CONTENTS

1 Cryptosystems 1
2 Ciphers 5
3 Classical Cryptosystems 7
4 Classical Ciphers 41
5 Simplified DES 43
6 Mini-AES 53
7 Blum-Goldwasser Probabilistic Encryption 73
8 Stream Cryptosystems 81
9 Stream Ciphers 85
10 Linear feedback shift register (LFSR) sequence commands 89
11 Utility Functions for Cryptography 93
12 Boolean functions 101
13 S-Boxes and Their Algebraic Representations 111
14 S-Boxes used in cryptographic schemes 129
15 Abstract base class for generators of polynomial systems. 135
16 Small Scale Variants of the AES (SR) Polynomial System Generator 139
17 Rijndael-GF 167
18 Hard Lattice Generator 187
19 (Ring-)LWE oracle generators 191
20 Indices and Tables 201
Python Module Index 203
Index 205
This module contains base classes for various cryptosystems, including symmetric key and public-key cryptosystems. The classes defined in this module should not be called directly. It is the responsibility of child classes to implement specific cryptosystems. Take for example the Hill or matrix cryptosystem as implemented in `HillCryptosystem`. It is a symmetric key cipher so `HillCryptosystem` is a child class of `SymmetricKeyCryptosystem`, which in turn is a child class of `Cryptosystem`. The following diagram shows the inheritance relationship of particular cryptosystems:

```
Cryptosystem
| + SymmetricKeyCryptosystem
|   | + HillCryptosystem
|   | + LFSRCryptosystem
|   | + ShiftCryptosystem
|   | + ShrinkingGeneratorCryptosystem
|   | + SubstitutionCryptosystem
|   | + TranspositionCryptosystem
|   | + VigenereCryptosystem
| + PublicKeyCryptosystem
```

class sage.crypto.cryptosystem.Cryptosystem(plaintext_space, ciphertext_space, key_space, block_length=1, period=None)

Bases: sage.structure.parent_old.Parent, sage.structure.parent.Set_generic

A base cryptosystem class. This is meant to be extended by other specialized child classes that implement specific cryptosystems. A cryptosystem is a pair of maps

\[E : \mathcal{K} \to \text{Hom}(\mathcal{M}, \mathcal{C}) \]

\[D : \mathcal{K} \to \text{Hom}(\mathcal{C}, \mathcal{M}) \]

where \(\mathcal{K} \) is the key space, \(\mathcal{M} \) is the plaintext or message space, and \(\mathcal{C} \) is the ciphertext space. In many instances \(\mathcal{M} = \mathcal{C} \) and the images will lie in \(\text{Aut}(\mathcal{M}) \). An element of the image of \(E \) is called a cipher.

We may assume that \(E \) and \(D \) are injective, hence identify a key \(K \) in \(\mathcal{K} \) with its image \(E_K := E(K) \) in \(\text{Hom}(\mathcal{M}, \mathcal{C}) \).

The cryptosystem has the property that for every encryption key \(K_1 \) there is a decryption key \(K_2 \) such that \(D_{K_2} \circ E_{K_1} \). A cryptosystem with the property that \(K := K_2 = K_1 \), is called a symmetric cryptosystem. Otherwise, if the key \(K_2 \neq K_1 \), nor is \(K_2 \) easily derived from \(K_1 \), we call the cryptosystem asymmetric or public key. In that case, \(K_1 \) is called the public key and \(K_2 \) is called the private key.

INPUT:

- `plaintext_space` – the plaintext alphabet.
- `ciphertext_space` – the ciphertext alphabet.
• key_space – the key alphabet.
• block_length – (default: 1) the block length.
• period – (default: None) the period.

EXAMPLES:

Various classical cryptosystems:

```python
sage: ShiftCryptosystem(AlphabeticStrings())
Shift cryptosystem on Free alphabetic string monoid on A-Z
sage: SubstitutionCryptosystem(HexadecimalStrings())
Substitution cryptosystem on Free hexadecimal string monoid
sage: HillCryptosystem(BinaryStrings(), 3)
Hill cryptosystem on Free binary string monoid of block length 3
sage: TranspositionCryptosystem(OctalStrings(), 5)
Transposition cryptosystem on Free octal string monoid of block length 5
sage: VigenereCryptosystem(Radix64Strings(), 7)
Vigenere cryptosystem on Free radix 64 string monoid of period 7
```

block_length()

Return the block length of this cryptosystem. For some cryptosystems this is not relevant, in which case the block length defaults to 1.

EXAMPLES:

The block lengths of various classical cryptosystems:

```python
sage: ShiftCryptosystem(AlphabeticStrings()).block_length()
1
sage: SubstitutionCryptosystem(HexadecimalStrings()).block_length()
1
sage: HillCryptosystem(BinaryStrings(), 3).block_length()
3
sage: TranspositionCryptosystem(OctalStrings(), 5).block_length()
5
sage: VigenereCryptosystem(Radix64Strings(), 7).block_length()
1
```

cipher_codomain()

Return the alphabet used by this cryptosystem for encoding ciphertexts. This is the same as the ciphertext space.

EXAMPLES:

The cipher codomains, or ciphertext spaces, of various classical cryptosystems:

```python
sage: ShiftCryptosystem(AlphabeticStrings()).cipher_codomain()
Free alphabetic string monoid on A-Z
sage: SubstitutionCryptosystem(HexadecimalStrings()).cipher_codomain()
Free hexadecimal string monoid
sage: HillCryptosystem(BinaryStrings(), 3).cipher_codomain()
Free binary string monoid
sage: TranspositionCryptosystem(OctalStrings(), 5).cipher_codomain()
Free octal string monoid
sage: VigenereCryptosystem(Radix64Strings(), 7).cipher_codomain()
Free radix 64 string monoid
```

cipher_domain()

Return the alphabet used by this cryptosystem for encoding plaintexts. This is the same as the plaintext
space.

EXAMPLES:

The cipher domains, or plaintext spaces, of various classical cryptosystems:

```python
sage: ShiftCryptosystem(AlphabeticStrings()).cipher_domain()
Free alphabetic string monoid on A-Z
sage: SubstitutionCryptosystem(HexadecimalStrings()).cipher_domain()
Free hexadecimal string monoid
sage: HillCryptosystem(BinaryStrings(), 3).cipher_domain()
Free binary string monoid
sage: TranspositionCryptosystem(OctalStrings(), 5).cipher_domain()
Free octal string monoid
sage: VigenereCryptosystem(Radix64Strings(), 7).cipher_domain()
Free radix 64 string monoid
```

ciphertext_space()

Return the ciphertext alphabet of this cryptosystem.

EXAMPLES:

The ciphertext spaces of various classical cryptosystems:

```python
sage: ShiftCryptosystem(AlphabeticStrings()).ciphertext_space()
Free alphabetic string monoid on A-Z
sage: SubstitutionCryptosystem(HexadecimalStrings()).ciphertext_space()
Free hexadecimal string monoid
sage: HillCryptosystem(BinaryStrings(), 3).ciphertext_space()
Free binary string monoid
sage: TranspositionCryptosystem(OctalStrings(), 5).ciphertext_space()
Free octal string monoid
sage: VigenereCryptosystem(Radix64Strings(), 7).ciphertext_space()
Free radix 64 string monoid
```

key_space()

Return the alphabet used by this cryptosystem for encoding keys.

EXAMPLES:

The key spaces of various classical cryptosystems:

```python
sage: ShiftCryptosystem(AlphabeticStrings()).key_space()
Ring of integers modulo 26
sage: SubstitutionCryptosystem(HexadecimalStrings()).key_space()
Free hexadecimal string monoid
sage: HillCryptosystem(BinaryStrings(), 3).key_space()
Full MatrixSpace of 3 by 3 dense matrices over Ring of integers modulo 2
sage: TranspositionCryptosystem(OctalStrings(), 5).key_space()
Symmetric group of order 5! as a permutation group
sage: VigenereCryptosystem(Radix64Strings(), 7).key_space()
Free radix 64 string monoid
```

period()

plaintext_space()

Return the plaintext alphabet of this cryptosystem.

EXAMPLES:

The plaintext spaces of various classical cryptosystems:
sage: ShiftCryptosystem(AlphabeticStrings()).plaintext_space()
Free alphabetic string monoid on A-Z
sage: SubstitutionCryptosystem(HexadecimalStrings()).plaintext_space()
Free hexadecimal string monoid
sage: HillCryptosystem(BinaryStrings(), 3).plaintext_space()
Free binary string monoid
sage: TranspositionCryptosystem(OctalStrings(), 5).plaintext_space()
Free octal string monoid
sage: VigenereCryptosystem(Radix64Strings(), 7).plaintext_space()
Free radix 64 string monoid

class sage.crypto.cryptosystem.PublicKeyCryptosystem(plaintext_space, ciphertext_space, key_space, block_length=1, period=None)

Bases: sage.crypto.cryptosystem.Cryptosystem

The base class for asymmetric or public-key cryptosystems.

class sage.crypto.cryptosystem.SymmetricKeyCryptosystem(plaintext_space, ciphertext_space, key_space, block_length=1, period=None)

Bases: sage.crypto.cryptosystem.Cryptosystem

The base class for symmetric key, or secret key, cryptosystems.

alphabet_size()
Return the number of elements in the alphabet of this cryptosystem. This only applies to any cryptosystem whose plaintext and ciphertext spaces are the same alphabet.

EXAMPLES:

sage: ShiftCryptosystem(AlphabeticStrings()).alphabet_size()
26
sage: ShiftCryptosystem(BinaryStrings()).alphabet_size()
2
sage: ShiftCryptosystem(HexadecimalStrings()).alphabet_size()
16
sage: SubstitutionCryptosystem(OctalStrings()).alphabet_size()
8
sage: SubstitutionCryptosystem(Radix64Strings()).alphabet_size()
64
class sage.crypto.cipher.Cipher(parent, key)
 Bases: sage.structure.element.Element
 Cipher class
 codomain()
 domain()
 key()

class sage.crypto.cipher.PublicKeyCipher(parent, key, public=True)
 Bases: sage.crypto.cipher.Cipher
 Public key cipher class

class sage.crypto.cipher.SymmetricKeyCipher(parent, key)
 Bases: sage.crypto.cipher.Cipher
 Symmetric key cipher class
A convenient user interface to various classical ciphers. These include:

- affine cipher; see `AffineCryptosystem`
- Hill or matrix cipher; see `HillCryptosystem`
- shift cipher; see `ShiftCryptosystem`
- substitution cipher; see `SubstitutionCryptosystem`
- transposition cipher; see `TranspositionCryptosystem`
- Vigenere cipher; see `VigenereCryptosystem`

These classical cryptosystems support alphabets such as:

- the capital letters of the English alphabet; see `AlphabeticStrings()`
- the hexadecimal number system; see `HexadecimalStrings()`
- the binary number system; see `BinaryStrings()`
- the octal number system; see `OctalStrings()`
- the radix-64 number system; see `Radix64Strings()`

AUTHORS:

- David Kohel (2007): initial version with the Hill, substitution, transposition, and Vigenere cryptosystems.
- Minh Van Nguyen (2009-08): shift cipher, affine cipher

class `sage.crypto.classical.AffineCryptosystem(A)`

Bases: `sage.crypto.cryptosystem.SymmetricKeyCryptosystem`

Create an affine cryptosystem.

Let $A = \{a_0, a_1, a_2, \ldots, a_{n-1}\}$ be a non-empty alphabet consisting of n unique elements. Define a mapping $f : A \rightarrow \mathbb{Z}/n\mathbb{Z}$ from the alphabet A to the set $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n, given by $f(a_i) = i$. Thus we can identify each element of the alphabet A with a unique integer $0 \leq i < n$. A key of the affine cipher is an ordered pair of integers $(a, b) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ such that $\gcd(a, n) = 1$. Therefore the key space is $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Since we assume that A does not have repeated elements, the mapping $f : A \rightarrow \mathbb{Z}/n\mathbb{Z}$ is bijective. Encryption and decryption functions are both affine functions. Let (a, b) be a secret key, i.e. an element of the key space, and let p be a plaintext character and consequently $p \in \mathbb{Z}/n\mathbb{Z}$. Then the ciphertext character c corresponding to p is given by

$$c \equiv ap + b \pmod{n}$$
Similarly, given a ciphertext character \(c \in \mathbb{Z}/n\mathbb{Z} \) and a secret key \((a, b)\), we can recover the corresponding plaintext character as follows:

\[
p \equiv a^{-1}(c - b) \pmod{n}
\]

where \(a^{-1}\) is the inverse of \(a\) modulo \(n\). Use the bijection \(f: A \rightarrow \mathbb{Z}/n\mathbb{Z}\) to convert \(c\) and \(p\) back to elements of the alphabet \(A\). Currently, only the following alphabet is supported for the affine cipher:

- capital letters of the English alphabet as implemented in \texttt{AlphabeticStrings()}

EXAMPLES:

Encryption and decryption over the capital letters of the English alphabet:

```python
sage: A = AffineCryptosystem(AlphabeticStrings()); A
Affine cryptosystem on Free alphabetic string monoid on A-Z
sage: P = A.encoding("The affine cryptosystem generalizes the shift cipher.")

sage: P
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER

sage: a, b = (9, 13)

sage: C = A.enciphering(a, b, P); C
CYXNGGHAXFKVSCJTVCTXRPXAXKNIHEXTCYXTYHCFHSYXK

sage: A.deciphering(a, b, C)
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER

sage: A.deciphering(a, b, C) == P
True
```

We can also use functional notation to work through the previous example:

```python
sage: A = AffineCryptosystem(AlphabeticStrings()); A
Affine cryptosystem on Free alphabetic string monoid on A-Z
sage: P = A.encoding("The affine cryptosystem generalizes the shift cipher.")

sage: P
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER

sage: a, b = (9, 13)

sage: E = A(a, b); E
Affine cipher on Free alphabetic string monoid on A-Z

sage: C = E(P); C
CYXNGGHAXFKVSCJTVCTXRPXAXKNIHEXTCYXTYHCFHSYXK

sage: aInv, bInv = A.inverse_key(a, b)

sage: D = A(aInv, bInv); D
Affine cipher on Free alphabetic string monoid on A-Z

sage: D(C)
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER

sage: D(C) == P
True

sage: D(C) == P == D(E(P))
True
```

Encrypting the ciphertext with the inverse key also produces the plaintext:

```python
sage: A = AffineCryptosystem(AlphabeticStrings())

sage: P = A.encoding("Encrypt with inverse key.")

sage: a, b = (11, 8)

sage: C = A.enciphering(a, b, P)

sage: P; C
ENCRIPTWITHINVERSEKEY
AVENMRJQSJHSVFANYAOAM

sage: aInv, bInv = A.inverse_key(a, b)

sage: C = A.enciphering(a, b, P)

sage: C; C
AVENMRJQSJHSVFANYAOAM

sage: A = AffineCryptosystem(AlphabeticStrings())

sage: P = A.encoding("Encrypt with inverse key.")

sage: a, b = (11, 8)

sage: C = A.enciphering(a, b, P)

sage: P; C
ENCRIPTWITHINVERSEKEY
AVENMRJQSJHSVFANYAOAM

sage: aInv, bInv = A.inverse_key(a, b)

sage: C = A.enciphering(a, b, P)

sage: C; C
AVENMRJQSJHSVFANYAOAM

sage: A = AffineCryptosystem(AlphabeticStrings())

sage: P = A.encoding("Encrypt with inverse key.")

sage: a, b = (11, 8)

sage: C = A.enciphering(a, b, P)

sage: P; C
ENCRIPTWITHINVERSEKEY
AVENMRJQSJHSVFANYAOAM

sage: aInv, bInv = A.inverse_key(a, b)

sage: C = A.enciphering(a, b, P)

sage: C; C
AVENMRJQSJHSVFANYAOAM

sage: A = AffineCryptosystem(AlphabeticStrings())

sage: P = A.encoding("Encrypt with inverse key.")

sage: a, b = (11, 8)

sage: C = A.enciphering(a, b, P)

sage: P; C
ENCRIPTWITHINVERSEKEY
AVENMRJQSJHSVFANYAOAM

sage: aInv, bInv = A.inverse_key(a, b)

sage: C = A.enciphering(a, b, P)

sage: C; C
AVENMRJQSJHSVFANYAOAM
```

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: P = A.encoding("An affine cipher with a random key.")
sage: a, b = A.random_key()
sage: C = A.enciphering(a, b, P)
sage: A.deciphering(a, b, C) == P
True

REFERENCES:

• [Sti2006]

brute_force (C, ranking='none')

Attempt a brute force cryptanalysis of the ciphertext C.

INPUT:

• C – A ciphertext over one of the supported alphabets of this affine cryptosystem. See the class AffineCryptosystem for documentation on the supported alphabets.

• ranking – (default "none") the method to use for ranking all possible keys. If ranking="none", then do not use any ranking function. The following ranking functions are supported:
 - "chi_square" – the chi-square ranking function as implemented in the method rank_by_chi_square().
"squared_differences" – the squared differences ranking function as implemented in the method \texttt{rank_by_squared_differences()}.

OUTPUT:

- All the possible plaintext sequences corresponding to the ciphertext C. This method effectively uses all the possible keys in this affine cryptosystem to decrypt C. The method is also referred to as exhaustive key search. The output is a dictionary of key, candidate decipherment pairs.

EXAMPLES:

Cryptanalyze using all possible keys with the option \texttt{ranking="none"}:

```python
sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Linear"); P
LINEAR
sage: C = A.enciphering(a, b, P)
sage: L = A.brute_force(C)
sage: sorted(L.items())[:26]  # display 26 candidate decipherments
[(0, OFUTHG),
 (1, NETSGF),
 (2, MDSRFE),
 (3, LCRQED),
 (4, KBQPDQ),
 (5, JAPOCB),
 (6, IZONBA),
 (7, HYNMAZ),
 (8, GXMLZY),
 (9, FWLKYX),
 (10, EVKJXW),
 (11, DUJINV),
 (12, CTIHVU),
 (13, BSGHUT),
 (14, ARGFTS),
 (15, ZQFESR),
 (16, YPEDRQ),
 (17, XODCQP),
 (18, WNCBPO),
 (19, VMBANQ),
 (20, ULAZNM),
 (21, TKZYML),
 (22, SJYXLM),
 (23, RIXWKJ),
 (24, QHJVWI),
 (25, PGVUIH)]
```

Use the chi-square ranking function, i.e. \texttt{ranking="chisquare"}:

```python
sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Linear functions for encrypting and decrypting."); P
LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING
sage: C = A.enciphering(a, b, P)
sage: L = A.brute_force(C, ranking="chisquare")
sage: L[:10]  # display only the top 10 candidate keys
[((3, 7), LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING),
 (4, 8), XODCQP),
 (5, 9), WNCBPO),
 (6, 10), VMBANQ),
 (7, 11), ULAZNM),
 (8, 12), TKZYML),
 (9, 13), SJYXLM),
 (10, 14), RIXWKJ),
 (11, 15), QHJVWI),
 (12, 16), PGVUIH)]
```
Use the squared differences ranking function, i.e. `ranking="squared_differences"`:

```
sage: Rank = A.brute_force(C, ranking="squared_differences")
sage: Rank[:10]  # display only the top 10 candidate keys
```

```{(3, 7), LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING),
(23, 6), GJENRAMXEPYJDEZMDANEPATCYJELREOONPATCYJEL),
(23, 25), VYTCGBPMTENYSTOBSPCTEPIRNYTAGTDDCEPIRNYTA),
(19, 22), QVETRAGABUVLENALGFSGDSUVEHREMMTFGSUVEH),
(19, 9), DIRGETNORSHIYRANYTGRSTQFHIRUERZZGSTQFHIRU),
(23, 18), KNIRVEQBITCHDQHERITEXGNCNPVISSRTEXGNCNP),
(17, 16), GHORBEIDOMHFOVIFEROJETWMOHZBOARJETWMHOZ),
(21, 14), AHEZEMOFEVQHTEBOTMZEVMINIQHEDREKZKVZMNQHED),
(11, 12), CTIHKVDIRBATLIXKLUHIBUPOATINVIEHBUPOATIN),
(7, 18), SNEPRCIHEDONXEVIXCPEDCFQONEBREWPDCEFQONEB)}
```

deciphering \((a, b, C)\)

Decrypt the ciphertext \(C\) with the key \((a, b)\) using affine cipher decryption.

INPUT:

- \(a, b\) – a secret key belonging to the key space of this affine cipher. This key must be an element of \(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \) such that \(\gcd(a,n) = 1 \) with \(n \) being the size of the ciphertext and plaintext spaces.

- \(C\) – a string of ciphertext; possibly an empty string. Characters in this string must be encoded using one of the supported alphabets. See the method `encoding()` for more information.

OUTPUT:

- The plaintext corresponding to the ciphertext \(C\).

EXAMPLES:

Decryption over the capital letters of the English alphabet:

```
sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (5, 2)
sage: P = A.encoding("Affine functions are linear functions.")
sage: C = A.enciphering(a, b, P); C
CBBQPWBYPMTQUPOCJWFQPWCJBYPMTQUPO
sage: P == A.deciphering(a, b, C)
True
```

The previous example can also be worked through using functional notation:

```
sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (5, 2)
sage: P = A.encoding("Affine functions are linear functions.")
sage: E = A(a, b); E
```

(continues on next page)
Affine cipher on Free alphabetic string monoid on A-Z

```sage
C = E(P); C
sage: CBBQPWBYPMTQUPOCJWFQPWCJBYPMTQUPO
```

```sage
aInv, bInv = A.inverse_key(a, b)
```

```sage
D = A(aInv, bInv); D
```

Affine cipher on Free alphabetic string monoid on A-Z

```sage
D(C) == P
```

True

If the ciphertext is an empty string, then the plaintext is also an empty string regardless of the value of the secret key:

```sage
a, b = A.random_key()
sage: A.deciphering(a, b, A.encoding(""))
sage: A.deciphering(a, b, A.encoding(" "))
```

enciphering *(a, b, P)*

Encrypt the plaintext *P* with the key *(a, b)* using affine cipher encryption.

INPUT:

- *a, b* — a secret key belonging to the key space of this affine cipher. This key must be an element of \(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}\) such that \(\gcd(a, n) = 1\) with \(n\) being the size of the ciphertext and plaintext spaces.

- *P* — a string of plaintext; possibly an empty string. Characters in this string must be encoded using one of the supported alphabets. See the method `encoding()` for more information.

OUTPUT:

- The ciphertext corresponding to the plaintext *P*.

EXAMPLES:

Encryption over the capital letters of the English alphabet:

```sage
A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 6)
sage: P = A.encoding("Affine ciphers work with linear functions.")
sage: A.enciphering(a, b, P)
```

GVVETSMEZBSFIUWFKUELBNETSGFVOTMLEWTI

Now work through the previous example using functional notation:

```sage
A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 6)
sage: P = A.encoding("Affine ciphers work with linear functions.")
sage: E = A(a, b); E
```

Affine cipher on Free alphabetic string monoid on A-Z

```sage
E(P)
```

GVVETSMEZBSFIUWFKUELBNETSGFVOTMLEWTI

If the plaintext is an empty string, then the ciphertext is also an empty string regardless of the value of the secret key:

```sage
a, b = A.random_key()
sage: A.enciphering(a, b, A.encoding(""))
sage: A.enciphering(a, b, A.encoding(" "))
```
encoding(S)

The encoding of the string S over the string monoid of this affine cipher. For example, if the string monoid of this cryptosystem is `AlphabeticStringMonoid`, then the encoding of S would be its upper-case equivalent stripped of all non-alphabetic characters. Only the following alphabet is supported for the affine cipher:

- capital letters of the English alphabet as implemented in `AlphabeticStrings()`

INPUT:

- S – a string, possibly empty.

OUTPUT:

- The encoding of S over the string monoid of this cryptosystem. If S is an empty string, return an empty string.

EXAMPLES:

Encoding over the upper-case letters of the English alphabet:

```sage
A = AffineCryptosystem(AlphabeticStrings())
sage: A.encoding("Affine cipher over capital letters of the English alphabet.")
AFFINECIPHEROVERCAPITALLETTERSOFTHEENGLISHALPHABET
```

The argument S can be an empty string, in which case an empty string is returned:

```sage
A = AffineCryptosystem(AlphabeticStrings()).encoding("")
```

inverse_key(a, b)

The inverse key corresponding to the secret key (a, b). If p is a plaintext character so that $p \in \mathbb{Z}/n\mathbb{Z}$ and n is the alphabet size, then the ciphertext c corresponding to p is

$$c \equiv ap + b \pmod{n}$$

As (a, b) is a key, then the multiplicative inverse a^{-1} exists and the original plaintext can be recovered as follows

$$p \equiv a^{-1}(c - b) \pmod{n} \equiv a^{-1}c + a^{-1}(-b) \pmod{n}$$

Therefore the ordered pair $(a^{-1}, -ba^{-1})$ is the inverse key corresponding to (a, b).

INPUT:

- a, b – a secret key for this affine cipher. The ordered pair (a, b) must be an element of $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ such that $\gcd(a, n) = 1$.

OUTPUT:

- The inverse key $(a^{-1}, -ba^{-1})$ corresponding to (a, b).

EXAMPLES:

```sage
A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (1, 2)
sage: A.inverse_key(a, b)
(1, 24)
sage: A.inverse_key(3, 2)
(9, 8)
```
Suppose that the plaintext and ciphertext spaces are the capital letters of the English alphabet so that $n = 26$. If $\varphi(n)$ is the Euler phi function of n, then there are $\varphi(n)$ integers $0 \leq a < n$ that are relatively prime to n. For the capital letters of the English alphabet, there are 12 such integers relatively prime to n:

```sage
euler_phi(A.alphabet_size())  
12
```

And here is a list of those integers:

```sage
n = A.alphabet_size()  
L = [i for i in range(n) if gcd(i, n) == 1]; L  
[1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25]
```

Then a secret key (a, b) of this shift cryptosystem is such that a is an element of the list L in the last example. Any inverse key (A, B) corresponding to (a, b) is such that A is also in the list L above:

```sage
a, b = (3, 9)  
a in L  
True  
aInv, bInv = A.inverse_key(a, b)  
aInv, bInv  
(9, 23)  
aInv in L  
True
```

random_key()

Generate a random key within the key space of this affine cipher. The generated secret key is an ordered pair $(a, b) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ with n being the size of the cipher domain and $\gcd(a, n) = 1$. Let $\varphi(n)$ denote the Euler phi function of n. Then the affine cipher has $n \cdot \varphi(n)$ possible keys (see page 10 of [Sti2006]).

OUTPUT:

- A random key within the key space of this affine cryptosystem. The output key is an ordered pair (a, b).

EXAMPLES:

```sage
A = AffineCryptosystem(AlphabeticStrings())  
A.random_key()  
# random  
(17, 25)
```

If (a, b) is a secret key and n is the size of the plaintext and ciphertext alphabets, then $\gcd(a, n) = 1$:

```sage
a, b = A.random_key()  
n = A.alphabet_size()  
\gcd(a, n)  
1
```

rank_by_chi_square()

Use the chi-square statistic to rank all possible keys. Currently, this method only applies to the capital letters of the English alphabet.

ALGORITHM:

Consider a non-empty alphabet A consisting of n elements, and let C be a ciphertext encoded using elements of A. The plaintext P corresponding to C is also encoded using elements of A. Let M be a candidate decipherment of C, i.e. M is the result of attempting to decrypt C using a key (a, b) which is not necessarily the same key used to encrypt P. Suppose $F_A(e)$ is the characteristic frequency probability of
$e \in A$ and let $F_M(e)$ be the message frequency probability with respect to M. The characteristic frequency probability distribution of an alphabet is the expected frequency probability distribution for that alphabet. The message frequency probability distribution of M provides a distribution of the ratio of character occurrences over message length. One can interpret the characteristic frequency probability $F_A(e)$ as the expected probability, while the message frequency probability $F_M(e)$ is the observed probability. If M is of length L, then the observed frequency of $e \in A$ is

$$O_M(e) = F_M(e) \cdot L$$

and the expected frequency of $e \in A$ is

$$E_A(e) = F_A(e) \cdot L$$

The chi-square rank $R_{\chi^2}(M)$ of M corresponding to a key $(a, b) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ is given by

$$R_{\chi^2}(M) = \sum_{e \in A} \frac{(O_M(e) - E_A(e))^2}{E_A(e)}$$

Cryptanalysis by exhaustive key search produces a candidate decipherment $M_{a,b}$ for each possible key (a, b). For a set $D = \{M_{a_1,b_1}, M_{a_2,b_2}, \ldots, M_{a_k,b_k}\}$ of all candidate decipherments corresponding to a ciphertext C, the smaller is the rank $R_{\chi^2}(M_{a_i,b_i})$ the more likely that (a_i, b_i) is the secret key. This key ranking method is based on the Pearson chi-square test \cite{PearsonTest}.

INPUT:

- C – The ciphertext, a non-empty string. The ciphertext must be encoded using the upper-case letters of the English alphabet.
- $pdict$ – A dictionary of key, possible plaintext pairs. This should be the output of `brute_force()` with `ranking="none"`.

OUTPUT:

- A list ranking the most likely keys first. Each element of the list is a tuple of key, possible plaintext pairs.

EXAMPLES:

Use the chi-square statistic to rank all possible keys and their corresponding decipherment:

```python
sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Line.")
sage: C = A.enciphering(a, b, P)
sage: Plist = A.brute_force(C)
sage: Rank = A.rank_by_chi_square(C, Plist)
sage: Rank[:10]  # display only the top 10 candidate keys
```

As more ciphertext is available, the reliability of the chi-square ranking function increases:
rank_by_squared_differences(C, pdict)

Use the squared-differences measure to rank all possible keys. Currently, this method only applies to the capital letters of the English alphabet.

ALGORITHM:

Consider a non-empty alphabet \(A \) consisting of \(n \) elements, and let \(C \) be a ciphertext encoded using elements of \(A \). The plaintext \(P \) corresponding to \(C \) is also encoded using elements of \(A \). Let \(M \) be a candidate decipherment of \(C \), i.e. \(M \) is the result of attempting to decrypt \(C \) using a key \((a, b)\) which is not necessarily the same key used to encrypt \(P \). Suppose \(F_A(e) \) is the characteristic frequency probability of \(e \in A \) and let \(F_M(e) \) be the message frequency probability with respect to \(M \). The characteristic frequency probability distribution of an alphabet is the expected frequency probability distribution for that alphabet. The message frequency probability distribution of \(M \) provides a distribution of the ratio of character occurrences over message length. One can interpret the characteristic frequency probability \(F_A(e) \) as the expected probability, while the message frequency probability \(F_M(e) \) is the observed probability. If \(M \) is of length \(L \), then the observed frequency of \(e \in A \) is

\[
O_M(e) = F_M(e) \cdot L
\]

and the expected frequency of \(e \in A \) is

\[
E_A(e) = F_A(e) \cdot L
\]

The squared-differences, or residual sum of squares, rank \(R_{RSS}(M) \) of \(M \) corresponding to a key \((a, b) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \) is given by

\[
R_{RSS}(M) = \sum_{e \in A} (O_M(e) - E_A(e))^2
\]

Cryptanalysis by exhaustive key search produces a candidate decipherment \(M_{a,b} \) for each possible key \((a, b)\). For a set \(D = \{M_{a_1,b_1}, M_{a_2,b_2}, \ldots, M_{a_k,b_k}\} \) of all candidate decipherments corresponding to a ciphertext \(C \), the smaller is the rank \(R_{RSS}(M_{a,b}) \) the more likely that \((a, b)\) is the secret key. This key ranking method is based on the residual sum of squares measure [RSS].

INPUT:

- \(C \) – The ciphertext, a non-empty string. The ciphertext must be encoded using the upper-case letters of the English alphabet.
• `pdict` - A dictionary of key, possible plaintext pairs. This should be the output of `brute_force()` with `ranking="none"`.

OUTPUT:

• A list ranking the most likely keys first. Each element of the list is a tuple of key, possible plaintext pairs.

EXAMPLES:

Use the method of squared differences to rank all possible keys and their corresponding decipherment:

```python
sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Line."

sage: C = A.enciphering(a, b, P)
sage: Plist = A.brute_force(C)
sage: Rank = A.rank_by_squared_differences(C, Plist)
sage: Rank[:10]  # display only the top 10 candidate keys
```

As more ciphertext is available, the reliability of the squared-differences ranking function increases:

```python
sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (11, 24)
sage: P = A.encoding("Longer message is more information for cryptanalysis."

sage: C = A.enciphering(a, b, P)
sage: Plist = A.brute_force(C)
sage: Rank = A.rank_by_squared_differences(C, Plist)
sage: Rank[:10]  # display only the top 10 candidate keys
```

```python
class sage.crypto.classical.HillCryptosystem(S, m)

Bases: sage.crypto.cryptosystem.SymmetricKeyCryptosystem

Create a Hill cryptosystem defined by the $m \times m$ matrix space over $\mathbb{Z}/N\mathbb{Z}$, where $N$ is the alphabet size of the string monoid $S$.

INPUT:

• $S$ - a string monoid over some alphabet
```
• \textit{m} - integer > 0; the block length of matrices that specify block permutations

OUTPUT:
• A Hill cryptosystem of block length \textit{m} over the alphabet \textit{S}.

EXAMPLES:

```python
sage: S = AlphabeticStrings()
sage: E = HillCryptosystem(S, 3)
sage: E
Hill cryptosystem on Free alphabetic string monoid on A-Z of block length 3
sage: R = IntegerModRing(26)
sage: M = MatrixSpace(R, 3, 3)
sage: A = M([[1, 0, 1], [0, 1, 1], [2, 2, 3]])
sage: A
[1 0 1]
[0 1 1]
[2 2 3]
sage: e = E(A)
sage: e
Hill cipher on Free alphabetic string monoid on A-Z of block length 3
sage: e(S("LAMAISONBLANCHE"))
JYVKSKQPELAYKPV
```

\textit{block_length()}

The row or column dimension of a matrix specifying a block permutation. Encryption and decryption keys of a Hill cipher are square matrices, i.e. the row and column dimensions of an encryption or decryption key are the same. This row/column dimension is referred to as the \textit{block length}.

OUTPUT:
• The block length of an encryption/decryption key.

EXAMPLES:

```python
sage: A = AlphabeticStrings()
sage: n = randint(1, A.ngens() - 1)
sage: H = HillCryptosystem(A, n)
sage: H.block\_length() == n
True
```

\textit{deciphering}(\textit{A}, \textit{C})

Decrypt the ciphertext \textit{C} using the key \textit{A}.

INPUT:
• \textit{A} - a key within the key space of this Hill cipher
• \textit{C} - a string (possibly empty) over the string monoid of this Hill cipher

OUTPUT:
• The plaintext corresponding to the ciphertext \textit{C}.

EXAMPLES:

```python
sage: H = HillCryptosystem(AlphabeticStrings(), 3)
sage: K = H.random\_key()
sage: M = H.encoding("Good day, mate! How ya going?")
sage: H.deciphering(K, H.enciphering(K, M)) == M
True
```
enciphering \((A, M)\)
Encrypt the plaintext \(M\) using the key \(A\).

INPUT:
- \(A\) - a key within the key space of this Hill cipher
- \(M\) - a string (possibly empty) over the string monoid of this Hill cipher.

OUTPUT:
- The ciphertext corresponding to the plaintext \(M\).

EXAMPLES:
```python
sage: H = HillCryptosystem(AlphabeticStrings(), 3)
sage: K = H.random_key()
sage: M = H.encoding("Good day, mate! How ya going?")
sage: H.deciphering(K, H.enciphering(K, M)) == M
True
```

coding \((M)\)
The encoding of the string \(M\) over the string monoid of this Hill cipher. For example, if the string monoid of this Hill cipher is `AlphabeticStringMonoid`, then the encoding of \(M\) would be its upper-case equivalent stripped of all non-alphabetic characters.

INPUT:
- \(M\) - a string, possibly empty

OUTPUT:
- The encoding of \(M\) over the string monoid of this Hill cipher.

EXAMPLES:
```python
sage: M = "The matrix cipher by Lester S. Hill."
sage: A = AlphabeticStrings()
sage: H = HillCryptosystem(A, 7)
sage: H.encoding(M) == A.encoding(M)
True
```

inverse_key \((A)\)
The inverse key corresponding to the key \(A\).

INPUT:
- \(A\) - an invertible matrix of the key space of this Hill cipher

OUTPUT:
- The inverse matrix of \(A\).

EXAMPLES:
```python
sage: S = AlphabeticStrings()
sage: E = HillCryptosystem(S, 3)
sage: A = E.random_key()
sage: B = E.inverse_key(A)
sage: M = S("LAMAISONBLANCHE")
sage: e = E(A)
sage: c = E(B)
sage: c(e(M))
LAMAISONBLANCHE
```
random_key()
A random key within the key space of this Hill cipher. That is, generate a random $m \times m$ matrix to be used as a block permutation, where m is the block length of this Hill cipher. If n is the size of the cryptosystem alphabet, then there are n^m possible keys. However the number of valid keys, i.e. invertible $m \times m$ square matrices, is smaller than n^m.

OUTPUT:
- A random key within the key space of this Hill cipher.

EXAMPLES:
```
sage: A = AlphabeticStrings()
sage: n = 3
sage: H = HillCryptosystem(A, n)
sage: K = H.random_key()
sage: Ki = H.inverse_key(K)
sage: M = "LAMAISONBLANCHE"
sage: e = H(K)
sage: d = H(Ki)
sage: d(e(A(M))) == A(M)
True
```

class sage.crypto.classical.ShiftCryptosystem(A)
Bases: sage.crypto.cryptosystem.SymmetricKeyCryptosystem

Create a shift cryptosystem.

Let $A = \{a_0, a_1, a_2, \ldots, a_{n-1}\}$ be a non-empty alphabet consisting of n unique elements. Define a mapping $f : A \rightarrow Z/nZ$ from the alphabet A to the set Z/nZ of integers modulo n, given by $f(a_i) = i$. Thus we can identify each element of the alphabet A with a unique integer $0 \leq i < n$. A key of the shift cipher is an integer $0 \leq k < n$. Therefore the key space is Z/nZ. Since we assume that A does not have repeated elements, the mapping $f : A \rightarrow Z/nZ$ is bijective. Encryption works by moving along the alphabet by k positions, with wrap around. Decryption reverses the process by moving backwards by k positions, with wrap around. More generally, let k be a secret key, i.e. an element of the key space, and let p be a plaintext character and consequently $p \in Z/nZ$. Then the ciphertext character c corresponding to p is given by

$$c \equiv p + k \pmod{n}$$

Similarly, given a ciphertext character $c \in Z/nZ$ and a secret key k, we can recover the corresponding plaintext character as follows:

$$p \equiv c - k \pmod{n}$$

Use the bijection $f : A \rightarrow Z/nZ$ to convert c and p back to elements of the alphabet A. Currently, the following alphabets are supported for the shift cipher:

- capital letters of the English alphabet as implemented in AlphabeticStrings()
- the alphabet consisting of the hexadecimal number system as implemented in HexadecimalStrings()
- the alphabet consisting of the binary number system as implemented in BinaryStrings()

EXAMPLES:
Some examples illustrating encryption and decryption over various alphabets. Here is an example over the upper-case letters of the English alphabet:
A shift cryptosystem with key $k = 3$ is commonly referred to as the Caesar cipher. Create a Caesar cipher over
the upper-case letters of the English alphabet:

```
sage: caesar = ShiftCryptosystem(AlphabeticStrings())
sage: K = 3
sage: P = caesar.encoding("abcdef"); P
ABCDEF
sage: C = caesar.enciphering(K, P); C
DEFGHI
sage: caesar.deciphering(K, C) == P
True
```

Generate a random key for encryption and decryption:

```
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shift cipher with a random key.")
sage: K = S.random_key()
sage: C = S.enciphering(K, P)
sage: S.deciphering(K, C) == P
True
```

Decrypting with the key K is equivalent to encrypting with its corresponding inverse key:

```
sage: S.enciphering(S.inverse_key(K), C) == P
True
```

`brute_force` (C, `ranking='none'`)

Attempt a brute force cryptanalysis of the ciphertext C.

INPUT:

- C – A ciphertext over one of the supported alphabets of this shift cryptosystem. See the class `ShiftCryptosystem` for documentation on the supported alphabets.
- `ranking` – (default "none") the method to use for ranking all possible keys. If `ranking="none"`, then do not use any ranking function. The following ranking functions are supported:
 - "chisquare" – the chi-square ranking function as implemented in the method `rank_by_chi_square()`.
 - "squared_differences" – the squared differences ranking function as implemented in the method `rank_by_squared_differences()`.

OUTPUT:

- All the possible plaintext sequences corresponding to the ciphertext C. This method effectively uses all the possible keys in this shift cryptosystem to decrypt C. The method is also referred to as exhaustive key search. The output is a dictionary of key, plaintext pairs.

EXAMPLES:

Cryptanalyze using all possible keys for various alphabets. Over the upper-case letters of the English alphabet:

```
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("The shift cryptosystem generalizes the Caesar cipher.")
sage: K = 7
sage: C = S.enciphering(K, P)
sage: Dict = S.brute_force(C)
sage: for k in range(len(Dict)):
  print(Dict[k])
```

(continues on next page)

(continued from previous page)

```python
    if Dict[k] == P:
    #print("key = " + str(k))  
key = 7
```

Over the hexadecimal number system:

```python
sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: P = S.encoding("Encryption & decryption shifts along the alphabet.")
sage: K = 5
sage: C = S.enciphering(K, P)
sage: Dict = S.brute_force(C)
sage: for k in range(len(Dict)):
    if Dict[k] == P:
        print("key = " + str(k))
key = 5
```

And over the binary number system:

```python
sage: S = ShiftCryptosystem(BinaryStrings())
sage: P = S.encoding("The binary alphabet is very insecure.")
sage: K = 1
sage: C = S.enciphering(K, P)
sage: Dict = S.brute_force(C)
sage: for k in range(len(Dict)):
    if Dict[k] == P:
        print("key = " + str(k))
key = 1
```

Don’t use any ranking functions, i.e. `ranking="none"`

```python
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shifting using modular arithmetic.")
sage: K = 8
sage: C = S.enciphering(K, P)
sage: pdict = S.brute_force(C)
sage: sorted(pdict.items())
[(0, 'APQNBVQCAQVQUWLCTIZ2IZ2BQPUMBQK'),
 (1, '2ZOPMAPUNBZPUNTVKBSSHYPAOPTLAPJ'),
 (2, 'YNOLZOTMAYOTMSUJARGXG2Z2KS2OI'),
 (3, 'XMNLYSNZXSRLT2Z2QFWNYM2RJYNH'),
 (4, 'WLMJXMRKYNMRKQSHYPEVNMXQLIXMG'),
 (5, 'VKLINLQJXVLQPGRXODUDULWKLPHWL'),
 (6, 'UJKHVKPIWUKPIOQFWNCTCKVJQGVK'),
 (7, 'TIJGUJGVTVJOHNPEVMBSJSJUINFUD'),
 (8, 'SHIPTINGINGMULARARITHMETIC'),
 (9, 'GHESHMFTRWHFLCTKZ2Q2QUSHGSHD'),
 (10, 'QGDRGLESQGKMBJSJYPPGRFKCRG'),
 (11, 'PEFCQFDRPFDJLARIXXOFQJEJQBQF'),
 (12, 'ODEBPEJCQEOECJIKZHQHNWNEPDIAAPY'),
 (13, 'NCDAOIBPNBDNBHVJYPGVMWMDCH2D0X'),
 (14, 'MBCZ2NCHAOMHAGIXQULCNBGYNCFW'),
 (15, 'LANYMB2NZLB2FHWN2T2K2M2A2FXBV'),
 (16, 'K2AXLAFYMPKAEVMSJSJAL2WENL'),
 (17, 'JY2ZKN2EZKLZGNMCTUL3CRIRJZKVDK'),
 (18, 'IXYVJYDKWJYDCTKQEQHITYJXCUJYS'),
 (19, 'HNXUIXCVHJXCVJBSJAPQGXIWB2X')]
```

(continues on next page)
Use the chi-square ranking function, i.e. `ranking="chisquare"`:

```python
sage: S.brute_force(C, ranking="chisquare")
```

```plaintext
[(8, SHIFTINGUSINGMODULARARITHMETIC),
(14, MBCZNCHAOMCHAGIXOFULULCNBGCNWC),
(20, GVWTHWBUIGWBUACRIZOFOWHVASQW),
(25, BQORCRWPDBRWPVXMDUAJARCQVENCRL)]
```

Use the squared differences ranking function, i.e. `ranking="squared_differences"`:

```python
sage: S.brute_force(C, ranking="squared_differences")
```

```plaintext
[(8, SHIFTINGUSINGMODULARARITHMETIC),
(12, ODEBPEJCQEOEJCICIKQHWWNPEDFAPEY),
(20, GVWTHWBUIGWBUACRIZOFOWHVASQW),
(25, BQORCRWPDBRWPVXMDUAJARCQVENCRL),
(9, RGHESHMFTRHMFLNCNCTKQZQSHGSSDB),
(24, CRSPDSXGECXQWNYEKVXHSDWODSM),
(3, XMNKYNLZXSLSLRTIZQFWNMYRJYNH),
(5, VKLILQJXVLQJPRGQDUDULWPFWHLF),
(7, TJJGJOHVTJOHNPEVMBSBJSJUIFJUD),
(2, YNLOZOTMAYOTMSUJARGXGODZNSK2O),
(18, IXYVYWDYKXYWDCETKQHQQHJXJUYS),
(4, WLKMRKYXKQHSHYQFVEVMXOLQIXM),
(11, PECQFDRFPDJDARLIXOFOFQEQJQBQFZ),
(19, HXUXJYXVJXCVBDSJAPGPXIXWBTIXR),
(0, AQPNQVOCALVQOULCTIZQBPUMPQK),
(17, JYMN2EKLXZEXDFULCRIRIZKYDVKTZ)]
```
deciphering (K, C)
Decrypt the ciphertext C with the key K using shift cipher decryption.

INPUT:

- K – a secret key; a key belonging to the key space of this shift cipher. This key is an integer k satisfying the inequality $0 \leq k < n$, where n is the size of the cipher domain.
- C – a string of ciphertext; possibly an empty string. Characters in this string must be encoded using one of the supported alphabets. See the method encoding() for more information.

OUTPUT:

- The plaintext corresponding to the ciphertext C.

EXAMPLES:

Let’s perform decryption over the supported alphabets. Here is decryption over the capital letters of the English alphabet:

```python
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Stop shifting me."); P
STOPSHIFTINGME
sage: K = 13
sage: C = S.enciphering(K, P); C
FGBCFUVSGVATZR
sage: S.deciphering(K, C) == P
True
```

Decryption over the hexadecimal number system:

```python
sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: P = S.encoding("Shift me now."); P
5368696674206d65206e6f772e
sage: K = 7
sage: C = S.enciphering(K, P); C
cadfd0ddeb97d4dc97d5d6ee95
sage: S.deciphering(K, C) == P
True
```

Decryption over the binary number system:

```python
sage: S = ShiftCryptosystem(BinaryStrings())
sage: P = S.encoding("OK, enough shifting."); P
0100111010011011100010000000110010101110110110110111011101101011001100110100010000101110
sage: K = 1
sage: C = S.enciphering(K, P); C
```
sage: S.deciphering(K, C) == P
True

enciphering \((K, P)\)

Encrypt the plaintext \(P\) with the key \(K\) using shift cipher encryption.

INPUT:

- \(K\) – a key belonging to the key space of this shift cipher. This key is an integer \(k\) satisfying the inequality \(0 \leq k < n\), where \(n\) is the size of the cipher domain.
- \(P\) – a string of plaintext; possibly an empty string. Characters in this string must be encoded using one of the supported alphabets. See the method `encoding()` for more information.

OUTPUT:

- The ciphertext corresponding to the plaintext \(P\).

EXAMPLES:

Let’s perform encryption over the supported alphabets. Here is encryption over the capital letters of the English alphabet:

```python
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shift your gear."); P
SHIFTYOURGEAR
sage: K = 3
sage: S.enciphering(K, P)
VKLIWBRXUJHDU
```

Encryption over the hexadecimal number system:

```python
sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: P = S.encoding("Capitalize with the shift key."); P
4361706974616c697a65207769746820746865207368696674206b65792e
sage: K = 5
sage: S.enciphering(K, P)
98b6c5bec9b6b1becfba75ccbec9bd75c9bdbebc9750bace73
```

Encryption over the binary number system:

```python
sage: S = ShiftCryptosystem(BinaryStrings())
sage: P = S.encoding("Don't shift."); P
0100010001101111011110001001111011000100000011100110110100001101001011001100111010000101110
sage: K = 1
sage: S.enciphering(K, P)
1011000010110100110111110111110110100110011011111011010011001100010111011101110111011101110111
```

encoding \((S)\)

The encoding of the string \(S\) over the string monoid of this shift cipher. For example, if the string monoid of this cryptosystem is `AlphabeticStringMonoid`, then the encoding of \(S\) would be its upper-case equivalent stripped of all non-alphabetic characters. The following alphabets are supported for the shift cipher:

- capital letters of the English alphabet as implemented in `AlphabeticStrings()`
- the alphabet consisting of the hexadecimal number system as implemented in `HexadecimalStrings()`

Chapter 3. Classical Cryptosystems
• the alphabet consisting of the binary number system as implemented in `BinaryStrings()`

INPUT:
• `S` – a string, possibly empty.

OUTPUT:
• The encoding of `S` over the string monoid of this cryptosystem. If `S` is an empty string, return an empty string.

EXAMPLES:
Encoding over the upper-case letters of the English alphabet:
```
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: S.encoding("Shift cipher on capital letters of the English alphabet.")
SHIFTCIPHERONCAPITALLETTERSOFTHEENGLISHALPHABET
```

Encoding over the binary system:
```
sage: S = ShiftCryptosystem(BinaryStrings())
sage: S.encoding("Binary")
01000101100101110110010001011110101110101
```

Encoding over the hexadecimal system:
```
sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: S.encoding("Over hexadecimal system.")
4f7665722068657861646563696d616e2073797374656e74
```

The argument `S` can be an empty string, in which case an empty string is returned:
```
sage: ShiftCryptosystem(AlphabeticStrings()).encoding("")
sage: ShiftCryptosystem(HexadecimalStrings()).encoding("")
sage: ShiftCryptosystem(BinaryStrings()).encoding("")
```

inverse_key (`K`)
The inverse key corresponding to the key `K`. For the shift cipher, the inverse key corresponding to `K` is
\[-K \mod n\], where `n > 0` is the size of the cipher domain, i.e. the plaintext/ciphertext space. A key `k` of the shift cipher is an integer `0 \leq k < n`. The key `k = 0` has no effect on either the plaintext or the ciphertext.

INPUT:
• `K` – a key for this shift cipher. This must be an integer `k` such that `0 \leq k < n`, where `n` is the size of the cipher domain.

OUTPUT:
• The inverse key corresponding to `K`.

EXAMPLES:
Some random keys and their respective inverse keys:
```
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: key = S.random_key(); key  # random
2
sage: S.inverse_key(key)  # random
```

(continues on next page)
Regardless of the value of a key, the addition of the key and its inverse must be equal to the alphabet size. This relationship holds exactly when the value of the key is non-zero:

```python
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: K = S.random_key()
sage: while K == 0:
....:     K = S.random_key()
sage: invK = S.inverse_key(K)
sage: K + invK == S.alphabet_size()  # True
sage: invK + K == S.alphabet_size()  # True
sage: K = S.random_key()
sage: while K != 0:
....:     K = S.random_key()
sage: invK = S.inverse_key(K)
sage: K + invK != S.alphabet_size()  # True
sage: K; invK
0
0
```

`random_key()`
Generate a random key within the key space of this shift cipher. The generated key is an integer $0 \leq k < n$ with n being the size of the cipher domain. Thus there are n possible keys in the key space, which is the set $\mathbb{Z}/n\mathbb{Z}$. The key $k = 0$ has no effect on either the plaintext or the ciphertext.

OUTPUT:

- A random key within the key space of this shift cryptosystem.

EXAMPLES:

```python
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: S.random_key()  # random
18
sage: S = ShiftCryptosystem(BinaryStrings())
.. # random
0
sage: S = ShiftCryptosystem(HexadecimalStrings())
.. # random
5
```
Regardless of the value of a key, the addition of the key and its inverse must be equal to the alphabet size. This relationship holds exactly when the value of the key is non-zero:

```python
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: K = S.random_key()
sage: while K == 0:
    K = S.random_key()
 sage: invK = S.inverse_key(K)
sage: K + invK == S.alphabet_size()
True
sage: invK + K == S.alphabet_size()
True
sage: K = S.random_key()
sage: while K != 0:
    K = S.random_key()
 sage: invK = S.inverse_key(K)
sage: K + invK != S.alphabet_size()
True
```

rank_by_chi_square(*C, pdict*)

Use the chi-square statistic to rank all possible keys. Currently, this method only applies to the capital letters of the English alphabet.

ALGORITHM:

Consider a non-empty alphabet A consisting of n elements, and let C be a ciphertext encoded using elements of A. The plaintext P corresponding to C is also encoded using elements of A. Let M be a candidate decipherment of C, i.e. M is the result of attempting to decrypt C using a key $k \in \mathbb{Z}/n\mathbb{Z}$ which is not necessarily the same key used to encrypt P. Suppose $F_A(e)$ is the characteristic frequency probability of $e \in A$ and let $F_M(e)$ be the message frequency probability with respect to M. The characteristic frequency probability distribution of an alphabet is the expected frequency probability distribution for that alphabet. The message frequency probability distribution of M provides a distribution of the ratio of character occurrences over message length. One can interpret the characteristic frequency probability $F_A(e)$ as the expected probability, while the message frequency probability $F_M(e)$ is the observed probability. If M is of length L, then the observed frequency of $e \in A$ is

$$O_M(e) = F_M(e) \cdot L$$

and the expected frequency of $e \in A$ is

$$E_A(e) = F_A(e) \cdot L$$

The chi-square rank $R_{\chi^2}(M)$ of M corresponding to a key $k \in \mathbb{Z}/n\mathbb{Z}$ is given by

$$R_{\chi^2}(M) = \sum_{e \in A} \frac{(O_M(e) - E_A(e))^2}{E_A(e)}$$

Cryptanalysis by exhaustive key search produces a candidate decipherment M_k for each possible key $k \in \mathbb{Z}/n\mathbb{Z}$. For a set $D = \{M_{k_1}, M_{k_2}, \ldots, M_{k_r}\}$ of all candidate decipherments corresponding to a ciphertext C, the smaller is the rank $R_{\chi^2}(M_k)$ the more likely that k_i is the secret key. This key ranking method is based on the Pearson chi-square test [PearsonTest].

INPUT:

- C – The ciphertext, a non-empty string. The ciphertext must be encoded using the upper-case letters of the English alphabet.
• **pdict** – A dictionary of key, possible plaintext pairs. This should be the output of `brute_force()` with `ranking="none"`.

OUTPUT:

• A list ranking the most likely keys first. Each element of the list is a tuple of key, possible plaintext pairs.

EXAMPLES:

Use the chi-square statistic to rank all possible keys and their corresponding decipherment:

```python
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shi."); P
SHI
sage: K = 5
sage: C = S.enciphering(K, P)
sage: Pdict = S.brute_force(C)
sage: S.rank_by_chi_square(C, Pdict)
[(9, ODE),
 (5, SHI),
 (20, DST),
 (19, ETU),
 (21, CRS),
 (10, NCD),
 (25, YNO),
 (6, RGH),
 (12, LAB),
 (8, PEF),
 (1, WLM),
 (11, MBC),
 (18, FUV),
 (17, GVW),
 (2, VKL),
 (4, TIJ),
 (3, UJK),
 (0, XMN),
 (16, HWX),
 (15, IXY),
 (23, APQ),
 (24, ZOP),
 (22, BQR),
 (7, QFG),
 (13, KZA),
 (14, JYZ)]
```

As more ciphertext is available, the reliability of the chi-square ranking function increases:

```python
sage: P = S.encoding("Shift cipher."); P
SHIFTCIPHER
sage: C = S.enciphering(K, P)
sage: Pdict = S.brute_force(C)
sage: S.rank_by_chi_square(C, Pdict)
[(5, SHIFTCIPHER),
 (9, ODEBPYELDAN),
 (18, FUVSGPVCURE),
 (2, VKLINFLSKHU),
(continues on next page)
```
rank_by_squared_differences \((C, pdict) \)

Use the squared-differences measure to rank all possible keys. Currently, this method only applies to the capital letters of the English alphabet.

ALGORITHM:

Consider a non-empty alphabet \(A \) consisting of \(n \) elements, and let \(C \) be a ciphertext encoded using elements of \(A \). The plaintext \(P \) corresponding to \(C \) is also encoded using elements of \(A \). Let \(M \) be a candidate decipherment of \(C \), i.e. \(M \) is the result of attempting to decrypt \(C \) using a key \(k \in \mathbb{Z}/n\mathbb{Z} \) which is not necessarily the same key used to encrypt \(P \). Suppose \(F_A(e) \) is the characteristic frequency probability of \(e \in A \) and let \(F_M(e) \) be the message frequency probability with respect to \(M \). The characteristic frequency probability distribution of an alphabet is the expected frequency probability distribution for that alphabet. The message frequency probability distribution of \(M \) provides a distribution of the ratio of character occurrences over message length. One can interpret the characteristic frequency probability \(F_A(e) \) as the expected probability, while the message frequency probability \(F_M(e) \) is the observed probability. If \(M \) is of length \(L \), then the observed frequency of \(e \in A \) is

\[
O_M(e) = F_M(e) \cdot L
\]

and the expected frequency of \(e \in A \) is

\[
E_A(e) = F_A(e) \cdot L
\]

The squared-differences, or residual sum of squares, rank \(R_{RSS}(M) \) of \(M \) corresponding to a key \(k \in \mathbb{Z}/n\mathbb{Z} \) is given by

\[
R_{RSS}(M) = \sum_{e \in A} (O_M(e) - E_A(e))^2
\]

Cryptanalysis by exhaustive key search produces a candidate decipherment \(M_k \) for each possible key \(k \in \mathbb{Z}/n\mathbb{Z} \). For a set \(D = \{ M_{k_1}, M_{k_2}, \ldots, M_{k_r} \} \) of all candidate decipherments corresponding to a ciphertext \(C \), the smaller is the rank \(R_{RSS}(M_{k_i}) \) the more likely that \(k_i \) is the secret key. This key ranking method is based on the residual sum of squares measure [RSS].

INPUT:
• C – The ciphertext, a non-empty string. The ciphertext must be encoded using the upper-case letters of the English alphabet.
• pdict – A dictionary of key, possible plaintext pairs. This should be the output of `brute_force()` with `ranking="none"`.

OUTPUT:
• A list ranking the most likely keys first. Each element of the list is a tuple of key, possible plaintext pairs.

EXAMPLES:

Use the method of squared differences to rank all possible keys and their corresponding decipherment:

```
sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shi."); P
SHI
sage: K = 5
sage: C = S.enciphering(K, P)
sage: Pdict = S.brute_force(C)
sage: S.rank_by_squared_differences(C, Pdict)
[(19, ETU),
 (9, ODE),
 (20, DST),
 (5, SHI),
 (8, PEF),
 (4, TIJ),
 (25, YNO),
 (21, CRS),
 (6, RGH),
 (10, NCD),
 (12, LAB),
 (23, APQ),
 (24, ZOP),
 (0, XMN),
 (13, K2A),
 (15, IXY),
 (1, WLM),
 (16, HWX),
 (22, BQR),
 (11, MBC),
 (18, FUV),
 (2, VKL),
 (17, GVW),
 (7, QFG),
 (3, UJK),
 (14, JY2)]
```

As more ciphertext is available, the reliability of the squared differences ranking function increases:

```
sage: P = S.encoding("Shift cipher."); P
SHIFTCIPHER
sage: C = S.enciphering(K, P)
sage: Pdict = S.brute_force(C)
sage: S.rank_by_squared_differences(C, Pdict)
[(20, DSTQENTASPC),
 (5, SHIFTCIPHER),
(continues on next page)
```
class sage.crypto.classical.SubstitutionCryptosystem(S)

Bases: sage.crypto.cryptosystem.SymmetricKeyCryptosystem

Create a substitution cryptosystem.

INPUT:

• S - a string monoid over some alphabet

OUTPUT:

• A substitution cryptosystem over the alphabet S.

EXAMPLES:

\begin{verbatim}
sage: M = AlphabeticStrings()
sage: E = SubstitutionCryptosystem(M)
sage: E
Substitution cryptosystem on Free alphabetic string monoid on A-Z
sage: K = M([25-i for i in range(26)])
sage: K
ZYXWVUTSRQPONMLKJIHGFEDCBA
sage: e = E(K)
sage: m = M("THECATINTHEHAT")
sage: e(m)
GSVXZGRMGSVSZG
\end{verbatim}

deciphering(K, C)

Decrypt the ciphertext C using the key K.

INPUT:

• K - a key belonging to the key space of this substitution cipher
• C - a string (possibly empty) over the string monoid of this cryptosystem.
OUTPUT:

- The plaintext corresponding to the ciphertext C.

EXAMPLES:

```
sage: S = SubstitutionCryptosystem(AlphabeticStrings())
sage: K = S.random_key()
sage: M = S.encoding("Don't substitute me!")
sage: S.deciphering(K, S.enciphering(K, M)) == M
True
```

\textbf{enciphering (K, M)}

Encrypt the plaintext M using the key K.

\textbf{INPUT}:

- K - a key belonging to the key space of this substitution cipher
- M - a string (possibly empty) over the string monoid of this cryptosystem.

\textbf{OUTPUT}:

- The ciphertext corresponding to the plaintext M.

\textbf{EXAMPLES}:

```
sage: S = SubstitutionCryptosystem(AlphabeticStrings())
sage: K = S.random_key()
sage: M = S.encoding("Don't substitute me.")
sage: S.deciphering(K, S.enciphering(K, M)) == M
True
```

\textbf{encoding (M)}

The encoding of the string M over the string monoid of this substitution cipher. For example, if the string monoid of this cryptosystem is \texttt{AlphabeticStringMonoid}, then the encoding of M would be its upper-case equivalent stripped of all non-alphabetic characters.

\textbf{INPUT}:

- M - a string, possibly empty

\textbf{OUTPUT}:

- The encoding of M over the string monoid of this cryptosystem.

\textbf{EXAMPLES}:

```
sage: M = "Peter Pan(ning) for gold."
sage: A = AlphabeticStrings()
sage: S = SubstitutionCryptosystem(A)
sage: S.encoding(M) == A.encoding(M)
True
```

\textbf{inverse_key (K)}

The inverse key corresponding to the key K. The specified key is a permutation of the cryptosystem alphabet.

\textbf{INPUT}:

- K - a key belonging to the key space of this cryptosystem

\textbf{OUTPUT}:
• The inverse key of \(K \).

EXAMPLES:

```python
sage: S = AlphabeticStrings()
sage: E = SubstitutionCryptosystem(S)
sage: K = E.random_key()
sage: L = E.inverse_key(K)
sage: M = S("THECATINTHEHAT")
sage: e = E(K)
sage: c = E(L)
sage: c(e(M))
THECATINTHEHAT
```

random_key()

Generate a random key within the key space of this substitution cipher. The generated key is a permutation of the cryptosystem alphabet. Let \(n \) be the length of the alphabet. Then there are \(n! \) possible keys in the key space.

OUTPUT:

• A random key within the key space of this cryptosystem.

EXAMPLES:

```python
sage: A = AlphabeticStrings()
sage: S = SubstitutionCryptosystem(A)
sage: K = S.random_key()
sage: Ki = S.inverse_key(K)
sage: M = "THECATINTHEHAT"
sage: e = S(K)
sage: d = S(Ki)
sage: d(e(A(M))) == A(M)
True
```

```python
class sage.crypto.classical.TranspositionCryptosystem(S, n)
Bases: sage.crypto.cryptosystem.SymmetricKeyCryptosystem
```

Create a transposition cryptosystem of block length \(n \).

INPUT:

• \(S \) - a string monoid over some alphabet

• \(n \) - integer > 0; a block length of a block permutation

OUTPUT:

• A transposition cryptosystem of block length \(n \) over the alphabet \(S \).

EXAMPLES:

```python
sage: S = AlphabeticStrings()
sage: E = TranspositionCryptosystem(S,14)
sage: E
Transposition cryptosystem on Free alphabetic string monoid on A-Z of block length 14
sage: K = [ 14-i for i in range(14) ]
sage: K
[14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
sage: e = E(K)
```
deciphering \((K, C)\)
Decrypt the ciphertext \(C\) using the key \(K\).

INPUT:
- \(K\) - a key belonging to the key space of this transposition cipher
- \(C\) - a string (possibly empty) over the string monoid of this cryptosystem.

OUTPUT:
- The plaintext corresponding to the ciphertext \(C\).

EXAMPLES:
```
sage: T = TranspositionCryptosystem(AlphabeticStrings(), 14)
sage: K = T.random_key()
sage: M = T.encoding("The cat in the hat."")
sage: T.deciphering(K, T.enciphering(K, M)) == M
True
```

enciphering \((K, M)\)
Encrypt the plaintext \(M\) using the key \(K\).

INPUT:
- \(K\) - a key belonging to the key space of this transposition cipher
- \(M\) - a string (possibly empty) over the string monoid of this cryptosystem

OUTPUT:
- The ciphertext corresponding to the plaintext \(M\).

EXAMPLES:
```
sage: T = TranspositionCryptosystem(AlphabeticStrings(), 14)
sage: K = T.random_key()
sage: M = T.encoding("The cat in the hat."")
sage: T.deciphering(K, T.enciphering(K, M)) == M
True
```

encoding \((M)\)
The encoding of the string \(M\) over the string monoid of this transposition cipher. For example, if the string monoid of this cryptosystem is AlphabeticStringMonoid, then the encoding of \(M\) would be its upper-case equivalent stripped of all non-alphabetic characters.

INPUT:
- \(M\) - a string, possibly empty

OUTPUT:
- The encoding of \(M\) over the string monoid of this cryptosystem.

EXAMPLES:
sage: M = "Transposition cipher is not about matrix transpose."
sage: A = AlphabeticStrings()
sage: T = TranspositionCryptosystem(A, 11)
sage: T.encoding(M) == A.encoding(M)
True

inverse_key (*K*, **check**=*True*)

The inverse key corresponding to the key *K*.

INPUT:

- *K* - a key belonging to the key space of this transposition cipher
- **check** - bool (default: True); check that *K* belongs to the key space of this cryptosystem.

OUTPUT:

- The inverse key corresponding to *K*.

EXAMPLES:

```sage
sage: S = AlphabeticStrings()
sage: E = TranspositionCryptosystem(S, 14)
sage: K = E.random_key()
sage: Ki = E.inverse_key(K)
sage: e = E(K)
sage: d = E(Ki)
sage: M = "THECATINTHEHAT"
sage: C = e(S(M))
sage: d(S(C)) == S(M)
True
```

random_key()

Generate a random key within the key space of this transposition cryptosystem. Let *n* > 0 be the block length of this cryptosystem. Then there are *n*! possible keys.

OUTPUT:

- A random key within the key space of this cryptosystem.

EXAMPLES:

```sage
sage: S = AlphabeticStrings()
sage: E = TranspositionCryptosystem(S, 14)
sage: K = E.random_key()
sage: Ki = E.inverse_key(K)
sage: e = E(K)
sage: d = E(Ki)
sage: M = "THECATINTHEHAT"
sage: C = e(S(M))
sage: d(S(C)) == S(M)
True
```

class **sage.crypto.classical.VigenereCryptosystem** (*S*, *n*)

Bases: *sage.crypto.cryptosystem.SymmetricKeyCryptosystem*

Create a Vigenere cryptosystem of block length *n*.

INPUT:

- *S* - a string monoid over some alphabet
• n - integer > 0; block length of an encryption/decryption key

OUTPUT:

• A Vigenere cryptosystem of block length n over the alphabet S.

EXAMPLES:

```sage
sage: S = AlphabeticStrings()
sage: E = VigenereCryptosystem(S, 14)
sage: E
Vigenere cryptosystem on Free alphabetic string monoid on A-Z of period 14
sage: K = S('ABCDEFGHIJKLMN')
sage: K
ABCDEFGHIJKLMN
sage: e = E(K)
sage: e
Cipher on Free alphabetic string monoid on A-Z
sage: e(S('THECATINTHEHAT'))
TIGFEYOUBQOSMG
```

def deciphering(K, C)
Decrypt the ciphertext C using the key K.

INPUT:

• K - a key belonging to the key space of this Vigenere cipher
• C - a string (possibly empty) over the string monoid of this cryptosystem

OUTPUT:

• The plaintext corresponding to the ciphertext C.

EXAMPLES:

```sage
sage: V = VigenereCryptosystem(AlphabeticStrings(), 24)
sage: K = V.random_key()  
sage: M = V.encoding("Jack and Jill went up the hill.")
sage: V.deciphering(K, V.enciphering(K, M)) == M
True
```

def enciphering(K, M)
Encrypt the plaintext M using the key K.

INPUT:

• K - a key belonging to the key space of this Vigenere cipher
• M - a string (possibly empty) over the string monoid of this cryptosystem

OUTPUT:

• The ciphertext corresponding to the plaintext M.

EXAMPLES:

```sage
sage: V = VigenereCryptosystem(AlphabeticStrings(), 24)  
sage: K = V.random_key()
sage: M = V.encoding("Jack and Jill went up the hill.")
sage: V.deciphering(K, V.enciphering(K, M)) == M
True
```
encoding(M)
The encoding of the string M over the string monoid of this Vigenere cipher. For example, if the string monoid of this cryptosystem is `AlphabeticStringMonoid`, then the encoding of M would be its upper-case equivalent stripped of all non-alphabetic characters.

INPUT:
- M - a string, possibly empty

OUTPUT:
- The encoding of M over the string monoid of this cryptosystem.

EXAMPLES:

```python
sage: A = AlphabeticStrings()
sage: V = VigenereCryptosystem(A, 24)
sage: M = "Jack and Jill went up the hill."
sage: V.encoding(M) == A.encoding(M)
True
```

inverse_key(K)
The inverse key corresponding to the key K.

INPUT:
- K - a key within the key space of this Vigenere cryptosystem

OUTPUT:
- The inverse key corresponding to K.

EXAMPLES:

```python
sage: S = AlphabeticStrings()
sage: E = VigenereCryptosystem(S, 14)
sage: K = E.random_key()
sage: L = E.inverse_key(K)
sage: M = S("THECATINTHEHAT")
sage: e = E(K)
sage: c = E(L)
sage: c(e(M))
THECATINTHEHAT
```

random_key()
Generate a random key within the key space of this Vigenere cryptosystem. Let $n > 0$ be the length of the cryptosystem alphabet and let $m > 0$ be the block length of this cryptosystem. Then there are n^m possible keys.

OUTPUT:
- A random key within the key space of this cryptosystem.

EXAMPLES:

```python
sage: A = AlphabeticStrings()
sage: V = VigenereCryptosystem(A, 14)
sage: M = "THECATINTHEHAT"
sage: K = V.random_key()
sage: Ki = V.inverse_key(K)
sage: e = V(K)
sage: d = V(Ki)
```

(continues on next page)
\texttt{sage}: \: d(e(A(M))) == A(M)

\texttt{True}
CHAPTER FOUR

CLASSICAL CIPHERS

class sage.crypto.classical_cipher.AffineCipher (parent, key):
 Bases: sage.crypto.cipher.SymmetricKeyCipher

 Affine cipher class. This is the class that does the actual work of encryption and decryption. Users should not
directly instantiate or create objects of this class. Instead, functionalities of this class should be accessed via
AffineCryptosystem as the latter provides a convenient user interface.

class sage.crypto.classical_cipher.HillCipher (parent, key):
 Bases: sage.crypto.cipher.SymmetricKeyCipher

 Hill cipher class

 inverse()

class sage.crypto.classical_cipher.ShiftCipher (parent, key):
 Bases: sage.crypto.cipher.SymmetricKeyCipher

 Shift cipher class. This is the class that does the actual work of encryption and decryption. Users should not
directly instantiate or create objects of this class. Instead, functionalities of this class should be accessed via
ShiftCryptosystem as the latter provides a convenient user interface.

class sage.crypto.classical_cipher.SubstitutionCipher (parent, key):
 Bases: sage.crypto.cipher.SymmetricKeyCipher

 Substitution cipher class

 inverse()

class sage.crypto.classical_cipher.TranspositionCipher (parent, key):
 Bases: sage.crypto.cipher.SymmetricKeyCipher

 Transition cipher class

 inverse()

class sage.crypto.classical_cipher.VigenereCipher (parent, key):
 Bases: sage.crypto.cipher.SymmetricKeyCipher

 Vigenere cipher class

 inverse()
SIMPLIFIED DES

A simplified variant of the Data Encryption Standard (DES). Note that Simplified DES or S-DES is for educational purposes only. It is a small-scale version of the DES designed to help beginners understand the basic structure of DES.

AUTHORS:
• Minh Van Nguyen (2009-06): initial version

class sage.crypto.block_cipher.sdes.SimplifiedDES
 Bases: sage.structure.sage_object.SageObject

 This class implements the Simplified Data Encryption Standard (S-DES) described in [Sch1996]. Schaefer’s S-DES is for educational purposes only and is not secure for practical purposes. S-DES is a version of the DES with all parameters significantly reduced, but at the same time preserving the structure of DES. The goal of S-DES is to allow a beginner to understand the structure of DES, thus laying a foundation for a thorough study of DES. Its goal is as a teaching tool in the same spirit as Phan’s Mini-AES [Pha2002].

EXAMPLES:

Encrypt a random block of 8-bit plaintext using a random key, decrypt the ciphertext, and compare the result with the original plaintext:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES(); sdes
Simplified DES block cipher with 10-bit keys
sage: bin = BinaryStrings()
sage: P = [bin(str(randint(0, 1))) for i in range(8)]
sage: K = sdes.random_key()
sage: C = sdes.encrypt(P, K)
sage: plaintxt = sdes.decrypt(C, K)
sage: plaintxt == P
True
```

We can also encrypt binary strings that are larger than 8 bits in length. However, the number of bits in that binary string must be positive and a multiple of 8:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: bin = BinaryStrings()
sage: P = bin.encoding("Encrypt this using S-DES!")
sage: Mod(len(P), 8) == 0
True
sage: K = sdes.list_to_string(sdes.random_key())
sage: C = sdes(P, K, algorithm="encrypt")
sage: plaintxt = sdes(C, K, algorithm="decrypt")
sage: plaintxt == P
True
```
block_length()
Return the block length of Schaefer’s S-DES block cipher. A key in Schaefer’s S-DES is a block of 10 bits.

OUTPUT:
• The block (or key) length in number of bits.

EXAMPLES:

```python
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.block_length()
10
```

decrypt (C, K)
Return an 8-bit plaintext corresponding to the ciphertext C, using S-DES decryption with key K. The decryption process of S-DES is as follows. Let \(P \) be the initial permutation function, \(P^{-1} \) the corresponding inverse permutation, \(\Pi_F \) the permutation/substitution function, and \(\sigma \) the switch function. The ciphertext block \(C \) first goes through \(P \), the output of which goes through \(\Pi_F \) using the second subkey. Then we apply the switch function to the output of the last function, and the result is then fed into \(\Pi_F \) using the first subkey. Finally, run the output through \(P^{-1} \) to get the plaintext.

INPUT:
• \(C \) – an 8-bit ciphertext; a block of 8 bits
• \(K \) – a 10-bit key; a block of 10 bits

OUTPUT:
The 8-bit plaintext corresponding to \(C \), obtained using the key \(K \).

EXAMPLES:
Decrypt an 8-bit ciphertext block:

```python
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: des = SimplifiedDES()
sage: C = [0, 1, 0, 1, 0, 1, 0, 1]
 sage: K = [1, 0, 1, 0, 0, 0, 0, 1, 0]
 sage: des.decrypt(C, K)
[0, 0, 0, 1, 0, 1, 0, 1]
```

We can also work with strings of bits:

```python
sage: C = "01010101"
sage: K = "1010000010"
sage: des.decrypt(des.string_to_list(C), des.string_to_list(K))
[0, 0, 0, 1, 0, 1, 0, 1]
```

encrypt (P, K)
Return an 8-bit ciphertext corresponding to the plaintext \(P \), using S-DES encryption with key \(K \). The encryption process of S-DES is as follows. Let \(P \) be the initial permutation function, \(P^{-1} \) the corresponding inverse permutation, \(\Pi_F \) the permutation/substitution function, and \(\sigma \) the switch function. The plaintext block \(P \) first goes through \(P \), the output of which goes through \(\Pi_F \) using the first subkey. Then we apply the switch function to the output of the last function, and the result is then fed into \(\Pi_F \) using the second subkey. Finally, run the output through \(P^{-1} \) to get the ciphertext.

INPUT:
• \(P \) – an 8-bit plaintext; a block of 8 bits
• K – a 10-bit key; a block of 10 bits

OUTPUT:

The 8-bit ciphertext corresponding to P, obtained using the key K.

EXAMPLES:

Encrypt an 8-bit plaintext block:

```python
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()

sage: P = [0, 1, 0, 1, 0, 1, 0, 1]

sage: K = [1, 0, 1, 0, 0, 0, 0, 1, 0]

sage: sdes.encrypt(P, K)

[1, 1, 0, 0, 0, 0, 0, 1]
```

We can also work with strings of bits:

```python
sage: P = "01010101"

sage: K = "1010000010"

sage: sdes.encrypt(sdes.string_to_list(P), sdes.string_to_list(K))

[1, 1, 0, 0, 0, 0, 0, 1]
```

initial_permutation(B, inverse=False)

Return the initial permutation of B. Denote the initial permutation function by P and let \((b_0, b_1, b_2, \ldots, b_7)\) be a vector of 8 bits, where each \(b_i \in \{0, 1\}\). Then

\[
P(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7) = (b_1, b_5, b_2, b_0, b_3, b_7, b_4, b_6)
\]

The inverse permutation is \(P^{-1}\):

\[
P^{-1}(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7) = (b_3, b_0, b_2, b_4, b_6, b_1, b_7, b_5)
\]

INPUT:

• B – list; a block of 8 bits

• inverse – (default: False) if True then use the inverse permutation \(P^{-1}\); if False then use the initial permutation \(P\)

OUTPUT:

The initial permutation of B if inverse=False, or the inverse permutation of B if inverse=True.

EXAMPLES:

The initial permutation of a list of 8 bits:

```python
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()

sage: B = [1, 0, 1, 1, 0, 1, 0, 0]

sage: P = sdes.initial_permutation(B); P

[0, 1, 1, 1, 1, 0, 0, 0]
```

Recovering the original list of 8 bits from the permutation:

```python
sage: Pinv = sdes.initial_permutation(P, inverse=True)

sage: Pinv; B

[1, 0, 1, 1, 0, 1, 0, 0]
[1, 0, 1, 1, 0, 1, 0, 0]
```
We can also work with a string of bits:

```
sage: S = "10110100"
sage: L = sdes.string_to_list(S)
sage: P = sdes.initial_permutation(L); P
[0, 1, 1, 1, 0, 0, 0]
sage: sdes.initial_permutation(sdes.string_to_list("01111000"), inverse=True)
[1, 0, 1, 1, 0, 1, 0, 0]
```

left_shift *(B, n=1)*

Return a circular left shift of B by n positions. Let \(B = (b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9) \) be a vector of 10 bits. Then the left shift operation \(L_n \) is performed on the first 5 bits and the last 5 bits of \(B \) separately. That is, if the number of shift positions is \(n=1 \), then \(L_1 \) is defined as

\[
L_1(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9) = (b_1, b_2, b_3, b_4, b_0, b_6, b_7, b_8, b_9, b_5)
\]

If the number of shift positions is \(n=2 \), then \(L_2 \) is given by

\[
L_2(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9) = (b_2, b_3, b_4, b_0, b_1, b_7, b_8, b_9, b_5, b_6)
\]

INPUT:

- \(B \) – a list of 10 bits
- \(n \) – (default: 1) if \(n=1 \) then perform left shift by 1 position; if \(n=2 \) then perform left shift by 2 positions. The valid values for \(n \) are 1 and 2, since only up to 2 positions are defined for this circular left shift operation.

OUTPUT:

The circular left shift of each half of B.

EXAMPLES:

Circular left shift by 1 position of a 10-bit string:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 0, 0, 0, 0, 0, 1, 1, 0, 0]
sage: sdes.left_shift(B)
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift([1, 0, 1, 0, 0, 0, 0, 0, 1, 0], n=2)
[0, 1, 0, 0, 1, 0, 0, 1, 0, 0]
```

Circular left shift by 2 positions of a 10-bit string:

```
sage: B = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift(B, n=2)
[0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
```

Here we work with a string of bits:

```
sage: S = "1000001100"
sage: L = sdes.string_to_list(S)
sage: sdes.left_shift(L)
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift(sdes.string_to_list("1010000010"), n=2)
[1, 0, 0, 1, 0, 0, 1, 0, 0, 0]
```
list_to_string(B)
Return a binary string representation of the list B.

INPUT:
 * B – a non-empty list of bits

OUTPUT:
The binary string representation of B.

EXAMPLES:
A binary string representation of a list of bits:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: L = [0, 0, 0, 1, 1, 0, 1, 0, 0]
sage: sdes.list_to_string(L)
0000110100
```

permutation10(B)
Return a permutation of a 10-bit string. This permutation is called \(P_{10} \) and is specified as follows. Let \((b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9)\) be a vector of 10 bits where each \(b_i \in \{0, 1\} \). Then \(P_{10} \) is given by

\[
P_{10}(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9) = (b_2, b_4, b_1, b_6, b_3, b_9, b_0, b_8, b_7, b_5)
\]

INPUT:
 * B – a block of 10-bit string

OUTPUT:
A permutation of B.

EXAMPLES:
Permute a 10-bit string:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1]
sage: sdes.permutation10(B)
[0, 1, 1, 0, 0, 1, 1, 0, 1, 0]
sage: sdes.permutation10([0, 1, 1, 0, 1, 0, 0, 1, 0, 1])
[1, 1, 1, 0, 0, 1, 0, 0, 1, 0]
sage: sdes.permutation10([1, 0, 1, 0, 0, 0, 0, 0, 1, 0])
[1, 0, 0, 0, 0, 0, 1, 1, 0, 0]
```

Here we work with a string of bits:

```
sage: S = "1100100101"
sage: L = sdes.string_to_list(S)
sage: sdes.permutation10(L)
[0, 1, 1, 0, 0, 1, 1, 0, 1, 0]
sage: sdes.permutation10(sdes.string_to_list("0110100101"))
[1, 1, 1, 0, 0, 1, 0, 0, 1, 0]
```

permutation4(B)
Return a permutation of a 4-bit string. This permutation is called \(P_4 \) and is specified as follows. Let \((b_0, b_1, b_2, b_3)\) be a vector of 4 bits where each \(b_i \in \{0, 1\} \). Then \(P_4 \) is defined by

\[
P_4(b_0, b_1, b_2, b_3) = (b_1, b_3, b_2, b_0)
\]
INPUT:

- \(B \) – a block of 4-bit string

OUTPUT:

A permutation of \(B \).

EXAMPLES:

Permute a 4-bit string:

```python
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()

sage: B = [1, 1, 0, 0]
sage: sdes.permutation4(B)
[1, 0, 0, 1]
sage: sdes.permutation4([0, 1, 0, 1])
[1, 1, 0, 0]
```

We can also work with a string of bits:

```python
sage: S = "1100"
sage: L = sdes.string_to_list(S)
sage: sdes.permutation4(L)
[1, 0, 0, 1]
sage: sdes.permutation4(sdes.string_to_list("0101"))
[1, 1, 0, 0]
```

permutation8\((B)\)

Return a permutation of an 8-bit string. This permutation is called \(P_8 \) and is specified as follows. Let \((b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8)\) be a vector of 10 bits where each \(b_i \in \{0, 1\} \). Then \(P_8 \) picks out 8 of those 10 bits and permutes those 8 bits:

\[
P_8(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8) = (b_5, b_2, b_6, b_3, b_7, b_4, b_9, b_8)
\]

INPUT:

- \(B \) – a block of 10-bit string

OUTPUT:

Pick out 8 of the 10 bits of \(B \) and permute those 8 bits.

EXAMPLES:

Permute a 10-bit string:

```python
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()

sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1]
sage: sdes.permutation8(B)
[0, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.permutation8([0, 1, 1, 0, 1, 0, 0, 1, 0, 1])
[0, 1, 0, 0, 1, 1, 1, 0]
sage: sdes.permutation8([0, 0, 0, 0, 1, 1, 1, 0, 0, 0])
[1, 0, 1, 0, 0, 1, 0, 0]
```

We can also work with a string of bits:
permute_substitute\((B, key)\)

Apply the function \(\Pi_F\) on the block \(B\) using subkey \(key\). Let \((b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7)\) be a vector of 8 bits where each \(b_i \in \{0, 1\}\), let \(L\) and \(R\) be the leftmost 4 bits and rightmost 4 bits of \(B\) respectively, and let \(F\) be a function mapping 4-bit strings to 4-bit strings. Then

\[
\Pi_F(L, R) = (L \oplus F(R, S), R)
\]

where \(S\) is a subkey and \(\oplus\) denotes the bit-wise exclusive-OR function.

The function \(F\) can be described as follows. Its 4-bit input block \((n_0, n_1, n_2, n_3)\) is first expanded into an 8-bit block to become \((n_3, n_0, n_1, n_2, n_1, n_2, n_3, n_0)\). This is usually represented as follows

\[
\begin{array}{c|c|c|c}
 n_3 & n_0 & n_1 & n_2 \\
 n_1 & n_2 & n_3 & n_0 \\
\end{array}
\]

Let \(K = (k_0, k_1, k_2, k_3, k_4, k_5, k_6, k_7)\) be an 8-bit subkey. Then \(K\) is added to the above expanded input block using exclusive-OR to produce

\[
\begin{array}{c|c|c|c}
 n_3 + k_0 & n_0 + k_1 & n_1 + k_2 & n_2 + k_3 \\
 n_1 + k_4 & n_2 + k_5 & n_3 + k_6 & n_0 + k_7 \\
\end{array} = \begin{bmatrix} p_{0,0} & p_{0,1} & p_{0,2} & p_{0,3} \\ p_{1,0} & p_{1,1} & p_{1,2} & p_{1,3} \end{bmatrix}
\]

Now read the first row as the 4-bit string \(p_{0,0}p_{0,3}p_{0,1}p_{0,2}\) and input this 4-bit string through S-box \(S_0\) to get a 2-bit output.

\[
S_0 =
\begin{array}{c|c}
\text{Input} & \text{Output} \\
0000 & 01 \\
0001 & 00 \\
0010 & 11 \\
0011 & 10 \\
0100 & 11 \\
0101 & 10 \\
0110 & 01 \\
0111 & 00 \\
\end{array}
\]

Next read the second row as the 4-bit string \(p_{1,0}p_{1,3}p_{1,1}p_{1,2}\) and input this 4-bit string through S-box \(S_1\) to get another 2-bit output.

\[
S_1 =
\begin{array}{c|c}
\text{Input} & \text{Output} \\
0000 & 00 \\
0001 & 01 \\
0010 & 10 \\
0011 & 11 \\
0100 & 10 \\
0101 & 00 \\
0110 & 01 \\
0111 & 11 \\
\end{array}
\]

Denote the 4 bits produced by \(S_0\) and \(S_1\) as \(b_0b_1b_2b_3\). This 4-bit string undergoes another permutation called \(P_4\) as follows:

\[
P_4(b_0, b_1, b_2, b_3) = (b_1, b_3, b_2, b_0)
\]
The output of P_4 is the output of the function F.

INPUT:

- B – a list of 8 bits
- key – an 8-bit subkey

OUTPUT:

The result of applying the function Π_F to B.

EXAMPLES:

Applying the function Π_F to an 8-bit block and an 8-bit subkey:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
dsage: sdes = SimplifiedDES()
dsage: B = [1, 0, 1, 1, 1, 1, 0, 1]
dsage: K = [1, 1, 0, 1, 0, 1, 0, 1]
dsage: sdes.permute_substitute(B, K)
[1, 0, 1, 0, 1, 1, 0, 1]
```

We can also work with strings of bits:

```
sage: B = "1011101"
sage: K = "11010101"
sage: B = sdes.string_to_list(B); K = sdes.string_to_list(K)
sage: sdes.permute_substitute(B, K)
[1, 0, 1, 0, 1, 1, 0, 1]
```

random_key()

Return a random 10-bit key.

EXAMPLES:

The size of each key is the same as the block size:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
dsage: sdes = SimplifiedDES()
dsage: key = sdes.random_key()
dsage: len(key) == sdes.block_length()
True
```

sbox()

Return the S-boxes of simplified DES.

EXAMPLES:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
dsage: sdes = SimplifiedDES()
dsage: sbox = sdes.sbox()
dsage: sbox[0]; sbox[1]
(1, 0, 3, 2, 3, 2, 1, 0, 0, 2, 1, 3, 3, 1, 3, 2)
(0, 1, 2, 3, 2, 0, 1, 3, 3, 0, 1, 0, 2, 1, 0, 3)
```

string_to_list(S)

Return a list representation of the binary string S.

INPUT:

- S – a string of bits
OUTPUT:
A list representation of the string S.

EXAMPLES:
A list representation of a string of bits:

```python
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: S = "0101010110"
sage: sdes.string_to_list(S)
[0, 1, 0, 1, 0, 1, 0, 1, 1, 0]
```

subkey ($K, n=1$)
Return the n-th subkey based on the key K.

INPUT:

- K – a 10-bit secret key of this Simplified DES
- n – (default: 1) if $n=1$ then return the first subkey based on K; if $n=2$ then return the second subkey.
 The valid values for n are 1 and 2, since only two subkeys are defined for each secret key in Schaefer’s S-DES.

OUTPUT:
The n-th subkey based on the secret key K.

EXAMPLES:
Obtain the first subkey from a secret key:

```python
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.subkey(key, n=1)
[1, 0, 1, 0, 0, 1, 0, 0]
```

Obtain the second subkey from a secret key:

```python
sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.subkey(key, n=2)
[0, 1, 0, 0, 0, 0, 1, 1]
```

We can also work with strings of bits:

```python
sage: K = "1010010010"
sage: L = sdes.string_to_list(K)
sage: sdes.subkey(L, n=1)
[1, 0, 1, 0, 0, 1, 0, 1]
sage: sdes.subkey(sdes.string_to_list("0010010011"), n=2)
[0, 1, 1, 0, 1, 0, 1, 0]
```

switch (B)
Interchange the first 4 bits with the last 4 bits in the list B of 8 bits. Let $(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7)$ be a vector of 8 bits, where each $b_i \in \{0,1\}$. Then the switch function σ is given by

$$\sigma(b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7) = (b_4, b_5, b_6, b_7, b_0, b_1, b_2, b_3)$$

INPUT:
• B – list; a block of 8 bits

OUTPUT:

A block of the same dimension, but in which the first 4 bits from B has been switched for the last 4 bits in B.

EXAMPLES:

Interchange the first 4 bits with the last 4 bits:

```
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 1, 1, 0, 1, 0, 0, 0]
sage: sdes.switch(B)
[1, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.switch([1, 1, 1, 1, 0, 0, 0, 0])
[0, 0, 0, 0, 1, 1, 1, 1]
```

We can also work with a string of bits:

```
sage: S = "11101000"
sage: L = sdes.string_to_list(S)
sage: sdes.switch(L)
[1, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.switch(sdes.string_to_list("11110000"))
[0, 0, 0, 0, 1, 1, 1, 1]
```
MINI-AES

A simplified variant of the Advanced Encryption Standard (AES). Note that Mini-AES is for educational purposes only. It is a small-scale version of the AES designed to help beginners understand the basic structure of AES.

AUTHORS:

- Minh Van Nguyen (2009-05): initial version

```python
class sage.crypto.block_cipher.miniaes.MiniAES
    Bases: sage.structure.sage_object.SageObject

This class implements the Mini Advanced Encryption Standard (Mini-AES) described in [Pha2002]. Note that Phan’s Mini-AES is for educational purposes only and is not secure for practical purposes. Mini-AES is a version of the AES with all parameters significantly reduced, but at the same time preserving the structure of AES. The goal of Mini-AES is to allow a beginner to understand the structure of AES, thus laying a foundation for a thorough study of AES. Its goal is as a teaching tool and is different from the SR small scale variants of the AES. SR defines a family of parameterizable variants of the AES suitable as a framework for comparing different cryptanalytic techniques that can be brought to bear on the AES.

EXAMPLES:

Encrypt a plaintext:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: P = MS([K("x^3 + x"), K("x^2 + 1"), K("x^2 + x"), K("x^3 + x^2")]); P

[x^3 + x x^2 + 1]
[x^2 + x x^3 + x^2]
sage: key = MS([K("x^3 + x^2"), K("x^3 + x"), K("x^3 + x^2 + x"), K("x^2 + x + 1")]); key

[x^3 + x^2 x^3 + x]
[x^3 + x^2 + x x^2 + x + 1]
sage: C = maes.encrypt(P, key); C

[x x^2 + x]
[x^3 + x^2 + x x^3 + x]
```

Decrypt the result:

```python
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt; P
```

(continues on next page)
We can also work directly with binary strings:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: bin = BinaryStrings()
sage: key = bin.encoding("KE"); key
010010110100101
sage: P = bin.encoding("Encrypt this secret message!"); P
010001010110111001100011011100100111100101110000011101000010000001110100011010000110100101110011001000000111001101100101011000110111001001100101011101000010000011000110001100000111000011100110101111000000001110001001
sage: C = maes(P, key, algorithm="encrypt"); C
1100100001110011010001010011110111000101010110011100001011101101110110011110110111110110011001100000111001101100101011100110111001101100001011001110110010100100001
sage: plaintxt = maes(C, key, algorithm="decrypt")
sage: plaintxt == P
True
```

Now we work with integers $n$ such that $0 \leq n \leq 15$:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: P = [n for n in range(16)]; P
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: key = [2, 3, 11, 0]; key
[2, 3, 11, 0]
sage: P = maes.integer_to_binary(P); P
0000000100100011010001010110011110001001101010111100110111101111
sage: key = maes.integer_to_binary(key); key
0010001110110000
sage: C = maes(P, key, algorithm="encrypt"); C
1100100001110011010001010011110111000101010110011100001011101101110110011110110111110110011001100000111001101100101011100110111001101100001011001110110010100100001
sage: plaintxt = maes(C, key, algorithm="decrypt")
sage: plaintxt == P
True
```

Generate some random plaintext and a random secret key. Encrypt the plaintext using that secret key and decrypt the result. Then compare the decrypted plaintext with the original plaintext:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: MS = MatrixSpace(FiniteField(16, "x"), 2, 2)
sage: P = MS.random_element()
sage: key = maes.random_key()
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True
```

`GF_to_binary(G)`

Return the binary representation of $G$. If $G$ is an element of the finite field $\textbf{F}_{2^4}$, then obtain the binary representation of $G$. If $G$ is a list of elements belonging to $\textbf{F}_{2^4}$, obtain the 4-bit representation of each
element of the list, then concatenate the resulting 4-bit strings into a binary string. If \( G \) is a matrix with entries over \( \mathbb{F}_2^4 \), convert each matrix entry to its 4-bit representation, then concatenate the 4-bit strings. The concatenation is performed starting from the top-left corner of the matrix, working across left to right, top to bottom. Each element of \( \mathbb{F}_2^4 \) can be associated with a unique 4-bit string according to the following table:

<table>
<thead>
<tr>
<th>4-bit string</th>
<th>( \mathbb{F}_2^4 )</th>
<th>4-bit string</th>
<th>( \mathbb{F}_2^4 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>1000</td>
<td>( x^3 )</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1001</td>
<td>( x^3 + 1 )</td>
</tr>
<tr>
<td>0010</td>
<td>( x )</td>
<td>1010</td>
<td>( x^3 + x )</td>
</tr>
<tr>
<td>0011</td>
<td>( x + 1 )</td>
<td>1011</td>
<td>( x^3 + x + 1 )</td>
</tr>
<tr>
<td>0100</td>
<td>( x^2 )</td>
<td>1100</td>
<td>( x^3 + x^2 )</td>
</tr>
<tr>
<td>0101</td>
<td>( x^2 + 1 )</td>
<td>1101</td>
<td>( x^3 + x^2 + 1 )</td>
</tr>
<tr>
<td>0110</td>
<td>( x^3 + x )</td>
<td>1110</td>
<td>( x^3 + x^2 + x )</td>
</tr>
<tr>
<td>0111</td>
<td>( x^3 + x + 1 )</td>
<td>1111</td>
<td>( x^3 + x^2 + x + 1 )</td>
</tr>
</tbody>
</table>

INPUT:

- \( G \) – an element of \( \mathbb{F}_2^4 \), a list of elements of \( \mathbb{F}_2^4 \), or a matrix over \( \mathbb{F}_2^4 \)

OUTPUT:

- A binary string representation of \( G \).

EXAMPLES:

Obtain the binary representation of all elements of \( \mathbb{F}_2^4 \):

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
gs = MiniAES()
sage: K = FiniteField(16, "x")
sage: S = Set(K); len(S) # \(\mathbb{GF}(2^4) \) has this many elements
16
sage: [gs.GF_to_binary(S[i]) for i in range(len(S))]
[0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111]
```

The binary representation of a list of elements belonging to \( \mathbb{F}_2^4 \):

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
gs = MiniAES()
sage: K = FiniteField(16, "x")
sage: G = [K("x^2 + x + 1"), K("x^3 + x^2"), K("x"), K("x^3 + x + 1"), K("x^3 + x + 1"), K("x^2 + x + 1"), K("x^2 + x"), K("1"), K("x^2 + x + 1")]
```

(continues on next page)
The binary representation of a matrix over $\mathbb{F}_{2^4}$:

```sage
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: G = MS([["x^3 + x^2", "x + 1"], ["x^2 + x + 1", "x^3 + x^2 + x"]]); G
[x^3 + x^2 x + 1]
[x^2 + x + 1 x^3 + x^2 + x + 1]
sage: maes.GF_to_binary(G)
110000110111110
```

```sage
sage: MS = MatrixSpace(K, 2, 4)
sage: G = MS([["x^2 + x + 1", "x^3 + x^2", "x", "x^3 + x + 1"], ["x^3 + x^2 + x + 1", "x^2 + x", 1, "x^2 + x + 1"]]); G
[x^2 + x + 1 x^3 + x^2 x x^3 + x + 1]
[x^3 + x^2 + x + 1 x^2 + x 1 x^2 + x + 1]
sage: maes.GF_to_binary(G)
011111000010111111101100010111
```

**GF_to_integer** ($G$)

Return the integer representation of the finite field element $G$. If $G$ is an element of the finite field $\mathbb{F}_{2^4}$, then obtain the integer representation of $G$. If $G$ is a list of elements belonging to $\mathbb{F}_{2^4}$, obtain the integer representation of each element of the list, and return the result as a list of integers. If $G$ is a matrix with entries over $\mathbb{F}_{2^4}$, convert each matrix entry to its integer representation, and return the result as a list of integers. The resulting list is obtained by starting from the top-left corner of the matrix, working across left to right, top to bottom. Each element of $\mathbb{F}_{2^4}$ can be associated with a unique integer according to the following table:

<table>
<thead>
<tr>
<th>integer</th>
<th>$\mathbb{F}_{2^4}$</th>
<th>integer</th>
<th>$\mathbb{F}_{2^4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>8</td>
<td>$x^4$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>$x^3 + 1$</td>
</tr>
<tr>
<td>2</td>
<td>$x$</td>
<td>10</td>
<td>$x^3 + x$</td>
</tr>
<tr>
<td>3</td>
<td>$x + 1$</td>
<td>11</td>
<td>$x^3 + x + 1$</td>
</tr>
<tr>
<td>4</td>
<td>$x^2$</td>
<td>12</td>
<td>$x^3 + x^2$</td>
</tr>
<tr>
<td>5</td>
<td>$x^2 + 1$</td>
<td>13</td>
<td>$x^3 + x^2 + 1$</td>
</tr>
<tr>
<td>6</td>
<td>$x^2 + x$</td>
<td>14</td>
<td>$x^3 + x^2 + x$</td>
</tr>
<tr>
<td>7</td>
<td>$x^2 + x + 1$</td>
<td>15</td>
<td>$x^3 + x^2 + x + 1$</td>
</tr>
</tbody>
</table>

**INPUT:**

- $G$ — an element of $\mathbb{F}_{2^4}$, a list of elements belonging to $\mathbb{F}_{2^4}$, or a matrix over $\mathbb{F}_{2^4}$

**OUTPUT:**

- The integer representation of $G$.

**EXAMPLES:**

Obtain the integer representation of all elements of $\mathbb{F}_{2^4}$:
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: S = Set(K); len(S)  # GF(2^4) has this many elements
16
sage: [maes.GF_to_integer(S[i]) for i in range(len(S))]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

The integer representation of a list of elements belonging to $\mathbb{F}_{2^4}$:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: G = [K("x^2 + x + 1"), K("x^3 + x^2"), K("x"), K("x^3 + x + 1"), K("x^3 + x^2 + x + 1"), K("x^2 + x"), K("1"), K("x^2 + x + 1")]
sage: maes.GF_to_integer(G)
[7, 12, 2, 11, 15, 6, 1, 7]

The integer representation of a matrix over $\mathbb{F}_{2^4}$:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: G = MS([K("x^3 + x^2"), K("x + 1"), K("x^2 + x + 1"), K("x^3 + x^2 + x + 1")]); G
[ x^3 + x^2 x + 1]
[ x^2 + x + 1 x^3 + x^2 + x]
sage: maes.GF_to_integer(G)
[12, 3, 7, 14]
sage: MS = MatrixSpace(K, 2, 4)
sage: G = MS([K("x^2 + x + 1"), K("x^3 + x^2"), K("x"), K("x^3 + x + 1"), K("x^3 + x^2 + x + 1"), K("x^2 + x"), K("1"), K("x^2 + x + 1")]); G
[ x^2 + x + 1 x^3 + x^2 x x^3 + x + 1]
[x^3 + x^2 + x + 1 x^2 + x 1 x^2 + x + 1]
sage: maes.GF_to_integer(G)
[7, 12, 2, 11, 15, 6, 1, 7]

**add_key** *(block, rkey)*

Return the matrix addition of block and rkey. Both block and rkey are $2 \times 2$ matrices over the finite field $\mathbb{F}_{2^4}$. This method just return the matrix addition of these two matrices.

**INPUT:**

- block – a $2 \times 2$ matrix with entries over $\mathbb{F}_{2^4}$
- rkey – a round key; a $2 \times 2$ matrix with entries over $\mathbb{F}_{2^4}$

**OUTPUT:**

- The matrix addition of block and rkey.

**EXAMPLES:**

We can work with elements of $\mathbb{F}_{2^4}$:
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: D = MS([[K("x^3 + x^2 + x + 1"), K("x^3 + x")], [K("0"), K("x^3 + x^2 + x + 1")]])

sage: D
[[x^3 + x^2 + x + 1 x^3 + x],
 [0 x^3 + x^2]]

sage: k = MS([[K("x^2 + 1"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]])

sage: k
[[ x^2 + 1 x^3 + x^2 + x + 1],
 [ x + 1 0]]

sage: maes.add_key(D, k)

sage: maes.add_key(B, key)

We can also work with integers \( n \) such that \( 0 \leq n \leq 15 \):

sage: N = [2, 3, 5, 7]; N
[2, 3, 5, 7]

sage: key = [9, 11, 13, 15]; key
[9, 11, 13, 15]

sage: N = MS(maes.integer_to_GF(N)); N

sage: key = MS(maes.integer_to_GF(key)); key

sage: maes.add_key(N, key)

binary_to_GF(B)
Return a list of elements of $F_{2^4}$ that represents the binary string $B$. The number of bits in $B$ must be greater than zero and a multiple of 4. Each nibble (or 4-bit string) is uniquely associated with an element of $F_{2^4}$ as specified by the following table:

<table>
<thead>
<tr>
<th>4-bit string</th>
<th>$F_{2^4}$</th>
<th>4-bit string</th>
<th>$F_{2^4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>1000</td>
<td>$x^3$</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1001</td>
<td>$x^3 + 1$</td>
</tr>
<tr>
<td>0010</td>
<td>$x$</td>
<td>1010</td>
<td>$x^3 + x$</td>
</tr>
<tr>
<td>0011</td>
<td>$x + 1$</td>
<td>1011</td>
<td>$x^3 + x + 1$</td>
</tr>
<tr>
<td>0100</td>
<td>$x^2$</td>
<td>1100</td>
<td>$x^3 + x^2$</td>
</tr>
<tr>
<td>0101</td>
<td>$x^2 + 1$</td>
<td>1101</td>
<td>$x^3 + x^2 + 1$</td>
</tr>
<tr>
<td>0110</td>
<td>$x^2 + x$</td>
<td>1110</td>
<td>$x^3 + x^2 + x$</td>
</tr>
<tr>
<td>0111</td>
<td>$x^2 + x + 1$</td>
<td>1111</td>
<td>$x^3 + x^2 + x + 1$</td>
</tr>
</tbody>
</table>

**INPUT:**
- $B$ – a binary string, where the number of bits is positive and a multiple of 4

**OUTPUT:**
- A list of elements of the finite field $F_{2^4}$ that represent the binary string $B$.

**EXAMPLES:**
Obtain all the elements of the finite field $F_{2^4}$:

```
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: bin = BinaryStrings()
sage: B = bin("00000001001000110110001001111100010101111011011111011011111")
sage: maes.binary_to_GF(B)

[0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1, x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + 1, x^3 + x^2 + x, x^3 + x^2 + x + 1]
```

`binary_to_integer(B)`

Return a list of integers representing the binary string $B$. The number of bits in $B$ must be greater than zero and a multiple of 4. Each nibble (or 4-bit string) is uniquely associated with an integer as specified by the
The following table:

<table>
<thead>
<tr>
<th>4-bit string</th>
<th>integer</th>
<th>4-bit string</th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

**INPUT:**
- $B$ – a binary string, where the number of bits is positive and a multiple of 4

**OUTPUT:**
- A list of integers that represent the binary string $B$.

**EXAMPLES:**

Obtain the integer representation of every 4-bit string:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
... bin = BinaryStrings()
... B = bin(
... # "00000000101000110110111110001001101011110011011110111"
...)
... maes.binary_to_integer(B)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
```

**block_length()**

Return the block length of Phan’s Mini-AES block cipher. A key in Phan’s Mini-AES is a block of 16 bits. Each nibble of a key can be considered as an element of the finite field $\mathbb{F}_{2^4}$. Therefore the key consists of four elements from $\mathbb{F}_{2^4}$.

**OUTPUT:**
- The block (or key) length in number of bits.

**EXAMPLES:**

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
... maes.block_length()
16
```

**decrypt(C, key)**

Use Phan’s Mini-AES to decrypt the ciphertext $C$ with the secret key $key$. Both $C$ and $key$ must be $2 \times 2$ matrices over the finite field $\mathbb{F}_{2^4}$. Let $\gamma$ denote the operation of nibble-sub, $\pi$ denote shift-row, $\theta$ denote mix-column, and $\sigma_{K_i}$ denote add-key with the round key $K_i$. Then decryption $D$ using Phan’s Mini-AES is the function composition

$$D = \sigma_{K_2} \circ \gamma^{-1} \circ \pi \circ \theta \circ \sigma_{K_1} \circ \gamma^{-1} \circ \pi \circ \sigma_{K_2}$$

where $\gamma^{-1}$ is the nibble-sub operation that uses the S-box for decryption, and the order of execution is from right to left.

**INPUT:**
• \( C \) – a ciphertext block; must be a \( 2 \times 2 \) matrix over the finite field \( \mathbb{F}_{2^4} \)

• \( key \) – a secret key for this Mini-AES block cipher; must be a \( 2 \times 2 \) matrix over the finite field \( \mathbb{F}_{2^4} \)

OUTPUT:

• The plaintext corresponding to \( C \).

EXAMPLES:

We encrypt a plaintext, decrypt the ciphertext, then compare the decrypted plaintext with the original plaintext. Here we work with elements of \( \mathbb{F}_{2^4} \):

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()

sage: K = FiniteField(16, "x")

sage: MS = MatrixSpace(K, 2, 2)

sage: P = MS([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]]); P

\[
\begin{bmatrix}
 x^3 + 1 & x^2 + x \\
x^3 + x^2 & x + 1
\end{bmatrix}
\]

sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]]); key

\[
\begin{bmatrix}
 x^3 + x^2 & x^3 + x^2 + x + 1 \\
x + 1 & 0
\end{bmatrix}
\]

sage: C = maes.encrypt(P, key); C

\[
\begin{bmatrix}
x^2 + x + 1 & x^3 + x^2 \\
x & x^2 + x
\end{bmatrix}
\]

sage: plaintxt = maes.decrypt(C, key)

sage: plaintxt; P

\[
\begin{bmatrix}
 x^3 + 1 & x^2 + x \\
x^3 + x^2 & x + 1
\end{bmatrix}
\]

sage: plaintxt == P

True
```

But we can also work with binary strings:

```python
sage: bin = BinaryStrings()

sage: P = bin.encoding("de"); P

0110010001100101

sage: P = MS(maes.binary_to_GF(P)); P

\[
\begin{bmatrix}
x^2 + x & x^2 \\
x^2 + x^2 + 1
\end{bmatrix}
\]

sage: key = bin.encoding("ke"); key

0110101101100101

sage: key = MS(maes.binary_to_GF(key)); key

\[
\begin{bmatrix}
x^2 + x & x^3 + x + 1 \\
x^2 + x & x^2 + 1
\end{bmatrix}
\]

sage: C = maes.encrypt(P, key)

sage: plaintxt = maes.decrypt(C, key)

(continues on next page)
```
Here we work with integers \( n \) such that \( 0 \leq n \leq 15 \):

```
sage: P = [3, 5, 7, 14]; P
[3, 5, 7, 14]
sage: key = [2, 6, 7, 8]; key
[2, 6, 7, 8]
sage: P = MS(maes.integer_to_GF(P)); P
[x + 1 x^2 + 1]
[x^2 + x + 1 x^3 + x^2 + x]
sage: key = MS(maes.integer_to_GF(key)); key
[x x^2 + x]
[x^2 + x + 1 x^3]
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True
```

**encrypt \((P, key)\)**

Use Phan’s Mini-AES to encrypt the plaintext \( P \) with the secret key \( key \). Both \( P \) and \( key \) must be \( 2 \times 2 \) matrices over the finite field \( \mathbb{F}_{2^4} \). Let \( \gamma \) denote the operation of nibble-sub, \( \pi \) denote shift-row, \( \theta \) denote mix-column, and \( \sigma_{K_i} \) denote add-key with the round key \( K_i \). Then encryption \( E \) using Phan’s Mini-AES is the function composition

\[
E = \sigma_{K_2} \circ \pi \circ \gamma \circ \sigma_{K_1} \circ \theta \circ \pi \circ \gamma \circ \sigma_{K_0}
\]

where the order of execution is from right to left. Note that \( \gamma \) is the nibble-sub operation that uses the S-box for encryption.

**INPUT:**
- \( P \) – a plaintext block; must be a \( 2 \times 2 \) matrix over the finite field \( \mathbb{F}_{2^4} \)
- \( key \) – a secret key for this Mini-AES block cipher; must be a \( 2 \times 2 \) matrix over the finite field \( \mathbb{F}_{2^4} \)

**OUTPUT:**
- The ciphertext corresponding to \( P \).

**EXAMPLES:**

Here we work with elements of \( \mathbb{F}_{2^4} \):

```
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: P = MS([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]]);
˓→ P
[x^3 + 1 x^2 + x]
[x^3 + x^2 x + 1]
sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0 hom")]]); key
```

(continues on next page)
But we can also work with binary strings:

```python
sage: bin = BinaryStrings()
sage: P = bin.encoding("de"); P
0110010001100101
sage: P = MS(maes.binary_to_GF(P)); P
[x^2 + x x^2]
[x^2 + x x^2 + 1]
sage: key = bin.encoding("ke"); key
0110101101100101
sage: key = MS(maes.binary_to_GF(key)); key
[x^2 + x x^2]
[x^2 + x x^2 + 1]
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True
```

Now we work with integers $n$ such that $0 \leq n \leq 15$:

```python
sage: P = [1, 5, 8, 12]; P
[1, 5, 8, 12]
sage: key = [5, 9, 15, 0]; key
[5, 9, 15, 0]
sage: P = MS(maes.integer_to_GF(P)); P
[1 x^2 + 1]
[x^3 x^3 + x^2]
sage: key = MS(maes.integer_to_GF(key)); key
[x^2 + 1 x^3 + 1]
[x^3 + x^2 + x + 1 0]
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True
```

**integer_to_GF** $(N)$

Return the finite field representation of $N$. If $N$ is an integer such that $0 \leq N \leq 15$, return the element of $F_{2^4}$ that represents $N$. If $N$ is a list of integers each of which is $\geq 0$ and $\leq 15$, then obtain the element of $F_{2^4}$ that represents each such integer, and return a list of such finite field representations. Each integer between 0 and 15, inclusive, can be associated with a unique element of $F_{2^4}$ according to the following
INPUT:

• N – a non-negative integer less than or equal to 15, or a list of such integers

OUTPUT:

• Elements of the finite field $F_{2^4}$.

EXAMPLES:

Obtain the element of $F_{2^4}$ representing an integer $n$, where $0 \leq n \leq 15$:

```
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.integer_to_GF(0)
0
sage: maes.integer_to_GF(2)
x
sage: maes.integer_to_GF(7)
x^2 + x + 1
```

Obtain the finite field elements corresponding to all non-negative integers less than or equal to 15:

```
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: lst = [n for n in range(16)]; lst
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: maes.integer_to_GF(lst)
[0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1, x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + 1, x^3 + x^2 + x, x^3 + x^2 + x + 1]
```

**integer_to_binary**(N)

Return the binary representation of $N$. If $N$ is an integer such that $0 \leq N \leq 15$, return the binary representation of $N$. If $N$ is a list of integers each of which is $\geq 0$ and $\leq 15$, then obtain the binary representation of
each integer, and concatenate the individual binary representations into a single binary string. Each integer between 0 and 15, inclusive, can be associated with a unique 4-bit string according to the following table:

<table>
<thead>
<tr>
<th>4-bit string</th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

INPUT:

* N – a non-negative integer less than or equal to 15, or a list of such integers

OUTPUT:

* A binary string representing N.

EXAMPLES:

The binary representations of all integers between 0 and 15, inclusive:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()

sage: lst = [n for n in range(16)]; lst
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

sage: maes.integer_to_binary(lst)
000000010010001101000101011001111000100110101011110011011110111
```

The binary representation of an integer between 0 and 15, inclusive:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()

sage: maes.integer_to_binary(3)
0011
sage: maes.integer_to_binary(5)
0101
sage: maes.integer_to_binary(7)
0111
```

`mix_column(block)`

Return the matrix multiplication of `block` with a constant matrix. The constant matrix is

\[
\begin{bmatrix}
  x + 1 & x \\
  x & x + 1
\end{bmatrix}
\]

If the input block is

\[
\begin{bmatrix}
  c_0 & c_2 \\
  c_1 & c_3
\end{bmatrix}
\]

then the output block is

\[
\begin{bmatrix}
  d_0 & d_2 \\
  d_1 & d_3
\end{bmatrix} = \begin{bmatrix}
  x + 1 & x \\
  x & x + 1
\end{bmatrix} \begin{bmatrix}
  c_0 & c_2 \\
  c_1 & c_3
\end{bmatrix}
\]

INPUT:
• block – a $2 \times 2$ matrix with entries over $F_{2^4}$

OUTPUT:
• A $2 \times 2$ matrix resulting from multiplying the above constant matrix with the input matrix block.

EXAMPLES:
Here we work with elements of $F_{2^4}$:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: mat = MS([[K("x^2 + x + 1"), K("x^3 + x^2 + 1")], [K("x^3"), K("x")]])
sage: maes.mix_column(mat)
```
\[
\begin{bmatrix}
x^3 + x & 0 \\
x^2 + 1 & x^3 + x^2 + x + 1 \\
\end{bmatrix}
\]

Multiplying by the identity matrix should leave the constant matrix unchanged:

```python
sage: eye = MS([[K("1"), K("0")], [K("0"), K("1")]])
sage: maes.mix_column(eye)
```
\[
\begin{bmatrix}
x + 1 & x \\
x & x + 1 \\
\end{bmatrix}
\]

We can also work with binary strings:

```python
sage: bin = BinaryStrings()
sage: B = bin.encoding("rT"); B
0111001001010100
sage: B = MS(maes.binary_to_GF(B)); B
```
\[
\begin{bmatrix}
x^2 + x + 1 & x \\
x^2 + 1 & x^2 \\
\end{bmatrix}
\]

```python
sage: maes.mix_column(B)
```
\[
\begin{bmatrix}
x + 1 & x^3 + x^2 + x \\
1 & x^3 \\
\end{bmatrix}
\]

We can also work with integers $n$ such that $0 \leq n \leq 15$:

```python
sage: P = [10, 5, 2, 7]; P
[10, 5, 2, 7]
sage: P = MS(maes.integer_to_GF(P)); P
```
\[
\begin{bmatrix}
x^3 + x & x^2 + 1 \\
x & x^2 + x + 1 \\
\end{bmatrix}
\]

```python
sage: maes.mix_column(P)
```
\[
\begin{bmatrix}
x^3 + 1 & 1 \\
1 & x + 1 \\
\end{bmatrix}
\]

nibble_sub(block, algorithm='encrypt')
Substitute a nibble (or a block of 4 bits) using the following S-box:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1110</td>
</tr>
<tr>
<td>0001</td>
<td>0100</td>
</tr>
<tr>
<td>0010</td>
<td>1101</td>
</tr>
<tr>
<td>0011</td>
<td>0010</td>
</tr>
<tr>
<td>0100</td>
<td>0010</td>
</tr>
<tr>
<td>0101</td>
<td>1110</td>
</tr>
<tr>
<td>0110</td>
<td>1011</td>
</tr>
<tr>
<td>0111</td>
<td>1000</td>
</tr>
</tbody>
</table>

The values in the above S-box are taken from the first row of the first S-box of the Data Encryption Standard (DES). Each nibble can be thought of as an element of the finite field $\mathbb{F}_{2^4}$ of 16 elements. Thus in terms of $\mathbb{F}_{2^4}$, the S-box can also be specified as:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^3 + x^2 + x$</td>
<td></td>
</tr>
<tr>
<td>$x^2$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2 + 1$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$x + 1$</td>
<td></td>
</tr>
<tr>
<td>$x$</td>
<td></td>
</tr>
<tr>
<td>$x^2 + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 + x + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^3$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2 + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2 + x$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2 + x + 1$</td>
<td></td>
</tr>
</tbody>
</table>

Note that the above S-box is used for encryption. The S-box for decryption is obtained from the above S-box by reversing the role of the Input and Output columns. Thus the previous Input column for encryption now becomes the Output column for decryption, and the previous Output column for encryption is now the Input column for decryption. The S-box used for decryption can be specified as:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^3 + x^2 + x$</td>
<td></td>
</tr>
<tr>
<td>$x + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2$</td>
<td></td>
</tr>
<tr>
<td>$x$</td>
<td></td>
</tr>
<tr>
<td>$x + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2$</td>
<td></td>
</tr>
<tr>
<td>$x^2 + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2 + 1$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2 + x$</td>
<td></td>
</tr>
<tr>
<td>$x^3 + x^2 + x + 1$</td>
<td></td>
</tr>
</tbody>
</table>
INPUT:

- block – a $2 \times 2$ matrix with entries over $F_{2^4}$
- algorithm – (default: "encrypt") a string; a flag to signify whether this nibble-sub operation is used for encryption or decryption. The encryption flag is "encrypt" and the decryption flag is "decrypt".

OUTPUT:

- A $2 \times 2$ matrix resulting from applying an S-box on entries of the $2 \times 2$ matrix block.

EXAMPLES:

Here we work with elements of the finite field $F_{2^4}$:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
```

```python
sage: K = FiniteField(16, "x")
```

```python
sage: MS = MatrixSpace(K, 2, 2)
```

```python
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")], [K("x^2 + x + 1"), K("x^3 + x")]])
```

```python
sage: maes.nibble_sub(mat, algorithm="encrypt")
```

```
[x^2 + x + 1 x^3 + x^2 + x]
[x^3 x^2 + x]
```

But we can also work with binary strings:

```python
sage: bin = BinaryStrings()
```

```python
sage: B = bin.encoding("bi"); B
```

```
0110001001101001
```

```python
sage: B = MS(maes.binary_to_GF(B)); B
```

```
[x^2 + x x]
[x^2 + x x^3 + 1]
```

```python
sage: maes.nibble_sub(B, algorithm="encrypt")
```

```
[x^3 + x + 1 x^3 + x^2 + 1]
[x^3 + x + 1 x^3 + x]
```

```python
sage: maes.nibble_sub(B, algorithm="decrypt")
```

```
[x^3 + x x^2]
[x^3 + x x^3 + x^2 + 1]
```

Here we work with integers $n$ such that $0 \leq n \leq 15$:

```python
sage: P = [2, 6, 8, 14]; P
```

```
[2, 6, 8, 14]
```

```python
sage: P = MS(maes.integer_to_GF(P)); P
```

```
[x x^2 + x]
[x^3 x^3 + x^2 + x]
```

```python
sage: maes.nibble_sub(P, algorithm="encrypt")
```

```
[x^3 + x^2 + 1 x^3 + x + 1]
[x + 1 0]
```

```python
sage: maes.nibble_sub(P, algorithm="decrypt")
```

(continues on next page)
random_key()

A random key within the key space of this Mini-AES block cipher. Like the AES, Phan’s Mini-AES is a symmetric-key block cipher. A Mini-AES key is a block of 16 bits, or a $2 \times 2$ matrix with entries over the finite field $F_{2^4}$. Thus the number of possible keys is $2^{16} = 16^4$.

OUTPUT:

• A $2 \times 2$ matrix over the finite field $F_{2^4}$, used as a secret key for this Mini-AES block cipher.

EXAMPLES:

Each nibble of a key is an element of the finite field $F_{2^4}$:

```python
sage: K = FiniteField(16, "x")
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: key = maes.random_key()
```

Generate a random key, then perform encryption and decryption using that key:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
```

round_key(key, n)

Return the round key for round $n$. Phan’s Mini-AES is defined to have two rounds. The round key $K_0$ is generated and used prior to the first round, with round keys $K_1$ and $K_2$ being used in rounds 1 and 2 respectively. In total, there are three round keys, each generated from the secret key $key$.

INPUT:

• key – the secret key
• n – non-negative integer; the round number

OUTPUT:

• The $n$-th round key.

EXAMPLES:

Obtaining the round keys from the secret key:

```python
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
```
**sage:** maes.round_key(key, 0)

\[
\begin{bmatrix}
    x^3 + x^2 & x^3 + x^2 + x + 1 \\
    x + 1 & 0
\end{bmatrix}
\]

**sage:** key

\[
\begin{bmatrix}
    x^3 + x^2 & x^3 + x^2 + x + 1 \\
    x + 1 & 0
\end{bmatrix}
\]

**sage:** maes.round_key(key, 1)

\[
\begin{bmatrix}
    x + 1 & x^3 + x^2 + x + 1 \\
    0 & x^3 + x^2 + x + 1
\end{bmatrix}
\]

**sage:** maes.round_key(key, 2)

\[
\begin{bmatrix}
    x^2 + x & x^3 + 1 \\
    x^2 + x & x^2 + x
\end{bmatrix}
\]

---

**sbox()**

Return the S-box of Mini-AES.

**EXAMPLES:**

```
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.sbox()
(14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7)
```

**shift_row(block)**

Rotate each row of block to the left by different nibble amounts. The first or zero-th row is left unchanged, while the second or row one is rotated left by one nibble. This has the effect of only interchanging the nibbles in the second row. Let \(b_0, b_1, b_2, b_3\) be four nibbles arranged as the following \(2 \times 2\) matrix

\[
\begin{bmatrix}
    b_0 & b_2 \\
    b_1 & b_3
\end{bmatrix}
\]

Then the operation of shift-row is the mapping

\[
\begin{bmatrix}
    b_0 & b_2 \\
    b_1 & b_3
\end{bmatrix} \mapsto \begin{bmatrix}
    b_0 & b_2 \\
    b_3 & b_1
\end{bmatrix}
\]

**INPUT:**

- \(\text{block}\) — a \(2 \times 2\) matrix with entries over \(\mathbb{F}_{2^4}\)

**OUTPUT:**

- A \(2 \times 2\) matrix resulting from applying shift-row on \(\text{block}\).

**EXAMPLES:**

Here we work with elements of the finite field \(\mathbb{F}_{2^4}\):

```
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
```

```python
def MS(
 K,
 block
):
 return K.block_size(2)
```

```python
mat = MS(
 [K("x^3 + x^2 + x + 1"), K("0")],
 [K("x^3 + x^2 + x + 1"), K("x^2 + x + 1")])
```

**sage:** maes.shift_row(mat)
But we can also work with binary strings:

```
sage: bin = BinaryStrings()
sage: B = bin.encoding("Qt"); B
0101000101110100
sage: B = MS(maes.binary_to_GF(B)); B
[x^2 + 1 1]
[x^2 + x + 1 x^2]
sage: maes.shift_row(B)
[x^2 + 1 1]
[x^2 x^2 + x + 1]
```

Here we work with integers $n$ such that $0 \leq n \leq 15$:

```
sage: P = [3, 6, 9, 12]; P
[3, 6, 9, 12]
sage: P = MS(maes.integer_to_GF(P)); P
[x + 1 x^2 + x]
[x^3 + 1 x^3 + x^2]
sage: maes.shift_row(P)
[x + 1 x^2 + x]
[x^3 + x^2 x^3 + 1]
```
BLUM-GOLDWASSER PROBABILISTIC ENCRYPTION

The Blum-Goldwasser probabilistic public-key encryption scheme. This scheme was originally described in [BG1985]. See also section 8.7.2 of [MvOV1996] and the Wikipedia article Blum-Goldwasser_cryptosystem on this scheme.

AUTHORS:

- Mike Hogan and David Joyner (2009-9-19): initial procedural version released as public domain software.
- Minh Van Nguyen (2009-12): integrate into Sage as a class and relicense under the GPLv2+. Complete rewrite of the original version to follow the description contained in [MvOV1996].

class sage.crypto.public_key.blum_goldwasser.BlumGoldwasser
Bases: sage.crypto.cryptosystem.PublicKeyCryptosystem

The Blum-Goldwasser probabilistic public-key encryption scheme.

The Blum-Goldwasser encryption and decryption algorithms as described in encrypt() and decrypt(), respectively, make use of the least significant bit of a binary string. A related concept is the $k$ least significant bits of a binary string. For example, given a positive integer $n$, let $b = b_0b_1 \cdots b_{m-1}$ be the binary representation of $n$ so that $b$ is a binary string of length $m$. Then the least significant bit of $n$ is $b_{m-1}$. If $0 < k \leq m$, then the $k$ least significant bits of $n$ are $b_{m-1-k}b_{m-k}\cdots b_{m-1}$. The least significant bit of an integer is also referred to as its parity bit, because this bit determines whether the integer is even or odd. In the following example, we obtain the least significant bit of an integer:

```
sage: n = 123
sage: b = n.binary(); b
'1111011'
sage: n % 2
1
sage: b[-1] '1'
```

Now find the 4 least significant bits of the integer $n = 123$:

```
sage: b
'1111011'
sage: b[-4:] '1011'
```

The last two examples could be worked through as follows:

```
sage: from sage.crypto.util import least_significant_bits
sage: least_significant_bits(123, 1) [1]
sage: least_significant_bits(123, 4) [1, 0, 1, 1]
```
EXAMPLES:
The following encryption/decryption example is taken from Example 8.57, pages 309–310 of [MvOV1996]:

```python
sage: from sage.crypto.public_key.blum_goldwasser import BlumGoldwasser
sage: bg = BlumGoldwasser(); bg
The Blum-Goldwasser public-key encryption scheme.
sage: p = 499; q = 547
sage: pubkey = bg.public_key(p, q); pubkey
272953
sage: prikey = bg.private_key(p, q); prikey
(499, 547, -57, 52)
sage: P = "10011100000100001100"
sage: C = bg.encrypt(P, pubkey, seed=159201); C
([[0, 0, 1, 0], [0, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0]], 139680)
sage: M = bg.decrypt(C, prikey); M
[[1, 0, 0, 1], [1, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0], [1, 1, 0, 0]]
sage: M = ''.join(str(x) for x in flatten(M)); M
'10011100000100001100'
sage: M == P
True
```

Generate a pair of random public/private keys. Use the public key to encrypt a plaintext. Then decrypt the resulting ciphertext using the private key. Finally, compare the decrypted message with the original plaintext.

```python
sage: from sage.crypto.public_key.blum_goldwasser import BlumGoldwasser
sage: from sage.crypto.util import bin_to_ascii
sage: bg = BlumGoldwasser()
sage: pubkey, prikey = bg.random_key(10**4, 10**6)
sage: P = "A fixed plaintext."
sage: C = bg.encrypt(P, pubkey)
sage: M = bg.decrypt(C, prikey)
sage: bin_to_ascii(flatten(M)) == P
True
```

If \((p, q, a, b)\) is a private key, then \(n = pq\) is the corresponding public key. Furthermore, we have \(\gcd(p, q) = ap + bq = 1\).

```python
sage: p, q, a, b = prikey
sage: pubkey == p * q
True
sage: gcd(p, q) == a*p + b*q == 1
True
```

decrypt \((C, K)\)
Apply the Blum-Goldwasser scheme to decrypt the ciphertext \(C\) using the private key \(K\).

**INPUT:**
- \(C\) – a ciphertext resulting from encrypting a plaintext using the Blum-Goldwasser encryption algorithm. The ciphertext \(C\) must be of the form \(C = (c_1, c_2, \ldots, c_t, x_{t+1})\). Each \(c_i\) is a sub-block of binary string and \(x_{t+1}\) is the result of the \(t + 1\)-th iteration of the Blum-Blum-Shub algorithm.
- \(K\) – a private key \((p, q, a, b)\) where \(p\) and \(q\) are distinct Blum primes and \(\gcd(p, q) = ap + bq = 1\).

**OUTPUT:**
- The plaintext resulting from decrypting the ciphertext \(C\) using the Blum-Goldwasser decryption algorithm.

**ALGORITHM:**
The Blum-Goldwasser decryption algorithm is described in Algorithm 8.56, page 309 of [MvOV1996]. The algorithm works as follows:

1. Let $C$ be the ciphertext $C = (c_1, c_2, \ldots, c_t, x_{t+1})$. Then $t$ is the number of ciphertext sub-blocks and $h$ is the length of each binary string sub-block $c_i$.

2. Let $(p, q, a, b)$ be the private key whose corresponding public key is $n = pq$. Note that $\gcd(p, q) = ap + bq = 1$.

3. Compute $d_1 = ((p + 1)/4)^{t+1} \mod (p - 1)$.

4. Compute $d_2 = ((q + 1)/4)^{t+1} \mod (q - 1)$.

5. Let $u = x_{t+1}^{d_1} \mod p$.

6. Let $v = x_{t+1}^{d_2} \mod q$.

7. Compute $x_0 = vap + ubq \mod n$.

8. For $i$ from 1 to $t$, do:
   (a) Compute $x_i = x_{i-1}^2 \mod n$.
   (b) Let $p_i$ be the $h$ least significant bits of $x_i$.
   (c) Compute $m_i = p_i \oplus c_i$.

9. The plaintext is $m = m_1 m_2 \cdots m_t$.

EXAMPLES:

The following decryption example is taken from Example 8.57, pages 309–310 of [MvOV1996]. Here we decrypt a binary string:

```python
sage: from sage.crypto.public_key.blum_goldwasser import BlumGoldwasser
sage: bg = BlumGoldwasser()
sage: p = 499; q = 547
sage: C = ([[0, 0, 1, 0], [0, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0]], 139680)
sage: K = bg.private_key(p, q); K
(499, 547, -57, 52)
sage: P = bg.decrypt(C, K); P
[[[1, 0, 0, 1], [1, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0], [1, 1, 0, 0]]]
```

Convert the plaintext sub-blocks into a binary string:

```python
sage: bin = BinaryStrings()
sage: bin(flatten(P))
10011100000100001100
```

Decrypt a longer ciphertext and convert the resulting plaintext into an ASCII string:

```python
sage: from sage.crypto.public_key.blum_goldwasser import BlumGoldwasser
sage: from sage.crypto.util import bin_to_ascii
sage: bg = BlumGoldwasser()
sage: p = 78307; q = 412487
sage: K = bg.private_key(p, q)
```

(continues on next page)
Apply the Blum-Goldwasser scheme to encrypt the plaintext \( P \) using the public key \( K \).

**INPUT:**
- \( P \) – a non-empty string of plaintext. The string \( "\) is an empty string, whereas \( "\) is a string consisting of one white space character. The plaintext can be a binary string or a string of ASCII characters. Where \( P \) is an ASCII string, then \( P \) is first encoded as a binary string prior to encryption.
- \( K \) – a public key, which is the product of two Blum primes.
- \( \text{seed} \) – (default: \( \text{None} \)) if \( p \) and \( q \) are Blum primes and \( n = pq \) is a public key, then \( \text{seed} \) is a quadratic residue in the multiplicative group \( (\mathbb{Z}/n\mathbb{Z})^* \). If \( \text{seed}=\text{None} \), then the function would generate its own random quadratic residue in \( (\mathbb{Z}/n\mathbb{Z})^* \). Where a value for \( \text{seed} \) is provided, it is your responsibility to ensure that the seed is a quadratic residue in the multiplicative group \( (\mathbb{Z}/n\mathbb{Z})^* \).

**OUTPUT:**
- The ciphertext resulting from encrypting \( P \) using the public key \( K \). The ciphertext \( C \) is of the form \( C = (c_1, c_2, \ldots, c_t, x_{t+1}) \). Each \( c_i \) is a sub-block of binary string and \( x_{t+1} \) is the result of the \( t+1 \)-th iteration of the Blum-Blum-Shub algorithm.

**ALGORITHM:**

The Blum-Goldwasser encryption algorithm is described in Algorithm 8.56, page 309 of [MvOV1996]. The algorithm works as follows:

1. Let \( n \) be a public key, where \( n = pq \) is the product of two distinct Blum primes \( p \) and \( q \).
2. Let \( k = \lfloor \log_2(n) \rfloor \) and \( h = \lfloor \log_2(k) \rfloor \).
3. Let \( m = m_1m_2\cdots m_t \) be the message (plaintext) where each \( m_i \) is a binary string of length \( h \).
4. Choose a random seed \( x_0 \), which is a quadratic residue in the multiplicative group \( (\mathbb{Z}/n\mathbb{Z})^* \). That is, choose a random \( r \in (\mathbb{Z}/n\mathbb{Z})^* \) and compute \( x_0 = r^2 \mod n \).
5. For \( i \) from 1 to \( t \), do:
   - (a) Let \( x_i = x_{i-1}^2 \mod n \).
   - (b) Let \( p_i \) be the \( h \) least significant bits of \( x_i \).
   - (c) Let \( c_i = p_i \oplus m_i \).
6. Compute \( x_{t+1} = x_t^2 \mod n \).
7. The ciphertext is \( C = (c_1, c_2, \ldots, c_t, x_{t+1}) \).

The value \( h \) in the algorithm is the sub-block length. If the binary string representing the message cannot be divided into blocks of length \( h \) each, then other sub-block lengths would be used instead. The sub-block lengths to fall back on are in the following order: 16, 8, 4, 2, 1.
EXAMPLES:

The following encryption example is taken from Example 8.57, pages 309–310 of [MvOV1996]. Here, we encrypt a binary string:

```
sage: from sage.crypto.public_key.blum_goldwasser import BlumGoldwasser
sage: bg = BlumGoldwasser()
p = 499; q = 547; n = p * q
sage: P = "10011100000100001100"
```

```
sage: C = bg.encrypt(P, n, seed=159201); C
([[[0, 0, 1, 0], [0, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0]], 139680]
```

Convert the ciphertext sub-blocks into a binary string:

```
sage: bin = BinaryStrings()
sage: bin(flatten(C[0]))
00100000110011100100
```

Now encrypt an ASCII string. The result is random; no seed is provided to the encryption function so the function generates its own random seed:

```
sage: from sage.crypto.public_key.blum_goldwasser import BlumGoldwasser
sage: bg = BlumGoldwasser()
sage: K = 32300619509
sage: P = "Blum-Goldwasser encryption"
```

```
sage: bg.encrypt(P, K) # random
[[[1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0],
[1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1],
[0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0],
[1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1]]}, 3479653279)
```

**private_key** $(p, q)$

Return the Blum-Goldwasser private key corresponding to the distinct Blum primes $p$ and $q$.

**INPUT:**

- $p$ – a Blum prime.
- $q$ – a Blum prime.

**OUTPUT:**

- The Blum-Goldwasser private key $(p, q, a, b)$ where $gcd(p, q) = ap + bq = 1$.

Both $p$ and $q$ must be distinct Blum primes. Let $p$ be a positive prime. Then $p$ is a Blum prime if $p$ is congruent to 3 modulo 4, i.e. $p \equiv 3 \pmod{4}$.

**EXAMPLES:**

Obtain two distinct Blum primes and compute the Blum-Goldwasser private key corresponding to those two Blum primes:
Choose two distinct random Blum primes, compute the Blum-Goldwasser private key corresponding to those two primes, and test that the resulting private key \((p, q, a, b)\) satisfies
\[
gcd(p, q) = ap + bq = 1
\]

Choose two distinct random Blum primes, compute the Blum-Goldwasser public key corresponding to those two primes, and test that the public key factorizes into Blum primes:

\[
\text{public_key}(p, q)
\]

Return the Blum-Goldwasser public key corresponding to the distinct Blum primes \(p\) and \(q\).

**INPUT:**

- \(p\) – a Blum prime.
- \(q\) – a Blum prime.

**OUTPUT:**

- The Blum-Goldwasser public key \(n = pq\).

Both \(p\) and \(q\) must be distinct Blum primes. Let \(p\) be a positive prime. Then \(p\) is a Blum prime if \(p\) is congruent to 3 modulo 4, i.e. \(p \equiv 3 \pmod{4}\).

**EXAMPLES:**

Obtain two distinct Blum primes and compute the Blum-Goldwasser public key corresponding to those two Blum primes:

Choose two distinct random Blum primes, compute the Blum-Goldwasser public key corresponding to those two primes, and test that the public key factorizes into Blum primes:
random_key (lbound, ubound, ntries=100)
Return a pair of random public and private keys.

INPUT:

• lbound – positive integer; the lower bound on how small each random Blum prime \( p \) and \( q \) can be. So we have \( 0 < \text{lower_bound} \leq p, q \leq \text{upper_bound} \). The lower bound must be distinct from the upper bound.

• ubound – positive integer; the upper bound on how large each random Blum prime \( p \) and \( q \) can be. So we have \( 0 < \text{lower_bound} \leq p, q \leq \text{upper_bound} \). The lower bound must be distinct from the upper bound.

• ntries – (default: 100) the number of attempts to generate a random public/private key pair. If \( ntries \) is a positive integer, then perform that many attempts at generating a random public/private key pair.

OUTPUT:

• A random public key and its corresponding private key. Each randomly chosen \( p \) and \( q \) are guaranteed to be Blum primes. The public key is \( n = pq \), and the private key is \( (p, q, a, b) \) where \( \gcd(p, q) = ap + bq = 1 \).

ALGORITHM:
The key generation algorithm is described in Algorithm 8.55, page 308 of [MvOV1996]. The algorithm works as follows:

1. Let \( p \) and \( q \) be distinct large random primes, each congruent to 3 modulo 4. That is, \( p \) and \( q \) are Blum primes.
2. Let \( n = pq \) be the product of \( p \) and \( q \).
3. Use the extended Euclidean algorithm to compute integers \( a \) and \( b \) such that \( \gcd(p, q) = ap + bq = 1 \).
4. The public key is \( n \) and the corresponding private key is \( (p, q, a, b) \).

Note: Beware that there might not be any primes between the lower and upper bounds. So make sure that these two bounds are “sufficiently” far apart from each other for there to be primes congruent to 3 modulo 4. In particular, there should be at least two distinct primes within these bounds, each prime being congruent to 3 modulo 4.

EXAMPLES:
Choosing a random pair of public and private keys. We then test to see if they satisfy the requirements of the Blum-Goldwasser scheme:
sage: from sage.crypto.public_key.blum_goldwasser import BlumGoldwasser
sage: from sage.crypto.util import is_blum_prime
sage: bg = BlumGoldwasser()

sage: pubkey, prikey = bg.random_key(10**4, 10**5)
sage: p, q, a, b = prikey

sage: is_blum_prime(p); is_blum_prime(q)
True
True

sage: p == q
False

sage: pubkey == p*q
True

sage: gcd(p, q) == a*p + b*q == 1
True
class sage.crypto.stream.LFSRCryptosystem(field=None)
    Bases: sage.crypto.cryptosystem.SymmetricKeyCryptosystem
    Linear feedback shift register cryptosystem class
    encoding (M)

class sage.crypto.stream.ShrinkingGeneratorCryptosystem(field=None)
    Bases: sage.crypto.cryptosystem.SymmetricKeyCryptosystem
    Shrinking generator cryptosystem class
    encoding (M)

sage.crypto.stream.blum_blum_shub(length, seed=None, p=None, q=None, lbound=None, ubound=None, ntries=100)

The Blum-Blum-Shub (BBS) pseudorandom bit generator.

See the original paper by Blum, Blum and Shub [BBS1986]. The BBS algorithm is also discussed in section 5.5.2 of [MvOV1996].

INPUT:

- length – positive integer; the number of bits in the output pseudorandom bit sequence.
- seed – (default: None) if p and q are Blum primes, then seed is a quadratic residue in the multiplicative group (Z/nZ)* where n = pq. If seed=None, then the function would generate its own random quadratic residue in (Z/nZ)*. If you provide a value for seed, then it is your responsibility to ensure that the seed is a quadratic residue in the multiplicative group (Z/nZ)*.
- p – (default: None) a large positive prime congruent to 3 modulo 4. Both p and q must be distinct. If p=None, then a value for p will be generated, where 0 < lbound <= p <= ubound.
- q – (default: None) a large positive prime congruent to 3 modulo 4. Both p and q must be distinct. If q=None, then a value for q will be generated, where 0 < lbound <= q <= ubound.
- lbound – (positive integer, default: None) the lower bound on how small each random primes p and q can be. So we have 0 < lbound <= p, q <= ubound. The lower bound must be distinct from the upper bound.
- ubound – (positive integer, default: None) the upper bound on how large each random primes p and q can be. So we have 0 < lbound <= p, q <= ubound. The lower bound must be distinct from the upper bound.
- ntries – (default: 100) the number of attempts to generate a random Blum prime. If ntries is a positive integer, then perform that many attempts at generating a random Blum prime. This might or might not result in a Blum prime.

OUTPUT:
A pseudorandom bit sequence whose length is specified by length.

Here is a common use case for this function. If you want this function to use pre-computed values for \( p \) and \( q \), you should pass those pre-computed values to this function. In that case, you only need to specify values for length, \( p \) and \( q \), and you do not need to worry about doing anything with the parameters lbound and ubound. The pre-computed values \( p \) and \( q \) must be Blum primes. It is your responsibility to check that both \( p \) and \( q \) are Blum primes.

Here is another common use case. If you want the function to generate its own values for \( p \) and \( q \), you must specify the lower and upper bounds within which these two primes must lie. In that case, you must specify values for length, lbound and ubound, and you do not need to worry about values for the parameters \( p \) and \( q \). The parameter ntries is only relevant when you want this function to generate \( p \) and \( q \).

Note: Beware that there might not be any primes between the lower and upper bounds. So make sure that these two bounds are “sufficiently” far apart from each other for there to be primes congruent to 3 modulo 4. In particular, there should be at least two distinct primes within these bounds, each prime being congruent to 3 modulo 4. This function uses the function \texttt{random_blum_prime()}\ to generate random primes that are congruent to 3 modulo 4.

**ALGORITHM:**

The BBS algorithm as described below is adapted from the presentation in Algorithm 5.40, page 186 of [MvOV1996].

1. Let \( L \) be the desired number of bits in the output bit sequence. That is, \( L \) is the desired length of the bit string.
2. Let \( p \) and \( q \) be two large distinct primes, each congruent to 3 modulo 4.
3. Let \( n = pq \) be the product of \( p \) and \( q \).
4. Select a random seed value \( s \in (\mathbb{Z}/n\mathbb{Z})^* \), where \((\mathbb{Z}/n\mathbb{Z})^*\) is the multiplicative group of \( \mathbb{Z}/n\mathbb{Z} \).
5. Let \( x_0 = s^2 \mod n \).
6. For \( i \) from 1 to \( L \), do
   (a) Let \( x_i = x_{i-1}^2 \mod n \).
   (b) Let \( z_i \) be the least significant bit of \( x_i \).
7. The output pseudorandom bit sequence is \( z_1, z_2, \ldots, z_L \).

**EXAMPLES:**

A BBS pseudorandom bit sequence with a specified seed:

```
sage: from sage.crypto.stream import blum_blum_shub
sage: blum_blum_shub(length=6, seed=3, p=11, q=19)
110000
```

You could specify the length of the bit string, with given values for \( p \) and \( q \):

```
sage: blum_blum_shub(length=6, p=11, q=19) # random
001011
```

Or you could specify the length of the bit string, with given values for the lower and upper bounds:

```
sage: blum_blum_shub(length=6, lbound=10**4, ubound=10**5) # random
110111
```
Under some reasonable hypotheses, Blum-Blum-Shub [BBS1982] sketch a proof that the period of the BBS stream cipher is equal to $\lambda(\lambda(n))$, where $\lambda(n)$ is the Carmichael function of $n$. This is verified below in a few examples by using the function $lfsr\_connection\_polynomial()$ (written by Tim Brock) which computes the connection polynomial of a linear feedback shift register sequence. The degree of that polynomial is the period.

```python
sage: from sage.crypto.stream import blum_blum_shub
sage: from sage.crypto.util import carmichael_lambda
sage: carmichael_lambda(carmichael_lambda(7*11))
4
sage: s = [GF(2)(int(str(x))) for x in blum_blum_shub(60, p=7, q=11, seed=13)]
sage: lfsr_connection_polynomial(s)
x^3 + x^2 + 1
sage: carmichael_lambda(carmichael_lambda(11*23))
20
sage: s = [GF(2)(int(str(x))) for x in blum_blum_shub(60, p=11, q=23, seed=13)]
sage: lfsr_connection_polynomial(s)
x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + ... + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
```
class sage.crypto.stream_cipher.LFSRCipher(parent, poly, IS)

Create a linear feedback shift register (LFSR) cipher.

INPUT:

• parent - parent
• poly - connection polynomial
• IS - initial state

EXAMPLES:

sage: FF = FiniteField(2)
sage: P.<x> = PolynomialRing(FF)
sage: E = LFSRCryptosystem(FF)
sage: E
LFSR cryptosystem over Finite Field of size 2
sage: IS = [ FF(a) for a in [0,1,1,1,0,1,1] ]
sage: g = x^7 + x + 1
sage: e = E((g,IS))
sage: B = BinaryStrings()
sage: m = B.encoding("THECATIN\nTHEHAT")
sage: e(m)
00100011011110101110101010100011000000001101000101010111000010111100100100000111111001001000110011011010000011111
sage: FF = FiniteField(2)
sage: P.<x> = PolynomialRing(FF)
sage: LFSR = LFSRCryptosystem(FF)
sage: e = LFSR((x^2+x+1,[FF(0),FF(1)]))
sage: B = e.domain()
sage: m = B.encoding("The cat in the hat.")
sage: e(m)
001110011101111010111001001101111101011110100110000001101111011010101111000010111101011110101111011011010001
sage: m == e(e(m))
True

connection_polynomial()

The connection polynomial defining the LFSR of the cipher.

EXAMPLES:

sage: k = GF(2)
sage: P.<x> = PolynomialRing( k )
sage: LFSR = LFSRCryptosystem( k )
sage: e = LFSR((x^2+x+1, [k(0), k(1)]))
sage: e.connection_polynomial()
x^2 + x + 1

\textbf{initial\_state()}

The initial state of the LFSR cipher.

\textbf{EXAMPLES:}

sage: k = GF(2)
sage: P.<x> = PolynomialRing( k )
sage: LFSR = LFSRCryptosystem( k )
sage: e = LFSR((x^2+x+1, [k(0), k(1)]))
sage: e.initial_state()
[0, 1]

\textbf{class \texttt{sage.crypto.stream_cipher.ShrinkingGeneratorCipher}(\texttt{parent, e1, e2})}

\textbf{Bases: \texttt{sage.crypto.cipher.SymmetricKeyCipher}}

Create a shrinking generator cipher.

\textbf{INPUT:}

- \texttt{parent} - parent
- \texttt{poly} - connection polynomial
- \texttt{IS} - initial state

\textbf{EXAMPLES:}

sage: FF = FiniteField(2)
sage: P.<x> = PolynomialRing(FF)
sage: LFSR = LFSRCryptosystem(FF)
sage: IS_1 = [ FF(a) for a in [0,1,0,1,0,0,0] ]
sage: e1 = LFSR((x^7 + x + 1, IS_1))
sage: IS_2 = [ FF(a) for a in [0,0,1,0,0,0,1,0,1] ]
sage: e2 = LFSR((x^9 + x^3 + 1, IS_2))
sage: E = ShrinkingGeneratorCryptosystem()
sage: e = E((e1,e2))
sage: e
Shrinking generator cipher on Free binary string monoid

\textbf{decimating\_cipher()}

The LFSR cipher generating the decimating key stream.

\textbf{EXAMPLES:}

sage: FF = FiniteField(2)
sage: P.<x> = PolynomialRing(FF)
sage: LFSR = LFSRCryptosystem(FF)
sage: IS_1 = [ FF(a) for a in [0,1,0,1,0,0,0] ]
sage: e1 = LFSR((x^7 + x + 1, IS_1))
sage: IS_2 = [ FF(a) for a in [0,0,1,0,0,0,1,0,1] ]
sage: e2 = LFSR((x^9 + x^3 + 1, IS_2))
sage: E = ShrinkingGeneratorCryptosystem()
sage: e = E((e1,e2))
sage: e.decimating_cipher()
LFSR cipher on Free binary string monoid
keystream_cipher()
The LFSR cipher generating the output key stream.

EXAMPLES:

```
sage: FF = FiniteField(2)
sage: P.<x> = PolynomialRing(FF)
sage: LFSR = LFSRCryptosystem(FF)
sage: IS_1 = [FF(a) for a in [0,1,0,1,0,0,0]]
sage: e1 = LFSR((x^7 + x + 1,IS_1))
sage: IS_2 = [FF(a) for a in [0,0,1,0,0,0,1,0,1]]
sage: e2 = LFSR((x^9 + x^3 + 1,IS_2))
sage: E = ShrinkingGeneratorCryptosystem()
sage: e = E((e1,e2))
sage: e.keystream_cipher()
```
LFSR cipher on Free binary string monoid
Stream ciphers have been used for a long time as a source of pseudo-random number generators. S. Golomb [Go1967] gives a list of three statistical properties that a sequence of numbers \( a = \{a_n\}_n \), \( a_n \in \{0, 1\} \), should display to be considered “random”. Define the autocorrelation of \( a \) to be

\[
C(k) = C(k, a) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (-1)^{a_n + a_{n+k}}.
\]

In the case where \( a \) is periodic with period \( P \), then this reduces to

\[
C(k) = \frac{1}{P} \sum_{n=1}^{P} (-1)^{a_n + a_{n+k}}.
\]

Assume \( a \) is periodic with period \( P \).

- balance: \( |\sum_{n=1}^{P} (-1)^{a_n}| \leq 1 \).
- low autocorrelation:

\[
C(k) = \begin{cases} 1, & k = 0, \\ \epsilon, & k \neq 0. \end{cases}
\]

(For sequences satisfying these first two properties, it is known that \( \epsilon = -1/P \) must hold.)

- proportional runs property: In each period, half the runs have length 1, one-fourth have length 2, etc. Moreover, there are as many runs of 1’s as there are of 0’s.

A general feedback shift register is a map \( f : \mathbb{F}_q^d \to \mathbb{F}_q^d \) of the form

\[
f(x_0, \ldots, x_{n-1}) = (x_1, x_2, \ldots, x_n),
\]

\[
x_n = C(x_0, \ldots, x_{n-1}),
\]

where \( C : \mathbb{F}_q^d \to \mathbb{F}_q \) is a given function. When \( C \) is of the form

\[
C(x_0, \ldots, x_{n-1}) = a_0x_0 + \ldots + a_{n-1}x_{n-1},
\]

for some given constants \( a_i \in \mathbb{F}_q \), the map is called a linear feedback shift register (LFSR).

**Example of an LFSR:** Let

\[
f(x) = a_0 + a_1x + \ldots + a_nx^n + \ldots,
\]

\[
g(x) = b_0 + b_1x + \ldots + b_nx^n + \ldots,
\]
be given polynomials in \( F_2[x] \) and let
\[
h(x) = \frac{f(x)}{g(x)} = c_0 + c_1 x + ... + c_n x^n + ... .
\]

We can compute a recursion formula which allows us to rapidly compute the coefficients of \( h(x) \) (take \( f(x) = 1 \)):
\[
c_n = \sum_{i=1}^{n} \frac{-b_i}{b_0} c_{n-i}.
\]

The coefficients of \( h(x) \) can, under certain conditions on \( f(x) \) and \( g(x) \), be considered “random” from certain statistical points of view.

Example: For instance, if
\[
f(x) = 1, \quad g(x) = x^4 + x + 1,
\]
then
\[
h(x) = 1 + x + x^2 + x^3 + x^5 + x^7 + x^8 + ... .
\]

The coefficients of \( h \) are
\[1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, ... .\]

The sequence of 0, 1’s is periodic with period \( P = 2^4 - 1 = 15 \) and satisfies Golomb’s three randomness conditions. However, this sequence of period 15 can be “cracked” (i.e., a procedure to reproduce \( g(x) \)) by knowing only 8 terms! This is the function of the Berlekamp-Massey algorithm [Mas1969], implemented in \texttt{berlekamp_massey.py}.

AUTHORS:
- Timothy Brock (2005-11): added \texttt{lfsr_sequence} with code modified from Python Cookbook, \url{http://aspn.activestate.com/ASPN/Python/Cookbook/}
- Timothy Brock (2006-04-17): added \texttt{lfsr_autocorrelation} and \texttt{lfsr_connection_polynomial}.

\begin{verbatim}
sage.crypto.lfsr.lfsr_autocorrelation(L, p, k)
\end{verbatim}

**INPUT:**
- \( L \) – a periodic sequence of elements of ZZ or GF(2); must have length \( p \)
- \( p \) – the period of \( L \)
- \( k \) – an integer between 0 and \( p \)

**OUTPUT:** autocorrelation sequence of \( L \)

**EXAMPLES:**
```
sage: F = GF(2)
sage: o = F(0)
sage: l = F(1)
sage: key = [l,o,o,l]; fill = [l,l,o,l]; n = 20
sage: s = lfsr_sequence(key,fill,n)
sage: lfsr_autocorrelation(s,15,7)
4/15
sage: lfsr_autocorrelation(s,int(15),7) # Using integer
4/15
```
sage.crypto.lfsr.lfsr_connection_polynomial(s)

INPUT:

• s – a sequence of elements of a finite field of even length

OUTPUT:

• C(x) – the connection polynomial of the minimal LFSR.

This implements the algorithm in section 3 of J. L. Massey’s article [Mas1969].

EXAMPLES:

```python
sage: F = GF(2)
sage: F
Finite Field of size 2
sage: o = F(0); l = F(1)
sage: key = [l,o,o,l]; fill = [l,l,o,l]; n = 20
sage: s = lfsr_sequence(key,fill,n); s
[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0]
sage: lfsr_connection_polynomial(s)
x^4 + x + 1
sage: from sage.matrix.berlekamp_massey import berlekamp_massey
sage: g = berlekamp_massey(s); g
x^4 + x^3 + 1
```

Notice that berlekamp_massey returns the reverse of the connection polynomial (and is potentially must faster than this implementation).

sage.crypto.lfsr.lfsr_sequence(key, fill, n)

This function creates an LFSR sequence.

INPUT:

• key – a list of finite field elements, [c_0,c_1,...,c_k]

• fill – the list of the initial terms of the LFSR sequence, [x_0,x_1,...,x_k]

• n – number of terms of the sequence that the function returns

OUTPUT: The LFSR sequence defined by \[ x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k} \text{ for } n \leq k. \]

EXAMPLES:

```python
sage: F = GF(2); l = F(1); o = F(0)
sage: F = GF(2); S = LaurentSeriesRing(F,'x'); x = S.gen()
sage: fill = [l,l,o,l]; key = [1,o,o,1]; n = 20
sage: L = lfsr_sequence(key,fill,20); L
[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0]
sage: from sage.matrix.berlekamp_massey import berlekamp_massey
sage: g = berlekamp_massey(L); g
1 + x + x^2 + x^3 + O(x^20)
sage: (1+x^2)/(g.reverse()+O(x^20))
1 + x + x^2 + x^3 + x^5 + x^7 + x^8 + x^11 + x^15 + x^16 + x^17 + x^18 + O(x^20)
sage: (1+x^2)/(g.reverse()+O(x^20))
1 + x + x^2 + x^4 + x^8 + x^9 + x^10 + x^11 + x^13 + x^15 + x^16 + x^19 + O(x^20)
sage: (1+x^2+x^3)/(g.reverse()+O(x^20))
1 + x + x^3 + x^5 + x^6 + x^9 + x^13 + x^14 + x^15 + x^16 + x^18 + O(x^20)
sage: fill = [l,1,0,1]; key = [1,o,o,o]; n = 20
sage: L = lfsr_sequence(key,fill,20); L
[1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1]
sage: g = berlekamp_massey(L); g
```

(continues on next page)
\(x^4 + 1\)

```
sage: (1+x)/(g.reverse()+O(x^20))
1 + x + x^4 + x^5 + x^8 + x^9 + x^12 + x^13 + x^16 + x^17 + O(x^20)
```

```
sage: (1+x+x^3)/(g.reverse()+O(x^20))
1 + x + x^3 + x^4 + x^5 + x^7 + x^8 + x^9 + x^11 + x^12 + x^13 + x^15 + x^16 + x^17 + O(x^20)
```
UTILITY FUNCTIONS FOR CRYPTOGRAPHY

Miscellaneous utility functions for cryptographic purposes.

AUTHORS:

- Minh Van Nguyen (2009-12): initial version with the following functions:
  
  ascii_integer, ascii_to_bin, bin_to_ascii, has_blum_prime, is_blum_prime,
  least_significant_bits, random_blum_prime.

sage.crypto.util.ascii_integer(B)

Return the ASCII integer corresponding to the binary string B.

INPUT:

- B – a non-empty binary string or a non-empty list of bits. The number of bits in B must be 8.

OUTPUT:

- The ASCII integer corresponding to the 8-bit block B.

EXAMPLES:

The ASCII integers of some binary strings:

```
sage: from sage.crypto.util import ascii_integer
sage: bin = BinaryStrings()
sage: B = bin.encoding("A"); B
01000001
sage: ascii_integer(B)
65
sage: B = bin.encoding("C"); list(B)
[0, 1, 0, 0, 0, 1, 1]
sage: ascii_integer(list(B))
67
sage: ascii_integer("01000100")
68
sage: ascii_integer([0, 1, 0, 0, 0, 1, 0, 1])
69
```

sage.crypto.util.ascii_to_bin(A)

Return the binary representation of the ASCII string A.

INPUT:

- A – a string or list of ASCII characters.

OUTPUT:

- The binary representation of A.
ALGORITHM:

Let \( A = a_0a_1 \cdots a_{n-1} \) be an ASCII string, where each \( a_i \) is an ASCII character. Let \( c_i \) be the ASCII integer corresponding to \( a_i \) and let \( b_i \) be the binary representation of \( c_i \). The binary representation \( B \) of \( A \) is \( B = b_0b_1 \cdots b_{n-1} \).

EXAMPLES:

The binary representation of some ASCII strings:

```python
sage: from sage.crypto.util import ascii_to_bin
sage: ascii_to_bin("A")
01000001
sage: ascii_to_bin("Abc123")
010000010110001001100011001100010011001000110011
```

The empty string is different from the string with one space character. For the empty string and the empty list, this function returns the same result:

```python
sage: from sage.crypto.util import ascii_to_bin
sage: ascii_to_bin(" ")
00100000
sage: ascii_to_bin([])
00100000
```

This function also accepts a list of ASCII characters. You can also pass in a list of strings:

```python
sage: from sage.crypto.util import ascii_to_bin
sage: ascii_to_bin(["A", "b", "c", "1", "2", "3"])
in attic: $L:\mathbb{R}^n\to\mathbb{R}^{l+m}$
```

sage.crypto.util.bin_to_ascii(B)

Return the ASCII representation of the binary string \( B \).

INPUT:

- \( B \) – a non-empty binary string or a non-empty list of bits. The number of bits in \( B \) must be a multiple of 8.

OUTPUT:

- The ASCII string corresponding to \( B \).

ALGORITHM:

Consider a block of bits \( B = b_0b_1 \cdots b_{n-1} \) where each sub-block \( b_i \) is a binary string of length 8. Then the total number of bits is a multiple of 8 and is given by \( 8n \). Let \( c_i \) be the integer representation of \( b_i \). We can consider \( c_i \) as the integer representation of an ASCII character. Then the ASCII representation \( A \) of \( B \) is \( A = a_0a_1 \cdots a_{n-1} \).

EXAMPLES:

Convert some ASCII strings to their binary representations and recover the ASCII strings from the binary representations:

```python
sage: from sage.crypto.util import ascii_to_bin, bin_to_ascii
sage: A = "Abc"
sage: B = ascii_to_bin(A); B
010000101100010011000110
sage: ascii_to_bin(B)
"Abc"
```
This function also accepts strings and lists of bits:

```python
sage: from sage.crypto.util import bin_to_ascii
sage: bin_to_ascii("010000010110001001100011")
'Abc'
sage: bin_to_ascii([0, 1, 0, 0, 0, 0, 0, 1])
'A'
```

`sage.crypto.util.carmichael_lambda(n)`  
Return the Carmichael function of a positive integer \( n \).

The Carmichael function of \( n \), denoted \( \lambda(n) \), is the smallest positive integer \( k \) such that \( a^k \equiv 1 \pmod{n} \) for all \( a \in \mathbb{Z}/n\mathbb{Z} \) satisfying \( \gcd(a, n) = 1 \). Thus, \( \lambda(n) = k \) is the exponent of the multiplicative group \( (\mathbb{Z}/n\mathbb{Z})^* \).

**INPUT:**  
- \( n \) – a positive integer.

**OUTPUT:**  
- The Carmichael function of \( n \).

**ALGORITHM:**

If \( n = 2, 4 \) then \( \lambda(n) = \varphi(n) \). Let \( p \geq 3 \) be an odd prime and let \( k \) be a positive integer. Then \( \lambda(p^k) = p^{k-1}(p - 1) = \varphi(p^k) \). If \( k \geq 3 \), then \( \lambda(2^k) = 2^{k-2} \). Now consider the case where \( n > 3 \) is composite and let \( n = p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t} \) be the prime factorization of \( n \). Then

\[
\lambda(n) = \lambda(p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}) = \text{lcm}(\lambda(p_1^{k_1}), \lambda(p_2^{k_2}), \ldots, \lambda(p_t^{k_t}))
\]

**EXAMPLES:**

The Carmichael function of all positive integers up to and including 10:

```python
sage: from sage.crypto.util import carmichael_lambda
sage: list(map(carmichael_lambda, [1..10]))
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4]
```

The Carmichael function of the first ten primes:

```python
sage: list(map(carmichael_lambda, primes_first_n(10)))
[1, 2, 4, 6, 10, 12, 16, 18, 22, 28]
```

Cases where the Carmichael function is equivalent to the Euler phi function:

```python
sage: list(map(carmichael_lambda, [1..10]))
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4]
```
A case where $\lambda(n) \neq \varphi(n)$:

```
sage: k = randint(1, 1000)
sage: carmichael_lambda(2^k) == 2^(k - 2)
True
carmichael_lambda(2^k) == 2^(k - 2) == euler_phi(2^k)
False
```

Verifying the current implementation of the Carmichael function using another implementation. The other implementation that we use for verification is an exhaustive search for the exponent of the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^*$. 

```
sage: from sage.crypto.util import carmichael_lambda
sage: n = randint(1, 500)
sage: c = carmichael_lambda(n)
sage: def coprime(n):
....: return [i for i in range(n) if gcd(i, n) == 1]
sage: def znpower(n, k):
....: L = coprime(n)
....: return list(map(power_mod, L, [k] * len(L), [n] * len(L)))
sage: def my_carmichael(n):
....: for k in range(1, n):
....: L = znpower(n, k)
....: ones = [1] * len(L)
....: T = [L[i] == ones[i] for i in range(len(L))]
....: if all(T):
....: return k
sage: c == my_carmichael(n)
True
```

Carmichael’s theorem states that $a^{\lambda(n)} \equiv 1 \pmod{n}$ for all elements $a$ of the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^*$. Here, we verify Carmichael’s theorem.

```
sage: from sage.crypto.util import carmichael_lambda
sage: n = randint(1, 1000)
sage: c = carmichael_lambda(n)
sage: ZnZ = IntegerModRing(n)
sage: M = ZnZ.list_of_elements_of_multiplicative_group()
sage: ones = [1] * len(M)
sage: P = [power_mod(a, c, n) for a in M]
sage: P == ones
True
```

REFERENCES:

- Wikipedia article Carimeichael_function

sage.crypto.util.has_blum_prime(lbound, ubound)
Determine whether or not there is a Blum prime within the specified closed interval.
INPUT:

- lbound – positive integer; the lower bound on how small a Blum prime can be. The lower bound must be distinct from the upper bound.
- ubound – positive integer; the upper bound on how large a Blum prime can be. The lower bound must be distinct from the upper bound.

OUTPUT:

- True if there is a Blum prime $p$ such that $lbound \leq p \leq ubound$. False otherwise.

ALGORITHM:

Let $L$ and $U$ be distinct positive integers. Let $P$ be the set of all odd primes $p$ such that $L \leq p \leq U$. Our main focus is on Blum primes, i.e. odd primes that are congruent to 3 modulo 4, so we assume that the lower bound $L > 2$. The closed interval $[L, U]$ has a Blum prime if and only if the set $P$ has a Blum prime.

EXAMPLES:

Testing for the presence of Blum primes within some closed intervals. The interval $[4, 100]$ has a Blum prime, the smallest such prime being 7. The interval $[24, 28]$ has no primes, hence no Blum primes.

```sage
def has_blum_prime(lbound, ubound):
 if not lbound % 4 == 3 or not ubound % 4 == 3:
 return False
 for p in range(lbound, ubound + 1):
 if is_blum_prime(p):
 return True
 return False
```

sage: has_blum_prime(4, 100)
True
sage: has_blum_prime(24, 28)
False

sage.crypto.util.is_blum_prime(n)
Determine whether or not $n$ is a Blum prime.

INPUT:

- $n$ a positive prime.

OUTPUT:

- True if $n$ is a Blum prime; False otherwise.

Let $n$ be a positive prime. Then $n$ is a Blum prime if $n$ is congruent to 3 modulo 4, i.e. $n \equiv 3 \pmod{4}$.

EXAMPLES:

Testing some integers to see if they are Blum primes:

```sage
def is_blum_prime(n):
 return n % 4 == 3
```

sage: is_blum_prime(101)
False
sage: is_blum_prime(7)
True
sage: p = random_blum_prime(10**3, 10**5)
```
sage.crypto.util.least_significant_bits(n, k)
Return the \(k \) least significant bits of \(n \).

INPUT:
- \(n \) – an integer.
- \(k \) – a positive integer.

OUTPUT:
- The \(k \) least significant bits of the integer \(n \). If \(k=1 \), then return the parity bit of the integer \(n \). Let \(b \) be the binary representation of \(n \), where \(m \) is the length of the binary string \(b \). If \(k \geq m \), then return the binary representation of \(n \).

EXAMPLES:

Obtain the parity bits of some integers:

```python
def least_significant_bits(n, k):
    return bin(n)[:k]
```

```python
sage: from sage.crypto.util import least_significant_bits
sage: least_significant_bits(0, 1)
[0]
sage: least_significant_bits(2, 1)
[0]
sage: least_significant_bits(3, 1)
[1]
sage: least_significant_bits(-2, 1)
[0]
sage: least_significant_bits(-3, 1)
[1]
```

Obtain the 4 least significant bits of some integers:

```python
sage: least_significant_bits(101, 4)
[0, 1, 0, 1]
sage: least_significant_bits(-101, 4)
[0, 1, 0, 1]
sage: least_significant_bits(124, 4)
[1, 1, 0, 0]
sage: least_significant_bits(-124, 4)
[1, 1, 0, 0]
```

The binary representation of 123:

```python
sage: n = 123; b = n.binary(); b
'1111011'
sage: least_significant_bits(n, len(b))
[1, 1, 1, 1, 0, 1, 1]
```

sage.crypto.util.random_blum_prime(lbound, ubound, ntries=100)
A random Blum prime within the specified bounds.

Let \(p \) be a positive prime. Then \(p \) is a Blum prime if \(p \) is congruent to 3 modulo 4, i.e. \(p \equiv 3 \pmod{4} \).

INPUT:
- \(lbound \) – positive integer; the lower bound on how small a random Blum prime \(p \) can be. So we have \(0 < lbound \leq ubound \). The lower bound must be distinct from the upper bound.
- \(ubound \) – positive integer; the upper bound on how large a random Blum prime \(p \) can be. So we have \(0 < lbound \leq ubound \). The lower bound must be distinct from the upper bound.
• \texttt{ntries} – (default: 100) the number of attempts to generate a random Blum prime. If \texttt{ntries} is a positive integer, then perform that many attempts at generating a random Blum prime. This might or might not result in a Blum prime.

OUTPUT:

• A random Blum prime within the specified lower and upper bounds.

\textbf{Note:} Beware that there might not be any primes between the lower and upper bounds. So make sure that these two bounds are "sufficiently" far apart from each other for there to be primes congruent to 3 modulo 4. In particular, there should be at least two distinct Blum primes within the specified bounds.

EXAMPLES:

Choose a random prime and check that it is a Blum prime:

```
sage: from sage.crypto.util import random_blum_prime
sage: p = random_blum_prime(10**4, 10**5)
sage: is_prime(p)
True
sage: mod(p, 4) == 3
True
```
CHAPTER
TWELVE

BOOLEAN FUNCTIONS

Those functions are used for example in LFSR based ciphers like the filter generator or the combination generator. This module allows to study properties linked to spectral analysis, and also algebraic immunity.

EXAMPLES:

```
sage: R.<x>=GF(2^8,'a')[]
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction( x^254 ) # the Boolean function Tr(x^254)
sage: B
Boolean function with 8 variables
sage: B.nonlinearity()
112
sage: B.algebraic_immunity()
4
```

AUTHOR:

- Rusydi H. Makarim (2016-10-13): add functions related to linear structures
- Rusydi H. Makarim (2016-07-09): add is_plateaued()
- Yann Laigle-Chapuy (2010-02-26): add basic arithmetic
- Yann Laigle-Chapuy (2009-08-28): first implementation

class sage.crypto.boolean_function.BooleanFunction
 Bases: sage.structure.sage_object.SageObject

This module implements Boolean functions represented as a truth table.

We can construct a Boolean Function from either:

- an integer - the result is the zero function with \(x \) variables;
- a list - it is expected to be the truth table of the result. Therefore it must be of length a power of 2, and its elements are interpreted as Booleans;
- a string - representing the truth table in hexadecimal;
- a Boolean polynomial - the result is the corresponding Boolean function;
- a polynomial \(P \) over an extension of \(GF(2) \) - the result is the Boolean function with truth table (\(\text{Tr}(P(x)) \) for \(x \) in \(GF(2^k) \))

EXAMPLES:

from the number of variables:
from sage.crypto.boolean_function import BooleanFunction

Boolean function with 5 variables

from a truth table:

Boolean function with 2 variables

note that elements can be of different types:

Boolean function with 1 variable

from a string:

Boolean function with 4 variables

from a BooleanPolynomial:

Boolean function with 3 variables

from a polynomial over a binary field:

Boolean function with 8 variables

two failure cases:

Traceback (most recent call last):
...
TypeError: unable to init the Boolean function

Traceback (most recent call last):
...
ValueError: the length of the truth table must be a power of 2

absolut_indicator()
Return the absolut indicator of the function. This is the maximal absolut value of the autocorrelation.

EXAMPLES:
absolute_autocorrelation()
Return the absolute autocorrelation of the function.

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction("7969817CC5893BA6AC326E47619F5AD0")
sage: sorted(B.absolute_autocorrelation().items())
[(0, 33), (8, 58), (16, 28), (24, 6), (32, 2), (128, 1)]
```

absolute_walsh_spectrum()
Return the absolute Walsh spectrum of the function.

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction("7969817CC5893BA6AC326E47619F5AD0")
sage: sorted(B.absolute_walsh_spectrum().items())
[(0, 64), (16, 64)]
sage: B = BooleanFunction("0113077C165E76A8")
sage: B.absolute_walsh_spectrum()
{8: 64}
```

algebraic_degree()
Return the algebraic degree of this Boolean function.

The algebraic degree of a Boolean function is defined as the degree of its algebraic normal form. Note that the degree of the constant zero function is defined to be equal to -1.

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: R.<x0, x1, x2, x3> = BooleanPolynomialRing()
sage: f = BooleanFunction(x1*x2 + x1*x2*x3 + x1)
sage: f.algebraic_degree()
3
sage: g = BooleanFunction([0, 0])
sage: g.algebraic_degree()
-1
```

algebraic_immunity(annihilator=False)
Returns the algebraic immunity of the Boolean function. This is the smallest integer i such that there exists a non trivial annihilator for `self` or `self`.

INPUT:

- annihilator -- a Boolean (default: False), if True, returns also an annihilator of minimal degree.

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: R.<x0, x1, x2, x3, x4, x5> = BooleanPolynomialRing(6)
sage: B = BooleanFunction(x0*x1 + x1*x2 + x2*x3 + x3*x4 + x4*x5)
sage: B.algebraic_immunity(annihilator=True)
(2, x0*x1 + x1*x2 + x2*x3 + x3*x4 + x4*x5 + 1)
sage: B[0] +=1
sage: B.algebraic_immunity()
2
```

(continues on next page)
algebraic_normal_form()

Return the \texttt{sage.rings.polynomial.pbori.BooleanPolynomial} corresponding to the algebraic normal form.

EXAMPLES:

```
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction([0,1,1,0,1,0,1,1])
sage: P = B.algebraic_normal_form()
sage: P
x0*x1*x2 + x0 + x1*x2 + x1 + x2
```

annihilator \((d, \text{dim}=\text{False})\)

Return (if it exists) an annihilator of the boolean function of degree at most \(d\), that is a Boolean polynomial \(g\) such that

\[f(x)g(x) = 0 \forall x. \]

INPUT:

- \(d\) – an integer;
- \(\text{dim}\) – a Boolean (default: False), if True, return also the dimension of the annihilator vector space.

EXAMPLES:

```
sage: from sage.crypto.boolean_function import BooleanFunction
sage: f = BooleanFunction("7969817CC5893BA6AC326E47619F5AD0")
sage: f.annihilator(3) is None
True
sage: g = BooleanFunction( f.annihilator(3) )
sage: set([( fi+g(i) for i,fi in enumerate(f) )])
{0}
```

autocorrelation()

Return the autocorrelation of the function, defined by

\[\Delta f(j) = \sum_{i\in\{0,1\}^n} (-1)^{f(i)\oplus f(i\oplus j)}. \]

EXAMPLES:

```
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction("03")
sage: B.autocorrelation()
(8, 8, 0, 0, 0, 0, 0, 0)
```

correlation_immunity()

Return the maximum value \(m\) such that the function is correlation immune of order \(m\).

A Boolean function is said to be correlation immune of order \(m\), if the output of the function is statistically independent of the combination of any \(m\) of its inputs.
EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction("7969817CC5893BA6AC326E47619F5AD0")
sage: B.correlation_immunity()
2
```

derivative (*u*)

Return the derivative in direction of *u*

INPUT:

- *u* – either an integer or a tuple/list of \(F_2 \) elements of length equal to the number of variables

The derivative of \(f \) in direction of \(u \) is defined as \(x \mapsto f(x) + f(x + u) \).

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: f = BooleanFunction([0,1,0,1,0,1,0,1])
sage: f.derivative(1).algebraic_normal_form()
1
sage: u = [1,0,0]
sage: f.derivative(u).algebraic_normal_form()
1
sage: v = vector(GF(2), u)
sage: f.derivative(u).algebraic_normal_form()
1
sage: f.derivative(8).algebraic_normal_form()
Traceback (most recent call last):
  ... IndexError: index out of bound
```

has_linear_structure()

Return True if this function has a linear structure.

An \(n \)-variable Boolean function \(f \) has a linear structure if there exists a nonzero \(a \in F_2^n \) such that \(f(x \oplus a) \oplus f(x) \) is a constant function.

See also:

`is_linear_structure()`, `linear_structures()`.

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: f = BooleanFunction([0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0])
sage: f.has_linear_structure()
True
sage: f.autocorrelation()
(16, -16, 0, 0, 0, 0, -16, 16, 0, 0, 0, 0, 0, 0, 0, 0)
sage: g = BooleanFunction([0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1])
sage: g.has_linear_structure()
False
sage: g.autocorrelation()
(15, 4, 1, 4, 4, -4, -4, -4, -4, 4, -4, -4, -4, 4, -4, -4)
```

is_balanced()

Return True if the function takes the value True half of the time.

EXAMPLES:

105
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction(1)
False
sage: B[0] = True
sage: B.is_balanced()
True

is_bent()
Return True if the function is bent.

EXAMPLES:

sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction("0113077C165E76A8")
sage: B.is_bent()
True

is_linear_structure(val)
Return True if val is a linear structure of this Boolean function.

INPUT:
• val – either an integer or a tuple/list of \mathbb{F}_2 elements of length equal to the number of variables

See also:
has_linear_structure(), linear_structures().

EXAMPLES:

sage: from sage.crypto.boolean_function import BooleanFunction
sage: f = BooleanFunction([0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0])
sage: f.is_linear_structure(1)
True
sage: l = [1, 0, 0, 1]
sage: f.is_linear_structure(l)
True
sage: v = vector(GF(2), l)
sage: f.is_linear_structure(v)
True
sage: f.is_linear_structure(7)
False
sage: f.is_linear_structure(20) #parameter is out of range
Traceback (most recent call last):
 ... IndexError: index out of range
sage: v = vector(GF(3), [1, 0, 1, 1])
sage: f.is_linear_structure(v)
Traceback (most recent call last):
 ... TypeError: base ring of input vector must be GF(2)
sage: v = vector(GF(2), [1, 0, 1, 1])
sage: f.is_linear_structure(v)
Traceback (most recent call last):
 ... TypeError: input vector must be an element of a vector space with dimension 4
sage: f.is_linear_structure('X') #failure case
Traceback (most recent call last):
is_plateaued()
Return True if this function is plateaued, i.e. its Walsh transform takes at most three values 0 and ±λ, where λ is some positive integer.

EXAMPLES:

```
sage: from sage.crypto.boolean_function import BooleanFunction
sage: R.<x0, x1, x2, x3> = BooleanPolynomialRing()
sage: f = BooleanFunction(x0*x1 + x2 + x3)
sage: f.walsh_hadamard_transform()
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, -8)
sage: f.is_plateaued()
True
```

is_symmetric()
Return True if the function is symmetric, i.e. invariant under permutation of its input bits. Another way to see it is that the output depends only on the Hamming weight of the input.

EXAMPLES:

```
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction(5)
sage: B[3] = 1
sage: B.is_symmetric()
False
sage: V_B = [0, 1, 1, 0, 1, 0]
sage: for i in srange(32): B[i] = V_B[i.popcount()]
sage: B.is_symmetric()
True
```

linear_structures()
Return all linear structures of this Boolean function as a vector subspace of \(F_2^n \).

See also:

is_linear_structure(), has_linear_structure().

EXAMPLES:

```
sage: from sage.crypto.boolean_function import BooleanFunction
sage: f = BooleanFunction([0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0])
sage: LS = f.linear_structures()
sage: LS.dimension()
2
sage: LS.basis_matrix()
[1 0 0 0]
[0 0 0 1]
sage: LS.list()
[(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 1)]
```

nonlinearity()
Return the nonlinearity of the function. This is the distance to the linear functions, or the number of output ones need to change to obtain a linear function.

EXAMPLES:
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction(5)
sage: B.nonlinearity()
2
sage: B = BooleanFunction("0113077C165E76A8")

nvariables()
The number of variables of this function.

EXAMPLES:

resiliency_order()
Return the maximum value \(m \) such that the function is resilient of order \(m \).

A Boolean function is said to be resilient of order \(m \) if it is balanced and correlation immune of order \(m \).

If the function is not balanced, we return -1.

EXAMPLES:

sum_of_square_indicator()
Return the sum of square indicator of the function.

EXAMPLES:

truth_table (format='bin')
The truth table of the Boolean function.

INPUT: a string representing the desired format, can be either

- ‘bin’ (default): we return a tuple of Boolean values
- ‘int’: we return a tuple of 0 or 1 values
- ‘hex’: we return a string representing the truth_table in hexadecimal

EXAMPLES:
Walsh Hadamard Transform

Compute the Walsh Hadamard transform W of the function f.

\[W(j) = \sum_{i \in \{0,1\}^n} (-1)^{f(i) \oplus i \cdot j} \]

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: R.<x> = GF(2^3,'a')[

sage: B = BooleanFunction( x^3 )

sage: B.walsh_hadamard_transform()
```

Class `

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction(3)

sage: type(B.__iter__())
```

next

`x.next()` -> the next value, or raise StopIteration
sage.crypto.boolean_function.random_boolean_function\((n) \)
Returns a random Boolean function with \(n \) variables.

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import random_boolean_function
sage: B = random_boolean_function(9)
sage: B.nvariables()
9
sage: B.nonlinearity()
217 # 32-bit
222 # 64-bit
```

sage.crypto.boolean_function.unpickle_BooleanFunction\((bool_list) \)
Specific function to unpickle Boolean functions.

EXAMPLES:

```python
sage: from sage.crypto.boolean_function import BooleanFunction
sage: B = BooleanFunction([0,1,1,0])
sage: loads(dumps(B)) == B # indirect doctest
True
```
S-BOXES AND THEIR ALGEBRAIC REPRESENTATIONS

```python
class sage.crypto.sbox.SBox(*args, **kwargs):
    Bases: sage.structure.sage_object.SageObject

    A substitution box or S-box is one of the basic components of symmetric key cryptography. In general, an S-box takes \( m \) input bits and transforms them into \( n \) output bits. This is called an \( mxn \) S-box and is often implemented as a lookup table. These S-boxes are carefully chosen to resist linear and differential cryptanalysis [He2002].

This module implements an S-box class which allows an algebraic treatment and determine various cryptographic properties.

EXAMPLES:

We consider the S-box of the block cipher PRESENT [BKLPPRSV2007]:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2); S
(12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2)
sage: S(1)
5
```

Note that by default bits are interpreted in big endian order. This is not consistent with the rest of Sage, which has a strong bias towards little endian, but is consistent with most cryptographic literature:

```python
sage: S([0,0,0,1])
[0, 1, 0, 1]
sage: S = SBox(12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2, big_endian=False)
sage: S(1)
5
sage: S([0,0,0,1])
[1, 1, 0, 0]
```

Now we construct an SBox object for the 4-bit small scale AES S-Box (cf. sage.crypto.mq.sr):

```python
sage: sr = mq.SR(1,1,1,4, allow_zero_inversions=True)
sage: S = SBox([sr.sub_byte(e) for e in list(sr.k)])
sage: S
(6, 5, 2, 9, 4, 7, 3, 12, 14, 15, 10, 0, 8, 1, 13, 11)
```

AUTHORS:

• Rusydi H. Makarim (2016-03-31): added more functions to determine related cryptographic properties
• Yann Laigle-Chapuy (2009-07-01): improve linear and difference matrix computation
• Martin R. Albrecht (2008-03-12): initial implementation
REFERENCES:
• [He2002]
• [BKLPPRSV2007]
• [CDL2015]

\textbf{autocorrelation\_matrix}\ (*args, **kwds)

Deprecated: Use \textit{autocorrelation\_table()} instead. See trac ticket \#25708 for details.

\textbf{autocorrelation\_table()}\n
Return the autocorrelation table corresponding to this S-Box.

for an $m \times n$ S-Box $S$, its autocorrelation table entry at row $a \in \mathbb{F}_2^m$ and column $b \in \mathbb{F}_2^n$ (considering their integer representation) is defined as:

$$
\sum_{x \in \mathbb{F}_2^m} (-1)^{b \cdot S(x) \oplus b \cdot S(x \oplus a)}
$$

Equivalently, the columns $b$ of autocorrelation table correspond to the autocorrelation spectrum of component function $b \cdot S(x)$.

\textbf{EXAMPLES:}

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(7,6,0,4,2,5,1,3)
sage: S.autocorrelation_table()
[[8, 8, 8, 8, 8, 8, 8, 8],
 [8, 0, 0, 0, 0, 0, 0, -8],
 [8, 0, -8, 0, 0, 0, 0, 0],
 [8, 0, 0, 0, -8, 0, 0, 0],
 [8, -8, 0, 0, 0, 0, 0, 0],
 [8, 0, 0, 0, 0, -8, 0, 0],
 [8, 0, 0, -8, 0, 0, 0, 0],
 [8, 0, 0, 0, -8, 0, 0, 0]]
```

\textbf{boomerang\_connectivity\_matrix}\ (*args, **kwds)

Deprecated: Use \textit{boomerang\_connectivity\_table()} instead. See trac ticket \#25708 for details.

\textbf{boomerang\_connectivity\_table()}\n
Return the boomerang connectivity table (BCT) for this S-Box.

Boomerang connectivity matrix of an invertible $m \times m$ S-Box $S$ is an $2^m \times 2^m$ matrix with entry at row $\Delta_i \in \mathbb{F}_2^m$ and column $\Delta_o \in \mathbb{F}_2^m$ equal to

$$
|\{x \in \mathbb{F}_2^m | S^{-1}(S(x) \oplus \Delta_o) \oplus S^{-1}(S(x \oplus \Delta_i) \oplus \Delta_o) = \Delta_i\}|.
$$

For more results concerning boomerang connectivity matrix, see [CHPSS18]. The algorithm used here, is the one from Dunkelman, published in a preprint, see [Du2018].

\textbf{EXAMPLES:}

```python
sage: from sage.crypto.sboxes import PRESENT
sage: PRESENT.boomerang_connectivity_table()
[[16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16],
 [16, 0, 4, 0, 16, 4, 4, 4, 0, 0, 4, 4, 0, 0],
 [16, 0, 0, 6, 0, 4, 6, 0, 0, 0, 2, 0, 2, 2],
 [16, 2, 0, 6, 2, 4, 4, 2, 0, 0, 2, 2, 0, 0],
 [16, 0, 0, 0, 4, 2, 2, 0, 6, 2, 0, 6, 0, 2],
 [16, 2, 0, 0, 2, 4, 0, 0, 6, 2, 2, 4, 2, 0]]
```
boomerang_uniformity()
Return the boomerang uniformity

The boomerang uniformity is defined as the highest entry in the boomerang connectivity table, ignoring the first row and column.

EXAMPLES:

```python
sage: from sage.crypto.sboxes import AES
sage: AES.boomerang_uniformity()
6
```

cnf (xi=None, yi=None, format=None)
Return a representation of this S-Box in conjunctive normal form.

This function examines the truth tables for each output bit of the S-Box and thus has complexity $n \times 2^m$ for an $m \times n$ S-Box.

INPUT:
- `xi` - indices for the input variables (default: 1...m)
- `yi` - indices for the output variables (default: m+1 ... m+n)
- `format` - output format, see below (default: None)

FORMATS:
- `None` - return a list of tuples of integers where each tuple represents a clause, the absolute value of an integer represents a variable and the sign of an integer indicates inversion.
- `symbolic` - a string that can be parsed by the `SymbolicLogic` package.
- `dimacs` - a string in DIMACS format which is the gold standard for SAT-solver input (cf. http://www.satlib.org/).
- `dimacs_headless` - a string in DIMACS format, but without the header. This is useful for concatenation of outputs.

EXAMPLES:

We give a very small example to explain the output format:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(1,2,0,3); S
(1, 2, 0, 3)
sage: cnf = S.cnf(); cnf
([(1, 2, -3), (1, 2, 4),
 (1, -2, 3), (1, -2, -4),
 (1, 2, 4), (1, -2, -4),
 (1, -2, 3), (1, 2, -3)]
```
This output completely describes the S-Box. For instance, we can check that $S([0,1]) \rightarrow [1,0]$ satisfies every clause if the first input bit corresponds to the index 1 and the last output bit corresponds to the index 3 in the output.

We can convert this representation to the DIMACS format:

```sage
print(S.cnf(format='dimacs'))
p cnf 4 8
1 2 -3 0
1 2 4 0
1 -2 3 0
1 -2 -4 0
-1 2 -3 0
-1 2 -4 0
-1 -2 3 0
-1 -2 4 0
```

For concatenation we can strip the header:

```sage
print(S.cnf(format='dimacs_headless'))
1 2 -3 0
1 2 4 0
1 -2 3 0
1 -2 -4 0
-1 2 -3 0
-1 2 -4 0
-1 -2 3 0
-1 -2 4 0
```

This might be helpful in combination with the $x_i$ and $y_i$ parameter to assign indices manually:

```sage
print(S.cnf(xi=[10,20],yi=[30,40], format='dimacs_headless'))
10 20 -30 0
10 20 40 0
10 -20 30 0
10 -20 -40 0
-10 20 -30 0
-10 20 -40 0
-10 -20 30 0
-10 -20 40 0
```

We can also return a string which is parse-able by the `SymbolicLogic` package:

```sage
log = SymbolicLogic()
s = log.statement(S.cnf(format='symbolic'))
print(log.truthtable(s)[1:])
```
This function respects endianness of the S-Box:

```python
sage: S = SBox(1,2,0,3, big_endian=False); S
(1, 2, 0, 3)
sage: cnf = S.cnf(); cnf
[(1, 2, -4), (1, 2, 3),
 (-1, 2, 4), (-1, 2, -3),
 (1, -2, -4), (1, -2, -3),
 (-1, -2, 4), (-1, -2, 3)]
```

S-Boxes with m!=n also work:

```python
sage: o = list(range(8)) + list(range(8)) sage: shuffle(o) sage: S = SBox(o) sage: S.is_permutation() False
sage: len(S.cnf()) == 3*2^4 True
```

**component_function(b)**

Return a Boolean function corresponding to the component function \(b \cdot S(x)\).

If \(S\) is an \(m \times n\) S-Box, then \(b \in \mathbb{F}_2^n\) and \(\cdot\) denotes dot product of two vectors.

**INPUT:**

- \(b\) – either an integer or a list/tuple/vector of \(\mathbb{F}_2\) elements of length \(self.output_size()\)

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([7,6,0,4,2,5,1,3])
sage: f3 = S.component_function(3)
sage: f3.algebraic_normal_form() x0*x1 + x0*x2 + x0 + x2
sage: f5 = S.component_function([1, 0, 1])
sage: f5.algebraic_normal_form() x0*x2 + x0 + x1*x2
```

**derivative(u)**

Return the derivative in direction of \(u\)

**INPUT:**

- \(u\) – either an integer or a tuple/list of \(\mathbb{F}_2\) elements of length equal to \(m\)

The derivative of \(F\) in direction of \(u\) is defined as \(x \mapsto F(x) + F(x + u)\).

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: s = SBox(0,1,2,3)
```
```python
sage: s.derivative(1)
(1, 1, 1, 1)
sage: u = [1,0]
sage: s.derivative(u)
(1, 1, 1, 1)
sage: v = vector(GF(2), [1,0])
```
```python
sage: s.derivative(v)
(1, 1, 1, 1)
sage: s.derivative(4)
Traceback (most recent call last):
 ...
IndexError: list index out of range
sage: from sage.crypto.sboxes import PRESENT
sage: PRESENT.derivative(1).max_degree() < PRESENT.max_degree()
```
```python
True
difference_distribution_matrix(*args, **kwds)
 Deprecated: Use difference_distribution_table() instead. See trac ticket #25708 for details.
difference_distribution_table()
 Return difference distribution table (DDT) \(A\) for this S-box.
 The rows of \(A\) encode the differences \(\text{Delta} I\) of the input and the columns encode the difference \(\text{Delta} O\) for the output. The bits are ordered according to the endianess of this S-box. The value at \(A[\text{Delta} I, \text{Delta} O]\) encodes how often \(\text{Delta} O\) is the actual output difference given \(\text{Delta} I\) as input difference.
 See [He2002] for an introduction to differential cryptanalysis.
 EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2])
sage: S.difference_distribution_table()
[8 0 0 0 0 0 0 0]
[0 2 0 2 0 0 2]
[0 0 2 2 0 2 2]
[0 2 0 2 2 0 2]
[0 2 0 2 2 0 2]
[0 0 2 2 2 2]
[0 2 0 2 2 2]
```
```python
differential_branch_number()
   Return differential branch number of this S-Box.
   The differential branch number of an S-Box \(S\) is defined as
   \[
   \min_{v, w \neq v} \{ \text{wt}(v \oplus w) + \text{wt}(S(v) \oplus S(w)) \}
   \]
   where \(\text{wt}(x)\) denotes the Hamming weight of vector \(x\).
   EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2])
sage: S.differential_branch_number()
3
```
fixed_points()

Return a list of all fixed points of this S-Box.

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([0,1,3,6,7,4,5,2])
sage: S.fixed_points()
[0, 1]
```

from_bits(x, n=None)

Return integer for bitstring x of length n.

INPUT:

- x - a bitstring
- n - bit length (optional)

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([7,6,0,4,2,5,1,3])
sage: S.from_bits([1,1,0])
6
sage: S(S.from_bits([1,1,0]))
1
sage: S.from_bits(S([1,1,0]))
1
```

has_linear_structure()

Return True if there exists a nonzero component function of this S-Box that has a linear structure.

See also:

is_linear_structure(), linear_structures().

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2])
sage: S.has_linear_structure()
True
```

input_size()

Return the input size of this S-Box.

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([0, 3, 2, 1, 1, 3, 2, 0])
sage: S.input_size()
3
```

interpolation_polynomial(k=None)

Return a univariate polynomial over an extension field representing this S-box.

If m is the input length of this S-box then the extension field is of degree m.

If the output length does not match the input length then a TypeError is raised.

INPUT:
• $k$ - an instance of $\mathbb{F}_{2^m}$ (default: None)

**EXAMPLES:**

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([7,6,0,4,2,5,1,3])
sage: f = S.interpolation_polynomial()
sage: f
x^6 + a*x^5 + (a + 1)*x^4 + (a^2 + a + 1)*x^3
+ (a^2 + 1)*x^2 + (a + 1)*x + a^2 + a + 1
sage: a = f.base_ring().gen()
sage: f(0), S(0)
(a^2 + a + 1, 7)
sage: f(a^2 + 1), S(5)
(a^2 + 1, 5)
```

**inverse()**

Return the inverse of this S-Box.

Note that the S-Box must be invertible, otherwise it will raise a `TypeError`.

**EXAMPLES:**

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([0, 1, 3, 6, 7, 4, 5, 2])
sage: Sinv = S.inverse()
sage: [Sinv(S(i)) for i in range(8)]
[0, 1, 2, 3, 4, 5, 6, 7]
```

**is_almost_bent()**

Return `True` if this S-Box is an almost bent (AB) function.

An $m \times m$ S-Box $S$, for $m$ odd, is called almost bent if its nonlinearity is equal to $2^{m-1} - 2^{(m-1)/2}$.

**EXAMPLES:**

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([0,1,3,6,7,4,5,2])
sage: S.is_almost_bent()
True
```

**is_apn()**

Return `True` if this S-Box is an almost perfect nonlinear (APN) function.

An $m \times m$ S-Box $S$ is called almost perfect nonlinear if for every nonzero $\alpha \in \mathbb{F}_{2^m}^*$ and every $\beta \in \mathbb{F}_{2^m}$, the equation $S(x) \oplus S(x \oplus \alpha) = \beta$ has 0 or 2 solutions. Equivalently, the differential uniformity of $S$ is equal to 2.

**EXAMPLES:**

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([0,1,3,6,7,4,5,2])
sage: S.is_apn()
True
sage: S.differential_uniformity()
2
```
**is_balanced()**

Return `True` if this S-Box is balanced.

An S-Box is balanced if all its component functions are balanced.

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2])
sage: S.is_balanced()
True
```

**is_bent()**

Return `True` if this S-Box is bent, i.e. its nonlinearity is equal to $2^{m-1} - 2^{m/2-1}$ where $m$ is the input size of the S-Box.

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: R.<x> = GF(2**2, 'a')[]
sage: base = R.base_ring()
sage: a = base.gen()
sage: G = a * x^2 + 1
sage: S = SBox([G(x * y**14) for x in sorted(base) for y in sorted(base)])
sage: S.is_bent()
True
sage: S.nonlinearity()
6
```

**is_involution()**

Return `True` if this S-Box is an involution, i.e. the inverse S-Box is equal itself.

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([x**254 for x in sorted(GF(2**8))])
sage: S.is_involution()
True
```

**is_linear_structure(a, b)**

Return `True` if $a$ is a linear structure of the component function $b \cdot S(x)$ where $S$ is this $m \times n$ S-Box.

**INPUT:**
• a – either an integer or a tuple of $\mathbb{F}_2$ elements of length equal to the input size of SBox
• b – either an integer or a tuple of $\mathbb{F}_2$ elements of length equal to the output size of SBox

See also:

linear_structures(), has_linear_structure().

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2)
```

```plaintext
sage: S.component_function(1).autocorrelation()
(16, -16, 0, 0, 0, 0, 0, -16, 16, 0, 0, 0, 0, 0, 0)
```

```python
sage: S.is_linear_structure(1, 1)
True
sage: S.is_linear_structure([1, 0, 0, 1], [0, 0, 0, 1])
True
sage: S.is_linear_structure([0, 1, 1, 1], 1)
False
```

`is_monomial_function()`

Return True if this S-Box is a monomial/power function.

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([0,1,3,6,7,4,5,2])
```

```plaintext
sage: S.is_monomial_function()
False
sage: S.interpolation_polynomial()
(a + 1)*x^6 + (a^2 + a + 1)*x^5 + (a^2 + 1)*x^3
```

```python
sage: S = SBox(0,1,5,6,7,2,3,4)
```

```plaintext
sage: S.is_monomial_function()
True
sage: S.interpolation_polynomial()
x^6
```

`is_permutation()`

Return True if this S-Box is a permutation.

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(7,6,0,4,2,5,1,3)
```

```plaintext
sage: S.is_permutation()
True
sage: S = SBox(3,2,0,0,2,1,1,3)
```

```plaintext
sage: S.is_permutation()
False
```

`is_plateaued()`

Return True if this S-Box is plateaued, i.e. for all nonzero $b \in \mathbb{F}_2^n$ the Boolean function $b \cdot S(x)$ is plateaued.

EXAMPLES:
sage: from sage.crypto.sbox import SBox
sage: S = SBox(0, 3, 1, 2, 4, 6, 7, 5)
sage: S.is_plateaued()
True

linear_approximation_matrix(*args, **kwds)
Deprecated: Use linear_approximation_table() instead. See trac ticket #25708 for details.

linear_approximation_table(scale='absolute_bias')
Return linear approximation table (LAT) $A$ for this S-box.

The entry $A[\alpha, \beta]$ corresponds to the probability $Pr[\alpha \cdot x = \beta \cdot S(x)]$, where $S$ is this S-box mapping $n$-bit inputs to $m$-bit outputs. There are three typical notations for this probability used in the literature:

- $Pr[\alpha \cdot x = \beta \cdot S(x)] = 1/2 + e(\alpha, \beta)$, where $e(\alpha, \beta)$ is called the bias,
- $2 \cdot Pr[\alpha \cdot x = \beta \cdot S(x)] = 1 + c(\alpha, \beta)$, where $c(\alpha, \beta) = 2 \cdot e(\alpha, \beta)$ is the correlation, and
- $2^{(m+1)} \cdot Pr[\alpha \cdot x = \beta \cdot S(x)] = 2^m + \hat{S}(\alpha, \beta)$, where $\hat{S}(\alpha, \beta)$ is the Fourier coefficient of $S$.

See [He2002] for an introduction to linear cryptanalysis.

INPUT:

- scale - string to choose the scaling for the LAT, one of
  - “bias”: elements are $e(\alpha, \beta)$
  - “correlation”: elements are $c(\alpha, \beta)$
  - “absolute_bias”: elements are $2^m \cdot e(\alpha, \beta)$ (default)
  - “fourier_coefficient”: elements are $\hat{S}(\alpha, \beta)$

EXAMPLES:

sage: from sage.crypto.sbox import SBox
sage: S = SBox(7,6,0,4,2,5,1,3)
sage: lat_abs_bias = S.linear_approximation_table()
sage: lat_abs_bias
[ 4 0 0 0 0 0 0 0]
[ 0 0 0 2 2 2 -2]
[ 0 0 -2 -2 -2 2 0 0]
[ 0 0 -2 2 0 0 -2 -2]
[ 0 2 0 2 -2 0 2 0]
[ 0 -2 0 2 0 2 0 2]
[ 0 -2 -2 0 0 -2 2 0]
[ 0 -2 2 0 -2 0 0 -2]
sage: lat_abs_bias/(1<<S.m) == S.linear_approximation_table(scale="bias")
True
sage: lat_abs_bias/(1<<(S.m-1)) == S.linear_approximation_table(scale="correlation")
True
sage: lat_abs_bias*2 == S.linear_approximation_table(scale="fourier_coefficient")
True

According to this table the first bit of the input is equal to the third bit of the output 6 out of 8 times:
linear_branch_number()
Return linear branch number of this S-Box.

The linear branch number of an S-Box $S$ is defined as

$$\min_{\alpha \neq 0, \beta, LAM(\alpha, \beta) \neq 0} \{\text{wt}(\alpha) + \text{wt}(\beta)\}$$

where $LAM(\alpha, \beta)$ is the entry at row $\alpha$ and column $\beta$ of linear approximation matrix correspond to this S-Box. The $\text{wt}(x)$ denotes the Hamming weight of $x$.

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2])
sage: S.linear_branch_number()
2
```

linear_structures()
Return a list of 3-valued tuple $(b, \alpha, c)$ such that $\alpha$ is a $c$-linear structure of the component function $b \cdot S(x)$.

A Boolean function $f : \mathbb{F}_2^m \to \mathbb{F}_2$ is said to have a $c$-linear structure if there exists a nonzero $\alpha$ such that $f(x) \oplus f(x \oplus \alpha)$ is a constant function $c$.

An $m \times n$ S-Box $S$ has a linear structure if there exists a component function $b \cdot S(x)$ that has a linear structure.

The three valued tuple $(b, \alpha, c)$ shows that $\alpha$ is a $c$-linear structure of the component function $b \cdot S(x)$. This implies that for all output differences $\beta$ of the S-Box correspond to input difference $\alpha$, we have $b \cdot \beta = c$.

See also: $is_linear_structure()$, $has_linear_structure()$.

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([0,1,3,6,7,4,5,2])
sage: S.linear_structures()
[(1, 1, 1), (2, 2, 1), (3, 3, 1), (4, 4, 1), (5, 5, 1), (6, 6, 1), (7, 7, 1)]
```

linearity()
Return the linearity of this S-Box.

EXAMPLES:

```python
sage: from sage.crypto.sbox import SBox
sage: S = mq.SR(1, 4, 4, 8).sbox()
sage: S.linearity()
32
```
**max_degree()**

Return the maximal algebraic degree of all its component functions.

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox([12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2])
```

```python
sage: S.max_degree()
3
```

**maximal_difference_probability()**

Return the difference probability of the difference with the highest probability in the range between 0.0 and 1.0 indicating 0% or 100% respectively.

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(7, 6, 0, 4, 2, 5, 1, 3)
```

```python
sage: S.maximal_difference_probability()
0.25
```

**maximal_difference_probability_absolute()**

Return the difference probability of the difference with the highest probability in absolute terms, i.e. how often it occurs in total.

Equivalently, this is equal to the differential uniformity of this S-Box.

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(7, 6, 0, 4, 2, 5, 1, 3)
```

```python
sage: S.maximal_difference_probability_absolute()
2
```

**Note:** This code is mainly called internally.

**maximal_linear_bias_absolute()**

Return maximal linear bias, i.e. how often the linear approximation with the highest bias is true or false minus $2^{n-1}$.

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(7, 6, 0, 4, 2, 5, 1, 3)
```

```python
sage: S.maximal_linear_bias_absolute()
2
```

**maximal_linear_bias_relative()**

Return maximal bias of all linear approximations of this S-box.

**EXAMPLES:**

```python
sage: from sage.crypto.sbox import SBox
sage: S = SBox(7, 6, 0, 4, 2, 5, 1, 3)
```

```python
sage: S.maximal_linear_bias_relative()
0.25
```
min_degree()
Return the minimal algebraic degree of all its component functions.

EXAMPLES:

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2])
sage: S.min_degree()
sage: 2
```

nonlinearity()
Return the nonlinearity of this S-Box.
The nonlinearity of an S-Box is defined as the minimum nonlinearity of all its component functions.

EXAMPLES:

```
sage: from sage.crypto.sbox import SBox
sage: S = mq.SR(1,4,4,8).sbox()
sage: S.nonlinearity()
sage: 112
```

output_size()
Return the output size of this S-Box.

EXAMPLES:

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([0, 3, 2, 1, 1, 3, 2, 0])
sage: S.output_size()
sage: 2
```

degrees (X=None, Y=None, degree=2, groebner=False)
Return a list of polynomials satisfying this S-box.

First, a simple linear fitting is performed for the given degree (cf. for example [BC2003]). If groebner=True a Groebner basis is also computed for the result of that process.

INPUT:

- X - input variables
- Y - output variables
- degree - integer > 0 (default: 2)
- groebner - calculate a reduced Groebner basis of the spanning polynomials to obtain more polynomials (default: False)

EXAMPLES:

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([7, 6, 0, 4, 2, 5, 1, 3])
sage: P = S.ring()
sage: S.polynomials()
```

By default, this method returns an indirect representation:

```
sage: S.polynomials()
[x0*x2 + x1 + y1 + 1,
x0*x1 + x1 + x2 + y0 + y1 + y2 + 1,
x0*y1 + x0 + x2 + y0 + y2,
```
We can get a direct representation by computing a lexicographical Groebner basis with respect to the right variable ordering, i.e. a variable ordering where the output bits are greater than the input bits:

\[
\begin{align*}
S = \{ &x_0*y_0 + x_0+y_2 + x_1 + x_2 + y_0 + y_1 + y_2 + 1, \\
x_1*x_2 + x_0 + x_1 + x_2 + y_2 + 1, \\
x_0*y_0 + x_1*y_0 + x_0 + x_2 + y_1 + y_2, \\
x_0*y_0 + x_1*y_1 + x_1 + y_1 + 1, \\
x_1*y_2 + x_1 + x_2 + y_0 + y_1 + y_2 + 1, \\
x_0*y_0 + x_2*y_0 + x_1 + x_2 + y_1 + 1, \\
x_2*y_1 + x_0 + y_1 + y_2, \\
x_2*y_2 + x_1 + y_1 + 1, \\
y_0*y_1 + x_0 + x_2 + y_0 + y_1 + y_2, \\
y_0*y_2 + x_1 + x_2 + y_0 + y_1 + 1, \\
y_1*y_2 + x_2 + y_0\}
\end{align*}
\]

ring()
Create, return and cache a polynomial ring for S-box polynomials.

EXAMPLES:

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([7,6,0,4,2,5,1,3])
sage: S.ring()
Multivariate Polynomial Ring in x0, x1, x2, y0, y1, y2 over Finite Field of size 2
```

solutions (X=None, Y=None)
Return a dictionary of solutions to this S-box.

INPUT:
- X - input variables (default: None)
- Y - output variables (default: None)

EXAMPLES:

```
sage: from sage.crypto.sbox import SBox
sage: S = SBox([7,6,0,4,2,5,1,3])
sage: F = S.polynomials()
sage: any(f.subs(_s) for f in F for _s in S.solutions())
False
```

to_bits (x, n=None)
Return bitstring of length n for integer x. The returned bitstring is guaranteed to have length n.

INPUT:
- x - an integer
- n - bit length (optional)

EXAMPLES:
from sage.crypto.sbox import SBox
s = SBox(7, 6, 0, 4, 2, 5, 1, 3)

s.to_bits(6)
[1, 1, 0]

s.to_bits(S(6))
[0, 0, 1]

S(S.to_bits(6))
[0, 0, 1]

sage.crypto.sbox.feistel_construction(*args)
Return an S-Box constructed by Feistel structure using smaller S-Boxes in args. The number of round in the construction is equal to the number of S-Boxes provided as input. For more results concerning the differential uniformity and the nonlinearity of S-Boxes constructed by Feistel structures see [CDL2015].

INPUT:
  • args - a finite iterable SBox objects

EXAMPLES:
Suppose we construct an 8 × 8 S-Box with 3-round Feistel construction from the S-Box of PRESENT:

s = SBox(12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2)
S = feistel_construction(s, s, s)

The properties of the constructed S-Box can be easily examined:

S.nonlinearity()
96
S.differential_branch_number()
2
S.linear_branch_number()
2

sage.crypto.sbox.misty_construction(*args)
Return an S-Box constructed by MISTY structure using smaller S-Boxes in args. The number of round in the construction is equal to the number of S-Boxes provided as input. For further result related to the nonlinearity and differential uniformity of the constructed S-Box one may consult [CDL2015].

INPUT:
  • args - a finite iterable SBox objects

EXAMPLES:
We construct an 8 × 8 S-Box using 3-round MISTY structure with the following 4 × 4 S-Boxes S1, S2, S3 (see Example 2 in [CDL2015]):

S1 = SBox([0x4, 0x0, 0x1, 0xF, 0x2, 0xB, 0x6, 0x7, 0x3, 0x9, 0xA, 0x5, 0xC, 0xD, 0xE, 0x8])
S2 = SBox([0x0, 0x0, 0x0, 0x1, 0x0, 0xA, 0x8, 0x3, 0x0, 0x8, 0xC, 0xE, 0xD, 0x2, 0xB, 0x4, 0x6])
S3 = SBox([0x0, 0x7, 0x8, 0xB, 0x4, 0x1, 0x8, 0xF, 0x1, 0xB, 0x0C, 0xE, 0xD, 0x0, 0x5, 0x5])
S = misty_construction(S1, S2, S3)
S.differential_uniformity()
8

sage: S.linearity()
64
S-BOXES USED IN CRYPTOGRAPHIC SCHEMES

This module provides the following SBoxes:

**constructions**
- BrackenLeander ([BraLea2008])
- CarletTangTangLiao ([CTTL2014])
- Gold ([Gol1968])
- Kasami ([Kas1971])
- Niho ([Dob1999a])
- Welch ([Dob1999b])

**8 bit to 8 bit**
- AES ([DR2002])
- Anubis ([BR2000a])
- ARIA_s2 ([KKPSSSYLLCHH2004])
- BelT ([Bel2011])
- Camellia ([AIKMMNT2001])
- CMEA ([WSK1997])
- Chiasmus ([STW2013])
- CLEFIA_S0, CLEFIA_S1 ([SSAMI2007])
- Crypton_0_5 ([Lim])
- Crypton_1_0_S0, . . . , Crypton_1_0_S3 ([Lim2001])
- CS_cipher ([SV2000])
- CSA ([WW2005])
- CSS ([BD2004])
- DBlock ([WZY2015])
- E2 ([KMAUTOM2000])
- Enocoro ([WFYTP2008])
- Fantomas ([GLSV2014])
- FLY ([KG2016])
• Fox ([VJ2004])
• Iceberg ([SPRQL2004])
• Iraqi (Wikipedia article Iraqi_block_cipher)
• iScream ([GLSVJGK2014])
• Kalyna_pi0, ..., Kalyna_pi3 ([OGKRKGBDDP2015])
• Khazad ([BR2000b])
• Kuznyechik (Kuznechik, Streebog, Stribog) ([Fed2015])
• MD2 ([Kal1992])
• newDES ([Sco1985])
• Picaro ([PRC2012])
• Safer ([Mas1994])
• Scream ([CDL2015],[GLSVJGK2014])
• SEED_S0, SEED_S1 ([LLYCL2005])
• SKINNY_8 ([BJKLMPSSS2016])
• Skipjack ([U.S1998])
• SNOW_3G_sq ([ETS2006a])
• SMS4 ([Ltd06])
• Turing ([RH2003b])
• Twofish_p0, Twofish_p1 ([SKWWHF1998])
• Whirlpool ([BR2000c])
• Zorro ([GGNS2013])
• ZUC_S0, ZUC_S1 ([ETS2011])

6 bit to 6 bit
• Fides_6 ([BBKMW2013])
• APN_6 ([BDMW2010])
• SC2000_6 ([SYTYT2002])

5 bit to 5 bit
• Ascon ([DEMS2016])
• Fides_5 ([BBKMW2013])
• SC2000_5 ([SYTYT2002])

4 bit to 4 bit
• DES_S1_1, ..., DES_S1_4, ..., DES_S8_4 ([U.S1999])
• Lucifer_S0, Lucifer_S1 ([Sor1984])
• GOST_1, ..., GOST_8 (http://www.cypherpunks.ru/pygost/)
• GOST2_1, GOST2_2 (http://www.cypherpunks.ru/pygost/)
• Magma_1, ..., Magma_8 ([Fed2015])
• GOST_IETF_1, . . . , GOST_IETF_8 (http://www.cypherpunks.ru/pygost/)
• Hummingbird_2_S1, . . . , Hummingbird_2_S4 ([ESSS2011])
• LBlock_0, . . . , LBlock_9 ([WZ2011])
• SERPENT_S0, . . . , SERPENT_S7 ([BAK1998])
• KLEIN ([GNL2011])
• MIBS ([ISSK2009])
• Midori_Sb0 (MANTIS), Midori_Sb1 ([BBISHAR2015])
• Noekeon ([DPVAR2000])
• Piccolo ([SIHMAS2011])
• Panda ([YWHWXSW2014])
• PRESENT ([BKLPSSV2007])
• GIFT ([BPPSST2017])
• Pride ([ADKLPY2014])
• PRINCE ([BCGKKKLNPRTY2012])
• Prost ([KLLRSY2014])
• Qarma_sigma0, Qarma_sigma1, Qarma_sigma2 ([Ava2017])
• REC_0 (earlier version of [ZBLRYV2015])
• Rectangle ([ZBLRYV2015])
• SC2000_4 ([SYYTIYTT2002])
• SKINNY_4 ([BJKLMPSSS2016])
• TWINE ([JMMK2013])
• Luffa_v1 ([DCSW2008])
• Luffa ([DCSW2008])
• BLAKE_1, . . . , BLAKE_9 ([AHMP2008])
• JH_S0, JH_S1 ([Wu2009])
• SMASH_256_S1, . . . , SMASH_256_S3 ([Knu2005])
• Anubis_S0, Anubis_S1 ([BR2000a])
• CLEFIA_SS0, . . . , CLEFIA_SS3 ([ISSAMI2007])
• Enocoro_S4 ([WFYTP2008])
• Iceberg_S0, Iceberg_S1 ([SPRQL2004])
• Khazad_P, Khazad_Q ([BR2000b])
• Whirlpool_E, Whirlpool_R ([BR2000c])
• CS_cipher_F, CS_cipher_G ([SV2000])
• Fox_S1, . . . , Fox_S3 ([VVJ2004])
• Twofish_Q0_T0, . . . , Twofish_Q0_T3, Twofish_Q1_T0, . . . , Twofish_Q1_T3 ([SKWWHF1998])
• Kuznyechik_nu0, Kuznyechik_nu1, Kuznyechik_sigma, Kuznyechik_phi ([BPU2016])

- UDCIKMP11 ([UDCIKMP2011])
- Optimal_S0, ..., Optimal_S15 ([LP2007])
- Serpent_type_S0, ..., Serpent_type_S19 ([LP2007])
- Golden_S0, ..., Golden_S3 ([Saa2011])
- representatives for all 302 affine equivalence classes ([dCa2007])

3 bit to 3 bit
- SEA ([SPGQ2006])
- PRINTcipher ([KLPR2010])

Additionally this modules offers a dictionary \texttt{sboxes} of all implemented above S-boxes for the purpose of easy iteration over all available S-boxes.

EXAMPLES:

We can print the S-Boxes with differential uniformity 2:

```python
sage: from sage.crypto.sboxes import sboxes
sage: sorted(name for name, s in sboxes.items() if s.differential_uniformity() == 2)
['APN_6', 'Fides_5', 'Fides_6', 'PRINTcipher', 'SC2000_5', 'SEA']
```

AUTHOR:
- Leo Perrin: initial collection of sboxes
- Friedrich Wiemer (2017-05-12): refactored list for inclusion in SAGE

\texttt{sage.crypto.sboxes.bracken_leander}(n)

Return the Bracken-Leander construction.

For \( n = 4^k \) and odd \( k \), the construction is \( x \mapsto x^{2^k + 2^k + 1} \) over \( \mathbb{F}_{2^n} \).

INPUT:
- \( n \) – size of the S-Box

EXAMPLES:

```python
sage: from sage.crypto.sboxes import bracken_leander
sage: sbox = bracken_leander(12); [sbox(i) for i in range(8)]
[0, 1, 2742, 4035, 1264, 408, 1473, 1327]
```

\texttt{sage.crypto.sboxes.carlet_tang_tang_liao}(n, c=None, bf=None)

Return the Carlet-Tang-Tang-Liao construction.

See [CTTL2014] for its definition.

INPUT:
- \( n \) – integer, the bit length of inputs and outputs, has to be even and \( \geq 6 \)
- \( c \) – element of \( \mathbb{F}_{2^n-1} \) used in the construction (default: random element)
- \( f \) – Function from \( \mathbb{F}_{2^n} \) to \( \mathbb{F}_2 \) or BooleanFunction on \( n - 1 \) bits (default: \( x \mapsto 1/(x+1) \). trace())

EXAMPLES:
sage: from sage.crypto.sboxes import carlet_tang_tang_liao as cttl
sage: cttl(6).differential_uniformity()
4

sage.crypto.sboxes.gold(n, i)
Return the Gold function defined by \( x \mapsto x^{i+1} \) over \( \mathbb{F}_{2^n} \).

INPUT:

\begin{itemize}
  \item n – size of the S-Box
  \item i – a positive integer
\end{itemize}

EXAMPLES:

sage: from sage.crypto.sboxes import gold
sage: gold(3, 1) # (0, 1, 3, 4, 5, 6, 7, 2)
sage: gold(3, 1).differential_uniformity()
2
sage: gold(4, 2) # (0, 1, 6, 6, 7, 7, 7, 6, 1, 7, 1, 6, 1, 6, 7, 1)

sage.crypto.sboxes.kasami(n, i)
Return the Kasami function defined by \( x \mapsto x^{2^i \cdot 2^i+1} \) over \( \mathbb{F}_{2^n} \).

INPUT:

\begin{itemize}
  \item n – size of the S-Box
  \item i – a positive integer
\end{itemize}

EXAMPLES:

sage: from sage.crypto.sboxes import kasami
sage: kasami(3, 1) # (0, 1, 3, 4, 5, 6, 7, 2)
sage: from sage.crypto.sboxes import gold
sage: kasami(3, 1) == gold(3, 1)
True
sage: kasami(4, 2) # (0, 1, 13, 11, 14, 9, 6, 7, 10, 4, 15, 2, 8, 3, 5, 12)
sage: kasami(4, 2) != gold(4, 2)
True

sage.crypto.sboxes.monomial_function(n, e)
Return an S-Box as a function \( x^e \) defined over \( \mathbb{F}_{2^n} \).

INPUT:

\begin{itemize}
  \item n – size of the S-Box (i.e. the degree of the finite field extension)
  \item e – exponent of the monomial function
\end{itemize}

EXAMPLES:

sage: from sage.crypto.sboxes import monomial_function
sage: S = monomial_function(7, 3)
sage: S.differential_uniformity()
2
sage: S.input_size()
sage.crypto.sboxes.niho(n)

Return the Niho function over $\mathbb{F}_{2^n}$.

It is defined by $x \mapsto x^{2^t + 2^s - 1}$ with $s = t/2$ if $t$ is even or $s = (3t + 1)/2$ if $t$ is odd.

INPUT:

- $n$ – size of the S-Box

EXAMPLES:

```
sage: from sage.crypto.sboxes import niho
sage: niho(3)
(0, 1, 7, 2, 3, 4, 5, 6)
sage: niho(3).differential_uniformity()
2
```

sage.crypto.sboxes.welch(n)

Return the Welch function defined by $x \mapsto x^{2^{(n-1)/2}+3}$ over $\mathbb{F}_{2^n}$.

INPUT:

- $n$ – size of the S-Box

EXAMPLES:

```
sage: from sage.crypto.sboxes import welch
sage: welch(3)
(0, 1, 7, 2, 3, 4, 5, 6)
sage: welch(3).differential_uniformity()
2
```

sage.crypto.sboxes.welch(n)

Return the Welch function defined by $x \mapsto x^{2^{(n-1)/2}+3}$ over $\mathbb{F}_{2^n}$.

INPUT:

- $n$ – size of the S-Box

EXAMPLES:

```
sage: from sage.crypto.sboxes import welch
sage: welch(3)
(0, 1, 7, 2, 3, 4, 5, 6)
sage: welch(3).differential_uniformity()
2
```
ABSTRACT BASE CLASS FOR GENERATORS OF POLYNOMIAL SYSTEMS.

AUTHOR: Martin Albrecht <malb@informatik.uni-bremen.de>

class sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator
    Bases: sage.structure.sage_object.SageObject

Abstract base class for generators of polynomial systems.

block_order()
    Return a block term ordering for the equation systems generated by self.

EXAMPLES:

    sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator
    sage: msg = MPolynomialSystemGenerator()
    sage: msg.block_order()
    Traceback (most recent call last):
    ... 
    NotImplementedError

polynomial_system(P=None, K=None)
    Return a tuple F,s for plaintext P and key K where F is an polynomial system and s a dictionary which maps key variables to their solutions.

    INPUT: P – plaintext (vector, list) K – key (vector, list)

    EXAMPLES:

    sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator
    sage: msg = MPolynomialSystemGenerator()
    sage: msg.polynomial_system()
    Traceback (most recent call last):
    ... 
    NotImplementedError

random_element()
    Return random element. Usually this is a list of elements in the base field of length ‘blocksize’.

    EXAMPLES:

    sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator
    sage: msg = MPolynomialSystemGenerator()
sage: msg.random_element()
Traceback (most recent call last):
...  
NotImplementedError

ring()

Return the ring in which the system is defined.

EXAMPLES:

sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator
sage: msg = MPolynomialSystemGenerator()
Traceback (most recent call last):
...  
NotImplementedError

sbox()

Return SBox object for self.

EXAMPLES:

sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator
sage: msg = MPolynomialSystemGenerator()
Traceback (most recent call last):
...  
AttributeError: 'sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator' object has no attribute '_sbox'

varformatstr(name)

Return format string for a given name ‘name’ which is understood by print et al.

Such a format string is used to construct variable names. Typically those format strings are somewhat like ‘name%02d%02d’ such that rounds and offset in a block can be encoded.

INPUT: name – string

EXAMPLES:

sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator
sage: msg = MPolynomialSystemGenerator()
Traceback (most recent call last):
...  
NotImplementedError

vars(name, round)

Return a list of variables given a name ‘name’ and an index ‘round’.

INPUT: name – string round – integer index

EXAMPLES:

Chapter 15. Abstract base class for generators of polynomial systems.
```python
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator
sage: msg = MPolynomialSystemGenerator()
Traceback (most recent call last):
...:
NotImplementedError
```

```python
varstrs(name, round)
```

Return a list of variable names given a name `name` and an index `round`.

This function is typically used by `self._vars`.

**INPUT:** name – string round – integer index

**EXAMPLES:**

```python
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator
sage: msg = MPolynomialSystemGenerator()
Traceback (most recent call last):
...:
NotImplementedError
```
SMALL SCALE VARIANTS OF THE AES (SR) POLYNOMIAL SYSTEM GENERATOR

Sage supports polynomial system generation for small scale (and full scale) AES variants over $F_2$ and $F_2^e$. Also, Sage supports both the specification of SR as given in the papers [CMR2005] and [CMR2006] and a variant of SR* which is equivalent to AES.

SR is a family of parameterizable variants of the AES suitable as a framework for comparing different cryptanalytic techniques that can be brought to bear on the AES. It is different from Mini-AES, whose purpose is to help beginners understand the basic structure and working of the full AES.

AUTHORS:
- Martin Albrecht (2007-09): initial version
- Niles Johnson (2010-08): (trac ticket #3893)

EXAMPLES:
We construct SR(1, 1, 1, 4) and study its properties.

```
sage: sr = mq.SR(1, 1, 1, 4)
```

$n$ is the number of rounds, $r$ the number of rows in the state array, $c$ the number of columns in the state array, and $e$ the degree of the underlying field.

```
sage: sr.n, sr.r, sr.c, sr.e
(1, 1, 1, 4)
```

By default variables are ordered reverse to as they appear, e.g.:

```
sage: print(sr.R.repr_long())
Polynomial Ring
 Base Ring : Finite Field in a of size 2^4
 Size : 20 Variables
 Block 0 : Ordering : deglex
 Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101,
 → w102, w103, s000, s001, s002, s003, k000, k001, k002, k003
```

However, this can be prevented by passing in reverse_variables=False to the constructor.

For SR(1, 1, 1, 4) the ShiftRows matrix isn’t that interesting:

```
sage: sr.ShiftRows
[1 0 0 0]
[0 1 0 0]
```

(continues on next page)
Also, the MixColumns matrix is the identity matrix:

```
sage: sr.MixColumns
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
```

Lin, however, is not the identity matrix:

```
sage: sr.Lin
[a^2 + 1 1 a^3 + a^2 a^2 + 1]
[a a 1 a^3 + a^2 + a + 1]
[a^3 + a a^2 a^2 1]
[1 a^3 a + 1 a + 1]
```

M and $M^{\star}$ are identical for SR(1, 1, 1, 4):

```
sage: sr.M
[a^2 + 1 1 a^3 + a^2 a^2 + 1]
[a a 1 a^3 + a^2 + a + 1]
[a^3 + a a^2 a^2 1]
[1 a^3 a + 1 a + 1]
```

```
sage: sr.Mstar
[a^2 + 1 1 a^3 + a^2 a^2 + 1]
[a a 1 a^3 + a^2 + a + 1]
[a^3 + a a^2 a^2 1]
[1 a^3 a + 1 a + 1]
```

However, for larger instances of SR $M^{\star}$ is not equal to M:

```
sage: sr = mq.SR(10,4,4,8)
True
```

We can compute a Groebner basis for the ideals spanned by SR instances to recover all solutions to the system:

```
sage: sr = mq.SR(1,1,1,4, gf2=True, polybori=True)
sage: K = sr.base_ring()
sage: a = K.gen()
sage: K = [a]
sage: P = [1]
sage: F,s = sr.polynomial_system(P=P, K=K)
sage: F.groebner_basis()
[k000, k001, k002 + 1, k003, x000 + 1, x001 + k003 + 1, x002 + k003 + 1, x003 + k003, x000 + 1, x001 + k003, x002 + k003, s000 + 1, s001 + k003, s002 + k003, s003 + k003 + 1, k000, k001, k002 + 1]
```

Note that the order of $k_{000}, k_{001}, k_{002}$ and $k_{003}$ is little endian. Thus the result $k_{002} + 1$, $k_{001}$, $k_{000}$ indicates that the key is either $a$ or $a + 1$. We can verify that both keys encrypt $P$ to the same ciphertext:
All solutions can easily be recovered using the variety function for ideals:

```python
sage: I = F.ideal()
sage: for V in I.variety():
 : for k, v in sorted(V.items):
 : print("{}").format(k, v))
 : print("\n")
```

We can also verify the correctness of the variety by evaluating all ideal generators on all points.
....: for f in I.gens():
....: if f.subs(V) != 0:
....: print("epic fail")
Note that the S-Box object for SR can be constructed with a call to `sr.sbox()`:

```python
sage: sr = mq.SR(1,1,1,4, gf2=True, polybori=True)
sage: S = sr.sbox()
```

For example, we can now study the difference distribution table of `S`:

```python
sage: S.difference_distribution_table()
```

or use `S` to find alternative polynomial representations for the S-Box:

```python
sage: S.polynomials(degree=3)
```

(continues on next page)
x0*x1*y1,
x0*x1*y2 + x0*x2 + x0*y2 + x0*y3 + x0,
x0*x1*y3 + x0*x1 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0*

x0*x2*y0 + x0*x1 + x0*x2 + x0*x3 + x0*y1 + x0*y2 + x0*y2,
x0*x2*y1 + x0*x2 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0,
x0*x2*y2 + x0*x2 + x0*y3 + x0,
x0*x2*y3 + x0*x2 + x0*y3 + x0,
x0*x3*y0 + x0*x1 + x0*x2 + x0*y0 + x0*y1 + x0*y3,
x0*x3*y1 + x0*x2 + x0*y1 + x0*y3 + x0,
x0*x3*y2,
x0*x3*y3 + x0*x1 + x0*y1 + x0*y2 + x0*y3 + x0,
x0*y0*y1 + x0*y1,
x0*y0*y2 + x0*x2 + x0*y3 + x0,
x0*y0*y3 + x0*x1 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0*y3 + x0,
x0*y1*y2 + x0*x2 + x0*y3 + x0,
x0*y1*y3 + x0*x3 + x0*y0 + x0*y2 + x0*y3,
x0*y2*y3 + x0*y2,
x1*x2*x3 + x0*x1 + x1*x3 + x0*y0 + x0*y1 + x2 + x3 + y3,
x1*x2*y0 + x0*x1 + x1*x3 + x0*y0 + x0*y1 + x2 + x3 + y3,
x1*x2*y1 + x0*x1 + x1*x3 + x0*y0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x1*x2*y2 + x0*x1 + x0*y0 + x0*y1 + x0 + x1 + y0 + y1 + 1,
x1*x2*y3 + x0*x1 + x1*x3 + x0*y0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x1*x3*y0 + x0*x1 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x0*y1 + x0*y2 + x0*y3 + x0,
x1*x3*y1 + x0*x2 + x0*x3 + x0*y3 + x2 + x3 + y3,
x1*x3*y2 + x0*x2 + x0*x3 + x1*x3 + x0*y1 + x0*y3 + x0,
x1*x3*y3 + x0*x1 + x0*x2 + x0*x3 + x0*y0 + x0*y1 + x0*y3,
x1*y0*y1 + x0*x2 + x0*x3 + x0*y3 + x2 + x3 + y3,
x1*y0*y2 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x0*y2 + x0*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x2*x3*y0 + x0*x1 + x0*x3 + x1*x3 + x0*y0 + x0*y2 + x0*y3 + x2 + x3 + y3,
x2*x3*y1 + x0*x1 + x0*y1 + x0*y2 + x0*y3 + x3 + y0,
x2*x3*y2 + x1*x3 + x0*y1 + x0 + x2 + x3 + y3,
x2*x3*y3,
x2*y0*y1 + x0*x2 + x0*x3 + x0*y0 + x0*y1 + x0*y2 + x0,
x2*y0*y2 + x0*x2 + x1*x3 + x0*y1 + x0*y3 + x2 + x3 + y3,
x2*y0*y3 + x0*x2 + x0*y3 + x0,
x2*y1*y2 + x0*x1 + x0*x2 + x1*x3 + x0*y0 + x0*y2 + x0*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x2*y1*y3 + x0*x3 + x1*x3 + x0*y0 + x0*y1 + x0*y3 + y0 + y3,
x2*y2*y3 + x0*x1 + x0*x2 + x1*x3 + x0*y0 + x0*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x3*y0*y1 + x0*x3 + x0*y1 + x0 + x2 + x3 + y3,
x3*y0*y2 + x0*x0 + y0,
x3*y0*y3 + x1*x3 + x0*y1 + x0*y2 + x0*y3 + y0,
x3*y1*y2 + x0*x2 + x0*x3 + x0*y3 + x2 + x3 + y3,
x3*y1*y3 + x0*x2 + x0*x3 + x0*y0 + x0*y2 + x0,
x3*y2*y3 + x0*x2 + x0*x3 + x1*x3 + x0*y0 + x0*y1 + x0*y3 + x0 + x1 + x2 + x3 + y0 + y1 + y3 + 1,
x3*y0 + x0 + x2 + x3 + y3,
x0 + x2 + x3 + y3,
x0 + y0 + y2 + x0 + y3,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
x0 + y2 + x0 + y3 + y0,
sage: S.interpolation_polynomial()
(a^2 + 1)*x^14 + x^13 + (a^3 + a^2)*x^11 + (a^2 + 1)*x^7 + a^2 + a

The \texttt{SR\_gf2\_2} gives an example how use alternative polynomial representations of the S-Box for construction of polynomial systems.

REFERENCES:
- [CMR2005]
- [CMR2006]
- [MR2002]

\texttt{class sage.crypto.mq.sr.AllowZeroInversionsContext(sr)}

Temporarily allow zero inversion.

\texttt{sage.crypto.mq.sr.SR(n=1, r=1, c=1, e=4, star=False, **kwargs)}

Return a small scale variant of the AES polynomial system constructor subject to the following conditions:

INPUT:
- \(n\) - the number of rounds (default: 1)
- \(r\) - the number of rows in the state array (default: 1)
- \(c\) - the number of columns in the state array (default: 1)
- \(e\) - the exponent of the finite extension field (default: 4)
- \(\text{star}\) - determines if \(\text{SR}^*\) or \(\text{SR}\) should be constructed (default: False)
- \(\text{aes\_mode}\) - as the \(\text{SR}\) key schedule specification differs slightly from the AES key schedule, this parameter controls which schedule to use (default: True)
- \(\text{gf2}\) - generate polynomial systems over \(\mathbb{F}_2\) rather than over \(\mathbb{F}_{2^e}\) (default: False)
- \(\text{polybori}\) - use the \texttt{BooleanPolynomialRing} as polynomial representation (default: True, \(\mathbb{F}_2\) only)
- \(\text{order}\) - a string to specify the term ordering of the variables (default: \texttt{deglex})
- \(\text{postfix}\) - a string which is appended after the variable name (default: ")"
- \(\text{allow\_zero\_inversions}\) - a boolean to control whether zero inversions raise an exception (default: False)
- \(\text{correct\_only}\) - only include correct inversion polynomials (default: False, \(\mathbb{F}_2\) only)
- \(\text{biaffine\_only}\) - only include bilinear and biaffine inversion polynomials (default: True, \(\mathbb{F}_2\) only)

EXAMPLES:

\begin{verbatim}
sage: sr = mq.SR(1, 1, 1, 4)
sage: ShiftRows = sr.shift_rows_matrix()
sage: MixColumns = sr.mix_columns_matrix()
sage: Lin = sr.lin_matrix()
sage: M = MixColumns * ShiftRows * Lin
sage: print(sr.hex_str_matrix(M))
5 1 C 5
2 2 1 F
A 4 4 1
1 8 3 3
\end{verbatim}
```python
sage: sr = mq.SR(1, 2, 1, 4)
sage: ShiftRows = sr.shift_rows_matrix()
sage: MixColumns = sr.mix_columns_matrix()
sage: Lin = sr.lin_matrix()
sage: M = MixColumns * ShiftRows * Lin
sage: print(sr.hex_str_matrix(M))
F 3 7 F A 2 B A
A A 5 6 8 8 4 9
7 8 8 2 D C C 3
4 6 C C 5 E F F
A 2 B A F 3 7 F
8 8 4 9 A A 5 6
D C C 3 7 8 8 2
5 E F F 4 6 C C

sage: sr = mq.SR(1, 2, 2, 4)
sage: ShiftRows = sr.shift_rows_matrix()
sage: MixColumns = sr.mix_columns_matrix()
sage: Lin = sr.lin_matrix()
sage: M = MixColumns * ShiftRows * Lin
sage: print(sr.hex_str_matrix(M))
F 3 7 F 0 0 0 0 0 0 0 0 A 2 B A
A A 5 6 0 0 0 0 0 0 0 0 8 8 4 9
7 8 8 2 0 0 0 0 0 0 0 0 D C C 3
4 6 C C 0 0 0 0 0 0 0 0 5 E F F
A 2 B A 0 0 0 0 0 0 0 0 F 3 7 F
8 8 4 9 0 0 0 0 0 0 0 0 A A 5 6
D C C 3 0 0 0 0 0 0 0 0 7 8 8 2
5 E F F 0 0 0 0 0 0 0 0 4 6 C C
0 0 0 0 A 2 B A F 3 7 F 0 0 0 0
0 0 0 0 8 8 4 9 A A 5 6 0 0 0 0
0 0 0 0 D C C 3 7 8 8 2 0 0 0 0
0 0 0 0 5 E F F 4 6 C C 0 0 0 0
0 0 0 0 F 3 7 F A 2 B A 0 0 0 0
0 0 0 0 A A 5 6 8 8 4 9 0 0 0 0
0 0 0 0 7 8 8 2 D C C 3 0 0 0 0
0 0 0 0 4 6 C C 5 E F F 0 0 0 0
```

```python
class sage.crypto.mq.sr.SR_generic(n=1, r=1, c=1, e=4, star=False, **kwargs)
 Bases: sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator

Small Scale Variants of the AES.

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 4)
sage: ShiftRows = sr.shift_rows_matrix()
sage: MixColumns = sr.mix_columns_matrix()
sage: Lin = sr.lin_matrix()
sage: M = MixColumns * ShiftRows * Lin
sage: print(sr.hex_str_matrix(M))
5 1 C 5
2 2 1 F
A 4 4 1
1 8 3 3
```

```python
add_round_key(d, key)
    Perform the AddRoundKey operation on d using key.
```
INPUT:

- \(d \) - state array or something coercible to a state array
- \(\text{key} \) - state array or something coercible to a state array

EXAMPLES:

```python
sage: sr = mq.SR(10, 4, 4, 4)
sage: D = sr.random_state_array()
sage: K = sr.random_state_array()
sage: sr.add_round_key(D, K) == K + D
True
```

```
base_ring()
```

Return the base field of self as determined by \(\text{self.e} \).

EXAMPLES:

```python
sage: sr = mq.SR(10, 2, 2, 4)
sage: sr.base_ring().polynomial()
a^4 + a + 1
```

The Rijndael polynomial:

```python
sage: sr = mq.SR(10, 4, 4, 8)
sage: sr.base_ring().polynomial()
a^8 + a^4 + a^3 + a + 1
```

```
block_order()
```

Return a block order for self where each round is a block.

EXAMPLES:

```python
sage: sr = mq.SR(2, 1, 1, 4)
sage: sr.block_order()
Block term order with blocks:
(Degree lexicographic term order of length 16,
 Degree lexicographic term order of length 16,
 Degree lexicographic term order of length 4)
```

```python
sage: P = sr.ring(order='block')
sage: print(P.repr_long())
Polynomial Ring
  Base Ring : Finite Field in a of size 2^4
  Size : 36 Variables
  Block 0 : Ordering : deglex
     Names : k200, k201, k202, k203, x200, x201, x202, x203, w200,
     w201, w202, w203, sl00, sl01, sl02, sl03
  Block 1 : Ordering : deglex
     Names : k100, k101, k102, k103, x100, x101, x102, x103, w100,
     w101, w102, w103, s000, s001, s002, s003
  Block 2 : Ordering : deglex
     Names : k000, k001, k002, k003
```

```
hex_str(M, typ='matrix')
```

Return a hex string for the provided AES state array/matrix.

INPUT:

- \(M \) - state array
• typ - controls what to return, either 'matrix' or 'vector' (default: 'matrix')

EXAMPLES:

```sage
sage: sr = mq.SR(2, 2, 2, 4)
sage: k = sr.base_ring()
sage: A = matrix(k, 2, 2, [1, k.gen(), 0, k.gen()^2])
sage: sr.hex_str(A)
' 1 2 
 0 4 
'
```

```sage
sage: sr.hex_str(A, typ='vector')
'1024'
```

hex_str_matrix(M)

Return a two-dimensional AES-like representation of the matrix M.

That is, show the finite field elements as hex strings.

INPUT:

- M - an AES state array

EXAMPLES:

```sage
sage: sr = mq.SR(2, 2, 2, 4)
sage: k = sr.base_ring()
sage: A = matrix(k, 2, 2, [1, k.gen(), 0, k.gen()^2])
sage: sr.hex_str_matrix(A)
' 1 2 
 0 4 
'
```

hex_str_vector(M)

Return a one-dimensional AES-like representation of the matrix M.

That is, show the finite field elements as hex strings.

INPUT:

- M - an AES state array

EXAMPLES:

```sage
sage: sr = mq.SR(2, 2, 2, 4)
sage: k = sr.base_ring()
sage: A = matrix(k, 2, 2, [1, k.gen(), 0, k.gen()^2])
sage: sr.hex_str_vector(A)
'1024'
```

is_state_array(d)

Return True if d is a state array, i.e. has the correct dimensions and base field.

EXAMPLES:

```sage
sage: sr = mq.SR(2, 2, 4, 8)
sage: k = sr.base_ring()
sage: sr.is_state_array( matrix(k, 2, 4) )
True
```

```sage
sage: sr = mq.SR(2, 2, 4, 8)
sage: k = sr.base_ring()
sage: sr.is_state_array( matrix(k, 4, 4) )
False
```
key_schedule \((kj, i)\)

Return \(k_i\) for a given \(i\) and \(k_j\) with \(j = i - 1\).

EXAMPLES:

```python
sage: sr = mq.SR(10, 4, 4, 8, star=True, allow_zero_inversions=True)
sage: ki = sr.state_array()
sage: for i in range(10):
    ....:     ki = sr.key_schedule(ki, i+1)
    ....:     print(sr.hex_str_matrix(ki))
B4 3E 23 6F
EF 92 E9 8F
SB E2 51 18
CB 11 CF 8E
```

key_schedule_polynomials \((i)\)

Return polynomials for the \(i\)-th round of the key schedule.

INPUT:

- \(i\) - round \((0 \leq i \leq n)\)

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=False)
```

The 0-th subkey is the user provided key, so only conjugacy relations or field polynomials are added.:```python
sage: sr.key_schedule_polynomials(0)
(k000^2 + k000, k001^2 + k001, k002^2 + k002, k003^2 + k003)
```

The 1-th subkey is derived from the user provided key according to the key schedule which is non-linear.:```python
sage: sr.key_schedule_polynomials(1)
(k100 + s000 + s002 + s003, k101 + s000 + s001 + s003 + 1, k102 + s000 + s001 + s002 + 1, k103 + s001 + s002 + s003 + 1, k100^2 + k100, k101^2 + k101, k102^2 + k102, k103^2 + k103, s000^2 + s000, s001^2 + s001, s002^2 + s002, s003^2 + s003, s000*k000 + s000*k003 + s001*k002 + s002*k001 + s003*k000, s000*k000 + s000*k001 + s000*k002 + s001*k003 + s002*k002 + s003*k001, s000*k001 + s000*k002 + s001*k000 + s001*k001 + s002*k000 + s002*k002 + s003*k001 + s002*k003 + s003*k002, s000*k002 + s000*k001 + s000*k003 + s001*k001 + s002*k000 + s002*k002 + s003*k000 + s000, s000*k001 + s000*k003 + s001*k001 + s001*k002 + s002*k000 + s002*k002 + s002*k001 + s003, s000*k001 + s000*k002 + s000*k003 + s001*k000 + s001*k001 + s001*k002 + s002*k002 + s002*k003 + s003, s000*k002 + s000*k001 + s000*k000 + s000*k002 + s000*k003 + 1)
```
mix_columns(d)

Perform the MixColumns operation on d.

INPUT:

- d - state array or something coercible to a state array

EXAMPLES:

```python
sage: sr = mq.SR(10, 4, 4, 4)
sage: E = sr.state_array() + 1; E
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: sr.mix_columns(E)
[a a + 1 1 1]
[1 a a + 1 1]
[1 1 a a + 1]
[a + 1 1 1 a]
```

new_generator(**kwds**)

Return a new SR instance equal to this instance except for the parameters passed explicitly to this function.

INPUT:

- **kwds** - see the SR constructor for accepted parameters

EXAMPLES:

```python
sage: sr = mq.SR(2,1,1,4); sr
SR(2,1,1,4)
sage: sr.ring().base_ring()
Finite Field in a of size 2^4
sage: sr2 = sr.new_generator(gf2=True); sr2
SR(2,1,1,4)
sage: sr2.ring().base_ring()
Finite Field of size 2
sage: sr3 = sr2.new_generator(correct_only=True)
sage: len(sr2.inversion_polynomials_single_sbox())
20
sage: len(sr3.inversion_polynomials_single_sbox())
19
```

polynomial_system($P=None$, $K=None$, $C=None$)

Return a polynomial system for this small scale AES variant for a given plaintext-key pair.

If neither P, K nor C are provided, a random pair (P, K) will be generated. If P and C are provided no K needs to be provided.

INPUT:

- P - vector, list, or tuple (default: None)
- K - vector, list, or tuple (default: None)
- C - vector, list, or tuple (default: None)

EXAMPLES:
This returns a polynomial system:

```python
sage: F
Polynomial Sequence with 36 Polynomials in 20 Variables
```

and a solution:

```python
sage: s # random -- maybe we need a better doctest here?
{k000: 1, k001: 0, k003: 1, k002: 0}
```

This solution is not the only solution that we can learn from the Groebner basis of the system.

```python
sage: F.groebner_basis()[-3:]
[k000 + 1, k001, k003 + 1]
```

In particular we have two solutions:

```python
sage: len(F.ideal().variety())
2
```

In the following example we provide \(C \) explicitly:

```python
sage: C = sr(P,K)
sage: F, s = sr.polynomial_system(P=P, C=C)
sage: F
Polynomial Sequence with 36 Polynomials in 20 Variables
```

Alternatively, we can use symbols for the \(P \) and \(C \). First, we have to create a polynomial ring:

```python
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True)
sage: R = sr.R
sage: vn = sr.varstrs("P",0,1,4) + R.variable_names() + sr.varstrs("C",0,1,4)
sage: R = BooleanPolynomialRing(len(vn),vn)
sage: sr.R = R
```

Now, we can construct the purely symbolic equation system:

```python
sage: C = sr.vars("C",0); C
(C000, C001, C002, C003)
sage: P = sr.vars("P",0)
sage: F, s = sr.polynomial_system(P=P, C=C)
sage: [(k,v) for k,v in sorted(s.items())] # this can be ignored
[(k003, 1), (k002, 1), (k001, 0, (k000, 1)]
sage: F
Polynomial Sequence with 36 Polynomials in 28 Variables
```

We show that the (returned) key is a solution to the returned system:
\begin{verbatim}
sage: sr = mq.SR(3,4,4,8, star=True, gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: F.subs(s).groebner_basis() # long time
Polynomial Sequence with 1248 Polynomials in 1248 Variables
\end{verbatim}

random_element *(elem_type='vector', *args, **kwds)*

Return a random element for self. Other arguments and keywords are passed to random_* methods.

INPUT:

- elem_type - either 'vector' or 'state array' (default: 'vector')

EXAMPLES:

\begin{verbatim}
sage: sr = mq.SR()
sage: sr.random_element()
[a^2]
[a + 1]
[a^2 + 1]
[a]
sage: sr.random_element('state_array')
[a^3 + a + 1]
\end{verbatim}

Passes extra positional or keyword arguments through:

\begin{verbatim}
sage: sr.random_element(density=0)
[0]
[0]
[0]
[0]
\end{verbatim}

random_state_array (*args, **kwds)*

Return a random element in MatrixSpace(self.base_ring(), self.r, self.c).

EXAMPLES:

\begin{verbatim}
sage: sr = mq.SR(2, 2, 2, 4)
sage: sr.random_state_array()
[a^2 a^3 + a + 1]
[a^3 + a^2 + a + 1 a + 1]
\end{verbatim}

random_vector (*args, **kwds)*

Return a random vector as it might appear in the algebraic expression of self.

EXAMPLES:

\begin{verbatim}
sage: sr = mq.SR(2, 2, 2, 4)
sage: sr.random_vector()
[a^2]
[a + 1]
[a^2 + 1]
[a]
[a^3 + a^2 + a + 1]
[a^3 + a + 1]
[a^3 + a]
[a^3]
[a^3 + a^2]
[a^3 + a + 1]
[a^3 + 1]
[a^3 + a^2 + 1]
\end{verbatim}

(continues on next page)
\[\begin{align*}
&\text{a}^3 + \text{a}^2 + \text{a} \\
&\text{a} + 1 \\
&\text{a}^2 + 1 \\
&\text{a} \\
&\text{a}^2 \\
\end{align*}\]

Note: \(\phi\) was already applied to the result.

\textbf{ring} (order=None, reverse_variables=None)

Construct a ring as a base ring for the polynomial system.

By default, variables are ordered in the reverse of their natural ordering, i.e. the reverse of as they appear.

INPUT:

- order - a monomial ordering (default: None)
- reverse_variables - reverse rounds of variables (default: True)

The variable assignment is as follows:

- \(k_{i,j,l}\) - subkey round \(i\) word \(j\) conjugate/bit \(l\)
- \(s_{i,j,l}\) - subkey inverse round \(i\) word \(j\) conjugate/bit \(l\)
- \(w_{i,j,l}\) - inversion input round \(i\) word \(j\) conjugate/bit \(l\)
- \(x_{i,j,l}\) - inversion output round \(i\) word \(j\) conjugate/bit \(l\)

Note that the variables are ordered in column major ordering in the state array and that the bits are ordered in little endian ordering.

For example, if \(x_{0,1,0}\) is a variable over \(\mathbb{F}_2\) for \(r = 2\) and \(c = 2\) then refers to the most significant bit of the entry in the position (1,0) in the state array matrix.

EXAMPLES:

```python
sage: sr = mq.SR(2, 1, 1, 4)
sage: P = sr.ring(order='block')
sage: print(P.repr_long())
Polynomial Ring
Base Ring : Finite Field in a of size 2^4
Size : 36 Variables
Block 0 : Ordering : deglex
   Names : k200, k201, k202, k203, x200, x201, x202, x203, w200,
   \rightarrow w201, w202, w203, s100, s101, s102, s103
Block 1 : Ordering : deglex
   Names : k100, k101, k102, k103, x100, x101, x102, x103, w100,
   \rightarrow w101, w102, w103, s000, s001, s002, s003
Block 2 : Ordering : deglex
   Names : k000, k001, k002, k003
```

\textbf{round_polynomials} (i, plaintext=None, ciphertext=None)

Return list of polynomials for a given round \(i\).

If \(i == 0\) a plaintext must be provided, if \(i == n\) a ciphertext must be provided.

INPUT:

- i - round number
plaintext - optional plaintext (mandatory in first round)
ciphertext - optional ciphertext (mandatory in last round)

OUTPUT: tuple

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 4)
sage: k = sr.base_ring()
sage: p = [k.random_element() for _ in range(sr.r*sr.c)]
sage: sr.round_polynomials(0, plaintext=p)
\[(w100 + k000 + (a^2 + 1), w101 + k001 + (a), w102 + k002 + (a^2), w103 + k003, 
\rightarrow (a + 1))\]
```

sbox (inversion_only=False)
Return an S-Box object for this SR instance.

INPUT:

* inversion_only - do not include the \(F_2\) affine map when computing the S-Box (default: False)

EXAMPLES:

```python
sage: sr = mq.SR(1,2,2,4, allow_zero_inversions=True)
sage: S = sr.sbox(); S
(6, 11, 5, 4, 2, 14, 7, 10, 9, 13, 15, 12, 3, 1, 0, 8)
sage: sr.sub_byte(0)
a^2 + a
sage: sage_eval(str(sr.sub_byte(0)), {'a':2})
6
sage: S(0)
6
sage: sr.sub_byte(1)
a^3 + a + 1
sage: sage_eval(str(sr.sub_byte(1)), {'a':2})
11
sage: S(1)
11
sage: sr = mq.SR(1,2,2,8, allow_zero_inversions=True)
sage: S = sr.sbox(); S
```

(continues on next page)
sage: sr.sub_byte(0)
a^6 + a^5 + a + 1

sage: sage_eval(str(sr.sub_byte(0)), {'a':2})
99

sage: S(0)
99

sage: sr.sub_byte(1)
a^6 + a^5 + a^4 + a^3 + a^2

sage: sage_eval(str(sr.sub_byte(1)), {'a':2})
124

sage: S(1)
124

sage: sr = mq.SR(1,2,2,4, allow_zero_inversions=True)
sage: S = sr.sbox(inversion_only=True); S
(0, 1, 9, 14, 13, 11, 7, 6, 15, 2, 12, 5, 10, 4, 3, 8)

sage: S(0)
0
sage: S(1)
1

sage: S(sr.k.gen())
a^3 + 1

sbox_constant()
Return the S-Box constant which is added after $L(x^{-1})$ was performed. That is $0x63$ if $e == 8$ or $0x6$ if $e == 4$.

EXAMPLES:

sage: sr = mq.SR(10, 1, 1, 8)
sage: sr.sbox_constant()
a^6 + a^5 + a + 1

shift_rows(d)
Perform the ShiftRows operation on d.

INPUT:

• d - state array or something coercible to a state array

EXAMPLES:

sage: sr = mq.SR(10, 4, 4, 4)
sage: E = sr.state_array() + 1; E
[1 0 0 0]
[0 1 0 0]
\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

sage: sr.shift_rows(E)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

state_array (*d=None*)

Convert the parameter to a state array.

INPUT:

- d - a matrix, a list, or a tuple (default: None)

EXAMPLES:

```
sage: sr = mq.SR(2, 2, 2, 4)
sage: k = sr.base_ring()
sage: e1 = [k.fetch_int(e) for e in range(2*2)]; e1
[0, 1, a, a + 1]
sage: e2 = sr.phi( Matrix(k, 2*2, 1, e1) )
sage: sr.state_array(e1)  # note the column major ordering
[ 0 a]
[ 1 a + 1]
sage: sr.state_array(e2)
[ 0 a]
[ 1 a + 1]
```

```
sage: sr.state_array()
[0 0]
[0 0]
```

sub_byte (*b*)

Perform SubByte on a single byte/halfbyte \(b\).

A ZeroDivision exception is raised if an attempt is made to perform an inversion on the zero element. This can be disabled by passing allow_zero_inversions=True to the constructor. A zero inversion can result in an inconsistent equation system.

INPUT:

- \(b\) - an element in self.base_ring()

EXAMPLES:

The S-Box table for \(F_{2^4}\):

```
sage: sr = mq.SR(1, 1, 1, 4, allow_zero_inversions=True)
sage: for e in sr.base_ring():
....:     print(' %20s %20s'%(e, sr.sub_byte(e)))
0, a^2 + a
a, a^2 + 1
a^2, a
a^3, a^3 + 1
a + 1, a^2
a^2 + a, a^2 + a + 1
```
sub_bytes \((d)\)
Perform the non-linear transform on \(d\).

INPUT:
- \(d\) - state array or something coercible to a state array

EXAMPLES:

```
sage: sr = mq.SR(2, 1, 2, 8, gf2=True)
sage: k = sr.base_ring()
sage: A = Matrix(k, 1, 2 , [k(1), k.gen()])
sage: sr.sub_bytes(A)
\[
\begin{array}{ll}
  a^6 + a^5 + a^4 + a^3 + a^2 & a^6 + a^5 + a^4 + a^2 + a + 1 \\
  a^3 + a^2 + a + 1 & a^3 + a^2 + a \\
  a^3 + a^2 & 0 \\
  a^3 + a & a^3 \\
  a^3 + 1 & 1 \\
  1 & a^3 + a + 1
\end{array}
```

varformatstr \((name, n=None, rc=None, e=None)\)
Return a format string which is understood by print et al.
If a numerical value is omitted, the default value of \(self\) is used. The numerical values \((n, rc, e)\) are used to determine the width of the respective fields in the format string.

INPUT:
- \(name\) - name of the variable
- \(n\) - number of rounds (default: None)
- \(rc\) - number of rows * number of cols (default: None)
- \(e\) - exponent of base field (default: None)

EXAMPLES:

```
sage: sr = mq.SR(1,1,1,4)
sage: sr.variable_dict()
{'k000': k000, 'k001': k001, 'k002': k002,}
```

variable_dict()
Return a dictionary to access variables in \(self.R\) by their names.

EXAMPLES:

```
sage: sr = mq.SR(1,1,1,4)
sage: sr.variable_dict()
{'k000': k000, 'k001': k001, 'k002': k002,}
```
{'k003': k003,
'k100': k100,
'k101': k101,
'k102': k102,
'k103': k103,
's000': s000,
's001': s001,
's002': s002,
's003': s003,
'w100': w100,
'w101': w101,
'w102': w102,
'w103': w103,
'x100': x100,
'x101': x101,
'x102': x102,
'x103': x103}

sage: sr = mq.SR(1,1,1,4,gf2=True)
sage: sr.variable_dict()
{'k000': k000,
'k001': k001,
'k002': k002,
'k003': k003,
'k100': k100,
'k101': k101,
'k102': k102,
'k103': k103,
's000': s000,
's001': s001,
's002': s002,
's003': s003,
'w100': w100,
'w101': w101,
'w102': w102,
'w103': w103,
'x100': x100,
'x101': x101,
'x102': x102,
'x103': x103}

vars (name, nr, rc=None, e=None)

Return a list of variables in self.

INPUT:

• name - variable name
• nr - number of round to create variable strings for
• rc - number of rounds * number of columns in the state array (default: None)
• e - exponent of base field (default: None)

EXAMPLES:

sage: sr = mq.SR(10, 1, 2, 4)
sage: sr.vars('x', 2)
(x200, x201, x202, x203, x210, x211, x212, x213)
varstr\((name, nr, rc, e)\)

Return a string representing a variable for the small scale AES subject to the given constraints.

INPUT:

- \(name\) - variable name
- \(nr\) - number of round to create variable strings for
- \(rc\) - row*column index in state array
- \(e\) - exponent of base field

EXAMPLES:

```sage
sage: sr = mq.SR(10, 1, 2, 4)
sage: sr.varstr('x', 2, 1, 1)
'x211'
```

varstrs\((name, nr, rc=None, e=None)\)

Return a list of strings representing variables in self.

INPUT:

- \(name\) - variable name
- \(nr\) - number of round to create variable strings for
- \(rc\) - number of rows * number of columns in the state array (default: None)
- \(e\) - exponent of base field (default: None)

EXAMPLES:

```sage
sage: sr = mq.SR(10, 1, 2, 4)
sage: sr.varstrs('x', 2)
('x200', 'x201', 'x202', 'x203', 'x210', 'x211', 'x212', 'x213')
```

class sage.crypto.mq.sr.SR_gf2\((n=1, r=1, c=1, e=4, star=False, **kwargs)\)

Bases: sage.crypto.mq.sr.SR_generic

Small Scale Variants of the AES polynomial system constructor over \(F_2\). See help for SR.

EXAMPLES:

```sage
sage: sr = mq.SR(gf2=True)
sage: sr
SR(1,1,1,4)
```

antiphi\((l)\)

The operation \(\phi^{-1}\) from [MR2002] or the inverse of self.phi.

INPUT:

- \(l\) - a vector in the sense of self.is_vector

EXAMPLES:

```sage
sage: sr = mq.SR(gf2=True)
sage: A = sr.random_state_array()
sage: A
\[a^2\]
sage: sr.antiphi(sr.phi(A)) == A
True
```
field_polynomials *(name, i, l=None)*

Return list of field polynomials for a given round *i* and name *name*.

INPUT:
- *name* - variable name
- *i* - round number
- *l* - length of variable list (default: None = r^c)

EXAMPLES:

```python
sage: sr = mq.SR(3, 1, 1, 8, gf2=True, polybori=False)
sage: sr.field_polynomials('x', 2)
[x200^2 + x200, x201^2 + x201,
x202^2 + x202, x203^2 + x203,
x204^2 + x204, x205^2 + x205,
x206^2 + x206, x207^2 + x207]
```

```python
sage: sr = mq.SR(3, 1, 1, 8, gf2=True, polybori=True)
sage: sr.field_polynomials('x', 2)
[]
```

inversion_polynomials *(xi, wi, length)*

Return polynomials to represent the inversion in the AES S-Box.

INPUT:
- *xi* - output variables
- *wi* - input variables
- *length* - length of both lists

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 8, gf2=True)
sage: xi = sr.vars('x', 1)
sage: wi = sr.vars('w', 1)
sage: sr.inversion_polynomials(xi, wi, len(xi))[:3]
[x100*w100 + x100*w102 + x100*w103 + x101*w107 + x101*w101 + x101*w102 +
 x104*w103 + x105*w102 + x106*w101 + x107*w100,
x100*w101 + x100*w103 + x101*w104 + x101*w100 + x101*w102 + x101*w103 +
 x103*w107 + x102*w101 + x102*w102 + x102*w106 + x103*w100 + x103*w101 +
 x103*w105 + x104*w100 + x104*w104 + x105*w103 + x106*w102 + x107*w101,
x100*w102 + x100*w104 + x101*w101 + x101*w103 + x101*w104 +
 x102*w100 + x102*w103 + x102*w106 + x103*w101 + x103*w102 +
 x103*w106 + x104*w103 + x105*w104 + x105*w100 + x105*w102 +
 x106*w103 + x107*w102]
```

inversion_polynomials_single_sbox *(x=None, w=None, biaffine_only=None, correct_only=None)*

Return inversion polynomials of a single S-Box.

INPUT:
- *xi* - output variables
- *wi* - input variables
- *length* - length of both lists
EXAMPLES:

```
sage: sr = mq.SR(1, 1, 1, 8, gf2=True)
sage: len(sr.inversion_polynomials_single_sbox())
24
sage: len(sr.inversion_polynomials_single_sbox(correct_only=True))
23
sage: len(sr.inversion_polynomials_single_sbox(biaffine_only=False))
40
sage: len(sr.inversion_polynomials_single_sbox(biaffine_only=False, correct_only=True))
39
```

```
sage: sr = mq.SR(1, 1, 1, 4, gf2=True)
sage: l0 = sr.inversion_polynomials_single_sbox(); len(l0)
12
sage: l1 = sr.inversion_polynomials_single_sbox(correct_only=True); len(l1)
11
sage: l2 = sr.inversion_polynomials_single_sbox(biaffine_only=False); len(l2)
20
sage: l3 = sr.inversion_polynomials_single_sbox(biaffine_only=False, correct_only=True); len(l3)
19
```

```
sage: set(l0) == set(sr._inversion_polynomials_single_sbox())
True
sage: set(l1) == set(sr._inversion_polynomials_single_sbox(correct_only=True))
True
sage: set(l2) == set(sr._inversion_polynomials_single_sbox(biaffine_only=False))
True
sage: set(l3) == set(sr._inversion_polynomials_single_sbox(biaffine_only=False, correct_only=True))
True
```

```
sage: is_vector(d)
```

160 Chapter 16. Small Scale Variants of the AES (SR) Polynomial System Generator
Return True if the given matrix satisfies the conditions for a vector as it appears in the algebraic expression of self.

INPUT:

- d - matrix

EXAMPLES:

```python
sage: sr = mq.SR(gf2=True)
sage: sr
SR(1,1,1,4)
sage: k = sr.base_ring()
sage: A = Matrix(k, 1, 1, [k.gen()])
sage: B = sr.vector(A)
sage: sr.is_vector(A)
False
sage: sr.is_vector(B)
True
```

lin_matrix(length=None)

Return the Lin matrix.

If no length is provided, the standard state space size is used. The key schedule calls this method with an explicit length argument because only self.r S-Box applications are performed in the key schedule.

INPUT:

- length - length of state space (default: None)

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 4, gf2=True)
sage: sr.lin_matrix()
[1 0 1 1]
[1 1 0 1]
[1 1 1 0]
[0 1 1 1]
```

mix_columns_matrix()

Return the MixColumns matrix.

EXAMPLES:

```python
sage: sr = mq.SR(1, 2, 2, 4, gf2=True)
sage: s = sr.random_state_array()
sage: r1 = sr.mix_columns(s)
sage: r2 = sr.state_array(sr.mix_columns_matrix() * sr.vector(s))
sage: r1 == r2
True
```

phi(l, diffusion_matrix=False)

The operation ϕ from [MR2002]

Given a list/matrix of elements in \mathbb{F}_{2^n}, return a matching list/matrix of elements in \mathbb{F}_2.

INPUT:

- l - element to perform ϕ on.
- diffusion_matrix - if True, the given matrix l is transformed to a matrix which performs the same operation over \mathbb{F}_2 as l over \mathbb{F}_{2^n} (default: False).
EXAMPLES:

```
sage: sr = mq.SR(2, 1, 2, 4, gf2=True)
sage: k = sr.base_ring()
sage: A = matrix(k, 1, 2, [k.gen(), 0])
sage: sr.phi(A)
[0 0]
[0 0]
[1 0]
[0 0]
```

shift_rows_matrix()

Return the ShiftRows matrix.

EXAMPLES:

```
sage: sr = mq.SR(1, 2, 2, 4, gf2=True)
sage: s = sr.random_state_array()
sage: r1 = sr.shift_rows(s)
sage: r2 = sr.state_array( sr.shift_rows_matrix() * sr.vector(s) )
sage: r1 == r2
True
```

vector (d=None)

Constructs a vector suitable for the algebraic representation of SR.

INPUT:

- d - values for vector (default: None)

EXAMPLES:

```
sage: sr = mq.SR(gf2=True)
sage: sr
SR(1,1,1,4)
sage: k = sr.base_ring()
sage: A = Matrix(k, 1, 1, [k.gen()])
sage: sr.vector(A)
[0]
[0]
[1]
[0]
```

class sage.crypto.mq.sr.SR_gf2_2 (n=1, r=1, c=1, e=4, star=False, **kwargs)

Bases: `sage.crypto.mq.sr.SR_gf2`

This is an example how to customize the SR constructor.

In this example, we replace the S-Box inversion polynomials by the polynomials generated by the S-Box class.

inversion_polynomials_single_sbox (x=None, w=None, biaffine_only=None, correct_only=None, groebner=False)

Return inversion polynomials of a single S-Box.

INPUT:

- x - output variables (default: None)
- w - input variables (default: None)
- biaffine_only - ignored (always False)
- correct_only - ignored (always True)
• **groebner** - precompute the Groebner basis for this S-Box (default: False).

EXAMPLES:

```python
sage: from sage.crypto.mq.sr import SR_gf2_2
sage: e = 4
code
sage: sr = SR_gf2_2(1, 1, 1, e)
code
sage: P = PolynomialRing(GF(2), ['x%d' %i for i in range(e)] + ['w%d' %i for i in range(e)], order='lex')
code
sage: X, W = P.gens()[:e], P.gens()[e:]
code
sage: sr.inversion_polynomials_single_sbox(X, W, groebner=True)
code
```

```plaintext
[x0 + w0*w1*w2 + w0*w1 + w0*w3 + w0 + w1 + w2,
x1 + w0*w1*w3 + w0*w3 + w1*w3 + w1 + w2*w3,
x2 + w0*w2*w3 + w0*w2 + w0 + w1*w2 + w1*w3 + w2*w3,
x3 + w0*w1*w2 + w0 + w1*w2*w3 + w1*w2 + w1*w3 + w1 + w2 + w3]```

```python
sage: from sage.crypto.mq.sr import SR_gf2_2
sage: e = 4
code
sage: sr = SR_gf2_2(1, 1, 1, e)
code
sage: sr.inversion_polynomials_single_sbox()
code
```

```plaintext
[w3*w1 + w3*w0 + w3*x2 + w3*x1 + w3 + w2*w1 + w1 + x3 + x2 + x1,
w3*w2 + w3*w1 + w3*x3 + w2 + w1 + x3,
w3*w2 + w3*w1 + w3*x2 + w3 + w2*x3 + x2 + x1,
w3*w2 + w3*w1 + w3*x3 + w3*x2 + w3 + w2*x2 + w0 + x3 + x2 + x1 + x0,
w3*w2 + w3*w1 + w3*x1 + w2*x1 + w0 + x3 + x0,
w3*w2 + w3*w1 + w3*x0 + w3*x1 + w2*x0 + w2 + x3 + x2 + x1 + x0,
w3*w2 + w3*w1 + w3*x1 + w2*x1 + w0 + x3 + x0,
w3*w2 + w3*w1 + w3*x0 + w3*x1 + w2*x0 + w2 + x3 + x2 + x1 + x0]```

class `sage.crypto.mq.sr.SR_gf2n(n=1, r=1, c=1, e=4, star=False, **kwargs)`

Bases: `sage.crypto.mq.sr.SR_generic`

Small Scale Variants of the AES polynomial system constructor over \mathbb{F}_{2^n}.

antiphi(l)

The operation ϕ^{-1} from [MR2002] or the inverse of `self.phi`.

INPUT:

• `l` – a vector in the sense of `is_vector()`

EXAMPLES:

```python
sage: sr = mq.SR()

sage: A = sr.random_state_array()

sage: A
```

(continues on next page)
\[a^2\]

```python
sage: sr.antiphi(sr.phi(A)) == A
True
```

field_polynomials (*name*, *i*, *l=None*)

Return list of conjugacy polynomials for a given round *i* and name *name*.

INPUT:

- name - variable name
- *i* - round number
- *l* - *r*c (default: None)

EXAMPLES:

```python
sage: sr = mq.SR(3, 1, 1, 8)
sage: sr.field_polynomials('x', 2)
[x200^2 + x201, x201^2 + x202, x202^2 + x203, x203^2 + x204, x204^2 + x205, x205^2 + x206, x206^2 + x207, x207^2 + x200]
```

inversion_polynomials (*xi*, *wi*, *length*)

Return polynomials to represent the inversion in the AES S-Box.

INPUT:

- *xi* - output variables
- *wi* - input variables
- *length* - length of both lists

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 8)
sage: R = sr.ring()
sage: xi = Matrix(R, 8, 1, sr.vars('x', 1))
sage: wi = Matrix(R, 8, 1, sr.vars('w', 1))
sage: sr.inversion_polynomials(xi, wi, 8)
[x100*w100 + 1, x101*w101 + 1, x102*w102 + 1, x103*w103 + 1, x104*w104 + 1, x105*w105 + 1, x106*w106 + 1, x107*w107 + 1]
```

is_vector (*d*)

Return True if *d* can be used as a vector for self.

EXAMPLES:
lin_matrix(length=None)
Return the \texttt{Lin} matrix.
If no \texttt{length} is provided, the standard state space size is used. The key schedule calls this method with an explicit length argument because only self.r S-Box applications are performed in the key schedule.

\textbf{INPUT:}

- \texttt{length} - length of state space (default: None)

\textbf{EXAMPLES:}

```python
sage: sr = mq.SR(1, 1, 1, 4)
sage: sr.lin_matrix()
[ a^2 + 1 1 a^3 + a^2 a^2 + 1]
[ a a 1 a^3 + a^2 + a + 1]
[ a^3 + a a^2 a^2 1]
[ 1 a^3 a + 1 a + 1]
```

mix_columns_matrix()
Return the \texttt{MixColumns} matrix.

\textbf{EXAMPLES:}

```python
sage: sr = mq.SR(1, 2, 2, 4)
sage: s = sr.random_state_array()
sage: r1 = sr.mix_columns(s)
sage: r2 = sr.state_array(sr.mix_columns_matrix() * sr.vector(s))
sage: r1 == r2
True
```

phi(l)
The operation \(\phi\) from \[MR2002\]
Projects state arrays to their algebraic representation.

\textbf{INPUT:}

- \texttt{l} - element to perform \(\phi\) on.

\textbf{EXAMPLES:}

```python
sage: sr = mq.SR(2, 1, 2, 4)
sage: k = sr.base_ring()
sage: A = matrix(k, 1, 2, [k.gen(), 0])
sage: sr.phi(A)
[ a 0]
[ a^2 0]
[ a + 1 0]
[a^2 + 1 0]
```
shift_rows_matrix()

Return the ShiftRows matrix.

EXAMPLES:

```python
sage: sr = mq.SR(1, 2, 2, 4)
sage: s = sr.random_state_array()
sage: r1 = sr.shift_rows(s)
sage: r2 = sr.state_array(sr.shift_rows_matrix() * sr.vector(s))
sage: r1 == r2
True
```

vector(d=\text{None})

Constructs a vector suitable for the algebraic representation of SR, i.e. BES.

INPUT:

• d - values for vector, must be understood by \texttt{self.phi} (default:None)

EXAMPLES:

```python
sage: sr = mq.SR()
sage: sr
SR(1,1,1,4)
sage: k = sr.base_ring()
sage: A = Matrix(k, 1, 1, [k.gen()])
sage: sr.vector(A)
[a]
[a^2]
[a + 1]
[a^2 + 1]
```

sage.crypto.mq.sr.test_consistency(max_n=2, **kwargs)

Test all combinations of r, c, e and n in (1, 2) for consistency of random encryptions and their polynomial systems. F_2 and F_{2^e} systems are tested. This test takes a while.

INPUT:

• max_n – maximal number of rounds to consider (default: 2)
• kwargs – are passed to the SR constructor
Rijndael-GF is an algebraic implementation of the AES cipher which seeks to provide a fully generalized algebraic representation of both the whole AES cipher as well as its individual components.

This class is an algebraic implementation of the Rijndael-GF extension of the AES cipher, as described in [DR2002]. The AES cipher itself is defined to operate on a state in $(\mathbb{F}_2)^{8\times n_t}$ where $n_t \in \{16, 20, 24, 28, 32\}$. Rijndael-GF is a generalization of AES which allows for operations in $(\mathbb{F}_2^q)^{8\times n_t}$, enabling more algebraically sophisticated study of AES and its variants. This implementation of Rijndael-GF is suitable for learning purposes, for comparison to other algebraic ciphers, and for studying various techniques of algebraic cryptanalysis of AES. This cipher is different from Mini-AES, which is a teaching tool for beginners to understand the basic structure of AES.

An algebraic implementation of Rijndael-GF is achieved by recognizing that for each round component function ϕ of AES (SubBytes, ShiftRows, etc.) operating on state matrices, every entry of the output matrix $B = \phi(A)$ is representable as a polynomial with variables being the entries of the input state matrix A. Correspondingly, this implementation of Rijndael-GF provides a RijndaelGF.Round_Component_Poly_Constr class which allows for creation of these such polynomials. For each round component function ϕ of Rijndael-GF there exists a Round_Component_Poly_Constr object with a __call__ method of the form __call__(i, j) which returns a polynomial representing $\phi(A)_{i,j}$ in terms of the entries of A. There additionally are various methods provided which allow for easy polynomial evaluation and for simple creation of Round_Component_Poly_Constr objects representing more complex aspects of the cipher.

This approach to implementing Rijndael-GF bears some similarity to the multivariate quadratic (MQ) systems utilized in SR, in that the MQ systems also seek to describe the AES cipher as a system of algebraic equations. Despite this initial similarity though, Rijndael-GF and SR are quite different as this implementation seeks to provide a fully generalized algebraic representation of both the whole AES cipher as well as its individual components, while SR is instead a family of parameterizable variants of the AES suitable as a framework for comparing different cryptanalytic techniques that can be brought to bear on the AES.

AUTHORS:

- Thomas Gagne (2015-06): initial version

EXAMPLES

We build Rijndael-GF with a block length of 4 and a key length of 6:

```
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 6)
```

We can encrypt plaintexts and decrypt ciphertexts by calling the encrypt and decrypt methods or by calling the Rijndael-GF object explicitly. Note that the default input format is a hex string.

```
sage: plaintext = '00112233445566778899aabbccddeeff'
sage: key = '000102030405060708090a0b0c0d0e0f1011121314151617'
sage: rgf.encrypt(plaintext, key)
'dda97ca4864cdfe06eaf70a0ec0d7191'
```

(continues on next page)
We can also use binary strings as input and output.

```python
sage: plain = '1110101110011111000000111001100' * 4
sage: key = '01100010111101101000110010111010' * 6
sage: ciphertext = rgf(plain, key, format='binary')
```

[DR2002] demonstrates an example of encryption which takes the plaintext ‘3243f6a8885a308d313198a2e0370734’ and the key ‘2b7e151628aed2a6abf7158809cf4f3c’ and returns the ciphertext ‘3902dc1925dc09fbdc118597196a0b32’. We can use this example to demonstrate the correctness of this implementation:

```python
sage: rgf = RijndaelGF(4, 4)  # change dimensions for this example
sage: plain = '3243f6a8885a308d313198a2e0370734'
sage: key = '2b7e151628aed2a6abf7158809cf4f3c'
```

```python
sage: expected_ciphertext = '3925841d02dc09fbdc118597196a0b32'
```

```python
sage: rgf.encrypt(plain, key) == expected_ciphertext
True
```

To build polynomials representing entries of the output matrix \(B = \phi(A) \) for any round component function \(\phi \), each of the round component functions (SubBytes, ShiftRows, and MixColumns) have a Round_Component_Poly_Constr object associated with it for building polynomials. These objects can be accessed by calling their getter functions: \(\text{rgf.sub_bytes_poly()} \), \(\text{rgf.shift_rows_poly()} \), and \(\text{rgf.mix_columns_poly()} \). Each returned object has a `__call__` method which takes an index \(i, j \) and an algorithm flag (‘encrypt’ or ‘decrypt’) and returns a polynomial representing \(\phi(A)_{i,j} \) in terms of the entries of \(A \), where \(A \) is an arbitrary state matrix and \(\phi \) is the round component function associated with that particular Round_Component_Poly_Constr object. Some of these objects’ `__call__` methods also have additional keywords to modify their behavior, and so we describe the usage of each object below.

\(\text{rgf.shift_rows_poly()} \) and \(\text{rgf.mix_columns_poly()} \) do not have any additional keywords for their `__call__` methods and we can call them as such:

```python
sage: sr_pc = rgf.shift_rows_poly_constr()
sage: sr_pc(1, 2)
a13
sage: sr_pc(2, 3, algorithm='decrypt')
a21
```

```python
sage: mc_pc = rgf.mix_columns_poly_constr()
sage: mc_pc(1, 2)
a02 + (x)*a12 + (x + 1)*a22 + a32
sage: mc_pc(2, 3, algorithm='decrypt')
(x^3 + x^2 + 1)*a03 + (x^3 + 1)*a13 + (x^3 + x^2 + x)*a23 + (x^3 + x + 1)*a33
```

\(\text{rgf.sub_bytes_poly()} \) has a single keyword `no_inversion=False`, which when set to `True` returns only the affine transformation step of SubBytes. Below describes the usage of \(\text{rgf.sub_bytes_poly()} \)
Because of the order of the affine transformation and the inversion step in SubBytes, calling `rgf.sub_bytes_poly()((i, j, algorithm='decrypt') results in a polynomial with thousands of terms which takes a very long time to compute. Hence, when using the decryption version of `rgf.sub_bytes_poly() with the intention of evaluating the polynomials it constructs, it is recommended to first call `rgf.sub_bytes_poly()((i, j, algorithm='decrypt', no_inversion=True) to get a polynomial representing only the inverse affine transformation, evaluate this polynomial for a particular input block, then finally perform the inversion step after the affine transformation polynomial has been evaluated.

```sage
sage: inv_affine = sb_pc(1, 2, algorithm='decrypt', no_inversion=True)
sage: state = rgf._hex_to_GF('ff87968431d86a51645151fa773ad009')
sage: evaluated = inv_affine(state.list())
sage: result = evaluated * -1
sage: rgf._GF_to_hex(result)
'79'
```

We can see how the variables of these polynomials are organized in A:

```sage
sage: rgf.state_vrs
[a00 a01 a02 a03]
[a10 a11 a12 a13]
[a20 a21 a22 a23]
[a30 a31 a32 a33]
```

The final `Round_Component_Poly_Constr` object we have not discussed yet is `add_round_key_poly`, which corresponds to the AddRoundKey round component function. This object differs from the other `Round_Component_Poly_Constr` objects in that it returns polynomials with variables being entries of an input state A as well as entries of various subkeys. Since there are N_r subkeys to choose from, `add_round_key_poly` has a keyword of `round=0` to select which subkey to use variables from.

```sage
sage: ark_pc = rgf.add_round_key_poly_constr()
sage: ark_pc(1, 2)
(a12 + k012)
sage: ark_pc(1, 2, algorithm='decrypt')
```

(continues on next page)
We can see how key variables are organized in the original key (the key used to build the rest of the subkeys) below. Note that because key variables are subkey entries, if the key length is longer than the block length we will have entries from multiple subkeys in the original key matrix.

We can evaluate any of these constructed polynomials for a particular input state (in essence, calculate $\phi(A)_{i,j}$) as such:

We can use the `apply_poly` method to build a matrix whose i,j th entry equals the polynomial $\phi_{poly}(i, j)$ evaluated for a particular input state, where ϕ_{poly} is the `Round_Component_Poly_Constr` object associated with the round component function ϕ. Essentially, `apply_poly` calculates $\phi(A)$, where A is our input state. Calling `apply_poly` is equivalent to applying the round component function associated this `Round_Component_Poly_Constr` object to A.

Alternatively, we can pass a matrix of polynomials as input to `apply_poly`, which will then return another matrix of polynomials. For example, `rgf.state_vrs` can be used as input to make each i,j th entry of the output matrix equal $\phi_{poly_constr}(i, j)$, where ϕ_{poly_constr} is our inputted `Round_Component_Poly_Constr` object. This matrix can then be passed through again and so on, demonstrating how one could potentially build a matrix of polynomials representing the entire cipher.

For any of these `Round_Component_Poly_Constr` objects, we can change the keywords of its `__call__` method when `apply_poly` invokes it by passing `apply_poly` a dictionary mapping keywords to their values.
We can build our own Round_Component_Poly_Constr objects which correspond to the composition of multiple round component functions with the compose method. To do this, if we pass two Round_Component_Poly_Constr objects to compose where the first object corresponds to the round component function \(f \) and the second to the round component function \(g \), compose will return a new Round_Component_Poly_Constr object corresponding to the function \(g \circ f \). This returned Round_Component_Poly_Constr object will have the arguments of __call__(row, col, algorithm='encrypt') and when passed an index \(i, j \) will return \(g(f(A))_{i,j} \) in terms of the entries of \(A \).

Alternatively, we can use compose to build the polynomial output of a Round_Component_Poly_Constr object corresponding to the composition of multiple round functions like above without having to explicitly build our own Round_Component_Poly_Constr object. To do this, we simply make the first input a Round_Component_Poly_Constr object corresponding to a round component function \(f \) and make the second input a polynomial representing \(g(A)_{i,j} \) for a round component function \(g \). Given this, compose will return a polynomial representing \(g(f(A))_{i,j} \) in terms of the entries of \(A \).
(x^3 + 1)*a33^253 +
(x^7 + x^6 + x^5 + x^3 + 1)*a03^251 +
(x^4)*a13^251 +
(x^7 + x^6 + x^5 + x^4 + x^3 + 1)*a23^251 +
(x^7 + x^6 + x^5 + x^4 + x^3 + 1)*a33^251 +
(x^6 + x^3 + x)*a03^247 +
(x^6 + x^5 + x^3 + x^2 + x + 1)*a13^247 +
(x^5 + x^2 + 1)*a23^247 +
(x^5 + x^2 + 1)*a33^247 +
(x^7 + x^6 + x^5 + x^4 + x + 1)*a03^239 +
(x^2 + x + 1)*a13^239 +
(x^7 + x^6 + x^5 + x^4 + x^2)*a23^239 +
(x^7 + x^6 + x^5 + x^4 + x^2)*a33^239 +
(x)*a03^223 +
(x + 1)*a13^223 +
a23^223 +
a33^223 +
(x^6 + x^5 + x^4 + 1)*a03^191 +
(x^7 + x^6 + x^2)*a13^191 +
(x^7 + x^5 + x^4 + x^2 + 1)*a23^191 +
(x^7 + x^5 + x^4 + x^2 + 1)*a33^191 +
(x^2 + 1)*a03^127 +
(x^7 + x^3 + x)*a13^127 +
(x^7 + x^3 + x^2 + x + 1)*a23^127 +
(x^7 + x^3 + x^2 + x + 1)*a33^127 +
(x^6 + x^5 + x + 1)

If we use algorithm='decrypt' as an argument to compose, then the value of algorithm will be passed directly to the first argument of compose (a Round_Component_Poly_Constr object) when it is called, provided the second argument is a polynomial. Setting this flag does nothing if both arguments are Round_Component_Poly_Constr objects, since the returned Round_Component_Poly_Constr object's __call__ method must have its own algorithm keyword defaulted to 'encrypt'.

```python
sage: poly = rgf.shift_rows_poly_constr()(2, 1)
sage: rgf.compose(rgf.mix_columns_poly_constr(), poly, algorithm='decrypt')
(x^3 + x^2 + 1)*a03 + (x^3 + 1)*a13 + (x^3 + x^2 + x)*a23 + (x^3 + x + 1)*a33

sage: state = rgf._hex_to_GF('80121e0776fd1d8a8d8c31bc965d1fee')
sage: with_decrypt = rgf.compose(rgf.sub_bytes_poly_constr(),
....: rgf.shift_rows_poly_constr(), algorithm='decrypt')
sage: result_wd = rgf.apply_poly(state, with_decrypt)
sage: no_decrypt = rgf.compose(rgf.sub_bytes_poly_constr(),
....: rgf.shift_rows_poly_constr())
sage: result_nd = rgf.apply_poly(state, no_decrypt)
sage: result_wd == result_nd
True
```

We can also pass keyword dictionaries of f_attr and g_attr to compose to make f and g use those keywords during polynomial creation.

```python
sage: rcpc = rgf.compose(rgf.add_round_key_poly_constr(),
....: rgf.add_round_key_poly_constr(),
....: f_attr={'round' : 4}, g_attr={'round' : 7})
sage: rcpc(1, 2)
a12 + k412 + k712
```

In addition to building polynomial representations of state matrices, we can also build polynomial representations of
elements of the expanded key with the expand_key_poly method. However, since the key schedule is defined recursively, it is impossible to build polynomials for the key schedule in the same manner as we do for the round component functions. Consequently, expand_round_key_poly() is not a Round_Component_Poly_Constr object. Instead, expand_key_poly is a method which takes an index i, j and a round number round, and returns a polynomial representing the i, j th entry of the round th round key. This polynomial’s variables are entries of the original key we built above.

```sage
sage: rgf.expand_key_poly(1, 2, 0)
k012
sage: rgf.expand_key_poly(1, 1, 1)
k111
sage: rgf.expand_key_poly(1, 2, 1)
(x^2 + 1)*k121^254 +
(x^3 + 1)*k121^253 +
(x^7 + x^6 + x^5 + x^4 + x^3 + 1)*k121^251 +
(x^5 + x^2 + 1)*k121^247 +
(x^7 + x^6 + x^5 + x^4 + x^2)*k121^239 +
k121^223 +
(x^7 + x^5 + x^4 + x^2 + 1)*k121^191 +
(x^7 + x^3 + x^2 + x + 1)*k121^127 +
k010 +
(x^6 + x^5 + x)
```

Since expand_key_poly is not actually a Round_Component_Poly_Constr object, we cannot use it as input to apply_poly or compose.

```sage
sage: rgf.apply_poly(state, rgf.expand_key_poly)
Traceback (most recent call last):
  ...TypeError: keyword 'poly_constr' must be a Round_Component_Poly_Constr
sage: rgf.compose(rgf.expand_key_poly, rgf.sub_bytes_poly_constr())
Traceback (most recent call last):
  ...TypeError: keyword 'f' must be a Round_Component_Poly_Constr
```

```python
class sage.crypto.mq.rijndael_gf.RijndaelGF(Nb, Nk, state_chr='a', key_chr='k')
    Bases: sage.structure.sage_object.SageObject
    
    An algebraically generalized version of the AES cipher.

    INPUT:

    • Nb – The block length of this instantiation. Must be between 4 and 8.
    • Nk – The key length of this instantiation. Must be between 4 and 8.
    • state_chr – The variable name for polynomials representing elements from state matrices.
    • key_chr – The variable name for polynomials representing elements of the key schedule.

    EXAMPLES:

```sage
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(6, 8)
sage: rgf
Rijndael-GF block cipher with block length 6, key length 8, and 14 rounds.
```

By changing state_chr we can alter the names of variables in polynomials representing elements from state matrices.
We can also alter the name of variables in polynomials representing elements from round keys by changing key_chr.

```sage
rgf = RijndaelGF(4, 6, state_chr='myChr')
rgf.mix_columns_poly_constr()(3, 2)
(x + 1)*myChr02 + myChr12 + myChr22 + (x)*myChr32
```

```sage
rgf = RijndaelGF(4, 6, state_chr='myKeyChr')
rgf.expand_key_poly(1, 2, 1)
(x^2 + 1)*myKeyChr121^254 +
(x^3 + 1)*myKeyChr121^253 +
(x^7 + x^5 + x^4 + x^4 + x^3 + 1)*myKeyChr121^251 +
(x^5 + x^2 + 1)*myKeyChr121^247 +
(x^7 + x^6 + x^5 + x^4 + x^2)*myKeyChr121^239 +
myKeyChr121^223 +
(x^7 + x^5 + x^4 + x^2 + 1)*myKeyChr121^191 +
(x^7 + x^3 + x^2 + x + 1)*myKeyChr121^127 +
myKeyChr010 +
(x^6 + x^5 + x)
```

class Round_Component_Poly_Constr(polynomial_constr, rgf, round_component_name=None)

Bases: sage.structure.sage_object.SageObject

An object which constructs polynomials representing round component functions of a RijndaelGF object.

**INPUT:**

- `polynomial_constr` – A function which takes an index `row, col` and returns a polynomial representing the `row, col`th entry of a matrix after a specific round component function has been applied to it. This polynomial must be in terms of entries of the input matrix to that round component function and of entries of various subkeys. `polynomial_constr` must have arguments of the form `polynomial_constr(row, col, algorithm='encrypt', **kwargs)` and must be able to be called as `polynomial_constr(row, col)`.

- `rgf` – The RijndaelGF object whose state entries are represented by polynomials returned from `polynomial_constr`.

- `round_component_name` – The name of the round component function this object corresponds to as a string. Used solely for display purposes.

**EXAMPLES:**

```sage
from sage.crypto.mq.rijndael_gf import *
...: RijndaelGF
rgf = RijndaelGF(4, 4)
rcpc = RijndaelGF.Round_Component_Poly_Constr(
 ...: rgf._shift_rows_pc, rgf, "Shift Rows")
rcpc
```

A polynomial constructor for the function 'Shift Rows' of Rijndael-GF block cipher with block length 4, key length 4, and 10 rounds.

If $\phi$ is the round component function to which this object corresponds to, then `__call__(i, j)` = $\phi(A)_{i,j}$, where $A$ is an arbitrary input matrix. Note that the polynomial returned by `__call__(i, j)` will be in terms of the entries of $A$.

```sage
rcpc = RijndaelGF.Round_Component_Poly_Constr(
 ...: rgf._mix_columns_pc, rgf, "Mix Columns")
```
Invoking this object's __call__ method passes its arguments directly to \texttt{polynomial\_constr} and returns the result. In a sense, \texttt{Round\_Component\_Poly\_Constr} acts as a wrapper for the \texttt{polynomial\_constr} method and helps ensure that each \texttt{Round\_Component\_Poly\_Constr} object will act similarly.

\begin{verbatim}
sage: all(rgf._mix_columns_pc(i, j) == rcpc(i, j)
....: for i in range(4) for j in range(4))
True
\end{verbatim}

Since all keyword arguments of \texttt{polynomial\_constr} must have a default value except for \texttt{row} and \texttt{col}, we can always call a \texttt{Round\_Component\_Poly\_Constr} object by \texttt{__call__(row, col)}. Because of this, methods such as \texttt{apply\_poly} and \texttt{compose} will only call \texttt{__call__(row, col)} when passed a \texttt{Round\_Component\_Poly\_Constr} object. In order to change this object's behavior and force methods such as \texttt{apply\_poly} to use non-default values for keywords we can pass dictionaries mapping keywords to non-default values as input to \texttt{apply\_poly} and \texttt{compose}.

\begin{verbatim}
sage: fn = rgf.compose(rgf.add_round_key_poly_constr(),
....: rgf.add_round_key_poly_constr(),
....: f_attr={'round' : 3}, g_attr={'round' : 7})
sage: fn(2, 3)
a23 + k323 + k723
\end{verbatim}

Because all \texttt{Round\_Component\_Poly\_Constr} objects are callable as \texttt{__call__(row, col, algorithm)}, \texttt{__call__} will check the validity of these three arguments automatically. Any other keywords, however, must be checked in \texttt{polynomial\_constr}.

\begin{verbatim}
sage: def my_poly_constr(row, col, algorithm='encrypt'):
....:     return x * rgf._F.one() # example body with no checks
....:
sage: rcpc = RijndaelGF.Round\_Component\_Poly\_Constr(
....:     my_poly_constr, rgf, "My Poly Constr")
sage: rcpc(-1, 2)
Traceback (most recent call last):
...
ValueError: keyword 'row' must be in range 0 - 3
sage: rcpc(1, 2, algorithm=5)
Traceback (most recent call last):
...
ValueError: keyword 'algorithm' must be either 'encrypt' or 'decrypt'
\end{verbatim}
Returns the round-key addition of matrices \( \text{state} \) and \( \text{round\_key} \).

INPUT:

- \( \text{state} \) – The state matrix to have \( \text{round\_key} \) added to.
- \( \text{round\_key} \) – The round key to add to \( \text{state} \).

OUTPUT:

- A state matrix which is the round key addition of \( \text{state} \) and \( \text{round\_key} \). This transformation is simply the entrywise addition of these two matrices.

EXAMPLES:

```python
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: state = rgf._hex_to_GF('36339d50f9b539269f2c092dc4406d23')
sage: key = rgf._hex_to_GF('7CC78D0E22754E667E24573F454A6531')
sage: key_schedule = rgf.expand_key(key)
sage: result = rgf.add_round_key(state, key_schedule[0])
sage: rgf._GF_to_hex(result)
'4af4105eddbe7740e1085e12810a0812'
```

\( \text{add\_round\_key\_poly\_constr}() \)

Return the \text{Round\_Component\_Poly\_Constr} object corresponding to AddRoundKey.

EXAMPLES:

```python
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: ark_pc = rgf.add_round_key_poly_constr()
sage: ark_pc
A polynomial constructor for the function 'Add Round Key' of Rijndael-GF with block length 4, key length 4, and 10 rounds.
sage: ark_pc(0, 1)
a01 + k001
```

When invoking the returned object’s \texttt{__call__} method, changing the value of \texttt{algorithm=’encrypt’} does nothing, since the AddRoundKey round component function is its own inverse.

```python
sage: with_encrypt = ark_pc(1, 1, algorithm='encrypt')
sage: with_decrypt = ark_pc(1, 1, algorithm='decrypt')
sage: with_encrypt == with_decrypt
True
```

When invoking the returned object’s \texttt{__call__} method, one can change the round subkey used in the returned polynomial by changing the \texttt{round=0} keyword.

```python
sage: ark_pc(2, 1, round=7)
a21 + k721
```

When passing the returned object to methods such as \texttt{apply\_poly} and \texttt{compose}, we can make these methods use a non-default value for \texttt{round=0} by passing in a dictionary mapping \texttt{round} to a different value.

```python
sage: rgf.apply_poly(rgf.state_vrs, ark_pc,
....: poly_constr_attr=('round' : 6))
[a00 + k600 a01 + k601 a02 + k602 a03 + k603]
```

(continues on next page)
apply_poly \(\text{(state, poly\_constr, algorithm='encrypt', keys=None, poly\_constr\_attr=None)}\)

Returns a state matrix where poly\_method is applied to each entry.

**INPUT:**

- **state** – The state matrix over \(\mathbb{F}_{2^8}\) to which poly\_method is applied to.
- **poly\_constr** – The Round\_Component\_Poly\_Constr object to build polynomials during evaluation.
- **algorithm** – (default: “encrypt”) Passed directly to rcpc to select encryption or decryption. The encryption flag is “encrypt” and the decrypt flag is “decrypt”.
- **keys** – (default: None) An array of \(N_r\) subkey matrices to replace any key variables in any polynomials returned by poly\_method. Must be identical to the format returned by expand_key. If any polynomials have key variables and keys is not supplied, the key variables will remain as-is.
- **poly\_constr\_attr** – (default:None) A dictionary of keyword attributes to pass to rcpc when it is called.

**OUTPUT:**

- A state matrix in \(\mathbb{F}_{2^8}\) whose \(i, j\) th entry equals the polynomial \(\text{poly\_constr}(i, j, \text{algorithm}, **\text{poly\_constr\_attr})\) evaluated by setting its variables equal to the corresponding entries of state.

**EXAMPLES:**

```
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: state = rgf._hex_to_GF('3b59cb73fcd90ee05774222dc067fb68')
sage: result = rgf.apply_poly(state, rgf.shift_rows_poly_constr())
sage: rgf._GF_to_hex(result)
'3bd92268fc74fb735767cbe0c0590e2d'
```

Calling apply_poly with the Round\_Component\_Poly\_Constr object of a round component (e.g. sub\_bytes\_poly) is identical to calling that round component function itself.

```
sage: state = rgf._hex_to_GF('4915598f55e5d7a0daca94f1f0a63f7')
sage: apply_poly_result = rgf.apply_poly(state,
.....: rgf.sub_bytes_poly_constr())
sage: direct_result = rgf.sub_bytes(state)
sage: direct_result == apply_poly_result
True
```

If the Round\_Component\_Poly\_Constr object's __call__ method returns a polynomial with state variables as well as key variables, we can supply a list of \(N_r\) round keys keys whose elements are evaluated as the key variables. If this is not provided, the key variables will remain as is.
We can change the value of the keywords of poly_constr's __call__ method when apply_poly calls it by passing in a dictionary poly_constr_attr mapping keywords to their values.

```python
sage: rgf.apply_poly(rgf.state_vrs,
....: rgf.add_round_key_poly_constr(),
....: poly_constr_attr={'round' : 5})

[a00 + k500 a01 + k501 a02 + k502 a03 + k503]
[a10 + k510 a11 + k511 a12 + k512 a13 + k513]
[a20 + k520 a21 + k521 a22 + k522 a23 + k523]
[a30 + k530 a31 + k531 a32 + k532 a33 + k533]
```

---

**block_length()**

Returns the block length of this instantiation of Rijndael-GF.

**EXAMPLES:**

```python
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 6)
sage: rgf.block_length()
4
```

**compose (f, g, algorithm='encrypt', f_attr=None, g_attr=None)**

Return a Round_Component_Poly_Constr object corresponding to \( g \circ f \) or the polynomial output of this object's __call__ method.

**INPUT:**

- \( f \) - A Round_Component_Poly_Constr object corresponding to a round component function \( f \).
- \( g \) - A Round_Component_Poly_Constr object corresponding to a round component function \( g \) or a polynomial output of this object's __call__ method.
- \( \text{algorithm} \) - (default: "encrypt") Whether \( f \) and \( g \) should use their encryption transformations or their decryption transformations. Does nothing if \( g \) is a Round_Component_Poly_Constr object. The encryption flag is "encrypt" and the decryption flag is "decrypt".
- \( f\_attr \) - (default: None) A dictionary of keyword attributes to pass to \( f \) when it is called.
- \( g\_attr \) - (default: None) A dictionary of keyword attributes to pass to \( g \) when it is called. Does nothing if \( g \) is a polynomial.

**OUTPUT:**

- If \( g \) is a Round_Component_Poly_Constr object corresponding to a round component function \( g \), then compose returns a Round_Component_Poly_Constr corresponding to the round component function \( g \circ f \), where \( f \) is the round component function corresponding to the first argument \( f \). On the other hand, if \( g = g(A)_{i,j} \) for a round component function \( g \), then compose returns \( g(f(A))_{i,j} \), where \( A \) is an arbitrary input state matrix.
EXAMPLES

This function allows us to determine the polynomial representations of entries across multiple round functions. For example, if we wanted a polynomial representing the 1, 3 entry of a matrix after we first apply ShiftRows and then MixColumns to that matrix, we do:

```
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)

sage: mcp = rgf.mix_columns_poly_constr()(1, 3); mcp
a03 + (x)*a13 + (x + 1)*a23 + a33

sage: result = rgf.compose(rgf.shift_rows_poly_constr(), mcp)

sage: result
a03 + (x)*a10 + (x + 1)*a21 + a32
```

We can test the correctness of this:

```
sage: state = rgf._hex_to_GF('fa636a2825b339c940668a3157244d17')
sage: new_state = rgf.shift_rows(state)
sage: new_state = rgf.mix_columns(new_state)
sage: result(state.list()) == new_state[1,3]
True
```

We can also use `compose` to build a new `Round_Component_Poly_Constr` object corresponding to the composition of multiple round functions as such:

```
sage: fn = rgf.compose(rgf.shift_rows_poly_constr(),
....: rgf.mix_columns_poly_constr())

sage: fn(1, 3)
a03 + (x)*a10 + (x + 1)*a21 + a32
```

If we use `compose` to make a new `Round_Component_Poly_Constr` object, we can use that object as input to `apply_poly` and `compose`:

```
sage: state = rgf._hex_to_GF('36400926f9336d2d9fb59d23c42c3950')
sage: result = rgf.apply_poly(state, fn)
sage: rgf._GF_to_hex(result)
'f4bcd45432e554d075f1d6c51dd03b3c'

sage: new_state = rgf.shift_rows(state)
sage: new_state = rgf.mix_columns(new_state)
sage: result == new_state
True

sage: fn2 = rgf.compose(rgf.sub_bytes_poly_constr(), fn)
```

If the second argument is a polynomial, then the value of `algorithm` is passed directly to the first argument $f$ during evaluation. However, if the second argument is a `Round_Component_Poly_Constr` object, changing `algorithm` does nothing since the returned object has its own `algorithm='encrypt'` keyword.

```
sage: f = rgf.compose(rgf.sub_bytes_poly_constr(),
....: rgf.mix_columns_poly_constr(), algorithm='decrypt')

sage: g = rgf.compose(rgf.sub_bytes_poly_constr(),
....: rgf.mix_columns_poly_constr())

sage: all(f(i,j) == g(i,j) for i in range(4) for j in range(4))
True
```
We can change the keyword attributes of the \_\_call\_\_ methods of \texttt{f} and \texttt{g} by passing dictionaries \texttt{f\_attr} and \texttt{g\_attr} to \texttt{compose}.

\begin{Verbatim}
sage: fn = rgf.compose(rgf.add_round_key_poly_constr(), ....: rgf.add_round_key_poly_constr(), ....: f\_attr={'round' : 4}, g\_attr={'round' : 7})
sage: fn(1, 2)
a12 + k412 + k712
\end{Verbatim}

decrypt (\texttt{ciphertext, key, format='hex'})

Returns the ciphertext \texttt{ciphertext} decrypted with the key \texttt{key}.

\textbf{INPUT:}

- \texttt{ciphertext} – The ciphertext to be decrypted.
- \texttt{key} – The key to decrypt \texttt{ciphertext} with.
- \texttt{format} – (default: hex) The string format that both \texttt{ciphertext} and \texttt{key} must be in, either “hex” or “binary”.

\textbf{OUTPUT:}

- A string in the format \texttt{format} of \texttt{ciphertext} decrypted with key \texttt{key}.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: key = '2dfb02343f6d12dd09337ec75b36e3f0'
sage: ciphertext = '54d990a16ba09ab596bbf40ea111702f'
sage: expected_plaintext = '1e1d913b7274ad9b5a4ab1a5f9133b93'
sage: rgf.decrypt(ciphertext, key) == expected_plaintext
True
\end{Verbatim}

We can also decrypt messages using binary strings.

\begin{Verbatim}
sage: key = '0001101000001110000000000000111101' * 4
sage: ciphertext = '54d990a16ba09ab596bbf40ea111702f'
\end{Verbatim}

\begin{Verbatim}
sage: expected_plaintext = '1e1d913b7274ad9b5a4ab1a5f9133b93'
sage: result = rgf.decrypt(ciphertext, key, format='binary')
sage: result == expected_plaintext
True
\end{Verbatim}

\textbf{encrypt (\texttt{plain, key, format='hex'})}

Returns the plaintext \texttt{plain} encrypted with the key \texttt{key}.

\textbf{INPUT:}

- \texttt{plain} – The plaintext to be encrypted.
- \texttt{key} – The key to encrypt \texttt{plain} with.
- \texttt{format} – (default: hex) The string format of \texttt{key} and \texttt{plain}, either “hex” or “binary”.

\textbf{OUTPUT:}

- A string of the plaintext \texttt{plain} encrypted with the key \texttt{key}.

\textbf{EXAMPLES:}
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)

sage: key = 'c81677bc9b7ac93b25027992b0261996'

sage: plain = 'fde3bad205e5d0d73547964ef1fe37f1'

sage: expected_ciphertext = 'e767290ddfc6414e3c50a444bec081f0'

sage: rgf.encrypt(plain, key) == expected_ciphertext
True

We can encrypt binary strings as well.

sage: key = '1001011111000011111011101010001' * 4

sage: plain = '0000000010100000000000111100110110'

sage: expected_ciphertext = ('110101111010000111110010101010001' * 4)

result = rgf.encrypt(plain, key, format='binary')

result == expected_ciphertext
True

expand_key(key)

Returns the expanded key schedule from key.

INPUT:

• key – The key to build a key schedule from. Must be a matrix over $F_{2^8}$ of dimensions $4 \times N_k$.

OUTPUT:

• A length $N_r$ list of $4 \times N_b$ matrices corresponding to the expanded key. The $n$ th entry of the list corresponds to the matrix used in the add_round_key step of the $n$ th round.

EXAMPLES:

sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 6)

sage: key = '331d0084b176c3fb59caa0eda271b565bb5d9a2d1e4b2892'

sage: key_state = rgf._hex_to_GF(key)

sage: key_schedule = rgf.expand_key(key_state)

sage: rgf._GF_to_hex(key_schedule[0])
'331d0084b176c3fb59caa0eda271b565'

sage: rgf._GF_to_hex(key_schedule[6])
'5c5d51c4121f018d0f4f3e408ae9f78c'

expand_key_poly(row, col, round)

Returns a polynomial representing the $row, col$ th entry of the $round$ th round key.

INPUT:

• row – The row position of the element represented by this polynomial.

• col – The column position of the element represented by this polynomial.

OUTPUT:

• A polynomial representing the $row, col$ th entry of the $round$ th round key in terms of entries of the input key.

EXAMPLES:

sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)

(continues on next page)
sage: rgf.expand_key_poly(1, 2, 0)
k012
sage: rgf.expand_key_poly(1, 2, 1)
(x^2 + 1)*k023^254 +
(x^3 + 1)*k023^253 +
(x^7 + x^6 + x^5 + x^4 + x^3 + 1)*k023^251 +
(x^5 + x^2 + 1)*k023^247 +
(x^7 + x^6 + x^5 + x^4 + x^2)*k023^239 +
k023^223 +
(x^7 + x^5 + x^4 + x^2 + 1)*k023^191 +
(x^7 + x^3 + x^2 + x + 1)*k023^127 +
k010 +
k011 +
k012 +
(x^6 + x^5 + x)

It should be noted that expand_key_poly cannot be used with apply_poly or compose, since expand_key_poly is not a Round_Component_Poly_Constr object.

sage: rgf.compose(rgf.sub_bytes_poly_constr(), rgf.expand_key_poly)
Traceback (most recent call last):
  ...TypeError: keyword 'g' must be a Round_Component_Poly_Constr or a polynomial over Finite Field in x of size 2^8
sage: state = rgf._hex_to_GF('00000000000000000000000000000000')
sage: rgf.apply_poly(state, rgf.expand_key_poly)
Traceback (most recent call last):
  ...TypeError: keyword 'poly_constr' must be a Round_Component_Poly_Constr

key_length()
Returns the key length of this instantiation of Rijndael-GF.

EXAMPLES:

sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 8)
sage: rgf.key_length()
8

mix_columns(state, algorithm='encrypt')
Returns the application of MixColumns to the state matrix state.

INPUT:

• state – The state matrix to apply MixColumns to.
• algorithm – (default: “encrypt”) Whether to perform the encryption version of MixColumns, or its decryption inverse. The encryption flag is “encrypt” and the decryption flag is “decrypt”.

OUTPUT:

• The state matrix over \( \mathbb{F}_{2^8} \) which is the result of applying MixColumns to state.

EXAMPLES:

sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
\begin{verbatim}
sage: state = rgf._hex_to_GF('cd54c7283864c0c55d4c727e90c9a465')
sage: result = rgf.mix_columns(state)
sage: rgf._GF_to_hex(result)
'921f748fd96e937d622d7725ba8ba50c'
sage: decryption = rgf.mix_columns(result, algorithm='decrypt')
sage: decryption == state
True
\end{verbatim}

**mix_columns_poly_constr()**

Return a \texttt{Round\_Component\_Poly\_Constr} object corresponding to MixColumns.

**EXAMPLES:**

\begin{verbatim}
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: mc_pc = rgf.mix_columns_poly_constr()
sage: mc_pc
A polynomial constructor for the function 'Mix Columns' of Rijndael-GF block→cipher with block length 4, key length 4, and 10 rounds.
sage: mc_pc(1, 2)
a02 + (x)*a12 + (x + 1)*a22 + a32
sage: mc_pc(1, 0, algorithm='decrypt')
(x^3 + 1)*a00 + (x^3 + x^2 + x)*a10 + (x^3 + x + 1)*a20 + (x^3 + x^2 + 1)*a30
\end{verbatim}

The returned object’s \texttt{__call__} method has no additional keywords, unlike \texttt{sub_bytes_poly_constr()} and \texttt{add_round_key_poly_constr()}.

**number_rounds()**

Returns the number of rounds used in this instantiation of Rijndael-GF.

**EXAMPLES:**

\begin{verbatim}
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(5, 4)
sage: rgf.number_rounds()
11
\end{verbatim}

**shift_rows(state, algorithm='encrypt')**

Returns the application of ShiftRows to the state matrix \texttt{state}.

**INPUT:**

- \texttt{state} – A state matrix over \(F_{2^8}\) to which ShiftRows is applied to.
- \texttt{algorithm} – (default: “encrypt”) Whether to perform the encryption version of ShiftRows or its decryption inverse. The encryption flag is “encrypt” and the decryption flag is “decrypt”.

**OUTPUT:**

- A state matrix over \(F_{2^8}\) which is the application of ShiftRows to \texttt{state}.

**EXAMPLES:**

\begin{verbatim}
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: state = rgf._hex_to_GF('adcb0f257e9c63e0bc557e951c15ef01')
sage: result = rgf.shift_rows(state)
sage: rgf._GF_to_hex(result)
'ad9c7e017e55ef25bc150fe01cc6395'
\end{verbatim}
sage: decryption = rgf.shift_rows(result, algorithm='decrypt')
sage: decryption == state
True

\texttt{shift\_rows\_poly\_constr()} \\
\text{Return a Round\_Component\_Poly\_Constr object corresponding to ShiftRows.}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: sr_pc = rgf.shift_rows_poly_constr()
sage: sr_pc(3, 0)
a33
sage: sr_pc(2, 1, algorithm='decrypt')
a23
\end{verbatim}

The returned object’s \texttt{\_\_call\_\_} method has no additional keywords, unlike \texttt{sub\_bytes\_poly\_constr()} and \texttt{add\_round\_key\_poly\_constr}.

\texttt{sub\_bytes(state, algorithm='encrypt')} \\
\text{Returns the application of SubBytes to the state matrix \texttt{state}.}

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{state} – The state matrix to apply SubBytes to.
  \item \texttt{algorithm} – (default: “encrypt”) Whether to apply the encryption step of SubBytes or its decryption inverse. The encryption flag is “encrypt” and the decryption flag is “decrypt”.
\end{itemize}

\textbf{OUTPUT:}

\begin{itemize}
  \item The state matrix over $F_{2^8}$ where SubBytes has been applied to every entry of \texttt{state}.
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: state = rgf._hex_to_GF('d1c4941f7955f40fb46f6c0ad68730ad')
sage: result = rgf.sub_bytes(state)
sage: rgf._GF_to_hex(result)
'3e1c22c0b6fcbf768da85067f6170495'
sage: decryption = rgf.sub_bytes(result, algorithm='decrypt')
sage: decryption == state
True
\end{verbatim}

\texttt{sub\_bytes\_poly\_constr()} \\
\text{Return the Round\_Component\_Poly\_Constr object corresponding to SubBytes.}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
sage: sb_pc = rgf.sub_bytes_poly_constr()
sage: sb_pc(2, 3)
(x^2 + 1)*a23^254 +
\end{verbatim}
The returned object’s __call__ method has an additional keyword of no_inversion=False, which causes the returned polynomial to represent only the affine transformation step of SubBytes.

We can build a polynomial representing the inverse transformation by setting the keyword algorithm='decrypt'. However, the order of the affine transformation and the inversion step in SubBytes means that this polynomial has thousands of terms and is very slow to compute. Hence, if one wishes to build the decryption polynomial with the intention of evaluating that polynomial for a particular input, it is strongly recommended to first call sb_pc(i, j, algorithm='decrypt', no_inversion=True) to build a polynomial representing only the inverse affine transformation, evaluate this polynomial for your intended input, then finally calculate the inverse of the result.

When passing the returned object to apply_poly and compose, we can make those methods change the keyword no_inversion of this object’s __call__ method by passing the dictionary {'no_inversion': True} to them.

Note that if we set algorithm='decrypt' for apply_poly, it will perform the necessary performance enhancement described above automatically. The structure of compose, however, unfortunately does not allow this enhancement to be employed.
This module contains lattice related functions relevant in cryptography. Feel free to add more functionality.

AUTHORS:
- Richard Lindner <rlindner@cdc.informatik.tu-darmstadt.de>
- Michael Schneider <mischnei@cdc.informatik.tu-darmstadt.de>

```python
sage.crypto.lattice.gen_lattice(type='modular', n=4, m=8, q=11, seed=None, quotient=None, dual=False, ntl=False, lattice=False)
```

This function generates different types of integral lattice bases of row vectors relevant in cryptography.

Randomness can be set either with `seed`, or by using `sage.misc.randstate.set_random_seed()`.

**INPUT:**

- `type` -- one of the following strings
  - 'modular' (default) -- A class of lattices for which asymptotic worst-case to average-case connections hold. For more refer to [Aj1996].
  - 'random' -- Special case of modular (n=1). A dense class of lattice used for testing basis reduction algorithms proposed by Goldstein and Mayer [GM2002].
  - 'ideal' -- Special case of modular. Allows for a more compact representation proposed by [LM2006].
  - 'cyclotomic' -- Special case of ideal. Allows for efficient processing proposed by [LM2006].
- `n` -- Determinant size, primal: \( \det(L) = q^n \), dual: \( \det(L) = q^{m-n} \). For ideal lattices this is also the degree of the quotient polynomial.
- `m` -- Lattice dimension, \( L \subseteq \mathbb{Z}^m \).
- `q` -- Coefficient size, \( q \subseteq \mathbb{Z}^m \subseteq L \).
- `seed` -- Randomness seed.
- `quotient` -- For the type ideal, this determines the quotient polynomial. Ignored for all other types.
- `dual` -- Set this flag if you want a basis for \( q - dual(L) \), for example for Regev’s LWE bases [Reg2005].
- `ntl` -- Set this flag if you want the lattice basis in NTL readable format.
- `lattice` -- Set this flag if you want a `FreeModule_submodule_with_basis_integer` object instead of an integer matrix representing the basis.

**OUTPUT:** A unique size-reduced triangular (primal: lower_left, dual: lower_right) basis of row vectors for the lattice in question.
EXAMPLES:

Modular basis:

```python
sage: sage.crypto.gen_lattice(m=10, seed=42)
[[11 0 0 0 0 0 0 0 0 0]
 [0 11 0 0 0 0 0 0 0 0]
 [0 0 11 0 0 0 0 0 0 0]
 [2 4 3 5 1 0 0 0 0 0]
 [1 -5 -4 2 0 1 0 0 0 0]
[-4 3 -1 1 0 1 0 0 0 0]
[-2 -3 4 -1 0 0 1 0 0 0]
[-5 -5 3 3 0 0 0 0 1 0]
[-4 -3 2 -5 0 0 0 0 0 1]]
```

Random basis:

```python
sage: sage.crypto.gen_lattice(type='random', n=1, m=10, q=11^4, seed=42)
[[14641 0 0 0 0 0 0 0 0 0]
 [431 1 0 0 0 0 0 0 0 0]
[-4792 0 1 0 0 0 0 0 0 0]
 [1015 0 0 1 0 0 0 0 0 0]
[-3086 0 0 0 1 0 0 0 0 0]
[-5378 0 0 0 0 1 0 0 0 0]
 [4769 0 0 0 0 0 1 0 0 0]
[-1159 0 0 0 0 0 0 1 0 0]
 [3082 0 0 0 0 0 0 0 1 0]
[-4580 0 0 0 0 0 0 0 0 1]]
```

Ideal bases with quotient $x^n-1$, $m=2n$ are NTRU bases:

```python
sage: sage.crypto.gen_lattice(type='ideal', seed=42, quotient=x^4-1)
[[11 0 0 0 0 0 0 0]
 [0 11 0 0 0 0 0 0]
 [0 0 11 0 0 0 0 0]
 [0 0 0 11 0 0 0 0]
 [0 0 0 0 11 0 0 0]
[-2 -3 -1 4 2 0 0 0]
[-2 -2 -3 4 0 1 0 0]
[-3 -3 -2 4 -1 0 0 0]
[-2 -4 -3 1 0 0 0 1]]
```

Ideal bases also work with polynomials:

```python
sage: R.<t> = PolynomialRing(ZZ)
sage: sage.crypto.gen_lattice(type='ideal', seed=1234, quotient=t^4-1)
[[11 0 0 0 0 0 0 0]
 [0 11 0 0 0 0 0 0]
 [0 0 11 0 0 0 0 0]
 [0 0 0 11 0 0 0 0]
 [0 0 0 0 11 0 0 0]
 [1 4 -3 3 1 0 0 0]
 [0 3 1 -4 -3 0 1 0]
 [0 3 1 4 0 0 1 0]
[-3 -3 3 1 0 0 0 1]]
```

Cyclotomic bases with n=2^k are SWIFFT bases:
Dual modular bases are related to Regev’s famous public-key encryption [Reg2005]:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 11 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 11 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 11 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 11 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 11 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 -5 -2 -1 1 -3 5 \\
0 & 0 & 1 0 -3 4 1 4 -3 -2 \\
0 & 1 0 0 -4 5 -3 3 5 3 \\
1 0 0 0 -2 -1 4 2 5 4
\end{bmatrix}
\]

Relation of primal and dual bases:

\[
\begin{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\n\end{bmatrix}
\end{bmatrix}
\]

True
(RING-)LWE ORACLE GENERATORS

The Learning with Errors problem (LWE) is solving linear systems of equations where the right hand side has been disturbed ‘slightly’ where ‘slightly’ is made precise by a noise distribution - typically a discrete Gaussian distribution. See [Reg09] for details.

The Ring Learning with Errors problem (LWE) is solving a set of univariate polynomial equations - typically in a cyclotomic field - where the right hand side was disturbed ‘slightly’. See [LPR2010] for details.

This module implements generators of LWE samples where parameters are chosen following proposals in the cryptographic literature.

EXAMPLES:

We get 30 samples from an LWE oracle parameterised by security parameter $n=20$ and where the modulus and the standard deviation of the noise are chosen as in [Reg09]:

```python
sage: from sage.crypto.lwe import samples
sage: samples(30, 20, 'Regev')
[[(360, 264, 123, 368, 398, 392, 41, 84, 25, 389, 311, 68, 322, 41, 161, 372, 222, 153, 243, 381), 122), ...
 ((155, 22, 357, 312, 87, 298, 182, 163, 296, 181, 219, 135, 164, 308, 248, 320, 64, 166, 214, 104), 152)
```

We may also pass classes to the samples function, which is useful for users implementing their own oracles:

```python
sage: from sage.crypto.lwe import samples, LindnerPeikert
sage: samples(30, 20, LindnerPeikert)
[[(1275, 168, 1529, 2024, 1874, 1309, 16, 1869, 1114, 1696, 1645, 618, 1372, 1273, 683, 237, 1526, 879, 1305, 1355), 950), ...
 ((1787, 2033, 1677, 331, 1562, 49, 796, 1002, 627, 98, 91, 711, 1712, 418, 2024, 163, 1773, 184, 1548, 3), 1815)
```

Finally, `samples()` also accepts instances of classes:

```python
sage: from sage.crypto.lwe import LindnerPeikert
sage: lwe = LindnerPeikert(20)
sage: samples(30, 20, lwe)
[[(465, 180, 440, 706, 1367, 106, 1380, 614, 1162, 1354, 1098, 2036, 1974, 1417, 1502, 1431, 863, 1894, 1368, 1771), 618), ...
 ((1050, 1017, 1314, 1310, 1941, 2041, 484, 104, 1199, 1744, 161, 1905, 679, 1663, 531, 1630, 168, 1559, 1040, 1719), 1006)
```

Note that Ring-LWE samples are returned as vectors:
One technical issue when working with these generators is that by default they return vectors and scalars over/in rings modulo some $q$. These are represented as elements in $(0, q-1)$ by Sage. However, it usually is more natural to think of these entries as integers in $(-q/2, q/2)$. To allow for this, this module provides the option to balance the representation. In this case vectors and scalars over/in the integers are returned:

AUTHORS:

- Martin Albrecht
- Robert Fitzpatrick
- Daniel Cabracas
- Florian Göpfert
- Michael Schneider

REFERENCES:

- [Reg09]
- [LP2011]
- [LPR2010]
- [CGW2013]
“uniform” - secret follows the uniform distribution in $\mathbb{Z}/q\mathbb{Z}$
“noise” - secret follows the noise distribution
$(lb, ub)$ - the secret is chosen uniformly from $[lb, \ldots, ub]$ including both endpoints

- $m$ - number of allowed samples or None if no such limit exists (default: None)

**EXAMPLES:**

First, we construct a noise distribution with standard deviation 3.0:

```python
sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler
sage: D = DiscreteGaussianDistributionIntegerSampler(3.0)
```

Next, we construct our oracle:

```python
sage: from sage.crypto.lwe import LWE
sage: lwe = LWE(n=20, q=next_prime(400), D=D); lwe
```

and sample 1000 samples:

```python
sage: L = [lwe() for _ in range(1000)]
```

To test the oracle, we use the internal secret to evaluate the samples in the secret:

```python
sage: S = [ZZ(a.dot_product(lwe._LWE__s) - c) for (a,c) in L]
```

However, while Sage represents finite field elements between 0 and q-1 we rely on a balanced representation of those elements here. Hence, we fix the representation and recover the correct standard deviation of the noise:

```python
sage: sqrt(variance([e if e <= 200 else e-401 for e in S]).n())
3.0...
```

If $m$ is not None the number of available samples is restricted:

```python
sage: from sage.crypto.lwe import LWE
sage: lwe = LWE(n=20, q=next_prime(400), D=D, m=30)
```

If $m$ is not None the number of available samples is restricted:

```python
sage: lwe() # 31
Traceback (most recent call last):
...
IndexError: Number of available samples exhausted.
```

**call**

**EXAMPLES:**

```python
sage: from sage.crypto.lwe import DiscreteGaussianDistributionIntegerSampler
sage: D = DiscreteGaussianDistributionIntegerSampler(3.0)
```

```python
sage: LWE(10, 401, DiscreteGaussianDistributionIntegerSampler(3))()
((309, 347, 198, 194, 336, 360, 264, 123, 368, 398), 198)
```

**class** `sage.crypto.lwe.LindnerPeikert` ($n$, $delta=0.01$, $m=None$)

**Bases:** `sage.crypto.lwe.LWE`

LWE oracle with parameters as in [LP2011].
__init__ (n, delta=0.01, m=None)
Construct LWE instance parameterised by security parameter n where the modulus q and the stddev of the noise is chosen as in [LP2011].

INPUT:
• n - security parameter (integer > 0)
• delta - error probability per symbol (default: 0.01)
• m - number of allowed samples or None in which case m=2*n + 128 as in [LP2011] (default: None)

EXAMPLES:
```
sage: from sage.crypto.lwe import LindnerPeikert
sage: LindnerPeikert(n=20)
LWE(20, 2053, Discrete Gaussian sampler over the Integers with sigma = 3.600954 and c = 0, 'noise', 168)
```

class sage.crypto.lwe.Regev (n, secret_dist='uniform', m=None)
Bases: sage.crypto.lwe.LWE
LWE oracle with parameters as in [Reg09].

__init__ (n, secret_dist='uniform', m=None)
Construct LWE instance parameterised by security parameter n where the modulus q and the stddev of the noise are chosen as in [Reg09].

INPUT:
• n - security parameter (integer > 0)
• secret_dist - distribution of the secret. See documentation of LWE for details (default='uniform')
• m - number of allowed samples or None if no such limit exists (default: None)

EXAMPLES:
```
sage: from sage.crypto.lwe import Regev
sage: Regev(n=20)
LWE(20, 401, Discrete Gaussian sampler over the Integers with sigma = 1.915069 and c = 401, 'uniform', None)
```

class sage.crypto.lwe.RingLWE (N, q, D, poly=None, secret_dist='uniform', m=None)
Bases: sage.structure.sage_object.SageObject
Ring Learning with Errors oracle.

__init__ (N, q, D, poly=None, secret_dist='uniform', m=None)
Construct a Ring-LWE oracle in dimension n=phi(N) over a ring of order q with noise distribution D.

INPUT:
• N - index of cyclotomic polynomial (integer > 0, must be power of 2)
• q - modulus typically > N (integer > 0)
• D - an error distribution such as an instance of DiscreteGaussianDistributionPolynomialSampler or UniformSampler
• poly - a polynomial of degree phi(N). If None the cyclotomic polynomial used (default: None).
• secret_dist - distribution of the secret. See documentation of LWE for details (default='uniform')
The examples provided illustrate the usage of the `RingLWE` class and its associated methods. Here is a summary of the key points:

- **m** - number of allowed samples or `None` if no such limit exists (default: `None`)

**Examples:**

```python
sage: from sage.crypto.lwe import RingLWE
sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=euler_phi(20), sigma=3.0)
sage: RingLWE(N=20, q=next_prime(800), D=D)
RingLWE(20, 809, Discrete Gaussian sampler for polynomials of degree < 8 with \(\sigma=3.000000\) in each component, \(x^8 - x^6 + x^4 - x^2 + 1\), 'uniform', None)
```

The `__call__` method is demonstrated with similar examples, showing how instances of `RingLWE` can be created and called to generate samples.

```python
sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE, RingLWEConverter
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], euler_phi(16), 5)
sage: lwe = RingLWEConverter(RingLWE(16, 257, D, secret_dist='uniform'))
sage: lwe()
((32, 216, 3, 125, 58, 197, 171, 43), 81)
```

The `RingLWEConverter` class wraps `RingLWE` oracles into `LWE` oracles by disregarding the additional structure of `RingLWE`.

```python
sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE, RingLWEConverter
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], euler_phi(16), 5)
sage: lwe = RingLWEConverter(RingLWE(16, 257, D, secret_dist='uniform'))
sage: set_random_seed(1337)
sage: lwe()
((32, 216, 3, 125, 58, 197, 171, 43), 81)
```

These examples showcase the flexibility and utility of the Sage library for cryptographic operations, particularly in the realm of lattice-based cryptography.
class sage.crypto.lwe.RingLindnerPeikert(N, delta=0.01, m=None)
    Bases: sage.crypto.lwe.RingLWE

Ring-LWE oracle with parameters as in [LP2011].

    __init__(N, delta=0.01, m=None)
    Construct a Ring-LWE oracle in dimension n=\phi(N) where the modulus q and the stddev of the noise is chosen as in [LP2011].

    INPUT:
    • N - index of cyclotomic polynomial (integer > 0, must be power of 2)
    • delta - error probability per symbol (default: 0.01)
    • m - number of allowed samples or None in which case 3*n is used (default: None)

    EXAMPLES:

    sage: from sage.crypto.lwe import RingLindnerPeikert
    sage: RingLindnerPeikert(N=16)
    RingLWE(16, 1031, Discrete Gaussian sampler for polynomials of degree < 8 with \sigma=2.803372 in each component, x^8 + 1, 'noise', 24)

class sage.crypto.lwe.UniformNoiseLWE(n, instance='key', m=None)
    Bases: sage.crypto.lwe.LWE

LWE oracle with uniform secret with parameters as in [CGW2013].

    __init__(n, instance='key', m=None)
    Construct LWE instance parameterised by security parameter n where all other parameters are chosen as in [CGW2013].

    INPUT:
    • n - security parameter (integer >= 89)
    • instance - one of
        - “key” - the LWE-instance that hides the secret key is generated
        - “encrypt” - the LWE-instance that hides the message is generated (default: key)
    • m - number of allowed samples or None in which case m is chosen as in [CGW2013]. (default: None)

    EXAMPLES:

    sage: from sage.crypto.lwe import UniformNoiseLWE
    sage: UniformNoiseLWE(89)
    LWE(89, 154262477, UniformSampler(0, 351), 'noise', 131)
    sage: UniformNoiseLWE(89, instance='encrypt')
    LWE(131, 154262477, UniformSampler(0, 497), 'noise', 181)

class sage.crypto.lwe.UniformPolynomialSampler(P, n, lower_bound, upper_bound)
    Bases: sage.structure.sage_object.SageObject

Uniform sampler for polynomials.

    EXAMPLES:

    sage: from sage.crypto.lwe import UniformPolynomialSampler
    sage: UniformPolynomialSampler(ZZ['x'], 8, -2, 2)()
    -2*x^7 + x^6 - 2*x^5 - x^3 - 2*x^2 - 2
__init__ (P, n, lower_bound, upper_bound)
Construct a sampler for univariate polynomials of degree \(n-1\) where coefficients are drawn uniformly at random between \(\text{lower_bound}\) and \(\text{upper_bound}\) (both endpoints inclusive).

INPUT:

- \(P\) - a univariate polynomial ring over the Integers
- \(n\) - number of coefficients to be sampled
- \(\text{lower_bound}\) - integer
- \(\text{upper_bound}\) - integer

EXAMPLES:

```python
sage: from sage.crypto.lwe import UniformPolynomialSampler
sage: UniformPolynomialSampler(ZZ['x'], 10, -10, 10)
UniformPolynomialSampler(10, -10, 10)
```

__call__()
Return a new sample.

EXAMPLES:

```python
sage: from sage.crypto.lwe import UniformPolynomialSampler
sage: sampler = UniformPolynomialSampler(ZZ['x'], 8, -12, 12)
sage: sampler()
-10*x^7 + 5*x^6 - 8*x^5 + x^4 - 4*x^3 - 11*x^2 - 10
```

class sage.crypto.lwe.UniformSampler (lower_bound, upper_bound)

Uniform sampling in a range of integers.

EXAMPLES:

```python
sage: from sage.crypto.lwe import UniformSampler
sage: UniformSampler(-2, 2)
UniformSampler(-2, 2)
```

__init__ (lower_bound, upper_bound)
Construct a uniform sampler with bounds \(\text{lower_bound}\) and \(\text{upper_bound}\) (both endpoints inclusive).

INPUT:

- \(\text{lower_bound}\) - integer
- \(\text{upper_bound}\) - integer

EXAMPLES:

```python
sage: from sage.crypto.lwe import UniformSampler
sage: UniformSampler(-2, 2)
UniformSampler(-2, 2)
```

__call__()
Return a new sample.

EXAMPLES:
sage: from sage.crypto.lwe import UniformSampler
sage: sampler = UniformSampler(-12, 12)
sage: sampler()
-10

sage.crypto.lwe.balance_sample(s, q=None)
Given \((a, c) = s\) return a tuple \((a', c')\) where \(a'\) is an integer vector with entries between \(-q/2\) and \(q/2\) and \(c\) is also within these bounds.

If \(q\) is given \((a, c) = s\) may live in the integers. If \(q\) is not given, then \((a, c)\) are assumed to live in \(\mathbb{Z}/q\mathbb{Z}\).

INPUT:
- \(s\) - sample of the form \((a, c)\) where \(a\) is a vector and \(c\) is a scalar
- \(q\) - modulus (default: None)

EXAMPLES:

sage: from sage.crypto.lwe import balance_sample, samples, Regev
sage: [balance_sample(s) for s in samples(10, 5, Regev)]
[((-9, -4, -4, 4, -4), 4), ((-8, 11, 12, -11, -11), -7), ...
((-11, 12, 0, -6, -3), 7), ((-7, 14, 8, 11, -8), -12)]

sage: from sage.crypto.lwe import balance_sample, samples, Regev
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], 8, 5)
sage: rlwe = RingLWE(20, 257, D)
sage: [balance_sample(s) for s in samples(10, 8, rlwe)]
[((-64, 107, -91, -24, 120, 54, 38, -35), (-84, 121, 28, -99, 91, 54, -60, 11)), ...
((-40, -117, 35, -69, -11, 10, 122, 48), (-80, -2, 119, -91, 27, 66, 121, -1))]

Note: This function is useful to convert between Sage’s standard representation of elements in \(\mathbb{Z}/q\mathbb{Z}\) as integers between 0 and \(q-1\) and the usual representation of such elements in lattice cryptography as integers between \(-q/2\) and \(q/2\).

sage.crypto.lwe.samples(m, n, lwe=None, seed=None, balanced=False, **kwds)
Return \(m\) LWE samples.

INPUT:
- \(m\) - the number of samples (integer > 0)
- \(n\) - the security parameter (integer > 0)
- \(lwe\) - either
  - a subclass of \(LWE\) such as \(Regev\) or \(LindnerPeikert\)
  - an instance of \(LWE\) or any subclass
  - the name of any such class (e.g., “Regev”, “LindnerPeikert”)
- \(seed\) - seed to be used for generation or None if no specific seed shall be set (default: None)
- \(balanced\) - use function \(balance_sample()\) to return balanced representations of finite field elements (default: False)
• **kwds** - passed through to LWE constructor

**EXAMPLES:**

```python
sage: from sage.crypto.lwe import samples, Regev
sage: samples(2, 20, Regev, seed=1337)
[((199, 388, 337, 53, 200, 284, 336, 215, 75, 14, 274, 234, 97, 255, 246, 153, 268, 218, 396, 351), 15),
 ((365, 227, 333, 165, 76, 328, 288, 206, 286, 42, 175, 155, 190, 275, 114, 280, 45, 218, 304, 386), 143)]

sage: from sage.crypto.lwe import samples, Regev
sage: samples(2, 20, Regev, balanced=True, seed=1337)
[((199, -13, -64, 53, 200, -117, -65, -186, 75, 14, -127, -167, 97, -146, -155, 153, -133, -183, -5, -50), 15),
 ((-36, -174, -68, 165, 76, -73, -113, -195, -115, 42, 175, 155, 190, -126, 114, -121, 45, -183, -97, -15), 143)]

sage: from sage.crypto.lwe import samples
sage: samples(2, 20, 'LindnerPeikert')
[((506, 1205, 398, 0, 337, 106, 836, 75, 1242, 642, 840, 262, 1823, 1798, 1831, 1658, 1084, 915, 1994, 163), 1447),
```
INDICES AND TABLES

• Index
• Module Index
• Search Page
C
sage.crypto.block_cipher.miniaes, 53
sage.crypto.block_cipher.sdes, 43
sage.crypto.boolean_function, 101
sage.crypto.cipher, 5
sage.crypto.classical, 7
sage.crypto.classical_cipher, 41
sage.crypto.cryptosystem, 1
sage.crypto.lattice, 187
sage.crypto.lfsr, 89
sage.crypto.lwe, 191
sage.crypto.mq.mpolynomialsystemgenerator, 135
sage.crypto.mq.rijndael_gf, 167
sage.crypto.mq.sr, 139
sage.crypto.public_key.blum_goldwasser, 73
sage.crypto.sbox, 111
sage.crypto.sboxes, 129
sage.crypto.stream, 81
sage.crypto.stream_cipher, 85
sage.crypto.util, 93
Symbols

__call__() (sage.crypto.lwe.LWE method), 193
__call__() (sage.crypto.lwe.RingLWE method), 195
__call__() (sage.crypto.lwe.RingLWEConverter method), 195
__call__() (sage.crypto.lwe.UniformPolynomialSampler method), 197
__call__() (sage.crypto.lwe.UniformSampler method), 197
__init__() (sage.crypto.lwe.LWE method), 192
__init__() (sage.crypto.lwe.LindnerPeikert method), 193
__init__() (sage.crypto.lwe.Regev method), 194
__init__() (sage.crypto.lwe.RingLWE method), 194
__init__() (sage.crypto.lwe.RingLWEConverter method), 195
__init__() (sage.crypto.lwe.RingLindnerPeikert method), 196
__init__() (sage.crypto.lwe.UniformNoiseLWE method), 196
__init__() (sage.crypto.lwe.UniformPolynomialSampler method), 196
__init__() (sage.crypto.lwe.UniformSampler method), 197

A

absolut_indicator() (sage.crypto.boolean_function.BooleanFunction method), 102
absolute_autocorrelation() (sage.crypto.boolean_function.BooleanFunction method), 102
absolute_walsh_spectrum() (sage.crypto.boolean_function.BooleanFunction method), 103
add_key() (sage.crypto.block_cipher.miniaes.MiniaES method), 57
add_round_key() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 175
add_round_key() (sage.crypto.mq.sr.SR_generic method), 145
add_round_key_poly_constr() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 176
AffineCipher (class in sage.crypto.classical_cipher), 41
AffineCryptosystem (class in sage.crypto.classical), 7
algebraic_degree() (sage.crypto.boolean_function.BooleanFunction method), 103
algebraic_immunity() (sage.crypto.boolean_function.BooleanFunction method), 103
algebraic_normal_form() (sage.crypto.boolean_function.BooleanFunction method), 104
AllowZeroInversionsContext (class in sage.crypto.mq.sr), 144
alphabet_size() (sage.crypto.cryptosystem.SymmetricKeyCryptosystem method), 4
annihilator() (sage.crypto.boolean_function.BooleanFunction method), 104
antiphi() (sage.crypto.mq.sr.SR_gf2 method), 158
antiphi() (sage.crypto.mq.sr.SR_gf2n method), 163
apply_poly() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 177
ascii_integer() (in module sage.crypto.util), 93
ascii_to_bin() (in module sage.crypto.util), 93
autocorrelation() (sage.crypto.boolean_function.BooleanFunction method), 104
autocorrelation_matrix() (sage.crypto.sbox.SBox method), 112
autocorrelation_table() (sage.crypto.sbox.SBox method), 112

B
balance_sample() (in module sage.crypto.lwe), 198
base_ring() (sage.crypto.mq.sr.SR_generic method), 146
bin_to_ascii() (in module sage.crypto.util), 94
binary_to_GF() (sage.crypto.block_cipher.miniaes.MiniAES method), 58
binary_to_integer() (sage.crypto.block_cipher.miniaes.MiniAES method), 59
block_length() (sage.crypto.block_cipher.miniaes.MiniAES method), 60
block_length() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 43
block_length() (sage.crypto.classical.HillCryptosystem method), 18
block_length() (sage.crypto.cryptosystem.Cryptosystem method), 2
block_length() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 178
block_order() (sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator method), 135
block_order() (sage.crypto.mq.sr.SR_generic method), 146
blum_blum_shub() (in module sage.crypto.stream), 81
BlumGoldwasser (class in sage.crypto.public_key.blum_goldwasser), 73
BooleanFunction (class in sage.crypto.boolean_function), 101
BooleanFunctionIterator (class in sage.crypto.boolean_function), 109
boomerang_connectivity_matrix() (sage.crypto.sbox.SBox method), 112
boomerang_connectivity_table() (sage.crypto.sbox.SBox method), 112
boomerang_uniformity() (sage.crypto.sbox.SBox method), 113
bracken_leander() (in module sage.crypto.sboxes), 132
brute_force() (sage.crypto.classical.AffineCryptosystem method), 9
brute_force() (sage.crypto.classical.ShiftCryptosystem method), 22

C
carlet_tang_tang_liao() (in module sage.crypto.sboxes), 132
carmichael_lambda() (in module sage.crypto.util), 95
Cipher (class in sage.crypto.cipher), 5
cipher_codomain() (sage.crypto.cryptosystem.Cryptosystem method), 2
cipher_domain() (sage.crypto.cryptosystem.Cryptosystem method), 2
ciphertext_space() (sage.crypto.cryptosystem.Cryptosystem method), 3
cnf() (sage.crypto.sbox.SBox method), 113
codomain() (sage.crypto.cipher.Cipher method), 5
component_function() (sage.crypto.sbox.SBox method), 115
compose() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 178
connection_polynomial() (sage.crypto.stream_cipher.LFSRCipher method), 85
correlation_immunity() (sage.crypto.boolean_function.BooleanFunction method), 104
Cryptosystem (class in sage.crypto.cryptosystem), 1

D
decimating_cipher() (sage.crypto.stream_cipher.ShrinkingGeneratorCipher method), 86
deciphering() (sage.crypto.classical.AffineCryptosystem method), 11
deciphering() (sage.crypto.classical.HillCryptosystem method), 18
deciphering() (sage.crypto.classical.ShiftCryptosystem method), 25
deciphering() (sage.crypto.classical.SubstitutionCryptosystem method), 33
deciphering() (sage.crypto.classical.TranspositionCryptosystem method), 36
deciphering() (sage.crypto.classical.VigenereCryptosystem method), 38
decrypt() (sage.crypto.block_cipher.miniaes.MiniAES method), 60
decrypt() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 44
decrypt() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 180
decrypt() (sage.crypto.public_key.blum_goldwasser.BlumGoldwasser method), 74
derivative() (sage.crypto.boolean_function.BooleanFunction method), 105
derivative() (sage.crypto.sbox.SBox method), 115
difference_distribution_matrix() (sage.crypto.sbox.SBox method), 116
difference_distribution_table() (sage.crypto.sbox.SBox method), 116
differential_branch_number() (sage.crypto.sbox.SBox method), 116
domain() (sage.crypto.cipher.Cipher method), 5

e
enciphering() (sage.crypto.classical.AffineCryptosystem method), 12
enciphering() (sage.crypto.classical.HillCryptosystem method), 18
enciphering() (sage.crypto.classical.ShiftCryptosystem method), 26
enciphering() (sage.crypto.classical.SubstitutionCryptosystem method), 34
enciphering() (sage.crypto.classical.TranspositionCryptosystem method), 36
enciphering() (sage.crypto.classical.VigenereCryptosystem method), 38
encoding() (sage.crypto.classical.AffineCryptosystem method), 12
encoding() (sage.crypto.classical.HillCryptosystem method), 19
encoding() (sage.crypto.classical.ShiftCryptosystem method), 26
encoding() (sage.crypto.classical.SubstitutionCryptosystem method), 34
encoding() (sage.crypto.classical.TranspositionCryptosystem method), 36
encoding() (sage.crypto.classical.VigenereCryptosystem method), 38
encoding() (sage.crypto.stream.LFSRCryptosystem method), 81
encoding() (sage.crypto.stream.ShrinkingGeneratorCryptosystem method), 81
encrypt() (sage.crypto.block_cipher.miniaes.MiniAES method), 62
encrypt() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 44
encrypt() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 180
encrypt() (sage.crypto.public_key.blum_goldwasser.BlumGoldwasser method), 76
expand_key() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 181
expand_key_poly() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 181

F
feistel_construction() (in module sage.crypto.sbox), 126
field_polynomials() (sage.crypto.mq.sr.SR_gf2 method), 158
field_polynomials() (sage.crypto.mq.sr.SR_gf2n method), 164
fixed_points() (sage.crypto.sbox.SBox method), 116
from_bits() (sage.crypto.sbox.SBox method), 117

G
gen_lattice() (in module sage.crypto.lattice), 187
GF_to_binary() (sage.crypto.block_cipher.miniaes.MiniAES method), 54
GF_to_integer() (sage.crypto.block_cipher.miniaes.MiniAES method), 56
gold() (in module sage.crypto.sboxes), 133

H
has_blum_prime() (in module sage.crypto.util), 96
has_linear_structure() (sage.crypto.boolean_function.BooleanFunction method), 105
key() (sage.crypto.cipher.Cipher method), 5
key_length() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 182
key_schedule() (sage.crypto.mq.sr.SR_generic method), 147
key_schedule_polynomials() (sage.crypto.mq.sr.SR_generic method), 148
key_space() (sage.crypto.cryptosystem.Cryptosystem method), 3
keystream_cipher() (sage.crypto.stream_cipher.ShrinkingGeneratorCipher method), 86

L
least_significant_bits() (in module sage.crypto.util), 97
left_shift() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 46
lfsr_autocorrelation() (in module sage.crypto.lfsr), 90
lfsr_connection_polynomial() (in module sage.crypto.lfsr), 90
lfsr_sequence() (in module sage.crypto.lfsr), 91
LFSRCipher (class in sage.crypto.stream_cipher), 85
LFSRCryptosystem (class in sage.crypto.stream), 81
lin_matrix() (sage.crypto.mq.sr.SR_gf2 method), 161
lin_matrix() (sage.crypto.mq.sr.SR_gf2n method), 165
LindnerPeikert (class in sage.crypto.lwe), 193
linear_approximation_matrix() (sage.crypto.sbox.SBox method), 121
linear_approximation_table() (sage.crypto.sbox.SBox method), 121
linear_branch_number() (sage.crypto.sbox.SBox method), 122
linear_structures() (sage.crypto.boolean_function.BooleanFunction method), 107
linear_structures() (sage.crypto.sbox.SBox method), 122
linearity() (sage.crypto.sbox.SBox method), 122
list_to_string() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 46
LWE (class in sage.crypto.lwe), 192

M
max_degree() (sage.crypto.sbox.SBox method), 122
maximal_difference_probability() (sage.crypto.sbox.SBox method), 123
maximal_difference_probability_absolute() (sage.crypto.sbox.SBox method), 123
maximal_linear_bias_absolute() (sage.crypto.sbox.SBox method), 123
maximal_linear_bias_relative() (sage.crypto.sbox.SBox method), 123
min_degree() (sage.crypto.sbox.SBox method), 123
MiniAES (class in sage.crypto.block_cipher.miniaes), 53
misty_construction() (in module sage.crypto.sbox), 126
mix_column() (sage.crypto.block_cipher.miniaes.Miniaes method), 65
mix_columns() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 182
mix_columns() (sage.crypto.mq.sr.SR_generic method), 148
mix_columns_matrix() (sage.crypto.mq.sr.SR_gf2 method), 161
mix_columns_matrix() (sage.crypto.mq.sr.SR_gf2n method), 165
mix_columns_poly_constr() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 183
monomial_function() (in module sage.crypto.sboxes), 133
MPolynomialSystemGenerator (class in sage.crypto.mq.mpolynomialsystemgenerator), 135

N
new_generator() (sage.crypto.mq.sr.SR_generic method), 149
next() (sage.crypto.boolean_function.BooleanFunctionIterator method), 109
nibble_sub() (sage.crypto.block_cipher.miniaes.Miniaes method), 66
niho() (in module sage.crypto.sboxes), 134
ring() (sage.crypto.mq.src.SR_generic method), 152
ring() (sage.crypto.sbox.SBox method), 125
RingLindnerPeikert (class in sage.crypto.lwe), 195
RingLWE (class in sage.crypto.lwe), 194
RingLWEConverter (class in sage.crypto.lwe), 195
round_key() (sage.crypto.block_cipher.miniaes.MiniAES method), 69
round_polynomials() (sage.crypto.mq.src.SR_generic method), 152

S
sage.crypto.block_cipher.miniaes (module), 53
sage.crypto.block_cipher.sdes (module), 43
sage.crypto.boolean_function (module), 101
sage.crypto.cipher (module), 5
sage.crypto.classical (module), 7
sage.crypto.classical_cipher (module), 41
sage.crypto.cryptosystem (module), 1
sage.crypto.lattice (module), 187
sage.crypto.lfsr (module), 89
sage.crypto.lwe (module), 191
sage.crypto.mq.mpolynomialsystemgenerator (module), 135
sage.crypto.mq.rijndael_gf (module), 167
sage.crypto.mq.sr (module), 139
sage.crypto.public_key.blum_goldwasser (module), 73
sage.crypto.sbox (module), 111
sage.crypto.sboxes (module), 129
sage.crypto.stream (module), 81
sage.crypto.stream_cipher (module), 85
sage.crypto.util (module), 93
samples() (in module sage.crypto.lwe), 198
SBox (class in sage.crypto.sbox), 111
sbox() (sage.crypto.block_cipher.miniaes.MiniAES method), 70
sbox() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 50
sbox() (sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator method), 136
sbox() (sage.crypto.mq.sr.SR_generic method), 153
sbox_constant() (sage.crypto.mq.sr.SR_generic method), 154
shift_row() (sage.crypto.block_cipher.miniaes.MiniAES method), 70
shift_rows() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 183
shift_rows() (sage.crypto.mq.sr.SR_generic method), 154
shift_rows_matrix() (sage.crypto.mq.sr.SR_gf2 method), 162
shift_rows_matrix() (sage.crypto.mq.sr.SR_gf2n method), 165
shift_rows_poly_constr() (sage.crypto.mq.rijndael_gf.RijndaelGF method), 184
ShiftCipher (class in sage.crypto.classical_cipher), 41
ShiftCryptosystem (class in sage.crypto.classical), 20
ShrinkingGeneratorCipher (class in sage.crypto.stream_cipher), 86
ShrinkingGeneratorCryptosystem (class in sage.crypto.stream), 81
SimplifiedDES (class in sage.crypto.block_cipher.sdes), 43
solutions() (sage.crypto.sbox.SBox method), 125
SR() (in module sage.crypto.mq.sr), 144
SR_generic (class in sage.crypto.mq.sr), 145
SR_gf2 (class in sage.crypto.mq.sr), 158

Index
SR_gf2_2 (class in sage.crypto.mq.sr), 162
SR_gf2n (class in sage.crypto.mq.sr), 163
state_array() (sage.crypto.mq.sr.SR_generic method), 155
string_to_list() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 50
sub_bytes() (sage.crypto.mq.sr.RijndaelGF method), 184
sub_bytes() (sage.crypto.mq.sr.SR_generic method), 156
sub_bytes_poly_constr() (sage.crypto.mq.sr.rijndael_GF.RijndaelGF method), 184
subkey() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 51
SubstitutionCipher (class in sage.crypto.classical_cipher), 41
SubstitutionCryptosystem (class in sage.crypto.classical), 33
sum_of_square_indicator() (sage.crypto.boolean_function.BooleanFunction method), 108
switch() (sage.crypto.block_cipher.sdes.SimplifiedDES method), 51
SymmetricKeyCipher (class in sage.crypto.cipher), 5
SymmetricKeyCryptosystem (class in sage.crypto.cryptosystem), 4
T
test_consistency() (in module sage.crypto.mq.sr), 166
to_bits() (sage.crypto.sbox.SBox method), 125
TranspositionCipher (class in sage.crypto.classical_cipher), 41
TranspositionCryptosystem (class in sage.crypto.classical), 35
truth_table() (sage.crypto.boolean_function.BooleanFunction method), 108
U
UniformNoiseLWE (class in sage.crypto.lwe), 196
UniformPolynomialSampler (class in sage.crypto.lwe), 196
UniformSampler (class in sage.crypto.lwe), 197
unpickle_BooleanFunction() (in module sage.crypto.boolean_function), 110
V
v() (in module sage.crypto.sboxes), 134
varformatstr() (sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator method), 136
varformatstr() (sage.crypto.mq.sr.SR_generic method), 156
variable_dict() (sage.crypto.mq.sr.SR_generic method), 156
vars() (sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator method), 136
vars() (sage.crypto.mq.sr.SR_generic method), 157
varstr() (sage.crypto.mq.sr.SR_generic method), 157
varstrs() (sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator method), 137
varstrs() (sage.crypto.mq.sr.SR_generic method), 158
vector() (sage.crypto.mq.sr.SR_gf2 method), 162
vector() (sage.crypto.mq.sr.SR_gf2n method), 166
VigenereCipher (class in sage.crypto.classical_cipher), 41
VigenereCryptosystem (class in sage.crypto.classical), 37
W
walsh_hadamard_transform() (sage.crypto.boolean_function.BooleanFunction method), 109
welch() (in module sage.crypto.sboxes), 134