Affine Lie Algebras#

AUTHORS:

  • Travis Scrimshaw (2013-05-03): Initial version

class sage.algebras.lie_algebras.affine_lie_algebra.AffineLieAlgebra(g, cartan_type, names, kac_moody)#

Bases: FinitelyGeneratedLieAlgebra

An (untwisted) affine Lie algebra.

Note that the derived subalgebra of the Kac-Moody algebra is the affine Lie algebra.

INPUT:

Can be one of the following:

  • a base ring and an affine Cartan type: constructs the affine (Kac-Moody) Lie algebra of the classical Lie algebra in the bracket representation over the base ring

  • a classical Lie algebra: constructs the corresponding affine (Kac-Moody) Lie algebra

There is the optional argument kac_moody, which can be set to False to obtain the affine Lie algebra instead of the affine Kac-Moody algebra.

REFERENCES:

basis()#

Return the basis of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['D', 4, 1])
sage: B = g.basis()
sage: al = RootSystem(['D',4]).root_lattice().simple_roots()
sage: B[al[1]+al[2]+al[4],4]
(E[alpha[1] + alpha[2] + alpha[4]])#t^4
sage: B[-al[1]-2*al[2]-al[3]-al[4],2]
(E[-alpha[1] - 2*alpha[2] - alpha[3] - alpha[4]])#t^2
sage: B[al[4],-2]
(E[alpha[4]])#t^-2
sage: B['c']
c
sage: B['d']
d

sage: g = LieAlgebra(QQ, cartan_type=['D', 4, 2], kac_moody=False)
sage: B = g.basis()
sage: it = iter(B)
sage: [next(it) for _ in range(3)]
[c, (E[alpha[1]])#t^0, (E[alpha[2]])#t^0]
sage: B['c']
c
sage: B['d']
0
c()#

Return the canonical central element \(c\) of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['A',3,1])
sage: g.c()
c
cartan_type()#

Return the Cartan type of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['C',3,1])
sage: g.cartan_type()
['C', 3, 1]
classical()#

Return the classical Lie algebra of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['F',4,1])
sage: g.classical()
Lie algebra of ['F', 4] in the Chevalley basis

sage: so5 = lie_algebras.so(QQ, 5, 'matrix')
sage: A = so5.affine()
sage: A.classical() == so5
True
d()#

Return the canonical derivation \(d\) of self.

If self is the affine Lie algebra, then this returns \(0\).

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['A',3,1])
sage: g.d()
d
sage: D = g.derived_subalgebra()
sage: D.d()
0
derived_series()#

Return the derived series of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['B',3,1])
sage: g.derived_series()
[Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis,
 Affine Lie algebra of ['B', 3] in the Chevalley basis]
sage: g.lower_central_series()
[Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis,
 Affine Lie algebra of ['B', 3] in the Chevalley basis]

sage: D = g.derived_subalgebra()
sage: D.derived_series()
[Affine Lie algebra of ['B', 3] in the Chevalley basis]
e(i=None)#

Return the generators \(e\) of self.

INPUT:

  • i – (optional) if specified, return just the generator \(e_i\)

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['B', 3, 1])
sage: list(g.e())
[(E[-alpha[1] - 2*alpha[2] - 2*alpha[3]])#t^1,
 (E[alpha[1]])#t^0, (E[alpha[2]])#t^0, (E[alpha[3]])#t^0]
sage: g.e(2)
(E[alpha[2]])#t^0
f(i=None)#

Return the generators \(f\) of self.

INPUT:

  • i – (optional) if specified, return just the generator \(f_i\)

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2])
sage: list(g.f())
[(E[alpha[1] + 2*alpha[2] + alpha[3]])#t^-1,
 (E[-alpha[1]])#t^0, (E[-alpha[2]])#t^0, (E[-alpha[3]])#t^0]
sage: g.f(2)
(E[-alpha[2]])#t^0
is_nilpotent()#

Return False as self is semisimple.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['B',3,1])
sage: g.is_nilpotent()
False
sage: g.is_solvable()
False
is_solvable()#

Return False as self is semisimple.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['B',3,1])
sage: g.is_nilpotent()
False
sage: g.is_solvable()
False
lie_algebra_generators()#

Return the Lie algebra generators of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['A',1,1])
sage: list(g.lie_algebra_generators())
[(E[alpha[1]])#t^0,
 (E[-alpha[1]])#t^0,
 (h1)#t^0,
 (E[-alpha[1]])#t^1,
 (E[alpha[1]])#t^-1,
 c,
 d]

sage: L = LieAlgebra(QQ, cartan_type=['A',5,2])
sage: list(L.lie_algebra_generators())
[(E[alpha[1]])#t^0,
 (E[alpha[2]])#t^0,
 (E[alpha[3]])#t^0,
 (E[-alpha[1]])#t^0,
 (E[-alpha[2]])#t^0,
 (E[-alpha[3]])#t^0,
 (h1)#t^0,
 (h2)#t^0,
 (h3)#t^0,
 (E[-alpha[1] - 2*alpha[2] - alpha[3]])#t^1,
 (E[alpha[1] + 2*alpha[2] + alpha[3]])#t^-1,
 c,
 d]
lower_central_series()#

Return the derived series of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['B',3,1])
sage: g.derived_series()
[Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis,
 Affine Lie algebra of ['B', 3] in the Chevalley basis]
sage: g.lower_central_series()
[Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis,
 Affine Lie algebra of ['B', 3] in the Chevalley basis]

sage: D = g.derived_subalgebra()
sage: D.derived_series()
[Affine Lie algebra of ['B', 3] in the Chevalley basis]
monomial(m)#

Construct the monomial indexed by m.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['B',4,1])
sage: al = RootSystem(['B',4]).root_lattice().simple_roots()
sage: g.monomial((al[1]+al[2]+al[3],4))
(E[alpha[1] + alpha[2] + alpha[3]])#t^4
sage: g.monomial((-al[1]-al[2]-2*al[3]-2*al[4],2))
(E[-alpha[1] - alpha[2] - 2*alpha[3] - 2*alpha[4]])#t^2
sage: g.monomial((al[4],-2))
(E[alpha[4]])#t^-2
sage: g.monomial('c')
c
sage: g.monomial('d')
d
zero()#

Return the element \(0\).

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['F',4,1])
sage: g.zero()
0
class sage.algebras.lie_algebras.affine_lie_algebra.TwistedAffineIndices(cartan_type)#

Bases: UniqueRepresentation, Set_generic

The indices for the basis of a twisted affine Lie algebra.

INPUT:

  • cartan_type – the Cartan type of twisted affine type Lie algebra

EXAMPLES:

sage: from sage.algebras.lie_algebras.affine_lie_algebra import TwistedAffineIndices
sage: I = TwistedAffineIndices(['A', 3, 2])
sage: it = iter(I)
sage: [next(it) for _ in range(20)]
[(alpha[1], 0), (alpha[2], 0), (alpha[1] + alpha[2], 0),
 (2*alpha[1] + alpha[2], 0), (-alpha[1], 0), (-alpha[2], 0),
 (-alpha[1] - alpha[2], 0), (-2*alpha[1] - alpha[2], 0),
 (alphacheck[1], 0), (alphacheck[2], 0), (alpha[1], 1),
 (alpha[1] + alpha[2], 1), (-alpha[1], 1), (-alpha[1] - alpha[2], 1),
 (alphacheck[1], 1), (alpha[1], -1), (alpha[1] + alpha[2], -1),
 (-alpha[1], -1), (-alpha[1] - alpha[2], -1), (alphacheck[1], -1)]

sage: I = TwistedAffineIndices(['A', 4, 2])
sage: it = iter(I)
sage: [next(it) for _ in range(20)]
[(alpha[0], 0), (alpha[1], 0), (alpha[0] + alpha[1], 0),
 (2*alpha[0] + alpha[1], 0), (-alpha[0], 0), (-alpha[1], 0),
 (-alpha[0] - alpha[1], 0), (-2*alpha[0] - alpha[1], 0),
 (alphacheck[0], 0), (alphacheck[1], 0), (alpha[0], 1), (alpha[1], 1),
 (alpha[0] + alpha[1], 1), (2*alpha[0] + alpha[1], 1), (-alpha[0], 1),
 (-alpha[1], 1), (-alpha[0] - alpha[1], 1), (-2*alpha[0] - alpha[1], 1),
 (2*alpha[0], 1), (2*alpha[0] + 2*alpha[1], 1)]

sage: I = TwistedAffineIndices(['A', 2, 2])
sage: it = iter(I)
sage: [next(it) for _ in range(10)]
[(alpha[0], 0), (-alpha[0], 0), (alphacheck[0], 0), (alpha[0], 1),
 (-alpha[0], 1), (2*alpha[0], 1), (-2*alpha[0], 1),
 (alphacheck[0], 1), (alpha[0], -1), (-alpha[0], -1)]
class sage.algebras.lie_algebras.affine_lie_algebra.TwistedAffineLieAlgebra(R, cartan_type, kac_moody)#

Bases: AffineLieAlgebra

A twisted affine Lie algebra.

A twisted affine Lie algebra is an affine Lie algebra for type \(X_N^{(r)}\) with \(r > 1\). We realize this inside an untwisted affine Kac–Moody Lie algebra following Chapter 8 of [Ka1990].

Let \(\overline{\mathfrak{g}}\) be the classical Lie algebra by taking the index set \(I \setminus \{\epsilon\}\), where \(\epsilon = 0\) unless \(\epsilon = n\) for \(X_N^{(r)} = A_{2n}^{(2)}\), for the twisted affine Lie algebra \(\widetilde{\mathfrak{g}}\). Let \(\mathfrak{g}\) be the basic Lie algebra of type \(X_N\). We realize \(\overline{\mathfrak{g}}\) as the fixed-point subalgebra \(\mathfrak{g}^{(0)}\) of \(\mathfrak{g}\) under the order \(r\) diagram automorphism \(\mu\). This naturally acts on the \(\zeta_r\) (a primitive \(r\)-th root of unity) eigenspace \(\mathfrak{g}^{(1)}\) of \(\mu\), which is the highest weight representation corresponding to the small adjoint (where the weight spaces are the short roots of \(\overline{\mathfrak{g}}\)). The twisted affine (Kac-Moody) Lie algebra \(\widehat{\mathfrak{g}}\) is constructed as the subalgebra of \(X_N^{(1)}\) given by

\[\sum_{i \in \ZZ} \mathfrak{g}^{(i \mod 2)} \otimes t^i \oplus R c \oplus R d,\]

where \(R\) is the base ring.

We encode our basis by using the classical Lie algebra except for type \(A_{2n}^{(2)}\). For type \(A_{2n}^{(2)}\), the fixed-point algebra \(\mathfrak{g}^{(0)}\) is of type \(B_n\) using the index set \(\{0, \ldots, n-1\}\). For \(\mathfrak{g}^{(1)}\), we identify the weights in this representation with the roots of type \(B_n\) and the double all of its short roots.

class Element#

Bases: UntwistedAffineLieAlgebraElement

ambient()#

Return the ambient untwisted affine Lie algebra of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2])
sage: g.ambient()
Affine Kac-Moody algebra of ['A', 5] in the Chevalley basis
derived_subalgebra()#

Return the derived subalgebra of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2])
sage: g
Twisted affine Kac-Moody algebra of type ['B', 3, 1]^* over Rational Field
sage: D = g.derived_subalgebra(); D
Twisted affine Lie algebra of type ['B', 3, 1]^* over Rational Field
sage: D.derived_subalgebra() == D
True
retract(x)#

Retract the element x from the ambient untwisted affine Lie algebra into self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2])
sage: it = iter(g.basis())
sage: elts = [next(it) for _ in range(20)]
sage: elts
[c,
 d,
 (E[alpha[1]])#t^0,
 (E[alpha[2]])#t^0,
 (E[alpha[3]])#t^0,
 (E[alpha[1] + alpha[2]])#t^0,
 (E[alpha[2] + alpha[3]])#t^0,
 (E[2*alpha[2] + alpha[3]])#t^0,
 (E[alpha[1] + alpha[2] + alpha[3]])#t^0,
 (E[2*alpha[1] + 2*alpha[2] + alpha[3]])#t^0,
 (E[alpha[1] + 2*alpha[2] + alpha[3]])#t^0,
 (E[-alpha[1]])#t^0,
 (E[-alpha[2]])#t^0,
 (E[-alpha[3]])#t^0,
 (E[-alpha[1] - alpha[2]])#t^0,
 (E[-alpha[2] - alpha[3]])#t^0,
 (E[-2*alpha[2] - alpha[3]])#t^0,
 (E[-alpha[1] - alpha[2] - alpha[3]])#t^0,
 (E[-2*alpha[1] - 2*alpha[2] - alpha[3]])#t^0,
 (E[-alpha[1] - 2*alpha[2] - alpha[3]])#t^0]
sage: all(g.retract(g.to_ambient(x)) == x for x in elts)
True
to_ambient()#

Lift the element x from the ambient untwisted affine Lie algebra into self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2])
sage: g.to_ambient
Generic morphism:
  From: Twisted affine Kac-Moody algebra of type ['B', 3, 1]^* over Rational Field
  To:   Affine Kac-Moody algebra of ['A', 5] in the Chevalley basis
class sage.algebras.lie_algebras.affine_lie_algebra.UntwistedAffineLieAlgebra(g, kac_moody)#

Bases: AffineLieAlgebra

An untwisted affine Lie algebra.

Let \(R\) be a ring. Given a finite-dimensional simple Lie algebra \(\mathfrak{g}\) over \(R\), the affine Lie algebra \(\widehat{\mathfrak{g}}^{\prime}\) associated to \(\mathfrak{g}\) is defined as

\[\widehat{\mathfrak{g}}' = \bigl( \mathfrak{g} \otimes R[t, t^{-1}] \bigr) \oplus R c,\]

where \(c\) is the canonical central element and \(R[t, t^{-1}]\) is the Laurent polynomial ring over \(R\). The Lie bracket is defined as

\[[x \otimes t^m + \lambda c, y \otimes t^n + \mu c] = [x, y] \otimes t^{m+n} + m \delta_{m,-n} ( x | y ) c,\]

where \(( x | y )\) is the Killing form on \(\mathfrak{g}\).

There is a canonical derivation \(d\) on \(\widehat{\mathfrak{g}}'\) that is defined by

\[d(x \otimes t^m + \lambda c) = a \otimes m t^m,\]

or equivalently by \(d = t \frac{d}{dt}\).

The affine Kac-Moody algebra \(\widehat{\mathfrak{g}}\) is formed by adjoining the derivation \(d\) such that

\[\widehat{\mathfrak{g}} = \bigl( \mathfrak{g} \otimes R[t,t^{-1}] \bigr) \oplus R c \oplus R d.\]

Specifically, the bracket on \(\widehat{\mathfrak{g}}\) is defined as

\[[t^m \otimes x \oplus \lambda c \oplus \mu d, t^n \otimes y \oplus \lambda_1 c \oplus \mu_1 d] = \bigl( t^{m+n} [x,y] + \mu n t^n \otimes y - \mu_1 m t^m \otimes x\bigr) \oplus m \delta_{m,-n} (x|y) c .\]

EXAMPLES:

We begin by constructing an affine Kac-Moody algebra of type \(G_2^{(1)}\) from the classical Lie algebra of type \(G_2\):

sage: g = LieAlgebra(QQ, cartan_type=['G',2])
sage: A = g.affine()
sage: A
Affine Kac-Moody algebra of ['G', 2] in the Chevalley basis

Next, we construct the generators and perform some computations:

sage: A.inject_variables()
Defining e1, e2, f1, f2, h1, h2, e0, f0, c, d
sage: e1.bracket(f1)
(h1)#t^0
sage: e0.bracket(f0)
(-h1 - 2*h2)#t^0 + 8*c
sage: e0.bracket(f1)
0
sage: A[d, f0]
(-E[3*alpha[1] + 2*alpha[2]])#t^-1
sage: A([[e0, e2], [[[e1, e2], [e0, [e1, e2]]], e1]])
(-6*E[-3*alpha[1] - alpha[2]])#t^2
sage: f0.bracket(f1)
0
sage: f0.bracket(f2)
(E[3*alpha[1] + alpha[2]])#t^-1
sage: A[h1+3*h2, A[[[f0, f2], f1], [f1,f2]] + f1] - f1
(2*E[alpha[1]])#t^-1

We can construct its derived subalgebra, the affine Lie algebra of type \(G_2^{(1)}\). In this case, there is no canonical derivation, so the generator \(d\) is \(0\):

sage: D = A.derived_subalgebra()
sage: D.d()
0
Element#

alias of UntwistedAffineLieAlgebraElement

derived_subalgebra()#

Return the derived subalgebra of self.

EXAMPLES:

sage: g = LieAlgebra(QQ, cartan_type=['B',3,1])
sage: g
Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis
sage: D = g.derived_subalgebra(); D
Affine Lie algebra of ['B', 3] in the Chevalley basis
sage: D.derived_subalgebra() == D
True