Minimal Polynomials of Linear Recurrence Sequences¶

AUTHORS:

• William Stein
sage.matrix.berlekamp_massey.berlekamp_massey(a)

Use the Berlekamp-Massey algorithm to find the minimal polynomial of a linearly recurrence sequence a.

The minimal polynomial of a linear recurrence $$\{a_r\}$$ is by definition the unique monic polynomial $$g$$, such that if $$\{a_r\}$$ satisfies a linear recurrence $$a_{j+k} + b_{j-1} a_{j-1+k} + \cdots + b_0 a_k=0$$ (for all $$k\geq 0$$), then $$g$$ divides the polynomial $$x^j + \sum_{i=0}^{j-1} b_i x^i$$.

INPUT:

• a – a list of even length of elements of a field (or domain)

OUTPUT:

• Polynomial – the minimal polynomial of the sequence (as a polynomial over the field in which the entries of a live)

EXAMPLES:

sage: from sage.matrix.berlekamp_massey import berlekamp_massey
sage: berlekamp_massey([1,2,1,2,1,2])
x^2 - 1
sage: berlekamp_massey([GF(7)(1),19,1,19])
x^2 + 6
sage: berlekamp_massey([2,2,1,2,1,191,393,132])
x^4 - 36727/11711*x^3 + 34213/5019*x^2 + 7024942/35133*x - 335813/1673
sage: berlekamp_massey(prime_range(2,38))
x^6 - 14/9*x^5 - 7/9*x^4 + 157/54*x^3 - 25/27*x^2 - 73/18*x + 37/9