Polynomial Sequences¶
We call a finite list of polynomials a Polynomial Sequence
.
Polynomial sequences in Sage can optionally be viewed as consisting of
various parts or sub-sequences. These kind of polynomial sequences
which naturally split into parts arise naturally for example in
algebraic cryptanalysis of symmetric cryptographic primitives. The
most prominent examples of these systems are: the small scale variants
of the AES [CMR2005] (cf. sage.crypto.mq.sr.SR()
) and Flurry/Curry [BPW2006]. By
default, a polynomial sequence has exactly one part.
AUTHORS:
Martin Albrecht (2007ff): initial version
Martin Albrecht (2009): refactoring, clean-up, new functions
Martin Albrecht (2011): refactoring, moved to sage.rings.polynomial
Alex Raichev (2011-06): added algebraic_dependence()
Charles Bouillaguet (2013-1): added solve()
EXAMPLES:
As an example consider a small scale variant of the AES:
sage: sr = mq.SR(2, 1, 2, 4, gf2=True, polybori=True) # needs sage.rings.polynomial.pbori
sage: sr # needs sage.rings.polynomial.pbori
SR(2,1,2,4)
>>> from sage.all import *
>>> sr = mq.SR(Integer(2), Integer(1), Integer(2), Integer(4), gf2=True, polybori=True) # needs sage.rings.polynomial.pbori
>>> sr # needs sage.rings.polynomial.pbori
SR(2,1,2,4)
We can construct a polynomial sequence for a random plaintext-ciphertext pair and study it:
sage: set_random_seed(1)
sage: while True: # workaround (see :issue:`31891`) # needs sage.rings.polynomial.pbori
....: try:
....: F, s = sr.polynomial_system()
....: break
....: except ZeroDivisionError:
....: pass
sage: F # needs sage.rings.polynomial.pbori
Polynomial Sequence with 112 Polynomials in 64 Variables
sage: r2 = F.part(2); r2 # needs sage.rings.polynomial.pbori
(w200 + k100 + x100 + x102 + x103,
w201 + k101 + x100 + x101 + x103 + 1,
w202 + k102 + x100 + x101 + x102 + 1,
w203 + k103 + x101 + x102 + x103,
w210 + k110 + x110 + x112 + x113,
w211 + k111 + x110 + x111 + x113 + 1,
w212 + k112 + x110 + x111 + x112 + 1,
w213 + k113 + x111 + x112 + x113,
x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100,
x100*w100 + x100*w101 + x101*w100 + x101*w103 + x102*w102 + x103*w101,
x100*w101 + x100*w102 + x101*w100 + x101*w101 + x102*w100 + x102*w103 + x103*w102,
x100*w100 + x100*w102 + x100*w103 + x101*w100 + x101*w101 + x102*w102 + x103*w100 + x100,
x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 + x101,
x100*w100 + x100*w102 + x101*w100 + x101*w102 + x101*w103 + x102*w100 + x102*w101 + x103*w102 + x102,
x100*w101 + x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w103 + x103,
x100*w100 + x100*w101 + x100*w103 + x101*w101 + x102*w100 + x102*w102 + x103*w100 + w100,
x100*w102 + x101*w100 + x101*w101 + x101*w103 + x102*w101 + x103*w100 + x103*w102 + w101,
x100*w100 + x100*w101 + x100*w102 + x101*w102 + x102*w100 + x102*w101 + x102*w103 + x103*w101 + w102,
x100*w101 + x101*w100 + x101*w102 + x102*w100 + x103*w101 + x103*w103 + w103,
x100*w102 + x101*w101 + x102*w100 + x103*w103 + 1,
x110*w110 + x110*w113 + x111*w112 + x112*w111 + x113*w110,
x110*w110 + x110*w111 + x111*w110 + x111*w113 + x112*w112 + x113*w111,
x110*w111 + x110*w112 + x111*w110 + x111*w111 + x112*w110 + x112*w113 + x113*w112,
x110*w110 + x110*w112 + x110*w113 + x111*w110 + x111*w111 + x112*w112 + x113*w110 + x110,
x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w111 + x111,
x110*w110 + x110*w112 + x111*w110 + x111*w112 + x111*w113 + x112*w110 + x112*w111 + x113*w112 + x112,
x110*w111 + x110*w112 + x111*w110 + x111*w113 + x112*w111 + x113*w113 + x113,
x110*w110 + x110*w111 + x110*w113 + x111*w111 + x112*w110 + x112*w112 + x113*w110 + w110,
x110*w112 + x111*w110 + x111*w111 + x111*w113 + x112*w111 + x113*w110 + x113*w112 + w111,
x110*w110 + x110*w111 + x110*w112 + x111*w112 + x112*w110 + x112*w111 + x112*w113 + x113*w111 + w112,
x110*w111 + x111*w110 + x111*w112 + x112*w110 + x113*w111 + x113*w113 + w113,
x110*w112 + x111*w111 + x112*w110 + x113*w113 + 1)
>>> from sage.all import *
>>> set_random_seed(Integer(1))
>>> while True: # workaround (see :issue:`31891`) # needs sage.rings.polynomial.pbori
... try:
... F, s = sr.polynomial_system()
... break
... except ZeroDivisionError:
... pass
>>> F # needs sage.rings.polynomial.pbori
Polynomial Sequence with 112 Polynomials in 64 Variables
>>> r2 = F.part(Integer(2)); r2 # needs sage.rings.polynomial.pbori
(w200 + k100 + x100 + x102 + x103,
w201 + k101 + x100 + x101 + x103 + 1,
w202 + k102 + x100 + x101 + x102 + 1,
w203 + k103 + x101 + x102 + x103,
w210 + k110 + x110 + x112 + x113,
w211 + k111 + x110 + x111 + x113 + 1,
w212 + k112 + x110 + x111 + x112 + 1,
w213 + k113 + x111 + x112 + x113,
x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100,
x100*w100 + x100*w101 + x101*w100 + x101*w103 + x102*w102 + x103*w101,
x100*w101 + x100*w102 + x101*w100 + x101*w101 + x102*w100 + x102*w103 + x103*w102,
x100*w100 + x100*w102 + x100*w103 + x101*w100 + x101*w101 + x102*w102 + x103*w100 + x100,
x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 + x101,
x100*w100 + x100*w102 + x101*w100 + x101*w102 + x101*w103 + x102*w100 + x102*w101 + x103*w102 + x102,
x100*w101 + x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w103 + x103,
x100*w100 + x100*w101 + x100*w103 + x101*w101 + x102*w100 + x102*w102 + x103*w100 + w100,
x100*w102 + x101*w100 + x101*w101 + x101*w103 + x102*w101 + x103*w100 + x103*w102 + w101,
x100*w100 + x100*w101 + x100*w102 + x101*w102 + x102*w100 + x102*w101 + x102*w103 + x103*w101 + w102,
x100*w101 + x101*w100 + x101*w102 + x102*w100 + x103*w101 + x103*w103 + w103,
x100*w102 + x101*w101 + x102*w100 + x103*w103 + 1,
x110*w110 + x110*w113 + x111*w112 + x112*w111 + x113*w110,
x110*w110 + x110*w111 + x111*w110 + x111*w113 + x112*w112 + x113*w111,
x110*w111 + x110*w112 + x111*w110 + x111*w111 + x112*w110 + x112*w113 + x113*w112,
x110*w110 + x110*w112 + x110*w113 + x111*w110 + x111*w111 + x112*w112 + x113*w110 + x110,
x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w111 + x111,
x110*w110 + x110*w112 + x111*w110 + x111*w112 + x111*w113 + x112*w110 + x112*w111 + x113*w112 + x112,
x110*w111 + x110*w112 + x111*w110 + x111*w113 + x112*w111 + x113*w113 + x113,
x110*w110 + x110*w111 + x110*w113 + x111*w111 + x112*w110 + x112*w112 + x113*w110 + w110,
x110*w112 + x111*w110 + x111*w111 + x111*w113 + x112*w111 + x113*w110 + x113*w112 + w111,
x110*w110 + x110*w111 + x110*w112 + x111*w112 + x112*w110 + x112*w111 + x112*w113 + x113*w111 + w112,
x110*w111 + x111*w110 + x111*w112 + x112*w110 + x113*w111 + x113*w113 + w113,
x110*w112 + x111*w111 + x112*w110 + x113*w113 + 1)
We separate the system in independent subsystems:
sage: C = Sequence(r2).connected_components(); C # needs sage.rings.polynomial.pbori
[[w200 + k100 + x100 + x102 + x103,
w201 + k101 + x100 + x101 + x103 + 1,
w202 + k102 + x100 + x101 + x102 + 1,
w203 + k103 + x101 + x102 + x103,
x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100,
x100*w100 + x100*w101 + x101*w100 + x101*w103 + x102*w102 + x103*w101,
x100*w101 + x100*w102 + x101*w100 + x101*w101 + x102*w100 + x102*w103 + x103*w102,
x100*w100 + x100*w102 + x100*w103 + x101*w100 + x101*w101 + x102*w102 + x103*w100 + x100,
x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 + x101,
x100*w100 + x100*w102 + x101*w100 + x101*w102 + x101*w103 + x102*w100 + x102*w101 + x103*w102 + x102,
x100*w101 + x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w103 + x103,
x100*w100 + x100*w101 + x100*w103 + x101*w101 + x102*w100 + x102*w102 + x103*w100 + w100,
x100*w102 + x101*w100 + x101*w101 + x101*w103 + x102*w101 + x103*w100 + x103*w102 + w101,
x100*w100 + x100*w101 + x100*w102 + x101*w102 + x102*w100 + x102*w101 + x102*w103 + x103*w101 + w102,
x100*w101 + x101*w100 + x101*w102 + x102*w100 + x103*w101 + x103*w103 + w103,
x100*w102 + x101*w101 + x102*w100 + x103*w103 + 1],
[w210 + k110 + x110 + x112 + x113,
w211 + k111 + x110 + x111 + x113 + 1,
w212 + k112 + x110 + x111 + x112 + 1,
w213 + k113 + x111 + x112 + x113,
x110*w110 + x110*w113 + x111*w112 + x112*w111 + x113*w110,
x110*w110 + x110*w111 + x111*w110 + x111*w113 + x112*w112 + x113*w111,
x110*w111 + x110*w112 + x111*w110 + x111*w111 + x112*w110 + x112*w113 + x113*w112,
x110*w110 + x110*w112 + x110*w113 + x111*w110 + x111*w111 + x112*w112 + x113*w110 + x110,
x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w111 + x111,
x110*w110 + x110*w112 + x111*w110 + x111*w112 + x111*w113 + x112*w110 + x112*w111 + x113*w112 + x112,
x110*w111 + x110*w112 + x111*w110 + x111*w113 + x112*w111 + x113*w113 + x113,
x110*w110 + x110*w111 + x110*w113 + x111*w111 + x112*w110 + x112*w112 + x113*w110 + w110,
x110*w112 + x111*w110 + x111*w111 + x111*w113 + x112*w111 + x113*w110 + x113*w112 + w111,
x110*w110 + x110*w111 + x110*w112 + x111*w112 + x112*w110 + x112*w111 + x112*w113 + x113*w111 + w112,
x110*w111 + x111*w110 + x111*w112 + x112*w110 + x113*w111 + x113*w113 + w113,
x110*w112 + x111*w111 + x112*w110 + x113*w113 + 1]]
sage: C[0].groebner_basis() # needs sage.rings.polynomial.pbori
Polynomial Sequence with 30 Polynomials in 16 Variables
>>> from sage.all import *
>>> C = Sequence(r2).connected_components(); C # needs sage.rings.polynomial.pbori
[[w200 + k100 + x100 + x102 + x103,
w201 + k101 + x100 + x101 + x103 + 1,
w202 + k102 + x100 + x101 + x102 + 1,
w203 + k103 + x101 + x102 + x103,
x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100,
x100*w100 + x100*w101 + x101*w100 + x101*w103 + x102*w102 + x103*w101,
x100*w101 + x100*w102 + x101*w100 + x101*w101 + x102*w100 + x102*w103 + x103*w102,
x100*w100 + x100*w102 + x100*w103 + x101*w100 + x101*w101 + x102*w102 + x103*w100 + x100,
x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 + x101,
x100*w100 + x100*w102 + x101*w100 + x101*w102 + x101*w103 + x102*w100 + x102*w101 + x103*w102 + x102,
x100*w101 + x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w103 + x103,
x100*w100 + x100*w101 + x100*w103 + x101*w101 + x102*w100 + x102*w102 + x103*w100 + w100,
x100*w102 + x101*w100 + x101*w101 + x101*w103 + x102*w101 + x103*w100 + x103*w102 + w101,
x100*w100 + x100*w101 + x100*w102 + x101*w102 + x102*w100 + x102*w101 + x102*w103 + x103*w101 + w102,
x100*w101 + x101*w100 + x101*w102 + x102*w100 + x103*w101 + x103*w103 + w103,
x100*w102 + x101*w101 + x102*w100 + x103*w103 + 1],
[w210 + k110 + x110 + x112 + x113,
w211 + k111 + x110 + x111 + x113 + 1,
w212 + k112 + x110 + x111 + x112 + 1,
w213 + k113 + x111 + x112 + x113,
x110*w110 + x110*w113 + x111*w112 + x112*w111 + x113*w110,
x110*w110 + x110*w111 + x111*w110 + x111*w113 + x112*w112 + x113*w111,
x110*w111 + x110*w112 + x111*w110 + x111*w111 + x112*w110 + x112*w113 + x113*w112,
x110*w110 + x110*w112 + x110*w113 + x111*w110 + x111*w111 + x112*w112 + x113*w110 + x110,
x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w111 + x111,
x110*w110 + x110*w112 + x111*w110 + x111*w112 + x111*w113 + x112*w110 + x112*w111 + x113*w112 + x112,
x110*w111 + x110*w112 + x111*w110 + x111*w113 + x112*w111 + x113*w113 + x113,
x110*w110 + x110*w111 + x110*w113 + x111*w111 + x112*w110 + x112*w112 + x113*w110 + w110,
x110*w112 + x111*w110 + x111*w111 + x111*w113 + x112*w111 + x113*w110 + x113*w112 + w111,
x110*w110 + x110*w111 + x110*w112 + x111*w112 + x112*w110 + x112*w111 + x112*w113 + x113*w111 + w112,
x110*w111 + x111*w110 + x111*w112 + x112*w110 + x113*w111 + x113*w113 + w113,
x110*w112 + x111*w111 + x112*w110 + x113*w113 + 1]]
>>> C[Integer(0)].groebner_basis() # needs sage.rings.polynomial.pbori
Polynomial Sequence with 30 Polynomials in 16 Variables
and compute the coefficient matrix:
sage: A,v = Sequence(r2).coefficients_monomials() # needs sage.rings.polynomial.pbori
sage: A.rank() # needs sage.rings.polynomial.pbori
32
>>> from sage.all import *
>>> A,v = Sequence(r2).coefficients_monomials() # needs sage.rings.polynomial.pbori
>>> A.rank() # needs sage.rings.polynomial.pbori
32
Using these building blocks we can implement a simple XL algorithm easily:
sage: sr = mq.SR(1,1,1,4, gf2=True, polybori=True, order='lex') # needs sage.rings.polynomial.pbori
sage: while True: # workaround (see :issue:`31891`) # needs sage.rings.polynomial.pbori
....: try:
....: F, s = sr.polynomial_system()
....: break
....: except ZeroDivisionError:
....: pass
sage: # needs sage.rings.polynomial.pbori
sage: monomials = [a*b for a in F.variables() for b in F.variables() if a < b]
sage: len(monomials)
190
sage: F2 = Sequence(map(mul, cartesian_product_iterator((monomials, F))))
sage: A, v = F2.coefficients_monomials(sparse=False)
sage: A.echelonize()
sage: A
6840 x 4474 dense matrix over Finite Field of size 2...
sage: A.rank()
4056
sage: A[4055] * v
k001*k003
>>> from sage.all import *
>>> sr = mq.SR(Integer(1),Integer(1),Integer(1),Integer(4), gf2=True, polybori=True, order='lex') # needs sage.rings.polynomial.pbori
>>> while True: # workaround (see :issue:`31891`) # needs sage.rings.polynomial.pbori
... try:
... F, s = sr.polynomial_system()
... break
... except ZeroDivisionError:
... pass
>>> # needs sage.rings.polynomial.pbori
>>> monomials = [a*b for a in F.variables() for b in F.variables() if a < b]
>>> len(monomials)
190
>>> F2 = Sequence(map(mul, cartesian_product_iterator((monomials, F))))
>>> A, v = F2.coefficients_monomials(sparse=False)
>>> A.echelonize()
>>> A
6840 x 4474 dense matrix over Finite Field of size 2...
>>> A.rank()
4056
>>> A[Integer(4055)] * v
k001*k003
Note
In many other computer algebra systems (cf. Singular) this class
would be called Ideal
but an ideal is a very distinct object
from its generators and thus this is not an ideal in Sage.
Classes¶
- sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence(arg1, arg2=None, immutable=False, cr=False, cr_str=None)[source]¶
Construct a new polynomial sequence object.
INPUT:
arg1
– a multivariate polynomial ring, an ideal or a matrixarg2
– an iterable object of parts or polynomials (default:None
)immutable
– ifTrue
the sequence is immutable (default:False
)cr
– print a line break after each element (default:False
)cr_str
– print a line break after each element if ‘str’ is called (default:None
)
EXAMPLES:
sage: P.<a,b,c,d> = PolynomialRing(GF(127), 4) sage: I = sage.rings.ideal.Katsura(P) # needs sage.libs.singular
>>> from sage.all import * >>> P = PolynomialRing(GF(Integer(127)), Integer(4), names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = P._first_ngens(4) >>> I = sage.rings.ideal.Katsura(P) # needs sage.libs.singular
If a list of tuples is provided, those form the parts:
sage: F = Sequence([I.gens(),I.gens()], I.ring()); F # indirect doctest # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c, a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c] sage: F.nparts() # needs sage.libs.singular 2
>>> from sage.all import * >>> F = Sequence([I.gens(),I.gens()], I.ring()); F # indirect doctest # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c, a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c] >>> F.nparts() # needs sage.libs.singular 2
If an ideal is provided, the generators are used:
sage: Sequence(I) # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
>>> from sage.all import * >>> Sequence(I) # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
If a list of polynomials is provided, the system has only one part:
sage: F = Sequence(I.gens(), I.ring()); F # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c] sage: F.nparts() # needs sage.libs.singular 1
>>> from sage.all import * >>> F = Sequence(I.gens(), I.ring()); F # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c] >>> F.nparts() # needs sage.libs.singular 1
We test that the ring is inferred correctly:
sage: P.<x,y,z> = GF(2)[] sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence sage: PolynomialSequence([1,x,y]).ring() Multivariate Polynomial Ring in x, y, z over Finite Field of size 2 sage: PolynomialSequence([[1,x,y], [0]]).ring() Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
>>> from sage.all import * >>> P = GF(Integer(2))['x, y, z']; (x, y, z,) = P._first_ngens(3) >>> from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence >>> PolynomialSequence([Integer(1),x,y]).ring() Multivariate Polynomial Ring in x, y, z over Finite Field of size 2 >>> PolynomialSequence([[Integer(1),x,y], [Integer(0)]]).ring() Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
- class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic(parts, ring, immutable=False, cr=False, cr_str=None)[source]¶
Bases:
Sequence_generic
Construct a new system of multivariate polynomials.
INPUT:
part
– list of lists with polynomialsring
– a multivariate polynomial ringimmutable
– ifTrue
the sequence is immutable (default:False
)cr
– print a line break after each element (default:False
)cr_str
– print a line break after each element if ‘str’ is called (default:None
)
EXAMPLES:
sage: P.<a,b,c,d> = PolynomialRing(GF(127), 4) sage: I = sage.rings.ideal.Katsura(P) # needs sage.libs.singular sage: Sequence([I.gens()], I.ring()) # indirect doctest # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
>>> from sage.all import * >>> P = PolynomialRing(GF(Integer(127)), Integer(4), names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = P._first_ngens(4) >>> I = sage.rings.ideal.Katsura(P) # needs sage.libs.singular >>> Sequence([I.gens()], I.ring()) # indirect doctest # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
If an ideal is provided, the generators are used.:
sage: Sequence(I) # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
>>> from sage.all import * >>> Sequence(I) # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
If a list of polynomials is provided, the system has only one part.:
sage: Sequence(I.gens(), I.ring()) # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
>>> from sage.all import * >>> Sequence(I.gens(), I.ring()) # needs sage.libs.singular [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
- algebraic_dependence()[source]¶
Return the ideal of annihilating polynomials for the polynomials in
self
, if those polynomials are algebraically dependent. Otherwise, return the zero ideal.OUTPUT:
If the polynomials \(f_1,\ldots,f_r\) in
self
are algebraically dependent, then the output is the ideal \(\{F \in K[T_1,\ldots,T_r] : F(f_1,\ldots,f_r) = 0\}\) of annihilating polynomials of \(f_1,\ldots,f_r\). Here \(K\) is the coefficient ring of polynomial ring of \(f_1,\ldots,f_r\) and \(T_1,\ldots,T_r\) are new indeterminates. If \(f_1,\ldots,f_r\) are algebraically independent, then the output is the zero ideal in \(K[T_1,\ldots,T_r]\).EXAMPLES:
sage: # needs sage.libs.singular sage: R.<x,y> = PolynomialRing(QQ) sage: S = Sequence([x, x*y]) sage: I = S.algebraic_dependence(); I Ideal (0) of Multivariate Polynomial Ring in T0, T1 over Rational Field
>>> from sage.all import * >>> # needs sage.libs.singular >>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2) >>> S = Sequence([x, x*y]) >>> I = S.algebraic_dependence(); I Ideal (0) of Multivariate Polynomial Ring in T0, T1 over Rational Field
sage: # needs sage.libs.singular sage: R.<x,y> = PolynomialRing(QQ) sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2]) sage: I = S.algebraic_dependence(); I Ideal (16 + 32*T2 - 8*T0^2 + 24*T2^2 - 8*T0^2*T2 + 8*T2^3 + 9*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + 8*T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) of Multivariate Polynomial Ring in T0, T1, T2 over Rational Field sage: [F(S) for F in I.gens()] [0]
>>> from sage.all import * >>> # needs sage.libs.singular >>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2) >>> S = Sequence([x, (x**Integer(2) + y**Integer(2) - Integer(1))**Integer(2), x*y - Integer(2)]) >>> I = S.algebraic_dependence(); I Ideal (16 + 32*T2 - 8*T0^2 + 24*T2^2 - 8*T0^2*T2 + 8*T2^3 + 9*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + 8*T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) of Multivariate Polynomial Ring in T0, T1, T2 over Rational Field >>> [F(S) for F in I.gens()] [0]
sage: # needs sage.libs.singular sage: R.<x,y> = PolynomialRing(GF(7)) sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2]) sage: I = S.algebraic_dependence(); I Ideal (2 - 3*T2 - T0^2 + 3*T2^2 - T0^2*T2 + T2^3 + 2*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) of Multivariate Polynomial Ring in T0, T1, T2 over Finite Field of size 7 sage: [F(S) for F in I.gens()] [0]
>>> from sage.all import * >>> # needs sage.libs.singular >>> R = PolynomialRing(GF(Integer(7)), names=('x', 'y',)); (x, y,) = R._first_ngens(2) >>> S = Sequence([x, (x**Integer(2) + y**Integer(2) - Integer(1))**Integer(2), x*y - Integer(2)]) >>> I = S.algebraic_dependence(); I Ideal (2 - 3*T2 - T0^2 + 3*T2^2 - T0^2*T2 + T2^3 + 2*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) of Multivariate Polynomial Ring in T0, T1, T2 over Finite Field of size 7 >>> [F(S) for F in I.gens()] [0]
Note
This function’s code also works for sequences of polynomials from a univariate polynomial ring, but i don’t know where in the Sage codebase to put it to use it to that effect.
AUTHORS:
Alex Raichev (2011-06-22)
- coefficient_matrix(sparse=True)[source]¶
Return tuple
(A,v)
whereA
is the coefficient matrix of this system andv
the matching monomial vector.Thus value of
A[i,j]
corresponds the coefficient of the monomialv[j]
in thei
-th polynomial in this system.Monomials are order w.r.t. the term ordering of
self.ring()
in reverse order, i.e. such that the smallest entry comes last.INPUT:
sparse
– construct a sparse matrix (default:True
)
EXAMPLES:
sage: # needs sage.libs.singular sage: P.<a,b,c,d> = PolynomialRing(GF(127), 4) sage: I = sage.rings.ideal.Katsura(P) sage: I.gens() [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c] sage: F = Sequence(I) sage: A,v = F.coefficient_matrix() doctest:warning... DeprecationWarning: the function coefficient_matrix is deprecated; use coefficients_monomials instead See https://github.com/sagemath/sage/issues/37035 for details. sage: A [ 0 0 0 0 0 0 0 0 0 1 2 2 2 126] [ 1 0 2 0 0 2 0 0 2 126 0 0 0 0] [ 0 2 0 0 2 0 0 2 0 0 126 0 0 0] [ 0 0 1 2 0 0 2 0 0 0 0 126 0 0] sage: v [a^2] [a*b] [b^2] [a*c] [b*c] [c^2] [b*d] [c*d] [d^2] [ a] [ b] [ c] [ d] [ 1] sage: A*v [ a + 2*b + 2*c + 2*d - 1] [a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a] [ 2*a*b + 2*b*c + 2*c*d - b] [ b^2 + 2*a*c + 2*b*d - c]
>>> from sage.all import * >>> # needs sage.libs.singular >>> P = PolynomialRing(GF(Integer(127)), Integer(4), names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = P._first_ngens(4) >>> I = sage.rings.ideal.Katsura(P) >>> I.gens() [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c] >>> F = Sequence(I) >>> A,v = F.coefficient_matrix() doctest:warning... DeprecationWarning: the function coefficient_matrix is deprecated; use coefficients_monomials instead See https://github.com/sagemath/sage/issues/37035 for details. >>> A [ 0 0 0 0 0 0 0 0 0 1 2 2 2 126] [ 1 0 2 0 0 2 0 0 2 126 0 0 0 0] [ 0 2 0 0 2 0 0 2 0 0 126 0 0 0] [ 0 0 1 2 0 0 2 0 0 0 0 126 0 0] >>> v [a^2] [a*b] [b^2] [a*c] [b*c] [c^2] [b*d] [c*d] [d^2] [ a] [ b] [ c] [ d] [ 1] >>> A*v [ a + 2*b + 2*c + 2*d - 1] [a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a] [ 2*a*b + 2*b*c + 2*c*d - b] [ b^2 + 2*a*c + 2*b*d - c]
- coefficients_monomials(order=None, sparse=True)[source]¶
Return the matrix of coefficients
A
and the matching vector of monomialsv
, such thatA*v == vector(self)
.Thus value of
A[i,j]
corresponds the coefficient of the monomialv[j]
in thei
-th polynomial in this system.Monomials are ordered w.r.t. the term ordering of
order
if given; otherwise, they are ordered w.r.t.self.ring()
in reverse order, i.e., such that the smallest entry comes last.INPUT:
sparse
– construct a sparse matrix (default:True
)order
– list or tuple specifying the order of monomials (default:None
)
EXAMPLES:
sage: # needs sage.libs.singular sage: P.<a,b,c,d> = PolynomialRing(GF(127), 4) sage: I = sage.rings.ideal.Katsura(P) sage: I.gens() [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c] sage: F = Sequence(I) sage: A,v = F.coefficients_monomials() sage: A [ 0 0 0 0 0 0 0 0 0 1 2 2 2 126] [ 1 0 2 0 0 2 0 0 2 126 0 0 0 0] [ 0 2 0 0 2 0 0 2 0 0 126 0 0 0] [ 0 0 1 2 0 0 2 0 0 0 0 126 0 0] sage: v (a^2, a*b, b^2, a*c, b*c, c^2, b*d, c*d, d^2, a, b, c, d, 1) sage: A*v (a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c)
>>> from sage.all import * >>> # needs sage.libs.singular >>> P = PolynomialRing(GF(Integer(127)), Integer(4), names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = P._first_ngens(4) >>> I = sage.rings.ideal.Katsura(P) >>> I.gens() [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c] >>> F = Sequence(I) >>> A,v = F.coefficients_monomials() >>> A [ 0 0 0 0 0 0 0 0 0 1 2 2 2 126] [ 1 0 2 0 0 2 0 0 2 126 0 0 0 0] [ 0 2 0 0 2 0 0 2 0 0 126 0 0 0] [ 0 0 1 2 0 0 2 0 0 0 0 126 0 0] >>> v (a^2, a*b, b^2, a*c, b*c, c^2, b*d, c*d, d^2, a, b, c, d, 1) >>> A*v (a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c)
- connected_components()[source]¶
Split the polynomial system in systems which do not share any variables.
EXAMPLES:
As an example consider one part of AES, which naturally splits into four subsystems which are independent:
sage: # needs sage.rings.polynomial.pbori sage: sr = mq.SR(2, 4, 4, 8, gf2=True, polybori=True) sage: while True: # workaround (see :issue:`31891`) ....: try: ....: F, s = sr.polynomial_system() ....: break ....: except ZeroDivisionError: ....: pass sage: Fz = Sequence(F.part(2)) sage: Fz.connected_components() [Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables]
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> sr = mq.SR(Integer(2), Integer(4), Integer(4), Integer(8), gf2=True, polybori=True) >>> while True: # workaround (see :issue:`31891`) ... try: ... F, s = sr.polynomial_system() ... break ... except ZeroDivisionError: ... pass >>> Fz = Sequence(F.part(Integer(2))) >>> Fz.connected_components() [Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables]
- connection_graph()[source]¶
Return the graph which has the variables of this system as vertices and edges between two variables if they appear in the same polynomial.
EXAMPLES:
sage: # needs sage.rings.polynomial.pbori sage: B.<x,y,z> = BooleanPolynomialRing() sage: F = Sequence([x*y + y + 1, z + 1]) sage: G = F.connection_graph(); G Graph on 3 vertices sage: G.is_connected() False sage: F = Sequence([x]) sage: F.connection_graph() Graph on 1 vertex
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> B = BooleanPolynomialRing(names=('x', 'y', 'z',)); (x, y, z,) = B._first_ngens(3) >>> F = Sequence([x*y + y + Integer(1), z + Integer(1)]) >>> G = F.connection_graph(); G Graph on 3 vertices >>> G.is_connected() False >>> F = Sequence([x]) >>> F.connection_graph() Graph on 1 vertex
- groebner_basis(*args, **kwargs)[source]¶
Compute and return a Groebner basis for the ideal spanned by the polynomials in this system.
INPUT:
args
– list of arguments passed toMPolynomialIdeal.groebner_basis
callkwargs
– dictionary of arguments passed toMPolynomialIdeal.groebner_basis
call
EXAMPLES:
sage: # needs sage.rings.polynomial.pbori sage: sr = mq.SR(allow_zero_inversions=True) sage: F, s = sr.polynomial_system() sage: gb = F.groebner_basis() sage: Ideal(gb).basis_is_groebner() True
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> sr = mq.SR(allow_zero_inversions=True) >>> F, s = sr.polynomial_system() >>> gb = F.groebner_basis() >>> Ideal(gb).basis_is_groebner() True
- ideal()[source]¶
Return ideal spanned by the elements of this system.
EXAMPLES:
sage: # needs sage.rings.polynomial.pbori sage: sr = mq.SR(allow_zero_inversions=True) sage: F, s = sr.polynomial_system() sage: P = F.ring() sage: I = F.ideal() sage: J = I.elimination_ideal(P.gens()[4:-4]) sage: J <= I True sage: set(J.gens().variables()).issubset(P.gens()[:4] + P.gens()[-4:]) True
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> sr = mq.SR(allow_zero_inversions=True) >>> F, s = sr.polynomial_system() >>> P = F.ring() >>> I = F.ideal() >>> J = I.elimination_ideal(P.gens()[Integer(4):-Integer(4)]) >>> J <= I True >>> set(J.gens().variables()).issubset(P.gens()[:Integer(4)] + P.gens()[-Integer(4):]) True
- is_groebner(singular=Singular)[source]¶
Return
True
if the generators of this ideal (self.gens()
) form a Groebner basis.Let \(I\) be the set of generators of this ideal. The check is performed by trying to lift \(Syz(LM(I))\) to \(Syz(I)\) as \(I\) forms a Groebner basis if and only if for every element \(S\) in \(Syz(LM(I))\):
\(S * G = \sum_{i=0}^{m} h_ig_i ---->_G 0.\)
EXAMPLES:
sage: # needs sage.libs.singular sage: R.<a,b,c,d,e,f,g,h,i,j> = PolynomialRing(GF(127), 10) sage: I = sage.rings.ideal.Cyclic(R, 4) sage: I.basis.is_groebner() False sage: I2 = Ideal(I.groebner_basis()) sage: I2.basis.is_groebner() True
>>> from sage.all import * >>> # needs sage.libs.singular >>> R = PolynomialRing(GF(Integer(127)), Integer(10), names=('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',)); (a, b, c, d, e, f, g, h, i, j,) = R._first_ngens(10) >>> I = sage.rings.ideal.Cyclic(R, Integer(4)) >>> I.basis.is_groebner() False >>> I2 = Ideal(I.groebner_basis()) >>> I2.basis.is_groebner() True
- maximal_degree()[source]¶
Return the maximal degree of any polynomial in this sequence.
EXAMPLES:
sage: P.<x,y,z> = PolynomialRing(GF(7)) sage: F = Sequence([x*y + x, x]) sage: F.maximal_degree() 2 sage: P.<x,y,z> = PolynomialRing(GF(7)) sage: F = Sequence([], universe=P) sage: F.maximal_degree() -1
>>> from sage.all import * >>> P = PolynomialRing(GF(Integer(7)), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> F = Sequence([x*y + x, x]) >>> F.maximal_degree() 2 >>> P = PolynomialRing(GF(Integer(7)), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> F = Sequence([], universe=P) >>> F.maximal_degree() -1
- monomials()[source]¶
Return an unordered tuple of monomials in this polynomial system.
EXAMPLES:
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori sage: F,s = sr.polynomial_system() # needs sage.rings.polynomial.pbori sage: len(F.monomials()) # needs sage.rings.polynomial.pbori 49
>>> from sage.all import * >>> sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori >>> F,s = sr.polynomial_system() # needs sage.rings.polynomial.pbori >>> len(F.monomials()) # needs sage.rings.polynomial.pbori 49
- nmonomials()[source]¶
Return the number of monomials present in this system.
EXAMPLES:
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori sage: F,s = sr.polynomial_system() # needs sage.rings.polynomial.pbori sage: F.nmonomials() # needs sage.rings.polynomial.pbori 49
>>> from sage.all import * >>> sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori >>> F,s = sr.polynomial_system() # needs sage.rings.polynomial.pbori >>> F.nmonomials() # needs sage.rings.polynomial.pbori 49
- nparts()[source]¶
Return number of parts of this system.
EXAMPLES:
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori sage: F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori sage: F.nparts() # needs sage.rings.polynomial.pbori 4
>>> from sage.all import * >>> sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori >>> F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori >>> F.nparts() # needs sage.rings.polynomial.pbori 4
- nvariables()[source]¶
Return number of variables present in this system.
EXAMPLES:
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori sage: F,s = sr.polynomial_system() # needs sage.rings.polynomial.pbori sage: F.nvariables() # needs sage.rings.polynomial.pbori 20
>>> from sage.all import * >>> sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori >>> F,s = sr.polynomial_system() # needs sage.rings.polynomial.pbori >>> F.nvariables() # needs sage.rings.polynomial.pbori 20
- part(i)[source]¶
Return
i
-th part of this system.EXAMPLES:
sage: # needs sage.rings.polynomial.pbori sage: sr = mq.SR(allow_zero_inversions=True) sage: F, s = sr.polynomial_system() sage: R0 = F.part(1) sage: R0 (k000^2 + k001, k001^2 + k002, k002^2 + k003, k003^2 + k000)
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> sr = mq.SR(allow_zero_inversions=True) >>> F, s = sr.polynomial_system() >>> R0 = F.part(Integer(1)) >>> R0 (k000^2 + k001, k001^2 + k002, k002^2 + k003, k003^2 + k000)
- parts()[source]¶
Return a tuple of parts of this system.
EXAMPLES:
sage: # needs sage.rings.polynomial.pbori sage: sr = mq.SR(allow_zero_inversions=True) sage: F, s = sr.polynomial_system() sage: l = F.parts() sage: len(l) 4
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> sr = mq.SR(allow_zero_inversions=True) >>> F, s = sr.polynomial_system() >>> l = F.parts() >>> len(l) 4
- reduced()[source]¶
If this sequence is \((f_1, ..., f_n)\) then this method returns \((g_1, ..., g_s)\) such that:
\((f_1,...,f_n) = (g_1,...,g_s)\)
\(LT(g_i) \neq LT(g_j)\) for all \(i \neq j\)
\(LT(g_i)\) does not divide \(m\) for all monomials \(m\) of \(\{g_1,...,g_{i-1},g_{i+1},...,g_s\}\)
\(LC(g_i) = 1\) for all \(i\) if the coefficient ring is a field.
EXAMPLES:
sage: R.<x,y,z> = PolynomialRing(QQ) sage: F = Sequence([z*x+y^3,z+y^3,z+x*y]) sage: F.reduced() [y^3 + z, x*y + z, x*z - z]
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3) >>> F = Sequence([z*x+y**Integer(3),z+y**Integer(3),z+x*y]) >>> F.reduced() [y^3 + z, x*y + z, x*z - z]
Note that tail reduction for local orderings is not well-defined:
sage: R.<x,y,z> = PolynomialRing(QQ,order='negdegrevlex') sage: F = Sequence([z*x+y^3,z+y^3,z+x*y]) sage: F.reduced() [z + x*y, x*y - y^3, x^2*y - y^3]
>>> from sage.all import * >>> R = PolynomialRing(QQ,order='negdegrevlex', names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3) >>> F = Sequence([z*x+y**Integer(3),z+y**Integer(3),z+x*y]) >>> F.reduced() [z + x*y, x*y - y^3, x^2*y - y^3]
A fixed error with nonstandard base fields:
sage: R.<t>=QQ['t'] sage: K.<x,y>=R.fraction_field()['x,y'] sage: I=t*x*K sage: I.basis.reduced() [x]
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> K = R.fraction_field()['x,y']; (x, y,) = K._first_ngens(2) >>> I=t*x*K >>> I.basis.reduced() [x]
The interreduced basis of 0 is 0:
sage: P.<x,y,z> = GF(2)[] sage: Sequence([P(0)]).reduced() [0]
>>> from sage.all import * >>> P = GF(Integer(2))['x, y, z']; (x, y, z,) = P._first_ngens(3) >>> Sequence([P(Integer(0))]).reduced() [0]
Leading coefficients are reduced to 1:
sage: P.<x,y> = QQ[] sage: Sequence([2*x,y]).reduced() [x, y] sage: P.<x,y> = CC[] # needs sage.rings.real_mpfr sage: Sequence([2*x,y]).reduced() [x, y]
>>> from sage.all import * >>> P = QQ['x, y']; (x, y,) = P._first_ngens(2) >>> Sequence([Integer(2)*x,y]).reduced() [x, y] >>> P = CC['x, y']; (x, y,) = P._first_ngens(2)# needs sage.rings.real_mpfr >>> Sequence([Integer(2)*x,y]).reduced() [x, y]
ALGORITHM:
Uses Singular’s interred command or
sage.rings.polynomial.toy_buchberger.inter_reduction()
if conversion to Singular fails.
- ring()[source]¶
Return the polynomial ring all elements live in.
EXAMPLES:
sage: sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block') # needs sage.rings.polynomial.pbori sage: F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori sage: print(F.ring().repr_long()) # needs sage.rings.polynomial.pbori Polynomial Ring Base Ring : Finite Field of size 2 Size : 20 Variables Block 0 : Ordering : deglex Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003 Block 1 : Ordering : deglex Names : k000, k001, k002, k003
>>> from sage.all import * >>> sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block') # needs sage.rings.polynomial.pbori >>> F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori >>> print(F.ring().repr_long()) # needs sage.rings.polynomial.pbori Polynomial Ring Base Ring : Finite Field of size 2 Size : 20 Variables Block 0 : Ordering : deglex Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003 Block 1 : Ordering : deglex Names : k000, k001, k002, k003
- subs(*args, **kwargs)[source]¶
Substitute variables for every polynomial in this system and return a new system. See
MPolynomial.subs()
for calling convention.INPUT:
args
– arguments to be passed toMPolynomial.subs()
kwargs
– keyword arguments to be passed toMPolynomial.subs()
EXAMPLES:
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori sage: F, s = sr.polynomial_system(); F # needs sage.rings.polynomial.pbori Polynomial Sequence with 40 Polynomials in 20 Variables sage: F = F.subs(s); F # needs sage.rings.polynomial.pbori Polynomial Sequence with 40 Polynomials in 16 Variables
>>> from sage.all import * >>> sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori >>> F, s = sr.polynomial_system(); F # needs sage.rings.polynomial.pbori Polynomial Sequence with 40 Polynomials in 20 Variables >>> F = F.subs(s); F # needs sage.rings.polynomial.pbori Polynomial Sequence with 40 Polynomials in 16 Variables
- universe()[source]¶
Return the polynomial ring all elements live in.
EXAMPLES:
sage: sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block') # needs sage.rings.polynomial.pbori sage: F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori sage: print(F.ring().repr_long()) # needs sage.rings.polynomial.pbori Polynomial Ring Base Ring : Finite Field of size 2 Size : 20 Variables Block 0 : Ordering : deglex Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003 Block 1 : Ordering : deglex Names : k000, k001, k002, k003
>>> from sage.all import * >>> sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block') # needs sage.rings.polynomial.pbori >>> F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori >>> print(F.ring().repr_long()) # needs sage.rings.polynomial.pbori Polynomial Ring Base Ring : Finite Field of size 2 Size : 20 Variables Block 0 : Ordering : deglex Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003 Block 1 : Ordering : deglex Names : k000, k001, k002, k003
- variables()[source]¶
Return all variables present in this system. This tuple may or may not be equal to the generators of the ring of this system.
EXAMPLES:
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori sage: F,s = sr.polynomial_system() # needs sage.rings.polynomial.pbori sage: F.variables()[:10] # needs sage.rings.polynomial.pbori (k003, k002, k001, k000, s003, s002, s001, s000, w103, w102)
>>> from sage.all import * >>> sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori >>> F,s = sr.polynomial_system() # needs sage.rings.polynomial.pbori >>> F.variables()[:Integer(10)] # needs sage.rings.polynomial.pbori (k003, k002, k001, k000, s003, s002, s001, s000, w103, w102)
- class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2(parts, ring, immutable=False, cr=False, cr_str=None)[source]¶
Bases:
PolynomialSequence_generic
Polynomial Sequences over \(\GF{2}\).
- coefficients_monomials(order=None, sparse=True)[source]¶
Return the matrix of coefficients
A
and the matching vector of monomialsv
, such thatA*v == vector(self)
.Thus value of
A[i,j]
corresponds the coefficient of the monomialv[j]
in thei
-th polynomial in this system.Monomials are ordered w.r.t. the term ordering of
order
if given; otherwise, they are ordered w.r.t.self.ring()
in reverse order, i.e., such that the smallest entry comes last.INPUT:
sparse
– construct a sparse matrix (default:True
)order
– list or tuple specifying the order of monomials (default:None
)
EXAMPLES:
sage: # needs sage.rings.polynomial.pbori sage: B.<x,y,z> = BooleanPolynomialRing() sage: F = Sequence([x*y + y + 1, z + 1]) sage: A, v = F.coefficients_monomials() sage: A [1 1 0 1] [0 0 1 1] sage: v (x*y, y, z, 1) sage: A*v (x*y + y + 1, z + 1)
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> B = BooleanPolynomialRing(names=('x', 'y', 'z',)); (x, y, z,) = B._first_ngens(3) >>> F = Sequence([x*y + y + Integer(1), z + Integer(1)]) >>> A, v = F.coefficients_monomials() >>> A [1 1 0 1] [0 0 1 1] >>> v (x*y, y, z, 1) >>> A*v (x*y + y + 1, z + 1)
- eliminate_linear_variables(maxlength=+Infinity, skip=None, return_reductors=False, use_polybori=False)[source]¶
Return a new system where linear leading variables are eliminated if the tail of the polynomial has length at most
maxlength
.INPUT:
maxlength
– an optional upper bound on the number of monomials by which a variable is replaced. Ifmaxlength==+Infinity
then no condition is checked. (default: +Infinity).skip
– an optional callable to skip eliminations. It must accept two parameters and return eitherTrue
orFalse
. The two parameters are the leading term and the tail of a polynomial (default:None
).return_reductors
– ifTrue
the list of polynomials with linear leading terms which were used for reduction is also returned (default:False
).use_polybori
– ifTrue
thenpolybori.ll.eliminate
is called. While this is typically faster than what is implemented here, it is less flexible (skip
is not supported) and may increase the degree (default:False
)
OUTPUT:
With
return_reductors=True
, a pair of sequences of boolean polynomials are returned, along with the promises that:The union of the two sequences spans the same boolean ideal as the argument of the method
The second sequence only contains linear polynomials, and it forms a reduced groebner basis (they all have pairwise distinct leading variables, and the leading variable of a polynomial does not occur anywhere in other polynomials).
The leading variables of the second sequence do not occur anywhere in the first sequence (these variables have been eliminated).
With
return_reductors=False
, only the first sequence is returned.EXAMPLES:
sage: # needs sage.rings.polynomial.pbori sage: B.<a,b,c,d> = BooleanPolynomialRing() sage: F = Sequence([c + d + b + 1, a + c + d, a*b + c, b*c*d + c]) sage: F.eliminate_linear_variables() # everything vanishes [] sage: F.eliminate_linear_variables(maxlength=2) [b + c + d + 1, b*c + b*d + c, b*c*d + c] sage: F.eliminate_linear_variables(skip=lambda lm,tail: str(lm)=='a') [a + c + d, a*c + a*d + a + c, c*d + c]
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> B = BooleanPolynomialRing(names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = B._first_ngens(4) >>> F = Sequence([c + d + b + Integer(1), a + c + d, a*b + c, b*c*d + c]) >>> F.eliminate_linear_variables() # everything vanishes [] >>> F.eliminate_linear_variables(maxlength=Integer(2)) [b + c + d + 1, b*c + b*d + c, b*c*d + c] >>> F.eliminate_linear_variables(skip=lambda lm,tail: str(lm)=='a') [a + c + d, a*c + a*d + a + c, c*d + c]
The list of reductors can be requested by setting
return_reductors
toTrue
:sage: # needs sage.rings.polynomial.pbori sage: B.<a,b,c,d> = BooleanPolynomialRing() sage: F = Sequence([a + b + d, a + b + c]) sage: F, R = F.eliminate_linear_variables(return_reductors=True) sage: F [] sage: R [a + b + d, c + d]
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> B = BooleanPolynomialRing(names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = B._first_ngens(4) >>> F = Sequence([a + b + d, a + b + c]) >>> F, R = F.eliminate_linear_variables(return_reductors=True) >>> F [] >>> R [a + b + d, c + d]
If the input system is detected to be inconsistent then
[1]
is returned, and the list of reductors is empty:sage: # needs sage.rings.polynomial.pbori sage: R.<x,y,z> = BooleanPolynomialRing() sage: S = Sequence([x*y*z + x*y + z*y + x*z, x + y + z + 1, x + y + z]) sage: S.eliminate_linear_variables() [1] sage: R.<x,y,z> = BooleanPolynomialRing() sage: S = Sequence([x*y*z + x*y + z*y + x*z, x + y + z + 1, x + y + z]) sage: S.eliminate_linear_variables(return_reductors=True) ([1], [])
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> R = BooleanPolynomialRing(names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3) >>> S = Sequence([x*y*z + x*y + z*y + x*z, x + y + z + Integer(1), x + y + z]) >>> S.eliminate_linear_variables() [1] >>> R = BooleanPolynomialRing(names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3) >>> S = Sequence([x*y*z + x*y + z*y + x*z, x + y + z + Integer(1), x + y + z]) >>> S.eliminate_linear_variables(return_reductors=True) ([1], [])
Note
This is called “massaging” in [BCJ2007].
- reduced()[source]¶
If this sequence is \(f_1, ..., f_n\), return \(g_1, ..., g_s\) such that:
\((f_1,...,f_n) = (g_1,...,g_s)\)
\(LT(g_i) \neq LT(g_j)\) for all \(i \neq j\)
\(LT(g_i)\) does not divide \(m\) for all monomials \(m\) of \({g_1,...,g_{i-1},g_{i+1},...,g_s}\)
EXAMPLES:
sage: # needs sage.rings.polynomial.pbori sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True) sage: while True: # workaround (see :issue:`31891`) ....: try: ....: F, s = sr.polynomial_system() ....: break ....: except ZeroDivisionError: ....: pass sage: g = F.reduced() sage: len(g) == len(set(gi.lt() for gi in g)) True sage: for i in range(len(g)): ....: for j in range(len(g)): ....: if i == j: ....: continue ....: for t in list(g[j]): ....: assert g[i].lt() not in t.divisors()
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> sr = mq.SR(Integer(1), Integer(1), Integer(1), Integer(4), gf2=True, polybori=True) >>> while True: # workaround (see :issue:`31891`) ... try: ... F, s = sr.polynomial_system() ... break ... except ZeroDivisionError: ... pass >>> g = F.reduced() >>> len(g) == len(set(gi.lt() for gi in g)) True >>> for i in range(len(g)): ... for j in range(len(g)): ... if i == j: ... continue ... for t in list(g[j]): ... assert g[i].lt() not in t.divisors()
- solve(algorithm='polybori', n=1, eliminate_linear_variables=True, verbose=False, **kwds)[source]¶
Find solutions of this boolean polynomial system.
This function provide a unified interface to several algorithms dedicated to solving systems of boolean equations. Depending on the particular nature of the system, some might be much faster than some others.
INPUT:
self
– a sequence of boolean polynomialsalgorithm
– the method to use. Possible values are'polybori'
,'sat'
and'exhaustive_search'
. (default:'polybori'
, since it is always available)n
– (default: 1) number of solutions to return. Ifn == +Infinity
then all solutions are returned. If \(n < \infty\) then \(n\) solutions are returned if the equations have at least \(n\) solutions. Otherwise, all the solutions are returned.eliminate_linear_variables
– whether to eliminate variables that appear linearly. This reduces the number of variables (makes solving faster a priori), but is likely to make the equations denser (may make solving slower depending on the method).verbose
– boolean (default:False
); whether to display progress and (potentially) useful information while the computation runs
EXAMPLES:
Without argument, a single arbitrary solution is returned:
sage: # needs sage.rings.polynomial.pbori sage: from sage.doctest.fixtures import reproducible_repr sage: R.<x,y,z> = BooleanPolynomialRing() sage: S = Sequence([x*y + z, y*z + x, x + y + z + 1]) sage: sol = S.solve() sage: print(reproducible_repr(sol)) [{x: 0, y: 1, z: 0}]
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> from sage.doctest.fixtures import reproducible_repr >>> R = BooleanPolynomialRing(names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3) >>> S = Sequence([x*y + z, y*z + x, x + y + z + Integer(1)]) >>> sol = S.solve() >>> print(reproducible_repr(sol)) [{x: 0, y: 1, z: 0}]
We check that it is actually a solution:
sage: S.subs(sol[0]) # needs sage.rings.polynomial.pbori [0, 0, 0]
>>> from sage.all import * >>> S.subs(sol[Integer(0)]) # needs sage.rings.polynomial.pbori [0, 0, 0]
We obtain all solutions:
sage: sols = S.solve(n=Infinity) # needs sage.rings.polynomial.pbori sage: print(reproducible_repr(sols)) # needs sage.rings.polynomial.pbori [{x: 0, y: 1, z: 0}, {x: 1, y: 1, z: 1}] sage: [S.subs(x) for x in sols] # needs sage.rings.polynomial.pbori [[0, 0, 0], [0, 0, 0]]
>>> from sage.all import * >>> sols = S.solve(n=Infinity) # needs sage.rings.polynomial.pbori >>> print(reproducible_repr(sols)) # needs sage.rings.polynomial.pbori [{x: 0, y: 1, z: 0}, {x: 1, y: 1, z: 1}] >>> [S.subs(x) for x in sols] # needs sage.rings.polynomial.pbori [[0, 0, 0], [0, 0, 0]]
We can force the use of exhaustive search if the optional package
FES
is present:sage: sol = S.solve(algorithm='exhaustive_search') # optional - fes # needs sage.rings.polynomial.pbori sage: print(reproducible_repr(sol)) # optional - fes # needs sage.rings.polynomial.pbori [{x: 1, y: 1, z: 1}] sage: S.subs(sol[0]) # optional - fes # needs sage.rings.polynomial.pbori [0, 0, 0]
>>> from sage.all import * >>> sol = S.solve(algorithm='exhaustive_search') # optional - fes # needs sage.rings.polynomial.pbori >>> print(reproducible_repr(sol)) # optional - fes # needs sage.rings.polynomial.pbori [{x: 1, y: 1, z: 1}] >>> S.subs(sol[Integer(0)]) # optional - fes # needs sage.rings.polynomial.pbori [0, 0, 0]
And we may use SAT-solvers if they are available:
sage: sol = S.solve(algorithm='sat') # optional - pycryptosat # needs sage.rings.polynomial.pbori sage: print(reproducible_repr(sol)) # optional - pycryptosat # needs sage.rings.polynomial.pbori [{x: 0, y: 1, z: 0}] sage: S.subs(sol[0]) # needs sage.rings.polynomial.pbori [0, 0, 0]
>>> from sage.all import * >>> sol = S.solve(algorithm='sat') # optional - pycryptosat # needs sage.rings.polynomial.pbori >>> print(reproducible_repr(sol)) # optional - pycryptosat # needs sage.rings.polynomial.pbori [{x: 0, y: 1, z: 0}] >>> S.subs(sol[Integer(0)]) # needs sage.rings.polynomial.pbori [0, 0, 0]
- class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2e(parts, ring, immutable=False, cr=False, cr_str=None)[source]¶
Bases:
PolynomialSequence_generic
PolynomialSequence over \(\GF{2^e}\), i.e extensions over \(\GF(2)\).
- weil_restriction()[source]¶
Project this polynomial system to \(\GF{2}\).
That is, compute the Weil restriction of scalars for the variety corresponding to this polynomial system and express it as a polynomial system over \(\GF{2}\).
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(2^2) sage: P.<x,y> = PolynomialRing(k, 2) sage: a = P.base_ring().gen() sage: F = Sequence([x*y + 1, a*x + 1], P) sage: F2 = F.weil_restriction() sage: F2 [x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 + x0, x1^2 + x1, y0^2 + y0, y1^2 + y1]
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(2)**Integer(2), names=('a',)); (a,) = k._first_ngens(1) >>> P = PolynomialRing(k, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> a = P.base_ring().gen() >>> F = Sequence([x*y + Integer(1), a*x + Integer(1)], P) >>> F2 = F.weil_restriction() >>> F2 [x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 + x0, x1^2 + x1, y0^2 + y0, y1^2 + y1]
Another bigger example for a small scale AES:
sage: # needs sage.rings.polynomial.pbori sage: sr = mq.SR(1, 1, 1, 4, gf2=False) sage: while True: # workaround (see :issue:`31891`) ....: try: ....: F, s = sr.polynomial_system() ....: break ....: except ZeroDivisionError: ....: pass sage: F Polynomial Sequence with 40 Polynomials in 20 Variables sage: F2 = F.weil_restriction(); F2 Polynomial Sequence with 240 Polynomials in 80 Variables
>>> from sage.all import * >>> # needs sage.rings.polynomial.pbori >>> sr = mq.SR(Integer(1), Integer(1), Integer(1), Integer(4), gf2=False) >>> while True: # workaround (see :issue:`31891`) ... try: ... F, s = sr.polynomial_system() ... break ... except ZeroDivisionError: ... pass >>> F Polynomial Sequence with 40 Polynomials in 20 Variables >>> F2 = F.weil_restriction(); F2 Polynomial Sequence with 240 Polynomials in 80 Variables
- sage.rings.polynomial.multi_polynomial_sequence.is_PolynomialSequence(F)[source]¶
Return
True
ifF
is aPolynomialSequence
.INPUT:
F
– anything
EXAMPLES:
sage: P.<x,y> = PolynomialRing(QQ) sage: I = [[x^2 + y^2], [x^2 - y^2]] sage: F = Sequence(I, P); F [x^2 + y^2, x^2 - y^2] sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence_generic sage: isinstance(F, PolynomialSequence_generic) True
>>> from sage.all import * >>> P = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> I = [[x**Integer(2) + y**Integer(2)], [x**Integer(2) - y**Integer(2)]] >>> F = Sequence(I, P); F [x^2 + y^2, x^2 - y^2] >>> from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence_generic >>> isinstance(F, PolynomialSequence_generic) True