A Sage bemutatása#

Ez a Sage-nek egy olyan bemutatása, amely pontosan követi a Mathematica bemutatását, ami a „Mathematica Book” könyv elején található.

A Sage, mint számológép#

A Sage parancssora tartalmaz egy sage: promptot; ezt nem kell beírnod. Ha a Sage jegyzetfüzetet (Sage notebook) használod, akkor írj be mindent, ami a sage: prompt után van, egy beviteli mezőbe, majd nyomj shift-enter-t a hozzá tartozó kimenet kiszámításához.

sage: 3 + 5
8

A kalap jel a hatványra emelést jelenti.

sage: 57.1 ^ 100
4.60904368661396e175

Kiszámítjuk egy \(2 \times 2\)-es mátrix inverzét Sage-ben.

sage: matrix([[1,2], [3,4]])^(-1)
[  -2    1]
[ 3/2 -1/2]

Itt egy egyszerű függvényt integrálunk.

sage: x = var('x')   # szimbolikus változót hozunk létre
sage: integrate(sqrt(x)*sqrt(1+x), x)
1/4*((x + 1)^(3/2)/x^(3/2) + sqrt(x + 1)/sqrt(x))/((x + 1)^2/x^2 - 2*(x + 1)/x + 1) - 1/8*log(sqrt(x + 1)/sqrt(x) + 1) + 1/8*log(sqrt(x + 1)/sqrt(x) - 1)

Ez azt kéri a Sage-től, hogy egy másodfokú egyenletet oldjon meg. A == jel felel meg az egyenlőségnek a Sage-ben.

sage: a = var('a')
sage: S = solve(x^2 + x == a, x); S
[x == -1/2*sqrt(4*a + 1) - 1/2, x == 1/2*sqrt(4*a + 1) - 1/2]

Az eredmény egyenleteknek a listája.

sage: S[0].rhs()
-1/2*sqrt(4*a + 1) - 1/2
sage: show(plot(sin(x) + sin(1.6*x), 0, 40))
_images/sin_plot.png

Nagyteljesítményű számítások Sage-dzsel#

Először létrehozzuk véletlen számoknak egy \(500 \times 500\) mátrixát.

sage: m = random_matrix(RDF,500)

A Sage-nek néhány másodpercet vesz igénybe, hogy kiszámítsa a mátrix sajátértékeit, és ábrázolja őket.

sage: e = m.eigenvalues()  #körülbelül 2 másodperc
sage: w = [(i, abs(e[i])) for i in range(len(e))]
sage: show(points(w))
_images/eigen_plot.png

A GNU sokféle pontosságú könyvtárnak (GNU Multiprecision Library (GMP)) köszönhetően a Sage nagyon nagy számokat tud kezelni, még millió vagy milliárd számjegyből álló számokat is.

sage: factorial(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
sage: n = factorial(1000000)  #körülbelül 2.5 másodperc

Ez a \(\pi\)-nek legalább 100 számjegyét számítja ki.

sage: N(pi, digits=100)
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068

Ez azt kéri a Sage-től, hogy egy két változós polinomot szorzattá alakítson.

sage: R.<x,y> = QQ[]
sage: F = factor(x^99 + y^99)
sage: F
(x + y) * (x^2 - x*y + y^2) * (x^6 - x^3*y^3 + y^6) *
(x^10 - x^9*y + x^8*y^2 - x^7*y^3 + x^6*y^4 - x^5*y^5 +
 x^4*y^6 - x^3*y^7 + x^2*y^8 - x*y^9 + y^10) *
(x^20 + x^19*y - x^17*y^3 - x^16*y^4 + x^14*y^6 + x^13*y^7 -
 x^11*y^9 - x^10*y^10 - x^9*y^11 + x^7*y^13 + x^6*y^14 -
 x^4*y^16 - x^3*y^17 + x*y^19 + y^20) * (x^60 + x^57*y^3 -
 x^51*y^9 - x^48*y^12 + x^42*y^18 + x^39*y^21 - x^33*y^27 -
 x^30*y^30 - x^27*y^33 + x^21*y^39 + x^18*y^42 - x^12*y^48 -
 x^9*y^51 + x^3*y^57 + y^60)
sage: F.expand()
x^99 + y^99

A Sage-nek kevesebb mint 5 másodpercbe telik, hogy kiszámítsa, hogy a százmilliót hányféle képpen lehet pozitív egész számok összegeként felírni.

sage: z = Partitions(10^8).cardinality() #körülbelül 4.5 másodperc
sage: str(z)[:40]
'1760517045946249141360373894679135204009'

Algoritmusokhoz való hozzáférés Sage-ben#

Amikor a Sage-et használod, akkor a világ egyik legnagyobb szabad forráskódú számítási algoritmus gyűjteményhez férsz hozzá.