Sage Constructions
Release 7.6

The Sage Development Team

Mar 25, 2017

Calculus

I.1 Differentiation e e
1.2 Integration L e e e e
1.3 Ordinary differential equations
1.4 Fourier series of periodic functions
Plotting

2.1 Plotting functions in 2D Lo
2.2 PIOtHNZ CUTVES . . v v v v e
2.3 openmath L. L e e e e e e e e e
24 Tachyon3Doplotting e
25 gnuplot . ..o e
2.6 Plotting surfaces
Groups

3.1 Permutation @roups v v i i e
32 Conjugacyclasses
3.3 Normal subgroups v v i i e e e e e e e e e e e e e
34 Centers
3.5 Thegroupiddatabase e e
3.6 Construction instructions for every group of order lessthan32

3.7 Construction instructions for every finitely presented group of order 15 or less

Linear algebra

4.1 VECIOT SPACES « .« v v v v v e
4.2 MatriX POWEIS . . o v v e e v e e e e e e e e e e e e e e
43 Kernelso e
4.4 Eigenvectors and eigenvalues e
45 Rowreduction e
4.6 Characteristic polynomial L oL
4.7 Solving systems of linear equations

Linear codes and ciphers

5.0 Codes . . . o o e e e e
52 Ciphers o
Representation theory

6.1 Ordinary characters e e e
6.2 Brauercharacters
Rings

CONTENTS

9

Tl MatriX TINZS © v v o v v e

7.2 Polynomial TINGS o e e e e e e e e e e e e e e e e e e
7.3 p-adicnumbers e e e e e e e e e e e e e e e
74 Quotientrings of polynomials oL
Polynomials

8.1 Polynomial powers L e e e e
8.2 Factorization L e e e e e e e e e e e e
8.3 Polynomial GCD’s e e e
8.4 Rootsof polynomials L e e
8.5 Evaluation of multivariate functions L L
8.6 Roots of multivariate polynomials L
8.7 Grobnerbases e e

Elementary number theory

9.1 Taking modular pOWErs e e e
0.2 Discretelogs e
0.3 Primenumbers e e e e e e e e e e e e e
0.4 DIVISOTS . v v v v e
9.5 Quadratic 1esidues e e e e e e e e e e

10 Modular forms

10.1 Cuspforms o o e e e e e e e e e e e e e e e e
10.2 CoSEtTePresentatiVes . .« v v v v v v v e
10.3 Modular symbols and Hecke operators e
104 Genusformulas L L e e e e e e e

11 Elliptic curves

I1.1 Conductor e e e e
11.2 g-invariant o e
11.3 The GF(g)-rational pointson E
11.4 Modular form associated to an elliptic curveover Q e

12 Number fields

12.1 Ramification e e e e e e
12.2 ClassnUMDEIS o o e e e e e e e e e e e e e e e
12.3 Integral basis o ot e e e e e e e e e e e e

13 Algebraic Geometry

13.1 PointCOUNtiNg ON CUIVES .+ . v v v v v v v e et e
13.2 Riemann-Roch spaces using Singular L L e

14 Interface Issues

14.1 Background jobs e e e e e e e e e
14.2 Referencing Sage L e e e e e e
14.3 Logging your Sage SeSSION v ittt e e e e e e e e e e e
144 LaTeX CONVEISION v v v v v v it e
14.5 Sage and other computer algebra systems ool
14.6 Command-line Sage help e e
14.7 Reading and importing filesinto Sage L L
14.8 Installation for the impatient L
14.9 Python language program code for Sage commands 0oL L.
14.10 “Special functions” in Sage e e e
14.11 Whatis Sage? o e e e e e e e e e e e e e e e e e

45
45
46
46
47
47
48
48

51
51
51
51
52
52

55
55
55
56
56

57
57
57
58
58

59
59
60
61

63
63
67

15 Contributions to this document

16 Indices and tables

81

83

Sage Constructions, Release 7.6

This document collects the answers to some questions along the line “How do I construct ... in Sage?” Though much
of this material can be found in the manual or tutorial or string documentation of the Python code, it is hoped that this
will provide the casual user with some basic examples on how to start using Sage in a useful way.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.
Please send suggestions, additions, corrections to the sage—devel Google group!

The Sage wiki http://wiki.sagemath.org/ contains a wealth of information. Moreover, all these can be tested in the
Sage notebook interface http://www.sagenb.org/ on the web.

CONTENTS 1

http://creativecommons.org/licenses/by-sa/3.0/
http://wiki.sagemath.org/
http://www.sagenb.org/

Sage Constructions, Release 7.6

2 CONTENTS

CHAPTER
ONE

CALCULUS

Here are some examples of calculus symbolic computations using Sage. They use the Maxima interface.

Work is being done to make the commands for the symbolic calculations given below more intuitive and natural. At
the moment, we use the maxima class interface.

1.1 Differentiation

Differentiation:

sage: var('x k w'")

(x, k, w)

sage: f = x"3 » e”(k*x) * sin(wxx); £

x"3*%e” (kxx) *sin (w*x)

sage: f.diff (x)

WxX"3xcos (W*x) xe” (kxx) + k*x"3*e” (kxx)*sin(w*x) + 3*xx"2+e” (k*x)+sin (wxx)

sage: latex(f.diff(x))

w x~{3} \cos\left (w x\right) e~{\left (k x\right)} + k x"{3} e”{\left (k x\right)}
—\sin\left (w x\right) + 3 \, x"{2} e”{\left (k x\right)} \sin\left (w x\right)

Ifyoutype view (f.diff (x)) another window will open up displaying the compiled output. In the notebook, you
can enter

var('x k w')

f = x"3 % e”(k*x) * sin(w*x)
show ()

show (f.diff (x))

into a cell and press shift—-enter for asimilar result. You can also differentiate and integrate using the commands

R = PolynomialRing (QQ, "x")
X R.gen ()

p=x"2+1

show (p.derivative())

show (p.integral())

in a notebook cell, or

sage: R = PolynomialRing (QQ, "x")
sage: x = R.gen()

sage: p = x"2 + 1

sage: p.derivative ()

2%X

Sage Constructions, Release 7.6

sage: p.integral ()
1/3%xx"3 + x

on the command line. At this point you can also type view (p.derivative ()) orview (p.integral()) to
open a new window with output typeset by LaTeX.

1.1.1 Critical points

You can find critical points of a piecewise defined function:

sage: x = PolynomialRing(RationalField(), 'x'").gen()
sage: fl = x"0

sage: f2 = 1-x

sage: f3 = 2+x

sage: f4 = 10xx-x"2

sage: f = piecewise([((0,1),f1), ((1,2),£f2), ((2,3),£3), ((3,10),£4)1)
sage: f.critical_points ()
[5.0]

1.1.2 Power series

Sage offers several ways to construct and work with power series.

To get Taylor series from function expressions use the method .taylor () on the expression:

sage: var('f0 k x")

(f0, k, x)

sage: g = f0/sinh(kxx) "4

sage: g.taylor(x, 0, 3)

—-62/945xf0xk"2+xx"2 + 11/45xf0 — 2/3%xf0/ (k"2+x"2) + f0/ (k"4xx"4)

Formal power series expansions of functions can be had with the . series () method:

sage: (1/(2-cos(x))) .series(x,7)
1 + (-1/2)*x"2 4+ 7/24%xx™4 + (-121/720)*x"6 + Order (x"7)

Certain manipulations on such series are hard to perform at the moment, however. There are two alternatives: either
use the Maxima subsystem of Sage for full symbolic functionality:

sage: f = log(sin(x)/x)

sage: f.taylor(x, 0, 10)

-1/467775%x"10 - 1/37800%xx"8 — 1/2835%x"6 — 1/180%x"4 — 1/6%x"2

sage: maxima (f) .powerseries(x,0) ._sage_ ()

sum (27 (2*i... — 1)x(=1)"i...*x"(2xi...)*bern(2+i...)/(i...xfactorial(2+i...)), 1i...,
—1, +Infinity)

Or you can use the formal power series rings for fast computation. These are missing symbolic functions, on the other
hand:

sage: R.<w> = QQ[[]]

sage: ps = w + 17/2+w"2 + 15/4%w™4 + O(w"6); ps

w + 17/2xw"2 + 15/4xw™4 + O(w"6)

sage: ps.exp()

1 +w + 9xwh2 + 26/3*xw"3 + 265/6*w™4 + 413/10xw"5 + O(w"6)
sage: (l+ps).log()

4 Chapter 1. Calculus

Sage Constructions, Release 7.6

w + 8xw™2 — 49/6xw”3 — 193/8%xw™4 + 301/5%w”5 + O(w"6)
sage: (ps”1000).coefficients()
[1, 8500, 36088875, 102047312625, 1729600092867375/8]

1.2 Integration

Numerical integration is discussed in Riemann and trapezoid sums for integrals below.

Sage can integrate some simple functions on its own:

sage: f = x"3

sage: f.integral (x)
1/4xx™4

sage: integral (x"3,x)
1/4xx™4

sage: f = x*sin(x"2)
sage: integral (f, x)
—-1/2xcos (x"2)

Sage can also compute symbolic definite integrals involving limits.

sage: var('x, k, w'")

(x, k, w)

sage: £ = x"3 % e”(k*x) * sin(w*x)

sage: f.integrate (x)

((24%k"3%w — 24+kxw"3 — (k"6xw + 3*xk"4*w"3 + 3xk"2xw"5 + w?7)*x"3 + 6% (k"5%xw + 2xk"

—3*Wh3 + kxw”5) *x"2 — 6% (3xk™Mxw + 2xk"2xw"3 - w"5) xx) xcos (wxx) xe” (kxx) — (6xk™4 — |
36%k"2+xW 2 + 6*xwr4 — (k™7 4+ 3%k"5xwt2 + 3%k"3xwt4 + k*xwt6)*x"3 + 3% (k"6 + kMxwt2 —
SkM2+%wh4 — Wh6) *xX72 — 6% (kN5 — 24k"M3xwt2 — 3xkxw4) «x) xe” (kxx) *sin(wxx))/ (k"8 + 4xk”

S 6*xW 2 + 6*xkMMxwhd 4+ 4xk"M"2+WN6 + WN8)
sage: integrate(l/x"2, x, 1, infinity)
1

1.2.1 Convolution

You can find the convolution of any piecewise defined function with another (off the domain of definition, they are
assumed to be zero). Here is f, f x f,and f x f x f, where f(z) = 1,0 <z < 1:

sage: x = PolynomialRing(QQ, 'x').gen|()
sage: f = piecewise([((0,1),1+xx"0)1)
sage: g = f.convolution (f)

sage: h = f.convolution(g)

sage: set_verbose (-1)
sage: P = f.plot(); Q = g.plot (rgbcolor=(1,1,0)); R = h.plot(rgbcolor=(0,1,1))

To view this, type show (P+Q+R) .

1.2.2 Riemann and trapezoid sums for integrals

Regarding numerical approximation of fab f(z) da, where f is a piecewise defined function, can

» compute (for plotting purposes) the piecewise linear function defined by the trapezoid rule for numerical inte-
gration based on a subdivision into N subintervals

1.2. Integration 5

Sage Constructions, Release 7.6

* the approximation given by the trapezoid rule,

» compute (for plotting purposes) the piecewise constant function defined by the Riemann sums (left-hand, right-
hand, or midpoint) in numerical integration based on a subdivision into N subintervals,

* the approximation given by the Riemann sum approximation.

sage: fl(x) = x"2
sage: f2(x) = 5-x"2
sage: f = piecewise([[[0,1], £f1], [RealSet.open_closed(l,2), £211)

sage: t = f.trapezoid(2); t

piecewise (x|-->1/2%xx on (0, 1/2), x|-->3/2xx - 1/2 on (1/2, 1), x|-->7/2%x - 5/2 on_,
(1, 3/2), x|-—>-7/2+x + 8 on (3/2, 2); x)

sage: t.integral()

piecewise (x|-->1/4%x"2 on (0, 1/2), x|-->3/4xx"2 - 1/2%x + 1/8 on (1/2, 1), x|-->7/
4xx"2 — 5/2«x + 9/8 on (1, 3/2), x|-—>-T7/4%*x"2 + 8*x - 27/4 on (3/2, 2); Xx)

sage: t.integral (definite=True)

9/4

1.2.3 Laplace transforms

If you have a piecewise-defined polynomial function then there is a “native” command for computing Laplace trans-
forms. This calls Maxima but it’s worth noting that Maxima cannot handle (using the direct interface illustrated in the
last few examples) this type of computation.

sage: var('x s')

(x, s)

sage: fl(x) =1

sage: f2(x) = 1-x

sage: f = piecewise([((0,1),£f1), ((1,2),£2)1)

sage: f.laplace(x, s)

—e”(-s)/s + (s + 1l)xe”(-2xs)/s"2 + 1/s — e”(-s)/s"2

For other “reasonable” functions, Laplace transforms can be computed using the Maxima interface:

sage: var('k, s, t'")
(k, s, t)
sage: f = 1/exp(kxt)
sage: f.laplace(t,s)
1/(k + s)

is one way to compute LT’s and

sage: var('s, t')

(s, ©)

sage: £ = t"bxexp(t)*sin(t)

sage: L = laplace(f, t, s); L

3840x (s — 1)75/(s"2 - 2xs + 2)"6 — 3840%(s — 1)"3/(s"2 - 2%s + 2)"5 +
720% (s — 1)/ (s"2 — 2xs + 2)"4

is another way.

1.3 Ordinary differential equations

Symbolically solving ODEs can be done using Sage interface with Maxima. See

6 Chapter 1. Calculus

Sage Constructions, Release 7.6

sage:desolvers?

for available commands. Numerical solution of ODEs can be done using Sage interface with Octave (an experimental
package), or routines in the GSL (Gnu Scientific Library).

An example, how to solve ODE’s symbolically in Sage using the Maxima interface (do not type the :):
sage: y=function('y') (x); desolve(diff(y,x,2) + 3*x ==y, dvar = vy, ics = [1,1,11])
3xx — 2#xe™(x - 1)

sage: desolve(diff(y,x,2) + 3xx ==y, dvar = y)

_K2xe” (-x) + _Klxe”x + 3*x

sage: desolve (diff(y,x) + 3xx ==y, dvar = y)

(3x(x + 1)*xe”(-x) + _C)+*e™x

sage: desolve(diff(y,x) + 3*x ==y, dvar = vy, ics = [1,1]) .expand()

3xx — b*xe™(x - 1) + 3

sage: f=function('f') (x); desolve_laplace(diff(f,x,2) == 2+«diff(f,x)-f, dvar = £, ics_
—= [01112])
x*xe’x + e”x

sage: desolve_laplace(diff(f,x,2) == 2xdiff(f,x)-f, dvar = f)
—xxe’"x+xf(0) + x*e”™xxD[0] (f) (0) + e”xxf (0)

If you have Octave and gnuplot installed,

sage: octave.de_system_plot (['x+y', 'x-y'], [1,-11, [0,2]) # optional - octave

yields the two plots (¢, z(t)), (t,y(t)) on the same graph (the ¢-axis is the horizonal axis) of the system of ODEs
¥ =z+y,z0) =1y =2—y,y0)=-1,

for 0 <=t <= 2. The same result can be obtained by using desolve_system_rk4 :

sage: x, y, t =var('x y t")

sage: P=desolve_system_rk4 ([x+y, x-vy], [x,y], ics=[0,1,-1]1, ivar=t, end_points=2)
sage: pl = list_plot([[i,]j] for i,j,k in P], plotjoined=True)

sage: p2 = list_plot([[i,k] for i,7j,k in P], plotjoined=True, color='red')

sage: pl+p2

Graphics object consisting of 2 graphics primitives

Another way this system can be solved is to use the command desolve_system.

sage: t=var('t'); x=function('x',t); y=function('y',t)

sage: des = [diff(x,t) == x+y, diff(y,t) == x-Vy]
sage: desolve_system(des, [x,vy], ics = [0, 1, -11])
[x(t) == cosh(sgrt(2)=t), vy (t) == sqgrt(2)*sinh(sgrt (2)*t) — cosh(sqgrt (2)=t)]

The output of this command is not a pair of functions.

Finally, can solve linear DEs using power series:

sage: R.<t> = PowerSeriesRing(QQ, default_prec=10)

sage: a = 2 - 3%t + 4xt"2 + 0O(t"10)

sage: b = 3 — 4xt"2 + O(t"7)

sage: f = a.solve_linear_de (prec=5, b=b, £f0=3/5)

sage: f

3/5 + 21/5+t + 33/10%t”2 — 38/15xt"3 + 11/24xt"4 + O(t"5)
sage: f.derivative() - axf - Db

o(t"4)

1.3. Ordinary differential equations 7

Sage Constructions, Release 7.6

1.4 Fourier series of periodic functions

If f(z) is a piecewise-defined polynomial function on —L < 2 < L then the Fourier series

oo (22) ("2

converges. In addition to computing the coefficients a,,, b, it will also compute the partial sums (as a string), plot
the partial sums (as a function of = over (—L, L), for comparison with the plot of f(x) itself), compute the value of
the FS at a point, and similar computations for the cosine series (if f(x) is even) and the sine series (if f(z) is odd).
Also, it will plot the partial F.S. Cesaro mean sums (a “smoother” partial sum illustrating how the Gibbs phenomenon
is mollified).

[M]8

J@)~ G+

n=1

sage: fl = lambda x: -1

sage: f2 = lambda x: 2

sage: f = piecewise([((0,p1/2),fl), ((pi/2,pi),£2)1])
sage: f.fourier_series_cosine_coefficient (5,pi)
-3/5/pi

sage: f.fourier_series_sine_coefficient (2,pi)

-3/pi

sage: f.fourier_series_partial_sum(3,pi)

-3xcos (x)/pl — 3%sin(2*x)/pi + sin(x)/pi + 1/4

Type show (f.plot_fourier_series_partial_sum(1l5,pi,-5,5)) and
show (f.plot_fourier_series_partial_sum_cesaro(l5,pi,-5,5)) (and be patient) to view
the partial sums.

8 Chapter 1. Calculus

CHAPTER
TWO

PLOTTING

Sage can plot using matplotlib, openmath, gnuplot, or surf but only matplotlib and openmath are included with Sage
in the standard distribution. For surf examples, see Plotting surfaces.

Plotting in Sage can be done in many different ways. You can plot a function (in 2 or 3 dimensions) or a set of points
(in 2-D only) via gnuplot, you can plot a solution to a differential equation via Maxima (which in turn calls gnuplot
or openmath), or you can use Singular’s interface with the plotting package surf (which does not come with Sage).
gnuplot does not have an implicit plotting command, so if you want to plot a curve or surface using an implicit
plot, it is best to use the Singular’s interface to surf, as described in chapter ch:AG, Algebraic geometry.

2.1 Plotting functions in 2D

The default plotting method in uses the excellent matplotlib package.

To view any of these, type P.save ("<path>/myplot.png") and then open it in a graphics viewer such as
gimp.

You can plot piecewise-defined functions:

sage: fl =1
sage: f2 = 1-x

sage: f3 = exp(x)
sage: f4 = sin(2xx)
sage: f = piecewise([((0,1),f1), ((1,2),£f2), ((2,3),£3), ((3,10),£f4)1])

sage: f.plot(x,0,10)
Graphics object consisting of 1 graphics primitive

Other function plots can be produced as well:

A red plot of the Jacobi elliptic function sn(x,2), —3 < x < 3 (do not type the: :

sage: L = [(1/100.0, maxima.eval ('jacobi_sn (/100.0,2.0) "%1))
e for i in range (-300,300)]
sage: show(line (L, rgbcolor=(3/4,1/4,1/8)))

A red plot of J-Bessel function Jz(z), 0 < = < 10:

sage: L = [(1/10.0, maxima.eval ('bessel_ 3 (2, /10.0)'%1)) for 1 in range (100)]
sage: show(line(L, rgbcolor=(3/4,1/4,5/8)))

A purple plot of the Riemann zeta function ¢(1/2 + it), 0 < t < 30:

sage: I = CDF.O
sage: show(line([zeta(l/2 + kxI/6) for k in range(180)], rgbcolor=(3/4,1/2,5/8)))

Sage Constructions, Release 7.6

2.2 Plotting curves

To plot a curve in Sage, you can use Singular and surf (http://surf.sourceforge.net/, also available as an experimental
package) or use matplotlib (included with Sage).

2.2.1 matplotlib

Here are several examples. To view them, type p.save ("<path>/my_plot.png") (where <path> is a
directory path which you have write permissions to where you want to save the plot) and view it in a viewer (such as
GIMP).

A blue conchoid of Nicomedes:

sage: L = [[1+5xcos (pi/2+pi*1/100), tan(pi/2+pix1/100) *

s eel (1+5%cos (pi/2+pix1/100))] for i in range(1l,100)]
sage: line (L, rgbcolor=(1/4,1/8,3/4))

Graphics object consisting of 1 graphics primitive

A blue hypotrochoid (3 leaves):

sage: n = 4; h = 3; b =2

sage: L = [[nxcos(pix1i/100)+h*cos ((n/b)*pixi/100),

e nxsin(pi*i/100) ~h*sin ((n/b) *pixi/100)] for i1 in range (200)]
sage: line (L, rgbcolor=(1/4,1/4,3/4))

Graphics object consisting of 1 graphics primitive

A blue hypotrochoid (4 leaves):

sage: n = 6; h =5; b =2

sage: L = [[n*cos(pixi/100)+h*cos ((n/b)*pixi/100),

e n*sin(pi*1/100) -h*sin((n/b)*pi*1/100)] for i in range (200)]
sage: line (L, rgbcolor=(1/4,1/4,3/4))

Graphics object consisting of 1 graphics primitive

A red limagon of Pascal:

sage: L = [[sin(pi*1/100)+sin(pi*1/50), - (l+cos(pi*1i/100)+cos (pi*xi/50))]
e for i in range(-100,101)]

sage: line (L, rgbcolor=(1,1/4,1/2))

Graphics object consisting of 1 graphics primitive

A light green trisectrix of Maclaurin:

sage: L = [[2x(1l-4%cos(-pl/2+pixi/100)"2),10+tan(-pi/2+pix1/100) *
e (1-4xcos (-pi/2+pi*1/100)"2)] for i in range(1,100)]
sage: line (L, rgbcolor=(1/4,1,1/8))

Graphics object consisting of 1 graphics primitive

A green lemniscate of Bernoulli (we omit i==100 since that would give a 0 division error):

sage: v = [(l/cos(-pi/2+pi*x1i/100), tan(-pi/2+pixi/100)) for i in range(l,200) if 1i!
—=100]
sage: L = [(a/(a"2+b"2), b/ (a"2+b"2)) for a,b in v]

sage: line (L, rgbcolor=(1/4,3/4,1/8))
Graphics object consisting of 1 graphics primitive

10 Chapter 2. Plotting

http://surf.sourceforge.net/

Sage Constructions, Release 7.6

2.2.2 surf

In particular, since surf is only available on a UNIX type OS (and is not included with Sage), plotting using the
commands below in Sage is only available on such an OS. Incidentally, surf is included with several popular Linux
distributions.

sage: s = singular.eval
sage: s('LIB "surf.lib";"')

sage: s("ring rr0 = 0, (x1,x2),dp;")

[}

sage: s("ideal I = x173 - x272;")

[}

sage: s ("plot(I);")

Press g with the surf window active to exit from surf and return to Sage.

You can save this plot as a surf script. In the surf window which pops up, just choose file, save as, etc.. (Type
q orselect file, quit , to close the window.)

The plot produced is omitted but the gentle reader is encouraged to try it out.

2.3 openmath

Openmath is a TCL/Tk GUI plotting program written by W. Schelter.

The following command plots the function cos(2x) 4 2¢~*

sage: maxima.plot2d('cos (2xx) + 2xexp(-x)','[x,0,1]", # not tested (pops up a window)
et '[plot_format, openmath] ")

(Mac OS X users: Note that these openmath commands were run in a session of started in an xterm shell, not using
the standard Mac Terminal application.)

sage: maxima.eval ('load ("plotdf"); ")
'".../share/maxima/.../share/dynamics/plotdf.lisp""
sage: maxima.eval ('plotdf (x+y, [trajectory_at,2,-0.11); ") # not tested

This plots a direction field (the plotdf Maxima package was also written by W. Schelter.)

A 2D plot of several functions:

sage: maxima.plot2d('[x,x"2,x"3]"',"[x,-1,1]", " "[plot_format,openmath]"') # not tested

Openmath also does 3D plots of surfaces of the form z = f(x,y), as « and y range over a rectangle. For example,
here is a “live” 3D plot which you can move with your mouse:

sage: maxima.plot3d ("sin(x"2 + y~2)", "[x, -3, 31", "ly, -3, 31", # not tested

e '[plot_format, openmath]')

By rotating this suitably, you can view the contour plot.

2.3. openmath 11

Sage Constructions, Release 7.6

2.4 Tachyon 3D plotting

The ray-tracing package Tachyon is distributed with Sage. The 3D plots look very nice but tend to take a bit more
setting up. Here is an example of a parametric space curve:

sage: f = lambda t: (t,t"2,t”"3)

sage: t = Tachyon (camera_center=(5,0,4))

sage: t.texture('t")

sage: t.light((-20,-20,40), 0.2, (1,1,1))

sage: t.parametric_plot(f,-5,5,'t',min_depth=6)

Type t . show () to view this.

Other examples are in the Reference Manual.

2.5 gnuplot

You must have gnuplot installed to run these commands.

First, here’s way to plot a function: {plot!a function}

sage: maxima.plot2d('sin(x)','[x,-5,5]")

sage: opts = '[gnuplot_term, ps], [gnuplot_out_file, "sin-plot.eps"]'
sage: maxima.plot2d('sin(x)"',"'[x,-5,5]"',opts)
sage: opts = '[gnuplot_term, ps], [gnuplot_out_file, "/tmp/sin-plot.eps"]'

sage: maxima.plot2d('sin(x)"',"'[x,-5,5]"',opts)

The eps file is saved by default to the current directory but you may specify a path if you prefer.

Here is an example of a plot of a parametric curve in the plane:

sage: maxima.plot2d_parametric(["sin(t)","cos(t)"], "t",[-3.1,3.11)

sage: opts = '[gnuplot_preamble, "set nokey"], [gnuplot_term, ps],

et [gnuplot_out_file, "circle-plot.eps"]'

sage: maxima.plot2d_parametric(["sin(t)","cos(t)"], "t", [-3.1,3.1], options=opts)

Here is an example of a plot of a parametric surface in 3-space: {plot!a parametric surface}

sage: maxima.plot3d_parametric(["vxsin(u)","vxcos(u)","v"], ["u","v"],

e [-3.2,3.2]1,10,31) # optional -- pops up a window.
sage: opts = '[gnuplot_term, ps], [gnuplot_out_file, "sin-cos-plot.eps"]'
sage: maxima.plot3d_parametric(["vxsin(u)","vxcos(u)","v"], ["u","v"],

e [-3.2,3.21,10,3],0pts) # optional -- pops up a window.

To illustrate how to pass gnuplot options in , here is an example of a plot of a set of points involving the Riemann zeta
function ¢(s) (computed using Pari but plotted using Maxima and Gnuplot): {plot!points} {Riemann zeta function}

sage: zeta_ptsx = [(pari(1/2 + 1i%xI/10).zeta().real()) .precision(1)

cee for i in range (70,150)]

sage: zeta_ptsy = [(pari(l/2 + 1i%I/10).zeta().imag()) .precision(l)

e for i in range (70,150)]

sage: maxima.plot_list (zeta_ptsx, zeta_ptsy) # optional —-- pops up a window.

sage: opts='[gnuplot_preamble, "set nokey"], [gnuplot_term, ps],
et [gnuplot_out_file, "zeta.eps"]'
sage: maxima.plot_list (zeta_ptsx, zeta_ptsy, opts) # optional -— pops up a window.

12 Chapter 2. Plotting

Sage Constructions, Release 7.6

2.6 Plotting surfaces

To plot a surface in is no different that to plot a curve, though the syntax is slightly different. In particular, you need to
have surf loaded. {plot!surface using surf}

sage: singular.eval('ring rrl = 0, (x,v,z),dp;")
T

sage: singular.eval ('ideal I(1l) = 2x2-1/2x3 +1-y+1;")

[}

sage: singular.eval('plot (I(1));")

2.6. Plotting surfaces 13

Sage Constructions, Release 7.6

14 Chapter 2. Plotting

CHAPTER
THREE

GROUPS

3.1 Permutation groups

A permutation group is a subgroup of some symmetric group .S,,. Sage has a Python class PermutationGroup,
so you can work with such groups directly:

sage: G = PermutationGroup(['(1,2,3) (4,5)"'])
sage: G

Permutation Group with generators [(1,2,3) (4,5)]
sage: g = G.gens () [0]; g

(1,2,3) (4,5)

sage: gx*g

(1,3,2)

sage: G = PermutationGroup(['(1,2,3)"'])
sage: g = G.gens () [0]; g

(1,2,3)

sage: g.order ()

3

For the example of the Rubik’s cube group (a permutation subgroup of Sy, where the non-center facets of the Rubik’s
cube are labeled 1, 2, ..., 48 in some fixed way), you can use the GAP-Sage interface as follows.

sage: cube = "cubegp := Group (

1, 3, 8 6)(2, 5, 7, 4)(9,33,25,17
9,11,16,14) (10,13,15,12 1,17,41,40
17,19,24,22) (18,21,23,20 6,25,43,16
) (
) (

) (

) (
25,27,32,30) (26,29,31,28) (3,38,43,19

) (

) (

10,34,26,18
4,20,44,37
7,28,42,13
5,36,45,21
2,12,47,29
15,23,31,39

11,35,27,19),
6,22,46,35),
8,30,41,11),
8,33,48,24)
1,14,48,27)

16,24,32,40)

33,35,40,38) (34,37,39,36 3, 9,46,32
41,43,48,46) (42,45,47,44) (14,22,30,38
sage: gap (cube)

'permutation group with 6 generators'
sage: gap("Size (cubegp)")
43252003274489856000"

’

(
(
(
(
(
(

(
(
(
(
(
(

(
(
(
(
(
(

)"

Another way you can choose to do this:

* Create a file cubegroup.py containing the lines:

cube = "cubegp := Group (
1, 3, 8 6)(2, 5 7, 4
9,11,16,14) (10,13,15,12
17,19,24,22) (18,21,23,20
25,27,32,30) (26,29,31,28
)
)

9,33,25,17
1,17,41, 40
6,25,43,16
3,38,43,19
3, 9,46,32
14,22,30,38

10,34,26,18) (11,35,27,19),
4,20,44,37) (6,22,46,35),
7,28,42,13) (8,30,41,11),
5,36,45,21) (8,33,48,24)
2,12,47,29) (1,14,48,27)
15,23,31,39) (16,24,32,40)

33,35,40,38) (34,37,39, 36
41,43,48,46) (42,45,47,44

14

(
(
(
(
(
(

) (
) (
) (
) (
) (
) (

(
(
(
(
(
(

)n

15

Sage Constructions, Release 7.6

Then place the file in the subdirectory $SAGE_ROOT/local/lib/python2.4/site-packages/sage

of your Sage home directory. Last, read (i.e., import) it into Sage:

sage: import sage.cubegroup
sage: sage.cubegroup.cube
'cubegp := Group((1, 3, 8

6) (2, 5, 7, 4)(9,33,25,17) (10,34,26,18)

’ , 4)
(11,35,27,19), (9,11,16,14) (10,13,15,12) (1,17,41,40) (4,20,44,37)
(6,22,46,35),(17,19,24,22) (18,21,23,20) (6,25,43,16) (7,28,42,13)
(8,30,41,11), (25,27,32,30) (26,29,31,28) (3,38,43,19) (5,36,45,21)
(8,33,48,24), (33,35,40,38) (34,37,39,36) (3, 9,46,32)(2,12,47,29)
(1,14,48,27), (41,43,48,46) (42,45,47,44) (14,22,30,38) (15,23,31,39)
(

16,24,32,40))'

sage: gap (sage.cubegroup.cube)
'permutation group with 6 generators'
sage: gap("Size (cubegp)")
'43252003274489856000"

(You will have line wrap instead of the above carriage returns in your Sage output.)

e Use the CubeGroup class:

sage: rubik = CubeGroup ()

sage: rubik

The Rubik's cube group with generators R,L,F,B,U,D in SymmetricGroup (48) .
sage: rubik.order ()

43252003274489856000

(1) has implemented classical groups (such as GU (3, F'5)) and matrix groups over a finite field with u
generators.

(2) also has implemented finite and infinite (but finitely generated) abelian groups.

3.2 Conjugacy classes

You can compute conjugacy classes of a finite group using “natively”:

ser-defined

sage: G = PermutationGroup(['(1,2,3)"', '"(1,2)(3,4)', "(1,7)'])

sage: CG = G.conjugacy_classes_representatives()

sage: gamma = CG[2]

sage: CG; gamma

[G, 4,7, (3,4,7), (2,3)(4,7), (2,3,4,7), (1,2)(3,4,7), (1,2,3,4,7)]
(3,4,7)

You can use the Sage-GAP interface:

sage: gap.eval ("G := Group((1,2)(3,4),(1,2,3))")
'Group ([(1,2)(3,4), (1,2,3) 1)'

sage: gap.eval ("CG := ConjugacyClasses (G)")

I ()G, (2,3,4)°G, (2,4,3)°G, (1,2)(3,4)"G 1"
sage: gap.eval ("gamma := CG[3]")

'(2,4,3)"G"

sage: gap.eval("g := Representative (gamma)")
'(2,4,3)"

Or, here’s another (more “pythonic”) way to do this type of computation:

16 Chapter 3

. Groups

Sage Constructions, Release 7.6

sage: G = gap.Group ('[(1,2,3), (1,2)(3,4), (1,7)1")
sage: CG = G.ConjugacyClasses()
sage: gamma = CG[2]

sage: g = gamma.Representative ()

sage: CG; gamma; g

[ConjugacyClass(SymmetricGroup([1, 2, 3, 4, 71), ()),
ConjugacyClass (SymmetricGroup([1, 2, 3, 4, 7 1), (4,7)),
ConjugacyClass (SymmetricGroup([1, 2, 3, 4, 71), (3,4,7)),
ConjugacyClass (SymmetricGroup([1, 2, 3, 4, 71), (2,3)(4,7)),
ConjugacyClass(SymmetricGroup([1, 2, 3, 4, 71), (2,3,4,7)),
ConjugacyClass (SymmetricGroup([1, 2, 3, 4, 71), (1,2)(3,4,7)),
ConjugacyClass (SymmetricGroup([1, 2, 3, 4, 71), (1,2,3,4,7)) 1

ConjugacyClass (SymmetricGroup([1, 2, 3, 4, 71), (4,7))

(4,7)

3.3 Normal subgroups

If you want to find all the normal subgroups of a permutation group G (up to conjugacy), you can use Sage’s interface
to GAP:

sage: G = AlternatingGroup(5)
sage: gap (G) .NormalSubgroups ()
[Group(()), AlternatingGroup([1 .. 51) 1]

or

sage: G = gap("AlternatingGroup(5)")
sage: G.NormalSubgroups ()
[Group(()), AlternatingGroup([1 .. 5 1) 1

Here’s another way, working more directly with GAP:

sage: print(gap.eval("G := AlternatingGroup(5)"))
Alt([1 .. 5 1)

sage: print (gap.eval ("normal := NormalSubgroups(G)"))
[Group(()), Alt([1 .. 51) 1

sage: G = gap.new("DihedralGroup(10)")
sage: G.NormalSubgroups ()

[Group(<identity> of ...), Group([£f2]), Group([f1, f2])]

sage: print(gap.eval ("G := SymmetricGroup(4)"))

Sym([1 .. 4 1)

sage: print (gap.eval ("normal := NormalSubgroups(G);"))

[Group(()), Group([(1,4)(2,3), (1,3)(2,4) 1), Group([(2,4,3), (1,4)
(2,3), (1,3)(2,4) 1), sym([1 .. 41)]

3.4 Centers

How do you compute the center of a group in Sage?

Although Sage calls GAP to do the computation of the group center, center is “wrapped” (i.e., Sage has a class
PermutationGroup with associated class method “center”), so the user does not need to use the gap command. Here’s
an example:

3.3. Normal subgroups 17

Sage Constructions, Release 7.6

sage: G = PermutationGroup(['(1l,2,3) (4,5 ", "(3,4)"'])

sage: G.center()

Subgroup of (Permutation Group with generators [(3,4), (1,2,3) (4,5)]) generated by,
=[]

A similar syntax for matrix groups also works:

sage: G = SL(2, GF(5))

sage: G.center()

Matrix group over Finite Field of size 5 with 1 generators (

[4 0]

[0 4]

)

sage: G = PSL(2, 5)

sage: G.center()

Subgroup of (The projective special linear group of degree 2 over Finite Field of
—size 5) generated by [()]

Note: center can be spelled either way in GAP, not so in Sage.

3.5 The group id database

The function group_id requires that the Small Groups Library of E. A. O’Brien, B. Eick, and H. U. Besche be
installed. You can do this by typing sage -1 database_gap in the shell.

sage: G = PermutationGroup (['(1,2,3)(4,5) ", "(3,4)'])
sage: G.order ()

120

sage: G.group_id() # optional - database_gap
[120, 34]

Another example of using the small groups database: group_id

sage: gap_console ()
GAP4, Version: 4.4.6 of 02-Sep-2005, x86_64-unknown—-linux—-gnu—-gcc
gap> G:=Group((4,6,5)(7,8,9),(1,7,2,4,6,9,5,3));

Group ([(4,6,5)(7,8,9), (1,7,2,4,6,9,5,3) 1)
gap> StructureDescription (G);
"(((C3 x C3) : Q8) : C3) : c2"

3.6 Construction instructions for every group of order less than 32

AUTHORS:
¢ Davis Shurbert

Every group of order less than 32 is implemented in Sage as a permutation group. They can all be created easily. We
will first show how to build direct products and semidirect products, then give the commands necessary to build all of
these small groups.

18 Chapter 3. Groups

Sage Constructions, Release 7.6

Let G1, G2, ..., Gn be permutation groups already initialized in Sage. The following command can be used to take
their direct product (where, of course, the ellipses are simply being used here as a notation, and you actually must
enter every factor in your desired product explicitly).

sage:

G

direct_product_permgroups ([Gl, G2,

., GnJ)

The semidirect product operation can be thought of as a generalization of the direct product operation. Given two
groups, H and K, their semidirect product, H x4 K, (where ¢ : H — Aut(K) is a homomorphism) is a group whose
underlying set is the cartersian product of H and K, but with the operation:

(h'17 kl)(hQ, kg) = (h1h27 kf(hZ)kg)

The output is not the group explicity described in the definition of the operation, but rather an isomorphic group of
permutations. In the routine below, assume H and K already have been defined and initialized in Sage. Also, phi is
a list containing two sublists that define the underlying homomorphism by giving the images of a set of generators of
H . For each semidirect product in the table below we will show you how to build phi , then assume you have read
this passage and understand how to go from there.

sage:

G

H.semidirect_product (K, phi)

To avoid unnecessary repetition, we will now give commands that one can use to create the cyclic group of order n,
C,, and the dihedral group on n letters, D,,. We will present one more example of each to ensure that the reader
understands the command, then it will be withheld.

sage:

sage:

G

G

CyclicPermutationGroup (n)

DihedralGroup (n)

Note that exponential notation will be used for the direct product operation. For example, Co* = C x Cs. This table
was crafted with the help of Group Tables, by AD Thomas and GV Wood (1980, Shiva Publishing).

Order Group Description Command(s) GAP ID
1 The Trivial Group [1,1]
sage: G = SymmetricGroup (1)
2 Cy [2,1]
sage: G = SymmetricGroup (2)
3 Cy [3,1]
sage: G = CyclicPermutationGroup (3)
4 Cy [4,1]
4 CQ X 02 [4,2]
sage: G = KleinFourGroup ()
5 05 [571]
6 Cs [6,2]
6 S3 (Symmetric Group on 3 [6,1]
letters) sage: G = SymmetricGroup (3)
7 Cr [7,1]
8 Cs (8,1]
8 04 X CQ [8:2]
8 CQ X CQ X CQ [8,5]
Continued on next page

3.6. Construction instructions for every group of order less than 32

19

Sage Constructions, Release 7.6

Table 3.1 — continued from previous page

Order Group Description Command(s) GAP ID
8 Dy [8,3]
sage: G = DihedralGroup (4)
8 The Quaternion Group (Q) [8,4]
sage: G = QuaternionGroup ()
9 Cy [9,1]
9 03 X 03 [9,2]
10 Cho [10,2]
10 Dy [10,1]
11 Ch1 [11,1]
12 Cha [12,2]
12 Cg x Co [12,5]
12 Dg [12,4]
12 Ay (Alternating Group on 4 [12,3]
letters) sage: G = AlternatingGroup (4)
12 Q¢ (DiCyclic group of or- [12,1]
der 12) sage: G = DiCyclicGroup (3)
13 Ci3 [13,1]
14 Chy [14,2]
14 D~ [14,1]
15 Cis [15,1]
16 Cis [16,1]
16 Cg X 02 [16,5]
16 C4 X C4 [16,2]
16 04 X 02 X 02 [16,10]
16 Cy* [16,14]
16 Dy x Cy [16,11]
16 Q x Cy [16,12]
16 Dg [16,7]
16 Q@s (Dicyclic group of order [16,9]
16) sage: G = DiCyclicGroup (4)
16 Semidihedral Group of or- [16,8]
der 24 sage: G = SemidihedralGroup (4)
16 Split Metacyclic Group of [16,6]
order 24 sage: G = SplitMetag¢yclicGroup (2,4)
16 (04 X CQ) N 02 [16,13]
sage: C2 = Symmetrig¢Group(2); C4 = CycligPermuta
sage: A = direct_product_permgroups ([C2,(4])
sage: alpha = PermutationGroupMorphism (A} A, [A.ge
sage: phi = [[(1,2)], [alphal]
Continued on next page
20 Chapter 3. Groups

Sage Constructions, Release 7.6

Table 3.1 — continued from previous page

Order Group Description Command(s) GAP ID
16 (C4 X CQ) X CQ [16,3]
sage: C2 = SymmetricGroup(2); C4 = CycligPermuta
sage: A = direct_product_permgroups ([C2,{4])
sage: alpha = PermutationGroupMorphism (A} A, [A.ge
sage: phi = [[(1,2)], [alphal]l
16 04 X 04 [16,4]
sage: C4 = CyclicPermutationGroup (4)
sage: alpha = PermutationGroupMorphism(C4d,C4, [C4
sage: phi = [[(1,2,3,4)], [alphal]
17 Ci7 [17,1]
18 Cis [18,2]
18 Cg x C3 [18,5]
18 Dy [18,1]
18 S3 x C3 [18,3]
18 Dih(C3 x Cs) [18,4]
sage: G = GeneralDihedralGroup([3,31])
19 Chg [19,1]
20 Coo [20,2]
20 CIO X 02 [20,5]
20 D1 [20,4]
20 Q10 (Dicyclic Group of or- [20,1]
der 20)
20 Hol(C5) [20,3]
sage: C5 = CyclicPermutationGroup (5)
sage: G = C5.holomoxph ()
21 Co [21,2]
21 07 N 03 [21,1]
sage: C7 = CyclicPermutationGroup (7)
sage: alpha = PermutationGroupMorphism(C[/,C7, [C7
sage: phi = [[(1,2,3)], [alpha]l]
22 Cao [22,2]
22 D1y [22,1]
23 Cas [23,1]
24 Coy [24,2]
24 D1s [24,6]
24 @12 (DiCyclic Group of or- [24,4]
der 24)
24 012 X 02 [24,9]
24 Cg x Cy x Cy [24,15]
24 S4 (Symmetric Group on 4 [24,12]
letters) sage: G = SymmetricGroup (4)
24 Sg X C4 [24,5]
24 S3 x Oy x Cy [24,14]
24 Dy x Cy [24,10]
Continued on next page

3.6. Construction instructions for every group of order less than 32

21

Sage Constructions, Release 7.6

Table 3.1 — continued from previous page

Order Group Description Command(s) GAP ID

24 Q xCs [24,11]

24 Ay x Cy [24,13]

24 Qe x Co [24,7]

24 Q %y Cs [24,3]
sage: Q = QuaternionGroup ()
sage: alpha = PermutationGroupMorphism(Q},Q, [Q.ge
sage: phi = [[(1,2,3)], [alphal]l

24 C3 xg Cy [24,1]
sage: C3 = CyclicPermutationGroup (3)
sage: alpha = PermutationGroupMorphism(CB,C3, [C3
sage: phi = [[(1,2,3,4,5,6,7,8)1, [alphall

24 C3 x¢ Dy [24,8]
sage: C3 = CyclicPermutationGroup(3)
sage: alphal = PermuytationGroupMorphism({3,C3, [C
sage: alpha2 = PermutationGroupMorphism({3,C3, [C
sage: phi = [[(1,2,3,4),(1,3)]1, [alphal,allpha2]]

25 Cos [25,1]

25 Cy x Cs [25,2]

26 Cas [26,2]

26 D13 [26,1]

27 Cor [27,1]

27 Cg X 03 [27,2]

27 03 X 03 X 03 [27,5]

27 Split Metacyclic Group of [27.,4]

order 33 sage: G = SplitMetag¢gyclicGroup (3, 3)

27 (Cg X Cg) X Cg [27,3]
sage: C3 = CyclicPermutationGroup (3)
sage: A = direct_product_permgroups ([C3,L3])
sage: alpha = PermutationGroupMorphism (A}, A, [A.ge
sage: phi = [[(1,2,3)]1, [alphal]l

28 Cog [28,2]

28 Cy x Cy [28,4]

28 D1y [28,3]

28 Q14 (DiCyclic Group of or- [28,1]

der 28)

29 Ca9 [29,1]

30 Cso [30,4]

30 D15 [30,3]

30 D5 x Cy [30,2]

30 D3 x Cx [30,1]

31 C31 [31,1]

Table By Kevin Halasz
22 Chapter 3. Groups

Sage Constructions, Release 7.6

3.7 Construction instructions for every finitely presented group of or-
der 15 or less

Sage has the capability to easily construct every group of order 15 or less as a finitely presented group. We will begin
with some discussion on creating finitely generated abelian groups, as well as direct and semidirect products of finitely
presented groups.

All finitely generated abelian groups can be created using the groups.presentation.FGAbelian (1s) com-
mand, where 1s is a list of non-negative integers which gets reduced to invariants defining the group to be returned.
For example, to construct Cy x Cy x Cy x C we can simply use:

sage: A = groups.presentation.FGAbelian([4,2,2,2])

The output for a given group is the same regardless of the input list of integers. The following example yields identical
presentations for the cyclic group of order 30.

sage: A = groups.presentation.FGAbelian([2,3,5])
sage: B = groups.presentation.FGAbelian ([30])

If G and H are finitely presented groups, we can use the following code to create the direct product of G and H ,
G x H.

’sage: D = G.direct_product (H)

Suppose there exists a homomorphism ¢ from a group G to the automorphism group of a group H. Define the
semidirect product of G with H via ¢, as the Cartesian product of G and H, with the operation (g1, h1)(g2, h2) =
(9192, dn, (g2)ha) where ¢, = ¢(h). To construct this product in Sage for two finitely presented groups, we must
define ¢ manually using a pair of lists. The first list consists of generators of the group G, while the second list consists
of images of the corresponding generators in the first list. These automorphisms are similarly defined as a pair of lists,
generators in one and images in the other. As an example, we construct the dihedral group of order 16 as a semidirect
product of cyclic groups.

sage: C2 = groups.presentation.Cyclic(2)
sage: C8 = groups.presentation.Cyclic(8)
sage: hom = (C2.gens (), [([C8([1])], [C8([-11)1) 1)

sage: D = C2.semidirect_product (C8, hom)

The following table shows the groups of order 15 or less, and how to construct them in Sage. Repeated commands
have been omitted but instead are described by the following examples.

The cyclic group of order n can be created with a single command:

’sage: C = groups.presentation.Cyclic(n)

Similarly for the dihedral group of order 2n:

’sage: D = groups.presentation.Dihedral (n)

This table was modeled after the preceding table created by Kevin Halasz.

3.7. Construction instructions for every finitely presented group of order 15 or less 23

Sage Constructions, Release 7.6

Order Group Description Command(s) GAP ID
1 The Trivial Group [1,1% ,)
sage: G = groups.presentation.Symmetric([L)
2 Co [2,14 . .
sage: G = groups.presentation.Symmetric (R)
3 3,1
Cs sage: G = groups.pregéngation.Cyclic(3)
4 Cy [4,1]
4 CQ X CQ [4,2% . X
sage: G = groups.presentation.Klein()
5 Cs [5,1]
6 Cﬁ [672]
6 S tric G 3 6,1
iﬁéngmnwrw roup on sage: G = groups.pregéhgation.Symmetric(3)
7 Cr [7.1]
8 08 [8’1]
8 C4 X 02 [8,2% ’ ;
sage: G = groups.presentation.FGAbelian ([[4,2])
8 CQ X CQ X 02 [8,5% , ,
sage: G = groups.presentation.FGAbelian (|[2,2,2])
8 Dy [8,3,; . .
sage: G = groups.presentation.Dihedral (4
8 The Quaternion Group (Q) sage: G = groups.pr@ggﬁgation.Quaternion()
9 Cy [9,1]
9 03 X 03 [972]
10 Cho (10,2]
10 Ds (10,1]
11 C11 (11,1]
12 Cia [12,2]
12 CG X CQ [12’5]
12 Dg [12,4]
12 Ay (Alternating Group on 4 [12,3] . ,
Jetters) sage: G = groups.presentation.Alternating(4)
12 DiCycli f or- 12,1
§§f2; yclic group ot of sage: G = groups.pregéntgtion.DiCyclic(B
13 Ci3 [13,1]
14 C4 [14.2]
14 Dy (14,1]
15 C1s [15,1]
24 Chapter 3. Groups

CHAPTER
FOUR

LINEAR ALGEBRA

4.1 Vector spaces

The VectorSpace command creates a vector space class, from which one can create a subspace. Note the basis
computed by Sage is “row reduced”.

sage: V = VectorSpace (GF(2),8)

sage: S = V.subspace([V([l,1,0,0,0,0,0,0]),Vv([1,0,0,0,0,1,1,01)1)
sage: S.basis()

[

(., o0, 0, 0, 0, 1, 1, 0),

sage: S.dimension ()
2

4.2 Matrix powers

How do I compute matrix powers in Sage? The syntax is illustrated by the example below.

sage: R = IntegerModRing(51)
sage: M = MatrixSpace (R, 3,3)
sage: A = M([1,2,3, 4,5,6, 7
sage: A"1000%«A"1007

+8,91)

[3 3 3]
[18 0 331
[33 48 12]

sage: A"2007

[3 3 3]
[18 0 33]
[33 48 12]

4.3 Kernels

The kernel is computed by applying the kernel method to the matrix object. The following examples illustrate the
syntax.

25

Sage Constructions, Release 7.6

sage: M = MatrixSpace (IntegerRing(),4,2) (range(8))
sage: M.kernel ()

Free module of degree 4 and rank 2 over Integer Ring
Echelon basis matrix:

[1 0 -3 2]

[0 1 -2 1]

A kernel of dimension one over Q:

sage: A = MatrixSpace (RationalField(), 3) (range(9))

sage: A.kernel ()

Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:

[1 -2 1]

A trivial kernel:

sage: A = MatrixSpace (RationalField(),2) ([1,2,3,4])

sage: A.kernel()

Vector space of degree 2 and dimension 0 over Rational Field
Basis matrix:

[]

sage: M = MatrixSpace (RationalField(),0,2) (0)

sage: M

[]

sage: M.kernel ()

Vector space of degree 0 and dimension 0 over Rational Field
Basis matrix:

[]

sage: M = MatrixSpace (RationalField(),2,0) (0)

sage: M.kernel ()

Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:

[1 0]

[0 1]

Kernel of a zero matrix:

sage: A = MatrixSpace (RationalField(),2) (0)

sage: A.kernel ()

Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:

[1 0]

[0 1]

Kernel of a non-square matrix:

sage: A = MatrixSpace (RationalField(),3,2) (range(6))

sage: A.kernel ()

Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:

[1 -2 1]

The 2-dimensional kernel of a matrix over a cyclotomic field:

sage: K CyclotomicField(12); a = K.gen()
sage: M = MatrixSpace(X,4,2)([1,-1, 0,-2, 0,-a”2-1, 0,a”2-11)
sage: M

26 Chapter 4. Linear algebra

Sage Constructions, Release 7.6

[1 -1]
[0 -2]
[0 -zetal2”2 - 1]
[0 =zetal2"2 - 1]

sage: M.kernel ()

Vector space of degree 4 and dimension 2 over Cyclotomic Field of order 12
and degree 4

Basis matrix:

[0 1 0 -2*zetal2”"2]

[0 0 1 -2xzetal2”2 + 1]

A nontrivial kernel over a complicated base field.

sage: K = FractionField(PolynomialRing(RationalField(),2,'x"))
sage: M = MatrixSpace (K, 2) ([[K.gen(l),K.gen(0)], [K.gen(l), K.gen(0)]11)
sage: M
[x1 x0]
[x1 x0]
sage: M.kernel ()
Vector space of degree 2 and dimension 1 over Fraction Field of Multivariate
Polynomial Ring in x0, x1 over Rational Field
Basis matrix:
[1 -1]

Other methods for integer matrices are elementary_divisors, smith_form (for the Smith normal form),
echelon_form for the Hermite normal form, frobenius for the Frobenius normal form (rational canonical
form).

There are many methods for matrices over a field such as Q or a finite field: row_span ,nullity, transpose,
swap_rows ,matrix_from_columns,matrix_from_rows , among many others.

See the file matrix.py for further details.

4.4 Eigenvectors and eigenvalues

How do you compute eigenvalues and eigenvectors using Sage?

Sage has a full range of functions for computing eigenvalues and both left and right eigenvectors and eigenspaces. If
our matrix is A, then the eigenmatrix_right (resp. eightmatrix_left) command also gives matrices D
and P such that AP = PD (resp. PA = DP.)

sage: A = matrix(QQ, [[1,1,0],10,2,01,10,0,311)
sage: A

[1 1 0]

[0 2 0]

[0 0 3]

sage: A.eigenvalues()

[3, 2, 1]

sage: A.eigenvectors_right ()

[(3, [

4.4. Eigenvectors and eigenvalues 27

Sage Constructions, Release 7.6

sage: A.eigenspaces_right ()

[

(3, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:

[0 0 11),

(2, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:

(1101,

(1, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:

[1 0 01)

, P = A.eigenmatrix_right ()

For eigenvalues outside the fraction field of the base ring of the matrix, you can choose to have all the eigenspaces
output when the algebraic closure of the field is implemented, such as the algebraic numbers, QObar . Or you may
request just a single eigenspace for each irreducible factor of the characteristic polynomial, since the others may
be formed through Galois conjugation. The eigenvalues of the matrix below are $pmsqrt{3}$ and we exhibit each
possible output.

Also, currently Sage does not implement multiprecision numerical eigenvalues and eigenvectors, so calling the eigen
functions on a matrix from CC or RR will probably give inaccurate and nonsensical results (a warning is also printed).
Eigenvalues and eigenvectors of matrices with floating point entries (over CDF and RDF) can be obtained with the
“eigenmatrix” commands.

sage: MS = MatrixSpace(QQ, 2, 2)

sage: A = MS([1l,-4,1, -11)

sage: A.eigenspaces_left (format="all"')

[

(=1.7320508075688782?x1, Vector space of degree 2 and dimension 1 over Algebraic Field
User basis matrix:

[1 -1 - 1.73205080756887872%1]),

(1.7320508075688787?+1, Vector space of degree 2 and dimension 1 over Algebraic Field
User basis matrix:

[1 -1 + 1.73205080756887872*1])

]
sage: A.eigenspaces_left (format="'galois')

[

(a0, Vector space of degree 2 and dimension 1 over Number Field in a0 with defining,
—polynomial x*2 + 3

User basis matrix:

[1 a0 - 17)

1

Another approach is to use the interface with Maxima:

28 Chapter 4. Linear algebra

Sage Constructions, Release 7.6

sage: A = maxima("matrix ([1, -4], [1, -1])™)
sage: eig = A.eigenvectors()

sage: eig

[[[-sgrt (3) *%1i,sqrt (3)*«%1i], [1,11], [[[1, (sqrt(3)*«%i+1) /411, [[1,-(sqrt(3)=%i-1)/4111]

This tells us that @, = [1, (v/3i + 1)/4] is an eigenvector of \; = —+/3i (which occurs with multiplicity one) and
Uy = [1,(—+/3i + 1)/4] is an eigenvector of Ay = 1/3i (which also occurs with multiplicity one).

Here are two more examples:

sage: A = maxima("matrix ([11, O, O], [1, 11, 01, [1, 3, 21)")
sage: A.eigenvectors()
(2,111, 02,211, 0000,0,1171,
sage: A = maxima ("matrix ([
sage: A.eigenvectors()
(re-1,21,102,111,00100,1,-271,000,0,17111

0,1,1/3111

[l]
-1, o, 01, (1, -1, O, [1, 3, 2])™)

Warning: Notice how the ordering of the output is reversed, though the matrices are almost the same.

Finally, you can use Sage’s GAP interface as well to compute “rational” eigenvalues and eigenvectors:

(r1,2,31,104,5,61,107,8,911"))
07,8, 91]

sage: print (gap.eval ("A :
[t 2, 31, [4, 5, 6

sage: print(gap.eval ("v := Eigenvectors(Rationals,A)"))
L ri, -2, 111
sage: print (gap.eval("lambda := Eigenvalues(Rationals,A)"))

[0]

4.5 Row reduction

The row reduced echelon form of a matrix is computed as in the following example.

sage: M = MatrixSpace (RationalField(),2,3)
sage: A = M([1,2,3, 4,5,61])

sage: A

[1 2 3]

[4 5 6]

sage: A.parent ()

Full MatrixSpace of 2 by 3 dense matrices over Rational Field
sage: A[0,2] = 389

sage: A

[1 2 389]

[4 5 6]

sage: A.echelon_form()

[1 0 -1933/3]

[0 1 1550/3]

4.6 Characteristic polynomial

The characteristic polynomial is a Sage method for square matrices.

First a matrix over Z:

4.5. Row reduction 29

Sage Constructions, Release 7.6

sage: A = MatrixSpace (IntegerRing(),2) ([[1,2]1, [3,4]11)
sage: f A.charpoly ()

sage: f

x"2 — bxx — 2

sage: f.parent()

Univariate Polynomial Ring in x over Integer Ring

We compute the characteristic polynomial of a matrix over the polynomial ring Z[a):

sage: R = PolynomialRing(IntegerRing(),'a'); a = R.gen()

sage: M = MatrixSpace(R,2) ([[a,1], [a,a+1]])
sage: M

[a 1]

[aa + 1]

sage: f = M.charpoly ()

sage: f

x"2 + (=2+a - 1)*x + a2

sage: f.parent()
Univariate Polynomial Ring in x over Univariate Polynomial Ring in a over
Integer Ring

sage: M.trace()

2«a + 1
sage: M.determinant ()
a2

We compute the characteristic polynomial of a matrix over the multi-variate polynomial ring Z[u, v]:

sage: R.<u,v> = PolynomialRing(ZZ,2)

sage: A = MatrixSpace(R,2) ([u,v,u"2,v"2])
sage: f = A.charpoly(); £
X"2 4 (-Vh2 - U)X - UN24V 4 uxvi2

It’s a little difficult to distinguish the variables. To fix this, we might want to rename the indeterminate “Z”, which we
can easily do as follows:

sage: f = A.charpoly('Z"); £
Zh2 4+ (=vh2 — u)*xZ — ut2xv + uxv”’2

4.7 Solving systems of linear equations

Using maxima, you can easily solve linear equations:

sage: var('a,b,c")

(a, b, c)

sage: eqn = [atbxc==1, b-axc==0, atb==05]

sage: s = solve(egn, a,b,c); s

[[a == -1/4%Ixsqrt(79) + 11/4, b == 1/4xI*sqrt(79) + 9/4, ¢ == 1/10%I*sqrt(79) + 1/
—10], [a == 1/4%Ixsqrt(79) + 11/4, == -1/4%Ixsqgrt(79) + 9/4, c == -1/10xIxsqrt(79)
4+ 1/1071]

You can even nicely typeset the solution in LaTeX:

sage.: print (latex(s))

30 Chapter 4. Linear algebra

Sage Constructions, Release 7.6

To have the above appear onscreen via xdvi, type view (s) .

You can also solve linear equations symbolically using the solve command:

sage: var('x,y,z,a'")
(x, vy, 2z, a)
sage: egns =
sage: solve(egns, x, VY, 2z)

[[x == a + 1, v == 2%a, z == a — 1]]

[x + 2 ==y, 2%axx —y == 2%a"2, y — 2%z == 2]

Here is a numerical Numpy example:

sage: from numpy import arange, eye, linalg

sage: A = eye(10) ## the 10x10 identity matrix
sage: b = arange(l,11)
sage: x = linalg.solve(A,b)

Another way to solve a system numerically is to use Sage’s octave interface:

sage: M33 = MatrixSpace (QQ, 3, 3)

sage: A = M33([(1,2,3,4,5,6,7,8,01)

sage: V3 = VectorSpace (QQ, 3)

sage: b = V3([1,2,3])

sage: octave.solve_linear_system(A,b) # optional - octave

[-0.33333299999999999, 0.66666700000000001, O]

4.7. Solving systems of linear equations 31

Sage Constructions, Release 7.6

32 Chapter 4. Linear algebra

CHAPTER
FIVE

LINEAR CODES AND CIPHERS

5.1 Codes

A linear code of length n is a finite dimensional subspace of GF'(g)"™. Sage can compute with linear error-correcting
codes to a limited extent. It basically has some wrappers to GAP and GUAVA commands. GUAVA 2.8 is not included

with Sage 4.0’s install of GAP but can be installed as an optional package.

Sage can compute Hamming codes

sage: C = codes.HammingCode (GF (3), 3)
sage: C

[13, 10] Hamming Code over GF (3)
sage: C.minimum_distance ()

3

0]
[\])
Q
[

C.generator_matrix(
0000 01 2

— — —
o O O

o

[0
[0
[0
[0
[0

O O O O O O o o+ o
ooooooo»—koo“
[N elNeNeNoNeolSielNe o
NNl el ool
OO O OoOr OO OO
NN TeoNeNeNe Nl
OO Rr OO0 00O OO
el NeoNeNeoNoNeolNoNolNeN|
e ReleNeoNelNeolNeNol
ONNNRENR PO
=N R NDO R RO

the four Golay codes

sage: C = codes.GolayCode (GF (3))

sage: C

[12, 6, 6] Extended Golay code over Finite Field of size 3
sage: C.minimum_distance()

6

sage: C.generator_matrix/()

[1 0020 21
[0
[0
[0
[0
[0

o O O O O
O o0 ok oo
oo r o oo
oOr o oo
o o oo
oON R =
N PP RPN
R NO RN
DN ON
N O N R
= RN RO N

as well as binary Reed-Muller codes, quadratic residue codes, quasi-quadratic residue codes, “random” linear codes,

and a code generated by a matrix of full rank (using, as usual, the rows as the basis).

For a given code, C, Sage can return a generator matrix, a check matrix, and the dual code:

33

Sage Constructions, Release 7.6

sage: C = codes.HammingCode (GF (2), 3)
sage: Cperp = C.dual_code()

sage: C; Cperp

[7, 4] Hamming Code over GF (2)

[7, 3] linear code over GF (2)

sage: C.generator_matrix()

[100O0O0T11]
[01 0010 1]
[001 011 0]

[0001 11 1]
sage: C.parity_check_matrix()
[1 01010 1]
[01 1 0011]
[0OO0O 01 11 1]
sage: C.dual_code ()
[7, 3] linear code over GF (2)
sage: C = codes.HammingCode (GF (4, 'a"), 3)
sage: C.dual_code ()
[21, 3] linear code over GF (4)

For C' and a vector v € GF(q)", Sage can try to decode v (i.e., find the codeword ¢ € C closest to v in the Hamming
metric) using syndrome decoding. As of yet, no special decoding methods have been implemented.

sage: C = codes.HammingCode (GF (2), 3)

sage: MS = MatrixSpace(GF(2),1,7)

sage: F = GF(2); a = F.gen()

sage: v = vector([a,a,F(0),a,a,F(0),al)
sage: ¢ = C.decode_to_code (v, "Syndrome"); c
(t, 1, 0, 1, 0, 0, 1)

sage: ¢ in C

True

To plot the (histogram of) the weight distribution of a code, one can use the matplotlib package included with Sage:

sage: C = codes.HammingCode (GF (2), 4)

sage: C
[15, 11] Hamming Code over GF (2)
sage: w C.weight_distribution(); w

(., o, o, 35, 105, 168, 280, 435, 435, 280, 168, 105, 35, 0, 0, 1]
sage: J = range(len(w))
sage: = IndexedSequence ([ZZ(w[i]) for i in J],J)
sage: P = W.plot_histogram()

=

Now type show (P) to view this.

There are several coding theory functions we are skipping entirely. Please see the reference manual or the file
coding/linear_codes.py for examples.

Sage can also compute algebraic-geometric codes, called AG codes, via the Singular interface § sec:agcodes. One may
also use the AG codes implemented in GUAVA via the Sage interface to GAP gap_console () . See the GUAVA
manual for more details. { GUAVA}

34 Chapter 5. Linear codes and ciphers

Sage Constructions, Release 7.6

5.2 Ciphers

5.2.1 LFSRs

A special type of stream cipher is implemented in Sage, namely, a linear feedback shift register (LFSR) sequence
defined over a finite field. Stream ciphers have been used for a long time as a source of pseudo-random number
generators. {linear feedback shift register}

S. Golomb {G} gives a list of three statistical properties a sequence of numbers a = {a,}52;, a, € {0, 1}, should
display to be considered “random”. Define the autocorrelation of a to be

N
C(k) = C(k,a) = lim Z Yontantr,

N—oco N

In the case where a is periodic with period P then this reduces to
Assume a is periodic with period P.
* balance: | Zn (=1 < 1.

¢ low autocorrelation:

1, k=0,
Clk) = { e, k#0.
(For sequences satisfying these first two properties, it is known that e = —1/P must hold.)

e proportional runs property: In each period, half the runs have length 1, one-fourth have length 2, etc. Moveover,
there are as many runs of 1°s as there are of 0°s.

A sequence satisfying these properties will be called pseudo-random. {pseudo-random}
A general feedback shift register is a map f : FZ — FZ of the form
f(x07 seey xnfl) = (3717 T2y eeey .Tn)7
Tp = C(X0y ey Tn1),
where C': F¢ — F is a given function. When C'is of the form
..math:: C(x_0,...,x_{n-1})=c_0x_0+...+c_{n-1}x_{n-1},

for some given constants ¢; € F, the map is called a linear feedback shift register (LFSR). The sequence of coeffi-
cients ¢; is called the key and the polynomial

is sometimes called the connection polynomial.
Example: Over GF(2), if [co, c1, c2, c3] = [1,0,0,1] then C(x) = 1 + x + a4,
The LFSR sequence is then

The sequence of 0, 1°s is periodic with period P = 2* — 1 = 15 and satisfies Golomb’s three randomness conditions.
However, this sequence of period 15 can be “cracked” (i.e., a procedure to reproduce g(x)) by knowing only 8 terms!
This is the function of the Berlekamp-Massey algorithm {M}, implemented as 1fsr_connection_polynomial
(which produces the reverse of berlekamp_massey).

5.2. Ciphers 35

Sage Constructions, Release 7.6

sage: F = GF(2)

sage: o = F(0)

sage: 1 = F (1)

sage: key = [1,0,0,1]; £fill = [1,1,0,1]; n = 20
sage: s = lfsr_sequence (key,fill,n); s

{1, 1, o, 1, 0, 14, 1, o, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0]
sage: lfsr_autocorrelation(s,15,7)

4/15

sage: lfsr_autocorrelation(s,15,0)

8/15

sage: lfsr_connection_polynomial (s)

x4 + x + 1

sage: berlekamp_massey (s)

x4 + x*"3 + 1

5.2.2 Classical ciphers

has a type for cryptosystems (created by David Kohel, who also wrote the examples below), implementing classical
cryptosystems. The general interface is as follows:

sage: S = AlphabeticStrings()

sage: S

Free alphabetic string monoid on A-2Z
sage: E = SubstitutionCryptosystem(S)
sage: E

Substitution cryptosystem on Free alphabetic string monoid on A-7Z
sage: K = S([25-1i for i in range(26) 1])
sage: e = E(K)

sage: m = S ("THECATINTHEHAT")

sage: e (m)

GSVXZGRMGSVSZG

Here’s another example:

sage: S = AlphabeticStrings()

sage: E = TranspositionCryptosystem(S,15);
sage: m = S ("THECATANDTHEHAT")

sage: G = E.key_space()

sage: G

Symmetric group of order 15! as a permutation group

sage: g = G([3, 2, 1, ¢, 5, 4, 9, 8, 7, 12, 11, 10, 15, 14, 13 1)
sage: e = E(9g)

sage: e (m)

EHTTACDNAEHTTAH

The idea is that a cryptosystem is a map E : K.S — Homge (M S, C'S) where K.S, M S, and C'S are the key space,
plaintext (or message) space, and ciphertext space, respectively. E is presumed to be injective, so e . key () returns
the pre-image key.

36 Chapter 5. Linear codes and ciphers

CHAPTER
SIX

REPRESENTATION THEORY

6.1 Ordinary characters

How can you compute character tables of a finite group in Sage? The Sage-GAP interface can be used to compute
character tables.

You can construct the table of character values of a permutation group GG as a Sage matrix, using the method
character_table of the PermutationGroup class, or via the pexpect interface to the GAP command
CharacterTable.

sage: G = PermutationGroup([[(1,2), (3,4)], [(1,2,3,4)11)
sage: G.order ()
8

sage: G.character_table ()

[1 1 1 1 1]

[1 -1 -1 1 1]

[1 -1 1 -1 1]

[1 1 -1 -1 1]

[2 0 0 0 -2]

sage: CT = gap(G) .CharacterTable ()

sage: print (gap.eval("Display () "$CT.name ()))
CT1

la 2a 2b 4a 2c
2P la la la 2c la
3P la 2a 2b 4a 2c

X.1 1 1 1 1 1

X.2 1 -1 -1 1 1

X.3 1 -1 1 -1 1

X.4 1 1 -1 -1 1

X.5 2 -2

Here is another example:

sage: G = PermutationGroup([[(1,2),(3,4)]1, [(1,2,3)11)
sage: G.character_table()

[1 1 1 1]

[1 —-zeta3 - 1 zeta3l 1]

[1 zeta3d -zeta3 - 1 1]

[3 0 0 -1]
sage: gap.eval ("G := Group((1,2) (3,4),(1,2,3))™")

37

Sage Constructions, Release 7.6

"Group ([(1,2)(3,4), (1,2,3) 1)
sage: gap.eval("T := CharacterTable(G)")

'CharacterTable(A1t ([1 .. 4 1))"
sage: print (gap.eval ("Display(T)"))
CT2
2 2 2
31 1 1
la 3a 3b 2a
2P la 3b 3a 1la
3P la la la 2a
X.1 11 1 1
X.2 1 A /A 1
X.3 1 /A A 1
X.4 3 -1
A = E(3)"2
= (-1-Sgrt(-3))/2 = -1-b3

where E(3) denotes a cube root of unity, ER(—3) denotes a square root of —3, say i1/3, and b3 = 1(—1 +i/3).
Note the added print Python command. This makes the output look much nicer.

sage: print (gap.eval ("irr := Irr(
[Character (CharacterTable (Alt (
Character (CharacterTable(Alt (

((

((

~

\\
e
o~

Character (CharacterTable
Character (CharacterTable
sage: print (gap.eval ("Display(irr)")
[I 1, 1, 1, 1
[1, E(3)"2, E(3), 1

[1, E(3), E(3)"2, 1

1

s

3

NG NN NN
<~ ~

W = e

N

o =

~ —_

~

[3, 0, 0, -
sage: gap.eval ("CG := ConjugacyClasse
I (O)"G, (2,3,4)°G, (2,4,3)°G, (1,2)(
sage: gap.eval ("gamma := CG[3]")
'(2,4,3)"G!
sage: gap.eval("g := Representative (gamma)")

'(2,4,3)"

sage: gap.eval("chi := irr[2]")

'Character (CharacterTable(A1t ([1 .. 4 1)), [1, E(3)"2, E(3), 1 1)"
sage: gap.eval("g”chi")

IE(B)I

This last quantity is the value of the character chi at the group element g .

Alternatively, if you turn IPython “pretty printing” off, then the table prints nicely.

sage: S%Pprint

Pretty printing has been turned OFF

sage: gap.eval ("G := Group((1,2)(3,4),(1,2,3))")
'Group ([(1,2)(3,4), (1,2,3) 1)

sage: gap.eval ("T := CharacterTable(G)")

'CharacterTable(A1t ([1 .. 4 71))'
sage: gap.eval ("Display (T)")
CT3

38 Chapter 6. Representation theory

Sage Constructions, Release 7.6

la 2a 3a 3b
2P la la 3b 3a
3P la 2a la 1la

X.1 11 1 1

X.2 1 1 A /A

X.3 1 1 /A A

X.4 3 -1

A = E(3)"2
= (-1-Sgrt(-3))/2 = -1-b3

sage: gap.eval ("irr := Irr(G)")

[Character (CharacterTable(Alt([1 4 1))y)y, 1, 1, 1, 1 1),
Character (CharacterTable(Alt([1 4 1)), [1, 1, E(3)"2, E(3) 1),
Character (CharacterTable(A1t ([1 41)y, [1, 1, E(3), E(3)*2 1),
Character (CharacterTable(A1t ([1 417)y), [3, -1, 0, 01) 1]

sage: gap.eval ("Display (irxr)")

[0 1, 1, 1, 11,

[1, 1, E(3)"2, E(3) 1,
[1, 1, E(3), E(3)"2 1,
[3, -1, 0, 01 1]

sage: %Pprint
Pretty printing has been turned ON

6.2 Brauer characters

The Brauer character tables in GAP do not yet have a “native” interface. To access them you can directly interface
with GAP using pexpect and the gap .eval command.

The example below using the GAP interface illustrates the syntax.

sage: print (gap.eval ("G := Group((1,2) (3,4),(1,2,3))"))
Group ([(1,2)(3,4), (1,2,3) 1)
sage: print (gap.eval("irr := IrreducibleRepresentations(G,GF(7))")) # random arch.
—dependent output
[[(1,2)(3,4), (1,2,3) 1 > [0 [z(nh~o 11, [[z(M~4 111,
[(1,2)(3,4), (L,2,3) 1 > [0 [[Lz(m~0 11, [T z(Hh*2 111,
[(1,2)3,4), (,2,3) 1 > [[[z(M~0o 711, [[z(1H"0 1 11,
[(1,2)(3,4), (1,2,3) 1 —>
L[[T z(nr2, 215, 2(7) 1, [2(N1)"3, z2(1)"2, Z2(7)"3 1,
[2(7), 2(7)"5, Z2(1)"2 1 1,
[

0xZ(7), 2(7)"0, 0xz(7) 1, [0%2(7), 0xZ(7), Z(7)"0 1,
[2(7)70, 0x2(7), O0xz2(7) 1 1 1]
sage: gap.eval ("brvals := List (irr,chi->List (ConjugacyClasses (G),c—>

—BrauerCharacterValue (Image (chi, Representative(c)))))")
T
sage: print (gap.eval ("Display (brvals)")) # random architecture dependent
—output
[0 1, 1, E(3)"2, E(3) 1,
[1, 1, E(3), E(3)"2],
[1, 1, 1, 11,
[3, -1, 0, 011
sage: print(gap.eval ("T := CharacterTable(G)"))

6.2. Brauer characters 39

Sage Constructions, Release 7.6

CharacterTable(A1t ([1 .. 4 1))
sage: print (gap.eval ("Display(T)"))
CT3

2 2 2

31 1 1

la 3a 3b 2a
2P la 3b 3a 1la
3P la la la 2a

X.1 11 1 1
X.2 1 A /A 1
X.3 1 /A A 1
X.4 3 . -1
A = E(3)"2
= (-1-Sgrt(-3))/2 = -1-b3

40 Chapter 6. Representation theory

CHAPTER
SEVEN

RINGS

7.1 Matrix rings

How do you construct a matrix ring over a finite ring in Sage? The Mat rixSpace constructor accepts any ring as a
base ring. Here’s an example of the syntax:

sage: R = IntegerModRing(51)
sage: M = MatrixSpace (R, 3,3)
sage: M(0)

[0 0 0]
[0 0 0]
[0 0 0]
sage: M
[1 0 0]
[0 1 0]
[0 0 1]
sage: 5
[5 0 0]
[0 5 0]
[0 0 5]

7.2 Polynomial rings

How do you construct a polynomial ring over a finite field in Sage? Here’s an example:

sage: R = PolynomialRing(GF (97), 'x")

sage: x = R.gen()
sage: f = x"2+7
sage: f in R
True

Here’s an example using the Singular interface:

sage: R = singular.ring (97, '(a,b,c,d)', '"lp'")

sage: I = singular.ideal(['atb+c+d', 'ab+ad+bc+cd', 'abct+abd+tacd+bed', 'abcd-1'])
sage: R

polynomial ring, over a field, global ordering

// characteristic : 97

// number of vars : 4

// block 1 : ordering lp

// : names abcd

// block 2 : ordering C

41

Sage Constructions, Release 7.6

sage: I

atb+c+d,

a*b+a*xd+bxc+cxd,
axbxctaxbxdtaxcxdtbrcxd,
axbxcxd-1

Here is another approach using GAP:

sage: R = gap.new("PolynomialRing (GEF (97), 4)"); R
PolynomialRing (GF (97), ["x_1", "x_2", "x_3", "x_4"])
sage: I = R.IndeterminatesOfPolynomialRing(); I

[x 1, x 2, x_ 3, x_ 4]

sage: vars = (I.name(), I.name(), I.name(), I.name())

sage: _ = gap.eval(

e "x_ 0 := %s[1l];; x_1 := %s[2];; x_2 := %s[3];;x_3 := %s[4]1;;"
et % vars)

sage: f = gap.new("x_1lxx_2+x _3"); £
X_2*xX_3+x_4

sage: f.value(I,[1,1,1,11])

Z(97)"34

7.3 p-adic numbers

How do you construct p-adics in Sage? A great deal of progress has been made on this (see SageDays talks by David
Harvey and David Roe). Here only a few of the simplest examples are given.

To compute the characteristic and residue class field of the ring Zp of integers of Qp , use the syntax illustrated by the
folowing examples.

sage: K = Qp(3)

sage: K.residue_class_field()
Finite Field of size 3

sage: K.residue_characteristic()

3
sage: a = K(1); a
1 + 0(3720)

sage: 82x*a

1 + 3% + 0(3720)
sage: l1l2xa

3 + 372 + 0(3721)
sage: a in K

True

sage: b = 82xa

sage: b"4

1 + 374 + 3"5 + 2379 + 3712 + 3713 + 3716 + 0(3720)

7.4 Quotient rings of polynomials

How do you construct a quotient ring in Sage?

We create the quotient ring GF'(97)[z]/(2* + 7), and demonstrate many basic functions with it.

42 Chapter 7. Rings

Sage Constructions, Release 7.6

sage: R = PolynomialRing(GF (97), 'x")
sage: x = R.gen()

sage: S = R.quotient (x"3 + 7, 'a')
sage: a = S.gen()

sage: S

Univariate Quotient Polynomial Ring in a over Finite Field of size 97 with
modulus x"3 + 7
sage: S.is_field()

True
sage: a in S
True
sage: x in S
True

sage: S.polynomial_ring/()
Univariate Polynomial Ring in x over Finite Field of size 97
sage: S.modulus ()

x"3 + 7
sage: S.degree()
3

In Sage, in means that there is a “canonical coercion” into the ring. So the integer = and a are both in S, although =
really needs to be coerced.

You can also compute in quotient rings without actually computing then using the command quo_rem as follows.

sage: R PolynomialRing (GF (97), 'x")
sage: Xx R.gen ()

sage: f = x"7+1

sage: (f£73).quo_rem(x"7-1)

(x*14 + 4%xx~7 + 7, 8)

7.4. Quotient rings of polynomials 43

Sage Constructions, Release 7.6

44 Chapter 7. Rings

CHAPTER
EIGHT

8.1 Polynomial powers

How do I compute modular polynomial powers in Sage?

POLYNOMIALS

To compute 22°°0 (mod 23 + 7) in GF(97)[z], we create the quotient ring GF(97)[z] /(23 + 7), and compute 2:2°°°
in it. As a matter of Sage notation, we must distinguish between the in GF'(97)[x] and the corresponding element

(which we denote by a) in the quotient ring GF(97)[z]/(z® + 7).

sage: R = PolynomialRing(GF (97), 'x")
sage: x = R.gen()

sage: S = R.quotient(x"3 + 7, 'a')
sage: a = S.gen{()

sage: S

Univariate Quotient Polynomial Ring in a over
Finite Field of size 97 with modulus x"3 + 7
sage: a"~2006

4xa”2

Another approach to this:

sage: R = PolynomialRing(GF (97), 'x")

sage: X R.gen ()

sage: S = R.quotient(x"3 + 7, 'a')

sage: a = S.gen{()

sage: a”~20062006

80*a

sage: print (gap.eval ("R:= PolynomialRing(GE(97))"))
GF (97) [x_1]

sage: print (gap.eval("i:= IndeterminatesOfPolynomialRing(R)"))
[x_ 1]

sage: gap.eval ("x:= 1i[1];; f:= x;;")

sage: print (gap.eval ("PowerMod(R, x, 20062006, x"3+7);"))
Z(97)"M1xx_1

sage: print (gap.eval ("PowerMod(R, x, 20062006, x"3+7);"))
Z(97)M1xx_1

sage: print (gap.eval ("PowerMod(R, x, 2006200620062006, x"3+7);"))
7(97) Mxx_1"2

sage: a”2006200620062006

43%xa”2

sage: print (gap.eval ("PowerMod(R, x, 2006200620062006, x"3+7);"))
7(97)Mxx_1"2

sage: print (gap.eval ("Int (Z(97)74)"))

43

45

Sage Constructions, Release 7.6

8.2 Factorization

You can factor a polynomial using Sage.

Using Sage to factor a univariate polynomial is a matter of applying the method factor to the PolynomialRingFEle-
ment object f. In fact, this method actually calls Pari, so the computation is fairly fast.

sage: x = PolynomialRing (RationalField(), 'x'").gen()

sage: £ = (x"3 - 1)"2-(x"2-1)"2
sage: f.factor()
(x = 1)72 % X2 * (x"2 + 2+x + 2)

Using the Singular interface, Sage also factors multivariate polynomials.

sage: x, y = PolynomialRing(RationalField(), 2, ['x','y']).gens()

sage: £ = (9%xy"6 — 94x"2xy"5 - 18xx"3xy"4 — 9xx"5xy"4 + 9xx"0xy"2 + 9xx"Txy”3
et + 18xx"8*y"2 — 9xx"11)

sage: f.factor()

(9) * (=x"5 + y"2) * (X6 — 24x"3xy"2 — x"2xy"3 + y"4)

8.3 Polynomial GCD’s

This example illustrates single variable polynomial GCD’s:

sage: x = PolynomialRing (RationalField(), 'x'").gen()
sage: f = 3%xx"3 + x

sage: g = 9xxx*(x+1l)

sage: f.gcd(g)

X

This example illustrates multivariate polynomial GCD’s:

sage: R = PolynomialRing(RationalField(),3, ['x','y','z"'], 'lex")

sage: xX,y,z = PolynomialRing(RationalField(),3, ['x','y','z"'], 'lex').gens()
sage: f = 34x"2x(x+y)

sage: g = 9xxx(y"2 - x"2)

sage: f.gcd(g)

X2+ XKy

Here’s another way to do this:

sage: R2 = singular.ring(0, '(x,v,z)', 'lp'")

sage: a = singular.new('3x2x (xty)")
sage: b = singular.new ('9xx (y2-x2)")
sage: g = a.gcd(b)

sage: g

XN2+x*y

This example illustrates univariate polynomial GCD’s via the GAP interface.

46 Chapter 8. Polynomials

Sage Constructions, Release 7.6

sage: R = gap.PolynomialRing(gap.GF(2)); R
PolynomialRing (GF (2), ["x_1"]

sage: 1 = R.IndeterminatesOfPolynomialRing(); i
[x 1]

sage: x_1 = 1i[1]

sage: f = (x_173 - x_1 + 1)x(x_1 + x_1"2); £

x_1"5+x_1"M+x_1"3+x_1
sage: g = (x_1"3 - x_1 +
X_1"M4x_1"3+x_1"2+7(2)"0
sage: f.Gcd(g)
xX_1M44x_1"3+x_1"2+7Z(2) "0

s« (x_1 + 1); g

We can, of course, do the same computation in , which uses the NTL library (which does huge polynomial gcd’s over
finite fields very quickly).

sage: x = PolynomialRing(GF (2), 'x').gen()
sage: f = (x"3 - x + 1)*x(x + x°2); £

x5 + x4 + x"3 + x

sage: g = (x"3 — x + 1)x(x + 1)

sage: f.gcd(g)
X"+ x"3 + x*"2 + 1

8.4 Roots of polynomials

Sage can compute roots of a univariant polynomial.

sage: x = PolynomialRing (RationalField(), 'x'").gen()
sage: f = x"3 - 1

sage: f.roots()

[(1, 1)]

sage: £ = (x"3 - 1)"2

sage: f.roots|()

[(1, 2)]

sage: x = PolynomialRing (CyclotomicField(3), 'x').gen()
sage: f = x"3 -1

sage: f.roots()

[(1, 1), (zeta3, 1), (-zeta3 - 1, 1)]

The first of the pair is the root, the second of the pair is its multiplicity.

There are some situations where GAP does find the roots of a univariate polynomial but GAP does not do this generally.
(The roots must generate either a finite field or a subfield of a cyclotomic field.) However, there is a GAP package
called RadiRoot , which must be installed into ‘s installation of GAP, which does help to do this for polynomials
with rational coefficients (radiroot itself requires other packages to be installed; please see its webpage for more
details). The Factors command actually has an option which allows you to increase the groundfield so that a
factorization actually returns the roots. Please see the examples given in section 64.10 “Polynomial Factorization” of
the GAP Reference Manual for more details.

8.5 Evaluation of multivariate functions

You can evaluate polynomials in Sage as usual by substituting in points:

8.4. Roots of polynomials 47

Sage Constructions, Release 7.6

sage: x = PolynomialRing (RationalField(), 3, 'x').gens/()
sage: £ = x[0] + x[1] - 2xx[1]*x[2]

sage: f

—2xx1+x2 + x0 + x1

sage: f(1,2,0)

3

sage: f(1,2,5)

-17

This also will work with rational functions:

sage: h = £ /(x[1] + x[2])
sage: h

(-2*x1*x2 + x0 + x1)/(x1 + x2)
sage: h(1,2,3)

-9/5

Sage also performs symbolic manipulation:

sage: var('x,y,z")

(%, vy, 2z)

sage: f = (x + 3xy + x"2xy)"3; £

(x"2*y + x + 3%y) "3

sage: f(x=1,y=2,2z=3)

729

sage: f.expand()

XM6xyN3 + 3xxM54yt2 + 9xxM4xyt3 4+ 3xxMxy + 18xx"3xy"2 +
2T*x"2%xy"3 +

X3 4+ 9xx"2xy + 274xxy"2 + 27+y"3

sage: f(x = 5/z)

(3xy + 25%y/z"2 + 5/z)"3

sage: g = f.subs(x = 5/2z); g

(3xy + 25%y/z"2 + 5/z)"3

sage: h = g.rational_simplify(); h

(27*y"3%z276 + 135%y"2%z"5 + 225% (3xy"3 + y)*z"4 + 125% (18%y"2 + 1)*xz"3 +
15625xy~3 + 9375%xy"2%z + 1875% (3xy"3 + y)*xz"2)/z"6

8.6 Roots of multivariate polynomials

Sage (using the interface to Singular) can solve multivariate polynomial equations in some situations (they assume
that the solutions form a zero-dimensional variety) using Grobner bases. Here is a simple example:

sage: R = PolynomialRing(QQ, 2, 'ab', order='lp')
sage: a,b = R.gens()

sage: I = (a”"2-b"2-3, a-2xb)=*R

sage: B I.groebner_basis(); B

[a - 2+b, b2 - 1]

Sob = =1and a = 2b.

8.7 Grobner bases

This computation uses Singular behind the scenes to compute the Grobner basis.

48 Chapter 8. Polynomials

Sage Constructions, Release 7.6

sage: R = PolynomialRing(QQ, 4, 'abcd', order='lp')
sage: a,b,c,d = R.gens()
sage: I = (atbtct+d, axbtaxdtbxctcxd, axbrctaxbrdtarcrd+bxrcxd, axbrcxd-1)+*R; I
Ideal (a + b + ¢ + d, a*b + axd + bxc + cxd, axbxc + axbxd + axcxd + bxcxd,
axbxcxd - 1) of Multivariate Polynomial Ring in a, b, ¢, d over Rational Field
sage: B = I.groebner_basis(); B

[a + b+ c + d,

b*2 + 2+bxd + d*2,

bxc - b*xd + c"2xd™4 + cxd - 2%d"2,

bxd*4 - b + d*5 - d,

c”"3xd”2 + c¢c"2%xd”"3 - ¢ - d,

c"2+xd”6 - c”2xd”2 - d"4 + 1]

You can work with multiple rings without having to switch back and forth like in Singular. For example,

sage: a,b,c = QQ['a,b,c"].gens()
sage: X,Y = GF(7)['X,Y"].gens ()
sage: I = ideal(a, b"2, b"3+c”3)
sage: J = ideal (X"10 + Y~10)

sage: I.minimal_associated_primes ()
[Ideal (c, b, a) of Multivariate Polynomial Ring in a, b, c over Rational Field]

sage: J.minimal_associated_primes () # slightly random output

[Ideal (Y"4 + 3xX*xY"3 + 4%X"2xY"2 + 4%X"3xY + X*4) of Multivariate Polynomial
Ring in X, Y over Finite Field of size 7,

Ideal (Y"4 + 4%X+Y"3 + 4xX"24Y"2 + 3xX"3%Y + X*4) of Multivariate Polynomial
Ring in X, Y over Finite Field of size 7,

Ideal (Y¥"2 + X*2) of Multivariate Polynomial Ring in X, Y over Finite Field
of size 7]

All the real work is done by Singular.

Sage also includes gfan which provides other fast algorithms for computing Grobner bases. See the section on
“Grobner fans” in the Reference Manual for more details.

8.7. Grobner bases 49

Sage Constructions, Release 7.6

50 Chapter 8. Polynomials

CHAPTER
NINE

ELEMENTARY NUMBER THEORY

9.1 Taking modular powers

How do I compute modular powers in Sage?

To compute 512°°° (mod 97) in Sage, type

sage: R = Integers(97)
sage: a = R(51)

sage: a”2006

12

Instead of R = Integers (97) youcanalsotype R = IntegerModRing (97) . Another option is to use the
interface with GMP:

sage: 51.powermod(99203843984,97)
96

9.2 Discrete logs

To find a number z such that b* = a (mod m) (the discrete log of @ (mod m)), you can call ‘s 1log command:

sage: r = Integers(125)

sage: b = r.multiplicative_generator()”"3
sage: a = b"17

sage: a.log(b)

17

This also works over finite fields:

sage: FF = FiniteField(16,"a")

sage: a = FF.gen()
sage: c = a”’7
sage: c.log(a)

-

9.3 Prime numbers

How do you construct prime numbers in Sage?

51

Sage Constructions, Release 7.6

The class Primes allows for primality testing:

sage: 27 (2712)+1 in Primes|()
False

sage: 11 in Primes|()

True

The usage of next_prime is self-explanatory:

sage: next_prime (2005)
2011

The Pari command primepi is used via the command pari (x) .primepi () . This returns the number of primes
< z, for example:

sage: pari(10) .primepi ()
4

Using primes_first_n orprimes one can check that, indeed, there are 4 primes up to 10:

sage: primes_first_n(5)
[2, 3, 5, 7, 11]

sage: list (primes(1l, 10))
[2, 3, 5, 7]

9.4 Divisors

How do you compute the sum of the divisors of an integer in Sage?

Sage uses divisors (n) for the list of divisors of n, number_of_divisors (n) for the number of divisors
of n and sigma (n, k) for the sum of the k-th powers of the divisors of n (so number_of_divisors (n) and
sigma (n, 0) are the same).

For example:

sage: divisors (28); sum(divisors(28)); 2%28
(1, 2, 4, 7, 14, 28]

56

56

sage: sigma(28,0); sigma(28,1); sigma(28,2)
6

56

1050

9.5 Quadratic residues

Try this:

sage: Q = quadratic_residues (23); Q

(o, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]

sage: N = [x for x in range(22) if kronecker(x,23)==-1]; N
(s, 7, 10, 11, 14, 15, 17, 19, 20, 21]

52 Chapter 9. Elementary number theory

Sage Constructions, Release 7.6

Q is the set of quadratic residues mod 23 and N is the set of non-residues.

Here is another way to construct these using the kronecker command (which is also called the “Legendre symbol”):

sage: [x for x in range (22) if kronecker(x,23)==1]
(1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]
sage: [x for x in range (22) if kronecker (x,23)==-1]

(5, 7, 10, 11, 14, 15, 17, 19, 20, 21]

9.5. Quadratic residues 53

Sage Constructions, Release 7.6

54 Chapter 9. Elementary number theory

CHAPTER
TEN

MODULAR FORMS

One of ‘s computational specialities is (the very technical field of) modular forms and can do a lot more than is even
suggested in this very brief introduction.

10.1 Cusp forms

How do you compute the dimension of a space of cusp forms using Sage?

To compute the dimension of the space of cusp forms for Gamma use the command dimension_cusp_forms .
Here is an example from section “Modular forms” in the Tutorial:

sage: dimension_cusp_forms (GammaO (11),2)

1

sage: dimension_cusp_forms (GammaO (1), 12)

1

sage: dimension_cusp_forms (Gammal (389),2)

6112

Related commands: dimension_new__cusp_forms_gamma0 (for dimensions of newforms),

dimension_modular_forms (for modular forms), and dimension_eis (for Eisenstein series). The
syntax is similar - see the Reference Manual for examples.

In future versions of Sage, more related commands will be added.

10.2 Coset representatives

The explicit representation of fundamental domains of arithmetic quotients H /T" can be determined from the cosets of
I"in SLy(Z). How are these cosets computed in Sage?

Here is an example of computing the coset representatives of SLa(Z)/T'o(11):

sage: G = GammaO(11l); G
Congruence Subgroup GammaO (11)
sage: list (G.coset_reps())

[
(ro;] r0-1;7 (20 [(O0-1] [O0-1] [0-1] [O0-1] [0 -1]
[0 11, [1 1

0 -1] [0 -1] [0 -1] [0 -1]
1 7

[
[I, 01 8], 01 91, [110]
]

55

Sage Constructions, Release 7.6

10.3 Modular symbols and Hecke operators

Next we illustrate computation of Hecke operators on a space of modular symbols of level 1 and weight 12.

sage: M = ModularSymbols(1l,12)

sage: M.basis ()

([X*8%xY"2, (0,0)], [X"9xY, (0,0)]1, [X~10, (0,0)])
sage: t2 = M.T(2)

sage: f = t2.charpoly('x"); £

X3 = 2001xx"2 — 97776xx — 1180224

sage: factor (f)

(x — 2049) % (x + 24)"2

sage: M.T(11l) .charpoly('x"').factor()

(x — 285311670612) * (x — 534612)"2

Here t2 represents the Hecke operator T5 on the space of Full Modular Symbols for T'g(1) of weight 12 with sign 0
and dimension 3 over Q.

sage: M = ModularSymbols (Gammal (6),3,sign=0)

sage: M

Modular Symbols space of dimension 4 for Gamma_1(6) of weight 3 with sign 0

and over Rational Field

sage: M.basis()

([X, (0,51, [X,(3,2)], [X,(4,5) 1, [X,(5,4)])

sage: M._compute_hecke_matrix_prime (2) .charpoly ()

XM - 17xx"2 + 16

sage: M.integral_structure ()

Free module of degree 4 and rank 4 over Integer Ring

Echelon basis matrix:

[1 00 0]

[0 1 0]

[0 0O 0]
0 1]

0
1
[0 0

See the section on modular forms in the Tutorial or the Reference Manual for more examples.

10.4 Genus formulas

Sage can compute the genus of X, (NV), X1 (N), and related curves. Here are some examples of the syntax:

sage: dimension_cusp_forms (GammaO (22))

2
sage: dimension_cusp_forms (GammaO (30))
3
sage: dimension_cusp_forms (Gammal (30))
9

See the code for computing dimensions of spaces of modular forms (in sage/modular/dims.py) or the paper
by Oesterlé and Cohen {CO} for some details.

56 Chapter 10. Modular forms

CHAPTER
ELEVEN

ELLIPTIC CURVES

11.1 Conductor

How do you compute the conductor of an elliptic curve (over Q) in Sage?

Once you define an elliptic curve E in Sage, using the E11ipticCurve command, the conductor is one of several
“methods” associated to F2. Here is an example of the syntax (borrowed from section 2.4 “Modular forms” in the
tutorial):

sage: E = EllipticCurve([1,2,3,4,5])

sage: E

Elliptic Curve defined by y"2 + x*xy + 3xy = x"3 + 2xx"2 + 4xx + 5 over
Rational Field

sage: E.conductor ()

10351

11.2 j-invariant

How do you compute the j-invariant of an elliptic curve in Sage?

Other methods associated to the EllipticCurve class are j_invariant , discriminant , and
weierstrass_model . Here is an example of their syntax.

sage: E = EllipticCurve ([0, -1, 1, -10, -201)

sage: E

Elliptic Curve defined by y*"2 + v = x*3 - x”2 - 10xx - 20 over Rational Field
sage: E.Jj_invariant ()

-122023936/161051

sage: E.short_weierstrass_model ()

Elliptic Curve defined by y"2 = x"3 - 13392%x - 1080432 over Rational Field
sage: E.discriminant ()

-161051

sage: E = EllipticCurve (GF (5), [
sage: E.short_weierstrass_model
Elliptic Curve defined by y"2
sage: E.Jj_invariant ()

4

-1, 1, -10, -201)

0,
0

x"3 + 3xx + 3 over Finite Field of size 5

57

Sage Constructions, Release 7.6

11.3 The G F(q)-rational points on E

How do you compute the number of points of an elliptic curve over a finite field?

Given an elliptic curve defined over F = GF(q), Sage can compute its set of F-rational points

sage: E = EllipticCurve(GF(5), [0, -1, 1, -10, -201])

sage: E

Elliptic Curve defined by y"2 + y = x"3 + 4%x"2 over Finite Field of size 5
sage: E.points /()

(¢0 : 0 1), (0 :1:0), (0 :4:1)y, (L :0=: 1), (1L : 4 : 1)]

sage: E.cardinality()

5
sage: G = E.abelian_group ()
sage: G

Additive abelian group isomorphic to Z/5 embedded in Abelian group of points on,,
—Elliptic Curve defined by y"2 + v = x"3 + 4%x”2 over Finite Field of size 5
sage: G.permutation_group ()

Permutation Group with generators [(1,2,3,4,5)]

11.4 Modular form associated to an elliptic curve over Q

Let E be a “nice” elliptic curve whose equation has integer coefficients, let N be the conductor of E and, for each n, let
a,, be the number appearing in the Hasse-Weil L-function of E. The Taniyama-Shimura conjecture (proven by Wiles)
states that there exists a modular form of weight two and level N which is an eigenform under the Hecke operators
and has a Fourier series), a,¢". Sage can compute the sequence a,, associated to E. Here is an example.

sage: E = EllipticCurve([O, -1, 1, -10, —-201)

sage: E

Elliptic Curve defined by y"2 + yv = x*3 - x*2 - 10xx - 20 over Rational Field
sage: E.conductor ()

11

sage: E.anlist (20)

(o, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
sage: E.analytic_rank()

0

58 Chapter 11. Elliptic curves

CHAPTER
TWELVE

NUMBER FIELDS

12.1 Ramification

How do you compute the number fields with given discriminant and ramification in Sage?

Sage can access the Jones database of number fields with bounded ramification and degree less than or equal to 6. It
must be installed separately (database_jones_numfield).

First load the database:

sage: J = JonesDatabase() # optional - database
sage: J # optional - database
John Jones's table of number fields with bounded ramification and degree <= 6

List the degree and discriminant of all fields in the database that have ramification at most at 2:

sage: [(k.degree(), k.disc()) for k in J.unramified_outside([2])] # optional —_,
—database

[(4, -2048), (2, 8), (4, -1024), (1, 1), (4, 256), (2, -4), (4, 2048), (4, 512), (4
—2048), (2, -8), (4, 2048)]

Ly

List the discriminants of the fields of degree exactly 2 unramified outside 2:

sage: [k.disc() for k in J.unramified_outside([2],2)] # optional - database
[8l 74! 781

List the discriminants of cubic field in the database ramified exactly at 3 and 5:

sage: [k.disc() for k in J.ramified_at([3,5]1,3)] # optional - database
[-6075, -6075, -675, -135]

sage: factor (6075)

375 % 572

sage: factor (675)

373 % 572

sage: factor(135)

373 x5

List all fields in the database ramified at 101:

sage: J.ramified_at (101) # optional - database

[Number Field in a with defining polynomial x*2 - 101,

Number Field in with defining polynomial x4 - x*3 + 13%x"2 - 19%x + 361,

Number Field in with defining polynomial x"5 - x*4 — 40%x"3 - 93xx"2 - 21xx + 17,
Number Field in with defining polynomial x5 + x*4 - 6%x"3 — x"2 + 18xx + 4,
Number Field in with defining polynomial x"5 + 2xx"4 + 7%x"3 + 4%xx"2 + 1lxx — 6]

JURE)

59

Sage Constructions, Release 7.6

12.2 Class numbers

How do you compute the class number of a number field in Sage?

The class_number is a method associated to a QuadraticField object:

sage: K = QuadraticField (29, 'x'")
sage: K.class_number ()

1

sage: K = QuadraticField (65, 'x'")

sage: K.class_number ()

2

sage: K = QuadraticField(-11, 'x'")

sage: K.class_number ()

1

sage: K = QuadraticField(-15, 'x'")

sage: K.class_number ()

2

sage: K.class_group()

Class group of order 2 with structure C2 of Number Field in x with defining
polynomial x"2 + 15

sage: K = QuadraticField (401, 'x'")

sage: K.class_group ()

Class group of order 5 with structure C5 of Number Field in x with defining
polynomial x"2 - 401

sage: K.class_number ()

5

sage: K.discriminant ()

401

sage: K = QuadraticField(-479, 'x'")

sage: K.class_group()

Class group of order 25 with structure C25 of Number Field in x with defining
polynomial x*2 + 479

sage: K.class_number ()

25

sage: K.pari_polynomial ()
x"2 + 479

sage: K.degree()

2

Here’s an example involving a more general type of number field:

sage: x = PolynomialRing(QQ, 'x') .gen()

sage: K = NumberField(x"5+10xx+1, 'a')

sage: K

Number Field in a with defining polynomial x”5 + 10xx + 1
sage: K.degree ()

5

sage: K.pari_polynomial ()

x"5 + 10xx + 1

sage: K.discriminant ()

25603125

sage: K.class_group ()

Class group of order 1 of Number Field in a with defining
polynomial x*5 + 10%x + 1

sage: K.class_number ()

1

60 Chapter 12. Number fields

Sage Constructions, Release 7.6

* See also the link for class numbers at http://mathworld.wolfram.com/ClassNumber.html at the Math World site
for tables, formulas, and background information.

* For cyclotomic fields, try:

sage: K = CyclotomicField(19)
sage: K.class_number () # long time
1

For further details, see the documentation strings in the ring/number_field.py file.

12.3 Integral basis

How do you compute an integral basis of a number field in Sage?

Sage can compute a list of elements of this number field that are a basis for the full ring of integers of a number field.

sage: x = PolynomialRing (QQ, 'x').gen()
sage: K = NumberField (x"5+10xx+1, 'a')
sage: K.integral_basis ()

[1, a, a~2, a3, a"4]

Next we compute the ring of integers of a cubic field in which 2 is an “essential discriminant divisor”, so the ring of
integers is not generated by a single element.

sage: x = PolynomialRing (QQ, 'x'").gen()

sage: K = NumberField(x"3 + x"2 - 2xx + 8, 'a')
sage: K.integral_basis ()

[1, 1/2xa”2 + 1/2%a, a"2]

12.3. Integral basis 61

http://mathworld.wolfram.com/ClassNumber.html

Sage Constructions, Release 7.6

62 Chapter 12. Number fields

CHAPTER
THIRTEEN

ALGEBRAIC GEOMETRY

13.1 Point counting on curves

How do you count points on an elliptic curve over a finite field in Sage?

Over prime finite fields, includes both the baby step giant step method and the SEA (Schoof-Elkies-Atkin) algorithm
(implemented in PARI by Christophe Doche and Sylvain Duquesne). An example taken form the Reference manual:

sage: E = EllipticCurve (GF(10007),[1,2,3,4,51)
sage: E.cardinality()
10076

The command E.points () will return the actual list of rational points.

How do you count points on a plane curve over a finite field? The rational_points command produces points
by a simple enumeration algorithm. Here is an example of the syntax:

sage: x,y,z = PolynomialRing(GF (5), 3, 'xyz').gens()

sage: C = Curve(y"2%z"7 - x*9 - x%xz78); C

Projective Plane Curve over Finite Field of size 5 defined by -x"9 + y"2%z"7 — x*xz"8
sage: C.rational_points ()

[¢<0: 0 1), (O 1 :0), (2 :2 1)y, (2 :+3 :1), (3 :1 1), (3 :4 : 1)1

sage: C.rational_points(algorithm="bn")

[(O00: 0 : 1), (O :1 :0), (2 :2 1), (2 :3 :1), (3 :1 1), (3 :4 : 1))

The option algorithm="bn uses Sage’s Singular interface and calls the brnoeth package.

Here is another example using Sage’s rational_points applied to Klein’s quartic over GF'(8).

sage: x, y, z = PolynomialRing(GF (8,'a'), 3, 'xyz').gens/()

sage: f = x"3xy+ty"3xz+x*xz"3

sage: C = Curve(f); C

Projective Plane Curve over Finite Field in a of size 273 defined by x"3*xy + y"3*xz +_
—x*z"3

sage: C.rational_points ()

[(0

o
0 O = O
o

a2 : 1),
ar2 + a

a2 : 1),
a2 + 1 : 1),

P ra R RRS

63

Sage Constructions, Release 7.6

(a + 1 a2 1),

(a + 1 a2 + a + 1 1),
(a2 1 : 1),

(ar2 a2 +a : 1),

(a”2 : a”2 +a +1 : 1),
(a”2 +1 : a+1 : 1),

(a2 +1 : a*2 + 1 : 1),
(a”2 + 1 : a”2 + a : 1),
(a”2 +a 1 : 1),

(a2 +a :a : 1),

(a2 + a : a + 1 1),

(a2 + a + 1 a : 1),

(a”2 + a + 1 a2 + 1 1),
(a”2 + a + 1 a2 + a + 1 1)1

13.1.1 Other methods

¢ For a plane curve, you can use Singular’s closed_points command. The input is the vanishing ideal I of

the curve X in a ring of 2 variables F'[z,y]. The closed_points command returns a list of prime ideals
(each a Grobner basis), corresponding to the (distinct affine closed) points of V' (I). Here’s an example:

sage: singular_console ()
SINGULAR / Development
A Computer Algebra System for Polynomial Computations / version 3-0-1
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ October 2005

FB Mathematik der Universitaet, D-67653 Kaiserslautern \
// %% executing /home/wdj/sagefiles/sage-0.9.4/local/LIB/.singularrc
> LIB "brnoeth.lib";
> ring s = 2, (x,v),1p;
> ideal I = x4+x,y4+y;
> list L = closed_points(I);
> L
[1]:

_[1] =y

_[21 = x
[2]:

_[1] =y

_[2] = x+1
[3]:

_[1] =y

_[2] = x2+x+1
[4]:

_[1] = y+1

_[21 = x
[5]:

_[1] = y+1

_[2] = x+1
[6]:

_[1] = y+1

_[2] = x2+x+1
[7]:

_[1] = y2+y+1

_[2] = x+1
[8]:

_[1] = y2+y+1

64 Chapter 13. Algebraic Geometry

Sage Constructions, Release 7.6

_[2] = x
[9]
_[1] = y2+y+l
_[2] = x+y
[107]:
_[1] = y2+y+l
[2] = x+y+1

> Auf Wiedersehen.

sage: singular.lib("brnoeth.lib")

sage: s = singular.ring(2,'(x,vy)"',"'1lp")
sage: I = singular.ideal (' [x"4+x, y™4+y]")
sage: L = singular.closed_points(I)

sage: # Here you have all the points
sage: print (L)

[1]:
_[1]=y+1 # 32-bit
_[21=x+1 # 32-bit
_[11=y # 64-bit
[2]=x # 64-bit

* Another way to compute rational points is to use Singular’s NSplaces command. Here’s the Klein quartic
over GF'(8) done this way:

sage: singular.LIB("brnoeth.lib")
sage: s = singular.ring(2,'(x,vy)"',"'lp")

sage: f = singular.poly ('x3y+y3+x")

sage: kleinl = f.Adj_div(); print(kleinl)

[17:
[1]:
// characteristic : 2
// number of vars : 2
// block 1 : ordering 1lp
// : names Xy
// block 2 : ordering C

sage: # define a curve X = {(f = 0} over GF(2)

sage: klein2 = singular.NSplaces(3,kleinl)

sage: print (singular.eval ('extcurve (3, ss) 'sklein2.name()))
Total number of rational places : NrRatPl = 23

sage: klein3 = singular.extcurve (3, klein2)

Above we defined a curve X = {f = 0} over GF(8) in Singular.

sage: print (kleinl)

[17:

[17:

// characteristic : 2

// number of vars : 2
// block 1 : ordering lp
// : names Xy
// block 2 : ordering C

[2]

13.1. Point counting on curves 65

Sage Constructions, Release 7.6

// characteristic : 2
// number of vars : 3
// block 1 : ordering lp
// : names Xy Z
// block 2 : ordering C
[2]:
4,3
[3]:
[1]:
1,1
[2]:
1,2
[47]:
0
[5]:
[1]:
[1]:
// characteristic : 2
// number of vars : 3
// block 1 : ordering ls
// : names Xy t
// block 2 : ordering C
[27:
1,1
sage: print(kleinl[3])
[1]:
1,1
[2]:
1,2

For the places of degree 3:

sage: print (klein2[3])
[1]:

Each point below is a pair: (degree, point index number).

sage: print (klein3[3])
[1]:

1,1
[27:

66

Chapter 13. Algebraic Geometry

Sage Constructions, Release 7.6

To actually get the points of X (GF(8)):

sage: R = klein3[1][5]
sage: R.set_ring()

sage: singular ("POINTS; ")
[1]:

plus 21 others (omitted). There are a total of 23 rational points.

13.2 Riemann-Roch spaces using Singular

To compute a basis of the Riemann-Roch space of a divisor D on a curve over a field F', one can use Sage’s wrapper
riemann_roch_basis of Singular’s implementation of the Brill Noether algorithm. Note that this wrapper cur-
rently only works when F' is prime and the divisor D is supported on rational points. Below are examples of how to
use riemann_roch_basis and how to use Singular itself to help an understanding of how the wrapper works.

Using riemann_roch_basis:

sage: x, y, z = PolynomialRing(GF (5), 3, 'xyz').gens/()

sage: f = x*7 + y*7 + z77

sage: X = Curve(f); pts = X.rational_ points/()

sage: D = X.divisor([(3, pts[0]), (-1,pts[l]), (10, pts[5]) 1)
sage: X.riemann_roch_basis (D)

[(2xx + y)/(x +vy), (-x + z)/(x + y)]

13.2.

Riemann-Roch spaces using Singular 67

Sage Constructions, Release 7.6

* Using Singular’s Bril1lNoether command (for details see the section Brill-Noether in the Singular online
documentation (http://www.singular.uni-kl.de/Manual/html/sing_960.htm and the paper {CF}):

sage: singular.LIB('brnoeth.lib'")

sage: _ = singular.ring(5,'(x,vy)"',"'1lp")

sage: print(singular.eval("list X = Adj_div (-x5+y2+x);"))
Computing affine singular points

Computing all points at infinity

Computing affine singular places

Computing singular places at infinity

Computing non-singular places at infinity

Adjunction divisor computed successfully

The genus of the curve is 2

sage: print (singular.eval ("X = NSplaces(1,X);"))
Computing non-singular affine places of degree 1
sage: print (singular ("X[3];"))

[17:

The first integer of each pair in the above list is the degree d of a point. The second integer is the index of this
point in the list POINTS of the ring X[5][d][1]. Note that the order of this latter list is different every time the
algorithm is run, e.g. 1, 1 in the above list refers to a different rational point each time. A divisor is given by
defining a list G of integers of the same length as X[3] such that if the k-th entry of X[3] is d, i, then the k-th
entry of G is the multiplicity of the divisor at the i-th point in the list POINTS of the ring X[5][d][1]. Let us
proceed by defining a “random” divisor of degree 12 and computing a basis of its Riemann-Roch space:

sage: singular.eval ("intvec G = 4,4,4,0,0,0;")

[}

sage: singular.eval("def R = X[1][2];")

T

sage: singular.eval("setring R;")
T

sage: print(singular.eval ("list LG
Forms of degree 6
28

BrillNoether (G,X);"))

Vector basis successfully computed

13.2.1 AG codes

Sage can compute an AG code C = Cx (D, E) by calling Singular’s BrillNoether to compute a basis of the Riemann
Roch space L(D) = Lx(D). In addition to the curve X and the divisor D, you must also specify the evaluation
divisor F.

Note that this section has not been updated since the wrapper riemann_roch_basis has been fixed. See above
for how to properly define a divisor for Singular’s Bril1lNoether command.

68 Chapter 13. Algebraic Geometry

http://www.singular.uni-kl.de/Manual/html/sing_960.htm

Sage Constructions, Release 7.6

Here’s an example, one which computes a generator matrix of an associated AG code. This time we use Singular’s
AGCode_L command.

sage: singular.LIB('brnoeth.lib")

sage: singular.eval("ring s = 2, (x,vy),1lp;")

sage: print (singular.eval("list HC = Adj_div (x3+y2+y);"))
Computing affine singular points

Computing all points at infinity

Computing affine singular places

Computing singular places at infinity

Computing non-singular places at infinity

Adjunction divisor computed successfully

The genus of the curve is 1

sage: print (singular.eval("list HCl = NSplaces(l..2,HC);"))
Computing non-singular affine places of degree 1

Computing non-singular affine places of degree 2

sage: print (singular.eval ("HC = extcurve (2,HCLl);"))

Total number of rational places : NrRatPl = 9

We set the following to junk to discard the output:

sage: junk = singular.eval("intvec G = 5;") # the rational divisor G = 5*HC[3][1]
sage: junk = singular.eval("def R = HC[L1][2];")
sage: singular.eval ("setring R;")

The vector G represents the divisor “5 times the point at infinity”.

Next, we compute the Riemann-Roch space.

sage: print (singular.eval ("BrillNoether (G,HC);"))
Forms of degree 3
10

Vector basis successfully computed

[1]
_[1]=x
_[2]=z

[2]
_[1l=y
_[2]=z

[3]
_[1]=1
_[2]1=1

[4]
_[1l=y2+yz
_[2]=xz

[5]:
_[1]=y3+y2z
_[2]=x2z

That was the basis of the Riemann-Roch space, where each pair of functions represents the quotient (first function
divided by second function). Each of these basis elements get evaluated at certain points to construct the generator
matrix of the code. We next construct the points.

13.2. Riemann-Roch spaces using Singular 69

Sage Constructions, Release 7.6

sage: singular.eval("def R = HC[1][5];")
'// %+ redefining R xx'

sage: singular.eval("setring R;")

T

sage: print (singular.eval ("POINTS; "))
[17:

plus 5 more, for a total of 9 rational points on the curve. We define our “evaluation divisor” D using a subset of these
points (all but the first):

sage: singular.eval("def ER = HC[1][4];")

(I}

sage: singular.eval ("setring ER;")

T

sage: # D = sum of the rational places no. 2..9 over F_4
sage: singular.eval ("intvec D = 2..9;")

T

sage: # let us construct the corresponding evaluation AG code
sage: print (singular.eval("matrix C = AGcode_L(G,D,HC);"))
Forms of degree 3

10

Vector basis successfully computed

sage: # here is a linear code of type [8,5,> = 3] over F_4
sage: print (singular.eval ("print (C);"))
at+l), (a), 1, 1, (a+1),
a+l), (a), (a), (a+1),

ll
(a),

70 Chapter 13. Algebraic Geometry

Sage Constructions, Release 7.6

0,0,1, 1, (a), (a+l), (a+l), (a)

This is, finally, our desired generator matrix, where a represents a generator of the field extension of degree 2 over
the base field GF'(2).

Can this be “wrapped”?

13.2. Riemann-Roch spaces using Singular 71

Sage Constructions, Release 7.6

72 Chapter 13. Algebraic Geometry

CHAPTER
FOURTEEN

INTERFACE ISSUES

14.1 Background jobs

Yes, a Sage job can be run in the background on a UNIX system. The canonical thing to do is type

’nohup sage < command_file > output_file &

The advantage of nohup is that Sage will continue running after you log out.

Currently Sage will appear as “sage-ipython” or “python” in the output of the (unix) top command, but in future
versions of Sage it will appears as sage .

14.2 Referencing Sage

To reference Sage, please add the following to your bibliography:

\bibitem[Sage] {sage}
Stein, William, \emph{Sage: {O}pen {S}ource {M}athematical {S}oftware
({V}ersion 2.10.2)}, The Sage~Group, 2008, {\tt http://www.sagemath.org}.

Here is the bibtex entry:

@manual {sage,
Key = {Sage},
Author = {William Stein},
Organization = {The Sage~Group},
Title = {{Sage}: {O}pen {S}ource {M}athematical {S}oftware ({V}ersion 2.10.2)},
Note= {{\tt http://www.sagemath.org}},
Year = 2008

If you happen to use the Sage interface to PARI, GAP or Singular, you should definitely reference them as well.
Likewise, if you use code that is implemented using PARI, GAP, or Singular, reference the corresponding system (you
can often tell from the documentation if PARI, GAP, or Singular is used in the implementation of a function).

For PARI, you may use

@manual {PARIZ2,
organization = "{The PARI~Group}",
title = "{PARI/GP, version {\tt 2.1.5}}",
year = 2004,
address = "Bordeaux",

73

Sage Constructions, Release 7.6

note = "available from \url{http://pari.math.u-bordeaux.fr/}"

or

\bibitem{PARI2} PARI/GP, version {\tt 2.1.5}, Bordeaux, 2004,
\url{http://pari.math.u-bordeaux.fr/}.

(replace the version number by the one you used).

For GAP, you may use

[GAP04] The GAP Group, GAP —- Groups, Algorithms, and Programming,
Version 4.4; 2005. (http://www.gap-system.org)

or
@manual {GAP4,
key = "GAP",
organization = "The GAP~Group",
title = "{GAP -- Groups, Algorithms, and Programming,
Version 4.41}",
year = 2005,
note = "{\tt http://www.gap-system.org}",
keywords = "groups; *; gap; manual"}

\bibitem [GAP] {GAP4}
The GAP~Group, \emph{GAP -- Groups, Algorithms, and Programming, Version 4.4}; 2005,
{\tt http://www.gap-system.org}.

For Singular, you may use

[GPS05] G.-M. Greuel, G. Pfister, and H. Sch\"onemann.

{\sc Singular} 3.0. A Computer Algebra System for Polynomial
Computations. Centre for Computer Algebra, University of
Kaiserslautern (2005). {\tt http://www.singular.uni-kl.de}.

or
@TechReport {GPS05,
author = {G.-M. Greuel and G. Pfister and H. Sch\"onemann},
title = {{\sc Singular} 3.0},
type = {{A Computer Algebra System for Polynomial Computations}},
institution = {Centre for Computer Algebra},
address = {University of Kaiserslautern},
year = {2005},
note = {{\tt http://www.singular.uni-kl.de}},
}
or

\bibitem[GPS05] {GPS05}

G.-M.~Greuel, G.~Pfister, and H.~Sch\"onemann.

\newblock {{\sc Singular} 3.0}. A Computer Algebra System for Polynomial Computations.
\newblock Centre for Computer Algebra, University of Kaiserslautern (2005).

\newblock {\tt http://www.singular.uni-kl.de}.

74 Chapter 14. Interface Issues

Sage Constructions, Release 7.6

14.3 Logging your Sage session

Yes you can log your sessions.

(a) Modify line 186 of the .ipythonrc file (or open .ipythonrc into an editor and search for “logfile”’). This will only
log your input lines, not the output.

(b) You can also write the output to a file, by running Sage in the background (Background jobs).

(c) Start in a KDE konsole (this only work in linux). Go to Settings — History ... and select unlimited.
Start your session. When ready, goto edit — save history as

Some interfaces (such as the interface to Singular or that to GAP) allow you to create a log file. For Singular, there is
a logfile option (in singular.py). In GAP, use the command LogTo .

14.4 LaTeX conversion

Yes, you can output some of your results into LaTeX.

sage: M = MatrixSpace (RealField(), 3, 3)

sage: A = M([1,2,3, 4,5,6, 7,8,91)

sage: print (latex(A))

\left (\begin{array}{rrr}
1.00000000000000 & 2.00000000000000 & 3.00000000000000 \\
4.00000000000000 & 5.00000000000000 & 6.00000000000000 \\
7.00000000000000 & 8.00000000000000 & 9.00000000000000
\end{array}\right)

sage: view(A)

At this point a dvi preview should automatically be called to display in a separate window the LaTeX output produced.

LaTeX previewing for multivariate polynomials and rational functions is also available:

sage: x = PolynomialRing(QQ,3, 'x'"').gens|()
sage: f = x[0] + x[1] - 2*xx[1]1#*x[2]

sage: h = £ /(x[1] + x[2])

sage: print (latex(h))

\frac{-2 x_{1} x_ {2} + x_{0} + x_{1}}{x_{1} + x_{2}}

14.5 Sage and other computer algebra systems

If foo is a Pari, GAP (without ending semicolon), Singular, Maxima command, resp., enter gp (" foo") for Pari,
gap.eval ("foo")} singular.eval ("foo") ,maxima ("foo") ,resp.. These programs merely send the
command string to the external program, execute it, and read the result back into Sage. Therefore, these will not work
if the external program is not installed and in your PATH.

14.6 Command-line Sage help

If you know only part of the name of a Sage command and want to know where it occurs in Sage, a new option for
0.10.11 has been added to make it easier to hunt it down. Just type sage —grep <string> to find all occurences
of <string> in the Sage source code. For example,

14.3. Logging your Sage session 75

Sage Constructions, Release 7.6

was@form:~/s/local/bin$ sage -grep berlekamp_massey
matrix/all.py:from berlekamp_massey import berlekamp_massey
matrix/berlekamp_massey.py:def berlekamp_massey (a) :
matrix/matrix.py:import berlekamp_massey

matrix/matrix.py: g =
berlekamp_massey.berlekamp_massey(cols[i].1list())

Type help (foo) or foo?? for help and foo. [tab] for searching of Sage commands. Type help () for
Python commands.

For example

help (Matrix)

returns

Help on function Matrix in module sage.matrix.constructor:

Matrix (R, nrows, ncols, entries = 0, sparse = False)
Create a matrix.

INPUT:

R —— ring

nrows —— int; number of rows

ncols —— int; number of columns

entries —— list; entries of the matrix

sparse —— bool (default: False); whether or not to store matrices as sparse
OUTPUT:

a matrix

EXAMPLES:
sage: Matrix (RationalField(), 2, 2, [1,2,3,41)
(1 2]
[3 4]

sage: Matrix (FiniteField(5), 2, 3, range(6))
[0 1 2]
[3 4 0]

sage: Matrix (IntegerRing(), 10, 10, range(100)) .parent ()
Full MatrixSpace of 10 by 10 dense matrices over Integer Ring

sage: Matrix (IntegerRing(), 10, 10, range(100), sparse = True) .parent ()
Full MatrixSpace of 10 by 10 sparse matrices over Integer Ring

in a new screen. Type q to return to the Sage screen.

14.7 Reading and importing files into Sage

A file imported into Sage must end in .py , e.g., foo.py and contain legal Python syntax. For a simple example see
Permutation groups with the Rubik’s cube group example above.

Another way to read a file in is to use the 1oad or attach command. Create a file called example. sage (located
in the home directory of Sage) with the following content:

76 Chapter 14. Interface Issues

Sage Constructions, Release 7.6

print ("Hello World")
print (273)

Read in and execute example. sage file using the load command.

sage: load("example.sage")
Hello World
8

You can also attach a Sage file to a running session:

sage: attach("example.sage")
Hello World
8

Now if you change example.sage and enter one blank line into Sage, then the contents of example.sage will
be automatically reloaded into Sage:

sage: !emacs example.sage& #change 273 to 274

sage: #hit return

Ak hkhhkhkhkhkhkhkhhkhkhAhhkkhkhAhhkhhkrhkkhkhAhhkkhkhhrhkhhkrhkhkdhrhhkkhhrrkhkhhhhk*x
Reloading 'example.sage'

R R S R S I S S S i b b b I 2 b 4

Hello World

16

14.8 Installation for the impatient

We shall explain the basic steps for installing the most recent version of Sage (which is the “source” version, not the
“binary”).

1. Download sage—«.tar (where » denotes the version number) from the website and save into a directory,
say HOME . Type tar zxvf sage-+.tar in HOME.

2. cd sage—* (we call this SAGE_ROOT) and type make . Now be patient because this process make take 2
hours or so.

14.9 Python language program code for Sage commands

Let’s say you want to know what the Python program is for the Sage command to compute the center of a permutation
group. Use Sage’s help interface to find the file name:

sage: PermutationGroup.center?

Type: instancemethod

Base Class: <type 'instancemethod'>

String Form: <unbound method PermutationGroup.center>

Namespace: Interactive

File: /home/wdj/sage/local/lib/python2.4/site-packages/sage/groups/
—permgroup.py

Definition: PermutationGroup.center (self)

Now you know that the command is located in the permgroup.py file and you know the directory to look for that
Python module. You can use an editor to read the code itself.

14.8. Installation for the impatient 77

Sage Constructions, Release 7.6

14.10 “Special functions” in Sage

Sage has many special functions (see the reference manual at http://doc.sagemath.org/html/en/reference/functions/),
and most of them can be manipulated symbolically. Where this is not implemented, it is possible that other symbolic
packages have the functionality.

Via Maxima, some symbolic manipulation is allowed:

sage: maxima.eval ("f:bessel vy (v, w)")

'bessel_y (v, w)'

sage: maxima.eval ("diff(f,w)")

' (bessel_y (v-1,w)-bessel_y (v+l,w)) /2"

sage: maxima.eval ("diff (jacobi_sn (u, m), u)")

'jJacobi_cn(u,m)*xjacobi_dn(u,m)"'

sage: jsn = lambda x: jacobi("sn",x,1)

sage: P = plot(jsn,0,1, plot_points=20); Q = plot(lambda x:bessel_Y(1, x), 1/2,1)
sage: show (P)

sage: show (Q)

In addition to maxima , pari and octave also have special functions (in fact, some of pari ‘s special functions
are wrapped in Sage).

Here’s an example using Sage’s interface (located in sage/interfaces/octave.py) with octave (http://www.octave.org/
doc/index.html).

sage: octave("atanh(1.1)") ## optional - octave
(1.52226,-1.5708)

Here’s an example using Sage’s interface to pari ‘s special functions.

sage: pari('2+I1'") .besselk(3)
0.0455907718407551 + 0.0289192946582081+1I
sage: pari('2') .besselk (3)
0.0615104584717420

14.11 What is Sage?

Sage is a framework for number theory, algebra, and geometry computation that is initially being designed for comput-
ing with elliptic curves and modular forms. The long-term goal is to make it much more generally useful for algebra,
geometry, and number theory. It is open source and freely available under the terms of the GPL. The section titles in
the reference manual gives a rough idea of the topics covered in Sage.

14.11.1 History of Sage

Sage was started by William Stein while at Harvard University in the Fall of 2004, with version 0.1 released in January
of 2005. That version included Pari, but not GAP or Singular. Version 0.2 was released in March, version 0.3 in
April, version 0.4 in July. During this time, support for Cremona’s database, multivariate polynomials and large finite
fields was added. Also, more documentation was written. Version 0.5 beta was released in August, version 0.6 beta
in September, and version 0.7 later that month. During this time, more support for vector spaces, rings, modular
symbols, and windows users was added. As of 0.8, released in October 2005, Sage contained the full distribution of
GAP, though some of the GAP databases have to be added separately, and Singular. Adding Singular was not easy, due
to the difficulty of compiling Singular from source. Version 0.9 was released in November. This version went through
34 releases! As of version 0.9.34 (definitely by version 0.10.0), Maxima and clisp were included with Sage. Version

78 Chapter 14. Interface Issues

http://doc.sagemath.org/html/en/reference/functions/
http://www.octave.org/doc/index.html
http://www.octave.org/doc/index.html

Sage Constructions, Release 7.6

0.10.0 was released January 12, 2006. The release of Sage 1.0 was made early February, 2006. As of February 2008,
the latest release is 2.10.2.

Many people have contributed significant code and other expertise, such as assistance in compiling on various OS’s.
Generally code authors are acknowledged in the AUTHOR section of the Python docstring of their file and the credits
section of the Sage website.

14.11. What is Sage? 79

Sage Constructions, Release 7.6

80 Chapter 14. Interface Issues

CHAPTER
FIFTEEN

CONTRIBUTIONS TO THIS DOCUMENT

Besides William Stein, contributions to this part of the documentation were made by Gary Zablackis.

[CF] {CF} A. Campillo and J. I. Farran, Symbolic Hamburger-Noether expressions of plane curves
and applications to AG codes’, Math. Comp., vol 71(2002)1759-1780. http://www.ams.org/mcom/
2002-71-240/S0025-5718-01-01390-4/home.html

[CO] {CO} H. Cohen, J. Oesterlé, Dimensions des espaces de formes modulaires, p. 69 78 in Modular
functions in one variable VI. Lecture Notes in Math. 627, Springer-Verlag, New York, 1977.

[GAP] {GAP4} The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4; 2005,
http://www.gap-system.org

[G] {G} Solomon Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, Ca, 1967

[Sing] {GPS05} G.-M. Greuel, G. Pfister, and H. Schonemann. Singular 3.0. A Computer Algebra

System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2005).
http://www.singular.uni-kl.de

[Pari] {PARI2} PARI/GP, version 2.1.5, Bordeaux, 2004, http://pari.math.u-bordeaux.fr/

[M] {M} James L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Trans. on Information
Theory, vol. 15(1), pp. 122-127, Jan 1969.

[SAGE] {SJ} William Stein, David Joyner, SAGE: System for Algebra and Geometry Experimentation,
Comm. Computer Algebra 39(2005)61-64. (SIGSAM Bull. June 2005) http://sagemath.org/ http://sage.
sourceforge.net/

81

http://www.ams.org/mcom/2002-71-240/S0025-5718-01-01390-4/home.html
http://www.ams.org/mcom/2002-71-240/S0025-5718-01-01390-4/home.html
http://www.gap-system.org
http://www.singular.uni-kl.de
http://pari.math.u-bordeaux.fr/
http://sagemath.org/
http://sage.sourceforge.net/
http://sage.sourceforge.net/

Sage Constructions, Release 7.6

82 Chapter 15. Contributions to this document

CHAPTER
SIXTEEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

83

Sage Constructions, Release 7.6

84 Chapter 16. Indices and tables

A

algebraic-geometric
codes, 68
attach into Sage, 77

B

background, running Sage in, 73
Brauer
character, 39

C

calculus
critical points, 4
differentiation, 3
integration, 5
center
groups, 17
character
Brauer, 39
modular representation, 39
characteristic polynomial
matrix, 29
check matrix
codes, 33
ciphers
connection polynomial, 35
class_number
number field, 59
codes
algebraic-geometric, 68
check matrix, 33
dual, 33
generator matrix, 33
Golay, 33
conjugacy classes
group, 16
connection polynomial

INDEX

85

Sage Constructions, Release 7.6

ciphers, 35
cosets of Gamma_0, 55
critical points

calculus, 4
cyclotomic

number field, 61

D

database

number field, 59
differentiation

calculus, 3
discrete logs, 51
discriminant

number field, 59
dual

codes, 33

E

eigenvalues, 27
eigenvectors, 27
elliptic curve

modular form, 58

point counting, 63
elliptic curves, 56, 57
evaluation

polynomial, 47

F

factorization
polynomial, 46
Frobenius normal form, 27

G

GAP
referencing, 74
gcd
polynomial, 46
generator matrix
codes, 33
Golay
codes, 33
group
conjugacy classes, 16
normal subgroups, 17
permutation, 15
Rubik’s cube, 15
groups
center, 17

86 Index

Sage Constructions, Release 7.6

H

Hecke operators, 55
help in Sage, 75
Hermite normal form, 27
history
Sage, 78

I
importing into Sage, 76
installation of Sage, 77
integral basis

number field, 61
integration

calculus, 5

L

LaTeX output, 75
linear equations
solve, 30
load into Sage, 77
logging Sage, 74

M

matrix
characteristic polynomial, 29
ring, 41
modular form
elliptic curve, 58
modular forms, 53
modular representation
character, 39
modular symbols, 55

N

normal subgroups
group, 17

number field
class_number, 59
cyclotomic, 61
database, 59
discriminant, 59
integral basis, 61

P

p-adics, 42
PARI
referencing, 73
permutation
group, 15
plot

Index

87

Sage Constructions, Release 7.6

a function, 12

a parametric curve, 12

curve using surf, 10
point counting

elliptic curve, 63
polynomial

evaluation, 47

factorization, 46

gcd, 46

powers, 45

quotient ring, 42

ring, 41

roots, 47

symbolic manipulation, 48
power series, 4
powers

polynomial, 45
Python and Sage, 77

Q

quadratic residues, 52
quotient ring
polynomial, 42

R

rational canonical form, 27
referencing

GAP, 74

PARI, 73

Sage, 73

Singular, 74
Riemann-Roch space, 67, 69
ring

matrix, 41

polynomial, 41
roots

polynomial, 47
Rubik’s cube

group, 15

S

Sage

history, 78

referencing, 73
Singular

referencing, 74
Smith normal form, 27
solve

linear equations, 30
special functions in Sage, 77

88 Index

Sage Constructions, Release 7.6

symbolic manipulation
polynomial, 48

T

Taylor series, 4

Index 89

	Calculus
	Differentiation
	Integration
	Ordinary differential equations
	Fourier series of periodic functions

	Plotting
	Plotting functions in 2D
	Plotting curves
	openmath
	Tachyon 3D plotting
	gnuplot
	Plotting surfaces

	Groups
	Permutation groups
	Conjugacy classes
	Normal subgroups
	Centers
	The group id database
	Construction instructions for every group of order less than 32
	Construction instructions for every finitely presented group of order 15 or less

	Linear algebra
	Vector spaces
	Matrix powers
	Kernels
	Eigenvectors and eigenvalues
	Row reduction
	Characteristic polynomial
	Solving systems of linear equations

	Linear codes and ciphers
	Codes
	Ciphers

	Representation theory
	Ordinary characters
	Brauer characters

	Rings
	Matrix rings
	Polynomial rings
	p-adic numbers
	Quotient rings of polynomials

	Polynomials
	Polynomial powers
	Factorization
	Polynomial GCD's
	Roots of polynomials
	Evaluation of multivariate functions
	Roots of multivariate polynomials
	Gröbner bases

	Elementary number theory
	Taking modular powers
	Discrete logs
	Prime numbers
	Divisors
	Quadratic residues

	Modular forms
	Cusp forms
	Coset representatives
	Modular symbols and Hecke operators
	Genus formulas

	Elliptic curves
	Conductor
	j-invariant
	The GF(q)-rational points on E
	Modular form associated to an elliptic curve over Q

	Number fields
	Ramification
	Class numbers
	Integral basis

	Algebraic Geometry
	Point counting on curves
	Riemann-Roch spaces using Singular

	Interface Issues
	Background jobs
	Referencing Sage
	Logging your Sage session
	LaTeX conversion
	Sage and other computer algebra systems
	Command-line Sage help
	Reading and importing files into Sage
	Installation for the impatient
	Python language program code for Sage commands
	``Special functions'' in Sage
	What is Sage?

	Contributions to this document
	Indices and tables

