CONTENTS

1 General curve constructors .. 1

2 Affine curves ... 5

3 Projective curves ... 23

4 Generic curves ... 45

5 Curve points ... 51

6 Base class for Jacobians of curves ... 57

7 Plane conics ... 59
 7.1 Plane conic constructor ... 59
 7.2 Projective plane conics over a field 60
 7.3 Projective plane conics over a number field 73
 7.4 Projective plane conics over \(\mathbb{Q} \) 75
 7.5 Projective plane conics over finite fields 78
 7.6 Projective plane conics over prime finite fields 79
 7.7 Projective plane conics over a rational function field 80

8 Plane quartics ... 85
 8.1 Quartic curve constructor ... 85
 8.2 Plane quartic curves over a general ring 85

9 Riemann surfaces ... 87
 9.1 Riemann matrices and endomorphism rings of algebraic Riemann surfaces ... 87

10 Elliptic curves .. 105
 10.1 Elliptic curve constructor .. 105
 10.2 Construct elliptic curves as Jacobians 120
 10.3 Points on elliptic curves .. 123
 10.4 Elliptic curves over a general ring 154
 10.5 Elliptic curves over a general field 178
 10.6 Elliptic curves over finite fields ... 193
 10.7 Formal groups of elliptic curves .. 212
 10.8 Isomorphisms between Weierstrass models of elliptic curves ... 217
 10.9 Isogenies .. 219
 10.10 Isogenies of small prime degree 248
 10.11 Elliptic curves over number fields 274
 10.12 To be sorted .. 600
11 Hyperelliptic curves

11.1 Hyperelliptic curve constructor ... 613
11.2 Hyperelliptic curves over a general ring .. 615
11.3 Hyperelliptic curves over a finite field .. 621
11.4 Hyperelliptic curves over a p-adic field 635
11.5 Hyperelliptic curves over the rationals .. 652
11.6 Mestre’s algorithm ... 652
11.7 Computation of Frobenius matrix on Monsky-Washnitzer cohomology 655
11.8 Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic curve over a largish prime finite field 681
11.9 Jacobian of a general hyperelliptic curve .. 683
11.10 Jacobian of a hyperelliptic curve of genus 2 685
11.11 Rational point sets on a Jacobian .. 685
11.12 Jacobian ‘morphism’ as a class in the Picard group 686
11.13 Hyperelliptic curves of genus 2 over a general ring 691
11.14 Hyperelliptic curves of genus 2 over a finite field 693
11.15 Hyperelliptic curves of genus 2 over a p-adic field 693
11.16 Hyperelliptic curves of genus 2 over the rationals 693
11.17 Compute invariants of quintics and sextics via ‘Ueberschiebung’ 693
11.18 Kummer surfaces over a general ring .. 698
11.19 Conductor and reduction types for genus 2 curves 698

12 Indices and Tables ... 703

Bibliography ... 705

Python Module Index .. 709

Index ... 711
GENERAL CURVE CONSTRUCTORS

AUTHORS:
- William Stein (2005-11-13)
- David Kohel (2006-01)
- Grayson Jorgenson (2016-06)

`sage.schemes.curves.constructor.Curve(F, A=None)`

Return the plane or space curve defined by \(F \), where \(F \) can be either a multivariate polynomial, a list or tuple of polynomials, or an algebraic scheme.

If no ambient space is passed in for \(A \), and if \(F \) is not an algebraic scheme, a new ambient space is constructed.

Also not specifying an ambient space will cause the curve to be defined in either affine or projective space based on properties of \(F \). In particular, if \(F \) contains a nonhomogenous polynomial, the curve is affine, and if \(F \) consists of homogenous polynomials, then the curve is projective.

INPUT:
- \(F \) — a multivariate polynomial, or a list or tuple of polynomials, or an algebraic scheme.
- \(A \) — (default: None) an ambient space in which to create the curve.

EXAMPLES: A projective plane curve

```
sage: x,y,z = QQ['x,y,z'].gens()
sage: C = Curve(x^3 + y^3 + z^3); C
Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3
sage: C.genus()
1
```

EXAMPLES: Affine plane curves

```
sage: x,y = GF(7)['x,y'].gens()
sage: C = Curve(y^2 + x^3 + x^10); C
Affine Plane Curve over Finite Field of size 7 defined by x^10 + x^3 + y^2
sage: C.genus()
0
sage: x, y = QQ['x,y'].gens()
sage: Curve(x^3 + y^3 + 1)
Affine Plane Curve over Rational Field defined by x^3 + y^3 + 1
```

EXAMPLES: A projective space curve
```python
sage: x,y,z,w = QQ['x,y,z,w'].gens()
sage: C = Curve([x^3 + y^3 - z^3 - w^3, x^5 - y*z^4]); C
Projective Curve over Rational Field defined by x^3 + y^3 - z^3 - w^3, x^5 - y*z^4
sage: C.genus()
13
```

EXAMPLES: An affine space curve

```python
sage: x,y,z = QQ['x,y,z'].gens()
sage: C = Curve([y^2 + x^3 + x^10 + z^7, x^2 + y^2]); C
Affine Curve over Rational Field defined by x^10 + z^7 + x^3 + y^2, x^2 + y^2
sage: C.genus()
47
```

EXAMPLES: We can also make non-reduced non-irreducible curves.

```python
sage: x,y,z = QQ['x,y,z'].gens()
sage: Curve((x-y)*(x+y))
Projective Conic Curve over Rational Field defined by x^2 - y^2
sage: Curve((x-y)^2*(x+y)^2)
Projective Plane Curve over Rational Field defined by x^4 - 2*x^2*y^2 + y^4
```

EXAMPLES: A union of curves is a curve.

```python
sage: x,y,z = QQ['x,y,z'].gens()
sage: C = Curve(x^3 + y^3 + z^3)
sage: D = Curve(x^4 + y^4 + z^4)
sage: C.union(D)
Projective Plane Curve over Rational Field defined by
x^7 + x^4*y^3 + x^3*y^4 + y^7 + x^4*z^3 + y^4*z^3 + x^3*z^4 + y^3*z^4 + z^7
```

The intersection is not a curve, though it is a scheme.

```python
sage: X = C.intersection(D); X
Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
- x^3 + y^3 + z^3,
- x^4 + y^4 + z^4
```

Note that the intersection has dimension 0.

```python
sage: X.dimension()
0
sage: I = X.defining_ideal(); I
Ideal (x^3 + y^3 + z^3, x^4 + y^4 + z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

EXAMPLES: In three variables, the defining equation must be homogeneous.

If the parent polynomial ring is in three variables, then the defining ideal must be homogeneous.

```python
sage: x,y,z = QQ['x,y,z'].gens()
sage: Curve(x^2+y^2)
Projective Conic Curve over Rational Field defined by x^2 + y^2
sage: Curve(x^2+y^2+z)
Traceback (most recent call last):
  ...
TypeError: x^2 + y^2 + z is not a homogeneous polynomial
```
The defining polynomial must always be nonzero:

```
sage: P1.<x,y> = ProjectiveSpace(1,GF(5))
sage: Curve(0*x)
Traceback (most recent call last):
...  
ValueError: defining polynomial of curve must be nonzero
```

```
sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y - x^2, z - x^3], A)
sage: A == C.ambient_space()
True
```
EXAMPLES:

We can construct curves in either an affine plane:

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y - x^2], A); C
Affine Plane Curve over Rational Field defined by -x^2 + y
```

or in higher dimensional affine space:

```python
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = Curve([y - x^2, z - w^3, w - y^4], A); C
Affine Curve over Rational Field defined by -x^2 + y, -w^3 + z, -y^4 + w
```

AUTHORS:

- William Stein (2005-11-13)
- David Joyner (2005-11-13)
- David Kohel (2006-01)
- Grayson Jorgenson (2016-8)

```python
class sage.schemes.curves.affine_curve.AffineCurve(A, X)
affine_subscheme.AlgebraicScheme_subscheme_affine

Initialization function.

EXAMPLES:

```python
sage: R.<v> = QQ[]
sage: K.<u> = NumberField(v^2 + 3)
sage: A.<x,y,z> = AffineSpace(K, 3)
sage: C = Curve([z - u*x^2, y^2], A); C
Affine Curve over Number Field in u with defining polynomial v^2 + 3
defined by (-u)*x^2 + z, y^2
```

```python
sage: A.<x,y,z> = AffineSpace(GF(7), 3)
sage: C = Curve([x^2 - z, z - 8*x], A); C
Affine Curve over Finite Field of size 7 defined by x^2 - z, -x + z
```

**blowup** *(P=None)*

Return the blow up of this affine curve at the point `P`.

The blow up is described by affine charts. This curve must be irreducible.
INPUT:

- \(P\) – (default: None) a point on this curve at which to blow up. If None, then \(P\) is taken to be the origin.

OUTPUT:

- a tuple consisting of three elements. The first is a tuple of curves in affine space of the same dimension as the ambient space of this curve, which define the blow up in each affine chart. The second is a tuple of tuples such that the \(j\)th element of the \(i\)th tuple is the transition map from the \(i\)th affine patch to the \(j\)th affine patch. Lastly, the third element is a tuple consisting of the restrictions of the projection map from the blow up back to the original curve, restricted to each affine patch. There the \(i\)th element will be the projection from the \(i\)th affine patch.

EXAMPLES:

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3], A)
sage: C.blowup()
((Affine Plane Curve over Rational Field defined by s1^2 - x,
 Affine Plane Curve over Rational Field defined by y*s0^3 - 1),
 ([Scheme endomorphism of Affine Plane Curve over Rational Field defined by s1^2 - x
 Defn: Defined on coordinates by sending (x, s1) to
 (x, s1), Scheme morphism:
 From: Affine Plane Curve over Rational Field defined by s1^2 - x
 To: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
 Defn: Defined on coordinates by sending (x, s1) to
 (x*s1, 1/s1)], [Scheme morphism:
 From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
 To: Affine Plane Curve over Rational Field defined by s1^2 - x
 Defn: Defined on coordinates by sending (y, s0) to
 (y*s0, 1/s0),
 Scheme endomorphism of Affine Plane Curve over Rational Field defined by
 -y*s0^3 - 1
 Defn: Defined on coordinates by sending (y, s0) to
 (y, s0))],
(Scheme morphism:
 From: Affine Plane Curve over Rational Field defined by s1^2 - x
 To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
 Defn: Defined on coordinates by sending (x, s1) to
 (x, x*s1), Scheme morphism:
 From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
 To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
 Defn: Defined on coordinates by sending (y, s0) to
 (y*s0, y)))
```

```python
sage: K.<a> = QuadraticField(2)
sage: A.<x,y,z> = AffineSpace(K, 3)
sage: C = Curve([y^2 - a*x^5, x - z], A)
sage: B = C.blowup()
sage: B[0]
(Affine Curve over Number Field in a with defining polynomial x^2 - 2 defined
 -by s2 - 1,
 2*x^3 + (-a)*s1^2,
 Affine Curve over Number Field in a with defining polynomial x^2 - 2 defined
 -by s0 - s2,
 2*y^3*s2^5 + (-a),
 Affine Curve over Number Field in a with defining polynomial x^2 - 2 defined
 -by s0 - 1,
 (continues on next page)
```
\[
2z^3 + (-a)\cdot s1^2
\]
\textit{sage:} B[1][0][2]

Scheme morphism:
From: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \(s2 - 1, 2x^3 + (-a)\cdot s1^2\)
To: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \(s0 - 1, 2x^3 + (-a)\cdot s1^2\)
Defn: Defined on coordinates by sending \((x, s1, s2)\) to \((x\cdot s2, 1/s2, s1/s2)\)

\textit{sage:} B[1][2][0]

Scheme morphism:
From: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \(s0 - 1, 2x^3 + (-a)\cdot s1^2\)
To: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \(s2 - 1, 2x^3 + (-a)\cdot s1^2\)
Defn: Defined on coordinates by sending \((z, s0, s1)\) to \((z\cdot s0, s1/s0, 1/s0)\)

\textit{sage:} B[2]

(Scheme morphism:
From: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \(s2 - 1, 2x^3 + (-a)\cdot s1^2\)
To: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \((-a)\cdot x^5 + y^2, x - z\)
Defn: Defined on coordinates by sending \((x, s1, s2)\) to \((x, x\cdot s1, x\cdot s2)\), Scheme morphism:
From: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \(s0 - s2, 2y^3\cdot s2^5 + (-a)\)
To: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \((-a)\cdot x^5 + y^2, x - z\)
Defn: Defined on coordinates by sending \((y, s0, s2)\) to \((y\cdot s0, y, y\cdot s2)\), Scheme morphism:
From: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \(s0 - 1, 2z^3 + (-a)\cdot s1^2\)
To: Affine Curve over Number Field in a with defining polynomial \(x^2 - 2\)
\(\rightarrow\) defined by \((-a)\cdot x^5 + y^2, x - z\)
Defn: Defined on coordinates by sending \((z, s0, s1)\) to \((z\cdot s0, z\cdot s1, z)\)

\textit{sage:} A.<x,y> = AffineSpace(QQ, 2)
\textit{sage:} C = A.curve(((y - 3/2)^3 - (x + 2)^5 - (x + 2)^6)
\textit{sage:} Q = A([-2,3/2])
\textit{sage:} C.blowup(Q)

((Affine Plane Curve over Rational Field defined by \(x^3 - s1^3 + 7\cdot x^2 + 16\cdot x + 12,\)
Affine Plane Curve over Rational Field defined by \(8\cdot y^3\cdot s0^6 - 36\cdot y^2\cdot s0^6 + 8\cdot y^2\cdot s0^5 + \) \textit{continues on next page})
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = A.curve(((x + 1)^2 + y^2)^3 - 4*(x + 1)^2*y^2, y - z, w - 4)
sage: Q = C([-1,0,0,4])
sage: B = C.blowup(Q)
sage: B[0]
(Affine Curve over Rational Field defined by s3, s1 - s2, x^2*s2^6 + 2*x*s2^6 + 3*x^2*s2^4 + s2^6 + 6*x*s2^4 + 3*x^2*s2^2 + 3*s2^4 + 6*x*s2^2 + x^2 - s2^2 + 2*x + 1,
Affine Curve over Rational Field defined by s3, s2 - 1, y^2*s0^6 + 3*y^2*s0^4 + 3*y^2*s0^2 + y^2 - 4*s0^2,
Affine Curve over Rational Field defined by s3, s1 - 1, z^2*s0^6 + 3*z^2*s0^4 + 3*z^2*s0^2 + z^2 - 4*s0^2,
Closed subscheme of Affine Space of dimension 4 over Rational Field defined by:

(continues on previous page)
sage: A.<x,y> = AffineSpace(QuadraticField(-1), 2)
sage: C = A.curve([y^2 + x^2])
sage: C.blowup()
Traceback (most recent call last):
  ...TypeError: this curve must be irreducible

plane_projection\((AP=None)\)

Return a projection of this curve into an affine plane so that the image of the projection is a plane curve.

INPUT:

\- \textbf{AP} – (default: None) the affine plane to project this curve into. This space must be defined over the same base field as this curve, and must have dimension two. This space will be constructed if not specified.

OUTPUT:

\- a tuple consisting of two elements: a scheme morphism from this curve into an affine plane, and the plane curve that defines the image of that morphism.

EXAMPLES:

```python
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = Curve([x^2 - y*z*w, z^3 - w, w + x*y - 3*z^3], A)
sage: C.plane_projection()
(Scheme morphism:
 From: Affine Curve over Rational Field defined by -y*z*w + x^2, z^3 -
 w, -3*z^3 + x*y + w
 To: Affine Space of dimension 2 over Rational Field
 Defn: Defined on coordinates by sending (x, y, z, w) to
 (x, y), Affine Plane Curve over Rational Field defined by
 x0^2*x1^7 - 16*x0^4)
```
projection \((\text{indices, AS=None})\)

Return the projection of this curve onto the coordinates specified by \text{indices}.

**INPUT:**

- \text{indices} – a list or tuple of distinct integers specifying the indices of the coordinates to use in the projection. Can also be a list or tuple consisting of variables of the coordinate ring of the ambient space of this curve. If integers are used to specify the coordinates, 0 denotes the first coordinate. The length of \text{indices} must be between two and one less than the dimension of the ambient space of this curve, inclusive.

- \text{AS} – (default: None) the affine space the projected curve will be defined in. This space must be defined over the same base field as this curve, and must have dimension equal to the length of \text{indices}. This space is constructed if not specified.

**OUTPUT:**

- a tuple consisting of two elements: a scheme morphism from this curve to affine space of dimension equal to the number of coordinates specified in \text{indices}, and the affine subscheme that is the image of that morphism. If the image is a curve, the second element of the tuple will be a curve.

**EXAMPLES:**

```python
sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y^7 - x^2 + x^3 - 2*z, z^2 - x^7 - y^2], A)
sage: C.projection([0,1])
(Scheme morphism:
 From: Affine Curve over Rational Field defined by y^7 + x^3 - x^2 - 2*z, -x^7 - y^2 + z^2
 To: Affine Space of dimension 2 over Rational Field
 Defn: Defined on coordinates by sending (x, y, z) to
 (x, y),
Affine Plane Curve over Rational Field defined by x1^14 + 2*x0^3*x1^7 - 2*x0^2*x1^7 - 4*x0^6 - 2*x0^5 + x0^4 - 4*x1^2)
sage: C.projection([0,1,3,4])
Traceback (most recent call last):
 ... ValueError: (=[0, 1, 3, 4]) must be a list or tuple of length between 2 and (=2), inclusive
```

```python
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: B.<a,b,c> = AffineSpace(QQ, 3)
sage: C.projection([0,1,2], AS=B)
(Scheme morphism:
 From: Affine Curve over Rational Field defined by x - 2, y - 3, z - 1
 To: Affine Space of dimension 3 over Rational Field
 Defn: Defined on coordinates by sending (x, y, z, w) to
 (x, y, z),
Closed subscheme of Affine Space of dimension 3 over Rational Field defined by:
c - 1,
```

(continues on next page)
b - 3,
  a - 2)

sage: A.<x,y,z,w,u> = AffineSpace(GF(11), 5)
sage: C = Curve([x^3 - 5*y*z + u^2, x - y^2 + 3*z^2, w^2 + 2*u^3*y, y - u^2 + z*x], A)
sage: B.<a,b,c> = AffineSpace(GF(11), 3)
sage: proj1 = C.projection([1,2,4], AS=B)
sage: proj1
(Scheme morphism:
  From: Affine Curve over Finite Field of size 11 defined by x^3 - 5*y*z + u^2, -y^2 + 3*z^2 + x, 2*y*u^3 + w^2, x*z - u^2 + y
  To:  Affine Space of dimension 3 over Finite Field of size 11
    Defn: Defined on coordinates by sending (x, y, z, w, u) to
      (y, z, u),
Affine Curve over Finite Field of size 11 defined by a^2*b - 3*b^3 - c^2 + a, c^6 - 5*a*b^4 + b^3*c^2 - 3*a*c^4 + 3*a^2*c^2 - a^3, a^2*c^4 - 3*b^2*c^4 - 2*a^3*c^2 - 5*a*b^2*c^2 + a^4 - 5*a*b^3 + 2*b^4 + b^2*c^2 - 3*b^2*c^2 + 2*a*b^4 + 5*b*c^4 + 3*a*c^2 + 2*b^2*c - 5*a*b^2 + 4*b^3 + b*c^2 + 5*c^2 - 5*a, a^6 - 5*b^6 - 5*b^3*c^2 + 5*a*b^3 + 2*c^4 - 4*a*c^2 + 2*a^2 - 5*a*b + c^2)
sage: proj1[1].ambient_space() is B
True
sage: proj2 = C.projection([1,2,4])
sage: proj2[1].ambient_space() is B
False
sage: C.projection([1,2,3,5], AS=B)
Traceback (most recent call last):
  ... TypeError: (=Affine Space of dimension 3 over Finite Field of size 11)
must have dimension (=4)

sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = A.curve([x*y - z^3, x*z - w^3, w^2 - x^3])
sage: C.projection([y,z])
(Scheme morphism:
  From: Affine Curve over Rational Field defined by -z^3 + x*y, -w^3 + x*z, -x^3 + w^2
  To:  Affine Space of dimension 2 over Rational Field
    Defn: Defined on coordinates by sending (x, y, z, w) to
      (y, z),
Affine Plane Curve over Rational Field defined by x1^23 - x0^7*x1^4)
sage: B.<x,y,z> = AffineSpace(QQ, 3)
sage: C.projection([x,y,z], AS=B)
(Scheme morphism:
  From: Affine Curve over Rational Field defined by -z^3 + x*y, -w^3 + x*z, -x^3 + w^2
  To:  Affine Space of dimension 3 over Rational Field
    Defn: Defined on coordinates by sending (x, y, z, w) to
      (x, y, z),
Affine Curve over Rational Field defined by z^3 - x*y, x^8 - x*z^2, x^7*z^2 - x*y*z)
sage: C.projection([y,z,z])
Traceback (most recent call last):
  ... ValueError: ([y, z, z]) must be a list or tuple of distinct indices or
variables

**projective_closure**(i=0, PP=None)

Return the projective closure of this affine curve.

**INPUT:**

- i – (default: 0) the index of the affine coordinate chart of the projective space that the affine ambient space of this curve embeds into.
- PP – (default: None) ambient projective space to compute the projective closure in. This is constructed if it is not given.

**OUTPUT:**

- a curve in projective space.

**EXAMPLES:**

```sage
A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y-x^2, z-x^3], A)
sage: C.projective_closure()
Projective Curve over Rational Field defined by x1^2 - x0*x2, x1*x2 - x0*x3, x2^2 - x1*x3
```

```sage
A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y - x^2, z - x^3], A)
sage: C.projective_closure()
Projective Curve over Rational Field defined by x1^2 - x0*x2, x1*x2 - x0*x3, x2^2 - x1*x3
```

```sage
A.<x,y> = AffineSpace(CC, 2)
sage: C = Curve(y - x^3 + x - 1, A)
sage: C.projective_closure(1)
Projective Plane Curve over Complex Field with 53 bits of precision defined by x0^3 - x0*x1^2 + x1^3 - x1^2*x2
```

```sage
A.<x,y> = AffineSpace(QQ, 2)
sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y - x^2], A)
sage: C.projective_closure(1, P).ambient_space() == P
True
```

**resolution_of_singularities**(extend=False)

Return a nonsingular model for this affine curve created by blowing up its singular points.

The nonsingular model is given as a collection of affine patches that cover it. If `extend` is `False` and if the base field is a number field, or if the base field is a finite field, the model returned may have singularities with coordinates not contained in the base field. An error is returned if this curve is already nonsingular, or if it has no singular points over its base field. This curve must be irreducible, and must be defined over a number field or finite field.

**INPUT:**

- extend – (default: False) specifies whether to extend the base field when necessary to find all singular points when this curve is defined over a number field. If `extend` is `False`, then only singularities with coordinates in the base field of this curve will be resolved. However, setting `extend` to `True` will slow down computations.
• a tuple consisting of three elements. The first is a tuple of curves in affine space of the same dimension as the ambient space of this curve, which represent affine patches of the resolution of singularities. The second is a tuple of tuples such that the jth element of the ith tuple is the transition map from the ith patch to the jth patch. Lastly, the third element is a tuple consisting of birational maps from the patches back to the original curve that were created by composing the projection maps generated from the blow up computations. There the ith element will be a map from the ith patch.

EXAMPLES:

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3], A)
sage: C.resolution_of_singularities()
((Affine Plane Curve over Rational Field defined by s1^2 - x,
 Affine Plane Curve over Rational Field defined by y*s0^3 - 1),
 ((Scheme endomorphism of Affine Plane Curve over Rational Field defined by →
 s1^2 - x
 Defn: Defined on coordinates by sending (x, s1) to
 (x, s1), Scheme morphism:
 From: Affine Plane Curve over Rational Field defined by s1^2 - x
 To: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
 Defn: Defined on coordinates by sending (x, s1) to
 (x*s1, 1/s1)), (Scheme morphism:
 From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
 To: Affine Plane Curve over Rational Field defined by s1^2 - x
 Defn: Defined on coordinates by sending (y, s0) to
 (y*s0, 1/s0),
 Scheme endomorphism of Affine Plane Curve over Rational Field defined by →
 -y*s0^3 - 1
 Defn: Defined on coordinates by sending (y, s0) to
 (y, s0)),
(Scheme morphism:
 From: Affine Plane Curve over Rational Field defined by s1^2 - x
 To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
 Defn: Defined on coordinates by sending (x, s1) to
 (x, x*s1), Scheme morphism:
 From: Affine Plane Curve over Rational Field defined by y*s0^3 - 1
 To: Affine Plane Curve over Rational Field defined by -x^3 + y^2
 Defn: Defined on coordinates by sending (y, s0) to
 (y*s0, y)))
sage: set_verbose(-1)
sage: K.<a> = QuadraticField(3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = A.curve(x^4 + 2*x^2 + a*y^3 + 1)
sage: C.resolution_of_singularities(extend=True)[0] # long time (2 seconds)
(Affine Plane Curve over Number Field in a0 with defining polynomial y^4 -
 24*x^2*ss1^3 + 24*ss1^3 + (a0^3 - 8*a0) ss0^2 + (-6*a0^3)*s1,
 Affine Plane Curve over Number Field in a0 with defining polynomial y^4 -
 8*y^2*s0^4 + (4*a0^3)*y*s0^3 - 32*s0^2 + (a0^3 - 8*a0)*y)
```
sage: A.<x,y,z> = AffineSpace(GF(5), 3)
sage: C = Curve([y - x^3, (z - 2)^2 - y^3 - x^3], A)
sage: R = C.resolution_of_singularities()
sage: R[0]
(Affine Curve over Finite Field of size 5 defined by x^2 - s1, s1^4 - x*s2^2 - s1, x*s1^3 - s2^2 + x,
Affine Curve over Finite Field of size 5 defined by y*s2^2 - y^2 - 1, s2^4 - y*s0^3 - y^2 - 2, y*s0^3 - s2^2 + y,
Affine Curve over Finite Field of size 5 defined by s0^3*s1 + s1^3 + z*s1^3 - 2*s0^3 - 2*s1^3 - 1, z^2*s1^3 + z*s1^3 - s1^3 - z + s1 + 2)

sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: C = A.curve([(x - 2)^2 + y^2)^2 - (x - 2)^2 - y^2 + (x - 2)^3, z - y, w - 4])
sage: B = C.resolution_of_singularities()
sage: B[0]
(Affine Curve over Rational Field defined by s3, s1 - s2, x^2*s2^4 - 4*x*x*s2^4 + 2*x^2*s2^2 + 4*x*s2^4 + 8*x*s2^2 + x^2 + 7*s2^2 - 3*x + 1,
Affine Curve over Rational Field defined by s3, s2 - 1, y^2*s0^4 + 2*y^2*s0^2 + y^2 - s0^2 - 1,
Affine Curve over Rational Field defined by s3, s1 - 1, z^2*s0^4 - 14*z*s0^4 + 2*z^2*s0^2 + z*s0^3 + 49*s0^4 - 28*z*s0^2 + 7*s0^3 + z^2 + 97*s0^2 - 14*z + 48,
Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: 1)

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y - x^2 + 1], A)
sage: C.resolution_of_singularities()  
Traceback (most recent call last):
  ...  
TypeError: this curve is already nonsingular

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([(x^2 + y^2 - y - 2)*(y - x^2 + 2) + y^3])
sage: C.resolution_of_singularities()  
Traceback (most recent call last):
  ...  
TypeError: this curve has no singular points over its base field. If working over a number field use extend=True

class sage.schemes.curves.affine_curve.AffinePlaneCurve(A,f)
Bases: sage.schemes.curves.affine_curve.AffineCurve

Initialization function.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([x^3 - y^2], A); C
Affine Plane Curve over Rational Field defined by x^3 - y^2

sage: A.<x,y> = AffineSpace(CC, 2)
sage: C = Curve([y^2 + x^2], A); C

(continues on next page)
Affine Plane Curve over Complex Field with 53 bits of precision defined
by $x^2 + y^2$

**divisor_of_function**($r$)

Return the divisor of a function on a curve.

**INPUT:** $r$ is a rational function on $X$

**OUTPUT:**

- list - The divisor of $r$ represented as a list of coefficients and points. (TODO: This will change to a more structural output in the future.)

**EXAMPLES:**

```sage
sage: F = GF(5)
sage: P2 = AffineSpace(2, F, names = 'xy')
sage: R = P2.coordinate_ring()
sage: x, y = R.gens()
sage: f = y^2 - x^9 - x
sage: C = Curve(f)
sage: K = FractionField(R)
sage: r = 1/x
sage: C.divisor_of_function(r) # todo: not implemented (broken)
[-1, (0, 0, 1)]
sage: r = 1/x^3
sage: C.divisor_of_function(r) # todo: not implemented (broken)
[-3, (0, 0, 1)]
```

**fundamental_group**()

Return a presentation of the fundamental group of the complement of $self$.

**Note:** The curve must be defined over the rationals or a number field with an embedding over $\mathbb{Q}$.

**EXAMPLES:**

```sage
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve(y^2 - x^3 - x^2)
sage: C.fundamental_group() # optional - sirocco
Finitely presented group < x0 | >
```

In the case of number fields, they need to have an embedding to the algebraic field:

```sage
sage: a = QQ[x](x^2+5).roots(QQbar)[0][0]
sage: F = NumberField(a.minpoly(), 'a', embedding=a)
sage: F.inject_variables()
Defining a
sage: A.<x,y> = AffineSpace(F, 2)
sage: C = A.curve(y^2 - a*x^3 - x^2)
sage: C.fundamental_group() # optional - sirocco
Finitely presented group < x0 | >
```

**Warning:** This functionality requires the sirocco package to be installed.
**is_ordinary_singularity** \((P)\)

Return whether the singular point \(P\) of this affine plane curve is an ordinary singularity.

The point \(P\) is an ordinary singularity of this curve if it is a singular point, and if the tangents of this curve at \(P\) are distinct.

**INPUT:**

- \(P\) – a point on this curve.

**OUTPUT:**

- Boolean. True or False depending on whether \(P\) is or is not an ordinary singularity of this curve, respectively. An error is raised if \(P\) is not a singular point of this curve.

**EXAMPLES:**

```sage
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3], A)
sage: Q = A([0,0])
sage: C.is_ordinary_singularity(Q)
False
```

```sage
sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 - 3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
sage: Q = A([0,0])
sage: C.is_ordinary_singularity(Q)
True
```

```sage
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([x^2*y - y^2*x + y^2 + x^3])
sage: Q = A([-1,-1])
sage: C.is_ordinary_singularity(Q)
Traceback (most recent call last):
 ...
TypeError: (=(-1, -1)) is not a singular point of (=Affine Plane Curve over Rational Field defined by x^3 + x^2*y - x*y^2 + y^2)
```

**is_transverse** \((C, P)\)

Return whether the intersection of this curve with the curve \(C\) at the point \(P\) is transverse.

The intersection at \(P\) is transverse if \(P\) is a nonsingular point of both curves, and if the tangents of the curves at \(P\) are distinct.

**INPUT:**

- \(C\) – a curve in the ambient space of this curve.
- \(P\) – a point in the intersection of both curves.

**OUTPUT:** Boolean.

**EXAMPLES:**

```sage
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([x^2 + y^2 - 1], A)
sage: D = Curve([x - 1], A)
sage: Q = A([1,0])
sage: C.is_transverse(D, Q)
False
```
local_coordinates($pt$, $n$)

Return local coordinates to precision $n$ at the given point.

Behaviour is flaky - some choices of $n$ are worst than others.

**INPUT:**

- $pt$ - an $F$-rational point on $X$ which is not a point of ramification for the projection $(x, y) - x$.
- $n$ - the number of terms desired

**OUTPUT:** $x = x_0 + t$ \quad $y = y_0 + \text{power series in } t$

**EXAMPLES:**

```python
sage: F = GF(5)
sage: pt = (2,3)
sage: R = PolynomialRing(F, 2, names = ['x', 'y'])
sage: x, y = R.gens()
sage: f = y^2-x^9-x
sage: C = Curve(f)
sage: C.local_coordinates(pt, 9)
[t + 2, -2*t^12 - 2*t^11 + 2*t^9 + t^8 - 2*t^7 - 2*t^6 - 2*t^4 + t^3 - 2*t^2 -
→ 2]
```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3], A)
sage: Q1 = A([1,1])
sage: C.multiplicity(Q1)
1
sage: Q2 = A([0,0])
sage: C.multiplicity(Q2)
2
sage: A.<x,y> = AffineSpace(QQbar,2)
sage: C = Curve([-x^7 + (-7)*x^6 + y^6 + (-21)*x^5 + 12*y^5 + (-35)*x^4 +
\rightarrow 60*y^4 + (-35)*x^3 + 160*y^3 + (-21)*x^2 + 240*y^2 + (-7)*x + 192*y + 63], A)
sage: Q = A([-1,-2])
sage: C.multiplicity(Q)
6

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([y^3 - x^3 + x^6])
sage: Q = A([1,1])
sage: C.multiplicity(Q)
Traceback (most recent call last):
  ...TypeError: (=1, 1)) is not a point on (=Affine Plane Curve over Rational Field defined by x^6 - x^3 + y^3)

plot(*args, **kwds)
Plot the real points on this affine plane curve.

INPUT:

• self - an affine plane curve
• *args - optional tuples (variable, minimum, maximum) for plotting dimensions
• **kwds - optional keyword arguments passed on to implicit_plot

EXAMPLES:
A cuspidal curve:

sage: R.<x, y> = QQ[]
sage: C = Curve(x^3 - y^2)
sage: C.plot()
Graphics object consisting of 1 graphics primitive

A 5-nodal curve of degree 11. This example also illustrates some of the optional arguments:

sage: R.<x, y> = ZZ[]
sage: C = Curve(32*x^2 - 2097152*y^11 + 1441792*y^9 - 360448*y^7 + 39424*y^5 -
\rightarrow 1760*y^3 + 22*y - 1)
sage: C.plot((x, -1, 1), (y, -1, 1), plot_points=400)
Graphics object consisting of 1 graphics primitive

A line over RR:

sage: R.<x, y> = RR[]
sage: C = Curve(R(y - sqrt(2)*x))
rational_parameterization()

Return a rational parameterization of this curve.

This curve must have rational coefficients and be absolutely irreducible (i.e. irreducible over the algebraic closure of the rational field). The curve must also be rational (have geometric genus zero).

The rational parameterization may have coefficients in a quadratic extension of the rational field.

OUTPUT:

• a birational map between $\mathbb{A}^1$ and this curve, given as a scheme morphism.

EXAMPLES:

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x], A)
sage: C.rational_parameterization()
Scheme morphism:
 From: Affine Space of dimension 1 over Rational Field
 To: Affine Plane Curve over Rational Field defined by y^2 - x
 Defn: Defined on coordinates by sending (t) to
 (t^2, t)
```

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
sage: C.rational_parameterization()
Scheme morphism:
 From: Affine Space of dimension 1 over Rational Field
 To: Affine Plane Curve over Rational Field defined by x^4 + 2*x^2*y^2 + y^4 - 4*x^3 - 4*x*y^2 + 3*x^2 - y^2
 Defn: Defined on coordinates by sending (t) to
 ((-12*t^4 + 6*t^3 + 4*t^2 - 2*t)/(-25*t^4 + 40*t^3 - 26*t^2 + 8*t - 1), (-9*t^4 + 12*t^3 - 4*t + 1)/(-25*t^4 + 40*t^3 - 26*t^2 + 8*t - 1))
```

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([x^2 + y^2 + 7], A)
sage: C.rational_parameterization()
Scheme morphism:
 From: Affine Space of dimension 1 over Number Field in a with defining polynomial a^2 + 7
 To: Affine Plane Curve over Number Field in a with defining polynomial a^2 + 7 defined by x^2 + y^2 + 7
 Defn: Defined on coordinates by sending (t) to
 ((-7*t^2 + 7)/((-a)*t^2 + (-a)), 14*t/((-a)*t^2 + (-a)))
```

riemann_surface(**kwargs)

Return the complex riemann surface determined by this curve

OUTPUT:

• RiemannSurface object

EXAMPLES:
tangents \((P, \text{factor=True})\)

Return the tangents of this affine plane curve at the point \(P\).

The point \(P\) must be a point on this curve.

**INPUT:**
- \(P\) – a point on this curve.
- \(\text{factor}\) – (default: True) whether to attempt computing the polynomials of the individual tangent lines over the base field of this curve, or to just return the polynomial corresponding to the union of the tangent lines (which requires fewer computations).

**OUTPUT:**
- a list of polynomials in the coordinate ring of the ambient space of this curve.

**EXAMPLES:**

```sage
sage: A.<x,y> = AffineSpace(QQbar, 2)
sage: C = Curve([x^5*y^3 + 2*x^4*y^4 + x^3*y^5 + 3*x^4*y^3 + 6*x^3*y^4 + 3*x^2*y^5 + 3*x^3*y^3 + 6*x^2*y^4 + 3*x*y^5 + x^5 + 10*x^4*y + 40*x^3*y^2 + 81*x^2*y^3 + 82*x*y^4 + 33*y^5], A)
sage: Q = A([0,0])
sage: C.tangents(Q)
[x + 3.425299577684700?*y, x + (1.949159013086856? + 1.179307909383728?*I)*y, x + (1.949159013086856? - 1.179307909383728?*I)*y, x + (1.338191198070795? + 0.2560234251008043?*I)*y, x + (1.338191198070795? - 0.2560234251008043?*I)*y]
sage: C.tangents(Q, factor=False)
[120*x^5 + 1200*x^4*y + 4800*x^3*y^2 + 9720*x^2*y^3 + 9840*x*y^4 + 3960*y^5]
```

```sage
sage: R.<a> = QQ[]
sage: K. = NumberField(a^2 - 3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = Curve([(x^2 + y^2 - 2*x)^2 - x^2 - y^2], A)
sage: Q = A([0,0])
sage: C.tangents(Q)
[x + (-1/3*b)*y, x + (1/3*b)*y]
```
sage: C.tangents(Q)
Traceback (most recent call last):
...
TypeError: (=1, 1)) is not a point on (=Affine Plane Curve over Rational Field defined by -x^4 + 2*x^2 + x*y)

class sage.schemes.curves.affine_curve.AffinePlaneCurve_finite_field(A, f)
    Bases: sage.schemes.curves.affine_curve.AffinePlaneCurve
    rational_points(algorithm='enum')
        Return sorted list of all rational points on this curve.
        Use very naive point enumeration to find all rational points on this curve over a finite field.

        EXAMPLES:

        sage: A.<x,y> = AffineSpace(2,GF(9,'a'))
        sage: C = Curve(x^2 + y^2 - 1)
        sage: C
        Affine Plane Curve over Finite Field in a of size 3^2 defined by x^2 + y^2 - 1
        sage: C.rational_points()
        [(0, 1), (0, 2), (1, 0), (2, 0), (a + 1, a + 1), (a + 1, 2*a + 2), (2*a + 2, a + 1), (2*a + 2, 2*a + 2)]

class sage.schemes.curves.affine_curve.AffinePlaneCurve_prime_finite_field(A, f)
    Bases: sage.schemes.curves.affine_curve.AffinePlaneCurve_finite_field
    rational_points(algorithm='enum')
        Return sorted list of all rational points on this curve.

        INPUT:
        • algorithm - string:
            - 'enum' - straightforward enumeration
            - 'bn' - via Singular's Brill-Noether package.
            - 'all' - use all implemented algorithms and verify that they give the same answer, then return it

        Note: The Brill-Noether package does not always work. When it fails a RuntimeError exception is raised.

        EXAMPLES:

        sage: x, y = (GF(5)['x,y']).gens()
        sage: f = y^2 - x^9 - x
        sage: C = Curve(f); C
        Affine Plane Curve over Finite Field of size 5 defined by -x^9 + y^2 - x
        sage: C.rational_points(algorithm='bn')
        [(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
        sage: C = Curve(x - y + 1)
        sage: C.rational_points()
        [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

        We compare Brill-Noether and enumeration:
sage: x, y = (GF(17)['x,y']).gens()
sage: C = Curve(x^2 + y^5 + x*y - 19)
sage: v = C.rational_points(algorithm='bn')
sage: w = C.rational_points(algorithm='enum')
sage: len(v)
20
sage: v == w
True

riemann_roch_basis(D)

Interfaces with Singular’s BrillNoether command.

INPUT:

• self - a plane curve defined by a polynomial eqn f(x,y) = 0 over a prime finite field F = GF(p) in
  2 variables x,y representing a curve X: f(x,y) = 0 having n F-rational points (see the Sage function
  places_on_curve)

• D - an n-tuple of integers (d1, ..., dn) representing the divisor Div = d1 * P1 + ... + dn * Pn, where
  X(F) = {P1, ..., Pn}. The ordering is that dictated by places_on_curve.

OUTPUT: basis of L(Div)

EXAMPLES:

sage: R = PolynomialRing(GF(5), 2, names = ['x', 'y'])
sage: x, y = R.gens()
sage: f = y^2 - x^9 - x
sage: C = Curve(f)
sage: D = [6, 0, 0, 0, 0]

sage: C.riemann_roch_basis(D)
[1, (-x*z^5 + y^2*z^4)/x^6, (-x*z^6 + y^2*z^5)/x^7, (-x*z^7 + y^2*z^6)/x^8]
EXAMPLES:

We can construct curves in either a projective plane:

\[
\text{sage: } P.<x,y,z> = \text{ProjectiveSpace}(\mathbb{Q}, 2) \\
\text{sage: } C = \text{Curve}([y*z^2 - x^3], P); C
\]

Projective Plane Curve over Rational Field defined by \(-x^3 + y*z^2\)

or in higher dimensional projective spaces:

\[
\text{sage: } P.<x,y,z,w> = \text{ProjectiveSpace}(\mathbb{Q}, 3) \\
\text{sage: } C = \text{Curve}([y*w^3 - x^4, z*w^3 - x^4], P); C
\]

Projective Curve over Rational Field defined by \(-x^4 + y*w^3, -x^4 + z*w^3\)

AUTHORS:

- William Stein (2005-11-13)
- David Joyner (2005-11-13)
- David Kohel (2006-01)
- Moritz Minzlaff (2010-11)
- Grayson Jorgenson (2016-8)

\[
\text{sage.schemes.curves.projective_curve.Hasse_bounds}(q, genus=1)
\]

Return the Hasse-Weil bounds for the cardinality of a nonsingular curve defined over \(\mathbb{F}_q\) of given genus.

**INPUT:**

- \(q\) (int) – a prime power
- \(\text{genus}\) (int, default 1) – a non-negative integer,

**OUTPUT:**

(tuple) The Hasse bounds (lb,ub) for the cardinality of a curve of genus \(\text{genus}\) defined over \(\mathbb{F}_q\).

EXAMPLES:

\[
\text{sage: } \text{Hasse_bounds}(2) \\
(1, 5) \\
\text{sage: } \text{Hasse_bounds}(\text{next_prime}(10^{30})) \\
(9999999999999800000000000058, 1000000000000000000000000000058)
\]

\[
\text{class } \text{sage.schemes.curves.projective_curve.ProjectiveCurve}(A, X) \\
\text{Bases: } \text{sage.schemes.curves.curve.Curve_generic, sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective}
\]
Initialization function.

EXAMPLES:

```python
sage: P.<x,y,z,w,v> = ProjectiveSpace(GF(7), 4)
sage: C = Curve([y*u^2 - x^3, z*u^2 - x^3, w*u^2 - x^3, y^3 - x^3], P); C
Projective Curve over Finite Field of size 7 defined by -x^3 + y*u^2, -x^3 + z*u^2, -x^3 + w*u^2, -x^3 + y^3
```

```python
sage: K.<u> = CyclotomicField(11)
sage: P.<x,y,z,w> = ProjectiveSpace(K, 3)
sage: C = Curve([y*w - u*z^2 - x^2, x*w - 3*u^2*z*w], P); C
Projective Curve over Cyclotomic Field of order 11 and degree 10 defined by -x^2 + (-u)*z^2 + y*w, x*w + (-3*u^2)*z*w
```

affine_patch(i, AA=None)

Return the i-th affine patch of this projective curve.

INPUT:

• i – affine coordinate chart of the projective ambient space of this curve to compute affine patch with respect to.

• AA – (default: None) ambient affine space, this is constructed if it is not given.

OUTPUT:

• a curve in affine space.

EXAMPLES:

```python
sage: P.<x,y,z,w> = ProjectiveSpace(CC, 3)
sage: C = Curve([y*z - x^2, w^2 - x*y], P)
sage: C.affine_patch(0)
Affine Curve over Complex Field with 53 bits of precision defined by y*z - 1.00000000000000, w^2 - y
```

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 - x^2*y + y^3 - x^2*z, P)
sage: C.affine_patch(1)
Affine Plane Curve over Rational Field defined by x^3 - x^2*z - x^2 + 1
```

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
sage: C = Curve([u^2 - v^2], P)
sage: C.affine_patch(1, A).ambient_space() == A
True
```

arithmetic_genus()

Return the arithmetic genus of this projective curve.

This is the arithmetic genus $g_a(C)$ as defined in [Hartshorne]. If $P$ is the Hilbert polynomial of the defining ideal of this curve, then the arithmetic genus of this curve is $1 - P(0)$. This curve must be irreducible.

OUTPUT: Integer.

EXAMPLES:
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = P.curve([w*z - x^2, w^2 + y^2 + z^2])
sage: C.arithmetic_genus()
1

sage: P.<x,y,z,w,t> = ProjectiveSpace(GF(7), 4)
sage: C = P.curve([t^3 - x*y*w, x^3 + y^3 + z^3, z - w])
sage: C.arithmetic_genus()
10

is_complete_intersection()

Return whether this projective curve is or is not a complete intersection.

OUTPUT: Boolean.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x*y - z*w, x^2 - y*w, y^2*w - x*z*w], P)
sage: C.is_complete_intersection()
False
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y*w - x^2, z*w^2 - x^3], P)
sage: C.is_complete_intersection()
True
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([z^2 - y*w, y*z - x*w, y^2 - x*z], P)
sage: C.is_complete_intersection()
False

plane_projection(PP=None)

Return a projection of this curve into a projective plane.

INPUT:

* PP – (default: None) the projective plane the projected curve will be defined in. This space must be defined over the same base field as this curve, and must have dimension two. This space is constructed if not specified.

OUTPUT:

* a tuple consisting of two elements: a scheme morphism from this curve into a projective plane, and the projective curve that is the image of that morphism.

EXAMPLES:

sage: P.<x,y,z,w,u,v> = ProjectiveSpace(QQ, 5)
sage: C = P.curve([x*u - z*v, w - y, w*y - x^2, y^3*u*2*z - w^4*w])
sage: L.<a,b,c> = ProjectiveSpace(QQ, 2)
sage: proj1 = C.plane_projection(PP=L)
sage: proj1
(Scheme morphism:
  From: Projective Curve over Rational Field defined by x*u - z*v, -y + w, -x^2 + y*w, -w^5 + 2*y^3*z*u
  To:  Projective Space of dimension 2 over Rational Field
  Defn: Defined on coordinates by sending (x : y : z : w : u : v) to (continues on next page)
Projective Plane Curve over Rational Field defined by \(a^8 + 6a^7b + 4a^5b^3 - 4a^7c - 2a^6bc - 4a^5b^2c + 2a^6c^2\)

\[
\text{sage: proj1[1].ambient_space()} \text{ is } L
\]

True

\[
\text{sage: proj2 = C.projection()}
\]

\[
\text{sage: proj2[1].ambient_space()} \text{ is } L
\]

False

\[
\text{sage: } P.<x,y,z,w,u> = \text{ProjectiveSpace}(GF(7), 4)
\]
\[
\text{sage: C = P.curve([x^2 - 6*y^2, w*z*u - y^3 + 4*y^2*z, w^2 - x^2])}
\]
\[
\text{sage: C.plane_projection()}
\]

(Scheme morphism:
From: Projective Curve over Finite Field of size 7 defined by \(x^2 + y^2, -y^3 - 3y^2z + z*w*u, -x^2 + w^2\)
To: Projective Plane Curve over Finite Field of size 7 defined by \(x0^10 - 2*x0^9*x1 + 3*x0^8*x1^2 - 2*x0^7*x1^3 + x0^6*x1^4 + 2*x0^6*x1^2*x2^2 - 2*x0^5*x1^3*x2^2 - x0^4*x1^4*x2^2 + x0^2*x1^4*x2^4\))

\[
\text{sage: } P.<x,y,z> = \text{ProjectiveSpace}(GF(17), 2)
\]
\[
\text{sage: C = P.curve(x^2 - y*z - z^2)}
\]
\[
\text{sage: C.plane_projection()}
\]

Traceback (most recent call last):
...
Type Error: this curve is already a plane curve

**projection** 
\((P=None, PS=None)\)

Return a projection of this curve into projective space of dimension one less than the dimension of the ambient space of this curve.

This curve must not already be a plane curve. Over finite fields, if this curve contains all points in its ambient space, then an error will be returned.

**INPUT:**

- \(P\) – (default: None) a point not on this curve that will be used to define the projection map; this is constructed if not specified.

- \(PS\) – (default: None) the projective space the projected curve will be defined in. This space must be defined over the same base ring as this curve, and must have dimension one less than that of the ambient space of this curve. This space will be constructed if not specified.

**OUTPUT:**

- a tuple consisting of two elements: a scheme morphism from this curve into a projective space of dimension one less than that of the ambient space of this curve, and the projective curve that is the image of that morphism.

**EXAMPLES:**

\[
\text{sage: } K.<a> = \text{CyclotomicField}(3)
\]
\[
\text{sage: } P.<x,y,z,w> = \text{ProjectiveSpace}(K, 3)
\]
\[
\text{sage: C = Curve([y*w - x^2, z*w^2 - a*x^3], P)}
\]
\[
\text{sage: L.<a,b,c> = \text{ProjectiveSpace}(K, 2)}
\]
\[
\text{sage: proj1 = C.projection(PS=L)}
\]
sage: proj1
(Scheme morphism:
  From: Projective Curve over Cyclotomic Field of order 3 and degree 2
defined by \(-x^2 + y*w, (-a)*x^3 + z*w^2\)
  To:  Projective Space of dimension 2 over Cyclotomic Field of order 3 and degree 2
  Defn: Defined on coordinates by sending (x : y : z : w) to
  \((x : y : -z + w)\),
Projective Plane Curve over Cyclotomic Field of order 3 and degree 2
defined by \(a^6 + (-a)*a^3*b^3 - a^4*b*c\)
sage: proj1[1].ambient_space() is L
True
sage: proj2 = C.projection()
sage: proj2[1].ambient_space() is L
False

sage: P.<x,y,z,w,a,b,c> = ProjectiveSpace(QQ, 6)
sage: C = Curve([y - x, z - a - b, w^2 - c^2, z - x - a, x^2 - w*z], P)
sage: C.projection()
(Scheme morphism:
  From: Projective Curve over Rational Field defined by \(-x + y, z - a - b, w^2 - c^2, -x + z - a, x^2 - w*z\)
  To:  Projective Space of dimension 5 over Rational Field
  Defn: Defined on coordinates by sending (x : y : z : w : a : b : c) to
  \((x : y : -z + w : a : b : c)\),
Projective Curve over Rational Field defined by \(x1 - x4, x0 - x4, x2*x3 + x3^2 + x2*x4 + 2*x3*x4, x2^2 - x3^2 - 2*x3*x4 + x4^2 - x5^2, x2*x4^2 + x3*x4^2 + x4^3 - x3*x5^2 - x4*x5^2, x4^4 - x3^2*x5^2 - 2*x3*x4*x5^2 - x4^2*x5^2\)

sage: P.<x,y,z,w> = ProjectiveSpace(GF(2), 3)
sage: C = P.curve([\((x - y)*(x - z)*(x - w)*(y - z)*(y - w)\),
  \(~x*y*z*w*(x+y+z+w)\)])
sage: C.projection()
Traceback (most recent call last):
  ... Not Implemented Error: this curve contains all points of its ambient space

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)
sage: C = P.curve([\(x^3 - y*z*u, w^2 - u^2 + 2*x*z, 3*x*w - y^2\)])
sage: L.<a,b,c,d> = ProjectiveSpace(GF(7), 3)
sage: C.projection(PS=L)
(Scheme morphism:
  From: Projective Curve over Finite Field of size 7 defined by \(x^3 - y*z*u, 2*x*z + w^2 - u^2, -y^2 + 3*x*w\)
  To:  Projective Space of dimension 3 over Finite Field of size 7
  Defn: Defined on coordinates by sending (x : y : z : w : u) to
  \((x : y : z : w)\),
Projective Curve over Finite Field of size 7 defined by \(b^2 - 3*a*d, a^5*b + a*b*c^3*d - 3*b*c^2*d^3, a^6 + a^2*c^3*d - 3*a*c^2*d^3\)
sage: Q.<a,b,c> = ProjectiveSpace(GF(7), 2)
sage: C.projection(PS=Q)
Traceback (most recent call last):
...
TypeError: (=Projective Space of dimension 2 over Finite Field of size 7) must have dimension (=3)

```python
sage: PP.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = PP.curve([x^3 - z^2*y, w^2 - z*x])
sage: Q = PP([1,0,1,1])
sage: C.projection(P=Q)
(Scheme morphism:
 From: Projective Curve over Rational Field defined by x^3 - y*z^2, -x*z + w^2
 To: Projective Space of dimension 2 over Rational Field
 Defn: Defined on coordinates by sending (x : y : z : w) to
 (y : -x + z : -x + w),
 Projective Plane Curve over Rational Field defined by x0*x1^5 - 6*x0*x1^4*x2 + 14*x0*x1^3*x2^2 - 16*x0*x1^2*x2^3 + 9*x0*x1*x2^4 - 2*x0*x2^5 - x2^6)
sage: LL.<a,b,c> = ProjectiveSpace(QQ, 2)
sage: Q = PP([0,0,0,1])
sage: C.projection(PS=LL, P=Q)
(Scheme morphism:
 From: Projective Curve over Rational Field defined by x^3 - y*z^2, -x*z + w^2
 To: Projective Space of dimension 2 over Rational Field
 Defn: Defined on coordinates by sending (x : y : z : w) to
 (x : y : z),
 Projective Plane Curve over Rational Field defined by a^3 - b*c^2)
sage: Q = PP([0,0,1,0])
sage: C.projection(P=Q)
Traceback (most recent call last):
 ...TypeError: (=0 : 0 : 1 : 0) must be a point not on this curve
```

```python
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
sage: C = P.curve(y^2 - x^2 + z^2)
sage: C.projection()
Traceback (most recent call last):
 ...TypeError: this curve is already a plane curve
```

```python
class sage.schemes.curves.projective_curve.ProjectivePlaneCurve(A,f)
Bases: sage.schemes.curves.projective_curve.ProjectiveCurve

Initialization function.

EXAMPLES:
```
```
Return the arithmetic genus of this projective curve.

This is the arithmetic genus \(g_a(C) \) as defined in [Hartshorne]. For a projective plane curve of degree \(d \), this is simply \((d-1)(d-2)/2 \). It need not equal the geometric genus (the genus of the normalization of the curve). This curve must be irreducible.

OUTPUT: Integer.

EXAMPLES:

```
sage: x, y, z = PolynomialRing(GF(5), 3, 'xyz').gens()
sage: C = Curve(y^2*z^7 - x^9 - x*z^8); C
Projective Plane Curve over Finite Field of size 5 defined by -x^9 + y^2*z^7 - x*z^8
sage: C.arithmetic_genus()
28
sage: C.genus()
4
```

REFERENCES:

\texttt{degree}()

Return the degree of this projective curve.

For a plane curve, this is just the degree of its defining polynomial.

OUTPUT: integer.

EXAMPLES:

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([y^3*x - x^2*y*z - 7*z^4])
sage: C.arithmetic_genus()
3
```

\texttt{divisor_of_function}(r)

Return the divisor of a function on a curve.

INPUT: r is a rational function on X

OUTPUT:

- list - The divisor of \(r \) represented as a list of coefficients and points. (TODO: This will change to a more structural output in the future.)

EXAMPLES:

```
sage: FF = FiniteField(5)
sage: P2 = ProjectiveSpace(2, FF, names = ['x', 'y', 'z'])
sage: R = P2.coordinate_ring()
sage: x, y, z = R.gens()
sage: f = y^2*z^7 - x^9 - x*z^8
sage: C = Curve(f)
sage: K = FractionField(R)
sage: r = 1/x
sage: C.divisor_of_function(r)  # todo: not implemented !!!!
```

(continues on next page)
excellent_position(Q)

Return a transformation of this curve into one in excellent position with respect to the point Q.

Here excellent position is defined as in [Fulton89]. A curve \(C \) of degree \(d \) containing the point \((0 : 0 : 1)\) with multiplicity \(r \) is said to be in excellent position if none of the coordinate lines are tangent to \(C \) at any of the fundamental points \((1 : 0 : 0), (0 : 1 : 0), \) and \((0 : 0 : 1)\), and if the two coordinate lines containing \((0 : 0 : 1)\) intersect \(C \) transversally in \(d - r \) distinct non-fundamental points, and if the other coordinate line intersects \(C \) transversally at \(d \) distinct, non-fundamental points.

INPUT:

- \(Q \) – a point on this curve.

OUTPUT:

- a scheme morphism from this curve to a curve in excellent position that is a restriction of a change of coordinates map of the projective plane.

EXAMPLES:

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x*y - z^2], P)
sage: Q = P([1,1,1])
sage: C.excellent_position(Q)
```

Scheme morphism:

From: Projective Plane Curve over Rational Field defined by x*y - z^2
To: Projective Plane Curve over Rational Field defined by -x^2 - 3*x*y - 4*y^2 - x*z - 3*y*z
Defn: Defined on coordinates by sending (x : y : z) to (-x + 1/2*y + 1/2*z : -1/2*y + 1/2*z : x + 1/2*y - 1/2*z)

```python
sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^2 - 3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = P.curve([z^2*y^3*x^4 - y^6*x^3 - 4*z^2*y^4*x^3 - 4*z^4*y^2*x^3 + \rightarrow 3*y^7*x^2 + 10*z^2*y^5*x^2\]
+ 9*z^4*y^3*x^2 + 5*z^6*y^2*x^2 - 3*y^8*x - 9*z^2*y^6*x - 11*z^4*y^4*x - 7*z^\rightarrow 6*y^2*x^2 + 2*z^8*x + y^9 +
2*z^2*y^7 + 3*z^4*y^5 + 4*z^6*y^3 + 2*z^8*y))
sage: Q = P([1,0,0])
sage: C.excellent_position(Q)
```

Scheme morphism:

From: Projective Plane Curve over Number Field in b with defining polynomial \(a^2 - 3 \) defined by -x^3*y^6 + 3*x^2*y^7 - 3*x*y^8 + y^9 + x^4*y^3*z^2 + 4*x^3*y^4*z^2 + 10*x^2*y^5*z^2 - 9*x*y^6*z^2 + 2*y^7*z^2 - 4*x^3*y^2*z^3 + 9*x^2*y^3*z^3 + 11*x*y^4*z^3 + 3*y^5*z^4 + 5*x^2*y^6*z - 7*x*y^2*z^6 + 4*y^3*z^6 - 2*x*z^8 + 2*y*z^8
To: Projective Plane Curve over Number Field in b with defining polynomial \(a^2 - 3 \) defined by 900*x^9 - 7410*x^8*y + 29282*x^7*y^2 - 69710*x^6*y^3 + 11018*x^5*y^4 - 123178*x^4*y^5 + 96550*x^3*y^6 - 52570*x^2*y^7 + 18194*x*y^8 - 3388*y^9 + 1550*x^8*z + 9892*x^7*y*z - 30756*x^6*y^2*z + 58692*x^5*y^3*z - 75600*x^4*y^4*z + 67916*x^3*y^5*z - 42364*x^2*y^6*z + 16844*x*y^7*z - 3586*y^8*z + 786*x^7*z^2 -
3958*x^6*y*z^2 + 9746*x^5*y^2*z^2 - 14694*x^4*y^3*z^2 +
15174*x^3*y^4*z^2 - 10802*x^2*y^5*z^2 + 5014*x*y^6*z^2 - 1266*y^7*z^2 -
144*x^6*z^3 + 512*x^5*y*z^3 - 912*x^4*y^2*z^3 + 1024*x^3*y^3*z^3 -
816*x^2*y^4*z^3 + 512*x*y^5*z^3 - 176*y^6*z^3 + 8*x^5*z^4 - 8*x^4*y*z^4 -
16*x^3*y^2*z^4 + 16*x^2*y^3*z^4 + 8*x*y^4*z^4 - 8*y^5*z^4
Defn: Defined on coordinates by sending (x : y : z) to
(1/4*y + 1/2*z : -1/4*y + 1/2*z : x + 1/4*y - 1/2*z)

sage: set_verbose(-1)
sage: a = QQbar(sqrt(2))
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
sage: C = Curve([-1/4*a)*x^3 + (-3/4*a)*x^2*y + (-3/4*a)*x*y^2 + (-1/4*a)*y^3 + (-2)*x*y*z], P)
sage: Q = P([0,0,1])
sage: C.excellent_position(Q)
Scheme morphism:
 From: Projective Plane Curve over Algebraic Field defined by
 (-0.3535533905932738?)*x^3 + (-1.060660171779822?)*x^2*y +
 (-1.060660171779822?)*x*y^2 + (-3/4*a)*x*y^2 + (-1/4*a)*y^3 +
 (-2)*x*y*z
 To: Projective Plane Curve over Algebraic Field defined by
 (-2.828427124746190?)*x^3 + (-2)*x^2*y + 2*y^3 + (-2)*x^2*z + 2*y^2*z
Defn: Defined on coordinates by sending (x : y : z) to
 (1/2*x + 1/2*y : (-1/2)*x + 1/2*y : 1/2*x + (-1/2)*y + z)

REFERENCES:

fundamental_group()
Return a presentation of the fundamental group of the complement of self.

Note: The curve must be defined over the rationals or a number field with an embedding over Q.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: C = P.curve(x^2*z-y^3)
sage: C.fundamental_group() # optional - sirocco
Finitely presented group < x0 | x0^3 >

sage: a = QQ[x](x^2+5).roots(QQbar)[0][0]
sage: F = NumberField(a.minpoly(), 'a', embedding=a)
sage: P.<x,y,z> = ProjectiveSpace(F, 2)
sage: F.inject_variables()
Defining a
sage: C = P.curve(x^2 + a * y^2)
sage: C.fundamental_group() # optional - sirocco
Finitely presented group < x0 | >

Warning: This functionality requires the sirocco package to be installed.
is_ordinary_singularity\((P)\)

Return whether the singular point \(P\) of this projective plane curve is an ordinary singularity.

The point \(P\) is an ordinary singularity of this curve if it is a singular point, and if the tangents of this curve at \(P\) are distinct.

INPUT:

• \(P\) – a point on this curve.

OUTPUT:

• Boolean. True or False depending on whether \(P\) is or is not an ordinary singularity of this curve, respectively. An error is raised if \(P\) is not a singular point of this curve.

EXAMPLES:

```sage
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z^3 - x^5], P)
sage: Q = P([0,0,1])
sage: C.is_ordinary_singularity(Q)
False
```

```sage
sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^2 - 3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3 +
  3*y^7*z^2 + 10*x^2*y^5*z^2 + 9*x^4*y^3*z^2 - 9*x^2*y^6*z - 11*x^4*y^4*z - 7*x^6*y^2*z -
  2*x^2*y^7 + 3*x^4*y^5 + 4*x^6*y^3 + 2*x^8*y])
sage: Q = P([0,1,1])
sage: C.is_ordinary_singularity(Q)
True
```

```sage
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([z^5 - y^5 + x^5 + x*y^2*z^2])
sage: Q = P([0,1,1])
sage: C.is_ordinary_singularity(Q)
Traceback (most recent call last):
...
TypeError: (=0 : 1 : 1) is not a singular point of (=Projective Plane Curve over Rational Field defined by x^5 - y^5 + x*y^2*z^2 + z^5)
```

is_singular\((P=None)\)

Return whether this curve is singular or not, or if a point \(P\) is provided, whether \(P\) is a singular point of this curve.

INPUT:

• \(P\) – (default: None) a point on this curve.

OUTPUT:

• Boolean. If no point \(P\) is provided, returns True or False depending on whether this curve is singular or not. If a point \(P\) is provided, returns True or False depending on whether \(P\) is or is not a singular point of this curve.

EXAMPLES:

Over \(Q\):
```python
sage: F = QQ
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^3-Y^2*Z)
sage: C.is_singular()
True

Over a finite field:
```
```python
sage: F = GF(19)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^3+Y^3+Z^3)
sage: C.is_singular()
False
sage: D = Curve(X^4-X^3*Z)
sage: D.is_singular()
True
sage: E = Curve(X^5+19*Y^5+Z^5)
sage: E.is_singular()
True
sage: E = Curve(X^5+9*Y^5+Z^5)
sage: E.is_singular()
False
```
```python
Over C:
```
```python
sage: F = CC
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X)
sage: C.is_singular()
False
sage: D = Curve(Y^2*Z-X^3)
sage: D.is_singular()
True
sage: E = Curve(Y^2*Z-X^3+Z^3)
sage: E.is_singular()
False
```
```python
Showing that trac ticket #12187 is fixed:
```
```python
sage: F.<X,Y,Z> = GF(2)[]
sage: G = Curve(X^2+Y*Z)
sage: G.is_singular()
False

sage: P.<x,y,z> = ProjectiveSpace(CC, 2)
sage: C = Curve([y^4 - x^3*z], P)
sage: Q = P([0,0,1])
sage: C.is_singular()
True
```

is_transverse(*C*, *P*)

Return whether the intersection of this curve with the curve *C* at the point *P* is transverse.

The intersection at *P* is transverse if *P* is a nonsingular point of both curves, and if the tangents of the curves at *P* are distinct.

** INPUT:**

- *C* – a curve in the ambient space of this curve.
• \(P \) – a point in the intersection of both curves.

OUTPUT: Boolean.

EXAMPLES:

```sage
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 - y^2], P)
sage: D = Curve([x - y], P)
sage: Q = P([1,1,0])
sage: C.is_transverse(D, Q)
False
```

```sage
sage: K = QuadraticField(-1)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = Curve([y^2*z - K.0*x^3], P)
sage: D = Curve([z*x + y^2], P)
sage: Q = P([0,0,1])
sage: C.is_transverse(D, Q)
False
```

```sage
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 - 2*y^2 - 2*z^2], P)
sage: D = Curve([y - z], P)
sage: Q = P([2,1,1])
sage: C.is_transverse(D, Q)
True
```

local_coordinates \((pt, n)\)

Return local coordinates to precision \(n \) at the given point.

Behaviour is flaky - some choices of \(n \) are worst that others.

INPUT:

• \(pt \) - an \(\mathbb{F} \)-rational point on \(X \) which is not a point of ramification for the projection \((x,y) \rightarrow x\).

• \(n \) - the number of terms desired

OUTPUT: \(x = x_0 + t \ y = y_0 + \text{power series in } t \)

EXAMPLES:

```sage
sage: FF = FiniteField(5)
sage: P2 = ProjectiveSpace(2, FF, names = ['x','y','z'])
sage: x, y, z = P2.coordinate_ring().gens()
sage: C = Curve(y^2*z^7-x^9-x*z^8)
sage: pt = C([2,3,1])
sage: C.local_coordinates(pt,9)  # todo: not implemented !!!!
[2 + t, 3 + 3*t^2 + t^3 + 3*t^4 + 3*t^6 + 3*t^7 + t^8 + 2*t^9 + 3*t^11 \rightarrow 3*t^12]
```

ordinary_model()

Return a birational map from this curve to a plane curve with only ordinary singularities.

Currently only implemented over number fields. If not all of the coordinates of the non-ordinary singularities of this curve are contained in its base field, then the domain and codomain of the map returned will be defined over an extension. This curve must be irreducible.

OUTPUT:
• a scheme morphism from this curve to a curve with only ordinary singularities that defines a birational map between the two curves.

EXAMPLES:

```python
sage: set_verbose(-1)
sage: K = QuadraticField(3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: C = Curve([x^5 - K.0*y*z^4], P)
sage: C.ordinary_model()
Scheme morphism:
From: Projective Plane Curve over Number Field in a with defining polynomial x^2 - 3 defined by x^5 + (-a)*y*z^4
To: Projective Plane Curve over Number Field in a with defining polynomial x^2 - 3 defined by (-a)*x^5*y + (-4*a)*x^4*y^2 + (-6*a)*x^3*y^3 + (-4*a)*x^2*y^4 + (-a - 1)*x*y^5 + (-4*a + 5)*x*y^3 + (-6*a - 10)*x*y^2 + (-4*a + 10)*x^2*y^3 + (-a - 5)*x*y^4 + y^5*z
Defn: Defined on coordinates by sending (x : y : z) to (-1/4*x^2 - 1/2*x*y + 1/2*x*z + 1/2*y*z - 1/4*z^2 : 1/4*x^2 + 1/2*x*y + 1/2*y*z - 1/4*z^2 : -1/4*x^2 + 1/4*z^2)
```

```python
sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z^2 - x^4 - x^3*z], P)
sage: D = C.ordinary_model(); D
# long time (2 seconds)
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by -x^4 - x^3*z + y^2*z^2
To: Projective Plane Curve over Rational Field defined by 4*x^6*y^3 - 24*x^5*y^4 + 36*x^4*y^5 + 8*x^3*y^6 + 2*x^2*y^7 + y^8
104*x^3*y^4 + 44*x^2*y^5 + 8*x^6 + 6*x^5*y + 6*x^4*y^2 + 8*x^3*y^3 + 56*x^2*y^4 + 8*x*y^5 + y^6
Defn: Defined on coordinates by sending (x : y : z) to
(-3/64*x^4 + 3/64*x^2*y^2 - 1/32*x*y^3 - 1/16*x^3*z - 1/8*x^2*y*y + 1/4*x*y^2*z - 1/16*y^3*z + 1/16*x*y*z^2 + 1/16*y^2*z^2 : 3/64*x^4 - 3/32*x^3*y + 3/64*x^2*y^2 + 1/16*x^3*z - 3/16*x^2*y^2 - 1/8*x*y^2*z - 1/8*x*y*z^2 + 1/16*y^2*z^2)
```

```python
sage: all(D.codomain().is_ordinary_singularity(Q) for Q in D.codomain().singular_points())
# long time
True
```

```python
sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([(x^2 + y^2 - y*z - 2*z^2)*(y*z - x^2 + 2*z^2)*z + y^5], P)
sage: C.ordinary_model()
# long time (5 seconds)
Scheme morphism:
From: Projective Plane Curve over Number Field in a with defining polynomial y^2 - 2 defined by y^5 - x^4*z - x^2*y^2*z + 2*x^2*y*z^2 + y^3*x^2 + 4*x^2*y^3 - y^2*x^3 - 4*y*z^4 - 4*z^5
To: Projective Plane Curve over Number Field in a with defining polynomial y^2 - 2 defined by (-29*a + 1)*x^8*y^6 + (10*a + 158)*x^7*y^7 + (-109*a - 31)*x^6*y^8 + (-80*a - 198)*x^5*y^9 + (531*a + 272)*x^4*y^10 + (170*a + 718)*x^3*y^11 + (19*a + 636)*x^2*y^12 +
```

(continues on next page)
(-200*a - 628)*x^8*y^4*z^2 + (1557*a - 114)*x^7*y^7*z^2 + (343*a -
1329)*x^4*y^8*z^2 + (-323*a - 809)*x^8*y^8*z^3 + (1630*a -
631)*x^7*y^4*z^3 + (4190*a - 3126)*x^6*y^5*z^3 + (3904*a -
7110)*x^3*y^8*z^3 + (-259*a - 524)*x^8*y^2*z^4 + (720*a -
605)*x^7*y^3*z^4 + (117*a - 416)*x^2*y^8*z^5 + (169*a - 168)*x^7*y^2*z^5 + (3082*a -
2011)*x^6*y^3*z^5 + (2225*a - 1725)*x^5*y^4*z^5 + (1970*a - 1725)*x^4*y^5*z^5 + (952*a -
2442)*x^3*y^6*z^5 + (217*a - 725)*x^2*y^7*z^5 + (16*a - 77)*x*y^8*z^5 +
(-23*a - 35)*x^8*y*z^6 + (43*a + 24)*x^7*y^2*z^6 + (21*a - 198)*x^6*y^3*z^6 +
(377*a - 179)*x^5*y^4*z^6 + (458*a - 3316)*x^4*y^5*z^6 + (288*a -
624)*x^3*y^6*z^6 + (100*a - 299)*x^2*y^7*z^6 + (16*a - 67)*x*y^8*z^6 -
5*y^8*z^6

Defn: Defined on coordinates by sending (x : y : z) to
((-5/128*a - 5/128)*x^4 + (-5/32*a + 5/32)*x^3*y + (-1/16*a +
3/32)*x^2*y^2 + (-1/16*a - 1/16)*x*y^3 + (1/32*a - 1/32)*y^4 - 1/32*x^3*z +
+ (3/16*a - 5/8)*x^2*y*z + (1/8*a - 5/16)*x*y^2*z + (1/8*a +
5/32)*x*y^3*z + (1/4*a - 1/4)*y^4*z + (-1/32*a - 3/32)*x^2*y^2 + (-1/32*a -
1/32)*y^3*z + (-1/32*a - 3/32)*x^3*y^2 + (1/4*a - 1/4)*y^3*z + (1/8*a + 5/16)*x^2*y^2 +
+ (3/16*a + 1/16)*y^3*z + (1/8*a + 5/16)*x^2*y*z + (1/8*a - 1/16)*y^2*z +
+ (1/16*a - 1/16)*y^3*z + (1/16*a + 1/64)*x^2*y*z + (1/16*a - 3/16)*y^3*z + (1/16*a +
1/16)*x*y^2*z + (3/16*a - 1/16)*x^2*y*z + (1/16*a + 1/16)*x*y^2*z + (3/16*a +
3/16)*x^2*y*z^2 + (-3/16*a - 1/4)*x*y^3*z + (1/16*a + 3/32)*x^3*y*z +
+ (3/32*a + 1/8)*x^2*y*z + (-1/8*a + 1/8)*x^2*y*z + (1/16*a + 1/8)*x^2*y*z +
+ (1/16*a - 3/32)*x^2*y*z^2 + (1/16*a + 1/16)*x*y^2*z^2 + (3/16*a -
3/16)*x^2*y*z^2 + (1/16*a - 1/8)*x*y^3*z + (1/16*a + 1/8)*x^2*y*z^2 +
+ (1/16*a + 1/16)*x*y^2*z^2 + (3/16*a +
3/16)*y^2*z^3 + (-3/32*a - 5/32)*y^3*z + (1/16*a - 1/16)*y^3*z +
+ (1/16*a + 1/8)*x^2*y*z + (-1/8*a + 1/8)*x^2*y*z + (1/16*a + 1/8)*x^2*y*z +
+ (1/16*a - 3/32)*x^2*y*z^2 + (1/16*a + 1/16)*x*y^2*z^2 + (3/16*a +
3/16)*x^2*y*z^2 + (1/16*a - 1/4)*x*y^3*z + (1/16*a + 3/32)*x^3*y*z^2

plot(*args,**kwds)
Plot the real points of an affine patch of this projective plane curve.

INPUT:

- **self** - an affine plane curve
- **patch** - (optional) the affine patch to be plotted; if not specified, the patch corresponding to the last
projective coordinate being nonzero
- ***args** - optional tuples (variable, minimum, maximum) for plotting dimensions
- ****kwds** - optional keyword arguments passed on to implicit_plot

EXAMPLES:

A cuspidal curve:

```
sage: R.<x, y, z> = QQ[]
sage: C = Curve(x^3 - y^2*z)
sage: C.plot()
Graphics object consisting of 1 graphics primitive
```

The other affine patches of the same curve:

```
sage: C.plot(patch=0)
Graphics object consisting of 1 graphics primitive
```
An elliptic curve:

\begin{verbatim}
 sage: E = EllipticCurve('101a')
 sage: C = Curve(E)
 sage: C.plot()
 Graphics object consisting of 1 graphics primitive
 sage: C.plot(patch=0)
 Graphics object consisting of 1 graphics primitive
 sage: C.plot(patch=1)
 Graphics object consisting of 1 graphics primitive
\end{verbatim}

A hyperelliptic curve:

\begin{verbatim}
 sage: P.<x> = QQ[]
 sage: f = 4*x^5 - 30*x^3 + 45*x - 22
 sage: C = HyperellipticCurve(f)
 sage: C.plot()
 Graphics object consisting of 1 graphics primitive
 sage: C.plot(patch=0)
 Graphics object consisting of 1 graphics primitive
 sage: C.plot(patch=1)
 Graphics object consisting of 1 graphics primitive
\end{verbatim}

quadratic_transform()

Return a birational map from this curve to the proper transform of this curve with respect to the standard Cremona transformation.

The standard Cremona transformation is the birational automorphism of \mathbb{P}^2 defined $(x : y : z) \mapsto (yz : xz : xy)$.

OUTPUT:

- a scheme morphism representing the restriction of the standard Cremona transformation from this curve to the proper transform.

EXAMPLES:

\begin{verbatim}
 sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
 sage: C = Curve(x^3*y - z^4 - z^2*x^2, P)
 sage: C.quadratic_transform()
 Scheme morphism:
 From: Projective Plane Curve over Rational Field defined by x^3*y - x^2*z^2 - z^4
 To: Projective Plane Curve over Rational Field defined by -x^3*y - x*y*z^2 + z^4
 Defn: Defined on coordinates by sending (x : y : z) to (y*z : x*z : x*y)
\end{verbatim}

\begin{verbatim}
 sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)
 sage: C = P.curve([y^7*z^2 - 16*x^9 + x*y*z^7 + 2*z^9])
 sage: C.quadratic_transform()
 Scheme morphism:
 From: Projective Plane Curve over Finite Field of size 17 defined by x^9 + y^7*z^2 + x*y*z^7 + 2*z^9
\end{verbatim}

(continues on next page)
To: Projective Plane Curve over Finite Field of size 17 defined by
2*x^9*y^7 + x^8*y^6*z^2 + x^9*z^7 + y^7*z^9
Defn: Defined on coordinates by sending (x : y : z) to
(y*z : x*z : x*y)

rational_parameterization()

Return a rational parameterization of this curve.

This curve must have rational coefficients and be absolutely irreducible (i.e. irreducible over the algebraic
closure of the rational field). The curve must also be rational (have geometric genus zero).

The rational parameterization may have coefficients in a quadratic extension of the rational field.

OUTPUT:

• a birational map between \mathbb{P}^1 and this curve, given as a scheme morphism.

EXAMPLES:

```sage
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z - x^3], P)
sage: C.rational_parameterization()
Scheme morphism:
    From: Projective Space of dimension 1 over Rational Field
    To:  Projective Plane Curve over Rational Field defined by -x^3 + y^2*z
    Defn: Defined on coordinates by sending (s : t) to
          (s^2*t : s^3 : t^3)
```

```sage
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^3 - 4*y*z^2 + x*z^2 - x*y*z], P)
sage: C.rational_parameterization()
Scheme morphism:
    From: Projective Space of dimension 1 over Rational Field
    To:  Projective Plane Curve over Rational Field defined by x^3 - x*y*z +
        -x*z^2 - 4*y*z^2
    Defn: Defined on coordinates by sending (s : t) to
          (4*s^2*t + s*t^2 : s^2*t + t^3 : 4*s^3 + s^2*t)
```

```sage
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 + y^2 + z^2], P)
sage: C.rational_parameterization()
Scheme morphism:
    From: Projective Space of dimension 1 over Number Field in a with defining
          polynomial a^2 + 1
    To:  Projective Plane Curve over Number Field in a with defining
          polynomial a^2 + 1 defined by x^2 + y^2 + z^2
    Defn: Defined on coordinates by sending (s : t) to
          ((-a)*s^2 + (-a)*t^2 : s^2 - t^2 : 2*s*t)
```

riemann_surface(**kwargs)

Return the complex riemann surface determined by this curve

OUTPUT:

• RiemannSurface object

EXAMPLES:
```
sage: R.<x,y,z>=QQ[]
sage: C=Curve(x^3+3*y^3+5*z^3)
sage: C.riemann_surface()
Riemann surface defined by polynomial f = x^3 + 3*y^3 + 5 = 0, with 53 bits of precision
```

tangents (*P, factor=True*)

Return the tangents of this projective plane curve at the point *P*.

These are found by homogenizing the tangents of an affine patch of this curve containing *P*. The point *P* must be a point on this curve.

INPUT:

- *P* – a point on this curve.
- *factor* – (default: True) whether to attempt computing the polynomials of the individual tangent lines over the base field of this curve, or to just return the polynomial corresponding to the union of the tangent lines (which requires fewer computations).

OUTPUT:

- a list of polynomials in the coordinate ring of the ambient space of this curve.

EXAMPLES:

```
sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)
sage: C = Curve([x^3*y + 2*x^2*y^2 + x*y^3 + x^3*z + 7*x^2*y*z + 14*x*y^2*z + 9*y^3*z], P)
sage: Q = P([0,0,1])
sage: C.tangents(Q)
[x + 4.147899035704788?*y, x + (1.426050482147607? + 0.3689894074818041?*I)*y, x + (1.426050482147607? - 0.3689894074818041?*I)*y]
sage: C.tangents(Q, factor=False)
[6*x^3 + 42*x^2*y + 84*x*y^2 + 54*y^3]
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: C = P.curve([z^3*x + y^4 - x^2*z^2])
sage: Q = P([1,1,1])
sage: C.tangents(Q)
[-y + z, 3*x^2 - y^2 + 2*y*z - z^2]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([z^3*x + y^4 - z^2*x^2])
sage: Q = P([1,1,1])
sage: C.tangents(Q)
Traceback (most recent call last):
  ...TypeError: (=1 : 1 : 1) is not a point on (=Projective Plane Curve over Rational Field defined by y^4 - x^2*z^2 + x*z^3)
```

class sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field(A, f)

Bases: sage.schemes.curves.projective_curve.ProjectivePlaneCurve
rational_points (algorithm='enum', sort=True)

Return the rational points on this curve computed via enumeration.

INPUT:

- algorithm (string, default: 'enum') – the algorithm to use. Currently this is ignored.
- sort (boolean, default True) – whether the output points should be sorted. If False, the order of the output is non-deterministic.

OUTPUT:

A list of all the rational points on the curve defined over its base field, possibly sorted.

Note: This is a slow Python-level implementation.

EXAMPLES:

```
sage: F = GF(7)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^3+Y^3-Z^3)
sage: C.rational_points()
[(0 : 1 : 1), (0 : 2 : 1), (0 : 4 : 1), (1 : 0 : 1), (2 : 0 : 1), (3 : 1 : 0),
  (4 : 0 : 1), (5 : 1 : 0), (6 : 1 : 0)]
sage: F = GF(1237)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^7+7*Y^6*Z+Z^4*X^2*Y*89)
sage: len(C.rational_points())
1237
```

```
sage: F = GF(2^6,'a')
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^5+11*X*Y*Z^3 + X^2*Y^3 - 13*Y^2*Z^3)
sage: len(C.rational_points())
104
```

```
sage: R.<x,y,z> = GF(2)[]
sage: f = x^3*y + y^3*z + x*z^3
sage: C = Curve(f);
pts = C.rational_points()
sage: pts
[(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)]
```

rational_points_iterator()

Return a generator object for the rational points on this curve.

INPUT:

- self – a projective curve

OUTPUT:

A generator of all the rational points on the curve defined over its base field.

EXAMPLES:

```
sage: F = GF(37)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X^7+Y*Z^5*55+Y^7*12)
```

(continues on next page)
sage: len(list(C.rational_points_iterator()))
37

sage: F = GF(2)
sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)
sage: C = Curve(X*Y*Z)
sage: a = C.rational_points_iterator()
sage: next(a)
(1 : 0 : 0)
sage: next(a)
(0 : 1 : 0)
sage: next(a)
(1 : 1 : 0)
sage: next(a)
(0 : 0 : 1)
sage: next(a)
(1 : 0 : 1)
sage: next(a)
(0 : 1 : 1)
sage: next(a)
Traceback (most recent call last):
...
StopIteration

sage: F = GF(3^2,'a')

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2)

sage: C = Curve(X^3+5*Y^2*Z-33*X*Y*X)

sage: b = C.rational_points_iterator()

sage: next(b)
(0 : 1 : 0)

sage: next(b)
(0 : 0 : 1)

sage: next(b)
(2*a + 2 : a : 1)

sage: next(b)
(2 : a + 1 : 1)

sage: next(b)
(a + 1 : 2*a + 1 : 1)

sage: next(b)
(1 : 2 : 1)

sage: next(b)
(2*a + 2 : 2*a : 1)

sage: next(b)
(2 : 2*a + 2 : 1)

sage: next(b)
(a + 1 : a + 2 : 1)

sage: next(b)
(1 : 1 : 1)

sage: next(b)
Traceback (most recent call last):
...
StopIteration

class sage.schemes.curves.projective_curve.ProjectivePlaneCurve_prime_finite_field(A, f)

Bases: sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field
rational_points *(algorithm='enum', sort=True)*

INPUT:

- `algorithm` - string:
 - 'enum' - straightforward enumeration
 - 'bn' - via Singular’s brnoeth package.

EXAMPLES:

```sage
x, y, z = PolynomialRing(GF(5), 3, 'xyz').gens()
f = y^2*z^7 - x^9 - x*z^8
C = Curve(f); C
Projective Plane Curve over Finite Field of size 5 defined by
-x^9 + y^2*z^7 - x*z^8
C.rational_points()
[(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1),
 (3 : 1 : 1), (3 : 4 : 1)]
```

Note: The Brill-Noether package does not always work (i.e., the ‘bn’ algorithm. When it fails a Run-timeError exception is raised.

riemann_roch_basis *(D)*

Return a basis for the Riemann-Roch space corresponding to D.

This uses Singular’s Brill-Noether implementation.

INPUT:

- D - a divisor

OUTPUT:

A list of function field elements that form a basis of the Riemann-Roch space

EXAMPLES:

```sage
R.<x,y,z> = GF(2)[]
f = x^3*y + y^3*z + x*z^3
C = Curve(f); pts = C.rational_points()
D = C.divisor([(4, pts[0]), (4, pts[2])])
C.riemann_roch_basis(D)
[x/y, 1, z/y, z^2/y^2, z/x, z^2/(x*y)]
```

```sage
R.<x,y,z> = GF(5)[]
f = x^7 + y^7 + z^7
C = Curve(f); pts = C.rational_points()
D = C.divisor([(3, pts[0]), (-1, pts[1]), (10, pts[5])])
C.riemann_roch_basis(D)
[(-x - 2*y)/(-2*x - 2*y), (-x + z)/(x + y)]
```
Note: Currently this only works over prime field and divisors supported on rational points.

class `sage.schemes.curves.curve.Curve_generic(A, polynomials)`

Bases: `sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme`

Generic curve class.

EXAMPLES:

```python
sage: A.<x,y,z> = AffineSpace(QQ,3)
sage: C = Curve([x-y,z-2])
sage: loads(C.dumps()) == C
True
```

`change_ring(R)`

Return a new curve which is this curve coerced to `R`.

INPUT:

- `R` – ring or embedding.

OUTPUT:

- a new curve which is this curve coerced to `R`.

EXAMPLES:

```python
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x^2 - y^2, z*y - 4/5*w^2], P)
sage: C.change_ring(QuadraticField(-1))
Projective Curve over Number Field in a with defining polynomial x^2 + 1 defined by x^2 - y^2, y*z - 4/5*w^2
sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^3 + a^2 - 1)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = Curve([K.0*x^2 - x + y^3 - 11], A)
sage: L = K.embeddings(QQbar)
sage: C.change_ring(L[0])
Affine Plane Curve over Algebraic Field defined by y^3 + (-0.8774388331233464? - 0.744861766619745?*I)*x^2 - x - 11
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([y*x - 18*x^2 + 17*z^2])
sage: C.change_ring(GF(17))
Projective Plane Curve over Finite Field of size 17 defined by -x^2 + x*y
```
defining_polynomial()
Return the defining polynomial of the curve.

EXAMPLES:

```sage
x, y, z = PolynomialRing(QQ, 3, names='x,y,z').gens()
sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: C.defining_polynomial()
x^3 + y^2*z - 17*x*z^2 + y*z^2
```

divisor(v, base_ring=None, check=True, reduce=True)
Return the divisor specified by v.

Warning: The coefficients of the divisor must be in the base ring and the terms must be reduced. If you set check=False and/or reduce=False it is your responsibility to pass a valid object v.

divisor_group(base_ring=None)
Return the divisor group of the curve.

INPUT:
- base_ring – the base ring of the divisor group. Usually, this is \(\mathbb{Z} \) (default) or \(\mathbb{Q} \).

OUTPUT:
The divisor group of the curve.

EXAMPLES:

```sage
x, y, z = PolynomialRing(QQ, 3, names='x,y,z').gens()
sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: Cp = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: C.divisor_group() is Cp.divisor_group()
True
```

genus()
The geometric genus of the curve.

genetic_genus()
Return the geometric genus of the curve.

This is by definition the genus of the normalization of the projective closure of the curve over the algebraic closure of the base field; the base field must be a prime field.

Note: This calls Singular’s genus command.

EXAMPLES:

Examples of projective curves.

```sage
P2 = ProjectiveSpace(2, GF(5), names=['x','y','z'])
x, y, z = P2.coordinate_ring().gens()
sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
sage: C.geometric_genus()
1
sage: C = Curve(y^2*z - x^3)
sage: C.geometric_genus()
```

(continues on next page)
Examples of affine curves.

```python
sage: x, y = PolynomialRing(GF(5), 2, 'xy').gens()
sage: C = Curve(y^2 - x^3 - 17*x + y)
sage: C.geometric_genus()
1
sage: C = Curve(y^2 - x^3)
sage: C.geometric_genus()
0
sage: C = Curve(x^10 + y^7 + 1)
sage: C.geometric_genus()
3
```

intersection_points \((C, F=None)\)

Return the points in the intersection of this curve and the curve \(C\).

If the intersection of these two curves has dimension greater than zero, and if the base ring of this curve is not a finite field, then an error is returned.

INPUT:

- \(C\) – a curve in the same ambient space as this curve.
- \(F\) – (default: None). Field over which to compute the intersection points. If not specified, the base ring of this curve is used.

OUTPUT:

- a list of points in the ambient space of this curve.

EXAMPLES:

```python
sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^2 + a + 1)
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y^2 - w*z, w^3 - y^3], P)
sage: D = Curve([x*y - w*z, z^3 - y^3], P)
sage: C.intersection_points(D, F=K)
[(-b - 1 : -b - 1 : b : 1), (b : b : -b - 1 : 1), (1 : 0 : 0 : 0), (1 : 1 : 1
˓→ 1)]
```

```python
sage: A.<x,y> = AffineSpace(GF(7), 2)
sage: C = Curve([y^3 - x^3], A)
sage: D = Curve([-x*y^3 + y^4 - 2*x^3 + 2*x^2*y], A)
sage: C.intersection_points(D)
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 3), (5, 5), (5, 6), (6, 6)]
```

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^3 - x^3], A)
sage: D = Curve([-x*y^3 + y^4 - 2*x^3 + 2*x^2*y], A)
sage: C.intersection_points(D)
Traceback (most recent call last):
...
```

(continues on next page)
`intersects_at(\(C, P\))`
Return whether the point \(P\) is or is not in the intersection of this curve with the curve \(C\).

INPUT:
- \(C\) – a curve in the same ambient space as this curve.
- \(P\) – a point in the ambient space of this curve.

OUTPUT:
Boolean.

EXAMPLES:
```python
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x^2 - z^2, y^3 - w*x^2], P)
sage: D = Curve([w^2 - 2*x*y + z^2, y^2 - w^2], P)
sage: Q1 = P([1,1,-1,1])
sage: C.intersects_at(D, Q1)
True
sage: Q2 = P([0,0,1,-1])
sage: C.intersects_at(D, Q2)
False
```

`is_singular(\(P=\text{None}\))`
Return whether \(P\) is a singular point of this curve, or if no point is passed, whether this curve is singular or not.

This just uses the `is_smooth` function for algebraic subschemes.

INPUT:
- \(P\) – (default: None) a point on this curve.

OUTPUT:
- Boolean. If a point \(P\) is provided, and if \(P\) lies on this curve, returns True if \(P\) is a singular point of this curve, and False otherwise. If no point is provided, returns True or False depending on whether this curve is or is not singular, respectively.

EXAMPLES:
```python
sage: A.<x,y> = AffineSpace(GF(13), 2)
sage: C = Curve([y + 12*x^5 + 3*x^3 + 7], A)
sage: D = Curve([y^2 + 7*x^2 + 8], A)
sage: Q1 = A([9,6])
sage: C.intersects_at(D, Q1)
True
sage: Q2 = A([3,7])
sage: C.intersects_at(D, Q2)
False
```

NotImplementedError: the intersection must have dimension zero or (=Rational Field) must be a finite field
sage: A.<x,y,z> = AffineSpace(GF(11), 3)
sage: C = A.curve([y^3 - z^5, x^5 - y + 1])
sage: Q = A([7,0,0])
sage: C.is_singular(Q)
True

singular_points *(F=None)*

Return the set of singular points of this curve.

INPUT:

- F – (default: None) field over which to find the singular points. If not given, the base ring of this curve is used.

OUTPUT:

- a list of points in the ambient space of this curve.

EXAMPLES:

```python
sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([y^2 - x^5, x - z], A)
sage: C.singular_points()
[(0, 0, 0)]
sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^8 - a^4 + 1)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([359/12*x*y^2*z^2 + 2*y*z^4 + 187/12*y^3*z^2 + x*z^4 +
  67/3*x^2*y*z^2 + 117/4*y^5 + 9*x^2 + 6*x^3*z^2 + 393/4*x*y^4 +
  145*x^2*y^3 + 115*x^3*y^2 + 49*x^4*y], P)
sage: C.singular_points(K)
[(b^6 : -b^6 : 1),
 (-b^6 : b^6 : 1),
 (1/2*b^5 + 1/2*b^3 - 1/2*b - 1 : 1 : 0),
 (-1/2*b^5 - 1/2*b^3 + 1/2*b - 1 : 1 : 0),
 (2/3*b^4 - 1/3 : 0 : 1),
 (-2/3*b^4 + 1/3 : 0 : 1)]
```

singular_subscheme ()

Return the subscheme of singular points of this curve.

OUTPUT:

- a subscheme in the ambient space of this curve.

EXAMPLES:

```python
sage: A.<x,y> = AffineSpace(CC, 2)
sage: C = Curve([y^4 - 2*x^5 - x^2*y], A)
sage: C.singular_subscheme()
Closed subscheme of Affine Space of dimension 2 over Complex Field with 53 bits of precision defined by:
  (-2.00000000000000)*x^5 + y^4 - x^2*y,
  (-10.0000000000000)*x^4 + (-2.00000000000000)*x*y,
  4.00000000000000*y^3 - x^2
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y^8 - x^2*z*w^5, w^2 - 2*y^2 - x*z], P)
```
\textbf{sage}: \texttt{C.singular_subscheme()}
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
\begin{align*}
&y^8 - x^2 z w^5, \\
&-2 y^2 - x + w^2, \\
&-x^3 y z^4 + 3 x^2 y z^3 w^2 - 3 x y z^2 w^4 + 8 x y z w^5 + y z w^6, \\
&x^2 z w^5, \\
&-5 x^2 z^2 w^4 - 4 x z w^6, \\
&x^4 y z^3 - 3 x^3 y z^2 w^2 + 3 x^2 y z w^4 - 4 x^2 y w^5 - x y w^6, \\
&-2 x^3 y z^3 w + 6 x^2 y z^2 w^3 - 20 x^2 y z w^4 - 6 x y z w^5 + 2 y w^7, \\
&-5 x^3 z w^4 - 2 x^2 w^6
\end{align*}

\texttt{union}(\textit{other})
Return the union of \texttt{self} and \texttt{other}.

\textbf{EXAMPLES}:
\begin{verbatim}
sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens()
sage: C1 = Curve(z - x)
sage: C2 = Curve(y - x)
sage: C1.union(C2).defining_polynomial()
x^2 - x*y - x*z + y*z
\end{verbatim}
EXAMPLES:

We can create points on projective curves:

```plaintext
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x^3 - 2*x*z^2 - y^3, z^3 - w^3 - x*y*z], P)
sage: Q = C([1,1,0,0])
sage: type(Q)
<class 'sage.schemes.curves.point.ProjectiveCurvePoint_field'>
sage: Q.parent()
Set of rational points of Projective Curve over Rational Field defined by x^3 - y^3 - 2*x*z^2, -x*y*z + z^3 - w^3
```

or on affine curves:

```plaintext
sage: A.<x,y> = AffineSpace(GF(23), 2)
sage: C = Curve([y - y^4 + 17*x^2 - 2*x + 22], A)
sage: Q = C([22,21])
sage: type(Q)
<class 'sage.schemes.curves.point.AffinePlaneCurvePoint_finite_field'>
sage: Q.parent()
Set of rational points of Affine Plane Curve over Finite Field of size 23 defined by -y^4 - 6*x^2 - 2*x + y - 1
```

AUTHORS:

- Grayson Jorgenson (2016-6): initial version

```python
class sage.schemes.curves.point.AffineCurvePoint_field(X, v, check=True):
    Bases: sage.schemes.affine.affine_point.SchemeMorphism_point_affine_field
    is_singular()
    Return whether this point is a singular point of the affine curve it is on.
    OUTPUT: Boolean.
    EXAMPLES:

    sage: K = QuadraticField(-1)
sage: A.<x,y,z> = AffineSpace(K, 3)
sage: C = Curve([(x^4 + 2*z + 2)*y, z - y + 1])
sage: Q1 = C([0,0,-1])
sage: Q1.is_singular()
    True
    sage: Q2 = C([-K.gen(),0,-1])
```
sage: Q2.is_singular()
False

class sage.schemes.curves.point.AffinePlaneCurvePoint_field(X, v, check=True)
Bases: sage.schemes.curves.point.AffineCurvePoint_field

is_ordinary_singularity()
Return whether this point is an ordinary singularity of the affine plane curve it is on.

OUTPUT: Boolean.

EXAMPLES:

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([x^5 - x^3*y^2 + 5*x^4 - x^3*y - 3*x^2*y^2 + x*y^3 + 10*x^3 - 3*x^2*y - 3*x*y^2 + y^3 + 10*x^2 - 3*x*y - y^2 + 5*x - y + 1])
sage: Q = C([-1,0])
sage: Q.is_ordinary_singularity()
True
```

```python
sage: A.<x,y> = AffineSpace(GF(7), 2)
sage: C = A.curve([y^2 - x^7 - 6*x^3])
sage: Q = C([0,0])
sage: Q.is_ordinary_singularity()
False
```

is_transverse(D)
Return whether the intersection of the curve D at this point with the curve this point is on is transverse or not.

INPUT:
- D – a curve in the same ambient space as the curve this point is on.

OUTPUT: Boolean.

EXAMPLES:

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([y - x^2], A)
sage: D = Curve([y], A)
sage: Q = C([0,0])
sage: Q.is_transverse(D)
False
```

```python
sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^2 - 2)
sage: A.<x,y> = AffineSpace(K, 2)
sage: C = Curve([y^2 + x^2 - 1], A)
sage: D = Curve([y - x], A)
sage: Q = C([-1/2*b,-1/2*b])
sage: Q.is_transverse(D)
True
```

multiplicity()
Return the multiplicity of this point with respect to the affine curve it is on.

OUTPUT: Integer.
EXAMPLES:

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([2*x^7 - 3*x^6*y + x^5*y^2 + 31*x^6 - 40*x^5*y + 13*x^4*y^2
→ - x^3*y^3
+ 207*x^5 - 228*x^4*y + 70*x^3*y^2 - 7*x^2*y^3 + 775*x^4 - 713*x^3*y + 193*x^2*y^2
→ - 129*x*y^3
+ y^4 + 1764*x^3 - 1293*x^2*y + 277*x*y^2 - 22*y^3 + 2451*x^2 - 1297*x*y + 172*y^2
→ 1935*x
- 570*y + 675])
sage: Q = C([-2,1])
sage: Q.multiplicity()
4
```

tangents()

Return the tangents at this point of the affine plane curve this point is on.

OUTPUT:

- a list of polynomials in the coordinate ring of the ambient space of the curve this point is on.

EXAMPLES:

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = A.curve([x^5 - x^3*y^2 + 5*x^4 - x^3*y - 3*x^2*y^2 + x*y^3 + 10*x^3
→ - 3*x^2*y - \
 3*x*y^2 + y^3 + 10*x^2 - 3*x*y - y^2 + 5*x - y + 1])
sage: Q = C([-1,0])
sage: Q.tangents()
[y, x + 1, x - y + 1, x + y + 1]
```

```python
class sage.schemes.curves.point.AffinePlaneCurvePointFiniteField(X, v, check=True)
Bases: sage.schemes.curves.point.AffinePlaneCurvePointField, sage.schemes.affine.affine_point.SchemeMorphismPointAffineFiniteField

is_singular()

Return whether this point is a singular point of the projective curve it is on.

OUTPUT: Boolean.

EXAMPLES:

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x^2 - y^2, z - w], P)
sage: Q1 = C([0,0,1,1])
sage: Q1.is_singular()
True
sage: Q2 = C([1,1,1,1])
sage: Q2.is_singular()
False
```

```python
class sage.schemes.curves.point.ProjectivePlaneCurvePointField(X, v, check=True)
Bases: sage.schemes.curves.point.ProjectivePlaneCurvePointField
```
**is_ordinary_singularity()**

Return whether this point is an ordinary singularity of the projective plane curve it is on.

**OUTPUT:** Boolean.

**EXAMPLES:**

```sage
P.<x,y,z> = ProjectiveSpace(QQ, 2)
P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = Curve([z^6 - x^6 - x^3*z^3 - x^3*y^3])
sage: Q = C([0,1,0])
sage: Q.is_ordinary_singularity()
False
sage: C = Curve([x^4 - 16*y^3*z])
sage: D = Curve([y^2 - z*x])
sage: Q = C([0,0,1])
sage: Q.is_ordinary_singularity()
False
```

**is_transverse(D)**

Return whether the intersection of the curve \(D\) at this point with the curve this point is on is transverse or not.

**INPUT:**

- \(D\) – a curve in the same ambient space as the curve this point is on.

**OUTPUT:** Boolean.

**EXAMPLES:**

```sage
P.<x,y,z> = ProjectiveSpace(QQ, 2)
P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = Curve([x^2 - 2*y^2 - 2*z^2], P)
sage: D = Curve([y - z], P)
sage: Q = C([2,1,1])
sage: Q.is_transverse(D)
True
sage: C = Curve([y^3*z - 16*x^4], P)
sage: Q = C([0,0,1])
sage: Q.is_transverse(D)
False
```

**multiplicity()**

Return the multiplicity of this point with respect to the projective curve it is on.

**OUTPUT:** Integer.

**EXAMPLES:**

```sage
P.<x,y,z> = ProjectiveSpace(QQ, 2)
P.<x,y,z> = ProjectiveSpace(GF(17), 2)
sage: C = Curve([y^3*z - 16*x^4], P)
sage: Q = C([0,0,1])
sage: Q.is_transverse(D)
False
```
sage: Q = C([0,0,1])
sage: Q.multiplicity()
3

**tangents()**

Return the tangents at this point of the projective plane curve this point is on.

**OUTPUT:**

- a list of polynomials in the coordinate ring of the ambient space of the curve this point is on.

**EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z^3 - x^5 + 18*y*x*z^3])
sage: Q = C([0,0,1])
sage: Q.tangents()
[y, 18*x + y]
```

```python
class sage.schemes.curves.point.ProjectivePlaneCurvePoint_finite_field(X, v, check=True):
 Bases: sage.schemes.curves.point.ProjectivePlaneCurvePoint_field, sage.schemes.projective.projective_point.SchemeMorphism_point_projective_finite_field
```
BASE CLASS FOR JACOBIANS OF CURVES

```python
sage.schemes.jacobians.abstract_jacobian.Jacobian(C)

EXAMPLES:

```
sage: from sage.schemes.jacobians.abstract_jacobian import Jacobian
sage: P2.<x, y, z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 + y^3 + z^3)
sage: Jacobian(C)
```
Jacobian of Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3

```python
class sage.schemes.jacobians.abstract_jacobian.Jacobian_generic(C)
Bases: sage.schemes.generic.scheme.Scheme

Base class for Jacobians of projective curves.

The input must be a projective curve over a field.

EXAMPLES:

```
sage: from sage.schemes.jacobians.abstract_jacobian import Jacobian
sage: P2.<x, y, z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 + y^3 + z^3)
sage: J = Jacobian(C); J
```
Jacobian of Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3

```
base_extend(R)
Return the natural extension of self over R

INPUT:

* R – a field. The new base field.

OUTPUT:

The Jacobian over the ring R.

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: Jac = H.jacobian(); Jac
```
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^3 - 10*x + 9

```
sage: F.<a> = QQ.extension(x^2+1)
sage: Jac.base_extend(F)
```
Jacobian of Hyperelliptic Curve over Number Field in a with defining polynomial x^2 + 1 defined by y^2 = x^3 - 10*x + 9
```
change_ring\((R)\)

Return the Jacobian over the ring \(R\).

INPUT:

• \(R\) – a field. The new base ring.

OUTPUT:

The Jacobian over the ring \(R\).

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: Jac = H.jacobian(); Jac
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^3 - 10*x + 9
sage: Jac.change_ring(RDF)
Jacobian of Hyperelliptic Curve over Real Double Field defined by y^2 = x^3 - 10.0*x + 9.0
```

curve()

Return the curve of which self is the Jacobian.

EXAMPLES:

```
sage: from sage.schemes.jacobians.abstract_jacobian import Jacobian
sage: P2.<x, y, z> = ProjectiveSpace(QQ, 2)
sage: J = Jacobian(Curve(x^3 + y^3 + z^3))
sage: J.curve()
Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3
```

sage.schemes.jacobians.abstract_jacobian.is_Jacobian\((J)\)

Return True if \(J\) is of type Jacobian\_generic.

EXAMPLES:

```
sage: from sage.schemes.jacobians.abstract_jacobian import Jacobian, is_Jacobian
sage: P2.<x, y, z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 + y^3 + z^3)
sage: J = Jacobian(C)
sage: is_Jacobian(J)
True
sage: E = EllipticCurve('37a1')
sage: is_Jacobian(E)
False
```
7.1 Plane conic constructor

AUTHORS:

• Marco Streng (2010-07-20)
• Nick Alexander (2008-01-08)

```
sage.schemes.plane_conics.constructor.Conic(base_field, F=None, names=None, unique=True)
```

Return the plane projective conic curve defined by \( F \) over \( \text{base_field} \).

The input form `Conic(F, names=None)` is also accepted, in which case the fraction field of the base ring of \( F \) is used as base field.

INPUT:

• `base_field` – The base field of the conic.
• `names` – a list, tuple, or comma separated string of three variable names specifying the names of the coordinate functions of the ambient space \( \mathbb{P}^3 \). If not specified or read off from \( F \), then this defaults to \( 'x, y, z' \).
• `F` – a polynomial, list, matrix, ternary quadratic form, or list or tuple of 5 points in the plane.
  
  If \( F \) is a polynomial or quadratic form, then the output is the curve in the projective plane defined by \( F = 0 \).

  If \( F \) is a polynomial, then it must be a polynomial of degree at most 2 in 2 variables, or a homogeneous polynomial in of degree 2 in 3 variables.

  If \( F \) is a matrix, then the output is the zero locus of \( (x, y, z)F(x, y, z)^t \).

  If \( F \) is a list of coefficients, then it has length 3 or 6 and gives the coefficients of the monomials \( x^2, y^2, z^2 \) or all 6 monomials \( x^2, xy, xz, y^2, yz, z^2 \) in lexicographic order.

  If \( F \) is a list of 5 points in the plane, then the output is a conic through those points.

• `unique` – Used only if \( F \) is a list of points in the plane. If the conic through the points is not unique, then raise `ValueError` if and only if `unique` is `True`

OUTPUT:

A plane projective conic curve defined by \( F \) over a field.

EXAMPLES:

Conic curves given by polynomials
Conics given by matrices

```
sage: C = Conic(matrix(QQ, [[1,2,0],[4,0,0],[7,0,9]], 'x,y,z'))
Projective Conic Curve over Rational Field defined by x^2 + 6*x*y + 7*x*z + 9*z^2
```

Conics given by coefficients

```
sage: C = Conic(QQ, [1,2,3])
Projective Conic Curve over Rational Field defined by x^2 + 2*y^2 + 3*z^2
```

The conic through a set of points

```
sage: C = Conic(QQ, [[10,2],[3,4],[-7,6],[7,8],[9,10]]); C
Projective Conic Curve over Rational Field defined by x^2 + 13/4*x*y - 17/4*y^2 - 35/2*x*z + 91/4*y*z - 37/2*z^2
sage: C.rational_point()
(10 : 2 : 1)
sage: C.point([3,4])
(3 : 4 : 1)
sage: a=AffineSpace(GF(13),2)
sage: Conic([a([x,x^2]) for x in range(5)])
Projective Conic Curve over Finite Field of size 13 defined by x^2 - y*z
```

### 7.2 Projective plane conics over a field

**AUTHORS:**
- Marco Streng (2010-07-20)
- Nick Alexander (2008-01-08)

```python
class sage.schemes.plane_conics.con_field.ProjectiveConic_field(A,f):
 Bases: sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Create a projective plane conic curve over a field. See Conic for full documentation.

EXAMPLES:
```
sage: K = FractionField(PolynomialRing(QQ, 't'))
sage: P.<X, Y, Z> = K[
Conic(X^2 + Y^2 - Z^2)
Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t
over Rational Field defined by X^2 + Y^2 - Z^2

\texttt{base\_extend}(S)
\hspace{10em} \text{Returns the conic over } S \text{ given by the same equation as } \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: c = Conic([1, 1, 1]); c
Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2
sage: c.has_rational_point()
False
sage: d = c.base_extend(QuadraticField(-1, 'i')); d
Projective Conic Curve over Number Field in i with defining polynomial x^2 +
-1 defined by x^2 + y^2 + z^2
sage: d.rational_point(algorithm = 'rnfisnorm')
(i : 1 : 0)
\end{verbatim}

\texttt{cache\_point}(p)
\hspace{10em} \text{Replace the point in the cache of } \texttt{self} \text{ by } p \text{ for use by } \texttt{self.rational\_point()} \text{ and } \texttt{self.parametrization()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: c = Conic([1, -1, 1])
sage: c.point([15, 17, 8])
(15/8 : 17/8 : 1)
sage: c.rational_point()
(15/8 : 17/8 : 1)
sage: c.cache_point(c.rational_point(read_cache = False))
sage: c.rational_point()
(-1 : 1 : 0)
\end{verbatim}

\texttt{coefficients}()
\hspace{10em} \text{Gives the 6 coefficients of the conic } \texttt{self} \text{ in lexicographic order.}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Conic(QQ, [1,2,3,4,5,6]).coefficients()
[1, 2, 3, 4, 5, 6]
sage: P.<x,y,z> = GF(13)[]
sage: a = Conic(x^2+5*x*y+y^2+z^2).coefficients(); a
[1, 5, 0, 1, 0, 1]
sage: Conic(a)
Projective Conic Curve over Finite Field of size 13 defined by x^2 + 5*x*y +
y^2 + z^2
\end{verbatim}

\texttt{derivative\_matrix}()
\hspace{10em} \text{Gives the derivative of the defining polynomial of the conic } \texttt{self}, \text{ which is a linear map, as a } 3 \times 3 \text{ matrix.}

\textbf{EXAMPLES:}

\begin{verbatim}
In characteristic different from 2, the derivative matrix is twice the symmetric matrix:
\end{verbatim}
sage: c = Conic(QQ, [1,1,1,1,1,0])
sage: c.symmetric_matrix()
\begin{bmatrix}
1 & 1/2 & 1/2 \\
1/2 & 1 & 1/2 \\
1/2 & 1/2 & 0
\end{bmatrix}
sage: c.derivative_matrix()
\begin{bmatrix}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 0
\end{bmatrix}

An example in characteristic 2:

sage: P.<t> = GF(2)[]
sage: c = Conic([t, 1, t^2, 1, 1, 0]); c
Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t
˓→ over Finite Field of size 2 (using GF2X) defined by t*x^2 + x*y + y^2 + t^2*x*z + y*z
sage: c.is_smooth()
True
sage: c.derivative_matrix()
\begin{bmatrix}
0 & 1 & t^2 \\
1 & 0 & 1 \\
t^2 & 1 & 0
\end{bmatrix}

determinant()

Returns the determinant of the symmetric matrix that defines the conic self.

This is defined only if the base field has characteristic different from 2.

EXAMPLES:

sage: C = Conic([1,2,3,4,5,6])
sage: C.determinant()
41/4
sage: C.symmetric_matrix().determinant()
41/4

Determinants are only defined in characteristic different from 2:

sage: C = Conic(GF(2), [1, 1, 1, 1, 1, 0])
sage: C.is_smooth()
True
sage: C.determinant()
Traceback (most recent call last):
...
ValueError: The conic self (= Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the base field has characteristic 2

diagonal_matrix()

Returns a diagonal matrix \( D \) and a matrix \( T \) such that \( T^t A T = D \) holds, where \((x, y, z)A(x, y, z)^t\) is the defining polynomial of the conic self.

EXAMPLES:

sage: c = Conic(QQ, [1,2,3,4,5,6])
sage: d, t = c.diagonal_matrix(); d, t
(continues on next page)
Diagonal matrices are only defined in characteristic different from 2:

```python
sage: c = Conic(GF(4, 'a'), [0, 1, 1, 1, 1, 1])
sage: c.is_smooth()
True
sage: c.diagonal_matrix()
Traceback (most recent call last):
...
ValueError: The conic self (= Projective Conic Curve over Finite Field in a of size 2^2 defined by x*y + y^2 + x*z + y*z + z^2) has no symmetric matrix because the base field has characteristic 2
```

**diagonalization** *(names=None)*

Returns a diagonal conic $C$, an isomorphism of schemes $M : C \to \text{self}$ and the inverse $N$ of $M$.

**EXAMPLES:**

```python
sage: Conic(GF(5), [1,0,1,1,0,1]).diagonalization()
(Deciagonal Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2,
 Scheme morphism:
 From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2 + 2*z^2
 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2
 Defn: Defined on coordinates by sending (x : y : z) to
 (x + 2*z : y : z),
 Scheme morphism:
 From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2 + x*z + z^2
 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2 + 2*z^2
 Defn: Defined on coordinates by sending (x : y : z) to
 (x - 2*z : y : z))
```

The diagonalization is only defined in characteristic different from 2:

```python
sage: Conic(GF(2), [1,1,1,1,1,0]).diagonalization()
Traceback (most recent call last):
...
ValueError: The conic self (= Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the base field has characteristic 2
```

An example over a global function field:

```python
sage: K = FractionField(PolynomialRing(GF(7), 't'))
sage: (t,) = K.gens()
```
sage: C = Conic(K, [t/2,0, 1, 2, 0, 3])
sage: C.diagonalization()
(Projecive Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2,
 Scheme morphism:
 From: Projective Conic Curve over Fraction Field of Univariate Polynomial
 Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2
 To: Projective Conic Curve over Fraction Field of Univariate Polynomial
 Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + x*z + 3*z^2
 Defn: Defined on coordinates by sending (x : y : z) to
 (x + 6/t*z : y : z),
 Scheme morphism:
 From: Projective Conic Curve over Fraction Field of Univariate Polynomial
 Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + x*z + 3*z^2
 To: Projective Conic Curve over Fraction Field of Univariate Polynomial
 Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2
 Defn: Defined on coordinates by sending (x : y : z) to
 (x + 1/t*z : y : z))

gens()

Returns the generators of the coordinate ring of self.

EXAMPLES:

sage: P.<x,y,z> = QQ[]
sage: c = Conic(x^2+y^2+z^2)
sage: c.gens()
(xbar, ybar, zbar)
sage: c.defining_polynomial()(c.gens())
0

The function gens() is required for the following construction:

sage: C.<a,b,c> = Conic(GF(3), [1, 1, 1])
sage: C
Projective Conic Curve over Finite Field of size 3 defined by a^2 + b^2 + c^2

has_rational_point(point=False, algorithm='default', read_cache=True)

Returns True if and only if the conic self has a point over its base field B.

If point is True, then returns a second output, which is a rational point if one exists.

Points are cached whenever they are found. Cached information is used if and only if read_cache is True.

ALGORITHM:

The parameter algorithm specifies the algorithm to be used:

- 'default' – If the base field is real or complex, use an elementary native Sage implementation.
- 'magma' (requires Magma to be installed) – delegates the task to the Magma computer algebra system.

EXAMPLES:
has_rational_point

Return True if and only if the conic self has a rational point.

If point is True, then also return a rational point (or None if no such point exists).

EXAMPLES:

```
sage: c = Conic(QQ, [1,0,1]); c
Projective Conic Curve over Rational Field defined by x^2 + z^2
sage: c.has_rational_point(point = True)
(True, (0 : 1 : 0))
sage: P.<x,y,z> = GF(7)[]
sage: e = Conic((x+y+z)*(x-y+2*z)); e
Projective Conic Curve over Finite Field of size 7 defined by x^2 - y^2 + 3*x*z + y*z + 2*z^2
sage: e.has_rational_point(point = True)
(True, (2 : 4 : 1))
sage: Conic([1, 1, -1]).has_rational_point()
False
sage: Conic([1, 1, -1]).has_rational_point(point = True)
(False, None)
sage: F.<a> = FiniteField(8)
sage: Conic([a, a+1, 1]).has_rational_point(point = True)
(True, (a + 1 : 0 : 1))
sage: P.<t> = GF(2)[]
```

has_singular_point is not implemented over all fields of characteristic 2. It is implemented over finite fields.

```
sage: F.<a> = FiniteField(8)
sage: Conic([a, a+1, 1]).has_singular_point(point = True)
(True, (a + 1 : 0 : 1))
sage: P.<t> = GF(2)[]
```
sage: C = Conic(P, [t,t,1]); C
Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t
over Finite Field of size 2 (using GF2X) defined by t*x^2 + t*y^2 + z^2
sage: C.has_singular_point(point = False)
Traceback (most recent call last):
...  
NotImplementedError: Sorry, find singular point on conics not implemented
→ over all fields of characteristic 2.

```

hom(x, Y=None)

Return the scheme morphism from self to Y defined by x. Here x can be a
matrix or a sequence of polynomials. If Y is omitted, then a natural
image is found if possible.

EXAMPLES:

Here are a few Morphisms given by matrices. In the first example, Y is
omitted, in the second example, Y is specified.

sage: c = Conic([-1, 1, 1])
sage: h = c.hom(Matrix([[1,1,0], [0,1,0], [0,0,1]])); h
Scheme morphism:
 From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2
 To: Projective Conic Curve over Rational Field defined by -x^2 + 2 *x*y +
 z^2
 Defn: Defined on coordinates by sending (x : y : z) to
 (x + y : y : z)
sage: h([-1, 1, 0])
(0 : 1 : 0)

sage: c = Conic([-1, 1, 1])
sage: d = Conic([4, 1, -1])
sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), d)
Scheme morphism:
 From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2
 To: Projective Conic Curve over Rational Field defined by 4*x^2 + y^2 - z^2
 Defn: Defined on coordinates by sending (x : y : z) to
 (1/2*z : y : x)

ValueError is raised if the wrong codomain Y is specified:

sage: c = Conic([-1, 1, 1])
sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), c)
Traceback (most recent call last):
...
ValueError: The matrix x (= [0 0 1/2]
[0 1 0]
[1 0 0]) does not define a map from self (= Projective Conic Curve over
→ Rational Field defined by -x^2 + y^2 + z^2) to Y (= Projective Conic Curve
→ over Rational Field defined by -x^2 + y^2 + z^2)

The identity map between two representations of the same conic:

sage: C = Conic([1,2,3,4,5,6])
sage: D = Conic([2,4,6,8,10,12])
sage: C.hom(identity_matrix(3), D)
Scheme morphism:
From: Projective Conic Curve over Rational Field defined by $x^2 + 2xy + 4y^2 + 3xz + 5yz + 6z^2$
To: Projective Conic Curve over Rational Field defined by $2x^2 + 4xy + 8y^2 + 6xz + 10yz + 12z^2$
Defn: Defined on coordinates by sending $(x : y : z)$ to
$(x : y : z)$

An example not over the rational numbers:

```
sage: P.<t> = QQ[]
sage: C = Conic([1,0,0,t,0,1/t])
sage: D = Conic([1/t^2, 0, -2/t^2, t, 0, (t + 1)/t^2])
sage: T = Matrix([t,0,1], [0,1,0], [0,0,1])
sage: C.hom(T, D)
```
Scheme morphism:
From: Projective Conic Curve over Fraction Field of Univariate Polynomial in t over Rational Field defined by $x^2 + t*y^2 + 1/t*z^2$
To: Projective Conic Curve over Fraction Field of Univariate Polynomial in t over Rational Field defined by $1/t^2*x^2 + t*y^2 + (-2/t^2)*x*z + ((t + 1)/t^2)*z^2$
Defn: Defined on coordinates by sending $(x : y : z)$ to
$(t*x + z : y : z)$

```
is_diagonal()
```
Return True if and only if the conic has the form $a*x^2 + b*y^2 + c*z^2$.

EXAMPLES:

```
sage: c=Conic([1,1,0,1,0,1]); c
Projective Conic Curve over Rational Field defined by $x^2 + x*y + y^2 + z^2$
sage: d,t = c.diagonal_matrix()
sage: c.is_diagonal()
False
```
```
is_smooth()
```
Returns True if and only if self is smooth.

EXAMPLES:

```
sage: Conic([1,-1,0]).is_smooth()
False
```
```
matrix()
```
Returns a matrix M such that $(x, y, z)M(x, y, z)^t$ is the defining equation of self.

The matrix M is upper triangular if the base field has characteristic 2 and symmetric otherwise.

EXAMPLES:

```
sage: R.<x, y, z> = QQ[]
sage: C = Conic(x^2 + x*y + y^2 + z^2)
sage: C.matrix()
[ 1 1/2 0]
[1/2 1 0]
```

7.2. Projective plane conics over a field

(continues on next page)
sage: R.<x, y, z> = GF(2)[]
sage: C = Conic(x^2 + x*y + y^2 + x*z + z^2)
sage: C.matrix()
\[
\begin{bmatrix}
0 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

parametrization *(point=None, morphism=True)*

Return a parametrization f of self together with the inverse of f.

If point is specified, then that point is used for the parametrization. Otherwise, use self.rational_point() to find a point.

If morphism is True, then f is returned in the form of a Scheme morphism. Otherwise, it is a tuple of polynomials that gives the parametrization.

EXAMPLES:

An example over a finite field

sage: c = Conic(GF(2), [1,1,1,1,1,0])
sage: c.parametrization()
(Scheme morphism:
 From: Projective Space of dimension 1 over Finite Field of size 2
 To: Projective Conic Curve over Finite Field of size 2 defined by x^2 + y^2 + x*z + y*z
 Defn: Defined on coordinates by sending (x : y) to
 (x*y + y^2 : x^2 + x*y + y^2),

Scheme morphism:
 From: Projective Conic Curve over Finite Field of size 2 defined by x^2 + y^2 + x*z + y*z
 To: Projective Space of dimension 1 over Finite Field of size 2
 Defn: Defined on coordinates by sending (x : y : z) to
 (y : x))

An example with morphism = False

sage: R.<x,y,z> = QQ[]
sage: C = Curve(7*x^2 + 2*y*z + z^2)
sage: (p, i) = C.parametrization(morphism = False); (p, i)
([-2*x*y, x^2 + 7*y^2, -2*x^2], [-1/2*x, 1/7*y + 1/14*z])
sage: C.defining_polynomial()(p)
0
sage: i[0](p) / i[1](p)
x/y

A ValueError is raised if self has no rational point

sage: C = Conic(x^2 + y^2 + 7*z^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^2 + 7*z^2 has no rational points over Rational Field!
A `ValueError` is raised if `self` is not smooth

```python
sage: C = Conic(x^2 + y^2)
sage: C.parametrization()
Traceback (most recent call last):
...
ValueError: The conic self (=Projective Conic Curve over Rational Field defined by x^2 + y^2) is not smooth, hence does not have a parametrization.
```

`point(v, check=True)`

Constructs a point on `self` corresponding to the input `v`.

If `check` is `True`, then checks if `v` defines a valid point on `self`.

If no rational point on `self` is known yet, then also caches the point for use by `self.rational_point()` and `self.parametrization()`.

EXAMPLES

```python
sage: c = Conic([1, -1, 1])
sage: c.point([15, 17, 8])
(15/8 : 17/8 : 1)
sage: c.rational_point()
(15/8 : 17/8 : 1)
sage: d = Conic([1, -1, 1])
sage: d.rational_point()
(-1 : 1 : 0)
```

`random_rational_point(*args1, **args2)`

Return a random rational point of the conic `self`.

ALGORITHM:

2. Computes a random point `(x : y)` on the projective line.
3. Output `f(x : y)`.

The coordinates `x` and `y` are computed using `B.random_element`, where `B` is the base field of `self` and additional arguments to `random_rational_point` are passed to `random_element`.

If the base field is a finite field, then the output is uniformly distributed over the points of `self`.

EXAMPLES

```python
sage: c = Conic(GF(2), [1,1,1,1,1,0])
sage: [c.random_rational_point() for i in range(10)] # output is random
[(1 : 0 : 1), (1 : 0 : 1), (1 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1), (0 : 0 : 1), ...
(1 : 0 : 1), (1 : 0 : 1), (0 : 0 : 1), (1 : 0 : 1)]

sage: d = Conic(QQ, [1, 1, -1])
sage: d.random_rational_point(den_bound = 1, num_bound = 5) # output is random
(-24/25 : 7/25 : 1)

sage: Conic(QQ, [1, 1, 1]).random_rational_point()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2 has no rational points over Rational Field!
```
rational_point *(algorithm='default', read_cache=True)*

Return a point on self defined over the base field.

Raises ValueError if no rational point exists.

See `self.has_rational_point` for the algorithm used and for the use of the parameters `algorithm` and `read_cache`.

EXAMPLES:

Examples over \(\mathbb{Q}\)

```
sage: R.<x,y,z> = QQ[]
sage: C = Conic(7*x^2 + 2*y*z + z^2)
sage: C.rational_point()
(0 : 1 : 0)
sage: C = Conic(x^2 + 2*y^2 + z^2)
sage: C.rational_point()
Traceback (most recent call last):
...  
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + 2*y^2 + z^2 has no rational points over Rational Field!
sage: C = Conic(x^2 + y^2 + 7*z^2)
sage: C.rational_point(algorithm = 'rnfisnorm')
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^2 + 7*z^2 has no rational points over Rational Field!
```

Examples over number fields

```
sage: P.<x> = QQ[]
sage: L.<b> = NumberField(x^3-5)
sage: C = Conic(L, [3, 2, -b])
sage: p = C.rational_point(algorithm = 'rnfisnorm')
# output is random
(1/3*b^2 - 4/3*b + 4/3 : b^2 - 2 : 1)
sage: C.defining_polynomial()(list(p))
0
sage: K.<i> = QuadraticField(-1)
sage: D = Conic(K, [3, 2, 5])
sage: D.rational_point(algorithm = 'rnfisnorm')  # output is random
(-3 : 4*i : 1)
sage: L.<s> = QuadraticField(2)
sage: Conic(QQ, [1, 1, -3]).has_rational_point()
False
sage: E = Conic(L, [1, 1, -3])
sage: E.rational_point()  # output is random
(-1 : -s : 1)
```

Currently Magma is better at solving conics over number fields than Sage, so it helps to use the algorithm 'magma' if Magma is installed:

```
sage: q = C.rational_point(algorithm = 'magma', read_cache=False)  # optional - magma
```
Examples over finite fields

```python
sage: F.<a> = FiniteField(7^20)
sage: C = Conic([1, a, -5]); C
Projective Conic Curve over Finite Field in a of size 7^20 defined by x^2 + a*y^2 + 2*z^2
sage: C.rational_point()  # output is random
(4*a^19 + 5*a^18 + 4*a^17 + a^16 + 6*a^15 + 3*a^13 + 6*a^11 + a^9 + 3*a^8 +
2*a^7 + 4*a^6 + 3*a^5 + a^3 + a + 6 : 5*a^18 + a^17 + a^16 + 6*a^15 +
4*a^14 + a^13 + 5*a^12 + 2*a^10 + 2*a^9 + 6*a^8 + 6*a^7 + 6*a^6 + 2*a^4 +
-3 : 1)
```

Examples over \(\mathbb{R} \) and \(\mathbb{C} \)

```python
sage: Conic(CC, [1, 2, 3]).rational_point()
(0 : 1.22474487139159*I : 1)
sage: Conic(RR, [1, 1, 1]).rational_point()
Traceback (most recent call last):
...
ValueError: Conic Projective Conic Curve over Real Field with 53 bits of precision defined by x^2 + y^2 + z^2 has no rational points over Real Field with 53 bits of precision!
```

singular_point()

Returns a singular rational point of self

EXAMPLES:

7.2. Projective plane conics over a field
ValueError is raised if the conic has no rational singular point

```python
sage: Conic(QQ, [1,1,1,1,1,1]).singular_point()
Traceback (most recent call last):
  ... ValueError: The conic self (= Projective Conic Curve over Rational Field, defined by x^2 + x*y + y^2 + x*z + y*z + z^2) has no rational singular point
```

symmetric_matrix()

The symmetric matrix M such that $(xyz)M(xyz)^t$ is the defining equation of `self`.

EXAMPLES:

```python
sage: R.<x, y, z> = QQ[]
sage: C = Conic(x^2 + x*y/2 + y^2 + z^2)
sage: C.symmetric_matrix()
[ 1 1/4 0]
[1/4 1 0]
[ 0 0 1]
sage: C = Conic(x^2 + 2*x*y + y^2 + 3*x*z + z^2)
sage: v = vector([x, y, z])
sage: v * C.symmetric_matrix() * v
x^2 + 2*x*y + y^2 + 3*x*z + z^2
```

upper_triangular_matrix()

The upper-triangular matrix M such that $(xyz)M(xyz)^t$ is the defining equation of `self`.

EXAMPLES:

```python
sage: R.<x, y, z> = QQ[]
sage: C = Conic(x^2 + x*y + y^2 + z^2)
sage: C.upper_triangular_matrix()
[1 1 0]
[0 1 0]
[0 0 1]
sage: C = Conic(x^2 + 2*x*y + y^2 + 3*x*z + z^2)
sage: v = vector([x, y, z])
sage: v * C.upper_triangular_matrix() * v
x^2 + 2*x*y + y^2 + 3*x*z + z^2
```

variable_names()

Returns the variable names of the defining polynomial of `self`.

EXAMPLES:

```python
sage: c=Conic([1,1,0,0,0,1], 'x,y,z')
sage: c.variable_names()
('x', 'y', 'z')
sage: c.variable_name()
'x'
```

The function `variable_names()` is required for the following construction:
7.3 Projective plane conics over a number field

AUTHORS:

• Marco Streng (2010-07-20)

class sage.schemes.plane_conics.con_number_field.ProjectiveConic_number_field(A, f)

Bases: sage.schemes.plane_conics.con_field.ProjectiveConic_field

Create a projective plane conic curve over a number field. See Conic for full documentation.

EXAMPLES:

sage: K.<a> = NumberField(x^3 - 2, 'a')
sage: P.<X, Y, Z> = K[]
sage: Conic(X^2 + Y^2 - a*Z^2)
Projective Conic Curve over Number Field in a with defining polynomial x^3 - 2
˓→defined by X^2 + Y^2 + (-a)*Z^2

has_rational_point(point=False, obstruction=False, algorithm='default', read_cache=True)

Returns True if and only if self has a point defined over its base field B.

If point and obstruction are both False (default), then the output is a boolean out saying whether self has a rational point.

If point or obstruction is True, then the output is a pair (out, S), where out is as above and:

• if point is True and self has a rational point, then S is a rational point,

• if obstruction is True, self has no rational point, then S is a prime or infinite place of B such that no rational point exists over the completion at S.

Points and obstructions are cached whenever they are found. Cached information is used for the output if available, but only if read_cache is True.

ALGORITHM:

The parameter algorithm specifies the algorithm to be used:

• 'rnfisnorm' – Use PARI’s rnfisnorm (cannot be combined with obstruction = True)

• 'local' – Check if a local solution exists for all primes and infinite places of B and apply the Hasse principle. (Cannot be combined with point = True.)

• 'default' – Use algorithm 'rnfisnorm' first. Then, if no point exists and obstructions are requested, use algorithm 'local' to find an obstruction.

• 'magma' (requires Magma to be installed) – delegates the task to the Magma computer algebra system.

EXAMPLES:

An example over Q
Examples over number fields:

```python
sage: K.<i> = QuadraticField(-1)
sage: C = Conic(K, [1, 3, -5])
sage: C.has_rational_point(point = True, obstruction = True)
(False, Fractional ideal (-i - 2))
sage: C.has_rational_point(algorithm = "rnfisnorm")
False
sage: C.has_rational_point(algorithm = "rnfisnorm", obstruction = True, read_→cache=False)
Traceback (most recent call last):
  ...  
ValueError: Algorithm rnfisnorm cannot be combined with obstruction = True in _→has_rational_point

sage: P.<x> = QQ[]
sage: L.<b> = NumberField(x^3-5)
sage: C = Conic(L, [1, 2, -3])
sage: C.has_rational_point(point = True, algorithm = 'rnfisnorm')
(True, (5/3 : -1/3 : 1))
```

is_locally_solvable(p)

Returns True if and only if self has a solution over the completion of the base field B of self at p. Here p is a finite prime or infinite place of B.

EXAMPLES:

```python
sage: P.<x> = QQ[]
sage: K.<a> = NumberField(x^3 + 5)
sage: C = Conic(K, [1, 2, 3 - a])
sage: [p1, p2] = K.places()
sage: C.is_locally_solvable(p1)
False

sage: C.is_locally_solvable(p2)
True

sage: O = K.maximal_order()
sage: f = (2*O).factor()
sage: C.is_locally_solvable(f[0][0])
True
```
local_obstructions (finite=True, infinite=True, read_cache=True)

Returns the sequence of finite primes and/or infinite places such that self is locally solvable at those primes and places.

If the base field is \(\mathbb{Q} \), then the infinite place is denoted \(-1\).

The parameters finite and infinite (both True by default) are used to specify whether to look at finite and/or infinite places. Note that finite = True involves factorization of the determinant of self, hence may be slow.

Local obstructions are cached. The parameter read_cache specifies whether to look at the cache before computing anything.

EXAMPLES

```
sage: K.<i> = QuadraticField(-1)
sage: Conic(K, [1, 2, 3]).local_obstructions()
[]
sage: L.<a> = QuadraticField(5)
sage: Conic(L, [1, 2, 3]).local_obstructions()
[Ring morphism:
  From: Number Field in a with defining polynomial x^2 - 5
  To: Algebraic Real Field
  Defn: a |--> -2.236067977499790?,
Ring morphism:
  From: Number Field in a with defining polynomial x^2 - 5
  To: Algebraic Real Field
  Defn: a |--> 2.236067977499790?]
```

7.4 Projective plane conics over \(\mathbb{Q} \)

AUTHORS:

• Marco Streng (2010-07-20)
• Nick Alexander (2008-01-08)

class sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field(A, f)

Create a projective plane conic curve over \(\mathbb{Q} \). See Conic for full documentation.

EXAMPLES:

```
sage: P.<X, Y, Z> = QQ[]
sage: Conic(X^2 + Y^2 - 3*Z^2)
Projective Conic Curve over Rational Field defined by X^2 + Y^2 - 3*Z^2
```

has_rational_point (point=False, obstruction=False, algorithm='default', read_cache=True)

Returns True if and only if self has a point defined over \(\mathbb{Q} \).

If point and obstruction are both False (default), then the output is a boolean out saying whether self has a rational point.
If `point` or `obstruction` is `True`, then the output is a pair `(out, S)`, where `out` is as above and the following holds:

- if `point` is `True` and `self` has a rational point, then `S` is a rational point,
- if `obstruction` is `True` and `self` has no rational point, then `S` is a prime such that no rational point exists over the completion at `S` or `-1` if no point exists over `R`.

Points and obstructions are cached, whenever they are found. Cached information is used if and only if `read_cache` is `True`.

ALGORITHM:

The parameter `algorithm` specifies the algorithm to be used:

- `'qfsolve'` – Use PARI/GP function `qfsolve`
- `'rnfisnorm'` – Use PARI’s function `rnfisnorm` (cannot be combined with `obstruction = True`)
- `'local'` – Check if a local solution exists for all primes and infinite places of `Q` and apply the Hasse principle (cannot be combined with `point = True`)
- `'default'` – Use `'qfsolve'`
- `'magma'` (requires Magma to be installed) – delegates the task to the Magma computer algebra system.

EXAMPLES:

```python
sage: C = Conic(QQ, [1, 2, -3])
sage: C.has_rational_point(point = True)
(True, (1 : 1 : 1))
sage: D = Conic(QQ, [1, 3, -5])
sage: D.has_rational_point(point = True)
(False, 3)
sage: P.<X,Y,Z> = QQ[]
sage: E = Curve(X^2 + Y^2 + Z^2); E
Projective Conic Curve over Rational Field defined by X^2 + Y^2 + Z^2
sage: E.has_rational_point(obstruction = True)
(False, -1)
```

The following would not terminate quickly with `algorithm = 'rnfisnorm'`

```python
sage: C = Conic(QQ, [1, 113922743, -310146482690273725409])
sage: C.has_rational_point(point = True)
(True, (-76842858034579/5424 : -5316144401/5424 : 1))
sage: C.has_rational_point(algorithm = 'local', read_cache = False)
True
sage: C.has_rational_point(point=True, algorithm='magma', read_cache=False)  # optional - magma
(True, (30106379962113/7913 : 12747947692/7913 : 1))
```

`is_locally_solvable(p)`

Returns True if and only if `self` has a solution over the `p`-adic numbers. Here `p` is a prime number or equals `-1`, infinity, or `R` to denote the infinite place.

EXAMPLES:

```python
sage: C = Conic(QQ, [1,2,3])
sage: C.is_locally_solvable(-1)
```

(continues on next page)
False
\texttt{sage: C.is_locally_solvable(2)}
False
\texttt{sage: C.is_locally_solvable(3)}
True
\texttt{sage: C.is_locally_solvable(QQ.hom(RR))}
False
\texttt{sage: D = Conic(QQ, \[1, 2, -3\])}
\texttt{sage: D.is_locally_solvable(infinity)}
True
\texttt{sage: D.is_locally_solvable(RR)}
True

\texttt{local_obstructions} \texttt{(finite=True, infinite=True, read_cache=True)}

Returns the sequence of finite primes and/or infinite places such that self is locally solvable at those primes and places.

The infinite place is denoted -1.

The parameters \texttt{finite} and \texttt{infinite} (both True by default) are used to specify whether to look at finite and/or infinite places. Note that \texttt{finite = True} involves factorization of the determinant of \texttt{self}, hence may be slow.

Local obstructions are cached. The parameter \texttt{read_cache} specifies whether to look at the cache before computing anything.

\textbf{EXAMPLES}

\texttt{sage: Conic(QQ, \[1, 1, 1\]).local_obstructions()}
\[2, -1\]
\texttt{sage: Conic(QQ, \[1, 2, 3\]).local_obstructions()}
\[
\]
\texttt{sage: Conic(QQ, \[1, 2, 3, 4, 5, 6\]).local_obstructions()}
\[41, -1\]

\texttt{parametrization} \texttt{(point=None, morphism=True)}

Return a parametrization f of \texttt{self} together with the inverse of f.

If \texttt{point} is specified, then that point is used for the parametrization. Otherwise, use \texttt{self.rational_point()} to find a point.

If \texttt{morphism} is True, then f is returned in the form of a Scheme morphism. Otherwise, it is a tuple of polynomials that gives the parametrization.

\textbf{ALGORITHM:}

Uses the PARI/GP function \texttt{qfparam}.

\textbf{EXAMPLES}

\texttt{sage: c = Conic([1,1,-1])}
\texttt{sage: c.parametrization()}
\texttt{(Scheme morphism:}
\texttt{ From: Projective Space of dimension 1 over Rational Field}
\texttt{ To: Projective Conic Curve over Rational Field defined by x^2 + y^2 - z^2}
\texttt{ Defn: Defined on coordinates by sending (x : y) to}
\texttt{ (2*x*y : x^2 - y^2 : x^2 + y^2),}
\texttt{ Scheme morphism:}
\texttt{ From: Projective Conic Curve over Rational Field defined by x^2 + y^2 - z^2}
\texttt{ To: Projective Space of dimension 1 over Rational Field})
An example with `morphism = False`

```python
sage: R.<x,y,z> = QQ[]
sage: C = Curve(7*x^2 + 2*y*z + z^2)
sage: (p, i) = C.parametrization(morphism = False); (p, i)
(-2*x*y, x^2 + 7*y^2, -2*x^2), (-1/2*x, 1/7*y + 1/14*z)
sage: C.defining_polynomial()(p)
0
sage: i[0](p) / i[1](p)
x/y
```

A `ValueError` is raised if `self` has no rational point

```python
sage: C = Conic(x^2 + 2*y^2 + z^2)
sage: C.parametrization()
Traceback (most recent call last):
  ...  
ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + 2*y^2 + z^2 has no rational points over Rational Field!
```

A `ValueError` is raised if `self` is not smooth

```python
sage: C = Conic(x^2 + y^2)
sage: C.parametrization()
Traceback (most recent call last):
  ...  
ValueError: The conic self (=Projective Conic Curve over Rational Field defined by x^2 + y^2) is not smooth, hence does not have a parametrization.
```

7.5 Projective plane conics over finite fields

AUTHORS:

- Marco Streng (2010-07-20)

```python
class sage.schemes.plane_conics.con_finite_field.ProjectiveConic_finite_field(A, f):
    Bases: sage.schemes.plane_conics.con_field.ProjectiveConic_field, sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field

Create a projective plane conic curve over a finite field. See `Conic` for full documentation.

EXAMPLES:
```
```python
sage: K.<a> = FiniteField(9, 'a')
sage: P.<X, Y, Z> = K[]
sage: Conic(X^2 + Y^2 + a*Z^2)
Projective Conic Curve over Finite Field in a of size 3^2 defined by X^2 + Y^2 + (a)*Z^2
```

```python
count_points(n)
If the base field $B$ of `self` is finite of order $q$, then returns the number of points over $\mathbb{F}_q,...,\mathbb{F}_{q^n}$.
```
EXAMPLES:

```
sage: P.<x,y,z> = GF(3)[]
sage: c = Curve(x^2+y^2+z^2); c
Projective Conic Curve over Finite Field of size 3 defined by x^2 + y^2 + z^2
sage: c.count_points(4)
[4, 10, 28, 82]
```

`has_rational_point(point=False, read_cache=True, algorithm='default')`

Always returns True because self has a point defined over its finite base field B.

If point is True, then returns a second output S, which is a rational point if one exists.

Points are cached. If read_cache is True, then cached information is used for the output if available. If no cached point is available or read_cache is False, then random y-coordinates are tried if self is smooth and a singular point is returned otherwise.

EXAMPLES:

```
sage: Conic(FiniteField(37), [1, 2, 3, 4, 5, 6]).has_rational_point()
True
sage: C = Conic(FiniteField(2), [1, 1, 1, 1, 1, 0]); C
Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z
sage: C.has_rational_point(point = True)  # output is random
(True, (0 : 0 : 1))
sage: p = next_prime(10^50)
sage: F = FiniteField(p)
sage: C = Conic(F, [1, 2, 3]); C
Projective Conic Curve over Finite Field of size 100000000000000000000000000000000000000000000000151 defined by x^2 + 2*y^2 + 3*z^2
sage: C.has_rational_point(point = True)  # output is random
(True, (14971942941468509742682168602989039212496867586852 : 195235465708017792892762202088174741054630437326388 : 1))
sage: F.<a> = FiniteField(7^20)
sage: C = Conic([1, a, -5]); C
Projective Conic Curve over Finite Field in a of size 7^20 defined by x^2 + (a)*y^2 + 2*z^2
sage: C.has_rational_point(point = True)  # output is random
(True, (a^18 + 2*a^17 + 4*a^16 + 6*a^15 + a^13 + a^12 + 6*a^11 + 3*a^10 + 4*a^9 + 2*a^8 + a^7 + 4*a^6 + a^4 + 6*a^2 + 3*a + 6 : 5*a^19 + 5*a^18 + 5*a^17 + a^16 + 2*a^15 + 3*a^14 + 4*a^13 + 5*a^12 + a^11 + 3*a^10 + 2*a^8 + 3*a^7 + 4*a^6 + 4*a^5 + 6*a^3 + 5*a^2 + 2*a + 4 : 1))
```

7.6 Projective plane conics over prime finite fields

AUTHORS:

• Marco Streng (2010-07-20)
Create a projective plane conic curve over a prime finite field. See Conic for full documentation.

EXAMPLES:

```python
sage: P.<X, Y, Z> = FiniteField(5)[]
sage: Conic(X^2 + Y^2 - 2*Z^2)
```

Projective Conic Curve over Finite Field of size 5 defined by X^2 + Y^2 - 2*Z^2

7.7 Projective plane conics over a rational function field

The class `ProjectiveConic_rational_function_field` represents a projective plane conic over a rational function field $F(t)$, where F is any field. Instances can be created using `Conic()`.

AUTHORS:
- Lennart Ackermans (2016-02-07): initial version

EXAMPLES:

Create a conic:

```python
tsage: K = FractionField(PolynomialRing(QQ, 't'))
tsage: P.<X, Y, Z> = K[]
tsage: Conic(X^2 + Y^2 - Z^2)
```

Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Rational Field defined by X^2 + Y^2 - Z^2

Points can be found using `has_rational_point()`:

```python
tsage: K.<t> = FractionField(QQ['t'])
tsage: C = Conic([1,-t,t])
tsage: C.has_rational_point(point = True)
(True, (0 : 1 : 1))
```

REFERENCES:

`find_point` (`supports, roots, case, solution=0`)

Given a solubility certificate like in [HC2006], find a point on `self`. Assumes `self` is in reduced form (see [HC2006] for a definition).
If you don’t have a solubility certificate and just want to find a point, use the function `has_rational_point()` instead.

INPUT:
- `self` — conic in reduced form.
- `supports` — 3-tuple where `supports[i]` is a list of all monic irreducible $p \in F[t]$ that divide the i’th of the 3 coefficients.
- `roots` — 3-tuple containing lists of roots of all elements of `supports[i]`, in the same order.
- `case` — 1 or 0, as in [HC2006].
- `solution` — (default: 0) a solution of (5) in [HC2006], if case = 0, 0 otherwise.

OUTPUT:
A point $(x, y, z) \in F(t)$ of `self`. Output is undefined when the input solubility certificate is incorrect.

ALGORITHM:
The algorithm used is the algorithm FindPoint in [HC2006], with a simplification from [ACKERMANS2016].

EXAMPLES:
```python
sage: K.<t> = FractionField(QQ['t'])
sage: C = Conic(K, [t^2-2, 2*t^3, -2*t^3-13*t^2-2*t+18])
sage: C.has_rational_point(point=True) # indirect test
(True, (-3 : (t + 1)/t : 1))
```

Different solubility certificates give different points:
```python
sage: K.<t> = PolynomialRing(QQ, 't')
sage: C = Conic(K, [t^2-2, 2*t, -2*t^3-13*t^2-2*t+18])
sage: supp = [[t^2 - 2], [t], [t^3 + 13/2*t^2 + t - 9]]
sage: tbar1 = QQ.extension(supp[0][0], 'tbar').gens()[0]
sage: tbar2 = QQ.extension(supp[1][0], 'tbar').gens()[0]
sage: tbar3 = QQ.extension(supp[2][0], 'tbar').gens()[0]
sage: roots = [[tbar1 + 1], [1/3*tbar2^0], [2/3*tbar3^2 + 11/3*tbar3 - 3]]
sage: C.find_point(supp, roots, 1)
(3 : t + 1 : 1)
sage: roots = [[-tbar1 - 1], [-1/3*tbar2^0], [-2/3*tbar3^2 - 11/3*tbar3 + 3]]
sage: C.find_point(supp, roots, 1)
(3 : -t - 1 : 1)
```

has_rational_point(point=False, algorithm='default', read_cache=True)
Returns True if and only if the conic `self` has a point over its base field $F(t)$, which is a field of rational functions.

If `point` is True, then returns a second output, which is a rational point if one exists.

Points are cached whenever they are found. Cached information is used if and only if `read_cache` is True.

The default algorithm does not (yet) work for all base fields F. In particular, sage is required to have:
- an algorithm for finding the square root of elements in finite extensions of F;
- a factorization and gcd algorithm for $F[t]$;
- an algorithm for solving conics over F.
ALGORITHM:

The parameter algorithm specifies the algorithm to be used:

• 'default' – use a native Sage implementation, based on the algorithm Conic in [HC2006].

• 'magma' (requires Magma to be installed) – delegates the task to the Magma computer algebra system.

EXAMPLES:

We can find points for function fields over (extensions of) \(\mathbb{Q}\) and finite fields:

```
 sage: K.<t> = FractionField(PolynomialRing(QQ, 't'))
sage: C = Conic(K, [t^2-2, 2*t^3, -2*t^3-13*t^2+2*t+18])
sage: C.has_rational_point(point=True)
(True, (-3 : (t + 1)/t : 1))
sage: R.<t> = FiniteField(23)[]
sage: C = Conic([2, t^2+1, t^2+5])
sage: C.has_rational_point()
True
sage: C.has_rational_point(point=True)
(True, (5*t : 8 : 1))
sage: F.<i> = QuadraticField(-1)
sage: R.<t> = F[]
sage: C = Conic([1,i*t,-t^2+4])
sage: C.has_rational_point(point = True)
(True, (-t - 2*i : -2*i : 1))
```

It works on non-diagonal conics as well:

```
 sage: K.<t> = QQ[]
sage: C = Conic([4, -4, 8, 1, -4, t + 4])
sage: C.has_rational_point(point=True)
(True, (1/2 : 1 : 0))
```

If no point exists output still depends on the argument point:

```
 sage: K.<t> = QQ[]
sage: C = Conic(K, [t^2, (t-1), -2*(t-1)])
sage: C.has_rational_point()
False
sage: C.has_rational_point(point=True)
(False, None)
```

Due to limitations in Sage of algorithms we depend on, it is not yet possible to find points on conics over multivariate function fields (see the requirements above):

```
 sage: F.<t1> = FractionField(QQ['t1'])
sage: K.<t2> = FractionField(F['t2'])
sage: a = K(1)
sage: b = 2*t^2*2+2*t1*t2*t1^2
c = -3*t^2*4+4*t1*t2^3*8*t1^2+t2^2*16*t1^3-t2-48*t1^4
c = Conic([a,b,c])
sage: C.has_rational_point()
Traceback (most recent call last):
...
NotImplementedError: is_square() not implemented for elements of Univariate Quotient Polynomial Ring in tbar over Fraction Field
```
of Univariate Polynomial Ring in t1 over Rational Field with
modulus tbar^2 + t1*tbar - 1/2*t1^2

In some cases, the algorithm requires us to be able to solve conics over F. In particular, the following does not work:

```python
sage: P.<u> = QQ[]
sage: E = P.fraction_field()
sage: Q.<Y> = E[]
sage: F.<v> = E.extension(Y^2 - u^3 - 1)
sage: K = R.fraction_field()
sage: C = Conic(K, [u, v, 1])
sage: C.has_rational_point()
Traceback (most recent call last):
...  
NotImplementedError: has_rational_point not implemented for conics over base field Univariate Quotient Polynomial Ring in v over Fraction Field of Univariate Polynomial Ring in u over Rational Field with modulus v^2 - u^3 - 1

has_rational_point fails for some conics over function fields over finite fields, due to trac ticket #20003:

```python
sage: K.<t> = PolynomialRing(GF(7))
sage: C = Conic([5*t^2+4, t^2+3*t+3, 6*t^2+3*t+2, 5*t^2+5, 4*t+3, 4*t^2+t+5])
sage: C.has_rational_point()
Traceback (most recent call last):
...
TypeError: self (=Scheme morphism:
 From: Projective Conic Curve over Fraction Field of Univariate Polynomial
 → Ring in t over Finite Field of size 7 defined by (5*t^2 + 4)*x^2 + (t^2 + 3*t + 3 + 5*t^2 + 5*t + 3)/(t^4 + t^3 + 4*t^2 + 3*t + 1)*y^2 + (5*t^2 + 2 + 5)*y*z + (4*t + 3)*z^2
 Defn: Defined on coordinates by sending (x : y : z) to
 (x + (2*t + 5)/(t^3 + 4*t^2 + 2*t + 2))*y : (t^2 + 5)*y : (t^5 + 4*t^4 + t^2 + 3*t + 3)*z)
) domain must equal right (=Scheme morphism:
 From: Projective Conic Curve over Fraction Field of Univariate Polynomial
 → Ring in t over Finite Field of size 7 defined by (5*t^3 + 6*t^2 + 3*t + 3)*x^2 + (t + 4)*y^2 + ((6*t^6 + 3*t^5 + t^3 + 6*t^2 + 6*t + 2)/(t^9 + 5*t^8 + t^7 + 6*t^6 + 3*t^5 + 4*t^3 + t^2 + 5*t + 3))*z^2
 Defn: Defined on coordinates by sending (x : y : z) to
 ((t^3 + 4*t^2 + 2*t + 2)*x : (t^2 + 5)*y : (t^5 + 4*t^4 + t^2 + 3*t + 3)*z)) codomain
```
8.1 Quartic curve constructor

```python
sage.schemes.plane_quartics.quartic_constructor.QuarticCurve(F, PP=None, check=False)
```

Returns the quartic curve defined by the polynomial F.

**INPUT:**
- F – a polynomial in three variables, homogeneous of degree 4
- PP – a projective plane (default: None)
- check – whether to check for smoothness or not (default: False)

**EXAMPLES:**

```python
sage: x, y, z = PolynomialRing(QQ, ['x', 'y', 'z']).gens()
sage: QuarticCurve(x**4 + y**4 + z**4)
Quartic Curve over Rational Field defined by x^4 + y^4 + z^4
```

8.2 Plane quartic curves over a general ring

These are generic genus 3 curves, as distinct from hyperelliptic curves of genus 3.

**EXAMPLES:**

```python
sage: PP.<X,Y,Z> = ProjectiveSpace(2, QQ)
sage: f = X^4 + Y^4 + Z^4 - 3*X*Y*Z*(X+Y+Z)
sage: C = QuarticCurve(f); C
Quartic Curve over Rational Field defined by X^4 + Y^4 - 3*X^2*Y*Z - 3*X*Y^2*Z - 3*X*Y*Z^2 + Z^4
```

```python
class sage.schemes.plane_quartics.quartic_generic.QuarticCurve_generic(A, f)
 Bases: sage.schemes.curves.projective_curve.ProjectivePlaneCurve
 genus()
 Returns the genus of self
```

**EXAMPLES:**
sage: x,y,z=PolynomialRing(QQ,['x','y','z']).gens()
sage: Q = QuarticCurve(x**4+y**4+z**4)
sage: Q.genus()
3

sage.schemes.plane_quartics.quartic_generic.is_QuarticCurve(C)
Checks whether C is a Quartic Curve

EXAMPLES:

sage: from sage.schemes.plane_quartics.quartic_generic import is_QuarticCurve
sage: x,y,z=PolynomialRing(QQ,['x','y','z']).gens()
sage: Q = QuarticCurve(x**4+y**4+z**4)
sage: is_QuarticCurve(Q)
True
9.1 Riemann matrices and endomorphism rings of algebraic Riemann surfaces

This module provides a class, RiemannSurface, to model the Riemann surface determined by a plane algebraic curve over a subfield of the complex numbers.

A homology basis is derived from the edges of a Voronoi cell decomposition based on the branch locus. The pull-back of these edges to the Riemann surface provides a graph on it that contains a homology basis.

The class provides methods for computing the Riemann period matrix of the surface numerically, using a certified homotopy continuation method due to [Kr2016].

The class also provides facilities for computing the endomorphism ring of the period lattice numerically, by determining integer (near) solutions to the relevant approximate linear equations.

AUTHORS:
- Alexandre Zotine, Nils Bruin (2017-06-10): initial version
- Nils Bruin, Jeroen Sijsling (2018-01-05): algebraization, isomorphisms

EXAMPLES:

We compute the Riemann matrix of a genus 3 curve:

```sage
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y>=QQ[]

sage: f=x^4-x^3*y+2*x^3+2*x^2*y+2*x^2-2*x*y^2+4*x*y-y^3+3*y^2+2*y+1

sage: S=RiemannSurface(f,prec=100)

sage: M=S.riemann_matrix()
```

We test the usual properties, i.e., that the period matrix is symmetric and that the imaginary part is positive definite:

```sage
sage: all(abs(a) < 1e-20 for a in (M-M.T).list())
True
sage: iM = Matrix(RDF,3,3,[a.imag_part() for a in M.list()])

sage: iM.is_positive_definite()
True
```

We compute the endomorphism ring and check it has $\mathbb{Z}$-rank 6:

```sage
sage: A=S.endomorphism_basis(80,8)

sage: len(A) == 6
True
```
In fact it is an order in a number field:

```python
sage: T.<t>=QQ[

sage: K.<a>=NumberField(t^6 - t^5 + 2*t^4 + 8*t^3 - t^2 - 5*t + 7)

sage: all(len(a.minpoly().roots(K)) == a.minpoly().degree() for a in A)

True
```

```
exception sage.schemes.riemann_surfaces.riemann_surface.ConvergenceError
Bases: exceptions.ValueError

Error object suitable for raising and catching when Newton iteration fails.

EXAMPLES:
```
```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import ConvergenceError
sage: raise ConvergenceError("test")
Traceback (most recent call last):
...ConvergenceError: test
sage: isinstance(ConvergenceError(),ValueError)
True
```

```
class sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface(f,
prec=53,
certification=True,

differentials=None)
Bases: object

Construct a Riemann Surface. This is specified by the zeroes of a bivariate polynomial with rational coefficients \(f(z, w) = 0 \).

INPUT:

- \(f \) – a bivariate polynomial with rational coefficients. The surface is interpreted as the covering space of the coordinate plane in the first variable.
- \(\text{prec} \) – the desired precision of computations on the surface in bits (default: 53)
- \(\text{certification} \) – a boolean (default: True) value indicating whether homotopy continuation is certified or not. Uncertified homotopy continuation can be faster.
- \(\text{differentials} \) – (default: None). If specified, provides a list of polynomials \(h \) such that \(h/\frac{df}{dw}dz \) is a regular differential on the Riemann surface. This is taken as a basis of the regular differentials, so the genus is assumed to be equal to the length of this list. The results from the homology basis computation are checked against this value. Providing this parameter makes the computation independent from Singular. For a nonsingular plane curve of degree \(d \), an appropriate set is given by the monomials of degree up to \(d - 3 \).

EXAMPLES:
```
```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[

sage: f = w^2 - z^3 + 1

sage: RiemannSurface(f)

Riemann surface defined by polynomial f = -z^3 + w^2 + 1 = 0, with 53 bits of
"""precision

Another Riemann surface with 100 bits of precision:
We can also work with Riemann surfaces that are defined over fields with a complex embedding, but since the current interface for computing genus and regular differentials in Singular presently does not support extensions of \(\mathbb{Q} \), we need to specify a description of the differentials ourselves. We give an example of a CM elliptic curve:

```python
sage: Qt.<t> = QQ[]
sage: K.<a> = NumberField(t^2-t+3, embedding=CC(0.5+1.6*I))
sage: R.<x,y> = K[]
sage: f = y^2+y-(x^3+(1-a)*x^2-(2+a)*x-2)
sage: S = RiemannSurface(f, prec=100, differentials=[1])
sage: A = S.endomorphism_basis()
sage: len(A)
2
sage: all(len(T.minpoly().roots(K)) > 0 for T in A)
True
```

cohomology_basis (option=1)
Compute the cohomology basis of this surface.

INPUT:

- **option** – Presently, this routine uses Singular’s `adjointIdeal` and passes the `option` parameter on. Legal values are 1, 2, 3, 4, where 1 is the default. See the Singular documentation for the meaning.

The backend for this function may change, and support for this parameter may disappear.

OUTPUT:

Returns a list of polynomials \(g\) representing the holomorphic differentials \(g/(df/dw)dz\), where \(f(z, w) = 0\) is the equation specifying the Riemann surface.

EXAMPLES:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 + z^3 - z^2
sage: S = RiemannSurface(f)
sage: S.cohomology_basis()
[1, w, z]
```

downstairs_edges()
Compute the edgeset of the Voronoi diagram.

OUTPUT:

A list of integer tuples corresponding to edges between vertices in the Voronoi diagram.

EXAMPLES:

Form a Riemann surface, one with a particularly simple branch locus:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 + z^3 - z^2
sage: S = RiemannSurface(f)
```
Compute the edges:

```
sage: S.downstairs_edges()
[(0, 1), (0, 5), (1, 4), (2, 3), (2, 4), (3, 5), (4, 5)]
```

This now gives an edgset which one could use to form a graph.

Note: The numbering of the vertices is given by the Voronoi package.

```python
downstairs_graph()  
Retun the Voronoi decomposition as a planar graph.  
The result of this routine can be useful to interpret the labelling of the vertices.

**OUTPUT:**

The Voronoi decomposition as a graph, with appropriate planar embedding.

**EXAMPLES:**

```
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 - z^4 + 1
sage: S = RiemannSurface(f)
sage: S.downstairs_graph()
Graph on 11 vertices
```

Similarly one can form the graph of the upstairs edges, which is visually rather less attractive but can be instructive to verify that a homology basis is likely correctly computed:

```
sage: G=Graph(S.upstairs_edges()); G
Graph on 22 vertices
sage: G.is_planar()
False
sage: G.genus()
1
sage: G.is_connected()
True
```

```python
downstairs_graph()
```

**edge_permutations()**

Compute the permutations of branches associated to each edge.

Over the vertices of the Voronoi decomposition around the branch locus, we label the fibres. By following along an edge, the lifts of the edge induce a permutation of that labelling.

**OUTPUT:**

A dictionary with as keys the edges of the Voronoi decomposition and as values the corresponding permutations.

**EXAMPLES:**

```
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 + z^2+1
sage: S = RiemannSurface(f)
sage: S.edge_permutations()
{(0, 2): (),
(0, 4): ()},
```

(continues on next page)
endomorphism_basis(b=None, r=None)

Numerically compute a $\mathbb{Z}$-basis for the endomorphism ring.

Let $(I|M)$ be the normalized period matrix ($M$ is the $g \times g$ riemann_matrix()). We consider the system of matrix equations $MA + C = (MB + D)M$ where $A, B, C, D$ are $g \times g$ integer matrices. We determine small integer (near) solutions using LLL reductions. These solutions are returned as $2g \times 2g$ integer matrices obtained by stacking $(D|B)$ on top of $(C|A)$.

**INPUT:**

- $b$ – integer (default provided). The equation coefficients are scaled by $2^b$ before rounding to integers.
- $r$ – integer (default: $b/4$). Solutions that have all coefficients smaller than $2^r$ in absolute value are reported as actual solutions.

**OUTPUT:**

A list of $2g \times 2g$ integer matrices that, for large enough $r$ and $b-r$, generate the endomorphism ring.

**EXAMPLES:**

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(x^3 + y^3 + 1)
sage: B = S.endomorphism_basis(); B
#random
[[1 0]
[0 1]]
```

homology_basis()

Compute the homology basis of the Riemann surface.

**OUTPUT:**

A list of paths $L = [P_1, \ldots, P_n]$. Each path $P_i$ is of the form $(k, [p_1\ldots p_m, p_1])$, where $k$ is the number of times to traverse the path (if negative, to traverse it backwards), and the $p_i$ are vertices of the upstairs graph.

**EXAMPLES:**

In this example, there are two paths that form the homology basis:
In order to check that the answer returned above is reasonable, we test some basic properties. We express the faces of the downstairs graph as $\mathbb{Z}$-linear combinations of the edges and check that the projection of the homology basis upstairs projects down to independent linear combinations of an even number of faces:

```
sage: dg = S.downstairs_graph()
sage: edges = dg.edges()
sage: E = ZZ^len(edges)
sage: edge_to_E = { e[:2]: E.gen(i) for i,e in enumerate(edges) }
sage: edge_to_E.update({ (e[1],e[0]): -E.gen(i) for i,e in enumerate(edges) })
sage: face_span = E.submodule([sum(edge_to_E[e] for e in f) for f in dg.faces()])
sage: def path_to_E(path):
 k,P = path
 ...: return k*sum(edge_to_E[(P[i][0],P[i+1][0])] for i in range(len(P)-1))
sage: hom_basis = [sum(path_to_E(p) for p in loop) for loop in S.homology_basiss]
sage: face_span.submodule(hom_basis).rank()
2
sage: [sum(face_span.coordinate_vector(b))%2 for b in hom_basis]
[0, 0]
```

**homomorphism_basis(other, b=None, r=None)**

Numerically compute a $\mathbb{Z}$-basis for module of homomorphisms to a given complex torus.

Given another complex torus (given as the analytic Jacobian of a Riemann surface), numerically compute a basis for the homomorphism module. The answer is returned as a list of $2g \times 2g$ integer matrices $T=(D, B; C, A)$ such that if the columns of $(I|M_1)$ generate the lattice defining the Jacobian of the Riemann surface and the columns of $(I|M_2)$ do this for the codomain, then approximately we have $(I|M_2)T=(D+M_2C)(I|M_1)$, i.e., up to a choice of basis for $\mathbb{C}^g$ as a complex vector space, we we realize $(I|M_1)$ as a sublattice of $(I|M_2)$.

**INPUT:**

- $b$ – integer (default provided). The equation coefficients are scaled by $2^b$ before rounding to integers.
- $r$ – integer (default: $b/4$). Solutions that have all coefficients smaller than $2^r$ in absolute value are reported as actual solutions.

**OUTPUT:**

A list of $2g \times 2g$ integer matrices that, for large enough $r$ and $b-r$, generate the homomorphism module.

**EXAMPLES:**

```
sage: S1 = EllipticCurve("11a1").riemann_surface()
sage: S2 = EllipticCurve("11a3").riemann_surface()
sage: [m.det() for m in S1.homomorphism_basis(S2)]
[5]
```
**homotopy_continuation** *(edge)*  
Perform homotopy continuation along an edge of the Voronoi diagram using Newton iteration.

**INPUT:**  
- *edge* – a tuple of integers indicating an edge of the Voronoi diagram

**OUTPUT:**  
A list of complex numbers corresponding to the points which are reached when traversing along the direction of the edge. The ordering of these points indicates how they have been permuted due to the weaving of the curve.

**EXAMPLES:**  
We check that continued values along an edge correspond (up to the appropriate permutation) to what is stored. Note that the permutation was originally computed from this data:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = z^3*w + w^3 + z
sage: S = RiemannSurface(f)
```

```python
sage: edge1 = sorted(S.edge_permutations())[0]
```

```python
sage: sigma = S.edge_permutations()[edge1]
```

```python
sage: continued_values = S.homotopy_continuation(edge1)
```

```python
sage: stored_values = S.w_values(S._vertices[edge1[1]])
```

```python
sage: all(abs(continued_values[i]-stored_values[sigma(i)]) < 1e-8 for i in range(3))
True
```

**make_zw_interpolator** *(upstairs_edge)*  
Given an upstairs edge for which continuation data has been stored, return a function that computes $z(t), w(t)$, where $t$ in $[0, 1]$ is a parametrization of the edge.

**INPUT:**  
- *upstairs_edge* – a pair of integer tuples indicating an edge on the upstairs graph of the surface

**OUTPUT:**  
A tuple $(g, d)$, where $g$ is the function that computes the interpolation along the edge and $d$ is the difference of the $z$-values of the end and start point.

**EXAMPLES:**

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
```

```python
sage: f = w^2 - z^4 + 1
```

```python
sage: S = RiemannSurface(f)
```

```python
sage: _ = S.homology_basis()
```

```python
sage: g,d = S.make_zw_interpolator([(0,0),(1,0)]);
```

```python
sage: all(f(*g(i*0.1)).abs() < 1e-13 for i in range(10))
True
```

```python
sage: abs((g(1)[0]-g(0)[0]) - d) < 1e-13
True
```

**matrix_of_integral_values** *(differentials)*  
Compute the path integrals of the given differentials along the homology basis.

The returned answer has a row for each differential. If the Riemann surface is given by the equation $f(z,w) = 0$, then the differentials are encoded by polynomials $g$, signifying the differential $g(z,w)/(df/dw)dz$.  

9.1. Riemann matrices and endomorphism rings of algebraic Riemann surfaces
INPUT:

- differentials – a list of polynomials.

OUTPUT:

A matrix, one row per differential, containing the values of the path integrals along the homology basis of the Riemann surface.

EXAMPLES:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]

sage: S = RiemannSurface(x^3 + y^3 + 1)
sage: B = S.cohomology_basis()
sage: m = S.matrix_of_integral_values(B)
sage: parent(m)
Full MatrixSpace of 1 by 2 dense matrices over Complex Field with 53 bits of precision
sage: (m[0,0]/m[0,1]).algdep(3).degree() # curve is CM, so the period is quadratic
2
```

`monodromy_group()`

Compute local monodromy generators of the Riemann surface.

For each branch point, the local monodromy is encoded by a permutation. The permutations returned correspond to positively oriented loops around each branch point, with a fixed base point. This means the generators are properly conjugated to ensure that together they generate the global monodromy. The list has an entry for every finite point stored in `self.branch_locus`, plus an entry for the ramification above infinity.

OUTPUT:

A list of permutations, encoding the local monodromy at each branch point.

EXAMPLES:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z, w> = QQ[]

sage: f = z^3*w + w^3 + z
sage: S = RiemannSurface(f)
sage: G = S.monodromy_group(); G
[(0,1,2), (0,1), (0,2), (1,2), (1,2), (1,2), (0,1), (0,2), (0,2)]

The permutations give the local monodromy generators for the branch points:

```python
sage: list(zip(S.branch_locus + [unsigned_infinity], G)) # abs tol 0.0000001
[(0.000000000000000, (0,1,2)),
(-1.31362670141929, (0,1)),
(-0.819032851784253 - 1.02703471138023*I, (0,2)),
(-0.819032851784253 + 1.02703471138023*I, (1,2)),
(0.292309440469772 - 1.28069133740100*I, (1,2)),
(0.292309440469772 + 1.28069133740100*I, (1,2)),
(1.18353676202412 - 0.569961265016465*I, (0,1)),
(1.18353676202412 + 0.569961265016465*I, (0,2)),
(Infinity, (0,2))]
```

We can check the ramification by looking at the cycle lengths and verify it agrees with the Riemann-Hurwitz formula:
perimeter_matrix()
Compute the period matrix of the surface.

OUTPUT:
A matrix of complex values.

EXAMPLES:

```sage
definitions:
from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = z^3*w + w^3 + z
sage: S = RiemannSurface(f, prec=30)
sage: M = S.period_matrix()
```

The results are highly arbitrary, so it is hard to check if the result produced is correct. The closely related `riemann_matrix` is somewhat easier to test:

```sage
definitions:
sage: parent(M)
Full MatrixSpace of 3 by 6 dense matrices over Complex Field with 30 bits of precision
sage: M.rank()
3
```

plot_paths()
Make a graphical representation of the integration paths.

Returns a two dimensional plot containing the branch points (in red) and the integration paths (obtained from the Voronoi cells of the branch points). The integration paths are plotted by plotting the points that have been computed for homotopy continuation, so the density gives an indication of where numerically sensitive features occur.

EXAMPLES:

```sage
definitions:
from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(y^2-x^3-x)
sage: S.plot_paths()
```

plot_paths3d(thickness=0.01)
Return the homology basis as a graph in 3-space.

The homology basis of the surface is constructed by taking the Voronoi cells around the branch points and taking the inverse image of the edges on the Riemann surface. If the surface is given by the equation \(f(z, w) \), the returned object gives the image of this graph in 3-space with coordinates \((\text{Re}(z), \text{Im}(z), \text{Im}(w))\).

EXAMPLES:

```sage
definitions:
from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
sage: S = RiemannSurface(y^2-x^3-x)
sage: S.plot_paths3d()
```
riemann_matrix()
 Compute the Riemann matrix.

 OUTPUT:
 A matrix of complex values.

 EXAMPLES:

 sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
 sage: R.<z,w> = QQ[]
 sage: f = z^3*w + w^3 + z
 sage: S = RiemannSurface(f, prec=60)
 sage: M = S.riemann_matrix()

 The Klein quartic has a Riemann matrix with values in a quadratic field:

 sage: x = polygen(QQ)
 sage: K.<a> = NumberField(x^2-x+2)
 sage: all(len(m.algdep(6).roots(K)) > 0 for m in M.list())
 True

rosati_involution(R)
 Computes the Rosati involution of an endomorphism.

 The endomorphism in question should be given by its homology representation with respect to the symplectic basis of the Jacobian.

 INPUT:
 - R – integral matrix.

 OUTPUT:
 The result of applying the Rosati involution to R.

 EXAMPLES:

 sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
 sage: A.<x,y> = QQ[]
 sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)
 sage: Rs = S.endomorphism_basis()
 sage: S.rosati_involution(S.rosati_involution(Rs[1])) == Rs[1]
 True

simple_vector_line_integral(upstairs_edge, differentials)
 Perform vectorized integration along a straight path.

 INPUT:
 - upstairs_edge – a pair of integer tuples corresponding to an edge of the upstairs graph.
 - differentials – a list of polynomials; a polynomial g represents the differential $g(z,w)/(df/dw)dz$ where $f(z,w) = 0$ is the equation defining the Riemann surface.

 OUTPUT:
 A complex number, the value of the line integral.

 EXAMPLES:
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]

sage: f = w^2 - z^4 + 1
sage: S = RiemannSurface(f); S
Riemann surface defined by polynomial f = -z^4 + w^2 + 1 = 0, with 53 bits of precision

Since we make use of data from homotopy continuation, we need to compute the necessary data:

sage: M = S.riemann_matrix()
sage: differentials = S.cohomology_basis()
sage: S.simple_vector_line_integral([(0,0),(1,0)], differentials) # abs tol 0.
(1.14590610929717e-16 - 0.352971844594760*I)

.. NOTE:

Uses data that "homology_basis" initializes.

symplectic_automorphism_group *(endo_basis=None, b=None, r=None)*

Numerically compute the symplectic automorphism group as a permutation group.

INPUT:

- **endo_basis** (default: None) – a \(\mathbb{Z}\)-basis of the endomorphisms of self, as obtained from `endomorphism_basis()`. If you have already calculated this basis, it saves time to pass it via this keyword argument. Otherwise the method will calculate it.

- **b** – integer (default provided): as for `homomorphism_basis()`, and used in its invocation if (re)calculating said basis.

- **r** – integer (default: \(b/4\)). as for `homomorphism_basis()`, and used in its invocation if (re)calculating said basis.

OUTPUT:

The symplectic automorphism group of the Jacobian of the Riemann surface. The automorphism group of the Riemann surface itself can be recovered from this; if the curve is hyperelliptic, then it is identical, and if not, then one divides out by the central element corresponding to multiplication by \(-1\).

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: A.<x,y> = QQ[]

sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)

sage: G = S.symplectic_automorphism_group()
sage: G.as_permutation_group().is_isomorphic(DihedralGroup(4))
True

symplectic_isomorphisms *(other=None, hom_basis=None, b=None, r=None)*

Numerically compute symplectic isomorphisms.

INPUT:

- **other** (default: self) – the codomain, another Riemann surface.

- **hom_basis** (default: None) – a \(\mathbb{Z}\)-basis of the homomorphisms from self to other, as obtained from `homomorphism_basis()`. If you have already calculated this basis, it saves time to pass it via this keyword argument. Otherwise the method will calculate it.
b – integer (default provided): as for `homomorphism_basis()`, and used in its invocation if (re)calculating said basis.

r – integer (default: \(b/4\)). as for `homomorphism_basis()`, and used in its invocation if (re)calculating said basis.

OUTPUT:

Returns the combinations of the elements of `homomorphism_basis()` that correspond to symplectic isomorphisms between the Jacobians of `self` and `other`.

EXAMPLES:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<x,y> = QQ[]
```

```python
sage: f = y^2 - (x^6 + 2*x^4 + 4*x^2 + 8)
```

```python
sage: X = RiemannSurface(f, prec = 100)
```

```python
sage: P = X.period_matrix()
```

```python
sage: g = y^2 - (x^6 + x^4 + x^2 + 1)
```

```python
sage: Y = RiemannSurface(g, prec = 100)
```

```python
sage: Q = Y.period_matrix()
```

```python
sage: Rs = X.symplectic_isomorphisms(Y)
```

```python
sage: Ts = X.tangent_representation_numerical(Rs, other = Y)
```

```python
sage: test1 = all(((T*P - Q*R).norm() < 2^(-80)) for [T, R] in zip(Ts, Rs))
```

```python
sage: test2 = all(det(R) == 1 for R in Rs)
```

```python
sage: test1 and test2
```

True
```

**tangent_representation_algebraic**(*Rs, other=None, epscomp=None*)

Compute the algebraic tangent representations corresponding to the homology representations in `Rs`.

The representations on homology `Rs` have to be given with respect to the symplectic homology basis of the Jacobian of `self` and `other`. Such matrices can for example be obtained via `endomorphism_basis()`.

Let \(P\) and \(Q\) be the period matrices of `self` and `other`. Then for a homology representation \(R\), the corresponding tangential representation \(T\) satisfies \(TP = QR\).

**INPUT:**

- **Rs** – a set of matrices on homology to be converted to their tangent representations.
- **other** (default: `self`) – the codomain, another Riemann surface.
- **epscomp** – real number (default: \(2^{(-\text{prec} + 30)}\)). Used to determine whether a complex number is close enough to a root of a polynomial.

**OUTPUT:**

The algebraic tangent representations of the matrices in `Rs`.

**EXAMPLES:**

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: A.<x,y> = QQ[]
```

```python
sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)
```

```python
sage: Rs = S.endomorphism_basis()
```

```python
sage: Ts = S.tangent_representation_algebraic(Rs)
```

```python
sage: test = all([Ts[0].base_ring().maximal_order().discriminant() == 8]
```

True
```

tangent_representation_numerical(*Rs, other=None*)

Compute the numerical tangent representations corresponding to the homology representations in `Rs`.

INPUT:

- **Rs** – a set of matrices on homology to be converted to their tangent representations.
- **other** (default: `self`) – the codomain, another Riemann surface.

OUTPUT:

The numerical tangent representations of the matrices in `Rs`.

EXAMPLES:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: A.<x,y> = QQ[]
```

```python
sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)
```

```python
sage: Rs = S.endomorphism_basis()
```

```python
sage: Ts = S.tangent_representation_numerical(Rs)
```

```python
sage: test = all([Ts[0].base_ring().maximal_order().discriminant() == 8]
```

True
```
The representations on homology $\text{Rs}$ have to be given with respect to the symplectic homology basis of the Jacobian of $\text{self}$ and $\text{other}$. Such matrices can for example be obtained via `endomorphism_basis()`.

Let $P$ and $Q$ be the period matrices of $\text{self}$ and $\text{other}$. Then for a homology representation $R$, the corresponding tangential representation $T$ satisfies $TP = QR$.

**INPUT:**

- $\text{Rs}$ – a set of matrices on homology to be converted to their tangent representations.
- $\text{other}$ (default: $\text{self}$) – the codomain, another Riemann surface.

**OUTPUT:**

The numerical tangent representations of the matrices in $\text{Rs}$.

**EXAMPLES:**

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: A.<x,y> = QQ[]
sage: S = RiemannSurface(y^2 - (x^6 + 2*x^4 + 4*x^2 + 8), prec = 100)
sage: P = S.period_matrix()
sage: Rs = S.endomorphism_basis()
sage: Ts = S.tangent_representation_numerical(Rs)
sage: all(((T*P - P*R).norm() < 2^(-80)) for [T, R] in zip(Ts, Rs))
True
```

### upstairs_edges() 

Compute the edgeset of the lift of the downstairs graph onto the Riemann surface.

**OUTPUT:**

An edgeset between vertices (i, j), where i corresponds to the i-th point in the Voronoi diagram vertices, and j is the j-th w-value associated with that point.

**EXAMPLES:**

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 + z^3 - z^2
sage: S = RiemannSurface(f)
sage: edgeset = S.upstairs_edges()
sage: len(edgeset) == S.degree*len(S.downstairs_edges())
True
sage: {v[0],w[0]} for v,w in edgeset} == set(S.downstairs_edges())
True
```

### w_values (z0)

Returns the points lying on the surface above $z0$.

**INPUT:**

- $z0$ – (complex) a point in the complex $z$-plane.

**OUTPUT:**

A set of complex numbers corresponding to solutions of $f(z0, w) = 0$.

**EXAMPLES:**
sage: from sage.schemes.riemann_surfaces.riemann_surface import RiemannSurface
sage: R.<z,w> = QQ[]
sage: f = w^2 - z^4 + 1
sage: S = RiemannSurface(f)

Find the w-values above the origin, i.e. the solutions of $w^2 + 1 = 0$:

sage: S.w_values(0) # abs tol 1e-14
[-1.00000000000000*I, 1.00000000000000*I]

class sage.schemes.riemann_surfaces.riemann_surface.RiemannSurfaceSum(L)
Bases: sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface

Represent the disjoint union of finitely many Riemann surfaces.

Rudimentary class to represent disjoint unions of Riemann surfaces. Exists mainly (and this is the only functionality actually implemented) to represents direct products of the complex tori that arise as analytic Jacobians of Riemann surfaces.

INPUT:

- L – list of RiemannSurface objects

EXAMPLES:

sage: _.<x> = QQ[]
sage: SC = HyperellipticCurve(x^6-2*x^4+3*x^2-7).riemann_surface(prec=60)
sage: S1 = HyperellipticCurve(x^3-2*x^2+3*x-7).riemann_surface(prec=60)
sage: S2 = HyperellipticCurve(1-2*x+3*x^2-7*x^3).riemann_surface(prec=60)
sage: len(SC.homomorphism_basis(S1+S2))
2

period_matrix()

Return the period matrix of the surface.

This is just the diagonal block matrix constructed from the period matrices of the constituents.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import *
  →RiemannSurface, RiemannSurfaceSum
sage: R.<x,y>=QQ[]
sage: S1 = RiemannSurface(y^2-x^3-x-1)
sage: S2 = RiemannSurface(y^2-x^3-x-5)
sage: S = RiemannSurfaceSum([S1,S2])
sage: S1S2 = S1.period_matrix().block_sum(S2.period_matrix())
sage: S.period_matrix() == S1S2[[0,1], [0,2,1,3]]
True

riemann_matrix()

Return the normalized period matrix of the surface.

This is just the diagonal block matrix constructed from the Riemann matrices of the constituents.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import *
  →RiemannSurface, RiemannSurfaceSum
sage: R.<x,y>=QQ[]
sage: S1 = RiemannSurface(y^2-x^3-x-1)
sage: S2 = RiemannSurface(y^2-x^3-x-5)
sage: S = RiemannSurfaceSum([S1,S2])
sage: S.riemann_matrix() == S1.riemann_matrix().block_sum(S2.riemann_matrix())
True

sage.schemes.riemann_surfaces.riemann_surface.bisect(L, t)

Find position in a sorted list using bisection.

Given a list \( L = [(t_0,...),(t_1,...),...,(t_n,...)] \) with increasing \( t_i \), find the index \( i \) such that \( t_i \leq t < t_{i+1} \) using bisection. The rest of the tuple is available for whatever use required.

INPUT:

- \( L \) – A list of tuples such that the first term of each tuple is a real number between 0 and 1. These real numbers must be increasing.
- \( t \) – A real number between \( t_0 \) and \( t_n \).

OUTPUT:

An integer \( i \), giving the position in \( L \) where \( t \) would be in

EXAMPLES:

Form a list of the desired form, and pick a real number between 0 and 1:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import bisect
sage: L = [(0.0, 'a'), (0.3, 'b'), (0.7, 'c'), (0.8, 'd'), (0.9, 'e'), (1.0, 'f')]
sage: t = 0.5
sage: bisect(L,t)
1
```

Another example which demonstrates that if \( t \) is equal to one of the \( t_i \), it returns that index:

```python
sage: L = [(0.0, 'a'), (0.1, 'b'), (0.45, 'c'), (0.5, 'd'), (0.65, 'e'), (1.0, 'f')]
sage: t = 0.5
sage: bisect(L,t)
3
```

sage.schemes.riemann_surfaces.riemann_surface.differential_basis_baker(f)

Compute a differential bases for a curve that is nonsingular outside \((1:0:0),(0:1:0),(0:0:1)\)

Baker’s theorem tells us that if a curve has its singularities at the coordinate vertices and meets some further easily tested genericity criteria, then we can read off a basis for the regular differentials from the interior of the Newton polygon spanned by the monomials. While this theorem only applies to special plane curves it is worth implementing because the analysis is relatively cheap and it applies to a lot of commonly encountered curves (e.g., curves given by a hyperelliptic model). Other advantages include that we can do the computation over any exact base ring (the alternative Singular based method for computing the adjoint ideal requires the rationals), and that we can avoid being affected by subtle bugs in the Singular code.

None is returned when \( f \) does not describe a curve of the relevant type. If \( f \) is of the relevant type, but is of genus 0 then \( [] \) is returned (which are both False values, but they are not equal).

INPUT:

- \( f \) – a bivariate polynomial

EXAMPLES:
sage: from sage.schemes.riemann_surfaces.riemann_surface import differential_matrix_relations
sage: R.<x,y>=QQ[]
sage: f=x^3+y^3+x^5*y^5
sage: differential_matrix_relations(f)
[y^2, x*y, x*y^2, x^2, x^2*y, x^2*y^2, x^3*y^2, x^3*y^3]
sage: f=y^2-(x-3)^2*x
sage: differential_matrix_relations(f) is None
True
sage: differential_matrix_relations(x^2+y^2-1)
[]

 sage.schemes.riemann_surfaces.riemann_surface.integer_matrix_relations(M1, M2, b=None, r=None)

Determine integer relations between complex matrices.

Given two square matrices with complex entries of size g, h respectively, numerically determine an (approximate) ZZ-basis for the 2g x 2h matrices with integer entries of the shape (D, B; C, A) such that B+M1*A=(D+M1*C)*M2. By considering real and imaginary parts separately we obtain 2gh equations with real coefficients in 4gh variables. We scale the coefficients by a constant 2^b and round them to integers, in order to obtain an integer system of equations. Standard application of LLL allows us to determine near solutions.

The user can specify the parameter b, but by default the system will choose a b based on the size of the coefficients and the precision with which they are given.

INPUT:

• M1 – square complex valued matrix
• M2 – square complex valued matrix of same size as M1
• b – integer (default provided). The equation coefficients are scaled by 2^b before rounding to integers.
• r – integer (default: b/4). The vectors found by LLL that satisfy the scaled equations to withing 2^r are reported as solutions.

OUTPUT:

A list of 2g x 2h integer matrices that, for large enough r, b − r, generate the ZZ-module of relevant transformations.

EXAMPLES:

sage: from sage.schemes.riemann_surfaces.riemann_surface import integer_matrix_relations
sage: M1=M2=matrix(CC,2,2,[sqrt(d) for d in [2,-3,-3,-6]])
sage: T=integer_matrix_relations(M1,M2)
sage: id=parent(M1)(1)
sage: M1t=[id.augment(M1) * t for t in T]

sage.schemes.riemann_surfaces.riemann_surface.numerical_inverse(C)

Compute numerical inverse of a matrix via LU decomposition

INPUT:

• C – A real or complex invertible square matrix

EXAMPLES:
sage: C = matrix(CC, 3, 3, [-4.5606e-31 + 1.2326e-31*I, 
.....: -0.21313 + 0.24166*I, 
.....: -3.4513e-31 + 0.16111*I, 
.....: -1.0175 + 9.8608e-32*I, 
.....: 0.30912 + 0.19962*I, 
.....: -4.9304e-32 + 0.39923*I, 
.....: 0.96793 - 3.4513e-31*I, 
.....: -0.091587 + 0.19276*I, 
.....: 3.9443e-31 + 0.38552*I])

sage: from sage.schemes.riemann_surfaces.riemann_surface import numerical_inverse
sage: max(abs(c) for c in (C^(-1)*C-C^0).list()) < 1e-10
False
sage: max(abs(c) for c in (numerical_inverse(C)*C-C^0).list()) < 1e-10
True

sage.schemes.riemann_surfaces.riemann_surface.voronoighost(cpoints, n=6, CC=Complex Double Field)

Convert a set of complex points to a list of real tuples \((x, y)\), and appends \(n\) points in a big circle around them.

The effect is that, with \(n \geq 3\), a Voronoi decomposition will have only finite cells around the original points. Furthermore, because the extra points are placed on a circle centered on the average of the given points, with a radius \(3/2\) times the largest distance between the center and the given points, these finite cells form a simply connected region.

INPUT:

- \(\text{cpoints}\) – a list of complex numbers

OUTPUT:

A list of real tuples \((x, y)\) consisting of the original points and a set of points which surround them.

EXAMPLES:

```python
sage: from sage.schemes.riemann_surfaces.riemann_surface import voronoighost
sage: L = [1 + 1*I, 1 - 1*I, -1 + 1*I, -1 - 1*I]
sage: voronoighost(L) # abs tol 1e-6
[(1.0, 1.0),
 (1.0, -1.0),
 (-1.0, 1.0),
 (-1.0, -1.0),
 (2.121320343559643, 0.0),
 (1.0606601771798216, 1.8371173070873836),
 (-1.0606601771798216, 1.8371173070873839),
 (-2.121320343559643, 2.59786816870648e-16),
 (-1.0606601771798223, -1.8371173070873832),
 (1.0606601771798223, -1.8371173070873845)]
```
10.1 Elliptic curve constructor

AUTHORS:

- William Stein (2005): Initial version
- John Cremona (2008-01): EllipticCurve(j) fixed for all cases

class sage.schemes.elliptic_curves.constructor.EllipticCurveFactory

    Bases: sage.structure.factory.UniqueFactory

    Construct an elliptic curve.

    In Sage, an elliptic curve is always specified by (the coefficients of) a long Weierstrass equation

    \[ y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. \]

    INPUT:

    There are several ways to construct an elliptic curve:

    - \texttt{EllipticCurve([a1,a2,a3,a4,a6])}: Elliptic curve with given \(a\)-invariants. The invariants are coerced into a common parent. If all are integers, they are coerced into the rational numbers.
    - \texttt{EllipticCurve([a4,a6])}: Same as above, but \(a_1 = a_2 = a_3 = 0\).
    - \texttt{EllipticCurve(label)}: Returns the elliptic curve over \(\mathbb{Q}\) from the Cremona database with the given label. The label is a string, such as "11a" or "37b2". The letters in the label must be lower case (Cremona's new labeling).
    - \texttt{EllipticCurve(R, [a1,a2,a3,a4,a6])}: Create the elliptic curve over \(R\) with given \(a\)-invariants. Here \(R\) can be an arbitrary commutative ring, although most functionality is only implemented over fields.
    - \texttt{EllipticCurve(j=j0) or EllipticCurve_from_j(j0)}: Return an elliptic curve with \(j\)-invariant \(j_0\).
    - \texttt{EllipticCurve polynomial}: Read off the \(a\)-invariants from the polynomial coefficients, see \texttt{EllipticCurve_from_Weierstrass_polynomial}.
    - \texttt{EllipticCurve(cubic, point)}: The elliptic curve defined by a plane cubic (homogeneous polynomial in three variables), with a rational point.

    Instead of giving the coefficients as a list of length 2 or 5, one can also give a tuple.

    EXAMPLES:

    We illustrate creating elliptic curves:
We create a curve from a Cremona label:

\texttt{sage: EllipticCurve('37b2')}
\texttt{Elliptic Curve defined by }y^2 + y = x^3 + x^2 - 1873x - 31833 \texttt{ over Rational Field}

\texttt{sage: EllipticCurve('5077a')}
\texttt{Elliptic Curve defined by }y^2 + y = x^3 - 7x + 6 \texttt{ over Rational Field}

\texttt{sage: EllipticCurve('389a')}
\texttt{Elliptic Curve defined by }y^2 + y = x^3 + x^2 - 2x \texttt{ over Rational Field}

Old Cremona labels are allowed:

\texttt{sage: EllipticCurve('2400FF')}
\texttt{Elliptic Curve defined by }y^2 = x^3 + x^2 + 2x + 8 \texttt{ over Rational Field}

Unicode labels are allowed:

\texttt{sage: EllipticCurve(u'389a')}
\texttt{Elliptic Curve defined by }y^2 + y = x^3 + x^2 - 2x \texttt{ over Rational Field}

We create curves over a finite field as follows:

\texttt{sage: EllipticCurve(GF(5), [0, 0, 1, -1, 0])}
\texttt{Elliptic Curve defined by }y^2 + y = x^3 + 4x \texttt{ over Finite Field of size 5}

Elliptic curves over \(\mathbb{Z}/N\mathbb{Z}\) with \(N\) prime are of type “elliptic curve over a finite field”:

\texttt{sage: F = Zmod(101)}
\texttt{sage: EllipticCurve(F, [2, 3])}
\texttt{Elliptic Curve defined by }y^2 = x^3 + 2x + 3 \texttt{ over Ring of integers modulo 101}

In contrast, elliptic curves over \(\mathbb{Z}/N\mathbb{Z}\) with \(N\) composite are of type “generic elliptic curve”:

\texttt{sage: F = Zmod(95)}
\texttt{sage: EllipticCurve(F, [2, 3])}
\texttt{Elliptic Curve defined by }y^2 = x^3 + 2x + 3 \texttt{ over Ring of integers modulo 95}

The following is a curve over the complex numbers:

\texttt{sage: E = EllipticCurve(CC, [0, 0, 1, -1, 0])}
\texttt{sage: E}
We can also create elliptic curves by giving the Weierstrass equation:

```python
sage: R2.<x,y> = PolynomialRing(QQ,2)
sage: EllipticCurve(y^2 + y - (x^3 + x - 9))
Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field
```

We can also create elliptic curves by giving a smooth plane cubic with a rational point:

```python
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: F = x^3+y^3+30*z^3
sage: P = [1,-1,0]
sage: EllipticCurve(F,P)
Elliptic Curve defined by y^2 - 270*y = x^3 - 24300 over Rational Field
```

We can explicitly specify the $j$-invariant:

```python
sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 = x^3 - x over Rational Field
1728
's32a2'
```

See trac ticket #6657

```python
sage: EllipticCurve(GF(144169),j=1728)
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169
```

Elliptic curves over the same ring with the same Weierstrass coefficients are identical, even when they are constructed in different ways (see trac ticket #11474):

```python
sage: EllipticCurve('11a3') is EllipticCurve(QQ, [0, -1, 1, 0, 0])
True
```

By default, when a rational value of $j$ is given, the constructed curve is a minimal twist (minimal conductor for curves with that $j$-invariant). This can be changed by setting the optional parameter minimal_twist, which is True by default, to False:

```python
sage: EllipticCurve(j=100)
Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field
sage: E = EllipticCurve(j=100); E
Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field
sage: E.conductor()
33129800
sage: E.j_invariant()
```

(continues on next page)
Without this option, constructing the curve could take a long time since both \( j \) and \( j - 1728 \) have to be factored to compute the minimal twist (see trac ticket #13100):

```python
sage: E = EllipticCurve_from_j(2^256+1, minimal_twist=False)
sage: E.j_invariant() == 2^256+1
True
```

```python
create_key_and_extra_args(x=None, y=None, j=None, minimal_twist=True, **kwds)
```

Return a `UniqueFactory` key and possibly extra parameters.

**INPUT:**

See the documentation for `EllipticCurveFactory`.

**OUTPUT:**

A pair (key, extra_args):

- key has the form \((R, (a_1, a_2, a_3, a_4, a_6))\), representing a ring and the Weierstrass coefficients of an elliptic curve over that ring;
- extra_args is a dictionary containing additional data to be inserted into the elliptic curve structure.

**EXAMPLES:**

```python
sage: key, data = EllipticCurve.create_key_and_extra_args('389.a1')
```

When constructing a curve over \( \mathbb{Q} \) from a Cremona or LMFDB label, the invariants from the database are returned as `extra_args`:

```python
sage: key, data = EllipticCurve.create_key_and_extra_args('389.al')
sage: key
(Rational Field, (0, 1, 1, -2, 0))
sage: data['conductor']
389
sage: data['cremona_label']
'389al'
sage: data['lmfdb_label']
'389.al'
sage: data['rank']
2
sage: data['torsion_order']
1
```

User-specified keywords are also included in `extra_args`:

```python
sage: key, data = EllipticCurve.create_key_and_extra_args({0, 0, 1, -23737, -960366}, rank=4)
sage: data['rank']
4
```
Furthermore, keywords takes precedence over data from the database, which can be used to specify an alternative set of generators for the Mordell-Weil group:

```python
sage: key, data = EllipticCurve.create_key_and_extra_args('5077a1', gens=[[1, -1], [-2, 3], [4, -7]])
sage: data['gens']
[[1, -1], [-2, 3], [4, -7]]
sage: E = EllipticCurve.create_object(0, key, **data)
sage: E.gens()
[(-2 : 3 : 1), (1 : -1 : 1), (4 : -7 : 1)]
```

Note that elliptic curves are equal if and only they have the same base ring and Weierstrass equation; the data in `extra_args` do not influence comparison of elliptic curves. A consequence of this is that passing keyword arguments only works when constructing an elliptic curve the first time:

```python
sage: E = EllipticCurve('433a1', gens=[[-1, 1], [3, 4]])
sage: E.gens()
[(-1 : 1 : 1), (3 : 4 : 1)]
sage: E = EllipticCurve('433a1', gens=[[-1, 0], [0, 1]])
sage: E.gens()
[(-1 : 1 : 1), (3 : 4 : 1)]
```

**Warning:** Manually specifying extra data is almost never necessary and is not guaranteed to have any effect, as the above example shows. Almost no checking is done, so specifying incorrect data may lead to wrong results of computations instead of errors or warnings.

### `create_object` *(version, key, **kwds)*
Create an object from a `UniqueFactory` key.

**EXAMPLES:**

```python
sage: E = EllipticCurve.create_object(0, (GF(3), (1, 2, 0, 1, 2)))
sage: type(E)
<class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'>
```

**Note:** Keyword arguments are currently only passed to the constructor for elliptic curves over \(\mathbb{Q}\); elliptic curves over other fields do not support them.

### `EllipticCurve_from_Weierstrass_polynomial` *(f)*
Return the elliptic curve defined by a cubic in (long) Weierstrass form.

**INPUT:**
- \(f\) – a inhomogeneous cubic polynomial in long Weierstrass form.

**OUTPUT:**
The elliptic curve defined by it.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]
sage: f = y^2 + 1*x*y + 3*y - (x^3 + 2*x^2 + 4*x + 6)
sage: EllipticCurve(f)
(continues on next page)```
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 6 over Rational Field

\sage\textbf{EllipticCurve(f).a_invariants()}

\begin{verbatim}
(1, 2, 3, 4, 6)
\end{verbatim}

The polynomial ring may have extra variables as long as they do not occur in the polynomial itself:

\begin{verbatim}
sage: R.<x,y,z,w> = QQ[]
sage: EllipticCurve(-y^2 + x^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: EllipticCurve(-x^2 + y^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: EllipticCurve(-w^2 + z^3 + 1)
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
\end{verbatim}

\texttt{sage.schemes.elliptic_curves.constructor.EllipticCurve_from_c4c6(c4, c6)}

Return an elliptic curve with given c_4 and c_6 invariants.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E = EllipticCurve_from_c4c6(17, -2005)
sage: E
Elliptic Curve defined by y^2 = x^3 - 17/48 *x + 2005/864 over Rational Field
sage: E.c_invariants()
(17, -2005)
\end{verbatim}

\texttt{sage.schemes.elliptic_curves.constructor.EllipticCurve_from_cubic(F, P=None, morphism=True)}

Construct an elliptic curve from a ternary cubic with a rational point.

If you just want the Weierstrass form and are not interested in the morphism then it is easier to use the function \texttt{Jacobian()} instead. If there is a rational point on the given cubic, this function will construct the same elliptic curve but you do not have to supply the point P.

\textbf{INPUT:}

- F – a homogeneous cubic in three variables with rational coefficients, as a polynomial ring element, defining a smooth plane cubic curve C.
- P – a 3-tuple (x, y, z) defining a projective point on C, or \texttt{None}. If \texttt{None} then a rational flex will be used as a base point if one exists, otherwise an error will be raised.
- \texttt{morphism} – boolean (default: \texttt{True}). If \texttt{True} returns a birational isomorphism from C to a Weierstrass elliptic curve E, otherwise just returns E.

\textbf{OUTPUT:}

Either (when \texttt{morphism} \texttt{_} = \texttt{_} \texttt{False}) an elliptic curve E in long Weierstrass form isomorphic to the plane cubic curve C defined by the equation $F = 0$.

Or (when \texttt{morphism} = \texttt{True}), a birational isomorphism from C to the elliptic curve E. If the given point is a flex, this is a linear isomorphism.

\textbf{Note:} The function \texttt{Jacobian()} may be used instead. It constructs the same elliptic curve (which is in all cases the Jacobian of $(F = 0)$) and needs no base point to be provided, but also returns no isomorphism since in general there is none: the plane cubic is only isomorphic to its Jacobian when it has a rational point.
Note: When `morphism=True`, a birational isomorphism between the curve $F = 0$ and the Weierstrass curve is returned. If the point happens to be a flex, then this is a linear isomorphism. The morphism does not necessarily take the given point P to the point at infinity on E, since we always use a rational flex on C as base-point when one exists.

EXAMPLES:

First we find that the Fermat cubic is isomorphic to the curve with Cremona label 27a1:

```
sage: R.<x,y,z> = QQ[]
sage: cubic = x^3+y^3+z^3
sage: P = [1,-1,0]
sage: E = EllipticCurve_from_cubic(cubic, P, morphism=False); E
Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
sage: E.cremona_label()
'27a1'
sage: EllipticCurve_from_cubic(cubic, [0,1,-1], morphism=False).cremona_label()
'27a1'
sage: EllipticCurve_from_cubic(cubic, [1,0,-1], morphism=False).cremona_label()
'27a1'
```

Next we find the minimal model and conductor of the Jacobian of the Selmer curve:

```
sage: R.<a,b,c> = QQ[]
sage: cubic = a^3+b^3+60*c^3
sage: P = [1,-1,0]
sage: E = EllipticCurve_from_cubic(cubic, P, morphism=False); E
Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field
sage: E.minimal_model()
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
sage: E.conductor()
24300
```

We can also get the birational isomorphism to and from the Weierstrass form. We start with an example where P is a flex and the equivalence is a linear isomorphism:

```
sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True)
sage: f
Scheme morphism:
  From: Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
  To:   Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field
Defn: Defined on coordinates by sending (a : b : c) to
       (-c : 3*a : 1/180*a + 1/180*b)
sage: finv = f.inverse(); finv
Scheme morphism:
  From: Elliptic Curve defined by y^2 - 540*y = x^3 - 97200 over Rational Field
  To:   Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
Defn: Defined on coordinates by sending (x : y : z) to
       (1/3*y : -1/3*y + 180*z : -x)
```

(continues on next page)
We verify that \(f \) maps the chosen point \(P = (1, -1, 0) \) on the cubic to the origin of the elliptic curve:

```
sage: f([1,-1,0])
(0 : 1 : 0)
sage: finv([0,1,0])
(-1 : 1 : 0)
```

To verify the output, we plug in the polynomials to check that this indeed transforms the cubic into Weierstrass form:

```
sage: cubic(finv.defining_polynomials()) * finv.post_rescaling()
-x^3 + y^2*z - 540*y*z^2 + 97200*z^3
sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
a^3 + b^3 + 60*c^3
```

If the given point is not a flex and the cubic has no rational flexes, then the cubic can not be transformed to a Weierstrass equation by a linear transformation. The general birational transformation is still a birational isomorphism, but is quadratic:

```
sage: R.<x,y,z> = QQ[]
sage: cubic = x^2*y + 4*x*y^2 + x^2*z + 8*x*y*z + 4*y^2*z + 9*x*z^2 + 9*y*z^2
sage: f = EllipticCurve_from_cubic(cubic, [1,-1,1], morphism=True); f
Scheme morphism:
  From: Projective Plane Curve over Rational Field defined by x^2*y + 4*x*y^2 + x^2*z + 8*x*y*z + 4*y^2*z + 9*x*z^2 + 9*y*z^2
  To:   Elliptic Curve defined by y^2 + 7560/19*x*y + 552960000000/2352637*y = x^3 - 3445200/133*x^2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z) to
  (2527/17280*x^2 + 133/2160*x*y + 133/10800*y^2 + 133/2880*x*z + 931/28800*y*z - 3857/48000*z^2 : -6859/288*x^2 + 323/36*x*y + 359/1800*y^2 + 551/48*x*z + 2813/300*y*z - 2352637/276480000000*z^2 : -2352637/276480000000*x^2 - 2352637/276480000000*x*y + 2352637/276480000000*y*z - 2352637/276480000000*z^2)
```

Note that the morphism returned cannot be evaluated directly at the given point \(P=(1:-1:1) \) since the polynomials defining it all vanish there:

```
sage: f([1,-1,1])
Traceback (most recent call last):
  ... ValueError: [0, 0, 0] does not define a valid point since all entries are 0
```

Using the group law on the codomain elliptic curve, which has rank 1 and full 2-torsion, and the inverse morphism, we can find many points on the cubic. First we find the preimages of multiples of the generator:

```
sage: R.<x,y,z> = QQ[]
sage: E = f.codomain()
sage: E.label()
'720e2'
sage: E.rank()
1
sage: R = E.gens()[0]; R
```

(continues on next page)

(continued from previous page)

```python
sage: finv = f.inverse()
sage: [finv(k*R) for k in range(1,10)]
[(-4 : 1 : 0),
 (-1 : 4 : 1),
 (-20 : -55/76 : 1),
 (319/399 : -11339/7539 : 1),
 (159919/14360 : -4078139/1327840 : 1),
 (-27809119/63578639 : 1856146436/3425378659 : 1),
 (-510646582340/56909753439 : 424000923715/30153806197284 : 1),
 (-5668643653679/4050436059492161 : -2433034816977728281/1072927821085503881 : 1),
 (650589589099815846721/72056273157352822480 : -3473761895460619931099881/
 194127383495944026752320 : 1)]
```

The elliptic curve also has torsion, which we can map back:

```python
sage: E.torsion_points()
[(-144000000/17689 : 3533760000000/2352637 : 1),
 (-92160000/17689 : 2162073600000/2352637 : 1),
 (-5760000/17689 : -124070400000/2352637 : 1),
 (0 : 1 : 0)]
sage: [finv(Q) for Q in E.torsion_points() if Q]
[(9 : -9/4 : 1), (-9 : 0 : 1), (0 : 1 : 0)]
```

In this example, the given point \(P \) is not a flex but the cubic does have a rational flex, \((-4:0:1)\). We return a linear isomorphism which maps this flex to the point at infinity on the Weierstrass model:

```python
sage: R.<a,b,c> = QQ[]
sage: cubic = a^3+7*b^3+64*c^3
sage: P = [2,2,-1]
sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True)
sage: E = f.codomain(); E
Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over Rational Field
sage: E.minimal_model()
Elliptic Curve defined by y^2 + y = x^3 - 331 over Rational Field
sage: f
Scheme morphism:
  From: Projective Plane Curve over Rational Field defined by a^3 + 7*b^3 + 64*c^3
  To:  Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over Rational Field
  Defn: Defined on coordinates by sending (a : b : c) to
        (b : -48*a : -1/5376*a - 1/1344*c)
sage: finv = f.inverse(); finv
Scheme morphism:
  From: Elliptic Curve defined by y^2 - 258048*y = x^3 - 22196256768 over Rational Field
  To:  Projective Plane Curve over Rational Field defined by a^3 + 7*b^3 + 64*c^3
  Defn: Defined on coordinates by sending (x : y : z) to
        (-1/48*y : x : 1/192*x - 1344*z)
sage: cubic(finv.defining_polynomials()) * finv.post_rescaling()
-x^3 + y^2*z - 258048*y*z^2 + 22196256768*z^3
sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
```

(continues on next page)

10.1. Elliptic curve constructor

113
\[a^3 + 7b^3 + 64c^3\]

Sage:
\[f(P)\]
(5376 : -258048 : 1)
Sage:
\[f([-4,0,1])\]
(0 : 1 : 0)

It is possible to not provide a base point \(P\) provided that the cubic has a rational flex. In this case the flexes will be found and one will be used as a base point:

Sage:
\[R.<x,y,z> = \mathbb{Q}[\]
\[\text{sage: cubic} = x^3+y^3+z^3\]
\[\text{sage: } f = \text{EllipticCurve_from_cubic(cubic, morphism=True)}\]
\[\text{sage: } f\]
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by \(x^3 + y^3 + z^3\)
To: Elliptic Curve defined by \(y^2 - 9*y = x^3 - 27\) over Rational Field
Defn: Defined on coordinates by sending \((x : y : z)\) to
\[(y : -3*x : -1/3*x - 1/3*z)\]

An error will be raised if no point is given and there are no rational flexes:

Sage:
\[R.<x,y,z> = \mathbb{Q}[\]
\[\text{sage: cubic} = 3*x^3+4*y^3+5*z^3\]
\[\text{sage: } \text{EllipticCurve_from_cubic(cubic)}\]
Traceback (most recent call last):
...
ValueError: A point must be given when the cubic has no rational flexes

An example over a finite field, using a flex:

Sage:
\[K = \text{GF}(17)\]
\[\text{sage: } R.<x,y,z> = K[\]
\[\text{sage: cubic} = 2*x^3+3*y^3+4*z^3\]
\[\text{sage: } \text{EllipticCurve_from_cubic(cubic,[0,3,1])}\]
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 17 defined by \(2*x^3 + 3*y^3 + 4*z^3\)
To: Elliptic Curve defined by \(y^2 + 16*y = x^3 + 11\) over Finite Field of size 17
Defn: Defined on coordinates by sending \((x : y : z)\) to
\[(-x : 4*y : 4*y + 5*z)\]

An example in characteristic 3:

Sage:
\[K = \text{GF}(3)\]
\[\text{sage: } R.<x,y,z> = K[\]
\[\text{sage: cubic} = x^3+y^3+z^3+x*y*z\]
\[\text{sage: } \text{EllipticCurve_from_cubic(cubic,[0,1,-1])}\]
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 3 defined by \(x^3 + y^3 + x*y*z\)
To: Elliptic Curve defined by \(y^2 + x*y = x^3 + 1\) over Finite Field of size 3
Defn: Defined on coordinates by sending \((x : y : z)\) to
\[(y + z : -y : x)\]

An example over a number field, using a non-flex and where there are no rational flexes:
An example over a function field, using a non-flex:

```
sage: K.<t> = FunctionField(QQ)
sage: R.<x,y,z> = K[

sage: cubic = x^3+t*y^3+(1+t)*z^3

sage: EllipticCurve_from_cubic(cubic,[1,1,-1], morphism=False)

Elliptic Curve defined by y^2 + ((162*t^6+486*t^5+810*t^4+810*t^3+486*t^2+162*t)/(t^6+12*t^5-3*t^4-20*t^3-3*t^2+12*t+1))*x*y + ((314928*t^14+4094064*t^13+23462136*t^12+4094064*t^11+314928*t^10)/(t^12+24*t^11+138*t^10-112*t^9-477*t^8+72*t^7+708*t^6+72*t^5-477*t^4+112*t^3+138*t^2+24*t+1))*x^2 over Rational function field in t over Rational Field
```

```
sage.schemes.elliptic_curves.constructor.EllipticCurve_from_j(j, minimal_twist=True)

Return an elliptic curve with given j-invariant.

INPUT:

- `j` – an element of some field.

- `minimal_twist` (boolean, default True) – If True and \( j \) is in \( \mathbb{Q} \), the curve returned is a minimal twist, i.e. has minimal conductor. If \( j \) is not in \( \mathbb{Q} \) this parameter is ignored.

OUTPUT:

An elliptic curve with \( j \)-invariant \( j \).

EXAMPLES:

```
sage: E = EllipticCurve_from_j(0); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 + y = x^3 over Rational Field
0
'27a3'
sage: E = EllipticCurve_from_j(1728); E; E.j_invariant(); E.label()
Elliptic Curve defined by y^2 = x^3 - x over Rational Field
(continues on next page)
```
\texttt{sage}: E = EllipticCurve_from_j(1); E; E.j_invariant()
Elliptic Curve defined by \( y^2 + x*y = x^3 + 36*x + 3455 \) over Rational Field

The \texttt{minimal\_twist} parameter (ignored except over \( \mathbb{Q} \) and True by default) controls whether or not a minimal twist is computed:

\begin{verbatim}
sage: EllipticCurve_from_j(100)
Elliptic Curve defined by \( y^2 = x^3 + x^2 + 3392*x + 307888 \) over Rational Field
sage: _.conductor()
33129800
sage: EllipticCurve_from_j(100, minimal_twist=False)
Elliptic Curve defined by \( y^2 = x^3 + 488400*x - 530076800 \) over Rational Field
sage: _.conductor()
298168200
\end{verbatim}

Since computing the minimal twist requires factoring both \( j \) and \( j - 1728 \) the following example would take a long time without setting \texttt{minimal\_twist} to False:

\begin{verbatim}
sage: E = EllipticCurve_from_j(2^256+1,minimal_twist=False)
sage: E.j_invariant() == 2^256+1
True
\end{verbatim}

Return a sorted list of all elliptic curves defined over \( \mathbb{Q} \) with good reduction outside the set \( S \) of primes.

INPUT:

\begin{itemize}
  \item \( S \) – list of primes (default: empty list)
  \item \texttt{proof} – boolean (default True): the MW basis for auxiliary curves will be computed with this proof flag
  \item \texttt{verbose} – boolean (default False): if True, some details of the computation will be output
\end{itemize}

\textbf{Note:} Proof flag: The algorithm used requires determining all \( S \)-integral points on several auxiliary curves, which in turn requires the computation of their generators. This is not always possible (even in theory) using current knowledge.

The value of this flag is passed to the function which computes generators of various auxiliary elliptic curves, in order to find their \( S \)-integral points. Set to \texttt{False} if the default (\texttt{True}) causes warning messages, but note that you can then not rely on the set of curves returned being complete.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: EllipticCurves_with_good_reduction_outside_S([])
[]
sage: elist = EllipticCurves_with_good_reduction_outside_S([2])
sage: elist
[Elliptic Curve defined by \( y^2 = x^3 + 4*x \) over Rational Field,
\]
\end{verbatim}
Elliptic Curve defined by $y^2 = x^3 - x$ over Rational Field,
...
Elliptic Curve defined by $y^2 = x^3 - x^2 - 13x + 21$ over Rational Field.

```python
sage: len(elist)
24
sage: ', '.join(e.label() for e in elist)
'32a1, 32a2, 32a3, 32a4, 64a1, 64a2, 64a3, 64a4, 128a1, 128a2, 128b1, 128b2, 128c1, 128c2, 128d1, 128d2, 256a1, 256a2, 256b1, 256b2, 256c1, 256c2, 256d1, 256d2'
```

Without `Proof=False`, this example gives two warnings:

```python
sage: ellist = EllipticCurves_with_good_reduction_outside_S([11], proof=False) # long time
(14s on sage.math, 2011)
sage: len(ellist) # long time
12
sage: ', '.join(e.label() for e in ellist) # long time
'11a1, 11a2, 11a3, 121a1, 121a2, 121b1, 121b2, 121c1, 121c2, 121d1, 121d2, 121d3'

sage: ellist = EllipticCurves_with_good_reduction_outside_S([2, 3]) # long time
(26s on sage.math, 2011)
sage: len(ellist) # long time
752
sage: conds = sorted(set([e.conductor() for e in ellist])) # long time
sage: max(conds) # long time
62208
sage: [N.factor() for N in conds] # long time
[2^3*3,
 3^3,
 2^5,
 2^2*3^2,
 2^4*3,
 2*3^3,
 2^6,
 2^3*3^2,
 2^5*3,
 2^2*3^3,
 2^7,
 2^4*3^2,
 2*3^4,
 2^6*3,
 2^3*3^3,
 3^5,
 2^8,
 2^5*3^2,
 2^2*3^4,
 2^7*3,
 2^4*3^3,
 2*3^5,
 2^6*3^2,
 2^3*3^4,
 2^8*3,
 2^3*3^3,
 2^2*3^5,
 2^7*3^2,
 2^4*3^4,
 2^6*3^3,
 2^3*3^3,]
```

(continues on next page)
sage.schemes.elliptic_curves.constructor.are_projectively_equivalent(\( P, Q, \) base\_ring)

Test whether \( P \) and \( Q \) are projectively equivalent.

**INPUT:**
- \( P, Q \) – list/tuple of projective coordinates.
- base\_ring – the base ring.

**OUTPUT:**
Boolean.

**EXAMPLES:**
```python
sage: from sage.schemes.elliptic_curves.constructor import are_projectively_equivalent
sage: are_projectively_equivalent([0,1,2,3], [0,1,2,2], base_ring=QQ)
False
sage: are_projectively_equivalent([0,1,2,3], [0,2,4,6], base_ring=QQ)
True
```

sage.schemes.elliptic_curves.constructor.chord_and_tangent(\( F, P \))

Return the third point of intersection of a cubic with the tangent at one point.

**INPUT:**
- \( F \) – a homogeneous cubic in three variables with rational coefficients, as a polynomial ring element, defining a smooth plane cubic curve.
- \( P \) – a 3-tuple \((x, y, z)\) defining a projective point on the curve \( F = 0 \).

**OUTPUT:**
A point \( Q \) such that \( F(Q) = 0 \), namely the third point of intersection of the tangent at \( P \) with the curve \( F=0 \), so \( Q=P \) if and only if \( P \) is a flex.

**EXAMPLES:**
```python
sage: R.<x,y,z> = QQ[]
sage: from sage.schemes.elliptic_curves.constructor import chord_and_tangent
sage: F = x^3+y^3+60*z^3
sage: chord_and_tangent(F, [1,-1,0])
(-1 : 1 : 0)
sage: F = x^3+7*y^3+64*z^3
(continues on next page)
```
sage: p0 = [2,2,-1]
sage: p1 = chord_and_tangent(F, p0); p1
(5 : -3 : 1)
sage: p2 = chord_and_tangent(F, p1); p2
(-1265/314 : 183/314 : 1)

sage.schemes.elliptic_curves.constructor.coefficients_from_Weierstrass_polynomial(f)

Return the coefficients \([a_1, a_2, a_3, a_4, a_6]\) of a cubic in Weierstrass form.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import coefficients_from_Weierstrass_polynomial
sage: R.<w,z> = QQ[]
sage: coefficients_from_Weierstrass_polynomial(-w^2 + z^3 + 1)
[0, 0, 0, 0, 1]

sage.schemes.elliptic_curves.constructor.coefficients_from_j(j, minimal_twist=True)

Return Weierstrass coefficients \((a_1, a_2, a_3, a_4, a_6)\) for an elliptic curve with given j-invariant.

INPUT:
See `EllipticCurve_from_j()`.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import coefficients_from_j
sage: coefficients_from_j(0)
[0, 0, 1, 0, 0]
sage: coefficients_from_j(1728)
[0, 0, 0, -1, 0]
sage: coefficients_from_j(1)
[1, 0, 0, 36, 3455]

The `minimal_twist` parameter (ignored except over \(\mathbb{Q}\) and True by default) controls whether or not a minimal twist is computed:

sage: coefficients_from_j(100)
[0, 1, 0, 3392, 307888]
sage: coefficients_from_j(100, minimal_twist=False)
[0, 0, 0, 488400, -530076800]

sage.schemes.elliptic_curves.constructor.projective_point(p)

Return equivalent point with denominators removed

INPUT:

• \(P, Q\) – list/tuple of projective coordinates.

OUTPUT:

List of projective coordinates.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.constructor import projective_point
sage: projective_point([4/5, 6/5, 8/5])
[2, 3, 4]
sage: F = GF(11)
sage: projective_point([F(4), F(8), F(2)])
[4, 8, 2]

sage.schemes.elliptic_curves.constructor.tangent_at_smooth_point(C, P)
Return the tangent at the smooth point $P$ of projective curve $C$.

INPUT:

- $C$ – a projective plane curve.
- $P$ – a 3-tuple $(x, y, z)$ defining a projective point on $C$.

OUTPUT:

The linear form defining the tangent at $P$ to $C$.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: from sage.schemes.elliptic_curves.constructor import tangent_at_smooth_point
sage: C = Curve(x^3+y^3+60*z^3)
sage: tangent_at_smooth_point(C, [1,-1,0])
x + y
sage: K.<t> = FunctionField(QQ)
sage: R.<x,y,z> = K[]
sage: C = Curve(x^3+2*y^3+3*z^3)
sage: from sage.schemes.elliptic_curves.constructor import tangent_at_smooth_point
sage: tangent_at_smooth_point(C, [1,1,-1])
3*x + 6*y + 9*z
```

10.2 Construct elliptic curves as Jacobians

An elliptic curve is a genus one curve with a designated point. The Jacobian of a genus-one curve can be defined as the set of line bundles on the curve, and is isomorphic to the original genus-one curve. It is also an elliptic curve with the trivial line bundle as designated point. The utility of this construction is that we can construct elliptic curves without having to specify which point we take as the origin.

EXAMPLES:

```python
sage: R.<u,v,w> = QQ[]
sage: Jacobian(u^3+v^3+w^3)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
sage: Jacobian(u^4+v^4+w^2)
Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field
sage: C = Curve(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
sage: P2.<u,v,w> = ProjectiveSpace(2, QQ)
sage: C = P2.subscheme(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
```
One can also define Jacobians of varieties that are not genus-one curves. These are not implemented in this module, but we call the relevant functionality:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = x**5 + 1184*x**3 + 1846*x**2 + 956*x + 560
sage: C = HyperellipticCurve(f)
sage: Jacobian(C)
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + 1184*x^3 + 1846*x^2 + 956*x + 560
```

REFERENCES:
sage.schemes.elliptic_curves.jacobian.Jacobian(X, **kwds)
Return the Jacobian.

**INPUT:**
- `X` – polynomial, algebraic variety, or anything else that has a Jacobian elliptic curve.
- `kwds` – optional keyword arguments.

The input `X` can be one of the following:
- A polynomial, see `Jacobian_of_equation()` for details.
- A curve, see `Jacobian_of_curve()` for details.

**EXAMPLES:**

```python
sage: R.<u,v,w> = QQ[]
sage: Jacobian(u^3+v^3+w^3)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
sage: C = Curve(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
sage: P2.<u,v,w> = ProjectiveSpace(2, QQ)
sage: C = P2.subscheme(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
sage: Jacobian(C, morphism=True)
Scheme morphism:
 From: Closed subscheme of Projective Space of dimension 2 over Rational Field
 Defined on coordinates by sending (u : v : w) to
 (-u^4*v^4*w - u^4*v*w^4 - u*v^4*w^4 : 1/2*u^6*v^3 - 1/2*u^3*v^6 - 1/2*u^6*w^3 + 1/2*v^6*w^3 + 1/2*u^3*w^6 - 1/2*v^3*w^6 :
 u^3*v^3*w^3)
```

sage.schemes.elliptic_curves.jacobian.Jacobian_of_curve(curve, morphism=False)
Return the Jacobian of a genus-one curve

**INPUT:**
- `curve` – a one-dimensional algebraic variety of genus one.

**OUTPUT:**
Its Jacobian elliptic curve.

EXAMPLES:

```python
sage: R.<u,v,w> = QQ[]
sage: C = Curve(u^3+v^3+w^3)
sage: Jacobian(C)
Elliptic Curve defined by y^2 = x^3 - 27/4 over Rational Field
```

sage.schemes.elliptic_curves.jacobian.

Construct the Jacobian of a genus-one curve given by a polynomial.

INPUT:

- \( F \) – a polynomial defining a plane curve of genus one. May be homogeneous or inhomogeneous.
- \( \text{variables} \) – list of two or three variables or None (default). The inhomogeneous or homogeneous coordinates. By default, all variables in the polynomial are used.
- \( \text{curve} \) – the genus-one curve defined by \( \text{polynomial} \) or \# None (default). If specified, suitable morphism from the jacobian elliptic curve to the curve is returned.

OUTPUT:

An elliptic curve in short Weierstrass form isomorphic to the curve \( \text{polynomial}=0 \). If the optional argument \( \text{curve} \) is specified, a rational multicover from the Jacobian elliptic curve to the genus-one curve is returned.

EXAMPLES:

```python
sage: R.<a,b,c> = QQ[]
sage: f = a^3+b^3+60*c^3
sage: Jacobian(f)
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
sage: Jacobian(f.subs(c=1))
Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
```

If we specify the domain curve the birational covering is returned:

```python
sage: h = Jacobian(f, curve=Curve(f)); h
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by a^3 + b^3 + 60*c^3
To: Elliptic Curve defined by y^2 = x^3 - 24300 over Rational Field
Defn: Defined on coordinates by sending (a : b : c) to
(-216000*a^4*b^4*c - 12960000*a^4*b*c^4 - 12960000*a*b^4*c^4 : 108000*a^6*b^3 - 108000*a^3*b^6 - 6480000*a^6*c^3 + 6480000*b^6*c^3 +
\rightarrow 3888000000*a^3*c^6 - 3888000000*b^3*c^6 :
216000*a^3*b^3*c^3)
sage: h([1,-1,0])
(0 : 1 : 0)
```

Plugging in the polynomials defining \( h \) allows us to verify that it is indeed a rational morphism to the elliptic curve:

```python
sage: E = h.codomain()
sage: E.defining_polynomial()(h.defining_polynomials()).factor()
(2519424000000000) * c^3 * b^3 * a^3 * (a^3 + b^3 + 60*c^3) *
(a^9*b^6 + a^6*b^9 - 120*a^9*b^3*c^3 + 900*a^6*b^6*c^3 - 120*a^3*b^9*c^3 +
(continues on next page)```
By specifying the variables, we can also construct an elliptic curve over a polynomial ring:

```sage
R.<u,v,t> = QQ[]
sage: Jacobian(u^3+v^3+t, variables=[u,v])
Elliptic Curve defined by y^2 = x^3 + (-27/4*t^2) over Multivariate Polynomial Ring in u, v, t over Rational Field
```

10.3 Points on elliptic curves

The base class `EllipticCurvePoint_field`, derived from `AdditiveGroupElement`, provides support for points on elliptic curves defined over general fields. The derived classes `EllipticCurvePoint_number_field` and `EllipticCurvePoint_finite_field` provide further support for points on curves defined over number fields (including the rational field \(\mathbb{Q} \)) and over finite fields.

The class `EllipticCurvePoint`, which is based on `SchemeMorphism_point_projective_ring`, currently has little extra functionality.

EXAMPLES:

An example over \(\mathbb{Q} \):

```sage
sage: E = EllipticCurve('389a1')
sage: P = E(-1,1); P
(-1 : 1 : 1)
sage: Q = E(0,-1); Q
(0 : -1 : 1)
sage: P+Q
(4 : 8 : 1)
sage: P-Q
(1 : 0 : 1)
sage: 3*P-5*Q
(328/361 : -2800/6859 : 1)
```

An example over a number field:

```sage
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[1,0,0,0,-1])
sage: P = E(0,i); P
(0 : i : 1)
sage: P.order()
+Infinity
sage: 101*P-100*P==P
True
```

An example over a finite field:

```sage
sage: K.<a> = GF(101^3)
sage: E = EllipticCurve(K,[1,0,0,0,-1])
sage: P = E(40*a^2 + 69*a + 84 , 58*a^2 + 73*a + 45)
sage: P.order()
1032210
```

(continues on next page)
Arithmetic with a point over an extension of a finite field:

```python
sage: k.<a> = GF(5^2)
sage: E = EllipticCurve(k,[1,0]); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field in a of size 5^2
sage: P = E([a,2*a+4])
sage: 5*P
(2*a + 3 : 2*a : 1)
sage: P*5
(2*a + 3 : 2*a : 1)
sage: P + P + P + P + P
(2*a + 3 : 2*a : 1)
sage: F = Zmod(3)
sage: E = EllipticCurve(F,[1,0]); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 3
sage: P = E([2,1])
sage: import sys
sage: n = sys.maxsize
sage: P*(n+1)-P*n == P
True
```

Arithmetic over \(\mathbb{Z}/N\mathbb{Z} \) with composite \(N \) is supported. When an operation tries to invert a non-invertible element, a \(\text{ZeroDivisionError} \) is raised and a factorization of the modulus appears in the error message:

```python
sage: N = 1715761513
sage: E = EllipticCurve(Integers(N),[3,-13])
sage: P = E(2,1)
sage: LCM([2..60])*P
Traceback (most recent call last):
  ...  ZeroDivisionError: Inverse of 1520944668 does not exist (characteristic = 1715761513, → = 26927*63719)
```

AUTHORS:

- William Stein (2005) – Initial version
- Robert Bradshaw et al.
- John Cremona (Feb 2008) – Point counting and group structure for non-prime fields, Frobenius endomorphism and order, elliptic logs
- John Cremona (Aug 2008) – Introduced \texttt{EllipticCurvePoint_number_field} class
- Tobias Nagel, Michael Mardaus, John Cremona (Dec 2008) – \(p \)-adic elliptic logarithm over \(\mathbb{Q} \)
- David Hansen (Jan 2009) – Added \texttt{weil_pairing} function to \texttt{EllipticCurvePoint_finite_field} class
- Mariah Lenox (March 2011) – Added \texttt{tate_pairing} and \texttt{ate_pairing} functions to \texttt{EllipticCurvePoint_finite_field} class

```python
class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint(X, v, check=True):
    Bases: sage.schemes.projective.projective_point.SchemeMorphism_point_projective_ring
    A point on an elliptic curve.
```
class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field(curve, v, check=True)

Bases: sage.schemes.projective.projective_point.SchemeMorphism_point_abelian_variety_field

A point on an elliptic curve over a field. The point has coordinates in the base field.

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: E([0,0])
(0 : 0 : 1)
sage: E(0,0) # brackets are optional
(0 : 0 : 1)
sage: E([GF(5)(0), 0]) # entries are coerced
(0 : 0 : 1)
sage: E(0.000, 0)
(0 : 0 : 1)
sage: E(1,0,0)
Traceback (most recent call last):
  ...TypeError: Coordinates [1, 0, 0] do not define a point on Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

```python
sage: E = EllipticCurve([0,0,1,-1,0])
sage: S = E(QQ); S
Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 - x over
Rational Field
sage: K.<i>=NumberField(x^2+1)
sage: E=EllipticCurve(K,[0,1,0,-160,308])
sage: P=E(26,-120)
sage: Q=E(2+12*i,-36+48*i)
sage: P.order() == Q.order() == 4 # long time (3s)
True
sage: 2*P==2*Q
False
```

```python
sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,0,t^2])
sage: P=E(0,t)
sage: P,2*P,3*P
((0 : t : 1), (0 : -t : 1), (0 : 1 : 0))
```

additive_order()

Return the order of this point on the elliptic curve.

If the point is zero, returns 1, otherwise raise a NotImplementedError.

For curves over number fields and finite fields, see below.

Note: additive_order() is a synonym for order()

EXAMPLES:

10.3. Points on elliptic curves

125
```python
sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P=E(t,0)
sage: P.order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over general fields.
sage: E(0).additive_order()
1
sage: E(0).order() == 1
True
```

```python
te_pairing(Q, n, k, t, q=None)

Return ate pairing of \( n \)-torsion points \( P = \text{self} \) and \( Q \).

Also known as the \( n \)-th modified ate pairing. \( P \) is \( GF(q) \)-rational, and \( Q \) must be an element of \( \text{Ker}(\pi - p) \), where \( \pi \) is the \( q \)-frobenius map (and hence \( Q \) is \( GF(q^k) \)-rational).

**INPUT:**
- \( P=\text{self} \) – a point of order \( n \), in \( \text{ker}(\pi - 1) \), where \( \pi \) is the \( q \)-Frobenius map (e.g., \( P \) is \( q - \text{rational} \)).
- \( Q \) – a point of order \( n \) in \( \text{ker}(\pi - q) \)
- \( n \) – the order of \( P \) and \( Q \).
- \( k \) – the embedding degree.
- \( t \) – the trace of Frobenius of the curve over \( GF(q) \).
- \( q \) – (default:None) the size of base field (the “big” field is \( GF(q^k) \)). \( q \) needs to be set only if its value cannot be deduced.

**OUTPUT:**

FiniteFieldElement in \( GF(q^k) \) – the ate pairing of \( P \) and \( Q \).

**EXAMPLES:**

An example with embedding degree 6:

```python
sage: p = 7549; A = 0; B = 1; n = 157; k = 6; t = 14
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF(p^k, modulus=x^k+2)
sage: EK = E.base_extend(K)
sage: P = EK(3050, 5371); Q = EK(6908*a^4, 3231*a^3)
sage: P.ate_pairing(Q, n, k, t)
6708*a^5 + 4230*a^4 + 4350*a^3 + 2064*a^2 + 4022*a + 6733
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True
```

Another example with embedding degree 7 and positive trace:

```python
sage: p = 2213; A = 1; B = 49; n = 1093; k = 7; t = 28
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF(p^k, modulus=x^k+2)
sage: EK = E.base_extend(K)
```

(continues on next page)
sage: P = EK(1583, 1734)
sage: Qx = 1729*a^6 + 1767*a^5 + 245*a^4 + 980*a^3 + 1592*a^2 + 1883*a + 722
sage: Qy = 1299*a^6 + 1877*a^5 + 1030*a^4 + 1513*a^3 + 1457*a^2 + 309*a + 1636
sage: Q = EK(Qx, Qy)
sage: P.ate_pairing(Q, n, k, t)
1665*a^6 + 1538*a^5 + 1979*a^4 + 239*a^3 + 2134*a^2 + 2151*a + 654
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True

Another example with embedding degree 7 and negative trace:

sage: p = 2017; A = 1; B = 30; n = 29; k = 7; t = -70
sage: F = GF(p); E = EllipticCurve(F, [A, B])
sage: R.<x> = F[]; K.<a> = GF(p^k, modulus=x^k+2)
sage: EK = E.base_extend(K)
sage: P = EK(369, 716)
sage: Qx = 1226*a^6 + 1778*a^5 + 660*a^4 + 1791*a^3 + 1750*a^2 + 867*a + 770
sage: Qy = 1764*a^6 + 198*a^5 + 1206*a^4 + 406*a^3 + 1200*a^2 + 273*a + 1712
sage: Q = EK(Qx, Qy)
sage: P.ate_pairing(Q, n, k, t)
1794*a^6 + 1161*a^5 + 576*a^4 + 488*a^3 + 1950*a^2 + 1905*a + 1315
sage: s = Integer(randrange(1, n))
sage: (s*P).ate_pairing(Q, n, k, t) == P.ate_pairing(s*Q, n, k, t)
True
sage: P.ate_pairing(s*Q, n, k, t) == P.ate_pairing(Q, n, k, t)^s
True

Using the same data, we show that the ate pairing is a power of the Tate pairing (see [HSV] end of section 3.1):

sage: c = (k*p^(k-1)).mod(n); T = t - 1
sage: N = gcd(T^k - 1, p^k - 1)
sage: s = Integer(N/n)
sage: L = Integer((T^k - 1)/N)
sage: M = (L*s*c.inverse_mod(n)).mod(n)
sage: P.ate_pairing(Q, n, k, t) == Q.tate_pairing(P, n, k)^M
True

An example where we have to pass the base field size (and we again have agreement with the Tate pairing). Note that though \( P \) is not \( F \)-rational, (it is the homomorphic image of an \( F \)-rational point) it is nonetheless in \( \ker(\pi - 1) \), and so is a legitimate input:

sage: q = 2^5; F.<a>=GF(q)
sage: n = 41; k = 4; t = -8
sage: E=EllipticCurve(F,[0,0,1,1,1])
sage: P = E(a^4 + 1, a^3)
sage: Fx.<b>=GF(q^k)
sage: phi=Hom(F,Fx)(F.gen().minpoly().roots(Fx)[0][0])
sage: Px=Ex(phi(P.xy())[0],phi(P.xy())[1])
sage: Qx = Ex(b^19+b^18+b^16+b^12+b^10+b^9+b^8+b^5+b^3+1, b^18+b^13+b^10+b^8+b^5+b^4+b^3+b)
sage: Qx = Ex(Qx[0]^q, Qx[1]^q) - Qx  # ensure Qx is in ker(pi - q)

(continues on next page)
It is an error if $Q$ is not in the kernel of $\pi - p$, where $\pi$ is the Frobenius automorphism:

```
sage: p = 29; A = 1; B = 0; n = 5; k = 2; t = 10
sage: F = GF(p); R.<x> = F[]
sage: E = EllipticCurve(F, [A, B]);
sage: K.<a> = GF(p^2, modulus=x^2+2); EK = E.base_extend(K)
sage: P = EK(13, 8); Q = EK(13, 21)
sage: P.ate_pairing(Q, n, k, t)
Traceback (most recent call last):
 ... ValueError: Point (13 : 21 : 1) not in Ker(pi - q)
```

It is also an error if $P$ is not in the kernel of $\pi - 1$:

```
sage: p = 29; A = 1; B = 0; n = 5; k = 2; t = 10
sage: F = GF(p); R.<x> = F[]
sage: E = EllipticCurve(F, [A, B]);
sage: K.<a> = GF(p^2, modulus=x^2+2); EK = E.base_extend(K)
sage: P = EK(14, 10*a); Q = EK(13, 21)
sage: P.ate_pairing(Q, n, k, t)
Traceback (most recent call last):
 ... ValueError: This point (14 : 10*a : 1) is not in Ker(pi - 1)
```

NOTES:
First defined in the paper of [HSV], the ate pairing can be computationally effective in those cases when the trace of the curve over the base field is significantly smaller than the expected value. This implementation is simply Miller’s algorithm followed by a naive exponentiation, and makes no claims towards efficiency.

REFERENCES:

AUTHORS:
• Mariah Lenox (2011-03-08)

`curve()`
Return the curve that this point is on.
**EXAMPLES:**

```python
sage: E = EllipticCurve('389a')
sage: P = E([-1,1])
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
```

**division_points** *(m, poly_only=False)*

Return a list of all points $Q$ such that $mQ = P$ where $P = self$.

Only points on the elliptic curve containing self and defined over the base field are included.

**INPUT:**

- $m$ – a positive integer
- `poly_only` – bool (default: False); if True return polynomial whose roots give all possible $x$-coordinates of $m$-th roots of self.

**OUTPUT:**

(list) – a (possibly empty) list of solutions $Q$ to $mQ = P$, where $P = self$.

**EXAMPLES:**

We find the five 5-torsion points on an elliptic curve:

```python
sage: E = EllipticCurve('11a'); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: P = E(0); P
(0 : 1 : 0)
sage: P.division_points(5)
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]
```

Note above that 0 is included since $[5]*0 = 0$.

We create a curve of rank 1 with no torsion and do a consistency check:

```python
sage: E = EllipticCurve('11a').quadratic_twist(-7)
sage: Q = E([44,-270])
sage: (4*Q).division_points(4)
[(44 : -270 : 1)]
```

We create a curve over a non-prime finite field with group of order 18:

```python
sage: k.<a> = GF(25)
sage: E = EllipticCurve(k, [1,2+a,3,4*a,2])
sage: P = E([3,3*a+4])
```

We find the 1-division points as a consistency check – there is just one, of course:

```python
sage: P.division_points(1)
[(3 : 3*a + 4 : 1)]
```

The point $P$ has order coprime to 2 but divisible by 3, so:
sage: P.division_points(2)
[(2*a + 1 : 3*a + 4 : 1), (3*a + 1 : a : 1)]

We check that each of the 2-division points works as claimed:

sage: [2*Q for Q in P.division_points(2)]
[(3 : 3*a + 4 : 1), (3 : 3*a + 4 : 1)]

Some other checks:

sage: P.division_points(3)
[]
sage: P.division_points(4)
[((0 : 3*a + 2 : 1), (1 : 0 : 1))

sage: P.division_points(5)
[(1 : 1 : 1)]

An example over a number field (see trac ticket #3383):

sage: E = EllipticCurve('19a1')
sage: K.<t> = NumberField(x^9-3*x^8-4*x^7+16*x^6-3*x^5-21*x^4+5*x^3+7*x^2-7*x+1)
sage: EK = E.base_extend(K)
sage: E(0).division_points(3)
[(0 : 1 : 0), (5 : -10 : 1), (5 : 9 : 1)]
sage: EK(0).division_points(3)
[(0 : 1 : 0), (5 : 9 : 1), (5 : -10 : 1)]
sage: E(0).division_points(9)
[(0 : 1 : 0), (5 : -10 : 1), (5 : 9 : 1)]
sage: EK(0).division_points(9)
[(0 : 1 : 0), (5 : 9 : 1), (5 : -10 : 1), (-150/121*t^8 + 414/121*t^7 + 1481/242*t^6 - 2382/121*t^5 - 103/242*t^4 + 629/22*t^3 - 367/484*t^2 - 1307/121*t + 35/484 : 1), (-1383/484*t^8 + 970/121*t^7 + 3159/242*t^6 - 5211/121*t^5 + 37/484*t^4 + 654/11*t^3 - 909/484*t^2 - 4831/242*t + 6791/484 : -927/121*t^8 + 5209/242*t^7 - 5020/11*t^6 + 27975/242*t^5 - 1147/242*t^4 + 1729/11*t^3 + 1566/121*t^2 + 12873/242*t - 10871/242 : (-1383/484*t^8 + 970/121*t^7 + 3159/242*t^6 - 5211/121*t^5 + 37/484*t^4 + 654/11*t^3 - 909/484*t^2 - 4831/242*t + 6791/484 : -927/121*t^8 + 5209/242*t^7 - 5020/11*t^6 + 27975/242*t^5 - 1147/242*t^4 + 1729/11*t^3 + 1566/121*t^2 + 12873/242*t - 10871/242 : 1), (-4793/484*t^8 + 6791/242*t^7 + 10727/242*t^6 - 8187/242*t^5 - 34977/242*t^4 + 122068/242*t^3 - 30837/484*t^2 - 21789/121*t^3 - 7311/484*t^2 - 17239/242*t + 6267/121 : -10633/484*t^8 + 29437/22*t^7 + 39725/484*t^6 + 55428/121*t - 176909/484 : 1], (-4793/484*t^8 + 6791/242*t^7 + 10727/242*t^6 - 8187/242*t^5 - 34977/242*t^4 + 122068/242*t^3 - 30837/484*t^2 - 21789/121*t^3 - 7311/484*t^2 - 17239/242*t + 6267/121 : -10633/484*t^8 + 29437/22*t^7 + 39725/484*t^6 + 55428/121*t - 176909/484 : 1)]

has_finite_order()
Return True if this point has finite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is NotImplemented unless self.is_zero().

EXAMPLES:
sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P = E(0)
sage: P.has_finite_order()
True
sage: P=E(t,0)
sage: P.has_finite_order()
Traceback (most recent call last):
  ...  
NotImplementedError: Computation of order of a point not implemented over general fields.
sage: (2*P).is_zero()
True

**has_infinite_order()**

Return True if this point has infinite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is NotImplemented unless self.is_zero().

**EXAMPLES:**

```
sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P = E(0)
sage: P.has_infinite_order()
False
sage: P=E(t,0)
sage: P.has_infinite_order()
Traceback (most recent call last):
 ...
NotImplementedError: Computation of order of a point not implemented over general fields.
sage: (2*P).is_zero()
True
```

**is_divisible_by**(m)

Return True if there exists a point Q defined over the same field as self such that mQ == self.

**INPUT:**

• m – a positive integer.

**OUTPUT:**

(bool) – True if there is a solution, else False.

**Warning:** This function usually triggers the computation of the m-th division polynomial of the associated elliptic curve, which will be expensive if m is large, though it will be cached for subsequent calls with the same m.

**EXAMPLES:**

```
sage: E = EllipticCurve('389a')
sage: Q = 5*E(0,0); Q
(-2739/1444 : -77033/54872 : 1)
sage: Q.is_divisible_by(4)
False
```

(continues on next page)
A finite field example:

```python
sage: E = EllipticCurve(GF(101),[23,34])
sage: E.cardinality().factor()
2 * 53
sage: Set([T.order() for T in E.points()])
{1, 106, 2, 53}
sage: len([T for T in E.points() if T.is_divisible_by(2)])
53
sage: len([T for T in E.points() if T.is_divisible_by(3)])
106
```

**is_finite_order()**

Return `True` if this point has finite additive order as an element of the group of points on this curve.

For fields other than number fields and finite fields, this is `NotImplemented` unless `self.is_zero()`.

**EXAMPLES:**

```python
sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P = E(t,0)
sage: P.has_finite_order()
True
sage: P=E(t,0)
sage: P.has_finite_order()
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over general fields.
```

**order()**

Return the order of this point on the elliptic curve.

If the point is zero, returns 1, otherwise raise a `NotImplementedError`.

For curves over number fields and finite fields, see below.

**Note:** `additive_order()` is a synonym for `order()`

**EXAMPLES:**

```python
sage: K.<t>=FractionField(PolynomialRing(QQ,'t'))
sage: E=EllipticCurve([0,0,0,-t^2,0])
sage: P=E(t,0)
Traceback (most recent call last):
...
NotImplementedError: Computation of order of a point not implemented over general fields.
```

(continues on next page)
plot(**args)
Plot this point on an elliptic curve.

INPUT:

• **args – all arguments get passed directly onto the point plotting function.

EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: P = E([-1,1])
sage: P.plot(pointsize=30, rgbcolor=(1,0,0))
```

Return the scheme of this point, i.e., the curve it is on. This is synonymous with \texttt{curve()} which is perhaps more intuitive.

EXAMPLES:

```
sage: E=EllipticCurve(QQ,[1,1])
sage: P=E(0,1)
sage: P.scheme()
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
```

```
sage: K.<a>=NumberField(x^2-3,'a')
sage: P=E.base_extend(K)(1,a)
sage: P.scheme()
Elliptic Curve defined by y^2 = x^3 + x + 1 over Number Field in a with defining polynomial x^2 - 3
```

set_order(value)
Set the value of self._order to value.

Use this when you know a priori the order of this point to avoid a potentially expensive order calculation.

INPUT:

• value - positive Integer

OUTPUT:

None

EXAMPLES:

This example illustrates basic usage.

```
sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: G = E(5, 0)
sage: G.set_order(2)
sage: 2*G
(0 : 1 : 0)
```

We now give a more interesting case, the NIST-P521 curve. Its order is too big to calculate with SAGE, and takes a long time using other packages, so it is very useful here.
It is an error to pass a value equal to 0:

```python
sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: G = E.random_point()
sage: G.set_order(0)
Traceback (most recent call last):
 ... ValueError: Value 0 illegal for point order
sage: G.set_order(1000)
Traceback (most recent call last):
 ... ValueError: Value 1000 illegal: outside max Hasse bound
```

It is also very likely an error to pass a value which is not the actual order of this point. How unlikely is determined by the factorization of the actual order, and the actual group structure:

```python
sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: G = E(5, 0) # G has order 2
sage: G.set_order(11)
Traceback (most recent call last):
 ... ValueError: Value 11 illegal: 11 * (5 : 0 : 1) is not the identity
```

However, set_order can be fooled, though it’s not likely in “real cases of interest”. For instance, the order can be set to a multiple the actual order:

```python
sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: G = E(5, 0) # G has order 2
sage: G.set_order(8)
sage: G.order()
8
```

AUTHORS:

- Mariah Lenox (2011-02-16)

tate_pairing(Q, n, k, q=None)

Return Tate pairing of n-torsion point \( P = self \) and point \( Q \).

The value returned is \( f_{n,P}(Q) \) where \( f_{n,P} \) is a function with divisor \( n[P] - n[O] \). This is also known as the “modified Tate pairing”. It is a well-defined bilinear map.

INPUT:
• $P = \text{self} = \text{Elliptic curve point having order } n$
• $Q = \text{Elliptic curve point on same curve as } P \text{ (can be any order)}$
• $n = \text{positive integer: order of } P$
• $k = \text{positive integer: embedding degree}$
• $q = \text{positive integer: size of base field (the “big” field is } GF(q^k). q \text{ needs to be set only if its value cannot be deduced.}$

OUTPUT:

An $n$'th root of unity in the base field self.curve().base_field()

EXAMPLES:

A simple example, pairing a point with itself, and pairing a point with another rational point:

```
sage: p = 103; A = 1; B = 18; E = EllipticCurve(GF(p), [A, B])
sage: P = E(33, 91); n = P.order(); n
19
sage: k = GF(n)(p).multiplicative_order(); k
6
sage: P.tate_pairing(P, n, k)
1
sage: Q = E(87, 51)
sage: P.tate_pairing(Q, n, k)
1
sage: set_random_seed(35)
sage: P.tate_pairing(P, n, k)
1
```

We now let $Q$ be a point on the same curve as above, but defined over the pairing extension field, and we also demonstrate the bilinearity of the pairing:

```
sage: K.<a> = GF(p^k)
sage: EK = E.base_extend(K); P = EK(P)
sage: Qx = 69*a^5 + 96*a^4 + 22*a^3 + 86*a^2 + 6*a + 35
sage: Qy = 34*a^5 + 24*a^4 + 16*a^3 + 41*a^2 + 4*a + 40
sage: Q = EK(Qx, Qy);
 # multiply by cofactor so Q has order n
 h = 551269674; Q = h*Q
sage: P = EK(P); P.tate_pairing(Q, n, k)
24*a^5 + 34*a^4 + 3*a^3 + 69*a^2 + 86*a + 45
sage: s = Integer(randrange(1,n))
sage: ans1 = (s*P).tate_pairing(Q, n, k)
sage: ans2 = P.tate_pairing(s*Q, n, k)
sage: ans3 = P.tate_pairing(Q, n, k)^s
sage: ans1 == ans2 == ans3
True
sage: (ans1 != 1) and (ans1^n == 1)
True
```

Here is an example of using the Tate pairing to compute the Weil pairing (using the same data as above):

```
sage: e = Integer((p^k-1)/n); e
62844857712
sage: P.weil_pairing(Q, n)^e
94*a^5 + 99*a^4 + 29*a^3 + 45*a^2 + 57*a + 34
sage: P.tate_pairing(Q, n, k) == P._miller_(Q, n)^e
1
```

(continues on next page)
True

\texttt{sage:} Q.tate_pairing(P, n, k) == Q._miller_(P, n)^e
True
\texttt{sage:} P.tate_pairing(Q, n, k)/Q.tate_pairing(P, n, k)
94*a^5 + 99*a^4 + 29*a^3 + 45*a^2 + 57*a + 34

An example where we have to pass the base field size (and we again have agreement with the Weil pairing):

\texttt{sage:} F.<a>=GF(2^5)
\texttt{sage:} E=EllipticCurve(F,[0,0,1,1,1])
\texttt{sage:} P = E(a^4 + 1, a^3)
\texttt{sage:} Fx.<b>=GF(2^(4*5))
\texttt{sage:} Ex=EllipticCurve(Fx,[0,0,1,1,1])
\texttt{sage:} phi=Hom(F,Fx)(F.gen().minpoly().roots(Fx)[0][0])
\texttt{sage:} Px=Ex(phi(P.xy()[0]),phi(P.xy()[1]))
\texttt{sage:} Qx = Ex(b^19+b^18+b^16+b^12+b^10+b^8+b^5+b^3+1, b^18+b^13+b^10+b^8+b^5+b^4+b^3+b)
\texttt{sage:} Px.tate_pairing(Qx, n=41, k=4)
Traceback (most recent call last):
  ...
ValueError: Unexpected field degree: set keyword argument q equal to the size of the base field (big field is GF(q^4)).
\texttt{sage:} num = Px.tate_pairing(Qx, n=41, k=4, q=32); num
b^19 + b^14 + b^13 + b^12 + b^6 + b^4 + b^3
\texttt{sage:} den = Qx.tate_pairing(Px, n=41, k=4, q=32); den
b^19 + b^17 + b^16 + b^15 + b^14 + b^10 + b^6 + b^2 + 1
\texttt{sage:} e = Integer((32^4-1)/41); e
25575
\texttt{sage:} Px.weil_pairing(Qx, 41)^e == num/den
True

NOTES:

This function uses Miller’s algorithm, followed by a naive exponentiation. It does not do anything fancy. In the case that there is an issue with \(Q\) being on one of the lines generated in the \(r*P\) calculation, \(Q\) is offset by a random point \(R\) and \(P.tate_pairing(Q+R,n,k)/P.tate_pairing(R,n,k)\) is returned.

AUTHORS:

• Mariah Lenox (2011-03-07)

\textbf{weil\_pairing} \((Q, n)\)

Compute the Weil pairing of self and \(Q\) using Miller’s algorithm.

\textbf{INPUT:}

• \(Q\) – a point on self.curve().
• \(n\) – an integer \(nP = nQ = (0 : 1 : 0)\) where \(P = \text{self}.\)

\textbf{OUTPUT:}

An \(n\)'th root of unity in the base field self.curve().base_field()
sage: Ex=EllipticCurve(Fx,[0,0,1,1,1])
sage: phi=Hom(F,Fx)(F.gen().minpoly().roots(Fx)[0][0])
sage: Px=Ex(phi(P.xy()[0]),phi(P.xy()[1]))
sage: O = Ex(0)
sage: Qx = Ex(b^19 + b^18 + b^16 + b^12 + b^10 + b^9 + b^8 + b^5 + b^3 + 1, b^→18 + b^13 + b^10 + b^8 + b^5 + b^4 + b^3 + b)
sage: Px.weil_pairing(Qx,41) == b^19 + b^15 + b^9 + b^8 + b^6 + b^4 + b^3 + b^→2 + 1
True
sage: Px.weil_pairing(17*Px,41) == Fx(1)
True
sage: Px.weil_pairing(O,41) == Fx(1)
True

An error is raised if either point is not n-torsion:

```
sage: Px.weil_pairing(O,40)
Traceback (most recent call last):
...
ValueError: points must both be n-torsion
```

A larger example (see trac ticket #4964):

```
sage: P,Q = EllipticCurve(GF(19^4,'a'),[-1,0]).gens()
sage: P.order(), Q.order()
(360, 360)
sage: z = P.weil_pairing(Q,360)
sage: z.multiplicative_order()
360
```

An example over a number field:

```
sage: P,Q = EllipticCurve('11a1').change_ring(CyclotomicField(5)).torsion_→subgroup().gens() # long time (10s)
sage: P,Q = (P.element(), Q.element()) # long time
sage: (P.order(),Q.order()) # long time
(5, 5)
sage: P.weil_pairing(Q,5) # long time
zeta5^2
sage: Q.weil_pairing(P,5) # long time
zeta5^3
```

ALGORITHM:

Implemented using Proposition 8 in [Mil04]. The value 1 is returned for linearly dependent input points. This condition is caught via a DivisionByZeroError, since the use of a discrete logarithm test for linear dependence, is much too slow for large n.

REFERENCES:

AUTHOR:

- David Hansen (2009-01-25)

```
xy()
```

Return the \( x \) and \( y \) coordinates of this point, as a 2-tuple. If this is the point at infinity a ZeroDivisionError is raised.

EXAMPLES:
sage: E = EllipticCurve('389a')
sage: P = E([-1,1])
sage: P.xy()
(-1, 1)
sage: Q = E(0); Q
(0 : 1 : 0)
sage: Q.xy()
Traceback (most recent call last):
  ...  
ZeroDivisionError: rational division by zero

class sage.schemes.elliptic_curves.ell_point.EllipticCurvePointFiniteField(curve, v, check=True)

Bases: sage.schemes.elliptic_curves.ell_point.EllipticCurvePointField

Class for elliptic curve points over finite fields.

additive_order()

Return the order of this point on the elliptic curve.

ALGORITHM: Use PARI function ellorder().

Note: additive_order() is a synonym for order()

EXAMPLES:

sage: k.<a> = GF(5^5)
sage: E = EllipticCurve(k,[2,4]); E
Elliptic Curve defined by y^2 = x^3 + 2*x + 4 over Finite Field in a of size 5^5
sage: P = E(3*a^4 + 3*a, 2*a + 1)
sage: P.order()
3227
sage: Q = E(0,2)
sage: Q.order()
7
sage: Q.additive_order()
7

sage: p=next_prime(2^150)
sage: E=EllipticCurve(GF(p),[1,1])
sage: P=E(831623307675610677632782670796608848711856078, 
    ...4229578604287336670657329253358638217232964)
sage: P.order()
1427247692705959981058262545272474300628281448
sage: P.order() == E.cardinality()
True

The next example has \( j(E) = 0 \):

sage: p = 33554501
sage: F.<u> = GF(p^2)
sage: E = EllipticCurve(F,[0,1])
sage: E.j_invariant()
0

(continues on next page)
Similarly when \( j(E) = 1728 \):

```
sage: p = 33554433
sage: F.<u> = GF(p^2)
sage: E = EllipticCurve(F,[1,0])
sage: E.j_invariant()
1728
sage: P = E.random_point()
sage: P.order() # random
46912611635760
```

\[ \text{discrete_log} \left( Q, \text{ord} = \text{None} \right) \]

Returns discrete log of \( Q \) with respect to \( P = \text{self} \).

**INPUT:**

- \( Q \) (point) – another point on the same curve as \( \text{self} \).
- \( \text{ord} \) (integer or \( \text{None} \) (default)) – the order of \( \text{self} \).

**OUTPUT:**

(integer) – The discrete log of \( Q \) with respect to \( P \), which is an integer \( m \) with \( 0 \leq m < o(P) \) such that \( mP = Q \), if one exists. A \text{ValueError} is raised if there is no solution.

**Note:** The order of \( \text{self} \) is computed if not supplied.

**AUTHOR:** John Cremona. Adapted to use generic functions 2008-04-05.

**EXAMPLES:**

```
sage: F = GF(3^6, 'a')
sage: a = F.gen()
sage: E = EllipticCurve([0,1,1,a,a])
sage: E.cardinality()
762
sage: A = E.abelian_group()
sage: P = A.gen(0).element()
sage: Q = 400*P
sage: P.discrete_log(Q)
400
```

\[ \text{has_finite_order} \] 

Return \text{True} if this point has finite additive order as an element of the group of points on this curve.

Since the base field is finite, the answer will always be \text{True}.

**EXAMPLES:**

```
sage: E = EllipticCurve(GF(7), [1,3])
sage: P = E.points()[3]
```

(continues on next page)
sage: P.has_finite_order()
True

**order()**

Return the order of this point on the elliptic curve.

**ALGORITHM:** Use PARI function `ellorder()`.

**Note:** `additive_order()` is a synonym for `order()`

**EXAMPLES:**

```python
sage: k.<a> = GF(5^5)
sage: E = EllipticCurve(k,[2,4]); E
Elliptic Curve defined by y^2 = x^3 + 2*x + 4 over Finite Field in a of size 5^5
sage: P = E(3*a^4 + 3*a , 2*a + 1)
sage: P.order()
3227
sage: Q = E(0,2)
sage: Q.order()
7
sage: Q.additive_order()
7
```

```python
sage: p=next_prime(2^150)
sage: E=EllipticCurve(GF(p),[1,1])
sage: P=E(831623307675610677632782670796608848711856078,
4229578604287336670657329253358638217232964)
sage: P.order()
1427247692705959881058262545272474300628281448
sage: P.order() == E.cardinality()
True
```

The next example has \( j(E) = 0 \):

```python
sage: p = 33554501
sage: F.<u> = GF(p^2)
sage: E = EllipticCurve(F,[0,1])
sage: E.j_invariant()
0
sage: P = E.random_point()
sage: P.order() # random
16777251
```

Similarly when \( j(E) = 1728 \):

```python
sage: p = 33554473
sage: F.<u> = GF(p^2)
sage: E = EllipticCurve(F,[1,0])
sage: E.j_invariant()
1728
sage: P = E.random_point()
sage: P.order() # random
46912611635760
```
class sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field(curve, v, check=True)

Bases: sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field

A point on an elliptic curve over a number field.

Most of the functionality is derived from the parent class EllipticCurvePoint_field. In addition we have support for orders, heights, reduction modulo primes, and elliptic logarithms.

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: E([0,0])
(0 : 0 : 1)
sage: E(0,0) # brackets are optional
(0 : 0 : 1)
sage: E([GF(5)(0), 0]) # entries are coerced
(0 : 0 : 1)
sage: E(0.000, 0)
(0 : 0 : 1)
sage: E(1,0,0)
Traceback (most recent call last):
...
TypeError: Coordinates [1, 0, 0] do not define a point on Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

```
sage: E = EllipticCurve([0,0,1,-1,0])
sage: S = E(QQ); S
Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

```
additive_order()

Return the order of this point on the elliptic curve.

If the point has infinite order, returns +Infinity. For curves defined over \(\mathbb{Q} \), we call PARI; over other number fields we implement the function here.

Note: additive_order() is a synonym for order()
```

EXAMPLES:

```
sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.order()
+Infinity
```

```
sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.order()
2
sage: P.additive_order()
2
```
archimedean_local_height \( (v=None, \text{prec}=\text{None}, \text{weighted}=\text{False}) \)

Compute the local height of self at the archimedean place \( v \).

**INPUT:**

- **self** – a point on an elliptic curve over a number field \( K \).
- **v** – a real or complex embedding of \( K \), or None (default). If \( v \) is a real or complex embedding, return the local height of self at \( v \). If \( v \) is None, return the total archimedean contribution to the global height.
- **prec** – integer, or None (default). The precision of the computation. If None, the precision is deduced from \( v \).
- **weighted** – boolean. If False (default), the height is normalised to be invariant under extension of \( K \). If True, return this normalised height multiplied by the local degree if \( v \) is a single place, or by the degree of \( K \) if \( v \) is None.

**OUTPUT:**

A real number. The normalisation is twice that in Silverman’s paper [Sil1988]. Note that this local height depends on the model of the curve.

**ALGORITHM:**

See [Sil1988], Section 4.

**EXAMPLES:**

Examples 1, 2, and 3 from [Sil1988]:

```python
sage: K.<a> = QuadraticField(-2)
sage: E = EllipticCurve(K, [0,-1,1,0,0]); E
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 over Number Field in a
˓→ with defining polynomial x^2 + 2
sage: P = E.lift_x(2+a); P
(a + 2 : 2*a + 1 : 1)
sage: P.archimedean_local_height(K.places(prec=170)[0]) / 2
0.45754773287523276736210741423654346576029814695

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0]); E
Elliptic Curve defined by y^2 + 4*y = x^3 + 6*i*x over Number Field in i with
˓→ defining polynomial x^2 + 1
sage: P = E((0,0))
sage: P.archimedean_local_height(K.places()[0]) / 2
0.510184995162373
sage: Q = E.lift_x(-9/4); Q
(-9/4 : -27/8*i : 1)
sage: Q.archimedean_local_height(K.places()[0]) / 2
0.654445619529600
```

An example over the rational numbers:

```python
sage: E = EllipticCurve([0, 0, 0, -36, 0])
sage: P = E([-3, 0])
sage: P.archimedean_local_height()
1.98723816350773
```

Local heights of torsion points can be non-zero (unlike the global height):
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, K(1), 0])
sage: P = E(i, 0)
sage: P.archimedean_local_height()
0.346573590279973

elliptic_logarithm(\text{embedding}=\text{None}, \text{precision}=100, \text{algorithm}=\text{‘pari’})

Return the elliptic logarithm of this elliptic curve point.

An embedding of the base field into \( \mathbb{R} \) or \( \mathbb{C} \) (with arbitrary precision) may be given; otherwise the first real embedding is used (with the specified precision) if any, else the first complex embedding.

INPUT:

• embedding: an embedding of the base field into \( \mathbb{R} \) or \( \mathbb{C} \)

• precision: a positive integer (default 100) setting the number of bits of precision for the computation

• algorithm: either ‘pari’ (default for real embeddings) to use PARI’s \text{ellpointtoz}(), or ‘sage’ for a native implementation. Ignored for complex embeddings.

ALGORITHM:


AUTHORS:

• Michael Mardaus (2008-07),

• Tobias Nagel (2008-07) – original version from [Coh1993].

• John Cremona (2008-07) – revision following eclib code.

• John Cremona (2010-03) – implementation for complex embeddings.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: E.discriminant() > 0
True
sage: P = E([-1,1])
sage: P.is_on_identity_component()
False
sage: P.elliptic_logarithm(precision=96)
0.4793482501902193161295330101 + 0.985868850775824102211203849...*I
sage: Q=E([3,5])
sage: Q.is_on_identity_component()
True
sage: Q.elliptic_logarithm(precision=96)
1.931128271542559442488585220

An example with negative discriminant, and a torsion point:

sage: E = EllipticCurve('11a1')
sage: E.discriminant() < 0
True
sage: P = E([16,-61])
sage: P.elliptic_logarithm(precision=70)
0.25384186085591068434

(continues on next page)
A larger example. The default algorithm uses PARI and makes sure the result has the requested precision:

```
sage: E = EllipticCurve([1, 0, 1, -85357462, 3035288987048])
sage: P = E([4458713781401/835903744, -64466909836503771/24167649046528, 1])
sage: P.elliptic_logarithm()
100 bits
0.27656204014107061464076203097
```

The native algorithm 'sage' used to have trouble with precision in this example, but no longer:

```
sage: E = EllipticCurve("4390c2")
sage: P = E(-1,0)
order 2
sage: [L.elliptic_logarithm(P) for L in Ls]
[-1.73964256006716 - 1.07861534489191*I, -0.363756518406398 - 1.50699412135253*I, 1.90726488608927]
```

Examples over number fields:

```
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(CC)
sage: Ls = [E.period_lattice(e) for e in emb]
sage: [L.real_flag for L in Ls]
[0, 0, -1]
sage: P = E(-1,0) # order 2
sage: [L.elliptic_logarithm(P) for L in Ls]
[0.250819591818930 - 0.411963479992219*I, -0.290994550611374 - 1.37239403241051*I, -0.69347375220559 - 2.45028458830342*I, -1.390154332520559 - 2.45028458830342*I, -1.75372176444709, 0.303069634723001]
sage: E = EllipticCurve([-a^2 - a - 1, a^2 + a])
sage: pts = [E(2*a^2 - a - 1, -2*a^2 - 2*a + 6), E(-2/3*a^2 - 1/3 , -4/3*a - 2/3), E(5/4*a^2 - 1/2*a , -a^2 - 1/4*a + 9/4), E(2*a^2 + 3*a + 4 , -7*a^2 - 10*a - 12)]
sage: [[L.elliptic_logarithm(P) for P in pts] for L in Ls]
[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
```

(continues on next page)
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,9*i-10,21-i])
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(2-i,4+2*i)
sage: L.elliptic_logarithm(P,prec=100)
0.70448375537782208460499649302 - 0.79246725643650979858266018068*I

has_finite_order()
Return True iff this point has finite order on the elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.has_finite_order()
False

sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.has_finite_order()
True

has_good_reduction(P=None)
Returns True iff this point has good reduction modulo a prime.

INPUT:

• P – a prime of the base_field of the point’s curve, or None (default)

OUTPUT:

(bool) If a prime $P$ of the base field is specified, returns True iff the point has good reduction at $P$; otherwise, return true if the point has god reduction at all primes in the support of the discriminant of this model.

EXAMPLES:

sage: E = EllipticCurve('990e1')
sage: P = E.gen(0); P
(15 : 51 : 1)
sage: [E.has_good_reduction(p) for p in [2,3,5,7]]
[False, False, False, True]
sage: [P.has_good_reduction(p) for p in [2,3,5,7]]
[True, False, True, True]
sage: [E.tamagawa_exponent(p) for p in [2,3,5,7]]
[2, 2, 1, 1]
sage: [(2*P).has_good_reduction(p) for p in [2,3,5,7]]
[True, True, True, True]
sage: P.has_good_reduction()
False
sage: (2*P).has_good_reduction()
True
sage: (3*P).has_good_reduction()
False
sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K,[0,1,0,-160,308])
sage: P = E(26,-120)
sage: E.discriminant().support()
[Fractional ideal (i + 1),
 Fractional ideal (-i - 2),
 Fractional ideal (2*i + 1),
 Fractional ideal (3)]
sage: [E.tamagawa_exponent(p) for p in E.discriminant().support()]
[1, 4, 4, 4]
sage: P.has_good_reduction()
False
sage: (2*P).has_good_reduction()
False
sage: (4*P).has_good_reduction()
True

**has_infinite_order()**

Return True iff this point has infinite order on the elliptic curve.

**EXAMPLES:**

```python
sage: E = EllipticCurve([0,0,1,-1,0])
sage: P = E([0,0]); P
(0 : 0 : 1)
sage: P.has_infinite_order()
True
```

```python
sage: E = EllipticCurve([0,1])
sage: P = E([-1,0])
sage: P.has_infinite_order()
False
```

**height** *(precision=None, normalised=True, algorithm='pari')*

Return the Néron-Tate canonical height of the point.

**INPUT:**

- **self** – a point on an elliptic curve over a number field \( K \).
- **precision** – positive integer, or None (default). The precision in bits of the result. If None, the default real precision is used.
- **normalised** – boolean. If True (default), the height is normalised to be invariant under extension of \( K \). If False, return this normalised height multiplied by the degree of \( K \).
- **algorithm** – string: either ‘pari’ (default) or ‘sage’. If ‘pari’ and the base field is \( \mathbb{Q} \), use the PARI library function; otherwise use the Sage implementation.

**OUTPUT:**

The rational number 0, or a non-negative real number.

There are two normalisations used in the literature, one of which is double the other. We use the larger of the two, which is the one appropriate for the BSD conjecture. This is consistent with [Cre] and double that of [SilBook].

See Wikipedia article Néron-Tate height

**REFERENCES:**
EXAMPLES:

```python
sage: E = EllipticCurve('11a'); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: P = E([5,5]); P
(5 : 5 : 1)
sage: P.height()
0
sage: Q = 5*P
sage: Q.height()
0

sage: E = EllipticCurve('37a'); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E([0,0])
sage: P.height()
0.051114082399688
sage: P.order()
+Infinity
sage: E.regulator()
0.051114082399688...

def naive_height(P):
 : return log(RR(max(abs(P[0].numerator()), abs(P[0].denominator()))))

for n in [1..10]:
 : print(naive_height(2^n*P)/4^n)
0.000000000000000
0.0433216987849966
0.0502949347635656
0.0511006335618645
0.051100734799612
0.051103666152466
0.0511034199907743
0.0511106492906471
0.051114081541082
0.051114081541180

sage: E = EllipticCurve('4602a1'); E
Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 37746035*x - 89296920339
→ over Rational Field
sage: x = 7798592245897494924685822919594510371590
sage: y = 195752602301313702261379022151675961965157108920263594545223
sage: d = 22540207618847822243
sage: E([x / d^2, y / d^3]).height()
86.7406561381275

sage: E = EllipticCurve([17, -60, -120, 0, 0]); E
Elliptic Curve defined by y^2 + 17*x*y - 120*y = x^3 - 60*x^2 over Rational Field
→ Field
sage: E([30, -90]).height()
0

sage: E = EllipticCurve('389a1'); E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: [P,Q] = [E(-1,1),E(0,-1)]
sage: P.height(precision=100)
0.6866708330558658572355210295
```

(continues on next page)
### Canonical heights over number fields are implemented as well:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([a, 4]); E
Elliptic Curve defined by y^2 = x^3 + a*x + 4 over Number Field in a with defining polynomial x^3 - 2
sage: P = E((0,2))
sage: P.height()
0.810463096585925
sage: P.height(precision=100)
0.81046309658592536863991810577
sage: P.height(precision=200)
0.81046309658592536863991810576865158896130286417155832378086
sage: (2*P).height() / P.height()
4.0000000000000
sage: (100*P).height() / P.height()
10000.0000000000
sage: E = EllipticCurve('37a')
sage: P = E([0,0])
sage: P.height()
0.0511114082399688
sage: P.height(normalised=False)
0.0511114082399688
sage: K.<z> = CyclotomicField(5)
sage: EK = E.change_ring(K)
sage: PK = EK([0,0])
sage: PK.height()
0.0511114082399688
sage: PK.height(normalised=False)
0.204445632959875
```

Setting normalised=True multiplies the height by the degree of $K$:

```python
sage: E = EllipticCurve('37a')
sage: P = E([0,0])
sage: P.height()
0.0511114082399688
sage: P.height(normalised=False)
0.0511114082399688
sage: K.<z> = CyclotomicField(5)
sage: EK = E.change_ring(K)
sage: PK = EK([0,0])
sage: PK.height()
0.0511114082399688
sage: PK.height(normalised=False)
0.204445632959875
```

Some consistency checks:

```python
sage: E = EllipticCurve('5077a1')
sage: P = E([-2,3,1])
sage: P.height()
1.36857250535393
sage: EK = E.change_ring(QuadraticField(-3,'a'))
sage: PK = EK([-2,3,1])
sage: PK.height()
1.36857250535393
sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0])
sage: Q = E.lift_x(-9/4); Q
(-9/4 : -27/8*i : 1)
sage: Q.height()
```

(continues on next page)
2.69518560017909

sage: (15*Q).height() / Q.height()
225.000000000000

sage: E = EllipticCurve('37a')
sage: P = E([0,-1])
sage: P.height()
0.0511114082399688

sage: K.<a> = QuadraticField(-7)
sage: ED = E.quadratic_twist(-7)
sage: Q = E.isomorphism_to(ED.change_ring(K))(P); Q
(0 : -7/2*a - 1/2 : 1)
sage: Q.height()
0.0511114082399688
sage: Q.height(precision=100)
0.05111140823996884023586099757

An example to show that the bug at trac ticket #5252 is fixed:

sage: E = EllipticCurve([1, -1, 1, -2063758701246626370773726978,
-3283864779330613307510374708583809114881])
sage: P = E([-30987785091199, 258909576181697016447])
sage: P.height()
25.8603170675462
sage: P.height(precision=100)
25.86031706754619074388840741
sage: P.height(precision=250)
25.860317067546190743888407407351103230988729038444162155577171041783572513
sage: P.height(precision=500)
25.
    8603170675461907438884074073511032309887290384441621555771710417835725129551130570889813281792157278507639909972112856019190236125362914195452321720
sage: P.height(precision=100) == P.non_archimedean_local_height(prec=100)+P.archimedean_local_height(prec=100)
True

An example to show that the bug at trac ticket #8319 is fixed (correct height when the curve is not minimal):

sage: E = EllipticCurve([-5580472329446114952805505505804593498080000,-15739737337853681103829736899035360547877004972233063680000000])
sage: xP = 204885147732879546487576840131729064308289385547094673627174585676211859152978311600/23625501907057948132262217188983681204856907657753178415430361
sage: P = E.lift_x(xP)
sage: P.height()
157.432598516754
sage: Q = 2*P
sage: Q.height() # long time (4s)
629.730394067016
sage: Q.height()-4*P.height() # long time
0.000000000000000

An example to show that the bug at trac ticket #12509 is fixed (precision issues):

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2-x-1)
sage: v = [0, a + 1, 1, 28665*a - 46382, 2797026*a - 4525688]
(continues on next page)
This shows that the bug reported at trac ticket #13951 has been fixed:

```sage
sage: E = EllipticCurve([0,17])
sage: P1 = E(2,5)
sage: P1.height()
1.06248137652528
sage: F = E.change_ring(QuadraticField(-3,'a'))
sage: P2 = F([2,5])
sage: P2.height()
1.06248137652528
```

### `is_on_identity_component` (embedding=None)

Returns True iff this point is on the identity component of its curve with respect to a given (real or complex) embedding.

**INPUT:**

- `self` – a point on a curve over any ordered field (e.g. \( \mathbb{Q} \))
- `embedding` – an embedding from the base_field of the point’s curve into \( \mathbb{R} \) or \( \mathbb{C} \); if None (the default) it uses the first embedding of the base_field into \( \mathbb{R} \) if any, else the first embedding into \( \mathbb{C} \).

**OUTPUT:**

(bool) – True iff the point is on the identity component of the curve. (If the point is zero then the result is True.)

**EXAMPLES:**

For \( K = \mathbb{Q} \) there is no need to specify an embedding:

```sage
sage: E=EllipticCurve('5077a1')
[sage: [E.lift_x(x).is_on_identity_component() for x in srange(-3,5)]
[False, False, False, False, False, True, True, True]
```

An example over a field with two real embeddings:

```sage
sage: L.<a> = QuadraticField(2)
sage: E=EllipticCurve(L,[0,1,0,a,a])
sage: P=E(-1,0)
[sage: P.is_on_identity_component(e) for e in L.embd.ings(RR)]
[False, True]
```

We can check this as follows:

```sage
sage: [e(E.discriminant())>0 for e in L.embd.ings(RR)]
[True, False]
```
```python
sage: e = L.embeddings(RR)[0]
sage: E1 = EllipticCurve(RR, [e(ai) for ai in E.ainvs()])
sage: e1, e2, e3 = E1.two_division_polynomial().roots(RR, multiplicities=False)
sage: e1 < e2 < e3 and e(P[0]) < e3
True
```

**non_archimedean_local_height** *(v=None, prec=None, weighted=False, is_minimal=None)*

Compute the local height of self at the non-archimedean place $v$.

**INPUT:**

- `self` – a point on an elliptic curve over a number field $K$.
- `v` – a non-archimedean place of $K$, or None (default). If $v$ is a non-archimedean place, return the local height of self at $v$. If $v$ is None, return the total non-archimedean contribution to the global height.
- `prec` – integer, or None (default). The precision of the computation. If None, the height is returned symbolically.
- `weighted` – boolean. If False (default), the height is normalised to be invariant under extension of $K$. If True, return this normalised height multiplied by the local degree if $v$ is a single place, or by the degree of $K$ if $v$ is None.

**OUTPUT:**

A real number. The normalisation is twice that in Silverman’s paper [Sil1988]. Note that this local height depends on the model of the curve.

**ALGORITHM:**

See [Sil1988], Section 5.

**EXAMPLES:**

Examples 2 and 3 from [Sil1988]:

```python
sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K, [0,0,4,6*i,0]); E
Elliptic Curve defined by y^2 + 4*y = x^3 + 6*i*x over Number Field in i with defining polynomial x^2 + 1
sage: P = E((0,0))
sage: P.non_archimedean_local_height(K.ideal(i+1))
-1/2*log(2)
sage: P.non_archimedean_local_height(K.ideal(3))
0
sage: P.non_archimedean_local_height(K.ideal(1-2*i))
0
sage: Q = E.lift_x(-9/4); Q
(-9/4 : -27/8*i : 1)
sage: Q.non_archimedean_local_height(K.ideal(1+i))
2*log(2)
sage: Q.non_archimedean_local_height(K.ideal(3))
0
sage: Q.non_archimedean_local_height(K.ideal(1-2*i))
0
sage: Q.non_archimedean_local_height()
2*log(2)
```

An example over the rational numbers:

10.3. Points on elliptic curves
Local heights of torsion points can be non-zero (unlike the global height):

```
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0, 0, 0, K(1), 0])
sage: P = E(i, 0)
sage: P.non_archimedean_local_height()
-1/2*log(2)
```

**order()**

Return the order of this point on the elliptic curve.

If the point has infinite order, returns +Infinity. For curves defined over Q, we call PARI; over other number fields we implement the function here.

**Note:** *additive_order()* is a synonym for *order()*

**padic_elliptic_logarithm**(p, absprec=20)

Computes the $p$-adic elliptic logarithm of this point.

**INPUT:**

- p - integer: a prime
- absprec - integer (default: 20): the initial $p$-adic absolute precision of the computation

**OUTPUT:**

The $p$-adic elliptic logarithm of self, with precision absprec.

**AUTHORS:**

- Tobias Nagel
- Michael Mardaus
- John Cremona

**ALGORITHM:**
For points in the formal group (i.e. not integral at $p$) we take the log() function from the formal groups module and evaluate it at $-x/y$. Otherwise we first multiply the point to get into the formal group, and divide the result afterwards.

**Todo:** See comments at trac ticket #4805. Currently the absolute precision of the result may be less than the given value of absprec, and error-handling is imperfect.

**EXAMPLES:**

```
sage: E = EllipticCurve([0,1,1,-2,0])
sage: E(0).padic_elliptic_logarithm(3)
0
sage: P = E(0,0)
sage: P.padic_elliptic_logarithm(3)
2 + 2*3 + 3^3 + 2*3^7 + 3^9 + 3^11 + 3^15 + 2*3^17 + 3^18 + O(3^19)
sage: P.padic_elliptic_logarithm(3).lift()
660257522
sage: P = E(-11/9,28/27)
[sage: [2*P].padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p in prime_range(20)]
[2 + O(2^19), 2 + O(3^20), 2 + O(5^19), 2 + O(7^19), 2 + O(11^19), 2 + O(13^19), 2 + O(17^19), 2 + O(19^19)]
[sage: [3*P].padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p in prime_range(12)]
[1 + 2 + O(2^19), 3 + 3^20 + O(3^21), 3 + O(5^19), 3 + O(7^19), 3 + O(11^19)]
[sage: [5*P].padic_elliptic_logarithm(p)/P.padic_elliptic_logarithm(p) for p in prime_range(12)]
[1 + 2^2 + O(2^19), 2 + 3 + O(3^20), 5 + O(5^19), 5 + O(7^19), 5 + O(11^19)]
```

An example which arose during reviewing trac ticket #4741:

```
sage: E = EllipticCurve('794a1')
sage: P = E(-1,2)
[sage: P.padic_elliptic_logarithm(2)]
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + O(2^16)
sage: P.padic_elliptic_logarithm(2, absprec=30)
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + 2^22 + 2^23 + 2^24 + O(2^26)
sage: P.padic_elliptic_logarithm(2, absprec=40)
2^4 + 2^5 + 2^6 + 2^8 + 2^9 + 2^13 + 2^14 + 2^15 + 2^22 + 2^23 + 2^24 + 2^28 + O(2^29 + 2^31 + 2^34 + O(2^35))
```

**reduction**($p$)

This finds the reduction of a point $P$ on the elliptic curve modulo the prime $p$.

**INPUT:**

- `self` – A point on an elliptic curve.
- `p` – a prime number

**OUTPUT:**

The point reduced to be a point on the elliptic curve modulo $p$.

**EXAMPLES:**

---

10.3. Points on elliptic curves   153

```sage
sage: E = EllipticCurve([1,2,3,4,0])
sage: P = E(0,0)
sage: P.reduction(5)
(0 : 0 : 1)
sage: Q = E(98,931)
sage: Q.reduction(5)
(3 : 1 : 1)
sage: Q.reduction(5).curve() == E.reduction(5)
True
sage: F.<a> = NumberField(x^2+5)
sage: E = EllipticCurve(F,[1,2,3,4,0])
sage: Q = E(98,931)
sage: Q.reduction(a)
(3 : 1 : 1)
sage: Q.reduction(11)
(10 : 7 : 1)
sage: F.<a> = NumberField(x^3+x^2+1)
sage: E = EllipticCurve(F,[a,2])
sage: P = E(a,1)
sage: P.reduction(F.ideal(5))
(abar : 1 : 1)
sage: P.reduction(F.ideal(a^2-4*a-2))
(abar : 1 : 1)
```

10.4 Elliptic curves over a general ring

Sage defines an elliptic curve over a ring $R$ as a ‘Weierstrass Model’ with five coefficients $[a_1, a_2, a_3, a_4, a_6]$ in $R$ given by

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$ 

Note that the (usual) scheme-theoretic definition of an elliptic curve over $R$ would require the discriminant to be a unit in $R$, Sage only imposes that the discriminant is non-zero. Also, in Magma, ‘Weierstrass Model’ means a model with $a_1 = a_2 = a_3 = 0$, which is called ‘Short Weierstrass Model’ in Sage; these do not always exist in characteristics 2 and 3.

**EXAMPLES:**

We construct an elliptic curve over an elaborate base ring:

```sage
sage: p = 97; a=1; b=3
sage: R.<u> = GF(p)[]
sage: S.<v> = R[]
sage: T = S.fraction_field()
sage: E = EllipticCurve(T, [a, b]); E
Elliptic Curve defined by y^2 = x^3 + x + 3 over Fraction Field of Univariate Polynomial Ring in v over Univariate Polynomial Ring in u over Finite Field of size 97
sage: latex(E)
y^2 = x^{3} + x + 3
```

**AUTHORS:**

- William Stein (2005): Initial version
• Robert Bradshaw et al. ...
• John Cremona (2008-01): isomorphisms, automorphisms and twists in all characteristics
• Julian Rueth (2014-04-11): improved caching

```python
class sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic(K, ainvs)
 Bases: sage.misc.fast_methods.WithEqualityById, sage.schemes.curves.projective_curve.ProjectivePlaneCurve

Elliptic curve over a generic base ring.

EXAMPLES:

```
 sage: E = EllipticCurve([1,2,3/4,7,19]); E
 Elliptic Curve defined by y^2 + x*y + 3/4*y = x^3 + 2*x^2 + 7*x + 19 over Rational Field
 sage: loads(E.dumps()) == E
 True
 sage: E = EllipticCurve([1,3])
 sage: P = E([-1,1,1])
 sage: -5*P
 (179051/80089 : -91814227/22665187 : 1)
```

a1()

Returns the a_1 invariant of this elliptic curve.

EXAMPLES:

```
 sage: E = EllipticCurve([1,2,3,4,6])
 sage: E.a1()
 1
```

a2()

Returns the a_2 invariant of this elliptic curve.

EXAMPLES:

```
 sage: E = EllipticCurve([1,2,3,4,6])
 sage: E.a2()
 2
```

a3()

Returns the a_3 invariant of this elliptic curve.

EXAMPLES:

```
 sage: E = EllipticCurve([1,2,3,4,6])
 sage: E.a3()
 3
```

a4()

Returns the a_4 invariant of this elliptic curve.

EXAMPLES:

```
 sage: E = EllipticCurve([1,2,3,4,6])
 sage: E.a4()
 4
```

10.4. Elliptic curves over a general ring
a6 ()

Returns the \(a_6\) invariant of this elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve([1,2,3,4,6])
sage: E.a6()
6
```

a_invariants ()

The \(a\)-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 5-tuple of the \(a\)-invariants of this elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.a_invariants()
(1, 2, 3, 4, 5)
sage: E = EllipticCurve([0,1])
sage: E.a_invariants()
(0, 0, 0, 1)
sage: E = EllipticCurve([GF(7)(3),5])
sage: E.a_invariants()
(0, 0, 0, 3, 5)
sage: E = EllipticCurve([1,0,0,0,1])
sage: E.a_invariants()[0] = 100000000
Traceback (most recent call last):
...
  TypeError: 'tuple' object does not support item assignment
```

a_invs ()

The \(a\)-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 5-tuple of the \(a\)-invariants of this elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.a_invs()
(1, 2, 3, 4, 5)
sage: E = EllipticCurve([0,1])
sage: E.a_invs()
(0, 0, 0, 1)
sage: E = EllipticCurve([GF(7)(3),5])
sage: E.a_invs()
(0, 0, 0, 3, 5)
sage: E = EllipticCurve([1,0,0,0,1])
sage: E.a_invs()[0] = 100000000
```

(continues on next page)
automorphisms *(field=None)*

Return the set of isomorphisms from self to itself (as a list).

INPUT:

- **field** (default None) – a field into which the coefficients of the curve may be coerced (by default, uses the base field of the curve).

OUTPUT:

(list) A list of *WeierstrassIsomorphism* objects consisting of all the isomorphisms from the curve *self* to itself defined over *field*.

EXAMPLES:

```
sage: E = EllipticCurve_from_j(QQ(0))  # a curve with j=0 over QQ
sage: E.automorphisms();
[Generic endomorphism of Abelian group of points on Elliptic Curve defined by
  \(y^2 + y = x^3\) over Rational Field
  Via: (u,r,s,t) = (-1, 0, 0, -1), Generic endomorphism of Abelian group of
  \(\text{points on Elliptic Curve defined by } y^2 + y = x^3\) over Rational Field
  Via: (u,r,s,t) = (1, 0, 0, 0)]
```

We can also find automorphisms defined over extension fields:

```
sage: K.<a> = NumberField(x^2+3)  # adjoin roots of unity
sage: E.automorphisms(K);
[Generic endomorphism of Abelian group of points on Elliptic Curve defined by
  \(y^2 + y = x^3\) over Number Field in a with defining polynomial x^2 + 3
  Via: (u,r,s,t) = (-1, 0, 0, -1),...
  Generic endomorphism of Abelian group of points on Elliptic Curve defined by
  \(y^2 + y = x^3\) over Number Field in a with defining polynomial x^2 + 3
  Via: (u,r,s,t) = (1, 0, 0, 0)]
```

```
sage: [ len(EllipticCurve_from_j(GF(q,'a')(0)).automorphisms()) for q in [2,4,3,9,5,25,7,49] ]
[2, 24, 2, 12, 2, 6, 6, 6]
```

b2 ()

Returns the \(b_2\) invariant of this elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b2()
9
```

b4 ()

Returns the \(b_4\) invariant of this elliptic curve.

EXAMPLES:
b6()
Returns the b_6 invariant of this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b6()  
29
```

b8()
Returns the b_8 invariant of this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b8()  
35
```

b_invariants()
Returns the b-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 4-tuple of the b-invariants of this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.b_invariants()  
(-4, -20, -79, -21)
sage: E = EllipticCurve([-4,0])
sage: E.b_invariants()  
(0, -8, 0, -16)
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.b_invariants()  
(9, 11, 29, 35)
sage: E.b2()  
9
sage: E.b4()  
11
sage: E.b6()  
29
sage: E.b8()  
35
```

ALGORITHM:

These are simple functions of the a-invariants.

AUTHORS:

base_extend(R)
Return the base extension of self to R.

```python
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.base_extend(QQbar)  
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Algebraic Field
```
INPUT:

- \(R \) – either a ring into which the \(a \)-invariants of \(\text{self} \) may be converted, or a morphism which may be applied to them.

OUTPUT:

An elliptic curve over the new ring whose \(a \)-invariants are the images of the \(a \)-invariants of \(\text{self} \).

EXAMPLES:

```python
sage: E = EllipticCurve(GF(5),[1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
sage: E1 = E.base_extend(GF(125,'a')); E1
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field in a of size 5^3
```

\(\text{base_ring}() \)

Returns the base ring of the elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve(GF(49, 'a'), [3,5])
sage: E.base_ring()
Finite Field in a of size 7^2
sage: E = EllipticCurve([1,1])
sage: E.base_ring()
Rational Field
sage: E = EllipticCurve(ZZ, [3,5])
sage: E.base_ring()
Integer Ring
```

\(\text{c4}() \)

Returns the \(c_4 \) invariant of this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c4()
496
```

\(\text{c6}() \)

Returns the \(c_6 \) invariant of this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c6()
20008
```

\(\text{c_invariants}() \)

Returns the \(c \)-invariants of this elliptic curve, as a tuple.

OUTPUT:

(tuple) - a 2-tuple of the \(c \)-invariants of the elliptic curve.

EXAMPLES:
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.c_invariants()
(496, 20008)
sage: E = EllipticCurve([-4,0])
sage: E.c_invariants()
(192, 0)

ALGORITHM:
These are simple functions of the a-invariants.

AUTHORS:

change_ring(R)
Return the base change of self to R.
This has the same effect as self.base_extend(R).

EXAMPLES:

sage: F2 = GF(5^2,'a'); a = F2.gen()
sage: F4 = GF(5^4,'b'); b = F4.gen()
sage: h = F2.hom([a.charpoly().roots(ring=F4,multiplicities=False)[0]],F4)
sage: E = EllipticCurve(F2,[1,a]); E
Elliptic Curve defined by y^2 = x^3 + x + a over Finite Field in a of size 5^2
sage: E.change_ring(h)
Elliptic Curve defined by y^2 = x^3 + x + (4*b^3+4*b^2+4*b+3) over Finite
← Field in b of size 5^4

change_weierstrass_model(*urst)
Return a new Weierstrass model of self under the standard transformation (u, r, s, t)

$(x, y) \mapsto (x', y') = (u^2x + r, u^3y + su^2x + t)$.

EXAMPLES:

sage: E = EllipticCurve('15a')
sage: F1 = E.change_weierstrass_model([1/2,0,0,0]); F1
Elliptic Curve defined by y^2 + 2*x*y + 8*y = x^3 + 4*x^2 - 160*x - 640 over Rational Field
sage: F2 = E.change_weierstrass_model([7,2,1/3,5]); F2
Elliptic Curve defined by y^2 + 5/21*x*y + 13/343*y = x^3 + 59/441*x^2 - 10/7203*x - 58/117649 over Rational Field
sage: F1.is_isomorphic(F2)
True

discriminant()
Returns the discriminant of this elliptic curve.

EXAMPLES:

sage: E = EllipticCurve([[0,0,1,-1,0]])
sage: E.discriminant()
37
sage: E = EllipticCurve([[0, -1, 1, -10, -20]])
sage: E.discriminant()
-161051
sage: E = EllipticCurve([GF(7)(2),1])
sage: E.discriminant()
1

division_polynomial \((m, x=None, two_tor_multiplicity=2) \)
Returns the \(m \)th division polynomial of this elliptic curve evaluated at \(x \).

INPUT:

- \(m \) - positive integer.
- \(x \) - optional ring element to use as the “\(x \)” variable. If \(x \) is None, then a new polynomial ring will be constructed over the base ring of the elliptic curve, and its generator will be used as \(x \). Note that \(x \) does not need to be a generator of a polynomial ring; any ring element is ok. This permits fast calculation of the torsion polynomial \textit{evaluated} on any element of a ring.
- \(two_tor_multiplicity \) - 0, 1 or 2

If 0: for even \(m \) when \(x \) is None, a univariate polynomial over the base ring of the curve is returned, which omits factors whose roots are the \(x \)-coordinates of the 2-torsion points. Similarly when \(x \) is not none, the evaluation of such a polynomial at \(x \) is returned.

If 2: for even \(m \) when \(x \) is None, a univariate polynomial over the base ring of the curve is returned, which includes a factor of degree 3 whose roots are the \(x \)-coordinates of the 2-torsion points. Similarly when \(x \) is not none, the evaluation of such a polynomial at \(x \) is returned.

If 1: when \(x \) is None, a bivariate polynomial over the base ring of the curve is returned, which includes a factor \(2 * y + a1 * x + a3 \) which has simple zeros at the 2-torsion points. When \(x \) is not none, it should be a tuple of length 2, and the evaluation of such a polynomial at \(x \) is returned.

EXAMPLES:

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.division_polynomial(1)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=0)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=1)
2*y + 1
sage: E.division_polynomial(2, two_torsion_multiplicity=2)
4*x^3 - 4*x + 1
sage: E.division_polynomial(2)
4*x^3 - 4*x + 1
sage: [E.division_polynomial(3, two_torsion_multiplicity=i) for i in range(3)]
[3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1]
sage: [type(E.division_polynomial(3, two_torsion_multiplicity=i)) for i in range(3)]
[<... 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint'>,
 <... 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>,
 <... 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint'>]

sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: R.<z>=PolynomialRing(QQ)
sage: E.division_polynomial(4,z,0)
(continues on next page)
This does not work, since when two_torsion_multiplicity is 1, we compute a bivariate polynomial, and must evaluate at a tuple of length 2:

```
sage: E.division_polynomial(4,z,1)
Traceback (most recent call last):
...
ValueError: x should be a tuple of length 2 (or None) when two_torsion_
...
```

We can also evaluate this bivariate polynomial at a point:

```
sage: P = E(5,5)
sage: E.division_polynomial(4,P,two_torsion_multiplicity=1)
-1771561
```
sage: E = EllipticCurve("37a")
sage: E.division_polynomial_0(1)
1
sage: E.division_polynomial_0(2)
1
sage: E.division_polynomial_0(3)
3*x^4 - 6*x^2 + 3*x - 1
sage: E.division_polynomial_0(4)
2*x^6 - 10*x^4 + 10*x^3 - 10*x^2 + 2*x + 1
sage: E.division_polynomial_0(5)
5*x^12 - 62*x^10 + 95*x^9 - 105*x^8 - 60*x^7 + 285*x^6 - 174*x^5 - 5*x^4 -
→ 5*x^3 + 35*x^2 - 15*x + 2
sage: E.division_polynomial_0(6)
3*x^16 - 72*x^14 + 168*x^13 - 316*x^12 + 1120*x^10 - 1144*x^9 + 300*x^8 -
→ 540*x^7 + 1120*x^6 - 588*x^5 - 133*x^4 + 252*x^3 - 114*x^2 + 22*x - 1
sage: E.division_polynomial_0(7)
7*x^24 - 308*x^22 + 986*x^21 - 2954*x^20 + 28*x^19 + 17171*x^18 - 23142*x^17 -
→ 511*x^16 - 5012*x^15 + 43804*x^14 - 7140*x^13 - 96950*x^12 + 111356*x^11 -
→ 19516*x^10 - 49707*x^9 + 40054*x^8 - 124*x^7 - 18382*x^6 + 13342*x^5 -
→ 4816*x^4 + 1099*x^3 - 210*x^2 + 35*x - 3
sage: E.division_polynomial_0(8)
4*x^30 - 292*x^28 + 1252*x^27 - 536*x^26 + 2340*x^25 + 39834*x^24 - 79560*x^23 +
→ 51432*x^22 - 142896*x^21 + 451596*x^20 - 212040*x^19 - 1005316*x^18 +
→ 1726416*x^17 - 671160*x^16 + 954924*x^15 + 1119552*x^14 + 313308*x^13 -
→ 1502818*x^12 + 1189908*x^11 - 160152*x^10 - 399176*x^9 + 386142*x^8 -
→ 220128*x^7 + 99558*x^6 - 33528*x^5 + 6042*x^4 + 310*x^3 - 406*x^2 + 78*x - 5
sage: E.division_polynomial_0(18) % E.division_polynomial_0(6) == 0
True

An example to illustrate the relationship with torsion points:

sage: F = GF(11)
sage: E = EllipticCurve(F, [0, 2]); E
Elliptic Curve defined by y^2 = x^3 + 2 over Finite Field of size 11
sage: f = E.division_polynomial_0(5); f
5*x^12 + x^9 + 8*x^6 + 4*x^3 + 7
sage: f.factor()
(5) * (x^2 + 5) * (x^2 + 2*x + 5) * (x^2 + 5*x + 7) * (x^2 + 7*x + 7) * (x^2 -
→ 9*x + 5) * (x^2 + 10*x + 7)

This indicates that the x-coordinates of all the 5-torsion points of E are in \(\mathbb{F}_{11^2}\), and therefore the y-coordinates are in \(\mathbb{F}_{11^4}\):
3*a^3 + 10*a^2 + 7*a + 1,
2*a^3 + 3*a^2 + a + 7,
a^3 + 7*a^2 + 6*a

Now we check that these are exactly the x-coordinates of the 5-torsion points of E:

```
sage: for x in x_coords:
    ....:     assert X.lift_x(x).order() == 5
```

The roots of the polynomial are the x-coordinates of the points P such that $mP = 0$ but $2P \neq 0$:

```
sage: E = EllipticCurve('14a1')
sage: T = E.torsion_subgroup()
sage: [n*T.0 for n in range(6)]
[(0 : 1 : 0),
 (9 : 23 : 1),
 (2 : 2 : 1),
 (1 : -1 : 1),
 (2 : -5 : 1),
 (9 : -33 : 1)]
sage: pol = E.division_polynomial_0(6)
sage: xlist = pol.roots(multiplicities=False); xlist
[9, 2, -1/3, -5]
sage: [E.lift_x(x, all=True) for x in xlist]
[[9 : 23 : 1], [9 : -33 : 1]], [[2 : 2 : 1], [2 : -5 : 1]], [], []
```

Note: The point of order 2 and the identity do not appear. The points with $x = -1/3$ and $x = -5$ are not rational.

`formal()`
The formal group associated to this elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve("37a")
sage: E.formal_group()
Formal Group associated to the Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

`formal_group()`
The formal group associated to this elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve("37a")
sage: E.formal_group()
Formal Group associated to the Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

`gen(i)`
Function returning the i'th generator of this elliptic curve.

Note: Relies on gens() being implemented.
EXAMPLES:

```
sage: R.<a1,a2,a3,a4,a6>=QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.gen(0)
Traceback (most recent call last):
... 
NotImplementedError: not implemented.
```

gens ()

Placeholder function to return generators of an elliptic curve.

Note: This functionality is implemented in certain derived classes, such as EllipticCurve_rational_field.

EXAMPLES:

```
sage: R.<a1,a2,a3,a4,a6>=QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.gens()
Traceback (most recent call last):
... 
NotImplementedError: not implemented.
sage: E = EllipticCurve(QQ,[1,1])
sage: E.gens()
[0 : 1 : 1]
```

hyperelliptic_polynomials ()

Return a pair of polynomials \(g(x), h(x) \) such that this elliptic curve can be defined by the standard hyperelliptic equation

\[
y^2 + h(x)y = g(x).
\]

EXAMPLES:

```
sage: R.<a1,a2,a3,a4,a6>=QQ[]
sage: E = EllipticCurve([a1,a2,a3,a4,a6])
sage: E.hyperelliptic_polynomials()
(x^3 + a2*x^2 + a4*x + a6, a1*x + a3)
```

is_isomorphic (other, field=None)

Returns whether or not self is isomorphic to other.

INPUT:

- `other` – another elliptic curve.
- `field` (default None) – a field into which the coefficients of the curves may be coerced (by default, uses the base field of the curves).

OUTPUT:

(bool) True if there is an isomorphism from curve `self` to curve `other` defined over `field`.

EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: F = E.change_weierstrass_model([2,3,4,5]); F
Elliptic Curve defined by y^2 + 4*x*y + 11/8*y = x^3 - 3/2*x^2 - 13/16*x over Rational Field
```
sage: E.is_isomorphic(F)
True
sage: E.is_isomorphic(F.change_ring(CC))
False

is_on_curve (x, y)

Returns True if \((x, y)\) is an affine point on this curve.

INPUT:

- \(x, y\) - elements of the base ring of the curve.

EXAMPLES:

```
sage: E = EllipticCurve(QQ, [1, 1])
sage: E.is_on_curve(0, 1)
True
sage: E.is_on_curve(1, 1)
False
```

is_x_coord (x)

Returns True if \(x\) is the \(x\)-coordinate of a point on this curve.

Note: See also `lift_x()` to find the point(s) with a given \(x\)-coordinate. This function may be useful in cases where testing an element of the base field for being a square is faster than finding its square root.

EXAMPLES:

```
sage: E = EllipticCurve('37a'); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: E.is_x_coord(1)
True
sage: E.is_x_coord(2)
True
There are no rational points with \(x\)-coordinate 3:
```

```
sage: E.is_x_coord(3)
False
```

However, there are such points in \(E(R)\):

```
sage: E.change_ring(RR).is_x_coord(3)
True
```

And of course it always works in \(E(C)\):

```
sage: E.change_ring(RR).is_x_coord(-3)
False
sage: E.change_ring(CC).is_x_coord(-3)
True
```

AUTHORS:

- John Cremona (2008-08-07): adapted from `lift_x()`
isomorphism_to(other)

Given another Weierstrass model other of self, return an isomorphism from self to other.

INPUT:

- other — an elliptic curve isomorphic to self.

OUTPUT:

(Weierstrass morphism) An isomorphism from self to other.

Note: If the curves in question are not isomorphic, a ValueError is raised.

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
```

```python
sage: F = E.short_weierstrass_model()
```

```python
sage: w = E.isomorphism_to(F); w
```

Generic morphism:

From: Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 - x
 ↔ over Rational Field

To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 - 16*x
 ↔ over Rational Field

Via: (u,r,s,t) = (1/2, 0, 0, -1/2)

```python
sage: P = E(0,-1,1)
```

```python
sage: w(P)
```

(0 : -4 : 1)

```python
sage: 5*w(P)
```

(1 : 1 : 1)

```python
sage: 120*w(P) == w(120*P)
```

True

We can also handle injections to different base rings:

```python
sage: K.<a> = NumberField(x^3-7)
```

```python
sage: E.isomorphism_to(E.change_ring(K))
```

Generic morphism:

From: Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 - x
 ↔ over Rational Field

To: Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + (-1)*x
 ↔ over Number Field in a with defining polynomial x^3 - 7

Via: (u,r,s,t) = (1, 0, 0, 0)

isomorphisms(other, field=None)

Return the set of isomorphisms from self to other (as a list).

INPUT:

- other — another elliptic curve.
• field (default None) – a field into which the coefficients of the curves may be coerced (by default, uses the base field of the curves).

OUTPUT:

(list) A list of WeierstrassIsomorphism objects consisting of all the isomorphisms from the curve self to the curve other defined over field.

EXAMPLES:

```sage
e = EllipticCurve_from_j(QQ(0)) # a curve with j=0 over QQ
e = EllipticCurve('27a3') # should be the same one
e.isomorphisms(F);
[Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 over Rational Field
 Via: (u,r,s,t) = (-1, 0, 0, -1),
 Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 over Rational Field
 Via: (u,r,s,t) = (1, 0, 0, 0)]
```

We can also find isomorphisms defined over extension fields:

```sage
e = EllipticCurve(GF(7),[0,0,0,1,1])
e = EllipticCurve(GF(7),[0,0,0,1,-1])
e.isomorphisms(F)
[]
e.isomorphisms(F,GF(49,'a'))
[Generic morphism:
 From: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field in a of size 7^2
 To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x + 6 over Finite Field in a of size 7^2
 Via: (u,r,s,t) = (a + 3, 0, 0, 0), Generic morphism:
 From: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field in a of size 7^2
 To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x + 6 over Finite Field in a of size 7^2
 Via: (u,r,s,t) = (6*a + 4, 0, 0, 0)]
```

j_invariant()

Returns the j-invariant of this elliptic curve.

EXAMPLES:

```sage
e = EllipticCurve([0,0,1,-1,0])
e.j_invariant()
110592/37
e = EllipticCurve([0, -1, 1, -10, -20])
e.j_invariant()
-122023936/161051
e = EllipticCurve([-4,0])
e.j_invariant()
1728
```

```sage
e = EllipticCurve([GF(7)(2),1])
e.j_invariant()
1
```

lift_x(x, all=False, extend=False)

Returns one or all points with given x-coordinate.
INPUT:

• \(x\) – an element of the base ring of the curve, or of an extension.

• all (bool, default False) – if True, return a (possibly empty) list of all points; if False, return just one point, or raise a ValueError if there are none.

• extend (bool, default False) –
 – if False, extend the base if necessary and possible to include \(x\), and only return point(s) defined over this ring, or raise an error when there are none with this \(x\)-coordinate;
 – If True, the base ring will be extended if necessary to contain the \(y\)-coordinates of the point(s) with this \(x\)-coordinate, in addition to a possible base change to include \(x\).

OUTPUT:

A point or list of up to 2 points on this curve, or a base-change of this curve to a larger ring.

Note: See also \texttt{is_x_coord()}.

EXAMPLES:

```python
sage: E = EllipticCurve('37a'); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: E.lift_x(1)
(1 : 0 : 1)
sage: E.lift_x(2)
(2 : 2 : 1)
sage: E.lift_x(1/4, all=True)
[(1/4 : -3/8 : 1), (1/4 : -5/8 : 1)]
```

There are no rational points with \(x\)-coordinate 3:

```python
sage: E.lift_x(3)
Traceback (most recent call last):
  ...
ValueError: No point with x-coordinate 3 on Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

We can use the extend parameter to make the necessary quadratic extension. Note that in such cases the returned point is a point on a new curve object, the result of changing the base ring to the parent of \(x\):

```python
sage: P = E.lift_x(3, extend=True); P
(3 : y : 1)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x over Number Field in y with defining polynomial y^2 + y - 24
```

Or we can extend scalars. There are two such points in \(E(\mathbb{R})\):

```python
sage: E.change_ring(RR).lift_x(3, all=True)
[(3.00000000000000 : 4.42442890089805 : 1.00000000000000),
 (3.00000000000000 : -5.42442890089805 : 1.00000000000000)]
```

And of course it always works in \(E(\mathbb{C})\):
In this example we start with a curve defined over \(\mathbb{Q} \) which has no rational points with \(x = 0 \), but using \(\text{extend} = \text{True} \) we can construct such a point over a quadratic field:

\[
\text{sage: } E = \text{EllipticCurve}([0,0,0,0,2]); E
\]

Elliptic Curve defined by \(y^2 = x^3 + 2 \) over Rational Field

\[
\text{sage: } P = E.\text{lift}_x(0, \text{extend=True}); P
\]

(0 : y : 1)

\[
\text{sage: } P.\text{curve()}
\]

Elliptic Curve defined by \(y^2 = x^3 + 2 \) over Number Field in \(y \) with defining polynomial \(y^2 - 2 \)

We can perform these operations over finite fields too:

\[
\text{sage: } E = \text{EllipticCurve('37a').change_ring(GF(17)); E}
\]

Elliptic Curve defined by \(y^2 + y = x^3 + 16*x \) over Finite Field of size 17

\[
\text{sage: } E.\text{lift}_x(7)
\]

(7 : 11 : 1)

\[
\text{sage: } E.\text{lift}_x(3)
\]

Traceback (most recent call last):
...

ValueError: No point with x-coordinate 3 on Elliptic Curve defined by \(y^2 + y = x^3 + 16*x \) over Finite Field of size 17

Note that there is only one lift with \(x \)-coordinate 10 in \(E(F_{17}) \):

\[
\text{sage: } E.\text{lift}_x(10, \text{all=True})
\]

([(10 : 8 : 1)])

We can lift over more exotic rings too. If the supplied \(x \) value is in an extension of the base, note that the point returned is on the base-extended curve:

\[
\text{sage: } E = \text{EllipticCurve('37a')}\text{.p-adicField(17, 5)(6)); P}
\]

PadicField(17, 5)(6))

\[
\text{sage: } P.\text{curve()}
\]

Elliptic Curve defined by \(y^2 + (1+O(17^5))*y = x^3 + (16+16*17+16*17^2+16*17^3+16*17^4+O(17^5))*x \) over 17-adic Field with capped relative precision 5

\[
\text{sage: } K.<t> = \text{PowerSeriesRing(QQ, 't', 5)}
\]

\[
\text{sage: } P = E.\text{lift}_x(1+t); P
\]

(2*t - t^2 + 5*t^3 - 21*t^4 + O(t^5) : 1)

\[
\text{sage: } K.<a> = GF(16)
\]

\[
\text{sage: } P = E.\text{change_ring(K).lift}_x(a^3); P
\]

(a^3 : a^3 + a : 1)

\[
\text{sage: } P.\text{curve()}
\]

Elliptic Curve defined by \(y^2 + y = x^3 + x \) over Finite Field in \(a \) of size 2^4

We can extend the base field to include the associated \(y \) value(s):

\[
\text{sage: } E = \text{EllipticCurve([0,0,0,0,2]); E}
\]

Elliptic Curve defined by \(y^2 = x^3 + 2 \) over Rational Field

(continues on next page)
This point is a generic point on E:

```
sage: P = E.lift_x(x, extend=True); P
(x : y : 1)
```

```
sage: P.curve()
Elliptic Curve defined by y^2 = x^3 + 2 over Univariate Quotient Polynomial Ring in y over Fraction Field of Univariate Polynomial Ring in x over Rational Field with modulus y^2 - x^3 - 2
```

```
sage: -P
(x : -y : 1)
sage: 2*P
((1/4*x^4 - 4*x)/(x^3 + 2) : ((1/8*x^6 + 5*x^3 - 4)/(x^6 + 4*x^3 + 4))*y : 1)
```

AUTHOR:
- John Cremona (2017-11-10)

multiplication_by_m (m, x_only=False)

Return the multiplication-by-m map from self to self

The result is a pair of rational functions in two variables x, y (or a rational function in one variable x if x_only is True).

INPUT:
- m - a nonzero integer
- x_only - boolean (default: False) if True, return only the x-coordinate of the map (as a rational function in one variable).

OUTPUT:
- a pair \((f(x), g(x, y))\), where \(f\) and \(g\) are rational functions with the degree of \(y\) in \(g(x, y)\) exactly 1,
- or just \(f(x)\) if \(x_only\) is True

Note:
- The result is not cached.
- \(m\) is allowed to be negative (but not 0).

EXAMPLES:

```
sage: E = EllipticCurve([-1,3])
```

We verify that multiplication by 1 is just the identity:

```
sage: E.multiplication_by_m(1)
(x, y)
```

Multiplication by 2 is more complicated:
sage: f = E.multiplication_by_m(2)
sage: f
((x^4 + 2*x^2 - 24*x + 1)/(4*x^3 - 4*x + 12), (8*x^6*y - 40*x^4*y + 480*x^3*y - 40*x^2*y + 96*x*y - 568*y)/(64*x^6 - 128*x^4 + 384*x^3 + 64*x^2 - 384*x + 576))

Grab only the x-coordinate (less work):

sage: mx = E.multiplication_by_m(2, x_only=True); mx
(1/4*x^4 + 1/2*x^2 - 6*x + 1/4)/(x^3 - x + 3)
sage: mx.parent()
Fraction Field of Univariate Polynomial Ring in x over Rational Field

We check that it works on a point:

sage: P = E([2,3])
sage: eval = lambda f,P: [fi(P[0],P[1]) for fi in f]
sage: assert E(eval(f,P)) == 2*P

We do the same but with multiplication by 3:

sage: f = E.multiplication_by_m(3)
sage: assert E(eval(f,P)) == 3*P

And the same with multiplication by 4:

sage: f = E.multiplication_by_m(4)
sage: assert E(eval(f,P)) == 4*P

And the same with multiplication by -1,-2,-3,-4:

sage: for m in [-1,-2,-3,-4]:
....: f = E.multiplication_by_m(m)
....: assert E(eval(f,P)) == m*P

multiplication_by_m_isogeny *(m)*

Return the EllipticCurveIsogeny object associated to the multiplication-by-

m map on self. The resulting isogeny will have the associated rational maps (i.e. those returned by self.multiplication_by_m()) already computed.

NOTE: This function is currently much slower than the result of self.multiplication_by_m(), because constructing an isogeny precomputes a significant amount of information. See trac ticket #7368 and trac ticket #8014 for the status of improving this situation.

INPUT:

* m - a nonzero integer

OUTPUT:

* An EllipticCurveIsogeny object associated to the multiplication-by-

m map on self.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.multiplication_by_m_isogeny(7)
Isogeny of degree 49 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - x^2 - 10*x - 20 over Rational Field
pari_curve()

Return the PARI curve corresponding to this elliptic curve.

The result is cached.

EXAMPLES:

```
sage: E = EllipticCurve([RR(0), RR(0), RR(1), RR(-1), RR(0)])
sage: e = E.pari_curve()
sage: type(e)
<... 'cypari2.gen.Gen'>
sage: e.type()
't_VEC'
sage: e.disc()
37.0000000000000
```

Over a finite field:

```
sage: EllipticCurve(GF(41),[2,5]).pari_curve()
[Mod(0, 41), Mod(0, 41), Mod(0, 41), Mod(2, 41), Mod(5, 41), Mod(0, 41),
 → Mod(4, 41), Mod(20, 41), Mod(37, 41), Mod(27, 41), Mod(26, 41), Mod(4, 41),
 → Mod(11, 41), Vecsmall([3]), [41, [9, 31, [6, 0, 0, 0]]], [0, 0, 0, 0]]
```

Over a \(p \)-adic field:

```
sage: Qp = pAdicField(5, prec=3)
sage: E = EllipticCurve(Qp,[3, 4])
sage: E.pari_curve()
[0, 0, 0, 3, 4, 0, 6, 16, -9, -144, -3456, -8640, 1728/5, Vecsmall([2]), [0(5^ → 3)], [0, 0]]
sage: E.j_invariant()
3*5^-1 + O(5)
```

Over a number field:

```
sage: K.<a> = QuadraticField(2)
sage: E = EllipticCurve([1,a])
sage: E.pari_curve()
[Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(1, y^2 - 2),
 Mod(y, y^2 - 2), Mod(0, y^2 - 2), Mod(2, y^2 - 2), Mod(4*y, y^2 - 2),
 Mod(-1, y^2 - 2), Mod(-48, y^2 - 2), Mod(-864*y, y^2 - 2),
 Mod(-928, y^2 - 2), Mod(3456/29, y^2 - 2), Vecsmall([5]),
 [[y^2 - 2, [2, 0], 8, 1, [[1, -1.41421356237310; 1, 1.41421356237310],
 1, 1.41421356237310], [1, -1.41421356237310; 1, 1.41421356237310],
 [1, -1; 1, 1], [2, 0; 0, 4], [4, 0; 0, 2], [2, 0; 0, 1],
 [2, [0, 2; 1, 0]], []], [-1.41421356237310, 1.41421356237310],
 [1, y], [1, 0; 0, 1], [1, 0, 0, 2; 0, 1, 1, 0])], [0, 0, 0, 0]]
```

PARI no longer requires that the \(j \)-invariant has negative \(p \)-adic valuation:

```
sage: E = EllipticCurve(Qp,[1, 1])
sage: E.j_invariant()
# the j-invariant is a \( p \)-adic integer
2 + 4*5^2 + O(5^3)
sage: E.pari_curve()
[0, 0, 0, 1, 1, 0, 2, 4, -1, -48, -864, -496, 6912/31, Vecsmall([2]), [0(5^ → 3)], [0, 0]]
```

plot (xmin=None, xmax=None, components='both', **args)

Draw a graph of this elliptic curve.
The plot method is only implemented when there is a natural coercion from the base ring of \texttt{self} to \texttt{RR}. In this case, \texttt{self} is plotted as if it was defined over \texttt{RR}.

INPUT:

- \texttt{xmin, xmax} - (optional) points will be computed at least within this range, but possibly farther.
- \texttt{components} - a string, one of the following:
 - \texttt{both} - (default), scale so that both bounded and unbounded components appear
 - \texttt{bounded} - scale the plot to show the bounded component. Raises an error if there is only one real component.
 - \texttt{unbounded} - scale the plot to show the unbounded component, including the two flex points.
- \texttt{plot_points} - passed to \texttt{sage.plot.generate_plot_points()}
- \texttt{adaptive_tolerance} - passed to \texttt{sage.plot.generate_plot_points()}
- \texttt{adaptive_recursion} - passed to \texttt{sage.plot.generate_plot_points()}
- \texttt{randomize} - passed to \texttt{sage.plot.generate_plot_points()}
- \texttt{**args} - all other options are passed to \texttt{sage.plot.line.Line}

EXAMPLES:

```python
sage: E = EllipticCurve([0,-1])
sage: plot(E, rgbcolor=hue(0.7))
Graphics object consisting of 1 graphics primitive
sage: E = EllipticCurve('37a')
sage: plot(E)
Graphics object consisting of 2 graphics primitives
sage: plot(E, xmin=25,xmax=26)
Graphics object consisting of 2 graphics primitives
```

With trac ticket \#12766 we added the components keyword:

```python
sage: E.real_components() 2
sage: E.plot(components='bounded')
Graphics object consisting of 1 graphics primitive
sage: E.plot(components='unbounded')
Graphics object consisting of 1 graphics primitive
```

If there is only one component then specifying components='bounded' raises a \texttt{ValueError}:

```python
sage: E = EllipticCurve('9990be2')
sage: E.plot(components='bounded')
Traceback (most recent call last):
...
ValueError: no bounded component for this curve
```

An elliptic curve defined over the Complex Field can not be plotted:

```python
sage: E = EllipticCurve(CC, [0,0,1,-1,0])
sage: E.plot()
Traceback (most recent call last):
...
NotImplementedError: plotting of curves over Complex Field with 53 bits of precision is not implemented yet
```
rst_transform\((r, s, t)\)
Returns the transform of the curve by \((r, s, t)\) (with \(u = 1\)).

INPUT:

• \(r, s, t\) – three elements of the base ring.

OUTPUT:
The elliptic curve obtained from self by the standard Weierstrass transformation \((u, r, s, t)\) with \(u = 1\).

Note: This is just a special case of change_weierstrass_model(), with \(u = 1\).

EXAMPLES:

```
sage: R.<r,s,t>=QQ[]
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.rst_transform(r,s,t)
Elliptic Curve defined by y^2 + (2*s+1)*x*y + (r+2*t+3)*y = x^3 + (-s^2+3*r-s+2)*x^2 + (3*r^2-r*s-2*s*t+4*r-3*s-t+4)*x + (r^3+2*r^2-r*t-t^2+4*r-3*t+5) over Multivariate Polynomial Ring in r, s, t over Rational Field
```

scale_curve\((u)\)
Returns the transform of the curve by scale factor \(u\).

INPUT:

• \(u\) – an invertible element of the base ring.

OUTPUT:
The elliptic curve obtained from self by the standard Weierstrass transformation \((u, r, s, t)\) with \(r = s = t = 0\).

Note: This is just a special case of change_weierstrass_model(), with \(r = s = t = 0\).

EXAMPLES:

```
sage: K = Frac(PolynomialRing(QQ,'u'))
sage: u = K.gen()
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.scale_curve(u)
Elliptic Curve defined by y^2 + u*x*y + 3*u^3*y = x^3 + 2*u^2*x^2 + 4*u^4*x + 5*u^6 over Fraction Field of Univariate Polynomial Ring in u over Rational Field
```

short_weierstrass_model\((complete_cube=True)\)
Returns a short Weierstrass model for self.

INPUT:

• \(complete_cube\) - bool (default: True); for meaning, see below.

OUTPUT:
An elliptic curve.

If \(complete_cube=True\): Return a model of the form \(y^2 = x^3 + a \cdot x + b\) for this curve. The characteristic must not be 2; in characteristic 3, it is only possible if \(b_2 = 0\).
If `complete_cube=False`: Return a model of the form \(y^2 = x^3 + ax^2 + bx + c\) for this curve. The characteristic must not be 2.

EXAMPLES:

```python
sage: E = EllipticCurve([1,2,3,4,5])
sage: E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over
  Rational Field
sage: F = E.short_weierstrass_model()
sage: F
Elliptic Curve defined by y^2 = x^3 + 4941*x + 185166 over Rational Field
sage: E.is_isomorphic(F)
True
sage: F = E.short_weierstrass_model(complete_cube=False)
sage: F
Elliptic Curve defined by y^2 = x^3 + 9*x^2 + 88*x + 464 over Rational Field
sage: E.is_isomorphic(F)
True
sage: E = EllipticCurve(GF(3),[1,2,3,4,5])
sage: E.short_weierstrass_model(complete_cube=False)
Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 3
This used to be different see trac ticket #3973:

```python
sage: E.short_weierstrass_model() # old
Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 3
```  

More tests in characteristic 3:

```python
sage: E = EllipticCurve(GF(3),[0,2,1,2,1])
sage: E.short_weierstrass_model() # old
Traceback (most recent call last):
 ...
ValueError: short_weierstrass_model(): no short model for Elliptic Curve
 defined by y^2 + y = x^3 + 2*x^2 + 2*x + 1 over Finite Field of size 3
 (characteristic is 3)
sage: E.short_weierstrass_model(complete_cube=False) # new
Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2*x + 2 over Finite Field of
 size 3
sage: E.short_weierstrass_model(complete_cube=False).is_isomorphic(E)
True
```

**torsion_polynomial** \((m, x=None, two_torsion_multiplicity=2)\)

Returns the \(m^{th}\) division polynomial of this elliptic curve evaluated at \(x\).

**INPUT:**

- \(m\) - positive integer.
- \(x\) - optional ring element to use as the “\(x\)” variable. If \(x\) is None, then a new polynomial ring will be constructed over the base ring of the elliptic curve, and its generator will be used as \(x\). Note that \(x\) does not need to be a generator of a polynomial ring; any ring element is ok. This permits fast calculation of the torsion polynomial evaluated on any element of a ring.
- \(two_torsion_multiplicity\) - 0, 1 or 2

If 0: for even \(m\) when \(x\) is None, a univariate polynomial over the base ring of the curve is returned, which omits factors whose roots are the \(x\)-coordinates of the 2-torsion points.
Similarly when \( x \) is not none, the evaluation of such a polynomial at \( x \) is returned.

If 2: for even \( m \) when \( x \) is None, a univariate polynomial over the base ring of the curve is returned, which includes a factor of degree 3 whose roots are the \( x \)-coordinates of the 2-torsion points. Similarly when \( x \) is not none, the evaluation of such a polynomial at \( x \) is returned.

If 1: when \( x \) is None, a bivariate polynomial over the base ring of the curve is returned, which includes a factor \( 2 \times y + a1 \times x + a3 \) which has simple zeros at the 2-torsion points. When \( x \) is not none, it should be a tuple of length 2, and the evaluation of such a polynomial at \( x \) is returned.

**EXAMPLES:**

```python
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.division_polynomial(1)
1
sage: E.division_polynomial(2, two_torsion_multiplicity=0)
2*y + 1
sage: E.division_polynomial(2, two_torsion_multiplicity=1)
4*x^3 - 4*x + 1
sage: E.division_polynomial(2, two_torsion_multiplicity=2)
4*x^3 - 4*x + 1
sage: E.division_polynomial(3, two_torsion_multiplicity=i) for i in range(3)]
[3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1, 3*x^4 - 6*x^2 + 3*x - 1]
sage: [type(E.division_polynomial(3, two_torsion_multiplicity=i)) for i in range(3)]
[<... 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint'>,
 <... 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>,
 <... 'sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint'>]
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: R.<z>=PolynomialRing(QQ)
sage: E.division_polynomial(4,z,0)
2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821
sage: E.division_polynomial(4, z)
8*z^9 - 24*z^8 - 464*z^7 - 2758*z^6 + 6636*z^5 + 34356*z^4 + 53510*z^3 +
 99714*z^2 + 351024*z + 459859
This does not work, since when two_torsion_multiplicity is 1, we compute a bivariate polynomial, and must evaluate at a tuple of length 2:

```python
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: R.<z,w>=PolynomialRing(QQ,2)
sage: E.division_polynomial(4,(z,w),1).factor()
(2*w + 1) * (2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821)
```

We can also evaluate this bivariate polynomial at a point:

```python
sage: E.division_polynomial(4,z,1)
Traceback (most recent call last):
...
ValueError: x should be a tuple of length 2 (or None) when two_torsion_multiplicity is 1
sage: R.<z,w>=PolynomialRing(QQ,2)
sage: E.division_polynomial(4, (z,w), 1).factor()
(2*w + 1) * (2*z^6 - 4*z^5 - 100*z^4 - 790*z^3 - 210*z^2 - 1496*z - 5821)
```
two_division_polynomial \,(x=None)\\
Returns the 2-division polynomial of this elliptic curve evaluated at \(x\).

INPUT:
- \(x\) - optional ring element to use as the \(x\) variable. If \(x\) is None, then a new polynomial ring will be constructed over the base ring of the elliptic curve, and its generator will be used as \(x\). Note that \(x\) does not need to be a generator of a polynomial ring; any ring element is ok. This permits fast calculation of the torsion polynomial \(evaluated\) on any element of a ring.

EXAMPLES:

```
sage: E = EllipticCurve('5077a1')
sage: E.two_division_polynomial()  
4*x^3 - 28*x + 25
sage: E = EllipticCurve(GF(3^2,'a'),[1,1,1,1,1])
sage: E.two_division_polynomial()  
x^3 + 2*x^2 + 2
sage: E.two_division_polynomial().roots()  
[(2, 1), (2*a, 1), (a + 2, 1)]
```

10.5 Elliptic curves over a general field

This module defines the class \texttt{EllipticCurve_field}, based on \texttt{EllipticCurve_generic}, for elliptic curves over general fields.

```
class sage.schemes.elliptic_curves.ell_field.EllipticCurve_field(K, ainvs)
    Bases: sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic

    base_field()  
    Returns the base ring of the elliptic curve.
```

EXAMPLES:

```
sage: E = EllipticCurve(GF(49, 'a'), [3,5])
sage: E.base_ring()  
Finite Field in a of size 7^2
```
\begin{verbatim}
 sage: E = EllipticCurve(ZZ, [3,5])
 sage: E.base_ring()
 Integer Ring

 sage: E = EllipticCurve([1,2,3,4,5])
 sage: E.base_ring()
 Traceback (most recent call last):
 ... TypeError: Input must be a field.

 sage: F. = QuadraticField(23)
 sage: G.<a> = F.extension(x^3+5)
 sage: E = EllipticCurve(j=1728*b).change_ring(G)
 sage: EF = E.descend_to(F); EF
 [Elliptic Curve defined by y^2 = x^3 + (27*b-621)*x + (-1296*b+2484) over \text{Number Field in b with defining polynomial x^2 - 23}]
 sage: all(Ei.change_ring(G).is_isomorphic(E) for Ei in EF)
 True

 sage: L.<a> = NumberField(x^4 - 7)
 sage: K. = NumberField(x^2 - 7, embedding=a^2)
 sage: E = EllipticCurve([a^6,0])
 sage: EK = E.descend_to(K); EK
 [Elliptic Curve defined by y^2 = x^3 + b*x over Number Field in b with defining polynomial x^2 - 7, Elliptic Curve defined by y^2 = x^3 + 7*b*x over Number Field in b with defining polynomial x^2 - 7]
 sage: all(Ei.change_ring(L).is_isomorphic(E) for Ei in EK)
 True

 sage: K.<a> = QuadraticField(17)
 sage: E = EllipticCurve(j = 2*a)
 sage: E.descend_to(QQ)
 []
\end{verbatim}

\textbf{descend_to} \((K,f=None)\)

Given an elliptic curve self defined over a field \(L\) and a subfield \(K\) of \(L\), return all elliptic curves over \(K\) which are isomorphic over \(L\) to self.

\textbf{INPUT:}

- \(K\) – a field which embeds into the base field \(L\) of self.
- \(f\) (optional) – an embedding of \(K\) into \(L\). Ignored if \(K\) is \(\mathbb{Q}\).

\textbf{OUTPUT:}

A list (possibly empty) of elliptic curves defined over \(K\) which are isomorphic to self over \(L\), up to isomorphism over \(K\).

\textbf{Note:} Currently only implemented over number fields. To extend to other fields of characteristic not 2 or 3, what is needed is a method giving the preimages in \(K^*/(K^*)^m\) of an element of the base field, for \(m = 2, 4, 6\).
genus()

Return 1 for elliptic curves.

EXAMPLES:

```
sage: E = EllipticCurve(GF(3), [0, -1, 0, -346, 2652])
sage: E.genus()
sage: R = FractionField(QQ['z'])
sage: E = EllipticCurve(R, [0, -1, 0, -346, 2652])
sage: E.genus()
1
```

hasse_invariant()

Return the Hasse invariant of this elliptic curve.

OUTPUT:

The Hasse invariant of this elliptic curve, as an element of the base field. This is only defined over fields of positive characteristic, and is an element of the field which is zero if and only if the curve is supersingular. Over a field of characteristic zero, where the Hasse invariant is undefined, a `ValueError` is returned.

EXAMPLES:

```
sage: E = EllipticCurve([Mod(1,2),Mod(1,2),0,0,Mod(1,2)])
sage: E.hasse_invariant()
sage: E = EllipticCurve([0,0,Mod(1,3),Mod(1,3),Mod(1,3)])
sage: E.hasse_invariant()
sage: E = EllipticCurve([0,0,Mod(1,5),0,Mod(2,5)])
sage: E.hasse_invariant()
sage: E = EllipticCurve([0,0,Mod(1,5),Mod(1,5),Mod(2,5)])
sage: E.hasse_invariant()
sage: F.<a> = GF(107^2)
```

Some examples over larger fields:

```
sage: EllipticCurve(GF(101),[0,0,0,0,1]).hasse_invariant()
sage: EllipticCurve(GF(101),[0,0,0,1,1]).hasse_invariant()
sage: EllipticCurve(GF(103),[0,0,0,0,1]).hasse_invariant()
sage: EllipticCurve(GF(103),[0,0,0,1,1]).hasse_invariant()
sage: F.<a> = GF(107^2)
```

Over fields of characteristic zero, the Hasse invariant is undefined:

```
sage: E = EllipticCurve([0,0,0,0,1])
sage: E.hasse_invariant()
Traceback (most recent call last):
```
is_isogenous \(\text{other, field=None}\)

Return whether or not self is isogenous to other.

INPUT:

- \(\text{other}\) – another elliptic curve.

- \(\text{field}\) (default None) – Currently not implemented. A field containing the base fields of the two elliptic curves onto which the two curves may be extended to test if they are isogenous over this field. By default is_isogenous will not try to find this field unless one of the curves can be be extended into the base field of the other, in which case it will test over the larger base field.

OUTPUT:

(bool) True if there is an isogeny from curve \(\text{self}\) to curve \(\text{other}\) defined over \(\text{field}\).

METHOD:

Over general fields this is only implemented in trivial cases.

EXAMPLES:

```sage
sage: E1 = EllipticCurve(CC, [1,18]); E1
Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000
˓→over Complex Field with 53 bits of precision
sage: E2 = EllipticCurve(CC, [2,7]); E2
Elliptic Curve defined by y^2 = x^3 + 2.00000000000000*x + 7.00000000000000
˓→over Complex Field with 53 bits of precision
sage: E1.is_isogenous(E2)
Traceback (most recent call last):
NotImplementedError: Only implemented for isomorphic curves over general fields.
```

```sage
sage: E1 = EllipticCurve(Frac(PolynomialRing(ZZ,'t')), [2,19]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 19 over Fraction Field of Univariate Polynomial Ring in t over Integer Ring
sage: E2 = EllipticCurve(CC, [23,4]); E2
Elliptic Curve defined by y^2 = x^3 + 23.0000000000000*x + 4.00000000000000
˓→over Complex Field with 53 bits of precision
sage: E1.is_isogenous(E2)
Traceback (most recent call last):
...
NotImplementedError: Only implemented for isomorphic curves over general fields.
```

is_quadratic_twist \(\text{other}\)

Determine whether this curve is a quadratic twist of another.

INPUT:

- \(\text{other}\) – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not quadratic twists, or \(D\) if \(\text{other}\) is \(\text{self}.\text{quadratic_twist}(D)\) (up to isomorphism). If \(\text{self}\) and \(\text{other}\) are isomorphic, returns 1.
If the curves are defined over \(\mathbb{Q} \), the output \(D \) is a squarefree integer.

Note: Not fully implemented in characteristic 2, or in characteristic 3 when both \(j \)-invariants are 0.

EXAMPLES:

```
sage: E = EllipticCurve('11a1')
sage: Et = E.quadratic_twist(-24)
sage: E.is_quadratic_twist(Et)
-6

sage: E1=EllipticCurve([0,0,1,0,0])
sage: E1.j_invariant()
0

sage: E2=EllipticCurve([0,0,0,0,2])
sage: E1.is_quadratic_twist(E2)
2

sage: E1.is_quadratic_twist(E1)
1

sage: type(E1.is_quadratic_twist(E1)) == type(E1.is_quadratic_twist(E2))
\rightarrow #trac 6574
True

sage: E1=EllipticCurve([0,0,1,0,0])

```

A characteristic 3 example:

```
sage: F = GF(3^5,'a')
sage: E1 = EllipticCurve_from_j(F(1))
sage: E2 = E1.quadratic_twist(-1)
sage: D = E1.is_quadratic_twist(E2); D!=0

```

(continues on next page)
is_quartic_twist (*other*)

Determine whether this curve is a quartic twist of another.

INPUT:

- *other* – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not quartic twists, or D if other is self.quartic_twist(D) (up to isomorphism). If self and other are isomorphic, returns 1.

Note: Not fully implemented in characteristics 2 or 3.

EXAMPLES:

```python
sage: E = EllipticCurve_from_j(GF(13)(1728))
sage: E1 = E.quartic_twist(2)
sage: D = E.is_quartic_twist(E1); D!=0
True
sage: E.quartic_twist(D).is_isomorphic(E1)
True
```

is_sextic_twist (*other*)

Determine whether this curve is a sextic twist of another.

INPUT:

- *other* – an elliptic curves with the same base field as self.

OUTPUT:

Either 0, if the curves are not sextic twists, or D if other is self.sextic_twist(D) (up to isomorphism). If self and other are isomorphic, returns 1.

Note: Not fully implemented in characteristics 2 or 3.

EXAMPLES:

```python
sage: E = EllipticCurve_from_j(1728)
sage: E1 = E.quartic_twist(12345)
sage: D = E.is_quartic_twist(E1); D
15999120
sage: (D/12345).is_perfect_power(4)
True
```
sage: E = EllipticCurve_from_j(GF(13)(0))
sage: E1 = E.sextic_twist(2)
sage: D = E.is_sextic_twist(E1); D!=0
True
sage: E.sextic_twist(D).is_isomorphic(E1)
True

sage: E = EllipticCurve_from_j(0)
sage: E1 = E.sextic_twist(12345)
sage: D = E.is_sextic_twist(E1); D
575968320
sage: (D/12345).is_perfect_power(6)
True

isogenies_prime_degree(l=None, max_l=31)
Return a list of all separable isogenies of given prime degree(s) with domain equal to self, which are defined over the base field of self.

INPUT:
- l – a prime or a list of primes.
- max_l – (default: 31) a bound on the primes to be tested. This is only used if l is None.

OUTPUT:
(list) All separable l-isogenies for the given l with domain self.

ALGORITHM:
Calls the generic function isogenies_prime_degree(). This is generic code, valid for all fields. It requires that certain operations have been implemented over the base field, such as root-finding for univariate polynomials.

EXAMPLES:
Examples over finite fields:

sage: E = EllipticCurve(GF(next_prime(1000000)), [7,8])
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over
$\text{Finite Field of size } 1000003$ to Elliptic Curve defined by $y^2 = x^3 +$
$970389x + 794257$ over $\text{Finite Field of size } 1000003$,
Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over
$\text{Finite Field of size } 1000003$ to Elliptic Curve defined by $y^2 = x^3 +$
$29783x + 206196$ over $\text{Finite Field of size } 1000003$,
Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over
$\text{Finite Field of size } 1000003$ to Elliptic Curve defined by $y^2 = x^3 +$
$999960x + 78$ over $\text{Finite Field of size } 1000003$]
sage: E.isogenies_prime_degree(3)
[]
sage: E.isogenies_prime_degree(5)
[]
sage: E.isogenies_prime_degree(7)
[]
sage: E.isogenies_prime_degree(11)
[]
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over
$\text{Finite Field of size } 1000003$ to Elliptic Curve defined by $y^2 = x^3 +$
$878663x + 845666$ over $\text{Finite Field of size } 1000003$,]
Isogeny of degree 13 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 878063x + 845666$ over $\text{Finite Field of size 1000003}$

```
sage: E.isogenies_prime_degree(max_l=13)
```

```
[Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 970389x + 794257$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 29783x + 206196$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 999960x + 78$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 13 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 878063x + 845666$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 13 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 375648x + 342776$ over $\text{Finite Field of size 1000003}$]
```

```
sage: E.isogenies_prime_degree() # Default limit of 31
```

```
[Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 970389x + 794257$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 29783x + 206196$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 999960x + 78$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 13 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 878063x + 845666$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 13 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 375648x + 342776$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 17 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 347438x + 594729$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 17 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 674846x + 7392$ over $\text{Finite Field of size 1000003}$, Isogeny of degree 23 from Elliptic Curve defined by $y^2 = x^3 + 7x + 8$ over $\text{Finite Field of size 1000003}$ to Elliptic Curve defined by $y^2 = x^3 + 390065x + 605596$ over $\text{Finite Field of size 1000003}$]
```

```
sage: E = EllipticCurve(GF(17), [2,0])
sage: E.isogenies_prime_degree(3)
```

```
[]
```

```
sage: E.isogenies_prime_degree(2)
```

```
[Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 2x$ over $\text{Finite Field of size 17}$ to Elliptic Curve defined by $y^2 = x^3 + 9x$ over $\text{Finite Field of size 17}$, Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 2x$ over $\text{Finite Field of size 17}$ to Elliptic Curve defined by $y^2 = x^3 + 5x + 9$ over $\text{Finite Field of size 17}$, Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 2x$ over $\text{Finite Field of size 17}$ to Elliptic Curve defined by $y^2 = x^3 + 5x + 8$ over $\text{Finite Field of size 17}$]
```
The base field matters, over a field extension we find more isogenies:

```
sage: E = EllipticCurve(GF(13), [2,8])
sage: E.isogenies_prime_degree(max_l=3)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field of size 13, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field of size 13]
sage: E = EllipticCurve(GF(13^6), [2,8])
sage: E.isogenies_prime_degree(max_l=3)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + 7*z6^4 + 7*z6^3 + 12*z6 + 7 over Finite Field in z6 of size 13^6, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = (2*z6^5+6*z6^4+9*z6^3+8*z6+7)*x + (3*z6^5+9*z6^4+7*z6^3+12*z6+7) over Finite Field in z6 of size 13^6, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + 9*z6^5+7*z6^4+4*z6^3+5*z6+9)*x + (10*z6^5+4*z6^4+6*z6^3+12*z6+10) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (3*z6^5+5*z6^4+8*z6^3+11*z6^2+5*z6+12)*x + (12*z6^5+6*z6^4+8*z6^3+4*z6^2+7*z6+6) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (7*z6^4+4*z6^3+7*z6^2+4)*x + (6*z6^5+10*z6^3+12*z6^2+10*z6+8) over Finite Field in z6 of size 13^6, Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in z6 of size 13^6 to Elliptic Curve defined by y^2 = x^3 + (10*z6^5+7*z6^4+4*z6^3+8*z6^2+9*z6+7)*x + (8*z6^5+7*z6^4+8*z6^3+10*z6^2+9*z6+7) over Finite Field in z6 of size 13^6]
```

If the degree equals the characteristic, we find only separable isogenies:

```
sage: E = EllipticCurve(GF(13), [2,8])
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field of size 13]
sage: E = EllipticCurve(GF(5), [1,1])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 to Elliptic Curve defined by y^2 = x^3 + 4*x + 4 over Finite Field of size 5]
sage: k.<a> = GF(3^4)
sage: E = EllipticCurve(k, [0,1,0,0,a])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x^2 + a over Finite Field in a of size 3^4 to Elliptic Curve defined by y^2 = x^3 + x^2 + (2*a^3+a^2+2)*x + (a^2+2) over Finite Field in a of size 3^4]
```
In the supersingular case, there are no separable isogenies of degree equal to the characteristic:

```
sage: E = EllipticCurve(GF(5), [0,1])
sage: E.isogenies_prime_degree(5)
[]
```

An example over a rational function field:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: E = EllipticCurve(K, [1, t^5])
sage: E.isogenies_prime_degree(5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x + t^5 over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 to Elliptic Curve defined by y^2 = x^3 + x + 4*t over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5]
```

Examples over number fields (other than QQ):

```
sage: QQroot2.<e> = NumberField(x^2-2)
sage: E = EllipticCurve(QQroot2, j=8000)
sage: E.isogenies_prime_degree()
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (220500*e-257250)*x + (54022500*e-88837000) over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (-36750)*x + 24010000 over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (54022500*e-88837000) over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (220500*e-257250)*x + (-54022500*e-88837000) over Number Field in e with defining polynomial x^2 - 2]
```

```
sage: E = EllipticCurve(QQroot2, [1,0,1,4, -6]); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70) over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-1)*x over Number Field in e with defining polynomial x^2 - 2,
Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874) over Number Field in e with defining polynomial x^2 - 2]
```

These are not implemented yet:
isogeny (kernel, codomain=None, degree=None, model=None, check=True)

Return an elliptic curve isogeny from self.

The isogeny can be determined in two ways, either by a polynomial or a set of torsion points. The methods used are:

- **Velu’s Formulas**: Velu’s original formulas for computing isogenies. This algorithm is selected by giving as the `kernel` parameter a point or a list of points which generate a finite subgroup.

- **Kohel’s Formulas**: Kohel’s original formulas for computing isogenies. This algorithm is selected by giving as the `kernel` parameter a polynomial (or a coefficient list (little endian)) which will define the kernel of the isogeny.

INPUT:

- **E** - an elliptic curve, the domain of the isogeny to initialize.

- **kernel** - a kernel, either a point in `E`, a list of points in `E`, a univariate kernel polynomial or None. If initiating from a domain/codomain, this must be set to None. Validity of input is checked (unless check=False).

- **codomain** - an elliptic curve (default:None). If `kernel` is None, then this must be the codomain of a separable normalized isogeny, furthermore, `degree` must be the degree of the isogeny from `E` to `codomain`. If `kernel` is not None, then this must be isomorphic to the codomain of the normalized separable isogeny defined by `kernel`, in this case, the isogeny is post composed with an isomorphism so that this parameter is the codomain.

- **degree** - an integer (default:None). If `kernel` is None, then this is the degree of the isogeny from `E` to `codomain`. If `kernel` is not None, then this is used to determine whether or not to skip a gcd of the kernel polynomial with the two torsion polynomial of `E`.

- **model** - a string (default:None). Only supported variable is “minimal”, in which case if ‘E’ is a curve over the rationals or over a number field, then the codomain is a global minimum model where this exists.

- **check** (default: True) checks that the input is valid, i.e., that the polynomial provided is a kernel polynomial, meaning that its roots are the x-coordinates of a finite subgroup.

OUTPUT:

An isogeny between elliptic curves. This is a morphism of curves.

EXAMPLES:
sage: F = GF(2^5, 'alpha'); alpha = F.gen()
sage: E = EllipticCurve(F, [1,0,1,1,1])
sage: R.<x> = F[]
sage: phi = E.isogeny(x+1)
sage: phi.rational_maps()
((x^2 + x + 1)/(x + 1), (x^2*y + x)/(x^2 + 1))
sage: E = EllipticCurve('11a1')
sage: P = E.torsion_points()[1]
sage: E.isogeny(P)
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over Rational Field
sage: E = EllipticCurve(GF(19),[1,1])
sage: P = E(15,3); Q = E(2,12);
sage: (P.order(), Q.order())
(7, 3)
sage: phi = E.isogeny([P,Q]); phi
Isogeny of degree 21 from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19 to Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 19
sage: phi(E.random_point()) # all points defined over GF(19) are in the kernel
(0 : 1 : 0)

Not all polynomials define a finite subgroup (trac ticket #6384):

sage: E = EllipticCurve(GF(31),[1,0,0,1,2])
sage: phi = E.isogeny([14,27,4,1])
Traceback (most recent call last):
... ValueError: The polynomial x^3 + 4*x^2 + 27*x + 14 does not define a finite subgroup of Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31.

Until the checking of kernel polynomials was implemented in trac ticket #23222, the following raised no error but returned an invalid morphism. See also trac ticket #11578:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2-x-1)
sage: E = EllipticCurve(K, [-13392, -1080432])
sage: R.<x> = K[]
sage: phi = E.isogeny((x-564)*(x - 396/5*a + 348/5))
Traceback (most recent call last):
... ValueError: The polynomial x^2 + (-396/5*a - 2472/5)*x + 223344/5*a - 196272/5 does not define a finite subgroup of Elliptic Curve defined by y^2 = x^3 - Number Field in a with defining polynomial x^2 - x - 1.

isogeny_codomain *(kernel, degree=None)*

Return the codomain of the isogeny from self with given kernel.

INPUT:

- **kernel** - Either a list of points in the [kernel of the isogeny](#), or a kernel polynomial (specified as a either a univariate polynomial or a coefficient list.)

- **degree** - an integer, (default:None) optionally specified degree of the kernel.

10.5. Elliptic curves over a general field
OUTPUT:

An elliptic curve, the codomain of the separable normalized isogeny from this kernel

EXAMPLES:

```
sage: E = EllipticCurve('17a1')
sage: R.<x> = QQ[]
sage: E2 = E.isogeny_codomain(x - 11/4); E2
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1461/16*x - 19681/64
    -> over Rational Field
```

```
quadratic_twist (D=None)

Return the quadratic twist of this curve by D.

INPUT:

• D (default None) the twisting parameter (see below).

In characteristics other than 2, D must be nonzero, and the twist is isomorphic to self after adjoining \( \sqrt{D} \) to the base.

In characteristic 2, D is arbitrary, and the twist is isomorphic to self after adjoining a root of \( x^2 + x + D \) to the base.

In characteristic 2 when \( j = 0 \), this is not implemented.

If the base field \( F \) is finite, D need not be specified, and the curve returned is the unique curve (up to isomorphism) defined over \( F \) isomorphic to the original curve over the quadratic extension of \( F \) but not over \( F \) itself. Over infinite fields, an error is raised if \( D \) is not given.

EXAMPLES:

```
sage: E = EllipticCurve([GF(1103)(1), 0, 0, 107, 340]); E
Elliptic Curve defined by y^2 + x*y = x^3 + 107 *x + 340 over Finite Field of size 1103
sage: F=E.quadratic_twist(-1); F
Elliptic Curve defined by y^2 = x^3 + 1102 *x^2 + 609*x + 300 over Finite Field of size 1103
sage: E.is_isomorphic(F)
False
sage: E.is_isomorphic(F,GF(1103^2,'a'))
True
```

A characteristic 2 example:

```
sage: E=EllipticCurve(GF(2),[1,0,1,1,1])
sage: E1=E.quadratic_twist(1)
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1,GF(4,'a'))
True
```

Over finite fields, the twisting parameter may be omitted:

```
sage: k.<a> = GF(2^10)
sage: E = EllipticCurve(k,[a^2,a,1,a+1,1])
sage: Et = E.quadratic_twist()
sage: Et # random (only determined up to isomorphism)
Elliptic Curve defined by y^2 + x*y = x^3 + (a^7+a^4+a^3+a^2+a+1)*x^2 + (a^8+a^6+a^4+1) over Finite Field in a of size 2^10
```
sage: E.is_isomorphic(Et)
False
sage: E.j_invariant()==Et.j_invariant()
True

sage: p=next_prime(10^10)
sage: k = GF(p)
sage: E = EllipticCurve(k,[1,2,3,4,5])
sage: Et = E.quadratic_twist()

# random (only determined up to isomorphism)
Elliptic Curve defined by y^2 = x^3 + 7860088097 *x^2 + 9495240877 *x + 3048660957 over Finite Field of size 10000000019

sage: E.is_isomorphic(Et)
False
sage: k2 = GF(p^2,'a')
sage: E.change_ring(k2).is_isomorphic(Et.change_ring(k2))
True

**quartic_twist** *(D)*

Return the quartic twist of this curve by *D*.

**INPUT:**

- *D* (must be nonzero) – the twisting parameter.

**Note:** The characteristic must not be 2 or 3, and the *j*-invariant must be 1728.

**EXAMPLES:**

```
sage: E=EllipticCurve_from_j(GF(13)(1728)); E
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 13
sage: E1=E.quartic_twist(2); E1
Elliptic Curve defined by y^2 = x^3 + 5 *x over Finite Field of size 13
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1,GF(13^2,'a'))
False
sage: E.is_isomorphic(E1,GF(13^4,'a'))
True
```

**sextic_twist** *(D)*

Return the quartic twist of this curve by *D*.

**INPUT:**

- *D* (must be nonzero) – the twisting parameter.

**Note:** The characteristic must not be 2 or 3, and the *j*-invariant must be 0.

**EXAMPLES:**

```
sage: E=EllipticCurve_from_j(GF(13)(0)); E
Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 13
sage: E1=E.sextic_twist(2); E1
Elliptic Curve defined by y^2 = x^3 + 11 over Finite Field of size 13
```

(continues on next page)
sage: E.is_isomorphic(E1)
False
sage: E.is_isomorphic(E1,GF(13^2,'a'))
False
sage: E.is_isomorphic(E1,GF(13^4,'a'))
False
sage: E.is_isomorphic(E1,GF(13^6,'a'))
True

two_torsion_rank()
Return the dimension of the 2-torsion subgroup of \( E(K) \).
This will be 0, 1 or 2.

EXAMPLES:

sage: E=EllipticCurve('11a1')
sage: E.two_torsion_rank()
0
sage: K.<alpha>=QQ.extension(E.division_polynomial(2).monic())
sage: E.base_extend(K).two_torsion_rank()
1
sage: E.reduction(53).two_torsion_rank()
2
sage: E = EllipticCurve('14a1')
sage: E.two_torsion_rank()
1
sage: K.<alpha>=QQ.extension(E.division_polynomial(2).monic().factor()[1][0])
sage: E.base_extend(K).two_torsion_rank()
2
sage: EllipticCurve('15a1').two_torsion_rank()
2

weierstrass_p(prec=20, algorithm=None)
Computes the Weierstrass \( \wp \)-function of the elliptic curve.

INPUT:
- mprec - precision
- algorithm - string (default:None) an algorithm identifier indicating using the pari, fast or quadratic algorithm. If the algorithm is None, then this function determines the best algorithm to use.

OUTPUT:
a Laurent series in one variable \( z \) with coefficients in the base field \( k \) of \( E \).

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: E.weierstrass_p(prec=10)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
sage: E.weierstrass_p(prec=8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: Esh = E.short_weierstrass_model()
10.6 Elliptic curves over finite fields

AUTHORS:

- William Stein (2005): Initial version
- Robert Bradshaw et al. . . .
- John Cremona (2008-02): Point counting and group structure for non-prime fields, Frobenius endomorphism and order, elliptic logs
- Mariah Lenox (2011-03): Added set_order method

class sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field(K, ainvs)


Elliptic curve over a finite field.

EXAMPLES:

sage: EllipticCurve(GF(101),[2,3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Finite Field of size 101

sage: F=GF(101^2, 'a')
sage: EllipticCurve([F(2),F(3)])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Finite Field in a of size 101^2

Elliptic curves over \(\mathbb{Z}/N\mathbb{Z}\) with \(N\) prime are of type “elliptic curve over a finite field”:

sage: F = Zmod(101)
sage: E = EllipticCurve(F, [2, 3])
Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101

sage: type(E)

(continues on next page)
Elliptic curves over $\mathbb{Z}/N\mathbb{Z}$ with $N$ composite are of type "generic elliptic curve":

```python
sage: F = Zmod(95)
sage: E = EllipticCurve(F, [2, 3])
sage: type(E)
<class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category'>
sage: E.category()
Category of schemes over Ring of integers modulo 95
```

**abelian_group** *(debug=False)*

Returns the abelian group structure of the group of points on this elliptic curve.

---

**Warning:** The algorithm is definitely not intended for use with large finite fields! The factorization of the orders of elements must be feasible. Also, baby-step-giant-step methods are used which have space and time requirements which are $O(\sqrt{q})$.

**See also:**

If you do not need the complete abelian group structure but only generators of the group, use `gens()` which is much faster.

Also, the algorithm uses random points on the curve and hence the generators are likely to differ from one run to another; but the group is cached so the generators will not change in any one run of Sage.

**INPUT:**

- `debug` - (default: False): if True, print debugging messages

**OUTPUT:**

- an abelian group
  - tuple of images of each of the generators of the abelian group as points on this curve

**AUTHORS:**

- John Cremona

**EXAMPLES:**

```python
sage: E=EllipticCurve(GF(11),[2,5])
sage: E.abelian_group()
Additive abelian group isomorphic to $\mathbb{Z}/10\mathbb{Z}$
 embedded in Abelian group of points on Elliptic Curve defined by $y^2 = x^3 + 2*x + 5$ over Finite Field of size 11
```

```python
sage: E=EllipticCurve(GF(41),[2,5])
sage: E.abelian_group()
Additive abelian group isomorphic to $\mathbb{Z}/22 + \mathbb{Z}/2$...
```
sage: F.<a>=GF(3^6,'a')
sage: E=EllipticCurve([a^4 + a^3 + 2*a^2 + 2*a, 2*a^5 + 2*a^3 + 2*a^2 + 1])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/26 + Z/26 ...

sage: F.<a>=GF(101^3,'a')
sage: E=EllipticCurve([2*a^2 + 48*a + 27, 89*a^2 + 76*a + 24])
sage: E.abelian_group()
Additive abelian group isomorphic to Z/1031352 ...

The group can be trivial:

sage: E=EllipticCurve(GF(2),[0,0,1,1,1])
sage: E.abelian_group()
Trivial group embedded in Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + x + 1 over Finite Field of size 2

Of course, there are plenty of points if we extend the field:

sage: E.cardinality(extension_degree=100)
1267650600228231653296516890625

This tests the patch for trac ticket #3111, using 10 primes randomly selected:

sage: E = EllipticCurve('389a')
sage: for p in [5927, 2297, 1571, 1709, 3851, 127, 3253, 5783, 3499, 4817]:
    G = E.change_ring(GF(p)).abelian_group()
    ...
    if p != 389:
        G = E.change_ring(GF(p)).abelian_group()

This tests that the bug reported in trac ticket #3926 has been fixed:

sage: K.<i> = QuadraticField(-1)
sage: OK = K.ring_of_integers()
sage: P=K.factor(10007)[0][0]
sage: OKmodP = OK.residue_field(P)
sage: E = EllipticCurve([0,0,0,i,i+3])
sage: Emod = E.change_ring(OKmodP); Emod
Elliptic Curve defined by y^2 = x^3 + ibar *x + (ibar+3) over Residue field in ibar of Fractional ideal (10007)
sage: Emod.abelian_group() #random generators
(Multiplicative Abelian group isomorphic to C50067594 x C2, ((3152*ibar + 7679 : 7330*ibar + 7913 : 1), (8466*ibar + 1770 : 0 : 1)))

cardinality(algorithm=None, extension_degree=None)
Return the number of points on this elliptic curve.

INPUT:

- algorithm - (optional) string:
  - 'pari' - use the PARI C-library function ellcard.
  - 'bsgs' - use the baby-step giant-step method as implemented in Sage, with the Cremona-
    Sutherland version of Mestre's trick.
  - 'exhaustive' - na"ive point counting.
  - 'subfield' - reduce to a smaller field, provided that the j-invariant lies in a subfield.

10.6. Elliptic curves over finite fields 195
- 'all' — compute cardinality with both 'pari' and 'bsgs'; return result if they agree or raise a `AssertionError` if they do not

- `extension_degree` — an integer $d$ (default: 1): if the base field is $F_q$, return the cardinality of `self` over the extension $F_{q^d}$ of degree $d$.

**OUTPUT:**

The order of the group of rational points of `self` over its base field, or over an extension field of degree $d$ as above. The result is cached.

**EXAMPLES:**

```sage
sage: EllipticCurve(GF(4, 'a'), [1,2,3,4,5]).cardinality()
8
sage: k.<a> = GF(3^3)
sage: l = [a^2 + 1, 2*a^2 + 2*a + 1, a^2 + a + 1, 2, 2*a]
sage: EllipticCurve(k,l).cardinality()
29

sage: l = [1, 1, 0, 2, 0]
sage: EllipticCurve(k, l).cardinality()
38
```

An even bigger extension (which we check against Magma):

```sage
sage: EllipticCurve(GF(3^100, 'a'), [1,2,3,4,5]).cardinality()
515377520732011331036459693969645888996929931054
sage: magma.eval("Order(EllipticCurve([GF(3^100)|1,2,3,4,5]))") # optional
˓→ magma
'515377520732011331036459693969645888996929931054'
```

```sage
sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality()
10076
sage: EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality(algorithm='pari')
10076
sage: EllipticCurve(GF(next_prime(10**20)), [1,2,3,4,5]).cardinality()
100000000011093199520
```

The cardinality is cached:

```sage
sage: E = EllipticCurve(GF(3^100, 'a'), [1,2,3,4,5])
sage: E.cardinality() is E.cardinality()
True
```

The following is very fast since the curve is actually defined over the prime field:

```sage
sage: k.<a> = GF(11^100)
sage: E1 = EllipticCurve(k, [3,3])
sage: N1 = E1.cardinality(algorithm="subfield"); N1
13780612339822270184118337172089636776264331200038467184683526694179151034106556517649784650
sage: E1.cardinality_pari() == N1
True
sage: E2 = E1.quadratic_twist()
sage: N2 = E2.cardinality(algorithm="subfield"); N2
13780612339822270184118337172089636776264331200038465681609428410130819384998058836230447249
sage: E2.cardinality_pari() == N2
True
```

(continues on next page)
We can count points over curves defined as a reduction:

```python
sage: x = polygen(QQ)
sage: K.<w> = NumberField(x^2 + x + 1)
sage: EK = EllipticCurve(K, [0, 0, w, 2, 1])
sage: E = EK.base_extend(K.residue_field(2))
sage: E
Elliptic Curve defined by y^2 + wbar*y = x^3 + 1 over Residue field in wbar of Fractional ideal (2)
sage: E.cardinality()
7
```

```python
sage: E = EK.base_extend(K.residue_field(w - 1))
sage: E.abelian_group()
Trivial group embedded in Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + 2*x + 1 over Residue field of Fractional ideal (w - 1)
```

```python
sage: R.<x> = GF(17)[x]
sage: pol = R.irreducible_element(5)
sage: k.<a> = R.residue_field(pol)
sage: E = EllipticCurve(R, [1, x]).base_extend(k)
sage: E
Elliptic Curve defined by y^2 = x^3 + x + a over Residue field in a of Principal ideal (x^5 + x + 14) of Univariate Polynomial Ring in x overFinite Field of size 17
sage: E.cardinality()
1421004
```

### cardinality_bsgs

**cardinality_bsgs**(verbosel=True)

Return the cardinality of self over the base field.

**ALGORITHM:** A variant of “Mestre’s trick” extended to all finite fields by Cremona and Sutherland, 2008.

**Note:**

1. The Mestre-Schoof-Cremona-Sutherland algorithm may fail for a small finite number of curves over \( \mathbb{F}_q \) for \( q \) at most 49, so for \( q < 50 \) we use an exhaustive count.

2. Quadratic twists are not implemented in characteristic 2 when \( j = 0 (= 1728) \); but this case is treated separately.

**EXAMPLES:**

```python
sage: p=next_prime(10^3)
sage: E=EllipticCurve(GF(p),[3,4])
sage: E.cardinality_bsgs()
1020
```

```python
sage: E=EllipticCurve(GF(3^4,'a'),[1,1])
sage: E.cardinality_bsgs()
64
```

```python
sage: F.<a>=GF(101^3,'a')
sage: E=EllipticCurve([2*a^2 + 48*a + 27, 89*a^2 + 76*a + 24])
(continues on next page)
cardinality_exhaustive()
Return the cardinality of self over the base field. Simply adds up the number of points with each x-coordinate: only used for small field sizes!

EXAMPLES:

```sage
sage: p = next_prime(10^3)
sage: E = EllipticCurve(GF(p),[3,4])
sage: E.cardinality_exhaustive()
1020
sage: E = EllipticCurve(GF(3^4,'a'),[1,1])
sage: E.cardinality_exhaustive()
64
```

cardinality_pari()
Return the cardinality of self using PARI.

EXAMPLES:

```sage
sage: p=next_prime(10^3)
sage: E=EllipticCurve(GF(p),[3,4])
sage: E.cardinality_pari()
1020
sage: K=GF(next_prime(10^6))
sage: E=EllipticCurve(K,[1,0,0,1,1])
sage: E.cardinality_pari()
999945
```

Since trac ticket #16931, this now works over finite fields which are not prime fields:

```sage
sage: k.<a> = GF(7^3)
sage: E = EllipticCurve_from_j(a)
sage: E.cardinality_pari()
318
sage: K.<a> = GF(3^20)
sage: E = EllipticCurve(K,[1,0,0,1,a])
sage: E.cardinality_pari()
3486794310
```

count_points(n=1)
Returns the cardinality of this elliptic curve over the base field or extensions.

INPUT:

- n (int) – a positive integer

OUTPUT:

If \(n = 1 \), returns the cardinality of the curve over its base field.

If \(n > 1 \), returns a list \([c_1, c_2, ..., c_n]\) where \(c_d \) is the cardinality of the curve over the extension of degree \(d \) of its base field.

EXAMPLES:
\texttt{sage}: p = 101
\texttt{sage}: F = GF(p)
\texttt{sage}: E = EllipticCurve(F, [2,3])
\texttt{sage}: E.count_points(1)
96
\texttt{sage}: E.count_points(5)
[96, 10368, 1031904, 104053248, 10509895776]

\texttt{sage}: F.<a> = GF(p^2)
\texttt{sage}: E = EllipticCurve(F, [a,a])
\texttt{sage}: E.cardinality()
10295
\texttt{sage}: E.count_points()
10295
\texttt{sage}: E.count_points(1)
10295
\texttt{sage}: E.count_points(5)
[10295, 104072155, 1061518108880, 10828567126268595, 110462212555439192375]

\texttt{frobenius}()

Return the frobenius of self as an element of a quadratic order

\textbf{Note:} This computes the curve cardinality, which may be time-consuming.

Frobenius is only determined up to conjugacy.

\textbf{EXAMPLES:}

\texttt{sage}: E=EllipticCurve(GF(11),[3,3])
\texttt{sage}: E.frobenius()
\texttt{phi}
\texttt{sage}: E.frobenius().minpoly()
\texttt{x^2 - 4*x + 11}

For some supersingular curves, Frobenius is in \(\mathbb{Z}\):

\texttt{sage}: E=EllipticCurve(GF(25,'a'),[0,0,0,0,1])
\texttt{sage}: E.frobenius()
\texttt{-5}

\texttt{frobenius_order}()

Return the quadratic order \(\mathbb{Z}[\phi]\) where \(\phi\) is the Frobenius endomorphism of the elliptic curve

\textbf{Note:} This computes the curve cardinality, which may be time-consuming.

\textbf{EXAMPLES:}

\texttt{sage}: E=EllipticCurve(GF(11),[3,3])
\texttt{sage}: E.frobenius_order()
Order in Number Field in phi with defining polynomial \(x^2 - 4*x + 11\)

For some supersingular curves, Frobenius is in \(\mathbb{Z}\) and the Frobenius order is \(\mathbb{Z}\):
sage: E=EllipticCurve(GF(25, 'a'), [0, 0, 0, 0, 1])
sage: R=E.frobenius_order()
sage: R
Order in Number Field in phi with defining polynomial x + 5
sage: R.degree()
1

frobenius_polynomial()

Return the characteristic polynomial of Frobenius.

The Frobenius endomorphism of the elliptic curve has quadratic characteristic polynomial. In most cases this is irreducible and defines an imaginary quadratic order; for some supersingular curves, Frobenius is an integer a and the polynomial is $(x - a)^2$.

Note: This computes the curve cardinality, which may be time-consuming.

EXAMPLES:

```
sage: E=EllipticCurve(GF(11), [3, 3])
sage: E.frobenius_polynomial()
x^2 - 4*x + 11
```

For some supersingular curves, Frobenius is in \mathbb{Z} and the polynomial is a square:

```
sage: E=EllipticCurve(GF(25, 'a'), [0, 0, 0, 0, 1])
sage: E.frobenius_polynomial().factor()
(x + 5)^2
```

 gens()

Return points which generate the abelian group of points on this elliptic curve.

OUTPUT: a tuple of points on the curve.

- if the group is trivial: an empty tuple.
- if the group is cyclic: a tuple with 1 point, a generator.
- if the group is not cyclic: a tuple with 2 points, where the order of the first point equals the exponent of the group.

Warning: In the case of 2 generators P and Q, it is not guaranteed that the group is the cartesian product of the 2 cyclic groups $\langle P \rangle$ and $\langle Q \rangle$. In other words, the order of Q is not as small as possible. If you really need to know the group structure, use `abelian_group()`.

EXAMPLES:

```
sage: E = EllipticCurve(GF(11), [2, 5])
sage: P = E.gens()[0]; P # random
(0 : 7 : 1)
sage: E.cardinality(), P.order()
(10, 10)
sage: E = EllipticCurve(GF(41), [2, 5])
sage: E.gens() # random
((20 : 38 : 1), (25 : 31 : 1))
sage: E.cardinality()
44
```
If the abelian group has been computed, return those generators instead:

```
sage: E.abelian_group()
Additive abelian group isomorphic to Z/22 + Z/2 embedded in Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 2*x + 5 over Finite Field of size 41
sage: E.abelian_group().gens()
((30 : 13 : 1), (23 : 0 : 1))
sage: E.gens()
((30 : 13 : 1), (23 : 0 : 1))
sage: E.gens()[0].order()
22
sage: E.gens()[1].order()
2
```

Examples with 1 and 0 generators:

```
sage: F.<a> = GF(3^6)
sage: E = EllipticCurve([a, a+1])
sage: pts = E.gens()
sage: len(pts)
1
sage: pts[0].order() == E.cardinality()
True
sage: E = EllipticCurve(GF(2), [0,0,1,1,1])
sage: E.gens()
()  
```

This works over larger finite fields where :meth:`abelian_group` may be too expensive:

```
sage: k.<a> = GF(5^60)
sage: E = EllipticCurve([a, a])
sage: len(E.gens())
2
sage: E.cardinality()  
867361737988403547207212930746733987710588
sage: E.gens()[0].order()  
433680868994201773603606465373366993855294
sage: E.gens()[1].order()  
433680868994201773603606465373366993855294
```

.. automethod:: is_isogenous

```
is_isogenous (other, field=None, proof=True)
Return whether or not self is isogenous to other

INPUT:

* other – another elliptic curve.

* field (default None) – a field containing the base fields of the two elliptic curves into which the two curves may be extended to test if they are isogenous over this field. By default is_isogenous will not try to find this field unless one of the curves can be extended into the base field of the other, in which case it will test over the larger base field.

* proof (default True) – this parameter is here only to be consistent with versions for other types of elliptic curves.

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other defined over field.

EXAMPLES:

```
```
When the field is given:

```
sage: E1 = EllipticCurve(GF(13^2,'a'),[2,7]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 7 over Finite Field in a of size 13^2
sage: E1.is_isogenous(5)
Traceback (most recent call last):
... ValueError: Second argument is not an Elliptic Curve.
sage: E1.is_isogenous(E1)
True
sage: E2 = EllipticCurve(GF(7^3,'b'),[3,1]); E2
Elliptic Curve defined by y^2 = x^3 + 3*x + 1 over Finite Field in b of size 7^3
sage: E1.is_isogenous(E2)
Traceback (most recent call last):
... ValueError: The base fields must have the same characteristic.
sage: E3 = EllipticCurve(GF(11^2,'c'),[4,3]); E3
Elliptic Curve defined by y^2 = x^3 + 4*x + 3 over Finite Field in c of size 11^2
sage: E1.is_isogenous(E3)
False
sage: E4 = EllipticCurve(GF(11^6,'d'),[6,5]); E4
Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field in d of size 11^6
sage: E1.is_isogenous(E4)
True
sage: E5 = EllipticCurve(GF(11^7,'e'),[4,2]); E5
Elliptic Curve defined by y^2 = x^3 + 4*x + 2 over Finite Field in e of size 11^7
sage: E1.is_isogenous(E5)
Traceback (most recent call last):
... ValueError: Curves have different base fields: use the field parameter.
```

```

When the field is given:

```
sage: E1 = EllipticCurve(GF(13^2,'a'),[2,7]); E1
Elliptic Curve defined by y^2 = x^3 + 2*x + 7 over Finite Field in a of size 13^2
sage: E1.is_isogenous(5,GF(13^6,'f'))
Traceback (most recent call last):
... ValueError: Second argument is not an Elliptic Curve.
sage: E6 = EllipticCurve(GF(11^3,'g'),[9,3]); E6
Elliptic Curve defined by y^2 = x^3 + 9*x + 3 over Finite Field in g of size 11^3
sage: E1.is_isogenous(E6,QQ)
Traceback (most recent call last):
... ValueError: The base fields must have the same characteristic.
sage: E7 = EllipticCurve(GF(13^5,'h'),[2,9]); E7
Elliptic Curve defined by y^2 = x^3 + 2*x + 9 over Finite Field in h of size 13^5
sage: E1.is_isogenous(E7,GF(13^4,'i'))
Traceback (most recent call last):
... ValueError: Field must be an extension of the base fields of both curves
sage: E1.is_isogenous(E7,GF(13^30,'j'))
False
```

\texttt{is_ordinary} (\texttt{proof}=\texttt{True})

Return True if this elliptic curve is ordinary, else False.

\textbf{INPUT:}

- \texttt{proof} (boolean, default \texttt{True}) – If True, returns a proved result. If False, then a return value of True is certain but a return value of False may be based on a probabilistic test. See the documentation of...
the function `is_j_supersingular()` for more details.

EXAMPLES:

```python
sage: F = GF(101)
sage: EllipticCurve(j=F(0)).is_ordinary()
False
sage: EllipticCurve(j=F(1728)).is_ordinary()
True
sage: EllipticCurve(j=F(66)).is_ordinary()
False
sage: EllipticCurve(j=F(99)).is_ordinary()
True
```

is_supersingular *(proof=True)*

Return True if this elliptic curve is supersingular, else False.

INPUT:

- `proof` (boolean, default True) – If True, returns a proved result. If False, then a return value of False is certain but a return value of True may be based on a probabilistic test. See the documentation of the function `is_j_supersingular()` for more details.

EXAMPLES:

```python
sage: F = GF(101)
sage: EllipticCurve(j=F(0)).is_supersingular()
True
sage: EllipticCurve(j=F(1728)).is_supersingular()
False
sage: EllipticCurve(j=F(66)).is_supersingular()
True
sage: EllipticCurve(j=F(99)).is_supersingular()
False
```

order *(algorithm=None, extension_degree=1)*

Return the number of points on this elliptic curve.

INPUT:

- `algorithm` – (optional) string:
 - 'pari' – use the PARI C-library function `ellcard`.
 - 'bsgs' – use the baby-step giant-step method as implemented in Sage, with the Cremona-Sutherland version of Mestre’s trick.
 - 'exhaustive' – naive point counting.
 - 'subfield' – reduce to a smaller field, provided that the j-invariant lies in a subfield.
 - 'all' – compute cardinality with both 'pari' and 'bsgs'; return result if they agree or raise an `AssertionError` if they do not

- `extension_degree` – an integer \(d\) (default: 1): if the base field is \(F_q\), return the cardinality of `self` over the extension \(F_{q^d}\) of degree \(d\).

OUTPUT:

The order of the group of rational points of `self` over its base field, or over an extension field of degree \(d\) as above. The result is cached.

EXAMPLES:
sage: `EllipticCurve(GF(4, 'a'), [1,2,3,4,5]).cardinality()`

8

sage: `k.<a> = GF(3^3)`

sage: `l = [a^2 + 1, 2*a^2 + 2*a + 1, a^2 + a + 1, 2, 2*a]`

sage: `EllipticCurve(k,l).cardinality()`

29

sage: `l = [1, 1, 0, 2, 0]`

sage: `EllipticCurve(k, l).cardinality()`

38

An even bigger extension (which we check against Magma):

sage: `EllipticCurve(GF(3^100, 'a'), [1,2,3,4,5]).cardinality()`

515377520732011331036459693969645888996929981504

sage: `magma.eval("Order(EllipticCurve([GF(3^100)|1,2,3,4,5]))")` # optional

→ `magma`

'515377520732011331036459693969645888996929981504'

sage: `EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality()`

10076

sage: `EllipticCurve(GF(10007), [1,2,3,4,5]).cardinality(algorithm='pari')`

10076

sage: `EllipticCurve(GF(next_prime(10**20)), [1,2,3,4,5]).cardinality()`

100000000011093199520

The cardinality is cached:

sage: `E = EllipticCurve(GF(3^100, 'a'), [1,2,3,4,5])`

sage: `E.cardinality()` is `E.cardinality()`

True

The following is very fast since the curve is actually defined over the prime field:

sage: `k.<a> = GF(11^100)`

sage: `E1 = EllipticCurve(k, [3,3])`

sage: `N1 = E1.cardinality(algorithm="subfield")`; N1

13780612339822270184113371720896367762643312000384671846835266941791510341065565176497846508362304472499998

sage: `E1.cardinality_pari() == N1`

True

sage: `E2 = E1.quadratic_twist()`

sage: `N2 = E2.cardinality(algorithm="subfield")`; N2

13780612339822270184113371720896367762643312000384656816094284101308193849980588362304472499998

sage: `E2.cardinality_pari() == N2`

True

sage: `N1 + N2 == 2*(k.cardinality() + 1)`

True

We can count points over curves defined as a reduction:

sage: `x = polygen(QQ)`

sage: `K.<w> = NumberField(x^2 + x + 1)`

sage: `EK = EllipticCurve(K, [0, 0, w, 2, 1])`

sage: `E = EK.base_extend(K.residue_field(2))`

Elliptic Curve defined by y^2 + wbar*y = x^3 + 1 over Residue field in wbar of Fractional ideal (2)
plot\(^*\text{args, **kwds}\)
Draw a graph of this elliptic curve over a prime finite field.

INPUT:

- *\text{args, **kwds} - all other options are passed to the circle graphing primitive.

EXAMPLES:

```
sage: E = EllipticCurve(FiniteField(17), [0,1])
sage: P = plot(E, rgbcolor=(0,0,1))
```

points()
All the points on this elliptic curve. The list of points is cached so subsequent calls are free.

EXAMPLES:

```
sage: p = 5
sage: F = GF(p)
sage: E = EllipticCurve(F, [1, 3])
sage: a_sub_p = E.change_ring(QQ).ap(p); a_sub_p
2
sage: len(E.points())
4
sage: p + 1 - a_sub_p
4
sage: E(points())
[(0 : 1 : 0), (1 : 0 : 1), (4 : 1 : 1), (4 : 4 : 1)]
```

10.6. Elliptic curves over finite fields 205
random_element()

Return a random point on this elliptic curve, uniformly chosen among all rational points.

ALGORITHM:

Choose the point at infinity with probability $1/(2q + 1)$. Otherwise, take a random element from the field as x-coordinate and compute the possible y-coordinates. Return the i’th possible y-coordinate, where i is randomly chosen to be 0 or 1. If the i’th y-coordinate does not exist (either there is no point with the given x-coordinate or we hit a 2-torsion point with $i == 1$), try again.

This gives a uniform distribution because you can imagine $2q + 1$ buckets, one for the point at infinity and 2 for each element of the field (representing the x-coordinates). This gives a 1-to-1 map of elliptic curve points into buckets. At every iteration, we simply choose a random bucket until we find a bucket containing a point.

AUTHOR:

• Jeroen Demeyer (2014-09-09): choose points uniformly random, see trac ticket #16951.

EXAMPLES:

```python
sage: k = GF(next_prime(7^5))
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P
(16740 : 12486 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
˓→'>
sage: P in E
True
```

```python
sage: k.<a> = GF(7^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P
(5*a^4 + 3*a^3 + 2*a^2 + a + 4 : 2*a^4 + 3*a^3 + 4*a^2 + a + 5 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
˓→'>
sage: P in E
True
```

```python
sage: k.<a> = GF(2^5)
sage: E = EllipticCurve(k,[a^2,a,1,a+1,1])
sage: P = E.random_element(); P
(a^4 + a : a^4 + a^3 + a^2 + 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field
˓→'>
```

(continues on next page)
sage: P in E
True

Ensure that the entire point set is reachable:

\begin{verbatim}
sage: E = EllipticCurve(GF(11), [2,1])
sage: len(set(E.random_element() for _ in range(100)))
16
sage: E.cardinality()
16
\end{verbatim}

\texttt{random_point()}
Return a random point on this elliptic curve, uniformly chosen among all rational points.

\textbf{ALGORITHM:}

Choose the point at infinity with probability \(1/(2q + 1)\). Otherwise, take a random element from the field as x-coordinate and compute the possible y-coordinates. Return the i’th possible y-coordinate, where i is randomly chosen to be 0 or 1. If the i’th y-coordinate does not exist (either there is no point with the given x-coordinate or we hit a 2-torsion point with i == 1), try again.

This gives a uniform distribution because you can imagine \(2q + 1\) buckets, one for the point at infinity and 2 for each element of the field (representing the x-coordinates). This gives a 1-to-1 map of elliptic curve points into buckets. At every iteration, we simply choose a random bucket until we find a bucket containing a point.

\textbf{AUTHOR:}

- Jeroen Demeyer (2014-09-09): choose points uniformly random, see trac ticket #16951.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: k = GF(next_prime(7^5))
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P # random
(16740 : 12486 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field'>
sage: P in E
True

sage: k.<a> = GF(7^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E.random_element(); P
(5*a^4 + 3*a^3 + 2*a^2 + a + 4 : 2*a^4 + 3*a^3 + 4*a^2 + a + 5 : 1)
sage: type(P)
<class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field'>
sage: P in E
True

sage: k.<a> = GF(2^5)
sage: E = EllipticCurve(k,[a^2,a,1,a+1,1])
sage: P = E.random_element(); P
(a^4 + a : a^4 + a^3 + a^2 : 1)
sage: type(P)
\end{verbatim}

(continues on next page)
Ensure that the entire point set is reachable:

```python
sage: E = EllipticCurve(GF(11), [2,1])
sage: len(set(E.random_element() for _ in range(100)))  # Ensure full point set is reachable
16
sage: E.cardinality()
16
```

rational_points()

All the points on this elliptic curve. The list of points is cached so subsequent calls are free.

EXAMPLES:

```python
sage: p = 5
sage: F = GF(p)
sage: E = EllipticCurve(F, [1, 3])
sage: a_sub_p = E.change_ring(QQ).ap(p); a_sub_p
2
sage: len(E.points())
4
sage: p + 1 - a_sub_p
4
sage: E.points()
[(0 : 1 : 0), (1 : 0 : 1), (4 : 1 : 1), (4 : 4 : 1)]
```

```python
sage: K = GF(p**2,'a')
sage: E = E.change_ring(K)
sage: len(E.points())
32
sage: (p + 1)**2 - a_sub_p**2
32
sage: w = E.points(); w
[(0 : 1 : 0), (0 : 2*a + 4 : 1), (0 : 3*a + 1 : 1), (1 : 0 : 1), (2 : 2*a + 4 : 1), (2 : 3*a + 1 : 1), (3 : 2*a + 4 : 1), (3 : 3*a + 1 : 1), (4 : 1 : 1), (4 : 4 : 1), (a : 1 : 1), (a : 4 : 1), (a + 2 : a + 1 : 1), (a + 2 : 4*a + 3 : 1), (a + 3 : a + 1 : 1), (a + 3 : 4*a + 1 : 1), (a + 4 : 0 : 1), (2*a : 2*a : 1), (2*a : 3*a : 1), (2*a + 4 : a + 1 : 1), (2*a + 4 : 4*a + 4 : 1), (3*a + 1 : a + 3 : 1), (3*a + 1 : 4*a + 2 : 1), (3*a + 2 : 2*a + 3 : 1), (3*a + 2 : a + 3 : 1), (4*a : 0 : 1), (4*a + 1 : 1 : 1), (4*a + 1 : 4 : 1), (4*a + 3 : a + 3 : 1), (4*a + 3 : 4*a + 2 : 1), (4*a + 4 : a + 4 : 1), (4*a + 4 : 4*a + 4 : 1), (4*a + 4 : 4*a + 1 : 1)]
```

Note that the returned list is an immutable sorted Sequence:

```python
sage: w[0] = 9
Traceback (most recent call last):
  ...
ValueError: object is immutable; please change a copy instead.
```

set_order *(value, num_checks=8)*

Set the value of self._order to value.
Use this when you know a priori the order of the curve to avoid a potentially expensive order calculation.

INPUT:

- **value** - Integer in the Hasse-Weil range for this curve.
- **num_checks** - Integer (default: 8) number of times to check whether value*(a random point on this curve) is equal to the identity.

OUTPUT:

None

EXAMPLES:

This example illustrates basic usage.

```sage
sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: E.set_order(6)
sage: E.order()
6
sage: E.order() * E.random_point()
(0 : 1 : 0)
```

We now give a more interesting case, the NIST-P521 curve. Its order is too big to calculate with Sage, and takes a long time using other packages, so it is very useful here.

```sage
sage: p = 2^521 - 1
sage: prev_proof_state = proof.arithmetic()
sage: proof.arithmetic(False) # turn off primality checking
sage: F = GF(p)
sage: A = p - 3
sage: B = 109384903807374274511112390766805569936207598951683748994586394495953116150735016013708735
sage: q = 68647976601306097149819007990813932172694353001433054093944634591855431833975539424505774
sage: E = EllipticCurve([F(A), F(B)])
sage: E.set_order(q)
sage: G = E.random_point()
sage: G.order() * G # This takes practically no time.
(0 : 1 : 0)
sage: proof.arithmetic(prev_proof_state) # restore state
```

It is an error to pass a value which is not an integer in the Hasse-Weil range:

```sage
sage: E = EllipticCurve(GF(7), [0, 1]) # This curve has order 6
sage: E.set_order("hi")
Traceback (most recent call last):
  ... TypeError: unable to convert 'hi' to an integer
sage: E.set_order(0)
Traceback (most recent call last):
  ... ValueError: Value 0 illegal (not an integer in the Hasse range)
sage: E.set_order(1000)
Traceback (most recent call last):
  ... ValueError: Value 1000 illegal (not an integer in the Hasse range)
```

It is also very likely an error to pass a value which is not the actual order of this curve. How unlikely is determined by num_checks, the factorization of the actual order, and the actual group structure:
However, set_order can be fooled, though it’s not likely in “real cases of interest”. For instance, the order
can be set to a multiple of the actual order:

```
sage: E = EllipticCurve(GF(7), [0, 1])  # This curve has order 6
sage: E.set_order(12)  # 12 just fits in the Hasse range
sage: E.order()
12
```

Or, the order can be set incorrectly along with num_checks set too small:

```
sage: E = EllipticCurve(GF(7), [0, 1])  # This curve has order 6
sage: E.set_order(4, num_checks=0)
sage: E.order()
4
```

The value of num_checks must be an integer. Negative values are interpreted as zero, which means don’t
do any checking:

```
sage: E = EllipticCurve(GF(7), [0, 1])  # This curve has order 6
sage: E.set_order(4, num_checks=-12)
sage: E.order()
4
```

AUTHORS:

• Mariah Lenox (2011-02-16)

```
trace_of_frobenius()
```

Return the trace of Frobenius acting on this elliptic curve.

Note: This computes the curve cardinality, which may be time-consuming.

EXAMPLES:

```
sage: E=EllipticCurve(GF(101),[2,3])
sage: E.trace_of_frobenius()
6
sage: E=EllipticCurve(GF(11^5,'a'),[2,5])
sage: E.trace_of_frobenius()
802
```

The following shows that the issue from trac ticket #2849 is fixed:

```
sage: E=EllipticCurve(GF(3^5,'a'),[-1,-1])
sage: E.trace_of_frobenius()
-27
```

```
Return True if \( j \) is a supersingular \( j \)-invariant.
```
INPUT:

• \(j\) (finite field element) – an element of a finite field

• \(\text{proof}\) (boolean, default True) – If True, returns a proved result. If False, then a return value of False is certain but a return value of True may be based on a probabilistic test. See the ALGORITHM section below for more details.

OUTPUT:

(boolean) True if \(j\) is supersingular, else False.

ALGORITHM:

For small characteristics \(p\) we check whether the \(j\)-invariant is in a precomputed list of supersingular values. Otherwise we next check the \(j\)-invariant. If \(j = 0\), the curve is supersingular if and only if \(p = 2\) or \(p \equiv 3 \pmod{4}\); if \(j = 1728\), the curve is supersingular if and only if \(p = 3\) or \(p \equiv 2 \pmod{3}\). Next, if the base field is the prime field \(\text{GF}(p)\), we check that \((p+1)P = 0\) for several random points \(P\), returning False if any fail: supersingular curves over \(\text{GF}(p)\) have cardinality \(p + 1\). If Proof is false we now return True. Otherwise we compute the cardinality and return True if and only if it is divisible by \(p\).

EXAMPLES:

\[
\text{sage: from sage.schemes.elliptic_curves.ell_finite_field import is_j_supersingular, supersingular_j_polynomials}
\]
\[
\text{sage: [(p, [j for j in GF(p) if is_j_supersingular(j)]) for p in prime_range(30)}
\]
\[
\text{\rightarrow [(2, [0]), (3, [0]), (5, [0]), (7, [6]), (11, [0, 1]), (13, [5]), (17, [0, 8]),}
\]
\[
\text{\rightarrow \(19, [7, 18]), (23, [0, 3, 19]), (29, [0, 2, 25])\]}
\]
\[
\text{sage: [j for j in GF(109) if is_j_supersingular(j)]}
\]
\[
\text{[17, 41, 43]}
\]
\[
\text{sage: PolynomialRing(GF(109), 'j')(supersingular_j_polynomials[109]).roots()}
\]
\[
\text{[43, 1), (41, 1), (17, 1)]}
\]
\[
\text{sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(0))]}
\]
\[
\text{[2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89]}
\]
\[
\text{sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(1728))]}
\]
\[
\text{[2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83]}
\]
\[
\text{sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(123456))]}
\]
\[
\text{[2, 3, 59, 89]}
\]

sage.schemes.elliptic_curves.ell_finite_field.supersingular_j_polynomial \((p)\)

Return a polynomial whose roots are the supersingular \(j\)-invariants in characteristic \(p\), other than 0, 1728.

INPUT:

• \(p\) (integer) – a prime number.

ALGORITHM:

First compute \(H(X)\) whose roots are the Legendre \(\lambda\)-invariants of supersingular curves (Silverman V.4.1(b)) in characteristic \(p\). Then, using a resultant computation with the polynomial relating \(\lambda\) and \(j\) (Silverman III.1.7(b)), we recover the polynomial (in variable \(j\)) whose roots are the \(j\)-invariants. Factors of \(j\) and \(j^2 - 1728\) are removed if present.

EXAMPLES:

\[
\text{sage: from sage.schemes.elliptic_curves.ell_finite_field import supersingular_j_}
\]
\[
\text{\rightarrow polynomial}
\]
\[
\text{sage: f = supersingular_j_polynomial(67); f}
\]
\[
\text{j^5 + 53*j^4 + 4*j^3 + 47*j^2 + 36*j + 8}
\]

(continues on next page)
10.7 Formal groups of elliptic curves

AUTHORS:

- William Stein: original implementations
- David Harvey: improved asymptotics of some methods
- Nick Alexander: separation from ell_generic.py, bugfixes and docstrings

class sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup(E)

Bases: sage.structure.sage_object.SageObject

The formal group associated to an elliptic curve.

curve()

Return the elliptic curve this formal group is associated to.

EXAMPLES:

```python
sage: E = EllipticCurve("37a")
sage: F = E.formal_group()
sage: F.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

differential (prec=20)

Return the power series \(f(t) = 1 + \cdots \) such that \(f(t)dt \) is the usual invariant differential \(dx/(2y+a_1x+a_3) \).

INPUT:

- \(\text{prec} \) - nonnegative integer (default 20), answer will be returned \(O(t^{\text{prec}}) \)

OUTPUT: a power series with given precision

Return the formal series

\[
f(t) = 1 + a_1 t + (a_1^2 + a_2)t^2 + \cdots
\]

to precision \(O(t^{\text{prec}}) \) of page 113 of [SilBook].

The result is cached, and a cached version is returned if possible.

Warning: The resulting series will have precision \(\text{prec} \), but its parent PowerSeriesRing will have default precision 20 (or whatever the default default is).

EXAMPLES:

```python
sage: E = EllipticCurve([-1, 1/4]).formal_group().differential(15)
sage: E = EllipticCurve(Integers(53), [-1, 1/4]).formal_group().differential(15)
```

- \(j + 1 \) * \((j^2 + 8j + 45) \) * \((j^2 + 44j + 24) \)

\[
[j + 1, j + 8, j + 9, j + 12, j + 4, j^2 + 2j + 21]
\]
group_law (prec=10)
Return the formal group law.

INPUT:
• prec - integer (default 10)

OUTPUT: a power series with given precision in $\mathbb{R}[[t1,t2]]$, where the curve is defined over \mathbb{R}.

Return the formal power series

$$F(t_1,t_2) = t_1 + t_2 - a_1 t_1 t_2 - \cdots$$

to precision $O(t_1,t_2)^{prec}$ of page 115 of [SilBook].

The result is cached, and a cached version is returned if possible.

AUTHORS:
• Nick Alexander: minor fixes, docstring
• Francis Clarke (2012-08): modified to use two-variable power series ring

EXAMPLES:

```sage
sage: e = EllipticCurve([1, 2])
sage: e.formal_group().group_law(6)
t1 + t2 - 2*t1^4*t2^2 - 4*t1^3*t2^3 - 2*t1^2*t2^4 + O(t1, t2)^6

sage: e = EllipticCurve('14a1')
sage: ehat = e.formal()
sage: ehat.group_law(3)
t1 + t2 - t1*t2 + O(t1, t2)^3
sage: ehat.group_law(5)
t1 + t2 - t1*t2 - 2*t1^3*t2^2 - 3*t1^2*t2^3 - 2*t1*t2^4 + O(t1, t2)^5

sage: e = EllipticCurve(GF(7), [3, 4])
sage: ehat = e.formal()
sage: ehat.group_law(3)
t1 + t2 + O(t1, t2)^3

sage: F = ehat.group_law(7); F
t1 + t2 + t1^4*t2 + 2*t1^3*t2^2 + 2*t1^2*t2^3 + t1*t2^4 + O(t1, t2)^7
```

inverse (prec=20)
Return the formal group inverse law $i(t)$, which satisfies $F(t, i(t)) = 0$.

INPUT:
• prec - integer (default 20)

OUTPUT: a power series with given precision

Return the formal power series

$$i(t) = -t + a_1 t^2 + \cdots$$

to precision $O(t^{prec})$ of page 114 of [SilBook].

The result is cached, and a cached version is returned if possible.
Warning: The resulting power series will have precision `prec`, but its parent PowerSeriesRing will have default precision 20 (or whatever the default default is).

EXAMPLES:

```python
sage: P.<a1, a2, a3, a4, a6> = ZZ[]
sage: E = EllipticCurve(list(P.gens()))
sage: i = E.formal_group().inverse(6); i
-t - a1*t^2 - a1^2*t^3 + (-a1^3 - a3)*t^4 + (-a1^4 - 3*a1*a3)*t^5 + O(t^6)
sage: F = E.formal_group().group_law(6)
sage: F(i.parent().gen(), i)
O(t^6)
```

log (`prec=20`)

Return the power series `f(t) = t + ...` which is an isomorphism to the additive formal group.

Generally this only makes sense in characteristic zero, although the terms before `t^p` may work in characteristic `p`.

INPUT:

- `prec` - nonnegative integer (default 20)

OUTPUT: a power series with given precision

EXAMPLES:

```python
sage: EllipticCurve([-1, 1/4]).formal_group().log(15)
t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 - 5/11*t^11 - 305/208*t^13 + O(t^15)
```

AUTHORS:

- David Harvey (2006-09-10): rewrote to use differential

mult_by_n (`n, prec=10`)

Return the formal ‘multiplication by n’ endomorphism `[n]`.

INPUT:

- `prec` - integer (default 10)

OUTPUT: a power series with given precision

Return the formal power series

```
[n](t) = nt + ...
```

to precision `O(t^{prec})` of Proposition 2.3 of [SilBook].

Warning: The resulting power series will have precision `prec`, but its parent PowerSeriesRing will have default precision 20 (or whatever the default default is).

AUTHORS:

- Nick Alexander: minor fixes, docstring
- David Harvey (2007-03): faster algorithm for char 0 field case
• Tom Boothby (2009-06): slight improvement to double-and-add
• Francis Clarke (2012-08): adjustments and simplifications using group_law code as modified to yield a two-variable power series.

EXAMPLES:

```
sage: e = EllipticCurve([1, 2, 3, 4, 6])
sage: e.formal_group().mult_by_n(0, 5)
O(t^5)
sage: e.formal_group().mult_by_n(1, 5)
t + O(t^5)
```

We verify an identity of low degree:

```
sage: none = e.formal_group().mult_by_n(-1, 5)
sage: two = e.formal_group().mult_by_n(2, 5)
sage: ntwo = e.formal_group().mult_by_n(-2, 5)
sage: ntwo - none(two)
O(t^5)
sage: ntwo - two(none)
O(t^5)
```

It’s quite fast:

```
sage: E = EllipticCurve("37a"); F = E.formal_group()
sage: F.mult_by_n(100, 20)
100*t - 49999950*t^4 + 3999999960*t^5 + 14285614285800*t^7 -
\vdots 320129060335050875009191524993000*t^17 -
\vdots 530246495613411125466184947310391600*t^19 + O(t^20)
```

\sigma\(\text{prec}=10\)

EXAMPLES:

```
sage: E = EllipticCurve('14a'); F = E.formal_group()
sage: F.sigma(5)
t + 1/2*t^2 + (1/2*c + 1/3)*t^3 + (3/4*c + 3/4)*t^4 + O(t^5)
```

\(w\(\text{prec}=20\)

Return the formal group power series \(w\).

INPUT:

• \text{prec} - integer (default 20)

OUTPUT: a power series with given precision

Return the formal power series

\[w(t) = t^3 + a_1 t^4 + (a_2 + a_1^2) t^5 + \cdots\]

to precision \(O(t^{\text{prec}})\) of Proposition IV.1.1 of [SilBook]. This is the formal expansion of \(w = -1/y\) about the formal parameter \(t = -x/y\) at \(\infty\).

The result is cached, and a cached version is returned if possible.

10.7. Formal groups of elliptic curves 215
Warning: The resulting power series will have precision prec, but its parent PowerSeriesRing will have default precision 20 (or whatever the default default is).

ALGORITHM: Uses Newton’s method to solve the elliptic curve equation at the origin. Complexity is roughly $O(M(n))$ where n is the precision and $M(n)$ is the time required to multiply polynomials of length n over the coefficient ring of E.

AUTHOR:

• David Harvey (2006-09-09): modified to use Newton’s method instead of a recurrence formula.

EXAMPLES:

```
sage: e = EllipticCurve([0, 0, 1, -1, 0])
sage: e.formal_group().w(10)
t^3 + t^6 - t^7 + 2*t^9 + O(t^10)
```

Check that caching works:

```
sage: e = EllipticCurve([3, 2, -4, -2, 5])
sage: e.formal_group().w(20)
t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + 237*t^8 + 312*t^9 - 949*t^10 -
   10389*t^11 - 57087*t^12 - 244092*t^13 - 865333*t^14 - 2455206*t^15 -
   4366196*t^16 + 6136610*t^17 + 109938783*t^18 + 688672497*t^19 + O(t^20)
sage: e.formal_group().w(7)
t^3 + 3*t^4 + 11*t^5 + 35*t^6 + O(t^7)
sage: e.formal_group().w(35)
t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + 237*t^8 + 312*t^9 - 949*t^10 -
   10389*t^11 - 57087*t^12 - 244092*t^13 - 865333*t^14 - 2455206*t^15 -
   4366196*t^16 + 6136610*t^17 + 109938783*t^18 + 688672497*t^19 +
   3219525807*t^20 + 12337076504*t^21 + 38106669615*t^22 + 79452618700*t^23 -
   33430470002*t^24 - 1522228110356*t^25 - 10561222329021*t^26 -
   52449326572178*t^27 - 211701726058446*t^28 - 693522772940043*t^29 -
   1613471639599950*t^30 - 421817906421378*t^31 + 23651687753515182*t^32 +
   181817896829144595*t^33 + 950887684082121163*t^34 + O(t^35)
```

$x (prec=20)$

Return the formal series $x(t) = t/w(t)$ in terms of the local parameter $t = -x/y$ at infinity.

INPUT:

• $prec$ - integer (default 20)

OUTPUT: a Laurent series with given precision

Return the formal series

$$x(t) = t^{-2} - a_1 t^{-1} - a_2 - a_3 t - \cdots$$

to precision $O(t^{prec})$ of page 113 of [SilBook].

Warning: The resulting series will have precision prec, but its parent PowerSeriesRing will have default precision 20 (or whatever the default default is).

EXAMPLES:
Return the formal series \(y(t) = -1/w(t) \) in terms of the local parameter \(t = -x/y \) at infinity.

INPUT:

• \(\text{prec} \) - integer (default 20)

OUTPUT: a Laurent series with given precision

Return the formal series

\[
y(t) = -t^{-3} + a_1 t^{-2} + a_2 t + a_3 + \cdots
\]

to precision \(O(t^{\text{prec}}) \) of page 113 of [SilBook].

The result is cached, and a cached version is returned if possible.

Warning: The resulting series will have precision \(\text{prec} \), but its parent \text{PowerSeriesRing} will have default precision 20 (or whatever the default default is).

EXAMPLES:

```python
sage: EllipticCurve([0, 0, 1, -1, 0]).formal_group().y(10)
-t^-3 + 1 - t + t^3 - 2*t^4 + t^5 + 2*t^6 - 6*t^7 + 6*t^8 + 3*t^9 + O(t^10)
```

Maps between them

10.8 Isomorphisms between Weierstrass models of elliptic curves

AUTHORS:

• Robert Bradshaw (2007): initial version

• John Cremona (Jan 2008): isomorphisms, automorphisms and twists in all characteristics

class `sage.schemes.elliptic_curves.weierstrass_morphism.WeierstrassIsomorphism(E=None, urst=None, F=None)`

Bases: `sage.schemes.elliptic_curves.weierstrass_morphism.baseWI`, `sage.categories.morphism.Morphism`

Class representing a Weierstrass isomorphism between two elliptic curves.

class `sage.schemes.elliptic_curves.weierstrass_morphism.baseWI(u=1, r=0, s=0, t=0)`

This class implements the basic arithmetic of isomorphisms between Weierstrass models of elliptic curves.

These are specified by lists of the form \([u, r, s, t]\) (with \(u \neq 0\)) which specifies a transformation \((x, y) \mapsto (x', y')\) where

\[
(x, y) = (u^2 x' + r, u^3 y' + su^2 x' + t).
\]

INPUT:

• \(u, r, s, t\) (default \((1,0,0,0)\)) – standard parameters of an isomorphism between Weierstrass models.
EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: baseWI()
(1, 0, 0, 0)
sage: baseWI(2, 3, 4, 5)
(2, 3, 4, 5)
sage: R.<u,r,s,t> = QQ[]
sage: baseWI(u,r,s,t)
(u, r, s, t)
```

`is_identity()`
Return True if this is the identity isomorphism.

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: w = baseWI(); w.is_identity()
True
sage: w = baseWI(2,3,4,5); w.is_identity()
False
```

tuple()
Return the parameters u, r, s, t as a tuple.

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: w = baseWI(2,3,4,5)
sage: w.tuple()
(2, 3, 4, 5)
```

`sage.schemes.elliptic_curves.weierstrass_morphism.isomorphisms(E, F, JustOne=False)`
Return one or all isomorphisms between two elliptic curves.

INPUT:

- E, F (EllipticCurve) – Two elliptic curves.
- JustOne (bool) If True, returns one isomorphism, or None if the curves are not isomorphic. If False, returns a (possibly empty) list of isomorphisms.

OUTPUT:
Either None, or a 4-tuple (u, r, s, t) representing an isomorphism, or a list of these.

Note: This function is not intended for users, who should use the interface provided by `ell_generic`.

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import *
sage: isomorphisms(EllipticCurve_from_j(0),EllipticCurve('27a3'))
[(-1, 0, 0, -1), (1, 0, 0, 0)]
sage: isomorphisms(EllipticCurve_from_j(0),EllipticCurve('27a3'),JustOne=True)
(1, 0, 0, 0)
sage: isomorphisms(EllipticCurve_from_j(0),EllipticCurve('27a1'))
[]
sage: isomorphisms(EllipticCurve_from_j(0),EllipticCurve('27a1'),JustOne=True)
```
10.9 Isogenies

An isogeny $\phi : E_1 \to E_2$ between two elliptic curves E_1 and E_2 is a morphism of curves that sends the origin of E_1 to the origin of E_2. Such a morphism is automatically a morphism of group schemes and the kernel is a finite subgroup scheme of E_1. Such a subscheme can either be given by a list of generators, which have to be torsion points, or by a polynomial in the coordinate x of the Weierstrass equation of E_1.

The usual way to create and work with isogenies is illustrated with the following example:

```python
sage: k = GF(11)
sage: E = EllipticCurve(k,[1,1])
sage: Q = E(6,5)
sage: phi = E.isogeny(Q)
sage: phi
Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 11 to Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 11
sage: P = E(4,5)
sage: phi(P)
(10 : 0 : 1)
sage: phi.codomain()
Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 11
sage: phi.rational_maps()
((x^7 + 4*x^6 - 3*x^5 - 2*x^4 - 3*x^3 + 3*x^2 + x - 2)/(x^6 + 4*x^5 - 4*x^4 - 5*x^3 + 5*x^2),
(x^9*y - 5*x^8*y - x^7*y + x^5*y - x^4*y - 5*x^3*y - 5*x^2*y - 2*x*y - 5*y)/(x^9 - 5*x^8 + 4*x^6 - 3*x^4 + 2*x^3))
```

The functions directly accessible from an elliptic curve E over a field are `isogeny` and `isogeny_codomain`.

The most useful functions that apply to isogenies are

- `codomain`
- `degree`
- `domain`
- `dual`
- `rational_maps`
- `kernel_polynomial`

Warning: Only cyclic, separable isogenies are implemented (except for [2]). Some algorithms may need the isogeny to be normalized.

AUTHORS:

- Daniel Shumow <shumow@gmail.com>: 2009-04-19: initial version
- Chris Wuthrich : 7/09: changes: add check of input, not the full list is needed. 10/09: eliminating some bugs.
- John Cremona 2014-08-08: tidying of code and docstrings, systematic use of univariate vs. bivariate polynomials and rational functions.
Class Implementing Isogenies of Elliptic Curves

This class implements cyclic, separable, normalized isogenies of elliptic curves.

Several different algorithms for computing isogenies are available. These include:

- **Velu’s Formulas**: Velu’s original formulas for computing isogenies. This algorithm is selected by giving as the `kernel` parameter a list of points which generate a finite subgroup.

- **Kohel’s Formulas**: Kohel’s original formulas for computing isogenies. This algorithm is selected by giving as the `kernel` parameter a monic polynomial (or a coefficient list (little endian)) which will define the kernel of the isogeny.

INPUT:

- `E` – an elliptic curve, the domain of the isogeny to initialize.

- `kernel` – a kernel, either a point in `E`, a list of points in `E`, a monic kernel polynomial, or `None`. If initializing from a domain/codomain, this must be set to `None`.

- `codomain` – an elliptic curve (default: `None`). If `kernel` is `None`, then this must be the codomain of a cyclic, separable, normalized isogeny, furthermore, `degree` must be the degree of the isogeny from `E` to `codomain`. If `kernel` is not `None`, then this must be isomorphic to the codomain of the cyclic normalized separable isogeny defined by `kernel`, in this case, the isogeny is post composed with an isomorphism so that this parameter is the codomain.

- `degree` – an integer (default: `None`). If `kernel` is `None`, then this is the degree of the isogeny from `E` to `codomain`. If `kernel` is `not None`, then this is used to determine whether or not to skip a gcd of the kernel polynomial with the two torsion polynomial of `E`.

- `model` – a string (default: `None`). Only supported variable is `minimal`, in which case if `E` is a curve over the rationals or over a number field, then the codomain is a global minimum model where this exists.

- `check` (default: `True`) checks if the input is valid to define an isogeny

EXAMPLES:

A simple example of creating an isogeny of a field of small characteristic:

```python
sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)) ); phi
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 7 to Elliptic Curve defined by y^2 = x^3 + 3*x over Finite Field of size 7
sage: phi.degree() == 2
True
sage: phi.kernel_polynomial()
x
sage: phi.rational_maps()
((x^2 + 1)/x, (x^2*y - y)/x^2)
sage: phi == loads(dumps(phi))  # known bug
True
```
A more complicated example of a characteristic 2 field:

```
sage: E = EllipticCurve(GF(2^4,'alpha'), [0,0,1,0,1])
sage: P = E((1,1))
sage: phi_v = EllipticCurveIsogeny(E, P); phi_v
Isogeny of degree 3 from Elliptic Curve defined by y^2 + y = x^3 + 1 over Finite
    Field in alpha of size 2^4 to Elliptic Curve defined by y^2 + y = x^3 over Finite
    Field in alpha of size 2^4
sage: phi_ker_poly = phi_v.kernel_polynomial()
sage: phi_ker_poly
x + 1
sage: ker_poly_list = phi_ker_poly.list()
sage: phi_k = EllipticCurveIsogeny(E, ker_poly_list)
sage: phi_k == phi_v
True
sage: phi_k.rational_maps()
((x^3 + x + 1)/(x^2 + 1), (x^3*y + x^2*y + x*y + x + y)/(x^3 + x^2 + x + 1))
```

We can create an isogeny that has kernel equal to the full 2 torsion:

```
sage: E = EllipticCurve(GF(3), [0,0,0,1,1])
sage: ker_list = E.division_polynomial(2).list()
sage: phi = EllipticCurveIsogeny(E, ker_list); phi
Isogeny of degree 4 from Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite
    Field of size 3 to Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite
    Field of size 3
sage: phi(E(0))
(0 : 1 : 0)
sage: phi(E((0,1)))
(1 : 0 : 1)
sage: phi(E((0,2)))
(1 : 0 : 1)
sage: phi(E((1,0)))
(0 : 1 : 0)
sage: phi.degree()
4
```

We can also create trivial isogenies with the trivial kernel:

```
sage: E = EllipticCurve(GF(17), [11, 11, 4, 12, 10])
sage: phi_v = EllipticCurveIsogeny(E, E(0))
sage: phi_v.degree()
```
1

```python
sage: phi_v.rational_maps()
(x, y)
sage: E == phi_v.codomain()
True
sage: P = E.random_point()
sage: phi_v(P) == P
True

sage: E = EllipticCurve(GF(31), [23, 1, 22, 7, 18])
sage: phi_k = EllipticCurveIsogeny(E, [1]); phi_k
Isogeny of degree 1 from Elliptic Curve defined by y^2 + 23*x*y + 22*y = x^3 + x^2 + 2 + 7*x + 18 over Finite Field of size 31 to Elliptic Curve defined by y^2 + 23*x*y + 22*y = x^3 + x^2 + 7*x + 18 over Finite Field of size 31
sage: phi_k.degree()
1
sage: phi_k.rational_maps()
(x, y)
sage: phi_k.codomain() == E
True
sage: phi_k.kernel_polynomial()
1
sage: P = E.random_point(); P == phi_k(P)
True

Velu and Kohel also work in characteristic 0:

```python
sage: E = EllipticCurve(QQ, [0,0,0,3,4])
sage: P_list = E.torsion_points()
sage: phi = EllipticCurveIsogeny(E, P_list); phi
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 3*x + 4 over Rational Field to Elliptic Curve defined by y^2 = x^3 - 27*x + 46 over Rational Field
sage: P = E((0,2))
sage: phi(P)
(6 : -10 : 1)
sage: phi_ker_poly = phi.kernel_polynomial()
sage: phi_ker_poly
x + 1
sage: ker_poly_list = phi_ker_poly.list()
sage: phi_k = EllipticCurveIsogeny(E, ker_poly_list); phi_k
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 3*x + 4 over Rational Field to Elliptic Curve defined by y^2 = x^3 - 27*x + 46 over Rational Field
sage: phi_k(P) == phi(P)
True
sage: phi_k == phi
True
sage: phi_k.degree()
2
sage: phi_k.is_separable()
True
```

A more complicated example over the rationals (of odd degree):

```python
sage: E = EllipticCurve('11a1')
sage: P_list = E.torsion_points()
```

(continues on next page)
We can also do this same example over the number field defined by the irreducible two torsion polynomial of $E$:

```
sage: E = EllipticCurve('11a1')
sage: P_list = E.torsion_points()
sage: K.<alpha> = NumberField(x^3 - 2*x^2 - 40*x - 158)
sage: EK = E.change_ring(K)
sage: P_list = [EK(P) for P in P_list]
sage: phi_v = EllipticCurveIsogeny(EK, P_list); phi_v
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x - 158 to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-7820)*x + (-263580) over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x - 158
sage: P = EK((alpha/2,-1/2))
sage: phi_v(P)
(122/121*alpha^2 + 1633/242*alpha - 3920/121 : -1/2 : 1)
sage: ker_poly = phi_v.kernel_polynomial()
sage: ker_poly
x^2 - 21*x + 80
sage: ker_poly_list = ker_poly.list()
sage: phi_k = EllipticCurveIsogeny(EK, ker_poly_list);
sage: phi_k
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x - 158 to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-7820)*x + (-263580) over Number Field in alpha with defining polynomial x^3 - 2*x^2 - 40*x - 158
sage: phi_v == phi_k
True
sage: phi_k(P) == phi_v(P)
True
sage: phi_k == phi_v
True
sage: phi_k.degree()
```
The following example shows how to specify an isogeny from domain and codomain:

```python
sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 - 21*x + 80
sage: phi = E.isogeny(f)
sage: E2 = phi.codomain()

sage: phi_s = EllipticCurveIsogeny(E, None, E2, 5)

sage: phi_s
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over Rational Field

sage: phi_s == phi
True

sage: phi_s.rational_maps() == phi.rational_maps()
True
```

However only cyclic normalized isogenies can be constructed this way. So it won’t find the isogeny [3]:

```python
sage: E.isogeny(None, codomain=E, degree=9)
Traceback (most recent call last):
...
ValueError: The two curves are not linked by a cyclic normalized isogeny of degree 9
```

Also the presumed isogeny between the domain and codomain must be normalized:

```python
sage: E2.isogeny(None, codomain=E, degree=5)
Traceback (most recent call last):
...
ValueError: The two curves are not linked by a cyclic normalized isogeny of degree 5

sage: phihat = phi.dual(); phihat
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

sage: phihat.is_normalized()
False
```

Here an example of a construction of an endomorphisms with cyclic kernel on a CM-curve:

```python
sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve(K, [1,0])
sage: RK.<X> = K[]
sage: f = X^2 - 2/5*i + 1/5
sage: phi = E.isogeny(f)

sage: isom = phi.codomain().isomorphism_to(E)
sage: phi.set_post_isomorphism(isom)

sage: phi.codomain() == phi.domain()
True

sage: phi.rational_maps()
(((4/25*i + 3/25)*x^5 + (4/5*i - 2/5)*x^3 - x)/(x^4 + (-4/5*i + 2/5)*x^2 + (-4/25*i - 3/25)), ((11/125*i + 2/125)*x^6*y + (-23/125*i + 64/125)*x^4*y + (141/125*i + 162/125)*x^2*y + (3/25*i - 4/25)*y)/(x^6 + (-6/5*i + 1/5)*x^4 + (-25*i - 9/25)*x^2 + (2/125*i - 11/125)))
(continued on next page)
```
Domain and codomain tests (see trac ticket #12880):

```python
sage: E = EllipticCurve(QQ, [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E(0,0))
sage: phi.domain() == E
True
sage: phi.codomain()
Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field
```

```python
sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: phi = EllipticCurveIsogeny(E, [17, 1])
sage: phi.domain()
Elliptic Curve defined by y^2 + x*y = x^3 + x + 2 over Finite Field of size 31
sage: phi.codomain()
Elliptic Curve defined by y^2 + x*y = x^3 + 24*x + 6 over Finite Field of size 31
```

Composition tests (see trac ticket #16245):

```python
sage: E = EllipticCurve(j=GF(7)(0))
sage: phi = E.isogeny([E(0), E((0,1)), E((0,-1))]); phi
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7 to Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7
sage: phi2 = phi * phi; phi2
Composite map:
 From: Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7
 To: Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7
 Defn: Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7
 then
 Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7
 then
 Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 7
```

Examples over relative number fields used not to work (see trac ticket #16779):

```python
sage: pol26 = hilbert_class_polynomial(-4*26)
sage: pol = NumberField(pol26,'a').optimized_representation()[0].polynomial()
sage: K.<a> = NumberField(pol)
sage: j = pol26.roots(K)[0][0]
sage: E = EllipticCurve(j=j)
sage: L. = K.extension(x^2+26)
sage: EL = E.change_ring(L)
sage: iso2 = EL.isogenies_prime_degree(2); len(iso2)
1
sage: iso3 = EL.isogenies_prime_degree(3); len(iso3)
2
```

Examples over function fields used not to work (see trac ticket #11327):

```python
sage: F.<t> = FunctionField(QQ)
sage: E = EllipticCurve([0,0,0,-t^2,0])
sage: isoqs = E.isogenies_prime_degree(2)
sage: isoqs[0]
```

(continues on next page)
Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + (-t^2)*x$ over $R$ to Elliptic Curve defined by $y^2 = x^3 + 4*t^2*x$ over $R$.

\begin{verbatim}
sage: isogs[0].rational_maps()
((x^2 - t^2)/x, (x^2*y + t^2*y)/x^2)
sage: duals = [phi.dual() for phi in isogs]
sage: duals[0]
Isogeny of degree 2 from Elliptic Curve defined by $y^2 = x^3 + 4*t^2*x$ over $R$ to Elliptic Curve defined by $y^2 = x^3 + (-t^2)*x$ over $R$.

\begin{verbatim}
sage: duals[0].rational_maps()
((1/4*x^2 + t^2)/x, (1/8*x^2*y + (-1/2*t^2)*y)/x^2)
\end{verbatim}
\end{verbatim}

\section*{degree ()}

Returns the degree of this isogeny.

**EXAMPLES:**

\begin{verbatim}
sage: E = EllipticCurve(QQ, [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.degree()
2
sage: phi = EllipticCurveIsogeny(E, [0,1,0,1])
sage: phi.degree()
4
sage: E = EllipticCurve(GF(31), [1,0,0,1,2])
sage: phi = EllipticCurveIsogeny(E, [17, 1])
sage: phi.degree()
3
\end{verbatim}

\section*{dual ()}

Return the isogeny dual to this isogeny.

**Note:** If $\phi: E \rightarrow E_2$ is the given isogeny and $n$ is its degree, then the dual is by definition the unique isogeny $\hat{\phi}: E_2 \rightarrow E$ such that the compositions $\hat{\phi} \circ \phi$ and $\phi \circ \hat{\phi}$ are the multiplication-by-$n$ maps on $E$ and $E_2$, respectively.

**EXAMPLES:**

\begin{verbatim}
sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 - 21*x + 80
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi_hat = phi.dual()
sage: phi_hat.domain() == phi.codomain()
True
sage: phi_hat.codomain() == phi.domain()
True
sage: (X, Y) = phi.rational_maps()
sage: (Xhat, Yhat) = phi_hat.rational_maps()
\end{verbatim}

(continues on next page)
sage: Xm = Xhat.subs(x=X, y=Y)
sage: Ym = Yhat.subs(x=X, y=Y)

sage: (Xm, Ym) == E.multiplication_by_m(5)
True

sage: E = EllipticCurve(GF(37), [0, 0, 0, 1, 8])
sage: R.<x> = GF(37)[[]]

sage: f = x^3 + 28*x + 33
sage: phi = EllipticCurveIsogeny(E, f)

sage: phi_hat = phi.dual()

sage: phi_hat.codomain() == phi.domain()
True

sage: phi_hat.domain() == phi.codomain()
True

sage: (X, Y) = phi.rational_maps()

sage: (Xhat, Yhat) = phi_hat.rational_maps()

sage: Xm = Xhat.subs(x=X, y=Y)
sage: Ym = Yhat.subs(x=X, y=Y)

sage: (Xm, Ym) == E.multiplication_by_m(7)
True

sage: E = EllipticCurve(GF(31), [0, 0, 0, 1, 8])
sage: R.<x> = GF(31)[[]]

sage: f = x^2 + 17*x + 29

sage: phi = EllipticCurveIsogeny(E, f)

sage: phi_hat = phi.dual()

sage: phi_hat.codomain() == phi.domain()
True

sage: phi_hat.domain() == phi.codomain()
True

sage: (X, Y) = phi.rational_maps()

sage: (Xhat, Yhat) = phi_hat.rational_maps()

sage: Xm = Xhat.subs(x=X, y=Y)

sage: Ym = Yhat.subs(x=X, y=Y)

sage: (Xm, Ym) == E.multiplication_by_m(5)
True

Test for trac ticket #23928:

sage: E = EllipticCurve(j=GF(431**2)(4))

sage: phi = E.isogeny(E.lift_x(0))

sage: phi.dual()
Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 427*x over \rightarrow Finite Field in z2 of size 431^2 to Elliptic Curve defined by y^2 = x^3 + x \rightarrow over Finite Field in z2 of size 431^2

Test (for trac ticket #7096):

sage: E = EllipticCurve('11a1')

sage: phi = E.isogeny(E(5,5))

sage: phi
(continues on next page)
Isogeny of degree 5 from Elliptic Curve defined by $y^2 = x^3 + 11x + 11$ over $	ext{Finite Field of size 103}$ to Elliptic Curve defined by $y^2 = x^3 + 25x + 80$ over Finite Field of size 103

```
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import WeierstrassIsomorphism
sage: phi.set_post_isomorphism(WeierstrassIsomorphism(phi.codomain(), (5, 0, 1, 2)))
sage: phi.dual().dual() == phi
True
```

```
sage: E = EllipticCurve(GF(103), [1, 0, 0, 1, -1])
sage: phi = E.isogeny(E(60, 85))
sage: phi.dual()
Isogeny of degree 7 from Elliptic Curve defined by $y^2 + x*y = x^3 + 84x + 34$ over Finite Field of size 103 to Elliptic Curve defined by $y^2 + x*y = x^3 + x + 102$ over Finite Field of size 103
```

Check that trac ticket #17293 is fixed:

```
sage: k.<s> = QuadraticField(2) sage: E = EllipticCurve(k, [-3*s*(4 + 5*s), 2*s*(2 + 14*s + 11*s^2)]) sage: phi = E.isogenies_prime_degree(3)[0] sage: (-phi).dual() == -(phi.dual())
True
sage: phi._EllipticCurveIsogeny__clear_cached_values() # forget the dual sage: -(phi.dual()) == (-phi.dual())
True
```

**formal** *(prec=20)*

Return the formal isogeny as a power series in the variable $t = -x/y$ on the domain curve.

**INPUT:**

- **prec** *(default = 20)*, the precision with which the computations in the formal group are carried out.

**EXAMPLES:**

```
sage: E = EllipticCurve(GF(13), [1, 7])
sage: phi = E.isogeny(E(10, 4))
sage: phi.formal()
t + 12*t^13 + 2*t^17 + 8*t^19 + 2*t^21 + O(t^23)
```

```
sage: E = EllipticCurve([0, 1])
sage: phi = E.isogeny(E(2, 3))
sage: phi.formal(prec=10)
t + 54*t^5 + 255*t^7 + 2430*t^9 + 19278*t^11 + O(t^13)
```

```
sage: E = EllipticCurve('11a2')
sage: R.<x> = QQ[]
sage: phi = E.isogeny(x^2 + 101*x + 12751/5)
sage: phi.formal(prec=7)
t - 2724/5*t^5 + 209046/5*t^7 - 4767/5*t^8 + 29200946/5*t^9 + O(t^10)
```

**get_post_isomorphism** *

Return the post-isomorphism of this isogeny, or None.

**EXAMPLES:**

```
sage: E = EllipticCurve(j=GF(31)(0))
sage: R.<x> = GF(31)[]
sage: phi = EllipticCurveIsogeny(E, x+18)
sage: phi.get_post_isomorphism()
```

(continues on next page)
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import WeierstrassIsomorphism
sage: isom = WeierstrassIsomorphism(phi.codomain(), (6,8,10,12))
sage: phi.set_post_isomorphism(isom)
sage: isom == phi.get_post_isomorphism()
True

sage: E = EllipticCurve(GF(83), [1,0,1,1,0])
sage: R.<x> = GF(83)[]; f = x+24
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: phi2 = EllipticCurveIsogeny(E, None, E2, 2)
sage: phi2.get_post_isomorphism()
Generic morphism:
From: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 65*x + 69 over Finite Field of size 83
To: Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 16 over Finite Field of size 83
Via: (u,r,s,t) = (1, 7, 42, 42)

get_pre_isomorphism()
Return the pre-isomorphism of this isogeny, or None.

EXAMPLES:

sage: E = EllipticCurve(GF(31), [1,1,0,1,-1])
sage: R.<x> = GF(31)[]
sage: f = x^3 + 9*x^2 + x + 30
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi.get_post_isomorphism()
sage: Epr = E.short_weierstrass_model()
sage: isom = Epr.isomorphism_to(E)
sage: phi.set_pre_isomorphism(isom)
sage: isom == phi.get_pre_isomorphism()
True

sage: E = EllipticCurve(GF(83), [1,0,1,1,0])
sage: R.<x> = GF(83)[]; f = x+24
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: phi2 = EllipticCurveIsogeny(E, None, E2, 2)
sage: phi2.get_pre_isomorphism()
Generic morphism:
From: Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 + x over Finite Field of size 83
To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 62*x + 74 over Finite Field of size 83
Via: (u,r,s,t) = (1, 76, 41, 3)

is_injective()
Return True if and only if this isogeny has trivial kernel.

EXAMPLES:

sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 + x - 29/5

(continues on next page)
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi.is_injective()
False
sage: phi = EllipticCurveIsogeny(E, R(1))
sage: phi.is_injective()
True

sage: F = GF(7)
sage: E = EllipticCurve(j=F(0))
sage: phi = EllipticCurveIsogeny(E, [ E((0,-1)), E((0,1))])
sage: phi.is_injective()
False
sage: phi = EllipticCurveIsogeny(E, E(0))
sage: phi.is_injective()
True

**is_normalized** *(via_formal=True, check_by_pullback=True)*

Return whether this isogeny is normalized.

**Note:** An isogeny \( \phi : E \to E_2 \) between two given Weierstrass equations is said to be normalized if the constant \( c \) is 1 in \( \phi^* (\omega_2) = c \cdot \omega \), where \( \omega \) and \( \omega_2 \) are the invariant differentials on \( E \) and \( E_2 \) corresponding to the given equation.

**INPUT:**

- **via_formal** *(default: True)* If True it simply checks if the leading term of the formal series is 1. Otherwise it uses a deprecated algorithm involving the second optional argument.
- **check_by_pullback** *(default: True)* Deprecated.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import WeierstrassIsomorphism
sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: R.<x> = GF(7)[]
sage: phi = EllipticCurveIsogeny(E, x)
sage: phi.is_normalized()
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (3, 0, 0, 0))
sage: phi.set_post_isomorphism(isom)
False
sage: isom = WeierstrassIsomorphism(phi.codomain(), (5, 0, 0, 0))
sage: phi.set_post_isomorphism(isom)
True
sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))
sage: phi.set_post_isomorphism(isom)
True
```

(continues on next page)
sage: isom = WeierstrassIsomorphism(phi.codomain(), (alpha, 0, 0, 0))
sage: phi.is_normalized()
True
sage: phi.set_post_isomorphism(isom)

sage: phi.is_normalized()
False

sage: isom = WeierstrassIsomorphism(phi.codomain(), (1/alpha, 0, 0, 0))

sage: phi.set_post_isomorphism(isom)

sage: phi.is_normalized()
True

sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))

sage: phi.set_post_isomorphism(isom)

sage: phi.is_normalized()
True

sage: E = EllipticCurve('11a1')

sage: R.<x> = QQ[]

sage: f = x^3 - x^2 - 10*x - 79/4

sage: phi = EllipticCurveIsogeny(E, f)

sage: isom = WeierstrassIsomorphism(phi.codomain(), (2, 0, 0, 0))

sage: phi.is_normalized()
True

sage: phi.set_post_isomorphism(isom)

sage: phi.is_normalized()
False

sage: isom = WeierstrassIsomorphism(phi.codomain(), (1/2, 0, 0, 0))

sage: phi.set_post_isomorphism(isom)

sage: phi.is_normalized()
True

sage: isom = WeierstrassIsomorphism(phi.codomain(), (1, 1, 1, 1))

sage: phi.set_post_isomorphism(isom)

sage: phi.is_normalized()
True

is_separable()

Return whether or not this isogeny is separable.

Note: This function always returns True as currently this class only implements separable isogenies.

EXAMPLES:

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])

sage: phi = EllipticCurveIsogeny(E, E((0,0)))

sage: phi.is_separable()
True

sage: E = EllipticCurve('11a1')

sage: phi = EllipticCurveIsogeny(E, E.torsion_points())

sage: phi.is_separable()
True

is_surjective()

Return True if and only if this isogeny is surjective.

Note: This function always returns True, as a non-constant map of algebraic curves must be surjective,
and this class does not model the constant 0 isogeny.

EXAMPLES:

```python
sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 + x - 29/5
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi.is_surjective()
True

sage: E = EllipticCurve(GF(7), [0,0,0,1,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.is_surjective()
True

sage: F = GF(2^5, 'omega')
sage: E = EllipticCurve(j=F(0))
sage: R.<x> = F[
]
sage: phi = EllipticCurveIsogeny(E, x)
sage: phi.is_surjective()
True
```

`is_zero()`
Return whether this isogeny is zero.

**Note:** Currently this class does not allow zero isogenies, so this function will always return True.

EXAMPLES:

```python
sage: E = EllipticCurve(j=GF(7)(0))
sage: phi = EllipticCurveIsogeny(E, [E((0,1)), E((0,-1))])
sage: phi.is_zero()
False
```

`kernel_polynomial()`
Return the kernel polynomial of this isogeny.

EXAMPLES:

```python
sage: E = EllipticCurve(QQ, [0,0,0,2,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.kernel_polynomial()
x

sage: E = EllipticCurve('11a1')
sage: phi = EllipticCurveIsogeny(E, E.torsion_points())
sage: phi.kernel_polynomial()
x^2 - 21*x + 80

sage: E = EllipticCurve(GF(17), [1,-1,1,-1,1])
sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.kernel_polynomial()
1

sage: E = EllipticCurve(GF(31), [0,0,0,3,0])
```

(continues on next page)
sage: phi = EllipticCurveIsogeny(E, [0,3,0,1])
sage: phi.kernel_polynomial()
x^3 + 3\times

**n()**

Numerical Approximation inherited from Map (through morphism), nonsensical for isogenies.

**EXAMPLES:**

```python
sage: E = EllipticCurve(j=GF(7)(0))
sage: phi = EllipticCurveIsogeny(E, [E((0,1)), E((0,-1))])
sage: phi.n()
Traceback (most recent call last):
 ...
NotImplementedError: Numerical approximations do not make sense for EllipticCurve Isogenies
```

**post_compose**(left)

Return the post-composition of this isogeny with left.

**EXAMPLES:**

```python
sage: E = EllipticCurve(j=GF(7)(0))
sage: phi = EllipticCurveIsogeny(E, [E((0,1)), E((0,-1))])
sage: phi.post_compose(phi)
Traceback (most recent call last):
 ...
NotImplementedError: post-composition of isogenies not yet implemented
```

**pre_compose**(right)

Return the pre-composition of this isogeny with right.

**EXAMPLES:**

```python
sage: E = EllipticCurve(j=GF(7)(0))
sage: phi = EllipticCurveIsogeny(E, [E((0,1)), E((0,-1))])
sage: phi.pre_compose(phi)
Traceback (most recent call last):
 ...
NotImplementedError: pre-composition of isogenies not yet implemented
```

**rational_maps**( )

Return the pair of rational maps defining this isogeny.

**Note:** Both components are returned as elements of the function field $F(x,y)$ in two variables over the base field $F$, though the first only involves $x$. To obtain the $x$-coordinate function as a rational function in $F(x)$, use $x_rational_map()$.

**EXAMPLES:**

```python
sage: E = EllipticCurve(QQ, [0,2,0,1,-1])
sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.rational_maps()
(x, y)
```
sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.rational_maps()
((x^2 + 3)/x, (x^2*y - 3*y)/x^2)

set_post_isomorphism (postWI)
Modify this isogeny by postcomposing with a Weierstrass isomorphism.

EXAMPLES:

sage: E = EllipticCurve(j=GF(31)(0))
sage: R.<x> = GF(31)[]
sage: phi = EllipticCurveIsogeny(E, x+18)
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import WeierstrassIsomorphism
sage: phi.set_post_isomorphism(WeierstrassIsomorphism(phi.codomain(), (6,8,10,12)))

Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 31 to Elliptic Curve defined by y^2 + 24*x*y + 7*y = x^3 + 22*x^2 + 16*x + 20 over Finite Field of size 31

sage: E = EllipticCurve(j=GF(47)(0))
sage: f = E.torsion_polynomial(3)/3
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: post_isom = E2.isomorphism_to(E)
sage: phi.set_post_isomorphism(post_isom)
sage: phi.rational_maps() == E.multiplication_by_m(3)
False
sage: phi.switch_sign()
sage: phi.rational_maps() == E.multiplication_by_m(3)
True

Example over a number field:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2 + 2)
sage: E = EllipticCurve(j=K(1728))
sage: ker_list = E.torsion_points()
sage: phi = EllipticCurveIsogeny(E, ker_list)
sage: from sage.schemes.elliptic_curves.weierstrass_morphism import WeierstrassIsomorphism
sage: post_isom = WeierstrassIsomorphism(phi.codomain(), (a,2,3,5))

Isogeny of degree 4 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in a with defining polynomial x^2 + 2 to Elliptic Curve defined by y^2 - 2 = x^3 + (-44)*x + 112 over Number Field in a with defining polynomial x^2 + 2

set_pre_isomorphism (preWI)
Modify this isogeny by precomposing with a Weierstrass isomorphism.

EXAMPLES:

sage: E = EllipticCurve(GF(31), [1,1,0,1,-1])
sage: R.<x> = GF(31)[]

(continues on next page)
sage: \( f = x^3 + 9x^2 + x + 30 \)
sage: \( \phi = \text{EllipticCurveIsogeny}(E, f) \)
sage: \( Epr = E.\text{short_weierstrass_model}() \)
sage: \( \text{isom} = Epr.\text{isomorphism_to}(E) \)
sage: \( \phi.\text{set_pre_isomorphism}(\text{isom}) \)
sage: \( \phi.\text{rational_maps}() \)
\((-6x^4 - 3x^3 + 12x^2 + 10x - 1)/(x^3 + x - 12), (3x^7 + x^6y - 14x^6 \rightarrow 3x^5 + 5x^4y + 7x^3 - 5x^2y + 5x^2 - 14x + 6)/(x^6 + 2x^4 + 7x^3 + x^2 + 7x - 11)) \)
sage: \( \phi(Epr((0, 22))) \)
\((13 : 21 : 1) \)
sage: \( \phi(Epr((3, 7))) \)
\((14 : 17 : 1) \)
sage: \( E = \text{EllipticCurve}(\text{GF}(29), [0, 0, 0, 1, 0]) \)
sage: \( R.<x> = \text{GF}(29)[x] \)
sage: \( f = x^2 + 5 \)
sage: \( \phi = \text{EllipticCurveIsogeny}(E, f) \)
sage: \( \phi \)
Isogeny of degree 5 from Elliptic Curve defined by \( y^2 = x^3 + x \) over Finite Field of size 29 to Elliptic Curve defined by \( y^2 = x^3 + 20x \) over Finite Field of size 29
sage: \( \text{from sage.schemes.elliptic_curves.weierstrass_morphism import WeierstrassIsomorphism} \)
sage: \( \text{inv_isom} = \text{WeierstrassIsomorphism}(E, (1,-2,5,10)) \)
sage: \( Epr = \text{inv_isom}.\text{codomain}().\text{codomain}() \)
sage: \( \text{isom} = Epr.\text{isomorphism_to}(E) \)
sage: \( \phi.\text{set_pre_isomorphism}(\text{isom}); \phi \)
Isogeny of degree 5 from Elliptic Curve defined by \( y^2 + 10x*y + 20*y = x^3 + 27x^2 + 6 \) over Finite Field of size 29 to Elliptic Curve defined by \( y^2 = x^3 + 20x \) over Finite Field of size 29
sage: \( \phi(Epr((12,1))) \)
\((26 : 0 : 1) \)
sage: \( \phi(Epr((2, 9))) \)
\((0 : 0 : 1) \)
sage: \( \phi(Epr((21,12))) \)
\((3 : 0 : 1) \)
sage: \( \phi.\text{rational_maps}()[0] \)
\((x^5 - 10x^4 - 6x^3 - 7x^2 - x + 3)/(x^4 - 8x^3 + 5x^2 - 14x - 6) \)
sage: \( E = \text{EllipticCurve('11a1')} \)
sage: \( R.<x> = \text{QQ}[x] \)
sage: \( f = x^2 - 21*x + 80 \)
sage: \( \phi = \text{EllipticCurveIsogeny}(E, f); \phi \)
Isogeny of degree 5 from Elliptic Curve defined by \( y^2 + y = x^3 - x^2 - 10x - 20 \) over Rational Field to Elliptic Curve defined by \( y^2 + y = x^3 - x^2 - 7820x - 263580 \) over Rational Field
sage: \( \text{from sage.schemes.elliptic_curves.weierstrass_morphism import WeierstrassIsomorphism} \)
sage: \( Epr = E.\text{short_weierstrass_model}() \)
sage: \( \text{isom} = Epr.\text{isomorphism_to}(E) \)
sage: \( \phi.\text{set_pre_isomorphism}(\text{isom}) \)
sage: \( \phi \)
Isogeny of degree 5 from Elliptic Curve defined by \( y^2 = x^3 - 13392x - 1080432 \) over Rational Field to Elliptic Curve defined by \( y^2 + y = x^3 - x^2 - 7820x - 263580 \) over Rational Field
sage: \( \phi(Epr((168,1188))) \)
(continues on next page)
switch_sign()

Compose this isogeny with \([-1]\) (negation).

EXAMPLES:

```
sage: E = EllipticCurve(GF(23), [0,0,0,1,0])
sage: f = E.torsion_polynomial(3)/3
sage: phi = EllipticCurveIsogeny(E, f, E)
sage: phi.rational_maps() == E.multiplication_by_m(3)
False
sage: phi.switch_sign()
False
sage: phi.rational_maps() == E.multiplication_by_m(3)
True
```

```
sage: E = EllipticCurve(GF(17), [-2, 3, -5, 7, -11])
sage: R.<x> = GF(17)[]
sage: f = x+6
sage: phi = EllipticCurveIsogeny(E, f)
sage: phi
Isogeny of degree 2 from Elliptic Curve defined by y^2 + 15*x*y + 12*y = x^3 + 3*x^2 + 4*x + 8 over Finite Field of size 17 to Elliptic Curve defined by y^2 + 15*x*y + 12*y = x^3 + 3*x^2 + 4*x + 8 over Finite Field of size 17
sage: phi.rational_maps()
((x^2 + 6*x + 4)/(x + 6), (x^2*y - 5*x*y + 8*x - 2*y)/(x^2 - 5*x + 2))
sage: phi.switch_sign()
False
```

```
sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]
sage: f = x^2 - 21*x + 80
sage: phi = EllipticCurveIsogeny(E, f)
```

```
sage: K.<a> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: R.<x> = K[]
sage: phi = EllipticCurveIsogeny(E, x-a)
sage: phi
Isogeny of degree 2 from Elliptic Curve defined by y^2 + 15*x*y + 12*y = x^3 + 3*x^2 + 4*x + 8 over Finite Field of size 17 to Elliptic Curve defined by y^2 + 15*x*y + 12*y = x^3 + 3*x^2 + 4*x + 8 over Finite Field of size 17
```
Return the rational map giving the $x$-coordinate of this isogeny.

**Note:** This function returns the $x$-coordinate component of the isogeny as a rational function in $F(x)$, where $F$ is the base field. To obtain both coordinate functions as elements of the function field $F(x, y)$ in two variables, use `rational_maps()`.

**EXAMPLES:**

```python
sage: E = EllipticCurve(QQ, [0,2,0,1,-1])
sage: phi = EllipticCurveIsogeny(E, [1])
sage: phi.x_rational_map()
x

sage: E = EllipticCurve(GF(17), [0,0,0,3,0])
sage: phi = EllipticCurveIsogeny(E, E((0,0)))
sage: phi.x_rational_map()
(x^2 + 3)/x
```

`sage.schemes.elliptic_curves.ell_curve_isogeny.compute_codomain_formula`($E$, $v$, $w$)

Compute the codomain curve given parameters $v$ and $w$ (as in Velu / Kohel / etc formulas).

**INPUT:**

- $E$ – an elliptic curve
- $v, w$ – elements of the base field of $E$

**OUTPUT:**

The elliptic curve with invariants $[a_1, a_2, a_3, a_4 - 5v, a_6 - (a_1^2 + 4a_2)v - 7w]$ where $E = [a_1, a_2, a_3, a_4, a_6]$.

**EXAMPLES:**

This formula is used by every Isogeny instantiation:

```python
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, E((1,2)))
sage: phi.codomain()
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 9*x + 13 over Finite Field of size 19

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_codomain_formula

sage: v = phi._EllipticCurveIsogeny__v
sage: w = phi._EllipticCurveIsogeny__w
sage: compute_codomain_formula(E, v, w) == phi.codomain()
True
```

`sage.schemes.elliptic_curves.ell_curve_isogeny.compute_codomain_kohel`($E$, `kernel`, `degree`)

Compute the codomain from the kernel polynomial using Kohel’s formulas.

**INPUT:**

- $E$ – an elliptic curve
• kernel (polynomial or list) – the kernel polynomial, or a list of its coefficients
• degree (int) – degree of the isogeny

OUTPUT:
(elliptic curve) – the codomain elliptic curve \( E/k \)

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_codomain_kohel
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, [9,1])
sage: phi.codomain() == isogeny_codomain_from_kernel(E, [9,1])
True
sage: compute_codomain_kohel(E, [9,1], 2)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 9*x + 8 over Finite Field of size 19
sage: R.<x> = GF(19)[]
sage: E = EllipticCurve(GF(19), [18,17,16,15,14])
sage: phi = EllipticCurveIsogeny(E, x^3 + 14*x^2 + 3*x + 11)
sage: phi.codomain() == isogeny_codomain_from_kernel(E, x^3 + 14*x^2 + 3*x + 11)
True
sage: compute_codomain_kohel(E, x^3 + 14*x^2 + 3*x + 11, 7)
Elliptic Curve defined by y^2 + 18*x*y + 16*y = x^3 + 17*x^2 + 18*x + 18 over Finite Field of size 19
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, x^3 + 7*x^2 + 15*x + 12)
sage: isogeny_codomain_from_kernel(E, x^3 + 7*x^2 + 15*x + 12) == phi.codomain()
True
sage: compute_codomain_kohel(E, x^3 + 7*x^2 + 15*x + 12,4)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15 over Finite Field of size 19
```

Note: This function uses the formulas of Section 2.4 of [K96].

REFERENCES:
sage.schemes.elliptic_curves.ell_curve_isogeny.compute_intermediate_curves(\( E_1, E_2 \))

Return intermediate curves and isomorphisms.

Note: This is used so we can compute \( \wp \) functions from the short Weierstrass model more easily.

Warning: The base field must be of characteristic not equal to 2,3.

INPUT:
• \( E_1 \) - an elliptic curve
• \( E_2 \) - an elliptic curve

OUTPUT:
tuple \( \text{pre_isomorphism, post_isomorphism, intermediate_domain, intermediate_codomain} \):
• intermediate_domain: a short Weierstrass model isomorphic to \( E_1 \)
• intermediate_codomain: a short Weierstrass model isomorphic to \( E_2 \)
• pre_isomorphism: normalized isomorphism from \( E_1 \) to intermediate_domain
• post_isomorphism: normalized isomorphism from intermediate_codomain to \( E_2 \)

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_intermediate_curves
sage: E = EllipticCurve(GF(83), [1,0,1,1,0])
sage: R.<x> = GF(83)[]; f = x+24
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_intermediate_curves(E, E2)
(Elliptic Curve defined by y^2 = x^3 + 62*x + 74 over Finite Field of size 83, Elliptic Curve defined by y^2 = x^3 + 65*x + 69 over Finite Field of size 83, Generic morphism:
 From: Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3
 → x over Finite Field of size 83
 To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 62*x +
 → 74 over Finite Field of size 83
 Via: (u,r,s,t) = (1, 76, 41, 3),
Generic morphism:
 From: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 65*x +
 → 69 over Finite Field of size 83
 To: Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3
 → 4*x + 16 over Finite Field of size 83
 Via: (u,r,s,t) = (1, 7, 42, 42))
sage: R.<x> = QQ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: E2 = EllipticCurve(K, [0,0,0,16,0])
sage: compute_intermediate_curves(E, E2)
(Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1, Elliptic Curve defined by y^2 = x^3 + 16*x over Number Field in i with defining polynomial x^2 + 1, Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2
 → x^3 + x over Number Field in i with defining polynomial x^2 + 1
 Via: (u,r,s,t) = (1, 0, 0, 0),
Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2
 → x^3 + 16*x over Number Field in i with defining polynomial x^2 + 1
 Via: (u,r,s,t) = (1, 0, 0, 0))
```

```
sage.schemes.elliptic_curves.ell_curve_isogeny.compute_isogeny_kernel_polynomial(E1, E2, ell_algorithm='starks')

Return the kernel polynomial of an isogeny of degree \(\ell \) between \(E_1 \) and \(E_2 \).

INPUT:

• \(E_1 \) - an elliptic curve in short Weierstrass form.
• \(E_2 \) - an elliptic curve in short Weierstrass form.
```

10.9. Isogenies
• \texttt{ell} - the degree of the isogeny from \texttt{E1} to \texttt{E2}.

• \texttt{algorithm} - currently only \texttt{starks} (default) is implemented.

OUTPUT:

polynomial over the field of definition of \texttt{E1}, \texttt{E2}, that is the kernel polynomial of the isogeny from \texttt{E1} to \texttt{E2}.

\textbf{Note:} If there is no degree \texttt{ell}, cyclic, separable, normalized isogeny from \texttt{E1} to \texttt{E2} then an error will be raised.

\textbf{EXAMPLES:}

\begin{verbatim}
    sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_isogeny_˓→kernel_polynomial
    sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
    sage: R.<x> = GF(37)[]
    sage: f = (x + 14) * (x + 30)
    sage: phi = EllipticCurveIsogeny(E, f)
    sage: E2 = phi.codomain()
    sage: compute_isogeny_kernel_polynomial(E, E2, 5)
    x^2 + 7*x + 13
    sage: f
    x^2 + 7*x + 13
    sage: R.<x> = QQ[]
    sage: K.<i> = NumberField(x^2 + 1)
    sage: E = EllipticCurve(K, [0,0,0,1,0])
    sage: E2 = EllipticCurve(K, [0,0,0,16,0])
    sage: compute_isogeny_kernel_polynomial(E, E2, 4)
    x^3 + x
\end{verbatim}

\texttt{sage.schemes.elliptic_curves.ell_curve_isogeny.compute_isogeny_starks}(\texttt{E1}, \texttt{E2}, \texttt{ell})

Return the kernel polynomials of an isogeny of degree \texttt{ell} between \texttt{E1} and \texttt{E2}.

\textbf{INPUT:}

• \texttt{E1} - an elliptic curve in short Weierstrass form.

• \texttt{E2} - an elliptic curve in short Weierstrass form.

• \texttt{ell} - the degree of the isogeny from \texttt{E1} to \texttt{E2}.

\textbf{OUTPUT:}

polynomial over the field of definition of \texttt{E1}, \texttt{E2}, that is the kernel polynomial of the isogeny from \texttt{E1} to \texttt{E2}.

\textbf{Note:} There must be a degree \texttt{ell}, separable, normalized cyclic isogeny from \texttt{E1} to \texttt{E2}, or an error will be raised.

\textbf{ALGORITHM:}

This function uses Starks Algorithm as presented in section 6.2 of \textit{BMSS}. 
Note: As published in [BMSS], the algorithm is incorrect, and a correct version (with slightly different notation) can be found in [M09]. The algorithm originates in [S72].

REFERENCES:

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_isogeny_starks, compute_sequence_of_maps

sage: E = EllipticCurve(GF(97), [1,0,1,1,0])
sage: R.<x> = GF(97)[]; f = x^5 + 27*x^4 + 61*x^3 + 58*x^2 + 28*x + 21
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: (isom1, isom2, E1pr, E2pr, ker_poly) = compute_sequence_of_maps(E, E2, 11)
sage: compute_isogeny_starks(E1pr, E2pr, 11)
x^10 + 37*x^9 + 53*x^8 + 66*x^7 + 66*x^6 + 17*x^5 + 57*x^4 + 6*x^3 + 89*x^2 + 53*x + 8

sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
sage: R.<x> = GF(37)[]
sage: f = (x + 14) * (x + 30)
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_isogeny_starks(E1pr, E2pr, 5)
x^4 + 14*x^3 + x^2 + 34*x + 21
sage: f**2
x^4 + 14*x^3 + x^2 + 34*x + 21

sage: E = EllipticCurve(QQ, [0,0,0,1,0])
sage: R.<x> = QQ[
 sage: f = x
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_isogeny_starks(E, E2, 2)
x

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_sequence_of_maps(E1, E2, ell)
```

Return intermediate curves, isomorphisms and kernel polynomial.

INPUT:

- `E1, E2` – elliptic curves.
- `ell` – a prime such that there is a degree `ell` separable normalized isogeny from `E1` to `E2`.

OUTPUT:

`(pre_isom, post_isom, E1pr, E2pr, ker_poly)` where:

- `E1pr` is an elliptic curve in short Weierstrass form isomorphic to `E1`;
- `E2pr` is an elliptic curve in short Weierstrass form isomorphic to `E2`;
- `pre_isom` is a normalised isomorphism from `E1` to `E1pr`;
- `post_isom` is a normalised isomorphism from `E2pr` to `E2`;
- `ker_poly` is the kernel polynomial of an `ell`-isogeny from `E1pr` to `E2pr`.

10.9. Isogenies 241
EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_sequence_of_maps
sage: E = EllipticCurve('11a1')
sage: R.<x> = QQ[]; f = x^2 - 21*x + 80
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_sequence_of_maps(E, E2, 5)
(Generic morphism:
 From: Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
 To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 - 31/3*x - 2501/108 over Rational Field
 Via: (u,r,s,t) = (1, 1/3, 0, -1/2),
Generic morphism:
 From: Abelian group of points on Elliptic Curve defined by y^2 = x^3 - 23461/3*x - 28748141/108 over Rational Field
 To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 - 7820*x - 2501/108 over Rational Field
 Via: (u,r,s,t) = (1, -1/3, 0, 1/2),
Elliptic Curve defined by y^2 = x^3 - 31/3*x - 2501/108 over Rational Field,
Elliptic Curve defined by y^2 = x^3 - 23461/3*x - 28748141/108 over Rational Field,
Elliptic Curve defined by y^2 = x^2 - 61/3*x + 658/9)
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K, [0,0,0,1,0])
sage: E2 = EllipticCurve(K, [0,0,0,16,0])
sage: compute_sequence_of_maps(E, E2, 4)
(Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1
 Via: (u,r,s,t) = (1, 0, 0, 0),
Generic endomorphism of Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 16*x over Number Field in i with defining polynomial x^2 + 1
 Via: (u,r,s,t) = (1, 0, 0, 0),
Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1,
Elliptic Curve defined by y^2 = x^3 + 16*x over Number Field in i with defining polynomial x^2 + 1,
x^3 + x)
sage: E = EllipticCurve(GF(97), [1,0,1,1,0])
sage: R.<x> = GF(97)[]; f = x^5 + 27*x^4 + 61*x^3 + 58*x^2 + 28*x + 21
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: compute_sequence_of_maps(E, E2, 11)
(Generic morphism:
 From: Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 + x over Finite Field of size 97
 To: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 52*x + 31 over Finite Field of size 97
 Via: (u,r,s,t) = (1, 8, 48, 44),
Generic morphism:
 From: Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 52*x + 31 over Finite Field of size 97
 To: Abelian group of points on Elliptic Curve defined by y^2 + 8*x*y + y = x^3 + x over Finite Field of size 97
 Via: (u,r,s,t) = (1, 8, 48, 44),
(continues on next page)```
Compute Velu’s (v,w) using Kohel’s formulas for isogenies of degree exactly divisible by 2.

INPUT:
- \(x_0, y_0\) – coordinates of a 2-torsion point on an elliptic curve \(E\)
- \(a_1, a_2, a_4\) – invariants of \(E\)

OUTPUT:
(tuple) Velu’s isogeny parameters (v,w).

EXAMPLES:
This function will be implicitly called by the following example:

```sage
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: phi = EllipticCurveIsogeny(E, [9,1]); phi
Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 19 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 9*x + 8 over Finite Field of size 19
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_even_deg1
sage: a1,a2,a3,a4,a6 = E.ainvs()
sage: x0 = -9
sage: y0 = -(a1*x0 + a3)/2
sage: compute_vw_kohel_even_deg1(x0, y0, a1, a2, a4)
(18, 9)
```

Compute Velu’s (v,w) using Kohel’s formulas for isogenies of degree divisible by 4.

INPUT:
- \(b_2, b_4\) – invariants of an elliptic curve \(E\)
- \(s_1, s_2, s_3\) – signed coefficients of the 2-division polynomial of \(E\)

OUTPUT:
(tuple) Velu’s isogeny parameters (v,w).

EXAMPLES:
This function will be implicitly called by the following example:
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: R.<x> = GF(19)[x]

```python
sage: phi = EllipticCurveIsogeny(E, x^3 + 7*x^2 + 15*x + 12); phi
Isogeny of degree 4 from Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 19 to Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15 over Finite Field of size 19
```

```python
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_even_deg3
sage: (b2,b4) = (E.b2(), E.b4())
sage: (s1, s2, s3) = (-7, 15, -12)
sage: compute_vw_kohel_even_deg3(b2, b4, s1, s2, s3)
(4, 7)
```

sage.schemes.elliptic_curves.ell_curve_isogeny.compute_vw_kohel_odd(b2, b4, b6, s1, s2, s3, n)

Compute Velu’s (v,w) using Kohel’s formulas for isogenies of odd degree.

INPUT:
- b2, b4, b6 – invariants of an elliptic curve E
- s1, s2, s3 – signed coefficients of lowest powers of x in the kernel polynomial.
- n (int) – the degree

OUTPUT:
(tuple) Velu’s isogeny parameters (v,w).

EXAMPLES:
This function will be implicitly called by the following example:

```python
sage: E = EllipticCurve(GF(19), [18,17,16,15,14])
sage: R.<x> = GF(19)[x]

sage: phi = EllipticCurveIsogeny(E, x^3 + 14*x^2 + 3*x + 11); phi
Isogeny of degree 7 from Elliptic Curve defined by y^2 + 18*x*y + 16*y = x^3 + 17*x^2 + 18*x + 14 over Finite Field of size 19 to Elliptic Curve defined by y^2 + 18*x*y + 16*y = x^3 + 17*x^2 + 18*x + 18 over Finite Field of size 19
```

```python
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_vw_kohel_odd
sage: (b2,b4,b6) = (E.b2(), E.b4(), E.b6())
sage: (s1,s2,s3) = (-14,3,-11)
```

```python
sage: compute_vw_kohel_odd(b2,b4,b6,s1,s2,s3)
(7, 1)
```

sage.schemes.elliptic_curves.ell_curve_isogeny.fill_isogeny_matrix(M)
Returns a filled isogeny matrix giving all degrees from one giving only prime degrees.

INPUT:
- M – a square symmetric matrix whose off-diagonal i, j entry is either a prime l (if the i’th and j’th curves have an l-isogeny between them), otherwise is 0.

OUTPUT:
(matrix) a square matrix with entries 1 on the diagonal, and in general the i, j entry is d > 0 if d is the minimal degree of an isogeny from the i’th to the j’th curve.

EXAMPLES:
sage: M = Matrix([[0, 2, 3, 3, 0, 0], [2, 0, 0, 3, 3, 0], [3, 0, 0, 0, 2, 0], [3, 0, 0, 0, 0, 2], [0, 2, 3, 0, 0, 0], [0, 3, 2, 0, 0, 0]]); M
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import fill_isogeny_matrix
sage: fill_isogeny_matrix(M)

Compute the isogeny codomain given a kernel.

INPUT:

• E - The domain elliptic curve.

• kernel - Either a list of points in the kernel of the isogeny, or a kernel polynomial (specified as a either a univariate polynomial or a coefficient list.)

• degree - an integer, (default:None) optionally specified degree of the kernel.

OUTPUT:

(elliptic curve) the codomain of the separable normalized isogeny from this kernel

EXAMPLES:

sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import isogeny_codomain_from_kernel
sage: E = EllipticCurve(GF(7), [1,0,1,0,1])
sage: R.<x> = GF(7)[]
sage: isogeny_codomain_from_kernel(E, [4,1], degree=3)
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 6 over Finite Field of size 7
sage: E.ambient().isogeny_codomain_from_kernel(E, [4,1], degree=3)
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 6 over Finite Field of size 7
True
sage: isogeny_codomain_from_kernel(E, x^3 + x^2 + 4*x + 3)
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + 6 over Finite Field of size 7
sage: isogeny_codomain_from_kernel(E, x^3 + 2*x^2 + 4*x + 3)
Elliptic Curve defined by y^2 + x*y + y = x^3 + 5*x + 2 over Finite Field of size 7

sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: kernel_list = [E((15,10)), E((10,3)), E((6,5))]

(continues on next page)
sage: isogeny_codomain_from_kernel(E, kernel_list)
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 3*x + 15 over Finite
˓→Field of size 19

sage.schemes.elliptic_curves.ell_curve_isogeny.isogeny_determine_algorithm(E, kernel)

Helper function that allows the various isogeny functions to infer the algorithm type from the parameters passed in.

INPUT:

• E (elliptic curve) – an elliptic curve
• kernel – either a list of points on E, or a univariate polynomial or list of coefficients of a univariate polynomial.

OUTPUT:

(string) either ‘velu’ or ‘kohel’

If kernel is a list of points on the EllipticCurve E, then we will try to use Velu’s algorithm.

If kernel is a list of coefficients or a univariate polynomial, we will try to use the Kohel’s algorithms.

EXAMPLES:

This helper function will be implicitly called by the following examples:

```
sage: R.<x> = GF(5)[]
sage: E = EllipticCurve(GF(5), [0,0,0,1,0])
```

We can construct the same isogeny from a kernel polynomial:

```
sage: phi = EllipticCurveIsogeny(E, x+3)
```

or from a list of coefficients of a kernel polynomial:

```
sage: phi == EllipticCurveIsogeny(E, [3,1])
True
```

or from a rational point which generates the kernel:

```
sage: phi == EllipticCurveIsogeny(E, E((2,0)) )
True
```

In the first two cases, Kohel’s algorithm will be used, while in the third case it is Velu:

```
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import isogeny_determine_algorithm
```
```
sage: isogeny_determine_algorithm(E, x+3)  # kohel
'shelb'
sage: isogeny_determine_algorithm(E, [3,1])  # kohel
'shelb'
sage: isogeny_determine_algorithm(E, E((2,0)))  # velu
'velu'
```

sage.schemes.elliptic_curves.ell_curve_isogeny.split_kernel_polynomial(poly)

Internal helper function for `compute_isogeny_kernel_polynomial`.

INPUT:
• poly – a nonzero univariate polynomial.

OUTPUT:

The maximum separable divisor of poly. If the input is a full kernel polynomial where the roots which are x-coordinates of points of order greater than 2 have multiplicity 1, the output will be a polynomial with the same roots, all of multiplicity 1.

EXAMPLES:

The following example implicitly exercises this function:

```python
sage: E = EllipticCurve(GF(37), [0,0,0,1,8])
sage: R.<x> = GF(37)[]
sage: f = (x + 10) * (x + 12) * (x + 16)
sage: phi = EllipticCurveIsogeny(E, f)
sage: E2 = phi.codomain()
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import compute_isogeny_starks
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import split_kernel_polynomial
sage: ker_poly = compute_isogeny_starks(E, E2, 7); ker_poly
x^6 + 2*x^5 + 20*x^4 + 11*x^3 + 36*x^2 + 35*x + 16
sage: ker_poly.factor()  
(x + 10)^2 * (x + 12)^2 * (x + 16)^2
sage: poly = split_kernel_polynomial(ker_poly); poly
x^3 + x^2 + 28*x + 33
sage: poly.factor()  
(x + 10) * (x + 12) * (x + 16)
```

sage.schemes.elliptic_curves.ell_curve_isogeny.two_torsion_part(E, ψ)

Returns the greatest common divisor of ψ and the 2-torsion polynomial of E.

INPUT:

• E – an elliptic curve

• ψ – a univariate polynomial over the base field of E

OUTPUT:

(polynomial) the gcd of ψ and the 2-torsion polynomial of E.

EXAMPLES:

Every function that computes the kernel polynomial via Kohel’s formulas will call this function:

```python
sage: E = EllipticCurve(GF(19), [1,2,3,4,5])
sage: R.<x> = GF(19)[]
sage: phi = EllipticCurveIsogeny(E, x + 13)
sage: isogeny_codomain_from_kernel(E, x + 13) == phi.codomain()  
True
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import two_torsion_part
sage: two_torsion_part(E, x+13)
x + 13
```

sage.schemes.elliptic_curves.ell_curve_isogeny.unfill_isogeny_matrix(M)

Reverses the action of fill_isogeny_matrix.

INPUT:

• M – a square symmetric matrix of integers.
OUTPUT:

(matrix) a square symmetric matrix obtained from M by replacing non-prime entries with 0.

EXAMPLES:

```python
sage: M = Matrix([[0, 2, 3, 3, 0, 0], [2, 0, 0, 0, 3, 3], [3, 0, 0, 0, 2, 0], [3, 0, 0, 0, 0, 2], [0, 3, 2, 0, 0, 0], [0, 3, 0, 2, 0, 0]]); M
[0 2 3 3 0 0]
[2 0 0 0 3 3]
[3 0 0 0 2 0]
[3 0 0 0 0 2]
[0 3 2 0 0 0]
[0 3 0 2 0 0]
sage: from sage.schemes.elliptic_curves.ell_curve_isogeny import fill_isogeny_matrix, unfill_isogeny_matrix
sage: M1 = fill_isogeny_matrix(M); M1
[ 1 2 3 3 6 6]
[ 2 1 6 6 3 3]
[ 3 6 1 9 2 18]
[ 3 6 9 1 18 2]
[ 6 3 2 18 1 9]
[ 6 3 10 2 9 1]
sage: unfill_isogeny_matrix(M1)
[0 2 3 3 0 0]
[2 0 0 0 3 3]
[3 0 0 0 2 0]
[3 0 0 0 0 2]
[0 3 2 0 0 0]
[0 3 0 2 0 0]
sage: unfill_isogeny_matrix(M1) == M
True
```

10.10 Isogenies of small prime degree

Functions for the computation of isogenies of small primes degree. First: $l = 2, 3, 5, 7, 13$, where the modular curve $X_0(l)$ has genus 0. Second: $l = 11, 17, 19, 23, 29, 31, 41, 47, 59, 71$, where $X_0^+(l)$ has genus 0 and $X_0(l)$ is elliptic or hyperelliptic. Also: $l = 11, 17, 19, 37, 43, 67$ or 163 over \mathbb{Q} (the sporadic cases with only finitely many j-invariants each). All the above only require factorization of a polynomial of degree $l+1$. Finally, a generic function which works for arbitrary odd primes l (including the characteristic), but requires factorization of the l-division polynomial, of degree $(l^2-1)/2$.

AUTHORS:

- John Cremona and Jenny Cooley: 2009-07..11: the genus 0 cases the sporadic cases over \mathbb{Q}.
- Kimi Tsukazaki and John Cremona: 2013-07: The 10 (hyper)-elliptic cases and the generic algorithm. See [KT2013].

`sage.schemes.elliptic_curves.isogeny_small_degree.Fricke_module(l)`

Fricke module for $l = 2, 3, 5, 7, 13$.

For these primes (and these only) the modular curve $X_0(l)$ has genus zero, and its field is generated by a single modular function called the Fricke module (or Hauptmodul), t. There is a classical choice of such a generator t in each case, and the j-function is a rational function of t of degree $l+1$ of the form $P(t)/t$ where P is a polynomial of degree $l+1$. Up to scaling, t is determined by the condition that the ramification points above $j = \infty$ are $t = 0$ (with ramification degree 1) and $t = \infty$ (with degree l). The ramification above $j = 0$ and $j = 1728$ may be seen in the factorizations of $j(t)$ and $k(t)$ where $k = j - 1728$.

248 Chapter 10. Elliptic curves
The rational function \(P(t)/t\).

For these primes (and these only) the modular curve \(X_0(l)\) has genus zero, and its field is generated by a single modular function called the Fricke module (or Hauptmodul), \(t\). There is a classical choice of such a generator \(t\) in each case, and the \(j\)-function is a rational function of \(t\) of degree \(l + 1\) of the form \(P(t)/t\) where \(P\) is a polynomial of degree \(l + 1\). Up to scaling, \(t\) is determined by the condition that the ramification points above \(j = \infty\) are \(t = 0\) (with ramification degree 1) and \(t = \infty\) (with degree \(l\)). The ramification above \(j = 0\) and \(j = 1728\) may be seen in the factorizations of \(j(t)\) and \(k(t)\) where \(k = j - 1728\).

OUTPUT:
The polynomial \(P(t)\) as an element of \(\mathbb{Z}[t]\).

For each of the primes \(l\) for which \(X_0(l)\) has genus zero (namely \(l = 2, 3, 5, 7, 13\)), we may define an elliptic curve \(E_t\) over \(\mathbb{Q}(t)\), with coefficients in \(\mathbb{Z}[t]\), which has good reduction except at \(t = 0\) and \(t = \infty\) (which lie above \(j = \infty\)) and at certain other values of \(t\) above \(j = 0\) when \(l = 3\) (one value) or \(l \equiv 1 \pmod{3}\) (two values) and above \(j = 1728\) when \(l = 2\) (one value) or \(l \equiv 1 \pmod{4}\) (two values). (These exceptional values correspond to endomorphisms of \(E_t\) of degree \(l\).) The \(l\)-division polynomial of \(E_t\) has a unique factor of degree \((l - 1)/2\) (or 1 when \(l = 2\)), with coefficients in \(\mathbb{Z}[t]\), which we call the Generic Kernel Polynomial for \(l\). These are used, by specialising \(t\), in the function \(isogenies_prime_degree_genus_0()\), which also has to take into account the twisting factor between \(E_t\) for a specific value of \(t\) and the short Weierstrass form of an elliptic curve with \(j\)-invariant \(j(t)\). This enables the computation of the kernel polynomials of isogenies without having to compute and factor division polynomials.

All of this data is quickly computed from the Fricke modules, except that for \(l = 13\) the factorization of the Generic Division Polynomial takes a long time, so the value have been precomputed and cached; by default the cached values are used, but the code here will recompute them when \(use_stored\) is \(False\), as in the doctests.

INPUT:
- \(l\) – either 2, 3, 5, 7, or 13.
- \(use_stored\) (boolean, default \(True\)) – If \(True\), use precomputed values, otherwise compute them on the fly.

Note: This computation takes a negligible time for \(l = 2, 3, 5\) but more than 100s for \(l = 13\). The reason for allowing dynamic computation here instead of just using precomputed values is for testing.

Return the generic kernel polynomial for hyperelliptic \(l\)-isogenies.

INPUT:
- \(l\) – either 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

OUTPUT:
The generic \(l\)-kernel polynomial.

EXAMPLES:
Test whether \(E \) has a cyclic isogeny of degree \(m \) with kernel polynomial \(f \).

INPUT:
- \(E \) – an elliptic curve.
- \(m \) – a positive integer.
- \(f \) – a polynomial over the base field of \(E \).

OUTPUT:

(booi) \textbf{True} if \(E \) has a cyclic isogeny of degree \(m \) with kernel polynomial \(f \), else \textbf{False}.

ALGORITHM:

\(f \) must have degree \((m - 1)/2\) (if \(m \) is odd) or degree \(m/2 \) (if \(m \) is even), and have the property that for each root \(x \) of \(f, \mu(x) \) is also a root where \(\mu \) is the multiplication-by-\(m \) map on \(E \) and \(m \) runs over a set of generators of \((\mathbb{Z}/m\mathbb{Z})^*/\{1, -1\}\).

EXAMPLES:

An example from [KT2013], where the 13-division polynomial splits into 14 factors each of degree 6, but only two of these is a kernel polynomial for a 13-isogeny:
False, False

See trac ticket #22232:

```python
sage: K = GF(47^2)
sage: E = EllipticCurve([0, K.gen()])
sage: psi7 = E.division_polynomial(7)
sage: f = psi7.factor()[4][0]
sage: f
x^3 + (7*z2 + 11)*x^2 + (25*z2 + 33)*x + 25*z2
sage: f.divides(psi7)
True
sage: is_kernel_polynomial(E, 7, f)
False
```

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_13_0(E, minimal_models=True)

Return list of all 13-isogenies from \(E\) when the j-invariant is 0.

INPUT:

- \(E\) – an elliptic curve with j-invariant 0.
- \(\text{minimal_models}\) (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 13-isogenies with codomain \(E\). In general these are normalised; but if \(-3\) is a square then there are two endomorphisms of degree 13, for which the codomain is the same as the domain.

Note: This implementation requires that the characteristic is not 2, 3 or 13.

Note: This function would normally be invoked indirectly via \(\text{E.isogenies_prime_degree}(13)\).

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_13_0

Endomorphisms of degree 13 will exist when -3 is a square:
```

```python
sage: K.<r> = QuadraticField(-3)
sage: E = EllipticCurve(K, [0, r]); E
Elliptic Curve defined by y^2 = x^3 + r over Number Field in r with defining polynomial x^2 + 3
sage: isogenies_13_0(E)
```
(Isogeny of degree 13 from Elliptic Curve defined by \(y^2 = x^3 + r\) over Number Field in \(r\) with defining polynomial \(x^2 + 3\) to Elliptic Curve defined by \(y^2 = x^3 + r\) over Number Field in \(r\) with defining polynomial \(x^2 + 3\).)

```
sage: isogenies_13_0(E)[0].rational_maps()
((7/338*r + 23/338)*x^13 + (-164/13*r - 420/13)*x^10 + (720/13*r + 3168/13)*x^7 +
(-4*r + 36)*x^9 + (788/13*r - 420/13)*x^5 + (3840/13*r - 576/13)*x^2 + (3840/13*r - 576/13)*x^4 + (4608/13*r + 2304/13)*x)/(x^12 + (4*r + 36)*x^9 + (1080/13*r + 3816/13)*x^6 + (2112/13*r - 5184/13)*x^3 + (-17280/169*r - 1152/169)),
((18/2197*r + 35/2197)*x^18*y + (23142/2197*r + 35478/2197)*x^15*y + (-112752/2197*r - 1559664/2197)*x^12*y + (-87744/13*r + 5992700/2197)*x^9*y + (-112752/2197*r - 1559664/2197)*x^6*y + (-6625152/2197*r - 9085824/2197)*x^3*y + (-28919808/2197*r - 2239488/2197)*x^18*y + (-1990656/2197*r - 3870720/2197))
```

An example of endomorphisms over a finite field:

```
sage: K = GF(19^2,'a')
sage: E = EllipticCurve(j=K(0)); E
Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field in a of size 19^2
sage: isogenies_13_0(E)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 19 to Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 19, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 19 to Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 19]
sage: isogenies_13_0(E)[0].rational_maps()
((6*x^13 - 6*x^10 - 3*x^7 + 6*x^4 + x)/(x^12 - 5*x^9 - 9*x^6 - 7*x^3 + 5), (-8*x^18*y - 9*x^15*y + 9*x^12*y - 5*x^9*y + 5*x^6*y - 7*x^3*y + 7*y)/(x^18 + 2*x^15 + 3*x^12 - x^9 + 8*x^6 - 9*x^3 + 7))
```

A previous implementation did not work in some characteristics:

```
sage: K = GF(29)
sage: E = EllipticCurve(j=K(0))
sage: isogenies_13_0(E)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 29 to Elliptic Curve defined by y^2 = x^3 + 26*x + 12 over Finite Field of size 29, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 29 to Elliptic Curve defined by y^2 = x^3 + 16*x + 28 over Finite Field of size 29]
sage: K = GF(101)
sage: E = EllipticCurve(j=K(0)); E.ainvs()[(0, 0, 1)]
sage: [phi.codomain().ainvs() for phi in isogenies_13_0(E)]
[(0, 0, 64, 36), (0, 0, 42, 66)]
sage: x = polygen(QQ)
sage: f = x^12 + 78624*x^9 - 130308048*x^6 + 2270840832*x^3 - 54500179968
sage: K.<a> = NumberField(f)
sage: E = EllipticCurve(j=K(0)); E.ainvs()[(0, 0, 1)]
```

(continues on next page)
Return list of all 13-isogenies from E when the j-invariant is 1728.

INPUT:

- E – an elliptic curve with j-invariant 1728.
- minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 13-isogenies with codomain E. In general these are normalised; but if -1 is a square then there are two endomorphisms of degree 13, for which the codomain is the same as the domain; and over \mathbb{Q} or a number field, the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 13.
Note: This function would normally be invoked indirectly via \texttt{E.isogenies_prime_degree(13)}.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_13_1728

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,i,0]); E.ainvs()
(0, 0, 0, i, 0)
sage: isogenies_13_1728(E)
(Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + i*x over Number Field in i with defining polynomial x^2 + 1 to Elliptic Curve defined by y^2 = x^3 + i*x over Number Field in i with defining polynomial x^2 + 1, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + i*x over Number Field in i with defining polynomial x^2 + 1 to Elliptic Curve defined by y^2 = x^3 + i*x over Number Field in i with defining polynomial x^2 + 1]

sage: K = GF(83)
sage: E = EllipticCurve(K, [0,0,0,5,0]); E.ainvs()
(0, 0, 0, 5, 0)
sage: isogenies_13_1728(E)
[]

sage: K = GF(89)
sage: E = EllipticCurve(K, [0,0,0,5,0]); E.ainvs()
(0, 0, 0, 5, 0)
sage: isogenies_13_1728(E)
(Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 89 to Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 89, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 89 to Elliptic Curve defined by y^2 = x^3 + 5*x over Finite Field of size 89]

sage: K = GF(23)
sage: E = EllipticCurve(K, [1,0])
sage: isogenies_13_1728(E)
(Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 23 to Elliptic Curve defined by y^2 = x^3 + 16 over Finite Field of size 23, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 23 to Elliptic Curve defined by y^2 = x^3 + 7 over Finite Field of size 23]

sage: x = polygen(QQ)
sage: f = x^12 + 1092*x^10 - 432432*x^8 + 6641024*x^6 - 282896640*x^4 - 149879808*x^2 - 349360128
sage: K.<a> = NumberField(f)
sage: E = EllipticCurve(K, [1,0])
sage: [phi.codomain().ainvs() for phi in isogenies_13_1728(E)]
[(0, 0, 0, -4225010072113/3063768069807341568*a^10 - 24841071989413/15957125363579904*a^8 + 11179537789374271/21276167151439872*a^6 - 407474562289492049/4522994717568*a^4 + 1608052769560747/4522994717568*a^2 + 7786720245212809/36937780193472,]
```

(continues on next page)
Return a list of all 2-isogenies with domain \(E \).

INPUT:

- \(E \) – an elliptic curve.
- \(\text{minimal_models} \) (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 2-isogenies with domain \(E \). In general these are normalised, but over \(\mathbb{Q} \) and other number fields, the codomain is a minimal model where possible.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_2
sage: E = EllipticCurve('14a1'); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field
sage: [phi.codomain().ainvs() for phi in isogenies_2(E)]
[(1, 0, 1, -36, -70)]
sage: E = EllipticCurve([1,2,3,4,5]); E
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field
sage: [phi.codomain().ainvs() for phi in isogenies_2(E)]
[]
sage: E = EllipticCurve(QQbar, [5,8]); E
Elliptic Curve defined by y^2 = x^3 + 9*x + 8 over Algebraic Field
sage: isogenies_2(E) # not implemented
```

Return a list of all 3-isogenies with domain \(E \).

INPUT:

- \(E \) – an elliptic curve.
- \(\text{minimal_models} \) (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:
3-isogenies with domain E. In general these are normalised, but over \mathbb{Q} or a number field, the codomain is a global minimal model where possible.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_3
sage: E = EllipticCurve(GF(17), [1,1])
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[(0, 0, 0, 9, 7), (0, 0, 0, 0, 1)]
sage: E = EllipticCurve(GF(17^2,'a'), [1,1])
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[(0, 0, 0, 9, 7), (0, 0, 0, 0, 1), (0, 0, 0, 5*a + 1, a + 13), (0, 0, 0, 12*a + 6, 16*a + 14)]
sage: E = EllipticCurve('19a1')
sage: [phi.codomain().ainvs() for phi in isogenies_3(E)]
[(0, 1, 1, 1, 0), (0, 1, 1, -769, -8470)]
sage: E = EllipticCurve([1,1])
```

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_5_0(E, minimal_models=True)

Return a list of all the 5-isogenies with domain E when the j-invariant is 0.

INPUT:

- E – an elliptic curve with j-invariant 0.

- `minimal_models` (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 5-isogenies with codomain E. In general these are normalised, but over \mathbb{Q} or a number field, the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 5.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(5).

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_0
sage: isogenies_5_0(E)
[]
sage: E = EllipticCurve(GF(13^2,'a'), [0,-3])
sage: isogenies_5_0(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 + (4*a+6)*x + (2*a+10) over Finite Field in a of size 13^2, Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + (12*a+5)*x + (2*a+10) over Finite Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 + (10*a+2)*x + (2*a+10) over Finite Field in a of size 13^2, Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + (3*a+12)*x + (11*a+13) over Finite Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 + (10*a+2)*x + (2*a+10) over Finite Field in a of size 13^2, Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + (12*a+5)*x + (2*a+10) over Finite Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 + (3*a+12)*x + (11*a+13) over Finite Field in a of size 13^2, Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + (4*a+6)*x + (2*a+10) over Finite Field in a of size 13^2 to Elliptic Curve defined by y^2 = x^3 + (10*a+2)*x + (2*a+10) over Finite Field in a of size 13^2]
```

(continued from previous page)

```python
sage: K.<a> = NumberField(x**6-320*x**3-320)
sage: E = EllipticCurve(K,[0,0,1,0,0])
sage: isogenies_5_0(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 over Number Field in a with defining polynomial x^6 - 320*x^3 - 320 to Elliptic Curve defined by y^2 + y = x^3 + (643/8*a^5-15779/48*a^4-32939/24*a^3-71989/2*a^2+214321/6*a-112115/3)*x + (2901961/96*a^5+4045805/48*a^4+12594215/18*a^3-30029635/6*a^2+15341626/3*a-38943312/9) over Number Field in a with defining polynomial x^6 - 320*x^3 - 320.
Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 over Number Field in a with defining polynomial x^6 - 320*x^3 - 320 to Elliptic Curve defined by y^2 + y = x^3 + (-1109/8*a^5-53873/48*a^4+180281/24*a^3-14491/2*a^2+35899/6*a+43745/3)*x + (-17790679/96*a^5-60439571/48*a^4+77680504/9*a^3-31286245/6*a^2+4961854/3*a-73854632/9) over Number Field in a with defining polynomial x^6 - 320*x^3 - 320.]
```

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_5_1728(E, minimal_models=True)

Return a list of 5-isogenies with domain E when the j-invariant is 1728.

INPUT:

- E – an elliptic curve with j-invariant 1728.
- `minimal_models` (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 5-isogenies with codomain E. In general these are normalised; but if -1 is a square then there are two endomorphisms of degree 5, for which the codomain is the same as the domain curve; and over \mathbb{Q} or a number field, the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3 or 5.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(5).

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_1728
sage: E = EllipticCurve([7,0])
sage: isogenies_5_1728(E)
[]
sage: E = EllipticCurve(GF(13),[11,0])
sage: isogenies_5_1728(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field of size 13,
Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 11*x over Finite Field of size 13]
```

An example of endomorphisms of degree 5:

10.10. Isogenies of small prime degree

257
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[0,0,1,0])
sage: isogenies_5_1728(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1 to Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1,
isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1,
isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in i with defining polynomial x^2 + 1]
sage: _[0].rational_maps()
(((4/25*i + 3/25)*x^5 + (4/5*i - 2/5)*x^3 - x)/(x^4 + (-4/5*i + 2/5)*x^2 + (-4/25*i - 3/25)),
((11/125*i + 2/125)*x^6*y + (-23/125*i + 64/125)*x^4*y + (141/125*i + 162/125)*x^2*y + (3/25*i - 4/25)*y)/(x^6 + (-6/5*i + 3/5)*x^4 + (-12/25*i + 9/25)*x^2 + (2/125*i + 11/125)))

An example of 5-isogenies over a number field:

sage: K.<a> = NumberField(x**4+20*x**2-80)
sage: K(5).is_square() #necessary but not sufficient!
True
sage: E = EllipticCurve(K,[0,0,1,0])
sage: isogenies_5_1728(E)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in a with defining polynomial x^4 + 20*x^2 - 80 to Elliptic Curve defined by y^2 = x^3 + (-753/4*a^2-4399)*x + (2779*a^3+65072*a) over Number Field in a with defining polynomial x^4 + 20*x^2 - 80,
isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in a with defining polynomial x^4 + 20*x^2 - 80 to Elliptic Curve defined by y^2 = x^3 + (-753/4*a^2-4399)*x + (-2779*a^3-65072*a) over Number Field in a,
isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Number Field in a with defining polynomial x^4 + 20*x^2 - 80]

See trac ticket #19840:

sage: K.<a> = NumberField(x**4 - 5*x**2 + 5)
sage: E = EllipticCurve([a^2 + a + 1, a^3 + a^2 + a + 1, a^2 + a, 17*a^3 + 34*a^2 - 16*a - 37, 54*a^3 + 105*a^2 - 66*a - 135])
sage: len(E.isogenies_prime_degree(5))
2
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_5_1728
sage: [phi.codomain().j_invariant() for phi in isogenies_5_1728(E)]
[19691491018752*a^2 - 27212977933632, 19691491018752*a^2 - 27212977933632]
	sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_7_0(E, minimal_models=True)

Return list of all 7-isogenies from E when the j-invariant is 0.

INPUT:
- E – an elliptic curve with j-invariant 0.
- minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:
(list) 7-isogenies with codomain E. In general these are normalised; but if -3 is a square then there are two endomorphisms of degree 7, for which the codomain is the same as the domain; and over Q or a number field, the codomain is a global minimal model where possible.
Note: This implementation requires that the characteristic is not 2, 3 or 7.

Note: This function would normally be invoked indirectly via \texttt{E.isogenies_prime_degree(7)}.

EXAMPLES:

First some examples of endomorphisms:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_0
sage: K.<r> = QuadraticField(-3)
sage: E = EllipticCurve(K, [0,1])
sage: isogenies_7_0(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in r with defining polynomial x^2 + 3 to Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in r with defining polynomial x^2 + 3, Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in r with defining polynomial x^2 + 3 to Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in r with defining polynomial x^2 + 3]
```

```python
sage: E = EllipticCurve(GF(13^2,'a'),[0,-3])
sage: isogenies_7_0(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field of size 13^2 to Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field of size 13^2, Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field of size 13^2 to Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field of size 13^2]
```

Now some examples of 7-isogenies which are not endomorphisms:

```python
sage: K = GF(101)
sage: E = EllipticCurve(K, [0,1])
sage: isogenies_7_0(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 1 over Finite Field of size 101 to Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field of size 101, Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field of size 101 to Elliptic Curve defined by y^2 = x^3 + 10 over Finite Field of size 101]
```

Examples over a number field:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_0
sage: E = EllipticCurve('27a1').change_ring(QuadraticField(-3,'r'))
sage: isogenies_7_0(E)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r with defining polynomial x^2 + 3 to Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r with defining polynomial x^2 + 3, Isogeny of degree 7 from Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r with defining polynomial x^2 + 3 to Elliptic Curve defined by y^2 + y = x^3 + (-7) over Number Field in r with defining polynomial x^2 + 3]
```

```python
sage: K.<a> = NumberField(x^6 + 1512*x^3 - 21168)
sage: E = EllipticCurve(K, [0,1])
sage: isogs = isogenies_7_0(E)
sage: [phi.codomain().a_invariants() for phi in isogs]
[(0,
```
sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_7_1728 \(E, \text{ minimal_models=True}\)

Return list of all 7-isogenies from \(E\) when the j-invariant is 1728.

INPUT:

- \(E\) – an elliptic curve with j-invariant 1728.
- `minimal_models` (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) 7-isogenies with codomain \(E\). In general these are normalised; but over \(\mathbb{Q}\) or a number field, the codomain is a global minimal model where possible.

Note: This implementation requires that the characteristic is not 2, 3, or 7.

Note: This function would normally be invoked indirectly via \(E.isogenies_prime_degree(7)\).

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_1728
sage: E = EllipticCurve(GF(47), [1, 0])
sage: isogenies_7_1728(E)  # Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 47 to Elliptic Curve defined by y^2 = x^3 + 26 over Finite Field
sage: isogenies_7_1728(E)  # Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field
```

An example in characteristic 53 (for which an earlier implementation did not work):

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_7_1728
sage: E = EllipticCurve(GF(53), [1, 0])
sage: isogenies_7_1728(E)  # Isogeny of degree 7 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field
```

(continues on next page)
 sage: E = EllipticCurve(GF(53^2,'a'), [1, 0])
sage: [iso.codomain().ainvs() for iso in isogenies_7_1728(E)]
[(0, 0, 0, 36, 19*a + 15), (0, 0, 0, 36, 34*a + 38), (0, 0, 0, 33, 14*a + 25), (0, 0, 0, 19, 8*a + 37), (0, 0, 3, 45*a + 16), (0, 0, 3, 8*a + 37)]

 sage: K.<a> = NumberField(x^8 + 84*x^6 - 1890*x^4 + 644*x^2 - 567)
sage: E = EllipticCurve(K, [1, 0])
sage: isogs = isogenies_7_1728(E)
sage: [phi.codomain().j_invariant() for phi in isogs]
[-526110256146528/53*a^6 + 183649373229024*a^4 - 3333881559996576/53*a^2 +
 2910267397643616/53, -526110256146528/53*a^6 + 183649373229024*a^4 - 3333881559996576/53*a^2 +
 2910267397643616/53]
sage: E1 = isogs[0].codomain()
sage: E2 = isogs[1].codomain()
sage: E1.is_isomorphic(E2)
False
sage: E1.is_quadratic_twist(E2)
-1

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree(E, l, minimal_models=True)

Return all separable 1-isogenies with domain E.

INPUT:

- E – an elliptic curve.
- l – a prime.
- minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False. Ignored except over number fields other than \(\mathbb{Q}\).

OUTPUT:

A list of all separable isogenies of degree \(l\) with domain E.

EXAMPLES:

 sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_degree
 sage: E = EllipticCurve_from_j(GF(2^6,'a')(1))
sage: isogenies_prime_degree(E, 7)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Finite Field in a of size 2^6 to Elliptic Curve defined by y^2 + x*y = x^3 + x over Finite Field in a of size 2^6]
sage: E = EllipticCurve_from_j(GF(3^12,'a')(2))
sage: isogenies_prime_degree(E, 17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2 over Finite Field in a of size 3^12 to Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field in a of size 3^12, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2 over Finite Field in a of size 3^12 to Elliptic Curve defined by y^2 = x^3 + 2*x^2 + x + 2 over Finite Field in a of size 3^12]
sage: E = EllipticCurve('50a1')
sage: isogenies_prime_degree(E, 3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 → over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x - 552 over Rational Field]
sage: isogenies_prime_degree(E, 5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 → over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298 over Rational Field]
sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_prime_degree(E, 19)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 121325489 over Rational Field]
sage: E = EllipticCurve([0, -1, 0, -6288, 211072])
sage: isogenies_prime_degree(E, 37)
[Isogeny of degree 37 from Elliptic Curve defined by y^2 = x^3 - x^2 - 6288*x + 211072 over Rational Field to Elliptic Curve defined by y^2 = x^3 - x^2 - 163137088*x - 801950801728 over Rational Field]

Isogenies of degree equal to the characteristic are computed (but only the separable isogeny). In the following example we consider an elliptic curve which is supersingular in characteristic 2 only:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_degree
sage: ainvs = (0,1,1,-1,-1)
sage: for l in prime_range(50):
....: E = EllipticCurve(GF(l),ainvs)
....: isogenies_prime_degree(E,l)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2*x + 2 → over Finite Field of size 3 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2*x + 2 over Finite Field of size 3]
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4 → over Finite Field of size 5 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4 over Finite Field of size 5]
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 6*x + 6 → over Finite Field of size 7 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 6*x + 6 over Finite Field of size 7]
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x + 10 → over Finite Field of size 11 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x + 10 over Finite Field of size 11]
[Isogeny of degree 13 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 12 → over Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x + 12 over Finite Field of size 13]
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 16*x + 16 → over Finite Field of size 17 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 16*x + 16 over Finite Field of size 17]
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 18*x + 18 → over Finite Field of size 19 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 18*x + 18 over Finite Field of size 19]
[Isogeny of degree 23 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 22*x + 22 → over Finite Field of size 23 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 22*x + 22 over Finite Field of size 23]
[Isogeny of degree 29 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 28*x + 28 → over Finite Field of size 29 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 28*x + 28 over Finite Field of size 29]

(continues on next page)
(continued from previous page)

\[\text{Isogeny of degree } 31 \text{ from Elliptic Curve defined by } y^2 + y = x^3 + x^2 + 30x + 30 \text{ over Finite Field of size } 31\]
\[\text{Isogeny of degree } 37 \text{ from Elliptic Curve defined by } y^2 + y = x^3 + x^2 + 36x + 36 \text{ over Finite Field of size } 37\]
\[\text{Isogeny of degree } 41 \text{ from Elliptic Curve defined by } y^2 + y = x^3 + x^2 + 40x + 40 \text{ over Finite Field of size } 41\]
\[\text{Isogeny of degree } 43 \text{ from Elliptic Curve defined by } y^2 + y = x^3 + x^2 + 42x + 42 \text{ over Finite Field of size } 43\]
\[\text{Isogeny of degree } 47 \text{ from Elliptic Curve defined by } y^2 + y = x^3 + x^2 + 46x + 46 \text{ over Finite Field of size } 47\]

Note that the computation is faster for degrees equal to one of the genus 0 primes (2, 3, 5, 7, 13) or one of the hyperelliptic primes (11, 17, 19, 23, 29, 31, 41, 47, 59, 71) than when the generic code must be used:

```python
sage: E = EllipticCurve(GF(101), [-3440, 77658])
sage: E.isogenies_prime_degree(71) # fast
[]
sage: E.isogenies_prime_degree(73) # slower (2s)
[]
```

Return all separable l-isogenies with domain E.

INPUT:

- E – an elliptic curve.
- l – a prime.
- `minimal_models` (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

A list of all separable isogenies of degree l with domain E.

ALGORITHM:

This algorithm factors the l-division polynomial, then combines its factors to obtain kernels. See [KT2013], Chapter 3.

Note: This function works for any prime l. Normally one should use the function `isogenies_prime_degree()` which uses special functions for certain small primes.

EXAMPLES:
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_degree_general
sage: E = EllipticCurve_from_j(GF(2^6,'a')(1))
sage: isogenies_prime_degree_general(E, 7)
[Isogeny of degree 7 from Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Finite Field in a of size 2^6 to Elliptic Curve defined by y^2 + x*y = x^3 + x over Finite Field in a of size 2^6]
sage: E = EllipticCurve_from_j(GF(3^12,'a')(2))
sage: isogenies_prime_degree_general(E, 17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2 over Finite Field in a of size 3^12 to Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2*x + 2 over Finite Field in a of size 3^12, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 2*x^2 + 2 over Finite Field in a of size 3^12 to Elliptic Curve defined by y^2 = x^3 + 2*x^2 + x + 2 over Finite Field in a of size 3^12]

sage: E = EllipticCurve('50a1')
sage: isogenies_prime_degree_general(E, 3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x - 1552 over Rational Field]
sage: isogenies_prime_degree_general(E, 5)
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298 over Rational Field]

sage: E = EllipticCurve((0, 0, 1, -1862, -30956))

sage: isogenies_prime_degree_general(E, 19)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x + 211072 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 213125489 over Rational Field]

sage: E = EllipticCurve([-3440, 77658])

sage: isogenies_prime_degree_general(E, 43) # long time (16s)
[Isogeny of degree 43 from Elliptic Curve defined by y^2 = x^3 - 3440*x + 77658 over Rational Field to Elliptic Curve defined by y^2 = x^3 - 6360560*x + 6174354606 over Rational Field]

Isogenies of degree equal to the characteristic are computed (but only the separable isogeny). In the following example we consider an elliptic curve which is supersingular in characteristic 2 only:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_degree_general
sage: ainvs = (0,1,1,-1,-1)
sage: for l in prime_range(50):
....: E = EllipticCurve(GF(l),ainvs)
....: isogenies_prime_degree_general(E,l)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2*x + 2 over Finite Field of size 3 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of size 3]
[Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4 over Finite Field of size 5 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 4*x + 4 over Finite Field of size 5]
Isogeny of degree 7 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 6x + 6\) over Finite Field of size 7 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2\) over Finite Field of size 7

Isogeny of degree 11 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 10x + 10\) over Finite Field of size 11 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + x + 1\) over Finite Field of size 11

Isogeny of degree 13 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 12x + 12\) over Finite Field of size 13 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 12x + 12\) over Finite Field of size 13

Isogeny of degree 17 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 16x + 16\) over Finite Field of size 17 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 15x + 16\) over Finite Field of size 17

Isogeny of degree 19 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 18x + 18\) over Finite Field of size 19 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 3x + 12\) over Finite Field of size 19

Isogeny of degree 23 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 22x + 22\) over Finite Field of size 23 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 22x + 22\) over Finite Field of size 23

Isogeny of degree 29 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 28x + 28\) over Finite Field of size 29 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 7x + 27\) over Finite Field of size 29

Isogeny of degree 31 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 30x + 30\) over Finite Field of size 31 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 15x + 16\) over Finite Field of size 31

Isogeny of degree 37 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 36x + 36\) over Finite Field of size 37 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 16x + 17\) over Finite Field of size 37

Isogeny of degree 41 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 40x + 40\) over Finite Field of size 41 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 33x + 16\) over Finite Field of size 41

Isogeny of degree 43 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 42x + 42\) over Finite Field of size 43 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 36\) over Finite Field of size 43

Isogeny of degree 47 from Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 46x + 46\) over Finite Field of size 47 to Elliptic Curve defined by \(y^2 + y = x^3 + x^2 + 2 + 42x + 34\) over Finite Field of size 47

Note that not all factors of degree \((l-1)/2\) of the \(l\)-division polynomial are kernel polynomials. In this example, the 13-division polynomial factors as a product of 14 irreducible factors of degree 6 each, but only two those are kernel polynomials:

```python
sage: F3 = GF(3)
sage: E = EllipticCurve(F3,[0,0,0,-1,0])
sage: Psi13 = E.division_polynomial(13)
sage: len([f for f,e in Psi13.factor() if f.degree()==6])
14
sage: len(E.isogenies_prime_degree(13))
2
```

Over GF(9) the other factors of degree 6 split into pairs of cubics which can be rearranged to give the remaining 12 kernel polynomials:

```python
sage: len(E.change_ring(GF(3^2,'a')).isogenies_prime_degree(13))
14
```

See trac ticket #18589: the following example took 20s before, now only 4s:

```
10.10. Isogenies of small prime degree
265
```
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[0,0,0,1,0])
[sage: [phi.codomain().ainvs() for phi in E.isogenies_prime_degree(37)] # long time
[(0, 0, 0, -840*i + 1081, 0), (0, 0, 0, 840*i + 1081, 0)]

Return list of \(l \)-isogenies with domain \(E \).

INPUT:

- \(E \) – an elliptic curve.
- \(l \) – either None or 2, 3, 5, 7, or 13.
- minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) When \(l \) is None a list of all isogenies of degree 2, 3, 5, 7 and 13, otherwise a list of isogenies of the given degree.

Note: This function would normally be invoked indirectly via \(E \).isogenies_prime_degree(l) \), which automatically calls the appropriate function.

ALGORITHM:

Cremona and Watkins [CW2005]. See also [KT2013], Chapter 4.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_degree_genus_0
sage: E = EllipticCurve([0,12])
sage: isogenies_prime_degree_genus_0(E, 5)
[]
sage: E = EllipticCurve('1450c1')
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 300*x - 1000 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 5950*x - 182250 over Rational Field]
sage: E = EllipticCurve('50a1')
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 126*x - 552 over Rational Field, Isogeny of degree 5 from Elliptic Curve defined by y^2 + x*y + y = x^3 - x - 2 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - 76*x + 298 over Rational Field]
```
Return list of \(l \)-isogenies with domain \(E \).

INPUT:

- \(E \) – an elliptic curve.
- \(l \) – either None or 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.
- \(\text{minimal_models} \) (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) When \(l \) is None a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71, otherwise a list of isogenies of the given degree.

Note: This function would normally be invoked indirectly via \(E\text{.isogenies_prime_degree}(l) \), which automatically calls the appropriate function.

ALGORITHM:

See [KT2013], Chapter 5.

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_degree_genus_plus_0
sage: E = EllipticCurve('121a1')
sage: isogenies_prime_degree_genus_plus_0(E, 11)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 30*x - 76 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 305*x + 7888 over Rational Field]
sage: E = EllipticCurve([1, 1, 0, -660, -7600])
sage: isogenies_prime_degree_genus_plus_0(E, 17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 660*x - 7600 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 878710*x + 316677750 over Rational Field]
sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_prime_degree_genus_plus_0(E, 19)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 212232489 over Rational Field]
sage: K = QuadraticField(-295,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(-484650135/16777216*a + 4549855725/16777216)
sage: isogenies_prime_degree_genus_plus_0(E, 23)
```

(continues on next page)
sage: K = QuadraticField(-199,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(94743000*a + 269989875)
sage: isogenies_prime_degree_genus_plus_0(E, 29)
[Isogeny of degree 29 from Elliptic Curve defined by y^2 = x^3 + (-153477413215038000*a+5140130723072965125)*x + (-297036215130547008455526000*a+285427704716431800973582250) over Number Field in a with defining polynomial x^2 + 199 to Elliptic Curve defined by y^2 = x^3 + (-251336163178040805000*a+3071093219933084341875)*x + (-841106428316216858008178643221000*a+34804337770798389546017184785250) over Number Field in a with defining polynomial x^2 + 199]

sage: K = QuadraticField(253,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(208438034112000*a - 3315409892960000)
sage: isogenies_prime_degree_genus_plus_0(E, 31)
[Isogeny of degree 31 from Elliptic Curve defined by y^2 = x^3 + (414634512218543303467795608000*a-65951656549965037259634800640000)*x + (-183291115695447347583425393698245080252416000*a+29154236611038932863651036806420414726012928) over Number Field in a with defining polynomial x^2 - 253 to Elliptic Curve defined by y^2 = x^3 + (200339763852548615771623686912000*a-3186599019027169428094827520000)*x + (-74436717914114796291217260182268294850207744000*a-1183988478798864757209685951728833895495168655360000) over Number Field in a with defining polynomial x^2 - 253]

sage: K = QuadraticField(5,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(184068066743177379840*a - 411588709724712960000)
sage: isogenies_prime_degree_genus_plus_0(E, 47)
long time (4.3s)
[Isogeny of degree 47 from Elliptic Curve defined by y^2 = x^3 + (1014631595837124114668689286176511361024000)*x + (494567984298960808144054050393713303830363993489042809651200*a+557802358738710443451273320) over Number Field in a with defining polynomial x^2 - 5 to Elliptic Curve defined by y^2 = x^3 + (395331184423610137305773683495307165245992960*a-888978401996698283401674788320052451737600000)*x + (214030321479466160282302526811652635838683380585369364810383253760*a-47858634807422069698761632325326661637202449745845231658257612800) over Number Field in a with defining polynomial x^2 - 5]

sage: K = QuadraticField(-66827,'a')
sage: a = K.gen()
sage: E = EllipticCurve_from_j(-98669236224000*a + 44017200742400000)
sage: isogenies_prime_degree_genus_plus_0(E, 59)
long time (25s, 2012)
[Isogeny of degree 59 from Elliptic Curve defined by y^2 = x^3 + (26058861467821447622979747840000*a+1893681048991277363494634716160000)*x + (-16918454256410782232256183398067568774071168000*a+170120435382946640271858823587374104011304812875520) over Number Field in a with defining polynomial x^2 + 66827 to Elliptic Curve defined by y^2 = x^3 + (-19387084271597868214007750983680000*a-4882659104885194223032876713613472800)*x + (25659862010101415428713334177227179429538847260672000*a-259603814844129348593879881900364297284081381946880000) over Number Field in a with defining polynomial x^2 + 66827]
sage: E = EllipticCurve_from_j(GF(13)(5))
sage: isogenies_prime_degree_genus_plus_0(E, 71) # long time
[Isogeny of degree 71 from Elliptic Curve defined by y^2 = x^3 + x + 4 over...
→ Finite Field of size 13 to Elliptic Curve defined by y^2 = x^3 + 10*x + 7 over...
→ Finite Field of size 13, Isogeny of degree 71 from Elliptic Curve defined by y^2 =...
→ x^3 + x + 4 over Finite Field of size 13 to Elliptic Curve defined by y^2 =...
→ x^3 + 10*x + 7 over Finite Field of size 13]
sage: E = EllipticCurve(GF(13),[0,1,1,1,0])
sage: isogenies_prime_degree_genus_plus_0(E)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over...
→ Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 10*x...
→ + 1 over Finite Field of size 13,
Isogeny of degree 17 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over...
→ Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x...
→ + 4 over Finite Field of size 13,
Isogeny of degree 29 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over...
→ Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x...
→ + 6 over Finite Field of size 13,
Isogeny of degree 29 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over...
→ Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 5*x...
→ + 6 over Finite Field of size 13,
Isogeny of degree 41 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over...
→ Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 12*x...
→ + 4 over Finite Field of size 13,
Isogeny of degree 41 from Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over...
→ Finite Field of size 13 to Elliptic Curve defined by y^2 + y = x^3 + x^2 + 5*x...
→ + 6 over Finite Field of size 13]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_prime_degree_genus_plus_0_j0(E, l, minimal_models=True)

Return a list of hyperelliptic 1-isogenies with domain \(E\) when \(j(E) = 0\).

INPUT:

- \(E\) – an elliptic curve with j-invariant 0.
- \(l\) – 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.
- minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

(list) a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

Note: This implementation requires that the characteristic is not 2, 3 or 1.

Note: This function would normally be invoked indirectly via \(E\).isogenies_prime_degree(l).

EXAMPLES:
```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_degree_genus_plus_0_j0

sage: u = polygen(QQ)

sage: K.<a> = NumberField(u^4+228*u^3+486*u^2-540*u+225)

sage: E = EllipticCurve(K, [0, -121/5*a^3-20691/5*a^2-29403/5*a+3267])

sage: isogenies_prime_degree_genus_plus_0_j0(E, 11)

sage: E = EllipticCurve(K, [0, -121/5*a^3-20691/5*a^2-29403/5*a+3267])

sage: isogenies_prime_degree_genus_plus_0_j0(E, 17)
```

(continues on next page)
Return a list of \(l \)-isogenies with domain \(E \) when \(j(E) = 1728 \).

INPUT:

- \(E \) – an elliptic curve with \(j \)-invariant 1728.
- \(l \) – 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.
- `minimal_models` (bool, default `True`) – if `True`, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to `False`.

OUTPUT:

(list) a list of all isogenies of degree 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71.

Note: This implementation requires that the characteristic is not 2, 3 or \(l \).

Note: This function would normally be invoked indirectly via \(E.isogenies_prime_degree(l) \).

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_prime_degree_genus_plus_0_j1728

sage: u = polygen(QQ)
sage: K.<a> = NumberField(u^6 - 522*u^5 - 10017*u^4 + 2484*u^3 - 5265*u^2 + 12150*u - 5103)
sage: E = EllipticCurve(K,[-75295/1335852*a^5+13066735/445284*a^4+44903485/74214*a^3+11373021/16492*a-1246245/2356,0])
sage: isogenies_prime_degree_genus_plus_0_j1728(E,11)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + (-75295/1335852*a^5+13066735/445284*a^4+44903485/74214*a^3+11373021/16492*a-1246245/2356)*x over Number Field in a with defining polynomial x^6 - 522*x^5 + 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103 to Elliptic Curve defined by y^2 = x^3 + (9110695/1335852*a^5-1581074935/445284*a^4-5433321685/74214*a^3-3163057249/24738*a+1569269691/16492*a+73825125/2356)*x + (-3540460*a^3+30522492*a^2-7043652*a-5031180) over Number Field in a with defining polynomial x^6 - 522*x^5 + 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103, Isogeny of degree 11 from Elliptic Curve defined by y^2 = x^3 + (-75295/1335852*a^5+13066735/445284*a^4+44903485/74214*a^3+11373021/16492*a-1246245/2356)*x over Number Field in a with defining polynomial x^6 - 522*x^5 + 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103 to Elliptic Curve defined by y^2 = x^3 + (9110695/1335852*a^5-1581074935/445284*a^4-5433321685/74214*a^3-3163057249/24738*a+1569269691/16492*a+73825125/2356)*x + (3540460*a^3-30522492*a^2+7043652*a+5031180) over Number Field in a with defining polynomial x^6 - 522*x^5 + 10017*x^4 + 2484*x^3 - 5265*x^2 + 12150*x - 5103]
```

```python
sage: i = QuadraticField(-1,'i').gen()
sage: E = EllipticCurve([-1-2*i,0])
sage: isogenies_prime_degree_genus_plus_0_j1728(E,17)
```
[Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + (-2*i-1)*x over Number Field in i with defining polynomial x^2 + 1 to Elliptic Curve defined by y^2 = x^3 + (-82*i-641)*x over Number Field in i with defining polynomial x^2 + 1]

Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + (-2*i-1)*x over Number Field in i with defining polynomial x^2 + 1 to Elliptic Curve defined by y^2 = x^3 + (-562*i+319)*x over Number Field in i with defining polynomial x^2 + 1]

sage: Emin = E.global_minimal_model()
sage: [(p,len(isogenies_prime_degree_genus_plus_0_j1728(Emin,p))) for p in [17, 29, 41]]
[(17, 2), (29, 2), (41, 2)]

sage.schemes.elliptic_curves.isogeny_small_degree.isogenies_sporadic_Q(E, l=None, minimal_models=True)

Return a list of sporadic l-isogenies from E (l = 11, 17, 19, 37, 43, 67 or 163). Only for elliptic curves over Q.

INPUT:

• E – an elliptic curve defined over Q.

• l – either None or a prime number.

OUTPUT:

(list) If l is None, a list of all isogenies with domain E and of degree 11, 17, 19, 37, 43, 67 or 163; otherwise a list of isogenies of the given degree.

Note: This function would normally be invoked indirectly via E.isogenies_prime_degree(l), which automatically calls the appropriate function.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.isogeny_small_degree import isogenies_sporadic_Q
sage: E = EllipticCurve('121a1')
sage: isogenies_sporadic_Q(E, 11)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 30*x - 76 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 305*x + 7888 over Rational Field]
sage: isogenies_sporadic_Q(E, 13)
[]
sage: isogenies_sporadic_Q(E, 17)
[]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 11 from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 30*x - 76 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 305*x + 7888 over Rational Field]
sage: E = EllipticCurve([1, 1, 0, -660, -7600])
sage: isogenies_sporadic_Q(E, 17)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 660*x - 7600 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 870710*x + 316677750 over Rational Field]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 17 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 8660*x - 7600 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 878710*x + 316677750 over Rational Field]
sage: isogenies_sporadic_Q(E, 11)
[]
sage: E = EllipticCurve([0, 0, 1, -1862, -30956])
sage: isogenies_sporadic_Q(E, 11)
[]
sage: isogenies_sporadic_Q(E, 19)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 212325489 over Rational Field]
sage: isogenies_sporadic_Q(E)
[Isogeny of degree 19 from Elliptic Curve defined by y^2 + y = x^3 - 1862*x - 30956 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 672182*x + 212325489 over Rational Field]
sage: E = EllipticCurve([0, -1, 0, -6288, 211072])
sage: E.conductor()
19600
sage: isogenies_sporadic_Q(E, 37)
[Isogeny of degree 37 from Elliptic Curve defined by y^2 = x^3 - x^2 - 6288*x + 211072 over Rational Field to Elliptic Curve defined by y^2 = x^3 - x^2 - 163137088*x - 801950801728 over Rational Field]
sage: E = EllipticCurve([1, 1, 0, -25178045, 48616918750])
sage: E.conductor()
148225
sage: isogenies_sporadic_Q(E, 37)
[Isogeny of degree 37 from Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 25178045*x + 48616918750 over Rational Field to Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 970*x - 13075 over Rational Field]
sage: E = EllipticCurve([-3440, 77658])
sage: E.conductor()
118336
sage: isogenies_sporadic_Q(E, 43)
[Isogeny of degree 43 from Elliptic Curve defined by y^2 = x^3 - 3440*x + 77658 over Rational Field to Elliptic Curve defined by y^2 = x^3 - 6360560*x - 342062961763303088 over Rational Field]
sage: E = EllipticCurve([-29480, -1948226])
sage: E.conductor()
287296
sage: isogenies_sporadic_Q(E, 67)
[Isogeny of degree 67 from Elliptic Curve defined by y^2 = x^3 - 29480*x - 1948226 over Rational Field to Elliptic Curve defined by y^2 = x^3 - 132335720*x + 585954296438 over Rational Field]
sage: E = EllipticCurve([-34790720, -78984748304])
sage: E.conductor()
425104
sage: isogenies_sporadic_Q(E, 163)
[Isogeny of degree 163 from Elliptic Curve defined by y^2 = x^3 - 34790720*x - 78984748304 over Rational Field to Elliptic Curve defined by y^2 = x^3 - 294354639680*x + 342062961763303088 over Rational Field]

(continued from previous page)
10.11 Elliptic curves over number fields

10.11.1 Elliptic curves over the rational numbers

AUTHORS:

• William Stein (2005): first version
• William Stein (2006-02-26): fixed Lseries_extended which didn’t work because of changes elsewhere in Sage.
• David Harvey (2006-09): Added padic_E2, padic_sigma, padic_height, padic_regulator methods.
• David Harvey (2007-02): reworked padic-height related code
• Christian Wuthrich (2007): added padic sha computation
• David Roe (2007-09): moved sha, l-series and p-adic functionality to separate files.
• John Cremona (2008-01)
• Tobias Nagel and Michael Mardaus (2008-07): added integral_points
• John Cremona (2008-07): further work on integral_points
• Christian Wuthrich (2010-01): moved Galois reps and modular parametrization in a separate file
• Simon Spicer (2013-03): Added code for modular degrees and congruence numbers of higher level
• Simon Spicer (2014-08): Added new analytic rank computation functionality

\[
\text{class} \quad \text{sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field(ainvs, **kwds)}
\]

Bases:

\[
\text{sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field}
\]

Elliptic curve over the Rational Field.

INPUT:

• \text{ainvs} – a list or tuple \([a_1, a_2, a_3, a_4, a_6]\) of Weierstrass coefficients.

\text{Note:} \quad \text{This class should not be called directly; use} \text{sage.constructor.EllipticCurve to construct elliptic curves.}

EXAMPLES:

Construction from Weierstrass coefficients (\(a\)-invariants), long form:

\[
\text{sage: E = EllipticCurve([1,2,3,4,5]); E}
\]
Elliptic Curve defined by \(y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5\) over Rational Field

Construction from Weierstrass coefficients (\(a\)-invariants), short form (sets \(a_1 = a_2 = a_3 = 0\)):

\[
\text{sage: EllipticCurve([4,5]).ainvs()}
(0, 0, 0, 4, 5)\]
Constructor from a Cremona label:

```
sage: EllipticCurve('389a1')
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
```

Constructor from an LMFDB label:

```
sage: EllipticCurve('462.f3')
Elliptic Curve defined by y^2 + x*y = x^3 - 363*x + 1305 over Rational Field
```

CPS_height_bound()

Return the Cremona-Prickett-Siksek height bound. This is a floating point number B such that if P is a rational point on the curve, then $\hat{h}(P) \leq \hat{h}(P) + B$, where $h(P)$ is the naive logarithmic height of P and $\hat{h}(P)$ is the canonical height.

See also:

silverman_height_bound() for a bound that also works for points over number fields.

EXAMPLES:

```
sage: E = EllipticCurve("11a")
sage: E.CPS_height_bound()
2.8774743273580445
sage: E = EllipticCurve("5077a")
sage: E.CPS_height_bound()
0.0
sage: E = EllipticCurve([1,2,3,4,1])
sage: E.CPS_height_bound()
Traceback (most recent call last):
...: RuntimeError: curve must be minimal.
sage: F = E.quadratic_twist(-19)
sage: F
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 + 1376*x - 130 over Rational Field
sage: F.CPS_height_bound()
0.6555158376972852
```

IMPLEMENTATION:

Call the corresponding mwrank C++ library function. Note that the formula in the [CPS] paper is given for number fields. It is only the implementation in Sage that restricts to the rational field.

Lambda (s, prec)

Return the value of the Lambda-series of the elliptic curve E at s, where s can be any complex number.

IMPLEMENTATION: Fairly slow computation using the definitions and implemented in Python.

Uses prec terms of the power series.

EXAMPLES:

```
sage: E = EllipticCurve('389a1')
sage: E.Lambda(1.4+0.5*I, 50)
-0.354172680517... + 0.874518681720...*I
```

Np (p)

The number of points on E modulo p.

INPUT:

10.11. Elliptic curves over number fields
• p (int) – a prime, not necessarily of good reduction.

OUTPUT:

(int) The number of points on the reduction of E modulo p (including the singular point when p is a prime of bad reduction).

EXAMPLES:

```python
sage: E = EllipticCurve([0, -1, 1, -10, -20])
sage: E.Np(2)
5
sage: E.Np(3)
5
sage: E.conductor()
11
sage: E.Np(11)
11
```

This even works when the prime is large:

```python
sage: E = EllipticCurve('37a')
sage: E.Np(next_prime(10^30))
100000000000000142644164441649
```

S_integral_points $(S, mw_base_base='auto', both_signs=False, verbose=False, proof=None)$

Compute all S-integral points (up to sign) on this elliptic curve.

INPUT:

• S - list of primes
• mw_base - list of EllipticCurvePoint generating the Mordell-Weil group of E (default: ‘auto’ - calls $gens()$)
• $both_signs$ - True/False (default False): if True the output contains both P and $-P$, otherwise only one of each pair.
• $verbose$ - True/False (default False): if True, some details of the computation are output.
• $proof$ - True/False (default True): if True ALL S-integral points will be returned. If False, the MW basis will be computed with the proof=False flag, and also the time-consuming final call to $S_integral_x_coords_with_abs_bounded_by(abs_bound)$ is omitted. Use this only if the computation takes too long, but be warned that then it cannot be guaranteed that all S-integral points will be found.

OUTPUT:

A sorted list of all the S-integral points on E (up to sign unless both_signs is True)

Note: The complexity increases exponentially in the rank of curve E and in the length of S. The computation time (but not the output!) depends on the Mordell-Weil basis. If mw_base is given but is not a basis for the Mordell-Weil group (modulo torsion), S-integral points which are not in the subgroup generated by the given points will almost certainly not be listed.

EXAMPLES:

A curve of rank 3 with no torsion points:
sage: E = EllipticCurve([0,0,1,-7,6])
sage: P1 = E.point((2,0))
sage: P2 = E.point((-1,3))
sage: P3 = E.point((4,6))

sage: a = E.S_integral_points(S=[2,3], mw_base=[P1,P2,P3], verbose=True);a

max_S: 3 len_S: 3 len_tors: 1
lambda 0.485997517468...

k1,k2,k3,k4 7.65200453902598e234 1.31952866480763 3.54035317966420e9 2.

→ 42767548272846e17

p= 2 : trying with p_prec = 30
mw_base_p_log_val = [2, 2, 1]
min_psi = 2 + 2^3 + 2^6 + 2^7 + 2^8 + 2^9 + 2^11 + 2^12 + 2^13 + 2^16 + 2^17 +
→ 2^19 + 2^20 + 2^21 + 2^23 + 2^24 + 2^28 + O(2^30)

p= 3 : trying with p_prec = 30
mw_base_p_log_val = [1, 2, 1]
min_psi = 3 + 3^2 + 2*3^3 + 3^6 + 2*3^7 + 2*3^8 + 3^9 + 2*3^11 + 2*3^12 +
→ 2*3^13 + 3^15 + 2*3^16 + 3^18 + 2*3^19 + 2*3^22 + 2*3^23 + 2*3^24 + 2*3^27 +
→ 3^28 + 3*2^9 + O(3^30)

mw_base [(1 : -1 : 1), (2 : 0 : 1), (0 : -3 : 1)]

mw_base_log [0.667789378224099, 0.552642660712417, 0.818477222895703]

mp [5, 7]

mw_base_p_log [[2^2 + 2^3 + 2^6 + 2^7 + 2^8 + 2^9 + 2^14 + 2^15 + 2^18 + 2^19 +
→ 2^24 + 2^29 + O(2^30), 2^2 + 2^3 + 2^5 + 2^6 + 2^9 + 2^11 + 2^12 + 2^14 +
→ 2^15 + 2^16 + 2^18 + 2^20 + 2^22 + 2^23 + 2^26 + 2^27 + 2^29 + O(2^30), 2^2 +
→ 2^3 + 2^6 + 2^7 + 2^8 + 2^9 + 2^11 + 2^12 + 2^13 + 2^16 + 2^17 + 2^19 + 2^20 +
→ 2^21 + 2^23 + 2^24 + 2^28 + O(2^30)], [2*3^2 + 2*3^5 + 2*3^6 + 2*3^7 +
→ 3^8 + 3*3^10 + 3*3^12 + 2*3^14 + 3*3^15 + 3*3^17 + 2*3^19 + 2*3^23 + 3^25 +
→ 3^28 + O(3^30), 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 3*3^6 + 2*3^7 + 2*3^8 + 3*10 +
→ 2*3^12 + 3*3^13 + 2*3^14 + 3*3^15 + 2*3^18 + 2*3^22 + 2*3^25 + 2*3^26 + 2*3^27 + 3^28 +
→ O(3^30), 3 + 3^2 + 2*3^3 + 3^6 + 2*3^7 + 3^8 + 3^9 + 2*3^11 + 2*3^12 +
→ 2*3^13 + 3*3^15 + 2*3^16 + 3*3^18 + 2*3^19 + 2*3^22 + 2*3^23 + 2*3^24 + 2*3^27 +
→ 3^28 + 3*2^9 + O(3^30)]]

k5,k6,k7 0.321154513240... 1.55246328915... 0.161999172489...

initial bound 2.8057927340...e117

bound_list [58, 58, 58]

bound_list [8, 9, 9]

bound_list [9, 7, 7]

starting search of points using coefficient bound 9

x-coords of S-integral points via linear combination of mw_base and torsion:
[-3, -26/9, -8159/2916, -2759/1024, -151/64, -1343/576, -2, -7/4, -1, -47/256, -2, 1/4, 4/9, 9/16, 58/81, 7/9, 6169/6561, 1, 17/16, 2, 33/16, 172/81, 9/4, 25/9, 3, 31/9, 4, 25/4, 1793/256, 8, 625/64, 11, 14, 21, 37, 52, 6142/81, 93, 4537/36, 342, 406, 816, 207331217/4096]

starting search of extra S-integer points with absolute value bounded by 3.

3.0211543274920515... 89321964979420

x-coords of points with bounded absolute value
[-3, -2, -1, 0, 1, 2]

Total number of S-integral points: 43

It is not necessary to specify mw_base; if it is not provided, then the Mordell-Weil basis must be computed, which may take much longer.

```python
sage: a = E.S_integral_points([2,3])
sage: len(a)
43
```

An example with negative discriminant:

```python
sage: E = EllipticCurve('900d1').S_integral_points([17], both_signs=True)
 (-16 : -54 : 1), (16 : 54 : 1)]
```

Output checked with Magma (corrected in 3 cases):

```python
sage: [len(E.S_integral_points([2], both_signs=False))
for E in cremona_curves([11..100])]
# long time (2011)
[2, 0, 2, 3, 3, 1, 3, 1, 3, 5, 3, 5, 4, 1, 1, 2, 2, 2, 3, 1, 2, 1, 0, 1, 3, 3,
 1, 1, 5, 3, 4, 2, 1, 1, 5, 3, 2, 2, 1, 1, 0, 1, 3, 0, 1, 0, 1, 1, 3, 7,
 -1, 3, 3, 3, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 1, 1, 0, 1, 3, 3, 1, 1,
 -7, 1, 0, 1, 0, 1, 2, 0, 3, 1, 2, 1, 3, 1, 2, 2, 4, 5, 3, 2, 1, 1, 6, 1,
 -10, 1, 3, 1, 3, 3, 1, 1, 1, 1, 3, 1, 5, 1, 2, 4, 1, 1, 1, 1, 0, 1, 0,
 -2, 2, 0, 0, 1, 0, 1, 1, 6, 1, 0, 1, 0, 4, 3, 1, 2, 1, 2, 3, 1, 1, 1, 1,
 -8, 3, 1, 2, 1, 2, 0, 8, 2, 0, 6, 2, 3, 1, 1, 1, 3, 1, 3, 2, 1, 3, 1, 2, 1,
 -6, 9, 3, 3, 1, 1, 2, 3, 1, 1, 5, 5, 1, 1, 0, 1, 1, 2, 3, 1, 2, 3, 1, 3,
 -1, 1, 1, 0, 0, 1, 3, 3, 1, 1, 1, 2, 2, 0, 0, 6, 1, 0, 1, 1, 1, 1, 3,
 -1, 2, 6, 3, 1, 2, 2, 1, 1, 1, 1, 7, 5, 4, 3, 3, 1, 1, 1, 1, 1, 8, 5, 1,
 -1, 3, 3, 1, 1, 3, 1, 1, 2, 3, 6, 1, 1, 7, 3, 3, 4, 5, 9, 6, 1, 0, 7, 1,
 -1, 3, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 7, 8, 2, 3, 1, 1, 1, 0, 0,
 -9, 1, 1, 1, 1]
```

An example from [PZGH]:

```python
sage: E = EllipticCurve([0,0,0,-172,505])
sage: E.rank(), len(E.S_integral_points([3,5,7]))
# long time (2011)
(4, 72)
```

This is curve “7690e1” which failed until trac ticket #4805 was fixed:

```python
sage: E = EllipticCurve([1,1,-301,-1821]).S_integral_points([13,2])
[(-13 : 16 : 1),
 (-9 : 20 : 1),
 (-7 : 4 : 1),
 (21 : 30 : 1),
 (23 : 52 : 1),
 (63 : 452 : 1),
 (71 : 548 : 1),
 (87 : 756 : 1),
 (2711 : 139828 : 1),
 (7323 : 623052 : 1),
 (17687 : 2343476 : 1)]
```

REFERENCES:
• Some parts of this implementation are partially based on the function integral_points()

AUTHORS:
• Tobias Nagel (2008-12)
• Michael Mardaus (2008-12)
• John Cremona (2008-12)

abelian_variety()

Return self as a modular abelian variety.

OUTPUT:
• a modular abelian variety

EXAMPLES:

```python
sage: E = EllipticCurve('11a')
sage: E.abelian_variety()
Abelian variety J0(11) of dimension 1

sage: E = EllipticCurve('33a')
sage: E.abelian_variety()
Abelian subvariety of dimension 1 of J0(33)
```

an(n)

The n-th Fourier coefficient of the modular form corresponding to this elliptic curve, where n is a positive integer.

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: [E.an(n) for n in range(20) if n>0]
[1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0]
```

analytic_rank(algorithm='pari', leading_coefficient=False)

Return an integer that is probably the analytic rank of this elliptic curve.

INPUT:

• **algorithm** – (default: 'pari'), String
 – 'pari' – use the PARI library function.
 – 'sympow' – use Watkins’s program sympow
 – 'rubinstein' – use Rubinstein’s L-function C++ program lcalc.
 – 'magma' – use MAGMA
 – 'zero_sum' – Use the rank bounding zero sum method implemented in self.analytic_rank_upper_bound()
 – 'all' – compute with PARI, sympow and lcalc, check that the answers agree, and return the common answer.
• **leading_coefficient** – (default: False) Boolean; if set to True, return a tuple (rank, lead) where lead is the value of the first non-zero derivative of the L-function of the elliptic curve. Only implemented for algorithm='pari'.
Note: If the curve is loaded from the large Cremona database, then the modular degree is taken from the database.

Of the first three algorithms above, probably Rubinstein’s is the most efficient (in some limited testing done). The zero sum method is often much faster, but can return a value which is strictly larger than the analytic rank. For curves with conductor $\leq 10^{9}$ using default parameters, testing indicates that for 99.75% of curves the returned rank bound is the true rank.

Note: If you use set_verbose(1), extra information about the computation will be printed when algorithm='zero_sum'.

Note: It is an open problem to prove that any particular elliptic curve has analytic rank ≥ 4.

EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: E.analytic_rank(algorithm='pari')
2
sage: E.analytic_rank(algorithm='rubinstein')
2
sage: E.analytic_rank(algorithm='sympow')
2
sage: E.analytic_rank(algorithm='magma')  # optional - magma
2
sage: E.analytic_rank(algorithm='zero_sum')
2
sage: E.analytic_rank(algorithm='all')
2
```

With the optional parameter leading_coefficient set to True, a tuple of both the analytic rank and the leading term of the L-series at $s = 1$ is returned. This only works for algorithm='pari':

```
sage: EllipticCurve([0,-1,1,-10,-20]).analytic_rank(leading_coefficient=True)
(0, 0.25384186085591068...)
sage: EllipticCurve([0,0,1,-1,0]).analytic_rank(leading_coefficient=True)
(1, 0.30599977383405230...)
sage: EllipticCurve([0,1,-2,0]).analytic_rank(leading_coefficient=True)
(2, 1.518633000576853...)
sage: EllipticCurve([0,0,-7,6]).analytic_rank(leading_coefficient=True)
(3, 10.39109940071580...)
sage: EllipticCurve([0,0,-7,36]).analytic_rank(leading_coefficient=True)
(4, 196.170903794579...)
```

analytic_rank_upper_bound

```
analytic_rank_upper_bound(max_Delta=None, adaptive=True, N=None, root_numbers='compute', bad_primes=None, ncpus=None)
```

Return an upper bound for the analytic rank of self, conditional on the Generalized Riemann Hypothesis, via computing the zero sum $\sum_{\gamma} f(\Delta \gamma)$, where γ ranges over the imaginary parts of the zeros of $L(E, s)$ along the critical strip, $f(x) = (\sin(\pi x)/(\pi x))^2$, and Δ is the tightness parameter whose maximum value is specified by max_Delta. This computation can be run on curves with very large conductor (so long as the conductor is known or quickly computable) when Δ is not too large (see below). Uses Bober’s rank bounding method as described in [Bob13].

INPUT:
max_Delta -- (default: None) If not None, a positive real value specifying the maximum Delta value used in the zero sum; larger values of Delta yield better bounds - but runtime is exponential in Delta. If left as None, Delta is set to \(\min\{ \frac{1}{2} \log(N + 1000)/2 - \log(2\pi - \eta), 2.5\} \), where \(N \) is the conductor of the curve attached to self, and \(\eta \) is the Euler-Mascheroni constant \(\approx 0.5772... \); the crossover point is at conductor around \(8.3 \cdot 10^8 \). For the former value, empirical results show that for about 99.7% of all curves the returned value is the actual analytic rank.

adaptive -- (default: True) Boolean
- True -- the computation is first run with small and then successively larger \(\Delta \) values up to max_Delta. If at any point the computed bound is 0 (or 1 when root_number is -1 or True), the computation halts and that value is returned; otherwise the minimum of the computed bounds is returned.
- False -- the computation is run a single time with \(\Delta \) equal to max_Delta, and the resulting bound returned.

N -- (default: None) If not None, a positive integer equal to the conductor of self. This is passable so that rank estimation can be done for curves whose (large) conductor has been precomputed.

root_number -- (default: "compute") String or integer
- "compute" -- the root number of self is computed and used to (possibly) lower the analytic rank estimate by 1.
- "ignore" -- the above step is omitted
- 1 -- this value is assumed to be the root number of self. This is passable so that rank estimation can be done for curves whose root number has been precomputed.
- -1 -- this value is assumed to be the root number of self. This is passable so that rank estimation can be done for curves whose root number has been precomputed.

bad_primes -- (default: None) If not None, a list of the primes of bad reduction for the curve attached to self. This is passable so that rank estimation can be done for curves of large conductor whose bad primes have been precomputed.

ncpus - (default: None) If not None, a positive integer defining the maximum number of CPUs to be used for the computation. If left as None, the maximum available number of CPUs will be used. Note: Due to parallelization overhead, multiple processors will only be used for Delta values \(\geq 1.75 \).

Note: Output will be incorrect if the incorrect conductor or root number is specified.

Warning: Zero sum computation time is exponential in the tightness parameter \(\Delta \), roughly doubling for every increase of 0.1 thereof. Using \(\Delta = 1 \) (and adaptive=False) will yield a runtime of a few milliseconds; \(\Delta = 2 \) takes a few seconds, and \(\Delta = 3 \) may take upwards of an hour. Increase beyond this at your own risk!

OUTPUT:
A non-negative integer greater than or equal to the analytic rank of self.

Note: If you use set_verbose(1), extra information about the computation will be printed.

See also:
LFunctionZeroSum() root_number() set_verbose()
EXAMPLES:

For most elliptic curves with small conductor the central zero(s) of $L_E(s)$ are fairly isolated, so small values of Δ will yield tight rank estimates.

```
sage: E = EllipticCurve("11a")
sage: E.rank()
0
sage: E.analytic_rank_upper_bound(max_Delta=1, adaptive=False)
0
sage: E = EllipticCurve([-39,123])
sage: E.rank()
1
sage: E.analytic_rank_upper_bound(max_Delta=1, adaptive=True)
1
```

This is especially true for elliptic curves with large rank.

```
sage: for r in range(9):
    ....:     E = elliptic_curves.rank(r)[0]
    ....:     print((r, E.analytic_rank_upper_bound(max_Delta=1,
        ....:         adaptive=False, root_number="ignore")))
    (0, 0)
    (1, 1)
    (2, 2)
    (3, 3)
    (4, 4)
    (5, 5)
    (6, 6)
    (7, 7)
    (8, 8)
```

However, some curves have L-functions with low-lying zeroes, and for these larger values of Δ must be used to get tight estimates.

```
sage: E = EllipticCurve("974b1")
sage: r = E.rank(); r
0
sage: E.analytic_rank_upper_bound(max_Delta=1, root_number="ignore")
1
sage: E.analytic_rank_upper_bound(max_Delta=1.3, root_number="ignore")
0
```

Knowing the root number of E allows us to use smaller Delta values to get tight bounds, thus speeding up runtime considerably.

```
sage: E.analytic_rank_upper_bound(max_Delta=0.6, root_number="compute")
0
```

There are a small number of curves which have pathologically low-lying zeroes. For these curves, this method will produce a bound that is strictly larger than the analytic rank, unless very large values of Delta are used. The following curve ("256944c1" in the Cremona tables) is a rank 0 curve with a zero at 0.0256...; the smallest Delta value for which the zero sum is strictly less than 2 is ~2.815.

```
sage: E = EllipticCurve([0, -1, 0, -7460362000712, -7842981500851012704])
sage: N, r = E.conductor(), E.analytic_rank(); N, r
(256944, 0)
sage: E.analytic_rank_upper_bound(max_Delta=1, adaptive=False)
```

(continues on next page)
This method is can be called on curves with large conductor.

And it can bound rank on curves with very large conductor, so long as you know beforehand/can easily compute the conductor and primes of bad reduction less than $e^{2\pi\Delta}$. The example below is of the rank 28 curve discovered by Elkies that is the elliptic curve of (currently) largest known rank.

REFERENCES:

anlist(n, python_ints=False)

The Fourier coefficients up to and including a_n of the modular form attached to this elliptic curve. The i-th element of the return list is $a[i]$.

INPUT:

• n - integer

• python_ints - bool (default: False); if True return a list of Python ints instead of Sage integers.

OUTPUT: list of integers

EXAMPLES:

antilogarithm(z, max_denominator=None)

Return the rational point (if any) associated to this complex number; the inverse of the elliptic logarithm function.

INPUT:

• z – a complex number representing an element of C/L where L is the period lattice of the elliptic curve
max_denominator (int or None) – parameter controlling the attempted conversion of real numbers to rationals. If None, simplest_rational() will be used; otherwise, nearby_rational() will be used with this value of max_denominator.

OUTPUT:

• point on the curve: the rational point which is the image of z under the Weierstrass parametrization, if it exists and can be determined from z and the given value of max_denominator (if any); otherwise a ValueError exception is raised.

EXAMPLES:

```python
sage: E = EllipticCurve('389a')
sage: P = E(-1,1)
sage: z = P.elliptic_logarithm()
sage: E.antilogarithm(z)
(-1 : 1 : 1)
sage: Q = E(0,-1)
sage: z = Q.elliptic_logarithm()
sage: E.antilogarithm(z)
Traceback (most recent call last):
... ValueError: approximated point not on the curve
sage: E.antilogarithm(z, max_denominator=10)
(0 : -1 : 1)
sage: E = EllipticCurve('11a1')
sage: w1,w2 = E.period_lattice().basis()
sage: [E.antilogarithm(a*w1/5,1) for a in range(5)]
[(0 : 1 : 0), (16 : -61 : 1), (5 : -6 : 1), (5 : 5 : 1), (16 : 60 : 1)]
```

ap(p)
The p-th Fourier coefficient of the modular form corresponding to this elliptic curve, where p is prime.

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: [E.ap(p) for p in prime_range(50)]
[-2, -3, -2, -1, -5, -2, 0, 0, 2, 6, -4, -1, -9, 2, -9]
```

aplist(n, python_ints=False)
The Fourier coefficients a_p of the modular form attached to this elliptic curve, for all primes $p \leq n$.

INPUT:

• n - integer

• python_ints - bool (default: False); if True return a list of Python ints instead of Sage integers.

OUTPUT: list of integers

EXAMPLES:

```python
sage: e = EllipticCurve('37a')
sage: e.aplist(1)
[]
sage: e.aplist(2)
[-2]
sage: e.aplist(10)
[-2, -3, -2, -1]
sage: v = e.aplist(13); v
```

(continues on next page)
cm_discriminant()

Return the associated quadratic discriminant if this elliptic curve has Complex Multiplication over the algebraic closure.

A ValueError is raised if the curve does not have CM (see the function has_cm()).

EXAMPLES:

```python
sage: E = EllipticCurve('32a1')
```
```
sage: E.cm_discriminant()
-4
```
```
sage: E = EllipticCurve('121b1')
```
```
sage: E.cm_discriminant()
-11
```
```
sage: E = EllipticCurve('37a1')
```
```
sage: E.cm_discriminant()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field → does not have CM
```

conductor(algorithm='pari')

Return the conductor of the elliptic curve.

INPUT:

• algorithm - str, (default: "pari")

 - "pari" - use the PARI C-library ellglobalred implementation of Tate’s algorithm

 - "mwrank" - use Cremona’s mwrank implementation of Tate’s algorithm; can be faster if the curve has integer coefficients (TODO: limited to small conductor until mwrank gets integer factorization)

 - "gp" - use the GP interpreter.

 - "generic" - use the general number field implementation

 - "all" - use all four implementations, verify that the results are the same (or raise an error), and output the common value.

EXAMPLES:

```python
sage: E = EllipticCurve([1, -1, 1, -29372, -1932937])
```
```
sage: E.conductor(algorithm="pari")
3006
```
```
sage: E.conductor(algorithm="mwrank")
3006
```
```
sage: E.conductor(algorithm="gp")
3006
```
```
sage: E.conductor(algorithm="generic")
3006
```
```
sage: E.conductor(algorithm="all")
3006
```
Note: The conductor computed using each algorithm is cached separately. Thus calling `E.conductor('pari')`, then `E.conductor('mwrank')` and getting the same result checks that both systems compute the same answer.

\texttt{congruence} \texttt{number} \texttt{(M=1)}

The case $M = 1$ corresponds to the classical definition of congruence number: Let X be the subspace of $S_2(\Gamma_0(N))$ spanned by the newform associated with this elliptic curve, and Y be orthogonal compliment of X under the Petersson inner product. Let S_X and S_Y be the intersections of X and Y with $S_2(\Gamma_0(N), \mathbb{Z})$. The congruence number is defined to be $[S_X \oplus S_Y : S_2(\Gamma_0(N), \mathbb{Z})]$. It measures congruences between f and elements of $S_2(\Gamma_0(N), \mathbb{Z})$ orthogonal to f.

The congruence number for higher levels, when $M > 1$, is defined as above, but instead considers X to be the subspace of $S_2(\Gamma_0(MN))$ spanned by embeddings into $S_2(\Gamma_0(MN))$ of the newform associated with this elliptic curve; this subspace has dimension $\sigma_0(M)$, i.e. the number of divisors of M. Let Y be the orthogonal complement in $S_2(\Gamma_0(MN))$ of X under the Petersson inner product, and S_X and S_Y the intersections of X and Y with $S_2(\Gamma_0(MN), \mathbb{Z})$ respectively. Then the congruence number at level MN is $[S_X \oplus S_Y : S_2(\Gamma_0(MN), \mathbb{Z})]$.

\textbf{INPUT:}

- M – Non-negative integer; congruence number is computed at level MN, where N is the conductor of \texttt{self}.

\textbf{EXAMPLES:}

```
sage: E = EllipticCurve('37a')
sage: E.congruence_number()
2
sage: E.congruence_number()
2
sage: E = EllipticCurve('54b')
sage: E.congruence_number()
6
sage: E.modular_degree()
2
sage: E = EllipticCurve('242a1')
sage: E.modular_degree()
16
sage: E.congruence_number()  # long time (4s on sage.math, 2011)
176
```

Higher level cases:

```
sage: E = EllipticCurve('11a')
sage: for M in range(1,11): print(E.congruence_number(M))  # long time (20s on 2009 MBP)
1
1
3
2
7
45
12
4
18
245
```
It is a theorem of Ribet that the congruence number (at level N) is equal to the modular degree in the case of square free conductor. It is a conjecture of Agashe, Ribet, and Stein that $\text{ord}_p(cf/m_f) \leq \text{ord}_p(N)/2$.

cremona_label *(space=False)*

Return the Cremona label associated to (the minimal model) of this curve, if it is known. If not, raise a `LookupError` exception.

EXAMPLES:

```
sage: E = EllipticCurve('389a1')
sage: E.cremona_label()
'389a1'
```

The default database only contains conductors up to 10000, so any curve with conductor greater than that will cause an error to be raised. The optional package `database_cremona_ellcurve` contains many more curves.

```
sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.cremona_label()  # optional - database_cremona_ellcurve
'234446a1'
sage: E = EllipticCurve([0, 0, 1, -79, 342])
sage: E.cremona_label()
19047851
sage: E.cremona_label()
Traceback (most recent call last):
...  
LookupError: Cremona database does not contain entry for Elliptic Curve defined by $y^2 + y = x^3 - 79*x + 342$ over Rational Field
```

database_attributes

Return a dictionary containing information about `self` in the elliptic curve database.

If there is no elliptic curve isomorphic to `self` in the database, a `LookupError` is raised.

EXAMPLES:

```
sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: data = E.database_attributes()
sage: data['conductor']
37
sage: data['cremona_label']
'37a1'
sage: data['rank']
1
sage: data['torsion_order']
1
sage: E = EllipticCurve([8, 13, 21, 34, 55])
sage: E.database_attributes()
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for Elliptic Curve defined by $y^2 + 8*x*y + 21*y = x^3 + 13*x^2 + 34*x + 55$ over Rational Field
```

database_curve

Return the curve in the elliptic curve database isomorphic to this curve, if possible. Otherwise raise a `LookupError` exception.
Since trac ticket #11474, this returns exactly the same curve as \texttt{minimal_model()}; the only difference is the additional work of checking whether the curve is in the database.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E = EllipticCurve([0,1,2,3,4])
sage: E.database_curve()
Elliptic Curve defined by y^2 = x^3 + x^2 + 3*x + 5 over Rational Field
\end{verbatim}

\textbf{Note:} The model of the curve in the database can be different from the Weierstrass model for this curve, e.g., database models are always minimal.

\begin{verbatim}
\texttt{elliptic_exponential}(z, embedding=None)
\end{verbatim}

Compute the elliptic exponential of a complex number with respect to the elliptic curve.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{z} (complex) – a complex number
 \item \texttt{embedding} - ignored (for compatibility with the \texttt{period_lattice} function for \texttt{elliptic_curve_number_field})
\end{itemize}

\textbf{OUTPUT:}

The image of \texttt{z} modulo \texttt{L} under the Weierstrass parametrization \texttt{C/L \rightarrow E(C)}.

\textbf{Note:} The precision is that of the input \texttt{z}, or the default precision of 53 bits if \texttt{z} is exact.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E = EllipticCurve([1,1,1,-8,6])
sage: P = E([1,-2])
sage: z = P.elliptic_logarithm() # default precision is 100 here
sage: E.elliptic_exponential(z)
(1.000 : -2.000 : 1.000)
sage: z = E([1,-2]).elliptic_logarithm(precision=201)
sage: E.elliptic_exponential(z)
(1.000 : -2.000 : 1.000)
sage: E = EllipticCurve('389a')
sage: Q = E([3,5])
sage: E.elliptic_exponential(Q.elliptic_logarithm())
(3.000 : 5.000 : 1.000)
sage: P = E([-1,1])
sage: P.elliptic_logarithm()
0.4793482501902193162953301006 + 0.98586885077582410221120384908*I
sage: E.elliptic_exponential(P.elliptic_logarithm())
(-1.000 : 1.000 : 1.000)
\end{verbatim}

Some torsion examples:
sage: w1, w2 = E.period_lattice().basis()
sage: E.two_division_polynomial().roots(CC, multiplicities=False)
[-2.0403022002854..., 0.13540924022175..., 0.90489296006371...]
sage: [E.elliptic_exponential((a*w1+b*w2)/2)[0] for a, b in [(0, 1), (1, 1), (1, -0)]]
[-2.0403022002854..., 0.13540924022175..., 0.90489296006371...]
sage: E.division_polynomial(3).roots(CC, multiplicities=False)
[-2.8828887913533..., 1.39292799513138, 0.0783137314443... - 0.492840991709...*I, 0.0783137314443... + 0.492840991709...*I]
sage: [E.elliptic_exponential((a*w1+b*w2)/3)[0] for a, b in [(0, 1), (1, 0), (1, 1), (2, 1)]]
[-2.8828887913533..., 1.39292799513138, 0.0783137314443... - 0.492840991709...*I, 0.0783137314443... + 0.492840991709...*I]
Observe that this is a group homomorphism (modulo rounding error):

sage: z = CC.random_element()
sage: 2 * E.elliptic_exponential(z)
(-1.52184235874404 - 0.0581413944316562*I : 0.948655866506128 - 0.0381469928565034*I : 1.00000000000000)
sage: E.elliptic_exponential(2 * z)
(-1.52184235874404 - 0.0581413944316542*I : 0.948655866506124 - 0.0381469928565030*I : 1.00000000000000)

eval_modular_form(points, order)
Evaluate the modular form of this elliptic curve at points in \(\mathbb{C}\).

INPUT:
- **points** – a list of points in the upper half-plane
- **order** – a nonnegative integer

The **order** parameter is the number of terms used in the summation.

OUTPUT: A list of values for \(s\) in **points**

EXAMPLES:

```
sage: E = EllipticCurve('37a1')
sage: E.eval_modular_form([1.5+I, 2.0+I, 2.5+I], 100) # abs tol le-20
[-0.0018743978548152085771342944989052703431,
 0.00186044853403710285594393397945456,
-0.0018743978548152085771342944989052703431]
sage: E.eval_modular_form(2.1+I, 100) # abs tol le-20
[0.00150864362757267079 + 0.0010910034113449845*I]
```

galois_representation()
The compatible family of the Galois representation attached to this elliptic curve.

Given an elliptic curve \(E\) over \(\mathbb{Q}\) and a rational prime number \(p\), the \(p^n\)-torsion \(E[p^n]\) points of \(E\) is a representation of the absolute Galois group of \(\mathbb{Q}\). As \(n\) varies we obtain the Tate module \(T_p E\) which is a representation of \(G_{\mathbb{K}}\) on a free \(\mathbb{Z}_p\)-module of rank 2. As \(p\) varies the representations are compatible.

EXAMPLES:
```python
sage: rho = EllipticCurve('11a1').galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: rho.is_irreducible(7)
True
sage: rho.is_irreducible(5)
False
sage: rho.is_surjective(11)
True
sage: rho.non_surjective()
[5]
sage: rho = EllipticCurve('37a1').galois_representation()
sage: rho.non_surjective() # cm-curve
[]
sage: rho = EllipticCurve('27a1').galois_representation()
sage: rho.is_irreducible(7)
True
sage: rho.non_surjective()
[0]
```

gens (proof=None, **kwds)

Return generators for the Mordell-Weil group \(E(Q) \) modulo torsion.

INPUT:

- proof – bool or None (default None), see `proof.elliptic_curve` or `sage.structure.proof`
- verbose - (default: None), if specified changes the verbosity of mwrank computations
- rank1_search - (default: 10), if the curve has analytic rank 1, try to find a generator by a direct search up to this logarithmic height. If this fails, the usual mwrank procedure is called.
- algorithm – one of the following:
 - 'mwrank_shell' (default) – call mwrank shell command
 - 'mwrank_lib' – call mwrank C library
- only_use_mwrank – bool (default True) if False, first attempts to use more naive, natively implemented methods
- use_database – bool (default True) if True, attempts to find curve and gens in the (optional) database
- descent_second_limit – (default: 12) used in 2-descent
- sat_bound – (default: 1000) bound on primes used in saturation. If the computed bound on the index of the points found by two-descent in the Mordell-Weil group is greater than this, a warning message will be displayed.

OUTPUT:

- generators - list of generators for the Mordell-Weil group modulo torsion

Note: If you call this with proof=False, then you can use the `gens_certain()` method to find out afterwards whether the generators were proved.

IMPLEMENTATION: Uses Cremona’s mwrank C library.
EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: E.gens()  # random output
[(-1 : 1 : 1), (0 : 0 : 1)]
```

A non-integral example:

```
sage: E = EllipticCurve([-3/8,-2/3])
sage: E.gens()  # random (up to sign)
[(10/9 : 29/54 : 1)]
```

A non-minimal example:

```
sage: E = EllipticCurve('389a1')
sage: E1 = E.change_weierstrass_model([1/20,0,0,0]); E1
Elliptic Curve defined by y^2 + 8000*y = x^3 + 400*x^2 - 320000*x over Rational Field
sage: E1.gens()  # random (if database not used)
[(-400 : 8000 : 1), (0 : -8000 : 1)]
```

gens_certain()
Return True if the generators have been proven correct.

EXAMPLES:

```
sage: E = EllipticCurve('37a1')
sage: E.gens()  # random (up to sign)
[(0 : -1 : 1)]
sage: E.gens_certain()
True
```

global_integral_model()
Return a model of self which is integral at all primes.

EXAMPLES:

```
sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
sage: F = E.global_integral_model(); F
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field
sage: F == EllipticCurve('5077a1')
True
```

has_cm()
Return whether or not this curve has a CM j-invariant.

OUTPUT:

True if the j-invariant of this curve is the j-invariant of an imaginary quadratic order, otherwise False.

See also:

```
cm_discriminant() and has_rational_cm()
```

Note:
Even if E has CM in this sense (that its j-invariant is a CM j-invariant), since the associated negative discriminant D is not a square in \mathbb{Q}, the extra endomorphisms will not be defined over \mathbb{Q}. See also the method has_rational_cm() which tests whether E has extra endomorphisms defined over \mathbb{Q} or a given extension of \mathbb{Q}.
EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: E.has_cm()
False
sage: E = EllipticCurve('32a1')
sage: E.has_cm()
True
sage: E.j_invariant()
1728
```

`has_good_reduction_outside_S(S=S)`

Test if this elliptic curve has good reduction outside S.

INPUT:

- S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

This only tests the given model, so should only be applied to minimal models.

EXAMPLES:

```python
sage: EllipticCurve('11a1').has_good_reduction_outside_S([11])
True
sage: EllipticCurve('11a1').has_good_reduction_outside_S([2])
False
sage: EllipticCurve('2310a1').has_good_reduction_outside_S([2,3,5,7])
False
sage: EllipticCurve('2310a1').has_good_reduction_outside_S([2,3,5,7,11])
True
```

`has_rational_cm(field=None)`

Return whether or not this curve has CM defined over \mathbb{Q} or the given field.

INPUT:

- `field` – a field, which should be an extension of \mathbb{Q}. If `field` is None (the default), it is taken to be \mathbb{Q}.

OUTPUT:

True if the ring of endomorphisms of this curve over the given field is larger than \mathbb{Z}; otherwise False. If `field` is None the output will always be False. See also `cm_discriminant()` and `has_cm()`.

Note: If E has CM but the discriminant D is not a square in the given field K, which will certainly be the case for $K = \mathbb{Q}$ since $D < 0$, then the extra endomorphisms will not be defined over K, and this function will return False. See also `has_cm()`. To obtain the CM discriminant, use `cm_discriminant()`.

EXAMPLES:

```python
sage: E = EllipticCurve(j=0)
sage: E.has_cm()
True
sage: E.has_rational_cm()
```

(continues on next page)
If we extend scalars to a field in which the discriminant is a square, the CM becomes rational:

```python
sage: E.has_rational_cm(QuadraticField(-3))
True
sage: E = EllipticCurve(j=8000)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-8
```

Again, we may extend scalars to a field in which the discriminant is a square, where the CM becomes rational:

```python
sage: E.has_rational_cm(QuadraticField(-2))
True
```

The field need not be a number field provided that it is an extension of \mathbb{Q}:

```python
sage: E.has_rational_cm(RR)
False
sage: E.has_rational_cm(CC)
True
```

An error is raised if a field is given which is not an extension of \mathbb{Q}, i.e., not of characteristic 0:

```python
sage: E.has_rational_cm(GF(2))
Traceback (most recent call last):
...:
ValueError: Error in has_rational_cm: Finite Field of size 2 is not an extension field of QQ
```

heegner_discriminants *(bound)*

Return the list of self’s Heegner discriminants between -1 and -bound.

INPUT:

- bound (int) - upper bound for -discriminant

OUTPUT: The list of Heegner discriminants between -1 and -bound for the given elliptic curve.

EXAMPLES:

```python
sage: E=EllipticCurve('11a')
sage: E.heegner_discriminants(30)  # indirect doctest
[-7, -8, -19, -24]
```

heegner_discriminants_list *(n)*

Return the list of self’s first n Heegner discriminants smaller than -5.

INPUT:

- n (int) - the number of discriminants to compute
OUTPUT: The list of the first n Heegner discriminants smaller than -5 for the given elliptic curve.

EXAMPLES:

```
sage: E=EllipticCurve('11a')
sage: E.heegner_discriminants_list(4)                      # indirect doctest
[-7, -8, -19, -24]
```

```
heegner_index(D, min_p=2, prec=5, descent_second_limit=12, verbose_mwrank=False, check_rank=True)
```

Return an interval that contains the index of the Heegner point \(y_K \) in the group of \(K \)-rational points modulo torsion on this elliptic curve, computed using the Gross-Zagier formula and/or a point search, or possibly half the index if the rank is greater than one.

If the curve has rank > 1, then the returned index is infinity.

Note: If \(\text{min}_p \) is bigger than 2 then the index can be off by any prime less than \(\text{min}_p \). This function returns the index divided by 2 exactly when the rank of \(E(K) \) is greater than 1 and \(E(Q)_{\text{tor}} \oplus E^D(Q)_{\text{tor}} \) has index 2 in \(E(K)_{\text{tor}} \), where the second factor undergoes a twist.

INPUT:

- \(D \) (int) - Heegner discriminant
- \(\text{min}_p \) (int) - (default: 2) only rule out primes = \(\text{min}_p \) dividing the index.
- \(\text{verbose}_\text{mwrank} \) (bool) - (default: False); print lots of mwrank search status information when computing regulator
- \(\text{prec} \) (int) - (default: 5), use \(\text{prec}*\sqrt{N} + 20 \) terms of L-series in computations, where \(N \) is the conductor.
- \(\text{descent}_\text{second}_\text{limit} \) - (default: 12)- used in 2-descent when computing regulator of the twist
- \(\text{check}_\text{rank} \) - whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: an interval that contains the index, or half the index

EXAMPLES:

```
sage: E = EllipticCurve('11a')
sage: E.heegner_discriminants(50)                          # indirect doctest
[-7, -8, -19, -24, -35, -39, -40, -43]
sage: E.heegner_index(-7)                                   1.00000?
sage: E = EllipticCurve('37b')                              # long time (1 second)
sage: E.heegner_index(-95)                                 2.00000?
```

This tests doing direct computation of the Mordell-Weil group.

```
sage: E = EllipticCurve('675b').heegner_index(-11)         3.0000?
```

Currently discriminants -3 and -4 are not supported:
sage: E.heegner_index(-3)
Traceback (most recent call last):
...
ArithmeticError: Discriminant (-3) must not be -3 or -4.

The curve 681b returns the true index, which is 3:

sage: E = EllipticCurve('681b')
sage: I = E.heegner_index(-8); I
3.0000?

In fact, whenever the returned index has a denominator of 2, the true index is got by multiplying the returned index by 2. Unfortunately, this is not an if and only if condition, i.e., sometimes the index must be multiplied by 2 even though the denominator is not 2.

This example demonstrates the descent_second_limit option, which can be used to fine tune the 2-descent used to compute the regulator of the twist:

sage: E = EllipticCurve([1,-1,0,-1228,-16267])
sage: E.heegner_index(-8)
Traceback (most recent call last):
...
RuntimeError: ...

However when we search higher, we find the points we need:

sage: E.heegner_index(-8, descent_second_limit=16, check_rank=False)
2.00000?

Two higher rank examples (of ranks 2 and 3):

sage: E = EllipticCurve('389a')
sage: E.heegner_index(-7)
+Infinity

sage: E = EllipticCurve('5077a')
sage: E.heegner_index(-7)
+Infinity

sage: E.heegner_index(-7, check_rank=False)
0.001?

sage: E.heegner_index(-7, check_rank=False).lower() == 0
True

heegner_index_bound (D=0, prec=5, max_height=None)
Assume self has rank 0.

Return a list v of primes such that if an odd prime p divides the index of the Heegner point in the group of rational points modulo torsion, then p is in v.

If 0 is in the interval of the height of the Heegner point computed to the given prec, then this function returns v = 0. This does not mean that the Heegner point is torsion, just that it is very likely torsion.

If we obtain no information from a search up to max_height, e.g., if the Siksek et al. bound is bigger than max_height, then we return v = -1.

INPUT:

• D (int) - (default: 0) Heegner discriminant; if 0, use the first discriminant -4 that satisfies the Heegner hypothesis
• verbose (bool) - (default: True)
- \texttt{prec (int)} - (default: 5), use \texttt{prec : } \sqrt{\texttt{N}} + 20 \text{ terms of } \texttt{L-series in computations, where } \texttt{N} \text{ is the conductor.}

- \texttt{max_height (float)} - should be \texttt{= 21}; bound on logarithmic naive height used in point searches. Make smaller to make this function faster, at the expense of possibly obtaining a worse answer. A good range is between 13 and 21.

OUTPUT:

- \texttt{v} - list or int (bad primes or 0 or -1)
- \texttt{D} - the discriminant that was used (this is useful if \texttt{D} was automatically selected).
- \texttt{exact} - either \texttt{False}, or the exact Heegner index (up to factors of 2)

EXAMPLES:

```python
sage: E = EllipticCurve('11a1')
sage: E.heegner_index_bound()
(2, -7, 2)
```

\texttt{heegner_point (D, c=1, f=None, check=True)}

Returns the Heegner point on this curve associated to the quadratic imaginary field \(K = \mathbb{Q} (\sqrt{D})\).

If the optional parameter \(c\) is given, returns the higher Heegner point associated to the order of conductor \(c\).

INPUT:

- \(D\) – a Heegner discriminant
- \(c\) – (default: 1) conductor, must be coprime to \(DN\)
- \(f\) – binary quadratic form or 3-tuple \((A, B, C)\) of coefficients of \(AX^2 + BXY + CY^2\)
- \texttt{check} – \texttt{bool} (default: True)

OUTPUT:

The Heegner point \(y_c\).

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: E.heegner_discriminants_list(10)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
sage: P = E.heegner_point(-7); P
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P.point_exact() (0 : 0 : 1)
sage: P.curve() Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E.heegner_point(-40).point_exact(); P
(a : -a + 1 : 1)
sage: P = E.heegner_point(-47).point_exact(); P
(a : a^4 + a - 1 : 1)
sage: P[0].parent()
Number Field in a with defining polynomial x^5 - x^4 + x^3 + x^2 - 2*x + 1
```

Working out the details manually:
The Heegner hypothesis is checked:

```python
sage: E = EllipticCurve('389a'); P = E.heegner_point(-5,7);
Traceback (most recent call last):
... 
ValueError: N (=389) and D (=5) must satisfy the Heegner hypothesis
```

We can specify the quadratic form:

```python
sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2
```

heegner_point_height ($D, \text{prec}=2, \text{check_rank}=True$)

Use the Gross-Zagier formula to compute the Neron-Tate canonical height over K of the Heegner point corresponding to D, as an interval (it is computed to some precision using L-functions).

If the curve has rank at least 2, then the returned height is the exact Sage integer 0.

INPUT:

- D (int) - fundamental discriminant ($\neq -3, -4$)
- prec (int) - (default: 2), use $\text{prec} \cdot \sqrt(N) + 20$ terms of L-series in computations, where N is the conductor.
- check_rank - whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: Interval that contains the height of the Heegner point.

EXAMPLES:

```python
sage: E = EllipticCurve('11a')
sage: E.heegner_point_height(-7)
0.22227?
```

Some higher rank examples:

```python
sage: E = EllipticCurve('389a')
sage: E.heegner_point_height(-7) 0
sage: E = EllipticCurve('5077a')
sage: E.heegner_point_height(-7) 0
sage: E.heegner_point_height(-7,check_rank=False) 0.0000?
```

heegner_sha_an ($D, \text{prec}=53$)

Return the conjectural (analytic) order of Sha for E over the field $K = \mathbb{Q}(\sqrt{D})$.

INPUT:

- D – negative integer; the Heegner discriminant

```
```

10.11. Elliptic curves over number fields 297
• prec – integer (default: 53); bits of precision to compute analytic order of Sha

OUTPUT:
(floating point number) an approximation to the conjectural order of Sha.

Note: Often you’ll want to do proof.elliptic_curve(False) when using this function, since
often the twisted elliptic curves that come up have enormous conductor, and Sha is nontrivial, which makes
provably finding the Mordell-Weil group using 2-descent difficult.

EXAMPLES:
An example where E has conductor 11:

```
sage: E = EllipticCurve('11a')
sage: E.heegner_sha_an(-7)                      # long time
1.00000000000000
```

The cache works:

```
sage: E.heegner_sha_an(-7) is E.heegner_sha_an(-7) # long time
True
```

Lower precision:

```
sage: E.heegner_sha_an(-7,10)                     # long time
1.0
```

Checking that the cache works for any precision:

```
sage: E.heegner_sha_an(-7,10) is E.heegner_sha_an(-7,10) # long time
True
```

Next we consider a rank 1 curve with nontrivial Sha over the quadratic imaginary field \(K \); however, there
is no Sha for \(E \) over \(\mathbb{Q} \) or for the quadratic twist of \(E \):

```
sage: E = EllipticCurve('37a')
sage: E.heegner_sha_an(-40)                      # long time
4.00000000000000
sage: E.quadratic_twist(-40).sha().an()          # long time
1
sage: E.sha().an()                               # long time
1
```

A rank 2 curve:

```
sage: E = EllipticCurve('389a')                  # long time
sage: E.heegner_sha_an(-7)                       # long time
1.00000000000000
```

If we remove the hypothesis that \(E(K) \) has rank 1 in Conjecture 2.3 in [Gross-Zagier, 1986, page 311],
then that conjecture is false, as the following example shows:

```
sage: E = EllipticCurve('65a')                   # long time
sage: E.heegner_sha_an(-56)                      # long time
1.00000000000000
sage: E.torsion_order()                          # long time
```

(continues on next page)
height (precision=None)
Return the real height of this elliptic curve. This is used in integral_points()

INPUT:

• precision - desired real precision of the result (default real precision if None)

EXAMPLES:

```
sage: E = EllipticCurve('5077a1')
sage: E.height()
sage: E.height(100)
sage: E = EllipticCurve([0,0,0,0,1])
sage: E.height()
sage: E = EllipticCurve([0,0,0,1,0])
sage: E.height()
```

integral_model()
Return a model of self which is integral at all primes.

EXAMPLES:

```
sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
sage: F = E.global_integral_model(); F
Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field
sage: F == EllipticCurve('5077a1')
True
```

integral_points (mw_base='auto', both_signs=False, verbose=False)
Compute all integral points (up to sign) on this elliptic curve.

INPUT:

• mw_base - list of EllipticCurvePoint generating the Mordell-Weil group of E (default: ‘auto’ - calls self.gens())

• both_signs - True/False (default False): if True the output contains both P and -P, otherwise only one of each pair.

• verbose - True/False (default False): if True, some details of the computation are output

OUTPUT: A sorted list of all the integral points on E (up to sign unless both_signs is True)

Note: The complexity increases exponentially in the rank of curve E. The computation time (but not the output!) depends on the Mordell-Weil basis. If mw_base is given but is not a basis for the Mordell-Weil group (modulo torsion), integral points which are not in the subgroup generated by the given points will almost certainly not be listed.
EXAMPLES: A curve of rank 3 with no torsion points

```python
sage: E = EllipticCurve([0,0,1,-7,6])
sage: P1=E.point((2,0)); P2=E.point((-1,3)); P3=E.point((4,6))
sage: a=E.integral_points([P1,P2,P3]); a
[(-3 : 0 : 1), (-2 : 3 : 1), (-1 : 3 : 1), (0 : 2 : 1), (1 : 0 : 1), (2 : 0 : 1),
 (-1 : 3 : 1), (4 : 6 : 1), (8 : 21 : 1), (11 : 35 : 1), (14 : 51 : 1),
 (406 : 8180 : 1), (816 : 23309 : 1)]
```

```python
sage: a = E.integral_points([P1,P2,P3], verbose=True)
Using mw_basis [(2 : 0 : 1), (3 : -4 : 1), (8 : -22 : 1)]
e1,e2,e3: -3.0124303725933... 1.0658205476962... 1.94660982489710
Minimal and maximal eigenvalues of height pairing matrix: 0.637920814585005,2.31982967525725
x-coords of points on compact component with -3 <=x<= 1
[-3, -2, -1, 0, 1]
x-coords of points on non-compact component with 2 <=x<= 6
[2, 3, 4]
starting search of remaining points using coefficient bound 5 and |x| bound 1.
53897183921009e25
x-coords of extra integral points:
[2, 3, 4, 8, 11, 14, 21, 37, 52, 93, 342, 406, 816]
Total number of integral points: 18
```

It is not necessary to specify mw_base; if it is not provided, then the Mordell-Weil basis must be computed, which may take much longer.

```python
sage: E = EllipticCurve([0,0,1,-7,6])
sage: a=E.integral_points(both_signs=True); a
[(-3 : -1 : 1), (-3 : 0 : 1), (-2 : -4 : 1), (-2 : 3 : 1), (-1 : -4 : 1), (-1 :
 -3 : 1), (0 : -3 : 1), (0 : 2 : 1), (1 : -1 : 1), (1 : 0 : 1), (2 : -1 :
 -3 : 1), (2 : 0 : 1), (3 : -4 : 1), (3 : 3 : 1), (4 : -7 : 1), (4 : 6 : 1), (8 :
 -22 : 1), (8 : 21 : 1), (11 : -36 : 1), (11 : 35 : 1), (14 : -52 : 1), (14 :
 (816 : 23309 : 1)]
```

An example with negative discriminant:

```python
sage: EllipticCurve('900d1').integral_points()
[(-11 : 27 : 1), (-4 : 34 : 1), (4 : 18 : 1), (16 : 54 : 1)]
```

Another example with rank 5 and no torsion points:

```python
sage: E = EllipticCurve([-879984,319138704])
sage: P1=E.point((540,1188)); P2=E.point((576,1836))
sage: P3=E.point((468,3132)); P4=E.point((612,3132))
sage: P5=E.point((432,4428))
sage: P5=E.integral_points([P1,P2,P3,P4,P5]); len(a) # long time (18s on sage.math, 2011)
54
```

```python
sage: [len(e.integral_points(both_signs=False))
    for e in cremona_curves([11...100])] # long time (15s on sage.math, 2011)
[2, 0, 2, 3, 2, 1, 3, 0, 2, 4, 2, 4, 3, 0, 0, 1, 2, 1, 2, 0, 2, 1, 0, 1, 3, 3,
  1, 4, 2, 2, 2, 0, 2, 1, 2, 1, 1, 0, 3, 2, 1, 0, 1, 0, 1, 3, 3, 1, 1,
  5, 1, 0, 1, 1, 0, 1, 2, 0, 2, 1, 0, 1, 3, 1, 2, 2, 4, 2, 4, 1, 2, 4, 0, 0, 5, 1,]
```

```python
sage: [len(e.integral_points(both_signs=False))
    for e in cremona_curves([11...100])] # long time (15s on sage.math, 2011)
[2, 0, 2, 3, 2, 1, 3, 0, 2, 4, 2, 4, 3, 0, 0, 1, 2, 1, 2, 0, 2, 1, 0, 1, 3, 3,
  1, 4, 2, 2, 2, 0, 2, 1, 2, 1, 1, 0, 3, 2, 1, 0, 1, 0, 1, 3, 3, 1, 1,
  5, 1, 0, 1, 1, 0, 1, 2, 0, 2, 1, 0, 1, 3, 1, 2, 2, 4, 2, 4, 1, 2, 4, 0, 0, 5, 1,]
```

(continues on next page)
The bug reported at trac ticket #4897 is now fixed:

```sage
sage: [P[0] for P in EllipticCurve([0,0,0,-468,2592]).integral_points()]
[-24, -18, -14, -6, -3, 4, 6, 18, 21, 24, 36, 46, 102, 168, 186, 381, 1476,
 →2034, 67246]
```

See trac ticket #22063:

```sage
sage: for n in [67,71,74,91]:
    ....: assert 4*n^6+4*n^2 in [P[0] for P in EllipticCurve([0,0,0,2,n^2]).
 →integral_points()]
```

Note: This function uses the algorithm given in [Coh2007I].

AUTHORS:

- Michael Mardaus (2008-07)
- Tobias Nagel (2008-07)
- John Cremona (2008-07)

integral_short_weierstrass_model()

Return a model of the form $y^2 = x^3 + ax + b$ for this curve with $a, b \in \mathbb{Z}$.

EXAMPLES:

```sage
sage: E = EllipticCurve([0, 0, 1, -7, 6])
sage: E.integral_short_weierstrass_model()  
Elliptic Curve defined by y^2 = x^3 - 11*x - 890 over Rational Field
```

integral_x_coords_in_interval (xmin, xmax)

Return the set of integers x with $xmin \leq x \leq xmax$ which are x-coordinates of rational points on this curve.

INPUT:

- $xmin$, $xmax$ (integers) – two integers.

OUTPUT:

(set) The set of integers x with $xmin \leq x \leq xmax$ which are x-coordinates of rational points on the elliptic curve.

EXAMPLES:

```sage
sage: E = EllipticCurve([0, 0, 1, -7, 6])
sage: xset = E.integral_x_coords_in_interval(-100, 100)
sage: sorted(xset)
[-3, -2, -1, 0, 1, 2, 3, 4, 8, 11, 14, 21, 37, 52, 93]
sage: xset = E.integral_x_coords_in_interval(-100, 0)
sage: sorted(xset)
[-3, -2, -1, 0]
```

is_global_integral_model()

Return True iff self is integral at all primes.
EXAMPLES:

```python
sage: E = EllipticCurve([1/2,1/5,1/5,1/5,1/5])
sage: E.is_global_integral_model()
False
sage: Emin=E.global_integral_model()
sage: Emin.is_global_integral_model()
True
```

`is_good(p, check=True)`

Return `True` if `p` is a prime of good reduction for `E`.

INPUT:

- `p` - a prime

OUTPUT: bool

EXAMPLES:

```python
sage: e = EllipticCurve('11a')
sage: e.is_good(-8)
Traceback (most recent call last):
  ... ValueError: p must be prime
sage: e.is_good(-8, check=False)
True
```

`is_integral()`

Return `True` if this elliptic curve has integral coefficients (in \(\mathbb{Z}\)).

EXAMPLES:

```python
sage: E = EllipticCurve(QQ,[1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
sage: E.is_integral()
True
sage: E2=E.change_weierstrass_model(2,0,0,0); E2
Elliptic Curve defined by y^2 = x^3 + 1/16*x + 1/64 over Rational Field
sage: E2.is_integral()
False
```

`is_isogenous(other, proof=True, maxp=200)`

Return whether or not self is isogenous to other.

INPUT:

- `other` – another elliptic curve.
- `proof` (default `True`) – If `False`, the function will return `True` whenever the two curves have the same conductor and are isogenous modulo \(p\) for \(p\) up to `maxp`. If `True`, this test is followed by a rigorous test (which may be more time-consuming).
- `maxp` (int, default 200) – The maximum prime \(p\) for which isogeny modulo \(p\) will be checked.

OUTPUT:

(bool) `True` if there is an isogeny from curve `self` to curve `other`.

METHOD:

First the conductors are compared as well as the Traces of Frobenius for good primes up to `maxp`. If any of these tests fail, `False` is returned. If they all pass and `proof` is `False` then `True` is returned, otherwise
a complete set of curves isogenous to self is computed and other is checked for isomorphism with any of these,

EXAMPLES:

```
sage: E1 = EllipticCurve('14a1')
sage: E6 = EllipticCurve('14a6')
sage: E1.is_isogenous(E6)
True
sage: E1.is_isogenous(EllipticCurve('11a1'))
False
sage: EllipticCurve('37a1').is_isogenous(EllipticCurve('37b1'))
False
sage: E = EllipticCurve([2, 16])
sage: EE = EllipticCurve([87, 45])
sage: E.is_isogenous(EE)
False
```

`is_local_integral_model(*p)`
Tests if self is integral at the prime p, or at all the primes if p is a list or tuple of primes

EXAMPLES:

```
sage: E = EllipticCurve([1/2, 1/5, 1/5, 1/5, 1/5])
sage: [E.is_local_integral_model(p) for p in (2, 3, 5)]
[False, True, False]
sage: E.is_local_integral_model(2, 3, 5)
False
sage: Eint2 = E.local_integral_model(2)
sage: Eint2.is_local_integral_model(2)
True
```

`is_minimal()`
Return True iff this elliptic curve is a reduced minimal model.

The unique minimal Weierstrass equation for this elliptic curve. This is the model with minimal discriminant and $a_1, a_2, a_3 \in \{0, \pm 1\}$.

Todo: This is not very efficient since it just computes the minimal model and compares. A better implementation using the Kraus conditions would be preferable.

EXAMPLES:

```
sage: E = EllipticCurve([10, 100, 1000, 10000, 1000000])
sage: E.is_minimal()
False
sage: E = E.minimal_model()
sage: E.is_minimal()
True
```

`is_ordinary(p, ell=None)`
Return True precisely when the mod-p representation attached to this elliptic curve is ordinary at ell.

INPUT:

- p - a prime
- ell - a prime (default: p)
OUTPUT: bool

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: E.is_ordinary(37)
True
sage: E = EllipticCurve('32a1')
sage: E.is_ordinary(2)
False
sage: [p for p in prime_range(50) if E.is_ordinary(p)]
[5, 13, 17, 29, 37, 41]
```

is_p_integral\((p)\)
Return True if this elliptic curve has \(p\)-integral coefficients.

INPUT:

- \(p\) – a prime integer

EXAMPLES:

```python
sage: E = EllipticCurve(QQ,[1,1]); E
Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
sage: E.is_p_integral(2)
True
sage: E2=E.change_weierstrass_model(2,0,0,0); E2
Elliptic Curve defined by y^2 = x^3 + 1/16*x + 1/64 over Rational Field
sage: E2.is_p_integral(2)
False
sage: E2.is_p_integral(3)
True
```

is_p_minimal\((p)\)
Tests if curve is \(p\)-minimal at a given prime \(p\).

INPUT: \(p\) – a prime

OUTPUT:

- True – if curve is \(p\)-minimal
- False – if curve is not \(p\)-minimal

EXAMPLES:

```python
sage: E = EllipticCurve('441a2')
sage: E.is_p_minimal(7)
True
sage: E = EllipticCurve([0,0,0,0,(2*5*11)**10])
[sage: [E.is_p_minimal(p) for p in prime_range(2,24)]
[False, True, False, True, False, True, True, True, True]
```

is_semistable()
Return True iff this elliptic curve is semi-stable at all primes.

EXAMPLES:
sage: E = EllipticCurve('37a1')
sage: E.is_semistable()
True
sage: E = EllipticCurve('90a1')
sage: E.is_semistable()
False

is_supersingular \((p, \text{ell=}\text{None})\)
Return True precisely when \(p\) is a prime of good reduction and the mod-\(p\) representation attached to this elliptic curve is supersingular at \(\text{ell}\).

INPUT:
- \(p\) - a prime
- \text{ell} - a prime (default: \(p\))

OUTPUT: \(\text{bool}\)

EXAMPLES:

```sage
sage: E = EllipticCurve('37a1')
sage: E.is_supersingular(37)
False
sage: E = EllipticCurve('32a1')
sage: E.is_supersingular(2)
False
sage: E.is_supersingular(7)
True
sage: [p for p in prime_range(50) if E.is_supersingular(p)]
[3, 7, 11, 19, 23, 31, 43, 47]
```

isogenies_prime_degree \((\ell=\text{None})\)
Return a list of \(\ell\)-isogenies from self, where \(\ell\) is a prime.

INPUT:
- \(\ell\) – either None or a prime or a list of primes.

OUTPUT:
- (list) \(\ell\)-isogenies for the given \(\ell\) or if \(\ell\) is None, all \(\ell\)-isogenies.

Note: The codomains of the isogenies returned are standard minimal models. This is because the functions isogenies_prime_degree_genus_0() and isogenies_sporadic_Q() are implemented that way for curves defined over \(\mathbb{Q}\).

EXAMPLES:

```sage
sage: E = EllipticCurve([45,32])
sage: E.isogenies_prime_degree()
[]
sage: E = EllipticCurve(j = -262537412640768000)
sage: E.isogenies_prime_degree()
[]
sage: E = EllipticCurve(j = -262537412640768000)
sage: E.isogenies_prime_degree()
[Isogeny of degree 163 from Elliptic Curve defined by y^2 + y = x^3 - 2174420*x + 1234136692 over Rational Field to Elliptic Curve defined by y^2 + y = x^3 - 57772164980*x - 5344733777551611 over Rational Field]
sage: E1 = E.quadratic_twist(6584935282)
sage: E1.isogenies_prime_degree()
[Isogeny of degree 163 from Elliptic Curve defined by y^2 = x^3 - 94285835957031790358080*x + 3523853116124065422457830898 over Rational Field to Elliptic Curve defined by y^2 = x^3 - 250508375542377840567181069520*x - 116318797845018020806 over Rational Field]
```
sage: E = EllipticCurve('14a1')
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x
 → 6 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - →36*x - 70 over Rational Field]
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x
 → 6 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 - →x over Rational Field, Isogeny of degree 3 from Elliptic Curve defined by y^ →2 + x*y + y = x^3 + 4*x - 6 over Rational Field to Elliptic Curve defined →by y^2 + x*y + y = x^3 - 171*x - 874 over Rational Field]
sage: E.isogenies_prime_degree(5)
[]
sage: E.isogenies_prime_degree(11)
[]
sage: E.isogenies_prime_degree(29)
[]
sage: E.isogenies_prime_degree(4)
Traceback (most recent call last):
...
ValueError: 4 is not prime.

isogeny_class *(algorithm='sage', order=None)*

Return the Q-isogeny class of this elliptic curve.

INPUT:

- **algorithm** - string: one of the following:
 - “database” - use the Cremona database (only works if curve is isomorphic to a curve in the database)
 - “sage” (default) - use the native Sage implementation.
- **order** - None, string, or list of curves (default: None): If not None then the curves in the class are reordered after being computed. Note that if the order is None then the resulting order will depend on the algorithm.
 - if order is “database” or “sage”, then the reordering is so that the order of curves matches the order produced by that algorithm.
 - if order is “lmfdb” then the curves are sorted lexicographically by a-invariants, in the LMFDB database.
 - if order is a list of curves, then the curves in the class are reordered to be isomorphic with the specified list of curves.

OUTPUT:

An instance of the class `sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_Rational`. This object models a list of minimal models (with containment, index, etc based on isomorphism classes). It also has methods for computing the isogeny matrix and the list of isogenies between curves in this class.

Note: The curves in the isogeny class will all be standard minimal models.

EXAMPLES:
sage: isocls = EllipticCurve('37b').isogeny_class(order="lmfdb")
sage: isocls
Elliptic curve isogeny class 37b
sage: isocls.curves
(Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 3*x + 1 over Rational Field)
sage: isocls.matrix()
[1 3 9]
[3 1 3]
[9 3 1]

sage: isocls = EllipticCurve('37b').isogeny_class('database', order="lmfdb");
isocls.curves
(Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 3*x + 1 over Rational Field)

This is an example of a curve with a 37-isogeny:

sage: E = EllipticCurve([1,1,1,-8,6])
sage: isocls = E.isogeny_class(); isocls
Isogeny class of Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 8*x + 6 over Rational Field
sage: isocls.matrix()
[1 37]
[37 1]
sage: print("\n".join([repr(E) for E in isocls.curves]))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 8*x + 6 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 208083*x - 36621194 over Rational Field

This curve had numerous 2-isogenies:

sage: e = EllipticCurve([1,0,0,-39,90])
sage: isocls = e.isogeny_class(); isocls.matrix()
[1 2 4 4 8 8]
[2 1 2 4 4]
[4 2 1 4 8 8]
[4 2 4 1 2 2]
[8 4 8 2 1 4]
[8 4 8 2 4 1]

See http://math.harvard.edu/~elkies/nature.html for more interesting examples of isogeny structures.

sage: E = EllipticCurve(j = -262537412640768000)
sage: isocls = E.isogeny_class(); isocls.matrix()
[1 163]
[163 1]
sage: print("\n".join([repr(C) for C in isocls.curves]))
Elliptic Curve defined by y^2 + y = x^3 - 2174420*x + 1234136692 over Rational Field

(continues on next page)
The degrees of isogenies are invariant under twists:

```python
sage: E = EllipticCurve(j = -262537412640768000)
sage: E1 = E.quadratic_twist(6584935282)
sage: isocls = E1.isogeny_class(); isocls.matrix()
    [ 1 163]
    [163 1]
sage: E1.conductor()
    1843309296712063653330496

sage: E = EllipticCurve('14a1')
sage: isocls = E.isogeny_class(); isocls.matrix()
    [ 1 2 3 3 6 6]
    [ 2 1 6 6 3 3]
    [ 3 6 1 9 2 18]
    [ 3 6 9 1 18 2]
    [ 6 3 2 18 1 9]
    [ 6 3 18 2 9 1]
sage: print("\n".join([repr(C) for C in isocls.curves]))
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 36*x - 70 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - x over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 171*x - 874 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 11*x + 12 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 2731*x - 55146 over Rational Field

sage: isocls2 = isocls.reorder('lmfdb'); isocls2.matrix()
    [ 1 2 3 9 18 6]
    [ 2 1 6 18 9 3]
    [ 3 6 1 3 6 2]
    [ 9 18 3 1 2 6]
    [18 9 6 2 1 3]
    [ 6 3 2 6 3 1]
sage: print("\n".join([repr(C) for C in isocls2.curves]))
Elliptic Curve defined by y^2 + x*y + y = x^3 - 2731*x - 55146 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 171*x - 874 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 11*x + 12 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - 36*x - 70 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 - x over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x - 6 over Rational Field

sage: E = EllipticCurve('11a1')
sage: isocls = E.isogeny_class(); isocls.matrix()
    [ 1 2 3 5 5]
    [ 5 1 25]
    [ 5 25 1]
sage: f = isocls.isogenies()[0][1]; f.kernel_polynomial()
x^2 + x - 29/5
```

`isogeny_degree(other)`

Return the minimal degree of an isogeny between self and other.
INPUT:

- other – another elliptic curve.

OUTPUT:

(int) The minimal degree of an isogeny from self to other, or 0 if the curves are not isogenous.

EXAMPLES:

```
sage: E = EllipticCurve([-1056, 13552])
sage: E2 = EllipticCurve([-127776, -18037712])
sage: E.isogeny_degree(E2)
11

sage: E1 = EllipticCurve('14a1')
sage: E2 = EllipticCurve('14a2')
sage: E3 = EllipticCurve('14a3')
sage: E4 = EllipticCurve('14a4')
sage: E5 = EllipticCurve('14a5')
sage: E6 = EllipticCurve('14a6')
sage: E3.isogeny_degree(E1)
3
sage: E3.isogeny_degree(E2)
6
sage: E3.isogeny_degree(E3)
1
sage: E3.isogeny_degree(E4)
9
sage: E3.isogeny_degree(E5)
2
sage: E3.isogeny_degree(E6)
18

sage: E1 = EllipticCurve('30a1')
sage: E2 = EllipticCurve('30a2')
sage: E3 = EllipticCurve('30a3')
sage: E4 = EllipticCurve('30a4')
sage: E5 = EllipticCurve('30a5')
sage: E6 = EllipticCurve('30a6')
sage: E7 = EllipticCurve('30a7')
sage: E8 = EllipticCurve('30a8')
sage: E1.isogeny_degree(E1)
1
sage: E1.isogeny_degree(E2)
2
sage: E1.isogeny_degree(E3)
3
sage: E1.isogeny_degree(E4)
4
sage: E1.isogeny_degree(E5)
4
sage: E1.isogeny_degree(E6)
6
sage: E1.isogeny_degree(E7)
12
sage: E1.isogeny_degree(E8)
12
```
E1 = EllipticCurve('15a1')
E2 = EllipticCurve('15a2')
E3 = EllipticCurve('15a3')
E4 = EllipticCurve('15a4')
E5 = EllipticCurve('15a5')
E6 = EllipticCurve('15a6')
E7 = EllipticCurve('15a7')
E8 = EllipticCurve('15a8')
E1.isogeny_degree(E1)
1
E7.isogeny_degree(E2)
8
E7.isogeny_degree(E3)
2
E7.isogeny_degree(E4)
8
E7.isogeny_degree(E5)
16
E7.isogeny_degree(E6)
16
E7.isogeny_degree(E8)
4
0 is returned when the curves are not isogenous:

A = EllipticCurve('37a1')
B = EllipticCurve('37b1')
A.isogeny_degree(B)
0
A.is_isogenous(B)
False

isogeny_graph(order=None)
Return a graph representing the isogeny class of this elliptic curve, where the vertices are isogenous curves over \(\mathbb{Q} \) and the edges are prime degree isogenies.

Note: The vertices are labeled 1 to n rather than 0 to n-1 to correspond to LMFDB and Cremona labels.

EXAMPLES:

LL = []
for e in cremona_optimal_curves(range(1, 38)): # long time
 G = e.isogeny_graph()
 already = False
 for H in LL:
 if G.is_isomorphic(H):
 already = True
 break
 if not already:
 LL.append(G)
graphs_list.show_graphs(LL) # long time

E = EllipticCurve('195a')
G = E.isogeny_graph()
for v in G: print("{} {}".format(v, G.get_vertex(v)))
(continued from previous page)

1 Elliptic Curve defined by $y^2 + x*y = x^3 - 110*x + 435$ over Rational Field
2 Elliptic Curve defined by $y^2 + x*y = x^3 - 115*x + 392$ over Rational Field
3 Elliptic Curve defined by $y^2 + x*y = x^3 + 210*x + 2277$ over Rational Field
4 Elliptic Curve defined by $y^2 + x*y = x^3 - 520*x - 4225$ over Rational Field
5 Elliptic Curve defined by $y^2 + x*y = x^3 + 605*x - 19750$ over Rational Field
6 Elliptic Curve defined by $y^2 + x*y = x^3 - 8125*x - 282568$ over Rational Field
7 Elliptic Curve defined by $y^2 + x*y = x^3 - 7930*x - 296725$ over Rational Field
8 Elliptic Curve defined by $y^2 + x*y = x^3 - 130000*x - 18051943$ over Rational Field

```python
sage: G.plot(edge_labels=True)
Graphics object consisting of 23 graphics primitives
```

kodaira_symbol (p)

Local Kodaira type of the elliptic curve at p.

INPUT:

- p – an integral prime

OUTPUT:

- the Kodaira type of this elliptic curve at p, as a KodairaSymbol.

EXAMPLES:

```python
sage: E = EllipticCurve('124a')
sage: E.kodaira_type(2)
IV
```

kodaira_type (p)

Local Kodaira type of the elliptic curve at p.

INPUT:

- p – an integral prime

OUTPUT:

- the Kodaira type of this elliptic curve at p, as a KodairaSymbol.

EXAMPLES:

```python
sage: E = EllipticCurve('124a')
sage: E.kodaira_type(2)
IV
```

kodaira_type_old (p)

Local Kodaira type of the elliptic curve at p.

INPUT:

- p, an integral prime

OUTPUT:

- the Kodaira type of this elliptic curve at p, as a KodairaSymbol.
EXAMPLES:

```python
sage: E = EllipticCurve('124a')
sage: E.kodaira_type_old(2)
IV
```

kolyvagin_point \((D, c=1, check=True)\)

Return the Kolyvagin point on this curve associated to the quadratic imaginary field \(K = \mathbb{Q}(\sqrt{D})\) and conductor \(c\).

INPUT:

- \(D\) – a Heegner discriminant
- \(c\) – (default: 1) conductor, must be coprime to \(DN\)
- \(check\) – bool (default: True)

OUTPUT:

The Kolyvagin point \(P\) of conductor \(c\).

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-14
(6.00000000000000 : -15.0000000000000 : 1.00000000000000)
sage: P.index()
6
sage: g = E((0,-1,1)) # a generator
sage: E.regulator() == E.regulator_of_points([g])
True
sage: 6*g
(6 : -15 : 1)
```

label \((space=False)\)

Return the Cremona label associated to (the minimal model) of this curve, if it is known. If not, raise a LookupError exception.

EXAMPLES:

```python
sage: E = EllipticCurve('389a1')
sage: E.cremona_label()
'389a1'
```

The default database only contains conductors up to 10000, so any curve with conductor greater than that will cause an error to be raised. The optional package `database_cremona_ellcurve` contains many more curves.

```python
sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.conductor()
234446
sage: E.cremona_label() # optional - database_cremona_ellcurve
'234446a1'
sage: E = EllipticCurve([0, 0, 1, -79, 342])
sage: E.conductor()
19047851
sage: E.cremona_label()
```
Traceback (most recent call last):
...
LookupError: Cremona database does not contain entry for Elliptic Curve defined by y^2 + y = x^3 - 79*x + 342 over Rational Field

lmfdb_page()
Open the LMFDB web page of the elliptic curve in a browser.

See http://www.lmfdb.org

EXAMPLES:

 sage: E = EllipticCurve('5077a1')
 sage: E.lmfdb_page() # optional -- webbrowser

local_integral_model(p)
Return a model of self which is integral at the prime p.

EXAMPLES:

 sage: E = EllipticCurve([0, 0, 1/216, -7/1296, 1/7776])
 sage: E.local_integral_model(2)
 Elliptic Curve defined by y^2 + 1/27*y = x^3 - 7/81*x + 2/243 over Rational Field
 sage: E.local_integral_model(3)
 Elliptic Curve defined by y^2 + 1/8*y = x^3 - 7/16*x + 3/32 over Rational Field
 sage: E.local_integral_model(2).local_integral_model(3) == EllipticCurve('5077a1')
 True

lseries()
Return the L-series of this elliptic curve.

Further documentation is available for the functions which apply to the L-series.

EXAMPLES:

 sage: E = EllipticCurve('37a1')
 sage: E.lseries()
 Complex L-series of the Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

lseries_gross_zagier(A)
Return the Gross-Zagier L-series attached to self and an ideal class A.

INPUT:

 * A – an ideal class in an imaginary quadratic number field K

This L-series $L(E, A, s)$ is defined as the product of a shifted L-function of the quadratic character associated to K and the Dirichlet series whose n-th coefficient is the product of the n-th factor of the L-series of E and the number of integral ideal in A of norm n. For any character χ on the class group of K, one gets $L_K(E, \chi, s) = \sum_A \chi(A)L(E, A, s)$ where A runs through the class group of K.

For the exact definition see section IV of [GrossZagier].

EXAMPLES:
sage: E = EllipticCurve('37a')

sage: K.<a> = QuadraticField(-40)

sage: A = K.class_group().gen(0); A
Fractional ideal class (2, 1/2*a)

sage: L = E.lseries_gross_zagier(A) ; L
Gross Zagier L-series attached to Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field with ideal class Fractional ideal class (2, 1/2*a)

sage: L(1)
0.000000000000000

sage: L.taylor_series(1, 5)
0.000000000000000 - 5.51899839494458*z + 13.6297841350649*z^2 - 16.22292417817675*z^3 + 7.94788823722712*z^4 + O(z^5)

These should be equal:

sage: L(2) + E.lseries_gross_zagier(A^2)(2)
0.502803417587467

sage: E.lseries()(2) * E.quadratic_twist(-40).lseries()(2)
0.502803417587467

REFERENCES:

manin_constant()

Return the Manin constant of this elliptic curve.

If \(\phi : X_0(N) \to E \) is the modular parametrization of minimal degree, then the Manin constant \(c \) is defined to be the rational number \(c \) such that \(\phi^* (\omega_E) = c \cdot \omega_f \) where \(\omega_E \) is a Néron differential and \(\omega_f = f(q)dq/q \) is the differential on \(X_0(N) \) corresponding to the newform \(f \) attached to the isogeny class of \(E \).

It is known that the Manin constant is an integer. It is conjectured that in each class there is at least one, more precisely the so-called strong Weil curve or \(X_0(N) \)-optimal curve, that has Manin constant \(1 \).

OUTPUT:

an integer

This function only works if the curve is in the installed Cremona database. Sage includes by default a small database; for the full database you have to install an optional package.

EXAMPLES:

sage: EllipticCurve('11a1').manin_constant()
1

sage: EllipticCurve('11a2').manin_constant()
1

sage: EllipticCurve('11a3').manin_constant()
5

Check that it works even if the curve is non-minimal:

sage: EllipticCurve('11a3').change_weierstrass_model([1/35,0,0,0]).manin_constant()
5

Rather complicated examples (see trac ticket #12080)

sage: [EllipticCurve('27a%s%i').manin_constant() for i in [1,2,3,4]]
[1, 1, 3, 3]

sage: [EllipticCurve('80b%s%i').manin_constant() for i in [1,2,3,4]]
[1, 2, 1, 2]
matrix_of_frobenius \((p, \text{prec}=20, \text{check}=False, \text{check_hypotheses}=True, \text{algorithm}=\text{'auto'}) \)

Returns the matrix of Frobenius on the Monsky Washnitzer cohomology of the short Weierstrass model of the minimal model of the elliptic curve.

INPUT:

• \(p \) - prime (\(\geq 3 \)) for which \(E \) is good and ordinary

• \(\text{prec} \) - (relative) \(p \)-adic precision for result (default 20)

• \(\text{check} \) - boolean (default: False), whether to perform a consistency check. This will slow down the computation by a constant factor 2. (The consistency check is to verify that its trace is correct to the specified precision. Otherwise, the trace is used to compute one column from the other one (possibly after a change of basis).)

• \(\text{check_hypotheses} \) - boolean, whether to check that this is a curve for which the \(p \)-adic sigma function makes sense

• \(\text{algorithm} \) - one of “standard”, “sqrtp”, or “auto”. This selects which version of Kedlaya’s algorithm is used. The “standard” one is the one described in Kedlaya’s paper. The “sqrtp” one has better performance for large \(p \), but only works when \(p > 6N \) (\(N = \text{prec} \)). The “auto” option selects “sqrtp” whenever possible.

Note that if the “sqrtp” algorithm is used, a consistency check will automatically be applied, regardless of the setting of the “check” flag.

OUTPUT: a matrix of \(p \)-adic number to precision \(\text{prec} \)

See also the documentation of \(\text{padic}_E2 \).

EXAMPLES:

```sage
sage: E = EllipticCurve('37a1')
sage: E.matrix_of_frobenius(7)
[ 2*7 + 4*7^2 + 5*7^4 + 6*7^5 + 6*7^6 + 7^8 + 4*7^9 + 3*7^10 + 
  2*7^11 + 5*7^12 + 4*7^14 + 7^16 + 2*7^17 + 3*7^18 + 4*7^19 + 3*7^20 + O(7^ 
  21) 
  2 + 3*7 + 6*7^2 + 7^3 + 3*7^4 + 5*7^5 + 
  3*7^7 + 7^8 + 3*7^9 + 6*7^13 + 7^14 + 7^16 + 5*7^17 + 4*7^18 + 7^19 + O(7^ 
  20)]
[ 2*7 + 3*7^2 + 7^3 + 3*7^4 + 6*7^5 + 2*7^6 + 3*7^7 + 5*7^8 + 3*7^9 + 2*7^ 
  11 + 6*7^12 + 5*7^13 + 4*7^16 + 4*7^17 + 6*7^18 + 6*7^19 + 4*7^20 + O(7^21) 
  6 + 4*7 + 2*7^2 + 6*7^3 + 7^4 + 6*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 4*7^11 + 7^ 
  12 + 6*7^13 + 2*7^14 + 6*7^15 + 5*7^16 + 4*7^17 + 3*7^18 + 2*7^19 + O(7^20)]
sage: M = E.matrix_of_frobenius(11,prec=3); M
[ 9*11 + 9*11^3 + O(11^4)  10 + 11 + O(11^3)]
[ 2*11 + 11*2 + O(11^4)  6 + 11 + 10*11^2 + O(11^3)]
sage: M.det()
11 + O(11^4)
sage: M.trace()
6 + 10*11 + 10*11^2 + O(11^3)
sage: E.ap(11)
-5
sage: E = EllipticCurve('83a1')
sage: E.matrix_of_frobenius(3,6)
[ 2*3 + 3^5 + O(3^6)  2*3 + 2*3^2 + 2*3^3 + 
  0(3^6)]
[ 2*3 + 3^2 + 2*3^5 + O(3^6)  2 + 2*3^2 + 2*3^3 + 2*3^4 + 3^5 + 
  0(3^6)]
```

minimal_model()

Return the unique minimal Weierstrass equation for this elliptic curve.
This is the model with minimal discriminant and $a_1, a_2, a_3 \in \{0, \pm 1\}$.

EXAMPLES:

```python
sage: E = EllipticCurve([10,100,1000,10000,1000000])
sage: E.minimal_model()
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + x + 1 over Rational Field
```

minimal_quadratic_twist()

Determine a quadratic twist with minimal conductor. Return a global minimal model of the twist and the fundamental discriminant of the quadratic field over which they are isomorphic.

Note: If there is more than one curve with minimal conductor, the one returned is the one with smallest label (if in the database), or the one with minimal a-invariant list (otherwise).

Note: For curves with j-invariant 0 or 1728 the curve returned is the minimal quadratic twist, not necessarily the minimal twist (which would have conductor 27 or 32 respectively).

EXAMPLES:

```python
sage: E = EllipticCurve('121d1')
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 + y = x^3 - x^2 over Rational Field, -11)
sage: Et, D = EllipticCurve('32a1').minimal_quadratic_twist()
sage: D
1
sage: E = EllipticCurve('11a1')
sage: Et, D = E.quadratic_twist(-24).minimal_quadratic_twist()  # note: different twists
sage: E == Et
True
sage: D
-24
sage: E = EllipticCurve([0,0,0,0,1000])
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field, 40)
sage: E = EllipticCurve([0,0,0,1600,0])
sage: E.minimal_quadratic_twist()
(Elliptic Curve defined by y^2 = x^3 + 4*x over Rational Field, 5)
```

If the curve has square-free conductor then it is already minimal (see trac ticket #14060):

```python
sage: E = next(cremona_optimal_curves([2*3*5*7*11]))
sage: (E, 1) == E.minimal_quadratic_twist()
True
```

An example where the minimal quadratic twist is not the minimal twist (which has conductor 27):

```python
sage: E = EllipticCurve([0,0,0,7])
sage: E.j_invariant()
0
sage: E.minimal_quadratic_twist()[0].conductor()
5292
```
mod5family()

Return the family of all elliptic curves with the same mod-5 representation as self.

EXAMPLES:

```python
sage: E = EllipticCurve('32a1')
sage: E.mod5family()
Elliptic Curve defined by y^2 = x^3 + 4*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field
```

modular_degree(algorithm='sympow', M=1)

Return the modular degree at level MN of this elliptic curve. The case $M == 1$ corresponds to the classical definition of modular degree.

When $M > 1$, the function returns the degree of the map from $X_0(MN) \rightarrow A$, where A is the abelian variety generated by embeddings of E into $J_0(MN)$.

The result is cached. Subsequent calls, even with a different algorithm, just returned the cached result. The algorithm argument is ignored when $M > 1$.

INPUT:

- `algorithm` - string:
 - `'sympow'` - (default) use Mark Watkin’s (newer) C program sympow
 - `'magma'` - requires that MAGMA be installed (also implemented by Mark Watkins)
 - M - Non-negative integer; the modular degree at level MN is returned (see above)

Note: On 64-bit computers ec does not work, so Sage uses sympow even if ec is selected on a 64-bit computer.

The correctness of this function when called with algorithm “sympow” is subject to the following three hypothesis:

- Manin’s conjecture: the Manin constant is 1
- Steven’s conjecture: the $X_1(N)$-optimal quotient is the curve with minimal Faltings height. (This is proved in most cases.)
- The modular degree fits in a machine double, so it better be less than about 50-some bits. (If you use sympow this constraint does not apply.)

Moreover for all algorithms, computing a certain value of an L-function ‘uses a heuristic method that discerns when the real-number approximation to the modular degree is within epsilon [=0.01 for algorithm='sympow’] of the same integer for 3 consecutive trials (which occur maybe every 25000 coefficients or so). Probably it could just round at some point. For rigour, you would need to bound the tail by assuming (essentially) that all the a_n are as large as possible, but in practice they exhibit significant (square root) cancellation. One difficulty is that it doesn’t do the sum in 1-2-3-4 order; it uses 1-2-4-8-3-6-12-24-9-18- (Euler product style) instead, and so you have to guess ahead of time at what point to curtail this expansion.’ (Quote from an email of Mark Watkins.)

Note: If the curve is loaded from the large Cremona database, then the modular degree is taken from the database.

EXAMPLES:
We compute the modular degree of the curve with rank 4 having smallest (known) conductor:

```
sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: factor(E.conductor())
2 * 117223
sage: factor(E.modular_degree())
2^7 * 2617
```

Higher level cases:

```
sage: E = EllipticCurve('11a')
sage: for M in range(1,11): print(E.modular_degree(M=M))
# long time (20s on 2009 MBP)
1
1
3
2
7
45
12
16
54
245
```

`modular_form()`

Return the cuspidal modular form associated to this elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: f = E.modular_form()
sage: f
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + O(q^6)
```

If you need to see more terms in the q-expansion:

```
sage: f.q_expansion(20)
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 6*q^9 + 4*q^10 - 5*q^11 - 6*q^12 - 2*q^13 + 2*q^14 + 6*q^15 - 4*q^16 - 12*q^18 + O(q^20)
```
Note: If you just want the q-expansion, use $q_expansion()$.

modular_parametrization()

Return the modular parametrization of this elliptic curve, which is a map from $X_0(N)$ to self, where N is the conductor of self.

EXAMPLES:

```python
sage: E = EllipticCurve('15a')
sage: phi = E.modular_parametrization(); phi
Modular parameterization from the upper half plane to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
sage: z = 0.1 + 0.2*I
sage: phi(z)
(8.20822465478524 - 13.1562816054681*I : -8.79855099049... + 69.4006129342... ← I : 1.00000000000000)
```

This map is actually a map on $X_0(N)$, so equivalent representatives in the upper half plane map to the same point:

```python
sage: phi((-7*z-1)/(15*z+2))
(8.20822465478524 - 13.1562816054681*I : -8.79855099049... + 69.4006129342... ← I : 1.00000000000000)
```

We can also get a series expansion of this modular parameterization:

```python
sage: E = EllipticCurve('389a1')
sage: X,Y=E.modular_parametrization().power_series()
sage: X
q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^7 + 173*q^8 + 251*q^9 + 379*q^10 + 560*q^11 + 824*q^12 + 1199*q^13 + 1773*q^14 + 2548*q^15 + 3722*q^16 + 5374*q^17 + O(q^18)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 - 528*q^6 - 861*q^7 - 1383*q^8 - 2218*q^9 - 3472*q^10 - 5451*q^11 - 8447*q^12 - 13020*q^13 - 19923*q^14 - 30403*q^15 - 46003*q^16 + O(q^17)
```

The following should give 0, but only approximately:

```python
sage: q = X.parent().gen()
sage: E.defining_polynomial()(X,Y,1) + O(q^11) == 0
True
```

modular_symbol(sign=1, normalize=None, implementation='eclib')

Return the modular symbol associated to this elliptic curve, with given sign.

INPUT:

- **sign** -1 (default) or 1.
- **normalize** - (default: None); either 'L_ratio', 'period', or 'none' when implementation is 'sage'; ignored if implementation is eclib. For 'L_ratio', the modular symbol tries to normalize correctly as explained below by comparing it to L_{ratio} for the curve and some small twists. The normalization 'period' uses the integral_period_map for modular symbols which is known to be equal to the desired normalization, up to the sign and a possible power of 2. With normalization 'none', the modular symbol is almost certainly not correctly normalized, i.e. all values will be a fixed scalar multiple of what they should be. However, the initial computation of the modular...
symbol is much faster when implementation sage is chosen, though evaluation of it after computing
it is no faster.

- **implementation** - either ’eclib’ (default) or ’sage’. Here ’eclib’ uses John Cremona’s imple-

mentation in the eclib library, while ’sage’ uses an implementation in Sage which is often quite a bit

slower.

See also:

```python
modular_symbol_numerical()
```

Note: The value at a rational number \(r \) is proportional to the real or imaginary part of the integral of
\(2\pi i f(z) dz \) from \(\infty \) to \(r \), where \(f \) is the newform attached to \(E \), suitably normalized so that all values of
this map take values in \(\mathbb{Q} \).

The normalization is such that for sign +1, the value at the cusp \(r \) is equal to the quotient of the real part
of \(\int_{\infty}^{r} 2\pi i f(z) dz \) by the least positive period of \(E \), where \(f \) is the newform attached to the isogeny class
of \(E \). This is in contrast to the method \(L_ratio \) of \(lseries() \), where the value is also divided by the
number of connected components of \(E(\mathbb{R}) \). In particular the modular symbol depends on \(E \) and not only
the isogeny class of \(E \). For negative modular symbols, the value is the quotient of the imaginary part of
the above integral by the imaginary part of the smallest positive imaginary period.

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: M = E.modular_symbol(); M
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve
  \( y^2 + y = x^3 - x \) over Rational Field
sage: M(1/2)
0
sage: M(1/5)
1
```

```python
sage: E = EllipticCurve('121b1')
sage: M = E.modular_symbol(implementation="sage")
Warning: Could not normalize the modular symbols, maybe all further results
will be multiplied by -1 and a power of 2
sage: M(1/7)
-1/2
```

Different curves in an isogeny class have modular symbols which differ by a nonzero rational factor:

```python
sage: E1 = EllipticCurve('11a1')
sage: M1 = E1.modular_symbol()
sage: M1(0)
1/5
sage: E2 = EllipticCurve('11a2')
sage: M2 = E2.modular_symbol()
sage: M2(0)
1
sage: E3 = EllipticCurve('11a3')
sage: M3 = E3.modular_symbol()
sage: M3(0)
1/25
sage: all(5*M1(r)==M2(r)==25*M3(r) for r in QQ.range_by_height(10))
True
```
With the default implementation using eclib, the symbols are correctly normalized automatically. With the Sage implementation we can choose to normalize using the L-ratio, unless that is 0 (for curves of positive rank) or using periods. Here is an example where the symbol is already normalized:

```python
sage: E = EllipticCurve('11a2')
sage: E.modular_symbol(implementation = 'eclib')(0)
1
sage: E.modular_symbol(implementation = 'sage', normalize='L_ratio')(0)
1
sage: E.modular_symbol(implementation = 'sage', normalize='none')(0)
1
sage: E.modular_symbol(implementation = 'sage', normalize='period')(0)
1
```

Here is an example where both normalization methods work, while the non-normalized symbol is incorrect:

```python
sage: E = EllipticCurve('11a3')
sage: E.modular_symbol(implementation = 'eclib')(0)
1/25
sage: E.modular_symbol(implementation = 'sage', normalize='none')(0)
1
sage: E.modular_symbol(implementation = 'sage', normalize='L_ratio')(0)
1/25
sage: E.modular_symbol(implementation = 'sage', normalize='period')(0)
1/25
```

Since trac ticket #10256, the interface for negative modular symbols in eclib is available:

```python
sage: E = EllipticCurve('11a1')
sage: Mplus = E.modular_symbol(+1); Mplus
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mplus(1/i) for i in [1..11]]
[1/5, -4/5, -3/10, 7/10, 6/5, 6/5, 7/10, -3/10, -4/5, 1/5, 0]
sage: Mminus = E.modular_symbol(-1); Mminus
Modular symbol with sign -1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mminus(1/i) for i in [1..11]]
[0, 0, 1/2, 1/2, 0, 0, -1/2, -1/2, 0, 0, 0]
```

`modular_symbol_numerical(sign=1, prec=53)`

Return the modular symbol as a numerical function.

Note: This method does not compute spaces of modular symbols, so it is suitable for curves of larger conductor than can be handled by `modular_symbol()`.

EXAMPLES:

```python
sage: E = EllipticCurve('19a1')
sage: f = E.modular_symbol_numerical(1)
sage: g = E.modular_symbol()
sage: f(0), g(0)  # abs tol 1e-14
(0.333333333333333, 1/3)
sage: f(oo), g(oo)
(-0.000000000000000, 0)
```
sage: E = EllipticCurve('79a1')
sage: f = E.modular_symbol_numerical(-1)
sage: g = E.modular_symbol(-1, implementation="sage")
sage: f(1/3), g(1/3) # abs tol 1e-13
(1.00000000000001, 1)
sage: f(oo), g(oo)
(0.000000000000000, 0)

modular_symbol_space (sign=1, base_ring=Rational Field, bound=None)
Return the space of cuspidal modular symbols associated to this elliptic curve, with given sign and base ring.

INPUT:
- sign - 0, -1, or 1
- base_ring - a ring

EXAMPLES:

sage: f = EllipticCurve('37b')
sage: f.modular_symbol_space() # dim=1
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(37) of weight 2 with sign 1 over Rational Field
sage: f.modular_symbol_space(-1) # dim=1, sign=-1
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 2 for Gamma_0(37) of weight 2 with sign -1 over Rational Field
sage: f.modular_symbol_space(0, bound=3) # dim=2, bound=3
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 5 for Gamma_0(37) of weight 2 with sign 0 over Rational Field

Note: If you just want the \(q \)-expansion, use \(q _expansion() \).

mwrank (options="")
Run Cremona’s mwrank program on this elliptic curve and return the result as a string.

INPUT:
- options (string) – run-time options passed when starting mwrank. The format is as follows (see below for examples of usage):
 - \(-v\ n\) (verbosity level) sets verbosity to \(n \) (default=1)
 - \(-o\) (PARI/GP style output flag) turns ON extra PARI/GP short output (default is OFF)
 - \(-p\ n\) (precision) sets precision to \(n \) decimals (default=15)
 - \(-b\ n\) (quartic bound) bound on quartic point search (default=10)
 - \(-x\ n\) (n_aux) number of aux primes used for sieving (default=6)
 - \(-l\) (generator list flag) turns ON listing of points (default ON unless \(v=0 \))
 - \(-s\) (selmer_only flag) if set, computes Selmer rank only (default: not set)
 - \(-d\) (skip_2nd_descent flag) if set, skips the second descent for curves with 2-torsion (default: not set)
 - \(-S\ n\) (sat_bd) upper bound on saturation primes (default=100, -1 for automatic)
OUTPUT:
- string - output of mwrank on this curve

Note: The output is a raw string and completely illegible using automatic display, so it is recommended to use print for legible output.

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: E.mwrank()  #random
...  
sage: print(E.mwrank())
Curve [0,0,1,-1,0] : Basic pair: I=48, J=-432
disc=255744
...
Generator 1 is [0:-1:1]; height 0.05111...
Regulator = 0.05111...
The rank and full Mordell-Weil basis have been determined unconditionally.
...
```

Options to mwrank can be passed:

```python
sage: E = EllipticCurve([0,0,0,877,0])
Run mwrank with 'verbose' flag set to 0 but list generators if found
```

```python
sage: print(E.mwrank('-v0 -l'))
Curve [0,0,0,877,0] : 0 <= rank <= 1
Regulator = 1
Run mwrank again, this time with a higher bound for point searching on homogeneous spaces:
```

```python
sage: print(E.mwrank('-v0 -l -b11'))
Curve [0,0,0,877,0] : Rank = 1
Generator 1 is
...
height 95.98037...
Regulator = 95.98037...
```

mwrank_curve *(verbose=False)*

Construct an mwrank_EllipticCurve from this elliptic curve

The resulting mwrank_EllipticCurve has available methods from John Cremona’s eclib library.

EXAMPLES:

```python
sage: E = EllipticCurve('11a1')
sage: EE = E.mwrank_curve()
sage: EE
y^2+ y = x^3 - x^2 - 10*x - 20
sage: type(EE)
<class 'sage.libs.eclib.interface.mwrank_EllipticCurve'>
sage: EE.isogeny_class()
(continues on next page)
```

10.11. Elliptic curves over number fields
newform()

Same as self.modular_form().

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: E.newform()
q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + O(q^6)
sage: E.newform() == E.modular_form()
True
```

ngens (proof=None)

Return the number of generators of this elliptic curve.

Note: See gens() for further documentation. The function ngens() calls gens() if not already done, but only with default parameters. Better results may be obtained by calling mwrank() with carefully chosen parameters.

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: E.ngens()
1
sage: E = EllipticCurve([0,0,0,877,0])
sage: E.ngens()
1
```

```python
sage: print(E.mwrank('-v0 -b12 -l'))
Curve [0,0,0,877,0] : Rank = 1
Generator 1 is
\rightarrow [296045653048282374403861024284371796799791624792913256602210:-
\rightarrow 256256267988926809388776834045513089648669153204356603464786949:49007802321978758895980293
\rightarrow height 95.98037...
Regulator = 95.980...
```

optimal_curve()

Given an elliptic curve that is in the installed Cremona database, return the optimal curve isogenous to it.

EXAMPLES:

The following curve is not optimal:

```python
sage: E = EllipticCurve('11a2'); E
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 7820*x - 263580 over Rational Field
sage: E.optimal_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: E.optimal_curve().cremona_label()
'11a1'
```

Note that 990h is the special case where the optimal curve isn’t the first in the Cremona labeling:
If the input curve is optimal, this function returns that curve (not just a copy of it or a curve isomorphic to it):

```python
sage: E = EllipticCurve('990h4'); E
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 + 6112*x - 41533 over Rational Field
sage: F = E.optimal_curve(); F
Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 1568*x - 4669 over Rational Field
sage: F.cremona_label()
'990h3'
sage: EllipticCurve('990a1').optimal_curve().cremona_label() # a isn't h.
'990a1'
```

Also, if this curve is optimal but not given by a minimal model, this curve will still be returned, so this function need not return a minimal model in general.

```python
sage: E = EllipticCurve('37a1')
sage: E.optimal_curve() is E
True
```

ordinary_primes(B)

Return a list of all ordinary primes for this elliptic curve up to and possibly including B.

EXAMPLES:

```python
sage: e = EllipticCurve('11a')
sage: e.aplist(20)
[-2, -1, 1, 4, -2, 0]
sage: e.ordinary_primes(97)
sage: e = EllipticCurve('49a')
sage: e.aplist(20)
[1, 0, 0, 4, 0, 0, 0]
sage: e.supersingular_primes(97)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97]
sage: e.ordinary_primes(97)
sage: e.ordinary_primes(3)
[2]
sage: e.ordinary_primes(2)
[2]
sage: e.ordinary_primes(1)
[]
```

padic_E2($p, \text{prec}=20, \text{check}=\text{False}, \text{check_hypotheses}=\text{True}, \text{algorithm}=\text{’auto’}$)

Returns the value of the p-adic modular form E_2 for (E, ω) where ω is the usual invariant differential $dx/(2y + a_1x + a_3)$.

INPUT:

- p - prime ($= 5$) for which E is good and ordinary
• prec - (relative) p-adic precision (= 1) for result
• check - boolean, whether to perform a consistency check. This will slow down the computation by a constant factor 2. (The consistency check is to compute the whole matrix of frobenius on Monsky-Washnitzer cohomology, and verify that its trace is correct to the specified precision. Otherwise, the trace is used to compute one column from the other one (possibly after a change of basis).)
• check_hypotheses - boolean, whether to check that this is a curve for which the p-adic sigma function makes sense
• algorithm - one of “standard”, “sqrtp”, or “auto”. This selects which version of Kedlaya’s algorithm is used. The “standard” one is the one described in Kedlaya’s paper. The “sqrtp” one has better performance for large p, but only works when $p > 6N$ ($N = \text{prec}$). The “auto” option selects “sqrtp” whenever possible.

Note that if the “sqrtp” algorithm is used, a consistency check will automatically be applied, regardless of the setting of the “check” flag.

OUTPUT: p-adic number to precision prec

Note: If the discriminant of the curve has nonzero valuation at p, then the result will not be returned mod p^{prec}, but it still will have prec digits of precision.

Todo: Once we have a better implementation of the “standard” algorithm, the algorithm selection strategy for “auto” needs to be revisited.

AUTHORS:
• David Harvey (2006-09-01): partly based on code written by Robert Bradshaw at the MSRI 2006 modular forms workshop

ACKNOWLEDGMENT: - discussion with Eyal Goren that led to the trace trick.

EXAMPLES: Here is the example discussed in the paper “Computation of p-adic Heights and Log Convergence” (Mazur, Stein, Tate):

```
sage: EllipticCurve([-1, 1/4]).padic_E2(5)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 + 4*5^22 + 2*5^23 + 3*5^24 + 3*5^25 + 2*5^26 + 2*5^27 + 3*5^28 + 2*5^29 + 5^31 + 4*5^32 + 3*5^33 + 4*5^34 + 4*5^35 + 5^36 + 4*5^37 + 4*5^38 + 3*5^39 + 4*5^40 + 2*5^41 + 3*5^42 + 2*5^43 + 2*5^44 + 2*5^45 + 3*5^46 + 4*5^47 + 2*5^48 + 2*5^49 + 4*5^50 + 2*5^51 + 5^52 + 4*5^53 + 4*5^54 + 3*5^55 + 2*5^56 + 3*5^57 + 4*5^58 + 4*5^59 + 5^60 + 3*5^61 + 5^62 + 4*5^63 + 5^64 + 3*5^65 + 4*5^66 + 2*5^67 + 5^68 + 2*5^69 + 2*5^70 + 3*5^71 + 3*5^72 + 5^74 + 5^75 + 5^76 + 3*5^77 + 4*5^78 + 4*5^79 + 2*5^80 + 3*5^81 + 5^82 + 4*5^83 + 4*5^84 + 3*5^85 + 2*5^86 + 3*5^87 + 5^88 + 2*5^89 + 4*5^90 + 4*5^92 + 3*5^93 + 4*5^94 + 3*5^95 + 2*5^96 + 4*5^97 + 4*5^98 + 2*5^99 + O(5^100)
```

Let’s try to higher precision (this is the same answer the MAGMA implementation gives):

```
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 100)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 + 4*5^22 + 2*5^23 + 3*5^24 + 3*5^25 + 2*5^26 + 2*5^27 + 3*5^28 + 2*5^29 + 5^31 + 4*5^32 + 3*5^33 + 4*5^34 + 4*5^35 + 5^36 + 4*5^37 + 4*5^38 + 3*5^39 + 4*5^40 + 2*5^41 + 3*5^42 + 2*5^43 + 2*5^44 + 2*5^45 + 3*5^46 + 4*5^47 + 2*5^48 + 2*5^49 + 4*5^50 + 2*5^51 + 5^52 + 4*5^53 + 4*5^54 + 3*5^55 + 2*5^56 + 3*5^57 + 4*5^58 + 4*5^59 + 5^60 + 3*5^61 + 5^62 + 4*5^63 + 5^64 + 3*5^65 + 4*5^66 + 2*5^67 + 5^68 + 2*5^69 + 2*5^70 + 3*5^71 + 3*5^72 + 5^74 + 5^75 + 5^76 + 3*5^77 + 4*5^78 + 4*5^79 + 2*5^80 + 3*5^81 + 5^82 + 4*5^83 + 4*5^84 + 3*5^85 + 2*5^86 + 3*5^87 + 5^88 + 2*5^89 + 4*5^90 + 4*5^92 + 3*5^93 + 4*5^94 + 3*5^95 + 2*5^96 + 4*5^97 + 4*5^98 + 2*5^99 + O(5^100)
```

Check it works at low precision too:
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1)
2 + O(5)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 2)
2 + 4*5 + O(5^2)
sage: EllipticCurve([-1, 1/4]).padic_E2(5, 3)
2 + 4*5 + O(5^3)

TODO: With the old(-er), i.e., = sage-2.4 p-adics we got \(5 + O(5^2)\) as output, i.e., relative precision 1, but with the newer p-adics we get relative precision 0 and absolute precision 1.

sage: EllipticCurve([1, 1, 1, 1, 1]).padic_E2(5, 1)
O(5)

Check it works for different models of the same curve (37a), even when the discriminant changes by a power of p (note that E2 depends on the differential too, which is why it gets scaled in some of the examples below):

sage: X1 = EllipticCurve([-1, 1/4])
sage: X1.j_invariant(), X1.discriminant()
(110592/37, 37)
sage: X1.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X2 = EllipticCurve([0, 0, 1, -1, 0])
sage: X2.j_invariant(), X2.discriminant()
(110592/37, 37)
sage: X2.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X3 = EllipticCurve([-1*(2**4), 1/4*(2**6)])
sage: X3.j_invariant(), X3.discriminant() / 2**12
(110592/37, 37)
sage: 2**(-2) * X3.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X4 = EllipticCurve([-1*(7**4), 1/4*(7**6)])
sage: X4.j_invariant(), X4.discriminant() / 7**12
(110592/37, 37)
sage: 7**(-2) * X4.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X5 = EllipticCurve([-1*(5**4), 1/4*(5**6)])
sage: X5.j_invariant(), X5.discriminant() / 5**12
(110592/37, 37)
sage: 5**(-2) * X5.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X6 = EllipticCurve([-1/(5**4), 1/4/(5**6)])
sage: X6.j_invariant(), X6.discriminant() * 5**12
(110592/37, 37)
sage: 5**2 * X6.padic_E2(5, 10)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

Test check=True vs check=False:
Here's one using the $p^{1/2}$ algorithm:

```python
sage: EllipticCurve([-1, 1/4]).padic_E2(3001, 3, algorithm="sqrtp")
1907 + 2819*3001 + 1124*3001^2 + O(3001^3)
```

padic_height ($p, \text{prec}=20, \text{sigma}=\text{None}, \text{check_hypotheses}=\text{True}$)
Compute the cyclotomic p-adic height.

The equation of the curve must be minimal at p.

INPUT:

- **p** - prime ≥ 5 for which the curve has semi-stable reduction
- **prec** - integer ≥ 1 (default 20), desired precision of result
- **sigma** - precomputed value of σ. If not supplied, this function will call `padic_sigma` to compute it.
- **check_hypotheses** - boolean, whether to check that this is a curve for which the p-adic height makes sense

OUTPUT: A function that accepts two parameters:

- a Q-rational point on the curve whose height should be computed
- optional boolean flag `check`: if False, it skips some input checking, and returns the p-adic height of that point to the desired precision.

The normalization (sign and a factor 1/2 with respect to some other normalizations that appear in the literature) is chosen in such a way as to make the p-adic Birch Swinnerton-Dyer conjecture hold as stated in [Mazur-Tate-Teitelbaum].

AUTHORS:

- Jennifer Balakrishnan: original code developed at the 2006 MSRI graduate workshop on modular forms
- David Harvey (2006-09-13): integrated into Sage, optimised to speed up repeated evaluations of the returned height function, addressed some thorny precision questions
- David Harvey (2006-09-30): rewrote to use division polynomials for computing denominator of nP
- David Harvey (2007-02): cleaned up according to algorithms in “Efficient Computation of p-adic Heights”
- Chris Wuthrich (2007-05): added supersingular and multiplicative heights

EXAMPLES:
```python
sage: E = EllipticCurve("37a")
sage: P = E.gens()[0]
sage: h = E.padic_height(5, 10)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)
```

An anomalous case:

```python
sage: h = E.padic_height(53, 10)
sage: h(P)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + 35*53^7 + 30*53^8 + 17*53^9 + O(53^10)
```

Boundary case:

```python
sage: E.padic_height(5, 3)(P)
5 + 5^2 + O(5^3)
```

A case that works the division polynomial code a little harder:

```python
sage: E.padic_height(5, 10)(5*P)
5^3 + 5^4 + 5^5 + 3*5^8 + 4*5^9 + O(5^10)
```

Check that answers agree over a range of precisions:

```python
sage: max_prec = 30 # make sure we get past p^2 # long time
sage: full = E.padic_height(5, max_prec)(P) # long time
sage: for prec in range(1, max_prec): # long time
    ....: assert E.padic_height(5, prec)(P) == full # long time
```

A supersingular prime for a curve:

```python
sage: E = EllipticCurve('37a')
sage: E.is_supersingular(3)
True
sage: h = E.padic_height(3, 5)
sage: h(E.gens()[0])
(3 + 3^3 + O(3^6), 2*3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + O(3^7))
sage: E.padic_regulator(5)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + 5^10 + 3*5^11 + 3*5^12 + 5^13 + 4*5^14 + 5^15 + 2*5^16 + 5^17 + 2*5^18 + 4*5^19 + O(5^20)
sage: E.padic_regulator(3, 5)
(3 + 2*3^2 + 3^3 + O(3^4), 3^2 + 2*3^3 + 3^4 + O(3^5))
```

A torsion point in both the good and supersingular cases:

```python
sage: E = EllipticCurve('11a')
sage: P = E.torsion_subgroup().gen(0).element(); P
(5 : 5 : 1)
sage: h = E.padic_height(19, 5)
sage: h(P)
0
sage: h = E.padic_height(5, 5)
sage: h(P)
0
```

The result is not dependent on the model for the curve:
```
sage: E = EllipticCurve([0,0,0,2^12*17])
sage: Em = E.minimal_model()
sage: P = E.gens()[0]
sage: Pm = Em.gens()[0]
sage: h = E.padic_height(7)
sage: hm = Em.padic_height(7)
sage: h(P) == hm(Pm)
True
```

padic_height_pairing_matrix *(p, prec=20, height=None, check_hypotheses=True)*

Computes the cyclotomic p-adic height pairing matrix of this curve with respect to the basis self.gens() for the Mordell-Weil group for a given odd prime p of good ordinary reduction.

INPUT:

- **p** - prime ≥ 5
- **prec** - answer will be returned modulo p^{prec}
- **height** - precomputed height function. If not supplied, this function will call padic_height to compute it.
- **check_hypotheses** - boolean, whether to check that this is a curve for which the p-adic height makes sense

OUTPUT: The p-adic cyclotomic height pairing matrix of this curve to the given precision.

Todo: remove restriction that curve must be in minimal Weierstrass form. This is currently required for E.gens().

AUTHORS:

- David Harvey, Liang Xiao, Robert Bradshaw, Jennifer Balakrishnan: original implementation at the 2006 MSRI graduate workshop on modular forms
- David Harvey (2006-09-13): cleaned up and integrated into Sage, removed some redundant height computations

EXAMPLES:

```
sage: E = EllipticCurve("37a")
sage: E.padic_height_pairing_matrix(5, 10)
[5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)]
```

A rank two example:

```
sage: e = EllipticCurve('389a')
sage: e._set_gens([e(-1, 1), e(1,0)])  # avoid platform dependent gens
sage: e.padic_height_pairing_matrix(5,10)
[[ 3*5 + 3*5^2 + 5^4 + 5*5 + 5^7 + 4*5^9 + O(5^10) 5 +
   4*5^2 + 5^3 + 2*5^4 + 3*5^5 + 4*5^6 + 5*7 + 5^8 + 2*5^9 + O(5^10)]
[5 + 4*5^2 + 5*3 + 2*5^4 + 3*5^5 + 4*5^6 + 5*7 + 5^8 + 2*5^9 + O(5^10)]]
```

An anomalous rank 3 example:

```
sage: e = EllipticCurve("5077a")
sage: e._set_gens([e(-1,3), e(2,0), e(4,6)])
```
padic_height_via_multiply(p, $prec=20$, $E2=None$, $check_hypotheses=True$)

Computes the cyclotomic p-adic height.

The equation of the curve must be minimal at p.

INPUT:

- `p` - prime ≥ 5 for which the curve has good ordinary reduction
- `$prec$` - integer ≥ 2 (default 20), desired precision of result
- `$E2$` - precomputed value of $E2$. If not supplied, this function will call `padic_E2` to compute it. The value supplied must be correct mod p^{prec-2} (or slightly higher in the anomalous case; see the code for details).
- `$check_hypotheses$` - boolean, whether to check that this is a curve for which the p-adic height makes sense

OUTPUT: A function that accepts two parameters:

- a \mathbb{Q}-rational point on the curve whose height should be computed
- optional boolean flag ‘check’: if False, it skips some input checking, and returns the p-adic height of that point to the desired precision.

- The normalization (sign and a factor 1/2 with respect to some other normalizations that appear in the literature) is chosen in such a way as to make the p-adic Birch Swinnerton-Dyer conjecture hold as stated in [Mazur-Tate-Teitelbaum].

AUTHORS:

- David Harvey (2008-01): based on the `padic_height()` function, using the algorithm of "Computing p-adic heights via point multiplication"

EXAMPLES:

```python
sage: E = EllipticCurve("37a")
sage: P = E.gens()[0]
sage: h = E.padic_height_via_multiply(5, 10)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)

An anomalous case:

```python
sage: h = E.padic_height_via_multiply(53, 10)
sage: h(P)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + O(53^10)
```

Supply the value of $E2$ manually:
padic_lseries \((p, \text{normalize}={\text{None}}, \text{implementation}={\text{eclib}}, \text{precision}={\text{None}})\)

Return the \(p\)-adic \(L\)-series of self at \(p\), which is an object whose \text{approx} method computes approximation to the true \(p\)-adic \(L\)-series to any desired precision.

**INPUT:**

- \(p\) – prime
- \text{normalize} – ‘L\_ratio’ (default), ‘period’ or ‘none’; this is describes the way the modular symbols are normalized. See modular\_symbol for more details.
- \text{implementation} – ‘eclib’ (default), ‘sage’, ‘pollackstevens’; Whether to use John Cremona’s eclib, the Sage implementation, or Pollack-Stevens’ implementation of overconvergent modular symbols.

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a')
sage: L = E.padic_lseries(5); L
5-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: type(L)
<class 'sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary'>
```

We compute the 3-adic \(L\)-series of two curves of rank 0 and in each case verify the interpolation property for their leading coefficient (i.e., value at 0):

```python
sage: e = EllipticCurve('11a')
sage: ms = e.modular_symbol()
sage: [ms(1/11), ms(1/3), ms(0), ms(oo)]
[0, -3/10, 1/5, 0]
sage: ms(0)
1/5
sage: L = e.padic_lseries(3)
sage: P = L.series(5)
sage: P(0)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7)
sage: alpha = L.alpha(9); alpha
2 + 3^2 + 2*3^3 + 2*3^4 + 2*3^6 + 3^8 + O(3^9)
(continues on next page)```
Next consider the curve 37b:

```
sage: e = EllipticCurve('37b')
sage: L = e.padic_lseries(3)
sage: P = L.series(5)
sage: alpha = L.alpha(9); alpha
1 + 2*3 + 3^2 + 2*3^3 + 2*3^5 + 3^7 + O(3^9)
sage: r = e.lseries().L_ratio(); r
1/3
```

```
sage: (1 - alpha^(-1))^2 * r
3 + 3^2 + 2*3^4 + 2*3^5 + O(3^6)
```

We can use Sage modular symbols instead to compute the L-series:

```
sage: e = EllipticCurve('11a')
sage: L = e.padic_lseries(3, implementation = 'sage')
sage: L.series(5, prec=10)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7) + (1 + 3 + 2*3^2 + 3^3 + O(3^4))*T 
+ (1 + 2*3 + O(3^4))*T^2 + (3 + 2*3^2 + O(3^3))*T^3 + (2*3 + 3^2 + O(3^ 
-3))*T^4 + (1 + 3 + 3^2 + O(3^3))*T^5 + (2 + 3^ 
-2 + O(3^3))*T^7 + (2 + 3 + O(3^2))*T^8 + (2 + O(3^2))*T^9 + O(T^ 
-10)
```

Finally, we can use the overconvergent method of Pollack-Stevens:

```
sage: e = EllipticCurve('11a1')
sage: L = e.padic_lseries(11, implementation = 'pollackstevens', precision=3)
sage: L[1]
10 + 3*11 + O(11^2)
sage: L[3]
3 + O(3^2)
```

Another example with a semistable prime.:

```
sage: E = EllipticCurve("11a1")
sage: L = E.padic_lseries(11, implementation = 'pollackstevens', precision=3)
sage: L[1]
10 + 3*11 + O(11^2)
sage: L[3]
O(11^0)
```

We can compute the cyclotomic p-adic regulator of this curve using the function `padic_regulator`:

```
\text{padic\_regulator}(p, \text{prec}=20, \text{height}=None, \text{check\_hypotheses}=True)
```

Compute the cyclotomic p-adic regulator of this curve.
INPUT:

- p – prime ≥ 5
- prec – answer will be returned modulo p^prec
- height – precomputed height function. If not supplied, this function will call padic_height to compute it.
- check_hypotheses – boolean, whether to check that this is a curve for which the p-adic height makes sense

OUTPUT: The p-adic cyclotomic regulator of this curve, to the requested precision.

If the rank is 0, we output 1.

Todo: Remove restriction that curve must be in minimal Weierstrass form. This is currently required for $E\text{.gens()}$.

AUTHORS:

- Liang Xiao: original implementation at the 2006 MSRI graduate workshop on modular forms
- David Harvey (2006-09-13): cleaned up and integrated into Sage, removed some redundant height computations
- Chris Wuthrich (2007-05-22): added multiplicative and supersingular cases
- David Harvey (2007-09-20): fixed some precision loss that was occurring

EXAMPLES:

```python
sage: E = EllipticCurve("37a")
sage: E.padic_regulator(5, 10)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)
```

An anomalous case:

```python
sage: E.padic_regulator(53, 10)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + \ldots + 35*53^7 + 30*53^8 + O(53^9)
```

An anomalous case where the precision drops some:

```python
sage: E = EllipticCurve("5077a")
sage: E.padic_regulator(5, 10)
5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 4*5^7 + 2*5^8 + 5^9 + O(5^10)
```

Check that answers agree over a range of precisions:

```python
sage: max_prec = 30  # make sure we get past p^2  # long time
sage: full = E.padic_regulator(5, max_prec)  # long time
sage: for prec in range(1, max_prec):
  ....:    assert E.padic_regulator(5, prec) == full  # long time
```

A case where the generator belongs to the formal group already (trac ticket #3632):

```python
sage: E = EllipticCurve([37,0])
sage: E.padic_regulator(5,10)
2*5^2 + 2*5^3 + 5^4 + 5^5 + 4*5^6 + 3*5^8 + 4*5^9 + O(5^10)
```
The result is not dependent on the model for the curve:

```python
sage: E = EllipticCurve([0,0,0,0,2^12*17])
sage: Em = E.minimal_model()
sage: E.padic_regulator(7) == Em.padic_regulator(7)
True
```

Allow a Python int as input:

```python
sage: E = EllipticCurve('37a')
sage: E.padic_regulator(int(5))
```

```
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + 5^10 + 3*5^11 + 3*5^12 + 5^13 + 4*5^14 + 5^15 + 2*5^16 + 5^17 + 2*5^18 + 4*5^19 + O(5^20)
```

`padic_sigma` ($p, N=20, E2=None, check=False, check_hypotheses=True$)

Computes the p-adic sigma function with respect to the standard invariant differential $dx/(2y+a_1x+a_3)$, as defined by Mazur and Tate, as a power series in the usual uniformiser t at the origin.

The equation of the curve must be minimal at p.

INPUT:

- p - prime ≥ 5 for which the curve has good ordinary reduction
- N - integer ≥ 1 (default 20), indicates precision of result; see OUTPUT section for description
- $E2$ - precomputed value of $E2$. If not supplied, this function will call `padic_E2` to compute it. The value supplied must be correct mod p^{N-2}.
- `check` - boolean, whether to perform a consistency check (i.e. verify that the computed sigma satisfies the defining differential equation - note that this does NOT guarantee correctness of all the returned digits, but it comes pretty close :-))
- `check_hypotheses` - boolean, whether to check that this is a curve for which the p-adic sigma function makes sense

OUTPUT: A power series $t + \cdots$ with coefficients in \mathbb{Z}_p.

The output series will be truncated at $O(t^{N+1})$, and the coefficient of t^n for $n \geq 1$ will be correct to precision $O(p^{-N-n+1})$.

In practice this means the following. If $t_0 = p^k u$, where u is a p-adic unit with at least N digits of precision, and $k \geq 1$, then the returned series may be used to compute $\sigma(t_0)$ correctly modulo p^{N+k} (i.e. with N correct p-adic digits).

ALGORITHM: Described in “Efficient Computation of p-adic Heights” (David Harvey), which is basically an optimised version of the algorithm from “p-adic Heights and Log Convergence” (Mazur, Stein, Tate).

Running time is soft-$O(N^2 \log p)$, plus whatever time is necessary to compute E_2.

AUTHORS:

- David Harvey (2006-09-12)
- David Harvey (2007-02): rewrote

EXAMPLES:

```python
sage: E = EllipticCurve([-1, 1/4]).padic_sigma(5, 10)
```

```
0(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 + O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + O(5^5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (1 + 2*5 + O(5^3))*t^9 + O(t^10)
```
Run it with a consistency check:

```python
sage: EllipticCurve("37a").padic_sigma(5, 10, check=True)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 +
   →) + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 + O(5^→)
   →) + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8 +
   →) + (4 + 5 + O(5^2))*t^9 + (1 + O(5))^t^10 + O(t^11)
```

Boundary cases:

```python
sage: EllipticCurve([1, 1, 1, 1]).padic_sigma(5, 1)
(1 + O(5))*t + O(t^2)
```

```python
sage: EllipticCurve([1, 1, 1, 1]).padic_sigma(5, 2)
(1 + O(5^2))*t + (3 + 5^2)*t^2 + O(t^3)
```

Supply your very own value of E2:

```python
sage: X = EllipticCurve("37a")
sage: my_E2 = X.padic_E2(5, 8)
sage: my_E2 = my_E2 + 5^5  # oops!!!
sage: X.padic_sigma(5, 10, E2=my_E2)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 4*5^4 +
   →) + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 + O(5^→)
   →) + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8 +
   →) + (4 + 5 + O(5^2))*t^9 + (1 + O(5))^t^10 + O(t^11)
```

Check that sigma is “weight 1”.

```python
sage: f = EllipticCurve([-1, 3]).padic_sigma(5, 10)
sage: g = EllipticCurve([-1*(2**4), 3*(2**6)]).padic_sigma(5, 10)
sage: t = f.parent().gen()
sage: f(2*t)/2
(1 + O(5^10))*t + (3 + 2*5 + 2*5^2 + 3*5^3 + 4*5^4 +
   →) + (3*5^3 + 5^4 + 3*5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 +
   →) + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8 +
   →) + (4 + 5 + O(5^2))*t^9 + (1 + O(5))^t^10 + O(t^11)
sage: g
O(5^11) + (1 + O(5^10))*t + (3 + 2*5^2 + 3*5^3 + 4*5^4 +
   →) + (3*5^3 + 5^4 + 3*5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 +
   →) + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8 +
   →) + (4 + 5 + O(5^2))*t^9 + (1 + O(5))^t^10 + O(t^11)
sage: f(2*t)/2 - g
O(t^11)
```

Test that it returns consistent results over a range of precision:

```python
sage: max_N = 30  # get up to at least p^2  # long time
sage: E = EllipticCurve([1, 1, 1, 1, 1])  # long time
sage: p = 5  # long time
sage: E2 = E.padic_E2(p, max_N)  # long time
sage: max_sigma = E.padic_sigma(p, max_N, E2=E2)  # long time
sage: for N in range(3, max_N):
    # long time
    sigma = E.padic_sigma(p, N, E2=E2)
    assert sigma == max_sigma
```
padic_sigma_truncated \((p, N=20, \text{ lamb}=0, \text{ E2}=\text{None}, \text{ check_hypotheses}=\text{True})\)

Compute the p-adic sigma function with respect to the standard invariant differential \(dx/(2y + a_1x + a_3)\), as defined by Mazur and Tate, as a power series in the usual uniformiser \(t\) at the origin.

The equation of the curve must be minimal at \(p\).

This function differs from **padic_sigma()** in the precision profile of the returned power series; see OUTPUT below.

INPUT:

- \(p\) - prime \(\geq 5\) for which the curve has good ordinary reduction
- \(N\) - integer \(\geq 2\) (default 20), indicates precision of result; see OUTPUT section for description
- \(\text{ lamb}\) - integer \(\geq 0\), see OUTPUT section for description
- \(\text{ E2}\) - precomputed value of \(E_2\). If not supplied, this function will call padic_E2 to compute it. The value supplied must be correct \(\mod p^{N-2}\).
- \(\text{ check_hypotheses}\) - boolean, whether to check that this is a curve for which the p-adic sigma function makes sense

OUTPUT: A power series \(t + \cdots\) with coefficients in \(\mathbb{Z}_p\).

The coefficient of \(t^j\) for \(j \geq 1\) will be correct to precision \(O(p^{N-2+(3-j)(\text{ lamb}+1)})\).

ALGORITHM: Described in “Efficient Computation of p-adic Heights” (David Harvey, to appear in LMS JCM), which is basically an optimised version of the algorithm from “p-adic Heights and Log Convergence” (Mazur, Stein, Tate), and “Computing p-adic heights via point multiplication” (David Harvey, still draft form).

Running time is \(O(N^2\lambda^{-1}\log p)\), plus whatever time is necessary to compute \(E_2\).

AUTHOR:

- David Harvey (2008-01): wrote based on previous **padic_sigma** function()

EXAMPLES:

```python
sage: E = EllipticCurve([-1, 1/4])
sage: E.padic_sigma_truncated(5, 10)
0(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 + O(5^8))*t^3 + O(5^5)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5*5 + O(5^6))*t^5 + O(5^2)*t^6 + (1 + 2*5 + O(5^2))*t^7 + O(5)*t^8 + (1 + 2*5 + O(5))*t^9 + O(t^10)
```

Note the precision of the \(t^3\) coefficient depends only on \(N\), not on \(\text{ lamb}\):

```python
sage: E.padic_sigma_truncated(5, 10, \text{ lamb}=2)
0(5^17) + (1 + O(5^14))*t + O(5^11)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 + O(5^8))*t^3 + O(5^5)*t^4 + (2 + O(5^2))*t^5 + O(t^6)
```

Compare against plain **padic_sigma()** function over a dense range of \(N\) and \(\text{ lamb}\):

```python
sage: E = EllipticCurve([1, 2, 3, 4, 7])
\text{ time }
sage: E2 = E.padic_E2(5, 50)
\text{ time }
sage: for N in range(2, 10):
\text{ time }
...: for \text{ lamb} in range(10):
\text{ time }
```

(continues on next page)
pa\textit{ri_curve}()

Return the PARI curve corresponding to this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: e = E.pari_curve()
sage: type(e)
<... 'cypari2.gen.Gen'>
sage: e.type()
't\_VEC'
sage: e.ellan(10)
[1, -2, -3, 2, -2, 6, -1, 0, 6, 4]
```

When doing certain computations, PARI caches the results:

```python
sage: E = EllipticCurve(RationalField(), ['1/3', '2/3'])
sage: e = E.pari_curve()
sage: e[:5]
[0, 0, 1/3, 2/3]
```

This shows that the bug uncovered by trac ticket #4715 is fixed:

```python
sage: Ep = EllipticCurve('903b3').pari_curve()
```

This still works, even when the curve coefficients are large (see trac ticket #13163):

```python
sage: E = EllipticCurve([4382696457564794691603442338788106497, 28, 3992,~
                        16777216, 298])
sage: E.pari_curve()
[4382696457564794691603442338788106497, 28, 3992, 16777216, 298, ...]
```

(continues on next page)
pari_mincurve()
Return the PARI curve corresponding to a minimal model for this elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve(RationalField(), ['1/3', '2/3'])
sage: e = E.pari_mincurve()
sage: e[:5]
[0, 0, 0, 27, 486]
sage: E.conductor()
47232
sage: e.ellglobalred()
[47232, [1, 0, 0, 0], 2, [2, 7; 3, 2; 41, 1], [[7, 2, 0, 1], [2, -3, 0, 2], →
 \rightarrow[1, 5, 0, 1]]
```

period_lattice(embedding=None)
Return the period lattice of the elliptic curve with respect to the differential $dx/(2y + a_1x + a_3)$.

INPUT:

- embedding - ignored (for compatibility with the period_lattice function for elliptic_curve_number_field)

OUTPUT:

(period lattice) The PeriodLattice_ell object associated to this elliptic curve (with respect to the natural embedding of \mathbb{Q} into \mathbb{R}).

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: E.period_lattice()
Period lattice associated to Elliptic Curve defined by y^2 + y = x^3 - x over →
 →Rational Field
```

point_search(height_limit, verbose=False, rank_bound=None)
Search for points on a curve up to an input bound on the naive logarithmic height.

INPUT:

- height_limit (float) - bound on naive height
- verbose (bool) - (default: False)
 If True, report on the saturation process.
 If False, just return the result.
- rank_bound (bool) - (default: None)
 If provided, stop saturating once we find this many independent nontorsion points.

OUTPUT: points (list) - list of independent points which generate the subgroup of the Mordell-Weil group generated by the points found and then saturated.

Warning: height_limit is logarithmic, so increasing by 1 will cause the running time to increase by a factor of approximately $4.5 (=\exp(1.5))$.
IMPLEMENTATION: Uses Michael Stoll’s ratpoints module in PARI/GP.

EXAMPLES:

```
sage: E = EllipticCurve('389a1')
sage: E.point_search(5, verbose=False)
[(-1 : 1 : 1), (0 : 0 : 1)]
```

Increasing the height_limit takes longer, but finds no more points:

```
sage: E.point_search(10, verbose=False)
[(-1 : 1 : 1), (0 : 0 : 1)]
```

In fact this curve has rank 2 so no more than 2 points will ever be output, but we are not using this fact.

```
sage: E.saturation(_)
[(-1 : 1 : 1), (0 : 0 : 1)], 1, 0.152460177943144
```

What this shows is that if the rank is 2 then the points listed do generate the Mordell-Weil group (mod torsion). Finally,

```
sage: E.rank()
2
```

If we only need one independent generator:

```
sage: E.point_search(5, verbose=False, rank_bound=1)
[(-2 : 0 : 1)]
```

```
pollack_stevens_modular_symbol(sign=0, implementation='eclib')
Create the modular symbol attached to the elliptic curve, suitable for overconvergent calculations.
```

INPUT:

- `sign` – +1 or -1 or 0 (default), in which case this is the sum of the two
- `implementation` – either ‘eclib’ (default) or ‘sage’. This determines classical modular symbols
 which implementation of the underlying classical modular symbols is used

EXAMPLES:

```
sage: E = EllipticCurve('113a1')
sage: symb = E.pollack_stevens_modular_symbol()
sage: symb
Modular symbol of level 113 with values in Sym^0 Q^2
sage: symb.values()
[-1/2, 1, -1, 0, 0, 1, 1, -1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, 0]
sage: E = EllipticCurve([0,1])
sage: symb = E.pollack_stevens_modular_symbol(+1)
sage: symb.values()
[-1/6, 1/12, 0, 1/6, 1/12, 1/3, -1/12, 0, -1/6, -1/12, -1/4, -1/6, 1/12]
```

```
prove_BSD(E, verbosity=0, two_desc='mwrank', proof=None, secs_hi=5, return_BSD=False)
Attempts to prove the Birch and Swinnerton-Dyer conjectural formula for E, returning a list of primes
p for which this function fails to prove BSD(E,p). Here, BSD(E,p) is the statement: “the Birch and
Swinnerton-Dyer formula holds up to a rational number coprime to p.”
```

INPUT:

- `E` - an elliptic curve
• **verbosity** - int, how much information about the proof to print.
 - 0 - print nothing
 - 1 - print sketch of proof
 - 2 - print information about remaining primes
• **two_desc** - string (default 'mwrank'), what to use for the two-descent. Options are 'mwrank', 'simon', 'sage'
• **proof** - bool or None (default: None, see proof.elliptic_curve or sage.structure.proof). If False, this function just immediately returns the empty list.
• **secs_hi** - maximum number of seconds to try to compute the Heegner index before switching over to trying to compute the Heegner index bound. (Rank 0 only!)
• **return_BSD** - bool (default: False) whether to return an object which contains information to reconstruct a proof

NOTE:
When printing verbose output, phrases such as “by Mazur” are referring to the following list of papers:

REFERENCES:

EXAMPLES:

```sage
EllipticCurve('11a').prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 5} by Kolyvagin.
Kolyvagin's bound for p = 5 applies by Lawson-Wuthrich
True for p = 5 by Kolyvagin bound
[]

EllipticCurve('14a').prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
[]

E = EllipticCurve("20a1")
E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
Kato further implies that #Sha[3] is trivial.
[]

E = EllipticCurve("50b1")
E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3, 5} by Kolyvagin.
Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich
Kolyvagin's bound for p = 5 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
True for p = 5 by Kolyvagin bound
[]
E.prove_BSD(two_desc='simon')
[]
```

A rank two curve:
We know nothing with proof=True:

```python
sage: E.prove_BSD()
Set of all prime numbers: 2, 3, 5, 7, ...
```

We (think we) know everything with proof=False:

```python
sage: E.prove_BSD(proof=False)
[]
```

A curve of rank 0 and prime conductor:

```python
sage: E = EllipticCurve('19a')
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 3} by Kolyvagin.
Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich
True for p = 3 by Kolyvagin bound
[]
sage: E = EllipticCurve('37a')
sage: E.rank()
1
sage: E._EllipticCurve_rational_field__rank
(1, True)
sage: E.analytic_rank = lambda : 0
sage: E.prove_BSD()
```

We test the consistency check for the 2-part of Sha:

```python
sage: E = EllipticCurve('37a')
sage: S = E.sha(); S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: def foo(use_database):
....:     return 4
sage: S.an = foo
sage: E.prove_BSD()
```

An example with a Tamagawa number at 5:

```python
sage: E = EllipticCurve('123a1')
sage: E.prove_BSD(verbosity=2)
p = 2: True by 2-descent
True for p not in {2, 5} by Kolyvagin.
Kolyvagin's bound for p = 5 applies by Lawson-Wuthrich
```

(continues on next page)
A curve for which \(3 \) divides the order of the Tate-Shafarevich group:

\[
\text{sage: } E = \text{EllipticCurve('681b')}
\]
\[
\text{sage: } E.prove_BSD(\text{verbosity}=2)
\]
\[
\text{# long time}
\]
\[
p = 2: \text{True by } 2\text{-descent...}
\]
\[
\text{True for } p \text{ not in } \{2, 3\} \text{ by Kolyvagin}....
\]
\[
\text{Remaining primes:}
\]
\[
p = 3: \text{irreducible, surjective, non-split multiplicative}
\]
\[
(0 <= \text{ord}_p <= 2)
\]
\[
\text{ord}_p(\#\text{Sha_an}) = 2
\]

A curve for which we need to use \texttt{heegner_index_bound}:

\[
\text{sage: } E = \text{EllipticCurve('198b')}
\]
\[
\text{sage: } E.prove_BSD(\text{verbosity}=1, \text{secs_hi}=1)
\]
\[
\text{p = 2: True by } 2\text{-descent}
\]
\[
\text{True for } p \text{ not in } \{2, 3\} \text{ by Kolyvagin}.
\]

The \texttt{return_BSD} option gives an object with detailed information about the proof:

\[
\text{sage: } E = \text{EllipticCurve('26b')}
\]
\[
\text{sage: } B = E.prove_BSD(\text{return_BSD}=\text{True})
\]
\[
\text{sage: } B.tor_rk
\]
\[
0
\]
\[
\text{sage: } B.N
\]
\[
26
\]
\[
\text{sage: } B.gens
\]
\[
[]
\]
\[
\text{sage: } B.primes
\]
\[
[]
\]
\[
\text{sage: } B.heegner_indexes
\]
\[
\{-23: 2\}
\]

\[
\text{sage: } E = \text{EllipticCurve('960d1')}
\]
\[
\text{sage: } E.prove_BSD(\text{verbosity}=1) \quad \text{# long time (4s on sage.math, 2011)}
\]
\[
p = 2: \text{True by } 2\text{-descent}
\]
\[
\text{True for } p \text{ not in } \{2\} \text{ by Kolyvagin}.
\]

\texttt{q_eigenform(prec)}

Synonym for \texttt{self.q_expansion(prec)}.

\textbf{EXAMPLES:}

\[
\text{sage: } E = \text{EllipticCurve('37a1')}
\]
\[
\text{sage: } E.q_eigenform(10)
\]
\[
q - 2q^2 - 3q^3 + 2q^4 - 2q^5 + 6q^6 - q^7 + 6q^9 + O(q^{10})
\]
\[
\text{sage: } E.q_eigenform(10) == E.q_expansion(10)
\]
\[
\text{True}
\]

\texttt{qExpansion(prec)}

Return the \(q \)-expansion to precision \(\text{prec} \) of the newform attached to this elliptic curve.
INPUT:
 • \texttt{prec} - an integer

OUTPUT:
a power series (in the variable 'q')

Note: If you want the output to be a modular form and not just a q-expansion, use \texttt{modular_form()}.

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: E.q_expansion(20)
q - 2\cdot q^2 - 3\cdot q^3 + 2\cdot q^4 - 2\cdot q^5 + 6\cdot q^6 - q^7 + 6\cdot q^9 + 4\cdot q^{10} - 5\cdot q^{11} - \ldots - 6\cdot q^{12} - 2\cdot q^{13} + 2\cdot q^{14} + 6\cdot q^{15} - 4\cdot q^{16} - 12\cdot q^{18} + O(q^{20})
```

\texttt{quadratic_twist} (D)

Return the global minimal model of the quadratic twist of this curve by D.

EXAMPLES:

```python
sage: E = EllipticCurve('37a1')
sage: E7=E.quadratic_twist(7); E7
Elliptic Curve defined by y^2 = x^3 - 784 * x + 5488 over Rational Field
sage: E7.conductor()
29008
sage: E7.quadratic_twist(7) == E
True
```

\texttt{rank} (\texttt{use_database=}True, \texttt{verbose=}False, \texttt{only_use_mwrank=}True, \texttt{algorithm=}\texttt{'mwrank_lib'}, \texttt{proof=}None)

Return the rank of this elliptic curve, assuming no conjectures.

If we fail to provably compute the rank, raises a \texttt{RuntimeError} exception.

INPUT:
 • \texttt{use_database} (bool) – (default: True), if True, try to look up the rank in the Cremona database.
 • \texttt{verbose} - (default: False), if specified changes the verbosity of mwrank computations.
 • \texttt{algorithm} - (default: \texttt{'mwrank_lib'}), one of:
 – \texttt{'mwrank_shell'} - call mwrank shell command
 – \texttt{'mwrank_lib'} - call mwrank c library
 • \texttt{only_use_mwrank} - (default: True) if False try using analytic rank methods first.
 • \texttt{proof} - bool or None (default: None, see \texttt{proof.elliptic_curve} or \texttt{sage.structure.proof}). Note that results obtained from databases are considered proof = True

OUTPUT: the rank of the elliptic curve as \texttt{Integer}

IMPLEMENTATION: Uses L-functions, mwrank, and databases.

EXAMPLES:
Examples with denominators in defining equations:

```python
sage: E = EllipticCurve([0, 0, 0, 0, -675/4])
sage: E.rank()
0
sage: E = EllipticCurve([0, 0, 1/2, 0, -1/5])
sage: E.rank()
1
sage: E.minimal_model().rank()
1
```

A large example where mwrank doesn’t determine the result with certainty:

```python
sage: EllipticCurve([1,0,0,0,37455]).rank(proof=False)
0
sage: EllipticCurve([1,0,0,0,37455]).rank(proof=True)
Traceback (most recent call last):
... 
RuntimeError: rank not provably correct (lower bound: 0)
```

rank_bound()

Upper bound on the rank of the curve, computed using 2-descent. In many cases, this is the actual rank of the curve. If the curve has no 2-torsion it is the same as the 2-selmer rank.

EXAMPLES: The following is the curve 960D1, which has rank 0, but Sha of order 4.

```python
sage: E = EllipticCurve([0, -1, 0, -900, -10098])
sage: E.rank_bound()
0
```

It gives 0 instead of 2, because it knows Sha is nontrivial. In contrast, for the curve 571A, also with rank 0 and Sha of order 4, we get a worse bound:

```python
sage: E = EllipticCurve([0, -1, 1, -929, -10595])
sage: E.rank_bound()
2
```

real_components()

Return 1 if there is 1 real component and 2 if there are 2.
EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: E.real_components ()
2
sage: E = EllipticCurve('37b')
sage: E.real_components ()
2
sage: E = EllipticCurve('11a')
sage: E.real_components ()
1
```

reduction \((p)\)

Return the reduction of the elliptic curve at a prime of good reduction.

Note: The actual reduction is done in `self.change_ring(GF(p))`; the reduction is performed after changing to a model which is minimal at \(p\).

INPUT:

- \(p\) – a (positive) prime number

OUTPUT: an elliptic curve over the finite field \(GF(p)\)

EXAMPLES:

```python
sage: E = EllipticCurve('389a1')
sage: E.reduction(2)
Elliptic Curve defined by y^2 + y = x^3 + x^2 over Finite Field of size 2
sage: E.reduction(3)
Elliptic Curve defined by y^2 + y = x^3 + x^2 + x over Finite Field of size 3
```

```python
sage: E.reduction(5)
Elliptic Curve defined by y^2 + y = x^3 + x^2 + 3*x over Finite Field of size 5
```

```python
sage: E.reduction(38)
Traceback (most recent call last):
  ...  
AttributeError: p must be prime.
```

```python
sage: E.reduction(389)
Traceback (most recent call last):
  ...  
AttributeError: The curve must have good reduction at p.
```

```python
sage: E = EllipticCurve([5^4,5^6])
sage: E.reduction(5)
Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5
```

regulator \((proof=None, precision=53, **kwds)\)

Return the regulator of this curve, which must be defined over \(Q\).

INPUT:

- `proof` – bool or None (default: None, see proof.[tab] or sage.structure.proof). Note that results from databases are considered `proof = True`
- `precision` – (int, default 53): the precision in bits of the result
- `**kwds` – passed to `gens()` method

EXAMPLES:
```
sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: E.regulator()
0.0511114082399688
sage: EllipticCurve('11a').regulator()
1.00000000000000
sage: EllipticCurve('37a').regulator()
0.0511114082399688
sage: EllipticCurve('389a').regulator()
0.152460177943144
sage: EllipticCurve('5077a').regulator()
0.41714355875838...
sage: EllipticCurve([1, -1, 0, -79, 289]).regulator()
1.50434488827528
sage: EllipticCurve([0, 0, 1, -79, 342]).regulator(proof=False) # long time
˓→(6s on sage.math, 2011)
14.790527570131...
```

root_number *(p=None)*

Return the root number of this elliptic curve.

This is 1 if the order of vanishing of the L-function \(L(E,s) \) at 1 is even, and -1 if it is odd.

INPUT:

- \(p \) – optional, default (None); if given, return the local root number at \(p \)

EXAMPLES:

```
sage: EllipticCurve('11a1').root_number()
1
sage: EllipticCurve('37a1').root_number()
-1
sage: EllipticCurve('389a1').root_number()
1
sage: type(EllipticCurve('389a1').root_number())
<... 'sage.rings.integer.Integer'>
```

The root number is cached:

```
sage: E = EllipticCurve('100a1')
sage: E.root_number(2)
-1
sage: E.root_number(5)
1
sage: E.root_number(7)
1
```

satisfies_heegner_hypothesis *(D)*

Returns True precisely when \(D \) is a fundamental discriminant that satisfies the Heegner hypothesis for this elliptic curve.

EXAMPLES:
sage: E = EllipticCurve('11a1')
sage: E.satisfies_heegner_hypothesis(-7)
True
sage: E.satisfies_heegner_hypothesis(-11)
False

saturation (points, verbose=False, max_prime=0, odd_primes_only=False)
Given a list of rational points on E, compute the saturation in E(Q) of the subgroup they generate.

INPUT:
• points (list) - list of points on E
• verbose (bool) - (default: False), if True, give verbose output
• max_prime (int) - (default: 0), saturation is performed for all primes up to max_prime. If max_prime==0, perform saturation at all primes, i.e., compute the true saturation.
• odd_primes_only (bool) - only do saturation at odd primes

OUTPUT:
• saturation (list) - points that form a basis for the saturation
• index (int) - the index of the group generated by points in their saturation
• regulator (real with default precision) - regulator of saturated points.

ALGORITHM: Uses Cremona’s mwrank package. With max_prime=0, we call mwrank with successively larger prime bounds until the full saturation is provably found. The results of saturation at the previous primes is stored in each case, so this should be reasonably fast.

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: P=E(0,0)
sage: Q=5*P; Q
(1/4 : -5/8 : 1)
sage: E.saturation([Q])
([(0 : 0 : 1)], 5, 0.0511114082399688)

selmer_rank()
The rank of the 2-Selmer group of the curve.

EXAMPLES: The following is the curve 960D1, which has rank 0, but Sha of order 4.

sage: E = EllipticCurve([0, -1, 0, -900, -10098])
sage: E.selmer_rank()
3

Here the Selmer rank is equal to the 2-torsion rank (=1) plus the 2-rank of Sha (=2), and the rank itself is zero:

sage: E.rank()
0

In contrast, for the curve 571A, also with rank 0 and Sha of order 4, we get a worse bound:

sage: E = EllipticCurve([0, -1, 1, -929, -10595])
sage: E.selmer_rank()
2

(continues on next page)
To establish that the rank is in fact 0 in this case, we would need to carry out a higher descent:

```
sage: E.three_selmer_rank()  # optional: magma
0
```

Or use the L-function to compute the analytic rank:

```
sage: E.rank(only_use_mwrank=False)
0
```

sha()

Return an object of class ‘sage.schemes.elliptic_curves.sha_tateSha’ attached to this elliptic curve.

This can be used in functions related to bounding the order of Sha (The Tate-Shafarevich group of the curve).

EXAMPLES:

```
sage: E = EllipticCurve('37a1')
sage: S=E.sha()
sage: S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: S.bound_kolyvagin()
([2], 1)
```

silverman_height_bound(algorithm='default')

Return the Silverman height bound. This is a positive real (floating point) number \(B\) such that for all points \(P\) on the curve over any number field, \(|h(P) - \hat{h}(P)| \leq B\), where \(h(P)\) is the naive logarithmic height of \(P\) and \(\hat{h}(P)\) is the canonical height.

INPUT:

- **algorithm** –
 - ‘default’ (default) – compute using a Python implementation in Sage
 - ‘mwrank’ – use a C++ implementation in the mwrank library

NOTES:

- The CPS_height_bound is often better (i.e. smaller) than the Silverman bound, but it only applies for points over the base field, whereas the Silverman bound works over all number fields.
- The Silverman bound is also fairly straightforward to compute over number fields, but isn’t implemented here.
- Silverman’s paper is ‘The Difference Between the Weil Height and the Canonical Height on Elliptic Curves’, Math. Comp., Volume 55, Number 192, pages 723-743. We use a correction by Bremner with 0.973 replaced by 0.961, as explained in the source code to mwrank (htconst.cc).

EXAMPLES:

```
sage: E = EllipticCurve('37a1')
sage: E.silverman_height_bound()
4.825400758180918
```

(continues on next page)
sage: E.silverman_height_bound(algorithm='mwrank')
4.825400758180918
sage: E.CPS_height_bound()
0.16397076103046915

\texttt{sage: E.simon_two_descent(\texttt{verbose=0, \ texttt{lim1=5, \ texttt{lim3=50, \ texttt{limtriv=3, \ texttt{maxprob=20, \ texttt{limbigprime=30, \ texttt{known_points=None}}}}})}

Return lower and upper bounds on the rank of the Mordell-Weil group $E(\mathbb{Q})$ and a list of points of infinite order.

INPUT:

- **self** – an elliptic curve E over \mathbb{Q}
- **\texttt{verbose=0, \ 1, \ 2, \ or \ 3 (default: 0), the verbosity level**
- **\texttt{lim1=5) limit on trivial points on quartics**
- **\texttt{lim3=50) limit on points on ELS quartics**
- **\texttt{limtriv=3) limit on trivial points on } E**
- **\texttt{maxprob=20) **
- **\texttt{limbigprime=30) to distinguish between small and large prime numbers. Use probabilistic tests for large primes. If 0, don’t any probabilistic tests.**
- **\texttt{known_points=None) list of known points on the curve**

OUTPUT: a triple ($\texttt{lower, upper, list}$) consisting of

- **\texttt{lower} (integer) – lower bound on the rank**
- **\texttt{upper} (integer) – upper bound on the rank**
- **\texttt{list} – list of points of infinite order in $E(\mathbb{Q})$**

The integer \texttt{upper} is in fact an upper bound on the dimension of the 2-Selmer group, hence on the dimension of $E(\mathbb{Q})/2E(\mathbb{Q})$. It is equal to the dimension of the 2-Selmer group except possibly if $E(\mathbb{Q})[2]$ has dimension 1. In that case, \texttt{upper} may exceed the dimension of the 2-Selmer group by an even number, due to the fact that the algorithm does not perform a second descent.

To obtain a list of generators, use $E.gens()$.

IMPLEMENTATION: Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/

EXAMPLES:

We compute the ranks of the curves of lowest known conductor up to rank 8. Amazingly, each of these computations finishes almost instantly!

sage: E = EllipticCurve('11a1')
sage: E.simon_two_descent()
(0, 0, [])
sage: E = EllipticCurve('37a1')
sage: E.simon_two_descent()
(1, 1, [(0 : 0 : 1)])
sage: E = EllipticCurve('389a1')
sage: E._known_points = [] # clear cached points
sage: E.simon_two_descent()
(2, 2, [(1 : 0 : 1), (-11/9 : 28/27 : 1)])
sage: E = EllipticCurve('5077a1')
In this example Simon’s program does not find any points, though it does correctly compute the rank of the 2-Selmer group.

```
sage: E = EllipticCurve([1, -1, 0, -79, 289])
sage: E.simon_two_descent()
(1, 1, [])
```

The rest of these entries were taken from Tom Womack’s page http://tom.womack.net/maths/conductors.htm

```
sage: E = EllipticCurve([1, 1, 0, -23737, 960366])
sage: r, s, G = E.simon_two_descent(); r,s
(8, 8)
```

Example from trac ticket #10832:

```
sage: E = EllipticCurve([1,0,0,-6664,86543])
sage: E.simon_two_descent()
(2, 3, [(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)])
```

Example where the lower bound is known to be 1 despite that the algorithm has not found any points of infinite order

```
sage: E = EllipticCurve([1, 1, 0, -23611790086, 1396491910863060])
sage: E.simon_two_descent()
(1, 2, [])
sage: E.rank()
1
sage: E.gens()
# uses mwrank
[((4311692542083/48594841 : -13035144436525227/338754636611 : 1)]
```

Example for trac ticket #5153:

```
sage: E = EllipticCurve([3,0])
sage: E.simon_two_descent()
(1, 2, [(1 : 2 : 1)])
```
The upper bound on the 2-Selmer rank returned by this method need not be sharp. In following example, the upper bound equals the actual 2-Selmer rank plus 2 (see trac ticket #10735):

```python
sage: E = EllipticCurve('438e1')
sage: E.simon_two_descent()
(0, 3, [])
sage: E.selmer_rank()  # uses mwrank
1
```

supersingular_primes (B)

Return a list of all supersingular primes for this elliptic curve up to and possibly including B.

EXAMPLES:

```python
sage: e = EllipticCurve('11a')
sage: e.aplist(20)
[-2, -1, 1, -2, 1, 4, -2, 0]
sage: e.supersingular_primes(1000)
[2, 19, 29, 199, 569, 809]
sage: e = EllipticCurve('27a')
sage: e.aplist(20)
[0, 0, 0, -1, 0, 5, 0, -7]
sage: e.supersingular_primes(97)
[2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89]
sage: e.ordinary_primes(97)
[7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97]
sage: e.supersingular_primes(3)
[2]
sage: e.supersingular_primes(2)
[2]
sage: e.supersingular_primes(1)
[]
```

tamagawa_exponent (p)

The Tamagawa index of the elliptic curve at \(p \).

This is the index of the component group \(E(\mathbb{Q}_p)/E^0(\mathbb{Q}_p) \). It equals the Tamagawa number (as the component group is cyclic) except for types \(I_m^n \) (\(m \) even) when the group can be \(C_2 \times C_2 \).

EXAMPLES:

```python
sage: E = EllipticCurve('816a1')
sage: E.tamagawa_number(2)
4
sage: E.tamagawa_exponent(2)
2
sage: E.kodaira_symbol(2)
I2*
```

```python
sage: E = EllipticCurve('200c4')
sage: E.kodaira_symbol(5)
I4*
sage: E.tamagawa_number(5)
4
sage: E.tamagawa_exponent(5)
2
```

See trac ticket #4715:
tamagawa_number \((p) \)
The Tamagawa number of the elliptic curve at \(p \).
This is the order of the component group \(E(\mathbb{Q}_p)/E^0(\mathbb{Q}_p) \).

EXAMPLES:

```python
sage: E = EllipticCurve('11a')
sage: E.tamagawa_number(11)
5
sage: E = EllipticCurve('37b')
sage: E.tamagawa_number(37)
3
```

tamagawa_number_old \((p) \)
The Tamagawa number of the elliptic curve at \(p \).
This is the order of the component group \(E(\mathbb{Q}_p)/E^0(\mathbb{Q}_p) \).

EXAMPLES:

```python
sage: E = EllipticCurve('11a')
sage: E.tamagawa_number_old(11)
5
sage: E = EllipticCurve('37b')
sage: E.tamagawa_number_old(37)
3
```

tamagawa_product ()
Return the product of the Tamagawa numbers.

EXAMPLES:

```python
sage: E = EllipticCurve('54a')
sage: E.tamagawa_product ()
3
```

tate_curve \((p) \)
Create the Tate curve over the \(p \)-adics associated to this elliptic curve.
This Tate curve is a \(p \)-adic curve with split multiplicative reduction of the form \(y^2 + xy = x^3 + s_4 x + s_6 \) which is isomorphic to the given curve over the algebraic closure of \(\mathbb{Q}_p \). Its points over \(\mathbb{Q}_p \) are isomorphic to \(\mathbb{Q}_p / q^\mathbb{Z} \) for a certain parameter \(q \in \mathbb{Z}_p \).

INPUT:
* \(p \) – a prime where the curve has split multiplicative reduction

EXAMPLES:

```python
sage: e = EllipticCurve('130a1')
sage: e.tate_curve(2)
2-adic Tate curve associated to the Elliptic Curve defined by y^2 + x*y + y = -x^3 - 33*x + 68 over Rational Field
```

The input curve must have multiplicative reduction at the prime.
We compute with $p = 5$:

```sage
sage: T = e.tate_curve(5); T
5-adic Tate curve associated to the Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68 over Rational Field
```

We find the Tate parameter q:

```sage
sage: T.parameter(prec=5)
3*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8)
```

We compute the \mathcal{L}-invariant of the curve:

```sage
sage: T.L_invariant(prec=10)
5^3 + 4*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 3*5^8 + 5^9 + O(5^10)
```

three_selmer_rank(algorithm='UseSUnits')

Return the 3-selmer rank of this elliptic curve, computed using Magma.

INPUT:

- `algorithm` - ‘Heuristic’ (which is usually much faster in large examples), ‘FindCubeRoots’, or ‘UseSUnits’ (default)

OUTPUT: nonnegative integer

EXAMPLES: A rank 0 curve:

```sage
sage: EllipticCurve('11a').three_selmer_rank() # optional - magma
0
```

A rank 0 curve with rational 3-isogeny but no 3-torsion

```sage
sage: EllipticCurve('14a3').three_selmer_rank() # optional - magma
0
```

A rank 0 curve with rational 3-torsion:

```sage
sage: EllipticCurve('14a1').three_selmer_rank() # optional - magma
1
```

A rank 1 curve with rational 3-isogeny:

```sage
sage: EllipticCurve('91b').three_selmer_rank() # optional - magma
2
```

A rank 0 curve with nontrivial 3-Sha. The Heuristic option makes this about twice as fast as without it.

```sage
sage: EllipticCurve('681b').three_selmer_rank(algorithm='Heuristic') # long time (10 seconds); optional - magma
2
```

torsion_order()

Return the order of the torsion subgroup.
EXAMPLES:

```python
sage: e = EllipticCurve('11a')
sage: e.torsion_order()
5
sage: type(e.torsion_order())
<... 'sage.rings.integer.Integer'>
sage: e = EllipticCurve([1,2,3,4,5])
sage: e.torsion_order()
1
sage: type(e.torsion_order())
<... 'sage.rings.integer.Integer'>
```

torsion_points()

Return the torsion points of this elliptic curve as a sorted list.

OUTPUT: A list of all the torsion points on this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve('11a').torsion_points()
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]
sage: E = EllipticCurve('37b').torsion_points()
[(0 : 1 : 0), (8 : -19 : 1), (8 : 18 : 1)]
```

Some curves with large torsion groups:

```python
sage: E = EllipticCurve([-1386747, 368636886])
sage: T = E.torsion_subgroup(); T
Torsion Subgroup isomorphic to Z/8 + Z/2 associated to the
Elliptic Curve defined by y^2 = x^3 - 1386747*x + 368636886 over
Rational Field
sage: E.torsion_points()
[(-1293 : 0 : 1),
(-933 : -29160 : 1),
(-933 : 29160 : 1),
(-285 : -27216 : 1),
(-285 : 27216 : 1),
(0 : 1 : 0),
(147 : -12960 : 1),
(147 : 12960 : 1),
(282 : 0 : 1),
(1011 : 0 : 1),
(1227 : -22680 : 1),
(1227 : 22680 : 1),
(2307 : -97200 : 1),
(2307 : 97200 : 1),
(8787 : -816480 : 1),
(8787 : 816480 : 1)]
sage: E = EllipticCurve('210b5').torsion_points()
[(-41/4 : 37/8 : 1),
(-5 : -103 : 1),
(-5 : 107 : 1),
(0 : 1 : 0),
(10 : -208 : 1),
(10 : 197 : 1),
(37 : -397 : 1),
(37 : 359 : 1),
(100 : -1153 : 1),
```

(continues on next page)
sage: EllipticCurve('210e2').torsion_points()
[(100 : 1052 : 1),
 (415 : -8713 : 1),
 (415 : 8297 : 1)]
sage: EllipticCurve('210e2').torsion_subgroup()
Return the torsion subgroup of this elliptic curve.

OUTPUT: The EllipticCurveTorsionSubgroup instance associated to this elliptic curve.

Note: To see the torsion points as a list, use torsion_points().

EXAMPLES:

sage: EllipticCurve('11a').torsion_subgroup()
Torsion Subgroup isomorphic to \(\mathbb{Z}/5 \) associated to the Elliptic Curve defined by \(y^2 + y = x^3 - x^2 - 10*x - 20 \) over Rational Field
sage: EllipticCurve('37b').torsion_subgroup()
Torsion Subgroup isomorphic to \(\mathbb{Z}/3 \) associated to the Elliptic Curve defined by \(y^2 + y = x^3 + x^2 - 23*x - 50 \) over Rational Field

sage: e = EllipticCurve([-1386747, 368636886]); e
Elliptic Curve defined by \(y^2 = x^3 - 1386747*x + 368636886 \) over Rational Field
sage: G = e.torsion_subgroup(); G
Torsion Subgroup isomorphic to \(\mathbb{Z}/8 + \mathbb{Z}/2 \) associated to the Elliptic Curve defined by \(y^2 = x^3 - 1386747*x + 368636886 \) over Rational Field
sage: G.0*3 + G.1
(1227 : 22680 : 1)
sage: G.1
(282 : 0 : 1)
sage: list(G)
two_descent (verbose=True, selmer_only=False, first_limit=20, second_limit=8, n_aux=-1, second_descent=1)

Compute 2-descent data for this curve.

INPUT:

- **verbose** - (default: True) print what mwrank is doing. If False, no output is printed.
- **selmer_only** - (default: False) selmer_only switch
- **first_limit** - (default: 20) firstlimit is bound on x+z
- **second_limit** - (default: 8) secondlim is bound on log max x,z, i.e. logarithmic
- **n_aux** - (default: -1) n_aux only relevant for general 2-descent when 2-torsion trivial; n_aux=-1 causes default to be used (depends on method)
- **second_descent** - (default: True) second_descent only relevant for descent via 2-isogeny

OUTPUT:

Return True if the descent succeeded, i.e. if the lower bound and the upper bound for the rank are the same. In this case, generators and the rank are cached. A return value of False indicates that either rational points were not found, or that Sha[2] is nontrivial and mwrank was unable to determine this for sure.

EXAMPLES:

```
sage: E = EllipticCurve('37a1')
sage: E.two_descent(verbos=False)
True
```
has dimension 1. In that case, upper may exceed the dimension of the 2-Selmer group by an even number, due to the fact that the algorithm does not perform a second descent.

To obtain a list of generators, use E.gens().

IMPLEMENTATION: Uses Denis Simon’s PARI/GP scripts from http://www.math.unicaen.fr/~simon/

EXAMPLES:

We compute the ranks of the curves of lowest known conductor up to rank 8. Amazingly, each of these computations finishes almost instantly!

```
sage: E = EllipticCurve('11a1')
sage: E.simon_two_descent()
(0, 0, [])
sage: E = EllipticCurve('37a1')
sage: E.simon_two_descent()
(1, 1, [(0 : 0 : 1)])
sage: E = EllipticCurve('389a1')
sage: E._known_points = []  # clear cached points
sage: E.simon_two_descent()
(2, 2, [(1 : 0 : 1), (-11/9 : 28/27 : 1)])
sage: E = EllipticCurve('5077a1')
sage: E.simon_two_descent()
(3, 3, [(1 : 0 : 1), (2 : 0 : 1), (0 : 2 : 1)])
```

In this example Simon’s program does not find any points, though it does correctly compute the rank of the 2-Selmer group.

```
sage: E = EllipticCurve(['1', '-1', 0, -751055859, -7922219731979])
sage: E.simon_two_descent()
(1, 1, [])
```

The rest of these entries were taken from Tom Womack’s page http://tom.womack.net/maths/conductors.htm

```
sage: E = EllipticCurve(['1', '-1', 0, -79, 289])
sage: E.simon_two_descent()
(4, 4, [(6 : -1 : 1), (4 : 3 : 1), (5 : -2 : 1), (8 : 7 : 1)])
sage: E = EllipticCurve([0, 0, 1, -79, 342])
sage: E.simon_two_descent()  # long time (9s on sage.math, 2011)
(5, 5, [(5 : 8 : 1), (10 : 23 : 1), (3 : 11 : 1), (-3 : 23 : 1), (0 : 18 : 1)])
sage: E = EllipticCurve([1, 1, 0, -2582, 48720])
sage: r, s, G = E.simon_two_descent(); r,s
(6, 6)
sage: E = EllipticCurve([0, 0, 0, -10012, 346900])
sage: r, s, G = E.simon_two_descent(); r,s
(7, 7)
sage: E = EllipticCurve([0, 0, 1, -23737, 960366])
sage: r, s, G = E.simon_two_descent(); r,s
(8, 8)
```

Example from trac ticket #10832:

```
sage: E = EllipticCurve([1,0,0,-6664,86543])
sage: E.simon_two_descent()
(2, 3, [(-1/4 : 2377/8 : 1), (323/4 : 1891/8 : 1)])
sage: E.rank()
```

(continues on next page)
Example where the lower bound is known to be 1 despite that the algorithm has not found any points of infinite order

```python
sage: E = EllipticCurve([1, 1, 0, -23611790086, 1396491910863060])
sage: E.simon_two_descent()
(1, 2, [])
sage: E.rank()
1
sage: E.gens()  # uses mwrank
[(4311692542083/48594841 : -13035144436525227/338754636611 : 1)]
```

Example for trac ticket #5153:

```python
sage: E = EllipticCurve([3,0])
sage: E.simon_two_descent()
(1, 2, [(1 : 2 : 1)])
```

The upper bound on the 2-Selmer rank returned by this method need not be sharp. In following example, the upper bound equals the actual 2-Selmer rank plus 2 (see trac ticket #10735):

```python
sage: E = EllipticCurve('438e1')
sage: E.simon_two_descent()
(0, 3, [])
sage: E.selmer_rank()  # uses mwrank
1
```

```python
sage.schemes.elliptic_curves.ell_rational_field.cremona_curves(conductors)
Return iterator over all known curves (in database) with conductor in the list of conductors.

EXAMPLES:

```python
sage: [(E.label(), E.rank()) for E in cremona_curves(srange(35,40))]
[('35a1', 0), ('35a2', 0), ('35a3', 0), ('36a1', 0), ('36a2', 0), ('36a3', 0), ('36a4', 0), ('37a1', 1), ('37b1', 0), ('37b2', 0), ('37b3', 0), ('38a1', 0), ('38a2', 0), ('38a3', 0), ('38b1', 0), ('38b2', 0), ('39a1', 0), ('39a2', 0), ('39a3', 0), ('39a4', 0)]
```
sage.schemes.elliptic_curves.ell_rational_field.cremona_optimal_curves(conductors)
Return iterator over all known optimal curves (in database) with conductor in the list of conductors.

EXAMPLES:

```python
sage: [(E.label(), E.rank()) for E in cremona_optimal_curves(srange(35,40))]
[('35a1', 0), ('36a1', 0), ('37a1', 1), ('37b1', 0), ('38a1', 0), ('38b1', 0), ('39a1', 0)]
```

There is one case – 990h3 – when the optimal curve isn’t labeled with a 1:

```python
sage: [e.cremona_label() for e in cremona_optimal_curves([990])]
['990a1', '990b1', '990c1', '990d1', '990e1', '990f1', '990g1', '990h3', '990i1', '990j1', '990k1', '990l1']
```

sage.schemes.elliptic_curves.ell_rational_field.elliptic_curve_congruence_graph(curves)
Return the congruence graph for this set of elliptic curves.

INPUT:
- curves – a list of elliptic curves

OUTPUT:
The graph with each curve as a vertex (labelled by its Cremona label) and an edge from $E$ to $F$ labelled $p$ if and only if $E$ is congruent to $F$ mod $p$

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_rational_field import elliptic_curve_congruence_graph
sage: curves = list(cremona_optimal_curves([11..30]))
sage: G = elliptic_curve_congruence_graph(curves)
sage: G
Graph on 12 vertices
```

sage.schemes.elliptic_curves.ell_rational_field.integral_points_with_bounded_mw_coeffs(E, mw_base, N, x_bound)
Return the set of integers $x$ which are $x$-coordinates of points on the curve $E$ which are linear combinations of the generators (basis and torsion points) with coefficients bounded by $N$.

INPUT:
- E - an elliptic curve
- mw_base - a list of points on $E$ (generators)
- N - a positive integer (bound on coefficients)
- x_bound - a positive real number (upper bound on size of x-coordinates)

OUTPUT:
(list) list of integral points on $E$ which are linear combinations of the given points with coefficients bounded by $N$ in absolute value.
10.11.2 Tables of elliptic curves of given rank

The default database of curves contains the following data:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Number of curves</th>
<th>Maximal conductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30427</td>
<td>9999</td>
</tr>
<tr>
<td>1</td>
<td>31871</td>
<td>9999</td>
</tr>
<tr>
<td>2</td>
<td>2388</td>
<td>9999</td>
</tr>
<tr>
<td>3</td>
<td>836</td>
<td>119888</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>1175648</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>37396136</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>6663562874</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>896913586322</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>457532830151317</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>-9.612839e+21</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>-1.971057e+21</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>-1.803406e+24</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-2.696017e+29</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-3.627533e+37</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-1.640078e+56</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-2.750021e+56</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>-1.373776e+65</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-7.381324e+73</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>-2.611208e+85</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-2.272064e+79</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-1.139647e+89</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>-3.257638e+95</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>-3.455601e+141</td>
</tr>
</tbody>
</table>

Note that lists for \( r \geq 4 \) are not exhaustive; there may well be curves of the given rank with conductor less than the listed maximal conductor, which are not included in the tables.


See also the functions `cremona_curves()` and `cremona_optimal_curves()` which enable easy looping through the Cremona elliptic curve database.

class sage.schemes.elliptic_curves.ec_database.EllipticCurves

    rank(rank, tors=0, n=10, labels=False)

    Return a list of at most \( n \) non-isogenous curves with given rank and torsion order.

INPUT:

- rank (int) – the desired rank
- tors (int, default 0) – the desired torsion order (ignored if 0)
- n (int, default 10) – the maximum number of curves returned.
- labels (bool, default False) – if True, return Cremona labels instead of curves.

OUTPUT:

(list) A list at most \( n \) of elliptic curves of required rank.

EXAMPLES:
sage: elliptic_curves.rank(n=5, rank=3, tors=2, labels=True)
['59450i1', '59450i2', '61376c1', '61376c2', '65481c1']

sage: elliptic_curves.rank(n=5, rank=0, tors=5, labels=True)
['11a1', '11a3', '38b1', '50b1', '50b2']

sage: elliptic_curves.rank(n=5, rank=1, tors=7, labels=True)
['574i1', '4730k1', '6378c1']

sage: e = elliptic_curves.rank(6)[0]; e.ainvs(), e.conductor()
((1, 1, 0, -2582, 48720), 5187563742)

sage: e = elliptic_curves.rank(7)[0]; e.ainvs(), e.conductor()
((0, 0, 0, -10012, 346900), 382623908456)

sage: e = elliptic_curves.rank(8)[0]; e.ainvs(), e.conductor()
((1, -1, 0, -106384, 13075804), 249649566346838)

For large conductors, the labels are not known:

sage: L = elliptic_curves.rank(6, n=3); L
[Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 2582*x + 48720 over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 - 7077*x + 235516 over Rational Field,
 Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 2326*x + 43456 over Rational Field]

sage: L[0].cremona_label()
Traceback (most recent call last):
  ... LookupError: Cremona database does not contain entry for Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 2582*x + 48720 over Rational Field

10.11.3 Elliptic curves over number fields

An elliptic curve \( E \) over a number field \( K \) can be given by a Weierstrass equation whose coefficients lie in \( K \) or by using \texttt{base_extend} on an elliptic curve defined over a subfield.

One major difference to elliptic curves over \( \mathbb{Q} \) is that there might not exist a global minimal equation over \( K \), when \( K \) does not have class number one. Another difference is the lack of understanding of modularity for general elliptic curves over general number fields.

Currently Sage can obtain local information about \( E/K_v \) for finite places \( v \), it has an interface to Denis Simon’s script for 2-descent, it can compute the torsion subgroup of the Mordell-Weil group \( E(K) \), and it can work with isogenies defined over \( K \).

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([0,4+i])
sage: E.discriminant()
-3456*i - 6480

sage: P= E([i,2])
sage: P=P
(-2*i + 9/16 : -9/4*i - 101/64 : 1)
AUTHORS:

• Robert Bradshaw 2007
• John Cremona
• Chris Wuthrich

REFERENCE:


class sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field(K, ainvs)

Bases: sage.schemes.elliptic_curves.ell_field.EllipticCurve_field

Elliptic curve over a number field.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35])
Elliptic Curve defined by y^2 + i*x*y + (i+1)*y = x^3 + (i-1)*x^2 + (24*i+15)*x + (14*i+35) over Number Field in i with defining polynomial x^2 + 1

base_extend(R)

Return the base extension of self to R.

EXAMPLES:
sage: E = EllipticCurve('11a3')
sage: K = QuadraticField(-5, 'a')
sage: E.base_extend(K)
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 over Number Field in a
˓→with defining polynomial x^2 + 5

Check that non-torsion points are remembered when extending the base field (see trac ticket #16034):

sage: E = EllipticCurve([1, 0, 1, -1751, -31352])
sage: K.<d> = QuadraticField(5)
sage: E.gens()
\[(52 : 111 : 1)\]
sage: EK = E.base_extend(K)
sage: EK.gens()
\[(52 : 111 : 1)\]

cm_discriminant()

Return the CM discriminant of the \(j\)-invariant of this curve, or 0.

OUTPUT:

An integer \(D\) which is either 0 if this curve \(E\) does not have Complex Multiplication) (CM), or an imaginary quadratic discriminant if \(j(E)\) is the \(j\)-invariant of the order with discriminant \(D\).

Note: If \(E\) has CM but the discriminant \(D\) is not a square in the base field \(K\) then the extra endomorphisms will not be defined over \(K\). See also has_rational_cm().

EXAMPLES:

sage: EllipticCurve(j=0).cm_discriminant()
-3
sage: EllipticCurve(j=1).cm_discriminant()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field does not have CM
sage: EllipticCurve(j=1728).cm_discriminant()
-4
sage: EllipticCurve(j=8000).cm_discriminant()
-8
sage: K.<a> = QuadraticField(5)
sage: EllipticCurve(j=282880*a + 632000).cm_discriminant()
-20
sage: K.<a> = NumberField(x^3 - 2)
sage: EllipticCurve(j=31710790944000*a^2 + 3995309301600*a + 50337742902000).cm_discriminant()
-108

c conductor()

Return the conductor of this elliptic curve as a fractional ideal of the base field.

OUTPUT:

(fractional ideal) The conductor of the curve.

EXAMPLES:
sage: K.<i> = NumberField(x^2+1)
sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35]).conductor()
Fractional ideal (21*i - 3)
sage: K.<a> = NumberField(x^2-x+3)
sage: EllipticCurve([1 + a , -1 + a , 1 + a , -11 + a , 5 -9*a ]).conductor()
Fractional ideal (-6*a)

A not so well known curve with everywhere good reduction:

sage: K.<a> = NumberField(x^2-38)
sage: E = EllipticCurve([0,0,0, 21796814856932765568243810*a - 134364590724198567128296995, 121774567239345229314269094644186997594*a - 750668847495706904791115375024037711300])
sage: E.conductor()
Fractional ideal (1)

An example which used to fail (see trac ticket #5307):

sage: K.<w> = NumberField(x^2+x+6)
sage: E = EllipticCurve([w,-1,0,-w-6,0])
sage: E.conductor()
Fractional ideal (86304, w + 5898)

An example raised in trac ticket #11346:

sage: K.<g> = NumberField(x^2 - x - 1)
sage: E1 = EllipticCurve(K,[0,0,0,-1/48,-161/864])
sage: [(p.smallest_integer(),e) for p,e in E1.conductor().factor()]
[(2, 4), (3, 1), (5, 1)]

def division_field(p, names=False, **kwds)
    Given an elliptic curve over a number field \( F \) and a prime number \( p \), construct the field \( F(E[p]) \).

    INPUT:
    - \( p \) – a prime number (an element of \( \mathbb{Z} \))
    - \( names \) – a variable name for the number field
    - \( map \) – (default: False) also return an embedding of the base field() into the resulting field.
    - \( kwds \) – additional keywords passed to sage.rings.number_field.splitting_field.splitting_field().

    OUTPUT:
    If map is False, the division field as an absolute number field. If map is True, a tuple \( (K, \text{phi}) \) where \( \text{phi} \) is an embedding of the base field in the division field \( K \).

    **Warning:** This takes a very long time when the degree of the division field is large (e.g. when \( p \) is large or when the Galois representation is surjective). The simplify flag also has a big influence on the running time: sometimes simplify=False is faster, sometimes simplify=True (the default) is faster.

    EXAMPLES:
    The 2-division field is the same as the splitting field of the 2-division polynomial (therefore, it has degree 1, 2, 3 or 6):
sage: E = EllipticCurve('15a1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial x
sage: E = EllipticCurve('14a1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial x^2 + 5*x + 92
sage: E = EllipticCurve('196b1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial x^3 + x^2 - 114*x - 127
sage: E = EllipticCurve('19a1')
sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial x^6 + 10*x^5 + 24*x^4 - 212*x^3 + 
    1364*x^2 + 24072*x + 104292

For odd primes $p$, the division field is either the splitting field of the $p$-division polynomial, or a quadratic extension of it.

sage: E = EllipticCurve('50a1')
sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F
Number Field in a with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^ 
    2 + 3*x + 3
sage: K.<b> = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^ 
    2 + 3*x + 3

If we take any quadratic twist, the splitting field of the 3-division polynomial remains the same, but the 3-division field becomes a quadratic extension:

sage: E = E.quadratic_twist(5)  # 50b3
sage: F.<a> = E.division_polynomial(3).splitting_field(simplify_all=True); F
Number Field in a with defining polynomial x^6 - 3*x^5 + 4*x^4 - 3*x^3 - 2*x^ 
    2 + 3*x + 3
sage: K.<b> = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^12 - 3*x^11 + 8*x^10 - 15*x^9 + 
    30*x^8 - 63*x^7 + 105*x^6 - 144*x^5 + 150*x^4 - 120*x^3 + 68*x^2 - 24*x + 4

Try another quadratic twist, this time over a subfield of $F$:

sage: G.<c> = F.subfields(3)[0]
sage: E = E.base_extend(G).quadratic_twist(c); E
Elliptic Curve defined by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + (-42000*a0^ 
    2+42000*a0+126000) over Number Field in a0 with defining polynomial x^3 - 
    3*x^2 + 3*x + 9
sage: K.<b> = E.division_field(3, simplify_all=True); K
Number Field in b with defining polynomial x^12 - 10*x^10 + 55*x^8 - 60*x^6 + 
    75*x^4 + 1350*x^2 + 2025

Some higher-degree examples:

sage: E = EllipticCurve('11a1')

sage: K.<b> = E.division_field(2); K
Number Field in b with defining polynomial x^6 + 2*x^5 - 48*x^4 - 436*x^3 + 
    1668*x^2 + 28792*x + 73844
sage: K.<b> = E.division_field(3); K  # long time (3s on sage.math, 2014)
Number Field in b with defining polynomial x^48 ...

sage: K.<b> = E.division_field(5); K
Number Field in b with defining polynomial x^4 - x^3 + x^2 - x + 1

(continues on next page)
**AUTHORS:**

- Jeroen Demeyer (2014-01-06): trac ticket #11905, use splitting_field method, moved from galois_reps.py, make it work over number fields.

**galois_representation()**

The compatible family of the Galois representation attached to this elliptic curve.

Given an elliptic curve $E$ over a number field $K$ and a rational prime number $p$, the $p^n$-torsion $E[p^n]$ points of $E$ is a representation of the absolute Galois group of $K$. As $n$ varies we obtain the Tate module $T_pE$ which is a a representation of $G_K$ on a free $\mathbb{Z}_p$-module of rank 2. As $p$ varies the representations are compatible.
EXAMPLES:

```python
sage: K = NumberField(x**2 + 1, 'a')
sage: E = EllipticCurve('11a1').change_ring(K)
sage: rho = E.galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in a with defining polynomial x^2 + 1
sage: rho.is_surjective(3)
True
sage: rho.is_surjective(5) # long time (4s on sage.math, 2014)
False
sage: rho.non_surjective()
[5]
```

gens (**kwds)

Return some points of infinite order on this elliptic curve.

Contrary to what the name of this method suggests, the points it returns do not always generate a subgroup of full rank in the Mordell-Weil group, nor are they necessarily linearly independent. Moreover, the number of points can be smaller or larger than what one could expect after calling `rank()` or `rank_bounds()`.

**Note:** The optional parameters control the Simon two descent algorithm; see the documentation of `simon_two_descent()` for more details.

**INPUT:**

- `verbose` – 0, 1, 2, or 3 (default: 0), the verbosity level
- `lim1` – (default: 2) limit on trivial points on quartics
- `lim3` – (default: 4) limit on points on ELS quartics
- `limtriv` – (default: 2) limit on trivial points on elliptic curve
- `maxprob` – (default: 20)
- `limbigprime` – (default: 30) to distinguish between small and large prime numbers. Use probabilistic tests for large primes. If 0, do not use probabilistic tests.
- `known_points` – (default: None) list of known points on the curve

**OUTPUT:**

A set of points of infinite order given by the Simon two-descent.

**Note:** For non-quadratic number fields, this code does return, but it takes a long time.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x**2 + 23, 'a')
sage: E = EllipticCurve(K,[0,0,0,101,0])
sage: E.gens()
[(23831509/8669448*a - 2867471/8669448 : 76507317707/18049790736*a - 424164479633/18049790736 : 1),
 (-2031032029/969232392*a + 58813561/969232392 : -15575984630401/21336681877488*a + 451041199309/21336681877488 : 1),
 (-186948623/4656964 : 549438861195/10049728312*a : 1)]
```
It can happen that no points are found if the height bounds used in the search are too small (see trac ticket #10745):

```
sage: K.<y> = NumberField(x^4 + x^2 - 7)
sage: E = EllipticCurve(K, [1, 0, 5*y^2 + 16, 0, 0])
sage: E.gens(lim1=1, lim3=1)
[]
sage: E.rank(), E.gens(lim3=12) # long time (about 4s)
(1, [(369/25*y^3 + 539/25*y^2 + 1178/25*y + 1718/25 : -29038/125*y^3 - 43003/125*y^2 - 92706/125*y - 137286/125 : 1)])
```

Here is a curve of rank 2:

```
sage: K.<t> = NumberField(x^2-17)
sage: E = EllipticCurve(K,[-4,0])
sage: E.gens()
[(-1/2*t + 1/2 : -1/2*t + 1/2 : 1), (-t + 3 : -2*t + 10 : 1)]
sage: E.rank()
2
```

Test that points of finite order are not included (see trac ticket #13593):

```
sage: E = EllipticCurve("17a3")
sage: K.<t> = NumberField(x^2+3)
sage: EK = E.base_extend(K)
sage: EK.rank()
0
sage: EK.gens()
[]
```

IMPLEMENTATION:

For curves over quadratic fields which are base-changes from \( \mathbb{Q} \), we delegate the work to \texttt{gens_quadratic()} where methods over \( \mathbb{Q} \) suffice. Otherwise, we use Denis Simon’s PARI/GP scripts from \url{http://www.math.unicaen.fr/~simon/}.

\texttt{gens_quadratic(**kwds)}

Return generators for the Mordell-Weil group modulo torsion, for a curve which is a base change from \( \mathbb{Q} \) to a quadratic field.

EXAMPLES:

```
sage: E = EllipticCurve([1,2,3,40,50])
sage: E.conductor()
2123582
sage: E.gens()
[(5 : 17 : 1)]
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)
sage: EK.gens_quadratic()
[(5 : 17 : 1), (-13 : 48*i + 5 : 1)]
sage: E.change_ring(QuadraticField(3, 'a')).gens_quadratic()
[(5 : 17 : 1), (-1 : 2*a - 1 : 1), (11/4 : 33/4*a - 23/8 : 1)]
sage: K.<a> = QuadraticField(-7)
sage: E = EllipticCurve([0,0,0,197,0])
sage: E.conductor()
```

(continues on next page)
2483776

```python
sage: E.gens()
[(47995604297578081/738979786648100 : -25038161802544048018837479/
 → 635266655830129794121000 : 1),
 → 1720892553212*a + 138577803462855/245841793316 : 1),
 → 1/28 : 393/392*a : 1),
 → (-61*a + 162 : 1098*a - 2916 : 1)]
```

```python
sage: K.<a> = QuadraticField(7)
sage: E.change_ring(K).gens_quadratic()
[(-1209642055/59583566*a + 1639995844/29791783 : -377240626321899/
 → 1725*i + 3125*i over Number Field in i with defining polynomial x^2 + 1)
 → 2*i + 3/2 : 1),
 → (-61*a + 162 : 1098*a - 2916 : 1)]
```

```python
sage: E = EllipticCurve([1, a])
sage: E.gens_quadratic()
Traceback (most recent call last):
 ... ValueError: gens_quadratic() requires the elliptic curve to be a base change
 → from Q
```

global_integral_model()

Return a model of self which is integral at all primes.

EXAMPLES:

```python
sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: P1,P2 = K.primes_above(5)
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 +
 → 125*i*x + 3125*i over Number Field in i with defining polynomial x^2 + 1
```

trac ticket #7935:

```python
sage: K.<a> = NumberField(x^2-38)
sage: E = EllipticCurve([a,1/2])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 1444*a*x + 27436 over Number Field in a
 → with defining polynomial x^2 - 38
```

trac ticket #9266:

```python
sage: K.<s> = NumberField(x^2-5)
sage: w = (1+s)/2
sage: E = EllipticCurve(K,[2,w])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 2*x + (1/2*s+1/2) over Number Field in s
 → with defining polynomial x^2 - 5
```

trac ticket #12151:

```python
sage: K.<v> = NumberField(x^2 + 161*x - 150)
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/
 → 1296, 634768555/7776*v - 98002625/1296, 0, 0])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (2094779518028859*v-1940492905300351)*x*y +
 → (477997268472544193101178234454165304071127500*v-
 → 442791377441346852919930773849502871958097500)*y = x^3 +
 → (26519784690047674853185542622500*v-24566525306469707225840460652500)*x^2
 → over Number Field in v with defining polynomial x^2 + 161*x
```

(continues on next page)
trac ticket #14476:

```python
sage: R.<t> = QQ[]
sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t + 1)
sage: E = EllipticCurve([-43/625*g^3 + 14/625*g^2 - 4/625*g + 706/625, -4862/78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, -4862/78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, 0,0])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (15*g^3-48*g-42)*x*y + (-111510*g^3-162162*g^2-44145*g+37638)*y = x^3 + (-954*g^3-1134*g^2+81*g+576)*x^2 over Number Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1
```

**global_minimal_model (proof=None, semi_global=False)**

Return a model of self that is integral, and minimal.

**Note:** Over fields of class number greater than 1, a global minimal model may not exist. If it does not, set the parameter `semi_global` to `True` to obtain a model minimal at all but one prime.

**INPUT:**

- `proof` – whether to only use provably correct methods (default controlled by global proof module).
  
  Note that the proof module is number_field, not elliptic_curves, since the functions that actually need the flag are in number fields.

- `semi_global` (boolean, default False) – if there is no global minimal model, return a semi-global minimal model (minimal at all but one prime) instead, if True; raise an error if False. No effect if a global minimal model exists.

**OUTPUT:**

A global integral and minimal model, or an integral model minimal at all but one prime of there is no global minimal model and the flag `semi_global` is True.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^2-38)
sage: E = EllipticCurve([0,0,0, 21796814856932765568243810*a - 134364590724198567128296995, 121774567239345229314269094644186979594*a - 750668847495706904791115375024037711300])
sage: E2 = E.global_minimal_model()
sage: E2
Elliptic Curve defined by y^2 + a*x*y + (a+1)*y = x^3 + (a+1)*x^2 + (4*a+15)*x + (4*a+21) over Number Field in a with defining polynomial x^2 - 38
```

See trac ticket #11347:

```python
sage: K.<g> = NumberField(x^2 - x - 1)
sage: E = EllipticCurve(K,[0,0,0,-1/48,161/864]).integral_model().global_minimal_model(); E
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Number Field in g with defining polynomial x^2 - x - 1
```

(continues on next page)
\[(9, 1), (5, 1)\]
\[
sage: \{(p.norm(), e) \text{ for } p, e \text{ in } E.discriminant().factor()\}
\[
(-5, 2), (9, 1)\]

See trac ticket #14472, this used not to work over a relative extension:

\[
sage: K1.<w> = NumberField(x^2+x+1)
sage: m = polygen(K1)
sage: K2.<v> = K1.extension(m^2-w+1)
sage: E = EllipticCurve([0*v,-432])
sage: E.global_minimal_model()
Elliptic Curve defined by y^2 + y = x^3 over Number Field in v with defining polynomial x^2 - w + 1 over its base field
\]

See trac ticket #18662: for fields of class number greater than 1, even when global minimal models did exist, their computation was not implemented. Now it is:

\[
sage: K.<a> = NumberField(x^2-10)
sage: K.class_number()
2
sage: E = EllipticCurve([0,0,0,-186408*a - 589491, 78055704*a + 246833838])
sage: E.discriminant().norm()
16375845905239507992576
sage: E.discriminant().norm().factor()
2^{31} \times 3^{27}
sage: E.has_global_minimal_model()
True
sage: Emin = E.global_minimal_model(); Emin
Elliptic Curve defined by y^2 + (a+1)*x*y + (a+1)*y = x^3 + (-a)*x^2 + (a-12)*x + (-2*a+2) over Number Field in a with defining polynomial x^2 - 10
sage: Emin.discriminant().norm()
3456
sage: Emin.discriminant().norm().factor()
2^7 \times 3^3
\]

If there is no global minimal model, this method will raise an error unless you set the parameter `semi_global` to `True`:

\[
sage: K.<a> = NumberField(x^2-10)
sage: K.class_number()
2
sage: E = EllipticCurve([a,a,0,3*a+8,4*a+3])
sage: E.has_global_minimal_model()
False
sage: E.global_minimal_model()
Traceback (most recent call last):
...
ValueError: Elliptic Curve defined by y^2 + a*x*y = x^3 + a*x^2 + (3*a+8)*x + (4*a+3) over Number Field in a with defining polynomial x^2 - 10 has no global minimal model! For a semi-global minimal model use semi_global=True
sage: E.global_minimal_model(semi_global=True)
Elliptic Curve defined by y^2 + a*x*y = x^3 + a*x^2 + (3*a+8)*x + (4*a+3) over Number Field in a with defining polynomial x^2 - 10
\]

An example of a curve with everywhere good reduction but which has no model with unit discriminant:
global_minimality_class()

Return the obstruction to this curve having a global minimal model.

OUTPUT:

An ideal class of the base number field, which is trivial if and only if the elliptic curve has a global minimal model, and which can be used to find global and semi-global minimal models.

EXAMPLES:

A curve defined over a field of class number 2 with no global minimal model was a nontrivial minimality class:

```python
sage: K.<a> = NumberField(x^2-10)
sage: K.class_number()
2
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.global_minimality_class()
Fractional ideal class (10, 5*a)
```

Over the same field, a curve defined by a non-minimal model has trivial class, showing that a global minimal model does exist:

```python
sage: K.<a> = NumberField(x^2-10)
sage: E = EllipticCurve([0, 0, 0, 4536*a+14148,-163728*a- 474336])
sage: E.is_global_minimal_model()
False
sage: E.global_minimality_class()
Trivial principal fractional ideal class
```

Over a field of class number 1 the result is always the trivial class:

```python
sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([0, 0, 0, K(16), K(64)])
sage: E.global_minimality_class()
Trivial principal fractional ideal class
```

(continues on next page)
has_additive_reduction(\(P\))
Return True if this elliptic curve has (bad) additive reduction at the prime \(P\).

INPUT:
• \(P\) – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:
(bool) True if the curve has additive reduction at \(P\), else False.

EXAMPLES:

```python
sage: E = EllipticCurve('27a1')
sage: [(p,E.has_additive_reduction(p)) for p in prime_range(15)]
[(2, False), (3, True), (5, False), (7, False), (11, False), (13, False)]
```

has_bad_reduction(\(P\))
Return True if this elliptic curve has bad reduction at the prime \(P\).

INPUT:
• \(P\) – a prime ideal of the base field of self, or a field element generating such an ideal.

OUTPUT:
(bool) True if the curve has bad reduction at \(P\), else False.

Note: This requires determining a local integral minimal model; we do not just check that the discriminant of the current model has valuation zero.

EXAMPLES:

```python
sage: E = EllipticCurve('14a1')
sage: [(p,E.has_bad_reduction(p)) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]
```

has_cm()
Return whether or not this curve has a CM \(j\)-invariant.

OUTPUT:
True if this curve has CM over the algebraic closure of the base field, otherwise False. See also \code{cm_discriminant()} and \code{has_rational_cm()}.

**Note:** Even if $E$ has CM in this sense (that its $j$-invariant is a CM $j$-invariant), if the associated negative discriminant $D$ is not a square in the base field $K$, the extra endomorphisms will not be defined over $K$. See also the method \code{has_rational_cm()} which tests whether $E$ has extra endomorphisms defined over $K$ or a given extension of $K$.

**EXAMPLES:**

```python
sage: EllipticCurve(j=0).has_cm()
True
sage: EllipticCurve(j=1).has_cm()
False
sage: EllipticCurve(j=1728).has_cm()
True
sage: EllipticCurve(j=8000).has_cm()
True
sage: K.<a> = QuadraticField(5)

 sage: EllipticCurve(j=282880*a + 632000).has_cm()
 True
sage: K.<a> = NumberField(x^3 - 2)

 sage: EllipticCurve(j=31710790944000*a^2 + 39953093016000*a + 50337742902000).has_cm()
 True
```

\section*{has_global_minimal_model()}

Return whether this elliptic curve has a global minimal model.

**OUTPUT:**

Boolean, True iff a global minimal model exists, i.e. an integral model which is minimal at every prime.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^2-10)

 sage: E = EllipticCurve([0,0,0,4536*a+14148,-163728*a-474336])

 sage: E.is_global_minimal_model()
 False
 sage: E.has_global_minimal_model()
 True
```

\section*{has_good_reduction($P$)}

Return True if this elliptic curve has good reduction at the prime $P$.

**INPUT:**

- $P$ – a prime ideal of the base field of self, or a field element generating such an ideal.

**OUTPUT:**

(bool) – True if the curve has good reduction at $P$, else False.

**Note:** This requires determining a local integral minimal model; we do not just check that the discriminant of the current model has valuation zero.

**EXAMPLES:**

```python
```
```python
sage: E = EllipticCurve('14a1')
sage: [(p,E.has_good_reduction(p)) for p in prime_range(15)]
[(2, False), (3, True), (5, True), (7, False), (11, True), (13, True)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_good_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), True),
 (Fractional ideal (2*a + 1), False)]
```

**has_multiplicative_reduction** (*P*)

Return True if this elliptic curve has (bad) multiplicative reduction at the prime *P*.

**Note:** See also has_split_multiplicative_reduction() and has_nonsplit_multiplicative_reduction().

**INPUT:**

- *P* — a prime ideal of the base field of self, or a field element generating such an ideal.

**OUTPUT:**

(bool) True if the curve has multiplicative reduction at *P*, else False.

**EXAMPLES:**

```python
sage: E = EllipticCurve('14a1')
sage: [(p,E.has_multiplicative_reduction(p)) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False),
 (Fractional ideal (2*a + 1), False)]
```

**has_nonsplit_multiplicative_reduction** (*P*)

Return True if this elliptic curve has (bad) non-split multiplicative reduction at the prime *P*.

**INPUT:**

- *P* — a prime ideal of the base field of self, or a field element generating such an ideal.

**OUTPUT:**

(bool) True if the curve has non-split multiplicative reduction at *P*, else False.

**EXAMPLES:**

```python
sage: E = EllipticCurve('14a1')
sage: [(p,E.has_nonsplit_multiplicative_reduction(p)) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
```
(continued from previous page)

```python
sage: [(p,E.has_nonsplit_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), False)]
```

**has_rational_cm(field=None)**

Return whether or not this curve has CM defined over its base field or a given extension.

**INPUT:**

- **field** – a field, which should be an extension of the base field of the curve. If `field` is `None` (the default), it is taken to be the base field of the curve.

**OUTPUT:**

True if the ring of endomorphisms of this curve over the given field is larger than \( \mathbb{Z} \); otherwise False.

See also `cm_discriminant()` and `has_cm()`.

**Note:** If \( E \) has CM but the discriminant \( D \) is not a square in the given field \( K \) then the extra endomorphisms will not be defined over \( K \), and this function will return False. See also `has_cm()`. To obtain the CM discriminant, use `cm_discriminant()`.

**EXAMPLES:**

```python
sage: E = EllipticCurve(j=0)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-3
sage: E.has_rational_cm(QuadraticField(D))
True
```

```python
sage: E = EllipticCurve(j=1728)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-4
sage: E.has_rational_cm(QuadraticField(D))
True
```

```
Higher degree examples:
```
```python
sage: K.<a> = QuadraticField(5)
sage: E = EllipticCurve(j=282880*a + 632000)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: D = E.cm_discriminant(); D
-20
sage: E.has_rational_cm(K.extension(x^2+5,'b'))
True
```

An error is raised if a field is given which is not an extension of the base field:
has_split_multiplicative_reduction \((P)\)  
Return True if this elliptic curve has (bad) split multiplicative reduction at the prime \(P\).

**INPUT:**

- \(P\) – a prime ideal of the base field of self, or a field element generating such an ideal.

**OUTPUT:**

(bool) True if the curve has split multiplicative reduction at \(P\), else False.

**EXAMPLES:**

```
sage: E = EllipticCurve('14a1')
sage: [(p,E.has_split_multiplicative_reduction(p)) for p in prime_range(15)]
[(2, False), (3, False), (5, False), (7, True), (11, False), (13, False)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.has_split_multiplicative_reduction(p)) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), False)]
```

height_function \()\)  
Return the canonical height function attached to self.

**EXAMPLES:**

```
sage: K.<a> = NumberField(x^2 - 5)
sage: E = EllipticCurve(K, '11a3')
sage: E.height_function()
EllipticCurveCanonicalHeight object associated to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 over Number Field in a with defining polynomial x^2 - 5
```

height_pairing_matrix \((points=None, precision=None)\)  
Return the height pairing matrix of the given points.

**INPUT:**
• points – either a list of points, which must be on this curve, or (default) None, in which case self gens() will be used.

• precision – number of bits of precision of result (default: None, for default RealField precision)

EXAMPLES:

```python
sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: E.height_pairing_matrix()
[0.0511114082399688]
```

For rank 0 curves, the result is a valid 0x0 matrix:

```python
sage: E = EllipticCurve('11a').height_pairing_matrix()
[]
```

Over a number field:

```python
sage: x = polygen(QQ)
sage: K.<t> = NumberField(x^2+47)
sage: EK = E.base_extend(K)
sage: EK.height_pairing_matrix([EK(P), EK(Q)])
[0.68667083305587 0.26847809806726]
[0.26847809806726 0.327000773651605]
```

```python
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,i,i])
sage: P = E(-9+4*i,-18-25*i)
sage: Q = E(i,-i)
```

```python
sage: E.height_pairing_matrix([P,Q])
[2.16941934493768 -0.870059380421505]
[-0.870059380421505 0.424585837470709]
```

```python
e = E.regulator_of_points([P,Q])
0.164101403936070
```

**integral_model()**

Return a model of self which is integral at all primes.

EXAMPLES:

```python
sage: K.<i> = QuadraticField(x^2+1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
```

(continues on next page)
sage: P1, P2 = K.primes_above(5)
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x + 3125*i over Number Field in i with defining polynomial x^2 + 1

trac ticket #7935:

sage: K.<a> = NumberField(x^2-38)
sage: E = EllipticCurve([a,1/2])

sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 1444*a*x + 27436 over Number Field in a with defining polynomial x^2 - 38

trac ticket #9266:

sage: K.<s> = NumberField(x^2-5)
sage: w = (1+s)/2

sage: E = EllipticCurve(K,[2,w])

sage: E.global_integral_model()
Elliptic Curve defined by y^2 = x^3 + 2*x + (1/2*s+1/2) over Number Field in s with defining polynomial x^2 - 5

trac ticket #12151:

sage: K.<v> = NumberField(x^2 + 161*x - 150)
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/1296, 634768555/7776*v - 98002625/1296, 0, 0])

sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (2094779518028859*v-1940492905300351)*x*y + (4779972684725441931011782344451645304071127500*v-44279137744134685291993077384502871958097500)*y = x^3 + (26519874690047674853185542622500*v-245665253064697072255840460652500)*x^2 over Number Field in v with defining polynomial x^2 + 161*x - 150

trac ticket #14476:

sage: R.<t> = QQ[]
sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t + 1)
sage: E = EllipticCurve([-43/625*g^3 + 14/625*g^2 - 4/625*g + 706/625, -4862/78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, -4862/78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, 0, 0])

sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (15*g^3-48*g-42)*x*y + (-111510*g^3-162162*g^2-44145*g+37638)*y = x^3 + (-954*g^3-1134*g^2+81*g+576)*x^2 over Number Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1

is_global_integral_model()  
Return whether self is integral at all primes.

EXAMPLES:

sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])

sage: P1,P2 = K.primes_above(5)
sage: Emin = E.global_integral_model()
sage: Emin.is_global_integral_model()

True
is_global_minimal_model()

Return whether this elliptic curve is a global minimal model.

OUTPUT:

Boolean, False if E is not integral, or if E is non-minimal at some prime, else True.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2-10)
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.is_global_minimal_model()
False
sage: E.non_minimal_primes()
[Fractional ideal (2, a), Fractional ideal (5, a)]

sage: E = EllipticCurve([0,0,0,-3024,46224])
sage: E.is_global_minimal_model()
False
sage: E.non_minimal_primes()
[2, 3]
sage: Emin = E.global_minimal_model()
sage: Emin.is_global_minimal_model()
True
```

A necessary condition to be a global minimal model is that the model must be globally integral:

```
sage: E = EllipticCurve([0,0,0,1/2,1/3])
sage: E.is_global_minimal_model()
False
sage: Emin.is_global_minimal_model()
True
sage: Emin.ainvs()
(0, 1, 1, -2, 0)
```

is_isogenous(other, proof=True, maxnorm=100)

Return whether or not self is isogenous to other.

INPUT:

- other – another elliptic curve.
- proof (default True) – If False, the function will return True whenever the two curves have the same conductor and are isogenous modulo \( p \) for all primes \( p \) of norm up to \( \text{maxnorm} \). If True, the function returns False when the previous condition does not hold, and if it does hold we compute the complete isogeny class to see if the curves are indeed isogenous.
- maxnorm (integer, default 100) – The maximum norm of primes \( p \) for which isogeny modulo \( p \) will be checked.

OUTPUT:

(bool) True if there is an isogeny from curve self to curve other.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: F = NumberField(x^2 -2, 's'); F
Number Field in s with defining polynomial x^2 - 2
sage: E1 = EllipticCurve(F, [7,8])
sage: E2 = EllipticCurve(F, [0,5,0,1,0])
```

(continues on next page)
```sage
sage: E3 = EllipticCurve(F, [0, -10, 0, 21, 0])
sage: E1.is_isogenous(E2)
False
sage: E1.is_isogenous(E1)
True
sage: E2.is_isogenous(E2)
True
sage: E2.is_isogenous(E1)
False
sage: E2.is_isogenous(E3)
True
sage: x = polygen(QQ, 'x')
sage: F = NumberField(x^2 -2, 's'); F
Number Field in s with defining polynomial x^2 - 2
sage: E = EllipticCurve('14a1')
sage: EE = EllipticCurve('14a2')
sage: E1 = E.change_ring(F)
sage: E2 = EE.change_ring(F)
sage: E1.is_isogenous(E2)
True
sage: x = polygen(QQ, 'x')
sage: F = NumberField(x^2 -2, 's'); F
Number Field in s with defining polynomial x^2 - 2
sage: k.<a> = NumberField(x^3+7)
sage: E = EllipticCurve(F, [7, 8])
sage: EE = EllipticCurve(k, [2, 2])
sage: E.is_isogenous(EE)
Traceback (most recent call last):
 ... ValueError: Second argument must be defined over the same number field.
sage: K.<i> = QuadraticField(-1)
sage: E1 = EllipticCurve([i + 1, 0, 1, -240*i - 400, -2869*i - 2627])
sage: E1.conductor()
Fractional ideal (-4*i - 7)
sage: E2 = EllipticCurve([1+i, 0, i, 0, 0])
sage: E2.conductor()
Fractional ideal (-4*i - 7)
sage: E1.is_isogenous(E2) # slower (~500ms)
True
sage: E1.is_isogenous(E2, proof=False) # faster (~170ms)
True
```

Some examples from Cremona's 1981 tables:

```sage
sage: E3 = EllipticCurve([i + 1, 0, 1, -5*i - 5, -2*i - 5])
sage: E3.is_isogenous(E1)
True
sage: E3.is_isogenous(E2)
True
sage: E1.isogeny_degree(E2)
9
```

In this case E1 and E2 are in fact 9-isogenous, as may be deduced from the following:
**is_local_integral_model**(\(*P\))
Tests if self is integral at the prime ideal \(P\), or at all the primes if \(P\) is a list or tuple.

**INPUT:**

- \(*P\) – a prime ideal, or a list or tuple of primes.

**EXAMPLES:**

```
sage: K.<i> = NumberField(x^2+1)
sage: P1,P2 = K.primes_above(5)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: E.is_local_integral_model(P1,P2)
False
sage: Emin = E.local_integral_model(P1,P2)
sage: Emin.is_local_integral_model(P1,P2)
True
```

**isogenies_prime_degree**(\(l=None,\) algorithm='Billerey', minimal_models=True)
Return a list of \(\ell\)-isogenies from self, where \(\ell\) is a prime.

**INPUT:**

- \(l\) – either None or a prime or a list of primes.
- algorithm (string, default ‘Billerey’) – the algorithm to use to compute the reducible primes when \(l\) is None. Ignored for CM curves or if \(l\) is provided. Values are ‘Billerey’ (default), ‘Larson’, and ‘heuristic’.
- minimal_models (bool, default True) – if True, all curves computed will be minimal or semi-minimal models. Over fields of larger degree it can be expensive to compute these so set to False.

**OUTPUT:**

(list) \(\ell\)-isogenies for the given \(\ell\) or if \(\ell\) is None, all isogenies of prime degree (see below for the CM case).

**Note:** Over \(\mathbb{Q}\), the codomains of the isogenies returned are standard minimal models. Over other number fields they are global minimal models if these exist, otherwise models which are minimal at all but one prime.

**Note:** For curves with rational CM, isogenies of primes degree exist for infinitely many primes \(\ell\), though there are only finitely many isogenous curves up to isomorphism. The list returned only includes one isogeny of prime degree for each codomain.

**EXAMPLES:**

```
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: isogs = E.isogenies_prime_degree()
sage: [phi.degree() for phi in isogs]
[2, 3]
sage: pol = PolynomialRing(QQ,'x')([-1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: js = hilbert_class_polynomial(-23).roots(L,multiplicities=False); js
[1, 23]
len(js)
3
```

(continues on next page)
Set minimal_models to False to avoid computing minimal models of the isogenous curves, since that can be time-consuming since it requires computation of the class group:

```
sage: proof.number_field(False)
sage: K.<z> = CyclotomicField(53)
sage: E = EllipticCurve(K,[0,6,0,2,0])
sage: E.isogenies_prime_degree(2, minimal_models=False)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x → over Cyclotomic Field of order 53 and degree 52 to Elliptic Curve defined by y^2 = x^3 + 6*x^2 + (-8)*x + (-48) over Cyclotomic Field of order 53 and degree 52]
sage: E.isogenies_prime_degree(2, minimal_models=True) # not tested (10s)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x → over Cyclotomic Field of order 53 and degree 52 to Elliptic Curve defined by y^2 = x^3 + (-20)*x + (-16) over Cyclotomic Field of order 53 and degree 52]
```

isogeny_class (reducible_primes=None, algorithm='Billerey', minimal_models=True)

Return the isogeny class of this elliptic curve.

INPUT:

- reducible_primes (list of ints, or None (default)) – if not None then this should be a list of primes; in computing the isogeny class, only composites isogenies of these degrees will be used.
- algorithm (string, default ‘Billerey’) – the algorithm to use to compute the reducible primes. Ignored for CM curves or if reducible_primes is provided. Values are ‘Billerey’ (default), ‘Larson’, and ‘heuristic’.
- minimal_models (bool, default True) – if True, all curves in the class will be minimal or semiminimal models. Over fields of larger degree it can be expensive to compute these so set to False.

OUTPUT:

An instance of the class `sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_NumberField`. From this object may be obtained a list of curves in the class, a matrix of the degrees of the isogenies between them, and the isogenies themselves.

Note: If using the algorithm ‘heuristic’ for non-CM curves, the result is not guaranteed to be the complete isogeny class, since only reducible primes up to the default bound in `reducible_primes_naive()` (currently 1000) are tested. However, no examples of non-CM elliptic curves with reducible primes greater than 100 have yet been computed so the output is likely to be correct.

Note: By default, the curves in the isogeny class will all be minimal models if these exist (for example, when the class number is 1); otherwise they will be minimal at all but one prime. This behaviour can be switched off if desired, for example over fields where the computation of the class group would be too expensive.

EXAMPLES:
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: C = E.isogeny_class(); C
Isogeny class of Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in i with defining polynomial x^2 + 1

The curves in the class (sorted):

```
sage: [E1.ainvs() for E1 in C]
[(0, 0, 0, 0, -27),
 (0, 0, 0, 0, 1),
 (i + 1, i, i + 1, -i + 3, 4*i),
 (i + 1, i, i + 1, -i + 33, -58*i)]
```

The matrix of degrees of cyclic isogenies between curves:

```
sage: C.matrix()
[1 3 6 2]
[3 1 2 6]
[6 2 1 3]
[2 6 3 1]
```

The array of isogenies themselves is not filled out but only contains those used to construct the class, the other entries containing the integer 0. This will be changed when the class `EllipticCurveIsogeny` allowed composition. In this case we used 2-isogenies to go from 0 to 2 and from 1 to 3, and 3-isogenies to go from 0 to 1 and from 2 to 3:

```
sage: isogs = C.isogenies()
sage: [(i,j),isogs[i][j].x_rational_map()) for i in range(4) for j in range(4) if isogs[i][j]!=0]
```

```
[((0, 1), (1/9*x^3 - 12)/x^2),
 ((0, 3), (-1/2*i*x^2 + i*x - 12*i)/(x - 3)),
 ((1, 0), (x^3 + 4)/x^2),
 ((1, 2), (-1/2*i*x^2 - i*x - 2*i)/(x + 3/2*i)),
 ((2, 1), (1/2*i*x^2 + x + 4*i)/(x - 5/2*i)),
 ((3, 0), (1/9*x^3 - 4/3*i*x^2 - 34/3*x + 226/9*i)/(x^2 - 8*i*x - 16))]
```

The isogeny class may be visualized by obtaining its graph and plotting it:

```
sage: G = C.graph()
sage: G.show(edge_labels=True) # long time
```

(continues on next page)
Isogeny class of Elliptic Curve defined by $y^2 + (i+1)\cdot x \cdot y + i \cdot y = x^3 + (-\rightarrow i) \cdot x^2 + x$ over Number Field in $i$ with defining polynomial $x^2 + 1$

```sage
sage: len(C)
6
sage: C.matrix()

[1 3 9 18 6 2]
[3 1 3 6 2 6]
[9 3 1 2 6 18]
[18 6 2 1 3 9]
[6 2 6 3 1 3]
[2 6 18 9 3 1]
```

```sage
sage: [E.ainvs() for E in C]

[(i + 1, i - 1, i, -i - 1, -i + 1),
 (i + 1, i - 1, i, 14*i + 4, 7*i + 14),
 (i + 1, i - 1, i, 59*i + 99, 372*i - 410),
 (i + 1, -i, i, -240*i - 399, 2869*i + 2627),
 (i + 1, -i, i, -5*i - 4, 2*i + 5),
 (i + 1, -i, i, 1, 0)]
```

An example with CM by $\sqrt{-5}$:

```sage
sage: pol = PolynomialRing(QQ,'x')([1,0,3,0,1])
sage: K.<c> = NumberField(pol)
sage: j = 1480640+565760*c^2
sage: E = EllipticCurve(j=j)
sage: E.has_cm()
True
sage: E.has_rational_cm()
True
sage: E.cm_discriminant()
-20
sage: C = E.isogeny_class()

```

```sage
sage: len(C)
2
sage: C.matrix()

[1 2]
[2 1]
```

```sage
sage: [E.ainvs() for E in C]

[(0, 0, 0, 83490*c^2 - 147015, -64739840*c^2 - 84465260),
 (0, 0, -161535*c^2 + 70785, -62264180*c^3 + 6229080*c)]
```

An example with CM by $\sqrt{-23}$ (class number 3):

```sage
sage: pol = PolynomialRing(QQ,'x')([-1,3,5,-5,3,1])
sage: L.<a> = NumberField(pol)

```

```sage
sage: js = hilbert_class_polynomial(-23).roots(L,multiplicities=False);

```

```sage
sage: C.isogenies()[0][1]

```

An example with CM by $\sqrt{-23}$ (class number 3):
The reason for the isogeny class having size six while the class number is only 3 is that the class also contains three curves with CM by the order of discriminant $-92 = 4 \cdot (-23)$, which also has class number 3. The curves in the class are sorted first by CM discriminant (then lexicographically using a-invariants):

\[
\text{sage: } \{F \text{.cm_discriminant()} \text{ for } F \text{ in } C\} \quad \# \text{ long time}
\]
\[-23, -23, -23, -92, -92, -92\]

2 splits in the order with discriminant $-23$, into two primes of order 3 in the class group, each of which induces a 2-isogeny to a curve with the same endomorphism ring; the third 2-isogeny is to a curve with the smaller endomorphism ring:

\[
\text{sage: } \{\phi \text{.codomain().cm_discriminant()} \text{ for } \phi \text{ in } E \text{.isogenies_prime_degree()}\} \quad \# \text{ long time}
\]
\[-92, -23, -23\]

The graph of this isogeny class has a shape which does not occur over $\mathbb{Q}$: a triangular prism. Note that for curves without CM, the graph has an edge between two curves if and only if they are connected by an isogeny of prime degree, and this degree is uniquely determined by the two curves, but in the CM case this property does not hold, since for pairs of curves in the class with the same endomorphism ring $O$, the set of degrees of isogenies between them is the set of integers represented by a primitive integral binary quadratic form of discriminant $\text{disc}(O)$, and this form represents infinitely many primes. In the matrix we give a small prime represented by the appropriate form. In this example, the matrix is formed by four $3 \times 3$ blocks. The isogenies of degree 2 indicated by the upper left $3 \times 3$ block of the matrix could be replaced by isogenies of any degree represented by the quadratic form $2x^2 + xy + 3y^2$ of discriminant $-23$. Similarly in the lower right block, the entries of 3 could be represented by any integers represented by the quadratic form $3x^2 + 2xy + 8y^2$ of discriminant $-92$. In the top right block and lower left blocks, by contrast, the prime entries 2 are unique determined:

\[
\text{sage: } G = C \text{.graph()} \quad \# \text{ long time}
\]
\[
\text{sage: } G \text{.adjacency_matrix()} \quad \# \text{ long time}
\]
\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

To display the graph without any edge labels:

\[
\text{sage: } G \text{.show()} \quad \# \text{ not tested}
\]

To display the graph with edge labels: by default, for curves with rational CM, the labels are the coefficients of the associated quadratic forms:
For an alternative view, first relabel the edges using only 2 labels to distinguish between isogenies between curves with the same endomorphism ring and isogenies between curves with different endomorphism rings, then use a 3-dimensional plot which can be rotated:

```python
sage: for i,j,l in G.edge_iterator(): # long time
 : G.set_edge_label(i, j, l.count(','))
sage: G.show3d(color_by_label=True) # long time
```

A class number 6 example. First we set up the fields: pol defines the same field as pol26, but is simpler:

```python
sage: pol26 = hilbert_class_polynomial(-4*26)
sage: pol = x^6-x^5+2*x^4+x^3-2*x^2-x-1
sage: K.<a> = NumberField(pol)
sage: L. = K.extension(x^2+26)
```

Only 2 of the \( j \)-invariants with discriminant -104 are in \( K \), though all are in \( L \):

```python
sage: len(pol26.roots(K))
2
sage: len(pol26.roots(L))
6
```

We create an elliptic curve defined over \( K \) with one of the \( j \)-invariants in \( K \):

```python
sage: j1 = pol26.roots(K)[0][0]
sage: E = EllipticCurve(j=j1)
sage: E.has_cm()
True
sage: E.has_rational_cm()
False
sage: E.has_rational_cm(L)
True
```

Over \( K \) the isogeny class has size 4, with 2 curves for each of the 2 \( K \)-rational \( j \)-invariants:

```python
sage: C = E.isogeny_class(); len(C) # long time (~11s)
4
sage: C.matrix()
[1 13 2 26]
[13 1 26 2]
[2 26 1 13]
[26 2 1 3]
sage: len(Set([EE.j_invariant() for EE in C.curves])) # long time
2
```

Over \( L \), the isogeny class grows to size 6 (the class number):

```python
sage: EL = E.change_ring(L)
sage: CL = EL.isogeny_class(minimal_models=False); len(CL)
6
sage: Set([EE.j_invariant() for EE in CL.curves]) == Set(pol26.roots(L, multiplicity=False))
True
```

In each position in the matrix of degrees, we see primes (or 1). In fact the set of degrees of cyclic isogenies from curve \( i \) to curve \( j \) is infinite, and is the set of all integers represented by one of the primitive binary
quadratic forms of discriminant $-104$, from which we have selected a small prime:

```
sage: CL.matrix() # long time # random (see :trac:`19229`)
[[1 2 3 3 5 5]
 [2 1 5 3 2 5]
 [3 5 1 3 2 5]
 [3 5 3 1 5 2]
 [5 3 2 5 1 3]
 [5 3 5 2 3 1]]
```

To see the array of binary quadratic forms:

```
sage: CL.qf_matrix() # long time # random (see :trac:`19229`)
[[[1], [2, 0, 13], [3, -2, 9], [3, -2, 9], [5, -4, 6], [5, -4, 6]],
 [[2, 0, 13], [1], [5, -4, 6], [5, -4, 6], [3, -2, 9], [3, -2, 9]],
 [[3, -2, 9], [5, -4, 6], [1], [3, -2, 9], [2, 0, 13], [5, -4, 6]],
 [[3, -2, 9], [5, -4, 6], [3, -2, 9], [1], [5, -4, 6], [2, 0, 13]],
 [[5, -4, 6], [3, -2, 9], [2, 0, 13], [5, -4, 6], [1], [3, -2, 9]],
 [[5, -4, 6], [3, -2, 9], [5, -4, 6], [2, 0, 13], [3, -2, 9], [1]]]
```

As in the non-CM case, the isogeny class may be visualized by obtaining its graph and plotting it. Since there are more edges than in the non-CM case, it may be preferable to omit the edge_labels:

```
sage: G = C.graph()
sage: G.show(edge_labels=False) # long time
```

It is possible to display a 3-dimensional plot, with colours to represent the different edge labels, in a form which can be rotated!:

```
sage: G.show3d(color_by_label=True) # long time
```

Over larger number fields several options make computations tractable. Here we use algorithm ‘heuristic’ which avoids a rigorous computation of the reducible primes, only testing those less than 1000, and setting minimal_models to False avoid having to compute the class group of $K$. To obtain minimal models set proof.number_field(False); the class group computation takes an additional 10s:

```
sage: K.<z> = CyclotomicField(53)
sage: E = EllipticCurve(K,[0,6,0,2,0])
sage: C = E.isogeny_class(algorithm='heuristic', minimal_models=False); C # long time (10s)
Isogeny class of Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x over Cyclotomic Field of order 53 and degree 52
sage: C.curves # long time
[Elliptic Curve defined by y^2 = x^3 + 6*x^2 + (-8)*x + (-48) over Cyclotomic Field of order 53 and degree 52,
 Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x over Cyclotomic Field of order 53 and degree 52]
```

**isogeny_degree**(other)

Return the minimal degree of an isogeny between self and other, or 0 if no isogeny exists.

**INPUT:**

- other – another elliptic curve.

**OUTPUT:**

(int) The degree of an isogeny from self to other, or 0.

**EXAMPLES:**
sage: x = QQ['x'].0
sage: F = NumberField(x^2 -2, 's'); F
Number Field in s with defining polynomial x^2 - 2
sage: E = EllipticCurve('14a1')

sage: EE = EllipticCurve('14a2')

sage: E1 = E.change_ring(F)

sage: E2 = EE.change_ring(F)

sage: E1.isogeny_degree(E2)  # long time
2
sage: E2.isogeny_degree(E2)
1

sage: E5 = EllipticCurve('14a5').change_ring(F)

sage: E1.isogeny_degree(E5)  # long time
6

sage: E = EllipticCurve('11a1')

sage: [E2.label() for E2 in cremona_curves([11..20]) if E.isogeny_degree(E2)]
['11a1', '11a2', '11a3']

kodaira_symbol($P$. proof=None)

Return the Kodaira Symbol of this elliptic curve at the prime $P$.

INPUT:

- $P$ – either None or a prime ideal of the base field of self.
- proof - whether to only use provably correct methods (default controlled by global proof module).

Note that the proof module is number_field, not elliptic_curves, since the functions that actually need the flag are in number fields.

OUTPUT:

The Kodaira Symbol of the curve at P, represented as a string.

EXAMPLES:

sage: K.<a> = NumberField(x^2-5)

sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])

sage: bad_primes = E.discriminant().support(); bad_primes
[Fractional ideal (-a), Fractional ideal (7/2*a - 81/2), Fractional ideal (-a - 52), Fractional ideal (2)]

sage: [E.kodaira_symbol(P) for P in bad_primes]
[I0, I1, I1, II]

sage: K.<a> = QuadraticField(-11)

sage: E = EllipticCurve('11a1').change_ring(K)

sage: [E.kodaira_symbol(P) for P in K(11).support()]
[I10]

lll_reduce($points$, height_matrix=None, precision=None)

Return an LLL-reduced basis from a given basis, with transform matrix.

INPUT:

- $points$ - a list of points on this elliptic curve, which should be independent.
• `height_matrix` - the height-pairing matrix of the points, or `None`. If `None`, it will be computed.

• `precision` - number of bits of precision of intermediate computations (default: `None`, for default `RealField` precision; ignored if `height_matrix` is supplied)

OUTPUT: A tuple (newpoints, U) where U is a unimodular integer matrix, new_points is the transform of points by U, such that new_points has LLL-reduced height pairing matrix

**Note:** If the input points are not independent, the output depends on the undocumented behaviour of PARI’s `qflllgram()` function when applied to a gram matrix which is not positive definite.

**EXAMPLES:**

Some examples over \( \mathbb{Q} \):

```
sage: E = EllipticCurve([0, 1, 1, -2, 42])
sage: Pi = E.gens(); Pi
sage: Qi, U = E.lll_reduce(Pi)
sage: all(sum(U[i,j]*Pi[i] for i in range(4)) == Qi[j] for j in range(4))
True
sage: sorted(Qi)
[(-4 : 1 : 1), (-3 : 5 : 1), (-2 : 6 : 1), (0 : 6 : 1)]
sage: U.det()
1
sage: E.regulator_of_points(Pi)
4.59088036960573
sage: E.regulator_of_points(Qi)
4.59088036960574
```

```
sage: E = EllipticCurve([1,0,1,-120039822036992245303534619191166796374,˓→504224992484910670010801799168082726759437562229114151116])
sage: xi = [2005024558054813068,
-4690836759490453344,\n4700156326649806635,\n6785546256295273860,\n6823803691665684943,\n77888906902110240789,\n27385442304350994620556,\n5428468206285253719/4,\n-94200235260395075139/25,\n-3436244773910331841724667/576,\n-6684065934033506970637/676,\n-956777386192640344198/2209,\n-27067471797013364392578/2809,\n-25538866857137199063309/3721,\n-1026325011760259051894331/108241,\n9351361230729481250627334/1366561,\n10100878635879432897339615/1423249,\n11499655868211022625340735/17522596,\n110352253665081002517811734/21353641,\n414280096426033094143668538257/285204544,\n36101712290699828042930087436/4098432361,\n45424634308503524215460183165/5424617104,\n983886013347400707678587482584/141566320009,\n1124614335716851053281176544216033/152487126016]
sage: points = [E.lift_x(x) for x in xi]
(continues on next page)
```

10.11. Elliptic curves over number fields 391
An example to show the explicit use of the height pairing matrix:

```
sage: E = EllipticCurve([0, 1, 1, -2, 42])
sage: Pi = E.gens()
sage: H = E.height_pairing_matrix(Pi,3)
sage: E.lll_reduce(Pi,height_matrix=H)
```

```
(0 0 1)
[(0 : -1 : 1), (-2 : -1/2*a - 1/2 : 1)], [1 0]
```

Some examples over number fields (see trac ticket #9411):

```
sage: K.<a> = QuadraticField(-23, 'a')
sage: E = EllipticCurve(K, [0,0,1,-1,0])
sage: P = E(-2,-(a+1)/2)
sage: Q = E(0,-1)
sage: E.lll_reduce([P,Q])
```

```
(0 : -1 : 1), (-2 : -1/2*a - 1/2 : 1), [1 0]
```

```
sage: K.<a> = QuadraticField(-5)
sage: E = EllipticCurve(K,[0,a])
sage: points = [E.point([-211/841*a - 6044/841,-209584/24389*a + 53634/24389]),E.point([-17/18*a - 1/9, -109/108*a - 277/108])]
sage: E.lll_reduce(points)
```

```
((-4 : 1 : 1), (-3 : 5 : 1), (-2 : 6 : 1), (1 : -7 : 1]), [0 0 1 1]
```

local_data (P=None, proof=None, algorithm='pari', globally=False)

Local data for this elliptic curve at the prime $P$.

**INPUT:**

- $P$ – either None, a prime ideal of the base field of self, or an element of the base field that generates a prime ideal.
- proof – whether to only use provably correct methods (default controlled by global proof module).

Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
the flag are in number fields.

- **algorithm** (string, default: “pari”) – Ignored unless the base field is $\mathbb{Q}$. If “pari”, use the PARI C-library `ellglobalred` implementation of Tate’s algorithm over $\mathbb{Q}$. If “generic”, use the general number field implementation.

- **globally** – whether the local algorithm uses global generators for the prime ideals. Default is False, which will not require any information about the class group. If True, a generator for $P$ will be used if $P$ is principal. Otherwise, or if globally is False, the minimal model returned will preserve integrality at other primes, but not minimality.

**OUTPUT:**

If $P$ is specified, returns the `EllipticCurveLocalData` object associated to the prime $P$ for this curve. Otherwise, returns a list of such objects, one for each prime $P$ in the support of the discriminant of this model.

**Note:** The model is not required to be integral on input.

**EXAMPLES:**

```python
sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([1 + i, 0, 1, 0, 0])
sage: E.local_data()
[Local data at Fractional ideal (2*i + 1):
 Reduction type: bad non-split multiplicative
 Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over Number Field in i with defining polynomial x^2 + 1
 Minimal discriminant valuation: 1
 Conductor exponent: 1
 Kodaira Symbol: I1
 Tamagawa Number: 1
 Local data at Fractional ideal (-3*i - 2):
 Reduction type: bad split multiplicative
 Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over Number Field in i with defining polynomial x^2 + 1
 Minimal discriminant valuation: 2
 Conductor exponent: 1
 Kodaira Symbol: I2
 Tamagawa Number: 2]
sage: E.local_data(K.ideal(3))
Local data at Fractional ideal (3):
 Reduction type: good
 Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over Number Field in i with defining polynomial x^2 + 1
 Minimal discriminant valuation: 0
 Conductor exponent: 0
 Kodaira Symbol: I0
 Tamagawa Number: 1
 sage: E.local_data(2*i + 1)
Local data at Fractional ideal (2*i + 1):
 Reduction type: bad non-split multiplicative
 Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3 over Number Field in i with defining polynomial x^2 + 1
 Minimal discriminant valuation: 1
 Conductor exponent: 1
 Kodaira Symbol: I1
 Tamagawa Number: 1
```
An example raised in trac ticket #3897:

```
sage: E = EllipticCurve([1,1])
sage: E.local_data(3)
Local data at Principal ideal (3) of Integer Ring:
Reduction type: good
Local minimal model: Elliptic Curve defined by y^2 = x^3 + x + 1 over Rational Field
Minimal discriminant valuation: 0
Conductor exponent: 0
Kodaira Symbol: I0
Tamagawa Number: 1
```

**local_integral_model**(*P*)

Return a model of self which is integral at the prime ideal *P*.

**Note:** The integrality at other primes is not affected, even if *P* is non-principal.

**INPUT:**

- *P* – a prime ideal, or a list or tuple of primes.

**EXAMPLES:**

```
sage: K.<i> = NumberField(x^2+1)
sage: P1,P2 = K.primes_above(5)
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
sage: E.local_integral_model((P1,P2))
Elliptic Curve defined by y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + ...
 -125*i*x + 3125*i over Number Field in i with defining polynomial x^2 + 1
```

**local_minimal_model**(*P*, *proof=None, algorithm='pari')

Return a model which is integral at all primes and minimal at *P*.

**INPUT:**

- *P* – either None or a prime ideal of the base field of self.
- **proof** – whether to only use provably correct methods (default controlled by global proof module). Note that the proof module is number_field, not elliptic_curves, since the functions that actually need the flag are in number fields.
- **algorithm** (string, default: “pari”) – Ignored unless the base field is *Q*. If “pari”, use the PARI C-library `ellglobalred` implementation of Tate’s algorithm over *Q*. If “generic”, use the general number field implementation.

**OUTPUT:**

A model of the curve which is minimal (and integral) at *P*.

**Note:** The model is not required to be integral on input.

For principal *P*, a generator is used as a uniformizer, and integrality or minimalilty at other primes is not affected. For non-principal *P*, the minimal model returned will preserve integrality at other primes, but not minimality.

**EXAMPLES:**
**minimal_discriminant_ideal()**

Return the minimal discriminant ideal of this elliptic curve.

**OUTPUT:**

The integral ideal $D$ whose valuation at every prime $P$ is that of the local minimal model for $E$ at $P$. If $E$ has a global minimal model, this will be the principal ideal generated by the discriminant of any such model, but otherwise it can be a proper divisor of the discriminant of any model.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([20, 225, 750, 1250*a + 6250, 62500*a + 15625])
sage: P = K.ideal(a)
sage: E.local_minimal_model(P).ainvs()
(0, 1, 0, 2*a - 34, -4*a + 66)
```

Here the minimal discriminant ideal is principal but there is no global minimal model since the quotient is the 12th power of a non-principal ideal:

```python
sage: E.minimal_discriminant_ideal()
Fractional ideal (4)
sage: E.minimal_discriminant_ideal().factor()
(Fractional ideal (2))^2
```

If (and only if) the curve has everywhere good reduction the result is the unit ideal:

```python
sage: K.<a> = NumberField(x^2-26)
sage: E = EllipticCurve([a,a-1,a+1,4*a+10,2*a+6])
sage: E.conductor()
Fractional ideal (1)
sage: E.discriminant()
-104030*a - 530451
sage: E.minimal_discriminant_ideal()
Fractional ideal (1)
```

Over $\mathbb{Q}$, the result returned is an ideal of $\mathbb{Z}$ rather than a fractional ideal of $\mathbb{Q}$:

```python
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.minimal_discriminant_ideal()
Principal ideal (10351) of Integer Ring
```

**non_minimal_primes()**

Return a list of primes at which this elliptic curve is not minimal.

**OUTPUT:**

A list of prime ideals (or prime numbers when the base field is $\mathbb{Q}$), empty if this is a global minimal model.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^2-2)
sage: E = EllipticCurve([a,a+1,a+1,4*a+10,2*a+6])
sage: E.conductor()
Fractional ideal (1)
sage: E.discriminant()
-104030*a - 530451
sage: E.minimal_discriminant_ideal()
Fractional ideal (1)
```

```python
sage: E = EllipticCurve([1,2,3,4,5])
sage: E.minimal_discriminant_ideal()
Principal ideal (10351) of Integer Ring
```
sage: K.<a> = NumberField(x^2-10)
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
sage: E.non_minimal_primes()
[Fractional ideal (2, a), Fractional ideal (5, a)]
sage: K.ideal(E.discriminant()).factor()
(Fractional ideal (2, a))^24 * (Fractional ideal (3, a + 1))^5 * (Fractional ideal (3, a + 2))^5 * (Fractional ideal (5, a))^24 * (Fractional ideal (7))
sage: E.minimal_discriminant_ideal().factor()
(Fractional ideal (2, a))^12 * (Fractional ideal (3, a + 1))^5 * (Fractional ideal (3, a + 2))^5 * (Fractional ideal (7))

Over \(\mathbb{Q}\), the primes returned are integers, not ideals:

sage: E = EllipticCurve([0,0,0,-3024,46224])
sage: E.non_minimal_primes()
[2, 3]
sage: Emin = E.global_minimal_model()
sage: Emin.non_minimal_primes()
[]

If the model is not globally integral, a ValueError is raised:

sage: E = EllipticCurve([0,0,0,1/2,1/3])
sage: E.non_minimal_primes()
Traceback (most recent call last):
... ValueError: non_minimal_primes only defined for integral models

period_lattice(embedding)

Return the period lattice of the elliptic curve for the given embedding of its base field with respect to the differential \(dx/(2y + a_1x + a_3)\).

INPUT:

• embedding - an embedding of the base number field into \(\mathbb{R}\) or \(\mathbb{C}\).

Note: The precision of the embedding is ignored: we only use the given embedding to determine which embedding into \(\mathbb{Q}\bar{\mathbb{Q}}\) to use. Once the lattice has been initialized, periods can be computed to arbitrary precision.

EXAMPLES:

First define a field with two real embeddings:

sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,a,2])
sage: embs = K.embeddings(CC); len(embs)
3

For each embedding we have a different period lattice:

sage: E.period_lattice(embs[0])
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2
  over Number Field in a with defining polynomial x^3 - 2 with respect to the
  embedding Ring morphism:
  From: Number Field in a with defining polynomial x^3 - 2
  To:   Complex Field with 53 bits of precision

(continues on next page)
To: Algebraic Field
Defn: \( a \mapsto -0.6299605249474365? - 1.091123635971722?i \)

```
sage: E.period_lattice(embs[1])
Period lattice associated to Elliptic Curve defined by \(y^2 = x^3 + a\cdot x + 2 \)
\(\rightarrow \) over Number Field in \(a \) with defining polynomial \(x^3 - 2 \) with respect to the
\(\rightarrow \) embedding Ring morphism:
From: Number Field in \(a \) with defining polynomial \(x^3 - 2 \)
To: Algebraic Field
Defn: \(a \mapsto -0.6299605249474365? + 1.091123635971722?i \)
```

```
sage: E.period_lattice(embs[2])
Period lattice associated to Elliptic Curve defined by \(y^2 = x^3 + a\cdot x + 2 \)
\(\rightarrow \) over Number Field in \(a \) with defining polynomial \(x^3 - 2 \) with respect to the
\(\rightarrow \) embedding Ring morphism:
From: Number Field in \(a \) with defining polynomial \(x^3 - 2 \)
To: Algebraic Field
Defn: \(a \mapsto 1.259921049894873? \)
```

Although the original embeddings have only the default precision, we can obtain the basis with higher
precision later:

```
sage: L=E.period_lattice(embs[0])
sage: L.basis()
(1.86405007647981 - 0.903761485143226*I, -0.149344633143919 - 2.06619546272945*I)
sage: L.basis(prec=100)
(1.8640500764798108425920506200 - 0.9037614851432259479786960975*I, -0.14934463314391922099120107422 - 2.0661954627294548995621225062*I)
```

`rank (**kwds)`

Return the rank of this elliptic curve, if it can be determined.

**Note:** The optional parameters control the Simon two descent algorithm; see the documentation of `simon_two_descent()` for more details.

**INPUT:**

- `verbose` – 0, 1, 2, or 3 (default: 0), the verbosity level
- `lim1` – (default: 2) limit on trivial points on quartics
- `lim3` – (default: 4) limit on points on ELS quartics
- `limtriv` – (default: 2) limit on trivial points on elliptic curve
- `maxprob` – (default: 20)
- `limbigprime` – (default: 30) to distinguish between small and large prime numbers. Use probabilistic tests for large primes. If 0, do not use probabilistic tests.
- `known_points` – (default: None) list of known points on the curve

**OUTPUT:**

If the upper and lower bounds given by Simon two-descent are the same, then the rank has been uniquely identified and we return this. Otherwise, we raise a `ValueError` with an error message specifying the upper and lower bounds.

10.11. Elliptic curves over number fields

397
Note: For non-quadratic number fields, this code does return, but it takes a long time.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 + 23, 'a')
sage: E = EllipticCurve(K, '37')
sage: E == loads(dumps(E))
True
sage: E.rank()
2
```

Here is a curve with two-torsion in the Tate-Shafarevich group, so here the bounds given by the algorithm do not uniquely determine the rank:

```python
sage: E = EllipticCurve("15a5")
sage: K.<t> = NumberField(x^2-6)
sage: EK = E.base_extend(K)
sage: EK.rank(lim1=1, lim3=1, limtriv=1)
Traceback (most recent call last):
...
ValueError: There is insufficient data to determine the rank -
2-descent gave lower bound 0 and upper bound 2
```

IMPLEMENTATION:


```
rank_bounds(**kwds)
```

Return the lower and upper bounds using `simon_two_descent()`. The results of `simon_two_descent()` are cached.

Note: The optional parameters control the Simon two descent algorithm; see the documentation of `simon_two_descent()` for more details.

INPUT:

- `verbose` – 0, 1, 2, or 3 (default: 0), the verbosity level
- `lim1` – (default: 2) limit on trivial points on quartics
- `lim3` – (default: 4) limit on points on ELS quartics
- `limtriv` – (default: 2) limit on trivial points on elliptic curve
- `maxprob` – (default: 20)
- `limbigprime` – (default: 30) to distinguish between small and large prime numbers. Use probabilistic tests for large primes. If 0, do not use probabilistic tests.
- `known_points` – (default: None) list of known points on the curve

OUTPUT:

lower and upper bounds for the rank of the Mordell-Weil group

Note: For non-quadratic number fields, this code does return, but it takes a long time.

EXAMPLES:
Here is a curve with two-torsion, again the bounds coincide:

```python
sage: Qrt5.<rt5> = NumberField(x^2-5)
sage: E = EllipticCurve([0,5-rt5,0,rt5,0])
sage: E.rank_bounds()
(1, 1)
```

Finally an example with non-trivial 2-torsion in Sha. So the 2-descent will not be able to determine the rank, but can only give bounds:

```python
sage: E = EllipticCurve("15a5")
sage: K.<t> = NumberField(x^2-6)
sage: EK = E.base_extend(K)
sage: EK.rank_bounds(lim1=1,lim3=1,limtriv=1)
(0, 2)
```

**IMPLEMENTATION:**


`rational_points(**kwds)`

Find rational points on the elliptic curve, all arguments are passed on to `sage.schemes.generic.algebraic_scheme.rational_points()`.

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a')
sage: E.rational_points(bound=8)
[(-1 : -1 : 1),
 (-1 : 0 : 1),
 (0 : -1 : 1),
 (0 : 0 : 1),
 (0 : 1 : 0),
 (1/4 : -5/8 : 1),
 (1/4 : -3/8 : 1),
 (1 : -1 : 1),
 (1 : 0 : 1),
 (2 : -3 : 1),
 (2 : 2 : 1)]
```

Check that trac ticket #26677 is fixed:

```python
sage: E = EllipticCurve("11a1")
sage: E.rational_points(bound=5)
[(0 : 1 : 0), (5 : 5 : 1)]
sage: E.rational_points(bound=6)
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1)]
```

An example over a number field:
sage: E = EllipticCurve([1,0])
sage: pts = E.rational_points(bound = 2, F = QuadraticField(-1))
sage: pts
[(-a : 0 : 1), (0 : 0 : 1), (0 : 1 : 0), (a : 0 : 1)]
sage: pts[0] + pts[1]
(a : 0 : 1)

reducible_primes(algorithm='Billerey', max_l=None, num_l=None, verbose=False)

Return a finite set of primes ℓ for which E has a K-rational ℓ-isogeny.

For curves without CM the list returned is exactly the finite set of primes ℓ for which the mod-ℓ Galois representation is reducible. For curves with CM this set is infinite; we return a finite list of primes ℓ such that every curve isogenous to this curve can be obtained by a finite sequence of isogenies of degree one of the primes in the list.

INPUT:

- **algorithm** (string) – only relevant for non-CM curves. Either ‘Billerey’, to use the methods of [Bil2011], ‘Larson’ to use Larson’s implementation using Galois representations, or ‘heuristic’ (see below).

- **max_l** (int or None) – only relevant for non-CM curves and algorithms ‘Billerey’ and ‘heuristic’. Controls the maximum prime used in either algorithm. If None, use the default for that algorithm.

- **num_l** (int or None) – only relevant for non-CM curves and algorithm ‘Billerey’. Controls the maximum number of primes used in the algorithm. If None, use the default for that algorithm.

Note: The ‘heuristic’ algorithm only checks primes up to the bound max_l. This is faster but not guaranteed to be complete. Both the Billerey and Larson algorithms are rigorous.

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.reducible_primes()
[3, 5]
sage: E.reducible_primes()
[3, 5]

sage: K = NumberField(x**2 + 1, 'a')
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
sage: rho = E.galois_representation()
sage: rho.reducible_primes() # CM curves always return [0]
[0]
sage: E.reducible_primes()
[2]

sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
sage: rho = E.galois_representation()
sage: rho.reducible_primes()
[2, 3]
sage: E.reducible_primes()
[2, 3]

sage: E = EllipticCurve_from_j(K(2268945/128)).global_minimal_model() # c.f. →[Sutherland12]
    ↪sage: rho = E.galois_representation()
    ↪sage: rho.isogeny_bound() # ... but there is no 7-isogeny ...

(continues on next page)
**reduction** *(place)*

Return the reduction of the elliptic curve at a place of good reduction.

**INPUT:**

- `place` – a prime ideal in the base field of the curve

**OUTPUT:**

An elliptic curve over a finite field, the residue field of the place.

**EXAMPLES:**

```python
sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve([0,0,0,i,i+3])
sage: v = K.fractional_ideal(2*i+3)
sage: EK.reduction(v)
Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Residue field of Fractional ideal (2*i + 3)
sage: EK.reduction(K.ideal(1+i))
Traceback (most recent call last):
 ... ValueError: The curve must have good reduction at the place.
sage: EK.reduction(K.ideal(2))
Traceback (most recent call last):
 ... ValueError: The ideal must be prime.
sage: K=QQ.extension(x^2+x+1,"a")
sage: E = EllipticCurve([1024*K.0,1024*K.0])
sage: E.reduction(2*K)
Elliptic Curve defined by y^2 + (abar+1)*y = x^3 over Residue field in abar of Fractional ideal (2)
```

**regulator_of_points** *(points=[], precision=None)*

Return the regulator of the given points on this curve.

**INPUT:**

- `points` - (default: empty list) a list of points on this curve
- `precision` - int or None (default: None): the precision in bits of the result (default real precision if None)

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a1')
sage: P = E(0,0)
sage: Q = E(1,0)
sage: E.regulator_of_points([P,Q])
0.000000000000000
sage: 2*P == Q
True
```
sage: E = EllipticCurve('5077a1')
sage: points = [E.lift_x(x) for x in [-2,-7/4,1]]
sage: E.regulator_of_points(points)
0.417143558758384
sage: E.regulator_of_points(points, precision=100)
0.41714355875838396981711954462

sage: E = EllipticCurve('389a')
sage: E.regulator_of_points()
1.00000000000000
sage: points = [P,Q] = [E(-1,1),E(0,-1)]
sage: E.regulator_of_points(points)
0.152460177943144
sage: E.regulator_of_points(points, precision=100)
0.15246017794314375162432475705
sage: E.regulator_of_points(points, precision=200)
0.152460177943143751624324757049455823243727077486643081784028
sage: E.regulator_of_points(points, precision=300)
0.

Examples over number fields:

sage: K.<a> = QuadraticField(97)
sage: E = EllipticCurve(K,[1,1])
sage: P = E(0,1)
sage: P.height()
0.476223106404866
sage: E.regulator_of_points([P])
0.476223106404866

sage: E = EllipticCurve('11a1')
sage: x = polygen(QQ)
sage: K.<t> = NumberField(x^2+47)
sage: EK = E.base_extend(K)
sage: T = EK(5,5)
sage: T.order()
5
sage: P = EK(-2, -1/2*t - 1/2)
sage: P.order()
+Infinity
sage: EK.regulator_of_points([P,T]) # random very small output
-1.23259516440783e-32
sage: EK.regulator_of_points([P,T]).abs() < 1e-30
True

sage: E = EllipticCurve('389a1')
sage: P,Q = E.gens()
sage: E.regulator_of_points([P,Q])
0.152460177943144
sage: K.<t> = NumberField(x^2+47)
sage: EK = E.base_extend(K)
sage: EK.regulator_of_points([EK(P),EK(Q)])
0.152460177943144

Chapter 10. Elliptic curves
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,i,i])
sage: P = E(-9+4*i,-18-25*i)
sage: Q = E(i,-i)
sage: E.height_pairing_matrix([P,Q])
[ 2.16941934493768 -0.870059380421505]
[-0.870059380421505 0.424585837470709]
sage: E.regulator_of_points([P,Q])
0.164101403936070

The following two inputs are optional, and may be provided to speed up the computation.

• lower_ht_bound (real, default None) – lower bound of the regulator \(E(K)\), if known.
• reg (real, default None), regulator of the span of points, if known.
• debug (int, default 0) – , used for debugging and testing.

OUTPUT:

• saturation (list) - points that form a basis for the saturation.
• index (int) - the index of the group generated by the input points in their saturation.
• regulator (real with default precision, or None) - regulator of saturated points.

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve('389a1')
sage: EK = E.change_ring(K)
sage: P = EK(-1,1); Q = EK(0,-1)
sage: EK.saturation([2*P], max_prime=2)
([(-1 : 1 : 1)], 2, 0.686667083305587)
sage: EK.saturation([12*P], max_prime=2)
([(-26/361 : -5720/6859 : 1)], 4, 6.18000374975028)
sage: EK.saturation([12*P], lower_ht_bound=0.1)
([(-1 : 1 : 1)], 12, 0.686667083305587)
sage: EK.saturation([2*P, Q], max_prime=2)
([(-1 : 1 : 1), (0 : -1 : 1)], 2, 0.152460177943144)
sage: EK.saturation([P+Q, P-Q], lower_ht_bound=.1, debug=2)
([(-1 : 1 : 1), (1 : 0 : 1)], 2, 0.152460177943144)
sage: EK.saturation([P+Q, 17*Q], lower_ht_bound=0.1)  # long time

(continues on next page)
Another number field:

```plaintext
type: E = EllipticCurve('389a1')
type: K.<a> = NumberField(x^3-x+1)
type: EK = E.change_ring(K)
type: P = EK(-1,1); Q = EK(0,-1)
type: EK.saturation([P+Q, P-Q], lower_ht_bound=0.1)
(((0 : 1 : 1), (1 : 0 : 1)), 2, 0.152460177943144)
type: EK.saturation([3*P, P+5*Q], lower_ht_bound=0.1)
(((0 : 0 : 1), (1/2*a : -1/4*a - 1/4 : 1)), 6, 0.0317814530725985)
```

A different curve:

```plaintext
type: K.<a> = QuadraticField(3)
type: E = EllipticCurve('37a1')
type: EK = E.change_ring(K)
type: P = EK(0,0); Q = EK(2-a,2*a-4)
type: EK.saturation([3*P-Q, 3*P+Q], lower_ht_bound=.01)
(((0 : 0 : 1), (1/2*a : -1/4*a - 1/4 : 1)), 6, 0.0317814530725985)
```

The points must be linearly independent:

```plaintext
type: EK.saturation([2*P, 3*Q, P-Q])
Traceback (most recent call last):
...
ValueError: points not linearly independent in saturation()
```

Degenerate case:

```plaintext
type: EK.saturation([[]])
(([]), 1, 1.00000000000000)
```

**ALGORITHM:**

For rank 1 subgroups, simply do trial division up to the maximal prime divisor. For higher rank subgroups, perform trial division on all linear combinations for small primes, and look for projections \( E(K) \rightarrow \oplus E(k) \otimes \mathbb{F}_p \) which are either full rank or provide \( p \)-divisible linear combinations, where the \( k \) here are residue fields of \( K \).

**simon_two_descent** (verbose=0, lim1=2, lim3=4, limtriv=2, maxprob=20, limbigprime=30, known_points=None)

Return lower and upper bounds on the rank of the Mordell-Weil group \( E(K) \) and a list of points.

This method is used internally by the `rank()`, `rank_bounds()` and `gens()` methods.
INPUT:
- **self** – an elliptic curve \( E \) over a number field \( K \)
- **verbose** – 0, 1, 2, or 3 (default: 0), the verbosity level
- **lim1** – (default: 2) limit on trivial points on quartics
- **lim3** – (default: 4) limit on points on ELS quartics
- **limtriv** – (default: 2) limit on trivial points on \( E \)
- **maxprob** – (default: 20)
- **limbigprime** – (default: 30) to distinguish between small and large prime numbers. Use probabilistic tests for large primes. If 0, do not use probabilistic tests.
- **known_points** – (default: None) list of known points on the curve

OUTPUT: a triple \((\text{lower}, \text{upper}, \text{list})\) consisting of
- **lower** (integer) – lower bound on the rank
- **upper** (integer) – upper bound on the rank
- **list** – list of points in \( E(K) \)

The integer \( \text{upper} \) is in fact an upper bound on the dimension of the 2-Selmer group, hence on the dimension of \( E(K)/2E(K) \). It is equal to the dimension of the 2-Selmer group except possibly if \( E(K)[2] \) has dimension 1. In that case, \( \text{upper} \) may exceed the dimension of the 2-Selmer group by an even number, due to the fact that the algorithm does not perform a second descent.

**Note:** For non-quadratic number fields, this code does return, but it takes a long time.

**ALGORITHM:**

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^2 + 23, 'a')
sage: E = EllipticCurve(K, '37')
sage: E == loads(dumps(E))
True
sage: E.simon_two_descent()
(2, 2, [(0 : 0 : 1), (1/8*a + 5/8 : -3/16*a - 7/16 : 1)])
sage: E.simon_two_descent(lim1=3, lim3=20, limtriv=5, maxprob=7, limbigprime=10)
(2, 2, [(-1 : 0 : 1), (-1/8*a + 5/8 : -3/16*a - 9/16 : 1)])
```

```python
sage: K.<a> = NumberField(x^2 + 7, 'a')
sage: E = EllipticCurve(K, [0,0,0,1,a]); E
Elliptic Curve defined by y^2 = x^3 + x + a over Number Field in a with defining polynomial x^2 + 7
sage: v = E.simon_two_descent(verbose=1); v
 elliptic curve: Y^2 = x^3 + x + a over Number Field in a with defining polynomial x^2 + 7
 Trivial points on the curve = [(1, 1, 0), [Mod(1/2*y + 3/2, y^2 + 7), Mod(y, y^2 + 7), Mod(-y^2 + 7, 1)]
 #S(E/K)[2] = 2
 #E(K)/2E(K) = 2
```

(continues on next page)
#III(E/K)[2] = 1
rank(E/K) = 1
listpoints = [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]]
(1, 1, [(1/2*a + 3/2 : -a - 2 : 1)])

sage: v = E.simon_two_descent(verbose=2)
K = bnfinit(y^2 + 7);
a = Mod(y,K.pol);
bnfellrank(K, [0, 0, 1, a], [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]]);
elliptic curve: Y^2 = x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)
A = Mod(0, y^2 + 7)
B = Mod(1, y^2 + 7)
C = Mod(y, y^2 + 7)
Computing L(S,2)
L(S,2) = [Mod(Mod(-1/2*y + 1/2, y^2 + 7)*x^2 + Mod(-1/2*y - 1/2, y^2 + 7)*x + Mod(y, y^2 + 7)),
Mod(x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)),
Mod(x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)),
Mod(x^2 + Mod(1/2*y + 1/2, y^2 + 7)*x - 1, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))]
Computing the Selmer group
#LS2gen = 2
LS2gen = [Mod(Mod(-1/2*y + 1/2, y^2 + 7)*x^2 + Mod(-1/2*y - 1/2, y^2 + 7)*x + Mod(y, y^2 + 7)),
Mod(x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))]
Search for trivial points on the curve
Trivial points on the curve = [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]], [1, 1, 0], [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]]
zc = Mod(Mod(-1/2*y + 1/2, y^2 + 7)*x^2 + Mod(-1/2*y - 1/2, y^2 + 7)*x + Mod(y, y^2 + 7))
Hilbert symbol (Mod(1, y^2 + 7),Mod(-2*y + 2, y^2 + 7)) =
sol of quadratic equation = [1, 1, 0]
zc*z1^2 = Mod(4*x + Mod(-2*y + 6, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))
quartic: (-1)*Y^2 = x^4 + (3*y - 9)*x^2 + (-8*y + 16)*x + (9/2*y - 11/2)
reduced: Y^2 = -x^4 + (-3*y + 9)*x^2 + (-8*y + 16)*x + (-9/2*y + 11/2)
not ELS at [2, [0, 1]], [1, 1, [1, -2; 1, 0]]
zc = Mod(Mod(1, y^2 + 7)*x^2 + Mod(1/2*y + 1/2, y^2 + 7)*x + Mod(-1, y^2 + 7))
comes from the trivial point [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]
m1 = 1
m2 = 1
#S(E/K)[2] = 2
#E(K)/2E(K) = 2
#III(E/K)[2] = 1
rank(E/K) = 1
listpoints = [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]]
v = [1, 1, [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]]]
sage: v
(1, 1, [(1/2*a + 3/2 : -a - 2 : 1)])
A curve with 2-torsion:

```python
sage: K.<a> = NumberField(x^2 + 7)
sage: E = EllipticCurve(K, '15a')
sage: E.simon_two_descent() # long time (3s on sage.math, 2013), points can vary
(1, 3, [...])
```

Check that the bug reported in trac ticket #15483 is fixed:

```python
sage: K.<s> = QuadraticField(229)
sage: c4 = 2173 - 235*(1 - s)/2
sage: c6 = -124369 + 15988*(1 - s)/2
sage: E = EllipticCurve([-c4/48, -c6/864])
sage: E.simon_two_descent()
(0, 0, [])
sage: R.<t> = QQ[]
sage: L.<g> = NumberField(t^3 - 9*t^2 + 13*t - 4)
sage: E1 = EllipticCurve(L,[1-g*(g-1),-g^2*(g-1),-g^2*(g-1),0,0])
sage: E1.rank() # long time (about 5 s)
0
sage: K = CyclotomicField(43).subfields(3)[0][0]
sage: E = EllipticCurve(K, '37')
sage: E.simon_two_descent() # long time (4s on sage.math, 2013)
(3, 3, [(0 : 0 : 1),
(-1/2*zeta43_0^2 - 1/2*zeta43_0 + 7 : -3/2*zeta43_0^2 - 5/2*zeta43_0 + 18 : ...])
```

tamagawa_exponent \((P, proof=None)\)

Return the Tamagawa index of this elliptic curve at the prime \(P\).

**INPUT:**

- \(P\) – either None or a prime ideal of the base field of self.
- \(proof\) – whether to only use provably correct methods (default controlled by global proof module).
  Note that the proof module is number_field, not elliptic_curves, since the functions that actually need
  the flag are in number fields.

**OUTPUT:**

(positive integer) The Tamagawa index of the curve at \(P\).

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
sage: [E.tamagawa_exponent(P) for P in E.discriminant().support()]
[1, 1, 1, 1]
sage: K.<a> = QuadraticField(-11)
sage: E = EllipticCurve('11a1').change_ring(K)
sage: [E.tamagawa_exponent(P) for P in K(11).support()]
[10]
```

tamagawa_number \((P, proof=None)\)

Return the Tamagawa number of this elliptic curve at the prime \(P\).
INPUT:

- \( P \) – either None or a prime ideal of the base field of self.
- \( \text{proof} \) – whether to only use provably correct methods (default controlled by global proof module). Note that the proof module is number_field, not elliptic_curves, since the functions that actually need the flag are in number fields.

OUTPUT:

(positive integer) The Tamagawa number of the curve at \( P \).

EXAMPLES:

```
sage: K.<a> = NumberField(x^2-5)
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
sage: [E.tamagawa_number(P) for P in E.discriminant().support()]
[1, 1, 1, 1]
sage: K.<a> = QuadraticField(-11)
sage: E = EllipticCurve('11a1').change_ring(K)
sage: [E.tamagawa_number(P) for P in K(11).support()]
[10]
```

tamagawa_numbers()

Return a list of all Tamagawa numbers for all prime divisors of the conductor (in order).

EXAMPLES:

```
sage: e = EllipticCurve('30a1')
sage: e.tamagawa_numbers()
[2, 3, 1]
sage: vector(e.tamagawa_numbers())
(2, 3, 1)
sage: K.<a> = NumberField(x^2+3)
sage: eK = e.base_extend(K)
sage: eK.tamagawa_numbers()
[4, 6, 1]
```

tamagawa_product_bsd()

Given an elliptic curve \( E \) over a number field \( K \), this function returns the integer \( C(E/K) \) that appears in the Birch and Swinnerton-Dyer conjecture accounting for the local information at finite places. If the model is a global minimal model then \( C(E/K) \) is simply the product of the Tamagawa numbers \( c_v \) where \( v \) runs over all prime ideals of \( K \). Otherwise, if the model has to be changed at a place \( v \) a correction factor appears. The definition is such that \( C(E/K) \) times the periods at the infinite places is invariant under change of the Weierstrass model. See [Tate1966] and [DD2010] for details.

Note: This definition is slightly different from the definition of tamagawa_product for curves defined over \( \mathbb{Q} \). Over the rational number it is always defined to be the product of the Tamagawa numbers, so the two definitions only agree when the model is global minimal.

OUTPUT:

A rational number

EXAMPLES:

```
sage: K.<i> = NumberField(x^2+1)
sage: e = EllipticCurve('30a1')
sage: e.tamagawa_numbers() # (continues on next page)
```
An example where the Neron model changes over $K$:

```python
sage: K.<t> = NumberField(x^5-10*x^3+5*x^2+10*x+1)
sage: E = EllipticCurve(K,'75a1')
sage: E.tamagawa_product_bsd()
5
sage: da = E.local_data()
sage: [dav.tamagawa_number() for dav in da]
[1, 1]
```

An example over $\mathbb{Q}$ (trac ticket #9413):

```python
sage: E = EllipticCurve('30a')
sage: E.tamagawa_product_bsd()
6
```

torsion_order()

Return the order of the torsion subgroup of this elliptic curve.

**OUTPUT:**

(integer) the order of the torsion subgroup of this elliptic curve.

**EXAMPLES:**

```python
sage: E = EllipticCurve('11a1')
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
sage: EK = E.base_extend(K)
sage: EK.torsion_order() # long time (2s on sage.math, 2014)
25
```

```python
sage: E = EllipticCurve('15a1')
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.base_extend(K)
sage: EK.torsion_order()
16
```

```python
sage: E = EllipticCurve('19a1')
sage: K.<t> = NumberField(x^9-3*x^8-4*x^7+16*x^6-3*x^5-21*x^4+5*x^3+7*x^2-
 7*x+1)
sage: EK = E.base_extend(K)
sage: EK.torsion_order()
9
```

```python
sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve([0,0,0,i,i+3])
sage: EK.torsion_order()
1
```
torsion_points()

Return a list of the torsion points of this elliptic curve.

OUTPUT:

(list) A sorted list of the torsion points.

EXAMPLES:

```
sage: E = EllipticCurve('11a1')
sage: E.torsion_points()
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1),
 (t : 1/11*t^3 + 6/11*t^2 + 19/11*t + 48/11 : 1),
 (-3/55*t^3 - 7/55*t^2 - 2/55*t - 133/55 : 6/55*t^3 + 3/55*t^2 + 25/11*t +
 156/55 : 1),
 (-9/121*t^3 - 21/121*t^2 - 127/121*t - 377/121 : -7/121*t^3 + 24/121*t^2 +
 197/121*t + 16/121 : 1),
 (5/121*t^3 - 14/121*t^2 - 158/121*t - 453/121 : -49/121*t^3 - 129/121*t^2 -
 315/121*t + 207/121 : 1),
 (10/121*t^3 + 49/121*t^2 + 168/121*t + 73/121 : 32/121*t^3 + 60/121*t^2 -
 261/121*t - 807/121 : 1),
 (1/11*t^3 - 5/11*t^2 + 19/11*t - 40/11 : -6/11*t^3 - 3/11*t^2 - 26/11*t -
 321/11 : 1),
 (14/121*t^3 - 15/121*t^2 + 90/121*t + 232/121 : 16/121*t^3 - 69/121*t^2 +
 293/121*t - 46/121 : 1),
 (-5/121*t^3 + 36/121*t^2 - 84/121*t + 24/121 : 34/121*t^3 - 27/121*t^2 + 305/
 121*t + 708/121 : 1),
 (-26/121*t^3 + 20/121*t^2 - 219/121*t + 995/121 : 15/121*t^3 + 156/121*t^2 -
 232/121*t + 2766/121 : 1),
 (1/11*t^3 - 5/11*t^2 + 19/11*t - 40/11 : 6/11*t^3 + 3/11*t^2 + 26/11*t + 310/
 11 : 1),
 (-26/121*t^3 + 20/121*t^2 - 219/121*t - 995/121 : -15/121*t^3 - 156/121*t^2 -
 232/121*t - 2887/121 : 1),
 (-5/121*t^3 + 36/121*t^2 - 84/121*t + 24/121 : -34/121*t^3 + 27/121*t^2 -
 305/121*t - 829/121 : 1),
 (3/55*t^3 + 7/55*t^2 + 2/55*t + 78/55 : -7/55*t^3 + 24/55*t^2 - 9/11*t - 72/55 : 1),
 (14/121*t^3 - 15/121*t^2 + 90/121*t + 232/121 : -16/121*t^3 + 69/121*t^2 -
 293/121*t - 75/121 : 1),
 (t : -1/11*t^3 - 6/11*t^2 - 19/11*t - 59/11 : 1),
 (10/121*t^3 + 49/121*t^2 + 168/121*t + 73/121 : -32/121*t^3 - 60/121*t^2 +
 261/121*t + 686/121 : 1),
 (5/121*t^3 - 14/121*t^2 - 158/121*t - 453/121 : 49/121*t^3 + 129/121*t^2 +
 315/121*t + 86/121 : 1),
 (-9/121*t^3 - 21/121*t^2 - 127/121*t - 377/121 : 7/121*t^3 - 24/121*t^2 -
 197/121*t + 137/121 : 1),
 (-3/55*t^3 - 7/55*t^2 - 2/55*t - 133/55 : -6/55*t^3 - 3/55*t^2 - 25/11*t -
 211/55 : 1)]```
```python
sage: E = EllipticCurve('15a1')
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.base_extend(K)
sage: EK.torsion_points()
[(-7 : -5*t - 2 : 1),
 (-7 : 5*t + 8 : 1),
 (-13/4 : 9/8 : 1),
 (-2 : -2 : 1),
 (-2 : 3 : 1),
 (-t - 2 : -t - 7 : 1),
 (-t - 2 : 2*t + 8 : 1),
 (-1 : 0 : 1),
 (t : t - 5 : 1),
 (t : -2*t + 4 : 1),
 (0 : 1 : 0),
 (1/2 : -5/4*t - 2 : 1),
 (1/2 : 5/4*t + 1/2 : 1),
 (3 : -2 : 1),
 (8 : -27 : 1),
 (8 : 18 : 1)]
sage: K.<i> = QuadraticField(-1)
sage: EK = EllipticCurve(K,[0,0,0,0,-1])
sage: EK.torsion_points()
[(-2 : -3*i : 1), (-2 : 3*i : 1), (0 : -i : 1), (0 : i : 1), (0 : 1 : 0), (1:
 ˓→ 0 : 1)]
```

torsion_subgroup()

Return the torsion subgroup of this elliptic curve.

OUTPUT:

(EllipticCurveTorsionSubgroup) The EllipticCurveTorsionSubgroup associated to this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve('11a1')
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
sage: EK = E.base_extend(K)
sage: tor = EK.torsion_subgroup()  # long time (2s on sage.math, 2014)
sage: tor  # long time
Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in t with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101
sage: tor.gens()  # long time
((16 : 60 : 1), (t : 1/11*t^3 + 6/11*t^2 + 19/11*t + 48/11 : 1))
```

```python
sage: E = EllipticCurve('15a1')
sage: K.<t> = NumberField(x^2 + 2*x + 10)
sage: EK = E.baseExtend(K)
sage: EK.torsion_subgroup()  # long time
Torsion Subgroup isomorphic to Z/4 + Z/4 associated to the Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + (-10)*x + (-10) over Number Field in t with defining polynomial x^2 + 2*x + 10
```

10.11. Elliptic curves over number fields
10.11.4 Canonical heights for elliptic curves over number fields

Also, rigorous lower bounds for the canonical height of non-torsion points, implementing the algorithms in \cite{CS} (over \(\mathbb{Q} \)) and \cite{TT}, which also refer to \cite{CPS}.

AUTHORS:

- Robert Bradshaw (2010): initial version
- John Cremona (2014): added many docstrings and doctests

REFERENCES:

class \texttt{sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight}(E)

Class for computing canonical heights of points on elliptic curves defined over number fields, including rigorous lower bounds for the canonical height of non-torsion points.

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.height import EllipticCurveCanonicalHeight	sage: E = EllipticCurve([0,0,0,0,1])	sage: EllipticCurveCanonicalHeight(E)
```

Normally this object would be created like this:

```
sage: E.height_function()
```

\(B(n, \mu) \)

Return the value \(B_n(\mu) \).

INPUT:

- \(n \) (int) - a positive integer
- \(\mu \) (real) - a positive real number

OUTPUT:

The real value \(B_n(\mu) \) as defined in \cite{TT}, section 5.
EXAMPLES:

Example 10.2 from [TT]:

```
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: H = E.height_function()
```

In [TT] the value is given as 0.772:

```
sage: RealField(12)( H.B(5, 0.01) )
0.777
```

$DE(n)$

Return the value $D_E(n)$.

INPUT:

- n (int) - a positive integer

OUTPUT:

The value $D_E(n)$ as defined in [TT], section 4.

EXAMPLES:

```
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: [H.DE(n) for n in srange(1,6)]
[0, 2*log(5) + 2*log(2), 0, 2*log(13) + 2*log(5) + 4*log(2), 0]
```

$ME()$

Return the norm of the ideal M_E.

OUTPUT:

The norm of the ideal M_E as defined in [TT], section 3.1. This is 1 if E is a global minimal model, and in general measures the non-minimality of E.

EXAMPLES:

```
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.ME()
1
sage: E = EllipticCurve([0,0,0,1])
sage: E.height_function().ME()
1
sage: E = EllipticCurve([0,0,0,64])
sage: E.height_function().ME()
4096
sage: E.discriminant()/E.minimal_model().discriminant()
4096
```

$S(\xi_1, \xi_2, v)$

Return the union of intervals $S^v(\xi_1, \xi_2)$.

INPUT:

- ξ_1, ξ_2 (real) - real numbers with $\xi_1 \leq \xi_2$.

10.11. Elliptic curves over number fields
• v (embedding) - a real embedding of the field.

OUTPUT:

The union of intervals $S(v)(\xi_1, \xi_2)$ defined in [TT] section 6.1.

EXAMPLES:

An example over \mathbb{Q}:

```python
sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: H = E.height_function()
sage: H.S(2,3,v)
((0.224512677391895, 0.274544821597130) U [0.725455178402870, 0.775487322608105])
```

An example over a number field:

```python
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
sage: H.S(9,10,v)
((0.0781194447253472, 0.0823423732016403) U [0.917657626798360, 0.921880555274653])
```

$S_n(x_1, x_2, n, v)$

Return the union of intervals $S_n(v)(\xi_1, \xi_2)$.

INPUT:

• x_1, x_2 (real) - real numbers with $\xi_1 \leq \xi_2$.
• n (integer) - a positive integer.
• v (embedding) - a real embedding of the field.

OUTPUT:

The union of intervals $S_n(v)(\xi_1, \xi_2)$ defined in [TT] (Lemma 6.1).

EXAMPLES:

An example over \mathbb{Q}:

```python
sage: E = EllipticCurve('389a')
sage: v = QQ.places()[0]
sage: H = E.height_function()
sage: H.Sn(2,3,6,v)
((0.0374187795653158, 0.0457574702661884) U [0.1290909196400478, 0.12947877101351] U [0.204854623198, 0.21242136932855] U [0.287575863067145, 0.295914553768017] U [0.370752112898649, 0.379090803599522] U [0.454242529733812, 0.462581220434684] U [0.537418779565316, 0.5457577470266188] U [0.6290909196400478, 0.62947877101351] U [0.70408544623198, 0.71242136932855] U [0.787575863067145, 0.795914553768017] U [0.870752112898649, 0.879090803599522] U [0.954242529733812, 0.962581220434684])
```
An example over a number field:

```python
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: H = E.height_function()
sage: H.S(2,3,v), H.Sn(2,3,1,v)
(([0.142172065860075, 0.172845716928584] U [0.827154283071416, 0.857827934139925]), ([0.142172065860075, 0.172845716928584] U [0.827154283071416, 0.857827934139925]))
sage: H.Sn(2,3,6,v)
([0.0236953443100124, 0.0288076194880974] U [0.137859047178569, 0.642971322356654] U [0.690362010976679, 0.971192380511903])
```

alpha(v, tol=0.01)

Return the constant \(\alpha_v \) associated to the embedding \(v \).

INPUT:

- \(v \) – an embedding of the base field into \(\mathbb{R} \) or \(\mathbb{C} \)

OUTPUT:

The constant \(\alpha_v \). In the notation of [CPS] (2006) and [TT] (section 3.2), \(\alpha_v^3 = \epsilon_v \). The result is cached since it only depends on the curve.

EXAMPLES:

Example 1 from [CPS] (2006):

```python
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: alpha = H.alpha(K.places()[0])
sage: alpha
1.12272013439355
```

Compare with \(\log(\epsilon_v) = 0.344562 \)...

```python
sage: 3*alpha.log()
0.347263296676126
```

base_field()

Return the base field.

EXAMPLES:

```python
sage: E = EllipticCurve([0,0,0,0,1])
sage: H = E.height_function()
sage: H.base_field()
Rational Field
```

complex_intersection_is_empty (Bk, v, verbose=False, use_half=True)

Returns True iff an intersection of \(T_n(v) \) sets is empty.
INPUT:

- \(B_k \) (list) - a list of reals.
- \(v \) (embedding) - a complex embedding of the number field.
- \(\text{verbose} \) (boolean, default False) - verbosity flag.
- \(\text{use_half} \) (boolean, default False) - if True, use only half the fundamental region.

OUTPUT:

True or False, according as the intersection of the unions of intervals \(T_n(\nu)(-b,b) \) for \(b \) in the list \(B_k \) (see [TT], section 7) is empty or not. When \(B_k \) is the list of \(b = \sqrt{B_n(\mu)} \) for \(n = 1, 2, 3, \ldots \) for some \(\mu > 0 \) this means that all non-torsion points on \(E \) with everywhere good reduction have canonical height strictly greater than \(\mu \), by [TT], Proposition 7.8.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.complex_embeddings()[0]
sage: H = E.height_function()

The following two lines prove that the heights of non-torsion points on \( E \) with everywhere good reduction have canonical height strictly greater than 0.02, but fail to prove the same for 0.03. For the first proof, using only \( n = 1, 2, 3 \) is not sufficient:

```
sage: H.complex_intersection_is_empty([H.B(n,0.02) for n in [1,2,3]],v) # long time (~6s)
False
sage: H.complex_intersection_is_empty([H.B(n,0.02) for n in [1,2,3,4]],v)
True
sage: H.complex_intersection_is_empty([H.B(n,0.03) for n in [1,2,3,4]],v) # long time (4s)
False
```

Using \( n \leq 6 \) enables us to prove the lower bound 0.03. Note that it takes longer when the result is False than when it is True:

```
sage: H.complex_intersection_is_empty([H.B(n,0.03) for n in [1..6]],v)
True
```

curve()

Return the elliptic curve.

EXAMPLES:

```
sage: E = EllipticCurve([0,0,0,0,1])
sage: H = E.height_function()
sage: H.curve()
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
```

e_p(p)

Return the exponent of the group over the residue field at \( p \).

INPUT:

- \( p \) - a prime ideal of \( K \) (or a prime number if \( K = \mathbb{Q} \)).

OUTPUT:
A positive integer $e_p$, the exponent of the group of nonsingular points on the reduction of the elliptic curve modulo $p$. The result is cached.

**EXAMPLES:**

```python
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.e_p(K.prime_above(2))
2
sage: H.e_p(K.prime_above(3))
10
sage: H.e_p(K.prime_above(5))
9
sage: E.conductor().norm().factor()
2^10 * 20921
sage: p1, p2 = K.primes_above(20921)
sage: E.local_data(p1)
Local data at Fractional ideal (-40*i + 139):
Reduction type: bad split multiplicative ...
sage: H.e_p(p1)
20920
sage: E.local_data(p2)
Local data at Fractional ideal (40*i + 139):
Reduction type: good ...
sage: H.e_p(p2)
20815
```

**fk_intervals** ($v=None, N=20, domain=Complex Interval Field with 53 bits of precision$)

Return a function approximating the Weierstrass function, with error.

**INPUT:**

- $v$ (embedding) - an embedding of the number field. If None (default) use the real embedding if the field is $\mathbb{Q}$ and raise an error for other fields.
- $N$ (int) - The number of terms to use in the $q$-expansion of $\wp$.
- $domain$ (complex field) - the model of $\mathbb{C}$ to use, for example CDF of CIF (default).

**OUTPUT:**

A pair of functions $\mathbf{f_k}$, $\mathbf{err}$ which can be evaluated at complex numbers $z$ (in the correct $domain$) to give an approximation to $\wp(z)$ and an upper bound on the error, respectively. The Weierstrass function returned is with respect to the normalised lattice $[1, \tau]$ associated to the given embedding.

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: w1, w2 = L.normalised_basis()
sage: z = CDF(0.3, 0.4)
Compare the value give by the standard elliptic exponential (scaled since $\mathbf{f_k}$ is with respect to the normalised lattice):

```
to the value given by this function, and see the error:

```python
sage: fk, err = E.height_function().fk_intervals(N=10)
sage: fk(CIF(z))
-1.82543539306049? - 2.49336319992847?*I
sage: err(CIF(z))
2.71750621458744e-31
```

The same, but in the domain `CDF` instead of `CIF`:

```python
sage: fk, err = E.height_function().fk_intervals(N=10, domain=CDF)
sage: fk(z)
-1.8254353930604... - 2.493363199928...*I
```

```python
min(tol, n_max, verbose=False)
```

Returns a lower bound for all points of infinite order.

**INPUT:**

- `tol` - tolerance in output (see below).
- `n_max` - how many multiples to use in iteration.
- `verbose` (boolean, default False) - verbosity flag.

**OUTPUT:**

A positive real $\mu$ for which it has been established rigorously that every point of infinite order on the elliptic curve (defined over its ground field) has canonical height greater than $\mu$, and such that it is not possible (at least without increasing $n_{\text{max}}$) to prove the same for $\mu \cdot \text{tol}$.

**EXAMPLES:**

Example 1 from [CS] (where the same lower bound of 0.1126 was given):

```python
sage: E = EllipticCurve([1, 0, 1, 421152067, 105484554028056])
60490d1
sage: E.height_function().min(.0001, 5)
0.0011263287309893311
```

Example 10.1 from [TT] (where a lower bound of 0.18 was given):

```python
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,91-26*i,-144-323*i])
sage: H = E.height_function()
```

```python
sage: H.min(0.1,4) # long time (8.1s)
0.1621049443313762
```

Example 10.2 from [TT]:

```python
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,1-i,i,-i,0])
sage: H = E.height_function()
```

```python
sage: H.min(0.01,5) # long time (4s)
0.020153685521979152
```

In this example the point $P = (0, 0)$ has height 0.023 so our lower bound is quite good:

```python
sage: P = E((0,0))
sage: P.height()
0.0230242154471211
```
Example 10.3 from [TT] (where the same bound of 0.0625 is given):

```python
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,-3*a-a^2,a^2])
sage: H = E.height_function()
sage: H.min(0.1,5) # long time (7s)
0.0625
```

More examples over Q:

```python
sage: E = EllipticCurve('37a')
sage: h = E.height_function()
sage: h.min(.01, 5)
0.03987318057488725
sage: E.gen(0).height()
0.0511114082399688
```

After base change the lower bound can decrease:

```python
sage: K.<a> = QuadraticField(-5)
sage: E.change_ring(K).height_function().min(0.5, 10) # long time (8s)
0.04419417382415922
sage: E = EllipticCurve('389a')
sage: h = E.height_function()
sage: h.min(0.1, 5)
0.05731275270029196
sage: [P.height() for P in E.gens()]
[0.686667083305587, 0.327000773651605]
```

`min_gr` (tol, n_max, verbose=False)

Returns a lower bound for points of infinite order with good reduction.

**INPUT:**

- `tol` - tolerance in output (see below).
- `n_max` - how many multiples to use in iteration.
- `verbose` (boolean, default False) - verbosity flag.

**OUTPUT:**

A positive real \( \mu \) for which it has been established rigorously that every point of infinite order on the elliptic curve (defined over its ground field), which has good reduction at all primes, has canonical height greater than \( \mu \), and such that it is not possible (at least without increasing \( n_{\text{max}} \)) to prove the same for \( \mu \cdot \text{tol} \).

**EXAMPLES:**

Example 1 from [CS] (where a lower bound of 1.9865 was given):

```python
sage: E = EllipticCurve([1, 0, 1, 421152067, 105484554028056]) # 60490d1
sage: E.height_function().min_gr(.0001, 5)
1.98684388146518
```

Example 10.1 from [TT] (where a lower bound of 0.18 was given):

```python
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,91-26*i,-144-323*i])
sage: H = E.height_function()
(continues on next page)
```
Example 10.2 from [TT]:

\[
\text{sage: } K.<i> = QuadraticField(-1) \\
\text{sage: } E = EllipticCurve([0,1-i,i,-i,0]) \\
\text{sage: } H = E.height_function() \\
\text{sage: } H.min_gr(0.01, 5) # long time \\
\]

0.020153685521979152

In this example the point \(P = (0, 0)\) has height 0.023 so our lower bound is quite good:

\[
\text{sage: } P = E((0,0)) \\
\text{sage: } P.has_good_reduction() \\
\text{sage: } P.height() \\
\]

True

0.0230242154471211

Example 10.3 from [TT] (where the same bound of 0.25 is given):

\[
\text{sage: } K.<a> = NumberField(x^3-2) \\
\text{sage: } E = EllipticCurve([0,0,0,-3*a-a^2,a^2]) \\
\text{sage: } H = E.height_function() \\
\text{sage: } H.min_gr(0.1,5) # long time (7.2s) \\
\]

0.25

**\(psi(x, v)\)**

Return the normalised elliptic log of a point with this x-coordinate.

**INPUT:**

- \(x\) (real) - the real x-coordinate of a point on the curve in the connected component with respect to a real embedding.
- \(v\) (embedding) - a real embedding of the number field.

**OUTPUT:**

A real number in the interval [0.5,1] giving the elliptic logarithm of a point on \(E\) with \(x\)-coordinate \(x\), on the connected component with respect to the embedding \(v\), scaled by the real period.

**EXAMPLES:**

An example over \(\mathbb{Q}\):

\[
\text{sage: } E = EllipticCurve('389a') \\
\text{sage: } v = QQ.places()[0] \\
\text{sage: } L = E.period_lattice(v) \\
\text{sage: } P = E.lift_x(10/9) \\
\text{sage: } L(P) \\
\text{sage: } L(P) / L.real_period() \\
\text{sage: } H = E.height_function() \\
\text{sage: } H.psi(10/9,v) \\
\]

1.53151606047462

0.615014189772115

An example over a number field:
```sage
K.<a> = NumberField(x^3-2)
E = EllipticCurve([0,0,0,0,a])
P = E.lift_x(1/3*a^2 + a + 5/3)
v = K.real_places()[0]
L = E.period_lattice(v)
L(P)
3.51086196882538
L(P) / L.real_period()
0.867385122699931
xP = v(P.xy()[0])
H = E.height_function()
H.psi(xP,v)
0.867385122699931
H.psi(1.23,v)
0.78584718241495
```

**real_intersection_is_empty** $(B_k, v)$

Returns True iff an intersection of $S_n^{(v)}$ sets is empty.

**INPUT:**

- $B_k$ (list) - a list of reals.
- $v$ (embedding) - a real embedding of the number field.

**OUTPUT:**

True or False, according as the intersection of the unions of intervals $S_n^{(v)}(-b, b)$ for $b$ in the list $B_k$ is empty or not. When $B_k$ is the list of $b = B_n(\mu)$ for $n = 1, 2, 3, \ldots$ for some $\mu > 0$ this means that all non-torsion points on $E$ with everywhere good reduction have canonical height strictly greater than $\mu$, by [TT], Proposition 6.2.

**EXAMPLES:**

An example over $\mathbb{Q}$:

```sage
E = EllipticCurve('389a')
v = QQ.places()[0]
H = E.height_function()
```

The following two lines prove that the heights of non-torsion points on $E$ with everywhere good reduction have canonical height strictly greater than 0.2, but fail to prove the same for 0.3:

```sage
H.real_intersection_is_empty([H.B(n,0.2) for n in srange(1,10)],v)
True
H.real_intersection_is_empty([H.B(n,0.3) for n in srange(1,10)],v)
False
```

An example over a number field:

```sage
K.<a> = NumberField(x^3-2)
E = EllipticCurve([0,0,0,0,a])
v = K.real_places()[0]
H = E.height_function()
```

The following two lines prove that the heights of non-torsion points on $E$ with everywhere good reduction have canonical height strictly greater than 0.07, but fail to prove the same for 0.08:
tau(v)
Return the normalised upper half-plane parameter τ for the period lattice with respect to the embedding v.

**INPUT:**

- v (embedding) - a real or complex embedding of the number field.

**OUTPUT:**

(Complex) $\tau = \omega_1/\omega_2$ in the fundamental region of the upper half-plane.

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: H.tau(QQ.places()[0])
1.22112736076463*I
```

**test_mu(mu, N, verbose=True)**

Return True if we can prove that $\mu$ is a lower bound.

**INPUT:**

- mu (real) - a positive real number
- N (integer) - upper bound on the multiples to be used.
- verbose (boolean, default True) - verbosity flag.

**OUTPUT:**

True or False, according to whether we succeed in proving that $\mu$ is a lower bound for the canonical heights of points of infinite order with everywhere good reduction.

**Note:** A True result is rigorous; False only means that the attempt failed: trying again with larger N may yield True.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: H = E.height_function()
sage: H.tau(QQ.places()[0])
1.22112736076463*I
```

This curve does have a point of good reduction whose canonical point is approximately 1.68:

```python
sage: P = E.gens(lim3=5)[0]; P
(1/3*a^2 + a + 5/3 : -2*a^2 - 4/3*a - 5/3 : 1)
sage: P.height()
1.68038085233673
sage: P.has_good_reduction()
True
```

Using $N = 5$ we can prove that 0.1 is a lower bound (in fact we only need $N = 2$), but not that 0.2 is:
Since 0.1 is a lower bound we can deduce that the point $P$ is either primitive or divisible by either 2 or 3. In fact it is primitive:

```python
sage: (P.height() / 0.1).sqrt()
4.09924487233530
sage: P.division_points(2)
[]
sage: P.division_points(3)
[]
```

### $wp_c(v)$

Return a bound for the Weierstrass $\wp$-function.

**INPUT:**

- $v$ (embedding) - a real or complex embedding of the number field.

**OUTPUT:**

(Real) $c > 0$ such that

$$|\wp(z) - z^{-2}| \leq \frac{c^2|z|^2}{1 - c|z|^2}$$

whenever $c|z|^2 < 1$. Given the recurrence relations for the Laurent series expansion of $\wp$, it is easy to see that there is such a constant $c$. [Reference?]

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: H.wp_c(QQ.places()[0])
2.68744508779950
sage: K.<i>=QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,1+5*i,3+i])
sage: H = E.height_function()
sage: H.wp_c(K.places()[0])
2.66213425640096
```

### $wp_intervals(v=None, N=20, abs_only=False)$

Return a function approximating the Weierstrass function.

**INPUT:**

- $v$ (embedding) - an embedding of the number field. If None (default) use the real embedding if the field is $\mathbb{Q}$ and raise an error for other fields.
- $N$ (int, default 20) - The number of terms to use in the $q$-expansion of $\wp$.
• **abs_only** (boolean, default False) - flag to determine whether (if True) the error adjustment should use the absolute value or (if False) the real and imaginary parts.

**OUTPUT:**

A function \( wp \) which can be evaluated at complex numbers \( z \) to give an approximation to \( \wp(z) \). The Weierstrass function returned is with respect to the normalised lattice \([1, \tau]\) associated to the given embedding. For \( z \) which are not near a lattice point the function \( f_k \) is used, otherwise a better approximation is used.

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a')
sage: wp = E.height_function().wp_intervals()
sage: z = CDF(0.3, 0.4)
sage: wp(CIF(z))
-1.82543539306049? - 2.4933631999285?*I

sage: L = E.period_lattice()
sage: w1, w2 = L.normalised_basis()
sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2^2
-1.82543539306049 - 2.49336319992847*I

sage: z = CDF(0.3, 0.1)
sage: wp(CIF(z))
8.5918243572165? - 5.4751982004351?*I

sage: L.elliptic_exponential(z*w2, to_curve=False)[0] * w2^2
8.59182435721650 - 5.47519820043503*I
```

**wp_on_grid** \((v, N, half=False)\)

Return an array of the values of \( \wp \) on an \( N \times N \) grid.

**INPUT:**

• **v** (embedding) - an embedding of the number field.
• **N** (int) - The number of terms to use in the \( q \)-expansion of \( \wp \).
• **half** (boolean, default False) - if True, use an array of size \( N \times N/2 \) instead of \( N \times N \).

**OUTPUT:**

An array of size either \( N \times N/2 \) or \( N \times N \) whose \((i, j)\) entry is the value of the Weierstrass \( \wp \)-function at \((i+.5)/N + (j+.5) * \tau/N\), a grid of points in the fundamental region for the lattice \([1, \tau]\).

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a')
sage: H = E.height_function()
sage: v = QQ.places()[0]

The array of values on the grid shows symmetry, since \(\wp \) is even:

```python
sage: H.wp_on_grid(v, 4)
array([[25.43920182, 5.28760943, 5.28760943, 25.43920182],
       [ 6.05099485, 1.83757786, 1.83757786, 6.05099485],
       [ 6.05099485, 1.83757786, 1.83757786, 6.05099485],
       [25.43920182, 5.28760943, 5.28760943, 25.43920182]])
```

The array of values on the half-grid:

```python
sage: H.wp_on_grid(v, 4, half=True)
array([[25.43920182, 5.28760943, 5.28760943, 25.43920182],
       [ 6.05099485, 1.83757786, 1.83757786, 6.05099485],
       [ 6.05099485, 1.83757786, 1.83757786, 6.05099485],
       [25.43920182, 5.28760943, 5.28760943, 25.43920182]])
```
class sage.schemes.elliptic_curves.height.UnionOfIntervals (endpoints)
A class representing a finite union of closed intervals in \(\mathbb{R} \) which can be scaled, shifted, intersected, etc.

The intervals are represented as an ordered list of their endpoints, which may include \(-\infty\) and \(+\infty\).

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: R = UnionOfIntervals([1,2,3,infinity]); R
([1, 2] U [3, +Infinity])
sage: R + 5
([6, 7] U [8, +Infinity])
sage: ~R
([-Infinity, 1] U [2, 3])
sage: ~R | (10*R + 100)
([-Infinity, 1] U [2, 3] U [110, 120] U [130, +Infinity])
```

Todo: Unify `UnionOfIntervals` with the class `RealSet` introduced by trac ticket #13125; see trac ticket #16063.

```
finite_endpoints ()
Returns the finite endpoints of this union of intervals.

EXAMPLES:
```
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals([0,1]).finite_endpoints()
[0, 1]
sage: UnionOfIntervals([-infinity, 0, 1, infinity]).finite_endpoints()
[0, 1]
```

classmethod intersection (L)
Return the intersection of a list of `UnionOfIntervals`.

INPUT:

- L (list) – a list of `UnionOfIntervals` instances

OUTPUT:

A new `UnionOfIntervals` instance representing the intersection of the `UnionOfIntervals` in the list.

Note: This is a class method.

EXAMPLES:
```
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([[1,3,5,7]]); A
([1, 3] U [5, 7])
sage: B = A+1; B
```

(continues on next page)
intervals()

Retruns the intervals in self, as a list of 2-tuples.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals(list(range(10))).intervals()
[(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)]
sage: UnionOfIntervals([-infinity, pi, 17, infinity]).intervals()
[(-Infinity, pi), (17, +Infinity)]
```

is_empty()

Returns whether self is empty.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: UnionOfIntervals([3,4]).is_empty()
False
sage: all = UnionOfIntervals([-infinity, infinity])
```

```python
sage: all.is_empty()
False
sage: (~all).is_empty()
True
sage: A = UnionOfIntervals([0,1]) & UnionOfIntervals([2,3])
sage: A.is_empty()
True
```

static join(L, condition)

Utility function to form the union or intersection of a list of UnionOfIntervals.

INPUT:

- `L` (list) – a list of UnionOfIntervals instances
- `condition` (function) – either `any` or `all`, or some other boolean function of a list of boolean values.

OUTPUT:

A new UnionOfIntervals instance representing the subset of ‘RR’ equal to those reals in any/all/condition of the UnionOfIntervals in the list.

Note: This is a static method for the class.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A+1; B
([2, 4] U [6, 8])
sage: A.join([A,B],any) # union
```

```python
([2, 4] U [6, 8])
sage: A.intersection([A,B])
([2, 3] U [6, 7])
```
(continued from previous page)

```python
((1, 4] U [5, 8])
sage: A.join([A,B], all) # intersection
([2, 3] U [6, 7])
sage: A.join([A,B], sum) # symmetric difference
([1, 2] U [3, 4] U [5, 6] U [7, 8])
```

**classmethod union(L)**

Return the union of a list of UnionOfIntervals.

**INPUT:**

- L (list) – a list of UnionOfIntervals instances

**OUTPUT:**

A new UnionOfIntervals instance representing the union of the UnionOfIntervals in the list.

**Note:** This is a class method.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.height import UnionOfIntervals
sage: A = UnionOfIntervals([1,3,5,7]); A
([1, 3] U [5, 7])
sage: B = A+1; B
([2, 4] U [6, 8])
sage: A.union([A,B])
([1, 4] U [5, 8])
```

`sage.schemes.elliptic_curves.height.\texttt{eps}(err, is\_real)`

Return a Real or Complex interval centered on 0 with radius err.

**INPUT:**

- err (real) – a positive real number, the radius of the interval
- is_real (boolean) – if True, returns a real interval in RIF, else a complex interval in CIF

**OUTPUT:**

An element of RIF or CIF (as specified), centered on 0, with given radius.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.height import eps
sage: eps(0.01, True)
0.0?
sage: eps(0.01, False)
0.0? + 0.0?*I
```

`sage.schemes.elliptic_curves.height.\texttt{inf\_max\_abs}(f, g, D)`

Returns \(\inf_D(\max(|f|, |g|))\).

**INPUT:**

- f, g (polynomials) – real univariate polynomials
- D (UnionOfIntervals) – a subset of \(\mathbb{R}\)
A real number approximating the value of \( \inf_D(\max(|f|, |g|)) \).

**ALGORITHM:**

The extreme values must occur at an endpoint of a subinterval of \( D \) or at a point where one of \( f, f', g, g', f \pm g \) is zero.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.height import inf_max_abs,
 → UnionOfIntervals
sage: x = polygen(RR)
sage: f = (x-10)^4+1
sage: g = 2*x^3+100
sage: inf_max_abs(f,g,UnionOfIntervals([1,2,3,4,5,6]))
425.638201706391
sage: r0 = (f-g).roots()[0][0]
sage: r0
5.46053402234697
sage: max(abs(f(r0)),abs(g(r0)))
425.638201706391
```

\[ \text{sage.schemes.elliptic_curves.height.min_on_disk}(f, tol, max_iter=10000) \]

Returns the minimum of a real-valued complex function on a square.

**INPUT:**

- \( f \) – a function from CIF to RIF
- \( \text{tol} \) (real) – a positive real number
- \( \text{maxIter} \) (integer, default 10000) – a positive integer bounding the number of iterations to be used

**OUTPUT:**

A 2-tuple \((s, t)\), where \( t = f(s) \) and \( s \) is a CIF element contained in the disk \(|z| \leq 1\), at which \( f \) takes its minimum value.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.height import min_on_disk
sage: f = lambda x: (x^2+100).abs()
sage: s, t = min_on_disk(f, 0.0001)
sage: s, f(s), t
(0.01? + 1.00?*I, 99.01?, 99.0000000000000)
```

\[ \text{sage.schemes.elliptic_curves.height.nonneg_region}(f) \]

Returns the UnionOfIntervals representing the region where \( f \) is non-negative.

**INPUT:**

- \( f \) (polynomial) – a univariate polynomial over \( \mathbb{R} \).

**OUTPUT:**

A UnionOfIntervals representing the set \( \{x \in \mathbb{R} | \text{mid}(x) \geq 0\} \).

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.height import nonneg_region
sage: x = polygen(RR)
```

(continues on next page)
sage: nonneg_region(x^2-1)
([-Infinity, -1.00000000000000] U [1.00000000000000, +Infinity])
sage: nonneg_region(1-x^2)
([-1.00000000000000, 1.00000000000000])
sage: nonneg_region(1-x^3)
([-Infinity, 1.00000000000000])
sage: nonneg_region(x^3-1)
([1.00000000000000, +Infinity])
sage: nonneg_region((x-1)*(x-2))
([-Infinity, 1.00000000000000] U [2.00000000000000, +Infinity])
sage: nonneg_region(-(x-1)*(x-2))
([1.00000000000000, 2.00000000000000] U [3.00000000000000, +Infinity])
sage: nonneg_region((x-1)*(x-2)*(x-3))
([-Infinity, 1.00000000000000] U [2.00000000000000, 3.00000000000000])
sage: nonneg_region(x^4+1)
([-Infinity, +Infinity])
sage: nonneg_region(-x^4-1)
()
sage.schemes.elliptic_curves.height.rat_term_CIF(z, try_strict=True)
Compute the value of $u/(1 - u^2)$ in CIF, where $u = \exp(2\pi i z)$.

INPUT:
- z (complex) – a CIF element
- try_strict (bool) – flag

EXAMPLES:

sage: from sage.schemes.elliptic_curves.height import rat_term_CIF
sage: z = CIF(0.5,0.2)
sage: rat_term_CIF(z)
-0.172467461182437? + 0.?e-16*I
sage: rat_term_CIF(z, False)
-0.172467461182437? + 0.?e-16*I

10.11.5 Saturation of Mordell-Weil groups of elliptic curves over number fields

Points $P_1, \ldots, P_r$ in $E(K)$, where $E$ is an elliptic curve over a number field $K$, are said to be $p$-saturated if no linear combination $\sum n_i P_i$ is divisible by $p$ in $E(K)$ except trivially when all $n_i$ are multiples of $p$. The points are said to be saturated if they are $p$-saturated at all primes; this is always true for all but finitely many primes since $E(K)$ is a finitely-generated Abelian group.

The process of $p$-saturating a given set of points is implemented here. The naive algorithm simply checks all $(p^r - 1)/(p - 1)$ projective combinations of the points, testing each to see if it can be divided by $p$. If this occurs then we replace one of the points and continue. The function $p\_saturation()$ does one step of this, while $full\_p\_saturation()$ repeats until the points are $p$-saturated. A more sophisticated algorithm for $p$-saturation is implemented which is much more efficient for large $p$ and $r$, and involves computing the reduction of the points modulo auxiliary primes to obtain linear conditions modulo $p$ which must be satisfied by the coefficients $a_i$ of any nontrivial relation. When the points are already $p$-saturated this sieving technique can prove their saturation quickly.

The method $saturation()$ of the class EllipticCurve_number_field applies full $p$-saturation at any given set of primes, or can compute a bound on the primes $p$ at which the given points may not be $p$-saturated. This involves
computing a lower bound for the canonical height of points of infinite order, together with estimates from the geometry of numbers.

AUTHORS:

- Robert Bradshaw
- John Cremona

sage.schemes.elliptic_curves.saturation.full_p_saturation(Plist, p, lin_combs={}, verbose=False)

Full $p$-saturation of Plist.

INPUT:

- Plist (list) - a list of independent points on one elliptic curve.
- p (integer) - a prime number.
- lin_combs (dict, default null) - a dict, possibly empty, with keys coefficient tuples and values the corresponding linear combinations of the points in Plist.

OUTPUT:

(newPlist, exponent) where newPlist has the same length as Plist and spans the $p$-saturation of the span of Plist, which contains that span with index $p**exponent$.

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.saturation import full_p_saturation
sage: E = EllipticCurve('389a')
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)
sage: P = EK(1+i,-1-2*i)
sage: full_p_saturation([8*P],2,verbose=True)
--starting full 2-saturation
Points were not 2-saturated, exponent was 3
([(i + 1 : -2*i - 1 : 1)], 3)
sage: Q = EK(0,0)
sage: R = EK(-1,1)
sage: full_p_saturation([P,Q,R],3)
([(i + 1 : -2*i - 1 : 1), (0 : 0 : 1), (-1 : 1 : 1)], 0)
```

An example where the points are not 7-saturated and we gain index exponent 1. Running this example with verbose=True shows that it uses the code for when the reduction has p-rank 2 (which occurs for the reduction modulo $(16 - 5i)$), which uses the Weil pairing:

```
sage: full_p_saturation([P,Q+3*R,Q-4*R],7)
([(i + 1 : -2*i - 1 : 1),
 (2869/676 : 154413/17576 : 1),
 (-7095/502681 : -366258864/356400829 : 1)], 1)
```

sage.schemes.elliptic_curves.saturation.p_saturation(Plist, p, sieve=True, lin_combs={}, verbose=False)

Checks whether the list of points is $p$-saturated.

INPUT:

- Plist (list) - a list of independent points on one elliptic curve.
- p (integer) - a prime number.
• **sieve** (boolean) - if True, use a sieve (when there are at least 2 points); otherwise test all combinations.

• **lin_combs** (dict) - a dict, possibly empty, with keys coefficient tuples and values the corresponding linear combinations of the points in 
Plist.

**Note:** The sieve is much more efficient when the points are saturated and the number of points or the prime are large.

**OUTPUT:**

Either (True, lin_combs) if the points are \( p \)-saturated, or (False, i, newP) if they are not \( p \)-saturated, in which case after replacing the \( i \)’th point with newP, the subgroup generated contains that generated by Plist with index \( p \). Note that while proving the points \( p \)-saturated, the lin_combs dict may have been enlarged, so is returned.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.saturation import p_saturation
sage: E = EllipticCurve('389a')
sage: K.<i> = QuadraticField(-1)
sage: EK = E.change_ring(K)
sage: P = EK(1+i,-1-2*i)
sage: p_saturation([P],2)
(True, {})
sage: p_saturation([2*P],2)
(False, 0, (i + 1 : -2*i - 1 : 1))
sage: Q = EK(0,0)
sage: R = EK(-1,1)
sage: p_saturation([P,Q,R],3)
(True, {})
```

Here we see an example where 19-saturation is proved, with the verbose flag set to True so that we can see what is going on:

```python
sage: p_saturation([P,Q,R],19, verbose=True)
Using sieve method to saturate...
There is 19-torsion modulo Fractional ideal (i + 14), projecting points
--> [(184 : 27 : 1), (0 : 0 : 1), (196 : 1 : 1)]
--rank is now 1
There is 19-torsion modulo Fractional ideal (i - 14), projecting points
--> [(15 : 168 : 1), (0 : 0 : 1), (196 : 1 : 1)]
--rank is now 2
There is 19-torsion modulo Fractional ideal (-2*i + 17), projecting points
--> [(156 : 275 : 1), (0 : 0 : 1), (292 : 1 : 1)]
--rank is now 3
Reached full rank: points were 19-saturated
(True, {})
```

An example where the points are not 11-saturated:

```python
sage: res = p_saturation([P+5*Q,P-6*Q,R],11); res
(False, 0, (-5783311/14600041*i + 1396143/14600041 : 37679338314/55786756661*i + 3813624227/
----------> 55786756661 : 1))
```
That means that the 0'th point may be replaced by the displayed point to achieve an index gain of 11:

```python
sage: p_saturation([res[2], P-6*Q, R], 11)
(True, {})
```

### 10.11.6 Torsion subgroups of elliptic curves over number fields (including $Q$)

**AUTHORS:**

- Nick Alexander: original implementation over $Q$
- Chris Wuthrich: original implementation over number fields
- John Cremona: rewrote p-primary part to use division polynomials, added some features, unified Number Field and $Q$ code.

```python
class sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup(E):
 Bases: sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper

The torsion subgroup of an elliptic curve over a number field.
```

**EXAMPLES:**

Examples over $Q$:

```python
sage: E = EllipticCurve([-4, 0]); E
Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field
sage: G = E.torsion_subgroup(); G
Torsion Subgroup isomorphic to Z/2 + Z/2 associated to the Elliptic Curve defined by y^2 = x^3 - 4*x over Rational Field
sage: G.order()
4
sage: G.gen(0)
(-2 : 0 : 1)
sage: G.gen(1)
(0 : 0 : 1)
sage: G.ngens()
2
```

```python
sage: E = EllipticCurve([17, -120, -60, 0, 0]); E
Elliptic Curve defined by y^2 + 17*x*y - 60*y = x^3 - 120*x^2 over Rational Field
sage: G = E.torsion_subgroup(); G
Torsion Subgroup isomorphic to Trivial group associated to the Elliptic Curve defined by y^2 + 17*x*y - 60*y = x^3 - 120*x^2 over Rational Field
sage: G.gens()
()
```

Constructing points from the torsion subgroup:

```python
sage: E = EllipticCurve('14a1')
sage: T = E.torsion_subgroup()
sage: [E(t) for t in T]
(continues on next page)
An example where the torsion subgroup is not cyclic:

```python
sage: E = EllipticCurve([0,0,0,-49,0])
sage: T = E.torsion_subgroup()
sage: [E(t) for t in T]
[(0 : 1 : 0), (-7 : 0 : 1), (0 : 0 : 1), (7 : 0 : 1)]
```

An example where the torsion subgroup is trivial:

```python
sage: E = EllipticCurve('37a1')
sage: T = E.torsion_subgroup()
sage: T
Torsion Subgroup isomorphic to Trivial group associated to the Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: [E(t) for t in T]
[(0 : 1 : 0)]
```

Examples over other Number Fields:

```python
sage: E = EllipticCurve('11a1')
sage: K.<i> = NumberField(x^2+1)
sage: EK = E.change_ring(K)
sage: from sage.schemes.elliptic_curves.ell_torsion import EllipticCurveTorsionSubgroup
sage: EllipticCurveTorsionSubgroup(EK)
Torsion Subgroup isomorphic to Z/5 associated to the Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in i with defining polynomial x^2 + 1
sage: E = EllipticCurve('11a1')
sage: K.<i> = NumberField(x^2+1)
sage: EK = E.change_ring(K)
sage: T = EK.torsion_subgroup()
sage: T.ngens()
1
sage: T.gen(0)
(5 : -6 : 1)
```

Note: this class is normally constructed indirectly as follows:

```python
sage: T = EK.torsion_subgroup(); T
Torsion Subgroup isomorphic to Z/5 associated to the Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in i with defining polynomial x^2 + 1
sage: type(T)
<class 'sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup_with_category'>
```

AUTHORS:

- Nick Alexander - initial implementation over \(\mathbb{Q} \).
• Chris Wuthrich - initial implementation over number fields.
• John Cremona - additional features and unification.

curve()
Return the curve of this torsion subgroup.

EXAMPLES:
```
sage: E = EllipticCurve('11a1')
sage: K.<i> = NumberField(x^2+1)
sage: EK = E.change_ring(K)
sage: T = EK.torsion_subgroup()
sage: T.curve() is EK
True
```
points()
Return a list of all the points in this torsion subgroup.

The list is cached.

EXAMPLES:
```
sage: K.<i> = NumberField(x^2 + 1)
sage: E = EllipticCurve(K,[0,0,0,1,0])
sage: tor = E.torsion_subgroup()
sage: tor.points()
[[(0 : 1 : 0), (-i : 0 : 1), (0 : 0 : 1), (i : 0 : 1)]
```

10.11.7 Galois representations attached to elliptic curves

Given an elliptic curve E over \mathbb{Q} and a rational prime number p, the p^n-torsion $E[p^n]$ points of E is a representation of the absolute Galois group $G_{\mathbb{Q}}$ of \mathbb{Q}. As n varies we obtain the Tate module $T_p E$ which is a a representation of $G_{\mathbb{Q}}$ on a free \mathbb{Z}_p-module of rank 2. As p varies the representations are compatible.

Currently sage can decide whether the Galois module $E[p]$ is reducible, i.e., if E admits an isogeny of degree p, and whether the image of the representation on $E[p]$ is surjective onto $\text{Aut}(E[p]) = GL_2(\mathbb{F}_p)$.

The following are the most useful functions for the class `GaloisRepresentation`.

For the reducibility:

• `is_reducible(p)`
• `is_irreducible(p)`
• `reducible_primes()`

For the image:

• `is_surjective(p)`
• `non_surjective()`
• `image_type(p)`

For the classification of the representation

• `is_semistable(p)`
• `is_unramified(p, ell)`
• `is_crystalline(p)`
EXAMPLES:

```
sage: E = EllipticCurve('196a1')
sage: rho = E.galois_representation()
sage: rho.is_irreducible(7)  # True
sage: rho.is_irreducible(3)  # True
sage: rho.is_irreducible(2)  # True
sage: rho.is_surjective(2)  # False
sage: rho.is_surjective(3)  # False
sage: rho.is_surjective(5)  # True
sage: rho.reducible_primes()  # [3]
sage: rho.non_surjective()  # [2, 3]
sage: rho.image_type(2)  # 'The image is cyclic of order 3.'
sage: rho.image_type(3)  # 'The image is contained in a Borel subgroup as there is a 3-isogeny.'
sage: rho.image_type(5)  # 'The image is all of GL_2(F_5).
```

For semi-stable curve it is known that the representation is surjective if and only if it is irreducible:

```
sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.non_surjective()  # [5]
sage: rho.reducible_primes()  # [5]
```

For cm curves it is not true that there are only finitely many primes for which the Galois representation mod p is surjective onto $\text{GL}_2(F_p)$:

```
sage: E = EllipticCurve('27a1')
sage: rho = E.galois_representation()
sage: rho.non_surjective()  # [0]
sage: rho.reducible_primes()  # [3]
sage: E.has_cm()  # True
sage: rho.image_type(11)  # 'The image is contained in the normalizer of a non-split Cartan group. (cm)'
```

REFERENCES:

AUTHORS:

- chris wuthrich (02/10) - moved from ell_rational_field.py.

```python
class sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation(E)
    Bases: sage.structure.sage_object.SageObject
```

The compatible family of Galois representation attached to an elliptic curve over the rational numbers.
Given an elliptic curve E over \mathbb{Q} and a rational prime number p, the p^n-torsion $E[p^n]$ points of E is a representation of the absolute Galois group. As n varies we obtain the Tate module T_pE which is a representation of the absolute Galois group on a free \mathbb{Z}_p-module of rank 2. As p varies the representations are compatible.

EXAMPLES:

```
sage: rho = EllipticCurve('11a1').galois_representation()
sage: rho
Compatible family of Galois representations associated to the Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
```

```python
def elliptic_curve():
    """The elliptic curve associated to this representation."
    return E
```

EXAMPLES:

```
sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.elliptic_curve() == E
True
```

```python
def image_classes(p, bound=10000):
    """This function returns, given the representation $\rho$ a list of $p$ values that add up to 1, representing the frequency of the conjugacy classes of the projective image of $\rho$ in $PGL_2(F_p)$."
    Let $M$ be a matrix in $GL_2(F_p)$, then define $u(M) = \text{tr}(M)^2/\det(M)$, which only depends on the conjugacy class of $M$ in $PGL_2(F_p)$. Hence this defines a map $u : PGL_2(F_p) \to F_p$, which is almost a bijection between conjugacy classes of the source and $F_p$ (the elements of order $p$ and the identity map to 4 and both classes of elements of order 2 map to 0).
    This function returns the frequency with which the values of $u$ appeared among the images of the Frobenius elements $a_\ell'a_\ell'^{-1}$ for good primes $\ell \neq p$ below a given bound.
    INPUT:
    - a prime $p$
    - a natural number $\text{bound}$ (optional, default=10000)
    OUTPUT:
    - a list of $p$ real numbers in the interval $[0, 1]$ adding up to 1
    **EXAMPLES:**
    ```python
 sage: E = EllipticCurve('14a1')
sage: rho = E.galois_representation()
sage: rho.image_classes(5)
[0.2095, 0.1516, 0.2445, 0.1728, 0.2217]
sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.image_classes(5)
[0.2467, 0.0000, 0.5049, 0.0000, 0.2484]
sage: EllipticCurve('27a1').galois_representation().image_classes(5)
[0.5839, 0.1645, 0.0000, 0.1702, 0.08143]
sage: EllipticCurve('30a1').galois_representation().image_classes(5)
[0.1956, 0.1801, 0.2543, 0.1728, 0.1972]
sage: EllipticCurve('32a1').galois_representation().image_classes(5)
```

(continues on next page)
REMARKS:

Conjugacy classes of subgroups of $\text{PGL}_2(F_5)$

For the case $p = 5$, the order of an element determines almost the value of $u$:

<table>
<thead>
<tr>
<th>$u$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>orders</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>1 or 5</td>
</tr>
</tbody>
</table>

Here we give here the full table of all conjugacy classes of subgroups with the values that `image_classes` should give (as bound tends to $\infty$). Comparing with the output of the above examples, it is now easy to guess what the image is.
## image_type \( (p) \)

Returns a string describing the image of the mod-\( p \) representation. The result is provably correct, but only indicates what sort of an image we have. If one wishes to determine the exact group one needs to work a bit harder. The probabilistic method of image_classes or Sutherland’s galrep package can give a very good guess what the image should be.

**INPUT:**
- \( p \) a prime number

**OUTPUT:**
- a string.

**EXAMPLES**

```python
sage: E = EllipticCurve('14a1')
sage: rho = E.galois_representation()
sage: rho.image_type(5)
'The image is all of GL_2(F_5).'
sage: E = EllipticCurve('11al1')
sage: rho = E.galois_representation()
sage: rho.image_type(5)
'The image is meta-cyclic inside a Borel subgroup as there is a 5-torsion point on the curve.'
sage: E = EllipticCurve('27al').galois_representation().image_type(5)
'The image is contained in the normalizer of a non-split Cartan group. (cm)'
sage: E = EllipticCurve('30al').galois_representation().image_type(5)
'The image is all of GL_2(F_5).'
sage: E = EllipticCurve('324b1').galois_representation().image_type(5)
'The image in PGL_2(F_5) is the exceptional group S_4.'
sage: E = EllipticCurve([0,0,-56,4848])
```

(continues on next page)
sage: rho = E.galois_representation()

sage: rho.image_type(5)
'The image is contained in the normalizer of a split Cartan group.'

sage: EllipticCurve('49a1').galois_representation().image_type(7)
'The image is contained in a Borel subgroup as there is a 7-isogeny.'

sage: EllipticCurve('121c1').galois_representation().image_type(11)
'The image is contained in a Borel subgroup as there is an 11-isogeny.'

sage: EllipticCurve('121d1').galois_representation().image_type(11)
'The image is all of GL_2(F_11).'</n
sage: EllipticCurve('441f1').galois_representation().image_type(13)
'The image is a... group of order 18.'

For $p = 2$:

sage: E = EllipticCurve('11a1')
sage: rho = E.galois_representation()
sage: rho.image_type(2)
'The image is all of GL_2(F_2), i.e. a symmetric group of order 6.'

sage: EllipticCurve('14a1').galois_representation().image_type(2)
'The image is cyclic of order 2 as there is exactly one rational 2-torsion point.'

Test trac ticket #14752:

sage: EllipticCurve([0, 0, 0, -1129345880,-86028258620304]).galois_representation().image_type(11)
'The image is contained in the normalizer of a non-split Cartan group.'

Test trac ticket #14577:

sage: EllipticCurve([0, 1, 0, -4788, 109188]).galois_representation().image_type(13)
'The image in PGL_2(F_13) is the exceptional group S_4.'
The image is trivial as all 2-torsion points are rational.'

```python
sage: rho = EllipticCurve('196a1').galois_representation()
sage: rho.image_type(2)
'The image is cyclic of order 3.'
```

$p = 3$:

```python
sage: rho = EllipticCurve('33a1').galois_representation()
sage: rho.image_type(3)
'The image is all of GL_2(F_3).'</sage: rho = EllipticCurve('30a1').galois_representation()
sage: rho.image_type(3)
'The image is meta-cyclic inside a Borel subgroup as there is a 3-torsion point on the curve.'

sage: rho = EllipticCurve('3840h1').galois_representation()
sage: rho.image_type(3)
'The image is contained in a dihedral group of order 8.'

sage: rho = EllipticCurve('32a1').galois_representation()
sage: rho.image_type(3)
'The image is a semi-dihedral group of order 16, gap.SmallGroup([16,8]).'
```

ALGORITHM: Mainly based on Serre’s paper.

**is_crystalline**\((p)\)

Returns true if the \(p\)-adic Galois representation to \(GL_2(\mathbb{Z}_p)\) is crystalline.

For an elliptic curve \(E\), this is to ask whether \(E\) has good reduction at \(p\).

**INPUT:**

- \(p\) a prime

**OUTPUT:**

- a Boolean

**EXAMPLES:**

```python
sage: rho = EllipticCurve('64a1').galois_representation()
sage: rho.is_crystalline(5)
True
sage: rho.is_crystalline(2)
False
```

**is_irreducible**\((p)\)

Return True if the mod \(p\) representation is irreducible.

**INPUT:**

- \(p\) - a prime number

**OUTPUT:**
• a boolean

EXAMPLES:

```python
sage: rho = EllipticCurve('37b').galois_representation()
sage: rho.is_irreducible(2)
True
sage: rho.is_irreducible(3)
False
sage: rho.is_reducible(2)
False
sage: rho.is_reducible(3)
True
```

is_ordinary \( (p) \)

Returns true if the \( p \)-adic Galois representation to \( GL_2(\mathbb{Z}_p) \) is ordinary, i.e. if the image of the decomposition group in \( \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) above the prime \( p \) maps into a Borel subgroup.

For an elliptic curve \( E \), this is to ask whether \( E \) is ordinary at \( p \), i.e. good ordinary or multiplicative.

INPUT:

• \( p \) a prime

OUTPUT:

• a Boolean

EXAMPLES:

```python
sage: rho = EllipticCurve('11a3').galois_representation()
sage: rho.is_ordinary(11)
True
sage: rho.is_ordinary(5)
True
sage: rho.is_ordinary(19)
False
```

is_potentially_crystalline \( (p) \)

Returns true if the \( p \)-adic Galois representation to \( GL_2(\mathbb{Z}_p) \) is potentially crystalline, i.e. if there is a finite extension \( K/\mathbb{Q}_p \) such that the \( p \)-adic representation becomes crystalline.

For an elliptic curve \( E \), this is to ask whether \( E \) has potentially good reduction at \( p \).

INPUT:

• \( p \) a prime

OUTPUT:

• a Boolean

EXAMPLES:

```python
sage: rho = EllipticCurve('37b1').galois_representation()
sage: rho.is_potentially_crystalline(37)
False
sage: rho.is_potentially_crystalline(7)
True
```

is_potentially_semistable \( (p) \)

Returns true if the \( p \)-adic Galois representation to \( GL_2(\mathbb{Z}_p) \) is potentially semistable.
For an elliptic curve $E$, this returns True always

INPUT:
- $p$ a prime

OUTPUT:
- a Boolean

EXAMPLES:
```python
sage: rho = EllipticCurve('27a2').galois_representation()
sage: rho.is_potentially_semistable(3)
True
```

### `is_quasi_unipotent(p, ell)`

Returns true if the Galois representation to $GL_2(\mathbb{Z}_p)$ is quasi-unipotent at $\ell \neq p$, i.e. if there is a finite extension $K/\mathbb{Q}$ such that the inertia group at a place above $\ell$ in $\text{Gal}(\mathbb{Q}/K)$ maps into a Borel subgroup.

For a Galois representation attached to an elliptic curve $E$, this returns always True.

INPUT:
- $p$ a prime
- $\ell$ a different prime

OUTPUT:
- Boolean

EXAMPLES:
```python
sage: rho = EllipticCurve('11a3').galois_representation()
sage: rho.is_quasi_unipotent(11,13)
True
```

### `is_reducible(p)`

Return True if the mod-$p$ representation is reducible. This is equivalent to the existence of an isogeny defined over $\mathbb{Q}$ of degree $p$ from the elliptic curve.

INPUT:
- $p$ - a prime number

OUTPUT:
- a boolean

The answer is cached.

EXAMPLES:
```python
sage: rho = EllipticCurve('121a').galois_representation()
sage: rho.is_reducible(7)
False
sage: rho.is_reducible(11)
True
sage: EllipticCurve('11a').galois_representation().is_reducible(5)
True
sage: rho = EllipticCurve('11a2').galois_representation()
sage: rho.is_reducible(5)
True
```
is_semistable \( (p) \)
Returns true if the \( p \)-adic Galois representation to \( GL_2(\mathbb{Z}_p) \) is semistable.
For an elliptic curve \( E \), this is to ask whether \( E \) has semistable reduction at \( p \).

**INPUT:**
- \( p \) a prime

**OUTPUT:**
- a Boolean

**EXAMPLES:**

```python
sage: rho = EllipticCurve('20a3').galois_representation()
sage: rho.is_semistable(2)
False
sage: rho.is_semistable(3)
True
sage: rho.is_semistable(5)
True
```

is_surjective \( (p, A=1000) \)
Return True if the mod-\( p \) representation is surjective onto \( Aut(E[p]) = GL_2(\mathbb{F}_p) \).
False if it is not, or None if we were unable to determine whether it is or not.

**INPUT:**
- \( p \) - int (a prime number)
- \( A \) - int (a bound on the number of \( a_p \) to use)

**OUTPUT:**
- boolean. True if the mod-\( p \) representation is surjective and False if not.

The answer is cached.

**EXAMPLES:**

```python
sage: rho = EllipticCurve('37b').galois_representation()
sage: rho.is_surjective(2)
True
sage: rho.is_surjective(3)
False
sage: rho = EllipticCurve('121a1').galois_representation()
sage: rho.non_surjective()
[11]
sage: rho.is_surjective(5)
True
sage: rho.is_surjective(11)
False
sage: rho = EllipticCurve('121d1').galois_representation()
sage: rho.is_surjective(5)
```

(continues on next page)
Here is a case, in which the algorithm does not return an answer:

```
sage: rho = EllipticCurve([0,0,1,2580,549326]).galois_representation()
sage: rho.is_surjective(7)
```

In these cases, one can use `image_type` to get more information about the image:

```
sage: rho.image_type(7)
'The image is contained in the normalizer of a split Cartan group.'
```

**REMARKS:**

1. If \( p \geq 5 \) then the mod-\( p \) representation is surjective if and only if the \( p \)-adic representation is surjective. When \( p = 2, 3 \) there are counterexamples. See papers of Dokchitser and Elkies for more details.

2. For the primes \( p = 2 \) and 3, this will always answer either True or False. For larger primes it might give None.

### \texttt{is_unipotent} \((p, \ell)\)

Returns true if the Galois representation to \( GL_2(\mathbb{Z}_p) \) is unipotent at \( \ell \neq p \), i.e. if the inertia group at a place above \( \ell \) in \( \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \) maps into a Borel subgroup.

For a Galois representation attached to an elliptic curve \( E \), this returns True if \( E \) has semi-stable reduction at \( \ell \).

**INPUT:**

- \( p \) a prime
- \( \ell \) a different prime

**OUTPUT:**

- Boolean

**EXAMPLES:**

```
sage: rho = EllipticCurve('120a1').galois_representation()
sage: rho.is_unipotent(2,5)
True
sage: rho.is_unipotent(5,2)
False
sage: rho.is_unipotent(5,7)
True
sage: rho.is_unipotent(5,3)
True
sage: rho.is_unipotent(5,5)
Traceback (most recent call last):
 ...
ValueError: unipotent is not defined for \ell = p, use semistable instead.
```

### \texttt{is_unramified} \((p, \ell)\)

Returns true if the Galois representation to \( GL_2(\mathbb{Z}_p) \) is unramified at \( \ell \), i.e. if the inertia group at a place above \( \ell \) in \( \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \) has trivial image in \( GL_2(\mathbb{Z}_p) \).

For a Galois representation attached to an elliptic curve \( E \), this returns True if \( \ell \neq p \) and \( E \) has good reduction at \( \ell \).
INPUT:
- \( p \) a prime
- \( \text{ell} \) another prime

OUTPUT:
- Boolean

EXAMPLES:

```
sage: rho = EllipticCurve('20a3').galois_representation()
sage: rho.is_unramified(5,7)
True
sage: rho.is_unramified(5,5)
False
sage: rho.is_unramified(7,5)
False
```

This says that the 5-adic representation is unramified at 7, but the 7-adic representation is ramified at 5.

**non_surjective** \((A=1000)\)

 Returns a list of primes \( p \) such that the mod-\( p \) representation might not be surjective. If \( p \) is not in the returned list, then the mod-\( p \) representation is provably surjective.

By a theorem of Serre, there are only finitely many primes in this list, except when the curve has complex multiplication.

If the curve has CM, we simply return the sequence \([0]\) and do no further computation.

INPUT:
- \( A \) - an integer (default 1000). By increasing this parameter the resulting set might get smaller.

OUTPUT:
- list - if the curve has CM, returns \([0]\). Otherwise, returns a list of primes where mod-\( p \) representation is very likely not surjective. At any prime not in this list, the representation is definitely surjective.

EXAMPLES:

```
sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A
sage: E.galois_representation().non_surjective()
[0]

sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.galois_representation().non_surjective()
[5]

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A
sage: E.galois_representation().non_surjective()
[]

sage: E = EllipticCurve([0,-1,1,-9965,385220]) # 9999a1
sage: rho = E.galois_representation()
```

(continues on next page)
ALGORITHM: We first find an upper bound \( B \) on the possible primes. If \( E \) is semi-stable, we can take \( B = 11 \) by a result of Mazur. There is a bound by Serre in the case that the \( j \)-invariant is not integral in terms of the smallest prime of good reduction. Finally there is an unconditional bound by Cojocaru, but which depends on the conductor of \( E \). For the prime below that bound we call \texttt{is_surjective}.

\texttt{reducible_primes()}\footnote{Returns a list of the primes \( p \) such that the mod-\( p \) representation is reducible. For all other primes the representation is irreducible.}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: rho = EllipticCurve('225a').galois_representation()
sage: rho.reducible_primes()
\end{verbatim}

10.11.8 Galois representations for elliptic curves over number fields

This file contains the code to compute for which primes the Galois representation attached to an elliptic curve (over an arbitrary number field) is surjective. The functions in this file are called by the \texttt{is_surjective} and \texttt{non_surjective} methods of an elliptic curve over a number field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.is_surjective(29)  # Cyclotomic character not surjective.
False
sage: rho.is_surjective(31)  # See Section 5.10 of [Serre72].
True
sage: rho.non_surjective()  # long time (4s on sage.math, 2014)
[3, 5, 29]
sage: E = EllipticCurve_from_j(1728).change_ring(K)  # CM
sage: E.galois_representation().non_surjective()  # long time (2s on sage.math, 2014)
[0]
\end{verbatim}

\textbf{AUTHORS:}

- John Cremona (2016, 2017): various efficiency improvements to \_semistable\_reducible\_primes
- John Cremona (2017): implementation of Bilerey’s algorithm to find all reducible primes

\textbf{REFERENCES:}
Compute Billerey's bound $B_l$.

We compute $B_l$ for $l$ up to $\text{max}_l$ (at most) until $\text{num}_l$ nonzero values are found (at most). Return the list of primes dividing all $B_l$ computed, excluding those dividing 6 or ramified or of bad reduction or less than $\text{small}_l$. If no non-zero values are found return $[0]$.

**INPUT:**

- $E$ – an elliptic curve over a number field $K$.
- $\text{max}_l$ (int, default 200) – maximum size of primes $l$ to check.
- $\text{num}_l$ (int, default 8) – maximum number of primes $l$ to check.
- $\text{small}_l$ (int, default 0) – remove primes less than this from the output.
- $\text{debug}$ (bool, default False) – if True prints details.

**Note:** The purpose of the small_prime_bound is that it is faster to deal with these using the local test; by ignoring them here, we enable the algorithm to terminate sooner when there are no large reducible primes, which is always the case in practice.

**EXAMPLES:**

```python
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_B_bound
sage: Billerey_B_bound(E)
[5]
```

If we do not use enough primes $l$, extraneous primes will be included which are not reducible primes:

```python
sage: Billerey_B_bound(E, num_l=6)
[5, 7]
```

Similarly if we do not use large enough primes $l$:

```python
sage: Billerey_B_bound(E, max_l=50, num_l=8)
[5, 7]
sage: Billerey_B_bound(E, max_l=100, num_l=8)
[5]
```

This curve does have a rational 5-isogeny:

```python
sage: len(E.isogenies_prime_degree(5))
1
```

```python
sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_B_l(E, l, B=0)
```

Return Billerey's $B_l$, adapted from the definition in [Bil2011], after (9).

**INPUT:**

- $E$ – an elliptic curve over a number field $K$
• \(l\) (int) – a rational prime
• \(B\) (int) – 0 or \(\text{LCM of previous } B_l\): the prime-to-\(B\) part of this \(B_l\) is ignored.

EXAMPLES:

```python
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_B_l
sage: [Billerey_B_l(E,l) for l in primes(15)]
[1123077552537600,
22727966377390386745600,
0,
0,
26924715481849241287713746693964214802283882086400,
0]
```

```python
sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_P_l(E, l)
Return Billerey’s \(P_l^*\) as defined in [Bil2011], equation (9).

INPUT:
• \(E\) – an elliptic curve over a number field \(K\)
• \(l\) – a rational prime

EXAMPLES:

```python
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_P_l
sage: [Billerey_P_l(E,l) for l in primes(10)]
[x^2 + 8143*x + 16777216,
 x^2 + 451358*x + 28242953681,
 x^4 - 664299076*x^3 + 205155493652343750*x^2 - 39595310449600219726562500*x + ...
 -\rightarrow 3552713678800500929355621337890625,
 x^4 - 207302404*x^3 - 377423798538689366394*x^2 + 37175249826471656586987520004*x ...
 -\rightarrow 36703368217294125441230211032033660188801]
```

```python
sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_R_bound(E, max_l=200,
 num_l=8,
 small_prime_bound=None,
 debug=False)
Compute Billerey’s bound \(R_q\).
We compute \(R_q\) for \(q\) dividing primes \(l\) up to \(\text{max}_l\) (at most) until \(\text{num}_l\) nonzero values are found (at most). Return the list of primes dividing all \(R_q\) computed, excluding those dividing 6 or ramified or of bad reduction or less than \(\text{small_prime_bound}\). If no non-zero values are found return [0].

INPUT:
• \(E\) – an elliptic curve over a number field \(K\).
• \(\text{max}_l\) (int, default 200) – maximum size of rational primes \(l\) for which the primes \(q\) above \(l\) are checked.
• \(\text{num}_l\) (int, default 8) – maximum number of rational primes \(l\) for which the primes \(q\) above \(l\) are checked.
• \(\text{small_prime_bound}\) (int, default 0) – remove primes less than this from the output.
• \(\text{debug}\) (bool, default False) – if True prints details.
Note: The purpose of the small_prime_bound is that it is faster to deal with these using the local test; by ignoring them here, we enable the algorithm to terminate sooner when there are no large reducible primes, which is always the case in practice.

EXAMPLES:

```sage
K = NumberField(x**2 - 29, 'a'); a = K.gen()
E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_R_bound
Billerey_R_bound(E)
```

We may get no bound at all if we do not use enough primes:

```sage
Billerey_R_bound(E, max_l=2, debug=False)
```

Or we may get a bound but not a good one if we do not use enough primes:

```sage
Billerey_R_bound(E, num_l=1, debug=False)
```

In this case two primes is enough to restrict the set of possible reducible primes to just \{5\}. This curve does have a rational 5-isogeny:

```sage
Billerey_R_bound(E, num_l=2, debug=False)
len(E.isogenies_prime_degree(5))
```

sage.schemes.elliptic_curves.gal_reps_number_field.Billerey_R_q(E, q, B=0)

Return Billerey’s $R_q$, adapted from the definition in [Bil2011], Theorem 2.8.

INPUT:

- $E$ – an elliptic curve over a number field $K$
- $q$ – a prime ideal of $K$
- $B$ (int) – 0 or LCM of previous $R_q$; the prime-to-B part of this $R_q$ is ignored.

EXAMPLES:

```sage
K = NumberField(x**2 - 29, 'a'); a = K.gen()
E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_R_q
Billerey_R_q(E, K.prime_above(l)) for l in primes(10)
```

sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, L, patience=100)

Determine which primes in $L$ might have an image contained in a Borel subgroup, by checking of traces of Frobenius.
Note: This function will sometimes return primes for which the image is not contained in a Borel subgroup. This issue cannot always be fixed by increasing patience as it may be a result of a failure of a local-global principle for isogenies.

INPUT:

- \( E \) – EllipticCurve - over a number field.
- \( L \) – list - a list of prime numbers.
- \( \text{patience} \) (int), default 100– a positive integer bounding the number of traces of Frobenius to use while trying to prove irreducibility.

OUTPUT:

- list – The list of all primes \( \ell \) in \( L \) for which the mod \( \ell \) image might be contained in a Borel subgroup of \( GL_2(\mathbb{F}_\ell) \).

EXAMPLES:

```python
sage: E = EllipticCurve('11a1') # has a 5-isogeny
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, \[7, \rightarrow primes(40)]

[5]
```

Example to show that the output may contain primes where the representation is in fact reducible. Over \( \mathbb{Q} \) the following is essentially the unique such example by [Sutherland12]:

```python
sage: E = EllipticCurve_from_j(2268945/128)
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, \[7, \rightarrow \rightarrow 11)]

[7]
```

This curve does possess a 7-isogeny modulo every prime of good reduction, but has no rational 7-isogeny:

```python
sage: E.isogenies_prime_degree(7)

[]
```

A number field example:

```python
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve([1+i, -i, i, -399-240*i, 2627+2869 *i])
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, \[primes(20)]

[2, 3]
```

Here the curve really does possess isogenies of degrees 2 and 3:

```python
sage: [len(E.isogenies_prime_degree(l)) for l in [2,3]]

[1, 1]
```

The compatible family of Galois representation attached to an elliptic curve over a number field. Given an elliptic curve \( E \) over a number field \( K \) and a rational prime number \( p \), the \( p^n \)-torsion \( E[p^n] \) points of \( E \) is a representation of the absolute Galois group \( G_K \) of \( K \). As \( n \) varies we obtain the Tate module \( T_pE \) which is a representation of \( G_K \) on a free \( \mathbb{Z}_p \)-module of rank 2. As \( p \) varies the representations are compatible.
EXAMPLES:

```
sage: K = NumberField(x**2 + 1, 'a')
sage: E = EllipticCurve('11a1').change_ring(K)
sage: rho = E.galois_representation()
sage: rho

Compatible family of Galois representations associated to the Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field in a with defining polynomial x^2 + 1
```

**elliptic_curve()**

Return the elliptic curve associated to this representation.

EXAMPLES:

```
sage: K = NumberField(x**2 + 1, 'a'); a = K.gen()
sage: E = EllipticCurve_from_j(a)
sage: rho = E.galois_representation()
sage: rho.elliptic_curve() == E
True
```

**is_surjective** *(p, A=100)*

Return True if the mod-p representation is (provably) surjective onto $\text{Aut}(E[p]) = GL_2(F_p)$. Return False if it is (probably) not.

INPUT:

- **p** - int - a prime number.
- **A** - int - a bound on the number of traces of Frobenius to use while trying to prove surjectivity.

EXAMPLES:

```
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.is_surjective(29) # Cyclotomic character not surjective.
False
sage: rho.is_surjective(7) # See Section 5.10 of [Serre72].
True
```

If $E$ is defined over $\mathbb{Q}$, then the exceptional primes for $E/K$ are the same as the exceptional primes for $E$, except for those primes that are ramified in $K/\mathbb{Q}$ or are less than $[K : \mathbb{Q}]$:

```
sage: K = NumberField(x**2 + 11, 'a')
sage: E = EllipticCurve([2, 14])
sage: rhoQQ = E.galois_representation()
sage: rhoK = E.change_ring(K).galois_representation()
sage: rhoQQ.is_surjective(2) == rhoK.is_surjective(2)
False
sage: rhoQQ.is_surjective(3) == rhoK.is_surjective(3)
True
sage: rhoQQ.is_surjective(5) == rhoK.is_surjective(5)
True
```

For CM curves, the mod-p representation is never surjective:

```
sage: K.<a> = NumberField(x^2-x+1)
sage: E = EllipticCurve([0,0,0,0,a])
```
sage: E.has_cm()
True
sage: rho = E.galois_representation()

**isogeny_bound** \((A=100)\)

Return a list of primes \(p\) including all primes for which the image of the mod-\(p\) representation is contained in a Borel.

**Note:** For the actual list of primes \(p\) at which the representation is reducible see `reducible_primes()`.

**INPUT:**

- \(A\) – int (a bound on the number of traces of Frobenius to use while trying to prove the mod-\(p\) representation is not contained in a Borel).

**OUTPUT:**

- list - A list of primes which contains (but may not be equal to) all \(p\) for which the image of the mod-\(p\) representation is contained in a Borel subgroup. At any prime not in this list, the image is definitely not contained in a Borel. If \(E\) has CM defined over \(K\), the list [0] is returned.

**EXAMPLES:**

```python
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # See Section 5.10 of [Serre72].
[3, 5]
sage: K = NumberField(x**2 + 1, 'a')
sage: EllipticCurve_from_j(K(1728)).galois_representation().isogeny_bound() # CM over K
[0]
sage: EllipticCurve_from_j(K(0)).galois_representation().isogeny_bound() # CM NOT over K
[2, 3]
sage: E = EllipticCurve_from_j(K(2268945/128)) # c.f. [Sutherland12]
sage: E.galois_representation().isogeny_bound() # No 7-isogeny, but...
[7]
```

For curves with rational CM, there are infinitely many primes \(p\) for which the mod-\(p\) representation is reducible, and [0] is returned:

```python
sage: K.<a> = NumberField(x^2-x+1)
sage: E = EllipticCurve([0,0,0,0,a])
sage: E.has_rational_cm()
True
sage: rho = E.galois_representation()

An example (an elliptic curve with everywhere good reduction over an imaginary quadratic field with quite large discriminant), which failed until fixed at trac ticket #21776:

```
sage: K.<a> = NumberField(x^2 - x + 112941801)
sage: E = EllipticCurve([a+1,a-1,a,-23163076*a + 266044005933275,
→57560769602038*a - 836483958630700313803])
sage: E.conductor().norm().
1
sage: GR = E.galois_representation()

non_surjective(A=100)
Return a list of primes $p$ including all primes for which the mod-$p$ representation might not be surjective.

INPUT:

• A – int (a bound on the number of traces of Frobenius to use while trying to prove surjectivity).

OUTPUT:

• list – A list of primes where mod-$p$ representation is very likely not surjective. At any prime not in this list, the representation is definitely surjective. If $E$ has CM, the list [0] is returned.

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.non_surjective() # See Section 5.10 of [Serre72].
[3, 5, 29]
sage: K = NumberField(x**2 + 3, 'a'); a = K.gen()
sage: E = EllipticCurve([0, -1, 1, -10, -20]).change_ring(K) # X_0(11)
sage: rho = E.galois_representation()
sage: rho.non_surjective() # long time (4s on sage.math, 2014)
[3, 5]
sage: K = NumberField(x**2 + 1, 'a'); a = K.gen()
sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
sage: rho = E.galois_representation()
sage: rho.non_surjective() [0]
sage: K = NumberField(x**2 - 5, 'a'); a = K.gen()
sage: E = EllipticCurve_from_j(146329141248*a - 327201914880) # CM
sage: rho = E.galois_representation()
sage: rho.non_surjective() # long time (3s on sage.math, 2014)
[0]

reducible_primes()
Return a list of primes $p$ for which the mod-$p$ representation is reducible, or [0] for CM curves.

OUTPUT:

• list – A list of those primes $p$ for which the mod-$p$ representation is contained in a Borel subgroup, i.e. is reducible. If $E$ has CM defined over $K$, the list [0] is returned (in this case the representation is reducible for infinitely many primes).

EXAMPLES:

sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # See Section 5.10 of [Serre72].
[3, 5]
For curves with rational CM, there are infinitely many primes \( p \) for which the mod-\( p \) representation is reducible, and \([0]\) is returned:

```python
sage: rho.reducible_primes()
[3, 5]
```

```python
sage: K = NumberField(x**2 + 1, 'a')
sage: EllipticCurve_from_j(K(1728)).galois_representation().isogeny_bound() # → CM over K
[0]
sage: EllipticCurve_from_j(K(0)).galois_representation().reducible_primes() # → CM but NOT over K
[2, 3]
sage: E = EllipticCurve_from_j(K(2268945/128)) # c.f. [Sutherland12]
sage: rho = E.galois_representation()
sage: rho.isogeny_bound() # ... but there is no 7-isogeny ...
[7]
sage: rho.reducible_primes()
[]
```

For curves with rational CM, there are infinitely many primes \( p \) for which the mod-\( p \) representation is reducible, and \([0]\) is returned:

```python
sage: K.<a> = NumberField(x^2-x+1)
sage: E = EllipticCurve([0,0,0,0,a])
sage: E.has_rational_cm()
True
sage: rho = E.galois_representation()
sage: rho.reducible_primes()
[0]
```

::

    sage.schemes.elliptic_curves.gal_reps_number_field.deg_one_primes_iter(K, principal_only=False)

Return an iterator over degree 1 primes of \( K \).

INPUT:

- \( K \) – a number field
- principal_only – bool; if True, only yield principal primes

OUTPUT:

An iterator over degree 1 primes of \( K \) up to the given norm, optionally yielding only principal primes.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-5)
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import deg_one_primes_iter
sage: it = deg_one_primes_iter(K)
sage: [next(it) for _ in range(6)]
[Fractional ideal (2, a + 1), Fractional ideal (3, a + 1), Fractional ideal (3, a + 2), Fractional ideal (-a), Fractional ideal (7, a + 3), Fractional ideal (7, a + 4)]
sage: it = deg_one_primes_iter(K, True)
```
Return a finite set of primes \( \ell \) containing all those for which \( E \) has a \( K \)-rational \( \ell \)-isogeny, where \( K \) is the base field of \( E \): i.e., the mod-\( \ell \) representation is irreducible for all \( \ell \) outside the set returned.

**INPUT:**

- \( E \) – an elliptic curve defined over a number field \( K \).
- \( \text{max}_l \) (int or \( \text{None} \) (default)) – the maximum prime \( \ell \) to use for the B-bound and R-bound. If \( \text{None} \), a default value will be used.
- \( \text{num}_l \) (int or \( \text{None} \) (default)) – the number of primes \( \ell \) to use for the B-bound and R-bound. If \( \text{None} \), a default value will be used.

**Note:** If \( E \) has CM then \([0]\) is returned. In this case use the function `sage.schemes.elliptic_curves.isogeny_class.possible_isogeny_degrees`.

We first compute Billeray’s \( B \)-bound using at most \( \text{num}_l \) primes of size up to \( \text{max}_l \). If that fails we compute Billeray’s \( R \)-bound using at most \( \text{num}_q \) primes of size up to \( \text{max}_q \).

Provided that one of these methods succeeds in producing a finite list of primes we check these using a local condition, and finally test that the primes returned actually are reducible. Otherwise we return \([0]\).

**EXAMPLES:**

An example where a prime is not reducible but passes the test:

sage.schemes.elliptic_curves.gal_reps_number_field.reducible_primes_naive(E, 
max_l=None, 
num_P=None, 
verbose=False)

Return locally reducible primes ℓ up to max_l.

The list of primes ℓ returned consists of all those up to max_l such that E mod P has an ℓ-isogeny, where K is the base field of E, for num_P primes P of K. In most cases E then has a K-rational ℓ-isogeny, but there are rare exceptions.

INPUT:

• E – an elliptic curve defined over a number field K
• max_l (int or None (default)) – the maximum prime ℓ to test.
• num_P (int or None (default)) – the number of primes P of K to use in testing each ℓ.

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import reducible_primes_naive
sage: K.<a> = NumberField(x^4 - 5*x^2 + 3)
sage: E = EllipticCurve(K, [a^2 - 2, -a^2 + 3, a^2 - 2, -50*a^2 + 35, 95*a^2 - 67])
sage: reducible_primes_naive(E,num_P=10)
sage: reducible_primes_naive(E,num_P=15)
[2, 5, 197, 557, 653, 769]
sage: reducible_primes_naive(E,num_P=20)
[2, 5]
sage: reducible_primes_naive(E)
[2, 5]
sage: [phi.degree() for phi in E.isogenies_prime_degree()]
[2, 2, 2, 5]
```

10.11.9 Isogeny class of elliptic curves over number fields

AUTHORS:

• David Roe (2012-03-29) – initial version.
• John Cremona (2014-08) – extend to number fields.

class sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC(E, 
label=None, 
empty=False)

Bases: sage.structure.sage_object.SageObject

Isogeny class of an elliptic curve.

Note: The current implementation chooses a curve from each isomorphism class in the isogeny class. Over \( \mathbb{Q} \) this is a unique reduced minimal model in each isomorphism class. Over number fields the model chosen may change in future.

graph()

Return a graph whose vertices correspond to curves in this class, and whose edges correspond to prime degree isogenies.
Note: There are only finitely many possible isogeny graphs for curves over \( \mathbb{Q} \) [M78]. This function tries to lay out the graph nicely by special casing each isogeny graph. This could also be done over other number fields, such as quadratic fields.

Note: The vertices are labeled 1 to \( n \) rather than 0 to \( n-1 \) to match LMFDB and Cremona labels for curves over \( \mathbb{Q} \).

EXAMPLES:

```python
sage: isocls = EllipticCurve('15a3').isogeny_class()
sage: G = isocls.graph()
sage: sorted(G._pos.items())
[(1, [-0.8660254, 0.5]), (2, [-0.8660254, 1.5]), (3, [-1.7320508, 0]), (4, [0, 0]), (5, [0, -1]), (6, [0.8660254, 0.5]), (7, [0.8660254, 1.5]), (8, [1.7320508, 0])]
```

REFERENCES:

index \((C)\)
Return the index of a curve in this class.

INPUT:
• \( C \) – an elliptic curve in this isogeny class.

OUTPUT:
• \( i \) – an integer so that the \( i \) th curve in the class is isomorphic to \( C \)

EXAMPLES:

```python
sage: E = EllipticCurve('990j1')
sage: iso = E.isogeny_class(order="lmfdb") # orders lexicographically on a- invariants
sage: iso.index(E.short_weierstrass_model())
2
```

isogenies \((fill=False)\)
Return a list of lists of isogenies and 0s, corresponding to the entries of \( \text{matrix()} \)

INPUT:
• \( \text{fill} \) – boolean (default \( \text{False} \)). Whether to only return prime degree isogenies. Currently only implemented for \( \text{fill}=\text{False} \).

OUTPUT:
• a list of lists, where the \( j \) th entry of the \( i \) th list is either zero or a prime degree isogeny from the \( i \) th curve in this class to the \( j \) th curve.

Warning: The domains and codomains of the isogenies will have the same Weierstrass equation as the curves in this class, but they may not be identical python objects in the current implementation.

EXAMPLES:
sage: isocls = EllipticCurve('15a3').isogeny_class()
sage: f = isocls.isogenies()[0][1]; f
Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field to Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
sage: f.domain() == isocls.curves[0] and f.codomain() == isocls.curves[1]
True

matrix (fill=True)
Return the matrix whose entries give the minimal degrees of isogenies between curves in this class.

INPUT:

• fill – boolean (default True). If False then the matrix will contain only zeros and prime entries; if True it will fill in the other degrees.

EXAMPLES:

sage: isocls = EllipticCurve('15a3').isogeny_class()
sage: isocls.matrix()
[ 1 2 2 4 4 8 8 ]
[ 2 1 4 8 8 16 16 ]
[ 2 4 1 4 8 8 16 16 ]
[ 2 4 4 1 2 2 4 4 ]
[ 4 8 2 1 4 8 8 ]
[ 4 8 2 4 1 2 2 ]
[ 8 16 16 4 8 2 1 4 ]
[ 8 16 16 4 8 2 4 1 ]
sage: isocls.matrix(fill=False)
[0 2 2 0 0 0 0]
[2 0 0 0 0 0 0]
[2 0 0 0 2 0 0]
[0 0 0 2 0 0 0]
[0 0 0 2 0 2 0]
[0 0 0 0 2 0 0]
[0 0 0 0 2 0 0]

qf_matrix()
Return the array whose entries are quadratic forms representing the degrees of isogenies between curves in this class (CM case only).

OUTPUT:

a 2x2 array (list of lists) of list, each of the form [2] or [2,1,3] representing the coefficients of an integral quadratic form in 1 or 2 variables whose values are the possible isogeny degrees between the i'th and j'th curve in the class.

EXAMPLES:

sage: pol = PolynomialRing(QQ,'x')([1,0,3,0,1])
sage: K.<c> = NumberField(pol)
sage: j = 1480640+565760*c^2
sage: E = EllipticCurve_j=j
sage: C = E.isogeny_class()
sage: C.qf_matrix()
[[[1], [2, 2, 3]], [[2, 2, 3], [1]]]

reorder (order)
Return a new isogeny class with the curves reordered.
INPUT:

- `order` – None, a string or an iterable over all curves in this class. See `sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field.isogeny_class()` for more details.

OUTPUT:

- Another `IsogenyClass_EC` with the curves reordered (and matrices and maps changed as appropriate)

EXAMPLES:

```python
sage: isocls = EllipticCurve('15a1').isogeny_class()
sage: print("\n".join([repr(C) for C in isocls.curves]))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over Rational Field

sage: isocls2 = isocls.reorder('lmfdb')
sage: print("\n".join([repr(C) for C in isocls2.curves]))
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 35*x - 28 over Rational Field
```

class sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_NumberField(E, reducible_primes=None, algorithm='Billerey', minimal_models=True)

Bases: sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC

Isogeny classes for elliptic curves over number fields.
**copy()**

Return a copy (mostly used in reordering).

**EXAMPLES:**

```python
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K, [0,0,0,0,1])
sage: C = E.isogeny_class()
sage: C2 = C.copy()
sage: C is C2
False
sage: C == C2
True
```

**class** `sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_Rational(E, algorithm='sage', label=None, empty=False)`

Isogeny classes for elliptic curves over \(\mathbb{Q}\).

**copy()**

Return a copy (mostly used in reordering).

**EXAMPLES:**

```python
sage: E = EllipticCurve('11a1')
sage: C = E.isogeny_class()
sage: C2 = C.copy()
sage: C is C2
False
sage: C == C2
True
```

`sage.schemes.elliptic_curves.isogeny_class.isogeny_degrees_cm(E, verbose=False)`

Return a list of primes \(\ell\) sufficient to generate the isogeny class of \(E\), where \(E\) has CM.

**INPUT:**

- \(E\) – An elliptic curve defined over a number field.

**OUTPUT:**

A finite list of primes \(\ell\) such that every curve isogenous to this curve can be obtained by a finite sequence of isogenies of degree one of the primes in the list.

**ALGORITHM:**

For curves with CM by the order \(O\) of discriminant \(d\), the Galois representation is always non-surjective and the curve will admit \(\ell\)-isogenies for infinitely many primes \(\ell\), but there are only finitely many codomains \(E'\). The primes can be divided according to the discriminant \(d'\) of the CM order \(O'\) associated to \(E\): either \(O = O'\), or one contains the other with index \(\ell\), since \(\ell O \subseteq O'\) and vice versa.

Case (1): \(O = O'\). The degrees of all isogenies between \(E\) and \(E'\) are precisely the integers represented by one of the classes of binary quadratic forms \(Q\) of discriminant \(d\). Hence to obtain all possible isomorphism classes of codomain \(E'\), we need only use one prime \(\ell\) represented by each such class \(Q\). It would in fact suffice to use
primes represented by forms which generate the class group. Here we simply omit the principal class and one from each pair of inverse classes, and include a prime represented by each of the remaining forms.

Case (2): \([O' : O] = \ell; \) so \(d = \ell^2 d\). We include all prime divisors of \(d\).

Case (3): \([O : O'] = \ell\): we may assume that \(\ell\) does not divide \(d\) as we have already included these, so \(\ell\) either splits or is inert in \(O\); the class numbers satisfy \(h(O') = (\ell \pm 1)h(O)\) accordingly. We include all primes \(\ell\) such that \(\ell \pm 1\) divides the degree \([K : Q]\).

For curves with only potential CM we proceed as in the CM case, using \(2[K : Q]\) instead of \([K : Q]\).

EXAMPLES:

For curves with CM by a quadratic order of class number greater than 1, we use the structure of the class group to only give one prime in each ideal class:

```python
sage: pol = PolynomialRing(QQ,'x')([1,-3,5,-5,5,-3,1])
sage: L.<a> = NumberField(pol)
sage: j = hilbert_class_polynomial(-23).roots(L,multiplicities=False)[0]
sage: E = EllipticCurve(j=j)
sage: from sage.schemes.elliptic_curves.isogeny_class import isogeny_degrees_cm
sage: isogeny_degrees_cm(E, verbose=True)
CM case, discriminant = -23
initial primes: {2}
upward primes: {}
downward ramified primes: {}
downward split primes: {2, 3}
downward inert primes: {5}
primes generating the class group: [2]
Complete set of primes: {2, 3, 5}
[2, 3, 5]
```

```
sage.schemes.elliptic_curves.isogeny_class.possible_isogeny_degrees(E, algorithm='Billerey', max_l=None, num_l=None, exact=True, verbose=False)
```

Return a list of primes \(\ell\) sufficient to generate the isogeny class of \(E\).

INPUT:

- \(E\) – An elliptic curve defined over a number field.
- \texttt{algorithm} (string, default ‘Billerey’) – Algorithm to be used for non-CM curves: either ‘Billerey’, ‘Larson’, or ‘heuristic’. Only relevant for non-CM curves and base fields other than \(\mathbb{Q}\).
- \texttt{max_l} (int or \texttt{None}) – only relevant for non-CM curves and algorithms ‘Billerey’ and ‘heuristic’. Controls the maximum prime used in either algorithm. If \texttt{None}, use the default for that algorithm.
- \texttt{num_l} (int or \texttt{None}) – only relevant for non-CM curves and algorithm ‘Billerey’. Controls the maximum number of primes used in the algorithm. If \texttt{None}, use the default for that algorithm.
- \texttt{exact} (bool, default \texttt{True}) – if \texttt{True}, perform an additional check that the primes returned are all reducible. If \texttt{False}, skip this step, in which case some of the primes returned may be irreducible.

OUTPUT:

A finite list of primes \(\ell\) such that every curve isogenous to this curve can be obtained by a finite sequence of isogenies of degree one of the primes in the list.
ALGORITHM:

For curves without CM, the set may be taken to be the finite set of primes at which the Galois representation is not surjective, since the existence of an $\ell$-isogeny is equivalent to the image of the mod-$\ell$ Galois representation being contained in a Borel subgroup. Two rigorous algorithms have been implemented to determine this set, due to Larson and Billeray respectively. We also provide a non-rigorous ‘heuristic’ algorithm which only tests reducible primes up to a bound depending on the degree of the base field.

For curves with CM see the documentation for \texttt{isogeny_degrees_cm()}.

EXAMPLES:

For curves without CM we determine the primes at which the mod $p$ Galois representation is reducible, i.e. contained in a Borel subgroup:

```python
sage: from sage.schemes.elliptic_curves.isogeny_class import possible_isogeny_degrees
sage: E = EllipticCurve('11a1')
sage: possible_isogeny_degrees(E)
[5]
sage: possible_isogeny_degrees(E, algorithm='Larson')
[5]
sage: possible_isogeny_degrees(E, algorithm='Billerey')
[5]
sage: possible_isogeny_degrees(E, algorithm='heuristic')
[5]
```

We check that in this case $E$ really does have rational 5-isogenies:

```python
sage: [phi.degree() for phi in E.isogenies_prime_degree()]
[5, 5]
```

Over an extension field:

```python
sage: E3 = E.change_ring(CyclotomicField(3))
\end{sageblock}
```

A higher degree example (LMFDB curve 5.5.170701.1-4.1-b1):

```python
sage: K.<a> = NumberField(x^5 - x^4 - 6*x^3 + 4*x + 1)
\end{sageblock}
```

LMFDB curve 4.4.8112.1-108.1-a5:

```python
sage: K.<a> = NumberField(x^4 - 5*x^2 + 3)
\end{sageblock}
```

(continues on next page)
This function only returns the primes which are isogeny degrees:

```
sage: Set(E.isogeny_class().matrix().list())
(1, 2, 4, 5, 20, 10)
```

For curves with CM by a quadratic order of class number greater than 1, we use the structure of the class group to only give one prime in each ideal class:

```
sage: pol = PolynomialRing(QQ,'x')(\[1,-3,5,-5,5,-3,1\])
sage: L.<a> = NumberField(pol)
sage: j = hilbert_class_polynomial(-23).roots(L,multiplicities=False)[0]
sage: E = EllipticCurve(j=j)
```

```
sage: from sage.schemes.elliptic_curves.isogeny_class import possible_isogeny_degrees
sage: possible_isogeny_degrees(E, verbose=True)
CM case, discriminant = -23
initial primes: {2}
upward primes: {}
downward ramified primes: {2, 3}
downward split primes: {5}
downward inert primes: {5}
primes generating the class group: [2]
Complete set of primes: {2, 3, 5}
```

### 10.11.10 Tate-Shafarevich group

If $E$ is an elliptic curve over a global field $K$, the Tate-Shafarevich group is the subgroup of elements in $H^1(K, E)$ which map to zero under every global-to-local restriction map $H^1(K_v, E) \to H^1(K, E)$, one for each place $v$ of $K$.

The group is usually denoted by the Russian letter Sha (cyrillic Sha), in this document it will be denoted by $Sha$.

$Sha$ is known to be an abelian torsion group. It is conjectured that the Tate-Shafarevich group is finite for any elliptic curve over a global field. But it is not known in general.

A theorem of Kolyvagin and Gross-Zagier using Heegner points shows that if the L-series of an elliptic curve $E/Q$ does not vanish at 1 or has a simple zero there, then $Sha$ is finite.

A theorem of Kato, together with theorems from Iwasawa theory, allows for certain primes $p$ to show that the $p$-primary part of $Sha$ is finite and gives an effective upper bound for it.

The ($p$-adic) conjecture of Birch and Swinnerton-Dyer predicts the order of $Sha$ from the leading term of the ($p$-adic) L-series of the elliptic curve.

Sage can compute a few things about $Sha$. The commands `an`, `an_numerical` and `an_padic` compute the conjectural order of $Sha$ as a real or $p$-adic number. With `p_primary_bound` one can find an upper bound of the size of the $p$-primary part of $Sha$. Finally, if the analytic rank is at most 1, then `bound_kato` and `bound_kolyvagin` find all primes for which the theorems of Kato and Kolyvagin respectively do not prove the triviality the $p$-primary part of $Sha$. 
EXAMPLES:

```
sage: E = EllipticCurve('11a1')
sage: S = E.sha()
sage: S.bound_kato()
[2]
sage: S.bound_kolyvagin()
([2, 5], 1)
sage: S.an_padic(7,3)
1 + O(7^5)
sage: S.an()
1
sage: S.an_numerical()
1.00000000000000
sage: E = EllipticCurve('389a')
sage: S = E.sha(); S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: S.an_numerical()
1.00000000000000
sage: S.p_primary_bound(5)
0
sage: S.an_padic(5)
1 + O(5)
sage: S.an_padic(5,prec=4) # long time (2s on sage.math, 2011)
1 + O(5^3)
```

AUTHORS:

- William Stein (2007) – initial version
- Chris Wuthrich (April 2009) – reformat docstrings

**class** `sage.schemes.elliptic_curves.sha_tateSha(E)`

Bases: `sage.structure.sage_object.SageObject`

The Tate-Shafarevich group associated to an elliptic curve.

If $E$ is an elliptic curve over a global field $K$, the Tate-Shafarevich group is the subgroup of elements in $H^1(K, E)$ which map to zero under every global-to-local restriction map $H^1(K, E) \to H^1(K_v, E)$, one for each place $v$ of $K$.

EXAMPLES:

```
sage: E = EllipticCurve('571a1')
sage: E._set_gens([]) # curve has rank 0, but non-trival Sha[2]
sage: S = E.sha()
sage: S.bound_kato()
[2]
sage: S.bound_kolyvagin()
([2], 1)
sage: S.an_padic(7,3)
4 + O(7^5)
sage: S.an()
4
sage: S.an_numerical()
```
(continues on next page)
4.00000000000000

```python
sage: E = EllipticCurve('389a')
sage: S = E.sha(); S
Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: S.an_numerical()
1.00000000000000
sage: S.p_primary_bound(5) # long time
0
sage: S.an_padic(5) # long time
1 + O(5)
sage: S.an_padic(5,prec=4) # very long time
1 + O(5^3)
an (use_database=False, descent_second_limit=12)
```

Returns the Birch and Swinnerton-Dyer conjectural order of $Sha$ as a provably correct integer, unless the analytic rank is $> 1$, in which case this function returns a numerical value.

**INPUT:**

- `use_database` – bool (default: False); if True, try to use any databases installed to lookup the analytic order of $Sha$, if possible. The order of $Sha$ is computed if it cannot be looked up.
- `descent_second_limit` – int (default: 12); limit to use on point searching for the quartic twist in the hard case

This result is proved correct if the order of vanishing is 0 and the Manin constant is $\leq 2$.

If the optional parameter `use_database` is True (default: False), this function returns the analytic order of $Sha$ as listed in Cremona’s tables, if this curve appears in Cremona’s tables.

**NOTE:**

If you come across the following error:

```python
sage: E = EllipticCurve([0, 0, 1, -34874, -2506691])
sage: E.sha().an()
Traceback (most recent call last):
 ...
RuntimeError: Unable to compute the rank, hence generators, with certainty.
 (lower bound=0, generators found=[]). This could be because Sha(E/Q)[2] is nontrivial.
Try increasing descent_second_limit then trying this command again.
```

You can increase the `descent_second_limit` (in the above example, set to the default, 12) option to try again:

```python
sage: E.sha().an(descent_second_limit=16) # long time (2s on sage.math, 2011)
1
```

**EXAMPLES:**

```python
sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.sha().an()
1
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.sha().an()
```

(continues on next page)
The smallest conductor curve with nontrivial $Sha$:

```python
sage: E = EllipticCurve([1,1,1,-352,-2689]) # 66b3
sage: E.sha().an()
4
```

The four optimal quotients with nontrivial $Sha$ and conductor $\leq 1000$:

```python
sage: E = EllipticCurve([0, -1, 1, -929, -10595]) # 571A
sage: E.sha().an()
4
sage: E = EllipticCurve([1, 1, 0, -1154, -15345]) # 681B
sage: E.sha().an()
9
sage: E = EllipticCurve([0, -1, 0, -900, -10098]) # 960D
sage: E.sha().an()
4
sage: E = EllipticCurve([0, 1, 0, -20, -42]) # 960N
sage: E.sha().an()
4
```

The smallest conductor curve of rank $> 1$:

```python
sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2)
sage: E.sha().an()
1.00000000000000
```

The following are examples that require computation of the Mordell-Weil group and regulator:

```python
sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.sha().an()
1
sage: E = EllipticCurve("1610f3")
sage: E.sha().an()
4
```

In this case the input curve is not minimal, and if this function did not transform it to be minimal, it would give nonsense:

```python
sage: E = EllipticCurve([0,-432*6^2])
sage: E.sha().an()
1
```

See trac ticket #10096: this used to give the wrong result 6.0000 before since the minimal model was not used.
an_numerical \( \text{(prec=None, use_database=True, proof=None)} \)

Return the numerical analytic order of \( Sha \), which is a floating point number in all cases.

**INPUT:**

- **\text{prec}** - integer (default: 53) bits precision – used for the L-series computation, period, regulator, etc.
- **\text{use_database}** - whether the rank and generators should be looked up in the database if possible. Default is True
- **\text{proof}** - bool or None (default: None, see proof.[tab] or sage.structure.proof) proof option passed onto regulator and rank computation.

**Note:** See also the \text{an()} command, which will return a provably correct integer when the rank is 0 or 1.

**Warning:** If the curve’s generators are not known, computing them may be very time-consuming. Also, computation of the L-series derivative will be time-consuming for large rank and large conductor, and the computation time for this may increase substantially at greater precision. However, use of very low precision less than about 10 can cause the underlying PARI library functions to fail.

**EXAMPLES:**

\begin{verbatim}
sage: EllipticCurve('11a').sha().an_numerical()
1.00000000000000
sage: EllipticCurve('37a').sha().an_numerical()
1.00000000000000
sage: EllipticCurve('389a').sha().an_numerical()
1.00000000000000
sage: EllipticCurve('66b3').sha().an_numerical()
4.00000000000000
sage: EllipticCurve('5077a').sha().an_numerical()
1.00000000000000
\end{verbatim}

A rank 4 curve:

\begin{verbatim}
sage: EllipticCurve([1, -1, 0, -79, 289]).sha().an_numerical()  # long time
1.00000000000000
\end{verbatim}

A rank 5 curve:

\begin{verbatim}
sage: EllipticCurve([0, 0, 1, -79, 342]).sha().an_numerical(prec=10, proof=False)  # long time
1.0
\end{verbatim}

See trac ticket #1115:
an_padic\((p, \text{prec}=0, \text{use\_twists}=\text{True})\)

Returns the conjectural order of \(\text{Sha}(E/\mathbb{Q})\), according to the \(p\)-adic analogue of the Birch and Swinnerton-Dyer conjecture as formulated in [MTT] and [BP].

REFERENCES:

INPUT:

- \(p\) - a prime > 3
- \(\text{prec}\) (optional) - the precision used in the computation of the \(p\)-adic L-Series
- \(\text{use\_twists}\) (default = True) - If True the algorithm may change to a quadratic twist with minimal conductor to do the modular symbol computations rather than using the modular symbols of the curve itself. If False it forces the computation using the modular symbols of the curve itself.

OUTPUT: \(p\)-adic number - that conjecturally equals \(\text{#Sha}(E/\mathbb{Q})\).

If \(\text{prec}\) is set to zero (default) then the precision is set so that at least the first \(p\)-adic digit of conjectural \(\text{#Sha}(E/\mathbb{Q})\) is determined.

EXAMPLES:

Good ordinary examples:

\begin{verbatim}
sage: EllipticCurve('11a1').sha().an_padic(5) \# rank 0
1 + O(5^22)
sage: EllipticCurve('43a1').sha().an_padic(5) \# rank 1
1 + O(5)
sage: EllipticCurve('389a1').sha().an_padic(5,4) \# rank 2, long time (2s on sage.math, 2011)
1 + O(5^3)
sage: EllipticCurve('858k2').sha().an_padic(7) \# rank 0, non trivial sha, long time (10s on sage.math, 2011)
7^2 + O(7^24)
sage: EllipticCurve('300b2').sha().an_padic(3) \# 9 elements in sha, long time (2s on sage.math, 2011)
3^2 + O(3^24)
sage: EllipticCurve('300b2').sha().an_padic(7, prec=6) \# long time
2 + 7 + O(7^8)
\end{verbatim}

Exceptional cases:

\begin{verbatim}
sage: EllipticCurve('11a1').sha().an_padic(11) \# rank 0
1 + O(11^22)
sage: EllipticCurve('130a1').sha().an_padic(5) \# rank 1
1 + O(5)
\end{verbatim}

Non-split, but rank 0 case (trac ticket #7331):
sage: EllipticCurve('270b1').sha().an_padic(5)  # rank 0, long time (2s on sage.math, 2011)
1 + O(5^22)

The output has the correct sign:

sage: EllipticCurve('123al').sha().an_padic(41)  # rank 1, long time (3s on sage.math, 2011)
1 + O(41)

Supersingular cases:

sage: EllipticCurve('34al').sha().an_padic(5)  # rank 0
1 + O(5^22)
sage: EllipticCurve('53al').sha().an_padic(5)  # rank 1, long time (11s on sage.math, 2011)
1 + O(5)

Cases that use a twist to a lower conductor:

sage: EllipticCurve('99a1').sha().an_padic(5)
1 + O(5)
sage: EllipticCurve('240d3').sha().an_padic(5)  # sha has 4 elements here
4 + O(5)
sage: EllipticCurve('448c5').sha().an_padic(7, prec=4, use_twists=False)  # long time (2s on sage.math, 2011)
2 + 7 + O(7^6)
sage: EllipticCurve([-19,34]).sha().an_padic(5)  # see trac #6455, long time (1s on sage.math, 2011)
1 + O(5)

Test for trac ticket #15737:

sage: E = EllipticCurve([-100,0])
sage: s = E.sha()
sage: s.an_padic(13)
1 + O(13^20)

bound()

Compute a provably correct bound on the order of the Tate-Shafarevich group of this curve. The bound is either False (no bound) or a list $B$ of primes such that any prime divisor of the order of $Sha$ is in this list.

EXAMPLES:

sage: EllipticCurve('37a').sha().bound()
([2], 1)

bound_kato()

Returns a list of primes $p$ such that the theorems of Kato’s [Ka] and others (e.g., as explained in a thesis of Grigor Grigorov [Gri]) imply that if $p$ divides the order of $Sha(E/Q)$ then $p$ is in the list.

If $L(E, 1) = 0$, then this function gives no information, so it returns False.

THEOREM: Suppose $L(E, 1) \neq 0$ and $p \neq 2$ is a prime such that

- $E$ does not have additive reduction at $p$,
- either the $p$-adic representation is surjective or has its image contained in a Borel subgroup.

10.11. Elliptic curves over number fields
Then \( \text{ord}_p(\#\text{Sha}(E)) \) is bounded from above by the \( p \)-adic valuation of \( L(E,1) \cdot \#\text{E}(\mathbb{Q})_{\text{tor}}^{2}/(\Omega_{\text{E}} \cdot \prod c_v) \). If the L-series vanishes, the method \text{p\_primary\_bound} can be used instead.

EXAMPLES:

```python
sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.sha().bound_kato()
[2]
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.sha().bound_kato()
[2]
sage: E = EllipticCurve([1,1,1,-352,-2689]) # 66B3
sage: E.sha().bound_kato()
[2]
```

For the following curve one really has that 25 divides the order of \( \text{Sha} \) (by [GJPST]):

```python
sage: E = EllipticCurve([1, -1, 0, -332311, -73733731]) # 1058D1
sage: E.sha().bound_kato() # long time (about 1 second)
[2, 5, 23]
sage: E.galois_representation().non_surjective() # long time
˓→(about 1 second)
[]
```

For this one, \( \text{Sha} \) is divisible by 7:

```python
sage: E = EllipticCurve([0, 0, 0, -4062871, -3152083138]) # 3364C1
sage: E.sha().bound_kato() # long time (< 10 seconds)
[2, 7, 29]
```

No information about curves of rank > 0:

```python
sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.sha().bound_kato()
False
```

REFERENCES:

\texttt{bound\_kolyvagin}(\(D=0\), \texttt{regulator=None}, \texttt{ignore\_nonsurj\_hypothesis=False})

Given a fundamental discriminant \( D \neq -3, -4 \) that satisfies the Heegner hypothesis for \( E \), return a list of primes so that Kolyvagin’s theorem (as in Gross’s paper) implies that any prime divisor of \( \text{Sha} \) is in this list.

INPUT:

- \( D \) - (optional) a fundamental discriminant < -4 that satisfies the Heegner hypothesis for \( E \); if not given, use the first such \( D \)
- \texttt{regulator} – (optional) regulator of \( \text{E}(K) \); if not given, will be computed (which could take a long time)
- \texttt{ignore\_nonsurj\_hypothesis} (optional: default False) – If True, then gives the bound coming from Heegner point index, but without any hypothesis on surjectivity of the mod-\( p \) representation.

OUTPUT:

- list – a list of primes such that if \( p \) divides \( \text{Sha}(E/K) \), then \( p \) is in this list, unless \( E/K \) has complex multiplication or analytic rank greater than 2 (in which case we return 0).
• index – the odd part of the index of the Heegner point in the full group of $K$-rational points on $E$. (If $E$ has CM, returns 0.)

REMARKS:

1. We do not have to assume that the Manin constant is 1 (or a power of 2). If the Manin constant were divisible by a prime, that prime would get included in the list of bad primes.

2. We assume the Gross-Zagier theorem is true under the hypothesis that $\gcd(N, D) = 1$, instead of the stronger hypothesis $\gcd(2 \cdot N, D) = 1$ that is in the original Gross-Zagier paper. That Gross-Zagier is true when $\gcd(N, D) = 1$ is “well-known” to the experts, but does not seem to written up well in the literature.

3. Correctness of the computation is guaranteed using interval arithmetic, under the assumption that the regulator, square root, and period lattice are computed to precision at least $10^{-10}$, i.e., they are correct up to addition or a real number with absolute value less than $10^{-10}$.

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: E.sha().bound_kolyvagin()
([2], 1)
sage: E = EllipticCurve('141a')
sage: E.sha().an()
1
sage: E.sha().bound_kolyvagin()
([2, 7], 49)
```

We get no information when the curve has rank 2.:

```python
sage: E = EllipticCurve('389a')
sage: E.sha().bound_kolyvagin()
(0, 0)
sage: E = EllipticCurve('681b')
sage: E.sha().an()
9
sage: E.sha().bound_kolyvagin()
([2, 3], 9)
```

**p**\_primary\_bound\( (p) \)**

Return a provable upper bound for the order of the $p$-primary part $Sha(E)(p)$ of the Tate-Shafarevich group.

INPUT:

• $p$ – a prime $> 2$

OUTPUT:

• $e$ – a non-negative integer such that $p^e$ is an upper bound for the order of $Sha(E)(p)$

In particular, if this algorithm does not fail, then it proves that the $p$-primary part of $Sha$ is finite. This works also for curves of rank $> 1$.

Note also that this bound is sharp if one assumes the main conjecture of Iwasawa theory of elliptic curves. One may use the method **p**\_primary\_order for checking if the extra conditions hold under which the main conjecture is known by the work of Skinner and Urban. This then returns the provable $p$-primary part of the Tate-Shafarevich group.

Currently the algorithm is only implemented when the following conditions are verified:
• The \( p \)-adic Galois representation must be surjective or must have its image contained in a Borel subgroup.
• The reduction at \( p \) is not allowed to be additive.
• If the reduction at \( p \) is non-split multiplicative, then the rank must be 0.
• If \( p = 3 \), then the reduction at 3 must be good ordinary or split multiplicative, and the rank must be 0.

**ALGORITHM:**

The algorithm is described in [SW]. The results for the reducible case can be found in [Wu]. The main ingredient is Kato’s result on the main conjecture in Iwasawa theory.

**EXAMPLES:**

```sage
e = EllipticCurve('11a3')
0
e.sha().p_primary_bound(3)
0
e.sha().p_primary_bound(5)
0
e.sha().p_primary_bound(7)
0
e.sha().p_primary_bound(11)
0
e.sha().p_primary_bound(13)
0

e = EllipticCurve('389a1')
0
e.sha().p_primary_bound(5)
0
e.sha().p_primary_bound(7)
0
e.sha().p_primary_bound(11)
0
e.sha().p_primary_bound(13)
0

e = EllipticCurve('858k2')
0
e.sha().p_primary_bound(3) # long time (10s on sage.math, 2011)
0
```

Some checks for trac ticket #6406 and trac ticket #16959:

```sage
e.sha().p_primary_bound(7) # long time
2

E = EllipticCurve('608b1')
E.sha().p_primary_bound(5)

Traceback (most recent call last):
...

ValueError: The \(p \)-adic Galois representation is not surjective or reducible.

Current knowledge about Euler systems does not provide an upper bound in this case. Try \texttt{an_padic} for a conjectural bound.

E.sha().an_padic(5) # long time
1 + O(5^22)

E = EllipticCurve("5040bil")
```

(continues on next page)
REFERENCES:

**p_primary_order**(p)

Return the order of the \( p \)-primary part of the Tate-Shafarevich group.

This uses the result of Skinner and Urban [SU] on the main conjecture in Iwasawa theory. In particular the elliptic curve must have good ordinary reduction at \( p \), the residual Galois representation must be surjective. Furthermore there must be an auxiliary prime \( \ell \) dividing the conductor of the curve exactly once such that the residual representation is ramified at \( p \).

INPUT:

• \( p \) – an odd prime

OUTPUT:

• \( e \) – a non-negative integer such that \( p^e \) is the order of the \( p \)-primary order if the conditions are satisfied and raises a `ValueError` otherwise.

EXAMPLES:

```python
sage: E = EllipticCurve("389a1") # rank 2
sage: E.sha().p_primary_order(5)
0
sage: E = EllipticCurve("11a1")
sage: E.sha().p_primary_order(7)
0
sage: E.sha().p_primary_order(5)
Traceback (most recent call last):
...
ValueError: The order is not provably known using Skinner-Urban. Try running p_primary_bound to get a bound.
```

REFERENCES:

**two_selmer_bound()**

This returns the 2-rank, i.e. the \( \mathbb{F}_2 \)-dimension of the 2-torsion part of \( Sha \), provided we can determine the rank of \( E \).

EXAMPLES:

```python
sage: sh = EllipticCurve('571a1').sha()
sage: sh.two_selmer_bound()
2
sage: sh.an()
4

sage: sh = EllipticCurve('66a1').sha()
sage: sh.two_selmer_bound()
0
sage: sh.an()
1

sage: sh = EllipticCurve('960d1').sha()
sage: sh.two_selmer_bound()
2
```

(continues on next page)
10.11.11 Complex multiplication for elliptic curves

This module implements the functions

• hilbert_class_polynomial
• cm_j_invariants
• cm_orders
• discriminants_with_bounded_class_number
• cm_j_invariants_and_orders
• largest_fundamental_disc_with_class_number

AUTHORS:

• Robert Bradshaw
• John Cremona
• William Stein

```
sage.schemes.elliptic_curves.cm.cm_j_invariants(K, proof=None)
```

Return a list of all CM \( j \)-invariants in the field \( K \).

INPUT:

• \( K \) – a number field
• \( proof \) – (default: proof.number_field())

OUTPUT:

(list) – A list of CM \( j \)-invariants in the field \( K \).

EXAMPLES:

```
sage: cm_j_invariants(QQ)
[-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]
```

Over imaginary quadratic fields there are no more than over \( QQ \):

```
sage: cm_j_invariants(QuadraticField(-1, 'i'))
[-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]
```

Over real quadratic fields there may be more, for example:

```
sage: len(cm_j_invariants(QuadraticField(5, 'a')))
31
```

Over number fields \( K \) of many higher degrees this also works:
sage: cm_j_invariants_and_orders(K)

Return a list of all CM $j$-invariants in the field $K$, together with the associated orders.

INPUT:
- $K$ – a number field
- proof – (default: proof.number_field())

OUTPUT:
(list) A list of 3-tuples $(D, f, j)$ where $j$ is a CM $j$-invariant in $K$ with quadratic fundamental discriminant $D$ and conductor $f$.

EXAMPLES:

sage: cm_j_invariants_and_orders(QQ)
[(-3, 3, -12288000), (-3, 2, 54000), (-3, 1, 0), (-4, 2, 287496), (-4, 1, 1728),
 (-7, 2, 16581375), (-7, 1, -3375), (-8, 1, 8000), (-11, 1, -32768), (-19, 1, -884736),
 (-43, 1, -884736000), (-67, 1, -147197952000), (-163, 1, -262537412640768000)]

Over an imaginary quadratic field there are no more than over $\mathbb{Q}$:

sage: cm_j_invariants_and_orders(QuadraticField(-1, 'i'))
[(-163, 1, -262537412640768000), (-67, 1, -147197952000),
 (-43, 1, -884736000), (-19, 1, -884736), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728),
 (-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000),
 (-3, 6, 31710790944000*a^2 + 39953093016000*a + 50337742902000)]

Over real quadratic fields there may be more:

sage: v = cm_j_invariants_and_orders(QuadraticField(5,'a')); len(v)
31
sage: [(D, f) for D, f, j in v if j not in QQ]
[(-235, 1), (-235, 1), (-115, 1), (-115, 1), (-40, 1), (-40, 1),
 (-35, 1), (-35, 1), (-20, 1), (-20, 1), (-15, 1), (-15, 1), (-15, 2),
 (-15, 2), (-4, 5), (-4, 5), (-3, 5), (-3, 5)]

Over number fields $K$ of many higher degrees this also works:

sage: cm_j_invariants_and_orders(K)
[(-163, 1, -262537412640768000), (-67, 1, -147197952000),
 (-43, 1, -884736000), (-19, 1, -884736), (-11, 1, -32768),
 (-8, 1, 8000), (-7, 1, -3375), (-7, 2, 16581375), (-4, 1, 1728),
 (-4, 2, 287496), (-3, 1, 0), (-3, 2, 54000), (-3, 3, -12288000),
 (-3, 6, 31710790944000*a^2 + 39953093016000*a + 50337742902000)]
sage.schemes.elliptic_curves.cm.cm_orders(h, proof=None)

Return a list of all pairs \((D, f)\) where there is a CM order of discriminant \(Df^2\) with class number \(h\), with \(D\) a fundamental discriminant.

**INPUT:**
- \(h\) – positive integer
- \(\text{proof}=(\text{default: proof.number_field()})\)

**OUTPUT:**
- list of 2-tuples \((D, f)\)

**EXAMPLES:**

```python
sage: cm_orders(0)
[]
sage: v = cm_orders(1);
v
[(-3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11, 1),
 (-19, 1), (-43, 1), (-67, 1), (-163, 1)]
sage: type(v[0][0]), type(v[0][1])
(<... 'sage.rings.integer.Integer'>, <... 'sage.rings.integer.Integer'>)
sage: v = cm_orders(2);
v
[(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-4, 3), (-7, 4), (-8, 3), (-8, 2),
 (-11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1),
 (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1),
 (-235, 1), (-267, 1), (-403, 1), (-427, 1)]
sage: len(v)
29
```

Any degree up to 100 is implemented, but may be prohibitively slow:

```python
sage: cm_orders(3)
[(-3, 9), (-3, 6), (-11, 2), (-19, 2), (-23, 2), (-23, 1), (-31, 2), (-31, 1),
 (-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1),
 (-233, 1), (-237, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1),
 (-883, 1), (-907, 1)]
sage: len(cm_orders(4))
84
```

sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(hmax, B=0, proof=None)

Return dictionary with keys class numbers \(h \leq h_{\text{max}}\) and values the list of all pairs \((D, f)\), with \(D < 0\) a fundamental discriminant such that \(Df^2\) has class number \(h\). If the optional bound \(B\) is given, return only those pairs with fundamental \(|D| \leq B\), though \(f\) can still be arbitrarily large.

**INPUT:**
- \(h_{\text{max}}\) – integer
- \(B\) – integer or None; if None returns all pairs
- \(\text{proof}=(\text{default: proof.number_field()})\)

**OUTPUT:**
- dictionary with key class numbers \(h \leq h_{\text{max}}\) and values the list of all pairs \((D, f)\), with \(D < 0\) a fundamental discriminant such that \(Df^2\) has class number \(h\). If the optional bound \(B\) is given, return only those pairs with fundamental \(|D| \leq B\), though \(f\) can still be arbitrarily large.
• dictionary

In case $B$ is not given, we use Mark Watkins’s: “Class numbers of imaginary quadratic fields” to compute a $B$ that captures all $h$ up to $h_{\text{max}}$ (only available for $h_{\text{max}} \leq 100$).

EXAMPLES:

```plaintext
sage: v = sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(3)
sage: sorted(v)
[1, 2, 3]
sage: v[1]
[(-3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)]
sage: v[2]
[(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-4, 3), (-7, 4), (-8, 3), (-8, 2), (-11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)]
sage: v[3]
[(-3, 9), (-3, 6), (-11, 2), (-19, 2), (-23, 2), (-23, 1), (-31, 2), (-31, 1), (-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-235, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883, 1), (-907, 1)]
sage: v = sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(8, proof=False)
sage: sorted(len(v[h]) for h in v)
[13, 25, 29, 38, 84, 101, 208]
```

Find all class numbers for discriminant up to 50:

```plaintext
sage: sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(hmax=5, B=50)
(1: [(3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11, 1), (-19, 1), (-43, 1)], 2: [(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-7, 4), (-8, 3), (-11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1), (-883, 1), (-907, 1)]
```

`sage.schemes.elliptic_curves.cm.hilbert_class_polynomial(D, algorithm=None)`

Return the Hilbert class polynomial for discriminant $D$.

INPUT:

- $D$ (int) – a negative integer congruent to 0 or 1 modulo 4.
- `algorithm` (string, default None).

OUTPUT:

(integer polynomial) The Hilbert class polynomial for the discriminant $D$.

ALGORITHM:

- If `algorithm` = “arb” (default): Use Arb’s implementation which uses complex interval arithmetic.
- If `algorithm` = “sage”: Use complex approximations to the roots.
- If `algorithm` = “magma”: Call the appropriate Magma function (if available).
AUTHORS:

- Sage implementation originally by Eduardo Ocampo Alvarez and Andrey Timofeev
- Sage implementation corrected by John Cremona (using corrected precision bounds from Andreas Enge)
- Magma implementation by David Kohel

EXAMPLES:

```python
sage: hilbert_class_polynomial(-4)
x - 1728
sage: hilbert_class_polynomial(-7)
x + 3375
sage: hilbert_class_polynomial(-23)
x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
sage: hilbert_class_polynomial(-37*4)
x^2 - 39660183801072000*x - 7898242515936467904000000
sage: hilbert_class_polynomial(-37*4, algorithm="magma") # optional - magma
x^2 - 39660183801072000*x - 7898242515936467904000000
sage: hilbert_class_polynomial(-163)
x + 262537412640768000
sage: hilbert_class_polynomial(-163, algorithm="sage")
x + 262537412640768000
sage: hilbert_class_polynomial(-163, algorithm="magma") # optional - magma
x + 262537412640768000
```

sage.schemes.elliptic_curves.cm.is_cm_j_invariant(j, method='new')

Return whether or not this is a CM j-invariant.

INPUT:

- j – an element of a number field \( K \)

OUTPUT:

A pair \( (\text{bool}, (d,f)) \) which is either \( \text{False}, \text{None} \) if \( j \) is not a CM j-invariant or \( \text{True}, (d,f) \) if \( j \) is the j-invariant of the imaginary quadratic order of discriminant \( D = df^2 \) where \( d \) is the associated fundamental discriminant and \( f \) the index.

**Note:** The current implementation makes use of the classification of all orders of class number up to 100, and hence will raise an error if \( j \) is an algebraic integer of degree greater than this. It would be possible to implement a more general version, using the fact that \( d \) must be supported on the primes dividing the discriminant of the minimal polynomial of \( j \).

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
sage: is_cm_j_invariant(0)
(True, (-3, 1))
sage: is_cm_j_invariant(8000)
(True, (-8, 1))
sage: K.<a> = QuadraticField(5)
sage: is_cm_j_invariant(282880*a + 632000)
(True, (-20, 1))
sage: K.<a> = NumberField(x^3 - 2)
sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
(True, (-3, 6))
```
sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(h)

Return largest absolute value of any fundamental discriminant with class number \( h \), and the number of fundamental discriminants with that class number. This is known for \( h \) up to 100, by work of Mark Watkins.

**INPUT:**

- \( h \) – integer

**EXAMPLES:**

```
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(0)
(0, 0)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(1)
(163, 9)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(2)
(427, 18)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(10)
(13843, 87)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(100)
(1856563, 1736)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(101)
Traceback (most recent call last):
...
NotImplementedError: largest discriminant not known for class number 101
```

The following relate to elliptic curves over local nonarchimedean fields.

### 10.11.12 Local data for elliptic curves over number fields

Let \( E \) be an elliptic curve over a number field \( K \) (including \( \mathbb{Q} \)). There are several local invariants at a finite place \( v \) that can be computed via Tate’s algorithm (see [Sil1994] IV.9.4 or [Tate1975]).

These include the type of reduction (good, additive, multiplicative), a minimal equation of \( E \) over \( K_v \), the Tamagawa number \( c_v \), defined to be the index \([E(K_v) : E^0(K_v)]\) of the points with good reduction among the local points, and the exponent of the conductor \( f_v \).

The functions in this file will typically be called by using `local_data`.

**EXAMPLES:**

```
sage: K.<i> = NumberField(x^2+1)
sage: E = EllipticCurve([(2+i)^2,(2+i)^7])
sage: pp = K.fractional_ideal(2+i)
sage: da = E.local_data(pp)
sage: da.has_bad_reduction()
True
sage: da.has_multiplicative_reduction()
False
sage: da.kodaira_symbol()
10*
```

(continues on next page)
An example to show how the Neron model can change as one extends the field:

```sage
sage: E = EllipticCurve([0,-1])
sage: E.local_data(2)
Local data at Principal ideal (2) of Integer Ring:
 Reduction type: bad additive
 Local minimal model: Elliptic Curve defined by y^2 = x^3 - 1 over Rational Field
 Minimal discriminant valuation: 4
 Conductor exponent: 4
 Kodaira Symbol: II
 Tamagawa Number: 1
sage: EK = E.base_extend(K)
sage: EK.local_data(1+i)
Local data at Fractional ideal (i + 1):
 Reduction type: bad additive
 Local minimal model: Elliptic Curve defined by y^2 = x^3 + (-1) over Number Field in i with defining polynomial x^2 + 1
 Minimal discriminant valuation: 8
 Conductor exponent: 2
 Kodaira Symbol: IV*
 Tamagawa Number: 3
```

Or how the minimal equation changes:

```sage
sage: E = EllipticCurve([0,8])
sage: E.is_minimal()
True
sage: EK = E.base_extend(K)
sage: da = EK.local_data(1+i)
sage: da.minimal_model()
Elliptic Curve defined by y^2 = x^3 + (-i) over Number Field in i with defining polynomial x^2 + 1
```

AUTHORS:

- John Cremona: First version 2008-09-21 (refactoring code from ell_number_field.py and ell_rational_field.py)
- Chris Wuthrich: more documentation 2010-01

```python
class sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData(E, P, proof=None, algorithm='pari', globally=False):

 Bases: sage.structure.sage_object.SageObject

 The class for the local reduction data of an elliptic curve.

 Currently supported are elliptic curves defined over Q, and elliptic curves defined over a number field, at an
```
arbitrary prime or prime ideal.

INPUT:

• $E$ – an elliptic curve defined over a number field, or $\mathbb{Q}$.
• $P$ – a prime ideal of the field, or a prime integer if the field is $\mathbb{Q}$.
• proof (bool)– if True, only use provably correct methods (default controlled by global proof module).
  Note that the proof module is number_field, not elliptic_curves, since the functions that actually need the flag are in number fields.
• algorithm (string, default: “pari”) – Ignored unless the base field is $\mathbb{Q}$. If “pari”, use the PARI C-library \texttt{ellglobalred} implementation of Tate’s algorithm over $\mathbb{Q}$. If “generic”, use the general number field implementation.

Note: This function is not normally called directly by users, who may access the data via methods of the EllipticCurve classes.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
sage: E = EllipticCurve('14a1')
sage: EllipticCurveLocalData(E, 2)
Local data at Principal ideal (2) of Integer Ring:
Reduction type: bad non-split multiplicative
Local minimal model: Elliptic Curve defined by $y^2 + x*y + y = x^3 + 4*x - 6$ over \mathbb{Q}
Minimal discriminant valuation: 6
Conductor exponent: 1
Kodaira Symbol: I6
Tamagawa Number: 2
```

**bad_reduction_type()**

Return the type of bad reduction of this reduction data.

OUTPUT:

(int or None):

• +1 for split multiplicative reduction
• -1 for non-split multiplicative reduction
• 0 for additive reduction
• None for good reduction

EXAMPLES:

```python
sage: E = EllipticCurve('14a1')
sage: [(p, E.local_data(p).bad_reduction_type()) for p in prime_range(15)]
[(2, -1), (3, None), (5, None), (7, 1), (11, None), (13, None)]
sage: K.<a>=NumberField(x^3-2)
sage: P17a, P17b = [P for P, e in K.factor(17)]
sage: E = EllipticCurve([0, 0, 0, 2*a+1])
sage: [(p, E.local_data(p).bad_reduction_type()) for p in [P17a, P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), None), (Fractional ideal (2*a + 1), 0)]
```
**conductor\_valuation()**

Return the valuation of the conductor from this local reduction data.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.conductor_valuation()
2
```

**discriminant\_valuation()**

Return the valuation of the minimal discriminant from this local reduction data.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.discriminant_valuation()
4
```

**has\_additive\_reduction()**

Return True if there is additive reduction.

EXAMPLES:

```python
sage: E = EllipticCurve('27a1')
sage: [(p,E.local_data(p).has_additive_reduction()) for p in prime_range(15)]
[(2, False), (3, True), (5, False), (7, False), (11, False), (13, False)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_additive_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), True)]
```

**has\_bad\_reduction()**

Return True if there is bad reduction.

EXAMPLES:

```python
sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_bad_reduction()) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_bad_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), True)]
```
**has_good_reduction()**

Return True if there is good reduction.

**EXAMPLES:**

```
sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_good_reduction()) for p in prime_range(15)]
[(2, False), (3, True), (5, True), (7, False), (11, True), (13, True)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_good_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), True),
 (Fractional ideal (2*a + 1), False)]
```

**has_multiplicative_reduction()**

Return True if there is multiplicative reduction.

**Note:** See also `has_split_multiplicative_reduction()` and `has_nonsplit_multiplicative_reduction()`.

**EXAMPLES:**

```
sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_multiplicative_reduction()) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_multiplicative_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), False)]
```

**has_nonsplit_multiplicative_reduction()**

Return True if there is non-split multiplicative reduction.

**EXAMPLES:**

```
sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_nonsplit_multiplicative_reduction()) for p in prime_range(15)]
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_nonsplit_multiplicative_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), False)]
```

**has_split_multiplicative_reduction()**

Return True if there is split multiplicative reduction.

**EXAMPLES:**

```
sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_split_multiplicative_reduction()) for p in
 ->prime_range(15)]
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_split_multiplicative_reduction()) for p in
 ->[P17a,P17b]]
[(Fractional ideal (4*a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), False)]
```
EXAMPLES:

```python
sage: E = EllipticCurve('14a1')
sage: [(p,E.local_data(p).has_split_multiplicative_reduction()) for p in prime_range(15)]
[(2, False), (3, False), (5, False), (7, True), (11, False), (13, False)]
```

```python
sage: K.<a> = NumberField(x^3-2)
sage: P17a, P17b = [P for P,e in K.factor(17)]
sage: E = EllipticCurve([0,0,0,0,2*a+1])
sage: [(p,E.local_data(p).has_split_multiplicative_reduction()) for p in [P17a,P17b]]
[(Fractional ideal (a^2 - 2*a + 1), False), (Fractional ideal (2*a + 1), False)]
```

**kodaira_symbol()**

Return the Kodaira symbol from this local reduction data.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.kodaira_symbol()
IV
```

**minimal_model**(reduce=True)

Return the (local) minimal model from this local reduction data.

**INPUT:**

- reduce – (default: True) if set to True and if the initial elliptic curve had globally integral coefficients, then the elliptic curve returned by Tate’s algorithm will be “reduced” as specified in _reduce_model() for curves over number fields.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.minimal_model()
Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field
sage: data.minimal_model() == E.local_minimal_model(2)
True
```

To demonstrate the behaviour of the parameter reduce:

```python
sage: K.<a> = NumberField(x^3+x+1)
sage: E = EllipticCurve(K, [0, 0, a, 0, 1])
sage: E.local_data(K.ideal(a-1)).minimal_model(reduce=True)
Elliptic Curve defined by y^2 + a*y = x^3 + 1 over Number Field in a with defining polynomial x^3 + x + 1
```

(continues on next page)
 sage: E = EllipticCurve([2, 1, 0, -2, -1])
 sage: E.local_data(ZZ.ideal(2), algorithm="generic").minimal_model(reduce=False)
 Elliptic Curve defined by y^2 + 2*x*y + 2*y = x^3 + x^2 - 4*x - 2 over Rational Field
 sage: E.local_data(ZZ.ideal(2), algorithm="pari").minimal_model(reduce=False)
 Traceback (most recent call last):
   ... ValueError: the argument reduce must not be False if algorithm=pari is used
 sage: E.local_data(ZZ.ideal(2), algorithm="generic").minimal_model()
 Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field
 sage: E.local_data(ZZ.ideal(2), algorithm="pari").minimal_model()
 Elliptic Curve defined by y^2 = x^3 - x^2 - 3*x + 2 over Rational Field

trac ticket #14476:

 sage: t = QQ['t'].0
 sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t +1)
 sage: E = EllipticCurve([-2*g^3 + 10/3*g^2 + 3*g - 2/3, -11/9*g^3 + 34/9*g^2 - 7/3*g + 4/9, -11/9*g^3 + 34/9*g^2 - 7/3*g + 4/9, 0, 0])
 sage: vv = K.fractional_ideal(g^2 - g - 2)
 sage: E.local_data(vv).minimal_model()
 Elliptic Curve defined by y^2 + (-2*g^3+10/3*g^2+3*g-2/3)*x*y + (-11/9*g^3+34/9*g^2-7/3*g+4/9)*y = x^3 + (-11/9*g^3+34/9*g^2-7/3*g+4/9)*x^2 over Number Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1

prime()  
Return the prime ideal associated with this local reduction data.

EXAMPLES:

 sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
 sage: E = EllipticCurve([0,0,0,0,64]); E
 Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
 sage: data = EllipticCurveLocalData(E,2)
 sage: data.prime()
 Principal ideal (2) of Integer Ring

tamagawa_exponent()  
Return the Tamagawa index from this local reduction data.

This is the exponent of $E(K_v)/E^0(K_v)$; in most cases it is the same as the Tamagawa index.

EXAMPLES:

 sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
 sage: E = EllipticCurve('816a1')
 sage: data = EllipticCurveLocalData(E,2)
 sage: data.tamagawa_number()
 4
 sage: data.tamagawa_exponent()
 2
sage: E = EllipticCurve('200c4')
sage: data = EllipticCurveLocalData(E,5)
sage: data.kodaira_symbol()
I4*
sage: data.tamagawa_number()
4
sage: data.tamagawa_exponent()
2

```
tamagawa_number()
```

Return the Tamagawa number from this local reduction data.

This is the index \( [E(K_v) : E^0(K_v)] \).

**EXAMPLES:**

```
sage: from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
sage: E = EllipticCurve([0,0,0,0,64]); E
Elliptic Curve defined by y^2 = x^3 + 64 over Rational Field
sage: data = EllipticCurveLocalData(E,2)
sage: data.tamagawa_number()
3
```

```
sage.schemes.elliptic_curves.ell_local_data.check_prime(K,P)
```

Function to check that \( P \) determines a prime of \( K \), and return that ideal.

**INPUT:**

- \( K \) – a number field (including \( \mathbb{Q} \)).
- \( P \) – an element of \( K \) or a (fractional) ideal of \( K \).

**OUTPUT:**

- If \( K \) is \( \mathbb{Q} \): the prime integer equal to or which generates \( P \).
- If \( K \) is not \( \mathbb{Q} \): the prime ideal equal to or generated by \( P \).

**Note:** If \( P \) is not a prime and does not generate a prime, a TypeError is raised.

**EXAMPLES:**

```
sage: from sage.schemes.elliptic_curves.ell_local_data import check_prime
sage: check_prime(QQ,3)
3
sage: check_prime(QQ,QQ(3))
3
sage: check_prime(QQ,ZZ.ideal(31))
31
sage: K.<a>=NumberField(x^2-5)
sage: check_prime(K,a)
Fractional ideal (a)
sage: check_prime(K,a+1)
Fractional ideal (a + 1)
sage: [check_prime(K,P) for P in K.primes_above(31)]
[Fractional ideal (5/2*a + 1/2), Fractional ideal (5/2*a - 1/2)]
```

(continues on next page)
sage: L.<b> = NumberField(x^2+3)
sage: check_prime(K, L.ideal(5))
Traceback (most recent call last):
...
TypeError: The ideal Fractional ideal (5) is not a prime ideal of Number Field in a with defining polynomial x^2 - 5
sage: check_prime(K, L.ideal(b))
Traceback (most recent call last):
TypeError: No compatible natural embeddings found for Number Field in a with defining polynomial x^2 - 5 and Number Field in b with defining polynomial x^2 - 3

## 10.11.13 Kodaira symbols

Kodaira symbols encode the type of reduction of an elliptic curve at a (finite) place.

The standard notation for Kodaira Symbols is as a string which is one of $I_m$, $II$, $III$, $IV$, $I_m^*$, $II^*$, $III^*$, $IV^*$, where $m$ denotes a non-negative integer. These have been encoded by single integers by different people. For convenience we give here the conversion table between strings, the eclib coding and the PARI encoding.

<table>
<thead>
<tr>
<th>Kodaira Symbol</th>
<th>Eclib coding</th>
<th>PARI Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_0$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$I_m^*$</td>
<td>10m + 1</td>
<td>$-(m + 4)$</td>
</tr>
<tr>
<td>$II$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$III$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$IV$</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$II^*$</td>
<td>7</td>
<td>$-2$</td>
</tr>
<tr>
<td>$III^*$</td>
<td>6</td>
<td>$-3$</td>
</tr>
<tr>
<td>$IV^*$</td>
<td>5</td>
<td>$-4$</td>
</tr>
</tbody>
</table>

AUTHORS:

- David Roe <roed@math.harvard.edu>
- John Cremona

`sage.schemes.elliptic_curves.kodaira_symbol.KodairaSymbol(symbol)`

Return the specified Kodaira symbol.

INPUT:

- `symbol` (string or integer) – Either a string of the form “I0”, “II”, ..., “In”, “II”, “III”, “IV”, “I0*”, “II*”, ..., “In*”, “II*”, “III*”, or “IV*”, or an integer encoding a Kodaira symbol using PARI’s conventions.

OUTPUT:

(KodairaSymbol) The corresponding Kodaira symbol.

EXAMPLES:

```python
sage: KS = KodairaSymbol
sage: [KS(n) for n in range(1,10)]
[I0, II, III, IV, I1, I2, I3, I4, I5]
sage: [KS(-n) for n in range(1,10)]
```

(continues on next page)
class sage.schemes.elliptic_curves.kodaira_symbol.KodairaSymbol_class(symbol)
    Bases: sage.structure.sage_object.SageObject

Class to hold a Kodaira symbol of an elliptic curve over a \( p \)-adic local field.

Users should use the KodairaSymbol() function to construct Kodaira Symbols rather than use the class constructor directly.

10.11.14 Tate's parametrisation of \( p \)-adic curves with multiplicative reduction

Let \( E \) be an elliptic curve defined over the \( p \)-adic numbers \( \mathbb{Q}_p \). Suppose that \( E \) has multiplicative reduction, i.e. that the \( j \)-invariant of \( E \) has negative valuation, say \( n \). Then there exists a parameter \( q \) in \( \mathbb{Z}_p \) of valuation \( n \) such that the points of \( E \) defined over the algebraic closure \( \overline{\mathbb{Q}_p} \) are in bijection with \( \overline{\mathbb{Q}_p} \times \frac{\mathbb{Z}}{q \mathbb{Z}} \). More precisely there exists the series \( s_4(q) \) and \( s_6(q) \) such that the \( y^2 + xy = x^3 + s_4(q)x + s_6(q) \) curve is isomorphic to \( E \) over \( \mathbb{Q}_p \) (or over \( \mathbb{Q}_p \) if the reduction is split multiplicative). There is \( p \)-adic analytic map from \( \mathbb{Q}_p^\times \) to this curve with kernel \( q \mathbb{Z} \). Points of good reduction correspond to points of valuation 0 in \( \mathbb{Q}_p^\times \).

See chapter V of [Sil1994] for more details.

AUTHORS:
- Chris Wuthrich (23/05/2007): first version
- Chris Wuthrich (04/09): reformatted docstrings.

class sage.schemes.elliptic_curves.ell_tate_curve.TateCurve(E, p)
    Bases: sage.structure.sage_object.SageObject

Tate’s \( p \)-adic uniformisation of an elliptic curve with multiplicative reduction.

Note: Some of the methods of this Tate curve only work when the reduction is split multiplicative over \( \mathbb{Q}_p \).

EXAMPLES:

sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5); eq
5-adic Tate curve associated to the Elliptic Curve defined by y^2 + x*y + y = x^3 + 33*x + 68 over Rational Field
sage: eq == loads(dumps(eq))
True

REFERENCES: [Sil1994]

\textbf{E2 (prec=20)}

Return the value of the \( p \)-adic Eisenstein series of weight 2 evaluated on the elliptic curve having split multiplicative reduction.

INPUT:
- \texttt{prec} - the \( p \)-adic precision, default is 20.

EXAMPLES:
eq = EllipticCurve('130a1').tate_curve(5)
4 + 2*5^2 + 2*5^3 + 5^4 + 2*5^5 + 5^7 + 5^8 + 2*5^9 + O(5^10)

T = EllipticCurve('14').tate_curve(7)
2 + 4*7 + 7^2 + 3*7^3 + 6*7^4 + 5*7^5 + 3*7^6 + 7^7 + 5*7^8 + 6*7^9 + 5*7^10 +
   + 2*7^11 + 6*7^12 + 4*7^13 + 3*7^14 + 5*7^15 + 4*7^16 + 4*7^17 + 4*7^18 + 2*7^20 + 7^30 +
   + 21 + 5*7^22 + 4*7^23 + 4*7^24 + 3*7^25 + 6*7^26 + 3*7^27 + 6*7^28 + O(7^30)

L_invariant(\text{prec}=20)
Returns the \textbf{mysterious} $L$-invariant associated to an elliptic curve with split multiplicative reduction.

One instance where this constant appears is in the exceptional case of the $p$-adic Birch and Swinnerton-Dyer conjecture as formulated in $[MTT]$. See $[Col]$ for a detailed discussion.

\textbf{INPUT:}

\textbullet\ \text{prec} - the $p$-adic precision, default is 20.

\textbf{REFERENCES:}

$[MTT]$

\textbf{EXAMPLES:}

\texttt{sage: eq = EllipticCurve('130a1').tate_curve(5)}
\texttt{sage: eq.L_invariant(prec=10)}
5^3 + 4*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 3*5^8 + 5^9 + O(5^10)

\texttt{curve(\text{prec}=20)}
Return the $p$-adic elliptic curve of the form $y^2 + xy = x^3 + s_4x + s_6$.

This curve with split multiplicative reduction is isomorphic to the given curve over the algebraic closure of $\mathbb{Q}_p$.

\textbf{INPUT:}

\textbullet\ \text{prec} - the $p$-adic precision, default is 20.

\textbf{EXAMPLES:}

\texttt{sage: eq = EllipticCurve('130a1').tate_curve(5)}
\texttt{sage: eq.curve(prec=5)}
Elliptic Curve defined by $y^2 + (1+O(5^5))*x*y = x^3 + (2*5^4+5^5+2*5^6+5^7+3*5^8+O(5^9))*x + (2*5^3+5^4+2*5^5+5^7+O(5^8))$ over 5-adic Field with capped relative precision 5

is_split()
Returns True if the given elliptic curve has split multiplicative reduction.

\textbf{EXAMPLES:}

\texttt{sage: eq = EllipticCurve('130a1').tate_curve(5)}
\texttt{sage: eq.is_split()}
True

\texttt{sage: eq = EllipticCurve('37a1').tate_curve(37)}
\texttt{sage: eq.is_split()}
False
lift \((P, \text{prec}=20)\)
Given a point \(P\) in the formal group of the elliptic curve \(E\) with split multiplicative reduction, this produces an element \(u\) in \(\mathbb{Q}_p^\times\) mapped to the point \(P\) by the Tate parametrisation. The algorithm returns the unique such element in \(1 + p\mathbb{Z}_p\).

INPUT:
- \(P\) - a point on the elliptic curve.
- \(\text{prec}\) - the \(p\)-adic precision, default is 20.

EXAMPLES:
```
sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5)
sage: P = e([-6,10])
sage: l = eq.lift(12*P, prec=10); l
1 + 4*5 + 5^3 + 5^4 + 4*5^5 + 5^6 + 5^7 + 4*5^8 + 5^9 + O(5^10)
```

Now we map the lift \(l\) back and check that it is indeed right:
```
sage: eq.parametrisation_onto_original_curve(l)
(4*5^-2 + 2*5^-1 + 4*5 + 3*5^3 + 5^4 + 2*5^5 + 4*5^6 + O(5^7) : 2*5^-3 + 5^-1 + 4 + 4*5 + 5^2 + 3*5^3 + 4*5^4 + O(5^6) : 1 + O(5^9))
sage: e5 = e.change_ring(Qp(5,9))
sage: e5(12*P)
(4*5^-2 + 2*5^-1 + 4*5 + 3*5^3 + 5^4 + 2*5^5 + 4*5^6 + O(5^7) : 2*5^-3 + 5^-1 + 4 + 4*5 + 5^2 + 3*5^3 + 4*5^4 + O(5^6) : 1 + O(5^9))
```

original_curve()
Return the elliptic curve the Tate curve was constructed from.

EXAMPLES:
```
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.original_curve()
Elliptic Curve defined by y^2 + x*y + y = x^3 - 33*x + 68 over Rational Field
```

padic_height \((\text{prec}=20)\)
Return the canonical \(p\)-adic height function on the original curve.

INPUT:
- \(\text{prec}\) - the \(p\)-adic precision, default is 20.

OUTPUT:
- A function that can be evaluated on rational points of \(E\).

EXAMPLES:
```
sage: e = EllipticCurve('130a1')
sage: eq = e.tate_curve(5)
sage: h = eq.padic_height(prec=10)
sage: P=e.gens()[0]
sage: h(P)
2*5^-1 + 1 + 2*5 + 2*5^2 + 3*5^3 + 3*5^6 + 5^7 + O(5^8)
```

Check that it is a quadratic function:
padic_regulator (prec=20)
Compute the canonical \( p \)-adic regulator on the extended Mordell-Weil group as in [MTT] (with the correction of [Wer] and sign convention in [SW].)

The \( p \)-adic Birch and Swinnerton-Dyer conjecture predicts that this value appears in the formula for the leading term of the \( p \)-adic L-function.

INPUT:

- \( \text{prec} \) – the \( p \)-adic precision, default is 20.

REFERENCES:

[MTT]

[SW]

EXAMPLES:

```
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.padic_regulator()
2*5^-1 + 1 + 2*5 + 2*5^2 + 3*5^3 + 3*5^6 + 5^7 + 3*5^9 + 3*5^10 + 3*5^12 + 4*5^13 + 3*5^15 + 2*5^16 + 3*5^18 + 4*5^19 + 0(5^20)
```

parameter (prec=20)
Return the Tate parameter \( q \) such that the curve is isomorphic over the algebraic closure of \( \mathbb{Q}_p \) to the curve \( \mathbb{Q}_p^\times / q\mathbb{Z} \).

INPUT:

- \( \text{prec} \) - the \( p \)-adic precision, default is 20.

EXAMPLES:

```
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parameter(prec=5)
3*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + 0(5^8)
```

parametrisation_onto_original_curve (u, prec=20)
Given an element \( u \) in \( \mathbb{Q}_p^\times \), this computes its image on the original curve under the \( p \)-adic uniformisation of \( E \).

INPUT:

- \( u \) - a non-zero \( p \)-adic number.
- \( \text{prec} \) - the \( p \)-adic precision, default is 20.

EXAMPLES:

```
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parametrisation_onto_original_curve(1+5+5^2+O(5^10))
(4*5^-2 + 4*5^-1 + 4 + 2*5^3 + 3*5^4 + 2*5^6 + 0(5^7) : 3*5^-3 + 5^-2 + 4*5^-1 + 1 + 4*5 + 5^2 + 3*5^5 + 0(5^6) : 1 + 0(5^20))
```

Here is how one gets a 4-torsion point on \( E \) over \( \mathbb{Q}_5 \):

10.11. Elliptic curves over number fields
```python
sage: R = Qp(5,10)
sage: i = R(-1).sqrt()
sage: T = eq.parametrisation_onto_original_curve(i); T
(2 + 3*5 + 4*5^2 + 2*5^3 + 5^4 + 4*5^5 + 2*5^7 + 5^8 + 5^9 + O(5^10) :
 3*5 + 5^2 + 5^4 + 3*5^5 + 3*5^7 + 2*5^8 + 4*5^9 + O(5^10) : 1 + O(5^20))
sage: 4*T
(0 : 1 + O(5^20) : 0)
```

The function `parametrisation_onto_tate_curve(u, prec=20)`

This computes the image of the Tate curve under the $p$-adic uniformisation of $E$.

**INPUT:**

- $u$ - a non-zero $p$-adic number.
- `prec` - the $p$-adic precision, default is 20.

**EXAMPLES:**

```python
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.parametrisation_onto_tate_curve(1+5+5^2+O(5^10))
(5^-2 + 4*5^-1 + 1 + 2*5 + 3*5^2 + 2*5^3 + 3*5^6 + O(5^7) :
 4*5^-3 + 2*5^-1 + 4 + 2*5 + 3*5^4 + 2*5^5 + O(5^6) : 1 + O(5^20))
```

The function `prime()`

This returns the residual characteristic $p$.

**EXAMPLES:**

```python
sage: eq = EllipticCurve('130a1').tate_curve(5)
sage: eq.prime()
5
```

Analytic properties over $\mathbb{C}$.

### 10.11.15 Weierstrass $\wp$-function for elliptic curves

The Weierstrass $\wp$ function associated to an elliptic curve over a field $k$ is a Laurent series of the form

$$\wp(z) = \frac{1}{z^2} + c_2 \cdot z^2 + c_4 \cdot z^4 + \cdots.$$  

If the field is contained in $\mathbb{C}$, then this is the series expansion of the map from $\mathbb{C}$ to $E(\mathbb{C})$ whose kernel is the period lattice of $E$.

Over other fields, like finite fields, this still makes sense as a formal power series with coefficients in $k$ - at least its first $p - 2$ coefficients where $p$ is the characteristic of $k$. It can be defined via the formal group as $x + c$ in the variable $z = \log_E(t)$ for a constant $c$ such that the constant term $c_0$ in $\wp(z)$ is zero.

**EXAMPLES:**

```python
sage: E = EllipticCurve([[0,1]])
sage: E.weierstrass_p()
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)
```
REFERENCES:


AUTHORS:

- Dan Shumov 04/09: original implementation
- Chris Wuthrich 11/09: major restructuring
- Jeroen Demeyer (2014-03-06): code clean up, fix characteristic bound for quadratic algorithm (see trac ticket #15855)

```
sage.schemes.elliptic_curves.ell_wp.compute_wp_fast(k, A, B, m)
```

Computes the Weierstrass function of an elliptic curve defined by short Weierstrass model: \( y^2 = x^3 + Ax + B \).

It does this with as fast as polynomial of degree \( m \) can be multiplied together in the base ring, i.e. \( O(M(n)) \) in the notation of [BMSS].

Let \( p \) be the characteristic of the underlying field: Then we must have either \( p = 0 \), or \( p > m + 3 \).

INPUT:

- \( k \) - the base field of the curve
- \( A \) - and
- \( B \) - as the coefficients of the short Weierstrass model \( y^2 = x^3 + Ax + B \), and
- \( m \) - the precision to which the function is computed to.

OUTPUT:

the Weierstrass \( \wp \) function as a Laurent series to precision \( m \).

ALGORITHM:

This function uses the algorithm described in section 3.3 of [BMSS].

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_fast
sage: compute_wp_fast(QQ, 1, 8, 7)
z^-2 - 1/5*z^2 - 8/7*z^4 + 1/75*z^6 + O(z^7)
```

```
sage: k = GF(37)
sage: compute_wp_fast(k, k(1), k(8), 5)z^-2 + 22*z^2 + 20*z^4 + O(z^5)
```

```
sage.schemes.elliptic_curves.ell_wp.compute_wp_pari(E, prec)
```

Computes the Weierstrass \( \wp \)-function with the \texttt{ellwp} function from PARI.

EXAMPLES:

```
sage: E = EllipticCurve([0,1])
sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_pari
sage: compute_wp_pari(E, prec=20)z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + 3/38548055*z^22 - 4/8364927935*z^28 + O(z^30)
```

```
sage.schemes.elliptic_curves.ell_wp.compute_wp_quadratic(k, A, B, prec)
```

Computes the truncated Weierstrass function of an elliptic curve defined by short Weierstrass model: \( y^2 = x^3 + Ax + B \). Uses an algorithm that is of complexity \( O(prec^2) \).
Let \( p \) be the characteristic of the underlying field. Then we must have either \( p = 0 \), or \( p > \text{prec} + 2 \).

**INPUT:**

- \( k \) - the field of definition of the curve
- \( A \) - and
- \( B \) - the coefficients of the elliptic curve
- \( \text{prec} \) - the precision to which we compute the series.

**OUTPUT:** A Laurent series approximating the Weierstrass \( \wp \)-function to precision \( \text{prec} \).

**ALGORITHM:** This function uses the algorithm described in section 3.2 of [BMSS].

**REFERENCES:** [BMSS] Boston, Morain, Salvy, Schost, “Fast Algorithms for Isogenies.”

**EXAMPLES:**

```python
sage: E = EllipticCurve([7,0])
sage: E.weierstrass_p(prec=10, algorithm='quadratic')
z^-2 - 7/5*z^2 + 49/75*z^6 + O(z^10)

sage: E = EllipticCurve(GF(103),[1,2])
sage: E.weierstrass_p(algorithm='quadratic')
z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + 17*z^10 + 17*z^12 + 11*z^14 + 17*z^16 +
 50*z^18 + O(z^20)

sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_quadratic
sage: compute_wp_quadratic(E.base_ring(), E.a4(), E.a6(), prec=10)
z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + O(z^10)
```

**Examples:**

```python
sage.schemes.elliptic_curves.ell_wp.solve_linear_differential_system(a, b, c, alpha)
```

Solves a system of linear differential equations: \( af' + bf = c \) and \( f'(0) = \alpha \) where \( a, b, \) and \( c \) are power series in one variable and \( \alpha \) is a constant in the coefficient ring.

**ALGORITHM:**

due to Brent and Kung ‘78.

**EXAMPLES:**

```python
sage: from sage.schemes.elliptic_curves.ell_wp import solve_linear_differential_system
sage: k = GF(17)
sage: R.<x> = PowerSeriesRing(k)
sage: a = 1+x+O(x^7); b = x+O(x^7); c = 1+x^3+O(x^7); alpha = k(3)
sage: f = solve_linear_differential_system(a,b,c,alpha)
sage: f
3 + x + 15*x^2 + x^3 + 10*x^5 + 3*x^6 + 13*x^7 + O(x^8)
sage: f(0) == alpha
True
```

**Examples:**

```python
sage.schemes.elliptic_curves.ell_wp.weierstrass_p(E, prec=20, algorithm=None)
```

Computes the Weierstrass \( \wp \)-function on an elliptic curve.

**INPUT:**

- \( E \) – an elliptic curve
• prec – precision
• algorithm – string (default: None) an algorithm identifier indicating the pari, fast or quadratic algorithm. If the algorithm is None, then this function determines the best algorithm to use.

OUTPUT:
a Laurent series in one variable $z$ with coefficients in the base field $k$ of $E$.

EXAMPLES:

```
sage: E = EllipticCurve('11a1')
sage: E.weierstrass_p(prec=10)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10)
sage: E.weierstrass_p(prec=8)
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: Esh = E.short_weierstrass_model()
sage: Esh.weierstrass_p(prec=8)
z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm='pari')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm='quadratic')
z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8)
sage: k = GF(11)
sage: E = EllipticCurve(k, [1,1])
sage: E.weierstrass_p(prec=6, algorithm='fast')
z^-2 + 2*z^2 + 3*z^4 + O(z^6)
sage: E.weierstrass_p(prec=7, algorithm='fast')
Traceback (most recent call last):
... ValueError: for computing the Weierstrass p-function via the fast algorithm, the characteristic (11) of the underlying field must be greater than prec + 4 = 11
sage: E.weierstrass_p(prec=8)
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm='quadratic')
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=8, algorithm='pari')
z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8)
sage: E.weierstrass_p(prec=9)
Traceback (most recent call last):
... Not Implemented Error: currently no algorithms for computing the Weierstrass p-function for that characteristic / precision pair is implemented. Lower the precision below char(k) - 2
sage: E.weierstrass_p(prec=9, algorithm="quadratic")
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via the quadratic algorithm, the characteristic (11) of the underlying field must be greater than prec + 2 = 11
sage: E.weierstrass_p(prec=9, algorithm='pari')
Traceback (most recent call last):
...
ValueError: for computing the Weierstrass p-function via pari, the characteristic (11) of the underlying field must be greater than prec + 2 = 11
```
10.11.16 Period lattices of elliptic curves and related functions

Let \( E \) be an elliptic curve defined over a number field \( K \) (including \( \mathbb{Q} \)). We attach a period lattice (a discrete rank 2 subgroup of \( \mathbb{C} \)) to each embedding of \( K \) into \( \mathbb{C} \).

In the case of real embeddings, the lattice is stable under complex conjugation and is called a real lattice. These have two types: rectangular, (the real curve has two connected components and positive discriminant) or non-rectangular (one connected component, negative discriminant).

The periods are computed to arbitrary precision using the AGM (Gauss’s Arithmetic-Geometric Mean).

**EXAMPLES:**

```python
guide: K.<a> = NumberField(x^3-2)
guide: E = EllipticCurve([0,1,0,a,a])
```

First we try a real embedding:

```python
guide: emb = K.embeddings(RealField())[0]
guide: L = E.period_lattice(emb); L
```

Period lattice associated to Elliptic Curve defined by \( y^2 = x^3 + x^2 + a*x + a \) over \( \text{Number Field in a with defining polynomial x^3 - 2 with respect to the embedding} \)

Ring morphism:
From: \( \text{Number Field in a with defining polynomial x^3 - 2} \)
To: \( \text{Algebraic Real Field} \)
Defn: \( a \rightarrow 1.259921049894873? \)

The first basis period is real:

```python
guide: L.basis()
guide: L.is_real()
```

Next a complex embedding:

```python
guide: emb = K.embeddings(ComplexField())[0]
guide: L = E.period_lattice(emb); L
```

Period lattice associated to Elliptic Curve defined by \( y^2 = x^3 + x^2 + a*x + a \) over \( \text{Number Field in a with defining polynomial x^3 - 2 with respect to the embedding} \)

Ring morphism:
From: \( \text{Number Field in a with defining polynomial x^3 - 2} \)
To: \( \text{Algebraic Field} \)
Defn: \( a \rightarrow -0.6299605249474365? - 1.091123635971722?*I \)

In this case, the basis \( \omega_1, \omega_2 \) is always normalised so that \( \tau = \omega_1/\omega_2 \) is in the fundamental region in the upper half plane:

```python
guide: w1,w2 = L.basis(); w1,w2
```

(continues on next page)
We test that bug trac ticket #8415 (caused by a PARI bug fixed in v2.3.5) is OK:

```
sage: E = EllipticCurve('37a')
sage: K.<a> = QuadraticField(-7)
sage: EK = E.change_ring(K)
sage: EK.period_lattice(K.complex_embeddings()[0])
```

Period lattice associated to Elliptic Curve defined by y^2 + y = x^3 + (-1)*x over
→ Number Field in a with defining polynomial x^2 + 7 with respect to the embedding
→ Ring morphism:
  From: Number Field in a with defining polynomial x^2 + 7
  To: Algebraic Field
  Defn: a |--> -2.645751311064591?*I

REFERENCES:

AUTHORS:

• ?: initial version.

• John Cremona:
  – Adapted to handle real embeddings of number fields, September 2008.
  – Added basis_matrix function, November 2008
  – Added support for complex embeddings, May 2009.
  – Added complex elliptic logs, March 2010; enhanced, October 2010.

class sage.schemes.elliptic_curves.period_lattice.PeriodLattice

Bases: sage.modules.free_module.FreeModule_generic_pid
The class for the period lattice of an algebraic variety.

class sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell (E, embedding=None)

Bases: sage.schemes.elliptic_curves.period_lattice.PeriodLattice
The class for the period lattice of an elliptic curve.
Currently supported are elliptic curves defined over \( \mathbb{Q} \), and elliptic curves defined over a number field with a real or complex embedding, where the lattice constructed depends on that embedding.

basis (prec=None, algorithm='sage')
  Return a basis for this period lattice as a 2-tuple.

INPUT:

• prec (default: None) – precision in bits (default precision if None).
• **algorithm** (string, default ‘sage’) – choice of implementation (for real embeddings only) between ‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embeddings).

OUTPUT:

(tuple of Complex) \((\omega_1, \omega_2)\) where the lattice is \(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2\). If the lattice is real then \(\omega_1\) is real and positive, \(\Im(\omega_2) > 0\) and \(\Re(\omega_1/\omega_2)\) is either \(0\) (for rectangular lattices) or \(\frac{1}{2}\) (for non-rectangular lattices). Otherwise, \(\omega_1/\omega_2\) is in the fundamental region of the upper half-plane. If the latter normalisation is required for real lattices, use the function `normalised_basis()` instead.

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: E.period_lattice().basis()
(2.99345864623196, 2.45138938198679*I)
```

This shows that the issue reported at trac ticket #3954 is fixed:

```
sage: E = EllipticCurve('37a')
sage: b1 = E.period_lattice().basis(prec=30)
sage: b2 = E.period_lattice().basis(prec=30)
sage: b1 == b2
True
```

This shows that the issue reported at trac ticket #4064 is fixed:

```
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField{})[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.basis(64)
(3.81452977217854509, 1.90726488608927255 + 1.34047785962440202*I)
sage: emb = K.embeddings(ComplexField{})[0]
sage: L = E.period_lattice(emb)
sage: w1,w2 = L.basis(); w1,w2
(-1.37588604166076 - 2.58560946624443*I, -2.10339907847356 + 0.˓→428378776460622*I)
sage: L.is_real()
False
sage: tau = w1/w2; tau
0.387694505032876 + 1.30821088214407*I
```

### basis_matrix

Return the basis matrix of this period lattice.

**INPUT:**

- **prec** (int or None (default)) -- real precision in bits (default real precision if None).
- **normalised** (bool, default None) – if True and the embedding is real, use the normalised basis (see `normalised_basis()` instead of the default.)
OUTPUT:

A 2x2 real matrix whose rows are the lattice basis vectors, after identifying \( \mathbb{C} \) with \( \mathbb{R}^2 \).

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: E.period_lattice().basis_matrix()
[2.99345864623196 0.000000000000000]
[0.000000000000000 2.45138938198679]
```

```
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.basis_matrix(64)
[3.81452977217854509 0.000000000000000]
[1.90726488608927255 1.34047785962440202]
```

See trac ticket #4388:

```
sage: L = EllipticCurve('11a1').period_lattice()
sage: L.basis_matrix()
[1.26920930427955 0.000000000000000]
[0.634604652139777 1.45881661693850]
```

```
sage: L.basis_matrix(normalised=True)
[0.634604652139777 -1.45881661693850]
[-1.26920930427955 0.000000000000000]
```

```
sage: L = EllipticCurve('389a1').period_lattice()
sage: L.basis_matrix()
[2.49021256085505 0.000000000000000]
[0.000000000000000 1.97173770155165]
```

```
sage: L.basis_matrix(normalised=True)
[2.49021256085505 0.000000000000000]
[0.000000000000000 -1.97173770155165]
```

complex_area(prec=None)

Return the area of a fundamental domain for the period lattice of the elliptic curve.

INPUT:

• prec (int or None (default)) -- real precision in bits (default real precision if None).

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: E.period_lattice().complex_area()
7.33813274078958
```

```
sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())
sage: E = EllipticCurve([0,1,0,a,a])
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)]
[False, False, True]
sage: [E.period_lattice(emb).complex_area() for emb in emb]
[6.0279689476694, 6.0279689476694, 5.1132927048345]
```

coordinates ($z$, $\text{rounding} = \text{None}$)
Returns the coordinates of a complex number w.r.t. the lattice basis

INPUT:
- $z$ (complex) – A complex number.
- $\text{rounding}$ (default None) – whether and how to round the output (see below).

OUTPUT:
When $\text{rounding}$ is None (the default), returns a tuple of reals $x, y$ such that $z = xw_1 + yw_2$ where $w_1, w_2$ are a basis for the lattice (normalised in the case of complex embeddings).

When $\text{rounding}$ is ‘round’, returns a tuple of integers $n_1, n_2$ which are the closest integers to the $x, y$ defined above. If $z$ is in the lattice these are the coordinates of $z$ with respect to the lattice basis.

When $\text{rounding}$ is ‘floor’, returns a tuple of integers $n_1, n_2$ which are the integer parts to the $x, y$ defined above. These are used in $\text{reduce()}$

EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: w1, w2 = L.basis(prec=100)
sage: P = E([-1,1])
sage: zP = P.elliptic_logarithm(precision=100); zP
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: L.coordinates(zP)
(0.19249290511394227352563996419, 0.500000000000000000000000000000)
sage: sum([x*w for x,w in zip(L.coordinates(zP), L.basis(prec=100))])
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
```

```
sage: L.coordinates(12*w1+23*w2)
(12.0000000000000000000000000000, 23.0000000000000000000000000000)
sage: L.coordinates(12*w1+23*w2, rounding='floor')
(11, 22)
sage: L.coordinates(12*w1+23*w2, rounding='round')
(12, 23)
```

curve()
Return the elliptic curve associated with this period lattice.

EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: L.curve() is E
True
```

```
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(K.embeddings(RealField())[0])
sage: L.curve() is E
True
```

```
sage: L = E.period_lattice(K.embeddings(ComplexField())[0])
sage: L.curve() is E
True
```
e_log_RC(xP, yP, prec=None, reduce=True)

Return the elliptic logarithm of a real or complex point.

- xP, yP (real or complex) – Coordinates of a point on the embedded elliptic curve associated with this period lattice.
- prec (default: None) – real precision in bits (default real precision if None).
- reduce (default: True) – if True, the result is reduced with respect to the period lattice basis.

OUTPUT:

(complex number) The elliptic logarithm of the point \((xP, yP)\) with respect to this period lattice. If \(E\) is the elliptic curve and \(\sigma : K \to C\) the embedding, the returned value \(z\) is such that \(z \pmod{L}\) maps to \((xP, yP) = \sigma(P)\) under the standard Weierstrass isomorphism from \(C/L\) to \(\sigma(E)\). If reduce is True, the output is reduced so that it is in the fundamental period parallelogram with respect to the normalised lattice basis.

ALGORITHM:

Uses the complex AGM. See [CT] for details.

EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: P = E([-1,1])
sage: xP, yP = [RR(c) for c in P.xy()]
sage: L.e_log_RC(xP, yP)
```

The elliptic log from the real coordinates:

```
sage: L.e_log_RC(xP, yP)
0.479348250190219 + 0.985868850775824*I
```

The same elliptic log from the algebraic point:

```
sage: L(P)
0.479348250190219 + 0.985868850775824*I
```

A number field example:

```
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,0,0,0,a])
sage: v = K.real_places()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: L(P)
3.51086196882538
sage: xP, yP = [v(c) for c in P.xy()]
sage: L.e_log_RC(xP, yP)
3.51086196882538
```

Elliptic logs of real points which do not come from algebraic points:

```
sage: ER = EllipticCurve([v(ai) for ai in E.a_invariants()])
sage: P = ER.lift_x(12.34)
sage: xP, yP = P.xy()
sage: xP, yP
(12.3400000000000, 43.3628968710567)
sage: L.e_log_RC(xP, yP)
```

(continues on next page)
Elliptic logs of complex points:

```python
sage: v = K.complex_embeddings()[0]
sage: L = E.period_lattice(v)
sage: P = E.lift_x(1/3*a^2 + a + 5/3)
sage: L(P)
1.68207104397706 - 1.87873661686704*I
sage: xP, yP = [v(c) for c in P.xy()]
sage: L.e_log_RC(xP, yP)
1.68207104397706 - 1.87873661686704*I
sage: EC = EllipticCurve([v(ai) for ai in E.a_invariants()])
sage: xP, yP = EC.lift_x(0).xy()
sage: L.e_log_RC(xP, yP)
1.03355715602040 - 0.867257428417356*I
```

\textbf{ei()}

Return the x-coordinates of the 2-division points of the elliptic curve associated with this period lattice, as elements of \( \mathbb{Q} \overline{\mathbb{Q}} \).

\textbf{EXAMPLES:}

```python
sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: L.ei()
[-1.107159871688768?, 0.2695944364054446?, 0.8375654352833230?]
```

In the following example, we should have one purely real 2-division point coordinate, and two conjugate purely imaginary coordinates.

```python
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(K.embeddings(RealField())[0])
sage: x1,x2,x3 = L.ei()
sage: abs(x1.real())+abs(x2.real())<1e-14
True
sage: x1.imag(),x2.imag(),x3
(-1.122462048309373?, 1.122462048309373?, -1.000000000000000?)
```

\textbf{elliptic_exponential}(z, \text{to\_curve}=\text{True})

Return the elliptic exponential of a complex number.

\textbf{INPUT:}

- \( z \) (complex) – A complex number (viewed modulo this period lattice).
- \( \text{to\_curve} \) (bool, default \text{True}): see below.
OUTPUT:

- If `to_curve` is False, a 2-tuple of real or complex numbers representing the point \((x, y) = (\wp(z), \wp'(z))\) where \(\wp\) denotes the Weierstrass \(\wp\)-function with respect to this lattice.

- If `to_curve` is True, the point \((X, Y) = (x - b_2/12, y - (a_1(x - b_2/12) - a_3)/2)\) as a point in \(E(\mathbb{R})\) or \(E(\mathbb{C})\), with \((x, y) = (\wp(z), \wp'(z))\) as above, where \(E\) is the elliptic curve over \(\mathbb{R}\) or \(\mathbb{C}\) whose period lattice this is.

- If the lattice is real and \(z\) is also real then the output is a pair of real numbers if `to_curve` is True, or a point in \(E(\mathbb{R})\) if `to_curve` is False.

**Note:** The precision is taken from that of the input \(z\).

**EXAMPLES:**

```python
sage: E = EllipticCurve([1,1,1,-8,6])
sage: P = E(1,-2)
sage: L = E.period_lattice()
sage: z = L(P); z
1.17044757240090
sage: L.elliptic_exponential(z)
(0.999999999999999 : -2.00000000000000 : 1.00000000000000)
sage: _.curve()
Elliptic Curve defined by y^2 + 1.00000000000000*x*y + 1.00000000000000*y = x^3 + 1.00000000000000*x^2 - 8.00000000000000*x + 6.00000000000000 over Real Field with 53 bits of precision
sage: L.elliptic_exponential(z,to_curve=False)
(1.41666666666667, -2.00000000000000)
sage: z = L(P,prec=201); z
1.17044757240089592298992188482371493504472561677451007994189
sage: L.elliptic_exponential(z)
(1.000 : -2.000 : 1.000)
```

Examples over number fields:

```python
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^3-2)
sage: embs = K.embeddings(CC)
sage: E = EllipticCurve('37a')
sage: EK = E.change_ring(K)
sage: Li = [EK.period_lattice(e) for e in embs]
sage: P = EK(-1,-1)
sage: Q = EK(a-1,1-a^2)
sage: zi = [L.elliptic_logarithm(P) for L in Li]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[0])]
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[1])]
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
sage: [c.real() for c in Li[0].elliptic_exponential(zi[2])]
[-1.00000000000000, -1.00000000000000, 1.00000000000000]
sage: zi = [L.elliptic_logarithm(Q) for L in Li]
sage: Li[0].elliptic_exponential(zi[0])
(-1.62996052494744 - 1.09112363597172*I : 1.79370052598410 - 1.37472963699860*I : 1.00000000000000)
```

(continues on next page)
Test to show that trac ticket #8820 is fixed:

```
sage: E = EllipticCurve('37a')
sage: K.<a> = QuadraticField(-5)
sage: L = E.change_ring(K).period_lattice(K.places()[0])
sage: L.elliptic_exponential(CDF(.1,.1))
(0.0000142854026029... - 49.9960001066650*I : 249.520141250950 + 250.002019855549131*I : 1.00000000000000)
sage: L.elliptic_exponential(CDF(.1,.1), to_curve=False)
(0.0000142854026029447 - 49.9960001066650*I, 500.040282501900 + 500.002039711098263*I)
```

\(z = 0\) is treated as a special case:

```
sage: E = EllipticCurve([1,1,1,-8,6])
sage: L = E.period_lattice()
sage: L.elliptic_exponential(0)
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
sage: L.elliptic_exponential(0, to_curve=False)
(+infinity, +infinity)
```

Very small \(z\) are handled properly (see trac ticket #8820):

```
sage: K.<a> = QuadraticField(-1)
sage: E = EllipticCurve([0,0,0,a,0])
sage: L = E.period_lattice(K.complex_embeddings()[0])
sage: L.elliptic_exponential(1e-100)
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
```

The elliptic exponential of \(z\) is returned as \((0 : 1 : 0)\) if the coordinates of \(z\) with respect to the period lattice are approximately integral:
elliptic_logarithm\( (P, \text{prec} = \text{None}, \text{reduce} = \text{True}) \)

Return the elliptic logarithm of a point.

INPUT:

- \( P \) (point) – A point on the elliptic curve associated with this period lattice.
- \( \text{prec} \) (default: None) – real precision in bits (default real precision if None).
- \( \text{reduce} \) (default: True) – if True, the result is reduced with respect to the period lattice basis.

OUTPUT:

(complex number) The elliptic logarithm of the point \( P \) with respect to this period lattice. If \( E \) is the elliptic curve and \( \sigma : K \to \mathbb{C} \) the embedding, the returned value \( z \) is such that \( z \pmod{L} \) maps to \( \sigma(P) \) under the standard Weierstrass isomorphism from \( \mathbb{C}/L \) to \( \sigma(E) \). If \( \text{reduce} \) is True, the output is reduced so that it is in the fundamental period parallelogram with respect to the normalised lattice basis.

ALGORITHM:

Uses the complex AGM. See \([CT]\) for details.

EXAMPLES:

```python
sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: E.discriminant() > 0
True
sage: L.elliptic_logarithm(P, prec=96)
0.4793482501902193161295330101 + 0.9858688507758241022112038491*I
sage: Q=E([3,5])
sage: Q.is_on_identity_component()
True
sage: L.elliptic_logarithm(Q, prec=96)
1.93112827154255944248858220
```

Note that this is actually the inverse of the Weierstrass isomorphism:

```python
sage: L.elliptic_exponential(_)
abs tol 1e-26
(3.00000000000000000000000000000000 : 5.00000000000000000000000000000000 : 1.
\rightarrow 0.000000000000000000000000000000)
```

An example with negative discriminant, and a torsion point:

```python
sage: E = EllipticCurve('11a1')
sage: L = E.period_lattice()
sage: E.discriminant() < 0
True
```

(continues on next page)
An example where precision is problematic:

```python
sage: E = EllipticCurve([1, 0, 1, -85357462, 303528987048]) # #18074g1
sage: P = E([4458713781401/835903744, -64466909836503771/24167649046528, 1])
sage: L = E.period_lattice()
sage: L.ei()
sage: L.elliptic_logarithm(P, prec=100)
0.27656204014107061464076203097
```

Some complex examples, taken from the paper by Cremona and Thongjunthug:

```python
sage: K.<i> = QuadraticField(-1)
sage: a4 = 9*i-10
sage: a6 = 21-i
sage: E = EllipticCurve([0,0,0,a4,a6])
sage: e1 = 3-2*i; e2 = 1+i; e3 = -4+i
sage: emb = K.embeddings(CC)[1]
sage: L = E.period_lattice(emb)
sage: P = E(2-i, 4+2*i)
```

By default, the output is reduced with respect to the normalised lattice basis, so that its coordinates with respect to that basis lie in the interval [0,1):

```python
sage: z = L.elliptic_logarithm(P, prec=100); z
0.70448375537782208460499649302 - 0.792467256436509798858266018068*I
sage: L.coordinates(z)
(0.46247636364807931766105406092, 0.7949758872680740200760395829)
```

Using reduce=False this step can be omitted. In this case the coordinates are usually in the interval [-0.5,0.5), but this is not guaranteed. This option is mainly for testing purposes:

```python
sage: z = L.elliptic_logarithm(P, prec=100, reduce=False); z
0.57002153834710752779601393964 + 0.46476340520469798857457031393*I
sage: L.coordinates(z)
(0.46247636364807931766105406092, -0.20502411273191295799239604171)
```

The elliptic logs of the 2-torsion points are half-periods:

```python
sage: L.elliptic_logarithm(E(e1, 0), prec=100)
0.64607575874356525952487867052 + 0.22379609053909448304176885364*I
sage: L.elliptic_logarithm(E(e2, 0), prec=100)
0.71330686725892253793705940192 - 0.40481924028150941053684639367*I
sage: L.elliptic_logarithm(E(e3, 0), prec=100)
0.067231108515357278412180731396 - 0.62861533082060389357861524731*I
```

We check this by doubling and seeing that the resulting coordinates are integers:
sage: L.coordinates(2*L.elliptic_logarithm(E(e1,0),prec=100))
(1.00000000000000000000000000000, 0.000000000000000000000000000000)

sage: L.coordinates(2*L.elliptic_logarithm(E(e2,0),prec=100))
(1.00000000000000000000000000000, 1.00000000000000000000000000000)

sage: L.coordinates(2*L.elliptic_logarithm(E(e3,0),prec=100))
(0.000000000000000000000000000000, 1.00000000000000000000000000000)

sage: a4 = -78*i + 104
sage: a6 = -216*i - 312
sage: E = EllipticCurve([0,0,a4,a6])

sage: emb = K.embeddings(CC)[1]

sage: L = E.period_lattice(emb)

sage: P = E(3+2*i,14-7*i)

sage: L.elliptic_logarithm(P)
0.297147783912228 - 0.546125549639461*I

sage: L.coordinates(L.elliptic_logarithm(P))
(0.628653378040238, 0.371417754610223)

sage: e1 = 1+3*i; e2 = -4-12*i; e3=-e1-e2

sage: L.coordinates(L.elliptic_logarithm(E(e1,0)))
(0.500000000000000, 0.500000000000000)

sage: L.coordinates(L.elliptic_logarithm(E(e2,0)))
(1.000000000000000, 0.500000000000000)

sage: L.coordinates(L.elliptic_logarithm(E(e3,0)))
(0.500000000000000, 0.000000000000000)

```
is_real()

Return True if this period lattice is real.

EXAMPLES:

```
sage: f = EllipticCurve('11a')
sage: f.period_lattice().is_real()
True

```

```
sage: K.<i> = QuadraticField(-1)
sage: E = EllipticCurve(K,[0,0,0,i,2*i])
sage: emb = K.embeddings(ComplexField())[0]
sage: L = E.period_lattice(emb)
sage: L.is_real()
False

```

```
sage: K.<a> = NumberField(x^3-2)
sage: E = EllipticCurve([0,1,0,a,a])
sage: [E.period_lattice(emb).is_real() for emb in K.embeddings(CC)]
[False, False, True]

```

ALGORITHM:
The lattice is real if it is associated to a real embedding; such lattices are stable under conjugation.

```
is_rectangular()

Return True if this period lattice is rectangular.

```

Note: Only defined for real lattices; a RuntimeError is raised for non-real lattices.

EXAMPLES:
sage: f = EllipticCurve('11a')
sage: f.period_lattice().basis()
(1.26920930427955, 0.634604652139777 + 1.45881661693850*I)
sage: f.period_lattice().is_rectangular()
False

sage: f = EllipticCurve('37b')
sage: f.period_lattice().basis()
(1.08852159290423, 1.76761067023379*I)
sage: f.period_lattice().is_rectangular()
True

ALGORITHM:
The period lattice is rectangular precisely if the discriminant of the Weierstrass equation is positive, or
equivalently if the number of real components is 2.

normalised_basis (prec=None, algorithm='sage')
Return a normalised basis for this period lattice as a 2-tuple.

INPUT:
- prec (default: None) – precision in bits (default precision if None).
- algorithm (string, default ‘sage’) – choice of implementation (for real embeddings only) between
 ‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embed-
ddings).

OUTPUT:
(tuple of Complex) \((\omega_1, \omega_2)\) where the lattice has the form \(Z\omega_1 + Z\omega_2\). The basis is normalised so that
\(\omega_1/\omega_2\) is in the fundamental region of the upper half-plane. For an alternative normalisation for real lattices
(with the first period real), use the function basis() instead.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: E.period_lattice().normalised_basis()
(2.99345864623196, -2.45138938198679*I)

sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.normalised_basis(64)
(1.90726488608927255 - 1.34047785962440202*I, -1.90726488608927255 - 1.
˓→34047785962440202*I)

omega (prec=None)
Returns the real or complex volume of this period lattice.
INPUT:

• \texttt{prec} (int or \texttt{None} (default)) -- real precision in bits (default \texttt{real precision if \texttt{None}})

OUTPUT:

(real) For real lattices, this is the real period times the number of connected components. For non-real
lattices it is the complex area.

\textbf{Note:} If the curve is defined over \(\mathbb{Q} \) and is given by a \emph{minimal} Weierstrass equation, then this is the correct
period in the BSD conjecture, i.e., it is the least real period * 2 when the period lattice is rectangular. More
generally the product of this quantity over all embeddings appears in the generalised BSD formula.

\textbf{EXAMPLES:}

\begin{verbatim}sage: E = EllipticCurve('37a') sage: E.period_lattice().omega() 5.98691729246392
\end{verbatim}

This is not a minimal model:

\begin{verbatim}sage: E = EllipticCurve([0,-432*6^2]) sage: E.period_lattice().omega() 0.486109385710056
\end{verbatim}

If you were to plug the above omega into the BSD conjecture, you would get nonsense. The following
works though:

\begin{verbatim}sage: F = E.minimal_model() sage: F.period_lattice().omega() 0.972218771420113
\end{verbatim}

\begin{verbatim}sage: K.<a> = NumberField(x^3-2) sage: emb = K.embeddings(RealField())[0] sage: E = EllipticCurve([0,1,a,a]) sage: L = E.period_lattice(emb) sage: L.omega(64) 3.81452977217854509
\end{verbatim}

A complex example (taken from J.E.Cremona and E.Whitley, \emph{Periods of cusp forms and elliptic curves

\begin{verbatim}sage: K.<i> = QuadraticField(-1) sage: E = EllipticCurve([0,1-i,i,-i,0]) sage: L = E.period_lattice(K.embeddings(CC)[0]) sage: L.omega() 8.80694160502647
\end{verbatim}

\textbf{real_period} \((\text{prec}={\texttt{None}}, \text{algorithm}='\texttt{sage}')\)

Returns the real period of this period lattice.

INPUT:

• \texttt{prec} (int or \texttt{None} (default)) -- real precision in bits (default \texttt{real precision if \texttt{None}})

• \texttt{algorithm} (string, default \texttt{‘sage’}) -- choice of implementation (for real embeddings only) between
‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embeddings).

Note: Only defined for real lattices; a RuntimeError is raised for non-real lattices.

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: E.period_lattice().real_period()
2.99345864623196

sage: K.<a> = NumberField(x^3-2)
sage: emb = K.embeddings(RealField())[0]
sage: E = EllipticCurve([0,1,0,a,a])
sage: L = E.period_lattice(emb)
sage: L.real_period(64)
3.81452977217854509
```

reduce

Reduce a complex number modulo the lattice

INPUT:

- \(z \) (complex) – A complex number.

OUTPUT:

(complex) the reduction of \(z \) modulo the lattice, lying in the fundamental period parallelogram with respect to the lattice basis. For curves defined over the reals (i.e. real embeddings) the output will be real when possible.

EXAMPLES:

```python
sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: w1, w2 = L.basis(prec=100)
sage: P = E([-1,1])
sage: zP = P.elliptic_logarithm(precision=100); zP
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: z = zP+10*w1-20*w2; z
25.381473858740770069343110929 - 38.448885180257139986236950114*I
sage: L.reduce(z)
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: L.elliptic_logarithm(2*P)
0.958696500380439
sage: L.reduce(L.elliptic_logarithm(2*P))
0.958696500380444
sage: L.reduce(L.elliptic_logarithm(2*P)+10*w1-20*w2)
0.958696500380444
```

sigma

Returns the value of the Weierstrass sigma function for this elliptic curve period lattice.

INPUT:

- \(z \) – a complex number
- \(\text{prec} = \text{None}, \text{flag}=0 \) (default real precision if None).

```python
sage: E = EllipticCurve('389a')
sage: L = E.period_lattice()
sage: w1, w2 = L.basis(prec=100)
sage: P = E([-1,1])
sage: zP = P.elliptic_logarithm(precision=100); zP
0.47934825019021931612953301006 + 0.98586885077582410221120384908*I
sage: z = zP+10*w1-20*w2; z
25.381473858740770069343110929 - 38.448885180257139986236950114*I
sage: L.elliptic_logarithm(2*P)
0.958696500380439
sage: L.reduce(L.elliptic_logarithm(2*P))
0.958696500380444
sage: L.reduce(L.elliptic_logarithm(2*P)+10*w1-20*w2)
0.958696500380444
```
0: (default) ???;
1: computes an arbitrary determination of log(sigma(z))
2, 3: same using the product expansion instead of theta series. ???

Note: The reason for the ???’s above, is that the PARI documentation for ellsigma is very vague. Also this is only implemented for curves defined over \(\mathbb{Q} \).

Todo: This function does not use any of the PeriodLattice functions and so should be moved to ell_rational_field.

EXAMPLES:

```
sage: EllipticCurve('389a1').period_lattice().sigma(CC(2,1))
2.60912163570108 - 0.200865080824587*I
```

\texttt{tau}(\texttt{prec=None, algorithm='sage'})

Return the upper half-plane parameter in the fundamental region.

INPUT:

- \texttt{prec} (default: None) – precision in bits (default precision if None).
- \texttt{algorithm} (string, default ‘sage’) – choice of implementation (for real embeddings only) between ‘sage’ (native Sage implementation) or ‘pari’ (use the PARI library: only available for real embeddings).

OUTPUT:

(Complex) \(\tau = \omega_1/\omega_2 \) where the lattice has the form \(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \), normalised so that \(\tau = \omega_1/\omega_2 \) is in the fundamental region of the upper half-plane.

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: L = E.period_lattice()
sage: L.tau()  
1.22112736076463*I
```

```
sage: K.<a> = NumberField(x^3-2)  
sage: emb = K.embeddings(RealField())[0]  
sage: E = EllipticCurve([0,1,0,a,a])  
sage: L = E.period_lattice(emb)  
sage: tau = L.tau(); tau  
-0.338718341018919 + 0.940887817679340*I
```

```
sage: tau.abs()  
1.00000000000000
```

```
sage: -0.5 <= tau.real() <= 0.5  
True
```

```
sage: emb = K.embeddings(ComplexField())[0]  
sage: L = E.period_lattice(emb)  
sage: tau = L.tau(); tau  
0.387694505032876 + 1.30821088214407*I
```

```
sage: tau.abs()  
1.36444961115933
```

(continues on next page)
sage: -0.5 <= tau.real() <= 0.5
True

sage.schemes.elliptic_curves.period_lattice.extended_agm_iteration(a, b, c)
Internal function for the extended AGM used in elliptic logarithm computation. INPUT:

• a, b, c (real or complex) – three real or complex numbers.

OUTPUT:

(3-tuple) \((a_0, b_0, c_0)\), the limit of the iteration \((a, b, c) \mapsto ((a + b)/2, \sqrt{ab}, (c + \sqrt{c^2 + b^2 - a^2}))/2\).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.period_lattice import extended_agm_iteration
sage: extended_agm_iteration(RR(1), RR(2), RR(3))
(1.45679103104691, 1.45679103104691, 3.21245294970054)
sage: extended_agm_iteration(CC(1, 2), CC(2, 3), CC(3, 4))
(1.46242448156430 + 2.47791311676267*I, 1.46242448156430 + 2.47791311676267*I, 3.22202144343535 + 4.28383734262540*I)

sage.schemes.elliptic_curves.period_lattice.normalise_periods(w1, w2)
Normalise the period basis \((w_1, w_2)\) so that \(w_1/w_2\) is in the fundamental region.

INPUT:

• w1, w2 (complex) – two complex numbers with non-real ratio

OUTPUT:

(tuple) \((\omega_1', \omega_2'), [a, b, c, d]\) where \(a, b, c, d\) are integers such that

• \(ad - bc = \pm 1\);
• \((\omega_1', \omega_2') = (a\omega_1 + b\omega_2, c\omega_1 + d\omega_2)\);
• \(\tau = \omega_1'/\omega_2'\) is in the upper half plane;
• \(|\tau| \geq 1\) and \(|\Re(\tau)| \leq \frac{1}{2}\).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.period_lattice import normalise_periods
sage: w1 = CC(1.234, 3.456)
sage: w2 = CC(1.234, 3.456000001)
sage: w1/w2 # in lower half plane!
0.99999999743367 - 9.163478582644e-11*I
sage: w1w2, abcd = normalise_periods(w1, w2)
sage: a, b, c, d = abcd
sage: w1w2 == (a*w1 + b*w2, c*w1 + d*w2)
True
sage: w1w2[0]/w1w2[1]
1.23400010389203e9*I
sage: a*d-b*c # note change of orientation
-1

sage.schemes.elliptic_curves.period_lattice.reduce_tau(tau)
Transform a point in the upper half plane to the fundamental region.
INPUT:
- \(\tau\) (complex) – a complex number with positive imaginary part

OUTPUT:
(tuple) \((\tau', [a, b, c, d])\) where \(a, b, c, d\) are integers such that
- \(ad - bc = 1\);
- \(\tau' = (a\tau + b)/(c\tau + d)\);
- \(|\tau'| \geq 1\);
- \(|\Re(\tau')| \leq \frac{1}{2}\).

EXAMPLES:

```sage
sage: from sage.schemes.elliptic_curves.period_lattice import reduce_tau
sage: reduce_tau(CC(1.23,3.45))
(0.230000000000000 + 3.45000000000000*I, [1, -1, 0, 1])
sage: reduce_tau(CC(1.23,0.0345))
(-0.463960069171512 + 1.35591888067914*I, [-5, 6, 4, -5])
sage: reduce_tau(CC(1.23,0.0000345))
(0.130000000001761 + 2.89855072463768*I, [13, -16, 100, -123])
```

10.11.17 Regions in fundamental domains of period lattices

This module is used to represent sub-regions of a fundamental parallelogram of the period lattice of an elliptic curve, used in computing minimum height bounds.

In particular, these are the approximating sets \(S^{(v)}\) in section 3.2 of Thotsaphon Thongjunthug’s Ph.D. Thesis and paper [TT].

AUTHORS:
- Robert Bradshaw (2010): initial version
- John Cremona (2014): added some docstrings and doctests

REFERENCES:

```sage
class sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion
    Bases: object

EXAMPLES:

```sage
sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: S = PeriodicRegion(CDF(2), CDF(2*I), np.zeros((4, 4)))
S = PeriodicRegion
sage: S.plot()
Graphics object consisting of 1 graphics primitive
sage: data = np.zeros((4, 4))
sage: data[1,1] = True
sage: S = PeriodicRegion(CDF(2), CDF(2*I+1), data)
```

```sage
border (raw=True)
 Returns the boundary of this region as set of tile boundaries.
```

10.11. Elliptic curves over number fields 513
If raw is true, returns a list with respect to the internal bitmap, otherwise returns complex intervals covering the border.

EXAMPLES:

```python
sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((4, 4))
sage: data[1, 1] = True
sage: PeriodicRegion(CDF(1), CDF(I), data).border() [(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]
sage: PeriodicRegion(CDF(2), CDF(I-1/2), data).border() [(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]
sage: PeriodicRegion(CDF(1), CDF(I), data).border(raw=False) [0.25000000000000000? + 1.?*I,
0.50000000000000000? + 1.?*I,
1.? + 0.25000000000000000?*I,
1.? + 0.50000000000000000?*I]
sage: PeriodicRegion(CDF(2), CDF(I-1/2), data).border(raw=False) [0.3? + 1.?*I,
0.8? + 1.?*I,
1.? + 0.25000000000000000?*I,
1.? + 0.50000000000000000?*I]
sage: data[1:3, 2] = True
sage: PeriodicRegion(CDF(1), CDF(I), data).border() [(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 0), (1, 3, 1), (3, 2, 0), (2, 2, 1), (2, 3, 1)]
```

**contract**(corners=True)

Opposite (but not inverse) of expand; removes neighbors of complement.

EXAMPLES:

```python
sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((10, 10))
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.plot() Graphics object consisting of 13 graphics primitives sage: S.contract().plot() Graphics object consisting of 5 graphics primitives sage: S.contract().data.sum() 1 sage: S.contract().contract().is_empty() True
```

**data**

Returns the sides of each parallelogram tile.

EXAMPLES:
sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((4, 4))
sage: S = PeriodicRegion(CDF(2), CDF(2*I), data, full=False)
sage: S.ds()
(0.5, 0.25*I)
sage: _ = S._ensure_full()
sage: S.ds()
(0.5, 0.25*I)
sage: data = np.zeros((8, 8))
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.ds()
(0.125, 0.0625 + 0.125*I)

expand (corners=True)
Returns a region containing this region by adding all neighbors of internal tiles.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((4, 4))
data[1,1] = True
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: S.plot()
Graphics object consisting of 5 graphics primitives
sage: S.expand().plot()
Graphics object consisting of 13 graphics primitives
sage: S.expand().data
array([[1, 1, 1, 0],
       [1, 1, 1, 0],
       [0, 0, 0, 0]], dtype=int8)
sage: S.expand(corners=False).plot()
Graphics object consisting of 13 graphics primitives
sage: S.expand(corners=False).data
array([[0, 1, 0, 0],
       [1, 1, 1, 0],
       [0, 1, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

full

innermost_point()
Returns a point well inside the region, specifically the center of (one of) the last tile(s) to be removed on contraction.

EXAMPLES:

sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((10, 10))
data[1, 0:8] = True
sage: S.plot()
Graphics object consisting of 40 graphics primitives
sage: S.data
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int8)

(continues on next page)
sage: S = PeriodicRegion(CDF(1), CDF(I+1/2), data)
sage: S.innermost_point()
0.375 + 0.25*I
sage: S.plot() + point(S.innermost_point())
Graphics object consisting of 24 graphics primitives

**is_empty()**

Returns whether this region is empty.

**EXAMPLES:**

```
sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((4, 4))
sage: PeriodicRegion(CDF(2), CDF(2*I), data).is_empty()
True
sage: data[1,1] = True
sage: PeriodicRegion(CDF(2), CDF(2*I), data).is_empty()
False
```

**plot(**kwds**)**

Plots this region in the fundamental lattice. If full is False plots only the lower half. Note that the true nature of this region is periodic.

**EXAMPLES:**

```
sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((10, 10))
sage: data[2, 2:8] = True
sage: data[2:5, 2] = True
sage: data[3, 3] = True
sage: S = PeriodicRegion(CDF(1), CDF(I + 1/2), data)
sage: plot(S) + plot(S.expand(), rgbcolor=(1, 0, 1), thickness=2)
Graphics object consisting of 46 graphics primitives
```

**refine**(condition=None, times=1)

Recursive function to refine the current tiling.

**INPUT:**

- condition (function, default None) - if not None, only keep tiles in the refinement which satisfy the condition.
- times (int, default 1) - the number of times to refine; each refinement step halves the mesh size.

**OUTPUT:**

The refined PeriodicRegion.

**EXAMPLES:**

```
sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((4, 4))
sage: S = PeriodicRegion(CDF(1), CDF(1/2), data, full=False)
```
verify (condition)
Given a condition that should hold for every line segment on the boundary, verify that it actually does so.

INPUT:
• condition (function) - a boolean-valued function on $\mathbb{C}$.

OUTPUT:
True or False according to whether the condition holds for all lines on the boundary.

EXAMPLES:

```
sage: import numpy as np
sage: from sage.schemes.elliptic_curves.period_lattice_region import PeriodicRegion
sage: data = np.zeros((4, 4))
sage: data[1, 1] = True
sage: S = PeriodicRegion(CDF(1), CDF(I), data)
sage: S.border()
[(1, 1, 0), (2, 1, 0), (1, 1, 1), (1, 2, 1)]
sage: condition = lambda z: z.real().abs()<0.5
sage: S.verify(condition)
False
sage: condition = lambda z: z.real().abs()<1
sage: S.verify(condition)
True
```

Modularity and $L$-series over $\mathbb{Q}$.

### 10.11.18 Modular parametrization of elliptic curves over $\mathbb{Q}$

By the work of Taylor–Wiles et al. it is known that there is a surjective morphism

\[ \phi_E : X_0(N) \to E. \]

from the modular curve $X_0(N)$, where $N$ is the conductor of $E$. The map sends the cusp $\infty$ to the origin of $E$.

EXAMPLES:

```
sage: phi = EllipticCurve('11a1').modular_parametrization()
sage: phi
Modular parameterization from the upper half plane to Elliptic Curve defined by y^2 +...
 -y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: phi(0.5+CDF(I))
```

(continues on next page)
AUTHORS:

• Chris Wuthrich (02/10) - moved from ell_rational_field.py.

class sage.schemes.elliptic_curves.modular_parametrization.ModularParameterization(E)
This class represents the modular parametrization of an elliptic curve

\[ \phi_E : X_0(N) \to E. \]

Evaluation is done by passing through the lattice representation of \( E \).

EXAMPLES:

```python
sage: phi = EllipticCurve('11a1').modular_parametrization()
sage: phi
Modular parameterization from the upper half plane to Elliptic Curve defined by y^2 + x^3 - x - 10*y - 20 over Rational Field
```

curve()
Return the curve associated to this modular parametrization.

EXAMPLES:

```python
sage: E = EllipticCurve('15a')
sage: phi = E.modular_parametrization()
sage: phi.curve()
True
```

map_to_complex_numbers(z, prec=None)
Evaluate self at a point \( z \in X_0(N) \) where \( z \) is given by a representative in the upper half plane, returning a point in the complex numbers.

All computations are done with \( \text{prec} \) bits of precision. If \( \text{prec} \) is not given, use the precision of \( z \). Use self(z) to compute the image of \( z \) on the Weierstrass equation of the curve.

EXAMPLES:

```python
sage: E = EllipticCurve('37a'); phi = E.modular_parametrization()
sage: tau = (sqrt(7)*I - 17)/74
sage: z = phi.map_to_complex_numbers(tau); z
0.929592715285395 - 1.22569469099340*I
sage: E.elliptic_exponential(z)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)
sage: phi(tau)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)
```

power_series(prec=20)
Return the power series of this modular parametrization.

The curve must be a minimal model. The prec parameter determines the number of significant terms. This means that \( X \) will be given up to \( O(q^{\text{prec}-2}) \) and \( Y \) will be given up to \( O(q^{\text{prec}-3}) \).

OUTPUT: A list of two Laurent series \([X(x), Y(x)]\) of degrees -2, -3 respectively, which satisfy the equation of the elliptic curve. There are modular functions on \( \Gamma_0(N) \) where \( N \) is the conductor.
The series should satisfy the differential equation
\[
\frac{dX}{2Y + a_1X + a_3} = \frac{f(q)}{q} dq
\]
where \( f \) is \( \text{self.curve().q_expansion()} \).

**EXAMPLES:**

```python
sage: E = EllipticCurve('389a1')
sage: phi = E.modular_parametrization()
sage: X, Y = phi.power_series(prec=10)
sage: X
q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^7 + O(q^8)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 - 528*q^6 + O(q^7)
sage: X, Y = phi.power_series()
sage: X
q^-2 + 2*q^-1 + 4 + 7*q + 13*q^2 + 18*q^3 + 31*q^4 + 49*q^5 + 74*q^6 + 111*q^7 + 173*q^8 + 251*q^9 + 379*q^10 + 560*q^11 + 824*q^12 + 1199*q^13 + 1773*q^14 + 2548*q^15 + 3722*q^16 + 5374*q^17 + O(q^18)
sage: Y
-q^-3 - 3*q^-2 - 8*q^-1 - 17 - 33*q - 61*q^2 - 110*q^3 - 186*q^4 - 320*q^5 - 528*q^6 - 861*q^7 - 1383*q^8 - 2218*q^9 - 3472*q^10 - 5451*q^11 - 8447*q^12 - 13020*q^13 - 19923*q^14 - 30403*q^15 - 46003*q^16 + O(q^17)
sage: E.defining_polynomial()(X,Y,1) + O(q^11) == 0
True
```

The following should give 0, but only approximately:

```python
sage: q = X.parent().gen()
sage: E.defining_polynomial()(X,Y,1) + O(q^11) == 0
True
```

Note that below we have to change variable from \( x \) to \( q \):

```python
sage: a1,_,a3,_,_ = E.a_invariants()
sage: f = E.q_expansion(17)
sage: q = f.parent().gen()
sage: f/q == (X.derivative()/(2*Y+a1*X+a3))
True
```

## 10.11.19 Modular symbols attached to elliptic curves over \( \mathbb{Q} \)

To an elliptic curve \( E \) over the rational numbers with conductor \( N \), one can associate a space of modular symbols of level \( N \), because \( E \) is known to be modular. The space is two-dimensional and contains a subspace on which complex conjugation acts as multiplication by \(+1\) and one on which it acts by \(-1\).

There are two implementations of modular symbols, one within Sage and the other in Cremona’s eclib library. One can choose here which one is used.

Associated to \( E \) there is a canonical generator in each space. They are maps \([\cdot]^+\) and \([\cdot]^-\), both \( \mathbb{Q} \rightarrow \mathbb{Q} \). They are normalized such that

\[
[r]^+\Omega^+ + [r]^-\Omega^- = \int_{0}^{r} 2\pi i f(z) dz
\]

where \( f \) is the newform associated to the isogeny class of \( E \) and \( \Omega^+ \) is the smallest positive period of the Néron differential of \( E \) and \( \Omega^- \) is the smallest positive purely imaginary period. Note that it depends on \( E \) rather than on its isogeny class.
From eclib version v20161230, both plus and minus symbols are available and are correctly normalized. In the Sage implementation, the computation of the space provides initial generators which are not necessarily correctly normalized; here we implement two methods that try to find the correct scaling factor.

Modular symbols are used to compute $p$-adic $L$-functions.

**EXAMPLES:**

```python
sage: E = EllipticCurve("19a1")
sage: m = E.modular_symbol()
sage: m(0)
1/3
sage: m(1/17)
-2/3
sage: m2 = E.modular_symbol(-1, implementation="sage")
sage: m2(0)
0
sage: m2(1/5)
1/2

sage: V = E.modular_symbol_space()
sage: V
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 2 for Gamma_0(19) of weight 2 with sign 1 over Rational Field
sage: V.q_eigenform(30)
q - 2*q^3 - 2*q^4 + 3*q^5 - q^7 + q^9 + 3*q^11 + 4*q^12 - 4*q^13 - 6*q^15 + 4*q^16 - 3*q^17 + q^19 - 6*q^20 + 2*q^21 + 4*q^25 + 4*q^27 + 2*q^28 + 6*q^29 + O(q^30)
```

For more details on modular symbols consult the following

**REFERENCES:**

**AUTHORS:**

- Chris Wuthrich (2008): add scaling and reference to eclib
- John Cremona (2016): reworked eclib interface

**class** `sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol`

**Bases:** `sage.structure.sage_object.SageObject`

A modular symbol attached to an elliptic curve, which is the map $\mathbb{Q} \rightarrow \mathbb{Q}$ obtained by sending $r$ to the normalized symmetrized (or anti-symmetrized) integral $\infty$ to $r$.

This is as defined in [MaTaTe], but normalized to depend on the curve and not only its isogeny class as in [StWu].

See the documentation of `E.modular_symbol()` in elliptic curves over the rational numbers for help.

**base_ring()**

Return the base ring for this modular symbol.

**EXAMPLES:**

```python
sage: m = EllipticCurve('11a1').modular_symbol()
sage: m.base_ring()
Rational Field
```

**elliptic_curve()**

Return the elliptic curve of this modular symbol.
EXAMPLES:

```
sage: m = EllipticCurve('11a1').modular_symbol()
sage: m.elliptic_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
```

`sign()`
Return the sign of this elliptic curve modular symbol.

EXAMPLES:

```
sage: m = EllipticCurve('11a1').modular_symbol()
sage: m.sign()
1
sage: m = EllipticCurve('11a1').modular_symbol(sign=-1, implementation="sage")
sage: m.sign()
-1
```

class sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E, sign)

Bases: sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol

Modular symbols attached to $E$ using eclib.

Note that the normalization used within eclib differs from the normalization chosen here by a factor of 2 in the case of elliptic curves with negative discriminant (with one real component) since the convention there is to write the above integral as $[r]^+ x + [r]^- yi$, where the lattice is $(2x, x + yi)$, so that $\Omega^+ = 2x$ and $\Omega^- = 2yi$. We allow for this below.

INPUT:

- $E$ - an elliptic curve
- $\text{sign}$ - an integer, -1 or 1

EXAMPLES:

```
sage: import sage.schemes.elliptic_curves.ell_modular_symbols
sage: E=EllipticCurve('11a1')
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E,+1)
sage: M
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: M(0)
1/5
sage: E=EllipticCurve('11a2')
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E,+1)
sage: M(0)
1
sage: E=EllipticCurve('121b1')
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E,+1)
sage: M(0)
0
sage: M(1/7)
1/2
sage: M = EllipticCurve('121d1').modular_symbol(implementation="eclib")
```

This is a rank 1 case with vanishing positive twists:

```
sage: E=EllipticCurve('121b1')
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolECLIB(E,+1)
sage: M(0)
0
sage: M(1/7)
1/2
```
sage: M(0)
2
sage: E = EllipticCurve('15a1')
sage: [C.modular_symbol(implementation="eclib")(0) for C in E.isogeny_class()]
[1/4, 1/8, 1/4, 1/2, 1/8, 1/16, 1/2, 1]

Since trac ticket #10256, the interface for negative modular symbols in eclib is available:

sage: E = EllipticCurve('11a1')
sage: Mplus = E.modular_symbol(+1); Mplus
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mplus(1/i) for i in [1..11]]
[1/5, -4/5, -3/10, 7/10, 6/5, 6/5, 7/10, -3/10, -4/5, 1/5, 0]
sage: Mminus = E.modular_symbol(-1); Mminus
Modular symbol with sign -1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [Mminus(1/i) for i in [1..11]]
[0, 0, 1/2, 1/2, 0, 0, -1/2, -1/2, 0, 0, 0]

The scaling factor relative to eclib’s normalization is 1/2 for curves of negative discriminant:

sage: [E.discriminant() for E in cremona_curves([14])]
[-21952, 941192, -1835008, -28, 25088, 98]
sage: [E.modular_symbol()._scaling for E in cremona_curves([14])]
[1/2, 1, 1/2, 1/2, 1, 1]

TESTS (for trac ticket #10236):

sage: E = EllipticCurve('11a1')
sage: m = E.modular_symbol(implementation="eclib")
sage: m(1/7)
7/10
sage: m(0)
1/5

class sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E, sign, normalize='L_ratio')

Bases: sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol

Modular symbols attached to E using sage.

INPUT:

- E – an elliptic curve
- sign – an integer, -1 or 1
- normalize – either ‘L_ratio’ (default), ‘period’, or ‘none’; For ‘L_ratio’, the modular symbol is correctly normalized by comparing it to the quotient of \( L(E,1) \) by the least positive period for the curve and some small twists. The normalization ‘period’ uses the integral_period_map for modular symbols and is known to be equal to the above normalization up to the sign and a possible power of 2. For ‘none’, the modular symbol is almost certainly not correctly normalized, i.e. all values will be a fixed scalar multiple of what they should be. But the initial computation of the modular symbol is much faster, though
evaluation of it after computing it won’t be any faster.

EXAMPLES:

```python
sage: E=EllipticCurve('11a1')
sage: import sage.schemes.elliptic_curves.ell_modular_symbols
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,+1)
sage: M
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: M(0)
1/5
sage: E=EllipticCurve('11a2')
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,+1)
sage: M(0)
1
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,-1)
sage: M(1/3)
1/2
This is a rank 1 case with vanishing positive twists. The modular symbol is adjusted by -2:

```python
sage: E=EllipticCurve('121b1')
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbolSage(E,-1, normalize='L_ratio')
sage: M(1/3)
1
sage: M._scaling
1
sage: M = EllipticCurve('121d1').modular_symbol(implementation="sage")
sage: M(0)
2
sage: M = EllipticCurve('121d1').modular_symbol(implementation="sage", normalize='none')
sage: M(0)
1
sage: E = EllipticCurve('15a1')
sage: [C.modular_symbol(implementation="sage", normalize='L_ratio')(0) for C in E.isogeny_class()]
[1/4, 1/8, 1/4, 1/2, 1/8, 1/16, 1/2, 1]
sage: [C.modular_symbol(implementation="sage", normalize='period')(0) for C in E.isogeny_class()]
[1/8, 1/16, 1/8, 1/4, 1/16, 1/32, 1/4, 1/2]
sage: [C.modular_symbol(implementation="sage", normalize='none')(0) for C in E.isogeny_class()]
[1, 1, 1, 1, 1, 1, 1, 1]
```

```
sage.schemes.elliptic_curves.ell_modular_symbols.modular_symbol_space(E, sign, base_ring, bound=None)

Creates the space of modular symbols of a given sign over a give base_ring, attached to the isogeny class of the elliptic curve E.

INPUT:
  - E - an elliptic curve over Q

10.11. Elliptic curves over number fields
• sign - integer, -1, 0, or 1
• base_ring - ring
• bound - (default: None) maximum number of Hecke operators to use to cut out modular symbols factor.
  If None, use enough to provably get the correct answer.

OUTPUT: a space of modular symbols

EXAMPLES:

```
sage: import sage.schemes.elliptic_curves.ell_modular_symbols
sage: E=EllipticCurve('11a1')
sage: M=sage.schemes.elliptic_curves.ell_modular_symbols.modular_symbol_space(E,-1,GF(37))
sage: M
Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Finite Field of size 37
```

10.11.20 \(L\)-series for elliptic curves

AUTHORS:

• Simon Spicer (2014-08-15) - Added LFunctionZeroSum class interface method
• Jeroen Demeyer (2013-10-17) - Compute L series with arbitrary precision instead of floats.
• William Stein et al. (2005 and later)

```
class sage.schemes.elliptic_curves.lseries_ell.Lseries_ell(E)
 Bases: sage.structure.sage_object.SageObject

An elliptic curve \(L\)-series.

L1_vanishes()
Returns whether or not \(L(E,1) = 0\). The result is provably correct if the Manin constant of the associated optimal quotient is \(\leq 2\). This hypothesis on the Manin constant is true for all curves of conductor \(\leq 40000\) (by Cremona) and all semistable curves (i.e., squarefree conductor).

ALGORITHM: see \(L_ratio()\).

EXAMPLES:

```
sage: E = EllipticCurve([0, -1, 1, -10, -20])  # 11A = X_0(11)
sage: E.lseries().L1_vanishes()
False
sage: E = EllipticCurve([0, -1, 1, 0, 0])  # X_1(11)
sage: E.lseries().L1_vanishes()
False
sage: E = EllipticCurve([0, 0, 1, -1, 0])  # 37A (rank 1)
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0, 1, -1, -2, 0])  # 389A (rank 2)
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0, 0, 1, -38, 90])  # 361A (CM curve)
sage: E.lseries().L1_vanishes()
True
sage: E = EllipticCurve([0, -1, 1, -2, -1])  # 141C (13-isogeny)
sage: E.lseries().L1_vanishes()
False
```

\texttt{L_ratio()}

Return the ratio $L(E, 1)/\Omega$ as an exact rational number.

The result is provably correct if the Manin constant of the associated optimal quotient is ≤ 2. This hypothesis on the Manin constant is true for all semistable curves (i.e., squarefree conductor), by a theorem of Mazur from his \textit{Rational Isogenies of Prime Degree} paper.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11)
sage: E.lseries().L_ratio() 1/5
sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11)
sage: E.lseries().L_ratio() 1/25
sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1)
sage: E.lseries().L_ratio() 0
sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2)
sage: E.lseries().L_ratio() 0
sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A (CM curve))
sage: E.lseries().L_ratio() 0
sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C (13-isogeny)
sage: E.lseries().L_ratio() 1
sage: E = EllipticCurve(RationalField(), [1, 0, 0, 1/24624, 1/886464])
sage: E.lseries().L_ratio() 2
\end{verbatim}

See trac ticket \#3651 and trac ticket \#15299:

\begin{verbatim}
sage: EllipticCurve([0,0,0,-193^2,0]).sha().an() 4
sage: EllipticCurve([1, 0, 1, -131, 558]).sha().an() # long time
1.00000000000000
\end{verbatim}

\textbf{ALGORITHM:} Compute the root number. If it is -1 then $L(E, s)$ vanishes to odd order at 1, hence vanishes. If it is +1, use a result about modular symbols and Mazur’s \textit{Rational Isogenies} paper to determine a provably correct bound (assuming Manin constant is ≤ 2) so that we can determine whether $L(E, 1) = 0$.

\texttt{at1(k=None, prec=None)}

Compute $L(E, 1)$ using k terms of the series for $L(E, 1)$ as explained in Section 7.5.3 of Henri Cohen’s book \textit{A Course in Computational Algebraic Number Theory}. If the argument k is not specified, then it defaults to \sqrt{N}, where N is the conductor.

\textbf{INPUT:}

- k – number of terms of the series. If zero or \texttt{None}, use $k = \sqrt{N}$, where N is the conductor.
- \texttt{prec} – numerical precision in bits. If zero or \texttt{None}, use a reasonable automatic default.

\textbf{OUTPUT:}
A tuple of real numbers \((L, \text{err})\) where \(L\) is an approximation for \(L(E,1)\) and \text{err} is a bound on the error in the approximation.

This function is disjoint from the PARI \texttt{elllseries} command, which is for a similar purpose. To use that command (via the PARI C library), simply type \(E\text{.pari_mincurve()}\text{.elllseries}(1)\).

ALGORITHM:

- Compute the root number \(\epsilon\). If it is -1, return 0.
- Compute the Fourier coefficients \(a_n\), for \(n\) up to and including \(k\).
- Compute the sum
 \[
 2 \cdot \sum_{n=1}^{k} \frac{a_n}{n} \cdot \exp(-2 \pi n/\sqrt{N}),
 \]
 where \(N\) is the conductor of \(E\).
- Compute a bound on the tail end of the series, which is
 \[
 2e^{-2\pi(k+1)/\sqrt{N}}/(1 - e^{-2\pi/\sqrt{N}}).
 \]
 For a proof see [Grigov-Jorza-Patrascu-Patrikis-Stein].

EXAMPLES:

```python
sage: L, err = EllipticCurve('11a1').lseries().at1()
sage: L, err
(0.253804, 0.000181444)
sage: parent(L)
Real Field with 24 bits of precision
sage: E = EllipticCurve('37b')
sage: E.lseries().at1()  
   (0.7257177, 0.000800697)
sage: E.lseries().at1(100)
   (0.7256810619361527823362055410263965487367603361763, 1.52469e-45)
sage: L, err = E.lseries().at1(100, prec=128)
sage: L
0.72568106193615278233620554102639654873
sage: parent(L)
Real Field with 128 bits of precision
sage: err
1.70693e-37
sage: parent(err)
Real Field with 24 bits of precision and rounding RNDU
```

Rank 1 through 3 elliptic curves:

```python
sage: E = EllipticCurve('37a1')
sage: E.lseries().at1()  
   (0.0000000, 0.000000)
sage: E = EllipticCurve('389a1')
sage: E.lseries().at1()  
   (-0.001769566, 0.00911776)
sage: E = EllipticCurve('5077a1')
sage: E.lseries().at1()  
   (0.0000000, 0.000000)
```

deriv_at1 \((k=None, \text{prec}=None)\)

Compute \(L'(E, 1)\) using \(k\) terms of the series for \(L'(E,1)\), under the assumption that \(L(E,1) = 0\).
The algorithm used is from Section 7.5.3 of Henri Cohen’s book *A Course in Computational Algebraic Number Theory*.

INPUT:
- \(k \) – number of terms of the series. If zero or `None`, use \(k = \sqrt{N} \), where \(N \) is the conductor.
- `prec` – numerical precision in bits. If zero or `None`, use a reasonable automatic default.

OUTPUT:
A tuple of real numbers \((L_1, \text{err})\) where \(L_1 \) is an approximation for \(L'(E, 1) \) and \(\text{err} \) is a bound on the error in the approximation.

Warning: This function only makes sense if \(L(E) \) has positive order of vanishing at 1, or equivalently if \(L(E, 1) = 0 \).

ALGORITHM:
- Compute the root number \(\epsilon \). If it is 1, return 0.
- Compute the Fourier coefficients \(a_n \), for \(n \) up to and including \(k \).
- Compute the sum

\[
2 \cdot \sum_{n=1}^{k} \left(\frac{a_n}{n} \right) \cdot E_1 \left(\frac{2\pi n}{\sqrt{N}} \right),
\]

where \(N \) is the conductor of \(E \), and \(E_1 \) is the exponential integral function.
- Compute a bound on the tail end of the series, which is

\[
2 e^{-2\pi(k+1)/\sqrt{N}} / \left(1 - e^{-2\pi/\sqrt{N}} \right).
\]

For a proof see [Grigorov-Jorza-Patrascu-Patrikis-Stein]. This is exactly the same as the bound for the approximation to \(L(E, 1) \) produced by `at1()`.

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: E.lseries().deriv_at1() (0.3059866, 0.000801045)
sage: E.lseries().deriv_at1(100) (0.3059997738340523018204836833216764744526377745903, 1.52493e-45)
sage: E.lseries().deriv_at1(1000) (0.305999773834052301820483683321676474452637774590771998..., 2.75031e-449)
```

With less numerical precision, the error is bounded by numerical accuracy:

```python
sage: L, err = E.lseries().deriv_at1(100, prec=64)
sage: L, err (0.305999773834052302, 5.55318e-18)
sage: parent(L) Real Field with 64 bits of precision
sage: parent(err) Real Field with 24 bits of precision and rounding RNDU
```

Rank 2 and rank 3 elliptic curves:
dokchitser (prec=53, max_imaginary_part=0, max_asympt_coeffs=40, algorithm='gp')
Return interface to Tim Dokchitser's program for computing with the L-series of this elliptic curve; this provides a way to compute Taylor expansions and higher derivatives of L-series.

INPUT:

- prec – integer (bits precision)
- max_imaginary_part – real number
- max_asympt_coeffs – integer
- algorithm – string: 'gp' or 'magma'

Note: If algorithm='magma', then the precision is in digits rather than bits and the object returned is a Magma L-series, which has different functionality from the Sage L-series.

EXAMPLES:

sage: E = EllipticCurve('37a')
sage: L = E.lseries().dokchitser()
sage: L(2)
0.381575408260711
sage: L = E.lseries().dokchitser(algorithm='magma') # optional - magma
sage: L.Evaluatede(2) # optional - magma
0.38157540826071121129371040958008663667709753398892116

If the curve has too large a conductor, it isn’t possible to compute with the L-series using this command. Instead a RuntimeError is raised:

sage: e = EllipticCurve([1,1,0,-63900,-1964465932632])
sage: L = e.lseries().dokchitser(15)
Traceback (most recent call last):
 ...
RuntimeError: Unable to create L-series, due to precision or other limits in →PARI.

elliptic_curve()
Return the elliptic curve that this L-series is attached to.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: L = E.lseries()
sage: L.elliptic_curve()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

sympow (n, prec)
Return $L(Sym^n(E, edge))$ to prec digits of precision.
INPUT:
• n – integer
• prec – integer

OUTPUT:
• string – real number to prec digits of precision as a string.

Note: Before using this function for the first time for a given n, you may have to type `sympow('-new_data <n>')`, where <n> is replaced by your value of n. This command takes a long time to run.

EXAMPLES:
```
sage: E = EllipticCurve('37a')
sage: a = E.lseries().sympow(2,16)  # not tested - requires precomputing
   "sympow('-new_data 2')"
sage: a  # not tested
'2.492262044273650E+00'
```

```
sage: RR(a)  # not tested
2.49226204427365
```

```
sage: sympow_derivs(n, prec, d)
Return 0-th to d-th derivatives of \(L(Sym^n)(E, \text{edge})\) to prec digits of precision.
```

INPUT:
• n – integer
• prec – integer
• d – integer

OUTPUT:
• a string, exactly as output by sympow

Note: To use this function you may have to run a few commands like `sympow('-new_data 1d2')`, each which takes a few minutes. If this function fails it will indicate what commands have to be run.

EXAMPLES:
```
sage: E = EllipticCurve('37a')
sage: print(E.lseries().sympow_derivs(1,16,2))  # not tested -- requires precomputing
   "sympow('-new_data 2')"
sage: print(E.lseries().sympow_derivs(1,16,2))  # not tested
1.018
```

```
Minimal model of curve is \[0,0,1,-1,0\]
At 37: Inertia Group is C1 MULTIPLICATIVE REDUCTION
Conductor is 37
sp 1: Conductor at 37 is 1+0, root number is 1
sp 1: Euler factor at 37 is 1+1\times
1st sym power conductor is 37, global root number is -1
NT 1d0: 35
NT 1d1: 32
NT 1d2: 28
Maximal number of terms is 35
```
Done with small primes 1049
Computed: 1d0 1d1 1d2
Checked out: 1d1
1n0: 3.837774351482055E-01
1w0: 3.77721403663848E-01
1n1: 3.05997738340522E-01
1w1: 3.05997738340524E-01
1n2: 1.519054910249753E-01
1w2: 1.545605024269432E-01

`taylor_series`(a=1, prec=53, series_prec=6, var=’z’)

Return the Taylor series of this L-series about a to the given precision (in bits) and the number of terms.

The output is a series in var, where you should view var as equal to s – a. Thus this function returns the formal power series whose coefficients are \(L^{(n)}(a)/n!\).

INPUT:

- a – complex number
- prec – integer, precision in bits (default 53)
- series_prec – integer (default 6)
- var – variable (default ‘z’)

EXAMPLES:

```python
sage: E = EllipticCurve('389a')
sage: L = E.lseries()
sage: L.taylor_series(series_prec=3)
-1.27685190980159e-23 + (7.23588070754027e-24)*z + 0.759316500288427*z^2 + O(z^3) # 32-bit
```

```
-2.72911738151096e-23 + (1.54658247036311e-23)*z + 0.759316500288427*z^2 + O(z^3) # 64-bit
```

`twist_values`(s, dmin, dmax)

Return values of \(L(E, s, \chi_d)\) for each quadratic character \(\chi_d\) for \(d_{\min} \leq d \leq d_{\max}\).

Note: The L-series is normalized so that the center of the critical strip is 1.

INPUT:

- s – complex number
- dmin – integer
- dmax – integer

OUTPUT:

- list of pairs \((d, L(E, s, \chi_d))\)

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: vals = E.lseries().twist_values(1, -12, -4)
sage: vals
# abs tol 1e-15
[(-11, 1.47824342), (-8, 8.9590946e-18), (-7, 1.85307619), (-4, 2.45138938)]
```
```
sage: F = E.quadratic_twist(-8)
sage: F.rank()
1
sage: F = E.quadratic_twist(-7)
sage: F.rank()
0
```

twist_zeros $(n, d_{\text{min}}, d_{\text{max}})$

Return first n real parts of nontrivial zeros of $L(E, s, \chi_d)$ for each quadratic character χ_d with $d_{\text{min}} \leq d \leq d_{\text{max}}$.

Note: The L-series is normalized so that the center of the critical strip is 1.

INPUT:
- n – integer
- d_{min} – integer
- d_{max} – integer

OUTPUT:
- `dict` – keys are the discriminants d, and values are list of corresponding zeros.

EXAMPLES:
```
sage: E = EllipticCurve('37a')
sage: E.lseries().twist_zeros(3, -4, -3)  # long time
{-4: [1.60813783, 2.96144840, 3.89751747], -3: [2.06170900, 3.48216881, 4.95853219]}
```

values_along_line $(s_0, s_1, \text{number samples})$

Return values of $L(E, s)$ at `number_samples` equally-spaced sample points along the line from s_0 to s_1 in the complex plane.

Note: The L-series is normalized so that the center of the critical strip is 1.

INPUT:
- s_0, s_1 – complex numbers
- `number_samples` – integer

OUTPUT:
list – list of pairs $(s, L(E, s))$, where the s are equally spaced sampled points on the line from s_0 to s_1.

EXAMPLES:
```
sage: E = EllipticCurve('37a')
sage: E.ellipsis().values_along_line(1, 0.5 + 20*I, 5)
[(0.500000000 + 0.000000000*I, 0.867691886 + 0.000000000*I),
 (0.400000000 + 4.000000000*I, 3.1920245 - 2.6028054*I),
 (0.300000000 + 8.000000000*I, -0.886341185 - 0.422640337*I),
 (0.200000000 + 12.0000000*I, -3.50558936 - 0.108531690*I),
 (0.100000000 + 16.0000000*I, -3.87043288 - 1.88049411*I)]
```
zero_sums *(\(N=\text{None}\))*
Return an \texttt{LFunctionZeroSum} class object for efficient computation of sums over the zeros of \texttt{self}.
This can be used to bound analytic rank from above without having to compute with the \(L\)-series directly.

INPUT:

- \(N\) – (default: \text{None}) If not \text{None}, the conductor of the elliptic curve attached to \texttt{self}. This is passable so that zero sum computations can be done on curves for which the conductor has been precomputed.

OUTPUT:

A \texttt{LFunctionZeroSum_EllipticCurve} instance.

EXAMPLES:

```python
sage: E = EllipticCurve("5077a")
sage: E.lseries().zero_sums()
Zero sum estimator for L-function attached to Elliptic Curve defined by y^2 + x → y = x^3 - 7*x + 6 over Rational Field
```

zeros *(\(n\))*

Return the imaginary parts of the first \(n\) nontrivial zeros on the critical line of the \(L\)-function in the upper half plane, as 32-bit reals.

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: E.lseries().zeros(2)
[0.000000000, 5.00317001]
sage: a = E.lseries().zeros(20)  # long time
sage: point([(1,x) for x in a])  # graph (long time)
Graphics object consisting of 1 graphics primitive
```

AUTHOR: – Uses Rubinstein’s \(L\)-functions calculator.

zeros_in_interval *(\(x, y, \text{stepsize}\))*

Return the imaginary parts of (most of) the nontrivial zeros on the critical line \(\Re(s) = 1\) with positive imaginary part between \(x\) and \(y\), along with a technical quantity for each.

INPUT:

- \(x\) – positive floating point number
- \(y\) – positive floating point number
- \text{stepsize} – positive floating point number

OUTPUT:

- list of pairs \((\text{zero}, S(T))\).

Rubinstein writes: The first column outputs the imaginary part of the zero, the second column a quantity related to \(S(T)\) (it increases roughly by 2 whenever a sign change, i.e. pair of zeros, is missed). Higher up the critical strip you should use a smaller stepsize so as not to miss zeros.

EXAMPLES:

```python
sage: E = EllipticCurve('37a')
sage: E.lseries().zeros_in_interval(6, 10, 0.1)  # long time
[(6.87039122, 0.248922780), (8.01433081, -0.140168533), (9.93309835, -0.129943029)]
```
10.11.21 Heegner points on elliptic curves over the rational numbers

AUTHORS:

- William Stein (August 2009)– most of the initial version
- Robert Bradshaw (July 2009) – an early version of some specific code

EXAMPLES:

```sage
sage: E = EllipticCurve('433a')
sage: P = E.heegner_point(-8, 3)
sage: z = P.point_exact(201); z
(-4/3 : 1/9*a : 1)
sage: parent(z)
Abelian group of points on Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Number Field in a with defining polynomial x^2 - 12*x + 111
sage: parent(z[0]).discriminant()
-3
sage: E.quadratic_twist(-3).rank()
1
sage: K.<a> = QuadraticField(-8)
sage: K.factor(3)
(Fractional ideal (1/2*a + 1)) * (Fractional ideal (-1/2*a + 1))
Next try an inert prime:
sage: K.factor(5)
Fractional ideal (5)
sage: P = E.heegner_point(-8, 5)
sage: z = P.point_exact(300)
sage: z[0].charpoly().factor()
(x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100)^2
sage: z[1].charpoly().factor()
x^12 - x^11 + 6/5*x^10 - 33/40*x^9 - 89/320*x^8 + 3287/800*x^7 - 5273/1600*x^6 + 993/-4000*x^5 + 823/320*x^4 - 2424/625*x^3 + 12059/12500*x^2 + 3329/25000*x + 123251/-250000
sage: f = P.x_poly_exact(300); f
x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100
sage: f.discriminant().factor()
-1 * 2^-9 * 5^-9 * 7^2 * 281^2 * 1021^2
We find some Mordell-Weil generators in the rank 1 case using Heegner points:

```
Here we find that the Heegner point generates a subgroup of index 3:

```
sage: E = EllipticCurve('92b1')
sage: E.heegner_discriminants_list(1)
[-7]
sage: P = E.heegner_point(-7); z = P.point_exact(); z
(0 : 1 : 1)
sage: E.regulator()
0.0498083972980648
sage: z.height()
0.448275575682583
sage: P = E(1,1); P
# a generator
(1 : 1 : 1)
sage: -3*P
(0 : 1 : 1)
sage: E.tamagawa_product()
3
```

The above is consistent with the following analytic computation:

```
sage: E.heegner_index(-7)
3.0000?
```

class `sage.schemes.elliptic_curves.heegner.GaloisAutomorphism`

```
Bases: sage.structure.sage_object.SageObject

An abstract automorphism of a ring class field.

Todo: make `GaloisAutomorphism` derive from `GroupElement`, so that one gets powers for free, etc.
```

domain()
Return the domain of this automorphism.

EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: s = E.heegner_point(-7,5).ring_class_field().galois_group().complex_
˓→conjugation()
sage: s.domain()
Ring class field extension of QQ[sqrt(-7)] of conductor 5
```

parent()
Return the parent of this automorphism, which is a Galois group of a ring class field.

EXAMPLES:

```
sage: E = EllipticCurve('389a')
sage: s = E.heegner_point(-7,5).ring_class_field().galois_group().complex_
˓→conjugation()
```
sage: s.parent()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5

class sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation(parent)
Bases: sage.schemes.elliptic_curves.heegner.GaloisAutomorphism

The complex conjugation automorphism of a ring class field.

EXAMPLES:

 sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation()
 sage: conj
 Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5
 sage: conj.domain()
 Ring class field extension of QQ[sqrt(-7)] of conductor 5

order()

EXAMPLES:

 sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation()
 sage: conj.order()
 2

class sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm(parent, quadratic_form, alpha=None)
Bases: sage.schemes.elliptic_curves.heegner.GaloisAutomorphism

An automorphism of a ring class field defined by a quadratic form.

EXAMPLES:

 sage: H = heegner_points(389,-20,3)
 sage: sigma = H.ring_class_field().galois_group(H.quadratic_field())[0]; sigma
 Class field automorphism defined by x^2 + 45*y^2
 sage: type(sigma)
 <class 'sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm'>
 sage: loads(dumps(sigma)) == sigma
 True

alpha()

Optional data that specified element corresponding element of \((\mathcal{O}_K/c\mathcal{O}_K)*/(\mathbb{Z}/c\mathbb{Z})^*\), via class field theory.

This is a generator of the ideal corresponding to this automorphism.

EXAMPLES:

 sage: K3 = heegner_points(389,-52,3).ring_class_field()
 sage: K1 = heegner_points(389,-52,1).ring_class_field()
 sage: G = K3.galois_group(K1)
 sage: orb = sorted([g.alpha() for g in G]); orb
 [1, 1/2*sqrt_minus_52 + 1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 - 1]
sage: sorted([x^2 for x in orb]) # this is just for testing
[-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, 1]

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on
˓→the database being installed or not)
[1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 + 1, 1/2*sqrt_minus_52 - 1, 1/
˓→2*sqrt_minus_52 - 2, -1/2*sqrt_minus_52 - 2]
sage: sorted([x^2 for x in orb]) # just for testing
[-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, -2*sqrt_minus_52 - 9, 2*sqrt_
˓→minus_52 - 9, 1]

ideal()

Return ideal of ring of integers of quadratic imaginary field corresponding to this quadratic form. This is
the ideal
\[I = \left(A, -\frac{B + \sqrt{D}}{2} \right) O_K. \]

EXAMPLES:

sage: E = EllipticCurve('389a'); F= E.heegner_point(-20,3).ring_class_field()
sage: G = F.galois_group(F.quadratic_field())
sage: G[1].ideal()
Fractional ideal (2, 1/2*sqrt_minus_20 + 1)
sage: s.ideal().gens() for s in G
[(1, 3/2*sqrt_minus_20), (2, 3/2*sqrt_minus_20 - 1), (5, 3/2*sqrt_minus_20),
→(7, 3/2*sqrt_minus_20 - 2)]

order()

Return the multiplicative order of this Galois group automorphism.

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: sorted([g.order() for g in G])
[1, 2, 4, 4]
sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: sorted([g.order() for g in G])
[1, 2, 3, 3, 6, 6]

pl_element()

Return element of the projective line corresponding to this automorphism.

This only makes sense if this automorphism is in the Galois group Gal(K_c/K_1).

EXAMPLES:

sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: sorted([g.pl_element() for g in G])
[(0, 1), (1, 0), (1, 1), (1, 2)]
sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: sorted([g.p1_element() for g in G])
[(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)]

quadratic_form()

Return reduced quadratic form corresponding to this Galois automorphism.

EXAMPLES:

sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.
˓→quadratic_field())[0]
sage: s.quadratic_form()
x^2 + 45*y^2

class sage.schemes.elliptic_curves.heegner.GaloisGroup(field, base=Rational Field)

Bases: sage.structure.sage_object.SageObject

A Galois group of a ring class field.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.cardinality()
12
sage: G.complex_conjugation()
Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of_
˓→conductor 5

base_field()

Return the base field, which the field fixed by all the automorphisms in this Galois group.

EXAMPLES:

sage: x = heegner_point(37,-7,5)
sage: Kc = x.ring_class_field(); Kc
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: K = x.quadratic_field()
sage: G = Kc.galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.base_field()
Rational Field
sage: G.cardinality()
12
sage: Kc.absolute_degree()
12
sage: G = Kc.galois_group(K); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
sage: G.cardinality()
6
sage: G.base_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
sage: G = Kc.galois_group(Kc); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
˓→ over Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.cardinality()
1
sage: G.base_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

cardinality()
Return the cardinality of this Galois group.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: G.cardinality()
12
sage: G = E.heegner_point(-7).ring_class_field().galois_group()
sage: G.cardinality()
2
sage: G = E.heegner_point(-7,55).ring_class_field().galois_group()
sage: G.cardinality()
120

complex_conjugation()
Return the automorphism of self determined by complex conjugation. The base field must be the rational
numbers.

EXAMPLES:

sage: E = EllipticCurve('389a')
sage: G = E.heegner_point(-7,5).ring_class_field().galois_group()
sage: G.complex_conjugation()
Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5

field()
Return the ring class field that this Galois group acts on.

EXAMPLES:

sage: G = heegner_point(389,-52,5).ring_class_field().galois_group()
sage: G.field()
Ring class field extension of QQ[sqrt(-52)] of conductor 5

is_kolyvagin()
Return True if conductor \(c \) is prime to the discriminant of the quadratic field, \(c \) is squarefree and each
prime dividing \(c \) is inert.

EXAMPLES:

sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: K5.galois_group(K1).is_kolyvagin()
True

(continues on next page)
```python
sage: K7 = heegner_points(389,-52,7).ring_class_field()
sage: K7.galois_group(K1).is_kolyvagin()
False
sage: K25 = heegner_points(389,-52,25).ring_class_field()
sage: K25.galois_group(K1).is_kolyvagin()
False
```

kolyvagin_generators()

Assuming this Galois group G is of the form $G = \text{Gal}(K_c/K_1)$, with $c = p_1 \ldots p_n$ satisfying the Kolyvagin hypothesis, this function returns noncanonical choices of lifts of generators for each of the cyclic factors of G corresponding to the primes dividing c. Thus the i-th returned valued is an element of G that maps to the identity element of $\text{Gal}(K_{p_i}/K_1)$ for all $p \neq p_i$ and to a choice of generator of $\text{Gal}(K_{p_i}/K_1)$.

OUTPUT:

- list of elements of self

EXAMPLES:

```python
sage: K3 = heegner_points(389,-52,3).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K3.galois_group(K1)
sage: G.kolyvagin_generators()
(Class field automorphism defined by 9*x^2 - 6*x*y + 14*y^2,)
```

lift_of_hilbert_class_field_galois_group()

Assuming this Galois group G is of the form $G = \text{Gal}(K_c/K)$, this function returns noncanonical choices of lifts of the elements of the quotient group $\text{Gal}(K_1/K)$.

OUTPUT:

- tuple of elements of self

EXAMPLES:

```python
sage: K5 = heegner_points(389,-52,5).ring_class_field()
sage: K1 = heegner_points(389,-52,1).ring_class_field()
sage: G = K5.galois_group(K1)
sage: G.kolyvagin_generators()
Class field automorphism defined by 17*x^2 - 14*x*y + 22*y^2,
```

10.11. Elliptic curves over number fields 539
sage: x = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,13); x
Heegner point of level 389, discriminant -7, and conductor 13
sage: type(x)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'>
sage: loads(dumps(x)) == x
True

conductor()

Return the conductor of this Heegner point.

EXAMPLES:

```
sage: heegner_point(389,-7,5).conductor()
5
sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P
Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of conductor 37
sage: P.conductor()
7
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P.conductor()
5
```

discriminant()

Return the discriminant of the quadratic imaginary field associated to this Heegner point.

EXAMPLES:

```
sage: heegner_point(389,-7,5).discriminant()
-7
sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P
Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of conductor 37
sage: P.discriminant()
-67
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P.discriminant()
-7
```

level()

Return the level of this Heegner point, which is the level of the modular curve $X_0(N)$ on which this is a Heegner point.

EXAMPLES:

```
sage: heegner_point(389,-7,5).level()
389
```

quadratic_field()

Return the quadratic number field of discriminant D.

EXAMPLES:

```
sage: x = heegner_point(37,-7,5)
sage: x.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
sage: E = EllipticCurve('37a1'); P = E.heegner_point(-40)
sage: P.quadratic_field()
```
(continues on next page)
Number Field in sqrt_minus_40 with defining polynomial x^2 + 40

```python
sage: P.quadratic_field() is P.quadratic_field()
True
sage: type(P.quadratic_field())
<class 'sage.rings.number_field.number_field.NumberField_quadratic_with_category'>
```

quadratic_order()

Return the order in the quadratic imaginary field of conductor c, where c is the conductor of this Heegner point.

EXAMPLES:

```python
sage: heegner_point(389,-7,5).quadratic_order()
Order in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
sage: heegner_point(389,-7,5).quadratic_order().basis()
[1, 5*sqrt_minus_7]
```

```python
sage: E = EllipticCurve('37a'); P = E.heegner_point(-40,11)
sage: P.quadratic_order()
Order in Number Field in sqrt_minus_40 with defining polynomial x^2 + 40
sage: P.quadratic_order().basis()
[1, 11*sqrt_minus_40]
```

ring_class_field()

Return the ring class field associated to this Heegner point. This is an extension K_c over K, where K is the quadratic imaginary field and c is the conductor associated to this Heegner point. This Heegner point is defined over K_c and the Galois group $Gal(K_c/K)$ acts transitively on the Galois conjugates of this Heegner point.

EXAMPLES:

```python
sage: E = EllipticCurve('389a'); K.<a> = QuadraticField(-5)
sage: len(K.factor(5))
1
sage: len(K.factor(23))
2
sage: E.heegner_point(-7, 5).ring_class_field().degree_over_K()
6
sage: E.heegner_point(-7, 23).ring_class_field().degree_over_K()
22
sage: E.heegner_point(-7, 5*23).ring_class_field().degree_over_K()
132
sage: E.heegner_point(-7, 5^2).ring_class_field().degree_over_K()
30
```

```python
sage: E.heegner_point(-7, 7).ring_class_field().degree_over_K()
7
```

class `sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve(E, x, check=True)`

Bases: `sage.schemes.elliptic_curves.heegner.HeegnerPoint`

A Heegner point on a curve associated to an order in a quadratic imaginary field.

EXAMPLES:

```python
sage: E = EllipticCurve('37a'); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
```
conjugates_over_K()

Return the $Gal(K_c/K)$ conjugates of this Heegner point.

EXAMPLES:

```python
sage: E = EllipticCurve('77a')
sage: y = E.heegner_point(-52,5); y
Heegner point of discriminant -52 and conductor 5 on elliptic curve of _
    conductor 77
sage: print([z.quadratic_form() for z in y.conjugates_over_K()])
[77*x^2 + 52*x*y + 13*y^2, 154*x^2 + 206*x*y + 71*y^2, 539*x^2 + 822*x*y + _
    192*y^2, 314*y^2, 847*x^2 + 1284*x*y + 487*y^2, 1001*x^2 + 52*x*y + y^2, 1078*x^2 + _
    822*x*y + 157*y^2, 1309*x^2 + 360*x*y + 25*y^2, 1309*x^2 + 2054*x*y + 806*y^2 + _
    2, 1463*x^2 + 976*x*y + 163*y^2, 2233*x^2 + 2824*x*y + 893*y^2, 2387*x^2 + _
    2054*x*y + 442*y^2, 3619*x^2 + 3286*x*y + 746*y^2]
sage: y.quadratic_form()
77*x^2 + 52*x*y + 13*y^2
```

curve()

Return the elliptic curve on which this is a Heegner point.

EXAMPLES:

```python
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7,5)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: P.curve() == E
True
```

heegner_point_on_X0N()

Return Heegner point on $X_0(N)$ that maps to this Heegner point on E.

EXAMPLES:

```python
sage: E = EllipticCurve('37a'); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of _
    conductor 37
sage: P.heegner_point_on_X0N()
Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_ _
    0(37)
```

kolyvagin_cohomology_class(n=None)

Return the Kolyvagin class associated to this Heegner point.

INPUT:

- n – positive integer that divides the gcd of a_p and $p + 1$ for all p dividing the conductor. If n is None, choose the largest valid n.

EXAMPLES:

```python
sage: y = EllipticCurve('389a').heegner_point(-7,5)
sage: y.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])
```
kolyvagin_point()

Return the Kolyvagin point corresponding to this Heegner point.

This is the point obtained by applying the Kolyvagin operator $J_c I_c$ in the group ring of the Galois group to this Heegner point. It is a point that defines an element of $H^1(K, E[n])$, under certain hypotheses on n.

EXAMPLES:

```
sage: E = EllipticCurve('37a1'); y = E.heegner_point(-7); y
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P = y.kolyvagin_point(); P
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx()  # abs tol 1e-15
(-3.36910401903861e-16 - 2.22076195576076e-16*I : 3.33066907387547e-16 + 2.22076195576075e-16*I : 1.00000000000000)
```

map_to_complex_numbers(prec=53)

Return the point in the subfield M of the complex numbers (well defined only modulo the period lattice) corresponding to this Heegner point.

EXAMPLES:

We compute a nonzero Heegner point over a ring class field on a curve of rank 2:

```
sage: E = EllipticCurve('389a'); y = E.heegner_point(-7,5)
sage: y.map_to_complex_numbers()
1.49979679635196 + 0.369156204821526*I
sage: y.map_to_complex_numbers(100)
1.4997967963519640592142411892 + 0.36915620482152626830089145962*I
sage: y.map_to_complex_numbers(10)
1.5 + 0.37*I
```

Here we see that the Heegner point is 0 since it lies in the lattice:

```
sage: E = EllipticCurve('389a'); y = E.heegner_point(-7)
sage: y.map_to_complex_numbers(10)
0.0034 - 3.9*I
sage: E.period_lattice().basis()[(1,0) + E.period_lattice().basis()[(1,0) + E.period_lattice().basis()[(1,0) + E.period_lattice().basis()]]
```

You can also directly coerce to the complex field:

```
sage: E = EllipticCurve('389a'); y = E.heegner_point(-7)
sage: z = ComplexField(100)(y); z
-3.4347540310330*I
```

numerical_approx(prec=53, algorithm=None)

Return a numerical approximation to this Heegner point computed using a working precision of prec bits.

Warning: The answer is not provably correct to prec bits! A priori, due to rounding and other errors, it is possible that not a single digit is correct.
INPUT:

- prec – (default: None) the working precision

EXAMPLES:

```python
sage: E = EllipticCurve('37a'); P = E.heegner_point(-7); P
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx()  # abs tol 1e-15
(-3.36910401903861e-16 - 2.22076195576076e-16*I : 3.33066907387547e-16 + 2.
  \rightarrow-22076195576075e-16*I : 1.00000000000000)
sage: P.numerical_approx(10)  # expect random digits
8.4...e-31 + 6.0...e-31*I
sage: E = EllipticCurve('37a'); P = E.heegner_point(-40); P
Heegner point of discriminant -40 on elliptic curve of conductor 37
sage: P.numerical_approx()  # abs tol 1e-14
(-3.15940603400359e-16 + 1.41421356237309*I : 1.00000000000000 - 1.
  \rightarrow41421356237309*I : 1.00000000000000)
```

A rank 2 curve, where all Heegner points of conductor 1 are 0:

```python
sage: E = EllipticCurve('389a'); E.rank()
2
sage: P = E.heegner_point(-7); P
Heegner point of discriminant -7 on elliptic curve of conductor 389
sage: P.numerical_approx()
(0.000000000000000 : 1.00000000000000 : 0.000000000000000)
```

However, Heegner points of bigger conductor are often nonzero:

```python
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
sage: P.numerical_approx()
(0.675507556926806 + 0.344749649302635*I : -0.377142931401887 + 0.
  \rightarrow843366227137146*I : 1.00000000000000)
sage: E.heegner_point(-7, 11).numerical_approx()  # abs tol 1e-14
(-3.15940603400359e-16 + 1.41421356237309*I : 1.00000000000000 - 1.0.
  \rightarrow41421356237309*I : 1.00000000000000)
```

We find (probably) the defining polynomial of the x-coordinate of P, which defines a class field. The shape of the discriminant below is strong confirmation – but not proof – that this polynomial is correct:

```python
sage: f = P.numerical_approx(70)[0].algdep(6); f
1225*x^6 + 1750*x^5 - 21675*x^4 - 380*x^3 + 110180*x^2 - 129720*x + 48771
sage: f.discriminant().factor()
2^6 * 3^2 * 5^11 * 7^4 * 13^2 * 19^6 * 199^2 * 719^2 * 26161^2
```

```
point_exact (prec=53, algorithm='lll', var='a', optimize=False)
Return exact point on the elliptic curve over a number field defined by computing this Heegner point to the
```
given number of bits of precision. A ValueError is raised if the precision is clearly insignificant to define a point on the curve.

Warning: It is in theory possible for this function to not raise a ValueError, find a point on the curve, but via some very unlikely coincidence that point is not actually this Heegner point.

Warning: Currently we make an arbitrary choice of y-coordinate for the lift of the x-coordinate.

INPUT:
- `prec` – integer (default: 53)
- `algorithm` – see the description of the algorithm parameter for the `x_poly_exact` method.
- `var` – string (default: ‘a’)
- `optimize` – bool (default: False) if True, try to optimize defining polynomial for the number field that the point is defined over. Off by default, since this can be very expensive.

EXAMPLES:

```
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of
  conductor 389
sage: z = P.point_exact(100, optimize=True)
```

```
x^12 + 6x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 -
  483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 +
  1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/
  367653125*x^2 + 211679465261391/1838265625
```

```
sage: E = EllipticCurve('5077a')
sage: P = E.heegner_point(-7)
sage: P.point_exact(prec=100)
(0 : 1 : 0)
```

quadratic_form()

Return the integral primitive positive definite binary quadratic form associated to this Heegner point.

EXAMPLES:

```
sage: EllipticCurve('389a').heegner_point(-7, 5).quadratic_form()
389*x^2 + 147*x*y + 14*y^2
```

```
sage: EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of
  conductor 389
sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2
```
satisfies_kolyvagin_hypothesis \((n=None) \)
Return True if this Heegner point and \(n \) satisfy the Kolyvagin hypothesis, i.e., that each prime dividing the conductor \(c \) of self is inert in \(K \) and coprime to \(ND \). Moreover, if \(n \) is not None, also check that for each prime \(p \) dividing \(c \) we have that \(n \mid \gcd(a_p(E), p + 1) \).

INPUT:

- \(n \) – positive integer

EXAMPLES:

```
sage: EllipticCurve('389a').heegner_point(-7).satisfies_kolyvagin_hypothesis()
True
sage: EllipticCurve('389a').heegner_point(-7,5).satisfies_kolyvagin_hypothesis()
True
sage: EllipticCurve('389a').heegner_point(-7,11).satisfies_kolyvagin_hypothesis()
False
```

tau()
Return \(\tau \) in the upper half plane that maps via the modular parametrization to this Heegner point.

EXAMPLES:

```
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5)
sage: P.tau()
5/778*sqrt_minus_7 - 147/778
```

x_poly_exact \((\text{prec}=53, \text{algorithm}='lll') \)
Return irreducible polynomial over the rational numbers satisfied by the \(x \) coordinate of this Heegner point. A ValueError is raised if the precision is clearly insignificant to define a point on the curve.

Warning: It is in theory possible for this function to not raise a ValueError, find a polynomial, but via some very unlikely coincidence that point is not actually this Heegner point.

INPUT:

- \(\text{prec} \) – integer (default: 53)
- \(\text{algorithm} = \text{`conjugates'} \text{ or `lll'} \text{ (default)} \); if `conjugates', compute numerically all the conjugates \(y[i] \) of the Heegner point and construct the characteristic polynomial as the product \(f(X) = (X - y[i]) \). If `lll', compute only one of the conjugates \(y[0] \), then uses the LLL algorithm to guess \(f(X) \).

EXAMPLES:

We compute some \(x \)-coordinate polynomials of some conductor 1 Heegner points:

```
sage: E = EllipticCurve('37a')
sage: v = E.heegner_discriminants_list(10)
sage: [E.heegner_point(D).x_poly_exact() for D in v]
[x, x, x^2 + 2, x^5 - x^4 + x^3 + x^2 - 2*x + 1, x - 6, x^7 - 2*x^6 + 9*x^5 -
-10*x^4 - x^3 + 8*x^2 - 5*x + 1, x^3 + 5*x^2 + 10*x + 4, x^4 - 10*x^3 + 10*x^2 +
+2 + 12*x - 12, x^8 - 5*x^7 + 7*x^6 + 13*x^5 - 10*x^4 - 4*x^3 + x^2 - 5*x +
-7, x^6 - 2*x^5 + 11*x^4 - 24*x^3 + 30*x^2 - 16*x + 4]
```

We compute \(x \)-coordinate polynomials for some Heegner points of conductor bigger than 1 on a rank 2 curve:
Here we compute a Heegner point of conductor 5 on a rank 3 curve:

```
sage: E = EllipticCurve('5077a'); P = E.heegner_point(-7,5); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of
  conductor 5077
sage: P.x_poly_exact(300)
x^6 + 1108754853727159228/72351048803252547*x^5 + 8887505551184048168/
  195347817687818769*x^4 - 221620027116098662132/3255797196146364615*x^3 +
  149416275041688394949851/9767391588439093845*x^2 - 3456417460183342963918/
  3255797196146364615*x + 1306572835857500500459/5426328660243941025
```

A Heegner point as a point on the modular curve \(X_0(N) \), which we view as the upper half plane modulo the action of \(\Gamma_0(N) \).

EXAMPLES:

```
sage: x = heegner_point(37,-7,5); x
Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37)
sage: type(x)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N'>
sage: x.level()
37	sage: x.conductor()
5	sage: x.discriminant()
-7	sage: x.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7	sage: x.quadratic_form()
37*x^2 + 11*x*y + 2*y^2	sage: x.quadratic_order()
Order in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7	sage: x.tau()
5/74*sqrt_minus_7 - 11/74	sage: loads(dumps(x)) == x
True
```
atkin_lehner_act \(_{Q=None}\)
Given an integer Q dividing the level N such that \(\gcd(Q, N/Q) = 1\), returns the image of this Heegner point under the Atkin-Lehner operator \(W_Q\).

INPUT:
- \(Q\) – positive divisor of \(N\); if not given, default to \(N\)

EXAMPLES:

```python
sage: x = heegner_point(389,-7,5)
sage: x.atkin_lehner_act()
Heegner point 5/199168*sqrt(-7) - 631/199168 of discriminant -7 and conductor 5 on X_0(389)

sage: x = heegner_point(45,D=-11,c=1); x
Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45)
sage: x.atkin_lehner_act(5)
Heegner point 1/90*sqrt(-11) + 23/90 of discriminant -11 on X_0(45)
sage: y = x.atkin_lehner_act(9); y
Heegner point 1/90*sqrt(-11) - 23/90 of discriminant -11 on X_0(45)
sage: z = y.atkin_lehner_act(9); z
Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45)
sage: z == x
True
```

galois_orbit_over_K
Return the \(\text{Gal}(K_c/K)\)-orbit of this Heegner point.

EXAMPLES:

```python
sage: x = heegner_point(389,-7,3); x
Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on X_0(389)
sage: x.galois_orbit_over_K()
[Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/1556*sqrt(-7) - 223/1556 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/1556*sqrt(-7) - 1001/1556 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/3112*sqrt(-7) - 223/3112 of discriminant -7 and conductor 3 on X_0(389)]
```

map_to_curve \((E)\)
Return the image of this Heegner point on the elliptic curve \(E\), which must also have conductor \(N\), where \(N\) is the level of self.

EXAMPLES:

```python
sage: x = heegner_point(389,-7,5); x
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
sage: y = x.map_to_curve(EllipticCurve('389a')); y
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
sage: y.curve().cremona_label()
'389a1'
sage: y.heegner_point_on_X0N()
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
```

You can also directly apply the modular parametrization of the elliptic curve:
x = heegner_point(37,-7); x
Heegner point 1/74*sqrt(-7) - 17/74 of discriminant -7 on X_0(37)
E = EllipticCurve('37a'); phi = E.modular_parametrization()
phi(x)
Heegner point of discriminant -7 on elliptic curve of conductor 37

plot(**kwds)
Draw a point at \((x, y)\) where this Heegner point is represented by the point \(\tau = x + iy\) in the upper half plane.
The kwds get passed onto the point plotting command.

EXAMPLES:

heegner_point(389,-7,1).plot(pointsize=50)
Graphics object consisting of 1 graphics primitive

quadratic_form()
Return the integral primitive positive-definite binary quadratic form associated to this Heegner point.

EXAMPLES:

heegner_point(389,-7,5).quadratic_form()
389*x^2 + 147*x*y + 14*y^2

reduced_quadratic_form()
Return reduced binary quadratic corresponding to this Heegner point.

EXAMPLES:

x = heegner_point(389,-7,5)
x.quadratic_form()
389*x^2 + 147*x*y + 14*y^2
x.reduced_quadratic_form()
4*x^2 - x*y + 11*y^2

tau()
Return an element \(\tau\) in the upper half plane that corresponds to this particular Heegner point.
Actually, \(\tau\) is in the quadratic imaginary field \(K\) associated to this Heegner point.

EXAMPLES:

x = heegner_point(37,-7,5); tau = x.tau(); tau
5/74*sqrt_minus_7 - 11/74
37 * tau.minpoly()
37*x^2 + 11*x + 2
x.quadratic_form()
37*x^2 + 11*x*y + 2*y^2

class sage.schemes.elliptic_curves.heegner.HeegnerPoints(N)
Bases: sage.structure.sage_object.SageObject
The set of Heegner points with given parameters.

EXAMPLES:

H = heegner_points(389); H
Set of all Heegner points on X_0(389)
sage: type(H)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level'>
sage: isinstance(H, sage.schemes.elliptic_curves.heegner.HeegnerPoints)
True

level()
Return the level \(N \) of the modular curve \(X_0(N) \).

EXAMPLES:

```
sage: heegner_points(389).level()
389
```

class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level(N)
Bases: sage.schemes.elliptic_curves.heegner.HeegnerPoints

Return the infinite set of all Heegner points on \(X_0(N) \) for all quadratic imaginary fields.

EXAMPLES:

```
sage: H = heegner_points(11); H
Set of all Heegner points on X_0(11)
sage: type(H)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level'>
sage: loads(dumps(H)) == H
True
```

discriminants \((n=10, \text{weak}=False)\)
Return the first \(n \) quadratic imaginary discriminants that satisfy the Heegner hypothesis for \(N \).

INPUT:

- \(n \) – nonnegative integer
- \text{weak} – bool (default: \text{False}); if \text{True} only require weak Heegner hypothesis, which is the same as usual but without the condition that \(\gcd(D, N) = 1 \).

EXAMPLES:

```
sage: X = heegner_points(37)
sage: X.discriminants(5)
[-7, -11, -40, -47, -67]
```

The default is 10:

```
sage: X.discriminants()
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
sage: X.discriminants(15)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -115, -120, -123, -127]
```

The discriminant -111 satisfies only the weak Heegner hypothesis, since it is divisible by 37:

```
sage: X.discriminants(15, weak=True)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -111, -115, -120, -123]
```
reduce_mod(ell)
Return object that allows for computation with Heegner points of level N modulo the prime ℓ, represented using quaternion algebras.

INPUT:
- ℓ – prime

EXAMPLES:
```sage
sage: heegner_points(389).reduce_mod(7).quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field
```

class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc(N, D)
Bases: sage.schemes.elliptic_curves.heegner.HeegnerPoints

Set of Heegner points of given level and all conductors associated to a quadratic imaginary field.

EXAMPLES:
```sage
sage: H = heegner_points(389,-7); H
Set of all Heegner points on X_0(389) associated to QQ[\sqrt(-7)]
sage: type(H)
<type 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc'>
sage: H._repr_()
'Set of all Heegner points on X_0(389) associated to QQ[\sqrt(-7)]'
sage: H.discriminant()
-7
sage: H.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
sage: H.kolyvagin_conductors()
[1, 3, 5, 13, 15, 17, 19, 31, 39, 41]
sage: loads(dumps(H)) == H
True
```
discriminant()
Return the discriminant of the quadratic imaginary extension K.

EXAMPLES:
```sage
sage: heegner_points(389,-7).discriminant()
-7
```
kolyvagin_conductors($r=\text{None}, n=10, E=\text{None}, m=\text{None}$)
Return the first n conductors that are squarefree products of distinct primes inert in the quadratic imaginary field $K = \mathbb{Q}(\sqrt{D})$. If r is specified, return only conductors that are a product of r distinct primes all inert in K. If $r = 0$, always return the list [1], no matter what.

If the optional elliptic curve E and integer m are given, then only include conductors c such that for each prime divisor p of c we have $m \mid \gcd(a_p(E), p + 1)$.

INPUT:
- r – (default: None) nonnegative integer or None
- n – positive integer
- E – an elliptic curve
- m – a positive integer

EXAMPLES:
```python
sage: H = heegner_points(389,-7)
sage: H.kolyvagin_conductors(0)
[1]
sage: H.kolyvagin_conductors(1)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61]
sage: H.kolyvagin_conductors(1,15)
[3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97, 101]
sage: H.kolyvagin_conductors(1,5)
[3, 5, 13, 17, 19]
sage: H.kolyvagin_conductors(1,5,EllipticCurve('389a'),3)
[5, 17, 41, 59, 83]
sage: H.kolyvagin_conductors(2,5,EllipticCurve('389a'),3)
[85, 205, 295, 415, 697]
```

`quadratic_field()`

Return the quadratic imaginary field \(K = \mathbb{Q}(\sqrt{D}) \).

EXAMPLES:

```python
sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
sage: K.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
```

`class sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond(N, D, c=1)`

Bases: `sage.schemes.elliptic_curves.heegner.HeegnerPoints_level`, `sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc`

The set of Heegner points of given level, discriminant, and conductor.

EXAMPLES:

```python
sage: H = heegner_points(389,-7,5); H
All Heegner points of conductor 5 on X_0(389) associated to \mathbb{Q}[\sqrt{-7}]
```

```python
sage: len(H.points())
12
```

```python
sage: H.points()[0]
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
```

```python
sage: H.betas()
(147, 631)
```

```python
sage: H.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
```

```python
sage: H.ring_class_field()
Ring class field extension of \mathbb{Q}[\sqrt{-7}] of conductor 5
```

```python
sage: H.kolyvagin_conductors()
[1, 3, 5, 13, 17, 19, 31, 39, 41]
```

```python
sage: H.satisfies_kolyvagin_hypothesis()
```
True

```
sage: H = heegner_points(389,-7,5)
sage: loads(dumps(H)) == H
True
```

betas()

Return the square roots of Dc^2 modulo $4N$ all reduced mod $2N$, without multiplicity.

EXAMPLES:

```
sage: X = heegner_points(45,-11,1); X
All Heegner points of conductor 1 on X_0(45) associated to QQ[sqrt(-11)]
sage: [x.quadratic_form() for x in X]
[45*x^2 + 13*x*y + y^2,
  45*x^2 + 23*x*y + 3*y^2,
  45*x^2 + 67*x*y + 25*y^2,
  45*x^2 + 77*x*y + 33*y^2]
sage: X.betas()
(13, 23, 67, 77)
sage: X.points(13)
(Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45),)
sage: [x.quadratic_form() for x in X.points(13)]
[45*x^2 + 13*x*y + y^2]
```

conductor()

Return the level of the conductor.

EXAMPLES:

```
sage: heegner_points(389,-7,5).conductor()
5
```

plot(*args, **kwds)

Returns plot of all the representatives in the upper half plane of the Heegner points in this set of Heegner points.

The inputs to this function get passed onto the point command.

EXAMPLES:

```
sage: heegner_points(389,-7,5).plot(pointsize=50, rgbcolor='red')
Graphics object consisting of 12 graphics primitives
sage: heegner_points(53,-7,15).plot(pointsize=50, rgbcolor='purple')
Graphics object consisting of 48 graphics primitives
```

points(beta=None)

Return the Heegner points in `self`. If β is given, return only those Heegner points with given β, i.e., whose quadratic form has B congruent to β modulo $2N$.

Use `self.beta()` to get a list of betas.

EXAMPLES:

```
sage: H = heegner_points(389,-7,5); H
All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
sage: H.points()
(Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389), ... Heegner point 5/5446*sqrt(-7) - 757/778 of discriminant -7 and conductor 5 on X_0(389))
```

10.11. Elliptic curves over number fields 553
sage: H.betas()
(147, 631)
sage: [x.tau() for x in H.points(147)]
sage: [x.tau() for x in H.points(631)]

The result is cached and is a tuple (since it is immutable):

sage: H.points() is H.points()
True
sage: type(H.points())
<... 'tuple'>

ring_class_field()

Return the ring class field associated to this set of Heegner points. This is an extension \(K_c \) over \(K \), where \(K \) is the quadratic imaginary field and \(c \) the conductor associated to this Heegner point. This Heegner point is defined over \(K_c \) and the Galois group \(\text{Gal}(K_c/K) \) acts transitively on the Galois conjugates of this Heegner point.

EXAMPLES:

sage: heegner_points(389,-7,5).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5

satisfies_kolyvagin_hypothesis()

Return True if self satisfies the Kolyvagin hypothesis, i.e., that each prime dividing the conductor \(c \) of self is inert in \(K \) and coprime to \(ND \).

EXAMPLES:

The prime 5 is inert, but the prime 11 is not:

sage: heegner_points(389,-7,5).satisfies_kolyvagin_hypothesis()
True
sage: heegner_points(389,-7,11).satisfies_kolyvagin_hypothesis()
False

class sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg(level, ell)

Heegner points viewed as supersingular points on the modular curve \(X_0(N)/F_\ell \).

EXAMPLES:

sage: H = heegner_points(11).reduce_mod(13); H
Heegner points on X_0(11) over F_13
sage: type(H)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg'>
sage: loads(dumps(H)) == H
True
brandt_module()

Return the Brandt module of right ideal classes that we used to represent the set of supersingular points on
the modular curve.

EXAMPLES:

```
sage: heegner_points(11).reduce_mod(3).brandt_module()
Brandt module of dimension 2 of level 3*11 of weight 2 over Rational Field
```

cyclic_subideal_p1(I, c)

Compute dictionary mapping 2-tuples that defined normalized elements of \(P^1(\mathbb{Z}/c\mathbb{Z}) \)

INPUT:

- \(I \) – right ideal of Eichler order or in quaternion algebra
- \(c \) – square free integer (currently must be odd prime) and coprime to level, discriminant, character-
 istic, etc.

OUTPUT:

- dictionary mapping 2-tuples \((u,v)\) to ideals

EXAMPLES:

```
sage: H = heegner_points(11).reduce_mod(7)
sage: I = H.brandt_module().right_ideals()[0]
sage: sorted(H.cyclic_subideal_p1(I,3).items())
[((0, 1), Fractional ideal (2 + 2*j + 32*k, 2*i + 8*j + 82*k, 12*j + 60*k, 132*k)),
 ((1, 0), Fractional ideal (2 + 10*j + 28*k, 2*i + 4*j + 62*k, 12*j + 60*k, 132*k)),
 ((1, 1), Fractional ideal (2 + 2*j + 76*k, 2*i + 4*j + 106*k, 12*j + 60*k, 132*k)),
 ((1, 2), Fractional ideal (2 + 10*j + 116*k, 2*i + 8*j + 38*k, 12*j + 60*k, 132*k))]
sage: len(H.cyclic_subideal_p1(I,17))
18
```

eell()

Return the prime \(\ell \) modulo which we are working.

EXAMPLES:

```
sage: heegner_points(11).reduce_mod(3).eell()
3
```
galois_group_over_hilbert_class_field(D, c)

Return the Galois group of the extension of ring class fields \(K_c \) over the Hilbert class field \(K_1 \) of the
quadratic imaginary field of discriminant \(D \).

INPUT:

- \(D \) – fundamental discriminant
- \(c \) – conductor (square-free integer)

EXAMPLES:

```
sage: N = 37; D = -7; eell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(eell)
```

(continues on next page)
sage: H.galois_group_over_hilbert_class_field(D, c)
Galois group of Ring class field extension of \(\mathbb{Q}[\sqrt{-7}]\) of conductor 41 \(\rightarrow\) over Hilbert class field of \(\mathbb{Q}[\sqrt{-7}]\)

\texttt{galois_group_over_quadratic_field}(D, c)

Return the Galois group of the extension of ring class fields \(\mathcal{K}_c\) over the quadratic imaginary field \(\mathcal{K}\) of discriminant \(D\).

\textbf{INPUT:}

- \(D\) – fundamental discriminant
- \(c\) – conductor (square-free integer)

\textbf{EXAMPLES:}

```sage
N = 37; D = -7; ell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.galois_group_over_quadratic_field(D, c)
Galois group of Ring class field extension of \(\mathbb{Q}[\sqrt{-7}]\) of conductor 41 \(\rightarrow\) over Number Field in sqrt_minus_7 with defining polynomial \(x^2 + 7\)
```

\texttt{heegner_conductors}(D, n=5)

Return the first \(n\) negative fundamental discriminants coprime to \(N\ell\) such that \(\ell\) is inert in the corresponding quadratic imaginary field and that field satisfies the Heegner hypothesis.

\textbf{INPUT:}

- \(D\) – negative integer; a fundamental Heegner discriminant
- \(n\) – positive integer (default: 5)

\textbf{OUTPUT:}

- list

\textbf{EXAMPLES:}

```sage
H = heegner_points(11).reduce_mod(3)
sage: H.heegner_conductors(-7)
[1, 2, 4, 5, 8]
sage: H.heegner_conductors(-7, 10)
[1, 2, 4, 5, 8, 10, 13, 16, 17, 19]
```

\texttt{heegner_discriminants}(n=5)

Return the first \(n\) negative fundamental discriminants coprime to \(N\ell\) such that \(\ell\) is inert in the corresponding quadratic imaginary field and that field satisfies the Heegner hypothesis, and \(N\) is the level.

\textbf{INPUT:}

- \(n\) – positive integer (default: 5)

\textbf{OUTPUT:}

- list

\textbf{EXAMPLES:}

```sage
H = heegner_points(11).reduce_mod(3)
sage: H.heegner_discriminants()
[-7, -19, -40, -43, -52]
```
heegner_divisor(D, c=1)
Return Heegner divisor as an element of the Brandt module corresponding to the discriminant \(D \) and conductor \(c \), which both must be coprime to \(N\ell \).

More precisely, we compute the sum of the reductions of the \(\text{Gal}(K_1/K) \)-conjugates of each choice of \(y_1 \), where the choice comes from choosing the ideal \(N \). Then we apply the Hecke operator \(T_c \) to this sum.

INPUT:
- \(D \) – discriminant (negative integer)
- \(c \) – conductor (positive integer)

OUTPUT:
- Brandt module element

EXAMPLES:

```python
sage: H = heegner_points(11).reduce_mod(7)
sage: H.heegner_discriminants()
[-8, -39, -43, -51, -79]
sage: H.heegner_divisor(-8)
(1, 0, 0, 1, 0, 0)
sage: H.heegner_divisor(-39)
(1, 2, 1, 1, 0)
sage: H.heegner_divisor(-43)
(1, 0, 1, 0, 0)
sage: H.heegner_divisor(-51)
(1, 0, 1, 0, 2)
sage: H.heegner_divisor(-79)
(3, 2, 3, 0, 0)
sage: sum(H.heegner_divisor(-39).element())
8
sage: QuadraticField(-39,'a').class_number()
4
```

kolyvagin_cyclic_subideals(I, p, alpha_quaternion)
Return list of pairs \((J, n) \) where \(J \) runs through the cyclic subideals of \(I \) of index \((\mathbb{Z}/p\mathbb{Z})^2 \), and \(J \sim \alpha^n(J_0) \) for some fixed choice of cyclic subideal \(J_0 \).

INPUT:
- \(I \) – right ideal of the quaternion algebra
- \(p \) – prime number
- \(\text{alpha_quaternion} \) – image in the quaternion algebra of \(\alpha \) of generator \(\alpha \) for \((\mathcal{O}_K/\mathcal{O}_K)^*/(\mathbb{Z}/p\mathbb{Z})^* \).

OUTPUT:
- list of 2-tuples

EXAMPLES:
```python
def kolyvagin_generator(K, p):
    # Return element in \( \mathcal{O}_K \) that maps to the multiplicative generator for the quotient group
    # \( (\mathcal{O}_K/p\mathcal{O}_K)^*/(\mathbb{Z}/p\mathbb{Z})^* \)
    # of the form \( \sqrt{D} + n \) with \( n \geq 1 \) minimal.
    #
    # INPUT:
    # - \( K \) – quadratic imaginary field
    # - \( p \) – inert prime
    #
    # EXAMPLES:

def kolyvagin_generators(K, c):
    # Return elements in \( \mathcal{O}_K \) that map to multiplicative generators for the factors of the quotient group
    # \( (\mathcal{O}_K/c\mathcal{O}_K)^*/(\mathbb{Z}/c\mathbb{Z})^* \)
    # corresponding to the prime divisors of \( c \). Each generator is of the form \( \sqrt{D} + n \) with \( n \geq 1 \) minimal.
    #
    # INPUT:
    # - \( K \) – quadratic imaginary field
    # - \( c \) – square free product of inert prime
```

This function requires that \(p \) be prime, but `kolyvagin_generators` works in general:

```python
sage: H.kolyvagin_generator(f.domain().number_field(), 5*17)
Traceback (most recent call last):
  ... NotImplementedError: p must be prime
```
EXAMPLES:

```python
sage: N = 37; D = -7; ell = 17; p=5
sage: H = heegner_points(N).reduce_mod(ell)
sage: B = H.brandt_module(); I = B.right_ideals()[32]
sage: f = H.optimal_embeddings(D, 1, I.left_order())[0]
sage: H.kolyvagin_generators(f.domain().number_field(), 5*17)
[-34*a + 1, 35*a + 106]
```

```python
kolyvagin_point_on_curve(D, E, p, bound=10)
```
Compute image of the Kolyvagin divisor \(P_c \) in \(E(F_{\ell^2})/pE(F_{\ell^2}) \).

Note that this image is by definition only well defined up to scalars. However, doing multiple computations will always yield the same result, and working modulo different \(\ell \) is compatible (since we always choose the same generator for Gal\((K_c/K_1)\)).

INPUT:
- \(D \) – fundamental negative discriminant
- \(c \) – conductor
- \(E \) – elliptic curve of conductor the level of self
- \(p \) – odd prime number such that we consider image in \(E(F_{\ell^2})/pE(F_{\ell^2}) \)
- \(\text{bound} \) – integer (default: 10)

EXAMPLES:

```python
sage: N = 37; D = -7; ell = 17; c = 41; p = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: E = EllipticCurve('37a')
sage: V = H.modp_dual_elliptic_curve_factor(E, q, 5)
# long time (4s on sage.math, 2012)
sage: k118 = H.kolyvagin_point_on_curve(D, c, E, p)
[2, 2]
```

```python
kolyvagin_sigma_operator(D, c, r, bound=None)
```
Return the action of the Kolyvagin sigma operator on the \(r \)-th basis vector.

INPUT:
- \(D \) – fundamental discriminant
- \(c \) – conductor (square-free integer, need not be prime)
- \(r \) – nonnegative integer
- \(\text{bound} \) – (default: None), if given, controls precision of computation of theta series, which could impact performance, but does not impact correctness

EXAMPLES:

We first try to verify Kolyvagin’s conjecture for a rank 2 curve by working modulo 5, but we are unlucky with \(c = 17 \):

```python
sage: N = 389; D = -7; ell = 5; c = 17; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: E = EllipticCurve('389a')
sage: V = H.modp_dual_elliptic_curve_factor(E, q, 5)
# long time (4s on sage.math, 2012)
sage: k118 = H.kolyvagin_sigma_operator(D, c, 118)
sage: k104 = H.kolyvagin_sigma_operator(D, c, 104)
sage: [b.dot_product(k104.element().change_ring(GF(3))) for b in V.basis()]
```

(continues on next page)
Next we try again with $c = 41$ and this does work, in that we get something nonzero, when dotting with V:

```python
sage: c = 41
sage: k118 = H.kolyvagin_sigma_operator(D, c, 118)
sage: k104 = H.kolyvagin_sigma_operator(D, c, 104)
sage: [b.dot_product(k118.element().change_ring(GF(3))) for b in V.basis()]  # long time
[2, 0]
sage: [b.dot_product(k104.element().change_ring(GF(3))) for b in V.basis()]  # long time
[1, 0]
```

By the way, the above is the first ever provable verification of Kolyvagin’s conjecture for any curve of rank at least 2.

Another example, but where the curve has rank 1:

```python
sage: N = 37; D = -7; ell = 17; c = 41; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: H.heegner_divisor(D,1).element().nonzero_positions()
[32, 51]
sage: k32 = H.kolyvagin_sigma_operator(D, c, 32); k32
(17, 12, 33, 33, 49, 108, 3, 0, 0, 33, 37, 49, 33, 33, 59, 54, 21, 30, 0, 0, 29, 12, 41, 38, 33, 15, 0, 0, 4, 0, 7, 0, 0, 0, 34, 26, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
sage: k51 = H.kolyvagin_sigma_operator(D, c, 51); k51
(5, 13, 0, 0, 14, 0, 21, 0, 0, 0, 29, 0, 0, 45, 0, 6, 0, 40, 0, 61, 0, 0, 40, 32, 0, 9, 0, 0, 0, 17, 0, 0, 77, 40, 2, 10, 18, 0, 0, 61, 19, 45, 26, 80, 61, 35, 19, 1, 0)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('37a'), q, 5)
Vector space of degree 52 and dimension 2 over Ring of integers modulo 3
Basis matrix:
2 x 52 dense matrix over Ring of integers modulo 3
sage: [b.dot_product(k32.element().change_ring(GF(q))) for b in V.basis()]
[2, 2]
sage: [b.dot_product(k51.element().change_ring(GF(q))) for b in V.basis()]
[1, 1]
```

An example with c a product of two primes:

```python
sage: N = 389; D = -7; ell = 5; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('389a'), q, 5)
sage: k = H.kolyvagin_sigma_operator(D, 17*41, 104)  # long time
sage: k
(990, 656, 219, ..., 246, 534, 1254)
sage: [b.dot_product(k.element().change_ring(GF(3))) for b in V.basis()]  # long time (but only because depends on something slow)
[0, 0]
```
Return the left orders associated to the representative right ideals in the Brandt module.

EXAMPLES:

```python
sage: heegner_points(11).reduce_mod(3).left_orders()
[Order of Quaternion Algebra (-1, -3) with base ring Rational Field with
  →basis (1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k),
  Order of Quaternion Algebra (-1, -3) with base ring Rational Field with
  →basis (1/2 + 1/2*j + 7*k, 1/4*i + 1/2*j + 63/4*k, j + 14*k, 22*k)]
```

level()

Return the level.

EXAMPLES:

```python
sage: heegner_points(11).reduce_mod(3).level()
11
```

modp_dual_elliptic_curve_factor(E, p, bound=10)

Return the factor of the Brandt module space modulo \(p \) corresponding to the elliptic curve \(E \), cut out using Hecke operators up to \(\text{bound} \).

INPUT:

- \(E \) – elliptic curve of conductor equal to the level of self
- \(p \) – prime number
- \(\text{bound} \) – positive integer (default: 10)

EXAMPLES:

```python
sage: N = 37; D = -7; ell = 17; c = 41; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('37a'), q, 5); V
Vector space of degree 52 and dimension 2 over Ring of integers modulo 3
Basis matrix:
  2 x 52 dense matrix over Ring of integers modulo 3
```

modp_splitting_data(p)

Return mod \(p \) splitting data for the quaternion algebra at the unramified prime \(p \). This is a pair of \(2 \times 2 \) matrices \(A, B \) over the finite field \(\mathbb{F}_p \) such that if the quaternion algebra has generators \(i, j, k \), then the homomorphism sending \(i \) to \(A \) and \(j \) to \(B \) maps any maximal order homomorphically onto the ring of \(2 \times 2 \) matrices.

Because of how the homomorphism is defined, we must assume that the prime \(p \) is odd.

INPUT:

- \(p \) – unramified odd prime

OUTPUT:

- 2-tuple of matrices over finite field

EXAMPLES:

```python
sage: H = heegner_points(11).reduce_mod(7)
sage: I, J = H.quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field
sage: I, J = H.modp_splitting_data(13)
sage: I
```

(continues on next page)
The following is a good test because of the asserts in the code:

```python
sage: v = [H.modp_splitting_data(p) for p in primes(13, 200)]
```

Some edge cases:

```python
sage: H.modp_splitting_data(11)
( [  0  10]  [  6  1]
   [  1   0],  [  1   5]
)
Proper error handling:

```python
sage: H.modp_splitting_data(7)
Traceback (most recent call last):
 ...
ValueError: p (=7) must be an unramified prime
```

```python
sage: H.modp_splitting_data(2)
Traceback (most recent call last):
 ...
ValueError: p must be odd
```

**modp_splitting_map** (*p*)

Return (algebra) map from the (*p*-integral) quaternion algebra to the set of 2 × 2 matrices over \( \mathbb{F}_p \).

**INPUT:**

- *p* – prime number

**EXAMPLES:**

```python
sage: H = heegner_points(11).reduce_mod(7)
sage: f = H.modp_splitting_map(13)
sage: B = H.quaternion_algebra(); B
Quaternion Algebra (-1, -7) with base ring Rational Field
sage: i,j,k = H.quaternion_algebra().gens()
sage: a = 2+i-j+3*k; b = 7+2*i-4*j+k
sage: f(a*b)
[12 3]
[10 5]
sage: f(a)*f(b)
```

(continues on next page)
optimal_embeddings \((D, c, R)\)

INPUT:
- \(D\) – negative fundamental discriminant
- \(c\) – integer coprime
- \(R\) – Eichler order

EXAMPLES:
```
sage: H = heegner_points(11).reduce_mod(3)
sage: R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 1, R)
[Embedding sending sqrt(-7) to i - j - k,
 Embedding sending sqrt(-7) to -i + j + k]
sage: H.optimal_embeddings(-7, 2, R)
[Embedding sending 2*sqrt(-7) to 5*i - k,
 Embedding sending 2*sqrt(-7) to -5*i + k,
 Embedding sending 2*sqrt(-7) to 2*i - 2*j - 2*k,
 Embedding sending 2*sqrt(-7) to -2*i + 2*j + 2*k]
```

quadratic_field \((D)\)

Return our fixed choice of quadratic imaginary field of discriminant \(D\).

INPUT:
- \(D\) – fundamental discriminant

OUTPUT:
- a quadratic number field

EXAMPLES:
```
sage: H = heegner_points(389).reduce_mod(5)
sage: H.quadratic_field(-7)
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
```

quaternion_algebra()

Return the rational quaternion algebra used to implement self.

EXAMPLES:
```
sage: heegner_points(389).reduce_mod(7).quaternion_algebra()
Quaternion Algebra (-1, -7) with base ring Rational Field
```

calculator_kolyvagin_divisor \((D, c)\)

Return the Kolyvagin divisor as an element of the Brandt module corresponding to the discriminant \(D\) and conductor \(c\), which both must be coprime to \(N\ell\).

INPUT:
- \(D\) – discriminant (negative integer)
- \(c\) – conductor (positive integer)

OUTPUT:
• Brandt module element (or tuple of them)

EXAMPLES:

```python
sage: N = 389; D = -7; ell = 5; c = 17; q = 3
sage: H = heegner_points(N).reduce_mod(ell)
sage: k = H.rational_kolyvagin_divisor(D, c); k # long time (5s on sage.math, → 2013)
(2, 0, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 9, 11, 0, 6, 0, 0, 7, 0, 0, 0, 0, → 14, 12, 15, 17, 0, 0, 0, 8, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, → 10, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, → 0, → 0, 0, 0, 0, 0, 0, 0)
sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('389a'), q, 2)
sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()]
long time
[0, 0]
sage: k = H.rational_kolyvagin_divisor(D, 59)
sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()]
[2, 0]
```

**right_ideals()**

Return representative right ideals in the Brandt module.

EXAMPLES:

```python
sage: heegner_points(11).reduce_mod(3).right_ideals()
(Fractional ideal (2 + 2*j + 28*k, 2*i + 26*k, 4*j + 12*k, 44*k),
 Fractional ideal (2 + 2*j + 28*k, 2*i + 4*j + 38*k, 8*j + 24*k, 88*k))
```

**satisfies_heegner_hypothesis** \((D, c=1)\)

The fundamental discriminant \(D\) must be coprime to \(N\ell\), and must define a quadratic imaginary field \(K\) in which \(\ell\) is inert. Also, all primes dividing \(N\) must split in \(K\), and \(c\) must be squarefree and coprime to \(ND\ell\).

**INPUT:**

- \(D\) – negative integer
- \(c\) – positive integer (default: 1)

**OUTPUT:**

- bool

**EXAMPLES:**

```python
sage: H = heegner_points(11).reduce_mod(7)
sage: H.satisfies_heegner_hypothesis(-5)
False
sage: H.satisfies_heegner_hypothesis(-7)
False
sage: H.satisfies_heegner_hypothesis(-8)
True
sage: [D for D in [-1,-2..-100] if H.satisfies_heegner_hypothesis(D)]
[-8, -39, -43, -51, -79, -95]
```

**class** `sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding(D, c, R, beta)`

Bases: `sage.structure.sage_object.SageObject`
The homomorphism $O \to R$, where $O$ is the order of conductor $c$ in the quadratic field of discriminant $D$, and $R$ is an Eichler order in a quaternion algebra.

**EXAMPLES:**

```python
sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[1]; f
Embedding sending 2*sqrt(-7) to -5*i + k
sage: type(f)
<class 'sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding'>
sage: loads(dumps(f)) == f
True
```

**beta()**

Return the element $\beta$ in the quaternion algebra order that $c\sqrt{D}$ maps to.

**EXAMPLES:**

```python
sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[1].beta()
-5*i + k
```

**codomain()**

Return the codomain of this embedding.

**EXAMPLES:**

```python
sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].codomain()
Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis
\rightarrow (1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k)
```

**conjugate()**

Return the conjugate of this embedding, which is also an embedding.

**EXAMPLES:**

```python
sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[1]
sage: f.conjugate()
Embedding sending 2*sqrt(-7) to 5*i - k
sage: f
Embedding sending 2*sqrt(-7) to -5*i + k
```

**domain()**

Return the domain of this embedding.

**EXAMPLES:**

```python
sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].domain()
Order in Number Field in a with defining polynomial x^2 + 7
```

**domain_conductor()**

Return the conductor of the domain.

**EXAMPLES:**

```python
Sage Manual: Plane curves, Release 8.7
```
sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: H.optimal_embeddings(-7, 2, R)[0].domain_conductor()
2

domain_gen()

Return the specific generator \( c\sqrt{D} \) for the domain order.

EXAMPLES:

```python
sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 2, R)[0]
sage: f.domain_gen()
2*a
sage: f.domain_gen()^2
-28
```

matrix()

Return matrix over \( \mathbb{Q} \) of this morphism, with respect to the basis \( 1, c\sqrt{D} \) of the domain and the basis \( 1, i, j, k \) of the ambient rational quaternion algebra (which contains the domain).

EXAMPLES:

```python
sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
sage: f = H.optimal_embeddings(-7, 1, R)[1]; f
Embedding sending sqrt(-7) to -i + j + k
sage: f.matrix()
[1 0 0 0]
[0 -1 1 1]
sage: f.conjugate().matrix()
[1 0 0 0]
[0 1 -1 -1]
```

class sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass(kolyvagin_point, n)

Bases: sage.structure.sage_object.SageObject

A Kolyvagin cohomology class in \( H^1(K, E[n]) \) or \( H^1(K, E)[n] \) attached to a Heegner point.

EXAMPLES:

```python
sage: y = EllipticCurve('37a').heegner_point(-7)
sage: c = y.kolyvagin_cohomology_class(3); c
Kolyvagin cohomology class c(1) in H^1(K,E[3])
sage: type(c)
<class 'sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClassEn'>
sage: loads(dumps(c)) == c
True
sage: y.kolyvagin_cohomology_class(5)
Kolyvagin cohomology class c(1) in H^1(K,E[5])
```

conductor()

Return the integer \( c \) such that this cohomology class is associated to the Heegner point \( y_c \).

EXAMPLES:

```python
sage: y = EllipticCurve('37a').heegner_point(-7,5)
sage: t = y.kolyvagin_cohomology_class()
sage: t.conductor()
5
```
heegner_point()

Return the Heegner point \(y_c\) to which this cohomology class is associated.

EXAMPLES:

```
sage: y = EllipticCurve('37a').heegner_point(-7,5)
sage: t = y.kolyvagin_cohomology_class()
sage: t.heegner_point()
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
```

kolyvagin_point()

Return the Kolyvagin point \(P_c\) to which this cohomology class is associated.

EXAMPLES:

```
sage: y = EllipticCurve('37a').heegner_point(-7,5)
sage: t = y.kolyvagin_cohomology_class()
sage: t.kolyvagin_point()
Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
```

n()

Return the integer \(n\) so that this is a cohomology class in \(H^1(K, E[n])\) or \(H^1(K, E)[n]\).

EXAMPLES:

```
sage: y = EllipticCurve('37a').heegner_point(-7)
sage: t = y.kolyvagin_cohomology_class(3); t
Kolyvagin cohomology class c(1) in \(H^1(K, E[3])\)
sage: t.n()
3
```

class sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClassEn(kolyvagin_point, n)

Bases: sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass

EXAMPLES:

```
class sage.schemes.elliptic_curves.heegner.KolyvaginPoint(heegner_point)

Bases: sage.schemes.elliptic_curves.heegner.HeegnerPoint

A Kolyvagin point.

EXAMPLES:

We create a few Kolyvagin points:

```
sage: EllipticCurve('11al').kolyvagin_point(-7)
Kolyvagin point of discriminant -7 on elliptic curve of conductor 11
sage: EllipticCurve('37al').kolyvagin_point(-7)
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: EllipticCurve('37al').kolyvagin_point(-67)
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: EllipticCurve('389al').kolyvagin_point(-7, 5)
Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
```

One can also associated a Kolyvagin point to a Heegner point:
sage: y = EllipticCurve('37a1').heegner_point(-7); y
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: y.kolyvagin_point()
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37

curve()
Return the elliptic curve over \(\mathbb{Q} \) on which this Kolyvagin point sits.

EXAMPLES:

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67, 3)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

heegner_point()
This Kolyvagin point \(P_c \) is associated to some Heegner point \(y_c \) via Kolyvagin’s construction. This function returns that point \(y_c \).

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: y = P.heegner_point(); y
Heegner point of discriminant -67 on elliptic curve of conductor 37
sage: y.kolyvagin_point() is P
True

index(*args, **kwds)
Return index of this Kolyvagin point in the full group of \(K_c \) rational points on \(E \).

When the conductor is 1, this is computed numerically using the Gross-Zagier formula and explicit point search, and it may be off by 2. See the documentation for \(E.heegner_index \), where \(E \) is the curve attached to self.

EXAMPLES:

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67); P.index()
6

kolyvagin_cohomology_class(n=None)
INPUT:

* n – positive integer that divides the gcd of \(a_p \) and \(p + 1 \) for all \(p \) dividing the conductor. If \(n \) is None, choose the largest valid \(n \).

EXAMPLES:

sage: y = EllipticCurve('389a').heegner_point(-7,5)
sage: P = y.kolyvagin_point()
sage: P.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])

sage: y = EllipticCurve('37a').heegner_point(-7,5).kolyvagin_point()
sage: y.kolyvagin_cohomology_class()
Kolyvagin cohomology class c(5) in H^1(K,E[2])

mod(p, prec=53)
Return the trace of the reduction \(Q \) modulo a prime over \(p \) of this Kolyvagin point as an element of \(E(F_p) \).
where \(p \) is any prime that is inert in \(K \) that is coprime to \(NDc \).

The point \(Q \) is only well defined up to an element of \((p + 1)E(F_p) \), i.e., it gives a well defined element of the abelian group \(E(F_p)/(p + 1)E(F_p) \).

See [SteinToward], Proposition 5.4 for a proof of the above well-definedness assertion.

EXAMPLES:

A Kolyvagin point on a rank 1 curve:

```python
sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
sage: P.mod(2)
(1 : 1 : 1)
sage: P.mod(3)
(1 : 0 : 1)
sage: P.mod(5)
(2 : 2 : 1)
sage: P.mod(7)
(6 : 0 : 1)
sage: P.trace_to_real_numerical()
(1.61355529131986 : -2.18446840788880 : 1.00000000000000)
sage: P._trace_exact_conductor_1()  # the actual point we're reducing
(1357/841 : -53277/24389 : 1)
sage: (P._trace_exact_conductor_1().height() / E.regulator()).sqrt()
12.0000000000000
```

Here the Kolyvagin point is a torsion point (since \(E \) has rank 1), and we reduce it modulo several primes:

```python
sage: E = EllipticCurve('11a1'); P = E.kolyvagin_point(-7)
sage: P.mod(3,70)  # long time (4s on sage.math, 2013)
(1 : 2 : 1)
sage: P.mod(5,70)
(1 : 4 : 1)
sage: P.mod(7,70)
Traceback (most recent call last):
  ... ValueError: p must be coprime to conductors and discriminant
sage: P.mod(11,70)
Traceback (most recent call last):
  ... ValueError: p must be coprime to conductors and discriminant
sage: P.mod(13,70)
(3 : 4 : 1)
```

REFERENCES:

numerical_approx \((\text{prec}=53)\)

Return a numerical approximation to this Kolyvagin point using \(\text{prec} \) bits of working precision.

INPUT:

- \(\text{prec} \) – precision in bits (default: 53)

EXAMPLES:

```python
sage: P = EllipticCurve('37a1').kolyvagin_point(-7); P
Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
sage: P.numerical_approx()  # approx. (0 : 0 : 1)
(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)
sage: P.numerical_approx(100)[0].abs() < 2.0^-99
```

(continues on next page)
True

```
sage: P = EllipticCurve('389a1').kolyvagin_point(-7, 5); P
Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
```

Numerical approximation is only implemented for points of conductor 1:

```
sage: P.numerical_approx()
Traceback (most recent call last):
  ... 
NotImplementedError
```

`plot` *(prec=53, *args, **kwds)*

Plot a Kolyvagin point P_1 if it is defined over the rational numbers.

EXAMPLES:

```
sage: E = EllipticCurve('37a'); P = E.heegner_point(-11).kolyvagin_point()
sage: P.plot(prec=30, pointsize=50, rgbcolor='red') + E.plot()
Graphics object consisting of 3 graphics primitives
```

`point_exact` *(prec=53)*

INPUT:

- `prec` – precision in bits (default: 53)

EXAMPLES:

A rank 1 curve:

```
sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
sage: P.point_exact()
(6 : -15 : 1)
sage: P.point_exact(40)
(6 : -15 : 1)
sage: P.point_exact(20)
Traceback (most recent call last):
  ... 
RuntimeError: insufficient precision to find exact point
```

A rank 0 curve:

```
sage: E = EllipticCurve('11a1'); P = E.kolyvagin_point(-7)
sage: P.point_exact()
(-1/2*sqrt_minus_7 + 1/2 : -2*sqrt_minus_7 - 2 : 1)
```

A rank 2 curve:

```
sage: E = EllipticCurve('389a1'); P = E.kolyvagin_point(-7)
sage: P.point_exact()
(0 : 1 : 0)
```

`satisfies_kolyvagin_hypothesis` *(n=None)*

Return `True` if this Kolyvagin point satisfies the Heegner hypothesis for n, so that it defines a Galois equivariant element of $E(K_c)/nE(K_c)$.

EXAMPLES:

```
```python
sage: y = EllipticCurve('389a').heegner_point(-7,5); P = y.kolyvagin_point()
sage: P.kolyvagin_cohomology_class(3)
Kolyvagin cohomology class c(5) in H^1(K,E[3])
sage: P.satisfies_kolyvagin_hypothesis(3)
True
sage: P.satisfies_kolyvagin_hypothesis(5)
False
sage: P.satisfies_kolyvagin_hypothesis(7)
False
sage: P.satisfies_kolyvagin_hypothesis(11)
False
```

### trace_to_real_numerical (prec=53)

Return the trace of this Kolyvagin point down to the real numbers, computed numerically using prec bits of working precision.

**EXAMPLES:**

```python
sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
sage: PP = P.numerical_approx()
sage: [c.real() for c in PP]
[6.00000000000000, -15.0000000000000, 1.00000000000000]
sage: all(c.imag().abs() < 1e-14 for c in PP)
True
sage: P.trace_to_real_numerical()
(1.61355529131986 : -2.18446840788880 : 1.00000000000000)
sage: P.trace_to_real_numerical(prec=80) # abs tol 1e-21
(1.6135552913198573127230 : -2.1844684078888023289187 : 1.0000000000000000000000)
```

### class sage.schemes.elliptic_curves.heegner.RingClassField(D, c, check=True)

Bases: sage.structure.sage_object.SageObject

A Ring class field of a quadratic imaginary field of given conductor.

**Note:** This is a ring class field, not a ray class field. In general, the ring class field of given conductor is a subfield of the ray class field of the same conductor.

**EXAMPLES:**

```python
sage: heegner_point(37,-7).ring_class_field()
Hilbert class field of QQ[sqrt(-7)]
sage: heegner_point(37,-7,5).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: heegner_point(37,-7,55).ring_class_field()
Ring class field extension of QQ[sqrt(-7)] of conductor 55
```

### absolute_degree()

Return the absolute degree of this field over \( \mathbb{Q} \).

**EXAMPLES:**

```python
sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
sage: K.absolute_degree()
12
sage: K.degree_over_K()
6
```
**conductor()**

Return the conductor of this ring class field.

**EXAMPLES:**

```sage
E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field()
K5.conductor()
5
```

**degree_over_H()**

Return the degree of this field over the Hilbert class field $H$ of $K$.

**EXAMPLES:**

```sage
E = EllipticCurve('389a')
E.heegner_point(-59).ring_class_field().degree_over_H()
1
E.heegner_point(-59).ring_class_field().degree_over_K()
3
QuadraticField(-59,'a').class_number()
3
```

Some examples in which prime dividing $c$ is inert:

```sage
heegner_point(37,-7,3).ring_class_field().degree_over_H()
4
heegner_point(37,-7,3^2).ring_class_field().degree_over_H()
12
heegner_point(37,-7,3^3).ring_class_field().degree_over_H()
36
```

The prime dividing $c$ is split. For example, in the first case $O_K/cO_K$ is isomorphic to a direct sum of two copies of $GF(2)$, so the units are trivial:

```sage
heegner_point(37,-7,2).ring_class_field().degree_over_H()
1
heegner_point(37,-7,4).ring_class_field().degree_over_H()
2
heegner_point(37,-7,8).ring_class_field().degree_over_H()
4
```

Now $c$ is ramified:

```sage
heegner_point(37,-7,7).ring_class_field().degree_over_H()
7
heegner_point(37,-7,7^2).ring_class_field().degree_over_H()
49
```

Check that trac ticket #15218 is solved:

```sage
E = EllipticCurve("19a");
s = E.heegner_point(-3,2).ring_class_field().galois_group().complex_conjugation()
H = s.domain(); H.absolute_degree()
2
```

**degree_over_K()**

Return the relative degree of this ring class field over the quadratic imaginary field $K$. 

Chapter 10. Elliptic curves
EXAMPLES:

```python
sage: E = EllipticCurve('389a'); P = E.heegner_point(-7,5)
sage: K5 = P.ring_class_field(); K5
Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: K5.degree_over_K()
6
sage: type(K5.degree_over_K())
<... 'sage.rings.integer.Integer'>
sage: E = EllipticCurve('389a'); E.heegner_point(-20).ring_class_field().
˓→degree_over_K()
2
sage: E.heegner_point(-20,3).ring_class_field().degree_over_K()
4
sage: kronecker(-20,11)
-1
sage: E.heegner_point(-20,11).ring_class_field().degree_over_K()
24
```

degree_over_Q()
Return the absolute degree of this field over \( \mathbb{Q} \).

EXAMPLES:

```python
sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
sage: K.absolute_degree()
12
sage: K.degree_over_K()
6
```

discriminant_of_K()
Return the discriminant of the quadratic imaginary field \( K \) contained in self.

EXAMPLES:

```python
sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field()
sage: K5.discriminant_of_K()
-7
```

galois_group(base=Rational Field)
Return the Galois group of self over base.

INPUT:

- base – (default: \( \mathbb{Q} \)) a subfield of self or \( \mathbb{Q} \)

EXAMPLES:

```python
sage: E = EllipticCurve('389a')
sage: A = E.heegner_point(-7,5).ring_class_field()
sage: A.galois_group()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: B = E.heegner_point(-7).ring_class_field()
sage: C = E.heegner_point(-7,15).ring_class_field()
sage: A.galois_group()
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: A.galois_group(B)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
˓→over Hilbert class field of QQ[sqrt(-7)]
```

sage: A.galois_group().cardinality()
12
sage: A.galois_group(B).cardinality()
6
sage: C.galois_group(A)
Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 15 → over Ring class field extension of QQ[sqrt(-7)] of conductor 5
sage: C.galois_group(A).cardinality()
4

**is_subfield(M)**
Return `True` if this ring class field is a subfield of the ring class field `M`. If `M` is not a ring class field, then a `TypeError` is raised.

**EXAMPLES:**

```python
sage: E = EllipticCurve('389a')
sage: A = E.heegner_point(-7,5).ring_class_field()
sage: B = E.heegner_point(-7).ring_class_field()
sage: C = E.heegner_point(-20).ring_class_field()
sage: D = E.heegner_point(-7,55).ring_class_field()
sage: B.is_subfield(A)
True
sage: B.is_subfield(B)
True
sage: B.is_subfield(D)
True
sage: B.is_subfield(C)
False
sage: A.is_subfield(B)
False
sage: A.is_subfield(D)
True
```

**quadratic_field()**
Return the quadratic imaginary field \( K = \mathbb{Q}(\sqrt{D}) \).

**EXAMPLES:**

```python
sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
sage: K.quadratic_field()
Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
```

**ramified_primes()**
Return the primes of \( \mathbb{Z} \) that ramify in this ring class field.

**EXAMPLES:**

```python
sage: E = EllipticCurve('389a'); K55 = E.heegner_point(-7,55).ring_class_field()
sage: K55.ramified_primes()
[5, 7, 11]
sage: E.heegner_point(-7).ring_class_field().ramified_primes()
[7]
```

\[ \text{sage.schemes.elliptic_curves.heegner.class_number}(D) \]
Return the class number of the quadratic field with fundamental discriminant \( D \).
INPUT:

• $D$ – integer

EXAMPLES:

```
sage: sage.schemes.elliptic_curves.heegner.class_number(-20)
2
sage: sage.schemes.elliptic_curves.heegner.class_number(-23)
3
sage: sage.schemes.elliptic_curves.heegner.class_number(-163)
1
```

A ValueError is raised when $D$ is not a fundamental discriminant:

```
sage: sage.schemes.elliptic_curves.heegner.class_number(-5)
Traceback (most recent call last):
...
ValueError: D (-5) must be a fundamental discriminant
```

sage.schemes.elliptic_curves.heegner.ell_heegner_discriminants$(self, bound)$

Return the list of self’s Heegner discriminants between -1 and -bound.

INPUT:

• bound (int) - upper bound for -discriminant

OUTPUT: The list of Heegner discriminants between -1 and -bound for the given elliptic curve.

EXAMPLES:

```
sage: E=EllipticCurve('11a')
sage: E.heegner_discriminants(30) # indirect doctest
[-7, -8, -19, -24]
```

sage.schemes.elliptic_curves.heegner.ell_heegner_discriminants_list$(self, n)$

Return the list of self’s first $n$ Heegner discriminants smaller than -5.

INPUT:

• n (int) - the number of discriminants to compute

OUTPUT: The list of the first $n$ Heegner discriminants smaller than -5 for the given elliptic curve.

EXAMPLES:

```
sage: E=EllipticCurve('11a')
sage: E.heegner_discriminants_list(4) # indirect doctest
[-7, -8, -19, -24]
```

sage.schemes.elliptic_curves.heegner.ell_heegner_point$(self, D, c=1, f=None, check=True)$

Returns the Heegner point on this curve associated to the quadratic imaginary field $K = \mathbb{Q}(\sqrt{D})$.

If the optional parameter $c$ is given, returns the higher Heegner point associated to the order of conductor $c$.

INPUT:

• $D$ – a Heegner discriminant
• $c$ – (default: 1) conductor, must be coprime to $DN$
• $f$ – binary quadratic form or 3-tuple $(A, B, C)$ of coefficients of $AX^2 + BXY + CY^2$
• check – bool (default: True)

OUTPUT:

The Heegner point $y_c$.

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: E.heegner_discriminants_list(10)
[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104] # indirect doctest
Heegner point of discriminant -7 on elliptic curve of conductor 37
sage: P = E.heegner_point(-7); P
(0 : 0 : 1)
sage: P.curve()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E.heegner_point(-40).point_exact(); P
(a : -a + 1 : 1)
sage: P = E.heegner_point(-47).point_exact(); P
(a : a^4 + a - 1 : 1)
sage: P[0].parent()
Number Field in a with defining polynomial x^5 - x^4 + x^3 + x^2 - 2*x + 1
```

Working out the details manually:

```
sage: P = E.heegner_point(-47).numerical_approx(prec=200)
sage: f = algdep(P[0], 5); f
x^5 - x^4 + x^3 + x^2 - 2*x + 1
sage: f.discriminant().factor()
47^2
```

The Heegner hypothesis is checked:

```
sage: E = EllipticCurve('389a'); P = E.heegner_point(-5, 7);
Traceback (most recent call last):
... ValueError: N (=389) and D (=5) must satisfy the Heegner hypothesis
```

We can specify the quadratic form:

```
sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P
Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
sage: P.quadratic_form()
778*x^2 + 925*x*y + 275*y^2
```

```
sage.schemes.elliptic_curves.heegner.heegner_index(self, D, min_p=2, prec=5, descent_second_limit=12, verbose_mwrank=False, check_rank=True)
```

Return an interval that contains the index of the Heegner point $y_K$ in the group of $K$-rational points modulo torsion on this elliptic curve, computed using the Gross-Zagier formula and/or a point search, or possibly half the index if the rank is greater than one.

If the curve has rank > 1, then the returned index is infinity.

**Note:** If $\text{min} \_p$ is bigger than 2 then the index can be off by any prime less than $\text{min} \_p$. This function returns the index divided by 2 exactly when the rank of $E(K)$ is greater than 1 and $E(Q)_{\text{tor}} \oplus E^D(Q)_{\text{tor}}$ has index
2 in \( E(K)_{\text{tor}} \), where the second factor undergoes a twist.

INPUT:

- \( D \) (int) - Heegner discriminant
- \( \text{min}_p \) (int) - (default: 2) only rule out primes = \( \text{min}_p \) dividing the index.
- \( \text{verbose}_\text{mwrank} \) (bool) - (default: False); print lots of mwrank search status information when computing regulator
- \( \text{prec} \) (int) - (default: 5), use \( \text{prec} \cdot \sqrt{\text{N}} + 20 \) terms of L-series in computations, where \( \text{N} \) is the conductor.
- \( \text{descent}_\text{second}_\text{limit} \) - (default: 12) - used in 2-descent when computing regulator of the twist
- \( \text{check}_\text{rank} \) - whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: an interval that contains the index, or half the index

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.heegner_discriminants(50)
[-7, -8, -19, -24, -35, -39, -40, -43]
sage: E.heegner_index(-7)
1.00000?

sage: E = EllipticCurve('37b')
sage: E.heegner_discriminants(100)
[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
sage: E.heegner_index(-95)  # long time (1 second)
2.00000?

This tests doing direct computation of the Mordell-Weil group.

sage: EllipticCurve('675b').heegner_index(-11)
3.0000?

Currently discriminants \(-3\) and \(-4\) are not supported:

sage: E.heegner_index(-3)
Traceback (most recent call last):
  ...
ArithmeticError: Discriminant (=\( -3 \)) must not be \(-3\) or \(-4\).

The curve 681b returns the true index, which is 3:

sage: E = EllipticCurve('681b')
sage: I = E.heegner_index(-9); I
3.0000?

In fact, whenever the returned index has a denominator of 2, the true index is got by multiplying the returned index by 2. Unfortunately, this is not an if and only if condition, i.e., sometimes the index must be multiplied by 2 even though the denominator is not 2.

This example demonstrates the \( \text{descent}_\text{second}_\text{limit} \) option, which can be used to fine tune the 2-descent used to compute the regulator of the twist.
However when we search higher, we find the points we need:

\[
\text{sage: } E = \text{EllipticCurve}([1,-1,0,-1228,-16267])
\]
\[
\text{sage: } E.\text{heegner_index}(-8, \text{descent_second_limit} = 16, \text{check_rank} = \text{False})
\]

2.00000

Two higher rank examples (of ranks 2 and 3):

\[
\text{sage: } E = \text{EllipticCurve}('389a')
\]
\[
\text{sage: } E.\text{heegner_index}(-7)
\]

+Infinity

\[
\text{sage: } E = \text{EllipticCurve}('5077a')
\]
\[
\text{sage: } E.\text{heegner_index}(-7, \text{check_rank} = \text{False})
\]

0.001

\[
\text{sage: } E.\text{heegner_index}(-7, \text{check_rank} = \text{False}).\text{lower}() == 0
\]

True

\[
\text{sage.schemes.elliptic_curves.heegner.}\text{heegner_index_bound}(\text{self, } D=0, \text{ prec}=5, \text{ max_height}=\text{None})
\]

Assume \text{self} has rank 0.

Return a list \(v\) of primes such that if an odd prime \(p\) divides the index of the Heegner point in the group of rational points modulo torsion, then \(p\) is in \(v\).

If 0 is in the interval of the height of the Heegner point computed to the given \(\text{prec}\), then this function returns \(v = 0\). This does not mean that the Heegner point is torsion, just that it is very likely torsion.

If we obtain no information from a search up to \(\text{max_height}\), e.g., if the Siksek et al. bound is bigger than \(\text{max_height}\), then we return \(v = -1\).

INPUT:

- \(D\) (int) - (default: 0) Heegner discriminant; if 0, use the first discriminant -4 that satisfies the Heegner hypothesis
- \(\text{verbose}\) (bool) - (default: True)
- \(\text{prec}\) (int) - (default: 5), use \(\text{prec} \cdot \sqrt{(N)} + 20\) terms of \(L\)-series in computations, where \(N\) is the conductor.
- \(\text{max_height}\) (float) - should be = 21; bound on logarithmic naive height used in point searches. Make smaller to make this function faster, at the expense of possibly obtaining a worse answer. A good range is between 13 and 21.

OUTPUT:

- \(v\) - list or int (bad primes or 0 or -1)
- \(D\) - the discriminant that was used (this is useful if \(D\) was automatically selected).
- \(\text{exact}\) - either False, or the exact Heegner index (up to factors of 2)

EXAMPLES:
sage: E = EllipticCurve('11a1')
sage: E.heegner_index_bound()
([2], -7, 2)

sage.schemes.elliptic_curves.heegner.heegner_point($N, D=\text{None}, c=1$)

Return a specific Heegner point of level $N$ with given discriminant and conductor. If $D$ is not specified, then the first valid Heegner discriminant is used. If $c$ is not given, then $c = 1$ is used.

INPUT:

- $N$ – level (positive integer)
- $D$ – discriminant (optional: default first valid $D$)
- $c$ – conductor (positive integer, optional, default: 1)

EXAMPLES:

sage: heegner_point(389)
Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389)
sage: heegner_point(389,-7)
Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389)
sage: heegner_point(389,-7,5)
Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
sage: heegner_point(389,-20)
Heegner point 1/778*sqrt(-20) - 165/389 of discriminant -20 on X_0(389)

sage.schemes.elliptic_curves.heegner.heegner_point_height($self$, $D$, $\text{prec}=2$, $\text{check_rank}=\text{True}$)

Use the Gross-Zagier formula to compute the Neron-Tate canonical height over $K$ of the Heegner point corresponding to $D$, as an interval (it is computed to some precision using $L$-functions).

If the curve has rank at least 2, then the returned height is the exact Sage integer 0.

INPUT:

- $D$ (int) - fundamental discriminant ($\neq -3, -4$)
- $\text{prec}$ (int) - (default: 2), use $\text{prec} \cdot \sqrt{N} + 20$ terms of $L$-series in computations, where $N$ is the conductor.
- $\text{check_rank}$ - whether to check if the rank is at least 2 by computing the Mordell-Weil rank directly.

OUTPUT: Interval that contains the height of the Heegner point.

EXAMPLES:

sage: E = EllipticCurve('11a')
sage: E.heegner_point_height(-7)
0.22227?
sage: E = EllipticCurve('389a')
sage: E.heegner_point_height(-7)
0
sage: E.heegner_point_height(-7,check_rank=False)
0.0000?
sage.schemes.elliptic_curves.heegner.heegner_points($N$, $D=\text{None}$, $c=\text{None}$)

Return all Heegner points of given level $N$. Can also restrict to Heegner points with specified discriminant $D$ and optionally conductor $c$.

INPUT:

- $N$ – level (positive integer)
- $D$ – discriminant (negative integer)
- $c$ – conductor (positive integer)

EXAMPLES:

```sage
sage: heegner_points(389,-7)
Set of all Heegner points on $X_0(389)$ associated to $\mathbb{Q}[\sqrt{-7}]$
sage: heegner_points(389,-7,1)
All Heegner points of conductor 1 on $X_0(389)$ associated to $\mathbb{Q}[\sqrt{-7}]$
sage: heegner_points(389,-7,5)
All Heegner points of conductor 5 on $X_0(389)$ associated to $\mathbb{Q}[\sqrt{-7}]$
```

sage.schemes.elliptic_curves.heegner.heegner_sha_an($self$, $D$, $prec=53$)

Return the conjectural (analytic) order of Sha for $E$ over the field $K = \mathbb{Q}(\sqrt{D})$.

INPUT:

- $D$ – negative integer; the Heegner discriminant
- $prec$ – integer (default: 53); bits of precision to compute analytic order of Sha

OUTPUT:

(floating point number) an approximation to the conjectural order of Sha.

Note: Often you’ll want to do `proof.elliptic_curve(False)` when using this function, since often the twisted elliptic curves that come up have enormous conductor, and Sha is nontrivial, which makes provably finding the Mordell-Weil group using 2-descent difficult.

EXAMPLES:

An example where $E$ has conductor 11:

```sage
sage: E = EllipticCurve('11a')
sage: E.heegner_sha_an(-7)
1.00000000000000 # long time
```

The cache works:

```sage
sage: E.heegner_sha_an(-7) is E.heegner_sha_an(-7)
True
```

Lower precision:

```sage
sage: E.heegner_sha_an(-7,10)
1.0
```

Checking that the cache works for any precision:

```sage
sage: E.heegner_sha_an(-7,10) is E.heegner_sha_an(-7,10)
True
```
Next we consider a rank 1 curve with nontrivial Sha over the quadratic imaginary field \( K \); however, there is no Sha for \( E \) over \( \mathbb{Q} \) or for the quadratic twist of \( E \):

```python
sage: E = EllipticCurve('37a')
sage: E.heegnerShaAn(-40) # long time
4.00000000000000
sage: E.quadraticTwist(-40).Sha().an() # long time
1
sage: ESha().an() # long time
1
```

A rank 2 curve:

```python
sage: E = EllipticCurve('389a') # long time
sage: E.heegnerShaAn(-7) # long time
1.00000000000000
sage: E.torsion_order() # long time
2
sage: E.tamagawaProduct() # long time
1
sage: E.quadraticTwist(-56).rank() # long time
2
```

If we remove the hypothesis that \( E(K) \) has rank 1 in Conjecture 2.3 in [Gross-Zagier, 1986, page 311], then that conjecture is false, as the following example shows:

```python
sage: E = EllipticCurve('65a') # long time
sage: E.heegnerShaAn(-56) # long time
1.00000000000000
sage: E.torsionOrder() # long time
2
sage: E.tamagawaProduct() # long time
1
sage: E.quadraticTwist(-56).rank() # long time
2
```

```python
sage.schemes.elliptic_curves.heegner.isInert(D, p)
```

Return True if \( p \) is an inert prime in the field \( \mathbb{Q}(\sqrt{D}) \).

**INPUT:**
- \( D \) – fundamental discriminant
- \( p \) – prime integer

**EXAMPLES:**

```python
sage: sage.schemes.elliptic_curves.heegner.isInert(-7, 3)
True
sage: sage.schemes.elliptic_curves.heegner.isInert(-7, 7)
False
sage: sage.schemes.elliptic_curves.heegner.isInert(-7, 11)
False
```

```python
sage.schemes.elliptic_curves.heegner.isKolyvaginConductor(N, E, D, r, n, c)
```

Return True if \( c \) is a Kolyvagin conductor for level \( N \), discriminant \( D \), mod \( n \), etc., i.e., \( c \) is divisible by exactly \( r \) prime factors, is coprime to \( ND \), each prime dividing \( c \) is inert, and if \( E \) is not None then \( n \mid \gcd(p+1, a_p(E)) \) for each prime \( p \) dividing \( c \).

**INPUT:**
- \( N \) – level (positive integer)
- \( E \) – elliptic curve or None
- \( D \) – negative fundamental discriminant
• \( r \) – number of prime factors (nonnegative integer) or None
• \( n \) – torsion order (i.e., do we get class in \((E(K_c)/nE(K_c))^\text{Gal}(K_c/K))\)?
• \( c \) – conductor (positive integer)

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.heegner import is_kolyvagin_conductor
sage: is_kolyvagin_conductor(389, None, -7, 1, None, 5)
True
sage: is_kolyvagin_conductor(389, None, -7, 1, None, 7)
False
sage: is_kolyvagin_conductor(389, None, -7, 1, None, 11)
False
sage: is_kolyvagin_conductor(389, EllipticCurve('389a'), -7, 1, 3, 5)
True
sage: is_kolyvagin_conductor(389, EllipticCurve('389a'), -7, 1, 11, 5)
False
```

`sage.schemes.elliptic_curves.heegner.is_ramified(D, p)`
Return True if \( p \) is a ramified prime in the field \( \mathbb{Q}(\sqrt{D}) \).

INPUT:
• \( D \) – fundamental discriminant
• \( p \) – prime integer

EXAMPLES:

```python
sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7, 2)
False
sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7, 7)
True
sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7, 11)
True
```

`sage.schemes.elliptic_curves.heegner.is_split(D, p)`
Return True if \( p \) is a split prime in the field \( \mathbb{Q}(\sqrt{D}) \).

INPUT:
• \( D \) – fundamental discriminant
• \( p \) – prime integer

EXAMPLES:

```python
sage: sage.schemes.elliptic_curves.heegner.is_split(-7, 3)
False
sage: sage.schemes.elliptic_curves.heegner.is_split(-7, 7)
False
sage: sage.schemes.elliptic_curves.heegner.is_split(-7, 11)
True
```

`sage.schemes.elliptic_curves.heegner.kolyvagin_point(self, D, c=1, check=True)`
Return the Kolyvagin point on this curve associated to the quadratic imaginary field \( K = \mathbb{Q}(\sqrt{D}) \) and conductor \( c \).

INPUT:
• \( D \) – a Heegner discriminant
• $c$ – (default: 1) conductor, must be coprime to $DN$
• check – bool (default: True)

OUTPUT:

The Kolyvagin point $P$ of conductor $c$.

EXAMPLES:

```sage
E = EllipticCurve('37a1')
P = E.kolyvagin_point(-67); P
Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
sage: P.numerical_approx() # abs tol 1e-14
(6.00000000000000 : -15.0000000000000 : 1.00000000000000)
sage: P.index()
6
sage: g = E((0,-1,1)) # a generator
sage: E.regulator() == E.regulator_of_points([g])
True
sage: 6*g
(6 : -15 : 1)
```

`sage.schemes.elliptic_curves.heegner.kolyvagin_reduction_data(E, q, first_only=True)`

Given an elliptic curve of positive rank and a prime $q$, this function returns data about how to use Kolyvagin’s $q$-torsion Heegner point Euler system to do computations with this curve. See the precise description of the output below.

INPUT:

• $E$ – elliptic curve over $\mathbb{Q}$ of rank 1 or 2
• $q$ – an odd prime that does not divide the order of the rational torsion subgroup of $E$
• first_only – bool (default: True) whether two only return the first prime that one can work modulo to get data about the Euler system

OUTPUT in the rank 1 case or when the default flag first_only=True:

• $\ell$ – first good odd prime satisfying the Kolyvagin condition that $q$ divides $\gcd(a_{\ell},\ell+1)$' and the reduction map is surjective to $E(F_\ell)/qE(F_\ell)$
• $D$ – discriminant of the first quadratic imaginary field $K$ that satisfies the Heegner hypothesis for $E$ such that both $\ell$ is inert in $K$, and the twist $E^D$ has analytic rank $\leq 1$
• $h_D$ – the class number of $K$
• the dimension of the Brandt module $B(\ell, N)$, where $N$ is the conductor of $E$

OUTPUT in the rank 2 case:

• $\ell_1$ – first prime (as above in the rank 1 case) where reduction map is surjective
• $\ell_2$ – second prime (as above) where reduction map is surjective
• $D$ – discriminant of the first quadratic imaginary field $K$ that satisfies the Heegner hypothesis for $E$ such that both $\ell_1$ and $\ell_2$ are simultaneously inert in $K$, and the twist $E^D$ has analytic rank $\leq 1$
• $h_D$ – the class number of $K$
• the dimension of the Brandt module $B(\ell_1, N)$, where $N$ is the conductor of $E$
• the dimension of the Brandt module $B(\ell_2, N)$
EXAMPLES:

Import this function:

```
sage: from sage.schemes.elliptic_curves.heegner import kolyvagin_reduction_data
```

A rank 1 example:

```
sage: kolyvagin_reduction_data(EllipticCurve('37a1'),3)
(17, -7, 1, 52)
```

A rank 3 example:

```
sage: kolyvagin_reduction_data(EllipticCurve('5077a1'),3)
(11, -47, 5, 4234)
sage: H = heegner_points(5077, -47)
sage: [c for c in H.kolyvagin_conductors(2,10,EllipticCurve('5077a1'),3) if c%11]
[667, 943, 1189, 2461]
sage: factor(667)
23 * 29
```

A rank 4 example (the first Kolyvagin class that we could try to compute would be $P_{23,29,41}$, and would require working in a space of dimension 293060 (so prohibitive at present):

```
sage: E = elliptic_curves.rank(4)[0]
sage: kolyvagin_reduction_data(E,3)
(11, -71, 7, 293060)
sage: H = heegner_points(293060, -71)
sage: H.kolyvagin_conductors(1,4,E,3)
[11, 17, 23, 41]
```

The first rank 2 example:

```
sage: kolyvagin_reduction_data(EllipticCurve('389a'),3)
(5, -7, 1, 130)
sage: kolyvagin_reduction_data(EllipticCurve('389a'),3, first_only=False)
(5, 17, -7, 1, 130, 520)
```

A large $q = 7$:

```
sage: kolyvagin_reduction_data(EllipticCurve('1143c1'),7, first_only=False)
(13, 83, -59, 3, 1536, 10496)
```

Additive reduction:

```
sage: kolyvagin_reduction_data(EllipticCurve('2350g1'),5, first_only=False)
(19, 239, -311, 19, 6480, 85680)
```

The function `sage.schemes.elliptic_curves.heegner.make_monic(f)`

Return a monic integral polynomial $g$ and an integer $d$ such that if $\alpha$ is a root of $g$, then $\alpha/d$ is a root of $f$. In other words, $cf(x) = g(dx)$ for some scalar $c$.

**INPUT:**

- $f$ – polynomial over the rational numbers

**OUTPUT:**

- a monic integral polynomial and an integer

**EXAMPLES:**
In this example we verify that `make_monic` does what we claim it does:

```python
sage: K.<a> = NumberField(x^3 + 17*x - 3)
sage: f = (a/7+2/3).minpoly(); f
x^3 - 2*x^2 + 247/147*x - 4967/9261
sage: g, d = make_monic(f); (g, d)
(x^3 - 42*x^2 + 741*x - 4967, 21)
sage: K. = NumberField(g)
sage: (b/d).minpoly()
x^3 - 2*x^2 + 247/147*x - 4967/9261
```

**sage.schemes.elliptic_curves.heegner.nearby_rational_poly** *(f, **kwds)*

Return a polynomial whose coefficients are rational numbers close to the coefficients of *f*.

**INPUT:**

- *f* – polynomial with real floating point entries
- ****kwds – passed on to `nearby_rational` method

**EXAMPLES:**

```python
sage: R.<x> = RR[]
sage: sage.schemes.elliptic_curves.heegner.nearby_rational_poly(2.1*x^2 + 3.5*x - 1.2, max_error=10e-16)
21/10*X^2 + 7/2*X - 6/5
sage: sage.schemes.elliptic_curves.heegner.nearby_rational_poly(2.1*x^2 + 3.5*x - 1.2, max_error=10e-17)
4728779608739021/2251799813685248*X^2 + 7/2*X - 5404319552844595/4503599627370496
sage: RR(4728779608739021/2251799813685248 - 21/10)
8.88178419700125e-17
```

**sage.schemes.elliptic_curves.heegner.quadratic_order** *(D, c, names='a')*

Return order of conductor *c* in quadratic field with fundamental discriminant *D*.

**INPUT:**

- *D* – fundamental discriminant
- *c* – conductor
- *names* – string (default: ‘a’)

**OUTPUT:**

- order *R* of conductor *c* in an imaginary quadratic field
- the element *c*√*D* as an element of *R*

The generator for the field is named ‘a’ by default.

**EXAMPLES:**

```python
sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3)
(Order in Number Field in a with defining polynomial x^2 + 7, 3*a)
sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3,'alpha')
(Order in Number Field in alpha with defining polynomial x^2 + 7, 3*alpha)
```
sage.schemes.elliptic_curves.heegner.satisfies_heegner_hypothesis(self, D)

Returns True precisely when $D$ is a fundamental discriminant that satisfies the Heegner hypothesis for this elliptic curve.

EXAMPLES:

```python
sage: E = EllipticCurve('11a1')
sage: E.satisfies_heegner_hypothesis(-7)
True
sage: E.satisfies_heegner_hypothesis(-11)
False
```

sage.schemes.elliptic_curves.heegner.satisfies_weak_heegner_hypothesis(N, D)

Check that $D$ satisfies the weak Heegner hypothesis relative to $N$. This is all that is needed to define Heegner points.

The condition is that $D < 0$ is a fundamental discriminant and that each unramified prime dividing $N$ splits in $K = \mathbb{Q}(\sqrt{D})$ and each ramified prime exactly divides $N$. We also do not require that $D < -4$.

INPUT:

- $N$ – positive integer
- $D$ – negative integer

EXAMPLES:

```python
sage: s = sage.schemes.elliptic_curves.heegner.satisfies_weak_heegner_hypothesis
sage: s(37, -7)
True
sage: s(37, -37)
False
sage: s(37, -37*4)
True
sage: s(100, -4)
False
sage: [D for D in [-1, -2, ..., -40] if s(37, D)]
[-3, -4, -7, -11, -40]
```

sage.schemes.elliptic_curves.heegner.simplest_rational_poly(f, prec)

Return a polynomial whose coefficients are as simple as possible rationals that are also close to the coefficients of $f$.

INPUT:

- $f$ – polynomial with real floating point entries
- $\text{prec}$ – positive integer

EXAMPLES:

```python
sage: R.<x> = RR[]
sage: sage.schemes.elliptic_curves.heegner.simplest_rational_poly(2.1*x^2 + 3.5*x, 53)
21/10*x^2 + 7/2*x - 6/5
```
10.11.22 \( p \)-adic \( L \)-functions of elliptic curves

To an elliptic curve \( E \) over the rational numbers and a prime \( p \), one can associate a \( p \)-adic L-function; at least if \( E \) does not have additive reduction at \( p \). This function is defined by interpolation of L-values of \( E \) at twists. Through the main conjecture of Iwasawa theory it should also be equal to a characteristic series of a certain Selmer group.

If \( E \) is ordinary, then it is an element of the Iwasawa algebra \( \Lambda(\mathbb{Z}_p^\times) = \mathbb{Z}_p[\Delta][T] \), where \( \Delta \) is the group of \((p-1)\)-st roots of unity in \( \mathbb{Z}_p^\times \), and \( T = [\gamma] - 1 \) where \( \gamma = 1 + p \) is a generator of \( 1 + p\mathbb{Z}_p \). (There is a slightly different description for \( p = 2 \).)

One can decompose this algebra as the direct product of the subalgebras corresponding to the characters of \( \Delta \), which are simply the powers \( \tau^n \) (\( 0 \leq n < p-2 \)) of the Teichmueller character \( \tau : \Delta \to \mathbb{Z}_p^\times \). Projecting the L-function into these components gives \( p-1 \) power series in \( T \), each with coefficients in \( \mathbb{Z}_p \).

If \( E \) is supersingular, the series will have coefficients in a quadratic extension of \( \mathbb{Q}_p \), and the coefficients will be unbounded. In this case we have only implemented the series for \( \eta = 0 \). We have also implemented the \( p \)-adic L-series as formulated by Perrin-Riou [BP], which has coefficients in the Dieudonné module \( D_p E = H^1_{dR}(E/\mathbb{Q}_p) \) of \( E \). There is a different description by Pollack [Po] which is not available here.

According to the \( p \)-adic version of the Birch and Swinnerton-Dyer conjecture [MTT], the order of vanishing of the \( L \)-function at the trivial character (i.e. of the series for \( \eta = 0 \) at \( T = 0 \)) is just the rank of \( E(\mathbb{Q}) \), or this rank plus one if the reduction at \( p \) is split multiplicative.

See [SW] for more details.

REFERENCES:

• [MTT]
• [BP]
• [SW]

AUTHORS:

• Chris Wuthrich (22/05/2007): changed minor issues and added supersingular things
• Chris Wuthrich (11/2008): added quadratic_twists
• David Loeffler (01/2011): added nontrivial Teichmueller components

class sage.schemes.elliptic_curves.padic_lseries.pAdicLseries(\( E, p \), implementation='eclib', normalize='L_ratio')

Bases: sage.structure.sage_object.SageObject

The \( p \)-adic L-series of an elliptic curve.

EXAMPLES:

An ordinary example:

```
sage: e = EllipticCurve('389a')
sage: L = e.padic_lseries(5)
sage: L.series(0)
Traceback (most recent call last):
...
ValueError: n (=0) must be a positive integer
sage: L.series(1)
O(T^1)
```

(continues on next page)
A prime $p$ such that $E[p]$ is reducible:

```python
sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.series(1)
5 + O(5^2) + O(T)
sage: L.series(2)
5 + 4*5^2 + O(5^3) + O(5^0)*T + O(5^0)*T^2 + O(5^0)*T^3 + O(T^5)
sage: L.series(3)
5 + 4*5^2 + 4*5^3 + O(5^4) + O(5)*T + O(5)*T^2 + O(5)*T^3 + O(5)*T^4 + O(T^5)
```

An example showing the calculation of nontrivial Teichmueller twists:

```python
sage: E = EllipticCurve('11a1')
sage: lp = E.padic_lseries(7)
sage: lp.series(4,eta=1)
3 + 7^3 + 6*7^4 + 3*7^5 + O(7^6) + (2*7 + 7^2 + O(7^3))*T + (1 + 5*7^2 + O(7^3))*T^2 + (4 + 3*7 + 7^2 + O(7^3))*T^3 + (4 + 3*7 + 7^2 + O(7^3))*T^4 + O(T^5)
sage: lp.series(4,eta=2)
5 + 6*7 + 4*7^2 + 2*7^3 + 3*7^4 + 2*7^5 + O(7^6) + (6 + 4*7 + 7^2 + O(7^3))*T + (3 + 2*7^2 + O(7^3))*T^2 + (1 + 4*7 + 7^2 + O(7^3))*T^3 + (6 + 6*7 + 6*7^2 + O(7^3))*T^4 + O(T^5)
sage: lp.series(4,eta=3)
O(7^6) + (5 + 4*7 + 2*7^2 + O(7^3))*T + (6 + 5*7 + 2*7^2 + O(7^3))*T^2 + (5*7 + O(7^3))*T^3 + (7 + 4*7^2 + O(7^3))*T^4 + O(T^5)
```

(Note that the last series vanishes at $T = 0$, which is consistent with

```python
sage: E.quadratic_twist(-7).rank()
1
```

This proves that $E$ has rank 1 over $\mathbb{Q}(\zeta_7)$.)

**alpha** *(prec=20)*

Return a $p$-adic root $\alpha$ of the polynomial $x^2 - a_p x + p$ with $ord_p(\alpha) < 1$. In the ordinary case this is just the unit root.

**INPUT:**

- **prec** – positive integer, the $p$-adic precision of the root.

**EXAMPLES:**

Consider the elliptic curve 37a:

```python
sage: E = EllipticCurve('37a')
```

An ordinary prime:
```python
sage: L = E.padic_lseries(5)
sage: alpha = L.alpha(10); alpha
3 + 2*5 + 4*5^2 + 2*5^3 + 5^4 + 4*5^5 + 2*5^7 + 5^8 + 5^9 + O(5^10)
sage: alpha^2 - E.ap(5)*alpha + 5
O(5^10)
```

A supersingular prime:

```python
sage: L = E.padic_lseries(3)
sage: alpha = L.alpha(10); alpha
alpha + O(alpha^21)
sage: alpha^2 - E.ap(3)*alpha + 3
O(alpha^22)
```

A reducible prime:

```python
sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.alpha(5)
1 + 4*5 + 3*5^2 + 2*5^3 + 4*5^4 + O(5^5)
```

**elliptic_curve()**

Return the elliptic curve to which this $p$-adic L-series is associated.

**EXAMPLES:**

```python
sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.elliptic_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
```

**measure**(a, n, prec, quadratic_twist=1, sign=1)

Return the measure on $\mathbb{Z}_p^\times$ defined by

$$\mu_{E,\alpha}^+(a + p^n\mathbb{Z}_p) = \frac{1}{\alpha^n} \left[ \frac{a}{p^n} \right]^{+} - \frac{1}{\alpha^{n+1}} \left[ \frac{a}{p^{n+1}} \right]^{+}$$

where $[]^+$ is the modular symbol. This is used to define this $p$-adic L-function (at least when the reduction is good).

The optional argument `sign` allows the minus symbol $[-]$ to be substituted for the plus symbol.

The optional argument `quadratic_twist` replaces $E$ by the twist in the above formula, but the twisted modular symbol is computed using a sum over modular symbols of $E$ rather than finding the modular symbols for the twist. Quadratic twists are only implemented if the sign is +1.

Note that the normalization is not correct at this stage: use `_quotient_of_periods` and `_quotient_of_periods_to_twist` to correct.

Note also that this function does not check if the condition on the `quadratic_twist` is satisfied. So the result will only be correct if for each prime $\ell$ dividing $D$, we have $ord_\ell(N) <= ord_\ell(D)$, where $N$ is the conductor of the curve.

**INPUT:**

- a – an integer
- n – a non-negative integer
- prec – an integer
- quadratic_twist (default = 1) – a fundamental discriminant of a quadratic field, should be co-prime to the conductor of $E$
• sign (default = 1) – an integer, which should be ±1.

EXAMPLES:

```
sage: E = EllipticCurve('37a')
sage: L = E.padic_lseries(5)
sage: L.measure(1,2, prec=9)
2 + 3*5 + 4*5^3 + 2*5^4 + 3*5^5 + 3*5^6 + 4*5^7 + 4*5^8 + O(5^9)
sage: L.measure(1,2, quadratic_twist=8, prec=15)
O(5^15)
sage: L.measure(1,2, quadratic_twist=-4, prec=15)
4 + 4*5 + 4*5^2 + 3*5^3 + 2*5^4 + 5^5 + 3*5^6 + 5^8 + 2*5^9 + 3*5^12 + 2*5^13
˓→ 4*5^14 + O(5^15)
sage: E = EllipticCurve('11a1')
sage: a = E.quadratic_twist(-3).padic_lseries(5).measure(1,2, prec=15)
sage: b = E.padic_lseries(5).measure(1,2, quadratic_twist=-3, prec=15)
sage: a == b * E.padic_lseries(5)._quotient_of_periods_to_twist(-3)
True
```

`modular_symbol(r, sign=1, quadratic_twist=1)`

Return the modular symbol evaluated at \( r \).

This is used to compute this \( p \)-adic L-series.

Note that the normalization is not correct at this stage: use `_quotient_of_periods_to_twist` to correct.

Note also that this function does not check if the condition on the quadratic_twist=D is satisfied. So the result will only be correct if for each prime \( \ell \) dividing \( D \), we have \( \text{ord}_\ell(N) < \text{ord}_\ell(D) \), where \( N \) is the conductor of the curve.

INPUT:

• \( r \) – a cusp given as either a rational number or oo
• \( \text{sign} \) – +1 (default) or -1 (only implemented without twists)
• \( \text{quadratic_twist} \) – a fundamental discriminant of a quadratic field or +1 (default)

EXAMPLES:

```
sage: E = EllipticCurve('11a1')
sage: lp = E.padic_lseries(5)
sage: [lp.modular_symbol(r) for r in [0,1/5,oo,1/11]]
[1/5, 6/5, 0, 0]
sage: [lp.modular_symbol(r,sign=-1) for r in [0,1/3,oo,1/7]]
[0, 1/2, 0, -1/2]
sage: [lp.modular_symbol(r,quadratic_twist=-20) for r in [0,1/5,oo,1/11]]
[1, 1, 0, 1/2]
sage: E = EllipticCurve('20a1')
sage: Et = E.quadratic_twist(-4)
sage: lpt = Et.padic_lseries(5)
sage: eta = lpt._quotient_of_periods_to_twist(-4)
sage: lpt.modular_symbol(0) == lp.modular_symbol(0,quadratic_twist=-4) / eta
True
```

`order_of_vanishing()`

Return the order of vanishing of this \( p \)-adic L-series.

The output of this function is provably correct, due to a theorem of Kato \([Ka]\).
Note: currently $p$ must be a prime of good ordinary reduction.

REFERENCES:

- [MTT]
- [Ka]

EXAMPLES:

```python
sage: L = EllipticCurve('11a').padic_lseries(3)
sage: L.order_of_vanishing()
0
sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.order_of_vanishing()
0
sage: L = EllipticCurve('37a').padic_lseries(5)
sage: L.order_of_vanishing()
1
sage: L = EllipticCurve('43a').padic_lseries(3)
sage: L.order_of_vanishing()
1
sage: L = EllipticCurve('37b').padic_lseries(3)
sage: L.order_of_vanishing()
0
sage: L = EllipticCurve('389a').padic_lseries(3)
sage: L.order_of_vanishing()
2
sage: L = EllipticCurve('389a').padic_lseries(5)
sage: L.order_of_vanishing()
2
sage: L = EllipticCurve('5077a').padic_lseries(5, implementation = 'eclib')
sage: L.order_of_vanishing()
3
```

**prime()**

Return the prime $p$ as in 'p-adic L-function'.

EXAMPLES:

```python
sage: L = EllipticCurve('11a').padic_lseries(7)
sage: L.teichmuller(1)
```

**teichmuller**(prec)

Return Teichmuller lifts to the given precision.

INPUT:

- prec - a positive integer.

OUTPUT:

- a list of $p$-adic numbers, the cached Teichmuller lifts

EXAMPLES:

```python
sage: L = EllipticCurve('11a').padic_lseries(7)
sage: L.teichmuller(1)
```

(continued from previous page)

```python
sage: L.teichmuller(2)
[0, 1, 30, 31, 18, 19, 48]
```

class sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary(E, p, implementation='eclib', normalize='L_ratio')

Bases: sage.schemes.elliptic_curves.padic_lseries.pAdicLseries

is_ordinary()

Return True if the elliptic curve that this L-function is attached to is ordinary.

EXAMPLES:

```python
sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.is_ordinary()
True
```

is_supersingular()

Return True if the elliptic curve that this L function is attached to is supersingular.

EXAMPLES:

```python
sage: L = EllipticCurve('11a').padic_lseries(5)
sage: L.is_supersingular()
False
```

power_series(n=2, quadratic_twist=1, prec=5, eta=0)

Return the $n$-th approximation to the $p$-adic L-series, in the component corresponding to the $\eta$-th power of the Teichmueller character, as a power series in $T$ (corresponding to $\gamma - 1$ with $\gamma = 1 + p$ as a generator of $1 + p\Z_p$). Each coefficient is a $p$-adic number whose precision is provably correct.

Here the normalization of the $p$-adic L-series is chosen such that $L_p(E,1) = (1 - 1/\alpha)^2 L(E,1)/\Omega_E$ where $\alpha$ is the unit root of the characteristic polynomial of Frobenius on $T_p E$ and $\Omega_E$ is the Néron period of $E$.

INPUT:

- $n$ - (default: 2) a positive integer
- quadratic_twist - (default: +1) a fundamental discriminant of a quadratic field, coprime to the conductor of the curve
- prec - (default: 5) maximal number of terms of the series to compute; to compute as many as possible just give a very large number for prec; the result will still be correct.
- eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots of unity in $\Z_p^\times$)

power_series() is identical to series.

EXAMPLES:

We compute some $p$-adic L-functions associated to the elliptic curve 11a:
Another example at a prime of bad reduction, where the $p$-adic L-function has an extra 0 (compared to the non $p$-adic L-function):

```
sage: E = EllipticCurve('11a')
sage: p = 11
sage: E.is_ordinary(p) # True
sage: L = E.padic_lseries(p)
sage: L.series(2) # O(11^4) + (10 + O(11))*T + (6 + O(11))*T^2 + (2 + O(11))*T^3 + (5 + O(11))*T^4 + O(T^5)
```

We compute a $p$-adic L-function that vanishes to order 2:

```
sage: E = EllipticCurve('389a')
sage: p = 3
sage: E.is_ordinary(p) # True
sage: L = E.padic_lseries(p)
sage: L.series(1) # O(T^1)
sage: L.series(2) # O(3^4) + O(3)*T + (2 + O(3))*T^2 + O(T^3)
sage: L.series(3) # O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 + O(T^5)
```

Checks if the precision can be changed (trac ticket #5846):

```
sage: L.series(3, prec=4) # O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + O(T^4)
sage: L.series(3, prec=6) # O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 + O(T^6)
```

Rather than computing the $p$-adic L-function for the curve ‘15523a1’, one can compute it as a quadratic twist:

```
sage: E = EllipticCurve('43a1')
sage: lp = E.padic_lseries(3)
sage: lp.series(2, quadratic_twist=-19) # 2 + 2*3 + 2*3^2 + O(3^4) + (1 + O(3))*T + (1 + O(3))*T^2 + O(T^3)
sage: E.quadratic_twist(-19).label() # optional -- database_cremona_ellcurve '15523a1'
```

This proves that the rank of ‘15523a1’ is zero, even if mwrank can not determine this.

We calculate the $L$-series in the nontrivial Teichmueller components:
sage: L = EllipticCurve('110a1').padic_lseries(5)
sage: for j in [0..3]: print(L.series(4, eta=j))
O(5^6) + (2 + 2*5 + 2*5^2 + O(5^3))*T + (5 + 5^2 + O(5^3))*T^2 + (4 + 4*5 +
   2*5^2 + O(5^3))*T^3 + (1 + 5 + 3*5^2 + O(5^3))*T^4 + O(T^5)
4 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + O(5^6) + (1 + 3*5 + 4*5^2 + O(5^3))*T + (3 +
   4*5 + 3*5^2 + O(5^3))*T^2 + (3 + 3*5^2 + O(5^3))*T^3 + (1 + 2*5 + 2*5^2 +
   O(5^3))*T^4 + O(T^5)
2 + O(5^6) + (1 + 5 + O(5^3))*T + (2 + 4*5 + 3*5^2 + O(5^3))*T^2 + (4 + 5 +
   2*5^2 + O(5^3))*T^3 + (4 + 2*5^2 + O(5^3))*T^4 + O(T^5)
2 + O(5^6) + (1 + 5 + O(5^3))*T + (2 + 4*5 + 3*5^2 + O(5^3))*T^2 + (4 + 5 +
   2*5^2 + O(5^3))*T^3 + (4 + 2*5^2 + O(5^3))*T^4 + O(T^5)
3 + 5 + 2*5^2 + 5^3 + 3*5^4 + 2*5^5 + O(5^6) + (1 + 2*5 + 2*5^2 + O(5^3))*T +
   (1 + 4*5 + O(5^3))*T^2 + (3 + 2*5 + 2*5^2 + O(5^3))*T^3 + (5 + 5^2 + O(5^3))
It should now also work with $p = 2$ (trac ticket #20798):

sage: E = EllipticCurve("53a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(7)
O(2^8) + (1 + 2^2 + 2^3 + O(2^5))*T + (1 + 2^3 + O(2^4))*T^2 + (2^2 + 2^3 +
   O(2^4))*T^3 + (2 + 2^2 + O(2^3))*T^4 + O(T^5)
sage: E = EllipticCurve("109a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(6)
2^2 + 2^6 + O(2^7) + (2 + O(2^4))*T + O(2^3)*T^2 + (2^2 + O(2^3))*T^3 + (2 +
   O(2^2))*T^4 + O(T^5)

series (n=2, quadratic_twist=1, prec=5, eta=0)

Return the $n$-th approximation to the $p$-adic $L$-series, in the component corresponding to the $\eta$-th power of the Teichmueller character, as a power series in $T$ (corresponding to $\gamma - 1$ with $\gamma = 1 + p$ as a generator of $1 + p\mathbb{Z}_p$). Each coefficient is a $p$-adic number whose precision is provably correct.

Here the normalization of the $p$-adic $L$-series is chosen such that $L_p(E,1) = (1 - 1/\alpha)^2 L(E,1)/\Omega_E$ where $\alpha$ is the unit root of the characteristic polynomial of Frobenius on $T_p E$ and $\Omega_E$ is the Néron period of $E$.

INPUT:

- $n$ - (default: 2) a positive integer
- quadratic_twist - (default: +1) a fundamental discriminant of a quadratic field, coprime to the conductor of the curve
- prec - (default: 5) maximal number of terms of the series to compute; to compute as many as possible just give a very large number for prec; the result will still be correct.
- eta (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots of unity in $\mathbb{Z}_p^\times$)

power_series() is identical to series.

EXAMPLES:

We compute some $p$-adic $L$-functions associated to the elliptic curve 11a:

sage: E = EllipticCurve('11a')
sage: p = 3
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
Another example at a prime of bad reduction, where the \( p \)-adic \( L \)-function has an extra 0 (compared to the non \( p \)-adic \( L \)-function):

```
sage: E = EllipticCurve('11a')
sage: p = 11
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(2)
O(11^4) + (10 + O(11))*T + (6 + O(11))*T^2 + (2 + O(11))*T^3 + (5 + O(11))*T^4 + O(T^5)
sage: L.series(3)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 + O(T^5)
```

We compute a \( p \)-adic \( L \)-function that vanishes to order 2:

```
sage: E = EllipticCurve('389a')
sage: p = 3
sage: E.is_ordinary(p)
True
sage: L = E.padic_lseries(p)
sage: L.series(1)
O(T^1)
sage: L.series(2)
O(3^4) + O(3)*T + (2 + O(3))*T^2 + O(T^3)
sage: L.series(3)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 + O(T^5)
```

Checks if the precision can be changed (trac ticket #5846):

```
sage: L.series(3, prec=4)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + O(T^4)
sage: L.series(3, prec=6)
O(3^5) + O(3^2)*T + (2 + 2*3 + O(3^2))*T^2 + (2 + O(3))*T^3 + (1 + O(3))*T^4 + O(T^6)
```

Rather than computing the \( p \)-adic \( L \)-function for the curve ‘15523a1’, one can compute it as a quadratic_twist:

```
sage: E = EllipticCurve('43a1')
sage: lp = E.padic_lseries(3)
sage: lp.series(2, quadratic_twist=-19)
2 + 2*3 + 2*3^2 + O(3^4) + (1 + O(3))*T + (1 + O(3))*T^2 + O(T^3)
sage: E.quadratic_twist(-19).label() # optional -- database_cremona_ellcurve
'15523a1'
```

This proves that the rank of ‘15523a1’ is zero, even if mwrank can not determine this.

We calculate the \( L \)-series in the nontrivial Teichmuller components:

```
sage: L = EllipticCurve('110a1').padic_lseries(5)
sage: for j in [0..3]: print(L.series(4, eta=j))
O(5^6) + (2 + 2*5 + 2*5^2 + O(5^3))*T + (5 + 5^2 + O(5^3))*T^2 + (4 + 4*5 +
```

(continues on next page)
It should now also work with $p = 2$ (trac ticket #20798):

```python
sage: E = EllipticCurve("53a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(7)
2^2 + O(2^6) + (2 + O(2^4))*T + O(2^3)*T^2 + (2^2 + O(2^3))*T^3 + (2 + O(2^2))*T^4 + O(T^5)
```

```python
sage: E = EllipticCurve("109a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(6)
2^2 + 2^6 + O(2^7) + (2 + O(2^4))*T + O(2^3)*T^2 + (2^2 + O(2^3))*T^3 + (2 + O(2^2))*T^4 + O(T^5)
```

```python
class sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular(E, p, implementation='eclib', normalize='L_ratio')

Bases: sage.schemes.elliptic_curves.padic_lseries.pAdicLseries

Dp_valued_height (prec=20)
Return the canonical p-adic height with values in the Dieudonné module $D_p(E)$.

It is defined to be

$h_\eta \cdot \omega - h_\omega \cdot \eta$

where h_η is made out of the sigma function of Bernardi and h_ω is $\log^2 E$.

The answer v is given as $v[1]*omega + v[2]*eta$. The coordinates of v are dependent of the Weierstrass equation.

EXAMPLES:

```python
sage: E = EllipticCurve('53a1')
sage: L = E.padic_lseries(5)
sage: h = L.Dp_valued_height(7)
sage: h(E.gens()[0])
(3*5 + 5^2 + 2*5^3 + 3*5^4 + 4*5^5 + 5^6 + 5^7 + O(5^8), 5^2 + 4*5^4 + 2*5^7 + O(5^8))
```

Dp_valued_regulator (prec=20, v1=0, v2=0)
Return the canonical p-adic regulator with values in the Dieudonné module $D_p(E)$ as defined by Perrin-Riou using the p-adic height with values in $D_p(E)$.

```python
class sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular(E, p, implementation='eclib', normalize='L_ratio')
```
The result is written in the basis $\omega, \varphi(\omega)$, and hence the coordinates of the result are independent of the chosen Weierstrass equation.

Note: The definition here is corrected with respect to Perrin-Riou’s article [PR]. See [SW].

REFERENCES:

EXAMPLES:

```sage
sage: E = EllipticCurve('43a')
sage: L = E.padic_lseries(7)
sage: L.Dp_valued_regulator(7)
(5*7 + 6*7^2 + 4*7^3 + 4*7^4 + 7^5 + 4*7^7 + O(7^8), 4*7^2 + 2*7^3 + 3*7^4 + 7^5 + 6*7^6 + 4*7^7 + O(7^8))
```

Dp_valued_series ($n=3$, quadratic_twist=1, prec=5)

Return a vector of two components which are p-adic power series.

The answer v is such that

$$(1 - \varphi)^{-2} \cdot L_p(E, T) = v[1] \cdot \omega + v[2] \cdot \varphi(\omega)$$

as an element of the Dieudonné module $D_p(E) = H^1_{dR}(E/\mathbb{Q}_p)$ where ω is the invariant differential and φ is the Frobenius on $D_p(E)$.

According to the p-adic Birch and Swinnerton-Dyer conjecture [BP] this function has a zero of order rank $E(\mathbb{Q})$ and its leading term contains the order of the Tate-Shafarevich group, the Tamagawa numbers, the order of the torsion subgroup and the D_p-valued p-adic regulator.

INPUT:

- n – (default: 3) a positive integer
- prec – (default: 5) a positive integer

EXAMPLES:

```sage
sage: E = EllipticCurve('14a')
sage: L = E.padic_lseries(5)
sage: L.bernardi_sigma_function(prec=5)
# Todo: some sort of consistency
˓→check!?
z + 1/24*z^3 + 29/384*z^5 + O(z^8) + 39888079523489529440377294563840000008
```

bernardi_sigma_function ($\text{prec}=20$)

Return the p-adic sigma function of Bernardi in terms of $z = \log(t)$.

This is the same as `padic_sigma` with $E_2 = 0$.

EXAMPLES:

```sage
sage: E = EllipticCurve('14a')
sage: L = E.padic_lseries(5)
sage: L.bernardi_sigma_function(prec=5) # Todo: some sort of consistency
˓→check!?
z + 1/24*z^3 + 29/384*z^5 - 8399/322560*z^7 - 291743/92897280*z^9 + O(z^10)
```

frobenius ($\text{prec}=20, \text{algorithm}='mw'$)

Return a geometric Frobenius φ on the Dieudonné module $D_p(E)$ with respect to the basis ω, the invariant differential, and $\eta = x\omega$.
It satisfies $\varphi^2 - a_p/p \varphi + 1/p = 0$.

INPUT:

- `prec` - (default: 20) a positive integer
- `algorithm` - either ‘mw’ (default) for Monsky-Washnitzer or ‘approx’ for the algorithm described by Bernardi and Perrin-Riou (much slower and not fully tested)

EXAMPLES:

```sage
e = EllipticCurve('14a')
l = e.padic_lseries(5)
phi = l.frobenius(5)
phi
[[ 2 + 5^2 + 5^4 + O(5^5) 3*5^-1 + 3 + 5 + 4*5^2 + 5^3 + O(5^4)]
 [ 3 + 3*5^2 + 4*5^3 + 3*5^4 + O(5^5) 3 + 4*5 + 3*5^2 + 4*5^3 + 3*5^4 + O(5^5)]
-s*phi^2
[5^-1 + O(5^4) O(5^4)]
[ O(5^5) 5^-1 + O(5^4)]
```

`is_ordinary()`

Return `True` if the elliptic curve that this L-function is attached to is ordinary.

EXAMPLES:

```sage
l = EllipticCurve('11a').padic_lseries(19)
l.is_ordinary()
False
```

`is_supersingular()`

Return `True` if the elliptic curve that this L function is attached to is supersingular.

EXAMPLES:

```sage
l = EllipticCurve('11a').padic_lseries(19)
l.is_supersingular()
True
```

`power_series(n=3, quadratic_twist=1, prec=5, eta=0)`

Return the n-th approximation to the p-adic L-series as a power series in T (corresponding to $\gamma - 1$ with $\gamma = 1 + p$ as a generator of $1 + p\mathbb{Z}_p$). Each coefficient is an element of a quadratic extension of the p-adic number whose precision is probably (?) correct.

Here the normalization of the p-adic L-series is chosen such that $L_p(E, 1) = (1 - 1/\alpha)^2 L(E, 1)/\Omega_E$ where α is a root of the characteristic polynomial of Frobenius on $T_p E$ and Ω_E is the Néron period of E.

INPUT:

- `n` - (default: 2) a positive integer
- `quadratic_twist` - (default: +1) a fundamental discriminant of a quadratic field, coprime to the conductor of the curve
- `prec` - (default: 5) maximal number of terms of the series to compute; to compute as many as possible just give a very large number for `prec`; the result will still be correct.
- `eta` - (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots of unity in \mathbb{Z}_p^\times)
a power series with coefficients in a quadratic ramified extension of the \(p \)-adic numbers generated by a root \(\alpha \) of the characteristic polynomial of Frobenius on \(T_pE \).

ALIAS: `power_series` is identical to `series`.

EXAMPLES:

A supersingular example, where we must compute to higher precision to see anything:

```
sage: e = EllipticCurve('37a')
sage: L = e.padic_lseries(3); L
3-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: L.series(2)
O(T^3)
sage: L.series(4)  # takes a long time (several seconds)
O(\alpha) + (\alpha^{-2} + O(\alpha^0))T + (\alpha^{-2} + O(\alpha^0))T^2 + O(T^5)
sage: L.alpha(2).parent()
3-adic Eisenstein Extension Field in \alpha defined by x^2 + 3x + 3
```

An example where we only compute the leading term (trac ticket #15737):

```
sage: E = EllipticCurve("17a1")
sage: L = E.padic_lseries(3)
sage: L.series(4,prec=1)
alpha^{-2} + alpha^{-1} + 2 + 2*alpha + ... + O(alpha^38) + O(T)
```

It works also for \(p = 2 \):

```
sage: E = EllipticCurve("11a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(10)
O(\alpha^{-3}) + (\alpha^{-4} + O(\alpha^{-3}))T + (\alpha^{-4} + O(\alpha^{-3}))T^2 + (\alpha^{-5} + \alpha^{-4} + O(\alpha^{-3}))T^3 + (\alpha^{-4} + O(\alpha^{-3}))T^4 + ... + O(T^5)
```

`series` \((n=3, \text{quadratic}_\text{twist}=1, \text{prec}=5, \text{eta}=0)\)

Return the \(n \)-th approximation to the \(p \)-adic L-series as a power series in \(T \) (corresponding to \(\gamma = 1 \) with \(\gamma = 1 + p \) as a generator of \(1 + p\mathbb{Z}_p \)). Each coefficient is an element of a quadratic extension of the \(p \)-adic number whose precision is probably (?) correct.

Here the normalization of the \(p \)-adic L-series is chosen such that \(L_p(E,1) = (1 - 1/\alpha)^2 L(E,1)/\Omega_E \) where \(\alpha \) is a root of the characteristic polynomial of Frobenius on \(T_pE \) and \(\Omega_E \) is the Néron period of \(E \).

INPUT:

- \(n \) - (default: 2) a positive integer
- `quadratic_twist` - (default: +1) a fundamental discriminant of a quadratic field, coprime to the conductor of the curve
- `prec` - (default: 5) maximal number of terms of the series to compute; to compute as many as possible just give a very large number for `prec`; the result will still be correct.
- `eta` - (default: 0) an integer (specifying the power of the Teichmueller character on the group of roots of unity in \(\mathbb{Z}_p^\times \))

OUTPUT:
a power series with coefficients in a quadratic ramified extension of the \(p \)-adic numbers generated by a root \(\alpha \) of the characteristic polynomial of Frobenius on \(T_p E \).

ALIAS: power_series is identical to series.

EXAMPLES:

A supersingular example, where we must compute to higher precision to see anything:

```python
sage: e = EllipticCurve('37a')
sage: L = e.padic_lseries(3); L
3-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational
˓→ Field
sage: L.series(2)
O(T^3)
sage: L.series(4)  # takes a long time (several seconds)
O(alpha) + (alpha^-2 + O(alpha^0))*T + (alpha^-2 + O(alpha^0))*T^2 + O(T^5)
sage: L.alpha(2).parent()
3-adic Eisenstein Extension Field in alpha defined by x^2 + 3*x + 3
```

An example where we only compute the leading term (trac ticket #15737):

```python
sage: E = EllipticCurve("17a1")
sage: L = E.padic_lseries(3)
sage: L.series(4,prec=1)
alpha^-2 + alpha^-1 + 2 + 2*alpha + ... + O(alpha^38) + O(T)
```

It works also for \(p = 2 \):

```python
sage: E = EllipticCurve("11a1")
sage: lp = E.padic_lseries(2)
sage: lp.series(10)
O(alpha^-3) + (alpha^-4 + O(alpha^-3))*T + (alpha^-4 + O(alpha^-3))*T^2 + ...
˓→ (alpha^-5 + alpha^-4 + O(alpha^-3))*T^3 + (alpha^-4 + O(alpha^-3))*T^4 + ...
˓→ O(T^5)
```

10.12 To be sorted

10.12.1 Descent on elliptic curves over \(\mathbb{Q} \) with a 2-isogeny

sage.schemes.elliptic_curves.descent_two_isogeny.test_els(a, b, c, d, e)

Doctest function for cdef int everywhere_locally_soluble(mpz_t, mpz_t, mpz_t, mpz_t, mpz_t).

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_els
sage: for _ in range(1000):
....:     a, b, c, d, e = randint(1,1000), randint(1,1000), randint(1,1000),
˓→ randint(1,1000), randint(1,1000)
....:     if pari.Pol([a,b,c,d,e]).hyperellratpoints(1000, 1):
....:         try:
....:             if not test_els(a,b,c,d,e):
....:                 print("This never happened", a, b, c, d, e)
....:             except ValueError:
....:                 continue
```
sage.schemes.elliptic_curves.descent_two_isogeny.test_padic_square(a, p)
Doctest function for cdef int padic_square(mpz_t, unsigned long).

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_padic_square as ps
sage: for i in range(1, 301):
    ....:     for p in prime_range(100):
    ....:         if not Qp(p)(i).is_square()==bool(ps(i, p)):
    ....:             print(i, p)
```

sage.schemes.elliptic_curves.descent_two_isogeny.test_qpls(a, b, c, d, e, p)
Testing function for Qp_soluble.

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_qpls as tq
sage: tq(1,2,3,4,5,7)
1
```

sage.schemes.elliptic_curves.descent_two_isogeny.test_valuation(a, p)
Doctest function for cdef long valuation(mpz_t, mpz_t).

EXAMPLES:

```
sage: from sage.schemes.elliptic_curves.descent_two_isogeny import test_valuation as tv
sage: for i in range(1, 21):
    ....:     print('{:>10} {} {} {}'.format(str(factor(i)), tv(i, 2), tv(i, 3), tv(i, 5)))
1 0 0 0
2 1 0 0
3 0 1 0
2^2 2 0 0
5 0 0 1
2 * 3 1 0 0
7 0 0 0
2^3 3 0 0
3^2 0 2 0
2 * 5 1 0 1
11 0 0 0
2^2 * 3 2 1 0
13 0 0 0
2 * 7 1 0 0
3 * 5 0 1 1
2^4 4 0 0
17 0 0 0
2 * 3^2 1 2 0
19 0 0 0
2^2 * 5 2 0 1
```

sage.schemes.elliptic_curves.descent_two_isogeny.two_descent_by_two_isogeny$(E, global_limit_small=10, global_limit_large=10000, verbosity=0, selmer_only=0, proof=1)$
Given an elliptic curve E with a two-isogeny $\phi: E \to E'$ and dual isogeny ϕ', runs a two-isogeny descent on E, returning n_1, n_2, n_1' and n_2'. Here n_1 is the number of quartic covers found with a rational point, and n_2 is the number which are ELS.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.descent_two_isogeny import two_descent_by_two_isogeny
sage: E = EllipticCurve('14a')
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
0
sage: E = EllipticCurve('65a')
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
1
sage: x,y = var('x,y')
sage: E = EllipticCurve(y^2 == x^3 + x^2 - 25*x + 39)
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)

Using the verbosity option:

```python
sage: E = EllipticCurve('14a')
sage: two_descent_by_two_isogeny(E, verbosity=1)
2-isogeny
Results:
2 <= #\(E(Q)/\phi'(E'(Q))\) <= 2
2 <= #\(E'(Q)/\phi(E(Q))\) <= 2
#Sel^{\phi'}(E'/Q) = 2
#Sel^{\phi}(E/Q) = 2
1 <= #Sha(E'/Q)[\phi'] <= 1
1 <= #Sha(E/Q)[\phi] <= 1
0 <= rank of E(Q) = rank of E'(Q) <= 0
(2, 2, 2, 2)
```

Handling curves whose discriminants involve larger than wordsize primes:

```python
sage: E = EllipticCurve('14a')
sage: E = E.quadratic_twist(next_prime(10^20))
sage: E
Elliptic Curve defined by y^2 = x^3 + x^2 +...
->71666666666666667225666666666666675672*x...
->391925925925925926384240370370370549019837037037060249356 over Rational Field
sage: E.discriminant().factor()
-1 * 2^18 * 7^3 * 1000000000000000039^6
sage: log(1000000000000000039.0, 2.0)
66.438...
```

```python
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
```

```python
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
0
```
Do all the work in doing a two-isogeny descent.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.descent_two_isogeny import two_descent_by_two_isogeny_work
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(13,128)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
0
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(1,-16)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
1
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(10,8)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
2
sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny_work(85,320)
sage: log(n1,2) + log(n1_prime,2) - 2 # the rank
3
```

### 10.12.2 Elliptic curves with prescribed good reduction

Construction of elliptic curves with good reduction outside a finite set of primes

A theorem of Shafarevich states that, over a number field $K$, given any finite set $S$ of primes of $K$, there are (up to isomorphism) only a finite set of elliptic curves defined over $K$ with good reduction at all primes outside $S$. An explicit form of the theorem with an algorithm for finding this finite set was given in “Finding all elliptic curves with good reduction outside a given set of primes” by John Cremona and Mark Lingham, Experimental Mathematics 16 No.3 (2007), 303-312. The method requires computation of the class and unit groups of $K$ as well as all the $S$-integral points on a collection of auxiliary elliptic curves defined over $K$.

This implementation (April 2009) is only for the case $K = \mathbb{Q}$, where in many cases the determination of the necessary sets of $S$-integral points is possible. The main user-level function is `EllipticCurves_with_good_reduction_outside_S()`, defined in constructor.py. Users should note carefully the following points:

1. the number of auxiliary curves to be considered is exponential in the size of $S$ (specifically, $2^{s^2}$ where $s = |S|$).
2. For some of the auxiliary curves it is impossible at present to provably find all the $S$-integral points using the current algorithms, which rely on first finding a basis for their Mordell-Weil groups using 2-descent. A warning is output in cases where the set of points (and hence the final output) is not guaranteed to be complete. Using the `proof=False` flag suppresses these warnings.

EXAMPLES: We find all elliptic curves with good reduction outside 2, listing the label of each:

```python
sage: [e.label() for e in EllipticCurves_with_good_reduction_outside_S([2])] # long time (5s on sage.math, 2013)
['32a1', '32a2', '32a3',
(continues on next page)
Secondly we try the same with $S = 11$; note that warning messages are printed without `proof=False` (unless the optional database is installed: two of the auxiliary curves whose Mordell-Weil bases are required have conductors 13068 and 52272 so are in the database):

```python
sage: [e.label() for e in EllipticCurves_with_good_reduction_outside_S([11], proof=False)] # long time (13s on sage.math, 2011)
['11a1', '11a2', '11a3', '121a1', '121a2', '121b1', '121b2', '121c1', '121c2', '121d1', '121d2', '256a1', '256a2', '256b1', '256b2', '256c1', '256c2', '256d1', '256d2']
```

AUTHORS:

- John Cremona (6 April 2009): initial version (over \mathbb{Q} only).

```python
sage.schemes.elliptic_curves.ell_egros.curve_key(E1)
```

Comparison key for elliptic curves over \mathbb{Q}.

The key is a tuple:

- if the curve is in the database: (conductor, 0, label, number)
- otherwise: (conductor, 1, a_invariants)

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_egros import curve_key
sage: E = EllipticCurve_from_j(1728)

sage: curve_key(E)
(32, 0, 0, 2)

sage: E = EllipticCurve_from_j(1729)

sage: curve_key(E)
(2989441, 1, (1, 0, 0, -36, -1))
```

```python
sage.schemes.elliptic_curves.ell_egros.egros_from_j(j, S=[], proof=False)
```

Given a rational j and a list of primes S, returns a list of elliptic curves over \mathbb{Q} with j-invariant j and good reduction outside S, by checking all relevant quadratic twists.

INPUT:
• j – a rational number.
• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

OUTPUT:
A sorted list of all elliptic curves defined over \mathbb{Q} with j-invariant equal to j and with good reduction at all primes outside the list S.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j
sage: [e.label() for e in egros_from_j(0,[3])]
['27a1', '27a3', '243a1', '243a2', '243b1', '243b2']
sage: [e.label() for e in egros_from_j(1728,[2])]
['32a1', '32a2', '64a1', '64a4', '256b1', '256b2', '256c1', '256c2']
sage: e=egros_from_j(-4096/11,[11])
sage: [e.label() for e in e]
['11a3', '121d1']
```

sage.schemes.elliptic_curves.ell_egros.egros_from_j_0($S=\emptyset$)
Given a list of primes S, returns a list of elliptic curves over \mathbb{Q} with j-invariant 0 and good reduction outside S, by checking all relevant sextic twists.

INPUT:
• S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

OUTPUT:
A sorted list of all elliptic curves defined over \mathbb{Q} with j-invariant equal to 0 and with good reduction at all primes outside the list S.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j_0
sage: egros_from_j_0(())
[]
sage: egros_from_j_0((2,))
[]
sage: [e.label() for e in egros_from_j_0((3,))]
['27a1', '27a3', '243a1', '243a2', '243b1', '243b2']
sage: len(egros_from_j_0((2,3,5)))  # long time (8s on sage.math, 2013)
432
```

sage.schemes.elliptic_curves.ell_egros.egros_from_j_1728($S=\emptyset$)
Given a list of primes S, returns a list of elliptic curves over \mathbb{Q} with j-invariant 1728 and good reduction outside S, by checking all relevant quartic twists.

INPUT:
• S – list of primes (default: empty list).
Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

OUTPUT:
A sorted list of all elliptic curves defined over \mathbb{Q} with j-invariant equal to 1728 and with good reduction at all primes outside the list S.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j_1728
sage: egros_from_j_1728([])
[]
sage: egros_from_j_1728([3])
[]
sage: [e.cremona_label() for e in egros_from_j_1728([2])]
['32a1', '32a2', '64a1', '64a4', '256b1', '256b2', '256c1', '256c2']
```

Sage schemes.elliptic_curves.ell_egros.egros_from_jlist (jlist, S=[])
Given a list of rational j and a list of primes S, returns a list of elliptic curves over \mathbb{Q} with j-invariant in the list and good reduction outside S.

INPUT:

- j – list of rational numbers.
- S – list of primes (default: empty list).

Note: Primality of elements of S is not checked, and the output is undefined if S is not a list or contains non-primes.

OUTPUT:
A sorted list of all elliptic curves defined over \mathbb{Q} with j-invariant in the list $jlist$ and with good reduction at all primes outside the list S.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j, egros_from_jlist
sage: jlist=egros_get_j([3])
sage: elist=egros_from_jlist(jlist,[3])
sage: [e.label() for e in elist]
['27a1', '27a2', '27a3', '27a4', '243a1', '243a2', '243b1', '243b2']
sage: [e.ainvs() for e in elist]
[(0, 0, 1, 0, -7),
 (0, 0, 1, -270, -1708),
 (0, 0, 1, 0),
 (0, 0, 1, -30, 63),
 (0, 0, 1, -1),
 (0, 0, 1, 20),
 (0, 0, 1, 0, 2),
 (0, 0, 1, 0, -61)]
```

Sage.schemes.elliptic_curves.ell_egros.egros_get_j (S=[], proof=None, verbose=False)
Returns a list of rational j such that all elliptic curves defined over \mathbb{Q} with good reduction outside S have...
\(j \)-invariant in the list, sorted by height.

INPUT:

- \(S \) – list of primes (default: empty list).
- \(\text{proof} \) – True/False (default True): the MW basis for auxiliary curves will be computed with this proof flag.
- \(\text{verbose} \) – True/False (default False): if True, some details of the computation will be output.

Note: Proof flag: The algorithm used requires determining all \(S \)-integral points on several auxiliary curves, which in turn requires the computation of their generators. This is not always possible (even in theory) using current knowledge.

The value of this flag is passed to the function which computes generators of various auxiliary elliptic curves, in order to find their \(S \)-integral points. Set to False if the default (True) causes warning messages, but note that you can then not rely on the set of invariants returned being complete.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j
sage: egros_get_j([])

[1728]
sage: egros_get_j([2])

# long time (3s on sage.math, 2013)
[128, 432, -864, 1728, 3375/2, -3456, 6912, 10976, -784446336, -189613868625/128]
sage: egros_get_j([3])

# long time (3s on sage.math, 2013)
[0, -576, 1536, 1728, -5184, -13824, 21952/9, -41472, 140608/3, -12288000]
sage: jlist=egros_get_j([2,3]); len(jlist)

# long time (30s)
83
```

sage.schemes.elliptic_curves.ell_egros.is_possible_j\((j, S=\emptyset)\)

Tests if the rational \(j \) is a possible \(j \)-invariant of an elliptic curve with good reduction outside \(S \).

Note: The condition used is necessary but not sufficient unless \(S \) contains both 2 and 3.

EXAMPLES:

```python
sage: from sage.schemes.elliptic_curves.ell_egros import is_possible_j
sage: is_possible_j(0,[])

False
sage: is_possible_j(1728,[])

True
sage: is_possible_j(-4096/11, [11])

True
```

10.12.3 Elliptic curves over padic fields

class `sage.schemes.elliptic_curves.ell_padic_field.EllipticCurve_padic_field(K, ainvs)`

Bases: `sage.schemes.elliptic_curves.ell_field.EllipticCurve_field`,
`sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field`

Elliptic curve over a padic field.
EXAMPLES:

```
sage: Qp=pAdicField(17)
sage: E=EllipticCurve(Qp,[2,3]); E
Elliptic Curve defined by y^2 = x^3 + (2+O(17^20)) *x + (3+O(17^20)) over 17-adic Field with capped relative precision 20
sage: E == loads(dumps(E))
True
```

```
frobenius(P=None)
    Returns the Frobenius as a function on the group of points of this elliptic curve.
```

```
sage: Qp=pAdicField(13)
sage: E=EllipticCurve(Qp,[1,1])
sage: type(E.frobenius())
<... 'function'>
sage: point=E(0,1)
sage: E.frobenius(point)
(0 : 1 + O(13^20) : 1 + O(13^20))
```

10.12.4 Denis Simon’s PARI scripts

sage.schemes.elliptic_curves.gp_simon.init()

Function to initialize the gp process

sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E, verbose=0, lim1=None, lim3=None, limtriv=None, maxprob=20, limbigprime=30, known_points=[])

Interface to Simon’s gp script for two-descent.

Note: Users should instead run `E.simon_two_descent()`

EXAMPLES:

```
sage: import sage.schemes.elliptic_curves.gp_simon
sage: E=EllipticCurve('389a1')
sage: sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E)
(2, 2, [(1 : 0 : 1), (-11/9 : 28/27 : 1)])
```

10.12.5 Elliptic curves with congruent mod-5 representation

AUTHORS:

- Alice Silverberg and Karl Rubin (original PARI/GP version)

sage.schemes.elliptic_curves.mod5family.mod5family(a, b)

Formulas for computing the family of elliptic curves with congruent mod-5 representation.

EXAMPLES:
You should use EllipticCurve_from_cubic() or EllipticCurve_from_curve() to construct the transformation starting with a cubic or with a genus one curve.

EXAMPLES:

```python
sage: R.<u,v,w> = QQ[]
sage: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True); f
Scheme morphism:
  From: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
  To:  Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
  Defn: Defined on coordinates by sending (u : v : w) to
         (-w : 3*u : 1/3*u + 1/3*v)
sage: finv = f.inverse(); finv
Scheme morphism:
  From: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
  To:  Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
  Defn: Defined on coordinates by sending (x : y : z) to
         (1/3*y : -1/3*y + 3*z : -x)
sage: (u^3 + v^3 + w^3)(f.inverse().defining_polynomials()) * f.inverse().post_rescaling()
-x^3 + y^2*z - 9*y*z^2 + 27*z^3
sage: E = finv.domain()
sage: E.defining_polynomial()(f.defining_polynomials()) * f.post_rescaling()
u^3 + v^3 + w^3
sage: f([[1,-1,0]])
(0 : 1 : 0)
sage: f([[1,0,-1]])
(3 : 9 : 1)
sage: f([[0,1,-1]])
(3 : 0 : 1)
```

```
class sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformation(domain, codomain, defining_polynomials, post_multiplication)
  Bases: sage.schemes.generic.morphism.SchemeMorphism_polynomial

  A morphism of a genus-one curve to/from the Weierstrass form.

  INPUT:

```
• **domain, codomain** – two schemes, one of which is an elliptic curve.

• **defining_polynomials** – triplet of polynomials that define the transformation.

• **post_multiplication** – a polynomial to homogeneously rescale after substituting the defining polynomials.

EXAMPLES:

```python
sage: P2.<u,v,w> = ProjectiveSpace(2,QQ)
sage: C = P2.subscheme(u^3 + v^3 + w^3)
sage: E = EllipticCurve([2, -1, -1/3, 1/3, -1/27])
sage: from sage.schemes.elliptic_curves.weierstrass_transform import WeierstrassTransformation
sage: f = WeierstrassTransformation(C, E, [w, -v-w, -3*u-3*v], 1); f
Scheme morphism:
From: Closed subscheme of Projective Space of dimension 2 over Rational Field
defined by:
u^3 + v^3 + w^3
To: Elliptic Curve defined by y^2 + 2 *x*y - 1/3*y = x^3 - x^2 + 1/3*x - 1/27 over Rational Field
Defn: Defined on coordinates by sending (u : v : w) to
    (w : -v - w : -3*u - 3*v)
sage: f([-1, 1, 0])
(0 : 1 : 0)
sage: f([-1, 0, 1])
(1/3 : -1/3 : 1)
sage: f([0,-1, 1])
(1/3 : 0 : 1)
sage: A2.<a,b> = AffineSpace(2,QQ)
sage: C = A2.subscheme(a^3 + b^3 + 1)
sage: f = WeierstrassTransformation(C, E, [1, -b-1, -3*a-3*b], 1); f
Scheme morphism:
From: Closed subscheme of Affine Space of dimension 2 over Rational Field
defined by:
a^3 + b^3 + 1
To: Elliptic Curve defined by y^2 + 2*x*y - 1/3*y = x^3 - x^2 + 1/3*x - 1/27 over Rational Field
Defn: Defined on coordinates by sending (a, b) to
    (1 : -b - 1 : -3*a - 3*b)
sage: f([-1,0])
(1/3 : -1/3 : 1)
sage: f([0,-1])
(1/3 : 0 : 1)
```

post_rescaling()

Return the homogeneous rescaling to apply after the coordinate substitution.

OUTPUT:

A polynomial. See the example below.

EXAMPLES:

```python
sage: R.<a,b,c> = QQ[]
sage: cubic = a^3+7*b^3+64*c^3
sage: P = [2,2,-1]
sage: f = EllipticCurve_from_cubic(cubic, P, morphism=True).inverse()
```
So here is what it does. If we just plug in the coordinate transformation, we get the defining polynomial up to scale. This method returns the overall rescaling of the equation to bring the result into the standard form:

```plaintext
type: cubic(f.defining_polynomials())
7*x^3 - 7*y^2*z + 1806336*y*z^2 - 155373797376*z^3
```

```plaintext
type: cubic(f.defining_polynomials()) * f.post_rescaling()
-x^3 + y^2*z - 258048*y*z^2 + 22196256768*z^3
```

Construct morphism of a a genus-one curve to/from the Weierstrass form with its inverse.

EXAMPLES:

```plaintext
type: R.<u,v,w> = QQ[]
type: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True); f
```

```
Scheme morphism:
    From: Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
    To: Elliptic Curve defined by y^2 - 9 *y = x^3 - 27 over Rational Field
    Defn: Defined on coordinates by sending (u : v : w) to
        (-w : 3*u : 1/3*u + 1/3*v)

Scheme morphism:
    From: Closed subscheme of Projective Space of dimension 2 over Rational Field
    Defined by:
        u^3 + v^3 + w^3
    To: Elliptic Curve defined by y^2 + 2 *x*y + 1/3*y
        = x^3 - x^2 - 1/3*x - 1/27 over Rational Field
    Defn: Defined on coordinates by sending (u : v : w) to
        (-w : -v + w : 3*u + 3*v)
```

Bases:

```plaintext
class sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformationWithInverse
def inverse()
    Return the inverse.

OUTPUT:
    A morphism in the opposite direction. This may be a rational inverse or an analytic inverse.

EXAMPLES:
```
```python
sage: R.<u,v,w> = QQ[]
sage: f = EllipticCurve_from_cubic(u^3 + v^3 + w^3, [1,-1,0], morphism=True)
sage: f.inverse()
Scheme morphism:
  From: Elliptic Curve defined by y^2 - 9*y = x^3 - 27 over Rational Field
  To:  Projective Plane Curve over Rational Field defined by u^3 + v^3 + w^3
  Defn: Defined on coordinates by sending (x : y : z) to
        (1/3*y : -1/3*y + 3*z : -x)
```
11.1 Hyperelliptic curve constructor

Returns the hyperelliptic curve $y^2 + hy = f$, for univariate polynomials h and f. If h is not given, then it defaults to 0.

INPUT:

- f - univariate polynomial
- h - optional univariate polynomial
- $names$ (default: ['x', 'y']) - names for the coordinate functions
- $check$ _squarefree_ (default: True) - test if the input defines a hyperelliptic curve when f is homogenized to degree $2g + 2$ and h to degree $g + 1$ for some g.

Warning: When setting $check$ _squarefree_=False or using a base ring that is not a field, the output curves are not to be trusted. For example, the output of is _singular_ is always False, without this being properly tested in that case.

Note: The words “hyperelliptic curve” are normally only used for curves of genus at least two, but this class allows more general smooth double covers of the projective line (conics and elliptic curves), even though the class is not meant for those and some outputs may be incorrect.

EXAMPLES:

Basic examples:

```
sage: R.<x> = QQ[]
sage: HyperellipticCurve(x^5 + x + 1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: HyperellipticCurve(x^19 + x + 1, x-2)
Hyperelliptic Curve over Rational Field defined by y^2 + (x - 2)*y = x^19 + x + 1
sage: k.<a> = GF(9); R.<x> = k[]
```
sage: HyperellipticCurve(x^3 + x - 1, x+a)
Hyperelliptic Curve over Finite Field in a of size 3^2 defined by y^2 + (x + a)*y = x^3 + x + 2

Characteristic two:

sage: P.<x> = GF(8,'a')[]
sage: HyperellipticCurve(x^7+1, x)
Hyperelliptic Curve over Finite Field in a of size 2^3 defined by y^2 + x*y = x^7 + 1
sage: HyperellipticCurve(x^8+x^7+1, x^4+1)
Hyperelliptic Curve over Finite Field in a of size 2^3 defined by y^2 + (x^4 + 1)*y = x^8 + x^7 + 1
sage: HyperellipticCurve(x^8+1, x)
Traceback (most recent call last):
... ValueError: Not a hyperelliptic curve: highly singular at infinity.
sage: HyperellipticCurve(x^8+x^7+1, x^4)
Traceback (most recent call last):
... ValueError: Not a hyperelliptic curve: singularity in the provided affine patch.

F.<t> = PowerSeriesRing(FiniteField(2))
P.<x> = PolynomialRing(FractionField(F))
sage: HyperellipticCurve(x^5+t, x)
Hyperelliptic Curve over Laurent Series Ring in t over Finite Field of size 2
defined by y^2 + x*y = x^5 + t

We can change the names of the variables in the output:

sage: k.<a> = GF(9); R.<x> = k[]
sage: HyperellipticCurve(x^3 + x - 1, x+a, names=[‘X’,’Y’])
Hyperelliptic Curve over Finite Field in a of size 3^2 defined by Y^2 + (X + a)*Y = X^3 + X + 2

This class also allows curves of genus zero or one, which are strictly speaking not hyperelliptic:

sage: P.<x> = QQ[]
sage: HyperellipticCurve(x^2+1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^2 + 1
sage: HyperellipticCurve(x^4-1)
Hyperelliptic Curve over Rational Field defined by y^2 = x^4 - 1
sage: HyperellipticCurve(x^3+2*x+2)
Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + 2*x + 2

Double roots:

sage: P.<x> = GF(7)[]
sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1))
Traceback (most recent call last):
... ValueError: Not a hyperelliptic curve: singularity in the provided affine patch.
sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1), check_squarefree=False)
Hyperelliptic Curve over Finite Field of size 7 defined by y^2 = x^12 + 5*x^10 + 4*x^9 + x^8 + 3*x^7 + 3*x^6 + 2*x^4 + 3*x^3 + 6*x^2 + 4*x + 3
(continues on next page)
The input for a (smooth) hyperelliptic curve of genus \(g \) should not contain polynomials of degree greater than \(2g + 2 \). In the following example, the hyperelliptic curve has genus 2 and there exists a model \(y^2 = F \) of degree 6, so the model \(y^2 + yh = f \) of degree 200 is not allowed:

```python
sage: P.<x> = QQ[]
sage: h = x^100
sage: F = x^6+1
sage: f = F-h^2/4
sage: HyperellipticCurve(f, h)
Traceback (most recent call last):
  ... Value Error: Not a hyperelliptic curve: highly singular at infinity.
```

An example with a singularity over an inseparable extension of the base field:

```python
sage: F.<t> = GF(5)[]
sage: P.<x> = F[]
sage: HyperellipticCurve(x^5+t)
Traceback (most recent call last):
  ... Value Error: Not a hyperelliptic curve: singularity in the provided affine patch.
```

Input with integer coefficients creates objects with the integers as base ring, but only checks smoothness over \(\mathbb{Q} \), not over Spec(\(\mathbb{Z} \)). In other words, it is checked that the discriminant is non-zero, but it is not checked whether the discriminant is a unit in \(\mathbb{Z}^* \).

```python
sage: P.<x> = ZZ[]
sage: HyperellipticCurve(3*x^7+6*x+6)
Hyperelliptic Curve over Integer Ring defined by y^2 = 3*x^7 + 6*x + 6
```

11.2 Hyperelliptic curves over a general ring

EXAMPLES:

```python
sage: P.<x> = GF(5)[]
sage: f = x^5 - 3*x^4 - 2*x^3 + 6*x^2 + 3*x - 1
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Finite Field of size 5 defined by y^2 = x^5 + 2*x^4 + 3*x^3 + x^2 + 3*x + 4
```

EXAMPLES:

```python
sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = 4*x^5 - 30*x^3 + 45*x - 22
sage: C.genus()
2
```

(continues on next page)
sage: D = C.affine_patch(0)
sage: D.defining_polynomials()[0].parent()
Multivariate Polynomial Ring in x1, x2 over Rational Field

class sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic

Bases: sage.schemes.curves.projective_curve.ProjectivePlaneCurve

base_extend(R)

Returns this HyperellipticCurve over a new base ring R.

EXAMPLES:

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5 - 10*x + 9)
sage: K = Qp(3,5)
sage: L.<a> = K.extension(x^30-3)
sage: HK = H.change_ring(K)
sage: HL = HK.change_ring(L); HL
Hyperelliptic Curve over 3-adic Eisenstein Extension Field in a defined by x^30 - 3 defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5 + (2 + 2*a^30 + a^60 + 2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210)

sage: R.<x> = FiniteField(7)[[]]
sage: H = HyperellipticCurve(x^8 + x + 5)
sage: H.base_extend(FiniteField(7^2, 'a'))
Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 = x^8 + x + 5

change_ring(R)

Returns this HyperellipticCurve over a new base ring R.

EXAMPLES:

sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5 - 10*x + 9)
sage: K = Qp(3,5)
sage: L.<a> = K.extension(x^30-3)
sage: HK = H.change_ring(K)
sage: HL = HK.change_ring(L); HL
Hyperelliptic Curve over 3-adic Eisenstein Extension Field in a defined by x^30 - 3 defined by (1 + O(a^150))*y^2 = (1 + O(a^150))*x^5 + (2 + 2*a^30 + a^60 + 2*a^90 + 2*a^120 + O(a^150))*x + a^60 + O(a^210)

sage: R.<x> = FiniteField(7)[[]]
sage: H = HyperellipticCurve(x^8 + x + 5)
sage: H.base_extend(FiniteField(7^2, 'a'))
Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 = x^8 + x + 5

genus()

has_odd_degree_model()

Return True if an odd degree model of self exists over the field of definition; False otherwise.

Use odd_degree_model to calculate an odd degree model.
EXAMPLES:

```python
sage: x = QQ['x'].0
sage: HyperellipticCurve(x^5 + x).has_odd_degree_model()
True
sage: HyperellipticCurve(x^6 + x).has_odd_degree_model()
True
sage: HyperellipticCurve(x^6 + x + 1).has_odd_degree_model()
False
```

```python
def hyperelliptic_polynomials(K=None, var='x'):
    pass
```

```python
sage: R.<x> = QQ[]; C = HyperellipticCurve(x^3 + x - 1, x^3/5); C
Hyperelliptic Curve over Rational Field defined by y^2 + 1/5*x^3*y = x^3 + x - 1
sage: C.hyperelliptic_polynomials()
(x^3 + x - 1, 1/5*x^3)
```

```python
def invariant_differential():
    pass
```

```python
sage: R.<x> = QQ[]
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: C.invariant_differential()
1 dx/2y
```

```python
def is_singular():
    pass
```

```python
sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5+1)
sage: H.is_singular()
False
```

A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane projective curve. This can be seen in the following example:

```python
sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5+2)
sage: set_verbose(None)
sage: H.is_singular()
False
```

```python
def is_smooth():
    pass
```

```python
sage: R.<x> = GF(13)[]
```

(continues on next page)
A hyperelliptic curve with genus at least 2 always has a singularity at infinity when viewed as a plane projective curve. This can be seen in the following example:

```sage
R.<x> = GF(27, 'a')[]
H = HyperellipticCurve(x^10+2)
set_verbose(None)
H.is_smooth()
from sage.schemes.curves.projective_curve import ProjectivePlaneCurve
ProjectivePlaneCurve.is_smooth(H)
```

```
False
```

```
jacobian()
lift_x(x, all=False)
local_coord(P, prec=20, name='t')
```

Calls the appropriate local_coordinates function

INPUT:

- P – a point on self
- prec – desired precision of the local coordinates
- name – generator of the power series ring (default: t)

OUTPUT:

\((x(t), y(t))\) such that \(y(t)^2 = f(x(t))\), where \(t\) is the local parameter at \(P\)

EXAMPLES:

```sage
R.<x> = QQ['x']
H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
H.local_coord(H(1,6), prec=5)
H.local_coord(H(4, 0), prec=7)
H.local_coord(H(0, 1, 0), prec=5)
```

```
(1 + t + O(t^5), 6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5))
(4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7), t + O(t^→7))
(t^-2 + 23*t^-2 - 18*t^-4 - 569*t^-6 + O(t^-7), t^-5 + 46*t^-1 - 36*t - 609*t^-3 +...
→1656*t^-5 + O(t^-6))
```

AUTHOR:

- Jennifer Balakrishnan (2007-12)

local_coordinates_at_infinity(prec=20, name='t')

For the genus \(g\) hyperelliptic curve \(y^2 = f(x)\), return \((x(t), y(t))\) such that \((y(t))^2 = f(x(t))\), where \(t = x^g/y\) is the local parameter at infinity

INPUT:

- prec – desired precision of the local coordinates
- name – generator of the power series ring (default: t)
OUTPUT:

\((x(t), y(t))\) such that \(y(t)^2 = f(x(t))\) and \(t = x/a\) is the local parameter at infinity

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-5*x^2+1)
sage: x,y = H.local_coordinates_at_infinity(10)
sage: x
t^-2 + 5*t^4 - t^8 - 50*t^10 + O(t^12)
sage: y
t^-5 + 10*t - 2*t^5 - 75*t^7 + 50*t^11 + O(t^12)
```

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-x+1)
sage: x,y = H.local_coordinates_at_infinity(10)
sage: x
t^-2 + t^2 - t^4 - t^6 + 3*t^8 + O(t^12)
sage: y
t^-3 + t - t^3 - t^5 + 3*t^7 - 10*t^11 + O(t^12)
```

AUTHOR:

• Jennifer Balakrishnan (2007-12)

local_coordinates_at_nonweierstrass \((P, \text{prec}=20, \text{name}='t')\)

For a non-Weierstrass point \(P = (a, b)\) on the hyperelliptic curve \(y^2 = f(x)\), return \((x(t), y(t))\) such that \((y(t))^2 = f(x(t))\), where \(t = x - a\) is the local parameter.

INPUT:

• \(P = (a, b)\) – a non-Weierstrass point on self
• \(\text{prec}\) – desired precision of the local coordinates
• \(\text{name}\) – gen of the power series ring (default: t)

OUTPUT:

\((x(t), y(t))\) such that \(y(t)^2 = f(x(t))\) and \(t = x - a\) is the local parameter at \(P\)

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: P = H(1,6)
sage: x,y = H.local_coordinates_at_nonweierstrass(P,prec=5)
sage: x
1 + t + O(t^5)
sage: y
6 + t - 7/2*t^2 - 1/2*t^3 - 25/48*t^4 + O(t^5)
```

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-x+1)
sage: P = H(-2,12)
sage: x,y = H.local_coordinates_at_nonweierstrass(P,prec=5)
sage: x
-2 + t + O(t^5)
sage: y
12 - 19/2*t - 19/32*t^2 + 61/256*t^3 - 5965/24576*t^4 + O(t^5)
```

AUTHOR:

• Jennifer Balakrishnan (2007-12)
local_coordinates_at_weierstrass \((P, \text{prec}=20, \text{name}='t') \)

For a finite Weierstrass point on the hyperelliptic curve \(y^2 = f(x) \), returns \((x(t), y(t))\) such that \((y(t))^2 = f(x(t))\), where \(t = y \) is the local parameter.

INPUT:
- \(P \) – a finite Weierstrass point on self
- \(\text{prec} \) – desired precision of the local coordinates
- \(\text{name} \) – gen of the power series ring (default: \(t \))

OUTPUT:
\((x(t), y(t))\) such that \((y(t))^2 = f(x(t))\) and \(t = y \) is the local parameter at \(P \)

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: A = H(4, 0)
sage: x, y = H.local_coordinates_at_weierstrass(A, prec=7)
sage: x
4 + 1/360*t^2 - 191/23328000*t^4 + 7579/188956800000*t^6 + O(t^7)
sage: y
t + O(t^7)
sage: B = H(-5, 0)
sage: x, y = H.local_coordinates_at_weierstrass(B, prec=5)
sage: x
-5 + 1/1260*t^2 + 887/2000376000*t^4 + O(t^5)
sage: y
t + O(t^5)
```

AUTHOR:
- Jennifer Balakrishnan (2007-12)
- Francis Clarke (2012-08-26)

monskey_washnitzer_gens()

odd_degree_model()

Return an odd degree model of self, or raise ValueError if one does not exist over the field of definition.

EXAMPLES:

```python
sage: x = QQ['x'].gen()
sage: H = HyperellipticCurve((x^2 + 2)*(x^2 + 3)*(x^2 + 5)); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 10*x^4 + 31*x^2 + 2 + 30
sage: H.odd_degree_model()
Traceback (most recent call last):
...
ValueError: No odd degree model exists over field of definition

sage: K2 = QuadraticField(-2, 'a')
sage: Hp2 = H.change_ring(K2).odd_degree_model(); Hp2
Hyperelliptic Curve over Number Field in a with defining polynomial x^2 + 2 def. by y^2 = 6*a*x^5 - 29*x^4 - 20*x^2 + 6*a*x + 1
sage: K3 = QuadraticField(-3, 'b')
```

(continues on next page)
Of course, Hp2 and Hp3 are isomorphic over the composite extension. One consequence of this is that odd degree models reduced over "different" fields should have the same number of points on their reductions. 43 and 67 split completely in the compositum, so when we reduce we find:

```python
sage: P2 = K2.factor(43)[0][0]
sage: P3 = K3.factor(43)[0][0]
sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial()
x^4 - 16*x^3 + 134*x^2 - 688*x + 1849
sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial()
x^4 - 16*x^3 + 134*x^2 - 688*x + 1849
sage: H.change_ring(GF(43)).odd_degree_model().frobenius_polynomial()
x^4 - 16*x^3 + 134*x^2 - 688*x + 1849
```

```python
sage: P2 = K2.factor(67)[0][0]
sage: P3 = K3.factor(67)[0][0]
sage: Hp2.change_ring(K2.residue_field(P2)).frobenius_polynomial()
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489
sage: Hp3.change_ring(K3.residue_field(P3)).frobenius_polynomial()
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489
sage: H.change_ring(GF(67)).odd_degree_model().frobenius_polynomial()
x^4 - 8*x^3 + 150*x^2 - 536*x + 4489
```

11.3 Hyperelliptic curves over a finite field

AUTHORS:

- David Kohel (2006)
- Robert Bradshaw (2007)
- Daniel Krenn (2011)
- Jean-Pierre Flori, Jan Tuitman (2013)
- Kiran Kedlaya (2016)
- Dean Bisogno (2017): Fixed Hasse-Witt computation

EXAMPLES:
sage: K.<a> = GF(9, 'a')
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^7 - x^5 - 2, x^2 + a)
sage: C._points_fast_sqrt()
[(0 : 1 : 0), (a + 1 : a : 1), (a + 1 : a + 1 : 1), (2 : a + 1 : 1), (2*a : 2*a + 2 : -1), (2*a : 2*a : 1), (1 : a + 1 : 1)]

class sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field

Bases: sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic

Cartier_matrix()

INPUT:
 • E : Hyperelliptic Curve of the form $y^2 = f(x)$ over a finite field, \mathbb{F}_q

OUTPUT:
 • M: The matrix $M = (c_{pi-j})$, where c_i are the coefficients of $f(x)^{(p-1)/2} = \sum c_i x^i$

REFERENCES:

EXAMPLES:

```python
sage: K.<x>=GF(9,'x')

sage: C=HyperellipticCurve(x^7-1, 0)

sage: C.Cartier_matrix()
[[0 2]
 [0 0]]

sage: K.<x>=GF(49,'x')

sage: C=HyperellipticCurve(x^5+1, 0)

sage: C.Cartier_matrix()
[[0 3]
 [0 0]]

sage: P.<x>=GF(9,'a')

sage: E=HyperellipticCurve(x^29+1, 0)

sage: E.Cartier_matrix()
[[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
]```
**Hasse_Witt()**

**INPUT:**

- E : Hyperelliptic Curve of the form \( y^2 = f(x) \) over a finite field, \( \mathbb{F}_q \)

**OUTPUT:**

- \( N \): The matrix \( N = M M^p \ldots M^{p^{q-1}} \) where \( M = c_{p-i-j} \), and \( f(x)^{(p-1)/2} = \sum c_i x^i \)

Reference-N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic \( p > 2 \).

**EXAMPLES:**

```python
sage: K.<x>=GF(9,'x')[]
sage: C=HyperellipticCurve(x^7-1,0)
sage: C.Hasse_Witt()
[0 0 0]
[0 0 0]
[0 0 0]
```

```python
sage: K.<x>=GF(49,'x')[]
sage: C=HyperellipticCurve(x^5+1,0)
sage: C.Hasse_Witt()
[0 0]
[0 0]
```

```python
sage: P.<x>=GF(9,'a')[]
sage: E=HyperellipticCurve(x^29+1,0)
sage: E.Hasse_Witt()
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
```

**a_number()**

**INPUT:**

- E : Hyperelliptic Curve of the form \( y^2 = f(x) \) over a finite field, \( \mathbb{F}_q \)

**OUTPUT:**

- a : a-number

**EXAMPLES:**

```python
sage: K.<x>=GF(49,'x')[]
sage: C=HyperellipticCurve(x^5+1,0)
sage: C.a_number()
1
```
sage: K.<x>=GF(9,'x')[]
sage: C=HyperellipticCurve(x^7-1,0)
sage: C.a_number()
  1

sage: P.<x>=GF(9,'a')[]
sage: E=HyperellipticCurve(x^29+1,0)
sage: E.a_number()
  5

**cardinality** *(extension_degree=1)*
Count points on a single extension of the base field.

**EXAMPLES:**

```
sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + 3*t^5 + 5)
sage: H.cardinality()
 106
sage: H.cardinality(15)
 116069695369992567076405831000
sage: H.cardinality(100)
 27048138294215260932671947108075308367793838278100277689020104911710151430673527943945601434674459120495370826289654897190781715493352266982697064575800553229661690000887425442240414673923744999504000
```

The following example shows that trac ticket #20391 has been resolved::

```
sage: F=GF(23) sage: x=polygen(F) sage: C=HyperellipticCurve(x^8+1) sage: C.cardinality() 24
```

**cardinality_exhaustive** *(extension_degree=1, algorithm=None)*
Count points on a single extension of the base field by enumerating over x and solving the resulting quadratic equation for y.

**EXAMPLES:**

```
sage: K.<a> = GF(9, 'a')
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^7 - 1, x^2 + a)
sage: C.cardinality_exhaustive()
 7

sage: K = GF(next_prime(1<<10))
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_exhaustive()
 1025
```
sage: P.<x> = PolynomialRing(GF(9,'a'))
sage: H = HyperellipticCurve(x^5+x^2+1)
sage: H.count_points(5)
[18, 78, 738, 6366, 60018]

sage: F.<a> = GF(4); P.<x> = F[]
sage: H = HyperellipticCurve(x^5+a*x^2+1, x+a+1)
sage: H.count_points(6)
[2, 24, 74, 256, 1082, 4272]

cardinality_hypellfrob(\texttt{extension\_degree}=1, \texttt{algorithm}=\texttt{None})
Count points on a single extension of the base field using the hypellfrob program.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K = GF(next_prime(1<<10))
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_hypellfrob()
1025

sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 3*t^5 + 5)
sage: H.cardinality_hypellfrob()
50162

sage: H.cardinality_hypellfrob(3)
124992471088310
\end{verbatim}

count_points(\texttt{n}=1)
Count points over finite fields.

\textbf{INPUT:}

- \texttt{n} – integer.

\textbf{OUTPUT:}

An integer. The number of points over $\mathbb{F}_q, \ldots, \mathbb{F}_{q^n}$ on a hyperelliptic curve over a finite field $\mathbb{F}_q$.

\textbf{Warning:} This is currently using exhaustive search for hyperelliptic curves over non-prime fields, which can be awfully slow.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: P.<x> = PolynomialRing(GF(3))
sage: C = HyperellipticCurve(x^3+x^2+1)
sage: C.count_points(4)
[6, 12, 18, 96]
sage: C.base_extend(GF(9,'a')).count_points(2)
[12, 96]

sage: K = GF(2**31-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 3*t + 5)
sage: H.count_points() # long time, 2.4 sec on a Corei7
\end{verbatim}
sage: H.count_points(n=2) # long time, 30s on a Corei7
[2147464821, 4611686018988310237]

sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^13 + 3*t^5 + 5)
sage: H.count_points(n=6)
[112, 16360, 2045356, 260199160, 33038302802, 4195868633548]

sage: P.<x> = PolynomialRing(GF(3))
sage: H = HyperellipticCurve(x^3+x^2+1)
sage: C1 = H.count_points(4); C1
[6, 12, 18, 96]
sage: C2 = sage.schemes.generic.scheme.Scheme.count_points(H,4); C2 # long time, 2s on a Corei7
[6, 12, 18, 96]
sage: C1 == C2 # long time, because we need C2 to be defined
True

sage: P.<x> = PolynomialRing(GF(9,'a'))
sage: H = HyperellipticCurve(x^5+x^2+1)
sage: H.count_points(5)
[18, 78, 738, 6366, 60018]

This example shows that trac ticket #20391 is resolved:

sage: x = polygen(GF(4099))
sage: H = HyperellipticCurve(x^6 + x + 1)
sage: H.count_points(1)
[4106]

\textbf{count_points_exhaustive}\ (n=1, naive=False)

Count the number of points on the curve over the first \(n\) extensions of the base field by exhaustive search if \(n\) if smaller than \(g\), the genus of the curve, and by computing the frobenius polynomial after performing exhaustive search on the first \(g\) extensions if \(n > g\) (unless naive == True).

\textbf{EXAMPLES}:

sage: K = GF(5)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.count_points_exhaustive(n=5)
[9, 27, 108, 675, 3069]

When \(n > g\), the frobenius polynomial is computed from the numbers of points of the curve over the first \(g\) extension, so that computing the number of points on extensions of degree \(n > g\) is not much more expensive than for \(n == g\):

sage: H.count_points_exhaustive(n=15)
[9,
This behavior can be disabled by passing \texttt{naive=True}:

```
sage: H.count_points_exhaustive(n=6, naive=True) # long time, 7s on a Corei7
[9, 27, 108, 675, 3069, 16302]
```

\textbf{count\_points\_frobenius\_polynomial} \((n=1, f=None)\)

Count the number of points on the curve over the first \(n\) extensions of the base field by computing the frobenius polynomial.

\textbf{EXAMPLES:}

```
sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^19 + t + 1)
```

The following computation takes a long time as the complete characteristic polynomial of the frobenius is computed:

```
sage: H.count_points_frobenius_polynomial(3) # long time, 20s on a Corei7
\rightarrow (when computed before the following test of course)
[49491, 2500024375, 124992509154249]
```

As the polynomial is cached, further computations of number of points are really fast:

```
sage: H.count_points_frobenius_polynomial(19) # long time, because of the \rightarrow previous test
[49491, 2500024375, 124992509154249, 6249500007135192947, 312468751250758776051811, 15623125093747382662737313867, 781140631562281338861289572576257, 390562504374825004171079924130002794587, 1952773465623687539373429411200893147181079, 97637205077187532811699634596361347221761552935, 4881738388665429945305281187129778704058864736771824, 244082037694882831835318764490138139735446240036293092851, 12203857802706446708934102903106811520015567632046432103159713, 61018068627751962899996211052002771035439565767719719151141201339, 305084241331897039303708105563892627040405225546438978173388673620145499, 1525390698235352006814610157008906752699329454643826047826098161898351623931, 78633, 389475, 1954044, 9768627, 48814533, 244072650, 1220693769, 6103414827, 30517927308]
```
count_points_hypellfrob\((n=1, N=None, \text{algorithm}=\text{None})\)

Count the number of points on the curve over the first \(n\) extensions of the base field using the hypellfrob program.

This only supports prime fields of large enough characteristic.

EXAMPLES:

```python
sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^21 + 3*t^5 + 5)
sage: H.count_points_hypellfrob()
[49804]
sage: H.count_points_hypellfrob(2)
[49804, 2499799038]
```

```python
sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^11 + 3*t^5 + 5)
sage: H.count_points_hypellfrob()
[127]
sage: H.count_points_hypellfrob(n=5)
[127, 16335, 2045701, 260134299, 33038098487]
```

```python
sage: K = GF(2**7-1)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^13 + 3*t^5 + 5)
sage: H.count_points(n=6)
[112, 16360, 2045356, 260199160, 33038302802, 4195868633548]
```

The base field should be prime:

```python
sage: K.<z> = GF(19**10)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + (z+1)*t^5 + 1)
sage: H.count_points_hypellfrob()
Traceback (most recent call last):
...
ValueError: hypellfrob does not support non-prime fields
```

and the characteristic should be large enough:

```python
sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.count_points_hypellfrob()
Traceback (most recent call last):
...
ValueError: p=7 should be greater than \((2*g+1)(2*N-1)=27\)
```

count_points_matrix_traces\((n=1, M=\text{None}, N=\text{None})\)

Count the number of points on the curve over the first \(n\) extensions of the base field by computing traces
of powers of the Frobenius matrix. This requires less $p$-adic precision than computing the characteristic polynomial of the matrix when $n < g$ where $g$ is the genus of the curve.

**EXAMPLES:**

```python
sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^19 + t + 1)
sage: H.count_points_matrix_traces(3)
[49491, 2500024375, 124992509154249]
```

`frobenius_matrix(N=None, algorithm='hypellfrob')`

Compute $p$-adic Frobenius matrix to precision $p^N$. If $N$ not supplied, a default value is selected, which is the minimum needed to recover the characteristic polynomial unambiguously.

**Note:** Currently only implemented using `hypellfrob`, which means it only works over the prime field $GF(p)$, and requires $p > (2g + 1)(2N - 1)$.

**EXAMPLES:**

```python
sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_matrix()
[1258 + O(37^2) 925 + O(37^2) 132 + O(37^2) 587 + O(37^2)]
[1147 + O(37^2) 814 + O(37^2) 241 + O(37^2) 1011 + O(37^2)]
[1258 + O(37^2) 1184 + O(37^2) 1105 + O(37^2) 482 + O(37^2)]
[1073 + O(37^2) 999 + O(37^2) 772 + O(37^2) 929 + O(37^2)]
```

The `hypellfrob` program doesn’t support non-prime fields:

```python
sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_matrix(algorithm='hypellfrob')
Traceback (most recent call last):
... NotImplementedError: Computation of Frobenius matrix only implemented for hyperelliptic curves defined over prime fields.
```

nor too small characteristic:

```python
sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.frobenius_matrix(algorithm='hypellfrob')
Traceback (most recent call last):
... ValueError: In the current implementation, p must be greater than $(2g+1)(2N-1) = 81$
```

`frobenius_matrix_hypellfrob(N=None)`

Compute $p$-adic Frobenius matrix to precision $p^N$. If $N$ not supplied, a default value is selected, which is the minimum needed to recover the characteristic polynomial unambiguously.

**Note:** Implemented using `hypellfrob`, which means it only works over the prime field $GF(p)$, and...
requires \( p > (2g + 1)(2N - 1) \).

EXAMPLES:

```python
sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_matrix_hypellfrob()
[1258 + O(37^2) 925 + O(37^2) 132 + O(37^2) 587 + O(37^2)]
[1147 + O(37^2) 814 + O(37^2) 241 + O(37^2) 1011 + O(37^2)]
[1258 + O(37^2) 1184 + O(37^2) 1105 + O(37^2) 482 + O(37^2)]
[1073 + O(37^2) 999 + O(37^2) 772 + O(37^2) 929 + O(37^2)]
```

The `hypellfrob` program doesn’t support non-prime fields:

```python
sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_matrix_hypellfrob()
Traceback (most recent call last):
 ... Not ImplementedError: Computation of Frobenius matrix only implemented for hyperelliptic curves defined over prime fields.
```

nor too small characteristic:

```python
sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.frobenius_matrix_hypellfrob()
Traceback (most recent call last):
 ... ValueError: In the current implementation, \(p \) must be greater than \((2g+1)(2N-1) = 81 \)
```

`frobenius_polynomial()`

Compute the charpoly of frobenius, as an element of \( \mathbb{Z}[x] \).

EXAMPLES:

```python
sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial()
x^4 + x^3 - 52*x^2 + 37*x + 1369
```

A quadratic twist:

```python
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial()
x^4 - x^3 - 52*x^2 - 37*x + 1369
```

Slightly larger example:

```python
sage: K = GF(2003)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1)
sage: H.frobenius_polynomial()
x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027
```
Curves defined over a non-prime field of odd characteristic, or an odd prime field which is too small compared to the genus, are supported via PARI:

```python
code
sage: K.<z> = GF(23**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^3 + z*t + 4)
sage: H.frobenius_polynomial()
x^2 - 15*x + 12167
sage: K.<z> = GF(3**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z**3)
sage: H.frobenius_polynomial()
x^4 - 3*x^3 + 10*x^2 - 81*x + 729
```

Over prime fields of odd characteristic, \( h \) may be non-zero:

```python
code
sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 27*t + 3, t)
sage: H.frobenius_polynomial()
x^4 + 2*x^3 - 58*x^2 + 202*x + 10201
```

Over prime fields of odd characteristic, \( f \) may have even degree:

```python
code
sage: H = HyperellipticCurve(t^6 + 27*t + 3)
sage: H.frobenius_polynomial()
x^4 + 25*x^3 + 322*x^2 + 2525*x + 10201
```

In even characteristic, the naive algorithm could cover all cases because we can easily check for squareness in quotient rings of polynomial rings over finite fields but these rings unfortunately do not support iteration:

```python
code
sage: K.<z> = GF(2**5)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z**3, t)
sage: H.frobenius_polynomial()
x^4 - x^3 + 16*x^2 - 32*x + 1024
```

\( \text{frobenius\_polynomial\_cardinalities}(a=None) \)
Compute the charpoly of frobenius, as an element of \( \mathbb{Z}[x] \), by computing the number of points on the curve over \( g \) extensions of the base field where \( g \) is the genus of the curve.

**Warning:** This is highly inefficient when the base field or the genus of the curve are large.

**EXAMPLES:**

```python
code
sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_cardinalities()
x^4 + x^3 - 52*x^2 + 37*x + 1369
```

A quadratic twist:

```python
code
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_cardinalities()
x^4 - x^3 - 52*x^2 - 37*x + 1369
```
Curve over a non-prime field:

```python
sage: K.<z> = GF(7^2)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + z*t + z^2)
sage: H.frobenius_polynomial_cardinalities()
x^4 + 8*x^3 + 70*x^2 + 392*x + 2401
```

This method may actually be useful when `hypellfrob` does not work:

```python
sage: K = GF(7)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^3 + 1)
sage: H.frobenius_polynomial_matrix(algorithm='hypellfrob')
Traceback (most recent call last):
...
ValueError: In the current implementation, p must be greater than (2g+1)(2N-1) = 81
sage: H.frobenius_polynomial_cardinalities()
x^8 - 5*x^7 + 7*x^6 + 36*x^5 - 180*x^4 + 252*x^3 + 343*x^2 - 1715*x + 2401
```

`frobenius_polynomial_matrix` ($M=None$, `algorithm='hypellfrob'`)

Compute the charpoly of frobenius, as an element of $\mathbb{Z}[x]$, by computing the charpoly of the frobenius matrix.

This is currently only supported when the base field is prime and large enough using the `hypellfrob` library.

**EXAMPLES:**

```python
sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_matrix()
x^4 + x^3 - 52*x^2 + 37*x + 1369
```

A quadratic twist:

```python
sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_matrix()
x^4 - x^3 - 52*x^2 - 37*x + 1369
```

Curves defined over larger prime fields:

```python
sage: K = GF(49999)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + t^5 + 1)
sage: H.frobenius_polynomial_matrix()
x^8 + 281*x^7 + 55939*x^6 + 14144175*x^5 + 3156455369*x^4 + 707194605825*x^3 -> 13984190615593*x^2 + 35122892542149719*x + 62495000149980001
sage: H = HyperellipticCurve(t^15 + t^5 + 1)
sage: H.frobenius_polynomial_matrix() # long time, 8s on a Corei7
x^14 - 76*x^13 + 22086*x^12 - 12984372*x^11 + 24374326657*x^10 - 120324310304*x^9 + 1770558798515792*x^8 - 74401511415224960*x^7 + -> 8852616936691084208*x^6 - 3007987702642212810304*x^5 + -> 304660828331197124223343*x^4 - 81145833008762983138584372*x^3 + -> 69007473838551978905211278195*x^2 - 118735750712481002849977200076*x + -> 78114063156228125437494750034999
```

This `hypellfrob` program doesn’t support non-prime fields:
sage: K.<z> = GF(37**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^9 + z*t^3 + 1)
sage: H.frobenius_polynomial_matrix(algorithm='hypellfrob')
Traceback (most recent call last):
...
NotImplementedError: Computation of Frobenius matrix only implemented for hyperelliptic curves defined over prime fields.

frobenius_polynomial_pari()
Compute the charpoly of frobenius, as an element of \( \mathbb{Z}[x] \), by calling the PARI function hyperellcharpoly.

EXAMPLES:

sage: R.<t> = PolynomialRing(GF(37))
sage: H = HyperellipticCurve(t^5 + t + 2)
sage: H.frobenius_polynomial_pari()
x^4 + x^3 - 52*x^2 + 37*x + 1369

A quadratic twist:

sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
sage: H.frobenius_polynomial_pari()
x^4 - x^3 - 52*x^2 - 37*x + 1369

Slightly larger example:

sage: K = GF(2003)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^7 + 487*t^5 + 9*t + 1)
sage: H.frobenius_polynomial_pari()
x^6 - 14*x^5 + 1512*x^4 - 66290*x^3 + 3028536*x^2 - 56168126*x + 8036054027

Curves defined over a non-prime field are supported as well:

sage: K.<a> = GF(7^2)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + a*t + 1)
sage: H.frobenius_polynomial_pari()
x^4 + 4*x^3 + 84*x^2 + 196*x + 2401

sage: K.<z> = GF(23**3)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^3 + z*t + 4)
sage: H.frobenius_polynomial_pari()
x^2 - 15*x + 12167

Over prime fields of odd characteristic, \( h \) may be non-zero:

sage: K = GF(101)
sage: R.<t> = PolynomialRing(K)
sage: H = HyperellipticCurve(t^5 + 27*t + 3, t)
sage: H.frobenius_polynomial_pari()
x^4 + 2*x^3 - 58*x^2 + 202*x + 10201

p_rank()
INPUT:
• E : Hyperelliptic Curve of the form $y^2 = f(x)$ over a finite field, $\mathbb{F}_q$

OUTPUT:

• pr : p-rank

EXAMPLES:

```python
sage: K.<x>=GF(49,'x')[]
sage: C=HyperellipticCurve(x^5+1,0)
sage: C.p_rank()
0

sage: K.<x>=GF(9,'x')[]
sage: C=HyperellipticCurve(x^7-1,0)
sage: C.p_rank()
0

sage: P.<x>=GF(9,'a')[]
sage: E=HyperellipticCurve(x^29+1,0)
sage: E.p_rank()
0
```

points()

All the points on this hyperelliptic curve.

EXAMPLES:

```python
sage: x = polygen(GF(7))
sage: C = HyperellipticCurve(x^7 - x^2 - 1)
sage: C.points()
[(0 : 1 : 0), (2 : 5 : 1), (2 : 2 : 1), (3 : 0 : 1), (4 : 6 : 1), (4 : 1 : 1),
 (5 : 0 : 1), (6 : 5 : 1), (6 : 2 : 1)]

sage: x = polygen(GF(121, 'a'))
sage: C = HyperellipticCurve(x^5 + x - 1, x^2 + 2)
sage: len(C.points())
122
```

Conics are allowed (the issue reported at trac ticket #11800 has been resolved):

```python
sage: R.<x> = GF(7)[]
sage: H = HyperellipticCurve(3*x^2 + 5*x + 1)
sage: H.points()
[(0 : 6 : 1), (0 : 1 : 1), (1 : 4 : 1), (1 : 3 : 1), (2 : 4 : 1), (2 : 3 : 1),
 (3 : 6 : 1), (3 : 1 : 1)]
```

The method currently lists points on the plane projective model, that is the closure in $\mathbb{P}^2$ of the curve defined by $y^2 + hy = f$. This means that one point $(0 : 1 : 0)$ at infinity is returned if the degree of the curve is at least 4 and $\text{deg}(f) > \text{deg}(h) + 1$. This point is a singular point of the plane model. Later implementations may consider a smooth model instead since that would be a more relevant object. Then, for a curve whose only singularity is at $(0 : 1 : 0)$, the point at infinity would be replaced by a number of rational points of the smooth model. We illustrate this with an example of a genus 2 hyperelliptic curve:

```python
sage: R.<x>=GF(11)[]
sage: H = HyperellipticCurve(x*(x+1)*(x+2)*(x+3)*(x+4)*(x+5))
sage: H.points()
[(0 : 1 : 0), (0 : 0 : 1), (1 : 7 : 1), (1 : 4 : 1), (5 : 7 : 1), (5 : 4 : 1),
 (6 : 0 : 1), (7 : 0 : 1), (8 : 0 : 1), (9 : 0 : 1), (10 : 0 : 1)]
```
The plane model of the genus 2 hyperelliptic curve in the above example is the curve in $\mathbb{P}^2$ defined by $y^2z^4 = g(x, z)$ where $g(x, z) = x(x + z)(x + 2z)(x + 3z)(x + 4z)(x + 5z)$. This model has one point at infinity $(0 : 1 : 0)$ which is also the only singular point of the plane model. In contrast, the hyperelliptic curve is smooth and imbeds via the equation $y^2 = g(x, z)$ into weighted projected space $\mathbb{P}(1, 3, 1)$. The latter model has two points at infinity: $(1 : 1 : 0)$ and $(1 : -1 : 0)$.

**zeta_function()**

Compute the zeta function of the hyperelliptic curve.

**EXAMPLES:**

```python
sage: F = GF(2); R.<t> = F[
 sage: H = HyperellipticCurve(t^9 + t, t^4)
 sage: H.zeta_function()
(16*x^8 + 8*x^7 + 8*x^6 + 4*x^5 + 6*x^4 + 2*x^3 + 2*x^2 + x + 1)/(2*x^2 - 3*x + 1)

sage: F.<a> = GF(4); R.<t> = F[
 sage: H = HyperellipticCurve(t^5 + t^3 + t^2 + t + 1, t^2 + t + 1)
 sage: H.zeta_function()
(16*x^4 + 8*x^3 + x^2 + 2*x + 1)/(4*x^2 - 5*x + 1)

sage: F.<a> = GF(9); R.<t> = F[
 sage: H = HyperellipticCurve(t^5 + a*t)
 sage: H.zeta_function()
(81*x^4 + 72*x^3 + 32*x^2 + 8*x + 1)/(9*x^2 - 10*x + 1)

sage: R.<t> = PolynomialRing(GF(37))
 sage: H = HyperellipticCurve(t^5 + t + 2)
 sage: H.zeta_function()
(1369*x^4 + 37*x^3 - 52*x^2 - x + 1)/(37*x^2 - 38*x + 1)
```

A quadratic twist:

```python
sage: R.<t> = PolynomialRing(GF(37))
 sage: H = HyperellipticCurve(2*t^5 + 2*t + 4)
 sage: H.zeta_function()
(1369*x^4 - 37*x^3 - 52*x^2 - x + 1)/(37*x^2 - 38*x + 1)
```

### 11.4 Hyperelliptic curves over a $p$-adic field

**class** `sage.schemes.hyperelliptic_curves.hyperelliptic_curve.HyperellipticCurve` `sage.schemes.hyperelliptic_curves.hyperelliptic_field.HyperellipticCurve_field` `sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field`

**Bases:**

- `sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic`
- `sage.schemes.hyperelliptic_curves.hyperelliptic_field.HyperellipticCurve_field`
- `sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field`

**P_to_S(P, S)**

Given a finite Weierstrass point $P$ and a point $S$ in the same disc, computes the Coleman integrals $\{\int_{S}^{P} x^i dx/2y \}_{i=0}^{2g-1}$.

**INPUT:**

- $P$: finite Weierstrass point
• S: point in disc of P

OUTPUT:
Coleman integrals \( \{ \int_P^S x^i dx / 2y \}_{i=0}^{2g-1} \)

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,4)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: HJ = HK.curve_over_ram_extn(10)
sage: S = HK.get_boundary_point(HJ,P)
sage: HK.P_to_S(P, S)
(2*a + 4*a^3 + 2*a^11 + 4*a^13 + 2*a^17 + 2*a^19 + a^21 + 4*a^23 + a^25 + 2*a^27 + a^29 + a^31 + O(a^33))
```

AUTHOR:
• Jennifer Balakrishnan

\( S_{to\ Q}(S, Q) \)
Given \( S \) a point on self over an extension field, computes the Coleman integrals \( \{ \int_S^Q x^i dx / 2y \}_{i=0}^{2g-1} \) one should be able to feed ‘\( S, Q \)’ into coleman_integral, but currently that segfaults

INPUT:
• S: a point with coordinates in an extension of \( \mathbb{Q}_p \) (with unif. a)
• Q: a non-Weierstrass point defined over \( \mathbb{Q}_p \)

OUTPUT:
the Coleman integrals \( \{ \int_S^Q x^i dx / 2y \}_{i=0}^{2g-1} \) in terms of \( a \)

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
sage: J.<a> = K.extension(x^20-5)
sage: HJ = H.change_ring(J)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
sage: P = HK(1,0)
sage: Q = HK(0,3)
sage: S = HK.get_boundary_point(HJ,P)
sage: P_to_S = HK.P_to_S(P, S)
sage: S_to_Q = HJ.S_to_Q(S, Q)
sage: P_to_S + S_to_Q
(2*a^40 + a^80 + a^100 + O(a^105), a^20 + 2*a^40 + 4*a^60 + 2*a^80 + O(a^103))
sage: HK.coleman_integrals_on_basis(P, Q)
(2*5^2 + 5^4 + 5^5 + 3*5^6 + O(5^7), 5 + 2*5^2 + 4*5^3 + 2*5^4 + 5^6 + O(5^7))
```

AUTHOR:
• Jennifer Balakrishnan
coleman_integral \((w, P, Q, algorithm='None')\)

Returns the Coleman integral \(\int_P^Q w\)

INPUT:

- \(w\) differential (if one of \(P, Q\) is Weierstrass, \(w\) must be odd)
- \(P\) point on self
- \(Q\) point on self
- \(algorithm\) (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integral \(\int_P^Q w\)

EXAMPLES:

Example of Leprevost from Kiran Kedlaya The first two should be zero as \((P - Q) = 30(P - Q)\) in the Jacobian and \(dx/2y\) and \(xdx/2y\) are holomorphic.

```
sage: K = pAdicField(11, 6)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C(-1, 1); P1 = C(-1, -1)
sage: Q = C(0, 1/4); Q1 = C(0, -1/4)
sage: x, y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.coleman_integral(P, Q)
O(11^6)
sage: C.coleman_integral(x*w, P, Q)
O(11^6)
sage: C.coleman_integral(x^2*w, P, Q)
7*11 + 6*11^2 + 3*11^3 + 11^4 + 5*11^5 + O(11^6)
sage: p = 71; m = 4
sage: K = pAdicField(p, m)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C(-1, 1); P1 = C(-1, -1)
sage: Q = C(0, 1/4); Q1 = C(0, -1/4)
sage: x, y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.integrate(P, Q), (x*w).integrate(P, Q)
(O(71^4), O(71^4))
sage: R, R1 = C.lift_x(4, all=True)
sage: w.integrate(P, R)
21*71 + 67*71^2 + 27*71^3 + O(71^4)
sage: w.integrate(P, R) + w.integrate(P1, R1)
O(71^4)
```

A simple example, integrating \(dx\):

```
sage: R.<x> = QQ['x']
sage: E= HyperellipticCurve(x^3-4*x+4)
sage: K = Qp(5,10)
sage: EK = E.change_ring(K)
```

(continues on next page)
sage: P = EK(2, 2)
sage: Q = EK.teichmuller(P)
sage: x, y = EK.monsky_washnitzer_gens()
sage: EK.coleman_integral(x.diff(), P, Q)
5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^{10})
sage: Q[0] - P[0]
5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^{10})

Yet another example:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x*(x-1)*(x+9))
sage: K = Qp(7,10)
sage: HK = H.change_ring(K)
sage: import sage.schemes.hyperelliptic_curves.monsky_washnitzer as mw
sage: M_frob, forms = mw.matrix_of_frobenius_hyperelliptic(HK)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
sage: f = forms[0]
sage: S = HK(-1,4)
sage: b = x*w*w._coeff.parent()(f)
sage: HK.coleman_integral(b,P,Q)
7 + 7^2 + 4*7^3 + 5*7^4 + 3*7^5 + 7^6 + 5*7^7 + 3*7^8 + 4*7^9 + 4*7^{10} + O(7^{11})

Integrals involving Weierstrass points:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: S = HK(1,0)
sage: T = HK(0,1,0)
sage: w = HK.invariant_differential()
sage: x,y = HK.monsky_washnitzer_gens()
AUTHORS:

- Robert Bradshaw (2007-03)
- Kiran Kedlaya (2008-05)
- Jennifer Balakrishnan (2010-02)

coleman_integral_P_to_S(w, P, S)

Given a finite Weierstrass point $P$ and a point $S$ in the same disc, computes the Coleman integral $\int_P^S w$

INPUT:

- $w$: differential
- $P$: Weierstrass point
- $S$: point in the same disc of $P$ ($S$ is defined over an extension of $\mathbb{Q}_p$; coordinates of $S$ are given in terms of uniformizer $a$)

OUTPUT:

Coleman integral $\int_P^S w$ in terms of $a$

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,4)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: J.<a> = K.extension(x^10-5)
sage: HJ = H.change_ring(J)
sage: S = HK.get_boundary_point(HJ,P)
sage: x,y = HK.monsky_washnitzer_gens()
sage: S[0]-P[0] == HK.coleman_integral_P_to_S(x.diff(),P,S)
True
sage: HK.coleman_integral_P_to_S(HK.invariant_differential(),P,S) == HK.P_to_˓→S(P,S)[0]
True
```
coleman_integral_S_to_Q(w, S, Q)
Compute the Coleman integral $\int_S^Q w$

one should be able to feed ‘S,Q’ into coleman_integral, but currently that segfaulpts

INPUT:

• w: a differential
• S: a point with coordinates in an extension of $\mathbb{Q}_p$
• Q: a non-Weierstrass point defined over $\mathbb{Q}_p$

OUTPUT:

the Coleman integral $\int_S^Q w$

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
sage: J.<a> = K.extension(x^20-5)
sage: HJ = H.change_ring(J)
sage: x,y = HK.monsky_washnitzer_gens()
sage: P = HK(1,0)
sage: Q = HK(0,3)
sage: S = HK.get_boundary_point(HJ,P)
sage: P_to_S = HK.coleman_integral_P_to_S(y.diff(),P,S)
sage: S_to_Q = HJ.coleman_integral_S_to_Q(y.diff(),S,Q)
sage: P_to_S + S_to_Q
3 + O(a^119)
sage: HK.coleman_integral(y.diff(),P,Q)
3 + O(5^6)
```

AUTHOR:

• Jennifer Balakrishnan

coleman_integral_from_weierstrass_via_boundary(w, P, Q, d)
Computes the Coleman integral $\int_P^Q w$ via a boundary point in the disc of $P$, defined over a degree $d$ extension

INPUT:

• w: a differential
• P: a Weierstrass point
• Q: a non-Weierstrass point
• d: degree of extension where coordinates of boundary point lie

OUTPUT:

the Coleman integral $\int_P^Q w$, written in terms of the uniformizer $a$ of the degree $d$ extension

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,6)
sage: HK = H.change_ring(K)
```

(continues on next page)
AUTHOR:

- Jennifer Balakrishnan

coleman_integrals_on_basis(P, Q, algorithm=None)
Computes the Coleman integrals $\{\int_P^Q x^i dx / 2y\}_{i=0}^{2g-1}$

INPUT:

- P point on self
- Q point on self
- algorithm (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integrals $\{\int_P^Q x^i dx / 2y\}_{i=0}^{2g-1}$

EXAMPLES:

```python
sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(2)
sage: Q = C.lift_x(3)
sage: C.coleman_integrals_on_basis(P, Q)
(10*11 + 6*11^3 + 2*11^4 + O(11^5), 11 + 9*11^2 + 7*11^3 + 9*11^4 + O(11^5), 3 + 11 + 5*11^2 + 4*11^4 + O(11^5), 0(11^5))
```

```python
sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.coleman_integrals_on_basis(P, Q)
(3*11^3 + 7*11^4 + 4*11^5 + 7*11^6 + 5*11^7 + O(11^8), 3*11 + 10*11^2 + 8*11^3 + 9*11^4 + O(11^5), 4*11^-1 + 2 + 6*11 + 6*11^2 + 7*11^3 + O(11^4), 11^-3 + 6*11^-2 + 2*11^-1 + 2 + O(11^2))
```
AUTHORS:

- Robert Bradshaw (2007-03): non-Weierstrass points
- Jennifer Balakrishnan and Robert Bradshaw (2010-02): Weierstrass points

coleman_integrals_on_basis_hyperelliptic(P, Q, algorithm=None)

Computes the Coleman integrals \( \left\{ \int_P^Q x^i dx / 2y \right\}^{2g-1}_{i=0} \)

INPUT:

- P point on self
- Q point on self
- algorithm (optional) = None (uses Frobenius) or teichmuller (uses Teichmuller points)

OUTPUT:

the Coleman integrals \( \left\{ \int_P^Q x^i dx / 2y \right\}^{2g-1}_{i=0} \)
EXAMPLES:

```python
sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→16)
sage: P = C.lift_x(2)
sage: Q = C.lift_x(3)
sage: C.coleman_integrals_on_basis(P, Q)
(10*11 + 6*11^3 + 2*11^4 + O(11^5), 11 + 9*11^2 + 7*11^3 + 9*11^4 + O(11^5),
→3 + 10*11 + 5*11^2 + 9*11^3 + 4*11^4 + O(11^5), 3 + 11 + 5*11^2 + 4*11^4 + O(11^5))
sage: C.coleman_integrals_on_basis(P, Q, algorithm='teichmuller')
(10*11 + 6*11^3 + 2*11^4 + O(11^5), 11 + 9*11^2 + 7*11^3 + 9*11^4 + O(11^5),
→3 + 10*11 + 5*11^2 + 9*11^3 + 4*11^4 + O(11^5), 3 + 11 + 5*11^2 + 4*11^4 + O(11^5))
```

```python
sage: K = pAdicField(11,5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/
→16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.coleman_integrals_on_basis(P, Q)
(3*11^3 + 7*11^4 + 4*11^5 + 7*11^6 + 5*11^7 + O(11^8), 3*11 + 10*11^2 + 8*11^3 +
→3 + 9*11^4 + 7*11^5 + O(11^6), 4*11^-1 + 2 + 6*11 + 6*11^2 + 7*11^3 + O(11^4),
→11^-3 + 6*11^-2 + 2*11^-1 + 2 + O(11^2))
sage: R = C(0,1/4)
sage: a = C.coleman_integrals_on_basis(P,R) # long time (7s on sage.math,
→2011)
sage: b = C.coleman_integrals_on_basis(R,Q) # long time (9s on sage.math,
→2011)
sage: c = C.coleman_integrals_on_basis(P,Q) # long time
sage: a+b == c # long time
True
```

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: S = HK(1,0)
sage: P = HK(0,3)
sage: T = HK(0,1,0)
sage: Q = HK.lift_x(5^-2)
sage: R = HK.lift_x(4*5^-2)
sage: HK.coleman_integrals_on_basis(S,P)
(HK.coleman_integrals_on_basis(T,P)
(2*5^2 + 5*4 + 5*5 + 3*5^6 + 3*5^7 + 2*5^8 + O(5^9), 5 + 2*5^2 + 4*5^3 + 2*5^4 +
→4 + 3*5^6 + 4*5^7 + 2*5^8 + O(5^9))
sage: HK.coleman_integrals_on_basis(S,P) == -HK.coleman_integrals_on_basis(S,
→P)
True
sage: HK.coleman_integrals_on_basis(S,Q)
(4*5 + 4*5^2 + 4*5^3 + O(5^4), 5^-1 + O(5^3))
```
sage: HK.coleman_integrals_on_basis(Q, R)
4*5 + 2*5^2 + 2*5^3 + 2*5^4 + 5^5 + 5^6 + 5^7 + 3*5^8 + O(5^9), 2*5^-1 + 4 +
˓→ 4*5 + 4*5^2 + 2*5^3 + 2*5^4 + 3*5^5 + 2*5^6 + O(5^7))
sage: HK.coleman_integrals_on_basis(S, R) == HK.coleman_integrals_on_basis(S, Q) + HK.coleman_integrals_on_basis(Q, R)
True
sage: HK.coleman_integrals_on_basis(T, T)
(0, 0)
sage: HK.coleman_integrals_on_basis(S, T)
(0, 0)

AUTHORS:
• Robert Bradshaw (2007-03): non-Weierstrass points
• Jennifer Balakrishnan and Robert Bradshaw (2010-02): Weierstrass points

curve_over_ram_extn (deg)
Return self over \( \mathbb{Q}_p(p^{1/\text{deg}}) \).

INPUT:
• deg: the degree of the ramified extension

OUTPUT:
self over \( \mathbb{Q}_p(p^{1/\text{deg}}) \)

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: K = Qp(11, 5)
sage: HK = H.change_ring(K)
sage: HL = HK.curve_over_ram_extn(2)
sage: HL
Hyperelliptic Curve over 11-adic Eisenstein Extension Field in a defined by x^2 - 11 defined by (1 + O(a^10))*y^2 = (1 + O(a^10))*x^5 + (10 + 8*a^2 +
˓→ 10*a^4 + 10*a^6 + 10*a^8 + O(a^10))*x^3 + (7 + a^2 + O(a^10))*x^2 + (7 +
˓→ 3*a^2 + O(a^10))*x

AUTHOR:
• Jennifer Balakrishnan

find_char_zero_weier_point (Q)
Given \( Q \) a point on self in a Weierstrass disc, finds the center of the Weierstrass disc (if defined over self.base_ring())

EXAMPLES:

sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5, 8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)
sage: Q = HK.lift_x(5^-2)
sage: S = HK(1, 0)
sage: T = HK(0, 1, 0)
sage: HK.find_char_zero_weier_point(P)

(continues on next page)
AUTHOR:

- Jennifer Balakrishnan

frobenius \((P=None)\)

Returns the \(p\)-th power lift of Frobenius of \(P\)

EXAMPLES:

```python
sage: K = Qp(11, 5)
sage: R.<x> = K[]
sage: E = HyperellipticCurve(x^5 - 21*x - 20)
sage: P = E.lift_x(2)
sage: E.frobenius(P)
(2 + 10*11 + 5*11^2 + 11^3 + O(11^5) : 5 + 9*11 + 2*11^2 + O(11^5) : 1 + O(11^5))
sage: Q = E.teichmuller(P); Q
(2 + 10*11 + 4*11^2 + 11^3 + O(11^5) : 5 + 9*11 + 2*11^2 + 11^3 + O(11^5))
sage: E.frobenius(Q)
(2 + 10*11 + 4*11^2 + 11^3 + O(11^5) : 5 + 9*11 + 2*11^2 + 11^3 + O(11^5))
sage: R.<x> = QQ[]
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: Q = H(0,0)
sage: u,v = H.local_coord(Q,prec=100)
sage: K = Qp(11,5)
sage: L.<a> = K.extension(x^20-11)
sage: HL = H.change_ring(L)
sage: S = HL(u(a),v(a))
sage: HL.frobenius(S)
(8*a^22 + 10*a^42 + 4*a^44 + 2*a^46 + 9*a^48 + 8*a^50 + a^52 + 7*a^54 + a^56 + 5*a^58 + 9*a^62 + 5*a^64 + a^66 + 6*a^68 + a^70 + 6*a^74 + 2*a^76 + 2*a^78 + 4*a^82 + 5*a^84 + 2*a^86 + 7*a^88 + a^90 + 6*a^92 + a^94 + 9*a^96 + 2*a^102 + 2*a^106 + 6*a^108 + 8*a^110 + 3*a^112 + a^114 + 8*a^116 + 10*a^118 + 3*a^120 + O(a^122) : a^11 + 7*a^33 + 7*a^35 + 4*a^37 + 6*a^39 + 9*a^41 + 8*a^43 + 8*a^45 + a^47 + 7*a^51 + 4*a^53 + 5*a^55 + a^57 + 7*a^59 + 5*a^61 + 9*a^63 + 4*a^65 + 10*a^69 + 3*a^71 + 2*a^73 + 9*a^75 + 10*a^77 + 6*a^79 + 10*a^81 + 7*a^85 + a^87 + 4*a^89 + 8*a^91 + a^93 + 8*a^95 + 2*a^97 + 7*a^99 + a^101 + 3*a^103 + 6*a^105 + 7*a^107 + 4*a^109 + O(a^111) : 1 + O(a^100))
```

AUTHORS:

- Robert Bradshaw and Jennifer Balakrishnan (2010-02)

get_boundary_point \((\text{curve} \over \text{extn}, P)\)

Given self over an extension field, find a point in the disc of \(P\) near the boundary
INPUT:

- curve_over_extn: self over a totally ramified extension
- P: Weierstrass point

OUTPUT:

a point in the disc of $P$ near the boundary

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(3,6)
sage: HK = H.change_ring(K)
sage: P = HK(1,0)
sage: J.<a> = K.extension(x^30-3)
sage: HJ = H.change_ring(J)
sage: S = HK.get_boundary_point(HJ,P)
sage: S
(1 + 2*a^2 + 2*a^6 + 2*a^18 + a^32 + a^34 + a^36 + 2*a^38 + a^42 +
→ 2*a^44 + a^48 + 2*a^50 + 2*a^52 + a^54 + a^56 + 2*a^60 + 2*a^62 + a^70 +
→ 2*a^72 + a^76 + 2*a^78 + a^82 + a^88 + a^96 + 2*a^98 + 2*a^102 + a^104 +
→ 2*a^106 + a^108 + 2*a^110 + a^112 + 2*a^116 + a^126 + 2*a^130 + 2*a^132 + a^144 + 2*a^148 + 2*a^150 + a^152 + 2*a^154 + a^156 + a^162 + a^164 + a^166 + a^168 +
→ a^170 + a^176 + a^178 + O(a^180) : a + O(a^180) : 1 + O(a^180))
```

AUTHOR:

- Jennifer Balakrishnan

is_in_weierstrass_disc($P$)

Checks if $P$ is in a Weierstrass disc

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK(0,3)
sage: HK.is_in_weierstrass_disc(P)
False
sage: Q = HK(0,1,0)
sage: HK.is_in_weierstrass_disc(Q)
True
sage: S = HK(1,0)
sage: HK.is_in_weierstrass_disc(S)
True
sage: T = HK.lift_x(1+3*5^2); T
(1 + 3*5^2 + O(5^8) : 2*5 + 4*5^3 + 3*5^4 + 5*5^6 + 3*5^6 + O(5^7) : 1 + O(5^8))
sage: HK.is_in_weierstrass_disc(T)
True
```

AUTHOR:

- Jennifer Balakrishnan (2010-02)

is_same_disc($P$, $Q$)

Checks if $P$, $Q$ are in same residue disc

EXAMPLES:
```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)
sage: Q = HK.lift_x(5^-2)
sage: S = HK(1,0)
sage: HK.is_same_disc(P,Q) False
sage: HK.is_same_disc(P,S) True
sage: HK.is_same_disc(Q,S) False
```

### is_weierstrass(P)
Checks if $P$ is a Weierstrass point (i.e., fixed by the hyperelliptic involution)

**EXAMPLES:**

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK(0,3)
sage: HK.is_weierstrass(P) False
sage: Q = HK(0,1,0)
sage: HK.is_weierstrass(Q) True
sage: S = HK(1,0)
sage: HK.is_weierstrass(S) True
sage: T = HK.lift_x((1+3*5^2)); T (1 + 3*5^2 + O(5^8) : 2*5 + 4*5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7) : 1 + O(5^8))
sage: HK.is_weierstrass(T) False
```

**AUTHOR:**

- Jennifer Balakrishnan (2010-02)

### local_analytic_interpolation(P, Q)
For points $P, Q$ in the same residue disc, this constructs an interpolation from $P$ to $Q$ (in homogeneous coordinates) in a power series in the local parameter $t$, with precision equal to the $p$-adic precision of the underlying ring.

**INPUT:**

- $P$ and $Q$ points on self in the same residue disc

**OUTPUT:**

Returns a point $X(t) = (x(t) : y(t) : z(t))$ such that:

1. $X(0) = P$ and $X(1) = Q$ if $P, Q$ are not in the infinite disc
2. $X(P[0]^9/P[1]) = P$ and $X(Q[0]^9/Q[1]) = Q$ if $P, Q$ are in the infinite disc

**EXAMPLES:**
A non-Weierstrass disc:

```python
sage: P = HK(0,3)
sage: Q = HK(5, 3 + 3*5^2 + 2*5^3 + 3*5^4 + 2*5^5 + 2*5^6 + 3*5^7 + O(5^8))
sage: x, y, z, = HK.local_analytic_interpolation(P, Q)
sage: x(0) == P[0], x(1) == Q[0], y(0) == P[1], y.polynomial()(1) == Q[1]
(True, True, True, True)
```

A finite Weierstrass disc:

```python
sage: P = HK.lift_x(1 + 2*5^2)
sage: Q = HK.lift_x(1 + 3*5^2)
sage: x, y, z = HK.local_analytic_interpolation(P, Q)
sage: x(0) == P[0], x.polynomial()(1) == Q[0], y(0) == P[1], y(1) == Q[1]
(True, True, True, True)
```

The infinite disc:

```python
sage: P = HK.lift_x(5^-2)
sage: Q = HK.lift_x(4*5^-2)
sage: x, y, z = HK.local_analytic_interpolation(P, Q)
sage: x = x/z
sage: y = y/z
sage: x(P[0]/P[1]) == P[0]
True
sage: x(Q[0]/Q[1]) == Q[0]
True
sage: y(P[0]/P[1]) == P[1]
True
sage: y(Q[0]/Q[1]) == Q[1]
True
```

An error if points are not in the same disc:

```python
sage: x, y, z = HK.local_analytic_interpolation(P, HK(1,0))
Traceback (most recent call last):
 ... ValueError: (5^-2 + O(5^6) : 5^-3 + 4*5^2 + 5^3 + 3*5^4 + O(5^5) : 1 + O(5^→8)) and (1 + O(5^8) : 0 : 1 + O(5^8)) are not in the same residue disc
```

AUTHORS:

- Robert Bradshaw (2007-03)
- Jennifer Balakrishnan (2010-02)

`newton_sqrt`\

\[ f, x0, prec \]

Takes the square root of the power series \( f \) by Newton’s method

NOTE:

this function should eventually be moved to \( p \)-adic power series ring

INPUT:
• \( f \) – power series with coefficients in \( \mathbb{Q}_p \) or an extension

• \( x_0 \) – seeds the Newton iteration

• \( \text{prec} \) – precision

OUTPUT: the square root of \( f \)

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^5-23*x^3+18*x^2+40*x)
sage: Q = H(0,0)
sage: u,v = H.local_coord(Q,prec=100)
sage: K = Qp(11,5)
sage: HK = H.change_ring(K)
sage: L.<a> = K.extension(x^20-11)
sage: HL = H.change_ring(L)
sage: S = HL(u(a),v(a))
sage: f = H.hyperelliptic_polynomials()[0]
sage: y = HK.newton_sqrt(f(u(a)^11), a^11,5)
sage: y^2 - f(u(a)^11)
O(a^122)
```

AUTHOR:

• Jennifer Balakrishnan

\textbf{residue\_disc}(P)

Gives the residue disc of \( P \)

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: H = HyperellipticCurve(x^3-10*x+9)
sage: K = Qp(5,8)
sage: HK = H.change_ring(K)
sage: P = HK.lift_x(1 + 2*5^2)
sage: HK.residue_disc(P)
(1 : 0 : 1)
sage: Q = HK(0,3)
sage: HK.residue_disc(Q)
(0 : 3 : 1)
sage: S = HK.lift_x(5^-2)
sage: HK.residue_disc(S)
(0 : 1 : 0)
sage: T = HK(0,1,0)
sage: HK.residue_disc(T)
(0 : 1 : 0)
```

AUTHOR:

• Jennifer Balakrishnan

\textbf{teichmuller}(P)

Find a Teichmüller point in the same residue class of \( P \).

Because this lift of Frobenius acts as \( x \mapsto x^p \), take the Teichmüller lift of \( x \) and then find a matching \( y \) from that.

EXAMPLES:
```
sage: K = pAdicField(7, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: E.frobenius(P) == P
False
sage: TP = E.teichmuller(P); TP
(0 : 2 + 3*7 + 3*7^2 + 3*7^4 + O(7^5) : 1 + O(7^5))
sage: E.frobenius(TP) == TP
True
sage: (TP[0] - P[0]).valuation() > 0, (TP[1] - P[1]).valuation() > 0
(True, True)
```

```
tiny_integrals(F, P, Q)
Evaluate the integrals of $f_i dx/2y$ from P to Q for each f_i in F by formally integrating a power series in a local parameter t.

P and Q MUST be in the same residue disc for this result to make sense.

INPUT:

• F a list of functions f_i
• P a point on self
• Q a point on self (in the same residue disc as P)

OUTPUT:

The integrals $\int_P^Q f_i dx/2y$

EXAMPLES:
```
sage: K = pAdicField(17, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: x, y = E.monsky_washnitzer_gens()
sage: E.tiny_integrals([1, x], P, TP) == E.tiny_integrals_on_basis(P, TP)
True
```
```
sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(11^(-2))
sage: Q = C.lift_x(3*11^(-2))
sage: C.tiny_integrals([1], P, Q)
(3*11^3 + 7*11^4 + 4*11^5 + 7*11^6 + 5*11^7 + O(11^8))
```

Note that this fails if the points are not in the same residue disc:
```
sage: S = C(0,1/4)
sage: C.tiny_integrals([1,x,x^2,x^3], P, S)
Traceback (most recent call last):
...
ValueError: (11^-2 + O(11^3) : 11^-5 + 8*11^-2 + O(11^0) : 1 + O(11^5)) and
(0 : 3 + 8*11 + 2*11^2 + 8*11^3 + 2*11^4 + O(11^5) : 1 + O(11^5)) are not
in the same residue disc
```
tiny_integrals_on_basis \((P, Q)\)

Evaluate the integrals \(\left\{ \int_0^Q x^i dx / 2y \right\}_{i=0}^{2g-1} \) by formally integrating a power series in a local parameter \(t\). \(P\) and \(Q\) MUST be in the same residue disc for this result to make sense.

INPUT:

- \(P\) a point on self
- \(Q\) a point on self (in the same residue disc as \(P\))

OUTPUT:

The integrals \(\left\{ \int_0^Q x^i dx / 2y \right\}_{i=0}^{2g-1} \)

EXAMPLES:

```python
sage: K = pAdicField(17, 5)
sage: E = EllipticCurve(K, [-31/3, -2501/108]) # 11a
sage: P = E(K(14/3), K(11/2))
sage: TP = E.teichmuller(P);
sage: E.tiny_integrals_on_basis(P, TP)
(17 + 14*17^2 + 17^3 + 8*17^4 + O(17^5), 16*17 + 5*17^2 + 8*17^3 + 14*17^4 + O(17^5))
```

```python
sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: P = C.lift_x(11^-2)
sage: Q = C.lift_x(3*11^-2)
sage: C.tiny_integrals_on_basis(P, Q)
(3*11^3 + 7*11^4 + 4*11^5 + 7*11^6 + 5*11^7 + O(11^8), 3*11 + 10*11^2 + 8*11^3 + 11^4 + 3 + 9*11^4 + 7*11^5 + O(11^6), 4*11^-1 + 2 + 6*11 + 6*11^2 + 7*11^3 + O(11^-4), 11^-3 + 6*11^-2 + 2*11^-1 + 1 + O(11^2))
```

Note that this fails if the points are not in the same residue disc:

```python
sage: S = C(0,1/4)
sage: C.tiny_integrals_on_basis(P,S)
Traceback (most recent call last):
  ... ValueError: ((11^-2 + 0(11^3) : 11^-5 + 8*11^-2 + O(11^0) : 1 + O(11^5)) and
  _→(0 : 3 + 8*11 + 2*11^2 + 8*11^3 + 2*11^4 + O(11^5) : 1 + O(11^5)) are not
  _→in the same residue disc
```

weierstrass_points

Return the Weierstrass points of self defined over self.base_ring(), that is, the point at infinity and those points in the support of the divisor of \(y\)

EXAMPLES:

```python
sage: K = pAdicField(11, 5)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 + 33/16*x^4 + 3/4*x^3 + 3/8*x^2 - 1/4*x + 1/16)
sage: C.weierstrass_points()
[(0 : 1 + O(11^5) : 0), (7 + 10*11 + 4*11^3 + O(11^5) : 0 : 1 + O(11^5))]```
11.5 Hyperelliptic curves over the rationals

class sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field.HyperellipticCurve_rational_field

Bases: 

sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic

matrix_of_frobenius (p, prec=20)

11.6 Mestre’s algorithm

This file contains functions that:

• create hyperelliptic curves from the Igusa-Clebsch invariants (over \( \mathbb{Q} \) and finite fields)
• create Mestre’s conic from the Igusa-Clebsch invariants

AUTHORS:

• Florian Bouyer
• Marco Streng

sage.schemes.hyperelliptic_curves.mestre.HyperellipticCurve_from_invariants

Returns a hyperelliptic curve with the given Igusa-Clebsch invariants up to scaling.

The output is a curve over the field in which the Igusa-Clebsch invariants are given. The output curve is unique up to isomorphism over the algebraic closure. If no such curve exists over the given field, then raise a ValueError.

INPUT:

• \( i \) - list or tuple of length 4 containing the four Igusa-Clebsch invariants: \( I_2, I_4, I_6, I_{10} \).
• reduced - Boolean (default = True) If True, tries to reduce the polynomial defining the hyperelliptic curve using the function reduce_polynomial() (see the reduce_polynomial() documentation for more details).
• precision - integer (default = None) Which precision for real and complex numbers should the reduction use. This only affects the reduction, not the correctness. If None, the algorithm uses the default 53 bit precision.
• algorithm - 'default' or 'magma'. If set to 'magma', uses Magma to parameterize Mestre’s conic (needs Magma to be installed).

OUTPUT:

A hyperelliptic curve object.

EXAMPLES:
Examples over the rationals:

```
 sage: HyperellipticCurve_from_invariants([3840,414720,491028480,2437709561856])
 Traceback (most recent call last):
 ...
 NotImplementedError: Reduction of hyperelliptic curves not yet implemented. See trac #14755 and #14756.
 sage: HyperellipticCurve_from_invariants([3840,414720,491028480,2437709561856], reduced = False)
 Hyperelliptic Curve over Rational Field defined by y^2 = -46656*x^6 + 46656*x^5 - 19440*x^4 + 4320*x^3 - 540*x^2 + 4410*x - 1
 sage: HyperellipticCurve_from_invariants([21, 225/64, 22941/512, 1])
 Traceback (most recent call last):
 ...
 NotImplementedError: Reduction of hyperelliptic curves not yet implemented. See trac #14755 and #14756.
```

An example over a finite field:

```
 sage: HyperellipticCurve_from_invariants([GF(13)(1),3,7,5])
 Hyperelliptic Curve over Finite Field of size 13 defined by y^2 = 8*x^5 + 5*x^4 + 5*x^2 + 9*x + 3
```

An example over a number field:

```
 sage: K = QuadraticField(353, 'a')
 sage: H = HyperellipticCurve_from_invariants([21, 225/64, 22941/512, 1], reduced = false)
 sage: f = K['x'](H.hyperelliptic_polynomials()[0])
```

If the Mestre Conic defined by the Igusa-Clebsch invariants has no rational points, then there exists no hyperelliptic curve over the base field with the given invariants:

```
 sage: HyperellipticCurve_from_invariants([1,2,3,4])
 Traceback (most recent call last):
 ...
 ValueError: No such curve exists over Rational Field as there are no rational points on Projective Conic Curve over Rational Field defined by -2572155000*u^2 - 317736000*u*v + 1250755459200*v^2 + 2501510918400*u*w + 39276887040*v*w + 2736219686912*w^2
```

Mestre’s algorithm only works for generic curves of genus two, so another algorithm is needed for those curves with extra automorphism. See also trac ticket #12199:

```
 sage: P.<x> = QQ[]
 sage: C = HyperellipticCurve(x^6+1)
 sage: i = C.igusa_clebsch_invariants()
 sage: HyperellipticCurve_from_invariants(i)
 Traceback (most recent call last):
 ...
 TypeError: F (=0) must have degree 2
```

Igusa-Clebsch invariants also only work over fields of characteristic different from 2, 3, and 5, so another algorithm will be needed for fields of those characteristics. See also trac ticket #12200:

```
 sage: P.<x> = GF(3)[]
 sage: HyperellipticCurve(x^6+x+1).igusa_clebsch_invariants()
 Traceback (most recent call last):
 (continues on next page)
NotImplementedError: Invariants of binary sextics/genus 2 hyperelliptic curves
→ not implemented in characteristics 2, 3, and 5
sage: HyperellipticCurve_from_invariants([GF(5)(1),1,0,1])
Traceback (most recent call last):
...
ZeroDivisionError: inverse of Mod(0, 5) does not exist

ALGORITHM:

This is Mestre’s algorithm [M1991]. Our implementation is based on the formulae on page 957 of [LY2001],
cross-referenced with [W1999] to correct typos.

First construct Mestre’s conic using the Mestre_conic() function. Parametrize the conic if possible. Let
\(f_1, f_2, f_3 \) be the three coordinates of the parametrization of the conic by the projective line, and change them
into one variable by letting \(F_i = f_i(t,1) \). Note that each \(F_i \) has degree at most 2.

Then construct a sextic polynomial \(f = \sum_{0 \leq i,j,k \leq 3} c_{ijk} \cdot F_i \cdot F_j \cdot F_k \), where \(c_{ijk} \) are defined as rational
functions in the invariants (see the source code for detailed formulae for \(c_{ijk} \)). The output is the hyperelliptic
curve \(y^2 = f \).

REFERENCES:
sage.schemes.hyperelliptic_curves.mestre.Mestre_conic(i, xyz=False, names=('u', 'v', 'w'))

Return the conic equation from Mestre’s algorithm given the Igusa-Clebsch invariants.

It has a rational point if and only if a hyperelliptic curve corresponding to the invariants exists.

INPUT:

• i - list or tuple of length 4 containing the four Igusa-Clebsch invariants: \(I_2, I_4, I_6, I_{10} \)

• xyz - Boolean (default: False) if True, the algorithm also returns three invariants \(x,y,z \) used in Mestre’s
algorithm

• names (default: ‘u,v,w’) - the variable names for the Conic

OUTPUT:

A Conic object

EXAMPLES:

A standard example:

sage: Mestre_conic([1,2,3,4])
Projective Conic Curve over Rational Field defined by -2572155000*u^2 -
\rightarrow 317736000*u*v + 1250755459200*v^2 + 2501510918400*u*w + 39276887040*v*w +
\rightarrow 2736219686912*w^2

Note that the algorithm works over number fields as well:

sage: k = NumberField(x^2-41,'a')
sage: a = k.an_element()
sage: Mestre_conic([1,2+a,a,4+a])
Projective Conic Curve over Number Field in a with defining polynomial x^2 - 41
\rightarrow defined by (-80190000*a + 343845000)*u^2 -
\rightarrow 317736000*u*v + 1250755459200*v^2 + 2501510918400*u*w + 39276887040*v*w +
\rightarrow 2736219686912*w^2

And over finite fields:
Mestre_conic([GF(7)(10),GF(7)(1),GF(7)(2),GF(7)(3)])

Projective Conic Curve over Finite Field of size 7 defined by
\[-2*\text{u}*\text{v} - \text{v}^2 - 2*\text{u}*\text{w} + 2*\text{v}*\text{w} - 3*\text{w}^2\]

An example with xyz:

Mestre_conic([5,6,7,8], xyz=True)

(Projective Conic Curve over Rational Field defined by
\[-415125000*\text{u}^2 + 608040000*\text{u}*\text{v} + 33065136000*\text{v}^2 + 66130272000*\text{u}*\text{w} + 240829440*\text{v}*\text{w} + 10208835584*\text{w}^2, 232/1125, -1072/16875, 14695616/2109375)\]

ALGORITHM:
The formulas are taken from pages 956 - 957 of \[LY2001\] and based on pages 321 and 332 of \[M1991\].
See the code or \[LY2001\] for the detailed formulae defining x, y, z and L.

11.7 Computation of Frobenius matrix on Monsky-Washnitzer cohomology

The most interesting functions to be exported here are \texttt{matrix_of_frobenius()} and \texttt{adjusted_prec()}.
Currently this code is limited to the case \(p \geq 5\) (no \(\text{GF}(p^n)\) for \(n > 1\)), and only handles the elliptic curve case (not more general hyperelliptic curves).

REFERENCES:

AUTHORS:

• David Harvey and Robert Bradshaw: initial code developed at the 2006 MSRI graduate workshop, working with Jennifer Balakrishnan and Liang Xiao
• David Harvey (2006-08): cleaned up, rewrote some chunks, lots more documentation, added Newton iteration method, added more complete ‘trace trick’, integrated better into Sage.
• David Harvey (2007-02): added algorithm with \(\sqrt{p}\) complexity (removed in May 2007 due to better C++ implementation)
• Robert Bradshaw (2007-03): keep track of exact form in reduction algorithms
• Robert Bradshaw (2007-04): generalization to hyperelliptic curves
• Julian Rueth (2014-05-09): improved caching

\texttt{class sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential\((\texttt{parent}, \texttt{val}=0, \texttt{offset}=0)\)}

Bases: \texttt{sage.structure.element.ModuleElement}

Create an element of the Monsky-Washnitzer ring of differentials, of the form \(Fdx/2y\).

INPUT:

• \texttt{parent} – Monsky-Washnitzer differential ring (instance of class \texttt{MonskyWashnitzerDifferentialRing})
• \texttt{val} – element of the base ring, or list of coefficients
• \texttt{offset} – if non-zero, shift \texttt{val} by \(y^{\text{offset}}\) (default 0)
EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5 - 4*x + 4)
sage: x,y = C.monsky_washnitzer_gens()
sage: MW = C.invariant_differential().parent()
sage: MonskyWashnitzerDifferential(MW, x) x dx/2y
sage: MonskyWashnitzerDifferential(MW, y) y dx/2y
sage: MonskyWashnitzerDifferential(MW, x, 10) y^10*x dx/2y
```

```python
coeff() Returns \( A \), where this element is \( A \frac{dx}{2y} \).

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.coeff() 1
sage: (x*w).coeff() y
```

coeffs\( (R=\text{None}) \)
Used to obtain the raw coefficients of a differential, see SpecialHyperellipticQuotientElement.coeffs().

INPUT:

- \( R \) – An (optional) base ring in which to cast the coefficients

OUTPUT:

The raw coefficients of \( A \) where self is \( A \frac{dx}{2y} \).

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = C.invariant_differential()
sage: w.coeffs() ([(1, 0, 0, 0, 0)], 0)
sage: (x*w).coeffs() ([(0, 1, 0, 0, 0)], 0)
sage: (y*w).coeffs() ([(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)], 0)
sage: (y^-2*w).coeffs() ([(1, 0, 0, 0, 0), (0, 0, 0, 0, 0), (0, 0, 0, 0, 0)], -2)
```

coleman_integral\( (P, Q) \)
Compute the definite integral of self from \( P \) to \( Q \).
INPUT:

- $P, Q$ – two points on the underlying curve

OUTPUT:

$\int_P^Q \text{self}$

EXAMPLES:

```python
sage: K = pAdicField(5,7)
sage: E = EllipticCurve(K,[-31/3,-2501/108]) #11a
sage: P = E(K(14/3), K(11/2))
sage: w = E.invariant_differential()
sage: w.coleman_integral(P,2*P)
O(5^6)
sage: Q = E([3,58332])
sage: w.coleman_integral(P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: (2*w).coleman_integral(P,Q) == 2*(w.coleman_integral(P,Q))
True
```

`extract_pow_y(k)`

Returns the power of $y$ in $A$ where self is $Adx/2y$.

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: A = y^5 - x*y^3
sage: A.extract_pow_y(5)
[1, 0, 0, 0, 0]
sage: (A * C.invariant_differential()).extract_pow_y(5)
[1, 0, 0, 0, 0]
```

`integrate(P,Q)`

Compute the definite integral of self from $P$ to $Q$.

INPUT:

- $P, Q$ – two points on the underlying curve

OUTPUT:

$\int_P^Q \text{self}$

EXAMPLES:

```python
sage: K = pAdicField(5,7)
sage: E = EllipticCurve(K,[-31/3,-2501/108]) #11a
sage: P = E(K(14/3), K(11/2))
sage: w = E.invariant_differential()
sage: w.coleman_integral(P,2*P)
O(5^6)
sage: Q = E([3,58332])
sage: w.coleman_integral(P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: (2*w).coleman_integral(P,Q) == 2*(w.coleman_integral(P,Q))
True
```

(continues on next page)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: w.coleman_integral(2*P,Q)
2*5 + 4*5^2 + 3*5^3 + 4*5^4 + 3*5^5 + O(5^6)
sage: (2*w).coleman_integral(P, Q) == 2*(w.coleman_integral(P, Q))
True

max_pow_y()
Returns the maximum power of \( y \) in \( A \) where self is \( A dx/2y \).

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = y^5 * C.invariant_differential()
sage: w.max_pow_y()
5
sage: w = (x^2*y^4 + y^5) * C.invariant_differential()
sage: w.max_pow_y()
5
```

min_pow_y()
Returns the minimum power of \( y \) in \( A \) where self is \( A dx/2y \).

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = y^5 * C.invariant_differential()
sage: w.min_pow_y()
5
sage: w = (x^2*y^4 + y^5) * C.invariant_differential()
sage: w.min_pow_y()
4
```

reduce()
Use homology relations to find \( a \) and \( f \) such that this element is equal to \( a + df \), where \( a \) is given in terms of the \( x' dx/2y \).

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: w = (x*y).diff()
sage: w.reduce()
(y*x, 0 dx/2y)
sage: w = x^4 * C.invariant_differential()
sage: w.reduce()
(1/5*y^5, 4/5*1 dx/2y)
sage: w = sum(QQ.random_element() * x^i * y^j for i in [0..4] for j in [-3..
˓→3]) * C.invariant_differential()
sage: f, a = w.reduce()
sage: f.diff() + a - w
0 dx/2y
```
**reduce_fast** *(even_degree_only=False)*

Use homology relations to find $a$ and $f$ such that this element is equal to $a + df$, where $a$ is given in terms of the $x'dx/2y$.

**EXAMPLES:**

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^3-4*x+4)
sage: x, y = E.monsky_washnitzer_gens()
sage: x.diff().reduce_fast()
(x, (0, 0))
sage: y.diff().reduce_fast()
(y+1, (0, 0))
sage: (y^-1).diff().reduce_fast()
((y^-1)*1, (0, 0))
sage: (y^-11).diff().reduce_fast()
((y^-11)*1, (0, 0))
sage: (y^-11)*1, (0, 0))
sage: (y^-11).diff().reduce_fast()
((y^-11)*1, (0, 0))
sage: (x*y^2).diff().reduce_fast()
(y^2*x, (0, 0))
```

**reduce_neg_y**

Use homology relations to eliminate negative powers of $y$.

**EXAMPLES:**

```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x, y = C.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)
```

**reduce_neg_y_fast** *(even_degree_only=False)*

Use homology relations to eliminate negative powers of $y$.

**EXAMPLES:**

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x, y = E.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y_fast()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y_fast()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)
```

It leaves non-negative powers of $y$ alone:

```python
sage: y.diff()
(-3*x + 5*x^4) dx/2y
sage: y.diff().reduce_neg_y_fast()
(0, (-3*x + 5*x^4) dx/2y)
```

**reduce_neg_y_faster** *(even_degree_only=False)*

Use homology relations to eliminate negative powers of $y$.

**EXAMPLES:**
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-3*x+1)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^-1).diff().reduce_neg_y()
((y^-1)*1, 0 dx/2y)
sage: (y^-5*x^2+y^-1*x).diff().reduce_neg_y_faster()
((y^-1)*x + (y^-5)*x^2, 0 dx/2y)

reduce_pos_y()  
Use homology relations to eliminate positive powers of y.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^3-4*x+4)
sage: x,y = C.monsky_washnitzer_gens()
sage: (y^2).diff().reduce_pos_y()
(y^2*1, 0 dx/2y)
sage: (y^2*x).diff().reduce_pos_y()
(y^2*x, 0 dx/2y)
sage: (y^92*x).diff().reduce_pos_y()
(y^92*x, 0 dx/2y)
sage: w = (y^3 + x).diff()
sage: w += w.parent()(x)
sage: w.reduce_pos_y_fast()
(y^3*1 + x, x dx/2y)

reduce_pos_y_faster (even_degree_only=False)  
Use homology relations to eliminate positive powers of y.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^3-4*x+4)
sage: x, y = E.monsky_washnitzer_gens()
sage: y.diff().reduce_pos_y_fast()
(y*1, 0 dx/2y)
sage: (y^2).diff().reduce_pos_y_fast()
(y^2*1, 0 dx/2y)
sage: (y^2*x).diff().reduce_pos_y_fast()
(y^2*x, 0 dx/2y)
sage: (y^92*x).diff().reduce_pos_y_fast()
(y^92*x, 0 dx/2y)
sage: w = (y^3 + x).diff()
sage: w += w.parent()(x)
sage: w.reduce_pos_y_fast()
(y^3*1 + x, x dx/2y)

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing  
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.modules.module.Module  
A ring of Monsky–Washnitzer differentials over base_ring.

Q()  
Returns Q(x) where the model of the underlying hyperelliptic curve of self is given by y^2 = Q(x).

EXAMPLES:
```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.Q()
x^5 - 4*x + 4
```

**base_extend**(\(R\))

Return a new differential ring which is self base-extended to \(R\)

**INPUT:**

- \(R\) – ring

**OUTPUT:**

Self, base-extended to \(R\).

**EXAMPLES:**

```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 4*x + 4) over
→ Rational Field
sage: MW.base_extend(Qp(5,5)).base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = (1 + O(5^5))*x^5 + (1 +
→ 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5))*x + 4 + O(5^5)) over 5-adic Field
→ with capped relative precision 5
```

**change_ring**(\(R\))

Returns a new differential ring which is self with the coefficient ring changed to \(R\).

**INPUT:**

- \(R\) – ring of coefficients

**OUTPUT:**

Self, with the coefficient ring changed to \(R\).

**EXAMPLES:**

```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.change_ring(Qp(5,5)).base_ring()
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = (1 + O(5^5))*x^5 + (1 +
→ 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5))*x + 4 + O(5^5)) over 5-adic Field
→ with capped relative precision 5
```

**degree**(\()\)

Returns the degree of \(Q(x)\), where the model of the underlying hyperelliptic curve of self is given by \(y^2 = Q(x)\).

**EXAMPLES:**

11.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.Q()
\(x^5 - 4x + 4\)
sage: MW.degree()
5

**dimension()**

Returns the dimension of self.

**EXAMPLES:**

```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: K = Qp(7,5)
sage: CK = C.change_ring(K)
sage: MW = CK.invariant_differential().parent()
sage: MW.dimension()
4
```

**frob_Q(p)**

Returns and caches \(Q(x^p)\), which is used in computing the image of \(y\) under a \(p\)-power lift of Frobenius to \(A^1\).

**EXAMPLES:**

```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.frob_Q(3)
\(-(60-48*y^2+12*y^4-y^6)*1 + (192-96*y^2+12*y^4)*x - (192-48*y^2)*x^2 + 60*x^3\)
sage: MW.Q()(MW.x_to_p(3))
\(-(60-48*y^2+12*y^4-y^6)*1 + (192-96*y^2+12*y^4)*x - (192-48*y^2)*x^2 + 60*x^3\)
sage: MW.frob_Q(11) is MW.frob_Q(11)
True
```

**frob_basis_elements**(prec, p)

Return the action of a \(p\)-power lift of Frobenius on the basis

\(\{dx/2y, xdx/2y, \ldots, x^{d-2}dx/2y\}\)

where \(d\) is the degree of the underlying hyperelliptic curve.

**EXAMPLES:**

```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: prec = 1
sage: p = 5
sage: MW = C.invariant_differential().parent()
sage: MW.frob_basis_elements(prec,p)
[(92000*y^-14-74200*y^-12+32000*y^-10-8000*y^-8+1000*y^-6-50*y^-4)*1 -
(194400*y^-14-153600*y^-10-96600*y^-8+8600*y^-6)-dx/2y,
(204800*y^-14-153600*y^-10-32000*y^-8)*x - (153600*y^-14-76800*y^-12)*1 + (63950*y^-14-18550*y^-12+30200*y^-10-1040*y^-8+850*y^-6)-
(65*y^-4)*4) dx/2y,
(x^{14}-1291200*y^-14-941400*y^-12+5774400*y^-10-1433600*y^-8+268800*y^-6-1343600*y^-4)*1 -
(19488000*y^-14-15763200*y^-12+49444000*y^-10-9138000*y^-8+1568000*y^-6-225600*y^-4)*1 + (2168800*y^-14-1402400*y^-12+537600*y^-10-1040*y^-8)*x -
(1596800*y^-14-1433600*y^-12+4300800*y^-10-716800*y^-8)*x^2 + (153600*y^-14-76800*y^-12)*x^3 -
(1587200*y^-14-1315200*y^-12+3422400*y^-10-67800*y^-8)*x^4,
(x^5)^{14}-12121600*y^-14-1075200*y^-12+4300800*y^-10-716800*y^-8)*x^3 + (12121600*y^-14-1075200*y^-12+268800*y^-10)*x^4 -
(870200*y^-14-445350*y^-12+63350*y^-10-3200*y^-8+600*y^-6-30*y^-4)*x^{10}-
(12121600*y^-14-1075200*y^-12+1433600*y^-10-5774400*y^-8+1433600*y^-6)*x^8,
(x^{14})^2-12+357600*y^-10-89600*y^-8+5600*y^-6)*x^2 + (1433600*y^-14-1402400*y^-12+537600*y^-10-1040*y^-8)*x^4 -
(1596800*y^-14-1433600*y^-12+1433600*y^-10-5774400*y^-8)*x^6)
```

frob_invariant_differential (prec, p)
Kedlaya’s algorithm allows us to calculate the action of Frobenius on the Monsky-Washnitzer cohomology. First we lift \( \phi \) to \( A^\dagger \) by setting
\[
\phi(x) = x^p \quad \phi(y) = y^p \sqrt{1 + \frac{Q(x^p) - Q(x)^p}{Q(x)^p}}.
\]
Pulling back the differential \( dx/2y \), we get
\[
\phi^{-1} (dx/2y) = px^{p-1} y(\phi(y))^{-1} dx/2y = px^{p-1} y^{1-p} \sqrt{1 + \frac{Q(x^p) - Q(x)^p}{Q(x)^p}} \frac{dx}{2y}
\]
Use Newton’s method to calculate the square root.

EXAMPLES:
```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: prec = 2
sage: p = 7
sage: MW = C.invariant_differential().parent()
sage: MW.frob_invariant_differential(prec,p)
((67894400*y^20-28198880*y^18+161035200*y^16-10035200*y^14+1254400*y^12-
 62720*y^10)*1 - (119503944*y^20-116064242*y^18+43753472*y^16-7426048*y^14+
 14+514304*y^12-12544*y^10+1568*y^8-70*y^6-7*y^4)*x + (78905288*y^20-
 61041016*y^18+16859136*y^16-2207744*y^14+250880*y^12-37632*y^10+3136*y^8-
 8-70*y^6)*x^2 + (39452448*y^20-26148752*y^18+8085490*y^16-2007040*y^14+
 14+376320*y^12-37632*y^10+1568*y^8-8)*x^3 + (21102144*y^20-18120592*y^18+
 8028160*y^16-2007040*y^14+250880*y^12-12544*y^10)*x^4) dx/2y
```

helper_matrix ()
We use this to solve for the linear combination of \( x^i y^j \) needed to clear all terms with \( y^{j-1} \).

EXAMPLES:
```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.helper_matrix()
[256/2101 320/2101 400/2101 500/2101 625/2101]
[-625/8404 -64/2101 -80/2101 -100/2101 -125/2101]
[-125/2101 -625/8404 -64/2101 -80/2101 -100/2101]
[-100/2101 -125/2101 -625/8404 -64/2101 -80/2101]
[-80/2101 -100/2101 -125/2101 -625/8404 -64/2101]
```

invariant_differential ()
Returns \( dx/2y \) as an element of self.

EXAMPLES:
```
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.invariant_differential()
1 dx/2y
```
**x_to_p** \((p)\)

Returns and caches \(x^p\), reduced via the relations coming from the defining polynomial of the hyperelliptic curve.

**EXAMPLES:**

```python
sage: R.<x> = QQ['x']
sage: C = HyperellipticCurve(x^5-4*x+4)
sage: MW = C.invariant_differential().parent()
sage: MW.x_to_p(3)
x^3
sage: MW.x_to_p(5)
-(4-y^2)*1 + 4*x
sage: MW.x_to_p(101) is MW.x_to_p(101)
True
```

`sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing_class`

alias of `sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing`

**class** `sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRing\(Q,\)`

Bases: `sage.rings.ring.CommutativeAlgebra`

Specialised class for representing the quotient ring \(R[x, T]/(T - x^3 - ax - b)\), where \(R\) is an arbitrary commutative base ring (in which 2 and 3 are invertible), \(a\) and \(b\) are elements of that ring.

Polynomials are represented internally in the form \(p_0 + p_1 x + p_2 x^2\) where the \(p_i\) are polynomials in \(T\). Multiplication of polynomials always reduces high powers of \(x\) (i.e. beyond \(x^2\)) to powers of \(T\).

Hopefully this ring is faster than a general quotient ring because it uses the special structure of this ring to speed multiplication (which is the dominant operation in the Frobenius matrix calculation). I haven’t actually tested this theory though.

**Todo:** Eventually we will want to run this in characteristic 3, so we need to: (a) Allow \(Q(x)\) to contain an \(x^2\) term, and (b) Remove the requirement that 3 be invertible. Currently this is used in the Toom-Cook algorithm to speed multiplication.

**EXAMPLES:**

```python
sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R
SpecialCubicQuotientRing over Ring of integers modulo 125 with polynomial T = x^3 \rightarrow + 124*x + 94
sage: x, T = R.gens()
sage: x
(0) + (1)*x + (0)*x^2
sage: T
(T) + (0)*x + (0)*x^2
```

Get generators:

```python
```

Coercions:
Create elements directly from polynomials:

```python
sage: A = R.poly_ring()
sage: A
Univariate Polynomial Ring in T over Ring of integers modulo 125
sage: z = A.gen()
sage: R.create_element(z^2, z+1, 3)
(T^2) + (T + 1)*x + (3)*x^2
```

Some arithmetic:

```python
sage: x^3
(T + 31) + (1)*x + (0)*x^2
sage: 3 * x**15 * T**2 + x - T
(3*T^7 + 90*T^6 + 110*T^5 + 26*T^4 + 124*T) + (15*T^6 + 110*T^5 →
˓→ 35*T^4 + 63*T^2 + 1)*x + (30*T^5 + 40*T^4 + 8*T^3 + 38*T^2)*x^2
```

Retrieve coefficients (output is zero-padded):

```python
sage: x^10
(3*T^2 + 61*T + 8) + (T^3 + 93*T^2 + 12*T + 40)*x + (3*T^2 + 61*T + 9)*x^2
sage: (x^10).coeffs()
[[8, 61, 3, 0], [40, 12, 93, 1], [9, 61, 3, 0]]
```

**Todo:** write an example checking multiplication of these polynomials against Sage’s ordinary quotient ring arithmetic. I can’t seem to get the quotient ring stuff happening right now...

**create_element** *(p0, p1, p2, check=True)*

Creates the element \( p_0 + p_1 \times x + p_2 \times x^2 \), where the \( p_i \) are polynomials in \( T \).

**INPUT:**

- \( p_0, p_1, p_2 \) – coefficients; must be coercible into \( \text{poly\_ring()} \)
- \( \text{check} \) – bool (default True): whether to carry out coercion

**EXAMPLES:**

```python
sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: A, z = R.poly_ring().objgen()
sage: R.create_element(z^2, z+1, 3)
(T^2) + (T + 1)*x + (3)*x^2
```

**gens** ()

Return a list \([x, T]\) where \( x \) and \( T \) are the generators of the ring (as element of this ring).

**Note:** I have no idea if this is compatible with the usual Sage ‘gens’ interface.

**EXAMPLES:**
```python
sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: x
(0) + (1)*x + (0)*x^2
sage: T
(T) + (0)*x + (0)*x^2
```

**poly_ring()**

Return the underlying polynomial ring in $T$.

**EXAMPLES:**

```python
sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: R.poly_ring()
Univariate Polynomial Ring in T over Ring of integers modulo 125
```

```python
class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement(parent, p0, p1, p2, check=True)

Bases: sage.structure.element.CommutativeAlgebraElement

An element of a SpecialCubicQuotientRing.

coeffs()

Returns list of three lists of coefficients, corresponding to the x^0, x^1, x^2 coefficients. The lists are zero padded to the same length. The list entries belong to the base ring.

EXAMPLES:

```python
sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: p = R.create_element(t, t^2 - 2, 3)
sage: p.coeffs()
[[0, 1, 0], [123, 0, 1], [3, 0, 0]]
```

scalar_multiply(scalar)

Multiplies this element by a scalar, i.e. just multiply each coefficient of x^j by the scalar.

INPUT:

* scalar – either an element of base_ring, or an element of poly_ring.

EXAMPLES:

```python
sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: f = R.create_element(2, t, t^2 - 3)
sage: f
(2) + (T)*x + (T^2 + 122)*x^2
sage: f.scalar_multiply(2)
(4) + (2*T)*x + (2*T^2 + 119)*x^2
sage: f.scalar_multiply(t)
(2*T) + (T^2)*x + (T^3 + 122*T)*x^2
```

666 Chapter 11. Hyperelliptic curves
shift \((n)\)
Returns this element multiplied by \(T^n\).

EXAMPLES:
```python
sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: f = R.create_element(2, t, t^2 - 3)
sage: f
(2) + (T)*x + (T^2 + 122)*x^2
sage: f.shift(1)
(2*T) + (T^2)*x + (T^3 + 122*T)*x^2
sage: f.shift(2)
(2*T^2) + (T^3)*x + (T^4 + 122*T^2)*x^2
```

square()
EXAMPLES:
```python
sage: B.<t> = PolynomialRing(Integers(125))
sage: R = monsky_washnitzer.SpecialCubicQuotientRing(t^3 - t + B(1/4))
sage: x, T = R.gens()
sage: f = R.create_element(1 + 2*t + 3*t^2, 4 + 7*t + 9*t^2, 3 + 5*t + 11*t^2)
sage: f.square()
(73*T^5 + 16*T^4 + 38*T^3 + 39*T^2 + 70*T + 120) + (121*T^5 + 113*T^4 + 73*T^3 + 8*T^2 + 51*T + 61)*x + (18*T^4 + 60*T^3 + 22*T^2 + 108*T + 31)*x^2
```

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement

Bases: sage.structure.element.CommutativeAlgebraElement

Elements in the Hyperelliptic quotient ring

EXAMPLES:
```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-36*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: MW = x.parent()
sage: MW(x+x^2+y-77)  # indirect doctest
-(77-y)*1 + x + x^2
```

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement

change_ring \((R)\)
Return the same element after changing the base ring to \(R\).

EXAMPLES:
```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-36*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: MW = x.parent()
sage: MW(x+x^2+y-77)  # indirect doctest
-(77-y)*1 + x + x^2
```

11.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology 667
coeffs (R=None)

Returns the raw coefficients of this element.

INPUT:

• R – an (optional) base-ring in which to cast the coefficients

OUTPUT:

• coeffs – a list of coefficients of powers of \(x \) for each power of \(y \)
• n – an offset indicating the power of \(y \) of the first list element

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x, y = E.monsky_washnitzer_gens()
sage: x.coeffs()
([0, 1, 0, 0, 0], 0)
sage: y.coeffs()
([0, 0, 0, 0, 0], 1, 0, 0, 0, 0), 0)
sage: a = sum(n*x^n for n in range(5)); a
x + 2*x^2 + 3*x^3 + 4*x^4
sage: a.coeffs()
([0, 1, 2, 3, 4], 0)
sage: a.coeffs(Qp(7))
([0, 0, 0, 0, 0], 0, 1, 2, 3, 4), 0)
sage: (a*y).coeffs()
([0, 0, 0, 0, 0], [0, 1, 2, 3, 4], 0)
sage: (a*y^-2).coeffs()
([0, 0, 0, 0, 0], [0, 1, 2, 3, 4], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], -2)
```

Note that the coefficient list is transposed compared to how they are stored and printed:

```python
sage: a*y^-2
(y^-2)*x + (2*y^-2)*x^2 + (3*y^-2)*x^3 + (4*y^-2)*x^4
```

A more complicated example:

```python
sage: a = x^20*y^-3 - x^11*y^2; a
(y^-3-4*y^-1+6*y^-2+4*y^-3)*1 - (12*y^-3-36*y^-1+36*y+y^2-12*y^3-2*y^4+y^6)*x
+ (54*y^-3-108*y^-1+54*y^6*y^2-6*y^4)*x^2 - (108*y^-3-108*y^-1+9*y^2)*x^3 +
     (81*y^-3)*x^4
sage: raw, offset = a.coeffs()
sage: a.min_pow_y()
-3
sage: offset
-3
sage: raw
([(1, -12, 54, -108, 81),
  (0, 0, 0, 0, 0),
  (-4, 36, -108, 108, 0),
  (0, 0, 0, 0, 0),
  (6, -36, 54, 0, 0),
  (0, -1, 6, -9, 0),
  (-4, 12, 0, 0, 0),
  (0, 2, -6, 0, 0),
  (1, 0, 0, 0, 0),
])
```
sage: sum(c * x^i * y^(j+offset) for j, L in enumerate(raw) for i, c in enumerate(L)) == a
True

Can also be used to construct elements:

sage: a.parent()(raw, offset) == a
True

diff()
Return the differential of self

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).diff()
(-(9-2*y)*1 + 15*x^4) dx/2y

extract_pow_y(k)
Return the coefficients of y^k in self as a list

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y+9*x*y).extract_pow_y(1)
[3, 9, 0, 0, 0]

max_pow_y()
Return the maximal degree of self w.r.t. y

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).max_pow_y()
1

min_pow_y()
Return the minimal degree of self w.r.t. y

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y).min_pow_y()
0

truncate_neg(n)
Return self minus its terms of degree less than n w.r.t. y.

EXAMPLES:
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: (x+3*y^7*x^2*y*x^4).truncate_neg(1)
3*x*y + 14*y^4*x

class sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.rings.ring.CommutativeAlgebra

Initialization.

Q()
Return the defining polynomial of the underlying hyperelliptic curve.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-2*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().Q()
x^5 - 2*x + 1

base_extend(R)
Return the base extension of self to the ring R if possible.

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().base_extend(UniversalCyclotomicField())
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 3*x + 1) over
˓→Universal Cyclotomic Field
sage: x.parent().base_extend(ZZ)
Traceback (most recent call last):
...:
TypeError: no such base extension

change_ring(R)
Return the analog of self over the ring R

EXAMPLES:

sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().change_ring(ZZ)
SpecialHyperellipticQuotientRing K[x,y,y^-1] / (y^2 = x^5 - 3*x + 1) over
˓→Integer Ring

curve()
Return the underlying hyperelliptic curve.

EXAMPLES:
```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().curve()
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - 3*x + 1
```

degree()

Return the degree of the underlying hyperelliptic curve.

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().degree()
5
```

gens()

Return the generators of `self`.

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().gens()
(x, y*x)
```

is_field(proof=True)

Return False as `self` is not a field.

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().is_field()
False
```

monomial(i,j,b=None)

Returns `by'x'i`, computed quickly.

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x,y = E.monsky_washnitzer_gens()
sage: x.parent().monomial(4,5)
y^5*x^4
```

monomial_diff_coeffs(i,j)

The key here is that the formula for `d(xiy')` is messy in terms of `i`, but varies nicely with `j`.

\[
d(x^iy^j) = y^{i-1}(2ix^{i-1}y^2 + j(A_i(x) + B_i(x)y^2)) \frac{dx}{2y}
\]

Where `A_i, B_i` have degree at most `n - 1` for each `i`. Pre-compute `A_i, B_i` for each `i` the “hard” way, and the rest are easy.

monomial_diff_coeffs_matrices()

11.7. Computation of Frobenius matrix on Monsky-Washnitzer cohomology
monsky_washnitzer()

prime()

x()

Return the generator x of self

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x, y = E.monsky_washnitzer_gens()
sage: x.parent().x()
x
```

y()

Return the generator y of self

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: E = HyperellipticCurve(x^5-3*x+1)
sage: x, y = E.monsky_washnitzer_gens()
sage: x.parent().y()
y
```

sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing_class

alias of sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing

sage.schemes.hyperelliptic_curves.monsky_washnitzer.adjusted_prec(p, $prec$)

Compute how much precision is required in `matrix_of_frobenius` to get an answer correct to $prec$ p-adic digits.

The issue is that the algorithm used in `matrix_of_frobenius()` sometimes performs divisions by p, so precision is lost during the algorithm.

The estimate returned by this function is based on Kedlaya’s result (Lemmas 2 and 3 of [Ked2001]), which implies that if we start with M p-adic digits, the total precision loss is at most $1 + \lfloor \log_p(2M - 3) \rfloor$ p-adic digits. (This estimate is somewhat less than the amount you would expect by naively counting the number of divisions by p.)

INPUT:

- p – a prime $p \geq 5$
- $prec$ – integer, desired output precision, $prec \geq 1$

OUTPUT: adjusted precision (usually slightly more than $prec$)

EXAMPLES:

```python
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import adjusted_prec
sage: adjusted_prec(5,2)
3
```

sage.schemes.hyperelliptic_curves.monsky_washnitzer.frobenius_expansion_by_newton(Q, p, M)

Computes the action of Frobenius on dx/y and on $x dx/y$, using Newton’s method (as suggested in Kedlaya’s paper [Ked2001]).
More specifically, it finds F_0 and F_1 in the quotient ring $R[x, T]/(T - Q(x))$, such that

$$F(dx/y) = T^{-r} F_0 dx/y, \text{ and } F(x dx/y) = T^{-r} F_1 dx/y$$

where

$$r = ((2M - 3)p - 1)/2.$$

(Here T is $y^2 = z - 2$, and R is the coefficient ring of Q.)

F_0 and F_1 are computed in the SpecialCubicQuotientRing associated to Q, so all powers of x^j for $j \geq 3$ are reduced to powers of T.

INPUT:

- Q – cubic polynomial of the form $Q(x) = x^3 + ax + b$, whose coefficient ring is a $Z/(p^M)Z$-algebra
- p – residue characteristic of the p-adic field
- M – p-adic precision of the coefficient ring (this will be used to determine the number of Newton iterations)

OUTPUT:

- F_0, F_1 - elements of SpecialCubicQuotientRing(Q), as described above
- r - non-negative integer, as described above

EXAMPLES:

```python
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_expansion_by_newton
sage: R.<x> = Integers(5^3)['x']
Sage: Q = x^3 - x + R(1/4)
Sage: frobenius_expansion_by_newton(Q, 5, 3)
((25*T^5 + 75*T^3 + 100*T^2 + 100*T + 100) + (5*T^6 + 80*T^5 + 100*T^3 + 25*T + 50)*x + (55*T^5 + 50*T^4 + 75*T^3 + 25*T^2 + 25*T + 25)*x^2, 
(5*T^8 + 15*T^7 + 95*T^6 + 10*T^5 + 25*T^4 + 25*T^3 + 100*T^2 + 50) + (65*T^7 + 55*T^6 + 70*T^5 + 100*T^4 + 25*T^2 + 100*T)*x + 
(15*T^6 + 115*T^5 + 75*T^4 + 100*T^3 + 50*T^2 + 75*T + 75)*x^2, 7)
```

Computation of Frobenius matrix on Monsky-Washnitzer cohomology

This function computes the action of Frobenius on dx/y and on $x dx/y$, using a series expansion.

(This function computes the same thing as frobenius_expansion_by_newton(), using a different method. Theoretically the Newton method should be asymptotically faster, when the precision gets large. However, in practice, this functions seems to be marginally faster for moderate precision, so I’m keeping it here until I figure out exactly why it is faster.)

(This function does not yet use the cohomology relations - that happens afterwards in the “reduction” step.)

More specifically, it finds F_0 and F_1 in the quotient ring $R[x, T]/(T - Q(x))$, such that $F(dx/y) = T^{-r} F_0 dx/y, \text{ and } F(x dx/y) = T^{-r} F_1 dx/y$ where $r = ((2M - 3)p - 1)/2.$ (Here T is $y^2 = z - 2$, and R is the coefficient ring of Q.)

F_0 and F_1 are computed in the SpecialCubicQuotientRing associated to Q, so all powers of x^j for $j \geq 3$ are reduced to powers of T.

INPUT:

- Q – cubic polynomial of the form $Q(x) = x^3 + ax + b$, whose coefficient ring is a $Z/(p^M)Z$-algebra
- p – residue characteristic of the p-adic field
- M – p-adic precision of the coefficient ring (this will be used to determine the number of Newton iterations)

OUTPUT:

- F_0, F_1 - elements of SpecialCubicQuotientRing(Q), as described above
- r - non-negative integer, as described above

EXAMPLES:

```python
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_expansion_by_series
sage.schemes.hyperelliptic_curves.monsky_washnitzer.frobenius_expansion_by_series(Q, p, M)
```

Computes the action of Frobenius on dx/y and on $x dx/y$, using a series expansion.
It uses the sum

\[F_0 = \sum_{k=0}^{M-2} \binom{M-2}{k} p x^{p-1} E^k T^{(M-2-k)p} \]

and

\[F_1 = x^p F_0, \]

where \(E = Q(x^p) - Q(x)^p \).

INPUT:
- \(Q \) – cubic polynomial of the form \(Q(x) = x^3 + ax + b \), whose coefficient ring is a \(\mathbb{Z}/(p^M) \mathbb{Z} \) -algebra
- \(p \) – residue characteristic of the \(p \)-adic field
- \(M \) – \(p \)-adic precision of the coefficient ring (this will be used to determine the number of terms in the series)

OUTPUT:
- \(F_0, F_1 \) - elements of SpecialCubicQuotientRing\((\mathcal{Q}) \), as described above
- \(r \) - non-negative integer, as described above

EXAMPLES:

```python
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import frobenius_expansion_by_series
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: frobenius_expansion_by_series(Q,5,3)
((25*T^5 + 75*T^3 + 100*T^2 + 100*T + 100) + (5*T^6 + 80*T^5 + 100*T^3 + 25*T + 50)*x + (55*T^5 + 50*T^4 + 75*T^3 + 25*T^2 + 25*T + 25)*x^2,
 (5*T^8 + 15*T^7 + 95*T^6 + 10*T^5 + 25*T^4 + 25*T^3 + 100*T^2 + 50) + (65*T^7 + 55*T^6 + 70*T^5 + 100*T^4 + 25*T^3 + 25*T^2 + 25*T + 25)*x^2,
 7)
```

`sage.schemes.hyperelliptic_curves.monsky_washnitzer.helper_matrix(Q)`

Computes the (constant) matrix used to calculate the linear combinations of the \(d(x^i y^j) \) needed to eliminate the negative powers of \(y \) in the cohomology (i.e. in reduce_negative()).

INPUT:
- \(Q \) – cubic polynomial

EXAMPLES:

```python
sage: t = polygen(QQ,'t')
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import helper_matrix
sage: helper_matrix(t**3-4*t-691)
[ 64/12891731 -16584/12891731 4297329/12891731]
[ 6219/12891731 -32/12891731 8292/12891731]
[ -24/12891731 6219/12891731 -32/12891731]
```

`sage.schemes.hyperelliptic_curves.monsky_washnitzer.lift(x)`

Tries to call \(\text{x.lift()} \), presumably from the \(p \)-adics to \(\mathbb{Z} \).

If this fails, it assumes the input is a power series, and tries to lift it to a power series over \(\mathbb{Q} \).

This function is just a very kludgy solution to the problem of trying to make the reduction code (below) work over both \(\mathbb{Z}_p \) and \(\mathbb{Z}_p[[t]] \).
Examples:

```
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import lift
sage: 1 = lift(Qp(13)(131)); 1
131
sage: 1.parent()
Integer Ring
sage: x=PowerSeriesRing(Qp(17),'x').gen()
sage: 1 = lift(4+5*x+17*x**6); 1
4 + 5*t + 17*t^6
sage: 1.parent()
Power Series Ring in t over Rational Field
```

```
sage.schemes.hyperelliptic_curves.monsky_washnitzer.matrix_of_frobenius(Q, p, M, trace=None, compute_exact_forms=False)
```

Compute the matrix of Frobenius on Monsky-Washnitzer cohomology, with respect to the basis $\frac{dx}{y}, \frac{x}{y}$.

Input:
- Q — Cubic polynomial $Q(x) = x^3 + ax + b$ defining an elliptic curve E by $y^2 = Q(x)$. The coefficient ring of Q should be a $\mathbb{Z}/(p^M)\mathbb{Z}$-algebra in which the matrix of frobenius will be constructed.
- p — Prime ≥ 5 for which E has good reduction
- M — Integer ≥ 2; p-adic precision of the coefficient ring
- trace — (Optional) the trace of the matrix, if known in advance. This is easy to compute because it is just the a_p of the curve. If the trace is supplied, matrix_of_frobenius will use it to speed the computation (i.e. we know the determinant is p, so we have two conditions, so really only column of the matrix needs to be computed. it is actually a little more complicated than that, but that’s the basic idea.) If trace=None, then both columns will be computed independently, and you can get a strong indication of correctness by verifying the trace afterwards.

Warning: THE RESULT WILL NOT NECESSARILY BE CORRECT TO M p-ADIC DIGITS.
If you want prec digits of precision, you need to use the function adjusted_prec(), and then you need to reduce the answer mod p^{prec} at the end.

Output:
2x2 matrix of Frobenius acting on Monsky-Washnitzer cohomology, with entries in the coefficient ring of Q.

Examples:
A simple example:
```
sage: p = 5
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec); M
4
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A
```

(continues on next page)
But the result is only accurate to \texttt{prec} digits:

```
sage: B = A.change_ring(Integers(p**prec))
sage: B
[90 62]
[70 33]
```

Check trace (123 = -2 mod 125) and determinant:

```
sage: B.det()
5
sage: B.trace()
123
sage: EllipticCurve([-1, 1/4]).ap(5)
-2
```

Try using the trace to speed up the calculation:

```
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4),
.....: p, M, -2)
sage: A
[ 90 62]
[320 533]
```

Hmmm... it looks different, but that’s because the trace of our first answer was only -2 modulo 5³, not -2 modulo 5⁵. So the right answer is:

```
sage: A.change_ring(Integers(p**prec))
[90 62]
[70 33]
```

Check it works with only one digit of precision:

```
sage: p = 5
sage: prec = 1
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M)
sage: A.change_ring(Integers(p))
[0 2]
[0 3]
```

Here is an example that is particularly badly conditioned for using the trace trick:

```
sage: p = 11
sage: prec = 3
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 + 7*x + 8, p, M)
sage: A.change_ring(Integers(p**prec))
[1144  176]
[ 847 185]
```
The problem here is that the top-right entry is divisible by 11, and the bottom-left entry is divisible by \(11^2\). So when you apply the trace trick, neither \(F(dx/y)\) nor \(F(xdx/y)\) is enough to compute the whole matrix to the desired precision, even if you try increasing the target precision by one. Nevertheless, \texttt{matrix_of_frobenius} knows how to get the right answer by evaluating \(F((x + 1)dx/y)\) instead:

```
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 + 7*x + 8, p, M, -2)
sage: A.change_ring(Integers(p**prec))
\[
\begin{bmatrix}
 1144 & 176 \\
 847 & 185
\end{bmatrix}
\]
```

The running time is about \(O(p \times \text{prec}^2)\) (times some logarithmic factors), so it is feasible to run on fairly large primes, or precision (or both?!?!):

```
sage: p = 10007
sage: prec = 2
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M) # long time
sage: B = A.change_ring(Integers(p**prec)) # long time
\[
\begin{bmatrix}
74311982 & 57996908 \\
95877067 & 25828133
\end{bmatrix}
\]
sage: B.det() # long time
10007
sage: B.trace() # long time
66
sage: EllipticCurve([-1, 1/4]).ap(10007) # long time
66
```

Let us check consistency of the results for a range of precisions:

```
sage: p = 5
sage: prec = 300
sage: M = monsky_washnitzer.adjusted_prec(p, prec)
sage: R.<x> = PolynomialRing(Integers(p**M))
sage: A = monsky_washnitzer.matrix_of_frobenius(x^3 - x + R(1/4), p, M) # long time
sage: B = A.change_ring(Integers(p**prec)) # long time
\[
\begin{bmatrix}
7 & 2 \\
-2 & 5
\end{bmatrix}
\]
sage: EllipticCurve([-1, 1/4]).ap(5) # long time
-2
```

(continues on next page)
The remaining examples discuss what happens when you take the coefficient ring to be a power series ring; i.e. in effect you’re looking at a family of curves.

The code does in fact work...
(d − 1) x (d − 1) matrix \(M \) of Frobenius on Monsky-Washnitzer cohomology, and list of differentials \(\{ f_i \} \) such that

\[
\phi^*(x^i dx/2y) = df_i + M[i] * vec(dx/2y, ..., x^{d-2}dx/2y)
\]

EXAMPLES:

```python
sage: p = 5
sage: prec = 3
sage: R.<x> = QQ['x']
sage: A,f = monsky_washnitzer.matrix_of_frobenius_hyperelliptic(x^5 - 2*x + 3, p, → prec)
sage: A
\[
\begin{pmatrix}
4*5 + O(5^3) & 5 + 2*5^2 + O(5^3) & 2 + 3*5 + 2*5^2 + O(5^3) & 2
\end{pmatrix}
\]
```

```python
sage: A
\[
\begin{pmatrix}
3*5 + 5^2 + O(5^3) & 3*5 + O(5^3) & 4*5 + O(5^3)
\end{pmatrix}
\]
```

```python
sage: A
\[
\begin{pmatrix}
4*5 + 4*5^2 + O(5^3) & 3*5 + 2*5^2 + O(5^3) & 5 + 3*5^2 + O(5^3)
\end{pmatrix}
\]
```

```python
sage: A
\[
\begin{pmatrix}
5*2 + 0(5^3) & 5 + 4*5^2 + O(5^3) & 4*5 + 3*5^2 + O(5^3)
\end{pmatrix}
\]
```

```python
sage: A
\[
\begin{pmatrix}
2*5 + 0(5^3)
\end{pmatrix}
\]
```

```python
sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_all(Q, p, coeffs, offset, compute_exact_form=False)
```

Applies cohomology relations to reduce all terms to a linear combination of \(dx/y \) and \(x dx/y \).

INPUT:

- \(Q \) – cubic polynomial
- \(\text{coeffs} \) – list of length 3 lists. The \(i \)th list \([a, b, c]\) represents \(y^{2(i-offset)}(a + bx + cx^2)dx/y \).
- \(\text{offset} \) – nonnegative integer

OUTPUT:

- \(A, B \) - pair such that the input differential is cohomologous to \((A + Bx) dx/y \).

Note: The algorithm operates in-place, so the data in \(\text{coeffs} \) is destroyed.

EXAMPLES:

```python
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_all(Q, 5, coeffs, 1)
(21, 106)
```

```python
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_all(Q, 5, coeffs, 1)
(21, 106)
```

```python
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_all(Q, 5, coeffs, 1)
(21, 106)
```

```python
sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_negative(Q, p, coeffs, offset, exact_form=None)
```

Applies cohomology relations to incorporate negative powers of \(y \) into the \(y^0 \) term.

INPUT:

- \(p \) – prime
• Q – cubic polynomial

• `coeffs` – list of length 3 lists. The i^{th} list $[a, b, c]$ represents $y^{2(i-\text{offset})}(a + bx + cx^2)dx/y.$

• offset – nonnegative integer

OUTPUT: The reduction is performed in-place. The output is placed in `coeffs[\text{offset}]`. Note that `coeffs[i]` will be meaningless for i offset after this function is finished.

EXAMPLES:

```python
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[10, 15, 20], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_negative(Q, 5, coeffs, 3)
sage: coeffs[3]
[28, 52, 9]
```

```python
sage: R.<x> = Integers(7^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[7, 14, 21], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_negative(Q, 7, coeffs, 3)
sage: coeffs[3]
[245, 332, 9]
```

sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_positive(Q, p, `coeffs`, offset, `exact_form=None`)

Applies cohomology relations to incorporate positive powers of y into the y^0 term.

INPUT:

• Q – cubic polynomial

• `coeffs` – list of length 3 lists. The i^{th} list $[a, b, c]$ represents $y^{2(i-\text{offset})}(a + bx + cx^2)dx/y.$

• offset – nonnegative integer

OUTPUT: The reduction is performed in-place. The output is placed in `coeffs[\text{offset}]`. Note that `coeffs[i]` will be meaningless for i offset after this function is finished.

EXAMPLES:

```python
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
```

```python
sage: coeffs = [[1, 2, 3], [10, 15, 20]]
```

```python
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
```

```python
sage: monsky_washnitzer.reduce_positive(Q, 5, coeffs, 0)
sage: coeffs[0]
[16, 102, 88]
```

```python
sage: coeffs = [[9, 8, 7], [10, 15, 20]]
```

```python
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
```

```python
sage: monsky_washnitzer.reduce_positive(Q, 5, coeffs, 0)
```

(continues on next page)
sage.schemes.hyperelliptic_curves.monsky_washnitzer.reduce_zero(Q, coeffs, offset, exact_form=None)

Applies cohomology relation to incorporate $x^2 y^0$ term into $x^0 y^0$ and $x^1 y^0$ terms.

INPUT:
- Q – cubic polynomial
- $coeffs$ – list of length 3 lists. The ith list $[a, b, c]$ represents $y^{2(i-\text{offset})}(a + bx + cx^2)dx/y$.
- $offset$ – nonnegative integer

OUTPUT: The reduction is performed in-place. The output is placed in $coeffs[offset]$. This method completely ignores $coeffs[i]$ for $i \neq offset$.

EXAMPLES:

```python
sage: R.<x> = Integers(5^3)['x']
sage: Q = x^3 - x + R(1/4)
sage: coeffs = [[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
sage: coeffs = [[R.base_ring()(a) for a in row] for row in coeffs]
sage: monsky_washnitzer.reduce_zero(Q, coeffs, 1)
sage: coeffs[1]
[6, 5, 0]
```

sage.schemes.hyperelliptic_curves.monsky_washnitzer.transpose_list(input)

INPUT:
- $input$ – a list of lists, each list of the same length

OUTPUT:
- $output$ – a list of lists such that $output[i][j] = input[j][i]$

EXAMPLES:

```python
sage: from sage.schemes.hyperelliptic_curves.monsky_washnitzer import transpose_list
sage: L = [[[1, 2], [3, 4], [5, 6]]
```

11.8 Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic curve over a largish prime finite field

This is a wrapper for the matrix() function in hypellfrob.cpp.

AUTHOR:
- David Harvey (2007-05)
- David Harvey (2007-12): rewrote for hypellfrob version 2.0
sage.schemes.hyperelliptic_curves.hypellfrob.hypellfrob\(p, N, Q\)
Compute the matrix of Frobenius acting on the Monsky-Washnitzer cohomology of a hyperelliptic curve \(y^2 = Q(x)\), with respect to the basis \(x^i dx/y\), \(0 \leq i < 2g\).

INPUT:
- \(p\) – a prime
- \(Q\) – a monic polynomial in \(\mathbb{Z}[x]\) of odd degree. Must have no multiple roots mod \(p\).
- \(N\) – precision parameter; the output matrix will be correct modulo \(p^N\).

PRECONDITIONS:
Must have \(p > (2g + 1)(2N - 1)\), where \(g = (\deg(Q) - 1)/2\) is the genus of the curve.

ALGORITHM:
Described in “Kedlaya’s algorithm in larger characteristic” by David Harvey. Running time is theoretically soft-\(O(p^{1/2}N^{5/2}g^3)\).

Todo: Remove the restriction on \(p\). Probably by merging in Robert’s code, which eventually needs a fast C++/NTL implementation.

EXAMPLES:

```python
sage: from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
sage: R.<x> = PolynomialRing(ZZ)
sage: f = x^5 + 2*x^2 + x + 1; p = 101
sage: M = hypellfrob(p, 4, f); M
[ 91844754 + O(101^4) 38295665 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^4)
  44498269 + O(101^4) 11854028 + O(101^4) 93295901 + O(101^4) 99485386 + O(101^4)
  11854028 + O(101^4) 99485386 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^4)
  91844754 + O(101^4) 38295665 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^4)
]
[ 93514789 + O(101^4) 48987424 + O(101^4) 53287857 + O(101^4) 61431148 + O(101^4)
  53287857 + O(101^4) 61431148 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^4)
  61431148 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^4) 93295901 + O(101^4)
  93514789 + O(101^4) 48987424 + O(101^4) 53287857 + O(101^4) 61431148 + O(101^4)
]
[ 77916046 + O(101^4) 60656459 + O(101^4) 101244586 + O(101^4) 56237448 + O(101^4)
  101244586 + O(101^4) 56237448 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^4)
  56237448 + O(101^4) 44498269 + O(101^4) 11854028 + O(101^4) 93295901 + O(101^4)
  77916046 + O(101^4) 60656459 + O(101^4) 101244586 + O(101^4) 56237448 + O(101^4)
]
[ 58643832 + O(101^4) 81727988 + O(101^4) 85294589 + O(101^4) 70104432 + O(101^4)
  81727988 + O(101^4) 85294589 + O(101^4) 70104432 + O(101^4) 101244586 + O(101^4)
  85294589 + O(101^4) 70104432 + O(101^4) 101244586 + O(101^4) 56237448 + O(101^4)
  58643832 + O(101^4) 81727988 + O(101^4) 85294589 + O(101^4) 70104432 + O(101^4)
]
sage: -M.trace()
sage: sum([legendre_symbol(f(i), p) for i in range(p)])
sage: ZZ(M.det())
```

AUTHORS:
- David Harvey (2007-05)
- David Harvey (2007-12); updated for hypellfrob version 2.0
11.9 Jacobian of a general hyperelliptic curve

```python
class sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic(C):
    Bases: sage.schemes.jacobians.abstract_jacobian.Jacobian_generic

    EXAMPLES:
    sage: FF = FiniteField(2003)
    sage: R.<x> = PolynomialRing(FF)
    sage: f = x**5 + 1184*x**3 + 1846*x**2 + 956*x + 560
    sage: C = HyperellipticCurve(f)
    sage: J = C.jacobian()
    sage: a = x**2 + 376*x + 245; b = 1015*x + 1368
    sage: X = J(FF)
    sage: D = X([a,b])
    sage: D
    (x^2 + 376*x + 245, y + 988*x + 635)
    sage: J(0)
    (1)
    sage: D == J([a,b])
    True
    sage: D == D + J(0)
    True

    An more extended example, demonstrating arithmetic in J(QQ) and J(K) for a number field K/QQ.

    sage: P.<x> = PolynomialRing(QQ)
    sage: f = x^5 - x + 1; h = x
    sage: C = HyperellipticCurve(f,h,'u,v')
    sage: C
    Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1
    sage: PP = C.ambient_space()
    sage: PP
    Projective Space of dimension 2 over Rational Field
    sage: C.defining_polynomial()
    -x0^5 + x0*x1*x2^3 + x1^2*x2^3 + x0*x2^4 - x2^5
    sage: C(QQ)
    Set of rational points of Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1
    sage: K.<t> = NumberField(x^2-2)
    sage: C(K)
    Set of rational points of Hyperelliptic Curve over Number Field in t with defining polynomial x^2 - 2 defined by v^2 + u*v = u^5 - u + 1
    sage: P = C(QQ)(0,1,1); P
    (0 : 1 : 1)
    sage: P == C(0,1,1)
    True
    sage: C(0,1,1).parent()
    Set of rational points of Hyperelliptic Curve over Rational Field defined by v^2 + u*v = u^5 - u + 1
    sage: P1 = C(K)(P)
    sage: P2 = C(K)([2,4*t-1,1])
    sage: P3 = C(K)([-1/2,1/8*(7*t+2),1])
    sage: P1, P2, P3
    ((0 : 1 : 1), (2 : 4*t - 1 : 1), (-1/2 : 7/8*t + 1/4 : 1))
    sage: J = C.jacobian()
    sage: J
```

(continues on next page)
Jacobian of Hyperelliptic Curve over Rational Field defined by $v^2 + u*v = u^5 - u + 1$

```
sage: Q = J(QQ)(P); Q
(u, v - 1)
sage: for i in range(6): Q*i
(1)
(1, v - 1)
(u^2, v + u - 1)
(u^2, v + 1)
(1, v + 1)
(1)
sage: Q1 = J(K)(P1); print("%s -> %s"%( P1, Q1 ))
(0 : 1 : 1) -> (u, v - 1)
sage: Q2 = J(K)(P2); print("%s -> %s"%( P2, Q2 ))
(2 : 4*t - 1 : 1) -> (u - 2, v - 4*t + 1)
sage: Q3 = J(K)(P3); print("%s -> %s"%( P3, Q3 ))
(-1/2 : 7/8*t + 1/4 : 1) -> (u + 1/2, v - 7/8*t - 1/4)
sage: R.<x> = PolynomialRing(K)
sage: Q4 = J(K)([x^2-t,R(1)])
sage: for i in range(4): Q4*i
(1)
(u^2 - t, v - 1)
(u^2 + (-3/4*t - 9/16)*u + 1/2*t + 1/4, v + (-1/32*t - 57/64)*u + 1/2*t + 9/16)
(u^2 + (1352416/247009*t - 1636930/247009)*u - 1156544/247009*t + 1900544/247009, v + (-2326345442/122763473*t + 3233153137/122763473)*u + 2439343104/122763473*t - 3350862929/122763473)
sage: R2 = Q2*5; R2
(u^2 - 3789465233/116983808*u - 267915823/58491904, v + (-233827256513849/178938327168*t + 1/2)*u + 15782925357447/894692163584*t)
sage: R3 = Q3*5; R3
(u^2 + 566330088399913890623/14426457498950909645952*u - 26531814176395676231273/28852909597901819291904, v + (253155440321645614078068086199103/4245098420175733688903836378159104*t + 1/2)*u + (-2427708505064902611513563431764311/490099684035146737780767256318208*t))
sage: R4 = Q4*5; R4
(u^2 - 3789465233/116983808*u - 267915823/58491904, v + (233827256513849/178938327168*t + 1/2)*u + 15782925357447/894692163584*t)
```

Thus we find the following identity:

```
sage: 5*Q2 + 5*Q4
(1)
```

Moreover the following relation holds in the 5-torsion subgroup:

```
sage: Q2 + Q4 == 2*Q1
True
```

dimension()

Return the dimension of this Jacobian.

OUTPUT:

Integer

EXAMPLES:
sage: k.<a> = GF(9); R.<x> = k[]
sage: HyperellipticCurve(x^3 + x - 1, x+a).jacobian().dimension()
1
sage: g = HyperellipticCurve(x^6 + x - 1, x+a).jacobian().dimension(); g
2
sage: type(g)
<... 'sage.rings.integer.Integer'>

point (mumford, check=True)

11.10 Jacobian of a hyperelliptic curve of genus 2

class sage.schemes.hyperelliptic_curves.jacobian_g2.HyperellipticJacobian_g2(C)

Bases:
 sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobian_generic

kummer_surface()

11.11 Rational point sets on a Jacobian

EXAMPLES:

sage: x = QQ['x'].0
sage: f = x^5 + x + 1
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: C(QQ)
Set of rational points of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: P = C([0,1,1])
sage: J = C.jacobian(); J
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1
sage: Q = J(QQ)(P); Q
(x, y - 1)
sage: Q + Q
(x^2, y - 1/2*x - 1)
sage: Q*3
(x^2 - 1/64*x + 1/8, y + 255/512*x + 65/64)

sage: F.<a> = GF(3)
sage: R.<x> = F[]
sage: f = x^5-1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: X = J(F)
sage: a = x^2-x+1
sage: b = -x +1
sage: c = x-1
sage: d = 0
sage: D1 = X([a,b])
sage: D2 = X([c,d])

(continues on next page)
11.12 Jacobian ‘morphism’ as a class in the Picard group

This module implements the group operation in the Picard group of a hyperelliptic curve, represented as divisors in Mumford representation, using Cantor’s algorithm.

A divisor on the hyperelliptic curve $y^2 + y h(x) = f(x)$ is stored in Mumford representation, that is, as two polynomials $u(x)$ and $v(x)$ such that:

- $u(x)$ is monic,
- $u(x)$ divides $f(x) - h(x)v(x) - v(x)^2$,
- $\deg(v(x)) < \deg(u(x)) \leq g$.

REFERENCES:

A readable introduction to divisors, the Picard group, Mumford representation, and Cantor’s algorithm:

A standard reference in the field of cryptography:

EXAMPLES: The following curve is the reduction of a curve whose Jacobian has complex multiplication.

```python
sage: x = GF(37)['x'].gen()
sage: H = HyperellipticCurve(x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x); H
Hyperelliptic Curve over Finite Field of size 37 defined by y^2 = x^5 + 12*x^4 + 13*x^3 + 15*x^2 + 33*x

At this time, Jacobians of hyperelliptic curves are handled differently than elliptic curves:

```
Points on the Jacobian are represented by Mumford’s polynomials. First we find a couple of points on the curve:

```python
sage: P1 = H.lift_x(2); P1
(2 : 11 : 1)
sage: Q1 = H.lift_x(10); Q1
(10 : 18 : 1)
```

Observe that 2 and 10 are the roots of the polynomials in x, respectively:

```python
sage: P = J(P1); P
(x + 35, y + 26)
sage: Q = J(Q1); Q
(x + 27, y + 19)
sage: P + Q
(x^2 + 25*x + 20, y + 13*x)
sage: (x^2 + 25*x + 20).roots(multiplicities=False)
[10, 2]
```

Frobenius satisfies

\[x^4 + 12*x^3 + 78*x^2 + 444*x + 1369\]

on the Jacobian of this reduction and the order of the Jacobian is \(N = 1904\).

```python
sage: 1904*P
(1)
sage: 34*P == 0
True
e: 35*P == P
True
sage: 33*P == -P
True
sage: Q*1904
(1)
sage: Q*238 == 0
True
sage: Q*239 == Q
True
sage: Q*237 == -Q
True
```

class `sage.schemes.hyperelliptic_curves.jacobian_morphism.JacobianMorphism_divisor_class_field`

Bases: `sage.structure.element.AdditiveGroupElement`, `sage.schemes.generic.morphism.SchemeMorphism`

An element of a Jacobian defined over a field, i.e. in \(J(K) = \text{Pic}_K^0(C)\).

```
scheme()
```

Return the scheme this morphism maps to; or, where this divisor lives.

Warning: Although a pointset is defined over a specific field, the scheme returned may be over a different (usually smaller) field. The example below demonstrates this: the pointset is determined over a number field of absolute degree 2 but the scheme returned is defined over the rationals.
EXAMPLES:

```python
sage: x = QQ['x'].gen()
sage: f = x^5 + x
sage: H = HyperellipticCurve(f)
sage: F.<a> = NumberField(x^2 - 2, 'a')
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve over
Number Field in a with defining polynomial x^2 - 2 defined
by y^2 = x^5 + x
sage: P = J(H.lift_x(F(1)))
sage: P.scheme()
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x
```

```python
sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_composition(D1, D2, f, h, genus)
```

EXAMPLES:

```python
sage: F.<a> = GF(7^2, 'a')
sage: x = F['x'].gen()
sage: f = x^7 + x^2 + a
sage: H = HyperellipticCurve(f, 2*x); H
Hyperelliptic Curve over Finite Field in a of size 7^2 defined by y^2 + 2*x*y = x^7 + x^2 + a
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve over
Finite Field in a of size 7^2 defined by y^2 + 2*x*y = x^7 + x^2 + a
sage: Q = J(H.lift_x(F(1))); Q
(x + 6, y + 2*a + 2)
sage: 10*Q
# indirect doctest
(x^3 + (3*a + 1)*x^2 + (2*a + 5)*x + a + 5, y + (4*a + 5)*x^2 + (a + 1)*x + 6*a + 3)
sage: 7*8297*Q
(1)
sage: Q = J(H.lift_x(F(a+1))); Q
(x + 6*a + 6, y + 2*a)
sage: 7*8297*Q
# indirect doctest
(1)
```

A test over a prime field:

```python
sage: F = GF(next_prime(10^30))
sage: x = F['x'].gen()
sage: f = x^7 + x^2 + 1
sage: H = HyperellipticCurve(f, 2*x); H
Hyperelliptic Curve over Finite Field of size 1000000000000000000000000000057 defined
by y^2 + 2*x*y = x^7 + x^2 + 1
sage: J = H.jacobian()(F); J
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to
very slow toy implementation.
Set of rational points of Jacobian of Hyperelliptic Curve over
Finite Field of size 1000000000000000000000000000057 defined
```

(continues on next page)
by $y^2 + 2x\cdot y = x^7 + x^2 + 1$

```
sage: Q = J(H.lift_x(F(1))); Q
(x + 1000000000000000000000000000056, y + 1000000000000000000000000000056)
sage: 10*Q
(x^3 + 50945615035248604340863286615, y + 514451014495791237681619598519*x^2 +
   86142924001259086251910326876)
sage: 7*8297*Q
(x^3 + 681571430588959705539385624700, y + 999722365017286747841221441793*x^2 +
   26270371599452725686603955650*x + 626219823403254233972118260890)
```

```
sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_composition_simple(D1, D2, f, genus)
```

Given D_1 and D_2 two reduced Mumford divisors on the Jacobian of the curve $y^2 = f(x)$, computes a representative $D_1 + D_2$.

Warning: The representative computed is NOT reduced! Use `cantor_reduction_simple()` to reduce it.

EXAMPLES:

```
sage: x = QQ['x'].gen()
sage: f = x^5 + x
sage: H = HyperellipticCurve(f); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x
```

```
sage: F.<a> = NumberField(x^2 - 2, 'a')
sage: J = H.jacobian()(F); J
Set of rational points of Jacobian of Hyperelliptic Curve over Number Field in a with defining polynomial x^2 - 2 defined by y^2 = x^5 + x
```

```
sage: P = J(H.lift_x(F(1))); P
(x - 1, y - a)
sage: Q = J(H.lift_x(F(0))); Q
(x, y)
sage: 2*P + 2*Q
# indirect doctest
(x^2 - 2*x + 1, y - 3/2*a*x + 1/2*a)
sage: 2*(P + Q)
# indirect doctest
(x^2 - 2*x + 1, y - 3/2*a*x + 1/2*a)
sage: 3*P
# indirect doctest
(x^2 - 25/32*a + 49/32, y - 45/256*a*x - 315/256*a)
```

```
sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_reduction(a, b, f, h, genus)
```

Return the unique reduced divisor linearly equivalent to (a, b) on the curve $y^2 + yh(x) = f(x)$.

See the docstring of `sage.schemes.hyperelliptic_curves.jacobian_morphism` for information about divisors, linear equivalence, and reduction.

EXAMPLES:
sage: x = QQ['x'].gen()
sage: f = x^5 - x
sage: H = HyperellipticCurve(f, x); H
Hyperelliptic Curve over Rational Field defined by y^2 + x*y = x^5 - x
sage: J = H.jacobian()(QQ); J
Set of rational points of Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 + x*y = x^5 - x

The following point is 2-torsion:

sage: Q = J(H.lift_x(0)); Q
(x, y)
sage: 2*Q # indirect doctest
(1)

The next point is not 2-torsion:

sage: P = J(H.lift_x(-1)); P
(x + 1, y - 1)
sage: 2*J(H.lift_x(-1)) # indirect doctest
(x^2 + 2*x + 1, y - 3*x - 4)
sage: 3*J(H.lift_x(-1)) # indirect doctest
(x^2 - 487*x - 324, y - 10754*x - 7146)

sage.schemes.hyperelliptic_curves.jacobian_morphism.cantor_reduction_simple(a, b, f, genus)

Return the unique reduced divisor linearly equivalent to \((a, b)\) on the curve \(y^2 = f(x)\).

See the docstring of `sage.schemes.hyperelliptic_curves.jacobian_morphism` for information about divisors, linear equivalence, and reduction.

EXAMPLES:

sage: x = QQ['x'].gen()
sage: f = x^5 - x
sage: H = HyperellipticCurve(f); H
Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - x
sage: J = H.jacobian()(QQ); J
Set of rational points of Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - x

The following point is 2-torsion:

sage: P = J(H.lift_x(-1)); P
(x + 1, y)
sage: 2*P # indirect doctest
(1)
11.13 Hyperelliptic curves of genus 2 over a general ring

```python
class sage.schemes.hyperelliptic_curves.hyperelliptic_g2_generic.HyperellipticCurve_g2_generic

Bases: sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic

absolute_igusa_invariants_kohel()
Return the three absolute Igusa invariants used by Kohel [KohECHIDNA].

See also:
sage.schemes.hyperelliptic_curves.invariants()

EXAMPLES:

```sage```
R.<x> = QQ[]
sage: HyperellipticCurve(x^5 - 1).absolute_igusa_invariants_kohel()
(0, 0, 0)
sage: HyperellipticCurve(x^5 - x + 1, x^2).absolute_igusa_invariants_kohel()
(-1030567/178769, 259686400/178769, 20806400/178769)
sage: HyperellipticCurve((x^5 - x + 1)(3*x + 1), (x^2)(3*x + 1)).absolute_igusa_invariants_kohel()
(-1030567/178769, 259686400/178769, 20806400/178769)
```sage```

absolute_igusa_invariants_wamelen()
Return the three absolute Igusa invariants used by van Wamelen [Wam1999].

EXAMPLES:

```sage```
R.<x> = QQ[]
sage: HyperellipticCurve(x^5 - 1).absolute_igusa_invariants_wamelen()
(0, 0, 0)
sage: HyperellipticCurve((x^5 - 1)(x - 2), (x^2)(x - 2)).absolute_igusa_invariants_wamelen()
(0, 0, 0)
```sage```

clebsch_invariants()

See also:
sage.schemes.hyperelliptic_curves.invariants()

EXAMPLES:

```sage```
R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).clebsch_invariants()
(0, -2048/375, -4096/25, -4881645568/84375)
sage: HyperellipticCurve(f(2*x)).clebsch_invariants()
(0, -8388608/375, -1073741824/25, -5241627016305836032/84375)
sage: HyperellipticCurve(f, x).clebsch_invariants()
(-8/15, 17504/5625, -23162896/140625, -420832861216768/7119140625)
```sage```
sage: HyperellipticCurve(f(2*x), 2*x).clebsch_invariants()
\(-512/15, 71696384/5625, -6072014209024/140625, -451865844002031331704832/7119140625\)

`igusa_clebsch_invariants()`

Return the Igusa-Clebsch invariants $I_2, I_4, I_6, I_{10}$ of Igusa and Clebsch [IJ1960].

See also:

`sage.schemes.hyperelliptic_curves.invariants()`

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^5 - x + 2
sage: HyperellipticCurve(f).igusa_clebsch_invariants()
(-640, -20480, 1310720, 52160364544)
sage: HyperellipticCurve(f(2*x)).igusa_clebsch_invariants()
(-40960, -83886080, 343597383680, 56006764965979488256)
sage: HyperellipticCurve(f, x).igusa_clebsch_invariants()
(-640, 17920, -1966656, 52409511936)
sage: HyperellipticCurve(f(2*x), 2*x).igusa_clebsch_invariants()
(-40960, 73400320, -515547070464, 56274284941110411264)
```

`is_odd_degree()`

Return `True` if the curve is an odd degree model.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).is_odd_degree()
True
```

`jacobian()`

Return the Jacobian of the hyperelliptic curve.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).jacobian()
Jacobian of Hyperelliptic Curve over Rational Field defined by y^2 = x^5 - x^4 + 3
```

`kummer_morphism()`

Return the morphism of an odd degree hyperelliptic curve to the Kummer surface of its Jacobian.

This could be extended to an even degree model if a prescribed embedding in its Jacobian is fixed.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^5 - x^4 + 3
sage: HyperellipticCurve(f).kummer_morphism() # not tested
```
11.14 Hyperelliptic curves of genus 2 over a finite field

class sage.schemes.hyperelliptic_curves.hyperelliptic_g2FiniteField.HyperellipticCurve_g2FiniteField

Bases: sage.schemes.hyperelliptic_curves.hyperelliptic_g2Generic.HyperellipticCurve_g2_generic, sage.schemes.hyperelliptic_curves.hyperellipticFiniteField.HyperellipticCurveFiniteField

11.15 Hyperelliptic curves of genus 2 over a \( p \)-adic field

class sage.schemes.hyperelliptic_curves.hyperelliptic_g2PadicField.HyperellipticCurve_g2PadicField

Bases: sage.schemes.hyperelliptic_curves.hyperelliptic_g2Generic.HyperellipticCurve_g2_generic, sage.schemes.hyperelliptic_curves.hyperellipticPadicField.HyperellipticCurvePadicField

11.16 Hyperelliptic curves of genus 2 over the rationals

class sage.schemes.hyperelliptic_curves.hyperelliptic_g2RationalField.HyperellipticCurve_g2RationalField

Bases: sage.schemes.hyperelliptic_curves.hyperelliptic_g2Generic.HyperellipticCurve_g2_generic, sage.schemes.hyperelliptic_curves.hyperellipticRationalField.HyperellipticCurveRationalField

11.17 Compute invariants of quintics and sextics via ‘Ueberschiebung’

Todo:

• Implement invariants in small positive characteristic.
• Cardona-Quer and additional invariants for classifying automorphism groups.

AUTHOR:

• Nick Alexander

sage.schemes.hyperelliptic_curves.invariants.Ueberschiebung(f, g, k)

Return the differential operator \((fg)_k\).
This is defined by Mestre on page 315 [MJ1991]:

\[(fg)_k = \frac{(m-k)!(n-k)!}{m!n!} \left( \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \right)_k.\]

**EXAMPLES:**

```python
sage: from sage.schemes.hyperelliptic_curves.invariants import Ueberschiebung as ub
sage: R.<x, y> = QQ[]
```

```python
sage: ub(x, y, 0)
x*y
```

```python
sage: ub(x^5 + 1, x^5 + 1, 1)
0
```

```python
sage: ub(x^5 + 5*x + 1, x^5 + 5*x + 1, 0)
x^10 + 10*x^6 + 2*x^5 + 25*x^2 + 10*x + 1
```

`sage.schemes.hyperelliptic_curves.invariants.absolute_igusa_invariants_kohel(f)`

Given a sextic form \(f\), return the three absolute Igusa invariants used by Kohel [KohECHIDNA].

\(f\) may be homogeneous in two variables or inhomogeneous in one.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
```

```python
sage: absolute_igusa_invariants_kohel(x^5 - 1)
(0, 0, 0)
```

```python
sage: absolute_igusa_invariants_kohel(x^5 - x)
(100, -20000, -2000)
```

The following example can be checked against Kohel’s database [KohECHIDNA]

```python
sage: i1, i2, i3 = absolute_igusa_invariants_kohel(-x^5 + 3*x^4 + 2*x^3 - 6*x^2 - 3*x + 1)
```

```python
sage: list(map(factor, (i1, i2, i3)))
[2^2 * 3^5 * 5 * 31, 2^5 * 3^11 * 5, 2^4 * 3^9 * 31]
```

`sage.schemes.hyperelliptic_curves.invariants.absolute_igusa_invariants_wamelen(f)`

Given a sextic form \(f\), return the three absolute Igusa invariants used by van Wamelen [Wam1999].

\(f\) may be homogeneous in two variables or inhomogeneous in one.

**REFERENCES:**

• [Wam1999]

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
```

```python
sage: absolute_igusa_invariants_wamelen(x^5 - 1)
(0, 0, 0)
```

The following example can be checked against van Wamelen’s paper:

```python
sage: i1, i2, i3 = absolute_igusa_invariants_wamelen(-x^5 + 3*x^4 + 2*x^3 - 6*x^2 - 3*x + 1)
```

```python
sage: list(map(factor, (i1, i2, i3)))
[2^7 * 3^15, 2^5 * 3^11 * 5, 2^4 * 3^9 * 31]
```
sage.schemes.hyperelliptic_curves.invariants.clebsch_invariants(f)

Given a sextic form \( f \), return the Clebsch invariants \((A, B, C, D)\) of Mestre, p 317, [MJ1991].

\( f \) may be homogeneous in two variables or inhomogeneous in one.

**EXAMPLES:**

```python
sage: R.<x, y> = QQ[]
sage: clebsch_invariants(x^6 + y^6)
(2, 2/3, -2/9, 0)
sage: R.<x> = QQ[]
sage: clebsch_invariants(x^6 + x^5 + x^4 + x^2 + 2)
(62/15, 15434/5625, -236951/140625, 229930748/791015625)
sage: magma(x^6 + 1).ClebschInvariants() # optional - magma
[2, 2/3, -2/9, 0]
sage: magma(x^6 + x^5 + x^4 + x^2 + 2).ClebschInvariants() # optional - magma
[62/15, 15434/5625, -236951/140625, 229930748/791015625]
```

 sage.schemes.hyperelliptic_curves.invariants.clebsch_to_igusa(A, B, C, D)

Convert Clebsch invariants \( A, B, C, D \) to Igusa invariants \( I_2, I_4, I_6, I_{10} \).

**EXAMPLES:**

```python
sage: from sage.schemes.hyperelliptic_curves.invariants import clebsch_to_igusa,
 igusa_to_clebsch
sage: clebsch_to_igusa(2, 3, 4, 5)
(-240, 17370, 231120, -103098906)
sage: igusa_to_clebsch(*clebsch_to_igusa(2, 3, 4, 5))
(2, 3, 4, 5)
sage: Cs = tuple(map(GF(31), (2, 3, 4, 5))); Cs
(2, 3, 4, 5)
sage: clebsch_to_igusa(*Cs)
(8, 10, 15, 26)
sage: igusa_to_clebsch(*clebsch_to_igusa(*Cs))
(2, 3, 4, 5)
```

 sage.schemes.hyperelliptic_curves.invariants.differential_operator(f, g, k)

Return the differential operator \((fg)_k\) symbolically in the polynomial ring in \( dfdx, dfdy, dgdx, dgdy \).

This is defined by Mestre on p 315 [MJ1991]:

\[
(fg)_k = \frac{(m-k)!(n-k)!}{m!n!} \left( \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \right)^k.
\]

**EXAMPLES:**

```python
sage: from sage.schemes.hyperelliptic_curves.invariants import differential_operator
sage: R.<x, y> = QQ[]
sage: differential_operator(x, y, 0)
1
sage: differential_operator(x, y, 1)
-dfdy*dgdx + dfdx*dgdy
sage: differential_operator(x*y, x*y, 2)
1/4*dfdy^2*dgdx^2 + 1/2*dfdx*dfdy*dgdx*dgdy + 1/4*dfdx^2*dgdy^2
sage: differential_operator(x^2*y, x*y^2, 2)
1/36*dfdy^2*dgdx^2 + 1/18*dfdx*dfdy*dgdx*dgdy + 1/36*dfdx^2*dgdy^2
```

(continues on next page)
sage: differential_operator(x^2*y, x*y^2, 4)
1/576*dfdy^4*dgdx^4 - 1/144*dfdx*dfdy^3*dgdx^3*dgdy + 1/96*dfdx^2*dfdy^2*dgdx^2*dgdy^2
→ 2*dgdy^2 - 1/144*dfdx^3*dfdy*dgdx*dgdy^3 + 1/576*dfdx^4*dgdy^4

sage.schemes.hyperelliptic_curves.invariants.diffsymb(U,f,g)
Given a differential operator \( U \) in \( \text{dfdx}, \text{dfdy}, \text{dgdx}, \text{dgdy} \), represented symbolically by \( U \), apply it to \( f, g \).

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.invariants import diffsymb
sage: R.<x, y> = QQ[]
sage: S.<dfdx, dfdy, dgdx, dgdy> = QQ[]
sage: [ diffsymb(dd, x^2, y*0 + 1) for dd in S.gens() ]
[2*x, 0, 0, 0]
sage: [ diffsymb(dd, x*0 + 1, y^2) for dd in S.gens() ]
[0, 0, 0, 2*y]
sage: [ diffsymb(dd, x^2, y^2) for dd in S.gens() ]
[2*x*y^2, 0, 0, 2*x^2*y]
sage: diffsymb(dfdx + dfdy*dgdy, y*x^2, y^3)
2*x*y^4 + 3*x^2*y^2

sage.schemes.hyperelliptic_curves.invariants.diffxy(f, xtimes, ytimes)
Differentiate a polynomial \( f \), \( \text{xtimes} \) with respect to \( x \), and \( \text{ytimes} \) with respect to \( y \).

EXAMPLES:

sage: R.<u, v> = QQ[]
sage: sage.schemes.hyperelliptic_curves.invariants.diffxy(u^2*v^3, u, 0, v, 0)
u^2*v^3
sage: sage.schemes.hyperelliptic_curves.invariants.diffxy(u^2*v^3, u, 2, v, 1)
6*v^2
sage: sage.schemes.hyperelliptic_curves.invariants.diffxy(u^2*v^3, u, 2, v, 2)
12*v
sage: sage.schemes.hyperelliptic_curves.invariants.diffxy(u^2*v^3 + u^4*v^4, u, 2, v, 2)
144*u^2*v^2 + 12*v

sage.schemes.hyperelliptic_curves.invariants.igusa_clebsch_invariants(f)
Given a sextic form \( f \), return the Igusa-Clebsch invariants \( I_2, I_4, I_6, I_{10} \) of Igusa and Clebsch [IJ1960].

\( f \) may be homogeneous in two variables or inhomogeneous in one.

EXAMPLES:

sage: R.<x, y> = QQ[]
sage: igusa_clebsch_invariants(x^6 + y^6)
(-240, 1620, -119880, -46656)
sage: R.<x> = QQ[]
sage: igusa_clebsch_invariants(x^6 + x^5 + x^4 + x^2 + 2)
(-496, 6220, -955932, -1111784)
sage: magma(x^6 + 1).IgusaClebschInvariants() # optional - magma
[ -240, 1620, -119880, -46656 ]
sage: magma(x^6 + x^5 + x^4 + x^2 + 2).IgusaClebschInvariants() # optional - magma
[ -496, 6220, -955932, -1111784 ]
Convert Igusa invariants $I_2, I_4, I_6, I_{10}$ to Clebsch invariants $A, B, C, D$.

**EXAMPLES:**

```python
sage: from sage.schemes.hyperelliptic_curves.invariants import clebsch_to_igusa, igusa_to_clebsch
sage: igusa_to_clebsch(-2400, 173700, 23112000, -10309890600)
(20, 342/5, 2512/5, 43381012/1125)
```

Given a sextic form $f$, return a dictionary of the invariants of Mestre, p 317 [MJ1991]. $f$ may be homogeneous in two variables or inhomogeneous in one.

**EXAMPLES:**

```python
sage: x = QQ['x'].0
sage: ubs(x^6 + 1)
{'A': 2,
 'B': 2/3,
 'C': -2/9,
 'D': 0,
 'Delta': -2/3*x^2*h^2,
 'f': x^6 + h^6,
 'i': 2*x^2*h^2,
 'y1': 0,
 'y2': 0,
 'y3': 0}
```

(continues on next page)
class sage.schemes.hyperelliptic_curves.kummer_surface.KummerSurface(J)

Bases: sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective

11.18 Kummer surfaces over a general ring

11.19 Conductor and reduction types for genus 2 curves

AUTHORS:
• William Stein (2006-03-05): wrote Sage interface to genus2reduction
• Jeroen Demeyer (2014-09-17): replace genus2reduction program by PARI library call (trac ticket #15808)

ACKNOWLEDGMENT: (From Liu’s website:) Many thanks to Henri Cohen who started writing this program. After this program is available, many people pointed out to me (mathematical as well as programming) bugs: B. Poonen, E. Schaefer, C. Stahlke, M. Stoll, F. Villegas. So thanks to all of them. Thanks also go to Ph. Depouilly who help me to compile the program.

Also Liu has given me explicit permission to include genus2reduction with Sage and for people to modify the C source code however they want.

class sage.interfaces.genus2reduction.Genus2reduction

Bases: sage.structure.sage_object.SageObject

Conductor and Reduction Types for Genus 2 Curves.

Use \( R = \text{genus2reduction}(Q, P) \) to obtain reduction information about the Jacobian of the projective smooth curve defined by \( y^2 + Q(x)y = P(x) \). Type \( R? \) for further documentation and a description of how to interpret the local reduction data.

EXAMPLES:

```
sage: x = QQ['x'].0
sage: R = genus2reduction(x^3 - 2*x^2 - 2*x + 1, -5*x^5)
sage: R.conductor
1416875
sage: factor(R.conductor)
5^4 * 2267
```

This means that only the odd part of the conductor is known.

```
sage: R.prime_to_2_conductor_only
True
```

The discriminant is always minimal away from 2, but possibly not at 2.
 sage: factor(R.minimal_disc)  
2^3 * 5^5 * 2267

Printing \texttt{R} summarizes all the information computed about the curve

\texttt{sage: R}
\begin{verbatim}
Reduction data about this proper smooth genus 2 curve:
y^2 + (x^3 - 2*x^2 - 2*x + 1)*y = -5*x^5
A Minimal Equation (away from 2):
y^2 = x^6 - 240*x^4 - 2550*x^3 - 11400*x^2 - 24100*x - 19855
Minimal Discriminant (away from 2): 56675000
Conductor (away from 2): 1416875
Local Data:
p=2
(potential) stable reduction: (II), j=1
p=5
(potential) stable reduction: (I)
reduction at p: [V] page 156, (3), f=4
p=2267
(potential) stable reduction: (II), j=432
reduction at p: [I{1-0-0}] page 170, (1), f=1
\end{verbatim}

Here are some examples of curves with modular Jacobians:

\texttt{sage: R = genus2reduction(x^3 + x + 1, -2*x^5 - 3*x^2 + 2*x - 2)}
\texttt{sage: factor(R.conductor)} 23^2
\texttt{sage: factor(genus2reduction(x^3 + 1, -x^5 - 3*x^4 + 2*x^2 + 2*x - 2).conductor)} 29^2
\texttt{sage: factor(genus2reduction(x^3 + x + 1, x^5 + 2*x^4 + 2*x^3 + x^2 - x - 1).conductor)} 5^6

**EXAMPLES:**

\texttt{sage: genus2reduction(0, x^6 + 3*x^3 + 63)}
\begin{verbatim}
Reduction data about this proper smooth genus 2 curve:
y^2 = x^6 + 3*x^3 + 63
A Minimal Equation (away from 2):
y^2 = x^6 + 3*x^3 + 63
Minimal Discriminant (away from 2): 1062838316852992
Conductor (away from 2): 2893401
Local Data:
p=2
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
p=3
(potential) stable reduction: (I)
reduction at p: [III{9}] page 184, (3)^2, f=10
p=7
(potential) stable reduction: (V), j1+j2=0, j1*j2=0
reduction at p: [I{0}-II-0] page 159, (1), f=2
\end{verbatim}

In the above example, Liu remarks that in fact at $p = 2$, the reduction is [II-II-0] page 163, (1), $f = 8$. So the conductor of $J(C)$ is actually $2 \cdot 2893401 = 5786802$.

**A MODULAR CURVE:**

11.19. Conductor and reduction types for genus 2 curves
Consider the modular curve $X_1(13)$ defined by an equation

$$y^2 + (x^3 - x^2 - 1)y = x^2 - x.$$ 

We have:

```python
sage: genus2reduction(x^3-x^2-1, x^2 - x)
Reduction data about this proper smooth genus 2 curve:
 $y^2 + (x^3 - x^2 - 1)*y = x^2 - x$
A Minimal Equation (away from 2):
 $y^2 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561$
Minimal Discriminant (away from 2): 169
Conductor: 169
Local Data:
 p=13
 (potential) stable reduction: (V), j1+j2=0, j1*j2=0
 reduction at p: [I0]-II-0] page 159, (1), f=2
```

So the curve has good reduction at 2. At $p = 13$, the stable reduction is union of two elliptic curves, and both of them have 0 as modular invariant. The reduction at 13 is of type [I_0-II-0] (see Namikawa-Ueno, page 159). It is an elliptic curve with a cusp. The group of connected components of the Neron model of $J(C)$ is trivial, and the exponent of the conductor of $J(C)$ at 13 is $f = 2$. The conductor of $J(C)$ is 13^2. (Note: It is a theorem of Conrad-Edixhoven-Stein that the component group of $J(X_1(p))$ is trivial for all primes $p$.)

```python
class sage.interfaces.genus2reduction.ReductionData(pari_result, P, Q, minimal_equation, minimal_disc, local_data, conductor, prime_to_2_conductor_only)
Bases: sage.structure.sage_object.SageObject

Reduction data for a genus 2 curve.

How to read local_data attribute, i.e., if this class is R, then the following is the meaning of R.
local_data[p].

For each prime number p dividing the discriminant of $y^2 + Q(x)y = P(x)$, there are two lines.

The first line contains information about the stable reduction after field extension. Here are the meanings of the symbols of stable reduction:

(I) The stable reduction is smooth (i.e. the curve has potentially good reduction).

(II) The stable reduction is an elliptic curve E with an ordinary double point. $j \mod p$ is the modular invariant of E.

(III) The stable reduction is a projective line with two ordinary double points.

(IV) The stable reduction is two projective lines crossing transversally at three points.

(V) The stable reduction is the union of two elliptic curves E_1 and E_2 intersecting transversally at one point. Let j_1, j_2 be their modular invariants, then $j_1 + j_2$ and j_1j_2 are computed (they are numbers mod p).

(VI) The stable reduction is the union of an elliptic curve E and a projective line which has an ordinary double point. These two components intersect transversally at one point. $j \mod p$ is the modular invariant of E.

(VII) The stable reduction is as above, but the two components are both singular.

In the cases (I) and (V), the Jacobian $J(C)$ has potentially good reduction. In the cases (III), (IV) and (VII), $J(C)$ has potentially multiplicative reduction. In the two remaining cases, the (potential) semi-abelian reduction of $J(C)$ is extension of an elliptic curve (with modular invariant $j \mod p$) by a torus.

The second line contains three data concerning the reduction at p without any field extension.
1. The first symbol describes the REDUCTION AT p of C. We use the symbols of Namikawa-Ueno for the type of the reduction (Namikawa, Ueno:”The complete classification of fibers in pencils of curves of genus two”, Manuscripta Math., vol. 9, (1973), pages 143-186.) The reduction symbol is followed by the corresponding page number (or just an indication) in the above article. The lower index is printed by , for instance, [I2-II-5] means [I_2-II-5]. Note that if K and K' are Kodaira symbols for singular fibers of elliptic curves, [K-K'-m] and [K'-K-m] are the same type. Finally, [K-K'-1] (not the same as [K-K'-1]) is [K'-K-alpha] in the notation of Namikawa-Ueno. The figure [2I_0-m] in Namikawa-Ueno, page 159 must be denoted by [2I_0-(m+1)].

2. The second datum is the GROUP OF CONNECTED COMPONENTS (over an ALGEBRAIC CLOSURE (!) of \mathbb{F}_p) of the Neron model of $J(C)$. The symbol (n) means the cyclic group with n elements. When n=0, (0) is the trivial group (1). \mathbb{H}_n is isomorphic to $(2)^x(2)$ if n is even and to \mathbb{A} otherwise.

Note - The set of rational points of Φ can be computed using Theorem 1.17 in S. Bosch and Q. Liu “Rational points of the group of components of a Neron model”, Manuscripta Math. 98 (1999), 275-293.

3. Finally, f is the exponent of the conductor of $J(C)$ at p.

Warning: Be careful regarding the formula:

\[
\text{valuation of the naive minimal discriminant} = f + n - 1 + 11c(X).
\]

(Q. Liu: “Conducteur et discriminant minimal de courbes de genre 2”, Compositio Math. 94 (1994) 51-79, Theoreme 2) is valid only if the residual field is algebraically closed as stated in the paper. So this equality does not hold in general over \mathbb{Q}_p. The fact is that the minimal discriminant may change after unramified extension. One can show however that, at worst, the change will stabilize after a quadratic unramified extension (Q. Liu: “Modeles entiers de courbes hyperelliptiques sur un corps de valuation discrete”, Trans. AMS 348 (1996), 4577-4610, Section 7.2, Proposition 4).

```
sage.interfaces.genus2reduction.divisors_to_string(divs)
```

Convert a list of numbers (representing the orders of cyclic groups in the factorization of a finite abelian group) to a string according to the format shown in the examples.

INPUT:

- divs -- a (possibly empty) list of numbers

OUTPUT: a string representation of these numbers

EXAMPLES:

```
sage: from sage.interfaces.genus2reduction import divisors_to_string
sage: print(divisors_to_string([]))
(1)
sage: print(divisors_to_string([5]))
(5)
sage: print(divisors_to_string([5]*6))
(5)^6
sage: print(divisors_to_string([2,3,4]))
(2)x(3)x(4)
sage: print(divisors_to_string([6,2,2]))
(6)x(2)^2
```
• Index
• Module Index
• Search Page

[S72] Stark, “Class-numbers of complex quadratic fields.”

[Edix] Edixhoven, B., Point counting after Kedlaya, EIDMA-Stieltjes graduate course, Leiden (notes: https://www.math.leidenuniv.nl/~edix/oww/mathofcrypt/carls_edixhoven/kedlaya.pdf)
sage.interfaces.genus2reduction, 698

S
sage.schemes.curves.affine_curve, 5
sage.schemes.curves.constructor, 1
sage.schemes.curves.curve, 45
sage.schemes.curves.point, 51
sage.schemes.curves.projective_curve, 23
sage.schemes.elliptic_curves.cm, 474
sage.schemes.elliptic_curves.constructor, 105
sage.schemes.elliptic_curves.descent_two_isogeny, 600
sage.schemes.elliptic_curves.ec_database, 361
sage.schemes.elliptic_curves.ell_curve_isogeny, 219
sage.schemes.elliptic_curves.ell_egros, 603
sage.schemes.elliptic_curves.ell_field, 178
sage.schemes.elliptic_curves.ell_finite_field, 193
sage.schemes.elliptic_curves.ell_generic, 154
sage.schemes.elliptic_curves.ell_local_data, 479
sage.schemes.elliptic_curves.ell_module_symbols, 519
sage.schemes.elliptic_curves.ell_number_field, 362
sage.schemes.elliptic_curves.ell_padic_field, 607
sage.schemes.elliptic_curves.ell_point, 123
sage.schemes.elliptic_curves.ell_rational_field, 274
sage.schemes.elliptic_curves.ell_tate_curve, 488
sage.schemes.elliptic_curves.ell_torsion, 432
sage.schemes.elliptic_curves.ell_wp, 492
sage.schemes.elliptic_curves.formal_group, 212
sage.schemes.elliptic_curves.gal_reps, 434
sage.schemes.elliptic_curves.gal_reps_number_field, 446
sage.schemes.elliptic_curves.gp_simon, 608
sage.schemes.elliptic_curves.heegner, 533
sage.schemes.elliptic_curves.height, 412
sage.schemes.elliptic_curves.isogeny_class, 456
sage.schemes.elliptic_curves.isogeny_small_degree, 248
sage.schemes.elliptic_curves.jacobian, 120
sage.schemes.elliptic_curves.kodaira_symbol, 487
sage.schemes.elliptic_curves.lseries_ell, 524
sage.schemes.elliptic_curves.mod5family, 608
sage.schemes.elliptic_curves.modular_parametrization, 517
sage.schemes.elliptic_curves.padic_lseries, 587
sage.schemes.elliptic_curves.period_lattice, 496
sage.schemes.elliptic_curves.period_lattice_region, 513
sage.schemes.elliptic_curves.saturation, 429
sage.schemes.elliptic_curves.sha_tate, 463
sage.schemes.elliptic_curves.weierstrass_morphism, 217
sage.schemes.elliptic_curves.weierstrass_transform, 609
sage.schemes.hyperelliptic_curves.constructor, 613
sage.schemes.hyperelliptic_curves.hypellfrob, 681
sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field, 621
sage.schemes.hyperelliptic_curves.hyperelliptic_g2_finite_field, 693
sage.schemes.hyperelliptic_curves.hyperelliptic_g2_generic, 691
sage.schemes.hyperelliptic_curves.hyperelliptic_g2_padic_field, 693
sage.schemes.hyperelliptic_curves.hyperelliptic_g2_rational_field, 693
sage.schemes.hyperelliptic_curves.hyperelliptic_generic, 615
sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field, 635
sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field, 652
sage.schemes.hyperelliptic_curves.invariants, 693
sage.schemes.hyperelliptic_curves.jacobian_g2, 685
sage.schemes.hyperelliptic_curves.jacobian_generic, 683
sage.schemes.hyperelliptic_curves.jacobian_homset, 685
sage.schemes.hyperelliptic_curves.jacobian_morphism, 686
sage.schemes.hyperelliptic_curves.kummer_surface, 698
sage.schemes.hyperelliptic_curves.mestre, 652
sage.schemes.hyperelliptic_curves.monsky_washnitzer, 655
sage.schemes.jacobians.abstract_jacobian, 57
sage.schemes.plane_conics.con_field, 60
sage.schemes.plane_conics.con_finite_field, 78
sage.schemes.plane_conics.con_number_field, 73
sage.schemes.plane_conics.con_prime_finite_field, 79
sage.schemes.plane_conics.con_rational_field, 75
sage.schemes.plane_conics.con_rational_function_field, 80
sage.schemes.plane_conics.constructor, 59
sage.schemes.plane_quartics.quartic_constructor, 85
sage.schemes.plane_quartics.quartic_generic, 85
sage.schemes.riemann_surfaces.riemann_surface, 87
A

a1() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 155
a2() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 155
a3() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 155
a4() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 155
a6() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 155
a_invariants() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 155
a_number() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 623
abelian_group() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field method), 194
abelian_variety() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 279
absolute_degree() (sage.schemes.elliptic_curves.heegner.RingClassField method), 571
absolute_igusa_invariants_kohel() (in module sage.schemes.hyperelliptic_curves.invariants), 694
absolute_igusa_invariants_kohel() (sage.schemes.hyperelliptic_curves.hyperelliptic_g2_generic.HyperellipticCurve_g2_generic method), 691
absolute_igusa_invariants_wamelen() (in module sage.schemes.hyperelliptic_curves.invariants), 694
absolute_igusa_invariants_wamelen() (sage.schemes.hyperelliptic_curves.hyperelliptic_g2_generic.HyperellipticCurve_g2_generic method), 691
additive_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 125
additive_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field method), 138
additive_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 141
adjusted_prec() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 672
affine_patch() (sage.schemes.curves.projective_curve.ProjectiveCurve method), 24
AffineCurve (class in sage.schemes.curves.affine_curve), 5
AffineCurve (class in sage.schemes.curves.affine_curve), 51
AffinePlaneCurve (class in sage.schemes.curves.affine_curve), 14
AffinePlaneCurve_finite_field (class in sage.schemes.curves.affine_curve), 21
AffinePlaneCurve_prime_finite_field (class in sage.schemes.curves.affine_curve), 21
AffinePlaneCurvePoint_field (class in sage.schemes.curves.affine_curve), 5
ainvs() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 156
alpha() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm method), 535
alpha() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 415
alpha() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries method), 588
an() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 279
an() (sage.schemes.elliptic_curves.sha_tate.Sha method), 465
an_numerical() (sage.schemes.elliptic_curves.sha_tate.Sha method), 467
an_padic() (sage.schemes.elliptic_curves.sha_tateSha method), 468
analytic_rank() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 279
analytic_rank_upper_bound() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 280
anlist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 283
antilogarithm() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 283
ap() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 284
aplist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 284
archimedean_local_height() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 141
are_projectively_equivalent() (in module sage.schemes.elliptic_curves.constructor), 118
arithmetic_genus() (sage.schemes.curves.projective_curve.ProjectiveCurve method), 24
arithmetic_genus() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 28
at1() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 525
ate_pairing() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 126
atkin_lehner_act() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N method), 547
automorphisms() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 157
B
B() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 412
b2() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 157
b4() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 157
b6() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 158
b8() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 158
b_invariants() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 158
bad_reduction_type() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 481
base_extend() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 158
base_extend() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 363
base_extend() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 616
base_extend() (sage.schemes.hyperelliptic_curves.jacobian_homset.JacobianHomset_divisor_classes method), 686
base_extend() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 661
base_extend() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 670
base_extend() (sage.schemes.jacobians.abstract_jacobian.Jacobian_generic method), 57
base_extend() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 61
base_field() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 178
base_field() (sage.schemes.elliptic_curves.heegner.GaloisGroup method), 537
base_field() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 415
base_ring() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 159
base_ring() (sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol method), 520
baseWI (class in sage.schemes.elliptic_curves.weierstrass_morphism), 217
basis() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 497
basis_matrix() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 498
bernardi_sigma_function() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular method), 597
beta() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding method), 565
betas() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond method), 553
Billerey_B_bound() (in module sage.schemes.elliptic_curves.gal_reps_number_field), 446
Billerey_B_l() (in module sage.schemes.elliptic_curves.gal_reps_number_field), 447
Billerey_P_l() (in module sage.schemes.elliptic_curves.gal_reps_number_field), 448
Billerey_R_bound() (in module sage.schemes.elliptic_curves.gal_reps_number_field), 448
Index 713
cm_discriminant() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 285

cm_j_invariants() (in module sage.schemes.elliptic_curves.cm), 474

cm_j_invariants_and_orders() (in module sage.schemes.elliptic_curves.cm), 475

cm_orders() (in module sage.schemes.elliptic_curves.cm), 475

codomain() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding method), 565

coeff() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 656

coefficients() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 61

coefficients_from_j() (in module sage.schemes.elliptic_curves.constructor), 119

coefficients_from_Weierstrass_polynomial() (in module sage.schemes.elliptic_curves.constructor), 119

coeffs() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 656

coeffs() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement method), 666

coeffs() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement method), 667

cohomology_basis() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 89

coleman_integral() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 636

coleman_integral() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 656

coleman_integral_from_weierstrass_via_boundary() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 640

coleman_integral_P_to_S() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 639

coleman_integral_S_to_Q() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 639

coleman_integrals_on_basis() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 641

coleman_integrals_on_basis_hyperelliptic() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 642

complex_area() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 499

complex_conjugation() (sage.schemes.elliptic_curves.heegner.GaloisGroup method), 538

complex_intersection_is_empty() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 415

compute_codomain_formula() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 237

compute_codomain_kohel() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 237

compute_intermediate_curves() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 238

compute_isogeny_kernel_polynomial() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 239

compute_isogeny_starks() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 240

compute_sequence_of_maps() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 241

compute_vw_kohel_even_deg1() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 243

compute_vw_kohel_even_deg3() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 243

compute_vw_kohel_odd() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 244

compute_wp_fast() (in module sage.schemes.elliptic_curves.ell_wp), 493

compute_wp_pari() (in module sage.schemes.elliptic_curves.ell_wp), 493

compute_wp_quadratic() (in module sage.schemes.elliptic_curves.ell_wp), 493

conductor() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 364

conductor() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 285

conductor() (sage.schemes.elliptic_curves.heegner.HeegnerPoint method), 540

conductor() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond method), 553

conductor() (sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass method), 566

conductor() (sage.schemes.elliptic_curves.heegner.RingClassField method), 571

conductor_valuation() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 481

congruence_number() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 286
Conic() (in module sage.schemes.plane_conics.constructor), 59
conjugate() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding method), 565
conjugates_over_K() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve method), 542
contract() (sage.schemes.elliptic_curves.period_lattice_region.PperiodicRegion method), 514
ConvergenceError, 88
coordinates() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 499
copy() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_NumberField method), 459
copy() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_Rational method), 460
count_points() (sage.schemes.elliptic_curves.ell_ell_prime.EllipticCurve_ell_prime method), 198
count_points() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 625
count_points() (sage.schemes.plane_conics.con_finite_field.ProjectiveConic_finite_field method), 78
count_points_exhaustive() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 626
count_points_frobenius_polynomial() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 627
count_points_frobenius_traces() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 628
CPS_height_bound() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 275
coremona_curves() (sage.schemes.elliptic_curves.ell_tate_curve.EllipticCurveTateCurve method), 489
coremona_label() (sage.schemes.elliptic_curves.ell_tate_curve.EllipticCurveTateCurve method), 489
coremona_optimal_curves() (sage.schemes.elliptic_curves.ell_tate_curve.EllipticCurveTateCurve method), 489
curve() (sage.schemes.elliptic_curves.ell_tate_curve.EllipticCurveTateCurve method), 434
curve() (sage.schemes.elliptic_curves.ell_tate_curve.EllipticCurveTorsionSubgroup method), 434
curve() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 489
curve() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 489
Curve() (sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup method), 212
Curve() (sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup method), 212
curve() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 568
curve() (sage.schemes.elliptic_curves.jacobian.Homset.JacobianHomset_divisor_classes method), 686
curve() (sage.schemes.elliptic_curves.jacobian.Homset.JacobianHomset_divisor_classes method), 686
curve() (sage.schemes.elliptic_curves.jacobian.Homset.JacobianHomset_divisor_classes method), 686
Curve_generic (class in sage.schemes.curves.curves), 45
curve_key() (in module sage.schemes.elliptic_curves.ell_tate_curve.ell_tate_curve), 45
curve_over_ram_extn() (sage.schemes.elliptic_curves.jacobian.Subring.jacobian_subring method), 604
cyclic_subideal_p1() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 555

D
data (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion attribute), 514
database_attributes() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 287
database_curve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_ell_rational_field method), 287
DE() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 413

defining_polynomial() (sage.schemes.curves.curve.EllipticCurveGeneric method), 45

deg_one_primes_iter() (in module sage.schemes.elliptic_curves.gal_reps_number_field), 454
degree() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 29
degree() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 226
degree() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 661
degree() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 671
degree_over_H() (sage.schemes.elliptic_curves.heegner.RingClassField method), 572
degree_over_K() (sage.schemes.elliptic_curves.heegner.RingClassField method), 572
degree_over_Q() (sage.schemes.elliptic_curves.heegner.RingClassField method), 573
deriv_at1() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 526
derivative_matrix() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 61
determinant() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 62
diagonal_matrix() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 62
diagonalization() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 63
diff() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement method), 669
differential() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup method), 212
differential_basis_baker() (in module sage.schemes.riemann_surfaces.riemann_surface), 101
differential_operator() (in module sage.schemes.hyperelliptic_curves.invariants), 695
diffsym() (in module sage.schemes.hyperelliptic_curves.invariants), 696
difffxty() (in module sage.schemes.hyperelliptic_curves.invariants), 696
dimension() (sage.schemes.hyperelliptic_curves.jacobian_generic.HyperellipticJacobianGeneric method), 684
dimension() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 662
discrete_log() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePointFiniteField method), 139
discriminant() (sage.schemes.elliptic_curves.ell_curve_generic.EllipticCurveGeneric method), 160
discriminant() (sage.schemes.elliptic_curves.heegner.HeegnerPoint method), 540
discriminant() (sage.schemes.elliptic_curves.heegner.HeegnerPointsLevelDisc method), 551
discriminant_of_K() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding method), 573
discriminant_valuation() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 482
discriminants() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePointFiniteField method), 139
discriminant_with_bounded_class_number() (in module sage.schemes.elliptic_curves.cm), 476
division_field() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurveNumberField method), 365
division_points() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePointNumberField method), 129
division_polynomial() (sage.schemes.elliptic_curves.ell_curve_generic.EllipticCurveGeneric method), 161
division_polynomial_0() (sage.schemes.elliptic_curves.ell_curve_generic.EllipticCurveGeneric method), 162
divisor() (sage.schemes.curves.curves.CurveGeneric method), 46
divisor_group() (sage.schemes.curves.curves.CurveGeneric method), 46
divisor_of_function() (sage.schemes.curves.affine_curve.AffinePlaneCurve method), 15
divisor_of_function() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 29
divisors_to_string() (in module sage.interfaces.genus2reduction), 701
dokchitser() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 528
domain() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphism method), 534
domain() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding method), 565
domain_conductor() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding method), 565
domain_gen() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding method), 566
downstairs_edges() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 89
downstairs_graph() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 90
dp_valued_height() (sage.schemes.elliptic_curves.padic_lseries.PadicLseriesSupersingular method), 596
Index 717

Dp_valued_regulator() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular method), 596
Dp_valued_series() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular method), 597
ds() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion method), 514
dual() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 226

E

E2() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 488
e_log_RC() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 500
e_pr() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 416
dgeometric() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 90
egrs_from_j() (in module sage.schemes.elliptic_curves.ell_egros), 604
egrs_from_j_0() (in module sage.schemes.elliptic_curves.ell_egros), 605
egrs_from_j_1728() (in module sage.schemes.elliptic_curves.ell_egros), 605
egrs_from_jlist() (in module sage.schemes.elliptic_curves.ell_egros), 606
egrs_get_j() (in module sage.schemes.elliptic_curves.ell_egros), 606
ei() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 502
eell() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 555
e_heegner_discriminants() (in module sage.schemes.elliptic_curves.heegner), 575
e_heegner_discriminants_list() (in module sage.schemes.elliptic_curves.heegner), 575
e_heegner_point() (in module sage.schemes.elliptic_curves.heegner), 575
e elliptic_curve() (sage.schemes.elliptic_curves.ell_modular_symbols.ModularSymbol method), 520
e elliptic_curve() (sage.schemes.elliptic_curves.galois_representation.Barcode method), 436
e elliptic_curve() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 528
e elliptic_curve() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries method), 589
e elliptic_curve_congruence_graph() (in module sage.schemes.elliptic_curves.ell_modular_symbols), 360
e elliptic_exponential() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 288
e elliptic_exponential() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 178
EllipticCurve_field (class in sage.schemes.elliptic_curves.ell_field), 178
EllipticCurveFiniteField (class in sage.schemes.elliptic_curves.ell_field), 193
EllipticCurveFromC4c60() (in module sage.schemes.elliptic_curves.constructor), 110
EllipticCurveFromCubic() (in module sage.schemes.elliptic_curves.constructor), 110
EllipticCurveFromJ() (in module sage.schemes.elliptic_curves.constructor), 115
EllipticCurveFromWeierstrassPolynomial() (in module sage.schemes.elliptic_curves.constructor), 109
EllipticCurve_generic (class in sage.schemes.elliptic_curves.ell_generic), 155
EllipticCurve_number_field (class in sage.schemes.elliptic_curves.ell_number_field), 363
EllipticCurve_padic_field (class in sage.schemes.elliptic_curves.ell_padic_field), 607
EllipticCurve_rational_field (class in sage.schemes.elliptic_curves.ell_rational_field), 274
EllipticCurveCanonicalHeight (class in sage.schemes.elliptic_curves.ell_rational_field), 412
EllipticCurveFactory (class in sage.schemes.elliptic_curves.constructor), 105
EllipticCurveGroup (class in sage.schemes.elliptic_curves.constructor), 212
EllipticCurveIsogeny (class in sage.schemes.elliptic_curves.ell_curve_isogeny), 219
EllipticCurveLocalData (class in sage.schemes.elliptic_curves.ell_local_data), 480
EllipticCurvePoint (class in sage.schemes.elliptic_curves.ell_point), 124
EllipticCurvePoint_field (class in sage.schemes.elliptic_curves.ell_point), 124
EllipticCurvePointFiniteField (class in sage.schemes.elliptic_curves.ell_point), 138
EllipticCurvePointNumberField (class in sage.schemes.elliptic_curves.ell_point), 140
EllipticCurves (class in sage.schemes.elliptic_curves.ec_database), 361
EllipticCurves_with_good_reduction_outside_S() (in module sage.schemes.elliptic_curves.constructor), 116
EllipticCurveTorsionSubgroup (class in sage.schemes.elliptic_curves.ell_torsion), 432
endomorphism_basis() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 91
eps() (in module sage.schemes.elliptic_curves.height), 427
eval_modular_form() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 289
excellent_position() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 30
expand() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion method), 515
extended_agm_iteration() (in module sage.schemes.elliptic_curves.period_lattice), 512
extract_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 657
extract_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement method), 669

F
field() (sage.schemes.elliptic_curves.heegner.GaloisGroup method), 538
fill_isogeny_matrix() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 244
find_char_zero_weier_point() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 644
find_point() (sage.schemes.plane_conics.con_rational_function_field.ProjectiveConic_rational_function_field method), 80
finite_endpoints() (sage.schemes.elliptic_curves.height.UnionOfIntervals method), 425
fk_intervals() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 417
formal() (sage.schemes.elliptic_curves.ell_curve_isogeny.ell_curve_isogeny.EllipticCurveIsogeny method), 228
formal() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 164
formal_group() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 164
Fricke_module() (in module sage.schemes.elliptic_curves.ell_padic_field), 614
Fricke_polynomial() (in module sage.schemes.elliptic_curves.ell_padic_field), 614
frob_basis_elements() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 662
frob_invariant_differential() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 663
frob_Q() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 662
frobenius() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field method), 199
frobenius() (sage.schemes.elliptic_curves.ell_padic_field.EllipticCurve_padic_field method), 628
frobenius() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular method), 597
frobenius() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 645
frobenius_expansion_by_newton() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 672
frobenius_expansion_by_series() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 673
Frobenius_filter() (in module sage.schemes.elliptic_curves.gal_reps_number_field), 449
frobenius_matrix() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 629
frobenius_matrix_hypellfrob() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 629
frobenius_order() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field method), 199
frobenius_polynomial() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field method), 200
frobenius_polynomial() (sage.schemes.elliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 630
frobenius_polynomial_cardinalities() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 631
frobenius_polynomial_matrix() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 631

Index
method), 632
frobenius_polynomial_pari() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field
method), 633
full (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion attribute), 515
full_p_saturation() (in module sage.schemes.elliptic_curves.saturation), 430
fundamental_group() (sage.schemes.curves.affine_curve.AffinePlaneCurve method), 15
fundamental_group() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 31

G
galois_group() (sage.schemes.elliptic_curves.heegner.RingClassField method), 573
galois_group_over_hilbert_class_field() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 555
galois_group_over_quadratic_field() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 556
galois_orbit_over_K() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnXON method), 548
galois_representation() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 289
GaloisAutomorphism (class in sage.schemes.elliptic_curves.heegner), 534
GaloisAutomorphismComplexConjugation (class in sage.schemes.elliptic_curves.heegner), 535
GaloisAutomorphismQuadraticForm (class in sage.schemes.elliptic_curves.heegner), 535
GaloisGroup (class in sage.schemes.elliptic_curves.ell_curve_isogeny), 450
GaloisRepresentation (class in sage.schemes.elliptic_curves.ell_curve_isogeny), 450
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 164
genskit() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 200
gens() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 165
gens() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 368
gens() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 290
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 164
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 200
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 165
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 368
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 290
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 164
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 200
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 165
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 368
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 290
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 164
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 200
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 165
gen() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 368
geometric_genus() (sage.schemes.curves.curve.Curve_generic method), 46
genus() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 179
genus() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 179
genus() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 370
Genus2reduction (class in sage.interfaces.genus2reduction), 698
get_boundary_point() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 64
get_pre_isomorphism() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 228
global_integral_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 229
global_integral_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 370
global_integral_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 291
global_minimal_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 371
global_minimality_class() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 373
graph() (sage.schemes.elliptic_curves.ell_curve_isogeny.isogeny_class.IsogenyClass_EC method), 456
group_law() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 228
has_additive_reduction() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 482
has_additive_reduction() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 374
has_bad_reduction() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 482
has_bad_reduction() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 374
has_bad_reduction() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 291
has_ambient_field() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 375
has_cm() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 374
has_cm() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 291
has_complex_multiplicative_reduction() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 483
has_complex_multiplicative_reduction() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 376
has_good_reduction() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 482
has_good_reduction() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 375
has_good_reduction() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 130
has_good_reduction() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 139
has_good_reduction_outside_S() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 292
has_infinite_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 131
has_infinite_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 146
has_multiplicative_reduction() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 145
has_multiplicative_reduction() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 293
has_nonsplit_multiplicative_reduction() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 145
has_nonsplit_multiplicative_reduction() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 293
has_odd_degree_model() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 616
has_rational_cm() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 377
has_rational_cm() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 293
has_rational_point() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 64
has_rational_point() (sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field method), 75
has_rational_point() (sage.schemes.plane_conics.con_rational_function_field.ProjectiveConic_rational_function_field method), 81
has_rational_point() (sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field method), 75
has_rational_point() (sage.schemes.plane_conics.con_rational_function_field.ProjectiveConic_rational_function_field method), 81
has_singular_point() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 65
has_split_multiplicative_reduction() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 131
has_split_multiplicative_reduction() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 146
Hasse_bounds() (in module sage.schemes.curves.projective_curve), 23
hasse_invariant() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 180
Hasse_Witt() (sage.schemes.hyperelliptic_curves.hyperelliptic_field.Hyperelliptic_curve method), 622
heegner_conductors() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 556
heegner_discriminants() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 293
heegner_discriminants() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 556
heegner_discriminants_list() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 293
heegner_divisor() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 557
heegner_index() (in module sage.schemes.elliptic_curves.heegner), 576
heegner_index() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 294
heegner_index_bound() (in module sage.schemes.elliptic_curves.heegner), 578
heegner_index_bound() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 295
heegner_point() (in module sage.schemes.elliptic_curves.heegner), 579
heegner_point() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 296
heegner_point() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field.KolyvaginCohomologyClass method), 566
heegner_point() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint method), 568
heegner_point_height() (in module sage.schemes.elliptic_curves.heegner), 579
heegner_point_height() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 297
heegner_point_on_X0N() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve method), 542
heegner_points() (in module sage.schemes.elliptic_curves.heegner), 579
heegner_sha_an() (in module sage.schemes.elliptic_curves.heegner), 580
heegner_sha_an() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 297
HeegnerPoint (class in sage.schemes.elliptic_curves.heegner), 539
HeegnerPointOnEllipticCurve (class in sage.schemes.elliptic_curves.heegner), 541
HeegnerPointOnX0N (class in sage.schemes.elliptic_curves.heegner), 547
HeegnerPoints (class in sage.schemes.elliptic_curves.heegner), 549
HeegnerPoints_level (class in sage.schemes.elliptic_curves.heegner), 550
HeegnerPoints_level_disc (class in sage.schemes.elliptic_curves.heegner), 551
HeegnerPoints_level_disc_cond (class in sage.schemes.elliptic_curves.heegner), 552
HeegnerQuatAlg (class in sage.schemes.elliptic_curves.heegner), 554
HeegnerQuatAlgEmbedding (class in sage.schemes.elliptic_curves.heegner), 564
height() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 146
height() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 299
height_pairing_matrix() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 378
helper_matrix() (in module sage.schemes.elliptic_curves.heegner), 579
hilbert_class_polynomial() (in module sage.schemes.elliptic_curves.cm), 477
hom() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 66
homology_basis() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 91
homomorphism_basis() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 92
homotopy_continuation() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 92
hypellfrob() (in module sage.schemes.hyperelliptic_curves.hypellfrob), 681
hyperelliptic_polynomials() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 165
hyperelliptic_polynomials() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 617
HyperellipticCurve() (in module sage.schemes.hyperelliptic_curves.constructor), 613
HyperellipticCurve_finite_field (class in sage.schemes.hyperelliptic_curves.HyperellipticCurve_finite_field), 622
HyperellipticCurve_finite_field (class in sage.schemes.hyperelliptic_curves.HyperellipticCurve_finite_field.constructor), 622
HyperellipticCurve_g2_finite_field (class in sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_g2_finite_field), 693
HyperellipticCurve_g2_generic (class in sage.schemes.hyperelliptic_curves.HyperellipticCurve_g2_generic), 691
HyperellipticCurve_g2_padic_field (class in sage.schemes.hyperelliptic_curves.HyperellipticCurve_g2_padic_field), 693
HyperellipticCurve_g2_padic_field (class in sage.schemes.hyperelliptic_curves.HyperellipticCurve_g2_padic_field.constructor), 693
HyperellipticCurve_g2_rational_field (class in sage.schemes.hyperelliptic_curves.HyperellipticCurve_g2_rational_field), 693
HyperellipticCurve_g2_rational_field (class in sage.schemes.hyperelliptic_curves.HyperellipticCurve_g2_rational_field.constructor), 693
ideal() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm method), 536
igusa_clebsch_invariants() (in module sage.schemes.hyperelliptic_curves.invariants), 696
igusa_clebsch_invariants() (sage.schemes.hyperelliptic_curves.hyperelliptic_g2_generic.HyperellipticCurve_g2_generic method), 692
igusa_to_clebsch() (in module sage.schemes.hyperelliptic_curves.invariants), 696
image_classes() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation method), 436
image_type() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation method), 438
index() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint method), 568
index() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 457
inf_max_abs() (in module sage.schemes.elliptic_curves.height), 427
init() (in module sage.schemes.elliptic_curves.gp_simon), 608
innermost_point() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion method), 515
integer_matrix_relations() (in module sage.schemes.riemann_surfaces.riemann_surface), 102
integral_model() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 379
integral_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 299
integral_points() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 299
integral_points_with_bounded_mw_coeffs() (in module sage.schemes.elliptic_curves.ell_rational_field), 360
integral_short_weierstrass_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 301
integral_x_coords_in_interval() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 301
integrate() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 657
intersection() (sage.schemes.elliptic_curves.height.UnionOfIntervals class method), 425
intersection_points() (sage.schemes.curves.curve.Curve_generic method), 47
intersects_at() (sage.schemes.curves.curve.Curve_generic method), 48
intervals() (sage.schemes.elliptic_curves.height.UnionOfIntervals method), 426
invariant_differential() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 617
invariant_differential() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 663
inverse() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup method), 213
inverse() (sage.schemes.elliptic_curves.weierstrass_transform.WeierstrassTransformationWithInverse_class method), 611
is_cm_j_invariant() (in module sage.schemes.elliptic_curves.cm), 478
is_complete_intersection() (sage.schemes.curves.projective_curve.ProjectiveCurve method), 25
is_crystalline() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation method), 440
is_diagonal() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 67
is_divisible_by() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 131
is_EllipticCurve() (in module sage.schemes.elliptic_curves.ell_generic), 178
is_empty() (sage.schemes.elliptic_curves.height.UnionOfIntervals method), 426
is_empty() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion method), 516
is_field() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 671
is_finite_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 132
is_global_integral_model() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 380
is_global_integral_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 301
is_global_minimal_model() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 380
is_good() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 302
is_HyperellipticCurve() (in module sage.schemes.hyperelliptic_curves.hyperelliptic_generic), 621
method), 646
is_semistable() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 304
is_semistable() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation method), 443
is_separable() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 231
is_sextic_twist() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 183
is_singular() (sage.schemes.curves.curve.Curve_generic method), 48
is_singular() (sage.schemes.curves.point.AffineCurvePoint_field method), 51
is_singular() (sage.schemes.curves.point.ProjectiveCurvePoint_field method), 53
is_singular() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 32
is_singular() (sage.schemes.hyperelliptic_curves.hyperelliptic_generics.HyperellipticCurve_generic method), 617
is_smooth() (sage.schemes.hyperelliptic_curves.hyperelliptic_generics.HyperellipticCurve_generic method), 617
is_smooth() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 67
is_split() (in module sage.schemes.elliptic_curves.heegner), 582
is_split() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 489
is_subfield() (sage.schemes.elliptic_curves.heegner.RingClassField method), 574
is_supersingular() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field method), 203
is_supersingular() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 305
is_supersingular() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary method), 592
is_supersingular() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular method), 598
is_surjective() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 231
is_surjective() (sage.schemes.elliptic_curves.ell_reps_number_field.GaloisRepresentation method), 443
is_surjective() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 451
is_transverse() (sage.schemes.curves.affine_curve.AffinePlaneCurve method), 16
is_transverse() (sage.schemes.curves.point.AffinePlaneCurvePoint_field method), 52
is_transverse() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 54
is_unipotent() (sage.schemes.elliptic_curves.ell_reps.GaloisRepresentation method), 444
is_unramified() (sage.schemes.elliptic_curves.ell_reps.GaloisRepresentation method), 444
is_weierstrass() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 647
is_x_coord() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 166
is_zero() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 232
isogenies() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 457
isogenies_13_0() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 251
isogenies_13_1728() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 253
isogenies_2() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 255
isogenies_3() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 255
isogenies_5_0() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 256
isogenies_5_1728() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 257
isogenies_7_0() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 258
isogenies_7_1728() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 260
isogenies_prime_degree() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 261
isogenies_prime_degree() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 244
isogenies_prime_degree() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 383
isogenies_prime_degree() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 305
isogenies_prime_degree_general() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 263
isogenies_prime_degree_genus_0() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 266
isogenies_prime_degree_genus_0_j0() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 269
isogenies_prime_degree_genus_0_j1728() (in module sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 271
isogenies_sporadic_Q() (in module sage.schemes.elliptic_curves.isogeny_small_degree), 272
isogeny() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 188
isogeny_bound() (sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation method), 452
isogeny_class() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 384
isogeny_codomain() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 189
isogeny_codomain_from_kernel() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 245
isogeny_degree() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 389
isogeny_degree() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 308
isogeny_degrees_cm() (in module sage.schemes.elliptic_curves.isogeny_class), 460
isogeny_determine_algorithm() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 246
isogeny_graph() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 310
IsogenyClass_EC (class in sage.schemes.elliptic_curves.isogeny_class), 456
IsogenyClass_EC_NumberField (class in sage.schemes.elliptic_curves.isogeny_class), 459
IsogenyClass_EC_Rational (class in sage.schemes.elliptic_curves.isogeny_class), 460
isomorphism_to() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 167
isomorphisms() (in module sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field), 218
J
j_invariant() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 168
Jacobian() (in module sage.schemes.elliptic_curves.jacobian), 121
Jacobian() (in module sage.schemes.elliptic_curves.jacobian), 57
jacobian() (sage.schemes.hyperelliptic_curves.hyperelliptic_g2_generic.HyperellipticCurve_g2_generic method), 692
jacobian() (sage.schemes.hyperelliptic_curves.hyperelliptic generic.HyperellipticCurve_generic method), 167
Jacobian_generic (class in sage.schemes.jacobians.abstract_jacobian), 57
Jacobian_of_curve() (in module sage.schemes.elliptic_curves.jacobian), 121
Jacobian_of_equation() (in module sage.schemes.elliptic_curves.jacobian), 122
JacobianHomset_divisor_classes (class in sage.schemes.elliptic_curves.jacobian_homset), 686
JacobianMorphism_divisor_class_field (class in sage.schemes.elliptic_curves.jacobian_morphism), 687
join() (sage.schemes.elliptic_curves.height.UnionOfIntervals static method), 426
K
kernel_polynomial() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 232
ekodaira_symbol() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 484
kodaira_symbol() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 390
kodaira_symbol() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 311
kodaira_type() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 311
kodaira_type_old() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 311
KodairaSymbol() (in module sage.schemes.elliptic_curves.kodaira), 487
KodairaSymbol_class (class in sage.schemes.elliptic_curves.kodaira), 488
kolyvagin_cohomology_class() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve method), 542
kolyvagin_cohomology_class() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint method), 568
kolyvagin_conductors() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc method), 551
kolyvagin_cyclic_subideals() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 557
kolyvagin_generator() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 558
kolyvagin_generators() (sage.schemes.elliptic_curves.heegner.GaloisGroup method), 539
kolyvagin_generators() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 558
kolyvagin_point() (in module sage.schemes.elliptic_curves.heegner), 582
kolyvagin_point() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 312
kolyvagin_point() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve method), 542
kolyvagin_point() (sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass method), 567
kolyvagin_point_on_curve() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 559
kolyvagin_reduction_data() (in module sage.schemes.elliptic_curves.heegner), 583
kolyvagin_sigma_operator() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 559
KolyvaginCohomologyClass (class in sage.schemes.elliptic_curves.heegner), 566
KolyvaginCohomologyClassEn (class in sage.schemes.elliptic_curves.heegner), 567
KolyvaginPoint (class in sage.schemes.elliptic_curves.heegner), 567
kummer_morphism() (sage.schemes.hyperelliptic_curves.hyperelliptic_g2_generic.HyperellipticCurve_g2_generic method), 692
kummer_surface() (sage.schemes.hyperelliptic_curves.jacobian_g2.HyperellipticJacobian_g2 method), 685
KummerSurface (class in sage.schemes.hyperelliptic_curves.kummer_surface), 698

L
L1_vanishes() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 524
L_invariant() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 489
L_ratio() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 525
label() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 312
Lambda() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 275
largest_fundamental_disc_with_class_number() (in module sage.schemes.elliptic_curves.cm), 478
left_orders() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 560
level() (sage.schemes.elliptic_curves.heegner.HeegnerPoint method), 540
level() (sage.schemes.elliptic_curves.heegner.HeegnerPoints method), 550
level() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 561
lift() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 674
lift() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 489
lift_of_hilbert_class_field_galois_group() (sage.schemes.elliptic_curves.heegner.GaloisGroup method), 539
lift_x() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 168
lift_x() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 618
lll_reduce() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 390
lmfdb_page() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 313
local_analytic_interpolation() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 647
local_coord() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 618
local_coordinates() (sage.schemes.curves.affine_curve.AffinePlaneCurve method), 17
local_coordinates() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 34
local_coordinates_at_infinity() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 618
local_coordinates_at_nonweierstrass() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 619
local_coordinates_at_weierstrass() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 619
local_data() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 392
local_integral_model() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 394
local_integral_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 313
local_minimal_model() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 394
local_obstructions() (sage.schemes.plane_conics.con_number_field.ProjectiveConic_number_field method), 75
local_obstructions() (sage.schemes.plane_conics.con_rational_field.ProjectiveConic_rational_field method), 77
log() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup method), 214

726
lseries() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 313
Lseries_ell (class in sage.schemes.elliptic_curves.Lseries_ell), 524
lseries_gross_zagier() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 313

M
make_monic() (in module sage.schemes.elliptic_curves.heegner), 584
make_zw_interpolator() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 93
manin_constant() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 314
map_to_complex_numbers() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve method), 543
map_to_complex_numbers() (sage.schemes.elliptic_curves.modular_parametrization.ModularParameterization method), 518
map_to_curve() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N method), 548
matrix() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding method), 566
matrix() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 458
matrix() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 67
matrix_of_frobenius() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 675
matrix_of_frobenius() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 314
matrix_of_frobenius() (sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field.HyperellipticCurve_rational_field method), 652
matrix_of_frobenius_hypereuclidean() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 678
matrix_of_integral_values() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 93
max_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 658
max_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement method), 669
ME() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 413
measure() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries method), 589
Mestre_conic() (in module sage.schemes.hyperelliptic_curves.mestre), 654
min() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 418
min_gr() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 419
min_on_disk() (in module sage.schemes.elliptic_curves.height), 428
min_pow_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientElement method), 669
minimal_discriminant_ideal() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 395
minimal_model() (sage.schemes.elliptic_curves.ell_local_data.EllipticCurveLocalData method), 484
minimal_model() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 315
minimal_quadratic_twist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 316
mod() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint method), 568
mod5family() (in module sage.schemes.elliptic_curves.mod5family), 608
mod5family() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 316
modp_dual_elliptic_curve_factor() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 561
modp_splitting_data() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 561
modp_splitting_map() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 562
modular_degree() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 317
modular_form() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 318
modular_parametrization() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 319
modular_symbol() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 319
modular_symbol() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseries method), 590
modular_symbol_numerical() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 319

Index 727
modular_symbol_space() (in module sage.schemes.elliptic_curves.ell_modular_symbols), 523
modular_symbol_space() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 322
ModularParameterization (class in sage.schemes.elliptic_curves.modular_parametrization), 518
ModularSymbol (class in sage.schemes.elliptic_curves.ell_modular_symbols), 520
ModularSymbolECLIB (class in sage.schemes.elliptic_curves.ell_modular_symbols), 521
ModularSymbolSage (class in sage.schemes.elliptic_curves.ell_modular_symbols), 522
monodromy_group() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 94
monomial() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 671
monomial_diff_coeffs() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 671
monomial_diff_coeffs_matrices() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 671
monsny_washnitzer() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 322
MonskyWashnitzerDifferential (class in sage.schemes.hyperelliptic_curves.monsky_washnitzer), 655
MonskyWashnitzerDifferentialRing (class in sage.schemes.hyperelliptic_curves.monsky_washnitzer), 660
MonskyWashnitzerDifferentialRing_class (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 664
mult_by_n() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup method), 214
multiplication_by_n() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 171
multiplication_by_m_isogeny() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 172
multiplicity() (sage.schemes.curves.affine_curve.AffinePlaneCurve method), 17
multiplicity() (sage.schemes.curves.point.AffinePlaneCurvePoint_field method), 52
multiplicity() (sage.schemes.curves.point.ProjectivePlaneCurvePoint_field method), 54
mwrank() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 322
mwrank_curve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 323

N
n() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 233
n() (sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClass method), 567
nearby_rational_poly() (in module sage.schemes.elliptic_curves.heegner), 585
newform() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 324
newton_sqrt() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 648
ngens() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 324
non_archimedean_local_height() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 151
non_minimal_primes() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 395
non_surjective() (sage.schemes.elliptic_curves.gal_reps.GaloisRepresentation method), 445
non_surjective() (sage.schemes.elliptic_curves.gal_reps_number_field.GaloisRepresentation method), 453
nonneg_region() (in module sage.schemes.elliptic_curves.ell_number_field), 428
normalise_periods() (in module sage.schemes.elliptic_curves.period_lattice), 512
normalised_basis() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 508
Np() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 275
numerical_approx() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve method), 543
numerical_approx() (sage.schemes.elliptic_curves.heegner.KolyvaginPoint method), 569
numerical_inverse() (in module sage.schemes.riemann_surfaces.riemann_surface), 102
odd_degree_model() (sage.schemes.hyperelliptic_curves.hyperelliptic_generic.HyperellipticCurve_generic method), 620
omega() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 508
optimal_curve() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 324
optimal_embeddings() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 563
order() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 203
order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 132
order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 140
order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field method), 152
order() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation method), 535
ordinary_model() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 34
ordinary_primes() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 325
original_curve() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 490

p1_element() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm method), 536
p_primary_bound() (sage.schemes.elliptic_curves.sha_tate.Sha method), 471
p_primary_order() (sage.schemes.elliptic_curves.sha_tate.Sha method), 473
p_rank() (sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field.HyperellipticCurve_rational_field method), 633
p_saturation() (in module sage.schemes.elliptic_curves.saturation), 430
P_to_S() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 491

padic_E2() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 324
padic_height() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 333
padic_height() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 490
padic_height_pairing_matrix() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 325
padic_height_via_multiply() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 331

padic_Lseries() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 332
padic_regulator() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 333
padic_regulator() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 491
padic_sigma() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 335
padic_sigma_truncated() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 336
pAdicLseriesOrdinary (class in sage.schemes.elliptic_curves.padic_Lseries), 587
pAdicLseriesSupersingular (class in sage.schemes.elliptic_curves.padic_Lseries), 596

parameter() (sage.schemes.hyperelliptic_curves.hyperelliptic_rational_field.EllipticCurve_rational_field method), 491

parent() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphism method), 534

parametrisation_onto_original_curve() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 491
parametrisation_onto_tate_curve() (sage.schemes.elliptic_curves.ell_tate_curve.TateCurve method), 492

parametrisation() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 68

padic height() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 328

parent() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphism method), 534

pari() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 338
pari() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 396

Index
ProjectiveConic_rational_field (class in sage.schemes.plane_conics.con_rational_field), 75
ProjectiveConic_rational_function_field (class in sage.schemes.plane_conics.con_rational_function_field), 80
ProjectiveCurve (class in sage.schemes.curves.projective_curve), 23
ProjectiveCurvePoint_field (class in sage.schemes.curves.curve point), 53
ProjectivePlaneCurve (class in sage.schemes.curves.projective_curve), 28
ProjectivePlaneCurve_finite_field (class in sage.schemes.curves.projective_curve), 39
ProjectivePlaneCurve_finite_prime_field (class in sage.schemes.curves.projective_curve), 41
ProjectivePlaneCurvePoint_field (class in sage.schemes.curves.point), 53
ProjectivePlaneCurvePoint_finite_field (class in sage.schemes.curves.point), 55
prove_BSD() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 340
Psi() in module sage.schemes.elliptic_curves.isogeny_small_degree, 249
psi() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 420
Psi2() in module sage.schemes.elliptic_curves.isogeny_small_degree, 249

Q
Q() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 660
Q() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 670
q_eigenform() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 343
q_expansion() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 343
qf_matrix() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 458
quadratic_field() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc method), 552
quadratic_field() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 563
quadratic_field() (sage.schemes.elliptic_curves.heegner.RingClassField method), 574
quadratic_form() (sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm method), 537
quadratic_form() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve method), 545
quadratic_form() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N method), 549
quadratic_order() in module sage.schemes.elliptic_curves.heegner, 585
quadratic_order() (sage.schemes.elliptic_curves.heegner.HeegnerPoint method), 541
quadratic_transform() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 37
quadratic_twist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 190
quadratic_twist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 344
quartic_twist() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 191
QuarticCurve() in module sage.schemes.plane_quartics.quartic_constructor, 85
QuarticCurve_generic (class in sage.schemes.plane_quartics.quartic_generic), 85
quaternion_algebra() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 563

R
ramified_primes() (sage.schemes.elliptic_curves.heegner.RingClassField method), 574
random_element() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field method), 206
random_point() (sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field method), 207
random_rational_point() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 69
rank() (sage.schemes.elliptic_curves.ec_database.EllipticCurves method), 361
rank() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 397
rank() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 344
rank_bound() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 345
rank_bounds() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 398
rat_term_CIF() (in module sage.schemes.elliptic_curves.ell_curve_isogeny, 429
rational_kolyvagin_divisor() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 563
rational_maps() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 233
rational_parameterization() (sage.schemes.curves.affine_curve.AffinePlaneCurve method), 19
rational_parameterization() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 38
rational_points() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 69
rational_points() (sage.schemes.curves.affine_curve.AffinePlaneCurve_finite_field method), 21
rational_points() (sage.schemes.curves.affine_curve.AffinePlaneCurve_prime_finite_field method), 21
rational_points() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field method), 39
rational_points() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve_prime_finite_field method), 41
rational_points() (sage.schemes.elliptic_curves.ellFiniteField.EllipticCurve_finite_field method), 208
rational_points() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 399
rational_points_iterator() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field method), 40
real_components() (sage.schemes.elliptic_curves.ellRationalField.EllipticCurve_rational_field method), 345
real_intersection_is_empty() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 421
real_period() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 509
reduce() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 510
reduce() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 658
reduce_all() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 679
reduce_fast() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 658
reduce_mod() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level method), 550
reduce_neg_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 659
reduce_neg_y_fast() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 659
reduce_neg_y_faster() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 659
reduce_negative() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 679
reduce_pos_y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 660
reduce_pos_y_fast() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferential method), 660
reduce_positive() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 680
reduce_tau() (in module sage.schemes.elliptic_curves.period_lattice), 512
reduce_zero() (in module sage.schemes.hyperelliptic_curves.monsky_washnitzer), 681
reducible_primes() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 400
reducible_primes() (sage.schemes.elliptic_curves.ellNumberField.EllipticCurve_number_field method), 405
reducible_primes() (sage.schemes.elliptic_curves.ellRationalField.EllipticCurve_rational_field method), 153
reducible_primes() (sage.schemes.elliptic_curves.ellRationalField.EllipticCurve_rational_field method), 346
reducible_primes() (sage.schemes.elliptic_curves.ellRationalField.EllipticCurve_rational_field method), 405
reducible_primes_Billerey() (in module sage.schemes.elliptic_curves.ellNumberField), 455
reducible_primes_naive() (in module sage.schemes.elliptic_curves.ellNumberField), 455
reduction() (sage.schemes.elliptic_curves.ellNumberField.EllipticCurve_number_field method), 401
reduction() (sage.schemes.elliptic_curves.ellRationalField.EllipticCurve_rational_field method), 153
reduction() (sage.schemes.elliptic_curves.ellRationalField.EllipticCurve_rational_field method), 346
ReductionData (class in sage.interfaces.genus2reduction), 700
refine() (sage.schemes.elliptic_curves.period_lattice.PeriodRegion method), 516
regulator() (sage.schemes.elliptic_curves.ellRationalField.EllipticCurve_rational_field method), 346
regulator_of_points() (sage.schemes.elliptic_curves.ellRationalField.EllipticCurve_rational_field method), 401
reorder() (sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC method), 458
residue_disc() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 649
resolution_of_singularities() (sage.schemes.curves.affine_curve.AffineCurve method), 12
riemann_matrix() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 95
riemann_matrix() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurfaceSum method), 100
riemann_roch_basis() (sage.schemes.curves.affine_curve.AffinePlaneCurve_prime_finite_field method), 22
riemann_roch_basis() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve_primefinite_field method), 42
riemann_surface() (sage.schemes.curves.affine_curve.AffinePlaneCurve method), 19
riemann_surface() (sage.schemes.curves.projective_curve.ProjectivePlaneCurve method), 38
RiemannSurface (class in sage.schemes.riemann_surfaces.riemann_surface), 88
RiemannSurfaceSum (class in sage.schemes.riemann_surfaces.riemann_surface), 100
right_ideals() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 564
ring_class_field() (sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg method), 541
ring_class_field() (sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond method), 554
RingClassField (class in sage.schemes.elliptic_curves.heegner), 571
root_number() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 347
rst_transform() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 174

S
S() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 413
S_integral_points() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 276
S_to_Q() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field method), 636
sage.interfaces.genus2reduction (module), 698
sage.schemes.curves.affine_curve (module), 5
sage.schemes.curves.constructor (module), 1
sage.schemes.curves.curve (module), 45
sage.schemes.curves.point (module), 51
sage.schemes.curves.projective_curve (module), 23
sage.schemes.elliptic_curves.cm (module), 474
sage.schemes.elliptic_curves.constructor (module), 105
sage.schemes.elliptic_curves.descent_two_isogeny (module), 600
sage.schemes.elliptic_curves.ec_database (module), 361
sage.schemes.elliptic_curves.ell_curve_isogeny (module), 219
sage.schemes.elliptic_curves.ell_field (module), 603
sage.schemes.elliptic_curves.ell_padic_field (module), 178
sage.schemes.elliptic_curves.ell_rational_field (module), 193
sage.schemes.elliptic_curves.ell_tate_curve (module), 154
sage.schemes.elliptic_curves.ell_local_data (module), 479
sage.schemes.elliptic_curves.ell_number_field (module), 519
sage.schemes.elliptic_curves.ell_padic_field (module), 362
sage.schemes.elliptic_curves.ell_torsion (module), 607
sage.schemes.elliptic_curves.ell_point (module), 432
sage.schemes.elliptic_curves.ell_tate_curve (module), 123
sage.schemes.elliptic_curves.ell_torsion (module), 274
sage.schemes.elliptic_curves.ell_wp (module), 488
sage.schemes.elliptic_curves.ell_wp (module), 492
sage.schemes.elliptic_curves.ell_wp (module), 212
sage.schemes.elliptic_curves.ell_field (module), 434
sage.schemes.elliptic_curves.ell_number_field (module), 446
sage.schemes.elliptic_curves.jacobian (module), 608
sage.schemes.elliptic_curves.heegner (module), 533
sage.schemes.elliptic_curves.height (module), 412
sage.schemes.elliptic_curves.isogeny_class (module), 456
sage.schemes.elliptic_curves.isogeny_small_degree (module), 248
sage.schemes.elliptic_curves.jacobian (module), 120

Index 733
saturation() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 348
scalar_multiply() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement method), 666
scale_curve() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 175
scheme() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 133
scheme() (sage.schemes.hyperelliptic_curves.jacobian_morphism.JacobianMorphism_divisor_class_field method), 687
selmer_rank() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 348
series() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesOrdinary method), 594
series() (sage.schemes.elliptic_curves.padic_lseries.pAdicLseriesSupersingular method), 599
set_order() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 133
set_post_isomorphism() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 234
set_pre_isomorphism() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 234
sextic_twist() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 191
Sha (class in sage.schemes.elliptic_curves.sha_tate), 464
sha() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 349
shift() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialCubicQuotientRingElement method), 666
short_weierstrass_model() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 175
sigma() (sage.schemes.elliptic_curves.period_lattice.PeriodLattice_ell method), 510
sigma() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup method), 215
sign() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 350
silverman_height_bound() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 349
simplest_rational_poly() (in module sage.schemes.elliptic_curves.heegner), 586
simon_two_descent() (in module sage.schemes.elliptic_curves.gp_simon), 608
simon_two_descent() (sage.schemes.elliptic_curves.ell_number_field.EllipticCurve_number_field method), 404
simon_two_descent() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 350
simple_vector_line_integral() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 96
split_kernel_polynomial() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 246
split_kernel_polynomial() (in module sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 494
SpecialCubicQuotientRing (class in sage.schemes.hyperelliptic_curves.monsky_washnitzer), 664
SpecialCubicQuotientRingElement (class in sage.schemes.hyperelliptic_curves.monsky_washnitzer), 666
SpecialHyperellipticQuotientElement (class in sage.schemes.hyperelliptic_curves.monsky_washnitzer), 667
SpecialHyperellipticQuotientRing (class in sage.schemes.hyperelliptic_curves.monsky_washnitzer), 670
SpecialHyperellipticQuotientRing_class (in module sage.schemes.elliptic_curves.ell_wp), 494
split_kernel_polynomial() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 246
split_kernel_polynomial() (in module sage.schemes.elliptic_curves.ell_point), 133
square() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 352
supersingular_j_polynomial() (in module sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 404
supersingular_j_polynomial() (in module sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field method), 211
supersingular_primes() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 350
switch_sign() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 349
symmetric_matrix() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 191
symplectic_automorphism_group() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 97
symplectic_isomorphisms() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 97
sympow() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 528
sympow_derivs() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 529
method), 669
tuple() (sage.schemes.elliptic_curves.weierstrass_morphism.baseWI method), 218
twist_values() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 530
twist_zeros() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 531
two_descent() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 356
two_descent_by_two_isogeny() (in module sage.schemes.elliptic_curves.descent_two_isogeny), 601
two_descent_by_two_isogeny_work() (in module sage.schemes.elliptic_curves.descent_two_isogeny), 602
two_descent_simon() (sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field method), 357
two_division_polynomial() (sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic method), 178
two_selmer_bound() (sage.schemes.elliptic_curves.sha_tateSha method), 473
two_torsion_part() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 247
two_torsion_rank() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 192

U
ubs() (in module sage.schemes.hyperelliptic_curves.invariants), 697
Ueberschiebung() (in module sage.schemes.hyperelliptic_curves.invariants), 693
 unfill_isogeny_matrix() (in module sage.schemes.elliptic_curves.ell_curve_isogeny), 247
union() (sage.schemes.elliptic_curves.curve.Curve_generic method), 50
union() (sage.schemes.elliptic_curves.height.UnionOfIntervals class method), 427
UnionOfIntervals (class in sage.schemes.elliptic_curves.height), 425
upper_triangular_matrix() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 72
upstairs_edges() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 99

V
value_ring() (sage.schemes.hyperelliptic_curves.jacobian_homset.JacobianHomset_divisor_classes method), 686
values_along_line() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 531
variable_names() (sage.schemes.plane_conics.con_field.ProjectiveConic_field method), 72
verify() (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion method), 517
voronoi_ghost() (in module sage.schemes.riemann_surfaces.riemann_surface), 103

W
w() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup method), 215
w1 (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion attribute), 517
w2 (sage.schemes.elliptic_curves.period_lattice_region.PeriodicRegion attribute), 517
w_values() (sage.schemes.riemann_surfaces.riemann_surface.RiemannSurface method), 99
weierstrass_p() (in module sage.schemes.elliptic_curves.ell_wp), 494
weierstrass_p() (sage.schemes.elliptic_curves.ell_field.EllipticCurve_field method), 192
weierstrass_points() (sage.schemes.hyperelliptic_curves.hyperelliptic_padic_field.HyperellipticCurve_padic_field
method), 651
WeierstrassIsomorphism (class in sage.schemes.elliptic_curves.weierstrass_morphism), 217
WeierstrassTransformation (class in sage.schemes.elliptic_curves.weierstrass_transform), 609
WeierstrassTransformationWithInverse() (in module sage.schemes.elliptic_curves.weierstrass_transform), 611
WeierstrassTransformationWithInverse_class (class in sage.schemes.elliptic_curves.weierstrass_transform), 611
weil_pairing() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 136
wp_c() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 423
wp_intervals() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 423
wp_on_grid() (sage.schemes.elliptic_curves.height.EllipticCurveCanonicalHeight method), 424

X
x() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup method), 216
x() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 672
x_poly_exact() (sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve method), 546
x_rational_map() (sage.schemes.elliptic_curves.ell_curve_isogeny.EllipticCurveIsogeny method), 236
x_to_p() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.MonskyWashnitzerDifferentialRing method), 663
xy() (sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_field method), 137

Y

y() (sage.schemes.elliptic_curves.formal_group.EllipticCurveFormalGroup method), 217
y() (sage.schemes.hyperelliptic_curves.monsky_washnitzer.SpecialHyperellipticQuotientRing method), 672

Z

zero_sums() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 531
zeros() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 532
zeros_in_interval() (sage.schemes.elliptic_curves.lseries_ell.Lseries_ell method), 532
zeta_function() (sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field.HyperellipticCurve_finite_field method), 635