Morphisms defined by a matrix¶
A matrix morphism is a morphism that is defined by multiplication
by a matrix. Elements of domain must either have a method
vector()
that returns a vector that the defining
matrix can hit from the left, or be coercible into vector space of
appropriate dimension.
EXAMPLES:
sage: from sage.modules.matrix_morphism import MatrixMorphism, is_MatrixMorphism
sage: V = QQ^3
sage: T = End(V)
sage: M = MatrixSpace(QQ,3)
sage: I = M.identity_matrix()
sage: m = MatrixMorphism(T, I); m
Morphism defined by the matrix
[1 0 0]
[0 1 0]
[0 0 1]
sage: is_MatrixMorphism(m)
True
sage: m.charpoly('x')
x^3  3*x^2 + 3*x  1
sage: m.base_ring()
Rational Field
sage: m.det()
1
sage: m.fcp('x')
(x  1)^3
sage: m.matrix()
[1 0 0]
[0 1 0]
[0 0 1]
sage: m.rank()
3
sage: m.trace()
3
AUTHOR:
 William Stein: initial versions
 David Joyner (20051217): added examples
 William Stein (20050107): added __reduce__
 Craig Citro (20080318): refactored MatrixMorphism class
 Rob Beezer (20110715): additional methods, bug fixes, documentation

class
sage.modules.matrix_morphism.
MatrixMorphism
(parent, A, copy_matrix=True)¶ Bases:
sage.modules.matrix_morphism.MatrixMorphism_abstract
A morphism defined by a matrix.
INPUT:
parent
– a homspaceA
– matrix or aMatrixMorphism_abstract
instancecopy_matrix
– (default:True
) make an immutable copy of the matrixA
if it is mutable; ifFalse
, then this makesA
immutable

is_injective
()¶ Tell whether
self
is injective.EXAMPLES:
sage: V1 = QQ^2 sage: V2 = QQ^3 sage: phi = V1.hom(Matrix([[1,2,3],[4,5,6]]),V2) sage: phi.is_injective() True sage: psi = V2.hom(Matrix([[1,2],[3,4],[5,6]]),V1) sage: psi.is_injective() False
AUTHOR:
– Simon King (201005)

is_surjective
()¶ Tell whether
self
is surjective.EXAMPLES:
sage: V1 = QQ^2 sage: V2 = QQ^3 sage: phi = V1.hom(Matrix([[1,2,3],[4,5,6]]), V2) sage: phi.is_surjective() False sage: psi = V2.hom(Matrix([[1,2],[3,4],[5,6]]), V1) sage: psi.is_surjective() True
An example over a PID that is not \(\ZZ\).
sage: R = PolynomialRing(QQ, 'x') sage: A = R^2 sage: B = R^2 sage: H = A.hom([B([x^21, 1]), B([x^2, 1])]) sage: H.image() Free module of degree 2 and rank 2 over Univariate Polynomial Ring in x over Rational Field Echelon basis matrix: [ 1 0] [ 0 1] sage: H.is_surjective() True
This tests if trac ticket #11552 is fixed.
sage: V = ZZ^2 sage: m = matrix(ZZ, [[1,2],[0,2]]) sage: phi = V.hom(m, V) sage: phi.lift(vector(ZZ, [0, 1])) Traceback (most recent call last): ... ValueError: element is not in the image sage: phi.is_surjective() False
AUTHORS:
 Simon King (201005)
 Rob Beezer (20110628)

matrix
(side='left')¶ Return a matrix that defines this morphism.
INPUT:
side
– (default:'left'
) the side of the matrix where a vector is placed to effect the morphism (function)
OUTPUT:
A matrix which represents the morphism, relative to bases for the domain and codomain. If the modules are provided with user bases, then the representation is relative to these bases.
Internally, Sage represents a matrix morphism with the matrix multiplying a row vector placed to the left of the matrix. If the option
side='right'
is used, then a matrix is returned that acts on a vector to the right of the matrix. These two matrices are just transposes of each other and the difference is just a preference for the style of representation.EXAMPLES:
sage: V = ZZ^2; W = ZZ^3 sage: m = column_matrix([3*V.0  5*V.1, 4*V.0 + 2*V.1, V.0 + V.1]) sage: phi = V.hom(m, W) sage: phi.matrix() [ 3 4 1] [5 2 1] sage: phi.matrix(side='right') [ 3 5] [ 4 2] [ 1 1]

class
sage.modules.matrix_morphism.
MatrixMorphism_abstract
(parent)¶ Bases:
sage.categories.morphism.Morphism
INPUT:
parent
 a homspaceA
 matrix
EXAMPLES:
sage: from sage.modules.matrix_morphism import MatrixMorphism sage: T = End(ZZ^3) sage: M = MatrixSpace(ZZ,3) sage: I = M.identity_matrix() sage: A = MatrixMorphism(T, I) sage: loads(A.dumps()) == A True

base_ring
()¶ Return the base ring of self, that is, the ring over which self is given by a matrix.
EXAMPLES:
sage: sage.modules.matrix_morphism.MatrixMorphism((ZZ**2).endomorphism_ring(), Matrix(ZZ,2,[3..6])).base_ring() Integer Ring

characteristic_polynomial
(var='x')¶ Return the characteristic polynomial of this endomorphism.
characteristic_polynomial
andchar_poly
are the same method. INPUT:
 var – variable
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1]) sage: phi.characteristic_polynomial() x^2  3*x + 2 sage: phi.charpoly() x^2  3*x + 2 sage: phi.matrix().charpoly() x^2  3*x + 2 sage: phi.charpoly('T') T^2  3*T + 2

charpoly
(var='x')¶ Return the characteristic polynomial of this endomorphism.
characteristic_polynomial
andchar_poly
are the same method. INPUT:
 var – variable
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1]) sage: phi.characteristic_polynomial() x^2  3*x + 2 sage: phi.charpoly() x^2  3*x + 2 sage: phi.matrix().charpoly() x^2  3*x + 2 sage: phi.charpoly('T') T^2  3*T + 2

decomposition
(*args, **kwds)¶ Return decomposition of this endomorphism, i.e., sequence of subspaces obtained by finding invariant subspaces of self.
See the documentation for self.matrix().decomposition for more details. All inputs to this function are passed onto the matrix one.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1]) sage: phi.decomposition() [ Free module of degree 2 and rank 1 over Integer Ring Echelon basis matrix: [0 1], Free module of degree 2 and rank 1 over Integer Ring Echelon basis matrix: [ 1 1] ]

det
()¶ Return the determinant of this endomorphism.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1]) sage: phi.det() 2

fcp
(var='x')¶ Return the factorization of the characteristic polynomial.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1]) sage: phi.fcp() (x  2) * (x  1) sage: phi.fcp('T') (T  2) * (T  1)

image
()¶ Compute the image of this morphism.
EXAMPLES:
sage: V = VectorSpace(QQ,3) sage: phi = V.Hom(V)(matrix(QQ, 3, range(9))) sage: phi.image() Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 1] [ 0 1 2] sage: hom(GF(7)^3, GF(7)^2, zero_matrix(GF(7), 3, 2)).image() Vector space of degree 2 and dimension 0 over Finite Field of size 7 Basis matrix: []
Compute the image of the identity map on a ZZsubmodule:
sage: V = (ZZ^2).span([[1,2],[3,4]]) sage: phi = V.Hom(V)(identity_matrix(ZZ,2)) sage: phi(V.0) == V.0 True sage: phi(V.1) == V.1 True sage: phi.image() Free module of degree 2 and rank 2 over Integer Ring Echelon basis matrix: [1 0] [0 2] sage: phi.image() == V True

inverse
()¶ Returns the inverse of this matrix morphism, if the inverse exists.
Raises a
ZeroDivisionError
if the inverse does not exist.EXAMPLES:
An invertible morphism created as a restriction of a noninvertible morphism, and which has an unequal domain and codomain.
sage: V = QQ^4 sage: W = QQ^3 sage: m = matrix(QQ, [[2, 0, 3], [6, 1, 4], [1, 2, 4], [1, 0, 1]]) sage: phi = V.hom(m, W) sage: rho = phi.restrict_domain(V.span([V.0, V.3])) sage: zeta = rho.restrict_codomain(W.span([W.0, W.2])) sage: x = vector(QQ, [2, 0, 0, 7]) sage: y = zeta(x); y (3, 0, 1) sage: inv = zeta.inverse(); inv Vector space morphism represented by the matrix: [1 3] [ 1 2] Domain: Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [1 0 0] [0 0 1] Codomain: Vector space of degree 4 and dimension 2 over Rational Field Basis matrix: [1 0 0 0] [0 0 0 1] sage: inv(y) == x True
An example of an invertible morphism between modules, (rather than between vector spaces).
sage: M = ZZ^4 sage: p = matrix(ZZ, [[ 0, 1, 1, 2], ....: [ 1, 3, 2, 3], ....: [ 0, 4, 3, 4], ....: [2, 8, 4, 3]]) sage: phi = M.hom(p, M) sage: x = vector(ZZ, [1, 3, 5, 2]) sage: y = phi(x); y (1, 12, 12, 21) sage: rho = phi.inverse(); rho Free module morphism defined by the matrix [ 5 3 1 1] [ 9 4 3 2] [20 8 7 4] [ 6 2 2 1] Domain: Ambient free module of rank 4 over the principal ideal domain ... Codomain: Ambient free module of rank 4 over the principal ideal domain ... sage: rho(y) == x True
A noninvertible morphism, despite having an appropriate domain and codomain.
sage: V = QQ^2 sage: m = matrix(QQ, [[1, 2], [20, 40]]) sage: phi = V.hom(m, V) sage: phi.is_bijective() False sage: phi.inverse() Traceback (most recent call last): ... ZeroDivisionError: matrix morphism not invertible
The matrix representation of this morphism is invertible over the rationals, but not over the integers, thus the morphism is not invertible as a map between modules. It is easy to notice from the definition that every vector of the image will have a second entry that is an even integer.
sage: V = ZZ^2 sage: q = matrix(ZZ, [[1, 2], [3, 4]]) sage: phi = V.hom(q, V) sage: phi.matrix().change_ring(QQ).inverse() [ 2 1] [ 3/2 1/2] sage: phi.is_bijective() False sage: phi.image() Free module of degree 2 and rank 2 over Integer Ring Echelon basis matrix: [1 0] [0 2] sage: phi.lift(vector(ZZ, [1, 1])) Traceback (most recent call last): ... ValueError: element is not in the image sage: phi.inverse() Traceback (most recent call last): ... ZeroDivisionError: matrix morphism not invertible
The unary invert operator (~, tilde, “wiggle”) is synonymous with the
inverse()
method (and a lot easier to type).sage: V = QQ^2 sage: r = matrix(QQ, [[4, 3], [2, 5]]) sage: phi = V.hom(r, V) sage: rho = phi.inverse() sage: zeta = ~phi sage: rho.is_equal_function(zeta) True

is_bijective
()¶ Tell whether
self
is bijective.EXAMPLES:
Two morphisms that are obviously not bijective, simply on considerations of the dimensions. However, each fullfills half of the requirements to be a bijection.
sage: V1 = QQ^2 sage: V2 = QQ^3 sage: m = matrix(QQ, [[1, 2, 3], [4, 5, 6]]) sage: phi = V1.hom(m, V2) sage: phi.is_injective() True sage: phi.is_bijective() False sage: rho = V2.hom(m.transpose(), V1) sage: rho.is_surjective() True sage: rho.is_bijective() False
We construct a simple bijection between two onedimensional vector spaces.
sage: V1 = QQ^3 sage: V2 = QQ^2 sage: phi = V1.hom(matrix(QQ, [[1, 2], [3, 4], [5, 6]]), V2) sage: x = vector(QQ, [1, 1, 4]) sage: y = phi(x); y (18, 22) sage: rho = phi.restrict_domain(V1.span([x])) sage: zeta = rho.restrict_codomain(V2.span([y])) sage: zeta.is_bijective() True
AUTHOR:
 Rob Beezer (20110628)

is_equal_function
(other)¶ Determines if two morphisms are equal functions.
INPUT:
other
 a morphism to compare withself
OUTPUT:
Returns
True
precisely when the two morphisms have equal domains and codomains (as sets) and produce identical output when given the same input. Otherwise returnsFalse
.This is useful when
self
andother
may have different representations.Sage’s default comparison of matrix morphisms requires the domains to have the same bases and the codomains to have the same bases, and then compares the matrix representations. This notion of equality is more permissive (it will return
True
“more often”), but is more correct mathematically.EXAMPLES:
Three morphisms defined by combinations of different bases for the domain and codomain and different functions. Two are equal, the third is different from both of the others.
sage: B = matrix(QQ, [[3, 5, 4, 2], ....: [1, 2, 1, 4], ....: [ 4, 6, 5, 1], ....: [5, 7, 6, 1]]) sage: U = (QQ^4).subspace_with_basis(B.rows()) sage: C = matrix(QQ, [[1, 6, 4], ....: [ 3, 5, 6], ....: [ 1, 2, 3]]) sage: V = (QQ^3).subspace_with_basis(C.rows()) sage: H = Hom(U, V) sage: D = matrix(QQ, [[7, 2, 5, 2], ....: [5, 1, 4, 8], ....: [ 1, 1, 1, 4], ....: [4, 1, 3, 1]]) sage: X = (QQ^4).subspace_with_basis(D.rows()) sage: E = matrix(QQ, [[ 4, 1, 4], ....: [ 5, 4, 5], ....: [1, 0, 2]]) sage: Y = (QQ^3).subspace_with_basis(E.rows()) sage: K = Hom(X, Y) sage: f = lambda x: vector(QQ, [x[0]+x[1], 2*x[1]4*x[2], 5*x[3]]) sage: g = lambda x: vector(QQ, [x[0]x[2], 2*x[1]4*x[2], 5*x[3]]) sage: rho = H(f) sage: phi = K(f) sage: zeta = H(g) sage: rho.is_equal_function(phi) True sage: phi.is_equal_function(rho) True sage: zeta.is_equal_function(rho) False sage: phi.is_equal_function(zeta) False
AUTHOR:
 Rob Beezer (20110715)

is_identity
()¶ Determines if this morphism is an identity function or not.
EXAMPLES:
A homomorphism that cannot possibly be the identity due to an unequal domain and codomain.
sage: V = QQ^3 sage: W = QQ^2 sage: m = matrix(QQ, [[1, 2], [3, 4], [5, 6]]) sage: phi = V.hom(m, W) sage: phi.is_identity() False
A bijection, but not the identity.
sage: V = QQ^3 sage: n = matrix(QQ, [[3, 1, 8], [5, 4, 6], [1, 1, 5]]) sage: phi = V.hom(n, V) sage: phi.is_bijective() True sage: phi.is_identity() False
A restriction that is the identity.
sage: V = QQ^3 sage: p = matrix(QQ, [[1, 0, 0], [5, 8, 3], [0, 0, 1]]) sage: phi = V.hom(p, V) sage: rho = phi.restrict(V.span([V.0, V.2])) sage: rho.is_identity() True
An identity linear transformation that is defined with a domain and codomain with wildly different bases, so that the matrix representation is not simply the identity matrix.
sage: A = matrix(QQ, [[1, 1, 0], [2, 3, 4], [2, 4, 7]]) sage: B = matrix(QQ, [[2, 7, 2], [1, 3, 1], [1, 6, 2]]) sage: U = (QQ^3).subspace_with_basis(A.rows()) sage: V = (QQ^3).subspace_with_basis(B.rows()) sage: H = Hom(U, V) sage: id = lambda x: x sage: phi = H(id) sage: phi([203, 179, 34]) (203, 179, 34) sage: phi.matrix() [ 1 0 1] [ 9 18 2] [17 31 5] sage: phi.is_identity() True
AUTHOR:
 Rob Beezer (20110628)

is_zero
()¶ Determines if this morphism is a zero function or not.
EXAMPLES:
A zero morphism created from a function.
sage: V = ZZ^5 sage: W = ZZ^3 sage: z = lambda x: zero_vector(ZZ, 3) sage: phi = V.hom(z, W) sage: phi.is_zero() True
An image list that just barely makes a nonzero morphism.
sage: V = ZZ^4 sage: W = ZZ^6 sage: z = zero_vector(ZZ, 6) sage: images = [z, z, W.5, z] sage: phi = V.hom(images, W) sage: phi.is_zero() False
AUTHOR:
 Rob Beezer (20110715)

kernel
()¶ Compute the kernel of this morphism.
EXAMPLES:
sage: V = VectorSpace(QQ,3) sage: id = V.Hom(V)(identity_matrix(QQ,3)) sage: null = V.Hom(V)(0*identity_matrix(QQ,3)) sage: id.kernel() Vector space of degree 3 and dimension 0 over Rational Field Basis matrix: [] sage: phi = V.Hom(V)(matrix(QQ,3,range(9))) sage: phi.kernel() Vector space of degree 3 and dimension 1 over Rational Field Basis matrix: [ 1 2 1] sage: hom(CC^2, CC^2, matrix(CC, [[1,0], [0,1]])).kernel() Vector space of degree 2 and dimension 0 over Complex Field with 53 bits of precision Basis matrix: []

matrix
()¶ EXAMPLES:
sage: V = ZZ^2; phi = V.hom(V.basis()) sage: phi.matrix() [1 0] [0 1] sage: sage.modules.matrix_morphism.MatrixMorphism_abstract.matrix(phi) Traceback (most recent call last): ... NotImplementedError: this method must be overridden in the extension class

nullity
()¶ Returns the nullity of the matrix representing this morphism, which is the dimension of its kernel.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom(V.basis()) sage: phi.nullity() 0 sage: V = ZZ^2; phi = V.hom([V.0, V.0]) sage: phi.nullity() 1

rank
()¶ Returns the rank of the matrix representing this morphism.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom(V.basis()) sage: phi.rank() 2 sage: V = ZZ^2; phi = V.hom([V.0, V.0]) sage: phi.rank() 1

restrict
(sub)¶ Restrict this matrix morphism to a subspace sub of the domain.
The codomain and domain of the resulting matrix are both sub.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([3*V.0, 2*V.1]) sage: phi.restrict(V.span([V.0])) Free module morphism defined by the matrix [3] Domain: Free module of degree 2 and rank 1 over Integer Ring Echelon ... Codomain: Free module of degree 2 and rank 1 over Integer Ring Echelon ... sage: V = (QQ^2).span_of_basis([[1,2],[3,4]]) sage: phi = V.hom([V.0+V.1, 2*V.1]) sage: phi(V.1) == 2*V.1 True sage: W = span([V.1]) sage: phi(W) Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 4/3] sage: psi = phi.restrict(W); psi Vector space morphism represented by the matrix: [2] Domain: Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 4/3] Codomain: Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 4/3] sage: psi.domain() == W True sage: psi(W.0) == 2*W.0 True

restrict_codomain
(sub)¶ Restrict this matrix morphism to a subspace sub of the codomain.
The resulting morphism has the same domain as before, but a new codomain.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([4*(V.0+V.1),0]) sage: W = V.span([2*(V.0+V.1)]) sage: phi Free module morphism defined by the matrix [4 4] [0 0] Domain: Ambient free module of rank 2 over the principal ideal domain ... Codomain: Ambient free module of rank 2 over the principal ideal domain ... sage: psi = phi.restrict_codomain(W); psi Free module morphism defined by the matrix [2] [0] Domain: Ambient free module of rank 2 over the principal ideal domain ... Codomain: Free module of degree 2 and rank 1 over Integer Ring Echelon ...
An example in which the codomain equals the full ambient space, but with a different basis:
sage: V = QQ^2 sage: W = V.span_of_basis([[1,2],[3,4]]) sage: phi = V.hom(matrix(QQ,2,[1,0,2,0]),W) sage: phi.matrix() [1 0] [2 0] sage: phi(V.0) (1, 2) sage: phi(V.1) (2, 4) sage: X = V.span([[1,2]]); X Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 2] sage: phi(V.0) in X True sage: phi(V.1) in X True sage: psi = phi.restrict_codomain(X); psi Vector space morphism represented by the matrix: [1] [2] Domain: Vector space of dimension 2 over Rational Field Codomain: Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 2] sage: psi(V.0) (1, 2) sage: psi(V.1) (2, 4) sage: psi(V.0).parent() is X True

restrict_domain
(sub)¶ Restrict this matrix morphism to a subspace sub of the domain. The subspace sub should have a basis() method and elements of the basis should be coercible into domain.
The resulting morphism has the same codomain as before, but a new domain.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([3*V.0, 2*V.1]) sage: phi.restrict_domain(V.span([V.0])) Free module morphism defined by the matrix [3 0] Domain: Free module of degree 2 and rank 1 over Integer Ring Echelon ... Codomain: Ambient free module of rank 2 over the principal ideal domain ... sage: phi.restrict_domain(V.span([V.1])) Free module morphism defined by the matrix [0 2]...

trace
()¶ Return the trace of this endomorphism.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1]) sage: phi.trace() 3

sage.modules.matrix_morphism.
is_MatrixMorphism
(x)¶ Return True if x is a Matrix morphism of free modules.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([3*V.0, 2*V.1]) sage: sage.modules.matrix_morphism.is_MatrixMorphism(phi) True sage: sage.modules.matrix_morphism.is_MatrixMorphism(3) False