Sage Reference Manual: Parallel
Computing

Release 7.6

The Sage Development Team

Mar 25, 2017

Decorate interface for parallel computation
Reference Parallel Primitives
Parallel iterator built using the fork () system call

Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

41 COontents v v vt e e e e e e e e e e e e
4.2 How is this different from usual MapReduce ?
43 Howcanluseall thatstuff?
44 Advanced USe oo e e e
4.5 Profiling e e e e e
4.6 Log@ing. i e e e e e e
477 Howdoesitwork ?
4.8 How thefts are performed Lo
4.9 Theendof thecomputation
4.10 Arethere examplesof classes ?o
411 Tests . . o o o e e e e
412 Classesandmethods e

Parallel Iterator built using Python’s multiprocessing module
Parallelization control
CPU Detection

Indices and Tables

CONTENTS

33

35

41

43

CHAPTER
ONE

DECORATE INTERFACE FOR PARALLEL COMPUTATION

class sage.parallel.decorate. Fork (timeout=0, verbose=False)
A fork decorator class.

class sage.parallel.decorate. Parallel (p_iter="fork’, ncpus=None, **kwds)
Create a parallel -decorated function. This is the object created by paraliel () .

class sage.parallel.decorate. ParallelFunction (parallel, func)
Bases: object

Class which parallelizes a function or class method. This is typically accessed indirectly through
Parallel.__call__ ().

sage.parallel.decorate. fork (f=None, timeout=0, verbose=False)
Decorate a function so that when called it runs in a forked subprocess. This means that it won’t have any
in-memory side effects on the parent Sage process. The pexpect interfaces are all reset.

INPUT:
of —a function
et imeout - (default: 0) if positive, kill the subprocess after this many seconds (wall time)

everbose - (default: False) whether to print anything about what the decorator does (e.g., killing the
subprocess)

Warning: The forked subprocess will not have access to data created in pexpect interfaces. This behavior
with respect to pexpect interfaces is very important to keep in mind when setting up certain computations.
It’s the one big limitation of this decorator.

EXAMPLES:

We create a function and run it with the fork decorator. Note that it does not have a side effect. Despite trying
to change the global variable a below in g, the variable a does not get changed:

sage: a = 5

sage: (@fork

....: def g(n, m):

ceet global a

P a =10

et return factorial(n) .ndigits() + m
sage: g(5, m=5)

sage: a

Sage Reference Manual: Parallel Computing, Release 7.6

We use fork to make sure that the function terminates after one second, no matter what:

sage: (@fork (timeout=1, verbose=True)

....: def g(n, m): return factorial(n).ndigits() + m

sage: g (5, m=5)

8

sage: g (10”77, m=5)

Killing subprocess ... with input ((10000000,), {'m': 5}) which took too long
'NO DATA (timed out)'

We illustrate that the state of the pexpect interface is not altered by forked functions (they get their own new
pexpect interfaces!):

sage: gp.eval('a = 5")
l5l

sage: @fork()

c...t def g():

et gp.eval('a = 10")
et return gp.eval('a')

sage: g/()

'10'

sage: gp.eval('a')
|5l

We illustrate that the forked function has its own pexpect interface:

sage: gp.eval('a = 15")

1150
sage: @fork()

....: def g(): return gp.eval('a')
sage: g()

lal

We illustrate that segfaulting subprocesses are no trouble at all:

sage: cython('def f(): print (<char*>0)")
sage: (@fork
c...: def g(): £0()

sage: print ("this works"); g{()
this works...

'NO DATA'

sage.parallel.decorate. normalize_input (a)
Convert a to a pair (args, kwds) using some rules:

«if already of that form, leave that way.
*if a is a tuple make (a, {})
eif a is a dict make (tuple([]),a)
eotherwise make ((a,), {})

INPUT:

*a — object

2 Chapter 1. Decorate interface for parallel computation

Sage Reference Manual: Parallel Computing, Release 7.6

OUTPUT:
eargs —tuple

*kwds - dictionary

EXAMPLES:

sage: sage.parallel.decorate.normalize_input((2, {3:4}))
((2, {3: 4}), {})

sage: sage.parallel.decorate.normalize_input((2,3))

(2, 3), {}H)

sage: sage.parallel.decorate.normalize_input ({3:4})

(0, {3: 4})

sage: sage.parallel.decorate.normalize_input(5)

((5,), {1}

sage.parallel.decorate. parallel (p_iter="fork’, ncpus=None, **kwds)
This is a decorator that gives a function a parallel interface, allowing it to be called with a list of inputs, whose
values will be computed in parallel.

Warning: The parallel subprocesses will not have access to data created in pexpect interfaces. This behavior
with respect to pexpect interfaces is very important to keep in mind when setting up certain computations.
It’s the one big limitation of this decorator.

INPUT:
*p_iter - parallel iterator function or string:
— 'fork' — (default) use a new forked subprocess for each input
— 'multiprocessing' —use multiprocessing library
— 'reference' —use a fake serial reference implementation
encpus - integer, maximal number of subprocesses to use at the same time

et imeout — number of seconds until each subprocess is killed (only supported by ‘fork’; zero means not
at all)

Warning: If you use anything but ' fork' above, then a whole new subprocess is spawned, so none of
your local state (variables, certain functions, etc.) is available.

EXAMPLES:

We create a simple decoration for a simple function. The number of cpus (or cores, or hardware threads) is
automatically detected:

sage: (@parallel
....: def f(n): return n*n
sage: f£(10)

sage: sorted(list (£([1,2,3]1)))
LCCL),),)y (2, {bH, 4, (((3,), {}), 9]

We use exactly two cpus:

Sage Reference Manual: Parallel Computing, Release 7.6

sage: (@parallel (2)
....: def f(n): return n*n

We create a decorator that uses three subprocesses, and times out individual processes after 10 seconds:

sage: (@parallel (ncpus=3, timeout=10)

....: def fac(n): return factor(2”n-1)
sage: for X, Y in sorted(list(fac([101,119,151,197,209]1))): print ((X,Y))
((101,), {}), 7432339208719 * 341117531003194129)

(151,), {}), 18121 = 55871 * 165799 % 2332951 * 7289088383388253664437433)

)
((119,), {}), 127 % 239 » 20231 = 131071 = 62983048367 * 131105292137)
()
((197,), {}), 7487 % 26828803997912886929710867041891989490486893845712448833)
(

(
(
(
(
(((209,), {}), 23 %= 89 x 524287 % 94803416684681 x 1512348937147247 =_,
5346950541323960232319657)

sage: (@parallel ('multiprocessing')

....: def £(N): return N"2

sage: v = list(f£([1,2,4])); v.sort(); v

[, {H, L)y, 2,), {H), 4), (((4,), {}), 16)]
sage: (@parallel ('reference')

v...: def f£(N): return N"2

sage: v = list(£([1,2,4]1)); v.sort(); Vv

L), {hH, Ly 2, {1, 4, ((4,), {1, 16)]

For functions that take multiple arguments, enclose the arguments in tuples when calling the parallel function:

sage: (@parallel

....: def f(a,b): return ax*b

sage: for X, Y in sorted(list (£([(2,3),(3,5),(5,7)]1))): print ((X, Y))
(2, 3), {1, 6)

(3, 5), {}), 195)

(5, 7y, {}1), 35)

For functions that take a single tuple as an argument, enclose it in an additional tuple at call time, to distinguish
it as the first argument, as opposed to a tuple of arguments:

sage: (@parallel

....: def firstEntry(aTuple): return aTuple[0]

sage: for X, Y in sorted(list (firstEntry ([((1,2,3,4),), ((5,6,7,8),)1)))
—print ((X, Y))

(1, 2, 3, 4),), {H), 1)

(C((5, 6, 7, 8),), {}), 5)

The parallel decorator also works with methods, classmethods, and staticmethods. Be sure to apply the parallel
decorator after (“above”) either the classmethod or staticmethod decorators:

sage: class Foo(object):

e @parallel (2)

et def square(self, n):

ce et return nxn

P @parallel (2)

el @classmethod

e def square_classmethod(cls, n):
et return nxn

sage: a = Fool()

sage: a.square(3)

sage: sorted(a.square([2,3]))

4 Chapter 1. Decorate interface for parallel computation

Sage Reference Manual: Parallel Computing, Release 7.6

L2,), 4, (3, {H), 9]

sage: Foo.square_classmethod(3)

9

sage: sorted(Foo.square_classmethod([2,3]))
L2, {hH, 4, ((3), {1, 9]

sage: Foo.square_classmethod(3)

9

Warning: Currently, parallel methods do not work with the multiprocessing implementation.

Sage Reference Manual: Parallel Computing, Release 7.6

6 Chapter 1. Decorate interface for parallel computation

CHAPTER
TWO

REFERENCE PARALLEL PRIMITIVES

These are reference implementations of basic parallel primitives. These are not actually parallel, but work the same
way. They are good for testing.

sage.parallel.reference. parallel_iter (f, inputs)
Reference parallel iterator implementation.

INPUT:
*f —a Python function that can be pickled using the pickle_function command.
einputs —alist of pickleable pairs (args, kwds), where args is a tuple and kwds is a dictionary.

OUTPUT:

eiterator over 2-tuples (inputs[i], £ (inputs([i])) , where the order may be completely random

EXAMPLES:

sage: def f(N,M=10): return NxM

sage: inputs [((2,3),{hH), (tuple([1), {'N'":3,'™™M"'":5}), ((2,),{})]
sage: set_random_seed (0)

sage: for a, val in sage.parallel.reference.parallel_iter (f, inputs):
print ((a, wval))

(((2,), {1, 20)

(((), {'™M': 5, 'N': 3}), 15)

(2, 3), {bH), ©6)

sage: for a, val in sage.parallel.reference.parallel_iter(f, inputs):
print ((a, wval))

(¢, {'™M': 5, 'N': 3}), 15)

(((2,), {1, 20)

Sage Reference Manual: Parallel Computing, Release 7.6

8 Chapter 2. Reference Parallel Primitives

CHAPTER
THREE

PARALLEL ITERATOR BUILT USING THE FORrRK () SYSTEM CALL

class sage.parallel.use_fork. p_iter_ fork (ncpus, timeout=0, verbose=Fualse, re-

set_interfaces=True)
A parallel iterator implemented using fork () .

EXAMPLES:

sage: X = sage.parallel.use_fork.p_iter_fork (2,3, False); X
<sage.parallel.use_fork.p_iter_fork instance at ...>

sage: X.ncpus

2

sage: X.timeout

3.0

sage: X.verbose

False

Sage Reference Manual: Parallel Computing, Release 7.6

10 Chapter 3. Parallel iterator built using the fork () system call

CHAPTER
FOUR

PARALLEL COMPUTATIONS USING
RECURSIVELYENUMERATEDSET AND MAP-REDUCE

There exists an efficient way to distribute computations when you have a set S of objects defined by
RecursivelyEnumeratedSet () (see sage.sets.recursively_enumerated_set for more details)
over which you would like to perform the following kind of operations :

e Compute the cardinality of a (very large) set defined recursively (through a «call to
RecursivelyEnumeratedSet of forest type)

* More generally, compute any kind of generating series over this set
 Test a conjecture : i.e. find an element of .S satisfying a specific property; conversely, check that all of them do
* Count/list the elements of S having a specific property
* Apply any map/reduce kind of operation over the elements of .S
AUTHORS :
¢ Florent Hivert — code, documentation (2012-2016)
* Jean Baptiste Priez — prototype, debugging help on MacOSX (2011-June, 2016)
¢ Nathann Cohen — Some doc (2012)

4.1 Contents

* How can I use all that stuff?
e Advanced use

* Profiling

* Logging

* How does it work ?

e Are there examples of classes ?

4.2 How is this different from usual MapReduce ?

This implementation is specific to RecursivelyEnumeratedSet of forest type, and uses its properties
to do its job. Not only mapping and reducing is done on different processors but also generating the elements of S.

11

Sage Reference Manual: Parallel Computing, Release 7.6

4.3 How can | use all that stuff?

First, you need the information necessary to describe a RecursivelyEnumeratedSet of forest type rep-
resenting your set S (see sage.sets.recursively enumerated_set). Then, you need to provide a Map
function as well as a Reduce function. Here are some examples :

* Counting the number of elements: In this situation, the map function can be set to lambda x : 1, and
the reduce function just adds the values together, i.e. lambda x,y : x+y.

Here’s the Sage code for binary words of length < 16

sage: seeds = [[]]
sage: succ = lambda 1: [1+[0], 1+[1]] if len(l) <= 15 else []
sage: S = RecursivelyEnumeratedSet (seeds, succ,

e structure="'forest', enumeration='depth')
sage: map_function = lambda x: 1
sage: reduce_function = lambda x,y: X+y

sage: reduce_init = 0
sage: S.map_reduce (map_function, reduce_function, reduce_init)
131071

One can check that this is indeed the number of binary words of length < 16

sage: factor (131071 + 1)
2717

Note that the function mapped and reduced here are equivalent to the default values of the
sage.combinat .backtrack.SearchForest.map_reduce () method so that to compute the num-
ber of element you only need to call:

sage: S.map_reduce ()
131071

You don’t need to use RecursivelyEnumeratedSet () , you can use directly RESetMapReduce . This
is needed if you want to have fine control over the parallel execution (see Advanced use below):

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce (

el roots = [[]],

e children = lambda 1: [1+[0], 1+[1]] if len(l) <= 15 else [],
e map_function = lambda x : 1,

e reduce_function = lambda x,y: x+y,

e reduce_init = 0)

sage: S.run()

131071

¢ Generating series: In this situation, the map function associates a monomial to each element of S, while the
Reduce function is still equal to lambda %,y : x+y.

Here’s the Sage code for binary words of length < 16

sage: S = RecursivelyEnumeratedSet (
et [[1], lambda 1: [1+[0], 1+[1]] if len(l) < 16 else [],
e structure="'forest', enumeration='depth')

sage: sp = S.map_reduce (
et map_function = lambda z: x*x*xlen(z),
el reduce_function = lambda x,y: x+y,
e reduce_init = 0)

12 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

sage: sp

65536%x"16 + 32768%xx"15 + 16384xx"714 + 8192%x"13 + 4096%x"12 + 2048xx"11 + 1024xx"
—10 + 512xx"9 + 256*x"8 + 128xx"7 + 64xx76 + 32xx"5 + 16xx"4 + 8%x"3 + 4*x"2 +_|
—2*x + 1

This is of course 3_'=1°(2x)*:

sage: bool (sp == sum((2%x)"i for i in range(l7)))
True

Here is another example where we count permutations of size < 8 (here we use the default values):

sage: S = RecursivelyEnumeratedSet ([[]],

e lambda 1: ([1[:1] + [len(l)] + 1[i:] for 1 in range(len(l)+1)]
e if len(l) < 8 else [1),

e structure="'forest', enumeration='depth')

sage: sp = S.map_reduce (lambda z: xxxlen(z)); sp

40320*xx"8 + 5040xx"7 + 720%x76 + 120%xx"5 + 24%x™4 + 6*xx"3 + 2xx"2 + x + 1

L. =8 ., s
This is of course Y, ilz":

sage: bool (sp == sum(factorial (i)+*x"i for i in range(9)))
True

* Post Processing: We now demonstrate the use of post_process . We generate the permutation as previously,
but we only perform the map/reduce computation on those of even len . Of course we get the even part of the
previous generating series:

sage: S = RecursivelyEnumeratedSet ([[]],

e lambda 1: ([1[:1] + [len(l)+1] + 1[i:] for i in range(len(l)+1)]
e if len(l) < 8 else [1),

et post_process = lambda 1 : 1 if len(l) % 2 == 0 else None,

e structure="'forest', enumeration='depth')

sage: sp = S.map_reduce (lambda z: x**xlen(z)); sp

40320xx"8 + T720%x76 + 24xx"4 + 2xx"2 + 1

This is also useful for example to call a constructor on the generated elements:

sage: S = RecursivelyEnumeratedSet ([[]],

e lambda 1: ([1[:1] + [len(l)+1] + 1[i:] for i in range(len(l)+1)]

e if len(l) < 5 else [1]),

e post_process = lambda 1 : Permutation(l) if len(l) == 5 else None,

e structure='forest', enumeration='depth')

sage: sp = S.map_reduce (lambda z: x*x*(len(z.inversions()))); sp

x*10 + 4xx79 + 9%xx78 + 15%x"7 + 20%x76 + 22%x"5 + 20%x"4 + 15+*x"3 + 9xx"2 + 4xx + |
1

i=5 1—g?,
i=1 1—x°

We get here a polynomial called the z-factorial of 5 that is |

sage: (prod((l-x"i)/(l-x) for i in range(l,6))).simplify_rational ()
xML0 4+ 4%x79 + 94x"8 + 15xx"7 + 20%x76 + 22xx"5 + 20%x"4 + 15xx"3 + 9xx"2 + 4xx + |

—1

* Listing the objects: One can also compute the list of objects in a RecursivelyEnumeratedSet of
forest type using RESetMapReduce . As an example, we compute the set of numbers between 1 and
63, generated by their binary expansion:

4.3. How can | use all that stuff? 13

Sage Reference Manual: Parallel Computing, Release 7.6

sage: S = RecursivelyEnumeratedSet([1],
e lambda 1: [(1<<1) |0, (1<<1)|1] if 1 < 1<<5 else [],
e structure='forest', enumeration='depth')

Here is the list computed without RESetMapReduce :

sage: serial
sage: serial
(1, 2, 4, 8, 16, 32, 33, 17, 34, 35, 9, 18, 36, 37, 19, 38, 39, 5, 10, 20, 40,

—41, 21, 42, 43, 11, 22, 44, 45, 23, 46, 47, 3, 6, 12, 24, 48, 49, 25, 50, 51,

—-13, 26, 52, 53, 27, 54, 55, 7, 14, 28, 56, 57, 29, 58, 59, 15, 30, 60, 61, 31,
—62, 63]

list (S)

Here is how to perform the parallel computation. The order of the lists depends on the synchronisation of the
various computation processes and therefore should be considered as random:

sage: parall S.map_reduce(lambda x: [x], lambda x,y: x+y, [])

sage: parall # random

r1, 3, 7, 15, 31, 63, 62, 30, 61, 60, 14, 29, 59, 58, 28, 57, 56, 6, 13, 27, 55,
—-54, 26, 53, 52, 12, 25, 51, 50, 24, 49, 48, 2, 5, 11, 23, 47, 46, 22, 45, 44,
—10, 21, 43, 42, 20, 41, 40, 4, 9, 19, 39, 38, 18, 37, 36, 8, 17, 35, 34, 16,

33, 32]
sage: sorted(serial) == sorted(parall)
True

4.4 Advanced use

Fine control of the execution of a map/reduce computations is obtained by passing parameters to the
RESetMapReduce. run () method. One can use the three following parameters:

* max_proc —maximum number of process used. default: number of processor on the machine

* timeout - atimeouton the computation (default: None)

e reduce_locally - whether the workers should reduce locally their work or sends results to the master as
soon as possible. See RESetMapReducelWorker for details.

Here is an example or how to deal with timeout:

sage: from sage.parallel.map_reduce import RESetMPExample, AbortError
sage: EX = RESetMPExample (maxl 8)

sage: try:

e res = EX.run (timeout=0.01)

....: except AbortError:

el print ("Computation timeout")

....: else:

et print ("Computation normally finished")

R res

Computation timeout

The following should not timeout even on a very slow machine:

et res = EX.run (timeout=60)
....: except AbortError:
e print ("Computation Timeout")

14 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

...t else:

el print ("Computation normally finished")

et res

Computation normally finished

40320xx"8 + 5040xx"7 + 720%x"6 + 120%x"5 + 24xx"4 + 6%x"3 + 2%x"2 + x + 1

As for reduce_locally , one should not see any difference, except for speed during normal usage. Most of the
time the user should leave it to True , unless he sets up a mecanism to consume the partial results as soon as they
arrive. See RESetParallellterator andin particularthe _iter__ method for a example of consumer use.

4.5 Profiling

It is possible the profile a map/reduce computation. First we create a RESetMapReduce object:

sage: from sage.parallel.map_ reduce import RESetMapReduce
sage: S = RESetMapReduce (

R roots = [[]],

et children = lambda 1: [1+[0], 1+[1]] if len(l) <= 15 else [],
I map_function = lambda x : 1,

et reduce_function = lambda x,y: x+ty,

et reduce_1init = 0)

The profiling is activated by the profile parameter. The value provided should be a prefix (including a possible
directory) for the profile dump:

sage: prof = tmp_dir ('RESetMR_profile')+'profcomp'

sage: res = S.run(profile=prof) # random

[RESetMapReduceWorker—-1:58] (20:00:41.444) Profiling in /home/user/.sage/temp/
—mymachine.mysite/32414/RESetMR_profilewRCRAx/profcompl

[RESetMapReduceWorker—-1:57] (20:00:41.444) Profiling in /home/user/.sage/temp/
—mymachine.mysite/32414/RESetMR_profilewRCRAx/profcompl

sage: res

131071

In this example, the profile have been dumped in files such as profcompO . One can then load and print them as
follows. See profile.profile for more details:

sage: import cProfile, pstats
sage: st = pstats.Stats(prof+'0")
sage: st.strip_dirs().sort_stats('cumulative') .print_stats () #random

Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno (function)
1 0.023 0.023 0.432 0.432 map_reduce.py:1211 (run_myself)

11968 0.151 0.000 0.223 0.000 map_reduce.py:1292 (walk_branch_locally)

<pstats.Stats instance at 0x7fedead40c6c8>

See also:

The Python Profilers for more detail on profiling in python.

4.5. Profiling 15

https://docs.python.org/2/library/profile.html

Sage Reference Manual: Parallel Computing, Release 7.6

4.6 Logging

The computation progress is logged through a 1ogging.Logger in sage.parallel .map_reduce.logger
together with logging.Streamandler anda logging.Formatter . They are currently configured to print
warning message on the console.

See also:

Logging facility for Python for more detail on logging and log system configuration.

Note: Calls to logger which involve printing the node are commented out in the code, because the printing (to a
string) of the node can be very time consuming depending on the node and it happens before the decision whether the
logger should record the string or drop it.

4.7 How does it work ?

The scheduling algorithm we use here is any adaptation of Wikipedia article Work_stealing:

In a work stealing scheduler, each processor in a computer system has a queue of work items (compu-
tational tasks, threads) to perform. [...]. Each work items are initially put on the queue of the processor
executing the work item. When a processor runs out of work, it looks at the queues of other processors and
“steals” their work items. In effect, work stealing distributes the scheduling work over idle processors,
and as long as all processors have work to do, no scheduling overhead occurs.

For communication we use Python’s basic multiprocessing module. We first describe the different actors and
communications tools used by the system. The work is done under the coordination of a master object (an instance of
RESetMapReduce) by a bunch of worker objects (instances of RESetMapReduceWorker).

Each running map reduce instance work on a RecursivelyEnumeratedSet of forest type called here
C and is coordinated by a RESetMapReduce object called the master. The master is in charge of lauching the work,
gathering the results and cleaning up at the end of the computation. It doesn’t perform any computation associated
to the generation of the element C' nor the computation of the mapped function. It however occasionally perform a
reduce, but most reducing is by default done by the workers. Also thanks to the work-stealing algorithm, the master
is only involved in detecting the termination of the computation but all the load balancing is done at the level of the
worker.

Workers are instance of RESetMapReducelWorker . They are responsible of doing the actual computations: ele-
ments generation, mapping and reducing. They are also responsible of the load balancing thanks to work-stealing.

Here is a description of the attribute of the master relevant to the map-reduce protocol:
* master._results —a SimpleQueue where the master gathers the results sent by the workers.

* master._active_tasks —a Semaphore recording the number of active task. The work is done when
it gets to 0.

* master._done —a Lock which ensures that shutdown is done only once.

* master._abort —aValue () storing ashared ctypes.c_bool whichis True if the computation was
aborted before all the worker runs out of work.

* master._workers —alistof RESetMapReduceWorker objects. Each worker is identified by its posi-
tion in this list.

Each worker is a process (RESetMapReducellorker inherits from Process) which contains:

* worker._iproc —the identifier of the worker that is its position in the master’s list of workers

16 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

https://docs.python.org/library/logging.html#logging.Logger
https://docs.python.org/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/library/logging.html#logging.Formatter
https://docs.python.org/2/library/logging.html
https://en.wikipedia.org/wiki/Work_stealing
https://docs.python.org/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/library/multiprocessing.html#multiprocessing.Semaphore
https://docs.python.org/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/library/multiprocessing.html#multiprocessing.Value
https://docs.python.org/library/ctypes.html#ctypes.c_bool
https://docs.python.org/library/multiprocessing.html#multiprocessing.Process

Sage Reference Manual: Parallel Computing, Release 7.6

worker._todo —acollections.deque storing of nodes of the worker. It is used as a stack by the
worker. Thiefs steal from the bottom of this queue.

worker._request —a SimpleQueue storing steal request submitted to worker .

worker._read_task,worker._write_task —aPipe used to transfert node during steal.

worker._thief —aThread which is in charge of stealing from worker._todo.

Here is a schematic of the architecture:

Steal 3ns

Master

Active Tasks

4]

Results

Worker 0

main loop

Worker 1

//% Nodes % " Nodes eee
| T | | T |

A Steal Req A] Steal Req

€ Thief [€—@ € Thief [«— 0

K| theft | Thread Steal ﬁns\‘ K| theft | Thread

S Al | >

4.8 How thefts are performed

During normal time, that is when all worker are active) a worker W
RESetMapReducelWorker.walk branch_locally (). Worknodes are taken from and new nodes W._todo
are appended to W._todo . When a worker W is running out of work, thatis worker ._todo isempty, then it tries to
steal some work (ie: a node) from another worker. This is performed in the RESetMapReducelWorker.steal ()
method.

From the point of view of W here is what happens:

Steal A

E—

ns

Worker N

Nodes

LEEEENNN

main loop

Ste

theft

Y

Thief
Thread

al Req

is iterating though a loop inside

W signals to the master that it is idle master._signal_task_done () ;

W chose a victim V at random,;

W sends a request to V : it puts its identifier into V. _request ;

W tries to read a node from W._read_task . Then three things may happen:

— aproper node is read. Then the theft was a success and W starts working locally on the received node.

— None is received. This means that V was idle. Then W tries another victim.

— AbortError isreceived. This means either that the computation was aborted or that it simply succeded
and that no more work is required by W . Therefore an AbortError exception is raised leading to W to
shutdown.

‘We now describe the protocol on the victims side. Each worker process contains a Thread which we call T for thief
which acts like some kinds of Troyan horse during theft. It is normally blocked waiting for a steal request.

4.8. How thefts are performed

17

https://docs.python.org/library/collections.html#collections.deque
https://docs.python.org/library/threading.html#threading.Thread

Sage Reference Manual: Parallel Computing, Release 7.6

From the point of view of V and T, here is what happens:
e during normal time T is blocked waiting on V._request ;
* upon steal request, T wakes up receiving the identification of W ;
e T signal to the master that a new task is starting by master._signal_task_start () ;

* Two things may happen depending if the queue V._todo is empty or not. Remark that due to the GIL, there
is no parallel execution between the victim V and its thief tread T .

— If V._todo is empty, then None is answered on W._write_task . The task is immediately signaled
to end the master through master._signal_task_done () .

— Otherwise, a node is removed from the bottom of V. _todo . ThenodeissenttoW onW._write_ task
. The task will be ended by W, that is when finished working on the subtree rooted at the node, W will call
master._signal_task_done() .

4.9 The end of the computation

To detect when a computation is finished, we keep a synchronized integer which count the number of active task. This
is essentially a semaphore but semaphore are broken on Darwin’s OSes so we ship two implementations depending on
the os (see ActiveTaskCounter and ActiveTaskCounterDarwin and note below).

When a worker finishes working on a task, it calls master._signal_task_done () . This decrease the task
counter master._active_tasks . When it reaches 0, it means that there are no more nodes: the work is done.
The worker executes master._shutdown () which sends AbortError on all worker._request () and
worker._write_task () Queues. Each worker or thief thread receiving such a message raise the corresponding
exception, stoping therefore its work. A lock called master._done ensures that shutdown is only done once.

Finally, it is also possible to interrupt the computation before its ends calling master.abort () . This is done by
putting master._active_tasks to0and callingmaster._shutdown () .

Warning: The MacOSX Semaphore bug

Darwin’s OSes do not correctly implement POSIX’s semaphore semantic. Indeed, on this system, acquire may
fail and return False not only because the semaphore is equal to zero but also because someone else is trying to
acquire at the same time. This renders the usage of Semaphore impossible on MacOSX so that on this system we
use a synchronized integer.

4.10 Are there examples of classes ?

Yes ! Here, there are:
* RESetMPExample — asimple basic example

* RESetParallellterator —amore advanced example using non standard communication configuration.

4.11 Tests

Generating series for sum of strictly decreasing list of integer smaller than 15:

18 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

sage: y = polygen(Zz, 'v')
sage: R = RESetMapReduce (

e roots = [([], O, 0)] +[([i], i, i) for i in range(l,15)1]1,

el children = lambda list_sum_ last:

e [(list_sum_last[0] + [i], list_sum_last[l] + i, 1) for i in range(l,
—list_sum_last[2])],

e map_function = lambda 1i_sum_dummy: y**1i_sum_dummy[1])

sage: sg = R.run()

sage: bool (sg == expand(prod((l+y”i) for i in range(l,15))))

True

4.12 Classes and methods

exception sage.parallel .map_reduce. AbortError
Bases: exceptions.Exception

Exception for aborting parallel computations
This is used both as exception or as abort message

sage.parallel.map_reduce. ActiveTaskCounter
alias of Act iveTaskCounterPosix

class sage.parallel.map_reduce. ActiveTaskCounterDarwin (rask_number)
Bases: object

Handling the number of Active Tasks

A class for handling the number of active task in distributed computation process. This is essentially a

semaphore, but Darwin’s OSes do not correctly implement POSIX’s semaphore semantic. So we use a shared
integer with a lock.

abort ()
Set the task counter to 0.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounterDarwin as ATC
sage: ¢ = ATC(4); c

ActiveTaskCounter (value=4)

sage: c.abort ()

sage: cC

ActiveTaskCounter (value=0)

task _done ()
Decrement the task counter by one.

OUTPUT:

Calling task_done () decrement the counter and returns its value after the decrementation.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounterDarwin as ATC
sage: ¢ = ATC(4); c

ActiveTaskCounter (value=4)

sage: c.task_done ()

3

sage: c

4.12. Classes and methods 19

https://docs.python.org/library/exceptions.html#exceptions.Exception

Sage Reference Manual: Parallel Computing, Release 7.6

ActiveTaskCounter (value=3)

sage: c = ATC(0)
sage: c.task_done ()
-1

task_start ()
Increment the task counter by one.

OUTPUT:

Calling task_start () on a zero or negative counter returns 0, otherwise increment the counter and
returns its value after the incrementation.

EXAMPLES:

sage: from sage.parallel .map_reduce import ActiveTaskCounterDarwin as ATC
sage: c = ATC(4); c

ActiveTaskCounter (value=4)

sage: c.task_start ()

5

sage: c

ActiveTaskCounter (value=5)

Calling task_start () on a zero counter does nothing:

sage: c = ATC(0)

sage: c.task_start ()

0

sage: c

ActiveTaskCounter (value=0)

class sage.parallel .map_reduce. ActiveTaskCounterPosix (fask_number)

Bases: object
Handling the number of Active Tasks

A class for handling the number of active task in distributed computation process. This is the standard imple-
mentation on POSIX compliant OSes. We essentially wrap a semaphore.

Note: A legitimate question is whether there is a need in keeping the two implementations. I ran the following
experiment on my machine:

S = RecursivelyEnumeratedSet ([[]],

lambda 1: ([1[:i] + [len(l)] + 1[i:] for i in range(len(l)+1)]
if len(l) < NNN else []),
structure='forest', enumeration='depth')
%time sp = S.map_reduce (lambda z: xx*xlen(z)); sp

For NNN = 10, averaging a dozen of runs, I got:
*Posix complient implementation : 17.04 s
eDarwin’s implementation : 18.26 s

So there is a non negligible overhead. It will probably be worth if we tries to Cythonize the code. So I'm keeping
both implementation.

20

Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

abort ()
Set the task counter to O.

EXAMPLES:

sage: from sage.parallel.map_ reduce import ActiveTaskCounter as ATC
sage: ¢ = ATC(4); c

ActiveTaskCounter (value=4)

sage: c.abort ()

sage: c

ActiveTaskCounter (value=0)

task_done ()
Decrement the task counter by one.

OUTPUT:
Calling task_done () decrement the counter and returns its value after the decrementation.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounter as ATC
sage: ¢ = ATC(4); c

ActiveTaskCounter (value=4)

sage: c.task_done ()

3

sage: c

ActiveTaskCounter (value=3)

sage: c = ATC(0)
sage: c.task_done ()
-1

task_start ()
Increment the task counter by one.

OUTPUT:

Calling task_start () on a zero or negative counter returns 0, otherwise increment the counter and
returns its value after the incrementation.

EXAMPLES:

sage: from sage.parallel .map_reduce import ActiveTaskCounterDarwin as ATC
sage: ¢ = ATC(4); c

ActiveTaskCounter (value=4)

sage: c.task_start ()

5

sage: c

ActiveTaskCounter (value=5)

Calling task_start () on a zero counter does nothing:

sage: c = ATC(0)

sage: c.task_start ()

0

sage: c

ActiveTaskCounter (value=0)

class sage.parallel .map_reduce. RESetMPExample (max/=9)
Bases: sage.parallel.map_reduce.RESetMapReduce

4.12. Classes and methods 21

Sage Reference Manual: Parallel Computing, Release 7.6

An example of map reduce class
INPUT:
emax1l —the maximum size of permutations generated (default to 9).

This compute the generating series of permutations counted by their size upto size max1 .

EXAMPLES:

sage:
sage:
sage:

from sage.parallel.map_reduce import RESetMPExample
EX RESetMPExample ()
EX.run ()

362880xx"9 + 40320%x"8 + 5040%x"7 + 720%x76 + 120%x"5 + 24%x™4 + 6%x"3 + 2*xx"2 + |

—x + 1

See also:

This is an example of RESetMapReduce

children (/)
Return the children of the permutation /.
INPUT:

*1 —alist containing a permutation

OUTPUT:

the lists of 1en (1) inserted at all possible positions into 1

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: RESetMPExample () .children([1,0])

(rz, 1, o1, 1, 2, 01, I[1, 0, 2]]

map_function (/)
The monomial associated to the permutation [

INPUT:

*1 —alist containing a permutation
OUTPUT:
x*~len(l) .

EXAMPLES:

sage:
sage:
xX"2

from sage.parallel.map_reduce import RESetMPExample
RESetMPExample () .map_function([1,0])

roots ()
Return the empty permutation

EXAMPLES:

sage:
sage:

(1]

from sage.parallel .map_reduce import RESetMPExample
RESetMPExample () .roots ()

22

Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

class sage.parallel .map_reduce. RESetMapReduce (roots=None, children=None,
post_process=None, map_function=None,
reduce_function=None, reduce_init=None,

forest=None)
Bases: object

Map-Reduce on recursively enumerated sets
INPUT:
Description of the set:
ecither forest=f —where £ isaRecursivelyEnumeratedSet of forest type
eor a triple roots, children, post_process as follows
—roots=r — The root of the enumeration
—children=c - afunction iterating through children node, given a parent nodes
—post_process=p — a post processing function

The option post_process allows for customizing the nodes that are actually produced. Furthermore, if
post_process (x) returns None , then x won’t be output at all.

Description of the map/reduce operation:
emap_function=f - (defaultto None)
ereduce_function=red - (default to None)
ereduce_init=init - (defaultto None)

See also:

the Map/Reduce module for details and examples.

abort ()
Abort the current parallel computation

EXAMPLES:

sage: from sage.parallel.map_ reduce import RESetParallellIterator
sage: S = RESetParallellIterator([[]],

R lambda 1: [1+[0], 1+[1]] if len(l) < 17 else [])

sage: it = iter(S)

sage: next (it)

sage: S.abort ()
sage: hasattr (S, 'work_qgqueue')

Cleanups:

sage: S.finish{()

finish ()
Destroys the worker and all the communication objects.

Also gathers the communication statistics before destroying the workers.
See also:

print_communication_statistics ()

4.12. Classes and methods 23

Sage Reference Manual: Parallel Computing, Release 7.6

get_results ()
Get the results from the queue

OUTPUT:
the reduction of the results of all the workers, that is the result of the map/reduce computation.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce ()
sage: S.setup_workers(2)

sage: for v in [1, 2, None, 3, None]: S._results.put (v)
sage: S.get_results()

6

Cleanups:

sage: del S._results, S._active_tasks, S._done, S._workers

map_function (o)
Return the function mapped by self

INPUT:

*0 —anode
OUTPUT:
By default 1 .

Note: This should be overloaded in applications.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce ()

sage: S.map_function(7)

1

sage: S = RESetMapReduce (map_function = lambda x: 3%x + 5)
sage: S.map_function(7)

26

post_process (a)
Return the post-processing function for self

INPUT: a —anode

By default, returns a itself

Note: This should be overloaded in applications.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce ()

sage: S.post_process (4)

4

sage: S = RESetMapReduce (post_process=lambda x: x*Xx)

24 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

sage: S.post_process (4)
16

print_communication_statistics (blocksize=16)
Print the communication statistics in a nice way

EXAMPLES:

sage: from sage.parallel.map_ reduce import RESetMPExample
sage: S = RESetMPExample (maxl=6)

sage: S.run()

720%x76 + 120%xx"5 + 24%x™4 + 6*xx"3 + 2xx"2 + x + 1

sage: S.print_communication_statistics() # random
#proc: 0 1 2 3 4 5 6 7
regs sent: 5 2 3 11 21 19 1 0
regs rcvs: 10 10 9 5 1 11 9 2
- thefs: 1 0 0 0 0 0 0 0
+ thefs: 0 0 1 0 0 0 0 0

random_worker ()
Returns a random workers

OUTPUT:
A worker for self chosen at random

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample,
—RESetMapReduceWorker

sage: from threading import Thread

sage: EX = RESetMPExample (maxl=6)

sage: EX.setup_workers(2)

sage: EX.random_worker ()

<RESetMapReduceWorker (RESetMapReduceWorker—..., initial)>
sage: EX.random_worker () in EX._workers

True

Cleanups:

sage: del EX._results, EX._active_tasks, EX._done, EX._workers

reduce_function (a,b)
Return the reducer function for self

INPUT:
*a , b —two value to be reduced
OUTPUT:

by default the sumof a and b .

Note: This should be overloaded in applications.

EXAMPLES:

4.12. Classes and methods 25

Sage Reference Manual: Parallel Computing, Release 7.6

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce ()

sage: S.reduce_function (4, 3)

7

sage: S = RESetMapReduce (reduce_function=lambda x,y: X*Vy)
sage: S.reduce_function (4, 3)

12

reduce_init ()
Return the initial element for a reduction

Note: This should be overloaded in applications.

roots ()
Return the roots of self

OUTPUT:

an iterable of nodes

Note: This should be overloaded in applications.

EXAMPLES:

sage: from sage.parallel.map_ reduce import RESetMapReduce
sage: S = RESetMapReduce (42)

sage: S.roots()

42

run (max_proc=None, reduce_locally=True, timeout=None, profile=None)
Run the computations

INPUT:
'max_proc — maximum number of process used. default: number of processor on the machine
ereduce_locally - See RESetMapReduceWorker (default: True)
et imeout - atimeout on the computation (default: None)
sprofile - directory/filename prefix for profiling, or None for no profiling (default: None)
OUTPUT:

the result of the map/reduce computation or an exception AbortError if the computation was inter-
rupted or timeout.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample

sage: EX = RESetMPExample (maxl = 8)

sage: EX.run()

40320%x78 + 5040+xx"7 + 720xx"6 + 120%x"5 + 24*x"4 + 6*x"3 + 2xx"2 + x + 1

Here is an example or how to deal with timeout:

sage: from sage.parallel.map_reduce import AbortError
sage: try:

26 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

e res = EX.run (timeout=0.01)

....: except AbortError:

et print ("Computation timeout")

...t else:

et print ("Computation normally finished")
el res

Computation timeout

The following should not timeout even on a very slow machine:

sage: from sage.parallel.map_reduce import AbortError

sage: try:

e res = EX.run (timeout=60)

....: except AbortError:

e print ("Computation Timeout")

...t else:

e print ("Computation normally finished")

et res

Computation normally finished

40320%xx"8 + 5040xx"7 + 720%x"6 + 120%x"5 + 24xx"4 + 6*xx"3 + 2%xx"2 + x + 1

run_serial ()
Serial run of the computation (mostly for tests)

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: EX RESetMPExample (maxl = 4)

sage: EX.run_serial()

24%x™M4 + 6%x"3 + 2xx"2 + x + 1

setup_workers (max_proc=None, reduce_locally=True)
Setup the communication channels

INPUT:
*mac_proc —an integer: the maximum number of workers

ereduce_locally - whether the workers should reduce locally their work or sends results to the
master as soon as possible. See RESetMapReduceWorker for details.

start_workers ()
Lauch the workers

The worker should have been created using setup_workers () .

class sage.parallel .map_reduce. RESetMapReduceWorker (mapred, iproc, reduce_locally)
Bases: multiprocessing.process.Process

Worker for generate-map-reduce
This shouldn’t be called directly, but instead created by RESetMapReduce. setup_workers () .
INPUT:

*mapred - the instance of RESetMapReduce for which this process is working.

eiproc - the id of this worker.

ereduce_locally — when reducing the results. Three possible values are supported:

—-True - means the reducing work is done all locally, the result is only sent back at the end of the
work. This ensure the lowest level of communication.

4.12. Classes and methods 27

Sage Reference Manual: Parallel Computing, Release 7.6

—False —results are sent back after each finished branches, when the process is asking for more work.

run ()
The main function executed by the worker

Calls run_myself () after possibly setting up parallel profiling.
EXAMPLES:

sage: from sage.parallel .map_reduce import RESetMPExample,
—RESetMapReduceWorker

sage: EX = RESetMPExample (maxl=6)

sage: EX.setup_workers (1)

sage: w = EX._workers([0]
sage: w._todo.append (EX.roots () [0])

sage: w.run()
sage: sleep(l)
sage: w._todo.append (None)

sage: EX.get_results()
720xx"6 + 120*x"5 + 24xx™4 + 6%xX"3 + 2xx"2 + x + 1

Cleanups:

sage: del EX._results, EX._active_tasks, EX._done, EX._workers

run_myself ()
The main function executed by the worker

EXAMPLES:

sage: from sage.parallel .map_reduce import RESetMPExample,
—~RESetMapReduceWorker

sage: EX = RESetMPExample (maxl=6)

sage: EX.setup_workers (1)

sage: w = EX._workers[0]
sage: w._todo.append (EX.roots () [0])
sage: w.run_myself ()

sage: sleep(l)
sage: w._todo.append (None)

sage: EX.get_results()
T720%x76 + 120%xx"5 + 24%x™4 + 6xx"3 + 2xx"2 + x + 1

Cleanups:

sage: del EX._results, EX._active_tasks, EX._done, EX._workers

send_partial_result ()
Send results to the MapReduce process

Send the result stored in self._ res to the master an reinitialize it to master.reduce_init .

EXAMPLES:

28 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

sage: from sage.parallel.map_reduce import RESetMPExample,
—RESetMapReduceWorker

sage: EX = RESetMPExample (maxl=4)

sage: EX.setup_workers (1)

sage: w = EX._workers([0]

sage: w._res = 4

sage: w.send_partial_result ()

sage: w._res

0
sage: EX._results.get ()
4
steal ()
Steal some node from another worker
OUTPUT:

a node stolen from another worker choosed at random

EXAMPLES:

sage: from sage.parallel .map_reduce import RESetMPExample,
—RESetMapReduceWorker

sage: from threading import Thread

sage: EX = RESetMPExample (maxl=6)

sage: EX.setup_workers(2)

sage: w0, wl = EX._workers

sage: w0._todo.append (42)

sage: thiefO = Thread(target = wO._thief, name="Thief")
sage: thiefO.start ()

sage: wl.steal()
42

walk_branch_locally (node)
Work locally

Performs the map/reduce computation on the subtrees rooted at node .
INPUT:
enode - the root of the subtree explored.
OUTPUT:
nothing, the result are stored in self._res
This is where the actual work is performed.

EXAMPLES:

sage: from sage.parallel .map_ reduce import RESetMPExample,
—RESetMapReduceWorker

sage: EX = RESetMPExample (maxl=4)

sage: w = RESetMapReduceWorker (EX, 0, True)

sage: def sync(): pass
sage: w.synchronize = sync
sage: w._res = 0

sage: w.walk_branch_locally([])

4.12. Classes and methods 29

Sage Reference Manual: Parallel Computing, Release 7.6

sage: w._res

x4 + x*"3 + x"2 + x + 1

sage: w.walk_branch_locally(w._todo.pop())
sage: w._res
24X + x°"3 4+ x"2 + x + 1

sage: while True: w.walk_branch_locally(w._todo.pop())
Traceback (most recent call last):

IndexError: pop from an empty deque
sage: w._res
24xx™4 + 6xx"3 + 2%x"2 + x + 1

class sage.parallel.map_reduce. RESetParallelIterator (roots=None, children=None,
post_process=None,
map_function=None, re-
duce_function=None, re-

duce_init=None, forest=None)
Bases: sage.parallel.map _reduce.RESetMapReduce

A parallel iterator for recursively enumerated sets

This demonstrate how to use RESetMapReduce to get an iterator on a recursively enumerated sets for which
the computations are done in parallel.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetParallelIterator
sage: S = RESetParallellIterator([[]],

e lambda 1: [1+[0], 14+[1]] if len(l) < 15 else [])

sage: sum(l for _ in S)

65535

map_function (z)
Return a singleton tuple

INPUT: z —anode
OUTPUT: (z,)
EXAMPLES:

sage: from sage.parallel.map_ reduce import RESetParallelIterator
sage: S = RESetParallellIterator([[]],

et lambda 1: [1+[0], 1+[1]] if len(l) < 15 else [])

sage: S.map_function([1l, 0])

(1, 01,)

sage.parallel.map_reduce. proc_number (max_proc=None)
Computing the number of process used

INPUT:

'max_proc —the maximum number of process used

EXAMPLES:

sage: from sage.parallel.map_reduce import proc_number
sage: proc_number () # random

8

30 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Sage Reference Manual: Parallel Computing, Release 7.6

sage: proc_number (max_proc=1)

1

sage: proc_number (max_proc=2) in (1, 2)
True

4.12. Classes and methods 31

Sage Reference Manual: Parallel Computing, Release 7.6

32 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

CHAPTER
FIVE

PARALLEL ITERATOR BUILT USING PYTHON’S MULTIPROCESSING
MODULE

sage.parallel .multiprocessing_sage. parallel_iter (processes,f, inputs)
Return a parallel iterator.

INPUT:
*processes - integer
of —function
einputs - an iterable of pairs (args, kwds)
OUTPUT:
eiterator over values of £ at args, kwds in some random order.

EXAMPLES:

sage: def f(x): return x+x

sage: import sage.parallel.multiprocessing_sage

sage: v = list (sage.parallel.multiprocessing_sage.parallel_iter (2, £, [((2,), {}
=), (3., {H1))

sage: v.sort(); v

L2, AhH, 4, ((3,), {}), 6)]

sage.parallel.multiprocessing_sage. pyprocessing (processes=0)
Return a parallel iterator using a given number of processes implemented using pyprocessing.

INPUT:

*processes - integer (default: 0); if 0, set to the number of processors on the computer.
OUTPUT:

ea (partially evaluated) function

EXAMPLES:

sage: from sage.parallel .multiprocessing sage import pyprocessing
sage: p_iter = pyprocessing(4)

sage: P = parallel (p_iter=p_iter)

sage: def f(x): return x+x

sage: v = list (P (f) (range(10))); v.sort(); v

LCCCO,),), 0), (1), {H), 2), (((2,), {}H), 4), (((3,), {}), 6), (((4,), {}),.
=8), (((5,), {}), 10), (((6,), {}), 12), (((7,), {}), 14), (((8,), {}), 16),
= (((9,), {}), 18)]

33

Sage Reference Manual: Parallel Computing, Release 7.6

34 Chapter 5. Parallel Iterator built using Python’s multiprocessing module

CHAPTER
SIX

PARALLELIZATION CONTROL

AUTHORS:

e Marco Mancini, Eric Gourgoulhon, Michal Bejger (2015): initial version

class sage.parallel.parallelism. Parallelism

This module defines the singleton class Parallelism to govern the parallelization of computations in some specific
topics. It allows the user to set the number of processes to be used for parallelization.

Some examples of use are provided in the documentation of sage . tensor.modules.comp.Components.contract ()

Bases: sage.misc.fast_methods.Singleton, sage.structure.sage_object.SageObject

Singleton class for managing the number of processes used in parallel computations involved in various fields.

EXAMPLES:

The number of processes is initialized to 1 (no parallelization) for each field (only tensor computations are

implemented at the moment):

sage: Parallelism()
Number of processes for parallelization:
- tensor computations: 1

Using 4 processes to parallelize tensor computations:

sage: Parallelism() .set ('tensor', nproc=4)
sage: Parallelism()
Number of processes for parallelization:
- tensor computations: 4
sage: Parallelism() .get ('tensor')
4

Using 6 processes to parallelize all types of computations:

sage: Parallelism() .set (nproc=6)

sage: Parallelism()

Number of processes for parallelization:
- tensor computations: 6

Using all the cores available on the computer to parallelize tensor computations:

sage: Parallelism() .set ('tensor')

sage: Parallelism() # random (depends on the computer)
Number of processes for parallelization:

- tensor computations: 8

35

Sage Reference Manual: Parallel Computing, Release 7.6

Using all the cores available on the computer to parallelize all types of computations:

sage: Parallelism() .set ()

sage: Parallelism() # random (depends on the computer)
Number of processes for parallelization:

- tensor computations: 8

Switching off all parallelizations:

sage: Parallelism() .set (nproc=1)

get (field)
Return the number of processes which will be used in parallel computations regarding some specific field.

INPUT:

efield - string specifying the part of Sage involved in parallel computations

OUTPUT:

enumber of processes used in parallelization of computations pertaining to field

EXAMPLES:

The default is a single process (no parallelization):

sage: Parallelism() .reset ()

sage: Parallelism() .get ('tensor')
1

Asking for parallelization on 4 cores:

sage: Parallelism() .set ('tensor', nproc=4)

sage: Parallelism().get ('tensor")
4
get_all ()
Return the number of processes which will be used in parallel computations in all fields
OUTPUT:

edictionary of the number of processes, with the computational fields as keys

EXAMPLES:

sage: Parallelism() .reset ()
sage: Parallelism() .get_all()
{'tensor': 1}

Asking for parallelization on 4 cores:

sage: Parallelism() .set (nproc=4)
sage: Parallelism() .get_all()
{'tensor': 4}

get_default ()
Return the default number of processes to be launched in parallel computations.

EXAMPLES:

36 Chapter 6. Parallelization control

Sage Reference Manual: Parallel Computing, Release 7.6

A priori, the default number of process for parallelization is the total number of cores found on the com-
puter:

sage: Parallelism() .reset ()
sage: Parallelism() .get_default () # random (depends on the computer)
8

It can be changed via set_default () :

sage: Parallelism() .set_default (nproc=4)
sage: Parallelism() .get_default ()
4

reset ()

set

Put the singleton object Parallelism () in the same state as immediately after its creation.
EXAMPLES:

State of Parallelism() just after its creation:

sage: Parallelism()
Number of processes for parallelization:
- tensor computations: 1
sage: Parallelism() .get_default () # random (depends on the computer)
8

Changing some values:

sage: Parallelism() .set_default (6)

sage: Parallelism() .set ()

sage: Parallelism()

Number of processes for parallelization:
- tensor computations: 6

sage: Parallelism() .get_default ()

6

Back to the initial state:

sage: Parallelism() .reset ()
sage: Parallelism()
Number of processes for parallelization:
- tensor computations: 1
sage: Parallelism() .get_default () # random (depends on the computer)
8

(field=None, nproc=None)
Set the number of processes to be launched for parallel computations regarding some specific field.

INPUT:

efield — (default: None) string specifying the computational field for which the number of parallel
processes is to be set; if None , all fields are considered

enproc - (default: None) number of processes to be used for parallelization; if None , the number
of processes will be set to the default value, which, unless redefined by set_default () , is the
total number of cores found on the computer.

EXAMPLES:

The default is a single processor (no parallelization):

37

Sage Reference Manual: Parallel Computing, Release 7.6

sage: Parallelism()
Number of processes for parallelization:
- tensor computations: 1

Asking for parallelization on 4 cores in tensor algebra:

sage: Parallelism() .set('tensor', nproc=4)
sage: Parallelism()
Number of processes for parallelization:

- tensor computations: 4

Using all the cores available on the computer:

sage: Parallelism() .set ('tensor")

sage: Parallelism() # random (depends on the computer)
Number of processes for parallelization:

- tensor computations: 8

Using 6 cores in all parallelizations:

sage: Parallelism() .set (nproc=6)

sage: Parallelism()

Number of processes for parallelization:
- tensor computations: 6

Using all the cores available on the computer in all parallelizations:

sage: Parallelism() .set ()

sage: Parallelism() # random (depends on the computer)
Number of processes for parallelization:

- tensor computations: 8

Switching off the parallelization:

sage: Parallelism() .set (nproc=1)

sage: Parallelism()

Number of processes for parallelization:
— tensor computations: 1

set_default (nproc=None)

Set the default number of processes to be launched in parallel computations.
INPUT:

enproc - (default: None) default number of processes; if None , the number of processes will be
set to the total number of cores found on the computer.

EXAMPLES:

A priori the default number of process for parallelization is the total number of cores found on the com-
puter:

sage: Parallelism() .get_default () # random (depends on the computer)
8

Changing it thanks to set_default :

38

Chapter 6. Parallelization control

Sage Reference Manual: Parallel Computing, Release 7.6

sage: Parallelism() .set_default (nproc=4)
sage: Parallelism() .get_default ()
4

Setting it back to the total number of cores available on the computer:

sage: Parallelism() .set_default ()
sage: Parallelism() .get_default () # random (depends on the computer)
8

39

Sage Reference Manual: Parallel Computing, Release 7.6

40 Chapter 6. Parallelization control

CHAPTER
SEVEN

CPU DETECTION

sage.parallel.ncpus. ncpus ()
Detects the number of effective CPUs in the system.

EXAMPLES:
sage: sage.parallel.ncpus.ncpus () # random output —— depends on machine.
2

See also:

* Parallel Interface to the Sage interpreter

41

Sage Reference Manual: Parallel Computing, Release 7.6

42 Chapter 7. CPU Detection

CHAPTER
EIGHT

INDICES AND TABLES

¢ Index
¢ Module Index
e Search Page

43

Sage Reference Manual: Parallel Computing, Release 7.6

44 Chapter 8. Indices and Tables

sage.
sage.
sage.

sage

sage.
sage.
.parallel.

sage

parallel.
parallel.

parallel

.parallel.
parallel.
parallel.

decorate, 1
map_reduce, 11

.multiprocessing_sage, 33

ncpus, 41
parallelism, 35
reference, 7
use_fork, 9

PYTHON MODULE INDEX

45

Sage Reference Manual: Parallel Computing, Release 7.6

46 Python Module Index

A

abort() (sage.parallel.map_reduce.ActiveTaskCounterDarwin method), 19
abort() (sage.parallel.map_reduce.ActiveTaskCounterPosix method), 20
abort() (sage.parallel. map_reduce.RESetMapReduce method), 23
AbortError, 19

ActiveTaskCounter (in module sage.parallel.map_reduce), 19
ActiveTaskCounterDarwin (class in sage.parallel.map_reduce), 19
ActiveTaskCounterPosix (class in sage.parallel.map_reduce), 20

C

children() (sage.parallel.map_reduce. RESetMPExample method), 22

F

finish() (sage.parallel.map_reduce.RESetMapReduce method), 23
Fork (class in sage.parallel.decorate), 1
fork() (in module sage.parallel.decorate), |

G

get() (sage.parallel.parallelism.Parallelism method), 36

get_all() (sage.parallel.parallelism.Parallelism method), 36
get_default() (sage.parallel.parallelism.Parallelism method), 36
get_results() (sage.parallel.map_reduce.RESetMapReduce method), 23

M

map_function() (sage.parallel. map_reduce.RESetMapReduce method), 24
map_function() (sage.parallel. map_reduce.RESetMPExample method), 22

map_function() (sage.parallel. map_reduce.RESetParallellterator method), 30

N

ncpus() (in module sage.parallel.ncpus), 41
normalize_input() (in module sage.parallel.decorate), 2

P

p_iter_fork (class in sage.parallel.use_fork), 9

Parallel (class in sage.parallel.decorate), 1

parallel() (in module sage.parallel.decorate), 3

parallel_iter() (in module sage.parallel. multiprocessing_sage), 33

INDEX

47

Sage Reference Manual: Parallel Computing, Release 7.6

parallel_iter() (in module sage.parallel.reference), 7

ParallelFunction (class in sage.parallel.decorate), |

Parallelism (class in sage.parallel.parallelism), 35

post_process() (sage.parallel.map_reduce.RESetMapReduce method), 24
print_communication_statistics() (sage.parallel.map_reduce.RESetMapReduce method), 25
proc_number() (in module sage.parallel.map_reduce), 30

pyprocessing() (in module sage.parallel.multiprocessing_sage), 33

R

random_worker() (sage.parallel.map_reduce.RESetMapReduce method), 25
reduce_function() (sage.parallel.map_reduce.RESetMapReduce method), 25
reduce_init() (sage.parallel.map_reduce.RESetMapReduce method), 26
reset() (sage.parallel.parallelism.Parallelism method), 37

RESetMapReduce (class in sage.parallel.map_reduce), 22
RESetMapReduceWorker (class in sage.parallel.map_reduce), 27
RESetMPExample (class in sage.parallel.map_reduce), 21
RESetParallellterator (class in sage.parallel.map_reduce), 30

roots() (sage.parallel.map_reduce.RESetMapReduce method), 26

roots() (sage.parallel.map_reduce.RESetMPExample method), 22

run() (sage.parallel.map_reduce.RESetMapReduce method), 26

run() (sage.parallel.map_reduce.RESetMapReduceWorker method), 28
run_myself() (sage.parallel.map_reduce.RESetMapReduceWorker method), 28
run_serial() (sage.parallel.map_reduce.RESetMapReduce method), 27

S

sage.parallel.decorate (module), 1

sage.parallel.map_reduce (module), 11

sage.parallel.multiprocessing_sage (module), 33

sage.parallel.ncpus (module), 41

sage.parallel.parallelism (module), 35

sage.parallel.reference (module), 7

sage.parallel.use_fork (module), 9

send_partial_result() (sage.parallel.map_reduce.RESetMapReduceWorker method), 28
set() (sage.parallel.parallelism.Parallelism method), 37

set_default() (sage.parallel.parallelism.Parallelism method), 38
setup_workers() (sage.parallel.map_reduce.RESetMapReduce method), 27
start_workers() (sage.parallel.map_reduce.RESetMapReduce method), 27
steal() (sage.parallel.map_reduce.RESetMapReduceWorker method), 29

T

task_done() (sage.parallel.map_reduce.ActiveTaskCounterDarwin method), 19
task_done() (sage.parallel.map_reduce.ActiveTaskCounterPosix method), 21
task_start() (sage.parallel.map_reduce.ActiveTaskCounterDarwin method), 20
task_start() (sage.parallel.map_reduce.ActiveTaskCounterPosix method), 21

W

walk_branch_locally() (sage.parallel.map_reduce.RESetMapReduceWorker method), 29

48 Index

	Decorate interface for parallel computation
	Reference Parallel Primitives
	Parallel iterator built using the fork() system call
	Parallel computations using RecursivelyEnumeratedSet and Map-Reduce
	Contents
	How is this different from usual MapReduce ?
	How can I use all that stuff?
	Advanced use
	Profiling
	Logging
	How does it work ?
	How thefts are performed
	The end of the computation
	Are there examples of classes ?
	Tests
	Classes and methods

	Parallel Iterator built using Python's multiprocessing module
	Parallelization control
	CPU Detection
	Indices and Tables

