Simplified DES¶
A simplified variant of the Data Encryption Standard (DES). Note that Simplified DES or S-DES is for educational purposes only. It is a small-scale version of the DES designed to help beginners understand the basic structure of DES.
AUTHORS:
Minh Van Nguyen (2009-06): initial version
- class sage.crypto.block_cipher.sdes.SimplifiedDES[source]¶
Bases:
SageObject
This class implements the Simplified Data Encryption Standard (S-DES) described in [Sch1996]. Schaefer’s S-DES is for educational purposes only and is not secure for practical purposes. S-DES is a version of the DES with all parameters significantly reduced, but at the same time preserving the structure of DES. The goal of S-DES is to allow a beginner to understand the structure of DES, thus laying a foundation for a thorough study of DES. Its goal is as a teaching tool in the same spirit as Phan’s
Mini-AES
[Pha2002].EXAMPLES:
Encrypt a random block of 8-bit plaintext using a random key, decrypt the ciphertext, and compare the result with the original plaintext:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES(); sdes Simplified DES block cipher with 10-bit keys sage: bin = BinaryStrings() sage: P = [bin(str(randint(0, 1))) for i in range(8)] sage: K = sdes.random_key() sage: C = sdes.encrypt(P, K) sage: plaintxt = sdes.decrypt(C, K) sage: plaintxt == P True
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES(); sdes Simplified DES block cipher with 10-bit keys >>> bin = BinaryStrings() >>> P = [bin(str(randint(Integer(0), Integer(1)))) for i in range(Integer(8))] >>> K = sdes.random_key() >>> C = sdes.encrypt(P, K) >>> plaintxt = sdes.decrypt(C, K) >>> plaintxt == P True
We can also encrypt binary strings that are larger than 8 bits in length. However, the number of bits in that binary string must be positive and a multiple of 8:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: bin = BinaryStrings() sage: P = bin.encoding("Encrypt this using S-DES!") sage: Mod(len(P), 8) == 0 True sage: K = sdes.list_to_string(sdes.random_key()) sage: C = sdes(P, K, algorithm='encrypt') sage: plaintxt = sdes(C, K, algorithm='decrypt') sage: plaintxt == P True
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> bin = BinaryStrings() >>> P = bin.encoding("Encrypt this using S-DES!") >>> Mod(len(P), Integer(8)) == Integer(0) True >>> K = sdes.list_to_string(sdes.random_key()) >>> C = sdes(P, K, algorithm='encrypt') >>> plaintxt = sdes(C, K, algorithm='decrypt') >>> plaintxt == P True
- block_length()[source]¶
Return the block length of Schaefer’s S-DES block cipher. A key in Schaefer’s S-DES is a block of 10 bits.
OUTPUT:
The block (or key) length in number of bits.
EXAMPLES:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: sdes.block_length() 10
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> sdes.block_length() 10
- decrypt(C, K)[source]¶
Return an 8-bit plaintext corresponding to the ciphertext
C
, using S-DES decryption with keyK
. The decryption process of S-DES is as follows. Let be the initial permutation function, the corresponding inverse permutation, the permutation/substitution function, and the switch function. The ciphertext blockC
first goes through , the output of which goes through using the second subkey. Then we apply the switch function to the output of the last function, and the result is then fed into using the first subkey. Finally, run the output through to get the plaintext.INPUT:
C
– an 8-bit ciphertext; a block of 8 bitsK
– a 10-bit key; a block of 10 bits
OUTPUT:
The 8-bit plaintext corresponding to
C
, obtained using the keyK
.EXAMPLES:
Decrypt an 8-bit ciphertext block:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: C = [0, 1, 0, 1, 0, 1, 0, 1] sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.decrypt(C, K) [0, 0, 0, 1, 0, 1, 0, 1]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> C = [Integer(0), Integer(1), Integer(0), Integer(1), Integer(0), Integer(1), Integer(0), Integer(1)] >>> K = [Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0)] >>> sdes.decrypt(C, K) [0, 0, 0, 1, 0, 1, 0, 1]
We can also work with strings of bits:
sage: C = "01010101" sage: K = "1010000010" sage: sdes.decrypt(sdes.string_to_list(C), sdes.string_to_list(K)) [0, 0, 0, 1, 0, 1, 0, 1]
>>> from sage.all import * >>> C = "01010101" >>> K = "1010000010" >>> sdes.decrypt(sdes.string_to_list(C), sdes.string_to_list(K)) [0, 0, 0, 1, 0, 1, 0, 1]
- encrypt(P, K)[source]¶
Return an 8-bit ciphertext corresponding to the plaintext
P
, using S-DES encryption with keyK
. The encryption process of S-DES is as follows. Let be the initial permutation function, the corresponding inverse permutation, the permutation/substitution function, and the switch function. The plaintext blockP
first goes through , the output of which goes through using the first subkey. Then we apply the switch function to the output of the last function, and the result is then fed into using the second subkey. Finally, run the output through to get the ciphertext.INPUT:
P
– an 8-bit plaintext; a block of 8 bitsK
– a 10-bit key; a block of 10 bits
OUTPUT:
The 8-bit ciphertext corresponding to
P
, obtained using the keyK
.EXAMPLES:
Encrypt an 8-bit plaintext block:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: P = [0, 1, 0, 1, 0, 1, 0, 1] sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.encrypt(P, K) [1, 1, 0, 0, 0, 0, 0, 1]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> P = [Integer(0), Integer(1), Integer(0), Integer(1), Integer(0), Integer(1), Integer(0), Integer(1)] >>> K = [Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0)] >>> sdes.encrypt(P, K) [1, 1, 0, 0, 0, 0, 0, 1]
We can also work with strings of bits:
sage: P = "01010101" sage: K = "1010000010" sage: sdes.encrypt(sdes.string_to_list(P), sdes.string_to_list(K)) [1, 1, 0, 0, 0, 0, 0, 1]
>>> from sage.all import * >>> P = "01010101" >>> K = "1010000010" >>> sdes.encrypt(sdes.string_to_list(P), sdes.string_to_list(K)) [1, 1, 0, 0, 0, 0, 0, 1]
- initial_permutation(B, inverse=False)[source]¶
Return the initial permutation of
B
. Denote the initial permutation function by and let be a vector of 8 bits, where each . ThenThe inverse permutation is
:INPUT:
B
– list; a block of 8 bitsinverse
– boolean (default:False
); ifTrue
then use the inverse permutation . IfFalse
then use the initial permutation .
OUTPUT:
The initial permutation of
B
ifinverse=False
, or the inverse permutation ofB
ifinverse=True
.EXAMPLES:
The initial permutation of a list of 8 bits:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 1, 1, 0, 1, 0, 0] sage: P = sdes.initial_permutation(B); P [0, 1, 1, 1, 1, 0, 0, 0]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> B = [Integer(1), Integer(0), Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0)] >>> P = sdes.initial_permutation(B); P [0, 1, 1, 1, 1, 0, 0, 0]
Recovering the original list of 8 bits from the permutation:
sage: Pinv = sdes.initial_permutation(P, inverse=True) sage: Pinv; B [1, 0, 1, 1, 0, 1, 0, 0] [1, 0, 1, 1, 0, 1, 0, 0]
>>> from sage.all import * >>> Pinv = sdes.initial_permutation(P, inverse=True) >>> Pinv; B [1, 0, 1, 1, 0, 1, 0, 0] [1, 0, 1, 1, 0, 1, 0, 0]
We can also work with a string of bits:
sage: S = "10110100" sage: L = sdes.string_to_list(S) sage: P = sdes.initial_permutation(L); P [0, 1, 1, 1, 1, 0, 0, 0] sage: sdes.initial_permutation(sdes.string_to_list("01111000"), inverse=True) [1, 0, 1, 1, 0, 1, 0, 0]
>>> from sage.all import * >>> S = "10110100" >>> L = sdes.string_to_list(S) >>> P = sdes.initial_permutation(L); P [0, 1, 1, 1, 1, 0, 0, 0] >>> sdes.initial_permutation(sdes.string_to_list("01111000"), inverse=True) [1, 0, 1, 1, 0, 1, 0, 0]
- left_shift(B, n=1)[source]¶
Return a circular left shift of
B
byn
positions. Let be a vector of 10 bits. Then the left shift operation is performed on the first 5 bits and the last 5 bits of separately. That is, if the number of shift positions isn=1
, then is defined asIf the number of shift positions is
n=2
, then is given byINPUT:
B
– list of 10 bitsn
– (default: 1) ifn=1
then perform left shift by 1 position; ifn=2
then perform left shift by 2 positions. The valid values forn
are 1 and 2, since only up to 2 positions are defined for this circular left shift operation.
OUTPUT: the circular left shift of each half of
B
EXAMPLES:
Circular left shift by 1 position of a 10-bit string:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 0, 0, 0, 0, 1, 1, 0, 0] sage: sdes.left_shift(B) [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift([1, 0, 1, 0, 0, 0, 0, 0, 1, 0]) [0, 1, 0, 0, 1, 0, 0, 1, 0, 0]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> B = [Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)] >>> sdes.left_shift(B) [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] >>> sdes.left_shift([Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0)]) [0, 1, 0, 0, 1, 0, 0, 1, 0, 0]
Circular left shift by 2 positions of a 10-bit string:
sage: B = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift(B, n=2) [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
>>> from sage.all import * >>> B = [Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(1), Integer(1), Integer(0), Integer(0), Integer(0)] >>> sdes.left_shift(B, n=Integer(2)) [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
Here we work with a string of bits:
sage: S = "1000001100" sage: L = sdes.string_to_list(S) sage: sdes.left_shift(L) [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] sage: sdes.left_shift(sdes.string_to_list("1010000010"), n=2) [1, 0, 0, 1, 0, 0, 1, 0, 0, 0]
>>> from sage.all import * >>> S = "1000001100" >>> L = sdes.string_to_list(S) >>> sdes.left_shift(L) [0, 0, 0, 0, 1, 1, 1, 0, 0, 0] >>> sdes.left_shift(sdes.string_to_list("1010000010"), n=Integer(2)) [1, 0, 0, 1, 0, 0, 1, 0, 0, 0]
- list_to_string(B)[source]¶
Return a binary string representation of the list
B
.INPUT:
B
– a non-empty list of bits
OUTPUT: the binary string representation of
B
EXAMPLES:
A binary string representation of a list of bits:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: L = [0, 0, 0, 0, 1, 1, 0, 1, 0, 0] sage: sdes.list_to_string(L) 0000110100
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> L = [Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0)] >>> sdes.list_to_string(L) 0000110100
- permutation10(B)[source]¶
Return a permutation of a 10-bit string. This permutation is called
and is specified as follows. Let be a vector of 10 bits where each . Then is given byINPUT:
B
– a block of 10-bit string
OUTPUT: a permutation of
B
EXAMPLES:
Permute a 10-bit string:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1] sage: sdes.permutation10(B) [0, 1, 1, 0, 0, 1, 1, 0, 1, 0] sage: sdes.permutation10([0, 1, 1, 0, 1, 0, 0, 1, 0, 1]) [1, 1, 1, 0, 0, 1, 0, 0, 1, 0] sage: sdes.permutation10([1, 0, 1, 0, 0, 0, 0, 0, 1, 0]) [1, 0, 0, 0, 0, 0, 1, 1, 0, 0]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> B = [Integer(1), Integer(1), Integer(0), Integer(0), Integer(1), Integer(0), Integer(0), Integer(1), Integer(0), Integer(1)] >>> sdes.permutation10(B) [0, 1, 1, 0, 0, 1, 1, 0, 1, 0] >>> sdes.permutation10([Integer(0), Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(1), Integer(0), Integer(1)]) [1, 1, 1, 0, 0, 1, 0, 0, 1, 0] >>> sdes.permutation10([Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0)]) [1, 0, 0, 0, 0, 0, 1, 1, 0, 0]
Here we work with a string of bits:
sage: S = "1100100101" sage: L = sdes.string_to_list(S) sage: sdes.permutation10(L) [0, 1, 1, 0, 0, 1, 1, 0, 1, 0] sage: sdes.permutation10(sdes.string_to_list("0110100101")) [1, 1, 1, 0, 0, 1, 0, 0, 1, 0]
>>> from sage.all import * >>> S = "1100100101" >>> L = sdes.string_to_list(S) >>> sdes.permutation10(L) [0, 1, 1, 0, 0, 1, 1, 0, 1, 0] >>> sdes.permutation10(sdes.string_to_list("0110100101")) [1, 1, 1, 0, 0, 1, 0, 0, 1, 0]
- permutation4(B)[source]¶
Return a permutation of a 4-bit string. This permutation is called
and is specified as follows. Let be a vector of 4 bits where each . Then is defined byINPUT:
B
– a block of 4-bit string
OUTPUT: a permutation of
B
EXAMPLES:
Permute a 4-bit string:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0] sage: sdes.permutation4(B) [1, 0, 0, 1] sage: sdes.permutation4([0, 1, 0, 1]) [1, 1, 0, 0]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> B = [Integer(1), Integer(1), Integer(0), Integer(0)] >>> sdes.permutation4(B) [1, 0, 0, 1] >>> sdes.permutation4([Integer(0), Integer(1), Integer(0), Integer(1)]) [1, 1, 0, 0]
We can also work with a string of bits:
sage: S = "1100" sage: L = sdes.string_to_list(S) sage: sdes.permutation4(L) [1, 0, 0, 1] sage: sdes.permutation4(sdes.string_to_list("0101")) [1, 1, 0, 0]
>>> from sage.all import * >>> S = "1100" >>> L = sdes.string_to_list(S) >>> sdes.permutation4(L) [1, 0, 0, 1] >>> sdes.permutation4(sdes.string_to_list("0101")) [1, 1, 0, 0]
- permutation8(B)[source]¶
Return a permutation of an 8-bit string. This permutation is called
and is specified as follows. Let be a vector of 10 bits where each . Then picks out 8 of those 10 bits and permutes those 8 bits:INPUT:
B
– a block of 10-bit string
OUTPUT: pick out 8 of the 10 bits of
B
and permute those 8 bitsEXAMPLES:
Permute a 10-bit string:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1] sage: sdes.permutation8(B) [0, 0, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8([0, 1, 1, 0, 1, 0, 0, 1, 0, 1]) [0, 1, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8([0, 0, 0, 0, 1, 1, 1, 0, 0, 0]) [1, 0, 1, 0, 0, 1, 0, 0]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> B = [Integer(1), Integer(1), Integer(0), Integer(0), Integer(1), Integer(0), Integer(0), Integer(1), Integer(0), Integer(1)] >>> sdes.permutation8(B) [0, 0, 0, 0, 1, 1, 1, 0] >>> sdes.permutation8([Integer(0), Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(1), Integer(0), Integer(1)]) [0, 1, 0, 0, 1, 1, 1, 0] >>> sdes.permutation8([Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(1), Integer(1), Integer(0), Integer(0), Integer(0)]) [1, 0, 1, 0, 0, 1, 0, 0]
We can also work with a string of bits:
sage: S = "1100100101" sage: L = sdes.string_to_list(S) sage: sdes.permutation8(L) [0, 0, 0, 0, 1, 1, 1, 0] sage: sdes.permutation8(sdes.string_to_list("0110100101")) [0, 1, 0, 0, 1, 1, 1, 0]
>>> from sage.all import * >>> S = "1100100101" >>> L = sdes.string_to_list(S) >>> sdes.permutation8(L) [0, 0, 0, 0, 1, 1, 1, 0] >>> sdes.permutation8(sdes.string_to_list("0110100101")) [0, 1, 0, 0, 1, 1, 1, 0]
- permute_substitute(B, key)[source]¶
Apply the function
on the blockB
using subkeykey
. Let be a vector of 8 bits where each , let and be the leftmost 4 bits and rightmost 4 bits ofB
respectively, and let be a function mapping 4-bit strings to 4-bit strings. Thenwhere
is a subkey and denotes the bit-wise exclusive-OR function.The function
can be described as follows. Its 4-bit input block is first expanded into an 8-bit block to become . This is usually represented as followsLet
be an 8-bit subkey. Then is added to the above expanded input block using exclusive-OR to produceNow read the first row as the 4-bit string
and input this 4-bit string through S-box to get a 2-bit output.Next read the second row as the 4-bit string
and input this 4-bit string through S-box to get another 2-bit output.Denote the 4 bits produced by
and as . This 4-bit string undergoes another permutation called as follows:The output of
is the output of the function .INPUT:
B
– list of 8 bitskey
– an 8-bit subkey
OUTPUT: the result of applying the function
toB
EXAMPLES:
Applying the function
to an 8-bit block and an 8-bit subkey:sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 0, 1, 1, 1, 1, 0, 1] sage: K = [1, 1, 0, 1, 0, 1, 0, 1] sage: sdes.permute_substitute(B, K) [1, 0, 1, 0, 1, 1, 0, 1]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> B = [Integer(1), Integer(0), Integer(1), Integer(1), Integer(1), Integer(1), Integer(0), Integer(1)] >>> K = [Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(1), Integer(0), Integer(1)] >>> sdes.permute_substitute(B, K) [1, 0, 1, 0, 1, 1, 0, 1]
We can also work with strings of bits:
sage: B = "10111101" sage: K = "11010101" sage: B = sdes.string_to_list(B); K = sdes.string_to_list(K) sage: sdes.permute_substitute(B, K) [1, 0, 1, 0, 1, 1, 0, 1]
>>> from sage.all import * >>> B = "10111101" >>> K = "11010101" >>> B = sdes.string_to_list(B); K = sdes.string_to_list(K) >>> sdes.permute_substitute(B, K) [1, 0, 1, 0, 1, 1, 0, 1]
- random_key()[source]¶
Return a random 10-bit key.
EXAMPLES:
The size of each key is the same as the block size:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: key = sdes.random_key() sage: len(key) == sdes.block_length() True
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> key = sdes.random_key() >>> len(key) == sdes.block_length() True
- sbox()[source]¶
Return the S-boxes of simplified DES.
EXAMPLES:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: sbox = sdes.sbox() sage: sbox[0]; sbox[1] (1, 0, 3, 2, 3, 2, 1, 0, 0, 2, 1, 3, 3, 1, 3, 2) (0, 1, 2, 3, 2, 0, 1, 3, 3, 0, 1, 0, 2, 1, 0, 3)
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> sbox = sdes.sbox() >>> sbox[Integer(0)]; sbox[Integer(1)] (1, 0, 3, 2, 3, 2, 1, 0, 0, 2, 1, 3, 3, 1, 3, 2) (0, 1, 2, 3, 2, 0, 1, 3, 3, 0, 1, 0, 2, 1, 0, 3)
- string_to_list(S)[source]¶
Return a list representation of the binary string
S
.INPUT:
S
– string of bits
OUTPUT: list representation of the string
S
EXAMPLES:
A list representation of a string of bits:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: S = "0101010110" sage: sdes.string_to_list(S) [0, 1, 0, 1, 0, 1, 0, 1, 1, 0]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> S = "0101010110" >>> sdes.string_to_list(S) [0, 1, 0, 1, 0, 1, 0, 1, 1, 0]
- subkey(K, n=1)[source]¶
Return the
-th subkey based on the keyK
.INPUT:
K
– a 10-bit secret key of this Simplified DESn
– (default: 1) ifn=1
then return the first subkey based onK
; ifn=2
then return the second subkey. The valid values forn
are 1 and 2, since only two subkeys are defined for each secret key in Schaefer’s S-DES.
OUTPUT: the
-th subkey based on the secret keyK
EXAMPLES:
Obtain the first subkey from a secret key:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.subkey(key, n=1) [1, 0, 1, 0, 0, 1, 0, 0]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> key = [Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0)] >>> sdes.subkey(key, n=Integer(1)) [1, 0, 1, 0, 0, 1, 0, 0]
Obtain the second subkey from a secret key:
sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] sage: sdes.subkey(key, n=2) [0, 1, 0, 0, 0, 0, 1, 1]
>>> from sage.all import * >>> key = [Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0)] >>> sdes.subkey(key, n=Integer(2)) [0, 1, 0, 0, 0, 0, 1, 1]
We can also work with strings of bits:
sage: K = "1010010010" sage: L = sdes.string_to_list(K) sage: sdes.subkey(L, n=1) [1, 0, 1, 0, 0, 1, 0, 1] sage: sdes.subkey(sdes.string_to_list("0010010011"), n=2) [0, 1, 1, 0, 1, 0, 1, 0]
>>> from sage.all import * >>> K = "1010010010" >>> L = sdes.string_to_list(K) >>> sdes.subkey(L, n=Integer(1)) [1, 0, 1, 0, 0, 1, 0, 1] >>> sdes.subkey(sdes.string_to_list("0010010011"), n=Integer(2)) [0, 1, 1, 0, 1, 0, 1, 0]
- switch(B)[source]¶
Interchange the first 4 bits with the last 4 bits in the list
B
of 8 bits. Let be a vector of 8 bits, where each . Then the switch function is given byINPUT:
B
– list; a block of 8 bits
OUTPUT:
A block of the same dimension, but in which the first 4 bits from
B
has been switched for the last 4 bits inB
.EXAMPLES:
Interchange the first 4 bits with the last 4 bits:
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES sage: sdes = SimplifiedDES() sage: B = [1, 1, 1, 0, 1, 0, 0, 0] sage: sdes.switch(B) [1, 0, 0, 0, 1, 1, 1, 0] sage: sdes.switch([1, 1, 1, 1, 0, 0, 0, 0]) [0, 0, 0, 0, 1, 1, 1, 1]
>>> from sage.all import * >>> from sage.crypto.block_cipher.sdes import SimplifiedDES >>> sdes = SimplifiedDES() >>> B = [Integer(1), Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0)] >>> sdes.switch(B) [1, 0, 0, 0, 1, 1, 1, 0] >>> sdes.switch([Integer(1), Integer(1), Integer(1), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)]) [0, 0, 0, 0, 1, 1, 1, 1]
We can also work with a string of bits:
sage: S = "11101000" sage: L = sdes.string_to_list(S) sage: sdes.switch(L) [1, 0, 0, 0, 1, 1, 1, 0] sage: sdes.switch(sdes.string_to_list("11110000")) [0, 0, 0, 0, 1, 1, 1, 1]
>>> from sage.all import * >>> S = "11101000" >>> L = sdes.string_to_list(S) >>> sdes.switch(L) [1, 0, 0, 0, 1, 1, 1, 0] >>> sdes.switch(sdes.string_to_list("11110000")) [0, 0, 0, 0, 1, 1, 1, 1]