Function Fields: extension#

class sage.rings.function_field.function_field_polymod.FunctionField_char_zero(polynomial, names, category=None)#

Bases: FunctionField_simple

Function fields of characteristic zero.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
sage: L
Function field in y defined by y^3 + (-x^3 + 1)/(x^3 - 2)
sage: L.characteristic()
0
higher_derivation()#

Return the higher derivation (also called the Hasse-Schmidt derivation) for the function field.

The higher derivation of the function field is uniquely determined with respect to the separating element \(x\) of the base rational function field \(k(x)\).

EXAMPLES:

sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
sage: L.higher_derivation()                                                 # needs sage.modules
Higher derivation map:
  From: Function field in y defined by y^3 + (-x^3 + 1)/(x^3 - 2)
  To:   Function field in y defined by y^3 + (-x^3 + 1)/(x^3 - 2)
class sage.rings.function_field.function_field_polymod.FunctionField_char_zero_integral(polynomial, names, category=None)#

Bases: FunctionField_char_zero, FunctionField_integral

Function fields of characteristic zero, defined by an irreducible and separable polynomial, integral over the maximal order of the base rational function field with a finite constant field.

class sage.rings.function_field.function_field_polymod.FunctionField_global(polynomial, names)#

Bases: FunctionField_simple

Global function fields.

INPUT:

  • polynomial – monic irreducible and separable polynomial

  • names – name of the generator of the function field

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]                                 # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))                            # needs sage.rings.finite_rings
sage: L                                                                         # needs sage.rings.finite_rings
Function field in y defined by y^3 + (4*x^3 + 1)/(x^3 + 3)

The defining equation needs not be monic:

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]                                 # needs sage.rings.finite_rings
sage: L.<y> = K.extension((1 - x)*Y^7 - x^3)                                    # needs sage.rings.finite_rings
sage: L.gaps()                          # long time (6s)                        # needs sage.rings.finite_rings
[1, 2, 3]

or may define a trivial extension:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]                                 # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y-1)                                                  # needs sage.rings.finite_rings
sage: L.genus()                                                                 # needs sage.rings.finite_rings
0
L_polynomial(name='t')#

Return the L-polynomial of the function field.

INPUT:

  • name – (default: t) name of the variable of the polynomial

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]                             # needs sage.rings.finite_rings
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)                                # needs sage.rings.finite_rings
sage: F.L_polynomial()                                                      # needs sage.rings.finite_rings
2*t^2 + t + 1
gaps()#

Return the gaps of the function field.

These are the gaps at the ordinary places, that is, places which are not Weierstrass places.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]                             # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 + x^3 * Y + x)                                # needs sage.rings.finite_rings
sage: L.gaps()                                                              # needs sage.modules sage.rings.finite_rings
[1, 2, 3]
get_place(degree)#

Return a place of degree.

INPUT:

  • degree – a positive integer

OUTPUT: a place of degree if any exists; otherwise None

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2)
sage: K.<x> = FunctionField(F)
sage: R.<Y> = PolynomialRing(K)
sage: L.<y> = K.extension(Y^4 + Y - x^5)
sage: L.get_place(1)
Place (x, y)
sage: L.get_place(2)
Place (x, y^2 + y + 1)
sage: L.get_place(3)
Place (x^3 + x^2 + 1, y + x^2 + x)
sage: L.get_place(4)
Place (x + 1, x^5 + 1)
sage: L.get_place(5)
Place (x^5 + x^3 + x^2 + x + 1, y + x^4 + 1)
sage: L.get_place(6)
Place (x^3 + x^2 + 1, y^2 + y + x^2)
sage: L.get_place(7)
Place (x^7 + x + 1, y + x^6 + x^5 + x^4 + x^3 + x)
sage: L.get_place(8)
higher_derivation()#

Return the higher derivation (also called the Hasse-Schmidt derivation) for the function field.

The higher derivation of the function field is uniquely determined with respect to the separating element \(x\) of the base rational function field \(k(x)\).

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]                             # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))                        # needs sage.rings.finite_rings
sage: L.higher_derivation()                                                 # needs sage.modules sage.rings.finite_rings
Higher derivation map:
  From: Function field in y defined by y^3 + (4*x^3 + 1)/(x^3 + 3)
  To:   Function field in y defined by y^3 + (4*x^3 + 1)/(x^3 + 3)
maximal_order()#

Return the maximal order of the function field.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^4 + x^12*t^2 + x^18*t + x^21 + x^18)
sage: O = F.maximal_order()
sage: O.basis()
(1, 1/x^4*y, 1/x^11*y^2 + 1/x^2, 1/x^15*y^3 + 1/x^6*y)
number_of_rational_places(r=1)#

Return the number of rational places of the function field whose constant field extended by degree r.

INPUT:

  • r – positive integer (default: \(1\))

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: F.number_of_rational_places()
4
sage: [F.number_of_rational_places(r) for r in [1..10]]
[4, 8, 4, 16, 44, 56, 116, 288, 508, 968]
places(degree=1)#

Return a list of the places with degree.

INPUT:

  • degree – positive integer (default: \(1\))

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2)
sage: K.<x> = FunctionField(F)
sage: R.<t> = PolynomialRing(K)
sage: L.<y> = K.extension(t^4 + t - x^5)
sage: L.places(1)
[Place (1/x, 1/x^4*y^3), Place (x, y), Place (x, y + 1)]
places_finite(degree=1)#

Return a list of the finite places with degree.

INPUT:

  • degree – positive integer (default: \(1\))

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2)
sage: K.<x> = FunctionField(F)
sage: R.<t> = PolynomialRing(K)
sage: L.<y> = K.extension(t^4 + t - x^5)
sage: L.places_finite(1)
[Place (x, y), Place (x, y + 1)]
places_infinite(degree=1)#

Return a list of the infinite places with degree.

INPUT:

  • degree – positive integer (default: \(1\))

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2)
sage: K.<x> = FunctionField(F)
sage: R.<t> = PolynomialRing(K)
sage: L.<y> = K.extension(t^4 + t - x^5)
sage: L.places_infinite(1)
[Place (1/x, 1/x^4*y^3)]
weierstrass_places()#

Return all Weierstrass places of the function field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]                             # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 + x^3 * Y + x)                                # needs sage.rings.finite_rings
sage: L.weierstrass_places()                                                # needs sage.modules sage.rings.finite_rings
[Place (1/x, 1/x^3*y^2 + 1/x),
 Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1),
 Place (x, y),
 Place (x + 1, (x^3 + 1)*y + x + 1),
 Place (x^3 + x + 1, y + 1),
 Place (x^3 + x + 1, y + x^2),
 Place (x^3 + x + 1, y + x^2 + 1),
 Place (x^3 + x^2 + 1, y + x),
 Place (x^3 + x^2 + 1, y + x^2 + 1),
 Place (x^3 + x^2 + 1, y + x^2 + x + 1)]
class sage.rings.function_field.function_field_polymod.FunctionField_global_integral(polynomial, names)#

Bases: FunctionField_global, FunctionField_integral

Global function fields, defined by an irreducible and separable polynomial, integral over the maximal order of the base rational function field with a finite constant field.

class sage.rings.function_field.function_field_polymod.FunctionField_integral(polynomial, names, category=None)#

Bases: FunctionField_simple

Integral function fields.

A function field is integral if it is defined by an irreducible separable polynomial, which is integral over the maximal order of the base rational function field.

equation_order()#

Return the equation order of the function field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)               # needs sage.rings.finite_rings
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)                            # needs sage.rings.finite_rings
sage: F.equation_order()                                                    # needs sage.rings.finite_rings
Order in Function field in y defined by y^3 + x^6 + x^4 + x^2

sage: K.<x> = FunctionField(QQ); R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: F.equation_order()
Order in Function field in y defined by y^3 - x^6 - 2*x^5 - 3*x^4 - 2*x^3 - x^2
equation_order_infinite()#

Return the infinite equation order of the function field.

This is by definition \(o[b]\) where \(b\) is the primitive integral element from primitive_integal_element_infinite() and \(o\) is the maximal infinite order of the base rational function field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)               # needs sage.rings.finite_rings
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)                            # needs sage.rings.finite_rings
sage: F.equation_order_infinite()                                           # needs sage.rings.finite_rings
Infinite order in Function field in y defined by y^3 + x^6 + x^4 + x^2

sage: K.<x> = FunctionField(QQ); R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: F.equation_order_infinite()
Infinite order in Function field in y defined by y^3 - x^6 - 2*x^5 - 3*x^4 - 2*x^3 - x^2
primitive_integal_element_infinite()#

Return a primitive integral element over the base maximal infinite order.

This element is integral over the maximal infinite order of the base rational function field and the function field is a simple extension by this element over the base order.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: b = F.primitive_integal_element_infinite(); b
1/x^2*y
sage: b.minimal_polynomial('t')
t^3 + (x^4 + x^2 + 1)/x^4
class sage.rings.function_field.function_field_polymod.FunctionField_polymod(polynomial, names, category=None)#

Bases: FunctionField

Function fields defined by a univariate polynomial, as an extension of the base field.

INPUT:

  • polynomial – univariate polynomial over a function field

  • names – tuple of length 1 or string; variable names

  • category – category (default: category of function fields)

EXAMPLES:

We make a function field defined by a degree 5 polynomial over the rational function field over the rational numbers:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x

We next make a function field over the above nontrivial function field L:

sage: S.<z> = L[]
sage: M.<z> = L.extension(z^2 + y*z + y); M
Function field in z defined by z^2 + y*z + y
sage: 1/z
((-x/(x^4 + 1))*y^4 + 2*x^2/(x^4 + 1))*z - 1
sage: z * (1/z)
1

We drill down the tower of function fields:

sage: M.base_field()
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
sage: M.base_field().base_field()
Rational function field in x over Rational Field
sage: M.base_field().base_field().constant_field()
Rational Field
sage: M.constant_base_field()
Rational Field

Warning

It is not checked if the polynomial used to define the function field is irreducible Hence it is not guaranteed that this object really is a field! This is illustrated below.

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(x^2 - y^2)
sage: (y - x)*(y + x)
0
sage: 1/(y - x)
1
sage: y - x == 0; y + x == 0
False
False
Element#

alias of FunctionFieldElement_polymod

base_field()#

Return the base field of the function field. This function field is presented as \(L = K[y]/(f(y))\), and the base field is by definition the field \(K\).

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.base_field()
Rational function field in x over Rational Field
change_variable_name(name)#

Return a field isomorphic to this field with variable(s) name.

INPUT:

  • name – a string or a tuple consisting of a strings, the names of the new variables starting with a generator of this field and going down to the rational function field.

OUTPUT:

A triple F,f,t where F is a function field, f is an isomorphism from F to this field, and t is the inverse of f.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: R.<z> = L[]
sage: M.<z> = L.extension(z^2 - y)

sage: M.change_variable_name('zz')
(Function field in zz defined by zz^2 - y,
 Function Field morphism:
  From: Function field in zz defined by zz^2 - y
  To:   Function field in z defined by z^2 - y
  Defn: zz |--> z
        y |--> y
        x |--> x,
 Function Field morphism:
  From: Function field in z defined by z^2 - y
  To:   Function field in zz defined by zz^2 - y
  Defn: z |--> zz
        y |--> y
        x |--> x)
sage: M.change_variable_name(('zz','yy'))
(Function field in zz defined by zz^2 - yy, Function Field morphism:
  From: Function field in zz defined by zz^2 - yy
  To:   Function field in z defined by z^2 - y
  Defn: zz |--> z
        yy |--> y
        x |--> x, Function Field morphism:
  From: Function field in z defined by z^2 - y
  To:   Function field in zz defined by zz^2 - yy
  Defn: z |--> zz
        y |--> yy
        x |--> x)
sage: M.change_variable_name(('zz','yy','xx'))
(Function field in zz defined by zz^2 - yy,
 Function Field morphism:
  From: Function field in zz defined by zz^2 - yy
  To:   Function field in z defined by z^2 - y
  Defn: zz |--> z
        yy |--> y
        xx |--> x,
 Function Field morphism:
  From: Function field in z defined by z^2 - y
  To:   Function field in zz defined by zz^2 - yy
  Defn: z |--> zz
        y |--> yy
        x |--> xx)
constant_base_field()#

Return the base constant field of the function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
sage: L.constant_base_field()
Rational Field
sage: S.<z> = L[]
sage: M.<z> = L.extension(z^2 - y)
sage: M.constant_base_field()
Rational Field
constant_field()#

Return the algebraic closure of the constant field of the function field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]                             # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^5 - x)                                          # needs sage.rings.finite_rings
sage: L.constant_field()                                                    # needs sage.rings.finite_rings
Traceback (most recent call last):
...
NotImplementedError
degree(base=None)#

Return the degree of the function field over the function field base.

INPUT:

  • base – a function field (default: None), a function field from which this field has been constructed as a finite extension.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
sage: L.degree()
5
sage: L.degree(L)
1

sage: R.<z> = L[]
sage: M.<z> = L.extension(z^2 - y)
sage: M.degree(L)
2
sage: M.degree(K)
10
different()#

Return the different of the function field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]                             # needs sage.rings.finite_rings
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)                        # needs sage.rings.finite_rings
sage: F.different()                                                         # needs sage.rings.finite_rings
2*Place (x, (1/(x^3 + x^2 + x))*y^2)
 + 2*Place (x^2 + x + 1, (1/(x^3 + x^2 + x))*y^2)
equation_order()#

Return the equation order of the function field.

If we view the function field as being presented as \(K[y]/(f(y))\), then the order generated by the class of \(y\) is returned. If \(f\) is not monic, then _make_monic_integral() is called, and instead we get the order generated by some integral multiple of a root of \(f\).

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: O = L.equation_order()
sage: O.basis()
(1, x*y, x^2*y^2, x^3*y^3, x^4*y^4)

We try an example, in which the defining polynomial is not monic and is not integral:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(x^2*y^5 - 1/x); L
Function field in y defined by x^2*y^5 - 1/x
sage: O = L.equation_order()
sage: O.basis()
(1, x^3*y, x^6*y^2, x^9*y^3, x^12*y^4)
free_module(base=None, basis=None, map=True)#

Return a vector space and isomorphisms from the field to and from the vector space.

This function allows us to identify the elements of this field with elements of a vector space over the base field, which is useful for representation and arithmetic with orders, ideals, etc.

INPUT:

  • base – a function field (default: None), the returned vector space is over this subfield \(R\), which defaults to the base field of this function field.

  • basis – a basis for this field over the base.

  • maps – boolean (default True), whether to return \(R\)-linear maps to and from \(V\).

OUTPUT:

  • a vector space over the base function field

  • an isomorphism from the vector space to the field (if requested)

  • an isomorphism from the field to the vector space (if requested)

EXAMPLES:

We define a function field:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x

We get the vector spaces, and maps back and forth:

sage: # needs sage.modules
sage: V, from_V, to_V = L.free_module()
sage: V
Vector space of dimension 5 over Rational function field in x over Rational Field
sage: from_V
Isomorphism:
  From: Vector space of dimension 5 over Rational function field in x over Rational Field
  To:   Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
sage: to_V
Isomorphism:
  From: Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
  To:   Vector space of dimension 5 over Rational function field in x over Rational Field

We convert an element of the vector space back to the function field:

sage: from_V(V.1)                                                                       # needs sage.modules
y

We define an interesting element of the function field:

sage: a = 1/L.0; a                                                                      # needs sage.modules
(x/(x^4 + 1))*y^4 - 2*x^2/(x^4 + 1)

We convert it to the vector space, and get a vector over the base field:

sage: to_V(a)                                                                           # needs sage.modules
(-2*x^2/(x^4 + 1), 0, 0, 0, x/(x^4 + 1))

We convert to and back, and get the same element:

sage: from_V(to_V(a)) == a                                                              # needs sage.modules
True

In the other direction:

sage: v = x*V.0 + (1/x)*V.1                                                             # needs sage.modules
sage: to_V(from_V(v)) == v                                                              # needs sage.modules
True

And we show how it works over an extension of an extension field:

sage: R2.<z> = L[]; M.<z> = L.extension(z^2 - y)
sage: M.free_module()                                                                   # needs sage.modules
(Vector space of dimension 2 over Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x, Isomorphism:
  From: Vector space of dimension 2 over Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
  To:   Function field in z defined by z^2 - y, Isomorphism:
  From: Function field in z defined by z^2 - y
  To:   Vector space of dimension 2 over Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x)

We can also get the vector space of M over K:

sage: M.free_module(K)                                                                  # needs sage.modules
(Vector space of dimension 10 over Rational function field in x over Rational Field, Isomorphism:
  From: Vector space of dimension 10 over Rational function field in x over Rational Field
  To:   Function field in z defined by z^2 - y, Isomorphism:
  From: Function field in z defined by z^2 - y
  To:   Vector space of dimension 10 over Rational function field in x over Rational Field)
gen(n=0)#

Return the \(n\)-th generator of the function field. By default, \(n\) is 0; any other value of \(n\) leads to an error. The generator is the class of \(y\), if we view the function field as being presented as \(K[y]/(f(y))\).

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.gen()
y
sage: L.gen(1)
Traceback (most recent call last):
...
IndexError: there is only one generator
genus()#

Return the genus of the function field.

For now, the genus is computed using Singular.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^3 - (x^3 + 2*x*y + 1/x))
sage: L.genus()
3
hom(im_gens, base_morphism=None)#

Create a homomorphism from the function field to another function field.

INPUT:

  • im_gens – list of images of the generators of the function field and of successive base rings.

  • base_morphism – homomorphism of the base ring, after the im_gens are used. Thus if im_gens has length 2, then base_morphism should be a morphism from the base ring of the base ring of the function field.

EXAMPLES:

We create a rational function field, and a quadratic extension of it:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)

We make the field automorphism that sends y to -y:

sage: f = L.hom(-y); f
Function Field endomorphism of Function field in y defined by y^2 - x^3 - 1
  Defn: y |--> -y

Evaluation works:

sage: f(y*x - 1/x)
-x*y - 1/x

We try to define an invalid morphism:

sage: f = L.hom(y + 1)
Traceback (most recent call last):
...
ValueError: invalid morphism

We make a morphism of the base rational function field:

sage: phi = K.hom(x + 1); phi
Function Field endomorphism of Rational function field in x over Rational Field
  Defn: x |--> x + 1
sage: phi(x^3 - 3)
x^3 + 3*x^2 + 3*x - 2
sage: (x+1)^3 - 3
x^3 + 3*x^2 + 3*x - 2

We make a morphism by specifying where the generators and the base generators go:

sage: L.hom([-y, x])
Function Field endomorphism of Function field in y defined by y^2 - x^3 - 1
  Defn: y |--> -y
        x |--> x

You can also specify a morphism on the base:

sage: R1.<q> = K[]
sage: L1.<q> = K.extension(q^2 - (x+1)^3 - 1)
sage: L.hom(q, base_morphism=phi)
Function Field morphism:
  From: Function field in y defined by y^2 - x^3 - 1
  To:   Function field in q defined by q^2 - x^3 - 3*x^2 - 3*x - 2
  Defn: y |--> q
        x |--> x + 1

We make another extension of a rational function field:

sage: K2.<t> = FunctionField(QQ); R2.<w> = K2[]
sage: L2.<w> = K2.extension((4*w)^2 - (t+1)^3 - 1)

We define a morphism, by giving the images of generators:

sage: f = L.hom([4*w, t + 1]); f
Function Field morphism:
  From: Function field in y defined by y^2 - x^3 - 1
  To:   Function field in w defined by 16*w^2 - t^3 - 3*t^2 - 3*t - 2
  Defn: y |--> 4*w
        x |--> t + 1

Evaluation works, as expected:

sage: f(y+x)
4*w + t + 1
sage: f(x*y + x/(x^2+1))
(4*t + 4)*w + (t + 1)/(t^2 + 2*t + 2)

We make another extension of a rational function field:

sage: K3.<yy> = FunctionField(QQ); R3.<xx> = K3[]
sage: L3.<xx> = K3.extension(yy^2 - xx^3 - 1)

This is the function field L with the generators exchanged. We define a morphism to L:

sage: g = L3.hom([x,y]); g
Function Field morphism:
  From: Function field in xx defined by -xx^3 + yy^2 - 1
  To:   Function field in y defined by y^2 - x^3 - 1
  Defn: xx |--> x
        yy |--> y
is_separable(base=None)#

Return whether this is a separable extension of base.

INPUT:

  • base – a function field from which this field has been created as an extension or None (default: None); if None, then return whether this is a separable extension over its base field.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: L.is_separable()
False
sage: R.<z> = L[]
sage: M.<z> = L.extension(z^3 - y)
sage: M.is_separable()
True
sage: M.is_separable(K)
False

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(5))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.is_separable()
True

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(5))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - 1)
sage: L.is_separable()
False
maximal_order()#

Return the maximal order of the function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.maximal_order()
Maximal order of Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
maximal_order_infinite()#

Return the maximal infinite order of the function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.maximal_order_infinite()
Maximal infinite order of Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x

sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]                             # needs sage.rings.finite_rings
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)                        # needs sage.rings.finite_rings
sage: F.maximal_order_infinite()                                            # needs sage.rings.finite_rings
Maximal infinite order of Function field in y defined by y^3 + x^6 + x^4 + x^2

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]                             # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)                                # needs sage.rings.finite_rings
sage: L.maximal_order_infinite()                                            # needs sage.rings.finite_rings
Maximal infinite order of Function field in y defined by y^2 + y + (x^2 + 1)/x
monic_integral_model(names=None)#

Return a function field isomorphic to this field but which is an extension of a rational function field with defining polynomial that is monic and integral over the constant base field.

INPUT:

  • names – a string or a tuple of up to two strings (default: None), the name of the generator of the field, and the name of the generator of the underlying rational function field (if a tuple); if not given, then the names are chosen automatically.

OUTPUT:

A triple (F,f,t) where F is a function field, f is an isomorphism from F to this field, and t is the inverse of f.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(x^2*y^5 - 1/x); L
Function field in y defined by x^2*y^5 - 1/x
sage: A, from_A, to_A = L.monic_integral_model('z')
sage: A
Function field in z defined by z^5 - x^12
sage: from_A
Function Field morphism:
  From: Function field in z defined by z^5 - x^12
  To:   Function field in y defined by x^2*y^5 - 1/x
  Defn: z |--> x^3*y
        x |--> x
sage: to_A
Function Field morphism:
  From: Function field in y defined by x^2*y^5 - 1/x
  To:   Function field in z defined by z^5 - x^12
  Defn: y |--> 1/x^3*z
        x |--> x
sage: to_A(y)
1/x^3*z
sage: from_A(to_A(y))
y
sage: from_A(to_A(1/y))
x^3*y^4
sage: from_A(to_A(1/y)) == 1/y
True

This also works for towers of function fields:

sage: R.<z> = L[]
sage: M.<z> = L.extension(z^2*y - 1/x)
sage: M.monic_integral_model()
(Function field in z_ defined by z_^10 - x^18,
 Function Field morphism:
  From: Function field in z_ defined by z_^10 - x^18
  To:   Function field in z defined by y*z^2 - 1/x
  Defn: z_ |--> x^2*z
        x |--> x, Function Field morphism:
  From: Function field in z defined by y*z^2 - 1/x
  To:   Function field in z_ defined by z_^10 - x^18
  Defn: z |--> 1/x^2*z_
        y |--> 1/x^15*z_^8
        x |--> x)
ngens()#

Return the number of generators of the function field over its base field. This is by definition 1.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.ngens()
1
polynomial()#

Return the univariate polynomial that defines the function field, that is, the polynomial \(f(y)\) so that the function field is of the form \(K[y]/(f(y))\).

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.polynomial()
y^5 - 2*x*y + (-x^4 - 1)/x
polynomial_ring()#

Return the polynomial ring used to represent elements of the function field. If we view the function field as being presented as \(K[y]/(f(y))\), then this function returns the ring \(K[y]\).

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.polynomial_ring()
Univariate Polynomial Ring in y over Rational function field in x over Rational Field
primitive_element()#

Return a primitive element over the underlying rational function field.

If this is a finite extension of a rational function field \(K(x)\) with \(K\) perfect, then this is a simple extension of \(K(x)\), i.e., there is a primitive element \(y\) which generates this field over \(K(x)\). This method returns such an element \(y\).

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: R.<z> = L[]
sage: M.<z> = L.extension(z^2 - y)
sage: R.<z> = L[]
sage: N.<u> = L.extension(z^2 - x - 1)
sage: N.primitive_element()
u + y
sage: M.primitive_element()
z
sage: L.primitive_element()
y

This also works for inseparable extensions:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<Y> = K[]
sage: L.<y> = K.extension(Y^2 - x)
sage: R.<Z> = L[]
sage: M.<z> = L.extension(Z^2 - y)
sage: M.primitive_element()
z
random_element(*args, **kwds)#

Create a random element of the function field. Parameters are passed onto the random_element method of the base_field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x^2 + x))
sage: L.random_element() # random
((x^2 - x + 2/3)/(x^2 + 1/3*x - 1))*y^2 + ((-1/4*x^2 + 1/2*x - 1)/(-5/2*x + 2/3))*y
+ (-1/2*x^2 - 4)/(-12*x^2 + 1/2*x - 1/95)
separable_model(names=None)#

Return a function field isomorphic to this field which is a separable extension of a rational function field.

INPUT:

  • names – a tuple of two strings or None (default: None); the second entry will be used as the variable name of the rational function field, the first entry will be used as the variable name of its separable extension. If None, then the variable names will be chosen automatically.

OUTPUT:

A triple (F,f,t) where F is a function field, f is an isomorphism from F to this function field, and t is the inverse of f.

ALGORITHM:

Suppose that the constant base field is perfect. If this is a monic integral inseparable extension of a rational function field, then the defining polynomial is separable if we swap the variables (Proposition 4.8 in Chapter VIII of [Lan2002].) The algorithm reduces to this case with monic_integral_model().

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3)
sage: L.separable_model(('t','w'))
(Function field in t defined by t^3 + w^2,
 Function Field morphism:
   From: Function field in t defined by t^3 + w^2
   To:   Function field in y defined by y^2 + x^3
   Defn: t |--> x
         w |--> y,
 Function Field morphism:
   From: Function field in y defined by y^2 + x^3
   To:   Function field in t defined by t^3 + w^2
   Defn: y |--> w
         x |--> t)

This also works for non-integral polynomials:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2/x - x^2)
sage: L.separable_model()
(Function field in y_ defined by y_^3 + x_^2,
 Function Field morphism:
   From: Function field in y_ defined by y_^3 + x_^2
   To:   Function field in y defined by 1/x*y^2 + x^2
   Defn: y_ |--> x
         x_ |--> y,
 Function Field morphism:
   From: Function field in y defined by 1/x*y^2 + x^2
   To:   Function field in y_ defined by y_^3 + x_^2
   Defn: y |--> x_
         x |--> y_)

If the base field is not perfect this is only implemented in trivial cases:

sage: # needs sage.rings.finite_rings
sage: k.<t> = FunctionField(GF(2))
sage: k.is_perfect()
False
sage: K.<x> = FunctionField(k)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^3 - t)
sage: L.separable_model()
(Function field in y defined by y^3 + t,
 Function Field endomorphism of Function field in y defined by y^3 + t
   Defn: y |--> y
         x |--> x,
 Function Field endomorphism of Function field in y defined by y^3 + t
   Defn: y |--> y
         x |--> x)

Some other cases for which a separable model could be constructed are not supported yet:

sage: R.<y> = K[]                                                           # needs sage.rings.finite_rings
sage: L.<y> = K.extension(y^2 - t)                                          # needs sage.rings.finite_rings
sage: L.separable_model()                                                   # needs sage.rings.finite_rings
Traceback (most recent call last):
...
NotImplementedError: constructing a separable model is only implemented for function fields over a perfect constant base field
simple_model(name=None)#

Return a function field isomorphic to this field which is a simple extension of a rational function field.

INPUT:

  • name – a string (default: None), the name of generator of the simple extension. If None, then the name of the generator will be the same as the name of the generator of this function field.

OUTPUT:

A triple (F,f,t) where F is a field isomorphic to this field, f is an isomorphism from F to this function field and t is the inverse of f.

EXAMPLES:

A tower of four function fields:

sage: K.<x> = FunctionField(QQ); R.<z> = K[]
sage: L.<z> = K.extension(z^2 - x); R.<u> = L[]
sage: M.<u> = L.extension(u^2 - z); R.<v> = M[]
sage: N.<v> = M.extension(v^2 - u)

The fields N and M as simple extensions of K:

sage: N.simple_model()
(Function field in v defined by v^8 - x,
 Function Field morphism:
  From: Function field in v defined by v^8 - x
  To:   Function field in v defined by v^2 - u
  Defn: v |--> v,
 Function Field morphism:
  From: Function field in v defined by v^2 - u
  To:   Function field in v defined by v^8 - x
  Defn: v |--> v
        u |--> v^2
        z |--> v^4
        x |--> x)
sage: M.simple_model()
(Function field in u defined by u^4 - x,
 Function Field morphism:
  From: Function field in u defined by u^4 - x
  To:   Function field in u defined by u^2 - z
  Defn: u |--> u,
 Function Field morphism:
  From: Function field in u defined by u^2 - z
  To:   Function field in u defined by u^4 - x
  Defn: u |--> u
        z |--> u^2
        x |--> x)

An optional parameter name can be used to set the name of the generator of the simple extension:

sage: M.simple_model(name='t')
(Function field in t defined by t^4 - x, Function Field morphism:
  From: Function field in t defined by t^4 - x
  To:   Function field in u defined by u^2 - z
  Defn: t |--> u, Function Field morphism:
  From: Function field in u defined by u^2 - z
  To:   Function field in t defined by t^4 - x
  Defn: u |--> t
        z |--> t^2
        x |--> x)

An example with higher degrees:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3)); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - x); R.<z> = L[]
sage: M.<z> = L.extension(z^3 - x)
sage: M.simple_model()
(Function field in z defined by z^15 + x*z^12 + x^2*z^9 + 2*x^3*z^6 + 2*x^4*z^3 + 2*x^5 + 2*x^3,
 Function Field morphism:
   From: Function field in z defined by z^15 + x*z^12 + x^2*z^9 + 2*x^3*z^6 + 2*x^4*z^3 + 2*x^5 + 2*x^3
   To:   Function field in z defined by z^3 + 2*x
   Defn: z |--> z + y,
 Function Field morphism:
   From: Function field in z defined by z^3 + 2*x
   To:   Function field in z defined by z^15 + x*z^12 + x^2*z^9 + 2*x^3*z^6 + 2*x^4*z^3 + 2*x^5 + 2*x^3
   Defn: z |--> 2/x*z^6 + 2*z^3 + z + 2*x
         y |--> 1/x*z^6 + z^3 + x
         x |--> x)

This also works for inseparable extensions:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x); R.<z> = L[]
sage: M.<z> = L.extension(z^2 - y)
sage: M.simple_model()
(Function field in z defined by z^4 + x, Function Field morphism:
   From: Function field in z defined by z^4 + x
   To:   Function field in z defined by z^2 + y
   Defn: z |--> z, Function Field morphism:
   From: Function field in z defined by z^2 + y
   To:   Function field in z defined by z^4 + x
   Defn: z |--> z
         y |--> z^2
         x |--> x)
class sage.rings.function_field.function_field_polymod.FunctionField_simple(polynomial, names, category=None)#

Bases: FunctionField_polymod

Function fields defined by irreducible and separable polynomials over rational function fields.

constant_field()#

Return the algebraic closure of the base constant field in the function field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(3)); _.<y> = K[]                             # needs sage.rings.finite_rings
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))                        # needs sage.rings.finite_rings
sage: L.constant_field()                                                    # needs sage.rings.finite_rings
Finite Field of size 3
exact_constant_field(name='t')#

Return the exact constant field and its embedding into the function field.

INPUT:

  • name – name (default: \(t\)) of the generator of the exact constant field

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3)); _.<Y> = K[]
sage: f = Y^2 - x*Y + x^2 + 1 # irreducible but not absolutely irreducible
sage: L.<y> = K.extension(f)
sage: L.genus()
0
sage: L.exact_constant_field()
(Finite Field in t of size 3^2, Ring morphism:
   From: Finite Field in t of size 3^2
   To:   Function field in y defined by y^2 + 2*x*y + x^2 + 1
   Defn: t |--> y + x)
sage: (y+x).divisor()
0
genus()#

Return the genus of the function field.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(16)
sage: K.<x> = FunctionField(F); K
Rational function field in x over Finite Field in a of size 2^4
sage: R.<t> = PolynomialRing(K)
sage: L.<y> = K.extension(t^4 + t - x^5)
sage: L.genus()
6

The genus is computed by the Hurwitz genus formula.

places_above(p)#

Return places lying above p.

INPUT:

  • p – place of the base rational function field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]                             # needs sage.rings.finite_rings
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)                        # needs sage.rings.finite_rings
sage: all(q.place_below() == p                                              # needs sage.rings.finite_rings
....:     for p in K.places() for q in F.places_above(p))
True

sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: O = K.maximal_order()
sage: pls = [O.ideal(x - c).place() for c in [-2, -1, 0, 1, 2]]
sage: all(q.place_below() == p
....:     for p in pls for q in F.places_above(p))
True

sage: # needs sage.rings.number_field
sage: K.<x> = FunctionField(QQbar); _.<Y> = K[]
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: O = K.maximal_order()
sage: pls = [O.ideal(x - QQbar(sqrt(c))).place()
....:        for c in [-2, -1, 0, 1, 2]]
sage: all(q.place_below() == p      # long time (4s)
....:     for p in pls for q in F.places_above(p))
True
residue_field(place, name=None)#

Return the residue field associated with the place along with the maps from and to the residue field.

INPUT:

  • place – place of the function field

  • name – string; name of the generator of the residue field

The domain of the map to the residue field is the discrete valuation ring associated with the place.

The discrete valuation ring is defined as the ring of all elements of the function field with nonnegative valuation at the place. The maximal ideal is the set of elements of positive valuation. The residue field is then the quotient of the discrete valuation ring by its maximal ideal.

If an element not in the valuation ring is applied to the map, an exception TypeError is raised.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: p = L.places_finite()[0]
sage: R, fr_R, to_R = L.residue_field(p)
sage: R
Finite Field of size 2
sage: f = 1 + y
sage: f.valuation(p)
-1
sage: to_R(f)
Traceback (most recent call last):
...
TypeError: ...
sage: (1+1/f).valuation(p)
0
sage: to_R(1 + 1/f)
1
sage: [fr_R(e) for e in R]
[0, 1]