Solving ordinary differential equations¶
This file contains functions useful for solving differential equations
which occur commonly in a 1st semester differential equations
course. For another numerical solver see the ode_solver()
function
and the optional package Octave.
Solutions from the Maxima package can contain the three constants
_C
, _K1
, and _K2
where the underscore is used to distinguish
them from symbolic variables that the user might have used. You can
substitute values for them, and make them into accessible usable
symbolic variables, for example with var("_C")
.
Commands:
desolve()
– compute the “general solution” to a 1st or 2nd order ODE via Maximadesolve_laplace()
– solve an ODE using Laplace transforms via Maxima. Initial conditions are optionaldesolve_rk4()
– solve numerically an IVP for one first order equation, return list of points or plotdesolve_system_rk4()
– solve numerically an IVP for a system of first order equations, return list of pointsdesolve_odeint()
– solve numerically a system of first-order ordinary differential equations usingodeint()
from the modulescipy.integrate
.desolve_system()
– solve a system of 1st order ODEs of any size using Maxima. Initial conditions are optionaleulers_method()
– approximate solution to a 1st order DE, presented as a tableeulers_method_2x2()
– approximate solution to a 1st order system of DEs, presented as a tableeulers_method_2x2_plot()
– plot the sequence of points obtained from Euler’s method
The following functions require the optional package tides
:
desolve_mintides()
– numerical solution of a system of 1st order ODEs via the Taylor series integrator method implemented in TIDESdesolve_tides_mpfr()
– arbitrary precision Taylor series integrator implemented in TIDES
AUTHORS:
David Joyner (3-2006) - Initial version of functions
Marshall Hampton (7-2007) - Creation of Python module and testing
Robert Bradshaw (10-2008) - Some interface cleanup.
Robert Marik (10-2009) - Some bugfixes and enhancements
Miguel Marco (06-2014) - Tides desolvers
- sage.calculus.desolvers.desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False, algorithm='maxima')[source]¶
Solve a 1st or 2nd order linear ODE, including IVP and BVP.
INPUT:
de
– an expression or equation representing the ODEdvar
– the dependent variable (hereafter called \(y\))ics
– (optional) the initial or boundary conditionsfor a first-order equation, specify the initial \(x\) and \(y\)
for a second-order equation, specify the initial \(x\), \(y\), and \(dy/dx\), i.e. write \([x_0, y(x_0), y'(x_0)]\)
for a second-order boundary solution, specify initial and final \(x\) and \(y\) boundary conditions, i.e. write \([x_0, y(x_0), x_1, y(x_1)]\).
gives an error if the solution is not SymbolicEquation (as happens for example for a Clairaut equation)
ivar
– (optional) the independent variable (hereafter called \(x\)), which must be specified if there is more than one independent variable in the equationshow_method
– (optional) ifTrue
, then Sage returns pair[solution, method]
, where method is the string describing the method which has been used to get a solution (Maxima uses the following order for first order equations: linear, separable, exact (including exact with integrating factor), homogeneous, bernoulli, generalized homogeneous) - use carefully in class, see below the example of an equation which is separable but this property is not recognized by Maxima and the equation is solved as exact.contrib_ode
– (optional) ifTrue
,desolve
allows to solve Clairaut, Lagrange, Riccati and some other equations. This may take a long time and is thus turned off by default. Initial conditions can be used only if the result is one SymbolicEquation (does not contain a singular solution, for example).algorithm
– (default:'maxima'
) one of'maxima'
– use maxima'fricas'
– use FriCAS (the optional fricas spkg has to be installed)
OUTPUT:
In most cases return a SymbolicEquation which defines the solution implicitly. If the result is in the form \(y(x)=\ldots\) (happens for linear eqs.), return the right-hand side only. The possible constant solutions of separable ODEs are omitted.
Note
Use
desolve? <tab>
if the output in the Sage notebook is truncated.EXAMPLES:
sage: x = var('x') sage: y = function('y')(x) sage: desolve(diff(y,x) + y - 1, y) (_C + e^x)*e^(-x)
>>> from sage.all import * >>> x = var('x') >>> y = function('y')(x) >>> desolve(diff(y,x) + y - Integer(1), y) (_C + e^x)*e^(-x)
sage: f = desolve(diff(y,x) + y - 1, y, ics=[10,2]); f (e^10 + e^x)*e^(-x)
>>> from sage.all import * >>> f = desolve(diff(y,x) + y - Integer(1), y, ics=[Integer(10),Integer(2)]); f (e^10 + e^x)*e^(-x)
sage: plot(f) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> plot(f) Graphics object consisting of 1 graphics primitive
We can also solve second-order differential equations:
sage: x = var('x') sage: y = function('y')(x) sage: de = diff(y,x,2) - y == x sage: desolve(de, y) _K2*e^(-x) + _K1*e^x - x
>>> from sage.all import * >>> x = var('x') >>> y = function('y')(x) >>> de = diff(y,x,Integer(2)) - y == x >>> desolve(de, y) _K2*e^(-x) + _K1*e^x - x
sage: f = desolve(de, y, [10,2,1]); f -x + 7*e^(x - 10) + 5*e^(-x + 10)
>>> from sage.all import * >>> f = desolve(de, y, [Integer(10),Integer(2),Integer(1)]); f -x + 7*e^(x - 10) + 5*e^(-x + 10)
sage: f(x=10) 2
>>> from sage.all import * >>> f(x=Integer(10)) 2
sage: diff(f,x)(x=10) 1
>>> from sage.all import * >>> diff(f,x)(x=Integer(10)) 1
sage: de = diff(y,x,2) + y == 0 sage: desolve(de, y) _K2*cos(x) + _K1*sin(x)
>>> from sage.all import * >>> de = diff(y,x,Integer(2)) + y == Integer(0) >>> desolve(de, y) _K2*cos(x) + _K1*sin(x)
sage: desolve(de, y, [0,1,pi/2,4]) cos(x) + 4*sin(x)
>>> from sage.all import * >>> desolve(de, y, [Integer(0),Integer(1),pi/Integer(2),Integer(4)]) cos(x) + 4*sin(x)
sage: desolve(y*diff(y,x)+sin(x)==0,y) -1/2*y(x)^2 == _C - cos(x)
>>> from sage.all import * >>> desolve(y*diff(y,x)+sin(x)==Integer(0),y) -1/2*y(x)^2 == _C - cos(x)
Clairaut equation: general and singular solutions:
sage: desolve(diff(y,x)^2+x*diff(y,x)-y==0,y,contrib_ode=True,show_method=True) [[y(x) == _C^2 + _C*x, y(x) == -1/4*x^2], 'clairau...']
>>> from sage.all import * >>> desolve(diff(y,x)**Integer(2)+x*diff(y,x)-y==Integer(0),y,contrib_ode=True,show_method=True) [[y(x) == _C^2 + _C*x, y(x) == -1/4*x^2], 'clairau...']
For equations involving more variables we specify an independent variable:
sage: a,b,c,n=var('a b c n') sage: desolve(x^2*diff(y,x)==a+b*x^n+c*x^2*y^2,y,ivar=x,contrib_ode=True) [[y(x) == 0, (b*x^(n - 2) + a/x^2)*c^2*u == 0]]
>>> from sage.all import * >>> a,b,c,n=var('a b c n') >>> desolve(x**Integer(2)*diff(y,x)==a+b*x**n+c*x**Integer(2)*y**Integer(2),y,ivar=x,contrib_ode=True) [[y(x) == 0, (b*x^(n - 2) + a/x^2)*c^2*u == 0]]
sage: desolve(x^2*diff(y,x)==a+b*x^n+c*x^2*y^2,y,ivar=x,contrib_ode=True,show_method=True) [[[y(x) == 0, (b*x^(n - 2) + a/x^2)*c^2*u == 0]], 'riccati']
>>> from sage.all import * >>> desolve(x**Integer(2)*diff(y,x)==a+b*x**n+c*x**Integer(2)*y**Integer(2),y,ivar=x,contrib_ode=True,show_method=True) [[[y(x) == 0, (b*x^(n - 2) + a/x^2)*c^2*u == 0]], 'riccati']
Higher order equations, not involving independent variable:
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y).expand() 1/6*y(x)^3 + _K1*y(x) == _K2 + x
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+y*(diff(y,x,Integer(1)))**Integer(3)==Integer(0),y).expand() 1/6*y(x)^3 + _K1*y(x) == _K2 + x
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,1,3]).expand() 1/6*y(x)^3 - 5/3*y(x) == x - 3/2
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+y*(diff(y,x,Integer(1)))**Integer(3)==Integer(0),y,[Integer(0),Integer(1),Integer(1),Integer(3)]).expand() 1/6*y(x)^3 - 5/3*y(x) == x - 3/2
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,1,3],show_method=True) [1/6*y(x)^3 - 5/3*y(x) == x - 3/2, 'freeofx']
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+y*(diff(y,x,Integer(1)))**Integer(3)==Integer(0),y,[Integer(0),Integer(1),Integer(1),Integer(3)],show_method=True) [1/6*y(x)^3 - 5/3*y(x) == x - 3/2, 'freeofx']
Separable equations - Sage returns solution in implicit form:
sage: desolve(diff(y,x)*sin(y) == cos(x),y) -cos(y(x)) == _C + sin(x)
>>> from sage.all import * >>> desolve(diff(y,x)*sin(y) == cos(x),y) -cos(y(x)) == _C + sin(x)
sage: desolve(diff(y,x)*sin(y) == cos(x),y,show_method=True) [-cos(y(x)) == _C + sin(x), 'separable']
>>> from sage.all import * >>> desolve(diff(y,x)*sin(y) == cos(x),y,show_method=True) [-cos(y(x)) == _C + sin(x), 'separable']
sage: desolve(diff(y,x)*sin(y) == cos(x),y,[pi/2,1]) -cos(y(x)) == -cos(1) + sin(x) - 1
>>> from sage.all import * >>> desolve(diff(y,x)*sin(y) == cos(x),y,[pi/Integer(2),Integer(1)]) -cos(y(x)) == -cos(1) + sin(x) - 1
Linear equation - Sage returns the expression on the right hand side only:
sage: desolve(diff(y,x)+(y) == cos(x),y) 1/2*((cos(x) + sin(x))*e^x + 2*_C)*e^(-x)
>>> from sage.all import * >>> desolve(diff(y,x)+(y) == cos(x),y) 1/2*((cos(x) + sin(x))*e^x + 2*_C)*e^(-x)
sage: desolve(diff(y,x)+(y) == cos(x),y,show_method=True) [1/2*((cos(x) + sin(x))*e^x + 2*_C)*e^(-x), 'linear']
>>> from sage.all import * >>> desolve(diff(y,x)+(y) == cos(x),y,show_method=True) [1/2*((cos(x) + sin(x))*e^x + 2*_C)*e^(-x), 'linear']
sage: desolve(diff(y,x)+(y) == cos(x),y,[0,1]) 1/2*(cos(x)*e^x + e^x*sin(x) + 1)*e^(-x)
>>> from sage.all import * >>> desolve(diff(y,x)+(y) == cos(x),y,[Integer(0),Integer(1)]) 1/2*(cos(x)*e^x + e^x*sin(x) + 1)*e^(-x)
This ODE with separated variables is solved as exact. Explanation - factor does not split \(e^{x-y}\) in Maxima into \(e^{x}e^{y}\):
sage: desolve(diff(y,x)==exp(x-y),y,show_method=True) [-e^x + e^y(x) == _C, 'exact']
>>> from sage.all import * >>> desolve(diff(y,x)==exp(x-y),y,show_method=True) [-e^x + e^y(x) == _C, 'exact']
You can solve Bessel equations, also using initial conditions, but you cannot put (sometimes desired) the initial condition at \(x=0\), since this point is a singular point of the equation. Anyway, if the solution should be bounded at \(x=0\), then
_K2=0
.sage: desolve(x^2*diff(y,x,x)+x*diff(y,x)+(x^2-4)*y==0,y) _K1*bessel_J(2, x) + _K2*bessel_Y(2, x)
>>> from sage.all import * >>> desolve(x**Integer(2)*diff(y,x,x)+x*diff(y,x)+(x**Integer(2)-Integer(4))*y==Integer(0),y) _K1*bessel_J(2, x) + _K2*bessel_Y(2, x)
Example of difficult ODE producing an error:
sage: desolve(sqrt(y)*diff(y,x)+e^(y)+cos(x)-sin(x+y)==0,y) # not tested Traceback (click to the left for traceback) ... NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option contrib_ode to True."
>>> from sage.all import * >>> desolve(sqrt(y)*diff(y,x)+e**(y)+cos(x)-sin(x+y)==Integer(0),y) # not tested Traceback (click to the left for traceback) ... NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option contrib_ode to True."
Another difficult ODE with error - moreover, it takes a long time:
sage: desolve(sqrt(y)*diff(y,x)+e^(y)+cos(x)-sin(x+y)==0,y,contrib_ode=True) # not tested
>>> from sage.all import * >>> desolve(sqrt(y)*diff(y,x)+e**(y)+cos(x)-sin(x+y)==Integer(0),y,contrib_ode=True) # not tested
Some more types of ODEs:
sage: desolve(x*diff(y,x)^2-(1+x*y)*diff(y,x)+y==0,y,contrib_ode=True,show_method=True) [[y(x) == _C + log(x), y(x) == _C*e^x], 'factor']
>>> from sage.all import * >>> desolve(x*diff(y,x)**Integer(2)-(Integer(1)+x*y)*diff(y,x)+y==Integer(0),y,contrib_ode=True,show_method=True) [[y(x) == _C + log(x), y(x) == _C*e^x], 'factor']
sage: desolve(diff(y,x)==(x+y)^2,y,contrib_ode=True,show_method=True) [[[x == _C - arctan(sqrt(t)), y(x) == -x - sqrt(t)], [x == _C + arctan(sqrt(t)), y(x) == -x + sqrt(t)]], 'lagrange']
>>> from sage.all import * >>> desolve(diff(y,x)==(x+y)**Integer(2),y,contrib_ode=True,show_method=True) [[[x == _C - arctan(sqrt(t)), y(x) == -x - sqrt(t)], [x == _C + arctan(sqrt(t)), y(x) == -x + sqrt(t)]], 'lagrange']
These two examples produce an error (as expected, Maxima 5.18 cannot solve equations from initial conditions). Maxima 5.18 returns false answer in this case!
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,2]).expand() # not tested Traceback (click to the left for traceback) ... NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option contrib_ode to True."
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+y*(diff(y,x,Integer(1)))**Integer(3)==Integer(0),y,[Integer(0),Integer(1),Integer(2)]).expand() # not tested Traceback (click to the left for traceback) ... NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option contrib_ode to True."
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,2],show_method=True) # not tested Traceback (click to the left for traceback) ... NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option contrib_ode to True."
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+y*(diff(y,x,Integer(1)))**Integer(3)==Integer(0),y,[Integer(0),Integer(1),Integer(2)],show_method=True) # not tested Traceback (click to the left for traceback) ... NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option contrib_ode to True."
Second order linear ODE:
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y) (_K2*x + _K1)*e^(-x) + 1/2*sin(x)
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == cos(x),y) (_K2*x + _K1)*e^(-x) + 1/2*sin(x)
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,show_method=True) [(_K2*x + _K1)*e^(-x) + 1/2*sin(x), 'variationofparameters']
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == cos(x),y,show_method=True) [(_K2*x + _K1)*e^(-x) + 1/2*sin(x), 'variationofparameters']
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,1]) 1/2*(7*x + 6)*e^(-x) + 1/2*sin(x)
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == cos(x),y,[Integer(0),Integer(3),Integer(1)]) 1/2*(7*x + 6)*e^(-x) + 1/2*sin(x)
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,1],show_method=True) [1/2*(7*x + 6)*e^(-x) + 1/2*sin(x), 'variationofparameters']
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == cos(x),y,[Integer(0),Integer(3),Integer(1)],show_method=True) [1/2*(7*x + 6)*e^(-x) + 1/2*sin(x), 'variationofparameters']
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,pi/2,2]) 3*(x*(e^(1/2*pi) - 2)/pi + 1)*e^(-x) + 1/2*sin(x)
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == cos(x),y,[Integer(0),Integer(3),pi/Integer(2),Integer(2)]) 3*(x*(e^(1/2*pi) - 2)/pi + 1)*e^(-x) + 1/2*sin(x)
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,pi/2,2],show_method=True) [3*(x*(e^(1/2*pi) - 2)/pi + 1)*e^(-x) + 1/2*sin(x), 'variationofparameters']
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == cos(x),y,[Integer(0),Integer(3),pi/Integer(2),Integer(2)],show_method=True) [3*(x*(e^(1/2*pi) - 2)/pi + 1)*e^(-x) + 1/2*sin(x), 'variationofparameters']
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y) (_K2*x + _K1)*e^(-x)
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == Integer(0),y) (_K2*x + _K1)*e^(-x)
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,show_method=True) [(_K2*x + _K1)*e^(-x), 'constcoeff']
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == Integer(0),y,show_method=True) [(_K2*x + _K1)*e^(-x), 'constcoeff']
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,[0,3,1]) (4*x + 3)*e^(-x)
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == Integer(0),y,[Integer(0),Integer(3),Integer(1)]) (4*x + 3)*e^(-x)
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,[0,3,1],show_method=True) [(4*x + 3)*e^(-x), 'constcoeff']
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == Integer(0),y,[Integer(0),Integer(3),Integer(1)],show_method=True) [(4*x + 3)*e^(-x), 'constcoeff']
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,[0,3,pi/2,2]) (2*x*(2*e^(1/2*pi) - 3)/pi + 3)*e^(-x)
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == Integer(0),y,[Integer(0),Integer(3),pi/Integer(2),Integer(2)]) (2*x*(2*e^(1/2*pi) - 3)/pi + 3)*e^(-x)
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,[0,3,pi/2,2],show_method=True) [(2*x*(2*e^(1/2*pi) - 3)/pi + 3)*e^(-x), 'constcoeff']
>>> from sage.all import * >>> desolve(diff(y,x,Integer(2))+Integer(2)*diff(y,x)+y == Integer(0),y,[Integer(0),Integer(3),pi/Integer(2),Integer(2)],show_method=True) [(2*x*(2*e^(1/2*pi) - 3)/pi + 3)*e^(-x), 'constcoeff']
Using
algorithm='fricas'
we can invoke the differential equation solver from FriCAS. For example, it can solve higher order linear equations:sage: de = x^3*diff(y, x, 3) + x^2*diff(y, x, 2) - 2*x*diff(y, x) + 2*y - 2*x^4 sage: Y = desolve(de, y, algorithm='fricas'); Y # optional - fricas (2*x^3 - 3*x^2 + 1)*_C0/x + (x^3 - 1)*_C1/x + (x^3 - 3*x^2 - 1)*_C2/x + 1/15*(x^5 - 10*x^3 + 20*x^2 + 4)/x
>>> from sage.all import * >>> de = x**Integer(3)*diff(y, x, Integer(3)) + x**Integer(2)*diff(y, x, Integer(2)) - Integer(2)*x*diff(y, x) + Integer(2)*y - Integer(2)*x**Integer(4) >>> Y = desolve(de, y, algorithm='fricas'); Y # optional - fricas (2*x^3 - 3*x^2 + 1)*_C0/x + (x^3 - 1)*_C1/x + (x^3 - 3*x^2 - 1)*_C2/x + 1/15*(x^5 - 10*x^3 + 20*x^2 + 4)/x
The initial conditions are then interpreted as \([x_0, y(x_0), y'(x_0), \ldots, y^(n)(x_0)]\):
sage: Y = desolve(de, y, ics=[1,3,7], algorithm='fricas'); Y # optional - fricas 1/15*(x^5 + 15*x^3 + 50*x^2 - 21)/x
>>> from sage.all import * >>> Y = desolve(de, y, ics=[Integer(1),Integer(3),Integer(7)], algorithm='fricas'); Y # optional - fricas 1/15*(x^5 + 15*x^3 + 50*x^2 - 21)/x
FriCAS can also solve some non-linear equations:
sage: de = diff(y, x) == y / (x+y*log(y)) sage: Y = desolve(de, y, algorithm='fricas'); Y # optional - fricas 1/2*(log(y(x))^2*y(x) - 2*x)/y(x)
>>> from sage.all import * >>> de = diff(y, x) == y / (x+y*log(y)) >>> Y = desolve(de, y, algorithm='fricas'); Y # optional - fricas 1/2*(log(y(x))^2*y(x) - 2*x)/y(x)
AUTHORS:
David Joyner (1-2006)
Robert Bradshaw (10-2008)
Robert Marik (10-2009)
- sage.calculus.desolvers.desolve_laplace(de, dvar, ics=None, ivar=None)[source]¶
Solve an ODE using Laplace transforms. Initial conditions are optional.
INPUT:
de
– a lambda expression representing the ODE (e.g.de = diff(y,x,2) == diff(y,x)+sin(x)
)dvar
– the dependent variable (e.g.y
)ivar
– (optional) the independent variable (hereafter called \(x\)), which must be specified if there is more than one independent variable in the equation.ics
– list of numbers representing initial conditions, (e.g.f(0)=1
,f'(0)=2
corresponds toics = [0,1,2]
)
OUTPUT: solution of the ODE as symbolic expression
EXAMPLES:
sage: u=function('u')(x) sage: eq = diff(u,x) - exp(-x) - u == 0 sage: desolve_laplace(eq,u) 1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
>>> from sage.all import * >>> u=function('u')(x) >>> eq = diff(u,x) - exp(-x) - u == Integer(0) >>> desolve_laplace(eq,u) 1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
We can use initial conditions:
sage: desolve_laplace(eq,u,ics=[0,3]) -1/2*e^(-x) + 7/2*e^x
>>> from sage.all import * >>> desolve_laplace(eq,u,ics=[Integer(0),Integer(3)]) -1/2*e^(-x) + 7/2*e^x
The initial conditions do not persist in the system (as they persisted in previous versions):
sage: desolve_laplace(eq,u) 1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
>>> from sage.all import * >>> desolve_laplace(eq,u) 1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
sage: f=function('f')(x) sage: eq = diff(f,x) + f == 0 sage: desolve_laplace(eq,f,[0,1]) e^(-x)
>>> from sage.all import * >>> f=function('f')(x) >>> eq = diff(f,x) + f == Integer(0) >>> desolve_laplace(eq,f,[Integer(0),Integer(1)]) e^(-x)
sage: x = var('x') sage: f = function('f')(x) sage: de = diff(f,x,x) - 2*diff(f,x) + f sage: desolve_laplace(de,f) -x*e^x*f(0) + x*e^x*D[0](f)(0) + e^x*f(0)
>>> from sage.all import * >>> x = var('x') >>> f = function('f')(x) >>> de = diff(f,x,x) - Integer(2)*diff(f,x) + f >>> desolve_laplace(de,f) -x*e^x*f(0) + x*e^x*D[0](f)(0) + e^x*f(0)
sage: desolve_laplace(de,f,ics=[0,1,2]) x*e^x + e^x
>>> from sage.all import * >>> desolve_laplace(de,f,ics=[Integer(0),Integer(1),Integer(2)]) x*e^x + e^x
AUTHORS:
David Joyner (1-2006,8-2007)
Robert Marik (10-2009)
- sage.calculus.desolvers.desolve_mintides(f, ics, initial, final, delta, tolrel=1e-16, tolabs=1e-16)[source]¶
Solve numerically a system of first order differential equations using the taylor series integrator implemented in mintides.
INPUT:
f
– symbolic function; its first argument will be the independent variable, . Its output should be de derivatives of the dependent variables.ics
– list or tuple with the initial conditionsinitial
– the starting value for the independent variablefinal
– the final value for the independent valuedelta
– the size of the steps in the outputtolrel
– the relative tolerance for the methodtolabs
– the absolute tolerance for the method
OUTPUT: list with the positions of the IVP
EXAMPLES:
We integrate a periodic orbit of the Kepler problem along 50 periods:
sage: var('t,x,y,X,Y') (t, x, y, X, Y) sage: f(t,x,y,X,Y)=[X, Y, -x/(x^2+y^2)^(3/2), -y/(x^2+y^2)^(3/2)] sage: ics = [0.8, 0, 0, 1.22474487139159] sage: t = 100*pi sage: sol = desolve_mintides(f, ics, 0, t, t, 1e-12, 1e-12) # optional -tides sage: sol # optional -tides # abs tol 1e-5 [[0.000000000000000, 0.800000000000000, 0.000000000000000, 0.000000000000000, 1.22474487139159], [314.159265358979, 0.800000000028622, -5.91973525754241e-9, 7.56887091890590e-9, 1.22474487136329]]
>>> from sage.all import * >>> var('t,x,y,X,Y') (t, x, y, X, Y) >>> __tmp__=var("t,x,y,X,Y"); f = symbolic_expression([X, Y, -x/(x**Integer(2)+y**Integer(2))**(Integer(3)/Integer(2)), -y/(x**Integer(2)+y**Integer(2))**(Integer(3)/Integer(2))]).function(t,x,y,X,Y) >>> ics = [RealNumber('0.8'), Integer(0), Integer(0), RealNumber('1.22474487139159')] >>> t = Integer(100)*pi >>> sol = desolve_mintides(f, ics, Integer(0), t, t, RealNumber('1e-12'), RealNumber('1e-12')) # optional -tides >>> sol # optional -tides # abs tol 1e-5 [[0.000000000000000, 0.800000000000000, 0.000000000000000, 0.000000000000000, 1.22474487139159], [314.159265358979, 0.800000000028622, -5.91973525754241e-9, 7.56887091890590e-9, 1.22474487136329]]
ALGORITHM:
Uses TIDES.
REFERENCES:
A. Abad, R. Barrio, F. Blesa, M. Rodriguez. Algorithm 924. ACM Transactions on Mathematical Software , 39 (1), 1-28.
A. Abad, R. Barrio, F. Blesa, M. Rodriguez. TIDES tutorial: Integrating ODEs by using the Taylor Series Method.
- sage.calculus.desolvers.desolve_odeint(des, ics, times, dvars, ivar=None, compute_jac=False, args=(), rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)[source]¶
Solve numerically a system of first-order ordinary differential equations using
scipy.integrate.odeint()
.INPUT:
des
– right hand sides of the systemics
– initial conditionstimes
– a sequence of time points in which the solution must be founddvars
– dependent variables. ATTENTION: the order must be the same as indes
, that means:d(dvars[i])/dt=des[i]
ivar
– independent variable, optionalcompute_jac
– boolean (default:False
); ifTrue
, the Jacobian ofdes
is computed and used during the integration of stiff systems
Other Parameters (taken from the documentation of the
odeint()
function fromscipy.integrate
):rtol
,atol
: float The input parametersrtol
andatol
determine the error control performed by the solver. The solver will control the vector, \(e\), of estimated local errors in \(y\), according to an inequality of the form:max-norm of (e / ewt) <= 1
where ewt is a vector of positive error weights computed as:
ewt = rtol * abs(y) + atol
rtol
andatol
can be either vectors the same length as \(y\) or scalars.tcrit
: array Vector of critical points (e.g. singularities) where integration care should be taken.h0
: float, (0: solver-determined) The step size to be attempted on the first step.hmax
: float, (0: solver-determined) The maximum absolute step size allowed.hmin
: float, (0: solver-determined) The minimum absolute step size allowed.ixpr
: boolean. Whether to generate extra printing at method switches.mxstep
: integer, (0: solver-determined) Maximum number of (internally defined) steps allowed for each integration point in t.mxhnil
: integer, (0: solver-determined) Maximum number of messages printed.mxordn
: integer, (0: solver-determined) Maximum order to be allowed for the nonstiff (Adams) method.mxords
: integer, (0: solver-determined) Maximum order to be allowed for the stiff (BDF) method.
OUTPUT: a list with the solution of the system at each time in
times
EXAMPLES:
Lotka Volterra Equations:
sage: from sage.calculus.desolvers import desolve_odeint sage: x,y = var('x,y') sage: f = [x*(1-y), -y*(1-x)] sage: sol = desolve_odeint(f, [0.5,2], srange(0,10,0.1), [x,y]) # needs scipy sage: p = line(zip(sol[:,0],sol[:,1])) # needs scipy sage.plot sage: p.show() # needs scipy sage.plot
>>> from sage.all import * >>> from sage.calculus.desolvers import desolve_odeint >>> x,y = var('x,y') >>> f = [x*(Integer(1)-y), -y*(Integer(1)-x)] >>> sol = desolve_odeint(f, [RealNumber('0.5'),Integer(2)], srange(Integer(0),Integer(10),RealNumber('0.1')), [x,y]) # needs scipy >>> p = line(zip(sol[:,Integer(0)],sol[:,Integer(1)])) # needs scipy sage.plot >>> p.show() # needs scipy sage.plot
Lorenz Equations:
sage: x,y,z = var('x,y,z') sage: # Next we define the parameters sage: sigma = 10 sage: rho = 28 sage: beta = 8/3 sage: # The Lorenz equations sage: lorenz = [sigma*(y-x),x*(rho-z)-y,x*y-beta*z] sage: # Time and initial conditions sage: times = srange(0,50.05,0.05) sage: ics = [0,1,1] sage: sol = desolve_odeint(lorenz, ics, times, [x,y,z], # needs scipy ....: rtol=1e-13, atol=1e-14)
>>> from sage.all import * >>> x,y,z = var('x,y,z') >>> # Next we define the parameters >>> sigma = Integer(10) >>> rho = Integer(28) >>> beta = Integer(8)/Integer(3) >>> # The Lorenz equations >>> lorenz = [sigma*(y-x),x*(rho-z)-y,x*y-beta*z] >>> # Time and initial conditions >>> times = srange(Integer(0),RealNumber('50.05'),RealNumber('0.05')) >>> ics = [Integer(0),Integer(1),Integer(1)] >>> sol = desolve_odeint(lorenz, ics, times, [x,y,z], # needs scipy ... rtol=RealNumber('1e-13'), atol=RealNumber('1e-14'))
One-dimensional stiff system:
sage: y = var('y') sage: epsilon = 0.01 sage: f = y^2*(1-y) sage: ic = epsilon sage: t = srange(0,2/epsilon,1) sage: sol = desolve_odeint(f, ic, t, y, # needs scipy ....: rtol=1e-9, atol=1e-10, compute_jac=True) sage: p = points(zip(t,sol[:,0])) # needs scipy sage.plot sage: p.show() # needs scipy sage.plot
>>> from sage.all import * >>> y = var('y') >>> epsilon = RealNumber('0.01') >>> f = y**Integer(2)*(Integer(1)-y) >>> ic = epsilon >>> t = srange(Integer(0),Integer(2)/epsilon,Integer(1)) >>> sol = desolve_odeint(f, ic, t, y, # needs scipy ... rtol=RealNumber('1e-9'), atol=RealNumber('1e-10'), compute_jac=True) >>> p = points(zip(t,sol[:,Integer(0)])) # needs scipy sage.plot >>> p.show() # needs scipy sage.plot
Another stiff system with some optional parameters with no default value:
sage: y1,y2,y3 = var('y1,y2,y3') sage: f1 = 77.27*(y2+y1*(1-8.375*1e-6*y1-y2)) sage: f2 = 1/77.27*(y3-(1+y1)*y2) sage: f3 = 0.16*(y1-y3) sage: f = [f1,f2,f3] sage: ci = [0.2,0.4,0.7] sage: t = srange(0,10,0.01) sage: v = [y1,y2,y3] sage: sol = desolve_odeint(f, ci, t, v, rtol=1e-3, atol=1e-4, # needs scipy ....: h0=0.1, hmax=1, hmin=1e-4, mxstep=1000, mxords=17)
>>> from sage.all import * >>> y1,y2,y3 = var('y1,y2,y3') >>> f1 = RealNumber('77.27')*(y2+y1*(Integer(1)-RealNumber('8.375')*RealNumber('1e-6')*y1-y2)) >>> f2 = Integer(1)/RealNumber('77.27')*(y3-(Integer(1)+y1)*y2) >>> f3 = RealNumber('0.16')*(y1-y3) >>> f = [f1,f2,f3] >>> ci = [RealNumber('0.2'),RealNumber('0.4'),RealNumber('0.7')] >>> t = srange(Integer(0),Integer(10),RealNumber('0.01')) >>> v = [y1,y2,y3] >>> sol = desolve_odeint(f, ci, t, v, rtol=RealNumber('1e-3'), atol=RealNumber('1e-4'), # needs scipy ... h0=RealNumber('0.1'), hmax=Integer(1), hmin=RealNumber('1e-4'), mxstep=Integer(1000), mxords=Integer(17))
AUTHOR:
Oriol Castejon (05-2010)
- sage.calculus.desolvers.desolve_rk4(de, dvar, ics=None, ivar=None, end_points=None, step=0.1, output='list', **kwds)[source]¶
Solve numerically one first-order ordinary differential equation.
INPUT:
Input is similar to
desolve
command. The differential equation can be written in a form close to theplot_slope_field
ordesolve
command.Variant 1 (function in two variables)
de
– right hand side, i.e. the function \(f(x,y)\) from ODE \(y'=f(x,y)\)dvar
– dependent variable (symbolic variable declared by var)
Variant 2 (symbolic equation)
de
– equation, including term withdiff(y,x)
dvar
– dependent variable (declared as function of independent variable)
Other parameters
ivar
– should be specified, if there are more variables or if the equation is autonomousics
– initial conditions in the form[x0,y0]
end_points
– the end points of the intervalif
end_points
is a or [a], we integrate betweenmin(ics[0],a)
andmax(ics[0],a)
if
end_points
is None, we useend_points=ics[0]+10
if end_points is [a,b] we integrate between
min(ics[0], a)
andmax(ics[0], b)
step
– (default: 0.1) the length of the step (positive number)output
– (default:'list'
) one of'list'
,'plot'
,'slope_field'
(graph of the solution with slope field)
OUTPUT:
Return a list of points, or plot produced by
list_plot
, optionally with slope field.See also
EXAMPLES:
sage: from sage.calculus.desolvers import desolve_rk4
>>> from sage.all import * >>> from sage.calculus.desolvers import desolve_rk4
Variant 2 for input - more common in numerics:
sage: x,y = var('x,y') sage: desolve_rk4(x*y*(2-y),y,ics=[0,1],end_points=1,step=0.5) [[0, 1], [0.5, 1.12419127424558], [1.0, 1.46159016228882...]]
>>> from sage.all import * >>> x,y = var('x,y') >>> desolve_rk4(x*y*(Integer(2)-y),y,ics=[Integer(0),Integer(1)],end_points=Integer(1),step=RealNumber('0.5')) [[0, 1], [0.5, 1.12419127424558], [1.0, 1.46159016228882...]]
Variant 1 for input - we can pass ODE in the form used by desolve function In this example we integrate backwards, since
end_points < ics[0]
:sage: y = function('y')(x) sage: desolve_rk4(diff(y,x)+y*(y-1) == x-2,y,ics=[1,1],step=0.5, end_points=0) [[0.0, 8.904257108962112], [0.5, 1.90932794536153...], [1, 1]]
>>> from sage.all import * >>> y = function('y')(x) >>> desolve_rk4(diff(y,x)+y*(y-Integer(1)) == x-Integer(2),y,ics=[Integer(1),Integer(1)],step=RealNumber('0.5'), end_points=Integer(0)) [[0.0, 8.904257108962112], [0.5, 1.90932794536153...], [1, 1]]
Here we show how to plot simple pictures. For more advanced applications use list_plot instead. To see the resulting picture use
show(P)
in Sage notebook.sage: x,y = var('x,y') sage: P=desolve_rk4(y*(2-y),y,ics=[0,.1],ivar=x,output='slope_field',end_points=[-4,6],thickness=3)
>>> from sage.all import * >>> x,y = var('x,y') >>> P=desolve_rk4(y*(Integer(2)-y),y,ics=[Integer(0),RealNumber('.1')],ivar=x,output='slope_field',end_points=[-Integer(4),Integer(6)],thickness=Integer(3))
ALGORITHM:
\(4\)-th order Runge-Kutta method. Wrapper for command
rk
in Maxima’s dynamics package. Perhaps could be faster by using fast_float instead.AUTHORS:
Robert Marik (10-2009)
- sage.calculus.desolvers.desolve_rk4_determine_bounds(ics, end_points=None)[source]¶
Used to determine bounds for numerical integration.
If
end_points
is None, the interval for integration is fromics[0]
toics[0]+10
If
end_points
isa
or[a]
, the interval for integration is frommin(ics[0],a)
tomax(ics[0],a)
If
end_points
is[a,b]
, the interval for integration is frommin(ics[0],a)
tomax(ics[0],b)
EXAMPLES:
sage: from sage.calculus.desolvers import desolve_rk4_determine_bounds sage: desolve_rk4_determine_bounds([0,2],1) (0, 1)
>>> from sage.all import * >>> from sage.calculus.desolvers import desolve_rk4_determine_bounds >>> desolve_rk4_determine_bounds([Integer(0),Integer(2)],Integer(1)) (0, 1)
sage: desolve_rk4_determine_bounds([0,2]) (0, 10)
>>> from sage.all import * >>> desolve_rk4_determine_bounds([Integer(0),Integer(2)]) (0, 10)
sage: desolve_rk4_determine_bounds([0,2],[-2]) (-2, 0)
>>> from sage.all import * >>> desolve_rk4_determine_bounds([Integer(0),Integer(2)],[-Integer(2)]) (-2, 0)
sage: desolve_rk4_determine_bounds([0,2],[-2,4]) (-2, 4)
>>> from sage.all import * >>> desolve_rk4_determine_bounds([Integer(0),Integer(2)],[-Integer(2),Integer(4)]) (-2, 4)
- sage.calculus.desolvers.desolve_system(des, vars, ics=None, ivar=None, algorithm='maxima')[source]¶
Solve a system of any size of 1st order ODEs. Initial conditions are optional.
One dimensional systems are passed to
desolve_laplace()
.INPUT:
des
– list of ODEsvars
– list of dependent variablesics
– (optional) list of initial values forivar
andvars
; ifics
is defined, it should provide initial conditions for each variable, otherwise an exception would be raisedivar
– (optional) the independent variable, which must be specified if there is more than one independent variable in the equationalgorithm
– (default:'maxima'
) one of'maxima'
– use maxima'fricas'
– use FriCAS (the optional fricas spkg has to be installed)
EXAMPLES:
sage: t = var('t') sage: x = function('x')(t) sage: y = function('y')(t) sage: de1 = diff(x,t) + y - 1 == 0 sage: de2 = diff(y,t) - x + 1 == 0 sage: desolve_system([de1, de2], [x,y]) [x(t) == (x(0) - 1)*cos(t) - (y(0) - 1)*sin(t) + 1, y(t) == (y(0) - 1)*cos(t) + (x(0) - 1)*sin(t) + 1]
>>> from sage.all import * >>> t = var('t') >>> x = function('x')(t) >>> y = function('y')(t) >>> de1 = diff(x,t) + y - Integer(1) == Integer(0) >>> de2 = diff(y,t) - x + Integer(1) == Integer(0) >>> desolve_system([de1, de2], [x,y]) [x(t) == (x(0) - 1)*cos(t) - (y(0) - 1)*sin(t) + 1, y(t) == (y(0) - 1)*cos(t) + (x(0) - 1)*sin(t) + 1]
The same system solved using FriCAS:
sage: desolve_system([de1, de2], [x,y], algorithm='fricas') # optional - fricas [x(t) == _C0*cos(t) + cos(t)^2 + _C1*sin(t) + sin(t)^2, y(t) == -_C1*cos(t) + _C0*sin(t) + 1]
>>> from sage.all import * >>> desolve_system([de1, de2], [x,y], algorithm='fricas') # optional - fricas [x(t) == _C0*cos(t) + cos(t)^2 + _C1*sin(t) + sin(t)^2, y(t) == -_C1*cos(t) + _C0*sin(t) + 1]
Now we give some initial conditions:
sage: sol = desolve_system([de1, de2], [x,y], ics=[0,1,2]); sol [x(t) == -sin(t) + 1, y(t) == cos(t) + 1]
>>> from sage.all import * >>> sol = desolve_system([de1, de2], [x,y], ics=[Integer(0),Integer(1),Integer(2)]); sol [x(t) == -sin(t) + 1, y(t) == cos(t) + 1]
sage: solnx, solny = sol[0].rhs(), sol[1].rhs() sage: plot([solnx,solny],(0,1)) # not tested sage: parametric_plot((solnx,solny),(0,1)) # not tested
>>> from sage.all import * >>> solnx, solny = sol[Integer(0)].rhs(), sol[Integer(1)].rhs() >>> plot([solnx,solny],(Integer(0),Integer(1))) # not tested >>> parametric_plot((solnx,solny),(Integer(0),Integer(1))) # not tested
AUTHORS:
Robert Bradshaw (10-2008)
Sergey Bykov (10-2014)
- sage.calculus.desolvers.desolve_system_rk4(des, vars, ics=None, ivar=None, end_points=None, step=0.1)[source]¶
Solve numerically a system of first-order ordinary differential equations using the \(4\)-th order Runge-Kutta method. Wrapper for Maxima command
rk
.INPUT:
Input is similar to
desolve_system
anddesolve_rk4
commandsdes
– right hand sides of the systemvars
– dependent variablesivar
– (optional) should be specified, if there are more variables or if the equation is autonomous and the independent variable is missingics
– initial conditions in the form[x0,y01,y02,y03,....]
end_points
– the end points of the intervalif
end_points
is a or [a], we integrate on betweenmin(ics[0], a)
andmax(ics[0], a)
if
end_points
is None, we useend_points=ics[0]+10
if
end_points
is [a,b] we integrate on betweenmin(ics[0], a)
andmax(ics[0], b)
step
– (default: 0.1) the length of the step
OUTPUT: a list of points
See also
EXAMPLES:
sage: from sage.calculus.desolvers import desolve_system_rk4
>>> from sage.all import * >>> from sage.calculus.desolvers import desolve_system_rk4
Lotka Volterra system:
sage: from sage.calculus.desolvers import desolve_system_rk4 sage: x,y,t = var('x y t') sage: P = desolve_system_rk4([x*(1-y),-y*(1-x)], [x,y], ics=[0,0.5,2], ....: ivar=t, end_points=20) sage: Q = [[i,j] for i,j,k in P] sage: LP = list_plot(Q) # needs sage.plot sage: Q = [[j,k] for i,j,k in P] sage: LP = list_plot(Q) # needs sage.plot
>>> from sage.all import * >>> from sage.calculus.desolvers import desolve_system_rk4 >>> x,y,t = var('x y t') >>> P = desolve_system_rk4([x*(Integer(1)-y),-y*(Integer(1)-x)], [x,y], ics=[Integer(0),RealNumber('0.5'),Integer(2)], ... ivar=t, end_points=Integer(20)) >>> Q = [[i,j] for i,j,k in P] >>> LP = list_plot(Q) # needs sage.plot >>> Q = [[j,k] for i,j,k in P] >>> LP = list_plot(Q) # needs sage.plot
ALGORITHM:
\(4\)-th order Runge-Kutta method. Wrapper for command
rk
in Maxima’s dynamics package. Perhaps could be faster by usingfast_float
instead.AUTHOR:
Robert Marik (10-2009)
- sage.calculus.desolvers.desolve_tides_mpfr(f, ics, initial, final, delta, tolrel=1e-16, tolabs=1e-16, digits=50)[source]¶
Solve numerically a system of first order differential equations using the taylor series integrator in arbitrary precision implemented in tides.
INPUT:
f
– symbolic function; its first argument will be the independent variable. Its output should be de derivatives of the dependent variables.ics
– list or tuple with the initial conditionsinitial
– the starting value for the independent variablefinal
– the final value for the independent valuedelta
– the size of the steps in the outputtolrel
– the relative tolerance for the methodtolabs
– the absolute tolerance for the methoddigits
– the digits of precision used in the computation
OUTPUT: list with the positions of the IVP
EXAMPLES:
We integrate the Lorenz equations with Saltzman values for the parameters along 10 periodic orbits with 100 digits of precision:
sage: var('t,x,y,z') (t, x, y, z) sage: s = 10 sage: r = 28 sage: b = 8/3 sage: f(t,x,y,z)= [s*(y-x),x*(r-z)-y,x*y-b*z] sage: x0 = -13.7636106821342005250144010543616538641008648540923684535378642921202827747268115852940239346395038284 sage: y0 = -19.5787519424517955388380414460095588661142400534276438649791334295426354746147526415973165506704676171 sage: z0 = 27 sage: T = 15.586522107161747275678702092126960705284805489972439358895215783190198756258880854355851082660142374 sage: sol = desolve_tides_mpfr(f, [x0, y0, z0], 0, T, T, 1e-100, 1e-100, 100) # optional - tides sage: sol # optional -tides # abs tol 1e-50 [[0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -13.7636106821342005250144010543616538641008648540923684535378642921202827747268115852940239346395038, -19.5787519424517955388380414460095588661142400534276438649791334295426354746147526415973165506704676, 27.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000], [15.5865221071617472756787020921269607052848054899724393588952157831901987562588808543558510826601424, -13.7636106821342005250144010543616538641008648540923684535378642921202827747268115852940239346315658, -19.5787519424517955388380414460095588661142400534276438649791334295426354746147526415973165506778440, 26.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999636628]]
>>> from sage.all import * >>> var('t,x,y,z') (t, x, y, z) >>> s = Integer(10) >>> r = Integer(28) >>> b = Integer(8)/Integer(3) >>> __tmp__=var("t,x,y,z"); f = symbolic_expression([s*(y-x),x*(r-z)-y,x*y-b*z]).function(t,x,y,z) >>> x0 = -RealNumber('13.7636106821342005250144010543616538641008648540923684535378642921202827747268115852940239346395038284') >>> y0 = -RealNumber('19.5787519424517955388380414460095588661142400534276438649791334295426354746147526415973165506704676171') >>> z0 = Integer(27) >>> T = RealNumber('15.586522107161747275678702092126960705284805489972439358895215783190198756258880854355851082660142374') >>> sol = desolve_tides_mpfr(f, [x0, y0, z0], Integer(0), T, T, RealNumber('1e-100'), RealNumber('1e-100'), Integer(100)) # optional - tides >>> sol # optional -tides # abs tol 1e-50 [[0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, -13.7636106821342005250144010543616538641008648540923684535378642921202827747268115852940239346395038, -19.5787519424517955388380414460095588661142400534276438649791334295426354746147526415973165506704676, 27.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000], [15.5865221071617472756787020921269607052848054899724393588952157831901987562588808543558510826601424, -13.7636106821342005250144010543616538641008648540923684535378642921202827747268115852940239346315658, -19.5787519424517955388380414460095588661142400534276438649791334295426354746147526415973165506778440, 26.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999636628]]
ALGORITHM:
Uses TIDES.
Warning
This requires the package tides.
REFERENCES:
- sage.calculus.desolvers.eulers_method(f, x0, y0, h, x1, algorithm='table')[source]¶
This implements Euler’s method for finding numerically the solution of the 1st order ODE \(y' = f(x,y)\), \(y(a)=c\). The
x
column of the table increments from \(x_0\) to \(x_1\) by \(h\) (so \((x_1-x_0)/h\) must be an integer). In they
column, the new \(y\)-value equals the old \(y\)-value plus the corresponding entry in the last column.Note
This function is for pedagogical purposes only.
EXAMPLES:
sage: from sage.calculus.desolvers import eulers_method sage: x,y = PolynomialRing(QQ,2,"xy").gens() sage: eulers_method(5*x+y-5,0,1,1/2,1) x y h*f(x,y) 0 1 -2 1/2 -1 -7/4 1 -11/4 -11/8
>>> from sage.all import * >>> from sage.calculus.desolvers import eulers_method >>> x,y = PolynomialRing(QQ,Integer(2),"xy").gens() >>> eulers_method(Integer(5)*x+y-Integer(5),Integer(0),Integer(1),Integer(1)/Integer(2),Integer(1)) x y h*f(x,y) 0 1 -2 1/2 -1 -7/4 1 -11/4 -11/8
sage: x,y = PolynomialRing(QQ,2,"xy").gens() sage: eulers_method(5*x+y-5,0,1,1/2,1,algorithm='none') [[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
>>> from sage.all import * >>> x,y = PolynomialRing(QQ,Integer(2),"xy").gens() >>> eulers_method(Integer(5)*x+y-Integer(5),Integer(0),Integer(1),Integer(1)/Integer(2),Integer(1),algorithm='none') [[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU') sage: x,y = PolynomialRing(RR,2,"xy").gens() sage: eulers_method(5*x+y-5,0,1,1/2,1,algorithm="None") [[0, 1], [1/2, -1.0], [1, -2.7], [3/2, -4.0]]
>>> from sage.all import * >>> RR = RealField(sci_not=Integer(0), prec=Integer(4), rnd='RNDU') >>> x,y = PolynomialRing(RR,Integer(2),"xy").gens() >>> eulers_method(Integer(5)*x+y-Integer(5),Integer(0),Integer(1),Integer(1)/Integer(2),Integer(1),algorithm="None") [[0, 1], [1/2, -1.0], [1, -2.7], [3/2, -4.0]]
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU') sage: x,y=PolynomialRing(RR,2,"xy").gens() sage: eulers_method(5*x+y-5,0,1,1/2,1) x y h*f(x,y) 0 1 -2.0 1/2 -1.0 -1.7 1 -2.7 -1.3
>>> from sage.all import * >>> RR = RealField(sci_not=Integer(0), prec=Integer(4), rnd='RNDU') >>> x,y=PolynomialRing(RR,Integer(2),"xy").gens() >>> eulers_method(Integer(5)*x+y-Integer(5),Integer(0),Integer(1),Integer(1)/Integer(2),Integer(1)) x y h*f(x,y) 0 1 -2.0 1/2 -1.0 -1.7 1 -2.7 -1.3
sage: x,y=PolynomialRing(QQ,2,"xy").gens() sage: eulers_method(5*x+y-5,1,1,1/3,2) x y h*f(x,y) 1 1 1/3 4/3 4/3 1 5/3 7/3 17/9 2 38/9 83/27
>>> from sage.all import * >>> x,y=PolynomialRing(QQ,Integer(2),"xy").gens() >>> eulers_method(Integer(5)*x+y-Integer(5),Integer(1),Integer(1),Integer(1)/Integer(3),Integer(2)) x y h*f(x,y) 1 1 1/3 4/3 4/3 1 5/3 7/3 17/9 2 38/9 83/27
sage: eulers_method(5*x+y-5,0,1,1/2,1,algorithm='none') [[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
>>> from sage.all import * >>> eulers_method(Integer(5)*x+y-Integer(5),Integer(0),Integer(1),Integer(1)/Integer(2),Integer(1),algorithm='none') [[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
sage: pts = eulers_method(5*x+y-5,0,1,1/2,1,algorithm='none') sage: P1 = list_plot(pts) # needs sage.plot sage: P2 = line(pts) # needs sage.plot sage: (P1 + P2).show() # needs sage.plot
>>> from sage.all import * >>> pts = eulers_method(Integer(5)*x+y-Integer(5),Integer(0),Integer(1),Integer(1)/Integer(2),Integer(1),algorithm='none') >>> P1 = list_plot(pts) # needs sage.plot >>> P2 = line(pts) # needs sage.plot >>> (P1 + P2).show() # needs sage.plot
AUTHORS:
David Joyner
- sage.calculus.desolvers.eulers_method_2x2(f, g, t0, x0, y0, h, t1, algorithm='table')[source]¶
This implements Euler’s method for finding numerically the solution of the 1st order system of two ODEs
\[\begin{split}\begin{aligned} x' &= f(t, x, y), x(t_0)=x_0 \\ y' &= g(t, x, y), y(t_0)=y_0. \end{aligned}\end{split}\]The
t
column of the table increments from \(t_0\) to \(t_1\) by \(h\) (so \(\frac{t_1-t_0}{h}\) must be an integer). In thex
column, the new \(x\)-value equals the old \(x\)-value plus the corresponding entry in the next (third) column. In they
column, the new \(y\)-value equals the old \(y\)-value plus the corresponding entry in the next (last) column.Note
This function is for pedagogical purposes only.
EXAMPLES:
sage: from sage.calculus.desolvers import eulers_method_2x2 sage: t, x, y = PolynomialRing(QQ,3,"txy").gens() sage: f = x+y+t; g = x-y sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1,algorithm='none') [[0, 0, 0], [1/3, 0, 0], [2/3, 1/9, 0], [1, 10/27, 1/27], [4/3, 68/81, 4/27]]
>>> from sage.all import * >>> from sage.calculus.desolvers import eulers_method_2x2 >>> t, x, y = PolynomialRing(QQ,Integer(3),"txy").gens() >>> f = x+y+t; g = x-y >>> eulers_method_2x2(f,g, Integer(0), Integer(0), Integer(0), Integer(1)/Integer(3), Integer(1),algorithm='none') [[0, 0, 0], [1/3, 0, 0], [2/3, 1/9, 0], [1, 10/27, 1/27], [4/3, 68/81, 4/27]]
sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1) t x h*f(t,x,y) y h*g(t,x,y) 0 0 0 0 0 1/3 0 1/9 0 0 2/3 1/9 7/27 0 1/27 1 10/27 38/81 1/27 1/9
>>> from sage.all import * >>> eulers_method_2x2(f,g, Integer(0), Integer(0), Integer(0), Integer(1)/Integer(3), Integer(1)) t x h*f(t,x,y) y h*g(t,x,y) 0 0 0 0 0 1/3 0 1/9 0 0 2/3 1/9 7/27 0 1/27 1 10/27 38/81 1/27 1/9
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU') sage: t,x,y=PolynomialRing(RR,3,"txy").gens() sage: f = x+y+t; g = x-y sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1) t x h*f(t,x,y) y h*g(t,x,y) 0 0 0.00 0 0.00 1/3 0.00 0.13 0.00 0.00 2/3 0.13 0.29 0.00 0.043 1 0.41 0.57 0.043 0.15
>>> from sage.all import * >>> RR = RealField(sci_not=Integer(0), prec=Integer(4), rnd='RNDU') >>> t,x,y=PolynomialRing(RR,Integer(3),"txy").gens() >>> f = x+y+t; g = x-y >>> eulers_method_2x2(f,g, Integer(0), Integer(0), Integer(0), Integer(1)/Integer(3), Integer(1)) t x h*f(t,x,y) y h*g(t,x,y) 0 0 0.00 0 0.00 1/3 0.00 0.13 0.00 0.00 2/3 0.13 0.29 0.00 0.043 1 0.41 0.57 0.043 0.15
To numerically approximate \(y(1)\), where \((1+t^2)y''+y'-y=0\), \(y(0)=1\), \(y'(0)=-1\), using 4 steps of Euler’s method, first convert to a system: \(y_1' = y_2\), \(y_1(0)=1\); \(y_2' = \frac{y_1-y_2}{1+t^2}\), \(y_2(0)=-1\).:
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU') sage: t, x, y=PolynomialRing(RR,3,"txy").gens() sage: f = y; g = (x-y)/(1+t^2) sage: eulers_method_2x2(f,g, 0, 1, -1, 1/4, 1) t x h*f(t,x,y) y h*g(t,x,y) 0 1 -0.25 -1 0.50 1/4 0.75 -0.12 -0.50 0.29 1/2 0.63 -0.054 -0.21 0.19 3/4 0.63 -0.0078 -0.031 0.11 1 0.63 0.020 0.079 0.071
>>> from sage.all import * >>> RR = RealField(sci_not=Integer(0), prec=Integer(4), rnd='RNDU') >>> t, x, y=PolynomialRing(RR,Integer(3),"txy").gens() >>> f = y; g = (x-y)/(Integer(1)+t**Integer(2)) >>> eulers_method_2x2(f,g, Integer(0), Integer(1), -Integer(1), Integer(1)/Integer(4), Integer(1)) t x h*f(t,x,y) y h*g(t,x,y) 0 1 -0.25 -1 0.50 1/4 0.75 -0.12 -0.50 0.29 1/2 0.63 -0.054 -0.21 0.19 3/4 0.63 -0.0078 -0.031 0.11 1 0.63 0.020 0.079 0.071
To numerically approximate \(y(1)\), where \(y''+ty'+y=0\), \(y(0)=1\), \(y'(0)=0\):
sage: t,x,y=PolynomialRing(RR,3,"txy").gens() sage: f = y; g = -x-y*t sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1) t x h*f(t,x,y) y h*g(t,x,y) 0 1 0.00 0 -0.25 1/4 1.0 -0.062 -0.25 -0.23 1/2 0.94 -0.11 -0.46 -0.17 3/4 0.88 -0.15 -0.62 -0.10 1 0.75 -0.17 -0.68 -0.015
>>> from sage.all import * >>> t,x,y=PolynomialRing(RR,Integer(3),"txy").gens() >>> f = y; g = -x-y*t >>> eulers_method_2x2(f,g, Integer(0), Integer(1), Integer(0), Integer(1)/Integer(4), Integer(1)) t x h*f(t,x,y) y h*g(t,x,y) 0 1 0.00 0 -0.25 1/4 1.0 -0.062 -0.25 -0.23 1/2 0.94 -0.11 -0.46 -0.17 3/4 0.88 -0.15 -0.62 -0.10 1 0.75 -0.17 -0.68 -0.015
AUTHORS:
David Joyner
- sage.calculus.desolvers.eulers_method_2x2_plot(f, g, t0, x0, y0, h, t1)[source]¶
Plot solution of ODE.
This plots the solution in the rectangle with sides
(xrange[0],xrange[1])
and(yrange[0],yrange[1])
, and plots using Euler’s method the numerical solution of the 1st order ODEs \(x' = f(t,x,y)\), \(x(a)=x_0\), \(y' = g(t,x,y)\), \(y(a) = y_0\).Note
This function is for pedagogical purposes only.
EXAMPLES:
The following example plots the solution to \(\theta''+\sin(\theta)=0\), \(\theta(0)=\frac 34\), \(\theta'(0) = 0\). Type
P[0].show()
to plot the solution,(P[0]+P[1]).show()
to plot \((t,\theta(t))\) and \((t,\theta'(t))\):sage: from sage.calculus.desolvers import eulers_method_2x2_plot sage: f = lambda z : z[2]; g = lambda z : -sin(z[1]) sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0) # needs sage.plot
>>> from sage.all import * >>> from sage.calculus.desolvers import eulers_method_2x2_plot >>> f = lambda z : z[Integer(2)]; g = lambda z : -sin(z[Integer(1)]) >>> P = eulers_method_2x2_plot(f,g, RealNumber('0.0'), RealNumber('0.75'), RealNumber('0.0'), RealNumber('0.1'), RealNumber('1.0')) # needs sage.plot
- sage.calculus.desolvers.fricas_desolve(de, dvar, ics, ivar)[source]¶
Solve an ODE using FriCAS.
EXAMPLES:
sage: x = var('x') sage: y = function('y')(x) sage: desolve(diff(y,x) + y - 1, y, algorithm='fricas') # optional - fricas _C0*e^(-x) + 1 sage: desolve(diff(y, x) + y == y^3*sin(x), y, algorithm='fricas') # optional - fricas -1/5*(2*cos(x)*y(x)^2 + 4*sin(x)*y(x)^2 - 5)*e^(-2*x)/y(x)^2
>>> from sage.all import * >>> x = var('x') >>> y = function('y')(x) >>> desolve(diff(y,x) + y - Integer(1), y, algorithm='fricas') # optional - fricas _C0*e^(-x) + 1 >>> desolve(diff(y, x) + y == y**Integer(3)*sin(x), y, algorithm='fricas') # optional - fricas -1/5*(2*cos(x)*y(x)^2 + 4*sin(x)*y(x)^2 - 5)*e^(-2*x)/y(x)^2
- sage.calculus.desolvers.fricas_desolve_system(des, dvars, ics, ivar)[source]¶
Solve a system of first order ODEs using FriCAS.
EXAMPLES:
sage: t = var('t') sage: x = function('x')(t) sage: y = function('y')(t) sage: de1 = diff(x,t) + y - 1 == 0 sage: de2 = diff(y,t) - x + 1 == 0 sage: desolve_system([de1, de2], [x, y], algorithm='fricas') # optional - fricas [x(t) == _C0*cos(t) + cos(t)^2 + _C1*sin(t) + sin(t)^2, y(t) == -_C1*cos(t) + _C0*sin(t) + 1] sage: desolve_system([de1, de2], [x,y], [0,1,2], algorithm='fricas') # optional - fricas [x(t) == cos(t)^2 + sin(t)^2 - sin(t), y(t) == cos(t) + 1]
>>> from sage.all import * >>> t = var('t') >>> x = function('x')(t) >>> y = function('y')(t) >>> de1 = diff(x,t) + y - Integer(1) == Integer(0) >>> de2 = diff(y,t) - x + Integer(1) == Integer(0) >>> desolve_system([de1, de2], [x, y], algorithm='fricas') # optional - fricas [x(t) == _C0*cos(t) + cos(t)^2 + _C1*sin(t) + sin(t)^2, y(t) == -_C1*cos(t) + _C0*sin(t) + 1] >>> desolve_system([de1, de2], [x,y], [Integer(0),Integer(1),Integer(2)], algorithm='fricas') # optional - fricas [x(t) == cos(t)^2 + sin(t)^2 - sin(t), y(t) == cos(t) + 1]