Base classes for 3D graphics objects and plotting#

The most important facts about these classes are that you can simply add graphics objects together (G1+G2, see Graphics3d.__add__()), and the Graphics3d.show() method with its options for choosing a viewer and setting various parameters for displaying the graphics.

Most of the other methods of these classes are technical and for special usage.

AUTHORS:

  • Robert Bradshaw (2007-02): initial version

  • Robert Bradshaw (2007-08): Cythonization, much optimization

  • William Stein (2008)

  • Paul Masson (2016): Three.js support

  • Joshua Campbell (2020): Three.js animation support

  • Günter Rote (2021): camera and light parameters for tachyon

Todo

finish integrating tachyon – good default lights

full documentation of three.js viewer parameters

zoom by changing camera parameters instead of scaling objects

class sage.plot.plot3d.base.BoundingSphere(cen, r)#

Bases: SageObject

A bounding sphere is like a bounding box, but is simpler to deal with and behaves better under rotations.

transform(T)#

Return the bounding sphere of this sphere acted on by T. This always returns a new sphere, even if the resulting object is an ellipsoid.

EXAMPLES:

sage: from sage.plot.plot3d.transform import Transformation
sage: from sage.plot.plot3d.base import BoundingSphere
sage: BoundingSphere((0,0,0), 10).transform(Transformation(trans=(1,2,3)))
Center (1.0, 2.0, 3.0) radius 10.0
sage: BoundingSphere((0,0,0), 10).transform(Transformation(scale=(1/2, 1, 2)))
Center (0.0, 0.0, 0.0) radius 20.0
sage: BoundingSphere((0,0,3), 10).transform(Transformation(scale=(2, 2, 2)))
Center (0.0, 0.0, 6.0) radius 20.0
class sage.plot.plot3d.base.Graphics3d#

Bases: SageObject

This is the baseclass for all 3d graphics objects.

__add__(left, right)#

Addition of objects adds them to the same scene.

EXAMPLES:

sage: A = sphere((0,0,0), 1, color='red')
sage: B = dodecahedron((2, 0, 0), color='yellow')
sage: A+B
Graphics3d Object

For convenience, we take 0 and None to be the additive identity:

sage: A + 0 is A
True
sage: A + None is A, 0 + A is A, None + A is A
(True, True, True)

In particular, this allows us to use the sum() function without having to provide an empty starting object:

sage: sum(point3d((cos(n), sin(n), n)) for n in [0..10, step=.1])
Graphics3d Object

A Graphics 3d object and a 2d object can also be added:

sage: A = sphere((0, 0, 0), 1) + circle((0, 0), 1.5)
sage: A.show(aspect_ratio=1)
_rich_repr_(display_manager, **kwds)#

Rich Output Magic Method

See sage.repl.rich_output for details.

EXAMPLES:

sage: from sage.repl.rich_output import get_display_manager
sage: dm = get_display_manager()
sage: g = sphere()
sage: g._rich_repr_(dm)  # OutputSceneThreejs container outside doctest mode
OutputSceneJmol container
amf_ascii_string(name='surface')#

Return an AMF (Additive Manufacturing File Format) representation of the surface.

Warning

This only works for triangulated surfaces!

INPUT:

  • name (string, default: “surface”) – name of the surface.

OUTPUT:

A string that represents the surface in the AMF format.

See Wikipedia article Additive_Manufacturing_File_Format

Todo

This should rather be saved as a ZIP archive to save space.

EXAMPLES:

sage: # needs sage.symbolic
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9,[x,-5,5],[y,-5,5],[z,-5,5])
sage: a_amf = a.amf_ascii_string()
sage: a_amf[:160]
'<?xml version="1.0" encoding="utf-8"?><amf><object id="surface"><mesh><vertices><vertex><coordinates><x>2.948717948717948</x><y>-0.384615384615385</y><z>-0.3935'

sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.amf_ascii_string(name='triangle'))
<?xml version="1.0" encoding="utf-8"?><amf><object id="triangle"><mesh><vertices><vertex><coordinates><x>0.0</x><y>0.0</y><z>0.0</z></coordinates></vertex><vertex><coordinates><x>1.0</x><y>2.0</y><z>3.0</z></coordinates></vertex><vertex><coordinates><x>3.0</x><y>0.0</y><z>0.0</z></coordinates></vertex></vertices><volume><triangle><v1>0</v1><v2>1</v2><v3>2</v3></triangle></volume></mesh></object></amf>
aspect_ratio(v=None)#

Set or get the preferred aspect ratio.

INPUT:

  • v – (default: None) must be a list or tuple of length three, or the integer 1. If no arguments are provided then the default aspect ratio is returned.

EXAMPLES:

sage: D = dodecahedron()
sage: D.aspect_ratio()
[1.0, 1.0, 1.0]
sage: D.aspect_ratio([1,2,3])
sage: D.aspect_ratio()
[1.0, 2.0, 3.0]
sage: D.aspect_ratio(1)
sage: D.aspect_ratio()
[1.0, 1.0, 1.0]
bounding_box()#

Return the lower and upper corners of a 3d bounding box.

This is used for rendering, and the scene should fit entirely within this box.

Specifically, the first point returned has x, y, and z coordinates that are the respective minimum over all points in the graphics, and the second point is the maximum.

The default return value is simply the box containing the origin.

EXAMPLES:

sage: sphere((1,1,1), 2).bounding_box()
((-1.0, -1.0, -1.0), (3.0, 3.0, 3.0))
sage: G = line3d([(1, 2, 3), (-1,-2,-3)])
sage: G.bounding_box()
((-1.0, -2.0, -3.0), (1.0, 2.0, 3.0))
default_render_params()#

Return an instance of RenderParams suitable for plotting this object.

EXAMPLES:

sage: type(dodecahedron().default_render_params())
<class 'sage.plot.plot3d.base.RenderParams'>
export_jmol(filename='jmol_shape.jmol', force_reload=False, zoom=1, spin=False, background=(1, 1, 1), stereo=False, mesh=False, dots=False, perspective_depth=True, orientation=(-764, -346, -545, 76.39), **ignored_kwds)#

A jmol scene consists of a script which refers to external files. Fortunately, we are able to put all of them in a single zip archive, which is the output of this call.

EXAMPLES:

sage: out_file = tmp_filename(ext=".jmol")
sage: G = sphere((1, 2, 3), 5) + cube() + sage.plot.plot3d.shapes.Text("hi")
sage: G.export_jmol(out_file)
sage: import zipfile
sage: z = zipfile.ZipFile(out_file)
sage: z.namelist()
['obj_...pmesh', 'SCRIPT']

sage: print(z.read('SCRIPT').decode('ascii'))
data "model list"
2
empty
Xx 0 0 0
Xx 5.5 5.5 5.5
end "model list"; show data
select *
wireframe off; spacefill off
set labelOffset 0 0
background [255,255,255]
spin OFF
moveto 0 -764 -346 -545 76.39
centerAt absolute {0 0 0}
zoom 100
frank OFF
set perspectivedepth ON
isosurface sphere_1  center {1.0 2.0 3.0} sphere 5.0
color isosurface  [102,102,255]
pmesh obj_... "obj_...pmesh"
color pmesh  [102,102,255]
select atomno = 1
color atom  [102,102,255]
label "hi"
isosurface fullylit; pmesh o* fullylit; set antialiasdisplay on;

sage: print(z.read(z.namelist()[0]).decode('ascii'))
24
0.5 0.5 0.5
-0.5 0.5 0.5
...
-0.5 -0.5 -0.5
6
5
0
1
...
flatten()#

Try to reduce the depth of the scene tree by consolidating groups and transformations.

The generic Graphics3d object cannot be made flatter.

EXAMPLES:

sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.flatten() is G
True
frame_aspect_ratio(v=None)#

Set or get the preferred frame aspect ratio.

INPUT:

  • v – (default: None) must be a list or tuple of length three, or the integer 1. If no arguments are provided then the default frame aspect ratio is returned.

EXAMPLES:

sage: D = dodecahedron()
sage: D.frame_aspect_ratio()
[1.0, 1.0, 1.0]
sage: D.frame_aspect_ratio([2,2,1])
sage: D.frame_aspect_ratio()
[2.0, 2.0, 1.0]
sage: D.frame_aspect_ratio(1)
sage: D.frame_aspect_ratio()
[1.0, 1.0, 1.0]
jmol_repr(render_params)#

A (possibly nested) list of strings which will be concatenated and used by jmol to render the object.

(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may refer to several remove files, which are stored in render_parames.output_archive.

EXAMPLES:

sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.jmol_repr(G.default_render_params())
[]
sage: G = sphere((1, 2, 3))
sage: G.jmol_repr(G.default_render_params())
[['isosurface sphere_1  center {1.0 2.0 3.0} sphere 1.0\ncolor isosurface  [102,102,255]']]
json_repr(render_params)#

A (possibly nested) list of strings. Each entry is formatted as JSON, so that a JavaScript client could eval it and get an object. Each object has fields to encapsulate the faces and vertices of the object. This representation is intended to be consumed by the canvas3d viewer backend.

EXAMPLES:

sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.json_repr(G.default_render_params())
[]
mtl_str()#

Return the contents of a .mtl file, to be used to provide coloring information for an .obj file.

EXAMPLES:

sage: G = tetrahedron(color='red') + tetrahedron(color='yellow', opacity=0.5)
sage: print(G.mtl_str())
newmtl ...
Ka 0.5 5e-06 5e-06
Kd 1.0 1e-05 1e-05
Ks 0.0 0.0 0.0
illum 1
Ns 1.0
d 1.0
newmtl ...
Ka 0.5 0.5 5e-06
Kd 1.0 1.0 1e-05
Ks 0.0 0.0 0.0
illum 1
Ns 1.0
d 0.5
obj()#

An .obj scene file (as a string) containing the this object.

A .mtl file of the same name must also be produced for coloring.

EXAMPLES:

sage: from sage.plot.plot3d.shapes import ColorCube
sage: print(ColorCube(1, ['red', 'yellow', 'blue']).obj())
g obj_1
usemtl ...
v 1 1 1
v -1 1 1
v -1 -1 1
v 1 -1 1
f 1 2 3 4
...
g obj_6
usemtl ...
v -1 -1 1
v -1 1 1
v -1 1 -1
v -1 -1 -1
f 21 22 23 24
obj_repr(render_params)#

A (possibly nested) list of strings which will be concatenated and used to construct an .obj file of the object.

(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may include a reference to color information which is stored elsewhere.

EXAMPLES:

sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.obj_repr(G.default_render_params())
[]
sage: G = cube()
sage: G.obj_repr(G.default_render_params())
['g obj_1',
 'usemtl ...',
 ['v 0.5 0.5 0.5',
  'v -0.5 0.5 0.5',
  'v -0.5 -0.5 0.5',
  'v 0.5 -0.5 0.5',
  'v 0.5 0.5 -0.5',
  'v -0.5 0.5 -0.5',
  'v 0.5 -0.5 -0.5',
  'v -0.5 -0.5 -0.5'],
 ['f 1 2 3 4',
  'f 1 5 6 2',
  'f 1 4 7 5',
  'f 6 5 7 8',
  'f 7 4 3 8',
  'f 3 2 6 8'],
 []]
plot()#

Draw a 3D plot of this graphics object, which just returns this object since this is already a 3D graphics object. Needed to support PLOT in docstrings, see github issue #17498

EXAMPLES:

sage: S = sphere((0,0,0), 2)
sage: S.plot() is S
True
ply_ascii_string(name='surface')#

Return a PLY (Polygon File Format) representation of the surface.

INPUT:

  • name (string, default: “surface”) – name of the surface.

OUTPUT:

A string that represents the surface in the PLY format.

See Wikipedia article PLY_(file_format)

EXAMPLES:

sage: # needs sage.symbolic
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9,[x,-5,5],[y,-5,5],[z,-5,5])
sage: astl = a.ply_ascii_string()
sage: astl.splitlines()[:10]
['ply',
'format ascii 1.0',
'comment surface',
'element vertex 15540',
'property float x',
'property float y',
'property float z',
'element face 5180',
'property list uchar int vertex_indices',
'end_header']

sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.ply_ascii_string(name='triangle'))
ply
format ascii 1.0
comment triangle
element vertex 3
property float x
property float y
property float z
element face 1
property list uchar int vertex_indices
end_header
0.0 0.0 0.0
1.0 2.0 3.0
3.0 0.0 0.0
3 0 1 2
rotate(v, theta)#

Return the object rotated about the vector \(v\) by \(\theta\) radians.

EXAMPLES:

sage: from math import pi
sage: from sage.plot.plot3d.shapes import Cone
sage: v = (1,2,3)
sage: G = arrow3d((0, 0, 0), v)
sage: G += Cone(1/5, 1).translate((0, 0, 2))
sage: C = Cone(1/5, 1, opacity=.25).translate((0, 0, 2))
sage: G += sum(C.rotate(v, pi*t/4) for t in [1..7])
sage: G.show(aspect_ratio=1)

sage: from sage.plot.plot3d.shapes import Box
sage: Box(1/3, 1/5, 1/7).rotate((1, 1, 1), pi/3).show(aspect_ratio=1)
rotateX(theta)#

Return the object rotated about the \(x\)-axis by the given angle.

EXAMPLES:

sage: from math import pi
sage: from sage.plot.plot3d.shapes import Cone
sage: G = Cone(1/5, 1) + Cone(1/5, 1, opacity=.25).rotateX(pi/2)
sage: G.show(aspect_ratio=1)
rotateY(theta)#

Return the object rotated about the \(y\)-axis by the given angle.

EXAMPLES:

sage: from math import pi
sage: from sage.plot.plot3d.shapes import Cone
sage: G = Cone(1/5, 1) + Cone(1/5, 1, opacity=.25).rotateY(pi/3)
sage: G.show(aspect_ratio=1)
rotateZ(theta)#

Return the object rotated about the \(z\)-axis by the given angle.

EXAMPLES:

sage: from math import pi
sage: from sage.plot.plot3d.shapes import Box
sage: G = Box(1/2, 1/3, 1/5) + Box(1/2, 1/3, 1/5, opacity=.25).rotateZ(pi/5)
sage: G.show(aspect_ratio=1)
save(filename, **kwds)#

Save the graphic in a file.

The file type depends on the file extension you give in the filename. This can be either:

  • an image file (of type: PNG, BMP, GIF, PPM, or TIFF) rendered using Jmol (default) or Tachyon,

  • a Sage object file (of type .sobj) that you can load back later (a pickle),

  • an HTML file depicting the graphic using the Three.js viewer,

  • a data file (of type: X3D, STL, AMF, PLY) for export and use in other software.

For data files, the support is only partial. For instance STL and AMF only works for triangulated surfaces. The prefered format is X3D.

INPUT:

  • filename – string. Where to save the image or object.

  • **kwds – When specifying an image file to be rendered by Tachyon or Jmol, any of the viewing options accepted by show() are valid as keyword arguments to this function and they will behave in the same way. Accepted keywords include: viewer, verbosity, figsize, aspect_ratio, frame_aspect_ratio, zoom, frame, and axes. Default values are provided.

EXAMPLES:

sage: f = tmp_filename(ext='.png')
sage: G = sphere()
sage: G.save(f)

We demonstrate using keyword arguments to control the appearance of the output image:

sage: G.save(f, zoom=2, figsize=[5, 10])

Using Tachyon instead of the default viewer (Jmol) to create the image:

sage: G.save(f, viewer='tachyon')

Since Tachyon only outputs PNG images, PIL will be used to convert to alternate formats:

sage: cube().save(tmp_filename(ext='.gif'), viewer='tachyon')

Here is how to save in one of the data formats:

sage: f = tmp_filename(ext='.x3d')
sage: cube().save(f)

sage: open(f).read().splitlines()[7]
"<Shape><Box size='0.5 0.5 0.5'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>"

Producing a Three.js-based HTML file:

sage: f = tmp_filename(ext='.html')
sage: G.save(f, frame=False, online=True)
save_image(filename, **kwds)#

Save a 2-D image rendering.

The image type is determined by the extension of the filename. For example, this could be .png, .jpg, .gif, .pdf, .svg.

INPUT:

  • filename – string. The file name under which to save the image.

Any further keyword arguments are passed to the renderer.

EXAMPLES:

sage: G = sphere()
sage: png = tmp_filename(ext='.png')
sage: G.save_image(png)
sage: with open(png, 'rb') as fobj:
....:     assert fobj.read().startswith(b'\x89PNG')

sage: gif = tmp_filename(ext='.gif')
sage: G.save_image(gif)
sage: with open(gif, 'rb') as fobj:
....:     assert fobj.read().startswith(b'GIF')
scale(*x)#

Return the object scaled in the x, y, and z directions.

EXAMPLES:

sage: G = dodecahedron() + dodecahedron(opacity=.5).scale(2)
sage: G.show(aspect_ratio=1)
sage: G = icosahedron() + icosahedron(opacity=.5).scale([1, 1/2, 2])
sage: G.show(aspect_ratio=1)
show(**kwds)#

Display graphics immediately

This method attempts to display the graphics immediately, without waiting for the currently running code (if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a large number of external viewer programs.

INPUT:

  • viewer – string (default: 'threejs'), how to view the plot; admissible values are

    • 'threejs': interactive web-based 3D viewer using JavaScript and a WebGL renderer

    • 'jmol': interactive 3D viewer using Java

    • 'tachyon': ray tracer generating a static PNG image; can produce high-resolution graphics, but does not show any text labels

    • 'canvas3d': web-based 3D viewer using JavaScript and a canvas renderer (Sage notebook only)

  • verbosity – display information about rendering the figure

  • figsize – (default: 5); x or pair [x,y] for numbers, e.g., [5,5]; controls the size of the output figure. With ‘tachyon’, the resolution (in number of pixels) is 100 times figsize. This is ignored for the jmol embedded renderer.

  • aspect_ratio – (default: 'automatic') – aspect ratio of the coordinate system itself. Give [1,1,1] or 1 to make spheres look round.

  • frame_aspect_ratio – (default: 'automatic') aspect ratio of frame that contains the 3d scene.

  • zoom – (default: 1) how zoomed in

  • frame – (default: True) if True, draw a bounding frame with labels

  • axes – (default: False) if True, draw coordinate axes

  • camera_position (for tachyon) – (default: (2.3, 2.4, 2.0)) the viewpoint, with respect to the cube $[-1,1]\times[-1,1]\times[-1,1]$, into which the bounding box of the scene is scaled and centered. The default viewing direction is towards the origin.

  • viewdir (for tachyon) – (default: None) three coordinates specifying the viewing direction.

  • updir (for tachyon) – (default: (0,0,1)) the “upward” direction of the camera

  • light_position (for tachyon) – (default: (4,3,2)) the position of the single light source in the scene (in addition to ambient light)

  • antialiasing (for tachyon) – (default: False)

  • raydepth (for tachyon) – (default: 8) see the sage.plot.plot3d.tachyon.Tachyon class

  • shade (for tachyon) – string (default: 'full'); shading options. Admissible values are

    • 'full': best quality rendering (and slowest). Sets tachyon command line flag -fullshade.

    • 'medium: good quality rendering, but no shadows. Sets tachyon command line flag -mediumshade.

    • 'low': low quality rendering, preview (and fast). Sets tachyon command line flag -lowshade.

    • 'lowest': worst quality rendering, preview (and fastest). Sets tachyon command line flag -lowestshade.

  • extra_opts (for tachyon) – string (default: empty string); extra options that will be appended to the tachyon command line.

  • **kwds – other options, which make sense for particular rendering engines

OUTPUT:

This method does not return anything. Use save() if you want to save the figure as an image file.

Warning

By default, the jmol and tachyon viewers perform some non-uniform scaling of the axes.

If this is not desired, one can set aspect_ratio=1:

sage: p = plot3d(lambda u,v:(cos(u)-cos(v)), (-0.2,0.2),(-0.2,0.2))
sage: p.show(viewer="threejs")
sage: p.show(viewer="jmol")
sage: p.show(viewer="jmol",aspect_ratio=1)
sage: p.show(viewer="tachyon",camera_position=(4,0,0))
sage: p.show(viewer="tachyon",camera_position=(2,2,0.3),aspect_ratio=1)

CHANGING DEFAULTS: Defaults can be uniformly changed by importing a dictionary and changing it. For example, here we change the default so images display without a frame instead of with one:

sage: from sage.plot.plot3d.base import SHOW_DEFAULTS
sage: SHOW_DEFAULTS['frame'] = False

This sphere will not have a frame around it:

sage: sphere((0,0,0))
Graphics3d Object

We change the default back:

sage: SHOW_DEFAULTS['frame'] = True

Now this sphere is enclosed in a frame:

sage: sphere((0,0,0))
Graphics3d Object

EXAMPLES: We illustrate use of the aspect_ratio option:

sage: x, y = var('x,y')                                                     # needs sage.symbolic
sage: p = plot3d(2*sin(x*y), (x, -pi, pi), (y, -pi, pi))                    # needs sage.symbolic
sage: p.show(aspect_ratio=[1,1,1])                                          # needs sage.symbolic

This looks flattened, but filled with the plot:

sage: p.show(frame_aspect_ratio=[1,1,1/16])                                 # needs sage.symbolic

This looks flattened, but the plot is square and smaller:

sage: p.show(aspect_ratio=[1,1,1], frame_aspect_ratio=[1,1,1/8])            # needs sage.symbolic

This example shows indirectly that the defaults from plot() are dealt with properly:

sage: plot(vector([1,2,3]))
Graphics3d Object

We use the ‘canvas3d’ backend from inside the notebook to get a view of the plot rendered inline using HTML canvas:

sage: p.show(viewer='canvas3d')                                             # needs sage.symbolic

Sometimes shadows in Tachyon-produced images can lead to confusing plots. To remove them:

sage: p.show(viewer="tachyon", shade="medium")                              # needs sage.symbolic

One can also pass Tachyon command line flags directly. For example, the following line produces the same result as the previous one:

sage: p.show(viewer="tachyon", extra_opts="-mediumshade")                   # needs sage.symbolic
stl_ascii_string(name='surface')#

Return an STL (STereoLithography) representation of the surface.

Warning

This only works for surfaces, not for general plot objects!

INPUT:

  • name (string, default: “surface”) – name of the surface.

OUTPUT:

A string that represents the surface in the STL format.

See Wikipedia article STL_(file_format)

See also

stl_binary()

EXAMPLES:

sage: # needs sage.symbolic
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9,[x,-5,5],[y,-5,5],[z,-5,5])
sage: astl = a.stl_ascii_string()
sage: astl.splitlines()[:7]  # abs tol 1e-10
['solid surface',
'facet normal 0.9733285267845754 -0.16222142113076257 -0.16222142113076257',
'    outer loop',
'        vertex 2.94871794872 -0.384615384615 -0.39358974359',
'        vertex 2.95021367521 -0.384615384615 -0.384615384615',
'        vertex 2.94871794872 -0.39358974359 -0.384615384615',
'    endloop']

sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.stl_ascii_string(name='triangle'))
solid triangle
facet normal 0.0 0.8320502943378436 -0.5547001962252291
    outer loop
        vertex 0.0 0.0 0.0
        vertex 1.0 2.0 3.0
        vertex 3.0 0.0 0.0
    endloop
endfacet
endsolid triangle

Now works when faces have more then 3 sides:

sage: P = polytopes.dodecahedron()                                          # needs sage.geometry.polyhedron
sage: Q = P.plot().all[-1]                                                  # needs sage.geometry.polyhedron
sage: print(Q.stl_ascii_string().splitlines()[:7])                          # needs sage.geometry.polyhedron
['solid surface',
 'facet normal 0.0 0.5257311121191338 0.8506508083520399',
 '    outer loop',
 '        vertex -0.7639320225002102 0.7639320225002102 0.7639320225002102',
 '        vertex -0.4721359549995796 0.0 1.2360679774997898',
 '        vertex 0.4721359549995796 0.0 1.2360679774997898',
 '    endloop']
stl_binary()#

Return an STL (STereoLithography) binary representation of the surface.

Warning

This only works for surfaces, transforms and unions of surfaces, but not for general plot objects!

OUTPUT:

A binary string that represents the surface in the binary STL format.

See Wikipedia article STL_(file_format)

EXAMPLES:

sage: # needs sage.symbolic
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9,[x,-5,5],[y,-5,5],[z,-5,5])
sage: astl = a.stl_binary()
sage: print(astl[:40].decode('ascii'))
STL binary file / made by SageMath / ###

sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.stl_binary()[:40].decode('ascii'))
STL binary file / made by SageMath / ###

This works when faces have more then 3 sides:

sage: P = polytopes.dodecahedron()                                          # needs sage.geometry.polyhedron
sage: Q = P.plot().all[-1]                                                  # needs sage.geometry.polyhedron
sage: print(Q.stl_binary()[:40].decode('ascii'))                            # needs sage.geometry.polyhedron
STL binary file / made by SageMath / ###
tachyon(zoom=1.0, antialiasing=False, figsize=[5, 5], raydepth=8, camera_position=[2.3, 2.4, 2.0], updir=[0, 0, 1], light_position=[4.0, 3.0, 2.0], viewdir=None)#

A tachyon input file (as a string) containing the this object.

EXAMPLES:

sage: print(sphere((1, 2, 3), 5, color='yellow').tachyon())

begin_scene
resolution 500 500

         camera
        ...
      plane
        center -592.870151560437 618.647114671761 -515.539262226467
        normal -2.3 2.4 -2.0
        TEXTURE
            AMBIENT 1.0 DIFFUSE 0.0 SPECULAR 0.0 OPACITY 1.0
            COLOR 1.0 1.0 1.0
            TEXFUNC 0

    Texdef texture...
  Ambient 0.3333333333333333 Diffuse 0.6666666666666666 Specular 0.0 Opacity 1.0
  Color 1.0 1.0 0.0
  TexFunc 0

    Sphere center 1.0 -2.0 3.0 Rad 5.0 texture...

end_scene

sage: G = icosahedron(color='red') + sphere((1,2,3), 0.5, color='yellow')
sage: G.show(viewer='tachyon', frame=false)
sage: print(G.tachyon())
begin_scene
...
Texdef texture...
  Ambient 0.3333333333333333 Diffuse 0.6666666666666666 Specular 0.0 Opacity 1.0
   Color 1.0 1.0 0.0
   TexFunc 0
TRI V0 ...
Sphere center 1.0 -2.0 3.0 Rad 0.5 texture...
end_scene
tachyon_keywords = ('antialiasing', 'zoom', 'raydepth', 'figsize', 'light_position', 'camera_position', 'updir', 'viewdir')#
tachyon_repr(render_params)#

A (possibly nested) list of strings which will be concatenated and used by tachyon to render the object.

(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may include a reference to color information which is stored elsewhere.

EXAMPLES:

sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.tachyon_repr(G.default_render_params())
[]
sage: G = sphere((1, 2, 3))
sage: G.tachyon_repr(G.default_render_params())
['Sphere center 1.0 2.0 3.0 Rad 1.0 texture...']
testing_render_params()#

Return an instance of RenderParams suitable for testing this object.

In particular, it opens up a temporary file as an auxiliary zip file for jmol.

EXAMPLES:

sage: type(dodecahedron().testing_render_params())
<class 'sage.plot.plot3d.base.RenderParams'>
texture#
texture_set()#

Often the textures of a 3d file format are kept separate from the objects themselves. This function returns the set of textures used, so they can be defined in a preamble or separate file.

EXAMPLES:

sage: sage.plot.plot3d.base.Graphics3d().texture_set()
set()

sage: G = tetrahedron(color='red') + tetrahedron(color='yellow') + tetrahedron(color='red', opacity=0.5)
sage: [t for t in G.texture_set() if t.color == colors.red] # we should have two red textures
[Texture(texture..., red, ff0000), Texture(texture..., red, ff0000)]
sage: [t for t in G.texture_set() if t.color == colors.yellow] # ...and one yellow
[Texture(texture..., yellow, ffff00)]
threejs_repr(render_params)#

A flat list of (kind, desc) tuples where kind is one of: ‘point’, ‘line’, ‘text’, or ‘surface’; and where desc is a dictionary describing a point, line, text, or surface.

EXAMPLES:

sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.threejs_repr(G.default_render_params())
[]
transform(**kwds)#

Apply a transformation, where the inputs are passed onto a TransformGroup object.

Mostly for internal use; see the translate, scale, and rotate methods for more details.

EXAMPLES:

sage: sphere((0,0,0), 1).transform(trans=(1, 0, 0), scale=(2,3,4)).bounding_box()
((-1.0, -3.0, -4.0), (3.0, 3.0, 4.0))
translate(*x)#

Return the object translated by the given vector (which can be given either as a 3-iterable or via positional arguments).

EXAMPLES:

sage: icosahedron() + sum(icosahedron(opacity=0.25).translate(2*n, 0, 0) for n in [1..4])
Graphics3d Object
sage: icosahedron() + sum(icosahedron(opacity=0.25).translate([-2*n, n, n^2]) for n in [1..4])
Graphics3d Object
viewpoint()#

Return the viewpoint of this plot.

Currently only a stub for x3d.

EXAMPLES:

sage: type(dodecahedron().viewpoint())
<class 'sage.plot.plot3d.base.Viewpoint'>
x3d()#

An x3d scene file (as a string) containing the this object.

EXAMPLES:

sage: print(sphere((1, 2, 3), 5).x3d())
<X3D version='3.0' profile='Immersive' xmlns:xsd='http://www.w3.org/2001/XMLSchema-instance' xsd:noNamespaceSchemaLocation=' http://www.web3d.org/specifications/x3d-3.0.xsd '>
<head>
<meta name='title' content='sage3d'/>
</head>
<Scene>
<Viewpoint position='0 0 6'/>
<Transform translation='1 2 3'>
<Shape><Sphere radius='5.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>
</Scene>
</X3D>

sage: G = icosahedron() + sphere((0,0,0), 0.5, color='red')
sage: print(G.x3d())
<X3D version='3.0' profile='Immersive' xmlns:xsd='http://www.w3.org/2001/XMLSchema-instance' xsd:noNamespaceSchemaLocation=' http://www.web3d.org/specifications/x3d-3.0.xsd '>
<head>
<meta name='title' content='sage3d'/>
</head>
<Scene>
<Viewpoint position='0 0 6'/>
<Shape>
<IndexedFaceSet coordIndex='...'>
  <Coordinate point='...'/>
</IndexedFaceSet>
<Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
<Transform translation='0 0 0'>
<Shape><Sphere radius='0.5'/><Appearance><Material diffuseColor='1.0 0.0 0.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>
</Scene>
</X3D>
class sage.plot.plot3d.base.Graphics3dGroup(all=(), rot=None, trans=None, scale=None, T=None)#

Bases: Graphics3d

This class represents a collection of 3d objects. Usually they are formed implicitly by summing.

bounding_box()#

Box that contains the bounding boxes of the objects.

EXAMPLES:

sage: A = sphere((0,0,0), 5)
sage: B = sphere((1, 5, 10), 1)
sage: A.bounding_box()
((-5.0, -5.0, -5.0), (5.0, 5.0, 5.0))
sage: B.bounding_box()
((0.0, 4.0, 9.0), (2.0, 6.0, 11.0))
sage: (A+B).bounding_box()
((-5.0, -5.0, -5.0), (5.0, 6.0, 11.0))
sage: (A+B).show(aspect_ratio=1, frame=True)

sage: sage.plot.plot3d.base.Graphics3dGroup([]).bounding_box()
((0.0, 0.0, 0.0), (0.0, 0.0, 0.0))
flatten()#

Try to reduce the depth of the scene tree by consolidating groups and transformations.

EXAMPLES:

sage: G = sum([circle((0, 0), t) for t in [1..10]], sphere()); G
Graphics3d Object
sage: G.flatten()
Graphics3d Object
sage: len(G.all)
2
sage: len(G.flatten().all)
11
jmol_repr(render_params)#

The jmol representation of a group is simply the concatenation of the representation of its objects.

EXAMPLES:

sage: G = sphere() + sphere((1,2,3))
sage: G.jmol_repr(G.default_render_params())
[[['isosurface sphere_1  center {0.0 0.0 0.0} sphere 1.0\ncolor isosurface  [102,102,255]']],
 [['isosurface sphere_2  center {1.0 2.0 3.0} sphere 1.0\ncolor isosurface  [102,102,255]']]]
json_repr(render_params)#

The JSON representation of a group is simply the concatenation of the representations of its objects.

EXAMPLES:

sage: G = sphere() + sphere((1, 2, 3))
sage: G.json_repr(G.default_render_params())
[[['{"vertices":...']], [['{"vertices":...']]]
obj_repr(render_params)#

The obj representation of a group is simply the concatenation of the representation of its objects.

EXAMPLES:

sage: G = tetrahedron() + tetrahedron().translate(10, 10, 10)
sage: G.obj_repr(G.default_render_params())
[['g obj_1',
  'usemtl ...',
  ['v 0 0 1',
   'v 0.942809 0 -0.333333',
   'v -0.471405 0.816497 -0.333333',
   'v -0.471405 -0.816497 -0.333333'],
  ['f 1 2 3', 'f 2 4 3', 'f 1 3 4', 'f 1 4 2'],
  []],
 [['g obj_2',
   'usemtl ...',
   ['v 10 10 11',
    'v 10.9428 10 9.66667',
    'v 9.5286 10.8165 9.66667',
    'v 9.5286 9.1835 9.66667'],
   ['f 5 6 7', 'f 6 8 7', 'f 5 7 8', 'f 5 8 6'],
   []]]]
plot()#
set_texture(**kwds)#

EXAMPLES:

sage: G = dodecahedron(color='red', opacity=.5) + icosahedron((3, 0, 0), color='blue')
sage: G
Graphics3d Object
sage: G.set_texture(color='yellow')
sage: G
Graphics3d Object
stl_binary_repr(render_params)#

The stl binary representation of a group is simply the concatenation of the representation of its objects.

The STL binary representation is a list of binary strings, one for each triangle.

EXAMPLES:

sage: G = sphere() + sphere((1,2,3))
sage: len(G.stl_binary_repr(G.default_render_params()))
2736
tachyon_repr(render_params)#

The tachyon representation of a group is simply the concatenation of the representations of its objects.

EXAMPLES:

sage: G = sphere() + sphere((1,2,3))
sage: G.tachyon_repr(G.default_render_params())
[['Sphere center 0.0 0.0 0.0 Rad 1.0 texture...'],
 ['Sphere center 1.0 2.0 3.0 Rad 1.0 texture...']]
texture_set()#

The texture set of a group is simply the union of the textures of all its objects.

EXAMPLES:

sage: G = sphere(color='red') + sphere(color='yellow')
sage: [t for t in G.texture_set() if t.color == colors.red] # one red texture
[Texture(texture..., red, ff0000)]
sage: [t for t in G.texture_set() if t.color == colors.yellow] # one yellow texture
[Texture(texture..., yellow, ffff00)]

sage: T = sage.plot.plot3d.texture.Texture('blue'); T
Texture(texture..., blue, 0000ff)
sage: G = sphere(texture=T) + sphere((1, 1, 1), texture=T)
sage: len(G.texture_set())
1
threejs_repr(render_params)#

The three.js representation of a group is the concatenation of the representations of its objects.

EXAMPLES:

sage: G = point3d((1,2,3)) + point3d((4,5,6)) + line3d([(1,2,3), (4,5,6)])
sage: G.threejs_repr(G.default_render_params())
[('point',
  {'color': '#6666ff', 'opacity': 1.0, 'point': (1.0, 2.0, 3.0), 'size': 5.0}),
 ('point',
  {'color': '#6666ff', 'opacity': 1.0, 'point': (4.0, 5.0, 6.0), 'size': 5.0}),
 ('line',
  {'color': '#6666ff',
   'linewidth': 1.0,
   'opacity': 1.0,
   'points': [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)]})]
transform(**kwds)#

Transforming this entire group simply makes a transform group with the same contents.

EXAMPLES:

sage: G = dodecahedron(color='red', opacity=.5) + icosahedron(color='blue')
sage: G
Graphics3d Object
sage: G.transform(scale=(2,1/2,1))
Graphics3d Object
sage: G.transform(trans=(1,1,3))
Graphics3d Object
x3d_str()#

The x3d representation of a group is simply the concatenation of the representation of its objects.

EXAMPLES:

sage: G = sphere() + sphere((1,2,3))
sage: print(G.x3d_str())
<Transform translation='0 0 0'>
<Shape><Sphere radius='1.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>
<Transform translation='1 2 3'>
<Shape><Sphere radius='1.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>
class sage.plot.plot3d.base.KeyframeAnimationGroup(all=(), **kwds)#

Bases: Graphics3dGroup

A group of objects, each depicting a single frame of animation

threejs_repr(render_params)#

Adds keyframe information to the representations of the group’s contents.

EXAMPLES:

sage: a = point3d((0, 0, 1))
sage: b = point3d((0, 1, 0))
sage: c = point3d((1, 0, 0))
sage: g = sage.plot.plot3d.base.KeyframeAnimationGroup([a, b, c])
sage: g.threejs_repr(g.default_render_params())
[('point', {..., 'keyframe': 0, ..., 'point': (0.0, 0.0, 1.0), ...}),
 ('point', {..., 'keyframe': 1, ..., 'point': (0.0, 1.0, 0.0), ...}),
 ('point', {..., 'keyframe': 2, ..., 'point': (1.0, 0.0, 0.0), ...})]

Only top-level objects get a unique keyframe. Nested objects share the same keyframe:

sage: g = sage.plot.plot3d.base.KeyframeAnimationGroup([a + b, c])
sage: g.threejs_repr(g.default_render_params())
[('point', {..., 'keyframe': 0, ..., 'point': (0.0, 0.0, 1.0), ...}),
 ('point', {..., 'keyframe': 0, ..., 'point': (0.0, 1.0, 0.0), ...}),
 ('point', {..., 'keyframe': 1, ..., 'point': (1.0, 0.0, 0.0), ...})]
class sage.plot.plot3d.base.PrimitiveObject#

Bases: Graphics3d

This is the base class for the non-container 3d objects.

get_texture()#

EXAMPLES:

sage: G = dodecahedron(color='red')
sage: G.get_texture()
Texture(texture..., red, ff0000)
jmol_repr(render_params)#

Default behavior is to render the triangulation. The actual polygon data is stored in a separate file.

EXAMPLES:

sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.jmol_repr(G.testing_render_params())
['pmesh obj_1 "obj_1.pmesh"\ncolor pmesh  [102,102,255]']
obj_repr(render_params)#

Default behavior is to render the triangulation.

EXAMPLES:

sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.obj_repr(G.default_render_params())
['g obj_1',
 'usemtl ...',
 ['v 0 1 0.5',
 ...
  'f ...'],
 []]
set_texture(texture=None, **kwds)#

EXAMPLES:

sage: G = dodecahedron(color='red'); G
Graphics3d Object
sage: G.set_texture(color='yellow'); G
Graphics3d Object
tachyon_repr(render_params)#

Default behavior is to render the triangulation.

EXAMPLES:

sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.tachyon_repr(G.default_render_params())
['TRI V0 0 1 0.5
...
'texture...']
texture_set()#

EXAMPLES:

sage: G = dodecahedron(color='red')
sage: G.texture_set()
{Texture(texture..., red, ff0000)}
threejs_repr(render_params)#

Default behavior is to render the triangulation.

EXAMPLES:

sage: from sage.plot.plot3d.base import PrimitiveObject
sage: class SimpleTriangle(PrimitiveObject):
....:     def triangulation(self):
....:         return polygon3d([(0,0,0), (1,0,0), (0,1,0)])
sage: G = SimpleTriangle()
sage: G.threejs_repr(G.default_render_params())
[('surface',
  {'color': '#0000ff',
   'faces': [[0, 1, 2]],
   'opacity': 1.0,
   'vertices': [{'x': 0.0, 'y': 0.0, 'z': 0.0},
    {'x': 1.0, 'y': 0.0, 'z': 0.0},
    {'x': 0.0, 'y': 1.0, 'z': 0.0}]})]
x3d_str()#

EXAMPLES:

sage: sphere().flatten().x3d_str()
"<Transform>\n<Shape><Sphere radius='1.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>\n\n</Transform>"
class sage.plot.plot3d.base.RenderParams(**kwds)#

Bases: SageObject

This class is a container for all parameters that may be needed to render triangulate/render an object to a certain format. It can contain both cumulative and global parameters.

Of particular note is the transformation object, which holds the cumulative transformation from the root of the scene graph to this node in the tree.

antialiasing = 8#
dots = False#
force_reload = False#
mesh = False#
pop_transform()#

Remove the last transformation off the stack, resetting self.transform to the previous value.

EXAMPLES:

sage: from sage.plot.plot3d.transform import Transformation
sage: params = sage.plot.plot3d.base.RenderParams()
sage: T = Transformation(trans=(100, 500, 0))
sage: params.push_transform(T)
sage: params.transform.get_matrix()
[  1.0   0.0   0.0 100.0]
[  0.0   1.0   0.0 500.0]
[  0.0   0.0   1.0   0.0]
[  0.0   0.0   0.0   1.0]
sage: params.push_transform(Transformation(trans=(-100, 500, 200)))
sage: params.transform.get_matrix()
[   1.0    0.0    0.0    0.0]
[   0.0    1.0    0.0 1000.0]
[   0.0    0.0    1.0  200.0]
[   0.0    0.0    0.0    1.0]
sage: params.pop_transform()
sage: params.transform.get_matrix()
[  1.0   0.0   0.0 100.0]
[  0.0   1.0   0.0 500.0]
[  0.0   0.0   1.0   0.0]
[  0.0   0.0   0.0   1.0]
push_transform(T)#

Push a transformation onto the stack, updating self.transform.

EXAMPLES:

sage: from sage.plot.plot3d.transform import Transformation
sage: params = sage.plot.plot3d.base.RenderParams()
sage: params.transform is None
True
sage: T = Transformation(scale=(10,20,30))
sage: params.push_transform(T)
sage: params.transform.get_matrix()
[10.0  0.0  0.0  0.0]
[ 0.0 20.0  0.0  0.0]
[ 0.0  0.0 30.0  0.0]
[ 0.0  0.0  0.0  1.0]
sage: params.push_transform(T)  # scale again
sage: params.transform.get_matrix()
[100.0   0.0   0.0   0.0]
[  0.0 400.0   0.0   0.0]
[  0.0   0.0 900.0   0.0]
[  0.0   0.0   0.0   1.0]
randomize_counter = 0#
unique_name(desc='name')#

Return a unique identifier starting with desc.

INPUT:

  • desc (string) – the prefix of the names (default ‘name’)

EXAMPLES:

sage: params = sage.plot.plot3d.base.RenderParams()
sage: params.unique_name()
'name_1'
sage: params.unique_name()
'name_2'
sage: params.unique_name('texture')
'texture_3'
class sage.plot.plot3d.base.TransformGroup(all=[], rot=None, trans=None, scale=None, T=None)#

Bases: Graphics3dGroup

This class is a container for a group of objects with a common transformation.

bounding_box()#

Return the bounding box, i.e., the box containing the contents of the object after applying the transformation.

EXAMPLES:

sage: from math import pi
sage: G = cube()
sage: G.bounding_box()
((-0.5, -0.5, -0.5), (0.5, 0.5, 0.5))
sage: G.scale(4).bounding_box()
((-2.0, -2.0, -2.0), (2.0, 2.0, 2.0))
sage: G.rotateZ(pi/4).bounding_box()
((-0.7071067811865475, -0.7071067811865475, -0.5),
 (0.7071067811865475, 0.7071067811865475, 0.5))
flatten()#

Try to reduce the depth of the scene tree by consolidating groups and transformations.

EXAMPLES:

sage: G = sphere((1,2,3)).scale(100)
sage: T = G.get_transformation()
sage: T.get_matrix()
[100.0   0.0   0.0   0.0]
[  0.0 100.0   0.0   0.0]
[  0.0   0.0 100.0   0.0]
[  0.0   0.0   0.0   1.0]

sage: G.flatten().get_transformation().get_matrix()
[100.0   0.0   0.0 100.0]
[  0.0 100.0   0.0 200.0]
[  0.0   0.0 100.0 300.0]
[  0.0   0.0   0.0   1.0]
get_transformation()#

Return the current transformation object.

EXAMPLES:

sage: G = sphere().scale(100)
sage: T = G.get_transformation()
sage: T.get_matrix()
[100.0   0.0   0.0   0.0]
[  0.0 100.0   0.0   0.0]
[  0.0   0.0 100.0   0.0]
[  0.0   0.0   0.0   1.0]
jmol_repr(render_params)#

Transformations for jmol are applied at the leaf nodes.

EXAMPLES:

sage: G = sphere((1,2,3)).scale(2)
sage: G.jmol_repr(G.default_render_params())
[[['isosurface sphere_1  center {2.0 4.0 6.0} sphere 2.0\ncolor isosurface  [102,102,255]']]]
json_repr(render_params)#

Transformations are applied at the leaf nodes.

EXAMPLES:

sage: G = cube().rotateX(0.2)
sage: G.json_repr(G.default_render_params())
[['{"vertices":[{"x":0.5,"y":0.589368,"z":0.390699},...']]
obj_repr(render_params)#

Transformations for .obj files are applied at the leaf nodes.

EXAMPLES:

sage: G = cube().scale(4).translate(1, 2, 3)
sage: G.obj_repr(G.default_render_params())
[[['g obj_1',
   'usemtl ...',
   ['v 3 4 5',
    'v -1 4 5',
    'v -1 0 5',
    'v 3 0 5',
    'v 3 4 1',
    'v -1 4 1',
    'v 3 0 1',
    'v -1 0 1'],
   ['f 1 2 3 4',
    'f 1 5 6 2',
    'f 1 4 7 5',
    'f 6 5 7 8',
    'f 7 4 3 8',
    'f 3 2 6 8'],
   []]]]
stl_binary_repr(render_params)#

Transformations are applied at the leaf nodes.

The STL binary representation is a list of binary strings, one for each triangle.

EXAMPLES:

sage: G = sphere().translate((1,2,0))
sage: len(G.stl_binary_repr(G.default_render_params()))
1368
tachyon_repr(render_params)#

Transformations for Tachyon are applied at the leaf nodes.

EXAMPLES:

sage: G = sphere((1,2,3)).scale(2)
sage: G.tachyon_repr(G.default_render_params())
[['Sphere center 2.0 4.0 6.0 Rad 2.0 texture...']]
threejs_repr(render_params)#

Transformations for three.js are applied at the leaf nodes.

EXAMPLES:

sage: G = point3d((1,2,3)) + point3d((4,5,6))
sage: G = G.translate(-1, -2, -3).scale(10)
sage: G.threejs_repr(G.default_render_params())
[('point',
  {'color': '#6666ff', 'opacity': 1.0, 'point': (0.0, 0.0, 0.0), 'size': 5.0}),
 ('point',
  {'color': '#6666ff',
   'opacity': 1.0,
   'point': (30.0, 30.0, 30.0),
   'size': 5.0})]
transform(**kwds)#

Transforming this entire group can be done by composing transformations.

EXAMPLES:

sage: G = dodecahedron(color='red', opacity=.5) + icosahedron(color='blue')
sage: G
Graphics3d Object
sage: G.transform(scale=(2,1/2,1))
Graphics3d Object
sage: G.transform(trans=(1,1,3))
Graphics3d Object
x3d_str()#

To apply a transformation to a set of objects in x3d, simply make them all children of an x3d Transform node.

EXAMPLES:

sage: sphere((1,2,3)).x3d_str()
"<Transform translation='1 2 3'>\n<Shape><Sphere radius='1.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>\n\n</Transform>"
class sage.plot.plot3d.base.Viewpoint(*x)#

Bases: Graphics3d

This class represents a viewpoint, necessary for x3d.

In the future, there could be multiple viewpoints, and they could have more properties. (Currently they only hold a position).

x3d_str()#

EXAMPLES:

sage: sphere((0,0,0), 100).viewpoint().x3d_str()
"<Viewpoint position='0 0 6'/>"
sage.plot.plot3d.base.flatten_list(L)#

This is an optimized routine to turn a list of lists (of lists …) into a single list. We generate data in a non-flat format to avoid multiple data copying, and then concatenate it all at the end.

This is NOT recursive, otherwise there would be a lot of redundant copying (which we are trying to avoid in the first place, though at least it would be just the pointers).

EXAMPLES:

sage: from sage.plot.plot3d.base import flatten_list
sage: flatten_list([])
[]
sage: flatten_list([[[[]]]])
[]
sage: flatten_list([['a', 'b'], 'c'])
['a', 'b', 'c']
sage: flatten_list([['a'], [[['b'], 'c'], ['d'], [[['e', 'f', 'g']]]]])
['a', 'b', 'c', 'd', 'e', 'f', 'g']
sage.plot.plot3d.base.max3(v)#

Return the componentwise maximum of a list of 3-tuples.

EXAMPLES:

sage: from sage.plot.plot3d.base import min3, max3
sage: max3([(-1,2,5), (-3, 4, 2)])
(-1, 4, 5)
sage.plot.plot3d.base.min3(v)#

Return the componentwise minimum of a list of 3-tuples.

EXAMPLES:

sage: from sage.plot.plot3d.base import min3, max3
sage: min3([(-1,2,5), (-3, 4, 2)])
(-3, 2, 2)
sage.plot.plot3d.base.optimal_aspect_ratios(ratios)#

Average the aspect ratios. compute the elementwise maximum of triples.

sage.plot.plot3d.base.optimal_extra_kwds(v)#

Merge a list v of dictionaries such that later dictionaries have precedence.

sage.plot.plot3d.base.point_list_bounding_box(v)#

Return the bounding box of a list of points.

EXAMPLES:

sage: from sage.plot.plot3d.base import point_list_bounding_box
sage: point_list_bounding_box([(1,2,3),(4,5,6),(-10,0,10)])
((-10.0, 0.0, 3.0), (4.0, 5.0, 10.0))
sage: point_list_bounding_box([(float('nan'), float('inf'), float('-inf')), (10,0,10)])
((10.0, 0.0, 10.0), (10.0, 0.0, 10.0))