Soliton Cellular Automata#

AUTHORS:

  • Travis Scrimshaw (2017-06-30): Initial version

  • Travis Scrimshaw (2018-02-03): Periodic version

class sage.dynamics.cellular_automata.solitons.PeriodicSolitonCellularAutomata(initial_state, cartan_type=2, vacuum=1)#

Bases: SolitonCellularAutomata

A periodic soliton cellular automata.

Fix some \(r \in I_0\). A periodic soliton cellular automata is a SolitonCellularAutomata with a state being a fixed number of tensor factors \(p = p_{\ell} \otimes \cdots \otimes p_1 \otimes p_0\) and the time evolution \(T_s\) is defined by

\[R(p \otimes u) = u \otimes T_s(p),\]

for some element \(u \in B^{r,s}\).

INPUT:

  • initial_state – the list of elements, can also be a string when vacuum is 1 and n is \(\mathfrak{sl}_n\)

  • cartan_type – (default: 2) the value n, for \(\mathfrak{sl}_n\), or a Cartan type

  • r – (default: 1) the node index \(r\); typically this corresponds to the height of the vacuum element

EXAMPLES:

The construction and usage is the same as for SolitonCellularAutomata:

sage: P = PeriodicSolitonCellularAutomata('1123334111241111423111411123112', 4)
sage: P.evolve()
sage: P
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  ..23334...24....423...4...23..2
  evoltuions: [(1, 31)]
  current state:
  34......24....243....4.223.233.
sage: P.evolve(carrier_capacity=2)
sage: P.evolve(carrier_index=2)
sage: P.evolve(carrier_index=2, carrier_capacity=3)
sage: P.print_states(10)
t: 0
     ..23334...24....423...4...23..2
t: 1
     34......24....243....4.223.233.
t: 2
     ......24....24.3....4223.2333.4
t: 3
     .....34....34.2..223234.24...3.
t: 4
     ....34...23..242223.4..33....4.
t: 5
     ..34.2223.224.3....4.33.....4..
t: 6
     34223...24...3....433......4.22
t: 7
     23....24....3...343....222434..
t: 8
     ....24.....3..34.322244...3..23
t: 9
     ..24.....332442342.......3.23..

Using \(r = 2\) in type \(A_3^{(1)}\):

sage: initial = [[2,1],[2,1],[4,1],[2,1],[2,1],[2,1],[3,1],[3,1],[3,2]]
sage: P = PeriodicSolitonCellularAutomata(initial, 4, 2)
sage: P.print_states(10)
t: 0   4   333
     ..1...112
t: 1  4 333
     .1.112...
t: 2 433     3
     112.....1
t: 3 3    334
     2....111.
t: 4   334   3
     ..111...2
t: 5 34     33
     11.....21
t: 6     3334
     ....1121.
t: 7  333  4
     .112..1..
t: 8 3    4 33
     2....1.11
t: 9    3433
     ...1112..

We do some examples in other types:

sage: initial = [[1],[2],[2],[1],[1],[1],[3],[1],['E'],[1],[1]]
sage: P = PeriodicSolitonCellularAutomata(initial, ['D',4,3])
sage: P.print_states(10)
t: 0
     .22...3.E..
t: 1
     2....3.E..2
t: 2
     ....3.E.22.
t: 3
     ...3.E22...
t: 4
     ..32E2.....
t: 5
     .00.2......
t: 6 _
     22.2.......
t: 7
     2.2......3E
t: 8
     .2.....30.2
t: 9
     2....332.2.

sage: P = PeriodicSolitonCellularAutomata([[3],[2],[1],[1],[-2]], ['C',2,1])
sage: P.print_state_evolution(0)
        3           2           1           1          -2
    _   |           |           |       _   |      __   |       _
11112 --+-- 11112 --+-- 11111 --+-- 11112 --+-- 11122 --+-- 11112
        |           |           |           |           |
        2           1          -2          -2           1

REFERENCES:

evolve(carrier_capacity=None, carrier_index=None, number=None)#

Evolve self.

Time evolution \(T_s\) of a SCA state \(p\) is determined by

\[u \otimes T_s(p) = R(p \otimes u),\]

where \(u\) is some element in \(B^{r,s}\).

INPUT:

  • carrier_capacity – (default: the number of balls in the system) the size \(s\) of carrier

  • carrier_index – (default: the vacuum index) the index \(r\) of the carrier

  • number – (optional) the number of times to perform the evolutions

To perform multiple evolutions of the SCA, carrier_capacity and carrier_index may be lists of the same length.

Warning

Time evolution is only guaranteed to result in a solution when the carrier_index is the defining \(r\) of the SCA. If no solution is found, then this will raise an error.

EXAMPLES:

sage: P = PeriodicSolitonCellularAutomata('12411133214131221122', 4)
sage: P.evolve()
sage: P.print_state(0)
.24...332.4.3.22..22
sage: P.print_state(1)
4...33.2.42322..22..
sage: P.evolve(carrier_capacity=2)
sage: P.print_state(2)
..33.22.4232..22...4
sage: P.evolve(carrier_capacity=[1,3,1,2])
sage: P.evolve(1, number=3)
sage: P.print_states(10)
t: 0
     .24...332.4.3.22..22
t: 1
     4...33.2.42322..22..
t: 2
     ..33.22.4232..22...4
t: 3
     .33.22.4232..22...4.
t: 4
     3222..43.2.22....4.3
t: 5
     222..43.2.22....4.33
t: 6
     2...4322.2.....43322
t: 7
     ...4322.2.....433222
t: 8
     ..4322.2.....433222.
t: 9
     .4322.2.....433222..

sage: P = PeriodicSolitonCellularAutomata('12411132121', 4)
sage: P.evolve(carrier_index=2, carrier_capacity=3)
sage: P.state_evolution(0)
[[[1, 1, 1], [2, 2, 4]],
 [[1, 1, 2], [2, 2, 4]],
 [[1, 1, 3], [2, 2, 4]],
 [[1, 1, 1], [2, 2, 3]],
 [[1, 1, 1], [2, 2, 3]],
 [[1, 1, 1], [2, 2, 3]],
 [[1, 1, 2], [2, 2, 3]],
 [[1, 1, 1], [2, 2, 2]],
 [[1, 1, 1], [2, 2, 2]],
 [[1, 1, 1], [2, 2, 2]],
 [[1, 1, 1], [2, 2, 4]],
 [[1, 1, 1], [2, 2, 4]]]
class sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata(initial_state, cartan_type=2, vacuum=1)#

Bases: SageObject

Soliton cellular automata.

Fix an affine Lie algebra \(\mathfrak{g}\) with index \(I\) and classical index set \(I_0\). Fix some \(r \in I_0\). A soliton cellular automaton (SCA) is a discrete (non-linear) dynamical system given as follows. The states are given by elements of a semi-infinite tensor product of Kirillov-Reshetihkin crystals \(B^{r,1}\), where only a finite number of factors are not the maximal element \(u\), which we will call the vacuum. The time evolution \(T_s\) is defined by

\[R(p \otimes u_s) = u_s \otimes T_s(p),\]

where \(p = \cdots \otimes p_3 \otimes p_2 \otimes p_1 \otimes p_0\) is a state and \(u_s\) is the maximal element of \(B^{r,s}\). In more detail, we have \(R(p_i \otimes u^{(i)}) = u^{(i+1)} \otimes \widetilde{p}_i\) with \(u^{(0)} = u_s\) and \(T_s(p) = \cdots \otimes \widetilde{p}_1 \otimes \widetilde{p}_0\). This is well-defined since \(R(u \otimes u_s) = u_s \otimes u\) and \(u^{(k)} = u_s\) for all \(k \gg 1\).

INPUT:

  • initial_state – the list of elements, can also be a string when vacuum is 1 and n is \(\mathfrak{sl}_n\)

  • cartan_type – (default: 2) the value n, for \(\mathfrak{sl}_n\), or a Cartan type

  • r – (default: 1) the node index \(r\); typically this corresponds to the height of the vacuum element

EXAMPLES:

We first create an example in \(\mathfrak{sl}_4\) (type \(A_3\)):

sage: B = SolitonCellularAutomata('3411111122411112223', 4)
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: []
  current state:
  34......224....2223

We then apply a standard evolution:

sage: B.evolve()
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 19)]
  current state:
  .................34.....224...2223....

Next, we apply a smaller carrier evolution. Note that the soliton of size 4 moves only 3 steps:

sage: B.evolve(3)
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 19), (1, 3)]
  current state:
  ...............34....224...2223.......

We can also use carriers corresponding to non-vacuum indices. In these cases, the carrier might not return to its initial state, which results in a message being displayed about the resulting state of the carrier:

sage: B.evolve(carrier_capacity=7, carrier_index=3)
Last carrier:
  1  1  1  1  1  1  1
  2  2  2  2  2  3  3
  3  3  3  3  3  4  4
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 19), (1, 3), (3, 7)]
  current state:
  .....................23....222....2223.......

sage: B.evolve(carrier_capacity=3, carrier_index=2)
Last carrier:
  1  1  1
  2  2  3
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 19), (1, 3), (3, 7), (2, 3)]
  current state:
  .......................22.....223...2222........

To summarize our current evolutions, we can use print_states():

sage: B.print_states(5)
t: 0
     .............................34......224....2223
t: 1
     ...........................34.....224...2223....
t: 2
     .........................34....224...2223.......
t: 3
     ........................23....222....2223.......
t: 4
     .......................22.....223...2222........

To run the SCA further under the standard evolutions, one can use print_states() or latex_states():

sage: B.print_states(15)
t: 0
     ................................................34......224....2223
t: 1
     ..............................................34.....224...2223....
t: 2
     ............................................34....224...2223.......
t: 3
     ...........................................23....222....2223.......
t: 4
     ..........................................22.....223...2222........
t: 5
     ........................................22....223..2222............
t: 6
     ......................................22..2223..222................
t: 7
     ..................................2222..23...222...................
t: 8
     ..............................2222....23..222......................
t: 9
     ..........................2222......23.222.........................
t: 10
      ......................2222.......223.22............................
t: 11
      ..................2222........223..22..............................
t: 12
      ..............2222.........223...22................................
t: 13
      ..........2222..........223....22..................................
t: 14
      ......2222...........223.....22....................................

Next, we use \(r = 2\) in type \(A_3\). Here, we give the data as lists of values corresponding to the entries of the column of height 2 from the largest entry to smallest. Our columns are drawn in French convention:

sage: B = SolitonCellularAutomata([[4,1],[4,1],[2,1],[2,1],[2,1],[2,1],[3,1],[3,1],[3,2]], 4, 2)

We perform 3 evolutions and obtain the following:

sage: B.evolve(number=3)
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 2
  initial state:
  44    333
  11....112
  evoltuions: [(2, 9), (2, 9), (2, 9)]
  current state:
     44 333
  ...11.112.........

We construct Example 2.9 from [LS2017]:

sage: B = SolitonCellularAutomata([[2],[-3],[1],[1],[1],[4],[0],[-2],
....:   [1],[1],[1],[1],[3],[-4],[-3],[-3],[1]], ['D',5,2])
sage: B.print_states(10)
t: 0                                    _     _     ___
     ..................................23...402....3433.
t: 1                                  _    _    ___
     ................................23..402...3433.....
t: 2                                _   _   ___
     ..............................23.402..3433.........
t: 3                              _  _  ___
     ...........................243.02.3433.............
t: 4                           _  __ __
     .......................2403..42333.................
t: 5                       _   ___ _
     ...................2403...44243....................
t: 6                   _    ___  _
     ...............2403....442.43......................
t: 7               _     ___   _
     ...........2403.....442..43........................
t: 8           _      ___    _
     .......2403......442...43..........................
t: 9       _       ___     _
     ...2403.......442....43............................

Example 3.4 from [LS2017]:

sage: B = SolitonCellularAutomata([['E'],[1],[1],[1],[3],[0],
....: [1],[1],[1],[1],[2],[-3],[-1],[1]], ['D',4,2])
sage: B.print_states(10)
t: 0                                                      __
     ..........................................E...30....231.
t: 1                                                  __
     .........................................E..30..231.....
t: 2                                            _  _
     ........................................E303.21.........
t: 3                                       _ _
     ....................................303E2.22............
t: 4                                   _    _
     ................................303E...222..............
t: 5                               _       _
     ............................303E......12................
t: 6                           _         _
     ........................303E........1.2.................
t: 7                       _           _
     ....................303E..........1..2..................
t: 8                   _             _
     ................303E............1...2...................
t: 9               _               _
     ............303E..............1....2....................

Example 3.12 from [LS2017]:

sage: B = SolitonCellularAutomata([[-1,3,2],[3,2,1],[3,2,1],[-3,2,1],
....:   [-2,-3,1]], ['B',3,1], 3)
sage: B.print_states(6)
                                   -1    -3-2
t: 0                                3     2-3
      . . . . . . . . . . . . . . . 2 . . 1 1
                                 -1-3-2
t: 1                              3 2-3
      . . . . . . . . . . . . . . 2 1 1 . . .
                             -3-1
t: 2                          2-2
      . . . . . . . . . . . . 1-3 . . . . . .
                       -3-1  -3
t: 3                    2-2   2
      . . . . . . . . . 1 3 . 1 . . . . . . .
                 -3-1      -3
t: 4              2-2       2
      . . . . . . 1 3 . . . 1 . . . . . . . .
           -3-1          -3
t: 5        2-2           2
      . . . 1 3 . . . . . 1 . . . . . . . . .

Example 4.12 from [LS2017]:

sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,1, 'KR')
sage: u = K.module_generators[0]
sage: x = u.f_string([1,3,4,5])
sage: y = u.f_string([1,3,4,2,5,6])
sage: a = u.f_string([1,3,4,2])
sage: B = SolitonCellularAutomata([a, u,u,u, x,y], ['E',6,1], 1)
sage: B
Soliton cellular automata of type ['E', 6, 1] and vacuum = 1
  initial state:
      (-2, 5)          .          .          . (-5, 2, 6)(-2, -6, 4)
  evoltuions: []
  current state:
      (-2, 5)          .          .          . (-5, 2, 6)(-2, -6, 4)
sage: B.print_states(8)
t: 0 ...
t: 7
                  .       (-2, 5)(-2, -5, 4, 6) ... (-6, 2) ...
evolve(carrier_capacity=None, carrier_index=None, number=None)#

Evolve self.

Time evolution \(T_s\) of a SCA state \(p\) is determined by

\[u_{r,s} \otimes T_s(p) = R(p \otimes u_{r,s}),\]

where \(u_{r,s}\) is the maximal element of \(B^{r,s}\).

INPUT:

  • carrier_capacity – (default: the number of balls in the system) the size \(s\) of carrier

  • carrier_index – (default: the vacuum index) the index \(r\) of the carrier

  • number – (optional) the number of times to perform the evolutions

To perform multiple evolutions of the SCA, carrier_capacity and carrier_index may be lists of the same length.

EXAMPLES:

sage: B = SolitonCellularAutomata('3411111122411112223', 4)
sage: for k in range(10):
....:     B.evolve()
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 19), (1, 19), (1, 19), (1, 19), (1, 19),
               (1, 19), (1, 19), (1, 19), (1, 19), (1, 19)]
  current state:
  ......2344.......222....23...............................

sage: B.reset()
sage: B.evolve(number=10); B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 19), (1, 19), (1, 19), (1, 19), (1, 19),
               (1, 19), (1, 19), (1, 19), (1, 19), (1, 19)]
  current state:
  ......2344.......222....23...............................

sage: B.reset()
sage: B.evolve(carrier_capacity=[1,2,3,4,5,6,7,8,9,10]); B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
               (1, 6), (1, 7), (1, 8), (1, 9), (1, 10)]
  current state:
  ........2344....222..23..............................

sage: B.reset()
sage: B.evolve(carrier_index=[1,2,3])
Last carrier:
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  4  4
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 19), (2, 19), (3, 19)]
  current state:
  ..................................22......223...2222.....

sage: B.reset()
sage: B.evolve(carrier_capacity=[1,2,3], carrier_index=[1,2,3])
Last carrier:
  1  1
  3  4
Last carrier:
  1  1  1
  2  2  3
  3  3  4
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(1, 1), (2, 2), (3, 3)]
  current state:
  .....22.......223....2222..

sage: B.reset()
sage: B.evolve(1, 2, number=3)
Last carrier:
  1
  3
Last carrier:
  1
  4
Last carrier:
  1
  3
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224....2223
  evoltuions: [(2, 1), (2, 1), (2, 1)]
  current state:
  .24......222.....2222.
latex_state_evolution(num, scale=1)#

Return a latex version of the evolution process of the state num.

EXAMPLES:

sage: B = SolitonCellularAutomata('113123', 3)
sage: B.evolve(3)
sage: B.latex_state_evolution(0)
\begin{tikzpicture}[scale=1]
\node (i0) at (0.0,0.9) {$1$};
\node (i1) at (2.48,0.9) {$1$};
\node (i2) at (4.96,0.9) {$3$};
...
\draw[->] (i5) -- (t5);
\draw[->] (u6) -- (u5);
\end{tikzpicture}
sage: B.latex_state_evolution(1)
\begin{tikzpicture}[scale=1]
...
\end{tikzpicture}
latex_states(num=None, as_array=True, box_width='5pt')#

Return a latex version of the states.

INPUT:

  • num – the number of states

  • as_array (default: True) if True, then the states are placed inside of an array; if False, then the states are given as a word

  • box_width – (default: '5pt') the width of the . used to represent the vacuum state when as_array is True

If as_array is False, then the vacuum element is printed in a gray color. If as_array is True, then the vacuum is given as .

Use the box_width to help create more even spacing when a column in the output contains only vacuum elements.

EXAMPLES:

sage: B = SolitonCellularAutomata('411122', 4)
sage: B.latex_states(8)
{\arraycolsep=0.5pt \begin{array}{c|ccccccccccccccccccc}
t = 0 & \cdots & ... & \makebox[5pt]{.} & 4 & \makebox[5pt]{.}
 & \makebox[5pt]{.} & \makebox[5pt]{.} & 2 & 2 \\
t = 1 & \cdots & ... & 4 & \makebox[5pt]{.} & \makebox[5pt]{.} & 2 & 2 & ... \\
t = 2 & \cdots & ... & 4 & \makebox[5pt]{.} & 2 & 2 & ... \\
t = 3 & \cdots & ... & 4 & 2 & 2 & ... \\
t = 4 & \cdots & ... & 2 & 4 & 2 & ... \\
t = 5 & \cdots & ... & 2 & 4 & \makebox[5pt]{.} & 2 & ... \\
t = 6 & \cdots & ... & 2 & 4 & \makebox[5pt]{.} & \makebox[5pt]{.}
 & 2 & ... \\
t = 7 & \cdots & \makebox[5pt]{.} & 2 & 4 & \makebox[5pt]{.}
 & \makebox[5pt]{.} & \makebox[5pt]{.} & 2 & ... \\
\end{array}}

sage: B = SolitonCellularAutomata('511122', 5)
sage: B.latex_states(8, as_array=False)
{\begin{array}{c|c}
t = 0 & \cdots ... {\color{gray} 1} 5 {\color{gray} 1}
 {\color{gray} 1} {\color{gray} 1} 2 2 \\
t = 1 & \cdots ... 5 {\color{gray} 1} {\color{gray} 1} 2 2 ... \\
t = 2 & \cdots ... 5 {\color{gray} 1} 2 2 ... \\
t = 3 & \cdots ... 5 2 2 ... \\
t = 4 & \cdots ... 2 5 2 ... \\
t = 5 & \cdots ... 2 5 {\color{gray} 1} 2 ... \\
t = 6 & \cdots ... 2 5 {\color{gray} 1} {\color{gray} 1} 2 ... \\
t = 7 & \cdots {\color{gray} 1} 2 5 {\color{gray} 1}
 {\color{gray} 1} {\color{gray} 1} 2 ... \\
\end{array}}
print_state(num=None, vacuum_letter='.', remove_trailing_vacuums=False)#

Print the state num.

INPUT:

  • num – (default: the current state) the state to print

  • vacuum_letter – (default: '.') the letter to print for the vacuum

  • remove_trailing_vacuums – (default: False) if True then this does not print the vacuum letters at the right end of the state

EXAMPLES:

sage: B = SolitonCellularAutomata('3411111122411112223', 4)
sage: B.print_state()
34......224....2223
sage: B.evolve(number=2)
sage: B.print_state(vacuum_letter=',')
,,,,,,,,,,,,,,,34,,,,224,,2223,,,,,,,,
sage: B.print_state(10, '_')
______2344_______222____23_______________________________
sage: B.print_state(10, '_', True)
______2344_______222____23
print_state_evolution(num)#

Print the evolution process of the state num.

EXAMPLES:

sage: B = SolitonCellularAutomata('1113123', 3)
sage: B.evolve(3)
sage: B.evolve(3)
sage: B.print_state_evolution(0)
      1         1         1         3         1         2         3
      |         |         |         |         |         |         |
111 --+-- 111 --+-- 111 --+-- 113 --+-- 112 --+-- 123 --+-- 113 --+-- 111
      |         |         |         |         |         |         |
      1         1         3         2         3         1         1
sage: B.print_state_evolution(1)
      1         1         3         2         3         1         1
      |         |         |         |         |         |         |
111 --+-- 113 --+-- 133 --+-- 123 --+-- 113 --+-- 111 --+-- 111 --+-- 111
      |         |         |         |         |         |         |
      3         3         2         1         1         1         1
print_states(num=None, vacuum_letter='.')#

Print the first num states of self.

Note

If the number of states computed for self is less than num, then this evolves the system using the default time evolution.

INPUT:

  • num – the number of states to print

EXAMPLES:

sage: B = SolitonCellularAutomata([[2],[-1],[1],[1],[1],[1],[2],[2],[3],
....:   [-2],[1],[1],[2],[-1],[1],[1],[1],[1],[1],[1],[2],[3],[3],[-3],[-2]],
....:   ['C',3,1])
sage: B.print_states(7)
t: 0                           _       _   _         __
     .........................21....2232..21......23332
t: 1                        _      _    _       __
     ......................21...2232...21....23332.....
t: 2                     _     _     _     __
     ...................21..2232....21..23332..........
t: 3                  _    _      _   __
     ...............221..232...2231..332...............
t: 4              _     _    _     __
     ...........221...232.2231....332..................
t: 5          _     __          __
     .......221...2321223......332.....................
t: 6      _    __            __
     ..2221...321..223......332........................

sage: B = SolitonCellularAutomata([[2],[1],[1],[1],[3],[-2],[1],[1],
....:   [1],[2],[2],[-3],[1],[1],[1],[1],[1],[1],[2],[3],[3],[-3]],
....:   ['B',3,1])
sage: B.print_states(9, ' ')
t: 0                            _     _         _
                           2   32   223      2333
t: 1                          _    _        _
                          2  32  223     2333
t: 2                        _   _       _
                         2 32 223    2333
t: 3                      _  _      _
                       23 2223   2333
t: 4                     __     _
                     23 213  2333
t: 5                _  _    _
                 2233 222 333
t: 6            _    _   _
             2233  23223 3
t: 7        _     _     _
         2233   232 23  3
t: 8    _      _       _
     2233    232  23   3

sage: B = SolitonCellularAutomata([[2],[-2],[1],[1],[1],[1],[2],[0],[-3],
....:   [1],[1],[1],[1],[1],[2],[2],[3],[-3],], ['D',4,2])
sage: B.print_states(10)
t: 0                                      _      _        _
     ....................................22....203.....2233
t: 1                                    _     _       _
     ..................................22...203....2233....
t: 2                                  _    _      _
     ................................22..203...2233........
t: 3                                _   _     _
     ..............................22.203..2233............
t: 4                              _  _    _
     ............................22203.2233................
t: 5                            _ _   _
     ........................220223.233....................
t: 6                        _   _  _
     ....................2202.223.33.......................
t: 7                    _    _   _
     ................2202..223..33.........................
t: 8                _     _    _
     ............2202...223...33...........................
t: 9            _      _     _
     ........2202....223....33.............................

Example 4.13 from [Yamada2007]:

sage: B = SolitonCellularAutomata([[3],[3],[1],[1],[1],[1],[2],[2],[2]], ['D',4,3])
sage: B.print_states(15)
t: 0
     ....................................33....222
t: 1
     ..................................33...222...
t: 2
     ................................33..222......
t: 3
     ..............................33.222.........
t: 4
     ............................33222............
t: 5
     ..........................3022...............
t: 6                          _
     ........................332..................
t: 7                        _
     ......................03.....................
t: 8                     _
     ....................3E.......................
t: 9                   _
     .................21..........................
t: 10
      ..............20E............................
t: 11              _
      ...........233...............................
t: 12
      ........2302.................................
t: 13
      .....23322...................................
t: 14
      ..233.22.....................................

Example 4.14 from [Yamada2007]:

sage: B = SolitonCellularAutomata([[3],[1],[1],[1],[2],[3],[1],[1],[1],[2],[3],[3]], ['D',4,3])
sage: B.print_states(15)
t: 0
     ....................................3...23...233
t: 1
     ...................................3..23..233...
t: 2
     ..................................3.23.233......
t: 3
     .................................323233.........
t: 4
     ................................0033............
t: 5                                _
     ..............................313...............
t: 6
     ...........................30E.3................
t: 7                           _
     ........................333...3.................
t: 8
     .....................3302....3..................
t: 9
     ..................33322.....3...................
t: 10
      ...............333.22......3....................
t: 11
      ............333..22.......3.....................
t: 12
      .........333...22........3......................
t: 13
      ......333....22.........3.......................
t: 14
      ...333.....22..........3........................
reset()#

Reset self back to the initial state.

EXAMPLES:

sage: B = SolitonCellularAutomata('34111111224', 4)
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224
  evoltuions: []
  current state:
  34......224
sage: B.evolve()
sage: B.evolve()
sage: B.evolve()
sage: B.evolve()
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224
  evoltuions: [(1, 11), (1, 11), (1, 11), (1, 11)]
  current state:
  ...34..224............
sage: B.reset()
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
  initial state:
  34......224
  evoltuions: []
  current state:
  34......224
state_evolution(num)#

Return a list of the carrier values at state num evolving to the next state.

If num is greater than the number of states, this performs the standard evolution \(T_k\), where \(k\) is the number of balls in the system.

EXAMPLES:

sage: B = SolitonCellularAutomata('1113123', 3)
sage: B.evolve(3)
sage: B.state_evolution(0)
[[[1, 1, 1]],
 [[1, 1, 1]],
 [[1, 1, 1]],
 [[1, 1, 3]],
 [[1, 1, 2]],
 [[1, 2, 3]],
 [[1, 1, 3]],
 [[1, 1, 1]]]
sage: B.state_evolution(2)
[[[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 3]],
 [[1, 1, 1, 1, 1, 3, 3]],
 [[1, 1, 1, 1, 1, 1, 3]],
 [[1, 1, 1, 1, 1, 1, 2]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]]]