CONTENTS

1 Introduction 1

2 Function and Data Plots 3
 2.1 Plotting Functions 3
 2.2 Parametric Plots 48
 2.3 Surfaces of revolution 102
 2.4 Plotting 3D fields 112
 2.5 Implicit Plots 113
 2.6 List Plots 149

3 Basic Shapes and Primitives 157
 3.1 Base Classes for 3D Graphics Objects and Plotting 157
 3.2 Basic objects such as Sphere, Box, Cone, etc. 180
 3.3 Classes for Lines, Frames, Rulers, Spheres, Points, Dots, and Text 218
 3.4 Platonic Solids 227
 3.5 Parametric Surface 253
 3.6 Graphics 3D Object for Representing and Triangulating Isosurfaces 258

4 Infrastructure 263
 4.1 Texture Support 263
 4.2 Indexed Face Sets 267
 4.3 Transformations 274
 4.4 Adaptive refinement code for 3d surface plotting 276

5 Backends 279
 5.1 The Tachyon 3D Ray Tracer 279
 5.2 Three.js JavaScript WebGL Renderer 297

6 Indices and Tables 299

Python Module Index 301

Index 303
Sage has a wide support for 3D graphics, from basic shapes to implicit and parametric plots.

The following graphics functions are supported:

- `plot3d()` - plot a 3d function
- `parametric_plot3d()` - a parametric three-dimensional space curve or surface
- `revolution_plot3d()` - a plot of a revolved curve
- `plot_vector_field3d()` - a plot of a 3d vector field
- `implicit_plot3d()` - a plot of an isosurface of a function
- `list_plot3d()` - a 3-dimensional plot of a surface defined by a list of points in 3-dimensional space
- `list_plot3d_matrix()` - a 3-dimensional plot of a surface defined by a matrix defining points in 3-dimensional space
- `list_plot3d_array_of_arrays()` - A 3-dimensional plot of a surface defined by a list of lists defining points in 3-dimensional space
- `list_plot3d_tuples()` - a 3-dimensional plot of a surface defined by a list of points in 3-dimensional space

The following classes for basic shapes are supported:

- `Box` - a box given its three magnitudes
- `Cone` - a cone, with base in the xy-plane pointing up the z-axis
- `Cylinder` - a cylinder, with base in the xy-plane pointing up the z-axis
- `Line` - a 3d line joining a sequence of points
- `Sphere` - a sphere centered at the origin
- `Text` - a text label attached to a point in 3d space
- `Torus` - a 3d torus
- `Point` - a position in 3d, represented by a sphere of fixed size

The following plotting functions for basic shapes are supported

- `ColorCube()` - a cube with given size and sides with given colors
- `LineSegment()` - a line segment, which is drawn as a cylinder from start to end with given radius
- `line3d()` - a 3d line joining a sequence of points
- `arrow3d()` - a 3d arrow
• `point3d()` - a point or list of points in 3d space
• `bezier3d()` - a 3d bezier path
• `frame3d()` - a frame in 3d
• `frame_labels()` - labels for a given frame in 3d
• `polygon3d()` - draw a polygon in 3d
• `polygons3d()` - draw the union of several polygons in 3d
• `ruler()` - draw a ruler in 3d, with major and minor ticks
• `ruler_frame()` - draw a frame made of 3d rulers, with major and minor ticks
• `sphere()` - plot of a sphere given center and radius
• `text3d()` - 3d text

Sage also supports platonic solids with the following functions:
• `tetrahedron()`
• `cube()`
• `octahedron()`
• `dodecahedron()`
• `icosahedron()`

Different viewers are supported: jmol, a web-based interactive viewer using the Three.js JavaScript library and a raytraced representation. The viewer is invoked by adding the keyword argument `viewer='jmol'` (respectively 'tachyon' or 'threejs') to the command `show()` on any three-dimensional graphic:
• `Tachyon` - create a scene that can be rendered using the Tachyon ray tracer
• `Axis_aligned_box` - box with axis-aligned edges with the given min and max coordinates
• `Cylinder` - an infinite cylinder
• `FCylinder` - a finite cylinder
• `FractalLandscape` - axis-aligned fractal landscape
• `Light` - represents lighting objects
• `ParametricPlot` - parametric plot routines
• `Plane` - an infinite plane
• `Ring` - an annulus of zero thickness
• `Sphere` - a sphere
• `TachyonSmoothTriangle` - a triangle along with a normal vector, which is used for smoothing
• `TachyonTriangle` - basic triangle class
• `TachyonTriangleFactory` - class to produce triangles of various rendering types
• `Texfunc` - creates a texture function
• `Texture` - stores texture information
• `tostr()` - converts vector information to a space-separated string
FUNCTION AND DATA PLOTS

2.1 Plotting Functions

EXAMPLES:

```
sage: x, y = var('x y')
sage: W = plot3d(sin(pi*((x)^2+(y)^2))/2,(x,-1,1),(y,-1,1), frame=False, color='purple', opacity=0.8)
sage: S = sphere((0,0,0),size=0.3, color='red', aspect_ratio=[1,1,1])
sage: show(W + S, figsize=8)
```
sage: def f(x,y):
....: return math.sin(y^2+x^2)/math.sqrt(x^2+y^2+0.0001)
sage: P = plot3d(f,(-3,3),(-3,3), adaptive=True, color=rainbow(60, 'rgbtuple'), max_
˓→bend=.1, max_depth=15)
sage: P.show()

Here is an example using a colormap and a color function c:

sage: def f(x,y):
....: return math.exp(x/5)*math.sin(y)
...
sage: P = plot3d(f,(-5,5),(-5,5), adaptive=True, color=['red','yellow'])
sage: from sage.plot.plot3d.plot3d import axes
sage: S = P + axes(6, color='black')
sage: S.show()

Here is an example using a colormap and a color function c:

sage: x, y = var('x y')
sage: cm = colormaps.hsv
sage: def c(x,y):
....: return float((x+y+x*y)/15) % 1
sage: plot3d(x*x+y*y, (x,-4,4), (y,-4,4), color=(c,cm))
Graphics3d Object

Beware that the color function must take values between 0 and 1.

We plot “cape man”:
2.1. Plotting Functions
\begin{verbatim}
sage: S = sphere(size=.5, color='yellow')

sage: from sage.plot.plot3d.shapes import Cone
sage: S += Cone(.5, .5, color='red').translate(0,0,.3)

sage: S += sphere((.45,-.1,.15), size=.1, color='white') + sphere((.51,-.1,.17), size=.05, color='black')

sage: S += sphere((.45, .1,.15),size=.1, color='white') + sphere((.51, .1,.17), size=.05, color='black')

sage: S += sphere((.5,0,-.2),size=.1, color='yellow')

sage: def f(x,y):
 return math.exp(x/5)*math.cos(y)

sage: P = plot3d(f,(-5,5),(-5,5), adaptive=True, color=['red','yellow'], max_depth=10)

sage: cape_man = P.scale(.2) + S.translate(1,0,0)

sage: cape_man.show(aspect_ratio=[1,1,1])
\end{verbatim}

Or, we plot a very simple function indeed:

\begin{verbatim}
sage: plot3d(pi, (-1,1), (-1,1))
Graphics3d Object

Transparent with fractional opacity value:

\begin{verbatim}
sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2), opacity=8/10)
Graphics3d Object
\end{verbatim}
\end{verbatim}

2.1. Plotting Functions
Todo: Add support for smooth triangles.

AUTHORS:

- Tom Boothby: adaptive refinement triangles
- Josh Kantor: adaptive refinement triangles
- Robert Bradshaw (2007-08): initial version of this file
- Oscar Lazo, William Cauchois, Jason Grout (2009-2010): Adding coordinate transformations

```python
class sage.plot.plot3d.plot3d.Cylindrical(dep_var, indep_vars):
    Bases: sage.plot.plot3d.plot3d._Coordinates

    A cylindrical coordinate system for use with plot3d(transformation=...) where the position of a point is specified by three numbers:
    - the radial distance (radius) from the z-axis
    - the azimuth angle (azimuth) from the positive x-axis
    - the height or altitude (height) above the xy-plane

    These three variables must be specified in the constructor.

    EXAMPLES:

    Construct a cylindrical transformation for a function for height in terms of radius and azimuth:

    sage: T = Cylindrical('height', ['radius', 'azimuth'])

    If we construct some concrete variables, we can get a transformation:

    sage: r, theta, z = var('r theta z')
    sage: T.transform(radius=r, azimuth=theta, height=z)
    (r*cos(theta), r*sin(theta), z)

    We can plot with this transform. Remember that the dependent variable is the height, and the independent variables are the radius and the azimuth (in that order):

    sage: plot3d(9-r^2, (r, 0, 3), (theta, 0, pi), transformation=T)
    Graphics3d Object

    We next graph the function where the radius is constant:

    sage: S=Cylindrical('radius', ['azimuth', 'height'])
    sage: theta,z=var('theta, z')
    sage: plot3d(3, (theta,0,2*pi), (z, -2, 2), transformation=S)
    Graphics3d Object

    See also `cylindrical_plot3d()` for more examples of plotting in cylindrical coordinates.
```

transform(radius=None, azimuth=None, height=None)

A cylindrical coordinates transform.

EXAMPLES:
2.1. Plotting Functions
class sage.plot.plot3d.plot3d.Spherical(dep_var, indep_vars)
Bases: sage.plot.plot3d.plot3d._Coordinates

A spherical coordinate system for use with plot3d(transformation=...) where the position of a point is specified by three numbers:

• the radial distance (radius) from the origin
• the azimuth angle (azimuth) from the positive x-axis
• the inclination angle (inclination) from the positive z-axis

These three variables must be specified in the constructor.

EXAMPLES:

Construct a spherical transformation for a function for the radius in terms of the azimuth and inclination:

```
sage: T = Spherical('radius', ['azimuth', 'inclination'])
```

If we construct some concrete variables, we can get a transformation in terms of those variables:

```
sage: r, phi, theta = var('r phi theta')
sage: T.transform(radius=r, azimuth=theta, inclination=phi)
(r*cos(theta)*sin(phi), r*sin(phi)*sin(theta), r*cos(phi))
```

We can plot with this transform. Remember that the dependent variable is the radius, and the independent variables are the azimuth and the inclination (in that order):

```
sage: plot3d(phi * theta, (theta, 0, pi), (phi, 0, 1), transformation=T)
Graphics3d Object
```

We next graph the function where the inclination angle is constant:

```
sage: S=Spherical('inclination', ['radius', 'azimuth'])
sage: r,theta=var('r,theta')
sage: plot3d(3, (r,0,3), (theta, 0, 2*pi), transformation=S)
Graphics3d Object
```

See also spherical_plot3d() for more examples of plotting in spherical coordinates.

```
transform (radius=None, azimuth=None, inclination=None)
```

A spherical coordinates transform.

EXAMPLES:

```
sage: T = Spherical('radius', ['azimuth', 'inclination'])
sage: T.transform(radius=var('r'), azimuth=var('theta'), inclination=var('phi'))
(r*cos(theta)*sin(phi), r*sin(phi)*sin(theta), r*cos(phi))
```

class sage.plot.plot3d.plot3d.SphericalElevation(dep_var, indep_vars)
Bases: sage.plot.plot3d.plot3d._Coordinates

A spherical coordinate system for use with plot3d(transformation=...) where the position of a point is specified by three numbers:
2.1. Plotting Functions
• the \emph{radial distance} \texttt{(radius)} from the origin
• the \emph{azimuth angle} \texttt{(azimuth)} from the positive \emph{x}-axis
• the \emph{elevation angle} \texttt{(elevation)} from the \emph{xy}-plane toward the positive \emph{z}-axis

These three variables must be specified in the constructor.

\textbf{EXAMPLES:}

Construct a spherical transformation for the radius in terms of the azimuth and elevation. Then, get a transformation in terms of those variables:

\begin{verbatim}
 sage: T = SphericalElevation('radius', ['azimuth', 'elevation'])
 sage: r, theta, phi = var('r theta phi')
 sage: T.transform(radius=r, azimuth=theta, elevation=phi)
 (r*cos(phi)*cos(theta), r*cos(phi)*sin(theta), r*sin(phi))
\end{verbatim}

We can plot with this transform. Remember that the dependent variable is the radius, and the independent variables are the azimuth and the elevation (in that order):

\begin{verbatim}
 sage: plot3d(phi * theta, (theta, 0, pi), (phi, 0, 1), transformation=T)
Graphics3d Object
\end{verbatim}

We next graph the function where the elevation angle is constant. This should be compared to the similar example for the \texttt{Spherical} coordinate system:
Plot a sin curve wrapped around the equator:

```
sage: P1=plot3d((pi/12)*sin(8*theta), (r,0.99,1), (theta, 0, 2*pi),
              transformation=SE, plot_points=(10,200))
sage: P2=sphere(center=(0,0,0), size=1, color='red', opacity=0.3)
sage: P1+P2
```

Now we graph several constant elevation functions alongside several constant inclination functions. This example illustrates the difference between the Spherical coordinate system and the SphericalElevation coordinate system:

```
sage: r, phi, theta = var('r phi theta')
sage: SE = SphericalElevation('elevation', ['radius', 'azimuth'])
sage: angles = [pi/18, pi/12, pi/6]
sage: P1 = [plot3d( a, (r,0,3), (theta, 0, 2*pi), transformation=SE, opacity=0.85,
                color='blue') for a in angles]
sage: S = Spherical('inclination', ['radius', 'azimuth'])
```
2.1. Plotting Functions
sage: P2 = [plot3d(a, (r,0,3), (theta, 0, 2*pi), transformation=S, opacity=0.85, color='red') for a in angles]
sage: show(sum(P1+P2), aspect_ratio=1)

See also \texttt{spherical_plot3d()} for more examples of plotting in spherical coordinates.

\textbf{transform} (radius=None, azimuth=None, elevation=None)
A spherical elevation coordinates transform.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: T = SphericalElevation('radius', ['azimuth', 'elevation'])
sage: T.transform(radius=var('r'), azimuth=var('theta'), elevation=var('phi'))
(r*cos(phi)*cos(theta), r*cos(phi)*sin(theta), r*sin(phi))
\end{verbatim}

\textbf{class} \texttt{sage.plot.plot3d.plot3d.TrivialTriangleFactory}
Class emulating behavior of \texttt{TriangleFactory} but simply returning a list of vertices for both regular and smooth triangles.

\textbf{smooth_triangle} (a, b, c, da, db, dc, color=None)
Function emulating behavior of \texttt{smooth_triangle()} but simply returning a list of vertices.

\textbf{INPUT:}

- a, b, c : triples (x,y,z) representing corners on a triangle in 3-space
• da, db, dc: ignored
• color: ignored

OUTPUT:
• the list [a, b, c]

triangle(a, b, c, color=None)
Function emulating behavior of triangle() but simply returning a list of vertices.

INPUT:
• a, b, c: triples (x,y,z) representing corners on a triangle in 3-space
• color: ignored

OUTPUT:
• the list [a, b, c]

sage.plot.plot3d.plot3d.axes(scale=1, radius=None, **kwds)
Creates basic axes in three dimensions. Each axis is a three dimensional arrow object.

INPUT:
• scale - (default: 1) The length of the axes (all three will be the same).
• radius - (default: .01) The radius of the axes as arrows.

EXAMPLES:

```
sage: from sage.plot.plot3d.plot3d import axes
sage: S = axes(6, color='black'); S
Graphics3d Object
sage: T = axes(2, .5); T
Graphics3d Object
```

sage.plot.plot3d.plot3d.cylindrical_plot3d(f, urange, vrange, **kwds)
Plots a function in cylindrical coordinates. This function is equivalent to:

```
sage: r,u,v=var('r,u,v')
sage: f=u*v; urange=(u,0,pi); vrange=(v,0,pi)
sage: T = (r*cos(u), r*sin(u), v, [u,v])
sage: plot3d(f, urange, vrange, transformation=T)
Graphics3d Object
```
or equivalently:

```
sage: T = Cylindrical('radius', ['azimuth', 'height'])
sage: f=lambda u,v: u*v; urange=(u,0,pi); vrange=(v,0,pi)
sage: plot3d(f, urange, vrange, transformation=T)
Graphics3d Object
```

INPUT:
• f - a symbolic expression or function of two variables, representing the radius from the z-axis.
• urange - a 3-tuple (u, u_min, u_max), the domain of the azimuth variable.
• vrange - a 3-tuple (v, v_min, v_max), the domain of the elevation (z) variable.
EXAMPLES:

A portion of a cylinder of radius 2:

```python
sage: theta, z = var('theta, z')
sage: cylindrical_plot3d(2, (theta, 0, 3*pi/2), (z, -2, 2))
Graphics3d Object
```

Some random figures:

```python
sage: cylindrical_plot3d(cosh(z), (theta, 0, 2*pi), (z, -2, 2))
Graphics3d Object
```

```python
sage: cylindrical_plot3d(e^(-z^2)*(cos(4*theta)+2)+1, (theta, 0, 2*pi), (z, -2, 2), plot_points=[80, 80]).show(aspect_ratio=(1, 1, 1))
sage.plot.plot3d.plot3d.plot3d(f, urange, vrange, adaptive=False, transformation=None, **kwds)
```

Plots a function in 3d.

INPUT:

- `f` - a symbolic expression or function of 2 variables
- `urange` - a 2-tuple (u_min, u_max) or a 3-tuple (u, u_min, u_max)
- `vrange` - a 2-tuple (v_min, v_max) or a 3-tuple (v, v_min, v_max)
2.1. Plotting Functions
• adaptive - (default: False) whether to use adaptive refinement to draw the plot (slower, but may look better). This option does NOT work in conjunction with a transformation (see below).

• mesh - bool (default: False) whether to display mesh grid lines

• dots - bool (default: False) whether to display dots at mesh grid points

• plot_points - (default: “automatic”) initial number of sample points in each direction; an integer or a pair of integers

• transformation - (default: None) a transformation to apply. May be a 3 or 4-tuple (x_func, y_func, z_func, independent_vars) where the first 3 items indicate a transformation to Cartesian coordinates (from your coordinate system) in terms of u, v, and the function variable fvar (for which the value of f will be substituted). If a 3-tuple is specified, the independent variables are chosen from the range variables. If a 4-tuple is specified, the 4th element is a list of independent variables. transformation may also be a predefined coordinate system transformation like Spherical or Cylindrical.

Note: mesh and dots are not supported when using the Tachyon raytracer renderer.

EXAMPLES: We plot a 3d function defined as a Python function:

```python
sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2))
Graphics3d Object
```

We plot the same 3d function but using adaptive refinement:
sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2), adaptive=True)
Graphics3d Object

Adaptive refinement but with more points:

sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2), adaptive=True, initial_depth=5)
Graphics3d Object

We plot some 3d symbolic functions:

sage: var('x,y')
(x, y)
sage: plot3d(x^2 + y^2, (x,-2,2), (y,-2,2))
Graphics3d Object

sage: plot3d(sin(x*y), (x, -pi, pi), (y, -pi, pi))
Graphics3d Object

We give a plot with extra sample points:

sage: var('x,y')
(x, y)

(continues on next page)
A 3d plot with a mesh:

```
sage: var('x,y')
(x, y)
sage: plot3d(sin(x-y)*y*cos(x), (x,-3,3), (y,-3,3), mesh=True)
Graphics3d Object
```

Two wobby translucent planes:

```
sage: x,y = var('x,y')
sage: P = plot3d(x+y+sin(x*y), (x,-10,10),(y,-10,10), opacity=0.87, color='blue')
sage: Q = plot3d(x-2*y-cos(x*y),(x,-10,10),(y,-10,10),opacity=0.3,color='red')
sage: P + Q
Graphics3d Object
```

We draw two parametric surfaces and a transparent plane:
2.1. Plotting Functions
We draw the “Sinus” function (water ripple-like surface):

```python
sage: x, y = var('x y')
sage: plot3d(sin(pi*(x^2+y^2))/2, (x,-1,1), (y,-1,1))
Graphics3d Object
```

Hill and valley (flat surface with a bump and a dent):

```python
sage: x, y = var('x y')
sage: plot3d(4*x*exp(-x^2-y^2), (x,-2,2), (y,-2,2))
Graphics3d Object
```

An example of a transformation:

```python
sage: r, phi, z = var('r phi z')
sage: trans=(r*cos(phi),r*sin(phi),z)
sage: plot3d(cos(r), (r,0,17*pi/2), (phi,0,2*pi),transformation=trans,opacity=0.87).show(aspect_ratio=(1,1,2), frame=False)
```
2.1. Plotting Functions
An example of a transformation with symbolic vector:

```
sage: cylindrical(r,theta,z)=[r*cos(theta),r*sin(theta),z]
sage: plot3d(3,(theta,0,pi/2),(z,0,pi/2),transformation=cylindrical)
Graphics3d Object
```

Many more examples of transformations:

```
sage: u, v, w = var('u v w')
sage: rectangular=(u,v,w)
sage: spherical=(w*cos(u)*sin(v),w*sin(u)*sin(v),w*cos(v))
sage: cylindric_radial=(w*cos(u),w*sin(u),v)
sage: cylindric_axial=(v*cos(u),v*sin(u),w)
sage: parabolic_cylindrical=(w*v,(v^2-w^2)/2,u)
```

Plot a constant function of each of these to get an idea of what it does:

```
sage: A = plot3d(2,(u,-pi,pi),(v,0,pi),transformation=rectangular,plot_points=[100,100])
sage: B = plot3d(2,(u,-pi,pi),(v,0,pi),transformation=spherical,plot_points=[100,100])
sage: C = plot3d(2,(u,-pi,pi),(v,0,pi),transformation=cylindric_radial,plot_points=[100,100])
sage: D = plot3d(2,(u,-pi,pi),(v,0,pi),transformation=cylindric_axial,plot_points=[100,100])
```

(continues on next page)
sage: E = plot3d(2, (u,-pi,pi), (v,-pi,pi), transformation=parabolic_cylindrical, plot_points=[100,100])
sage: @interact
....: def _ (which_plot=[A,B,C,D,E]):
....: show(which_plot)
Interactive function <function _ at ...> with 1 widget

Now plot a function:

sage: g=3+sin(4+u)/2+cos(4+v)/2
sage: F = plot3d(g, (u,-pi,pi), (v,0,pi), transformation=rectangular, plot_points=[100,100])
sage: G = plot3d(g, (u,-pi,pi), (v,0,pi), transformation=spherical, plot_points=[100,100])
sage: H = plot3d(g, (u,-pi,pi), (v,0,pi), transformation=cylindric_radial, plot_points=[100,100])
sage: I = plot3d(g, (u,-pi,pi), (v,0,pi), transformation=cylindric_axial, plot_points=[100,100])
sage: J = plot3d(g, (u,-pi,pi), (v,0,pi), transformation=parabolic_cylindrical, plot_points=[100,100])
sage: @interact
....: def _ (which_plot=[F, G, H, I, J]):
....: show(which_plot)
Interactive function <function _ at ...> with 1 widget

sage.plot.plot3d.plot3d.plot3d_adaptive(f, x_range, y_range, color='automatic',
 grad_f=None, max_bend=0.5, max_depth=5,
 initial_depth=4, num_colors=128, **kwds)

Adaptive 3d plotting of a function of two variables.

This is used internally by the plot3d command when the option adaptive=True is given.

INPUT:

• f - a symbolic function or a Python function of 3 variables.
• x_range - x range of values: 2-tuple (xmin, xmax) or 3-tuple (xmin, xmax)
• y_range - y range of values: 2-tuple (ymin, ymax) or 3-tuple (ymin, ymax)
• grad_f - gradient of f as a Python function
• color - “automatic” - a rainbow of num_colors colors
• num_colors - (default: 128) number of colors to use with default color
• max_bend - (default: 0.5)
• max_depth - (default: 5)
• initial_depth - (default: 4)
• **kwds - standard graphics parameters

EXAMPLES:
We plot $\sin(xy)$:

```python
sage: from sage.plot.plot3d.plot3d import plot3d_adaptive
sage: x,y=var('x,y'); plot3d_adaptive(sin(x*y), (x,-pi,pi), (y,-pi,pi), initial_depth=5)
```

Graphics3d Object

```
sage.plot.plot3d.plot3d.spherical_plot3d(f, urange, vrange, **kwds)
```

Plots a function in spherical coordinates. This function is equivalent to:

```python
sage: r,u,v=var('r,u,v')
sage: f=u*v; urange=(u,0,pi); vrange=(v,0,pi)
sage: T = (r*cos(u)*sin(v), r*sin(u)*sin(v), r*cos(v), [u,v])
sage: plot3d(f, urange, vrange, transformation=T)
```

Graphics3d Object

or equivalently:

```python
sage: T = Spherical('radius', ['azimuth', 'inclination'])
sage: f=lambda u,v: u*v; urange=(u,0,pi); vrange=(v,0,pi)
sage: plot3d(f, urange, vrange, transformation=T)
```

Graphics3d Object

INPUT:

- f - a symbolic expression or function of two variables.
- urange - a 3-tuple \((u, u_{\text{min}}, u_{\text{max}})\), the domain of the azimuth variable.
- vrange - a 3-tuple \((v, v_{\text{min}}, v_{\text{max}})\), the domain of the inclination variable.

EXAMPLES:
A sphere of radius 2:

```sage
sage: x, y = var('x, y')
sage: spherical_plot3d(2, (x, 0, 2*pi), (y, 0, pi))
Graphics3d Object
```

The real and imaginary parts of a spherical harmonic with \(l = 2\) and \(m = 1\):

```sage
sage: phi, theta = var('phi, theta')
sage: Y = spherical_harmonic(2, 1, theta, phi)
sage: rea = spherical_plot3d(abs(real(Y)), (phi, 0, 2*pi), (theta, 0, pi), color='blue', opacity=0.6)
sage: ima = spherical_plot3d(abs(imag(Y)), (phi, 0, 2*pi), (theta, 0, pi), color='red', opacity=0.6)
sage: (rea + ima).show(aspect_ratio=1)  # long time (4s on sage.math, 2011)
```

A drop of water:

```sage
sage: x, y = var('x, y')
sage: spherical_plot3d(e^-y, (x, 0, 2*pi), (y, 0, pi), opacity=0.5).show(frame=False)
```
2.1. Plotting Functions
Chapter 2. Function and Data Plots
An object similar to a heart:

```
sage: x,y=var('x,y')
sage: spherical_plot3d((2+cos(2*x))*(y+1),(x,0,2*pi),(y,0,pi),rgbcolor=(1,.1,.1))
Graphics3d Object
```

Some random figures:

```
sage: x,y=var('x,y')
sage: spherical_plot3d(1+sin(5*x)/5,(x,0,2*pi),(y,0,pi),rgbcolor=(1,0.5,0),plot_˓→points=(80,80),opacity=0.7)
Graphics3d Object
```

```
sage: x,y=var('x,y')
sage: spherical_plot3d(1+2*cos(2*y),(x,0,3*pi/2),(y,0,pi)).show(aspect_ratio=(1,1,˓→1))
```
2.2 Parametric Plots

sage.plot.plot3d.parametric_plot3d(parametric_plot3d(f, urange, vrange=None, plot_points='automatic', boundary_style=None, **kwds))

Return a parametric three-dimensional space curve or surface.

There are four ways to call this function:

• parametric_plot3d([f_x, f_y, f_z], (u_min, u_max)): f_x, f_y, f_z are three functions and u_min and u_max are real numbers
• parametric_plot3d([f_x, f_y, f_z], (u, u_min, u_max)): f_x, f_y, f_z can be viewed as functions of u
• parametric_plot3d([f_x, f_y, f_z], (u_min, u_max), (v_min, v_max)): f_x, f_y, f_z are each functions of two variables
• parametric_plot3d([f_x, f_y, f_z], (u, u_min, u_max), (v, v_min, v_max)): f_x, f_y, f_z can be viewed as functions of u and v

INPUT:

• f - a 3-tuple of functions or expressions, or vector of size 3
• urange - a 2-tuple (u_min, u_max) or a 3-tuple (u, u_min, u_max)
• vrange - (optional - only used for surfaces) a 2-tuple (v_min, v_max) or a 3-tuple (v, v_min, v_max)
• plot_points - (default: “automatic”, which is 75 for curves and [40,40] for surfaces) initial number of sample points in each parameter; an integer for a curve, and a pair of integers for a surface.
• boundary_style - (default: None, no boundary) a dict that describes how to draw the boundaries of regions by giving options that are passed to the line3d command.
• mesh - bool (default: False) whether to display mesh grid lines
• dots - bool (default: False) whether to display dots at mesh grid points

Note:

1. By default for a curve any points where f_x, f_y, or f_z do not evaluate to a real number are skipped.
2. Currently for a surface f_x, f_y, and f_z have to be defined everywhere. This will change.
3. mesh and dots are not supported when using the Tachyon ray tracer renderer.

EXAMPLES: We demonstrate each of the four ways to call this function.

1. A space curve defined by three functions of 1 variable:

```python
sage: parametric_plot3d((sin, cos, lambda u: u/10), (0,20))
```

Graphics3d Object

Note above the lambda function, which creates a callable Python function that sends u to u/10.

2. Next we draw the same plot as above, but using symbolic functions:

```python
sage: u = var('u')
sage: parametric_plot3d((sin(u), cos(u), u/10), (u,0,20))
```

Graphics3d Object
2.2. Parametric Plots
3. We draw a parametric surface using 3 Python functions (defined using lambda):

```
sage: f = (lambda u,v: cos(u), lambda u,v: sin(u)+cos(v), lambda u,v: sin(v))
sage: parametric_plot3d(f, (0,2*pi), (-pi,pi))
```

```
Graphics3d Object
```

4. The same surface, but where the defining functions are symbolic:

```
sage: u, v = var('u,v')
sage: parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u,0,2*pi), (v,-pi,pi))
```

```
Graphics3d Object
```

The surface, but with a mesh:

```
sage: u, v = var('u,v')
sage: parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u,0,2*pi), (v,-pi,pi), mesh=True)
```

```
Graphics3d Object
```

We increase the number of plot points, and make the surface green and transparent:

```
sage: parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u,0,2*pi), (v,-pi,pi), ....: color='green', opacity=0.1, plot_points=[30,30])
```

(continues on next page)
Chapter 2. Function and Data Plots
2.2. Parametric Plots
One can also color the surface using a coloring function and a colormap as follows. Note that the coloring function must take values in the interval \([0,1]\).

```python
sage: u,v = var('u,v')
sage: def cf(u,v):
    return sin(u+v/2)**2
sage: P = parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)),
           (u,0,2*pi), (v,-pi,pi), color=(cf,colormaps.PiYG), plot_points=[60,60])
sage: P.show(viewer='tachyon')
```

Another example, a colored Möbius band:

```python
sage: cm = colormaps.ocean
sage: def c(x,y):
    return sin(x*y)**2
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: MoebiusStrip(5, 1, plot_points=200, color=(c,cm))
```

Yet another colored example:

```python
sage: from sage.plot.plot3d.parametric_surface import ParametricSurface
sage: cm = colormaps.autumn
```

2.2. Parametric Plots
sage: def c(x,y): return sin(x*y)**2
sage: def g(x,y): return x, y+sin(y), x**2 + y**2
sage: ParametricSurface(g, (srange(-10,10,0.1), srange(-5,5.0,0.1)), color=(c,cm))
Graphics3d Object

Warning: This kind of coloring using a colormap can be visualized using Jmol, Tachyon (option viewer='tachyon') and Canvas3D (option viewer='canvas3d' in the notebook).

We call the space curve function but with polynomials instead of symbolic variables.

sage: R.<t> = RDF[]
sage: parametric_plot3d((t, t^2, t^3), (t,0,3))
Graphics3d Object

Next we plot the same curve, but because we use (0, 3) instead of (t, 0, 3), each polynomial is viewed as a callable function of one variable:

sage: parametric_plot3d((t, t^2, t^3), (0,3))
Graphics3d Object

We do a plot but mix a symbolic input, and an integer:
2.2. Parametric Plots
We specify a boundary style to show us the values of the function at its extrema:

```
sage: u, v = var('u, v')
sage: parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u, 0, pi), (v, 0, pi),
....: boundary_style={'color': 'black', 'thickness': 2})
```

We can plot vectors:

```
sage: x, y = var('x, y')
sage: parametric_plot3d(vector([x-y, x*y, x*cos(y)]), (x, 0, 2), (y, 0, 2))
```

Any options you would normally use to specify the appearance of a curve are valid as entries in the `boundary_style` dict.
2.2. Parametric Plots
MANY MORE EXAMPLES:

We plot two interlinked tori:

```
sage: u, v = var('u,v')
sage: f1 = (4+(3+cos(v))*sin(u), 4+(3+cos(v))*cos(u), 4+sin(v))
sage: f2 = (8+(3+cos(v))*cos(u), 3+sin(v), 4+(3+cos(v))*sin(u))
sage: p1 = parametric_plot3d(f1, (u,0,2*pi), (v,0,2*pi), texture="red")
sage: p2 = parametric_plot3d(f2, (u,0,2*pi), (v,0,2*pi), texture="blue")
sage: p1 + p2
Graphics3d Object
```

A cylindrical Star of David:

```
sage: u,v = var('u v')
sage: K = (abs(cos(u))^200+abs(sin(u))^200)^(-1.0/200)
sage: f_x = cos(u) * cos(v) * (abs(cos(3*v/4))^500+abs(sin(3*v/4))^500)^(-1/260)
    * K
sage: f_y = cos(u) * sin(v) * (abs(cos(3*v/4))^500+abs(sin(3*v/4))^500)^(-1/260)
    * K
sage: f_z = sin(u) * K
sage: parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, 0, 2*pi))
Graphics3d Object
```

Double heart:
2.2. Parametric Plots
sage: u, v = var('u,v')
sage: G1 = abs(sqrt(2)*tanh((u/sqrt(2))))
sage: G2 = abs(sqrt(2)*tanh((v/sqrt(2))))
sage: f_x = (abs(v) - abs(u) - G1 + G2)*sin(v)
sage: f_y = (abs(v) - abs(u) - G1 - G2)*cos(v)
sage: f_z = sin(u)*(abs(cos(u)) + abs(sin(u)))^(-1)

sage: parametric_plot3d([f_x, f_y, f_z], (u,0,pi), (v,-pi,pi))
Graphics3d Object

Heart:

sage: u, v = var('u,v')
sage: f_x = cos(u)*(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
sage: f_y = sin(u)*(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
sage: f_z = v

sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-1,1), frame=False, color="red")
Graphics3d Object

A Trefoil knot (Wikipedia article Trefoil_knot):

sage: u, v = var('u,v')
sage: f_x = (4*(1+0.25*sin(3*v))+cos(u))*cos(2*v)
sage: f_y = (4*(1+0.25*sin(3*v))+cos(u))*sin(2*v)
(continues on next page)
2.2. Parametric Plots
sage: f_z = sin(u)+2*cos(3*v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), frame=False,
→color="blue")
Graphics3d Object

Green bowtie:
sage: u, v = var('u,v')
sage: f_x = sin(u) / (sqrt(2) + sin(v))
sage: f_y = sin(u) / (sqrt(2) + cos(v))
sage: f_z = cos(u) / (1 + sqrt(2))
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), frame=False,
→color="green")
Graphics3d Object

sage: u, v = var('u,v')
sage: K = cos(u) / (sqrt(2) - cos(2*u)*sin(3*v))
sage: f_x = K * (cos(u)*cos(2*v)+sqrt(2)*sin(u)*cos(v))
sage: f_y = K * (cos(u)*sin(2*v)-sqrt(2)*sin(u)*sin(v))
sage: f_z = 3 * K * cos(u)
sage: parametric_plot3d([f_x, f_y, f_z], (u,-2*pi,2*pi), (v,0,pi),
(continues on next page)
2.2. Parametric Plots
Maeder's Owl also known as Bour's minimal surface (Wikipedia article Bour%27s_minimal_surface):

```
sage: u, v = var('u,v')
sage: f_x = v*cos(u) - 0.5*v^2*cos(2*u)
sage: f_y = -v*sin(u) - 0.5*v^2*sin(2*u)
sage: f_z = 4 * v^1.5 * cos(3*u/2) / 3
sage: parametric_plot3d([f_x, f_y, f_z], (u,-2*pi,2*pi), (v,0,1),
.....: plot_points=[90,90], frame=False, color="purple")
```

Bracelet:

```
sage: u, v = var('u,v')
sage: f_x = (2 + 0.2*sin(2*pi*u)) * sin(pi*v)
sage: f_y = 0.2 * cos(2*pi*u) * 3 * cos(2*pi*v)
sage: f_z = (2 + 0.2*sin(2*pi*u)) * cos(pi*v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,pi/2), (v,0,3*pi/4), frame=False,
.....: color="gray")
```
Green goblet:

```sage
u, v = var('u,v')
sage: f_x = cos(u) * cos(2*v)
sage: f_y = sin(u) * cos(2*v)
sage: f_z = sin(v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,pi), frame=False, color="green")
Graphics3d Object
```

Funny folded surface - with square projection:

```sage
u, v = var('u,v')
sage: f_x = cos(u) * sin(2*v)
sage: f_y = sin(u) * cos(2*v)
sage: f_z = sin(v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="green")
Graphics3d Object
```

Surface of revolution of figure 8:

```sage
u, v = var('u,v')
sage: f_x = cos(u) * sin(2*v)
sage: f_y = sin(u) * sin(2*v)
```

(continues on next page)
Chapter 2. Function and Data Plots
sage: f_z = sin(v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="green")
Graphics3d Object

Yellow Whitney’s umbrella (Wikipedia article Whitney_umbrella):

sage: u, v = var('u,v')
sage: f_x = u*v
sage: f_y = u
sage: f_z = v^2
sage: parametric_plot3d([f_x, f_y, f_z], (u,-1,1), (v,-1,1), frame=False, color="yellow")
Graphics3d Object

Cross cap (Wikipedia article Cross-cap):

sage: u, v = var('u,v')
sage: f_x = (1+cos(v)) * cos(u)
sage: f_y = (1+cos(v)) * sin(u)
sage: f_z = -tanh((2/3)*(u-pi)) * sin(v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="red")
Graphics3d Object
Chapter 2. Function and Data Plots
Twisted torus:

```python
sage: u, v = var('u,v')
sage: f_x = (3+sin(v)+cos(u)) * cos(2*v)
sage: f_y = (3+sin(v)+cos(u)) * sin(2*v)
sage: f_z = sin(u) + 2*cos(v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="red")
```

Graphics3d Object

Four intersecting discs:

```python
sage: u, v = var('u,v')
sage: f_x = v*cos(u) - 0.5*v^2*cos(2*u)
sage: f_y = -v*sin(u) - 0.5*v^2*sin(2*u)
sage: f_z = 4 * v^1.5 * cos(3*u/2) / 3
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,4*pi), (v,0,2*pi), frame=False, color="red", opacity=0.7)
```

Graphics3d Object

Steiner surface/Roman’s surface (see Wikipedia article Roman_surface and Wikipedia article Steiner_surface):

```python
sage: u, v = var('u,v')
sage: f_x = (sin(2*u) * cos(v) * cos(v))
sage: f_y = (sin(2*u) * cos(v) * cos(v))
sage: f_z = (sin(u) * sin(2+v))
```

(continues on next page)
sage: f_z = (cos(u) * sin(2*v))
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi/2,pi/2), (v,-pi/2,pi/2),
 frame=False, color="red")
Graphics3d Object

Klein bottle? (see Wikipedia article Klein_bottle):

sage: u, v = var('u,v')
sage: f_x = (3*(1+sin(v)) + 2*(1-cos(v)/2)*cos(u)) * cos(v)
sage: f_y = (4+2*(1-cos(v)/2)*cos(u)) * sin(v)
sage: f_z = -2 * (1-cos(v)/2) * sin(u)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False,
 color="green")
Graphics3d Object

A Figure 8 embedding of the Klein bottle (see Wikipedia article Klein_bottle):

sage: u, v = var('u,v')
sage: f_x = (2*cos(v/2)*sin(u)-sin(v/2)*sin(2*u)) * cos(v)
sage: f_y = (2*cos(v/2)*sin(u)-sin(v/2)*sin(2*u)) * sin(v)
sage: f_z = sin(v/2)*sin(u) + cos(v/2)*sin(2*u)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False,
 color="red")
Graphics3d Object
2.2. Parametric Plots
Chapter 2. Function and Data Plots
Enneper’s surface (see Wikipedia article Enneper_surface):

```
sage: u, v = var('u,v')
sage: f_x = u - u^3/3 + u*v^2
sage: f_y = v - v^3/3 + v*u^2
sage: f_z = u^2 - v^2
sage: parametric_plot3d([f_x, f_y, f_z], (u,-2,2), (v,-2,2), frame=False, color="red")
Graphics3d Object
```

Henneberg’s surface (see http://xahlee.org/surface/gallery_m.html):

```
sage: u, v = var('u,v')
sage: f_x = 2*sinh(u)*cos(v) - (2/3)*sinh(3*u)*cos(3*v)
sage: f_y = 2*sinh(u)*sin(v) + (2/3)*sinh(3*u)*sin(3*v)
sage: f_z = 2 * cosh(2*u) * cos(2*v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,-1,1), (v,-pi/2,pi/2), frame=False, color="red")
Graphics3d Object
```

Dini’s spiral:

```
sage: u, v = var('u,v')
sage: f_x = cos(u) * sin(v)
sage: f_y = sin(u) * sin(v)
```

(continues on next page)
Catalan’s surface (see http://xahlee.org/surface/catalan/catalan.html):

```python
sage: u, v = var('u,v')
sage: f_x = u - sin(u)*cosh(v)
sage: f_y = 1 - cos(u)*cosh(v)
sage: f_z = 4 * sin(1/2*u) * sinh(v/2)
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,3*pi), (v,-2,2), frame=False, color="red")
Graphics3d Object
```

A Conchoid:

```python
sage: u, v = var('u,v')
sage: k = 1.2; k_2 = 1.2; a = 1.5
sage: f = (k^u*(1+cos(v))*cos(u), k^u*(1+cos(v))*sin(u), k^u*sin(v)-a*k_2^u)
sage: parametric_plot3d(f, (u,0,6*pi), (v,0,2*pi), plot_points=[40,40], texture=(0,0.5,0))
Graphics3d Object
```
Chapter 2. Function and Data Plots
2.2. Parametric Plots
A Möbius strip:

```
sage: u, v = var("u,v")
sage: parametric_plot3d([cos(u)*(1+v*cos(u/2)), sin(u)*(1+v*cos(u/2)), 0. →2*v*sin(u/2)],
....: (u,0, 4*pi+0.5), (v,0, 0.3), plot_points=[50,50])
Graphics3d Object
```

A Twisted Ribbon:

```
sage: u, v = var('u,v')
sage: parametric_plot3d([3*sin(u)*cos(v), 3*sin(u)*sin(v), cos(v)],
....: (u,0,2*pi), (v,0,pi), plot_points=[50,50])
Graphics3d Object
```

An Ellipsoid:

```
sage: u, v = var('u,v')
sage: parametric_plot3d([3*sin(u)*cos(v), 2*sin(u)*sin(v), cos(u)],
....: (u,0,2*pi), (v,0,2*pi), plot_points=[50,50], aspect_ →ratio=[1,1,1])
Graphics3d Object
```

A Cone:
2.2. Parametric Plots
Chapter 2. Function and Data Plots
A Paraboloid:

```python
sage: u, v = var('u,v')
sage: parametric_plot3d([u*cos(v), u*sin(v), u^2], (u,0,1), (v,0,2*pi+0.4), plot_points=[50,50])
```

A Hyperboloid:

```python
sage: u, v = var('u,v')
sage: plot3d(u^2-v^2, (u,-1,1), (v,-1,1), plot_points=[50,50])
```

A weird looking surface - like a Möbius band but also an O:

```python
sage: u, v = var('u,v')
sage: parametric_plot3d([sin(u)*cos(u)*log(u^2)*sin(v), (u^2)^(1/6)*(cos(u)^2)^(1/4)*cos(v), sin(v)],
...: (u,0.001,1), (v,-pi,pi+0.2), plot_points=[50,50])
```
2.2. Parametric Plots
A heart, but not a cardioid (for my wife):

```python
sage: u, v = var('u,v')
sage: p1 = parametric_plot3d([sin(u)*cos(u)*log(u^2)*v*(1-v)/2, ((u^6)^(1/20)*(cos(u)^2)^(1/4)-1/2)*v*(1-v), v^(0.5)],
....: (u,0.001,1), (v,0,1), plot_points=[70,70], color='red')
sage: p2 = parametric_plot3d([-sin(u)*cos(u)*log(u^2)*v*(1-v)/2, ((u^6)^(1/20)*(cos(u)^2)^(1/4)-1/2)*v*(1-v), v^(0.5)],
....: (u,0.001,1), (v,0,1), plot_points=[70,70], color='red')
sage: show(p1+p2)
```

A Hyperhelicoidal:

```python
sage: u = var("u")
sage: v = var("v")
sage: f_x = (sinh(v)*cos(3*u)) / (1+cosh(u)*cosh(v))
sage: f_y = (sinh(v)*sin(3*u)) / (1+cosh(u)*cosh(v))
sage: f_z = (cosh(v)*sinh(u)) / (1+cosh(u)*cosh(v))
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), plot_points=[50,]
....: frame=False, color="red")
Graphics3d Object
```

A Helicoid (lines through a helix, Wikipedia article Helix):
sage: u, v = var('u,v')
sage: f_x = sinh(v) * sin(u)
sage: f_y = -sinh(v) * cos(u)
sage: f_z = 3 * u
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), plot_points=[50, →
˓→50], frame=False, color="red")
Graphics3d Object

Kuen’s surface (http://virtualmathmuseum.org/Surface/kuen/kuen.html):

sage: f_x = (2*(cos(u) + u*sin(u))*sin(v))/(1+ u^2*sin(v)^2)
sage: f_y = (2*(sin(u) - u*cos(u))*sin(v))/(1+ u^2*sin(v)^2)
sage: f_z = log(tan(1/2 *v)) + (2*cos(v))/(1+ u^2*sin(v)^2)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0.01,pi-0.01), plot_˓→points=[50,50], frame=False, color="green")
Graphics3d Object

A 5-pointed star:

sage: G1 = (abs(cos(u/4))^0.5+abs(sin(u/4))^0.5)^(-1/0.3)
sage: G2 = (abs(cos(5*v/4))^1.7+abs(sin(5*v/4))^1.7)^(-1/0.1)
sage: f_x = cos(u) * cos(v) * G1 * G2
sage: f_y = cos(u) * sin(v) * G1 * G2
sage: f_z = sin(u) * G1
(continues on next page)
Chapter 2. Function and Data Plots
A cool self-intersecting surface (Eppener surface?):

```sage
sage: f_x = u - u^3/3 + u*v^2
sage: f_y = v - v^3/3 + v*u^2
sage: f_z = u^2 - v^2
sage: parametric_plot3d([f_x, f_y, f_z], (u,-25,25), (v,-25,25), plot_points=[50,50], frame=False, color="green")
```

The breather surface (Wikipedia article Breather_surface):

```sage
sage: K = sqrt(0.84)
sage: G = (0.4*K*cosh(0.4*u))^2 + (0.4*sin(K*v))^2
sage: f_x = (2*K*cosh(0.4*u)*(-K*cos(v)*cos(K*v)) - sin(v)*sin(K*v))/G
sage: f_y = (2*K*cosh(0.4*u)*(-K*sin(v)*cos(K*v)) + cos(v)*sin(K*v))/G
sage: f_z = -u + (2*0.84*cosh(0.4*u)*sinh(0.4*u))/G
sage: parametric_plot3d([f_x, f_y, f_z], (u,-13.2,13.2), (v,-37.4,37.4), plot_points=[90,90], frame=False, color="green")
```

2.2. Parametric Plots
Chapter 2. Function and Data Plots
2.2. Parametric Plots
2.3 Surfaces of revolution

AUTHORS:
• Oscar Gerardo Lazo Arjona (2010): initial version.

\[
\text{sage.plot.plot3d.revolution_plot3d.} \quad \text{revolution_plot3d}(\text{curve}, \text{trange}, \text{phirange}=\text{None}, \text{parallel_axis}=\text{None}, \text{axis}=\text{None}, \text{print_vector}=\text{False}, \text{show_curve}=\text{False}, \text{**kwds})
\]

Return a plot of a revolved curve.

There are three ways to call this function:

• \(\text{revolution_plot3d}(f, \text{trange})\) where \(f\) is a function located in the \(xz\) plane.
• \(\text{revolution_plot3d}((f_x, f_z), \text{trange})\) where \((f_x, f_z)\) is a parametric curve on the \(xz\) plane.
• \(\text{revolution_plot3d}((f_x, f_y, f_z), \text{trange})\) where \((f_x, f_y, f_z)\) can be any parametric curve.

INPUT:

• curve - A curve to be revolved, specified as a function, a 2-tuple or a 3-tuple.
• trange - A 3-tuple \((t, t_{\text{min}}, t_{\text{max}})\) where \(t\) is the independent variable of the curve.
• phirange - A 2-tuple of the form \((\phi_{\text{min}}, \phi_{\text{max}})\), (default \((0, \pi)\)) that specifies the angle in which the curve is to be revolved.
• parallel_axis - A string (Either ‘x’, ‘y’, or ‘z’) that specifies the coordinate axis parallel to the revolution axis.
• axis - A 2-tuple that specifies the position of the revolution axis. If parallel is:
 – ‘z’ - then axis is the point in which the revolution axis intersects the \(xy\) plane.
 – ‘x’ - then axis is the point in which the revolution axis intersects the \(yz\) plane.
 – ‘y’ - then axis is the point in which the revolution axis intersects the \(xz\) plane.
• print_vector - If True, the parametrization of the surface of revolution will be printed.
• show_curve - If True, the curve will be displayed.

EXAMPLES:

Let’s revolve a simple function around different axes:

\[
\begin{align*}
\text{sage: } & u = \text{var}('u') \\
\text{sage: } & f = u^2 \\
\text{sage: } & \text{revolution_plot3d}(f, (u,0,2), \text{show_curve}=\text{True}, \text{opacity}=0.7).\text{show(aspect_ratio=(1,1,1))}
\end{align*}
\]

If we move slightly the axis, we get a goblet-like surface:

\[
\begin{align*}
\text{sage: } & \text{revolution_plot3d}(f, (u,0,2), \text{axis}=(1,0.2), \text{show_curve}=\text{True}, \text{opacity}=0.5).\text{show(aspect_ratio=(1,1,1))}
\end{align*}
\]

A common problem in calculus books, find the volume within the following revolution solid:

\[
\begin{align*}
\text{sage: } & \text{line} = u \\
\text{sage: } & \text{parabola} = u^2 \\
\text{sage: } & \text{sur1} = \text{revolution_plot3d}((\text{line}, (u,0,1), \text{opacity}=0.5, \text{rgbcolor}=(1,0.5,0), \text{print_vector}=\text{False}, \text{show_curve}=\text{True}, \text{parallel_axis}='x')
\end{align*}
\]
2.3. Surfaces of revolution
Now let's revolve a parametrically defined circle. We can play with the topology of the surface by changing the axis, an axis in (0, 0) (as the previous one) will produce a sphere-like surface:

```
sage: u = var('u')
sage: circle = (cos(u), sin(u))
sage: revolution_plot3d(circle, (u,0,2*pi), axis=(0,0), show_curve=True, opacity=0.5).show(aspect_ratio=(1,1,1))
```

An axis on (0, y) will produce a cylinder-like surface:

```
sage: revolution_plot3d(circle, (u,0,2*pi), axis=(0,2), show_curve=True, opacity=0.5).show(aspect_ratio=(1,1,1))
```

And any other axis will produce a torus-like surface:

```
sage: revolution_plot3d(circle, (u,0,2*pi), axis=(2,0), show_curve=True, opacity=0.5).show(aspect_ratio=(1,1,1))
```

Now, we can get another goblet-like surface by revolving a curve in 3d:
2.3. Surfaces of revolution
A curvy curve with only a quarter turn:

```
sage: u = var('u')
sage: curve = (sin(3*u), .8*cos(4*u), cos(u))
sage: revolution_plot3d(curve, (u,0,pi), (0,pi/2), show_curve=True, parallel_axis='z', opacity=0.5).show(aspect_ratio=(1,1,1), frame=False)
```

One can also color the surface using a coloring function of two parameters and a colormap as follows. Note that the coloring function must take values in the interval $[0,1]$.

```
sage: u, phi = var('u,phi')
sage: def cf(u,phi): return sin(phi+u) ** 2
sage: curve = (1+u**2/4, 0, u)
sage: revolution_plot3d(curve, (u,-2,2), (0,2*pi), parallel_axis='z', color=(cf, colormaps.PiYG)).show(aspect_ratio=(1,1,1))
```

The first parameter of the coloring function will be identified with the parameter of the curve, and the second with the angle parameter.
2.3. Surfaces of revolution
Warning: This kind of coloring using a colormap can be visualized using Jmol, Tachyon (option viewer='tachyon') and Canvas3D (option viewer='canvas3d' in the notebook).

Another colored example, illustrating that one can use (colormap, color function) instead of (color function, colormap):

```
sage: u, phi = var('u,phi')
sage: def cf(u, phi): return float(2 * u / pi) % 1
sage: curve = (sin(u), 0, u)
sage: revolution_plot3d(curve, (u,0,pi), (0,2*pi), parallel_axis....: ='z', color=(colormaps.brg, cf)).show(aspect_ratio=1)
```

2.4 Plotting 3D fields

```
sage.plot.plot3d.plot_field3d.plot_vector_field3d(functions, xrange, yrange, zrange, plot_points=5, colors='jet', center_arrows=False, **kwds)
```

Plot a 3d vector field

INPUT:

- `functions` - a list of three functions, representing the x-, y-, and z-coordinates of a vector
• `xrange`, `yrange`, and `zrange` - three tuples of the form (var, start, stop), giving the variables and ranges for each axis
• `plot_points` (default 5) - either a number or list of three numbers, specifying how many points to plot for each axis
• `colors` (default 'jet') - a color, list of colors (which are interpolated between), or matplotlib colormap name, giving the coloring of the arrows. If a list of colors or a colormap is given, coloring is done as a function of length of the vector
• `center_arrows` (default False) - If True, draw the arrows centered on the points; otherwise, draw the arrows with the tail at the point
• any other keywords are passed on to the plot command for each arrow

EXAMPLES:

```python
sage: x, y, z = var('x y z')
sage: plot_vector_field3d((x*cos(z), -y*cos(z), sin(z)), (x, 0, pi), (y, 0, pi), (z, 0, pi))
Graphics3d Object
sage: plot_vector_field3d((x*cos(z), -y*cos(z), sin(z)), (x, 0, pi), (y, 0, pi), (z, 0, pi), colors=['red', 'green', 'blue'])
Graphics3d Object
sage: plot_vector_field3d((x*cos(z), -y*cos(z), sin(z)), (x, 0, pi), (y, 0, pi), (z, 0, pi), colors='red')
Graphics3d Object
sage: plot_vector_field3d((x*cos(z), -y*cos(z), sin(z)), (x, 0, pi), (y, 0, pi), (z, 0, pi), plot_points=4)
Graphics3d Object
sage: plot_vector_field3d((x*cos(z), -y*cos(z), sin(z)), (x, 0, pi), (y, 0, pi), (z, 0, pi), plot_points=[3, 5, 7])
Graphics3d Object
sage: plot_vector_field3d((x*cos(z), -y*cos(z), sin(z)), (x, 0, pi), (y, 0, pi), (z, 0, pi), center_arrows=True)
Graphics3d Object
```

2.5 Implicit Plots

`sage.plot.plot3d.implicit_plot3d.implicit_plot3d(f, xrange, yrange, zrange, **kwds)`
Plot an isosurface of a function.

INPUT:

• `f` – function
• `xrange` – a 2-tuple `(x_min, x_max)` or a 3-tuple `(x, x_min, x_max)`
• `yrange` – a 2-tuple `(y_min, y_max)` or a 3-tuple `(y, y_min, y_max)`
• `zrange` – a 2-tuple `(z_min, z_max)` or a 3-tuple `(z, z_min, z_max)`
• `plot_points` – (default: “automatic”, which is 40) the number of function evaluations in each direction. (The number of cubes in the marching cubes algorithm will be one less than this). Can be a triple of integers, to specify a different resolution in each of x,y,z.
• `contour` – (default: 0) plot the isosurface `f(x,y,z)==contour`. Can be a list, in which case multiple contours are plotted.
• **region** – (default: None) If region is given, it must be a Python callable. Only segments of the surface where \(\text{region}(x,y,z) \) returns a number >0 will be included in the plot. (Note that returning a Python boolean is acceptable, since True == 1 and False == 0).

EXAMPLES:

```python
sage: var('x,y,z')
(x, y, z)
```

A simple sphere:

```python
sage: implicit_plot3d(x^2+y^2+z^2==4, (x,-3,3), (y,-3,3), (z,-3,3))
Graphics3d Object
```

A nested set of spheres with a hole cut out:

```python
sage: implicit_plot3d((x^2 + y^2 + z^2), (x,-2,2), (y,-2,2), (z,-2,2), plot_points=60, contour=[1,3,5],
                   ....: region=lambda x,y,z: x<=0.2 or y>=0.2 or z<=0.2, color='aquamarine').show(viewer='tachyon')
```

A very pretty example, attributed to Douglas Summers-Stay (archived page):

```python
sage: T = RDF(golden_ratio)
sage: F = 2 - (cos(x+T*y) + cos(x-T*y) + cos(y+T*z) + cos(y-T*z) + cos(z+T*x) + cos(z-T*x))
(continues on next page)```
2.5. Implicit Plots
sage: r = 4.77
sage: implicit_plot3d(F, (x,-r,r), (y,-r,r), (z,-r,r), plot_points=40, color='darkkhaki').show(viewer='tachyon')

As I write this (but probably not as you read it), it’s almost Valentine’s day, so let’s try a heart (from http://mathworld.wolfram.com/HeartSurface.html)

sage: F = (x^2+9/4*y^2+z^2-1)^3 - x^2*z^3 - 9/(80)*y^2*z^3
sage: r = 1.5
sage: implicit_plot3d(F, (x,-r,r), (y,-r,r), (z,-r,r), plot_points=80, color='red', smooth=False).show(viewer='tachyon')

The same examples also work with the default Jmol viewer; for example:

sage: T = RDF(golden_ratio)
sage: F = 2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) + cos(z - T*x) + cos(z + T*x))
sage: r = 4.77
sage: implicit_plot3d(F, (x,-r,r), (y,-r,r), (z,-r,r), plot_points=40, color='deepskyblue').show()

Here we use smooth=True with a Tachyon graph:
We explicitly specify a gradient function (in conjunction with smooth=True) and invert the normals:

```python
sage: gx = lambda x, y, z: -(2*x + y^2 + z^2)
sage: gy = lambda x, y, z: -(x^2 + 2*y + z^2)
sage: gz = lambda x, y, z: -(x^2 + y^2 + 2*z)
sage: implicit_plot3d(x^2+y^2+z^2, (x,-2,2), (y,-2,2), (z,-2,2), contour=4,: plot_points=40, smooth=True, gradient=(gx, gy, gz)).show(viewer='tachyon')
```

A graph of two metaballs interacting with each other:

```python
sage: def metaball(x0, y0, z0):
 return 1 / ((x-x0)^2+(y-y0)^2+(z-z0)^2)
sage: implicit_plot3d(metaball(-0.6,0,0) + metaball(0.6,0,0), (x,-2,2), (y,-2,2), (z,-2,2), plot_points=60, contour=2, color='seagreen')
```

One can also color the surface using a coloring function and a colormap as follows. Note that the coloring function must take values in the interval [0,1].

```python
```
2.5. Implicit Plots
Chapter 2. Function and Data Plots
Here is another colored example:

```
sage: x, y, z = var('x,y,z')
sage: t = (x).function(x,y,z)
sage: cm = colormaps.PiYG
sage: G = implicit_plot3d(x^4 + y^2 + z^2, (x,-2,2), (y,-2,2), (z,-2,2),
....: contour=4, color=(t,cm), plot_points=40)
sage: G
Graphics3d Object
```

**Warning:** This kind of coloring using a colormap can be visualized using Jmol, Tachyon (option `viewer='tachyon'`) and Canvas3D (option `viewer='canvas3d'` in the notebook).

**MANY MORE EXAMPLES:**

A kind of saddle:

```
```
A smooth surface with six radial openings:

```sage
sage: implicit_plot3d(-cos(x) + cos(y) + cos(z)), (x,-4,4), (y,-4,4), (z,-4,4), color='orchid')
Graphics3d Object
```

A cube composed of eight conjoined blobs:

```sage
sage: F = x^2 + y^2 + z^2 + cos(4*x) + cos(4*y) + cos(4*z) - 0.2
sage: implicit_plot3d(F, (x,-2,2), (y,-2,2), (z,-2,2), color='mediumspringgreen')
Graphics3d Object
```

A variation of the blob cube featuring heterogeneously sized blobs:

```sage
sage: F = x^2 + y^2 + z^2 + sin(4*x) + sin(4*y) + sin(4*z) - 1
sage: implicit_plot3d(F, (x,-2,2), (y,-2,2), (z,-2,2), color='lavenderblush')
Graphics3d Object
```

A Klein bottle:
2.5. Implicit Plots
A lemniscate:

```
sage: F = 4*x^2*(x^2+y^2+z^2)+y^2*(y^2+z^2-1)
sage: implicit_plot3d(F, (x,-0.5,0.5), (y,-1,1), (z,-1,1), color='deeppink')
```

Drope:

```
sage: implicit_plot3d(z - 4*x*exp(-x^2-y^2), (x,-2,2), (y,-2,2), (z,-1.7,1.7), color='darkcyan')
```

A cube with a circular aperture on each face:

```
sage: F = ((1/2.3)^2 * (x^2 + y^2 + z^2))^(-6) + ((1/2)^8 * (x^8 + y^8 + z^8))^6 - 1
sage: implicit_plot3d(F, (x,-2,2), (y,-2,2), (z,-2,2), color='palevioletred')
```

A simple hyperbolic surface:
2.5. Implicit Plots
A hyperboloid:

```python
sage: implicit_plot3d(x^2 + y^2 - z^2 - 0.3, (x,-2,2), (y,-2,2), (z,-1.8,1.8), color='honeydew')
```

Dupin cyclide (Wikipedia article Dupin_cyclide)

```python
sage: x, y, z, a, b, c, d = var('x,y,z,a,b,c,d')
sage: a = 3.5
sage: b = 3
sage: c = sqrt(a^2 - b^2)
sage: d = 2
sage: F = (x^2 + y^2 + z^2 + b^2 - d^2)^2 - 4*(a*x-c*d)^2 - 4*b^2*y^2
sage: implicit_plot3d(F, (x,-6,6), (y,-6,6), (z,-6,6), color='seashell')
```

Sinus:
Chapter 2. Function and Data Plots
2.5. Implicit Plots
A torus:

```
sage: implicit_plot3d((sqrt(x*x+y*y)-3)^2 + z*z - 1, (x,-4,4), (y,-4,4), (z,-1,1),
 color='indigo')
Graphics3d Object
```

An octahedron:

```
sage: implicit_plot3d(abs(x) + abs(y) + abs(z) - 1, (x,-1,1), (y,-1,1), (z,-1,1),
 color='olive')
Graphics3d Object
```

A cube:

```
sage: implicit_plot3d(x^100 + y^100 + z^100 - 1, (x,-2,2), (y,-2,2), (z,-2,2),
 color='lightseagreen')
Graphics3d Object
```

Toupie:
2.5. Implicit Plots
A cube with rounded edges:

\[
sage: F = x^4 + y^4 + z^4 - (x^2 + y^2 + z^2)
\]

\[
sage: implicit_plot3d(F, (x, -2, 2), (y, -2, 2), (z, -2, 2), color='mediumvioletred')
\]

Graphics3d Object

Chmutov:

\[
sage: F = x^4 + y^4 + z^4 - (x^2 + y^2 + z^2 - 0.3)
\]

\[
sage: implicit_plot3d(F, (x, -1.5, 1.5), (y, -1.5, 1.5), (z, -1.5, 1.5), color='lightskyblue')
\]

Graphics3d Object

Further Chmutov:

\[
sage: F = 2*(x^2*(3-4*x^2)^2+y^2*(3-4*y^2)^2+z^2*(3-4*z^2)^2) - 3
\]

\[
sage: implicit_plot3d(F, (x, -1.3, 1.3), (y, -1.3, 1.3), (z, -1.3, 1.3), color='darksalmon')
\]

Graphics3d Object

Clebsch surface:
2.5. Implicit Plots
\begin{Verbatim}
\texttt{sage}: F_1 = 81 * (x^3+y^3+z^3)
sage: F_2 = 189 * (x^2*(y+z)+y^2*(x+z)+z^2*(x+y))
sage: F_3 = 54 * x * y * z
sage: F_4 = 126 * (x*y+x*z+y*z)
sage: F_5 = 9 * (x^2+y^2+z^2)
sage: F_6 = 9 * (x+y+z)
sage: F = F_1 - F_2 + F_3 + F_4 - F_5 + F_6 + 1
sage: implicit_plot3d(F, (x,-1,1), (y,-1,1), (z,-1,1), color='yellowgreen')
\end{Verbatim}

Looks like a water droplet:
\begin{Verbatim}
\texttt{sage}: implicit_plot3d(x^2+y^2 -(1-z)*z^2, (x,-1.5,1.5), (y,-1.5,1.5), (z,-1,1), color='bisque')
\end{Verbatim}

Sphere in a cage:
\begin{Verbatim}
\texttt{sage}: F = (x^8+z^30+y^8-(x^4 + z^50 + y^4 -0.3)) * (x^2+y^2+z^2-0.5)
\texttt{sage}: implicit_plot3d(F, (x,-1.2,1.2), (y,-1.3,1.3), (z,-1.5,1.5), color='firebrick')
\end{Verbatim}

Ortho circle:
\textbf{sage}: \( F = ((x^2+y^2-1)^2+z^2) \times ((y^2+z^2-1)^2+x^2) \times ((z^2+x^2-1)^2+y^2)-0.075^2 \rightarrow (1+3 \times (x^2+y^2+z^2)) \)

\textbf{sage}: \text{implicit_plot3d}(F, (x,-1.5,1.5), (y,-1.5,1.5), (z,-1.5,1.5), color='lemonchiffon')

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{sage-3d-graphics.png}
\caption{Cube sphere:}
\end{figure}

\textbf{sage}: \text{implicit_plot3d}(F, (x,-2,2), (y,-2,2), (z,-2,2), color='rosybrown')

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{sage-3d-graphics.png}
\caption{Two cylinders intersect to make a cross:}
\end{figure}

\textbf{sage}: \text{implicit_plot3d}((x^2+y^2-1) \times (x^2+z^2-1) - 1, (x,-3,3), (y,-3,3), (z,-3,3), color='burlywood')

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{sage-3d-graphics.png}
\caption{Three cylinders intersect in a similar fashion:}
\end{figure}

\textbf{sage}: \text{implicit_plot3d}((x^2+y^2-1) \times (x^2+z^2-1) \times (y^2+z^2-1)-1, (x,-3,3), (y,-3,3), (z,-3,3), color='aqua')

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{sage-3d-graphics.png}
\caption{A sphere-ish object with twelve holes, four on each XYZ plane:}
\end{figure}
Chapter 2. Function and Data Plots
A gyroid:

```
sage: implicit_plot3d(cos(x)*sin(y) + cos(y)*sin(z) + cos(z)*sin(x), (x,-4,4), (y,-4,4), (z,-4,4), color='sandybrown')
```

Tetrahedra:

```
sage: implicit_plot3d((x^2+y^2+z^2)^2 + 8*x*y*z - 10*(x^2+y^2+z^2) + 25, (x,-4,4), (y,-4,4), (z,-4,4), color='plum')
```

2.6 List Plots

`sage.plot.plot3d.list_plot3d.list_plot3d(v, interpolation_type='default', point_list=None, **kwds)`

A 3-dimensional plot of a surface defined by the list \( v \) of points in 3-dimensional space.

**INPUT:**
2.6. List Plots
• v - something that defines a set of points in 3 space:
  – a matrix
  – a list of 3-tuples
  – a list of lists (all of the same length) - this is treated the same as a matrix.

OPTIONAL KEYWORDS:

• interpolation_type - ‘linear’, ‘clough’ (CloughTocher2D), ‘spline’
  ‘linear’ will perform linear interpolation
  The option ‘clough’ will interpolate by using a piecewise cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme. The interpolant is guaranteed to be continuously differentiable. The gradients of the interpolant are chosen so that the curvature of the interpolating surface is approximatively minimized.

  The option ‘spline’ interpolates using a bivariate B-spline.

  When v is a matrix the default is to use linear interpolation, when v is a list of points the default is ‘clough’.

• degree - an integer between 1 and 5, controls the degree of spline used for spline interpolation. For data that is highly oscillatory use higher values

• point_list - If point_list=True is passed, then if the array is a list of lists of length three, it will be treated as an array of points rather than a 3xn array.

• num_points - Number of points to sample interpolating function in each direction, when interpolation_type is not default. By default for an n x n array this is n.

• **kwds - all other arguments are passed to the surface function

OUTPUT: a 3d plot

EXAMPLES:

We plot a matrix that illustrates summation modulo n:

```
sage: n = 5
sage: list_plot3d(matrix(RDF, n, [(i+j)%n for i in [1..n] for j in [1..n]]))
Graphics3d Object
```

We plot a matrix of values of sin:

```
sage: pi = float(pi)
sage: m = matrix(RDF, 6, [sin(i^2 + j^2) for i in [0,pi/5,..,pi] for j in [0,pi/5, π,..,pi]])
sage: list_plot3d(m, color='yellow', frame_aspect_ratio=[1, 1, 1/3])
Graphics3d Object
```

Though it does not change the shape of the graph, increasing num_points can increase the clarity of the graph:

```
sage: list_plot3d(m, color='yellow', frame_aspect_ratio=[1, 1, 1/3], num_points=40)
Graphics3d Object
```

We can change the interpolation type:

```
sage: import warnings
sage: warnings.simplefilter('ignore', UserWarning)
```

(continues on next page)
We can make this look better by increasing the number of samples:

```
sage: list_plot3d(m, color='yellow', interpolation_type='clough', frame_aspect_ratio=[1, 1, 1/3], num_points=40)
```
Graphics3d Object

Let us try a spline:

```
sage: list_plot3d(m, color='yellow', interpolation_type='spline', frame_aspect_ratio=[1, 1, 1/3])
```
Graphics3d Object

That spline does not capture the oscillation very well; let’s try a higher degree spline:

```
sage: list_plot3d(m, color='yellow', interpolation_type='spline', degree=5, frame_aspect_ratio=[1, 1, 1/3])
```
Graphics3d Object

We plot a list of lists:

```
sage: show(list_plot3d([[1, 1, 1, 1], [1, 2, 1, 2], [1, 1, 3, 1], [1, 2, 1, 4]]))
```
We plot a list of points. As a first example we can extract the (x,y,z) coordinates from the above example and make a list plot out of it. By default we do linear interpolation:

```
sage: l = []
for i in range(6):
 for j in range(6):
 l.append((float(i*pi/5), float(j*pi/5), m[i, j]))
sage: list_plot3d(l, color='red')
```
Graphics3d Object

Note that the points do not have to be regularly sampled. For example:

```
sage: l = []
sage: for i in range(-5, 5):
 : for j in range(-5, 5):
 : l.append((normalvariate(0, 1), normalvariate(0, 1), normalvariate(0, 1)))
sage: L = list_plot3d(l, interpolation_type='clough', color='orange', num_points=100)
sage: L
```
Graphics3d Object

Check that no NaNs are produced (see trac ticket #13135):

```
sage: any(math.isnan(c) for v in L.vertices() for c in v)
False
```

```
sage.plot.plot3d.list_plot3d.list_plot3d_array_of_arrays(v, interpolation_type, **kwds)
```
A 3-dimensional plot of a surface defined by a list of lists v defining points in 3-dimensional space.
This is done by making the list of lists into a matrix and passing back to \textit{list_plot3d()}. See \textit{list_plot3d()} for full details.

\textbf{INPUT:}

- \texttt{v} - a list of lists, all the same length
- \texttt{interpolation\_type} - (default: 'linear')

\textbf{OPTIONAL KEYWORDS:}

- \texttt{**kwds} - all other arguments are passed to the surface function

\textbf{OUTPUT:} a 3d plot

\textbf{EXAMPLES:}

The resulting matrix does not have to be square:

\begin{verbatim}
sage: show(list_plot3d([[1, 1, 1, 1], [1, 2, 1, 2], [1, 1, 3, 1]])) # indirect
doctest
\end{verbatim}

The normal route is for the list of lists to be turned into a matrix and use \textit{list_plot3d\_matrix()}:  

\begin{verbatim}
sage: show(list_plot3d([[1, 1, 1, 1], [1, 2, 1, 2], [1, 1, 3, 1], [1, 2, 1, 4]]))
\end{verbatim}

With certain extra keywords (see \textit{list_plot3d\_matrix()}), this function will end up using \textit{list_plot3d\_tuples()}:

\begin{verbatim}
sage: show(list_plot3d([[1, 1, 1, 1], [1, 2, 1, 2], [1, 1, 3, 1], [1, 2, 1, 4]],
                     interpolation\_type='spline'))
\end{verbatim}

\texttt{sage.plot.plot3d.list_plot3d.list_plot3d\_matrix}(\texttt{m, **kwds})

A 3-dimensional plot of a surface defined by a matrix \texttt{M} defining points in 3-dimensional space.

See \textit{list_plot3d()} for full details.

\textbf{INPUT:}

- \texttt{M} - a matrix

\textbf{OPTIONAL KEYWORDS:}

- \texttt{**kwds} - all other arguments are passed to the surface function

\textbf{OUTPUT:} a 3d plot

\textbf{EXAMPLES:}

We plot a matrix that illustrates summation modulo \texttt{n}:

\begin{verbatim}
sage: n = 5
sage: list_plot3d(matrix(RDF, n, [(i+j)%n for i in [1..n] for j in [1..n]]) # indirect
doctest
Graphics3d Object
\end{verbatim}

The interpolation type for matrices is 'linear'; for other types use other \textit{list_plot3d()} input types.

We plot a matrix of values of \texttt{sin}:

\begin{verbatim}
sage: pi = float(pi)
sage: m = matrix(RDF, 6, [sin(i^2 + j^2) for i in [0,pi/5,..,pi] for j in [0,pi/5,..
                              ..,pi]])
sage: list_plot3d(m, color='yellow', frame_aspect_ratio=[1, 1, 1/3]) # indirect
doctest
\end{verbatim}

(continues on next page)
Here is a colored example, using a colormap and a coloring function which must take values in (0, 1):

```
sage: cm = colormaps.rainbow
sage: n = 20
sage: cf = lambda x, y: ((2*(x-y)/n)**2) % 1
sage: list_plot3d(matrix(RDF, n, [cos(pi*(i+j)/n) for i in [1..n] for j in [1..n]], color=(cf,cm))
Graphics3d Object
```

A 3-dimensional plot of a surface defined by the list $v$ of points in 3-dimensional space.

**INPUT:**

- $v$ - something that defines a set of points in 3 space, for example:
  - a matrix

  This will be if using an interpolation type other than ‘linear’, or if using num_points with ‘linear’; otherwise see `list_plot3d_matrix()`.
– a list of 3-tuples
– a list of lists (all of the same length, under same conditions as a matrix)

OPTIONAL KEYWORDS:

• interpolation_type - ‘linear’, ‘clough’ (CloughTocher2D), ‘spline’
  ‘linear’ will perform linear interpolation
  The option ‘clough’ will interpolate by using a piecewise cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme. The interpolant is guaranteed to be continuously differentiable.
  The option ‘spline’ interpolates using a bivariate B-spline.
When v is a matrix the default is to use linear interpolation, when v is a list of points the default is ‘clough’.
• degree - an integer between 1 and 5, controls the degree of spline used for spline interpolation. For data that is highly oscillatory use higher values
• point_list - If point_list=True is passed, then if the array is a list of lists of length three, it will be treated as an array of points rather than a 3 × n array.
• num_points - Number of points to sample interpolating function in each direction. By default for an n × n array this is n.
• **kwds - all other arguments are passed to the surface function

OUTPUT: a 3d plot

EXAMPLES:
All of these use this function; see list_plot3d() for other list plots:

```python
sage: pi = float(pi)
sage: m = matrix(RDF, 6, [sin(i^2 + j^2) for i in [0,pi/5,..,pi] for j in [0,pi/5,˓→..,pi]])
sage: list_plot3d(m, color='yellow', interpolation_type='linear', num_points=5) # indirect doctest
Graphics3d Object
```

```python
sage: list_plot3d(m, color='yellow', interpolation_type='spline', frame_aspect_ratio=[1, 1, 1/3])
Graphics3d Object
```

```python
sage: show(list_plot3d([[1, 1, 1], [1, 2, 1], [0, 1, 3], [1, 0, 4]], point_list=True))
```

```python
sage: list_plot3d([(1, 2, 3), (0, 1, 3), (2, 1, 4), (1, 0, -2)], color='yellow', num_points=50) # long time
Graphics3d Object
```
3.1 Base Classes for 3D Graphics Objects and Plotting

AUTHORS:

- Robert Bradshaw (2007-02): initial version
- William Stein (2008)
- Paul Masson (2016): Three.js support

Todo: finish integrating tachyon – good default lights, camera

```python
class sage.plot.plot3d.base.BoundingSphere(cen, r)
 Bases: sage.structure.sage_object.SageObject

 A bounding sphere is like a bounding box, but is simpler to deal with and behaves better under rotations.

 transform(T)
 Return the bounding sphere of this sphere acted on by T. This always returns a new sphere, even if the
 resulting object is an ellipsoid.

 EXAMPLES:

 sage: from sage.plot.plot3d.transform import Transformation
 sage: from sage.plot.plot3d.base import BoundingSphere
 sage: BoundingSphere((0,0,0), 10).transform(Transformation(trans=(1,2,3)))
 Center (1.0, 2.0, 3.0) radius 10.0
 sage: BoundingSphere((0,0,0), 10).transform(Transformation(scale=(1/2, 1, 2)))
 Center (0.0, 0.0, 0.0) radius 20.0
 sage: BoundingSphere((0,0,3), 10).transform(Transformation(scale=(2, 2, 2)))
 Center (0.0, 0.0, 6.0) radius 20.0
```

class sage.plot.plot3d.base.Graphics3d
    Bases: sage.structure.sage_object.SageObject

    This is the baseclass for all 3d graphics objects.

    __add__(left, right)
        Addition of objects adds them to the same scene.

    EXAMPLES:
sage: A = sphere((0,0,0), 1, color='red')
sage: B = dodecahedron((2, 0, 0), color='yellow')
sage: A+B
Graphics3d Object

For convenience, we take 0 and None to be the additive identity:

sage: A + 0 is A
True
sage: A + None is A, 0 + A is A, None + A is A
(True, True, True)

In particular, this allows us to use the sum() function without having to provide an empty starting object:

sage: sum(point3d((cos(n), sin(n), n)) for n in [0..10, step=.1])
Graphics3d Object

A Graphics 3d object can also be added a 2d graphic object:

sage: A = sphere((0, 0, 0), 1) + circle((0, 0), 1.5)
sage: A.show(aspect_ratio=1)

__rich_repr__ (display_manager, **kwds)
Rich Output Magic Method
See sage.repl.rich_output for details.

EXAMPLES:

sage: from sage.repl.rich_output import get_display_manager
sage: dm = get_display_manager()
sage: g = sphere()
sage: g._rich_repr_(dm)
OutputSceneJmol container

amf_ascii_string (name='surface')
Return an AMF (Additive Manufacturing File Format) representation of the surface.

Warning: This only works for triangulated surfaces!

INPUT:
• name (string, default: “surface”) – name of the surface.

OUTPUT:
A string that represents the surface in the AMF format.
See Wikipedia article Additive_Manufacturing_File_Format

Todo: This should rather be saved as a ZIP archive to save space.

EXAMPLES:
aspect_ratio(v=None)
Set or get the preferred aspect ratio of self.

INPUT:
• v – (default: None) must be a list or tuple of length three, or the integer 1. If no arguments are
  provided then the default aspect ratio is returned.

EXAMPLES:

```
sage: D = dodecahedron()
sage: D.aspect_ratio()
[1.0, 1.0, 1.0]
sage: D.aspect_ratio([1,2,3])
sage: D.aspect_ratio(1)
sage: D.aspect_ratio()
[1.0, 1.0, 1.0]
```

bounding_box()
Return the lower and upper corners of a 3d bounding box for self.

This is used for rendering and self should fit entirely within this box.

Specifically, the first point returned should have x, y, and z coordinates should be the respective infimum
over all points in self, and the second point is the supremum.

The default return value is simply the box containing the origin.

EXAMPLES:

```
sage: sphere((1,1,1), 2).bounding_box()
((-1.0, -1.0, -1.0), (3.0, 3.0, 3.0))
sage: G = line3d([(1, 2, 3), (-1,-2,-3)])
sage: G.bounding_box()
((-1.0, -2.0, -3.0), (1.0, 2.0, 3.0))
```

default_render_params()
Return an instance of RenderParams suitable for plotting this object.

EXAMPLES:
```python
sage: type(dodecahedron().default_render_params())
<class 'sage.plot.plot3d.base.RenderParams'>
```

```python
export_jmol(filename='jmol_shape.jmol', force_reload=False, zoom=1, spin=False, background=(1, 1, 1), stereo=False, mesh=False, dots=False, perspective_depth=True, orientation=(-764, -346, -545, 76.39), **ignored_kwds)
```

A jmol scene consists of a script which refers to external files. Fortunately, we are able to put all of them in a single zip archive, which is the output of this call.

**EXAMPLES:**

```python
sage: out_file = tmp_filename(ext=".jmol")
sage: G = sphere((1, 2, 3), 5) + cube() + sage.plot.plot3d.shapes.Text("hi")
sage: G.export_jmol(out_file)
sage: import zipfile
sage: z = zipfile.ZipFile(out_file)
sage: z.namelist()
['obj_...pmesh', 'SCRIPT']

sage: print(z.read('SCRIPT').decode('ascii'))
data "model list"
2
empty
Xx 0 0 0
Xx 5.5 5.5 5.5
end "model list"; show data
select *
wireframe off; spacefill off
set labelOffset 0 0
background [255,255,255]
spin OFF
moveto 0 -764 -346 -545 76.39
centerAt absolute {0 0 0}
zoom 100
frank OFF
set perspectivedepth ON
isosurface sphere_1 center {1.0 2.0 3.0} sphere 5.0
color isosurface [102,102,255]
pmesh obj_... "obj_...pmesh"
color pmesh [102,102,255]
select atomno = 1
color atom [102,102,255]
label "hi"
isosurface fullylit; pmesh o* fullylit; set antialiasdisplay on;
```

```python
sage: print(z.read(z.namelist()[0]).decode('ascii'))
24
0.5 0.5 0.5
-0.5 0.5 0.5
...
-0.5 -0.5 -0.5
6
5
0
1
...
```

`flatten()`
Try to reduce the depth of the scene tree by consolidating groups and transformations.

The generic Graphics3d object cannot be made flatter.

**EXAMPLES:**

```sage
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.flatten() is G
True
```

**frame_aspect_ratio**(v=None)

Set or get the preferred frame aspect ratio of `self`.

**INPUT:**

- v – (default: None) must be a list or tuple of length three, or the integer 1. If no arguments are provided then the default frame aspect ratio is returned.

**EXAMPLES:**

```sage
sage: D = dodecahedron()
sage: D.frame_aspect_ratio()
[1.0, 1.0, 1.0]
sage: D.frame_aspect_ratio([2,2,1])
sage: D.frame_aspect_ratio()
[2.0, 2.0, 1.0]
sage: D.frame_aspect_ratio(1)
sage: D.frame_aspect_ratio()
[1.0, 1.0, 1.0]
```

**jmol_repr**(render_params)

A (possibly nested) list of strings which will be concatenated and used by jmol to render `self`.

(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may refer to several remove files, which are stored in `render_params.output_archive`.

**EXAMPLES:**

```sage
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.jmol_repr(G.default_render_params())
[]
sage: G = sphere((1, 2, 3))
sage: G.jmol_repr(G.default_render_params())
[['isosurface sphere_1 center {1.0 2.0 3.0} sphere 1.0\ncolor isosurface \r
 →{102,102,255}']]
```

**json_repr**(render_params)

A (possibly nested) list of strings. Each entry is formatted as JSON, so that a JavaScript client could eval it and get an object. Each object has fields to encapsulate the faces and vertices of `self`. This representation is intended to be consumed by the canvas3d viewer backend.

**EXAMPLES:**

```sage
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.json_repr(G.default_render_params())
[]
```

**mtl_str**

Return the contents of a .mtl file, to be used to provide coloring information for an .obj file.

**EXAMPLES:**
sage: G = tetrahedron(color='red') + tetrahedron(color='yellow', opacity=0.5)
sage: print(G.mtl_str())
newmtl ...
Ka 0.5 5e-06 5e-06
Kd 1.0 1e-05 1e-05
Ks 0.0 0.0 0.0
illum 1
Ns 1.0
d 1.0
newmtl ...
Ka 0.5 0.5 5e-06
Kd 1.0 1.0 1e-05
Ks 0.0 0.0 0.0
illum 1
Ns 1.0
d 0.5

obj()
An .obj scene file (as a string) containing the this object.
A .mtl file of the same name must also be produced for coloring.

EXAMPLES:
sage: from sage.plot.plot3d.shapes import ColorCube
sage: print(ColorCube(1, ['red', 'yellow', 'blue']).obj())
g obj_1
usemtl ...
v 1 1 1
v -1 1 1
v -1 -1 1
v 1 -1 1
f 1 2 3 4
...
g obj_6
usemtl ...
v -1 -1 1
v -1 1 1
v -1 1 -1
v -1 -1 -1
f 21 22 23 24

obj_repr(render_params)
A (possibly nested) list of strings which will be concatenated and used to construct an .obj file of self.
(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may include a reference to color information which is stored elsewhere.

EXAMPLES:
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.obj_repr(G.default_render_params())
[]
sage: G = cube()
sage: G.obj_repr(G.default_render_params())
['g obj_1',
 'usemtl ...',
 ['v 0.5 0.5 0.5',
 (continues on next page)
plot()

Draw a 3D plot of this graphics object, which just returns this object since this is already a 3D graphics object. Needed to support PLOT in doctests, see trac ticket #17498

EXAMPLES:

```
sage: S = sphere((0,0,0), 2)
sage: S.plot() is S
True
```

ply_ascii_string(name='surface')

Return a PLY (Polygon File Format) representation of the surface.

INPUT:

- name (string, default: "surface") – name of the surface.

OUTPUT:

A string that represents the surface in the PLY format.

See Wikipedia article PLY_(file_format)

EXAMPLES:

```
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9,[x,-5,5],[y,-5,5],[z,-5,5])
sage: astl = a.ply_ascii_string()
sage: astl.splitlines()[:10]
['ply',
 'format ascii 1.0',
 'comment surface',
 'element vertex 15540',
 'property float x',
 'property float y',
 'property float z',
 'element face 5180',
 'property list uchar int vertex_indices',
 'end_header']
sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.ply_ascii_string(name='triangle'))
ply
format ascii 1.0
```
**rotate**\((v, \theta)\)

Return self rotated about the vector \(v\) by \(\theta\) radians.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Cone
sage: v = (1, 2, 3)
sage: G = arrow3d((0, 0, 0), v)
sage: G += Cone(1/5, 1).translate((0, 0, 2))
sage: C = Cone(1/5, 1, opacity=.25).translate((0, 0, 2))
sage: G += sum(C.rotate(v, pi/4) for t in [1..7])
sage: G.show(aspect_ratio=1)
```

**rotateX**\((\theta)\)

Return self rotated about the \(x\)-axis by the given angle.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Cone
sage: G = Cone(1/5, 1) + Cone(1/5, 1, opacity=.25).rotateX(pi/2)
sage: G.show(aspect_ratio=1)
```

**rotateY**\((\theta)\)

Return self rotated about the \(y\)-axis by the given angle.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Cone
sage: G = Cone(1/5, 1) + Cone(1/5, 1, opacity=.25).rotateY(pi/3)
sage: G.show(aspect_ratio=1)
```

**rotateZ**\((\theta)\)

Return self rotated about the \(z\)-axis by the given angle.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Box
sage: G = Box(1/2, 1/3, 1/5) + Box(1/2, 1/3, 1/5, opacity=.25).rotateZ(pi/5)
sage: G.show(aspect_ratio=1)
```

**save**\((filename, **kwds)\)

Save the graphic in a file.
The file type depends on the file extension you give in the filename. This can be either:

- an image file (of type: PNG, BMP, GIF, PPM, or TIFF) rendered using Jmol (default) or Tachyon,
- a Sage object file (of type .sobj) that you can load back later (a pickle),
- a data file (of type: X3D, STL, AMF, PLY) for export and use in other software.

For data files, the support is only partial. For instance STL and AMF only works for triangulated surfaces. The preferred format is X3D.

INPUT:

- **filename** – string. Where to save the image or object.
- **kwds** – When specifying an image file to be rendered by Tachyon or Jmol, any of the viewing options accepted by show() are valid as keyword arguments to this function and they will behave in the same way. Accepted keywords include: viewer, verbosity, figsize, aspect_ratio, frame_aspect_ratio, zoom, frame, and axes. Default values are provided.

EXAMPLES:

```python
sage: f = tmp_filename(ext='.png')
sage: G = sphere()
sage: G.save(f)
```

We demonstrate using keyword arguments to control the appearance of the output image:

```python
sage: G.save(f, zoom=2, figsize=[5, 10])
```

Using Tachyon instead of the default viewer (Jmol) to create the image:

```python
sage: G.save(f, viewer='tachyon')
```

Since Tachyon only outputs PNG images, PIL will be used to convert to alternate formats:

```python
sage: cube().save(tmp_filename(ext='.gif'), viewer='tachyon')
```

Here is how to save in one of the data formats:

```python
sage: f = tmp_filename(ext='.x3d')
sage: cube().save(f)
sage: open(f).read().splitlines()[7]
"<Shape><Box size='0.5 0.5 0.5'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>"
```

**save_image**(filename, **kwds)**

Save a 2-D image rendering.

The image type is determined by the extension of the filename. For example, this could be .png, .jpg, .gif, .pdf, .svg.

INPUT:

- **filename** – string. The file name under which to save the image.

Any further keyword arguments are passed to the renderer.

EXAMPLES:
scale(*x)
Return self scaled in the x, y, and z directions.

EXAMPLES:

```python
sage: G = dodecahedron() + dodecahedron(opacity=.5).scale(2)
sage: G.show(aspect_ratio=1)
sage: G = icosahedron() + icosahedron(opacity=.5).scale([1, 1/2, 2])
sage: G.show(aspect_ratio=1)
```

show(**kwds)
Display graphics immediately

This method attempts to display the graphics immediately, without waiting for the currently running code (if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a large number of external viewer programs.

INPUT:

- `viewer` – string (default: ‘jmol’), how to view the plot
  - ‘jmol’: Interactive 3D viewer using Java
  - ‘tachyon’: Ray tracer generates a static PNG image
  - ‘canvas3d’: Web-based 3D viewer using JavaScript and a canvas renderer (Sage notebook only)
  - ‘threejs’: Web-based 3D viewer using JavaScript and a WebGL renderer
- `verbosity` – display information about rendering the figure
- `figsize` – (default: 5); x or pair [x,y] for numbers, e.g., [5,5]; controls the size of the output figure. E.g., with Tachyon the number of pixels in each direction is 100 times figsize[0]. This is ignored for the jmol embedded renderer.
- `frame_aspect_ratio` – (default: “automatic”) aspect ratio of frame that contains the 3d scene.
- `zoom` – (default: 1) how zoomed in
- `frame` – (default: True) if True, draw a bounding frame with labels
- `axes` – (default: False) if True, draw coordinate axes
- `**kwds` – other options, which make sense for particular rendering engines

OUTPUT:

This method does not return anything. Use `save()` if you want to save the figure as an image.
CHANGING DEFAULTS: Defaults can be uniformly changed by importing a dictionary and changing it. For example, here we change the default so images display without a frame instead of with one:

```python
sage: from sage.plot.plot3d.base import SHOW_DEFAULTS
sage: SHOW_DEFAULTS['frame'] = False
```

This sphere will not have a frame around it:

```python
sage: sphere((0,0,0))
Graphics3d Object
```

We change the default back:

```python
sage: SHOW_DEFAULTS['frame'] = True
```

Now this sphere is enclosed in a frame:

```python
sage: sphere((0,0,0))
Graphics3d Object
```

**EXAMPLES:** We illustrate use of the `aspect_ratio` option:

```python
sage: x, y = var('x,y')
sage: p = plot3d(2*sin(x*y), (x, -pi, pi), (y, -pi, pi))
sage: p.show(aspect_ratio=[1,1,1])
```

This looks flattened, but filled with the plot:

```python
sage: p.show(frame_aspect_ratio=[1,1,1/16])
```

This looks flattened, but the plot is square and smaller:

```python
sage: p.show(aspect_ratio=[1,1,1], frame_aspect_ratio=[1,1,1/8])
```

This example shows indirectly that the defaults from `plot()` are dealt with properly:

```python
sage: plot(vector([1,2,3]))
Graphics3d Object
```

We use the ‘canvas3d’ backend from inside the notebook to get a view of the plot rendered inline using HTML canvas:

```python
sage: p.show(viewer='canvas3d')
```

```python
stl_ascii_string(name='surface')
```
Return an STL (STereoLithography) representation of the surface.

**Warning:** This only works for surfaces, not for general plot objects!

**INPUT:**

- name (string, default: “surface”) – name of the surface.

**OUTPUT:**

A string that represents the surface in the STL format.

See Wikipedia article STL_(file_format)
EXAMPLES:

```python
sage: x, y, z = var('x, y, z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9, [x, -5, 5], [y, -5, 5], [z, -5, 5])
sage: astl = a.stl_ascii_string()
sage: astl.splitlines()[:7] # abs tol 1e-10
['solid surface',
 'facet normal 0.9733285267845754 -0.16222142113076257 -0.16222142113076257',
 ' outer loop',
 ' vertex 2.94871794872 -0.384615384615 -0.39358974359',
 ' vertex 2.95021367521 -0.384615384615 -0.384615384615',
 ' vertex 2.94871794872 -0.39358974359 -0.384615384615',
 ' endloop']
sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.stl_ascii_string(name='triangle'))
solid triangle
facet normal 0.0 0.8320502943378436 -0.5547001962252291
 outer loop
 vertex 0.0 0.0 0.0
 vertex 1.0 2.0 3.0
 vertex 3.0 0.0 0.0
 endloop
endfacet
endsolid triangle
```

Now works when faces have more then 3 sides:

```python
sage: P = polytopes.dodecahedron()
sage: Q = P.plot().all[-1]
sage: Q.stl_ascii_string().splitlines()[:6]
['solid surface',
 'facet normal 0.5257311121191338 0.8506508083520398 -0.0',
 ' outer loop',
 ' vertex 0.0 1.2360679774997898 -0.4721359549995796',
 ' vertex 0.0 1.2360679774997898 0.4721359549995796',
 ' vertex 0.7639320225002102 0.7639320225002102']
```

**stl_binary()**

Return an STL (STereoLithography) binary representation of the surface.

**Warning:** This only works for surfaces, not for general plot objects!

**OUTPUT:**

A binary string that represents the surface in the binary STL format.

See Wikipedia article STL_(file_format)

**EXAMPLES:**

```python
sage: x, y, z = var('x, y, z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9, [x, -5, 5], [y, -5, 5], [z, -5, 5])
sage: astl = a.stl_binary()
sage: print(astl[:40].decode('ascii'))
STL binary file / made by SageMath / ###
```
This works when faces have more than 3 sides:

```python
sage: P = polytopes.dodecahedron()
sage: Q = P.plot().all[-1]
sage: print(Q.stl_binary()[:40].decode('ascii'))
```

```
STL binary file / made by SageMath / ###
```

```
tachyon()
```

An tachyon input file (as a string) containing the this object.

**EXAMPLES:**

```python
sage: print(sphere((1, 2, 3), 5, color='yellow').tachyon())
```

```
begin_scene
resolution 400 400
...
plane
 center -2000 -1000 -500
 normal 2.3 2.4 2.0
 TEXTURE
 AMBIENT 1.0 DIFFUSE 1.0 SPECULAR 1.0 OPACITY 1.0
 COLOR 1.0 1.0 1.0
 TEXFUNC 0
 Texdef texture...
 Ambient 0.3333333333333333 Diffuse 0.6666666666666666 Specular 0.0 Opacity1.0
 →1.0
 Color 1.0 1.0 0.0
 TexFunc 0
 Sphere center 1.0 -2.0 3.0 Rad 5.0 texture...
end_scene
```

```python
sage: G = icosahedron(color='red') + sphere((1,2,3), 0.5, color='yellow')
sage: G.show(viewer='tachyon', frame=false)
sage: print(G.tachyon())
```

```
begin_scene ...
Texdef texture...
 Ambient 0.3333333333333333 Diffuse 0.6666666666666666 Specular 0.0 Opacity1.0
 →1.0
 Color 1.0 1.0 0.0
 TexFunc 0
 TRI V0 ...
 Sphere center 1.0 -2.0 3.0 Rad 0.5 texture...
end_scene
```

```
tachyon_repr(render_params)
```

A (possibly nested) list of strings which will be concatenated and used by tachyon to render `self`.

(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may include a reference to color information which is stored elsewhere.

**EXAMPLES:**
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.tachyon_repr(G.default_render_params())
[]
sage: G = sphere((1, 2, 3))
sage: G.tachyon_repr(G.default_render_params())
['Sphere center 1.0 2.0 3.0 Rad 1.0 texture...']

testing_render_params()
Return an instance of RenderParams suitable for testing this object.
In particular, it opens up a temporary file as an auxiliary zip file for jmol.

EXAMPLES:

sage: type(dodecahedron().testing_render_params())
<class 'sage.plot.plot3d.base.RenderParams'>

texture

texture_set()
Often the textures of a 3d file format are kept separate from the objects themselves. This function returns
the set of textures used, so they can be defined in a preamble or separate file.

EXAMPLES:

sage: sage.plot.plot3d.base.Graphics3d().texture_set()
set()
sage: G = tetrahedron(color='red') + tetrahedron(color='yellow') +
    tetrahedron(color='red', opacity=0.5)
sage: [t for t in G.texture_set() if t.color == colors.red]  # we should have
    two red textures
[Texture(texture..., red, ff0000), Texture(texture..., red, ff0000)]
sage: [t for t in G.texture_set() if t.color == colors.yellow]  # ...and one
    yellow
[Texture(texture..., yellow, ffff00)]

transform(**kwds)
Apply a transformation to self, where the inputs are passed onto a TransformGroup object.
Mostly for internal use; see the translate, scale, and rotate methods for more details.

EXAMPLES:

sage: sphere((0,0,0), 1).transform(trans=(1, 0, 0), scale=(2,3,4)).bounding_box()
((-1.0, -3.0, -4.0), (3.0, 3.0, 4.0))

translate(*x)
Return self translated by the given vector (which can be given either as a 3-iterable or via positional
arguments).

EXAMPLES:

sage: icosahedron() + sum(icosahedron(opacity=0.25).translate(2*n, 0, 0)
    for n in [1..4])
Graphics3d Object
sage: icosahedron() + sum(icosahedron(opacity=0.25).translate([-2*n, n, n^2])
    for n in [1..4])
Graphics3d Object
viewpoint()
Return the viewpoint of this plot.
Currently only a stub for x3d.
EXAMPLES:

```
sage: type(dodecahedron().viewpoint())
<class 'sage.plot.plot3d.base.Viewpoint'>
```

x3d()
An x3d scene file (as a string) containing the this object.
EXAMPLES:

```
sage: print(sphere((1, 2, 3), 5).x3d())
<head>
<meta name='title' content='sage3d'/>
</head>
<Scene>
<Viewpoint position='0 0 6'/>
<Transform translation='1 2 3'>
<Shape><Sphere radius='5.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>
</Scene>
</X3D>
sage: G = icosahedron() + sphere((0,0,0), 0.5, color='red')
sage: print(G.x3d())
<head>
<meta name='title' content='sage3d'/>
</head>
<Scene>
<Viewpoint position='0 0 6'/>
<Shape>
<IndexedFaceSet coordIndex='...'>
<Coordinate point='...'/>
</IndexedFaceSet>
<Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
<Transform translation='0 0 0'>
<Shape><Sphere radius='0.5'/><Appearance><Material diffuseColor='1.0 0.0 0.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>
</Scene>
</X3D>
```

class sage.plot.plot3d.base.Graphics3dGroup(all=(), rot=None, trans=None, scale=None, T=None)
Bases: sage.plot.plot3d.base.Graphics3d

This class represents a collection of 3d objects. Usually they are formed implicitly by summing.

3.1. Base Classes for 3D Graphics Objects and Plotting 171
**bounding_box()**

Box that contains the bounding boxes of all the objects that make up `self`.

**EXAMPLES:**

```
sage: A = sphere((0,0,0), 5)
sage: B = sphere((1, 5, 10), 1)
sage: A.bounding_box()
((-5.0, -5.0, -5.0), (5.0, 5.0, 5.0))
sage: B.bounding_box()
((0.0, 4.0, 9.0), (2.0, 6.0, 11.0))
sage: (A+B).bounding_box()
((-5.0, -5.0, -5.0), (5.0, 6.0, 11.0))
sage: (A+B).show(aspect_ratio=1, frame=True)
sage: sage.plot.plot3d.base.Graphics3dGroup([]).bounding_box()
((0.0, 0.0, 0.0), (0.0, 0.0, 0.0))
```

**flatten()**

Try to reduce the depth of the scene tree by consolidating groups and transformations.

**EXAMPLES:**

```
sage: G = sum([circle((0, 0), t) for t in [1..10]], sphere()); G
Graphics3d Object
sage: G.flatten()
Graphics3d Object
sage: len(G.all)
2
sage: len(G.flatten().all)
11
```

**jmol_repr(render_params)**

The jmol representation of a group is simply the concatenation of the representation of its objects.

**EXAMPLES:**

```
sage: G = sphere() + sphere((1,2,3))
sage: G.jmol_repr(G.default_render_params())
[['isosurface sphere_1 center (0.0 0.0 0.0) sphere 1.0\ncolor isosurface \n\n−−–[102,102,255]'],[['isosurface sphere_2 center (1.0 2.0 3.0) sphere 1.0\ncolor isosurface \n\n−−–[102,102,255]]]
```

**json_repr(render_params)**

The JSON representation of a group is simply the concatenation of the representations of its objects.

**EXAMPLES:**

```
sage: G = sphere() + sphere((1, 2, 3))
sage: G.json_repr(G.default_render_params())
[['"vertices":...'], ['"vertices":...']]}
```

**obj_repr(render_params)**

The obj representation of a group is simply the concatenation of the representation of its objects.

**EXAMPLES:**
sage: G = tetrahedron() + tetrahedron().translate(10, 10, 10)
sage: G.obj_repr(G.default_render_params())
[['g obj_1',
  'usemtl ...',
  ['v 0 0 1',
   'v 0.942809 0 -0.333333',
   'v -0.471405 0.816497 -0.333333',
   'v -0.471405 -0.816497 -0.333333'],
  ['f 1 2 3', 'f 2 4 3', 'f 1 3 4', 'f 1 4 2'],
  []],
[['g obj_2',
  'usemtl ...',
  ['v 10 10 11',
   'v 10.9428 10 9.66667',
   'v 9.5286 10.8165 9.66667',
   'v 9.5286 9.1835 9.66667'],
  ['f 5 6 7', 'f 6 8 7', 'f 5 7 8', 'f 5 8 6'],
  []]]

plot()

set_texture(**kwds)

EXAMPLES:

sage: G = dodecahedron(color='red', opacity=.5) + icosahedron((3, 0, 0),
  color='blue')
sage: G
Graphics3d Object
sage: G.set_texture(color='yellow')
sage: G
Graphics3d Object

tachyon_repr(render_params)

The tachyon representation of a group is simply the concatenation of the representations of its objects.

EXAMPLES:

sage: G = sphere() + sphere((1,2,3))
sage: G.tachyon_repr(G.default_render_params())
[['Sphere center 0.0 0.0 0.0 Rad 1.0 texture...'],
 ['Sphere center 1.0 2.0 3.0 Rad 1.0 texture...']]

texture_set()

The texture set of a group is simply the union of the textures of all its objects.

EXAMPLES:

sage: G = sphere(color='red') + sphere(color='yellow')
sage: [t for t in G.texture_set() if t.color == colors.red] # one red texture
[Texture(texture..., red, ff0000)]
sage: [t for t in G.texture_set() if t.color == colors.yellow] # one yellow texture
[Texture(texture..., yellow, ffff00)]
sage: T = sage.plot.plot3d.texture.Texture('blue'); T
Texture(texture..., blue, 0000ff)
sage: G = sphere(texture=T) + sphere((1, 1, 1), texture=T)

(continues on next page)
transform(**kwds)
Transforming this entire group simply makes a transform group with the same contents.

EXAMPLES:

```python
sage: G = dodecahedron(color='red', opacity=.5) + icosahedron(color='blue')
sage: G
Graphics3d Object
sage: G.transform(scale=(2,1/2,1))
Graphics3d Object
sage: G.transform(trans=(1,1,3))
Graphics3d Object
```

x3d_str()
The x3d representation of a group is simply the concatenation of the representation of its objects.

EXAMPLES:

```python
sage: G = sphere() + sphere((1,2,3))
sage: print(G.x3d_str())
<Transform translation='0 0 0'>
<Shape>
<Sphere radius='1.0'/>
<Appearance>
<Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance>
</Shape>
</Transform>
<Transform translation='1 2 3'>
<Shape>
<Sphere radius='1.0'/>
<Appearance>
<Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance>
</Shape>
</Transform>
```

class sage.plot.plot3d.base.PrimitiveObject
Bases: sage.plot.plot3d.base.Graphics3d
This is the base class for the non-container 3d objects.

get_texture()
EXAMPLES:

```python
sage: G = dodecahedron(color='red')
sage: G.get_texture()
Texture(texture..., red, ff0000)
```

jmol_repr(render_params)
Default behavior is to render the triangulation. The actual polygon data is stored in a separate file.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.jmol_repr(G.testing_render_params())
['pmesh obj_1 "obj_1.pmesh"\ncolor pmesh [102,102,255]']
```

obj_repr(render_params)
Default behavior is to render the triangulation.

EXAMPLES:
```python
sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.obj_repr(G.default_render_params())[['g obj_1',
 'usemtl ...',
 ['v 0 1 0.5',
 ...
 'f ...'],
 []]
```

```
set_texture(texture=None, **kwds)
EXEMPLARY:
```
```python
sage: G = dodecahedron(color='red'); G
Graphics3d Object
sage: G.set_texture(color='yellow'); G
Graphics3d Object
```

```
tachyon_repr(render_params)
Default behavior is to render the triangulation.
EXEMPLARY:
```
```python
sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.tachyon_repr(G.default_render_params())[['TRI V0 0 1 0.5
 ...
 'texture...']]
```

```
texture_set()
EXEMPLARY:
```
```python
sage: G = dodecahedron(color='red')
sage: G.texture_set()
{Texture(texture..., red, ff0000)}
```

```
x3d_str()
EXEMPLARY:
```
```python
sage: sphere().flatten().x3d_str()
"<Transform>
<Shape><Sphere radius='1.0'/><Appearance><Material diffuseColor=
 →'0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></
 Shape></Shape></Transform>"
```

```
class sage.plot.plot3d.base.RenderParams(**kwds)
Bases: sage.structure.sage_object.SageObject
This class is a container for all parameters that may be needed to render triangulate/render an object to a certain
format. It can contain both cumulative and global parameters.

Of particular note is the transformation object, which holds the cumulative transformation from the root of the
scene graph to this node in the tree.

pop_transform()
Remove the last transformation off the stack, resetting self.transform to the previous value.

EXEMPLARY:
```
```

3.1. Base Classes for 3D Graphics Objects and Plotting 175
```python
sage: from sage.plot.plot3d.transform import Transformation
sage: params = sage.plot.plot3d.base.RenderParams()
sage: T = Transformation(trans=(100, 500, 0))
sage: params.push_transform(T)
sage: params.transform.get_matrix()
\[
[ 1.0 0.0 0.0 100.0]
[ 0.0 1.0 0.0 500.0]
[ 0.0 0.0 1.0 0.0]
[ 0.0 0.0 0.0 1.0]
\]
sage: params.push_transform(Transformation(trans=(-100, 500, 200)))
sage: params.transform.get_matrix()
\[
[ 1.0 0.0 0.0 0.0]
[ 0.0 1.0 0.0 1000.0]
[ 0.0 0.0 1.0 200.0]
[ 0.0 0.0 0.0 1.0]
\]
sage: params.pop_transform()
sage: params.transform.get_matrix()
\[
[ 1.0 0.0 0.0 100.0]
[ 0.0 1.0 0.0 500.0]
[ 0.0 0.0 1.0 0.0]
[ 0.0 0.0 0.0 1.0]
\]
```

push_transform(T)

Push a transformation onto the stack, updating self.transform.

EXAMPLES:

```python
sage: from sage.plot.plot3d.transform import Transformation
sage: params = sage.plot.plot3d.base.RenderParams()
sage: params.transform is None
True
sage: T = Transformation(scale=(10, 20, 30))
sage: params.push_transform(T)
sage: params.transform.get_matrix()
\[
[10.0 0.0 0.0 0.0]
[0.0 20.0 0.0 0.0]
[0.0 0.0 30.0 0.0]
[0.0 0.0 0.0 1.0]
\]
sage: params.push_transform(T)  # scale again
sage: params.transform.get_matrix()
\[
[100.0 0.0 0.0 0.0]
[0.0 400.0 0.0 0.0]
[0.0 0.0 900.0 0.0]
[0.0 0.0 0.0 1.0]
\]
```

unique_name(desc='name')

Return a unique identifier starting with desc.

INPUT:

- desc (string) – the prefix of the names (default ‘name’)

EXAMPLES:

```python
sage: params = sage.plot.plot3d.base.RenderParams()
sage: params.unique_name()  
'name_1'
sage: params.unique_name()  
'name_2'
```

(continues on next page)
class sage.plot.plot3d.base.TransformGroup(*args, **kwargs):
 Bases: sage.plot.plot3d.base.Graphics3dGroup

 This class is a container for a group of objects with a common transformation.

 bounding_box()

 Return the bounding box of self, i.e., the box containing the contents of self after applying the transformation.

 EXAMPLES:

 sage: G = cube()
 sage: G.bounding_box()
 ((-0.5, -0.5, -0.5), (0.5, 0.5, 0.5))
 sage: G = G.scale(4)
 sage: G.bounding_box()
 ((-2.0, -2.0, -2.0), (2.0, 2.0, 2.0))
 sage: G = G.rotateZ(pi/4)
 sage: G.bounding_box()
 ((-0.7071067811865475, -0.7071067811865475, -0.5),
 (0.7071067811865475, 0.7071067811865475, 0.5))

 flatten()

 Try to reduce the depth of the scene tree by consolidating groups and transformations.

 EXAMPLES:

 sage: G = sphere((1,2,3)).scale(100)
 sage: T = G.get_transformation()
 sage: T.get_matrix()
 [100.0 0.0 0.0 0.0]
 [0.0 100.0 0.0 0.0]
 [0.0 0.0 100.0 0.0]
 [0.0 0.0 0.0 1.0]
 sage: G = G.flatten()
 sage: T = G.get_transformation()
 sage: T.get_matrix()
 [100.0 0.0 0.0 100.0]
 [0.0 100.0 0.0 200.0]
 [0.0 0.0 100.0 300.0]
 [0.0 0.0 0.0 1.0]

 get_transformation()

 Return the actual transformation object associated with self.

 EXAMPLES:

 sage: G = sphere().scale(100)
 sage: T = G.get_transformation()
 sage: T.get_matrix()
 [100.0 0.0 0.0 0.0]
 [0.0 100.0 0.0 0.0]
 [0.0 0.0 100.0 0.0]
 [0.0 0.0 0.0 1.0]

 jmol_repr(render_params)

 Transformations for jmol are applied at the leaf nodes.
EXAMPLES:

```
sage: G = sphere((1,2,3)).scale(2)
sage: G.jmol_repr(G.default_render_params())
[['isosurface sphere_1 center (2.0 4.0 6.0) sphere 2.0\ncolor isosurface →[102,102,255]'']]
```

json_repr(render_params)
Transformations are applied at the leaf nodes.

EXAMPLES:

```
sage: G = cube().rotateX(0.2)
sage: G.json_repr(G.default_render_params())
[['"vertices":[['"x":0.5,"y":0.589368,"z":0.390699},...']]]
```

obj_repr(render_params)
Transformations for .obj files are applied at the leaf nodes.

EXAMPLES:

```
sage: G = cube().scale(4).translate(1, 2, 3)
sage: G.obj_repr(G.default_render_params())
[['g obj_1,
  'usemtl ...
  ['v 3 4 5',
   'v -1 4 5',
   'v -1 0 5',
   'v 3 0 5',
   'v 3 4 1',
   'v -1 4 1',
   'v 3 0 1',
   'v -1 0 1'],
  ['f 1 2 3 4',
   'f 1 5 6 2',
   'f 1 4 7 5',
   'f 6 5 7 8',
   'f 7 4 3 8',
   'f 3 2 6 8'],
  []]]
```

tachyon_repr(render_params)
Transformations for Tachyon are applied at the leaf nodes.

EXAMPLES:

```
sage: G = sphere((1,2,3)).scale(2)
sage: G.tachyon_repr(G.default_render_params())
[['Sphere center 2.0 4.0 6.0 Rad 2.0 texture...']]]
```

transform(**kwds**)
Transforming this entire group can be done by composing transformations.

EXAMPLES:

```
sage: G = dodecahedron(color='red', opacity=.5) + icosahedron(color='blue')
sage: G
Graphics3d Object
sage: G.transform(scale=(2,1/2,1))
```
Graphics3d Object

sage: G.transform(trans=(1,1,3))

Graphics3d Object

x3d_str()

To apply a transformation to a set of objects in x3d, simply make them all children of an x3d Transform node.

EXAMPLES:

sage: sphere((1,2,3)).x3d_str()
"<Transform translation='1 2 3'>
<Shape><Sphere radius='1.0'/><Appearance>

 </Material>
</Appearance></Shape>
</Transform>"

class sage.plot.plot3d.base.Viewpoint (*x)

Bases: sage.plot.plot3d.base.Graphics3d

This class represents a viewpoint, necessary for x3d.

In the future, there could be multiple viewpoints, and they could have more properties. (Currently they only
hold a position).

x3d_str()

EXAMPLES:

sage: sphere((0,0,0), 100).viewpoint().x3d_str()
"<Viewpoint position='0 0 6'/>"

sage.plot.plot3d.base.flatten_list(L)

This is an optimized routine to turn a list of lists (of lists ...) into a single list. We generate data in a non-flat
format to avoid multiple data copying, and then concatenate it all at the end.

This is NOT recursive, otherwise there would be a lot of redundant copying (which we are trying to avoid in the
first place, though at least it would be just the pointers).

EXAMPLES:

sage: from sage.plot.plot3d.base import flatten_list
sage: flatten_list([])
[]
sage: flatten_list([[[[]]]])
[]
sage: flatten_list([['a', 'b'], 'c'])
['a', 'b', 'c']
sage: flatten_list([['a'], [[['b'], 'c'], ['d'], [[e', 'f', 'g']]]])
['a', 'b', 'c', 'd', 'e', 'f', 'g']

sage.plot.plot3d.base.max3(v)

Return the componentwise maximum of a list of 3-tuples.

EXAMPLES:

sage: from sage.plot.plot3d.base import min3, max3
sage: max3([(-1,2,5), (-3, 4, 2)])
(-1, 4, 5)

sage.plot.plot3d.base.min3(v)

Return the componentwise minimum of a list of 3-tuples.
3.2 Basic objects such as Sphere, Box, Cone, etc.

AUTHORS:

- Robert Bradshaw 2007-02: initial version
- Robert Bradshaw 2007-08: obj/tachyon rendering, much updating
- Robert Bradshaw 2007-08: cythonization

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import *

sage: S = Sphere(.5, color='yellow')

sage: S += Cone(.5, .5, color='red').translate(0,0,.3)

sage: S += Sphere(.1, color='white').translate(.45,-.1,.15) + Sphere(.05, color='black').translate(.51,-.1,.17)

sage: S += Sphere(.1, color='white').translate(.45,.1,.15) + Sphere(.05, color='black').translate(.51,.1,.17)

sage: S += Sphere(.1, color='yellow').translate(.5, 0, -.2)

sage: S.show()

sage: S.scale(1,1,2).show()
```

```python
sage: from sage.plot.plot3d.shapes import *

sage: Torus(.7, .2, color=(0,.3,0)).show()
```

class sage.plot.plot3d.shapes.Box(*size, **kwds)

Bases: sage.plot.plot3d.index_face_set.IndexFaceSet

Return a box.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Box

A square black box:
```
3.2. Basic objects such as Sphere, Box, Cone, etc.
A red rectangular box:

```sage
sage: show(Box([2,3,4], color="red"))
```

A stack of boxes:

```sage
sage: show(sum([Box([2,3,1], color="red").translate((0,0,6*i)) for i in [0..3]]))
```

A sinusoidal stack of multicolored boxes:

```sage
sage: B = sum([Box([2,4,1/4], color=(i/4,i/5,1)).translate((sin(i),0,5-i)) for i in [0..20]])
sage: show(B, figsize=6)
```

bounding_box()

EXAMPLES:

```sage
sage: from sage.plot.plot3d.shapes import Box
sage: Box([1,2,3]).bounding_box()
((-1.0, -2.0, -3.0), (1.0, 2.0, 3.0))
```

x3d_geometry()

EXAMPLES:
3.2. Basic objects such as Sphere, Box, Cone, etc.
```python
sage: from sage.plot.plot3d.shapes import Box
sage: Box([1,2,1/4]).x3d_geometry()
"<Box size='1.0 2.0 0.25'/>"
```

```
sage.plot.plot3d.shapes.ColorCube(size, colors, opacity=1, **kwds)
```

Return a cube with given size and sides with given colors.

INPUT:

- `size` – 3-tuple of sizes (same as for box and frame)
- `colors` – a list of either 3 or 6 colors
- `opacity` – (default: 1) opacity of cube sides
- `**kwds` – passed to the face constructor

OUTPUT:

a 3d graphics object

EXAMPLES:

A color cube with translucent sides:

```python
sage: from sage.plot.plot3d.shapes import ColorCube
sage: c = ColorCube([1,2,3], ['red', 'blue', 'green', 'black', 'white', 'orange'], opacity=0.5)
sage: c.show()
sage: list(c.texture_set())[0].opacity
0.5
```

If you omit the last 3 colors then the first three are repeated (with repeated colors on opposing faces):

```python
sage: c = ColorCube([0.5,0.5,0.5], ['red', 'blue', 'green'])
```

```python
class sage.plot.plot3d.shapes.Cone
Bases: sage.plot.plot3d.parametric_surface.ParametricSurface
```

A cone, with base in the xy-plane pointing up the z-axis.

INPUT:

- `radius` – positive real number
- `height` – positive real number
- `closed` – whether or not to include the base (default True)
- `**kwds` – passed to the ParametricSurface constructor

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Cone
sage: c = Cone(3/2, 1, color='red') + Cone(1, 2, color='yellow').translate(3, 0, 0)
sage: c.show(aspect_ratio=1)
```

We may omit the base:

```python
sage: Cone(1, 1, closed=False)
Graphics3d Object
```

3.2. Basic objects such as Sphere, Box, Cone, etc.

187
3.2. Basic objects such as Sphere, Box, Cone, etc.
Chapter 3. Basic Shapes and Primitives
3.2. Basic objects such as Sphere, Box, Cone, etc.
A spiky plot of the sine function:

```
sage: sum(Cone(.1, sin(n), color='yellow').translate(n, sin(n), 0) for n in [0..→10, step=.1])
Graphics3d Object
```

A Christmas tree:

```
sage: T = sum(Cone(exp(-n/5), 4/3*exp(-n/5), color=(0, .5, 0)).translate(0, 0, -→3*exp(-n/5)) for n in [1..7])
sage: T += Cone(1/8, 1, color='brown').translate(0, 0, -3)
sage: T.show(aspect_ratio=1, frame=False)
```

`get_grid(ds)`
Return the grid on which to evaluate this parametric surface.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Cone
sage: Cone(1, 3, closed=True).get_grid(100)
([1, 0, -1], [0.0, 1.2566..., 2.5132..., 3.7699..., 5.0265..., 0.0])
sage: Cone(1, 3, closed=False).get_grid(100)
([1, 0], [0.0, 1.2566..., 2.5132..., 3.7699..., 5.0265..., 0.0])
sage: len(Cone(1, 3).get_grid(.001)[1])
38
```
3.2. Basic objects such as Sphere, Box, Cone, etc.
x3d_geometry()

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Cone
sage: Cone(1, 3).x3d_geometry()
"<Cone bottomRadius='1.0' height='3.0'/>"
```

class sage.plot.plot3d.shapes.Cylinder
Bases: sage.plot.plot3d.parametric_surface.ParametricSurface

A cone, with base in the xy-plane pointing up the z-axis.

INPUT:

- radius – positive real number
- height – positive real number
- closed – whether or not to include the ends (default True)
- **kwds – passed to the ParametricSurface constructor

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Cylinder
sage: c = Cylinder(3/2, 1, color='red') + Cylinder(1, 2, color='yellow').translate(3, 0, 0)
sage: c.show(aspect_ratio=1)
```

![Diagram of a cone and a cylinder]
We may omit the base:

```python
sage: Cylinder(1, 1, closed=False)
Graphics3d Object
```

Some gears:

```python
sage: G = Cylinder(1, .5) + Cylinder(.25, 3).translate(0, 0, -3)
sage: G += sum(Cylinder(.2, 1).translate(cos(2*pi*n/9), sin(2*pi*n/9), 0) for n in [1..9])
sage: G += G.translate(2.3, 0, -.5)
sage: G += G.translate(3.5, 2, -1)
sage: G.show(aspect_ratio=1, frame=False)
```

`bounding_box()`

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Cylinder
sage: Cylinder(1, 2).bounding_box()
((-1.0, -1.0, 0), (1.0, 1.0, 2.0))
```

`get_endpoints(transform=None)`

EXAMPLES:
sage: from sage.plot.plot3d.shapes import Cylinder
sage: from sage.plot.plot3d.transform import Transformation
sage: Cylinder(1, 5).get_endpoints()
((0, 0, 0), (0, 0, 5.0))
sage: Cylinder(1, 5).get_endpoints(Transformation(trans=(1,2,3), scale=(2,2,-2)))
((1.0, 2.0, 3.0), (1.0, 2.0, 13.0))

get_grid(ds)
Return the grid on which to evaluate this parametric surface.

EXAMPLES:

sage: from sage.plot.plot3d.shapes import Cylinder
sage: Cylinder(1, 3, closed=True).get_grid(100)
([2, 1, -1, -2], [0.0, 1.2566..., 2.5132..., 3.7699..., 5.0265..., 0.0])
sage: Cylinder(1, 3, closed=False).get_grid(100)
([1, -1], [0.0, 1.2566..., 2.5132..., 3.7699..., 5.0265..., 0.0])
sage: len(Cylinder(1, 3).get_grid(.001)[1])
38

get_radius(transform=None)
EXAMPLES:

sage: from sage.plot.plot3d.shapes import Cylinder
sage: from sage.plot.plot3d.transform import Transformation
sage: Cylinder(3, 1).get_radius()
3.0
sage: Cylinder(3, 1).get_radius(Transformation(trans=(1,2,3), scale=(2,2,2)))
6.0

jmol_repr(render_params)
EXAMPLES:

sage: from sage.plot.plot3d.shapes import Cylinder

For thin cylinders, lines are used:
sage: C = Cylinder(.1, 4)
sage: C.jmol_repr(C.default_render_params())
['\ndraw line_1 width 0.1 {0 0 0} {0 0 4.0}\ncolor $line_1 [102,102,255] '
]

For anything larger, we use a pmesh:
sage: C = Cylinder(3, 1, closed=False)
sage: C.jmol_repr(C.testing_render_params())
['pmesh obj_1 "obj_1.pmesh"
color pmesh [102,102,255]'
]

tachyon_repr(render_params)
EXAMPLES:

sage: from sage.plot.plot3d.shapes import Cylinder
sage: C = Cylinder(1/2, 4, closed=False)
sage: C.tachyon_repr(C.default_render_params())
'FCylinder
 Base 0 0 0
 Apex 0 0 4.0
 Rad 0.5
 texture... '
sage: C = Cylinder(1, 2)
sage: C.tachyon_repr(C.default_render_params())
(continues on next page)
x3d_geometry()

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Cylinder
sage: Cylinder(1, 2).x3d_geometry()
"<Cylinder radius='1.0' height='2.0'/>"
```

sage.plot.plot3d.shapes.LineSegment(start, end, thickness=1, radius=None, **kwds)

Create a line segment, which is drawn as a cylinder from start to end with radius radius.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import LineSegment, Sphere
sage: P = (0,0,0.1)
sage: Q = (0.5,0.6,0.7)
sage: S = Sphere(.2, color='red').translate(P)
sage: S += Sphere(.2, color='blue').translate(Q)
sage: S += LineSegment(P, Q, .05, color='black')
sage: S.show()
```
AUTHOR:

• Robert Bradshaw

class sage.plot.plot3d.shapes.Sphere
Bases: sage.plot.plot3d.parametric_surface.ParametricSurface

This class represents a sphere centered at the origin.

EXAMPLES:

```sage
from sage.plot.plot3d.shapes import Sphere
S = Sphere(3)
Graphics3d Object

Plot with aspect_ratio=1 to see it unsquashed:

```sage```n```S = Sphere(3, color='blue') + Sphere(2, color='red').translate(0,3,0)
S.show(aspect_ratio=1)
```

Scale to get an ellipsoid:

3.2. Basic objects such as Sphere, Box, Cone, etc. 199
Chapter 3. Basic Shapes and Primitives
3.2. Basic objects such as Sphere, Box, Cone, etc.
\texttt{sage}: \texttt{S = Sphere(1).scale(1,2,1/2)}
\texttt{sage}: \texttt{S.show(aspect_ratio=1)}

\textbf{bounding\_box()}

Return the bounding box that contains this sphere.

\textbf{EXAMPLES:}

\texttt{sage: from sage.plot.plot3d.shapes import Sphere}
\texttt{sage: Sphere(3).bounding\_box()}
\((-3.0, -3.0, -3.0), (3.0, 3.0, 3.0)\)

\textbf{get\_grid(ds)}

Return the range of variables to be evaluated on to render as a parametric surface.

\textbf{EXAMPLES:}

\texttt{sage: from sage.plot.plot3d.shapes import Sphere}
\texttt{sage: Sphere(1).get\_grid(100)}
\((-10.0, ..., 0.0, ..., 10.0],
[0.0, ..., 3.141592653589793, ..., 0.0])

\textbf{jmol\_repr(render\_params)}

\textbf{EXAMPLES:}
Jmol has native code for handling spheres:

```python
sage: S = Sphere(2)
sage: S.jmol_repr(S.default_render_params())
['isosurface sphere_1 center (0 0 0) sphere 2.0\ncolor isosurface [102,102,255]']
sage: S.translate(10, 100, 1000).jmol_repr(S.default_render_params())
[['isosurface sphere_1 center (10.0 100.0 1000.0) sphere 2.0\ncolor isosurface [102,102,255]']]
```

It cannot natively handle ellipsoids:

```python
sage: S = Sphere(1).scale(2, 3, 4).jmol_repr(S.testing_render_params())
[['pmesh obj_2 "obj_2.pmesh"\ncolor pmesh [102,102,255]']]
```

Small spheres need extra hints to render well:

```python
sage: S = Sphere(0.01).jmol_repr(S.default_render_params())
['isosurface sphere_1 resolution 100 center (0 0 0) sphere 0.01\ncolor isosurface [102,102,255]']
```

tachyon_repr (render_params)

Tachyon can natively handle spheres. Ellipsoids rendering is done as a parametric surface.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Sphere
sage: S = Sphere(2)
sage: S.tachyon_repr(S.default_render_params())
'Sphere center 0 0 0 Rad 2.0 texture...'
sage: S.translate(1, 2, 3).scale(3).tachyon_repr(S.default_render_params())
[[''Sphere center 3.0 6.0 9.0 Rad 6.0 texture...']]
sage: S.scale(1,1/2,1/4).tachyon_repr(S.default_render_params())
[['TRI V0 0 0 -0.5 V1 0.308116 0.0271646 -0.493844 V2 0.312869 0 -0.493844',
 'texture...','TRI V0 0.308116 -0.0271646 0.493844 V1 0.312869 0 0.493844 V2 0 0 0.5',
 'texture...']]
```

x3d_geometry ()

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Sphere
sage: S = Sphere(12).x3d_geometry()
"<Sphere radius='12.0'/>"
```

class sage.plot.plot3d.shapes.Text (string, **kwds)

Bases: sage.plot.plot3d.base.PrimitiveObject

A text label attached to a point in 3d space. It always starts at the origin, translate it to move it elsewhere.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Text
sage: Text("Just a lonely label.")
Graphics3d Object
```
3.2. Basic objects such as Sphere, Box, Cone, etc.

```
sage: pts = [(RealField(10)^3).random_element() for k in range(20)]
sage: sum(Text(str(P)).translate(P) for P in pts)

Graphics3d Object
```

**bounding_box()**

Text labels have no extent:

```
sage: from sage.plot.plot3d.shapes import Text
sage: Text("Hi").bounding_box()
((0, 0, 0), (0, 0, 0))
```

**jmol_repr**(render_params)

Labels in jmol must be attached to atoms.

**EXAMPLES:**

```
sage: from sage.plot.plot3d.shapes import Text
sage: T = Text("Hi")
sage: T.jmol_repr(T.testing_render_params())
[['select atomno = 1', 'color atom [102,102,255]', 'label "Hi"']]
sage: T = Text("Hi").translate(-1, 0, 0) + Text("Bye").translate(1, 0, 0)
sage: T.jmol_repr(T.testing_render_params())
[['select atomno = 1', 'color atom [102,102,255]', 'label "Hi"'],
[['select atomno = 2', 'color atom [102,102,255]', 'label "Bye"']]
```
obj_repr (render_params)
The obj file format does not support text strings:

```python
sage: from sage.plot.plot3d.shapes import Text
dsage: Text("Hi").obj_repr(None)
```

tachyon_repr (render_params)
Strings are not yet supported in Tachyon, so we ignore them for now:

```python
sage: from sage.plot.plot3d.shapes import Text
dsage: Text("Hi").tachyon_repr(None)
```

x3d_geometry()
EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Text
dsage: Text("Hi").x3d_geometry()
"<Text string='Hi' solid='true'/>"
```

class sage.plot.plot3d.shapes.Torus
Bases: sage.plot.plot3d.parametric_surface.ParametricSurface

INPUT:
- R – (default: 1) outer radius
- r – (default: .3) inner radius

OUTPUT:
a 3d torus

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Torus
dsage: Torus(1, .2).show(aspect_ratio=1)
dsage: Torus(1, .7, color='red').show(aspect_ratio=1)
```

A rubberband ball:

```python
sage: show(sum([Torus(1, .03, color=(1, t/30.0, 0)).rotate((1,1,1),t) for t in \n \[range(30)]])
```

Mmm... doughnuts:

```python
sage: D = Torus(1, .4, color=(.5, .3, .2)) + Torus(1, .3, color='yellow').\n \[translate(0, 0, .15)
sage: G = sum(D.translate(RDF.random_element(-.2, .2), RDF.random_element(-.2, .\n \[2), .8*t) for t in range(10))
sage: G.show(aspect_ratio=1, frame=False)
```

get_grid (ds)
Return the range of variables to be evaluated on to render as a parametric surface.

EXAMPLES:
3.2. Basic objects such as Sphere, Box, Cone, etc.
3.2. Basic objects such as Sphere, Box, Cone, etc.
Create a 3d arrow.

**INPUT:**
- `start` - (x, y, z) point; the starting point of the arrow
- `end` - (x, y, z) point; the end point
- `width` - (default: 1); how wide the arrow is
- `radius` - (default: `width/50.0`); the radius of the arrow
- `head_radius` - (default: `3*radius`); radius of arrow head
- `head_len` - (default: `3*head_radius`); len of arrow head

**EXAMPLES:**

The default arrow:

```python
sage: arrow3d((0,0,0), (1,1,1), 1)
Graphics3d Object
```

A fat arrow:

```python
sage: arrow3d((0,0,0), (1,1,1), radius=0.1)
Graphics3d Object
```

A green arrow:

```python
sage: arrow3d((0,0,0), (1,1,1), color='green')
Graphics3d Object
```

A fat arrow head:

```python
sage: arrow3d((2,1,0), (1,1,1), color='green', head_radius=0.3, aspect_ratio=[1,1,1])
Graphics3d Object
```

Many arrows arranged in a circle (flying spears?):

```python
sage: sum([arrow3d((cos(t),sin(t),0),(cos(t),sin(t),1)) for t in [0,0.3,..,2*pi]])
Graphics3d Object
```

Change the width of the arrow. (Note: for an arrow that scales with zoom, please consider the line3d function with the option `arrow_head=True`):

```python
sage: arrow3d((0,0,0), (1,1,1), width=1)
Graphics3d Object
```

**sage.plot.plot3d.shapes.validate_frame_size(size)**

Check that the input is an iterable of length 3 with all elements nonnegative and coercible to floats.

**EXAMPLES:**
3.2. Basic objects such as Sphere, Box, Cone, etc.
3.2. Basic objects such as Sphere, Box, Cone, etc.
3.2. Basic objects such as Sphere, Box, Cone, etc.
3.3 Classes for Lines, Frames, Rulers, Spheres, Points, Dots, and Text

AUTHORS:
- William Stein (2007-12): initial version

class sage.plot.plot3d.shapes2.Line(points, thickness=5, corner_cutoff=0.5, arrow_head=False, **kwds)
Bases: sage.plot.plot3d.base.PrimitiveObject

Draw a 3d line joining a sequence of points.

This line has a fixed diameter unaffected by transformations and zooming. It may be smoothed if corner_cutoff < 1.

INPUT:
- points – list of points to pass through
- thickness – (optional, default 5) diameter of the line
- corner_cutoff – (optional, default 0.5) threshold for smoothing (see corners()).
- arrow_head – (optional, default False) if True make this curve into an arrow

The parameter corner_cutoff is a bound for the cosine of the angle made by two successive segments. This angle is close to 0 (and the cosine close to 1) if the two successive segments are almost aligned and close to π (and the cosine close to -1) if the path has a strong peak. If the cosine is smaller than the bound (which means a sharper peak) then no smoothing is done.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes2 import Line
sage: Line([(i*math.sin(i), i*math.cos(i), i/3) for i in range(30)], arrow_head=True)
Graphics3d Object
```

Smooth angles less than 90 degrees:

```
sage: Line([(0,0,0),(1,0,0),(2,1,0),(0,1,0)], corner_cutoff=0)
Graphics3d Object
```

Make sure that the corner_cutoff keyword works (trac ticket #3859):

```
sage: N = 11
sage: c = 0.4
sage: sum([Line([(i,1,0), (i,0,0), (i,cos(2*pi*i/N), sin(2*pi*i/N))],
 corner_cutoff=c,
 color='red' if -cos(2*pi*i/N)<=c else 'blue')
 for i in range(N+1)])
Graphics3d Object
```
Return the lower and upper corners of a 3-D bounding box for self.

This is used for rendering and self should fit entirely within this box. In this case, we return the highest
and lowest values of each coordinate among all points.

**corners**(corner_cutoff=None, max_len=None)

Figure out where the curve turns too sharply to pretend it is smooth.

**INPUT:**

- corner_cutoff – (optional, default None) If the cosine of the angle between adjacent line seg-
  ments is smaller than this bound, then there will be a sharp corner in the path. Otherwise, the path is
  smoothed. If None, then the default value 0.5 is used.

- max_len – (optional, default None) Maximum number of points allowed in a single path. If this is
  set, this creates corners at smooth points in order to break the path into smaller pieces.

The parameter corner_cutoff is a bound for the cosine of the angle made by two successive segments.
This angle is close to 0 (and the cosine close to 1) if the two successive segments are almost aligned and
close to π (and the cosine close to -1) if the path has a strong peak. If the cosine is smaller than the bound
(which means a sharper peak) then there must be a corner.

**OUTPUT:**

List of points at which to start a new line. This always includes the first point, and never the last.

**EXAMPLES:**

No corners, always smooth:

```python
sage: from sage.plot.plot3d.shapes2 import Line
sage: Line(((0,0,0),(1,0,0),(2,1,0),(0,1,0)), corner_cutoff=-1).corners()
[(0, 0, 0)]
```

Smooth if the angle is greater than 90 degrees:

```python
sage: Line(((0,0,0),(1,0,0),(2,1,0),(0,1,0)), corner_cutoff=0).corners()
[(0, 0, 0), (2, 1, 0)]
```

Every point (corners everywhere):

```python
sage: Line(((0,0,0),(1,0,0),(2,1,0),(0,1,0)), corner_cutoff=1).corners()
[(0, 0, 0), (1, 0, 0), (2, 1, 0)]
```

**jmol_repr**(render_params)

Return representation of the object suitable for plotting using Jmol.

**obj_repr**(render_params)

Return complete representation of the line as an object.

**tachyon_repr**(render_params)

Return representation of the line suitable for plotting using the Tachyon ray tracer.

**class** sage.plot.plot3d.shapes2.Point(center, size=1, **kwds)**

**Bases:** sage.plot.plot3d.base.PrimitiveObject

Create a position in 3-space, represented by a sphere of fixed size.

**INPUT:**

- center – point (3-tuple)
- size – (default: 1)
EXAMPLES:

We normally access this via the point3d function. Note that extra keywords are correctly used:

```python
sage: point3d((4,3,2),size=2,color='red',opacity=.5)
Graphics3d Object
```

**bounding_box()**

Returns the lower and upper corners of a 3-D bounding box for self.

This is used for rendering and self should fit entirely within this box. In this case, we simply return the center of the point.

**jmol_repr**(render_params)

Return representation of the object suitable for plotting using Jmol.

**obj_repr**(render_params)

Return complete representation of the point as a sphere.

**tachyon_repr**(render_params)

Return representation of the point suitable for plotting using the Tachyon ray tracer.

```python
sage.plot.plot3d.shapes2.bezier3d(path, aspect_ratio=[1, 1, 1], color='blue', opacity=1, thickness=2, **options)
```

Draw a 3-dimensional bezier path.

Input is similar to bezier_path, but each point in the path and each control point is required to have 3 coordinates.

**INPUT:**

- **path** – a list of curves, which each is a list of points. See further detail below.
- **thickness** – (default: 2)
- **color** – a string ("red", "green" etc) or a tuple (r, g, b) with r, g, b numbers between 0 and 1
- **opacity** – (default: 1) if less than 1 then is transparent
- **aspect_ratio** – (default:[1,1,1])

The path is a list of curves, and each curve is a list of points. Each point is a tuple (x,y,z).

The first curve contains the endpoints as the first and last point in the list. All other curves assume a starting point given by the last entry in the preceding list, and take the last point in the list as their opposite endpoint. A curve can have 0, 1 or 2 control points listed between the endpoints. In the input example for path below, the first and second curves have 2 control points, the third has one, and the fourth has no control points:

```python
path = [[p1, c1, c2, p2], [c3, c4, p3], [c5, p4], [p5], ...]
```

In the case of no control points, a straight line will be drawn between the two endpoints. If one control point is supplied, then the curve at each of the endpoints will be tangent to the line from that endpoint to the control point. Similarly, in the case of two control points, at each endpoint the curve will be tangent to the line connecting that endpoint with the control point immediately after or immediately preceding it in the list.

So in our example above, the curve between p1 and p2 is tangent to the line through p1 and c1 at p1, and tangent to the line through p2 and c2 at p2. Similarly, the curve between p2 and p3 is tangent to line(p2,c3) at p2 and tangent to line(p3,c4) at p3. Curve(p3,p4) is tangent to line(p3,c5) at p3 and tangent to line(p4,c5) at p4. Curve(p4,p5) is a straight line.

**EXAMPLES:**
sage: path = [[(0,0,0), (.5,.1,.2), (.75,3,-1),(1,1,0)],[(.5,.1,.2),(1,5,0)],[(.7,.2,.5)]]
sage: b = bezier3d(path, color='green')
sage: b
Graphics3d Object

To construct a simple curve, create a list containing a single list:

sage: path = [[(0,0,0),(1,0,0),(0,1,0),(0,1,1)]]
sage: curve = bezier3d(path, thickness=5, color='blue')
sage: curve
Graphics3d Object

sage.plot.plot3d.shapes2.frame3d(lower_left, upper_right, **kwds)

Draw a frame in 3-D.

Primarily used as a helper function for creating frames for 3-D graphics viewing.

INPUT:

• lower_left – the lower left corner of the frame, as a list, tuple, or vector.
• upper_right – the upper right corner of the frame, as a list, tuple, or vector.

EXAMPLES:

A frame:

sage: from sage.plot.plot3d.shapes2 import frame3d
sage: frame3d([1,3,2],vector([2,5,4]),color='red')
Graphics3d Object

This is usually used for making an actual plot:

sage: y = var('y')
sage: plot3d(sin(x^2+y^2),(x,0,pi),(y,0,pi))
Graphics3d Object

sage.plot.plot3d.shapes2.frame_labels(lower_left, upper_right, label_lower_left, label_upper_right, eps=1, **kwds)

Draw correct labels for a given frame in 3-D.

Primarily used as a helper function for creating frames for 3-D graphics viewing - do not use directly unless you know what you are doing!

INPUT:

• lower_left – the lower left corner of the frame, as a list, tuple, or vector.
• upper_right – the upper right corner of the frame, as a list, tuple, or vector.
• label_lower_left – the label for the lower left corner of the frame, as a list, tuple, or vector. This label must actually have all coordinates less than the coordinates of the other label.
• label_upper_right – the label for the upper right corner of the frame, as a list, tuple, or vector. This label must actually have all coordinates greater than the coordinates of the other label.
• eps – (default: 1) a parameter for how far away from the frame to put the labels.

EXAMPLES:

We can use it directly:
sage: from sage.plot.plot3d.shapes2 import frame_labels
sage: frame_labels([1,2,3],[4,5,6],[1,2,3],[4,5,6])
Graphics3d Object

This is usually used for making an actual plot:

sage: y = var('y')
sage: P = plot3d(sin(x^2+y^2),(x,0,pi),(y,0,pi))
sage: a,b = P._rescale_for_frame_aspect_ratio_and_zoom(1.0,[1,1,1],1)
sage: F = frame_labels(a,b,*P._box_for_aspect_ratio("automatic",a,b))
sage: F.jmol_repr(F.default_render_params())[0][
['select atomno = 1', 'color atom [76,76,76]', 'label "0.0"']

\[\text{sage.plot.plot3d.shapes2.} \text{line3d}(points, thickness=1, radius=None, arrow_head=False, **kwds)\]

\begin{itemize}
\item \texttt{points} – a list of at least 2 points
\item \texttt{thickness} – (default: 1)
\item \texttt{radius} – (default: None)
\item \texttt{arrow_head} – (default: False)
\item \texttt{color} – a string ("red", "green" etc) or a tuple (r, g, b) with r, g, b numbers between 0 and 1
\item \texttt{opacity} – (default: 1) if less than 1 then is transparent
\end{itemize}

\textbf{EXAMPLES:}

\begin{itemize}
\item A line in 3-space:
\begin{verbatim}
sage: line3d([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)])
\end{verbatim}
Gra\text{9}{ics3d Object}
\end{itemize}

\begin{itemize}
\item The same line but red:
\begin{verbatim}
sage: line3d([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)], color='red')
\end{verbatim}
Gra\text{9}{ics3d Object}
\end{itemize}

\begin{itemize}
\item The points of the line provided as a numpy array:
\begin{verbatim}
sage: import numpy
sage: line3d(numpy.array([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)]))
\end{verbatim}
Gra\text{9}{ics3d Object}
\end{itemize}

\begin{itemize}
\item A transparent thick green line and a little blue line:
\begin{verbatim}
sage: line3d([(0,0,0), (1,1,1), (1,0,2)], opacity=0.5, radius=0.1, ....: color='green') + line3d([(0,1,0), (1,0,2)])
\end{verbatim}
Gra\text{9}{ics3d Object}
\end{itemize}

\begin{itemize}
\item A Dodecahedral complex of 5 tetrahedra (a more elaborate example from Peter Jipsen):
\end{itemize}
```python
sage: def tetra(col):
 ...: return line3d([(0,0,1), (2*sqrt(2.)/3,0,-1./3), (-sqrt(2.)/3, sqrt(6.)/3,-1./3),
 ...: (-sqrt(2.)/3,-sqrt(6.)/3,-1./3), (0,0,1), (-sqrt(2.)/3, sqrt(6.)/3,-1./3),
 ...: (-sqrt(2.)/3,-sqrt(6.)/3,-1./3), (2*sqrt(2.)/3,0,-1./3)],
 ...: color=col, thickness=10, aspect_ratio=[1,1,1])

sage: v = (sqrt(5.)/2-5/6, 5/6*sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3)
sage: t = acos(sqrt(5.)/3)/2
sage: t1 = tetra('blue').rotateZ(t)
sage: t2 = tetra('red').rotateZ(t).rotate(v,2*pi/5)
sage: t3 = tetra('green').rotateZ(t).rotate(v,4*pi/5)
sage: t4 = tetra('yellow').rotateZ(t).rotate(v,6*pi/5)
sage: t5 = tetra('orange').rotateZ(t).rotate(v,8*pi/5)
sage: show(t1+t2+t3+t4+t5, frame=False)
```

`sage.plot.plot3d.shapes2.point3d(v, size=5, **kwds)`

Plot a point or list of points in 3d space.

**INPUT:**

- `v` - a point or list of points
- `size` - (default: 5) size of the point (or points)
- `color` - a string ("red", "green" etc) or a tuple (r, g, b) with r, g, b numbers between 0 and 1
- `opacity` - (default: 1) if less than 1 then is transparent

**EXAMPLES:**

```python
sage: sum([point3d((i,i^2,i^3), size=5) for i in range(10)])
```

Graphics3d Object

We check to make sure this works with vectors and other iterables:

```python
sage: pl = point3d([vector(ZZ,(1, 0, 0)), vector(ZZ,(0, 1, 0)), (-1, -1, 0))]
sage: print(point(vector((2,3,4))))
```

Graphics3d Object

We check to make sure the options work:

```python
sage: point3d((4,3,2),size=20,color='red',opacity=.5)
```

Graphics3d Object

Numpy arrays can be provided as input:

```python
sage: import numpy
sage: point3d(numpy.array([[1,2,3]]))
sage: point3d(numpy.array([[1,2,3], [4,5,6], [7,8,9]]))
```

Graphics3d Object

3.3. Classes for Lines, Frames, Rulers, Spheres, Points, Dots, and Text
We check that iterators of points are accepted (trac ticket #13890):

```python
sage: point3d(iter([(1,1,2),(2,3,4),(3,5,8)]),size=20,color='red')
Graphics3d Object
```

`sage.plot.plot3d.shapes2.polygon3d(points, color=(0, 0, 1), opacity=1, **options)`

Draw a polygon in 3d.

**INPUT:**

- points – the vertices of the polygon

Type `polygon3d.options` for a dictionary of the default options for polygons. You can change this to change the defaults for all future polygons. Use `polygon3d.reset()` to reset to the default options.

**EXAMPLES:**

A simple triangle:

```python
sage: polygon3d([[0,0,0], [1,2,3], [3,0,0]])
Graphics3d Object
```

Some modern art – a random polygon:

```python
v = [(randrange(-5,5), randrange(-5,5), randrange(-5, 5)) for _ in range(10)]
sage: polygon3d(v)
Graphics3d Object
```

A bent transparent green triangle:

```python
sage: polygon3d([[1, 2, 3], [0,1,0], [1,0,1], [3,0,0]], color=(0,1,0), opacity=0.7)
Graphics3d Object
```

This is the same as using `alpha=0.7`:

```python
sage: polygon3d([[1, 2, 3], [0,1,0], [1,0,1], [3,0,0]], color=(0,1,0), alpha=0.7)
Graphics3d Object
```

`sage.plot.plot3d.shapes2.polygons3d(faces, points, color=(0, 0, 1), opacity=1, **options)`

Draw the union of several polygons in 3d.

Useful to plot a polyhedron as just one `IndexFaceSet`.

**INPUT:**

- faces – list of faces, every face given by the list of indices of its vertices
- points – coordinates of the vertices in the union

**EXAMPLES:**

Two adjacent triangles:

```python
f = [[0,1,2],[1,2,3]]
sage: v = [(-1,0,0),(0,1,1),(0,-1,1),(1,0,0)]
sage: polygons3d(f, v, color='red')
Graphics3d Object
```
sage.plot.plot3d.shapes2.ruler\( (start, end, ticks=4, sub_ticks=4, absolute=False, snap=False, **kwds) \)

Draw a ruler in 3-D, with major and minor ticks.

**INPUT:**

- **start** – the beginning of the ruler, as a list, tuple, or vector.
- **end** – the end of the ruler, as a list, tuple, or vector.
- **ticks** – (default: 4) the number of major ticks shown on the ruler.
- **sub_ticks** – (default: 4) the number of shown subdivisions between each major tick.
- **absolute** – (default: False) if True, makes a huge ruler in the direction of an axis.
- **snap** – (default: False) if True, snaps to an implied grid.

**EXAMPLES:**

A ruler:

```python
sage: from sage.plot.plot3d.shapes2 import ruler
sage: R = ruler([1,2,3],vector([2,3,4])); R
Graphics3d Object
```

A ruler with some options:

```python
sage: R = ruler([1,2,3],vector([2,3,4]),ticks=6, sub_ticks=2, color='red'); R
Graphics3d Object
```

The keyword `snap` makes the ticks not necessarily coincide with the ruler:

```python
sage: ruler([1,2,3],vector([1,2,4]),snap=True)
Graphics3d Object
```

The keyword `absolute` makes a huge ruler in one of the axis directions:

```python
sage: ruler([1,2,3],vector([1,2,4]),absolute=True)
Graphics3d Object
```

sage.plot.plot3d.shapes2.ruler_frame\( (lower_left, upper_right, ticks=4, sub_ticks=4, **kwds) \)

Draw a frame made of 3-D rulers, with major and minor ticks.

**INPUT:**

- **lower_left** – the lower left corner of the frame, as a list, tuple, or vector.
- **upper_right** – the upper right corner of the frame, as a list, tuple, or vector.
- **ticks** – (default: 4) the number of major ticks shown on each ruler.
- **sub_ticks** – (default: 4) the number of shown subdivisions between each major tick.

**EXAMPLES:**

A ruler frame:

```python
sage: from sage.plot.plot3d.shapes2 import ruler_frame
sage: F = ruler_frame([1,2,3],vector([2,3,4])); F
Graphics3d Object
```

A ruler frame with some options:

```python
sage: ruler_frame([1,2,3],vector([2,3,4]),ticks=6, sub_ticks=2, color='red')
Graphics3d Object
```
sage: F = ruler_frame([1,2,3],vector([2,3,4]),ticks=6, sub_ticks=2, color='red');
F
Graphics3d Object

sage.plot.plot3d.shapes2.sphere(center=(0, 0, 0), size=1, **kwds)
Return a plot of a sphere of radius size centered at (x, y, z).

INPUT:
• (x, y, z) – center (default: (0,0,0))
• size – the radius (default: 1)

EXAMPLES: A simple sphere:

sage: sphere()
Graphics3d Object

Two spheres touching:

sage: sphere(center=(-1,0,0)) + sphere(center=(1,0,0), aspect_ratio=[1,1,1])
Graphics3d Object

Spheres of radii 1 and 2 one stuck into the other:

sage: sphere(color='orange') + sphere(color=(0,0,0.3),
..: center=(0,0,-2),size=2,opacity=0.9)
Graphics3d Object

We draw a transparent sphere on a saddle.

sage: u,v = var('u v')
sage: saddle = plot3d(u^2 - v^2, (u,-2,2), (v,-2,2))
sage: sphere((0,0,1), color='red', opacity=0.5, aspect_ratio=[1,1,1]) + saddle
Graphics3d Object

sage.plot.plot3d.shapes2.text3d(txt, x_y_z, **kwds)
Display 3d text.

INPUT:
• txt – some text
• (x, y, z) – position tuple (x, y, z)
• **kwds – standard 3d graphics options

Note: There is no way to change the font size or opacity yet.

EXAMPLES:

We write the word Sage in red at position (1,2,3):

sage: text3d("Sage", (1,2,3), color=(0.5,0,0))
Graphics3d Object

We draw a multicolor spiral of numbers:
sage: sum([text3d('%.1f
(cos(n),sin(n),n), color=(n/2,1-n/2,0))
....: for n in [0,0.2,..,8]])
Graphics3d Object

Another example:

sage: text3d("Sage is really neat!!",(2,12,1))
Graphics3d Object

And in 3d in two places:

sage: text3d("Sage is...",(2,12,1), color=(1,0,0)) + text3d("quite powerful!!",(4, 10,0), color=(0,0,1))
Graphics3d Object

3.4 Platonic Solids

EXAMPLES: The five platonic solids in a row:

sage: G = tetrahedron((0,-3.5,0), color='blue') + cube((0,-2,0),color=(.25,0,.5))
sage: G += octahedron(color='red') + dodecahedron((0,2,0), color='orange')
sage: G += icosahedron(center=(0,4,0), color='yellow')
sage: G.show(aspect_ratio=[1,1,1])

All the platonic solids in the same place:

sage: G = tetrahedron(color='blue',opacity=0.7)
sage: G += cube(color=(.25,0,.5), opacity=0.7)
sage: G += octahedron(color='red', opacity=0.7)
sage: G += dodecahedron(color='orange', opacity=0.7) + icosahedron(opacity=0.7)
sage: G.show(aspect_ratio=[1,1,1])

Display nice faces only:

sage: icosahedron().stickers(['red','blue'], .075, .1)
Graphics3d Object

AUTHORS:

• Robert Bradshaw (2007, 2008): initial version
• William Stein

sage.plot.plot3d.platonic.cube(center=(0, 0, 0), size=1, color=None, frame_thickness=0, frame_color=None, **kwds)

A 3D cube centered at the origin with default side lengths 1.

INPUT:

• center – (default: (0,0,0))
• size – (default: 1) the side lengths of the cube
• color – a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
• frame_thickness – (default: 0) if positive, then thickness of the frame
• frame_color – (default: None) if given, gives the color of the frame
Chapter 3. Basic Shapes and Primitives
3.4. Platonic Solids
• opacity – (default: 1) if less than 1 then it’s transparent

EXAMPLES:

A simple cube:

```
sage: cube()
Graphics3d Object
```

A red cube:

```
sage: cube(color="red")
Graphics3d Object
```

A transparent grey cube that contains a red cube:

```
sage: cube(opacity=0.8, color='grey') + cube(size=3/4)
Graphics3d Object
```

A transparent colored cube:

```
sage: cube(color=['red', 'green', 'blue'], opacity=0.5)
Graphics3d Object
```

A bunch of random cubes:
3.4. Platonic Solids
```python
sage: v = [(random(), random(), random()) for _ in [1..30]]
sage: sum([cube((10*a,10*b,10*c), size=random()/3, color=(a,b,c)) for a,b,c in v])
Graphics3d Object
```

Non-square cubes (boxes):

```python
sage: cube(aspect_ratio=[1,1,1]).scale([1,2,3])
Graphics3d Object
```

```python
sage: cube(color=['red', 'blue', 'green'],aspect_ratio=[1,1,1]).scale([1,2,3])
Graphics3d Object
```

And one that is colored:

```python
sage: cube(color=['red', 'blue', 'green', 'black', 'white', 'orange'],
.....: aspect_ratio=[1,1,1]).scale([1,2,3])
Graphics3d Object
```

A nice translucent color cube with a frame:

```python
sage: c = cube(color=['red', 'blue', 'green'], frame=False, frame_thickness=2,
.....: frame_color='brown', opacity=0.8)
sage: c
Graphics3d Object
```
3.4. Platonic Solids
Chapter 3. Basic Shapes and Primitives
3.4. Platonic Solids
A raytraced color cube with frame and transparency:

```sage```
c.show(viewer='tachyon')
```

This shows trac ticket #11272 has been fixed:

```sage```
cube(center=(10, 10, 10), size=0.5).bounding_box()
```
((9.75, 9.75, 9.75), (10.25, 10.25, 10.25))

AUTHORS:

• William Stein

`sage.plot.plot3d.platonic.dodecahedron` *(center=(0, 0, 0), size=1, **kwds)*

A dodecahedron.

INPUT:

• `center` – (default: (0,0,0))

• `size` – (default: 1)

• `color` – a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.

• `opacity` – (default: 1) if less than 1 then is transparent

EXAMPLES: A plain Dodecahedron:

```sage```
dodecahedron()
Graphics3d Object
```

A translucent dodecahedron that contains a black sphere:

```sage```
G = dodecahedron(color='orange', opacity=0.8)
G += sphere(size=0.5, color='black')
G
```
Graphics3d Object

CONSTRUCTION: This is how we construct a dodecahedron. We let one point be $Q = (0, 1, 0)$.

Now there are three points spaced equally on a circle around the north pole. The other requirement is that the angle between them be the angle of a pentagon, namely $3\pi/5$. This is enough to determine them. Placing one on the $xz$-plane we have.

$P_1 = (t, 0, \sqrt{1 - t^2})$

$P_2 = \left(-\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1 - t^2}\right)$

$P_3 = \left(-\frac{1}{2}t, -\frac{\sqrt{3}}{2}t, \sqrt{1 - t^2}\right)$

Solving $\frac{(P_1 - Q) \cdot (P_2 - Q)}{|P_1 - Q||P_2 - Q|} = \cos(3\pi/5)$ we get $t = \frac{2}{3}$.

Now we have 6 points $R_1, ..., R_6$ to close the three top pentagons. These can be found by mirroring $P_2$ and $P_3$ by the $yz$-plane and rotating around the $y$-axis by the angle $\theta$ from $Q$ to $P_1$. Note that $\cos(\theta) = t = \frac{2}{3}$ and so $\sin(\theta) = \sqrt{3}/3$. Rotation gives us the other four.

Now we reflect through the origin for the bottom half.

AUTHORS:

• Robert Bradshaw, William Stein
3.4. Platonic Solids
sage.plot.plot3d.platonic.icosahedron(center=(0, 0, 0), size=1, **kwds)
An icosahedron.

INPUT:

• center – (default: (0, 0, 0))
• size – (default: 1)
• color – a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
• opacity – (default: 1) if less than 1 then is transparent

EXAMPLES:

```python
sage: icosahedron()
Graphics3d Object
```

Two icosahedra at different positions of different sizes.

```python
sage: p = icosahedron((-1/2,0,1), color='orange')
sage: p += icosahedron((2,0,1), size=1/2, color='red', aspect_ratio=[1,1,1])
sage: p
Graphics3d Object
```

sage.plot.plot3d.platonic.index_face_set(face_list, point_list, enclosed, **kwds)
Helper function that creates IndexFaceSet object for the tetrahedron, dodecahedron, and icosahedron.

3.4. Platonic Solids 243
INPUT:

- `face_list` – list of faces, given explicitly from the solid invocation
- `point_list` – list of points, given explicitly from the solid invocation
- `enclosed` – boolean (default passed is always True for these solids)

```sage
dodecahedron(center=(2,0,0),size=2,color='red')
Graphics3d Object
```

```sage
icosahedron(center=(2,0,0),size=2,color='red')
Graphics3d Object
```

```sage
sage.plot.plot3d.platonic.octahedron(center=(0, 0, 0), size=1, **kwds)
```

Return an octahedron.

**INPUT:**

- `center` – (default: (0,0,0))
- `size` – (default: 1)
- `color` – a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
- `opacity` – (default: 1) if less than 1 then is transparent

**EXAMPLES:**

```sage
G = octahedron((1,4,3), color='orange')
sage: G += octahedron((0,2,1), size=2, opacity=0.6)
sage: G
Graphics3d Object
```

```sage
sage.plot.plot3d.platonic.tetrahedron(center=(0,0,0), size=1, **kwds)
```

A 3d tetrahedron.

**INPUT:**

- `center` – 3-tuple indicating the center (default passed from `index_face_set()` is the origin (0, 0, 0))
- `size` – number indicating amount to scale by (default passed from `index_face_set()` is 1)
- `kwds` – a dictionary of keywords, passed from solid invocation by `index_face_set()`

**EXAMPLES:** A default colored tetrahedron at the origin:

```sage
tetrahedron()
Graphics3d Object
```

A transparent green tetrahedron in front of a solid red one:

### 3.4. Platonic Solids

245
3.4. Platonic Solids
A translucent tetrahedron sharing space with a sphere:

```
sage: tetrahedron(color='yellow', opacity=0.7) + sphere(size=0.5, color='red')
```

A big tetrahedron:

```
sage: tetrahedron(size=10)
```

A wide tetrahedron:

```
sage: tetrahedron(aspect_ratio=[1,1,1]).scale([4,4,1])
```

A red and blue tetrahedron touching noses:

```
sage: tetrahedron(color='red') + tetrahedron((0,0,-2)).scale([1,1,-1])
```

A Dodecahedral complex of 5 tetrahedra (a more elaborate example from Peter Jipsen):
3.4. Platonic Solids
3.4. Platonic Solids
AUTHORS:

- Robert Bradshaw and William Stein

### 3.5 Parametric Surface

Graphics 3D object for triangulating surfaces, and a base class for many other objects that can be represented by a 2D parametrization.

It takes great care to turn degenerate quadrilaterals into triangles and to propagate identified points to all attached polygons. This is not so much to save space as it is to assist the raytracers/other rendering systems to better understand the surface (and especially calculate correct surface normals).

AUTHORS:
EXAMPLES:

```python
sage: from sage.plot.plot3d.parametric_surface import ParametricSurface, MoebiusStrip
sage: def f(x,y): return x+y, sin(x)*sin(y), x*y
sage: P = ParametricSurface(f, (srange(0,10,0.1), srange(-5,5,0.1)))
```

```python
sage: show(P)
```

```python
sage: S = MoebiusStrip(1,.2)
```

```python
sage: S.is_enclosed()
False
```

```python
sage: S.show()
```

By default, the surface is colored with one single color.

```python
sage: P = ParametricSurface(f, (srange(0,10,0.1), srange(-5,5,0.1)),
....: color="red")
```

```python
sage: P.show()
```

One can instead provide a coloring function and a colormap:

```python
sage: def f(x,y): return x+y, x-y, x*y
```

```python
sage: def c(x,y): return sin((x+y)/2)**2
```

```python
sage: cm = colormaps.RdYlGn
```

```python
sage: P = ParametricSurface(f, (srange(-5,5,0.1), srange(-5,5,0.1)), color=(c,cm))
```

```python
sage: P.show(viewer='tachyon')
```

Note that the coloring function should rather have values between 0 and 1. This value is passed to the chosen colormap.

Another colored example:

```python
sage: colm = colormaps.autumn
sage: def g(x,y): return x, y, x**2 + y**2
```

```python
sage: P = ParametricSurface(g, (srange(-10,10,0.1), srange(-5,5,0.1)), color=(c,colm))
```

```python
sage: P.show(viewer='tachyon')
```

**Warning:** This kind of coloring using a colormap can be visualized using Jmol, Tachyon (option `viewer='tachyon'`) and Canvas3D (option `viewer='canvas3d'` in the notebook).

**Note:** One may override `eval()` or `eval_c()` in a subclass rather than passing in a function for greater speed. One also would want to override `get_grid`

**Todo:** actually remove unused points, fix the below code:

```python
S = ParametricSurface(f=lambda xy: (xy[0],xy[1],0), domain=(range(10),range(10)))
```

```python
class sage.plot.plot3d.parametric_surface.MoebiusStrip(r, width, twists=1, **kwds)
```

```python
Bases: sage.plot.plot3d.parametric_surface.ParametricSurface
```

Base class for the `MoebiusStrip` graphics type. This sets the basic parameters of the object.
• $r$ – a number which can be coerced to a float, serving roughly as the radius of the object
• width – a number which can be coerced to a float, which gives the width of the object
• twists – (default: 1) an integer, giving the number of twists in the object (where one twist is the ‘traditional’ Möbius strip)

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: M = MoebiusStrip(3,3)
sage: M.show()
```

**eval** ($u$, $v$)

Return a tuple for $x$, $y$, $z$ coordinates for the given $u$ and $v$ for this MoebiusStrip instance.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: N = MoebiusStrip(7,3,2) # two twists
sage: N.eval(-1,0)
(4.0, 0.0, -0.0)
```

**get_grid** ($ds$)

Return appropriate $u$ and $v$ ranges for this MoebiusStrip instance.

This is intended for internal use in creating an actual plot.

**INPUT:**

• $ds$ – A number, typically coming from a RenderParams object, which helps determine the increment for the $v$ range for the MoebiusStrip object.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: N = MoebiusStrip(7,3,2) # two twists
sage: N.get_grid(N.default_render_params().ds)
([-1, 1], [0.0, 0.12566370614359174, 0.25132741228718347, 0.37699111843077515, ...
```

```python
class sage.plot.plot3d.parametric_surface.ParametricSurface
Bases: sage.plot.plot3d.index_face_set.IndexFaceSet
```

Base class that initializes the ParametricSurface graphics type. This sets options, the function to be plotted, and the plotting array as attributes.

**INPUT:**

• $f$ - (default: None) The defining function. Either a tuple of three functions, or a single function which returns a tuple, taking two python floats as input. To subclass, pass None for $f$ and override eval_c or eval instead.

• domain - (default: None) A tuple of two lists, defining the grid of $u,v$ values. If None, this will be calculated automatically.

• color - (default: None) A pair $(h, c)$ where $h$ is a function with values in $[0, 1]$ and $c$ is a colormap. The color of a point $p$ is then defined as the composition $c(h(p))$

**EXAMPLES:**

3.5. Parametric Surface
```python
sage: from sage.plot.plot3d.parametric_surface import ParametricSurface
sage: def f(x,y):
 return cos(x)*sin(y), sin(x)*sin(y), cos(y)+log(tan(y/2))+0.2*x
sage: S = ParametricSurface(f, (srange(0,12.4,0.1), srange(0.1,2,0.1)))
sage: show(S)
sage: len(S.face_list())
2214
```

The Hessenberg surface:

```python
sage: def f(u,v):
 a = 1
 from math import cos, sin, sinh, cosh
 x = cos(a)*(cos(u)*sinh(v)-cos(3*u)*sinh(3*v)/3) + sin(a)*(sin(u)*cosh(v)-sin(3*u)*cosh(3*v)/3)
 y = cos(a)*(sin(u)*sinh(v)+sin(3*u)*sinh(3*v)/3) + sin(a)*(-cos(u)*cosh(v)-cos(3*u)*cosh(3*v)/3)
 z = cos(a)*cos(2*u)*cosh(2*v)+sin(a)*sin(2*u)*sinh(2*v)
 return (x,y,z)
sage: v = srange(float(0),float((3/2)*pi),float(0.1))
sage: S = ParametricSurface(f, (srange(float(0),float(pi),float(0.1)),
 srange(float(-1),float(1),float(0.1))), color="blue")
sage: show(S)
```

A colored example using the `color` keyword:

```python
sage: def g(x,y):
 return x, y, - x**2 + y**2
sage: def c(x,y):
 return sin((x-y/2)*y/4)**2
sage: cm = colormaps.gist_rainbow
sage: P = ParametricSurface(g, (srange(-10,10,0.1),
 srange(-5,5.0,0.1)),color=(c,cm))
sage: P.show(viewer='tachyon')
```

`bounding_box()`

Return the lower and upper corners of a 3D bounding box for `self`.

This is used for rendering and `self` should fit entirely within this box.

Specifically, the first point returned should have x, y, and z coordinates should be the respective infimum over all points in `self`, and the second point is the supremum.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: M = MoebiusStrip(7,3,2)
sage: M.bounding_box()
((-10.0, -7.53907349250478..., -2.9940801852848145), (10.0, 7.53907349250478...
˓
→ , 2.9940801852848145))
```

`default_render_params()`

Return an instance of RenderParams suitable for plotting this object.

`dual()`

Return an IndexFaceSet which is the dual of the `ParametricSurface` object as a triangulated surface.

**EXAMPLES:**

As one might expect, this gives an icosahedron:
sage: D = dodecahedron()
sage: D.dual()
Graphics3d Object

But any enclosed surface should work:

sage: from sage.plot.plot3d.shapes import Torus
sage: T = Torus(1, .2)
sage: T.dual()
Graphics3d Object
sage: T.is_enclosed()
True

Surfaces which are not enclosed, though, should raise an exception:

sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: M = MoebiusStrip(3,1)
sage: M.is_enclosed()
False
sage: M.dual()
Traceback (most recent call last):
...  
NotImplementedError: This is only implemented for enclosed surfaces

eval\((u, v)\)

get_grid\((ds)\)

is_enclosed()

    Return a boolean telling whether or not it is necessary to render the back sides of the polygons (assuming, 
    of course, that they have the correct orientation).

    This is calculated in by verifying the opposite edges of the rendered domain either line up or are pinched 
    together.

    EXAMPLES:

sage: from sage.plot.plot3d.shapes import Sphere
sage: Sphere(1).is_enclosed()
True
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: MoebiusStrip(1,0.2).is_enclosed()
False

jmol_repr\((\text{render\_params})\)

    Return a representation of the object suitable for plotting using Jmol.

json_repr\((\text{render\_params})\)

    Return a representation of the object in JSON format as a list with one element, which is a string of a 
    dictionary listing vertices, faces and colors.

obj_repr\((\text{render\_params})\)

    Return a complete representation of object with name, texture, and lists of vertices, faces, and back-faces.

plot()

    Draw a 3D plot of this graphics object, which just returns this object since this is already a 3D graphics 
    object. Needed to support PLOT in doctstrings, see trac ticket #17498

EXAMPLES:

```python
sage: S = parametric_plot3d((sin, cos, lambda u: u/10), (0, 20))
sage: S.plot() is S
True
```

tachyon_repr (render_params)
Return representation of the object suitable for plotting using Tachyon ray tracer.

triangulate (render_params=None)
Call self.eval_grid() for all \((u, v)\) in urange \times vrange to construct this surface.

The most complicated part of this code is identifying shared vertices and shrinking trivial edges. This is not done so much to save memory, rather it is needed so normals of the triangles can be calculated correctly.

x3d_geometry()
Return XML-like representation of the coordinates of all points in a triangulation of the object along with an indexing of those points.

3.6 Graphics 3D Object for Representing and Triangulating Isosurfaces.

AUTHORS:


```python
class sage.plot.plot3d.implicit_surface.ImplicitSurface
Bases: sage.plot.plot3d.index_face_set.IndexFaceSet

bounding_box()
Return a bounding box for the ImplicitSurface, as a tuple of two 3-dimensional points.

EXAMPLES:

Note that the bounding box corresponds exactly to the x-, y-, and z- range:

```python
sage: from sage.plot.plot3d.implicit_surface import ImplicitSurface
sage: G = ImplicitSurface(0, (0, 1), (0, 1), (0, 1))
sage: G.bounding_box()
((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))
```

color_function
colormap
contours
f

gradient
jmol_repr (render_params)
Return a representation of this object suitable for use with the Jmol renderer.

json_repr (render_params)
Return a representation of this object in JavaScript Object Notation (JSON).
obj_repr *(render_params)*
Return a representation of this object in the .obj format.

plot_points
region
smooth

tachyon_repr *(render_params)*
Return a representation of this object suitable for use with the Tachyon renderer.

triangulate *(force=False)*
The IndexFaceSet will be empty until you call this method, which generates the faces and vertices according to the parameters specified in the constructor for ImplicitSurface.

Note that if you call this method more than once, subsequent invocations will have no effect (this is an optimization to avoid repeated work) unless you specify *force=True* in the keywords.

EXAMPLES:

```python
sage: from sage.plot.plot3d.implicit_surface import ImplicitSurface
sage: var('x,y,z')
(x, y, z)
sage: G = ImplicitSurface(x + y + z, (x,-1, 1), (y,-1, 1), (z,-1, 1))
sage: len(G.vertex_list()), len(G.face_list())
(0, 0)
sage: G.triangulate()
sage: len(G.vertex_list()) > 0, len(G.face_list()) > 0
(True, True)
sage: G.show()  # This should be fast, since the mesh is already triangulated.
```

vars
xrange
yrange
zrange

class *sage.plot.plot3d.implicit_surface.MarchingCubes*
Bases: object
Handles marching cube rendering.

Protocol:
1. Create the class.
2. Call *process_slice* once for each X slice, from self.nx > x >= 0.
3. Call *finish()*, which returns a list of strings.

Note: Actually, only 4 slices ever exist; the caller will re-use old storage.

color_function
colormap
contour

finish()
Return the results of the marching cubes algorithm as a list.

3.6. Graphics 3D Object for Representing and Triangulating Isosurfaces. 259
The format is specific to the subclass implementing this method.

<table>
<thead>
<tr>
<th>gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>nx</td>
</tr>
<tr>
<td>ny</td>
</tr>
<tr>
<td>nz</td>
</tr>
<tr>
<td>region</td>
</tr>
<tr>
<td>results</td>
</tr>
<tr>
<td>smooth</td>
</tr>
<tr>
<td>transform</td>
</tr>
<tr>
<td>xrange</td>
</tr>
<tr>
<td>yrange</td>
</tr>
<tr>
<td>zrange</td>
</tr>
</tbody>
</table>

class `sage.plot.plot3d.implicit_surface.MarchingCubesTriangles`
Bases: `sage.plot.plot3d.implicit_surface.MarchingCubes`
A subclass of `MarchingCubes` that returns its results as a list of triangles, including their vertices and normals (if `smooth=True`). And also their vertex colors if a vertex coloring function is given.

add_triangle(v1, v2, v3)
Called when a new triangle is generated by the marching cubes algorithm to update the results array.

process_cubes(_left, _right)
process_slice(x, slice)
Process a single slice of function evaluations at the specified x coordinate.

EXAMPLES:

```python
sage: from sage.plot.plot3d.implicit_surface import MarchingCubesTriangles
sage: import numpy as np
sage: cube_marcher = MarchingCubesTriangles((-2, 2), (-2, 2), (-2, 2), 4, (10, ˓→3), smooth=False)
sage: f = lambda x, y, z: x^2 + y^2 + z^2
sage: slices = np.zeros((10, 10, 10), dtype=np.double)
sage: for x in reversed(range(0, 10)):
    for y in range(0, 10):
        for z in range(0, 10):
            slices[x, y, z] = f(*[a * (4 / 9) -2 for a in (x, y, z)])
    cube_marcher.process_slice(x, slices[x, :, :])
sage: faces = cube_marcher.finish()
sage: faces[0][0]  
{'x': 1.555555555555..., 'y': -1.111111111111..., 'z': -0.555555555555...}
```

We render the isosurface using `IndexFaceSet`:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: IndexFaceSet([tuple((p['x'], p['y'], p['z'])) for p in face] for face in faces)
Graphics3d Object
```

slices
\begin{verbatim}
x_vertices
y_vertices
y_vertices_swapped
z_vertices
z_vertices_swapped

class sage.plot.plot3d.implicit_surface.VertexInfo
 Bases: object

sage.plot.plot3d.implicit_surface.render_implicit(f, xrange, yrange, zrange, plot_points, cube_marchers)

INPUT:
 \begin{itemize}
 \item f - a (fast!) callable function
 \item xrange - a 2-tuple (x_min, x_max)
 \item yrange - a 2-tuple (y_min, y_max)
 \item zrange - a 2-tuple (z_min, z_max)
 \item plot_points - a triple of integers indicating the number of function evaluations in each direction.
 \item cube_marchers - a list of cube marchers, one for each contour.
 \end{itemize}

OUTPUT:
 A representation of the isosurface, in the format specified by the individual cube marchers.
\end{verbatim}
4.1 Texture Support

This module provides texture/material support for 3D Graphics objects and plotting. This is a very rough common interface for Tachyon, x3d, and obj (mtl). See Texture and Texture_class for full details about options and use.

Initially, we have no textures set:

```python
sage: sage.plot.plot3d.base.Graphics3d().texture_set()
set()
```

However, one can access these textures in the following manner:

```python
sage: G = tetrahedron(color='red') + tetrahedron(color='yellow') + tetrahedron(color='red', opacity=0.5)
sage: [t for t in G.texture_set() if t.color == colors.red]  # we should have two red

[Texture(texture..., red, ff0000), Texture(texture..., red, ff0000)]
sage: [t for t in G.texture_set() if t.color == colors.yellow]  # ...and one yellow

[Texture(texture..., yellow, ffff00)]
```

And the Texture objects keep track of all their data:

```python
sage: T = tetrahedron(color='red', opacity=0.5)
sage: t = T.get_texture()
sage: t.opacity
0.5
sage: T  # should be translucent
Graphics3d Object
```

AUTHOR:


```
sage.plot.plot3d.texture.Texture(id=None, **kwds)
```

Return a texture.

INPUT:

- `id` - a texture (optional, default: None), a dict, a color, a str, a tuple, None or any other type acting as an ID. If `id` is None and keyword `texture` is empty, then it returns a unique texture object.
- `texture` - a texture
- `color` - tuple or str, (optional, default: (.4, .4, 1))
• opacity - number between 0 and 1 (optional, default: 1)
• ambient - number (optional, default: 0.5)
• diffuse - number (optional, default: 1)
• specular - number (optional, default: 0)
• shininess - number (optional, default: 1)
• name - str (optional, default: None)
• **kwds - other valid keywords

OUTPUT:
A texture object.

EXAMPLES:
Texture from integer id:

```
sage: from sage.plot.plot3d.texture import Texture
sage: Texture(17)
sage: Texture(17, 6666ff)
```

Texture from rational id:

```
sage: Texture(3/4)
sage: Texture(3/4, 6666ff)
```

Texture from a dict:

```
sage: Texture({'color':'orange','opacity':0.5})
sage: Texture(texture..., orange, ffa500)
```

Texture from a color:

```
sage: c = Color('red')
sage: Texture(c)
sage: Texture(texture..., ff0000)
```

Texture from a valid string color:

```
sage: Texture('red')
sage: Texture(texture..., red, ff0000)
```

Texture from a non valid string color:

```
sage: Texture('redd')
sage: Texture(redd, 6666ff)
```

Texture from a tuple:

```
sage: Texture((.2,.3,.4))
sage: Texture(texture..., 334c66)
```

Textures using other keywords:
class sage.plot.plot3d.texture.Texture_class(id, color=(0.4, 0.4, 1), opacity=1, ambient=0.5, diffuse=1, specular=0, shininess=1, name=None, **kwds)

Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.SageObject

Construction of a texture.

See documentation of Texture for more details and examples.

EXAMPLES:

We create a translucent texture:

```python
sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
sage: t.opacity
0.6
```

`jmol_str(obj)`

Converts Texture object to string suitable for Jmol applet.

INPUT:

* obj - str

EXAMPLES:

```python
sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
```

```python
sage: t.jmol_str('obj')
'color obj translucent 0.4 [102,102,255]'
```

`hex_rgb()`

EXAMPLES:

```python
sage: from sage.plot.plot3d.texture import Texture
sage: Texture('red').hex_rgb()
'ff0000'
sage: Texture((1, .5, 0)).hex_rgb()
'ff7f00'
```
sage: sum([dodecahedron(center=[2.5*x, 0, 0], color=(1, 0, 0, x/10)) for x in range(11)]).show(aspect_ratio=[1,1,1], frame=False, zoom=2)

mtl_str()
Converts Texture object to string suitable for mtl output.

EXAMPLES:

sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
sage: t.mtl_str()
'newmtl texture...
Ka 0.2 0.2 0.5
Kd 0.4 0.4 1.0
Ks 0.0 0.0 0.0
illum 1
Ns 1.0
d 0.6'

tachyon_str()
Converts Texture object to string suitable for Tachyon ray tracer.

EXAMPLES:

sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
sage: t.tachyon_str()
'Texdef texture...
 Ambient 0.3333333333333333 Diffuse 0.6666666666666666 Specular 0.0 Opacity 0.6
 Color 0.4 0.4 1.0
 TexFunc 0'

x3d_str()
Converts Texture object to string suitable for x3d.

EXAMPLES:

sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
sage: t.x3d_str()
"<Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0'
specularColor='0.0 0.0 0.0'/></Appearance>"

sage.plot.plot3d.texture.is_Texture(x)
Return whether x is an instance of Texture_class.

EXAMPLES:

sage: from sage.plot.plot3d.texture import is_Texture, Texture
sage: t = Texture(0.5)
sage: is_Texture(t)
True
sage: is_Texture(4)
False

sage.plot.plot3d.texture.parse_color(info, base=None)
Parses the color.

It transforms a valid color string into a color object and a color object into an RBG tuple of length 3. Otherwise, it multiplies the info by the base color.

INPUT:

• info - color, valid color str or number
• base - tuple of length 3 (optional, default: None)
OUTPUT:
A tuple or color.

EXAMPLES:
From a color:

```
sage: from sage.plot.plot3d.texture import parse_color
sage: c = Color('red')
sage: parse_color(c)
(1.0, 0.0, 0.0)
```

From a valid color str:

```
sage: parse_color('red')
RGB color (1.0, 0.0, 0.0)
sage: parse_color('#ff0000')
RGB color (1.0, 0.0, 0.0)
```

From a non valid color str:

```
sage: parse_color('redd')
Traceback (most recent call last):
  ... ...
ValueError: unknown color 'redd'
```

From an info and a base:

```
sage: opacity = 10
sage: parse_color(opacity, base=(.2,.3,.4))
(2.0, 3.0, 4.0)
```

4.2 Indexed Face Sets

Graphics3D object that consists of a list of polygons, also used for triangulations of other objects.

Usually these objects are not created directly by users.

AUTHORS:

- Robert Bradshaw (2007-08-26): initial version
- Robert Bradshaw (2007-08-28): significant optimizations

Todo: Smooth triangles using vertex normals

class sage.plot.plot3d.index_face_set.EdgeIter
 Bases: object
 A class for iteration over edges

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: len(list(S.edges())) == 12  # indirect doctest
True
```
next ()
 x.next() -> the next value, or raise StopIteration

class sage.plot.plot3d.index_face_set.FaceIter
 Bases: object
 A class for iteration over faces

 EXAMPLES:

 sage: from sage.plot.plot3d.shapes import *
 sage: S = Box(1,2,3)
 sage: len(list(S.faces())) == 6 # indirect doctest
 True

next ()
 x.next() -> the next value, or raise StopIteration

class sage.plot.plot3d.index_face_set.IndexFaceSet
 Bases: sage.plot.plot3d.base.PrimitiveObject
 Graphics3D object that consists of a list of polygons, also used for triangulations of other objects.

 Polygons (mostly triangles and quadrilaterals) are stored in the c struct face_c (see transform.pyx). Rather
 than storing the points directly for each polygon, each face consists a list of pointers into a common list of points
 which are basically triples of doubles in a point_c.

 Moreover, each face has an attribute color which is used to store color information when faces are colored. The
 red/green/blue components are then available as floats between 0 and 1 using color.r, color.g, color.b.

 Usually these objects are not created directly by users.

 EXAMPLES:

 sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
 sage: S = IndexFaceSet([(1,0,0),(0,1,0),(0,0,1)],[(1,0,0),(0,1,0),(0,0,0)])
 sage: S.face_list()
 [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0), (0.0, 0.0, 0.0)]
 sage: S.vertex_list()
 [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0), (0.0, 0.0, 0.0)]

 sage: def make_face(n):
 ... return [(0,0,n),(0,1,n),(1,1,n),(1,0,n)]
 sage: S = IndexFaceSet([make_face(n) for n in range(10)])
 sage: S.show()

 sage: point_list = [(1,0,0),(0,1,0)] + [(0,0,n) for n in range(10)]
 sage: face_list = [[0,1,n] for n in range(2,10)]
 sage: S = IndexFaceSet(face_list, point_list, color='red')
 sage: S.face_list()
 [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 0.0), (0.0, 0.0, 1.0),
 (0.0, 0.0, 1.0), (0.0, 2.0, 0.0), (1.0, 1.0, 0.0), (0.0, 3.0, 0.0),
 (0.0, 4.0, 0.0), (0.0, 0.0, 0.0), (0.0, 0.0, 5.0),
 (0.0, 0.0, 6.0), (0.0, 0.0, 7.0)]
 sage: S.show()

A simple example of colored IndexFaceSet (trac ticket #12212):
```
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
sage: t_list = [Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
sage: S.show(viewer='tachyon')
```

bounding_box()
Calculate the bounding box for the vertices in this object (ignoring infinite or NaN coordinates).

OUTPUT:
a tuple ((low_x, low_y, low_z), (high_x, high_y, high_z)), which gives the coordinates of opposite corners of the bounding box.

EXAMPLES:
```
sage: x, y = var('x, y')
sage: p = plot3d(sqrt(sin(x)*sin(y)), (x,0,2*pi),(y,0,2*pi))
sage: p.bounding_box()
((0.0, 0.0, -0.0), (6.283185307179586, 6.283185307179586, 0.9991889981715697))
```

dual(\texttt{**kwds**})**
Return the dual.

EXAMPLES:
```
sage: S = cube()
sage: T = S.dual()
sage: len(T.vertex_list())
6
```

edge_list()
Return the list of edges.

EXAMPLES:
```
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: S.edge_list()[0]
((1.0, -2.0, 3.0), (1.0, 2.0, 3.0))
```

edges()
An iterator over the edges.

EXAMPLES:
```
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: list(S.edges())[0]
((1.0, -2.0, 3.0), (1.0, 2.0, 3.0))
```

face_list()
Return the list of faces.

Every face is given as a tuple of vertices.

EXAMPLES:

4.2. Indexed Face Sets
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: S.face_list()[0]
[(1.0, 2.0, 3.0), (-1.0, 2.0, 3.0), (-1.0, -2.0, 3.0), (1.0, -2.0, 3.0)]

faces()
An iterator over the faces.

EXAMPLES:

sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: list(S.faces()) == S.face_list()
True

has_local_colors()
Return True if and only if every face has an individual color.

EXAMPLES:

sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
sage: t_list=[Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
sage: S.has_local_colors()
True
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
S.has_local_colors()
False

index_faces()
Return the list over all faces of the indices of the vertices.

EXAMPLES:

sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: S.index_faces()
[[0, 1, 2, 3],
 [0, 4, 5, 1],
 [0, 3, 6, 4],
 [5, 4, 6, 7],
 [6, 3, 2, 7],
 [2, 1, 5, 7]]

index_faces_with_colors()
Return the list over all faces of (indices of the vertices, color).

This only works if every face has its own color.

See also:

has_local_colors()

EXAMPLES:
A simple colored one:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
```

```python
sage: t_list=[Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)

sage: S.index_faces_with_colors()
[(0, 4, 5), '#ff0000'),
 ([3, 4, 5], '#ff9900'),
 ([2, 3, 4], '#cbff00'),
 ([1, 3, 5], '#33ff00')]
```

When the texture is global, an error is raised:

```python
sage: from sage.plot.plot3d.shapes import *

sage: S = Box(1,2,3)

sage: S.index_faces_with_colors()
Traceback (most recent call last):
... ValueError: the texture is global
```

is_enclosed()

Whether or not it is necessary to render the back sides of the polygons.

One is assuming, of course, that they have the correct orientation.

This is may be passed in on construction. It is also calculated in `sage.plot.plot3d.parametric_surface.ParametricSurface` by verifying the opposite edges of the rendered domain either line up or are pinched together.

EXAMPLES:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet

sage: IndexFaceSet([[0,0,1),(0,1,0),(1,0,0)]).is_enclosed()
False
```

jmol_repr *(render_params)*

Return a jmol representation for self.

json_repr *(render_params)*

Return a json representation for self.

obj_repr *(render_params)*

Return an obj representation for self.

partition *(f)*

Partition the faces of self.

The partition is done according to the value of a map $f : \mathbb{R}^3 \to \mathbb{Z}$ applied to the center of each face.

INPUT:

- f – a function from \mathbb{R}^3 to \mathbb{Z}

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import *

sage: S = Box(1,2,3)
```
sticker(face_list, width, hover, **kwds)
Return a sticker on the chosen faces.

stickers(colors, width, hover)
Return a group of IndexFaceSets.

INPUT:
- colors – list of colors/textures to use (in cyclic order)
- width – offset perpendicular into the edge (to create a border) may also be negative
- hover – offset normal to the face (usually have to float above the original surface so it shows, typically this value is very small compared to the actual object)

OUTPUT:
Graphics3dGroup of stickers

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Box
sage: B = Box(.5,.4,.3, color='black')
```

```python
sage: S = B.stickers(['red','yellow','blue'], 0.1, 0.05)
```

```python
sage: S.show()
```

```python
sage: (S+B).show()
```

\[
\text{tachyon_repr}(\text{render_params})
\]
Return a tachyon object for self.

EXAMPLES:

A basic test with a triangle:

```python
sage: G = polygon([(0,0,1), (1,1,1), (2,0,1)])
```

```python
sage: s = G.tachyon_repr(G.default_render_params()); s
['TRI V0 0 0 0 V1 1 1 1 V2 2 0 1', ...]
```

A simple colored one:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
```

```python
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
```

```python
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
```

```python
sage: col = rainbow(10, 'rgbtuple')
```

```python
sage: texture_list=[Texture(col[i]) for i in range(10)]
```

```python
sage: S = IndexFaceSet(face_list, point_list, texture_list=texture_list)
```

```python
sage: S.tachyon_repr(S.default_render_params())
['TRI V0 0 0 0 V1 1 0 1 V2 1 1 0',
'TEXTURE... AMBIENT 0.3 DIFFUSE 0.7 SPECULAR 0 OPACITY 1.0... COLOR 1 0 0 ...
→TEXFUNC 0,...]
```

vertex_list()
Return the list of vertices.

EXAMPLES:
The `vertices()` method returns an iterator over the vertices. Here's an example:

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = polygon([(0,0,1), (1,1,1), (2,0,1)])
sage: S.vertex_list()[0]
(0.0, 0.0, 1.0)
```

The `x3d_geometry()` method returns the x3d data. Here's an example of a basic test with a triangle:

```python
sage: G = polygon([(0,0,1), (1,1,1), (2,0,1)])
sage: print(G.x3d_geometry())
<IndexedFaceSet coordIndex='0,1,2,-1'>
  <Coordinate point='0.0 0.0 1.0,1.0 1.0 1.0,2.0 0.0 1.0'/></IndexedFaceSet>
```

A simple colored one:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
sage: t_list = [Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
sage: print(S.x3d_geometry())
<IndexedFaceSet solid='False' colorPerVertex='False' coordIndex='0,4,5,-1,3,4,-1,2,3,4,-1,1,3,5,-1'>
  <Coordinate point='2.0 0.0 0.0,0.0 2.0 0.0,0.0 0.0 0.0 0.0 2.0 0.0,1.0 1.0 1.0,1.0 1.0 0.0'/></IndexedFaceSet>
```

The `VertexIter` class is a class for iteration over vertices. Here's an example:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
sage: t_list = [Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
sage: len(list(S.vertices())) == 8 # indirect doctest
True
```
next ()
x.next() -> the next value, or raise StopIteration

sage.plot.plot3d.index_face_set.len3d(v)
Return the norm of a vector in three dimensions.

EXAMPLES:

```python
sage: from sage.plot.plot3d.index_face_set import len3d
gsage: len3d((1,2,3))
3.7416573867739413
```

sage.plot.plot3d.index_face_set.sticker(face, width, hover)
Return a sticker over the given face.

4.3 Transformations

```python
class sage.plot.plot3d.transform.Transformation
    Bases: object
    avg_scale()
    get_matrix()
    is_skew(eps=1e-05)
    is_uniform(eps=1e-05)
    is_uniform_on(basis, eps=1e-05)
    max_scale()
    transform_bounding_box(box)
    transform_point(x)
    transform_vector(v)
```

sage.plot.plot3d.transform.rotate_arbitrary(v, theta)
Return a matrix that rotates the coordinate space about the axis v by the angle theta.

INPUT:

- theta - real number, the angle

EXAMPLES:

```python
sage: from sage.plot.plot3d.transform import rotate_arbitrary
Try rotating about the axes:
sage: rotate_arbitrary((1,0,0), 1)
[ 1.0 0.0 0.0]
[ 0.0 0.5403023058681398 0.8414709848078965]
[ 0.0 -0.8414709848078965 0.5403023058681398]
sage: rotate_arbitrary((0,1,0), 1)
[ 0.5403023058681398 0.0 -0.8414709848078965]
[ 0.0 1.0 0.0]
[ 0.8414709848078965 0.0 0.5403023058681398]
sage: rotate_arbitrary((0,0,1), 1)
[ 0.5403023058681398 0.8414709848078965 0.0]
```

(continues on next page)
These next two should be the same (up to floating-point errors):

```
sage: rotate_arbitrary((1,1,1), 1) # rel tol 1e-15
[ 0.6935348705787598 0.6390560643047186 -0.33259093488347846]
[-0.33259093488347846 0.6935348705787598 0.6390560643047186]
[ 0.6390560643047186 -0.33259093488347835 0.6935348705787598]
sage: rotate_arbitrary((1,1,1), -1)^(-1) # rel tol 1e-15
[ 0.6935348705787598 0.6390560643047186 -0.33259093488347846]
[-0.33259093488347846 0.6935348705787598 0.6390560643047186]
[ 0.6390560643047185 -0.33259093488347835 0.6935348705787598]
```

Make sure it does the right thing...:

```
sage: rotate_arbitrary((1,2,3), -1).det()
1.0000000000000002
sage: rotate_arbitrary((1,1,1), 2*pi/3) * vector(RDF, (1,2,3)) # rel tol 2e-15
(1.9999999999999996, 2.0, 3.0000000000000002)
sage: rotate_arbitrary((1,2,3), 5) * vector(RDF, (1,2,3)) # rel tol 2e-15
(1.0000000000000001, 2.0, 3.0000000000000001)
sage: rotate_arbitrary((1,1,1), pi/7)^7 # rel tol 2e-15
[-0.33333333333333337 0.6666666666666667 0.6666666666666666]
[ 0.6666666666666665 -0.33333333333333337 0.6666666666666667]
[ 0.6666666666666671 0.6666666666666667 -0.3333333333333326]
```

AUTHORS:
- Robert Bradshaw

ALGORITHM:

There is a formula. Where did it come from? Let's take a quick jaunt into Sage's calculus package...

Setup some variables:

```
sage: vx,vy,vz,theta = var('x y z theta')
```

Symbolic rotation matrices about X and Y axis:

```
sage: def rotX(theta):
        return matrix(SR, 3, 3, [1, 0, 0, 0, cos(theta), -sin(theta), 0, sin(theta), cos(theta)])
sage: def rotZ(theta):
        return matrix(SR, 3, 3, [cos(theta), -sin(theta), 0, sin(theta), cos(theta), 0, 0, 0, 1])
```

Normalizing y so that $|v|=1$. Perhaps there is a better way to tell Maxima that $x^2+y^2+z^2=1$ which would make for a much cleaner calculation:

```
sage: vy = sqrt(1-vx^2-vz^2)
```

Now we rotate about the x axis so v is in the xy-plane:

```
sage: t = arctan(vy/vz)+pi/2
sage: m = rotX(t)
sage: new_y = vy*cos(t) - vz*sin(t)
```

And rotate about the z axis so v lies on the x axis:

```
sage: t = arctan(vy/vz)+pi/2
```

4.3. Transformations 275
Rotating about v in our old system is the same as rotating about the x-axis in the new:

```python
sage: m = rotX(theta) * m
```

Do some simplifying here to avoid blow-up:

```python
sage: m = m.simplify_rational()
```

Now go back to the original coordinate system:

```python
sage: m = rotZ(-s) * m
sage: m = rotX(-t) * m
```

And simplify every single entry (which is more effective that simplify the whole matrix like above):

```python
sage: m.parent()([x.simplify_full() for x in m._list()])  # long time;
˓→random
[ -(cos(theta) - 1) *x^2 +
˓→cos(theta) -(cos(theta) - 1) *sqrt(-x^2 - z^2 + 1)*x +
˓→sin(theta) *abs(z) -(cos(theta) - 1) *x*z^2 + sqrt(-x^2 - z^2 +
˓→1)*sin(theta) *abs(z)/z]
[ -(cos(theta) - 1)*sqrt(-x^2 - z^2 + 1)*x +
˓→(cos(theta) - 1) *z^2 + 1 -((cos(theta) - 1)*sqrt(-x^2 - z^2 +
˓→1)*z*abs(z) - x*z*sin(theta))/abs(z)]
[ -(cos(theta) - 1)*x*z^2 - sqrt(-x^2 - z^2 + 1)*sin(theta) *abs(z))/
˓→z -((cos(theta) - 1)*sqrt(-x^2 - z^2 + 1)*z*abs(z) + x*z*sin(theta))/
˓→abs(z) -(cos(theta) - 1) *z^2 +
˓→cos(theta)]
```

Re-expressing some entries in terms of y and resolving the absolute values introduced by eliminating y, we get the desired result.

4.4 Adaptive refinement code for 3d surface plotting

AUTHOR:

- Tom Boothby – Algorithm design, code
- Joshua Kantor – Algorithm design
- Marshall Hampton – Docstrings and doctests

Todo:

- Parametrizations (cylindrical, spherical)
- Massive optimization

```python
class sage.plot.plot3d.tri_plot.PlotBlock(left, left_c, top, top_c, right, right_c, bottom, bottom_c)
```

A container class to hold information about spatial blocks.
class sage.plot.plot3d.tri_plot.SmoothTriangle(a, b, c, da, db, dc, color=0)
Bases: sage.plot.plot3d.tri_plot.Triangle

A class for smoothed triangles.

get_normals()
Returns the normals to vertices a, b, and c.

str()
Returns a string representation of the SmoothTriangle of the form
a b c color da db dc
where a, b, and c are the triangle corner coordinates, da, db, dc are normals at each corner, and color is the
color.

class sage.plot.plot3d.tri_plot.Triangle(a, b, c, color=0)

A graphical triangle class.

get_vertices()
Returns a tuple of vertex coordinates of the triangle.

set_color(color)
This method will reset the color of the triangle.

str()
Returns a string representation of an instance of the Triangle class of the form
a b c color
where a, b, and c are corner coordinates and color is the color.

class sage.plot.plot3d.tri_plot.TriangleFactory

get_colors(list)
Parameters: list: an iterable collection of values which can be cast into colors – typically an RGB triple,
or an RGBA 4-tuple
Returns: a list of single parameters which can be passed into the set_color method of the Triangle or
SmoothTriangle objects generated by this factory.

smooth_triangle(a, b, c, da, db, dc, color=None)
Parameters:
• a, b, c : triples (x,y,z) representing corners on a triangle in 3-space
• da, db, dc : triples (dx,dy,dz) representing the normal vector at each point a,b,c
Returns: a SmoothTriangle object with the specified coordinates and normals

triangle(a, b, c, color=None)
Parameters: a, b, c : triples (x,y,z) representing corners on a triangle in 3-space
Returns: a Triangle object with the specified coordinates

class sage.plot.plot3d.tri_plot.TrianglePlot(triangle_factory, f, min_x__max_x,
min_y__max_y, g=28eNone, min_depth=4,
max_depth=8, num_colors=28eNone,
max_bend=0.3)

Recursively plots a function of two variables by building squares of 4 triangles, checking at every stage whether
or not each square should be split into four more squares. This way, more planar areas get fewer triangles, and
areas with higher curvature get more triangles.

4.4. Adaptive refinement code for 3d surface plotting 277
extrema(list)
If the num_colors option has been set, this expands the TrianglePlot's _min and _max attributes to include
the minimum and maximum of the argument list.

interface(n, p, p_c, q, q_c)
Takes a pair of lists of points, and compares the (n)th coordinate, and “zips” the lists together into one.
The “centers”, supplied in p_c and q_c are matched up such that the lists describe triangles whose sides
are “perfectly” aligned. This algorithm assumes that p and q start and end at the same point, and are sorted
smallest to largest.

plot_block(min_x, mid_x, max_x, min_y, mid_y, max_y, sw_z, nw_z, se_z, ne_z, mid_z, depth)
Recursive triangulation function for plotting.
First six inputs are scalars, next 5 are 2-dimensional lists, and the depth argument keeps track of the depth
of recursion.

str()
Returns a string listing the objects in the instance of the TrianglePlot class.

triangulate(p, c)
Pass in a list of edge points (p) and center points (c). Triangles will be rendered between consecutive edge
points and the center point with the same index number as the earlier edge point.

sage.plot.plot3d.tri_plot.crossunit(u, v)
This function computes triangle normal unit vectors by taking the cross-products of the midpoint-to-corner
vectors. It always goes around clockwise so we’re guaranteed to have a positive value near 1 when neighboring
triangles are parallel. However – crossunit doesn’t really return a unit vector. It returns the length of the vector
to avoid numerical instability when the length is nearly zero – rather than divide by nearly zero, we multiply the
other side of the inequality by nearly zero – in general, this should work a bit better because of the density of
floating-point numbers near zero.
5.1 The Tachyon 3D Ray Tracer

Given any 3D graphics object one can compute a raytraced representation by typing `show(viewer='tachyon')`. For example, we draw two translucent spheres that contain a red tube, and render the result using Tachyon.

```python
sage: S = sphere(opacity=0.8, aspect_ratio=[1,1,1])
sage: L = line3d([(0,0,0),(2,0,0)], thickness=10, color='red')
sage: M = S + S.translate((2,0,0)) + L
sage: M.show(viewer='tachyon')
```

One can also directly control Tachyon, which gives a huge amount of flexibility. For example, here we directly use Tachyon to draw 3 spheres on the coordinate axes:

```python
sage: t = Tachyon(xres=500,yres=500, camera_center=(2,0,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t2', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,-0))
sage: t.texture('t3', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,1,-0))
sage: t.texture('t4', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,0,-1))
sage: t.sphere((0,0.5,0), 0.2, 't2')
sage: t.sphere((0.5,0,0), 0.2, 't3')
sage: t.sphere((0,0,0.5), 0.2, 't4')
sage: t.show()
```

For scenes with many reflections it is helpful to increase the raydepth option, and turn on antialiasing. The following scene is an extreme case with many reflections between four cotangent spheres:

```python
sage: t = Tachyon(camera_center=(0,-4,1), xres = 800, yres = 600, raydepth = 12, aspectratio=.75, antialiasing = 4)
sage: t.light((0.02,0.012,0.001), 0.01, (1,0,0))
sage: t.light((0,0,10), 0.01, (0,0,1))
sage: t.texture('s', color = (.8,1,1), opacity = .9, specular = .95, diffuse = .3, ambient = 0.05)
sage: t.texture('p', color = (0,0,1), opacity = 1, specular = .2)
sage: t.sphere((-1,-.57735,-0.7071),1,'s')
sage: t.sphere((1,-.57735,-0.7071),1,'s')
sage: t.sphere((0,1.15465,-0.7071),1,'s')
sage: t.sphere((0,0,0.9259),1,'s')
sage: t.plane((0,0,-1.9259),(0,0,1),'p')
sage: t.show()  # long time
```
Different projection options are available. The following examples all use a sphere and cube:

```python
sage: cedges = [[[1, 1, 1], [-1, 1, 1]],
            [[1, 1, 1], [-1, -1, 1]],
            [[-1, 1, 1], [1, -1, 1]],
            [[-1, 1, 1], [1, 1, -1]],
            [[-1, 1, -1], [-1, 1, 1]],
            [[1, -1, 1], [1, -1, -1]],
            [[-1, -1, 1], [-1, -1, -1]],
            [[1, 1, -1], [-1, 1, -1]],
            [[1, 1, -1], [1, -1, -1]],
            [[-1, 1, -1], [-1, -1, -1]],
            [[1, -1, -1], [-1, -1, -1]],
....:
```  

The default projection is 'perspective':

```python
sage: t = Tachyon(xres=800, yres=600, camera_center=(-1.5,0.0,0.0), zoom=.2)
sage: t.texture('t1', color=(0,0,1))
sage: for ed in cedges:
    t.fcylinder(ed[0], ed[1], .05, 't1')
sage: t.light((-4,-4,4), .1, (1,1,1))
sage: t.show()
```

Another option is `projection='fisheye'`, which requires frustum information. The frustum data is (bottom angle, top angle, left angle, right angle):

```python
sage: t = Tachyon(xres=800, yres=600, camera_center=(-1.5,0.0,0.0),
               projection='fisheye', frustum=(-1.2, 1.2, -1.2, 1.2))
sage: t.texture('t1', color=(0,0,1))
sage: for ed in cedges:
    t.fcylinder(ed[0], ed[1], .05, 't1')
sage: t.light((-4,-4,4), .1, (1,1,1))
sage: t.show()
```

Finally there is the `projection='perspective_dof'` option.

```python
sage: T = Tachyon(xres=800, antialiasing=4, raydepth=10,
               projection='perspective_dof', focallength='1.0', aperture='.0025')
sage: T.light((0,5,7), 1.0, (1,1,1))
sage: T.texture('t1', opacity=1, specular=.3)
sage: T.texture('t2', opacity=1, specular=1, color=(0,0,1))
sage: T.texture('t3', opacity=1, specular=.3, color=(1,.8,1), diffuse=0.2)
sage: T.plane((0,0,-1), (0,0,1), 't3')
sage: tlist = ['t1', 't2']
sage: tt = 't1'
sage: T.cylinder((0,0,.1), (1/3,0), .05, 't3')
sage: for q in srange(-3, 100, .15):
    if tt == 't1':
        tt = 't2'
    else:
        tt = 't1'
    T.sphere((q, q/3+.3*sin(3*q), .1+.3*cos(3*q)), .1, tt)
sage: T.show()
```

Image files in the ppm format can be used to tile planes or cover cylinders or spheres. In this example an image is created and then used to tile the plane:

```python
sage: T = Tachyon(xres=800, yres=600, camera_center=(-2.0,-.1,.3), projection='fisheye',
               frustum=(-1.0, 1.0, -1.0, 1.0))
sage: T.texture('t1', color=(0,0,1))
sage: for ed in cedges:
    T.fcylinder(ed[0], ed[1], .05, 't1')
sage: T.light((-4,-4,4), .1, (1,1,1))
```

(continues on next page)
sage: fname_png = tmp_filename(ext='.png')
sage: fname_ppm = tmp_filename(ext='.ppm')
sage: T.save(fname_png)
sage: r2 = os.system('convert '+fname_png+' '+fname_ppm) # optional -- ImageMagick
sage: T = Tachyon(xres=800, yres=600, camera_center=(-2.0,-.1,.3), projection='fisheye
˓→', frustum=(-1.0, 1.0, -1.0, 1.0)) # optional -- ImageMagick
sage: T.texture('t1', color=(1,0,0), specular=.9) # optional -- ImageMagick
sage: T.texture('p1', color=(1,1,1), opacity=.1, imagefile=fname_ppm, texfunc=9) # ˓→optional -- ImageMagick
sage: T.sphere((0,0,0), .5, 't1') # optional -- ImageMagick
sage: T.plane((0,0,-1), (0,0,1), 'p1') # optional -- ImageMagick
sage: T.light((-4,-4,4), .1, (1,1,1)) # optional -- ImageMagick
sage: T.show() # optional -- ImageMagick

AUTHOR:

• John E. Stone (johns@megapixel.com): wrote tachyon ray tracer
• William Stein: sage-tachyon interface
• Joshua Kantor: 3d function plotting
• Tom Boothby: 3d function plotting n’stuff
• Leif Hille: key idea for bugfix for texfunc issue (trac ticket #799)
• Marshall Hampton: improved doctests, rings, axis-aligned boxes.
• Paul Graham: Respect global verbosity settings (trac ticket #16228)

Todo:

• clean up trianglefactory stuff

```python
class sage.plot.plot3d.tachyon.Axis_aligned_box(min_p, max_p, texture)
Bases: object

Box with axis-aligned edges with the given min and max coordinates.

str()

Returns the scene string of the axis-aligned box.

EXAMPLES:

sage: from sage.plot.plot3d.tachyon import Axis_aligned_box
sage: aab = Axis_aligned_box((0,0,0),(1,1,1),'s')
sage: aab.str()
'\n    box min 0.0 0.0 0.0 max 1.0 1.0 1.0 s
'
```

```python
class sage.plot.plot3d.tachyon.Cylinder(center, axis, radius, texture)
Bases: object

An infinite cylinder.

str()

Returns the scene string of the cylinder.

EXAMPLES:

```
```
sage: t = Tachyon()
sage: from sage.plot.plot3d.tachyon import Cylinder
sage: c = Cylinder((0,0,0),(1,1,1),.1,'s')
sage: c.str()
'\n  cylinder center 0.0 0.0 0.0 axis 1.0 1.0 1.0 rad 0.1 s
  ' →

class sage.plot.plot3d.tachyon.FCylinder(base, apex, radius, texture)
Bases: object
A finite cylinder.

str()
Returns the scene string of the finite cylinder.

EXAMPLES:

sage: from sage.plot.plot3d.tachyon import FCylinder
sage: fc = FCylinder((0,0,0),(1,1,1),.1,'s')
sage: fc.str()
'\n  fcylinder base 0.0 0.0 0.0 apex 1.0 1.0 1.0 rad 0.1 s
  ' →

class sage.plot.plot3d.tachyon.FractalLandscape(res, scale, center, texture)
Bases: object
Axis-aligned fractal landscape. Does not seem very useful at the moment, but perhaps will be improved in the future.

str()
Returns the scene string of the fractal landscape.

EXAMPLES:

sage: from sage.plot.plot3d.tachyon import FractalLandscape
sage: fl = FractalLandscape([20,20],[30,30],[1,2,3],'s')
sage: fl.str()
'\n  landscape res 20 20 scale 30 30 center 1.0 2.0 3.0 s
  ' →

class sage.plot.plot3d.tachyon.Light(center, radius, color)
Bases: object
Represents lighting objects.

str()
Returns the tachyon string defining the light source.

EXAMPLES:
class sage.plot.plot3d.tachyon.ParametricPlot(f, t_0, t_f, tex, r=0.1, cylinders=True, min_depth=4, max_depth=8, e_rel=0.01, e_abs=0.01)

Bases: object

Parametric plotting routines.

str()

Returns the tachyon string representation of the parameterized curve.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import ParametricPlot
sage: t = var('t')
sage: f = lambda t: (t,t^2,t^3)
sage: q = ParametricPlot(f,0,1,'s')
sage: q.str()[9:69]
'sphere center 0.0 0.0 0.0 rad 0.1 s\n
fcyli'
```

tol(est, val)

Check relative, then absolute tolerance. If both fail, return False. This is a zero-safe error checker.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import ParametricPlot
sage: t = var('t')
sage: f = lambda t: (t,t^2,t^3)
sage: q = ParametricPlot(f,0,1,'s')
sage: q.tol([0,0,0],[1,0,0])
False
sage: q.tol([0,0,0],[.0001,0,0])
True
```

class sage.plot.plot3d.tachyon.Plane(center, normal, texture)

Bases: object

An infinite plane.

str()

Returns the scene string of the plane.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Plane
sage: p = Plane((1,2,3),(1,2,4),'s')
sage: p.str()
'\n plane center 1.0 2.0 3.0 normal 1.0 2.0 4.0 s\n'```

class sage.plot.plot3d.tachyon.Ring(center, normal, inner, outer, texture)

Bases: object

An annulus of zero thickness.

str()

Returns the scene string of the ring.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Ring
sage: r = Ring((0,0,0), (1,1,0), 1.0, 2.0, 's')
```

(continues on next page)
class sage.plot.plot3d.tachyon.Sphere(center, radius, texture)

A class for creating spheres in tachyon.

str()
Returns the scene string for the sphere.

EXAMPLES:

```python
c sage: t = Tachyon()
c sage: from sage.plot.plot3d.tachyon import Sphere
c sage: t.texture('r', color=(.8,0,0), ambient = .1)
c sage: s = Sphere((1,1,1), 1, 'r')
c sage: s.str()
'sphere center 1.0 1.0 1.0 rad 1.0 r'
```

class sage.plot.plot3d.tachyon.Tachyon(xres=350, yres=350, zoom=1.0, antialiasing=False, aspectratio=1.0, raydepth=8, camera_center=(-3, 0, 0), updir=(0, 0, 1), look_at=(0, 0, 0), viewdir=None, projection='PERSPECTIVE', focallength='', aperture=''

Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.SageObject

Create a scene that can be rendered using the Tachyon ray tracer.

INPUT:
- xres - (default 350)
- yres - (default 350)
- zoom - (default 1.0)
- antialiasing - (default False)
- aspectratio - (default 1.0)
- raydepth - (default 5)
- camera_center - (default (-3, 0, 0))
- updir - (default (0, 0, 1))
- look_at - (default (0,0,0))
- viewdir - (default None), otherwise list of three numbers
- projection - 'PERSPECTIVE' (default), 'perspective_dof' or 'fisheye'.
- frustum - (default ''), otherwise list of four numbers. Only used with projection='fisheye'.
- focallength - (default ''), otherwise a number. Only used with projection='perspective_dof'.
- aperture - (default ''), otherwise a number. Only used with projection='perspective_dof'.

OUTPUT: A Tachyon 3d scene.
Note that the coordinates are by default such that z is up, positive y is to the {left} and x is toward you. This is not oriented according to the right hand rule.

EXAMPLES: Spheres along the twisted cubic.

```python
sage: t = Tachyon(xres=512,yres=512, camera_center=(3,0.3,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, color=(0,1.0,0))
sage: t.texture('t2', ambient=0.2, diffuse=0.7, specular=0.5, opacity=0.7, color=(0,0,1.0))
sage: k=0
sage: for i in srange(-1,1,0.05):
    ....:     k += 1
    ....:     t.sphere((i,i^2-0.5,i^3), 0.1, 't%s'%(k%3))
sage: t.show()
```

Another twisted cubic, but with a white background, got by putting infinite planes around the scene.

```python
sage: t = Tachyon(xres=512,yres=512, camera_center=(3,0.3,0), raydepth=8)
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, color=(0,1.0,0))
sage: t.texture('t2', ambient=0.2, diffuse=0.7, specular=0.5, opacity=0.7, color=(0,0,1.0))
sage: t.texture('white', color=(1,1,1))
sage: t.plane((0,0,-1), (0,0,1), 'white')
sage: t.plane((0,-20,0), (0,1,0), 'white')
sage: t.plane((-20,0,0), (1,0,0), 'white')
sage: k=0
sage: for i in srange(-1,1,0.05):
    ....:     k += 1
    ....:     t.sphere((i,i^2 - 0.5,i^3), 0.1, 't%s'%(k%3))
    ....:     t.cylinder((0,0,0), (0,0,1), 0.05,'t1')
sage: t.show()
```

Many random spheres:

```python
sage: t = Tachyon(xres=512,yres=512, camera_center=(2,0.5,0.5), look_at=(0.5,0.5, 0.5), raydepth=4)
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, color=(0,1.0,0))
sage: t.texture('t2', ambient=0.2, diffuse=0.7, specular=0.5, opacity=0.7, color=(0,0,1.0))
sage: k=0
sage: for i in range(100):
    ....:     k += 1
    ....:     t.sphere((random(),random(), random()), random()/10, 't%s'%(k%3))
sage: t.show()
```

Points on an elliptic curve, their height indicated by their height above the axis:
A beautiful picture of rational points on a rank 1 elliptic curve.

```
sage: t = Tachyon(xres=1000, yres=800, camera_center=(2,7,4), look_at=(2,0,0), raydepth=4)
sage: t.light((0,0,100), 1, (1,1,1))
sage: t.texture('r', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: for i in srange(0,50,0.1):
    ....:   t.sphere((i/10,sin(i),cos(i)), 0.05, 'r')
sage: t.texture('white', color=(1,1,1), opacity=1, specular=1, diffuse=1)
sage: t.plane((0,0,-100), (0,0,-100), 'white')
sage: t.show()  # long time, e.g., 10-20 seconds
```

A beautiful spiral.

```
sage: t = Tachyon(xres=800, yres=800, camera_center=(2,5,2), look_at=(2.5,0,0))
sage: t.light((0,0,100), 1, (1,1,1))
sage: t.texture('r', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: for i in srange(0,50,0.1):
    ....:   t.sphere((i/10,sin(i),cos(i)), 0.05, 'r')
sage: t.texture('white', color=(1,1,1), opacity=1, specular=1, diffuse=1)
sage: t.plane((0,0,-100), (0,0,-100), 'white')
sage: t.show()  # long time, e.g., 10-20 seconds
```

If the optional parameter `viewdir` is not set, the camera center should not coincide with the point which is looked at (see trac ticket #7232):

```
sage: t = Tachyon(xres=800, yres=800, camera_center=(2,5,2), look_at=(2.5,0,0))
Traceback (most recent call last):
(continues on next page)
```
...\n\nValueError: camera_center and look_at coincide

Use of a fisheye lens perspective.

\[\text{sage: } T = \text{Tachyon(xres=800, yres=600, camera_center=(-1.5,-1.5,.3), projection='fisheye', frustum=(-1.0, 1.0, -1.0, 1.0))}\]
\[\text{sage: } T\text{.texture('t1', color=(0,0,1))}\]
\[\text{sage: } \text{ctedges} = [[[1, 1, 1], [-1, 1, 1]], [[1, 1, 1], [1, -1, 1]], [[-1, 1, 1], [-1, 1, -1]], [[1, -1, 1], [-1, -1, 1]], [[1, -1, -1], [-1, -1, -1]]\]
\[\text{sage: } \text{for } ed \text{ in ctedges:}\]
\[\text{....: } T\text{.fcylinder(ed[0], ed[1], .05, 't1')}\]
\[\text{sage: } T\text{.light((-4,-4,4), .1, (1,1,1))}\]
\[\text{sage: } T\text{.show()}\]

Use of the projection='perspective_dof' option. This may not be implemented correctly.

\[\text{sage: } T = \text{Tachyon(xres=800, antialiasing=4, raydepth=10, projection='perspective_dof', focallength='1.0', aperture='.0025')}\]
\[\text{sage: } T\text{.light((0,5,7), 1.0, (1,1,1))}\]
\[\text{sage: } T\text{.texture('t1', opacity=1, specular=.3)}\]
\[\text{sage: } T\text{.texture('t2', opacity=1, specular=.3, color=(0,0,1))}\]
\[\text{sage: } T\text{.plane((0,0,-1), (0,0,1), 't3')}\]
\[\text{sage: } \text{ttlist = ['t1', 't2']}\]
\[\text{sage: } \text{tt = 't1'}\]
\[\text{sage: } T\text{.cylinder((0,0,0),(-1,-1,-1),.1,'t1')}\]
\[\text{sage: } \text{for } q \text{ in srange(-3, 100, .15):}\]
\[\text{....: } \text{if tt == 't1':}\]
\[\text{....: } \text{tt = 't2'}\]
\[\text{....: } \text{else:}\]
\[\text{....: } \text{tt = 't1'}\]
\[\text{....: } T\text{.sphere((q, q/3+.3*sin(3*q), .1+.3*cos(3*q)), .1, tt)}\]
\[\text{sage: } T\text{.show()}\]

\text{axis_aligned_box} (\text{min_p}, \text{max_p}, \text{texture})

Creates an axis-aligned box with minimal point \text{min_p} and maximum point \text{max_p}.

\text{EXAMPLES:}

\[\text{sage: } t = \text{Tachyon()}\]
\[\text{sage: } t\text{.axis_aligned_box((0,0,0),(2,2,2),'s')}\]

\text{cylinder} (\text{center}, \text{axis}, \text{radius}, \text{texture})

Creates the scene information for a infinite cylinder with the given center, axis direction, radius, and texture.

\text{EXAMPLES:}

\[\text{sage: } t = \text{Tachyon()}\]
\[\text{sage: } t\text{.texture('c')}\]
\[\text{sage: } t\text{.cylinder((0,0,0),(-1,-1,-1),.1,'c')}\]

5.1. The Tachyon 3D Ray Tracer
fcylinder *(base, apex, radius, texture)*

Finite cylinders are almost the same as infinite ones, but the center and length of the axis determine the extents of the cylinder. The finite cylinder is also really a shell, it doesn’t have any caps. If you need to close off the ends of the cylinder, use two ring objects, with the inner radius set to 0.0 and the normal set to be the axis of the cylinder. Finite cylinders are built this way to enhance speed.

EXAMPLES:

```python
sage: t = Tachyon()
sage: t.fcylinder((1,1,1),(1,2,3),.01,'s')
sage: len(t.str())
451
```

fractal_landscape *(res, scale, center, texture)*

Axis-aligned fractal landscape. Not very useful at the moment.

EXAMPLES:

```python
sage: t = Tachyon()
sage: t.texture('s')
sage: t.fractal_landscape([30,30],[80,80],[0,0,0],'s')
sage: len(t._objects)
2
```

light *(center, radius, color)*

Create a light source of the given center, radius, and color.

EXAMPLES:

```python
sage: q = Tachyon()
sage: q.light((-20,-20,40), 0.2, (1,1,1))
sage: q.str().split('n')[17]
' light center 1.0 1.0 1.0 '
```

parametric_plot *(f, t_0, t_f, tex, r=0.1, cylinders=True, min_depth=4, max_depth=8, e_rel=0.01, e_abs=0.01)*

Plots a space curve as a series of spheres and finite cylinders. Example (twisted cubic)

```python
sage: f = lambda t: (t,t^2,t^3)
sage: t = Tachyon(camera_center=(5,0,4))
sage: t.texture('t')
sage: t.light((-20,-20,40), 0.2, (1,1,1))
sage: t.parametric_plot(f,-5,5,'t',min_depth=6)
sage: t.show(]verbose=1)
tachyon ...
Scene contains 514 objects.
...
```

plane *(center, normal, texture)*

Creates an infinite plane with the given center and normal.

plot *(f, xmin_xmax, ymin_ymax, texture, grad_f=None, max_bend=0.7, max_depth=5, initial_depth=3, num_colors=None)*

INPUT:

- **f** - Function of two variables, which returns a float (or coercible to a float) (xmin,xmax)
- **(ymin,ymax)** - defines the rectangle to plot over texture: Name of texture to be used Optional arguments:
- **grad_f** - gradient function. If specified, smooth triangles will be used.
• **max_bend** - Cosine of the threshold angle between triangles used to determine whether or not to recurse after the minimum depth

• **max_depth** - maximum recursion depth. Maximum triangles plotted = $2^{2 \times \text{max_depth}}$

• **initial_depth** - minimum recursion depth. No error-tolerance checking is performed below this depth. Minimum triangles plotted: $2^{2 \times \text{min_depth}}$

• **num_colors** - Number of rainbow bands to color the plot with. Texture supplied will be cloned (with different colors) using the texture_recolor method of the Tachyon object.

Plots a function by constructing a mesh with nonstandard sampling density without gaps. At very high resolutions (depths 10) it becomes very slow. Cython may help. Complexity is approx. $O(2^{2 \times \text{max_depth}})$.

This algorithm has been optimized for speed, not memory - values from $f(x,y)$ are recycled rather than calling the function multiple times. At high recursion depth, this may cause problems for some machines.

Flat Triangles:

```python
sage: t = Tachyon(xres=512,yres=512, camera_center=(4,-4,3),viewdir=(-4,4,-3),
               raydepth=4)
sage: t.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
               color=(1.0,0,0))
sage: t.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, num_colors=60)
# increase min_depth for better picture
sage: t.show(verbos=1)
tachyon ...
Scene contains 2713 objects.
...
```

Plotting with Smooth Triangles (requires explicit gradient function):

```python
sage: t = Tachyon(xres=512,yres=512, camera_center=(4,-4,3),viewdir=(-4,4,-3),
               raydepth=4)
sage: t.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: def g(x,y): return ( float(y*cos(x*y)), float(x*cos(x*y)), 1 )
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
               color=(1.0,0,0))
sage: t.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, grad_f = g)
# increase min_depth for better picture
sage: t.show(verbos=1)
tachyon ...
Scene contains 2713 objects.
...
```

Preconditions: f is a scalar function of two variables, grad_f is None or a triple-valued function of two variables, $\text{min_x} != \text{max_x}$, $\text{min_y} != \text{max_y}$

```python
sage: f = lambda x,y: x*y
sage: t = Tachyon()
sage: t.plot(f,(2.,2.),(-2.,2.),"")
Traceback (most recent call last):
...
ValueError: Plot rectangle is really a line. Make sure $\text{min\_x} != \text{max\_x}$ and $\text{min\_y} != \text{max\_y}$.
```

ring (center, normal, inner, outer, texture)

Creates the scene information for a ring with the given parameters.
EXAMPLES:

```python
sage: t = Tachyon()
sage: t.ring([0, 0, 0], [0, 0, 1], 1.0, 2.0, 's')
sage: t._objects[0]._center
(0.0, 0.0, 0.0)
```

save *(filename='sage.png', verbose=None, extra_opts='')*

Save rendering of the tachyon scene

INPUT:

- `filename` - (default: 'sage.png') output filename; the extension of the filename determines the type. Supported types include:
 - `tga` - 24-bit (uncompressed)
 - `bmp` - 24-bit Windows BMP (uncompressed)
 - `ppm` - 24-bit PPM (uncompressed)
 - `rgb` - 24-bit SGI RGB (uncompressed)
 - `png` - 24-bit PNG (compressed, lossless)
- `verbose` - integer (default: None); if no verbosity setting is supplied, the verbosity level set by `sage.misc.misc.set_verbose` is used.
 - 0 - silent
 - 1 - some output
 - 2 - very verbose output
- `extra_opts` - passed directly to tachyon command line. Use `tachyon_rt.usage()` to see some of the possibilities.

EXAMPLES:

```python
sage: q = Tachyon()
sage: q.light((1,1,11), 1,(1,1,1))
sage: q.texture('s')
sage: q.sphere((0,0,0),1,'s')
sage: tempname = tmp_filename()
sage: q.save(tempname)
```

save_image *(filename=None, *args, **kwds)*

Save an image representation of `self`.

The image type is determined by the extension of the filename. For example, this could be `.png`, `.jpg`, `.gif`, `.pdf`, `.svg`. Currently this is implemented by calling the `save()` method of `self`, passing along all arguments and keywords.

Note: Not all image types are necessarily implemented for all graphics types. See `save()` for more details.

EXAMPLES:

```python
sage: q = Tachyon()
sage: q.light((1,1,11), 1,(1,1,1))
sage: q.texture('s')
```
show (kwds**)**
Create a PNG file of the scene.

This method attempts to display the graphics immediately, without waiting for the currently running code (if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a large number of external viewer programs.

OUTPUT:

This method does not return anything. Use `save()` if you want to save the figure as an image.

EXAMPLES:

This example demonstrates how the global Sage verbosity setting is used if none is supplied. Firstly, using a global verbosity setting of 0 means no extra technical information is displayed, and we are simply shown the plot.

```sage
sage: h = Tachyon(xres=512, yres=512, camera_center=(4,-4,3), viewdir=(-4,4,-3),
                 raydepth=4)
sage: h.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: h.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
                 color=(1.0,0,0))
sage: h.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, num_colors=60)
# increase min_depth for better picture
sage: set_verbose(0)
sage: h.show()
```

This second example, using a “medium” global verbosity setting of 1, displays some extra technical information then displays our graph.

```sage
sage: s = Tachyon(xres=512, yres=512, camera_center=(4,-4,3), viewdir=(-4,4,-3),
                 raydepth=4)
sage: s.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: s.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
                color=(1.0,0,0))
sage: s.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, num_colors=60)
# increase min_depth for better picture
sage: set_verbose(1)
sage: s.show()
```

The last example shows how you can override the global Sage verbosity setting, my supplying a setting level as an argument. In this case we chose the highest verbosity setting level, 2, so much more extra technical information is shown, along with the plot.

```sage
sage: set_verbose(0)
sage: d = Tachyon(xres=512, yres=512, camera_center=(4,-4,3), viewdir=(-4,4,-3),
                 raydepth=4)
sage: d.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
```

(continues on next page)
smooth_triangle (vertex_1, vertex_2, vertex_3, normal_1, normal_2, normal_3, texture)

Creates a triangle along with a normal vector for smoothing.

EXAMPLES:

```python
sage: t = Tachyon()
sage: t.smooth_triangle((0,0,0), (0,0,1), (0,1,0), [0,1,1], [-1,1,2], [3,0,0], 's')
sage: t._objects[2].get_vertices()
((0, 0, 0), (0, 0, 1), (0, 1, 0))
sage: t._objects[2].get_normals()
((0, 1, 1), [-1, 1, 2], [3, 0, 0])
```

sphere (center, radius, texture)

Create the scene information for a sphere with the given center, radius, and texture.

EXAMPLES:

```python
sage: t = Tachyon()
sage: t.sphere((1,2,3), .1, 'sphere_texture')
sage: t._objects[1].str()
'\n sphere center 1.0 2.0 3.0 rad 0.1 sphere_texture
 '
```

str()

Return the complete tachyon scene file as a string.

EXAMPLES:

```python
sage: t = Tachyon(xres=500, yres=500, camera_center=(2,0,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t2', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: t.texture('t3', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,1,0))
sage: t.texture('t4', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,0,1))
sage: t.sphere((0,0.5,0), 0.2, 't2')
sage: t.sphere((0.5,0,0), 0.2, 't3')
sage: t.sphere((0,0.5,0), 0.2, 't4')
sage: 'PLASTIC' in t.str()
True
```
\textbf{texfunc} (type=0, center=(0, 0, 0), rotate=(0, 0, 0), scale=(1, 1, 1), imagefile=")

INPUT:

- **type** - (default: 0)
 0. No special texture, plain shading
 1. 3D checkerboard function, like a rubik’s cube
 2. Grit Texture, randomized surface color
 3. 3D marble texture, uses object’s base color
 4. 3D wood texture, light and dark brown, not very good yet
 5. 3D gradient noise function (can’t remember what it looks like)
 6. Don’t remember
 7. Cylindrical Image Map, requires ppm filename (with path)
 8. Spherical Image Map, requires ppm filename (with path)
 9. Planar Image Map, requires ppm filename (with path)

- **center** - (default: (0,0,0))
- **rotate** - (default: (0,0,0))
- **scale** - (default: (1,1,1))

EXAMPLES: We draw an infinite checkerboard:

\begin{verbatim}
sage: t = Tachyon(camera_center=(2,7,4), look_at=(2,0,0))
sage: t.texture('black', color=(0,0,0), texfunc=1)
sage: t.plane((0,0,0),(0,0,1),'black')
sage: t.show()
\end{verbatim}

\textbf{texture} (name, ambient=0.2, diffuse=0.8, specular=0.0, opacity=1.0, color=(1.0, 0.0, 0.5), texfunc=0, phong=0, phongsize=0.5, phongtype=‘PLASTIC’, imagefile=")

INPUT:

- **name** - string; the name of the texture (to be used later)
- **ambient** - (default: 0.2)
- **diffuse** - (default: 0.8)
- **specular** - (default: 0.0)
- **opacity** - (default: 1.0)
- **color** - (default: (1.0,0.0,0.5))
- **texfunc** - (default: 0); a texture function; this is either the output of self.texfunc, or a number between 0 and 9, inclusive. See the docs for self.texfunc.
- **phong** - (default: 0)
- **phongsize** - (default: 0.5)
- **phongtype** - (default: “PLASTIC”)

EXAMPLES:

We draw a scene with 4 spheres that illustrates various uses of the texture command:
sage: t = Tachyon(camera_center=(2,5,4), look_at=(2,0,0), raydepth=6)
sage: t.light((10,3,4), 1, (1,1,1))
sage: t.texture('mirror', ambient=0.05, diffuse=0.05, specular=.9, opacity=0.99, color=(.8,.8,.8))
sage: t.texture('grey', color=(.8,.8,.8), texfunc=3)
sage: t.plane((0,0,0),(0,0,1),'grey')
sage: t.sphere((4,-1,1), 1, 'mirror')
sage: t.sphere((0,-1,1), 1, 'mirror')
sage: t.sphere((2,-1,1), 0.5, 'mirror')
sage: t.sphere((2,1,1), 0.5, 'mirror')
sage: show(t) # known bug (trac #7232)

texture_recolor (name, colors)
Recolor default textures.

EXAMPLES:

sage: t = Tachyon()
sage: t.texture('s')
sage: q = t.texture_recolor('s',[(0,0,1)])
sage: t._objects[1]._color
(0.0, 0.0, 1.0)

triangle (vertex_1, vertex_2, vertex_3, texture)
Creates a triangle with the given vertices and texture.

EXAMPLES:

sage: t = Tachyon()
sage: t.texture('s')
sage: t.triangle([1,2,3],[4,5,6],[7,8,10],'s')
sage: t._objects[1].get_vertices()
([1, 2, 3], [4, 5, 6], [7, 8, 10])

class sage.plot.plot3d.tachyon.TachyonSmoothTriangle (a, b, c, da, db, dc, color=0)
Bases: sage.plot.plot3d.tri_plot.SmoothTriangle

A triangle along with a normal vector, which is used for smoothing.

str()
Return the scene string for a smoothed triangle.

EXAMPLES:

sage: from sage.plot.plot3d.tachyon import TachyonSmoothTriangle
sage: t = TachyonSmoothTriangle([-1,-1,-1],[0,0,0],[1,2,3],[1,0,0],[0,1,0],[0,0,1])
sage: t.str()
'\n STRI V0 ... 1.0 0.0 0.0 N1 0.0 1.0 0.0 N2 0.0 0.0 1.0 \n 0
'

class sage.plot.plot3d.tachyon.TachyonTriangle (a, b, c, color=0)
Bases: sage.plot.plot3d.tri_plot.Triangle

Basic triangle class.

str()
Returns the scene string for a triangle.

EXAMPLES:
sage: from sage.plot.plot3d.tachyon import TachyonTriangle
sage: t = TachyonTriangle([-1,-1,-1],[0,0,0],[1,2,3])
sage: t.str()
'\n TRI V0 -1.0 -1.0 -1.0 V1 0.0 0.0 0.0 V2 1.0 2.0 3.0 ';

class sage.plot.plot3d.tachyon.TachyonTriangleFactory(tach, tex)
 Bases: sage.plot.plot3d.tri_plot.TriangleFactory

A class to produce triangles of various rendering types.

get_colors(list)
 Returns a list of color labels.

 EXAMPLES:

 sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
 sage: t = Tachyon()
 sage: t.texture('s')
 sage: ttf = TachyonTriangleFactory(t, 's')
 sage: ttf.get_colors([(1,1,1)])
 ['SAGETEX1_0']

smooth_triangle(a, b, c, da, db, dc, color=None)
 Creates a TachyonSmoothTriangle.

 EXAMPLES:

 sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
 sage: t = Tachyon()
 sage: t.texture('s')
 sage: ttf = TachyonTriangleFactory(t, 's')
 sage: ttfst = ttf.smooth_triangle([0,0,0],[1,0,0],[0,0,1],[1,1,1],[1,2,3],[-1,-1,2])
 sage: ttfst.str()
 '\n STRI V0 0.0 0.0 0.0 ...

triangle(a, b, c, color=None)
 Creates a TachyonTriangle with vertices a, b, and c.

 EXAMPLES:

 sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
 sage: t = Tachyon()
 sage: t.texture('s')
 sage: ttf = TachyonTriangleFactory(t, 's')
 sage: ttft = ttf.triangle([1,2,3],[3,2,1],[0,2,1])
 sage: ttft.str()
 '\n TRI V0 1.0 2.0 3.0 V1 3.0 2.0 1.0 V2 0.0 2.0 1.0 ';

class sage.plot.plot3d.tachyon.Texfunc(type=0, center=(0, 0, 0), rotate=(0, 0, 0), scale=(1, 1, 1), imagefile='')
 Bases: object

 Creates a texture function.

 EXAMPLES:
sage: from sage.plot.plot3d.tachyon import Texfunc
sage: t = Texfunc()

\textbf{str()}\newline
Returns the scene string for this texture function.

\textbf{EXAMPLES:}

\begin{verbatim}sage: from sage.plot.plot3d.tachyon import Texfunc sage: t = Texfunc() sage: t.str() '0'
\end{verbatim}

\textbf{class} sage.plot.plot3d.tachyon.Texture(\textit{name}, ambient=0.2, diffuse=0.8, specular=0.0, opacity=1.0, color=(1.0, 0.0, 0.5), texfunc=0, phong=0, phongsize=0, phongtype='PLASTIC', imagefile='')

\textbf{Bases:} object

Stores texture information.

\textbf{EXAMPLES:}

\begin{verbatim}sage: from sage.plot.plot3d.tachyon import Texture sage: t = Texture('w') sage: t.str().split()[2:6] ['ambient', '0.2', 'diffuse', '0.8']
\end{verbatim}

\textbf{recolor} (\textit{name, color})\newline
Returns a texture with the new given color.

\textbf{EXAMPLES:}

\begin{verbatim}sage: from sage.plot.plot3d.tachyon import Texture sage: t2 = Texture('w') sage: t2w = t2.recolor('w2', (.1,.2,.3)) sage: t2ws = t2w.str() sage: color_index = t2ws.find('color') sage: t2ws[color_index:color_index+20] 'color 0.1 0.2 0.3 ' \end{verbatim}

\textbf{str()}\newline
Returns the scene string for this texture.

\textbf{EXAMPLES:}

\begin{verbatim}sage: from sage.plot.plot3d.tachyon import Texture sage: t = Texture('w') sage: t.str().split()[2:6] ['ambient', '0.2', 'diffuse', '0.8']
\end{verbatim}

sage.plot.plot3d.tachyon.tostr(\textit{s, length=3, out_type=<type 'float'>})\newline
Converts vector information to a space-separated string.

\textbf{EXAMPLES:}
5.2 Three.js JavaScript WebGL Renderer

A web-based interactive viewer using the Three.js JavaScript library maintained by https://threejs.org. The viewer is invoked by adding the keyword argument viewer='threejs' to the command show() or any three-dimensional graphic. The scene is rendered and displayed in the user's web browser. Interactivity includes

- Zooming in or out with the mouse wheel or pinching on a touch pad
- Rotation by clicking and dragging with the mouse or swiping on a touch pad
- Panning by right-clicking and dragging with the mouse or swiping with three fingers on a touch pad

The generated HTML file contains all data for the scene apart from the JavaScript library and can be saved to disk for sharing or embedding in a web page. The option online can be set to true to provide links to the required files in an online content delivery network. Alternately the required files can be downloaded from the Three.js GitHub repository and linked directly from the web server.

Options currently supported by the viewer:

- aspect_ratio – (default: [1,1,1]) list or tuple of three numeric values; z-aspect is automatically reduced when large but can be overridden
- axes – (default: False) Boolean determining whether coordinate axes are drawn
- axes_labels – (default: ['x','y','z']) list or tuple of three strings; set to False to remove all labels
- color – (default: 'blue') color of the 3d object
- decimals – (default: 2) integer determining decimals displayed in labels
- frame – (default: True) Boolean determining whether frame is drawn
- online – (default: False) Boolean determining whether the local standard package files are replaced by links to an online content delivery network
- opacity – (default: 1) numeric value for transparency of lines and surfaces
- radius – (default: None) numeric value for radius of lines; use to render lines thicker than available using thickness or on Windows platforms where thickness is ignored
- thickness – (default: 1) numeric value for thickness of lines

AUTHORS:

- Paul Masson (2016): Initial version

EXAMPLES:

Three spheres of different color and opacity:

```python
sage: p1 = sphere(color='red', opacity='.5')
sage: p2 = sphere((-1,-1,1), color='cyan', opacity='.3')
sage: p3 = sphere((1,-1,-1), color='yellow', opacity='.7')
sage: show(p1 + p2 + p3, viewer='threejs')
```
A parametric helix:

```python
sage: parametric_plot3d([cos(x), sin(x), x/10], (x, 0, 4*pi), color='red', viewer='threejs')
```

Graphics3d Object
CHAPTER

SIX

INDICES AND TABLES

• Index
• Module Index
• Search Page
p

sage.plot.plot3d.base, 157
sage.plot.plot3d.implicit_plot3d, 113
sage.plot.plot3d.implicit_surface, 258
sage.plot.plot3d.index_face_set, 267
sage.plot.plot3d.introduction, 1
sage.plot.plot3d.list_plot3d, 149
sage.plot.plot3d.parametric_plot3d, 48
sage.plot.plot3d.parametric_surface, 253
sage.plot.plot3d.platonic, 227
sage.plot.plot3d.plot3d, 3
sage.plot.plot3d.plot_field3d, 112
sage.plot.plot3d.revolution_plot3d, 102
sage.plot.plot3d.shapes, 180
sage.plot.plot3d.shapes2, 218
sage.plot.plot3d.tachyon, 279
sage.plot.plot3d.texture, 263
sage.plot.plot3d.transform, 274
sage.plot.plot3d.tri_plot, 276
Symbols

__add__() (sage.plot.plot3d.base.Graphics3d method), 157
_rich_repr__() (sage.plot.plot3d.base.Graphics3d method), 158

A

add_triangle() (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles method), 260
amf_ascii_string() (sage.plot.plot3d.base.Graphics3d method), 158
arrow3d() (in module sage.plot.plot3d.shapes), 211
aspect_ratio() (sage.plot.plot3d.base.Graphics3d method), 159
avg_scale() (sage.plot.plot3d.transform.Transformation method), 274
axes() (in module sage.plot.plot3d.plot3d), 19
Axis_alignde_box (class in sage.plot.plot3d.tachyon), 281
axis_aligned_box() (sage.plot.plot3d.tachyon.Tachyon method), 287

B

bezier3d() (in module sage.plot.plot3d.shapes2), 220
bounding_box() (sage.plot.plot3d.base.Graphics3d method), 159
bounding_box() (sage.plot.plot3d.base.Graphics3dGroup method), 171
bounding_box() (sage.plot.plot3d.base.TransformGroup method), 177
bounding_box() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 258
bounding_box() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 269
bounding_box() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 256
bounding_box() (sage.plot.plot3d.shapes.Box method), 183
bounding_box() (sage.plot.plot3d.shapes.Cylinder method), 195
bounding_box() (sage.plot.plot3d.shapes.Sphere method), 202
bounding_box() (sage.plot.plot3d.shapes.Text method), 205
bounding_box() (sage.plot.plot3d.shapes2.Line method), 218
bounding_box() (sage.plot.plot3d.shapes2.Point method), 220
BoundingSphere (class in sage.plot.plot3d.tachyon), 281
Box (class in sage.plot.plot3d.shapes), 180

C

color_function (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 258
color_function (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 259
ColorCube() (in module sage.plot.plot3d.shapes), 187
colormap (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 258
colormap (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 259
Cone (class in sage.plot.plot3d.shapes), 187
countour (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 259
countours (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 258
corners() (sage.plot.plot3d.shapes2.Line method), 219
crossunit() (in module sage.plot.plot3d.tri_plot), 278
cube() (in module sage.plot.plot3d.platonic), 227
Cylinder (class in sage.plot.plot3d.shapes), 194
Cylinder (class in sage.plot.plot3d.tachyon), 281
cylinder() (sage.plot.plot3d.tachyon.Tachyon method), 287
Cylindrical (class in sage.plot.plot3d.plot3d), 9
cylindrical_plot3d() (in module sage.plot.plot3d.plot3d), 19

D
default_render_params() (sage.plot.plot3d.base.Graphics3d method), 159
default_render_params() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 256
dodecahedron() (in module sage.plot.plot3d.platonic), 240
dual() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 269
dual() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 256

E
edge_list() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 269
EdgeIter (class in sage.plot.plot3d.index_face_set), 267
edges() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 269
eval() (sage.plot.plot3d.parametric_surface.MoebiusStrip method), 255
eval() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 257
export_jmol() (sage.plot.plot3d.base.Graphics3d method), 160
extrema() (sage.plot.plot3d.tri_plot.TrianglePlot method), 277

F
f (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 258
face_list() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 269
FaceIter (class in sage.plot.plot3d.index_face_set), 267
faces() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 270
FCylinder (class in sage.plot.plot3d.tachyon), 282
cylinder() (sage.plot.plot3d.tachyon.Tachyon method), 287
finish() (sage.plot.plot3d.implicit_surface.MarchingCubes method), 259
flatten() (sage.plot.plot3d.base.Graphics3d method), 160
flatten() (sage.plot.plot3d.base.Graphics3dGroup method), 172
flatten() (sage.plot.plot3d.base.TransformGroup method), 177
flatten_list() (in module sage.plot.plot3d.base), 179
fractal_landscape() (sage.plot.plot3d.tachyon.Tachyon method), 288
FractalLandscape (class in sage.plot.plot3d.tachyon), 282
frame3d() (in module sage.plot.plot3d.shapes2), 221
frame_aspect_ratio() (sage.plot.plot3d.base.Graphics3d method), 161
frame_labels() (in module sage.plot.plot3d.shapes2), 221

G
get_colors() (sage.plot.plot3d.tachyon.TachyonTriangleFactory method), 295
get_colors() (sage.plot.plot3d.tri_plot.TriangleFactory method), 277
get_endpoints() (sage.plot.plot3d.shapes.Cylinder method), 195
get_grid() (sage.plot.plot3d.parametric_surface.MoebiusStrip method), 255
get_grid() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 257
get_grid() (sage.plot.plot3d.shapes.Cone method), 192
get_grid() (sage.plot.plot3d.shapes.Cylinder method), 197
get_grid() (sage.plot.plot3d.shapes.Sphere method), 202
get_grid() (sage.plot.plot3d.shapes.Torus method), 206
get_matrix() (sage.plot.plot3d.transform.Transformation method), 274
get_normals() (sage.plot.plot3d.tri_plot.SmoothTriangle method), 277
get_radius() (sage.plot.plot3d.shapes.Cylinder method), 197
get_texture() (sage.plot.plot3d.base.PrimitiveObject method), 174
get_transformation() (sage.plot.plot3d.base.TransformGroup method), 177
get_vertices() (sage.plot.plot3d.tri_plot.Triangle method), 277
gradient (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 258
gradient (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260
Graphics3d (class in sage.plot.plot3d.base), 157
Graphics3dGroup (class in sage.plot.plot3d.base), 171
has_local_colors() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 270
hex_rgb() (sage.plot.plot3d.texture.Texture_class method), 265
icosahedron() (in module sage.plot.plot3d.platonic), 240
implicit_plot3d() (in module sage.plot.plot3d.implicit_plot3d), 113
ImplicitSurface (class in sage.plot.plot3d.implicit_surface), 258
index_face_set() (in module sage.plot.plot3d.platonic), 243
index_faces() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 270
index_faces_with_colors() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 270
IndexFaceSet (class in sage.plot.plot3d.index_face_set), 268
interface() (sage.plot.plot3d.tri_plot.TrianglePlot method), 278
is_enclosed() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 271
is_enclosed() (sage.plot.plot3d.shapes2.parametric_surface.ParametricSurface method), 257
is_skew() (sage.plot.plot3d.transform.Transformation method), 274
is_Texture() (in module sage.plot.plot3d.texture), 266
is_uniform() (sage.plot.plot3d.transform.Transformation method), 274
is_uniform_on() (sage.plot.plot3d.transform.Transformation method), 274
jmol_repr() (sage.plot.plot3d.base.Graphics3d method), 161
jmol_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 172
jmol_repr() (sage.plot.plot3d.base.PrimitiveObject method), 174
jmol_repr() (sage.plot.plot3d.base.TransformGroup method), 177
jmol_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 258
jmol_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 271
jmol_repr() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 257
jmol_repr() (sage.plot.plot3d.shapes.Cylinder method), 197
jmol_repr() (sage.plot.plot3d.shapes.Sphere method), 202
jmol_repr() (sage.plot.plot3d.shapes.Text method), 205
jmol_repr() (sage.plot.plot3d.shapes2.Line method), 219
jmol_repr() (sage.plot.plot3d.shapes2.Point method), 220

jmol_str() (sage.plot.plot3d.texture.Texture_class method), 265
json_repr() (sage.plot.plot3d.base.Graphics3d method), 161
json_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 172
json_repr() (sage.plot.plot3d.base.TransformGroup method), 178
json_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 258
json_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 271
json_repr() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 257

L
len3d() (in module sage.plot.plot3d.index_face_set), 274
Light (class in sage.plot.plot3d.tachyon), 282
light() (sage.plot.plot3d.tachyon.Tachyon method), 288
Line (class in sage.plot.plot3d.shapes2), 218
line3d() (in module sage.plot.plot3d.shapes2), 222
LineSegment() (in module sage.plot.plot3d.shapes), 198
list_plot3d() (in module sage.plot.plot3d.list_plot3d), 149
list_plot3d_array_of_arrays() (in module sage.plot.plot3d.list_plot3d), 153
list_plot3d_matrix() (in module sage.plot.plot3d.list_plot3d), 154
list_plot3d_tuples() (in module sage.plot.plot3d.list_plot3d), 155

M
MarchingCubes (class in sage.plot.plot3d.implicit_surface), 259
MarchingCubesTriangles (class in sage.plot.plot3d.implicit_surface), 260
max3() (in module sage.plot.plot3d.base), 179
max_scale() (sage.plot.plot3d.transform.Transformation method), 274
min3() (in module sage.plot.plot3d.base), 179
MoebiusStrip (class in sage.plot.plot3d.parametric_surface), 254
mtl_str() (sage.plot.plot3d.base.Graphics3d method), 161
mtl_str() (sage.plot.plot3d.texture.Texture_class method), 266

N
next() (sage.plot.plot3d.index_face_set.EdgeIter method), 267
next() (sage.plot.plot3d.index_face_set.FaceIter method), 268
next() (sage.plot.plot3d.index_face_set.VertexIter method), 273
nx (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260
ny (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260
nz (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260

O
obj() (sage.plot.plot3d.base.Graphics3d method), 162
obj_repr() (sage.plot.plot3d.base.Graphics3d method), 162
obj_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 172
obj_repr() (sage.plot.plot3d.base.PrimitiveObject method), 174
obj_repr() (sage.plot.plot3d.base.TransformGroup method), 178
obj_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 258
obj_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 271
obj_repr() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 257
obj_repr() (sage.plot.plot3d.shapes.Text method), 205
obj_repr() (sage.plot.plot3d.shapes2.Line method), 219
obj_repr() (sage.plot.plot3d.shapes2.Point method), 220
octahedron() (in module sage.plot.plot3d.platonic), 245
optimal_aspect_ratios() (in module sage.plot.plot3d.base), 180
optimal_extra_kwds() (in module sage.plot.plot3d.base), 180

P

parametric_plot() (sage.plot.plot3d.tachyon.Tachyon method), 288
parametric_plot3d() (in module sage.plot.plot3d.parametric_plot3d), 48
ParametricPlot (class in sage.plot.plot3d.tachyon), 282
ParametricSurface (class in sage.plot.plot3d.parametric_surface), 255
parse_color() (in module sage.plot.plot3d.texture), 266
partition() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 271
Plane (class in sage.plot.plot3d.tachyon), 283
plane() (sage.plot.plot3d.tachyon.Tachyon method), 288
plot() (sage.plot.plot3d.base.Graphics3d method), 163
plot() (sage.plot.plot3d.base.Graphics3dGroup method), 173
plot() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 257
plot() (sage.plot.plot3d.tachyon.Tachyon method), 288
plot3d() (in module sage.plot.plot3d.plot3d), 23
plot3d_adaptive() (in module sage.plot.plot3d.plot3d), 40
plot_block() (sage.plot.plot3d.tri_plot.TrianglePlot method), 278
plot_points (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 259
plot_vector_field3d() (in module sage.plot.plot3d.plot_field3d), 112
PlotBlock (class in sage.plot.plot3d.tri_plot), 276
ply_ascii_string() (sage.plot.plot3d.base.Graphics3d method), 163
Point (class in sage.plot.plot3d.shapes2.shapes2), 219
point3d() (in module sage.plot.plot3d.shapes2.shapes2), 223
point_list_bounding_box() (in module sage.plot.plot3d.base), 180
polygon3d() (in module sage.plot.plot3d.shapes2.shapes2), 224
polys() (in module sage.plot.plot3d.shapes2.shapes2), 224
pop_transform() (sage.plot.plot3d.base.RenderParams method), 175
prep() (in module sage.plot.plot3d.platonic), 245
PrimitiveObject (class in sage.plot.plot3d.base), 174
process_cubes() (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles method), 260
process_slice() (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles method), 260
push_transform() (sage.plot.plot3d.base.RenderParams method), 176

R

recolor() (sage.plot.plot3d.tachyon.Texture method), 296
region (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 259
region (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260
render_implicit() (in module sage.plot.plot3d.implicit_surface), 261
RenderParams (class in sage.plot.plot3d.base), 175
results (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260
revolution_plot3d() (in module sage.plot.plot3d.revolution_plot3d), 102
Ring (class in sage.plot.plot3d.tachyon), 283
ring() (sage.plot.plot3d.tachyon.Tachyon method), 289
rotate() (sage.plot.plot3d.base.Graphics3d method), 164
rotate_arbitrary() (in module sage.plot.plot3d.transform), 274
rotateX() (sage.plot.plot3d.base.Graphics3d method), 164
rotateY() (sage.plot.plot3d.base.Graphics3d method), 164

Index
rotateZ() (sage.plot.plot3d.base.Graphics3d method), 164
ruler() (in module sage.plot.plot3d.shapes2), 224
ruler_frame() (in module sage.plot.plot3d.shapes2), 225

S

sage.plot.plot3d.base (module), 157
sage.plot.plot3d.implicit_plot3d (module), 113
sage.plot.plot3d.implicit_surface (module), 258
sage.plot.plot3d.index_face_set (module), 267
sage.plot.plot3d.introduction (module), 1
sage.plot.plot3d.list_plot3d (module), 149
sage.plot.plot3d.parametric_plot3d (module), 48
sage.plot.plot3d.parametric_surface (module), 253
sage.plot.plot3d.platonic (module), 227
sage.plot.plot3d.plot3d (module), 3
sage.plot.plot3d.plot_field3d (module), 112
sage.plot.plot3d.revolution_plot3d (module), 102
sage.plot.plot3d.shapes (module), 180
sage.plot.plot3d.shapes2 (module), 218
sage.plot.plot3d.tachyon (module), 279
sage.plot.plot3d.texture (module), 263
sage.plot.plot3d.transform (module), 274
sage.plot.plot3d.tri_plot (module), 276
save() (sage.plot.plot3d.base.Graphics3d method), 164
save() (sage.plot.plot3d.tachyon.Tachyon method), 290
save_image() (sage.plot.plot3d.base.Graphics3d method), 165
save_image() (sage.plot.plot3d.tachyon.Tachyon method), 290
scale() (sage.plot.plot3d.base.Graphics3d method), 166
set_color() (sage.plot.plot3d.tri_plot.Triangle method), 277
set_texture() (sage.plot.plot3d.base.Graphics3dGroup method), 173
set_texture() (sage.plot.plot3d.base.PrimitiveObject method), 175
show() (sage.plot.plot3d.base.Graphics3d method), 166
show() (sage.plot.plot3d.tachyon.Tachyon method), 291
slices (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 260
smooth (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 259
smooth (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260
smooth_triangle() (sage.plot.plot3d.plot3d.TriangularTriangleFactory method), 18
smooth_triangle() (sage.plot.plot3d.tachyon.Tachyon method), 292
smooth_triangle() (sage.plot.plot3d.tachyon.TachyonTriangleFactory method), 295
smooth_triangle() (sage.plot.plot3d.tri_plot.TriangleFactory method), 277
SmoothTriangle (class in sage.plot.plot3d.tri_plot), 276
Sphere (class in sage.plot.plot3d.shapes), 199
Sphere (class in sage.plot.plot3d.tachyon), 284
sphere() (in module sage.plot.plot3d.shapes2), 226
sphere() (sage.plot.plot3d.tachyon.Tachyon method), 292
Spherical (class in sage.plot.plot3d.plot3d), 12
spherical_plot3d() (in module sage.plot.plot3d.plot3d), 41
SphericalElevation (class in sage.plot.plot3d.plot3d), 12
sticker() (in module sage.plot.plot3d.index_face_set), 274
sticker() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 272
stickers() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 272
stl_ascii_string() (sage.plot.plot3d.base.Graphics3d method), 167
stl_binary() (sage.plot.plot3d.base.Graphics3d method), 168
str() (sage.plot.plot3d.tachyon.Axis_aligned_box method), 281
str() (sage.plot.plot3d.tachyon.Cylinder method), 281
str() (sage.plot.plot3d.tachyon.FCylinder method), 282
str() (sage.plot.plot3d.tachyon.FractalLandscape method), 282
str() (sage.plot.plot3d.tachyon.Light method), 282
str() (sage.plot.plot3d.tachyon.ParametricPlot method), 283
str() (sage.plot.plot3d.tachyon.Plane method), 283
str() (sage.plot.plot3d.tachyon.Ring method), 283
str() (sage.plot.plot3d.tachyon.Sphere method), 284
str() (sage.plot.plot3d.tachyon.Tachyon method), 292
str() (sage.plot.plot3d.tachyon.TachyonSmoothTriangle method), 294
str() (sage.plot.plot3d.tachyon.TachyonTriangle method), 294
str() (sage.plot.plot3d.tachyon.Texfunc method), 296
str() (sage.plot.plot3d.tachyon.Texture method), 296
str() (sage.plot.plot3d.tri_plot.SmoothTriangle method), 277
str() (sage.plot.plot3d.tri_plot.Triangle method), 277
str() (sage.plot.plot3d.tri_plot.TrianglePlot method), 278

T

Tachyon (class in sage.plot.plot3d.tachyon), 284
tachyon() (sage.plot.plot3d.base.Graphics3d method), 169
tachyon_repr() (sage.plot.plot3d.base.Graphics3d method), 169
tachyon_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 173
tachyon_repr() (sage.plot.plot3d.base.PrimitiveObject method), 175
tachyon_repr() (sage.plot.plot3d.base.TransformGroup method), 178
tachyon_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 259
tachyon_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 272
tachyon_repr() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 258
tachyon_repr() (sage.plot.plot3d.shapes.Cylinder method), 197
tachyon_repr() (sage.plot.plot3d.shapes.Sphere method), 203
tachyon_repr() (sage.plot.plot3d.shapes.Text method), 206
tachyon_repr() (sage.plot.plot3d.shapes2.Line method), 219
tachyon_repr() (sage.plot.plot3d.shapes2.Point method), 220
tachyon_str() (sage.plot.plot3d.texture.Texture_class method), 266
TachyonSmoothTriangle (class in sage.plot.plot3d.tachyon), 294
TachyonTriangle (class in sage.plot.plot3d.tachyon), 294
TachyonTriangleFactory (class in sage.plot.plot3d.tachyon), 295
testing_render_params() (sage.plot.plot3d.base.Graphics3d method), 170
tetrahedron() (in module sage.plot.plot3d.platonic), 245
Texfunc (class in sage.plot.plot3d.tachyon), 295
texfunc() (sage.plot.plot3d.tachyon.Tachyon method), 292
Text (class in sage.plot.plot3d.shapes), 203
text3d() (in module sage.plot.plot3d.shapes2), 226
Texture (class in sage.plot.plot3d.tachyon), 296
texture (sage.plot.plot3d.base.Graphics3d attribute), 170
Texture() (in module sage.plot.plot3d.texture), 263
texture() (sage.plot.plot3d.tachyon.Tachyon method), 293
Texture_class (class in sage.plot.plot3d.texture), 265
texture_recolor() (sage.plot.plot3d.tachyon.Tachyon method), 294
texture_set() (sage.plot.plot3d.base.Graphics3d method), 170
texture_set() (sage.plot.plot3d.base.Graphics3dGroup method), 173
texture_set() (sage.plot.plot3d.base.PrimitiveObject method), 175
tol() (sage.plot.plot3d.tachyon.ParametricPlot method), 283
Torus (class in sage.plot.plot3d.shapes), 206
tosr() (in module sage.plot.plot3d.tachyon), 296
transform (sage.plot.plot3d.implicit_surface.MeshingCubes attribute), 260
transform() (sage.plot.plot3d.base.BoundingSphere method), 157
transform() (sage.plot.plot3d.base.Graphics3d method), 170
transform() (sage.plot.plot3d.base.Graphics3dGroup method), 174
transform() (sage.plot.plot3d.base.TransformGroup method), 178
transform() (sage.plot.plot3d.plot3d.Cylindrical method), 9
transform() (sage.plot.plot3d.plot3d.Spherical method), 12
transform() (sage.plot.plot3d.plot3d.SphericalElevation method), 18
transform_bounding_box() (sage.plot.plot3d.transform.Transformation method), 274
transform_point() (sage.plot.plot3d.transform.Transformation method), 274
transform_vector() (sage.plot.plot3d.transform.Transformation method), 274
Transformation (class in sage.plot.plot3d.transform), 274
TransformGroup (class in sage.plot.plot3d.base), 177
translate() (sage.plot.plot3d.base.Graphics3d method), 170
Triangle (class in sage.plot.plot3d.tri_plot), 277
triangle() (sage.plot.plot3d.plot3d.TrivialTriangleFactory method), 19
triangle() (sage.plot.plot3d.tachyon.Tachyon method), 294
triangle() (sage.plot.plot3d.tachyon.TachyonTriangleFactory method), 295
triangle() (sage.plot.plot3d.tri_plot.TriangleFactory method), 277
TriangleFactory (class in sage.plot.plot3d.tri_plot), 277
TrianglePlot (class in sage.plot.plot3d.tri_plot), 277
triangulate() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 259
triangulate() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 258
triangulate() (sage.plot.plot3d.tri_plot.TrianglePlot method), 278
TrivialTriangleFactory (class in sage.plot.plot3d.plot3d), 18

U
unique_name() (sage.plot.plot3d.base.RenderParams method), 176

V
validate_frame_size() (in module sage.plot.plot3d.shapes), 211
vars (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 259
vertex_list() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 272
VertexInfo (class in sage.plot.plot3d.implicit_surface), 261
VertexIter (class in sage.plot.plot3d.index_face_set), 273
vertices() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 273
Viewpoint (class in sage.plot.plot3d.base), 179
viewpoint() (sage.plot.plot3d.base.Graphics3d method), 170

X
x3d() (sage.plot.plot3d.base.Graphics3d method), 171
x3d_geometry() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 273
x3d_geometry() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 258
x3d_geometry() (sage.plot.plot3d.shapes.Box method), 183
x3d_geometry() (sage.plot.plot3d.shapes.Cone method), 192
x3d_geometry() (sage.plot.plot3d.shapes.Cylinder method), 198
x3d_geometry() (sage.plot.plot3d.shapes.Sphere method), 203
x3d_geometry() (sage.plot.plot3d.shapes.Text method), 206
x3d_str() (sage.plot.plot3d.base.Graphics3dGroup method), 174
x3d_str() (sage.plot.plot3d.base.PrimitiveObject method), 175
x3d_str() (sage.plot.plot3d.base.TransformGroup method), 179
x3d_str() (sage.plot.plot3d.base.Viewpoint method), 179
x3d_str() (sage.plot.plot3d.texture.Texture_class method), 266
x_vertices (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 260
xrange (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 259
xrange (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260

Y
y_vertices (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 261
y_vertices_swapped (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 261
yrange (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 259
yrange (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260

Z
z_vertices (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 261
z_vertices_swapped (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 261
zrange (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 259
zrange (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 260