Crystals#

class sage.categories.crystals.CrystalHomset(X, Y, category=None)#

Bases: Homset

The set of crystal morphisms from one crystal to another.

An \(U_q(\mathfrak{g})\) \(I\)-crystal morphism \(\Psi : B \to C\) is a map \(\Psi : B \cup \{ 0 \} \to C \cup \{ 0 \}\) such that:

  • \(\Psi(0) = 0\).

  • If \(b \in B\) and \(\Psi(b) \in C\), then \(\mathrm{wt}(\Psi(b)) = \mathrm{wt}(b)\), \(\varepsilon_i(\Psi(b)) = \varepsilon_i(b)\), and \(\varphi_i(\Psi(b)) = \varphi_i(b)\) for all \(i \in I\).

  • If \(b, b^{\prime} \in B\), \(\Psi(b), \Psi(b^{\prime}) \in C\) and \(f_i b = b^{\prime}\), then \(f_i \Psi(b) = \Psi(b^{\prime})\) and \(\Psi(b) = e_i \Psi(b^{\prime})\) for all \(i \in I\).

If the Cartan type is unambiguous, it is suppressed from the notation.

We can also generalize the definition of a crystal morphism by considering a map of \(\sigma\) of the (now possibly different) Dynkin diagrams corresponding to \(B\) and \(C\) along with scaling factors \(\gamma_i \in \ZZ\) for \(i \in I\). Let \(\sigma_i\) denote the orbit of \(i\) under \(\sigma\). We write objects for \(B\) as \(X\) with corresponding objects of \(C\) as \(\widehat{X}\). Then a virtual crystal morphism \(\Psi\) is a map such that the following holds:

  • \(\Psi(0) = 0\).

  • If \(b \in B\) and \(\Psi(b) \in C\), then for all \(j \in \sigma_i\):

\[\varepsilon_i(b) = \frac{1}{\gamma_j} \widehat{\varepsilon}_j(\Psi(b)), \quad \varphi_i(b) = \frac{1}{\gamma_j} \widehat{\varphi}_j(\Psi(b)), \quad \mathrm{wt}(\Psi(b)) = \sum_i c_i \sum_{j \in \sigma_i} \gamma_j \widehat{\Lambda}_j,\]

where \(\mathrm{wt}(b) = \sum_i c_i \Lambda_i\).

  • If \(b, b^{\prime} \in B\), \(\Psi(b), \Psi(b^{\prime}) \in C\) and \(f_i b = b^{\prime}\), then independent of the ordering of \(\sigma_i\) we have:

    \[\Psi(b^{\prime}) = e_i \Psi(b) = \prod_{j \in \sigma_i} \widehat{e}_j^{\gamma_i} \Psi(b), \quad \Psi(b^{\prime}) = f_i \Psi(b) = \prod_{j \in \sigma_i} \widehat{f}_j^{\gamma_i} \Psi(b).\]

If \(\gamma_i = 1\) for all \(i \in I\) and the Dynkin diagrams are the same, then we call \(\Psi\) a twisted crystal morphism.

INPUT:

  • X – the domain

  • Y – the codomain

  • category – (optional) the category of the crystal morphisms

See also

For the construction of an element of the homset, see CrystalMorphismByGenerators and crystal_morphism().

EXAMPLES:

We begin with the natural embedding of \(B(2\Lambda_1)\) into \(B(\Lambda_1) \otimes B(\Lambda_1)\) in type \(A_1\):

sage: B = crystals.Tableaux(['A',1], shape=[2])
sage: F = crystals.Tableaux(['A',1], shape=[1])
sage: T = crystals.TensorProduct(F, F)
sage: v = T.highest_weight_vectors()[0]; v
[[[1]], [[1]]]
sage: H = Hom(B, T)
sage: psi = H([v])
sage: b = B.highest_weight_vector(); b
[[1, 1]]
sage: psi(b)
[[[1]], [[1]]]
sage: b.f(1)
[[1, 2]]
sage: psi(b.f(1))
[[[1]], [[2]]]

We now look at the decomposition of \(B(\Lambda_1) \otimes B(\Lambda_1)\) into \(B(2\Lambda_1) \oplus B(0)\):

sage: B0 = crystals.Tableaux(['A',1], shape=[])
sage: D = crystals.DirectSum([B, B0])
sage: H = Hom(T, D)
sage: psi = H(D.module_generators)
sage: psi
['A', 1] Crystal morphism:
  From: Full tensor product of the crystals
   [The crystal of tableaux of type ['A', 1] and shape(s) [[1]],
    The crystal of tableaux of type ['A', 1] and shape(s) [[1]]]
  To:   Direct sum of the crystals Family
   (The crystal of tableaux of type ['A', 1] and shape(s) [[2]],
    The crystal of tableaux of type ['A', 1] and shape(s) [[]])
  Defn: [[[1]], [[1]]] |--> [[1, 1]]
        [[[2]], [[1]]] |--> []
sage: psi.is_isomorphism()
True

We can always construct the trivial morphism which sends everything to \(0\):

sage: Binf = crystals.infinity.Tableaux(['B', 2])
sage: B = crystals.Tableaux(['B',2], shape=[1])
sage: H = Hom(Binf, B)
sage: psi = H(lambda x: None)
sage: psi(Binf.highest_weight_vector())

For Kirillov-Reshetikhin crystals, we consider the map to the corresponding classical crystal:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: B = K.classical_decomposition()
sage: H = Hom(K, B)
sage: psi = H(lambda x: x.lift(), cartan_type=['D',4])
sage: L = [psi(mg) for mg in K.module_generators]; L
[[], [[1], [2]]]
sage: all(x.parent() == B for x in L)
True

Next we consider a type \(D_4\) crystal morphism where we twist by \(3 \leftrightarrow 4\):

sage: B = crystals.Tableaux(['D',4], shape=[1])
sage: H = Hom(B, B)
sage: d = {1:1, 2:2, 3:4, 4:3}
sage: psi = H(B.module_generators, automorphism=d)
sage: b = B.highest_weight_vector()
sage: b.f_string([1,2,3])
[[4]]
sage: b.f_string([1,2,4])
[[-4]]
sage: psi(b.f_string([1,2,3]))
[[-4]]
sage: psi(b.f_string([1,2,4]))
[[4]]

We construct the natural virtual embedding of a type \(B_3\) into a type \(D_4\) crystal:

sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: H = Hom(B, C)
sage: psi = H(C.module_generators)
sage: psi
['B', 3] -> ['D', 4] Virtual Crystal morphism:
  From: The crystal of tableaux of type ['B', 3] and shape(s) [[1]]
  To:   The crystal of tableaux of type ['D', 4] and shape(s) [[2]]
  Defn: [[1]] |--> [[1, 1]]
sage: for b in B: print("{} |--> {}".format(b, psi(b)))
[[1]] |--> [[1, 1]]
[[2]] |--> [[2, 2]]
[[3]] |--> [[3, 3]]
[[0]] |--> [[3, -3]]
[[-3]] |--> [[-3, -3]]
[[-2]] |--> [[-2, -2]]
[[-1]] |--> [[-1, -1]]
Element#

alias of CrystalMorphismByGenerators

class sage.categories.crystals.CrystalMorphism(parent, cartan_type=None, virtualization=None, scaling_factors=None)#

Bases: Morphism

A crystal morphism.

INPUT:

  • parent – a homset

  • cartan_type – (optional) a Cartan type; the default is the Cartan type of the domain

  • virtualization – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain

  • scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \(\varepsilon\) and \(\varphi\)

cartan_type()#

Return the Cartan type of self.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: psi = Hom(B, B).an_element()
sage: psi.cartan_type()
['A', 2]
is_injective()#

Return if self is an injective crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: psi = Hom(B, B).an_element()
sage: psi.is_injective()
False
is_surjective()#

Check if self is a surjective crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_surjective()
False
sage: im_gens = [None, B.module_generators[0]]
sage: psi = C.crystal_morphism(im_gens, codomain=B)
sage: psi.is_surjective()
True

sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: B = crystals.infinity.Tableaux(['A',2])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: W = crystals.elementary.T(['A',2], La[1]+La[2])
sage: T = W.tensor(B)
sage: mg = T(W.module_generators[0], B.module_generators[0])
sage: psi = Hom(C,T)([mg])
sage: psi.is_surjective()
False
scaling_factors()#

Return the scaling factors \(\gamma_i\).

EXAMPLES:

sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: psi = B.crystal_morphism(C.module_generators)
sage: psi.scaling_factors()
Finite family {1: 2, 2: 2, 3: 1}
virtualization()#

Return the virtualization sets \(\sigma_i\).

EXAMPLES:

sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: psi = B.crystal_morphism(C.module_generators)
sage: psi.virtualization()
Finite family {1: (1,), 2: (2,), 3: (3, 4)}
class sage.categories.crystals.CrystalMorphismByGenerators(parent, on_gens, cartan_type=None, virtualization=None, scaling_factors=None, gens=None, check=True)#

Bases: CrystalMorphism

A crystal morphism defined by a set of generators which create a virtual crystal inside the codomain.

INPUT:

  • parent – a homset

  • on_gens – a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of the domain under self

  • cartan_type – (optional) a Cartan type; the default is the Cartan type of the domain

  • virtualization – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain

  • scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \(\varepsilon\) and \(\varphi\)

  • gens – (optional) a finite list of generators to define the morphism; the default is to use the highest weight vectors of the crystal

  • check – (default: True) check if the crystal morphism is valid

im_gens()#

Return the image of the generators of self as a tuple.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: F = crystals.Tableaux(['A',2], shape=[1])
sage: T = crystals.TensorProduct(F, F, F)
sage: H = Hom(T, B)
sage: b = B.highest_weight_vector()
sage: psi = H((None, b, b, None), generators=T.highest_weight_vectors())
sage: psi.im_gens()
(None, [[1, 1], [2]], [[1, 1], [2]], None)
image()#

Return the image of self in the codomain as a Subcrystal.

Warning

This assumes that self is a strict crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: H = Hom(B, C)
sage: psi = H(C.module_generators)
sage: psi.image()
Virtual crystal of The crystal of tableaux of type ['D', 4] and shape(s) [[2]] of type ['B', 3]
to_module_generator(x)#

Return a generator mg and a path of \(e_i\) and \(f_i\) operations to mg.

OUTPUT:

A tuple consisting of:

  • a module generator,

  • a list of 'e' and 'f' to denote which operation, and

  • a list of matching indices.

EXAMPLES:

sage: B = crystals.elementary.Elementary(['A',2], 2)
sage: psi = B.crystal_morphism(B.module_generators)
sage: psi.to_module_generator(B(4))
(0, ['f', 'f', 'f', 'f'], [2, 2, 2, 2])
sage: psi.to_module_generator(B(-2))
(0, ['e', 'e'], [2, 2])
class sage.categories.crystals.Crystals#

Bases: Category_singleton

The category of crystals.

See sage.combinat.crystals.crystals for an introduction to crystals.

EXAMPLES:

sage: C = Crystals()
sage: C
Category of crystals
sage: C.super_categories()
[Category of... enumerated sets]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1

Parents in this category should implement the following methods:

  • either an attribute _cartan_type or a method cartan_type

  • module_generators: a list (or container) of distinct elements which generate the crystal using \(f_i\)

Furthermore, their elements x should implement the following methods:

  • x.e(i) (returning \(e_i(x)\))

  • x.f(i) (returning \(f_i(x)\))

  • x.epsilon(i) (returning \(\varepsilon_i(x)\))

  • x.phi(i) (returning \(\varphi_i(x)\))

EXAMPLES:

sage: from sage.misc.abstract_method import abstract_methods_of_class
sage: abstract_methods_of_class(Crystals().element_class)
{'optional': [], 'required': ['e', 'epsilon', 'f', 'phi', 'weight']}
class ElementMethods#

Bases: object

Epsilon()#

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(0).Epsilon()
(0, 0, 0, 0, 0, 0)
sage: C(1).Epsilon()
(0, 0, 0, 0, 0, 0)
sage: C(2).Epsilon()
(1, 0, 0, 0, 0, 0)
Phi()#

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(0).Phi()
(0, 0, 0, 0, 0, 0)
sage: C(1).Phi()
(1, 0, 0, 0, 0, 0)
sage: C(2).Phi()
(1, 1, 0, 0, 0, 0)
all_paths_to_highest_weight(index_set=None)#

Iterate over all paths to the highest weight from self with respect to index_set.

INPUT:

  • index_set – (optional) a subset of the index set of self

EXAMPLES:

sage: B = crystals.infinity.Tableaux("A2")
sage: b0 = B.highest_weight_vector()
sage: b = b0.f_string([1, 2, 1, 2])
sage: L = b.all_paths_to_highest_weight()
sage: list(L)
[[2, 1, 2, 1], [2, 2, 1, 1]]

sage: Y = crystals.infinity.GeneralizedYoungWalls(3)
sage: y0 = Y.highest_weight_vector()
sage: y = y0.f_string([0, 1, 2, 3, 2, 1, 0])
sage: list(y.all_paths_to_highest_weight())
[[0, 1, 2, 3, 2, 1, 0],
 [0, 1, 3, 2, 2, 1, 0],
 [0, 3, 1, 2, 2, 1, 0],
 [0, 3, 2, 1, 1, 0, 2],
 [0, 3, 2, 1, 1, 2, 0]]

sage: B = crystals.Tableaux("A3", shape=[4,2,1])
sage: b0 = B.highest_weight_vector()
sage: b = b0.f_string([1, 1, 2, 3])
sage: list(b.all_paths_to_highest_weight())
[[1, 3, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1]]
cartan_type()#

Returns the Cartan type associated to self

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C(1).cartan_type()
['A', 5]
e(i)#

Return \(e_i\) of self if it exists or None otherwise.

This method should be implemented by the element class of the crystal.

EXAMPLES:

sage: C = Crystals().example(5)
sage: x = C[2]; x
3
sage: x.e(1), x.e(2), x.e(3)
(None, 2, None)
e_string(list)#

Applies \(e_{i_r} \cdots e_{i_1}\) to self for list as \([i_1, ..., i_r]\)

EXAMPLES:

sage: C = crystals.Letters(['A',3])
sage: b = C(3)
sage: b.e_string([2,1])
1
sage: b.e_string([1,2])
epsilon(i)#

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).epsilon(1)
0
sage: C(2).epsilon(1)
1
f(i)#

Return \(f_i\) of self if it exists or None otherwise.

This method should be implemented by the element class of the crystal.

EXAMPLES:

sage: C = Crystals().example(5)
sage: x = C[1]; x
2
sage: x.f(1), x.f(2), x.f(3)
(None, 3, None)
f_string(list)#

Applies \(f_{i_r} \cdots f_{i_1}\) to self for list as \([i_1, ..., i_r]\)

EXAMPLES:

sage: C = crystals.Letters(['A',3])
sage: b = C(1)
sage: b.f_string([1,2])
3
sage: b.f_string([2,1])
index_set()#

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).index_set()
(1, 2, 3, 4, 5)
is_highest_weight(index_set=None)#

Return True if self is a highest weight.

Specifying the option index_set to be a subset \(I\) of the index set of the underlying crystal, finds all highest weight vectors for arrows in \(I\).

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).is_highest_weight()
True
sage: C(2).is_highest_weight()
False
sage: C(2).is_highest_weight(index_set = [2,3,4,5])
True
is_lowest_weight(index_set=None)#

Returns True if self is a lowest weight. Specifying the option index_set to be a subset \(I\) of the index set of the underlying crystal, finds all lowest weight vectors for arrows in \(I\).

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).is_lowest_weight()
False
sage: C(6).is_lowest_weight()
True
sage: C(4).is_lowest_weight(index_set = [1,3])
True
phi(i)#

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi(1)
1
sage: C(2).phi(1)
0
phi_minus_epsilon(i)#

Return \(\varphi_i - \varepsilon_i\) of self.

There are sometimes better implementations using the weight for this. It is used for reflections along a string.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi_minus_epsilon(1)
1
s(i)#

Return the reflection of self along its \(i\)-string.

EXAMPLES:

sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: b = C(rows=[[1,1],[3]])
sage: b.s(1)
[[2, 2], [3]]
sage: b = C(rows=[[1,2],[3]])
sage: b.s(2)
[[1, 2], [3]]
sage: T = crystals.Tableaux(['A',2],shape=[4])
sage: t = T(rows=[[1,2,2,2]])
sage: t.s(1)
[[1, 1, 1, 2]]
subcrystal(index_set=None, max_depth=inf, direction='both', contained=None, cartan_type=None, category=None)#

Construct the subcrystal generated by self using \(e_i\) and/or \(f_i\) for all \(i\) in index_set.

INPUT:

  • index_set – (default: None) the index set; if None then use the index set of the crystal

  • max_depth – (default: infinity) the maximum depth to build

  • direction – (default: 'both') the direction to build the subcrystal; it can be one of the following:

    • 'both' - using both \(e_i\) and \(f_i\)

    • 'upper' - using \(e_i\)

    • 'lower' - using \(f_i\)

  • contained – (optional) a set (or function) defining the containment in the subcrystal

  • cartan_type – (optional) specify the Cartan type of the subcrystal

  • category – (optional) specify the category of the subcrystal

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2)
sage: elt = C(1,4)
sage: list(elt.subcrystal(index_set=[1,3]))
[[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], max_depth=1))
[[[1, 4]], [[2, 4]], [[1, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], direction='upper'))
[[[1, 4]], [[1, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], direction='lower'))
[[[1, 4]], [[2, 4]]]
tensor(*elts)#

Return the tensor product of self with the crystal elements elts.

EXAMPLES:

sage: C = crystals.Letters(['A', 3])
sage: B = crystals.infinity.Tableaux(['A', 3])
sage: c = C[0]
sage: b = B.highest_weight_vector()
sage: t = c.tensor(c, b)
sage: ascii_art(t)
          1  1  1
1 # 1 #   2  2
          3
sage: tensor([c, c, b]) == t
True
sage: ascii_art(tensor([b, b, c]))
  1  1  1     1  1  1
  2  2    #   2  2    # 1
  3           3
to_highest_weight(index_set=None)#

Return the highest weight element \(u\) and a list \([i_1,...,i_k]\) such that self \(= f_{i_1} ... f_{i_k} u\), where \(i_1,...,i_k\) are elements in index_set.

By default the index_set is assumed to be the full index set of self.

EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape = [1])
sage: t = T(rows = [[3]])
sage: t.to_highest_weight()
[[[1]], [2, 1]]
sage: T = crystals.Tableaux(['A',3], shape = [2,1])
sage: t = T(rows = [[1,2],[4]])
sage: t.to_highest_weight()
[[[1, 1], [2]], [1, 3, 2]]
sage: t.to_highest_weight(index_set = [3])
[[[1, 2], [3]], [3]]
sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: t = K(rows=[[2],[3]]); t.to_highest_weight(index_set=[1])
[[[1], [3]], [1]]
sage: t.to_highest_weight()
Traceback (most recent call last):
...
ValueError: this is not a highest weight crystal
to_lowest_weight(index_set=None)#

Return the lowest weight element \(u\) and a list \([i_1,...,i_k]\) such that self \(= e_{i_1} ... e_{i_k} u\), where \(i_1,...,i_k\) are elements in index_set.

By default the index_set is assumed to be the full index set of self.

EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape = [1])
sage: t = T(rows = [[3]])
sage: t.to_lowest_weight()
[[[4]], [3]]
sage: T = crystals.Tableaux(['A',3], shape = [2,1])
sage: t = T(rows = [[1,2],[4]])
sage: t.to_lowest_weight()
[[[3, 4], [4]], [1, 2, 2, 3]]
sage: t.to_lowest_weight(index_set = [3])
[[[1, 2], [4]], []]
sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: t = K.module_generator(); t
[[1], [2]]
sage: t.to_lowest_weight(index_set=[1,2,3])
[[[3], [4]], [2, 1, 3, 2]]
sage: t.to_lowest_weight()
Traceback (most recent call last):
...
ValueError: this is not a highest weight crystal
weight()#

Return the weight of this crystal element.

This method should be implemented by the element class of the crystal.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).weight()
(1, 0, 0, 0, 0, 0)
Finite#

alias of FiniteCrystals

class MorphismMethods#

Bases: object

is_embedding()#

Check if self is an injective crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_embedding()
True

sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: B = crystals.infinity.Tableaux(['A',2])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: W = crystals.elementary.T(['A',2], La[1]+La[2])
sage: T = W.tensor(B)
sage: mg = T(W.module_generators[0], B.module_generators[0])
sage: psi = Hom(C,T)([mg])
sage: psi.is_embedding()
True
is_isomorphism()#

Check if self is a crystal isomorphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_isomorphism()
False
is_strict()#

Check if self is a strict crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_strict()
True
class ParentMethods#

Bases: object

Lambda()#

Returns the fundamental weights in the weight lattice realization for the root system associated with the crystal

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C.Lambda()
Finite family {1: (1, 0, 0, 0, 0, 0), 2: (1, 1, 0, 0, 0, 0), 3: (1, 1, 1, 0, 0, 0), 4: (1, 1, 1, 1, 0, 0), 5: (1, 1, 1, 1, 1, 0)}
an_element()#

Returns an element of self

sage: C = crystals.Letters([‘A’, 5]) sage: C.an_element() 1

cartan_type()#

Returns the Cartan type of the crystal

EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: C.cartan_type()
['A', 2]
connected_components()#

Return the connected components of self as subcrystals.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.connected_components()
[Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
  The crystal of letters for type ['A', 2]],
 Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
  The crystal of letters for type ['A', 2]],
 Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
  The crystal of letters for type ['A', 2]]]
connected_components_generators()#

Return a tuple of generators for each of the connected components of self.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.connected_components_generators()
([[[1, 1], [2]], 1], [[[1, 2], [2]], 1], [[[1, 2], [3]], 1])
crystal_morphism(on_gens, codomain=None, cartan_type=None, index_set=None, generators=None, automorphism=None, virtualization=None, scaling_factors=None, category=None, check=True)#

Construct a crystal morphism from self to another crystal codomain.

INPUT:

  • on_gens – a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of self under the crystal morphism

  • codomain – (default: self) the codomain of the morphism

  • cartan_type – (optional) the Cartan type of the morphism; the default is the Cartan type of self

  • index_set – (optional) the index set of the morphism; the default is the index set of the Cartan type

  • generators – (optional) the generators to define the morphism; the default is the generators of self

  • automorphism – (optional) the automorphism to perform the twisting

  • virtualization – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain; the default is the identity dictionary

  • scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \(\varepsilon\) and \(\varphi\); the default are all scaling factors to be one

  • category – (optional) the category for the crystal morphism; the default is the category of Crystals.

  • check – (default: True) check if the crystal morphism is valid

See also

For more examples, see sage.categories.crystals.CrystalHomset.

EXAMPLES:

We construct the natural embedding of a crystal using tableaux into the tensor product of single boxes via the reading word:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: F = crystals.Tableaux(['A',2], shape=[1])
sage: T = crystals.TensorProduct(F, F, F)
sage: mg = T.highest_weight_vectors()[2]; mg
[[[1]], [[2]], [[1]]]
sage: psi = B.crystal_morphism([mg], codomain=T); psi
['A', 2] Crystal morphism:
  From: The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]
  To:   Full tensor product of the crystals
         [The crystal of tableaux of type ['A', 2] and shape(s) [[1]],
          The crystal of tableaux of type ['A', 2] and shape(s) [[1]],
          The crystal of tableaux of type ['A', 2] and shape(s) [[1]]]
  Defn: [[1, 1], [2]] |--> [[[1]], [[2]], [[1]]]
sage: b = B.module_generators[0]
sage: b.pp()
  1  1
  2
sage: psi(b)
[[[1]], [[2]], [[1]]]
sage: psi(b.f(2))
[[[1]], [[3]], [[1]]]
sage: psi(b.f_string([2,1,1]))
[[[2]], [[3]], [[2]]]
sage: lw = b.to_lowest_weight()[0]
sage: lw.pp()
  2  3
  3
sage: psi(lw)
[[[3]], [[3]], [[2]]]
sage: psi(lw) == mg.to_lowest_weight()[0]
True

We now take the other isomorphic highest weight component in the tensor product:

sage: mg = T.highest_weight_vectors()[1]; mg
[[[2]], [[1]], [[1]]]
sage: psi = B.crystal_morphism([mg], codomain=T)
sage: psi(lw)
[[[3]], [[2]], [[3]]]

We construct a crystal morphism of classical crystals using a Kirillov-Reshetikhin crystal:

sage: B = crystals.Tableaux(['D', 4], shape=[1,1])
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: K.module_generators
[[], [[1], [2]], [[1, 1], [2, 2]]]
sage: v = K.module_generators[1]
sage: psi = B.crystal_morphism([v], codomain=K, category=FiniteCrystals())
sage: psi
['D', 4] -> ['D', 4, 1] Virtual Crystal morphism:
  From: The crystal of tableaux of type ['D', 4] and shape(s) [[1, 1]]
  To:   Kirillov-Reshetikhin crystal of type ['D', 4, 1] with (r,s)=(2,2)
  Defn: [[1], [2]] |--> [[1], [2]]
sage: b = B.module_generators[0]
sage: psi(b)
[[1], [2]]
sage: psi(b.to_lowest_weight()[0])
[[-2], [-1]]

We can define crystal morphisms using a different set of generators. For example, we construct an example using the lowest weight vector:

sage: B = crystals.Tableaux(['A',2], shape=[1])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(['A',2], La[2])
sage: Bp = T.tensor(B)
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: x = C.module_generators[0].f_string([1,2])
sage: psi = Bp.crystal_morphism([x], generators=Bp.lowest_weight_vectors())
sage: psi(Bp.highest_weight_vector())
[[1, 1], [2]]

We can also use a dictionary to specify the generators and their images:

sage: psi = Bp.crystal_morphism({Bp.lowest_weight_vectors()[0]: x})
sage: psi(Bp.highest_weight_vector())
[[1, 1], [2]]

We construct a twisted crystal morphism induced from the diagram automorphism of type \(A_3^{(1)}\):

sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_weights()
sage: B0 = crystals.GeneralizedYoungWalls(3, La[0])
sage: B1 = crystals.GeneralizedYoungWalls(3, La[1])
sage: phi = B0.crystal_morphism(B1.module_generators, automorphism={0:1, 1:2, 2:3, 3:0})
sage: phi
['A', 3, 1] Twisted Crystal morphism:
  From: Highest weight crystal of generalized Young walls of Cartan type ['A', 3, 1] and highest weight Lambda[0]
  To:   Highest weight crystal of generalized Young walls of Cartan type ['A', 3, 1] and highest weight Lambda[1]
  Defn: [] |--> []
sage: x = B0.module_generators[0].f_string([0,1,2,3]); x
[[0, 3], [1], [2]]
sage: phi(x)
[[], [1, 0], [2], [3]]

We construct a virtual crystal morphism from type \(G_2\) into type \(D_4\):

sage: D = crystals.Tableaux(['D',4], shape=[1,1])
sage: G = crystals.Tableaux(['G',2], shape=[1])
sage: psi = G.crystal_morphism(D.module_generators,
....:                          virtualization={1:[2],2:[1,3,4]},
....:                          scaling_factors={1:1, 2:1})
sage: for x in G:
....:     ascii_art(x, psi(x), sep='  |-->  ')
....:     print("")
             1
  1  |-->    2

             1
  2  |-->    3

             2
  3  |-->   -3

             3
  0  |-->   -3

             3
 -3  |-->   -2

            -3
 -2  |-->   -1

            -2
 -1  |-->   -1
digraph(subset=None, index_set=None)#

Return the DiGraph associated to self.

INPUT:

  • subset – (optional) a subset of vertices for which the digraph should be constructed

  • index_set – (optional) the index set to draw arrows

EXAMPLES:

sage: C = Crystals().example(5)
sage: C.digraph()
Digraph on 6 vertices

The edges of the crystal graph are by default colored using blue for edge 1, red for edge 2, and green for edge 3:

sage: C = Crystals().example(3)
sage: G = C.digraph()
sage: view(G)  # optional - dot2tex graphviz, not tested (opens external window)

One may also overwrite the colors:

sage: C = Crystals().example(3)
sage: G = C.digraph()
sage: G.set_latex_options(color_by_label = {1:"red", 2:"purple", 3:"blue"})
sage: view(G)  # optional - dot2tex graphviz, not tested (opens external window)

Or one may add colors to yet unspecified edges:

sage: C = Crystals().example(4)
sage: G = C.digraph()
sage: C.cartan_type()._index_set_coloring[4]="purple"
sage: view(G)  # optional - dot2tex graphviz, not tested (opens external window)

Here is an example of how to take the top part up to a given depth of an infinite dimensional crystal:

sage: C = CartanType(['C',2,1])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[0])
sage: S = T.subcrystal(max_depth=3)
sage: G = T.digraph(subset=S); G
Digraph on 5 vertices
sage: G.vertices(sort=True, key=str)
[(-Lambda[0] + 2*Lambda[1] - delta,),
 (1/2*Lambda[0] + Lambda[1] - Lambda[2] - 1/2*delta, -1/2*Lambda[0] + Lambda[1] - 1/2*delta),
 (1/2*Lambda[0] - Lambda[1] + Lambda[2] - 1/2*delta, -1/2*Lambda[0] + Lambda[1] - 1/2*delta),
 (Lambda[0] - 2*Lambda[1] + 2*Lambda[2] - delta,),
 (Lambda[0],)]

Here is a way to construct a picture of a Demazure crystal using the subset option:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = B.highest_weight_vector()
sage: D = B.demazure_subcrystal(t, [2,1])
sage: list(D)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
 [[1, 3], [2]], [[1, 3], [3]]]
sage: view(D)  # optional - dot2tex graphviz, not tested (opens external window)

We can also choose to display particular arrows using the index_set option:

sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: G = C.digraph(index_set=[1,3])
sage: len(G.edges(sort=False))
20
sage: view(G)  # optional - dot2tex graphviz, not tested (opens external window)

Todo

Add more tests.

direct_sum(X)#

Return the direct sum of self with X.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: B.direct_sum(C)
Direct sum of the crystals Family
(The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
 The crystal of letters for type ['A', 2])

As a shorthand, we can use +:

sage: B + C
Direct sum of the crystals Family
(The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
 The crystal of letters for type ['A', 2])
dot_tex()#

Return a dot_tex string representation of self.

EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: C.dot_tex()
'digraph G { \n  node [ shape=plaintext ];\n  N_0 [ label = " ", texlbl = "$1$" ];\n  N_1 [ label = " ", texlbl = "$2$" ];\n  N_2 [ label = " ", texlbl = "$3$" ];\n  N_0 -> N_1 [ label = " ", texlbl = "1" ];\n  N_1 -> N_2 [ label = " ", texlbl = "2" ];\n}'
index_set()#

Returns the index set of the Dynkin diagram underlying the crystal

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C.index_set()
(1, 2, 3, 4, 5)
is_connected()#

Return True if self is a connected crystal.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: B.is_connected()
True
sage: T.is_connected()
False
latex(**options)#

Returns the crystal graph as a latex string. This can be exported to a file with self.latex_file('filename').

EXAMPLES:

sage: T = crystals.Tableaux(['A',2],shape=[1])
sage: T._latex_()
'...tikzpicture...'
sage: view(T) # optional - dot2tex graphviz, not tested (opens external window)

One can for example also color the edges using the following options:

sage: T = crystals.Tableaux(['A',2],shape=[1])
sage: T._latex_(color_by_label={0:"black", 1:"red", 2:"blue"})
'...tikzpicture...'
latex_file(filename)#

Export a file, suitable for pdflatex, to filename.

This requires a proper installation of dot2tex in sage-python. For more information see the documentation for self.latex().

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: fn = tmp_filename(ext='.tex')
sage: C.latex_file(fn)
metapost(filename, thicklines=False, labels=True, scaling_factor=1.0, tallness=1.0)#

Export a file, suitable for MetaPost, to filename.

Root operators \(e(1)\) or \(f(1)\) move along red lines, \(e(2)\) or \(f(2)\) along green. The highest weight is in the lower left. Vertices with the same weight are kept close together. The concise labels on the nodes are strings introduced by Berenstein and Zelevinsky and Littelmann; see Littelmann’s paper Cones, Crystals, Patterns, sections 5 and 6.

For Cartan types B2 or C2, the pattern has the form

\(a_2 a_3 a_4 a_1\)

where \(c*a_2 = a_3 = 2*a_4 = 0\) and \(a_1=0\), with \(c=2\) for B2, \(c=1\) for C2. Applying \(e(2)\) \(a_1\) times, \(e(1)\) \(a_2\) times, \(e(2)\) \(a_3\) times, \(e(1)\) \(a_4\) times returns to the highest weight. (Observe that Littelmann writes the roots in opposite of the usual order, so our \(e(1)\) is his \(e(2)\) for these Cartan types.) For type A2, the pattern has the form

\(a_3 a_2 a_1\)

where applying \(e(1)\) \(a_3\) times, \(e(2)\) \(a_2\) times then \(e(1)\) \(a_1\) times returns to the highest weight. These data determine the vertex and may be translated into a Gelfand-Tsetlin pattern or tableau.

INPUT:

  • filename – name of the output file, e.g., 'filename.mp'

  • thicklines – (default: True) for thicker edges

  • labels – (default: False) to suppress labeling of the vertices

  • scaling_factor – (default: 1.0) Increasing or decreasing the scaling factor changes the size of the image

  • tallness – (default: 1.0) Increasing makes the image taller without increasing the width

EXAMPLES:

sage: C = crystals.Letters(['A', 2])
sage: C.metapost(tmp_filename())
sage: C = crystals.Letters(['A', 5])
sage: C.metapost(tmp_filename())
Traceback (most recent call last):
...
NotImplementedError
number_of_connected_components()#

Return the number of connected components of self.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.number_of_connected_components()
3
plot(**options)#

Return the plot of self as a directed graph.

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: print(C.plot())
Graphics object consisting of 17 graphics primitives
plot3d(**options)#

Return the 3-dimensional plot of self as a directed graph.

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: print(C.plot3d())
Graphics3d Object
subcrystal(index_set=None, generators=None, max_depth=inf, direction='both', contained=None, virtualization=None, scaling_factors=None, cartan_type=None, category=None)#

Construct the subcrystal from generators using \(e_i\) and/or \(f_i\) for all \(i\) in index_set.

INPUT:

  • index_set – (default: None) the index set; if None then use the index set of the crystal

  • generators – (default: None) the list of generators; if None then use the module generators of the crystal

  • max_depth – (default: infinity) the maximum depth to build

  • direction – (default: 'both') the direction to build the subcrystal; it can be one of the following:

    • 'both' - using both \(e_i\) and \(f_i\)

    • 'upper' - using \(e_i\)

    • 'lower' - using \(f_i\)

  • contained – (optional) a set or function defining the containment in the subcrystal

  • virtualization, scaling_factors – (optional) dictionaries whose key \(i\) corresponds to the sets \(\sigma_i\) and \(\gamma_i\) respectively used to define virtual crystals; see VirtualCrystal

  • cartan_type – (optional) specify the Cartan type of the subcrystal

  • category – (optional) specify the category of the subcrystal

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2)
sage: S = list(C.subcrystal(index_set=[1,2])); S
[[[1, 1]], [[1, 2]], [[2, 2]], [[1, 3]], [[2, 3]], [[3, 3]]]
sage: C.cardinality()
10
sage: len(S)
6
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)]))
[[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], max_depth=1))
[[[1, 4]], [[2, 4]], [[1, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction='upper'))
[[[1, 4]], [[1, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction='lower'))
[[[1, 4]], [[2, 4]]]

sage: G = C.subcrystal(index_set=[1,2,3]).digraph()
sage: GA = crystals.Tableaux('A3', shape=[2]).digraph()
sage: G.is_isomorphic(GA, edge_labels=True)
True

We construct the subcrystal which contains the necessary data to construct the corresponding dual equivalence graph:

sage: C = crystals.Tableaux(['A',5], shape=[3,3])
sage: is_wt0 = lambda x: all(x.epsilon(i) == x.phi(i) for i in x.parent().index_set())
sage: def check(x):
....:     if is_wt0(x):
....:         return True
....:     for i in x.parent().index_set()[:-1]:
....:         L = [x.e(i), x.e_string([i,i+1]), x.f(i), x.f_string([i,i+1])]
....:         if any(y is not None and is_wt0(y) for y in L):
....:             return True
....:     return False
sage: wt0 = [x for x in C if is_wt0(x)]
sage: S = C.subcrystal(contained=check, generators=wt0)
sage: S.module_generators[0]
[[1, 3, 5], [2, 4, 6]]
sage: S.module_generators[0].e(2).e(3).f(2).f(3)
[[1, 2, 5], [3, 4, 6]]

An example of a type \(B_2\) virtual crystal inside of a type \(A_3\) ambient crystal:

sage: A = crystals.Tableaux(['A',3], shape=[2,1,1])
sage: S = A.subcrystal(virtualization={1:[1,3], 2:[2]},
....:                  scaling_factors={1:1,2:1}, cartan_type=['B',2])
sage: B = crystals.Tableaux(['B',2], shape=[1])
sage: S.digraph().is_isomorphic(B.digraph(), edge_labels=True)
True
tensor(*crystals, **options)#

Return the tensor product of self with the crystals B.

EXAMPLES:

sage: C = crystals.Letters(['A', 3])
sage: B = crystals.infinity.Tableaux(['A', 3])
sage: T = C.tensor(C, B); T
Full tensor product of the crystals
 [The crystal of letters for type ['A', 3],
  The crystal of letters for type ['A', 3],
  The infinity crystal of tableaux of type ['A', 3]]
sage: tensor([C, C, B]) is T
True

sage: C = crystals.Letters(['A',2])
sage: T = C.tensor(C, C, generators=[[C(2),C(1),C(1)],[C(1),C(2),C(1)]]); T
The tensor product of the crystals
 [The crystal of letters for type ['A', 2],
  The crystal of letters for type ['A', 2],
  The crystal of letters for type ['A', 2]]
sage: T.module_generators
([2, 1, 1], [1, 2, 1])
weight_lattice_realization()#

Return the weight lattice realization used to express weights in self.

This default implementation uses the ambient space of the root system for (non relabelled) finite types and the weight lattice otherwise. This is a legacy from when ambient spaces were partially implemented, and may be changed in the future.

For affine types, this returns the extended weight lattice by default.

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C.weight_lattice_realization()
Ambient space of the Root system of type ['A', 5]
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.weight_lattice_realization()
Weight lattice of the Root system of type ['A', 2, 1]
class SubcategoryMethods#

Bases: object

Methods for all subcategories.

TensorProducts()#

Return the full subcategory of objects of self constructed as tensor products.

See also

EXAMPLES:

sage: HighestWeightCrystals().TensorProducts()
Category of tensor products of highest weight crystals
class TensorProducts(category, *args)#

Bases: TensorProductsCategory

The category of crystals constructed by tensor product of crystals.

extra_super_categories()#

EXAMPLES:

sage: Crystals().TensorProducts().extra_super_categories()
[Category of crystals]
example(choice='highwt', **kwds)#

Returns an example of a crystal, as per Category.example().

INPUT:

  • choice – str [default: ‘highwt’]. Can be either ‘highwt’ for the highest weight crystal of type A, or ‘naive’ for an example of a broken crystal.

  • **kwds – keyword arguments passed onto the constructor for the chosen crystal.

EXAMPLES:

sage: Crystals().example(choice='highwt', n=5)
Highest weight crystal of type A_5 of highest weight omega_1
sage: Crystals().example(choice='naive')
A broken crystal, defined by digraph, of dimension five.
super_categories()#

EXAMPLES:

sage: Crystals().super_categories()
[Category of enumerated sets]