CONTENTS

1 Polynomial Rings ... 1
 1.1 Constructors for polynomial rings 1

2 Univariate Polynomials 9
 2.1 Univariate Polynomials and Polynomial Rings 9
 2.2 Generic Convolution 239
 2.3 Fast calculation of cyclotomic polynomials 240

3 Multivariate Polynomials 243
 3.1 Multivariate Polynomials and Polynomial Rings 243
 3.2 Classical Invariant Theory 404
 3.3 Educational Versions of Groebner Basis and Related Algorithms 432

4 Skew Polynomials .. 445
 4.1 Univariate Skew Polynomials 445
 4.2 Constructor for skew polynomial rings 473
 4.3 Skew Univariate Polynomial Rings 475

5 Rational Functions ... 483
 5.1 Fraction Field of Integral Domains 483
 5.2 Fraction Field Elements 489
 5.3 Univariate rational functions over prime fields 492

6 Laurent Polynomials ... 501
 6.1 Ring of Laurent Polynomials 501
 6.2 Elements of Laurent polynomial rings 508
 6.3 MacMahon’s Partition Analysis Omega Operator 523

7 Infinite Polynomial Rings 529
 7.1 Infinite Polynomial Rings 529
 7.2 Elements of Infinite Polynomial Rings 539
 7.3 Symmetric Ideals of Infinite Polynomial Rings 547
 7.4 Symmetric Reduction of Infinite Polynomials 556

8 Boolean Polynomials .. 563
 8.1 Boolean Polynomials 563

9 Noncommutative Polynomials 621
 9.1 Noncommutative Polynomials via libSINGULAR/Plural 621

10 Indices and Tables ... 639
1.1 Constructors for polynomial rings

This module provides the function `PolynomialRing()`, which constructs rings of univariate and multivariate polynomials, and implements caching to prevent the same ring being created in memory multiple times (which is wasteful and breaks the general assumption in Sage that parents are unique).

There is also a function `BooleanPolynomialRing_constructor()`, used for constructing Boolean polynomial rings, which are not technically polynomial rings but rather quotients of them (see module `sage.rings.polynomial.pbori` for more details).

Construct a boolean polynomial ring with the following parameters:

INPUT:
- `n` – number of variables (an integer > 1)
- `names` – names of ring variables, may be a string or list/tuple of strings
- `order` – term order (default: lex)

EXAMPLES:

```
sage: R.<x, y, z> = BooleanPolynomialRing()  # indirect doctest
sage: R
Boolean PolynomialRing in x, y, z
sage: p = x*y + x*z + y*z
sage: x*p
x*y*z + x*y + x*z
sage: R.term_order()
Lexicographic term order
sage: R = BooleanPolynomialRing(5,'x',order='deglex(3),deglex(2)')
sage: R.term_order()
Block term order with blocks:
(Degree lexicographic term order of length 3,
 Degree lexicographic term order of length 2)
sage: R = BooleanPolynomialRing(3,'x',order='degneglex')
sage: R.term_order()
```

(continues on next page)
Consider the following code:

```python
sage: BooleanPolynomialRing(names=('x','y'))
Boolean PolynomialRing in x, y
sage: BooleanPolynomialRing(names='x,y')
Boolean PolynomialRing in x, y
```

This code demonstrates how to create a Boolean polynomial ring with given names. The `BooleanPolynomialRing` constructor from Sage provides several ways to specify the variables for the polynomial ring:

1. `PolynomialRing(base_ring, name, ...)`
2. `PolynomialRing(base_ring, names, ...)`
3. `PolynomialRing(base_ring, n, names, ...)`
4. `PolynomialRing(base_ring, n, ..., var_array=var_array, ...)`

The `...` at the end of these commands stands for additional keywords, like `sparse` or `order`.

INPUT:
- `base_ring` – a ring
- `n` – an integer
- `name` – a string
- `names` – a list or tuple of names (strings), or a comma separated string
- `var_array` – a list or tuple of names, or a comma separated string
- `sparse` – bool: whether or not elements are sparse. The default is a dense representation (`sparse=False`) for univariate rings and a sparse representation (`sparse=True`) for multivariate rings.
- `order` – string or `TermOrder` object, e.g.,
 - `'degrevlex'` (default) – degree reverse lexicographic
 - `'lex'` – lexicographic
 - `'deglex'` – degree lexicographic
 - `TermOrder('deglex',3) + TermOrder('deglex',3)` – block ordering
- `implementation` – string or None; selects an implementation in cases where Sage includes multiple choices (currently $\mathbb{Z}[x]$ can be implemented with 'NTL' or 'FLINT'; default is 'FLINT'). For many base rings, the "singular" implementation is available. One can always specify `implementation="generic"` for a generic Sage implementation which does not use any specialized library.

Note: If the given implementation does not exist for rings with the given number of generators and the given sparsity, then an error results.

OUTPUT:
PolynomialRing(base_ring, name, sparse=False) returns a univariate polynomial ring; also, PolynomialRing(base_ring, names, sparse=False) yields a univariate polynomial ring, if names is a list or tuple providing exactly one name. All other input formats return a multivariate polynomial ring.

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one single-variate polynomial ring over each base ring in each choice of variable, sparseness, and implementation. There is also exactly one multivariate polynomial ring over each base ring for each choice of names of variables and term order. The names of the generators can only be temporarily changed after the ring has been created. Do this using the localvars context:

EXAMPLES:

1. PolynomialRing(base_ring, name, ...)

```
sage: PolynomialRing(QQ, 'w')
Univariate Polynomial Ring in w over Rational Field
sage: PolynomialRing(QQ, name='w')
Univariate Polynomial Ring in w over Rational Field
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:

```
sage: R.<w> = PolynomialRing(QQ)
sage: (1 + w)^3
w^3 + 3*w^2 + 3*w + 1
```

You must specify a name:

```
sage: PolynomialRing(QQ)
Traceback (most recent call last):
  ... 
TypeError: you must specify the names of the variables
sage: R.<abc> = PolynomialRing(QQ, sparse=True); R
Sparse Univariate Polynomial Ring in abc over Rational Field
sage: R.<w> = PolynomialRing(PolynomialRing(GF(7),'k'),'w'); R
Univariate Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of size 7
```

The square bracket notation:

```
sage: R.<y> = QQ['y']; R
Univariate Polynomial Ring in y over Rational Field
sage: y^2 + y
y^2 + y
```

In fact, since the diamond brackets on the left determine the variable name, you can omit the variable from the square brackets:

```
sage: R.<zz> = QQ[]; R
Univariate Polynomial Ring in zz over Rational Field
sage: (zz + 1)^2
zz^2 + 2*zz + 1
```

This is exactly the same ring as what PolynomialRing returns:

```
sage: R is PolynomialRing(QQ,'zz')
True
```

However, rings with different variables are different:

sage: QQ['x'] == QQ['y']
False

Sage has two implementations of univariate polynomials over the integers, one based on NTL and one based on FLINT. The default is FLINT. Note that FLINT uses a “more dense” representation for its polynomials than NTL, so in particular, creating a polynomial like $2^{1000000} \cdot x^{1000000}$ in FLINT may be unwise.

sage: ZxNTL = PolynomialRing(ZZ, 'x', implementation='NTL'); ZxNTL
Univariate Polynomial Ring in x over Integer Ring (using NTL)
sage: ZxFLINT = PolynomialRing(ZZ, 'x', implementation='FLINT'); ZxFLINT
Univariate Polynomial Ring in x over Integer Ring
sage: ZxFLINT is ZZ['x']
True
sage: ZxFLINT is PolynomialRing(ZZ, 'x')
True
sage: xNTL = ZxNTL.gen()
sage: xFLINT = ZxFLINT.gen()
sage: xNTL.parent()
Univariate Polynomial Ring in x over Integer Ring (using NTL)
sage: xFLINT.parent()
Univariate Polynomial Ring in x over Integer Ring

There is a coercion from the non-default to the default implementation, so the values can be mixed in a single expression:

sage: (xNTL + xFLINT^2)
\(x^2 + x\)

The result of such an expression will use the default, i.e., the FLINT implementation:

sage: (xNTL + xFLINT^2).parent()
Univariate Polynomial Ring in x over Integer Ring

The generic implementation uses neither NTL nor FLINT:

sage: Zx = PolynomialRing(ZZ, 'x', implementation='generic'); Zx
Univariate Polynomial Ring in x over Integer Ring
sage: Zx.element_class
<... 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>

2. PolynomialRing(base_ring, names, ...)

sage: R = PolynomialRing(QQ, 'a,b,c'); R
Multivariate Polynomial Ring in a, b, c over Rational Field
sage: S = PolynomialRing(QQ, ['a','b','c']); S
Multivariate Polynomial Ring in a, b, c over Rational Field
sage: T = PolynomialRing(QQ, ('a','b','c')); T
Multivariate Polynomial Ring in a, b, c over Rational Field

All three rings are identical:

sage: R is S
True
sage: S is T
True
There is a unique polynomial ring with each term order:

```python
sage: R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: S = PolynomialRing(QQ, 'x,y,z', order='invlex'); S
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: S is PolynomialRing(QQ, 'x,y,z', order='invlex')
True
sage: R == S
False
```

Note that a univariate polynomial ring is returned, if the list of names is of length one. If it is of length zero, a multivariate polynomial ring with no variables is returned.

```python
sage: PolynomialRing(QQ,["x"])  
Univariate Polynomial Ring in x over Rational Field
sage: PolynomialRing(QQ,[])  
Multivariate Polynomial Ring in no variables over Rational Field
```

The Singular implementation always returns a multivariate ring, even for 1 variable:

```python
sage: PolynomialRing(QQ, "x", implementation="singular")
Multivariate Polynomial Ring in x over Rational Field
sage: P.<x> = PolynomialRing(QQ, implementation="singular"); P
Multivariate Polynomial Ring in x over Rational Field
```

3. `PolynomialRing(base_ring, n, names, ...)` (where the arguments `n` and `names` may be reversed)

If you specify a single name as a string and a number of variables, then variables labeled with numbers are created.

```python
sage: PolynomialRing(QQ, 'x', 10)
Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field
sage: PolynomialRing(QQ, 2, 'alpha0')
Multivariate Polynomial Ring in alpha00, alpha01 over Rational Field
sage: PolynomialRing(GF(7), 'y', 5)
Multivariate Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7
sage: PolynomialRing(QQ, 'y', 3, sparse=True)
Multivariate Polynomial Ring in y0, y1, y2 over Rational Field
```

Note that a multivariate polynomial ring is returned when an explicit number is given.

```python
sage: PolynomialRing(QQ,"x",1)
Multivariate Polynomial Ring in x over Rational Field
sage: PolynomialRing(QQ,"x",0)
Multivariate Polynomial Ring in no variables over Rational Field
```

It is easy in Python to create fairly arbitrary variable names. For example, here is a ring with generators labeled by the primes less than 100:

```python
sage: R = PolynomialRing(ZZ, ['x%d' % p for p in primes(100)]); R
Multivariate Polynomial Ring in x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97 over Integer Ring
```
By calling the `inject_variables()` method, all those variable names are available for interactive use:

```python
sage: R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x31, x37, x41, x43, x47,
     → x53, x59, x61, x67, x71, x73, x79, x83, x89, x97
sage: (x2 + x41 + x71)^2
x2^2 + 2*x2*x41 + x41^2 + 2*x2*x71 + 2*x41*x71 + x71^2
```

4. `PolynomialRing(base_ring, n, ... , var_array=var_array, ...)`

This creates an array of variables where each variables begins with an entry in `var_array` and is indexed from 0 to `n - 1`.

```python
sage: PolynomialRing(ZZ, 3, var_array=['x', 'y'])
Multivariate Polynomial Ring in x0, y0, x1, y1, x2, y2 over Integer Ring
sage: PolynomialRing(ZZ, 3, var_array='a,b')
Multivariate Polynomial Ring in a0, b0, a1, b1, a2, b2 over Integer Ring
```

It is possible to create higher-dimensional arrays:

```python
sage: PolynomialRing(ZZ, 2, 3, var_array=('p', 'q'))
Multivariate Polynomial Ring in p00, q00, p01, q01, p02, q02, p10, q10, p11, q11,
     → p12, q12 over Integer Ring
sage: PolynomialRing(ZZ, 2, 3, 4, var_array='m')
Multivariate Polynomial Ring in m000, m001, m002, m003, m010, m011, m012, m013,
     → m020, m021, m022, m023, m100, m101, m102, m103, m110, m111, m112, m113,
     → m120, m121, m122, m123 over Integer Ring
```

The array is always at least 2-dimensional. So, if `var_array` is a single string and only a single number `n` is given, this creates an `n x n` array of variables:

```python
sage: PolynomialRing(ZZ, 2, var_array='m')
Multivariate Polynomial Ring in m00, m01, m10, m11 over Integer Ring
```

Square brackets notation

You can alternatively create a polynomial ring over a ring `R` with square brackets:

```python
 sage: RR["x"]
Univariate Polynomial Ring in x over Real Field with 53 bits of precision
 sage: RR["x,y"]
Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision
 sage: P.<x,y> = RR[]; P
Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision
```

This notation does not allow to set any of the optional arguments.

Changing variable names

Consider

```python
 sage: R.<x,y> = PolynomialRing(QQ,2); R
Multivariate Polynomial Ring in x, y over Rational Field
 sage: f = x^2 - 2*y^2
```

You can’t just globally change the names of those variables. This is because objects all over Sage could have pointers to that polynomial ring.
However, you can very easily change the names within a `with` block:

```python
sage: with localvars(R, ['z', 'w]):
   ....: print(f)
x^2 - 2*w^2
```

After the `with` block the names revert to what they were before:

```python
sage: print(f)
x^2 - 2*y^2
```

Choose an appropriate category for a polynomial ring.

It is assumed that the corresponding base ring is nonzero.

INPUT:

- `base_ring_category` – The category of ring over which the polynomial ring shall be defined
- `n_variables` – number of variables

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_ring_constructor import polynomial_default_category
sage: polynomial_default_category(Rings(),1) is Algebras(Rings()).Infinite()
True
sage: polynomial_default_category(Rings().Commutative(),1) is Algebras(Rings().Commutative()).Commutative().Infinite()
True
sage: polynomial_default_category(Fields(),1) is EuclideanDomains() &
    ->Algebras(Fields()).Infinite()
True
sage: polynomial_default_category(Fields(),2) is UniqueFactorizationDomains() &
    ->CommutativeAlgebras(Fields()).Infinite()
True
sage: QQ['t'].category() is EuclideanDomains() & CommutativeAlgebras(QQ.
    ->category()).Infinite()
True
sage: QQ['s','t'].category() is UniqueFactorizationDomains() &
    ->CommutativeAlgebras(QQ.category()).Infinite()
True
sage: QQ['s']['t'].category() is UniqueFactorizationDomains() &
    ->CommutativeAlgebras(QQ['s'].category()).Infinite()
True
```

Custom unpickling function for polynomial rings.

1.1. Constructors for polynomial rings 7
This has the same positional arguments as the old `PolynomialRing` constructor before trac ticket #23338.
2.1 Univariate Polynomials and Polynomial Rings

Sage’s architecture for polynomials ‘under the hood’ is complex, interfacing to a variety of C/C++ libraries for polynomials over specific rings. In practice, the user rarely has to worry about which backend is being used.

The hierarchy of class inheritance is somewhat confusing, since most of the polynomial element classes are implemented as Cython extension types rather than pure Python classes and thus can only inherit from a single base class, whereas others have multiple bases.

2.1.1 Univariate Polynomial Rings

Sage implements sparse and dense polynomials over commutative and non-commutative rings. In the non-commutative case, the polynomial variable commutes with the elements of the base ring.

AUTHOR:
• William Stein
• Kiran Kedlaya (2006-02-13): added macaulay2 option
• Martin Albrecht (2006-08-25): removed it again as it isn’t needed anymore
• Simon King (2011-05): Dense and sparse polynomial rings must not be equal.
• Simon King (2011-10): Choice of categories for polynomial rings.

EXAMPLES:

sage: z = QQ['z'].0
sage: (z^3 + z - 1)^3
z^9 + 3*z^7 - 3*z^6 + 3*z^5 - 6*z^4 + 4*z^3 - 3*z^2 + 3*z - 1

Saving and loading of polynomial rings works:

sage: loads(dumps(QQ['x'])) == QQ['x']
True
sage: k = PolynomialRing(QQ['x'], 'y'); loads(dumps(k)) == k
True
sage: k = PolynomialRing(ZZ, 'y'); loads(dumps(k)) == k
True
sage: k = PolynomialRing(ZZ, 'y', sparse=True); loads(dumps(k))
Sparse Univariate Polynomial Ring in y over Integer Ring

Rings with different variable names are not equal; in fact, by trac ticket #9944, polynomial rings are equal if and only if they are identical (which should be the case for all parent structures in Sage):
We create a polynomial ring over a quaternion algebra:

```
sage: A.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: R.<w> = PolynomialRing(A,sparse=True)
sage: f = w^3 + (i+j)*w + 1
sage: f
w^3 + (i + j)*w + 1
sage: f^2
w^6 + (2*i + 2*j)*w^4 + 2*w^3 - 2*w^2 + (2*i + 2*j)*w + 1
sage: f = w + i ; g = w + j
sage: f * g
w^2 + (i + j)*w + k
sage: g * f
w^2 + (i + j)*w - k
```

Trac ticket #9944 introduced some changes related with coercion. Previously, a dense and a sparse polynomial ring with the same variable name over the same base ring evaluated equal, but of course they were not identical. Coercion maps are cached - but if a coercion to a dense ring is requested and a coercion to a sparse ring is returned instead (since the cache keys are equal!), all hell breaks loose.

Therefore, the coercion between rings of sparse and dense polynomials works as follows:

```
sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: S.<x> = QQ[]
sage: S == R
False
sage: S.has_coerce_map_from(R)
True
sage: R.has_coerce_map_from(S)
False
sage: (R.0+S.0).parent()
Univariate Polynomial Ring in x over Rational Field
sage: (S.0+R.0).parent()
Univariate Polynomial Ring in x over Rational Field
```

It may be that one has rings of dense or sparse polynomials over different base rings. In that situation, coercion works by means of the `pushout()` formalism:

```
sage: R.<x> = PolynomialRing(GF(5), sparse=True)
sage: S.<x> = PolynomialRing(ZZ)
sage: R.has_coerce_map_from(S)
False
sage: S.has_coerce_map_from(R)
False
sage: (S.0 + R.0).parent()
Univariate Polynomial Ring in x over Finite Field of size 5
sage: (S.0 + R.0).parent().is_sparse()
False
```

Similarly, there is a coercion from the (non-default) NTL implementation for univariate polynomials over the integers to the default FLINT implementation, but not vice versa:
sage: R.<x> = PolynomialRing(ZZ, implementation = 'NTL')
sage: S.<x> = PolynomialRing(ZZ, implementation = 'FLINT')
sage: (S.0+R.0).parent() is S
True
sage: (R.0+S.0).parent() is S
True

class sage.rings.polynomial.polynomial_ring.PolynomialRing_cdvf (base_ring,
 name=None, sparse=False, element_class=None, category=None)

polynomial.polynomial_ring.PolynomialRing_field

A class for polynomial ring over complete discrete valuation fields

class sage.rings.polynomial.polynomial_ring.PolynomialRing_cdvr (base_ring,
 name=None, sparse=False, element_class=None, category=None)

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain

A class for polynomial ring over complete discrete valuation rings

class sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative (base_ring,
 name=None, sparse=False, element_class=None, category=None)

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_general, sage.
rings.ring.CommutativeAlgebra

Univariate polynomial ring over a commutative ring.

quotient_by_principal_ideal (f, names=None)

Return the quotient of this polynomial ring by the principal ideal (generated by) \(f \).

INPUT:

- \(f \) - either a polynomial in \(self \), or a principal ideal of \(self \).

EXAMPLES:

sage: R.<x> = QQ[]
sage: I = (x^2-1)*R
sage: R.quotient_by_principal_ideal(I)
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus \(x^2 - 1 \)

The same example, using the polynomial instead of the ideal, and customizing the variable name:
weyl_algebra()

Return the Weyl algebra generated from self.

EXAMPLES:

```python
sage: R = QQ['x']
sage: W = R.weyl_algebra(); W
differential Weyl algebra of polynomials in x over Rational Field
sage: W.polynomial_ring() == R
True
```

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field(base_ring, name='x', element_class=None, implementation=None)

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_field

Univariate polynomial ring over a finite field.

EXAMPLES:

```python
sage: R = PolynomialRing(GF(27, 'a'), 'x')
sage: type(R)
class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field_˓
˓→with_category'
```

irreducible_element(n, algorithm=None)

Construct a monic irreducible polynomial of degree n.

INPUT:

- n – integer: degree of the polynomial to construct
- algorithm – string: algorithm to use, or None
 - 'random': try random polynomials until an irreducible one is found.
 - 'first_lexicographic': try polynomials in lexicographic order until an irreducible one is found.

OUTPUT:

A monic irreducible polynomial of degree n in self.

EXAMPLES:

```python
sage: GF(5^3, 'a')['x'].irreducible_element(2)
x^2 + (4*a^2 + a + 4)*x + 2*a^2 + 2
sage: GF(19)['x'].irreducible_element(21, algorithm="first_lexicographic")
```

(continues on next page)
AUTHORS:

- Peter Bruin (June 2013)
- Jean-Pierre Flori (May 2014)

```python
sage: GF(5^2, 'a')['x'].irreducible_element(17, algorithm="first_lexicographic")
x^17 + a*x + 4*a + 3
```

```python
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n(base_ring, name=None, element_class=None, implementation=None, category=None):
Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative

modulus()

EXAMPLES:

```python
sage: R.<x> = Zmod(15)[]
sage: R.modulus()
15
```

```python
residue_field(ideal, names=None)

Return the residue finite field at the given ideal.

EXAMPLES:

```python
sage: R.<t> = GF(2)[]
sage: k.<a> = R.residue_field(t^3+t+1); k
Residue field in a of Principal ideal (t^3 + t + 1) of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
sage: k.list()
[0, a, a^2, a + 1, a^2 + a, a^2 + a + 1, a^2 + 1, 1]
sage: R.residue_field(t)
Residue field of Principal ideal (t) of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
sage: P = R.irreducible_element(8) * R
sage: P
Principal ideal (t^8 + t^4 + t^3 + t^2 + 1) of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
sage: k.<a> = R.residue_field(P); k
Residue field in a of Principal ideal (t^8 + t^4 + t^3 + t^2 + 1) of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
sage: k.cardinality()
256
```

Non-maximal ideals are not accepted:
```python
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p (base_ring, name='x', implementation=None, category=None):

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p,
        sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field,
        sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n,
        sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr

irreducible_element (n, algorithm=None)
  Construct a monic irreducible polynomial of degree n.
  
  INPUT:

  - n -- integer: the degree of the polynomial to construct
  - algorithm -- string: algorithm to use, or None. Currently available options are:
    - 'adleman-lenstra': a variant of the Adleman–Lenstra algorithm as implemented in PARI.
    - 'conway': look up the Conway polynomial of degree n over the field of p elements in the database; raise a RuntimeError if it is not found.
    - 'ffprimroot': use the ffprimroot() function from PARI.
    - 'first_lexicographic': return the lexicographically smallest irreducible polynomial of degree n.
    - 'minimal_weight': return an irreducible polynomial of degree n with minimal number of non-zero coefficients. Only implemented for p = 2.
    - 'primitive': return a polynomial f such that a root of f generates the multiplicative group of the finite field extension defined by f. This uses the Conway polynomial if possible, otherwise it uses ffprimroot.
    - 'random': try random polynomials until an irreducible one is found.

  If algorithm is None, use x - 1 in degree 1. In degree > 1, the Conway polynomial is used if it is found in the database. Otherwise, the algorithm minimal_weight is used if p = 2, and the algorithm adleman-lenstra if p > 2.
```

OUTPUT:

A monic irreducible polynomial of degree \(n \) in \texttt{self}.

EXAMPLES:

```python
sage: GF(5)['x'].irreducible_element(2)
x^2 + 4*x + 2
sage: GF(5)['x'].irreducible_element(2, algorithm="adleman-lenstra")
x^2 + x + 1
sage: GF(5)['x'].irreducible_element(2, algorithm="primitive")
x^2 + 4*x + 2
sage: GF(5)['x'].irreducible_element(32, algorithm="first_lexicographic")
x^32 + 2
sage: GF(5)['x'].irreducible_element(32, algorithm="conway")
Traceback (most recent call last):
  ...  
RuntimeError: requested Conway polynomial not in database.
sage: GF(5)['x'].irreducible_element(32, algorithm="primitive")
x^32 + ...
```

In characteristic 2:

```python
sage: GF(2)['x'].irreducible_element(33)
x^33 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^3 + 1
sage: GF(2)['x'].irreducible_element(33, algorithm="minimal_weight")
x^33 + x^10 + 1
```

In degree 1:

```python
sage: GF(97)['x'].irreducible_element(1)
x + 96
sage: GF(97)['x'].irreducible_element(1, algorithm="conway")
x + 92
sage: GF(97)['x'].irreducible_element(1, algorithm="adleman-lenstra")
x
```

AUTHORS:

- Peter Bruin (June 2013)
- Jeroen Demeyer (September 2014): add “ffprimroot” algorithm, see trac ticket #8373.
A class for dense polynomial ring over p-adic fields

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_field_generic

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_cdvf

A class for dense polynomial ring over p-adic fields

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_absolute

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_relative

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_fixed_mod

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_cdvr

A class for dense polynomial ring over p-adic rings
class sage.rings.polynomial.polynomial_ring.PolynomialRing_field(base_ring, name='x', sparse=False, element_class=None, category=None):

 Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain,
sage.rings.ring.PrincipalIdealDomain

 divided_difference(points, full_table=False)

 Return the Newton divided-difference coefficients of the Lagrange interpolation polynomial through points.

 INPUT:

 • points -- a list of pairs \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\) of elements of the base ring of self, where \(x_i - x_j\) is invertible for \(i \neq j\). This method converts the \(x_i\) and \(y_i\) into the base ring of self.

 • full_table -- boolean (default: False): If True, return the full divided-difference table. If False, only return entries along the main diagonal; these are the Newton divided-difference coefficients \(F_{i,i}\).

 OUTPUT:

 The Newton divided-difference coefficients of the \(n\)-th Lagrange interpolation polynomial \(P_n(x)\) that passes through the points in points (see lagrange_polynomial()). These are the coefficients \(F_{0,0}, F_{1,1}, \ldots, F_{n,n}\) in the base ring of self such that

 \[
 P_n(x) = \sum_{i=0}^{n} F_{i,i} \prod_{j=0}^{i-1} (x - x_j)
 \]

 EXAMPLES:

 Only return the divided-difference coefficients \(F_{i,i}\). This example is taken from Example 1, page 121 of [BF05]:

 sage: points = [(1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022), (1.9, 0. \rightarrow 2818186), (2.2, 0.1103623)]
 sage: R = PolynomialRing(RR, "x")
 sage: R.divided_difference(points)
 [0.765197700000000,
 -0.483705666666666,
 -0.108733888888889,
 0.0658783950617283,
 0.00182510288066044]

 Now return the full divided-difference table:

 sage: points = [(1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022), (1.9, 0. \rightarrow 2818186), (2.2, 0.1103623)]
 sage: R = PolynomialRing(RR, "x")
 sage: R.divided_difference(points, full_table=True)
 [[0.765197700000000],
 [0.620086000000000, -0.483705666666666],
 [0.455402200000000, -0.548946000000000, -0.108733888888889],
 [0.281818600000000, -0.578612000000000,
 -0.0494433333333339],
 (continues on next page)
The following example is taken from Example 4.12, page 225 of [MF99]:

```sage
points = [(1, -3), (2, 0), (3, 15), (4, 48), (5, 105), (6, 192)]
R = PolynomialRing(QQ, "x")
R.divided_difference(points)
([-3], [3, 6, 1, 0, 0])
R.divided_difference(points, full_table=True)
([-3], [0, 3], [15, 15, 6], [48, 33, 9, 1], [105, 57, 12, 1, 0], [192, 87, 15, 1, 0, 0])
```

REFERENCES:

* fraction_field()
 Returns the fraction field of self.
 EXAMPLES:

```sage
R.<t> = GF(5)[]
R.fraction_field()
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
```

* lagrange_polynomial(points, algorithm='divided_difference', previous_row=None)
 Return the Lagrange interpolation polynomial through the given points.
 INPUT:
 • points – a list of pairs \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\) of elements of the base ring of self, where
 \(x_i - x_j\) is invertible for \(i \neq j\). This method converts the \(x_i\) and \(y_i\) into the base ring of self.
 • algorithm – (default: 'divided_difference'): one of the following:
 - 'divided_difference': use the method of divided differences.
 - algorithm='neville': adapt Neville’s method as described on page 144 of [BF05] to
 recursively generate the Lagrange interpolation polynomial. Neville’s method generates a table of
 approximating polynomials, where the last row of that table contains the \(n\)-th Lagrange interpo-
 lation polynomial. The adaptation implemented by this method is to only generate the last row of
 this table, instead of the full table itself. Generating the full table can be memory inefficient.
 • previous_row – (default: None): This option is only relevant if used with
 algorithm='neville'. If provided, this should be the last row of the table resulting from
 a previous use of Neville’s method. If such a row is passed, then points should consist of
 both previous and new interpolating points. Neville’s method will then use that last row and the
 interpolating points to generate a new row containing an interpolation polynomial for the new points.
 OUTPUT:
 The Lagrange interpolation polynomial through the points \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\). This is the
 unique polynomial \(P_n\) of degree at most \(n\) in self satisfying \(P_n(x_i) = y_i\) for \(0 \leq i \leq n\).
EXAMPLES:

By default, we use the method of divided differences:

```python
sage: R = PolynomialRing(QQ, 'x')
sage: f = R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)]); f
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1
sage: f(0)
1
sage: f(2)
2
sage: f(3)
-2
sage: f(-4)
9
sage: R = PolynomialRing(GF(2**3,'a'), 'x')
sage: a = R.base_ring().gen()
sage: f = R.lagrange_polynomial([(a^2+a,a),(a,1),(a^2,a^2+a+1)]); f
a^2*x^2 + a^2*x + a^2
sage: f(a^2+a)
a
sage: f(a)
1
sage: f(a^2)
a^2 + a + 1
```

Now use a memory efficient version of Neville’s method:

```python
sage: R = PolynomialRing(QQ, 'x')
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)], algorithm="neville")
[9,
 -11/7*x + 19/7,
 -17/42*x^2 - 83/42*x + 53/7,
 -23/84*x^3 - 11/84*x^2 + 13/7*x + 1]
sage: R = PolynomialRing(GF(2**3,'a'), 'x')
sage: a = R.base_ring().gen()
sage: R.lagrange_polynomial([(a^2+a,a),(a,1),(a^2,a^2+a+1)], algorithm="neville")
[a^2 + a + 1, x + a + 1, a^2*x^2 + a^2*x + a^2]
```

Repeated use of Neville’s method to get better Lagrange interpolation polynomials:

```python
sage: R = PolynomialRing(QQ, 'x')
sage: p = R.lagrange_polynomial([(0,1),(2,2)], algorithm="neville")
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)], algorithm="neville", previous_row=p)[-1]
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1
sage: R = PolynomialRing(GF(2**3,'a'), 'x')
sage: a = R.base_ring().gen()
sage: p = R.lagrange_polynomial([(a^2+a,a),(a,1)], algorithm="neville")
sage: R.lagrange_polynomial([(a^2+a,a),(a,1),(a^2,a^2+a+1)], algorithm="neville", previous_row=p)[-1]
a^2*x^2 + a^2*x + a^2
```

REFERENCES:
class sage.rings.polynomial.polynomial_ring.PolynomialRing_general(base_ring, name=None, sparse=False, element_class=None, category=None)

Bases: sage.rings.ring.Algebra

Univariate polynomial ring over a ring.

base_extend(R)
Return the base extension of this polynomial ring to R.

EXAMPLES:

sage: R.<x> = RR[]; R
Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: R.base_extend(CC)
Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
sage: R.base_extend(QQ)
Traceback (most recent call last):
 ... TypeError: no such base extension
sage: R.change_ring(QQ)
Univariate Polynomial Ring in x over Rational Field

change_ring(R)
Return the polynomial ring in the same variable as self over R.

EXAMPLES:

sage: R.<ZZZ> = RealIntervalField()[]; R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
sage: R.change_ring(GF(19^2,'b'))
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2

change_var(var)
Return the polynomial ring in variable var over the same base ring.

EXAMPLES:

sage: R.<x> = ZZ[]; R
Univariate Polynomial Ring in x over Integer Ring
sage: R.change_var('y')
Univariate Polynomial Ring in y over Integer Ring

characteristic()
Return the characteristic of this polynomial ring, which is the same as that of its base ring.

EXAMPLES:

sage: R.<ZZZ> = RealIntervalField()[]; R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
sage: R.characteristic()
0
sage: S = R.change_ring(GF(19^2,'b')); S

Univariate Polynomial Ring in ZZ over Finite Field in b of size 19^2
sage: S.characteristic()
19

completion (p, prec=20, extras=None)

Return the completion of self with respect to the irreducible polynomial p. Currently only implemented for p=self.gen(), i.e. you can only complete R[x] with respect to x, the result being a ring of power series in x. The prec variable controls the precision used in the power series ring.

EXAMPLES:

```python
sage: P.<x>=PolynomialRing(QQ)
sage: P
Univariate Polynomial Ring in x over Rational Field
sage: PP=P.completion(x)
sage: PP
Power Series Ring in x over Rational Field
sage: f=1-x
sage: PP(f)
1 - x
sage: 1/f
1/(-x + 1)
```

construction ()

cyclotomic_polynomial (n)

Return the n-th cyclotomic polynomial as a polynomial in this polynomial ring. For details of the implementation, see the documentation for `sage.rings.polynomial.cyclotomic.cyclotomic_coeffs()`.

EXAMPLES:

```python
sage: R = ZZ['x']
sage: R.cyclotomic_polynomial(8)
x^4 + 1
sage: R.cyclotomic_polynomial(12)
x^4 - x^2 + 1
```

extend_variables (added_names, order='degrevlex')

Returns a multivariate polynomial ring with the same base ring but with added_names as additional variables.

EXAMPLES:

```python
sage: R.<x> = ZZ[]; R
Univariate Polynomial Ring in x over Integer Ring
sage: R.extend_variables('y, z')
Multivariate Polynomial Ring in x, y, z over Integer Ring
```
flattening_morphism()
Return the flattening morphism of this polynomial ring

EXAMPLES:

```
sage: QQ['a','b']['x'].flattening_morphism()  
Flattening morphism:  
  From: Univariate Polynomial Ring in x over Multivariate Polynomial Ring in  
  \rightarrow_{\text{a, b over Rational Field}}  
  To:  Multivariate Polynomial Ring in a, b, x over Rational Field  
sage: QQ['x'].flattening_morphism()  
Identity endomorphism of Univariate Polynomial Ring in x over Rational Field  
```

gen (n=0)
Return the indeterminate generator of this polynomial ring.

EXAMPLES:

```
sage: R.<abc> = Integers(8)[]; R  
Univariate Polynomial Ring in abc over Ring of integers modulo 8  
sage: t = R.gen(); t  
abc  
sage: t.is_gen()  
True  
An identical generator is always returned.  
```

gens_dict()
Return a dictionary whose entries are \{name:variable,...\}, where name stands for the variable names of this object (as strings) and variable stands for the corresponding generators (as elements of this object).

EXAMPLES:

```
sage: R.<y,x,a42> = RR[]  
sage: R.gens_dict()  
{'a42': a42, 'x': x, 'y': y}  
```

is_exact()
EXAMPLES:

```
sage: class Foo:  
....:     def __init__(self, x):  
....:         self._x = x  
....:     @cached_method  
....:     def f(self):  
....:         return self._x^2  
sage: a = Foo(2)  
sage: print(a.f.cache)  
None  
sage: a.f()  
4  
sage: a.f.cache  
4  
```
is_field *(proof=True)*

Return False, since polynomial rings are never fields.

EXAMPLES:

```sage
sage: R.<z> = Integers(2)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 2 (using GF2X)
sage: R.is_field()
False
```

is_finite()

Return False since polynomial rings are not finite (unless the base ring is 0.)

EXAMPLES:

```sage
sage: R = Integers(1)['x']
sage: R.is_finite()
True
sage: R = GF(7)['x']
sage: R.is_finite()
False
sage: R['x']['y'].is_finite()
False
```

is_integral_domain(proof=True)

EXAMPLES:

```sage
sage: ZZ['x'].is_integral_domain()
True
sage: Integers(8)['x'].is_integral_domain()
False
```

is_noetherian()

is_sparse()

Return true if elements of this polynomial ring have a sparse representation.

EXAMPLES:

```sage
sage: R.<z> = Integers(8)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 8
sage: R.is_sparse()
False
sage: R.<W> = PolynomialRing(QQ, sparse=True); R
Sparse Univariate Polynomial Ring in W over Rational Field
sage: R.is_sparse()
True
```

is_unique_factorization_domain(proof=True)

EXAMPLES:

```sage
sage: ZZ['x'].is_unique_factorization_domain()
True
sage: Integers(8)['x'].is_unique_factorization_domain()
False
```

karatsuba_threshold()

Return the Karatsuba threshold used for this ring by the method _mul_karatsuba to fall back to the schoolbook algorithm.
EXAMPLES:

```sage
sage: K = QQ['x']
sage: K.karatsuba_threshold()
8
sage: K = QQ['x']['y']
sage: K.karatsuba_threshold()
0
```

krull_dimension()

Return the Krull dimension of this polynomial ring, which is one more than the Krull dimension of the base ring.

EXAMPLES:

```sage
sage: R.<x> = QQ[]
sage: R.krull_dimension()
1
sage: R.<z> = GF(9,'a')[]; R
Univariate Polynomial Ring in z over Finite Field in a of size 3^2
sage: R.krull_dimension()
1
sage: S.<t> = R[]
sage: S.krull_dimension()
2
sage: for n in range(10):
    ....: S = PolynomialRing(S,'w')
    ....: S.krull_dimension()
    ....: print(S.krull_dimension())
12
```

monics(of_degree=None, max_degree=None)

Return an iterator over the monic polynomials of specified degree.

INPUT: Pass exactly one of:

- **max_degree** - an int; the iterator will generate all monic polynomials which have degree less than or equal to max_degree
- **of_degree** - an int; the iterator will generate all monic polynomials which have degree of_degree

OUTPUT: an iterator

EXAMPLES:

```sage
sage: P = PolynomialRing(GF(4,'a'),'y')
sage: for p in P.monics( of_degree = 2 ):
    print(p)
y^2
y^2 + a
y^2 + a + 1
y^2 + 1
y^2 + a*y
y^2 + a*y + a
y^2 + a*y + a + 1
y^2 + a*y + 1
y^2 + (a + 1)*y
y^2 + (a + 1)*y + a
y^2 + (a + 1)*y + a + 1
y^2 + (a + 1)*y + 1
y^2 + y
y^2 + y + a
```

(continues on next page)
AUTHORS:

- Joel B. Mohler

ngens()

Return the number of generators of this polynomial ring, which is 1 since it is a univariate polynomial ring.

EXAMPLES:

```python
sage: R.<z> = Integers(8)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 8
sage: R.ngens()
1
```

parameter()

Return the generator of this polynomial ring.

This is the same as self.gen().

polynomials(of_degree=None, max_degree=None)

Return an iterator over the polynomials of specified degree.

INPUT: Pass exactly one of:

- `max_degree` - an int; the iterator will generate all polynomials which have degree less than or equal to `max_degree`
- `of_degree` - an int; the iterator will generate all polynomials which have degree `of_degree`

OUTPUT: an iterator

EXAMPLES:

```python
sage: P = PolynomialRing(GF(3),'y')
sage: for p in P.polynomials( of_degree = 2 ): print(p)
  y^2
  y^2 + 1
  y^2 + 2
  y^2 + y
  y^2 + y + 1
  y^2 + y + 2
  y^2 + 2*y
  y^2 + 2*y + 1
  y^2 + 2*y + 2
  2*y^2
  2*y^2 + 1
  2*y^2 + 2
```
AUTHORS:

• Joel B. Mohler

random_element (degree=(-1, 2), *args, **kwds)

Return a random polynomial of given degree or with given degree bounds.

INPUT:

• degree - optional integer for fixing the degree or or a tuple of minimum and maximum degrees. By default set to (-1, 2).

• *args, **kwds - Passed on to the random_element method for the base ring

EXAMPLES:

```sage```
R.<x> = ZZ[]
```
sage```
R.random_element(10, 5,10)
```
9*x^10 + 8*x^9 + 6*x^8 + 8*x^7 + 8*x^6 + 9*x^5 + 8*x^4 + 8*x^3 + 6*x^2 + 8*x
˓→ + 8
```
sage```
R.random_element(6)
```
x^6 - 3*x^5 - x^4 + x^3 - x^2 + x + 1
```
sage```
R.random_element(6)
```
-2*x^6 - 2*x^5 + 2*x^4 - 3*x^3 + 1
```
sage```
R.random_element(6)
```
-x^6 + x^5 - x^4 + 4*x^3 - x^2 + x
```

If a tuple of two integers is given for the degree argument, a polynomial of degree in between the bound is given:

```sage```
R.random_element(degree=(0,8))
```
x^8 + 4*x^7 + 2*x^6 - x^4 + 4*x^3 - 5*x^2 + x + 14
```
sage```
R.random_element(degree=(0,8))
```
-5*x^7 + x^6 - 3*x^5 + 4*x^4 - x^2 - 2*x + 1
```

Note that the zero polynomial has degree -1, so if you want to consider it set the minimum degree to -1:
sage: any(R.random_element(degree=(-1,2),x=-1,y=1) == R.zero() for _ in range(100))
True

set_karatsuba_threshold(Karatsuba_threshold)
Changes the default threshold for this ring in the method _mul_karatsuba to fall back to the schoolbook algorithm.

Warning: This method may have a negative performance impact in polynomial arithmetic. So use it at your own risk.

EXAMPLES:

sage: K = QQ['x']
sage: K.karatsuba_threshold()
8
sage: K.set_karatsuba_threshold(0)
sage: K.karatsuba_threshold()
0

some_elements()
Return a list of polynomials.
This is typically used for running generic tests.

EXAMPLES:

sage: R.<x> = QQ[]
sage: R.some_elements()
x, 0, 1, 1/2, x^2 + 2*x + 1, x^3, x^2 - 1, x^2 + 1, 2*x^2 + 2

variable_names_recursive(depth=+Infinity)
Return the list of variable names of this ring and its base rings, as if it were a single multi-variate polynomial.

INPUT:
• depth – an integer or Infinity.

OUTPUT:
A tuple of strings.

EXAMPLES:

sage: R = QQ['x']['y']['z']
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')

2.1. Univariate Polynomials and Polynomial Rings 27
class sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain

Bases:
sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative,
sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr,
sage.rings.ring.IntegralDomain

sage.rings.polynomial.polynomial_ring.is_PolynomialRing(x)
Return True if x is a univariate polynomial ring (and not a sparse multivariate polynomial ring in one variable).

EXAMPLES:

```
sage: from sage.rings.polynomial.polynomial_ring import is_PolynomialRing
sage: from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing
sage: is_PolynomialRing(2)
False
sage: is_PolynomialRing(ZZ['x,y,z'])
False
sage: is_MPolynomialRing(ZZ['x,y,z'])
True
sage: is_PolynomialRing(ZZ['w'])
True
```

This polynomial ring is not univariate.

```
sage: is_PolynomialRing(ZZ['x,y,z'])
False
sage: is_MPolynomialRing(ZZ['x,y,z'])
True
```

Univariate means not only in one variable, but is a specific data type. There is a multivariate (sparse) polynomial ring data type, which supports a single variable as a special case.

```
sage: R.<w> = PolynomialRing(ZZ, implementation="singular"); R
Multivariate Polynomial Ring in w over Integer Ring
sage: is_PolynomialRing(R)
False
sage: type(R)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'>
```

sage.rings.polynomial.polynomial_ring.polygen(ring_or_element, name='x')
Return a polynomial indeterminate.

INPUT:

- polygen(base_ring, name='x')
- polygen(ring_element, name='x')
If the first input is a ring, return a polynomial generator over that ring. If it is a ring element, return a polynomial generator over the parent of the element.

EXAMPLES:

```
sage: z = polygen(QQ,'z')
sage: z^3 + z +1
z^3 + z + 1
sage: parent(z)
Univariate Polynomial Ring in z over Rational Field
```

Note: If you give a list or comma separated string to polygen, you’ll get a tuple of indeterminates, exactly as if you called polygens.

```
sage.rings.polynomial.polynomial_ring.polygens(base_ring, names='x')
```
Return indeterminates over the given base ring with the given names.

EXAMPLES:

```
sage: x,y,z = polygens(QQ,'x,y,z')
sage: (x+y+z)^2
x^2 + 2*x*y + y^2 + 2*x*z + 2*y*z + z^2
sage: parent(x)
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: t = polygens(QQ,['x','yz','abc'])
sage: t
(x, yz, abc)
```

### 2.1.2 Ring homomorphisms from a polynomial ring to another ring

This module currently implements the canonical ring homomorphism from $A[x]$ to $B[x]$ induced by a ring homomorphism from $A$ to $B$.

Todo: Implement homomorphisms from $A[x]$ to an arbitrary ring $R$, given by a ring homomorphism from $A$ to $R$ and the image of $x$ in $R$.

AUTHORS:

- Peter Bruin (March 2014): initial version

```
class sage.rings.polynomial.polynomial_ring_homomorphism.PolynomialRingHomomorphism_from_base
Bases: sage.rings.morphism.RingHomomorphism_from_base
```

The canonical ring homomorphism from $R[x]$ to $S[x]$ induced by a ring homomorphism from $R$ to $S$.

EXAMPLES:

```
sage: QQ['x'].coerce_map_from(ZZ['x'])
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Univariate Polynomial Ring in x over Rational Field
Defn: Induced from base ring by
 Natural morphism:
 From: Integer Ring
 To: Rational Field
```

2.1. Univariate Polynomials and Polynomial Rings
**is_injective()**
Return whether this morphism is injective.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: S.<x> = QQ[]
sage: R.hom(S).is_injective()
True
```

**is_surjective()**
Return whether this morphism is surjective.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: S.<x> = Zmod(2)[]
sage: R.hom(S).is_surjective()
True
```

### 2.1.3 Univariate Polynomial Base Class

AUTHORS:
- William Stein: first version.
- Martin Albrecht: Added singular coercion.
- Robert Bradshaw: Move Polynomial_generic_dense to Cython.
- Miguel Marco: Implemented resultant in the case where PARI fails.
- Simon King: Use a faster way of conversion from the base ring.
- Julian Rueth (2012-05-25, 2014-05-09): Fixed is_squarefree() for imperfect fields, fixed division without remainder over QQbar; added _cache_key for polynomials with unhashable coefficients
- Edgar Costa (2017-07): Added rational reconstruction.
- Kiran Kedlaya (2017-09): Added reciprocal transform, trace polynomial.
- David Zureick-Brown (2017-09): Added is_weil_polynomial.

```python
class sage.rings.polynomial.polynomial_element.ConstantPolynomialSection
```

This class is used for conversion from a polynomial ring to its base ring.

Since trac ticket #9944, it calls the constant_coefficient method, which can be optimized for a particular polynomial type.

EXAMPLES:

```python
sage: P0.<y_1> = GF(3)[]
sage: P1.<y_2,y_1,y_0> = GF(3)[]
sage: P0(-y_1) # indirect doctest
2*y_1
```

(continues on next page)
sage: phi = GF(3).convert_map_from(P0); phi
Generic map:
    From: Univariate Polynomial Ring in y_1 over Finite Field of size 3
    To:    Finite Field of size 3
sage: type(phi)
<type 'sage.rings.polynomial.polynomial_element.ConstantPolynomialSection'>

sage: phi(P0.one())
1
sage: phi(y_1)
Traceback (most recent call last):
  ...TypeError: not a constant polynomial

class sage.rings.polynomial.polynomial_element.Polynomial
Bases: sage.structure.element.CommutativeAlgebraElement

A polynomial.

EXAMPLES:

sage: R.<y> = QQ['y']
sage: S.<x> = R['x']
sage: S
Univariate Polynomial Ring in x over Univariate Polynomial Ring in y
    over Rational Field
sage: f = x*y; f
    y*x
sage: type(f)
<type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: p = (y+1)^10; p(1)
1024

__add__(right)
Add two polynomials.

EXAMPLES:

sage: R = ZZ['x']
sage: p = R([1,2,3,4])
sage: q = R([-4,-3,2,-1])
sage: p + q
# indirect doctest
3*x^3 + 5*x^2 - x + 5

__sub__(other)
Default implementation of subtraction using addition and negation.

__lmul__(left)
Multiply self on the left by a scalar.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: f = (x^3 + x + 5)
sage: f._lmul_(7)
7*x^3 + 7*x + 35
sage: 7*f
7*x^3 + 7*x + 35

2.1. Univariate Polynomials and Polynomial Rings
_rmul_(right)
Multiply self on the right by a scalar.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: f = (x^3 + x + 5)
sage: f._rmul_(7)
7*x^3 + 7*x + 35
```

_mul_(right)

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: (x - 4)*(x^2 - 8*x + 16)
x^3 - 12*x^2 + 48*x - 64
```

```python
sage: C.<t> = PowerSeriesRing(ZZ)
sage: D.<s> = PolynomialRing(C)
sage: z = (1 + O(t)) + t*s^2
sage: z*z
(t^2*s^4 + (2*t + O(t^2))*s^2 + 1 + O(t))
```

## More examples from trac 2943, added by Kiran S. Kedlaya 2 Dec 09

```python
sage: C.<t> = PowerSeriesRing(Integers())
sage: D.<s> = PolynomialRing(C)
sage: z = 1 + (t + O(t^2))*s + (t^2 + O(t^3))*s^2
sage: z*z
(t^4 + O(t^5))*s^4 + (2*t^3 + O(t^4))*s^3 + (3*t^2 + O(t^3))*s^2 + (2*t + O(t^2))*s + 1
```

_mul_trunc_(right, n)
Return the truncated multiplication of two polynomials up to n.

This is the default implementation that does the multiplication and then truncate! There are custom implementations in several subclasses:

- on dense polynomial over integers (via FLINT)
- on dense polynomial over Z/nZ (via FLINT)
- on dense rational polynomial (via FLINT)
- on dense polynomial on Z/nZ (via NTL)

EXAMPLES:

```python
sage: R = QQ['x']['y']
sage: y = R.gen()
sage: x = R.base_ring().gen()
sage: p1 = 1 - x*y + 2*y**3
sage: p2 = -1/3 + y**5
sage: p1._mul_trunc_(p2, 5)
-2/3*y^3 + 1/3*x*y - 1/3
```

Todo: implement a generic truncated Karatsuba and use it here.
**adams_operator** *(n, monic=False)*

Return the polynomial whose roots are the n-th power of the roots of this.

**INPUT:**

- n – an integer
- monic – boolean (default False) if set to True, force the output to be monic

**EXAMPLES:**

```python
sage: f = cyclotomic_polynomial(30)
sage: f.adams_operator(7)==f
True
sage: f.adams_operator(6) == cyclotomic_polynomial(5)**2
True
sage: f.adams_operator(10) == cyclotomic_polynomial(3)**4
True
sage: f.adams_operator(15) == cyclotomic_polynomial(2)**8
True
sage: f.adams_operator(30) == cyclotomic_polynomial(1)**8
True

sage: x = polygen(QQ)
sage: f = x^2-2*x+2
sage: f.adams_operator(10)
x^2 + 1024
```

When f is monic the output will have leading coefficient ±1 depending on the degree, but we can force it to be monic:

```python
sage: R.<a,b,c> = ZZ[]
sage: x = polygen(R)
sage: f = (x-a)*(x-b)*(x-c)
sage: f.adams_operator(3).factor()
(-1) * (x - c^3) * (x - b^3) * (x - a^3)
sage: f.adams_operator(3,monic=True).factor()
(x - c^3) * (x - b^3) * (x - a^3)
```

**add_bigoh** *(prec)*

Returns the power series of precision at most prec got by adding \(O(q^{\text{prec}})\) to self, where q is its variable.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: f = 1 + 4*x + x^3
sage: f.add_bigoh(7)
1 + 4*x + x^3 + O(x^7)
sage: f.add_bigoh(2)
1 + 4*x + O(x^2)
sage: f.add_bigoh(2).parent()
Power Series Ring in x over Integer Ring
```

**all_roots_in_interval** *(a=None, b=None)*

Return True if the roots of this polynomial are all real and contained in the given interval.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x-1)^2 * (x-2)^2 * (x-3)
```

(continues on next page)
**any_root** *(ring=\text{None}, degree=\text{None}, assume\_squarefree=\text{False})*

Return a root of this polynomial in the given ring.

**INPUT:**

- **ring** – The ring in which a root is sought. By default this is the coefficient ring.
- **degree** (\text{None} or nonzero integer) – Used for polynomials over finite fields. Returns a root of degree $\text{abs}(\text{degree})$ over the ground field. If negative, also assumes that all factors of this polynomial are of degree $\text{abs}(\text{degree})$. If \text{None}, returns a root of minimal degree contained within the given ring.
- **assume\_squarefree** (\text{bool}) – Used for polynomials over finite fields. If \text{True}, this polynomial is assumed to be squarefree.

**EXAMPLES:**

```python
sage: R.<x> = GF(11)[]
sage: f = 7*x^7 + 8*x^6 + 4*x^5 + x^4 + 6*x^3 + 10*x^2 + 8*x + 5
sage: f.\text{any_root}()
2
```

```python
sage: f.factor()
(7) * (x + 9) * (x^6 + 10*x^4 + 6*x^3 + 5*x^2 + 2*x + 2)
```

```python
sage: f.\text{any_root}(GF(11^6, 'a'))
a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a
```

```python
sage: \text{sorted(f.roots(GF(11^6, 'a')))}
[(10*a^5 + 2*a^4 + 8*a^3 + 9*a^2 + a, 1), (a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a, ↦1), (9*a^5 + 5*a^4 + 10*a^3 + 8*a^2 + 3*a + 1, 1), (2*a^5 + 8*a^4 + 3*a^3 + ↦6*a + 2, 1), (a^5 + 3*a^4 + 8*a^3 + 2*a^2 + 3*a + 4, 1), (10*a^5 + 3*a^4 + ↦8*a^3 + a^2 + 10*a + 4, 1)]
```

```python
sage: f.\text{any_root}(GF(11^6, 'a'))
a^5 + a^4 + 7*a^3 + 2*a^2 + 10*a
```

```python
sage: g = (x-1)*(x^2 + 3*x + 9) * (x^5 + 5*x^4 + 8*x^3 + 5*x^2 + 3*x + 5)
sage: g.\text{any_root}(\text{ring}=\text{GF}(11^{10}, 'b'), \text{degree}=1)
1
```

```python
sage: g.\text{any_root}(\text{ring}=\text{GF}(11^{10}, 'b'), \text{degree}=2)
5*b^9 + 4*b^7 + 8*b^5 + 10*b^2 + 10*b + 5
```

```python
sage: g.\text{any_root}(\text{ring}=\text{GF}(11^{10}, 'b'), \text{degree}=5)
5*b^9 + b^8 + 3*b^7 + 2*b^6 + b^5 + 4*b^4 + 3*b^3 + 7*b^2 + 10*b
```

**args**

Returns the generator of this polynomial ring, which is the (only) argument used when calling self.

**EXAMPLES:**
A constant polynomial has no variables, but still takes a single argument.

```python
sage: R.<x> = QQ[]
sage: x.args()
(x,)
```

**base_extend** \((R)\)
Return a copy of this polynomial but with coefficients in \(R\), if there is a natural map from coefficient ring of self to \(R\).

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^3 - 17*x + 3
sage: f.base_extend(GF(7))
Traceback (most recent call last):
...
TypeError: no such base extension
sage: f.change_ring(GF(7))
x^3 + 4*x + 3
```

**base_ring**()
Return the base ring of the parent of self.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: x.base_ring()
Integer Ring
sage: (2*x+3).base_ring()
Integer Ring
```

**change_ring** \((R)\)
Return a copy of this polynomial but with coefficients in \(R\), if at all possible.

**INPUT:**

- \(R\) - a ring or morphism.

**EXAMPLES:**

```python
sage: K.<z> = CyclotomicField(3)
sage: f = K.defining_polynomial()
sage: f.change_ring(GF(7))
x^2 + x + 1
```

```python
sage: K.<z> = CyclotomicField(3)
sage: R.<x> = K[]
sage: f = x^2 + z
sage: f.change_ring(K.embeddings(CC)[0])
x^2 - 0.500000000000000 - 0.866025403784439*I
```

**change_variable_name** \((\text{var})\)
Return a new polynomial over the same base ring but in a different variable.

**EXAMPLES:**
\begin{verbatim}
sage: x = polygen(QQ,'x')
sage: f = -2/7*x^3 + (2/3)*x - 19/993; f
-2/7*x^3 + 2/3*x - 19/993
sage: f.change_variable_name('theta')
-2/7*theta^3 + 2/3*theta - 19/993
coefficients (sparse=True)
Return the coefficients of the monomials appearing in self. If sparse=True (the default), it returns only the non-zero coefficients. Otherwise, it returns the same value as self.list(). (In this case, it may be slightly faster to invoke self.list() directly.)

EXAMPLES:

\begin{verbatim}
sage: _.<x> = PolynomialRing(ZZ)
sage: f = x^4+2*x^2+1
sage: f.coefficients()
[1, 2, 1]
sage: f.coefficients(sparse=False)
[1, 0, 2, 0, 1]
\end{verbatim}

coeffs()
Using coeffs() is now deprecated (trac ticket #17518). Returns self.list(). (It is potentially slightly faster to use self.list() directly.)

EXAMPLES:

\begin{verbatim}
sage: x = QQ['x'].0
sage: f = 10*x^3 + 5*x + 2/17
sage: f.coeffs()
doctest:...: DeprecationWarning: The use of coeffs() is now deprecated in favor of coefficients(sparse=False).
See http://trac.sagemath.org/17518 for details.
[2/17, 5, 0, 10]
\end{verbatim}

complex_roots()
Return the complex roots of this polynomial, without multiplicities.

Calls self.roots(ring=CC), unless this is a polynomial with floating-point coefficients, in which case it is uses the appropriate precision from the input coefficients.

EXAMPLES:

\begin{verbatim}
sage: x = polygen(ZZ)
sage: (x^3 - 1).complex_roots() # note: low order bits slightly different
[1.00000000000000, -0.500000000000000 - 0.866025403784433...*I, -0.500000000000000 + 0.866025403784433...*I]
\end{verbatim}

compose_power (k, algorithm=None, monic=False)
Return the \(k\)-th iterate of the composed product of this polynomial with itself.

INPUT:

- \(k\) – a non-negative integer
- algorithm=None (default), "resultant" or "BFSS". See composed_op()
- monic=False (default) or True. See composed_op()
The polynomial of degree $d^k$ where $d$ is the degree, whose roots are all $k$-fold products of roots of this polynomial. That is, $f \ast f \ast \cdots \ast f$ where this is $f$ and $f \ast f = f \text{.composed_op}(f, \text{operator.mul})$.

**EXAMPLES:**

```python
sage: R.<a,b,c> = ZZ[]
sage: x = polygen(R)
sage: f = (x-a)*(x-b)*(x-c)
sage: f.compose_power(2).factor()
(x - c^2) * (x - b^2) * (x - a^2) * (x - b*c)^2 * (x - a*c)^2 * (x - a*b)^2
sage: x = polygen(QQ)
sage: f = x^2-2*x+2
sage: f2 = f.compose_power(2); f2
x^4 - 4*x^3 + 8*x^2 - 16*x + 16
sage: f2 == f.composed_op(f, operator.mul)
True
sage: f3 = f.compose_power(3); f3
x^8 - 8*x^7 + 32*x^6 - 64*x^5 + 128*x^4 - 512*x^3 + 2048*x^2 - 4096*x + 4096
sage: f3 == f2.composed_op(f, operator.mul)
True
sage: f4 = f.compose_power(4)
sage: f4 == f3.composed_op(f, operator.mul)
True
```

**compose_trunc** ($other$, $n$)

Return the composition of self and other, truncated to $O(x^n)$.

This method currently works for some specific coefficient rings only.

**EXAMPLES:**

```python
sage: Pol.<x> = CBF[]
sage: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120).compose_trunc(1 + x, 2)
((2.708333333333333 +/- 6.64e-16)*x + [2.716666666666667 +/- 4.29e-15])
sage: Pol.<x> = QQ['y'][]
sage: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120).compose_trunc(1 + x, 2)
Traceback (most recent call last):
 ... Not ImplementedError: truncated composition is not implemented for this subclass of polynomials
```

**composed_op** ($p1$, $p2$, $op$ = None, $monic$ = False)

Return the composed sum, difference, product or quotient of this polynomial with another one.

In the case of two monic polynomials $p_1$ and $p_2$ over an integral domain, the composed sum, difference, etc. are given by

$$
\prod_{p_1(a)=p_2(b)=0} (x - (a \ast b)), \quad \ast \in \{+,-,\times,\}/
$$

where the roots $a$ and $b$ are to be considered in the algebraic closure of the fraction field of the coefficients and counted with multiplicities. If the polynomials are not monic this quantity is multiplied by $\alpha_1^{deg(p_2)} \alpha_2^{deg(p_1)}$ where $\alpha_1$ and $\alpha_2$ are the leading coefficients of $p_1$ and $p_2$ respectively.
INPUT:

- \( p_2 \) – univariate polynomial belonging to the same polynomial ring as this polynomial
- \( \text{op} \) – \text{operator.OP} where \( \text{OP}=\text{add} \) or \text{sub} or \text{mul} or \text{truediv}.
- \text{algorithm} – can be “resultant” or “BFSS”; by default the former is used when the polynomials have few nonzero coefficients and small degrees or if the base ring is not \( \mathbb{Z} \) or \( \mathbb{Q} \). Otherwise the latter is used.
- \text{monic} – whether to return a monic polynomial. If \text{True} the coefficients of the result belong to the fraction field of the coefficients.

ALGORITHM:

The computation is straightforward using resultants. Indeed for the composed sum it would be \( \text{Res}_y(p_1(x - y), p_2(y)) \). However, the method from [BFSS] using series expansions is asymptotically much faster.

Note that the algorithm BFSS with polynomials with coefficients in \( \mathbb{Z} \) needs to perform operations over \( \mathbb{Q} \).

Todo:

- The [BFSS] algorithm has been implemented here only in the case of polynomials over rationals. For other rings of zero characteristic (or if the characteristic is larger than the product of the degrees), one needs to implement a generic method \text{_exp_series}. In the general case of non-zero characteristic there is an alternative algorithm in the same paper.

- The Newton series computation can be done much more efficiently! See [BFSS].

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: p1 = x^2 - 1
sage: p2 = x^4 - 1
sage: p1.composed_op(p2, operator.add)
x^8 - 4*x^6 + 4*x^4 - 16*x^2
sage: p1.composed_op(p2, operator.mul)
x^8 - 2*x^4 + 1
sage: p1.composed_op(p2, operator.truediv)
x^8 - 2*x^4 + 1
```

This function works over any field. However for base rings other than \( \mathbb{Z} \) and \( \mathbb{Q} \) only the resultant algorithm is available:

```python
sage: x = polygen(QQbar)
sage: p1 = x**2 - AA(2).sqrt()
sage: p2 = x**3 - AA(3).sqrt()
sage: r1 = p1.roots(multiplicities=False)
sage: r2 = p2.roots(multiplicities=False)
sage: p = p1.composed_op(p2, operator.add)
sage: p
x^6 - 4.242640687119285?*x^4 - 3.464101615137755?*x^3 + 6*x^2 - 14.˓→6963845669907?*x + 0.1715728752538099?
```

(continues on next page)
sage: p1 = x**2 + x - 1
sage: p2 = x**3 + x - 1
sage: p_add = p1.composed_op(p2, operator.add)
sage: p_add
x^6 + x^5 + x^3 + x^2 + 1
sage: p_mul = p1.composed_op(p2, operator.mul)
sage: p_mul
x^6 + x^4 + x^2 + x + 1
sage: p_div = p1.composed_op(p2, operator.truediv)
sage: p_div
x^6 + x^5 + x^4 + x^2 + 1

sage: K = GF(2**6, 'a')
sage: r1 = p1.roots(K, multiplicities=False)
sage: r2 = p2.roots(K, multiplicities=False)
sage: all(p_add(x1+x2).is_zero() for x1 in r1 for x2 in r2)
True
sage: all(p_mul(x1*x2).is_zero() for x1 in r1 for x2 in r2)
True
sage: all(p_div(x1/x2).is_zero() for x1 in r1 for x2 in r2)
True

sage: y = polygen(ZZ)
sage: for p1 in [2*y^3 - y + 3, -y^5 - 2, 4*y - 3]:
.... for p2 in [5*y^2 - 7, -3*y - 1]:
.... for monic in [True,False]:
.... for op in [operator.add, operator.sub, operator.mul, operator.truediv]:
.... pr = p1.composed_op(p2, op, "resultant", monic=monic)
.... pb = p1.composed_op(p2, op, "BFSS", monic=monic)
.... assert ((pr == pb) or ((not monic) and pr == -pb) and (parent(pr) is parent(pb)))

REFERENCES:

current_coefficient()
Return the constant coefficient of this polynomial.

OUTPUT: element of base ring

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = -2*x^3 + 2*x - 1/3
sage: f.constant_coefficient()
-1/3

current_ideal(*args, **kwd)
Deprecated: Use current_ideal() instead. See trac ticket #16613 for details.

current_ideal()
Return the content ideal of this polynomial, defined as the ideal generated by its coefficients.

EXAMPLES:

sage: R.<x> = IntegerModRing(4)[

(continues on next page)
When the base ring is a gcd ring, the content as a ring element is the generator of the content ideal:

\[
\text{sage: } R.<x> = \mathbb{Z}[]
\]
\[
\text{sage: } f = 2 \cdot x^3 - 4 \cdot x^2 + 6 \cdot x - 10
\]
\[
\text{sage: } f.\text{content_ideal().gen()}
\]
\[
2
\]

\text{cyclotomic_part()}

Return the product of the irreducible factors of this polynomial which are cyclotomic polynomials.

The algorithm assumes that the polynomial has rational coefficients.

\text{See also:}

\text{is_cyclotomic() is_cyclotomic_product() has_cyclotomic_factor()}

\text{EXAMPLES:}

\[
\text{sage: } P.<x> = \text{PolynomialRing}(\mathbb{Z}(\text{Integers}()))
\]
\[
\text{sage: } \text{pol} = 2 \cdot (x^4 + 1)
\]
\[
\text{sage: } \text{pol.\text{cyclotomic_part()}}
\]
\[
x^4 + 1
\]
\[
\text{sage: } \text{pol} = x^4 + 2
\]
\[
\text{sage: } \text{pol.\text{cyclotomic_part()}}
\]
\[
1
\]
\[
\text{sage: } \text{pol} = (x^4 + 1)^2 \cdot (x^4 + 2)
\]
\[
\text{sage: } \text{pol.\text{cyclotomic_part()}}
\]
\[
x^8 + 2 \cdot x^4 + 1
\]
\[
\text{sage: } P.<x> = \text{PolynomialRing}(\mathbb{Q}(\text{QQ}))
\]
\[
\text{sage: } \text{pol} = (x^4 + 1)^2 \cdot (x^4 + 2)
\]
\[
\text{sage: } \text{pol.\text{cyclotomic_part()}}
\]
\[
x^8 + 2 \cdot x^4 + 1
\]
\[
\text{sage: } P.<x> = \text{PolynomialRing}(\mathbb{R}(\text{RR}))
\]
\[
\text{sage: } \text{pol} = (x^4 + 1)^2 \cdot (x^4 + 2)
\]
\[
\text{sage: } \text{pol.\text{cyclotomic_part()}}
\]
\[
\text{Traceback (most recent call last):}
\]
\[
\text{NotImplementedError: not implemented for inexact base rings}
\]
\[
\text{sage: } x = \text{polygen}(\mathbb{Z}(\text{mod}(5)))
\]
\[
\text{sage: } (x-1).\text{cyclotomic_part()}
\]
\[
\text{Traceback (most recent call last):}
\]
\[
\text{NotImplementedError: not implemented in non-zero characteristic}
\]

\text{degree (gen=None)}

Return the degree of this polynomial. The zero polynomial has degree -1.

\text{EXAMPLES:}

\[
\text{sage: } x = \mathbb{Z}['x'].0
\]
\[
\text{sage: } f = x^93 + 2 \cdot x + 1
\]
\[
\text{sage: } f.\text{degree()}
\]
AUTHORS:

• Naqi Jaffery (2006-01-24): examples

### denominator()

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.

Note that some subclasses may implement their own denominator function. For example, see `sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint`

**Warning:** This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.

**EXAMPLES:**

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.

```python
sage: R.<x> = ZZ[]
sage: f = x^3 + 17*x + 1
sage: f.denominator()
1
```

Next we compute the denominator of a polynomial with rational coefficients.

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = (1/17)*x^19 - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/3
sage: f.denominator()
51
```

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```python
sage: R.<x> = RR[]
sage: f = x + RR('0.3'); f
x + 0.300000000000000
```
sage: f.denominator()
1.00000000000000

Check that the denominator is an element over the base whenever the base has no denominator function. This closes trac ticket #9063.

sage: R.<a> = GF(5)[]
sage: x = R(0)
sage: x.denominator()
1
sage: type(x.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: isinstance(x.numerator() / x.denominator(), Polynomial)
True
sage: isinstance(x.numerator() / R(1), Polynomial)
False

**derivative(*args)**

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

**See also:**

[_derivative()](#)

**EXAMPLES:**

sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1

sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3*x^2 + t^4*x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2

**dict()**

Return a sparse dictionary representation of this univariate polynomial.

**EXAMPLES:**

sage: R.<x> = QQ[]
sage: f = x^3 + -1/7*x + 13
**sage:** f.dict()
{0: 13, 1: -1/7, 3: 1}

**diff(***args***)
The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

**See also:**

_**derivative()**_

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1
```

```python
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3*x^2 + t^4*x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2
```

**differentiate(***args***)
The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

**See also:**

_**derivative()**_

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1
```
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3*x^2 + t^4*x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2

\textbf{discriminant} ()

Returns the discriminant of self.

The discriminant is

$$R_n := a_n^{2n-2} \prod_{1 \leq i < j \leq n} (r_i - r_j)^2,$$

where $n$ is the degree of self, $a_n$ is the leading coefficient of self and the roots of self are $r_1, \ldots, r_n$.

\textbf{OUTPUT:} An element of the base ring of the polynomial ring.

\textbf{ALGORITHM:}

Uses the identity $R_n(f) := (-1)^{n(n-1)/2} R(f, f') a_n^{n-k-2}$, where $n$ is the degree of self, $a_n$ is the leading coefficient of self, $f'$ is the derivative of $f$, and $k$ is the degree of $f'$. Calls \texttt{resultant}().

\textbf{EXAMPLES:}

In the case of elliptic curves in special form, the discriminant is easy to calculate:

sage: R.<x> = QQ[]
sage: f = x^3 + x + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant()/16
-31

sage: R.<x> = QQ[]
sage: f = 2*x^3 + x + 1
sage: d = f.discriminant(); d
-116

We can compute discriminants over univariate and multivariate polynomial rings:

sage: R.<a> = QQ[]
sage: S.<x> = R[]
sage: f = a*x + x + a + 1
sage: d = f.discriminant(); d
1
sage: d.parent() is R
True

sage: R.<a, b> = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a + b
sage: d = f.discriminant(); d

(continues on next page)
-4*a - 4*b
sage: d.parent() is R
True

\texttt{dispersion(\textit{other}=None)}

Compute the dispersion of a pair of polynomials.

The dispersion of \( f \) and \( g \) is the largest nonnegative integer \( n \) such that \( f(x + n) \) and \( g(x) \) have a nonconstant common factor.

When \textit{other} is None, compute the auto-dispersion of \textit{self}, i.e., its dispersion with itself.

\textbf{See also:}

\texttt{dispersion\_set()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Pol.<x> = QQ[]
sage: x.dispersion(x + 1)
1
sage: (x + 1).dispersion(x)
-Infinity
sage: Pol.<x> = QQbar[]
sage: pol = Pol([sqrt(5), 1, 3/2])
sage: pol.dispersion()
0
sage: (pol*pol(x+3)).dispersion()
3
\end{verbatim}

\texttt{dispersion\_set(\textit{other}=None)}

Compute the dispersion set of two polynomials.

The dispersion set of \( f \) and \( g \) is the set of nonnegative integers \( n \) such that \( f(x + n) \) and \( g(x) \) have a nonconstant common factor.

When \textit{other} is None, compute the auto-dispersion set of \textit{self}, i.e., its dispersion set with itself.

\textbf{ALGORITHM:}

See Section 4 of Man & Wright [ManWright1994].

\textbf{See also:}

\texttt{dispersion()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Pol.<x> = QQ[]
sage: x.dispersion_set(x + 1)
[1]
sage: (x + 1).dispersion_set(x)
[]
sage: pol = x^3 + x - 7
sage: (pol*pol(x+3)^2).dispersion_set()
[0, 3]
\end{verbatim}

\texttt{euclidean\_degree()}

Return the degree of this element as an element of an Euclidean domain.

2.1. Univariate Polynomials and Polynomial Rings 45
If this polynomial is defined over a field, this is simply its `degree()`.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: x.euclidean_degree()
1
sage: R.<x> = ZZ[]
sage: x.euclidean_degree()
Traceback (most recent call last):
...
NotImplementedError
```

### `exponents()`

Return the exponents of the monomials appearing in self.

**EXAMPLES:**

```python
sage: _.<x> = PolynomialRing(ZZ)
sage: f = x^4+2*x^2+1
sage: f.exponents()
[0, 2, 4]
```

### `factor(**kwargs)`

Return the factorization of self over its base ring.

**INPUT:**

- `**kwargs` — any keyword arguments are passed to the method `_factor_univariate_polynomial()` of the base ring if it defines such a method.

**OUTPUT:**

- A factorization of self over its parent into a unit and irreducible factors. If the parent is a polynomial ring over a field, these factors are monic.

**EXAMPLES:**

Factorization is implemented over various rings. Over $\mathbb{Q}$:

```python
sage: x = QQ['x'].0
sage: f = (x^3 - 1)^2
sage: f.factor()
(x - 1)^2 * (x^2 + x + 1)^2
```

Since $\mathbb{Q}$ is a field, the irreducible factors are monic:

```python
sage: f = 10*x^5 - 1
sage: f.factor()
(10) * (x^5 - 1/10)
sage: f = 10*x^5 - 10
sage: f.factor()
(10) * (x - 1) * (x^4 + x^3 + x^2 + x + 1)
```

Over $\mathbb{Z}$ the irreducible factors need not be monic:

```python
sage: x = ZZ['x'].0
sage: f = 10*x^5 - 1
sage: f.factor()
10*x^5 - 1
```
We factor a non-monic polynomial over a finite field of 25 elements:

```
sage: k.<a> = GF(25)
sage: R.<x> = k[]
sage: f = 2*x^10 + 2*x + 2*a
sage: F = f.factor(); F
(2) * (x + a + 2) * (x^2 + 3*x + 4*a + 4) * (x^2 + (a + 1)*x + a + 2) * (x^5 + (3*a + 4)*x^4 + (3*a + 3)*x^3 + 2*a*x^2 + (3*a + 1)*x + 3*a + 1)
```

Notice that the unit factor is included when we multiply $F$ back out:

```
sage: expand(F)
2*x^10 + 2*x + 2*a
```

A new ring. In the example below, we set the special method `_factor_univariate_polynomial()` in the base ring which is called to factor univariate polynomials. This facility can be used to easily extend polynomial factorization to work over new rings you introduce:

```
sage: R.<x> = PolynomialRing(IntegerModRing(4),implementation="NTL")
sage: (x^2).factor()
Traceback (most recent call last):
...
NotImplementedError: factorization of polynomials over rings with composite characteristic is not implemented
sage: R.base_ring()._factor_univariate_polynomial = lambda f: f.change_ring(ZZ).factor()
sage: (x^2).factor()
x^2
```

Arbitrary precision real and complex factorization:

```
sage: R.<x> = RealField(100)[]
sage: F = factor(x^2-3); F
(x - 1.7320508075688772935274463415) * (x + 1.7320508075688772935274463415)
sage: expand(F)
x^2 - 3.000
sage: factor(x^2 + 1)
x^2 + 1.000
```

Over a number field:
sage: K.<z> = CyclotomicField(15)
sage: x = polygen(K)
sage: ((x^3 + z*x + 1)^3*(x - z)).factor()  
(x - z) * (x^3 + z*x + 1)^3
sage: cyclotomic_polynomial(12).change_ring(K).factor()  
(x^2 - z^5 - 1) * (x^2 + z^5)
sage: ((x^3 + z*x + 1)^3*(x/(z+2) - 1/3)).factor()  
(-1/331*z^7 + 3/331*z^6 - 6/331*z^5 + 11/331*z^4 - 21/331*z^3 + 41/331*z^2 -  
-82/331*z + 165/331) * (x - 1/3*z - 2/3) * (x^3 + z*x + 1)^3

Over a relative number field:

sage: x = polygen(QQ)
sage: K.<z> = CyclotomicField(3)
sage: L.<a> = K.extension(x^3 - 2)
sage: t = polygen(L, 't')
sage: f = (t^3 + t + a)*(t^5 + t + z); f  
t^8 + t^6 + a*t^5 + t^4 + z*t^3 + t^2 + (a + z)*t + z*a
sage: f.factor()  
(t^3 + t + a) * (t^5 + t + z)

Over the real double field:

sage: R.<x> = RDF[]
sage: f = (-2*x^2 - 1).factor()  
(-2.0) * (x^2 + 0.5000000000000001)
sage: f = (-2*x^2 - 1).factor().expand()  
-2.0*x^2 - 1.0000000000000002
sage: f = (x - 1)^3
sage: f.factor()  
# abs tol 2e-5
(x - 1.0000065719436413) * (x^2 - 1.9999934280563585*x + 0.9999934280995487)

The above output is incorrect because it relies on the roots() method, which does not detect that all the roots are real:

sage: f.roots()  
[(1.0000065719436413, 1)]

Over the complex double field the factors are approximate and therefore occur with multiplicity 1:

sage: R.<x> = CDF[]
sage: f = (x^2 + 2*R(I))^3
sage: F = f.factor()  
# abs tol 3e-5
(x - 1.0000138879287663 + 1.000001343528687*I) * (x - 0.9999942196864997 + 0.9999652115381809*I) * (x + 0.9999918923847313 - 1.00001134544053*I) * (x + 0.9999908759550227 - 1.0000069659624138*I) * (x + 0.999985293216753 - 0.999986153831807*I) * (x + 1.0000105947233 - 1.0000044186544053*I)

sage: [f(t[0][0]).abs() for t in F]  
[1.979365054e-14, 1.97936298566e-14, 1.97936990747e-14, 3.6812407475e-14, 3.65220890052e-14, 3.65220890052e-14]

Factoring polynomials over \(\mathbb{Z}/n\mathbb{Z}\) for composite \(n\) is not implemented:

sage: R.<x> = PolynomialRing(Integers(35))
sage: f = (x^2+2*x+2)*(x^2+3*x+9)
sage: f.factor()  
# abs tol 2e-5
(x - 1.0000138879287663 + 1.0000013435286879*I) * (x - 0.9999942196864997 + 0.9999652115381809*I) * (x - 0.9999918923847313 + 1.00001134544053*I) * (x + 0.9999908759550227 - 1.0000069659624138*I) * (x + 0.999985293216753 - 0.999986153831807*I) * (x + 1.0000105947233 - 1.0000044186544053*I)

(continues on next page)
Traceback (most recent call last):
...
NotImplementedError: factorization of polynomials over rings with composite...

Factoring polynomials over the algebraic numbers (see trac ticket #8544):

```python
sage: R.<x> = QQbar[]
sage: (x^8-1).factor()
(x - 1) * (x - 0.7071067811865475? - 0.7071067811865475?*I) * (x - 0.7071067811865475? + 0.7071067811865475?*I) * (x - (x + 1))
```

Factoring polynomials over the algebraic reals (see trac ticket #8544):

```python
sage: R.<x> = AA[]
sage: (x^8+1).factor()
(x^2 - 1.847759065022574?*x + 1.000000000000000?) * (x^2 - 0.7653668647301795? + 1.000000000000000?) * (x^2 + 0.7653668647301795?*x + 1.000000000000000?) * (x^2 + 1.847759065022574?*x + 1.000000000000000?)
```

```python
sage: R.<x0> = GF(9,'x')[] # purposely calling it x to test robustness
sage: f = x0^3 + x0 + 1
sage: f.factor()
(x0 + 2) * (x0 + x) * (x0 + 2*x + 1)

sage: f = 0*x0
sage: f.factor() # ArithmeticError: factorization of 0 is not defined
```

Over a complicated number field:

```python
sage: x = polygen(QQ, 'x')
sage: f = x^6 + 10/7*x^5 - 867/49*x^4 - 76/245*x^3 + 3148/35*x^2 - 25944/245*x + 48771/1225
sage: K.<a> = NumberField(f)
sage: S.<T> = K[]
sage: ff = S(f); ff
T^6 + 10/7*T^5 - 867/49*T^4 - 76/245*T^3 + 3148/35*T^2 - 25944/245*T + 48771/1225
sage: F = ff.factor()
sage: len(F)
4
sage: expand(F)
T^6 + 10/7*T^5 - 867/49*T^4 - 76/245*T^3 + 3148/35*T^2 - 25944/245*T + 48771/1225
```

2.1. Univariate Polynomials and Polynomial Rings 49
sage: f = x^2 - 1/3
sage: K.<a> = NumberField(f)

sage: A.<T> = K[]

sage: A(x^2 - 1).factor()
(T - 1) * (T + 1)

sage: A(3*x^2 - 1).factor()
(3) * (T - a) * (T + a)

sage: A(x^2 - 1/3).factor()
(T - a) * (T + a)

Test that trac ticket #10279 is fixed:

sage: R.<t> = PolynomialRing(QQ)

sage: K.<a> = NumberField(t^4 - t^2 + 1)

sage: pol = t^3 + (-4*a^3 + 2*a)*t^2 - 11/3*a^2*t + 2/3*a^3 - 4/3*a

sage: pol.factor()
(t - 2*a^3 + a) * (t - 4/3*a^3 + 2/3*a) * (t - 2/3*a^3 + 1/3*a)

Test that this factorization really uses nffactor() internally:

sage: pari.default("debug", 3)

Entering nffactor:
...

sage: pari.default("debug", 0)

Test that trac ticket #10369 is fixed:

sage: x = polygen(QQ)

sage: K.<a> = NumberField(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)

sage: R.<t> = PolynomialRing(K)

sage: pol = (1/7*a^2 - 1/7*a)*t^10 + (4/7*a - 6/7)*t^9 + (102/49*a^5 + 99/49*a^4 + 96/49*a^3 + 93/49*a^2 + 90/49*a + 150/49)*t^8 + (-160/49*a^5 - 36/49*a^4 - 48/49*a^3 - 8/7*a^2 - 60/49*a + 20/7)*t^7 + (12/7*a^5 + 12/7*a^3 + 2/7*a + 16/7)*t^6 + (-12/7*a^5 - 12/7*a^3 - 2/7*a^2 - 2/7*a - 1)*t^5 + t^4 + (12/7*a^5 + 12/7*a^3 + 2/7*a + 16/7)*t^3 + (12/7*a^5 - 12/7*a^3 - 2/7*a^2 - 2/7*a - 1)*t^2 + (12/7*a^5 + 12/7*a^3 + 2/7*a + 16/7)*t - 6/7*a^5 - 6/7*a^3 - 6/7*a - 6/7)

sage: pol.factor()
(-1/7*a^5 - 1/7*a^4 - 1/7*a^3 - 1/7*a^2 - 2/7*a - 1/7) * t * (t^5 + (-12/7*a^5 - 10/7*a^4 - 8/7*a^3 - 6/7*a^2 - 4/7*a - 2/7)*t^4 + (12/7*a^5 - 8/7*a^3 + 16/7*a^2 + 20/7)*t^3 + (12/7*a^5 - 20/7*a^3 - 20/7*a^2 + 4/7*a - 2)*t^2 + (12/7*a^5 + 12/7*a^3 + 2/7*a + 16/7)*t - 4/7*a^5 - 4/7*a^3 - 4/7*a - 2/7)

Test that trac ticket #10369 is fixed:

sage: x = polygen(QQ)

sage: K.<a> = NumberField(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)

sage: R.<t> = PolynomialRing(K)

sage: pol = (1/7*a^2 - 1/7*a)*t^10 + (4/7*a - 6/7)*t^9 + (102/49*a^5 + 99/49*a^4 + 96/49*a^3 + 93/49*a^2 + 90/49*a + 150/49)*t^8 + (-160/49*a^5 - 36/49*a^4 - 48/49*a^3 - 8/7*a^2 - 60/49*a + 20/7)*t^7 + (12/7*a^5 + 12/7*a^3 + 2/7*a + 16/7)*t^6 + (-12/7*a^5 - 12/7*a^3 - 2/7*a^2 - 2/7*a - 1)*t^5 + t^4 + (12/7*a^5 + 12/7*a^3 + 2/7*a + 16/7)*t^3 + (12/7*a^5 - 12/7*a^3 - 2/7*a^2 - 2/7*a - 1)*t^2 + (12/7*a^5 + 12/7*a^3 + 2/7*a + 16/7)*t - 6/7*a^5 - 6/7*a^3 - 6/7*a - 6/7)
Factoring over a number field over which we cannot factor the discriminant by trial division:

_factoring over a number field over which we cannot factor the discriminant by trial division:

```sage
sage: x = polygen(QQ)
sage: f = (x+a)^50 - (a-1)^50
sage: len(factor(f))
6
sage: pari(K.discriminant()).factor(limit=10^6)
[-1, 1; 3, 15; 23, 1; 887, 1; 12583, 1; 6335047 * 371692813]
```

Factoring over a number field over which we cannot factor the discriminant and over which `nffactor()` fails:

```sage
sage: p = next_prime(10^50); q = next_prime(10^51); n = p*q;
sage: K.<a> = QuadraticField(p*q)
sage: R.<x> = PolynomialRing(K)
sage: K.pari_polynomial('a').nffactor("x^2+1")
Mat([x^2 + 1, 1])
sage: factor(x^2 + 1)
x^2 + 1
sage: factor((x - a) * (x + 2*a))
(x - a) * (x + 2*a)
```

A test where `nffactor` used to fail without a `nf` structure:

```sage
sage: x = polygen(QQ)
sage: K = NumberField([x^2-1099511627777, x^3-3],'a')
sage: x = polygen(K)
sage: f = x^3 - 3
sage: factor(f)
(x - a1) * (x^2 + a1*x + a1^2)
```

We check that trac ticket #7554 is fixed:

```sage
sage: L.<q> = LaurentPolynomialRing(QQ)
sage: F = L.fraction_field()
sage: R.<x> = PolynomialRing(F)
sage: factor(x)
```

(continues on next page)
x
```
sage: factor(x^2 - q^2)
(x - q) * (x + q)
sage: factor(x^2 - q^-2)
(x - 1/q) * (x + 1/q)
```

```
sage: P.<a,b,c> = PolynomialRing(ZZ)
sage: R.<x> = PolynomialRing(FractionField(P))
sage: p = (x - a)*(b*x + c)*(a*b*x + a*c) / (a + 2)
sage: factor(p)
(a/(a + 2)) * (x - a) * (b*x + c)^2
```

Check that trac ticket #24973 is fixed:
```
sage: x1 = ZZ['x'].gen()
sage: x2 = ZZ['x']['x'].gen()
sage: (x1 - x2).factor()
-x + x
```

### gcd(other)

Return a greatest common divisor of this polynomial and other.

**INPUT:**
- `other` - a polynomial in the same ring as this polynomial

**OUTPUT:**
A greatest common divisor as a polynomial in the same ring as this polynomial. If the base ring is a field, the return value is a monic polynomial.

**Note:** The actual algorithm for computing greatest common divisors depends on the base ring underlying the polynomial ring. If the base ring defines a method `_gcd_univariate_polynomial`, then this method will be called (see examples below).

**EXAMPLES:**
```
sage: R.<x> = QQ[]
sage: (2*x^2).gcd(2*x)
x
```
```
sage: R.zero().gcd(0)
0
```
```
sage: (2*x).gcd(0)
x
```

One can easily add gcd functionality to new rings by providing a method `_gcd_univariate_polynomial`:
```
sage: O = ZZ[-sqrt(5)]
sage: R.<x> = O[]
sage: a = O.1
sage: p = x + a
sage: q = x^2 - 5
sage: p.gcd(q)
Traceback (most recent call last):
...
```
NotImplementedError: Order in Number Field in a with defining polynomial x^2 - 5 does not provide a gcd implementation for univariate polynomials

sage: S.<x> = O.number_field()

sage: O._gcd_univariate_polynomial = lambda f,g : R(S(f).gcd(S(g)))

sage: p.gcd(q)

x + a

del O._gcd_univariate_polynomial

Use multivariate implementation for polynomials over polynomials rings:

sage: R.<x> = ZZ[]

sage: S.<y> = R[]

sage: T.<z> = S[]

sage: r = 2*x*y + z

sage: p = r * (3*x*y*z - 1)

sage: q = r * (x + y + z - 2)

sage: p.gcd(q)

z + 2*x*y

sage: R.<x> = QQ[]

sage: S.<y> = R[]

sage: r = 2*x*y + 1

sage: p = r * (x - 1/2 * y)

sage: q = r * (x*y^2 - x + 1/3)

sage: p.gcd(q)

2*x*y + 1

gradient()
Return a list of the partial derivatives of self with respect to the variable of this univariate polynomial.

There is only one partial derivative.

EXAMPLES:

sage: P.<x> = QQ[]

sage: f = x^2 + (2/3)*x + 1

sage: f.gradient()

[2*x + 2/3]

sage: f = P(1)

sage: f.gradient()

[0]

hamming_weight()
Returns the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

EXAMPLES:

sage: R.<x> = ZZ[]

sage: f = x^3 - x

sage: f.number_of_terms()

2

sage: R(0).number_of_terms()

0

sage: f = (x+1)^100

sage: f.number_of_terms()

101

sage: S = GF(5)['y']

(continues on next page)
The method `hamming_weight()` is an alias:

```python
sage: f.hamming_weight()
101
```

`has_cyclotomic_factor()`

Return True if the given polynomial has a nontrivial cyclotomic factor.

The algorithm assumes that the polynomial has rational coefficients.

If the polynomial is known to be irreducible, it may be slightly more efficient to call `is_cyclotomic` instead.

See also:

`is_cyclotomic()` `is_cyclotomic_product()` `cyclotomic_part()`

**EXAMPLES:**

```python
sage: pol.<x> = PolynomialRing(Rationals())
sage: u = x^5-1; u.has_cyclotomic_factor()
True
sage: u = x^5-2; u.has_cyclotomic_factor()
False
sage: u = pol(cyclotomic_polynomial(7)) * pol.random_element() # random
sage: u.has_cyclotomic_factor()
True
```

`homogenize(var='h')`

Return the homogenization of this polynomial.

The polynomial itself is returned if it is homogeneous already. Otherwise, its monomials are multiplied with the smallest powers of `var` such that they all have the same total degree.

**INPUT:**

- `var` – a variable in the polynomial ring (as a string, an element of the ring, or `0`) or a name for a new variable (default: `'h'`)

**OUTPUT:**

If `var` specifies the variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable `var`.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^2 + 1
sage: f.homogenize()
```

The parameter `var` can be used to specify the name of the variable:

```python
sage: g = f.homogenize('z'); g
```

(continues on next page)
However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:

```
sage: f = x^2
sage: g = f.homogenize('z'); g
x^2
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field
```

For compatibility with the multivariate case, if \texttt{var} specifies the variable of the polynomial ring, then the monomials are multiplied with the smallest powers of \texttt{var} such that the result is homogeneous; in other words, we end up with a monomial whose leading coefficient is the sum of the coefficients of the polynomial:

```
sage: f = x^2 + x + 1
sage: f.homogenize('x')
3\times x^2
```

In positive characteristic, the degree can drop in this case:

```
sage: R.<x> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x)
0
```

For compatibility with the multivariate case, the parameter \texttt{var} can also be 0 to specify the variable in the polynomial ring:

```
sage: R.<x> = QQ[]
sage: f = x^2 + x + 1
sage: f.homogenize(0)
3\times x^2
```

\textbf{integral} (\texttt{var=None})

Return the integral of this polynomial.

By default, the integration variable is the variable of the polynomial.

Otherwise, the integration variable is the optional parameter \texttt{var}

\textbf{Note:} The integral is always chosen so that the constant term is 0.

\textbf{EXAMPLES:}

```
sage: R.<x> = ZZ[]
sage: R(0).integral()
0
sage: f = R(2).integral(); f
2\times x
```

Note that the integral lives over the fraction field of the scalar coefficients:
sage: f.parent()
Univariate Polynomial Ring in x over Rational Field
sage: R(0).integral().parent()
Univariate Polynomial Ring in x over Rational Field
sage: f = x^3 + x - 2
sage: g = f.integral(); g
1/4*x^4 + 1/2*x^2 - 2*x
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field

This shows that the issue at trac ticket #7711 is resolved:

sage: P.<x,z> = PolynomialRing(GF(2147483647))
sage: Q.<y> = PolynomialRing(P)
sage: p=x+y+z
sage: p.integral()
-1073741823*y^2 + (x + z)*y
sage: P.<x,z> = PolynomialRing(GF(next_prime(2147483647)))
sage: Q.<y> = PolynomialRing(P)
sage: p=x+y+z
sage: p.integral()
1073741830*y^2 + (x + z)*y

A truly convoluted example:

sage: A.<a1, a2> = PolynomialRing(ZZ)
sage: B.<b> = PolynomialRing(A)
sage: C.<c> = PowerSeriesRing(B)
sage: R.<x> = PolynomialRing(C)
sage: f = a2*x^2 + c*x - a1*b
sage: f.parent()
Univariate Polynomial Ring in x over Power Series Ring in c
over Univariate Polynomial Ring in b over Multivariate Polynomial
Ring in a1, a2 over Integer Ring
sage: f.integral()
1/3*a2*x^3 + 1/2*c*x^2 - a1*b*x
sage: f.integral().parent()
Univariate Polynomial Ring in x over Power Series Ring in c
over Univariate Polynomial Ring in b over Multivariate Polynomial
Ring in a1, a2 over Rational Field
sage: g = 3*a2*x^2 + 2*c*x - a1*b
sage: g.integral()
a2*x^3 + c*x^2 - a1*b*x
sage: g.integral().parent()
Univariate Polynomial Ring in x over Power Series Ring in c
over Univariate Polynomial Ring in b over Multivariate Polynomial
Ring in a1, a2 over Rational Field

Integration with respect to a variable in the base ring:

sage: R.<x> = QQ[]
sage: t = PolynomialRing(R,'t').gen()
sage: f = x*t + 5*t^2
sage: f.integral(x)
5*x*t^2 + 1/2*x^2*t
inverse_mod($a, m$)

Inverts the polynomial $a$ with respect to $m$, or raises a ValueError if no such inverse exists. The parameter $m$ may be either a single polynomial or an ideal (for consistency with inverse_mod in other rings).

See also:

If you are only interested in the inverse modulo a monomial $x^k$ then you might use the specialized method inverse_series_trunc() which is much faster.

EXAMPLES:

```python
sage: S.<t> = QQ[]
sage: f = inverse_mod(t^2 + 1, t^3 + 1); f
-1/2*t^2 - 1/2*t + 1/2
sage: f * (t^2 + 1) % (t^3 + 1)
1
sage: f = t.inverse_mod((t+1)^7); f
-t^6 - 7*t^5 - 21*t^4 - 35*t^3 - 35*t^2 - 21*t - 7
sage: (f * t) + (t+1)^7
1
sage: t.inverse_mod(S.ideal((t + 1)^7)) == f
True
```

This also works over inexact rings, but note that due to rounding error the product may not always exactly equal the constant polynomial 1 and have extra terms with coefficients close to zero.

```python
sage: R.<x> = RDF[]
sage: epsilon = RDF(1).ulp()*50 # Allow an error of up to 50 ulp
sage: f = inverse_mod(x^2 + 1, x^5 + x + 1); f # abs tol 1e-14
0.4*x^4 - 0.2*x^3 - 0.4*x^2 + 0.2*x + 0.8
sage: poly = f * (x^2 + 1) % (x^5 + x + 1)
sage: # Remove noisy zero terms:
sage: parent(poly)([0.0 if abs(c)<=epsilon else c for c in poly.
→coefficients(sparse=False)])
1.0
sage: f = inverse_mod(x^3 - x + 1, x - 2); f
0.14285714285714285
sage: f * (x^3 - x + 1) % (x - 2)
1.0
sage: g = 5*x^3-x^7; m = x^4-12*x+13; f = inverse_mod(g, m); f
-0.03119361125...*x^2 - 0.0463050900...*x + 0.346479687..
→.
sage: poly = f*g % m
sage: # Remove noisy zero terms:
sage: parent(poly)([0.0 if abs(c)<=epsilon else c for c in poly.
→coefficients(sparse=False)]) # abs tol 1e-14
1.000000000000004
```

ALGORITHM: Solve the system as $as + mt = 1$, returning $s$ as the inverse of $a$ mod $m$.

Uses the Euclidean algorithm for exact rings, and solves a linear system for the coefficients of $s$ and $t$ for inexact rings (as the Euclidean algorithm may not converge in that case).

AUTHORS:

• Robert Bradshaw (2007-05-31)

inverse_of_unit()

EXAMPLES:
sage: R.<x> = QQ[]
sage: f = x - 90283
sage: f.inverse_of_unit()
Traceback (most recent call last):
...  
ValueError: self is not a unit
sage: f = R(-90283); g = f.inverse_of_unit(); g
-1/90283
sage: parent(g)
Univariate Polynomial Ring in x over Rational Field

**inverse_series_trunc** *(prec)*

Return a polynomial approximation of precision *prec* of the inverse series of this polynomial.

**See also:**

The method **inverse_mod()** allows more generally to invert this polynomial with respect to any ideal.

**EXAMPLES:**

```python
sage: x = polygen(ZZ)
sage: s = (1+x).inverse_series_trunc(5)
sage: s
x^4 - x^3 + x^2 - x + 1
sage: s * (1+x)
x^5 + 1
```

Note that the constant coefficient needs to be a unit:

```python
sage: ZZx.<x> = ZZ[]
sage: ZZxy.<y> = ZZx[]
sage: (1+x + y**2).inverse_series_trunc(4)
Traceback (most recent call last):
...
ValueError: constant term x + 1 is not a unit
sage: (1+x + y**2).change_ring(ZZx.fraction_field()).inverse_series_trunc(4)
(-1/(x^2 + 2*x + 1))*y^2 + 1/(x + 1)
```

The method works over any polynomial ring:

```python
sage: R = Zmod(4)
sage: Rx.<x> = R[]
sage: Rxy.<y> = Rx[]
```

```
sage: p = 1 + (1+2*x)*y + x**2*y**4
sage: q = p.inverse_series_trunc(10)
sage: (p*q).truncate(11) == M.one()
True
sage: q = p.inverse_series_trunc(13)
```

Even noncommutative ones:

```python
sage: M = MatrixSpace(ZZ,2)
sage: x = polygen(M)
sage: p = M([1,2,3,4])*x^3 + M([-1,0,0,1])*x^2 + M([1,3,-1,0])*x + M.one()
sage: q = p.inverse_series_trunc(5)
sage: (p*q).truncatemod(5) == M.one()
True
sage: q = p.inverse_series_trunc(13)
```
AUTHORS:

- David Harvey (2006-09-09): Newton’s method implementation for power series
- Vincent Delecroix (2014-2015): move the implementation directly in polynomial

**is_constant()**

Return True if this is a constant polynomial.

**OUTPUT:**

- bool - True if and only if this polynomial is constant

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: x.is_constant()
False
sage: R(2).is_constant()
True
sage: R(0).is_constant()
True
```

**is_cyclotomic(certificate=False, algorithm='pari')**

Test if this polynomial is a cyclotomic polynomial.

A cyclotomic polynomial is a monic, irreducible polynomial such that all roots are roots of unity.

By default the answer is a boolean. But if certificate is True, the result is a non-negative integer: it is 0 if self is not cyclotomic, and a positive integer $n$ if self is the $n$-th cyclotomic polynomial.

See also:

- is_cyclotomic_product()
- cyclotomic_part()
- has_cyclotomic_factor()

**INPUT:**

- certificate - boolean, default to False. Only works with algorithm set to “pari”.
- algorithm - either “pari” or “sage” (default is “pari”)

**ALGORITHM:**

The native algorithm implemented in Sage uses the first algorithm of [BD89]. The algorithm in pari (using pari:poliscyclo) is more subtle since it does compute the inverse of the Euler $\phi$ function to determine the $n$ such that the polynomial is the $n$-th cyclotomic polynomial.

**EXAMPLES:**

Quick tests:

```python
sage: P.<x> = ZZ['x']
sage: (x - 1).is_cyclotomic()
True
sage: (x + 1).is_cyclotomic()
True
sage: (x^2 - 1).is_cyclotomic()
False
sage: (x^2 + x + 1).is_cyclotomic(certificate=True)
```

(continues on next page)
3

```sage
(x^2 + 2*x + 1).is_cyclotomic(certificate=True)
```

0

Test first 100 cyclotomic polynomials:

```sage
all(cyclotomic_polynomial(i).is_cyclotomic() for i in range(1,101))
```

True

Some more tests:

```sage
(x^16 + x^14 - x^10 + x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="pari →")
```

False

```sage
(x^16 + x^14 - x^10 + x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="sage →")
```

False

```sage
(x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="pari →")
```

True

```sage
(x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="sage →")
```

True

```sage
y = polygen(QQ)
(y/2 - 1/2).is_cyclotomic()
```

False

```sage
(2*(y/2 - 1/2)).is_cyclotomic()
```

True

Invalid arguments:

```sage
(x - 3).is_cyclotomic(algorithm="sage", certificate=True)
```

```
Traceback (most recent call last):
...
ValueError: no implementation of the certificate within Sage
```

Test using other rings:

```sage
z = polygen(GF(5))
z - 1).is_cyclotomic()
```

```
Traceback (most recent call last):
...
NotImplementedError: not implemented in non-zero characteristic
```

REFERENCES:

- **is_cyclotomic_product()**
  
  Test whether this polynomial is a product of cyclotomic polynomials.

  This method simply calls the function pari:poliscycloprod from the Pari library.

  See also:

  - **is_cyclotomic()**
  - **cyclotomic_part()**
  - **has_cyclotomic_factor()**

  EXAMPLES:
```python
sage: x = polygen(ZZ)
sage: (x^5 - 1).is_cyclotomic_product()
True
sage: (x^5 + x^4 - x^2 + 1).is_cyclotomic_product()
False
sage: p = prod(cyclotomic_polynomial(i) for i in [2,5,7,12])
sage: p.is_cyclotomic_product()
True
sage: (x^5 - 1/3).is_cyclotomic_product()
False
sage: x = polygen(Zmod(5))
sage: (x-1).is_cyclotomic_product()
Traceback (most recent call last):
...
NotImplementedError: not implemented in non-zero characteristic
```

**is_gen()**

Return True if this polynomial is the distinguished generator of the parent polynomial ring.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: R(1).is_gen()
False
sage: R(x).is_gen()
True
```

Important - this function doesn’t return True if self equals the generator; it returns True if self *is* the generator.

```python
sage: f = R([0,1]); f
x
sage: f.is_gen()
False
sage: f is x
False
sage: f == x
True
```

**is_homogeneous()**

Return True if this polynomial is homogeneous.

**EXAMPLES:**

```python
sage: P.<x> = PolynomialRing(QQ)
sage: x.is_homogeneous()
True
sage: P(1).is_homogeneous()
True
sage: (x+1).is_homogeneous()
False
```

**is_irreducible()**

Return whether this polynomial is irreducible.

**EXAMPLES:**

```python
```
sage: R.<x> = ZZ[]
sage: (x^3 + 1).is_irreducible()
False
sage: (x^2 - 1).is_irreducible()
False
sage: (x^3 + 2).is_irreducible()
True
sage: R(0).is_irreducible()
False

The base ring does matter: for example, $2x$ is irreducible as a polynomial in $\mathbb{Q}[x]$, but not in $\mathbb{Z}[x]$:

sage: R.<x> = ZZ[]

sage: R(2*x).is_irreducible()
False
sage: R.<x> = QQ[]

sage: R(2*x).is_irreducible()
True

is_monic ()

Returns True if this polynomial is monic. The zero polynomial is by definition not monic.

EXAMPLES:

sage: x = QQ['x'].0
sage: f = x + 33
sage: f.is_monic()
True
sage: f = 0*x
sage: f.is_monic()
False
sage: f = 3*x^3 + x^4 + x^2
sage: f.is_monic()
True
sage: f = 2*x^2 + x^3 + 56*x^5
sage: f.is_monic()
False

AUTHORS:

• Naqi Jaffery (2006-01-24): examples

is_monomial ()

Returns True if self is a monomial, i.e., a power of the generator.

EXAMPLES:

sage: x = QQ['x'].0
sage: f = x + 33
sage: f.is_monic()
True
sage: f = 0*x
sage: f.is_monic()
False
sage: f = 3*x^3 + x^4 + x^2
sage: f.is_monic()
True
sage: f = 2*x^2 + x^3 + 56*x^5
sage: f.is_monic()
False

The coefficient must be 1:
To allow a non-1 leading coefficient, use is_term():

```
sage: (2*x^5).is_term()
sage: True
```

**Warning:** The definition of is_monomial in Sage up to 4.7.1 was the same as is_term, i.e., it allowed a coefficient not equal to 1.

### is_nilpotent()

Return True if this polynomial is nilpotent.

**EXAMPLES:**

```
sage: R = Integers(12)
sage: S.<x> = R[]
sage: f = 5 + 6*x
sage: f.is_nilpotent()
sage: False
sage: f = 6 + 6*x^2
sage: f.is_nilpotent()
sage: True
sage: f^2
sage: 0
```

EXERCISE (Atiyah-McDonald, Ch 1): Let \( A[x] \) be a polynomial ring in one variable. Then \( f = \sum a_i x^i \in A[x] \) is nilpotent if and only if every \( a_i \) is nilpotent.

### is_one()

Test whether this polynomial is 1.

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: (x-3).is_one()
sage: False
sage: R(1).is_one()
sage: True
sage: R2.<y> = R[]
sage: R2(x).is_one()
sage: False
sage: R2(1).is_one()
sage: True
sage: R2(-1).is_one()
sage: False
```

### isPrimitive \((n=None, n_prime_divs=None)\)

Returns True if the polynomial is primitive. The semantics of “primitive” depend on the polynomial coefficients.

- (field theory) A polynomial of degree \( m \) over a finite field \( \text{F}_q \) is primitive if it is irreducible and its root in \( \text{F}_{q^m} \) generates the multiplicative group \( \text{F}_{q^m}^* \).
- (ring theory) A polynomial over a ring is primitive if its coefficients generate the unit ideal.
Calling \texttt{is\_primitive} on a polynomial over an infinite field will raise an error.

The additional inputs to this function are to speed up computation for field semantics (see note).

**INPUT:**

- \texttt{n} (default: \texttt{None}) - if provided, should equal \(q - 1\) where \texttt{self.parent()} is the field with \(q\) elements; otherwise it will be computed.

- \texttt{n\_prime\_divs} (default: \texttt{None}) - if provided, should be a list of the prime divisors of \(n\); otherwise it will be computed.

**Note:** Computation of the prime divisors of \(n\) can dominate the running time of this method, so performing this computation externally (e.g. \texttt{pdivs=n.prime\_divisors()}) is a good idea for repeated calls to \texttt{is\_primitive} for polynomials of the same degree.

Results may be incorrect if the wrong \(n\) and/or factorization are provided.

**EXAMPLES:**

Field semantics examples.

```python
sage: R.<x> = GF(2)['x']
sage: f = x^4+x^3+x^2+x+1
sage: f.is_irreducible(), f.is_primitive()
(True, False)
sage: f = x^3+x+1
sage: f.is_irreducible(), f.is_primitive()
(True, True)
sage: R.<x> = GF(3)[]
sage: f = x^3-x+1
sage: f.is_irreducible(), f.is_primitive()
(True, True)
sage: f = x^2+1
sage: f.is_irreducible(), f.is_primitive()
(True, False)
sage: R.<x> = GF(5)[]
sage: f = x^2+x+1
sage: f.is_primitive()
False
sage: f = x^2-x+2
sage: f.is_primitive()
True
sage: x=polygen(QQ); f=x^2+1
sage: f.is_primitive()
Traceback (most recent call last):
...
NotImplementedError: is_primitive() not defined for polynomials over infinite fields.
```

Ring semantics examples.

```python
::
sage: x=polygen(ZZ)
sage: f = 5*x^2+2
```
sage: f.is_primitive()
True
sage: f = 5*x^2+5
sage: f.is_primitive()
False
sage: K=NumberField(x^2+5,'a')

sage: R=K.ring_of_integers()
sage: a=R.gen(1)
sage: a^2
-5
sage: f=a*x+2
sage: f.is_primitive()
True
sage: f=(1+a)*x+2
sage: f.is_primitive()
False
sage: x=polygen(Integers(10));
sage: f=5*x^2+2
sage: #f.is_primitive() #BUG:: elsewhere in Sage, should return True
sage: f=4*x^2+2
sage: #f.is_primitive() #BUG:: elsewhere in Sage, should return False

is_real_rooted()
Return True if the roots of this polynomial are all real.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = chebyshev_T(5, x)
sage: pol.is_real_rooted()
True
sage: pol = x^2 + 1
sage: pol.is_real_rooted()
False
```

is_square (root=False)
Returns whether or not polynomial is square. If the optional argument root is set to True, then also returns the square root (or None, if the polynomial is not square).

INPUT:

- root - whether or not to also return a square root (default: False)

OUTPUT:

- bool - whether or not a square
- root - (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: (x^2 + 2*x + 1).is_square()
True
sage: (x^4 + 2*x^3 - x^2 - 2*x + 1).is_square(root=True)
(True, x^2 + x - 1)
```
sage: f = 12*(x+1)^2 * (x+3)^2
sage: f.is_square()
False
sage: f.is_square(root=True)
(False, None)

sage: h = f/3; h
4*x^4 + 32*x^3 + 88*x^2 + 96*x + 36
sage: h.is_square(root=True)
(True, 2*x^2 + 8*x + 6)

sage: S.<y> = PolynomialRing(RR)
sage: g = 12*(y+1)^2 * (y+3)^2
sage: g.is_square()
True

is_squarefree()
Return False if this polynomial is not square-free, i.e., if there is a non-unit \(g\) in the polynomial ring such that \(g^2\) divides self.

**Warning:** This method is not consistent with \(\text{squarefree_decomposition}()\) since the latter does not factor the content of a polynomial. See the examples below.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = (x-1)*(x-2)*(x^2-5)*(x^17-3); f
x^21 - 3*x^20 - 3*x^19 + 15*x^18 - 10*x^17 - 3*x^4 + 9*x^3 + 9*x^2 - 45*x + 30
sage: f.is_squarefree()
True
sage: (f*(x^2-5)).is_squarefree()
False
```

A generic implementation is available, which relies on gcd computations:

```python
sage: R.<x> = ZZ[]
sage: (2*x).is_squarefree()
True
sage: (4*x).is_squarefree()
False
```

In positive characteristic, we compute the square-free decomposition or a full factorization, depending on which is available:
In the following example, \( t^2 \) is a unit in the base field:

```
sage: R(t^2).is_squarefree()
True
```

This method is not consistent with `squarefree_decomposition()`:

```
sage: R.<x> = ZZ[]
sage: f = 4 * x
sage: f.is_squarefree()
False
sage: f.squarefree_decomposition()
(4) * x
```

If you want this method equally not to consider the content, you can remove it as in the following example:

```
sage: c = f.content()
sage: (f/c).is_squarefree()
True
```

If the base ring is not an integral domain, the question is not mathematically well-defined:

```
sage: R.<x> = IntegerModRing(9)[]
sage: pol = (x + 3)*(x + 6); pol
x^2
sage: pol.is_squarefree()
Traceback (most recent call last):
 ...TypeError: is_squarefree() is not defined for polynomials over Ring of integers modulo 9
```

**is_term()**

Return True if this polynomial is a nonzero element of the base ring times a power of the variable.

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: x.is_term()
True
sage: R(0).is_term()
False
sage: R(1).is_term()
True
sage: (3*x^5).is_term()
True
sage: (1+3*x^5).is_term()
False
```
To require that the coefficient is 1, use `is_monomial()` instead:

```python
sage: (3*x^5).is_monomial()
False
```

### is_unit()
Return True if this polynomial is a unit.

**EXAMPLES:**

```python
sage: a = Integers(90384098234^3)
sage: b = a(2*191*236607587)
sage: b.is_nilpotent()
True
sage: R.<x> = a[]
sage: f = 3 + b*x + b^2*x^2
sage: f.is_unit()
True
sage: f = 3 + b*x + b^2*x^2 + 17*x^3
sage: f.is_unit()
False
```

**EXERCISE (Atiyah-McDonald, Ch 1):** Let $A[x]$ be a polynomial ring in one variable. Then $f = \sum a_i x^i \in A[x]$ is a unit if and only if $a_0$ is a unit and $a_1, \ldots, a_n$ are nilpotent.

### is_weil_polynomial (return_q=False)
Return True if this is a Weil polynomial.

This polynomial must have rational or integer coefficients.

**INPUT:**

- `self` – polynomial with rational or integer coefficients
- `return_q` – (default False) if True, return a second value $q$ which is the prime power with respect to which this is $q$-Weil, or 0 if there is no such value.

**EXAMPLES:**

```python
sage: polRing.<x> = PolynomialRing(Rationals())
sage: P0 = x^4 + 5*x^3 + 15*x^2 + 25*x + 25
sage: P1 = x^4 + 25*x^3 + 15*x^2 + 5*x + 25
sage: P2 = x^4 + 5*x^3 + 25*x^2 + 25*x + 25
sage: P0.is_weil_polynomial(return_q=True)
(True, 5)
sage: P0.is_weil_polynomial(return_q=False)
True
sage: P1.is_weil_polynomial(return_q=True)
(False, 0)
sage: P1.is_weil_polynomial(return_q=False)
False
sage: P2.is_weil_polynomial()
False
```

**AUTHORS:**

David Zureick-Brown (2017-10-01)

### is_zero()
Test whether this polynomial is zero.

**EXAMPLES:**
lc()  
Return the leading coefficient of this polynomial.

OUTPUT: element of the base ring  
This method is same as leading_coefficient().

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lc()
-2/5
```

lcm(other)  
Let f and g be two polynomials. Then this function returns the monic least common multiple of f and g.

leading_coefficient()  
Return the leading coefficient of this polynomial.

OUTPUT: element of the base ring

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.leading_coefficient()
-2/5
```

list(copy=True)  
Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: v = f.list(); v
[-1/3, 2, 0, -2/5]
```

Note that v is a list, it is mutable, and each call to the list method returns a new list:

```python
sage: type(v)
<... 'list'>
sage: v[0] = 5
sage: f.list()
[-1/3, 2, 0, -2/5]
```

Here is an example with a generic polynomial ring:

```python
sage: R.<x> = QQ[]
sage: S.<y> = R[]
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
```

(continues on next page)
sage: type(f)
<type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: v = f.list(); v
[-3*x, x, 0, 1]
sage: v[0] = 10
sage: f.list()
[-3*x, x, 0, 1]

lm()
Return the leading monomial of this polynomial.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lm()
x^3
sage: R(5).lm()
1
sage: R(0).lm()
0
sage: R(0).lm().parent() is R
True
```

lt()
Return the leading term of this polynomial.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lt()
-2/5*x^3
sage: R(5).lt()
5
sage: R(0).lt()
0
sage: R(0).lt().parent() is R
True
```

map_coefficients(f, new_base_ring=None)
Returns the polynomial obtained by applying \( f \) to the non-zero coefficients of self.

If \( f \) is a sage.categories.map.Map, then the resulting polynomial will be defined over the codomain of \( f \). Otherwise, the resulting polynomial will be over the same ring as self. Set new_base_ring to override this behaviour.

INPUT:

- \( f \) – a callable that will be applied to the coefficients of self.
- \( \text{new_base_ring} \) (optional) – if given, the resulting polynomial will be defined over this ring.

EXAMPLES:

```python
sage: R.<x> = SR[]
sage: f = (1+I)*x^2 + 3*x - I
sage: f.map_coefficients(lambda z: z.conjugate())
(-I + 1)*x^2 + 3*x + I
```
Examples with different base ring:

```
sage: R.<x> = ZZ[

sage: k = GF(2)
sage: residue = lambda x: k(x)
sage: f = 4*x^2+x+3
sage: g = f.map_coefficients(residue); g
x + 1

sage: g.parent()
Univariate Polynomial Ring in x over Integer Ring

sage: g = f.map_coefficients(residue, new_base_ring = k); g
x + 1

sage: g.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using GF2X)

sage: residue = k.coerce_map_from(ZZ)
sage: g = f.map_coefficients(residue); g
x + 1

sage: g.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using GF2X)
```

```
mod (other)

Remainder of division of self by other.

EXAMPLES:

```
sage: x = QQ['x'].0

sage: f = 2*x^2 + x^3 + 56*x^5

sage: f.monic()
x^5 + 1/56*x^3 + 1/28*x

sage: f = (1/4)*x^2 + 3*x + 1

sage: f.monic()
x^2 + 12*x + 4

sage: x^2 + 12*x + 4

sage: f = 2*x^2 + x^3 + 56*x^5

sage: f.monic()
x^5 + 1/56*x^3 + 1/28*x

sage: f = (1/4)*x^2 + 3*x + 1

sage: f.monic()
x^2 + 12*x + 4
```

The following happens because \(f = 0 \) cannot be made into a monic polynomial.
sage: f = 0*x
sage: f.monic()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

Notice that the monic version of a polynomial over the integers is defined over the rationals.

AUTHORS:

• Naqi Jaffery (2006-01-24): examples

\textbf{monomial_coefficient} (m)

Return the coefficient in the base ring of the monomial m in self, where m must have the same parent as self.

INPUT:

• m - a monomial

OUTPUT:

Coefficient in base ring.

EXAMPLES:

\begin{verbatim}
sage: P.<x> = QQ[]
\end{verbatim}

The parent of the return is a member of the base ring.

\begin{verbatim}
sage: f = 2 * x
sage: c = f.monomial_coefficient(x); c
2
sage: c.parent()
Rational Field
\end{verbatim}

\begin{verbatim}
sage: f = x^9 - 1/2*x^2 + 7*x + 5/11
sage: f.monomial_coefficient(x^9)
1
sage: f.monomial_coefficient(x^2)
-1/2
sage: f.monomial_coefficient(x)
7
sage: f.monomial_coefficient(x^0)
5/11
sage: f.monomial_coefficient(x^3)
0
\end{verbatim}

\textbf{monomials} ()

Return the list of the monomials in self in a decreasing order of their degrees.

EXAMPLES:
```python
sage: P.<x> = QQ[]
sage: f = x^2 + (2/3)*x + 1
sage: f.monomials()
[x^2, x, 1]
sage: f = P(3/2)
sage: f.monomials()
[1]
sage: f = P(0)
sage: f.monomials()
[]
sage: f = x
sage: f.monomials()
[x]
sage: f = - 1/2*x^2 + x^9 + 7*x + 5/11
sage: f.monomials()
[x^9, x^2, x, 1]
sage: x = var('x')
sage: K.<rho> = NumberField(x^2 + 1)
sage: R.<y> = QQ[]
sage: p = rho*y
sage: p.monomials()
[y]
```

def multiplication_trunc(other, n):
 Truncated multiplication

 EXAMPLES:

    ```python
    sage: R.<x> = ZZ[]
sage: (x^10 + 5*x^5 + x^2 - 3).multiplication_trunc(x^7 - 3*x^3 + 1, 11)
x^10 + x^9 - 15*x^8 - 3*x^7 + 2*x^5 + 9*x^3 + x^2 - 3
    Check that coercion is working:

    sage: R2 = QQ['x']
sage: x2 = R2.gen()
sage: p1 = (x^3 + 1).multiplication_trunc(x^2^3 - 2, 5); p1
    -x^3 - 2
    sage: p2 = (x^2^3 + 1).multiplication_trunc(x^3 - 2, 5); p2
    -x^3 - 2
    sage: parent(p1) == parent(p2) == R2
    True
    ```

```python
def newton_raphson(n, x0):
    Return a list of n iterative approximations to a root of this polynomial, computed using the Newton-Raphson method.

    The Newton-Raphson method is an iterative root-finding algorithm. For f(x) a polynomial, as is the case here, this is essentially the same as Horner's method.

    INPUT:

    - n - an integer (=the number of iterations),
    - x0 - an initial guess x0.

    OUTPUT: A list of numbers hopefully approximating a root of f(x)=0.

    If one of the iterates is a critical point of f then a ZeroDivisionError exception is raised.

    EXAMPLES:

    ```python
```
AUTHORS:

- David Joyner and William Stein (2005-11-28)

**newton_slopes** *(p, lengths=False)*

Return the \( p \)-adic slopes of the Newton polygon of self, when this makes sense.

**OUTPUT:**

If `lengths` is `False`, a list of rational numbers. If `lengths` is `True`, a list of couples \((s, l)\) where \(s\) is the slope and \(l\) the length of the corresponding segment in the Newton polygon.

**EXAMPLES:**

```python
sage: x = QQ['x'].0
sage: f = x^6 + x^2 + -x^4 - 2*x^3
sage: f.norm(2)
2.64575131106459
sage: (sqrt(1^2 + 1^2 + (-1)^2 + (-2)^2)).n()
2.64575131106459
sage: f.norm(1)
5.00000000000000
sage: f.norm(infinity)
2.00000000000000
```

**ALGORITHM:** Uses PARI if `lengths` is `False`.

**norm** *(p)*

Return the \( p \)-norm of this polynomial.

**DEFINITION:** For integer \( p \), the \( p \)-norm of a polynomial is the \( p \)th root of the sum of the \( p \)th powers of the absolute values of the coefficients of the polynomial.

**INPUT:**

- \( p \) - (positive integer or +infinity) the degree of the norm

**EXAMPLES:**

```python
sage: x = RR[]
sage: f = x^6 + x^2 - x^4 - 2*x^3
sage: f.norm(2)
2.64575131106459
sage: (sqrt(1^2 + 1^2 + (-1)^2 + (-2)^2)).n()
2.64575131106459
```
AUTHORS:

- Didier Deshommes
- William Stein: fix bugs, add definition, etc.

\textbf{nth\_root} \((n)\)

Return a \(n\)-th root of this polynomial.

This is computed using Newton method in the ring of power series. This method works only when the base
ring is an integral domain. Moreover, for polynomial whose coefficient of lower degree is different from 1,
the elements of the base ring should have a method \texttt{nth\_root} implemented.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: R.<x> = ZZ[]
sage: a = 27 * (x+3)**6 * (x+5)**3
dsage: a.nth_root(3)
3*x^3 + 33*x^2 + 117*x + 135

sage: b = 25 * (x^2 + x + 1)
sage: b.nth_root(2)
Traceback (most recent call last):
...
ValueError: not a 2nd power

sage: R.<x> = QQ[]
sage: a = 1/4 * (x/7 + 3/2)^2 * (x/2 + 5/3)^4
sage: a.nth_root(2)
1/56*x^3 + 103/336*x^2 + 365/252*x + 25/12

sage: K.<sqrt2> = QuadraticField(2)
sage: R.<x> = K[]
sage: a = (x + sqrt2)^3 * ((1+sqrt2)*x - 1/sqrt2)^6
sage: b = a.nth_root(3); b
(2*sqrt2 + 3)*x^3 + (2*sqrt2 + 2)*x^2 + (-2*sqrt2 - 3/2)*x + 1/2*sqrt2
sage: b^3 == a
True

sage: R.<x> = QQbar[]
sage: p = x**3 + QQbar(2).sqrt() * x - QQbar(3).sqrt()
sage: r = (p**5).nth_root(5)
sage: r * p[0] == p * r[0]
True

sage: p = (x+1)**20 + x^20
sage: p.nth_root(20)
Traceback (most recent call last):
...
ValueError: not a 20th power

sage: z = GF(4).gen()
sage: R.<x> = GF(4)[]
sage: p = z*x**4 + 2*x - 1
sage: r = (p**15).nth_root(15)
\end{verbatim}
Here we consider a base ring without `nth_root` method. The third example with a non-trivial coefficient of lowest degree raises an error:

```python
sage: R.<x> = QQ[]
sage: R2 = R.quotient(x**2 + 1)
sage: x = R2.gen()
sage: R3.<y> = R2[]
sage: (y**2 - 2*y + 1).nth_root(2)
 -y + 1
sage: (y**3).nth_root(3)
y
sage: (y**2 + x).nth_root(2)
Traceback (most recent call last):
 ... AttributeError: ... has no attribute 'nth_root'
```

### `number_of_real_roots()`

Return the number of real roots of this polynomial, counted without multiplicity.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x-1)^2 * (x-2)^2 * (x-3)
sage: pol.number_of_real_roots()
3
sage: pol = (x-1)*(x-2)*(x-3)
sage: pol2 = pol.change_ring(CC)
sage: pol2.number_of_real_roots()
3
sage: R.<x> = PolynomialRing(CC)
sage: pol = (x-1)*(x-CC(I))
```
number_of_real_roots()  

1

number_of_roots_in_interval \(a=None, b=None\)  

Return the number of roots of this polynomial in the interval \([a,b]\), counted without multiplicity. The endpoints \(a, b\) default to -Infinity, Infinity (which are also valid input values).

Calls the PARI routine polsturm. Note that as of version 2.8, PARI includes the left endpoint of the interval (and no longer uses Sturm’s algorithm on exact inputs). polsturm requires a polynomial with real coefficients; in case PARI returns an error, we try again after taking the GCD of \(self\) with its complex conjugate.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x-1)^2 * (x-2)^2 * (x-3)
sage: pol.number_of_roots_in_interval(1, 2)
2
sage: pol.number_of_roots_in_interval(1.01, 2)
1
sage: pol.number_of_roots_in_interval(None, 2)
2
sage: pol.number_of_roots_in_interval(1, Infinity)
3
sage: pol.number_of_roots_in_interval()
3
sage: pol = (x-1)*(x-CC(I))
sage: pol.number_of_roots_in_interval(0,2)
1
```

number_of_terms()  

Returns the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: f = x^3 - x
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+1)^100
sage: f.number_of_terms()
101
sage: S = GF(5)['y']
sage: S(f).number_of_terms()
5
sage: cyclotomic_polynomial(105).number_of_terms()
33
```

The method `hamming_weight()` is an alias:
**numerator()**

Return a numerator of self computed as self * self.denominator()

Note that some subclasses may implement its own numerator function. For example, see `sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint`

**Warning:** This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

**EXAMPLES:**

First we compute the numerator of a polynomial with integer coefficients, which is of course self.

```sage
code
R.<x> = ZZ[]
f = x^3 + 17*x + 1
f.numerator()
x^3 + 17*x + 1
f == f.numerator()
True
```

Next we compute the numerator of a polynomial with rational coefficients.

```sage
code
R.<x> = PolynomialRing(QQ)
f = (1/17)*x^19 - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/3
f.numerator()
3*x^19 - 34*x + 17
f == f.numerator()
False
```

We try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```sage
code
R.<x> = RR[]
f = x + RR('0.3'); f
x + 0.300000000000000
f.numerator()
x + 0.300000000000000
```

We check that the computation the numerator and denominator are valid

```sage
code
K=NumberField(symbolic_expression('x^3+2'),'a')['s','t']['x']
f=K.random_element()
f.numerator() / f.denominator() == f
True
R=RR['x']
f=R.random_element()
f.numerator() / f.denominator() == f
True
```

**ord** *(p=None)*

This is the same as the valuation of self at p. See the documentation for `self.valuation`.

**EXAMPLES:**
```python
sage: R.<x> = ZZ[]
sage: (x^2+x).ord(x+1)
1
```

**padded_list** *(n=\text{None})*

Return list of coefficients of self up to (but not including) \(q^n\).
Includes 0’s in the list on the right so that the list has length \(n\).

**INPUT:**

* n - (default: None); if given, an integer that is at least 0

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: f = 1 + x^3 + 23*x^5
sage: f.padded_list()
[1, 0, 0, 1, 0, 23]
sage: f.padded_list(10)
[1, 0, 0, 1, 0, 23, 0, 0, 0, 0]
sage: len(f.padded_list(10))
10
sage: f.padded_list(3)
[1, 0, 0]
sage: f.padded_list(0)
[]
sage: f.padded_list(-1)
Traceback (most recent call last):
 ... ValueError: n must be at least 0
```

**plot** *(xmin=\text{None}, xmax=\text{None}, *args, **kwds})*

Return a plot of this polynomial.

**INPUT:**

* xmin - float
* xmax - float

* *args, **kwds - passed to either plot or point

**OUTPUT:** returns a graphic object.

**EXAMPLES:**

```python
sage: x = polygen(GF(389))
sage: plot(x^2 + 1, rgbcolor=(0,0,1))
Graphics object consisting of 1 graphics primitive
sage: x = polygen(QQ)
sage: plot(x^2 + 1, rgbcolor=(1,0,0))
Graphics object consisting of 1 graphics primitive
```

**polynomial** *(\text{var})*

Let \text{var} be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in \text{var} over the polynomial ring generated by all the other variables of the parent.

For univariate polynomials, if \text{var} is the generator of the parent ring, we return this polynomial, otherwise raise an error.

**EXAMPLES:**
power_trunc \( (n, \text{prec}) \)

Truncated \( n \)-th power of this polynomial up to precision \( \text{prec} \)

**INPUT:**

- \( n \) – (non-negative integer) power to be taken
- \( \text{prec} \) – (integer) the precision

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: (x+1).polynomial(x)
x + 1
```

```python
power_trunc(n, prec)
```

Truncated \( n \)-th power of this polynomial up to precision \( \text{prec} \)

**INPUT:**

- \( n \) – (non-negative integer) power to be taken
- \( \text{prec} \) – (integer) the precision

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: (3*x^2 - 2*x + 1).power_trunc(5, 8)
-1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1
sage: (3*x^2 - 2*x + 1)^5 . truncate(8)
-1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1
```

```python
power_trunc(5, 5)
```

```python
5*x*x^2*y^3 + 10*x*x^3*y^2 + 5*x^4*y + x^5
sage: ((x*y)^5).truncate(5)
5*x*x^2*y^3 + 10*x*x^3*y^2 + 5*x^4*y + x^5
```

```python
prec()
```

Return the precision of this polynomial. This is always infinity, since polynomials are of infinite precision by definition (there is no big-oh).

**EXAMPLES:**

```python
sage: x = polygen(ZZ)
sage: (x^5 + x + 1).prec()
+Infinity
sage: x.prec()
+Infinity
```

```python
pseudo_quo_rem(other)
```

Compute the pseudo-division of two polynomials.
INPUT:
・other – a nonzero polynomial

OUTPUT:

\[ Q \text{ and } R \text{ such that } l^{m-n+1} \text{self} = Q \cdot \text{other} + R \text{ where } m \text{ is the degree of this polynomial, } n \text{ is the degree of other, } l \text{ is the leading coefficient of other. The result is such that } \deg(R) < \deg(\text{other}).\]

ALGORITHM:
Algorithm 3.1.2 in [Coh1993].

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^4 + 6*x^3 + x^2 - x + 2
sage: q = 2*x^2 - 3*x - 1
sage: (quo,rem)=p.pseudo_quo_rem(q); quo,rem
 (4*x^2 + 30*x + 51, 175*x + 67)
sage: 2^(4-2+1)*p == quo*q + rem
 True
sage: S.<T> = R[]
sage: p = (-3*x^2 - x)*T^3 - 3*x*T^2 + (x^2 - x)*T + 2*x^2 + 3*x - 2
sage: q = (-x^2 - 4*x - 5)*T^2 + (6*x^2 + x + 1)*T + 2*x^2 - x
sage: quo,rem=p.pseudo_quo_rem(q); quo,rem
 ((3*x^4 + 13*x^3 + 19*x^2 + 5*x)*T + 18*x^4 + 12*x^3 + 16*x^2 + 16*x,
 (-113*x^6 - 106*x^5 - 133*x^4 - 101*x^3 - 42*x^2 - 41*x)*T - 34*x^6 + 13*x^5
 - 54*x^4 + 126*x^3 + 134*x^2 - 5*x - 50)
sage: (-x^2 - 4*x - 5)^(3-2+1) * p == quo*q + rem
 True
```

radical()

Returns the radical of self; over a field, this is the product of the distinct irreducible factors of self. (This is also sometimes called the “square-free part” of self, but that term is ambiguous; it is sometimes used to mean the quotient of self by its maximal square factor.)

EXAMPLES:

```python
sage: P.<x> = ZZ[]
sage: t = (x^2-x+1)^3 * (3*x-1)^2
sage: t.radical()
 3*x^3 - 4*x^2 + 4*x - 1
sage: radical(12 * x^5)
 6*x
```

If self has a factor of multiplicity divisible by the characteristic (see trac ticket #8736):

```python
sage: P.<x> = GF(2)[]
sage: (x^3 + x^2).radical()
 x^2 + x
```

rational_reconstruct \((m, \text{n\_deg}=\text{None}, \text{d\_deg}=\text{None})\)

Return a tuple of two polynomials \((n, d)\) where \(self \ast d\) is congruent to \(n\) modulo \(m\) and \(n\).

degree() <= n\_deg and d\_degree() <= d\_deg.

INPUT:

・m – a univariate polynomial
・n\_deg – (optional) an integer; the default is \(\lfloor (\deg(m) - 1)/2 \rfloor\)
• d_deg – (optional) an integer; the default is \(\lceil \deg(m) - 1 \rceil / 2 \)

ALGORITHM:
The algorithm is based on the extended Euclidean algorithm for the polynomial greatest common divisor.

EXAMPLES:

Over \(\mathbb{Q}[z]\):

```python
sage: z = PolynomialRing(QQ, 'z').gen()
sage: p = -z**16 - z**15 - z**14 + z**13 + z**12 + z**11 - z**5 - z**4 - z**3
 + z**2 + z + 1
sage: m = z**21
sage: n, d = p.rational_reconstruct(m);
sage: print((n, d))
(z^4 + 2*z^3 + 3*z^2 + 2*z + 1, z^10 + z^9 + z^8 + z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1)
sage: print(((p*d - n) % m).is_zero())
True
```

Over \(\mathbb{Z}[z]\):

```python
sage: z = PolynomialRing(ZZ, 'z').gen();
sage: p = -z**16 - z**15 - z**14 + z**13 + z**12 + z**11 - z**5 - z**4 - z**3
 + z**2 + z + 1
sage: m = z**21
sage: n, d = p.rational_reconstruct(m);
sage: print((n, d))
(z^4 + 2*z^3 + 3*z^2 + 2*z + 1, z^10 + z^9 + z^8 + z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1)
sage: print(((p*d - n) % m).is_zero())
True
```

Over an integral domain \(d\) might not be monic:

```python
sage: P = PolynomialRing(ZZ, 'x');
sage: x = P.gen()
sage: p = 7*x^5 - 10*x^4 + 16*x^3 - 32*x^2 + 128*x + 256
sage: m = x^5;
sage: n, d = p.rational_reconstruct(m, 3, 2)
sage: print((n, d))
(-32*x^3 + 384*x^2 + 2304*x + 2048, 5*x + 8)
sage: print(((p*d - n) % m).is_zero())
True
sage: n, d = p.rational_reconstruct(m, 4, 0)
sage: print((n, d))
(-10*x^4 + 16*x^3 - 32*x^2 + 128*x + 256, 1)
sage: print(((p*d - n) % m).is_zero())
True
```

Over \(\mathbb{Q}(t)[z]\):

```python
sage: P = PolynomialRing(QQ, 't');
sage: t = P.gen();
sage: Pz = PolynomialRing(P.fraction_field(), 'z');
sage: z = Pz.gen();
sage: # p = (1 + t^2*z + z^4) / (1 - t*z)
sage: p = (1 + t^2*z + z^4)*(1 - t*z).inverse_mod(z^9)
(continues on next page)
```
```python
sage: m = z^9;
sage: n, d = p.rational_reconstruct(m);
sage: print((n,d))
((1/-t)*z^4 - t*z + 1/-t, z + 1/-t)
sage: print(((p*d - n) % m).is_zero())
True
sage: w = PowerSeriesRing(P.fraction_field(), 'w').gen()
sage: n = -10*t^2*z^4 + (-t^2 + t - 1)*z^3 + (-t - 8)*z^2 + z + 2*t^2 - t
sage: d = z^4 + (2*t + 4)*z^3 + (-t + 5)*z^2 + (t^2 + 2)*z + t^2 + 2*t + 1
sage: prec = 9
sage: nc, dc = Pz((n.subs(z = w)/d.subs(z = w) + O(w^prec)).list()).rational_reconstruct(z^prec)
sage: print((nc, dc) == (n, d))
True
Over \(\mathbb{Q}[t][z] \):
```
sage: m = x^9;

sage: n, d = p.rational_reconstruct(m, 4, 4)

sage: print((n, d))

(25/6*x^4 - 130/3*x^3 + 105*x^2 - 70*x, x^4 - 20*x^3 + 90*x^2 - 140*x + 70)

sage: print(((p*d - n) % m ).is_zero())

True

sage: p = P(sqrt(1+z).list())

sage: m = x^6;

sage: n, d = p.rational_reconstruct(m, 3, 2)

sage: print((n, d))

(1/6*x^3 + 3*x^2 + 8*x + 16/3, x^2 + 16/3*x + 16/3)

sage: print(((p*d - n) % m ).is_zero())

True

sage: p = P(exp(2*z).list())

sage: m = x^7;

sage: n, d = p.rational_reconstruct(m, 3, 3)

sage: print((n, d))

(-x^3 - 6*x^2 - 15*x - 15, x^3 - 6*x^2 + 15*x - 15)

sage: print(((p*d - n) % m ).is_zero())

True

Over \( R[z] \):

sage: z = PowerSeriesRing(RR, 'z').gen()

sage: P = PolynomialRing(RR,'x');

sage: x = P.gen()

sage: p = P(exp(2*z).list())

sage: m = x^7

sage: n, d = p.rational_reconstruct(m, 3, 3)

sage: print((n, d))  # absolute tolerance 1e-10

(-x^3 - 6.0*x^2 - 15.0*x - 15.0, x^3 - 6.0*x^2 + 15.0*x - 15.0)

See also:

- sage.matrix.berlekamp_massey
- sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint.rational_reconstruct() 

real_roots() 

Return the real roots of this polynomial, without multiplicities.

Calls self.roots(ring=RR), unless this is a polynomial with floating-point real coefficients, in which case it calls self.roots().

EXAMPLES:

sage: x = polygen(ZZ)

sage: (x^2 - x - 1).real_roots()

[-0.618033988749895, 1.61803398874989]

reciprocal_transform \((R=1, q=1)\)

Transform a general polynomial into a self-reciprocal polynomial.

The input \( Q \) and output \( P \) satisfy the relation

\[
P(x) = Q(x + q/x)x^{\deg(Q)}R(x).
\]
In this relation, \( Q \) has all roots in the real interval \([-2\sqrt{q}, 2\sqrt{q}]\) if and only if \( P \) has all roots on the circle \(|x| = \sqrt{q}\) and \( R \) divides \( x^2 - q \).

**See also:**

The inverse operation is \texttt{trace_polynomial()}.  

**INPUT:**

- \( R \) – polynomial
- \( q \) – scalar (default: 1)

**EXAMPLES:**

```python
sage: pol.<x> = PolynomialRing(Rationals())
sage: u = x^2+x-1
sage: u.reciprocal_transform()
x^4 + x^3 + x^2 + x + 1
sage: u.reciprocal_transform(R=x-1)
x^5 - 1
sage: u.reciprocal_transform(q=3)
x^4 + x^3 + 5*x^2 + 3*x + 9
```

**resultant \((other)\)**

Return the resultant of \texttt{self} and \texttt{other}.

**INPUT:**

- \( other \) – a polynomial

**OUTPUT:** an element of the base ring of the polynomial ring

**ALGORITHM:**

Uses PARI’s \texttt{polresultant} function. For base rings that are not supported by PARI, the resultant is computed as the determinant of the Sylvester matrix.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
sage: r.parent() is QQ
True
```

We can compute resultants over univariate and multivariate polynomial rings:

```python
sage: R.<a> = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a; g = x^3 + a
sage: r = f.resultant(g); r
a^3 + a^2
sage: r.parent() is R
True
```

```python
sage: R.<a, b> = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a; g = x^3 + b
sage: r = f.resultant(g); r
a^3 + b^2
```

(continues on next page)
sage: r.parent() is R
True

reverse(degree=None)

Return polynomial but with the coefficients reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary before reversing it. Assuming that the constant coefficient of self is nonzero, the reverse polynomial will have the specified degree.

EXAMPLES:

```
sage: R.<x> = ZZ[]; S.<y> = R[]
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: f.reverse()
-3*x*y^3 + x*y^2 + 1
sage: f.reverse(degree=2)
-3*x*y^2 + x*y
sage: f.reverse(degree=5)
-3*x*y^5 + x*y^4 + y^2
```

revert_series(n)

Return a polynomial f such that f(self(x)) = self(f(x)) = x mod x^n.

Currently, this is only implemented over some coefficient rings.

EXAMPLES:

```
sage: Pol.<x> = QQ[]
sage: (x + x^3/6 + x^5/120).revert_series(6)
3/40*x^5 - 1/6*x^3 + x
sage: Pol.<x> = CBF[]
sage: (x + x^3/6 + x^5/120).revert_series(6)
(0.075000000000000 +/- 9.75e-17)*x^5 + (-0.166666666666667 +/- 4.45e-16)*x^3 + x
sage: Pol.<x> = SR[]
sage: x.revert_series(6)
Traceback (most recent call last):
 ...
NotImplementedError: only implemented for certain base rings
```

root_field(names, check_irreducible=True)

Return the field generated by the roots of the irreducible polynomial self. The output is either a number field, relative number field, a quotient of a polynomial ring over a field, or the fraction field of the base ring.

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: f = x^3 + x + 17
sage: f.root_field('a')
Number Field in a with defining polynomial x^3 + x + 17

sage: R.<x> = QQ['x']
sage: f = x - 3
sage: f.root_field('b')
Rational Field
```
sage: R.<x> = ZZ['x']
sage: f = x^3 + x + 17
sage: f.root_field('b')
Number Field in b with defining polynomial x^3 + x + 17

sage: y = QQ['x'].0
sage: L.<a> = NumberField(y^3-2)
sage: R.<x> = L['x']
sage: f = x^3 + x + 17
sage: f.root_field('c')
Number Field in c with defining polynomial x^3 + x + 17 over its base field

sage: R.<x> = PolynomialRing(GF(9,'a'))
sage: f = x^3 + x^2 + 8
sage: K.<alpha> = f.root_field(); K
Univariate Quotient Polynomial Ring in alpha over Finite Field in a of size 3^2 with modulus x^3 + x^2 + 2
sage: alpha^2 + 1
alpha^2 + 1
sage: alpha^3 + alpha^2
1

sage: R.<x> = QQ[]
sage: f = x^2
sage: K.<alpha> = f.root_field()
Traceback (most recent call last):
... ValueError: polynomial must be irreducible

roots (ring=None, multiplicities=True, algorithm=None, **kwds)
Return the roots of this polynomial (by default, in the base ring of this polynomial).

INPUT:

• ring - the ring to find roots in
• multiplicities - bool (default: True) if True return list of pairs (r, n), where r is the root and n is the multiplicity. If False, just return the unique roots, with no information about multiplicities.
• algorithm - the root-finding algorithm to use. We attempt to select a reasonable algorithm by default, but this lets the caller override our choice.

By default, this finds all the roots that lie in the base ring of the polynomial. However, the ring parameter can be used to specify a ring to look for roots in.

If the polynomial and the output ring are both exact (integers, rationals, finite fields, etc.), then the output should always be correct (or raise an exception, if that case is not yet handled).

If the output ring is approximate (floating-point real or complex numbers), then the answer will be estimated numerically, using floating-point arithmetic of at least the precision of the output ring. If the polynomial is ill-conditioned, meaning that a small change in the coefficients of the polynomial will lead to a relatively large change in the location of the roots, this may give poor results. Distinct roots may be returned as multiple roots, multiple roots may be returned as distinct roots, real roots may be lost entirely (because the numerical estimate thinks they are complex roots). Note that polynomials with multiple roots are always ill-conditioned; there’s a footnote at the end of the docstring about this.

If the output ring is a RealIntervalField or ComplexIntervalField of a given precision, then the answer will always be correct (or an exception will be raised, if a case is not implemented). Each root will be contained
in one of the returned intervals, and the intervals will be disjoint. (The returned intervals may be of higher
precision than the specified output ring.)

At the end of this docstring (after the examples) is a description of all the cases implemented in this
function, and the algorithms used. That section also describes the possibilities for “algorithm=", for the
cases where multiple algorithms exist.

**EXAMPLES:**

```
sage: x = QQ['x'].0
sage: f = x^3 - 1
sage: f.roots()
[(1, 1)]
sage: f.roots(ring=CC) # note -- low order bits slightly different on ppc.
[(1.00000000000000, 1), (-0.500000000000000 - 0.86602540378443...*I, 1), (-0.500000000000000 + 0.86602540378443...*I, 1)]
sage: f = (x^3 - 1)^2
sage: f.roots()
[(1, 2)]
sage: f = -19*x + 884736
sage: f.roots()
[(884736/19, 1)]
sage: (f^20).roots()
[(884736/19, 20)]
sage: K.<z> = CyclotomicField(3)
sage: f = K.defining_polynomial()
```

```
sage: f.roots(ring=GF(7))
[(4, 1), (2, 1)]
sage: g = f.change_ring(GF(7))
sage: g.roots()
[(4, 1), (2, 1)]
sage: g.roots(multiplicities=False)
[4, 2]
```

A new ring. In the example below, we add the special method _roots_univariate_polynomial to the base
ring, and observe that this method is called instead to find roots of polynomials over this ring. This facility
can be used to easily extend root finding to work over new rings you introduce:

```
sage: R.<x> = QQ[]
sage: (x^2 + 1).roots()
[]
sage: g = lambda f, *args, **kwds: f.change_ring(CDF).roots()
sage: QQ._roots_univariate_polynomial = g
sage: (x^2 + 1).roots() # abs tol 1e-14
[(2.7755575615628914e-17 - 1.0*I, 1), (0.9999999999999997*I, 1)]
sage: del QQ._roots_univariate_polynomial
```

An example over RR, which illustrates that only the roots in RR are returned:

```
sage: x = RR['x'].0
sage: f = x^3 - 2
sage: f.roots()
[(1.25992104989487, 1)]
sage: f.factor()
(x - 1.25992104989487) * (x^2 + 1.25992104989487*x + 1.58740105196820)
```

(continues on next page)
Another example showing that only roots in the base ring are returned:

```
sage: x = polygen(ZZ)
sage: f = (2*x-3) * (x-1) * (x+1)
sage: f.roots()
[(1, 1), (-1, 1)]

sage: f.roots(ring=QQ)
[(3/2, 1), (1, 1), (-1, 1)]
```

An example involving large numbers:

```
sage: x = RR['x'].0
sage: f = x^2 - 1e100
sage: f.roots()
[(-1.00000000000000e50, 1), (1.00000000000000e50, 1)]

sage: f = x^10 - 2*(5*x-1)^2
sage: f.roots(multiplicities=False)
[-1.6772670339941..., 0.19995479628..., 0.20004530611..., 1.5763035161844...]
```

Describing roots using radical expressions:

```
sage: x = QQ['x'].0
sage: f = x^2 + 2
sage: f.roots(SR)
[(-I*sqrt(2), 1), (I*sqrt(2), 1)]

sage: f.roots(SR, multiplicities=False)
[-I*sqrt(2), I*sqrt(2)]
```

The roots of some polynomials can’t be described using radical expressions:

```
sage: (x^5 - x + 1).roots(SR)
[]
```
For some other polynomials, no roots can be found at the moment due to the way roots are computed. trac ticket #17516 addresses these defects. Until that gets implemented, one such example is the following:

```
sage: f = x^6-300*x^5+30361*x^4-1061610*x^3+1141893*x^2-915320*x+101724
sage: f.roots()
[]
```

A purely symbolic roots example:

```
sage: X = var('X')
sage: f = expand((X-1)*(X-I)^3*(X^2 - sqrt(2))); f
X^6 - (3*I + 1)*X^5 - sqrt(2)*X^4 + (3*I - 3)*X^4 + (3*I + 1)*sqrt(2)*X^3 +
 -(I + 3)*X^3 - (3*I - 3)*sqrt(2)*X^2 - I*X^2 - (I + 3)*sqrt(2)*X + I*sqrt(2)
sage: f.roots()
[(I, 3), (-2^(1/4), 1), (2^(1/4), 1), (1, 1)]
```

The same operation, performed over a polynomial ring with symbolic coefficients:

```
sage: X = SR['X'].0
sage: f = (X-1)*(X-I)^3*(X^2 - sqrt(2)); f
X^6 + (-3*I - 1)*X^5 + (-sqrt(2) + 3*I - 3)*X^4 + ((3*I + 1)*sqrt(2) + I +
 3)*X^3 + (-3*I - 3)*sqrt(2) - I)*X^2 + ((I + 3)*sqrt(2))*X + I*sqrt(2)
sage: f.roots()
[(I, 3), (-2^(1/4), 1), (2^(1/4), 1), (1, 1)]
sage: f.roots(multiplicities=False)
[I, -2^(1/4), 2^(1/4), 1]
```

A couple of examples where the base ring does not have a factorization algorithm (yet). Note that this is currently done via a rather naive enumeration, so could be very slow:

```
sage: R = Integers(6)
sage: S.<x> = R['x']
sage: p = x^2-1
sage: p.roots()
Traceback (most recent call last):
 ...
NotImplementedError: root finding with multiplicities for this polynomial not
 implemented (try the multiplicities=False option)
sage: p.roots(multiplicities=False)
[5, 1]
sage: R = Integers(9)
sage: A = PolynomialRing(R, 'y')
sage: y = A.gen()
sage: f = 10*y^2 - y^3 - 9
sage: f.roots(multiplicities=False)
[1, 0, 3, 6]
```

An example over the complex double field (where root finding is fast, thanks to NumPy):

```
sage: R.<x> = CDF[]
sage: f = R.cyclotomic_polynomial(5); f
x^4 + x^3 + x^2 + x + 1.0
sage: f.roots(multiplicities=False) # abs tol 1e-9
[-0.8090169943749469 - 0.5877852522915513*I, -0.8090169943749473 + 0.5877852522915517*I, 0.30901699437494773 - 0.9510565162951525*I, 0.30901699437494773 + 0.9510565162951525*I]
sage: [z^5 for z in f.roots(multiplicities=False)] # abs tol 2e-14
[0.9999999999999998, 1.000000000000002, 1.0000000000000024, 1.0000000000000024 + 0.0000000000000024*I, 1.0000000000000024 - 0.0000000000000024*I]
```

(continues on next page)
sage: f = CDF['x']([1,2,3,4]); f
4.0*x^3 + 3.0*x^2 + 2.0*x + 1.0
sage: r = f.roots(multiplicities=False)
sage: [f(a).abs() for a in r] # abs tol 1e-14

Another example over RDF:

sage: x = RDF['x'].0
sage: ((x^3 -1)).roots() # abs tol 4e-16
[(1.0000000000000002, 1)]
sage: ((x^3 -1)).roots(multiplicities=False) # abs tol 4e-16
[1.0000000000000002]

More examples involving the complex double field:

sage: x = CDF['x'].0
sage: i = CDF.0
sage: f = x^3 + 2*i; f
x^3 + 2.0*I
sage: f.roots() # abs tol 1e-14
[(-1.0911236359717227 - 0.6299605249474363*I, 1), (3.885780586188048e-16 + 1.2599210498947363*I, 1), (1.0911236359717227 + 0.6299605249474363*I, 1)]
sage: f.roots(multiplicities=False) # abs tol 1e-14
[-1.0911236359717227 - 0.6299605249474363*I, 3.885780586188048e-16 + 1.2599210498947363*I, 1.0911236359717227 + 0.6299605249474363*I]
sage: abs(f(f.roots()[0][0])) # abs tol 1e-13
1.1102230246251565e-16

Examples using real root isolation:

sage: x = polygen(ZZ)
sage: f = x^2 - x - 1
sage: f.roots() []
sage: f.roots(ring=RIF) [(1.6180339887498482045868343657?, 1), (-0.6180339887498482045868343657?, 1)]
sage: f.roots(ring=RIF, multiplicities=False) [-0.6180339887498482045868343657?, 1.6180339887498482045868343657?]
sage: f.roots(ring=RealIntervalField(150)) [(-0.61803398874984820458683436563811772030917980576286213544862272, 1), (1.61803398874984820458683436563811772030917980576286213544862272, 1)]
sage: f.roots(ring=AA) [(-0.618033988749895?, 1), (1.618033988749895?, 1)]
sage: f = f^2 * (x - 1)
sage: f.roots() # abs tol 1e-14
[(-0.6180339887498482045868343657?, 2), (1.6180339887498482045868343657?, 2)]
sage: f.roots(ring=RIF, multiplicities=False)
Examples using complex root isolation:

```
sage: x = polygen(ZZ)
sage: p = x^5 - x - 1
sage: p.roots()
[]
sage: p.roots(ring=CIF)
[(1.167303978261419?, 1), (-0.764884433600585? + 0.352471546031727?*I, 1), (-0.764884433600585? - 0.352471546031727?*I, 1), (0.18123244469876? + 1.083954101317711?*I, 1), (0.18123244469876? - 1.083954101317711?*I, 1)]
sage: p.roots(ring=ComplexIntervalField(200))
[(1.16730397826141868425604589954842180720560371525480939140082?, 1), (-0.76488443360058472602982318770854173032899665194736756700778? - 0.3524715460317262493179470914025810543942064880242733283770?*I, 1), (-0.76488443360058472602982318770854173032899665194736756700778? + 0.3524715460317262493179470914025810543942064880242733283770?*I, 1), (0.1812324446987538398190180237781120639687164646184623047347774? - 1.083954101317711?*I, 1), (0.1812324446987538398190180237781120639687164646184623047347774? + 1.083954101317711?*I, 1)]
sage: rts = p.roots(ring=QQbar); rts
[(1.167303978261419?, 1), (-0.7648844336005847? - 0.3524715460317263?*I, 1), (-0.7648844336005847? + 0.3524715460317263?*I, 1), (0.1812324446987543? - 1.083954101317711?*I, 1), (0.1812324446987543? + 1.083954101317711?*I, 1)]
sage: p.roots(ring=AA)
[(1.167303978261419?, 1)]
sage: p = (x - rts[4][0])^2 * (3*x^2 + x + 1)
sage: p.roots(ring=QQbar)
[(-0.1666666666666667? - 0.552770798392567?*I, 1), (-0.1666666666666667? + 0.552770798392567?*I, 1), (0.1812324446987543? + 1.083954101317711?*I, 2)]
sage: p.roots(ring=CIF)
[(-0.1666666666666667? - 0.552770798392567?*I, 1), (-0.1666666666666667? + 0.552770798392567?*I, 1), (0.1812324446987543? + 1.083954101317711?*I, 2)]
```

In some cases, it is possible to isolate the roots of polynomials over complex ball fields:

```
sage: Pol.<x> = CBF[]
sage: (x^2 + 2).roots(multiplicities=False)
[+/- 1.54e-19] + [+/- 1.41e-19]*I,
[+/- 1.54e-19] + [+/- 1.41e-19]*I
sage: (x^3 - 1/2).roots(RBF, multiplicities=False)
[0.7937005259840997 +/- 3.76e-17]
sage: ((x - 1)^2).roots(multiplicities=False, proof=False)
doctest:... UserWarning: roots may have been lost...
[[1.00000000000 +/- 8.43e-12] + [+/- 1.01e-11]*I,
[1.00000000000 +/- 5.22e-12] + [+/- 6.20e-12]*I]
```

Note that coefficients in a number field with defining polynomial $x^2 + 1$ are considered to be Gaussian rationals (with the generator mapping to $+I$), if you ask for complex roots.

```
sage: K.<im> = QuadraticField(-1)
sage: y = polygen(K)
```

(continues on next page)
sage: p = y^4 - 2 - im
sage: p.roots(ring=CC)
[(-1.2146389322441... - 0.14142505258239...*I, 1), (-0.14142505258239... + 1.2146389322441...*I, 1), (0.14142505258239... - 1.2146389322441...*I, 1), (1.2146389322441... + 0.14142505258239...*I, 1)]

sage: p = p^2 * (y^2 - 2)
sage: p.roots(ring=CIF)
[(-1.41421356237095?, 1), (1.41421356237095?, 1), (-1.214638932244183? - 0.141425052582394?*I, 2), (-0.141425052582394? + 1.214638932244183?*I, 2), (0.141425052582394? - 1.214638932244183?*I, 2), (1.214638932244183? + 0.141425052582394?*I, 2)]

Note that one should not use NumPy when wanting high precision output as it does not support any of the high precision types:

sage: R.<x> = RealField(200)

sage: f = x^2 - R(pi)

sage: f.roots()
[(-1.77245385090551602791674834311451827975494561223871282138, 1), (1.77245385090551602791674834311451827975494561223871282138, 1)]

sage: f.roots(algorithm='numpy')
doctest... UserWarning: NumPy does not support arbitrary precision arithmetic. The roots found will likely have less precision than you expect.

[(-1.77245385090551..., 1), (1.77245385090551..., 1)]

We can also find roots over number fields:

sage: K.<z> = CyclotomicField(15)
sage: R.<x> = PolynomialRing(K)
sage: (x^2 + x + 1).roots()
[(z^5, 1), (-z^5 - 1, 1)]

There are many combinations of floating-point input and output types that work. (Note that some of them are quite pointless like using algorithm='numpy' with high-precision types.)

sage: rflds = (RR, RDF, RealField(100))
sage: cflds = (CC, CDF, ComplexField(100))
sage: def cross(a, b):
....: return list(cartesian_product_iterator([a, b]))
sage: flds = cross(rflds, rflds) + cross(rflds, cflds) + cross(cflds, cflds)
sage: for (fld_in, fld_out) in flds:
....: x = polygen(fld_in)
....: f = x^3 - fld_in(2)
....: x2 = polygen(fld_out)
....: f2 = x2^3 - fld_out(2)
....: for algo in (None, 'pari', 'numpy',
....: 'pari', 'numpy'):
....: rts = f.roots(ring=fld_out, multiplicities=False)
....: if fld_in == fld_out and algo is None:
....: print('{} {}'.format(fld_in, rts))
....: for rt in rts:
....: assert(abs(f2(rt)) <= 1e-10)
....: assert(rt.parent() == fld_out)
Real Field with 53 bits of precision [1.25992104989487]
Real Double Field [1.25992104989487]
Real Field with 100 bits of precision [1.259921049894873164763597172\]
Complex Field with 53 bits of precision [1.25992104989487, -0.6299605249473... + 1.09112363597172*I, -0.6299605249473... + 1.09112363597172*I]
Complex Double Field \[1.25992104989..., -0.629960524947... - 1.0911236359717.. \rightarrow \ast I, -0.629960524947... + 1.0911236359717... \ast I, -0.
\rightarrow 62996052494743658238360530364 - 1.0911236359717214035600726142*I, -0.
\rightarrow 62996052494743658238360530364 + 1.0911236359717214035600726142*I]

Note that we can find the roots of a polynomial with algebraic coefficients:

```sage
sage: rt2 = sqrt(AA(2))
sage: rt3 = sqrt(AA(3))
sage: x = polygen(AA)
sage: f = (x - rt2) * (x - rt3); f
x^2 - 3.146264369941973?*x + 2.449489742783178?
sage: rts = f.roots(); rts
[(1.414213562373095?, 1), (1.732050807568878?, 1)]
sage: rts[0][0] == rt2
True
sage: f.roots(ring=RealIntervalField(150))
[(1.4142135623709504880168872420969807856967187537694073176679738?, 1), (1.7320508075688772935274463415058756942805253810380628055806980?, 1)]
```

We can handle polynomials with huge coefficients.

This number doesn’t even fit in a IEEE double-precision float, but RR and CC allow a much larger range of floating-point numbers:

```sage
sage: bigc = 2^1500
sage: CDF(bigc)
+infinity
sage: CC(bigc)
3.50746621104340e451
```

Polynomials using such large coefficients can’t be handled by numpy, but pari can deal with them:

```sage
sage: x = polygen(QQ)
sage: p = x + bigc
sage: p.roots(ring=RR, algorithm='numpy')
Traceback (most recent call last):
 ... LinAlgError: Array must not contain infs or NaNs
sage: p.roots(ring=RR, algorithm='pari')
[(-3.5074662110434039?e451, 1)]
sage: p.roots(ring=AA)
[(-3.5074662110434039?e451, 1)]
sage: p.roots(ring=QQbar)
[(-3.5074662110434039?e451, 1)]
sage: p = bigc*x + 1
sage: p.roots(ring=QQbar)
[(0.0000000000000000, 1)]
sage: p.roots(ring=AA)
[(-2.851060648967059?e-452, 1)]
sage: p.roots(ring=QQbar)
[(-2.851060648967059?e-452, 1)]
sage: p = x^2 - bigc
sage: p.roots(ring=RR)
[(-5.92238652153286e225, 1), (5.92238652153286e225, 1)]
```

(continues on next page)
Algorithms used:

For brevity, we will use RR to mean any RealField of any precision; similarly for RIF, CC, and CIF. Since Sage has no specific implementation of Gaussian rationals (or of number fields with embedding, at all), when we refer to Gaussian rationals below we will accept any number field with defining polynomial $x^2 + 1$, mapping the field generator to +I.

We call the base ring of the polynomial K, and the ring given by the ring= argument L. (If ring= is not specified, then L is the same as K.)

If K and L are floating-point (RDF, CDF, RR, or CC), then a floating-point root-finder is used. If L is RDF or CDF then we default to using NumPy’s roots(); otherwise, we use PARI’s polroots(). This choice can be overridden with algorithm=’pari’ or algorithm=’numpy’. If the algorithm is unspecified and NumPy’s roots() algorithm fails, then we fall back to pari (numpy will fail if some coefficient is infinite, for instance).

If L is SR, then the roots will be radical expressions, computed as the solutions of a symbolic polynomial expression. At the moment this delegates to sage.symbolic.expression.Expression.solve() which in turn uses Maxima to find radical solutions. Some solutions may be lost in this approach. Once trac ticket #17516 gets implemented, all possible radical solutions should become available.

If L is AA or RIF, and K is ZZ, QQ, or AA, then the root isolation algorithm sage.rings.polynomial.real_roots.real_roots() is used. (You can call real_roots() directly to get more control than this method gives.)

If L is QQbar or CIF, and K is ZZ, QQ, AA, QQbar, or the Gaussian rationals, then the root isolation algorithm sage.rings.polynomial.complex_roots.complex_roots() is used. (You can call complex_roots() directly to get more control than this method gives.)

If L is AA and K is QQbar or the Gaussian rationals, then complex_roots() is used (as above) to find roots in QQbar, then these roots are filtered to select only the real roots.

If L is floating-point and K is not, then we attempt to change the polynomial ring to L (using .change_ring()) (or, if L is complex and K is not, to the corresponding real field). Then we use either PARI or numpy as specified above.

For all other cases where K is different than L, we just use .change_ring(L) and proceed as below.

The next method, which is used if K is an integral domain, is to attempt to factor the polynomial. If this succeeds, then for every degree-one factor $a \times b$, we add $-b/a$ as a root (as long as this quotient is actually in the desired ring).

If factoring over K is not implemented (or K is not an integral domain), and K is finite, then we find the roots by enumerating all elements of K and checking whether the polynomial evaluates to zero at that value.

Note: We mentioned above that polynomials with multiple roots are always ill-conditioned; if your input is given to n bits of precision, you should not expect more than n/k good bits for a k-fold root. (You can get solutions that make the polynomial evaluate to a number very close to zero; basically the problem is that with a multiple root, there are many such numbers, and it’s difficult to choose between them.)

To see why this is true, consider the naive floating-point error analysis model where you just pretend that all floating-point numbers are somewhat imprecise - a little ‘fuzzy’, if you will. Then the graph of a floating-point polynomial will be a fuzzy line. Consider the graph of $(x - 1)^3$; this will be a fuzzy line.
with a horizontal tangent at $x = 1, y = 0$. If the fuzziness extends up and down by about $j$, then it will extend left and right by about $\text{cube_root}(j)$.

\textbf{shift ($n$)}

Returns this polynomial multiplied by the power $x^n$. If $n$ is negative, terms below $x^n$ will be discarded. Does not change this polynomial (since polynomials are immutable).

\textbf{EXAMPLES:}

```
sage: R.<x> = QQ[]
sage: p = x^2 + 2*x + 4
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(-5)
0
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```

One can also use the infix shift operator:

```
sage: f = x^3 + x
sage: f >> 2
x
sage: f << 2
x^5 + x^3
```

\textbf{AUTHORS:}

- David Harvey (2006-08-06)

\textbf{specialization ($D=None$, $phi=None$)}

Specialization of this polynomial.

Given a family of polynomials defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a \texttt{SpecializationMorphism}.

\textbf{INPUT:}

- $D$ – dictionary (optional)
- $phi$ – \texttt{SpecializationMorphism} (optional)

\textbf{OUTPUT:} a new polynomial

\textbf{EXAMPLES:}

```
sage: R.<c> = PolynomialRing(ZZ)
sage: S.<z> = PolynomialRing(R)
sage: F = c*z^2 + c^2
sage: F.specialization(dict({c:2}))
2*z^2 + 4
```

\textbf{splitting_field ($names=None$, $map=False$, **kwds)}

Compute the absolute splitting field of a given polynomial.

\textbf{INPUT:}
• names – (default: None) a variable name for the splitting field.
• map – (default: False) also return an embedding of self into the resulting field.
• kwds – additional keywords depending on the type. Currently, only number fields are implemented. See sage.rings.number_field.splitting_field.splitting_field() for the documentation of these keywords.

OUTPUT:

If map is False, the splitting field as an absolute field. If map is True, a tuple \((K, \phi)\) where \(\phi\) is an embedding of the base field of self in \(K\).

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(ZZ)
sage: K.<a> = (x^3 + 2).splitting_field(); K
Number Field in a with defining polynomial x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1
sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K
Number Field in a with defining polynomial x^3 - 3*x + 1
```

Relative situation:

```sage
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 + 2)
sage: S.<t> = PolynomialRing(K)
sage: L. = (t^2 - a).splitting_field()
sage: L
Number Field in b with defining polynomial t^6 + 2
```

With map=True, we also get the embedding of the base field into the splitting field:

```sage
sage: L., phi = (t^2 - a).splitting_field(map=True)
sage: phi
Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Number Field in b with defining polynomial t^6 + 2
 Defn: a |--> b^2
```

An example over a finite field:

```sage
sage: P.<x> = PolynomialRing(GF(7))
sage: t = x^2 + 1
sage: t.splitting_field('b')
Finite Field in b of size 7^2
sage: P.<x> = PolynomialRing(GF(7^3, 'a'))
sage: t = x^2 + 1
sage: t.splitting_field('b', map=True)
(Finite Field in b of size 7^6,
 Ring morphism:
 From: Finite Field in a of size 7^3
 To: Finite Field in b of size 7^6
 Defn: a |--> 2*b^4 + 6*b^3 + 2*b^2 + 3*b + 2)
```

If the extension is trivial and the generators have the same name, the map will be the identity:
sage: t = 24*x^13 + 2*x^12 + 14
sage: t.splitting_field('a', map=True)
(Finite Field in a of size 7^3,
 Identity endomorphism of Finite Field in a of size 7^3)

sage: t = x^56 - 14*x^3
sage: t.splitting_field('b', map=True)
(Finite Field in b of size 7^3,
 Ring morphism:
  From: Finite Field in a of size 7^3
  To:  Finite Field in b of size 7^3
  Defn: a |--> b)

See also:
sage.rings.number_field.splitting_field.splitting_field() for more examples over number fields

square()

Returns the square of this polynomial.

Todo:

- This is just a placeholder; for now it just uses ordinary multiplication. But generally speaking, squaring is faster than ordinary multiplication, and it’s frequently used, so subclasses may choose to provide a specialised squaring routine.
- Perhaps this even belongs at a lower level? RingElement or something?

AUTHORS:

- David Harvey (2006-09-09)

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = x^3 + 1
sage: f.square()
x^6 + 2*x^3 + 1
sage: f*f
x^6 + 2*x^3 + 1
```

squarefree_decomposition()

Return the square-free decomposition of this polynomial. This is a partial factorization into square-free, coprime polynomials.

EXAMPLES:

```python
sage: x = polygen(QQ)
sage: p = 37 * (x-1)^3 * (x-2)^3 * (x-1/3)^7 * (x-3/7)
sage: p.squarefree_decomposition()
(37*x - 111/7) * (x^2 - 3*x + 2)^3 * (x - 1/3)^7
sage: p = 37 * (x-2/3)^2
sage: p.squarefree_decomposition()
(37) * (x - 2/3)^2
sage: x = polygen(GF(3))
sage: x.squarefree_decomposition()
x
```
sage: f = QQbar['x'](1)
sage: f.squarefree_decomposition()
1

\texttt{subs} (*x, **kwds)

Identical to \texttt{self(*x)}.

See the docstring for \texttt{self.__call__}.

\textbf{EXAMPLES:}

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x - 3
sage: f.subs(x=5)
127
sage: f.subs({x:2})
7
sage: f.subs({})
x^3 + x - 3
sage: f.subs({'x':2})
Traceback (most recent call last):
 ...TypeError: keys do not match self's parent
```

\texttt{substitute} (*x, **kwds)

Identical to \texttt{self(*x)}.

See the docstring for \texttt{self.__call__}.

\textbf{EXAMPLES:}

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x - 3
sage: f.subs(x=5)
127
sage: f.subs({x:2})
7
sage: f.subs({})
x^3 + x - 3
sage: f.subs({'x':2})
Traceback (most recent call last):
 ...TypeError: keys do not match self's parent
```

\texttt{sylvester\_matrix} (right, variable=None)

Returns the Sylvester matrix of self and right.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

\textbf{INPUT:}

- right: a polynomial in the same ring as self.
- variable: optional, included for compatibility with the multivariate case only. The variable of the polynomials.
EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
sage: M = f.sylvester_matrix(g)
sage: M
[42 317 134 1786 0 0 0]
[0 42 317 134 1786 0 0]
[0 0 42 317 134 1786 0]
[0 0 0 42 317 134 1786]
[18 141 12 100 47 0 0]
[0 18 141 12 100 47 0]
[0 0 18 141 12 100 47]
```

If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will
be zero:
```
sage: M.determinant()
0
```

If self and right are polynomials of positive degree, the determinant of the Sylvester matrix is the resultant
of the polynomials:
```
sage: h1 = R.random_element()
sage: h2 = R.random_element()
sage: M1 = h1.sylvester_matrix(h2)
sage: M1.determinant() == h1.resultant(h2)
True
```

The rank of the Sylvester matrix is related to the degree of the gcd of self and right:
```
sage: f.gcd(g).degree() == f.degree() + g.degree() - M.rank()
True
sage: h1.gcd(h2).degree() == h1.degree() + h2.degree() - M1.rank()
True
```

**symmetric_power** *(k, monic=False)*

Return the polynomial whose roots are products of *k*-th distinct roots of this.

EXAMPLES:

```
sage: x = polygen(QQ)
sage: f = x^4-x+2
sage: [f.symmetric_power(k) for k in range(5)]
[x - 1, x^4 - x + 2, x^6 - 2*x^4 - x^3 - 4*x^2 + 8, x^4 - x^3 + 8, x - 2]
sage: f = x^5-2*x+2
sage: [f.symmetric_power(k) for k in range(6)]
[x - 1, x^5 - 2*x + 2, x^10 + 2*x^8 - 4*x^6 - 8*x^5 - 8*x^4 - 8*x^3 + 16,
 x^10 + 4*x^7 - 8*x^6 + 16*x^5 - 16*x^4 + 32*x^2 + 64,
 x^5 + 2*x^4 - 16,
 x + 2]
sage: R.<a,b,c,d> = ZZ[]
sage: x = polygen(R)
```

(continues on next page)
trace_polynomial()
Compute the trace polynomial and cofactor.

The input $P$ and output $Q$ satisfy the relation

$$P(x) = Q(x + q/x)x^{\deg(Q)}R(x).$$

In this relation, $Q$ has all roots in the real interval $[-2\sqrt{q}, 2\sqrt{q}]$ if and only if $P$ has all roots on the circle $|x| = \sqrt{q}$ and $R$ divides $x^2 - q$. We thus require that the base ring of this polynomial have a coercion to the real numbers.

**See also:**
The inverse operation is `reciprocal_transform()`.

**OUTPUT:**

- $Q$ – trace polynomial
- $R$ – cofactor
- $q$ – scaling factor

**EXAMPLES:**

```python
sage: pol.<x> = PolynomialRing(Rationals())
sage: u = x^5 - 1; u.trace_polynomial()
(x^2 + x - 1, x - 1, 1)
sage: u = x^4 + x^3 + 5*x^2 + 3*x + 9
sage: u.trace_polynomial()
(x^2 + x - 1, 1, 3)
```

We check that this function works for rings that have a coercion to the reals:

```python
sage: K.<a> = NumberField(x^2-2,embedding=1.4)
sage: u = x^4 + a*x^3 + 3*x^2 + 2*a*x + 4
sage: u.trace_polynomial()
(x^2 + a*x - 1, 1, 2)
sage: (u*(x^2-2)).trace_polynomial()
(x^2 + a*x - 1, x^2 - 2, 2)
sage: (u*(x^2-2)^2).trace_polynomial()
(x^4 + a*x^3 - 9*x^2 - 8*a*x + 8, x^2 - 2, 2)
sage: (u*(x^2-2)^3).trace_polynomial()
(x^4 + a*x^3 - 9*x^2 - 8*a*x + 8, x^2 - 2, 2)
sage: u = x^4 + a*x^3 + 3*x^2 + 4*a*x + 16
sage: u.trace_polynomial()
(x^2 + a*x - 5, 1, 4)
sage: (u*(x-2)).trace_polynomial()
(x^2 + a*x - 5, x - 2, 4)
sage: (u*(x+2)).trace_polynomial()
(x^2 + a*x - 5, x + 2, 4)
```
**truncate** \((n)\)

Returns the polynomial of degree ‘\(< n\)’ which is equivalent to self modulo \(x^n\).

**EXAMPLES:**

```
sage: R.<x> = ZZ[]; S.<y> = PolynomialRing(R, sparse=True)
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: f.truncate(2)
x*y - 3*x
sage: f.truncate(1)
-3*x
sage: f.truncate(0)
0
```

**valuation** \((p=\text{None})\)

If \(f = a_rx^r + a_{r+1}x^{r+1} + \cdots\), with \(a_r\) nonzero, then the valuation of \(f\) is \(r\). The valuation of the zero polynomial is \(\infty\).

If a prime (or non-prime) \(p\) is given, then the valuation is the largest power of \(p\) which divides self.

The valuation at \(\infty\) is \(-\text{self.degree()}.\)

**EXAMPLES:**

```
sage: P.<x> = ZZ[]
sage: (x^2+x).valuation()
1
sage: (x^2+x).valuation(x+1)
1
sage: (x^2+1).valuation()
0
sage: (x^3+1).valuation(infinity)
-3
sage: P(0).valuation()
+Infinity
```

**variable_name()**

Return name of variable used in this polynomial as a string.

**OUTPUT:** string

**EXAMPLES:**

```
sage: R.<t> = QQ[]
sage: f = t^3 + 3/2*t + 5
sage: f.variable_name()
't'
```

**variables()**

Returns the tuple of variables occurring in this polynomial.

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: x.variables()
(x,)
```

A constant polynomial has no variables.
sage: R(2).variables()
()

\texttt{xgcd}(\texttt{other})

Return an extended gcd of this polynomial and \texttt{other}.

\textbf{INPUT:}

- \texttt{other} – a polynomial in the same ring as this polynomial

\textbf{OUTPUT:}

A tuple \((r, s, t)\) where \(r\) is a greatest common divisor of this polynomial and \texttt{other}, and \(s\) and \(t\) are such that \(r = s*\text{self} + t*\text{other}\) holds.

\textbf{Note:} The actual algorithm for computing the extended gcd depends on the base ring underlying the polynomial ring. If the base ring defines a method \texttt{\_xgcd\_univariate\_polynomial}, then this method will be called (see examples below).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = QQbar[]
sage: (2*x^2).gcd(2*x)
x
sage: R.zero().gcd(0)
0
sage: (2*x).gcd(0)
x
\end{verbatim}

One can easily add \texttt{xgcd} functionality to new rings by providing a method \texttt{\_xgcd\_univariate\_polynomial}:

\begin{verbatim}
sage: R.<x> = QQ[]
sage: S.<y> = R[]
sage: h1 = y*x
sage: h2 = y^2*x^2
sage: h1.xgcd(h2)
Traceback (most recent call last):
  ...
NotImplementedError: Univariate Polynomial Ring in x over Rational Field does not provide an xgcd implementation for univariate polynomials
sage: T.<x,y> = QQ[]
sage: sage: def poor_xgcd(f,g):
  ....:     ret = S(T(f).gcd(g))
  ....:     if ret == f: return ret,S.one(),S.zero()
  ....:     if ret == g: return ret,S.zero(),S.one()
  ....:     raise Not ImplementedError
sage: R._xgcd_univariate_polynomial = poor_xgcd
sage: h1.xgcd(h2)
(x*y, 1, 0)
sage: del R._xgcd_univariate_polynomial
\end{verbatim}

\textbf{class} \texttt{sage.rings.polynomial.polynomial\_element.PolynomialBaseringInjection}

\textbf{Bases:} \texttt{sage.categories.morphism.Morphism}

This class is used for conversion from a ring to a polynomial over that ring.
It calls the \_new\_constant\_poly method on the generator, which should be optimized for a particular polynomial type.

Technically, it should be a method of the polynomial ring, but few polynomial rings are cython classes, and so, as a method of a cython polynomial class, it is faster.

**EXAMPLES:**

We demonstrate that most polynomial ring classes use polynomial base injection maps for coercion. They are supposed to be the fastest maps for that purpose. See trac ticket \#9944.

```
sage: R.<x> = Qp(3)[
sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
 From: 3-adic Field with capped relative precision 20
 To: Univariate Polynomial Ring in x over 3-adic Field with capped relative
 precision 20
sage: R.<x,y> = Qp(3)[
sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
 From: 3-adic Field with capped relative precision 20
 To: Multivariate Polynomial Ring in x, y over 3-adic Field with capped
 relative precision 20
sage: R.<x,y> = QQ[
sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
 From: Rational Field
 To: Multivariate Polynomial Ring in x, y over Rational Field
sage: R.<x> = QQ[
sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
 From: Rational Field
 To: Univariate Polynomial Ring in x over Rational Field
```

By trac ticket \#9944, there are now only very few exceptions:

```
sage: PolynomialRing(QQ,names=[]).coerce_map_from(QQ)
Generic morphism:
 From: Rational Field
 To: Multivariate Polynomial Ring in no variables over Rational Field
```

**is_injective**()

Return whether this morphism is injective.

**EXAMPLES:**

```
sage: R.<x> = ZZ[
sage: S.<y> = R[
sage: S.coerce_map_from(R).is_injective()
True
```

Check that trac ticket \#23203 has been resolved:

```
sage: R.is_subring(S) # indirect doctest
True
```

**is_surjective**()

Return whether this morphism is surjective.

**EXAMPLES:**

```
```
sage: R.<x> = ZZ[]
sage: R.coerce_map_from(ZZ).is_surjective()
False

section()

class sage.rings.polynomial.polynomial_element.Polynomial-generic_dense
Bases: sage.rings.polynomial.polynomial_element.Polynomial

A generic dense polynomial.

EXAMPLES:

    sage: f = QQ['x','y'].random_element()
    sage: loads(f.dumps()) == f
    True

custom_coefficient()
    Return the constant coefficient of this polynomial.

    OUTPUT: element of base ring

    EXAMPLES: sage: R.<t> = QQ[] sage: S.<x> = R[] sage: f = x*t + x + t sage: f.constant_coefficient() t
degree(gen=None)
    EXAMPLES:

    sage: R.<x> = RDF[]
    sage: f = (1+2*x^7)^5
    sage: f.degree()
    35
    is_term()
    Return True if this polynomial is a nonzero element of the base ring times a power of the variable.

    EXAMPLES:

    sage: R.<x> = SR[]
    sage: R(0).is_term()
    False
    sage: R(1).is_term()
    True
    sage: (3*x^5).is_term()
    True
    sage: (1+3*x^5).is_term()
    False

list(copy=True)
    Return a new copy of the list of the underlying elements of self.

    EXAMPLES:

    sage: R.<x> = GF(17)[]
    sage: f = (1+2*x)^3 + 3*x; f
    8*x^3 + 12*x^2 + 9*x + 1
    sage: f.list()
    [1, 9, 12, 8]

quo_rem(other)
    Returns the quotient and remainder of the Euclidean division of self and other.

2.1. Univariate Polynomials and Polynomial Rings 105
Raises ZerodivisionError if other is zero. Raises ArithmeticError if the division is not exact.

AUTHORS:

- Kwankyu Lee (2013-06-02)
- Bruno Grenet (2014-07-13)

EXAMPLES:

```python
sage: P.<x> = QQ[]
sage: R.<y> = P[]
sage: f = R.random_element(10)
sage: g = y^5+R.random_element(4)
sage: q, r = f.quo_rem(g)
sage: f == q*g + r
True
sage: g = x*y^5
sage: f.quo_rem(g)
Traceback (most recent call last):
 ... ArithmeticError: Division non exact (consider coercing to polynomials over → the fraction field)
sage: g = 0
sage: f.quo_rem(g)
Traceback (most recent call last):
 ... ZeroDivisionError: Division by zero polynomial
```

**shift** \((n)\)

Returns this polynomial multiplied by the power \(x^n\). If \(n\) is negative, terms below \(x^n\) will be discarded. Does not change this polynomial.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(PolynomialRing(QQ,'y'), 'x')
sage: p = x^2 + 2*x + 4
sage: type(p)
<type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```

AUTHORS:

- David Harvey (2006-08-06)

**truncate** \((n)\)

Returns the polynomial of degree ‘<\(n\)’ which is equivalent to self modulo \(x^n\).

EXAMPLES:

```python
sage: S.<q> = QQ['t']['q']
sage: f = (1+q^10+q^11+q^12).truncate(11); f
q^10 + 1
sage: f = (1+q^10+q^100).truncate(50); f
q^10 + 1
sage: f.degree()
(continues on next page)
```
class sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact

Bases: sage.rings.polynomial.polynomial_element.Polynomial_generic_dense

A dense polynomial over an inexact ring.

AUTHOR:

• Xavier Caruso (2013-03)

degree (secure=False)

INPUT:

• secure – a boolean (default: False)

OUTPUT:

The degree of self.

If secure is True and the degree of this polynomial is not determined (because the leading coefficient is indistinguishable from 0), an error is raised.

If secure is False, the returned value is the largest \( n \) so that the coefficient of \( x^n \) does not compare equal to 0.

EXAMPLES:

sage: K = Qp(3, 10)
sage: R. = K[]
sage: f = T + 2; f
\((1 + O(3^{10}))*T + (2 + O(3^{10}))\)
sage: f.degree()
1
sage: (f-T).degree()
0
sage: (f-T).degree(secure=True)
Traceback (most recent call last):
...
PrecisionError: the leading coefficient is indistinguishable from 0

AUTHOR:

• Xavier Caruso (2013-03)
**prec_degree()**

Returns the largest $n$ so that precision information is stored about the coefficient of $x^n$.

Always greater than or equal to degree.

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.degree()
1
sage: f.prec_degree()
1
sage: g = f - T; g
(0 + O(3^10))*T + (2 + O(3^10))
sage: g.degree()
0
sage: g.prec_degree()
1
```

**AUTHOR:**

- Xavier Caruso (2013-03)

sage.rings.polynomial.polynomial_element.generic_power_trunc($p$, $n$, $prec$)

Generic truncated power algorithm

**INPUT:**

- $p$ - a polynomial
- $n$ - an integer (of type `sage.rings.integer.Integer`)
- $prec$ - a precision (should fit into a C long)

sage.rings.polynomial.polynomial_element.is_Polynomial($f$)

Return True if $f$ is of type univariate polynomial.

**INPUT:**

- $f$ - an object

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_element import is_Polynomial
sage: R.<x> = ZZ[]
sage: is_Polynomial(x^3 + x + 1)
True
sage: S.<y> = R[]
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: is_Polynomial(f)
True
```

However this function does not return True for genuine multivariate polynomial type objects or symbolic polynomials, since those are not of the same data type as univariate polynomials:

```python
sage: R.<x,y> = QQ[]
sage: f = y^3 + x*y - 3*x; f
```

(continues on next page)
```python
sage: y^3 + x*y - 3*x
sage: is_Polynomial(f)
False
sage: var('x,y')
(x, y)
sage: f = y^3 + x*y -3*x; f
y^3 + x*y - 3*x
sage: is_Polynomial(f)
False
```

```python
sage.rings.polynomial.polynomial_element.make_generic_polynomial(parent, coeffs)
```

```python
sage.rings.polynomial.polynomial_element.universal_discriminant(n)
Return the discriminant of the ‘universal’ univariate polynomial $a_n x^n + \cdots + a_1 x + a_0$ in $\mathbb{Z}[a_0, \ldots, a_n][x]$.
```

**INPUT:**
- `n` - degree of the polynomial

**OUTPUT:**
The discriminant as a polynomial in $n + 1$ variables over $\mathbb{Z}$. The result will be cached, so subsequent computations of discriminants of the same degree will be faster.

**EXAMPLES:**
```python
sage: from sage.rings.polynomial.polynomial_element import universal_discriminant
sage: universal_discriminant(1)
1
sage: universal_discriminant(2)
a1^2 - 4*a0*a2
sage: universal_discriminant(3)
a1^2*a2^2 - 4*a0*a2^3 - 4*a1^3*a3 + 18*a0*a1*a2*a3 - 27*a0^2*a3^2
sage: universal_discriminant(4).degrees()
(3, 4, 4, 4, 3)
```

**See also:**
`Polynomial.discriminant()`

### 2.1.4 Univariate Polynomials over domains and fields

**AUTHORS:**
- William Stein: first version
- Martin Albrecht: Added singular coercion.
- David Harvey: split off `polynomial_integer_dense_ntl.pyx` (2007-09)
- Robert Bradshaw: split off `polynomial_modn_dense_ntl.pyx` (2007-09)

```python
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv(parent, is_gen=False, construct=False)
Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain
```

2.1. Univariate Polynomials and Polynomial Rings 109
A generic class for polynomials over complete discrete valuation domains and fields.

**AUTHOR:**

- Xavier Caruso (2013-03)

**factor_of_slope**(slope=None)

**INPUT:**

- slope – a rational number (default: the first slope in the Newton polygon of self)

**OUTPUT:**

The factor of self corresponding to the slope slope (i.e. the unique monic divisor of self whose slope is slope and degree is the length of slope in the Newton polygon).

**EXAMPLES:**

```python
sage: K = Qp(5)
sage: R.<x> = K[]
sage: g = f.factor_of_slope(0)
sage: g.newton_slopes()
[0, 0, 0]
```

If slope is not a slope of self, the corresponding factor is 1:

```python
sage: f.factor_of_slope(-1)
(1 + O(5^20))
```

**AUTHOR:**

- Xavier Caruso (2013-03-20)

**hensel_lift**(a)

Lift a to a root of this polynomial (using Newton iteration).

If a is not close enough to a root (so that Newton iteration does not converge), an error is raised.

**EXAMPLES:**

```python
sage: K = Qp(5, 10)
sage: f = x^2 + 1
sage: root = f.hensel_lift(2); root
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: f(root)
O(5^10)
```
AUTHOR:

- Xavier Caruso (2013-03-23)

newton_polygon()

Returns a list of vertices of the Newton polygon of this polynomial.

Note: If some coefficients have not enough precision an error is raised.

EXAMPLES:

```
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
sage: g = f + K(0,0)*t^4; g
(5^2 + O(5^22))*t^10 + (O(5^0))*t^4 + (3 + O(5^20))*t + (5 + O(5^21))
sage: g.newton_polygon()
Traceback (most recent call last):
...
PrecisionError: The coefficient of t^4 has not enough precision
```

AUTHOR:

- Xavier Caruso (2013-03-20)

newton_slopes(repetition=True)

Returns a list of the Newton slopes of this polynomial.

These are the valuations of the roots of this polynomial.

If repetition is True, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.

EXAMPLES:

```
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
sage: f.newton_slopes(repetition=False)
[1, 0, -1/3]
```

AUTHOR:

- Xavier Caruso (2013-03-20)
sage: K = Qp(5)
sage: R.<x> = K[]
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_slopes()
[1, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]

sage: F = f.slope_factorization()
sage: F.prod() == f
True

AUTHOR:
• Xavier Caruso (2013-03-20)
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field(parent, x=None, check=True, is_gen=False, construct=False)

Bases: sage.rings.polynomial.polynomial_element.Polynomial_generic_dense, sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain(parent, is_gen=False, construct=False)

Bases: sage.rings.polynomial.polynomial_element.Polynomial, sage.structure.element.IntegralDomainElement

is_unit()
Return True if this polynomial is a unit.

EXERCISE (Atiyah-McDonald, Ch 1): Let \( A[x] \) be a polynomial ring in one variable. Then \( f = \sum a_i x^i \in A[x] \) is a unit if and only if \( a_0 \) is a unit and \( a_1, \ldots, a_n \) are nilpotent.

EXAMPLES:

```sage
code not shown
```

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field(parent, is_gen=False, construct=False)


quo_rem(other)
Returns a tuple (quotient, remainder) where self = quotient * other + remainder.

EXAMPLES:

```sage
code not shown
```

2.1. Univariate Polynomials and Polynomial Rings
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse

Bases: sage.rings.polynomial.polynomial_element.Polynomial

A generic sparse polynomial.

The Polynomial_generic_sparse class defines functionality for sparse polynomials over any base ring. A sparse polynomial is represented using a dictionary which maps each exponent to the corresponding coefficient. The coefficients must never be zero.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(PolynomialRing(QQ, 'y'), sparse=True)
sage: f = x^3 - x + 17
sage: type(f)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with\
 category.element_class'>
sage: loads(f.dumps()) == f
True
```

A more extensive example:

```
sage: A.<T> = PolynomialRing(Integers(5),sparse=True) ; f = T^2+1 ; B = A.quo(f)
sage: C.<s> = PolynomialRing(B)
sage: C
Univariate Polynomial Ring in s over Univariate Quotient Polynomial Ring in Tbar\n \rightarrow over Ring of integers modulo 5 with modulus T^2 + 1
sage: s + T
s + Tbar
sage: (s + T)**2
s^2 + 2*Tbar*s + 4
```

coefficients (sparse=True)

Return the coefficients of the monomials appearing in self.

EXAMPLES:

```
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: f.coefficients()
[5, 1, 7]
```

degree (gen=None)

Return the degree of this sparse polynomial.

EXAMPLES:

```
sage: R.<z> = PolynomialRing(ZZ, sparse=True)
sage: f = 13*z^50000 + 15*z^2 + 17*z
sage: f.degree()
50000
```

dict ()

Return a new copy of the dict of the underlying elements of self.
EXAMPLES:

```python
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: d = f.dict(); d
{0: 5, 1997: 1, 10000: 7}
sage: d[0] = 10
sage: f.dict()
{0: 5, 1997: 1, 10000: 7}
```

`exponents()`

Return the exponents of the monomials appearing in `self`.

EXAMPLES:

```python
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: f.exponents()
[0, 1997, 10000]
```

`gcd(other, algorithm=None)`

Return the gcd of this polynomial and `other`.

**INPUT:**

- `other` – a polynomial defined over the same ring as this polynomial.

**ALGORITHM:**

Two algorithms are provided:

- `generic`: Uses the generic implementation, which depends on the base ring being a UFD or a field.
- `dense`: The polynomials are converted to the dense representation, their gcd is computed and is converted back to the sparse representation.

Default is `dense` for polynomials over ZZ and `generic` in the other cases.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ,sparse=True)
sage: p = x^6 + 7*x^5 + 8*x^4 + 6*x^3 + 2*x^2 + x + 2
sage: q = 2*x^4 - x^3 - 2*x^2 - 4*x - 1
sage: gcd(p,q)
x^2 + x + 1
sage: gcd(p, q, algorithm = "dense")
x^2 + x + 1
sage: gcd(p, q, algorithm = "generic")
x^2 + x + 1
sage: gcd(p, q, algorithm = "foobar")
Traceback (most recent call last):
...
ValueError: Unknown algorithm 'foobar'
```

`integral(var=None)`

Return the integral of this polynomial.

By default, the integration variable is the variable of the polynomial.

Otherwise, the integration variable is the optional parameter `var`.
Note: The integral is always chosen so that the constant term is 0.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: (1 + 3*x^10 - 2*x^100).integral()
-2/101*x^101 + 3/11*x^11 + x
```

`list (copy=True)`

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```
sage: R.<z> = PolynomialRing(Integers(100), sparse=True)
sage: f = 13*z^5 + 15*z^2 + 17*z
sage: f.list()
[0, 17, 15, 0, 0, 13]
```

`number_of_terms()`

Return the number of nonzero terms.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ,sparse=True)
sage: p = x^100 - 3*x^10 + 12
sage: p.number_of_terms()
3
```

`quo_rem (other)`

Returns the quotient and remainder of the Euclidean division of self and other.

Raises ZerodivisionError if other is zero. Raises ArithmeticError if other has a nonunit leading coefficient.

EXAMPLES:

```
sage: P.<x> = PolynomialRing(ZZ,sparse=True)
sage: R.<y> = PolynomialRing(P,sparse=True)
sage: f = R.random_element(10)
sage: g = y^5+R.random_element(4)
sage: q,r = f.quo_rem(g)
sage: f == q*g + r and r.degree() < g.degree()
True
sage: g = x*y^5
sage: f.quo_rem(g)
Traceback (most recent call last):
 ... ArithmeticError: Division non exact (consider coercing to polynomials over → the fraction field)
sage: g = 0
sage: f.quo_rem(g)
Traceback (most recent call last):
 ... ZeroDivisionError: Division by zero polynomial
```

AUTHORS:

- Bruno Grenet (2014-07-09)
**reverse** *(degree=None)*

Return this polynomial but with the coefficients reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^4 + 2*x^2^100
sage: p.reverse()
x^1267650600228229401496703205372 + 2
sage: p.reverse(10)
x^6
```

**shift** *(n)*

Returns this polynomial multiplied by the power $x^n$.

If $n$ is negative, terms below $x^n$ will be discarded. Does not change this polynomial.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^100000 + 2*x + 4
sage: type(p)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category.element_class'>
sage: p.shift(0)
x^100000 + 2*x + 4
sage: p.shift(-1)
x^99999 + 2
sage: p.shift(-100002)
0
sage: p.shift(2)
x^100002 + 2*x^3 + 4*x^2
```

**AUTHOR:** - David Harvey (2006-08-06)

**truncate** *(n)*

Return the polynomial of degree $< n$ equal to $\text{self}$ modulo $x^n$.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: (x^11 + x^10 + 1).truncate(11)
x^10 + 1
sage: (x^2^500 + x^2^100 + 1).truncate(2^101)
x^1267650600228229401496703205376 + 1
```

**valuation** ()

Return the valuation of $\text{self}$.

**EXAMPLES:**

```python
sage: R.<w> = PolynomialRing(GF(9,'a'), sparse=True)
sage: f = w^1997 - w^10000
sage: f.valuation()
1997
sage: R(19).valuation()
0
```

(continues on next page)
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdv(parent, x=None, check=True, is_gen=False, construct=False)

Bases:
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse,
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvf(parent, x=None, check=True, is_gen=False, construct=False)

Bases:
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdv,
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvf

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvr(parent, x=None, check=True, is_gen=False, construct=False)

Bases:
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvr,
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvr

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_field(parent, x=None, check=True, is_gen=False, construct=False)

Bases:
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_field,
    sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Frac(RR['t']), sparse=True)
sage: f = x^3 - x + 17
sage: type(f)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category.element_class'>
sage: loads(f.dumps()) == f
True
```
2.1.5 Univariate Polynomials over GF(2) via NTL’s GF2X.

AUTHOR: - Martin Albrecht (2008-10) initial implementation

sage.rings.polynomial.polynomial_gf2x.GF2X_BuildIrred_list(n)
Return the list of coefficients of the lexicographically smallest irreducible polynomial of degree \( n \) over the field of 2 elements.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
sage: GF2X_BuildIrred_list(2)
[1, 1, 1]
sage: GF2X_BuildIrred_list(3)
[1, 1, 0, 1]
sage: GF2X_BuildIrred_list(4)
[1, 1, 0, 0, 1]
sage: GF(2)('x')(GF2X_BuildIrred_list(33))
x^33 + x^6 + x^3 + x + 1
```

sage.rings.polynomial.polynomial_gf2x.GF2X_BuildRandomIrred_list(n)
Return the list of coefficients of an irreducible polynomial of degree \( n \) of minimal weight over the field of 2 elements.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildRandomIrred_list
sage: GF2X_BuildRandomIrred_list(2)
[1, 1, 1]
sage: GF2X_BuildRandomIrred_list(3)
in [[1, 1, 0, 1], [1, 0, 1, 1]]
True
```

sage.rings.polynomial.polynomial_gf2x.GF2X_BuildSparseIrred_list(n)
Return the list of coefficients of an irreducible polynomial of degree \( n \) of minimal weight over the field of 2 elements.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildSparseIrred_list
sage: all([GF2X_BuildSparseIrred_list(n) == GF2X_BuildIrred_list(n)
 for n in range(1,33)])
True
sage: GF(2)('x')(GF2X_BuildSparseIrred_list(33))
x^33 + x^10 + 1
```

class sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X
Bases: sage.rings.polynomial.polynomial_gf2x.Polynomial_template

Univariate Polynomials over GF(2) via NTL’s GF2X.

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x^3 + x^2 + 1
x^3 + x^2 + 1
sage: P.<x> = GF(2)[]

is_irreducible()
Return whether this polynomial is irreducible over \(\mathbb{F}_2 \).
EXAMPLES:

```
sage: R.<x> = GF(2)[]
sage: (x^2 + 1).is_irreducible()
False
sage: (x^3 + x + 1).is_irreducible()
True
```

Test that caching works:

```
sage: R.<x> = GF(2)[]
sage: f = x^2 + 1
sage: f.is_irreducible()
False
sage: f.is_irreducible.cache
False
```

modular_composition\(^{(g, h, \text{algorithm}=\text{None})}\)
Compute \(f(g) \pmod{h}\).

INPUT:
- \(g\) – a polynomial
- \(h\) – a polynomial
- \text{algorithm} – either ‘native’ or ‘ntl’ (default: ‘native’)

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: r = 279
sage: f = x^r + x + 1
sage: g = x^r
sage: g.modular_composition(g, f) == g(g) % f
True
sage: P.<x> = GF(2)[]
sage: f = x^29 + x^24 + x^22 + x^21 + x^20 + x^16 + x^15 + x^14 + x^10 + x^9 +
      + x^8 + x^7 + x^6 + x^5 + x^2
sage: g = x^31 + x^30 + x^28 + x^26 + x^24 + x^21 + x^19 + x^18 + x^11 + x^10 +
      + x^9 + x^8 + x^5 + x^2 + 1
sage: h = x^30 + x^28 + x^26 + x^25 + x^24 + x^22 + x^21 + x^18 + x^17 + x^15 +
      + x^13 + x^12 + x^11 + x^10 + x^9 + x^4
sage: f.modular_composition(g,h) == f(g) % h
True
```

AUTHORS:
- Paul Zimmermann (2008-10) initial implementation
- Martin Albrecht (2008-10) performance improvements

```python
class sage.rings.polynomial.polynomial_gf2x.Polynomial_template(Bases:
sage.rings.polynomial.polynomial_element.Polynomial

Template for interfacing to external C / C++ libraries for implementations of polynomials.

AUTHORS:
```
This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a ‘linkage’ file which implements the celement_ functions (see sage.libs.ntl. ntl_GF2X_linkage for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See sage.rings.polynomial.polynomial_gf2x for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).

Note: Implementations using this template MUST implement coercion from base ring elements and get_unsafe(). See Polynomial_GF2X for an example.

degree()

EXAMPLES:

```sage
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
```

gcd(other)

Return the greatest common divisor of self and other.

EXAMPLES:

```sage
sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x
```

get_cparent()

is_gen()

EXAMPLES:

```sage
sage: P.<x> = GF(2)[]
sage: x.is_gen()
True
sage: (x+1).is_gen()
False
```

is_one()

EXAMPLES:

```sage
sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True
```

is_zero()

EXAMPLES:
```python
sage: P.<x> = GF(2)[]
sage: x.is_zero()
False

**list** (copy=True)

**EXAMPLES:**
```python
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```

**quo_rem** (right)

**EXAMPLES:**
```python
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
```

**shift** (n)

**EXAMPLES:**
```python
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
```

**truncate** (n)

Returns this polynomial mod \(x^n\).

**EXAMPLES:**
```python
sage: R.<x> = GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:
```python
sage: f.truncate(10) is f
True
```

**xgcd** (other)

Computes extended gcd of self and other.

**EXAMPLES:**
```python
sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)
```
sage.rings.polynomial.polynomial_gf2x.make_element\(\text{(parent, args)}\)

### 2.1.6 Univariate polynomials over number fields.

**AUTHOR:**

**EXAMPLES:**

Define a polynomial over an absolute number field and perform basic operations with them:

```python
sage: N.<a> = NumberField(x^2-2)
sage: K.<x> = N[]
sage: f = x - a
sage: g = x^3 - 2*a + 1
sage: f*(x + a)
x^2 - 2
sage: f + g
x^3 + x - 3*a + 1
sage: g // f
x^2 + a*x + 2
sage: g % f
1
sage: factor(x^3 - 2*a*x^2 - 2*x + 4*a)
(x - 2*a) * (x - a) * (x + a)
sage: gcd(f, x - a)
x - a
```

Polynomials are aware of embeddings of the underlying field:

```python
sage: x = var('x')
sage: Q7 = Qp(7)
sage: r1 = Q7(3 + 7 + 2*7^2 + 6*7^3 + 7^4 + 2*7^5 + 7^6 + 2*7^7 + 4*7^8 +
 6*7^9 + 6*7^10 + 2*7^11 + 7^12 + 7^13 + 2*7^15 + 7^16 + 7^17 +
 4*7^18 + 6*7^19)
sage: N. = NumberField(x^2-2, embedding = r1)
sage: K.<t> = N[

sage: f = t^3-2*t+1
sage: f(r1)
1 + O(7^20)
```

We can also construct polynomials over relative number fields:

```python
sage: N.<i, s2> = QQ[I, sqrt(2)]
sage: K.<x> = N[

sage: g = x^3 - 2*i*x^2 + s2*x
sage: f*(x + s2)
x^2 - 2
sage: f + g
x^3 - 2*I*x^2 + (sqrt2 + 1)*x - sqrt2
sage: g // f
x^2 + (-2*I + sqrt2)*x - 2*sqrt2*I + sqrt2 + 2
sage: g % f
-4*I + 2*sqrt2 + 2
sage: factor(i*x^4 - 2*i*x^2 + 9*i)
(I) * (x - I + sqrt2) * (x + I - sqrt2) * (x - I - sqrt2) * (x + I + sqrt2)
```

(continues on next page)
Sage: gcd(f, x-i)
1

class sage.rings.polynomial.polynomial_number_field.Polynomial_absolute_number_field_dense

Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field

Class of dense univariate polynomials over an absolute number field.

gcd(other)
  Compute the monic gcd of two univariate polynomials using PARI.

  INPUT:
  • other - a polynomial with the same parent as self.

  OUTPUT:
  • The monic gcd of self and other.

EXAMPLES:

Sage: N.<a> = NumberField(x^3-1/2, 'a')
Sage: R.<r> = N['r']
Sage: f = (5/4*a^2 - 2*a + 4)*r^2 + (5*a^2 - 81/5*a - 17/2)*r + 4/5*a^2 +
     → 24*a + 6
Sage: g = (5/4*a^2 - 2*a + 4)*r^2 + (-11*a^2 + 79/5*a - 7/2)*r - 4/5*a^2 -
     → 24*a - 6
Sage: gcd(f, g**2)
3007841270210397801332023184861992203848614243276352/761479502937156016075231968518095247134059
r - 60808/96625*a^2 - 69936/96625*a - 149212/96625
Sage: R = QQ[I]['x']
Sage: f = R.random_element(2)
Sage: g = f + 1
Sage: h = R.random_element(2).monic()
Sage: f +=h
Sage: g +=h
Sage: gcd(f, g) - h
0
Sage: f.gcd(g) - h
0

class sage.rings.polynomial.polynomial_number_field.Polynomial_relative_number_field_dense

Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field

Class of dense univariate polynomials over a relative number field.

gcd(other)
  Compute the monic gcd of two polynomials.
Currently, the method checks corner cases in which one of the polynomials is zero or a constant. Then, computes an absolute extension and performs the computations there.

INPUT:

• other – a polynomial with the same parent as self.

OUTPUT:

• The monic gcd of self and other.

See `Polynomial_absolute_number_field_dense.gcd()` for more details.

EXAMPLES:

```python
sage: N = QQ[sqrt(2), sqrt(3)]
sage: s2, s3 = N.gens()
sage: x = polygen(N)
sage: f = x^4 - 5*x^2 + 6
sage: g = x^3 + (-2*s2 + s3)*x^2 + (-2*s3*s2 + 2)*x + 2*s3
sage: gcd(f, g)
x^2 + (-sqrt2 + sqrt3)*x - sqrt3*sqrt2
```

2.1.7 Dense univariate polynomials over $\mathbb{Z}$, implemented using FLINT.

AUTHORS:

• David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler’s recent rewrite of the NTL wrapper

• David Harvey: split off from polynomial_element_generic.py (2007-09)

• Burcin Erocal: rewrote to use FLINT (2008-06-16)

```python
class sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint
Bases: sage.rings.polynomial.polynomial_element.Polynomial
```

A dense polynomial over the integers, implemented via FLINT.

**_add_(right)**

Returns self plus right.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: f = 2*x + 1
sage: g = -3*x^2 + 6
```

**_sub_(right)**

Return self minus right.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: f = 2*x + 1
sage: g = -3*x^2 + 6
```
sage: f - g
3*x^2 + 2*x - 5

_lmul_(right)
Returns self multiplied by right, where right is a scalar (integer).

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: x*3
3*x
sage: (2*x^2 + 4)*3
6*x^2 + 12
```

_rmul_(right)
Returns self multiplied by right, where right is a scalar (integer).

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: 3*x
3*x
sage: 3*(2*x^2 + 4)
6*x^2 + 12
```

_mul_(right)
Returns self multiplied by right.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: (x - 2)*(x^2 - 8*x + 16)
x^3 - 10*x^2 + 32*x - 32
```

_mul_trunc_(right, n)
Truncated multiplication

See also:
_mul_() for standard multiplication

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: p1 = 1 + x + x^2 + x^4
sage: p2 = -2 + 3*x^2 + 5*x^4
sage: p1._mul_trunc_(p2, 4)
3*x^3 + x^2 - 2*x - 2
sage: (p1*p2).truncate(4)
3*x^3 + x^2 - 2*x - 2
sage: p1._mul_trunc_(p2, 6)
5*x^5 + 6*x^4 + 3*x^3 + x^2 - 2*x - 2
```

content()
Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.

EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ)
sage: (2*x^2 - 4*x^4 + 14*x^7).content()
2
sage: x.content()
1
sage: R(1).content()
1
sage: R(0).content()
0

degree (gen=None)
Return the degree of this polynomial.
The zero polynomial has degree -1.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)
sage: x.degree()
1
sage: (x^2).degree()
2
sage: R(1).degree()
0
sage: R(0).degree()
-1

disc (proof=True)
Return the discriminant of self, which is by definition
\((-1)^{m(m-1)/2} \text{resultant}(a, a') / \text{lc}(a),\)

where \(m = \deg(a)\), and \(\text{lc}(a)\) is the leading coefficient of \(a\). If \(\text{proof}\) is False (the default is True), then
this function may use a randomized strategy that errors with probability no more than \(2^{-80}\).

EXAMPLES:

sage: R.<x> = ZZ[]
sage: f = 3*x^3 + 2*x + 1
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339

discriminant (proof=True)
Return the discriminant of self, which is by definition
\((-1)^{m(m-1)/2} \text{resultant}(a, a') / \text{lc}(a),\)

where \(m = \deg(a)\), and \(\text{lc}(a)\) is the leading coefficient of \(a\). If \(\text{proof}\) is False (the default is True), then
this function may use a randomized strategy that errors with probability no more than \(2^{-80}\).

EXAMPLES:

sage: R.<x> = ZZ[]
sage: f = 3*x^3 + 2*x + 1
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339
**factor()**

This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use Pari or NTL based on some benchmarking.

Note: This function factors the content of the polynomial, which can take very long if it’s a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.

**EXAMPLES:**

```
sage: R.<x>=ZZ[]
sage: f=x^4-1
sage: f.factor()
(x - 1) * (x + 1) * (x^2 + 1)
sage: f=1-x
sage: f.factor()
(-1) * (x - 1)
sage: f.factor().unit()
-1
sage: f = -30*x; f.factor()
(-1) * 2 * 3 * 5 * x
```

**factor_mod(p)**

Return the factorization of self modulo the prime p.

**INPUT:**

- p – prime

**OUTPUT:**

factorization of self reduced modulo p.

**EXAMPLES:**

```
sage: R.<x> = ZZ['x']
sage: f = -3*x*(x-2)*(x-9) + x
sage: f.factor_mod(3)
x
sage: f = -3*x*(x-2)*(x-9)
```

```
Traceback (most recent call last):
 ...
ArithmeticError: factorization of 0 is not defined
```

```
sage: f = 2*x*(x-2)*(x-9)
sage: f.factor_mod(7)
(2) * x * (x + 5)^2
```

**factor_padic(p, prec=10)**

Return p-adic factorization of self to given precision.

**INPUT:**

- p – prime
- prec – integer; the precision

**OUTPUT:**

- factorization of self over the completion at p.

**EXAMPLES:**
A more difficult example:

```sage
sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
sage: f.factor_padic(5, 10)
(4 + O(5^10)) * ((5 + O(5^11)))^2 * ((1 + O(5^10))*x + (5 + O(5^10)))^2 * ((5 + O(5^10))*x + (1 + O(5^10)))^2
```

**gcd**(right)

Return the GCD of self and right. The leading coefficient need not be 1.

**EXAMPLES:**

```sage
sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
sage: f.gcd(g)
6*x + 47
```

**inverse_series_trunc**(prec)

Return a polynomial approximation of precision prec of the inverse series of this polynomial.

**EXAMPLES:**

```sage
sage: x = polygen(ZZ)
sage: p = 1+x+2*x^2
sage: q5 = p.inverse_series_trunc(5)
sage: q5
-x^4 + 3*x^3 - x^2 - x + 1
sage: p*q5
-x^6 + 5*x^5 + 1
sage: (x-1).inverse_series_trunc(5)
-x^4 - x^3 - x^2 - x - 1
sage: q100 = p.inverse_series_trunc(100)
sage: (q100 * p).truncate(100)
1
```

**is_one()**

Returns True if self is equal to one.

**EXAMPLES:**

```sage
sage: R.<x> = ZZ[]
sage: R(0).is_one()
False
sage: R(1).is_one()
True
sage: x.is_one()
False
```

**is_zero()**

Returns True if self is equal to zero.
EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: R(0).is_zero()
True
sage: R(1).is_zero()
False
sage: x.is_zero()
False
```

`lcm(right)`

Return the LCM of self and right.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
sage: h = f.lcm(g); h
126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786
sage: h == (6*x + 47)*(7*x^2 - 2*x + 38)*(3*x^3 + 2*x + 1)
True
```

`list(copy=True)`

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```python
sage: x = PolynomialRing(ZZ,'x').0
sage: f = x^3 + 3*x - 17
sage: f.list()
[-17, 3, 0, 1]
sage: f = PolynomialRing(ZZ,'x')(0)
```

`pseudo_divrem(B)`

Write \( A = \text{self} \). This function computes polynomials \( Q \) and \( R \) and an integer \( d \) such that

\[
\text{lead}(B)^d A = BQ + R
\]

where \( R \) has degree less than that of \( B \).

INPUT:

- \( B \) – a polynomial over \( \mathbb{Z} \)

OUTPUT:

- \( Q, R \) – polynomials
- \( d \) – nonnegative integer

EXAMPLES:

```python
sage: R.<x> = ZZ['x']
sage: A = R(range(10))
sage: B = 3*R([-1, 0, 1])
sage: Q, R, d = A.pseudo_divrem(B)
sage: Q, R, d
```

(continues on next page)
(continued from previous page)

\[(9 \cdot x^7 + 8 \cdot x^6 + 16 \cdot x^5 + 14 \cdot x^4 + 21 \cdot x^3 + 18 \cdot x^2 + 24 \cdot x + 20, 75 \cdot x + 60, 1)\]

**sage:** B.leading_coefficient()^d \cdot A == B*Q + R

True

**quo_rem**(*right*)

Attempts to divide self by right, and return a quotient and remainder.

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ)
sage: f = R(range(10)); g = R([-1, 0, 1])
sage: q, r = f.quo_rem(g)
sage: q, r
(9\cdot x^7 + 8\cdot x^6 + 16\cdot x^5 + 14\cdot x^4 + 21\cdot x^3 + 18\cdot x^2 + 24\cdot x + 20, 25\cdot x + 20)
sage: q\cdot g + r == f
True
sage: f = x^2
sage: f.quo_rem(0)
Traceback (most recent call last):
 ...
ZeroDivisionError: division by zero polynomial
sage: f = (x^2 + 3) \cdot (2\cdot x - 1)
sage: f.quo_rem(2\cdot x - 1)
(x^2 + 3, 0)
sage: f = x^2
sage: f.quo_rem(2\cdot x - 1)
(0, x^2)
```

**real_root_intervals()**

Returns isolating intervals for the real roots of this polynomial.

**EXAMPLES:** We compute the roots of the characteristic polynomial of some Salem numbers:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: f = 1 - x^2 - x^3 - x^4 + x^6
sage: f.real_root_intervals()
[((1/2, 3/4), 1), ((1, 3/2), 1)]
```

**resultant**(*other*, *proof=True*)

Returns the resultant of self and other, which must lie in the same polynomial ring.

If `proof = False` (the default is `proof=True`), then this function may use a randomized strategy that errors with probability no more than $2^{-80}$.

**INPUT:**

- other – a polynomial

**OUTPUT:**

an element of the base ring of the polynomial ring

**EXAMPLES:**

```
sage: x = PolynomialRing(ZZ, 'x').0
sage: f = x^3 + x + 1; g = x^3 - x - 1
```

(continues on next page)
reverse (degree=None)

Return a polynomial with the coefficients of this polynomial reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
sage: p.reverse()
x^3 + 2*x^2 + 3*x + 4
sage: p.reverse(degree=6)
x^6 + 2*x^5 + 3*x^4 + 4*x^3
sage: p.reverse(degree=2)
x^2 + 2*x + 3
```

revert_series (n)

Return a polynomial 𝑓 such that 𝑓(𝑠𝑒𝑙𝑓(𝑥)) = 𝑠𝑒𝑙𝑓(𝑓(𝑥)) = 𝑥 mod 𝑥ⁿ.

EXAMPLES:

```python
sage: R.<t> = ZZ[]
sage: f = t - t^3 + t^5
sage: f.revert_series(6)
2*t^5 + t^3 + t
sage: f.revert_series(-1)
Traceback (most recent call last):
 ... ValueError: argument n must be a non-negative integer, got -1
sage: g = - t^3 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
 ... ValueError: self must have constant coefficient 0 and a unit for coefficient t
```

squarefree_decomposition ()

Return the square-free decomposition of self. This is a partial factorization of self into square-free, relatively prime polynomials.

This is a wrapper for the NTL function SquareFreeDecomp.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: p = (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
sage: p.squarefree_decomposition()
(x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
sage: p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
```


```plaintext
sage: p.squarefree_decomposition()
(37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
```

**xgcd** *(right)*

Return a triple *(g, s, t)* such that *g = s * self + t * right* and such that *g* is the gcd of *self* and *right* up to a divisor of the resultant of *self* and *other*.

As integer polynomials do not form a principal ideal domain, it is not always possible given *a* and *b* to find a pair *s, t* such that \( \text{gcd}(a, b) = sa + tb \). Take \( a = x + 2 \) and \( b = x + 4 \) as an example for which the gcd is 1 but the best you can achieve in the Bezout identity is 2.

If *self* and *right* are coprime as polynomials over the rationals, then *g* is guaranteed to be the resultant of *self* and *right*, as a constant polynomial.

**EXAMPLES:**

```plaintext
sage: P.<x> = PolynomialRing(ZZ)
sage: (x+2).xgcd(x+4)
(2, -1, 1)
sage: (x+2).resultant(x+4)
2
sage: (x+2).gcd(x+4)
1

sage: F = (x^2 + 2)*x^3; G = (x^2+2)*(x-3)
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(27*x^2 + 54, 1, -x^2 - 3*x - 9)
sage: u*F + v*G
27*x^2 + 54
```

2.1.8 Dense univariate polynomials over \( \mathbb{Z} \), implemented using NTL.

**AUTHORS:**

- David Harvey: split off from polynomial_element_generic.py (2007-09)
- David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler’s recent rewrite of the NTL wrapper

Sage includes two implementations of dense univariate polynomials over \( \mathbb{Z} \); this file contains the implementation based on NTL, but there is also an implementation based on FLINT in `sage.rings.polynomial.polynomial_integer_dense_flint`.
The FLINT implementation is preferred (FLINT’s arithmetic operations are generally faster), so it is the default: to use the NTL implementation, you can do:

```python
sage: K.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: K
Univariate Polynomial Ring in x over Integer Ring (using NTL)
```

```
class sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl
 Bases: sage.rings.polynomial.polynomial_element.Polynomial

A dense polynomial over the integers, implemented via NTL.

content()

Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: (2*x^2 - 4*x^4 + 14*x^7).content()
2
sage: (2*x^2 - 4*x^4 - 14*x^7).content()
-2
sage: x.content()
1
sage: R(1).content()
1
sage: R(0).content()
0
```

degree(gen=None)

Return the degree of this polynomial. The zero polynomial has degree -1.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: x.degree()
1
sage: (x^2).degree()
2
sage: R(1).degree()
0
sage: R(0).degree()
-1
```

discriminant(proof=True)

Return the discriminant of self, which is by definition

\[(-1)^{m(m-1)/2}\text{resultant}(a, a')/\text{lc}(a), \]

where \(m = \text{deg}(a) \), and \(\text{lc}(a) \) is the leading coefficient of \(a \). If \(\text{proof} \) is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \(2^{-80} \).

EXAMPLES:

```python
sage: f = ntl.ZZX([1,2,0,3])
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339
```
factor()
This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use Pari or NTL based on some benchmarking.

Note: This function factors the content of the polynomial, which can take very long if it’s a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.

EXAMPLES:
```
sage: R.<x>=ZZ[]
sage: f=x^4-1
sage: f.factor()
(x - 1) * (x + 1) * (x^2 + 1)
sage: f=1-x
sage: f.factor()
(-1) * (x - 1)
sage: f.factor().unit()
-1
sage: f = -30*x; f.factor()
(-1) * 2 * 3 * 5 * x
```

factor_mod(p)
Return the factorization of self modulo the prime p.

INPUT:
• p – prime

OUTPUT: factorization of self reduced modulo p.

EXAMPLES:
```
sage: R.<x> = PolynomialRing(ZZ, 'x', implementation='NTL')
sage: f = -3*x*(x-2)*(x-9) + x
sage: f.factor_mod(3)
x
sage: f = -3*x*(x-2)*(x-9)
sage: f.factor_mod(3)
Traceback (most recent call last):
... ArithmeticError: factorization of 0 is not defined
sage: f = 2*x*(x-2)*(x-9)
sage: f.factor_mod(7)
(2) * x * (x + 5)^2
```

factor_padic(p, prec=10)
Return \(p\)-adic factorization of self to given precision.

INPUT:
• p – prime
• prec – integer; the precision

OUTPUT:
• factorization of self over the completion at \(p\).

EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = x^2 + 1
sage: f.factor_padic(5, 4)
((1 + O(5^4))*x + (2 + 5 + 2*5^2 + 5^3 + O(5^4))) * ((1 + O(5^4))*x + (3 +
 3*5 + 2*5^2 + 3*5^3 + O(5^4)))

A more difficult example:

sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
sage: f.factor_padic(5, 10)
(4 + O(5^10)) * ((5 + O(5^11)))^2 * ((1 + O(5^10))*x + (5 + O(5^10)))^2 * ((5 +
 O(5^10))*x + (1 + O(5^10)))^2

gcd(right)

Return the GCD of self and right. The leading coefficient need not be 1.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')

sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)

sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)

sage: f.gcd(g)
6*x + 47

lcm(right)

Return the LCM of self and right.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')

sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)

sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)

sage: h = f.lcm(g); h
126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786

sage: h == (6*x + 47)*(7*x^2 - 2*x + 38)*(3*x^3 + 2*x + 1)
True

list(copy=True)

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

sage: x = PolynomialRing(ZZ,'x',implementation='NTL').0

sage: f = x^3 + 3*x - 17

sage: f.list()
[-17, 3, 0, 1]

sage: f = PolynomialRing(ZZ,'x',implementation='NTL')(0)

sage: f.list()
[]

quo_rem(right)

Attempts to divide self by right, and return a quotient and remainder.

If right is monic, then it returns \((q, r)\) where \(\text{self} = q * \text{right} + r\) and \(\deg(r) < \deg(\text{right})\).

If right is not monic, then it returns \((q, 0)\) where \(q = \text{self}/\text{right}\) if right exactly divides self, otherwise it raises an exception.

EXAMPLES:
```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = R(range(10)); g = R([-1, 0, 1])
sage: q, r = f.quo_rem(g)
sage: q, r
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 25*x + 20)
sage: q*g + r == f
True
sage: 0//(2*x)
0
sage: f = x^2
sage: f.quo_rem(0)
Traceback (most recent call last):
  ... ArithmeticError: division by zero polynomial
sage: f = (x^2 + 3) * (2*x - 1)
sage: f.quo_rem(2*x - 1)
(x^2 + 3, 0)
sage: f = x^2
sage: f.quo_rem(2*x - 1)
Traceback (most recent call last):
  ... ArithmeticError: division not exact in Z[x] (consider coercing to Q[x] first)
```

real_root_intervals()

Returns isolating intervals for the real roots of this polynomial.

EXAMPLES: We compute the roots of the characteristic polynomial of some Salem numbers:

```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = 1 - x^2 - x^3 - x^4 + x^6
sage: f.real_root_intervals()
[((1/2, 3/4), 1), ((1, 3/2), 1)]
```

resultant(other, proof=True)

Returns the resultant of self and other, which must lie in the same polynomial ring.

If proof = False (the default is proof=True), then this function may use a randomized strategy that errors with probability no more than 2^{-80}.

INPUT:

- other – a polynomial

OUTPUT:

an element of the base ring of the polynomial ring

EXAMPLES:

```python
sage: x = PolynomialRing(ZZ, 'x', implementation='NTL').0
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
sage: r.parent() is ZZ
True
```
squarefree_decomposition()

Return the square-free decomposition of self. This is a partial factorization of self into square-free, relatively prime polynomials.

This is a wrapper for the NTL function SquareFreeDecomp.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
sage: p.squarefree_decomposition()
(37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
```

xgcd (right)

This function can’t in general return \((g, s, t)\) as above, since they need not exist. Instead, over the integers, we first multiply \(g\) by a divisor of the resultant of \(a/g\) and \(b/g\), up to sign, and return \(g, u, v\) such that \(g = s \cdot \text{self} + s \cdot \text{right}\). But note that this \(g\) may be a multiple of the gcd.

If \text{self} and \text{right} are coprime as polynomials over the rationals, then \(g\) is guaranteed to be the resultant of \text{self} and \text{right}, as a constant polynomial.

EXAMPLES:

```
sage: P.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: F = (x^2 + 2)*x^3; G = (x^2+2)*(x-3)
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(27*x^2 + 54, 1, -x^2 - 3*x - 9)
sage: u*F + v*G
27*x^2 + 54
sage: x.xgcd(P(0))
((x, 1, 0)
sage: f = P(0)
sage: f.xgcd(x)
(x, 0, 1)
sage: F = (x-3)^3; G = (x-15)^2
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(2985984, -432*x + 8208, 432*x^2 + 864*x + 14256)
sage: u*F + v*G
2985984
```

2.1.9 Univariate polynomials over \(Q\) implemented via FLINT

AUTHOR:

- Sebastian Pancratz

class sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint

Internally, we represent rational polynomial as the quotient of an integer polynomial and a positive denominator which is coprime to the content of the numerator.

__add__ (right)

Returns the sum of two rational polynomials.

EXAMPLES:
\begin{Verbatim}
sage: R.<t> = QQ[]
sage: f = 2/3 + t + 2*t^3
sage: g = -1 + t/3 - 10/11*t^4
sage: f + g
-10/11*t^4 + 2*t^3 + 4/3*t - 1/3
\end{Verbatim}

\textbf{_sub_} (right)

Returns the difference of two rational polynomials.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: R.<t> = QQ[]
sage: f = -10/11*t^4 + 2*t^3 + 4/3*t - 1/3
sage: g = 2*t^3
sage: f - g
-10/11*t^4 + 4/3*t - 1/3
\end{Verbatim}

\textbf{_lmul_} (right)

Returns self * right, where right is a rational number.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: R.<t> = QQ[

sage: f = 3/2*t^3 - t + 1/3
sage: f \times 6
9*t^3 - 6*t + 2
\end{Verbatim}

\textbf{_rmul_} (left)

Returns left * self, where left is a rational number.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: R.<t> = QQ[

sage: f = 3/2*t^3 - t + 1/3
sage: 6 \times f
9*t^3 - 6*t + 2
\end{Verbatim}

\textbf{_mul_} (right)

Returns the product of self and right.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: R.<t> = QQ[

sage: f = -1 + 3*t/2 - t^3
sage: g = 2/3 + 7/3*t + 3*t^2
sage: f \times g
-3*t^5 - 7/3*t^4 + 23/6*t^3 + 1/2*t^2 - 4/3*t - 2/3
\end{Verbatim}

\textbf{_mul_trunc_} (right, \(n\))

Truncated multiplication.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: x = polygen(QQ)
sage: p1 = 1/2 - 3*x + 2/7*x**3
sage: p2 = x + 2/5*x**5 + x**7
sage: p1._mul_trunc_\(p2, 5\)
2/7*x^4 - 3*x^2 + 1/2*x
\end{Verbatim}
sage: (p1*p2).truncate(5)
2/7*x^4 - 3*x^2 + 1/2*x

sage: p1._mul_trunc_(p2, 1)
0
sage: p1._mul_trunc_(p2, 0)
Traceback (most recent call last):
 ...
ValueError: n must be > 0

ALGORITHM:
Call the FLINT method fmpq_poly_mullow.

degree()
Return the degree of self.
By convention, the degree of the zero polynomial is -1.

EXAMPLES:

sage: R.<t> = QQ[]
sage: f = 1 + t + t^2/2 + t^3/3 + t^4/4
sage: f.degree()
4
sage: g = R(0)
sage: g.degree()
-1

denominator()
Returns the denominator of self.

EXAMPLES:

sage: R.<t> = QQ[]
sage: f = (3 * t^3 + 1) / -3
sage: f.denominator()
3

disc()
Returns the discriminant of this polynomial.
The discriminant R_n is defined as

$$R_n = a_n^{2n-2} \prod_{1 \leq i < j \leq n} (r_i - r_j)^2,$$

where n is the degree of this polynomial, a_n is the leading coefficient and the roots over \mathbb{Q} are r_1, \ldots, r_n.
The discriminant of constant polynomials is defined to be 0.

OUTPUT:
- Discriminant, an element of the base ring of the polynomial ring

Note: Note the identity $R_n(f) := (-1)^n(n(n-1)/2)R(f, f')a_n^{n-k-2}$, where n is the degree of this polynomial, a_n is the leading coefficient, f' is the derivative of f, and k is the degree of f'. Calls resultant().
ALGORITHM:
Use PARI.

EXAMPLES:
In the case of elliptic curves in special form, the discriminant is easy to calculate:

```
sage: R.<t> = QQ[]
sage: f = t^3 + t + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant() / 16
-31
```

```sage
sage: R.<t> = QQ[]
sage: f = 2*t^3 + t + 1
sage: d = f.discriminant(); d
-116
```

```sage
sage: R.<t> = QQ[]
sage: f = t^3 + 3*t - 17
sage: f.discriminant()
-7911
```

discriminant()

Returns the discriminant of this polynomial.

The discriminant R_n is defined as

$$R_n = a_n^{2n-2} \prod_{1 \leq i < j \leq n} (r_i - r_j)^2,$$

where n is the degree of this polynomial, a_n is the leading coefficient and the roots over $\overline{\mathbb{Q}}$ are r_1, \ldots, r_n.

The discriminant of constant polynomials is defined to be 0.

OUTPUT:

- Discriminant, an element of the base ring of the polynomial ring

Note: Note the identity $R_n(f) := (-1)^{(n(n-1))/2}R(f, f')a_n^n n - k - 2)$, where n is the degree of this polynomial, a_n is the leading coefficient, f' is the derivative of f, and k is the degree of f'. Calls resultant().

ALGORITHM:
Use PARI.

EXAMPLES:
In the case of elliptic curves in special form, the discriminant is easy to calculate:

```
sage: R.<t> = QQ[]
sage: f = t^3 + t + 1
sage: d = f.discriminant(); d
-31
```

(continues on next page)
factor_mod\((p) \)

Returns the factorization of self modulo the prime \(p \).

Assumes that the degree of this polynomial is at least one, and raises a \texttt{ValueError} otherwise.

INPUT:

- \(p \) - Prime number

OUTPUT:

- Factorization of this polynomial modulo \(p \)

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: (x^5 + 17*x^3 + x + 3).factor_mod(3)
x \cdot (x^2 + 1)^2
sage: (x^5 + 2).factor_mod(5)
(x + 2)^5
```

Variable names that are reserved in PARI, such as \(\alpha \), are supported (see trac ticket #20631):

```python
sage: R.<zeta> = QQ[]
sage: (zeta^2 + zeta + 1).factor_mod(7)
(zeta + 3) \cdot (zeta + 5)
```

factor_padic\((p, \text{prec}=10) \)

Return the \(p \)-adic factorization of this polynomial to the given precision.

INPUT:

- \(p \) - Prime number
- \(\text{prec} \) - Integer; the precision

OUTPUT:

- Factorization of \(\text{self} \) viewed as a \(p \)-adic polynomial

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = x^3 - 2
sage: f.factor_padic(2)
```

(continues on next page)
(1 + O(2^10))*x^3 + (O(2^10))*x^2 + (O(2^10))*x + (2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + O(2^10))

sage: f.factor_padic(3)
(1 + O(3^10))*x^3 + (O(3^10))*x^2 + (O(3^10))*x + (1 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10))

sage: f.factor_padic(5)
((1 + O(5^10))*x + (2 + 4*5 + 2*5^2 + 2*5^3 + 5^4 + 3*5^5 + 4*5^7 + 2*5^8 + 5^9 + O(5^10))) * ((1 + O(5^10))*x^2 + (3 + 2*5^2 + 2*5^3 + 3*5^4 + 5^5 + 4*5^6 + 2*5^8 + 3*5^9 + O(5^10))*x + (4 + 5 + 2*5^2 + 4*5^3 + 4*5^4 + 3*5^5 + O(5^10))

The input polynomial is considered to have “infinite” precision, therefore the \(p \)-adic factorization of the polynomial is not the same as first coercing to \(\mathbb{Q}_p \) and then factoring (see also trac ticket #15422):

sage: f = x^2 - 3^6
sage: f.factor_padic(3,5)
((1 + O(3^5))*x + (3^3 + O(3^5))) * ((1 + O(3^5))*x + (2*3^3 + 2*3^4 + O(3^5)))

sage: f.change_ring(Qp(3,5)).factor()
Traceback (most recent call last):
 ...
PrecisionError: \(p \)-adic factorization not well-defined since the discriminant is zero up to the requesion \(p \)-adic precision

A more difficult example:

sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
sage: f.factor_padic(5, 10)
(4*5^4 + O(5^14)) * ((1 + O(5^9))*x + (5^-1 + O(5^9))^2) * ((1 + O(5^10))*x + O(5^10))^2

Try some bogus inputs:

sage: f.factor_padic(3,-1)
Traceback (most recent call last):
 ...
ValueError: prec_cap must be non-negative.

sage: f.factor_padic(6,10)
Traceback (most recent call last):
 ...
ValueError: p must be prime

sage: f.factor_padic('hello', 'world')
Traceback (most recent call last):
 ...
TypeError: unable to convert 'hello' to an integer

galois_group (pari_group=False, algorithm='pari')

Returns the Galois group of self as a permutation group.

INPUT:

- self - Irreducible polynomial
- pari_group - bool (default: False); if True instead return the Galois group as a PARI group.

This has a useful label in it, and may be slightly faster since it doesn’t require looking up a group in Gap. To get a permutation group from a PARI group \(P \), type \(P \).
• algorithm = 'pari', 'kash', 'magma' (default: 'pari', except when the degree is at least 12 in which case 'kash' is tried).

OUTPUT:
• Galois group

ALGORITHM:
The Galois group is computed using PARI in C library mode, or possibly KASH or MAGMA.

Note: The PARI documentation contains the following warning: The method used is that of resolvent polynomials and is sensitive to the current precision. The precision is updated internally but, in very rare cases, a wrong result may be returned if the initial precision was not sufficient.

MAGMA does not return a provably correct result. Please see the MAGMA documentation for how to obtain a provably correct result.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = QQ[]
sage: f = x^4 - 17*x^3 - 2*x + 1
go: G = f.galois_group(); G # optional - database_gap
Transitive group number 5 of degree 4
go: G.gens(); # optional - database_gap
[[(1,2), (1,2,3,4)]
go: G.order(); # optional - database_gap
24
\end{verbatim}

It is potentially useful to instead obtain the corresponding PARI group, which is little more than a 4-tuple. See the PARI manual for the exact details. (Note that the third entry in the tuple is in the new standard ordering.)

\begin{verbatim}
sage: f = x^4 - 17*x^3 - 2*x + 1
go: G = f.galois_group(pari_group=True); G # optimal - database_gap
PARI group [24, -1, 5, "S4"] of degree 4
go: PermutationGroup(G) # optional - database_gap
Transitive group number 5 of degree 4
\end{verbatim}

You can use KASH to compute Galois groups as well. The advantage is that KASH can compute Galois groups of fields up to degree 21, whereas PARI only goes to degree 11. (In my not-so-thorough experiments PARI is faster than KASH.)

\begin{verbatim}
sage: f = x^4 - 17*x^3 - 2*x + 1
go: f.galois_group(algorithm='kash'); # optional - kash
Transitive group number 5 of degree 4
sage: f = x^4 - 17*x^3 - 2*x + 1
go: f.galois_group(algorithm='magma'); # optional - magma database_gap
Transitive group number 5 of degree 4
\end{verbatim}

\texttt{gcd(right)}

Returns the (monic) greatest common divisor of self and right.

Corner cases: if self and right are both zero, returns zero. If only one of them is zero, returns the other polynomial, up to normalisation.

EXAMPLES:
From the Sage Reference Manual:

```python
sage: R.<t> = QQ[]
sage: f = -2 + 3*t/2 + 4*t^2/7 - t^3
sage: g = 1/2 + 4*t + 2*t^4/3
sage: f.gcd(g)
1
sage: f = (-3*t + 1/2) * f
sage: g = (-3*t + 1/2) * (4*t^2/3 - 1) * g
sage: f.gcd(g)
t - 1/6
```

hensel_lift (p, e)

Assuming that this polynomial factors modulo p into distinct monic factors, computes the Hensel lifts of these factors modulo p^e. We assume that `self` has integer coefficients.

Returns an empty list if this polynomial has degree less than one.

INPUT:

- `p` - Prime number; coercable to Integer
- `e` - Exponent; coercable to Integer

OUTPUT:

- Hensel lifts; list of polynomials over $\mathbb{Z}/p^e\mathbb{Z}$

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R((x-1)*(x+1)).hensel_lift(7, 2)
[x + 1, x + 48]
```

If the input polynomial f is not monic, we get a factorization of $f/lc(f)$:

```python
sage: R(2*x^2 - 2).hensel_lift(7, 2)
[x + 1, x + 48]
```

inverse_series_trunc $(prec)$

Return a polynomial approximation of precision $prec$ of the inverse series of this polynomial.

EXAMPLES:

```python
sage: x = polygen(QQ)
sage: p = 2 + x - 3/5*x**2
sage: q5 = p.inverse_series_trunc(5)
sage: q5
151/800*x^4 - 17/80*x^3 + 11/40*x^2 - 1/4*x + 1/2
sage: q5 * p
-453/4000*x^6 + 253/800*x^5 + 1
sage: q100 = p.inverse_series_trunc(100)
sage: (q100 * p).truncate(100)
1
```

is_irreducible

Return whether this polynomial is irreducible.

This method computes the primitive part as an element of $\mathbb{Z}[t]$ and calls the method `is_irreducible` for elements of that polynomial ring.

2.1. Univariate Polynomials and Polynomial Rings 145
By definition, over any integral domain, an element r is irreducible if and only if it is non-zero, not a unit and whenever $r = ab$ then a or b is a unit.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: (t^2 + 2).is_irreducible()
True
sage: (t^2 - 1).is_irreducible()
False
```

is_one()

Returns whether or not this polynomial is one.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R([0,1]).is_one()
False
sage: R([1]).is_one()
True
sage: R([0]).is_one()
False
sage: R([-1]).is_one()
False
sage: R([1,1]).is_one()
False
```

is_zero()

Returns whether or not self is the zero polynomial.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = 1 - t + 1/2*t^2 - 1/3*t^3
sage: f.is_zero()
False
sage: R(0).is_zero()
True
```

lcm(right)

Returns the monic (or zero) least common multiple of self and right.

Corner cases: if either of self and right are zero, returns zero. This behaviour is ensures that the relation \(\text{lcm}(a,b) \text{gcd}(a,b) = a b \) holds up to multiplication by rationals.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = -2 + 3*t/2 + 4*t^2/7 - t^3
sage: g = 1/2 + 4*t + 2*t^4/3
sage: f.lcm(g)
t^7 - 4/7*t^6 - 3/2*t^5 + 8*t^4 - 75/28*t^3 - 66/7*t^2 + 87/8*t + 3/2
sage: f.lcm(g) * f.gcd(g) // (f * g)
-3/2
```

list(copy=True)

Return a list with the coefficients of self.

EXAMPLES:
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2/2 + t^3/3 + t^4/4
sage: f.list()
[1, 1, 1/2, 1/3, 1/4]
sage: g = R(0)
sage: g.list()
[]

numerator()

Returns the numerator of self.

Representing self as the quotient of an integer polynomial and a positive integer denominator (coprime to the content of the polynomial), returns the integer polynomial.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = (3 * t^3 + 1) / -3
sage: f.numerator()
-3*t^3 - 1
```

quo_rem(right)

Returns the quotient and remainder of the Euclidean division of self and right.

Raises a ZerodivisionError if right is zero.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: g = R.random_element(1000)
sage: q, r = f.quo_rem(g)
sage: f == q*g + r
True
```

real_root_intervals()

Returns isolating intervals for the real roots of self.

EXAMPLES:

We compute the roots of the characteristic polynomial of some Salem numbers:

```python
sage: R.<t> = QQ[]
sage: f = 1 - t^2 - t^3 - t^4 + t^6
sage: f.real_root_intervals()
[((1/2, 3/4), 1), ((1, 3/2), 1)]
```

resultant(right)

Returns the resultant of self and right.

Enumerating the roots over \(\mathbb{Q} \) as \(r_1, \ldots, r_m \) and \(s_1, \ldots, s_n \) and letting \(x \) and \(y \) denote the leading coefficients of \(f \) and \(g \), the resultant of the two polynomials is defined by

\[
x^\deg f y^\deg g \prod_{i,j} (r_i - s_j).
\]

Corner cases: if one of the polynomials is zero, the resultant is zero. Note that otherwise if one of the polynomials is constant, the last term in the above is the empty product.

EXAMPLES:

2.1. Univariate Polynomials and Polynomial Rings

reverse (degree=None)
Reverse the coefficients of this polynomial (thought of as a polynomial of degree degree).

INPUT:

• degree (None or integral value that fits in an unsigned long, default: degree of self) - if specified, truncate or zero pad the list of coefficients to this degree before reversing it.

EXAMPLES:

We first consider the simplest case, where we reverse all coefficients of a polynomial and obtain a polynomial of the same degree:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3 + t^4 / 4
sage: f.reverse()
t^4 + t^3 + 1/2*t^2 + 1/3*t + 1/4
```

Next, an example we the returned polynomial has lower degree because the original polynomial has low coefficients equal to zero:

```
sage: R.<t> = QQ[]
sage: f = 3/4*t^2 + 6*t^7
sage: f.reverse()
3/4*t^5 + 6
```

The next example illustrates the passing of a value for degree less than the length of self, notationally resulting in truncation prior to reversing:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3 + t^4 / 4
sage: f.reverse(2)
t^2 + t + 1/2
```

Now we illustrate the passing of a value for degree greater than the length of self, notationally resulting in zero padding at the top end prior to reversing:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3
sage: f.reverse(4)
t^4 + t^3 + 1/2*t^2 + 1/3*t
```

revert_series (n)
Return a polynomial f such that \(f(self(x)) = self(f(x)) = x \mod x^n \).

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = t - t^3/6 + t^5/120
```

(continues on next page)
\section*{2.1.10 Dense univariate polynomials over $\mathbb{Z}/n\mathbb{Z}$, implemented using FLINT.}

This module gives a fast implementation of $(\mathbb{Z}/n\mathbb{Z})[x]$ whenever n is at most \texttt{sys.maxsize}. We use it by default in preference to NTL when the modulus is small, falling back to NTL if the modulus is too large, as in the example below.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<a> = PolynomialRing(Integers(100))
sage: type(a) <type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
\end{verbatim}
AUTHORS:

- Burcin Erocal (2008-11) initial implementation
- Martin Albrecht (2009-01) another initial implementation

class sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template

Bases: sage.rings.polynomial.polynomial_element.Polynomial

Template for interfacing to external C / C++ libraries for implementations of polynomials.

AUTHORS:

- Robert Bradshaw (2008-10): original idea for templating
- Martin Albrecht (2008-10): initial implementation

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a 'linkage' file which implements the celement_* functions (see sage.libsntl.ntl_GF2X_linkage for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See sage.rings.polynomial.polynomial_gf2x for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).

Note: Implementations using this template MUST implement coercion from base ring elements and get_unsafe(). See Polynomial_GF2X for an example.

degree()

EXAMPLES:

sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1

gcd(other)

Return the greatest common divisor of self and other.

EXAMPLES:

sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x

get_cparent()
is_gen()

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x.is_gen()
True
sage: (x+1).is_gen()
False
```

is_one()

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True
```

is_zero()

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x.is_zero()
False
```

list(copy=True)

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```

quo_rem(right)

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
```

shift(n)

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
```

truncate(n)

Returns this polynomial mod x^n.

EXAMPLES:

```
sage: R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
```

(continues on next page)
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

sage: f.truncate(10) is f
True

\texttt{xgcd}(other)

Computes extended gcd of self and other.

\textbf{EXAMPLES:}

sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)

\textbf{class} \texttt{sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint}

\textbf{Bases:} \texttt{sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template}

Polynomial on \(\mathbb{Z}/n\mathbb{Z}\) implemented via FLINT.

\texttt{.add__(right)}

\textbf{EXAMPLES:}

sage: P.<x> = GF(2)[]
sage: x + 1
x + 1

\texttt{.sub__(right)}

\textbf{EXAMPLES:}

sage: P.<x> = GF(2)[]
sage: x - 1
x + 1

\texttt{.lmul__(left)}

\textbf{EXAMPLES:}

sage: P.<x> = GF(2)[]
sage: t = x^2 + x + 1
sage: 0*t
0
sage: 1*t
x^2 + x + 1
sage: R.<y> = GF(5)[]
sage: u = y^2 + y + 1
sage: 3*u
3*y^2 + 3*y + 3
sage: 5*u
0
sage: (2^81)*u

\begin{verbatim}
2*y^2 + 2*y + 2
sage: (-2^81)*u
3*y^2 + 3*y + 3
sage: P.<x> = GF(2)[]
sage: t = x^2 + x + 1
sage: t*0
0
sage: t*1
x^2 + x + 1
sage: R.<y> = GF(5)[]
sage: u = y^2 + y + 1
sage: u*3
3*y^2 + 3*y + 3
sage: u*5
0

__rmul__(right)
Multiply self on the right by a scalar.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: f = (x^3 + x + 5)
sage: f._rmul_(7)
7*x^3 + 7*x + 35
sage: f*7
7*x^3 + 7*x + 35

__mul__(right)

EXAMPLES:

sage: P.<x> = GF(2)[]
sage: x*(x+1)
x^2 + x

__mul_trunc__(right, n)
Return the product of this polynomial and other truncated to the given length n.

This function is usually more efficient than simply doing the multiplication and then truncating. The function is tuned for length n about half the length of a full product.

EXAMPLES:

sage: P.<a>=GF(7)[]
sage: a = P(range(10)); b = P(range(5, 15))
sage: a._mul_trunc_(b, 5)
4*a^4 + 6*a^3 + 2*a^2 + 5*a

factor()
Returns the factorization of the polynomial.

EXAMPLES:

sage: R.<x> = GF(5)[]
sage: (x^2 + 1).factor()
(x + 2) * (x + 3)
\end{verbatim}
is_irreducible()
Return whether this polynomial is irreducible.

EXAMPLES:

```sage
R.<x> = GF(5)[]
sage: (x^2 + 1).is_irreducible()
False
sage: (x^3 + x + 1).is_irreducible()
True
```

Not implemented when the base ring is not a field:

```sage
S.<s> = Zmod(10)[]
sage: (s^2).is_irreducible()
Traceback (most recent call last):
... NotImplmentedError: checking irreducibility of polynomials over rings with...
```

monic()
Return this polynomial divided by its leading coefficient.

Raises ValueError if the leading coefficient is not invertible in the base ring.

EXAMPLES:

```sage
R.<x> = GF(5)[]
sage: (2*x^2+1).monic()
x^2 + 3
```

rational_reconstruct (m, n_deg=0, d_deg=0)
Construct a rational function n/d such that \(p \cdot d \) is equivalent to \(n \) modulo \(m \) where \(p \) is this polynomial.

EXAMPLES:

```sage
P.<x> = GF(5)[]
sage: p = 4*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + 4*x + 2
sage: n, d = p.rational_reconstruct(x^9, 4, 4); n, d
(3*x^4 + 2*x^3 + x^2 + 2*x, x^4 + 3*x^3 + x^2 + x)
sage: (p*d % x^9) == n
True
```

resultant(other)
Returns the resultant of self and other, which must lie in the same polynomial ring.

INPUT:
• other – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

EXAMPLES:

```sage
R.<x> = GF(19)[['x']]
sage: f = x^3 + x + 1;  g = x^3 - x - 1
sage: r = f.resultant(g); r
11
sage: r.parent() is GF(19)
True
```
The following example shows that trac ticket #11782 has been fixed:

```
sage: R.<x> = ZZ.quo(9)['x']
sage: f = 2*x^3 + x^2 + x; g = 6*x^2 + 2*x + 1
sage: f.resultant(g)
5
```

reverse (degree=None)

Return a polynomial with the coefficients of this polynomial reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

EXAMPLES:

```
sage: R.<x> = GF(5)[]
sage: p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
sage: p.reverse()
x^3 + 2*x^2 + 3*x + 4
sage: p.reverse(degree=6)
x^6 + 2*x^5 + 3*x^4 + 4*x^3
sage: p.reverse(degree=2)
x^2 + 2*x + 3
sage: R.<x> = GF(101)[]
sage: f = x^3 - x + 2; f
x^3 + 100*x + 2
sage: f.reverse()
2*x^3 + 100*x^2 + 1
sage: f.reverse() == f(1/x) * x^f.degree()
True
```

Note that if \(f \) has zero constant coefficient, its reverse will have lower degree.

```
sage: f = x^3 + 2*x
sage: f.reverse()
2*x^2 + 1
```

In this case, reverse is not an involution unless we explicitly specify a degree.

```
sage: f
x^3 + 2*x
sage: f.reverse().reverse()
x^2 + 2
sage: f.reverse(5).reverse(5)
x^3 + 2*x
```

revert_series (n)

Return a polynomial \(f \) such that \(f(self(x)) = self(f(x)) = x \mod x^n \).

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: f = t + 2*t^2 - t^3 - 3*t^4
sage: f.revert_series(5)
3*t^4 + 4*t^3 + 3*t^2 + t
sage: f.revert_series(-1)
```

(continues on next page)
Traceback (most recent call last):
...
ValueError: argument n must be a non-negative integer, got -1

```
sage: g = - t^3 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
...
ValueError: self must have constant coefficient 0 and a unit for coefficient -t^1
```

```
sage: g = t + 2*t^2 - t^3 -3*t^4 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
...
ValueError: the integers 1 up to n=5 are required to be invertible over the base field
```

small_roots(*args, **kwds)

See `sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()` for the documentation of this function.

EXAMPLES:

```
sage: N = 10001
sage: K = Zmod(10001)
trian: R.<x> = PolynomialRing(K)
sage: f = x^3 + 10*x^2 + 5000*x - 222
sage: f.small_roots()
[4]
```

squarefree_decomposition()

Returns the squarefree decomposition of this polynomial.

EXAMPLES:

```
sage: R.<x> = GF(5)[]
sage: (x+1)*(x^2+1)^2*x^3).squarefree_decomposition()
(x + 1) * (x^2 + 1)^2 * x^3
```

2.1.11 Dense univariate polynomials over \(Z/nZ \), implemented using NTL.

This implementation is generally slower than the FLINT implementation in `polynomial_zmod_flint`, so we use FLINT by default when the modulus is small enough; but NTL does not require that \(n \) be int-sized, so we use it as default when \(n \) is too large for FLINT.

Note that the classes `Polynomial_dense_modn_ntl_zz` and `Polynomial_dense_modn_ntl_ZZ` are different; the former is limited to moduli less than a certain bound, while the latter supports arbitrarily large moduli.

AUTHORS:

- Robert Bradshaw: Split off from `polynomial_element_generic.py` (2007-09)
- Robert Bradshaw: Major rewrite to use NTL directly (2007-09)
class sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n
Bases: sage.rings.polynomial.polynomial_element.Polynomial

A dense polynomial over the integers modulo n, where n is composite, with the underlying arithmetic done using NTL.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(16), implementation='NTL')
sage: f = x^3 - x + 17
sage: f^2
x^6 + 14*x^4 + 2*x^3 + x^2 + 14*x + 1
sage: loads(f.dumps()) == f
True
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: p = 3*x
sage: q = 7*x
sage: p+q
10*x
sage: R.<x> = PolynomialRing(Integers(8), implementation='NTL')
parent(p)
Univariate Polynomial Ring in x over Ring of integers modulo 100 (using NTL)
sage: p + q
10*x
sage: R({10:-1})
7*x^10
```

degree (gen=None)
Return the degree of this polynomial.

The zero polynomial has degree -1.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
```

```python
sage: (x^3 + 3*x - 17).degree()
3
```

```python
sage: R.zero().degree()
-1
```

int_list()

list (copy=True)

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```python
sage: _.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: f = x^3 + 3*x - 17
sage: f.list()
[83, 3, 0, 1]
```

ntl ZZ pX()

Return underlying NTL representation of this polynomial. Additional “bonus” functionality is available through this function.
Warning: You must call `ntl.set_modulus(ntl.ZZ(n))` before doing arithmetic with this object!

ntl_set_directly(v)
Set the value of this polynomial directly from a vector or string.

Polynomials over the integers modulo n are stored internally using NTL's $\mathbb{Z}_n[X]$ class. Use this function to set the value of this polynomial using the NTL constructor, which is potentially very fast. The input v is either a vector of ints or a string of the form `[n1 n2 n3 ...]` where the n_i are integers and there are no commas between them. The optimal input format is the string format, since that’s what NTL uses by default.

EXAMPLES:
```
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_dense_mod_n as poly_modn_dense
sage: poly_modn_dense(R, ([1,-2,3]))
3*x^2 + 98*x + 1
sage: f = poly_modn_dense(R, 0)
sage: f.ntl_set_directly(([1,-2,3])
3*x^2 + 98*x + 1
sage: f.ntl_set_directly([1 -2 3 4])
4*x^3 + 3*x^2 + 98*x + 1
```

quo_rem(right)
Returns a tuple (quotient, remainder) where self = quotient*other + remainder.

shift(n)
Returns this polynomial multiplied by the power x^n. If n is negative, terms below x^n will be discarded. Does not change this polynomial.

EXAMPLES:
```
sage: R.<x> = PolynomialRing(Integers(12345678901234567890), implementation='NTL')
sage: p = x^2 + 2*x + 4
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(-5)
0
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```

AUTHOR:
- David Harvey (2006-08-06)

small_roots(*args, **kwds)
See `sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()` for the documentation of this function.

EXAMPLES:
class sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p

Bases: sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n

A dense polynomial over the integers modulo p, where p is prime.

discriminant()

EXAMPLES:

```
sage: _.<x> = PolynomialRing(GF(19),implementation='NTL')
sage: f = x^3 + 3*x - 17
sage: f.discriminant()
sage: 12
```
gcd(right)

Return the greatest common divisor of this polynomial and other, as a monic polynomial.

INPUT:

- `other` – a polynomial defined over the same ring as self

EXAMPLES:

```
sage: R.<x> = PolynomialRing(GF(3),implementation="NTL")
sage: f,g = x + 2, x^2 - 1
sage: f.gcd(g)
sage: x + 2
```
resultant(other)

Returns the resultant of self and other, which must lie in the same polynomial ring.

INPUT:

- `other` – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

EXAMPLES:

```
sage: R.<x> = PolynomialRing(GF(19),implementation='NTL')
sage: f = x^3 + x + 1;  g = x^3 - x - 1
sage: r = f.resultant(g); r
sage: 11
sage: r.parent() is GF(19)
sage: True
```
xgcd(other)

Compute the extended gcd of this element and other.

INPUT:

- `other` – an element in the same polynomial ring

OUTPUT:
A tuple \((r,s,t)\) of elements in the polynomial ring such that \(r = s \cdot \text{self} + t \cdot \text{other}\).

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sage: R.<x> = PolynomialRing(GF(3), implementation='NTL')</code></td>
<td>Create a polynomial ring</td>
</tr>
<tr>
<td><code>sage: x.xgcd(x)</code></td>
<td>Compute (x)'s gcd with itself</td>
</tr>
<tr>
<td><code>sage: (x^2 - 1).xgcd(x - 1)</code></td>
<td>Compute ((x^2 - 1))'s gcd with ((x - 1))</td>
</tr>
<tr>
<td><code>sage: R.zero().xgcd(R.one())</code></td>
<td>Compute (0)'s gcd with (1)</td>
</tr>
<tr>
<td><code>sage: (x^3 - 1).xgcd((x - 1)^2)</code></td>
<td>Compute ((x^3 - 1))'s gcd with ((x - 1)^2)</td>
</tr>
<tr>
<td><code>sage: ((x - 1)*(x + 1)).xgcd(x*(x - 1))</code></td>
<td>Compute ((x - 1)(x + 1))'s gcd with (x(x - 1))</td>
</tr>
</tbody>
</table>

Class: `sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_dense_ntl_ZZ`
Bases:
`sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n`

degree()

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sage: R.<x> = PolynomialRing(Integers(14^34), implementation='NTL')</code></td>
<td>Create a polynomial ring with a large integer coefficient field</td>
</tr>
<tr>
<td><code>sage: f = x^4 - x - 1</code></td>
<td>Define a polynomial</td>
</tr>
<tr>
<td><code>sage: f.degree()</code></td>
<td>Compute degree of (f)</td>
</tr>
<tr>
<td><code>sage: f = 14^43*x + 1</code></td>
<td>Define another polynomial</td>
</tr>
<tr>
<td><code>sage: f.degree()</code></td>
<td>Compute degree of (f)</td>
</tr>
</tbody>
</table>

is_gen()

list(copy=True)

quo_rem(right)

Returns \(q\) and \(r\), with the degree of \(r\) less than the degree of \(right\), such that \(q \cdot right + r = self\).

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sage: R.<x> = PolynomialRing(Integers(10^30), implementation='NTL')</code></td>
<td>Create a polynomial ring with a large integer coefficient field</td>
</tr>
<tr>
<td><code>sage: f = x^5+1; g = (x+1)^2</code></td>
<td>Define polynomials</td>
</tr>
<tr>
<td><code>sage: q, r = f.quo_rem(g)</code></td>
<td>Compute (q) and (r) of (f) modulo (g)</td>
</tr>
<tr>
<td><code>sage: q</code></td>
<td>(q) in (\mathbb{Z}_{10^{30}}[x])</td>
</tr>
<tr>
<td><code>sage: r</code></td>
<td>(r) in (\mathbb{Z}_{10^{30}}[x])</td>
</tr>
</tbody>
</table>

reverse()

Reverses the coefficients of self. The reverse of \(f(x)\) is \(x^n f(1/x)\).

The degree will go down if the constant term is zero.

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sage: R.<x> = PolynomialRing(Integers(12^29), implementation='NTL')</code></td>
<td>Create a polynomial ring with a large integer coefficient field</td>
</tr>
<tr>
<td><code>sage: f = x^4 + 2*x + 5</code></td>
<td>Define a polynomial</td>
</tr>
</tbody>
</table>

(continues on next page)
shift (**n**)
Shift self to left by **n**, which is multiplication by \(x^n\), truncating if \(n\) is negative.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(12^30), implementation='NTL')
sage: f = x^7 + x + 1
sage: f.shift(1)
x^8 + x^2 + x
sage: f.shift(-1)
x^6 + 1
sage: f.shift(10).shift(-10) == f
True
```

truncate (**n**)
Returns this polynomial mod \(x^n\).

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(15^30), implementation='NTL')
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

valuation ()
Returns the valuation of self, that is, the power of the lowest non-zero monomial of self.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(10^50), implementation='NTL')
sage: x.valuation()
1
sage: f = x-3; f.valuation()
0
sage: f = x^99; f.valuation()
99
sage: f = x-x; f.valuation()
+Infinity
```

```python
class sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_dense_ntl

Bases: sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn

Polynomial on \(\mathbb{Z}/n\mathbb{Z}\) implemented via NTL.

_add_(_right)
_sub_(_right)
_lmul_(_c)
_rmul_(_c)
```

2.1. Univariate Polynomials and Polynomial Rings 161
mul(_right)_

_mul_trunc_(right, n)
Return the product of self and right truncated to the given length n

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(100), implementation="NTL")
sage: f = x - 2
sage: g = x^2 - 8*x + 16
sage: f*g
x^3 + 90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 42)
x^3 + 90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 3)
90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 2)
32*x + 68
sage: f._mul_trunc_(g, 1)
68
sage: f._mul_trunc_(g, 0)
0
```

degree()

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^4 - x - 1
sage: f.degree()
4
sage: f = 77*x + 1
sage: f.degree()
0
```

int_list()
Returns the coefficients of self as efficiently as possible as a list of python ints.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_
˓→dense_mod_n as poly_modn_dense
sage: f = poly_modn_dense(R,[5,0,0,1])
sage: f.int_list()
[5, 0, 0, 1]
sage: [type(a) for a in f.int_list()]
[<... 'int'>, <... 'int'>, <... 'int'>, <... 'int'>]
```

is_gen()

ntl_set_directly(v)

quo_rem(right)
Returns q and r, with the degree of r less than the degree of right, such that q * right + r = self.

EXAMPLES:
sage: R.<x> = PolynomialRing(Integers(125), implementation='NTL')
sage: f = x^5+1; g = (x+1)^2
sage: q, r = f.quo_rem(g)
sage: q
x^3 + 123*x^2 + 3*x + 121
sage: r
5*x + 5
sage: q*g + r
x^5 + 1

reverse()
Reverses the coefficients of self. The reverse of $f(x)$ is $x^n f(1/x)$.
The degree will go down if the constant term is zero.

EXAMPLES:

sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^4 - x - 1
sage: f.reverse()
76*x^4 + 76*x^3 + 1
sage: f = x^3 - x
sage: f.reverse()
76*x^2 + 1

shift(n)
Shift self to left by n, which is multiplication by x^n, truncating if n is negative.

EXAMPLES:

sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^7 + x + 1
sage: f.shift(1)
x^8 + x^2 + x
sage: f.shift(-1)
x^6 + 1
sage: f.shift(10).shift(-10) == f
True

truncate(n)
Returns this polynomial mod x^n.

EXAMPLES:

sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1

valuation()
Returns the valuation of self, that is, the power of the lowest non-zero monomial of self.

EXAMPLES:

sage: R.<x> = PolynomialRing(Integers(10), implementation='NTL')
sage: x.valuation()
1
sage: f = x-3; f.valuation()
(continues on next page)
Let N be the characteristic of the base ring this polynomial is defined over: $N = \text{self.base_ring().characteristic()}$. This method returns small roots of this polynomial modulo some factor b of N with the constraint that $b \geq N^\beta$. Small in this context means that if x is a root of f modulo b then $|x| < X$. This X is either provided by the user or the maximum X is chosen such that this algorithm terminates in polynomial time. If X is chosen automatically it is $X = \text{ceil}(1/2N^{\beta^2/\delta} - \epsilon)$. The algorithm may also return some roots which are larger than X. ‘This algorithm’ in this context means Coppersmith’s algorithm for finding small roots using the LLL algorithm. The implementation of this algorithm follows Alexander May’s PhD thesis referenced below.

INPUT:

- X – an absolute bound for the root (default: see above)
- β – compute a root mod b where b is a factor of N and $b \geq N^\beta$. (Default: 1.0, so $b = N$.)
- ϵ – the parameter ϵ described above. (Default: $\beta/8$)
- **kwds – passed through to method $\text{Matrix_integer_dense_LLL()}$."

EXAMPLES:

First consider a small example:

```python
sage: N = 10001
sage: K = Zmod(10001)
sage: P.<x> = PolynomialRing(K, implementation='NTL')
sage: f = x^3 + 10*x^2 + 5000*x - 222

This polynomial has no roots without modular reduction (i.e. over $\mathbb{Z}$):

```python
sage: f.change_ring(ZZ).roots()
[]
```

To compute its roots we need to factor the modulus $N$ and use the Chinese remainder theorem:

```python
sage: p,q = N.prime_divisors()
sage: f.change_ring(GF(p)).roots()
[(4, 1)]
sage: f.change_ring(GF(q)).roots()
[(4, 1)]
sage: crt(4, 4, p, q)
4
```

This root is quite small compared to $N$, so we can attempt to recover it without factoring $N$ using Coppersmith’s small root method:
An application of this method is to consider RSA. We are using 512-bit RSA with public exponent $e = 3$ to encrypt a 56-bit DES key. Because it would be easy to attack this setting if no padding was used we pad the key $K$ with $1$s to get a large number:

We choose two primes of size 256-bit each:

We choose a random key:

and pad it with 512-56=456 1s:

Now we encrypt the resulting message:

To recover $K$ we consider the following polynomial modulo $N$:

and recover its small roots:

The same algorithm can be used to factor $N = pq$ if partial knowledge about $q$ is available. This example is from the Magma handbook:

First, we set up $p$, $q$ and $N$:

Now we disturb the low 110 bits of $q$:  

2.1. Univariate Polynomials and Polynomial Rings 165
And try to recover $q$ from it:

```
sage: F.<x> = PolynomialRing(Zmod(N), implementation='NTL')
sage: f = x - qbar
```

We know that the error is $\leq 2^{\text{\text{hidden}}}-1$ and that the modulus we are looking for is $\geq \sqrt{N}$:

```
sage: set_verbose(2)
sage: d = f.small_roots(X=2^hidden-1, beta=0.5)[0] # time random
verbose 2 (<module>) m = 4
verbose 2 (<module>) t = 4
verbose 2 (<module>) X = 1298074214633706907132624082305023
verbose 1 (<module>) LLL of 8x8 matrix (algorithm fpLLL:wrapper)
verbose 1 (<module>) LLL finished (time = 0.006998)
sage: q == qbar - d
True
```

REFERENCES:


### 2.1.12 Dense univariate polynomials over $\mathbb{R}$, implemented using MPFR

**class** `sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense`

**Bases:** `sage.rings.polynomial.polynomial_element.Polynomial`

**change_ring** $(R)$

**EXAMPLES:**

```
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [-2, 0, 1.5])
sage: f.change_ring(QQ)
3/2*x^2 - 2
sage: f.change_ring(RealField(10))
1.5*x^2 - 2.0
sage: f.change_ring(RealField(100))
1.5000000000000000000000000000*x^2 - 2.0000000000000000000000000000
```

**degree** ()

Return the degree of the polynomial.

**EXAMPLES:**

```
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [1, 2, 3]); f
3.0000000000000000000000000000*x^2 + 2.0000000000000000000000000000*x + 1.0000000000000000000000000000
sage: f.degree()
2
```
integral()

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [3, pi, 1])
sage: f.integral()
0.333333333333333*x^3 + 1.57079632679490*x^2 + 3.00000000000000*x
```

list (copy=True)

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr.dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [1, 0, -2]); f
-2.00000000000000*x^2 + 1.00000000000000
sage: f.list()
[1.00000000000000, 0.000000000000000, -2.00000000000000]
```

quo_rem (other)

Return the quotient with remainder of `self` by `other`.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr.dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [-2, 0, 1])
sage: g = PolynomialRealDense(RR['x'], [5, 1])
sage: q, r = f.quo_rem(g)
sage: q
x - 5.00000000000000
sage: r
23.0000000000000
sage: q*g + r == f
True
sage: fg = f*g
sage: fg.quo_rem(f)
(x^2 - 2.00000000000000, 0)
sage: fg.quo_rem(g)
(x^2 - 2.00000000000000, 0)
sage: f = PolynomialRealDense(RR['x'], range(5))
sage: g = PolynomialRealDense(RR['x'], [pi,3000,4])
sage: q, r = f.quo_rem(g)
sage: g*q + r == f
True
```

reverse()

Returns $x^d f(1/x)$ where $d$ is the degree of $f$.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr.dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [-3, pi, 0, 1])
sage: f.reverse()
-3.00000000000000*x^3 + 3.14159265358979*x^2 + 1.00000000000000
```

shift (n)

2.1. Univariate Polynomials and Polynomial Rings
Returns this polynomial multiplied by the power $x^n$. If $n$ is negative, terms below $x^n$ will be discarded. Does not change this polynomial.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [1, 2, 3]); f
3.00000000000000*x^2 + 2.00000000000000*x + 1.00000000000000
sage: f.shift(10)
3.00000000000000*x^12 + 2.00000000000000*x^11 + x^10
sage: f.shift(-1)
3.00000000000000*x + 2.00000000000000
sage: f.shift(-10)
0
```

**truncate** $(n)$

Returns the polynomial of degree $< n$ which is equivalent to self modulo $x^n$.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RealField(10)['x'], [1, 2, 4, 8])
```

```python
sage: f.truncate(3)
4.0*x^2 + 2.0*x + 1.0
```

```python
sage: f.truncate(100)
8.0*x^3 + 4.0*x^2 + 2.0*x + 1.0
```

```python
sage: f.truncate(1)
1.0
```

```python
sage: f.truncate(0)
0
```

**truncate_abs** $(\text{bound})$

Truncate all high order coefficients below bound.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RealField(10)['x'], [10^-k for k in range(10)])
```

```python
sage: f
1.0e-9*x^9 + 1.0e-8*x^8 + 1.0e-7*x^7 + 1.0e-6*x^6 + 0.000010*x^5 + 0.00010*x^4 + 0.0010*x^3 + 0.010*x^2 + 0.10*x + 1.0
```

```python
sage: f.truncate_abs(0.5e-6)
1.0e-6*x^6 + 0.000010*x^5 + 0.00010*x^4 + 0.0010*x^3 + 0.010*x^2 + 0.10*x + 1.0
```

```python
sage: f.truncate_abs(10.0)
0
```

```python
sage: f.truncate_abs(1e-100) == f
True
```

sage.rings.polynomial.polynomial_real_mpfr_dense.make_PolynomialRealDense$(\text{parent, data})$

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import make_PolynomialRealDense
sage: make_PolynomialRealDense(RR['x'], [1,2,3])
```

(continues on next page)
2.1.13 Polynomial Interfaces to Singular

AUTHORS:

- Martin Albrecht <malb@informatik.uni-bremen.de> (2006-04-21)
- Robert Bradshaw: Re-factor to avoid multiple inheritance vs. Cython (2007-09)
- Syed Ahmad Lavasani: Added function field to _singular_init_ (2011-12-16) Added non-prime finite fields to _singular_init_ (2012-1-22)

class sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr
Implements methods to convert polynomial rings to Singular.

This class is a base class for all univariate and multivariate polynomial rings which support conversion from and to Singular rings.

class sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr
Implements coercion of polynomials to Singular polynomials.

This class is a base class for all (univariate and multivariate) polynomial classes which support conversion from and to Singular polynomials.

Due to the incompatibility of Python extension classes and multiple inheritance, this just defers to module-level functions.

sage.rings.polynomial.polynomial_singular_interface.can_convert_to_singular(R)
Returns True if this ring’s base field or ring can be represented in Singular, and the polynomial ring has at least one generator. If this is True then this polynomial ring can be represented in Singular.

The following base rings are supported: finite fields, rationals, number fields, and real and complex fields.

EXAMPLES:

```
sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
True
sage: can_convert_to_singular(PolynomialRing(ZZ, names=['x']))
True
sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
False
```

2.1.14 Base class for generic \( p \)-adic polynomials

This provides common functionality for all \( p \)-adic polynomials, such as printing and factoring.

AUTHORS:

- Jeroen Demeyer (2013-11-22): initial version, split off from other files, made Polynomial_padic the common base class for all \( p \)-adic polynomials.
class sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic(
    parent,
    x=None,
    check=True,
    is_gen=False,
    construct=False)

Bases: sage.rings.polynomial.polynomial_element.Polynomial

content()

Compute the content of this polynomial.

OUTPUT:

If this is the zero polynomial, return the constant coefficient. Otherwise, since the content is only defined 
up to a unit, return the content as $\pi^k$ with maximal precision where $k$ is the minimal valuation of any of 
the coefficients.

EXAMPLES:

```
sage: K = Zp(13,7)
sage: R.<t> = K[]
sage: f = 13^7*t^3 + K(169,4)*t - 13^4
sage: f.content()
13^2 + O(13^9)
sage: R(0).content()
0
sage: f = R(K(0,3)); f
(0(13^3))
sage: f.content()
O(13^3)
sage: P.<x> = ZZ[]
sage: f = x + 2
sage: f.content()
1
sage: fp = f.change_ring(pAdicRing(2, 10))
sage: fp
(1 + O(2^10))*x + (2 + O(2^11))
sage: fp.content()
1 + O(2^10)
sage: (2*fp).content()
2 + O(2^11)
```

Over a field it would be sufficient to return only zero or one, as the content is only defined up to multipli-
cation with a unit. However, we return $\pi^k$ where $k$ is the minimal valuation of any coefficient:

```
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: f = 13^7*t^3 + K(169,4)*t - 13^-4
sage: f.content()
13^-4 + O(13^3)
sage: f = R.zero()
sage: f.content()
0
sage: f = R(K(0,3))
sage: f.content()
O(13^3)
sage: f = 13*t^3 + K(0,1)*t
```

(continues on next page)

(continued from previous page)

sage: f.content()
13 + O(13^8)

factor()
Return the factorization of this polynomial.
EXAMPLES:
sage: R.<t> = PolynomialRing(Qp(3,3,print_mode='terse',print_pos=False))
sage: pol = t^8 - 1
sage: for p,e in pol.factor():
....:
print("{} {}".format(e, p))
1 (1 + O(3^3))*t + (1 + O(3^3))
1 (1 + O(3^3))*t + (-1 + O(3^3))
1 (1 + O(3^3))*t^2 + (5 + O(3^3))*t + (-1 + O(3^3))
1 (1 + O(3^3))*t^2 + (-5 + O(3^3))*t + (-1 + O(3^3))
1 (1 + O(3^3))*t^2 + (0 + O(3^3))*t + (1 + O(3^3))
sage: R.<t> = PolynomialRing(Qp(5,6,print_mode='terse',print_pos=False))
sage: pol = 100 * (5*t - 1) * (t - 5)
sage: pol
(500 + O(5^9))*t^2 + (-2600 + O(5^8))*t + (500 + O(5^9))
sage: pol.factor()
(500 + O(5^9)) * ((1 + O(5^5))*t + (-1/5 + O(5^5))) * ((1 + O(5^6))*t + (-5 +
˓→O(5^6)))
sage: pol.factor().value()
(500 + O(5^8))*t^2 + (-2600 + O(5^8))*t + (500 + O(5^8))

The same factorization over Z𝑝 . In this case, the “unit” part is a 𝑝-adic unit and the power of 𝑝 is considered
to be a factor:
sage: R.<t> = PolynomialRing(Zp(5,6,print_mode='terse',print_pos=False))
sage: pol = 100 * (5*t - 1) * (t - 5)
sage: pol
(500 + O(5^9))*t^2 + (-2600 + O(5^8))*t + (500 + O(5^9))
sage: pol.factor()
(4 + O(5^6)) * ((5 + O(5^7)))^2 * ((1 + O(5^6))*t + (-5 + O(5^6))) * ((5 +
˓→O(5^6))*t + (-1 + O(5^6)))
sage: pol.factor().value()
(500 + O(5^8))*t^2 + (-2600 + O(5^8))*t + (500 + O(5^8))

In the following example, the discriminant is zero, so the 𝑝-adic factorization is not well defined:
sage: factor(t^2)
Traceback (most recent call last):
...
PrecisionError: p-adic factorization not well-defined since the discriminant
˓→is zero up to the requestion p-adic precision

More examples over Z𝑝 :
sage: R.<w> = PolynomialRing(Zp(5, prec=6, type = 'capped-abs', print_mode =
˓→'val-unit'))
sage: f = w^5-1
sage: f.factor()
((1 + O(5^6))*w + (3124 + O(5^6))) * ((1 + O(5^6))*w^4 + (12501 + O(5^6))*w^3
˓→+ (9376 + O(5^6))*w^2 + (6251 + O(5^6))*w + (3126 + O(5^6)))

See trac ticket #4038:
2.1. Univariate Polynomials and Polynomial Rings

171


sage: E = EllipticCurve('37a1')
sage: K = Qp(7,10)
sage: EK = E.base_extend(K)
sage: E = EllipticCurve('37a1')
sage: K = Qp(7,10)
sage: EK = E.base_extend(K)
sage: g = EK.division_polynomial_0(3)
sage: g.factor()

\[(3 + O(7^{10})) \cdot ((1 + O(7^{10})) \cdot x + (1 + 2 \cdot 7 + 4 \cdot 7^2 + 2 \cdot 7^3 + 5 \cdot 7^4 + 7^5 + 5 \cdot 7^6 + 3 \cdot 7^7 + 5 \cdot 7^8 + 3 \cdot 7^9 + O(7^{10}))) \cdot ((1 + O(7^{10})) \cdot x^3 + (6 + 4 \cdot 7 + 2 \cdot 7^2 + 4 \cdot 7^3 + 7^4 + 5 \cdot 7^5 + 7^6 + 3 \cdot 7^7 + 7^8 + 3 \cdot 7^9 + O(7^{10})) \cdot x^2 + (6 + 3 \cdot 7 + 5 \cdot 7^2 + 2 \cdot 7^3 + 7^5 + 7^6 + 2 \cdot 7^8 + 3 \cdot 7^9 + O(7^{10})) \cdot x + (2 + 5 \cdot 7 + 3 \cdot 7^2 + 2 \cdot 7^3 + 6 \cdot 7^4 + 3 \cdot 7^5 + 7^6 + 4 \cdot 7^7 + O(7^{10})))\]

```
root_field(names, check_irreducible=True, **kwds)
```

Return the p-adic extension field generated by the roots of the irreducible polynomial self.

**INPUT:**

- `names` – name of the generator of the extension
- `check_irreducible` – check whether the polynomial is irreducible
- `kwds` – see `sage.ring.padics.padic_generic.pAdicGeneric.extension()`

**EXAMPLES:**

```
sage: R.<x> = Qp(3,5,print_mode='digits')[]
sage: f = x^2 - 3
sage: f.root_field('x')
Eisenstein Extension in x defined by x^2 - 3 with capped relative precision \(\rightarrow 10\) over 3-adic Field
```

```
sage: R.<x> = Qp(5,5,print_mode='digits')[]
sage: f = x^2 - 3
sage: f.root_field('x', print_mode='bars')
Unramified Extension in x defined by x^2 - 3 with capped relative precision 5\(\rightarrow\)over 5-adic Field
```

```
sage: R.<x> = Qp(11,5,print_mode='digits')[]
sage: f = x^2 - 3
sage: f.root_field('x', print_mode='bars')
Traceback (most recent call last):
...
ValueError: polynomial must be irreducible
```
2.1.15 p-adic Capped Relative Dense Polynomials

```python
class sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense:
 def __init__(self, parent, x=None, check=True, is_gen=False, construct=False, absprec=+Infinity, relprec=+Infinity):
 Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv, sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic

degree(secure=False)
Return the degree of self.

INPUT:

• secure – a boolean (default: False)

If secure is True and the degree of this polynomial is not determined (because the leading coefficient is indistinguishable from 0), an error is raised.

If secure is False, the returned value is the largest n so that the coefficient of x^n does not compare equal to 0.

EXAMPLES:

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.degree()
1
sage: (f-T).degree()
0
sage: (f-T).degree(secure=True)
Traceback (most recent call last):
  ...
PrecisionError: the leading coefficient is indistinguishable from 0
```

```python
sage: x = O(3^5)
sage: li = [3^i * x for i in range(0,5)]; li
[O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)]
sage: f = R(li); f
(0(3^9))*T^4 + (O(3^8))*T^3 + (O(3^7))*T^2 + (O(3^6))*T + (O(3^5))
sage: f.degree()
-1
sage: f.degree(secure=True)
Traceback (most recent call last):
  ...
PrecisionError: the leading coefficient is indistinguishable from 0
```

disc()

factor_mod()
Return the factorization of self modulo p.
```
is_eisenstein(secure=False)

Return True if this polynomial is an Eisenstein polynomial.

EXAMPLES:

```python
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 5*t + t^4
sage: f.is_eisenstein()
True
```

AUTHOR:

- Xavier Caruso (2013-03)

lift()

Return an integer polynomial congruent to this one modulo the precision of each coefficient.

Note: The lift that is returned will not necessarily be the same for polynomials with the same coefficients (i.e. same values and precisions): it will depend on how the polynomials are created.

EXAMPLES:

```python
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: a = 13^7*t^3 + K(169,4)*t - 13^4
sage: a.lift()
62748517*t^3 + 169*t - 28561
```

list(copy=True)

Return a list of coefficients of self.

Note: The length of the list returned may be greater than expected since it includes any leading zeros that have finite absolute precision.

EXAMPLES:

```python
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: a = 2*t^3 + 169*t - 1
sage: a
(2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + (12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7))
```

lshift_coeffs(shift, no_list=False)

Return a new polynomials whose coefficients are multiplied by p^shift.

EXAMPLES:

```python
sage: K = Qp(13, 4)
sage: R.<t> = K[]
```
\begin{verbatim}
sage: a = t + 52
sage: a.ishift_coeffs(3)
(13^3 + O(13^7))*t + (4*13^4 + O(13^8))
\end{verbatim}

**newton_polygon**

Return the Newton polygon of this polynomial.

**Note:** If some coefficients have not enough precision an error is raised.

**OUTPUT:**

- a Newton polygon

**EXAMPLES:**

\begin{verbatim}
sage: K = Qp(2, prec=5)
sage: P.<x> = K[]
sage: f = x^4 + 2^3*x^3 + 2^13*x^2 + 2^21*x + 2^37
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0)
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
\end{verbatim}

Here is an example where the computation fails because precision is not sufficient:

\begin{verbatim}
sage: g = f + K(0,0)*t^4; g
(5^2 + O(5^22))*t^10 + (O(5^0))*t^4 + (3 + O(5^20))*t + (5 + O(5^21))
sage: g.newton_polygon()
Traceback (most recent call last):
...
PrecisionError: The coefficient of t^4 has not enough precision
\end{verbatim}

**AUTHOR:**
- Xavier Caruso (2013-03-20)

**newton_slopes** *(repetition=True)*

Return a list of the Newton slopes of this polynomial.

These are the valuations of the roots of this polynomial.

If `repetition` is True, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.

**INPUT:**

- `repetition` -- boolean (default True)

**OUTPUT:**

- a list of rationals

**EXAMPLES:**
AUTHOR:

- Xavier Caruso (2013-03-20)

**prec_degree()**

Return the largest \(n\) so that precision information is stored about the coefficient of \(x^n\).

Always greater than or equal to degree.

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.prec_degree()
1
```

**precision_absolute \((n=None)\)**

Return absolute precision information about `self`.

**INPUT:**

- `self` – a p-adic polynomial
- `n` – None or an integer (default None).

**OUTPUT:**

If `n == None`, returns a list of absolute precisions of coefficients. Otherwise, returns the absolute precision of the coefficient of \(x^n\).

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.precision_absolute()
[10, 10]
```

**precision_relative \((n=None)\)**

Return relative precision information about `self`.

**INPUT:**

- `self` – a p-adic polynomial
- `n` – None or an integer (default None).

**OUTPUT:**
If \( n == \) None, returns a list of relative precisions of coefficients. Otherwise, returns the relative precision of the coefficient of \( x^n \).

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.precision_relative()
[10, 10]
```

**quo_rem** *(right, secure=False)*
Return the quotient and remainder in division of **self** by **right**.

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2
sage: g = T**4 + 3*T+22
sage: g.quo_rem(f)
((1 + O(3^10))*T^3 + (1 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10))*T^2 + (1 + 3 + O(3^10))*T + (1 + 3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10)),
(2 + 3 + 3^3 + O(3^10)))
```

**rescale** *(a)*
Return \( f(a*X) \)

**Todo:** Need to write this function for integer polynomials before this works.

**EXAMPLES:**

```python
sage: K = Zp(13, 5)
sage: R.<t> = K[]
sage: f = t^3 + K(13, 3) * t
sage: f.rescale(2) # not implemented
```

**reverse** *(n=None)*
Return a new polynomial whose coefficients are the reversed coefficients of **self**, where **self** is considered as a polynomial of degree \( n \).

If \( n \) is **None**, defaults to the degree of **self**.

If \( n \) is smaller than the degree of **self**, some coefficients will be discarded.

**EXAMPLES:**

```python
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: f = t^3 + 4*t; f
(1 + O(13^7))*t^3 + (4 + O(13^7))*t
sage: f.reverse()
(4 + O(13^7))*t^2 + (1 + O(13^7))
sage: f.reverse(3)
(4 + O(13^7))*t^2 + (1 + O(13^7))
sage: f.reverse(2)
```

(continues on next page)
(4 + O(13^7))*t
sage: f.reverse(4)
(4 + O(13^7))*t^3 + (1 + O(13^7))*t
sage: f.reverse(6)
(4 + O(13^7))*t^5 + (1 + O(13^7))*t^3

Valuation

valuation(val_of_var=None)

Return the valuation of self.

INPUT:

self -- a p-adic polynomial
val_of_var -- None or a rational (default None).

OUTPUT:

If val_of_var == None, returns the largest power of the variable dividing self. Otherwise, returns the valuation of self where the variable is assigned valuation val_of_var.

EXAMPLES:

sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.valuation()
0

Valuation of coefficient

valuation_of_coefficient(n=None)

Return valuation information about self's coefficients.

INPUT:

self -- a p-adic polynomial
n -- None or an integer (default None).

OUTPUT:

If n is None, returns a list of valuations of coefficients. Otherwise, returns the valuation of the coefficient of x^n.
EXAMPLES:

```
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.valuation_of_coefficient(1)
0
```

**xgcd**(right)

Extended gcd of self and other.

**INPUT:**

* other – an element with the same parent as self

**OUTPUT:**

Polynomials g, u, and v such that g = u*self + v*other

**Warning:** The computations are performed using the standard Euclidean algorithm which might produce mathematically incorrect results in some cases. See trac ticket #13439.

EXAMPLES:

```
sage: R.<x> = Qp(3,3)[]
sage: f = x + 1
sage: f.xgcd(f^2)
((1 + O(3^3))*x + (1 + O(3^3)), (1 + O(3^3)), 0)
```

In these examples the results are incorrect, see trac ticket #13439:

```
sage: R.<x> = Qp(3,3)[]
sage: f = 3*x + 7
sage: g = 5*x + 9
sage: f.xgcd(f*g) # known bug
((3 + O(3^4))*x + (1 + 2*3 + O(3^3)), (1 + O(3^3)), 0)
```

```python
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.make_padic_poly(parent, x, version)
```
2.1.16 p-adic Flat Polynomials

class sage.rings.polynomial.padics.polynomial_padic_flat.Polynomial_padic_flat(parent, x=None, check=True, is_gen=False, construct=False, absprec=None)

Bases: sage.rings.polynomial.polynomial_element.Polynomial_generic_dense, sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic

2.1.17 Univariate Polynomials over GF(p^e) via NTL’s ZZ_pEX.

AUTHOR:
• Yann Laigle-Chapuy (2010-01) initial implementation

class sage.rings.polynomial.polynomial_zz_pex.Polynomial_ZZ_pEX
Bases: sage.rings.polynomial.polynomial_zz_pex.Polynomial_template

Univariate Polynomials over GF(p^n) via NTL’s ZZ_pEX.

EXAMPLES:

sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K,implementation='NTL')
sage: (x^3 + a*x^2 + 1) * (x + a)
x^4 + 2*a*x^3 + a^2*x^2 + x + a

is_irreducible(algorithm='fast_when_false', iter=1)
Returns True precisely when self is irreducible over its base ring.

INPUT:

Parameters

• algorithm – a string (default “fast_when_false”), there are 3 available algorithms: “fast_when_true”, “fast_when_false” and “probabilistic”.
• iter – (default: 1) if the algorithm is “probabilistic” defines the number of iterations. The error probability is bounded by \( q^{-\text{iter}} \) for polynomials in \( GF(q)[x] \).

EXAMPLES:

sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K,implementation='NTL')
sage: P = x^3+(2-a)*x+1
sage: P.is_irreducible(algorithm="fast_when_false")
True
sage: P.is_irreducible(algorithm="fast_when_true")
True
sage: P.is_irreducible(algorithm="probabilistic")
True
sage: Q = (x^2+a)*(x+a^3)
sage: Q.is_irreducible(algorithm="fast_when_false")
False
sage: Q.is_irreducible(algorithm="fast_when_true")
(continues on next page)
list (copy=True)
Returns the list of coefficients.

EXAMPLES:

```python
sage: K.<a> = GF(5^3)
sage: P = PolynomialRing(K, 'x')
sage: f = P.random_element(100)
sage: f.list() == [f[i] for i in range(f.degree()+1)]
True
sage: P.0.list()
[0, 1]
```

resultant (other)
Returns the resultant of self and other, which must lie in the same polynomial ring.

INPUT:

Parameters other – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

EXAMPLES:

```python
sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K,implementation='NTL')
sage: f=(x-a)*(x-a**2)*(x+1)
sage: g=(x-a**3)*(x-a**4)*(x+a)
sage: r = f.resultant(g)
sage: r == prod(u-v for (u,eu) in f.roots() for (v,ev) in g.roots())
True
```

shift (n)
EXAMPLES:

```python
sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K,implementation='NTL')
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
```

Template for interfacing to external C / C++ libraries for implementations of polynomials.

AUTHORS:

- Robert Bradshaw (2008-10): original idea for templating
- Martin Albrecht (2008-10): initial implementation
This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a “linkage” file which implements the \texttt{celement}\_\texttt{functions} (see \texttt{sage.libs.ntl.ntl\_GF2X\_linkage} for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See \texttt{sage.rings.polynomial.polynomial\_gf2x} for an example.

We illustrate the generic glueing using univariate polynomials over \texttt{GF(2)}.

\textbf{Note:} Implementations using this template MUST implement coercion from base ring elements and \texttt{get\_unsafe()}. See \texttt{Polynomial\_GF2X} for an example.

\begin{description}
\item[\texttt{degree()}]
\textbf{EXAMPLES:}
\begin{verbatim}
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
\end{verbatim}
\item[\texttt{gcd(other)}]
Return the greatest common divisor of self and other.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x
\end{verbatim}
\item[\texttt{get\_cparent()}]
\item[\texttt{is\_gen()}]
\textbf{EXAMPLES:}
\begin{verbatim}
sage: P.<x> = GF(2)[]
sage: x.is_gen()
True
sage: (x+1).is_gen()
False
\end{verbatim}
\item[\texttt{is\_one()}]
\textbf{EXAMPLES:}
\begin{verbatim}
sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True
\end{verbatim}
\item[\texttt{is\_zero()}]
\textbf{EXAMPLES:}
\begin{verbatim}
sage: P.<x> = GF(2)[]
sage: x.is_zero()
False
\end{verbatim}
\end{description}
\textbf{list} (\texttt{copy=True})

**EXAMPLES:**

```
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```

\textbf{quo_rem (right)}

**EXAMPLES:**

```
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
```

\textbf{shift (n)}

**EXAMPLES:**

```
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
```

\textbf{truncate (n)}

Returns this polynomial mod $x^n$.

**EXAMPLES:**

```
sage: R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

```
sage: f.truncate(10) \text{ is } f
True
```

\textbf{xgcd (other)}

Computes extended gcd of self and other.

**EXAMPLES:**

```
sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)
```
2.1.18 Isolate Real Roots of Real Polynomials

AUTHOR:

• Carl Witty (2007-09-19): initial version

This is an implementation of real root isolation. That is, given a polynomial with exact real coefficients, we compute isolating intervals for the real roots of the polynomial. (Polynomials with integer, rational, or algebraic real coefficients are supported.)

We convert the polynomials into the Bernstein basis, and then use de Casteljau’s algorithm and Descartes’ rule of signs on the Bernstein basis polynomial (using interval arithmetic) to locate the roots. The algorithm is similar to that in “A Descartes Algorithm for Polynomials with Bit-Stream Coefficients”, by Eigenwillig, Kettner, Krandick, Mehlhorn, Schmitt, and Wolpert, but has three crucial optimizations over the algorithm in that paper:

• Precision reduction: at certain points in the computation, we discard the low-order bits of the coefficients, widening the intervals.

• Degree reduction: at certain points in the computation, we find lower-degree polynomials that are approximately equal to our high-degree polynomial over the region of interest.

• When the intervals are too wide to continue (either because of a too-low initial precision, or because of precision or degree reduction), and we need to restart with higher precision, we recall which regions have already been proven not to have any roots and do not examine them again.

The best description of the algorithms used (other than this source code itself) is in the slides for my Sage Days 4 talk, currently available from https://wiki.sagemath.org/days4schedule .

exception sage.rings.polynomial.real_roots.PrecisionError

Bases: exceptions.ValueError

sage.rings.polynomial.real_roots.bernstein_down(d1, d2, s)

Given polynomial degrees d1 and d2 (where d1 < d2), and a number of samples s, computes a matrix bd.

If you have a Bernstein polynomial of formal degree d2, and select s of its coefficients (according to subsample_vec), and multiply the resulting vector by bd, then you get the coefficients of a Bernstein polynomial of formal degree d1, where this second polynomial is a good approximation to the first polynomial over the region of the Bernstein basis.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_down(3, 8, 5)
[612/245 -348/245 -37/49 338/245 -172/245]
[-724/441 132/49 395/441 -290/147 452/441]
[452/441 -290/147 395/441 132/49 -724/441]
[-172/245 338/245 -37/49 -348/245 612/245]
```

sage.rings.polynomial.real_roots.bernstein_expanda(c, d2)

Given an integer vector representing a Bernstein polynomial p, and a degree d2, compute the representation of p as a Bernstein polynomial of formal degree d2.

This is similar to multiplying by the result of bernstein_up, but should be faster for large d2 (this has about the same number of multiplies, but in this version all the multiplies are by single machine words).

Returns a pair consisting of the expanded polynomial, and the maximum error E. (So if an element of the returned polynomial is a, and the true value of that coefficient is b, then a <= b < a + E.)

EXAMPLES:
```python
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(ZZ, [1000, 2000, -3000])
sage: bernstein_expand(c, 3)
((1000, 1666, 333, -3000), 1)
sage: bernstein_expand(c, 4)
((1000, 1500, 1000, -500, -3000), 1)
sage: bernstein_expand(c, 20)
((1000, 1100, 1168, 1205, 1210, 1184, 1126, 1036, 915, 763, 578, 363, 115, -164, -474, -816, -1190, -1595, -2032, -2500, -3000), 1)
```

### class sage.rings.polynomial.real_roots.bernstein_polynomial_factory

An abstract base class for `bernstein_polynomial` factories. That is, elements of subclasses represent Bernstein polynomials (exactly), and are responsible for creating `interval_bernstein_polynomial_integer` approximations at arbitrary precision.

Supports four methods, `coeffs_bitsize()`, `bernstein_polynomial()`, `lsign()`, and `usign()`. The `coeffs_bitsize()` method gives an integer approximation to the log2 of the max of the absolute values of the Bernstein coefficients. The `bernstein_polynomial(scale_log2)` method gives an approximation where the maximum coefficient has approximately `coeffs_bitsize()` - `scale_log2` bits. The `lsign()` and `usign()` methods give the (exact) sign of the first and last coefficient, respectively.

- `lsign()`
  - Returns the sign of the first coefficient of this Bernstein polynomial.

- `usign()`
  - Returns the sign of the last coefficient of this Bernstein polynomial.

### class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ar(p, neg)

Bases: `sage.rings.polynomial.real_roots.bernstein_polynomial_factory`

This class holds an exact Bernstein polynomial (represented as a list of algebraic real coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

- `bernstein_polynomial(scale_log2)`
  - Compute an `interval_bernstein_polynomial_integer` that approximates this polynomial, using the given `scale_log2`. (Smaller `scale_log2` values give more accurate approximations.)

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: bpf = bernstein_polynomial_factory_ar(p, False)
sage: print(bpf.bernstein_polynomial(-20))<IBP: ((-2965821, 2181961, -1542880, 1048576) + [0 .. 1)) * 2^-20>
sage: bpf = bernstein_polynomial_factory_ar(p, True)
sage: print(bpf.bernstein_polynomial(-20))<IBP: ((-2965821, -2181962, -1542880, -1048576) + [0 .. 1)) * 2^-20>
sage: p = x^2 - 1
sage: bpf = bernstein_polynomial_factory_ar(p, False)
sage: print(bpf.bernstein_polynomial(-10))<IBP: ((-1024, 0, 1024) + [0 .. 1)) * 2^-10>
```

- `coeffs_bitsize()`
  - Computes the approximate log2 of the maximum of the absolute values of the coefficients.

**EXAMPLES:**

2.1. Univariate Polynomials and Polynomial Rings

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: bernstein_polynomial_factory_ar(p, False).coeffs_bitsize()
1
```

class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist(coeffs)

Bases: sage.rings.polynomial.real_roots.bernstein_polynomial_factory

This class holds an exact Bernstein polynomial (represented as a list of integer coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

bernstein_polynomial(scale_log2)

Compute an interval_bernstein_polynomial_integer that approximates this polynomial, using the given scale_log2. (Smaller scale_log2 values give more accurate approximations.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bpf = bernstein_polynomial_factory_intlist([10, -20, 30, -40])
sage: print(bpf.bernstein_polynomial(0))
degree 3 IBP with 6-bit coefficients
sage: bpf.bernstein_polynomial(20)
<IBP: ((0, -1, 0, -1) + [0 .. 1)) * 2^20; lsign 1>
sage: bpf.bernstein_polynomial(0)
<IBP: (0, -4, 2, -2) + [0 .. 1); lsign 1>
```

coeffs_bitsize()

Computes the approximate log2 of the maximum of the absolute values of the coefficients.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_polynomial_factory_intlist([1, 2, 3, -60000]).coeffs_bitsize()
16
```

class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ratlist(coeffs)

Bases: sage.rings.polynomial.real_roots.bernstein_polynomial_factory

This class holds an exact Bernstein polynomial (represented as a list of rational coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

bernstein_polynomial(scale_log2)

Compute an interval_bernstein_polynomial_integer that approximates this polynomial, using the given scale_log2. (Smaller scale_log2 values give more accurate approximations.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bpf = bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99])
sage: print(bpf.bernstein_polynomial(0))
degree 3 IBP with 3-bit coefficients
sage: bpf.bernstein_polynomial(20)
<IBP: ((0, -1, 0, -1) + [0 .. 1)) * 2^20; lsign 1>
sage: bpf.bernstein_polynomial(0)
<IBP: ((10485760, -20971520, 31457280, -41943040) + [0 .. 1)) * 2^-20>
```

(continues on next page)
coffs_bitsize()  
Computes the approximate log2 of the maximum of the absolute values of the coefficients.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: BernsteinPolynomialFactoryRatList([1, 2, 3, -60000]).coffs_bitsize()
15
sage: BernsteinPolynomialFactoryRatList([65535/65536]).coffs_bitsize()
-1
sage: BernsteinPolynomialFactoryRatList([65536/65535]).coffs_bitsize()
1
```

sage.rings.polynomial.real_roots.bernstein_up(d1, d2, s=None)
Given polynomial degrees d1 and d2, where d1 < d2, compute a matrix bu.

If you have a Bernstein polynomial of formal degree d1, and multiply its coefficient vector by bu, then the result is the coefficient vector of the same polynomial represented as a Bernstein polynomial of formal degree d2.

If s is not None, then it represents a number of samples; then the product only gives s of the coefficients of the new Bernstein polynomial, selected according to subsample_vec.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_down(3, 7, 4)
\[
\begin{bmatrix}
12/5 & -4 & 3 & -2/5 \\
-13/15 & 16/3 & -4 & 8/15 \\
8/15 & -4 & 16/3 & -13/15 \\
-2/5 & 3 & -4 & 12/5 \\
\end{bmatrix}
\]
```

sage.rings.polynomial.real_roots.bitsize_doctest(n)
sage.rings.polynomial.real_roots.cl_maximum_root(cl)
Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.

Uses two algorithms of Akritas, Strzeboński, and Vigklas, and picks the better result.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root([RIF(-1), RIF(0), RIF(1)])
1.00000000000000
```

sage.rings.polynomial.real_roots.cl_maximum_root_first_lambda(cl)
Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.


EXAMPLES:
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root_first_lambda([RIF(-1), RIF(0), RIF(1)])
1.00000000000000

sage.rings.polynomial.real_roots.cl_maximum_root_local_max(cl)

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.


EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root_local_max([RIF(-1), RIF(0), RIF(1)])
1.41421356237310

class sage.rings.polynomial.real_roots.context
Bases: object

A simple context class, which is passed through parts of the real root isolation algorithm to avoid global variables.

Holds logging information, a random number generator, and the target machine wordsize.

get_be_log()

get_dc_log()

sage.rings.polynomial.real_roots.de_casteljau_doublevec(c, x)

Given a polynomial in Bernstein form with floating-point coefficients over the region \([0 .. 1]\), and a split point \(x\), use de Casteljau's algorithm to give polynomials in Bernstein form over \([0 .. x]\) and \([x .. 1]\).

This function will work for an arbitrary rational split point \(x\), as long as \(0 < x < 1\); but it has a specialized code path for \(x = 1/2\).

INPUT:

- \(c\) – vector of coefficients of polynomial in Bernstein form
- \(x\) – rational splitting point; \(0 < x < 1\)

OUTPUT:

- \(c1\) – coefficients of polynomial over range \([0 .. x]\)
- \(c2\) – coefficients of polynomial over range \([x .. 1]\)
- \(\text{err}_\text{inc}\) – number of half-ulps by which error intervals widened

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(RDF, [0.7, 0, 0, 0, 0, 0])
sage: de_casteljau_doublevec(c, 1/2)
((0.7, 0.4666666666666667, 0.31111111111111117, 0.20740740740740746, 0.
˓→13827160493827165, 0.09218106995884777), (0.09218106995884777, 0.0, 0.0, 0.0,
˓→15))

(continues on next page)
Given a polynomial in Bernstein form with integer coefficients over the region [0 .. 1], and a split point x, use de Casteljau’s algorithm to give polynomials in Bernstein form over [0 .. x] and [x .. 1].

This function will work for an arbitrary rational split point x, as long as 0 < x < 1; but it has specialized code paths that make some values of x faster than others. If x == a/(a + b), there are special efficient cases for a==1, b==1, a+b fits in a machine word, a+b is a power of 2, a fits in a machine word, b fits in a machine word. The most efficient case is x==1/2.

Given split points x == a/(a + b) and y == c/(c + d), where min(a, b) and min(c, d) fit in the same number of machine words and a+b and c+d are both powers of two, then x and y should be equally fast split points.

If use_ints is nonzero, then instead of checking whether numerators and denominators fit in machine words, we check whether they fit in ints (32 bits, even on 64-bit machines). This slows things down, but allows for identical results across machines.

**INPUT:**
- c – vector of coefficients of polynomial in Bernstein form
- c_bitsize – approximate size of coefficients in c (in bits)
- x – rational splitting point; 0 < x < 1

**OUTPUT:**
- c1 – coefficients of polynomial over range [0 .. x]
- c2 – coefficients of polynomial over range [x .. 1]
- err_inc – amount by which error intervals widened

**EXAMPLES:**

```python
dsage: from sage.rings.polynomial.real_roots import *
dsage: c = vector(ZZ, [1048576, 0, 0, 0, 0, 0])
dsage: de_casteljau_intvec(c, 20, 1/2, 1)
((1048576, 524288, 262144, 131072, 65536, 32768), (32768, 0, 0, 0, 0, 0), 1)
dsage: de_casteljau_intvec(c, 20, 1/3, 1)
((1048576, 699050, 466033, 310689, 207126, 138084), (138084, 0, 0, 0, 0, 0), 1)
dsage: de_casteljau_intvec(c, 20, 7/22, 1)
((1048576, 714938, 487457, 332357, 226607, 154505), (154505, 0, 0, 0, 0, 0), 1)
```

**sage.rings.polynomial.real_roots.degree_reduction_next_size(n)**

Given n (a polynomial degree), returns either a smaller integer or None. This defines the sequence of degrees followed by our degree reduction implementation.

**EXAMPLES:**

```python
dsage: from sage.rings.polynomial.real_roots import *
dsage: degree_reduction_next_size(1000)
30
sage: degree_reduction_next_size(20)
15
sage: degree_reduction_next_size(3)
```

(continues on next page)
sage: degree_reduction_next_size(2) is None
True

sage.rings.polynomial.real_roots.dprod_imatrow_vec(m, v, k)
Computes the dot product of row k of the matrix m with the vector v (that is, compute one element of the product
m*v).

If v has more elements than m has columns, then elements of v are selected using subsample_vec.

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: m = matrix(3, range(9))
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 0, 0, 0]), 1)
0
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 1, 0, 0]), 1)
3
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 1, 0]), 1)
4
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 0, 1]), 1)
5
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 0, 0]), 1)
3
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 1, 0]), 1)
4
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 1]), 1)
5
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 2, 3]), 1)
26

sage.rings.polynomial.real_roots.get_realfield_rndu(n)
A simple cache for RealField fields (with rounding set to round-to-positive-infinity).

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: get_realfield_rndu(20)
Real Field with 20 bits of precision and rounding RNDU
sage: get_realfield_rndu(53)
Real Field with 53 bits of precision and rounding RNDU
sage: get_realfield_rndu(20)
Real Field with 20 bits of precision and rounding RNDU

class sage.rings.polynomial.real_roots.interval_bernstein_polynomial
Bases: object

An interval_bernstein_polynomial is an approximation to an exact polynomial. This approximation is in the
form of a Bernstein polynomial (a polynomial given as coefficients over a Bernstein basis) with interval coeffi-
cients.

The Bernstein basis of degree n over the region [a .. b] is the set of polynomials
\[ \binom{n}{k} (x-a)^k (b-x)^{n-k} / (b-a)^n \]
for 0 \leq k \leq n.

A degree-n interval Bernstein polynomial P with its region [a .. b] can represent an exact polynomial p in two
different ways: it can “contain” the polynomial or it can “bound” the polynomial.
We say that $P$ contains $p$ if, when $p$ is represented as a degree-$n$ Bernstein polynomial over $[a .. b]$, its coefficients are contained in the corresponding interval coefficients of $P$. For instance, $[0.9 .. 1.1]*x^2$ (which is a degree-2 interval Bernstein polynomial over $[0 .. 1]$) contains $x^2$.

We say that $P$ bounds $p$ if, for all $a \leq x \leq b$, there exists a polynomial $p'$ contained in $P$ such that $p(x) = p'(x)$. For instance, $[0 .. 1]*x$ is a degree-1 interval Bernstein polynomial which bounds $x^2$ over $[0 .. 1]$.

If $P$ contains $p$, then $P$ bounds $p$; but the converse is not necessarily true. In particular, if $n < m$, it is possible for a degree-$n$ interval Bernstein polynomial to bound a degree-$m$ polynomial; but it cannot contain the polynomial.

In the case where $P$ bounds $p$, we maintain extra information, the “slope error”. We say that $P$ (over $[a .. b]$) bounds $p$ with a slope error of $E$ (where $E$ is an interval) if there is a polynomial $p'$ contained in $P$ such that the derivative of $(p - p')$ is bounded by $E$ in the range $[a .. b]$. If $P$ bounds $p$ with a slope error of 0 then $P$ contains $p$.

(Note that “contains” and “bounds” are not standard terminology; I just made them up.)

Interval Bernstein polynomials are useful in finding real roots because of the following properties:

- Given an exact real polynomial $p$, we can compute an interval Bernstein polynomial over an arbitrary region containing $p$.
- Given an interval Bernstein polynomial $P$ over $[a .. c]$, where $a < b < c$, we can compute interval Bernstein polynomials $P_1$ over $[a .. b]$ and $P_2$ over $[b .. c]$, where $P_1$ and $P_2$ contain (or bound) all polynomials that $P$ contains (or bounds).
- Given a degree-$n$ interval Bernstein polynomial $P$ over $[a .. b]$, and $m < n$, we can compute a degree-$m$ interval Bernstein polynomial $P'$ over $[a .. b]$ that bounds all polynomials that $P$ bounds.
- It is sometimes possible to prove that no polynomial bounded by $P$ over $[a .. b]$ has any roots in $[a .. b]$. (Roughly, this is possible when no polynomial contained by $P$ has any complex roots near the line segment $[a .. b]$, where “near” is defined relative to the length $b-a$.)
- It is sometimes possible to prove that every polynomial bounded by $P$ over $[a .. b]$ with slope error $E$ has exactly one root in $[a .. b]$. (Roughly, this is possible when every polynomial contained by $P$ over $[a .. b]$ has exactly one root in $[a .. b]$, there are no other complex roots near the line segment $[a .. b]$, and every polynomial contained in $P$ has a derivative which is bounded away from zero over $[a .. b]$ by an amount which is large relative to $E$.)
- Starting from a sufficiently precise interval Bernstein polynomial, it is always possible to split it into polynomials which provably have 0 or 1 roots (as long as your original polynomial has no multiple real roots).

So a rough outline of a family of algorithms would be:

- Given a polynomial $p$, compute a region $[a .. b]$ in which any real roots must lie.
- Compute an interval Bernstein polynomial $P$ containing $p$ over $[a .. b]$.
- Keep splitting $P$ until you have isolated all the roots. Optionally, reduce the degree or the precision of the interval Bernstein polynomials at intermediate stages (to reduce computation time). If this seems not to be working, go back and try again with higher precision.

Obviously, there are many details to be worked out to turn this into a full algorithm, like:

- What initial precision is selected for computing $P$?
- How do you decide when to reduce the degree of intermediate polynomials?
- How do you decide when to reduce the precision of intermediate polynomials?
- How do you decide where to split the interval Bernstein polynomial regions?
- How do you decide when to give up and start over with higher precision?
Each set of answers to these questions gives a different algorithm (potentially with very different performance characteristics), but all of them can use this `interval_bernstein_polynomial` class as their basic building block.

To save computation time, all coefficients in an `interval_bernstein_polynomial` share the same interval width. (There is one exception: when creating an `interval_bernstein_polynomial`, the first and last coefficients can be marked as “known positive” or “known negative”. This has some of the same effect as having a (potentially) smaller interval width for these two coefficients, although it does not affect de Casteljau splitting.) To allow for widely varying coefficient magnitudes, all coefficients in an `interval_bernstein_polynomial` are scaled by \(2^n\) (where \(n\) may be positive, negative, or zero).

There are two representations for `interval_bernstein_polynomials`, integer and floating-point. These are the two subclasses of this class; `interval_bernstein_polynomial` itself is an abstract class.

`interval_bernstein_polynomial` and its subclasses are not expected to be used outside this file.

**region()**

**region_width()**

**try_rand_split(ctx, logging_note)**

Compute a random split point \(r\) (using the random number generator embedded in \(ctx\)). We require \(1/4 \leq r < 3/4\) (to ensure that recursive algorithms make progress).

Then, try doing a de Casteljau split of this polynomial at \(r\), resulting in polynomials \(p_1\) and \(p_2\). If we see that the sign of this polynomial is determined at \(r\), then return \((p_1, p_2, r)\); otherwise, return None.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
sage: bp1
<IBP: (50, 29, -27, -56, -11) + [0 .. 6) over [0 .. 43/64]>
sage: bp2
<IBP: (-11, 10, 49, 111, 200) + [0 .. 6) over [43/64 .. 1]>
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(seed=42), None)
sage: bp1
<IBP: (50, 32, -11, -41, -29) + [0 .. 6) over [0 .. 583/1024]>
sage: bp2
<IBP: (-29, -20, 13, 83, 200) + [0 .. 6) over [583/1024 .. 1]>
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
sage: bp1
rel tol
<IBP: (0.5, 0.2984375, -0.2642578125, -0.5511661529541015, -0.
˓→3145806974172592) + [-0.1 .. 0.01] over [0 .. 43/64]>
sage: bp2
rel tol
<IBP: (-0.3145806974172592, -0.19903896331787108, 0.04135986328125002, 0.
˓→43546875, 0.99) + [-0.1 .. 0.01] over [43/64 .. 1]>
```

**try_split(ctx, logging_note)**

Try doing a de Casteljau split of this polynomial at \(1/2\), resulting in polynomials \(p_1\) and \(p_2\). If we see that the sign of this polynomial is determined at \(1/2\), then return \((p_1, p_2, 1/2)\); otherwise, return None.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: bp1, bp2, _ = bp.try_split(mk_context(), None)
sage: bp1
(continues on next page)
```
Consider a polynomial (written in either the normal power basis or the Bernstein basis). Take its list of coefficients, omitting zeroes. Count the number of positions in the list where the sign of one coefficient is opposite the sign of the next coefficient.

This count is the number of sign variations of the polynomial. According to Descartes’ rule of signs, the number of real roots of the polynomial (counted with multiplicity) in a certain interval is always less than or equal to the number of sign variations, and the difference is always even. (If the polynomial is written in the power basis, the region is the positive reals; if the polynomial is written in the Bernstein basis over a particular region, then we count roots in that region.)

In particular, a polynomial with no sign variations has no real roots in the region, and a polynomial with one sign variation has one real root in the region.

In an interval Bernstein polynomial, we do not necessarily know the signs of the coefficients (if some of the coefficient intervals contain zero), so the polynomials contained by this interval polynomial may not all have the same number of sign variations. However, we can compute a range of possible numbers of sign variations.

This function returns the range, as a 2-tuple of integers.

```
class sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float
Bases: sage.rings.polynomial.real_roots.interval_bernstein_polynomial

This is the subclass of interval_bernstein_polynomial where polynomial coefficients are represented using floating-point numbers.

In the floating-point representation, each coefficient is represented as an IEEE double-precision float A, and the (shared) lower and upper interval widths E1 and E2. These represent the coefficients \((A+E1)*2^n <= c <= (A+E2)*2^n\).

Note that we always have \(E1 <= 0 <= E2\). Also, each floating-point coefficient has absolute value less than one.

(Note that mk_ibpf is a simple helper function for creating elements of interval_bernstein_polynomial_float in doctests.)
```

**EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpf([0.1, 0.2, 0.3], pos_err=0.5); print(bp)
degree 2 IBP with floating-point coefficients
sage: bp
<IBP: (0.1, 0.2, 0.3) + [0.0 .. 0.5]>
sage: bp.variations()
(0, 0)
sage: bp = mk_ibpf([-0.3, -0.1, 0.1, -0.1, -0.3, -0.1], lower=1, upper=5/4,
˓→usign=1, pos_err=0.2, scale_log2=-3, level=2, slope_err=RIF(pi)); print(bp)
degree 5 IBP with floating-point coefficients
```
de_casteljau(ctx, mid, msign=0)

Uses de Casteljau’s algorithm to compute the representation of this polynomial in a Bernstein basis over new regions.

INPUT:

- `mid` – where to split the Bernstein basis region; 0 < mid < 1
- `msign` – default 0 (unknown); the sign of this polynomial at mid

OUTPUT:

- `bp1, bp2` – the new interval Bernstein polynomials
- `ok` – a boolean; True if the sign of the original polynomial at mid is known

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: ctx = mk_context()
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)
sage: bp1
<IBP: (0.5, 0.30000000000000004, -0.2555555555555555, -0.5444444444444444, -0.
˓→32172839506172846) + [-0.1 .. 0.01] over [0 .. 2/3]>
sage: bp2
<IBP: (0.1765692706232836, -0.26556803047927313, -0.7802038132807364, -0.
˓→3966666666666666, 0.99) + [-0.1 .. 0.01] over [7/39 .. 1]>
```

get_msb_bit()

Returns an approximation of the log2 of the maximum of the absolute values of the coefficients, as an integer.

slope_range()

Compute a bound on the derivative of this polynomial, over its region.

EXAMPLES:
```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp.slope_range().str(style='brackets')
"[-4.8400000000000017 .. 7.2000000000000011]"
```

```python
class sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer
Bases: sage.rings.polynomial.real_roots.interval_bernstein_polynomial

This is the subclass of interval_bernstein_polynomial where polynomial coefficients are represented using integers.

In this integer representation, each coefficient is represented by a GMP arbitrary-precision integer \(A \), and a (shared) interval width \(E \) (which is a machine integer). These represent the coefficients \(A \cdot 2^n \leq c < (A+E) \cdot 2^n \).

(Note that mk_ibpi is a simple helper function for creating elements of interval_bernstein_polynomial_integer in doctests.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *

sage: bp = mk_ibpi([1, 2, 3], error=5); print(bp)
degree 2 IBP with 2-bit coefficients
sage: bp
<IBP: (1, 2, 3) + [0 .. 5)>
sage: bp.variations()
(0, 0)
sage: bp = mk_ibpi([-3, -1, 1, -1, -3, -1], lower=1, upper=5/4, usign=1, error=2, scale_log2=-3, level=2, slope_err=RIF(pi)); print(bp)
degree 5 IBP with 2-bit coefficients
sage: bp
<IBP: ((-3, -1, 1, -1, -3, -1) + [0 .. 2)) * 2^-3 over [1 .. 5/4]; usign 1; level 2; slope_err 3.141592653589794?>
sage: bp.variations()
(3, 3)
```

```python
as_float()

Compute an interval_bernstein_polynomial_float which contains (or bounds) all the polynomials this interval polynomial contains (or bounds).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *

sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: print(bp.as_float())
degree 4 IBP with floating-point coefficients
sage: bp.as_float()
<IBP: ((0.1953125, 0.078125, -0.3515625, -0.2734375, 0.78125) + [-1.2757025938e-16 .. 0.01953125]) * 2^8>
```

```python
de_casteljau(ctx, mid, msign=0)

Uses de Casteljau’s algorithm to compute the representation of this polynomial in a Bernstein basis over new regions.

INPUT:

- \(\text{mid} \) – where to split the Bernstein basis region; 0 < \text{mid} < 1
- \(\text{msign} \) – default 0 (unknown); the sign of this polynomial at \text{mid}
```
**OUTPUT:**

- $bp_1, bp_2$ – the new interval Bernstein polynomials
- $ok$ – a boolean; True if the sign of the original polynomial at mid is known

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: ctx = mk_context()
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)
sage: bp1
<IBP: (50, 35, 0, -29, -31) + [0 .. 6) over [0 .. 1/2]>
sage: bp2
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1]>
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 2/3)
sage: bp1
<IBP: (50, 30, -26, -55, -13) + [0 .. 6) over [0 .. 2/3]>
sage: bp2
<IBP: (-13, 8, 47, 110, 200) + [0 .. 6) over [2/3 .. 1]>
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 7/39)
sage: bp1
<IBP: (50, 44, 36, 27, 17) + [0 .. 6) over [0 .. 7/39]>
sage: bp2
<IBP: (17, -26, -75, -22, 200) + [0 .. 6) over [7/39 .. 1]>
```

**down_degree** $(ctx, max_err, exp_err_shift)$

Compute an interval Bernstein polynomial integer which bounds all the polynomials this interval polynomial bounds, but is of lesser degree.

During the computation, we find an “expected error” expected_err, which is the error inherent in our approach (this depends on the degrees involved, and is proportional to the error of the current polynomial).

We require that the error of the new interval polynomial be bounded both by max_err, and by expected_err $\ll exp\_err\_shift$. If we find such a polynomial $p$, then we return a pair of $p$ and some debugging/logging information. Otherwise, we return the pair (None, None).

If the resulting polynomial would have error more than $2^{17}$, then it is downscaled before returning.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: ctx = mk_context()
sage: bp
<IBP: (0, 100, 400, 903) + [0 .. 2)>
sage: dbp, _ = bp.down_degree(ctx, 10, 32)
sage: dbp
<IBP: (-1, 148, 901) + [0 .. 4); level 1; slope_err 0.??e2>
```

**down_degree_iter** $(ctx, max_scale)$

Compute a degree-reduced version of this interval polynomial, by iterating down_degree.

We stop when degree reduction would give a polynomial which is too inaccurate, meaning that either we think the current polynomial may have more roots in its region than the degree of the reduced polynomial, or that the least significant accurate bit in the result (on the absolute scale) would be larger than $1 \ll max\_scale$.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: ctx = mk_context()
sage: bp
<IBP: (0, 100, 400, 903) + [0 .. 2)>
sage: dbp, _ = bp.down_degree(ctx, 10, 32)
sage: dbp
<IBP: (-1, 148, 901) + [0 .. 4); level 1; slope_err 0.??e2>
```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903, 1600, 2500], error=2)
sage: ctx = mk_context()
sage: bp
<IBP: (0, 100, 400, 903, 1600, 2500) + [0 .. 2)>
sage: rbp = bp.down_degree_iter(ctx, 6)
sage: rbp
<IBP: (-4, 249, 2497) + [0 .. 9); level 2; slope_err 0.1e3>

**downscale**(bits)

Compute an interval_bernstein_polynomial_integer which contains (or bounds) all the polynomials this interval polynomial contains (or bounds), but uses “bits” fewer bits.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: bp.downscale(5)
<IBP: ((0, 3, 12, 28) + [0 .. 1)) * 2^5>
```

**get_msb_bit()**

Returns an approximation of the log2 of the maximum of the absolute values of the coefficients, as an integer.

**slope_range()**

Compute a bound on the derivative of this polynomial, over its region.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: bp.slope_range().str(style='brackets')
'[294.0000000000000 .. 1515.0000000000000]'
```

**sage.rings.polynomial.real_roots.intvec_to_doublevec**(<b>, err)

Given a vector of integers \( A = [a_1, \ldots, a_n] \), and an integer error bound \( E \), returns a vector of floating-point numbers \( B = [b_1, \ldots, b_n] \), lower and upper error bounds \( F_1 \) and \( F_2 \), and a scaling factor \( d \), such that

\[
(b_k + F_1) \ast 2^d \leq a_k
\]

and

\[
a_k + E \leq (b_k + F_2) \ast 2^d
\]

If \( b_j \) is the element of \( B \) with largest absolute value, then \( 0.5 \leq \text{abs}(b_j) < 1.0 \).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: intvec_to_doublevec(vector(ZZ, [1, 2, 3, 4, 5]), 3)
((0.125, 0.25, 0.375, 0.5, 0.625), -1.1275702593849246e-16, 0.37500000000000017, →3)
```

**class sage.rings.polynomial.real_roots.island**

Bases: object

This implements the island portion of my ocean-island root isolation algorithm. See the documentation for class ocean, for more information on the overall algorithm.
Island root refinement starts with a Bernstein polynomial whose region is the whole island (or perhaps slightly more than the island in certain cases). There are two subalgorithms; one when looking at a Bernstein polynomial covering a whole island (so we know that there are gaps on the left and right), and one when looking at a Bernstein polynomial covering the left segment of an island (so we know that there is a gap on the left, but the right is in the middle of an island). An important invariant of the left-segment subalgorithm over the region \([l .. r]\) is that it always finds a gap \([r0 .. r]\) ending at its right endpoint.

Ignoring degree reduction, downscaling (precision reduction), and failures to split, the algorithm is roughly:

**Whole island:**
1. If the island definitely has exactly one root, then return.
2. Split the island in (approximately) half.
3. If both halves definitely have no roots, then remove this island from its doubly-linked list (merging its left and right gaps) and return.
4. If either half definitely has no roots, then discard that half and call the whole-island algorithm with the other half, then return.
5. If both halves may have roots, then call the left-segment algorithm on the left half.
6. We now know that there is a gap immediately to the left of the right half, so call the whole-island algorithm on the right half, then return.

**Left segment:**
1. Split the left segment in (approximately) half.
2. If both halves definitely have no roots, then extend the left gap over the segment and return.
3. If the left half definitely has no roots, then extend the left gap over this half and call the left-segment algorithm on the right half, then return.
4. If the right half definitely has no roots, then split the island in two, creating a new gap. Call the whole-island algorithm on the left half, then return.
5. Both halves may have roots. Call the left-segment algorithm on the left half.
6. We now know that there is a gap immediately to the left of the right half, so call the left-segment algorithm on the right half, then return.

Degree reduction complicates this picture only slightly. Basically, we use heuristics to decide when degree reduction might be likely to succeed and be helpful; whenever this is the case, we attempt degree reduction.

Precision reduction and split failure add more complications. The algorithm maintains a stack of different-precision representations of the interval Bernstein polynomial. The base of the stack is at the highest (currently known) precision; each stack entry has approximately half the precision of the entry below it. When we do a split, we pop off the top of the stack, split it, then push whichever half we’re interested in back on the stack (so the different Bernstein polynomials may be over different regions). When we push a polynomial onto the stack, we may heuristically decide to push further lower-precision versions of the same polynomial onto the stack.

In the algorithm above, whenever we say “split in (approximately) half”, we attempt to split the top-of-stack polynomial using try_split() and try_rand_split(). However, these will fail if the sign of the polynomial at the chosen split point is unknown (if the polynomial is not known to high enough precision, or if the chosen split point actually happens to be a root of the polynomial). If this fails, then we discard the top-of-stack polynomial, and try again with the next polynomial down (which has approximately twice the precision). This next polynomial may not be over the same region; if not, we split it using de Casteljau’s algorithm to get a polynomial over (approximately) the same region first.

If we run out of higher-precision polynomials (if we empty out the entire stack), then we give up on root refinement for this island. The ocean class will notice this, provide the island with a higher-precision polynomial,
and restart root refinement. Basically the only information kept in that case is the lower and upper bounds on the island. Since these are updated whenever we discover a “half” (of an island or a segment) that definitely contains no roots, we never need to re-examine these gaps. (We could keep more information. For example, we could keep a record of split points that succeeded and failed. However, a split point that failed at lower precision is likely to succeed at higher precision, so it’s not worth avoiding. It could be useful to select split points that are known to succeed, but starting from a new Bernstein polynomial over a slightly different region, hitting such split points would require de Casteljau splits with non-power-of-two denominators, which are much much slower.)

\texttt{bp\_done}(bp)
Examine the given Bernstein polynomial to see if it is known to have exactly one root in its region. (In addition, we require that the polynomial region not include 0 or 1. This makes things work if the user gives explicit bounds to \texttt{real\_roots()}, where the lower or upper bound is a root of the polynomial. \texttt{real\_roots()} deals with this by explicitly detecting it, dividing out the appropriate linear polynomial, and adding the root to the returned list of roots; but then if the island considers itself “done” with a region including 0 or 1, the returned root regions can overlap with each other.)

\texttt{done}(ctx)
Check to see if the island is known to contain zero roots or is known to contain one root.

\texttt{has\_root}()
Assuming that the island is done (has either 0 or 1 roots), reports whether the island has a root.

\texttt{less\_bits}(ancestors, bp)
Heuristically pushes lower-precision polynomials on the polynomial stack. See the class documentation for class island for more information.

\texttt{more\_bits}(ctx, ancestors, bp, rightmost)
Find a Bernstein polynomial on the “ancestors” stack with more precision than \texttt{bp}; if it is over a different region, then shrink its region to (approximately) match that of \texttt{bp}. (If this is rightmost – if \texttt{bp} covers the whole island – then we only require that the new region cover the whole island fairly tightly; if this is not rightmost, then the new region will have exactly the same right boundary as \texttt{bp}, although the left boundary may vary slightly.)

\texttt{refine}(ctx)
Attempts to shrink and/or split this island into sub-island that each definitely contain exactly one root.

\texttt{refine\_recurse}(ctx, bp, ancestors, history, rightmost)
This implements the root isolation algorithm described in the class documentation for class island. This is the implementation of both the whole-island and the left-segment algorithms; if the flag rightmost is True, then it is the whole-island algorithm, otherwise the left-segment algorithm.

The precision-reduction stack is (ancestors + [bp]); that is, the top-of-stack is maintained separately.

\texttt{reset\_root\_width}(target\_width)
Modify the criteria for this island to require that it is not “done” until its width is less than or equal to target\_width.

\texttt{shrink\_bp}(ctx)
If the island’s Bernstein polynomial covers a region much larger than the island itself (in particular, if either the island’s left gap or right gap are totally contained in the polynomial’s region) then shrink the polynomial down to cover the island more tightly.

\texttt{class\ sage}\texttt{.rings}\texttt{.polynomial}\texttt{.real}\texttt{.roots}\texttt{.linear}\texttt{map}(lower, upper)
A simple class to map linearly between original coordinates (ranging from [lower .. upper]) and ocean coordinates (ranging from [0 .. 1]).

\texttt{from\_ocean}(region)
\texttt{to\_ocean}(region)
Given a floating-point vector, return the maximum of the absolute values of its elements.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: max_abs_doublevec(vector(RDF, [0.1, -0.767, 0.3, 0.693]))
0.767
```

Given a polynomial with real coefficients, computes an upper bound on its largest real root, using the first-lambda algorithm from “Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials”, by Akritas, Strzeboński, and Vigklas.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: maximum_root_first_lambda((x-1)*(x-2)*(x-3))
6.00000000000001
sage: maximum_root_first_lambda((x+1)*(x+2)*(x+3))
0.000000000000000
sage: maximum_root_first_lambda(x^2 - 1)
1.41421356237310
```

Given a polynomial with real coefficients, computes an upper bound on its largest real root, using the local-max algorithm from “Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials”, by Akritas, Strzeboński, and Vigklas.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: maximum_root_local_max((x-1)*(x-2)*(x-3))
12.00000000000001
sage: maximum_root_local_max((x+1)*(x+2)*(x+3))
0.000000000000000
sage: maximum_root_local_max(x^2 - 1)
1.41421356237310
```

Given two integer vectors a and b (of equal, nonzero length), return a pair of the minimum and maximum values taken on by a[i] - b[i].

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: a = vector(ZZ, [10, -30])
sage: b = vector(ZZ, [15, -60])
sage: min_max_delta_intvec(a, b)
(30, -5)
```

Given a floating-point vector b = (b0, ..., bn), compute the minimum and maximum values of b_{[j+1]} - b_j.

EXAMPLES:
sage.rings.polynomial.real_roots.min_max_diff_doublevec(vector(RDF, [1, 7, -2]))
(-9.0, 6.0)

sage.rings.polynomial.real_roots.min_max_diff_intvec(b)
Given an integer vector \( b = (b_0, \ldots, b_n) \), compute the minimum and maximum values of \( b_{j+1} - b_j \).

EXAMPLES:

sage.rings.polynomial.real_roots.mk_context(do_logging=False, seed=0, wordsize=32)
A simple wrapper for creating context objects with coercions, defaults, etc.
For use in doctests.
EXAMPLES:

sage.rings.polynomial.real_roots.mk_ibpf(coeffs, lower=0, upper=1, lsign=0, usign=0, neg_err=0, pos_err=0, scale_log2=0, level=0, slope_err=None)
A simple wrapper for creating interval_bernstein_polynomial_float objects with coercions, defaults, etc.
For use in doctests.
EXAMPLES:

sage.rings.polynomial.real_roots.mk_ibpi(coeffs, lower=0, upper=1, lsign=0, usign=0, error=1, scale_log2=0, level=0, slope_err=None)
A simple wrapper for creating interval_bernstein_polynomial_integer objects with coercions, defaults, etc.
For use in doctests.
EXAMPLES:

class sage.rings.polynomial.real_roots.ocean
Bases: object

Given the tools we’ve defined so far, there are many possible root isolation algorithms that differ on where to select split points, what precision to work at when, and when to attempt degree reduction.

Here we implement one particular algorithm, which I call the ocean-island algorithm. We start with an interval Bernstein polynomial defined over the region \([0..1]\). This region is the “ocean”. Using de Casteljau’s algorithm and Descartes’ rule of signs, we divide this region into subregions which may contain roots, and subregions which are guaranteed not to contain roots. Subregions which may contain roots are “islands”; subregions known not to contain roots are “gaps”.

2.1. Univariate Polynomials and Polynomial Rings
All the real root isolation work happens in class island. See the documentation of that class for more information.

An island can be told to refine itself until it contains only a single root. This may not succeed, if the island’s interval Bernstein polynomial does not have enough precision. The ocean basically loops, refining each of its islands, then increasing the precision of islands which did not succeed in isolating a single root; until all islands are done.

Increasing the precision of unsuccessful islands is done in a single pass using split_for_target(); this means it is possible to share work among multiple islands.

\texttt{all\_done()}

Returns true iff all islands are known to contain exactly one root.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.all_done()
False
sage: oc.find_roots()
sage: oc.all_done()
True
```

\texttt{approx\_bp(scale\_log2)}

Returns an approximation to our Bernstein polynomial with the given scale_log2.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.approx_bp(0)
<IBP: (0, -4, 2, -2) + [0 .. 1); lsign 1>
sage: oc.approx_bp(-20)
<IBP: ((349525, -3295525, 2850354, -1482835) + [0 .. 1)) * 2^-20>
```

\texttt{find\_roots()}

Isolate all roots in this ocean.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.find_roots()
sage: oc
ocean with precision 120 and 3 island(s)
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1, 0, -111/2, 0, 1108889/14, 0, 0, 0, -1]), lmap)
sage: oc.find_roots()
sage: oc
ocean with precision 240 and 3 island(s)
```

\texttt{increase\_precision()}

Increase the precision of the interval Bernstein polynomial held by any islands which are not done. (In normal use, calls to this function are separated by calls to self.refine_all().)
EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.increase_precision()
sage: oc.increase_precision()
sage: oc
ocean with precision 960 and 1 island(s)
```

**refine_all()**
Refine all islands which are not done (which are not known to contain exactly one root).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.refine_all()
sage: oc
ocean with precision 120 and 3 island(s)
```

**reset_root_width**(isle_num, target_width)
Require that the isle_num island have a width at most target_width.

If this is followed by a call to find_roots(), then the corresponding root will be refined to the specified width.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([-1, -1, -1]), lmap)
sage: oc.find_roots()
sage: oc.roots()
[(1/2, 3/4)]
sage: oc.reset_root_width(0, 1/2^200)
sage: oc.find_roots()
sage: oc.roots()
[(1/2, 3/4)]
```

**roots()**
Return the locations of all islands in this ocean. (If run after find_roots(), this is the location of all roots in the ocean.)

EXAMPLES:
sage.rings.polynomial.real_roots.precompute_degree_reduction_cache(n)
Compute and cache the matrices used for degree reduction, starting from degree n.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: precompute_degree_reduction_cache(5)
sage: dr_cache[5]
{3, [[121/126 8/63 -1/9 -2/63 11/126 -2/63]
 [-3/7 37/42 16/21 1/21 -3/7 1/6]
 [1/6 -3/7 1/21 16/21 37/42 -3/7]
3, [-2/63 11/126 -2/63 -1/9 8/63 121/126], 2,
[[121 16 -14 -4 11 -4]
 [-54 111 96 6 -54 21]
 [21 -54 6 96 111 -54]
 [-4 11 -4 -14 16 121], 126]}
```

sage.rings.polynomial.real_roots.pseudoinverse(m)
sage.rings.polynomial.real_roots.rational_root_bounds(p)
Given a polynomial p with real coefficients, computes rationals a and b, such that for every real root r of p, a < r < b. We try to find rationals which bound the roots somewhat tightly, yet are simple (have small numerators and denominators).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: rational_root_bounds((x-1)*(x-2)*(x-3))
(0, 7)
sage: rational_root_bounds(x^2)
(-1/2, 1/2)
sage: rational_root_bounds(x*(x+1))
(-3/2, 1/2)
sage: rational_root_bounds((x+2)*(x-3))
(-3, 6)
sage: rational_root_bounds(x^995 * (x^2 - 9999) - 1)
(-100, 1000/7)
sage: rational_root_bounds(x^995 * (x^2 - 9999) + 1)
(-142, 213/2)
```

If we can see that the polynomial has no real roots, return None.

```python
sage: rational_root_bounds(x^2 + 7) is None
True
```
Compute the real roots of a given polynomial with exact coefficients (integer, rational, and algebraic real coefficients are supported). Returns a list of pairs of a root and its multiplicity.

The root itself can be returned in one of three different ways. If retval=='rational', then it is returned as a pair of rationals that define a region that includes exactly one root. If retval=='interval', then it is returned as a RealIntervalFieldElement that includes exactly one root. If retval=='algebraic_real', then it is returned as an AlgebraicReal. In the former two cases, all the intervals are disjoint.

An alternate high-level algorithm can be used by selecting strategy='warp'. This affects the conversion into Bernstein polynomial form, but still uses the same ocean-island algorithm as the default algorithm. The ‘warp’ algorithm performs the conversion into Bernstein polynomial form much more quickly, but performs the rest of the computation slightly slower in some benchmarks. The ‘warp’ algorithm is particularly likely to be helpful for low-degree polynomials.

Part of the algorithm is randomized; the seed parameter gives a seed for the random number generator. (By default, the same seed is used for every call, so that results are repeatable.) The random seed may affect the running time, or the exact intervals returned, but the results are correct regardless of the seed used.

The bounds parameter lets you find roots in some proper subinterval of the reals; it takes a pair of a rational lower and upper bound and only roots within this bound will be found. Currently, specifying bounds does not work if you select strategy='warp', or if you use a polynomial with algebraic real coefficients.

By default, the algorithm will do a squarefree decomposition to get squarefree polynomials. The skip_squarefree parameter lets you skip this step. (If this step is skipped, and the polynomial has a repeated real root, then the algorithm will loop forever! However, repeated non-real roots are not a problem.)

For integer and rational coefficients, the squarefree decomposition is very fast, but it may be slow for algebraic reals. (It may trigger exact computation, so it might be arbitrarily slow. The only other way that this algorithm might trigger exact computation on algebraic real coefficients is that it checks the constant term of the input polynomial for equality with zero.)

Part of the algorithm works (approximately) by splitting numbers into word-size pieces (that is, pieces that fit into a machine word). For portability, this defaults to always selecting pieces suitable for a 32-bit machine; the wordsize parameter lets you make choices suitable for a 64-bit machine instead. (This affects the running time, and the exact intervals returned, but the results are correct on both 32- and 64-bit machines even if the wordsize is chosen “wrong”.)

The precision of the results can be improved (at the expense of time, of course) by specifying the max_diameter parameter. If specified, this sets the maximum diameter of the intervals returned. (Sage defines diameter() to be the relative diameter for intervals that do not contain 0, and the absolute diameter for intervals containing 0.) This directly affects the results in rational or interval return mode; in algebraic_real mode, it increases the precision of the intervals passed to the algebraic number package, which may speed up some operations on that algebraic real.

Some logging can be enabled with do_logging=True. If logging is enabled, then the normal values are not returned; instead, a pair of the internal context object and a list of all the roots in their internal form is returned.

ALGORITHM: We convert the polynomial into the Bernstein basis, and then use de Casteljau’s algorithm and Descartes’ rule of signs (using interval arithmetic) to locate the roots.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *

sage: x = polygen(ZZ)

sage: real_roots(x^3 - x^2 - x - 1)
```

(continues on next page)

(continued from previous page)

```python
sage: real_roots((x-1) * (x-2) * (x-3) * (x-8) * (x-13) * (x-21) * (x-34))
```

```
[((7/4, 19/8), 1), ((11/16, 33/32), 1), ((11/8, 33/16), 1), ((11/4, 55/16), 1), ((77/16, 165/32), 1), ((11/2, 33/4), 1), ((11, 55/4), 1), ((165/8, 341/16), 1), ((22, 44), 1)]
```

```python
sage: real_roots(x^5 * (x^2 - 9999)^2 - 1, seed=42)
```

```
[((-123196838480289/18014398509481984, 293964743458749/9007199254740992), 1), ((5192037235625926175810152497974343761/519229685853482776, 10888491270860312183/1088903754170030830827987437816582766592), 1), ((272212819296614397116039288660060007142141, 2), ((106332922627402845137352558954186101/106338296627397293683230456482242756608, 5316646143586569670144520163085464353/5316911983139663491615228241121378304), 1)]
```

```python
sage: real_roots(x^5 * (x^2 - 9999)^2 - 1, wordsize=64)
```

```
[((-62856503803202151050000/19342813113834066795298816, 90108655412564177624143/483570327845816698824704), 1), ((5444245633733152149909872280905010115/5445157870735051541543993718902913383292, 1), (5192037235625926175810152497974343761/519229685853482776, 10888491270860312183/1088903754170030830827987437816582766592), 1), ((272212819296614397116039288660060007142141, 2), ((106332922627402845137352558954186101/106338296627397293683230456482242756608, 5316646143586569670144520163085464353/5316911983139663491615228241121378304), 1)]
```

```python
sage: real_roots(x-1)
```

```
((209/256, 593/512), 1)]
```

```python
sage: real_roots(x*(x-1)*(x-2), bounds=(0, 2), retval='algebraic_real')
```

```
[(0, 1), (1, 1), (2, 1)]
```

```python
v = 2^40
```

```python
sage: real_roots((x^2-1)^2 * (x^2 - (v+1)/v))
```

```
[((1/2, 1), (2, 2), 1), ((0, 0), 1), ((81/128, 337/256), 1), ((11, 11/2), 1), ((62165404551223303269422781081352609336491632/6216540455122330326942278108135260512557018896646468680579971116449371265667191632, 1), (1125899906842725/11258999068426752, -562949953421275/562949953421322), 2), ((106332922627402845137352558954186101/106338296627397293683230456482242756608, 5316646143586569670144520163085464353/5316911983139663491615228241121378304), 1)]
```

```python
sage: real_roots(x^2 - 2)
```

```python
(continues on next page)```
```python
[((-3/2, -1), 1), ((1, 3/2), 1)]
sage: real_roots(x^2 - 2, retval='interval')
[(-2.?, 1), (2.?, 1)]
sage: real_roots(x^2 - 2, max_diameter=1/2^30)
[((-45012561012096082945350759177730865244897230942118203105306559954894985601579935498343/
  → 31826871302263450979446388139653376642919365103025391618696495211622708802136034115543276423091229702492...
  → 7212644121497099935831413222665927505592755799950501152782060571470109559971605970274534596862014728517418640889198609552?,
  → 1), ((45012561012096082945350759177730865244897230942118203105306559954894985601579935498343/
  → 31826871302263450979446388139653376642919365103025391618696495211622708802136034115543276423091229702492...
  → 7212644121497099935831413222665927505592755799950501152782060571470109559971605970274534596862014728517418640889198609552?,
  → 1))]
sage: real_roots(x^2 - 2, retval='interval', max_diameter=1/2^500)
[(-1.414213562373095?, 1), (1.414213562373095?, 1)]
sage: v = 2^40
sage: real_roots((x-1) * (x-(v+1)/v), retval='interval')
[(1.000000000000?, 1), (1.000000000001?, 1)]
sage: v = 2^60
sage: real_roots((x-1) * (x-(v+1)/v), retval='interval')
[(1.000000000000000000?, 1), (1.000000000000000001?, 1)]
sage: real_roots((x+3)*(x+1)*x*(x-1)*(x-2), strategy='warp')
[((499/525, 1173/875), 1), ((337/175, 849/175), 1)]
sage: real_roots((x+3)*(x+1)*x*(x-1)*(x-2), strategy='warp', retval='algebraic_real')
[(-3.000000000000000000?, 1), (-1.000000000000000000?,-1), (0, 1), (1.000000000000000000?,-1), (2.000000000000000000?,-1)]
sage: ar_rts = real_roots(x-1, retval='algebraic_real')
sage: ar_rts[0][0] == 1
True

If the polynomial has no real roots, we get an empty list.

```
Now we play with algebraic real coefficients.

```python
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: real_roots(p)
[((499/525, 2171/1925), 1), ((1173/875, 2521/1575), 1), ((337/175, 849/175), 1)]
sage: ar_rts = real_roots(p, retval='algebraic_real'); ar_rts
[(1.000000000000000?, 1), (1.414213562373095?, 1), (2.000000000000000?, 1)]
sage: ar_rts[1][0]^2 == 2
True
sage: ar_rts = real_roots(x*(x-1), retval='algebraic_real')
sage: ar_rts[0][0] == 0
True
sage: p2 = p * (p - 1/100); p2
x^6 - 8.82842712474619?*x^5 + 31.97056274847714?*x^4 - 60.77955262170047?*x^3 +
→ 63.98526763257801?*x^2 - 35.37613490585595?*x + 8.028284271247462?
sage: real_roots(p2, retval='interval')
[(1.00?, 1), (1.1?, 1), (1.38?, 1), (1.5?, 1), (2.00?, 1), (2.1?, 1)]
sage: p = (x - 1) * (x - sqrt(AA(2)))^2 * (x - 2)^3 * sqrt(AA(3))
sage: real_roots(p, retval='interval')
[(1.000000000000000?, 1), (1.414213562373095?, 2), (2.000000000000000?, 3)]
```

sage.rings.polynomial.real_roots.relative_bounds(a, b)

INPUT:
- (al, ah) – pair of rationals
- (bl, bh) – pair of rationals

OUTPUT:
- (cl, ch) – pair of rationals

Computes the linear transformation that maps (al, ah) to (0, 1); then applies this transformation to (bl, bh) and returns the result.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: relative_bounds((1/7, 1/4), (1/6, 1/5))
(2/9, 8/15)
```

sage.rings.polynomial.real_roots.reverse_intvec(c)

Given a vector of integers, reverse the vector (like the reverse() method on lists).

Modifies the input vector; has no return value.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: v = vector(ZZ, [1, 2, 3, 4]); v
(1, 2, 3, 4)
sage: reverse_intvec(v)
sage: v
(4, 3, 2, 1)
```
Given a polynomial with real coefficients, computes a lower and upper bound on its real roots. Uses algorithms of Akritas, Strzebo’nski, and Vigklas.

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: root_bounds((x-1)*(x-2)*(x-3))
(0.545454545454545, 6.00000000000001)
sage: root_bounds(x^2)
(0.000000000000000, 0.000000000000000)
sage: root_bounds(x*(x+1))
(-1.000000000000000, 0.000000000000000)
sage: root_bounds((x+2)*(x-3))
(-2.44948974278317, 3.46410161513776)
sage: root_bounds(x^995 * (x^2 - 9999) - 1)
(-99.9949998749937, 141.414284992713)
sage: root_bounds(x^995 * (x^2 - 9999) + 1)
(-141.414284992712, 99.9949998749938)
```

If we can see that the polynomial has no real roots, return None.

```python
sage: root_bounds(x^2 + 1) is None
True
```

Class sage.rings.polynomial.real_roots.rr_gap

Bases: object

A simple class representing the gaps between islands, in my ocean-island root isolation algorithm. Named “rr_gap” for “real roots gap”, because “gap” seemed too short and generic.

```python
class sage.rings.polynomial.real_roots.rr_gap:

region()
```

sage.rings.polynomial.real_roots.scale_intvec_var(c, k)

Given a vector of integers c of length n+1, and a rational $k = \frac{kn}{kd}$, multiplies each element $c[i]$ by $(kd^i)(kn^{n-i})$.

Modifies the input vector; has no return value.

Examples:

```python
sage: from sage.rings.polynomial.real_roots import *

sage: v = vector(ZZ, [1, 1, 1, 1])
sage: scale_intvec_var(v, 3/4)
(64, 48, 36, 27)
```

sage.rings.polynomial.real_roots.split_for_targets(ctx, bp, target_list, precise=False)

Given an interval Bernstein polynomial over a particular region (assumed to be a (not necessarily proper) sub-region of $[0 .. 1]$), and a list of targets, uses de Casteljau’s method to compute representations of the Bernstein polynomial over each target. Uses degree reduction as often as possible while maintaining the requested precision.

Each target is of the form $(lgap, ugap, b)$. Suppose $lgap.region()$ is $(l1, l2)$, and $ugap.region()$ is $(u1, u2)$. Then we will compute an interval Bernstein polynomial over a region $[l1 .. u1]$, where $l1 <= l <= l2$ and $u1 <= u <= u2$. (split_for_targets() is free to select arbitrary region endpoints within these bounds; it picks endpoints which make the computation easier.) The third component of the target, b, is the maximum allowed scale_log2 of the result; this is used to decide when degree reduction is allowed.
The pair \((l1, l2)\) can be replaced by None, meaning \([-\infty .. 0]\); or, \((u1, u2)\) can be replaced by None, meaning \([1 .. \infty]\).

There is another constraint on the region endpoints selected by split_for_targets() for a target \(((l1, l2), (u1, u2), b)\). We set a size goal \(g\), such that \((u - l) \leq g \times (u1 - l2)\). Normally \(g\) is 256/255, but if precise is True, then \(g\) is 65536/65535.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([1000000, -2000000, 3000000, -4000000, -5000000, -6000000])
sage: ctx = mk_context()
sage: bps = split_for_targets(ctx, bp, [(rr_gap(1/1234567893, 1/1234567892, 1), rr_gap(1/1234567891, 1/1234567890, 1), 12), (rr_gap(1/3, 1/2, -1), rr_gap(2/3, 3/4, -1), 6)])
sage: bps[0]
<IBP: (999992, 999992, 999992) + [0 .. 15) over [861339747114467984778830327/1063382396279326983230456482242756068 .. 5919081680259349813836527495938297487/73075081866541591018421635814590872966721488]; level 2; slope_err 0.?e12>
sage: bps[1]
<IBP: (-1562500, -1875001, -2222223, -2592593, -2969137, -3337450) + [0 .. 4) over [1/2 .. 2863311531/4294967296]>
```

sage.rings.polynomial.real_roots.subsample_vec_doctest \((a, slen, llen)\)

Given a vector of integers \(c\) of length \(d+1\), representing the coefficients of a degree-\(d\) polynomial \(p\), modify the vector to perform a Taylor shift by 1 (that is, \(p\) becomes \(p(x+1)\)).

This is the straightforward algorithm, which is not asymptotically optimal.

Modifies the input vector; has no return value.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: p = (x-1)*(x-2)*(x-3)
sage: v = vector(ZZ, p.list())
sage: p, v
(x^3 - 6*x^2 + 11*x - 6, (-6, 11, -6, 1))
sage: taylor_shift1_intvec(v)
sage: p(x+1), v
(x^3 - 3*x^2 + 2*x, (0, 2, -3, 1))
```

sage.rings.polynomial.real_roots.to_bernstein \((p, low=0, high=1, degree=None)\)

Given a polynomial \(p\) with integer coefficients, and rational bounds low and high, compute the exact rational Bernstein coefficients of \(p\) over the region \([low .. high]\). The optional parameter degree can be used to give a formal degree higher than the actual degree.

The return value is a pair \((c, scale)\); \(c\) represents the same polynomial as \(p \times scale\). (If you only care about the roots of the polynomial, then of course scale can be ignored.)

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: to_bernstein(x)
(\([0, 1]\), 1)
```
sage: to_bernstein(x, degree=5)
([0, 1/5, 3/5, 4/5, 1], 1)
sage: to_bernstein(x^3 + x^2 - x - 1, low=-3, high=3)
([-16, 24, -32, 32], 1)
sage: to_bernstein(x^3 + x^2 - x - 1, low=3, high=22/7)
([296352, 310464, 325206, 340605], 9261)

sage.rings.polynomial.real_roots.to_bernstein_warp(p)
Given a polynomial p with rational coefficients, compute the exact rational Bernstein coefficients of p(x/(x+1)).

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: to_bernstein_warp(1 + x + x^2 + x^3 + x^4 + x^5)
[1, 1/5, 1/10, 1/10, 1/5, 1]

class sage.rings.polynomial.real_roots.warp_map(neg)
A class to map between original coordinates and ocean coordinates. If neg is False, then the original->ocean transform is x -> x/(x+1), and the ocean->original transform is x/(1-x); this maps between [0 .. infinity] and [0 .. 1]. If neg is True, then the original->ocean transform is x -> -x/(1-x), and the ocean->original transform is the same thing: -x/(1-x). This maps between [0 .. -infinity] and [0 .. 1].

from_ocean(region)
to_ocean(region)

sage.rings.polynomial.real_roots.wordsizerational(a, b, wordsize)
Given rationals a and b, selects a de Casteljau split point r between a and b. An attempt is made to select an efficient split point (according to the criteria mentioned in the documentation for de_casteljau_intvec), with a bias towards split points near a.

In full detail:

Takes as input two rationals, a and b, such that 0<=a<=1, 0<=b<=1, and a!=b. Returns rational r, such that a<=r<=b or b<=r<=a. The denominator of r is a power of 2. Let m be min(r, 1-r), nm be numerator(m), and dml be log2(denominator(m)). The return value r is taken from the first of the following classes to have any members between a and b (except that if a <= 1/8, or 7/8 <= a, then class 2 is preferred to class 1).

1. dml < wordsize
2. bitsize(nm) <= wordsize
3. bitsize(nm) <= 2*wordsize
4. bitsize(nm) <= 3*wordsize
...
11. bitsize(nm) <= (k-1)*wordsize

From the first class to have members between a and b, r is chosen as the element of the class which is closest to a.

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: wordsizerational(1/5, 1/7, 32)
429496729/2147483648
dsage: wordsizerational(1/7, 1/5, 32)
2.1.19 Isolate Complex Roots of Polynomials

AUTHOR:

• Carl Witty (2007-11-18): initial version

This is an implementation of complex root isolation. That is, given a polynomial with exact complex coefficients, we compute isolating intervals for the complex roots of the polynomial. (Polynomials with integer, rational, Gaussian rational, or algebraic coefficients are supported.)

We use a simple algorithm. First, we compute a squarefree decomposition of the input polynomial; the resulting polynomials have no multiple roots. Then, we find the roots numerically, using NumPy (at low precision) or Pari (at high precision). Then, we verify the roots using interval arithmetic.

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: (x^5 - x - 1).roots(ring=CIF)
[(1.167303978261419?, 1), (-0.764884433600585? - 0.352471546031727?*I, 1), (-0.764884433600585? + 0.352471546031727?*I, 1), (0.181232444469876? - 1.083954101317711?*I, 1), (0.181232444469876? + 1.083954101317711?*I, 1)]
```

sage.rings.polynomial.complex_roots.complex_roots(p, skip_squarefree=False, retval='interval', min_prec=0)

Compute the complex roots of a given polynomial with exact coefficients (integer, rational, Gaussian rational, and algebraic coefficients are supported). Returns a list of pairs of a root and its multiplicity.

Roots are returned as a ComplexIntervalFieldElement; each interval includes exactly one root, and the intervals are disjoint.

By default, the algorithm will do a squarefree decomposition to get squarefree polynomials. The skip_squarefree parameter lets you skip this step. (If this step is skipped, and the polynomial has a repeated root, then the algorithm will loop forever!)

You can specify retval=’interval’ (the default) to get roots as complex intervals. The other options are retval=’algebraic’ to get elements of QQbar, or retval=’algebraic_real’ to get only the real roots, and to get them as elements of AA.

EXAMPLES:

```python
sage: from sage.rings.polynomial.complex_roots import complex_roots
sage: x = polygen(ZZ)
sage: complex_roots(x^5 - x - 1)
```
Unfortunately due to numerical noise there can be a small imaginary part to each root depending on CPU, compiler, etc, and that affects the printing order. So we verify the real part of each root and check that the imaginary part is small in both cases:

```
sage: v = complex_roots(x^2 + 27*x + 181)
```
```
# random
[(-14.61803398874989?, 1), (-12.38196601125015? + 0.?e-27*I, 1)]
```
```
sage: sorted((v[0][0].real(), v[1][0].real()))
[-14.61803398874989?, -12.38196601125015?]
```
```
sage: v[0][0].imag() < 1e25
True
```
```
sage: v[1][0].imag() < 1e25
True
```

We can get roots either as intervals, or as elements of QQbar or AA.

```
sage: K.<im> = QuadraticField(-1)
sage: eps = 1/2^100
sage: p = (x^2 + x - 1)
sage: p = p * p(x*im)
sage: p
-x^4 + (im - 1)*x^3 + im*x^2 + (-im - 1)*x + 1
```

Two of the roots have a zero real component; two have a zero imaginary component. These zero components will be found slightly inaccurately, and the exact values returned are very sensitive to the (non-portable) results of NumPy. So we post-process the roots for printing, to get predictable doctest results.

```
sage: def tiny(x):
....:     return x.contains_zero() and x.absolute_diameter() < 1e-14
sage: def smash(x):
....:     x = CIF(x[0]) # discard multiplicity
....:     if tiny(x.imag()): return x.real()
....:     if tiny(x.real()): return CIF(0, x.imag())

sage: p = (x^2 + x - 1)
sage: p = p * p(x*im)
sage: p
-x^4 + (im - 1)*x^3 + im*x^2 + (-im - 1)*x + 1
```

```
sage: rts = complex_roots(p)
sage: sorted(map(smash, rts))
[-1.618033988749895?, -0.618033988749895?*I, 1.618033988749895?*I, 0.618033988749895?]
```

We can get roots either as intervals, or as elements of QQbar or AA.
sage.rings.polynomial.complex_roots.interval_roots(p, rts, prec)

We are given a squarefree polynomial p, a list of estimated roots, and a precision.

We attempt to verify that the estimated roots are in fact distinct roots of the polynomial, using interval arithmetic of precision prec. If we succeed, we return a list of intervals bounding the roots; if we fail, we return None.

EXAMPLES:

sage: x = polygen(ZZ)
sage: p = x^3 - 1
sage: rts = [CC.zeta(3)^i for i in range(0, 3)]
sage: from sage.rings.polynomial.complex_roots import interval_roots
sage: interval_roots(p, rts, 53)
[1, -0.5000000000000000? + 0.8660254037844390?*I, -0.5000000000000000? - 0.
 + 0.8660254037844386?*I]
sage: interval_roots(p, rts, 200)
[1, -0.5000? + 0.
 + 0.86602540378443864676372317052936183471402626905190314027904?*I, -0.
 + 0.86602540378443864676372317052936183471402626905190314027904?*I]

sage.rings.polynomial.complex_roots.intervals_disjoint(intvs)

Given a list of complex intervals, check whether they are pairwise disjoint.

EXAMPLES:

sage: from sage.rings.polynomial.complex_roots import intervals_disjoint
sage: a = CIF(RIF(0, 3), 0)
sage: b = CIF(0, RIF(1, 3))
sage: c = CIF(RIF(1, 2), RIF(1, 2))
sage: d = CIF(RIF(2, 3), RIF(2, 3))

sage: intervals_disjoint([a,b,c,d])
False
sage: d2 = CIF(RIF(2, 3), RIF(2.001, 3))
sage: intervals_disjoint([a,b,c,d2])
True

2.1.20 Refine polynomial roots using Newton–Raphson

This is an implementation of the Newton–Raphson algorithm to approximate roots of complex polynomials. The implementation is based on interval arithmetic

AUTHORS:

* Carl Witty (2007-11-18): initial version

sage.rings.polynomial.refine_root.refine_root(ip, ipd, irt, fld)

We are given a polynomial and its derivative (with complex interval coefficients), an estimated root, and a complex interval field to use in computations. We use interval arithmetic to refine the root and prove that we have in fact isolated a unique root.

If we succeed, we return the isolated root; if we fail, we return None.

EXAMPLES:
sage: from sage.rings.polynomial.refine_root import refine_root
sage: x = polygen(ZZ)
sage: p = x^9 - 1
sage: ip = CIF['x'](p); ip
x^9 - 1
sage: ipd = CIF['x'](p.derivative()); ipd
9*x^8
sage: irt = CIF(CC(cos(2*pi/9), sin(2*pi/9))); irt
0.76604444311897802? + 0.64278760968653926?*I
sage: ip(irt)
0.?e-14 + 0.?e-14*I
sage: ipd(irt)
6.89439998807080? - 5.78508848717885?*I
sage: refine_root(ip, ipd, irt, CIF)
0.766044443118978? + 0.642787609686540?*I

2.1.21 Ideals in Univariate Polynomial Rings.

AUTHORS:

• David Roe (2009-12-14) – initial version.

class sage.rings.polynomial.ideal.Ideal_1poly_field(ring, gen)
Bases: sage.rings.ideal.Ideal_pid

An ideal in a univariate polynomial ring over a field.

groebner_basis(algorithm=None)

Return a Gröbner basis for this ideal.

The Gröbner basis has 1 element, namely the generator of the ideal. This trivial method exists for compatibility with multi-variate polynomial rings.

INPUT:

• algorithm – ignored

EXAMPLES:

sage: R.<x> = QQ[]
sage: I = R.ideal([x^2 - 1, x^3 - 1])
sage: G = I.groebner_basis(); G
[x - 1]
sage: type(G)
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>
sage: list(G)
[x - 1]

residue_class_degree()

Returns the degree of the generator of this ideal.

This function is included for compatibility with ideals in rings of integers of number fields.

EXAMPLES:

sage: R.<x> = QQ[]
sage: I = R.ideal([x^2 - 1, x^3 - 1])
sage: G = I.groebner_basis(); G
[x - 1]

(continues on next page)
residue_field(names=None, check=True)

If this ideal is \(P \subset F_p[t] \), returns the quotient \(F_p[t]/P \).

EXAMPLES:

```python
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + 2*t + 9)
sage: k.<a> = P.residue_field(); k
Residue field in a of Principal ideal \( (t^3 + 2*t + 9) \) of Univariate Polynomial Ring in t over Finite Field of size 17
```

2.1.22 Quotients of Univariate Polynomial Rings

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: S = R.quotient(x^3-3*x+1, 'alpha')
sage: S.gen()**2 in S
True
sage: x in S
True
sage: S.gen() in R
False
sage: 1 in S
True
```

class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRingFactory

Bases: sage.structure.factory.UniqueFactory

Create a quotient of a polynomial ring.

INPUT:

- ring - a univariate polynomial ring
- polynomial - an element of ring with a unit leading coefficient
- names - (optional) name for the variable

OUTPUT: Creates the quotient ring \(R/I \), where \(R \) is the ring and \(I \) is the principal ideal generated by polynomial.

EXAMPLES: We create the quotient ring \(\mathbb{Z}[x]/(x^3 + 7) \), and demonstrate many basic functions with it:

```python
tsage: Z = IntegerRing()
tsage: R = PolynomialRing(Z, 'x'); x = R.gen()
tsage: S = R.quotient(x^3 + 7, 'a'); a = S.gen()
tsage: S
Univariate Quotient Polynomial Ring in a over Integer Ring with modulus x^3 + 7
tsage: a^3
-7
tsage: S.is_field()
False
tsage: a in S
```

(continues on next page)
We create the “iterated” polynomial ring quotient

\[R = \left(\mathbb{F}_2[y]/(y^2 + y + 1) \right)[x]/(x^3 - 5). \]

Next we create a number field, but viewed as a quotient of a polynomial ring over \(\mathbb{Q} \):

There are conversion functions for easily going back and forth between quotients of polynomial rings over \(\mathbb{Q} \) and number fields:

The leading coefficient must be a unit (but need not be 1).

(continues on next page)
Traceback (most recent call last):
...
TypeError: polynomial must have unit leading coefficient

Another example:

```python
sage: R.<x> = PolynomialRing(IntegerRing())
sage: f = x^2 + 1
sage: R.quotient(f)
Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
```

This shows that the issue at trac ticket #5482 is solved:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = x^2-1
sage: R.quotient_by_principal_ideal(f)
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
```

create_key (ring, polynomial, names=None)

Return a unique description of the quotient ring specified by the arguments.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: PolynomialQuotientRing.create_key(R, x + 1)
(Univariate Polynomial Ring in x over Rational Field, x + 1, ('xbar',))
```

create_object (version, key)

Return the quotient ring specified by key.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: PolynomialQuotientRing.create_object((8, 0, 0), (R, x^2 - 1, ('xbar')))
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
```

class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_coercion

A coercion map from a PolynomialQuotientRing to a PolynomialQuotientRing that restricts to the coercion map on the underlying ring of constants.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: S.<x> = QQ[]
sage: f = S.quo(x^2 + 1).coerce_map_from(R.quo(x^2 + 1)); f
Coercion map:
  From: Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
  To:   Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
```

is_injective ()

Return whether this coercion is injective.

EXAMPLES:
If the modulus of the domain and the codomain is the same and the leading coefficient is a unit in the domain, then the map is injective if the underlying map on the constants is:

```python
sage: R.<x> = ZZ[]
sage: S.<x> = QQ[]
sage: f = S.quo(x^2 + 1).coerce_map_from(R.quo(x^2 + 1))
sage: f.is_injective()
True
```

is_surjective()

Return whether this coercion is surjective.

EXAMPLES:

If the underlying map on constants is surjective, then this coercion is surjective since the modulus of the codomain divides the modulus of the domain:

```python
sage: R.<x> = ZZ[]
sage: f = R.quo(x).coerce_map_from(R.quo(x^2))
sage: f.is_surjective()
True
```

If the modulus of the domain and the codomain is the same, then the map is surjective iff the underlying map on the constants is:

```python
sage: A.<a> = ZqCA(9)
sage: R.<x> = A[]
sage: S.<x> = A.fraction_field()[]
sage: f = S.quo(x^2 + 2).coerce_map_from(R.quo(x^2 + 2))
sage: f.is_surjective()
False
```

```python
class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain
```

Bases: `sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic, sage.rings.ring.IntegralDomain`

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
```

field_extension(names)

Takes a polynomial quotient ring, and returns a tuple with three elements: the NumberField defined by the same polynomial quotient ring, a homomorphism from its parent to the NumberField sending the generators to one another, and the inverse isomorphism.

2.1. Univariate Polynomials and Polynomial Rings 219
OUTPUT:

- field
- homomorphism from self to field
- homomorphism from field to self

EXAMPLES:

```sage
definition: R.<x> = PolynomialRing(Rationals())
definition: S.<alpha> = R.quotient(x^3-2)
definition: F.<b>, f, g = S.field_extension()
definition: F
Number Field in b with defining polynomial x^3 - 2
definition: a = F.gen()
definition: f(alpha)
b
definition: g(a)
alpha
```

Note that the parent ring must be an integral domain:

```sage
definition: R.<x> = GF(25,'f25')['x']
definition: S.<a> = R.quo(x^3 - 2)
definition: F, g, h = S.field_extension('b')
Traceback (most recent call last):
...
AttributeError: 'PolynomialQuotientRing_generic_with_category' object has no attribute 'field_extension'
```

Over a finite field, the corresponding field extension is not a number field:

```sage
definition: R.<x> = GF(25, 'a')['x']
definition: S.<a> = R.quo(x^3 + 2*x + 1)
definition: F, g, h = S.field_extension('b')
definition: h(F.0^2 + 3)
a^2 + 3
definition: g(x^2 + 2)
b^2 + 2
```

We do an example involving a relative number field:

```sage
definition: R.<x> = QQ['x']
definition: K.<a> = NumberField(x^3 - 2)
definition: S.<X> = K['X']
definition: Q.<b> = S.quo(X^3 + 2*X + 1)
definition: Q.field_extension('b')
(Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field, ...
Defn: b |--> b, Relative number field morphism:
From: Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field
To: Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial X^3 - 2 with modulus X^3 + 2*X + 1
Defn: b |--> b
  a |--> a)
```

We slightly change the example above so it works.
AUTHORS:

• Craig Citro (2006-08-07)

• William Stein (2006-08-06)

class sage.rings.polynomial.polynomial_quotient_ring.

PolynomialQuotientRing_field (ring, polynomial, name=None)

Bases: sage.rings.polynomial.polynomial_quotient_ring. PolynomialQuotientRing_domain, sage.rings.ring.Field

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
```

```
base_field()

Alias for base_ring, when we’re defined over a field.

complex_embeddings (prec=53)

Return all homomorphisms of this ring into the approximate complex field with precision prec.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = x^5 + x + 17
sage: k = R.quotient(f)
sage: v = k.complex_embeddings(100)
sage: [phi(k(0)^2) for phi in v]
[2.9757207403766761469671194565, -2.4088994371613850098316292196 + 1.902540530528612407363802*I, -2.4088994371613850098316292196 - 1.902540530528612407363802*I, 0.92103906697304693634806949137 - 3.0553311845779473265418086*I, 0.92103906697304693634806949137 + 3.0553311845779473265418086*I]
```

(continues on next page)
class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic(ring, polynomial, name=None, category=None)

Bases: sage.rings.ring.CommutativeRing

Quotient of a univariate polynomial ring by an ideal.

EXAMPLES:

```python
code:
sage: R.<x> = PolynomialRing(Integers(8)); R
Univariate Polynomial Ring in x over Ring of integers modulo 8
sage: S.<xbar> = R.quotient(x^2 + 1); S
Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 8 with modulus x^2 + 1
```

We demonstrate object persistence.

```python
code:
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
```

We create some sample homomorphisms;

```python
code:
sage: R.<x> = PolynomialRing(ZZ)
sage: S = R.quo(x^2-4)
sage: f = S.hom([2])
sage: f
Ring morphism:
 From: Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 - 4
 To: Integer Ring
 Defn: xbar |--> 2
sage: f(x)
2
sage: f(x^2 - 4)
0
sage: f(x^2)
4
```

Element

alias of PolynomialQuotientRingElement

S_class_group(S, proof=True)

If self is an étale algebra $D$ over a number field $K$ (i.e. a quotient of $K[x]$ by a squarefree polynomial) and $S$ is a finite set of places of $K$, return a list of generators of the $S$-class group of $D$.

NOTE:

Since the ideal function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs $(gen, order)$, where $gen$ is a tuple of generators of an ideal $I$ and $order$ is the order of $I$ in the $S$-class group.
INPUT:
- \( S \) - a set of primes of the coefficient ring
- \( \text{proof} \) - if False, assume the GRH in computing the class group

OUTPUT:
A list of generators of the \( S \)-class group, in the form \((\text{gen}, \text{order})\), where \text{gen} is a tuple of elements generating a fractional ideal \( I \) and \text{order} is the order of \( I \) in the \( S \)-class group.

EXAMPLES:
A trivial algebra over \( \mathbb{Q}(\sqrt{-5}) \) has the same class group as its base:

\begin{verbatim}
  sage: K.<a> = QuadraticField(-5)
  sage: R.<x> = K[]
  sage: S.<xbar> = R.quotient(x)
  sage: S.S_class_group([])
  [((2, -a + 1), 2)]
\end{verbatim}

When we include the prime \((2, -a + 1)\), the \( S \)-class group becomes trivial:

\begin{verbatim}
  sage: S.S_class_group([K.ideal(2, -a+1)])
  []
\end{verbatim}

Here is an example where the base and the extension both contribute to the class group:

\begin{verbatim}
  sage: K.<a> = QuadraticField(-5)
  sage: K.class_group()
  Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 5
  sage: R.<x> = K[]
  sage: S.<xbar> = R.quotient(x^2 + 23)
  sage: S.S_class_group([])
  [((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
  sage: S.S_class_group([K.ideal(3, a-1)])
  []
  sage: S.S_class_group([K.ideal(2, a+1)])
  []
  sage: S.S_class_group([K.ideal(a)])
  [((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
\end{verbatim}

Now we take an example over a nontrivial base with two factors, each contributing to the class group:

\begin{verbatim}
  sage: K.<a> = QuadraticField(-5)
  sage: R.<x> = K[]
  sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
  sage: S.S_class_group([])
  [((1/4*xbar^2 + 31/4, (-1/4*a + 1/4)*xbar^2 - 31/4*a + 31/4, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/4)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/4), 6),
   ((-1/4*xbar^2 - 23/4, (1/4*a - 1/4)*xbar^2 + 23/4*a - 23/4, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/4)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/4), 6),
   ((-5/4*xbar^2 - 115/4, (continues on next page)
\end{verbatim}
By using the ideal $(a)$, we cut the part of the class group coming from $x^2 + 31$ from 12 to 2, i.e. we lose a generator of order 6 (this was fixed in trac ticket #14489):

```
sage: S.S_class_group([K.ideal(a)])
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6), ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 2)]
```

Note that all the returned values live where we expect them to:

```
sage: CG = S.S_class_group([])
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic_with_category.element_class'>
sage: type(CG[0][1])
<type 'sage.rings.integer.Integer'>
```

**S_units** ($S$, proof=True)

If self is an étale algebra $D$ over a number field $K$ (i.e. a quotient of $K[x]$ by a squarefree polynomial) and $S$ is a finite set of places of $K$, return a list of generators of the group of $S$-units of $D$.

**INPUT:**

- $S$ - a set of primes of the base field
- proof - if False, assume the GRH in computing the class group

**OUTPUT:**

A list of generators of the $S$-unit group, in the form $(gen, order)$, where $gen$ is a unit of order $order$.

**EXAMPLES:**

```
sage: K.<a> = QuadraticField(-3)
sage: K.unit_group() # Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
```

```
sage: u, o = K.S_units([[]][0]); o
6
sage: 2*u - 1 in {a, -a}
True
sage: u^6
1
sage: u^3
-1
sage: 2*u^2 + 1 in {a, -a}
True
```
sage: K.<a> = QuadraticField(-3)
sage: y = polygen(K)
sage: L.<b> = K['y'].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2 + 3 with modulus y^3 + 5
sage: [u for u, o in L.S_units([]) if o is Infinity]
[(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2,
  2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
sage: [u for u, o in L.S_units([K.ideal(1/2*a - 3/2)]) if o is Infinity]
[(-1/6*a - 1/2)*b^2 - (1/3*a - 1)*b + 4/3*a,
  (-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2,
  2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
sage: [u for u, o in L.S_units([K.ideal(2)]) if o is Infinity]
[(1/2*a - 1/2)*b^2 + (a + 1)*b + 3,
  (1/6*a + 1/2)*b^2 + (-1/3*a + 1)*b - 5/6*a + 1/2,
  (1/6*a + 1/2)*b^2 + (-1/3*a + 1)*b - 5/6*a - 1/2,
  (-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2,
  2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]

Note that all the returned values live where we expect them to:

sage: U = L.S_units([])
sage: type(U[0][0])
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field_with_category.element_class'>
sage: type(U[0][1])
<type 'sage.rings.integer.Integer'>
sage: type(U[1][1])
<class 'sage.rings.infinity.PlusInfinity'>

ambient()

Return the base ring of the polynomial ring, of which this ring is a quotient.

EXAMPLES:

The base ring of \( \mathbb{Z}[z]/(z^3 + z^2 + z + 1) \) is \( \mathbb{Z} \).

sage: R.<z> = PolynomialRing(ZZ)
sage: S.<beta> = R.quotient(z^3 + z^2 + z + 1)
sage: S.base_ring()
Integer Ring

Next we make a polynomial quotient ring over \( S \) and ask for its base ring.

sage: T.<t> = PolynomialRing(S)
sage: W = T.quotient(t^99 + 99)
sage: W.base_ring()
Univariate Quotient Polynomial Ring in beta over Integer Ring with modulus z^3 + z^2 + z + 1

cardinality()

Return the number of elements of this quotient ring.

order is an alias of cardinality.

EXAMPLES:

2.1. Univariate Polynomials and Polynomial Rings 225
```
sage: R.<x> = ZZ[

sage: R.quo(1).cardinality()
1
sage: R.quo(x^3-2).cardinality()
+Infinity
sage: R.quo(1).order()
1
sage: R.quo(x^3-2).order()
+Infinity
```

```
sage: R.<x> = GF(9,'a')[

sage: R.quo(2*x^3+x+1).cardinality()
729
sage: GF(9,'a').extension(2*x^3+x+1).cardinality()
729
sage: R.quo(2).cardinality()
1
```

```
characteristic()

Return the characteristic of this quotient ring.

This is always the same as the characteristic of the base ring.

EXAMPLES:
```
```
sage: R.<z> = PolynomialRing(ZZ)
sage: S.<a> = R.quo(z - 19)
sage: S.characteristic()
0
sage: R.<x> = PolynomialRing(GF(9,'a'))
sage: S = R.quotient(x^3 + 1)
sage: S.characteristic()
3
```

```
class_group (proof=True)

If self is a quotient ring of a polynomial ring over a number field \(K \), by a polynomial of nonzero discriminant, return a list of generators of the class group.

NOTE:
Since the \texttt{ideal} function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs \((\text{gen}, \text{order})\), where \text{gen} is a tuple of generators of an ideal \(I \) and \text{order} is the order of \(I \) in the class group.

INPUT:
* \texttt{proof} - if False, assume the GRH in computing the class group

OUTPUT:
A list of pairs \((\text{gen}, \text{order})\), where \text{gen} is a tuple of elements generating a fractional ideal and \text{order} is the order of \(I \) in the class group.

EXAMPLES:
```
```
sage: K.<a> = QuadraticField(-3)
sage: K.class_group()
Class group of order 1 of Number Field in a with defining polynomial x^2 + 3
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
```
A trivial algebra over $\mathbb{Q}(\sqrt{-5})$ has the same class group as its base:

```python
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.class_group()
[(2, -a + 1), 2]]
```

The same algebra constructed in a different way:

```python
sage: K.<a> = QQ['x'].quotient(x^2 + 5)
sage: K.class_group(()
[(2, a + 1), 2]]
```

Here is an example where the base and the extension both contribute to the class group:

```python
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
sage: S.class_group()
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6),
((-5/4*xbar^2 - 115/4, 1/4*a*xbar^2 + 23/4*a, -1/16*xbar^3 - 7/16*xbar^2 - 23/16*xbar - 161/16, 6),
```

Here is an example of a product of number fields, both of which contribute to the class group:

```python
sage: R.<x> = QQ[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 47))
sage: S.class_group()
[((1/12*xbar^2 + 47/12, 1/48*xbar^3 - 1/48*xbar^2 + 47/48*xbar - 47/48), 3),
((-1/12*xbar^2 - 23/12, -1/48*xbar^3 - 1/48*xbar^2 - 23/48*xbar - 23/48), 5)]
```

Now we take an example over a nontrivial base with two factors, each contributing to the class group:

```python
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
sage: S.class_group()
```

(continues on next page)
1/16*a*xbar^3 - 1/16*a*xbar^2 + 23/16*a*xbar - 23/16*a),
2)]

Note that all the returned values live where we expect them to:

```python
sage: CG = S.class_group()
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_
˓
generic_with_category.element_class'>
sage: type(CG[0][1])
<type 'sage.rings.integer.Integer'>
```

**construction()**

Functorial construction of self

EXAMPLES:

```python
sage: P.<t>=ZZ[]
sage: Q = P.quo(5+t^2)
sage: F, R = Q.construction()
sage: F(R) == Q
True
sage: P.<t> = GF(3)[]
sage: Q = P.quo([2+t^2])
sage: F, R = Q.construction()
sage: F(R) == Q
True
```

**AUTHOR:**

– Simon King (2010-05)

**cover_ring()**

Return the polynomial ring of which this ring is the quotient.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2-2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

**degree()**

Return the degree of this quotient ring. The degree is the degree of the polynomial that we quotiented out by.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2005 + 1)
sage: S.degree()
2005
```

**discriminant(v=None)**

Return the discriminant of this ring over the base ring. This is by definition the discriminant of the polynomial that we quotiented out by.

EXAMPLES:
The discriminant of the quotient polynomial ring need not equal the discriminant of the corresponding number field, since the discriminant of a number field is by definition the discriminant of the ring of integers of the number field:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^3 + x^2 + x + 1)
sage: S.discriminant()
-16
sage: S = R.quotient((x + 1) * (x + 1))
sage: S.discriminant()
0
```

**gen** (n=0)

Return the generator of this quotient ring. This is the equivalence class of the image of the generator of the polynomial ring.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 8, 'gamma')
sage: S.gen()
gamma
```

**is_field** (proof=True)

Return whether or not this quotient ring is a field.

EXAMPLES:

```
sage: R.<z> = PolynomialRing(ZZ)
sage: S = R.quo(z^2-2)
sage: S.is_field()
False
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 2)
sage: S.is_field()
True
```

If proof is True, requires the is_irreducible method of the modulus to be implemented:

```
sage: R1.<x> = Qp(2)[]
sage: F1 = R1.quotient_ring(x^2+x+1)
sage: R2.<x> = F1[]
sage: F2 = R2.quotient_ring(x^2+x+1)
sage: F2.is_field()
Traceback (most recent call last):
...
NotImplementedError: can not rewrite Univariate Quotient Polynomial Ring in...
```

2.1. Univariate Polynomials and Polynomial Rings 229
is_finite()  
Return whether or not this quotient ring is finite.

EXAMPLES:

```sage
g.<x> = ZZ[]
g.is_finite()
True
g.<x^3-2>.is_finite()
False
```

```sage
g.<x> = GF(9,'a')[]
g.<x^3+x+1>.is_finite()
True
g.<x>.is_finite()
True
```

```sage
g.<v> = GF(2)[]
g.quotient(v^2-v).is_finite()
True
```

krull_dimension()  
lift(x)  
Return an element of the ambient ring mapping to the given argument.

EXAMPLES:

```sage
g.<x> = QQ[]
g.<x>^2+2
g.lift(g.<x>^3)
-2*x
```

```sage
g.<x> = PolynomialRing(GF(3))
g.<x>^2 - 2
g.modulus()
x^2 + 1
```

ngens()  
Return the number of generators of this quotient ring over the base ring. This function always returns 1.

EXAMPLES:

```sage
g.<x> = PolynomialRing(QQ)
g.<y> = PolynomialRing(x)
g.<z> = g.quotient(y + x)
g.<z>.ngens()
1
```

(continues on next page)
**number_field()**

Return the number field isomorphic to this quotient polynomial ring, if possible.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^29 - 17*x - 1)
sage: K = S.number_field()
sage: K
Number Field in alpha with defining polynomial x^29 - 17*x - 1
sage: alpha = K.gen()
sage: alpha^29
17*alpha + 1
```

**order()**

Return the number of elements of this quotient ring.

order is an alias of cardinality.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: R.quo(1).cardinality()
1
sage: R.quo(x^3-2).cardinality()
+Infinity
sage: R.quo(1).order()
1
sage: R.quo(x^3-2).order()
+Infinity
sage: R.<x> = GF(9,'a')[]
sage: R.quo(2*x^3+x+1).cardinality()
729
sage: GF(9,'a').extension(2*x^3+x+1).cardinality()
729
sage: R.quo(2).cardinality()
1
```

**polynomial_ring()**

Return the polynomial ring of which this ring is the quotient.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2-2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

**random_element(**args, **kwds)**

Return a random element of this quotient ring.

**INPUT:**
• *args, **kwds - Arguments for randomization that are passed on to the random_element method of the polynomial ring, and from there to the base ring

OUTPUT:
• Element of this quotient ring

EXAMPLES:

```
sage: F1.<a> = GF(2^7)
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.random_element()
(a^6 + 1)*u + a^5 + a^4 + a^3 + 1
```

retract (x)
Return the coercion of x into this polynomial quotient ring.

The rings that coerce into the quotient ring canonically are:
• this ring
• any canonically isomorphic ring
• anything that coerces into the ring of which this is the quotient

selmer_group (S, m, proof=True)
If self is an étale algebra \( D \) over a number field \( K \) (i.e. a quotient of \( K[x] \) by a squarefree polynomial) and \( S \) is a finite set of places of \( K \), compute the Selmer group \( D(S, m) \). This is the subgroup of \( D^*/(D^*)^m \) consisting of elements \( a \) such that \( D(\sqrt{a})/D \) is unramified at all primes of \( D \) lying above a place outside of \( S \).

INPUT:
• \( S \) - A set of primes of the coefficient ring (which is a number field).
• \( m \) - a positive integer
• \( \text{proof} \) - if False, assume the GRH in computing the class group

OUTPUT:
A list of generators of \( D(S, m) \).

EXAMPLES:

```
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: D.<T> = R.quotient(x)
sage: D.selmer_group((), 2)
[-1, 2]
sage: D.selmer_group([K.ideal(2, -a+1)], 2)
[2, -1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 2)
[2, a + 1, -1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 4)
[2, a + 1, -1]
sage: D.selmer_group([K.ideal(2, -a+1)], 3)
[2]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 3)
[2, a + 1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1), K.ideal(a)], 3)
[2, a + 1, a]
```
units (proof=True)

If this quotient ring is over a number field \(K\), by a polynomial of nonzero discriminant, returns a list of
generators of the units.

INPUT:

- proof - if False, assume the GRH in computing the class group

OUTPUT:

A list of generators of the unit group, in the form \((\text{gen}, \text{order})\), where \(\text{gen}\) is a unit of order \(\text{order}\).

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-3)
sage: K.unit_group()
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3
sage: K<a> = QQ['x'].quotient(x^2 + 3)
sage: u = K.units()[0][0]
True
sage: u^6
1
sage: u^3
-1
sage: 2*u^2 + 1 in {a, -a}
True
sage: K.<a> = QQ['x'].quotient(x^2 + 5)
sage: K.units(())
[(-1, 2)]
```

```python
sage: K.<a> = QuadraticField(-3)
sage: y = polygen(K)
sage: L. = K['y'].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2 + 3 with modulus y^3 + 5
sage: [u for u, o in L.units() if o is Infinity]
[(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2,
 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
```

Note that all the returned values live where we expect them to:

```python
sage: L. = K['y'].quotient(y^3 + 5)
sage: type(L.units()[0][0])
<...>
sage: type(L.units()[0][1])
<...>
```

(continues on next page)
sage: type(U[1][1])
<class 'sage.rings.infinity.PlusInfinity'>
sage.rings.polynomial.polynomial_quotient_ring.is_PolynomialQuotientRing(x)

2.1.23 Elements of Quotients of Univariate Polynomial Rings

EXAMPLES: We create a quotient of a univariate polynomial ring over \( \mathbb{Z} \).

```
sage: R.<x> = ZZ[]
sage: S.<a> = R.quotient(x^3 + 3*x -1)
sage: 2 * a^3
-6*a + 2
```

Next we make a univariate polynomial ring over \( \mathbb{Z}[x]/(x^3 + 3x - 1) \).

```
sage: S1.<y> = S[]
```

And, we quotient out that by \( y^2 + a \).

```
sage: T.<z> = S1.quotient(y^2+a)
```

In the quotient \( z^2 \) is \(-a\).

```
sage: z^2
-a
```

And since \( a^3 = -3x + 1 \), we have:

```
sage: z^6
3*a - 1
```

```
sage: R.<x> = PolynomialRing(Integers(9))
sage: S.<a> = R.quotient(x^4 + 2*x^3 + x + 2)
sage: a^100
7*a^3 + 8*a + 7
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3-2)
sage: a
a
sage: a^3
2
```

For the purposes of comparison in Sage the quotient element \( a^3 \) is equal to \( x^3 \). This is because when the comparison is performed, the right element is coerced into the parent of the left element, and \( x^3 \) coerces to \( a^3 \).

```
sage: a == x
True
sage: a^3 == x^3
True
sage: x^3
x^3
sage: S(x^3)
2
```
AUTHORS:

• William Stein

class sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement

Bases:  
sage.rings.polynomial.polynomial_singular_interface.
Polynomial_singular_repr,sage.structure.element.CommutativeRingElement

Element of a quotient of a polynomial ring.

EXAMPLES:

sage: P.<x> = QQ[]
sage: Q.<xi> = P.quo([(x^2+1)])
sage: xi^2
-1
sage: singular(xi)
xi
sage: (singular(xi)*singular(xi)).NF('std(0)')
-1

charpoly(var)

The characteristic polynomial of this element, which is by definition the characteristic polynomial of right
multiplication by this element.

INPUT:

• var - string - the variable name

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quo(x^3 -389*x^2 + 2*x - 5)
sage: a.charpoly('X')
X^3 - 389*X^2 + 2*X - 5
sage: S(1).fcp('y')
(y - 1)^3

fcp(var='x')

Return the factorization of the characteristic polynomial of this element.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quo(x^3 -389*x^2 + 2*x - 5)
sage: a.fcp('x')
x^3 - 389*x^2 + 2*x - 5

field_extension(names)

Given a polynomial with base ring a quotient ring, return a 3-tuple: a number field defined by the same
polynomial, a homomorphism from its parent to the number field sending the generators to one another,
and the inverse isomorphism.

INPUT:

• names - name of generator of output field

OUTPUT:
• field
• homomorphism from self to field
• homomorphism from field to self

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^3-2)
sage: F.<a>, f, g = alpha.field_extension()
sage: F
Number Field in a with defining polynomial x^3 - 2
sage: a = F.gen()
sage: f(alpha)
a
sage: g(a)
alpha
```

Over a finite field, the corresponding field extension is not a number field:

```python
sage: R.<x> = GF(25,'b')['x']
sage: S.<a> = R.quo(x^3 + 2*x + 1)
sage: F., g, h = a.field_extension()
sage: h(b^2 + 3)
a^2 + 3
sage: g(x^2 + 2)
b^2 + 2
```

We do an example involving a relative number field:

```python
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3-2)
sage: S.<X> = K['X']
sage: Q. = S.quo(X^3 + 2*X + 1)
sage: F, g, h = b.field_extension('c')
```

Another more awkward example:

```python
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3-2)
sage: S.<X> = K['X']
sage: f = (X+a)^3 + 2*(X+a) + 1
sage: f
X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
sage: Q.<z> = S.quo(f)
sage: F.<w>, g, h = z.field_extension()
sage: c = g(z)
sage: f(c)
0
sage: h(g(z))
z
sage: g(h(w))
w
```

AUTHORS:

• Craig Citro (2006-08-06)
• William Stein (2006-08-06)
.. function:: is_unit()
   
   Return True if self is invertible.

   **Warning:** Only implemented when the base ring is a field.

   **EXAMPLES:**

   .. verbatim::

      sage: R.<x> = QQ[]
      sage: S.<y> = R.quotient(x^2 + 2*x + 1)
      sage: (2*y).is_unit()
      True
      sage: (y+1).is_unit()
      False

.. function:: lift()

   Return lift of this polynomial quotient ring element to the unique equivalent polynomial of degree less than the modulus.

   **EXAMPLES:**

   .. verbatim::

      sage: R.<x> = PolynomialRing(QQ)
      sage: S.<a> = R.quotient(x^3-2)
      sage: b = a^2 - 3
      sage: b
      a^2 - 3
      sage: b.lift()
      x^2 - 3

.. function:: list(copy=True)

   Return list of the elements of self, of length the same as the degree of the quotient polynomial ring.

   **EXAMPLES:**

   .. verbatim::

      sage: R.<x> = PolynomialRing(QQ)
      sage: S.<a> = R.quotient(x^3 + 2*x - 5)
      sage: a^10
      -134*a^2 - 35*a + 300
      sage: (a^10).list()
      [300, -35, -134]

.. function:: matrix()

   The matrix of right multiplication by this element on the power basis for the quotient ring.

   **EXAMPLES:**

   .. verbatim::

      sage: R.<x> = PolynomialRing(QQ)
      sage: S.<a> = R.quotient(x^3 + 2*x - 5)
      sage: a.matrix()
      [ 0 1 0]
      [ 0 0 1]
      [ 5 -2 0]

.. function:: minpoly()

   The minimal polynomial of this element, which is by definition the minimal polynomial of right multiplication by this element.

.. function:: norm()

   The norm of this element, which is the norm of the matrix of right multiplication by this element.
EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
sage: a.norm()
5
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
sage: a.trace()
389
```

2.1.24 Polynomial Compilers

AUTHORS:

- Tom Boothby, initial design & implementation
- Robert Bradshaw, bug fixes / suggested & assisted with significant design improvements

```python
class sage.rings.polynomial.polynomial_compiled.CompiledPolynomialFunction
 Bases: object

 Builds a reasonably optimized directed acyclic graph representation for a given polynomial. A CompiledPolynomialFunction is callable from python, though it is a little faster to call the eval function from pyrex.

 This class is not intended to be called by a user, rather, it is intended to improve the performance of immutable polynomial objects.

 Todo:
 - Recursive calling
 - Faster casting of coefficients / argument
 - Multivariate polynomials
 - Cython implementation of Pippenger’s Algorithm that doesn’t depend heavily upon dicts.
 - Computation of parameter sequence suggested by Pippenger
 - Univariate exponentiation can use Brauer’s method to improve extremely sparse polynomials of very high degree
```

```
class sage.rings.polynomial.polynomial_compiled.abc_pd
 Bases: sage.rings.polynomial.polynomial_compiled.binary_pd

class sage.rings.polynomial.polynomial_compiled.add_pd
 Bases: sage.rings.polynomial.polynomial_compiled.binary_pd

class sage.rings.polynomial.polynomial_compiled.binary_pd
 Bases: sage.rings.polynomial.polynomial_compiled.generic_pd

class sage.rings.polynomial.polynomial_compiled.coeff_pd
 Bases: sage.rings.polynomial.polynomial_compiled.generic_pd
```

Chapter 2. Univariate Polynomials
2.1.25 Polynomial multiplication by Kronecker substitution

2.2 Generic Convolution

Asymptotically fast convolution of lists over any commutative ring in which the multiply-by-two map is injective. (More precisely, if \( x \in R \), and \( x = 2^k \cdot y \) for some \( k \geq 0 \), we require that \( R(x/2^k) \) returns \( y \).)

The main function to be exported is convolution().

EXAMPLES:

```
sage: convolution([1, 2, 3, 4, 5], [6, 7])
[6, 19, 32, 45, 58, 35]
```

The convolution function is reasonably fast, even though it is written in pure Python. For example, the following takes less than a second:

```
sage: v = convolution(list(range(1000)), list(range(1000)))
```

ALGORITHM: Converts the problem to multiplication in the ring \( S[x]/(x^M - 1) \), where \( S = R[y]/(y^{2K} + 1) \) (where \( R \) is the original base ring). Performs FFT with respect to the roots of unity \( 1, y, y^2, \ldots, y^{2K-1} \) in \( S \). The FFT/IFFT are accomplished with just additions and subtractions and rotating python lists. (I think this algorithm is essentially due to Schonhage, not completely sure.) The pointwise multiplications are handled recursively, switching to a classical algorithm at some point.

Complexity is \( O(n \log(n) \log(\log(n))) \) additions/subtractions in \( R \) and \( O(n \log(n)) \) multiplications in \( R \).

AUTHORS:

- David Harvey (2007-07): first implementation
- William Stein: editing the docstrings for inclusion in Sage.

```
sage.rings.polynomial.convolution.convolution(L1, L2)
```

Returns convolution of non-empty lists \( L1 \) and \( L2 \). \( L1 \) and \( L2 \) may have arbitrary lengths.
EXAMPLES:

```python
sage: convolution([1, 2, 3], [4, 5, 6, 7])
[4, 13, 28, 34, 32, 21]
```

```python
sage: R = Integers(47)
sage: L1 = [R.random_element() for _ in range(1000)]
sage: L2 = [R.random_element() for _ in range(3756)]
sage: L3 = convolution(L1, L2)
True
sage: len(L3) == 1000 + 3756 - 1
True
```

### 2.3 Fast calculation of cyclotomic polynomials

This module provides a function `cyclotomic_coeffs()`, which calculates the coefficients of cyclotomic polynomials. This is not intended to be invoked directly by the user, but it is called by the method `cyclotomic_polynomial()` method of univariate polynomial ring objects and the top-level `cyclotomic_polynomial()` function.

```python
sage: from sage.rings.polynomial.cyclotomic import cyclotomic_coeffs
sage: cyclotomic_coeffs(30)
[1, 1, 0, -1, -1, -1, 0, 1, 1]
sage: cyclotomic_coeffs(10^5)
{0: 1, 10000: -1, 20000: 1, 30000: -1, 40000: 1}
```

```python
sage: R = QQ['x']
sage: R(cyclotomic_coeffs(30))
x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
```

Check that it has the right degree:

```python
sage: euler_phi(30)
8
sage: R(cyclotomic_coeffs(14)).factor()
x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
```
The coefficients are not always +/-1:

```
sage: cyclotomic_coeffs(105)
[1, 1, 1, 0, 0, -1, -1, -2, -1, 0, 1, 1, 1, 1, 1, 1, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1]
```

In fact the height is not bounded by any polynomial in n (Erdos), although takes a while just to exceed linear:

```
sage: v = cyclotomic_coeffs(1181895)
sage: max(v)
14102773
```

The polynomial is a palindrome for any n:

```
sage: n = ZZ.random_element(50000)
sage: factor(n)
3 * 10009
sage: v = cyclotomic_coeffs(n, sparse=False)
sage: v == list(reversed(v))
True
```

AUTHORS:

• Robert Bradshaw (2007-10-27): initial version (inspired by work of Andrew Arnold and Michael Mongan)

```python
sage.rings.polynomial.cyclotomic.cyclotomic_value(n, x)
```

Return the value of the \( n \)-th cyclotomic polynomial evaluated at \( x \).

**INPUT:**

• \( n \) – an Integer, specifying which cyclotomic polynomial is to be evaluated.
• \( x \) – an element of a ring.

**OUTPUT:**

• the value of the cyclotomic polynomial \( \Phi_n \) at \( x \).

**ALGORITHM:**

• Reduce to the case that \( n \) is squarefree: use the identity

\[
\Phi_n(x) = \Phi_q(x^{n/q})
\]

where \( q \) is the radical of \( n \).

• Use the identity

\[
\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)},
\]

where \( \mu \) is the Möbius function.

• Handles the case that \( x^d = 1 \) for some \( d \), but not the case that \( x^d - 1 \) is non-invertible: in this case polynomial evaluation is used instead.

**EXAMPLES:**

```
sage: cyclotomic_value(51, 3)
1282860140677441
sage: cyclotomic_polynomial(51)(3)
1282860140677441
```
It works for non-integral values as well:

```
sage: cyclotomic_value(144, 4/3)
79148745433504023621920372161/79766443076872509863361
sage: cyclotomic_polynomial(144)(4/3)
79148745433504023621920372161/79766443076872509863361
```
3.1 Multivariate Polynomials and Polynomial Rings

Sage implements multivariate polynomial rings through several backends. The most generic implementation uses the classes `sage.rings.polynomial.polydict.PolyDict` and `sage.rings.polynomial.polydict.ETuple` to construct a dictionary with exponent tuples as keys and coefficients as values.

Additionally, specialized and optimized implementations over many specific coefficient rings are implemented via a shared library interface to SINGULAR; and polynomials in the boolean polynomial ring

\[ \mathbb{F}_2[x_1, \ldots, x_n]/\langle x_1^2 + x_1, \ldots, x_n^2 + x_n \rangle. \]

are implemented using the PolyBoRi library (cf. `sage.rings.polynomial.pbori`).

3.1.1 Term orders

Sage supports the following term orders:

**Lexicographic (lex)** \( x^a < x^b \) if and only if there exists \( 1 \leq i \leq n \) such that \( a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘lp’ in Singular.

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: x > y
True
sage: x > y^2
True
sage: x > 1
True
sage: x^1*y^2 > y^3*z^4
True
sage: x^3*y^2*z^4 < x^3*y^2*z^1
False
```

**Degree reverse lexicographic (degrevlex)** Let \( \deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \( x^a < x^b \) if and only if \( \deg(x^a) < \deg(x^b) \) or \( \deg(x^a) = \deg(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_i = b_i, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘dp’ in Singular.

**EXAMPLES:**
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='degrevlex')
sage: x > y
True
sage: x > y^2*z
False
sage: x > 1
True
sage: x^1*y^5*z^3 > x^4*y^1*z^3
True
sage: x^2*y*z^2 > x*y^3*z
False

Degree lexicographic (deglex) Let $\deg(x^a) = a_1 + a_2 + \cdots + a_n$, then $x^a < x^b$ if and only if $\deg(x^a) < \deg(x^b)$ or $\deg(x^a) = \deg(x^b)$ and there exists $1 \leq i \leq n$ such that $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i$. This term order is called ‘Dp’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='deglex')
sage: x > y
True
sage: y > x^2
True
sage: x > 1
True
sage: x*y > z
True

Inverse lexicographic (invlex) $x^a < x^b$ if and only if there exists $1 \leq i \leq n$ such that $a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i < b_i$. This order is called ‘rp’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='invlex')
sage: x > y
False
sage: y > x^2
True
sage: x > 1
True
sage: x*y > z
False

Negative lexicographic (neglex) $x^a < x^b$ if and only if there exists $1 \leq i \leq n$ such that $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i$. This term order is called ‘ls’ in Singular.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='neglex')
sage: x > y
False
sage: x > 1
False

This term order only makes sense in a non-commutative setting because if $P$ is the ring $k[x_1, \ldots, x_n]$ and term order ‘invlex’ then it is equivalent to the ring $k[x_n, \ldots, x_1]$ with term order ‘lex’.

Negative lexicographic (neglex) $x^a < x^b$ if and only if there exists $1 \leq i \leq n$ such that $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i$. This term order is called ‘ls’ in Singular.

EXAMPLES:
Negative degree reverse lexicographic (negdegrevlex) Let \( \deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \( x^a < x^b \) if and only if \( \deg(x^a) > \deg(x^b) \) or \( \deg(x^a) = \deg(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘ds’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdegrevlex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
True
sage: x^2*y*z^2 > x*y^3*z
False
```

Negative degree lexicographic (negdeglex) Let \( \deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \( x^a < x^b \) if and only if \( \deg(x^a) > \deg(x^b) \) or \( \deg(x^a) = \deg(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘Ds’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdeglex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
True
sage: x^2*y*z^2 > x*y^3*z
True
```

Weighted degree reverse lexicographic (wdegrevlex), positive integral weights Let \( \deg_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n \) with weights \( w \), then \( x^a < x^b \) if and only if \( \deg_w(x^a) < \deg_w(x^b) \) or \( \deg_w(x^a) = \deg_w(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘wp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('wdegrevlex',(1,2,3)))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
(continues on next page)
Weighted degree lexicographic (wdeglex), positive integral weights

Let \(\deg_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n \) with weights \(w \), then \(x^a < x^b \) if and only if \(\deg_w(x^a) < \deg_w(x^b) \) or \(\deg_w(x^a) = \deg_w(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘Wp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('wdeglex',(1,2,3)))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
False
sage: y*z > x^3*y
False
```

Negative weighted degree reverse lexicographic (negwdegrevlex), positive integral weights

Let \(\deg_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n \) with weights \(w \), then \(x^a < x^b \) if and only if \(\deg_w(x^a) > \deg_w(x^b) \) or \(\deg_w(x^a) = \deg_w(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i \). This term order is called ‘ws’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdegrevlex',(1,2,3)))
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > x^2*z
True
sage: y*z > x^3*y
False
```

Degree negative lexicographic (degneglex)

Let \(\deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \(x^a < x^b \) if and only if \(\deg(x^a) < \deg(x^b) \) or \(\deg(x^a) = \deg(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i \). This term order is called ‘dp_asc’ in PolyBoRi. Singular has the extra weight vector ordering ‘(r(1:n),rp)’ for this purpose.

EXAMPLES:

```python
sage: t = TermOrder('degneglex')
sage: P.<x,y,z> = PolynomialRing(QQ, order=t)
sage: x*y > y*z # indirect doctest
False
sage: x*y > x
True
```

Negative weighted degree lexicographic (negwdeglex), positive integral weights

Let \(\deg_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n \) with weights \(w \), then \(x^a < x^b \) if and only if \(\deg_w(x^a) > \deg_w(x^b) \) or \(\deg_w(x^a) = \deg_w(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘Ws’ in Singular.
EXAMPLES:

```
Sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdeglex',(1,2,3)))
Sage: x > y
    True
Sage: x > x^2
    True
Sage: x > 1
    False
Sage: x^1*y^2 > x^2*z
    False
Sage: y*z > x^3*y
    False
```

Of these, only ‘degrevlex’, ‘deglex’, ‘degneglex’, ‘wdegrevlex’, ‘wdeglex’, ‘invlex’ and ‘lex’ are global orders.

Sage also supports matrix term order. Given a square matrix A,

$$x^a <_A x^b$$

if and only if $Aa < Ab$

where $<$ is the lexicographic term order.

EXAMPLES:

```
Sage: m = matrix(2,[2,3,0,1]); m
[2 3]
[0 1]
Sage: T = TermOrder(m); T
Matrix term order with matrix
[2 3]
[0 1]
Sage: P.<a,b> = PolynomialRing(QQ,2,order=T)
Sage: P
Multivariate Polynomial Ring in a, b over Rational Field
Sage: a > b
    False
Sage: a^3 < b^2
    True
Sage: S = TermOrder('M(2,3,0,1)')
Sage: T == S
    True
```

Additionally all these monomial orders may be combined to product or block orders, defined as:

Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_m)$ be two ordered sets of variables, $<_1$ a monomial order on $k[x]$ and $<_2$ a monomial order on $k[y]$.

The product order (or block order) $< := (<_1, <_2)$ on $k[x,y]$ is defined as: $x^a y^b < x^A y^B$ if and only if $x^a <_1 x^A$ or $(x^a = x^A$ and $y^b <_2 y^B$).

These block orders are constructed in Sage by giving a comma separated list of monomial orders with the length of each block attached to them.

EXAMPLES:

As an example, consider constructing a block order where the first four variables are compared using the degree reverse lexicographical order while the last two variables in the second block are compared using negative lexicographical order.

```
Sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6,order='degrevlex(4),neglex(2)')
Sage: a > c^4
```

(continues on next page)
The same result can be achieved by:

```
sage: T1 = TermOrder('degrevlex',4)
sage: T2 = TermOrder('neglex',2)
sage: T = T1 + T2
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6, order=T)
sage: a > c^4
False
sage: a > e^4
True
```

If any other unsupported term order is given the provided string can be forced to be passed through as is to Singular, Macaulay2, and Magma. This ensures that it is for example possible to calculate a Groebner basis with respect to some term order Singular supports but Sage doesn’t:

```
sage: T = TermOrder("royalorder")
Traceback (most recent call last):
...  
ValueError: unknown term order 'royalorder'
sage: T = TermOrder("royalorder", force=True)
sage: T
royalorder term order
sage: T.singular_str()
'royalorder'
```

AUTHORS:

- David Joyner and William Stein: initial version of multi_polynomial_ring
- Kiran S. Kedlaya: added macaulay2 interface
- Martin Albrecht: implemented native term orders, refactoring
- Kwankyu Lee: implemented matrix and weighted degree term orders, refactoring
sage: t=TermOrder('deglex',2)+TermOrder('lex',2)
sage: t.blocks()
(Degree lexicographic term order, Lexicographic term order)

compare_tuples_block(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_deglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_degneglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_degrevlex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_invlex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_lex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_matrix(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_negdeglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_negdegneglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_negdegrevlex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_neglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_negwdeglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_negwdegneglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_negwdegrevlex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_wdeglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_wdegneglex(f, g)
DEPRECATED in trac ticket #21766

compare_tuples_wdegrevlex(f, g)
DEPRECATED in trac ticket #21766

greater_tuple_block(f, g)
Return the greater exponent tuple with respect to the block order as specified when constructing this element.
This method is called by the lm/lc/Lt methods of MPolynomial_polydict.

INPUT:
• f - exponent tuple
• g - exponent tuple

EXAMPLES:

sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),
˓→degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest

(continues on next page)
greater_tuple_deglxex \((f, g)\)
Return the greater exponent tuple with respect to the total degree lexicographical term order.

INPUT:
- \(f\) - exponent tuple
- \(g\) - exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='deglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the \(\text{lm/lc/lt}\) methods of \texttt{MPolynomial_polydict}.

greater_tuple_degneglex \((f, g)\)
Return the greater exponent tuple with respect to the degree negative lexicographical term order.

INPUT:
- \(f\) - exponent tuple
- \(g\) - exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degneglex')
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the \(\text{lm/lc/lt}\) methods of \texttt{MPolynomial_polydict}.

greater_tuple_degrevlex \((f, g)\)
Return the greater exponent tuple with respect to the total degree reversed lexicographical term order.

INPUT:
- \(f\) - exponent tuple
- \(g\) - exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the \(\text{lm/lc/lt}\) methods of \texttt{MPolynomial_polydict}.
greater_tuple_invlex \((f, g)\)

Return the greater exponent tuple with respect to the inversed lexicographical term order.

INPUT:

- \(f\) - exponent tuple
- \(g\) - exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='invlex')
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = y + x^2; f.lm()
```

This method is called by the \(\text{lm/lc/lt}\) methods of \texttt{MPolynomial_polydict}.

greater_tuple_lex \((f, g)\)

Return the greater exponent tuple with respect to the lexicographical term order.

INPUT:

- \(f\) - exponent tuple
- \(g\) - exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='lex')
sage: f = x + y^2; f.lm() # indirect doctest
x
```

This method is called by the \(\text{lm/lc/lt}\) methods of \texttt{MPolynomial_polydict}.

greater_tuple_matrix \((f, g)\)

Return the greater exponent tuple with respect to the matrix term order.

INPUT:

- \(f\) - exponent tuple
- \(g\) - exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='m(1,3,1,0)')
sage: y > x^2 # indirect doctest
True
sage: y > x^3
False
```

greater_tuple_negdeglex \((f, g)\)

Return the greater exponent tuple with respect to the negative degree lexicographical term order.

INPUT:

- \(f\) - exponent tuple
- \(g\) - exponent tuple

EXAMPLES:
This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial_polydict}.

\texttt{greater_tuple_negdegrevlex}(f,g)

Return the greater exponent tuple with respect to the negative degree reverse lexicographical term order.

INPUT:

\begin{itemize}
 \item f - exponent tuple
 \item g - exponent tuple
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdeglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x^2*y*z^2
\end{verbatim}

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial_polydict}.

\texttt{greater_tuple_neglex}(f,g)

Return the greater exponent tuple with respect to the negative lexicographical term order.

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial_polydict}.

INPUT:

\begin{itemize}
 \item f - exponent tuple
 \item g - exponent tuple
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3), \rightarrow degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest
c^4
sage: g = a + e^4; g.lm()
a
\end{verbatim}

\texttt{greater_tuple_negwdeglex}(f,g)

Return the greater exponent tuple with respect to the negative weighted degree lexicographical term order.

INPUT:

\begin{itemize}
 \item f - exponent tuple
 \item g - exponent tuple
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3), \rightarrow degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest
c^4
sage: g = a + e^4; g.lm()
a
\end{verbatim}
```python
sage: t = TermOrder('negwdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
  x
sage: f = x + x^2; f.lm()
  x
sage: f = x^3 + z; f.lm()
  x^3
```

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial}_\texttt{polydict}.

\textbf{greater_tuple_negwdegrevlex}(f, g)

Return the greater exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

INPUT:

\begin{itemize}
 \item f - exponent tuple
 \item g - exponent tuple
\end{itemize}

EXAMPLES:

```python
sage: t = TermOrder('negwdegrevlex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
  x
sage: f = x + x^2; f.lm()
  x
sage: f = x^3 + z; f.lm()
  x^3
```

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial}_\texttt{polydict}.

\textbf{greater_tuple_wdeglex}(f, g)

Return the greater exponent tuple with respect to the weighted degree lexicographical term order.

INPUT:

\begin{itemize}
 \item f - exponent tuple
 \item g - exponent tuple
\end{itemize}

EXAMPLES:

```python
sage: t = TermOrder('wdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
  y
sage: f = x*y + z; f.lm()
  x*y
```

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial}_\texttt{polydict}.

\textbf{greater_tuple_wdegrevlex}(f, g)

Return the greater exponent tuple with respect to the weighted degree reverse lexicographical term order.

INPUT:

\begin{itemize}
 \item f - exponent tuple
 \item g - exponent tuple
\end{itemize}

EXAMPLES:

```python
sage: t = TermOrder('wdegrevlex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
  y
sage: f = x*y + z; f.lm()
  x*y
```

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial}_\texttt{polydict}.

\textbf{greater_tuple_wdegrevlex}(f, g)

Return the greater exponent tuple with respect to the weighted degree reverse lexicographical term order.

INPUT:

\begin{itemize}
 \item f - exponent tuple
 \item g - exponent tuple
\end{itemize}

EXAMPLES:
EXAMPLES:

```python
sage: t = TermOrder('wdegrevlex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm()  # indirect doctest
y
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial_polydict}.

\textbf{is_block_order()}

Return true if self is a block term order.

EXAMPLES:

```python
sage: t=TermOrder('deglex',2)+TermOrder('lex',2)
sage: t.is_block_order()
True
```

\textbf{is_global()}

Return true if this term order is definitely global. Return false otherwise, which includes unknown term orders.

EXAMPLES:

```python
sage: T = TermOrder('lex')
sage: T.is_global()
True
sage: T = TermOrder('negdeglex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_global()
False
sage: T = TermOrder('degrevlex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_global()
True
```

\textbf{is_local()}

Return true if this term order is definitely local. Return false otherwise, which includes unknown term orders.

EXAMPLES:

```python
sage: T = TermOrder('lex')
sage: T.is_local()
False
sage: T = TermOrder('negdeglex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_local()
True
sage: T = TermOrder('degrevlex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_local()
False
```

\textbf{is_weighted_degree_order()}

Return true if self is a weighted degree term order.

EXAMPLES:
macaulay2_str()
Return a Macaulay2 representation of self.
Used to convert polynomial rings to their Macaulay2 representation.
EXAMPLES:

```
sage: P = PolynomialRing(GF(127), 8, names='x', order='degrevlex(3), lex(5)')
sage: T = P.term_order()
sage: T.macaulay2_str()
'{GRevLex => 3,Lex => 5}'
sage: P._macaulay2_()  # optional - macaulay2
ZZ
---[x0, x1, x2, x3, x4, x5, x6, x7, Degrees => {8:1}, Heft => {1},
  →MonomialOrder => {MonomialSize => 16}, DegreeRank => 1]
127
  → (GRevLex => {3:1} }
  → (Lex => 5      }
  → (Position => Up }
```
singular_moreblocks()

Return a the number of additional blocks SINGULAR needs to allocate for handling non-native orderings like degneglex.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(127),10,names='x',order='lex(3),deglex(5),lex(2)')
sage: T = P.term_order()
sage: T.singular_moreblocks()
0
sage: P = PolynomialRing(GF(127),10,names='x',order='lex(3),degneglex(5),
    →lex(2)')
sage: T = P.term_order()
sage: T.singular_moreblocks()
1
sage: P = PolynomialRing(GF(127),10,names='x',order='degneglex(5),degneglex(5)
    →')
sage: T = P.term_order()
sage: T.singular_moreblocks()
2
```

singular_str()

Return a SINGULAR representation of self.

Used to convert polynomial rings to their SINGULAR representation.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(127),10,names='x',order='lex(3),deglex(5),lex(2)')
sage: T = P.term_order()
sage: T.singular_str()
'(lp(3),Dp(5),lp(2))'
```

sortkey_block(f)

Return the sortkey of an exponent tuple with respect to the block order as specified when constructing this element.

INPUT:

- f – exponent tuple

EXAMPLES:

```python
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),
    →degrevlex(3)')
sage: a > c^4 # indirect doctest
False
sage: a > e^4
True
```
sortkey_deglex(f)
Return the sortkey of an exponent tuple with respect to the degree lexicographical term order.

INPUT:
• f – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='deglex')
sage: x > y^2  # indirect doctest
False
sage: x > 1
True
```

sortkey_degneglex(f)
Return the sortkey of an exponent tuple with respect to the degree negative lexicographical term order.

INPUT:
• f – exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degneglex')
sage: x*y > y*z  # indirect doctest
False
sage: x*y > x
True
```

sortkey_degrevlex(f)
Return the sortkey of an exponent tuple with respect to the degree reversed lexicographical term order.

INPUT:
• f – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='degrevlex')
sage: x > y^2  # indirect doctest
False
sage: x > 1
True
```

sortkey_invlex(f)
Return the sortkey of an exponent tuple with respect to the inversed lexicographical term order.

INPUT:
• f – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='invlex')
sage: x > y^2  # indirect doctest
False
sage: x > 1
True
```

sortkey_lex(f)
Return the sortkey of an exponent tuple with respect to the lexicographical term order.

```
3.1. Multivariate Polynomials and Polynomial Rings 257
```
INPUT:
 • \(f \) – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='lex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
True
```

sortkey_matrix\((f)\)

Return the sortkey of an exponent tuple with respect to the matrix term order.

INPUT:
 • \(f \) - exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='m(1,3,1,0)')
sage: y > x^2 # indirect doctest
True
sage: y > x^3
False
```

sortkey_negdeglex\((f)\)

Return the sortkey of an exponent tuple with respect to the negative degree lexicographical term order.

INPUT:
 • \(f \) – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdeglex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
False
```

sortkey_negdegrevlex\((f)\)

Return the sortkey of an exponent tuple with respect to the negative degree reverse lexicographical term order.

INPUT:
 • \(f \) – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdegrevlex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
False
```

sortkey_neglex\((f)\)

Return the sortkey of an exponent tuple with respect to the negative lexicographical term order.

INPUT:
 • \(f \) – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdeglex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
False
```

258 Chapter 3. Multivariate Polynomials
• f – exponent tuple

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='neglex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
False
```

\text{sortkey_negwdeglex}(f)

Return the sortkey of an exponent tuple with respect to the negative weighted degree lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```python
sage: t = TermOrder('negwdeglex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
True
sage: x^2 > y^3
True
```

\text{sortkey_negwdegrevlex}(f)

Return the sortkey of an exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```python
sage: t = TermOrder('negwdegrevlex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
True
sage: x^2 > y^3
True
```

\text{sortkey_wdeglex}(f)

Return the sortkey of an exponent tuple with respect to the weighted degree lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```python
sage: t = TermOrder('wdeglex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
False
sage: x > y
True
```
sortkey\textsubscript{wdegrevlex}(f)

Return the sortkey of an exponent tuple with respect to the weighted degree reverse lexicographical term order.

INPUT:

• \(f \) – exponent tuple

EXAMPLES:

```python
sage: t = TermOrder('wdegrevlex', (3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2  # indirect doctest
False
sage: x^2 > y^3
True
```

tuple_weight\((f) \)

Return the weight of tuple \(f \).

INPUT:

• \(f \) - exponent tuple

EXAMPLES:

```python
sage: t = TermOrder('wdeglex', (1,2,3))
sage: P.<a,b,c> = PolynomialRing(QQbar, order=t)
sage: P.term_order().tuple_weight([3,2,1])
10
```

weights()

Return the weights for weighted term orders.

EXAMPLES:

```python
sage: t = TermOrder('wdeglex', (2,3))
sage: t.weights()
(2, 3)
```

```
```

\section*{sage.rings.polynomial.\texttt{term_order.\texttt{termorder_from_singular}\((S) \)\)}

Return the Sage term order of the basering in the given Singular interface

INPUT:

An instance of the Singular interface.

NOTE:

A term order in Singular also involves information on orders for modules. This is not taken into account in Sage.

EXAMPLES:

```python
sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)')
'sage: from sage.rings.polynomial.term_order import termorder_from_singular
termorder_from_singular(Singular)
Block term order with blocks:
(Matrix term order with matrix
[1 2]
[3 0],
(continues on next page)```
AUTHOR:

- Simon King (2011-06-06)

3.1.2 Base class for multivariate polynomial rings

class sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base

Bases: sage.rings.ring.CommutativeRing

Create a polynomial ring in several variables over a commutative ring.

EXAMPLES:

```sage
cr = CR()
cr.is_commutative()
True
cr['x,y']
Multivariate Polynomial Ring in x, y over <__main__.CR_with_category object at ... →
```

change_ring (base_ring=None, names=None, order=None)

Return a new multivariate polynomial ring which isomorphic to self, but has a different ordering given by the parameter ‘order’ or names given by the parameter ‘names’.

INPUT:

- base_ring – a base ring
- names – variable names
- order – a term order

EXAMPLES:

```sage:
P.<x,y,z> = PolynomialRing(GF(127),3,order='lex')
sage: x > y^2
True
sage: Q.<x,y,z> = P.change_ring(order='degrevlex')
sage: x > y^2
False
```

characteristic()

Return the characteristic of this polynomial ring.

EXAMPLES:
sage: R = PolynomialRing(QQ, 'x', 3)
sage: R.characteristic()
0
sage: R = PolynomialRing(GF(7),'x', 20)
sage: R.characteristic()
7

completion(names, prec=20, extras=None)

Return the completion of self with respect to the ideal generated by the variable(s) names.

INPUT:

- names – variable or list/tuple of variables (given either as elements of the polynomial ring or as strings)
- prec – default precision of resulting power series ring
- extras – deprecated and ignored

EXAMPLES:

sage: P.<x,y,z,w> = PolynomialRing(ZZ)
sage: P.completion('w')
Power Series Ring in w over Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: P.completion((w,x,y))
Multivariate Power Series Ring in w, x, y over Univariate Polynomial Ring in z over Integer Ring
sage: Q.<w,x,y,z> = P.completion(); Q
Multivariate Power Series Ring in w, x, y, z over Integer Ring
sage: H = PolynomialRing(PolynomialRing(ZZ,3,'z'),4,'f'); H
Multivariate Polynomial Ring in f0, f1, f2, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
sage: H.completion(H.gens())
Multivariate Power Series Ring in f0, f1, f2, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
sage: H.completion(H.gens()[2])
Power Series Ring in f2 over Multivariate Polynomial Ring in f0, f1, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring

collection()  

Returns a functor F and base ring R such that F(R) == self.

EXAMPLES:

sage: S = ZZ['x,y']
sage: F, R = S.construction(); R
Integer Ring
sage: F
MPoly[x,y]
sage: F(R) == S
True
sage: F(R) == ZZ['x']['y']
False
flattening_morphism()
Return the flattening morphism of this polynomial ring

EXAMPLES:

```
sage: QQ['a','b']['x','y'].flattening_morphism()
Flattening morphism:
 From: Multivariate Polynomial Ring in x, y over Multivariate Polynomial
 Ring in a, b over Rational Field
 To: Multivariate Polynomial Ring in a, b, x, y over Rational Field
sage: QQ['x,y'].flattening_morphism()
Identity endomorphism of Multivariate Polynomial Ring in x, y over Rational Field
```

gen(n=0)

irrelevant_ideal()
Return the irrelevant ideal of this multivariate polynomial ring, which is the ideal generated by all of the indeterminate generators of this ring.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: R.irrelevant_ideal()
Ideal (x, y, z) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

is_field(proof=True)
Test whether this multivariate polynomial ring is a field.

A polynomial ring is a field when there are no variable and the base ring is a field.

EXAMPLES:

```
sage: PolynomialRing(QQ, 'x', 2).is_field()
False
sage: PolynomialRing(QQ, 'x', 0).is_field()
True
sage: PolynomialRing(ZZ, 'x', 0).is_field()
False
```

is_finite()
Test whether this multivariate polynomial ring is finite.

Todo: This should be handled by categories but sage.ringsRING does implement a is_finite method that overrides that category implementation.

EXAMPLES:

```
sage: PolynomialRing(QQ, names=[]).is_finite()
False
sage: PolynomialRing(GF(5), names=[]).is_finite()
True
sage: PolynomialRing(Zmod(1), names=['x','y']).is_finite()
True
```

3.1. Multivariate Polynomials and Polynomial Rings 263
**is_integral_domain** *(proof=True)*

EXAMPLES:

```python
sage: ZZ['x,y'].is_integral_domain()
True
sage: Integers(8)['x,y'].is_integral_domain()
False
```

**is_noetherian**

EXAMPLES:

```python
sage: ZZ['x,y'].is_noetherian()
True
sage: Integers(8)['x,y'].is_noetherian()
True
```

**krull_dimension**

**macaulay_resultant** (*args, **kwds*)

This is an implementation of the Macaulay Resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It’s based on the implementation in Maple by Manfred Minimair, which in turn is based on the references listed below: It calculates the Macaulay resultant for a list of polynomials, up to sign!

REFERENCES:

AUTHORS:

- Hao Chen, Solomon Vishkautsan (7-2014)

INPUT:

- **args** – a list of $n$ homogeneous polynomials in $n$ variables. works when args[0] is the list of polynomials, or args is itself the list of polynomials

kwds:

- **sparse** – boolean (optional - default: False) if True function creates sparse matrices.

OUTPUT:

- the macaulay resultant, an element of the base ring of self

Todo: Working with sparse matrices should usually give faster results, but with the current implementation it actually works slower. There should be a way to improve performance with regards to this.

EXAMPLES:

The number of polynomials has to match the number of variables:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([y,x+z])
Traceback (most recent call last):
...
TypeError: number of polynomials(= 2) must equal number of variables (= 3)
```

The polynomials need to be all homogeneous:
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([y, x+z, z+x^3])
Traceback (most recent call last):
...
TypeError: resultant for non-homogeneous polynomials is not supported

All polynomials must be in the same ring:

sage: S.<x,y> = PolynomialRing(QQ, 2)
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: S.macaulay_resultant([y, x+z])
Traceback (most recent call last):
...
TypeError: not all inputs are polynomials in the calling ring

The following example recreates Proposition 2.10 in Ch.3 in [CLO]:

sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,2])
sage: R.macaulay_resultant(flist)
$$u_2^2 u_4^2 u_6 - 2 u_1 u_2 u_4 u_5 u_6 + u_1^2 u_5^2 u_6 - u_2^2 u_3 u_4 u_7 +$$
$$u_1 u_2 u_3 u_5 u_7 + u_0 u_2 u_4 u_5 u_7 - u_0 u_1 u_5^2 u_7 + u_1 u_2 u_3 u_4 u_8 - u_0 u_2 u_4^2 u_8 - u_2 u_8 - u_1^2 u_3 u_5 u_8 + u_0 u_1 u_4 u_5 u_8 + u_2^2 u_3^2 u_9 - 2 u_0 u_2 u_3 u_5 u_9 +$$
$$u_0^2 u_5^2 u_9 - u_1 u_2 u_3^2 u_10 + u_0 u_2 u_3 u_4 u_10 + u_0 u_1 u_3 u_5 u_10 - u_0^2 u_4 u_5 u_10 + u_1^2 u_3 u^2 u_11 - 2 u_0 u_1 u_3 u_4 u_11 + u_0^2 u_4 u_5 u_11$$

The following example degenerates into the determinant of a $3 \times 3$ matrix:

sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,1])
sage: R.macaulay_resultant(flist)
$$-u_2 u_4 u_6 + u_1 u_5 u_6 + u_2 u_3 u_7 - u_0 u_5 u_7 - u_1 u_3 u_8 + u_0 u_4 u_8$$

The following example is by Patrick Ingram (Arxiv 1310.4114):

sage: U = PolynomialRing(ZZ,'y',2); y0,y1 = U.gens()
sage: R = PolynomialRing(U,'x',3); x0,x1,x2 = R.gens()
sage: f0 = y0*x2^2 - x0^2 + 2*x1*x2
sage: f1 = y1*x2^2 - x1^2 + 2*x0*x2
sage: f2 = x0*x1 - x2^2
sage: flist = [f0,f1,f2]
sage: R.macaulay_resultant([f0,f1,f2])
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27

a simple example with constant rational coefficients:

sage: R.<x,y,z,w> = PolynomialRing(QQ,4)
sage: R.macaulay_resultant([w,z,y,x])
1

an example where the resultant vanishes:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([x+y,y^2,x])
0

an example of bad reduction at a prime $p = 5$:

3.1. Multivariate Polynomials and Polynomial Rings
The input can given as an unpacked list of polynomials:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([y,x^3+25*y^2*x,5*z])
125
```

an example when the coefficients live in a finite field:

```
sage: F = FiniteField(11)
sage: R.<x,y,z,w> = PolynomialRing(F,4)
sage: R.macaulay_resultant([z,x^3,5*y,w])
4
```

every example when the denominator in the algorithm vanishes(in this case the resultant is the constant term of
the quotient of char polynomials of numerator/denominator):

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([y, x+z, z^2])
-1
```

when there are only 2 polynomials, macaulay resultant degenerates to the traditional resultant:

```
sage: R.<x> = PolynomialRing(QQ,1)
sage: f = x^2+1; g = x^5+1
sage: fh = f.homogenize()
sage: gh = g.homogenize()
sage: RH = fh.parent()
sage: f.resultant(g) == RH.macaulay_resultant([fh,gh])
True
```

**monomial (**exponents**)

Return the monomial with given exponents.

**EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(ZZ, 3)
sage: R.monomial(1,1,1)
x*y*z
sage: e=(1,2,3)
sage: R.monomial(*e)
x*y^2*z^3
sage: m = R.monomial(1,2,3)
sage: R.monomial(*m.degrees()) == m
True
```

**ngens ()

**random_element (**degree=2, terms=None, choose_degree=False, **args, **kwargs**)

Return a random polynomial of at most degree \(d\) and at most \(t\) terms.

First monomials are chosen uniformly random from the set of all possible monomials of degree up to \(d\)
(inclusive). This means that it is more likely that a monomial of degree \(d\) appears than a monomial of
degree \(d-1\) because the former class is bigger.
Exactly \( t \) distinct monomials are chosen this way and each one gets a random coefficient (possibly zero) from the base ring assigned.

The returned polynomial is the sum of this list of terms.

**INPUT:**

- **degree** – maximal degree (likely to be reached) (default: 2)
- **terms** – number of terms requested (default: 5). If more terms are requested than exist, then this parameter is silently reduced to the maximum number of available terms.
- **choose_degree** – choose degrees of monomials randomly first rather than monomials uniformly random.
- **\*\*kwargs** – passed to the random element generator of the base ring

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: P.random_element(2, 5)
-6/5*x^2 + 2/3*z^2 - 1
sage: P.random_element(2, 5, choose_degree=True)
-1/4*x*y - x - 1/14*z - 1
```

Stacked rings:

```python
sage: R = QQ['x,y']
sage: S = R['t,u']
sage: S.random_element(degree=2, terms=1)
-x^2 - 1/2*x*y - 3*y^2 + 4*y
sage: S.random_element(degree=2, terms=1)
(-x^2 - 2*y^2 - 1/3*x + 2*y + 9)*u^2
```

Default values apply if no degree and/or number of terms is provided:

```python
sage: random_matrix(QQ['x,y,z'], 2, 2)
[357*x^2 + 1/4*y^2 + 2*y*z + 2*z^2 + 28*x^2 - 2 - z]
[x*y - y*z + 2*z^2 -x^2 - 4/3*x*z + 2*z^2 - x, + 4*y]
```

```python
sage: random_matrix(QQ['x,y,z'], 2, 2, terms=1, degree=2)
[1/2*x*y -1/4*x]
[1/2 1/3*x]
```

```python
sage: P.random_element(0, 1)
1
sage: P.random_element(2, 0)
0
```

```python
sage: R.<x> = PolynomialRing(Integers(3), 1)
sage: R.random_element()
2*x^2 + x
```

To produce a dense polynomial, pick `terms=Infinity:`
The number of terms is silently reduced to the maximum available if more terms are requested:

```
sage: P.<x,y,z> = GF(127)[]
sage: P.random_element(degree=2, terms=1000)
5*x^2 - 10*x*y + 10*y^2 - 44*x*z + 31*y*z + 19*z^2 - 42*x - 50*y - 49*z - 60
```

**remove_var** *(order=None, *var)*  
Remove a variable or sequence of variables from self.

If *order* is not specified, then the subring inherits the term order of the original ring, if possible.

**EXAMPLES:**

```
sage: P.<x,y,z,w> = PolynomialRing(ZZ)
sage: P.remove_var(z)
Multivariate Polynomial Ring in x, y, w over Integer Ring
sage: P.remove_var(z,x)
Multivariate Polynomial Ring in y, w over Integer Ring
sage: P.remove_var(y,z,x)
Univariate Polynomial Ring in w over Integer Ring
```

Removing all variables results in the base ring:

```
sage: P.remove_var(y,z,x,w)
Integer Ring
```

If possible, the term order is kept:

```
sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='deglex')
sage: R.remove_var(y).term_order()
Degree lexicographic term order
```

```
sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='lex')
sage: R.remove_var(y).term_order()
Lexicographic term order
```

Be careful with block orders when removing variables:

```
sage: R.<x,y,z,u,v> = PolynomialRing(ZZ, order='deglex(2),lex(3)')
sage: R.remove_var(x,y,z)
Traceback (most recent call last):
 ...
ValueError: impossible to use the original term order (most likely because it was a block order). Please specify the term order for the subring
sage: R.remove_var(x,y,z, order='degrevlex')
Multivariate Polynomial Ring in u, v over Integer Ring
```
repr_long()
Return structured string representation of self.

EXAMPLES:

```sage
sage: P.<x,y,z> = PolynomialRing(QQ,order=TermOrder('degrevlex',1)+TermOrder('lex',2))
sage: print(P.repr_long())
Polynomial Ring
 Base Ring : Rational Field
 Size : 3 Variables
 Block 0 : Ordering : degrevlex
 Names : x
 Block 1 : Ordering : lex
 Names : y, z
```

term_order()

univariate_ring(x)
Return a univariate polynomial ring whose base ring comprises all but one variables of self.

INPUT:
  * x – a variable of self.

EXAMPLES:

```sage
sage: P.<x,y,z> = QQ[

sage: P.univariate_ring(y)
Univariate Polynomial Ring in y over Multivariate Polynomial Ring in x, z over Rational Field
```

variable_names_recursive(depth=None)
Returns the list of variable names of this and its base rings, as if it were a single multi-variate polynomial.

EXAMPLES:

```sage
sage: R = QQ['x,y,z']['z,w']
sage: R.variable_names_recursive()
('x', 'y', 'z', 'w')
sage: R.variable_names_recursive(3)
('y', 'z', 'w')
```

weyl_algebra()
Return the Weyl algebra generated from self.

EXAMPLES:

```sage
sage: R = QQ['x,y,z']
sage: W = R.weyl_algebra(); W
Differential Weyl algebra of polynomials in x, y, z over Rational Field
sage: W.polynomial_ring() == R
True
```

sage.rings.polynomial.multi_polynomial_ring_base.is_MPolynomialRing(x)
sage.rings.polynomial.multi_polynomial_ring_base.unpickle_MPolynomialRing_generic(base_ring, n, names, order)
3.1.3 Base class for elements of multivariate polynomial rings

```python
class sage.rings.polynomial.multi_polynomial.MPolynomial:
 Bases: sage.structure.element.CommutativeRingElement

 def args(self):
 """Returns the named of the arguments of self, in the order they are accepted from call."
 EXAMPLES:
 sage: R.<x,y> = ZZ[
 sage: x.args()
 (x, y)

 def change_ring(self, R):
 """Return a copy of this polynomial but with coefficients in R, if at all possible."
 INPUT:
 • R -- a ring or morphism.
 EXAMPLES:
 sage: R.<x,y> = QQ[
 sage: f = x^3 + 3/5*y + 1
 sage: f.change_ring(GF(7))
 x^3 + 2*y + 1
 sage: R.<x,y> = GF(9,'a')[
 sage: (x+2*y).change_ring(GF(3))
 x - y
 sage: K.<z> = CyclotomicField(3)
 sage: R.<x,y> = K[
 sage: f = x^2 + z*y
 sage: f.change_ring(K.embeddings(CC)[1])
 x^2 + (-0.500000000000000 + 0.866025403784439*I)*y

 def coefficients(self):
 """Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of self.parent(), i.e. the list of coefficients matches the list of monomials returned by sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular.monomials()."
 EXAMPLES:
 sage: R.<x,y,z> = PolynomialRing(QQ,3,order='degrevlex')
 sage: f=23*x^6*y^7 + x^3*y+6*x^7*y+z
 sage: f.coefficients()
 [23, 6, 1]
 sage: R.<x,y,z> = PolynomialRing(QQ,3,order='lex')
```

(continues on next page)
Test the same stuff with base ring \( \mathbb{Z} \) – different implementation:

```python
sage: R.<x,y,z> = PolynomialRing(ZZ,3,order='degrevlex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]
sage: R.<x,y,z> = PolynomialRing(ZZ,3,order='lex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[6, 23, 1]
```

AUTHOR:

- Didier Deshommes

**content()**

Returns the content of this polynomial. Here, we define content as the gcd of the coefficients in the base ring.

See also:

**content_ideal()**

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = 4*x+6*y
sage: f.content()
2
sage: f.content().parent()
Integer Ring
```

**content_ideal()**

Return the content ideal of this polynomial, defined as the ideal generated by its coefficients.

See also:

**content()**

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = 2*x*y + 6*x - 4*y + 2
sage: f.content_ideal()
Principal ideal (2) of Integer Ring
sage: S.<z,t> = R[]
sage: g = x*z + y*t
sage: g.content_ideal()
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Integer Ring
```

**denominator()**

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.
Note that some subclasses may implement its own denominator function.

**Warning:** This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.

**EXAMPLES:**

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.

```
sage: R.<x,y> = ZZ[]
sage: f = x^3 + 17*y + x + y
sage: f.denominator()
1
```

Next we compute the denominator of a polynomial over a number field.

```
sage: R.<x,y> = NumberField(symbolic_expression(x^2+3) ,'a')['x,y']
sage: f = (1/17)*x^19 + (1/6)*y - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/6*y + 1/3
sage: f.denominator()
102
```

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```
sage: R.<a,b,c> = RR[]
sage: f = a + b + RR('0.3'); f
a + b + 0.300000000000000
sage: f.denominator()
1.00000000000000
```

Check that the denominator is an element over the base whenever the base has no denominator function. This closes trac ticket #9063:

```
sage: R.<a,b,c> = GF(5)[]
sage: x = R(0)
sage: x.denominator()
1
sage: type(x.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: type(a.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: from sage.rings.polynomial.multi_polynomial_element import MPolynomial
sage: isinstance(a / b, MPolynomial)
False
sage: isinstance(a.numerator() / a.denominator(), MPolynomial)
True
```

```python
derivative(*args)
```

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

**See also:**

_derivative()
EXAMPLES:

Polynomials implemented via Singular:

```
sage: R.<x, y> = PolynomialRing(FiniteField(5))
sage: f = x^3*y^5 + x^7*y
sage: type(f)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
sage: f.derivative(x)
2*x^6*y - 2*x^2*y^5
sage: f.derivative(y)
x^7
```

Generic multivariate polynomials:

```
sage: R.<t> = PowerSeriesRing(QQ)
sage: S.<x, y> = PolynomialRing(R)
sage: f = (t^2 + O(t^3))*x^2*y^3 + (37*t^4 + O(t^5))*x^3
sage: type(f)
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
sage: f.derivative(x) # with respect to x
(2*t^2 + O(t^3))*x*y^3 + (111*t^4 + O(t^5))*x^2
sage: f.derivative(y) # with respect to y
(3*t^2 + O(t^3))*x^2*y^2
sage: f.derivative(t) # with respect to t (recurses into base ring)
(2*t + O(t^2))*x^2*y^3 + (148*t^3 + O(t^4))*x^3
sage: f.derivative(x, y) # with respect to x and then y
(6*t^2 + O(t^3))*x*y^2
sage: f.derivative(y, 3) # with respect to y three times
(6*t^2 + O(t^3))*x^2
sage: f.derivative() # can't figure out the variable
Traceback (most recent call last):
 ... ValueError: must specify which variable to differentiate with respect to
```

Polynomials over the symbolic ring (just for fun...):

```
sage: x = var("x")
sage: S.<u, v> = PolynomialRing(SR)
sage: f = u*v*x
sage: f.derivative(x) == u*v
True
sage: f.derivative(u) == v*x
True
```

`discriminant(variable)`

Returns the discriminant of self with respect to the given variable.

**INPUT:**

- `variable` - The variable with respect to which we compute the discriminant

**OUTPUT:**

- An element of the base ring of the polynomial ring.

**EXAMPLES:**
\begin{verbatim}
sage: R.<x,y,z>=QQ[]
sage: f=4*x*y^2 + 1/4*x*y*z + 3/2*x*z^2 - 1/2*z^2
sage: f.discriminant(x)
1
sage: f.discriminant(y)
-383/16*x^2*z^2 + 8*x*z^2
sage: f.discriminant(z)
-383/16*x^2*y^2 + 8*x*y^2

Note that, unlike the univariate case, the result lives in the same ring as the polynomial:
\end{verbatim}

\begin{verbatim}
sage: R.<x,y>=QQ[]
sage: f=x^5*y+3*x^2*y^2-2*x+y-1
sage: f.discriminant(y)
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
sage: f.polynomial(y).discriminant()
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
sage: f.discriminant(y).parent()==f.polynomial(y).discriminant().parent()
False
\end{verbatim}

\textbf{AUTHOR:} Miguel Marco

\texttt{gcd}(other)

Return a greatest common divisor of this polynomial and \texttt{other}.

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{other} -- a polynomial with the same parent as this polynomial
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Q.<z> = Frac(QQ['z'])
sage: R.<x,y> = Q[]
sage: r = x*y - (2*z-1)/(z^2+z+1) * x + y/z
sage: p = r * (x + z*y - 1/z^2)
sage: q = r * (x*y*z + 1)
sage: gcd(p,q)
(z^3 + z^2 + z)*x*y + (-2*z^2 + z)*x + (z^2 + z + 1)*y
\end{verbatim}

Polynomials over polynomial rings are converted to a simpler polynomial ring with all variables to compute the gcd:

\begin{verbatim}
sage: A.<z,t> = ZZ[]
sage: B.<x,y> = A[]
sage: r = x*y*z*t+1
sage: p = r * (x - y + z - t + 1)
sage: q = r * (x*z - y*t)
sage: gcd(p,q)
z*t*x*y + 1
sage: _.parent()
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in z, t over Integer Ring
\end{verbatim}

Some multivariate polynomial rings have no gcd implementation:

\begin{verbatim}
sage: R.<x,y> =GaussianIntegers()[]
sage: x.gcd(x)
(continues on next page)
\end{verbatim}
Traceback (most recent call last):
...
NotImplementedError: GCD is not implemented for multivariate polynomials over,
→ Gaussian Integers in Number Field in I with defining polynomial x^2 + 1

\[\text{gradient()}\]
Return a list of partial derivatives of this polynomial, ordered by the variables of \text{self.parent()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: P.<x,y,z> = PolynomialRing(ZZ,3)
sage: f = x*y + 1
sage: f.gradient()
[y, x, 0]
\end{verbatim}

\[\text{homogenize}(\text{var}'h')\]
Return the homogenization of this polynomial.

The polynomial itself is returned if it is homogeneous already. Otherwise, the monomials are multiplied
with the smallest powers of \text{var} such that they all have the same total degree.

\textbf{INPUT:}

• \text{var} – a variable in the polynomial ring (as a string, an element of the ring, or a zero-based index in
  the list of variables) or a name for a new variable (default: 'h')

\textbf{OUTPUT:}

If \text{var} specifies a variable in the polynomial ring, then a homogeneous element in that ring is returned.
Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable \text{var}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = QQ[]
sage: f = x^2 + y + 1 + 5*x*y^10
sage: f.homogenize()
5*x*y^10 + x^2*h^9 + y*h^10 + h^11
\end{verbatim}

The parameter \text{var} can be used to specify the name of the variable:

\begin{verbatim}
sage: g = f.homogenize('z'); g
5*x*y^10 + x^2*z^9 + y*z^10 + z^11
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
\end{verbatim}

However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable
is added to the polynomial ring:

\begin{verbatim}
sage: f = x^2 + y^2
sage: g = f.homogenize('z'); g
x^2 + y^2
sage: g.parent()
Multivariate Polynomial Ring in x, y over Rational Field
\end{verbatim}

If you want the ring of the result to be independent of whether the polynomial is homogenized, you can
use \text{var} to use an existing variable to homogenize:
The parameter `var` can also be given as a zero-based index in the list of variables:

```python
sage: g = f.homogenize(2); g
x^2 - y*z
```

If the variable specified by `var` is not present in the polynomial, then setting it to 1 yields the original polynomial:

```python
sage: g(x,y,1)
x^2 - y
```

If it is present already, this might not be the case:

```python
sage: g = f.homogenize(x); g
x^2 - x*y
sage: g(1,y,z)
-y + 1
```

In particular, this can be surprising in positive characteristic:

```python
sage: R.<x,y> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x)
0
```

**inverse_mod(I)**

Returns an inverse of self modulo the polynomial ideal $I$, namely a multivariate polynomial $f$ such that $self \times f - 1$ belongs to $I$.

**INPUT:**

- $I$ – an ideal of the polynomial ring in which self lives

**OUTPUT:**

- a multivariate polynomial representing the inverse of $f$ modulo $I$

**EXAMPLES:**

```python
sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2*x2 + x1 - 2, x1*x2 - 1)
sage: f = x1 + 3*x2^2; g = f.inverse_mod(I); g
1/16*x1 + 3/16
```

Test a non-invertible element:
```python
sage: R.<x1,x2> = QQ[
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = x1 + x2
sage: f.inverse_mod(I)
Traceback (most recent call last):
 ...
ArithmeticError: element is non-invertible

is_generator()
Returns True if this polynomial is a generator of its parent.

EXAMPLES:

```python
sage: R.<x,y>=ZZ[
  sage: x.is_generator()
  True
  sage: (x+y-y).is_generator()
  True
  sage: (x+y).is_generator()
  False
  sage: R.<x,y>=QQ[
  sage: x.is_generator()
  True
  sage: (x+y-y).is_generator()
  True
  sage: (x+y).is_generator()
  False
```

is_homogeneous()
Return True if self is a homogeneous polynomial.

Note: This is a generic implementation which is likely overridden by subclasses.

is_nilpotent()
Return True if self is nilpotent, i.e., some power of self is 0.

EXAMPLES:

```python
sage: R.<x,y> = QQbar[
  sage: (x+y).is_nilpotent()
  False
  sage: R(0).is_nilpotent()
  True
  sage: _.<x,y> = Zmod(4)[
  sage: (2*x).is_nilpotent()
  True
  sage: (2+y*x).is_nilpotent()
  False
  sage: _.<x,y> = Zmod(36)[
  sage: (4+6*x).is_nilpotent()
  False
  sage: (6*x + 12*y + 18*x*y + 24*(x^2+y^2)).is_nilpotent()
  True
```

is_unit()
Return True if self is a unit, that is, has a multiplicative inverse.

3.1. Multivariate Polynomials and Polynomial Rings

277
EXAMPLES:

```python
sage: R.<x,y> = QQbar[]
sage: (x+y).is_unit()
False
sage: R(0).is_unit()
False
sage: R(-1).is_unit()
True
sage: R(-1 + x).is_unit()
False
sage: R(2).is_unit()
True
```

Check that trac ticket #22454 is fixed:

```python
sage: _.<x,y> = Zmod(4)[]
sage: (1 + 2*x).is_unit()
True
sage: (x*y).is_unit()
False
sage: _.<x,y> = Zmod(36)[]
sage: (7+ 6*x + 12*y - 18*x*y).is_unit()
True
```

jacobian_ideal()

Return the Jacobian ideal of the polynomial self.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: f = x^3 + y^3 + z^3
sage: f.jacobian_ideal()
Ideal (3*x^2, 3*y^2, 3*z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

lift(I)

given an ideal \(I = (f_1, \ldots, f_r) \) and some \(g == \text{self} \) in \(I \), find \(s_1, \ldots, s_r \) such that \(g = s_1 f_1 + \ldots + s_r f_r \).

EXAMPLES:

```python
sage: A.<x,y> = PolynomialRing(CC,2,order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7 ])
sage: f = x*y^13 + y^12
sage: M = f.lift(I)
sage: M
[y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + y^4]
sage: sum( map( mul , zip( M, I.gens() ) ) ) == f
True
```

macaulay_resultant(*args)

This is an implementation of the Macaulay Resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It’s based on the implementation in Maple by Manfred Minimair, which in turn is based on the references [CLO], [Can], [Mac]. It calculates the Macaulay resultant for a list of Polynomials, up to sign!

AUTHORS:
INPUT:

- **args** – a list of \(n - 1 \) homogeneous polynomials in \(n \) variables. works when \(\text{args}[0] \) is the list of polynomials, or \(\text{args} \) is itself the list of polynomials

OUTPUT:

- the macaulay resultant

EXAMPLES:

The number of polynomials has to match the number of variables:

```sage
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant(x+z)
Traceback (most recent call last):
  ...  TypeError: number of polynomials(= 2) must equal number of variables (= 3)
```

The polynomials need to be all homogeneous:

```sage
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x+z, z+x^3])
Traceback (most recent call last):
  ...  TypeError: resultant for non-homogeneous polynomials is not supported
```

All polynomials must be in the same ring:

```sage
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: S.<x,y> = PolynomialRing(QQ, 2)
sage: y.macaulay_resultant(z+x,z)
Traceback (most recent call last):
  ...  TypeError: not all inputs are polynomials in the calling ring
```

The following example recreates Proposition 2.10 in Ch.3 of Using Algebraic Geometry:

```sage
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,2])
sage: flist[0].macaulay_resultant(flist[1:])
```

The following example degenerates into the determinant of a 3 \(\times \) 3 matrix:

```sage
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,1])
sage: flist[0].macaulay_resultant(flist[1:])
```

The following example is by Patrick Ingram (Arxiv 1310.4114):

```sage
sage: U = PolynomialRing(ZZ,'y',2); y0,y1 = U.gens()
sage: R = PolynomialRing(U,'x',3); x0,x1,x2 = R.gens()
```

(continues on next page)
sage: f0 = y0*x2^2 - x0^2 + 2*x1*x2
sage: f1 = y1*x2^2 - x1^2 + 2*x0*x2
sage: f2 = x0*x1 - x2^2
sage: f0.macaulay_resultant(f1,f2)
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27

a simple example with constant rational coefficients:

sage: R.<x,y,z,w> = PolynomialRing(QQ,4)
sage: w.macaulay_resultant([z,y,x])
1

an example where the resultant vanishes:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: (x+y).macaulay_resultant([y^2,x])
0

an example of bad reduction at a prime \(p = 5 \):

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x^3+25*y^2*x,5*z])
125

The input can given as an unpacked list of polynomials:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant(x^3+25*y^2*x,5*z)
125

an example when the coefficients live in a finite field:

sage: F = FiniteField(11)
sage: R.<x,y,z,w> = PolynomialRing(F,4)
sage: z.macaulay_resultant([x^3,5*y,w])
4

example when the denominator in the algorithm vanishes(in this case the resultant is the constant term of the quotient of char polynomials of numerator/denominator):

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x+z, z^2])
-1

when there are only 2 polynomials, macaulay resultant degenerates to the traditional resultant:

sage: R.<x> = PolynomialRing(QQ,1)
sage: f = x^2+1; g = x^5+1
sage: fh = f.homogenize()
sage: gh = g.homogenize()
sage: RH = fh.parent()
sage: f.resultant(g) == fh.macaulay_resultant(gh)
True

map_coefficients \((f, new _base _ring=\text{None})\)

Returns the polynomial obtained by applying \(f\) to the non-zero coefficients of self.
If \(f \) is a `sage.categories.map.Map`, then the resulting polynomial will be defined over the codomain of \(f \). Otherwise, the resulting polynomial will be over the same ring as self. Set `new_base_ring` to override this behaviour.

INPUT:

- \(f \) – a callable that will be applied to the coefficients of self.
- `new_base_ring` (optional) – if given, the resulting polynomial will be defined over this ring.

EXAMPLES:

```python
sage: k.<a> = GF(9); R.<x,y> = k[]; f = x*a + 2*x^3*y*a + a
sage: f.map_coefficients(lambda a : a + 1)
(-a + 1)*x^3*y + (a + 1)*x + (a + 1)
```

Examples with different base ring:

```python
sage: R.<r> = GF(9); S.<s> = GF(81)
sage: h = Hom(R,S)[0]; h
Ring morphism:
  From: Finite Field in r of size 3^2
  To:   Finite Field in s of size 3^4
  Defn: r |--> 2*s^3 + 2*s^2 + 1
sage: T.<X,Y> = R[]
sage: f = r*X+Y
sage: g = f.map_coefficients(h); g
(-s^3 - s^2 + 1)*X + Y
```

```python
sage: g = f.map_coefficients(h, new_base_ring=GF(3)); g
X - Y
```

newton_polytope()

Return the Newton polytope of this polynomial.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = 1 + x*y + x^3 + y^3
sage: P = f.newton_polytope()
sage: P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: P.is_simple()
True
```

nth_root(n)

Return a \(n \)-th root of this element.

This method relies on factorization.

EXAMPLES:
sage: R.<x,y,z> = QQ[]
sage: a = 32 * (x*y + 1)^5 * (x+y+z)^5
sage: a.nth_root(5)
2*x^2*y + 2*x*y^2 + 2*x*y*z + 2*x + 2*y + 2*z
sage: b = x + 2*y + 3*z
sage: b.nth_root(42)
Traceback (most recent call last):
 ...
ValueError: (x + 2*y + 3*z)^(1/42) does not lie in
Multivariate Polynomial Ring in x, y, z over Rational Field

numerator()

Return a numerator of self computed as self * self.denominator()

Note that some subclasses may implement its own numerator function.

Warning: This is not the numerator of the rational function defined by self, which would always be
self since self is a polynomial.

EXAMPLES:
First we compute the numerator of a polynomial with integer coefficients, which is of course self.

sage: R.<x, y> = ZZ[]
sage: f = x^3 + 17*x + y + 1
sage: f.numerator()
x^3 + 17*x + y + 1
sage: f == f.numerator()
True

Next we compute the numerator of a polynomial over a number field.

sage: R.<x,y> = NumberField(symbolic_expression(x^2+3) ,'a')['x,y']
sage: f = (1/17)*y^19 - (2/3)*x + 1/3; f
3*y^19 - 34*x + 17
sage: f.numerator()
3*y^19 - 34*x + 17
sage: f == f.numerator()
False

We try to compute the numerator of a polynomial with coefficients in the finite field of 3 elements.

sage: K.<x,y,z> = GF(3)['x, y, z']
sage: f = 2*x*z + 2*z^2 + 2*y + 1; f
-x*z - z^2 - y + 1
sage: f.numerator()
-x*z - z^2 - y + 1

We check that the computation the numerator and denominator are valid

sage: K=NumberField(symbolic_expression('x^3+2'),'a')['x']['s,t']
sage: f=K.random_element()
sage: f.numerator() / f.denominator() == f
True
sage: R=RR['x,y,z']
sage: f=R.random_element()
polynomial(var)

Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.

EXAMPLES:

```python
sage: R.<x,w,z> = QQ[]
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5
sage: f.polynomial(x)
x^3 + (17*w^3 + 3*w)*x + w^5 + z^5
sage: parent(f.polynomial(x))
Univariate Polynomial Ring in x over Multivariate Polynomial Ring in w, z
˓→ over Rational Field
sage: f.polynomial(w)
w^5 + 17*x*w^3 + 3*x*w + z^5 + x^3
sage: f.polynomial(z)
z^5 + w^5 + 17*x*w^3 + x^3 + 3*x*w
sage: R.<x,w,z,k> = ZZ[]
```

```python
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5 + x*w*z*k + 5
sage: f.polynomial(x)
x^3 + (17*w^3 + w*z*k + 3*w)*x + w^5 + z^5 + 5
sage: f.polynomial(w)
w^5 + 17*x*w^3 + (x*z*k + 3*x)*w + z^5 + x^3 + 5
sage: f.polynomial(z)
z^5 + x*w*k*z + w^5 + 17*x*w^3 + x^3 + 3*x*w + 5
sage: f.polynomial(k)
x*w*z*k + w^5 + z^5 + 17*x*w^3 + x^3 + 3*x*w + 5
```

```python
sage: R.<x,y>=GF(5)[]
sage: f=x^2+x+y
sage: f.polynomial(x)
x^2 + x + y
sage: f.polynomial(y)
y + x^2 + x
```

reduced_form(prec=300, return_conjugation=True, error_limit=1e-06)

Returns a reduced form of this polynomial.

The algorithm is from Stoll and Cremona’s “On the Reduction Theory of Binary Forms” [SC]. This takes a two variable homogenous polynomial and finds a reduced form. This is a \(\text{SL}(2, \mathbb{Z}) \)-equivalent binary form whose covariant in the upper half plane is in the fundamental domain. This should also minimize the sum of the squares of the coefficients, but this is not always the case.

A portion of the algorithm uses Newton’s method to find a solution to a system of equations. If Newton’s method fails to converge to a point in the upper half plane, the function will use the less precise \(Q_0 \) covariant as defined in [SC]. Additionally, if this polynomial has a root with multiplicity at least half the total degree of the polynomial, then we must also use the \(Q_0 \) covariant. See [SC] for details.

Note that, if the covariant is within error_limit of the boundary but outside the fundamental domain, our function will erroneously move it to within the fundamental domain, hence our conjugation will be off by 1. If you don’t want this to happen, decrease your error_limit and increase your precision.

Implemented by Rebecca Lauren Miller as part of GSOC 2016.

INPUT:
• `prec` – integer, sets the precision (default: 300)
• `return_conjugation` – boolean. Returns element of $SL(2, \mathbb{Z})$ (default: True)
• `error_limit` – sets the error tolerance (default: 0.000001)

OUTPUT:
• a polynomial (reduced binary form)
• a matrix (element of $SL(2, \mathbb{Z})$)

TODO: When Newton’s Method doesn’t converge to a root in the upper half plane. Now we just return z_0. It would be better to modify and find the unique root in the upper half plane.

REFERENCES:

EXAMPLES:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: f = 19*x^8 - 262*x^7*h + 1507*x^6*h^2 - 4784*x^5*h^3 + 9202*x^4*h^4 - 10962*x^3*h^5 + 7844*x^2*h^6 - 3040*x*h^7 + 475*h^8
sage: f.reduced_form(prec=200)
(-x^8 - 2*x^7*h + 7*x^6*h^2 + 16*x^5*h^3 + 2*x^4*h^4 - 2*x^3*h^5 + 4*x^2*h^6 - 5*h^8,
[ 1 -2]
[ 1 -1])
```

An example were the multiplicity is too high:

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = x^3 + 378666*x^2*y - 12444444*x*y^2 + 1234567890*y^3
sage: j = f * (x-545*y)^9
sage: j.reduced_form(prec=200)
(x^12 + 374553*x^11*y - 1587470292*x^10*y^2 + 296031188270*x^9*y^3 - 3189673382015880*x^8*y^4 + 2180205736473134502*x^7*y^5 - 972679603186995463284*x^6*y^6 + 27855935048988119710176*x^5*y^7 - 4733949761359164056277355*x^4*y^8 + 371979022746279344137663545*x^3*y^9 + 4017321423785434880978464176*x^2*y^10 + 1605293849731195593699202674738*x*y^11 - 2738526775493743375819069013598582*y^12,
[ 1 66]
[ 0 1])
```

An example where Newton’s Method doesn’t find the right root:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: f = 234*x^11*h + 104832*x^10*h^2 + 21346884*x^9*h^3 + 2608021728*x^8*h^4
    + 212413000410*x^7*h^5 + 12109691106162*x^6*h^6 + 493106447396862*x^5*h^7
    + 14341797993350464*x^4*h^8 + 291976289803277118*x^3*h^9
    + 396262561855953690456*x^2*h^10
    + 32266526239647689652*x*h^11 + 119421058057217196228*h^12
```
(continues on next page)
An example with covariant on the boundary, therefore a non-unique form also a_0 is 0:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: g = -1872*x^5*h + 468*x^4*h^2 + 2340*x^3*h^3 - 2340*x^2*h^4 - 468*x*h^5 + 1872*h^6,
[ -1 147]
[ 0 -1]
```

An example where precision needs to be increased:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: f = -1872*x^5*h + 468*x^4*h^2 + 2340*x^3*h^3 - 2340*x^2*h^4 - 468*x*h^5 + 1872*h^6
sage: f.reduced_form(prec=200)
Traceback (most recent call last):
  ... ValueError: accuracy of Newton's root not within tolerance(1.551623876686905871738230151323562915980531542297136320 > 1e-06),
  ... increase precision
sage: f.reduced_form(prec=400)
( -1872*x^5*h + 468*x^4*h^2 + 2340*x^3*h^3 - 2340*x^2*h^4 - 468*x*h^5 + 1872*h^6,
[ -1 147]
[ 0 -1])
```

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: F = - 8*x^4 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3 - 1825511633*y^4
sage: F.reduced_form(return_conjugation=False)
x^4 + 8*x^3*y - 3*x*y^3 - 8*y^4
```

```python
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: F = x^4 + x^3*y*z + y^2*z
sage: F.reduced_form()
```

(continues on next page)
Traceback (most recent call last):
...
ValueError: (=x^3*y*z + x^4 + y^2*z) must have two variables

sage: R.<x,y> = PolynomialRing(ZZ)
sage: F = - 8*x^6 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3 - 99*y^6
sage: F.reduced_form(return_conjugation=False)
Traceback (most recent call last):
...
ValueError: (= -8*x^6 - 99*y^6 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3) must be homogenous

sage: R.<x,y> = PolynomialRing(RR)
sage: F = 217.992172373276*x^3 + 96023.1505442490*x^2*y + 1.
 → 40987971253579e7*x*y^2\n+ 6.90016027113216e8*y^3
sage: F.reduced_form()
(-39.5673942565918*x^3 + 111.874026298523*x^2*y + 231.052762985229*x*y^2 - 138.
 → 380829811096*y^3,
[-147 -148]
[1 1]

sage: R.<x,y> = PolynomialRing(CC)
sage: F = (0.759099196558145 + 0.845425869641446*CC.0)*x^3 + (84.
 → 817207268542 + 93.8840848648033*CC.0)*x^2*y\n+ (3159.07040755858 + 3475.3303777779*CC.0)*x*y^2 + (39202.5965389079 + 42882.5139724962*CC.0)*y^3
sage: F.reduced_form()
(-0.759099196558145 - 0.845425869641446*I)*x^3 + (-0.571709908900118 - 0.
 → 418133346027929*I)*x^2*y
+ (0.856525964330103 - 0.0721403997649759*I)*x*y^2 + (-0.965531044130330 + 0.
 → 75425231465703*I)*y^3,
[-1 37]
[0 -1]

specialization (D=None, phi=None)
Specialization of this polynomial.

Given a family of polynomials defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

INPUT:

- D – dictionary (optional)
- phi – SpecializationMorphism (optional)

OUTPUT: a new polynomial

EXAMPLES:
sage: R.<c> = PolynomialRing(QQ)
sage: S.<x,y> = PolynomialRing(R)
sage: F = x^2 + c*y^2
sage: F.specialization({c:2})
x^2 + 2*y^2

sage: S.<a,b> = PolynomialRing(QQ)
sage: P.<x,y,z> = PolynomialRing(S)
sage: RR.<c,d> = PolynomialRing(P)
sage: f = a*x^2 + b*y^3 + c*y^2 - b*a*d + d^2 - a*c*b*z^2
sage: f.specialization({a:2, z:4, d:2})
y^2 - 32*b)*c + b*y^3 + 2*x^2 - 4*b + 4

Check that we preserve multi-versus uni-variate:

sage: R.<l> = PolynomialRing(QQ, 1)
sage: S.<k> = PolynomialRing(R)
sage: K.<a, b, c> = PolynomialRing(S)
sage: F = a*k^2 + b*l + c^2
sage: F.specialization({b:56, c:5}).parent()
Univariate Polynomial Ring in a over Univariate Polynomial Ring in k
over Multivariate Polynomial Ring in l over Rational Field

sylvester_matrix(right, variable=None)
Given two nonzero polynomials self and right, returns the Sylvester matrix of the polynomials with respect
to a given variable.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

INPUT:
• self, right: multivariate polynomials
• variable: optional, compute the Sylvester matrix with respect to this variable. If variable is not pro-
vided, the first variable of the polynomial ring is used.

OUTPUT:
• The Sylvester matrix of self and right.

EXAMPLES:

sage: R.<x, y> = PolynomialRing(ZZ)
sage: f = (y + 1)*x + 3*x**2
sage: g = (y + 2)*x + 4*x**2
sage: M = f.sylvester_matrix(g, x)
sage: M
[3 y + 1 0 0]
[0 3 y + 1 0]
[4 y + 2 0 0]
[0 4 y + 2 0]

If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will
be zero:

sage: M.determinant()
0

(continues on next page)
If both polynomials are of positive degree with respect to variable, the determinant of the Sylvester matrix is the resultant:

```python
sage: f.sylvester_matrix(1 + g, x).determinant()
y^2 - y + 7
```

This method is given for convenience. It is faster to use polynomial rings with weighted term orders and the standard `degree` function.

INPUT:

- `weights` - Either individual numbers, an iterable or a dictionary, specifying the weights of each variable. If it is a dictionary, it maps each variable of `self` to its weight. If it is a sequence of individual numbers or a tuple, the weights are specified in the order of the generators as given by `self.parent().gens()`.

EXAMPLES:

```python
sage: R.<x,y,z> = GF(7)[]
sage: p = x^3 + y + x*z^2
sage: p.weighted_degree({z:0, x:1, y:2})
3
sage: p.weighted_degree(1, 2, 0)
3
sage: p.weighted_degree((1, 4, 2))
5
sage: p.weighted_degree((1, 4, 1))
4
sage: p.weighted_degree(2**64, 2**50, 2**128)
680564733841876926945195958937245974528
sage: q = R.random_element(100, 20) #random
sage: q.weighted_degree(1, 1, 1) == q.total_degree()
True
```

You may also work with negative weights:

```python
sage: p.weighted_degree(-1, -2, -1)
-2
```

Note that only integer weights are allowed.

```python
sage: p.weighted_degree(x,1,1)
Traceback (most recent call last):
```

(continues on next page)
The weighted_degree coincides with the degree of a weighted polynomial ring, but the later is faster.

```python
sage: K = PolynomialRing(QQ, 'x,y', order=TermOrder('wdegrevlex', (2,3)))
sage: p = K.random_element(10)
sage: p.degree() == p.weighted_degree(2,3)
True
```

sage.rings.polynomial.multi_polynomial.is_MPolynomial(x)

3.1.4 Multivariate Polynomial Rings over Generic Rings

Sage implements multivariate polynomial rings through several backends. This generic implementation uses the classes `PolyDict` and `ETuple` to construct a dictionary with exponent tuples as keys and coefficients as values.

AUTHORS:
- David Joyner and William Stein
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of Singular features
- Martin Albrecht (2006-04-21): reorganize class hierarchy for singular rep
- Martin Albrecht (2007-04-20): reorganized class hierarchy to support Pyrex implementations

EXAMPLES:

We construct the Frobenius morphism on \(\mathbb{F}_5[x, y, z] \) over \(\mathbb{F}_5 \):

```python
sage: R.<x,y,z> = GF(5)[]
sage: frob = R.hom([x^5, y^5, z^5])
sage: frob(x^2 + 2*y - z^4)
-x^20 + x^10 + 2*y^5
sage: frob((x + 2*y)^3)
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
sage: (x^5 + 2*y^5)^3
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
```

We make a polynomial ring in one variable over a polynomial ring in two variables:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: S.<t> = PowerSeriesRing(R)
sage: t*(x+y)
(x + y)*t
```

```python
class sage.rings.polynomial.multi_polynomial._MPolynomialRing_macaulay2_repr

    is_exact()```

### 3.1. Multivariate Polynomials and Polynomial Rings

289
class sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict (base_ring, n, names, order):
    Bases: sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_macaulay2_repr, sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr, sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base

    Multivariable polynomial ring.

    EXAMPLES:

    sage: R = PolynomialRing(Integers(12), 'x', 5); R
    Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Ring of integers modulo 12
    sage: loads(R.dumps()) == R
    True

    monomial_all_divisors(t)
    Return a list of all monomials that divide t, coefficients are ignored.

    INPUT:
    • t - a monomial.

    OUTPUT: a list of monomials.

    EXAMPLES:

    sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
    sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
    sage: P.monomial_all_divisors(x^2*z^3)
    [x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]

    ALGORITHM: addwithcarry idea by Toon Segers

    monomial_divides(a, b)
    Return False if a does not divide b and True otherwise.

    INPUT:
    • a – monomial
    • b – monomial

    OUTPUT: Boolean

    EXAMPLES:

    sage: P.<x,y,z> = PolynomialRing(ZZ,3, order='degrevlex')
    sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
    True
    sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
    False

    monomial_lcm(f, g)
    LCM for monomials. Coefficients are ignored.

    INPUT:
    • f - monomial.
• g - monomial.

OUTPUT: monomial.

EXAMPLES:

sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_
˓→polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.monomial_lcm(3/2*x*y, x)
x*y

sage: P.monomial_lcm(P(3/2), P(2/3))
1

sage: P.monomial_lcm(x, P(1))
x

monomial_pairwise_prime(h, g)
Return True if h and g are pairwise prime.
Both are treated as monomials.

INPUT:
• h - monomial.
• g - monomial.

OUTPUT: Boolean.

EXAMPLES:

sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_
˓→polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True

sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False

sage: P.monomial_pairwise_prime(1/2*x^3*y^2, Q(0))
True

sage: P.monomial_pairwise_prime(P(1/2),x)
False

monomial_quotient(f, g, coeff=False)
Return f/g, where both f and g are treated as monomials.
Coefficients are ignored by default.

INPUT:
• f - monomial.
• g - monomial.
• coeff - divide coefficients as well (default: False).
OUTPUT: monomial.

EXAMPLES:

```python
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_
 →polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
sage: P.monomial_quotient(3/2*x*y, x)
y
sage: P.monomial_quotient(3/2*x*y, 2*x, coeff=True)
3/4*y
sage: P.monomial_quotient(x*y, R.gen())
y
sage: P.monomial_quotient(P(0), P(1))
0
sage: P.monomial_quotient(P(1), P(0))
Traceback (most recent call last):
... ZeroDivisionError
sage: P.monomial_quotient(P(3/2), P(2/3), coeff=True)
9/4
sage: P.monomial_quotient(x, y) # Note the wrong result
x*y^-1
sage: P.monomial_quotient(x, P(1))
x
```

**Note:** Assumes that the head term of f is a multiple of the head term of g and return the multiplicant m. If this rule is violated, funny things may happen.

*monomial_reduce* (*f*, *G*)

Try to find a g in G where g.lm() divides f.

If found, (flt, g) is returned, (0, 0) otherwise, where flt is f/g.lm(). It is assumed that G is iterable and contains ONLY elements in this ring.

INPUT:

• *f* - monomial

• *G* - list/set of mpolynomials

EXAMPLES:

```python
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_
 →polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
sage: f = x*y^2
sage: G = [3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, P(1/2)]
```

(continues on next page)
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)

sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(Zmod(23432), 3, order='degrevlex')

sage: f = x*y^2
sage: G = [3*x^3 + y^2 + 2, 4*x*y + 7, P(2)]

sage: P.monomial_reduce(f,G)
(y, 4*x*y + 7)

sage: P.monomial_reduce(P(0),G)
(0, 0)

sage: P.monomial_reduce(f,[P(0)])
(0, 0)

class sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain(base_ring, n, names, order)

Bases: sage.rings.ring.IntegralDomain, sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict

ideal(*gens, **kwds)
Create an ideal in this polynomial ring.

is_field(proof=True)

is_integral_domain(proof=True)

3.1.5 Generic Multivariate Polynomials

AUTHORS:
• David Joyner: first version
• William Stein: use dict’s instead of lists
• Martin Albrecht malb@informatik.uni-bremen.de: some functions added
• Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of some Singular features
• William Stein (2006-04-19): added e.g., f[1,3] to get coeff of \(xy^3\); added examples of the new \(R.x,y = PolynomialRing(QQ,2)\) notation.
• Martin Albrecht: improved singular coercions (restructured class hierarchy) and added ETuples
• Robert Bradshaw (2007-08-14): added support for coercion of polynomials in a subset of variables (including multi-level univariate rings)
• Joel B. Mohler (2008-03): Refactored interactions with ETuples.

EXAMPLES:
We verify Lagrange’s four squares identity:
\begin{verbatim}
sage: R.<a0,a1,a2,a3,b0,b1,b2,b3> = QQbar[]
sage: (a0^2 + a1^2 + a2^2 + a3^2)*(b0^2 + b1^2 + b2^2 + b3^2) == (a0*b0 - a1*b1 - a2*b2 - a3*b3)^2 + (a0*b1 + a1*b0 + a2*b3 - a3*b2)^2 + (a0*b2 - a1*b3 + a2*b0 + a3*b1)^2 + (a0*b3 + a1*b2 - a2*b1 + a3*b0)^2
True
\end{verbatim}

**class** `sage.rings.polynomial.multi_polynomial_element.MPolynomial_element`

Bases: `sage.rings.polynomial.multi_polynomial.MPolynomial`

**EXAMPLES:**

\begin{verbatim}
sage: K.<cuberoot2> = NumberField(x^3 - 2)
sage: L.<cuberoot3> = K.extension(x^3 - 3)
sage: S.<sqrt2> = L.extension(x^2 - 2)
sage: S
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
sage: P.<x,y,z> = PolynomialRing(S) # indirect doctest
\end{verbatim}

**change_ring** \((R)\)

Change the base ring of this polynomial to \(R\).

**INPUT:**

- \(R\) – ring or morphism.

**OUTPUT:** a new polynomial converted to \(R\).

**EXAMPLES:**

\begin{verbatim}
sage: R.<x,y> = QQ[]
sage: f = x^2 + 5*y
sage: f.change_ring(GF(5))
x^2
sage: K.<w> = CyclotomicField(5)
sage: R.<x,y> = K[]
sage: f = x^2 + w*y
sage: f.change_ring(K.embeddings(QQbar)[1])
x^2 + (-0.8090169943749474? + 0.5877852522924731?*I)*y
\end{verbatim}

**element** ()

**hamming_weight** ()

Return the number of non-zero coefficients of this polynomial.

This is also called weight, \texttt{hamming_weight()} or sparsity.

**EXAMPLES:**

\begin{verbatim}
sage: R.<x, y> = CC[]
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)^100
sage: f.number_of_terms()
101
\end{verbatim}
The method `hamming_weight()` is an alias:

```
sage: f.hamming_weight()
101
```

**number_of_terms()**
Return the number of non-zero coefficients of this polynomial.

This is also called weight, `hamming_weight()` or sparsity.

**EXAMPLES:**

```
sage: R.<x, y> = CC[]
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)^100
sage: f.number_of_terms()
101
```

The method `hamming_weight()` is an alias:

```
sage: f.hamming_weight()
101
```

**class** `sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict` *(parent, x)*

**Bases:** `sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr, sage.rings.polynomial.multi_polynomial_element.MPolynomial_element`

Multivariate polynomials implemented in pure python using polydicts.

**coefficient** *(degrees)*
Return the coefficient of the variables with the degrees specified in the python dictionary `degrees`. Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in `degrees`. However, the result has the same parent as this polynomial.

This function contrasts with the function `monomial_coefficient()` which returns the coefficient in the base ring of a monomial.

**INPUT:**

- `degrees` - Can be any of:
  - a dictionary of degree restrictions
  - a list of degree restrictions (with None in the unrestricted variables)
  - a monomial (very fast, but not as flexible)

**OUTPUT:** element of the parent of self

**See also:**
For coefficients of specific monomials, look at `monomial_coefficient()`.

**EXAMPLES:**
sage: R.<x, y> = QQbar[]
sage: f = 2 + x + y
sage: c = f.coefficient({x:1,y:1}); c
2
sage: c.parent()
Multivariate Polynomial Ring in x, y over Algebraic Field
sage: c in PolynomialRing(QQbar, 2, names = ['x','y'])
True
sage: f = y^2 - x^9 - 7*x + 5*x*y
sage: f.coefficient({y:1})
5*x
sage: f.coefficient({y:0})
-x^9 + (-7)*x
sage: f.coefficient({x:0,y:0})
0
sage: f=(1+y+y^2)*(1+x+x^2)

sage: f.coefficient({x:0})
y^2 + y + 1
sage: f.coefficient([0,None])
y^2 + y + 1
sage: f.coefficient(x)
y^2 + y + 1
sage: # Be aware that this may not be what you think!
sage: # The physical appearance of the variable x is deceiving --
# particularly if the exponent would be a variable.
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x*y^2 + x^2 + x*y + y^2 + x + y + 1

sage: R.<x,y> = RR[]
sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5.00000000000000
sage: parent(c)
Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision

AUTHORS:

• Joel B. Mohler (2007-10-31)

constant_coefficient ()
Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

sage: R.<x,y> = QQbar[]

sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.constant_coefficient()
5
sage: f = 3*x^2
sage: f.constant_coefficient()
0

degree (x=None, std_grading=False)
Return the degree of self in x, where x must be one of the generators for the parent of self.

INPUT:

• x · multivariate polynomial (a generator of the parent of self). If x is not specified (or is None), return the total degree, which is the maximum degree of any monomial. Note that a weighted
term ordering alters the grading of the generators of the ring; see the tests below. To avoid this behavior, set the optional argument std_grading=True.

OUTPUT: integer

EXAMPLES:

```sage
default
R.<x,y> = RR[]
f = y^2 - x^9 - x
default
f.degree(x)
9
default
f.degree(y)
2
default
(y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
default
(y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10
```

Note that total degree takes into account if we are working in a polynomial ring with a weighted term order.

```sage
R = PolynomialRing(QQ,'x,y',order=TermOrder('wdeglex',(2,3)))
x,y = R.gens()
x.degree()
2
y.degree()
3
x.degree(y),x.degree(x),y.degree(x),y.degree(y)
(0, 1, 0, 1)
f = (x^2*y+x*y^2)
f.degree(x)
2
f.degree(y)
2
f.degree()
8
f.degree(std_grading=True)
3
```

Note that if $x$ is not a generator of the parent of self, for example if it is a generator of a polynomial algebra which maps naturally to this one, then it is converted to an element of this algebra. (This fixes the problem reported in trac ticket #17366.)

```sage
x, y = ZZ['x','y'].gens()
x0, y0 = QQ['x','y'].gens()
GF(3037000453)['x','y'].gen(0).degree(x)
1
GF(3037000453)['x','y'].gen(0).degree(x0)
Traceback (most recent call last):
 ... TypeError: x must canonically coerce to parent
GF(3037000453)['x','y'].gen(0).degree(x^2)
Traceback (most recent call last):
 ...
TypeError: x must be one of the generators of the parent
degrees()```
Returns a tuple (precisely - an ETuple) with the degree of each variable in this polynomial. The list of degrees is, of course, ordered by the order of the generators.

EXAMPLES:

```
sage: R.<x,y,z>=PolynomialRing(QQbar)
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.degrees()
(2, 2, 0)
sage: f = x^2+z^2
sage: f.degrees()
(2, 0, 2)
sage: f.total_degree()  # this simply illustrates that total degree is not
                      # the sum of the degrees
2
sage: R.<x,y,z,u>=PolynomialRing(QQbar)
sage: f=(1-x)*(1+y+z+x^3)^5
sage: f.degrees()
(16, 5, 5, 0)
sage: R(0).degrees()
(0, 0, 0, 0)
```

dict()

Return underlying dictionary with keys the exponents and values the coefficients of this polynomial.

exponents (as_ETuples=True)

Return the exponents of the monomials appearing in self.

INPUT:

- as_ETuples (default: True): return the list of exponents as a list of ETuples.

OUTPUT:

Return the list of exponents as a list of ETuples or tuples.

EXAMPLES:

```
sage: R.<a,b,c> = PolynomialRing(QQbar, 3)
sage: f = a^3 + b + 2*b^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
```

Be default the list of exponents is a list of ETuples:

```
sage: type(f.exponents()[0])
<type 'sage.rings.polynomial.polydict.ETuple'>
sage: type(f.exponents(as_ETuples=False)[0])
<... 'tuple'>
```

factor (proof=True)

Compute the irreducible factorization of this polynomial.

INPUT:

- proof'' - insist on provably correct results (default: `True)

integral (var=None)

Integrates self with respect to variable var.
Note: The integral is always chosen so the constant term is 0.

If \texttt{var} is not one of the generators of this ring, \texttt{integral(var)} is called recursively on each coefficient of this polynomial.

EXAMPLES:

On polynomials with rational coefficients:

\begin{verbatim}
sage: x, y = PolynomialRing(QQ, 'x, y').gens()
sage: ex = x*y + x - y
sage: it = ex.integral(x); it
1/2*x^2*y + 1/2*x^2 - x*y
sage: it.parent() == x.parent()
True
\end{verbatim}

On polynomials with coefficients in power series:

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(QQbar)
sage: S.<x, y> = PolynomialRing(R)
sage: f = (t^2 + O(t^3))*x^2*y^3 + (37*t^4 + O(t^5))*x^3
sage: f.parent()
Multivariate Polynomial Ring in x, y over Power Series Ring in t over \QQbar
sage: f.integral(x) # with respect to x
(1/3*t^2 + O(t^3))*x^3*y^3 + (37/4*t^4 + O(t^5))*x^4
sage: f.integral(x).parent()
Multivariate Polynomial Ring in x, y over Power Series Ring in t over \QQbar
sage: f.integral(y) # with respect to y
(1/4*t^2 + O(t^3))*x^2*y^4 + (37*t^4 + O(t^5))*x^3*y
sage: f.integral(t) # with respect to t (recurses into base ring)
(1/3*t^3 + O(t^4))*x^2*y^3 + (37/5*t^5 + O(t^6))*x^3
\end{verbatim}

\texttt{inverse_of_unit()}

True if polynomial is constant, and False otherwise.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.is_constant()
False
sage: g = 10*x^0
sage: g.is_constant()
True
\end{verbatim}

\texttt{is_generator()}

Returns True if self is a generator of it’s parent.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y>=QQbar[]
sage: x.is_generator()
True
\end{verbatim}

(continues on next page)
sage: (x+y-y).is_generator()
True
sage: (x+y).is_generator()
False

is_homogeneous()
Return True if self is a homogeneous polynomial.

EXAMPLES:

sage: R.<x,y> = QQbar[]
sage: (x+y).is_homogeneous()
True
sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True

is_monomial()
Returns True if self is a monomial, which we define to be a product of generators with coefficient 1.
Use is_term to allow the coefficient to not be 1.

EXAMPLES:

sage: R.<x,y>=QQbar[]
sage: x.is_monomial()
True
sage: (x+2*y).is_monomial()
False
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True

To allow a non-1 leading coefficient, use is_term():

sage: (2*x+y).is_term()
True
sage: (2*x+y).is_monomial()
False

is_term()
Returns True if self is a term, which we define to be a product of generators times some coefficient, which need not be 1.
Use is_monomial() to require that the coefficient be 1.

EXAMPLES:

sage: R.<x,y>=QQbar[]
sage: x.is_term()
(continues on next page)
To require leading coefficient 1, use is_monomial():

```
sage: (2*x*y).is_monomial()
False
sage: (2*x*y).is_term()
True
```

is_univariate()

Returns True if this multivariate polynomial is univariate and False otherwise.

EXAMPLES:

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.is_univariate()
False
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.is_univariate()
True
sage: f = x^0
sage: f.is_univariate()
True
```

lc()

Returns the leading coefficient of self i.e., self.coefficient(self.lm())

EXAMPLES:

```
sage: R.<x,y,z>=QQbar[]
sage: f=3*x^2-y^2-x*y
sage: f.lc()
3
```

lift(I)

Given an ideal I = (f_1,...,f_r) and some g (== self) in I, find s_1,...,s_r such that g = s_1 f_1 + ... + s_r f_r

ALGORITHM: Use Singular.

EXAMPLES:

```
sage: A.<x,y> = PolynomialRing(CC,2,order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7 ])
sage: f = x*y^13 + y^12
sage: M = f.lift(I)
sage: M
[y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + y + y^4]
```

(continues on next page)
\[\text{sage: } \sum(\text{map}(\text{mul}, \text{zip}(M, I.gens()))) == f \]

\text{True}

\text{lm()}

Returns the lead monomial of self with respect to the term order of self.parent().

\text{EXAMPLES:}

\text{sage: } R.<x,y,z>=\text{PolynomialRing}(\text{GF}(7),3,\text{order='lex'})
\text{sage: } (x^1*y^2 + y^3*z^4).\text{lm()}
\text{x*y^2}
\text{sage: } (x^3*y^2*z^4 + x^3*y^2*z^1).\text{lm()}
\text{x^3*y^2*z^4}

\text{sage: } R.<x,y,z>=\text{PolynomialRing}(\text{GF}(7),3,\text{order='deglex'})
\text{sage: } (x^1*y^2*z^3 + x^3*y^2*z^0).\text{lm()}
\text{x*y^2*z^3}
\text{sage: } (x^1*y^2*z^4 + x^1*y^1*z^5).\text{lm()}
\text{x*y^2*z^4}

\text{sage: } R.<x,y,z>=\text{PolynomialRing}(\text{CC},3,\text{order='degrevlex'})
\text{sage: } (x^1*y^5*z^2 + x^4*y^1*z^3).\text{lm()}
\text{x*y^5*z^2}
\text{sage: } (x^4*y^7*z^1 + x^4*y^2*z^3).\text{lm()}
\text{x^4*y^7*z}

\text{lt()}

Returns the leading term of self i.e., self.lc()*self.lm(). The notion of “leading term” depends on the ordering defined in the parent ring.

\text{EXAMPLES:}

\text{sage: } R.<x,y,z>=\text{PolynomialRing}(\text{QQbar},3,\text{order='invlex'})
\text{sage: } f=3*x^2-y^2-x*y
\text{sage: } f.\text{lt()}
\text{-y^2}

\text{monomial_coefficient(mon)}

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function \text{coefficient} which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

\text{INPUT:}

\begin{itemize}
 \item \text{mon} - a monomial
\end{itemize}

\text{OUTPUT:} \text{coefficient in base ring}

\text{See also:}

For coefficients in a base ring of fewer variables, look at \text{coefficient()}.

\text{EXAMPLES:}
The parent of the return is a member of the base ring.

```
sage: R.<x,y>=QQbar[]
```

The parent of the return is a member of the base ring.

```
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Algebraic Field
```

```
sage: f = y^2 + y^2*x - x^9 + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
-1
sage: f.monomial_coefficient(x^10)
0
```

```
sage: var('a')
a
sage: K.<a> = NumberField(a^2+a+1)
sage: P.<x,y> = K[]
sage: f=(a*x-1)*((a+1)*y-1); f
-x*y + (-a)*x + (-a - 1)*y + 1
sage: f.monomial_coefficient(x)
-a
```

```
monomials()
Returns the list of monomials in self. The returned list is decreasingly ordered by the term ordering of self.parent().

OUTPUT: list of MPolynomials representing Monomials

EXAMPLES:

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.monomials()
[x^2*y^2, x^2, y, 1]
sage: R.<fx,fy,gx,gy> = QQbar[]
sage: F = ((fx*gy - fy*gx)^3)
sage: F
-fy^3*gx^3 + 3*fx*fy^2*gx^2*gy + (-3)*fx^2*fy*gx*gy^2 + fx^3*gy^3
sage: F.monomials()
[fx^3*gy^3, fx*fy^2*gx^2*gy, fx^2*fy*gx*gy^2, fx^3*gy^3]
```

```
sage: F.coefficients()
[-1, 3, -3, 1]
sage: sum(map(mul,zip(F.coefficients(),F.monomials()))) == F
True
```

```
nvariables()
Number of variables in this polynomial

EXAMPLES:

```
sage: R.<fx, fy, gx, gy> = QQbar[]
sage: F = ((fx*gy - fy*gx)^3)
sage: F
-fy^3*gx^3 + 3*fx*fy^2*gx^2*gy + (-3)*fx^2*fy*gx*gy^2 + fx^3*gy^3
sage: F.monomials()
[fx^3*gy^3, fx*fy^2*gx^2*gy, fx^2*fy*gx*gy^2, fx^3*gy^3]
```

```
sage: F.coefficients()
[-1, 3, -3, 1]
sage: sum(map(mul,zip(F.coefficients(),F.monomials()))) == F
True
```

3.1. Multivariate Polynomials and Polynomial Rings 303
```python
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.nvariables()
2
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.nvariables()
1
```

quo_rem *(right)*

Returns quotient and remainder of self and right.

EXAMPLES:

```python
sage: R.<x,y> = CC[]
sage: f = y*x^2 + x + 1
sage: f.quo_rem(x)
(x*y + 1.00000000000000, 1.00000000000000)
sage: R = QQ['a','b']['x','y','z']
sage: p1 = R('a + (1+2*b)*x*y + (3-a^2)*z')
sage: p2 = R('x-1')
sage: p1.quo_rem(p2)
((2*b + 1)*y, (2*b + 1)*y + (-a^2 + 3)*z + a)
sage: R.<x,y> = Qp(5)[]
sage: x.quo_rem(y)
Traceback (most recent call last):
...
TypeError: no conversion of this ring to a Singular ring defined
```

ALGORITHM: Use Singular.

reduce *(I)*

Reduce this polynomial by the polynomials in *I*.

INPUT:

- *I* - a list of polynomials or an ideal

EXAMPLES:

```python
sage: P.<x,y,z> = QQbar[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x* y
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
(-6)*y^2 + 2*y
sage: g.reduce(F.gens())
(-6)*y^2 + 2*y
sage: f = 3*x
sage: f.reduce([2*x,y])
0
```
sage: k.<w> = CyclotomicField(3)
sage: A.<y9,y12,y13,y15> = PolynomialRing(k)
sage: J = [y9 + y12]
sage: f = y9 - y12; f.reduce(J)
-2*y12
sage: f = y13*y15; f.reduce(J)
y13*y15
sage: f = y13*y15 + y9 - y12; f.reduce(J)
y13*y15 - 2*y12

Make sure the remainder returns the correct type, fixing trac ticket #13903:

sage: R.<y1,y2>=PolynomialRing(Qp(5),2, order='lex')
sage: G=[y1^2 + y2^2, y1*y2 + y2^2, y2^3]
sage: type((y2^3).reduce(G))
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>

resultant (other, variables=None)
Compute the resultant of self and other with respect to variable.

If a second argument is not provided, the first variable of self.parent() is chosen.

INPUT:
 • other – polynomial in self.parent()
 • variable – (optional) variable (of type polynomial) in self.parent()

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ, 2)
sage: a = x + y
sage: b = x^3 - y^3
sage: a.resultant(b)
-2*y^3
sage: a.resultant(b, y)
2*x^3

subs (fixed=None, **kw)
Fixes some given variables in a given multivariate polynomial and returns the changed multivariate polynomi-als. The polynomial itself is not affected. The variable,value pairs for fixing are to be provided as a dictionary of the form {variable:value}.

This is a special case of evaluating the polynomial with some of the variables constants and the others the original variables.

INPUT:
 • fixed - (optional) dictionary of inputs
 • **kw - named parameters

OUTPUT: new MPolynomial

EXAMPLES:

sage: R.<x,y> = QQbar[]
sage: f = x^2 + y + x^2*y^2 + 5
sage: f((5,y))
25*y^2 + y + 30

(continues on next page)
total_degree()

Return the total degree of self, which is the maximum degree of any monomial in self.

EXAMPLES:

```python
sage: R.<x,y,z> = QQbar[]
sage: f=2*x*y^3*z^2
sage: f.total_degree()
6
sage: f=4*x^2*y^2*z^3
sage: f.total_degree()
7
sage: f=99*x^6*y^3*z^9
sage: f.total_degree()
18
sage: f=x*y^3*z^6+3*x^2
sage: f.total_degree()
10
sage: f=z^3+8*x^4*y^5*z
sage: f.total_degree()
10
sage: f=z^9+10*x^4+y^8*x^2
sage: f.total_degree()
10
```

univariate_polynomial(R=None)

Returns a univariate polynomial associated to this multivariate polynomial.

INPUT:

- \(R \) - (default: None) PolynomialRing

If this polynomial is not in at most one variable, then a ValueError exception is raised. This is checked using the is_univariate() method. The new Polynomial is over the same base ring as the given MPolynomial.

EXAMPLES:

```python
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.univariate_polynomial()
Traceback (most recent call last):
  ... TypeError: polynomial must involve at most one variable
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.univariate_polynomial()
700*y^2 - 2*y + 305
sage: g.univariate_polynomial(PolynomialRing(QQ,'z'))
700*z^2 - 2*z + 305
```

variable(i)

Returns \(i \)-th variable occurring in this polynomial.

EXAMPLES:
```python
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.variable(0)
x
sage: f.variable(1)
y
```

variables()

Returns the tuple of variables occurring in this polynomial.

EXAMPLES:

```python
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.variables()
(x, y)
```

```
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.variables()
(y,)
```

```python
degree_lowest_rational_function(r, x)
```

INPUT:

- `r` - a multivariate rational function
- `x` - a multivariate polynomial ring generator `x`

OUTPUT:

- `integer` - the degree of `r` in `x` and its “leading” (in the `x`-adic sense) coefficient.

Note: This function is dependent on the ordering of a Python dict. Thus, it isn’t really mathematically well-defined. I think that it should made a method of the `FractionFieldElement` class and rewritten.

EXAMPLES:

```python
sage: R1 = PolynomialRing(FiniteField(5), 3, names = ["a","b","c"])
sage: F = FractionField(R1)
sage: a,b,c = R1.gens()
sage: f = 3*a*b^2*c^3+4*a*b*c
sage: g = a^2*b*c^2+2*a^2*b^4*c^7
```

Consider the quotient $\frac{f}{g} = \frac{4+3b^2c}{ac+2ab^2b}$ (note the cancellation).

```python
sage: r = f/g; r
(-b*c^2 + 2)/(a*b^3*c^6 - 2*a*b^2)
```

```python
sage: degree_lowest_rational_function(r,a)
(-1, 3)
```

```python
sage: degree_lowest_rational_function(r,b)
(0, 4)
```

```python
sage: degree_lowest_rational_function(r,c)
(-1, 4)
```

```python
is_MPolynomial(x)
```

3.1. Multivariate Polynomials and Polynomial Rings 307
3.1.6 Ideals in multivariate polynomial rings.

Sage has a powerful system to compute with multivariate polynomial rings. Most algorithms dealing with these ideals are centered on the computation of Groebner bases. Sage mainly uses Singular to implement this functionality. Singular is widely regarded as the best open-source system for Groebner basis calculation in multivariate polynomial rings over fields.

AUTHORS:

- William Stein
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of some Singular features
- Martin Albrecht (2009): added Groebner basis over rings functionality from Singular 3.1
- John Perry (2012): bug fixing equality & containment of ideals

EXAMPLES:

We compute a Groebner basis for some given ideal. The type returned by the \texttt{groebner_basis} method is \texttt{PolynomialSequence}, i.e. it is not a \texttt{MPolynomialIdeal}:

\begin{verbatim}
sage: x,y,z = QQ['x,y,z'].gens()
sage: I = ideal(x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1)
sage: B = I.groebner_basis()
sage: type(B)
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>
\end{verbatim}

Groebner bases can be used to solve the ideal membership problem:

\begin{verbatim}
sage: f,g,h = B
sage: (2*x*f + g).reduce(B) 0
sage: (2*x*f + g) in I
True
sage: (2*x*f + 2*z*h + y^3).reduce(B)
y^3
sage: (2*x*f + 2*z*h + y^3) in I
False
\end{verbatim}

We compute a Groebner basis for Cyclic 6, which is a standard benchmark and test ideal.

\begin{verbatim}
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis()
sage: len(B)
45
\end{verbatim}

We compute in a quotient of a polynomial ring over \(\mathbb{Z}/17\mathbb{Z}\):

\begin{verbatim}
sage: R.<x,y> = ZZ[]
sage: S.<a,b> = R.quotient((x^2 + y^2, 17))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Integer Ring
by the ideal (x^2 + y^2, 17)
\end{verbatim}

(continues on next page)
Note that the result of a computation is not necessarily reduced:

```
sage: (a+b)^17
256*a*b^16 + 256*b^17
sage: S(17) == 0
True
```

Or we can work with \(\mathbb{Z}/17\mathbb{Z} \) directly:

```
sage: R.<x,y> = Zmod(17)[[]]
sage: S.<a,b> = R.quotient((x^2 + y^2,))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Ring of
integers modulo 17 by the ideal (x^2 + y^2)
sage: a^2 + b^2 == 0
True
sage: a^3 - b^2 == -a*b^2 - b^2 == 16*a*b^2 + 16*b^2
True
sage: (a+b)^17
a*b^16 + b^17
sage: S(17) == 0
True
```

Working with a polynomial ring over \(\mathbb{Z} \):

```
sage: R.<x,y,z,w> = ZZ[]
sage: I = ideal(x^2 + y^2 - z^2 - w^2, x-y)
sage: J = I^2
sage: J.groebner_basis()
[4*y^4 - 4*y^2*z^2 + z^4 - 4*y^2*w^2 + 2*z^2*w^2 + w^4,
  2*x*y^2 - 2*y^3 - x*z^2 + y*z^2 - x*w^2 + y*w^2,
  x^2 - 2*x*y + y^2]
sage: y^2 - 2*x*y + x^2 in J
True
sage: 0 in J
True
```

We do a Groebner basis computation over a number field:

```
sage: K.<zeta> = CyclotomicField(3)
sage: R.<x,y,z> = K[]; R
Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2
sage: i = ideal(x - zeta*y + 1, x^3 - zeta*y^3); i
Ideal (x + (-zeta)*y + 1, x^3 + (-zeta)*y^3) of Multivariate
Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2
sage: i.groebner_basis()
```

(continues on next page)
Two examples from the Mathematica documentation (done in Sage):

We compute a Groebner basis:

```
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: ideal(x^2 - 2*y^2, x*y - 3).groebner_basis()
[x - 2/3*y^3, y^4 - 9/2]
```

We show that three polynomials have no common root:

```
sage: R.<x,y> = QQ[]
sage: ideal(x+y, x^2 - 1, y^2 - 2*x).groebner_basis()
[1]
```

The next example shows how we can use Groebner bases over \(\mathbb{Z} \) to find the primes modulo which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal \(I \) in \(\mathbb{Z}[x, y, z] \), and note that the Groebner basis of \(I \) over \(\mathbb{Q} \) contains 1, so there are no solutions over \(\mathbb{Q} \) or an algebraic closure of it (this is not surprising as there are 4 equations in 3 unknowns).

```
sage: P.<x,y,z> = PolynomialRing(ZZ,order='lex')
sage: I = ideal(-y^2 - 3*y + z^2 + 3, -2*y*z + z^2 + 2*z + 1, x*z + y*z + z^2, -3*x*y + 2*y*z + 6*z^2)
sage: I.change_ring(P.change_ring(QQ)).groebner_basis()
[1]
```

However, when we compute the Groebner basis of \(I \) (defined over \(\mathbb{Z} \)), we note that there is a certain integer in the ideal which is not 1.

```
sage: I.groebner_basis()
[x + 130433*y + 59079*z, y^2 + 3*y + 17220, y*z + 5*y + 14504, 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878]
```

Now for each prime \(p \) dividing this integer 164878, the Groebner basis of \(I \) modulo \(p \) will be non-trivial and will thus give a solution of the original system modulo \(p \).

```
sage: factor(164878)
2 * 7 * 11777
sage: I.change_ring(P.change_ring( GF(2) )).groebner_basis()
[x + y + z, y^2 + y, y*z + y, z^2 + 1]
sage: I.change_ring(P.change_ring( GF(7) )).groebner_basis()
[x - 1, y + 3, z - 2]
```
The Groebner basis modulo any product of the prime factors is also non-trivial:

```
sage: I.change_ring(P.change_ring( IntegerModRing(2*7) )).groebner_basis()
[x + 9*y + 13*z, y^2 + 3*y, y*z + 7*y + 6, 2*y + 6, z^2 + 3, 2*z + 10]
```

Modulo any other prime the Groebner basis is trivial so there are no other solutions. For example:

```
sage: I.change_ring( P.change_ring( GF(3) ) ).groebner_basis()
[1]
```

Note: Sage distinguishes between lists or sequences of polynomials and ideals. Thus an ideal is not identified with a particular set of generators. For sequences of multivariate polynomials see sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic.

```
class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal

Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr, sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_macaulay2_repr, sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_magma_repr, sage.rings.ideal.Ideal_generic

Create an ideal in a multivariate polynomial ring.

INPUT:

- ring - the ring the ideal is defined in
- gens - a list of generators for the ideal
- coerce - coerce elements to the ring ring?

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(IntegerRing(), 2, order='lex')
sage: R.ideal([x, y])
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Integer Ring
sage: R.<x0,x1> = GF(3)[]
sage: R.ideal([x0^2, x1^3])
Ideal (x0^2, x1^3) of Multivariate Polynomial Ring in x0, x1 over Finite Field of size 3
```

```
basis

Shortcut to gens().

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1])
sage: I.basis
[x, y + 1]
```

```
change_ring (P)

Return the ideal I in P spanned by the generators g_1,...,g_n of self as returned by self.gens().

3.1. Multivariate Polynomials and Polynomial Rings 311
INPUT:

- P - a multivariate polynomial ring

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I
Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of
Multivariate Polynomial Ring in x, y, z over Rational Field

sage: I.groebner_basis()
[x + y + z, y^2 + y*z + z^2, z^3 - 1]
sage: Q.<x,y,z> = P.change_ring(order='degrevlex'); Q
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: Q.term_order()
Degree reverse lexicographic term order
sage: J = I.change_ring(Q); J
Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: J.groebner_basis()
[z^3 - 1, y^2 + y*z + z^2, x + y + z]
```

degree_of_semi_regularity()

Return the degree of semi-regularity of this ideal under the assumption that it is semi-regular.

Let \{f_1, ..., f_m\} \subset K[x_1, ..., x_n] be homogeneous polynomials of degrees \(d_1, ..., d_m\) respectively. This sequence is semi-regular if:

1. \{f_1, ..., f_m\} \neq K[x_1, ..., x_n]
2. for all \(1 \leq i \leq m\) and \(g \in K[x_1, ..., x_n]:\ deg(g \cdot f_i) < D \) and \(g \cdot f_i \in < f_1, ..., f_{i-1} >\) implies that \(g \in < f_1, ..., f_{i-1} >\) where \(D\) is the degree of regularity.

This notion can be extended to affine polynomials by considering their homogeneous components of highest degree.

The degree of regularity of a semi-regular sequence \(f_1, ..., f_m\) of respective degrees \(d_1, ..., d_m\) is given by the index of the first non-positive coefficient of:

\[
\sum c_k z^k = \prod(1-z^{d_i}) / (1-z)^n
\]

EXAMPLES:

We consider a homogeneous example:

```
sage: n = 8
sage: K = GF(127)
sage: P = PolynomialRing(K,n,'x')
sage: s = [K.random_element() for _ in range(n)]
sage: L = []
sage: for i in range(2*n):
....: f = P.random_element(degree=2, terms=binomial(n,2))
....: f -= f(*s)
....: L.append(f.homogenize())
```

(continues on next page)
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
4

From this, we expect a Groebner basis computation to reach at most degree 4. For homogeneous systems this is equivalent to the largest degree in the Groebner basis:

sage: max(f.degree() for f in I.groebner_basis())
4

We increase the number of polynomials and observe a decrease the degree of regularity:

sage: for i in range(2*n):
    ....: f = P.random_element(degree=2, terms=binomial(n,2))
    ....: f -= f(*s)
    ....: L.append(f.homogenize())
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
3

sage: max(f.degree() for f in I.groebner_basis())
3

The degree of regularity approaches 2 for quadratic systems as the number of polynomials approaches $n^2$:

sage: for i in range((n-4)*n):
    ....: f = P.random_element(degree=2, terms=binomial(n,2))
    ....: f -= f(*s)
    ....: L.append(f.homogenize())
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
2

sage: max(f.degree() for f in I.groebner_basis())
2

Note: It is unknown whether semi-regular sequences exist. However, it is expected that random systems 
are semi-regular sequences. For more details about semi-regular sequences see [BFS04].

REFERENCES:

gens()

Return a set of generators / a basis of this ideal. This is usually the set of generators provided during object creation.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]

groebner_basis(algorithm=None, deg_bound=None, mult_bound=None, prot=False, *args, **kwds)

Return the reduced Groebner basis of this ideal.
A Groebner basis \( g_1, ..., g_n \) for an ideal \( I \) is a generating set such that < \( LM(g_i) \) > = \( LM(I) \), i.e., the leading monomial ideal of \( I \) is spanned by the leading terms of \( g_1, ..., g_n \). Groebner bases are the key concept in computational ideal theory in multivariate polynomial rings which allows a variety of problems to be solved.

Additionally, a reduced Groebner basis \( G \) is a unique representation for the ideal < \( G \) > with respect to the chosen monomial ordering.

**INPUT:**

- **algorithm** - determines the algorithm to use, see below for available algorithms.
- **deg_bound** - only compute to degree \( \text{deg_bound} \), that is, ignore all S-polynomials of higher degree. (default: None)
- **mult_bound** - the computation is stopped if the ideal is zero-dimensional in a ring with local ordering and its multiplicity is lower than \( \text{mult_bound} \). Singular only. (default: None)
- **prot** - if set to True the computation protocol of the underlying implementation is printed. If an algorithm from the singular: or magma: family is used, prot may also be sage in which case the output is parsed and printed in a common format where the amount of information printed can be controlled via calls to \( \text{set_verbose()} \).
- ***args** - additional parameters passed to the respective implementations
- ****kwds** - additional keyword parameters passed to the respective implementations

**ALGORITHMS:**

- autoselect (default)
- \'singular:groebner\'  Singular's groebner command
- \'singular:std\'  Singular's std command
- \'singular:stdhilb\'  Singular's stdhilb command
- \'singular:stdfglm\'  Singular's stdfglm command
- \'singular:slimgb\'  Singular's slimgb command
- \'libsingular:groebner\'  libSingular's groebner command
- \'libsingular:std\'  libSingular's std command
- \'libsingular:slimgb\'  libSingular's slimgb command
- \'libsingular:stdhilb\'  libSingular's stdhilb command
- \'libsingular:stdfglm\'  libSingular's stdfglm command
- \'toy:buchberger\'  Sage's toy/educational buchberger without Buchberger criteria
- \'toy:buchberger2\'  Sage's toy/educational buchberger with Buchberger criteria
- \'toy:d_basis\'  Sage's toy/educational algorithm for computation over PIDs
- \'macaulay2:gb\'  Macaulay2's gb command (if available)
- \'magma:GroebnerBasis\'  Magma's Groebnerbasis command (if available)
- \'ginv:TQ\', \'ginv:TQBlockHigh\', \'ginv:TQBlockLow\' and \'ginv:TQDegree\'  One of GINV's implementations (if available)
- \'giac:gbasis\'  Giac's gbasis command (if available)
If only a system is given - e.g. ‘magma’ - the default algorithm is chosen for that system.

**Note:** The Singular and libSingular versions of the respective algorithms are identical, but the former calls an external Singular process while the later calls a C function, i.e. the calling overhead is smaller. However, the libSingular interface does not support pretty printing of computation protocols.

**EXAMPLES:**

Consider Katsura-3 over \( \mathbb{Q} \) with lexicographical term ordering. We compute the reduced Groebner basis using every available implementation and check their equality.

```python
sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex')
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis()
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```python
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:groebner')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```python
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:std')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```python
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:stdhilb')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```python
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:stdfglm')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```python
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:slimgb')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

Giac only supports the degree reverse lexicographical ordering:

```python
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: J = I.change_ring(P.change_ring(order='degrevlex'))
sage: gb = J.groebner_basis('giac') # optional - giacpy_sage, random
sage: gb.groebner_basis() # optional - giacpy_sage
[c^3 - 79/210*c^2 + 1/30*b + 1/70*c, b^2 - 3/5*c^2 - 1/5*b + 1/5*c, b*c + 6/5*c^2 - 1/10*b - 2/5*c, a + 2*b + 2*c - 1]
```

```python
sage: J.groebner_basis.set_cache(gb) # optional - giacpy_sage
sage: ideal(J.transformed_basis()).change_ring(P).interreduced_basis() # optional - testing trac 21884
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

(continues on next page)
Giac’s gbasis over $\mathbb{Q}$ can benefit from a probabilistic lifting and multi threaded operations:

```python
sage: A9=PolynomialRing(QQ,9,'x') # optional - giacpy_sage
sage: I9=sage.rings.ideal.Katsura(A9) # optional - giacpy_sage
sage: I9.groebner_basis("giac",proba_epsilon=1e-7) # optional - giacpy_sage,
Running a probabilistic check for the reconstructed Groebner basis...
```

Polynomial Sequence with 143 Polynomials in 9 Variables

The list of available Giac options is provided at `sage.libs.giac.groebner_basis()`. Note that `toy:buchberger` does not return the reduced Groebner basis,

```python
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('toy:buchberger')
[a^2 - a + 2*b^2 + 2*c^2, a*b + b*c - 1/2*b, a + 2*b + 2*c - 1, b^2 + 3*b*c - 1/2*b + 3*c^2 - c, b*c - 1/10*b + 6/5*c^2 - 2/5*c, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^6 - 79/210*c^5 - 229/2100*c^4 + 121/2520*c^3 + 1/3150*c^2 - 11/12600*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

but that `toy:buchberger2` does:

```python
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('toy:buchberger2')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

Singular and libSingular can compute Groebner basis with degree restrictions:

```python
sage: R.<x,y> = QQ[]
sage: I = R*[x^3+y^2,x^2*y+1]
sage: I.groebner_basis(algorithm='singular')
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: I.groebner_basis(algorithm='singular',deg_bound=2)
[x^3 + y^2, x^2*y + 1]
sage: I.groebner_basis() # optional - magma
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: I.groebner_basis(deg_bound=2) # optional - magma
[x^3 + y^2, x^2*y + 1]
```

A protocol is printed, if the verbosity level is at least 2, or if the argument `prot` is provided. Historically, the protocol did not appear during doctests, so, we skip the examples with protocol output.
```
sage: setVerbose(2)
sage: I = R[x^3+y^2,x^2*y+1]
sage: I.groebner_basis() # not tested
std in (QQ),(x,y),(dp(2),C)
(...:2)3ss4s6
(S:2) --
product criterion:1 chain criterion:0
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: I.groebner_basis(prot=False)
std in (QQ),(x,y),(dp(2),C)
(...:2)3ss4s6
(S:2) --
product criterion:1 chain criterion:0
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: setVerbose(0)
sage: I.groebner_basis(prot=True) # not tested
std in (QQ),(x,y),(dp(2),C)
(...:2)3ss4s6
(S:2) --
product criterion:1 chain criterion:0
[x^3 + y^2, x^2*y + 1, y^3 - x]
```

The list of available options is provided at `LibSingularOptions`.

Note that Groebner bases over \(\mathbb{Z}\) can also be computed:

```
sage: P.<a,b,c> = PolynomialRing(ZZ,3)
sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
sage: I.groebner_basis()
[b^3 - 181*b*c^2 + 222*c^3 - 26*b*c - 146*c^2 + 19*b + 24*c,
 2*b*c^2 - 48*c^3 + 3*b*c + 22*c^2 - 2*b - 2*c,
 42*c^3 + 45*b^2 + 54*b*c + 22*c^2 - 13*b - 12*c,
 2*b^2 + 6*b*c + 6*c^2 - b - 2*c,
 10*b*c + 12*c^2 - b - 4*c,
 a + 2*b + 2*c - 1]
```

```
sage: I.groebner_basis('macaulay2') # optional - macaulay2
[b^3 + 2*b*c^2 + 12*c^3 + b^2 + b*c - 4*c^2,
 2*b*c^2 - 181*b*c + 808*b,
 2*c^3 + 884*b*c + 666*c^2 + 320*b,
 b^2 + 438*b*c + 281*b,
 5*b*c + 156*c^2 + 112*b + 948*c,
 50*c^2 + 600*b + 650*c,
 a + 2*b + 2*c - 1]
```

Groebner bases over \(\mathbb{Z}/n\mathbb{Z}\) are also supported:

```
sage: P.<a,b,c> = PolynomialRing(Zmod(1000),3)
sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
sage: I.groebner_basis()
[b*c^2 + 732*b*c + 808*b,
 2*c^3 + 884*b*c + 666*c^2 + 320*b,
 b^2 + 438*b*c + 281*b,
 5*b*c + 156*c^2 + 112*b + 948*c,
 50*c^2 + 600*b + 650*c,
 a + 2*b + 2*c + 999,
 125*b]
```

3.1. Multivariate Polynomials and Polynomial Rings 317

Sage: R.<x,y,z> = PolynomialRing(Zmod(2233497349584))
Sage: I = R.ideal([z*(x-3*y), 3^2*x^2-y*z, z^2+y^2])
Sage: I.groebner_basis()
[2*z^4, y*z^2 + 81*z^3, 248166372176*z^3, 9*x^2 - y*z, y^2 + z^2, x*z +
 2233497349581*y*z, 248166372176*y*z]

Sage also supports local orderings:

Sage: P.<x,y,z> = PolynomialRing(QQ,3,order='negdegrevlex')
Sage: I = P * ( x*y*z + z^5, 2*x^2 + y^3 + z^7, 3*z^5 + y^5 )
Sage: I.groebner_basis()
[x^2 + 1/2*y^3, x*y*z + z^5, y^5 + 3*z^5, y^4*z - 2*x*z^5, z^6]

We can represent every element in the ideal as a combination of the generators using the lift() method:

Sage: P.<x,y,z> = PolynomialRing(QQ,3)
Sage: I = P * ( x*y*z + z^5, 2*x^2 + y^3 + z^7, 3*z^5 +y^5 )
Sage: J = Ideal(I.groebner_basis())
Sage: f = sum(P.random_element(terms=2)*f for f in I.gens())
Sage: f
1/2*y^2*z^7 - 1/4*y*z^8 + 2*x*z^5 + 95*z^6 + 1/2*y^4*z + x^2*y^2 +
 3/2*x^2*y*z + 95*x*y*z^2
e.
Sage: f.lift(I.gens())
[2*x + 95*z, 1/2*y^2 - 1/4*y*z, 0]
Sage: f = f.lift(J.gens()); f
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1/2*y^2 + 1/4*y*z, 1/2*y^2*z^2 - 1/
 4*y*z^3 + 2*x + 95*z]
Sage: sum(map(mul, zip(f,J.gens()))) == f
True

Groebner bases over fraction fields of polynomial rings are also supported:

Sage: P.<t> = QQ[]
Sage: F = Frac(P)
Sage: R.<X,Y,Z> = F[]
gens()])
Sage: I.groebner_basis()
[Z^3 + (79/105*t^2 - 79/105*t + 79/630)*Z^2 + (-11/105*t^4 + 22/105*t^3 - 17/
 45*t^2 + 197/1890)*Y + ...,
Y^2 + (-3/5)*Z^2 + (2/5*t^2 - 2/5*t + 1/15)*Y + (-2/5*t^2 + 2/5*t - 1/15)*Z -
 1/10*t^4 + 1/5*t^3 - 7/30*t^2 + 2/5*t + 11/90,
Y*Z + 6/5*Z^2 + (1/5*t^2 - 1/5*t + 1/30)*Y + (4/5*t^2 - 4/5*t + 2/15)*Z + 1/
 5*t^4 - 2/5*t^3 + 7/15*t^2 - 3/10*t - 11/45, X + 2*Y + 2*Z + t^2 - t - 1/3]

In cases where a characteristic cannot be determined, we use a toy implementation of Buchberger’s algorithm (see trac ticket #6581):

Sage: R.<a,b> = QQ[]; I = R.ideal(a^2+b^2-1)
Sage: Q = QuotientRing(R,I); K = Frac(Q)
Sage: R2.<x,y> = K[]; J = R2.ideal([{a^2+b^2}*x + y, x+y])
Sage: J.groebner_basis()
verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling
→back to very slow toy implementation.
[x + y]

ALGORITHM:
Uses Singular, Magma (if available), Macaulay2 (if available), Giac (if available), or a toy implementation.

**groebner_fan** *(is_groebner_basis=False, symmetry=None, verbose=False)*

Return the Groebner fan of this ideal.

The base ring must be \( \mathbb{Q} \) or a finite field \( \mathbb{F}_p \) of with \( p \leq 32749 \).

**EXAMPLES:**

```python
sage: P.<x,y> = PolynomialRing(QQ)
sage: i = ideal(x^2 - y^2 + 1)
sage: g = i.groebner_fan()
sage: g.reduced_groebner_bases()
[[x^2 - y^2 + 1], [-x^2 + y^2 - 1]]
```

**INPUT:**

- **is_groebner_basis** - bool (default False). if True, then I.gens() must be a Groebner basis with respect to the standard degree lexicographic term order.
- **symmetry** - default: None; if not None, describes symmetries of the ideal
- **verbose** - default: False; if True, printout useful info during computations

**homogenize** *(var='h')*

Return homogeneous ideal spanned by the homogeneous polynomials generated by homogenizing the generators of this ideal.

**INPUT:**

- **h** - variable name or variable in cover ring (default: ‘h’)

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(GF(2))
sage: I = Ideal([x^2*y + z + 1, x + y^2 + 1]); I
Ideal (x^2*y + z + 1, y^2 + x + 1) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
sage: I.homogenize()
Ideal (x^2*y + z*h^2 + h^3, y^2 + x*h + h^2) of Multivariate Polynomial Ring in x, y, z, h over Finite Field of size 2
sage: I.homogenize(y)
Ideal (x^2*y + y^3 + y^2*z, x*y) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
```

**is_homogeneous** ()

Return **True** if this ideal is spanned by homogeneous polynomials, i.e. if it is a homogeneous ideal.

**EXAMPLES:**

```python
sage: I = Ideal([x^2*y + z^3 + y^2*x, x + y^2 + 1])
sage: I.is_homogeneous()
Ideal (x^2*y + x*y^2 + z^3, y^2 + x*h + h^2) of Multivariate Polynomial Ring in x, y, z, h over Finite Field of size 2
```
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P)
sage: I
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y) of Multivariate Polynomial Ring in x, y, z over Rational Field

sage: I.is_homogeneous()
False

sage: J = I.homogenize()
sage: J
Ideal (x + 2*y + 2*z - h, x^2 + 2*y^2 + 2*z^2 - x*h, 2*x*y + 2*y*z - y*h) of Multivariate Polynomial Ring in x, y, z, h over Rational Field

sage: J.is_homogeneous()
True

plot(*args, **kwds)
Plot the real zero locus of this principal ideal.

INPUT:

• self - a principal ideal in 2 variables
• algorithm - set this to ‘surf’ if you want ‘surf’ to plot the ideal (default: None)
• *args - optional tuples (variable, minimum, maximum) for plotting dimensions
• **kwds - optional keyword arguments passed on to implicit_plot

EXAMPLES:

Implicit plotting in 2-d:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal([y^3 - x^2])
sage: I.plot() # cusp
Graphics object consisting of 1 graphics primitive

sage: I = R.ideal([y^2 - x^2 - 1])
sage: I.plot((x,-3, 3), (y, -2, 2)) # hyperbola
Graphics object consisting of 1 graphics primitive

sage: I = R.ideal([y^2 + x^2*(1/4) - 1])
sage: I.plot() # ellipse
Graphics object consisting of 1 graphics primitive

sage: I = R.ideal([y^2-(x^2-1)*(x-2)])
sage: I.plot() # elliptic curve
Graphics object consisting of 1 graphics primitive

sage: f = ((x+3)^3 + 2*(x+3)^2 - y^2)*(x^3 - y^2)*((x-3)^3-2*(x-3)^2-y^2)
sage: I = R.ideal(f)
sage: I.plot() # the Singular logo
Graphics object consisting of 1 graphics primitive
This used to be trac ticket #5267:

```python
sage: I = R.ideal([-x^2*y+1])
sage: I.plot()
Graphics object consisting of 1 graphics primitive
```

AUTHORS:
- Martin Albrecht (2008-09)

```python
def random_element(degree, compute_gb=False, *args, **kwds):
 r"""
 Return a random element in this ideal as \(r = \sum h_i \cdot f_i \).
 """
 INPUT:
 - `compute_gb`: if `True` then a Gröbner basis is computed first and \(f_i \) are the elements in the Gröbner basis. Otherwise whatever basis is returned by `self.gens()` is used.
 - `*args` and `**kwds` are passed to `R.random_element()` with `R = self.ring()`.

EXAMPLES:
We compute a uniformly random element up to the provided degree:

```python
sage: P.<x,y,z> = GF(127)[]
sage: I = sage.rings.ideal.Katsura(P)
sage: I.random_element(degree=4, compute_gb=True, terms=infinity)
34*x^4 - 33*x^3*y + 45*x^2*y^2 - 51*x*y^3 - 55*y^4 + 43*x^3*z ... - 28*y - 33*z + 45
```

Note that sampling uniformly at random from the ideal at some large enough degree is equivalent to computing a Gröbner basis. We give an example showing how to compute a Gröbner basis if we can sample uniformly at random from an ideal:

```python
sage: n = 3; d = 4
sage: P = PolynomialRing(GF(127), n, 'x')
sage: I = sage.rings.ideal.Cyclic(P)

1. We sample \( n^d \) uniformly random elements in the ideal:

```python
sage: F = Sequence(I.random_element(degree=d, compute_gb=True, terms=infinity) for _ in range(n^d))
```

2. We linearize and compute the echelon form:

```python
sage: A,v = F.coefficient_matrix()
sage: A.echelonize()
```

3. The result is the desired Gröbner basis:

```python
sage: G = Sequence((A*v).list())
sage: G.is_groebner() True
sage: Ideal(G) == I True
```

We return some element in the ideal with no guarantee on the distribution:

```python
```

3.1. Multivariate Polynomials and Polynomial Rings 321
We show that the default method does not sample uniformly at random from the ideal:

```python
sage: P.<x,y,z> = GF(127)[]
sage: G = Sequence([x+7, y-2, z+110])
sage: I = Ideal([sum(P.random_element() * g for g in G) for _ in range(4)])
sage: all(I.random_element(degree=1) == 0 for _ in range(100))
```

If degree equals the degree of the generators a random linear combination of the generators is returned:

```python
sage: P.<x,y> = QQ[]
sage: I = P.ideal([x^2,y^2])
sage: I.random_element(degree=2)
```

**reduce** (*f*)

Reduce an element modulo the reduced Groebner basis for this ideal. This returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

**EXAMPLES:**

```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: I = (x^3 + y, y)*R
sage: I.reduce(y)
0
sage: I.reduce(x^3)
0
sage: I.reduce(x - y)
x
```

**Note:** Requires computation of a Groebner basis, which can be a very expensive operation.

**subs** (*in_dict=None, **kwds*)

Substitute variables.

This method substitutes some variables in the polynomials that generate the ideal with given values. Variables that are not specified in the input remain unchanged.

**INPUT:**

- *in_dict* – (optional) dictionary of inputs
- **kwds** – named parameters

**OUTPUT:**
A new ideal with modified generators. If possible, in the same polynomial ring. Raises a TypeError if no common polynomial ring of the substituted generators can be found.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(ZZ,2,'xy')
sage: I = R.ideal(x^5+y^5, x^2 + y + x^2*y^2 + 5); I
Ideal (x^5 + y^5, x^2*y^2 + x^2 + y + 5) of Multivariate Polynomial Ring in x, y over Integer Ring
sage: I.subs(x=y)
Ideal (2*y^5, y^4 + y^2 + y + 5) of Multivariate Polynomial Ring in x, y over Integer Ring
sage: I.subs({x:y}) # same substitution but with dictionary
Ideal (2*y^5, y^4 + y^2 + y + 5) of Multivariate Polynomial Ring in x, y over Integer Ring
```

The new ideal can be in a different ring:

```python
sage: R.<a,b> = PolynomialRing(QQ,2)
sage: S.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal(a^2+b^2+a-b+2); I
Ideal (a^2 + b^2 + a - b + 2) of Multivariate Polynomial Ring in a, b over Rational Field
sage: I.subs(a=x, b=y)
Ideal (x^2 + y^2 + x - y + 2) of Multivariate Polynomial Ring in x, y over Rational Field
```

The resulting ring need not be a multivariate polynomial ring:

```python
sage: T.<t> = PolynomialRing(QQ)
sage: I.subs(a=t, b=t)
Principal ideal (t^2 + 1) of Univariate Polynomial Ring in t over Rational Field
sage: var("z")
z
sage: I.subs(a=z, b=z)
Principal ideal (2*z^2 + 2) of Symbolic Ring
```

Variables that are not substituted remain unchanged:

```python
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal(x^2+y^2+x-y+2); I
Ideal (x^2 + y^2 + x - y + 2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.subs(x=1)
Ideal (y^2 - y + 4) of Multivariate Polynomial Ring in x, y over Rational Field
```

Weil restriction

Compute the Weil restriction of this ideal over some extension field. If the field is a finite field, then this computes the Weil restriction to the prime subfield.

A Weil restriction of scalars - denoted $\text{Res}_{L/k}$ - is a functor which, for any finite extension of fields $L/k$ and any algebraic variety $X$ over $L$, produces another corresponding variety $\text{Res}_{L/k}(X)$, defined over $k$. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.

This function does not compute this Weil restriction directly but computes on generating sets of polynomial ideals:
Let \( d \) be the degree of the field extension \( L/k \), let \( a \) a generator of \( L/k \) and \( p \) the minimal polynomial of \( L/k \). Denote this ideal by \( I \).

Specifically, this function first maps each variable \( x \) to its representation over \( k \): \( \sum_{i=0}^{d-1} a^i x_i \). Then each generator of \( I \) is evaluated over these representations and reduced modulo the minimal polynomial \( p \). The result is interpreted as a univariate polynomial in \( a \) and its coefficients are the new generators of the returned ideal.

If the input and the output ideals are radical, this is equivalent to the statement about algebraic varieties above.

**OUTPUT:** MPolynomial Ideal

**EXAMPLES:**

```sage
sage: k.<a> = GF(2^2)
sage: P.<x,y> = PolynomialRing(k,2)
sage: I = Ideal([x*y + 1, a*x + 1])
sage: I.variety()
[(y: a, x: a + 1)]
sage: J = I.weil_restriction()
sage: J
Ideal (x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1) of Multivariate Polynomial Ring in x0, x1, y0, y1 over Finite Field of size 2
sage: J += sage.rings.ideal.FieldIdeal(J.ring()) # ensure radical ideal
sage: J.variety()
[(y1: 1, x1: 1, x0: 1, y0: 0)]
sage: J.weil_restriction() # returns J
Ideal (x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 + x0, x1^2 + x1, y0^2 + y0, y1^2 + y1) of Multivariate Polynomial Ring in x0, x1, y0, y1 over Finite Field of size 2
sage: k.<a> = GF(3^5)
sage: P.<x,y,z> = PolynomialRing(k)
sage: I = sage.rings.ideal.Katsura(P)
sage: I.dimension()
0
sage: I.variety()
[(y: 0, z: 0, x: 1)]
sage: J = I.weil_restriction(); J
Ideal (x0 - y0 - z0 - 1, x1 - y1 - z1, x2 - y2 - z2, x3 - y3 - z3, x4 - y4 - z4, x0^2 + x2*x3 + x1*x4 - y0^2 - y2*y3 - x0*y0 + y3^2 + x0 - z0, -x0*x1 - x2*x3 - x3*x4 + y1^2 + y2 + 3*y3 - z1 + z2 - x0, -x0*x1 - x2*x3 - x3*x4 + y1^2 + y0 + x0 + y1 + y2 + y3 - 3 + 3*z + 3^2 + z1 + z2 + z3^2 + z2*z3 + z3^2 + z1*z4 - z2*z4 - x1, x1^2 - x0*x2 + x3^2 - x2*x4 + x3*x4 - y1^2 + y0 + x0^2 - y3 + 3 + y4 - y2 - y1 + x1 + x2 + x3 + x4) of Multivariate Polynomial Ring in x0, x1, x2, x3, x4, y0, y1, y2, y3, y4 over Finite Field of size 2
```

(continues on next page)
Weil restrictions are often used to study elliptic curves over extension fields so we give a simple example involving those:

```python
sage: K.<a> = QuadraticField(1/3)
sage: E = EllipticCurve(K,[1,2,3,4,5])
```

We pick a point on \( E \):  

```python
sage: p = E.lift_x(1); p
(1 : 2 : 1)
```

Of course, the point \( p \) is a root of all generators of \( I \):

```python
sage: I = E.defining_ideal(); I
Ideal (-x^3 - 2*x^2*z + x*y*z + y^2*z - 4*x*z^2 + 3*y*z^2 - 5*z^3)
```

We can check that the point \( p \) is still a root of all generators of \( J \):

```python
sage: J = I.weil_restriction()
sage: J
Ideal (-x0^3 - x0*x1^2 - 2*x0^2*z0 - 2/3*x1^2*z0 + x0*y0*z0 + y0^2*z0 + 1/3*x1*y1*z0 + 1/3*y1^2*z0 - 4*x0*x0^2*z0 + 3*y0*z0^2 - 5*z0^3 - 4/3*x0*x1*z1 + 1/3*x1*y0*z1 + 1/3*x0*y1*z1 + 2/3*y0*y1*z1 - 8/3*x1*z0*z1 + 2*y1*z0*z1 - 4/3*x0*x1^2 + y0*z1^2 - 5*z0*z1^2, -3*x0^2*x1 - 1/3*x1^3 - 4*x0*x1*z0 + x1*y0*z0 + x0*y1*z0 + 2*y0*y1*z0 - 4*x1*z0^2 + 3*y1*z0^2 - 2*x0^2*z1 - 2/3*x1^2*z1 + x0*y0*z1 + y0^2*z1 + 1/3*x1*y1*z1 + 1/3*y1^2*z1 - 8*x0*z0^2*z1 + 6*y0*z0*z1 - 15*z0^2*z1 - 4/3*x1*z1^2 + y1*z1^2 - 5/3*z1^3)
```

Example for relative number fields:
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^5-2)
sage: S.<x,y> = K[]
sage: I = S.ideal([y^2-x^3-1])
sage: I.weil_restriction()
Ideal (-x0^3 + 3*x0*x1^2 + y0^2 - y1^2 - 1, -3*x0^2*x1 + x1^3 + 2*y0*y1)
of Multivariate Polynomial Ring in x0, x1, y0, y1 over Number Field in w
with defining polynomial x^5 - 2

Note: Based on a Singular implementation by Michael Brickenstein

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_macaulay2_repr
An ideal in a multivariate polynomial ring, which has an underlying Macaulay2 ring associated to it.

EXAMPLES:

sage: R.<x,y,z,w> = PolynomialRing(ZZ, 4)
sage: I = ideal(x*y-z^2, y^2-w^2)
sage: I
Ideal (x*y - z^2, y^2 - w^2) of Multivariate Polynomial Ring in x, y, z, w over Integer Ring

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_magma_repr

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr

syzygy_module()
Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 2*x^2 + y
sage: g = y
sage: h = 2*f + g
sage: I = Ideal([f,g,h])
sage: M = I.syzygy_module(); M
\[
\begin{bmatrix}
-2 & -1 & 1 \\
-2*x^2 - y & 0
\end{bmatrix}
\]
sage: G = vector(I.gens())
sage: M*G
(0, 0)

ALGORITHM: Uses Singular's syz command

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr
Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr
An ideal in a multivariate polynomial ring, which has an underlying Singular ring associated to it.

associated_primes(algorithm='sy')
Return a list of the associated primes of primary ideals of which the intersection is $I = \text{self}$.  An ideal $Q$ is called primary if it is a proper ideal of the ring $R$ and if whenever $ab \in Q$ and $a \notin Q$ then $b^n \in Q$ for some $n \in \mathbb{Z}$.  

Chapter 3. Multivariate Polynomials
If $Q$ is a primary ideal of the ring $R$, then the radical ideal $P$ of $Q$, i.e. $P = \{a \in R, a^n \in Q\}$ for some $n \in \mathbb{Z}$, is called the associated prime of $Q$.

If $I$ is a proper ideal of the ring $R$ then there exists a decomposition in primary ideals $Q_i$, such that

- their intersection is $I$
- none of the $Q_i$ contains the intersection of the rest, and
- the associated prime ideals of $Q_i$ are pairwise different.

This method returns the associated primes of the $Q_i$.

**INPUT:**

- `algorithm` - string:
  - `'sy'` - (default) use the Shimoyama-Yokoyama algorithm
  - `'gtz'` - use the Gianni-Trager-Zacharias algorithm

**OUTPUT:**

- `list` - a list of associated primes

**EXAMPLES:**

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.associated_primes(); pd
\[
\begin{align*}
\text{Ideal} (z^2 + 1, y + 1) \text{ of Multivariate Polynomial Ring in } x, y, z \text{ over } \mathbb{Q} \\
\text{Ideal} (z^3 + 2, y - z^2) \text{ of Multivariate Polynomial Ring in } x, y, z \text{ over } \mathbb{Q}
\end{align*}
\]
```

**ALGORITHM:**

Uses Singular.

**REFERENCES:**


**basis_is_groebner** *(singular=Singular)*

Returns `True` if the generators of this ideal (`self.gens()`) form a Groebner basis.

Let $I$ be the set of generators of this ideal. The check is performed by trying to lift $Syz(LM(I))$ to $Syz(I)$ as $I$ forms a Groebner basis if and only if for every element $S$ in $Syz(LM(I))$:

$$ S \ast G = \sum_{i=0}^{m} h_i g_i \succ \succ G \succ 0. $$

**ALGORITHM:**

Uses Singular.

**EXAMPLES:**

```python
sage: R.<a,b,c,d,e,f,g,h,i,j> = PolynomialRing(GF(127),10)
sage: I = sage.rings.ideal.Cyclic(R,4)
sage: I.basis_is_groebner()
False
```

(continues on next page)
A more complicated example:

```python
sage: R.<U6,U5,U4,U3,U2, u6,u5,u4,u3,u2, h> = PolynomialRing(GF(7583))
sage: l = [u6 + u5 + u4 + u3 + u2 - 3791*h, U6 + U5 + U4 + U3 + U2 - 3791*h, U2*u2 - h^2, U3*u3 - h^2, U4*u4 - h^2, U5*u5 + U4*u4 + U3*u3 + U2*u2 - 3791*u5*h - 3791*U5*h - 3791*U4*h - 3791*U3*h - 3791*U2*h + U3*u2*h + U2*u2*h + U1*u2*h - 3791*U5*h - 3791*U4*h - 3791*U3*h - 3791*U2*h - 2842*h^2, U4*u5 + U3*u5 + U2*u5 - 3791*U4*U3*h - 3791*U4*U2*h - 3791*U3*U2*h + 3791*U3*U2*h - 3791*U2*U2*h - 2842*h^2, U5*u5 + U4*u4 + U3*u3 + U2*u2 + U1*u2 - 3791*U5*u5*h - 3791*U5*u4*h - 3791*U5*u3*h - 3791*U5*u2*h - 2842*h^2, U5^2*U4*U3*h + U5^2*U4*U2*h + U5^2*U3*U2*h + 3791*U5*U4*h - 3791*U5*U3*h - 3791*U5*U2*h - 2842*h^2, U5^2*U4*U3*U2*h + U5^2*U4*U3*U2*h + U5^2*U3*U2*U2*h + 3791*U5*U4*U3*h + U5^2*U4*U3*h - 3791*U5*U4*U2*h - 3791*U5*U3*U2*h - 3791*U5*U2*U2*h - 2842*h^2, U5^2*U4*U3*U2*h + U5^2*U4*U3*U2*h + U5^2*U3*U2*U2*h + 3791*U5*U4*U3*h + U5^2*U4*U3*h - 3791*U5*U4*U2*h - 3791*U5*U3*U2*h - 3791*U5*U2*U2*h - 2842*h^2, U5^2*U4*U3*U2*h + U5^2*U4*U3*U2*h + U5^2*U3*U2*U2*h + 3791*U5*U4*U3*h + U5^2*U4*U3*h - 3791*U5*U4*U2*h - 3791*U5*U3*U2*h - 3791*U5*U2*U2*h - 2842*h^2]
sage: gb = Ideal(l).groebner_basis()
```

(continues on next page)
```
sage: Ideal(gb).basis_is_groebner()
True
```

Note: From the Singular Manual for the reduce function we use in this method: ‘The result may have no meaning if the second argument (self) is not a standard basis’. I (malb) believe this refers to the mathematical fact that the results may have no meaning if self is no standard basis, i.e., Singular doesn’t ‘add’ any additional ‘nonsense’ to the result. So we may actually use reduce to determine if self is a Groebner basis.

**complete_primary_decomposition** (*algorithm='sy'*)

Return a list of primary ideals such that their intersection is `self`, together with the associated prime ideals.

An ideal $Q$ is called primary if it is a proper ideal of the ring $R$, and if whenever $ab \in Q$ and $a \notin Q$, then $b^n \in Q$ for some $n \in \mathbb{Z}$.

If $Q$ is a primary ideal of the ring $R$, then the radical ideal $P$ of $Q$ (i.e. the ideal consisting of all $a \in R$ with $a^n \in Q$ for some $n \in \mathbb{Z}$), is called the associated prime of $Q$.

If $I$ is a proper ideal of a Noetherian ring $R$, then there exists a finite collection of primary ideals $Q_i$ such that the following hold:

- the intersection of the $Q_i$ is $I$;
- none of the $Q_i$ contains the intersection of the others;
- the associated prime ideals $P_i$ of the $Q_i$ are pairwise distinct.

**INPUT:**

- **algorithm** – string:
  - `'sy'` – (default) use the Shimoyama-Yokoyama algorithm
  - `'gtz'` – use the Gianni-Trager-Zacharias algorithm

**OUTPUT:**

- a list of pairs $(Q_i, P_i)$, where the $Q_i$ form a primary decomposition of `self` and $P_i$ is the associated prime of $Q_i$.

**EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.complete_primary_decomposition(); pd
[(Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
sage: I.primary_decomposition_complete(algorithm = 'gtz')
[(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, (continues on next page)
Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
(Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)

sage: from functools import reduce
sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), [Qi for (Qi,radQi) in pd]) == I
True
sage: [Qi.radical() == radQi for (Qi,radQi) in pd]
[True, True]
sage: P.<x,y,z> = PolynomialRing(ZZ)
sage: I = ideal(x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.complete_primary_decomposition()
Traceback (most recent call last):
 ... ValueError: Coefficient ring must be a field for function 'complete_primary_decomposition'.

ALGORITHM:
Uses Singular.

Note: See [BW93] for an introduction to primary decomposition.

dimension
\[(\text{singula}\text{r}='\text{singula}\text{r_default}')\]
The dimension of the ring modulo this ideal.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(GF(32003),order='degrevlex')
sage: I = ideal(x^2-y,x^3)
sage: I.dimension()
1

If the ideal is the total ring, the dimension is -1 by convention.

For polynomials over a finite field of order too large for Singular, this falls back on a toy implementation of Buchberger to compute the Groebner basis, then uses the algorithm described in Chapter 9, Section 1 of Cox, Little, and O’Shea’s “Ideals, Varieties, and Algorithms”.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(GF(2147483659),order='lex')
sage: I = R.ideal([x*y,x*y+1])
sage: I=ideal([x*(x*y+1),y*(x*y+1)])
sage: I.dimension()
1 sage: I = R.ideal([x^3*y,x*y^2])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back...
→ to very slow toy implementation.
1 sage: R.<x,y> = PolynomialRing(GF(2147483659),order='lex')
sage: I = R.ideal(0)
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back...
→ to very slow toy implementation.
2
ALGORITHM:
Uses Singular, unless the characteristic is too large.

Note: Requires computation of a Groebner basis, which can be a very expensive operation.

elimination_ideal (variables)
Return the elimination ideal of this ideal with respect to the variables given in variables.

INPUT:

• variables – a list or tuple of variables in self.ring()

EXAMPLES:

sage: R.<x,y,t,s,z> = PolynomialRing(QQ,5)
sage: I = R * [x-t,y-t^2,z-t^3,s-x+y^3]
sage: I.elimination_ideal([t,s])
Ideal (y^2 - x*z, x*y - z, x^2 - y) of Multivariate Polynomial Ring in x, y, t, s, z over Rational Field

ALGORITHM:
Uses Singular.

Note: Requires computation of a Groebner basis, which can be a very expensive operation.

genus ()
Return the genus of the projective curve defined by this ideal, which must be 1 dimensional.

EXAMPLES:
Consider the hyperelliptic curve $y^2 = 4x^5 - 30x^3 + 45x - 22$ over \mathbb{Q}, it has genus 2:

sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by $y^2 = 4x^5 - 30x^3 + 45x - 22$
sage: C.genus()
2

3.1. Multivariate Polynomials and Polynomial Rings 331
hilbert_numerator (singular='singular_default', grading=None)

Return the Hilbert numerator of this ideal.

Let \(I = \text{self} \) be a homogeneous ideal and \(R = \text{self.ring()} \) be a graded commutative algebra \((R = \oplus R_d)\) over a field \(K \). Then the Hilbert function is defined as \(H(d) = \dim_K R_d \) and the Hilbert series of \(I \) is defined as the formal power series \(H(t) = \sum_0^\infty H(d) t^d \).

This power series can be expressed as \(H(t) = Q(t)/(1-t)^n \) where \(Q(t) \) is a polynomial over \(Z \) and \(n \) the number of variables in \(R \). This method returns \(Q(t) \), the numerator; hence the name, \(\text{hilbert_numerator} \).

An optional grading can be given, in which case the graded (or weighted) Hilbert numerator is given.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_numerator()
-t^5 + 1
```

hilbert_polynomial()

Return the Hilbert polynomial of this ideal.

Let \(I = \text{self} \) be a homogeneous ideal and \(R = \text{self.ring()} \) be a graded commutative algebra \((R = \oplus R_d)\) over a field \(K \). The Hilbert polynomial is the unique polynomial \(H_P(t) \) with rational coefficients such that \(H_P(d) = \dim_K R_d \) for all but finitely many positive integers \(d \).

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_polynomial()
t^4 - 2*t^3 + 1
```

hilbert_series (singular='singular_default', grading=None)

Return the Hilbert series of this ideal.

Let \(I = \text{self} \) be a homogeneous ideal and \(R = \text{self.ring()} \) be a graded commutative algebra \((R = \oplus R_d)\) over a field \(K \). Then the Hilbert function is defined as \(H(d) = \dim_K R_d \) and the Hilbert series of \(I \) is defined as the formal power series \(H(t) = \sum_0^\infty H(d) t^d \).

This power series can be expressed as \(H(t) = Q(t)/(1-t)^n \) where \(Q(t) \) is a polynomial over \(Z \) and \(n \) the number of variables in \(R \). This method returns \(Q(t)/(1-t)^n \).

An optional grading can be given, in which case the graded (or weighted) Hilbert series is given.

EXAMPLES:
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_series()
(-t^4 - t^3 - t^2 - t - 1)/(-t^2 + 2*t - 1)
sage: R.<a,b> = PolynomialRing(QQ)
sage: J = R.ideal([a^2*b,a*b^2])
sage: J.hilbert_series()
(t^3 - t^2 - t - 1)/(t - 1)
sage: J.hilbert_series(grading=(10,3))
(t^25 + t^24 + t^23 - t^15 - t^14 - t^13 - t^12 - t^11
- t^10 - t^9 - t^8 - t^7 - t^6 - t^5 - t^4 - t^3 - t^2
- t - 1)/(t^12 + t^11 + t^10 - t^2 - t - 1)
sage: J = R.ideal([a^2*b^3, a*b^4 + a^3*b^2])
sage: J.hilbert_series(grading=[1,2])
(t^11 + t^8 - t^6 - t^5 - t^3 - t^2 - t - 1)/(t^2 - 1)
sage: J.hilbert_series(grading=[2,1])
(2*t^7 - t^6 - t^4 - t^2 - 1)/(t - 1)

integral_closure (p=0, r=True, singular='singular_default')
Let I = self.

Returns the integral closure of I,...,I^p, where sI is an ideal in the polynomial ring R = k[x(1),...x(n)].
If p is not given, or p = 0, compute the closure of all powers up to the maximum degree in t occurring in
the closure of R[It] (so this is the last power whose closure is not just the sum/product of the smaller). If r
is given and r is True, I.integral_closure() starts with a check whether I is already a radical ideal.

INPUT:
 • p - powers of I (default: 0)
 • r - check whether self is a radical ideal first (default: True)

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: I = ideal([x^2,x*y^4,y^5])
sage: I.integral_closure()
[x^2, x*y^4, y^5, x*y^3]

ALGORITHM:
Uses libSINGULAR.

interreduced_basis ()
If this ideal is spanned by (f_1,...,f_n) this method returns (g_1,...,g_s) such that:
 • (f_1,...,f_n) = (g_1,...,g_s)
 • LT(g_i) != LT(g_j) for all i != j
 • LT(g_i) does not divide m for all monomials m of \{g_1,...,g_i-1,g_i+1,...,g_s\}
 • LC(g_i) == 1 for all i if the coefficient ring is a field.

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([z+x*y^3,z+y^3,z+x*y])

(continues on next page)
Note that tail reduction for local orderings is not well-defined:

```
sage: R.<x,y,z> = PolynomialRing(QQ,order='negdegrevlex')
sage: I = Ideal([z*x+y^3,z+y^3,z+x*y])
sage: I.interreduced_basis()
[z + x*y, x*y - y^3, x^2*y - y^3]
```

A fixed error with nonstandard base fields:

```
sage: R.<t>=QQ['t']
sage: K.<x,y>=R.fraction_field()['x,y']
sage: I=t*x*K
sage: I.interreduced_basis()
[x]
```

The interreduced basis of 0 is 0:

```
sage: P.<x,y,z> = GF(2)[]
sage: Ideal(P(0)).interreduced_basis()
[0]
```

ALGORITHM:

Uses Singular’s interred command or `sage.rings.polynomial.toy_buchberger.inter_reduction()` if conversion to Singular fails.

`intersection(*others)`

Return the intersection of the arguments with this ideal.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ, 2, order='lex')
sage: I = x*R
sage: J = y*R
sage: I.intersection(J)
Ideal (x*y) of Multivariate Polynomial Ring in x, y over Rational Field
```

The following simple example illustrates that the product need not equal the intersection.

```
sage: I = (x^2, y)*R
sage: J = (y^2, x)*R
sage: K = I.intersection(J); K
Ideal (y^2, x*y, x^2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: IJ = I*J; IJ
Ideal (x^2*y^2, x^3, y^3, x*y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: IJ == K
False
```

Intersection of several ideals:

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I1 = x*R
```

sage: I2 = y*R
sage: I3 = (x, y)*R
sage: I4 = (x^2 + x*y*z, y^2 - z^3*y, z^3 + y^5*x*z)*R
sage: I1.intersection(I2, I3, I4)
Ideal (x*y*z^20 - x*y*z^3, x*y^2 - x*y*z^3, x^2*y + x*y*z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field

The ideals must share the same ring:

sage: R2.<x,y> = PolynomialRing(QQ, 2, order='lex')
sage: R3.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I2 = x*R2
sage: I3 = x*R3
sage: I2.intersection(I3)
Traceback (most recent call last):
 ...
TypeError: Intersection is only available for ideals of the same ring.

is_prime(**kwds)

Return True if this ideal is prime.

INPUT:

• keyword arguments are passed on to complete_primary_decomposition; in this way you can specify the algorithm to use.

EXAMPLES:

sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: I = (x^2 - y^2 - 1)*R
sage: I.is_prime()
True
sage: (I^2).is_prime()
False
sage: J = (x^2 - y^2)*R
sage: J.is_prime()
False
sage: (J^3).is_prime()
False
sage: (I * J).is_prime()
False

The following is trac ticket #5982. Note that the quotient ring is not recognized as being a field at this time, so the fraction field is not the quotient ring itself:

sage: Q = R.quotient(I); Q
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 - y^2 - 1)
sage: Q.fraction_field()
Fraction Field of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 - y^2 - 1)

minimal_associated_primes()

OUTPUT:

• list - a list of prime ideals
EXAMPLES:

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, 'xyz')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: I.minimal_associated_primes ()
[(z^2 + 1, -z^2 + y) of Multivariate Polynomial Ring
in x, y, z over Rational Field, (z^3 + 2, -z^2 + y)
  of Multivariate Polynomial Ring in x, y, z over Rational
  Field]
```

ALGORITHM:

Uses Singular.

normal_basis *(algorithm='libsingular', singular='singular_default')*

Returns a vector space basis (consisting of monomials) of the quotient ring by the ideal, resp. of a free module by the module, in case it is finite dimensional and if the input is a standard basis with respect to the ring ordering.

INPUT:

algorithm - defaults to use libsingular, if it is anything else we will use the `kbase()` command

EXAMPLES:

```
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: I = R.ideal(x^2+y^2+z^2-4, x^2+2*y^2-5, x*z-1)
sage: I.normal_basis()  
[y*z^2, z^2, y*z, z, x*y, y, x, 1]
sage: I.normal_basis(algorithm='singular')
[y*z^2, z^2, y*z, z, x*y, y, x, 1]
```

plot *(singular=Singular)*

If you somehow manage to install surf, perhaps you can use this function to implicitly plot the real zero locus of this ideal (if principal).

INPUT:

* self - must be a principal ideal in 2 or 3 vars over **Q**.

EXAMPLES:

Implicit plotting in 2-d:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal([y^3 - x^2])
sage: I.plot()  # cusp
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2 - x^2 - 1])
sage: I.plot()  # hyperbola
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2 + x^2*(1/4) - 1])
sage: I.plot()  # ellipse
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2-(x^2-1)*(x-2)])
sage: I.plot()  # elliptic curve
Graphics object consisting of 1 graphics primitive
```

Implicit plotting in 3-d:
AUTHORS:

• David Joyner (2006-02-12)

primary_decomposition(algorithm='sy')

Return a list of primary ideals such that their intersection is self.

An ideal Q is called primary if it is a proper ideal of the ring R, and if whenever $ab \in Q$ and $a \not\in Q$, then $b^n \in Q$ for some $n \in \mathbb{Z}$.

If Q is a primary ideal of the ring R, then the radical ideal P of Q (i.e. the ideal consisting of all $a \in R$ with $a^n \in Q'$ for some $n \in \mathbb{Z}$), is called the associated prime of Q.

If I is a proper ideal of a Noetherian ring R, then there exists a finite collection of primary ideals Q_i such that the following hold:

• the intersection of the Q_i is I;
• none of the Q_i contains the intersection of the others;
• the associated prime ideals of the Q_i are pairwise distinct.

INPUT:

• algorithm — string:
 - 'sy' — (default) use the Shimoyama-Yokoyama algorithm
 - 'gtz' — use the Gianni-Trager-Zacharias algorithm

OUTPUT:

• a list of primary ideals Q_i forming a primary decomposition of self.

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.primary_decomposition(); pd
[Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over
  Rational Field, Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z
  over Rational Field]
```

```python
sage: from functools import reduce
sage: reduce(lambda Q1,Qj: Q1.intersection(Qj), pd) == I
True
```

ALGORITHM:

Uses Singular.

REFERENCES:

3.1. Multivariate Polynomials and Polynomial Rings
primary_decomposition_complete(algorithm='sy')

Return a list of primary ideals such that their intersection is \texttt{self}, together with the associated prime ideals.

An ideal \(Q \) is called primary if it is a proper ideal of the ring \(R \), and if whenever \(ab \in Q \) and \(a \notin Q \), then \(b^n \in Q \) for some \(n \in \mathbb{Z} \).

If \(Q \) is a primary ideal of the ring \(R \), then the radical ideal \(P \) of \(Q \) (i.e. the ideal consisting of all \(a \in R \) with \(a^n \in Q \) for some \(n \in \mathbb{Z} \)), is called the associated prime of \(Q \).

If \(I \) is a proper ideal of a Noetherian ring \(R \), then there exists a finite collection of primary ideals \(Q_i \) such that the following hold:

\begin{itemize}
 \item the intersection of the \(Q_i \) is \(I \);
 \item none of the \(Q_i \) contains the intersection of the others;
 \item the associated prime ideals \(P_i \) of the \(Q_i \) are pairwise distinct.
\end{itemize}

INPUT:

\begin{itemize}
 \item \texttt{algorithm} – string:
 \begin{itemize}
 \item \texttt{'sy'} – (default) use the Shimoyama-Yokoyama algorithm
 \item \texttt{'gtz'} – use the Gianni-Trager-Zacharias algorithm
 \end{itemize}
\end{itemize}

OUTPUT:

\begin{itemize}
 \item a list of pairs \((Q_i, P_i)\), where the \(Q_i \) form a primary decomposition of \texttt{self} and \(P_i \) is the associated prime of \(Q_i \).
\end{itemize}

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.complete_primary_decomposition(); pd
[(Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field), (Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
```

```python
sage: I.primary_decomposition_complete(algorithm = 'gtz')
[(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field), (Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
```

```python
sage: from functools import reduce
sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), [Qi for (Qi,radQi) in pd]) == I
```

(continues on next page)
True

\begin{verbatim}
sage: [Qi.radical() == radQi for (Qi,radQi) in pd]
[True, True]
sage: P.<x,y,z> = PolynomialRing(ZZ)
sage: I = ideal(x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.complete_primary_decomposition()
Traceback (most recent call last):
 ...
ValueError: Coefficient ring must be a field for function 'complete_primary_decomposition'.
\end{verbatim}

ALGORITHM:

Uses Singular.

Note: See [BW93] for an introduction to primary decomposition.

quotient \((J)\)

Given ideals \(I = \text{self}\) and \(J\) in the same polynomial ring \(P\), return the ideal quotient of \(I\) by \(J\) consisting of the polynomials \(a\) of \(P\) such that \(\{aJ \subseteq I\}\).

This is also referred to as the colon ideal \((I:J)\).

INPUT:

- \(J\) - multivariate polynomial ideal

EXAMPLES:

\begin{verbatim}
sage: R.<x,y,z> = PolynomialRing(GF(181),3)
sage: I = Ideal([x^2+x*y*z,y^2-z^3*y,z^3+y^5*x*z])
sage: J = Ideal([x])
sage: Q = I.quotient(J)
sage: y*z + x in I
False
sage: x in J
True
sage: x * (y*z + x) in I
True
\end{verbatim}

radical ()

The radical of this ideal.

EXAMPLES:

This is an obviously not radical ideal:

\begin{verbatim}
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: I = (x^2, y^3, (x*z)^4 + y^3 + 10*x^2)*R
sage: I.radical()
Ideal (y, x) of Multivariate Polynomial Ring in x, y, z over Rational Field
\end{verbatim}

That the radical is correct is clear from the Groebner basis.

\begin{verbatim}
sage: I.groebner_basis()
[y^3, x^2]
\end{verbatim}
This is the example from the Singular manual:

```plaintext
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

Note: From the Singular manual: A combination of the algorithms of Krick/Logar and Kemper is used. Works also in positive characteristic (Kemper's algorithm).

```plaintext
sage: R.<x,y,z> = PolynomialRing(GF(37), 3)
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y - z^2)*R
sage: I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 37
```

saturation (other)
Returns the saturation (and saturation exponent) of the ideal `self` with respect to the ideal `other`.

INPUT:
- `other` – another ideal in the same ring

OUTPUT:
- a pair (ideal, integer)

EXAMPLES:

```plaintext
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: I = R.ideal(x^5*z^3, x*y*z, y*z^4)
sage: J = R.ideal(z)
sage: I.saturation(J)
(Ideal (y, x^5) of Multivariate Polynomial Ring in x, y, z over Rational Field, 4)
```

syzygy_module ()
Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

EXAMPLES:

```plaintext
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 2*x^2 + y
sage: g = y
sage: h = 2*f + g
sage: I = Ideal([f,g,h])
sage: M = I.syzygy_module(); M
[ -2 -1 1]
[ -y 2*x^2 + y 0]
sage: G = vector(I.gens())
sage: M*G
(0, 0)
```

ALGORITHM:
Uses Singular's syz command.
transformed_basis (algorithm='gwalk', other_ring=None, singular='singular_default')

Returns a lex or other_ring Groebner Basis for this ideal.

INPUT:

- **algorithm** - see below for options.
- **other_ring** - only valid for algorithm 'fglm', if provided conversion will be performed to this ring. Otherwise a lex Groebner basis will be returned.

ALGORITHMS:

- **fglm** - FGLM algorithm. The input ideal must be given with a reduced Groebner Basis of a zero-dimensional ideal
- **gwalk** - Groebner Walk algorithm (default)
- **awalk1** - 'first alternative’ algorithm
- **awalk2** - 'second alternative’ algorithm
- **twalk** - Tran algorithm
- **fwalk** - Fractal Walk algorithm

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = Ideal([y^3+x^2,y^2+x^2, x^3-x^2, z^4-x^2-y])
sage: I = Ideal(I.groebner_basis())
sage: S.<z,x,y> = PolynomialRing(QQ,3,order='lex')
sage: J = Ideal(I.transformed_basis('fglm',S))
sage: J
Ideal (z^4 + y^3 - y, x^2 + y^3, x*y^3 - y^3, y^4 + y^3)
of Multivariate Polynomial Ring in z, x, y over Rational Field

sage: R.<z,y,x>=PolynomialRing(GF(32003),3,order='lex')
sage: I=Ideal([y^3+x*y*z+y^2*z+x*z^3,3+x*y+x^2*y+y^2*z])
sage: I.transformed_basis('gwalk')
[3*y^2 + y*x^2 + y*x + 3,
  z*x + 8297*y^8*x^2 + 8297*y^8*x + 3556*y^7 - 8297*y^6*x^4 + 15409*y^6*x^3 -
  8297*y^6*x^2 + 8297*y^5*x^3 + 3556*y^5*x^2 + 3556*y^5*x +
  3556*y^4*x^3 - 10668*y^4 - 10668*y^3*x - 8297*y^2*x^9 - 10666*y^2*x^8 -
  14224*y^2*x^7 - 1185*y^2*x^6 - 1185*y^2*x^5 - 14223*y*x^7 - 10666*y*x^6 -
  10666*y*x^5 - 14223*y*x^4 + x^5 + 2*x^4 + x^3,
  y^9 - y^7*x^2 - y^7*x - y^6*x^3 - y^6*x^2 - 3*y^6 - 3*y^5*x - y^3*x^7 - 3*x^6
  - 3*y^3*x^5 - 9*y^2*x^5 - 18*y^2*x^4 - 9*y^2*x^3 - 27*y*x^3 -
  27*y*x^2 - 27*x]
```

ALGORITHM:

Uses Singular.

triangular_decomposition (algorithm=None, singular='singular_default')

Decompose zero-dimensional ideal self into triangular sets.

This requires that the given basis is reduced w.r.t. to the lexicographical monomial ordering. If the basis of self does not have this property, the required Groebner basis is computed implicitly.
INPUT:

- algorithm - string or None (default: None)

ALGORITHMS:

- singular:triangL - decomposition of self into triangular systems (Lazard).
- singular:triangLfak - decom. of self into tri. systems plus factorization.
- singular:triangM - decomposition of self into triangular systems (Moeller).

OUTPUT: a list T of lists t such that the variety of self is the union of the varieties of t in L and each t is in triangular form.

EXAMPLES:

```
sage: P.<e,d,c,b,a> = PolynomialRing(QQ,5,order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: GB = Ideal(I.groebner_basis('libsingular:stdfglm'))
sage: GB.triangular_decomposition('singular:triangLfak')
[
Ideal (a - 1, b - 1, c - 1, d^2 + 3*d + 1, e + d + 3) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a - 1, b - 1, c^2 + 3*c + 1, d + c + 3, e - 1) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a - 1, b^2 + 3*b + 1, c + b + 3, d - 1, e - 1) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a - 1, b^3 + b^2 + 2*b + 1, c + b^2, d - b^3 + b^2 + b, e - 1 + 1) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^2 + 3*a + 1, b - 1, c - 1, d - 1, e + a + 3) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^2 + 3*a + 1, b + a + 3, c - 1, d - 1, e - 1) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^4 - 4*a^3 + 6*a^2 + a + 1, -11*b^2 + 6*b*a^3 - 26*b*a^2 + 41*b*a - 4*b - 8*a^3 + 31*a^2 - 40*a - 24, 11*c + 3*a^3 - 13*a^2 + 26*a - 2, 11*d + 3*a^3 - 13*a^2 + 26*a - 2, -11*e - 11*b + 6*a^3 - 26*a^2 + 41*a - 4) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^4 + 3*a^3 + a^2 + a + 1, b - 1, c + a^3 + a^2 + a + 1, -d + a^3, -e + a^2) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^4 + 3*a^3 + a^2 + a + 1, b - a, c - a, d^2 + 3*d*a + a^2, e + d + 3*a) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^4 + 3*a^3 + a^2 + a + 1, b - a, c^2 + 3*c*a + a^2, d + c + 3*a, e - a) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^4 + 3*a^3 + a^2 + a + 1, b^2 + 3*b*a + a^2, c + b + 3*a, d - a, e - a) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^4 + 3*a^3 + a^2 + a + 1, b^3 + b^2*a + b^2 + b*a^2 + b*a + b + a^3 + a^2 + 2 + a + 1, c + b^2*a^3 + b^2*a^2 + b^2*a + b^2, -d + b^2*a^2 + b^2*a + b^2)*b^2 + b*a^2 + b^2*a^2, c + b + 3*a, d - a, e - a) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
Ideal (a^4 + 3*a^3 + 6*a^2 - 4*a + 1, -11*b^2 + 6*b*a^3 + 10*b*a^2 + 39*b*a + 16*a^3 + 39*a^2 + 23*a^2 + 104*a - 24, 11*c + 3*a^3 + 5*a^2 + 25*a + 1, 11*d + 3*a^3 + 5*a^2 + 25*a + 1, -11*e - 11*b + 6*a^3 + 10*a^2 + 39*a + 2) of \text{Multivariate Polynomial Ring in e, d, c, b, a over Rational Field},
```

```
sage: R.<x1,x2> = PolynomialRing(QQ, 2, order='lex')
sage: f1 = 1/2*((x1^2 + 2*x1 - 4)*x2^2 + 2*(x1^2 + x1)*x2 + x1^2)
sage: f2 = 1/2*((x1^2 + 2*x1 + 1)*x2^2 + 2*(x1^2 + x1)*x2 + 4*x1^2)
sage: I = Ideal(f1,f2)
sage: I.triangular_decomposition()
```

(continues on next page)
variety (ring=None)

Return the variety of this ideal.

Given a zero-dimensional ideal \(I(==\text{self})\) of a polynomial ring \(P\) whose order is lexicographic, return the variety of \(I\) as a list of dictionaries with (variable, value) pairs. By default, the variety of the ideal over its coefficient field \(K\) is returned; \(\text{ring}\) can be specified to find the variety over a different ring.

These dictionaries have cardinality equal to the number of variables in \(P\) and represent assignments of values to these variables such that all polynomials in \(I\) vanish.

If \(\text{ring}\) is specified, then a triangular decomposition of \(\text{self}\) is found over the original coefficient field \(K\); then the triangular systems are solved using root-finding over \(\text{ring}\). This is particularly useful when \(K\) is \(\mathbb{Q}\) (to allow fast symbolic computation of the triangular decomposition) and \(\text{ring}\) is \(\mathbb{R}, \mathbb{A}, \mathbb{C},\) or \(\mathbb{Q}\bar{\mathbb{Q}}\) (to compute the whole real or complex variety of the ideal).

Note that with \(\text{ring} = \mathbb{R}\) or \(\mathbb{C}\), computation is done numerically and potentially inaccurately; in particular, the number of points in the real variety may be miscomputed. With \(\text{ring} = \mathbb{A}\) or \(\mathbb{Q}\bar{\mathbb{Q}}\), computation is done exactly (which may be much slower, of course).

INPUT:

- \(\text{ring}\) - return roots in the \(\text{ring}\) instead of the base ring of this ideal (default: None)
- \(\text{proof}\) - return a provably correct result (default: True)

EXAMPLES:

```python
sage: K.<w> = GF(27) # this example is from the MAGMA handbook
sage: P.<x, y> = PolynomialRing(K, 2, order='lex')
sage: I = Ideal([ x^8 + y + 2, y^6 + x*y^5 + x^2 ])
sage: I = Ideal(I.groebner_basis()); I
Ideal (x - y^47 - y^45 + y^44 - y^43 + y^41 - y^39 - y^38 - y^37 - y^36 + y^35 - y^34 - y^33 + y^32 - y^31 + y^30 +
y^28 + y^27 + y^26 + y^25 - y^23 + y^22 + y^21 - y^19 -
y^18 - y^16 + y^15 + y^13 + y^12 - y^10 + y^9 + y^8 + y^7 - y^6 + y^4 + y^3 + y^2 + y - 1, y^48 + y^41 - y^40 - y^37 - y^36 - y^33 + y^32 - y^29 + y^28 - y^25 + y^24 + y^2 + y + 1) of Multivariate Polynomial Ring in x, y over Finite Field in w of size 3^3
sage: V = I.variety(); V
[{y: w^2 + 2, x: 2*w}, {y: w^2 + w, x: 2*w + 1}, {y: w^2 + 2*w, x: 2*w + 2}]
sage: [f.subs(v) for f in I.gens() for v in V] # check that all polynomials vanish
[0, 0, 0, 0, 0]
sage: [I.subs(v).is_zero() for v in V] # same test, but nicer syntax
[True, True, True]
```

However, we only account for solutions in the ground field and not in the algebraic closure:
Here we compute the points of intersection of a hyperbola and a circle, in several fields:

```sage
K.<x, y> = PolynomialRing(QQ, 2, order='lex')
I = Ideal([x*y - 1, (x-2)^2 + (y-1)^2 - 1])
I = Ideal(I.groebner_basis()); I
Ideal (x + y^3 - 2*y^2 + 4*y - 4, y^4 - 2*y^3 + 4*y^2 - 4*y + 1)
of Multivariate Polynomial Ring in x, y over Rational Field
```

These two curves have one rational intersection:

```sage
I.variety()
[{y: 1, x: 1}]
```

There are two real intersections:

```sage
I.variety(ring=RR)
[{y: 0.361103080528647, x: 2.76929235423863},
 {y: 1.00000000000000, x: 1.00000000000000}]
sage: I.variety(ring=AA)
[{x: 2.769292354238632?, y: 0.3611030805286474?},
 {x: 1, y: 1}]
```

and a total of four intersections:

```sage
I.variety(ring=CC)
[{y: 0.31944845973567... - 1.6331702409152...*I,
  x: 0.11535382288068... + 0.58974280502220...*I},
 {y: 0.31944845973567... + 1.6331702409152...*I,
  x: 0.11535382288068... - 0.58974280502220...*I},
 {y: 0.3611030805286474..., x: 2.7692923542386...},
 {y: 1.00000000000000, x: 1.00000000000000}]
sage: I.variety(ring=QQbar)
[{y: 0.3194484597356763? - 1.633170240915238?*I,
  x: 0.11535382288068429? + 0.5897428050222055?*I},
 {y: 0.3194484597356763? + 1.633170240915238?*I,
  x: 0.11535382288068429? - 0.5897428050222055?*I},
 {y: 0.3611030805286474?, x: 2.769292354238632?},
 {y: 1, x: 1}]
```

Computation over floating point numbers may compute only a partial solution, or even none at all. Notice
that x values are missing from the following variety:

```sage
R.<x,y> = CC[]
I = ideal([x^2+y^2-1,x*y-1])
I = I.groebner_basis(); I
Ideal (x^2 + y^2 - 1, x*y - 1)
of Multivariate Polynomial Ring in x, y over Complex Field with 53 bits of precision
```

```
verbose 0 (...: multi_polynomial_ideal.py, variety) Warning: computations in
    the complex field are inexact; variety may be computed partially or
    incorrectly.
verbose 0 (...: multi_polynomial_ideal.py, variety) Warning: falling back to
    very slow toy implementation.
```

```sage
I.variety()
[{y: -0.86602540378443... - 0.500000000000000*I},
 {y: -0.86602540378443... + 0.500000000000000*I},
 {y: 0.86602540378443... - 0.500000000000000*I},
 {y: 0.86602540378443... + 0.500000000000000*I}]
```
This is due to precision error, which causes the computation of an intermediate Groebner basis to fail. If the ground field’s characteristic is too large for Singular, we resort to a toy implementation:

```
sage: R.<x,y> = PolynomialRing(GF(2147483659),order='lex')
sage: I=ideal([x^3-2*y^2,3*x+y^4])
sage: I.variety()
verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation.
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy implementation.
verbose 0 (...: multi_polynomial_ideal.py, variety) Warning: falling back to very slow toy implementation.
[{y: 0, x: 0}]
```

The dictionary expressing the variety will be indexed by generators of the polynomial ring after changing to the target field. But the mapping will also accept generators of the original ring, or even generator names as strings, when provided as keys:

```
sage: K.<x,y> = QQ[]
sage: I = ideal([x^2+2*y-5,x+y+3])
sage: v = I.variety(AA)[0]; v
{ x: 4.464101615137755?, y: -7.464101615137755? }
sage: list(v)[0].parent()
Multivariate Polynomial Ring in x, y over Algebraic Real Field
sage: v[x]
4.464101615137755?
sage: v["y"]
-7.464101615137755?
```

ALGORITHM:
Uses triangular decomposition.

vector_space_dimension()
Return the vector space dimension of the ring modulo this ideal. If the ideal is not zero-dimensional, a TypeError is raised.

ALGORITHM:
Uses Singular.

EXAMPLES:

```
sage: R.<u,v> = PolynomialRing(QQ)
sage: g = u^4 + v^4 + u^3 + v^3
sage: I = ideal(g) + ideal(g.gradient())
sage: I.dimension()
0
sage: I.vector_space_dimension()
4
```

When the ideal is not zero-dimensional, we return infinity:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: I = R.ideal(x)
sage: I.dimension()
1
sage: I.vector_space_dimension()
+Infinity
```
class sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal(ring, gens, coerce=True, side='left')

Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr, sage.rings.noncommutative_ideals.Ideal_nc

Creates a non-commutative polynomial ideal.

INPUT:

- ring - the g-algebra to which this ideal belongs
- gens - the generators of this ideal
- coerce (optional - default True) - generators are coerced into the ring before creating the ideal
- side - optional string, either “left” (default) or “twosided”; defines whether this ideal is left of two-sided.

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False) # indirect doctest
sage: I
#random
Left Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(I.gens(),key=str)
[x^2, y^2, z^2 - 1]
sage: ideal = H.ideal([y^2, x^2, z^2-H.one()], side='twosided') # random
Twosided Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(H.ideal([y^2, x^2, z^2-H.one()], side='twosided').gens(),key=str)
[x^2, y^2, z^2 - 1]
sage: I = H.ideal([y^2, x^2, z^2-H.one()], side='right')
Traceback (most recent call last):
...
ValueError: Only left and two-sided ideals are allowed.
```

reduce(p)

Reduce an element modulo a Groebner basis for this ideal.

It returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

NOTE:

There are left and two-sided ideals. Hence,

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False, side='twosided')
sage: Q = H.quotient(I); Q # random
Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z...
```
over Rational Field, nc-relations: {z*x: x*z + 2*x,
 z*y: y*z - 2*y, y*x: x*y - z} by the ideal (y^2, x^2, z^2 - 1)
sage: Q.2^2 == Q.one() # indirect doctest
True

Here, we see that the relation that we just found in the quotient is actually a consequence of the given relations:

sage: H.2^2-H.one() in I.std().gens()
True

Here is the corresponding direct test:

sage: I.reduce(z^2)
1

res (length)
Compute the resolution up to a given length of the ideal.

NOTE:
Only left syzygies can be computed. So, even if the ideal is two-sided, then the resolution is only one-sided.
In that case, a warning is printed.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: I.res(3)
<Resolution>

std()
Computes a GB of the ideal. It is two-sided if and only if the ideal is two-sided.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: I.std() # random
Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of...
nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(I.std().gens(),key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]

If the ideal is a left ideal, then std returns a left Groebner basis. But if it is a two-sided ideal, then the output of std and twostd() coincide:

sage: JL = H.ideal([x^3, y^3, z^3 - 4*z])
sage: JL #random
Left Ideal (x^3, y^3, z^3 - 4*z) of Noncommutative Multivariate Polynomial...
nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

3.1. Multivariate Polynomials and Polynomial Rings
sage: sorted(JL.gens(), key=str)
[x^3, y^3, z^3 - 4*z]
sage: JL.std() # random
Left Ideal (z^3 - 4*z, y*z^2 - 2*y*z, x*z^2 + 2*x*z, 2*x*y*z - z^2 - 2*z, y^3, → x^3) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(JL.std().gens(), key=str)
[2*x*y*z - z^2 - 2*z, x*z^2 + 2*x*z, x^3, y*z^2 - 2*y*z, y^3, z^3 - 4*z]
sage: JT = H.ideal([x^3, y^3, z^3 - 4*z], side='twosided')
sage: JT # random
Twosided Ideal (x^3, y^3, z^3 - 4*z) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(JT.gens(), key=str)
[x^3, y^3, z^3 - 4*z]
sage: JT.std() # random
Twosided Ideal (z^3 - 4*z, y*z^2 - 2*y*z, x*z^2 + 2*x*z, 2*x*y*z - z^2 - 2*z, y^2*z - 2*y^2, → 2*x*y*z - z^2 - 2*z, x*y^2 - y*z, x^2*z + 2*x^2, y^3, x*y^2 - y*z, x^2*y - x*z - 2*x, x^3) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(JT.std().gens(), key=str)
[2*x*y*z - z^2 - 2*z, x*y^2 - y*z, x*z^2 + 2*x*z, x^2*y - x*z - 2*x, x^2*z + 2*x*y*z - z^2 - 2*z, y^3, z^3 - 4*z]
sage: JT.std() == JL.twostd()
True

ALGORITHM: Uses Singular’s std command

syzygy_module()

Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

NOTE:

Only left syzygies can be computed. So, even if the ideal is two-sided, then the syzygies are only one-sided.

In that case, a warning is printed.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: G = vector(I.gens()); G
d...: UserWarning: You are constructing a free module over a noncommutative ring. Sage does not have a concept of left/right and both sided modules, so be careful.
It's also not guaranteed that all multiplications are done from the right side.

d...: UserWarning: You are constructing a free module over a noncommutative ring. Sage does not have a concept of left/right and both sided modules, so be careful.
It's also not guaranteed that all multiplications are done from the right side.
(y^2, x^2, z^2 - 1)
sage: M = I.syzygy_module(); M
(-z^2 - 8*z - 15, y^2, y^2)
\[\begin{align*}
-\varepsilon^2 + 8\varepsilon - 15 &
\rightarrow x^2 \\
2\varepsilon + 15x &
\rightarrow y^2 + 8y + 15 - 15y^2 \\
-4xy + 2z^2 + 2x &
\rightarrow x^2 + 9x^2y - 6x^2z + 20x^2y - 72x^2 - z^2 \\
282x - 360 &
\rightarrow -y^3 + 7y^3 - 12y^3 \\
6y^2 &
\rightarrow x^3 + 7x^3 + 12x^3 - x^2 y^2 z + 9x^2 y^2 z - 4x y^2 z^2 + 32x y^2 z - 6z^3 \\
3x^2 y^2 z &
\rightarrow 2x^3 y z + 8x^3 y + 9x^2 y + 2x y - 12y^2 z - 18y^2 z \\
4x^4 &
\rightarrow 2x^4 y z + 8x^4 y + 9x^3 y + 2x y + 27x^2 y + 2x y^3 z - 8x^2 y - 12y^3 z \\
0 &
\rightarrow 2x^2 y z + 99y^2 + 195y^2 \\
-36x y z + 24z^2 + 18z &
\rightarrow x^4 + 4x^2 + 4x^2 - 4x^2 y^2 + 24z^2 - 48z \\
0 &
\rightarrow x^3 y z + 18x^2 y z - 36x y z + 36y z^3 + 66y z^2 - 432x y z^2 \\
-1656x y z - 2052x &
\rightarrow 8y^3 z^2 + 62y^3 z - 114y^3 \\
48y z^2 &
\rightarrow 48y z^2 - 36y z \\
\end{align*}\]

ALGORITHM: Uses Singular’s syz command

twostd()

Computes a two-sided GB of the ideal (even if it is a left ideal).

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: I.twostd() #random
Twosided Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field.

sage: sorted(I.twostd().gens(),key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]
```

ALGORITHM: Uses Singular’s twostd command

```python
class sage.rings.polynomial.multi_polynomial_ideal.RequireField(f)
```

3.1. Multivariate Polynomials and Polynomial Rings 349
Bases: sage.misc.method_decorator.MethodDecorator

Decorator which throws an exception if a computation over a coefficient ring which is not a field is attempted.

Note: This decorator is used automatically internally so the user does not need to use it manually.

sage.rings.polynomial.multi_polynomial_ideal.is_MPolynomialIdeal(x)
 Return True if the provided argument x is an ideal in the multivariate polynomial ring.

INPUT:
 • x - an arbitrary object

EXAMPLES:

sage: from sage.rings.polynomial.multi_polynomial_ideal import is_MPolynomialIdeal
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = [x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y]
Sage distinguishes between a list of generators for an ideal and the ideal itself. This distinction is inconsistent with Singular but matches Magma’s behavior.

sage: is_MPolynomialIdeal(I)
False
sage: I = Ideal(I)
sage: is_MPolynomialIdeal(I)
True

sage.rings.polynomial.multi_polynomial_ideal.require_field
 alias of RequireField

3.1.7 Polynomial Sequences

We call a finite list of polynomials a Polynomial Sequence.

Polynomial sequences in Sage can optionally be viewed as consisting of various parts or sub-sequences. These kind of polynomial sequences which naturally split into parts arise naturally for example in algebraic cryptanalysis of symmetric cryptographic primitives. The most prominent examples of these systems are: the small scale variants of the AES [CMR2005] (cf. sage.crypto.mq.sr.SR()) and Flurry/Curry [BPW06]. By default, a polynomial sequence has exactly one part.

AUTHORS:
 • Martin Albrecht (2007ff): initial version
 • Martin Albrecht (2009): refactoring, clean-up, new functions
 • Martin Albrecht (2011): refactoring, moved to sage.rings.polynomial
 • Alex Raichev (2011-06): added algebraic_dependence()
 • Charles Bouillaguet (2013-1): added solve()

EXAMPLES:

As an example consider a small scale variant of the AES:
We can construct a polynomial sequence for a random plaintext-ciphertext pair and study it:

```
sage: sr = mq.SR(2,1,2,4,gf2=True,polybori=True)
sage: sr
SR(2,1,2,4)
```

We separate the system in independent subsystems:

```
sage: r2 = F.part(2); r2
(Polynomial Sequence with 112 Polynomials in 64 Variables)

sage: F
Polynomial Sequence with 112 Polynomials in 64 Variables
```

We separate the system in independent subsystems:
and compute the coefficient matrix:

```python
sage: A, v = Sequence(r2).coefficient_matrix()
sage: A.rank()
32
```

Using these building blocks we can implement a simple XL algorithm easily:

```python
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True, order='lex')
(continues on next page)
```
In many other computer algebra systems (cf. Singular) this class would be called `Ideal` but an ideal is a very distinct object from its generators and thus this is not an ideal in Sage.

Classes

`sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence` *(arg1, arg2=None, immutable=False, cr=False, cr_str=None)*

Construct a new polynomial sequence object.

INPUT:

- `arg1` - a multivariate polynomial ring, an ideal or a matrix
- `arg2` - an iterable object of parts or polynomials (default: None)
 - `immutable` - if True the sequence is immutable (default: False)
 - `cr` - print a line break after each element (default: False)
 - `cr_str` - print a line break after each element if `str` is called (default: None)

EXAMPLES:

```python
sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
sage: I = sage.rings.ideal.Katsura(P)
```

If a list of tuples is provided, those form the parts:

```python
sage: F = Sequence([I.gens(),I.gens(), I.ring()]; F # indirect doctest
[a + 2*b + 2*c + 2*d - 1,
 a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
 2*a*b + 2*b*c + 2*c*d - b,
 b^2 + 2*a*c + 2*b*d - c,
 a + 2*b + 2*c + 2*d - 1,
 a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
```

(continues on next page)
If an ideal is provided, the generators are used:

```plaintext
sage: Sequence(I)
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
```

If a list of polynomials is provided, the system has only one part:

```plaintext
sage: F = Sequence(I.gens(), I.ring()); F
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
sage: F.nparts()
1
```

We test that the ring is inferred correctly:

```plaintext
sage: P.<x,y,z> = GF(2)[]
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
sage: PolynomialSequence([[1,x,y]], [0]).ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
sage: PolynomialSequence([], [[1,x,y],[0]]).ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
```

```python
class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic(parts, ring, immutable=False, cr=False, cr_str=None)

Bases: sage.structure.sequence.Sequence_generic

Construct a new system of multivariate polynomials.

INPUT:

- `part` - a list of lists with polynomials
- `ring` - a multivariate polynomial ring
- `immutable` - if `True` the sequence is immutable (default: `False`)
- `cr` - print a line break after each element (default: `False`)
- `cr_str` - print a line break after each element if `str` is called (default: `None`)

EXAMPLES:
```
sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
sage: I = sage.rings.ideal.Katsura(P)
sage: Sequence([I.gens()], I.ring()) # indirect doctest
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d -
→ b, b^2 + 2*a*c + 2*b*d - c]

If an ideal is provided, the generators are used:

sage: Sequence(I)
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d -
→ b, b^2 + 2*a*c + 2*b*d - c]

If a list of polynomials is provided, the system has only one part:

sage: Sequence(I.gens(), I.ring())
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d -
→ b, b^2 + 2*a*c + 2*b*d - c]

algebraic_dependence()
Returns the ideal of annihilating polynomials for the polynomials in self, if those polynomials are algebraically dependent. Otherwise, returns the zero ideal.

OUTPUT:
If the polynomials \(f_1, \ldots, f_r \) in self are algebraically dependent, then the output is the ideal \(\{ F \in K[T_1, \ldots, T_r] : F(f_1, \ldots, f_r) = 0 \} \) of annihilating polynomials of \(f_1, \ldots, f_r \). Here \(K \) is the coefficient ring of polynomial ring of \(f_1, \ldots, f_r \) and \(T_1, \ldots, T_r \) are new indeterminates. If \(f_1, \ldots, f_r \) are algebraically independent, then the output is the zero ideal in \(K[T_1, \ldots, T_r] \).

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ)
sage: S = Sequence([x, x*y])
sage: I = S.algebraic_dependence(); I
Ideal (0) of Multivariate Polynomial Ring in T0, T1 over Rational Field

sage: R.<x,y> = PolynomialRing(QQ)
sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])
sage: I = S.algebraic_dependence(); I
Ideal (16 + 32*T2 - 8*T0^2 + 24*T2^2 - 8*T0^2*T2 + 8*T2^3 + 9*T0^4 - 2*T0^2*T2^2 +
→ 2*T2^4 - T0^4*T1 + T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) of Multivariate Polynomial Ring in T0, T1, T2 over Rational Field

sage: [F(S) for F in I.gens()]
[0]

sage: R.<x,y> = PolynomialRing(GF(7))
sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])
sage: I = S.algebraic_dependence(); I
Ideal (2 - 3*T2 - 8*T0^2 + 24*T2^2 - 8*T0^2*T2 + 8*T2^3 + 9*T0^4 - 2*T0^2*T2^2 + T0^4 -
→ 2*T2^4 - T0^4*T1 + T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) of Multivariate Polynomial Ring in T0, T1, T2 over Finite Field of size 7

sage: [F(S) for F in I.gens()]
[0]

Note: This function’s code also works for sequences of polynomials from a univariate polynomial ring.
but I don’t know where in the Sage codebase to put it to use it to that effect.

AUTHORS:

• Alex Raichev (2011-06-22)

coefficient_matrix(sparse=True)

Return tuple \((A, v)\) where \(A\) is the coefficient matrix of this system and \(v\) the matching monomial vector. Thus value of \(A[i, j]\) corresponds the coefficient of the monomial \(v[j]\) in the \(i\)-th polynomial in this system.

Monomials are order w.r.t. the term ordering of \(\text{self.ring()}\) in reverse order, i.e. such that the smallest entry comes last.

INPUT:

• sparse - construct a sparse matrix (default: True)

EXAMPLES:

```
sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
sage: I = sage.rings.ideal.Katsura(P)
sage: I.gens()
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
sage: F = Sequence(I)
sage: A, v = F.coefficient_matrix()
sage: A
[ 0 0 0 0 0 0 0 0 0 1 2 2 2 126]
[ 1 0 2 0 0 2 0 0 2 126 0 0 0 0]
[ 0 2 0 0 2 0 0 2 0 0 126 0 0 0]
[ 0 0 1 2 0 0 2 0 0 0 0 126 0 0]

sage: v
[a^2]
[a*b]
[b^2]
[a*c]
[b*c]
[c^2]
[b*d]
[c*d]
[d^2]
[ a]
[ b]
[ c]
[ d]
[ 1]

sage: A*v
[a + 2*b + 2*c + 2*d - 1]
[a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a]
[ 2*a*b + 2*b*c + 2*c*d - b]
[ b^2 + 2*a*c + 2*b*d - c]
```
connected_components()
Split the polynomial system in systems which do not share any variables.

EXAMPLES:

As an example consider one part of AES, which naturally splits into four subsystems which are independent:

```python
sage: sr = mq.SR(2, 4, 4, 8, gf2=True, polybori=True)
sage: F, s = sr.polynomial_system()
sage: Fz = Sequence(F.part(2))
sage: Fz.connected_components()
[Polynomial Sequence with 128 Polynomials in 128 Variables,
 Polynomial Sequence with 128 Polynomials in 128 Variables,
 Polynomial Sequence with 128 Polynomials in 128 Variables,
 Polynomial Sequence with 128 Polynomials in 128 Variables]
```

connection_graph()
Return the graph which has the variables of this system as vertices and edges between two variables if they appear in the same polynomial.

EXAMPLES:

```python
sage: B.<x, y, z> = BooleanPolynomialRing()
sage: F = Sequence([x*y + y + 1, z + 1])
sage: F.connection_graph()
Graph on 3 vertices
```

groebner_basis(*args, **kwargs)
Compute and return a Groebner basis for the ideal spanned by the polynomials in this system.

INPUT:

- `args` - list of arguments passed to `MPolynomialIdeal.groebner_basis` call
- `kwargs` - dictionary of arguments passed to `MPolynomialIdeal.groebner_basis` call

EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system()
sage: gb = F.groebner_basis()
sage: Ideal(gb).basis_is_groebner()
True
```

ideal()
Return ideal spanned by the elements of this system.

EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system()
sage: P = F.ring()
sage: I = F.ideal()
sage: I.elimination_ideal(P('s000*s001*s002*s003*w100*w101*w102*w103*x100*x101*x102*x103'))
Ideal (k002 + (a^3 + a + 1)*k003 + (a^2 + 1),
 k001 + (a^3)*k003, k000 + (a)*k003 + (a^2),
 k103 + k003 + (a^2 + a + 1),
 k102 + (a^3 + a + 1)*k003 + (a + 1),
```
\begin{align*}
 k101 + (a^3)*k003 + (a^2 + a + 1), \\
 k100 + (a)*k003 + (a), \\
 k003^2 + (a)*k003 + (a^2))
\end{align*}
of Multivariate Polynomial Ring in k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003, k000, k001, k002, k003 over Finite Field in a of size 2^4

\textbf{is_groebner (\texttt{singular=Singular})}

Returns True if the generators of this ideal \((\text{self.gens()})\) form a Groebner basis.

Let \(I\) be the set of generators of this ideal. The check is performed by trying to lift \(Syz(LM(I))\) to \(Syz(I)\) as \(I\) forms a Groebner basis if and only if for every element \(S\) in \(Syz(LM(I))\):

\[
 S \ast G = \sum_{i=0}^{m} h_i g_i - \cdots > G 0.
\]

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<a,b,c,d,e,f,g,h,i,j> = PolynomialRing(GF(127),10)
sage: I = sage.rings.ideal.Cyclic(R,4)
sage: I.basis.is_groebner() False
sage: I2 = Ideal(I.groebner_basis())
sage: I2.basis.is_groebner() True
\end{verbatim}

\textbf{maximal_degree ()}

Return the maximal degree of any polynomial in this sequence.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: P.<x,y,z> = PolynomialRing(GF(7))
sage: F = Sequence([x*y + x, x])
sage: F.maximal_degree() 2
sage: P.<x,y,z> = PolynomialRing(GF(7))
sage: F = Sequence([], universe=P)
sage: F.maximal_degree() -1
\end{verbatim}

\textbf{monomials ()}

Return an unordered tuple of monomials in this polynomial system.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: len(F.monomials()) 49
\end{verbatim}

\textbf{nmonomials ()}

Return the number of monomials present in this system.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.nmonomials() 49
\end{verbatim}
nparts()
Return number of parts of this system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.nparts()
4
```

nvariables()
Return number of variables present in this system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.nvariables()
20
```

part(i)
Return i-th part of this system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: R0 = F.part(1)
sage: R0
(k000^2 + k001, k001^2 + k002, k002^2 + k003, k003^2 + k000)
```

parts()
Return a tuple of parts of this system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: l = F.parts()
sage: len(l)
4
```

reduced()
If this sequence is \((f_1, \ldots, f_n)\) then this method returns \((g_1, \ldots, g_s)\) such that:

- \((f_1, \ldots, f_n) = (g_1, \ldots, g_s)\)
- \(LT(g_i) = LT(g_j)\) for all \(i \neq j\)
- \(LT(g_i)\) does not divide \(m\) for all monomials \(m\) of \(\{g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_s\}\)
- \(LC(g_i) = 1\) for all \(i\) if the coefficient ring is a field.

EXAMPLES:
```
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: F = Sequence([z*x+y^3,z+y^3,z+x*y])
sage: F.reduced()
[y^3 + z, x*y + z, x*z - z]
```

Note that tail reduction for local orderings is not well-defined:
```python
sage: R.<x,y,z> = PolynomialRing(QQ,order='negdegrevlex')
sage: F = Sequence([z+x*y^3,z+y^3,z+x*y])
sage: F.reduced()
[z + x*y, x*y - y^3, x^2*y - y^3]
```

A fixed error with nonstandard base fields:

```python
sage: R.<t>=QQ['t']
sage: K.<x,y>=R.fraction_field()['x,y']
sage: I=t*x*K
sage: I.basis.reduced()
[x]
```

The interreduced basis of 0 is 0:

```python
sage: P.<x,y,z> = GF(2)[]
sage: Sequence([P(0)]).reduced()
[0]
```

Leading coefficients are reduced to 1:

```python
sage: P.<x,y> = QQ[]
sage: Sequence([2*x,y]).reduced()
[x, y]
sage: P.<x,y> = CC[]
sage: Sequence([2*x,y]).reduced()
[x, y]
```

ALGORITHM:

Uses Singular’s interred command or `sage.rings.polynomial.toy_buchberger.inter_reduction()` if conversion to Singular fails.

ring()

Return the polynomial ring all elements live in.

EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True,gf2=True,order='block')
sage: F,s = sr.polynomial_system()
sage: print(F.ring().repr_long())
Polynomial Ring
  Base Ring : Finite Field of size 2
  Size : 20 Variables
    Block 0 : Ordering : deglex
      Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, ...
    Block 1 : Ordering : deglex
      Names : k000, k001, k002, k003
```

subs (args, **kwargs**)

Substitute variables for every polynomial in this system and return a new system. See `MPolynomial.subs` for calling convention.

INPUT:

- **args** - arguments to be passed to `MPolynomial.subs`
- **kwargs** - keyword arguments to be passed to `MPolynomial.subs`
EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system(); F
Polynomial Sequence with 40 Polynomials in 20 Variables
sage: F = F.subs(s); F
Polynomial Sequence with 40 Polynomials in 16 Variables
```

`universe()`

Return the polynomial ring all elements live in.

EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True,gf2=True,order='block')
sage: F, s = sr.polynomial_system()
sage: print(F.ring().repr_long())
Polynomial Ring
Base Ring : Finite Field of size 2
Size : 20 Variables
Block 0 : Ordering : deglex
    Names : k100, k101, k102, k103, x100, x101, x102, x103, w100,
        w101, w102, w103, s000, s001, s002, s003
Block 1 : Ordering : deglex
    Names : k000, k001, k002, k003
```

`variables()`

Return all variables present in this system. This tuple may or may not be equal to the generators of the ring of this system.

EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system()
sage: F.variables()[:10]
(k003, k002, k001, k000, s003, s002, s001, s000, w103, w102)
```

```python
class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2(parts, ring, immutable=False, cr=False, cr_str=None)

Bases: sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic

Polynomial Sequences over \( \mathbb{F}_2 \).

`eliminate_linear_variables` (maxlength=+Infinity, skip=None, return_reductors=False, use_polybori=False)

Return a new system where linear leading variables are eliminated if the tail of the polynomial has length at most `maxlength`.

INPUT:

- `maxlength` - an optional upper bound on the number of monomials by which a variable is replaced. If `maxlength==+Infinity` then no condition is checked. (default: +Infinity).
- `skip` - an optional callable to skip eliminations. It must accept two parameters and return either True or False. The two parameters are the leading term and the tail of a polynomial (default: None).

---

3.1. Multivariate Polynomials and Polynomial Rings 361
• `return_reductors` - if True the list of polynomials with linear leading terms which were used for reduction is also returned (default: False).

• `use_polybori` - if True then polybori.ll.eliminate is called. While this is typically faster what is implemented here, it is less flexible (`skip` is not supported) and may increase the degree (default: False)

OUTPUT:

When `return_reductors`==True, then a pair of sequences of boolean polynomials are returned, along with the promises that:

1. The union of the two sequences spans the same boolean ideal as the argument of the method
2. The second sequence only contains linear polynomials, and it forms a reduced groebner basis (they all have pairwise distinct leading variables, and the leading variable of a polynomial does not occur anywhere in other polynomials).
3. The leading variables of the second sequence do not occur anywhere in the first sequence (these variables have been eliminated).

When `return_reductors`==False, only the first sequence is returned.

EXAMPLES:

```sage
B.<a,b,c,d> = BooleanPolynomialRing()
sage: F = Sequence([c + d + b + 1, a + c + d, a*b + c, b*c*d + c])
sage: F.eliminate_linear_variables() # everything vanishes
[]
sage: F.eliminate_linear_variables(maxlength=2)
[b + c + d + 1, b*c + b*d + c, b*c*d + c]
sage: F.eliminate_linear_variables(skip=lambda lm,tail: str(lm)=='a')
[a + c + d, a*c + a*d + a + c, c*d + c]
```

The list of reductors can be requested by setting `return_reductors` to True:

```sage
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: F = Sequence([a + b + d, a + b + c])
sage: F,R = F.eliminate_linear_variables(return_reductors=True)
sage: F
[]
sage: R
[a + b + d, c + d]
```

If the input system is detected to be inconsistent then [1] is returned and the list of reductors is empty:

```sage
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y*z+x*y*z+y+x*z, x+y+z+1, x+y+z])
sage: S.eliminate_linear_variables()
[1]
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y*z+x*y*z+y+x*z, x+y+z+1, x+y+z])
sage: S.eliminate_linear_variables(return_reductors=True)
([1], [])
```

**Note:** This is called “massaging” in [CBJ07].

REFERENCES:
reduced()

If this sequence is \((f_1, \ldots, f_n)\) this method returns \((g_1, \ldots, g_s)\) such that:

- \(< f_1, \ldots, f_n > = < g_1, \ldots, g_s >\)
- \(LT(g_i) = LT(g_j)\) for all \(i \neq j\)
- \(LT(g_i)\) does not divide \(m\) for all monomials \(m\) of \(g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_s\)

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True)
sage: F, s = sr.polynomial_system()
sage: F.reduced()
[k100 + 1, k101 + k001 + 1, k102, k103 + 1, ..., s002, s003 + k001 + 1, k000, ...
 \rightarrow+ 1, k002 + 1, k003 + 1]
```

solve(algorithm='polybori', n=1, eliminate_linear_variables=True, verbose=False, **kwds)

Find solutions of this boolean polynomial system.

This function provide a unified interface to several algorithms dedicated to solving systems of boolean equations. Depending on the particular nature of the system, some might be much faster than some others.

INPUT:

- self - a sequence of boolean polynomials
- algorithm - the method to use. Possible values are polybori, sat and exhaustive_search. (default: polybori, since it is always available)
- n - number of solutions to return. If \(n == +\text{Infinity}\) then all solutions are returned. If \(n < \infty\) then \(n\) solutions are returned if the equations have at least \(n\) solutions. Otherwise, all the solutions are returned. (default: 1)
- eliminate_linear_variables - whether to eliminate variables that appear linearly. This reduces the number of variables (makes solving faster a priori), but is likely to make the equations denser (may make solving slower depending on the method).
- verbose - whether to display progress and (potentially) useful information while the computation runs. (default: False)

EXAMPLES:

Without argument, a single arbitrary solution is returned:

```python
sage: from sage.doctest.fixtures import reproducible_repr
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y+z, y*z+x, x+y+z+1])
sage: sol = S.solve()
sage: print(reproducible_repr(sol))
[{x: 0, y: 1, z: 0}]
```

We check that it is actually a solution:

```python
sage: S.subs(sol[0])
[0, 0, 0]
```

We obtain all solutions:

```python
sage: sols = S.solve(n=Infinity)
sage: print(reproducible_repr(sols))
[{x: 0, y: 1, z: 0}, {x: 1, y: 1, z: 1}]
```
We can force the use of exhaustive search if the optional package FES is present:

```
sage: sol = S.solve(algorithm='exhaustive_search') # optional - FES
sage: print(reproducible_repr(sol)) # optional - FES
 [{x: 1, y: 1, z: 1}]
sage: S.subs(sol[0])
[0, 0, 0]
```

And we may use SAT-solvers if they are available:

```
sage: sol = S.solve(algorithm='sat') # optional - cryptominisat
sage: print(reproducible_repr(sol)) # optional - cryptominisat
 [{x: 0, y: 1, z: 0}]
sage: S.subs(sol[0])
[0, 0, 0]
```

```python
class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2e(parts, ring, immutable=False, cr=False, cr_str=None)

Bases: sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic

PolynomialSequence over \(\mathbb{F}_2^e \), i.e extensions over GF(2).

weil_restriction()
Project this polynomial system to \(\mathbb{F}_2 \).

That is, compute the Weil restriction of scalars for the variety corresponding to this polynomial system and express it as a polynomial system over \(\mathbb{F}_2 \).

EXAMPLES:

```
sage: k.<a> = GF(2^2)
sage: P.<x,y> = PolynomialRing(k,2)
sage: a = P.base_ring().gen()
sage: F = Sequence([x*y + 1, a*x + 1], P)
sage: F2 = F.weil_restriction()
sage: F2
[x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 + x0, x1^2 + x1, y0^2 + y0, y1^2 + y1]
```

Another bigger example for a small scale AES:

```
sage: sr = mq.SR(1,1,1,4,gf2=False)
sage: F,s = sr.polynomial_system(); F
Polynomial Sequence with 40 Polynomials in 20 Variables
sage: F2 = F.weil_restriction(); F2
Polynomial Sequence with 240 Polynomials in 80 Variables
```

```python
sage.rings.polynomial.multi_polynomial_sequence.is_PolynomialSequence(F)

Return True if F is a PolynomialSequence.

INPUT:
```
• F - anything

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ)
sage: I = [x^2 + y^2], [x^2 - y^2]
sage: F = Sequence(I, P); F
[x^2 + y^2, x^2 - y^2]
sage: from sage.rings.polynomial.multi_polynomial_sequence import is_
˓→PolynomialSequence
sage: is_PolynomialSequence(F)
True
```

3.1.8 Multivariate Polynomials via libSINGULAR

This module implements specialized and optimized implementations for multivariate polynomials over many coefficient rings, via a shared library interface to SINGULAR. In particular, the following coefficient rings are supported by this implementation:

- the rational numbers \mathbb{Q},
- the ring of integers \mathbb{Z},
- $\mathbb{Z}/n\mathbb{Z}$ for any integer n,
- finite fields F_{p^n} for p prime and $n > 0$,
- and absolute number fields $\mathbb{Q}(a)$.

AUTHORS:
The libSINGULAR interface was implemented by

- Martin Albrecht (2007-01): initial implementation
- Joel Mohler (2008-01): misc improvements, polishing
- Martin Albrecht (2008-08): added $\mathbb{Q}(a)$ and \mathbb{Z} support
- Simon King (2009-04): improved coercion
- Martin Albrecht (2009-05): added $\mathbb{Z}/n\mathbb{Z}$ support, refactoring
- Martin Albrecht (2009-06): refactored the code to allow better re-use
- Simon King (2011-03): Use a faster way of conversion from the base ring.

Todo: Implement Real, Complex coefficient rings via libSINGULAR

EXAMPLES:

We show how to construct various multivariate polynomial rings:

```
sage: P.<x,y,z> = QQ[]
sage: P
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f = 27/113 * x^2 + y*z + 1/2; f
```

(continues on next page)
We construct the Frobenius morphism on \(F_5[x, y, z] \) over \(F_5 \):

\[
\begin{align*}
\text{sage: } & R.<x,y,z> = PolynomialRing(GF(5), 3) \\
& \text{sage: } \text{frob = R.hom([x^5, y^5, z^5]}) \\
& \text{sage: } \text{frob}(x^2 + 2*y - z^4) \\
& \quad -z^20 + x^10 + 2*y^5 \\
& \text{sage: } \text{frob((x + 2*y)^3)} \\
& \quad x^{15} + x^{10}*y^5 + 2*x^5*y^{10} - 2*y^{15} \\
& \text{sage: } \text{(x^5 + 2*y^5)^3} \\
& \quad x^{15} + x^{10}*y^5 + 2*x^5*y^{10} - 2*y^{15}
\end{align*}
\]

We construct the Frobenius morphism on \(F_5[x, y, z] \) over \(F_5 \):
We make a polynomial ring in one variable over a polynomial ring in two variables:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: S.<t> = PowerSeriesRing(R)
sage: t*(x+y)
(x + y)*t
```

```python
class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular
Bases: sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base

Construct a multivariate polynomial ring subject to the following conditions:

INPUT:

- **base_ring** - base ring (must be either GF(q), ZZ, ZZ/nZZ, QQ or absolute number field)
- **n** - number of variables (must be at least 1)
- **names** - names of ring variables, may be string of list/tuple
- **order** - term order (default: degrevlex)

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: P
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f = 27/113 * x^2 + y*z + 1/2; f
27/113*x^2 + y*z + 1/2
sage: P.term_order()
Degree reverse lexicographic term order
sage: P = PolynomialRing(GF(127),3,names='abc', order='lex')
sage: P
Multivariate Polynomial Ring in a, b, c over Finite Field of size 127
sage: a,b,c = P.gens()
sage: f = 57 * a^2*b + 43 * c + 1; f
57*a^2*b + 43*c + 1
sage: P.term_order()
Lexicographic term order
sage: z = QQ['z'].0
sage: K.<s> = NumberField(z^2 - 2)
sage: P.<x,y> = PolynomialRing(K, 2)
sage: 1/2*s*x^2 + 3/4*s
(1/2*s)*x^2 + (3/4*s)
sage: P.<x,y,z> = ZZ[]; P
Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: P.<x,y,z> = Zmod(2^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1024
sage: P.<x,y,z> = Zmod(3^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 59049
```
```
Element

alias of MPolynomial_libsingular

gen(n=0)

Returns the n-th generator of this multivariate polynomial ring.

INPUT:

• n – an integer >= 0

EXAMPLES:

```
sage: P.<x,y,z> = QQ[]
sage: P.gen(), P.gen(1)
(x, y)
sage: P = PolynomialRing(GF(127), 1000, 'x')
sage: P.gen(500)
x500
sage: P.<SAGE,SINGULAR> = QQ[]
# weird names
sage: P.gen(1)
SINGULAR
```

ideal(*gens, **kwds)

Create an ideal in this polynomial ring.

INPUT:

• *gens - list or tuple of generators (or several input arguments)
 • coerce - bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.

EXAMPLES:

```
sage: P.<x,y,z> = QQ[]
sage: sage.rings.ideal.Katsura(P)
```

(continues on next page)
Ideal \((x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y)\) of
\(\text{Multivariate Polynomial Ring in } x, y, z \text{ over Rational Field}\)

```
sage: P.ideal([x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 + 2*y^2 + 2*z^2 - x])
Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 + 2*y^2 + 2*z^2 - x) of
\(\text{Multivariate Polynomial Ring in } x, y, z \text{ over Rational Field}\)
```

monomial_all_divisors \((t)\)

Return a list of all monomials that divide \(t\).

Coefficients are ignored.

INPUT:

- \(t\) - a monomial

OUTPUT: a list of monomials

EXAMPLES:

```
sage: P.<x,y,z> = QQ[]
sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
```

ALGORITHM: addwithcarry idea by Toon Segers

monomial_divides \((a, b)\)

Return *False* if \(a\) does not divide \(b\) and *True* otherwise.

Coefficients are ignored.

INPUT:

- \(a\) – monomial
- \(b\) – monomial

EXAMPLES:

```
sage: P.<x,y,z> = QQ[]
sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
False
```

monomial_lcm \((f, g)\)

LCM for monomials. Coefficients are ignored.

INPUT:

- \(f\) - monomial
- \(g\) - monomial

EXAMPLES:

```
sage: P.<x,y,z> = QQ[]
sage: P.monomial_lcm(3/2*x*y, x)
x*y
```

3.1. Multivariate Polynomials and Polynomial Rings
\texttt{monomial_pairwise_prime}(g, h)

Return \texttt{True} if \(h\) and \(g\) are pairwise prime. Both are treated as monomials.

Coefficients are ignored.

\textbf{INPUT}:

- \(h\) - monomial
- \(g\) - monomial

\textbf{EXAMPLES}:

\begin{verbatim}
sage: P.<x,y,z> = QQ[]
sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True

sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False
\end{verbatim}

\texttt{monomial_quotient}(f, g, \texttt{coeff=False})

Return \(f/g\), where both \(f\) and \(g\) are treated as monomials.

Coefficients are ignored by default.

\textbf{INPUT}:

- \(f\) - monomial
- \(g\) - monomial
- \texttt{coeff} - divide coefficients as well (default: \texttt{False})

\textbf{EXAMPLES}:

\begin{verbatim}
sage: P.<x,y,z> = QQ[]
sage: P.monomial_quotient(3/2*x*y,x)
y
sage: P.monomial_quotient(3/2*x*y,x,coeff=True)
3/2*y
\end{verbatim}

Note, that \(\mathbb{Z}\) behaves different if \texttt{coeff=True}:

\begin{verbatim}
sage: P.monomial_quotient(2*x,3*x)
1

sage: P.<x,y> = PolynomialRing(ZZ)
sage: P.monomial_quotient(2*x,3*x,coeff=True)
Traceback (most recent call last):
... ArithmeticError: Cannot divide these coefficients.
\end{verbatim}

\textbf{Warning}: Assumes that the head term of \(f\) is a multiple of the head term of \(g\) and return the multiplier \(m\). If this rule is violated, funny things may happen.

\texttt{monomial_reduce}(f, G)

Try to find a \(g\) in \(G\) where \(g.lm()\) divides \(f\). If found \((\texttt{flt}, g)\) is returned, \((0, 0)\) otherwise, where \(\texttt{flt}\) is \(f/g.lm()\).
It is assumed that \(G \) is iterable and contains only elements in this polynomial ring. Coefficients are ignored.

INPUT:

- \(f \) - monomial
- \(G \) - list/set of m-polynomials

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: f = x*y^2
sage: G = [ 3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, 1/2 ]
sage: P.monomial_reduce(f,G)
```

ngens()

Returns the number of variables in this multivariate polynomial ring.

EXAMPLES:

```python
sage: P.<x,y> = QQ[]
sage: P.ngens()
2
sage: k.<a> = GF(2^16)
sage: P = PolynomialRing(k,1000,'x')
sage: P.ngens()
1000
```

class `sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular`
Bases: `sage.rings.polynomial.multi_polynomial.MPolynomial`

A multivariate polynomial implemented using libSINGULAR.

add_m_mul_q \((m, q)\)

Return \(\text{self} + m \cdot q \), where \(m \) must be a monomial and \(q \) a polynomial.

INPUT:

- \(m \) - a monomial
- \(q \) - a polynomial

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: x.add_m_mul_q(y,z)
y*z + x
```

coefficient \((\text{degrees})\)

Return the coefficient of the variables with the degrees specified in the python dictionary \(\text{degrees} \). Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in \(\text{degrees} \). However, the result has the same parent as this polynomial.

This function contrasts with the function `monomial_coefficient` which returns the coefficient in the base ring of a monomial.

INPUT:

- \(\text{degrees} \) - Can be any of:
- a dictionary of degree restrictions
- a list of degree restrictions (with None in the unrestricted variables)
- a monomial (very fast, but not as flexible)

OUTPUT: element of the parent of this element.

Note: For coefficients of specific monomials, look at \texttt{monomial_coefficient()}.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y> = QQ[]
sage: f=x*y+y+5
sage: f.coefficient({x:0,y:1})
1
sage: f.coefficient({x:0})
y + 5
sage: f=(1+y+y^2)*(1+x+x^2)
\end{verbatim}

Be aware that this may not be what you think! The physical appearance of the variable x is deceiving – particularly if the exponent would be a variable.

\begin{verbatim}
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x*y^2 + x^2 + x*y + y^2 + x + y + 1
sage: R.<x,y> = GF(389)[]
sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5
sage: parent(c)
Multivariate Polynomial Ring in x, y over Finite Field of size 389
\end{verbatim}

AUTHOR:
- Joel B. Mohler (2007.10.31)

\texttt{coefficients()}

Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of the parent.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y,z> = PolynomialRing(QQ, order='degrevlex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]
\end{verbatim}
constant_coefficient()
Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

```
sage: P.<x, y> = QQ[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.constant_coefficient()
5
```

degree(x=None, std_grading=False)
Return the maximal degree of this polynomial in x, where x must be one of the generators for the parent of this polynomial.

INPUT:

- x - (default: None) a multivariate polynomial which is (or coerces to) a generator of the parent of self. If x is None, return the total degree, which is the maximum degree of any monomial. Note that a matrix term ordering alters the grading of the generators of the ring; see the tests below. To avoid this behavior, use either exponents() for the exponents themselves, or the optional argument std_grading=False.

OUTPUT: integer

EXAMPLES:

```
sage: R.<x, y> = QQ[]
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9
sage: f.degree(y)
2
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10
```

degrees()
Returns a tuple with the maximal degree of each variable in this polynomial. The list of degrees is ordered by the order of the generators.

EXAMPLES:

```
sage: R.<y0,y1,y2> = PolynomialRing(QQ,3)
sage: q = 3*y0*y1*y1+y2; q
3*y0*y1^2*y2
sage: q.degrees()
(1, 2, 1)
sage: (q + y0^5).degrees()
(5, 2, 1)
```
dict()

Return a dictionary representing self. This dictionary is in the same format as the generic MPolynomial: The dictionary consists of ETuple:coefficient pairs.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]  
sage: f=2*x*y^3*z^2 + 1/7*x^2 + 2/3  
sage: f.dict()  
{(0, 0, 0): 2/3, (1, 3, 2): 2, (2, 0, 0): 1/7}
```

divides(other)

Return True if this polynomial divides other.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]  
sage: p = 3*x*y + 2*y*z + x*z  
sage: q = x + y + z + 1  
sage: r = p * q  
sage: p.divides(r)  
True  
sage: q.divides(p)  
False  
sage: r.divides(0)  
True  
sage: R.zero().divides(r)  
False  
sage: R.zero().divides(0)  
True
```

exponents(as_ETuples=True)

Return the exponents of the monomials appearing in this polynomial.

INPUT:

• as_ETuples - (default: True) if true returns the result as an list of ETuples otherwise returns a list of tuples

EXAMPLES:

```
sage: R.<a,b,c> = QQ[]  
sage: f = a^3 + b + 2*b^2  
sage: f.exponents()  
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]  
sage: f.exponents(as_ETuples=False)  
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
```

factor(proof=True)

Return the factorization of this polynomial.

INPUT:

• proof - ignored.

EXAMPLES:

```
sage: R.<x, y> = QQ[]  
sage: f = (x^3 + 2*y^2*x) * (x^2 + x + 1); f  
x^5 + 2*x^3*y^2 + x^4 + 2*x^2*y^2 + x^3 + 2*x*y^2
```

(continues on next page)
Next we factor the same polynomial, but over the finite field of order 3.:

```
sage: R.<x, y> = GF(3)[]
sage: f = (x^3 + 2*y^2*x) * (x^2 + x + 1); f
x^5 - x^3*y^2 + x^4 - x^2*y^2 + x^3 - x*y^2
sage: F = f.factor()
sage: F
# order is somewhat random
(-1) * x * (-x + y) * (x + y) * (x - 1)^2
```

Next we factor a polynomial, but over a finite field of order 9.:

```
sage: K.<a> = GF(3^2)
sage: R.<x, y> = K[]
sage: f = (x^3 + 2*a*y^2*x) * (x^2 + x + 1); f
x^5 + (-a)*x^3*y^2 + x^4 + (-a)*x^2*y^2 + x^3 + (-a)*x*y^2
sage: F = f.factor()
sage: F
((-a)) * x * (x - 1)^2 * ((-a + 1)*x^2 + y^2)
sage: f - F
0
```

Next we factor a polynomial over a number field.:

```
sage: p = var('p')
sage: K.<s> = NumberField(p^3-2)
sage: KXY.<x,y> = K[]
sage: factor(x^3 - 2*y^3)
(x + (-s)*y) * (x^2 + (s)*x*y + (s^2)*y^2)
sage: k = (x^3-2*y^3)^5*(x+s*y)^2*(2/3 + s^2)
sage: k.factor()
((s^2 + 2/3)) * (x + (s)*y)^2 * (x + (-s)*y)^5 * (x^2 + (s)*x*y + (s^2)*y^2)^5
```

This shows that ticket trac ticket #2780 is fixed, i.e. that the unit part of the factorization is set correctly:

```
sage: x = var('x')
sage: K.<a> = NumberField(x^2 + 1)
sage: R.<y, z> = PolynomialRing(K)
sage: f = 2*y^2 + 2*z^2
sage: F = f.factor(); F.unit()
2
```

Another example:

```
sage: R.<x,y,z> = GF(32003)[[]
sage: f = 9*(x-1)^2*(y+z)
sage: f.factor()
(9) * (y + z) * (x - 1)^2
sage: R.<x,w,v,u> = QQ['x','w','v','u']
sage: p = (4*v^4*u^2 - 16*v^2*u^4 + 16*u^6 - 4*v^4*u + 8*v^2*u^3 + v^4)
sage: p.factor()
(-2*v^2*u + 4*u^3 + v^2)^2
```

(continues on next page)
sage: R.<a,b,c,d> = QQ[]
sage: f = (-2) * (a - d) * (-a + b) * (b - d) * (a - c) * (b - c) * (c - d)
sage: F = f.factor(); F
(-2) * (c - d) * (-b + c) * (b - d) * (-a + c) * (-a + b) * (a - d)
sage: F[0][0]
c - d
sage: F.unit()
-2

Constant elements are factorized in the base rings.

sage: P.<x,y> = ZZ[]
sage: P(2^3*7).factor()
2^3 * 7
sage: P.<x,y> = GF(2)[]
sage: P(1).factor()
1

Factorization for finite prime fields with characteristic $> 2^{29}$ is not supported

sage: q = 1073741789
sage: T.<aa, bb> = PolynomialRing(GF(q))
sage: f = aa^2 + 12124343*bb*aa + 32434598*bb^2
sage: f.factor()
Traceback (most recent call last):
 ... Not ImplementedError: Factorization of multivariate polynomials over prime fields with characteristic $> 2^{29}$ is not implemented.

Factorization over the integers is now supported, see trac ticket #17840:

sage: P.<x,y> = PolynomialRing(ZZ)
sage: f = 12 * (3*x*y + 4) * (5*x - 2) * (2*y + 7)^2
sage: f.factor()
2^2 * 3 * (2*y + 7)^2 * (5*x - 2) * (3*x*y + 4)

Factorization over non-integral domains is not supported

sage: R.<x,y> = PolynomialRing(Zmod(4))
sage: f = (2*x + 1) * (x^2 + x + 1)
sage: f.factor()
Traceback (most recent call last):
 ... Not ImplementedError: Factorization of multivariate polynomials over Ring of integers modulo 4 is not implemented.

sage: R.<x,y> = GF(2)[[]]
sage: p=x^8 + y^8; q=x^2*y^4 + x
sage: f=p*q
sage: f=f.factor()
sage: f-1f
0
```python
sage: R.<x,y> = GF(3)[]
sage: p = -x*y^9 + x
sage: q = -x^8*y^2
sage: f = p*q
sage: f
x^9*y^11 - x^9*y^2
sage: f.factor()
y^2 * (y - 1)^9 * x^9
sage: f - f.factor()
0
```

```python
sage: R.<x,y> = GF(5)[]
sage: p=x^27*y^9 + x^32*y^3 + 2*x^20*y^10 - x^4*y^24 - 2*x^17*y
sage: q=-2*x^10*y^24 + x^9*y^24 - 2*x^3*y^30
sage: f=p*q; f-f.factor()
0
```

```python
sage: R.<x,y> = GF(7)[]
sage: p=-3*x^47*y^24
sage: q=-3*x^47*y^37 - 3*x^24*y^49 + 2*x^56*y^8 + 3*x^29*y^15 - x^2*y^33
sage: f=p*q
sage: f-f.factor()
0
```

The following examples used to give a Segmentation Fault, see trac ticket #12918 and trac ticket #13129:

```python
sage: R.<x,y> = GF(2)[]
sage: f = x^6 + x^5 + y^5 + y^4
sage: f.factor()
x^6 + x^5 + y^5 + y^4
sage: f = x^16*y + x^10*y + x^9*y + x^6*y + x^5 + x*y + y^2
sage: f.factor()
x^16*y + x^10*y + x^9*y + x^6*y + x^5 + x*y + y^2
```

Test trac ticket #12928:

```python
sage: R.<x,y> = GF(2)[]
sage: p = x^2 + y^2 + x + 1
sage: q = x^4 + x^2*y^2 + y^4 + x*y^2 + x^2 + y^2 + 1
sage: factor(p*q)
(x^2 + y^2 + x + 1) * (x^4 + x^2*y^2 + y^4 + x*y^2 + x^2 + y^2 + 1)
```

Check that trac ticket #13770 is fixed:

```python
sage: U.<y,t> = GF(2)[]
sage: f = y*t^8 + y^5*t^2 + y*t^6 + t^7 + y^6 + y^5*t + y^2*t^4 + y^2*t^2 + y^\rightarrow 2*t + t^3 + y^2 + t^2
sage: l = f.factor()
1 = f.factor()
sage: l[0][0]==t^2 + y + t + 1 or l[1][0]==t^2 + y + t + 1
True
```

The following used to sometimes take a very long time or get stuck, see trac ticket #12846. These 100 iterations should take less than 1 second:

```python
sage: K.<a> = GF(4)
sage: R.<x,y> = K[]
```
sage: f = (a + 1)*x^145*y^84 + (a + 1)*x^205*y^17 + x^32*y^112 + x^92*y^45
sage: for i in range(100):
 : assert len(f.factor()) == 4

Test for trac ticket #20435:

sage: x,y = polygen(ZZ,'x,y')
sage: p = x**2-y**2
sage: z = factor(p); z
(x - y) * (x + y)

sage: z[0][0].parent()
Multivariate Polynomial Ring in x, y over Integer Ring

Test for trac ticket #17680:

sage: R.<a,r,v,n,g,f,h,o> = QQ[]
sage: f = 248301045*a^2*r^10*n^2*o^10+570807000*a^2*r^9*n*o^9-137945025*a^2*r^8*n^2*o^8+32805000*a^2*r^7*n*o^7-253692000*a^2*r^6*n^3*o^6+42282000*a^2*r^5*n^4*o^5-30654500*a^2*r^4*n^5*o^4+22457088*a^2*r^3*n^6*o^3-137945025*a^2*r^2*n^7*o^2+570807000*a^2*r*n^8*o-137945025*a^2*n^9*o^9+32805000*a^2*n^10*o^8-253692000*a^2*n^11*o^7+42282000*a^2*n^12*o^6-30654500*a^2*n^13*o^5+22457088*a^2*n^14*o^4-137945025*a^2*n^15*o^3+570807000*a^2*n^16*o^2-137945025*a^2*n^17*o+570807000*a^2*n^18
sage: len(factor(f))
4

Test for trac ticket #17251:

sage: R.<z,a,b> = PolynomialRing(QQ)
sage: N = -a^4*z^8 + 2*a^2*b^2*z^8 - b^4*z^8 - 16*a^3*b*z^7 + 16*a*b^3*z^7 + 28*a^4*z^6 - 56*a^2*b^2*z^6 + 28*b^4*z^6 + 112*a^3*b*z^5 - 112*a*b^3*z^5 + 70*a^4*z^4 + 140*a^2*b^2*z^4 - 70*b^4*z^4 - 112*a^3*b*z^3 + 112*a*b^3*z^3 + 28*a^4*z^2 - 56*a^2*b^2*z^2 + 28*b^4*z^2 + 16*a^3*b*z - 16*a*b^3*z - a^4 + 2*a^2*b^2 - b^4
sage: N.factor()
(-1) * (-a + b) * (a + b) * (-z^4*a + z^4*b - 4*z^3*a - 4*z^3*b + 6*z^2*a - 6*z^2*b + 4*z*a + 4*z*b - a - b) * (z^4*a + z^4*b - 4*z^3*a - 4*z^3*b + 4*z^2*a + 4*z^2*b + a + b)

gcd(right, algorithm=None, **kwds)
Return the greatest common divisor of self and right.

INPUT:

• right - polynomial
• algorithm - ezgcd - EZGCD algorithm - modular - multi-modular algorithm (default)
• **kwds - ignored

EXAMPLES:

sage: P.<x,y,z> = QQ[]
sage: f = (x+y+z)^6 - 1
sage: g = (x+y+z)^4 - 1
sage: f,gcd(g)
(x^2+y^2+z^2 - 1)
sage: GCD([x^3 - 3*x + 2, x^4 - 1, x^6 -1])
x - 1
We compute a gcd over a finite field:

```sage
sage: F.<u> = GF(31^2)
sage: R.<x,y,z> = F[]
sage: p = x^3 + (1+u)*y^3 + z^3
sage: q = p^3 * (x - y + z*u)
sage: gcd(p,q)
x^3 + (u + 1)*y^3 + z^3
```

We compute a gcd over a number field:

```sage
sage: x = polygen(QQ)
sage: F.<u> = NumberField(x^3 - 2)
sage: R.<x,y,z> = F[]
sage: p = x^3 + (1+u)*y^3 + z^3
sage: q = p^3 * (x - y + z*u)
sage: gcd(p,q)
x^3 + (u + 1)*y^3 + z^3
```

gradient()

Return a list of partial derivatives of this polynomial, ordered by the variables of the parent.

EXAMPLES:

```sage
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: f= x*y + 1
sage: f.gradient()
[y, x, 0]
```

hamming_weight()

Return the number of non-zero coefficients of this polynomial.

This is also called weight, `hamming_weight()` or sparsity.

EXAMPLES:

```sage
sage: R.<x, y> = ZZ[]
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)^100
sage: f.number_of_terms()
101
```

The method `hamming_weight()` is an alias:
integral (var)
Integrates this polynomial with respect to the provided variable.

One requires that Q is contained in the ring.

INPUT:

• variable - the integral is taken with respect to variable

EXAMPLES:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: f = 3*x^3*y^2 + 5*y^2 + 3*x + 2
sage: f.integral(x)
3/4*x^4*y^2 + 5*x*y^2 + 3/2*x^2 + 2*x
sage: f.integral(y)
x^3*y^3 + 5/3*y^3 + 3*x*y + 2*y
```

Check that trac ticket #15896 is solved:

```python
sage: s = x+y
sage: s.integral(x)+x
1/2*x^2 + x*y + x
sage: s.integral(x)*s
1/2*x^3 + 3/2*x^2*y + x*y^2
```

inverse_of_unit ()
Return the inverse of this polynomial if it is a unit.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: x.inverse_of_unit()
Traceback (most recent call last):
... ArithmeticError: Element is not a unit.
sage: R(1/2).inverse_of_unit()
2
```

is_constant ()
Return True if this polynomial is constant.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(GF(127))
sage: x.is_constant()
False
sage: P(1).is_constant()
True
```

is_homogeneous ()
Return True if this polynomial is homogeneous.

EXAMPLES:
sage: P.<x,y> = PolynomialRing(RationalField(), 2)
sage: (x+y).is_homogeneous()
True
sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True

is_monomial()
Return True if this polynomial is a monomial. A monomial is defined to be a product of generators with coefficient 1.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ)
sage: x.is_monomial()
True
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True
sage: (x*y + x).is_monomial()
False

is_squarefree()
Return True if this polynomial is square free.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ)
sage: f= x^2 + 2*x*y + 1/2*z
sage: f.is_squarefree()
True
sage: h = f^2
sage: h.is_squarefree()
False

is_univariate()
Return True if self is a univariate polynomial, that is if self contains only one variable.

EXAMPLES:

sage: P.<x,y,z> = GF(2)[]
sage: f = x^2 + 1
sage: f.is_univariate()
True
sage: f = y*x^2 + 1
sage: f.is_univariate()
False
sage: f = P(0)
sage: f.is_univariate()
True
is_zero()

Return True if this polynomial is zero.

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ)
sage: x.is_zero()
False
sage: (x-x).is_zero()
True
```

lc()

Leading coefficient of this polynomial with respect to the term order of self.parent().

EXAMPLES:

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lc()
3
sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lc()
5
```

lcm(g)

Return the least common multiple of self and g.

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: p = (x+y)*(y+z)
sage: q = (z^4+2)*(y+z)
sage: lcm(p,q)
x*y*z^4 + y^2*z^4 + x*z^5 + y*z^5 + 2*x*y + 2*y^2 + 2*x*z + 2*y*z
sage: P.<x,y,z> = ZZ[]
sage: p = 2*(x+y)*(y+z)
sage: q = 3*(z^4+2)*(y+z)
sage: lcm(p,q)
6*x*y*z^4 + 6*y^2*z^4 + 6*x*z^5 + 6*y*z^5 + 12*x*y + 12*y^2 + 12*x*z + 12*y*z
sage: r.<x,y> = PolynomialRing(GF(2**8, 'a'), 2)
sage: a = r.base_ring().0
sage: f = (a^2+a)*x^2*y + (a^4+a^3+a)*y + a^5
sage: f.lcm(x^4)
(a^2 + a)*x^6*y + (a^3 + a - 1)*x^4*y + (-a)*x^4
```

lift(I)

given an ideal \(I = (f_1, \ldots, f_r) \) and some \(g \ (== \text{self}) \) in \(I \), find \(s_1, \ldots, s_r \) such that \(g = s_1 f_1 + \ldots + s_r f_r \).

A ValueError exception is raised if \(g \ (== \text{self}) \) does not belong to \(I \).
EXAMPLES:

```python
sage: A.<x,y> = PolynomialRing(QQ,2,order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7 ])
sage: f = x*y^13 + y^12
sage: M = f.lift(I)
sage: M
[y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 +...
 + y^4]
sage: sum( map( mul , zip( M, I.gens() ) ) ) == f
True
```

Check that trac ticket #13671 is fixed:

```python
sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = I.gen(0) + x2*I.gen(1)
sage: f.lift(I)
[1, x2]
sage: (f+1).lift(I)
Traceback (most recent call last):
...
ValueError: polynomial is not in the ideal
sage: f.lift(I)
[1, x2]
```

`lm()`

Returns the lead monomial of self with respect to the term order of `self.parent()`. In Sage a monomial is a product of variables in some power without a coefficient.

EXAMPLES:

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: f = x^1*y^2 + y^3*z^4
sage: f.lm()
x*y^2
sage: f = x^3*y^2*z^4 + x^3*y^2*z^1
sage: f.lm()
x^3*y^2*z^4
sage: R.<x,y,z>=PolynomialRing(QQ,3,order='deglex')
sage: f = x^1*y^2*z^3 + x^3*y^2*z^0
sage: f.lm()
x*y^2*z^3
sage: f = x^4*y^7*z^1 + x^4*y^2*z^3
sage: f.lm()
x^4*y^7*z
```

`lt()`

Leading term of this polynomial. In Sage a term is a product of variables in some power and a coefficient.
EXAMPLES:

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lt()
3*x*y^2
sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lt()
-2*x^3*y^2*z^4
```

`monomial_coefficient (mon)`

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function `coefficient` which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

INPUT:

- mon - a monomial

OUTPUT:

coefficient in base ring

See also:

For coefficients in a base ring of fewer variables, look at `coefficient`.

EXAMPLES:

```python
sage: P.<x,y> = QQ[]
The parent of the return is a member of the base ring.
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Rational Field
sage: f = y^2 + y^2*x - x^9 - 7*x + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
-1
sage: f.monomial_coefficient(x^10)
0
```

`monomials ()`

Return the list of monomials in self. The returned list is decreasingly ordered by the term ordering of self.parent().

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: f = x + 3/2*y*z^2 + 2/3
sage: f.monomials()
[y*z^2, x, 1]
```

(continues on next page)
\texttt{sage}: f = P(3/2)
\texttt{sage}: f.monomials()
[1]

\texttt{number_of_terms()}
Return the number of non-zero coefficients of this polynomial.
This is also called weight, \texttt{hamming_weight()} or sparsity.

\textbf{EXAMPLES:}

\texttt{sage}: R.<x, y> = ZZ[]
\texttt{sage}: f = x^3 - y
\texttt{sage}: f.number_of_terms()
2
\texttt{sage}: R(0).number_of_terms()
0
\texttt{sage}: f = (x+y)^100
\texttt{sage}: f.number_of_terms()
101

The method \texttt{hamming_weight()} is an alias:

\texttt{sage}: f.hamming_weight()
101

\texttt{numerator()}
Return a numerator of self computed as self * self.denominator()
If the base_field of self is the Rational Field then the numerator is a polynomial whose base_ring is the Integer Ring, this is done for compatibility to the univariate case.

\textbf{Warning:} This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

\textbf{EXAMPLES:}
First we compute the numerator of a polynomial with integer coefficients, which is of course self.

\texttt{sage}: R.<x, y> = ZZ[]
\texttt{sage}: f = x^3 + 17*y + 1
\texttt{sage}: f.numerator()
\texttt{x^3 + 17*y + 1}
\texttt{sage}: f == f.numerator()
\texttt{True}

Next we compute the numerator of a polynomial with rational coefficients.

\texttt{sage}: R.<x,y> = PolynomialRing(QQ)
\texttt{sage}: f = (1/17)*x^19 - (2/3)*y + 1/3; f
\texttt{1/17*x^19 - 2/3*y + 1/3; f}
\texttt{1/17*x^19 - 2/3*y + 1/3}
\texttt{sage}: f.numerator()
\texttt{3*x^19 - 34*y + 17}
\texttt{sage}: f == f.numerator()
\texttt{False}
We check that the computation of numerator and denominator is valid.

```
sage: K=QQ['x,y']
sage: f=K.random_element()
sage: f.numerator() / f.denominator() == f
True
```

The following tests against a bug fixed in trac ticket #11780:

```
sage: P.<foo,bar> = ZZ[]
sage: Q.<foo,bar> = QQ[]
sage: f = Q.random_element()
sage: f.numerator().parent() is P
True
```

nvariables() (continued from previous page)

Return the number variables in this polynomial.

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(GF(127))
sage: f = x*y + z
sage: f.nvariables()
3
sage: f = x + y
sage: f.nvariables()
2
```

quo_rem(right)
Returns quotient and remainder of self and right.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: f = y*x^2 + x + 1
sage: f.quo_rem(x)
(x*y + 1, 1)
sage: f.quo_rem(y)
(x^2, x + 1)
sage: R.<x,y> = ZZ[]
sage: f = 2*y*x^2 + x + 1
sage: f.quo_rem(x)
(2*x*y + 1, 1)
sage: f.quo_rem(y)
(2*x^2, x + 1)
sage: f.quo_rem(3*x)
(2*x*y + 1, -4*x^2*y - 2*x + 1)
```

reduce(I)
Return a remainder of this polynomial modulo the polynomials in I.

INPUT:

- I - an ideal or a list/set/iterable of polynomials.
OUTPUT:
A polynomial \(r \) such that:

- \(\text{self} - r \) is in the ideal generated by \(I \).
- No term in \(r \) is divisible by any of the leading monomials of \(I \).

The result \(r \) is canonical if:

- \(I \) is an ideal, and Sage can compute a Groebner basis of it.
- \(I \) is a list/set/iterable that is a (strong) Groebner basis for the term order of \(\text{self} \). (A strong Groebner basis is such that for every leading term \(t \) of the ideal generated by \(I \), there exists an element \(g \) of \(I \) such that the leading term of \(g \) divides \(t \).)

The result \(r \) is implementation-dependent (and possibly order-dependent) otherwise. If \(I \) is an ideal and no Groebner basis can be computed, its list of generators \(I.gens() \) is used for the reduction.

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x* y
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
-6*y^2 + 2*y
sage: g.reduce(F.gens())
-6*y^2 + 2*y
```

\(\mathbb{Z} \) is also supported.

```python
sage: P.<x,y,z> = ZZ[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x* y
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
-6*y^2 + 2*y
sage: g.reduce(F.gens())
-6*y^2 + 2*y
sage: f = 3*x
sage: f.reduce([2*x,y])
3*x
```

The reduction is not canonical when \(I \) is not a Groebner basis:

```python
sage: A.<x,y> = QQ[]
sage: (x+y).reduce([x+y, x-y])
2*y
sage: (x+y).reduce([x-y, x+y])
0
```

resultant *(other, variable=None)*

Compute the resultant of this polynomial and the first argument with respect to the variable given as the second argument.
If a second argument is not provide the first variable of the parent is chosen.

INPUT:

- `other` - polynomial
- `variable` - optional variable (default: None)

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: a = x+y
sage: b = x^3-y^3
sage: c = a.resultant(b); c
-2*y^3
sage: d = a.resultant(b,y); d
type(base_ring)2*x^3
```

The SINGULAR example:

```python
sage: R.<x,y,z> = PolynomialRing(GF(32003),3)
sage: f = 3 * (x+2)^3 + y
sage: g = x+y+z
sage: f.resultant(g,x)
-24
```

Resultants are also supported over the Integers:

```python
sage: R.<x,y,a,b,u>=PolynomialRing(ZZ, 5, order='lex')
sage: r = (x^4*y^2+x^2*y-y).resultant(x*y-x*a+b+u,x)
sage: r
y^6*a^4 - 4*y^5*a^4*b - 4*y^5*a^3*u + y^5*a^2 - y^5 + 6*y^4*a^4*b^2 + 12*y^3*a^3*b^3 - 12*y^3*a^2*b^2 + 6*y^3*a*b - 3*y^3 - 2*y^2*a^4*b^2 + 6*y^2*a^3*b^2 + 4*y^2*a^2*b + 4*y^2*a*b - 2*y^2 + y^2*a^3*b + 6*y^2*a^2*b + 2*y^2*a*b + u^2 - 6*y^2*a*b + 4*y^2*a*b + 2*y^2*a*b + u - 4*y^2 - 2*y^2 + y^2*b^3 + 2*y^2 - 3*y^2 + 2*y^2 + y^2 + y^2 + y^2 + y^2 + y^2
```

sub_m_mul_q *(m, q)*

Return `self - m*q`, where `m` must be a monomial and `q` a polynomial.

INPUT:

- `m` - a monomial
- `q` - a polynomial

EXAMPLES:

```python
sage: P.<x,y,z>=PolynomialRing(QQ,3)
sage: x.sub_m_mul_q(y,z)
-y*z + x
```

subs *(fixed=None, **kw)*

Fixes some given variables in a given multivariate polynomial and returns the changed multivariate polynomials. The polynomial itself is not affected. The variable,value pairs for fixing are to be provided as dictionary of the form `{variable:value}`.

This is a special case of evaluating the polynomial with some of the variables constants and the others the original variables, but should be much faster if only few variables are to be fixed.
INPUT:

- **fixed** - (optional) dict with variable:value pairs
- ****kw - names parameters

OUTPUT: a new multivariate polynomial

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = x^2 + y + x^2*y^2 + 5
sage: f(5,y)
25*y^2 + y + 30
sage: f.subs({x:5})
25*y^2 + y + 30
sage: f.subs(x=5)
25*y^2 + y + 30
sage: P.<x,y,z> = PolynomialRing(GF(2),3)
sage: f = x + y + 1
sage: f.subs({x:y+1})
0
sage: f.subs(x=y)
1
sage: f.subs(x=x)
x + y + 1
sage: f.subs({x:z})
y + z + 1
sage: f.subs(x=z+1)
y + z
sage: f.subs({x:1/y})
(y^2 + y + 1)/y
sage: f.subs({x:1/y})
(y^2 + y + 1)/y
```

The parameters are subsituted in order and without side effects:

```python
sage: R.<x,y>=QQ[]
sage: g=x+y
sage: g.subs({x:x+1,y:x*y})
x*y + x + 1
sage: g.subs({x:x+1}).subs({y:x*y})
x*y + x + 1
sage: g.subs({y:x*y}).subs({x:x+1})
x*y + x + y + 1
```

```
3.1. Multivariate Polynomials and Polynomial Rings 389

**total_degree** *(std_grading=False)*

Return the total degree of *self*, which is the maximum degree of all monomials in *self*.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = x + 2*y
sage: f.subs(x=y,y=x)
2*x + y
```

```
univariate_polynomial \(R=None \)
Returns a univariate polynomial associated to this multivariate polynomial.

INPUT:

- \(R \) - (default: None) PolynomialRing

If this polynomial is not in at most one variable, then a `ValueError` exception is raised. This is checked using the `is_univariate()` method. The new Polynomial is over the same base ring as the given `MPolynomial` and in the variable \(x \) if no ring \(R \) is provided.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.univariate_polynomial()
 Traceback (most recent call last):
   ...  
TypeError: polynomial must involve at most one variable
sage: g = f.subs({x:10}); g
700*y^2 - 2*y + 305
sage: g.univariate_polynomial()
700*y^2 - 2*y + 305
sage: g.univariate_polynomial(PolynomialRing(QQ,'z'))
700*z^2 - 2*z + 305
```

Here’s an example with a constant multivariate polynomial:

```python
sage: g = R(1)
sage: h = g.univariate_polynomial(); h
1
sage: h.parent()
Univariate Polynomial Ring in x over Rational Field
```

variable \(i=0 \)
Return the \(i \)-th variable occurring in self. The index \(i \) is the index in `self.variables()`.

EXAMPLES:
variables()
Return a tuple of all variables occurring in self.

EXAMPLES:

```python
sage: P.<x,y,z> = GF(2)[]
sage: f = x*z^2 + z + 1
sage: f.variables()
(x, z)
sage: f.variable(1)
z
```

3.1.9 Direct low-level access to SINGULAR’s Groebner basis engine via libSINGULAR.

AUTHOR:
- Martin Albrecht (2007-08-08): initial version

EXAMPLES:

```python
sage: x,y,z = QQ['x,y,z'].gens()
sage: I = ideal(x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1)
sage: I.groebner_basis('libsingular:std')
[y^6 + x*y^4 + 2*y^3*z^2 + x*z^3 + z^4 - 2*y^3 - 2*z^2 - x + 1,
x^2*y^3 - y^4 + x^2*z^2 - z^3 - x^2 + 1, x^3 + y^3 + z^2 - 1]```
We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

```python
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis('libsingular:std')
sage: len(B)
45
```

Two examples from the Mathematica documentation (done in Sage):

- We compute a Groebner basis:

```python
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: ideal(x^2 - 2*y^2, x*y - 3).groebner_basis('libsingular:slimgb')
[x - 2/3*y^3, y^4 - 9/2]
```

- We show that three polynomials have no common root:

```python
sage: R.<x,y> = QQ[]
sage: ideal(x+y, x^2 - 1, y^2 - 2*x).groebner_basis('libsingular:slimgb')
[1]
```

SINGULAR's `interred()` command.

**INPUT:**

- `I` – a Sage ideal

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(ZZ)
sage: I = ideal(x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.interreduced_basis()
[y*z^2 - 81*x*y - 9*y - z, z^3 - x, x^2 - 3*y, 9*y^2 - y*z + 1]
```

SINGULAR's `kbase()` algorithm.

**INPUT:**

- `I` – a groebner basis of an ideal

**OUTPUT:**

Computes a vector space basis (consisting of monomials) of the quotient ring by the ideal, resp. of a free module by the module, in case it is finite dimensional and if the input is a standard basis with respect to the ring ordering. If the input is not a standard basis, the leading terms of the input are used and the result may have no meaning.

**EXAMPLES:**

```python
sage: P.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x^2-2*y^2, x*y-3)
sage: I.normal_basis()
[y^3, y^2, y, 1]
```

sage.rings.polynomial.multi_polynomial_ideal_libsingular.slibg_libsingular(I)
SINGULAR’s slimgb() algorithm.

INPUT:
- I – a Sage ideal

sage.rings.polynomial.multi_polynomial_ideal_libsingular.std_libsingular(I)
SINGULAR’s std() algorithm.

INPUT:
- I – a Sage ideal

3.1.10 PolyDict engine for generic multivariate polynomial rings

This module provides an implementation of the underlying arithmetic for multi-variate polynomial rings using Python dicts.

This class is not meant for end users, but instead for implementing multivariate polynomial rings over a completely general base. It does not do strong type checking or have parents, etc. For speed, it has been implemented in Cython.

The functions in this file use the ‘dictionary representation’ of multivariate polynomials

\{(e_1, \ldots, e_r) : c_1, \ldots\} \leftrightarrow c_1 x_1^{e_1} \cdots x_r^{e_r} + \ldots,

which we call a polydict. The exponent tuple \((e_1, \ldots, e_r)\) in this representation is an instance of the class \texttt{ETuple}. This class behaves like a normal Python tuple but also offers advanced access methods for sparse monomials like positions of non-zero exponents etc.

AUTHORS:
- William Stein
- David Joyner
- Martin Albrecht (ETuple)
- Joel B. Mohler (2008-03-17) – ETuple rewrite as sparse C array

class sage.rings.polynomial.polydict.ETuple
Bases: object

Representation of the exponents of a polydict monomial. If \((0,0,3,0,5)\) is the exponent tuple of \(x_2^3 x_4^5\) then this class only stores \((2,3,4,5)\) instead of the full tuple. This sparse information may be obtained by provided methods.

The index/value data is all stored in the _data C int array member variable. For the example above, the C array would contain 2,3,4,5. The indices are interlaced with the values.

This data structure is very nice to work with for some functions implemented in this class, but tricky for others. One reason that I really like the format is that it requires a single memory allocation for all of the values. A hash table would require more allocations and presumably be slower. I didn’t benchmark this question (although, there is no question that this is much faster than the prior use of python dicts).

\texttt{combine_to_positives} (other)
Given a pair of ETuples (self, other), returns a triple of ETuples (a, b, c) so that self = a + b, other = a + c and b and c have all positive entries.

EXAMPLES:
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([-2,1,-5, 3, 1,0])
sage: f = ETuple([1,-3,-3,4,0,2])
sage: e.combine_to_positives(f)
((-2, -3, -5, 3, 0, 0), (0, 4, 0, 0, 1, 0), (3, 0, 2, 1, 0, 2))

common_nonzero_positions (other, sort=False)
Returns an optionally sorted list of non zero positions either in self or other, i.e. the only positions that need to be considered for any vector operation.

EXAMPLES:

sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,0,1])
sage: e.common_nonzero_positions(f)
{0, 2}
sage: e.common_nonzero_positions(f, sort=True)
[0, 2]
eadd (other)
Vector addition of self with other.

EXAMPLES:

sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,1,1])
sage: e.eadd(f)
(1, 1, 3)

Verify that trac ticket #6428 has been addressed:

sage: R.<y, z> = Frac(QQ['x'])[]
sage: type(y)
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
sage: y^(2^32)
Traceback (most recent call last):
...
OverflowError: exponent overflow (2147483648)
eadd_p (other, pos)
Add other to self at position pos.

EXAMPLES:

sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: e.eadd_p(5, 1)
(1, 5, 2)
sage: e = ETuple([0]*7)
sage: e.eadd_p(5, 4)
(0, 0, 0, 0, 5, 0, 0)
sage: ETuple([0,1]).eadd_p(1, 0) == ETuple([1,1])
True
emax (other)
Vector of maximum of components of self and other.
EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,1,1])
sage: e.emax(f)
(1, 1, 2)
sage: e = ETuple([1,2,3,4])
sage: f = ETuple([4,0,2,1])
sage: f.emax(e)
(4, 2, 3, 4)
sage: e = ETuple([1,-2,-2,4])
sage: f = ETuple([4,0,0,0])
sage: f.emax(e)
(4, 0, 0, 4)
sage: f.emax(e).nonzero_positions()
[0, 3]
```

\[ \text{emin (other)} \]
Vector of minimum of components of self and other.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,1,1])
sage: e.emin(f)
(0, 0, 1)
sage: e = ETuple([1,0,-1])
sage: f = ETuple([0,-2,1])
sage: e.emin(f)
(0, -2, -1)
```

\[ \text{emul (factor)} \]
Scalar Vector multiplication of self.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: e.emul(2)
(2, 0, 4)
```

\[ \text{esub (other)} \]
Vector subtraction of self with other.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,1,1])
sage: e.esub(f)
(1, -1, 1)
```

\[ \text{is_constant ()} \]
Return if all exponents are zero in the tuple.

EXAMPLES:
nonzero_positions (**sort**=*False*)

Return the positions of non-zero exponents in the tuple.

**INPUT:**

- **sort** — (default: *False*) if True a sorted list is returned; if *False* an unsorted list is returned

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: e.nonzero_positions() # sort=False
[0, 2]
```

nonzero_values (**sort**=*True*)

Return the non-zero values of the tuple.

**INPUT:**

- **sort** — (default: *True*) if True the values are sorted by their indices; otherwise the values are returned unsorted

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([2,0,1])
sage: e.nonzero_values() # sort=True
[2, 1]
sage: f = ETuple([0,-1,1])
sage: f.nonzero_values(sort=True) # sort=True
[-1, 1]
```

reversed()

Return the reversed ETuple of self.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,2,3])
sage: e.reversed() # reversed()
(3, 2, 1)
```

sparse_iter()

Iterator over the elements of self where the elements are returned as (**i**, **e**) where **i** is the position of **e** in the tuple.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2,0,3])
sage: list(e.sparse_iter())
[(0, 1), (2, 2), (4, 3)]
```
class sage.rings.polynomial.polydict.ETupleIter
    Bases: object

    next()
    x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.polydict.PolyDict
    Bases: object

    INPUT:

    - pdict -- dict or list, which represents a multi-variable polynomial with the distribute representation (a
copy is not made)
    - zero -- (optional) zero in the base ring
    - force_int_exponents -- bool (optional) arithmetic with int exponents is much faster than some of
the alternatives, so this is True by default.
    - force_etuples -- bool (optional) enforce that the exponent tuples are instances of ETuple class

    EXAMPLES:

    sage: from sage.rings.polynomial.polydict import PolyDict
    sage: PolyDict({(2,3):2, (1,2):3, (2,1):4})
    PolyDict with representation {(1, 2): 3, (2, 1): 4, (2, 3): 2}
    # I've removed fractional exponent support in ETuple when moving to a sparse C
    → integer array
    #PolyDict with representation {(2, 1): 4, (1, 2, 1): 3, (2/3, 3, 5): 2}

    sage: PolyDict({(2,3):0, (1,2):3, (2,1):4}, remove_zero=True)
    PolyDict with representation {(1, 2): 3, (2, 1): 4}

    sage: PolyDict({(0,0):RIF(-1,1)}, remove_zero=True)
    PolyDict with representation {(0, 0): 0.?}

coefficient (mon)
    Return a polydict that defines a polynomial in 1 less number of variables that gives the coefficient of mon
in this polynomial.

    The coefficient is defined as follows. If f is this polynomial, then the coefficient is the sum T/mon where
the sum is over terms T in f that are exactly divisible by mon.

coefficients ()
    Return the coefficients of self.

    EXAMPLES:

    sage: from sage.rings.polynomial.polydict import PolyDict
    sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
    sage: f.coefficients()
    [3, 2, 4]

degree (x=None)
dict ()
    Return a copy of the dict that defines self. It is safe to change this. For a reference, use dictref.

    EXAMPLES:
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict(((2,3):2, (1,2):3, (2,1):4))

sage: f.dict()
{(1, 2): 3, (2, 1): 4, (2, 3): 2}

\textbf{exponents()}\textbf{()}

Return the exponents of self.

\textbf{EXAMPLES:}

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict(((2,3):2, (1,2):3, (2,1):4))
sage: sorted(f.exponents())
[(1, 2), (2, 1), (2, 3)]
```

\textbf{homogenize\textbf{(var)}}

\textbf{is_homogeneous\textbf{()}}

\textbf{latex} (\textbf{vars, atomic\textunderscore\textbf{exponents}}=\textbf{True}, atomic\textunderscore\textbf{coefficients}=\textbf{True}, sortkey=\textbf{None})

Return a nice polynomial latex representation of this PolyDict, where the vars are substituted in.

\textbf{INPUT:}

- \textbf{vars} – list
- \textbf{atomic\textunderscore\textbf{exponents}} – bool (default: True)
- \textbf{atomic\textunderscore\textbf{coefficients}} – bool (default: True)

\textbf{EXAMPLES:}

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict(((2,3):2, (1,2):3, (2,1):4))
sage: f.latex(['a', 'WW'], atomic_exponents=False)
'4 a^{2}bc + 3 ab^{2}c + 2 a^{2/3}b^{3}c^{5}'
```

\textbf{lcmt} (\textbf{greater\textunderscore\textbf{etuple}})

Provides functionality of \textbf{lc}, \textbf{lm}, and \textbf{lt} by calling the tuple compare function on the provided term order \textbf{T}.

\textbf{INPUT:}

- \textbf{greater\textunderscore\textbf{etuple}} – a term order

\textbf{list()}\textbf{()}

Return a list that defines \textbf{self}. It is safe to change this.

\textbf{EXAMPLES:}
```python
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: sorted(f.list())
[[2, [2, 3]], [3, [1, 2]], [4, [2, 1]]]
```

**max_exp()**

Returns an ETuple containing the maximum exponents appearing. If there are no terms at all in the PolyDict, it returns None.

The nvars parameter is necessary because a PolyDict doesn’t know it from the data it has (and an empty PolyDict offers no clues).

**EXAMPLES:**

```python
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.max_exp()
(2, 3)
```

```python
sage: PolyDict({}).max_exp() # returns None
```

**min_exp()**

Returns an ETuple containing the minimum exponents appearing. If there are no terms at all in the PolyDict, it returns None.

The nvars parameter is necessary because a PolyDict doesn’t know it from the data it has (and an empty PolyDict offers no clues).

**EXAMPLES:**

```python
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.min_exp()
(1, 1)
```

```python
sage: PolyDict({}).min_exp() # returns None
```

**monomial_coefficient**(mon)

**INPUT:**

- a PolyDict with a single key

**EXAMPLES:**

```python
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.monomial_coefficient(PolyDict({(2,1):1}).dict())
4
```

**poly_repr**(vars, atomic_exponents=True, atomic_coefficients=True, sortkey=None)

Return a nice polynomial string representation of this PolyDict, where the vars are substituted in.

**INPUT:**

- vars – list
- atomic_exponents – bool (default: True)
- atomic_coefficients – bool (default: True)

**EXAMPLES:**
When atomic_exponents is False, the exponents are surrounded in parenthesis, since ^ has such high precedence.

```
I've removed fractional exponent support in ETuple when moving to a sparse →C integer array
#sage: f.poly_repr(['a', 'b', 'c'], atomic_exponents=False)
#'4*a^(2)*b*c + 3*a*b^(2)*c + 2*a^(2/3)*b^(3)*c^(5)'
```

We check to make sure that when we are in characteristic two, we don’t put negative signs on the generators.

```
sage: Integers(2) ['x, y'].gens()
(x, y)
```

We make sure that intervals are correctly represented.

```
sage: f = PolyDict({(2,3):RIF(1/2,3/2), (1,2):RIF(-1,1)})
sage: f.poly_repr(['x', 'y'])
'1.?*x^2*y^3 + 0.?*x*y^2'
```

**polynomial_coefficient (degrees)**

Return a polydict that defines the coefficient in the current polynomial viewed as a tower of polynomial extensions.

**INPUT:**

- degrees – a list of degree restrictions; list elements are None if the variable in that position should be unrestricted

**EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.polynomial_coefficient([2,None])
PolyDict with representation {(0, 1): 4, (0, 3): 2}
sage: f = PolyDict({(0,3):2, (0,2):3, (2,1):4})
sage: f.polynomial_coefficient([0,None])
PolyDict with representation {(0, 2): 3, (0, 3): 2}
```

**rich_compare (other, op, key)**

**scalar_lmult (s)**

Left Scalar Multiplication

**EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: x, y = FreeMonoid(2, 'x, y').gens() # a strange object to live in a →polydict, but non-commutative!
sage: f = PolyDict({(2,3):x})
sage: f.scalar_lmult(y)
```

(continues on next page)
PolyDict with representation \((2, 3): y\times x\)
\begin{verbatim}
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.scalar_lmult(-2)
PolyDict with representation \((1, 2): -6, (2, 1): -8, (2, 3): -4\)
\end{verbatim}
\begin{verbatim}
sage: f.scalar_lmult(RIF(-1,1))
PolyDict with representation \((1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1\)
\end{verbatim}

**scalar_rmult** 
Right Scalar Multiplication

**EXAMPLES:**
\begin{verbatim}
sage: from sage.rings.polynomial.polydict import PolyDict
definitions
sage: x, y = FreeMonoid(2, 'x, y').gens()  # a strange object to live in a
polydict, but non-commutative!
sage: f = PolyDict({(2,3):x})
sage: f.scalar_rmult(y)
PolyDict with representation \((2, 3): x\times y\)
\end{verbatim}
\begin{verbatim}
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.scalar_rmult(-2)
PolyDict with representation \((1, 2): -6, (2, 1): -8, (2, 3): -4\)
\end{verbatim}
\begin{verbatim}
sage: f.scalar_rmult(RIF(-1,1))
PolyDict with representation \((1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1\)
\end{verbatim}

**total_degree**

**valuation** \((x=None)\)

sage.rings.polynomial.polydict.make_ETuple(data, length)
sage.rings.polynomial.polydict.make_PolyDict(data)

### 3.1.11 Class to flatten polynomial rings over polynomial ring

For example \(\mathbb{Q}['a', 'b'], ['x', 'y']\) flattens to \(\mathbb{Q}['a', 'b', 'x', 'y']\).

**EXAMPLES:**
\begin{verbatim}
sage: R = QQ['x'] ['y'] ['s', 't']['X']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
definitions
sage: phi = FlatteningMorphism(R); phi
Flattening morphism:
  From: Univariate Polynomial Ring in X over Multivariate Polynomial Ring in s, t over Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field
  To: Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
sage: phi('x*y*s + t*X').parent()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
\end{verbatim}

**Authors:**

Vincent Delecroix, Ben Hutz (July 2016): initial implementation

**class** **sage.rings.polynomial.flatten.FlatteningMorphism** \((domain)\)

**Bases:** **sage.categories.morphism.Morphism**

**EXAMPLES:**
sage: R = QQ['a','b']['x','y','z']['t1','t2']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: f = FlatteningMorphism(R)
sage: f.codomain()
Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field
sage: p = R('(a+b)*x + (a^2-b)*t2*(z+y)')
sage: f(p)
((a^2 - b)*y + (a^2 - b)*z)*t2 + (a + b)*x
sage: f(p).parent()
Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field

Also works when univariate polynomial ring are involved:

sage: R = QQ['x']['y']['s','t']['X']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: f = FlatteningMorphism(R)
sage: f.codomain()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
sage: p = R('((x^2 + 1) + (x+2)*y + x*y^3)*(s+t) + x*y*X')
sage: f(p)
x*y^3*s + x*y^3*t + x^2*s + x*y*s + x^2*t + x*y*t + x*y*X + 2*y*s + 2*y*t + s + t
sage: f(p).parent()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field

section()
Inverse of this flattening morphism.

EXAMPLES:

sage: R = QQ['a','b','c']['x','y','z']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: h = FlatteningMorphism(R)
sage: h.section()
Unflattening morphism:
From: Multivariate Polynomial Ring in a, b, c, x, y, z over Rational Field
To:  Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial Ring in a, b, c over Rational Field

sage: R = ZZ['a']['b']['c']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: FlatteningMorphism(R).section()
Unflattening morphism:
From: Multivariate Polynomial Ring in a, b, c over Integer Ring
To:  Univariate Polynomial Ring in c over Univariate Polynomial Ring in b over Univariate Polynomial Ring in a over Integer Ring

class sage.rings.polynomial.flatten.SpecializationMorphism(domain, D)

Bases: sage.categories.morphism.Morphism

Morphisms to specialize parameters in (stacked) polynomial rings

EXAMPLES:
```
sage: R.<c> = PolynomialRing(QQ)
sage: S.<x,y,z> = PolynomialRing(R)
sage: D = dict({c:1})
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
go: SpecializationMorphism(S, D)
sage: g = f(x^2 + c*y^2 - z^2); g
x^2 + y^2 - z^2
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
```
From: Multivariate Polynomial Ring in a, b, x, y over Rational Field
To:  Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in...

3.1.12 Monomials

sage.rings.monomials.monomials(v, n)

Given two lists v and n, of exactly the same length, return all monomials in the elements of v, where variable i (i.e., v[i]) in the monomial appears to degree strictly less than n[i].

INPUT:
• v – list of ring elements
• n – list of integers

EXAMPLES:

sage: monomials([x], [3])
[1, x, x^2]
sage: R.<x,y,z> = QQ[]
sage: monomials([x,y], [5,5])
[1, y, y^2, y^3, y^4, x, x*y, x*y^2, x*y^3, x^2, x^2*y, x^2*y^2, x^2*y^3, x^2*y^4, x^3, x^3*y, x^3*y^2, x^3*y^3, x^3*y^4, x^4, x^4*y, x^4*y^2, x^4*y^3, x^4*y^4]
sage: monomials([x,y,z], [2,3,2])
[1, z, y, y*z, y^2, y^2*z, x, x*z, x*y, x*y*z, x*y^2, x*y^2*z]

3.2 Classical Invariant Theory

This module lists classical invariants and covariants of homogeneous polynomials (also called algebraic forms) under the action of the special linear group. That is, we are dealing with polynomials of degree d in n variables. The special linear group $SL(n, C)$ acts on the variables $(x_1, \ldots, x_n)$ linearly,

$$(x_1, \ldots, x_n)^t \rightarrow A(x_1, \ldots, x_n)^t, \quad A \in SL(n, C)$$

The linear action on the variables transforms a polynomial $p$ generally into a different polynomial $gp$. We can think of it as an action on the space of coefficients in $p$. An invariant is a polynomial in the coefficients that is invariant under this action. A covariant is a polynomial in the coefficients and the variables $(x_1, \ldots, x_n)$ that is invariant under the combined action.

For example, the binary quadratic $p(x, y) = ax^2 + bxy + cy^2$ has as its invariant the discriminant $disc(p) = b^2 - 4ac$. This means that for any $SL(2, C)$ coordinate change

$$
\begin{pmatrix}
  x' \\
  y'
\end{pmatrix} =
\begin{pmatrix}
  \alpha & \beta \\
  \gamma & \delta
\end{pmatrix}
\begin{pmatrix}
  x \\
  y
\end{pmatrix}
\quad \alpha \delta - \beta \gamma = 1
$$

the discriminant is invariant, $disc\left(p(x', y')\right) = disc\left(p(x, y)\right)$.

To use this module, you should use the factory object $invariant\_theory$. For example, take the quartic:

sage: R.<x,y> = QQ[]
sage: q = x^4 + y^4
sage: quartic = invariant_theory.binary_quartic(q); quartic
Binary quartic with coefficients (1, 0, 0, 0, 1)
One invariant of a quartic is known as the Eisenstein D-invariant. Since it is an invariant, it is a polynomial in the coefficients (which are integers in this example):

```sage
sage: quartic.EisensteinD()
1
```

One example of a covariant of a quartic is the so-called g-covariant (actually, the Hessian). As with all covariants, it is a polynomial in $x, y$ and the coefficients:

```sage
sage: quartic.g_covariant()
-x^2*y^2
```

As usual, use tab completion and the online help to discover the implemented invariants and covariants.

In general, the variables of the defining polynomial cannot be guessed. For example, the zero polynomial can be thought of as a homogeneous polynomial of any degree. Also, since we also want to allow polynomial coefficients we cannot just take all variables of the polynomial ring as the variables of the form. This is why you will have to specify the variables explicitly if there is any potential ambiguity. For example:

```sage
sage: invariant_theory.binary_quartic(R.zero(), [x,y])
Binary quartic with coefficients (0, 0, 0, 0, 0)
sage: invariant_theory.binary_quartic(x^4, [x,y])
Binary quartic with coefficients (0, 0, 0, 1)
sage: R.<x,t> = QQ[]
sage: invariant_theory.binary_quartic(x^4 + y^4 + t*x^2*y^2, [x,y])
Binary quartic with coefficients (1, 0, t, 0, 1)
```

Finally, it is often convenient to use inhomogeneous polynomials where it is understood that one wants to homogenize them. This is also supported, just define the form with an inhomogeneous polynomial and specify one less variable:

```sage
sage: R.<x,t> = QQ[]
sage: invariant_theory.binary_quartic(x^4 + 1 + t*x^2, [x])
Binary quartic with coefficients (1, 0, t, 0, 1)
```

REFERENCES:

```python
class sage.rings.invariant_theory.AlgebraicForm(n, d, polynomial, *args, **kwds)
Bases: sage.rings.invariant_theory.FormsBase

The base class of algebraic forms (i.e. homogeneous polynomials).

You should only instantiate the derived classes of this base class.

Derived classes must implement coeffs() and scaled_coeffs()
```

INPUT:

- $n$ – The number of variables.
- $d$ – The degree of the polynomial.
- `polynomial` – The polynomial.
- `*args` – The variables, as a single list/tuple, multiple arguments, or `None` to use all variables of the polynomial.

Derived classes must implement the same arguments for the constructor.

EXAMPLES:
sage: from sage.rings.invariant_theory import AlgebraicForm
sage: R.<x,y> = QQ[]

sage: p = x^2 + y^2

sage: AlgebraicForm(2, 2, p).variables()  # (x, y)

sage: AlgebraicForm(2, 2, p, None).variables()  # (x, y, None)

sage: AlgebraicForm(3, 2, p).variables()  # (x, y, None)

sage: AlgebraicForm(3, 2, p, None).variables()  # (x, y, None)

sage: from sage.rings.invariant_theory import AlgebraicForm

sage: R.<x,y,s,t> = QQ[]

sage: p = s*x^2 + t*y^2

sage: AlgebraicForm(2, 2, p, [x,y]).variables()  # (x, y)

sage: AlgebraicForm(2, 2, p, x,y).variables()  # (x, y)

sage: AlgebraicForm(3, 2, p, [x,y,None]).variables()  # (x, y, None)

sage: AlgebraicForm(3, 2, p, x,y,None).variables()  # (x, y, None)

sage: AlgebraicForm(2, 1, p, [x,y]).variables()

Traceback (most recent call last):
  ...

ValueError: Polynomial is of the wrong degree.

sage: AlgebraicForm(2, 2, x^2+y, [x,y]).variables()  # Traceback (most recent call last):
  ...

ValueError: Polynomial is not homogeneous.

coefficients()

Alias for coeffs().

See the documentation for coeffs() for details.

EXAMPLES:

sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]

sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z

sage: q = invariant_theory.quadratic_form(p, x,y,z)

sage: q.coefficients()  # (a, b, c, d, e, f)

sage: q.coeffs()  # (a, b, c, d, e, f)

form()

Return the defining polynomial.

OUTPUT:

The polynomial used to define the algebraic form.

EXAMPLES:
Sage: \texttt{R.<x,y> = QQ[]}
Sage: quartic = invariant\_theory.binary\_quartic(x^4+y^4)
Sage: quartic.form()
x^4 + y^4
Sage: quartic.polynomial()
x^4 + y^4

\textbf{homogenized} (\textit{var}=\texttt{\textquoteleft}h\textquoteright) 

Return form as defined by a homogeneous polynomial.

\textbf{INPUT:} 

- \textit{var} – either a variable name, variable index or a variable (default: \textquoteleft}h\textquoteright). 

\textbf{OUTPUT:} 

The same algebraic form, but defined by a homogeneous polynomial.

\textbf{EXAMPLES:} 

Sage: \texttt{T.<t> = QQ[]}
Sage: quadratic = invariant\_theory.binary\_quadratic(t^2 + 2*t + 3)
Sage: quadratic
Binary quadratic with coefficients (1, 3, 2)
Sage: quadratic.homogenized()
Binary quadratic with coefficients (1, 3, 2)
Sage: quadratic == quadratic.homogenized()
True
Sage: quadratic.form()
t^2 + 2*t + 3
Sage: quadratic.homogenized().form()
t^2 + 2*t*h + 3*h^2
Sage: \texttt{R.<x,y,z> = QQ[]}
Sage: quadratic = invariant\_theory.ternary\_quadratic(x^2 + 1, [x,y])
Sage: quadratic.homogenized().form()
x^2 + h^2

\textbf{polynomial} ()

Return the defining polynomial.

\textbf{OUTPUT:} 

The polynomial used to define the algebraic form.

\textbf{EXAMPLES:} 

Sage: \texttt{R.<x,y> = QQ[]}
Sage: quartic = invariant\_theory.binary\_quartic(x^4+y^4)
Sage: quartic.form()
x^4 + y^4
Sage: quartic.polynomial()
x^4 + y^4

\textbf{transformed} (\textit{g})

Return the image under a linear transformation of the variables.

\textbf{INPUT:} 

- \textit{g} – a \textit{GL(n, C)} matrix or a dictionary with the 
  variables as keys. A matrix is used to define the 
  linear transformation of homogeneous variables, a dictionary acts by substitution of the variables.

\section{3.2. Classical Invariant Theory}
A new instance of a subclass of \texttt{AlgebraicForm} obtained by replacing the variables of the homogeneous polynomial by their image under \( g \).

**EXAMPLES:**

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3 + 2*y^3 + 3*z^3 + 4*x*y*z)
sage: cubic.transformed({x:y, y:z, z:x}).form()
3*x^3 + y^3 + 4*x*y*z + 2*z^3
sage: cyc = matrix([[0,1,0],[0,0,1],[1,0,0]])
sage: cubic.transformed(cyc) == cubic.transformed({x:y, y:z, z:x})
True
sage: g = matrix(QQ,
[[1, 0, 0],
[-1, 1, -3],
[-5, -5, 16]]
)
sage: cubic.transformed(g)
Ternary cubic with coefficients (-356, -373, 12234, -1119, 3578, -1151, 3582, -11766, -11466, 7360)
sage: cubic.transformed(g).transformed(g.inverse()) == cubic
True
```

**class** \texttt{sage.rings.invariant_theory.BinaryQuartic} \((n, d, \text{polynomial}, *\text{args})\)

**Bases:** \texttt{sage.rings.invariant_theory.AlgebraicForm}

Invariant theory of a binary quartic.

You should use the \texttt{invariant_theory} factory object to construct instances of this class. See \texttt{binary_quartic()} for details.

**EisensteinD()**

One of the Eisenstein invariants of a binary quartic.

**OUTPUT:**

The Eisenstein D-invariant of the quartic.

\[
\begin{align*}
 f(x) &= a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \\
 \Rightarrow D(f) &= a_0 a_4 + 3a_2^2 - 4a_1 a_3
\end{align*}
\]

**EXAMPLES:**

```python
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: f = a0*x1^4+4*a1*x0*x1^3+6*a2*x0^2*x1^2+4*a3*x0^3*x1+a4*x0^4
sage: inv = invariant_theory.binary_quartic(f, x0, x1)
sage: inv.EisensteinD()
3*a2^2 - 4*a1*a3 + a0*a4
```

**EisensteinE()**

One of the Eisenstein invariants of a binary quartic.

**OUTPUT:**

The Eisenstein E-invariant of the quartic.

\[
\begin{align*}
 f(x) &= a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \\
 \Rightarrow E(f) &= a_0 a_4^2 + a_1^2 a_4 - a_0 a_2 a_4 - 2a_1 a_2 a_3 + a_2^3
\end{align*}
\]

**EXAMPLES:**

```python
```
```python
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: f = a0*x1^4+4*a1*x0*x1^3+6*a2*x0^2*x1^2+4*a3*x0^3*x1+a4*x0^4
sage: inv = invariant_theory.binary_quartic(f, x0, x1)
sage: inv.EisensteinE()
a2^3 - 2*a1*a2*a3 + a0*a3^2 + a1^2*a4 - a0*a2*a4
```

```python
coeffs()

The coefficients of a binary quartic.

Given

\[f(x) = a_0 x_1^4 + a_1 x_0 x_1^3 + a_2 x_0^2 x_1^2 + a_3 x_0^3 x_1 + a_4 x_0^4 \]

this function returns \(a = (a_0, a_1, a_2, a_3, a_4) \)

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]
sage: p = a0*x^4+4*a1*x^3*y+6*a2*x^2*y^2+4*a3*x*y^3+a4*y^4
sage: inv = invariant_theory.binary_quartic(p, x, y)
sage: g = inv.g_covariant(); g
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3*y - 2*a0*a3*x^3*y + 3*a2^2*x^2*y^2
- 2*a1*a3*x^2*y^2 - a0*a4*x^2*y^2 + 2*a2*a3*x*y^3
- 2*a1*a4*x*y^3 + a3^2*y^4 - a2*a4*y^4
sage: inv_inhomogeneous = invariant_theory.binary_quartic(p.subs(y=1), x)
sage: inv_inhomogeneous.g_covariant()
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3 - 2*a0*a3*x^3 + 3*a2^2*x^2
- 2*a1*a3*x^2 - a0*a4*x^2 + 2*a2*a3*x - 2*a1*a4*x + a3^2 - a2*a4
sage: g == 1/144 * (p.derivative(x,y)^2 - p.derivative(x,x)*p.derivative(y,y))
True
```

```python
g_covariant()

The g-covariant of a binary quartic.

The g-covariant of the quartic.

\[ f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \]

\[ \Rightarrow D(f) = \frac{1}{144} \left( \frac{\partial^2 f}{\partial x \partial y} \right) \]

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]
sage: p = a0*x^4+4*a1*x^3*y+6*a2*x^2*y^2+4*a3*x*y^3+a4*y^4
sage: inv = invariant_theory.binary_quartic(p, x, y)
sage: g = inv.g_covariant(); g
```

```python
h_covariant()

The h-covariant of a binary quartic.

The h-covariant of the quartic.

\[f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \]

\[\Rightarrow D(f) = \frac{1}{144} \left(\frac{\partial^2 f}{\partial x \partial y} \right) \]

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]
sage: p = a0*x^4+4*a1*x^3*y+6*a2*x^2*y^2+4*a3*x*y^3+a4*y^4
sage: inv = invariant_theory.binary_quartic(p, x, y)
sage: g = inv.g_covariant(); g
```
```
The h-covariant of the quartic.

\[ f(x) = a_0 x_1^4 + 4 a_1 x_0 x_1^3 + 6 a_2 x_0^2 x_1^2 + 4 a_3 x_0^3 x_1 + a_4 x_0^4 \]

\[ \Rightarrow D(f) = \frac{1}{144} \left( \frac{\partial^2 f}{\partial x \partial y} \right) \]

**EXAMPLES:**

```python
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]
sage: p = a0*x^4+4*a1*x^3*y+6*a2*x^2*y^2+4*a3*x*y^3+a4*y^4
sage: inv = invariant_theory.binary_quartic(p, x, y)
sage: h = inv.h_covariant(); h
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - 6*a1^2*a2*x^5*y + 9*a0*a2^2*x^5*y
- 2*a0*a1*a3*x^5*y - a0^2*a4*x^5*y - 10*a1^2*a3*x^4*y^2 + 15*a0*a2*a3*x^4*y^2
- 5*a0*a1*a4*x^4*y^2 + 10*a0*a3^2*x^3*y^3 - 10*a1^2*a4*x^3*y^3 + 10*a1*a3^2*x^2*y^4
- 15*a1*a2*a4*x^2*y^4 + 5*a0*a3*a4*x*y^5 + 6*a2*a3^2*x*y^5 + 2*a3^3*y^6 - 3*a2*a3*a4*y^6 + a1*a4^2*y^6

sage: inv_inhomogeneous = invariant_theory.binary_quartic(p.subs(y=1), x)
sage: inv_inhomogeneous.h_covariant()
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - 6*a1^2*a2*x^5 + 9*a0*a2^2*x^5
- 2*a0*a1*a3*x^5 - a0^2*a4*x^5 - 10*a1^2*a3*x^4 + 10*a1*a3^2*x^2
- 15*a1*a2*a4*x + 5*a0*a3*a4*x + 2*a3^3 - 3*a2*a3*a4 + a1*a4^2

sage: g = inv.g_covariant()
sage: h == 1/8 * (p.derivative(x)*g.derivative(y)-p.derivative(y)*g.derivative(x))
True
```

**monomials()**

List the basis monomials in the form.

**OUTPUT:**

A tuple of monomials. They are in the same order as `coeffs()`.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic.monomials()
(y^4, x*y^3, x^2*y^2, x^3*y, x^4)
```

**scaled_coeffs()**

The coefficients of a binary quartic.

Given

\[ f(x) = a_0 x_1^4 + 4 a_1 x_0 x_1^3 + 6 a_2 x_0^2 x_1^2 + 4 a_3 x_0^3 x_1 + a_4 x_0^4 \]

this function returns \( \{a_0, a_1, a_2, a_3, a_4\} \).

**EXAMPLES:**
```python
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: quartic = a0*x1^4 + 4*a1*x1^3*x0 + 6*a2*x1^2*x0^2 + 4*a3*x1*x0^3 + a4*x0^4
sage: inv = invariant_theory.binary_quartic(quartic, x0, x1)
sage: inv.scaled_coeffs()
(a0, a1, a2, a3, a4)
sage: R.<a0, a1, a2, a3, a4, x> = QQ[]
sage: quartic = a0 + 4*a1*x + 6*a2*x^2 + 4*a3*x^3 + a4*x^4
sage: inv = invariant_theory.binary_quartic(quartic, x)
sage: inv.scaled_coeffs()
(a0, a1, a2, a3, a4)
```

```python
class sage.rings.invariant_theory.FormsBase(n, homogeneous, ring, variables)
Bases: sage.structure.sage_object.SageObject

The common base class of AlgebraicForm and SeveralAlgebraicForms.

This is an abstract base class to provide common methods. It does not make much sense to instantiate it.

is_homogeneous()

Return whether the forms were defined by homogeneous polynomials.

OUTPUT:

Boolean. Whether the user originally defined the form via homogeneous variables.

EXAMPLES:

```python
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.is_homogeneous()
True
sage: quartic.form()
x^2*y^2*t + x^4 + y^4
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
sage: quartic.is_homogeneous()
False
sage: quartic.form()
x^4 + x^2*t + 1
```

ring()

Return the polynomial ring.

OUTPUT:

A polynomial ring. This is where the defining polynomial(s) live. Note that the polynomials may be homogeneous or inhomogeneous, depending on how the user constructed the object.

EXAMPLES:

```python
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.ring()
Multivariate Polynomial Ring in x, y, t over Rational Field
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
sage: quartic.ring()
```

(continues on next page)
```python
sage: quartic.ring()
Multivariate Polynomial Ring in x, y, t over Rational Field
```

variables()
Return the variables of the form.

OUTPUT:
A tuple of variables. If inhomogeneous notation is used for the defining polynomial then the last entry will be None.

EXAMPLES:
```python
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.variables()
(x, y)
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
sage: quartic.variables()
(x, None)
```

class sage.rings.invariant_theory.InvariantTheoryFactory
Bases: object
Factory object for invariants of multilinear forms.

EXAMPLES:
```python
sage: R.<x,y,z> = QQ[]
sage: invariant_theory.ternary_cubic(x^3+y^3+z^3)
Ternary cubic with coefficients (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
```

binary_quadratic(quadratic, *args)
Invariant theory of a quadratic in two variables.

INPUT:
- quadratic – a quadratic form.
- x, y – the homogeneous variables. If y is None, the quadratic is assumed to be inhomogeneous.

REFERENCES:
- Wikipedia article Invariant_of_a_binary_form

EXAMPLES:
```python
sage: R.<x,y> = QQ[]
sage: invariant_theory.binary_quadratic(x^2+y^2)
Binary quadratic with coefficients (1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
sage: T.<t> = QQ[]
sage: invariant_theory.binary_quadratic(t^2 + 2*t + 1, [t])
Binary quadratic with coefficients (1, 1, 2)
```

binary_quartic(quartic, *args, **kwds)
Invariant theory of a quartic in two variables.
The algebra of invariants of a quartic form is generated by invariants i, j of degrees 2, 3. This ring is naturally isomorphic to the ring of modular forms of level 1, with the two generators corresponding to the Eisenstein series E_4 (see `EisensteinD()`) and E_6 (see `EisensteinE()`). The algebra of covariants is generated by these two invariants together with the form f of degree 1 and order 4, the Hessian g (see `g_covariant()`) of degree 2 and order 4, and a covariant h (see `h_covariant()`) of degree 3 and order 6. They are related by a syzygy

\[jf^3 - gf^2i + 4g^3 + h^2 = 0 \]

of degree 6 and order 12.

INPUT:

- `quartic` – a quartic.
- `x, y` – the homogeneous variables. If y is `None`, the quartic is assumed to be inhomogeneous.

REFERENCES:

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic
Binary quartic with coefficients (1, 0, 0, 0, 1)
sage: type(quartic)
<class 'sage.rings.invariant_theory.BinaryQuartic'>
```

```python
inhomogeneous_quadratic_form(polynomial, *args)
Invariants of an inhomogeneous quadratic form.

**INPUT:**

- `polynomial` – an inhomogeneous quadratic form.
- `*args` – the variables as multiple arguments, or as a single list/tuple.

**EXAMPLES:**

```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2+2*y^2+3*x*y+4*x+5*y+6
sage: inv3 = invariant_theory.inhomogeneous_quadratic_form(quadratic)
sage: type(inv3)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
sage: inv4 = invariant_theory.inhomogeneous_quadratic_form(x^2+y^2+z^2)
sage: type(inv4)
<class 'sage.rings.invariant_theory.QuadraticForm'>
```

```python
quadratic_form(polynomial, *args)
Invariants of a homogeneous quadratic form.

INPUT:

- `polynomial` – a homogeneous or inhomogeneous quadratic form.
- `*args` – the variables as multiple arguments, or as a single list/tuple. If the last argument is `None`, the cubic is assumed to be inhomogeneous.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2+2*y^2+3*x*y+4*x+5*y+6
sage: inv3 = invariant_theory.inhomogeneous_quadratic_form(quadratic)
sage: type(inv3)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
sage: inv4 = invariant_theory.inhomogeneous_quadratic_form(x^2+y^2+z^2)
sage: type(inv4)
<class 'sage.rings.invariant_theory.QuadraticForm'>
```
```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2+y^2+z^2
sage: inv = invariant_theory.quadratic_form(quadratic)
sage: type(inv)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
```

If some of the ring variables are to be treated as coefficients you need to specify the polynomial variables:

```python
sage: R.<x,y,z, a,b> = QQ[]
sage: quadratic = a*x^2+b*y^2+z^2+2*y*z
sage: invariant_theory.quadratic_form(quadratic, x,y,z)
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
sage: invariant_theory.quadratic_form(quadratic, [x,y,z])  # alternate syntax
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
```

Inhomogeneous quadratic forms (see also `inhomogeneous_quadratic_form()`) can be specified by passing None as the last variable:

```python
sage: inhom = quadratic.subs(z=1)
sage: invariant_theory.quadratic_form(inhom, x,y,None)
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
```

quaternary_biquadratic *(quadratic1, quadratic2, *args, **kwds)*

Invariants of two quadratics in four variables.

INPUT:

- `quadratic1, quadratic2` — two polynomials. Either homogeneous quadratic in 4 homogeneous variables, or inhomogeneous quadratic in 3 variables.
- `w, x, y, z` — the variables. If `z` is `None`, the quadratics are assumed to be inhomogeneous.

EXAMPLES:

```python
sage: R.<w,x,y,z> = QQ[]
sage: q1 = w^2+x^2+y^2+z^2
sage: q2 = w*x + y*z
sage: inv = invariant_theory.quaternary_biquadratic(q1, q2)
sage: type(inv)
<class 'sage.rings.invariant_theory.TwoQuaternaryQuadratics'>
```

Distance between two spheres *[Salmon]*

```python
sage: R.<x,y,z, a,b,c, r1,r2> = QQ[]
sage: S1 = -r1^2 + x^2 + y^2 + z^2
sage: S2 = -r2^2 + (x-a)^2 + (y-b)^2 + (z-c)^2
sage: inv = invariant_theory.quaternary_biquadratic(S1, S2, [x, y, z])
sage: inv.Delta_invariant()  # use Delta_invariant instead
-r1^2
sage: inv.Delta_prime_invariant()  # use Delta_prime_invariant
-r2^2
sage: inv.Theta_invariant()  # use Theta_invariant
a^2 + b^2 + c^2 - 3*r1^2 - r2^2
sage: inv.Theta_prime_invariant()  # use Theta_prime_invariant
a^2 + b^2 + c^2 - r1^2 - 3*r2^2
sage: inv.Phi_invariant()  # use Phi_invariant
2*a^2 + 2*b^2 + 2*c^2 - 3*r1^2 - 3*r2^2
sage: inv.J_covariant()  # use J_covariant
0
```
quaternary_quadratic\((\text{quadratic, } *\text{args}) \)
Invariant theory of a quadratic in four variables.

INPUT:

• \text{quadratic} – a quadratic form.
• \text{w, x, y, z} – the homogeneous variables. If \text{z} is \text{None}, the quadratic is assumed to be inhomogeneous.

REFERENCES:

EXAMPLES:

\begin{verbatim}
 sage: R.<w,x,y,z> = QQ[]
 sage: invariant_theory.quaternary_quadratic(w^2+x^2+y^2+z^2)
 Quaternary quadratic with coefficients (1, 1, 1, 0, 0, 0, 0, 0)
 sage: R.<x,y,z> = QQ[]
 sage: invariant_theory.quaternary_quadratic(1+x^2+y^2+z^2)
 Quaternary quadratic with coefficients (1, 1, 1, 0, 0, 0, 0, 0)
\end{verbatim}

ternary_biquadratic\((\text{quadratic1, quadratic2, } *\text{args}, **\text{kwds}) \)
Invariants of two quadratics in three variables.

INPUT:

• \text{quadratic1, quadratic2} – two polynomials. Either homogeneous quadratic in 3 homogeneous variables, or inhomogeneous quadratic in 2 variables.
• \text{x, y, z} – the variables. If \text{z} is \text{None}, the quadratics are assumed to be inhomogeneous.

EXAMPLES:

\begin{verbatim}
 sage: R.<x,y,z> = QQ[]
 sage: q1 = x^2+y^2+z^2
 sage: q2 = x*y + y*z + x*z
 sage: inv = invariant_theory.ternary_biquadratic(q1, q2)
 sage: type(inv)
 <class 'sage.rings.invariant_theory.TwoTernaryQuadratics'>
 sage: inv.Delta_invariant()
 -r1^2
 sage: inv.Delta_prime_invariant()
 -r2^2
 sage: inv.Theta_invariant()
 a^2 + b^2 - 2*r1^2 - 2*r2^2
 sage: inv.Theta_prime_invariant()
 a^2 + b^2 - r1^2 - 2*r2^2
 sage: inv.F_covariant()
 2*x^2*a^2 + y^2*a^2 - 2*x*x*a^2 + a^4 + 2*x*y*a*b - 2*y*y*a^2 + a^2*b^2 +
 2*y^2*b^2 - 2*x*x*x*b^2 + 2*a^2*x*b^2 - 2*y*b^3 + b^4 - 2*x^2*r1^2 - 2*y^2*r1^2 +
 2*x*x*a*r1^2 - 2*a^2*r1^2 + 2*x*b*r1^2 + r1^4 - 2*x^2*r2^2 - 2*y^2*r2^2 +
 2*x*x*a*r2^2 - 2*a^2*r2^2 + 2*y*b*r2^2 - 2*b^2*r2^2 - 2*r1^2*r2^2 +
 r2^4
 sage: inv.J_covariant()
 \end{verbatim}

ternary_cubic(cubic, *args, **kwds)

Invariants of a cubic in three variables.

The algebra of invariants of a ternary cubic under $SL_3(\mathbb{C})$ is a polynomial algebra generated by two invariants S (see $S_invariant()$) and T (see $T_invariant()$) of degrees 4 and 6, called Aronhold invariants.

The ring of covariants is given as follows. The identity covariant U of a ternary cubic has degree 1 and order 3. The Hessian H (see $Hessian()$) is a covariant of ternary cubics of degree 3 and order 3. There is a covariant Θ (see $Theta_covariant()$) of ternary cubics of degree 8 and order 6 that vanishes on points x lying on the Salmon conic of the polar of x with respect to the curve and its Hessian curve. The Brioschi covariant J (see $J_covariant()$) is the Jacobian of U, Θ, and H of degree 12, order 9. The algebra of covariants of a ternary cubic is generated over the ring of invariants by U, Θ, H, and J, with a relation

\[
J^2 = 4\Theta^3 + TU^2\Theta^2 + \Theta(-4S^3U^4 + 2STU^3H - 72S^2U^2H^2 - 18TUH^3 + 108SH^4) - 16S^4U^5H - 11S^2TU^4H^2 - 4T^2U^3H^3 + 54STU^2H^4 - 432S^2UH^5 - 27TH^6
\]

REFERENCES:

INPUT:

- cubic – a homogeneous cubic in 3 homogeneous variables, or an inhomogeneous cubic in 2 variables.
- x, y, z – the variables. If z is None, the cubic is assumed to be inhomogeneous.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: type(cubic)
<class 'sage.rings.invariant_theory.TernaryCubic'>
```

ternary_quadratic(quadratic, *args, **kwds)

Invariants of a quadratic in three variables.

REFERENCES:

EXAMPLES:

```python
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2)
sage: type(quadratic)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
```
sage: R.<x,y,z> = QQ[]
sage: invariant_theory.ternary_quadratic(x^2+y^2+z^2)
Ternary quadratic with coefficients (1, 1, 1, 0, 0, 0)
sage: T.<u, v> = QQ[]
sage: invariant_theory.ternary_quadratic(1+u^2+v^2)
Ternary quadratic with coefficients (1, 1, 1, 0, 0, 0)
sage: quadratic = x^2+y^2+z^2
sage: inv = invariant_theory.ternary_quadratic(quadratic)
sage: type(inv)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>

class sage.rings.invariant_theory.QuadraticForm(n, d, polynomial, *args)
Bases: sage.rings.invariant_theory.AlgebraicForm

Invariant theory of a multivariate quadratic form.

You should use the invariant_theory factory object to construct instances of this class. See quadratic_form() for details.

as_QuadraticForm()
Convert into a QuadraticForm.

OUTPUT:
Sage has a special quadratic forms subsystem. This method converts self into this QuadraticForm representation.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: p = x^2+y^2+z^2+2*x*y+3*x*z
sage: quadratic = invariant_theory.ternary_quadratic(p)
sage: matrix(quadratic)
[1 1 3/2]
[1 1 0]
[3/2 0 1]
sage: quadratic.as_QuadraticForm()
Quadratic form in 3 variables over Multivariate Polynomial Ring in x, y, z over Rational Field with coefficients:
[1 2 3]
[* 1 0]
[* * 1]
sage: _.polynomial('X,Y,Z')
X^2 + 2*X*Y + Y^2 + 3*X*Z + Z^2

coeffs()
The coefficients of a quadratic form.

Given
\[f(x) = \sum_{0 \leq i < n} a_i x_i^2 + \sum_{0 \leq j < k < n} a_{jk} x_j x_k \]

this function returns \(a = (a_0, \ldots, a_n, a_{00}, a_{01}, \ldots, a_{n-1,n}) \)

EXAMPLES:"
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: inv = invariant_theory.quadratic_form(p, x,y,z); inv
Ternary quadratic with coefficients (a, b, c, d, e, f)
sage: inv.coeffs()
(a, b, c, d, e, f)
sage: inv.scaled_coeffs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)

discriminant()
Return the discriminant of the quadratic form.
Up to an overall constant factor, this is just the determinant of the defining matrix, see matrix(). For a quadratic form in \(n\) variables, the overall constant is \(2^{n-1}\) if \(n\) is odd and \((-1)^{n/2}2^n\) if \(n\) is even.

EXAMPLES:

sage: R.<a,b,c, x,y> = QQ[]
sage: p = a*x^2+b*x*y+c*y^2
sage: quadratic = invariant_theory.quadratic_form(p, x,y)
sage: quadratic.discriminant()
b^2 - 4*a*c
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: quadratic = invariant_theory.quadratic_form(p, x,y,z)
sage: quadratic.discriminant()
4*a*b*c - c*d^2 - b*e^2 + d*e*f - a*f^2

dual()
Return the dual quadratic form.

OUTPUT:
A new quadratic form (with the same number of variables) defined by the adjoint matrix.

EXAMPLES:

sage: R.<a,b,c,x,y,z> = QQ[]
sage: cubic = x^2+y^2+z^2
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+c*z^2, [x,y, →z])
sage: quadratic.form()
a*x^2 + b*x*y^2 + c*x*z^2
sage: quadratic.dual().form()
b*c*x^2 + a*c*y^2 + a*b*z^2
sage: R.<x,y,z, t> = QQ[]
sage: cubic = x^2+y^2+z^2
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2 + t*x*y, [x, →y,z])
sage: quadratic.dual()
Ternary quadratic with coefficients (1, 1, -1/4*t^2 + 1, -t, 0, 0)
sage: R.<x,y, t> = QQ[]
sage: cubic = x^2+y^2+z^2
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+1 + t*x*y, [x,y])
sage: quadratic.dual()
Ternary quadratic with coefficients (1, 1, -1/4*t^2 + 1, -t, 0, 0)
matrix()
Return the quadratic form as a symmetric matrix

OUTPUT:
This method returns a symmetric matrix A such that the quadratic Q equals

$$Q(x, y, z, \ldots) = (x, y, \ldots)A(x, y, \ldots)^t$$

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2+x*y)
sage: matrix(quadratic)
[ 1 1/2 0]
[1/2 1 0]
[ 0 0 1]
sage: quadratic._matrix_() == matrix(quadratic)
True
```

monomials()
List the basis monomials in the form.

OUTPUT:
A tuple of monomials. They are in the same order as coeffs().

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: quadratic = invariant_theory.quadratic_form(x^2+y^2)
sage: quadratic.monomials()
(x^2, y^2, x*y)
sage: quadratic = invariant_theory.inhomogeneous_quadratic_form(x^2+y^2)
sage: quadratic.monomials()
(x^2, y^2, 1, x*y, x, y)
```

scaled_coeffs()
The scaled coefficients of a quadratic form.

Given

$$f(x) = \sum_{0 \leq i < n} a_i x_i^2 + \sum_{0 \leq j < k < n} 2a_{jk} x_j x_k$$

this function returns $a = (a_0, \ldots, a_n, a_{00}, a_{01}, \ldots, a_{n-1,n})$

EXAMPLES:

```python
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: inv = invariant_theory.quadratic_form(p, x,y,z); inv
Ternary quadratic with coefficients (a, b, c, d, e, f)
sage: inv.coefs()
(a, b, c, d, e, f)
sage: inv.scaled_coefs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)
```

class sage.rings.invariant_theory.SeveralAlgebraicForms(forms)
Bases: sage.rings.invariant_theory.FormsBase

3.2. Classical Invariant Theory
The base class of multiple algebraic forms (i.e. homogeneous polynomials).
You should only instantiate the derived classes of this base class.
See :class:`AlgebraicForm` for the base class of a single algebraic form.

INPUT:

- `forms` — a list/tuple/iterable of at least one :class:`AlgebraicForm` object, all with the same number of variables. Interpreted as multiple homogeneous polynomials in a common polynomial ring.

EXAMPLES:

```python
sage: from sage.rings.invariant_theory import AlgebraicForm, SeveralAlgebraicForms
sage: R.<x,y> = QQ[]
sage: p = AlgebraicForm(2, 2, x^2, (x,y))
sage: q = AlgebraicForm(2, 2, y^2, (x,y))
sage: pq = SeveralAlgebraicForms([p, q])
```

.. function:: get_form(i)

 Return the `i`-th form.

 EXAMPLES:

   ```python
   sage: R.<x,y> = QQ[]
sage: q1 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q2 = invariant_theory.quadratic_form(x*y)
sage: from sage.rings.invariant_theory import SeveralAlgebraicForms
sage: q12 = SeveralAlgebraicForms([q1, q2])
sage: q12.get_form(0) is q1
   True
sage: q12.get_form(1) is q2
   True
sage: q12[0] is q12.get_form(0)  # syntactic sugar
   True
sage: q12[1] is q12.get_form(1)  # syntactic sugar
   True
   ```

.. function:: homogenized(var='h')

 Return form as defined by a homogeneous polynomial.

 INPUT:

 - `var` — either a variable name, variable index or a variable (default: `h`).

 OUTPUT:

 The same algebraic form, but defined by a homogeneous polynomial.

 EXAMPLES:

   ```python
   sage: R.<x,y,z> = QQ[]
sage: q = invariant_theory.quaternary_biquadratic(x^2+1, y^2+1, [x,y,z])
sage: q
   Joint quaternary quadratic with coefficients (1, 0, 0, 1, 0, 0, 0, 0, 0, 0)
   and quaternary quadratic with coefficients (0, 1, 0, 1, 0, 0, 0, 0, 0, 0)
   sage: q.homogenized()
   Joint quaternary quadratic with coefficients (1, 0, 0, 1, 0, 0, 0, 0, 0, 0)
   and quaternary quadratic with coefficients (0, 1, 0, 1, 0, 0, 0, 0, 0, 0)
   sage: type(q) is type(q.homogenized())
   True
   ```
n_forms()
Return the number of forms.

EXAMPLES:

```sage
sage: R.<x,y> = QQ[]
sage: q1 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q2 = invariant_theory.quadratic_form(x+y)
sage: from sage.rings.invariant_theory import SeveralAlgebraicForms
sage: q12 = SeveralAlgebraicForms([q1, q2])
sage: q12.n_forms()
2
sage: len(q12) == q12.n_forms()  # syntactic sugar
True
```

class sage.rings.invariant_theory.TernaryCubic(n, d, polynomial, *args)
```

Invariant theory of a ternary cubic.

You should use the invariant_theory factory object to construct instances of this class. See ternary_cubic() for details.

Hessian()
Return the Hessian covariant.

OUTPUT:
The Hessian matrix multiplied with the conventional normalization factor 1/216.

EXAMPLES:

```sage
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.Hessian()
x*y*z
sage: R.<x,y> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
sage: cubic.Hessian()
x*y
```

J_covariant()
Return the J-covariant of the ternary cubic.

EXAMPLES:

```sage
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.J_covariant()
x^6*y^3 - x^3*y^6 - x^6*z^3 + y^6*z^3 + x^3*z^6 - y^3*z^6
sage: R.<x,y> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
sage: cubic.J_covariant()
x^6*y^3 - x^3*y^6 - x^6 + y^6 + x^3 - y^3
```

S_invariant()
Return the S-invariant.

EXAMPLES:
In this section, we explore various functions related to ternary cubic invariants in the SageMath system. The primary focus is on the computation and analysis of invariants such as the S-invariant and T-invariant. We also introduce the Theta covariant and the coeffs function, which are essential tools for studying cubic equations.

**T_invariant()**

Return the T-invariant.

**EXAMPLES:**

```sage
cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
cubic.T_invariant() 1
cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3+t*x*y*z, [x,y,z])
cubic.T_invariant() -t^6 - t^3 + 1
```

**Theta_covariant()**

Return the Θ covariant.

**EXAMPLES:**

```sage
cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
cubic.Theta_covariant() -x^3*y^3 - x^3*z^3 - y^3*z^3
cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
cubic.Theta_covariant() -x^3*y^3 - x^3 - y^3
```

**coeffs()**

Return the coefficients of a cubic.

Given

\[ p(x, y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00} \]

this function returns \( a = (a_{30}, a_{03}, a_{00}, a_{21}, a_{20}, a_{12}, a_{02}, a_{10}, a_{01}, a_{11}) \)

**EXAMPLES:**

```sage
cubic = invariant_theory.ternary_cubic(p, x,y,z) coeffs()
```

(continues on next page)
monomials()
List the basis monomials of the form.

OUTPUT:
A tuple of monomials. They are in the same order as coeffs().

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y*z^2)
sage: cubic.monomials()
(x^3, y^3, z^3, x^2*y, x^2*z, x*y^2, y^2*z, x*z^2, y*z^2, x*y*z)
```

polar_conic()
Return the polar conic of the cubic.

OUTPUT:
Given the ternary cubic \(f(X, Y, Z)\), this method returns the symmetric matrix \(A(x, y, z)\) defined by

\[
x f_X + y f_Y + z f_Z = (X, Y, Z) \cdot A(x, y, z) \cdot (X, Y, Z)^t
\]

EXAMPLES:

```python
sage: R.<x,y,z,X,Y,Z,a30,a21,a12,a03,a20,a11,a02,a10,a01,a00> = QQ[]
sage: p = (a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z +
 a11*x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3)
sage: cubic = invariant_theory.ternary_cubic(p, x,y,z)
sage: cubic.polar_conic()
[3*x*a30 + y*a21 + z*a20 x*a21 + y*a12 + 1/2*z*a11 x*a20 + 1/2*y*a11 +
 z*a10]
[1/2*x*a21 + a03*y^3 + 1/2*y*a03 + 2*z*a02 1/2*x*a12 + 3*y*a03 + z*a02 +
 a01*y*z^2 + a10*x*z^2 + a00*z^3)
[x*a20 + 1/2*y*a12 + a03*y^3 + 1/2*y*a03 + z*a02 + a01*y*z^2 + a10*x*z^2 +
 a00*z^3]
sage: polar_eqn = X*p.derivative(x) + Y*p.derivative(y) + Z*p.derivative(z)
sage: polar = invariant_theory.ternary_quadratic(polar_eqn, [x,y,z])
sage: polar.matrix().subs(X=x,Y=y,Z=z) == cubic.polar_conic()
True
```

scaled_coeffs()
Return the coefficients of a cubic.

Compared to coeffs(), this method returns rescaled coefficients that are often used in invariant theory.

Given

\[
p(x, y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 +
  a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}
\]

this function returns \(a = (a_{30}, a_{03}, a_{20}, 1/3, a_{20}/3, a_{12}/3, a_{02}/3, a_{10}/3, a_{01}/3, a_{11}/6)\)

EXAMPLES:
sage: R.<x,y,z,a30,a21,a12,a03,a20,a10,a01,a00> = QQ[]
sage: p = ( a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z +
.....:   a11*x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3 )
sage: invariant_theory.ternary_cubic(p, x,y,z).scaled_coeffs()
(a30, a03, a00, 1/3*a21, 1/3*a20, 1/3*a12, 1/3*a02, 1/3*a10, 1/3*a01, 1/6*a11)

syzygy (U, S, T, H, Theta, J)
Return the syzygy of the cubic evaluated on the invariants and covariants.

INPUT:

• U, S, T, H, Theta, J – polynomials from the same polynomial ring.

OUTPUT:

0 if evaluated for the form, the S invariant, the T invariant, the Hessian, the Θ covariant and the J-covariant of a ternary cubic.

EXAMPLES:

sage: R.<x,y,z> = QQ[]sage: monomials = (x^3, y^3, z^3, x^2*y, x^2*z, x*y^2, y^2*z, x*z^2, y*z^2, x*y*z)
sage: random_poly = sum([ randint(0,10000) * m
0

class sage.rings.invariant_theory.TernaryQuadratic (n, d, polynomial, *args)

Invariant theory of a ternary quadratic.

You should use the invariant_theory factory object to construct instances of this class. See ternary_quadratic() for details.

coeffs ()
Return the coefficients of a quadratic.

Given

\[ p(x, y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00} \]

this function returns \( a = (a_{20}, a_{02}, a_{00}, a_{11}, a_{10}, a_{01}) \)

EXAMPLES:

sage: R.<x,y,z,a20,a11,a02,a10,a01,a00> = QQ[]sage: p = ( a20*x^2 + a11*x*y + a02*y^2 +
.....: a10*x*z + a01*y*z + a00*z^2 )sage: invariant_theory.ternary_quadratic(p, x,y,z).coeffs()
(a20, a02, a00, a11, a10, a01)
sage: invariant_theory.ternary_quadratic(p.subs(z=1), x, y).coeffs()
(a20, a02, a00, a11, a10, a01)
covariant_conic(other)
Return the ternary quadratic covariant to self and other.

INPUT:
- other – Another ternary quadratic.

OUTPUT:
The so-called covariant conic, a ternary quadratic. It is symmetric under exchange of self and other.

EXAMPLES:

```
sage: ring.<x,y,z> = QQ[]
sage: Q = invariant_theory.ternary_quadratic(x^2+y^2+z^2)
sage: R = invariant_theory.ternary_quadratic(x*y+x*z+y*z)
sage: Q.covariant_conic(R)
-x*y - x*z - y*z
sage: R.covariant_conic(Q)
-x*y - x*z - y*z
```

monomials()
List the basis monomials of the form.

OUTPUT:
A tuple of monomials. They are in the same order as coeffs().

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y*z)
sage: quadratic.monomials()
(x^2, y^2, z^2, x*y, x*z, y*z)
```

scaled_coeffs()
Return the scaled coefficients of a quadratic.

Given

\[ p(x, y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00} \]

this function returns \( a = (a_{20}, a_{02}, a_{00}, \frac{a_{11}}{2}, \frac{a_{10}}{2}, \frac{a_{01}}{2},) \)

EXAMPLES:

```
sage: R.<x,y,z,a20,a11,a02,a10,a01,a00> = QQ[]
sage: p = (a20*x^2 + a11*x*y + a02*y^2 +...
 + a10*x*z + a01*y*z + a00*z^2)
sage: invariant_theory.ternary_quadratic(p, x, y, z).scaled_coeffs()
(a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)
sage: invariant_theory.ternary_quadratic(p.subs(z=1), x, y).scaled_coeffs()
(a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)
```

class sage.rings.invariant_theory.TwoAlgebraicForms(forms)
Bases: sage.rings.invariant_theory.SeveralAlgebraicForms

first()
Return the first of the two forms.

OUTPUT:
The first algebraic form used in the definition.
EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: q0 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q1 = invariant_theory.quadratic_form(x*y)
sage: from sage.rings.invariant_theory import TwoAlgebraicForms
sage: q = TwoAlgebraicForms([q0, q1])
sage: q.first() is q0
True
sage: q.get_form(0) is q0
True
sage: q.first().polynomial()
x^2 + y^2
```

**second()**

Return the second of the two forms.

**OUTPUT:**

The second form used in the definition.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]
sage: q0 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q1 = invariant_theory.quadratic_form(x*y)
sage: from sage.rings.invariant_theory import TwoAlgebraicForms
sage: q = TwoAlgebraicForms([q0, q1])
sage: q.second() is q1
True
sage: q.get_form(1) is q1
True
sage: q.second().polynomial()
x*y
```

class sage.rings.invariant_theory.TwoQuaternaryQuadratics(forms)

**Bases:** sage.rings.invariant_theory.TwoAlgebraicForms

Invariant theory of two quaternary quadratics.

You should use the `invariant_theory` factory object to construct instances of this class. See `quaternary_biquadratics()` for details.

**REFERENCES:**

**Delta_invariant()**

Return the $\Delta$ invariant.

**EXAMPLES:**

```python
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3 + b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3 + B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
True
```
**Delta_prime_invariant()**

Return the $\Delta'$ invariant.

**EXAMPLES:**

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
sage: q.Delta_prime_invariant() == coeffs[0]
True
```

**J_covariant()**

The $J$-covariant.

This is the Jacobian determinant of the two biquadratics, the $T$-covariant, and the $T'$-covariant with respect to the four homogeneous variables.

**EXAMPLES:**

```
sage: R.<w,x,y,z,a0,a1,a2,a3,A0,A1,A2,A3> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [w, x, y, z])
sage: q.J_covariant().factor()
z * y * x * w * (a3*A2 - a2*A3) * (a3*A1 - a1*A3) * (-a2*A0 + a0*A2) * (a3*A0 - a0*A3) * (-a2*A0 + a0*A2) * (-a1*A0 + a0*A1)
```

**Phi_invariant()**

Return the $\Phi'$ invariant.

**EXAMPLES:**

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
sage: q.Phi_invariant() == coeffs[2]
True
```

**T_covariant()**

The $T$-covariant.

**EXAMPLES:**

```
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
```

(continues on next page)
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])

sage: T = invariant_theory.quaternary_quadratic(q.T_covariant(), [x, y, z]).matrix()
sage: M = q[0].matrix().adjoint() + t*q[1].matrix().adjoint()

sage: M = M.adjoint().apply_map(lambda m: m.coefficient(t^2))
sage: M == q.Delta_prime_invariant() * Tprime
# long time
True

Theta_invariant()  
Return the $\Theta$ invariant.

EXAMPLES:

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5>=QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
sage: q Theta_invariant() == coeffs[3]
True

Theta_prime_invariant()  
Return the $\Theta'$ invariant.

EXAMPLES:

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5>=QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).

(continues on next page)
syzygy \((\Delta, \Theta, \Phi, \Theta_{\text{prime}}, \Delta_{\text{prime}}, U, V, T, T_{\text{prime}}, J)\)

Return the syzygy evaluated on the invariants and covariants.

**INPUT:**

- \(\Delta, \Theta, \Phi, \Theta_{\text{prime}}, \Delta_{\text{prime}}, U, V, T, T_{\text{prime}}, J\) – polynomials from the same polynomial ring.

**OUTPUT:**

Zero if the \(U\) is the first polynomial, \(V\) the second polynomial, and the remaining input are the invariants and covariants of a quaternary biquadratic.

**EXAMPLES:**

```python
sage: R.<w,x,y,z> = QQ[]
sage: monomials = [x^2, x*y, y^2, x*z, y*z, z^2, x*w, y*w, z*w, w^2]
sage: def q_rnd():
 return sum(randint(-1000,1000)*m for m in monomials)
sage: biquadratic = invariant_theory.quaternary_biquadratic(q_rnd(), q_rnd())
sage: Delta = biquadratic.Delta_invariant()
sage: Theta = biquadratic.Theta_invariant()
sage: Phi = biquadratic.Phi_invariant()
sage: Theta_prime = biquadratic.Theta_prime_invariant()
sage: Delta_prime = biquadratic.Delta_prime_invariant()
sage: U = biquadratic.first().polynomial()
sage: V = biquadratic.second().polynomial()
sage: T = biquadratic.T_covariant()
sage: T_prime = biquadratic.T_prime_covariant()
sage: J = biquadratic.J_covariant()
sage: biquadratic.syzygy(Delta, Theta, Phi, Theta_prime, Delta_prime, U, V, T, T_prime, J)
0
```

If the arguments are not the invariants and covariants then the output is some (generically non-zero) polynomial:

```python
sage: biquadratic.syzygy(1, 1, 1, 1, 1, 1, 1, 1, 1, x)
-x^2 + 1
```

class \sage\: rings\: invariant\_theory\: TwoTernaryQuadratics\((\text{forms})\)

Bases: \sage\: rings\: invariant\_theory\: TwoAlgebraicForms

Invariant theory of two ternary quadratics.

You should use the \texttt{invariant\_theory} factory object to construct instances of this class. See \texttt{ternary\_biquadratics()} for details.

**REFERENCES:**
**Delta_invariant()**

Return the $\Delta$ invariant.

**EXAMPLES:**

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
sage: q.Delta_invariant() == coeffs[3]
True
```

**Delta_prime_invariant()**

Return the $\Delta'$ invariant.

**EXAMPLES:**

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
sage: q.Delta_prime_invariant() == coeffs[0]
True
```

**F_covariant()**

Return the $F$ covariant.

**EXAMPLES:**

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y> = QQ[]
sage: p1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: p2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
sage: q.F_covariant()
-32566577*x^2 + 29060637/2*x*y + 20153633/4*y^2 - 30250497/2*x - 241241273/4*y - 323820473/16
```

**J_covariant()**

Return the $J$ covariant.

**EXAMPLES:**

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y> = QQ[]
sage: p1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: p2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
sage: q.J_covariant()
```

(continues on next page)
\begin{verbatim}
1057324024445*x^3 + 1209531088209*x^2*y + 942116599708*x*y^2 +
942116599708*y^3 + 543715345505/2*x^2 - 3065093506021/2*x*y +
755263948570*y^2 - 1118430692650*x - 509948695327/4*y + 3369951531745/8
\end{verbatim}

Theta_invariant()

Return the $\Theta$ invariant.

EXAMPLES:

\begin{verbatim}
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1,
    y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 +
    2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 +
    2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
    coefficients(sparse=False)
sage: q.Theta_invariant() == coeffs[2]
True
\end{verbatim}

Theta_prime_invariant()

Return the $\Theta'$ invariant.

EXAMPLES:

\begin{verbatim}
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1,
    y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 +
    2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 +
    2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
    coefficients(sparse=False)
sage: q.Theta_prime_invariant() == coeffs[1]
True
\end{verbatim}

syzygy (Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J)

Return the syzygy evaluated on the invariants and covariants.

INPUT:

- Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J – polynomials from the same polynomial ring.

OUTPUT:

Zero if $S$ is the first polynomial, $S'_\text{prime}$ the second polynomial, and the remaining input are the invariants and covariants of a ternary biquadratic.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y,z> = QQ[]
sage: monomials = [x^2, x*y, y^2, x*z, y*z, z^2]
sage: def q_rnd(): return sum(randint(-1000,1000)*m
    for m in monomials)
sage: biquadratic = invariant_theory.ternary_biquadratic(q_rnd(), q_rnd(), [x, y, z])
sage: Delta = biquadratic.Delta_invariant()
\end{verbatim}

(continues on next page)
If the arguments are not the invariants and covariants then the output is some (generically non-zero) polynomial:

```
sage: biquadratic.syzygy(1, 1, 1, 1, 1, 1, 1, x)
1/64*x^2 + 1
```

### 3.3 Educational Versions of Groebner Basis and Related Algorithms

#### 3.3.1 Educational Versions of Groebner Basis Algorithms.

Following [BW93] the original Buchberger algorithm (c.f. algorithm GROEBNER in [BW93]) and an improved version of Buchberger’s algorithm (c.g. algorithm GROEBNERNEW2 in [BW93]) are implemented.

No attempt was made to optimize either algorithm as the emphasis of these implementations is a clean and easy presentation. To compute a Groebner basis in Sage efficiently use the `sage.rings.polynomial.multipolynomial_ideal.MPolynomialIdeal.groebner_basis()` method on multivariate polynomial objects.

**Note:** The notion of ‘term’ and ‘monomial’ in [BW93] is swapped from the notion of those words in Sage (or the other way around, however you prefer it). In Sage a term is a monomial multiplied by a coefficient, while in [BW93] a monomial is a term multiplied by a coefficient. Also, what is called LM (the leading monomial) in Sage is called HT (the head term) in [BW93].

**EXAMPLES:**

Consider Katsura-6 w.r.t. a degrevlex ordering:

```
sage: from sage.rings.polynomial.toy_buchberger import *
sage: P.<a,b,c,e,f,g,h,i,j,k> = PolynomialRing(GF(32003),10)
sage: I = sage.rings.ideal.Katsura(P,6)
sage: g1 = buchberger(I)
sage: g2 = buchberger_improved(I)
sage: g3 = I.groebner_basis()
```

All algorithms actually compute a Groebner basis:

```
sage: Ideal(g1).basis_is_groebner()
True
sage: Ideal(g2).basis_is_groebner()
True
```

(continues on next page)
The results are correct:

\[
\text{sage: } \text{Ideal}(g1) == \text{Ideal}(g2) == \text{Ideal}(g3)
\]

True

If `getVerbose()` is \(\geq 1\) a protocol is provided:

The original Buchberger algorithm performs 15 useless reductions to zero for this example:

\[
\text{sage: } \text{buchberger}(I)
\]

(continues on next page)
(-2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(a + 2*b + 2*c - 1, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(a^2 + 2*b^2 + 2*c^2 - a, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(-2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

1 reductions to zero.
[a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c]

The ‘improved’ Buchberger algorithm in contrast only performs 3 reductions to zero:

```
sage: buchberger_improved(I)
(b^2 - 26*c^2 - 51*b + 51*c, b*c + 52*c^2 + 38*b + 25*c) => 11*c^3 - 12*c^2 + 30*b + 31*c
G: set([a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, 11*c^3 - 12*c^2 + 30*b + 31*c, -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(11*c^3 - 12*c^2 + 30*b + 31*c, b*c + 52*c^2 + 38*b + 25*c) => 0
G: set([a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, 11*c^3 - 12*c^2 + 30*b + 31*c, -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

1 reductions to zero.
[a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, c^3 + 22*c^2 - 55*b + 49*c, b*c + -52*c^2 + 38*b + 25*c]
```
REFERENCES:

AUTHOR:

- Marshall Hampton (2009-07-08): some doctest additions

```
sage.rings.polynomial.toy_buchberger.LCM(f, g)
sage.rings.polynomial.toy_buchberger.LM(f)
sage.rings.polynomial.toy_buchberger.LT(f)
sage.rings.polynomial.toy_buchberger.buchberger(F)
```

The original version of Buchberger’s algorithm as presented in [BW93], page 214.

INPUT:

- \( F \) - an ideal in a multivariate polynomial ring

OUTPUT:

a Groebner basis for \( F \)

Note: The verbosity of this function may be controlled with a `set_verbose()` call. Any value \( \geq 1 \) will result in this function printing intermediate bases.

EXAMPLES:

```
sage: from sage.rings.polynomial.toy_buchberger import buchberger
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: set_verbose(0)
sage: buchberger(R.ideal([x^2 - z - 1, z^2 - y - 1, x*y^2 - x - 1]))
[-y^3 + x*z - x + y, y^2*z + y^2 - x - z - 1, x*y^2 - x - 1, x^2 - z - 1, z^2 - y - 1]
```

```
sage.rings.polynomial.toy_buchberger.buchberger_improved(F)
```

An improved version of Buchberger’s algorithm as presented in [BW93], page 232.

This variant uses the Gebauer-Moeller Installation to apply Buchberger’s first and second criterion to avoid useless pairs.

INPUT:

- \( F \) - an ideal in a multivariate polynomial ring

OUTPUT:

a Groebner basis for \( F \)

Note: The verbosity of this function may be controlled with a `set_verbose()` call. Any value \( \geq 1 \) will result in this function printing intermediate Groebner bases.

EXAMPLES:

```
sage: from sage.rings.polynomial.toy_buchberger import buchberger_improved
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: set_verbose(0)
sage: buchberger_improved(R.ideal([x^4-y-z,x*y*z-1]))
[x*y*z - 1, x^3 - y^2*z + y*z^2, y^3*z^2 + y^2*z^3 - x^2]
```
If \( Q \) is the set \((f_1, ..., f_n)\) this method returns \((g_1, ..., g_s)\) such that:

- \(< f_1, ..., f_n > = < g_1, ..., g_s >\)
- \(LM(g_i) = LM(g_j)\) for all \(i = j\)
- \(LM(g_i)\) does not divide \(m\) for all monomials \(m\) of \(\{g_1, ..., g_i-1, g_{i+1}, ..., g_s\}\)
- \(LC(g_i) == 1\) for all \(i\).

**INPUT:**
- \( Q \) - a set of polynomials

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.toy_buchberger import inter_reduction
sage: inter_reduction(set())
set()
```

```python
sage: P.<x,y> = QQ[]
sage: reduced = inter_reduction(set([x^2-5*y^2,x^3]))
sage: reduced == set([x*y^2, x^2-5*y^2])
True
sage: reduced == inter_reduction(set([2*(x^2-5*y^2),x^3]))
True
```

The normal selection strategy

**INPUT:**
- \( P \) - a list of critical pairs

**OUTPUT:**
- an element of \( P \)

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.toy_buchberger import select
sage: R.<x,y,z> = PolynomialRing(QQ,3, order='lex')
sage: ps = [x^3 - z - 1, z^3 - y - 1, x^5 - y - 2]
sage: pairs = [[ps[i],ps[j]] for i in range(3) for j in range(i+1,3)]
sage: select(pairs)
[x^3 - z - 1, -y + z^3 - 1]
```

Computes the \(S\)-polynomial of \(f\) and \(g\).

**INPUT:**
- \( f, g \) - polynomials

**OUTPUT:**
- The \(S\)-polynomial of \(f\) and \(g\).

**EXAMPLES:**

```python
```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: from sage.rings.polynomial.toy_buchberger import spol
sage: spol(x^2 - z - 1, z^2 - y - 1)
\(x^2y - z^3 + x^2 - z^2\)

\[\text{sage.rings.polynomial.toy_buchberger.\texttt{update}}(G, B, h)\]

Update \(G\) using the list of critical pairs \(B\) and the polynomial \(h\) as presented in [BW93], page 230. For this, Buchberger’s first and second criterion are tested.

This function implements the Gebauer-Moeller Installation.

\textbf{INPUT:}

- \(G\) - an intermediate Groebner basis
- \(B\) - a list of critical pairs
- \(h\) - a polynomial

\textbf{OUTPUT:}

a tuple of an intermediate Groebner basis and a list of critical pairs

\textbf{EXAMPLES:}

\begin{verbatim}
\begin{verbatim}
sage: from sage.rings.polynomial.toy_buchberger import update
debug: R.<x,y,z> = PolynomialRing(QQ,3)
debug: set_verbose(0)
debug: G, B = update(set(), set(), x*y*z)
\{(x*y*z), \{\}\}
debug: G, B = update(G, B, x*y^2 - 1)
debug: G, B
\{(x*y*z - 1, x*y^2 - 1), \{(x*y^2 - 1, x*y*z - 1)\}\}
\end{verbatim}
\end{verbatim}
\end{verbatim}

\subsection*{3.3.2 Educational Versions of Groebner Basis Algorithms: Triangular Factorization.}

In this file is the implementation of two algorithms in [Laz92].

The main algorithm is \texttt{Triangular}; a secondary algorithm, necessary for the first, is \texttt{ElimPolMin}. As per Lazard’s formulation, the implementation works with any term ordering, not only lexicographic.

Lazard does not specify a few of the subalgorithms implemented as the functions

- \texttt{is_triangular},
- \texttt{is_linearly_dependent}, and
- \texttt{linear_representation}.

The implementations are not hard, and the choice of algorithm is described with the relevant function.

No attempt was made to optimize these algorithms as the emphasis of this implementation is a clean and easy presentation.

Examples appear with the appropriate function.

\textbf{AUTHORS:}

- John Perry (2009-02-24): initial version, but some words of documentation were stolen shamelessly from Martin Albrecht’s \texttt{toy_buchberger.py}.

\textbf{REFERENCES:}

3.3. Educational Versions of Groebner Basis and Related Algorithms 437
Generates the matrix $M$ whose entries are the coefficients of $\text{polys}$. The entries of row $i$ of $M$ consist of the coefficients of $\text{polys}[i]$.

INPUT:
- $\text{polys}$ - a list/tuple of polynomials

OUTPUT:
A matrix $M$ of the coefficients of $\text{polys}$.

EXAMPLES:

```
sage: from sage.rings.polynomial.toy_variety import coefficient_matrix
sage: R.<x,y> = PolynomialRing(QQ)
sage: coefficient_matrix([x^2 + 1, y^2 + 1, x*y + 1])
[1 0 0 1]
[0 0 1 1]
[0 1 0 1]
```

Note: This function may be merged with `sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic.coefficient_matrix()` in the future.

Finds the unique monic polynomial of lowest degree and lowest variable in the ideal described by $B$.

For the purposes of the triangularization algorithm, it is necessary to preserve the ring, so $n$ specifies which variable to check. By default, we check the last one, which should also be the smallest.

The algorithm may not work if you are trying to cheat: $B$ should describe the Groebner basis of a zero-dimensional ideal. However, it is not necessary for the Groebner basis to be lexicographic.

The algorithm is taken from a 1993 paper by Lazard [Laz92].

INPUT:
- $B$ - a list/tuple of polynomials or a multivariate polynomial ideal
- $n$ - the variable to check (see above) (default: $-1$)

EXAMPLES:

```
sage: set_verbose(0)
sage: from sage.rings.polynomial.toy_variety import elim_pol
sage: R.<x,y,z> = PolynomialRing(GF(32003))
sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
sage: p2 = z^2 - z
sage: p3 = (x-2)^2*(y-1)^3
sage: I = R.ideal(p1,p2,p3)
sage: elim_pol(I.groebner_basis())
z^2 - z
```

Decides whether the polynomials of $\text{polys}$ are linearly dependent. Here $\text{polys}$ is a collection of polynomials.

The algorithm creates a matrix of coefficients of the monomials of $\text{polys}$. It computes the echelon form of the matrix, then checks whether any of the rows is the zero vector.
Essentially this relies on the fact that the monomials are linearly independent, and therefore is building a linear map from the vector space of the monomials to the canonical basis of $R^n$, where $n$ is the number of distinct monomials in $\text{polys}$. There is a zero vector iff there is a linear dependence among $\text{polys}$.

The case where $\text{polys}=[]$ is considered to be not linearly dependent.

INPUT:
- $\text{polys}$ - a list/tuple of polynomials

OUTPUT:
- True if the elements of $\text{polys}$ are linearly dependent; False otherwise.

EXAMPLES:
```python
sage: from sage.rings.polynomial.toy_variety import is_linearly_dependent
sage: R.<x,y> = PolynomialRing(QQ)
sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
sage: is_linearly_dependent(B + [p])
True
sage: p = x*B[0]
sage: is_linearly_dependent(B + [p])
False
sage: is_linearly_dependent([])
False
```

sage.rings.polynomial.toy_variety.is_triangular($B$)
Check whether the basis $B$ of an ideal is triangular. That is: check whether the largest variable in $B[i]$ with respect to the ordering of the base ring $R$ is $R.gens()[i]$.

The algorithm is based on the definition of a triangular basis, given by Lazard in 1992 in [Laz92].

INPUT:
- $B$ - a list/tuple of polynomials or a multivariate polynomial ideal

OUTPUT:
- True if the basis is triangular; False otherwise.

EXAMPLES:
```python
sage: from sage.rings.polynomial.toy_variety import is_triangular
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: p1 = x^2*y + z^2
sage: p2 = y*z + z^3
sage: p3 = y+z
sage: is_triangular(R.ideal(p1,p2,p3))
False
sage: p3 = z^2 - 3
sage: is_triangular(R.ideal(p1,p2,p3))
True
```

sage.rings.polynomial.toy_variety.linear_representation($p$, $\text{polys}$)
Assuming that $p$ is a linear combination of $\text{polys}$, determines coefficients that describe the linear combination. This probably doesn’t work for any inputs except $p$, a polynomial, and $\text{polys}$, a sequence of polynomials. If $p$ is not in fact a linear combination of $\text{polys}$, the function raises an exception.

The algorithm creates a matrix of coefficients of the monomials of $\text{polys}$ and $p$, with the coefficients of $p$ in the last row. It augments this matrix with the appropriate identity matrix, then computes the echelon form of the
augmented matrix. The last row should contain zeroes in the first columns, and the last columns contain a linear dependence relation. Solving for the desired linear relation is straightforward.

**INPUT:**

- \( p \) - a polynomial
- \( \text{polys} \) - a list/tuple of polynomials

**OUTPUT:**

If \( n == \text{len}(	ext{polys}) \), returns \([a[0], a[1], \ldots, a[n-1]]\) such that \( p == a[0]*\text{poly}[0] + \ldots + a[n-1]*\text{poly}[n-1] \).

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.toy_variety import linear_representation
sage: R.<x,y> = PolynomialRing(GF(32003))
\sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
\sage: linear_representation(p, B)
[3, 32001, 1]
```

```
sage.rings.polynomial.toy_variety.triangular_factorization(B, n=-1)
Compute the triangular factorization of the Groebner basis \(B \) of an ideal.
This will not work properly if \(B \) is not a Groebner basis!
The algorithm used is that described in a 1992 paper by Daniel Lazard [Laz92]. It is not necessary for the term ordering to be lexicographic.

INPUT:

- \(B \) - a list/tuple of polynomials or a multivariate polynomial ideal
- \(n \) - the recursion parameter (default: \(-1\))

OUTPUT:

A list \(T \) of triangular sets \(T_0, T_1, \ldots \), etc.

EXAMPLES:

```python
sage: set_verbose(0)
\sage: from sage.rings.polynomial.toy_variety import triangular_factorization
\sage: R.<x,y,z> = PolynomialRing(GF(32003))
\sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
\sage: p2 = z^2 - z
\sage: p3 = (x-2)^2*(y-1)^3
\sage: I = R.ideal(p1,p2,p3)
\sage: I.groebner_basis()
\sage: triangular_factorization(I.groebner_basis())
[[x^2 - 4*x + 4, y, z],
 [x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z],
 [x^2 - 4*x + 4, y, z - 1],
 [x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z - 1]]
```

3.3.3 Educational version of the \(d \)-Groebner Basis Algorithm over PIDs.

No attempt was made to optimize this algorithm as the emphasis of this implementation is a clean and easy presentation.
Note: The notion of ‘term’ and ‘monomial’ in [BW93] is swapped from the notion of those words in Sage (or the other way around, however you prefer it). In Sage a term is a monomial multiplied by a coefficient, while in [BW93] a monomial is a term multiplied by a coefficient. Also, what is called LM (the leading monomial) in Sage is called HT (the head term) in [BW93].

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_d_basis import d_basis
```

First, consider an example from arithmetic geometry:

```python
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: B.<X,Y> = PolynomialRing(Rationals(),2)
sage: f = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: I = B.ideal([B(f),B(fx),B(fy)])
sage: I.groebner_basis()
```

Since the output is 1, we know that there are no generic singularities.

To look at the singularities of the arithmetic surface, we need to do the corresponding computation over \(\mathbb{Z} \):

```python
sage: I = A.ideal([f,fx,fy])
sage: gb = d_basis(I); gb
```

```
x - 2020, y - 11313, 22627
```

```
11^3 * 17
```

This Groebner Basis gives a lot of information. First, the only fibers (over \(\mathbb{Z} \)) that are not smooth are at 11 = 0, and 17 = 0. Examining the Groebner Basis, we see that we have a simple node in both the fiber at 11 and at 17. From the factorization, we see that the node at 17 is regular on the surface (an \(\mathcal{I}_1 \) node), but the node at 11 is not. After blowing up this non-regular point, we find that it is an \(\mathcal{I}_3 \) node.

Another example. This one is from the Magma Handbook:

```python
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
sage: I = ideal( x^2 - 1, y^2 - 1, 2*x*y - z)
sage: I = Ideal(d_basis(I))
sage: x.reduce(I)
sage: (2*x).reduce(I)
```

```
x
y*z
```

To compute modulo 4, we can add the generator 4 to our basis:

```python
sage: I = ideal( x^2 - 1, y^2 - 1, 2*x*y - z, 4)
sage: gb = d_basis(I)
sage: R = P.change_ring(IntegerModRing(4))
sage: gb = [R(f) for f in gb if R(f)]; gb
```

```
x^2 - 1, x*z + 2*y, 2*x - y*z, y^2 - 1, z^2, 2*z
```

A third example is also from the Magma Handbook.
This example shows how one can use Groebner bases over the integers to find the primes modulo which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal \(I \) in \(\mathbb{Z}[x, y, z] \), and note that the Groebner basis of \(I \) over \(\mathbb{Q} \) contains 1, so there are no solutions over \(\mathbb{Q} \) or an algebraic closure of it (this is not surprising as there are 4 equations in 3 unknowns):

```python
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='degneglex')
sage: I = ideal( x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1 )
sage: I.change_ring(P.change_ring(RationalField())).groebner_basis()
[1]
```

However, when we compute the Groebner basis of \(I \) (defined over \(\mathbb{Z} \)), we note that there is a certain integer in the ideal which is not 1:

```python
sage: gb = d_basis(I); gb
[z - 10719634859495266447618029795381604940469495175348246833906546204247034039930527590029899622, 
y + 84382748470950863244378281611217540841544985720033073528579677480909845506978504841979727647994346037, 
x + 105754645239745824529618668609551113725317621921665293762587811716173, 282687803443]
```

Now for each prime \(p \) dividing this integer 282687803443, the Groebner basis of \(I \) modulo \(p \) will be non-trivial and will thus give a solution of the original system modulo \(p \):

```python
sage: factor(282687803443)
101 * 103 * 27173681
sage: I.change_ring( P.change_ring( GF(101) ) ).groebner_basis()
[z - 33, y + 48, x + 19]
sage: I.change_ring( P.change_ring( GF(103) ) ).groebner_basis()
[z - 18, y + 8, x + 39]
sage: I.change_ring( P.change_ring( GF(27173681) ) ).groebner_basis()
[z + 10380032, y + 3186055, x - 536027]
```

Of course, modulo any other prime the Groebner basis is trivial so there are no other solutions. For example:

```python
sage: I.change_ring( P.change_ring( GF(3) ) ).groebner_basis()
[1]
```

AUTHOR:

- Martin Albrecht (2008-08): initial version

\[\text{sage.rings.polynomial.toy_d_basis.LC}(f)\]
\[\text{sage.rings.polynomial.toy_d_basis.LM}(f)\]
\[\text{sage.rings.polynomial.toy_d_basis.d_basis}(F, \text{strat=True})\]

Return the \(d \)-basis for the Ideal \(F \) as defined in [BW93].

INPUT:

- \(F \) - an ideal
- \(\text{strat} \) - use update strategy (default: True)
EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_d_basis import d_basis
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: f = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: I = A.ideal([f,fx,fy])
sage: gb = d_basis(I); gb
[x - 2020, y - 11313, 22627]
```

```python
sage.rings.polynomial.toy_d_basis.gpol(g1, g2)
Return G-Polynomial of g_1 and g_2.

Let \(a_i t_i\) be \(LT(g_i)\), \(a_i = a_i c_i + a_j c_j\) with \(a = \text{GCD}(a_i, a_j)\), and \(s_i = t_i/t_i\) with \(t = \text{LCM}(t_i, t_j)\). Then the G-Polynomial is defined as: \(c_1 s_1 g_1 - c_2 s_2 g_2\).

INPUT:
- \(g1\) - polynomial
- \(g2\) - polynomial

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_d_basis import gpol
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
sage: f = x^2 - 1
sage: g = 2*x*y - z
sage: gpol(f,g)
x^2*y - y
```

```python
sage.rings.polynomial.toy_d_basis.select(P)
The normal selection strategy.

INPUT:
- \(P\) - a list of critical pairs

OUTPUT: an element of \(P\)

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_d_basis import select
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: f = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: G = [f,fx,fy]
sage: B = set((f1, f2) for f1 in G for f2 in G if f1 != f2)
sage: select(B)
(-2*y - 1, 3*x^2 + 7)
```

```python
sage.rings.polynomial.toy_d_basis.spol(g1, g2)
Return S-Polynomial of g_1 and g_2.

Let \(a_i t_i\) be \(LT(g_i)\), \(b_i = a_i/a_i\) with \(a = \text{LCM}(a_i, a_j)\), and \(s_i = t_i/t_i\) with \(t = \text{LCM}(t_i, t_j)\). Then the S-Polynomial is defined as: \(b_1 s_1 g_1 - b_2 s_2 g_2\).

INPUT: 

3.3. Educational Versions of Groebner Basis and Related Algorithms 443
• \( g_1 \) - polynomial
• \( g_2 \) - polynomial

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.toy_d_basis import spol
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
sage: f = x^2 - 1
sage: g = 2*x*y - z
sage: spol(f, g)
x*z - 2*y
```

`sage.rings.polynomial.toy_d_basis.update(G, B, h)`

Update \( G \) using the list of critical pairs \( B \) and the polynomial \( h \) as presented in [BW93], page 230. For this, Buchberger's first and second criterion are tested.

This function uses the Gebauer-Moeller Installation.

**INPUT:**

- \( G \) - an intermediate Groebner basis
- \( B \) - a list of critical pairs
- \( h \) - a polynomial

**OUTPUT:** \( G, B \) where \( G \) and \( B \) are updated

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.toy_d_basis import update
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: G = set([3*x^2 + 7, 2*y + 1, x^3 - y^2 + 7*x - y + 1])
sage: B = set([[]])
sage: h = x^2*y - x^2 + y - 3
sage: update(G, B, h)
{(2*y + 1, 3*x^2 + 7, x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1),
 (x^2*y - x^2 + y - 3, 2*y + 1),
 (x^2*y - x^2 + y - 3, 3*x^2 + 7),
 (x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1))
```
4.1 Univariate Skew Polynomials

This module provides the \texttt{SkewPolynomial}, which constructs a single univariate skew polynomial over commutative base rings and an automorphism over the base ring. Skew polynomials are non-commutative and so principal methods such as gcd, lcm, monic, multiplication, and division are given in left and right forms.

The generic implementation of dense skew polynomials is \texttt{SkewPolynomial\_generic\_dense}. The classes \texttt{ConstantSkewPolynomialSection} and \texttt{SkewPolynomialBaseringInjection} handle conversion from a skew polynomial ring to its base ring and vice versa respectively.

\begin{warn}
The current semantics of \texttt{\_\_call\_\_}() are experimental, so a warning is thrown when a skew polynomial is evaluated for the first time in a session. See the method documentation for details.
\end{warn}

AUTHORS:

- Xavier Caruso (2012-06-29): initial version
- Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods
- Johan Rosenkilde (2016-08-03): changes for bug fixes, docstring and doctest errors

class \texttt{sage.rings.polynomial.skew_polynomial_element.ConstantSkewPolynomialSection}

\begin{verbatim}
  Bases: sage.categories.map.Map

  Representation of the canonical homomorphism from the constants of a skew polynomial ring to the base ring.

  This class is necessary for automatic coercion from zero-degree skew polynomial ring into the base ring.

  EXAMPLES:
\end{verbatim}

\begin{sageblock}
sage: from sage.rings.polynomial.skew_polynomial_element import ConstantSkewPolynomialSection
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: m = ConstantSkewPolynomialSection(S, R); m

Generic map:
  From: Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
  To:   Univariate Polynomial Ring in t over Rational Field
\end{sageblock}

class \texttt{sage.rings.polynomial.skew_polynomial_element.SkewPolynomial}

\begin{verbatim}
  Bases: sage.structure.element.AlgebraElement
\end{verbatim}
Abstract base class for skew polynomials.
This class must be inherited from and have key methods overridden.

Definition

Let \( R \) be a commutative ring equipped with an automorphism \( \sigma \).
Then, a skew polynomial is given by the equation:
\[
F(X) = a_n X^n + \cdots + a_0,
\]
where the coefficients \( a_i \in R \) and \( X \) is a formal variable.

Addition between two skew polynomials is defined by the usual addition operation and the modified multiplication is defined by the rule \( Xa = \sigma(a)X \) for all \( a \) in \( R \). Skew polynomials are thus non-commutative and the degree of a product is equal to the sum of the degrees of the factors.

Let \( a \) and \( b \) be two skew polynomials in the same ring \( S \). The left (resp. right) euclidean division of \( a \) by \( b \) is a couple \((q, r)\) of elements in \( S \) such that
- \( a = qb + r \) (resp. \( a = bq + r \))
- the degree of \( r \) is less than the degree of \( b \)

\( q \) (resp. \( r \)) is called the quotient (resp. the remainder) of this euclidean division.

Properties

Keeping the previous notation, if the leading coefficient of \( b \) is a unit (e.g. if \( b \) is monic) then the quotient and the remainder in the right euclidean division exist and are unique.

The same result holds for the left euclidean division if in addition the twist map defining the skew polynomial ring is invertible.

Evaluation

The value of a given a skew polynomial \( p(x) = \sum_{i=0}^{d} a_i x^i \) at \( r \) is calculated using the formula:
\[
p(r) = \sum_{i=0}^{d} a_i \sigma^i(r)
\]
where \( \sigma \) is the base ring automorphism. This is called the \textit{operator evaluation} method.

EXAMPLES:
We illustrate some functionalities implemented in this class.
We create the skew polynomial ring:

```sage
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
 twisted by t |--> t + 1
```

and some elements in it:
Polynomials

Ring operations are supported:

```sage
sage: a + b
x^2 + (t + 2)*x + t^2 + t + 1
sage: a - b
-x^2 - t*x - t^2 + t + 1
sage: a * b
x^3 + (2*t + 3)*x^2 + (2*t^2 + 4*t + 2)*x + t^3 + t^2
sage: b * a
x^3 + (2*t + 4)*x^2 + (2*t^2 + 3*t + 2)*x + t^3 + t^2
sage: a * b == b * a
False
sage: b^2
x^4 + (2*t + 4)*x^3 + (3*t^2 + 7*t + 6)*x^2
+ (2*t^3 + 4*t^2 + 3*t + 1)*x + t^4
sage: b^2 == b*b
True
```

Sage also implements arithmetic over skew polynomial rings. You will find below a short panorama:

```sage
sage: q, r = c.right_quo_rem(b)
sage: q
x - 95*t^2
sage: r
(95*t^3 + 93*t^2 - t - 1)*x + 95*t^4 + 2*t - 8
sage: c == q*b + r
True
```

The operators `//` and `%` give respectively the quotient and the remainder of the right euclidean division:

```sage
sage: q == c // b
True
sage: r == c % b
True
```

Left euclidean division won’t work over our current $S$ because Sage can’t invert the twist map:

```sage
sage: q, r = c.left_quo_rem(b)
Traceback (most recent call last):
...
NotImplementedError: inversion of the twist map Ring endomorphism of Univariate Polynomial Ring in t over Integer Ring
 Defn: t |--> t + 1
```

Here we can see the effect of the operator evaluation compared to the usual polynomial evaluation:

```sage
sage: a = x^2
sage: a(t)
t + 2
```
Here is a working example over a finite field:

```sage
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^4 + (4*t + 1)*x^3 + (t^2 + 3*t + 3)*x^2 + (3*t^2 + 2*t + 2)*x + (3*t^2 + 3*t + 1)
sage: b = (2*t^2 + 3)*x^2 + (3*t^2 + 1)*x + 4*t + 2
sage: q, r = a.left_quo_rem(b)
sage: q
(4*t^2 + t + 1)*x^2 + (2*t^2 + 2*t + 2)*x + 2*t^2 + 4*t + 3
sage: r
(t + 2)*x + 3*t^2 + 2*t + 4
sage: a == b*q + r
True
```

Once we have euclidean divisions, we have for free gcd and lcm (at least if the base ring is a field):

```sage
sage: a = (x + t) * (x + t^2)^2
sage: b = (x + t) * (t*x + t + 1) * (x + t^2)
sage: a.right_gcd(b)
x + t^2
sage: a.left_gcd(b)
x + t
```

The left lcm has the following meaning: given skew polynomials \( a \) and \( b \), their left lcm is the least degree polynomial \( c = u a = v b \) for some skew polynomials \( u, v \). Such a \( c \) always exist if the base ring is a field:

```sage
sage: c = a.left_lcm(b); c
x^5 + (4*t^2 + t + 3)*x^4 + (3*t^2 + 4*t)*x^3 + 2*t^2*x^2 + (2*t^2 + t)*x + 4*t^2 + 4
sage: c.is_right_divisible_by(a)
True
sage: c.is_right_divisible_by(b)
True
```

The right lcm is defined similarly as the least degree polynomial \( c = a u = b v \) for some \( u, v \):

```sage
sage: d = a.right_lcm(b); d
x^5 + (t^2 + 1)*x^4 + (3*t^2 + 3*t + 3)*x^3 + (3*t^2 + t + 2)*x^2 + (4*t^2 + t + 3)*x + 4*t + 4
sage: d.is_left_divisible_by(a)
True
sage: d.is_left_divisible_by(b)
True
```

See also:

- `sage.rings.polynomial.skew_polynomial_ring`
- `sage.rings.polynomial.skew_polynomial_ring_constructor`

```
base_ring()
 Return the base ring of self.
```

EXCEPTIONS:
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = S.random_element()
sage: a.base_ring()
Univariate Polynomial Ring in t over Integer Ring
sage: a.base_ring() is R
True

change_variable_name(var)
Change the name of the variable of self.

This will create the skew polynomial ring with the new name but same base ring and twist map. The
returned skew polynomial will be an element of that skew polynomial ring.

INPUT:

• var – the name of the new variable

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: a = x^3 + (2*t + 1)*x + t^2 + 3 *t + 5
sage: b = a.change_variable_name('y'); b
y^3 + (2*t + 1)*y + t^2 + 3*t + 5

Note that a new parent is created at the same time:

sage: b.parent()
Skew Polynomial Ring in y over Univariate Polynomial Ring in t over Integer
˓
→Ring
twisted by t |--> t + 1

coefficients(sparse=True)
Return the coefficients of the monomials appearing in self.

If sparse=True (the default), return only the non-zero coefficients. Otherwise, return the same value as
self.list().

Note: This should be overridden in subclasses.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.coefficients()
[t^2 + 1, t + 1, 1]
sage: a.coefficients(sparse=False)
[t^2 + 1, 0, t + 1, 0, 1]

conjugate(n)
Return self conjugated by x^n, where x is the variable of self.
The conjugate is obtained from `self` by applying the \( n \)-th iterate of the twist map to each of its coefficients.

**INPUT:**

- \( n \) – an integer, the power of conjugation

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: a = t*x^3 + (t^2 + 1)*x^2 + 2*t
sage: b = a.conjugate(2); b
(t + 2)*x^3 + (t^2 + 4*t + 5)*x^2 + 2*t + 4
sage: x^2*a == b*x^2
True
```

In principle, negative values for \( n \) are allowed, but Sage needs to be able to invert the twist map:

```python
sage: b = a.conjugate(-1)
Traceback (most recent call last):
... NotImplementedtError: inversion of the twist map
 Univariate Polynomial Ring in t over Rational Field
 Defn: t |--> t + 1
```

Here is a working example:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: T.<y> = k['y', Frob]
sage: u = T.random_element(); u
(2*t^2 + 3)*y^2 + (4*t^2 + t + 4)*y + 2*t^2 + 2
sage: v = u.conjugate(-1); v
(3*t^2 + t)*y^2 + (4*t^2 + 2*t + 4)*y + 3*t^2 + t + 4
sage: u*y == y*v
True
```

**constant_coefficient()**

Return the constant coefficient (i.e. the coefficient of term of degree 0) of `self`.

**EXAMPLES:**

```python
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: a = x + t^2 + 2
sage: a.constant_coefficient()
t^2 + 2
```

**degree()**

Return the degree of `self`.

By convention, the zero skew polynomial has degree \(-1\).

**EXAMPLES:**

```python
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
```

(continues on next page)
```sage
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x + 1
sage: a.degree()
3
sage: S.zero().degree()
-1
sage: S(5).degree()
0
```

**exponents()**

Return the exponents of the monomials appearing in `self`.

**EXAMPLES:**

```sage
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.exponents()
[0, 2, 4]
```

**hamming_weight()**

Return the number of non-zero coefficients of `self`.

This is also known as the weight, hamming weight or sparsity.

**EXAMPLES:**

```sage
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.number_of_terms()
3
```

This is also an alias for `hamming_weight`:

```sage
sage: a.hamming_weight()
3
```

**is_constant()**

Return whether `self` is a constant polynomial.

**EXAMPLES:**

```sage
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: R(2).is_constant()
True
sage: (x + 1).is_constant()
False
```

**is_left_divisible_by**(other)

Check if `self` is divisible by `other` on the left.

**INPUT:**

- other – a skew polynomial in the same ring as `self`
OUTPUT:

Return True or False.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: c.is_left_divisible_by(a)
True
sage: c.is_left_divisible_by(b)
False
```

Divisibility by 0 does not make sense:

```
sage: c.is_left_divisible_by(S(0))
Traceback (most recent call last):
...:
ZeroDivisionError: division by zero is not valid
```

`is_monic()`

Return True if this skew polynomial is monic.

The zero polynomial is by definition not monic.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + t
sage: a.is_monic()
True
sage: a = 0*x
sage: a.is_monic()
False
sage: a = t*x^3 + x^4 + (t+1)*x^2
sage: a.is_monic()
True
sage: a = (t^2 + 2*t)*x^2 + x^3 + t^10*x^5
sage: a.is_monic()
False
```

`is_monomial()`

Return True if self is a monomial, i.e., a power of the generator.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.is_monomial()
True
sage: (x+1).is_monomial()
False
```

(continues on next page)
The coefficient must be 1:

\[
\text{sage: } (2x^5).is_monomial() \\
\text{False} \\
\text{sage: } S(t).is_monomial() \\
\text{False}
\]

To allow a non-1 leading coefficient, use is_term():

\[
\text{sage: } (2x^5).is_term() \\
\text{True} \\
\text{sage: } S(t).is_term() \\
\text{True}
\]

**is_nilpotent()**

Check if self is nilpotent.

Given a commutative ring \( R \) and a base ring automorphism \( \sigma \) of order \( n \), an element \( f \) of \( R[X, \sigma] \) is nilpotent if and only if all coefficients of \( f^n \) are nilpotent in \( R \).

**Note:** The paper “Nilpotents and units in skew polynomial rings over commutative rings” by M. Rimmer and K.R. Pearson describes the method to check whether a given skew polynomial is nilpotent. That method however, requires one to know the order of the automorphism which is not available in Sage. This method is thus not yet implemented.

**EXAMPLES:**

\[
\text{sage: } R.<t> = ZZ[] \\
\text{sage: } \text{sigma} = R.hom([t+1]) \\
\text{sage: } S.<x> = R['x',sigma] \\
\text{sage: } x.is_nilpotent() \\
\text{Traceback (most recent call last):} \\
\text{...} \\
\text{NotImplementedError}
\]

**is_one()**

Test whether this polynomial is 1.

**EXAMPLES:**

\[
\text{sage: } R.<t> = QQ[] \\
\text{sage: } \text{sigma} = R.hom([t+1]) \\
\text{sage: } S.<x> = R['x',sigma] \\
\text{sage: } R(1).is_one() \\
\text{True} \\
\text{sage: } (x + 3).is_one() \\
\text{False}
\]

**is_right_divisible_by(other)**

Check if self is divisible by other on the right.
INPUT:

- other – a skew polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: c.is_right_divisible_by(a)
False
sage: c.is_right_divisible_by(b)
True
```

Divisibility by 0 does not make sense:

```
sage: c.is_right_divisible_by(S(0))
Traceback (most recent call last):
...
ZeroDivisionError: division by zero is not valid
```

This function does not work if the leading coefficient of the divisor is not a unit:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + 2*x + t
sage: b = (t+1)*x + t^2
sage: c = a*b
sage: c.is_right_divisible_by(b)
Traceback (most recent call last):
...
NotImplementedError: the leading coefficient of the divisor is not invertible
```

is_term()

Return True if self is an element of the base ring times a power of the generator.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.is_term()
True
sage: R(1).is_term()
True
sage: (3*x^5).is_term()
True
sage: (1+3*x^5).is_term()
False
```

If you want to test that self also has leading coefficient 1, use is_monomial() instead:

sage: (3*x^5).is_monomial()
False

is_unit()

Return True if this skew polynomial is a unit.

When the base ring $R$ is an integral domain, then a skew polynomial $f$ is a unit if and only if degree of $f$ is 0 and $f$ is then a unit in $R$.

Note: The case when $R$ is not an integral domain is not yet implemented.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + (t+1)*x^5 + t^2*x^3 - x^5
sage: a.is_unit()
False

is_zero()

Return True if self is the zero polynomial.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + 1
sage: a.is_zero()
False
sage: b = S.zero()
sage: b.is_zero()
True

leading_coefficient()

Return the coefficient of the highest-degree monomial of self.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (t+1)*x^5 + t^2*x^3 + x
sage: a.leading_coefficient()
t + 1

left_divides(other)

Check if self divides other on the left.

INPUT:

• other – a skew polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:
\begin{verbatim}
  sage: k.<t> = GF(5^3)
  sage: Frob = k.frobenius_endomorphism()
  sage: S.<x> = k['x',Frob]
  sage: a = x^2 + t*x + t^2 + 3
  sage: b = x^3 + (t + 1)*x^2 + 1
  sage: c = a*b
  sage: a.left_divides(c)
  True
  sage: b.left_divides(c)
  False
  sage: S(0).left_divides(c)
  Traceback (most recent call last):
  ...  
  ZeroDivisionError: division by zero is not valid
\end{verbatim}

Divisibility by 0 does not make sense:

\begin{verbatim}
  sage: S(0).left_divides(c)
  Traceback (most recent call last):
  ...  
  ZeroDivisionError: division by zero is not valid
\end{verbatim}

\texttt{leftgcd}\texttt{(other,\ monic=True)}

Return the left gcd of \texttt{self} and \texttt{other}.

\textbf{INPUT:}

- \texttt{other} – a skew polynomial in the same ring as \texttt{self}
- \texttt{monic} – boolean (default: \texttt{True}). Return whether the left gcd should be normalized to be monic.

\textbf{OUTPUT:}

The left gcd of \texttt{self} and \texttt{other}, that is a skew polynomial \( g \) with the following property: any skew polynomial is divisible on the left by \( g \) iff it is divisible on the left by both \texttt{self} and \texttt{other}. If \texttt{monic} is \texttt{True}, \( g \) is in addition monic. (With this extra condition, it is uniquely determined.)

\textbf{Note:} Works only if two following conditions are fulfilled (otherwise left gcd do not exist in general): 1) the base ring is a field and 2) the twist map on this field is bijective.

\textbf{EXAMPLES:}

\begin{verbatim}
  sage: k.<t> = GF(5^3)
  sage: Frob = k.frobenius_endomorphism()
  sage: S.<x> = k['x',Frob]
  sage: a = (x + t) * (x^2 + t*x + 1)
  sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
  sage: a.left_gcd(b)
  x + t
  sage: a.left_gcd(b,monic=False)
  2*t*x + 4*t + 2
  sage: R.<t> = QQ[]
  sage: sigma = R.hom([t+1])
  sage: S.<x> = R['x',sigma]
  sage: a = (x + t) * (x^2 + t*x + 1)
  x + t
\end{verbatim}

Specifying \texttt{monic=False}, we \textit{can} get a nonmonic gcd:

\begin{verbatim}
  sage: a.left_gcd(b,monic=False)
  2*t*x + 4*t + 2
\end{verbatim}

The base ring needs to be a field:

\begin{verbatim}
  sage: R.<t> = QQ[]
  sage: sigma = R.hom([t+1])
  sage: S.<x> = R['x',sigma]
  sage: a = (x + t) * (x^2 + t*x + 1)
\end{verbatim}

(continues on next page)
```sage
b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
```

```sage
a.left_gcd(b)
```

```sage
Traceback (most recent call last):
...
TypeError: the base ring must be a field
```

And the twist map needs to be bijective:

```sage
FR = R.fraction_field()
f = FR.hom([FR(t)^2])
S.<x> = FR['x',f]
a = (x + t) * (x^2 + t*x + 1)
b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
a.left_gcd(b)
```

```sage
Traceback (most recent call last):
...
NotImplementedError: inversion of the twist map
```

```sage
left_lcm(other, monic=True)
```

Return the left lcm of self and other.

**INPUT:**

- other – a skew polynomial in the same ring as self
- monic – boolean (default: True). Return whether the left lcm should be normalized to be monic.

**OUTPUT:**

The left lcm of self and other, that is a skew polynomial $g$ with the following property: any skew polynomial divides $g$ on the right iff it divides both self and other on the right. If monic is True, $g$ is in addition monic. (With this extra condition, it is uniquely determined.)

**Note:** Works only if the base ring is a field (otherwise left lcm do not exist in general).

**EXAMPLES:**

```sage
k.<t> = GF(5^3)
Frob = k.frobenius_endomorphism()
S.<x> = k['x',Frob]
a = (x + t^2) * (x + t)
b = 2 * (x^2 + t + 1) * (x*t)
c = a.left_lcm(b); c
x^5 + (2*t^2 + t + 4)*x^4 + (3*t^2 + 4)*x^3 + (3*t^2 + 3*t + 2)*x^2 + (t^2 + t + 2)*x
```

```sage
c.is_right_divisible_by(a)
True
c.is_right_divisible_by(b)
True
a.degree() + b.degree() == c.degree() + a.right_gcd(b).degree()
True
```

Specifying monic=False, we can get a nonmonic gcd:
```python
sage: a.left_lcm(b,monic=False)
(t^2 + t)*x^5 + (4*t^2 + 4*t + 1)*x^4 + (t + 1)*x^3 + (t^2 + 2)*x^2 + (3*t + 4)*x
```

The base ring needs to be a field:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t^2) * (x + t)
sage: b = 2 * (x^2 + t + 1) * (x * t)
sage: a.left_lcm(b)
Traceback (most recent call last):
 ...
TypeError: the base ring must be a field
```

left_mod(other)

Return the remainder of left division of self by other.

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = 1 + t*x^2
sage: b = x + 1
sage: a.left_mod(b)
2*t^2 + 4*t
```

left_monic()

Return the unique monic skew polynomial \( m \) which divides self on the left and has the same degree.

Given a skew polynomial \( p \) of degree \( n \), its left monic is given by \( m = p\sigma^{-n}(1/k) \), where \( k \) is the leading coefficient of \( p \), i.e. by the appropriate scalar multiplication on the right.

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
sage: b = a.left_monic(); b
x^3 + (4*t^2 + 3*t)*x^2 + (4*t + 2)*x + 2*t^2 + 4*t + 3
```

Check list:

```python
sage: b.degree() == a.degree()
True
sage: b.is_left_divisible_by(a)
True
sage: twist = S.twist_map(-a.degree())
sage: a == b * twist(a.leading_coefficient())
True
```

Note that \( b \) does not divide \( a \) on the right:
This function does not work if the leading coefficient is not a unit:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = t*x
sage: a.left_monic()
Traceback (most recent call last):
 ...
NotImplementedError: the leading coefficient is not a unit
```

`left_xgcd(other, monic=True)`

Return the left gcd of `self` and `other` along with the coefficients for the linear combination.

If `a` is `self` and `b` is `other`, then there are skew polynomials `u` and `v` such that `g = au + bv`, where `g` is the left gcd of `a` and `b`. This method returns `(g, u, v)`.

**INPUT:**
- `other` – a skew polynomial in the same ring as `self`
- `monic` – boolean (default: `True`). Return whether the left gcd should be normalized to be monic.

**OUTPUT:**
- The left gcd of `self` and `other`, that is a skew polynomial `g` with the following property: any skew polynomial is divisible on the left by `g` iff it is divisible on the left by both `self` and `other`. If `monic` is `True`, `g` is in addition monic. (With this extra condition, it is uniquely determined.)
- Two skew polynomials `u` and `v` such that:

  \[ g = a \cdot u + b \cdot v, \]

  where `s` is `self` and `b` is `other`.

**Note:** Works only if following two conditions are fulfilled (otherwise left gcd do not exist in general): 1) the base ring is a field and 2) the twist map on this field is bijective.

**EXAMPLES:**

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: g,u,v = a.left_xgcd(b); g
x + t
sage: a*u + b*v == g
True
```

Specifying `monic=False`, we can get a nonmonic gcd:

```python
sage: g,u,v = a.left_xgcd(b, monic=False); g
2*t*x + 4*t + 2
sage: a*u + b*v == g
True
```
The base ring must be a field:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_xgcd(b)
Traceback (most recent call last):
 ...TypeError: the base ring must be a field
```

And the twist map must be bijective:

```python
sage: FR = R.fraction_field()
sage: f = FR.hom([FR(t)^2])
sage: S.<x> = FR['x',f]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_xgcd(b)
Traceback (most recent call last):
 ...NotImplementedError: inversion of the twist map
```

```
Field of Univariate Polynomial Ring in t over Rational Field
 Defn: t |--> t^2
```

**multi_point_evaluation** *(eval_pts)*

Evaluate self at list of evaluation points.

**INPUT:**

- • eval_pts – list of points at which self is to be evaluated

**OUTPUT:**

List of values of self at the eval_pts.

**Todo:** This method currently trivially calls the evaluation function repeatedly. If fast skew polynomial multiplication is available, an asymptotically faster method is possible using standard divide and conquer techniques and `sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general.minimal_vanishing_polynomial()`.

**EXAMPLES:**

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x + t
sage: eval_pts = [1, t, t^2]
sage: c = a.multi_point_evaluation(eval_pts); c
[t + 1, 3*t^2 + 4*t + 4, 4*t]
sage: c == [a(e) for e in eval_pts]
True
```

**number_of_terms** *

Return the number of non-zero coefficients of self.

This is also known as the weight, hamming weight or sparsity.
EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.number_of_terms()
3
```

This is also an alias for `hamming_weight`:

```python
sage: a.hamming_weight()
3
```

`operator_eval(eval_pt)`

Evaluate `self` at `eval_pt` by the operator evaluation method.

**INPUT:**

- `eval_pt` – element of the base ring of `self`

**OUTPUT:**

The value of the polynomial at the point specified by the argument.

**EXAMPLES:**

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: T.<x> = k['x',Frob]
sage: a = 3*t^2*x^2 + (t + 1)*x + 2
sage: a(t) # indirect test
2*t^2 + 2*t + 3
sage: a.operator_eval(t)
2*t^2 + 2*t + 3
```

Evaluation points outside the base ring is usually not possible due to the twist map:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = t*x + 1
sage: a.operator_eval(1/t)
Traceback (most recent call last):
 ...
TypeError: 1/t fails to convert into the map's domain Univariate Polynomial
 in t over Rational Field, but a `pushforward` method is not properly
 implemented
```

`padded_list(n=None)`

Return list of coefficients of `self` up to (but not including) degree `n`.

Includes 0’s in the list so that the list always has length exactly `n`.

**INPUT:**

- `n` – (default: None); if given, an integer that is at least 0

**EXAMPLES:**

4.1. Univariate Skew Polynomials 461
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]

sage: a = 1 + t*x^3 + t^2*x^5
sage: a.padded_list()
[1, 0, 0, t, 0, t^2]
sage: a.padded_list(10)
[1, 0, 0, t, 0, t^2, 0, 0, 0, 0]
sage: len(a.padded_list(10))
10
sage: a.padded_list(3)
[1, 0, 0]
sage: a.padded_list(0)
[]
sage: a.padded_list(-1)
Traceback (most recent call last):
  ... ValueError: n must be at least 0

prec()
Return the precision of self.
This is always infinity, since polynomials are of infinite precision by definition (there is no big-oh).

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: x.prec()
+Infinity

right_divides(other)
Check if self divides other on the right.

INPUT:
• other—a skew polynomial in the same ring as self

OUTPUT:
Return True or False.

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: a.right_divides(c)
False
sage: b.right_divides(c)
True

Divisibility by 0 does not make sense:

sage: S(0).right_divides(c)
Traceback (most recent call last):
  ...
ZeroDivisionError: division by zero is not valid

This function does not work if the leading coefficient of the divisor is not a unit:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + 2*x + t
sage: b = (t+1)*x + t^2
sage: c = a*b
sage: b.right_divides(c)
Traceback (most recent call last):
 ... NotImplementedError: the leading coefficient of the divisor is not invertible
```

```python
right_gcd(other, monic=True)
```

Return the right gcd of `self` and `other`.

**INPUT:**
- `other` – a skew polynomial in the same ring as `self`
- `monic` – boolean (default: True). Return whether the right gcd should be normalized to be monic.

**OUTPUT:**

The right gcd of `self` and `other`, that is a skew polynomial `g` with the following property: any skew polynomial is divisible on the right by `g` iff it is divisible on the right by both `self` and `other`. If monic is True, `g` is in addition monic. (With this extra condition, it is uniquely determined.)

**Note:** Works only if the base ring is a field (otherwise right gcd do not exist in general).

**EXAMPLES:**

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_gcd(b)
x + t
```

Specifying `monic=False`, we can get a nonmonic gcd:

```python
sage: a.right_gcd(b,monic=False)
(4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3
```

The base ring need to be a field:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_gcd(b)
```

(continues on next page)
right_lcm(other, monic=True)

Return the right lcm of self and other.

INPUT:

• other – a skew polynomial in the same ring as self
• monic – boolean (default: True). Return whether the right lcm should be normalized to be monic.

OUTPUT:

The right lcm of self and other, that is a skew polynomial \( g \) with the following property: any skew polynomial divides \( g \) on the left iff it divides both self and other on the left. If monic is True, \( g \) is in addition monic. (With this extra condition, it is uniquely determined.)

**Note:** Works only if two following conditions are fulfilled (otherwise right lcm do not exist in general): 1) the base ring is a field and 2) the twist map on this field is bijective.

**EXAMPLES:**

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: c = a.right_lcm(b); c
x^4 + (2*t^2 + t + 2)*x^3 + (3*t^2 + 4*t + 1)*x^2 + (3*t^2 + 4*t + 1)*x + t^2
˓→ 4
sage: c.is_left_divisible_by(a)
True
sage: c.is_left_divisible_by(b)
True
sage: a.degree() + b.degree() == c.degree() + a.left_gcd(b).degree()
True

Specifying monic=False, we can get a nonmonic gcd:

```python
sage: a.right_lcm(b,monic=False)
2*t*x^4 + (3*t + 1)*x^3 + (4*t^2 + 4*t + 3)*x^2
+ (3*t^2 + 4*t + 2)*x + 3*t^2 + 2*t + 3
```

The base ring needs to be a field:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: a.right_lcm(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field
```
And the twist map needs to be bijective:

```sage
sage: FR = R.fraction_field()
sage: f = FR.hom([FR(t)^2])
sage: S.<x> = FR['x',f]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: a.right_lcm(b)
Traceback (most recent call last):
  ... 
NotImplementedError: inversion of the twist map

Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field
  Defn: t |--> t^2
```

right_mod(other)

Return the remainder of right division of `self` by `other`.

EXAMPLES:

```sage
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + t*x^2
sage: b = x + 1
sage: a % b
```

```
t + 1
```

```sage
sage: (x^3 + x - 1).right_mod(x^2 - 1)
```

```
t - 1
```

right_monic()

Return the unique monic skew polynomial \(m \) which divides `self` on the right and has the same degree.

Given a skew polynomial \(p \) of degree \(n \), its left monic is given by \(m = (1/k) \times p \), where \(k \) is the leading coefficient of \(p \), i.e. by the appropriate scalar multiplication on the left.

EXAMPLES:

```sage
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2
sage: b = a.right_monic(); b
```

```
x^3 + (2*t^2 + 3*t + 4)*x^2 + (3*t^2 + 4*t + 1)*x + 2*t^2 + 4*t + 3
```

Check list:

```sage
sage: b.degree() == a.degree() 
True
sage: b.is_right_divisible_by(a) 
True
sage: a == a.leading_coefficient() * b 
True
```

Note that \(b \) does not divide \(a \) on the right:

```sage
sage: a.is_left_divisible_by(b) 
False
```

This function does not work if the leading coefficient is not a unit:

4.1. Univariate Skew Polynomials 465
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = t*x
sage: a.right_monic()
Traceback (most recent call last):
 ... NotImplementedError: the leading coefficient is not a unit

right_xgcd (other, monic=True)

Return the right gcd of self and other along with the coefficients for the linear combination.

If a is self and b is other, then there are skew polynomials u and v such that \(g = ua + vb \), where g is the right gcd of a and b. This method returns \((g, u, v)\).

INPUT:

- other – a skew polynomial in the same ring as self
- monic – boolean (default: True). Return whether the right gcd should be normalized to be monic.

OUTPUT:

- The right gcd of self and other, that is a skew polynomial g with the following property: any skew polynomial is divisible on the right by g iff it is divisible on the right by both self and other. If monic is True, g is in addition monic. (With this extra condition, it is uniquely determined.)
- Two skew polynomials u and v such that:

\[
g = u \cdot a + v \cdot b
\]

where a is self and b is other.

Note: Works only if the base ring is a field (otherwise right gcd do not exist in general).

EXAMPLES:

sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: g,u,v = a.right_xgcd(b); g
x + t
sage: u*a + v*b == g
True

Specifying monic=False, we can get a nonmonic gcd:

sage: g,u,v = a.right_xgcd(b,monic=False); g
(4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3
sage: u*a + v*b == g
True

The base ring must be a field:
```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_xgcd(b)
Traceback (most recent call last):
  ...
TypeError: the base ring must be a field
```

shift \((n)\)

Return \(\text{self} \) multiplied on the right by the power \(x^n\).

If \(n\) is negative, terms below \(x^n\) will be discarded.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^5 + t^4*x^4 + t^2*x^2 + t^10
sage: a.shift(0)
x^5 + t^4*x^4 + t^2*x^2 + t^10
sage: a.shift(-1)
x^4 + t^4*x^3 + t^2*x
sage: a.shift(-5)
1
sage: a.shift(2)
x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2
```

One can also use the infix shift operator:

```
sage: a >> 2
x^3 + t^4*x^2 + t^2
sage: a << 2
x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2
```

square ()

Return the square of \(\text{self}\).

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + t; a
x + t
sage: a.square()
x^2 + (2*t + 1)*x + t^2
sage: a.square() == a*a
True
```

variable_name ()

Return the string name of the variable used in \(\text{self}\).

EXAMPLES:

```
```

4.1. Univariate Skew Polynomials 467
class sage.rings.polynomial.skew_polynomial_element.SkewPolynomialBaseringInjection

Bases: sage.categories.morphism.Morphism

Representation of the canonical homomorphism from a ring R into a skew polynomial ring over R.

This class is necessary for automatic coercion from the base ring to the skew polynomial ring.

See also:

PolynomialBaseringInjection

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: S.coerce_map_from(S.base_ring())
#indirect doctest
Skew Polynomial base injection morphism:
  From: Univariate Polynomial Ring in t over Rational Field
  To:  Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
```

an_element()

Return an element of the codomain of the ring homomorphism.

EXAMPLES:

```
sage: from sage.rings.polynomial.skew_polynomial_element import SkewPolynomialBaseringInjection
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: m = SkewPolynomialBaseringInjection(k, k['x', Frob])
sage: m.an_element()
x
```

section()

Return the canonical homomorphism from the constants of a skew polynomial ring to the base ring according to self.

class sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense

Bases: sage.rings.polynomial.skew_polynomial_element.SkewPolynomial

Generic implementation of dense skew polynomial supporting any valid base ring and twist map.

coefficients(sparse=True)

Return the coefficients of the monomials appearing in self.

If sparse=True (the default), return only the non-zero coefficients. Otherwise, return the same value as self.list().

EXAMPLES:
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.coefficients()
[t^2 + 1, t + 1, 1]
sage: a.coefficients(sparse=False)
[t^2 + 1, 0, t + 1, 0, 1]

degree()
Return the degree of self.

By convention, the zero skew polynomial has degree −1.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x + 1
sage: a.degree()
3

By convention, the degree of 0 is −1:

sage: S(0).degree()
-1

dict()
Return a dictionary representation of self.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2012 + t*x^1006 + t^3 + 2*t
sage: a.dict()
{0: t^3 + 2*t, 1006: t, 2012: 1}

left_power_mod(exp, modulus)
Return the remainder of \texttt{self**exp} in the left euclidean division by \texttt{modulus}.

INPUT:
- \texttt{exp} – an Integer
- \texttt{modulus} – a skew polynomial in the same ring as \texttt{self}

OUTPUT:
Remainder of \texttt{self**exp} in the left euclidean division by \texttt{modulus}.

REMARK:
The quotient of the underlying skew polynomial ring by the principal ideal generated by \texttt{modulus} is in general not a ring.
As a consequence, Sage first computes exactly \texttt{self**exp} and then reduce it modulo \texttt{modulus}.

EXAMPLES:
```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x + t
sage: modulus = x^3 + t*x^2 + (t+3)*x - 2
sage: a.left_power_mod(100,modulus)
(4*t^2 + t + 1)*x^2 + (t^2 + 4*t + 1)*x + 3*t^2 + 3*t
```

left_quo_rem(other)

Return the quotient and remainder of the left euclidean division of self by other.

INPUT:

- other—a skew polynomial in the same ring as self

OUTPUT:

- the quotient and the remainder of the left euclidean division of this skew polynomial by other

Note: This will fail if the leading coefficient of other is not a unit or if Sage can’t invert the twist map.

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
sage: b = (3*t^2 + 4*t + 2)*x^2 + (2*t^2 + 4*t + 3)*x + 2*t^2 + t + 1
sage: q,r = a.left_quo_rem(b)
sage: a == b*q + r
True
```

In the following example, Sage does not know the inverse of the twist map:

```python
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (-2*t^2 - t + 1)*x^3 + (-t^2 + t)*x^2 + (-12*t - 2)*x - t^2 - 95*t + 1
sage: b = x^2 + (5*t - 6)*x - 4*t^2 + 4*t - 1
sage: a.left_quo_rem(b)
Traceback (most recent call last):
  ... 
NotImplementedError: inversion of the twist map Ring endomorphism of
  Univariate Polynomial Ring in t over Integer Ring
  Defn: t |--> t + 1
```

list(copy=True)

Return a list of the coefficients of self.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
```

(continues on next page)
Note that l is a list, it is mutable, and each call to the list method returns a new list:

```
sage: type(l)
<... 'list'>
sage: l[0] = 5
sage: a.list()
[t^2 + 1, 0, t + 1, 0, 1]
```

`right_power_mod(exp, modulus)`

Return the remainder of $self^{\times exp}$ in the right euclidean division by $modulus$.

INPUT:

- `exp` – an Integer
- `modulus` – a skew polynomial in the same ring as $self$

OUTPUT:

Remainder of $self^{\times exp}$ in the right euclidean division by $modulus$.

REMARK:

The quotient of the underlying skew polynomial ring by the principal ideal generated by $modulus$ is in general not a ring.

As a consequence, Sage first computes exactly $self^{\times exp}$ and then reduce it modulo $modulus$.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x + t
sage: b = a^10  # short form for `a._pow_(10)`
sage: b == a*a*a*a*a*a*a*a*a*a
True
sage: modulus = x^3 + t*x^2 + (t+3)*x - 2
sage: br = a.right_power_mod(10,modulus); br
(t^2 + t)*x^2 + (3*t^2 + 1)*x + t^2 + t
sage: rq, rr = b.right_quo_rem(modulus)
sage: br == rr
True
sage: a.right_power_mod(100,modulus)
(2*t^2 + 3)*x^2 + (t^2 + 4*t + 2)*x + t^2 + 2*t + 1
```

`right_quo_rem(other)`

Return the quotient and remainder of the right euclidean division of $self$ by $other$.

INPUT:

- `other` – a skew polynomial in the same ring as $self$

OUTPUT:

- the quotient and the remainder of the left euclidean division of this skew polynomial by $other`
Note: This will fail if the leading coefficient of the divisor is not a unit.

EXAMPLES:

```python
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = S.random_element(degree=4); a
t^2*x^4 + (-12*t^2 - 2*t - 1)*x^3 + (-95*t^2 + t + 2)*x^2 + (-t^2 + t)*x + 2*t - 8

sage: b = S.random_element(monic=True); b
x^2 + (4*t^2 - t - 2)*x - t^2 + t - 1

sage: q,r = a.right_quo_rem(b)
sage: a == q*b + r
True
```

The leading coefficient of the divisor need to be invertible:

```python
sage: c = S.random_element(); c
(-4*t^2 + t)*x^2 - 2*t^2*x + 5*t^2 - 6*t - 4

sage: a.right_quo_rem(c)
Traceback (most recent call last):
  ...:
NotImplementedError: the leading coefficient of the divisor is not invertible
```

truncate

Return the polynomial resulting from discarding all monomials of degree at least n.

EXAMPLES:

```python
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x

sage: a.truncate(4)
t*x^3 + (t + 1)*x^2

sage: a.truncate(3)
(t + 1)*x^2
```

valuation

Return the minimal degree of a non-zero monomial of self.

By convention, the zero skew polynomial has valuation $+\infty$.

EXAMPLES:

```python
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x

sage: a.valuation()
1

sage: S(0).valuation()
+Infinity
```

By convention, the valuation of 0 is $+\infty$.
4.2 Constructor for skew polynomial rings

This module provides the function `SkewPolynomialRing()`, which constructs rings of univariate skew polynomials, and implements caching to prevent the same ring being created in memory multiple times (which is wasteful and breaks the general assumption in Sage that parents are unique).

AUTHOR:
- Xavier Caruso (2012-06-29): initial version
- Arpit Merchant (2016-08-04): improved docstrings, added doctests and refactored method
- Johan Rosenkilde (2016-08-03): changes to import format

```
sage.rings.polynomial.skew_polynomial_ring_constructor.SkewPolynomialRing(base_ring, base_ring_automorphism=None, names=None, sparse=False)
```

Return the globally unique skew polynomial ring with the given properties and variable names.

Given a ring R and a ring automorphism σ of R, the ring of skew polynomials $R[X, \sigma]$ is the usual abelian group polynomial $R[X]$ equipped with the modification multiplication deduced from the rule $Xa = \sigma(a)X$.

See also:
- `sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general`
- `sage.rings.polynomial.skew_polynomial_element.SkewPolynomial`

INPUT:
- `base_ring` – a commutative ring
- `base_ring_automorphism` – an automorphism of the base ring (also called twisting map)
- `names` – a string or a list of strings

Note: The current implementation of skew polynomial rings does not support derivations. Sparse skew polynomials and multivariate skew polynomials are also not implemented.

OUTPUT:

A univariate skew polynomial ring over $base_ring$ twisted by $base_ring_automorphism$ when $names$ is a string with no commas (,) or a list of length 1. Otherwise we raise a `NotImplementedError` as multivariate skew polynomial rings are not yet implemented.

UNIQUENESS and IMMUTABILITY:

In Sage, there is exactly one skew polynomial ring for each triple (base ring, twisting map, name of the variable).

EXAMPLES of VARIABLE NAME CONTEXT:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = SkewPolynomialRing(R, sigma); S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
twisted by t |--> t + 1
```
The names of the variables defined above cannot be arbitrarily modified because each skew polynomial ring is unique in Sage and other objects in Sage could have pointers to that skew polynomial ring.

However, the variable can be changed within the scope of a `with` block using the `localvars` context:

```python
sage: with localvars(S, ['y']):
    print(S)
Skew Polynomial Ring in y over Univariate Polynomial Ring in t over Integer Ring
t twisted by t |--> t + 1
```

SQUARE BRACKETS NOTATION:

You can alternatively create a skew polynomial ring over R twisted by `base_ring_automorphism` by writing `$R['varname', base_ring_automorphism]`.

EXAMPLES:

We first define the base ring:

```python
sage: R.<t> = ZZ[]; R
Univariate Polynomial Ring in t over Integer Ring
```

and the twisting map:

```python
sage: base_ring_automorphism = R.hom([t+1]); base_ring_automorphism
Ring endomorphism of Univariate Polynomial Ring in t over Integer Ring
    Defn: t |--> t + 1
```

Now, we are ready to define the skew polynomial ring:

```python
sage: S = SkewPolynomialRing(R, base_ring_automorphism, names='x'); S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
t twisted by t |--> t + 1
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:

```python
sage: S.<x> = SkewPolynomialRing(R, base_ring_automorphism)
sage: (x + t)^2
x^2 + (2*t + 1)*x + t^2
```

Here is an example with the square bracket notations:

```python
sage: S.<x> = R['x', base_ring_automorphism]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
t twisted by t |--> t + 1
```

Rings with different variables names are different:

```python
sage: R['x', base_ring_automorphism] == R['y', base_ring_automorphism]
False
```

Todo:

- Sparse Skew Polynomial Ring
- Multivariate Skew Polynomial Ring
- Add derivations.
4.3 Skew Univariate Polynomial Rings

This module provides the SkewPolynomialRing_general, which constructs a general dense univariate skew polynomials over commutative base rings with automorphisms over the base rings. This is usually accessed only indirectly through the constructor sage.rings.polynomial.skew_polynomial_constructor.SkewPolynomialRing().

See SkewPolynomialRing_general for a definition of a univariate skew polynomial ring.

AUTHOR:

• Xavier Caruso (2012-06-29): initial version
• Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods
• Johan Rosenkilde (2016-08-03): changes for bug fixes, docstring and doctest errors

class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general(base_ring, twist_map, name, sparse, element_class)

Bases: sage.rings.ring.Algebra, sage.structure.unique_representation.UniqueRepresentation

A general implementation of univariate skew polynomialring over a commutative ring.

Let R be a commutative ring, and let σ be an automorphism of R. The ring of skew polynomials $R[X, \sigma]$ is the polynomial ring $R[X]$, where the addition is the usual polynomial addition, but the multiplication operation is defined by the modified rule

$$X \ast a = \sigma(a)X.$$

This means that $R[X, \sigma]$ is a non-commutative ring. Skew polynomials were first introduced by Ore [Ore33].

EXAMPLES:

```python
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = SkewPolynomialRing(R, sigma); S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
   twisted by t |---> t + 1
```

One can also use a shorter syntax:

```python
sage: S.<x> = R['x', sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
   twisted by t |---> t + 1
```

If we omit the diamond notation, the variable holding the indeterminate is not assigned:

```python
sage: Sy = R['y', sigma]
sage: y
Traceback (most recent call last):
```

(continues on next page)
Note however that contrary to usual polynomial rings, we cannot omit the variable name on the RHS, since this collides with the notation for creating polynomial rings:

```sage
sage: Sz.<z> = R[σ]
Traceback (most recent call last):
  ...
ValueError: variable name 'Ring endomorphism of Univariate Polynomial Ring in t
˓
→ over Integer Ring
  Defn: t |--> t + 1' is not alphanumeric
```

Of course, skew polynomial rings with different twist maps are not equal either:

```sage
sage: R['x',σ] == R['x',σ^2]
False
```

Saving and loading of polynomial rings works:

```sage
sage: loads(dumps(R['x',σ])) == R['x',σ]
True
```

There is a coercion map from the base ring of the skew polynomial rings:

```sage
sage: S.has_coerce_map_from(R)
True
sage: x.parent()
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
  twisted by t |--> t + 1
sage: t.parent()
Univariate Polynomial Ring in t over Integer Ring
sage: y = x+t; y
x + t
sage: y.parent() is S
True
```

See also:

`sage.rings.polynomial.skew_polynomial_ring_constructor.SkewPolynomialRing()` `sage.rings.polynomial.skew_polynomial_element`

REFERENCES:

`change_var(var)`

Return the skew polynomial ring in variable `var` with the same base ring and twist map as `self`.

INPUT:

• `var` – a string representing the name of the new variable.

OUTPUT:

`self` with variable name changed to `var`.

EXAMPLES:
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: R.<x> = SkewPolynomialRing(k,Frob); R
Skew Polynomial Ring in x over Finite Field in t of size 5^3 twisted by t |--> t^5
sage: Ry = R.change_var('y'); Ry
Skew Polynomial Ring in y over Finite Field in t of size 5^3 twisted by t |--> t^5
sage: Ry is R.change_var('y')
True

characteristic()

Return the characteristic of the base ring of self.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: R['x',sigma].characteristic()
0
```

```python
sage: k.<u> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: k['y',Frob].characteristic()
5
```

gen(n=0)

Return the indeterminate generator of this skew polynomial ring.

INPUT:

- n – index of generator to return (default: 0). Exists for compatibility with other polynomial rings.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
sage: y = S.gen(); y
x
sage: y == x
True
sage: y is x
True
sage: S.gen(0)
```

This is also known as the parameter:

```python
sage: S.parameter() is S.gen()
True
```

gens_dict()

Return a {name: variable} dictionary of the generators of self.

EXAMPLES:

```python
sage: S gens_dict()```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = SkewPolynomialRing(R,sigma)
sage: S.gens_dict()
{'x': x}

**is_commutative()**

Return True if this skew polynomial ring is commutative, i.e. if the twist map is the identity.

**EXAMPLES:**

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: S.is_commutative() # False
sage: T.<y> = k['y',Frob^3]
sage: T.is_commutative() # True
```

**is_exact()**

Return True if elements of this skew polynomial ring are exact. This happens if and only if elements of the base ring are exact.

**EXAMPLES:**

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: S.is_exact() # True
sage: S.base_ring().is_exact() # True
sage: R.<u> = k[]
sage: sigma = R.hom([u+u^2])
sage: T.<y> = R['y',sigma]
sage: T.is_exact() # False
sage: T.base_ring().is_exact() # False
```

**is_finite()**

Return False since skew polynomial rings are not finite (unless the base ring is 0.)

**EXAMPLES:**

```
sage: k.<t> = GF(5^3)
sage: k.is_finite() # True
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: S.is_finite() # False
```

**is_sparse()**

Return True if the elements of this polynomial ring are sparsely represented.
Warning: Since sparse skew polynomials are not yet implemented, this function always returns False.

EXAMPLES:

```
sage: R.<t> = RR[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: S.is_sparse()
False
```

```
lagrange_polynomial(points)
```

Return the minimal-degree polynomial which interpolates the given points.

More precisely, given \( n \) pairs \((x_1, y_1), \ldots, (x_n, y_n) \) \( \in R^2 \), where \( R \) is self.base_ring(), compute a skew polynomial \( p(x) \) such that \( p(x_i) = y_i \) for each \( i \), under the condition that the \( x_i \) are linearly independent over the fixed field of self.twist_map().

If the \( x_i \) are linearly independent over the fixed field of self.twist_map() then such a polynomial is guaranteed to exist. Otherwise, it might exist depending on the \( y_i \), but the algorithm used in this implementation does not support that, and so an error is always raised.

INPUT:

- points – a list of pairs \((x_1, y_1), \ldots, (x_n, y_n)\) of elements of the base ring of self.
  
The \( x_i \) should be linearly independent over the fixed field of self.twist_map().

OUTPUT:

The Lagrange polynomial.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: points = [(t, 3*t^2 + 4*t + 4), (t^2, 4*t)]
sage: d = S.lagrange_polynomial(points); d
x + t
```

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: T.<x> = R['x', sigma]
sage: points = [(1, t^2 + 3*t + 4), (t, 2*t^2 + 3*t + 1), (t^2, t^2 + 3*t + 4)]
sage: p = T.lagrange_polynomial(points); p
((-t^4 - 2*t - 3)/-2)*x^2 + (-t^4 - t^3 - t^2 - 3*t - 2)*x + (-t^4 - 2*t^3 - 4*t^2 - 10*t - 9)/-2
```

```
sage: p.multi_point_evaluation([1, t, t^2]) == [t^2 + 3*t + 4, 2*t^2 + 3*t + 1, t^2 + 3*t + 4]
True
```

If the \( x_i \) are linearly dependent over the fixed field of self.twist_map(), then an error is raised:

```
sage: T.lagrange_polynomial([(t, 1), (2*t, 3)])
Traceback (most recent call last):
 ...
ValueError: the given evaluation points are linearly dependent over the fixed field of the twist map, so a Lagrange polynomial could not be determined (and might not exist).
```

```
minimal_vanishing_polynomial(eval_pts)
```

Return the minimal-degree, monic skew polynomial which vanishes at all the given evaluation points.
The degree of the vanishing polynomial is at most the length of \texttt{eval_pts}. Equality holds if and only if the elements of \texttt{eval_pts} are linearly independent over the fixed field of \texttt{self.twist_map()}.  

**INPUT:**  
- \texttt{eval_pts} – list of evaluation points which are linearly independent over the fixed field of the twist map of the associated skew polynomial ring  

**OUTPUT:**  
The minimal vanishing polynomial.  

**EXAMPLES:**

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: eval_pts = [1, t, t^2]
sage: b = S.minimal_vanishing_polynomial(eval_pts); b
x^3 + 4
```

The minimal vanishing polynomial evaluates to 0 at each of the evaluation points:

```python
sage: eval = b.multi_point_evaluation(eval_pts); eval
[0, 0, 0]
```

If the evaluation points are linearly dependent over the fixed field of the twist map, then the returned polynomial has lower degree than the number of evaluation points:

```python
sage: S.minimal_vanishing_polynomial([t])
x + 3*t^2 + 3*t
sage: S.minimal_vanishing_polynomial([t, 3*t])
x + 3*t^2 + 3*t
```

**ngens ()**

Return the number of generators of this skew polynomial ring, which is 1.  

**EXAMPLES:**

```python
sage: R.<t> = RR[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
sage: y = S.gen(); y
x
```

**parameter \(n=0\)**

Return the indeterminate generator of this skew polynomial ring.  

**INPUT:**  
- \texttt{n} – index of generator to return (default: 0). Exists for compatibility with other polynomial rings.  

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
sage: y = S.gen(); y
x
```
This is also known as the parameter:

```
sage: S.parameter() is S.gen()
True
```

**random_element** *(degree=2, monic=False, *args, **kwds)*

Return a random skew polynomial in `self`.

**INPUT:**

- degree – (default: 2) integer with degree or a tuple of integers with minimum and maximum degrees
- monic – (default: False) if True, return a monic skew polynomial
- *args, **kwds – passed on to the random_element method for the base ring

**OUTPUT:**

Skew polynomial such that the coefficients of $x^i$, for $i$ up to `degree`, are random elements from the base ring, randomized subject to the arguments *args and **kwds.

**EXAMPLES:**

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: S.random_element() # random
(2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
sage: S.random_element(monic=True) # random
x^2 + (2*t^2 + t + 1)*x + 3*t^2 + 3*t + 2
```

Use `degree` to obtain polynomials of higher degree

```
sage: p = S.random_element(degree=5) # random (t^2 + 3*t)*x^4 + (4*t + 4)*x^3 + (4*t^2 + 4*t)*x^2 + (2*t^2 + 1)*x + 3
```

When `monic` is False, the returned skew polynomial may have a degree less than `degree` (it happens when the random leading coefficient is zero). However, if `monic` is True, this can’t happen:

```
sage: p = S.random_element(degree=4, monic=True)
sage: p.leading_coefficient() == S.base_ring().one()
True
sage: p.degree() == 4
True
```

If a tuple of two integers is given for the degree argument, a random integer will be chosen between the first and second element of the tuple as the degree, both inclusive:

```
sage: S.random_element((2,7)) # random
(3*t^2 + 1)*x^4 + (4*t + 2)*x^3 + (4*t + 1)*x^2 + (t^2 + 3*t + 3)*x + 3*t^2 + 2*t + 2
```

If the first tuple element is greater than the second, a `ValueError` is raised.
twist_map \( (n=1) \)
Return the twist map, the automorphism of the base ring of \( \text{self} \), iterated \( n \) times.

INPUT:
• \( n \) - an integer (default: 1)

OUTPUT:
\( n \)-th iterative of the twist map of this skew polynomial ring.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: S.twist_map()
Ring endomorphism of Univariate Polynomial Ring in t over Rational Field
 Defn: t |--> t + 1
sage: S.twist_map() == sigma
True
sage: S.twist_map(10)
Ring endomorphism of Univariate Polynomial Ring in t over Rational Field
 Defn: t |--> t + 10
```

If \( n \) is negative, Sage tries to compute the inverse of the twist map:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: T.<y> = k['y',Frob]
sage: T.twist_map(-1)
Frobenius endomorphism t |--> t^(5^2) on Finite Field in t of size 5^3
```

Sometimes it fails, even if the twist map is actually invertible:

```
sage: S.twist_map(-1)
Traceback (most recent call last):
 ...
NotImplementedError: inversion of the twist map Ring endomorphism of...
```

```
 Univariate Polynomial Ring in t over Rational Field
 Defn: t |--> t + 1
```
5.1 Fraction Field of Integral Domains

AUTHORS:

- William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
- Burcin Erocal
- Julian Rüth (2017-06-27): embedding into the field of fractions and its section

EXAMPLES:

Quotienting is a constructor for an element of the fraction field:

```sage
sage: R.<x> = QQ[]
sage: (x^2-1)/(x+1)
x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

The GCD is not taken (since it doesn’t converge sometimes) in the inexact case:

```sage
sage: Z.<z> = CC[]
sage: I = CC.gen()
sage: (1+I+z)/(z+0.1*I)
(z + 1.00000000000000 + I)/(z + 0.100000000000000*I)
sage: (1+I*z)/(z+1.1)
(I*z + 1.00000000000000)/(z + 1.10000000000000)
```

```sage
sage: F = FractionField(PolynomialRing(RationalField(),'x'))
sage: F == loads(dumps(F))
True
sage: F = FractionField(PolynomialRing(IntegerRing(),'x'))
sage: F == loads(dumps(F))
True
sage: F = FractionField(PolynomialRing(RationalField(),2,'x'))
sage: F == loads(dumps(F))
True
```

```
sage.rings.fraction_field.FractionField(R, names=None)
Create the fraction field of the integral domain R.
```
INPUT:

- \( R \) – an integral domain
- names – ignored

EXAMPLES:

We create some example fraction fields:

\[
\text{sage: } \text{FractionField}\left(\text{IntegerRing()}\right) \\
\text{Rational Field} \\
\text{sage: } \text{FractionField}\left(\text{PolynomialRing}(\text{RationalField()}, 'x')\right) \\
\text{Fraction Field of Univariate Polynomial Ring in x over Rational Field} \\
\text{sage: } \text{FractionField}\left(\text{PolynomialRing}(\text{IntegerRing()}, 'x')\right) \\
\text{Fraction Field of Univariate Polynomial Ring in x over Integer Ring} \\
\text{sage: } \text{FractionField}\left(\text{PolynomialRing}(\text{RationalField()}, 2, 'x')\right) \\
\text{Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field}
\]

Dividing elements often implicitly creates elements of the fraction field:

\[
\text{sage: } x = \text{PolynomialRing}(\text{RationalField()}, 'x').\text{gen}() \\
\text{sage: } f = x/(x+1) \\
\text{sage: } g = x**3/(x+1) \\
\text{sage: } f/g \\
1/x^2 \\
\text{sage: } g/f \\
x^2
\]

The input must be an integral domain:

\[
\text{sage: } \text{Frac}(\text{Integers}(4)) \\
\text{Traceback (most recent call last):} \\
\text{...} \\
\text{TypeError: } R \text{ must be an integral domain.}
\]

class sage.rings.fraction_field.FractionFieldEmbedding

Bases: sage.structure.coerce_maps.DefaultConvertMap_unique

The embedding of an integral domain into its field of fractions.

EXAMPLES:

\[
\text{sage: } R.<x> = \text{QQ}[x] \\
\text{sage: } f = R.\text{fraction_field}().\text{coerce_map_from}(R); f \\
\text{Coercion map:} \\
\quad \text{From: Univariate Polynomial Ring in x over Rational Field} \\
\quad \text{To: } \text{Fraction Field of Univariate Polynomial Ring in x over Rational Field}
\]

\text{is injective}()

Return whether this map is injective.

EXAMPLES:

The map from an integral domain to its fraction field is always injective:

\[
\text{sage: } R.<x> = \text{QQ}[x] \text{ sage: } R.\text{fraction_field}().\text{coerce_map_from}(R).\text{is injective}() \text{ True}
\]

\text{is surjective}()

Return whether this map is surjective.

EXAMPLES:
sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).is_surjective()
False

section()

Return a section of this map.

EXAMPLES:

sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).section()
Section map:
  From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
  To:  Univariate Polynomial Ring in x over Rational Field

class sage.rings.fraction_field.FractionFieldEmbeddingSection

Bases: sage.categories.map.Section

The section of the embedding of an integral domain into its field of fractions.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = R.fraction_field().coerce_map_from(R).section(); f
Section map:
  From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
  To:  Univariate Polynomial Ring in x over Rational Field

class sage.rings.fraction_field.FractionField_1poly_field

Bases: sage.rings.fraction_field.FractionField_generic

The fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

class_number()

Here for compatibility with number fields and function fields.

EXAMPLES:

sage: R.<t> = GF(5)[]; K = R.fraction_field()
sage: K.class_number()
1

function_field()

Return the isomorphic function field.

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: K.function_field()
Rational function field in t over Finite Field of size 5

See also:

sage.rings.function_field.RationalFunctionField.field()
maximal_order()
Return the maximal order in this fraction field.

EXAMPLES:
```
sage: K = FractionField(GF(5)['t'])
sage: K.maximal_order()
Univariate Polynomial Ring in t over Finite Field of size 5
```

ring_of_integers()
Return the ring of integers in this fraction field.

EXAMPLES:
```
sage: K = FractionField(GF(5)['t'])
sage: K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5
```

class sage.rings.fraction_field.FractionField_generic(R, element_class=<type 'sage.rings.fraction_field_element.FractionFieldElement'>, category=Category of quotient fields)

Bases: sage.rings.ring.Field

The fraction field of an integral domain.

base_ring()
Return the base ring of self.

This is the base ring of the ring which this fraction field is the fraction field of.

EXAMPLES:
```
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
```

characteristic()
Return the characteristic of this fraction field.

EXAMPLES:
```
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
sage: R = Frac(ZZ['t']); R.characteristic()
0
sage: R = Frac(GF(5)['w']); R.characteristic()
5
```

construction()
EXAMPLES:
```
sage: Frac(ZZ['x']).construction()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)
sage: K = Frac(GF(3)['t'])
sage: f, R = K.construction()
sage: f(R)
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 3
(continues on next page)```
gen (i=0)

Return the \(i \)-th generator of \(\text{self} \).

EXAMPLES:

```python
sage: R = Frac(PolynomialRing(QQ, 'z', 10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6,... →z7, z8, z9 over Rational Field
sage: R.0
z0
sage: R.gen(3)
z3
sage: R.3
z3
```

is_exact()

Return if \(\text{self} \) is exact which is if the underlying ring is exact.

EXAMPLES:

```python
sage: Frac(ZZ['x']).is_exact()
True
sage: Frac(CDF['x']).is_exact()
False
```

is_field (proof=True)

Return True, since the fraction field is a field.

EXAMPLES:

```python
sage: Frac(ZZ).is_field()
True
```

isFinite()

Tells whether this fraction field is finite.

Note: A fraction field is finite if and only if the associated integral domain is finite.

EXAMPLES:

```python
sage: Frac(QQ['a','b','c']).is_finite()
False
```

ngens()

This is the same as for the parent object.

EXAMPLES:

```python
sage: R = Frac(PolynomialRing(QQ, 'z', 10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6,... →z7, z8, z9 over Rational Field
sage: R.ngens()
10
```
random_element(*args, **kwds)

Return a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

EXAMPLES:

```python
sage: F = ZZ['x'].fraction_field()
sage: F.random_element()  # random
(2*x - 8)/(-x^2 + x)
```

```python
sage: f = F.random_element(degree=5)
sage: f.numerator().degree()  
5
sage: f.denominator().degree()  
5
```

ring()

Return the ring that this is the fraction field of.

EXAMPLES:

```python
sage: R = Frac(QQ['x,y'])
sage: R
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ring()
Multivariate Polynomial Ring in x, y over Rational Field
```

some_elements()

Return some elements in this field.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R.fraction_field().some_elements()
[0, 1, x, 2*x, x/(x^2 + 2*x + 1), 1/x^2, ...
(2*x^2 + 2)/(x^2 + 2*x + 1),
(2*x^2 + 2)/x^3, (2*x^2 + 2)/(x^2 - 1),
2]
```

sage.rings.fraction_field.is_FractionField(x)

Test whether or not x inherits from FractionField_generic.

EXAMPLES:

```python
sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(ZZ['x']))
True
sage: is_FractionField(QQ)
False
```
5.2 Fraction Field Elements

AUTHORS:

- William Stein (input from David Joyner, David Kohel, and Joe Wetherell)
- Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici’s algorithms [Ho72]

REFERENCES:

class sage.rings.fraction_field_element.FractionFieldElement
 Bases: sage.structure.element.FieldElement

EXAMPLES:

```
sage: K = FractionField(PolynomialRing(QQ, 'x'))
sage: K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads(K.dumps()) == K
True
sage: x = K.gen()
sage: f = (x^3 + x)/(17 - x^19); f
(x^3 + x)/(-x^19 + 17)
sage: loads(f.dumps()) == f
True
```

denominator()
Return the denominator of self.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.denominator()
y
```

is_one()
Return True if this element is equal to one.

EXAMPLES:

```
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one()
True
sage: (x/y).is_one()
False
```

is_square(root=False)
Return whether or not self is a perfect square.

If the optional argument root is True, then also returns a square root (or None, if the fraction field element is not square).

INPUT:

- root – whether or not to also return a square root (default: False)

OUTPUT:
• `bool` - whether or not a square
• `object` - (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: (1/t).is_square()
False
sage: (1/t^6).is_square()
True
sage: ((1+t)^4/t^6).is_square()
True
sage: (4*(1+t)^4/t^6).is_square()
True
sage: (2*(1+t)^4/t^6).is_square()
False
sage: ((1+t)/t^6).is_square()
False
sage: (4*(1+t)^4/t^6).is_square(root=True)
(True, (2*t^2 + 4*t + 2)/t^3)
sage: (2*(1+t)^4/t^6).is_square(root=True)
(False, None)
sage: R.<x> = QQ[]
sage: a = 2*(x+1)^2 / (2*(x-1)^2); a
(2*x^2 + 4*x + 2)/(2*x^2 - 4*x + 2)
sage: a.numerator().is_square()
False
sage: a.is_square()
True
sage: (0/x).is_square()
True
```

is_zero()

Return `True` if this element is equal to zero.

EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: t = F(0)/x
sage: t.is_zero()
True
sage: u = 1/x - 1/x
sage: u.is_zero()
True
sage: u.parent() is F
True
```

numerator()

Return the numerator of `self`.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
```
reduce()
Divides out the gcd of the numerator and denominator.
Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must be called manually in that case.

EXAMPLES:

```
sage: R.<x> = RealField(10)[]
sage: f = (x^2+2*x+1)/(x+1); f
(x^2 + 2.0*x + 1.0)/(x + 1.0)
sage: f.reduce(); f
x + 1.0
```

valuation(v=None)
Return the valuation of self, assuming that the numerator and denominator have valuation functions defined on them.

EXAMPLES:

```
sage: x = PolynomialRing(RationalField(),'x').gen()
sage: f = (x^3 + x)/(x^2 - 2*x^3)
sage: f
(x^2 + 1)/(-2*x^2 + x)
sage: f.valuation()
-1
sage: f.valuation(x^2+1)
1
```

class sage.rings.fraction_field_element.FractionFieldElement_1poly_field

A fraction field element where the parent is the fraction field of a univariate polynomial ring.

Many of the functions here are included for coherence with number fields.

is_integral()
Returns whether this element is actually a polynomial.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: elt = (t^2 + t - 2) / (t + 2); elt
# == (t + 2)*(t - 1)/(t + 2)
t - 1
sage: elt.is_integral()
True
sage: elt = (t^2 - t) / (t+2); elt
# == t*(t - 1)/(t + 2)
(t^2 - t)/(t + 2)
sage: elt.is_integral()
False
```

support()
Returns a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:
sage: R.<t> = QQ[]
sage: h = (t^14 + 2*t^12 - 4*t^11 - 8*t^9 + 6*t^8 + 12*t^6 - 4*t^5 - 8*t^3 + t^2 + 2)/(t^6 + 6*t^5 + 9*t^4 - 2*t^2 - 12*t - 18)
sage: h.support()
[t - 1, t + 3, t^2 + 2, t^2 + t + 1, t^4 - 2]

.. currentsection:: sage.rings.fraction_field_element.is_FractionFieldElement(x)

 Return whether or not x is a :class:`FractionFieldElement`.

 EXAMPLES:

 .. currentsection:: sage.rings.fraction_field_element.make_element(parent, numerator, denominator)

 Used for unpickling :class:`FractionFieldElement` objects (and subclasses).

 EXAMPLES:

 .. currentsection:: sage.rings.fraction_field_element.make_element_old(parent, cdict)

 Used for unpickling old :class:`FractionFieldElement` pickles.

 EXAMPLES:

5.3 Univariate rational functions over prime fields

.. currentsection:: sage.rings.fraction_field_FpT.FpT(R, names=None)

 Bases: :class:`sage.rings.fraction_field.FractionField_1poly_field`

 This class represents the fraction field GF(p)(T) for \(2 < p < 2^{16}\).

 EXAMPLES:
\texttt{sage: } 1-1/T \\ (T + 70)/T \\ \ \ \ \texttt{sage: parent}(1-1/T) \ \textit{is} \ K \\ True

\texttt{iter} (\texttt{bound}=None, \texttt{start}=None)

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: from sage.rings.fraction_field_FpT import *}
\texttt{sage: R.<t> = FpT(GF(5))['t'])}
\texttt{sage: list(R.iter(2))[350:355]}
\end{verbatim}

\[(t^2 + t + 1)/(t + 2),\]
\[(t^2 + t + 2)/(t + 2),\]
\[(t^2 + t + 4)/(t + 2),\]
\[(t^2 + 2*t + 1)/(t + 2),\]
\[(t^2 + 2*t + 2)/(t + 2)]

\textbf{class} \texttt{sage.rings.fraction_field_FpT.FpTElement}

\textbf{Bases:} \texttt{sage.structure.element.RingElement}

An element of an FpT fraction field.

\textbf{denom} ()

Returns the denominator of this element, as an element of the polynomial ring.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: K = GF(11)['t'].fraction_field()}
\texttt{sage: t = K.gen(0); a = (t + 1/t)^3 - 1}
\texttt{sage: a.denom()}
\end{verbatim}

t^3

\textbf{denominator} ()

Returns the denominator of this element, as an element of the polynomial ring.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: K = GF(11)['t'].fraction_field()}
\texttt{sage: t = K.gen(0); a = (t + 1/t)^3 - 1}
\texttt{sage: a.denominator()}
\end{verbatim}

t^3

\textbf{factor} ()

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: K = Frac(GF(5))['t'])}
\texttt{sage: t = K.gen()}
\texttt{sage: f = 2 * (t+1) * (t^2+t+1)^2 / (t-1)
\texttt{sage: factor(f)}
\end{verbatim}

\[(2) * (t + 4)^{-1} * (t + 1) * (t^2 + t + 1)^2\]

\textbf{is_square} ()

Returns True if this element is the square of another element of the fraction field.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: K = GF(13)['t'].fraction_field(); t = K.gen()}
\texttt{sage: t.is_square()}
\end{verbatim}
next ()
This function iterates through all polynomials, returning the “next” polynomial after this one.

The strategy is as follows:

- We always leave the denominator monic.
- We progress through the elements with both numerator and denominator monic, and with the denominator less than the numerator. For each such, we output all the scalar multiples of it, then all of the scalar multiples of its inverse.
- So if the leading coefficient of the numerator is less than $p-1$, we scale the numerator to increase it by 1.
- Otherwise, we consider the multiple with numerator and denominator monic.
 - If the numerator is less than the denominator (lexicographically), we return the inverse of that element.
 - If the numerator is greater than the denominator, we invert, and then increase the numerator (remaining monic) until we either get something relatively prime to the new denominator, or we reach the new denominator. In this case, we increase the denominator and set the numerator to 1.

EXAMPLES:

```python
sage: from sage.rings.fraction_field_FpT import *
sage: R.<t> = FpT(GF(3)['t'])
sage: a = R(0)
sage: for _ in range(30):
    ....:     a = a.next()
    ....:     print(a)
1
2
1/t
2/t
t
2*t
1/(t + 1)
2/(t + 1)
t + 1
2*t + 2
t/(t + 1)
2*t/(t + 1)
(t + 1)/t
(2*t + 2)/t
1/(t + 2)
2/(t + 2)
t + 2
2*t + 1
t/(t + 2)
2*t/(t + 2)
(t + 2)/t
(2*t + 1)/t
```

(continues on next page)
numer()
Returns the numerator of this element, as an element of the polynomial ring.

EXAMPLES:

```python
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.numer()
t^6 + 3*t^4 + 10*t^3 + 3*t^2 + 1
```
	numerator()
Returns the numerator of this element, as an element of the polynomial ring.

EXAMPLES:

```python
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.numerator()
t^6 + 3*t^4 + 10*t^3 + 3*t^2 + 1
```

sqrt(extend=True, all=False)
Returns the square root of this element.

INPUT:

- `extend` - bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square is not in the base ring.
- `all` - bool (default: False); if True, return all square roots of self, instead of just one.

EXAMPLES:

```python
sage: from sage.rings.fraction_field_FpT import *
sage: K = GF(7)['t'].fraction_field(); t = K.gen(0)
sage: p = (t + 2)^2/(3*t^3 + 1)^4
sage: p.sqrt()^2 == p
True
```

subs(*args, **kwds)
EXAMPLES:

```python
sage: K = Frac(GF(11)['t'])
sage: t = K.gen()
sage: f = (t+1)/(t-1)
sage: f.subs(t=2)
3
sage: f.subs(X=2)
(t + 1)/(t + 10)
```

5.3. Univariate rational functions over prime fields 495
valuation(v)

Returns the valuation of self at v.

EXAMPLES:

```sage
sage: R.<t> = GF(5)[]
sage: f = (t+1)^2 * (t^2+t+1) / (t-1)^3
sage: f.valuation(t+1)
2
sage: f.valuation(t-1)
-3
sage: f.valuation(t)
0
```

class sage.rings.fraction_field_FpT.FpT_Fp_section

Bases: sage.categories.map.Section

This class represents the section from GF(p)(t) back to GF(p)[t]

EXAMPLES:

```sage
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = GF(5).convert_map_from(K); f
Section map:
    From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
    To:   Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.FpT_Fp_section'>
```

Warning: Comparison of FpT_Fp_section objects is not currently implemented. See :trac: 23469.

```sage
sage: fprime = loads(dumps(f))
sage: fprime == f
False
sage: fprime(3) == f(3)
True
```

class sage.rings.fraction_field_FpT.FpT_Polyring_section

Bases: sage.categories.map.Section

This class represents the section from GF(p)(t) back to GF(p)[t]

EXAMPLES:

```sage
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Section map:
    From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
    To:   Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.FpT_Polyring_section'>
```
Warning: Comparison of FpT_Polyring_section objects is not currently implemented. See :trac: 23469.

```
sage: fprime = loads(dumps(f))
sage: fprime == f  
False

sage: fprime(1+t) == f(1+t)  
True
```

```python
class sage.rings.fraction_field_FpT.FpT_iter

Bases: object

Returns a class that iterates over all elements of an FpT.

EXAMPLES:

```
sage: K = GF(3)['t'].fraction_field()
sage: I = K.iter(1)
sage: list(I)
[0, 1, 2, t, t + 1, t + 2, 2*t, 2*t + 1, 2*t + 2, 1/t, 2/t, (t + 1)/t, (t + 2)/t, (2*t + 1)/t, (2*t + 2)/t, 1/(t + 1), 2/(t + 1), t/(t + 1), (t + 2)/(t + 1), 2*t/(t + 1), (2*t + 1)/(t + 1), 1/(t + 2), 2/(t + 2), (t + 1)/(t + 2), 2*t/(t + 2), (2*t + 2)/(t + 2)]
```
```
next()

x.next()-> the next value, or raise StopIteration
```
```
class sage.rings.fraction_field_FpT.Fp_FpT_coerce

Bases: sage.rings.morphism.RingHomomorphism

This class represents the coercion map from GF(p) to GF(p)(t)

EXAMPLES:
```
```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(GF(5)); f
Ring morphism:
 From: Finite Field of size 5
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.Fp_FpT_coerce'>

section()
Returns the section of this inclusion: the partially defined map from GF(p)(t) back to GF(p), defined on constant elements.

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(GF(5))
sage: g = f.section(); g
Section map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
 To: Finite Field of size 5
sage: t = K.gen()
sage: g(f(1,3,reduce=False))
2
sage: g(t)
Traceback (most recent call last):
 ... ValueError: not constant
sage: g(1/t)
Traceback (most recent call last):
 ... ValueError: not integral

class sage.rings.fraction_field_FpT.Polyring_FpT_coerce
Bases: sage.rings.morphism.RingHomomorphism

This class represents the coercion map from GF(p)[t] to GF(p)(t)

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
Ring morphism:
 From: Univariate Polynomial Ring in t over Finite Field of size 5
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.Polyring_FpT_coerce'>

section()
Returns the section of this inclusion: the partially defined map from GF(p)(t) back to GF(p)[t], defined on elements with unit denominator.

EXAMPLES:
```python
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: g = f.section(); g
Section map:
   From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
   To:   Univariate Polynomial Ring in t over Finite Field of size 5
sage: t = K.gen()
sage: g(t)
t
sage: g(1/t)
Traceback (most recent call last):
...
ValueError: not integral
```

class `sage.rings.fraction_field_FpT.ZZ_FpT_coerce`

Bases: `sage.rings.morphism.RingHomomorphism`

This class represents the coercion map from `ZZ` to `GF(p)(t)`

EXAMPLES:

```python
sage: R.<t> = GF(17)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(ZZ); f
Ring morphism:
   From: Integer Ring
   To:   Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 17
sage: type(f)
<type 'sage.rings.fraction_field_FpT.ZZ_FpT_coerce'>
```

`section()`

Returns the section of this inclusion: the partially defined map from `GF(p)(t)` back to `ZZ`, defined on constant elements.

EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(ZZ)
sage: g = f.section(); g
Composite map:
   From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
   To:   Integer Ring
   Defn: Section map:
         From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
         To:   Finite Field of size 5
         then
         Lifting map:
         From: Finite Field of size 5
         To:   Integer Ring
sage: t = K.gen()
sage: g(f(1,3,reduce=False))
2
```

(continues on next page)
sage: g(t)
Traceback (most recent call last):
 ...
ValueError: not constant
sage: g(1/t)
Traceback (most recent call last):
 ...
ValueError: not integral

sage.rings.fraction_field_FpT.unpickle_FpT_element(K, numer, denom)
Used for pickling.
6.1 Ring of Laurent Polynomials

If R is a commutative ring, then the ring of Laurent polynomials in n variables over R is $R[x_1^{±1}, x_2^{±1}, \ldots, x_n^{±1}]$. We implement it as a quotient ring $R[x_1, y_1, x_2, y_2, \ldots, x_n, y_n]/(x_1y_1 - 1, x_2y_2 - 1, \ldots, x_ny_n - 1)$.

AUTHORS:
- David Roe (2008-02-23): created
- David Loeffler (2009-07-10): cleaned up docstrings

sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing(base_ring, *args, **kwds)

Return the globally unique univariate or multivariate Laurent polynomial ring with given properties and variable name or names.

There are four ways to call the Laurent polynomial ring constructor:

1. LaurentPolynomialRing(base_ring, name, sparse=False)
2. LaurentPolynomialRing(base_ring, names, order='degrevlex')
3. LaurentPolynomialRing(base_ring, name, n, order='degrevlex')
4. LaurentPolynomialRing(base_ring, n, name, order='degrevlex')

The optional arguments sparse and order must be explicitly named, and the other arguments must be given positionally.

INPUT:
- base_ring – a commutative ring
- name – a string
- names – a list or tuple of names, or a comma separated string
- n – a positive integer
- sparse – bool (default: False), whether or not elements are sparse
- order – string or TermOrder, e.g.,
 - 'degrevlex' (default) – degree reverse lexicographic
 - 'lex' – lexicographic
- 'deglex' – degree lexicographic
- TermOrder('deglex',3) + TermOrder('deglex',3) – block ordering

OUTPUT:

LaurentPolynomialRing(base_ring, name, sparse=False) returns a univariate Laurent polynomial ring; all other input formats return a multivariate Laurent polynomial ring.

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one single-variate Laurent polynomial ring over each base ring in each choice of variable and sparseness. There is also exactly one multivariate Laurent polynomial ring over each base ring for each choice of names of variables and term order.

```
sage: R.<x,y> = LaurentPolynomialRing(QQ,2); R
Multivariate Laurent Polynomial Ring in x, y over Rational Field
sage: f = x^2 - 2*y^-2
```

You can’t just globally change the names of those variables. This is because objects all over Sage could have pointers to that polynomial ring.

```
sage: R._assign_names(['z','w'])
Traceback (most recent call last):
  ...
ValueError: variable names cannot be changed after object creation.
```

EXAMPLES:

1. LaurentPolynomialRing(base_ring, name, sparse=False)

```
sage: LaurentPolynomialRing(QQ, 'w')
Univariate Laurent Polynomial Ring in w over Rational Field
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:

```
sage: R.<w> = LaurentPolynomialRing(QQ)
sage: (1 + w)^3
1 + 3*w + 3*w^2 + w^3
```

You must specify a name:

```
sage: LaurentPolynomialRing(QQ)
Traceback (most recent call last):
  ...
TypeError: you must specify the names of the variables
```

```
sage: R.<abc> = LaurentPolynomialRing(QQ, sparse=True); R
Univariate Laurent Polynomial Ring in abc over Rational Field
sage: R.<w> = LaurentPolynomialRing(PolynomialRing(GF(7),'k'))(QQ, 'k'))
Univariate Laurent Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of size 7
```

Rings with different variables are different:

```
sage: LaurentPolynomialRing(QQ, 'x') == LaurentPolynomialRing(QQ, 'y')
False
```

2. LaurentPolynomialRing(base_ring, names, order='degrevlex')
sage: R = LaurentPolynomialRing(QQ, 'a,b,c'); R
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field

sage: S = LaurentPolynomialRing(QQ, ['a','b','c']); S
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field

sage: T = LaurentPolynomialRing(QQ, ('a','b','c')); T
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field

All three rings are identical.

sage: (R is S) and (S is T)
True

There is a unique Laurent polynomial ring with each term order:

sage: R = LaurentPolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
Multivariate Laurent Polynomial Ring in x, y, z over Rational Field

sage: S = LaurentPolynomialRing(QQ, 'x,y,z', order='invlex'); S
Multivariate Laurent Polynomial Ring in x, y, z over Rational Field

sage: S is LaurentPolynomialRing(QQ, 'x,y,z', order='invlex')
True

sage: R == S
False

3. LaurentPolynomialRing(base_ring, name, n, order='degrevlex')

If you specify a single name as a string and a number of variables, then variables labeled with numbers are created.

sage: LaurentPolynomialRing(QQ, 'x', 10)
Multivariate Laurent Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field

sage: LaurentPolynomialRing(GF(7), 'y', 5)
Multivariate Laurent Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7

sage: LaurentPolynomialRing(QQ, 'y', 3, sparse=True)
Multivariate Laurent Polynomial Ring in y0, y1, y2 over Rational Field

By calling the inject_variables() method, all those variable names are available for interactive use:

sage: R = LaurentPolynomialRing(GF(7),15,'w'); R
Multivariate Laurent Polynomial Ring in w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14 over Finite Field of size 7

sage: R.inject_variables()
Defining w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14

sage: (w0 + 2*w8 + w13)^2
w0^2 + 4*w0*w8 + 4*w8^2 + 2*w0*w13 + 4*w8*w13 + w13^2

class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic(R)
Bases: sage.rings.ring.CommutativeRing, sage.structure.parent_gens.ParentWithGens

Laurent polynomial ring (base class).

EXAMPLES:
This base class inherits from `CommutativeRing`. Since trac ticket #11900, it is also initialised as such:

```python
sage: R.<x1,x2> = LaurentPolynomialRing(QQ)
sage: R.category()
Category of commutative rings
dsage: TestSuite(R).run()
```

change_ring *(base_ring=None, names=None, sparse=False, order=None)*

EXAMPLES:

```python
sage: R = LaurentPolynomialRing(QQ, 2, 'x')
sage: R.change_ring(ZZ)
Multivariate Laurent Polynomial Ring in x0, x1 over Integer Ring
```

characteristic()

Returns the characteristic of the base ring.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ, 2, 'x').characteristic()
0
dsage: LaurentPolynomialRing(GF(3), 2, 'x').characteristic()
3
```

completion(p, prec=20, extras=None)

EXAMPLES:

```python
sage: P.<x> = LaurentPolynomialRing(QQ)
sage: PP = P.completion(x)
sage: f = 1 - 1/x
sage: PP(f)
-x^-1 + 1
sage: 1/PP(f)
-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + x^20 + O(x^21)
```

construction()

Return the construction of `self`.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ, 2, 'x,y').construction()
(LaurentPolynomialFunctor,
 Univariate Laurent Polynomial Ring in x over Rational Field)
```

fraction_field()

The fraction field is the same as the fraction field of the polynomial ring.

EXAMPLES:

```python
sage: L.<x> = LaurentPolynomialRing(QQ)
sage: L.fraction_field()
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: (x^2 - x)/(x^2 - x)
```

Chapter 6. Laurent Polynomials
gen

Returns the \(i^{th}\) generator of self. If \(i\) is not specified, then the first generator will be returned.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ, 2, 'x').gen()
x0
sage: LaurentPolynomialRing(QQ, 2, 'x').gen(0)
x0
sage: LaurentPolynomialRing(QQ, 2, 'x').gen(1)
x1
```

ideal()

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ, 2, 'x').ideal()
Traceback (most recent call last):
... Not ImplementedError
```

is_exact()

Returns True if the base ring is exact.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ, 2, 'x').is_exact()
True
sage: LaurentPolynomialRing(RDF, 2, 'x').is_exact()
False
```

is_field(proof=True)

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ, 2, 'x').is_field()
False
```

is_finite()

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ, 2, 'x').is_finite()
False
```

is_integral_domain(proof=True)

Returns True if self is an integral domain.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ, 2, 'x').is_integral_domain()
True
```

The following used to fail; see trac ticket #7530:

```python
sage: L = LaurentPolynomialRing(ZZ, 'X')
sage: L['Y']
Univariate Polynomial Ring in Y over Univariate Laurent Polynomial Ring in X
˓→ over Integer Ring
```

is_noetherian()

Returns True if self is Noetherian.

6.1. Ring of Laurent Polynomials
EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').is_noetherian()
Traceback (most recent call last):
  ...
NotImplementedError
```

`krull_dimension()`

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').krull_dimension()
Traceback (most recent call last):
  ...
NotImplementedError
```

`ngens()`

Return the number of generators of `self`.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').ngens()
2
sage: LaurentPolynomialRing(QQ,1,'x').ngens()
1
```

`polynomial_ring()`

Returns the polynomial ring associated with `self`.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').polynomial_ring()
Multivariate Polynomial Ring in x0, x1 over Rational Field
sage: LaurentPolynomialRing(QQ,1,'x').polynomial_ring()
Multivariate Polynomial Ring in x over Rational Field
```

`random_element` (*low_degree=-2, high_degree=2, terms=5, choose_degree=False, *args, **kwds*)

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').random_element()
Traceback (most recent call last):
  ...
NotImplementedError
```

`remove_var` (*var*)

EXAMPLES:

```python
sage: R = LaurentPolynomialRing(QQ,'x,y,z')
sage: R.remove_var('x')
Multivariate Laurent Polynomial Ring in y, z over Rational Field
sage: R.remove_var('x').remove_var('y')
Univariate Laurent Polynomial Ring in z over Rational Field
```

`term_order()`

Returns the term order of `self`.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').term_order()
Degree reverse lexicographic term order
```
variable_names_recursive (depth=+Infinity)
Return the list of variable names of this ring and its base rings, as if it were a single multi-variate Laurent polynomial.

INPUT:
- depth – an integer or Infinity.

OUTPUT:
A tuple of strings.

EXAMPLES:

```python
sage: T = LaurentPolynomialRing(QQ, 'x')
sage: S = LaurentPolynomialRing(T, 'y')
sage: R = LaurentPolynomialRing(S, 'z')
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')
```

class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_mpair(R)
Bases: sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic

EXAMPLES:

```python
sage: L = LaurentPolynomialRing(QQ,2,'x')
sage: type(L)
<class 'sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_mpair_with_category'>
sage: L == loads(dumps(L))
True
```

monomial (*args)
Return the monomial whose exponents are given in argument.

EXAMPLES:

```python
sage: L = LaurentPolynomialRing(QQ, 'x', 2)
sage: L.monomial(-3, 5)
x0^-3*x1^5
sage: L.monomial(1, 1)
x0*x1
sage: L.monomial(0, 0)
1
sage: L.monomial(-2, -3)
x0^-2*x1^-3
sage: x0, x1 = L.gens()
sage: L.monomial(-1, 2) == x0^-1 * x1^2
True
sage: L.monomial(1, 2, 3)
Traceback (most recent call last):
...  
TypeError: tuple key must have same length as ngens
```

6.1. Ring of Laurent Polynomials
class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_univariate(R)

Bases: sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic

EXAMPLES:

sage: L = LaurentPolynomialRing(QQ,'x')
sage: type(L)
<class 'sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_univariate_with_category'>
sage: L == loads(dumps(L))
True

sage.rings.polynomial.laurent_polynomial_ring.is_LaurentPolynomialRing(R)

Returns True if and only if R is a Laurent polynomial ring.

EXAMPLES:

sage: from sage.rings.polynomial.laurent_polynomial_ring import is_LaurentPolynomialRing
sage: P = PolynomialRing(QQ,2,'x')
sage: is_LaurentPolynomialRing(P)
False
sage: R = LaurentPolynomialRing(QQ,3,'x')
sage: is_LaurentPolynomialRing(R)
True

6.2 Elements of Laurent polynomial rings

class sage.rings.polynomial.laurent_polynomial.LaurentPolynomial

Bases: sage.structure.element.CommutativeAlgebraElement

Base class for Laurent polynomials.

change_ring(R)

Return a copy of this Laurent polynomial, with coefficients in R.

EXAMPLES:

sage: R.<x> = LaurentPolynomialRing(QQ)
sage: a = x^2 + 3*x^3 + 5*x^-1
sage: a.change_ring(GF(3))
2*x^-1 + x^2

Check that trac ticket #22277 is fixed:

sage: R.<x, y> = LaurentPolynomialRing(QQ)
sage: a = 2*x^2 + 3*x^3 + 4*x^-1
sage: a.change_ring(GF(3))
-x^2 + x^-1

hamming_weight()

Return the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

EXAMPLES:
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: f = x^3 - 1
sage: f.number_of_terms()
2

number_of_terms()

Abstract method for number of terms

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: from sage.rings.polynomial.laurent_polynomial import LaurentPolynomial
sage: LaurentPolynomial.number_of_terms(x)
Traceback (most recent call last):
  ... 
NotImplementedError
```

class sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair

Bases: sage.rings.polynomial.laurent_polynomial.LaurentPolynomial

Multivariate Laurent polynomials.

coefficient (mon)

Return the coefficient of mon in self, where mon must have the same parent as self.

The coefficient is defined as follows. If f is this polynomial, then the coefficient \(c_m \) is sum:

\[
 c_m := \sum_T \frac{T}{m}
\]

where the sum is over terms \(T \) in \(f \) that are exactly divisible by \(m \).

A monomial \(m(x, y) \) 'exactly divides' \(f(x, y) \) if \(m(x, y) \mid f(x, y) \) and neither \(x \cdot m(x, y) \) nor \(y \cdot m(x, y) \) divides \(f(x, y) \).

INPUT:

* mon – a monomial

OUTPUT:

Element of the parent of self.

Note: To get the constant coefficient, call `constant_coefficient()`.

EXAMPLES:

```python
sage: P.<x,y> = LaurentPolynomialRing(QQ)

The coefficient returned is an element of the parent of self; in this case, P.

sage: f = 2 * x * y
sage: c = f.coefficient(x*y); c
2
sage: c.parent()
Multivariate Laurent Polynomial Ring in x, y over Rational Field
```
coefficients()
Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of self.parent().

EXAMPLES:

sage: L.<x,y,z> = LaurentPolynomialRing(QQ,order='degrevlex')
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.coefficients()
[4, 3, 2, 1]
sage: L.<x,y,z> = LaurentPolynomialRing(QQ,order='lex')
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.coefficients()
[4, 1, 2, 3]

constant_coefficient()
Return the constant coefficient of self.

EXAMPLES:

sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^2 + 5*x*y)*x^-3; f
-x^6 - 7*x^-2*y^2 + 5*x^-2*y + x^-3*y^2
sage: f.constant_coefficient()
0
sage: f = (x^3 + 2*x^-2*y+y^3)*y^-3; f
x^3*y^-3 + 1 + 2*x^-2*y^-2
sage: f.constant_coefficient()
1

degree (x=None)
Returns the degree of x in self.

EXAMPLES:

sage: R.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.degree(x)
7
sage: f.degree(y)
1
sage: f.degree(z)
0
derivative (*args*)
The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_action_derivative_

EXAMPLES:

```
sage: R = LaurentPolynomialRing(ZZ,'x, y')
sage: x, y = R.gens()
sage: t = x**4*y + x*y + y + x**(-1) + y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
```

dict ()

EXAMPLES:

```
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: sorted(f.dict().items())
[((3, 1, 0), 3), ((4, 0, -2), 2), ((6, -7, 0), 1), ((7, 0, -1), 4)]
```

diff (*args*)
The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_action_derivative_

EXAMPLES:

```
sage: R = LaurentPolynomialRing(ZZ,'x, y')
sage: x, y = R.gens()
sage: t = x**4*y + x*y + y + x**(-1) + y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
```

differentiate (*args*)
The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_action_derivative_

EXAMPLES:

```
sage: R = LaurentPolynomialRing(ZZ,'x, y')
sage: x, y = R.gens()
sage: t = x**4*y + x*y + y + x**(-1) + y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
```
```python
sage: R = LaurentPolynomialRing(ZZ, 'x, y')
sage: x, y = R.gens()
sage: t = x**4*y + x*y + y + x**(-1) + y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
```

exponents()

Returns a list of the exponents of self.

EXAMPLES:

```python
sage: L.<w,z> = LaurentPolynomialRing(QQ)
sage: a = w^2*z^-1 + 3; a
w^2*z^-1 + 3
sage: e = a.exponents()
sage: e.sort(); e
[(0, 0), (2, -1)]
```

factor()

Returns a Laurent monomial (the unit part of the factorization) and a factored multi-polynomial.

EXAMPLES:

```python
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.factor()
(x^3*y^-7*z^-2) * (4*x^4*y^7*z + 3*y^8*z^2 + 2*x*y^7 + x^3*z^2)
```

has_any_inverse()

Returns True if self contains any monomials with a negative exponent, False otherwise.

EXAMPLES:

```python
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.has_any_inverse()
True
sage: g = x^2 + y^2
sage: g.has_any_inverse()
False
```

has_inverse_of(i)

INPUT:

- i – The index of a generator of self.parent()

OUTPUT:

Returns True if self contains a monomial including the inverse of self.parent().gen(i), False otherwise.

EXAMPLES:

```python
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.has_inverse_of(0)
False
```

(continues on next page)
is_constant()

Return whether this Laurent polynomial is constant.

EXAMPLES:

```python
sage: L.<a, b> = LaurentPolynomialRing(QQ)
sage: L(0).is_constant()
True
sage: L(42).is_constant()
True
sage: a.is_constant()
False
sage: (1/b).is_constant()
False
```

is_monomial()

Return True if this element is a monomial.

EXAMPLES:

```python
sage: k.<y,z> = LaurentPolynomialRing(QQ)
sage: z.is_monomial()
True
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^-2909).is_monomial()
True
sage: (38*z^-2909).is_monomial()
False
```

is_unit()

Return True if self is a unit.

The ground ring is assumed to be an integral domain.

This means that the Laurent polynomial is a monomial with unit coefficient.

EXAMPLES:

```python
sage: L.<x,y> = LaurentPolynomialRing(QQ)
sage: (x*y/2).is_unit()
True
sage: (x + y).is_unit()
False
sage: (L.zero()).is_unit()
False
sage: (L.one()).is_unit()
True
```

(continues on next page)
is_univariate()
Return True if this is a univariate or constant Laurent polynomial, and False otherwise.

EXAMPLES:

```python
sage: R.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = (x^3 + y^-3)*z
sage: f.is_univariate()
False
sage: g = f(1,y,4)
sage: g.is_univariate()
True
sage: R(1).is_univariate()
True
```

monomial_coefficient(mon)
Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function coefficient() which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

INPUT:
• mon - a monomial

See also:
For coefficients in a base ring of fewer variables, see coefficient().

EXAMPLES:

```python
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^3 + 5*x*y)*x^-3
sage: f.monomial_coefficient(x^-2*y^3)
-7
sage: f.monomial_coefficient(x^2)
0
```

monomials()
Return the list of monomials in self.

EXAMPLES:

```python
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^3 + 5*x*y)*x^-3
sage: f.monomials()
[x^6, x^-3*y^2, x^-2*y, x^-2*y^3]
```

number_of_terms()
Return the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

EXAMPLES:

```python
sage: R.<x, y> = LaurentPolynomialRing(ZZ)
sage: f = x^3 - y
```

(continues on next page)
The method `hamming_weight()` is an alias:

```python
sage: f.hamming_weight()
101
```

`quo_rem(right)`

Divide this Laurent polynomial by `right` and return a quotient and a remainder.

INPUT:
- `right` – a Laurent polynomial

OUTPUT:
A pair of Laurent polynomials.

EXAMPLES:

```python
sage: R.<s, t> = LaurentPolynomialRing(QQ)
sage: (s^2-t^2).quo_rem(s-t)
(s + t, 0)
sage: (s^-2-t^2).quo_rem(s-t)
(s + t, -s^4 + 1)
sage: (s^-2-t^2).quo_rem(s^-1-t)
(t + s^-1, 0)
```

`subs(in_dict=None, **kwds)`

Substitute some variables in this Laurent polynomial.

Variable/value pairs for the substitution may be given as a dictionary or via keyword-value pairs. If both are present, the latter take precedence.

INPUT:
- `in_dict` – dictionary (optional)
- `**kwargs` – keyword arguments

OUTPUT:
A Laurent polynomial.

EXAMPLES:

```python
sage: L.<x, y, z> = LaurentPolynomialRing(QQ)
sage: f = x + 2*y + 3*z
sage: f.subs(x=1)
2*y + 3*z + 1
sage: f.subs(y=1)
x + 3*z + 2
sage: f.subs(z=1)
x + 2*y + 3
sage: f.subs(x=1, y=1, z=1)
```

(continues on next page)
univariate_polynomial \((R=None) \)
Returns a univariate polynomial associated to this multivariate polynomial.

INPUT:

• \(R \) - (default: \(\text{None} \)) a univariate Laurent polynomial ring

If this polynomial is not in at most one variable, then a \texttt{ValueError} exception is raised. The new polynomial is over the same base ring as the given \texttt{LaurentPolynomial} and in the variable \(x \) if no ring \(R \) is provided.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & R.<x, y> = \text{LaurentPolynomialRing}(\text{ZZ}) \\
\text{sage: } & f = 3*x^2 - 2*y^{-1} + 7*x^2*y^2 + 5 \\
\text{sage: } & f.\text{univariate_polynomial}() \\
& \text{Traceback (most recent call last):} \\
& \quad \text{...} \\
& \text{TypeError: polynomial must involve at most one variable} \\
\text{sage: } & g = f(10, y); g \\
& 700*y^2 + 305 - 2*y^{-1} \\
\text{sage: } & h = g.\text{univariate_polynomial}(); h \\
& -2*y^{-1} + 305 + 700*y^2 \\
\text{sage: } & h.\text{parent}() \\
& \text{Univariate Laurent Polynomial Ring in y over Integer Ring} \\
\text{sage: } & g.\text{univariate_polynomial}(\text{LaurentPolynomialRing}(\text{QQ}, 'z')) \\
& -2*z^{-1} + 305 + 700*z^2
\end{align*}
\]

Here’s an example with a constant multivariate polynomial:

\[
\begin{align*}
\text{sage: } & g = R(1) \\
\text{sage: } & h = g.\text{univariate_polynomial}(); h \\
& 1 \\
\text{sage: } & h.\text{parent}() \\
& \text{Univariate Laurent Polynomial Ring in x over Integer Ring}
\end{align*}
\]

variables \((sort=True) \)
Return a tuple of all variables occurring in self.

INPUT:

• \(\text{sort} \) – specifies whether the indices shall be sorted

EXAMPLES:

```python
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.variables()
(z, y, x)
sage: f.variables(sort=False) #random
(y, z, x)
```

class `sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate`

Bases: `sage.rings.polynomial.laurent_polynomial.LaurentPolynomial`

A univariate Laurent polynomial in the form of $t^n \cdot f$ where f is a polynomial in t.

INPUT:
- `parent` – a Laurent polynomial ring
- `f` – a polynomial (or something can be coerced to one)
- `n` – (default: 0) an integer

AUTHORS:
- Tom Boothby (2011) copied this class almost verbatim from `laurent_series_ring_element.pyx`, so most of the credit goes to William Stein, David Joyner, and Robert Bradshaw
- Travis Scrimshaw (09-2013): Cleaned-up and added a few extra methods

coefficients()
Return the nonzero coefficients of `self`.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.coefficients()
[-5, 1, 1, -10/3]
```

constant_coefficient()
Return the coefficient of the constant term of `self`.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 3*t^-2 - t^-1 + 3 + t^2
sage: f.constant_coefficient() 3
sage: g = -2*t^-2 + t^-1 + 3*t
sage: g.constant_coefficient() 0
```

degree()
Return the degree of this polynomial.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: g = x^2 - x^4
sage: g.degree() 4
sage: g = -10/x^5 + x^2 - x^7
sage: g.degree() 7
```

6.2. Elements of Laurent polynomial rings 517
derivative(*args)

The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied. See documentation for the global `derivative()` function for more details.

See also:

-_derivative()_

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: g = 1/x^10 - x + x^2 - x^4
g = g.derivative()
-10*x^-11 - 1 + 2*x - 4*x^3
sage: g.derivative(x)
-10*x^-11 - 1 + 2*x - 4*x^3

sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = LaurentPolynomialRing(R)
sage: f = 2*t/x + (3*t^2 + 6*t)*x
f = f.derivative()
-2*t*x^-2 + (3*t^2 + 6*t)
sage: f.derivative(x)
-2*t*x^-2 + (3*t^2 + 6*t)
sage: f.derivative(t)
2*x^-1 + (6*t + 6)*x
```

dict()

Return a dictionary representing self.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[
```

```python
case: Q.<t> = LaurentPolynomialRing(R)
case: f = y^3*t^-9 + 3*x^3*y^2*t^-6 + 3*x^6*y*t^-3 + x^9 + t^2
case: f.dict() {-9: y^3, -6: 3*x^3*y^2, -3: 3*x^6*y, 0: x^9, 2: 1}
```

exponents()

Return the exponents appearing in self with nonzero coefficients.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = -5/t^2 + t + t^2 - 10/3*t^3
f = f.exponents()
[-2, 1, 2, 3]
```

factor()

Return a Laurent monomial (the unit part of the factorization) and a factored polynomial.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 4*t^-7 + 3*t^3 + 2*t^4 + t^-6
f = f.factor()
(t^-7) * (4 + t + 3*t^10 + 2*t^11)
```

gcd(right)

Return the gcd of self with right where the common divisor d makes both self and right into polynomials with the lowest possible degree.

EXAMPLES:

```python
```
```python
sage: R.<t> = Laurent PolynomialRing(QQ)
sage: t.gcd(2)
1
sage: gcd(t^-2 + 1, t^-4 + 3*t^-1)
t^-4
sage: gcd((t^-2 + t)*(t + t^-1), (t^5 + t^8)*(1 + t^-2))
t^-3 + t^-1 + 1 + t^2
```

integral()

The formal integral of this Laurent series with 0 constant term.

EXAMPLES:

The integral may or may not be defined if the base ring is not a field.

```python
sage: t = Laurent PolynomialRing(ZZ, 't').0
sage: f = 2*t^-3 + 3*t^2
sage: f.integral()
-t^-2 + t^3
```

```python
sage: f = t^3
sage: f.integral()
Traceback (most recent call last):
  ... ArithmeticError: coefficients of integral cannot be coerced into the base ring
```

The integral of $1/t$ is $\log(t)$, which is not given by a Laurent polynomial:

```python
sage: t = Laurent PolynomialRing(ZZ,'t').0
sage: f = -1/t^3 - 31/t
sage: f.integral()
Traceback (most recent call last):
  ... ArithmeticError: the integral of is not a Laurent polynomial, since t^-1 has
  nonzero coefficient
```

Another example with just one negative coefficient:

```python
sage: A.<t> = Laurent PolynomialRing(QQ)
sage: f = -2*t^(-4)
sage: f.integral()
2/3*t^-3
sage: f.integral().derivative() == f
True
```

inverse_of_unit()

Return the inverse of `self` if a unit.

EXAMPLES:

```python
sage: R.<t> = Laurent PolynomialRing(QQ)
sage: (t^-2).inverse_of_unit()
t^-2
```

```python
sage: (t + 2).inverse_of_unit()
Traceback (most recent call last):
  ... ArithmeticError: element is not a unit
```
is_constant()

Return whether this Laurent polynomial is constant.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: x.is_constant()
False
sage: R.one().is_constant()
True
sage: (x^-2).is_constant()
False
sage: (x^2).is_constant()
False
sage: (x^-2 + 2).is_constant()
False
sage: R(0).is_constant()
True
sage: R(42).is_constant()
True
sage: x.is_constant()
False
sage: (1/x).is_constant()
False
```

is_monomial()

Return True if this element is a monomial. That is, if self is x^n for some integer n.

EXAMPLES:

```python
sage: k.<z> = LaurentPolynomialRing(QQ)
sage: z.is_monomial()
True
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^-2909).is_monomial()
True
sage: (38*z^-2909).is_monomial()
False
```

is_unit()

Return True if this Laurent polynomial is a unit in this ring.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (2+t).is_unit()
False
sage: f = 2*t
sage: f.is_unit()
True
sage: 1/f
1/2*t^-1
sage: R(0).is_unit()
False
sage: R.<s> = LaurentPolynomialRing(ZZ)
sage: g = 2*s
```

(continues on next page)
is_unit()
ALGORITHM: A Laurent polynomial is a unit if and only if its “unit part” is a unit.

is_zero()
Return 1 if self is 0, else return 0.

EXAMPLES:

\begin{Verbatim}
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x + x^2 + 3*x^4
sage: f.is_zero()
0
sage: z = 0*f
sage: z.is_zero()
1
\end{Verbatim}

number_of_terms()
Return the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

EXAMPLES:

\begin{Verbatim}
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: f = x^3 - 1
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+1)^100
sage: f.number_of_terms()
101
\end{Verbatim}

The method hamming_weight() is an alias:

\begin{Verbatim}
sage: f.hamming_weight()
101
\end{Verbatim}

polynomial_construction()
Return the polynomial and the shift in power used to construct the Laurent polynomial \(t^n u \).

OUTPUT:

A tuple \((u, n)\) where \(u \) is the underlying polynomial and \(n \) is the power of the exponent shift.

EXAMPLES:

\begin{Verbatim}
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.polynomial_construction()
(3*x^5 + x^3 + 1, -1)
\end{Verbatim}

quo_rem(right_r)
Attempts to divide self by right and returns a quotient and a remainder.

EXAMPLES:
residue()
Return the residue of self.
The residue is the coefficient of t^{-1}.

EXAMPLES:

```plaintext
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 3*t^-2 - t^-1 + 3 + t^2
sage: f.residue()
-1
sage: g = -2*t^-2 + 4 + 3*t
sage: g.residue()
0
sage: f.residue().parent()
Rational Field
```

shift(k)
Return this Laurent polynomial multiplied by the power t^n. Does not change this polynomial.

EXAMPLES:

```plaintext
sage: R.<t> = LaurentPolynomialRing(QQ[['y']])
sage: f = (t+t^-1)^4; f
$ t^{-4} + 4*t^{-2} + 6 + 4*t^2 + t^4$
sage: f.shift(10)
$ t^6 + 4*t^8 + 6*t^{10} + 4*t^{12} + t^{14}$
sage: f >> 10
$ t^{-14} + 4*t^{-12} + 6*t^{-10} + 4*t^{-8} + t^{-6}$
sage: f << 4
1 + 4*t^2 + 6*t^4 + 4*t^6 + t^8
```

truncate(n)
Return a polynomial with degree at most $n - 1$ whose j-th coefficients agree with self for all $j < n$.

EXAMPLES:

```plaintext
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x^12 + x^3 + x^5 + x^9
sage: f.truncate(10)
$ x^{-12} + x^{-1} + x^3 + x^5 + x^9$
sage: f.truncate(5)
$ x^{-12} + x^3$
sage: f.truncate(-16)
0
```

valuation(p=None)
Return the valuation of self.
The valuation of a Laurent polynomial $t^n u$ is n plus the valuation of u.

EXAMPLES:
variable_name()
Return the name of variable of self as a string.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.variable_name()
'x'
```

variables()
Return the tuple of variables occurring in this Laurent polynomial.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.variables()
(x,)
sage: R.one().variables()
()```

6.3 MacMahon's Partition Analysis Omega Operator

This module implements MacMahon's Omega Operator [Mac1915], which takes a quotient of Laurent polynomials and removes all negative exponents in the corresponding power series.

6.3.1 Examples

In the following example, all negative exponents of \( \mu \) are removed. The formula

\[
\Omega \geq \frac{1}{(1 - x\mu)(1 - y/\mu)} = \frac{1}{(1 - x)(1 - xy)}
\]

can be calculated and verified by

```python
sage: L.<mu, x, y> = LaurentPolynomialRing(ZZ)
sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1
```

6.3.2 Various

AUTHORS:

• Daniel Krenn (2016)
6.3.3 Functions

\begin{verbatim}
Return $\Omega_{op}$ of \texttt{expression} with respect to \texttt{var}.
To be more precise, calculate

\[ \prod_{d_i \in \text{denominator}} \prod_{n \in \text{numerator}} \frac{n}{d_1 \cdots d_n} \]

for the numerator $n$ and the factors $d_1, \ldots, d_n$ of the denominator, all of which are Laurent polynomials in \texttt{var} and return a (partial) factorization of the result.

\textbf{INPUT:}

- \texttt{var} – a variable or a representation string of a variable
- \texttt{expression} – a \texttt{Factorization} of Laurent polynomials or, if \texttt{denominator} is specified, a Laurent polynomial interpreted as the numerator of the expression
- \texttt{denominator} – a Laurent polynomial or a \texttt{Factorization} (consisting of Laurent polynomial factors) or a tuple/list of factors (Laurent polynomials)
- \texttt{op} – (default: \texttt{operator.ge}) an operator
  - At the moment only \texttt{operator.ge} is implemented.
- \texttt{Factorization_sort} (default: \texttt{False}) and \texttt{Factorization_simplify} (default: \texttt{True}) – are passed on to \texttt{sage.structure.factorization.Factorization} when creating the result

\textbf{OUTPUT:}

A (partial) \texttt{Factorization} of the result whose factors are Laurent polynomials

\textbf{Note:} The numerator of the result may not be factored.
\end{verbatim}

\textbf{REFERENCES:}

- [Mac1915]
- [APR2001]

\textbf{EXAMPLES:}

\begin{verbatim}
\sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(ZZ)
\sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1
\sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1 * (-x*z + 1)^-1
\sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
(-x*y*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1 * (-y*z + 1)^-1
\sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu^2])
\end{verbatim}

(continues on next page)
We demonstrate the different allowed input variants:

```python
sage: MacMahonOmega(mu, mu^2, [1 - x*mu, 1 - y/mu])
(-x*y^2 + x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
```

(continues on next page)
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^{-1} * (-x*y + 1)^{-1}

sage: MacMahonOmega(mu, mu^2 / ((1 - x*mu)*(1 - y/mu)))  # not tested because not fully implemented
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^{-1} * (-x*y + 1)^{-1}

sage: MacMahonOmega(mu, Factorization([[1/mu, 1], [1 - x*mu, -1],
                                       (1 - y/mu, -2)], unit=2))
2*x * (-x + 1)^{-1} * (-x*y + 1)^{-2}

sage: MacMahonOmega(mu, Factorization([[mu, -1], [1 - x*mu, -1],
                                       (1 - y/mu, -2)], unit=2))
2*x * (-x + 1)^{-1} * (-x*y + 1)^{-2}

sage: MacMahonOmega(mu, Factorization([[mu, -1], [1 - x, -1]]))
0

sage: MacMahonOmega(mu, Factorization([[2, -1]]))
1 * 2^{-1}

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - z, 1 - y/mu])
1 * (-z + 1)^{-1} * (-x + 1)^{-1} * (-x*y + 1)^{-1}

sage: MacMahonOmega(mu, 1, [1 - x*mu], op=operator.lt)
Traceback (most recent call last):
... NOTIMPLEMENTEDERROR: At the moment, only Omega_ge is implemented.

sage: MacMahonOmega(mu, 1, Factorization([[1 - x*mu, -1]]))
Traceback (most recent call last):
... VALUEERROR: Factorization (-mu*x + 1)^{-1} of the denominator contains negative exponents.

sage: MacMahonOmega(2*mu, 1, [1 - x*mu])
Traceback (most recent call last):
... VALUEERROR: 2*mu is not a variable.

sage: MacMahonOmega(mu, 1, Factorization([[0, 2]]))
Traceback (most recent call last):
... ZERODIVISIONERROR: Denominator contains a factor 0.

sage: MacMahonOmega(mu, 1, [2 - x*mu])
Traceback (most recent call last):
... NOTIMPLEMENTEDERROR: Factor 2 - x*mu is not normalized.

sage: MacMahonOmega(mu, 1, [1 - x*mu - mu^2])
Traceback (most recent call last):
... NOTIMPLEMENTEDERROR: Cannot handle factor 1 - x*mu - mu^2.

sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(QQ)
sage: MacMahonOmega(mu, 1/mu,
                   Factorization([[1 - x*mu, 1], (1 - y/mu, 2)], unit=2))
1/2*x * (-x + 1)^{-1} * (-x*y + 1)^{-2}
sage.rings.polynomial.omega.\texttt{Omega\_ge}(a, \texttt{exponents})

Return $\Omega_{\geq}$ of the expression specified by the input.

To be more precise, calculate

$$
\Omega_{\geq} = \mu^a \left(1 - z_0\mu^e_0\right) \ldots \left(1 - z_{n-1}\mu^e_{n-1}\right)
$$

and return its numerator and a factorization of its denominator. Note that $z_0, \ldots, z_{n-1}$ only appear in the output, but not in the input.

**INPUT:**

- $a$ – an integer
- $\texttt{exponents}$ – a tuple of integers

**OUTPUT:**

A pair representing a quotient as follows: Its first component is the numerator as a Laurent polynomial, its second component a factorization of the denominator as a tuple of Laurent polynomials, where each Laurent polynomial $z$ represents a factor $1 - z$.

The parents of these Laurent polynomials is always a Laurent polynomial ring in $z_0, \ldots, z_{n-1}$ over $\mathbb{Z}$, where $n$ is the length of $\texttt{exponents}$.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.omega import Omega_ge
sage: Omega_ge(0, (1, -2))
(1, (z0, z0^2*z1))
sage: Omega_ge(0, (1, -3))
(1, (z0, z0^3*z1))
sage: Omega_ge(0, (1, -4))
(1, (z0, z0^4*z1))
sage: Omega_ge(0, (2, -1))
(z0*z1 + 1, (z0, z0^2*z1))
sage: Omega_ge(0, (3, -1))
(z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3))
sage: Omega_ge(0, (2, 1, -1))
(-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z0*z1^2, z1*z2))
sage: Omega_ge(0, (1, 1, -2))
(-z0*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2))
sage: Omega_ge(0, (2, -1, -1))
(z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2))
sage: Omega_ge(0, (2, 1, -1))
(-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))
sage: Omega_ge(0, (2, 2, -2))
(-z0*z1 + 1, (z0, z0*z1, z0*z1))
sage: Omega_ge(0, (2, 3))
(z0^2*z1 + 1, (z0, z0^3*z1^2))
sage: Omega_ge(0, (3, 1, -3))
(-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2 + z0^2*z2^2 - 2*z0*z2 + 1,
(z0, z1, z0*z2, z0*z2, z0*z2, z1^3*z2))
```

6.3. MacMahon’s Partition Analysis Omega Operator 527
sage: Omega_ge(0, (3, 6, -1))
(-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 +
z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 -
z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1,
(0, z1, z0+z2^3, z1*z2^6))

sage: Omega_ge(1, (2,))
(1, (z0,))

sage.rings.polynomial.omega.homogenous_symmetric_function(j, x)
Return a complete homogeneous symmetric polynomial (Wikipedia article Complete_homogeneous_symmetric_polynomial).

INPUT:
• j – the degree as a nonnegative integer
• x – an iterable of variables

OUTPUT:
A polynomial of the common parent of all entries of x

EXAMPLES:

sage: from sage.rings.polynomial.omega import homogenous_symmetric_function
sage: P = PolynomialRing(ZZ, 'X', 3)
sage: homogenous_symmetric_function(0, P.gens())
1
sage: homogenous_symmetric_function(1, P.gens())
X0 + X1 + X2
sage: homogenous_symmetric_function(2, P.gens())
X0^2 + X0*X1 + X1^2 + X0*X2 + X1*X2 + X2^2
sage: homogenous_symmetric_function(3, P.gens())
X0^3 + X0^2*X1 + X0*X1^2 + X1^3 + X0^2*X2 + X0*X1*X2 + X1^2*X2 + X0*X2^2 + X1*X2^2 + X2^3

sage.rings.polynomial.omega.partition(items, predicate=<type 'bool'>)
Split items into two parts by the given predicate.

INPUT:
• item – an iterator
• predicate – a function

OUTPUT:
A pair of iterators; the first contains the elements not satisfying the predicate, the second the elements satisfying the predicate.

ALGORITHM:
Source of the code: http://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html

EXAMPLES:

sage: from sage.rings.polynomial.omega import partition
sage: E, O = partition(srange(10), is_odd)
sage: tuple(E), tuple(O)
((0, 2, 4, 6, 8), (1, 3, 5, 7, 9))
7.1 Infinite Polynomial Rings.

By Infinite Polynomial Rings, we mean polynomial rings in a countably infinite number of variables. The implementation consists of a wrapper around the current finite polynomial rings in Sage.

AUTHORS:

- Simon King <simon.king@nuigalway.ie>
- Mike Hansen <mhansen@gmail.com>

An Infinite Polynomial Ring has finitely many generators \( x, y, \ldots \) and infinitely many variables of the form \( x_0, x_1, x_2, \ldots, y_0, y_1, y_2, \ldots \). We refer to the natural number \( n \) as the index of the variable \( x_n \).

INPUT:

- \( R \), the base ring. It has to be a commutative ring, and in some applications it must even be a field
- \( \textbf{names} \), a list of generator names. Generator names must be alpha-numeric.
- \( \textbf{order} \) (optional string). The default order is 'lex' (lexicographic). 'deglex' is degree lexicographic, and 'degrevlex' (degree reverse lexicographic) is possible but discouraged.

Each generator \( x \) produces an infinite sequence of variables \( x[1], x[2], \ldots \) which are printed on screen as \( x_1, x_2, \ldots \) and are latex typeset as \( x_1, x_2 \). Then, the Infinite Polynomial Ring is formed by polynomials in these variables.

By default, the monomials are ordered lexicographically. Alternatively, degree (reverse) lexicographic ordering is possible as well. However, we do not guarantee that the computation of Groebner bases will terminate in this case.

In either case, the variables of a Infinite Polynomial Ring \( X \) are ordered according to the following rule:

\[
X.\text{gen}(i)[m] > X.\text{gen}(j)[n] \text{ if and only if } i<j \text{ or } (i==j \text{ and } m>n)
\]

We provide a ‘dense’ and a ‘sparse’ implementation. In the dense implementation, the Infinite Polynomial Ring carries a finite polynomial ring that comprises all variables up to the maximal index that has been used so far. This is potentially a very big ring and may also comprise many variables that are not used.

In the sparse implementation, we try to keep the underlying finite polynomial rings small, using only those variables that are really needed. By default, we use the dense implementation, since it usually is much faster.

EXAMPLES:

\[
\text{sage: } X.\langle x, y \rangle = \text{InfinitePolynomialRing(ZZ, implementation='sparse')}
\]
\[
\text{sage: } A.\langle \alpha, \beta \rangle = \text{InfinitePolynomialRing(QQ, implementation='deglex')}
\]
\[
\text{sage: } f = x[5] + 2; f
\]
It has some advantages to have an underlying ring that is not univariate. Hence, we always have at least two variables:

```
sage: g._p.parent()
Multivariate Polynomial Ring in y_1, y_0 over Integer Ring
```

Of course, we provide the usual polynomial arithmetic:

```
sage: f+g
x_5 + 3*y_1 + 2
sage: p = x[10]^2*(f+g); p
x_10^2*x_5 + 3*x_10^2*y_1 + 2*x_10^2
sage: p2 = alpha[10]^2*(f2+g2); p2
alpha_10^2*alpha_5 + 3*alpha_10^2*beta_1 + 2*alpha_10^2
```

There is a permutation action on the variables, by permuting positive variable indices:

```
sage: P = Permutation(((10,1)))
sage: p^P
x_5*x_1^2 + 3*x_1^2*y_10 + 2*x_1^2
sage: p2^P
alpha_5*alpha_1^2 + 3*alpha_1^2*beta_10 + 2*alpha_1^2
```

Note that $x_0^P = x_0$, since the permutations only change positive variable indices.

We also implemented ideals of Infinite Polynomial Rings. Here, it is thoroughly assumed that the ideals are set-wise invariant under the permutation action. We therefore refer to these ideals as Symmetric Ideals. Symmetric Ideals are finitely generated modulo addition, multiplication by ring elements and permutation of variables. If the base ring is a field, one can compute Symmetric Groebner Bases:

```
sage: J = A*(alpha[1]*beta[2])
sage: J.groebner_basis()
[alpha_1*beta_2, alpha_2*beta_1]
```

For more details, see `SymmetricIdeal`.

Infinite Polynomial Rings can have any commutative base ring. If the base ring of an Infinite Polynomial Ring is a (classical or infinite) Polynomial Ring, then our implementation tries to merge everything into one ring. The basic requirement is that the monomial orders match. In the case of two Infinite Polynomial Rings, the implementations must match. Moreover, name conflicts should be avoided. An overlap is only accepted if the order of variables can be uniquely inferred, as in the following example:

```
sage: A.<a,b,c> = InfinitePolynomialRing(ZZ)
sage: B.<b,c,d> = InfinitePolynomialRing(A)
sage: B
Infinite polynomial ring in a, b, c, d over Integer Ring
```
This is also allowed if finite polynomial rings are involved:

\begin{verbatim}
sage: A.<a_3,a_1,b_1,c_2,c_0> = ZZ[]
sage: B.<b,c,d> = InfinitePolynomialRing(A, order='degrevlex')
sage: B

Infinite polynomial ring in b, c, d over Multivariate Polynomial Ring in a_3, a_1,...
→ over Integer Ring
\end{verbatim}

It is no problem if one generator of the Infinite Polynomial Ring is called \( x \) and one variable of the base ring is also called \( x \). This is since no \textit{variable} of the Infinite Polynomial Ring will be called \( x \). However, a problem arises if the underlying classical Polynomial Ring has a variable \( x_1 \), since this can be confused with a variable of the Infinite Polynomial Ring. In this case, an error will be raised:

\begin{verbatim}
sage: X.<x,y_1> = ZZ[]
sage: Y.<x,z> = InfinitePolynomialRing(X)
\end{verbatim}

Note that \( X \) is not merged into \( Y \); this is since the monomial order of \( X \) is \textit{degrevlex}, but of \( Y \) is \textit{lex}.

\begin{verbatim}
sage: Y

Infinite polynomial ring in x, z over Multivariate Polynomial Ring in x, y_1 over...
→ Integer Ring
\end{verbatim}

The variable \( x \) of \( X \) can still be interpreted in \( Y \), although the first generator of \( Y \) is called \( x \) as well:

\begin{verbatim}
sage: x
x_*
sage: X('x')
x
sage: Y(X('x'))
x
sage: Y('x')
x
\end{verbatim}

But there is only merging if the resulting monomial order is uniquely determined. This is not the case in the following examples, and thus an error is raised:

\begin{verbatim}
sage: X.<y_1,x> = ZZ[]
sage: Y.<y,z> = InfinitePolynomialRing(X)
Traceback (most recent call last):
...
CoercionException: Overlapping variables (('y', 'z'),['y_1']) are incompatible
sage: Y.<z,y> = InfinitePolynomialRing(X)
Traceback (most recent call last):
...
CoercionException: Overlapping variables (('z', 'y'),['y_1']) are incompatible
sage: X.<x_3,y_1,y_2> = PolynomialRing(ZZ,order='lex')
sage: # y_1 and y_2 would be in opposite order in an Infinite Polynomial Ring
sage: Y.<y> = InfinitePolynomialRing(X)
Traceback (most recent call last):
...
CoercionException: Overlapping variables (('y'),['y_1', 'y_2']) are incompatible
\end{verbatim}

If the type of monomial orderings (e.g., \textit{degrevlex} versus \textit{lex}) or if the implementations don’t match, there is no simplified construction available:

\begin{verbatim}
sage: X.<x,y> = InfinitePolynomialRing(ZZ)
sage: Y.<z> = InfinitePolynomialRing(X,order='degrevlex')
\end{verbatim}

(continues on next page)
```python
sage: Y
Infinite polynomial ring in z over Infinite polynomial ring in x, y over Integer Ring
sage: Y.<z> = InfinitePolynomialRing(X, implementation='sparse')
sage: Y
Infinite polynomial ring in z over Infinite polynomial ring in x, y over Integer Ring

all constituents coerce.
```

```python
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: X.<x> = InfinitePolynomialRing(R)
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1
sage: R.<a,b> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: X.<x> = InfinitePolynomialRing(R)
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1
sage: R.<a,b> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: X.<x> = InfinitePolynomialRing(R, implementation='sparse')
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: X.<x> = InfinitePolynomialRing(R, implementation='sparse')
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1
```

```python
class sage.rings.polynomial.infinite_polynomial_ring.GenDictWithBasering (parent, start)

A dictionary-like class that is suitable for usage in `sage_eval`.

This pseudo-dictionary accepts strings as index, and then walks down a chain of base rings of (infinite) polynomial rings until it finds one ring that has the given string as variable name, which is then returned.

EXAMPLES:
```
```
GenDict of Infinite polynomial ring in a, b over Univariate Polynomial Ring in t over Rational Field

sage: next(D)
GenDict of Univariate Polynomial Ring in t over Rational Field
sage: sage_eval('t^2', next(D))
t^2

class sage.rings.polynomial.infinite_polynomial_ring.InfiniteGenDict(Gens)
A dictionary-like class that is suitable for usage in sage_eval.

The generators of an Infinite Polynomial Ring are not variables. Variables of an Infinite Polynomial Ring are returned by indexing a generator. The purpose of this class is to return a variable of an Infinite Polynomial Ring, given its string representation.

EXAMPLES:

sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: D = R.gens_dict()
indirect doctest
sage: D._D
[InfiniteGenDict defined by ['a', 'b'], {'1': 1}]
sage: D._D[0]['a_15']
a_15
sage: type(_)
<class 'sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense -->'>
sage: sage_eval('3*a_3*b_5-1/2*a_7', D._D[0])
-1/2*a_7 + 3*a_3*b_5

class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialGen(parent, name)

Bases: sage.structure.sage_object.SageObject

This class provides the object which is responsible for returning variables in an infinite polynomial ring (implemented in __getitem__).

EXAMPLES:

sage: X.<x1,x2> = InfinitePolynomialRing(RR)
sage: x1
x1_

sage: x1[5]
x1_5

sage: x1 == loads(dumps(x1))
True

class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRingFactory

Bases: sage.structure.factory.UniqueFactory

A factory for creating infinite polynomial ring elements. It handles making sure that they are unique as well as handling pickling. For more details, see UniqueFactory and infinite_polynomial_ring.

EXAMPLES:

sage: A.<a> = InfinitePolynomialRing(QQ)
sage: B. = InfinitePolynomialRing(A)
sage: B.construction()
[InfPoly[(a,b), "lex", "dense"], Rational Field]
sage: R.<a,b> = InfinitePolynomialRing(QQ)

7.1. Infinite Polynomial Rings. 533
create_key \((R, \text{names}=('x',), \text{order}='\text{lex}', \text{implementation}='\text{dense}')\)

Creates a key which uniquely defines the infinite polynomial ring.

create_object \((\text{version}, \text{key})\)

Returns the infinite polynomial ring corresponding to the key \text{key}.

class \text{sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense} \(\text{(R, names, order)}\)

Bases: \text{sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse}

Dense implementation of Infinite Polynomial Rings

Compared with \text{InfinitePolynomialRing_sparse}, from which this class inherits, it keeps a polynomial ring that comprises all elements that have been created so far.

collection \((\text{R})\)

Return the construction of \text{self}.

OUTPUT:

A pair \(F, R\), where \(F\) is a construction functor and \(R\) is a ring, so that \(F(R)\) is \text{self}.

EXAMPLES:

```sage
sage: R.<x,y> = InfinitePolynomialRing(GF(5))
sage: R.construction()
[InfPoly[{x,y}, "lex", "dense"], Finite Field of size 5]
```

polynomial_ring()

Returns the underlying \text{finite} polynomial ring.

Note: The ring returned can change over time as more variables are used.

Since the rings are cached, we create here a ring with variable names that do not occur in other doc tests, so that we avoid side effects.

EXAMPLES:

```sage
sage: X.<xx, yy> = InfinitePolynomialRing(ZZ)
sage: X.polynomial_ring()
Multivariate Polynomial Ring in xx_0, yy_0 over Integer Ring
sage: a = yy[3]
sage: X.polynomial_ring()
Multivariate Polynomial Ring in xx_3, xx_2, xx_1, xx_0, yy_3, yy_2, yy_1, yy_\rightarrow 0 over Integer Ring
```
tensor_with_ring(R)

Return the tensor product of self with another ring.

INPUT:
R - a ring.

OUTPUT:
An infinite polynomial ring that, mathematically, can be seen as the tensor product of self with R.

NOTE:
It is required that the underlying ring of self coerces into R. Hence, the tensor product is in fact merely an extension of the base ring.

EXAMPLES:

```
sage: R.<a,b> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: R.tensor_with_ring(QQ)
Infinite polynomial ring in a, b over Rational Field
sage: R
Infinite polynomial ring in a, b over Integer Ring
```

The following tests against a bug that was fixed at trac ticket #10468:

```
sage: R.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: R.tensor_with_ring(QQ) is R
True
```

class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse(R, names, order)

Sparse implementation of Infinite Polynomial Rings.

An Infinite Polynomial Ring with generators x_0, y_0, \ldots over a field F is a free commutative F-algebra generated by $x_0, x_1, x_2, \ldots, y_0, y_1, y_2, \ldots$ and is equipped with a permutation action on the generators, namely $x_n^P = x_{P(n)}, y_n^P = y_{P(n)}, \ldots$ for any permutation P (note that variables of index zero are invariant under such permutation).

It is known that any permutation invariant ideal in an Infinite Polynomial Ring is finitely generated modulo the permutation action – see SymmetricIdeal for more details.

Usually, an instance of this class is created using InfinitePolynomialRing with the optional parameter implementation='sparse'. This takes care of uniqueness of parent structures. However, a direct construction is possible, in principle:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: Y.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: X is Y
True
```

Nevertheless, since infinite polynomial rings are supposed to be unique parent structures, they do not evaluate equal.

```
sage: Z = InfinitePolynomialRing_sparse(QQ, ['x','y'], 'lex')
sage: Z == X
False
```

7.1. Infinite Polynomial Rings.
The last parameter (‘lex’ in the above example) can also be ‘deglex’ or ‘degrevlex’; this would result in an Infinite Polynomial Ring in degree lexicographic or degree reverse lexicographic order.

See `infinite_polynomial_ring` for more details.

characteristic()

Return the characteristic of the base field.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(GF(25,'a'))
sage: X
Infinite polynomial ring in x, y over Finite Field in a of size 5^2
sage: X.characteristic()
5
```

construction()

Return the construction of `self`.

OUTPUT:

A pair `F, R`, where `F` is a construction functor and `R` is a ring, so that `F(R)` is `self`.

EXAMPLES:

```python
sage: R.<x,y> = InfinitePolynomialRing(GF(5))
sage: R.construction()
[InfPoly[(x,y), "lex", "dense"], Finite Field of size 5]
```

gen(i=None)

Returns the `i`th ‘generator’ (see the description in `gens()`) of this infinite polynomial ring.

EXAMPLES:

```python
sage: X = InfinitePolynomialRing(QQ)
sage: x = X.gen()
sage: x[1]
x_1
sage: X.gen() is X.gen(0)
True
sage: XX = InfinitePolynomialRing(GF(5))
sage: XX.gen(0) is XX.gen()
True
```

gens_dict()

Return a dictionary-like object containing the infinitely many `{var_name:variable}` pairs.

EXAMPLES:

```python
sage: R = InfinitePolynomialRing(ZZ, 'a')
sage: D = R.gens_dict()
GenDict of Infinite polynomial ring in a over Integer Ring
sage: D['a_5']
a_5
```

is_field(args, **kwds)

Return `False`: Since Infinite Polynomial Rings must have at least one generator, they have infinitely many variables and thus never are fields.

EXAMPLES:

```python
```
is_integral_domain(*args, **kwds)
An infinite polynomial ring is an integral domain if and only if the base ring is. Arguments are passed to
is_integral_domain method of base ring.

EXAMPLES:

```python
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.is_integral_domain()
False
```

is_noetherian(*args, **kwds)
Return False, since polynomial rings in infinitely many variables are never Noetherian rings.

Note, however, that they are noetherian modules over the group ring of the symmetric group of the natural
numbers.

EXAMPLES:

```python
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: R.is_noetherian()
False
```

krull_dimension(*args, **kwds)
Return Infinity, since polynomial rings in infinitely many variables have infinite Krull dimension.

EXAMPLES:

```python
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.krull_dimension()
+Infinity
```

ngens()
Returns the number of generators for this ring. Since there are countably infinitely many variables
in this polynomial ring, by 'generators' we mean the number of infinite families of variables. See
infinite_polynomial_ring for more details.

EXAMPLES:

```python
sage: X.<x> = InfinitePolynomialRing(ZZ)
sage: X.ngens()
1
sage: X.<x1,x2> = InfinitePolynomialRing(QQ)
sage: X.ngens()
2
```

one()

order()
Return Infinity, since polynomial rings have infinitely many elements.

EXAMPLES:
sage: R.<x> = InfinitePolynomialRing(GF(2))
sage: R.order()
+Infinity

\texttt{tensor_with_ring}(R)
Return the tensor product of \texttt{self} with another ring.

\textbf{INPUT:}
\begin{itemize}
 \item \texttt{R} - a ring.
\end{itemize}

\textbf{OUTPUT:}
An infinite polynomial ring that, mathematically, can be seen as the tensor product of \texttt{self} with \texttt{R}.

\textbf{NOTE:}
It is required that the underlying ring of \texttt{self} coerces into \texttt{R}. Hence, the tensor product is in fact merely an extension of the base ring.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: R.tensor_with_ring(QQ)
Infinite polynomial ring in a, b over Rational Field
sage: R
Infinite polynomial ring in a, b over Integer Ring
\end{verbatim}

The following tests against a bug that was fixed at \texttt{trac ticket #10468:}
\begin{verbatim}
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: R.tensor_with_ring(QQ) is R
True
\end{verbatim}

\texttt{varname_key}(x)
Key for comparison of variable names.

\textbf{INPUT:}
\begin{itemize}
 \item \texttt{x} - a string of the form \texttt{a+'_'+str(n)}, where \texttt{a} is the name of a generator, and \texttt{n} is an integer
\end{itemize}

\textbf{RETURN:}
a key used to sort the variables

\textbf{THERY:}
The order is defined as follows:

\begin{align*}
x &< y \iff \text{the string } x.\text{split('')}[0] \text{ is later in the list of generator names of self than } y.\text{split('')}[0], \text{ or } (x.\text{split('')}[0]==y.\text{split('')}[0] \text{ and } \text{int}(x.\text{split('')}[1])<\text{int}(y.\text{split('')}[1]))
\end{align*}

\textbf{EXAMPLES:}
\begin{verbatim}
sage: X.<alpha,beta> = InfinitePolynomialRing(ZZ)
sage: X.varname_key('alpha_1')
(0, 1)
sage: X.varname_key('beta_10')
(-1, 10)
sage: X.varname_key('beta_1')
(-1, 1)
\end{verbatim}
7.2 Elements of Infinite Polynomial Rings

AUTHORS:

- Simon King <simon.king@nuigalway.ie>
- Mike Hansen <mhansen@gmail.com>

An Infinite Polynomial Ring has generators \(x_0, y_0, \ldots\), so that the variables are of the form \(x_0, x_1, x_2, \ldots, y_0, y_1, y_2, \ldots\) (see `infinite_polynomial_ring`). Using the generators, we can create elements as follows:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: a = x[3]
sage: b = y[4]
sage: c = a*b+a^3-2*b^4
sage: c
x_3^3 + x_3*y_4 - 2*y_4^4
```

Any Infinite Polynomial Ring \(X\) is equipped with a monomial ordering. We only consider monomial orderings in which:

\[
X.gen(i)[m] > X.gen(j)[n] \iff i < j, \text{ or } i = j \text{ and } m > n
\]

Under this restriction, the monomial ordering can be lexicographic (default), degree lexicographic, or degree reverse lexicographic. Here, the ordering is lexicographic, and elements can be compared as usual:

```python
sage: X._order
'lex'
sage: a > b
True
```

Note that, when a method is called that is not directly implemented for ‘InfinitePolynomial’, it is tried to call this method for the underlying classical polynomial. This holds, e.g., when applying the `latex` function:

```python
sage: latex(c)
x_{3}^{3} + x_{3} y_{4} - 2 y_{4}^{4}
```

There is a permutation action on Infinite Polynomial Rings by permuting the indices of the variables:

```python
sage: P = Permutation(((4,5),(2,3)))
sage: c^P
x_2^3 + x_2*y_5 - 2*y_5^4
```
Note that \(P(0) = 0 \), and thus variables of index zero are invariant under the permutation action. More generally, if \(P \) is any callable object that accepts non-negative integers as input and returns non-negative integers, then \(c^P \) means to apply \(P \) to the variable indices occurring in \(c \).

sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial *(A, p)*

Create an element of a Polynomial Ring with a Countably Infinite Number of Variables.

Usually, an InfinitePolynomial is obtained by using the generators of an Infinite Polynomial Ring (see `infinite_polynomial_ring`) or by conversion.

INPUT:

- \(A \) – an Infinite Polynomial Ring.
- \(p \) – a classical polynomial that can be interpreted in \(A \).

ASSUMPTIONS:

In the dense implementation, it must be ensured that the argument \(p \) coerces into \(A._P \) by a name preserving conversion map.

In the sparse implementation, in the direct construction of an infinite polynomial, it is *not* tested whether the argument \(p \) makes sense in \(A \).

EXAMPLES:

```python
sage: from sage.rings.polynomial.infinite_polynomial_element import InfinitePolynomial
sage: X.<alpha> = InfinitePolynomialRing(ZZ)
```

Currently, \(P \) and \(X._P \) (the underlying polynomial ring of \(X \)) both have two variables:

```python
sage: X._P
Multivariate Polynomial Ring in alpha_1, alpha_0 over Integer Ring
```

By default, a coercion from \(P \) to \(X._P \) would not be name preserving. However, this is taken care for; a name preserving conversion is impossible, and by consequence an error is raised:

```python
sage: InfinitePolynomial(X, (alpha_1+alpha_2)^2)
Traceback (most recent call last):
...TypeError: Could not find a mapping of the passed element to this ring.
```

When extending the underlying polynomial ring, the construction of an infinite polynomial works:

```python
sage: alpha[2]
alpha_2
sage: InfinitePolynomial(X, (alpha_1+alpha_2)^2)
alpha_2^2 + 2*alpha_2*alpha_1 + alpha_1^2
```

In the sparse implementation, it is not checked whether the polynomial really belongs to the parent:

```python
sage: Y.<alpha,beta> = InfinitePolynomialRing(GF(2), implementation='sparse')
sage: a = (alpha_1+alpha_2)^2
sage: InfinitePolynomial(Y, a)
alpha_1^2 + 2*alpha_1*alpha_2 + alpha_2^2
```

However, it is checked when doing a conversion:
class sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense(A, p)

Bases: sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse

Element of a dense Polynomial Ring with a Countably Infinite Number of Variables.

INPUT:

- A – an Infinite Polynomial Ring in dense implementation
- p – a classical polynomial that can be interpreted in A.

Of course, one should not directly invoke this class, but rather construct elements of A in the usual way.

This class inherits from InfinitePolynomial_sparse. See there for a description of the methods.

class sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse(A, p)

Bases: sage.structure.element.RingElement

Element of a sparse Polynomial Ring with a Countably Infinite Number of Variables.

INPUT:

- A – an Infinite Polynomial Ring in sparse implementation
- p – a classical polynomial that can be interpreted in A.

Of course, one should not directly invoke this class, but rather construct elements of A in the usual way.

EXAMPLES:

```
sage: A.<a> = QQ[]
sage: B.<b,c> = InfinitePolynomialRing(A, implementation='sparse')
sage: p = a*b[100] + 1/2*c[4]
sage: p
a*b_100 + 1/2*c_4
sage: p.parent()
Infinite polynomial ring in b, c over Univariate Polynomial Ring in a over Rational Field
sage: p.polynomial().parent()
Multivariate Polynomial Ring in b_100, b_0, c_4, c_0 over Univariate Polynomial Ring in a over Rational Field
```

coefficient (monomial)

Returns the coefficient of a monomial in this polynomial.

INPUT:

- A monomial (element of the parent of self) or
- a dictionary that describes a monomial (the keys are variables of the parent of self, the values are the corresponding exponents)

EXAMPLES:

We can get the coefficient in front of monomials:
We can also pass in a dictionary:

```
sage: a.coefficient({x[0]:1, x[1]:1})
2
```

footprint()

Leading exponents sorted by index and generator.

OUTPUT:

D – a dictionary whose keys are the occurring variable indices.

D[s] is a list [i_1,...,i_n], where i_j gives the exponent of self.parent().gen(j)[s] in the leading term of self.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: sorted(p.footprint().items())
[(1, [2, 3]), (30, [1, 0])]
```

gcd(x)

computes the greatest common divisor

EXAMPLES:

```
sage: R.<x>=InfinitePolynomialRing(QQ)
sage: p1=x[0]+x[1]**2
sage: gcd(p1,p1+3)
1
sage: gcd(p1,p1)==p1
True
```

is_nilpotent()

Return True if self is nilpotent, i.e., some power of self is 0.

EXAMPLES:

```
sage: R.<x> = InfinitePolynomialRing(QQbar)
sage: (x[0]+x[1]).is_nilpotent()
False
sage: R(0).is_nilpotent ()
True
sage: _.<x> = InfinitePolynomialRing(Zmod(4))
sage: (2*x[0]).is_nilpotent ()
True
sage: (2+x[4]*x[7]).is_nilpotent ()
```

(continues on next page)
False
sage: _.<y> = InfinitePolynomialRing(Zmod(100))
sage: (5+2*y[0] + 10*(y[0]^2+y[1]^2)).is_nilpotent()
False
True

\textbf{is_unit()}

Answer whether \texttt{self} is a unit.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R1.<x,y> = InfinitePolynomialRing(ZZ)
sage: R2.<a,b> = InfinitePolynomialRing(QQ)
sage: (1+x[2]).is_unit()
False
sage: R1(1).is_unit()
True
sage: R1(2).is_unit()
False
sage: R2(2).is_unit()
True
sage: (1+a[2]).is_unit()
False
\end{verbatim}

Check that trac ticket \#22454 is fixed:

\begin{verbatim}
sage: _.<x> = InfinitePolynomialRing(Zmod(4))
sage: (1 + 2*x[0]).is_unit()
True
sage: (x[0]*x[1]).is_unit()
True
sage: _.<x> = InfinitePolynomialRing(Zmod(900))
sage: (7+150*x[0] + 30*x[1] + 120*x[1]*x[100]).is_unit()
True
\end{verbatim}

\textbf{lc()}

The coefficient of the leading term of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.lc()
3
\end{verbatim}

\textbf{lm()}

The leading monomial of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.lm()
x_10*x_1^2*y_1^3
\end{verbatim}

\textbf{lt()}

The leading term (= product of coefficient and monomial) of \texttt{self}.
EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.lt()
3*x_10*x_1^2*y_1^3
```

`max_index()`
Return the maximal index of a variable occurring in `self`, or -1 if `self` is scalar.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.max_index()
4
sage: x[0].max_index()
0
sage: X(10).max_index()
-1
```

`polynomial()`
Return the underlying polynomial.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(GF(7))
sage: p=x[2]*y[1]+3*y[0]
sage: p
x_2*y_1 + 3*y_0
sage: p.polynomial()
```

```
x_2*y_1 + 3*y_0
```

```
sage: p.polynomial().parent()
Multivariate Polynomial Ring in x_2, x_1, x_0, y_2, y_1, y_0 over Finite
˓→Field of size 7
```

```
sage: p.parent()
Infinite polynomial ring in x, y over Finite Field of size 7
```

`reduce`
Symmetrical reduction of `self` with respect to a symmetric ideal (or list of Infinite Polynomials).

INPUT:

- I – a SymmetricIdeal or a list of Infinite Polynomials.
- tailreduce – (bool, default False) Tail reduction is performed if this parameter is True.
- report – (object, default None) If not None, some information on the progress of computation is printed, since reduction of huge polynomials may take a long time.

OUTPUT:

Symmetrical reduction of `self` with respect to `I`, possibly with tail reduction.

THEORY:

Reducing an element p of an Infinite Polynomial Ring X by some other element q means the following:

1. Let M and N be the leading terms of p and q.
2. Test whether there is a permutation P that does not diminish the variable indices occurring in N and preserves their order, so that there is some term $T \in X$ with $TN^P = M$. If there is no such permutation, return p.

Chapter 7. Infinite Polynomial Rings
3. Replace p by $p - Tq^P$ and continue with step 1.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.reduce([y[2]*x[1]^2])
x_3^3*y_2 + y_3*y_1^2
```

The preceding is correct: If a permutation turns $y[2]*x[1]^2$ into a factor of the leading monomial $y[2]*x[3]^3$ of p, then it interchanges the variable indices 1 and 2; this is not allowed in a symmetric reduction. However, reduction by $y[1]*x[2]^2$ works, since one can change variable index 1 into 2 and 2 into 3:

```
sage: p.reduce([y[1]*x[2]^2])
y_3*y_1^2
```

The next example shows that tail reduction is not done, unless it is explicitly advised. The input can also be a Symmetric Ideal:

```
sage: I = (y[3])*X
sage: p.reduce(I)
x_3^3*y_2 + y_3*y_1^2
sage: p.reduce(I, tailreduce=True)
x_3^3*y_2
```

Last, we demonstrate the report option:

```
sage: p.reduce(I, tailreduce=True, report=True)
: T[2]: >
x_1^2 + y_2^2
```

The output ':' means that there was one reduction of the leading monomial. ‘T[2]’ means that a tail reduction was performed on a polynomial with two terms. At ‘>’, one round of the reduction process is finished (there could only be several non-trivial rounds if I was generated by more than one polynomial).

ring()

The ring which `self` belongs to.

This is the same as `self.parent()`.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: p.ring()
Infinite polynomial ring in x, y over Integer Ring
```

squeezed()

Reduce the variable indices occurring in `self`.

OUTPUT:

Apply a permutation to `self` that does not change the order of the variable indices of `self` but squeezes them into the range 1,2,...

EXAMPLES:
stretch \((k) \)
Stretch self by a given factor.

INPUT:
\(k \) – an integer.

OUTPUT:
Replace \(v_n \) with \(v_{n \cdot k} \) for all generators \(v_n \) occurring in self.

EXAMPLES:

```python
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: a.stretch(2)
x_4 + x_2 + x_0
```

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: a = x[0] + x[1] + y[0]*y[1]; a
x_1 + x_0 + y_1*y_0
sage: a.stretch(2)
x_2 + x_0 + y_2*y_0
```

symmetric_cancellation_order \((other) \)
Comparison of leading terms by Symmetric Cancellation Order, \(<_{sc} \).

INPUT:
self, other – two Infinite Polynomials

ASSUMPTION:
Both Infinite Polynomials are non-zero.

OUTPUT:
\((c, \sigma, w)\), where

- \(c = -1, 0, 1, \) or None if the leading monomial of self is smaller, equal, greater, or incomparable with respect to other in the monomial ordering of the Infinite Polynomial Ring
- \(\sigma \) is a permutation witnessing self \(<_{sc} \) other (resp. self \(>_{sc} \) other) or is 1 if self.lm()==other.lm()
- \(w \) is 1 or is a term so that \(w \cdot \text{self.lt()} \cdot \sigma = \text{other.lt()} \) if \(c \leq 0 \), and \(w \cdot \text{other.lt()} \cdot \sigma = \text{self.lt()} \) if \(c = 1 \)

THEORY:
If the Symmetric Cancellation Order is a well-quasi-ordering then computation of Groebner bases always terminates. This is the case, e.g., if the monomial order is lexicographic. For that reason, lexicographic order is our default order.

EXAMPLES:
The tail of self (this is self minus its leading term).

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.tail()
2*x_10*y_30
```

variables()

Return the variables occurring in self (tuple of elements of some polynomial ring).

EXAMPLES:

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: p.variables()
(x_3, x_2, x_1)
sage: x[1].variables()
(x_1,)
sage: X(1).variables()
()  
```

7.3 Symmetric Ideals of Infinite Polynomial Rings

This module provides an implementation of ideals of polynomial rings in a countably infinite number of variables that are invariant under variable permutation. Such ideals are called ‘Symmetric Ideals’ in the rest of this document. Our implementation is based on the theory of M. Aschenbrenner and C. Hillar.

AUTHORS:

- Simon King <simon.king@nuigalway.ie>

EXAMPLES:

Here, we demonstrate that working in quotient rings of Infinite Polynomial Rings works, provided that one uses symmetric Groebner bases.

```
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: I = R.ideal([x[1]*x[2] + x[3]])
```

Note that I is not a symmetric Groebner basis:

```
sage: G = R/I.groebner_basis()
sage: G
```

(continues on next page)
Symmetric Ideal \((x_1^2 + x_1, x_2 - x_1)\) of Infinite polynomial ring in \(x\) over Rational Field

\[
sage: Q = R.quotient(G)
\]
\[
\]
\[
sage: Q(p)
\]
\[-2*x_1 + 3\]

By the second generator of \(G\), variable \(x_n\) is equal to \(x_1\) for any positive integer \(n\). By the first generator of \(G\), \(x_1^2\) is equal to \(x_1\) in \(Q\). Indeed, we have

\[
sage: Q(p)*x[2] == Q(p)*x[1]*x[3]*x[5]
\]

\[True\]

class sage.rings.polynomial.symmetric_ideal.SymmetricIdeal(ring, gens, coerce=True)

Ideal in an Infinite Polynomial Ring, invariant under permutation of variable indices

THEORY:

An Infinite Polynomial Ring with finitely many generators \(x_*, y_*\) over a field \(F\) is a free commutative \(F\)-algebra generated by infinitely many ‘variables’ \(x_0, x_1, x_2, \ldots, y_0, y_1, y_2, \ldots\). We refer to the natural number \(n\) as the index of the variable \(x_n\). See more detailed description at infinite_polynomial_ring

Infinite Polynomial Rings are equipped with a permutation action by permuting positive variable indices, i.e., \(x_n^P = x_{P(n)}^P\), \(y_n^P = y_{P(n)}^P\), \(\ldots\) for any permutation \(P\). Note that the variables \(x_0, y_0, \ldots\) of index zero are invariant under that action.

A Symmetric Ideal is an ideal in an infinite polynomial ring \(X\) that is invariant under the permutation action. In other words, if \(S_\infty\) denotes the symmetric group of 1, 2, \(\ldots\), then a Symmetric Ideal is a right \(X[S_\infty]\)-submodule of \(X\).

It is known by work of Aschenbrenner and Hillar [AB2007] that an Infinite Polynomial Ring \(X\) with a single generator \(x_*\) is Noetherian, in the sense that any Symmetric Ideal \(I \subset X\) is finitely generated modulo addition, multiplication by elements of \(X\), and permutation of variable indices (hence, it is a finitely generated right \(X[S_\infty]\)-module).

Moreover, if \(X\) is equipped with a lexicographic monomial ordering with \(x_1 < x_2 < x_3\ldots\) then there is an algorithm of Buchberger type that computes a Groebner basis \(G\) for \(I\) that allows for computation of a unique normal form, that is zero precisely for the elements of \(I\) – see [AB2008]. See groebner_basis() for more details.

Our implementation allows more than one generator and also provides degree lexicographic and degree reverse lexicographic monomial orderings – we do, however, not guarantee termination of the Buchberger algorithm in these cases.

EXAMPLES:

\[
sage: X.<x,y> = InfinitePolynomialRing(QQ)
\]
\[
\]
\[
sage: I == loads(dumps(I))
\]

\[True\]
\[
sage: latex(I)
\]

\[
\text{\textbackslash left}(x_1 y_2 y_1 + 2 x_1 y_2\right)\text{\textbackslash Bold}\{Q\}[x_\text{-}\{\text{\ast}\}, y_\text{-}\{\text{\ast}\}
\]

\[\rightarrow\]\text{\textbackslash mathfrak\{S\}_\{\text{\infty}{\}}]\]

The default ordering is lexicographic. We now compute a Groebner basis:
Note that even though the symmetric ideal can be generated by a single polynomial, its reduced symmetric Groebner basis comprises four elements. Ideal membership in I can now be tested by commuting symmetric reduction modulo J:

```sage
sage: I.reduce(J)
Symmetric Ideal (0) of Infinite polynomial ring in x, y over Rational Field
```

The Groebner basis is not point-wise invariant under permutation:

```sage
sage: P=Permutation([2, 1])
sage: J[2]
x_2*x_1*y_1^2 + 2*x_2*x_1*y_1
sage: J[2]^P
x_2*x_1*y_2^2 + 2*x_2*x_1*y_2
sage: J[2]^P in J
False
```

However, any element of J has symmetric reduction zero even after applying a permutation. This even holds when the permutations involve higher variable indices than the ones occurring in J:

```sage
sage: [(p^P).reduce(J) for p in J] for P in Permutations(3)]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
```

Since I is not a Groebner basis, it is no surprise that it can not detect ideal membership:

```sage
sage: [p.reduce(I) for p in J]
[0, x_2*y_2*y_1 + 2*x_2*y_1, x_2*x_1*y_1^2 + 2*x_2*x_1*y_1, x_2*x_1*y_2 - x_2*x_1*y_1]
```

Note that we give no guarantee that the computation of a symmetric Groebner basis will terminate in any order different from lexicographic.

When multiplying Symmetric Ideals or raising them to some integer power, the permutation action is taken into account, so that the product is indeed the product of ideals in the mathematical sense.

```sage
sage: I=X*(x[1])
sage: I*I
Symmetric Ideal (x_1^2, x_2*x_1) of Infinite polynomial ring in x, y over Rational Field
sage: I^3
Symmetric Ideal (x_1^3, x_2*x_1^2, x_2^2*x_1, x_3*x_2*x_1) of Infinite polynomial
```

Since I is not a Groebner basis, it is no surprise that it can not detect ideal membership:

```sage
sage: [p.reduce(I) for p in J]
[0, x_2*y_2*y_1 + 2*x_2*y_1, x_2*x_1*y_1^2 + 2*x_2*x_1*y_1, x_2*x_1*y_2 - x_2*x_1*y_1]
```

Note that we give no guarantee that the computation of a symmetric Groebner basis will terminate in any order different from lexicographic.

When multiplying Symmetric Ideals or raising them to some integer power, the permutation action is taken into account, so that the product is indeed the product of ideals in the mathematical sense.

```sage
sage: I=X*(x[1])
sage: I*I
Symmetric Ideal (x_1^2, x_2*x_1) of Infinite polynomial ring in x, y over Rational Field
sage: J^3
Symmetric Ideal (x_1^3, x_2*x_1^2, x_2^2*x_1, x_3*x_2*x_1) of Infinite polynomial ring in x, y over Rational Field
sage: I*I == X*(x[1]^2)
False
```

```
```

Methods

groebner_basis

Return a symmetric Groebner basis (type Sequence) of self.

INPUT:

- **tailreduce** – (bool, default False) If True, use tail reduction in intermediate computations
- **reduced** – (bool, default True) If True, return the reduced normalised symmetric Groebner basis.
• **algorithm** – (string, default None) Determine the algorithm (see below for available algorithms).
• **report** – (object, default None) If not None, print information on the progress of computation.
• **use_full_group** – (bool, default False) If True then proceed as originally suggested by [AB2008]. Our default method should be faster; see `symmetrisation()` for more details.

The computation of symmetric Groebner bases also involves the computation of classical Groebner bases, i.e., of Groebner bases for ideals in polynomial rings with finitely many variables. For these computations, Sage provides the following ALGORITHMS:

`autoselect` (default)

`singular:groebner` – Singular’s `groebner` command

`singular:std` – Singular’s `std` command

`singular:stdhilb` – Singular’s `stdhilb` command

`singular:stdfglm` – Singular’s `stdfglm` command

`singular:slimgb` – Singular’s `slimgb` command

`libsingular:std` – libSingular’s `std` command

`libsingular:slimgb` – libSingular’s `slimgb` command

`toy:buchberger` – Sage’s toy/educational `buchberger` algorithm

`toy:buchberger2` – Sage’s toy/educational `buchberger2` algorithm

`toy:d_basis` – Sage’s toy/educational `d_basis` algorithm

`macaulay2:gb` – Macaulay2’s `gb` command (if available)

`magma:GroebnerBasis` – Magma’s `GroebnerBasis` command (if available)

If only a system is given - e.g. ‘magma’ - the default algorithm is chosen for that system.

Note: The Singular and libSingular versions of the respective algorithms are identical, but the former calls an external Singular process while the later calls a C function, i.e. the calling overhead is smaller.

EXAMPLES:

```python
sage: X.<x,y> = Infinite PolynomialRing(QQ)
sage: I1 = X*(x[1]+x[2],x[1]*x[2])
sage: I1.groebner_basis()
[x_1]
sage: I2.groebner_basis()
[x_1+y_2 + y_2^2+y_1, x_2*y_1 + y_2*y_1^2]
```

Note that a symmetric Groebner basis of a principal ideal is not necessarily formed by a single polynomial.

When using the algorithm originally suggested by Aschenbrenner and Hillar, the result is the same, but the computation takes much longer:

```python
sage: I2.groebner_basis(use_full_group=True)
[x_1+y_2 + y_2^2+y_1, x_2*y_1 + y_2*y_1^2]
```

Last, we demonstrate how the report on the progress of computations looks like:
sage: I1.groebner_basis(report=True, reduced=True)
Symmetric interreduction
[1/2] >
[2/2] :
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 2
Apply permutations
>
>
Symmetric interreduction
[1/3] >
[2/3] >
[3/3] :
-> 0
[1/2] >
[2/2] >
Symmetrisation done
Classical Groebner basis
-> 2 generators
Symmetric interreduction
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 3
Apply permutations
>
>
::>
::>
Symmetric interreduction
[1/4] >
[2/4] :
-> 0
[3/4] :
-> 0
[4/4] :
-> 0
[1/1] >
Apply permutations
::>
::>
::>
Symmetric interreduction
[1/1] >
Classical Groebner basis
-> 1 generators
Symmetric interreduction
[1/1] >
Symmetrise 1 polynomials at level 4
Apply permutations
>
::>
::>
>
::>

(continues on next page)
The Aschenbrenner-Hillar algorithm is only guaranteed to work if the base ring is a field. So, we raise a TypeError if this is not the case:

```python
sage: R.<x,y> = InfinitePolynomialRing(ZZ)
sage: I = R*[x[1]+x[2],y[1]]
sage: I.groebner_basis()
Traceback (most recent call last):
  ...
TypeError: The base ring (= Integer Ring) must be a field
```

interreduced_basis()

A fully symmetrically reduced generating set (type `Sequence`) of self.

This does essentially the same as `interreduction()` with the option `tailreduce`, but it returns a `Sequence` rather than a `SymmetricIdeal`.

EXAMPLES:

```python
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I=X*(x[1]+x[2],x[1]*x[2])
sage: I.interreduced_basis()
[-x_1^2, x_2 + x_1]
```

interreduction(tailreduce=True, sorted=False, report=None, RStrat=None)

Return symmetrically interreduced form of self

INPUT:

- `tailreduce` – (bool, default `True`) If `True`, the interreduction is also performed on the non-leading monomials.
- `sorted` – (bool, default `False`) If `True`, it is assumed that the generators of self are already increasingly sorted.
- `report` – (object, default `None`) If not `None`, some information on the progress of computation is printed
- `RStrat` – (`SymmetricReductionStrategy`, default `None`) A reduction strategy to which the polynomials resulting from the interreduction will be added. If `RStrat` already contains some polynomials, they will be used in the interreduction. The effect is to compute in a quotient ring.

OUTPUT:

A Symmetric Ideal J (sorted list of generators) coinciding with self as an ideal, so that any generator is symmetrically reduced w.r.t. the other generators. Note that the leading coefficients of the result are not necessarily 1.

EXAMPLES:
Here, we show the `report` option:

```
sage: I.interreduction(report=True)
Symmetric interreduction
[1/2] ->
[2/2] :
[1/2] ->
>
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over
→Rational Field
```

[m/n] indicates that polynomial number m is considered and the total number of polynomials under consideration is n. ‘-> 0’ is printed if a zero reduction occurred. The rest of the report is as described in `sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy.reduce()`.

Last, we demonstrate the use of the optional parameter `RStrat`:

```
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: R = SymmetricReductionStrategy(X)
sage: R
Symmetric Reduction Strategy in Infinite polynomial ring in x over Rational
→Field
sage: I.interreduction(RStrat=R)
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over
→Rational Field
sage: R
Symmetric Reduction Strategy in Infinite polynomial ring in x over Rational
→Field, modulo
  x_1^2,
  x_2 + x_1
sage: R = SymmetricReductionStrategy(X,[x[1]^2])
sage: I.interreduction(RStrat=R)
Symmetric Ideal (x_2 + x_1) of Infinite polynomial ring in x over Rational
→Field
```

`is_maximal()`

Answers whether self is a maximal ideal.

ASSUMPTION:

self is defined by a symmetric Groebner basis.

NOTE:

It is not checked whether self is in fact a symmetric Groebner basis. A wrong answer can result if this assumption does not hold. A `NotImplementedError` is raised if the base ring is not a field, since symmetric Groebner bases are not implemented in this setting.

EXAMPLES:

7.3. Symmetric Ideals of Infinite Polynomial Rings 553
```python
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: I = R.ideal([x[1]+y[2], x[2]-y[1]])
sage: I = R*I.groebner_basis()
sage: I
Symmetric Ideal (y_1, x_1) of Infinite polynomial ring in x, y over Rational Field
```

The preceding answer is wrong, since it is not the case that \(I \) is given by a symmetric Groebner basis:

```python
sage: I = R*I.groebner_basis()
sage: I
Symmetric Ideal (y_1, x_1) of Infinite polynomial ring in x, y over Rational Field
```

```python
sage: I.is_maximal()
True
```

(normalisation)

Return an ideal that coincides with self, so that all generators have leading coefficient 1.
Possibly occurring zeroes are removed from the generator list.

EXAMPLES:

```python
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(1/2*x[1]+2/3*x[2], 0, 4/5*x[1]*x[2])
sage: I.normalisation()
Symmetric Ideal (x_2 + 3/4*x_1, x_2*x_1) of Infinite polynomial ring in x
→ over Rational Field
```

(reduce \((I, \text{tailreduce}=\text{False})\))

Symmetric reduction of self by another Symmetric Ideal or list of Infinite Polynomials, or symmetric reduction of a given Infinite Polynomial by self.

INPUT:
- \(I \) – an Infinite Polynomial, or a Symmetric Ideal or a list of Infinite Polynomials.
- \(\text{tailreduce} \) – (bool, default False) If True, the non-leading terms will be reduced as well.

OUTPUT:
Symmetric reduction of \(\text{self} \) with respect to \(I \).

THEORY:
Reduction of an element \(p \) of an Infinite Polynomial Ring \(X \) by some other element \(q \) means the following:
1. Let \(M \) and \(N \) be the leading terms of \(p \) and \(q \).
2. Test whether there is a permutation \(P \) that does not does not diminish the variable indices occurring in \(N \) and preserves their order, so that there is some term \(T \in X \) with \(TN^P = M \). If there is no such permutation, return \(p \).
3. Replace \(p \) by \(p - Tq^P \) and continue with step 1.

EXAMPLES:
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I.reduce([x[1]^2*y[2]])
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field

The preceding is correct, since any permutation that turns $x[1]^2*y[2]$ into a factor of $x[3]^2*y[2]$ interchanges the variable indices 1 and 2 – which is not allowed. However, reduction by $x[2]^2*y[1]$ works, since one can change variable index 1 into 2 and 2 into 3:

sage: I.reduce([x[2]^2*y[1]])
Symmetric Ideal (y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field

The next example shows that tail reduction is not done, unless it is explicitly advised. The input can also be a symmetric ideal:

sage: J = (y[2])*X
sage: I.reduce(J)
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field
sage: I.reduce(J, tailreduce=True)
Symmetric Ideal (x_3^2*y_1) of Infinite polynomial ring in x, y over Rational Field

squeezed()
Reduce the variable indices occurring in *self*.

OUTPUT:
A Symmetric Ideal whose generators are the result of applying *squeezed()* to the generators of *self*.

NOTE:
The output describes the same Symmetric Ideal as *self*.

EXAMPLES:

sage: X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse')
sage: I = X*(x[100]*y[100],x[50]*y[1000])
sage: I.squeezed()
[x_1^2, x_2 + x_1]

symmetrisation()
A symmetrised generating set (type *Sequence*) of self.

This does essentially the same as *symmetrisation()* with the option ‘tailreduce’, and it returns a *Sequence* rather than a *SymmetricIdeal*.

EXAMPLES:

sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(x[1]+x[2], x[1]*x[2])
sage: I.symmetric_basis()
[x_1^2, x_2 + x_1]

symmetrisation(N=None, tailreduce=False, report=None, use_full_group=False)
Apply permutations to the generators of self and interreduce
INPUT:

- `N` – (integer, default None) Apply permutations in $\text{Sym}(N)$. If it is not given then it will be replaced by the maximal variable index occurring in the generators of `self.interreduction().squeezed()`.
- `tailreduce` – (bool, default False) If True, perform tail reductions.
- `report` – (object, default None) If not None, report on the progress of computations.
- `use_full_group` (optional) – If True, apply all elements of $\text{Sym}(N)$ to the generators of `self` (this is what [AB2008] originally suggests). The default is to apply all elementary transpositions to the generators of `self.squeezed()`, interreduce, and repeat until the result stabilises, which is often much faster than applying all of $\text{Sym}(N)$, and we are convinced that both methods yield the same result.

OUTPUT:

A symmetrically interreduced symmetric ideal with respect to which any $\text{Sym}(N)$-translate of a generator of `self` is symmetrically reducible, where by default `N` is the maximal variable index that occurs in the generators of `self.interreduction().squeezed()`.

NOTE:

If `I` is a symmetric ideal whose generators are monomials, then `I.symmetrisation()` is its reduced Groebner basis. It should be noted that without symmetrisation, monomial generators, in general, do not form a Groebner basis.

EXAMPLES:

```plaintext
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(x[1]+x[2], x[1]*x[2])
sage: I.symmetrisation()
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
sage: I.symmetrisation(N=3)
Symmetric Ideal (-2*x_1) of Infinite polynomial ring in x over Rational Field
sage: I.symmetrisation(N=3, use_full_group=True)
Symmetric Ideal (-2*x_1) of Infinite polynomial ring in x over Rational Field
```

7.4 Symmetric Reduction of Infinite Polynomials

`SymmetricReductionStrategy` provides a framework for efficient symmetric reduction of Infinite Polynomials, see `infinite_polynomial_element`.

AUTHORS:

- Simon King <simon.king@nuigalway.ie>

THEORY:

According to M. Aschenbrenner and C. Hillar [AB2007], Symmetric Reduction of an element p of an Infinite Polynomial Ring X by some other element q means the following:

1. Let M and N be the leading terms of p and q.
2. Test whether there is a permutation P that does not diminish the variable indices occurring in N and preserves their order, so that there is some term $T \in X$ with $TN^P = M$. If there is no such permutation, return p.
3. Replace p by $p - Tq^P$ and continue with step 1.
When reducing one polynomial \(p \) with respect to a list \(L \) of other polynomials, there usually is a choice of order on which the efficiency crucially depends. Also it helps to modify the polynomials on the list in order to simplify the basic reduction steps.

The preparation of \(L \) may be expensive. Hence, if the same list is used many times then it is reasonable to perform the preparation only once. This is the background of \texttt{SymmetricReductionStrategy}.

Our current strategy is to keep the number of terms in the polynomials as small as possible. For this, we sort \(L \) by increasing number of terms. If several elements of \(L \) allow for a reduction of \(p \), we choose the one with the smallest number of terms. Later on, it should be possible to implement further strategies for choice.

When adding a new polynomial \(q \) to \(L \), we first reduce \(q \) with respect to \(L \). Then, we test heuristically whether it is possible to reduce the number of terms of the elements of \(L \) by reduction modulo \(q \). That way, we see best chances to keep the number of terms in intermediate reduction steps relatively small.

EXAMPLES:

First, we create an infinite polynomial ring and one of its elements:

```sage
sage: X.<x,y> = InfinitePolynomialRing(QQ)
```

We want to symmetrically reduce it by another polynomial. So, we put this other polynomial into a list and create a Symmetric Reduction Strategy object:

```sage
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S = SymmetricReductionStrategy(X, [y[2]^2*x[1]])
```

```sage
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, \[ \rightarrow \] modulo x_1*y_2^2
sage: S.reduce(p)
x_3*y_1^2 + y_3*y_1
```

The preceding is correct, since any permutation that turns \(y[2]^2*x[1] \) into a factor of \(y[1]^2*x[3] \) interchanges the variable indices 1 and 2 – which is not allowed in a symmetric reduction. However, reduction by \(y[1]^2*x[2] \) works, since one can change variable index 1 into 2 and 2 into 3. So, we add this to \(S \):

```sage
sage: S.add_generator(y[1]^2*x[2])
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, \[ \rightarrow \] modulo x_2*y_1^2,
x_1*y_2^2
sage: S.reduce(p)
y_3*y_1
```

The next example shows that tail reduction is not done, unless it is explicitly advised:

```sage
```

```sage
x_3 + 2*x_2*y_1^2 + 3*x_1*y_2^2
x_3
```

However, it is possible to ask for tail reduction already when the Symmetric Reduction Strategy is created:

```sage
sage: S2
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, \[ \rightarrow \] modulo
```

(continues on next page)
x_2*y_1^2,
 x_1*y_2^2
with tailreduction
x_3

\textbf{class} \texttt{sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy}

\textbf{Bases:} object

A framework for efficient symmetric reduction of InfinitePolynomial, see \textit{infinite_polynomial_element}.

\textbf{INPUT:}

- \texttt{Parent} -- an Infinite Polynomial Ring, see \textit{infinite_polynomial_element}.
- \texttt{L} -- (list, default the empty list) List of elements of \texttt{Parent} with respect to which will be reduced.
- \texttt{good_input} -- (bool, default None) If this optional parameter is true, it is assumed that each element of \texttt{L} is symmetrically reduced with respect to the previous elements of \texttt{L}.

\textbf{EXAMPLES:}

\texttt{sage:} X.<y> = InfinitePolynomialRing(QQ)
\texttt{sage:} from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
y_3 + 3*y_2^2*y_1 + 2*y_2*y_1^2
y_3

\texttt{add_generator} \texttt{(p, good_input=None)}

Add another polynomial to self.

\textbf{INPUT:}

- \texttt{p} -- An element of the underlying infinite polynomial ring.
- \texttt{good_input} -- (bool, default None) If True, it is assumed that \texttt{p} is reduced with respect to \texttt{self}. Otherwise, this reduction will be done first (which may cost some time).

\textbf{Note:} Previously added polynomials may be modified. All input is prepared in view of an efficient symmetric reduction.

\textbf{EXAMPLES:}

\texttt{sage:} from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
\texttt{sage:} X.<x,y> = InfinitePolynomialRing(QQ)
\texttt{sage:} S = SymmetricReductionStrategy(X)
\texttt{sage:} S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field
\texttt{sage:} S
(continues on next page)
Note that the first added polynomial will be simplified when adding a suitable second polynomial:

```python
sage: S.add_generator(x[2]+x[1])
sage: S
```

By default, reduction is applied to any newly added polynomial. This can be avoided by specifying the optional parameter 'good_input':

```python
sage: S.add_generator(y[2]+y[1]*x[2])
sage: S
```

In the previous example, \(x[3] + x[2]\) is added without being reduced to zero.

```python
gens()
```

Return the list of Infinite Polynomials modulo which self reduces.

EXAMPLES:

```python
sage: X.<y> = InfinitePolynomialRing(QQ)
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S
```

```python
reduce (p, notail=False, report=None)
```

Symmetric reduction of an infinite polynomial.

INPUT:
• \(p \) – an element of the underlying infinite polynomial ring.

• \texttt{notail} – (bool, default False) If True, tail reduction is avoided (but there is no guarantee that there will be no tail reduction at all).

• \texttt{report} – (object, default None) If not None, print information on the progress of the computation.

OUTPUT:
Reduction of \(p \) with respect to \(\text{self} \).

\textbf{Note:} If tail reduction shall be forced, use \texttt{tailreduce()}.

\textbf{EXAMPLES:}

```python
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<x,y> = InfinitePolynomialRing(QQ)
S = SymmetricReductionStrategy(X, \{y[3]\}, tailreduce=True)
sage: S.reduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1
sage: S.reduce(y[4]*x[1] + y[1]*x[4], notail=True)
x_4*y_1 + x_1*y_4
```

Last, we demonstrate the ‘report’ option:

```python
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over \text{Rational Field}, modulo \text{y}_2*y_1^2, y_2^2*y_1
::>
x_1*y_1 + y_4 - y_3*y_1 - y_1
```

Each ‘:’ indicates that one reduction of the leading monomial was performed. Eventually, the ‘>’ indicates that the computation is finished.

\textbf{reset()}
Remove all polynomials from \text{self}.

\textbf{EXAMPLES:}

```python
sage: X.<y> = InfinitePolynomialRing(QQ)
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in y over \text{Rational Field}, modulo \text{y}_2*y_1^2, y_2^2*y_1
sage: S.reset()
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in y over \text{Rational Field}
```

560 Chapter 7. Infinite Polynomial Rings
setgens *(L)*

Define the list of Infinite Polynomials modulo which self reduces.

INPUT:

L – a list of elements of the underlying infinite polynomial ring.

Note: It is not tested if L is a good input. That method simply assigns a *copy* of L to the generators of self.

EXAMPLES:

```python
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<y> = InfinitePolynomialRing(QQ)
sage: R = SymmetricReductionStrategy(X)
sage: R.setgens(S.gens())
sage: R
Symmetric Reduction Strategy in Infinite polynomial ring in y over Rational Field, modulo y_2*y_1^2, y_2^2*y_1
sage: R.gens() == S.gens()
True
```

tailreduce *(p, report=None)*

Symmetric reduction of an infinite polynomial, with forced tail reduction.

INPUT:

• p – an element of the underlying infinite polynomial ring.

• report – (object, default None) If not None, print information on the progress of the computation.

OUTPUT:

Reduction (including the non-leading elements) of p with respect to self.

EXAMPLES:

```python
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: S.reduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1 + x_1*y_4
sage: S.tailreduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1
sage: S.tailreduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1
```

Last, we demonstrate the 'report' option:

```python
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo
```

(continues on next page)
\[
\begin{align*}
 & y_3 + y_2, \\
 & x_2 + y_1, \\
 & x_1y_2 + y_4 + y_1^2
\end{align*}
\]

```
T[3]:> T[3]:>
sage: x_1*y_1 - y_2 + y_1^2 - y_1
```

The protocol means the following.

- ‘T[3]’ means that we currently do tail reduction for a polynomial with three terms.
- ‘:::>’ means that there were three reductions of leading terms.
- The tail of the result of the preceding reduction still has three terms. One reduction of leading terms was possible, and then the final result was obtained.
8.1 Boolean Polynomials

Elements of the quotient ring

$$F_2[x_1, ..., x_n]/ \langle x_1^2 + x_1, ..., x_n^2 + x_n \rangle.$$

are called boolean polynomials. Boolean polynomials arise naturally in cryptography, coding theory, formal logic, chip design and other areas. This implementation is a thin wrapper around the PolyBoRi library by Michael Brickenstein and Alexander Dreyer.

"Boolean polynomials can be modelled in a rather simple way, with both coefficients and degree per variable lying in \(\{0,1\} \). The ring of Boolean polynomials is, however, not a polynomial ring, but rather the quotient ring of the polynomial ring over the field with two elements modulo the field equations \(x^2 = x \) for each variable \(x \). Therefore, the usual polynomial data structures seem not to be appropriate for fast Groebner basis computations. We introduce a specialised data structure for Boolean polynomials based on zero-suppressed binary decision diagrams (ZDDs), which is capable of handling these polynomials more efficiently with respect to memory consumption and also computational speed. Furthermore, we concentrate on high-level algorithmic aspects, taking into account the new data structures as well as structural properties of Boolean polynomials." - [BD07]

For details on the internal representation of polynomials see

http://polybori.sourceforge.net/zdd.html

AUTHORS:

• Michael Brickenstein: PolyBoRi author
• Alexander Dreyer: PolyBoRi author
• Burcin Erocal <burcin@erocal.org>: main Sage wrapper author
• Martin Albrecht <malb@informatik.uni-bremen.de>: some contributions to the Sage wrapper
• Simon King <simon.king@uni-jena.de>: Adopt the new coercion model. Fix conversion from univariate polynomial rings. Pickling of \texttt{BooleanMonomialMonoid} (via \texttt{UniqueRepresentation}) and \texttt{BooleanMonomial}.
• Charles Bouillaguet <charles.bouillaguet@gmail.com>: minor changes to improve compatibility with \texttt{MPolynomial} and make the variety() function work on ideals of \texttt{BooleanPolynomial}'s.

EXAMPLES:

Consider the ideal

$$\langle ab + cd + 1, ace + de, abe + ce, bc + cde + 1 \rangle.$$
First, we compute the lexicographical Groebner basis in the polynomial ring

\[R = \mathbb{F}_2[a, b, c, d, e]. \]

```
sage: P.<a,b,c,d,e> = PolynomialRing(GF(2), 5, order='lex')
sage: I1 = ideal([a+b + c*d + 1, a*c+e + d*e, a*b+e + c*e, b*c + c*d*e + 1])
sage: for f in I1.groebner_basis():
....: f
a + c^2*d + c + d^2*e
b*c + d^3*e^2 + d^3*e + d^2*e^2 + d*e + e + 1
b*e + d*e^2 + e
C*e + d^3*e^2 + d^3*e + d^2*e^2 + d^2*e + e
D^4*e^2 + d^4*e + d^3*e + d^2*e^2 + d^2*e + d*e + e
```

If one wants to solve this system over the algebraic closure of \(\mathbb{F}_2 \) then this Groebner basis was the one to consider. If one wants solutions over \(\mathbb{F}_2 \) only then one adds the field polynomials to the ideal to force the solutions in \(\mathbb{F}_2 \).

```
sage: J = I1 + sage.rings.ideal.FieldIdeal(P)
sage: for f in J.groebner_basis():
....: f
a + d + 1
b + 1
c + 1
d^2 + d
e
```

So the solutions over \(\mathbb{F}_2 \) are \(\{e = 0, d = 1, c = 1, b = 1, a = 0\} \) and \(\{e = 0, d = 0, c = 1, b = 1, a = 1\} \).

We can express the restriction to \(\mathbb{F}_2 \) by considering the quotient ring. If \(I \) is an ideal in \(\mathbb{F}[x_1, ..., x_n] \) then the ideals in the quotient ring \(\mathbb{F}[x_1, ..., x_n]/I \) are in one-to-one correspondence with the ideals of \(\mathbb{F}[x_0, ..., x_n] \) containing \(I \) (that is, the ideals \(J \) satisfying \(I \subset J \subset P \)).

```
sage: Q = P.quotient( sage.rings.ideal.FieldIdeal(P) )
sage: I2 = ideal([Q(f) for f in I1.gens()])
sage: for f in I2.groebner_basis():
....: f
abar + dbar + 1
bbar + 1
cbar + 1
debar
```

This quotient ring is exactly what PolyBoRi handles well:

```
sage: B.<a,b,c,d,e> = BooleanPolynomialRing(5, order='lex')
sage: I2 = ideal([B(f) for f in I1.gens()])
sage: for f in I2.groebner_basis():
....: f
a + d + 1
b + 1
c + 1
e
```

Note that \(d^2 + d \) is not representable in \(B = Q \). Also note, that PolyBoRi cannot play out its strength in such small examples, i.e. working in the polynomial ring might be faster for small examples like this.
8.1.1 Implementation specific notes

PolyBoRi comes with a Python wrapper. However this wrapper does not match Sage’s style and is written using Boost. Thus Sage’s wrapper is a reimplementation of Python bindings to PolyBoRi’s C++ library. This interface is written in Cython like all of Sage’s C/C++ library interfaces. An interface in PolyBoRi style is also provided which is effectively a reimplementation of the official Boost wrapper in Cython. This means that some functionality of the official wrapper might be missing from this wrapper and this wrapper might have bugs not present in the official Python interface.

8.1.2 Access to the original PolyBoRi interface

The re-implementation PolyBoRi’s native wrapper is available to the user too:

```python
sage: from brial import *
sage: declare_ring([Block('x', 2), Block('y', 3)], globals())
Boolean PolynomialRing in x0, x1, y0, y1, y2
sage: r
Boolean PolynomialRing in x0, x1, y0, y1, y2
sage: [Variable(i, r) for i in range(r.ngens())]
x(0), x(1), y(0), y(1), y(2)
```

For details on this interface see:

Also, the interface provides functions for compatibility with Sage accepting convenient Sage data types which are slower than their native PolyBoRi counterparts. For instance, sets of points can be represented as tuples of tuples (Sage) or as BooleSet (PolyBoRi) and naturally the second option is faster.

REFERENCES:

```python
class sage.rings.polynomial.pbori.BooleConstant
    Bases: object

    Construct a boolean constant (modulo 2) from integer value:

    INPUT:
    • i - an integer

    EXAMPLES:

sage: from brial import BooleConstant
sage: [BooleConstant(i) for i in range(5)]
[0, 1, 0, 1, 0]
```

deg()
Get degree of boolean constant.

```python
degree: from brial import BooleConstant
degree: BooleConstant(0).deg()
-1
degree: BooleConstant(1).deg()
0
```

has_constant_part()
This is true for BooleConstant(1).
EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(1).has_constant_part()
True
sage: BooleConstant(0).has_constant_part()
False
```

is_constant()
This is always true for this case.

EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(1).is_constant()
True
sage: BooleConstant(0).is_constant()
True
```

is_one()
Check whether boolean constant is one.

EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(0).is_one()
False
sage: BooleConstant(1).is_one()
True
```

is_zero()
Check whether boolean constant is zero.

EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(1).is_zero()
False
sage: BooleConstant(0).is_zero()
True
```

variables()
Get variables (return always an empty tuple).

EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(0).variables()
()
sage: BooleConstant(1).variables()
()
```

class sage.rings.polynomial.pbori.BooleSet

Bases: object

Return a new set of boolean monomials. This data type is also implemented on the top of ZDDs and allows to see polynomials from a different angle. Also, it makes high-level set operations possible, which are in most cases faster than operations handling individual terms, because the complexity of the algorithms depends only on the structure of the diagrams.
Objects of type `BooleanPolynomial` can easily be converted to the type `BooleSet` by using the member function `BooleanPolynomial.set()`.

INPUT:
- param - either a `CCuddNavigator`, a `BooleSet` or None.
- ring - a boolean polynomial ring.

EXAMPLES:

```python
sage: from brial import BooleSet
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
```

```python
sage: BS = BooleSet(a.set())
```

```python
sage: BS
{{a}}
```

```python
sage: BS = BooleSet((a*b + c + 1).set())
```

```python
sage: BS
{{a,b}, {c}, {}}
```

```python
sage: from brial import *
sage: BooleSet([Monomial(B)])
{{}}
```

Note: `BooleSet` prints as `{}` but are not Python dictionaries.

cartesian_product *(rhs)*

Return the Cartesian product of this set and the set rhs.

The Cartesian product of two sets X and Y is the set of all possible ordered pairs whose first component is a member of X and whose second component is a member of Y.

\[X \times Y = \{ (x, y) | x \in X \text{ and } y \in Y \}. \]

EXAMPLES:

```python
sage: B = BooleanPolynomialRing(5,'x')
```

```python
sage: x0,x1,x2,x3,x4 = B.gens()
```

```python
sage: f = x1*x2+x2*x3
```

```python
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
```

```python
sage: g = x4 + 1
```

```python
sage: t = g.set(); t
{{x4}, {}}
```

```python
sage: s.cartesian_product(t)
{{x1,x2,x4}, {x1,x2}, {x2,x3,x4}, {x2,x3}}
```

change(ind)

Swaps the presence of \(x_i\) in each entry of the set.

EXAMPLES:

```python
sage: P.<a,b,c> = BooleanPolynomialRing()
```

```python
sage: f = a+b
```

```python
sage: s = f.set(); s
{{a}, {b}}
```

```python
sage: s.change(0)
```

(continues on next page)
diff (rhs)
Return the set theoretic difference of this set and the set rhs.

The difference of two sets X and Y is defined as:

$$ X \setminus Y = \{ x | x \in X \text{ and } x \notin Y \}. $$

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5, 'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2 + x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: g = x2*x3 + 1
sage: t = g.set(); t
{{x2,x3}, {}}
sage: s.diff(t)
{{x1,x2}}
```

divide (rhs)
Divide each element of this set by the monomial rhs and return a new set containing the result.

EXAMPLES:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='lex')
sage: f = b*e + b*c*d + b
sage: s = f.set(); s
{{b,c,d}, {b,e}, {b}}
sage: s.divide(b.lm())
{{c,d}, {e}, {}}
sage: f = b*e + b*c*d + b + c
sage: s = f.set()
sage: s.divide(b.lm())
{{c,d}, {e}, {}}
```

divisors_of (m)
Return those members which are divisors of m.

INPUT:

- m - a boolean monomial

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5, 'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2 + x2*x3
sage: s = f.set()
sage: s.divisors_of((x1*x2*x4).lead())
{{x1,x2}}
```
empty()
Return True if this set is empty.

EXAMPLES:
```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: BS = (a*b + c).set()
sage: BS.empty()
False
sage: BS = B(0).set()
sage: BS.empty()
True
```

include_divisors()
Extend this set to include all divisors of the elements already in this set and return the result as a new set.

EXAMPLES:
```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: f = a*d*e + a*f + b*d*e + c*d*e + 1
sage: s = f.set(); s
{{a,d,e}, {a,f}, {b,d,e}, {c,d,e}, {}}
sage: s.include_divisors()
{{a,d,e}, {a,d}, {a,e}, {a,f}, {a}, {b,d,e}, {b,d}, {b,e}, {b}, {c,d,e}, {c,d}, {c,e}, {c}, {d,e}, {d}, {e}, {f}, {}}
```

intersect(other)
Return the set theoretic intersection of this set and the set rhs.

The union of two sets \(X \) and \(Y \) is defined as:

\[
X \cap Y = \{ x | x \in X \text{ and } x \in Y \}.
\]

EXAMPLES:
```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: g = x2*x3 + 1
sage: t = g.set(); t
{{x2,x3}, {}}
sage: s.intersect(t)
{{x2,x3}}
```

minimal_elements()
Return a new set containing a divisor of all elements of this set.

EXAMPLES:
```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: f = a*d*e + a*f + a*b*d*e + a*c*d*e + a
sage: s = f.set(); s
{{a,b,d,e}, {a,c,d,e}, {a,d,e}, {a,f}, {a}}
sage: s.minimal_elements()
{{a}}
```

8.1. Boolean Polynomials
multiples_of(m)
Return those members which are multiples of m.

INPUT:

- m - a boolean monomial

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1+x2+x2+x3
sage: s = f.set()
sage: s.multiples_of(x1.lm())
{{x1,x2}}
```

n_nodes()
Return the number of nodes in the ZDD.

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1+x2+x2+x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: s.n_nodes()
4
```

navigation()
Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding then-and else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

EXAMPLES:

```
sage: from brial import BooleSet
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1+x2+x2+x3+x4+x2+x4+x3+x4+1
sage: s = f.set(); s
{{x1,x2}, {x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}
sage: nav = s.navigation()
sage: BooleSet(nav,s.ring())
{{x1,x2}, {x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}
sage: nav.value()
1
sage: nav_else = nav.else_branch()
sage: BooleSet(nav_else,s.ring())
{{x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}
sage: nav_else.value()
2
```
ring()
Return the parent ring.

EXAMPLES:

sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1+x2+x2*x3*x4+x2*x4+x3+x4+1
sage: f.set().ring() is B
True

set()
Return self.

EXAMPLES:

sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: BS = (a+b + c).set()
sage: BS.set() is BS
True

size_double()
Return the size of this set as a floating point number.

EXAMPLES:

sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set()
sage: s.size_double()
2.0

stable_hash()
A hash value which is stable across processes.

EXAMPLES:

sage: B.<x,y> = BooleanPolynomialRing()
sage: x.set() is x.set()
False
sage: x.set().stable_hash() == x.set().stable_hash()
True

Note: This function is part of the upstream PolyBoRi interface. In Sage all hashes are stable.

subset0(i)
Return a set of those elements in this set which do not contain the variable indexed by i.

INPUT:

• i - an index

EXAMPLES:

sage: BooleanPolynomialRing(5,'x')
Boolean PolynomialRing in x0, x1, x2, x3, x4
sage: B = BooleanPolynomialRing(5,'x')

(continues on next page)
sage: B.inject_variables()
Defining x0, x1, x2, x3, x4
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
\{\{x1, x2\}, \{x2, x3\}\}
sage: s.subset0(1)
\{\{x2, x3\}\}

subset0 (i)
Return a set of those elements in this set which do contain the variable indexed by \(i\) and evaluate the variable indexed by \(i\) to 1.

INPUT:

• \(i\) - an index

EXAMPLES:

sage: BooleanPolynomialRing(5,'x')
Boolean PolynomialRing in x0, x1, x2, x3, x4
sage: B = BooleanPolynomialRing(5,'x')
sage: B.inject_variables()
Defining x0, x1, x2, x3, x4
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
\{\{x1, x2\}, \{x2, x3\}\}
sage: s.subset0(1)
\{\{x2, x3\}\}

union (rhs)
Return the set theoretic union of this set and the set \(rhs\).

The union of two sets \(X\) and \(Y\) is defined as:

\[X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}. \]

EXAMPLES:

sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
\{\{x1, x2\}, \{x2, x3\}\}
sage: g = x2*x3 + 1
sage: t = g.set(); t
\{\{x2, x3\}, {}\}
sage: s.union(t)
\{\{x1, x2\}, \{x2, x3\}, {}\}

vars ()
Return the variables in this set as a monomial.

EXAMPLES:

sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='lex')
sage: f = a + b*e + d*f + e + 1
sage: s = f.set()
sage: s
{{a}, {b,e}, {d,f}, {e}, {}}
sage: s.vars()
a*b*d*e*f

class sage.rings.polynomial.pbori.BooleSetIterator
 Bases: object
 Helper class to iterate over boolean sets.

 next()
 x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.pbori.BooleanMonomial
 Bases: sage.structure.element.MonoidElement
 Construct a boolean monomial.

 INPUT:
 * parent - parent monoid this element lives in

 EXAMPLES:

 sage: from brial import BooleanMonomialMonoid, BooleanMonomial
 sage: P.<x,y,z> = BooleanPolynomialRing(3)
 sage: M = BooleanMonomialMonoid(P)
 sage: BooleanMonomial(M)
 1

 Note: Use the BooleanMonomialMonoid__call__() method and not this constructor to construct these objects.

 deg()
 Return degree of this monomial.

 EXAMPLES:

 sage: from brial import BooleanMonomialMonoid
 sage: P.<x,y,z> = BooleanPolynomialRing(3)
 sage: M = BooleanMonomialMonoid(P)
 sage: M(x*y).deg()
 2
 sage: M(x*x*y*z).deg()
 3

 Note: This function is part of the upstream PolyBoRi interface.

degree(x=None)
 Return the degree of this monomial in x, where x must be one of the generators of the polynomial ring.

 INPUT:
 * x - boolean multivariate polynomial (a generator of the polynomial ring). If x is not specified (or is None), return the total degree of this monomial.

 EXAMPLES:
```python
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y,z> = BooleanPolynomialRing(3)

sage: M = BooleanMonomialMonoid(P)
sage: M(x*y).degree()
2
sage: M(x*y).degree(x)
1
sage: M(x*y).degree(z)
0
```

divisors()
Return a set of boolean monomials with all divisors of this monomial.

EXAMPLES:

```python
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
sage: m.divisors()
{{x,y}, {x}, {y}, {}}
```

gcd(rhs)
Return the greatest common divisor of this boolean monomial and `rhs`.

INPUT:
- `rhs` - a boolean monomial

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: a,b,c,d = a.lm(), b.lm(), c.lm(), d.lm()
sage: (a*b).gcd(b*c)
b
sage: (a*b*c).gcd(d)
1
```

index()
Return the variable index of the first variable in this monomial.

EXAMPLES:

```python
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
sage: m.index()
0
```

Note: This function is part of the upstream PolyBoRi interface.

iterindex()
Return an iterator over the indices of the variables in self.

EXAMPLES:

```python
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y,z> = BooleanPolynomialRing(3)
```

(continues on next page)
```python
sage: M = BooleanMonomialMonoid(P)
sage: list(M(x*z).iterindex())
[0, 2]
```

multiples (*rhs*)

Return a set of boolean monomials with all multiples of this monomial up to the bound *rhs*.

INPUT:

- *rhs* - a boolean monomial

EXAMPLES:

```python
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x
sage: m = f.lm()
sage: g = x*y*z
sage: n = g.lm()
sage: m.multiples(n)
{{x,y,z}, {x,y}, {x,z}, {x}}
sage: n.multiples(m)
{{x,y,z}}
```

Note: The returned set always contains *self* even if the bound *rhs* is smaller than *self.*

navigation()

Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding then- and else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

EXAMPLES:

```python
sage: from brial import BooleSet
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3*x4+x2*x4+x3+x4+1
sage: m = f.lm(); m
x1*x2
sage: nav = m.navigation()
sage: BooleSet(nav, B)
{{x1,x2}}
sage: nav.value()
1
```

reducible_by (*rhs*)

Return True if *self* is reducible by *rhs*.

INPUT:

- *rhs* - a boolean monomial

EXAMPLES:

```python
```
B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
True
sage: m.reducible_by((x*z).lm())
False

ring()
Return the corresponding boolean ring.

EXAMPLES:
B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: a.lm().ring() is B
True

set()
Return a boolean set of variables in this monomials.

EXAMPLES:
B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
c
m = f.lm()
sage: m.set()
{{x,y}}

stable_hash()
A hash value which is stable across processes.

EXAMPLES:
B.<x,y> = BooleanPolynomialRing()
sage: x.lm() is x.lm()
False
sage: x.lm().stable_hash() == x.lm().stable_hash()
True

Note: This function is part of the upstream PolyBoRi interface. In Sage all hashes are stable.

variables()
Return a tuple of the variables in this monomial.

EXAMPLES:

class sage.rings.polynomial.pbori.BooleanMonomialIterator
 Bases: object

 An iterator over the variable indices of a monomial.
next()
 x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.pbori.BooleanMonomialMonoid(polring)
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.monoids.monoid.Monoid_class

Construct a boolean monomial monoid given a boolean polynomial ring.
This object provides a parent for boolean monomials.

INPUT:
 • polring - the polynomial ring our monomials lie in

EXAMPLES:

 sage: from brial import BooleanMonomialMonoid
 sage: P.<x,y> = BooleanPolynomialRing(2)
 sage: M = BooleanMonomialMonoid(P)
 sage: M
 MonomialMonoid of Boolean PolynomialRing in x, y
 sage: M.gens()
 (x, y)
 sage: type(M.gen(0))
 <type 'sage.rings.polynomial.pbori.BooleanMonomial'>

Since trac ticket #9138, boolean monomial monoids are unique parents and are fit into the category framework:

 sage: loads(dumps(M)) is M
 True
 sage: TestSuite(M).run()

 sage: gen(i=0)
 Return the i-th generator of self.

 INPUT:
 • i - an integer

 EXAMPLES:

 sage: from brial import BooleanMonomialMonoid
 sage: P.<x,y,z> = BooleanPolynomialRing(3)
 sage: M = BooleanMonomialMonoid(P)
 sage: M.gen(0)
 x
 sage: M.gen(2)
 z

 sage: P = BooleanPolynomialRing(1000, 'x')
 sage: M = BooleanMonomialMonoid(P)
 sage: M.gen(50)
 x50

gens()
Return the tuple of generators of this monoid.

EXAMPLES:

8.1. Boolean Polynomials
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: M = BooleanMonomialMonoid(P)
sage: M.gens()
(x, y, z)

ngens()
Return the number of variables in this monoid.

EXAMPLES:

sage: from brial import BooleanMonomialMonoid
sage: P = BooleanPolynomialRing(100, 'x')
sage: M = BooleanMonomialMonoid(P)
sage: M.ngens()
100

class sage.rings.polynomial.pbori.BooleanMonomialVariableIterator
Bases: object

next()
x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.pbori.BooleanMulAction
Bases: sage.categories.action.Action

class sage.rings.polynomial.pbori.BooleanPolynomial
Bases: sage.rings.polynomial.multi_polynomial.MPolynomial

Construct a boolean polynomial object in the given boolean polynomial ring.

INPUT:

• parent - a boolean polynomial ring

Note: Do not use this method to construct boolean polynomials, but use the appropriate __call__ method in the parent.

constant()
Return True if this element is constant.

EXAMPLES:

sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: x.constant()
False

sage: B(1).constant()
True

Note: This function is part of the upstream PolyBoRi interface.

constant_coefficient()
Return the constant coefficient of this boolean polynomial.

EXAMPLES:


```python
sage: B.<a,b> = BooleanPolynomialRing()
sage: a.constant_coefficient()
0
sage: (a+1).constant_coefficient()
1
```

deg()

Return the degree of `self`. This is usually equivalent to the total degree except for weighted term orderings which are not implemented yet.

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).degree()
1
```

```python
sage: P(1).degree()
0
```

```python
sage: (x*y + x + y + 1).degree()
2
```

Note: This function is part of the upstream PolyBoRi interface.

degree *(x=None)*

Return the maximal degree of this polynomial in `x`, where `x` must be one of the generators for the parent of this polynomial.

If `x` is not specified (or is `None`), return the total degree, which is the maximum degree of any monomial.

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).degree()
1
```

```python
sage: P(1).degree()
0
```

```python
sage: (x*y + x + y + 1).degree()
2
```

```python
sage: (x*y + x + y + 1).degree(x)
1
```

elength()

Return elimination length as used in the SlimGB algorithm.

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: x.elength()
1
```

```python
sage: f = x*y + 1
```

(continues on next page)
REFERENCES:

• Michael Brickenstein; SlimGB: Groebner Bases with Slim Polynomials http://www.mathematik.uni-kl.de/~zca/Reports_on_ca/35/paper_35_full.ps.gz

Note: This function is part of the upstream PolyBoRi interface.

first_term()

Return the first term with respect to the lexicographical term ordering.

EXAMPLES:

```python
sage: B.<a,b,z> = BooleanPolynomialRing(3,order='lex')
sage: f = b*z + a + 1
sage: f.first_term()
a
```

Note: This function is part of the upstream PolyBoRi interface.

graded_part(deg)

Return graded part of this boolean polynomial of degree deg.

INPUT:

• deg - a degree

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + c*d + a*b + 1
sage: f.graded_part(2)
a*b + c*d
sage: f.graded_part(0)
1
```

has_constant_part()

Return True if this boolean polynomial has a constant part, i.e. if 1 is a term.

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + c*d + a*b + 1
sage: f.has_constant_part()
True
sage: f = a*b*c + c*d + a*b
sage: f.has_constant_part()
False
```

is_constant()

Check if self is constant.
EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(1).is_constant()
True
sage: P(0).is_constant()
True
sage: x.is_constant()
False
sage: (x+y).is_constant()
False
```

is_equal(right)

EXAMPLES:

```
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*z + b + 1
sage: g = b + z
sage: f.is_equal(g)
False
sage: f.is_equal((f + 1) - 1)
True
```

Note: This function is part of the upstream PolyBoRi interface.

is_homogeneous()

Return True if this element is a homogeneous polynomial.

EXAMPLES:

```
sage: P.<x, y> = BooleanPolynomialRing()
sage: (x+y).is_homogeneous()
True
sage: P(0).is_homogeneous()
True
sage: (x+1).is_homogeneous()
False
```

is_one()

Check if self is 1.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(1).is_one()
True
sage: P.one().is_one()
True
```
sage: x.is_one()
False

sage: P(0).is_one()
False

\textbf{is_pair()}

Check if \texttt{self} has exactly two terms.

EXAMPLES:

sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(0).is_singleton_or_pair()
True

sage: x.is_singleton_or_pair()
True

sage: P(1).is_singleton_or_pair()
True

sage: (x*y).is_singleton_or_pair()
True

sage: (x + y).is_singleton_or_pair()
True

sage: (x + 1).is_singleton_or_pair()
True

sage: (x*y + 1).is_singleton_or_pair()
True

sage: (x + y + 1).is_singleton_or_pair()
False

sage: ((x + 1)*(y + 1)).is_singleton_or_pair()
False

\textbf{is_singleton()}

Check if \texttt{self} has at most one term.

EXAMPLES:

sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(0).is_singleton()
True

sage: x.is_singleton()
True

sage: P(1).is_singleton()
True
```python
sage: (x*y).is_singleton()
True

sage: (x + y).is_singleton()
False

sage: (x + 1).is_singleton()
False

sage: (x*y + 1).is_singleton()
False

sage: (x + y + 1).is_singleton()
False

sage: ((x + 1)*(y + 1)).is_singleton()
False
```

`is_singleton_or_pair()`

Check if `self` has at most two terms.

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(0).is_singleton_or_pair()
True

sage: x.is_singleton_or_pair()
True

sage: P(1).is_singleton_or_pair()
True

sage: (x*y).is_singleton_or_pair()
True

sage: (x + y).is_singleton_or_pair()
True

sage: (x + 1).is_singleton_or_pair()
True

sage: (x*y + 1).is_singleton_or_pair()
True

sage: (x + y + 1).is_singleton_or_pair()
False

sage: ((x + 1)*(y + 1)).is_singleton_or_pair()
False
```

`is_unit()`

Check if `self` is invertible in the parent ring.

8.1. Boolean Polynomials

583
Note that this condition is equivalent to being 1 for boolean polynomials.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.one().is_unit()
True

sage: x.is_unit()
False
```

is_univariate()

Return True if self is a univariate polynomial, that is if self contains only one variable.

EXAMPLES:

```
sage: P.<x,y,z> = BooleanPolynomialRing()
sage: f = x + 1
sage: f.is_univariate()
True

sage: f = y*x + 1
sage: f.is_univariate()
False

sage: f = P(0)

sage: f.is_univariate()
True
```

is_zero()

Check if self is zero.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(0).is_zero()
True

sage: x.is_zero()
False

sage: P(1).is_zero()
False
```

lead()

Return the leading monomial of boolean polynomial, with respect to to the order of parent ring.

EXAMPLES:

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lead()
x

sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lead()
y*z
```

Note: This function is part of the upstream PolyBoRi interface.
lead_deg()

Return the total degree of the leading monomial of self.

EXAMPLES:

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: p = x + y*z
sage: p.lead_deg()
1
```

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: p = x + y*z
sage: p.lead_deg()
2
```

```sage
sage: P(0).lead_deg()
0
```

Note: This function is part of the upstream PolyBoRi interface.

lead_divisors()

Return a BooleSet of all divisors of the leading monomial.

EXAMPLES:

```sage
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*b + z + 1
sage: f.lead_divisors()
{{a,b}, {a}, {b}, {}}
```

Note: This function is part of the upstream PolyBoRi interface.

lex_lead()

Return the leading monomial of boolean polynomial, with respect to the lexicographical term ordering.

EXAMPLES:

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lex_lead()
x
```

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lex_lead()
x
```

```sage
sage: P(0).lex_lead()
0
```

Note: This function is part of the upstream PolyBoRi interface.

lex_lead_deg()

Return degree of leading monomial with respect to the lexicographical ordering.

EXAMPLES:

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lex_lead_deg()
0
```

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lex_lead_deg()
0
```

Note: This function is part of the upstream PolyBoRi interface.

8.1. Boolean Polynomials 585
sage: B.<x,y,z> = BooleanPolynomialRing(3,order='lex')
sage: f = x + y*z
sage: f
x + y*z
sage: f.lex_lead_deg()
1

sage: B.<x,y,z> = BooleanPolynomialRing(3,order='deglex')
sage: f = x + y*z
sage: f
y*z + x
sage: f.lex_lead_deg()
1

Note: This function is part of the upstream PolyBoRi interface.

lm()
Return the leading monomial of this boolean polynomial, with respect to the order of parent ring.

EXAMPLES:

sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lm()
x
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lm()
y*z
sage: P(0).lm()
0

lt()
Return the leading term of this boolean polynomial, with respect to the order of the parent ring.

Note that for boolean polynomials this is equivalent to returning leading monomials.

EXAMPLES:

sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lt()
x
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lt()
y*z

map_every_x_to_x_plus_one()
Map every variable \(x_i \) in this polynomial to \(x_i + 1 \).

EXAMPLES:

sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*b + z + 1; f
a*b + z + 1
sage: f.map_every_x_to_x_plus_one()
monomial_coefficient (mon)
Return the coefficient of the monomial mon in self, where mon must have the same parent as self.

INPUT:

• mon - a monomial

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: x.monomial_coefficient(x)
1
sage: x.monomial_coefficient(y)
0
sage: R.<x,y,z,a,b,c>=BooleanPolynomialRing(6)
sage: f=(1-x)*(1+y); f
x*y + x + y + 1
sage: f.monomial_coefficient(1)
1
sage: f.monomial_coefficient(0)
0
```

monomials ()
Return a list of monomials appearing in self ordered largest to smallest.

EXAMPLES:

```
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='lex')
sage: f = a + c*b
sage: f.monomials()
[a, b*c]
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='deglex')
sage: f = a + c*b
sage: f.monomials()
[b*c, a]
sage: P.zero().monomials()
[]
```

n_nodes ()
Return the number of nodes in the ZDD implementing this polynomial.

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1+x2 + x2*x3 + 1
sage: f.n_nodes()
4
```
`n_vars()`

Return the number of variables used to form this boolean polynomial.

EXAMPLES:

```sage
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + 1
sage: f.n_vars()
3
```

Note: This function is part of the upstream PolyBoRi interface.

`navigation()`

Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding then- and else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

EXAMPLES:

```sage
sage: from brial import BooleSet
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3*x4+x2*x4+x3+x4+1
sage: nav = f.navigation()
sage: BooleSet(nav, B)
{{x1,x2}, {x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}
sage: nav.value()
1
sage: nav_else = nav.else_branch()
sage: BooleSet(nav_else, B)
{{x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}
sage: nav_else.value()
2
```

Note: This function is part of the upstream PolyBoRi interface.

`nvariables()`

Return the number of variables used to form this boolean polynomial.

EXAMPLES:

```sage
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + 1
```

(continues on next page)
reduce(I)
Return the normal form of self w.r.t. I, i.e. return the remainder of self with respect to the polynomials in I. If the polynomial set/list I is not a Groebner basis the result is not canonical.

INPUT:
• I - a list/set of polynomials in self.parent(). If I is an ideal, the generators are used.

EXAMPLES:

```
sage: B.<x0,x1,x2,x3> = BooleanPolynomialRing(4)
sage: I = B.ideal((x0 + x1 + x2 + x3,
                ....: x0*x1 + x1*x2 + x0*x3 + x2*x3,
                ....: x0*x1*x2 + x0*x1*x3 + x0*x2*x3 + x1*x2*x3,
                ....: x0*x1*x2*x3 + 1))
sage: gb = I.groebner_basis()
sage: f,g,h,i = I.gens()
sage: f.reduce(gb)
0
sage: p = f*g + x0*h + x2*i
sage: p.reduce(gb)
0
sage: p.reduce(I)
x1*x2*x3 + x2
sage: p.reduce([])
x0*x1*x2 + x0*x1*x3 + x0*x2*x3 + x2
```

Note: If this function is called repeatedly with the same I then it is advised to use PolyBoRi’s GroebnerStrategy object directly, since that will be faster. See the source code of this function for details.

reducible_by(rhs)
Return True if this boolean polynomial is reducible by the polynomial rhs.

INPUT:
• rhs - a boolean polynomial

EXAMPLES:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4,order='deglex')
sage: f = (a+b+1)*(c+1)
sage: f.reducible_by(d)
False
sage: f.reducible_by(c)
True
sage: f.reducible_by(c + 1)
True
```

Note: This function is part of the upstream PolyBoRi interface.
ring()
Return the parent of this boolean polynomial.

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: a.ring() is B
True
```

set()
Return a BooleSet with all monomials appearing in this polynomial.

EXAMPLES:

```python
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: (a*b+z+1).set()
{(a, b), (z), (())
```

spoly(rhs)
Return the S-Polynomial of this boolean polynomial and the other boolean polynomial rhs.

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + c*d + a*b + 1
sage: g = c*d + b
sage: f.spoly(g)
a*b + a*c*d + c*d + 1
```

Note: This function is part of the upstream PolyBoRi interface.

stable_hash()
A hash value which is stable across processes.

EXAMPLES:

```python
sage: B.<x,y> = BooleanPolynomialRing()
sage: x is B.gen(0)
False
sage: x.stable_hash() == B.gen(0).stable_hash()
True
```

Note: This function is part of the upstream PolyBoRi interface. In Sage all hashes are stable.

subs(in_dict=None, **kwds)
Fixes some given variables in a given boolean polynomial and returns the changed boolean polynomials. The polynomial itself is not affected. The variable,value pairs for fixing are to be provided as dictionary of the form {variable:value} or named parameters (see examples below).

INPUT:

- in_dict - (optional) dict with variable:value pairs
- **kwds - names parameters

EXAMPLES:
```python
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y + z + y*z + 1
sage: f.subs(x=1)
y*z + y + z + 1
sage: f.subs(x=0)
y*z + z + 1
sage: f.subs(x=y)
y*z + y + z + 1
sage: f.subs({x:1},y=1)
0
sage: f.subs(y=1)
x + 1
sage: f.subs(y=1,z=1)
x + 1
sage: f.subs(z=1)
x*y + y
sage: f.subs({'x':1},y=1)
0
sage: f.subs(x=var('a'),y=var('b'),z=var('c'))
a*b + b*c + c + 1
sage: f.subs({x:var('a'),'y':var('b'),'z':var('c')})
a*b + b*c + c + 1
```

This method can work fully symbolic:

```python
sage: f.subs(x=var('a'),y=var('b'),z=var('c'))
a*b + b*c + c + 1
sage: f.subs({x:var('a'),'y':var('b'),'z':var('c')})
a*b + b*c + c + 1
```

terms()

Return a list of monomials appearing in `self` ordered largest to smallest.

EXAMPLES:

```python
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='lex')
sage: f = a + c*b
sage: f.terms()
[a, b*c]
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='deglex')
sage: f = a + c*b
sage: f.terms()
[b*c, a]
```

total_degree()

Return the total degree of `self`.

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).total_degree()
1
sage: P(1).total_degree()
0
sage: (x+y + x + y + 1).total_degree()
2
```

8.1. Boolean Polynomials
univariate_polynomial \((R=None) \)
Return a univariate polynomial associated to this multivariate polynomial.

If this polynomial is not in at most one variable, then a `ValueError` exception is raised. This is checked using the `is_univariate()` method. The new Polynomial is over GF(2) and in the variable \(x \) if no ring \(R \) is provided.

```
sage: R.<x, y> = BooleanPolynomialRing() sage: f = x - y + x*y + 1
sage: f.univariate_polynomial() Traceback (most recent call last): ... ValueError: polynomial must involve at most one variable
```

Here’s an example with a constant multivariate polynomial:

```
sage: g = R(1)
sage: h = g.univariate_polynomial(); h
1
sage: h.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using GF2X)
```

variable \((i=0) \)
Return the \(i \)-th variable occurring in self. The index \(i \) is the index in `self.variables()`

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*z + z + 1
sage: f.variables()
(x, z)
sage: f.variable(1)
z
```

variables()
Return a tuple of all variables appearing in `self`.

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x + y).variables()
(x, y)
sage: (x*y + z).variables()
(x, y, z)
sage: P.zero().variables()
()
sage: P.one().variables()
()
```

vars_as_monomial()
Return a boolean monomial with all the variables appearing in `self`.

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x + y).vars_as_monomial()
x*y
```

Chapter 8. Boolean Polynomials
sage: (x*y + z).vars_as_monomial()
x*y*z

sage: P.zero().vars_as_monomial()
1

sage: P.one().vars_as_monomial()
1

Note: This function is part of the upstream PolyBoRi interface.

zeros_in(s)
Return a set containing all elements of s where this boolean polynomial evaluates to zero.
If s is given as a BooleSet, then the return type is also a BooleSet. If s is a set/list/tuple of tuple this function returns a tuple of tuples.

INPUT:
• s - candidate points for evaluation to zero

EXAMPLES:

sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b + c + d + 1

Now we create a set of points:

sage: s = a*b + a*b*c + c*d + 1
sage: s = s.set(); s
{{a,b,c}, {a,b}, {c,d}, {}}

This encodes the points (1,1,1,0), (1,1,0,0), (0,0,1,1) and (0,0,0,0). But of these only (1,1,0,0) evaluates to zero.

sage: f.zeros_in(s)
{{a,b}}

sage: f.zeros_in([(1,1,1,0), (1,1,0,0), (0,0,1,1), (0,0,0,0)])
((1, 1, 0, 0),)

class sage.rings.polynomial.pbori.BooleanPolynomialEntry
Bases: object

P

class sage.rings.polynomial.pbori.BooleanPolynomialIdeal(ring, gens=[], coerce=True)
Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal

Construct an ideal in the boolean polynomial ring.

INPUT:
• ring - the ring this ideal is defined in
• gens - a list of generators
• coerce - coerce all elements to the ring ring (default: True)

8.1. Boolean Polynomials
EXAMPLES:

```python
sage: P.<x0, x1, x2, x3> = BooleanPolynomialRing(4)
sage: I = P.ideal(x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0)
sage: I
Ideal (x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0) of Boolean PolynomialRing in x0, x1, x2, x3
sage: loads(dumps(I)) == I
True
```

dimension()

Return the dimension of `self`, which is always zero.

groebner_basis(algorithm='polybori', **kwds)

Return a Groebner basis of this ideal.

INPUT:

- **algorithm** - either "polybori" (built-in default) or "magma" (requires Magma).
- **red_tail** - tail reductions in intermediate polynomials, this options affects mainly heuristics. The reducedness of the output polynomials can only be guaranteed by the option redsb (default: True)
- **minsb** - return a minimal Groebner basis (default: True)
- **redsb** - return a minimal Groebner basis and all tails are reduced (default: True)
- **deg_bound** - only compute Groebner basis up to a given degree bound (default: False)
- **faugere** - turn off or on the linear algebra (default: False)
- **linear_algebra_in_last_block** - this affects the last block of block orderings and degree orderings. If it is set to True linear algebra takes affect in this block. (default: True)
- **gauss_on_linear** - perform Gaussian elimination on linear polynomials (default: True)
- **selection_size** - maximum number of polynomials for parallel reductions (default: 1000)
- **heuristic** - Turn off heuristic by setting heuristic=False (default: True)
- **lazy** - (default: True)
- **invert** - setting invert=True input and output get a transformation x+1 for each variable x, which shouldn’t effect the calculated GB, but the algorithm.
- **other_ordering_first** - possible values are False or an ordering code. In practice, many Boolean examples have very few solutions and a very easy Groebner basis. So, a complex walk algorithm (which cannot be implemented using the data structures) seems unnecessary, as such Groebner bases can be converted quite fast by the normal Buchberger algorithm from one ordering into another ordering. (default: False)
- **prot** - show protocol (default: False)
- **full_prot** - show full protocol (default: False)

EXAMPLES:

```python
sage: P.<x0, x1, x2, x3> = BooleanPolynomialRing(4)
sage: I = P.ideal(x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0)
sage: I.groebner_basis()
[x0*x1 + x0*x2 + x0, x0*x2*x3 + x0*x3]
```

Another somewhat bigger example:
We compute the same example with Magma:

```python
sage: sr = mq.SR(2,1,1,4,gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: I = F.ideal()
sage: I.groebner_basis(algorithm='magma', prot='sage') # optional - magma
Leading term degree: 3. Critical pairs: 101 (all pairs of current degree eliminated by criteria).
Highest degree reached during computation: 3.
```

interreduced_basis()

If this ideal is spanned by \((f_1, \ldots, f_n)\) this method returns \((g_1, \ldots, g_s)\) such that:

- \(<f_1, \ldots, f_n> = <g_1, \ldots, g_s>
- \(\text{LT}(g_i) \neq \text{LT}(g_j)\) for all \(i \neq j\)
- \(\text{LT}(g_i)\) does not divide \(m\) for all monomials \(m\) of \((g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_s)\)

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: I = F.ideal()
sage: I.interreduced_basis()
[k100 + 1, k101 + k001 + 1, k102, k103 + 1, x100 + k001 + 1, x101 + k001, 
  x102, x103 + k001, w100 + 1, w101 + k001 + 1, w102 + 1, w103 + 1, s000 + k001, 
  s001 + k001 + 1, s002, s003 + k001 + 1, k000 + 1, k002 + 1, k003 + 1]
```

reduce()

Reduce an element modulo the reduced Groebner basis for this ideal. This returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(2),10, 'x')
sage: B = BooleanPolynomialRing(10,'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I = B.ideal([B(f) for f in I.gens()])
sage: gb = I.groebner_basis()
sage: I.reduce(gb[0])
0
sage: I.reduce(gb[0] + 1)
1
sage: I.reduce(gb[0]*gb[1])
0
```

(continues on next page)
sage: I.reduce(gb[0]*B.gen(1))
0

variety(**kwds)

Return the variety associated to this boolean ideal.

EXAMPLES:

A Simple example:

```
sage: from sage.doctest.fixtures import reproducible_repr
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: I = ideal( [ x*y*z + x*z + y + 1, x+y+z+1 ] )
sage: print(reproducible_repr(I.variety()))
[(x: 0, y: 1, z: 0), (x: 1, y: 1, z: 1)]
```

class sage.rings.polynomial.pbori.BooleanPolynomialIterator

Bases: object

Iterator over the monomials of a boolean polynomial.

next ()

x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.pbori.BooleanPolynomialRing

Bases: sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base

Construct a boolean polynomial ring with the following parameters:

INPUT:

- n - number of variables (an integer > 1)
- names - names of ring variables, may be a string or list/tuple
- order - term order (default: lex)

EXAMPLES:

```
sage: R.<x, y, z> = BooleanPolynomialRing()
sage: R
Boolean PolynomialRing in x, y, z
sage: p = x*y + x*z + y*z
sage: x*p
x*y*z + x*y + x*z
sage: R.term_order()
Lexicographic term order
sage: R = BooleanPolynomialRing(5,'x',order='deglex(3),deglex(2)')
sage: R.term_order()
Block term order with blocks:
(Degree lexicographic term order of length 3,
 Degree lexicographic term order of length 2)
sage: R = BooleanPolynomialRing(3,'x',order='deglex')
sage: R.term_order()
Degree lexicographic term order
```

Chapter 8. Boolean Polynomials
sage: Q.<x,z> = BooleanPolynomialRing(2)
sage: P == Q
False

sage: S.<x,y> = BooleanPolynomialRing(2, order='deglex')
sage: P == S
False

```
change_ring (base_ring=None, names=None, order=None)
```

Return a new multivariate polynomial ring with base ring `base_ring`, variable names set to `names`, and term ordering given by `order`.

When `base_ring` is not specified, this function returns a `BooleanPolynomialRing` isomorphic to `self`. Otherwise, this returns a `MPolynomialRing`. Each argument above is optional.

INPUT:

- `base_ring` - a base ring
- `names` - variable names
- `order` - a term order

EXAMPLES:

```
sage: P.<x, y, z> = BooleanPolynomialRing()
sage: P.term_order()
Lexicographic term order
sage: R = P.change_ring(names=('a', 'b', 'c'), order="deglex")
sage: R
Boolean PolynomialRing in a, b, c
sage: R.term_order()
Degree lexicographic term order
sage: T = P.change_ring(base_ring=GF(3))
sage: T
Multivariate Polynomial Ring in x, y, z over Finite Field of size 3
sage: T.term_order()
Lexicographic term order
```

```
clone (ordering=None, names=[], blocks=[])
```

Shallow copy this boolean polynomial ring, but with different ordering, names or blocks if given.

ring.clone(ordering=..., names=..., block=...) generates a shallow copy of ring, but with different ordering, names or blocks if given.

EXAMPLES:

```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: B.clone()
Boolean PolynomialRing in a, b, c

sage: B.<x,y,z> = BooleanPolynomialRing(3,order='deglex')
sage: y*z > x
True
```

Now we call the clone method and generate a compatible, but ‘lex’ ordered, ring:
Now we change variable names:

```python
sage: P.<x0,x1> = BooleanPolynomialRing(2)
sage: P
Boolean PolynomialRing in x0, x1

sage: Q = P.clone(names=['t'])
sage: Q
Boolean PolynomialRing in t, x1
```

We can also append blocks to block orderings this way:

```python
sage: R.<x1,x2,x3,x4> = BooleanPolynomialRing(order='deglex(1),deglex(3)')
sage: x2 > x3*x4
False
```

Now we call the internal method and change the blocks:

```python
sage: S = R.clone(blocks=[3])
sage: S(x2) > S(x3*x4)
True
```

Note: This is part of PolyBoRi’s native interface.

cover_ring()

Return $R = F_2[x_1, x_2, ..., x_n]$ if $x_1, x_2, ..., x_n$ is the ordered list of variable names of this ring. R also has the same term ordering as this ring.

EXAMPLES:

```python
sage: B.<x,y> = BooleanPolynomialRing(2)
sage: R = B.cover_ring(); R
Multivariate Polynomial Ring in x, y over Finite Field of size 2

sage: B.term_order() == R.term_order()
True
```

The cover ring is cached:

```python
sage: B.cover_ring() is B.cover_ring()
True
```

defining_ideal()

Return $I = \langle x_i^2 + x_i \rangle \subseteq R$ where $R = \text{self.cover_ring}()$, and x_i any element in the set of variables of this ring.

EXAMPLES:

```python
sage: B.<x,y> = BooleanPolynomialRing(2)
sage: I = B.defining_ideal(); I
```
Ideal \((x^2 + x, y^2 + y) \) of Multivariate Polynomial Ring
in \(x, y \) over Finite Field of size 2

\[\text{gen}(i=0) \]
Return the \(i \)-th generator of this boolean polynomial ring.

INPUT:
- \(i \) - an integer or a boolean monomial in one variable

EXAMPLES:
```sage
P.<x,y,z> = BooleanPolynomialRing(3)
P.gen()
x
P.gen(2)
z
m = x.monomials()[0]
P.gen(m)
x
```

\[\text{gens}() \]
Return the tuple of variables in this ring.

EXAMPLES:
```sage
P.<x,y,z> = BooleanPolynomialRing(3)
P.gens()
(x, y, z)
P = BooleanPolynomialRing(10,'x')
P.gens()
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)
```

\[\text{get_base_order_code}() \]
EXAMPLES:
```sage
B.<a,b,c,d,e,f> = BooleanPolynomialRing()
B.get_base_order_code()
0
B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='deglex')
B.get_base_order_code()
1
T = TermOrder('deglex',2) + TermOrder('deglex',2)
B.<a,b,c,d> = BooleanPolynomialRing(4, order=T)
B.get_base_order_code()
1
```

Note: This function which is part of the PolyBoRi upstream API works with a current global ring. This notion is avoided in Sage.

\[\text{get_order_code}() \]
EXAMPLES:
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: B.get_order_code()
0
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='deglex')
sage: B.get_order_code()
1

Note: This function which is part of the PolyBoRi upstream API works with a current global ring. This notion is avoided in Sage.

has_degree_order()

Return checks whether the order code corresponds to a degree ordering.

EXAMPLES:

sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.has_degree_order()
False

id()

Return a unique identifier for this boolean polynomial ring.

EXAMPLES:

sage: P.<x,y> = BooleanPolynomialRing(2)
sage: print("id: {}".format(P.id()))
id: ...

sage: P = BooleanPolynomialRing(10, 'x')

sage: Q = BooleanPolynomialRing(20, 'x')
sage: P.id() != Q.id()
True

ideal(gens**, **kwds)**

Create an ideal in this ring.

INPUT:

- gens - list or tuple of generators
- coerce - bool (default: True) automatically coerce the given polynomials to this ring to form the ideal

EXAMPLES:

sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.ideal(x+y)
Ideal (x + y) of Boolean PolynomialRing in x, y, z

sage: P.ideal(x*y, y*z)
Ideal (x*y, y*z) of Boolean PolynomialRing in x, y, z

sage: P.ideal([x+y, z])
Ideal (x + y, z) of Boolean PolynomialRing in x, y, z
interpolation_polynomial \((zeros, ones)\)

Return the lexicographically minimal boolean polynomial for the given sets of points.

Given two sets of points \(zeros\) - evaluating to zero - and \(ones\) - evaluating to one -, compute the lexicographically minimal boolean polynomial satisfying these points.

INPUT:

- \(zeros\) - the set of interpolation points mapped to zero
- \(ones\) - the set of interpolation points mapped to one

EXAMPLES:

First we create a random-ish boolean polynomial.

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(6)
sage: f = a*b*c*e + a*d*e + a*f + b + c + e + f + 1
```

Now we find interpolation points mapping to zero and to one.

```
sage: zeros = set([(1, 0, 1, 0, 0, 0), (1, 0, 0, 0, 1, 0),
                (0, 0, 1, 1, 1, 1), (1, 0, 1, 1, 1, 1),
                (0, 0, 0, 0, 1, 0), (0, 1, 1, 1, 1, 0),
                (1, 1, 0, 0, 0, 1), (1, 1, 0, 1, 0, 1)])
sage: ones = set([(0, 0, 0, 0, 0, 0), (1, 0, 1, 0, 1, 0),
              (0, 0, 0, 1, 1, 1), (1, 0, 0, 1, 0, 1),
              (0, 0, 0, 0, 1, 1), (0, 1, 1, 0, 1, 1),
              (0, 1, 1, 1, 1, 1), (1, 1, 1, 0, 1, 0)])
sage: [f(*p) for p in zeros]
[0, 0, 0, 0, 0, 0, 0, 0]
sage: [f(*p) for p in ones]
[1, 1, 1, 1, 1, 1, 1, 1]
```

Finally, we find the lexicographically smallest interpolation polynomial using PolyBoRi.

```
sage: g = B.interpolation_polynomial(zeros, ones); g
b*f + c + d*f + d + e*f + e + 1
sage: [g(*p) for p in zeros]
[0, 0, 0, 0, 0, 0, 0, 0]
sage: [g(*p) for p in ones]
[1, 1, 1, 1, 1, 1, 1, 1]
```

Alternatively, we can work with PolyBoRi’s native \(\text{BooleSet}\)'s. This example is from the PolyBoRi tutorial:

```
sage: B = BooleanPolynomialRing(4, “x0,x1,x2,x3“)
sage: x = B.gen
sage: V = (x(0) + x(1) + x(2) + x(3) + 1).set(); V
{{x0}, {x1}, {x2}, {x3}, {}}
sage: f = x(0) + x(1) + x(2) + 1
sage: z = f.zeros_in(V); z
{{x1}, {x2}}
sage: o = V.diff(z); o
{{x0}, {x3}, {}}
sage: B.interpolation_polynomial(z,o)
x1 + x2 + 1
```

ALGORITHM: Calls \(\text{interpolate_smallest_lex}\) as described in the PolyBoRi tutorial.
n_variables()
Return the number of variables in this boolean polynomial ring.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.n_variables()
2
```

```
sage: P = BooleanPolynomialRing(1000, 'x')
sage: P.n_variables()
1000
```

Note: This is part of PolyBoRi’s native interface.

gens()
Return the number of variables in this boolean polynomial ring.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.ngens()
2
```

```
sage: P = BooleanPolynomialRing(1000, 'x')
sage: P.ngens()
1000
```

one()
EXAMPLES:

```
sage: P.<x0,x1> = BooleanPolynomialRing(2)
sage: P.one()
1
```

random_element(degree=None, terms=None, choose_degree=False, vars_set=None)
Return a random boolean polynomial. Generated polynomial has the given number of terms, and at most given degree.

INPUT:

• degree - maximum degree (default: 2 for len(var_set) > 1, 1 otherwise)
• terms – number of terms requested (default: 5). If more terms are requested than exist, then this parameter is silently reduced to the maximum number of available terms.
• choose_degree - choose degree of monomials randomly first, rather than monomials uniformly random
• vars_set - list of integer indices of generators of self to use in the generated polynomial

EXAMPLES:

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.random_element(degree=3, terms=4)
x*y*z + x*z + x + y*z
```
sage: P.random_element(degree=1, terms=2)
z + 1

In corner cases this function will return fewer terms by default:

```
sage: P = BooleanPolynomialRing(2,'y')
sage: P.random_element()
y0*y1 + y0
sage: P = BooleanPolynomialRing(1,'y')
sage: P.random_element()
y
```

We return uniformly random polynomials up to degree 2:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: B.random_element(terms=Infinity)
a*b + a*c + a*d + b*c + b*d + d
```

remove_var *(order=None, *var)*

Remove a variable or sequence of variables from this ring.

If order is not specified, then the subring inherits the term order of the original ring, if possible.

EXAMPLES:

```
sage: R.<x,y,z,w> = BooleanPolynomialRing()
sage: R.remove_var(z)
Boolean PolynomialRing in x, y, w
sage: R.remove_var(z,x)
Boolean PolynomialRing in y, w
sage: R.remove_var(y,z,x)
Boolean PolynomialRing in w
```

Removing all variables results in the base ring:

```
sage: R.remove_var(y,z,x,w)
Finite Field of size 2
```

If possible, the term order is kept:

```
sage: R.<x,y,z,w> = BooleanPolynomialRing(order='deglex')
sage: R.remove_var(y).term_order()
Degree lexicographic term order
```

```
sage: R.<x,y,z,w> = BooleanPolynomialRing(order='lex')
sage: R.remove_var(y).term_order()
Lexicographic term order
```

Be careful with block orders when removing variables:

```
sage: R.<x,y,z,u,v> = BooleanPolynomialRing(order='deglex(2),deglex(3)')
sage: R.remove_var(x,y,z)
Traceback (most recent call last):
...  ValueError: impossible to use the original term order (most likely because it was a block order). Please specify the term order for the subring
sage: R.remove_var(x,y,z, order='deglex')
Boolean PolynomialRing in u, v
```

8.1. Boolean Polynomials
variable \((i=0)\)
Return the \(i\)-th generator of this boolean polynomial ring.

INPUT:
- \(i\) - an integer or a boolean monomial in one variable

EXAMPLES:

```python
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.variable()
x
sage: P.variable(2)
z
sage: m = x.monomials()[0]
sage: P.variable(m)
x
```

zero()

EXAMPLES:

```python
sage: P.<x0,x1> = BooleanPolynomialRing(2)
sage: P.zero()
0
```

class `sage.rings.polynomial.pbori.BooleanPolynomialVector`
Bases: object
A vector of boolean polynomials.

EXAMPLES:

```python
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import BooleanPolynomialVector
sage: v = BooleanPolynomialVector()
sage: for i in range(5):
....:     v.append(B.random_element())
sage: list(v)
[a*b + a + b*e + c*d + e*f, a*d + c*d + d*f + e + f, a*c + a*e + b*c + c*f + f, a*b + a + b*e + c*d + e*f, a*c + a*d + a*e + b*c + c*f + f]
```

append\((el)\)
Append the element \(el\) to this vector.

EXAMPLES:

```python
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import BooleanPolynomialVector
sage: v = BooleanPolynomialVector()
sage: for i in range(5):
....:     v.append(B.random_element())
sage: list(v)
[a*b + a + b*e + c*d + e*f, a*d + c*d + d*f + e + f, a*c + a*e + b*c + c*f + f, a*c + a*d + a*e + b*c + c*f + f, a*b + a + b*e + c*d + e*f]
```

class `sage.rings.polynomial.pbori.BooleanPolynomialVectorIterator`
Bases: object
next ()
x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.pbori.CCuddNavigator
Bases: object

constant()
else_branch()
terminal_one()
then_branch()
value()

class sage.rings.polynomial.pbori.FGLMStrategy
Bases: object

Strategy object for the FGLM algorithm to translate from one Groebner basis with respect to a term ordering A to another Groebner basis with respect to a term ordering B.

main()
Execute the FGLM algorithm.

EXAMPLES:

```sage
def main()
    # Implement the FGLM algorithm
    pass
d
def example()
    ring = PolynomialRing(QQ, 'x,y,z')
    ideal = (x + y, y + z)
    strategy = FGLMStrategy(ideal, ring)
    result = strategy.main()
    return result
```

Note: This class is mainly used internally.

add_as_you_wish (p)
Add a new generator but let the strategy object decide whether to perform immediate interreduction.

INPUT:
• p - a polynomial

EXAMPLES:

```sage
def example()
    ring = PolynomialRing(QQ, 'x,y,z')
    ideal = (x + y, y + z)
    strategy = GroebnerStrategy(ideal, ring)
    result = strategy.add_as_you_wish(x + y)
    return result
```

Note that nothing happened immediately but that the generator was indeed added:

8.1. Boolean Polynomials
add_generator \((p)\)
Add a new generator.

INPUT:

- \(p\) - a polynomial

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
sage: gbs.add_generator(a + b)
sage: list(gbs)
[a + b]

sage: gbs.add_generator(a + c)
Traceback (most recent call last):
  ... ValueError: strategy already contains a polynomial with same lead
```

add_generator_delayed \((p)\)
Add a new generator but do not perform interreduction immediately.

INPUT:

- \(p\) - a polynomial

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
sage: gbs.add_generator(a + b)
sage: list(gbs)
[a + b]

sage: gbs.add_generator_delayed(a + c)
sage: list(gbs)
[a + b]

sage: list(gbs.all_generators())
[a + b, a + c]
```

all_generators ()
EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
sage: gbs.add_as_you_wish(a + b)
sage: list(gbs)
[a + b]

sage: gbs.add_as_you_wish(a + c)
```
sage: list(gbs)
[a + b]

sage: list(gbs.all_generators())
[a + b, a + c]

\texttt{all_spolys_in_next_degree()}

\texttt{clean_top_by_chain_criterion()}

\texttt{contains_one()}

Return \texttt{True} if 1 is in the generating system.

EXAMPLES:

We construct an example which contains 1 in the ideal spanned by the generators but not in the set of generators:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import GroebnerStrategy
sage: gb = GroebnerStrategy(B)
sage: gb.add_generator(a*c + a*f + d*f + d + f)
sage: gb.add_generator(b*c + b*e + c + d + 1)
sage: gb.add_generator(a*f + a + c + d + 1)
sage: gb.add_generator(a + f + a + c + d + l)
sage: gb.add_generator(a*d + a*e + b*e + c + f)
sage: gb.add_generator(b*d + c + d*f + e + f)
sage: gb.add_generator(a + b + c + d + c + e + 1)
sage: gb.contains_one()
False
```

Still, we have that:

```
sage: from brial import groebner_basis
sage: groebner_basis(gb)
[1]
```

\texttt{faugere_step_dense(v)}

Reduces a vector of polynomials using linear algebra.

INPUT:

- \texttt{v} - a boolean polynomial vector

EXAMPLES:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import GroebnerStrategy
sage: gb = GroebnerStrategy(B)
sage: gb.add_generator(a*c + a*f + d*f + d + f)
sage: gb.add_generator(b*c + b*e + c + d + 1)
sage: gb.add_generator(a*f + a + c + d + 1)
sage: gb.add_generator(a + f + a + c + d + l)
sage: gb.add_generator(a*d + a*e + b*e + c + f)
sage: gb.add_generator(b*d + c + d*f + e + f)
sage: gb.add_generator(a + b + c + d + c + e + 1)
sage: gb.add_generator(a + b + c + d + c + e + 1)
```

(continues on next page)
implications \((i)\)
Compute “useful” implied polynomials of \(i\)-th generator, and add them to the strategy, if it finds any.

INPUT:

\[i \quad \text{an index} \]

ll_reduce_all()
Use the built-in ll-encoded \(\text{BooleSet}\) of polynomials with linear lexicographical leading term, which coincides with leading term in current ordering, to reduce the tails of all polynomials in the strategy.

minimalize()
Return a vector of all polynomials with minimal leading terms.

Note: Use this function if strat contains a GB.

minimalize_and_tail_reduce()
Return a vector of all polynomials with minimal leading terms and do tail reductions.

Note: Use that if strat contains a GB and you want a reduced GB.

next_spoly()

nf \((p)\)
Compute the normal form of \(p\) with respect to the generating set.

INPUT:

\[p \quad \text{a boolean polynomial} \]

EXAMPLES:

```
sage: P = PolynomialRing(GF(2),10, 'x')
sage: B = BooleanPolynomialRing(10,'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I = B.ideal([B(f) for f in I.gens()])
sage: gb = I.groebner_basis()
sage: from brial import GroebnerStrategy
sage: G = GroebnerStrategy(B)
sage: _ = [G.add_generator(f) for f in gb]
sage: G.nf(gb[0])
0
sage: G.nf(gb[0] + 1)
1
sage: G.nf(gb[0]*gb[1])
0
sage: G.nf(gb[0]*B.gen(1))
0
```
Note: The result is only canonical if the generating set is a Groebner basis.

```python
npairs()
```

```python
reduction_strategy
```

```python
select(m)
```

Return the index of the generator which can reduce the monomial \(m \).

INPUT:

- \(m \) - a `BooleanMonomial`

EXAMPLES:

```python
sage: B.<a,b,c,d,e> = BooleanPolynomialRing()
sage: f = B.random_element()
sage: g = B.random_element()
sage: from brial import GroebnerStrategy
data: strat = GroebnerStrategy(B)
sage: strat.add_generator(f)
sage: strat.add_generator(g)
sage: strat.select(f.lm())
0
sage: strat.select(g.lm())
1
sage: strat.select(e.lm())
-1
```

```python
small_spolys_in_next_degree(f,n)
```

```python
some_spolys_in_next_degree(n)
```

```python
suggest_plugin_variable()
```

```python
symmGB_F2()
```

Compute a Groebner basis for the generating system.

Note: This implementation is out of date, but it will revived at some point in time. Use the `groebner_basis()` function instead.

```python
top_sugar()
```

```python
variable_has_value(v)
```

Computes, whether there exists some polynomial of the form \(v + c \) in the Strategy – where \(c \) is a constant – in the list of generators.

INPUT:

- \(v \) - the index of a variable

EXAMPLES:

```python
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import GroebnerStrategy
sage: gb = GroebnerStrategy(B)
sage: gb.add_generator(a*c + a*f + d*f + d + f)
sage: gb.add_generator(b*c + b*e + c + d + 1)
sage: gb.add_generator(a*f + a + c + d + 1)
sage: gb.add_generator(b*d + a*e + b*e + c + f)
sage: gb.add_generator(b*d + c + d*f + e + f)
sage: gb.add_generator(a*b + b + c*e + e + 1)
sage: gb.variable_has_value(0) False
sage: from brial import groebner_basis
sage: g = groebner_basis(gb) sage: list(g) [a, b + 1, c + 1, d, e + 1, f]
```
sage: gb = GroebnerStrategy(B) sage: _ = [gb.add_generator(f) for f in g] sage: gb.variable_has_value(0) True

class sage.rings.polynomial.pbori.MonomialConstruct
Bases: object
Implements PolyBoRi’s Monomial() constructor.

class sage.rings.polynomial.pbori.MonomialFactory
Bases: object
Implements PolyBoRi’s Monomial() constructor. If a ring is given is can be used as a Monomial factory for the given ring.

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: fac = MonomialFactory()
sage: fac = MonomialFactory(B)
```

class sage.rings.polynomial.pbori.PolynomialConstruct
Bases: object
Implements PolyBoRi’s Polynomial() constructor.

lead(x)
Return the leading monomial of boolean polynomial x, with respect to the order of parent ring.

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: PolynomialConstruct().lead(a)
a
```

class sage.rings.polynomial.pbori.PolynomialFactory
Bases: object
Implements PolyBoRi’s Polynomial() constructor and a polynomial factory for given rings.

lead(x)
Return the leading monomial of boolean polynomial x, with respect to the order of parent ring.

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: PolynomialFactory().lead(a)
a
```

class sage.rings.polynomial.pbori.ReductionStrategy
Bases: object
Functions and options for boolean polynomial reduction.

add_generator(p)
Add the new generator p to this strategy.

INPUT:
- p - a boolean polynomial.
can_rewrite \((p)\)

Return True if \(p\) can be reduced by the generators of this strategy.

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(a*b + c + 1)
sage: red.add_generator(b*c + d + 1)
sage: red.can_rewrite(a*b + a)
True
sage: red.can_rewrite(b + c)
False
sage: red.can_rewrite(a*d + b*c + d + 1)
True
```

cheap_reductions \((p)\)

Perform ‘cheap’ reductions on \(p\).

INPUT:

- \(p\) - a boolean polynomial

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(a*b + c + 1)
sage: red.add_generator(b*c + d + 1)
sage: red.add_generator(a)
sage: red.cheap_reductions(a*b + a)
0
sage: red.cheap_reductions(b + c)
b + c
sage: red.cheap_reductions(a*d + b*c + d + 1)
b*c + d + 1
```

head_normal_form \((p)\)

Compute the normal form of \(p\) with respect to the generators of this strategy but do not perform tail any reductions.

INPUT:

- \(p\) - a polynomial

EXAMPLES:

```python
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
```
sage: red = ReductionStrategy(B)
sage: red.opt_red_tail = True
sage: red.add_generator(x + y + 1)

sage: red.add_generator(y*z + z)

sage: red.head_normal_form(x + y*z)
\(y + z + 1\)

sage: red.nf(x + y*z)
\(y + z + 1\)

\textbf{nf}(p)

Compute the normal form of \(p\) w.r.t. to the generators of this reduction strategy object.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(x + y + 1)
sage: red.add_generator(y*z + z)
sage: red.nf(x)
y + 1
sage: red.nf(y*z + x)
y + z + 1
\end{verbatim}

\textbf{reduced_normal_form}(p)

Compute the normal form of \(p\) with respect to the generators of this strategy and perform tail reductions.

\textbf{INPUT:}

\begin{itemize}
 \item p - a polynomial
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(x + y + 1)
sage: red.add_generator(y*z + z)
sage: red.reduced_normal_form(x)
y + 1
sage: red.reduced_normal_form(y*z + x)
y + z + 1
\end{verbatim}

\textbf{sage.rings.polynomial.pbori.TermOrder_from_pb_order}(n, order, blocks)

\textbf{class sage.rings.polynomial.pbori.VariableBlock}

\textbf{Bases: object}

\textbf{class sage.rings.polynomial.pbori.VariableConstruct}

\textbf{Bases: object}

Implements \texttt{PolyBoRi}'s \texttt{Variable()} constructor.

\textbf{class sage.rings.polynomial.pbori.VariableFactory}

\textbf{Bases: object}

Implements PolyBoRi’s Variable() constructor and a variable factory for given ring

```python
sage.rings.polynomial.pbori.add_up_polynomials(v, init)
```

Add up all entries in the vector `v`.

INPUT:

- `v` - a vector of boolean polynomials

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: v = BooleanPolynomialVector()
sage: l = [B.random_element() for _ in range(5)]
sage: _ = [v.append(e) for e in l]
sage: add_up_polynomials(v, B.zero())
a*d + b*c + b*d + c + 1
```

```
sage: sum(l)
a*d + b*c + b*d + c + 1
```

```python
sage.rings.polynomial.pbori.contained_vars(m)
sage.rings.polynomial.pbori.easy_linear_factors(p)
sage.rings.polynomial.pbori.gauss_on_polys(inp)
```

Perform Gaussian elimination on the input list of polynomials.

INPUT:

- `inp` - an iterable

EXAMPLES:

```python
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import *
sage: l = [B.random_element() for _ in range(B.ngens())]
sage: A,v = Sequence(l,B).coefficient_matrix()
sage: A
[[1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0]
 [0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0]
 [0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0]
 [0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
 [0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0]]
```

```
sage: e = gauss_on_polys(l)
sage: E,v = Sequence(e,B).coefficient_matrix()
sage: E
[[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0]
 [0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0]
 [0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0]
 [0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0]
 [0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0]
 [0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0]]
```

```
sage: A.echelon_form()
[[1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0]
 [0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0]
 [0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0]
 [0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0]
 [0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0]
 [0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0]]
```

(continues on next page)
sage.rings.polynomial.pbori.get_var_mapping(ring, other)

Return a variable mapping between variables of other and ring. When other is a parent object, the mapping defines images for all variables of other. If it is an element, only variables occurring in other are mapped.

Raises NameError if no such mapping is possible.

EXAMPLES:

sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: R.<z,y> = QQ[]
sage: sage.rings.polynomial.pbori.get_var_mapping(P,R)
[z, y]
sage: sage.rings.polynomial.pbori.get_var_mapping(P, z^2)
[z, None]
sage: R.<z,x> = BooleanPolynomialRing(2)
sage: sage.rings.polynomial.pbori.get_var_mapping(P,R)
[z, x]
sage: sage.rings.polynomial.pbori.get_var_mapping(P, x^2)
[None, x]

sage.rings.polynomial.pbori.if_then_else(root, a, b)

The opposite of navigating down a ZDD using navigators is to construct new ZDDs in the same way, namely giving their else- and then-branch as well as the index value of the new node.

INPUT:

- root - a variable
- a - the if branch, a BooleSet or a BoolePolynomial
- b - the else branch, a BooleSet or a BoolePolynomial

EXAMPLES:

sage: from brial import if_then_else
sage: B = BooleanPolynomialRing(6, 'x')
sage: x0, x1, x2, x3, x4, x5 = B.gens()
sage: f0 = x2*x3+x3
sage: f1 = x4
sage: if_then_else(x1, f0, f1)
{{x1,x2,x3}, {x1,x3}, {x4}}
sage: if_then_else(x1.lm().index(), f0, f1)
{{x1,x2,x3}, {x1,x3}, {x4}}
sage: if_then_else(x5, f0, f1)
Traceback (most recent call last):
...
IndexError: index of root must be less than the values of roots of the branches.

sage.rings.polynomial.pbori.interpolate(zero, one)

Interpolate a polynomial evaluating to zero on zero and to one on ones.

INPUT:
• zero - the set of zero
• one - the set of ones

EXAMPLES:

```python
sage: B = BooleanPolynomialRing(4,"x0,x1,x2,x3")
sage: x = B.gen
sage: from brial.interpolate import *
sage: V=(x(0)+x(1)+x(2)+x(3)+1).set()

sage: V
{{x0}, {x1}, {x2}, {x3}, {}}

sage: f=x(0)*x(1)+x(1)+x(2)+1
sage: nf_lex_points(f,V)
x1 + x2 + 1

sage: z=f.zeros_in(V)
sage: z
{{x1}, {x2}}

sage: o=V.diff(z)
sage: o
{{x0}, {x3}, {}}

sage: interpolate(z,o)
x0*x1*x2 + x0*x1 + x0*x2 + x1*x2 + x1 + x2 + 1
```

`sage.rings.polynomial.pbori.interpolate_smallest_lex(zero, one)`
Interpolate the lexicographical smallest polynomial evaluating to zero on zero and to one on ones.

INPUT:

• zero - the set of zeros
• one - the set of ones

EXAMPLES:

Let V be a set of points in \mathbb{F}_2^4 and f a Boolean polynomial. V can be encoded as a `BooleSet`. Then we are interested in the normal form of f against the vanishing ideal of $V : I(V)$.

It turns out, that the computation of the normal form can be done by the computation of a minimal interpolation polynomial, which takes the same values as f on V:

```python
sage: B = BooleanPolynomialRing(4,"x0,x1,x2,x3")
sage: x = B.gen
sage: from brial.interpolate import *
sage: V=(x(0)+x(1)+x(2)+x(3)+1).set()

sage: V
{{x0}, {x1}, {x2}, {x3}, {}}

sage: f=x(0)*x(1)+x(1)+x(2)+1
sage: nf_lex_points(f,V)
x1 + x2 + 1
```

We take $V = \{e_0,e_1,e_2,e_3,0\}$, where e_i describes the i-th unit vector. For our considerations it does not play any role, if we suppose V to be embedded in \mathbb{F}_2^3 or a vector space of higher dimension:

```python
sage: V
{{x0}, {x1}, {x2}, {x3}, {}}

sage: f=x(0)*x(1)+x(1)+x(2)+1
sage: nf_lex_points(f,V)
x1 + x2 + 1
```
In this case, the normal form of f w.r.t. the vanishing ideal of V consists of all terms of f with degree smaller or equal to 1.

It can be easily seen, that this polynomial forms the same function on V as f. In fact, our computation is equivalent to the direct call of the interpolation function \texttt{interpolate_smallest_lex}, which has two arguments: the set of interpolation points mapped to zero and the set of interpolation points mapped to one:

```python
sage: z = f.zeros_in(V)
sage: z
{(x1), (x2)}

sage: o = V.diff(z)
sage: o
{(x0), (x3), {}}

sage: interpolate_smallest_lex(z, o)
x1 + x2 + 1
```

\texttt{sage.rings.polynomial.pbori.ll_red_nf_noredsb} $(p, \text{reductors})$

Redude the polynomial p by the set of \texttt{reductors} with linear leading terms.

\textbf{INPUT:}
- p - a boolean polynomial
- \texttt{reductors} - a boolean set encoding a Groebner basis with linear leading terms.

\textbf{EXAMPLES:}

```python
sage: from brial import ll_red_nf_noredsb
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: p = a*b + c + d + 1
sage: f, g = a + c + 1, b + d + 1;
(\text{reductors})
```

\texttt{sage.rings.polynomial.pbori.ll_red_nf_noredsb_single_recursive_call} $(p, \text{reductors})$

Redude the polynomial p by the set of \texttt{reductors} with linear leading terms.

\texttt{ll_red_nf_noredsb_single_recursive()} call has the same specification as \texttt{ll_red_nf_noredsb()}, but a different implementation: It is very sensitive to the ordering of variables, however it has the property, that it needs just one recursive call.

\textbf{INPUT:}
- p - a boolean polynomial
- \texttt{reductors} - a boolean set encoding a Groebner basis with linear leading terms.

\textbf{EXAMPLES:}

```python
sage: from brial import ll_red_nf_noredsb_single_recursive_call
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: p = a*b + c + d + 1
sage: f, g = a + c + 1, b + d + 1;
(\text{reductors})
```
sage.rings.polynomial.pbori.ll_red_nf_redsb(p, reductors)
Reduce the polynomial \(p \) by the set of \(\text{reductors} \) with linear leading terms. It is assumed that the set \(\text{reductors} \) is a reduced Groebner basis.

INPUT:

- \(p \) - a boolean polynomial
- \(\text{reductors} \) - a boolean set encoding a reduced Groebner basis with linear leading terms.

EXAMPLES:

```python
sage: from brial import ll_red_nf_redsb
sage: B.<a,b,c,d> = Boolean Polynomial Ring()
sage: p = a*b + c + d + 1
sage: f, g = a + c + 1, b + d + 1;
```

```python
sage: reductors = f.set().union( g.set() )
```

```python
sage: ll_red_nf_redsb(p, reductors)
```

\(b*c + b*d + c + d + 1 \)

sage.rings.polynomial.pbori.map_every_x_to_x_plus_one(p)
Map every variable \(x_i \) in this polynomial to \(x_i + 1 \).

EXAMPLES:

```python
sage: B.<a,b,z> = Boolean Polynomial Ring(3)
```

```python
sage: f = a*b + z + 1; f
```

```python
a*b + z + 1
```

```python
sage: from brial import map_every_x_to_x_plus_one
```

```python
sage: map_every_x_to_x_plus_one(f)
```

```python
a*b + a + b + z + 1
```

```python
sage: f(a+1,b+1,z+1)
```

```python
a*b + a + b + z + 1
```

sage.rings.polynomial.pbori.mod_mon_set(a_s, v_s)
sage.rings.polynomial.pbori.mod_var_set(a, v)
sage.rings.polynomial.pbori.mult_fact_sim_C(v, ring)
sage.rings.polynomial.pbori.nf3(s, p, m)
sage.rings.polynomial.pbori.parallel_reduce(inp, strat, average_steps, delay_f)
sage.rings.polynomial.pbori.random_set(variables, length)
Return a random set of monomials with \(\text{length} \) elements with each element in the \(\text{variables} \).

EXAMPLES:

```python
sage: from brial import random_set, set_random_seed
```

```python
sage: B.<a,b,c,d,e> = Boolean Polynomial Ring()
```

```python
sage: (a*b*c+d).lm()
```

```python
a*b*c+d
```

```python
sage: set_random_seed(1337)
```

```python
sage: random_set((a*b*c+d).lm(), 10)
```

```python
{(a,b,c,d), (a,b), (a,c,d), (a,c), (b,c,d), (b,d), (c,d), (c), (d)}
```

sage.rings.polynomial.pbori.recursively_insert(n, ind, m)
sage.rings.polynomial.pbori.red_tail(s, p)
Perform tail reduction on \(p \) using the generators of \(s \).

INPUT:

8.1. Boolean Polynomials 617
• \(s \) - a reduction strategy
• \(p \) - a polynomial

EXAMPLES:

```python
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(x + y + 1)
sage: red.add_generator(y*z + z)
sage: red_tail(red,x)
x
sage: red_tail(red,x*y + x)
x*y + y + 1
```

`sage.rings.polynomial.pbori.set_random_seed(seed)`
The the PolyBoRi random seed to `seed`

EXAMPLES:

```python
sage: from brial import random_set, set_random_seed
sage: B.<a,b,c,d,e> = BooleanPolynomialRing()
sage: (a*b*c*d).lm()
a*b*c*d
sage: set_random_seed(1337)
sage: random_set((a*b*c*d).lm(),2)
{(b), (c)}
sage: random_set((a*b*c*d).lm(),2)
{(a,c,d), (c)}

sage: set_random_seed(1337)
```

`sage.rings.polynomial.pbori.substitute_variables(parent, vec, poly)`
var(i) is replaced by vec[i] in poly.

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: f = a*b + c + 1
sage: from brial import substitute_variables
sage: substitute_variables(B, [a,b,c],f)
a*b + c + 1
sage: substitute_variables(B, [a+1,b,c],f)
a*b + b + c + 1
sage: substitute_variables(B, [a+1,b+1,c],f)
a*b + a + b + c
sage: substitute_variables(B, [a+1,b+1,B(0)],f)
a*b + a + b
```

Substitution is also allowed with different rings:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: f = a*b + c + 1
sage: B.<w,x,y,z> = BooleanPolynomialRing(order='deglex')
```

(continues on next page)
```python
sage: from brial import substitute_variables
sage: substitute_variables(B, [x,y,z], f) * w
w*x*y + w*z + w
```

sage.rings.polynomial.pbori.top_index *(s)*

Return the highest index in the parameter *s*.

INPUT:

- *s* - `BooleSet`, `BooleMonomial`, `BoolePolynomial`

EXAMPLES:

```python
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: from brial import top_index
top_index(x.lm())
0
top_index(y*z)
1
top_index(x + 1)
0
```

sage.rings.polynomial.pbori.unpickle_BooleanPolynomial *(ring, string)*

Unpickle boolean polynomials

EXAMPLES:

```python
sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
loads(dumps(a+b)) == a+b  # indirect doctest
True
```

sage.rings.polynomial.pbori.unpickle_BooleanPolynomial0 *(ring, l)*

Unpickle boolean polynomials

EXAMPLES:

```python
sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
loads(dumps(a+b)) == a+b  # indirect doctest
True
```

sage.rings.polynomial.pbori.unpickle_BooleanPolynomialRing *(n, names, order)*

Unpickle boolean polynomial rings.

EXAMPLES:

```python
sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
loads(dumps(P)) == P  # indirect doctest
True
```

sage.rings.polynomial.pbori.zeros *(pol, s)*

Return a `BooleSet` encoding on which points from *s* the polynomial *pol* evaluates to zero.

INPUT:

- *pol* - a boolean polynomial
• s - a set of points encoded as a `BooleSet`

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b + a*c + d + b
```

Now we create a set of points:

```python
sage: s = a*b + a*b*c + c*d + b*c
sage: s = s.set(); s
{{a,b,c}, {a,b}, {b,c}, {c,d}}
```

This encodes the points (1,1,1,0), (1,1,0,0), (0,0,1,1) and (0,1,1,0). But of these only (1,1,0,0) evaluates to zero:

```python
sage: from brial import zeros
sage: zeros(f,s)
{{a,b}}
```

For comparison we work with tuples:

```python
sage: f.zeros_in([(1,1,1,0), (1,1,0,0), (0,0,1,1), (0,1,1,0)])
((1, 1, 0, 0),)
```
Chapter Nine

Noncommutative Polynomials

9.1 Noncommutative Polynomials via libSINGULAR/Plural

This module provides specialized and optimized implementations for noncommutative multivariate polynomials over many coefficient rings, via the shared library interface to SINGULAR. In particular, the following coefficient rings are supported by this implementation:

- the rational numbers \mathbb{Q}, and
- finite fields \mathbb{F}_p for p prime

Authors:
The PLURAL wrapper is due to

- Burcin Erocal (2008-11 and 2010-07): initial implementation and concept
- Michael Brickenstein (2008-11 and 2010-07): initial implementation and concept
- Oleksandr Motsak (2010-07): complete overall noncommutative functionality and first release
- Alexander Dreyer (2010-07): noncommutative ring functionality and documentation
- Simon King (2011-09): left and two-sided ideals; normal forms; pickling; documentation

The underlying libSINGULAR interface was implemented by

- Martin Albrecht (2007-01): initial implementation
- Joel Mohler (2008-01): misc improvements, polishing
- Martin Albrecht (2008-08): added $\mathbb{Q}(\alpha)$ and \mathbb{Z} support
- Simon King (2009-04): improved coercion
- Martin Albrecht (2009-05): added $\mathbb{Z}/n\mathbb{Z}$ support, refactoring
- Martin Albrecht (2009-06): refactored the code to allow better re-use

Todo: extend functionality towards those of libSINGULARs commutative part

Examples:

We show how to construct various noncommutative polynomial rings:

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations=(y*x:-x*y), order = 'lex')
```

(continues on next page)
sage: P
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-
r->relations: {y*x: -x*y}

sage: y*x + 1/2
-x*y + 1/2

sage: A.<x,y,z> = FreeAlgebra(GF(17), 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P
Noncommutative Multivariate Polynomial Ring in x, y, z over Finite Field of size 17,
r->nc-relations: {y*x: -x*y}

sage: y*x + 7
-x*y + 7

Raw use of this class; this is not the intended use!

sage: from sage.matrix.constructor import Matrix
sage: c = Matrix(3)
sage: c[0,1] = -2
sage: c[0,2] = 1
sage: c[1,2] = 1

sage: d = Matrix(3)
sage: d[0, 1] = 17
sage: P = QQ['x','y','z']
sage: c = c.change_ring(P)
sage: d = d.change_ring(P)

sage: from sage.rings.polynomial.plural import NCPolynomialRing_plural
sage: R.<x,y,z> = NCPolynomialRing_plural(QQ, c = c, d = d, order=TermOrder('lex',3),
r->category=Algebras(QQ))
sage: R
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-
r->relations: {y*x: -2*x*y + 17}

sage: R.term_order()
Lexicographic term order

sage: a,b,c = R.gens()
sage: f = 57 * a^2*b + 43 * c + 1; f
57*x^2*y + 43*z + 1

sage.rings.polynomial.plural.ExteriorAlgebra(base_ring, names, order='degrevlex')

Return the exterior algebra on some generators

This is also known as a Grassmann algebra. This is a finite dimensional algebra, where all generators anti-
commute.

See Wikipedia article Exterior algebra

INPUT:

- base_ring – the ground ring
- names – a list of variable names

EXAMPLES:
sage: from sage.rings.polynomial.plural import ExteriorAlgebra
sage: E = ExteriorAlgebra(QQ, ['x', 'y', 'z']); E
#random
Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: -x*z, z*y: -y*z, y*x: -x*y} by the ideal (z^2, y^2, x^2)
sage: sorted(E.cover().domain().relations().items(), key=str)
[(y*x, -x*y), (z*x, -x*z), (z*y, -y*z)]
sage: sorted(E.cover().kernel().gens(), key=str)
[x^2, y^2, z^2]
sage: E.inject_variables()
Defining xbar, ybar, zbar
sage: x,y,z = (xbar,ybar,zbar)
sage: y*x
-x*y
sage: all(v^2==0 for v in E.gens())
True
sage: E.one()
1

class sage.rings.polynomial.plural.ExteriorAlgebra_plural
Bases: sage.rings.polynomial.plural.NCPolynomialRing_plural

class sage.rings.polynomial.plural.G_AlgFactory
Bases: sage.structure.factory.UniqueFactory

A factory for the creation of g-algebras as unique parents.

create_key_and_extra_args (base_ring, c, d, names=None, order=None, category=None, check=None)

Create a unique key for g-algebras.

INPUT:

- base_ring - a ring
- c, d - two matrices
- names - a tuple or list of names
- order - (optional) term order
- category - (optional) category
- check - optional bool

create_object (version, key, **extra_args)

Create a g-algebra to a given unique key.

INPUT:

- key - a 6-tuple, formed by a base ring, a tuple of names, two matrices over a polynomial ring over the base ring with the given variable names, a term order, and a category
- extra_args - a dictionary, whose only relevant key is ‘check’.

class sage.rings.polynomial.plural.NCPolynomialRing_plural
Bases: sage.rings.ring.Ring

A non-commutative polynomial ring.

EXAMPLES:
Note that two variables commute if they are not part of the given relations:

```
sage: H.<x,y,z> = A.g_algebra({z*x:x*z+2*x, z*y:y*z-2*y})
sage: x*y == y*x
True
```

gen (*n=0*)
Returns the *n*-th generator of this noncommutative polynomial ring.

INPUT:

- *n* – an integer >= 0

EXAMPLES:

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x: -x*y}, order = 'lex')
sage: P.gen(), P.gen(1)
(x, y)
```

Note that the generators are not cached:

```
sage: P.gen(1)
is P.gen(1)
False
```

ideal (*gens, **kwds*)
Create an ideal in this polynomial ring.

INPUT:

- *gens* - list or tuple of generators (or several input arguments)
- *coerce* - bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.
- *side* - string (either “left”, which is the default, or “twosided”) Must be a keyword argument. Defines whether the ideal is a left ideal or a two-sided ideal. Right ideals are not implemented.

EXAMPLES:

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x: -x*y}, order = 'lex')
sage: P.ideal([x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 + 2*y^2 + 2*z^2 - x])
Left Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 + 2*y^2 + 2*z^2 - x) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
nc-relations: {y*x: -x*y}
sage: P.ideal([x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 + 2*y^2 + 2*z^2 - x], side="twosided")
Twosided Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 - x + 2*y^2 + 2*z^2 - 2) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -x*y}
```

624 Chapter 9. Noncommutative Polynomials
is_commutative()
Return False.

Todo: Provide a mathematically correct answer.

EXAMPLES:
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.is_commutative()
False

is_field(*args, **kwargs)
Return False.

EXAMPLES:
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.is_field()
False

monomial_all_divisors(t)
Return a list of all monomials that divide t.
Coefficients are ignored.

INPUT:
• t - a monomial

OUTPUT:
a list of monomials

EXAMPLES:
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]

ALGORITHM: addwithcarry idea by Toon Segers

monomial_divides(a, b)
Return False if a does not divide b and True otherwise.
Coefficients are ignored.

INPUT:
• a – monomial
• b – monomial

EXAMPLES:
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
False

monomial_lcm (f, g)
LCM for monomials. Coefficients are ignored.

INPUT:
• f - monomial
• g - monomial

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_lcm(3/2*x*y,x)
x*y

monomial_pairwise_prime (g, h)
Return True if h and g are pairwise prime.
Both h and g are treated as monomials.
Coefficients are ignored.

INPUT:
• h - monomial
• g - monomial

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True
sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False

monomial_quotient (f, g, coeff=False)
Return f/g, where both f and g are treated as monomials.
Coefficients are ignored by default.

INPUT:
• \(f \) - monomial
• \(g \) - monomial
• \(\text{coeff} \) - divide coefficients as well (default: \text{False})

EXEMPLARY:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_quotient(3/2*x*y,x,coeff=True)
3/2*y
```

Note that \(Z \) behaves differently if \(\text{coeff=True} \):

```python
sage: P.monomial_quotient(2*x,3*x)
1
sage: P.monomial_quotient(2*x,3*x,coeff=True)
2/3
```

Warning: Assumes that the head term of \(f \) is a multiple of the head term of \(g \) and return the multiplier \(m \). If this rule is violated, funny things may happen.

monomial_reduce \((f, G)\)

Try to find a \(g \) in \(G \) where \(g.lm() \) divides \(f \). If found \((\text{flt}, g)\) is returned, \((0, 0)\) otherwise, where \(\text{flt} = f/g.lm() \).

It is assumed that \(G \) is iterable and contains only elements in this polynomial ring.

Coefficients are ignored.

INPUT:
• \(f \) - monomial
• \(G \) - list/set of mpolynomials

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: f = x*y^2
sage: G = [ 3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, 1/2 ]
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)
```

ngens ()

Returns the number of variables in this noncommutative polynomial ring.

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
(continues on next page)```
relations (add_commutative=False)

Return the relations of this g-algebra.

INPUT:

add_commutative (optional bool, default False)

OUTPUT:

The defining relations. There are some implicit relations: Two generators commute if they are not part of any given relation. The implicit relations are not provided, unless add_commutative==True.

EXAMPLES:

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({z*x:x*z+2*x, z*y:y*z-2*y})
sage: x*y == y*x
True
sage: H.relations()
{z*x: x*z + 2*x, z*y: y*z - 2*y}
sage: H.relations(add_commutative=True)
{y*x: x*y, z*x: x*z + 2*x, z*y: y*z - 2*y}
```

term_order()

Return the term ordering of the noncommutative ring.

EXAMPLES:

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.term_order()
Lexicographic term order
sage: P = A.g_algebra(relations={y*x:-x*y})
sage: P.term_order()
Degree reverse lexicographic term order
```

class sage.rings.polynomial.plural.NCPolynomial_plural

A noncommutative multivariate polynomial implemented using libSINGULAR.

coefficient (degrees)

Return the coefficient of the variables with the degrees specified in the python dictionary degrees. Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in degrees. However, the result has the same parent as this polynomial.

This function contrasts with the function monomial_coefficient() which returns the coefficient in the base ring of a monomial.

INPUT:

- **degrees** - Can be any of:
  - a dictionary of degree restrictions
  - a list of degree restrictions (with None in the unrestricted variables)
– a monomial (very fast, but not as flexible)

OUTPUT:

element of the parent of this element.

Note: For coefficients of specific monomials, look at `monomial_coefficient()`.

EXAMPLES:

```
sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=x*y+y+5
sage: f.coefficient({x:0,y:1})
1
sage: f.coefficient({x:0})
y + 5
sage: f=(1+y+y^2)*(1+x+x^2)
\[z + y^2 + y + 1 \]
sage: f.coefficient(x)
y^2 - y + 1
sage: f.coefficient([0,None]) # not tested
y^2 + y + 1
```

Be aware that this may not be what you think! The physical appearance of the variable $x$ is deceiving – particularly if the exponent would be a variable.

```
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x^2 + x*y^2 - x*y + x + z + y^2 + y + 1
```

AUTHOR:

• Joel B. Mohler (2007-10-31)

`constant_coefficient()`

Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
```
defining x, z, y
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.constant_coefficient()
5
sage: f = 3*x^2
sage: f.constant_coefficient()
0

def(x=None)
Return the maximal degree of this polynomial in x, where x must be one of the generators for the parent of this polynomial.

INPUT:

• x - multivariate polynomial (a generator of the parent of self) If x is not specified (or is None), return the total degree, which is the maximum degree of any monomial.

OUTPUT:

integer

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9
sage: f.degree(y)
2
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10

degrees()
Returns a tuple with the maximal degree of each variable in this polynomial. The list of degrees is ordered by the order of the generators.

EXAMPLES:

sage: A.<y0,y1,y2> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y1*y0:-y0*y1 + y2}, order='lex')
sage: R.inject_variables()
Defining y0, y1, y2
sage: q = 3*y0*y1*y2; q
3*y0*y1^2*y2
sage: q.degrees()
(1, 2, 1)
sage: (q + y0^5).degrees()
(5, 2, 1)

dict()
Return a dictionary representing self. This dictionary is in the same format as the generic MPolynomial: The dictionary consists of ETuple:coefficient pairs.

EXAMPLES:
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f = (2*x*y^3*z^2 + (7)*x^2 + (3))
sage: f.dict()
{(0, 0, 0): 3, (1, 2, 3): 2, (2, 0, 0): 7}

**exponents** *(as_ETuples=True)*

Return the exponents of the monomials appearing in this polynomial.

**INPUT:**

- **as_ETuples** *(default: True)* if True returns the result as an list of ETuples otherwise returns a list of tuples

**EXAMPLES:**

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f = x^3 + y + 2*z^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 0, 1)]
sage: f.exponents(as_ETuples=False)
[(3, 0, 0), (0, 2, 0), (0, 0, 1)]

**is_constant()**

Return True if this polynomial is constant.

**EXAMPLES:**

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: x.is_constant()
False
sage: P(1).is_constant()
True

**is_homogeneous()**

Return True if this polynomial is homogeneous.

**EXAMPLES:**

sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: (x+y+z).is_homogeneous()
True
sage: (x.parent()()(0)).is_homogeneous()
True
sage: (x+y^2+z^3).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()

(continues on next page)
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True

**is_monomial()**

Return True if this polynomial is a monomial.

A monomial is defined to be a product of generators with coefficient 1.

**EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: x.is_monomial()
True
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True
sage: (x*y + x).is_monomial()
False
```

**is_zero()**

Return True if this polynomial is zero.

**EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: x.is_zero()
False
sage: (x-x).is_zero()
True
```

**lc()**

Leading coefficient of this polynomial with respect to the term order of `self.parent()`.

**EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lc()
3
sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lc()
5
```
\textbf{lm()}

Returns the lead monomial of \texttt{self} with respect to the term order of \texttt{self.parent()}. In Sage a monomial is a product of variables in some power without a coefficient.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1*y^2 + y^3*z^4
sage: f.lm()
x*y^2
sage: f = x^3*y^2*z^4 + x^3*y^2*z^1
sage: f.lm()
x^3*y^2*z^4
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='deglex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^3*y^2*z^3 + x^3*y^2*z^0
sage: f.lm()
x*y^2*z^3
sage: f = x^1*y^2*z^4 + x^1*y^1*z^5
sage: f.lm()
x*y^2*z^4
sage: A.<x,y,z> = FreeAlgebra(GF(127), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='degrevlex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^4*y^7*z^2 + x^4*y^2*z^3
sage: f.lm()
x^4*y^7*z
\end{verbatim}

\textbf{lt()}

Leading term of this polynomial.

In Sage a term is a product of variables in some power and a coefficient.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lt()
3*x*y^2
sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lt()
-2*x^3*y^2*z^4
\end{verbatim}
monomial_coefficient (mon)

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function coefficient() which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

INPUT:

• mon - a monomial

OUTPUT:

coefficient in base ring

See also:

For coefficients in a base ring of fewer variables, look at coefficient()

EXAMPLES:

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
The parent of the return is a member of the base ring.
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Finite Field of size 389
sage: f = y^2 + y^2*x - x^9 + 7*x + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
388
sage: f.monomial_coefficient(x^10)
0
```

monomials ()

Return the list of monomials in self.

The returned list is decreasingly ordered by the term ordering of self.parent().

EXAMPLES:

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: f = x + (3*2)*y*z^2 + (2+3)
sage: f.monomials()
[x, z^2*y, 1]
sage: f = P(3^2)
sage: f.monomials()
[1]
```
reduce \((I)\)

**EXAMPLES:**

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
```

The result of reduction is not the normal form, if one reduces by a list of polynomials:

```
sage: (x*z).reduce(I.gens())
x*z
```

However, if the argument is an ideal, then a normal form (reduction with respect to a two-sided Groebner basis) is returned:

```
sage: (x*z).reduce(I)
-x
```

The Groebner basis shows that the result is correct:

```
sage: I.std() #random
Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational
Field, nc-relations: (z*x: x*z + 2*x, z*y: y*z - 2*y, x*y: x*y - z)
sage: sorted(I.std().gens(),key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]
```

**total_degree\()**

Return the total degree of \(self\), which is the maximum degree of all monomials in \(self\).

**EXAMPLES:**

```
sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=2*x*y^3*z^2
sage: f.total_degree()
6
sage: f=4*x^2*y^2*z^3
sage: f.total_degree()
7
sage: f=99*x^6*y^3*z^9
sage: f.total_degree()
18
sage: f=x*y^3*z^6+3*x^2
sage: f.total_degree()
10
sage: f=z^3+8*x^4*y^5*z
sage: f.total_degree()
10
sage: f=z^9+10*x^4*y^8*x^2
sage: f.total_degree()
10
```

```
sage.rings.polynomial.plural.SCA(base_ring, names, alt_vars, order='degrevlex')
```

Return a free graded-commutative algebra

This is also known as a free super-commutative algebra.
INPUT:

- base_ring – the ground field
- names – a list of variable names
- alt_vars – a list of indices of to be anti-commutative variables (odd variables)
- order – ordering to be used for the constructed algebra

EXAMPLES:

```python
sage: from sage.rings.polynomial.plural import SCA
sage: E = SCA(QQ, ['x', 'y', 'z'], [0, 1], order = 'degrevlex')
sage: E
Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -x*y} by the ideal (y^2, x^2)
sage: E.inject_variables()
Defining xbar, ybar, zbar
sage: x,y,z = (xbar,ybar,zbar)
sage: y*x
-x*y
sage: z*x
x*z
sage: x^2
0
sage: y^2
0
sage: z^2
z^2
sage: E.one()
1
```

`sage.rings.polynomial.plural.new_CRing(rw, base_ring)`
Construct MPolynomialRing_libsingular from ringWrap, assumming the ground field to be base_ring

EXAMPLES:

```python
sage: H.<x,y,z> = PolynomialRing(QQ, 3)
sage: from sage.libs.singular.function import singular_function
sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")
```

```
sage: L = ringlist(H, ring=H); L
[0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)],[0]]]
sage: len(L)
4
```

```python
sage: W = ring(L, ring=H); W
<RingWrap>
sage: from sage.rings.polynomial.plural import new_CRing
sage: R = new_CRing(W, H.base_ring())
sage: R
indirect doctest
Multivariate Polynomial Ring in x, y, z over Rational Field
```

Check that trac ticket #13145 has been resolved:
**sage**: \[ h = \text{hash}(R\text{.gen()} + 1) \]  # sets currRing
**sage**: from sage.libs.singular.ring import ring_refcount_dict, currRing_wrapper
**sage**: curcnt = ring_refcount_dict[currRing_wrapper()]
**sage**: newR = new_CRing(W, H.base_ring())
**sage**: ring_refcount_dict[currRing_wrapper()] - curcnt

\[ 1 \]

\[
\text{sage.rings.polynomial.plural.\texttt{new\_NRing}}(rw, \texttt{base\_ring})
\]
Construct \textsc{NCPolynomialRing\_plural} from ringWrap, assumming the ground field to be base\_ring

**EXAMPLES:**

**sage**: A.<x,y,z> = FreeAlgebra(QQ, 3)
**sage**: H = A.g_algebra({y*x:x*y-1})
**sage**: H.inject_variables()
Defining x, y, z
**sage**: z\*x
\[ x\*z \]
**sage**: z\*y
\[ y\*z \]
**sage**: y\*x
\[ x\*y - 1 \]
**sage**: I = H.ideal([y^2, x^2, z^2-1])
**sage**: I\._groebner\_basis\_libsingular()
\[ 1 \]

**sage**: from sage.libs.singular.function import singular_function
**sage**: ringlist = singular_function('ringlist')
**sage**: ring = singular_function("ring")
**sage**: L = ringlist(H, ring=H); L
\[
[0 1 1]
[0 0 1]
0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)], [0], [0 0 0],
[ 0 -1 0]
[ 0 0 0]
[ 0 0 0]
]
**sage**: len(L)
\[ 6 \]
**sage**: W = ring(L, ring=H); W
\langle\text{noncommutative RingWrap} \rangle

**sage**: from sage.rings.polynomial.plural import new\_NRing
**sage**: R = new\_NRing(W, H.base\_ring())
**sage**: R \# indirect doctest
Noncommutative Multivariate Polynomial Ring in x, y, z over
Rational Field, nc-relations: {y*x: x*y - 1}

\[
\text{sage.rings.polynomial.plural.\texttt{new\_Ring}}(rw, \texttt{base\_ring})
\]
Constructs a Sage ring out of low level RingWrap, which wraps a pointer to a Singular ring.

The constructed ring is either commutative or noncommutative depending on the Singular ring.

**EXAMPLES:**

9.1. Noncommutative Polynomials via libSINGULAR/Plural 637
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-1})
sage: H.inject_variables()
Defining x, y, z
sage: z*x
x*z
sage: z*y
y*z
sage: y*x
x*y - 1
sage: I = H.ideal([y^2, x^2, z^2-1])
sage: I._groebner_basis_libsingular()
[1]
sage: from sage.libs.singular.function import singular_function
sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")
sage: L = ringlist(H, ring=H); L

\[
\begin{bmatrix}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

sage: len(L)
6
sage: W = ring(L, ring=H); W
<noncommutative RingWrap>
sage: from sage.rings.polynomial.plural import new_Ring
sage: R = new_Ring(W, H.base_ring()); R
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: x*y - 1}
sage.rings.polynomial.plural.unpickle_NCPolynomial_plural(R, d)
Auxiliary function to unpickle a non-commutative polynomial.
CHAPTER
TEN

INDICES AND TABLES

• Index
• Module Index
• Search Page
BIBLIOGRAPHY


[WpBinaryForm] Wikipedia article *Invariant_of_a_binary_form*

[WpTernaryCubic] Wikipedia article *Ternary_cubic*


sage.rings.fraction_field, 483
sage.rings.fraction_field_element, 489
sage.rings.fraction_field_FpT, 492
sage.rings.invariant_theory, 404
sage.rings.monomials, 404
sage.rings.polynomial.complex_roots, 212
sage.rings.polynomial.convolution, 239
sage.rings.polynomial.cyclotomic, 240
sage.rings.polynomial.flatten, 401
sage.rings.polynomial.ideal, 215
sage.rings.polynomial.infinite_polynomial_element, 539
sage.rings.polynomial.infinite_polynomial_ring, 529
sage.rings.polynomial.laurent_polynomial, 508
sage.rings.polynomial.laurent_polynomial_ring, 501
sage.rings.polynomial.multi_polynomial, 270
sage.rings.polynomial.multi_polynomial_element, 293
sage.rings.polynomial.multi_polynomial_ideal, 308
sage.rings.polynomial.multi_polynomial_ideal_libsingular, 391
sage.rings.polynomial.multi_polynomial_libsingular, 365
sage.rings.polynomial.multi_polynomial_ring, 289
sage.rings.polynomial.multi_polynomial_ring_base, 261
sage.rings.polynomial.multi_polynomial_sequence, 350
sage.rings.polynomial.omega, 523
sage.rings.polynomial.padics.polynomial_padic, 169
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense, 173
sage.rings.polynomial.padics.polynomial_padic_flat, 180
sage.rings.polynomial.pbori, 563
sage.rings.polynomial.plural, 621
sage.rings.polynomial.polydict, 393
sage.rings.polynomial.polynomial_element, 30
sage.rings.polynomial.polynomial_element_generic, 109
sage.rings.polynomial.polynomial_fateman, 239
sage.rings.polynomial.polynomial_gf2x, 119
sage.rings.polynomial.polynomial_integer_dense_flint, 125
sage.rings.polynomial.polynomial_integer_dense_ntl, 133
Symbols

_add_() (sage.rings.polynomial.polynomial_element.Polynomial method), 31
_add_() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 125
_add_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 161
_add_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 138
_add_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 152
_lmul_() (sage.rings.polynomial.polynomial_element.Polynomial method), 31
_lmul_() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 126
_lmul_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 161
_lmul_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 139
_lmul_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 152
_mul_() (sage.rings.polynomial.polynomial_element.Polynomial method), 32
_mul_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_modn_ntl_zz method), 161
_mul_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 139
_mul_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 153
_mul_trunc_() (sage.rings.polynomial.polynomial_element.Polynomial method), 32
_mul_trunc_() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 126
_mul_trunc_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 161
_mul_trunc_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 139
_mul_trunc_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 153
_rmul_() (sage.rings.polynomial.polynomial_element.Polynomial method), 31
_rmul_() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 126
_rmul_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 161
_rmul_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 139
_rmul_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 153
_sub_() (sage.rings.polynomial.polynomial_element.Polynomial method), 31
_sub_() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 125
_sub_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 161
_sub_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 139
_sub_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 152

A

abc_pd (class in sage.rings.polynomial.polynomial_compiled), 238
adams_operator() (sage.rings.polynomial.polynomial_element.Polynomial method), 32
add_as_you_wish() (sage.rings.polynomial.pbori.GroebnerStrategy method), 605
add_bigoh() (sage.rings.polynomial.polynomial_element.Polynomial method), 33
add_generator() (sage.rings.polynomial.pbori.GroebnerStrategy method), 606
add_generator() (sage.rings.polynomial.pbori.ReductionStrategy method), 610
add_generator() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 558
add_m_mul_q() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 371
add_up_polynomials() (in module sage.rings.polynomial.pbori), 613
algebraic_dependence() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 355
AlgebraicForm (class in sage.rings.invariant_theory), 405
all_done() (sage.rings.polynomial.real_roots.ocean method), 202
all_generators() (sage.rings.polynomial.pbori.GroebnerStrategy method), 606
all_roots_in_interval() (sage.rings.polynomial.polynomial_element.Polynomial method), 33
all_spolys_in_next_degree() (sage.rings.polynomial.pbori.GroebnerStrategy method), 607
ambient() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 225
an_element() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomialBaseringInjection method), 468
any_root() (sage.rings.polynomial.polynomial_element.Polynomial method), 34
append() (sage.rings.polynomial.pbori.BooleanPolynomialVector method), 604
approx_bp() (sage.rings.polynomial.real_roots.ocean method), 202
args() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 270
as_float() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 194
as_float() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 195
as_QuadraticForm() (sage.rings.invariant_theory.QuadraticForm method), 417
associated_primes() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 326

B

base_extend() (sage.rings.polynomial.polynomial_element.Polynomial method), 35
base_extend() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 20
base_ring() (sage.rings.fraction_field.FractionField_generic method), 486
base_ring() (sage.rings.polynomial.polynomial_element.Polynomial method), 35
base_ring() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field method), 221
basis (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal attribute), 311
basis_is_groebner() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 327
bateman_bound() (in module sage.rings.polynomial.cyclotomic), 240
bernstein_down() (in module sage.rings.polynomial.real_roots), 184
bernstein_expand() (in module sage.rings.polynomial.real_roots), 184
bernstein_polynomial() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ar method), 185
bernstein_polynomial() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist method), 186
bernstein_polynomial() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ratlist method), 186
bernstein_polynomial() (class in sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ar method), 185
bernstein_polynomial() (class in sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist method), 186
bernstein_polynomial() (class in sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ratlist method), 186
bernstein_polynomial_ar() (class in sage.rings.polynomial.real_roots.bernstein_polynomial_ar method), 185
bernstein_polynomial_intlist() (class in sage.rings.polynomial.real_roots.bernstein_polynomial_intlist method), 186
bernstein_polynomial_ratlist() (class in sage.rings.polynomial.real_roots.bernstein_polynomial_ratlist method), 186
bernstein_up() (in module sage.rings.polynomial.real_roots), 187
binary_pd (class in sage.rings.polynomial.polynomial_compiled), 238
binary_quadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 412
binary_quartic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 412

646  Index
BinaryQuartic (class in sage.rings.invariant_theory), 408
bitsize_doctest() (in module sage.rings.polynomial.real_roots), 187
blocks() (sage.rings.polynomial.term_order.TermOrder method), 248
BooleanMonomial (class in sage.rings.polynomial.pbori), 573
BooleanMonomialIterator (class in sage.rings.polynomial.pbori), 576
BooleanMonomialMonoid (class in sage.rings.polynomial.pbori), 577
BooleanMonomialVariableIterator (class in sage.rings.polynomial.pbori), 578
BooleanMulAction (class in sage.rings.polynomial.pbori), 578
BooleanPolynomial (class in sage.rings.polynomial.pbori), 578
BooleanPolynomialEntry (class in sage.rings.polynomial.pbori), 593
BooleanPolynomialIdeal (class in sage.rings.polynomial.pbori), 593
BooleanPolynomialIterator (class in sage.rings.polynomial.pbori), 596
BooleanPolynomialRing (class in sage.rings.polynomial.pbori), 596
BooleanPolynomialRing_constructor() (in module sage.rings.polynomial.polynomial_ring_constructor), 1
BooleanPolynomialVector (class in sage.rings.polynomial.pbori), 604
BooleanPolynomialVectorIterator (class in sage.rings.polynomial.pbori), 604
BooleConstant (class in sage.rings.polynomial.pbori), 565
BooleSet (class in sage.rings.polynomial.pbori), 566
BooleSetIterator (class in sage.rings.polynomial.pbori), 573
bp_done() (sage.rings.polynomial.real_roots.island method), 199
buchberger() (in module sage.rings.polynomial.toy_buchberger), 435
buchberger_improved() (in module sage.rings.polynomial.toy_buchberger), 435

C
can_convert_to_singular() (in module sage.rings.polynomial.polynomial_singular_interface), 169
can_rewrite() (sage.rings.polynomial.pbori.ReductionStrategy method), 611
cardinality() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 225
cartesian_product() (sage.rings.polynomial.pbori.BooleSet method), 567
CCuddNavigator (class in sage.rings.polynomial.pbori), 605
change() (sage.rings.polynomial.pbori.BooleSet method), 567
change_ring() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial method), 508
change_ring() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 504
change_ring() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 270
change_ring() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 294
change_ring() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 311
change_ring() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 261
change_ring() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 597
change_ring() (sage.rings.polynomial.polynomial_element.Polynomial method), 35
change_ring() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 166
change_ring() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 20
change_var() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 20
change_var() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 476
change_variable_name() (sage.rings.polynomial.polynomial_element.Polynomial method), 35
characteristic() (sage.rings.FractionField_FractionField_generic method), 486
characteristic() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 536
characteristic() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomialRing_generic method), 504
characteristic() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 261
characteristic() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 226
characteristic() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 20

Index 647
characteristic() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 477
charpoly() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 235
cheap_reductions() (sage.rings.polynomial.pbori.ReductionStrategy method), 611
cl_maximum_root() (in module sage.rings.polynomial.real_roots), 187
cl_maximum_root_first_lambda() (in module sage.rings.polynomial.real_roots), 187
cl_maximum_root_local_max() (in module sage.rings.polynomial.real_roots), 188
class_group() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 226
class_number() (sage.rings.fraction_field.FractionField_1poly_field method), 485
clean_top_by_chain_criterion() (sage.rings.polynomial.pbori.GroebnerStrategy method), 607
clone() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 597
coeff_pd (class in sage.rings.polynomial.polynomial_element, 238
coefficient() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 541
coefficient() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 509
coefficient() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libdict method), 295
coefficient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 371
coefficient() (sage.rings.polynomial.plural.NCPolynomial_plural method), 628
coefficient() (sage.rings.polynomial.polydict.PolyDict method), 397
coefficient_matrix() (in module sage.rings.polynomial.toy_variety), 437
coefficient_matrix() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 356
coefficients() (sage.rings.invariant_theory.AlgebraicForm method), 406
coefficients() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 510
coefficients() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 517
coefficients() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libdict method), 270
coefficients() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 372
coefficients() (sage.rings.polynomial.polydict.PolyDict method), 397
coefficients() (sage.rings.polynomial.polynomial_element, 36
coefficients() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 114
coefficients() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_element method), 449
coefficients() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 468
coeffs() (sage.rings.invariant_theory.BinaryQuartic method), 409
coeffs() (sage.rings.invariant_theory.QuadraticForm method), 417
coeffs() (sage.rings.invariant_theory.TernaryCubic method), 422
coeffs() (sage.rings.invariant_theory.TernaryQuadratic method), 424
coeffs() (sage.rings.polynomial.polynomial_element.Polynomial method), 36
coeffs_bitsize() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ar method), 185
coeffs_bitsize() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist method), 186
combine_to_positives() (sage.rings.polynomial.polydict.ETuple method), 393
common_nonzero_positions() (sage.rings.polynomial.polydict.ETuple method), 394
compare_tuples_block() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_deglex() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_deglex() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_degneglex() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_degrevlex() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_invlex() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_lex() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_matrix() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_negdeglex() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_negdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 249
compare_tuples_neglex() (sage.rings.polynomial.term_order.TermOrder method), 249

648 Index
<table>
<thead>
<tr>
<th>Method Name</th>
<th>Module/Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare_tuples_negwdeglex()</td>
<td>sage.rings.polynomial.term_order.TermOrder method, 249</td>
<td></td>
</tr>
<tr>
<td>compare_tuples_negwdegrevlex()</td>
<td>sage.rings.polynomial.term_order.TermOrder method, 249</td>
<td></td>
</tr>
<tr>
<td>compare_tuples_wdeglex()</td>
<td>sage.rings.polynomial.term_order.TermOrder method, 249</td>
<td></td>
</tr>
<tr>
<td>compare_tuples_wdegrevlex()</td>
<td>sage.rings.polynomial.term_order.TermOrder method, 249</td>
<td></td>
</tr>
<tr>
<td>CompiledPolynomialFunction</td>
<td>class in sage.rings.polynomial.polynomial_compiled, 238</td>
<td></td>
</tr>
<tr>
<td>complete_primary_decomposition()</td>
<td>(sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 329</td>
<td></td>
</tr>
<tr>
<td>completion()</td>
<td>(sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 504</td>
<td></td>
</tr>
<tr>
<td>completion()</td>
<td>(sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 262</td>
<td></td>
</tr>
<tr>
<td>completion()</td>
<td>(sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 21</td>
<td></td>
</tr>
<tr>
<td>complex_embeddings()</td>
<td>(sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field method), 221</td>
<td></td>
</tr>
<tr>
<td>complex_roots()</td>
<td>in module sage.rings.polynomial.complex_roots, 212</td>
<td></td>
</tr>
<tr>
<td>complex_roots()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method), 36</td>
<td></td>
</tr>
<tr>
<td>compose_power()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method), 36</td>
<td></td>
</tr>
<tr>
<td>compose_trunc()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method), 37</td>
<td></td>
</tr>
<tr>
<td>composed_op()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method), 37</td>
<td></td>
</tr>
<tr>
<td>conjugate()</td>
<td>(sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 449</td>
<td></td>
</tr>
<tr>
<td>connected_components()</td>
<td>(sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 356</td>
<td></td>
</tr>
<tr>
<td>connection_graph()</td>
<td>(sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 357</td>
<td></td>
</tr>
<tr>
<td>constant()</td>
<td>(sage.rings.polynomial.pbori.BooleanPolynomial method), 578</td>
<td></td>
</tr>
<tr>
<td>constant()</td>
<td>(sage.rings.polynomial.pbori.CCuddNavigator method), 605</td>
<td></td>
</tr>
<tr>
<td>constant_coefficient()</td>
<td>(sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 510</td>
<td></td>
</tr>
<tr>
<td>constant_coefficient()</td>
<td>(sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 517</td>
<td></td>
</tr>
<tr>
<td>constant_coefficient()</td>
<td>(sage.rings.polynomial.multi_polynomial_element.MPolynomial_libdict method), 296</td>
<td></td>
</tr>
<tr>
<td>constant_coefficient()</td>
<td>(sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 373</td>
<td></td>
</tr>
<tr>
<td>constant_coefficient()</td>
<td>(sage.rings.polynomial.pbori.BooleanPolynomial method), 578</td>
<td></td>
</tr>
<tr>
<td>constant_coefficient()</td>
<td>(sage.rings.polynomial.plural.NCPolynomial_plural method), 629</td>
<td></td>
</tr>
<tr>
<td>constant_coefficient()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method), 39</td>
<td></td>
</tr>
<tr>
<td>constant_coefficient()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 105</td>
<td></td>
</tr>
<tr>
<td>ConstantPolynomialSection</td>
<td>(class in sage.rings.polynomial.polynomial_element), 30</td>
<td></td>
</tr>
<tr>
<td>ConstantSkewPolynomialSection</td>
<td>(class in sage.rings.polynomial.skew_polynomial_element), 445</td>
<td></td>
</tr>
<tr>
<td>construction()</td>
<td>(sage.rings.fraction_field.FractionField_generic method), 486</td>
<td></td>
</tr>
<tr>
<td>construction()</td>
<td>(sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense method), 534</td>
<td></td>
</tr>
<tr>
<td>construction()</td>
<td>(sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 536</td>
<td></td>
</tr>
<tr>
<td>construction()</td>
<td>(sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 504</td>
<td></td>
</tr>
<tr>
<td>construction()</td>
<td>(sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 262</td>
<td></td>
</tr>
<tr>
<td>construction()</td>
<td>(sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 228</td>
<td></td>
</tr>
<tr>
<td>contained_vars()</td>
<td>(in module sage.rings.polynomial.pbori), 613</td>
<td></td>
</tr>
<tr>
<td>contains_one()</td>
<td>(sage.rings.polynomial.pbori.GroebnerStrategy method), 607</td>
<td></td>
</tr>
<tr>
<td>content()</td>
<td>(sage.rings.polynomial.multi_polynomial.MPolynomial method), 271</td>
<td></td>
</tr>
<tr>
<td>content()</td>
<td>(sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic method), 170</td>
<td></td>
</tr>
<tr>
<td>content()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method), 39</td>
<td></td>
</tr>
<tr>
<td>content()</td>
<td>(sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 126</td>
<td></td>
</tr>
<tr>
<td>content()</td>
<td>(sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 134</td>
<td></td>
</tr>
<tr>
<td>content()</td>
<td>(sage.rings.polynomial.multi_polynomial.MPolynomial method), 271</td>
<td></td>
</tr>
<tr>
<td>content()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method), 39</td>
<td></td>
</tr>
<tr>
<td>Function/Method</td>
<td>Module/Class</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------------------------------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>context</td>
<td>class in sage.rings.polynomial.real_roots, 188</td>
<td></td>
</tr>
<tr>
<td>convolution()</td>
<td>module sage.rings.polynomial.convolution, 239</td>
<td></td>
</tr>
<tr>
<td>covariant_conic()</td>
<td>sage.rings.invariant_theory.TernaryQuadratic, 424</td>
<td></td>
</tr>
<tr>
<td>cover_ring()</td>
<td>sage.rings.polynomial.pbori.BooleanPolynomialRing, 598</td>
<td></td>
</tr>
<tr>
<td>covariant_conic()</td>
<td>PolynomialQuotientRing_generic, 228</td>
<td></td>
</tr>
<tr>
<td>create_key()</td>
<td>InfinitePolynomialRingFactory, 534</td>
<td></td>
</tr>
<tr>
<td>create_key_and_extra_args()</td>
<td>PolynomialQuotientRingFactory, 218</td>
<td></td>
</tr>
<tr>
<td>create_object()</td>
<td>PolynomialQuotientRingFactory, 218</td>
<td></td>
</tr>
<tr>
<td>cyclotomic_coeffs()</td>
<td>module sage.rings.polynomial.cyclotomic, 240</td>
<td></td>
</tr>
<tr>
<td>cyclotomic_part()</td>
<td>sage.rings.polynomial.polynomial_element.Polynomial, 40</td>
<td></td>
</tr>
<tr>
<td>cyclotomic_polynomial()</td>
<td>sage.rings.polynomial.polynomial_ring.PolynomialRing_general, 21</td>
<td></td>
</tr>
<tr>
<td>cyclotomic_value()</td>
<td>module sage.rings.polynomial.cyclotomic, 241</td>
<td></td>
</tr>
<tr>
<td>d_basis()</td>
<td>module sage.rings.polynomial.toy_d_basis, 442</td>
<td></td>
</tr>
<tr>
<td>de_casteljau()</td>
<td>sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float, 194</td>
<td></td>
</tr>
<tr>
<td>de_casteljau()</td>
<td>sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer, 195</td>
<td></td>
</tr>
<tr>
<td>de_casteljau_doublevec()</td>
<td>module sage.rings.polynomial.real_roots, 188</td>
<td></td>
</tr>
<tr>
<td>de_casteljau_intvec()</td>
<td>module sage.rings.polynomial.real_roots, 189</td>
<td></td>
</tr>
<tr>
<td>defining_ideal()</td>
<td>sage.rings.polynomial.pbori.BooleanPolynomialRing, 598</td>
<td></td>
</tr>
<tr>
<td>deg()</td>
<td>sage.rings.polynomial.pbori.BooleanMonomial, 573</td>
<td></td>
</tr>
<tr>
<td>deg()</td>
<td>sage.rings.polynomial.pbori.BooleanPolynomial, 579</td>
<td></td>
</tr>
<tr>
<td>deg()</td>
<td>sage.rings.polynomial.pbori.BooleConstant, 565</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>LaurentPolynomial_mpair, 510</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.multi_polynomial_element.MPolynomial_libdict, 296</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>Polynomial_padic_capped_relative_dense, 373</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>Polynomial_padic_capped_relative_dense, 173</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.pbori.BooleanMonomial, 573</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.pbori.BooleanPolynomial, 579</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.plural.NCPolynomial_plural, 630</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>PolyDict, 397</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_element.Polynomial, 40</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_element.Polynomial_generic_dense, 105</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact, 107</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>Polynomial_generic_sparse, 114</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>Polynomial_template, 121</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint, 127</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl, 134</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n, 157</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>Polynomial_dense_modn ZZ, 160</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn ZZ, 162</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic, 228</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>Polynomial_quotient_ring.PolynomialRational_flint, 140</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense, 166</td>
<td></td>
</tr>
<tr>
<td>degree()</td>
<td>sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template, 150</td>
<td></td>
</tr>
</tbody>
</table>
degree() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 182
degree() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 450
degree() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense method), 469
degree_lowest_rational_function() (in module sage.rings.polynomial.multi_polynomial_element), 307
degree_of_semi_regularity() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 312
degree_reduction_next_size() (in module sage.rings.polynomial.real_roots), 189
degrees() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 297
degrees() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 373
degrees() (sage.rings.polynomial.plural.NCPolynomial_plural method), 630
Delta_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 426
Delta_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 429
Delta_prime_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 426
Delta_prime_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 430
denom() (sage.rings.fraction_field_FpT.FpTElement method), 493
denominator() (sage.rings.fraction_field_element.FractionFieldElement method), 489
denominator() (sage.rings.fraction_field_FpT.FpTElement method), 493
denominator() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 271
denominator() (sage.rings.polynomial.polynomial_element.Polynomial method), 41
derivative() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 510
derivative() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 517
derivative() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 272
derivative() (sage.rings.polynomial.multi_polynomial_element.Polynomial method), 42
dict() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 511
dict() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 518
dict() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 298
dict() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 373
dict() (sage.rings.polynomial.plural.NCPolynomial_plural method), 630
dict() (sage.rings.polynomial.polydict.PolyDict method), 397
dict() (sage.rings.polynomial.polynomial_element.Polynomial method), 42
dict() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense method), 469
diff() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 511
diff() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 568
diff() (sage.rings.polynomial.polynomial_element.Polynomial method), 43
differentiate() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 511
differentiate() (sage.rings.polynomial.polynomial_element.Polynomial method), 43
dimension() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 330
dimension() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 594
disc() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense_method), 173
disc() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 127
disc() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 140
discriminant() (sage.rings.invariant_theory.QuadraticForm method), 418
discriminant() (sage.rings.polynomial.multi_polynomial.Polynomial method), 273
discriminant() (sage.rings.polynomial.polynomial_element.Polynomial method), 44
discriminant() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 127
discriminant() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 134
discriminant() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 159
discriminant() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 228
discriminant() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 141
dispersion() (sage.rings.polynomial.polynomial_element.Polynomial method), 45
dispersion_set() (sage.rings.polynomial.polynomial_element.Polynomial method), 45
divide() (sage.rings.polynomial.pbori.BooleSet method), 568
divided_difference() (sage.rings.polynomial.pbori.BooleanMonomial method), 574
divisors() (sage.rings.polynomial.pbori.BooleSet method), 574
divisors_of() (sage.rings.polynomial.pbori.BooleSet method), 568
done() (sage.rings.polynomial.real_roots.island method), 199
down_degree() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 196
down_degree_iter() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 196
downscale() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 197
dprod_imatrow_vec() (in module sage.rings.polynomial.real_roots), 190
dual() (sage.rings.invariant_theory.QuadraticForm method), 418
dummy_pd (class in sage.rings.polynomial.pbori), 238

eadd() (sage.rings.polynomial.polydict.ETuple method), 394
eadd_p() (sage.rings.polynomial.polydict.ETuple method), 394
easy_linear_factors() (in module sage.rings.polynomial.pbori), 613
EisensteinDi() (sage.rings.invariant_theory.BinaryQuartic method), 408
EisensteinEi() (sage.rings.invariant_theory.BinaryQuartic method), 408
Element (sage.rings.polynomial.multi_polynomial.libsingular.MPolynomialRing_libsingular method), 368
Element (sage.rings.polynomial.polynomial_quotient_ring.MPolynomialQuotientRing_generic method), 222
element() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 298
element() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 374
element() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 298
elim_pol() (in module sage.rings.polynomial.toy_variety), 438
evaluate_linear_variables() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2 method), 361
evaluation_ideal() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 331
else_branch() (sage.rings.polynomial.pbori.CCuddNavigator method), 605
emax() (sage.rings.polynomial.polydict.ETuple method), 394
emin() (sage.rings.polynomial.polydict.ETuple method), 395
empty() (sage.rings.polynomial.pbori.BooleSet method), 568
emul() (sage.rings.polynomial.polydict.ETuple method), 395
esub() (sage.rings.polynomial.polydict.ETuple method), 395
ETuple (class in sage.rings.polynomial.polydict), 393
ETupleIter (class in sage.rings.polynomial.polydict), 396
euclidean_degree() (sage.rings.polynomial.polynomial_element.Polynomial method), 45
exponents() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 512
exponents() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 518
exponents() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 298
exponents() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 374
exponents() (sage.rings.polynomial.plural.NCPolynomial_plural method), 631
exponents() (sage.rings.polynomial.polydict.PolyDict method), 398
exponents() (sage.rings.polynomial.polynomial_element.Polynomial method), 46
exponents() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 115
exponents() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 451
extend_variables() (sage.rings.polynomial.multi_polynomial_ring.PolynomialRing_general method), 21
ExteriorAlgebra() (in module sage.rings.polynomial.plural), 622
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExteriorAlgebra_plural</td>
<td>class in sage.rings.polynomial.plural</td>
</tr>
<tr>
<td>F_covariant()</td>
<td>(sage.rings.invariant_theory.TwoTernaryQuadratics method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.fraction_field_FpT.FpTElement method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method)</td>
</tr>
<tr>
<td>factor()</td>
<td>(sage.rings.polynomial.pbori.BooleanPolynomial method)</td>
</tr>
<tr>
<td>fcp()</td>
<td>(sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method)</td>
</tr>
<tr>
<td>FGLMStrategy</td>
<td>(class in sage.rings.polynomial.pbori)</td>
</tr>
<tr>
<td>field_extension()</td>
<td>(sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_element method)</td>
</tr>
<tr>
<td>field_extension()</td>
<td>(class in sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain method)</td>
</tr>
<tr>
<td>first()</td>
<td>(sage.rings.invariant_theory.TwoAlgebraicForms method)</td>
</tr>
<tr>
<td>first_term()</td>
<td>(sage.rings.polynomial.pbori.BooleanPolynomial method)</td>
</tr>
<tr>
<td>flattening_morphism()</td>
<td>(sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method)</td>
</tr>
<tr>
<td>flattening_morphism()</td>
<td>(sage.rings.polynomial.polynomial_ring.PolynomialRing_general method)</td>
</tr>
<tr>
<td>footprint()</td>
<td>(sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method)</td>
</tr>
<tr>
<td>find_roots()</td>
<td>(sage.rings.polynomial.real_roots.ocean method)</td>
</tr>
<tr>
<td>fraction_field()</td>
<td>(sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_general method)</td>
</tr>
<tr>
<td>fraction_field()</td>
<td>(sage.rings.polynomial.polynomial_ring.PolynomialRing_field method)</td>
</tr>
<tr>
<td>FractionField()</td>
<td>(in module sage.rings.fraction_field)</td>
</tr>
<tr>
<td>FractionField_1poly_field</td>
<td>(class in sage.rings.fraction_field)</td>
</tr>
<tr>
<td>FractionField_generic</td>
<td>(class in sage.rings.fraction_field)</td>
</tr>
<tr>
<td>FractionFieldElement</td>
<td>(class in sage.rings.fraction_field_element)</td>
</tr>
</tbody>
</table>
FractionFieldElement_1poly_field (class in sage.rings.fraction_field_element), 491
FractionFieldEmbedding (class in sage.rings.fraction_field), 484
FractionFieldEmbeddingSection (class in sage.rings.fraction_field), 485
from_ocean() (sage.rings.polynomial.real_roots.linear_map method), 199
from_ocean() (sage.rings.polynomial.real_roots.warp_map method), 211
function_field() (sage.rings.fraction_field.FractionField_1poly_field method), 485

g
G_AlgFactory (class in sage.rings.polynomial.plural), 623
g_covariant() (sage.rings.invariant_theory.BinaryQuartic method), 409
galois_group() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 143
gauss_on_polys() (in module sage.rings.polynomial.pbori), 613
gcd() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 542
gcd() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 518
gcd() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 274
gcd() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 378
gcd() (sage.rings.polynomial.pbori.BooleanMonomial method), 574
gcd() (sage.rings.polynomial.polynomial_element.ElementPolynomialRing method), 52
gcd() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 115
gcd() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense method), 121
gcd() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 129
gcd() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 136
gcd() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 159
gcd() (sage.rings.polynomial.polynomial_number_field.Polynomial_absolute_number_field_dense method), 124
gcd() (sage.rings.polynomial.polynomial_number_field.Polynomial_relative_number_field_dense method), 124
gcd() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 144
gcd() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 150
gcd() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 182
gen() (sage.rings.fraction_field.FractionField_generic method), 487
gen() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 536
gen() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_generic method), 504
gen() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 368
gen() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 263
gen() (sage.rings.polynomial.pbori.BooleanMonomialMonoid method), 577
gen() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 599
gen() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 624
gen() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 229
gen() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 22
gen() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 477
GenDictWithBasering (class in sage.rings.polynomial.infinite_polynomial_ring), 532
generic_power_trunc() (in module sage.rings.polynomial.polynomial_element), 108
gens() (sage.rings.polynomial.multi_polynomial.MPolynomialIdeal method), 313
gens() (sage.rings.polynomial.pbori.BooleanMonomialMonoid method), 577
gens() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 599
gens() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 559
gens_dict() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 536
gens_dict() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 22

genus() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 331

654
get_base_order_code() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 599
get_be_log() (sage.rings.polynomial.real_roots.context method), 188
get_cparent() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 121
get_cparent() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 150
get_cparent() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 182
get_dc_log() (sage.rings.polynomial.real_roots.context method), 188
get_form() (sage.rings.invariant_theory.SeveralAlgebraicForms method), 420
get_msb_bit() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 194
get_msb_bit() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 197
get_order_code() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 599
get_realfield_rndu() (in module sage.rings.polynomial.real_roots), 190
get_var_mapping() (in module sage.rings.polynomial.pbori), 614
GF2X_BuildIrred_list() (in module sage.rings.polynomial.polynomial_gf2x), 119
GF2X_BuildRandomIrred_list() (in module sage.rings.polynomial.polynomial_gf2x), 119
GF2X_BuildSparseIrred_list() (in module sage.rings.polynomial.polynomial_gf2x), 119
gpol() (in module sage.rings.polynomial.toy_d_basis), 443
greater_part() (sage.rings.polynomial.pbori.BooleanPolynomial method), 580
gradient() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 275
gradient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 379
gradient() (sage.rings.polynomial.polynomial_element.Polynomial method), 53
greater_tuple_block() (sage.rings.polynomial.term_order.TermOrder method), 249
greater_tuple_deglex() (sage.rings.polynomial.term_order.TermOrder method), 250
greater_tuple_degneglex() (sage.rings.polynomial.term_order.TermOrder method), 250
greater_tuple_degrevlex() (sage.rings.polynomial.term_order.TermOrder method), 250
greater_tuple_invlex() (sage.rings.polynomial.term_order.TermOrder method), 250
greater_tuple_lex() (sage.rings.polynomial.term_order.TermOrder method), 251
greater_tuple_matrix() (sage.rings.polynomial.term_order.TermOrder method), 251
greater_tuple_negdeglex() (sage.rings.polynomial.term_order.TermOrder method), 251
greater_tuple_negdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 252
greater_tuple_neglex() (sage.rings.polynomial.term_order.TermOrder method), 252
greater_tuple_negwdeglex() (sage.rings.polynomial.term_order.TermOrder method), 252
greater_tuple_negwdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 253
greater_tuple_wdeglex() (sage.rings.polynomial.term_order.TermOrder method), 253
greater_tuple_wdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 253
groebner_basis() (sage.rings.polynomial.ideal.Ideal_1poly_field method), 215
groebner_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 313
groebner_basis() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 357
groebner_basis() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 594
groebner_basis() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 549
groebner_fan() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 319
GroebnerStrategy (class in sage.rings.polynomial.pbori), 605

H

h_covariant() (sage.rings.invariant_theory.BinaryQuartic method), 409
hamming_weight() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial method), 508
hamming_weight() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 294
hamming_weight() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 379
hamming_weight() (sage.rings.polynomial.polynomial_element.Polynomial method), 53
hamming_weight() (sage.rings.polynomial.skew_poly_ring_element.SkewPolynomial method), 451
has_any_inverse() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 512
has_constant_part() (sage.rings.polynomial.pbori.BooleanPolynomial method), 580
has_constant_part() (sage.rings.polynomial.pbori.BooleConstant method), 565
has_cyclotomic_factor() (sage.rings.polynomial.polynomial_element.Polynomial method), 54
has_degree_order() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 600
has_inverse_of() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial.LaurentPolynomial_mpair method), 512
has_root() (sage.rings.polynomial.real_roots.island method), 199
head_normal_form() (sage.rings.polynomial.pbori.ReductionStrategy method), 611
hensel_lift() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 110
hensel_lift() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 145
Hessian() (sage.rings.invariant_theory.TernaryCubic method), 421
hilbert_numerator() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 332
hilbert_polynomial() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 332
hilbert_series() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 332
homogenize() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 275
homogenize() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 319
homogenize() (sage.rings.polynomial.polydict.PolyDict method), 398
homogenize() (sage.rings.polynomial.polynomial_element.Polynomial method), 54
homogenized() (sage.rings.invariant_theory.AlgebraicForm method), 407
homogenized() (sage.rings.invariant_theory.SeveralAlgebraicForms method), 420
homogenous_symmetric_function() (in module sage.rings.polynomial.omega), 528
id() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 600
ideal() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 505
ideal() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 368
ideal() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method), 293
ideal() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 357
ideal() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 600
ideal() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 624
Ideal_1poly_field (class in sage.rings.polynomial.ideal), 215
if_then_else() (in module sage.rings.polynomial.pbori), 614
implications() (sage.rings.polynomial.pbori.GroebnerStrategy method), 608
include_divisors() (sage.rings.polynomial.pbori.BooleSet method), 569
increase_precision() (sage.rings.polynomial.real_roots.ocean method), 202
index() (sage.rings.polynomial.pbori.BooleanMonomial method), 574
InfiniteGenDict (class in sage.rings.polynomial.infinite_polynomial_ring), 533
InfinitePolynomial() (in module sage.rings.polynomial.infinite_polynomial_element), 540
InfinitePolynomial_dense (class in sage.rings.polynomial.infinite_polynomial_element), 541
InfinitePolynomial_sparse (class in sage.rings.polynomial.infinite_polynomial_element), 541
InfinitePolynomialGen (class in sage.rings.polynomial.infinite_polynomial_ring), 533
InfinitePolynomialRing_dense (class in sage.rings.polynomial.infinite_polynomial_ring), 534
InfinitePolynomialRing_sparse (class in sage.rings.polynomial.infinite_polynomial_ring), 535
InfinitePolynomialRingFactory (class in sage.rings.polynomial.infinite_polynomial_ring), 533
inhomogeneous_quadratic_form() (sage.rings.invariant_theory.InvariantTheoryFactory method), 413
int_list() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 157
int_list() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 162
integral() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial.Univariate method), 519
integral() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 298
integral() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 380
integral() (sage.rings.polynomial.polynomial_element.Polynomial method), 55
is_integral_domain() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method), 293
is_integral_domain() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 263
is_integral_domain() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
is_irreducible() (sage.rings.polynomial.polynomial_element.Polynomial method), 61
is_irreducible() (sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X method), 119
is_irreducible() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 145
is_irreducible() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 153
is_irreducible() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_ZZ_pEX method), 180
is_LaurentPolynomialRing() (in module sage.rings.polynomial.laurent_polynomial_ring), 508
is_left_divisible_by() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 451
is_linearly_dependent() (in module sage.rings.polynomial.toy_variety), 438
is_local() (sage.rings.polynomial.term_order.TermOrder method), 254
is_maximal() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 553
is_monic() (sage.rings.polynomial.polynomial_element.Polynomial method), 62
is_monomial() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 452
is_monomial() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 513
is_monomial() (sage.rings.polynomial.multi_polynomial_element.monomial.multi_monomial_element.Polynomial_polydict method), 300
is_monomial() (sage.rings.polynomial.multi_polynomial_element.monomial.multi_monomial_libsingular.MPolynomial_libsingular method), 381
is_monomial() (sage.rings.polynomial.plural.NCPolynomial_plural method), 632
is_monomial() (sage.rings.polynomial.polynomial_element.Polynomial method), 62
is_monomial() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 452
is_MPolynomial() (in module sage.rings.polynomial.polynomial_element), 108
is_MPolynomial() (in module sage.rings.polynomial.polynomial_quotient_ring), 234
is_MPolynomial() (in module sage.rings.polynomial.polynomial_ring), 28
is_MPolynomialIdeal() (in module sage.rings.polynomial.multi_polynomial_ideal), 364
is_MPolynomialRing() (in module sage.rings.polynomial.multi_polynomial_ring_base), 269
is_nilpotent() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 542
is_nilpotent() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 277
is_nilpotent() (sage.rings.polynomial.polynomial_element.Polynomial method), 63
is_nilpotent() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 453
is_noetherian() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 537
is_noetherian() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial.LaurentPolynomialRing_generic method), 505
is_noetherian() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 264
is_noetherian() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
is_one() (sage.rings.fraction_field_element.FractionFieldElement method), 489
is_one() (sage.rings.polynomial.pbori.BooleanPolynomial method), 581
is_one() (sage.rings.polynomial.pbori.BooleConstant method), 566
is_one() (sage.rings.polynomial.polynomial_element.Polynomial method), 63
is_one() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 121
is_one() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 129
is_one() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 146
is_one() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 151
is_one() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 182
is_one() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 453
is_pair() (sage.rings.polynomial.pbori.BooleanPolynomial method), 582
is_Polynomial() (in module sage.rings.polynomial.polynomial_element), 108
is_PolynomialQuotientRing() (in module sage.rings.polynomial.polynomial_quotient_ring), 234
is_PolynomialRing() (in module sage.rings.polynomial.polynomial_ring), 28
is_PolynomialSequence() (in module sage.rings.polynomial.multi_polynomial_sequence), 364
is_prime() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 335
is_primitive() (sage.rings.polynomial.polynomial_element.Polynomial method), 63
is_real_rooted() (sage.rings.polynomial.polynomial_element.Polynomial method), 65
is_right_divisible_by() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 453
is_singleton() (sage.rings.polynomial.pbori.BooleanPolynomial method), 582
is_singleton_or_pair() (sage.rings.polynomial.pbori.BooleanPolynomial method), 583
is_sparse() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 23
is_square() (sage.rings.fraction_field_element.FractionFieldElement method), 489
is_square() (sage.rings.fraction_field_FpT.FpTElement method), 493
is_square() (sage.rings.polynomial.polynomial_element.Polynomial method), 65
is_squarefree() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 381
is_term() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 300
is_term() (sage.rings.polynomial.polynomial_element.Polynomial method), 67
is_term() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 105
is_term() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 454
is_triangular() (in module sage.rings.polynomial.toy_variety), 439
is_unique_factorization_domain() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
is_unit() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 543
is_unit() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_laurent_polynomial method), 513
is_unit() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 520
is_univariate() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 277
is_WEIGHTED_DEGREE_ORDER() (sage.rings.polynomial.term_order.TermOrder method), 254
is_weil_polynomial() (sage.rings.polynomial.polynomial_element.Polynomial method), 68
is_zero() (sage.rings.fraction_field_element.FractionFieldElement method), 490
is_zero() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 521
is_zero() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 68
is_zero() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libsingular method), 381
is_zero() (sage.rings.polynomial.pbori.BooleanPolynomial method), 584
is_zero() (sage.rings.polynomial.pbori.BooleConstant method), 566
is_zero() (sage.rings.polynomial.plural.NCPolynomial_plural method), 632
is_zero() (sage.rings.polynomial.polynomial_element.MPolynomial method), 68
is_zero() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 121
is_zero() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 129
is_zero() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 146
is_zero() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 151
is_zero() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 182
is_zero() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 455
island (class in sage.rings.polynomial.real_roots), 197
iter() (sage.rings.fraction_field_FpT.FpT method), 493
iterindex() (sage.rings.polynomial.pbori.BooleanMonomial method), 574

J
J_covariant() (sage.rings.invariant_theory.TernaryCubic method), 421
J_covariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 427
J_covariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 430
jacobianIdeal() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 278

K
karatsuba_threshold() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
kbase_libsingular() (in module sage.rings.polynomial.multi_polynomial_ideal_libsingular), 392
krull_dimension() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 537
krull_dimension() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 506
krull_dimension() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 264
krull_dimension() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 230

L
lagrange_polynomial() (sage.rings.polynomial.polynomial_ring.PolynomialRing_field method), 18
lagrange_polynomial() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 479
latex() (sage.rings.polynomial.polydict.PolyDict method), 398
LaurentPolynomial (class in sage.rings.polynomial.skew_polynomial.SkewPolynomialRing_general method), 479
LaurentPolynomial_class (class in sage.rings.polynomial.skew_polynomial.SkewPolynomialRing_general method), 479
LaurentPolynomial_mpair (class in sage.rings.polynomial.skew_polynomial.SkewPolynomialRing_general method), 479
LaurentPolynomial_univariate (class in sage.rings.polynomial.skew_polynomial.SkewPolynomialRing_general method), 479

Index 661
lm() (sage.rings.polynomial.plural.NCPolynomial_plural method), 632
lm() (sage.rings.polynomial.polynomial_element.Polynomial method), 70
lshift_coeffs() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 174
lsign() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory method), 185
LT() (in module sage.rings.polynomial.toy_buchberger), 435
lt() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 543
lt() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 302
lt() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 383
lt() (sage.rings.polynomial.plural.NCPolynomial_plural method), 633
lt() (sage.rings.polynomial.polynomial_element.Polynomial method), 70
macaulay2_str() (sage.rings.polynomial.term_order.TermOrder method), 255
macaulay_resultant() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 278
macaulay_resultant() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 264
MacMahonOmega() (in module sage.rings.polynomial.omega), 524
magma_str() (sage.rings.polynomial.term_order.TermOrder method), 255
main() (sage.rings.polynomial.pbori.FGLMStrategy method), 605
make_element() (in module sage.rings.fraction_field_element), 492
make_element() (in module sage.rings.polynomial.polynomial_gf2x), 122
make_element() (in module sage.rings.polynomial.polynomial_modn_dense_ntl), 164
make_element() (in module sage.rings.polynomial.polynomial_zmod_flint), 156
make_element() (in module sage.rings.polynomial.polynomial_zz_pex), 183
make_element_old() (in module sage.rings.fraction_field_element), 492
make_ETuple() (in module sage.rings.polynomial.polydict), 401
make_PolynomialRealDense() (in module sage.rings.polynomial.polynomial_real_mpfr_dense), 168
map_coefficients() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 280
map_coefficients() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 70
map_every_x_to_x_plus_one() (in module sage.rings.polynomial.pbori), 617
map_every_x_to_x_plus_one() (sage.rings.polynomial.pbori.BooleanPolynomial method), 586
matrix() (sage.rings.invariant_theory.QuadraticForm method), 418
matrix() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 237
matrix() (sage.rings.polynomial.term_order.TermOrder method), 255
max_abs_doublevec() (in module sage.rings.polynomial.real_roots), 199
max_bitsize_intvec_doctest() (in module sage.rings.polynomial.real_roots), 200
max_exp() (sage.rings.polynomial.polydict.PolyDict method), 399
max_index() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 544
maximal_degree() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 358
maximal_order() (sage.rings.fraction_field.FractionField_1poly_field method), 485
maximum_root_first_lambda() (in module sage.rings.polynomial.real_roots), 200
maximum_root_local_max() (in module sage.rings.polynomial.real_roots), 200
min_exp() (sage.rings.polynomial.polydict.PolyDict method), 399
min_max_delta_intvec() (in module sage.rings.polynomial.real_roots), 200
min_max_diff_doublevec() (in module sage.rings.polynomial.real_roots), 200
min_max_diff_intvec() (in module sage.rings.polynomial.real_roots), 201

Index 663
monomial_reduce() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 292
monomial_reduce() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 627
MonomialConstruct (class in sage.rings.polynomial.pborel), 610
MonomialFactory (class in sage.rings.polynomial.pborel), 610
monomials() (in module sage.rings.monomials), 404
monomials() (sage.rings.invariant_theory.BinaryQuartic method), 410
monomials() (sage.rings.invariant_theory.QuadraticForm method), 423
monomials() (sage.rings.invariant_theory.TernaryCubic method), 425
monomials() (sage.rings.invariant_theory.TernaryQuadratic method), 425
monomials() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 514
monomials() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 303
monomials() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 384
monomials() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 358
monomials() (sage.rings.polynomial.pborel.BooleanPolynomial method), 587
monomials() (sage.rings.polynomial.plural.NCPolynomial_plural method), 634
monomials() (sage.rings.polynomial.polynomial_element.Polynomial method), 72
more_bits() (sage.rings.polynomial.real_roots.island method), 199
MPolynomial (class in sage.rings.polynomial.multi_polynomial), 270
MPolynomial_element (class in sage.rings.polynomial.multi_polynomial_element), 294
MPolynomial_libsingular (class in sage.rings.polynomial.multi_polynomial_libsingular), 371
MPolynomial_polydict (class in sage.rings.polynomial.multi_polynomial_element), 295
MPolynomialIdeal (class in sage.rings.polynomial.multi_polynomial_element), 311
MPolynomialIdeal_macaulay2_repr (class in sage.rings.polynomial.multi_polynomial_element), 326
MPolynomialIdeal_magma_repr (class in sage.rings.polynomial.multi_polynomial_element), 326
MPolynomialIdeal_singular_base_repr (class in sage.rings.polynomial.multi_polynomial_element), 326
MPolynomialIdeal_singular_repr (class in sage.rings.polynomial.multi_polynomial_element), 326
MPolynomialRing_base (class in sage.rings.polynomial.multi_polynomial_ring_base), 261
MPolynomialRing_libsingular (class in sage.rings.polynomial.multi_polynomial_libsingular), 367
MPolynomialRing_macaulay2_repr (class in sage.rings.polynomial.multi_polynomial_ring), 289
MPolynomialRing_polydict (class in sage.rings.polynomial.multi_polynomial_ring), 289
MPolynomialRing_polydict_domain (class in sage.rings.polynomial.multi_polynomial_ring), 293
mul_pd (class in sage.rings.polynomial.polynomial_compiled), 239
multi_point_evaluation() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 460
multiples() (sage.rings.polynomial.pborel.BooleanMonomial method), 575
multiples_of() (sage.rings.polynomial.pborel.BooleSet method), 569
multiplication_trunc() (sage.rings.polynomial.polynomial_element.Polynomial method), 73

N
n_forms() (sage.rings.invariant_theory.SeveralAlgebraicForms method), 420
n_nodes() (sage.rings.polynomial.pborel.BooleanMonomial method), 587
n_nodes() (sage.rings.polynomial.pborel.BooleSet method), 570
n_variables() (sage.rings.polynomial.pborel.BooleanMonomialRing method), 601
n_vars() (sage.rings.polynomial.pborel.BooleanMonomial method), 588
name() (sage.rings.polynomial.term_order.TermOrder method), 255
navigation() (sage.rings.polynomial.pborel.BooleanMonomial method), 575
navigation() (sage.rings.polynomial.pborel.BooleSet method), 570
NCPolynomial_plural (class in sage.rings.polynomial.plural), 628
ntl_set_directly() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 162
ntl_ZZ_pX() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 157
number_field() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 231
number_of_real_roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 76
number_of_roots_in_interval() (sage.rings.polynomial.polynomial_element.Polynomial method), 77
number_of_terms() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial method), 509
number_of_terms() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 514
number_of_terms() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 521
number_of_terms() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 295
number_of_terms() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 385
number_of_terms() (sage.rings.polynomial.polynomial_element.Polynomial method), 77
number_of_terms() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 116
number_of_terms() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 460
numcr() (sage.rings.fraction_field_FpT.FpTElement method), 495
numerator() (sage.rings.fraction_field_element.FractionFieldElement method), 490
numerator() (sage.rings.fraction_field_FpT.FpTElement method), 495
numerator() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 282
numerator() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 385
numerator() (sage.rings.polynomial.polynomial_element.Polynomial method), 78
numerator() (sage.rings.polynomial.polynomial_element.Polynomial method), 78
nvariables() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 303
nvariables() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 386
nvariables() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 359
nvariables() (sage.rings.polynomial.pbori.BooleanPolynomial method), 588

O

ocean (class in sage.rings.polynomial.real_roots), 201
Omega_ge() (in module sage.rings.polynomial.omega), 526
one() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 537
one() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 602
operator_eval() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 461
ord() (sage.rings.polynomial.polynomial_element.Polynomial method), 78
order() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 537
order() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_sparse method), 231

P

p (sage.rings.polynomial.pbori.BooleanPolynomialEntry attribute), 593
padded_list() (sage.rings.polynomial.polynomial_element.Polynomial method), 79
padded_list() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 461
parallel_reduce() (in module sage.rings.polynomial.pbori), 617
parameter() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 25
parameter() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 480
part() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 359
partition() (in module sage.rings.polynomial.omega), 528
parts() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 359
Phi_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 427
plot() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 320
plot() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 336
plot() (sage.rings.polynomial.polynomial_element.Polynomial method), 79
Polynomial_zmod_flint (class in sage.rings.polynomial.polynomial_zmod_flint), 152
Polynomial_ZZ_pEX (class in sage.rings.polynomial.polynomial_zz_pex), 180
Polynomial_ZZ_pX (class in sage.rings.polynomial.polynomial_zz_pex), 181
PolynomialBaseringInjection (class in sage.rings.polynomial.polynomial_element), 103
PolynomialConstruct (class in sage.rings.polynomial.polynomial_pboremi), 610
PolynomialFactory (class in sage.rings.polynomial.polynomial_pboremi), 610
PolynomialQuotientRing_coercion (class in sage.rings.polynomial.polynomial_quotient_ring), 218
PolynomialQuotientRing_domain (class in sage.rings.polynomial.polynomial_quotient_ring), 219
PolynomialQuotientRing_field (class in sage.rings.polynomial.polynomial_quotient_ring), 221
PolynomialQuotientRing_generic (class in sage.rings.polynomial.polynomial_quotient_ring), 222
PolynomialQuotientRingElement (class in sage.rings.polynomial.polynomial_quotient_ring_element), 235
PolynomialQuotientRingFactory (class in sage.rings.polynomial.polynomial_quotient_ring), 216
PolynomialRealDense (class in sage.rings.polynomial.polynomial_real_mpfr_dense), 166
PolynomialRing() (in module sage.rings.polynomial.polynomial_ring_constructor), 2
PolynomialRing_cdvvf (class in sage.rings.polynomial.polynomial_ring), 11
PolynomialRing_cdvr (class in sage.rings.polynomial.polynomial_ring), 11
PolynomialRing_commutative (class in sage.rings.polynomial.polynomial_ring), 11
PolynomialRing_dense_finite_field (class in sage.rings.polynomial.polynomial_ring), 12
PolynomialRing_dense_mod_n (class in sage.rings.polynomial.polynomial_ring), 13
PolynomialRing_dense_mod_p (class in sage.rings.polynomial.polynomial_ring), 14
PolynomialRing_dense_padic_field_capped_relative (class in sage.rings.polynomial.polynomial_ring), 15
PolynomialRing_dense_padic_field_pseudo_relative (class in sage.rings.polynomial.polynomial_ring), 15
PolynomialRing_dense_padic_ring_capped_absolute (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_dense_padic_ring_capped_relative (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_dense_padic_ring_fixed_mod (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_dense_padic_ring_gen (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_field (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_general (class in sage.rings.polynomial.polynomial_ring), 19
PolynomialRing_integral_domain (class in sage.rings.polynomial.polynomial_ring), 27
PolynomialRing_singular_repr (class in sage.rings.polynomial.polynomial_singular_interface), 169
Polynomials() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 25
PolynomialSequence() (in module sage.rings.polynomial.multi_polynomial_sequence), 353
PolynomialSequence_generic (class in sage.rings.polynomial.multi_polynomial_sequence), 354
PolynomialSequence_gf2 (class in sage.rings.polynomial.multi_polynomial_sequence), 361
PolynomialSequence_gf2e (class in sage.rings.polynomial.multi_polynomial_sequence), 364
Polynring_FpT_coerce (class in sage.rings.fraction_field_FpT), 498
pow_pd (class in sage.rings.polynomial.polynomial_compiled), 239
power_trunc() (sage.rings.polynomial.polynomial_element.Polynomial method), 80
prec() (sage.rings.polynomial.polynomial_element.Polynomial method), 80
prec() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 462
prec_degree() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 176
prec_degree() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact method), 108
precision_absolute() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 176
precision_relative() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 176
PrecisionError, 184
precompute_degree_reduction_cache() (in module sage.rings.polynomial.real_roots), 204
primary_decomposition() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 337
primary_decomposition_complete() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 338
pseudo_divrem() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 130
pseudo_quo_rem() (sage.rings.polynomial.polynomial_element.Polynomial method), 80
pseudoinverse() (in module sage.rings.polynomial.real_roots), 204

Q
quadratic_form() (sage.rings.invariant_theory.InvariantTheoryFactory method), 413
QuadraticForm (class in sage.rings.invariant_theory), 417
quaternary_biquadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 414
quaternary_quadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 414
quo_rem() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 515
quo_rem() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 521
quo_rem() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 304
quo_rem() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 386
quo_rem() (sage.rings.polynomial.padic.polynomials.Polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 177
quo_rem() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 105
quo_rem() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field method), 113
quo_rem() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 116
quo_rem() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 122
quo_rem() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 131
quo_rem() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 136
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 158
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ZZ method), 160
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ZZ method), 162
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ZZ method), 164
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ZZ method), 166
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ZZ method), 151
quo_rem() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 183
quotient() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 339
quotient_by_principal_ideal() (sage.rings.polynomial.ring.PolynomialRing_commutative method), 11

R
radical() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 339
radical() (sage.rings.polynomial.polynomial_element.Polynomial method), 81
random_element() (sage.rings.fraction_field.FractionField_generic method), 487
random_element() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_ring_generic method), 506
random_element() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 321
random_element() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 266
random_element() (sage.rings.polynomial.polynomial_ring.ZPolynomialRing_dense method), 602
random_element() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 231
random_element() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 26
random_element() (sage.rings.polynomial.skew_polynomial.PolynomialSkewPolynomialRing_general method), 481
random_set() (in module sage.rings.polynomial.pbori), 617
rational_reconstruct() (sage.rings.polynomial.polynomial_element.Polynomial method), 81
rational_reconstruct() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 154

670 Index
rational_root_bounds() (in module sage.rings.polynomial.real_roots), 204
real_root_intervals() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 131
real_root_intervals() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 137
real_root_intervals() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 147
real_roots() (in module sage.rings.polynomial.real_roots), 204
real_roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 84
reciprocal_transform() (sage.rings.polynomial.polynomial_element.Polynomial method), 84
recursively_insert() (in module sage.rings.polynomial.pbori), 617
red_tail() (in module sage.rings.polynomial.pbori), 617
reduce() (sage.rings.fraction_field_element.FractionFieldElement method), 491
reduce() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_element_InfinitePolynomial_sparse method), 544
reduce() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 304
reduce() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 322
reduce() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 346
reduce() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 386
reduce() (sage.rings.polynomial.pbori.BooleanPolynomial method), 589
reduce() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 595
reduce() (sage.rings.polynomial.plural.NCPolynomial_plural method), 634
relatively_prime() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 559
relatively_prime() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 559
reduce() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 559
reduce() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 559
reduce() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 559
rescal() (sage.rings.polynomial.refine_root), 214
reset() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 560
reset_root_width() (sage.rings.polynomial.real_roots.island method), 199
Index 671
root_field() (sage.rings.polynomial.polynomial_element.Polynomial method), 86
roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 87
roots() (sage.rings.polynomial.real_roots.ocean method), 203
rr_gap (class in sage.rings.polynomial.real_roots), 209
rshift_coeffs() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 178

S

S_class_group() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 222
S_invariant() (sage.rings.invariant_theory.TernaryCubic method), 421
S_units() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 224
sage.rings.fraction_field (module), 483
sage.rings.fraction_field_element (module), 489
sage.rings.invariant_theory (module), 404
sage.rings.monomials (module), 404
sage.rings.polynomial.complex_roots (module), 212
sage.rings.polynomial.convolution (module), 239
sage.rings.polynomial.cyclotomic (module), 240
sage.rings.polynomial.flatten (module), 401
sage.rings.polynomial.ideal (module), 215
sage.rings.polynomial.infinite_polynomial_element (module), 539
sage.rings.polynomial.infinite_polynomial_ring (module), 529
sage.rings.polynomial.laurent_polynomial (module), 508
sage.rings.polynomial.laurent_polynomial_ring (module), 501
sage.rings.polynomial.multi_polynomial (module), 270
sage.rings.polynomial.multi_polynomial_element (module), 293
sage.rings.polynomial.multi_polynomial_ideal (module), 308
sage.rings.polynomial.multi_polynomial_ideal_libsingular (module), 391
sage.rings.polynomial.multi_polynomial_libsingular (module), 365
sage.rings.polynomial.multi_polynomial_ring (module), 289
sage.rings.polynomial.multi_polynomial_ring_base (module), 261
sage.rings.polynomial.multi_polynomial_sequence (module), 350
sage.rings.polynomial.omega (module), 523
sage.rings.polynomial.padics.polynomial_padic (module), 169
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense (module), 173
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense (module), 180
sage.rings.polynomial.pbori (module), 563
sage.rings.polynomialplural (module), 621
sage.rings.polynomial.polydict (module), 393
sage.rings.polynomial.polynomial_compiled (module), 238
sage.rings.polynomial.polynomial_element (module), 30
sage.rings.polynomial.polynomial_element_generic (module), 109
sage.rings.polynomial.polynomial_fateman (module), 239
sage.rings.polynomial.polynomial_gf2x (module), 119
sage.rings.polynomial.polynomial_integer_dense_flint (module), 125
sage.rings.polynomial.polynomial_integer_dense_ntl (module), 133
sage.rings.polynomial.polynomial_modn_dense_ntl (module), 156
sage.rings.polynomial.polynomial_number_field (module), 123
sage.rings.polynomial.polynomial_quotient_ring (module), 216
sage.rings.polynomial.polynomial_quotient_ring_element (module), 234
sage.rings.polynomial.polynomial_rational_flint (module), 138
sage.rings.polynomial.polynomial_real_mpfr_dense (module), 166
sage.rings.polynomial.polynomial_ring (module), 9
sage.rings.polynomial.polynomial_ring_constructor (module), 1
sage.rings.polynomial.polynomial_ring_homomorphism (module), 29
sage.rings.polynomial.polynomial_singular_interface (module), 169
sage.rings.polynomial.polynomial_zmod_flint (module), 149
sage.rings.polynomial.polynomial_zz_pex (module), 180
sage.rings.polynomial.real_roots (module), 184
sage.rings.polynomial.refine_root (module), 214
sage.rings.polynomial.skew_polynomial_element (module), 445
sage.rings.polynomial.skew_polynomial_ring (module), 475
sage.rings.polynomial.skew_polynomial_ring_constructor (module), 473
sage.rings.polynomial.symmetric_ideal (module), 547
sage.rings.polynomial.symmetric_reduction (module), 556
sage.rings.polynomial.term_order (module), 243
sage.rings.polynomial.toy_buchberger (module), 432
sage.rings.polynomial.toy_d_basis (module), 440
sage.rings.polynomial.toy_variety (module), 437
saturation() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 340
SCA() (in module sage.rings.polynomial.plural), 635
scalar_lmult() (sage.rings.polynomial.polydict.PolyDict method), 400
scalar_rmult() (sage.rings.polynomial.polydict.PolyDict method), 401
scale_intvec_var() (in module sage.rings.polynomial.real_roots), 209
scaled_coeffs() (sage.rings.invariant_theory.BinaryQuartic method), 410
scaled_coeffs() (sage.rings.invariant_theory.QuadraticForm method), 419
scaled_coeffs() (sage.rings.invariant_theory.TernaryCubic method), 423
scaled_coeffs() (sage.rings.invariant_theory.TernaryQuadratic method), 425
second() (sage.rings.invariant_theory.TwoAlgebraicForms method), 426
section() (sage.rings.fraction_field.FractionFieldEmbedding method), 485
section() (sage.rings.fraction_field.FpT.Fp_FpT_coerce method), 498
section() (sage.rings.fraction_field.FpT.Polyring_FpT_coerce method), 498
section() (sage.rings.fraction_field.FpT:ZZ_FpT_coerce method), 499
section() (sage.rings.polynomial.flatten.FlatteningMorphism method), 402
section() (sage.rings.polynomial.polynomial_element.PolynomialBaseringInjection method), 105
section() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomialBaseringInjection method), 468
select() (in module sage.rings.polynomial.toy_buchberger), 436
select() (in module sage.rings.polynomial.toy_d_basis), 443
select() (sage.rings.polynomial.pbori.GroebnerStrategy method), 609
selmer_group() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 232
set() (sage.rings.polynomial.pbori.BooleanMonomial method), 576
set() (sage.rings.polynomial.pbori.BooleanPolynomial method), 590
set() (sage.rings.polynomial.pbori.BooleSet method), 571
set_karatsuba_threshold() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 27
set_random_seed() (in module sage.rings.polynomial.pbori), 618
set_gens() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 560
SeveralAlgebraicForms (class in sage.rings.invariant_theory), 419
shift() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 522
shift() (sage.rings.polynomial.polynomial_element.Polynomial method), 96
shift() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 106
shift() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 117
shift() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 122
shift() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 158
shift() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modnntlZZ method), 161
shift() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modnntlzz method), 163
shift() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 167
shift() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 156
shift() (sage.rings.polynomial.polynomial_zz_pex.SkewPolynomial method), 467
shrink_bp() (sage.rings.polynomial.real_roots.Island method), 199
singular_moreblocks() (sage.rings.polynomial.term_order.TermOrder method), 255
singular_str() (sage.rings.polynomial.term_order.TermOrder method), 256
SizeDouble() (sage.rings.polynomial.pbori.BooleSet method), 571
SkewPolynomial (class in sage.rings.polynomial.skew_polynomial_element), 445
SkewPolynomial_generic_dense (class in sage.rings.polynomial.skew_polynomial_element), 468
SkewPolynomialBaseringInjection (class in sage.rings.polynomial.skew_polynomial_element), 468
SkewPolynomialRing() (in module sage.rings.polynomial.skew_polynomial_ring_constructor), 473
SkewPolynomialRing_general (class in sage.rings.polynomial.skew_polynomial_ring), 475
slimgb_lisingsingular() (in module sage.rings.polynomial.multivariate_polynomial_ideal_libsingular), 392
slope_factorization() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 111
slope_range() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 194
slope_range() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 197
small_roots() (in module sage.rings.polynomial.polynomial_modn_dense_ntl), 164
small_roots() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modnntl method), 158
small_roots() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 156
small_spolys_in_next_degree() (sage.rings.polynomial.pbori.GroebnerStrategy method), 609
solve() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2 method), 363
some_elements() (sage.rings.fraction_field.FractionField_generic method), 488
some_elements() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 27
some_spolys_in_next_degree() (sage.rings.polynomial.pbori.GroebnerStrategy method), 609
sortkey_block() (sage.rings.polynomial.term_order.TermOrder method), 256
sortkey_deglex() (sage.rings.polynomial.term_order.TermOrder method), 256
sortkey_degrevlex() (sage.rings.polynomial.term_order.TermOrder method), 257
sortkey_invlex() (sage.rings.polynomial.term_order.TermOrder method), 257
sortkey_lex() (sage.rings.polynomial.term_order.TermOrder method), 257
sortkey_matrix() (sage.rings.polynomial.term_order.TermOrder method), 257
sortkey_negdeglex() (sage.rings.polynomial.term_order.TermOrder method), 258
sortkey_negdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 258
sortkey_neglex() (sage.rings.polynomial.term_order.TermOrder method), 258
sortkey_negwdeglex() (sage.rings.polynomial.term_order.TermOrder method), 259
sortkey_negwdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 259
sortkey_wdeglex() (sage.rings.polynomial.term_order.TermOrder method), 259
sortkey_wdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 259
sparse_iter() (sage.rings.polynomial.polydict.ETuple method), 396
specialization() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 286
specialization() (sage.rings.polynomial.polynomial_element.Polynomial method), 96
SpecializationMorphism (class in sage.rings.polynomial.flatten), 402
syzygy() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 429
syzygy() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 431
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr method), 326
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 340
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 348
T
T_covariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 427
T_invariant() (sage.rings.invariant_theory.TernaryCubic method), 422
T_prime_covariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 428
tail() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 547
tailreduce() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 561
taylor_shift1_intvec() (in module sage.rings.polynomial.real_roots), 210
tensor_with_ring() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense method), 534
tensor_with_ring() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 538
term_order() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 506
term_order() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 269
term_order() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 628
terminal_one() (sage.rings.polynomial.pbori.CCuddNavigator method), 605
termOrder (class in sage.rings.polynomial.term_order), 248
termOrder_from_pb_order() (in module sage.rings.polynomial.pbori), 612
termorder_from_singular() (in module sage.rings.polynomial.term_order), 260
terms() (sage.rings.polynomial.pbori.BooleanPolynomial method), 591
ternary_biquadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 415
ternary_cubic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 416
ternary_quadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 416
TernaryCubic (class in sage.rings.invariant_theory), 421
TernaryQuadratic (class in sage.rings.invariant_theory), 424
then_branch() (sage.rings.polynomial.pbori.CCuddNavigator method), 605
Theta_covariant() (sage.rings.invariant_theory.TernaryCubic method), 422
Theta_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 428
Theta_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 431
Theta_prime_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 428
Theta_prime_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 431
to_bernstein() (in module sage.rings.polynomial.real_roots), 210
to_bernstein_warp() (in module sage.rings.polynomial.real_roots), 211
to_ocean() (sage.rings.polynomial.real_roots.linear_map method), 199
to_ocean() (sage.rings.polynomial.real_roots.warp_map method), 211
top_index() (in module sage.rings.polynomial.pbori), 619
top_sugar() (sage.rings.polynomial.pbori.GroebnerStrategy method), 609
total_degree() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 306
total_degree() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 389
total_degree() (sage.rings.polynomial.pbori.BooleanPolynomial method), 591
total_degree() (sage.rings.polynomial.plural.NCPolynomial_plural method), 635
trace() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 238
trace_polynomial() (sage.rings.polynomial.polynomial_element.Polynomial method), 101
transformed() (sage.rings.invariant_theory.AlgebraicForm method), 407
transformed_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 340

Index
triangular_decomposition() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 341

triangular_factorization() (in module sage.rings.polynomial.toy_variety), 440

truncation() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 522

truncation() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 288

truncation() (sage.rings.polynomial.polynomial_element.Polynomial method), 101

truncation() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 106

truncation() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 117

truncation() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 122

truncation() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ method), 161

truncation() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 163

truncation() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 149

truncation() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 151

truncation() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 183

truncation() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomialGeneric_dense method), 472

truncation() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 168

try_rand_split() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 192

try_split() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 192

tuple_weight() (sage.rings.polynomial.term_order.TermOrder method), 260

twist_map() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 482

TwoAlgebraicForms (class in sage.rings.invariant_theory), 425

TwoQuaternaryQuadratics (class in sage.rings.invariant_theory), 426

twoostd() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 349

TwoTernaryQuadratics (class in sage.rings.invariant_theory), 429

Unary PD (class in sage.rings.polynomial.polynomial_compiled), 239

UnflatteningMorphism (class in sage.rings.polynomial.flatten), 403

union() (sage.rings.polynomial.pbori.BooleSet method), 572

univariate() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 232

univar pd (class in sage.rings.polynomial.polynomial_compiled), 239

univariate_polynomial() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 516

univariate_polynomial() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 306

univariate_polynomial() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 306

univariate_polynomial() (sage.rings.polynomial.pbori.BooleanPolynomial method), 591

universal_discriminant() (in module sage.rings.polynomial.polynomial_element), 109

universal() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 361

unpickle_BooleanPolynomial() (in module sage.rings.polynomial.pbori), 619

unpickle_BooleanPolynomialRing() (in module sage.rings.polynomial.pbori), 619

unpickle_FpT_element() (in module sage.rings.fraction_field_FpT), 500

unpickle_MPolynomial_libsingular() (in module sage.rings.polynomial.multi_polynomial_libsingular), 391

unpickle_MPolynomialRing_generic() (in module sage.rings.polynomial.multi_polynomial_ring_base), 269

unpickle_MPolynomialRing_generic_v1() (in module sage.rings.polynomial.multi_polynomial_ring_base), 269

unpickle_MPolynomialRing_libsingular() (in module sage.rings.polynomial.multi_polynomial_libsingular), 391

unpickle_NCPolynomial_plural() (in module sage.rings.polynomial.pbori), 638

unpickle_PolynomialRing() (in module sage.rings.polynomial.polynomial_ring_constructor), 7
update() (in module sage.rings.polynomial.toy_buchberger), 437
update() (in module sage.rings.polynomial.toy_d_basis), 444
usign() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory method), 185

V

valuation() (sage.rings.fraction_field_element.FractionFieldElement method), 491
valuation() (sage.rings.fraction_field_FpT.FpTElement method), 495
valuation() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 522
valuation() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
method), 178
valuation() (sage.rings.polynomial.polydict.PolyDict method), 401
valuation() (sage.rings.polynomial.polynomial_element.Polynomial method), 102
valuation() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 117
valuation() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_ZZ method), 161
valuation() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense method), 472
valuation_of_coefficient() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative
method), 178

value() (sage.rings.polynomial.pbori.CCuddNavigator method), 605
var_pd (class in sage.rings.polynomial.polynomial_polynomial_compiled), 239
variable() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 306
variable() (sage.rings.polynomial.polynomial_element.MPolynomial_libsingular.MPolynomial_libsingular method), 390
variable() (sage.rings.polynomial.pbori.BooleanPolynomial method), 592
variable() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 603
variable_has_value() (sage.rings.polynomial.pbori.GroebnerStrategy method), 609
variable_name() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 523
variable_name() (sage.rings.polynomial.laurent_polynomial.Polynomial_element.Polynomial method), 102
variable_name() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 467
variable_names_recursive() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic
method), 506
variable_names_recursive() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 269

Index 679
varname_key() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 538
vars() (sage.rings.polynomial.pbori.BooleSet method), 572
vars_as_monomial() (sage.rings.polynomial.pbori.BooleanPolynomial method), 592
vector_space_dimension() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 345

W
warp_map (class in sage.rings.polynomial.real_roots), 211
weighted_degree() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 288
weights() (sage.rings.polynomial.ideal.TermOrder.TermOrder method), 260
weil_restriction() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 323
weil_restriction() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2e method), 364
weyl_algebra() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 269
weyl_algebra() (sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative method), 12
wordsize_rational() (in module sage.rings.polynomial.real_roots), 211

X
xgcd() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 179
xgcd() (sage.rings.polynomial.polynomial_element.Polynomial method), 103
xgcd() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 122
xgcd() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 133
xgcd() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 138
xgcd() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 159
xgcd() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 149
xgcd() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 152
xgcd() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 183

Z
zero() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 604
zeros() (in module sage.rings.polynomial.pbori), 619
zeros_in() (sage.rings.polynomial.pbori.BooleanPolynomial method), 593
ZZ_FpT_coerce (class in sage.rings.fraction_field_FpT), 499