Local Frames#

The class LocalFrame implements local frames on vector bundles (see TopologicalVectorBundle or DifferentiableVectorBundle).

For \(k=0,1,\dots\), a local frame on a vector bundle \(E \to M\) of class \(C^k\) and rank \(n\) is a local section \((e_1,\dots,e_n):U \to E^n\) of class \(C^k\) defined on some subset \(U\) of the base space \(M\), such that \(e(p)\) is a basis of the fiber \(E_p\) for any \(p \in U\).

AUTHORS:

  • Michael Jung (2019): initial version

EXAMPLES:

Defining a global frame on a topological vector bundle of rank 3:

sage: M = Manifold(3, 'M', structure='top')
sage: E = M.vector_bundle(3, 'E')
sage: e = E.local_frame('e'); e
Local frame (E|_M, (e_0,e_1,e_2))

This frame is now the default frame of the corresponding section module and saved in the vector bundle:

sage: e in E.frames()
True
sage: sec_module = E.section_module(); sec_module
Free module C^0(M;E) of sections on the 3-dimensional topological manifold M
 with values in the real vector bundle E of rank 3
sage: sec_module.default_basis()
Local frame (E|_M, (e_0,e_1,e_2))

However, the default frame can be changed:

sage: sec_module.set_default_basis(e)
sage: sec_module.default_basis()
Local frame (E|_M, (e_0,e_1,e_2))

The elements of a local frame are local sections in the vector bundle:

sage: for vec in e:
....:     print(vec)
Section e_0 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3
 Section e_1 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3
 Section e_2 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3

Each element of a vector frame can be accessed by its index:

sage: e[0]
Section e_0 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3

The slice operator : can be used to access to more than one element:

sage: e[0:2]
(Section e_0 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3,
 Section e_1 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3)
sage: e[:]
(Section e_0 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3,
 Section e_1 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3,
 Section e_2 on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3)

The index range depends on the starting index defined on the manifold:

sage: M = Manifold(3, 'M', structure='top', start_index=1)
sage: c_xyz.<x,y,z> = M.chart()
sage: U = M.open_subset('U')
sage: c_xyz_U = c_xyz.restrict(U)
sage: E = M.vector_bundle(3, 'E')
sage: e = E.local_frame('e', domain=U); e
Local frame (E|_U, (e_1,e_2,e_3))
sage: [e[i] for i in M.irange()]
[Section e_1 on the Open subset U of the 3-dimensional topological manifold
 M with values in the real vector bundle E of rank 3,
 Section e_2 on the Open subset U of the 3-dimensional topological manifold
 M with values in the real vector bundle E of rank 3,
 Section e_3 on the Open subset U of the 3-dimensional topological manifold
 M with values in the real vector bundle E of rank 3]
sage: e[1], e[2], e[3]
(Section e_1 on the Open subset U of the 3-dimensional topological manifold
 M with values in the real vector bundle E of rank 3,
 Section e_2 on the Open subset U of the 3-dimensional topological manifold
 M with values in the real vector bundle E of rank 3,
 Section e_3 on the Open subset U of the 3-dimensional topological manifold
 M with values in the real vector bundle E of rank 3)

Let us check that the local sections e[i] are indeed the frame vectors from their components with respect to the frame \(e\):

sage: e[1].comp(e)[:]
[1, 0, 0]
sage: e[2].comp(e)[:]
[0, 1, 0]
sage: e[3].comp(e)[:]
[0, 0, 1]

Defining a local frame on a vector bundle, the dual coframe is automatically created, which, by default, bares the same name (here \(e\)):

sage: E.coframes()
[Local coframe (E|_U, (e^1,e^2,e^3))]
sage: e_dual = E.coframes()[0] ; e_dual
Local coframe (E|_U, (e^1,e^2,e^3))
sage: e_dual is e.coframe()
True

Let us check that the coframe \((e^i)\) is indeed the dual of the vector frame \((e_i)\):

sage: e_dual[1](e[1]) # linear form e^1 applied to local section e_1
Scalar field e^1(e_1) on the Open subset U of the 3-dimensional topological
 manifold M
sage: e_dual[1](e[1]).expr() # the explicit expression of e^1(e_1)
1
sage: e_dual[1](e[1]).expr(), e_dual[1](e[2]).expr(), e_dual[1](e[3]).expr()
(1, 0, 0)
sage: e_dual[2](e[1]).expr(), e_dual[2](e[2]).expr(), e_dual[2](e[3]).expr()
(0, 1, 0)
sage: e_dual[3](e[1]).expr(), e_dual[3](e[2]).expr(), e_dual[3](e[3]).expr()
(0, 0, 1)

Via bundle automorphisms, a new frame can be created from an existing one:

sage: sec_module_U = E.section_module(domain=U)
sage: change_frame = sec_module_U.automorphism()
sage: change_frame[:] = [[0,1,0],[0,0,1],[1,0,0]]
sage: f = e.new_frame(change_frame, 'f'); f
Local frame (E|_U, (f_1,f_2,f_3))

A copy of this automorphism and its inverse is now part of the vector bundle’s frame changes:

sage: E.change_of_frame(e, f)
Automorphism of the Free module C^0(U;E) of sections on the Open subset U of
 the 3-dimensional topological manifold M with values in the real vector
 bundle E of rank 3
sage: E.change_of_frame(e, f) == change_frame
True
sage: E.change_of_frame(f, e) == change_frame.inverse()
True

Let us check the components of \(f\) with respect to the frame \(e\):

sage: f[1].comp(e)[:]
[0, 0, 1]
sage: f[2].comp(e)[:]
[1, 0, 0]
sage: f[3].comp(e)[:]
[0, 1, 0]
class sage.manifolds.local_frame.LocalCoFrame(frame, symbol, latex_symbol=None, indices=None, latex_indices=None)#

Bases: FreeModuleCoBasis

Local coframe on a vector bundle.

A local coframe on a vector bundle \(E \to M\) of class \(C^k\) is a local section \(e^*: U \to E^n\) of class \(C^k\) on some subset \(U\) of the base space \(M\), such that \(e^*(p)\) is a basis of the fiber \(E^*_p\) of the dual bundle for any \(p \in U\).

INPUT:

  • frame – the local frame dual to the coframe

  • symbol – either a string, to be used as a common base for the symbols of the linear forms constituting the coframe, or a tuple of strings, representing the individual symbols of the linear forms

  • latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of the linear forms constituting the coframe, or a tuple of strings, representing the individual LaTeX symbols of the linear forms; if None, symbol is used in place of latex_symbol

  • indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices labelling the linear forms of the coframe; if None, the indices will be generated as integers within the range declared on the coframe’s domain

  • latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the linear forms of the coframe; if None, indices is used instead

EXAMPLES:

Local coframe on a topological vector bundle of rank 3:

sage: M = Manifold(3, 'M', structure='top', start_index=1)
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(3, 'E')
sage: e = E.local_frame('e')
sage: from sage.manifolds.local_frame import LocalCoFrame
sage: f = LocalCoFrame(e, 'f'); f
Local coframe (E|_M, (f^1,f^2,f^3))

The local coframe can also be obtained by using the method dual_basis() or coframe():

sage: e_dual = e.dual_basis(); e_dual
Local coframe (E|_M, (e^1,e^2,e^3))
sage: e_dual is e.coframe()
True
sage: e_dual is f
False
sage: e_dual[:] == f[:]
True
sage: f[1].display(e)
f^1 = e^1

The consisted linear forms can be obtained via the operator []:

sage: f[1], f[2], f[3]
(Linear form f^1 on the Free module C^0(M;E) of sections on the
 3-dimensional topological manifold M with values in the real vector
 bundle E of rank 3,
 Linear form f^2 on the Free module C^0(M;E) of sections on the
 3-dimensional topological manifold M with values in the real vector
 bundle E of rank 3,
 Linear form f^3 on the Free module C^0(M;E) of sections on the
 3-dimensional topological manifold M with values in the real vector
 bundle E of rank 3)

Checking that \(f\) is the dual of \(e\):

sage: f[1](e[1]).expr(), f[1](e[2]).expr(), f[1](e[3]).expr()
(1, 0, 0)
sage: f[2](e[1]).expr(), f[2](e[2]).expr(), f[2](e[3]).expr()
(0, 1, 0)
sage: f[3](e[1]).expr(), f[3](e[2]).expr(), f[3](e[3]).expr()
(0, 0, 1)
at(point)#

Return the value of self at a given point on the base space, this value being a basis of the dual vector bundle at this point.

INPUT:

  • pointManifoldPoint; point \(p\) in the domain \(U\) of the coframe (denoted \(f\) hereafter)

OUTPUT:

  • FreeModuleCoBasis representing the basis \(f(p)\) of the vector space \(E^*_p\), dual to the vector bundle fiber \(E_p\)

EXAMPLES:

Cobasis of a vector bundle fiber:

sage: M = Manifold(2, 'M', structure='top', start_index=1)
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e')
sage: e_dual = e.coframe(); e_dual
Local coframe (E|_M, (e^1,e^2))
sage: p = M.point((-1,2), name='p')
sage: e_dual_p = e_dual.at(p) ; e_dual_p
Dual basis (e^1,e^2) on the Fiber of E at Point p on the
2-dimensional topological manifold M
sage: type(e_dual_p)
<class 'sage.tensor.modules.free_module_basis.FreeModuleCoBasis_with_category'>
sage: e_dual_p[1]
Linear form e^1 on the Fiber of E at Point p on the 2-dimensional
 topological manifold M
sage: e_dual_p[2]
Linear form e^2 on the Fiber of E at Point p on the 2-dimensional
 topological manifold M
sage: e_dual_p is e.at(p).dual_basis()
True
set_name(symbol, latex_symbol=None, indices=None, latex_indices=None, index_position='up', include_domain=True)#

Set (or change) the text name and LaTeX name of self.

INPUT:

  • symbol – either a string, to be used as a common base for the symbols of the linear forms constituting the coframe, or a list/tuple of strings, representing the individual symbols of the linear forms

  • latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of the linear forms constituting the coframe, or a list/tuple of strings, representing the individual LaTeX symbols of the linear forms; if None, symbol is used in place of latex_symbol

  • indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices labelling the linear forms of the coframe; if None, the indices will be generated as integers within the range declared on self

  • latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the linear forms; if None, indices is used instead

  • index_position – (default: 'up') determines the position of the indices labelling the linear forms of the coframe; can be either 'down' or 'up'

  • include_domain – (default: True) boolean determining whether the name of the domain is included in the beginning of the coframe name

EXAMPLES:

sage: M = Manifold(3, 'M', structure='top')
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e').coframe(); e
Local coframe (E|_M, (e^0,e^1))
sage: e.set_name('f'); e
Local coframe (E|_M, (f^0,f^1))
sage: e.set_name('e', latex_symbol=r'\epsilon')
sage: latex(e)
\left(E|_{M}, \left(\epsilon^{0},\epsilon^{1}\right)\right)
sage: e.set_name('e', include_domain=False); e
Local coframe (e^0,e^1)
sage: e.set_name(['a', 'b'], latex_symbol=[r'\alpha', r'\beta']); e
Local coframe (E|_M, (a,b))
sage: latex(e)
\left(E|_{M}, \left(\alpha,\beta\right)\right)
sage: e.set_name('e', indices=['x','y'],
....:            latex_indices=[r'\xi', r'\zeta']); e
Local coframe (E|_M, (e^x,e^y))
sage: latex(e)
\left(E|_{M}, \left(e^{\xi},e^{\zeta}\right)\right)
class sage.manifolds.local_frame.LocalFrame(section_module, symbol, latex_symbol=None, indices=None, latex_indices=None, symbol_dual=None, latex_symbol_dual=None)#

Bases: FreeModuleBasis

Local frame on a vector bundle.

A local frame on a vector bundle \(E \to M\) of class \(C^k\) is a local section \((e_1,\dots,e_n):U \to E^n\) of class \(C^k\) defined on some subset \(U\) of the base space \(M\), such that \(e(p)\) is a basis of the fiber \(E_p\) for any \(p \in U\).

For each instantiation of a local frame, a local coframe is automatically created, as an instance of the class LocalCoFrame. It is returned by the method coframe().

INPUT:

  • section_module – free module of local sections over \(U\) in the given vector bundle \(E \to M\)

  • symbol – either a string, to be used as a common base for the symbols of the local sections constituting the local frame, or a tuple of strings, representing the individual symbols of the local sections

  • latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of the local sections constituting the local frame, or a tuple of strings, representing the individual LaTeX symbols of the local sections; if None, symbol is used in place of latex_symbol

  • indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices labelling the local sections of the frame; if None, the indices will be generated as integers within the range declared on the local frame’s domain

  • latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the local sections; if None, indices is used instead

  • symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbol must be a string and is used for the common base of the symbols of the elements of the dual coframe

  • latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

EXAMPLES:

Defining a local frame on a 3-dimensional vector bundle over a 3-dimensional manifold:

sage: M = Manifold(3, 'M', start_index=1, structure='top')
sage: E = M.vector_bundle(3, 'E')
sage: e = E.local_frame('e'); e
Local frame (E|_M, (e_1,e_2,e_3))
sage: latex(e)
\left(E|_{M}, \left(e_{1},e_{2},e_{3}\right)\right)

The individual elements of the vector frame are accessed via square brackets, with the possibility to invoke the slice operator ‘:’ to get more than a single element:

sage: e[2]
Section e_2 on the 3-dimensional topological manifold M with values in
 the real vector bundle E of rank 3
sage: e[1:3]
(Section e_1 on the 3-dimensional topological manifold M with values in
 the real vector bundle E of rank 3,
 Section e_2 on the 3-dimensional topological manifold M with values in
 the real vector bundle E of rank 3)
sage: e[:]
(Section e_1 on the 3-dimensional topological manifold M with values in
 the real vector bundle E of rank 3,
 Section e_2 on the 3-dimensional topological manifold M with values in
 the real vector bundle E of rank 3,
 Section e_3 on the 3-dimensional topological manifold M with values in
 the real vector bundle E of rank 3)

The LaTeX symbol can be specified:

sage: eps = E.local_frame('eps', latex_symbol=r'\epsilon')
sage: latex(eps)
\left(E|_{M}, \left(\epsilon_{1},\epsilon_{2},\epsilon_{3}\right)\right)

By default, the elements of the local frame are labelled by integers within the range specified at the manifold declaration. It is however possible to fully customize the labels, via the argument indices:

sage: u = E.local_frame('u', indices=('x', 'y', 'z')) ; u
Local frame (E|_M, (u_x,u_y,u_z))
sage: u[1]
Section u_x on the 3-dimensional topological manifold M with values in
 the real vector bundle E of rank 3
sage: u.coframe()
Local coframe (E|_M, (u^x,u^y,u^z))

The LaTeX format of the indices can be adjusted:

sage: v = E.local_frame('v', indices=('a', 'b', 'c'),
....:                    latex_indices=(r'\alpha', r'\beta', r'\gamma'))
sage: v
Local frame (E|_M, (v_a,v_b,v_c))
sage: latex(v)
\left(E|_{M}, \left(v_{\alpha},v_{\beta},v_{\gamma}\right)\right)
sage: latex(v.coframe())
\left(E|_{M}, \left(v^{\alpha},v^{\beta},v^{\gamma}\right)\right)

The symbol of each element of the local frame can also be freely chosen, by providing a tuple of symbols as the first argument of local_frame; it is then mandatory to specify as well some symbols for the dual coframe:

sage: h = E.local_frame(('a', 'b', 'c'), symbol_dual=('A', 'B', 'C')); h
Local frame (E|_M, (a,b,c))
sage: h[1]
Section a on the 3-dimensional topological manifold M with values in the
 real vector bundle E of rank 3
sage: h.coframe()
Local coframe (E|_M, (A,B,C))
sage: h.coframe()[1]
Linear form A on the Free module C^0(M;E) of sections on the
 3-dimensional topological manifold M with values in the real vector
 bundle E of rank 3

Local frames are bases of free modules formed by local sections:

sage: N = Manifold(2, 'N', structure='top', start_index=1)
sage: X.<x,y> = N.chart()
sage: U = N.open_subset('U')
sage: F = N.vector_bundle(2, 'F')
sage: f = F.local_frame('f', domain=U)
sage: f.module()
Free module C^0(U;F) of sections on the Open subset U of the
 2-dimensional topological manifold N with values in the real vector
 bundle F of rank 2
sage: f.module().base_ring()
Algebra of scalar fields on the Open subset U of the 2-dimensional
 topological manifold N
sage: f.module() is F.section_module(domain=f.domain())
True
sage: f in F.section_module(domain=U).bases()
True

The value of the local frame at a given point is a basis of the corresponding fiber:

sage: X_U = X.restrict(U) # We need coordinates on the subset
sage: p = N((0,1), name='p') ; p
Point p on the 2-dimensional topological manifold N
sage: f.at(p)
Basis (f_1,f_2) on the Fiber of F at Point p on the 2-dimensional
 topological manifold N
at(point)#

Return the value of self at a given point, this value being a basis of the vector bundle fiber at the point.

INPUT:

  • pointManifoldPoint; point \(p\) in the domain \(U\) of the local frame (denoted \(e\) hereafter)

OUTPUT:

  • FreeModuleBasis representing the basis \(e(p)\) of the vector bundle fiber \(E_p\)

EXAMPLES:

Basis of a fiber of a trivial vector bundle:

sage: M = Manifold(2, 'M', structure='top')
sage: X.<x,y> = M.chart()
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e'); e
Local frame (E|_M, (e_0,e_1))
sage: p = M.point((-1,2), name='p')
sage: ep = e.at(p) ; ep
Basis (e_0,e_1) on the Fiber of E at Point p on the 2-dimensional
 topological manifold M
sage: type(ep)
<class 'sage.tensor.modules.free_module_basis.FreeModuleBasis_with_category'>
sage: ep[0]
Vector e_0 in the fiber of E at Point p on the 2-dimensional
 topological manifold M
sage: ep[1]
Vector e_1 in the fiber of E at Point p on the 2-dimensional
 topological manifold M

Note that the symbols used to denote the vectors are same as those for the vector fields of the frame. At this stage, ep is the unique basis on fiber at p:

sage: Ep = E.fiber(p)
sage: Ep.bases()
[Basis (e_0,e_1) on the Fiber of E at Point p on the 2-dimensional
 topological manifold M]

Let us consider another local frame:

sage: aut = E.section_module().automorphism()
sage: aut[:] = [[1+y^2, 0], [0, 2]]
sage: f = e.new_frame(aut, 'f') ; f
Local frame (E|_M, (f_0,f_1))
sage: fp = f.at(p) ; fp
Basis (f_0,f_1) on the Fiber of E at Point p on the 2-dimensional
 topological manifold M

There are now two bases on the fiber:

sage: Ep.bases()
[Basis (e_0,e_1) on the Fiber of E at Point p on the 2-dimensional
 topological manifold M,
 Basis (f_0,f_1) on the Fiber of E at Point p on the 2-dimensional
 topological manifold M]

Moreover, the changes of bases in the tangent space have been computed from the known relation between the frames e and f (via the automorphism aut defined above):

sage: Ep.change_of_basis(ep, fp)
Automorphism of the Fiber of E at Point p on the 2-dimensional
 topological manifold M
sage: Ep.change_of_basis(ep, fp).display()
5 e_0⊗e^0 + 2 e_1⊗e^1
sage: Ep.change_of_basis(fp, ep)
Automorphism of the Fiber of E at Point p on the 2-dimensional
 topological manifold M
sage: Ep.change_of_basis(fp, ep).display()
1/5 e_0⊗e^0 + 1/2 e_1⊗e^1

The dual bases:

sage: e.coframe()
Local coframe (E|_M, (e^0,e^1))
sage: ep.dual_basis()
Dual basis (e^0,e^1) on the Fiber of E at Point p on the
 2-dimensional topological manifold M
sage: ep.dual_basis() is e.coframe().at(p)
True
sage: f.coframe()
Local coframe (E|_M, (f^0,f^1))
sage: fp.dual_basis()
Dual basis (f^0,f^1) on the Fiber of E at Point p on the
 2-dimensional topological manifold M
sage: fp.dual_basis() is f.coframe().at(p)
True
base_space()#

Return the base space on which the overlying vector bundle is defined.

EXAMPLES:

sage: M = Manifold(3, 'M', structure='top')
sage: U = M.open_subset('U')
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e', domain=U)
sage: e.base_space()
3-dimensional topological manifold M
coframe()#

Return the coframe of self.

EXAMPLES:

sage: M = Manifold(2, 'M', structure='top')
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e'); e
Local frame (E|_M, (e_0,e_1))
sage: e.coframe()
Local coframe (E|_M, (e^0,e^1))
domain()#

Return the domain on which self is defined.

EXAMPLES:

sage: M = Manifold(3, 'M', structure='top')
sage: U = M.open_subset('U')
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e', domain=U); e
Local frame (E|_U, (e_0,e_1))
sage: e.domain()
Open subset U of the 3-dimensional topological manifold M
new_frame(change_of_frame, symbol, latex_symbol=None, indices=None, latex_indices=None, symbol_dual=None, latex_symbol_dual=None)#

Define a new local frame from self.

The new local frame is defined from vector bundle automorphisms; its module is the same as that of the current frame.

INPUT:

  • change_of_frameFreeModuleAutomorphism; vector bundle automorphisms \(P\) that relates the current frame \((e_i)\) to the new frame \((f_i)\) according to \(f_i = P(e_i)\)

  • symbol – either a string, to be used as a common base for the symbols of the sections constituting the local frame, or a list/tuple of strings, representing the individual symbols of the sections

  • latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of the sections constituting the local frame, or a list/tuple of strings, representing the individual LaTeX symbols of the sections; if None, symbol is used in place of latex_symbol

  • indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices labelling the sections of the frame; if None, the indices will be generated as integers within the range declared on self

  • latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the sections; if None, indices is used instead

  • symbol_dual – (default: None) same as symbol but for the dual coframe; if None, symbol must be a string and is used for the common base of the symbols of the elements of the dual coframe

  • latex_symbol_dual – (default: None) same as latex_symbol but for the dual coframe

OUTPUT:

  • the new frame \((f_i)\), as an instance of LocalFrame

EXAMPLES:

Orthogonal transformation of a frame on the 2-dimensional trivial vector bundle over the Euclidean plane:

sage: M = Manifold(2, 'R^2', structure='top', start_index=1)
sage: c_cart.<x,y> = M.chart()
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e'); e
Local frame (E|_R^2, (e_1,e_2))
sage: orth = E.section_module().automorphism()
sage: orth[:] = [[sqrt(3)/2, -1/2], [1/2, sqrt(3)/2]]
sage: f = e.new_frame(orth, 'f')
sage: f[1][:]
[1/2*sqrt(3), 1/2]
sage: f[2][:]
[-1/2, 1/2*sqrt(3)]
sage: a =  E.change_of_frame(e,f)
sage: a[:]
[1/2*sqrt(3)        -1/2]
[        1/2 1/2*sqrt(3)]
sage: a == orth
True
sage: a is orth
False
sage: a._components # random (dictionary output)
{Local frame (E|_D_0, (e_1,e_2)): 2-indices components w.r.t.
 Local frame (E|_D_0, (e_1,e_2)),
 Local frame (E|_D_0, (f_1,f_2)): 2-indices components w.r.t.
 Local frame (E|_D_0, (f_1,f_2))}
sage: a.comp(f)[:]
[1/2*sqrt(3)        -1/2]
 [        1/2 1/2*sqrt(3)]
sage: a1 = E.change_of_frame(f,e)
sage: a1[:]
[1/2*sqrt(3)         1/2]
[       -1/2 1/2*sqrt(3)]
sage: a1 == orth.inverse()
True
sage: a1 is orth.inverse()
False
sage: e[1].comp(f)[:]
[1/2*sqrt(3), -1/2]
sage: e[2].comp(f)[:]
[1/2, 1/2*sqrt(3)]
restrict(subdomain)#

Return the restriction of self to some open subset of its domain.

If the restriction has not been defined yet, it is constructed here.

INPUT:

  • subdomain – open subset \(V\) of the current frame domain \(U\)

OUTPUT:

  • the restriction of the current frame to \(V\) as a LocalFrame

EXAMPLES:

Restriction of a frame defined on \(\RR^2\) to the unit disk:

sage: M = Manifold(2, 'R^2', structure='top', start_index=1)
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e'); e
Local frame (E|_R^2, (e_1,e_2))
sage: a = E.section_module().automorphism()
sage: a[:] = [[1-y^2,0], [1+x^2, 2]]
sage: f = e.new_frame(a, 'f'); f
Local frame (E|_R^2, (f_1,f_2))
sage: U = M.open_subset('U', coord_def={c_cart: x^2+y^2<1})
sage: e_U = e.restrict(U); e_U
Local frame (E|_U, (e_1,e_2))
sage: f_U = f.restrict(U) ; f_U
Local frame (E|_U, (f_1,f_2))

The vectors of the restriction have the same symbols as those of the original frame:

sage: f_U[1].display()
f_1 = (-y^2 + 1) e_1 + (x^2 + 1) e_2
sage: f_U[2].display()
f_2 = 2 e_2

Actually, the components are the restrictions of the original frame vectors:

sage: f_U[1] is f[1].restrict(U)
True
sage: f_U[2] is f[2].restrict(U)
True
set_name(symbol, latex_symbol=None, indices=None, latex_indices=None, index_position='down', include_domain=True)#

Set (or change) the text name and LaTeX name of self.

INPUT:

  • symbol – either a string, to be used as a common base for the symbols of the local sections constituting the local frame, or a list/tuple of strings, representing the individual symbols of the local sections

  • latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of the local sections constituting the local frame, or a list/tuple of strings, representing the individual LaTeX symbols of the local sections; if None, symbol is used in place of latex_symbol

  • indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices labelling the local sections of the frame; if None, the indices will be generated as integers within the range declared on self

  • latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the local sections; if None, indices is used instead

  • index_position – (default: 'down') determines the position of the indices labelling the local sections of the frame; can be either 'down' or 'up'

  • include_domain – (default: True) boolean determining whether the name of the domain is included in the beginning of the vector frame name

EXAMPLES:

sage: M = Manifold(3, 'M', structure='top')
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e'); e
Local frame (E|_M, (e_0,e_1))
sage: e.set_name('f'); e
Local frame (E|_M, (f_0,f_1))
sage: e.set_name('e', include_domain=False); e
Local frame (e_0,e_1)
sage: e.set_name(['a', 'b']); e
Local frame (E|_M, (a,b))
sage: e.set_name('e', indices=['x', 'y']); e
Local frame (E|_M, (e_x,e_y))
sage: e.set_name('e', latex_symbol=r'\epsilon')
sage: latex(e)
\left(E|_{M}, \left(\epsilon_{0},\epsilon_{1}\right)\right)
sage: e.set_name('e', latex_symbol=[r'\alpha', r'\beta'])
sage: latex(e)
\left(E|_{M}, \left(\alpha,\beta\right)\right)
sage: e.set_name('e', latex_symbol='E',
....:            latex_indices=[r'\alpha', r'\beta'])
sage: latex(e)
\left(E|_{M}, \left(E_{\alpha},E_{\beta}\right)\right)
vector_bundle()#

Return the vector bundle on which self is defined.

EXAMPLES:

sage: M = Manifold(3, 'M', structure='top')
sage: U = M.open_subset('U')
sage: E = M.vector_bundle(2, 'E')
sage: e = E.local_frame('e', domain=U)
sage: e.vector_bundle()
Topological real vector bundle E -> M of rank 2 over the base space
3-dimensional topological manifold M
sage: e.vector_bundle() is E
True
class sage.manifolds.local_frame.TrivializationCoFrame(triv_frame, symbol, latex_symbol=None, indices=None, latex_indices=None)#

Bases: LocalCoFrame

Trivialization coframe on a vector bundle.

A trivialization coframe is the coframe of the trivialization frame induced by a trivialization (see: TrivializationFrame).

More precisely, a trivialization frame on a vector bundle \(E \to M\) of class \(C^k\) and rank \(n\) over the topological field \(K\) and over a topological manifold \(M\) is a local coframe induced by a local trivialization \(\varphi:E|_U \to U \times K^n\) of the domain \(U \in M\). Namely, the local dual sections

\[\varphi^*e^i := \varphi(\;\cdot\;, e^i)\]

on \(U\) induce a local frame \((\varphi^*e^1, \dots, \varphi^*e^n)\), where \((e^1, \dots, e^n)\) is the dual of the standard basis of \(K^n\).

INPUT:

  • triv_frame – trivialization frame dual to the trivialization coframe

  • symbol – either a string, to be used as a common base for the symbols of the dual sections constituting the coframe, or a tuple of strings, representing the individual symbols of the dual sections

  • latex_symbol – (default: None) either a string, to be used as a common base for the LaTeX symbols of the dual sections constituting the coframe, or a tuple of strings, representing the individual LaTeX symbols of the dual sections; if None, symbol is used in place of latex_symbol

  • indices – (default: None; used only if symbol is a single string) tuple of strings representing the indices labelling the dual sections of the coframe; if None, the indices will be generated as integers within the range declared on the local frame’s domain

  • latex_indices – (default: None) tuple of strings representing the indices for the LaTeX symbols of the dual sections of the coframe; if None, indices is used instead

EXAMPLES:

Trivialization coframe on a trivial vector bundle of rank 3:

sage: M = Manifold(3, 'M', start_index=1, structure='top')
sage: X.<x,y,z> = M.chart()
sage: E = M.vector_bundle(3, 'E')
sage: phi = E.trivialization('phi'); phi
Trivialization (phi, E|_M)
sage: E.frames()
[Trivialization frame (E|_M, ((phi^*e_1),(phi^*e_2),(phi^*e_3)))]
sage: E.coframes()
[Trivialization coframe (E|_M, ((phi^*e^1),(phi^*e^2),(phi^*e^3)))]
sage: f = E.coframes()[0] ; f
Trivialization coframe (E|_M, ((phi^*e^1),(phi^*e^2),(phi^*e^3)))

The linear forms composing the coframe are obtained via the operator []:

sage: f[1]
Linear form (phi^*e^1) on the Free module C^0(M;E) of sections on the
 3-dimensional topological manifold M with values in the real vector
 bundle E of rank 3
sage: f[2]
Linear form (phi^*e^2) on the Free module C^0(M;E) of sections on the
 3-dimensional topological manifold M with values in the real vector
 bundle E of rank 3
sage: f[3]
Linear form (phi^*e^3) on the Free module C^0(M;E) of sections on the
 3-dimensional topological manifold M with values in the real vector
 bundle E of rank 3
sage: f[1][:]
[1, 0, 0]
sage: f[2][:]
[0, 1, 0]
sage: f[3][:]
[0, 0, 1]

The coframe is the dual of the trivialization frame:

sage: e = phi.frame() ; e
Trivialization frame (E|_M, ((phi^*e_1),(phi^*e_2),(phi^*e_3)))
sage: f[1](e[1]).expr(), f[1](e[2]).expr(), f[1](e[3]).expr()
(1, 0, 0)
sage: f[2](e[1]).expr(), f[2](e[2]).expr(), f[2](e[3]).expr()
(0, 1, 0)
sage: f[3](e[1]).expr(), f[3](e[2]).expr(), f[3](e[3]).expr()
(0, 0, 1)
class sage.manifolds.local_frame.TrivializationFrame(trivialization)#

Bases: LocalFrame

Trivialization frame on a topological vector bundle.

A trivialization frame on a topological vector bundle \(E \to M\) of rank \(n\) over the topological field \(K\) and over a topological manifold \(M\) is a local frame induced by a local trivialization \(\varphi:E|_U \to U \times K^n\) of the domain \(U \in M\). More precisely, the local sections

\[\varphi^*e_i := \varphi(\;\cdot\;, e_i)\]

on \(U\) induce a local frame \((\varphi^*e_1, \dots, \varphi^*e_n)\), where \((e_1, \dots, e_n)\) is the standard basis of \(K^n\).

INPUT:

  • trivialization – the trivialization defined on the vector bundle

EXAMPLES:

sage: M = Manifold(3, 'M')
sage: U = M.open_subset('U')
sage: E = M.vector_bundle(2, 'E')
sage: phi_U = E.trivialization('phi_U', domain=U)
sage: phi_U.frame()
Trivialization frame (E|_U, ((phi_U^*e_1),(phi_U^*e_2)))
sage: latex(phi_U.frame())
\left(E|_{U}, \left(\left(phi_U^* e_{ 1 }\right),\left(phi_U^* e_{ 2 }\right)\right)\right)
trivialization()#

Return the underlying trivialization of self.

EXAMPLES:

sage: M = Manifold(3, 'M')
sage: U = M.open_subset('U')
sage: E = M.vector_bundle(2, 'E')
sage: phi_U = E.trivialization('phi_U', domain=U)
sage: e = phi_U.frame()
sage: e.trivialization()
Trivialization (phi_U, E|_U)
sage: e.trivialization() is phi_U
True