Rational Cherednik Algebras#

class sage.algebras.rational_cherednik_algebra.RationalCherednikAlgebra(ct, c, t, base_ring, prefix)#

Bases: CombinatorialFreeModule

A rational Cherednik algebra.

Let \(k\) be a field. Let \(W\) be a complex reflection group acting on a vector space \(\mathfrak{h}\) (over \(k\)). Let \(\mathfrak{h}^*\) denote the corresponding dual vector space. Let \(\cdot\) denote the natural action of \(w\) on \(\mathfrak{h}\) and \(\mathfrak{h}^*\). Let \(\mathcal{S}\) denote the set of reflections of \(W\) and \(\alpha_s\) and \(\alpha_s^{\vee}\) are the associated root and coroot of \(s\). Let \(c = (c_s)_{s \in W}\) such that \(c_s = c_{tst^{-1}}\) for all \(t \in W\).

The rational Cherednik algebra is the \(k\)-algebra \(H_{c,t}(W) = T(\mathfrak{h} \oplus \mathfrak{h}^*) \otimes kW\) with parameters \(c, t \in k\) that is subject to the relations:

\[\begin{split}\begin{aligned} w \alpha & = (w \cdot \alpha) w, \\ \alpha^{\vee} w & = w (w^{-1} \cdot \alpha^{\vee}), \\ \alpha \alpha^{\vee} & = \alpha^{\vee} \alpha + t \langle \alpha^{\vee}, \alpha \rangle + \sum_{s \in \mathcal{S}} c_s \frac{\langle \alpha^{\vee}, \alpha_s \rangle \langle \alpha^{\vee}_s, \alpha \rangle}{ \langle \alpha^{\vee}, \alpha \rangle} s, \end{aligned}\end{split}\]

where \(w \in W\) and \(\alpha \in \mathfrak{h}\) and \(\alpha^{\vee} \in \mathfrak{h}^*\).

INPUT:

  • ct – a finite Cartan type

  • c – the parameters \(c_s\) given as an element or a tuple, where the first entry is the one for the long roots and (for non-simply-laced types) the second is for the short roots

  • t – the parameter \(t\)

  • base_ring – (optional) the base ring

  • prefix – (default: ('a', 's', 'ac')) the prefixes

Todo

Implement a version for complex reflection groups.

REFERENCES:

algebra_generators()#

Return the algebra generators of self.

EXAMPLES:

sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
sage: list(R.algebra_generators())
[a1, a2, s1, s2, ac1, ac2]
an_element()#

Return an element of self.

EXAMPLES:

sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
sage: R.an_element()
3*ac1 + 2*s1 + a1
deformed_euler()#

Return the element \(eu_k\).

EXAMPLES:

sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
sage: R.deformed_euler()
2*I + 2/3*a1*ac1 + 1/3*a1*ac2 + 1/3*a2*ac1 + 2/3*a2*ac2
 + s1 + s2 + s1*s2*s1
degree_on_basis(m)#

Return the degree on the monomial indexed by m.

EXAMPLES:

sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
sage: [R.degree_on_basis(g.leading_support())
....:  for g in R.algebra_generators()]
[1, 1, 0, 0, -1, -1]
one_basis()#

Return the index of the element \(1\).

EXAMPLES:

sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
sage: R.one_basis()
(1, 1, 1)
product_on_basis(left, right)#

Return left multiplied by right in self.

EXAMPLES:

sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
sage: a2 = R.algebra_generators()['a2']
sage: ac1 = R.algebra_generators()['ac1']
sage: a2 * ac1  # indirect doctest
a2*ac1
sage: ac1 * a2
-I + a2*ac1 - s1 - s2 + 1/2*s1*s2*s1
sage: x = R.an_element()
sage: [y * x for y in R.some_elements()]
[0,
 3*ac1 + 2*s1 + a1,
 9*ac1^2 + 10*I + 6*a1*ac1 + 6*s1 + 3/2*s2 + 3/2*s1*s2*s1 + a1^2,
 3*a1*ac1 + 2*a1*s1 + a1^2,
 3*a2*ac1 + 2*a2*s1 + a1*a2,
 3*s1*ac1 + 2*I - a1*s1,
 3*s2*ac1 + 2*s2*s1 + a1*s2 + a2*s2,
 3*ac1^2 - 2*s1*ac1 + 2*I + a1*ac1 + 2*s1 + 1/2*s2 + 1/2*s1*s2*s1,
 3*ac1*ac2 + 2*s1*ac1 + 2*s1*ac2 - I + a1*ac2 - s1 - s2 + 1/2*s1*s2*s1]
sage: [x * y for y in R.some_elements()]
[0,
 3*ac1 + 2*s1 + a1,
 9*ac1^2 + 10*I + 6*a1*ac1 + 6*s1 + 3/2*s2 + 3/2*s1*s2*s1 + a1^2,
 6*I + 3*a1*ac1 + 6*s1 + 3/2*s2 + 3/2*s1*s2*s1 - 2*a1*s1 + a1^2,
 -3*I + 3*a2*ac1 - 3*s1 - 3*s2 + 3/2*s1*s2*s1 + 2*a1*s1 + 2*a2*s1 + a1*a2,
 -3*s1*ac1 + 2*I + a1*s1,
 3*s2*ac1 + 3*s2*ac2 + 2*s1*s2 + a1*s2,
 3*ac1^2 + 2*s1*ac1 + a1*ac1,
 3*ac1*ac2 + 2*s1*ac2 + a1*ac2]
some_elements()#

Return some elements of self.

EXAMPLES:

sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
sage: R.some_elements()
[0, I, 3*ac1 + 2*s1 + a1, a1, a2, s1, s2, ac1, ac2]
trivial_idempotent()#

Return the trivial idempotent of self.

Let \(e = |W|^{-1} \sum_{w \in W} w\) is the trivial idempotent. Thus \(e^2 = e\) and \(eW = We\). The trivial idempotent is used in the construction of the spherical Cherednik algebra from the rational Cherednik algebra by \(U_{c,t}(W) = e H_{c,t}(W) e\).

EXAMPLES:

sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
sage: R.trivial_idempotent()
1/6*I + 1/6*s1 + 1/6*s2 + 1/6*s2*s1 + 1/6*s1*s2 + 1/6*s1*s2*s1