CONTENTS

1 Polynomial Rings 1
 1.1 Constructors for polynomial rings 1

2 Univariate Polynomials 9
 2.1 Univariate Polynomials and Polynomial Rings 9
 2.2 Generic Convolution ... 227
 2.3 Fast calculation of cyclotomic polynomials 228

3 Multivariate Polynomials 231
 3.1 Multivariate Polynomials and Polynomial Rings 231
 3.2 Classical Invariant Theory 389
 3.3 Educational Versions of Groebner Basis and Related Algorithms 417

4 Skew Polynomials 431
 4.1 Univariate Skew Polynomials 431
 4.2 Constructor for skew polynomial rings 458
 4.3 Skew Univariate Polynomial Rings 460

5 Rational Functions 469
 5.1 Fraction Field of Integral Domains 469
 5.2 Fraction Field Elements .. 473
 5.3 Univariate rational functions over prime fields 477

6 Laurent Polynomials 485
 6.1 Ring of Laurent Polynomials 485
 6.2 Elements of Laurent polynomial rings 492
 6.3 MacMahon’s Partition Analysis Omega Operator 507

7 Infinite Polynomial Rings 513
 7.1 Infinite Polynomial Rings ... 513
 7.2 Elements of Infinite Polynomial Rings 523
 7.3 Symmetric Ideals of Infinite Polynomial Rings 531
 7.4 Symmetric Reduction of Infinite Polynomials 540

8 Boolean Polynomials 547
 8.1 Boolean Polynomials .. 547

9 Noncommutative Polynomials 605
 9.1 Noncommutative Polynomials via libSINGULAR/Plural 605

10 Indices and Tables 623
1.1 Constructors for polynomial rings

This module provides the function \texttt{PolynomialRing()}, which constructs rings of univariate and multivariate polynomials, and implements caching to prevent the same ring being created in memory multiple times (which is wasteful and breaks the general assumption in Sage that parents are unique).

There is also a function \texttt{BooleanPolynomialRing_constructor()}, used for constructing Boolean polynomial rings, which are not technically polynomial rings but rather quotients of them (see module \texttt{sage.rings.polynomial.pbori} for more details).

\begin{verbatim}
sage: R.<x, y, z> = BooleanPolynomialRing()
indirect doctest
sage: R
Boolean PolynomialRing in x, y, z
sage: p = x*y + x*z + y*z
sage: x*p
x*y*z + x*y + x*z
sage: R.term_order()
Lexicographic term order
sage: R = BooleanPolynomialRing(5,'x',order='deglex(3),deglex(2)')
sage: R.term_order()
Block term order with blocks:
(Degree lexicographic term order of length 3,
 Degree lexicographic term order of length 2)
sage: R = BooleanPolynomialRing(3,'x',order='degneglex')
sage: R.term_order()
\end{verbatim}
Degree negative lexicographic term order

```
sage: BooleanPolynomialRing(names=('x', 'y'))
Boolean PolynomialRing in x, y
sage: BooleanPolynomialRing(names='x,y')
Boolean PolynomialRing in x, y
```

```
sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing(base_ring, arg1=None, arg2=None, sparse=False, order='degrevlex', names=None, name=None, var_array=None, implementation=None)
```

Return the globally unique univariate or multivariate polynomial ring with given properties and variable name or names.

There are five ways to call the polynomial ring constructor:

1. `PolynomialRing(base_ring, name, sparse=False)`
2. `PolynomialRing(base_ring, names, order='degrevlex')`
3. `PolynomialRing(base_ring, name, n, order='degrevlex')`
4. `PolynomialRing(base_ring, n, name, order='degrevlex')`
5. `PolynomialRing(base_ring, n, var_array=var_array, order='degrevlex')`

The optional arguments sparse and order must be explicitly named, and the other arguments must be given positionally.

INPUT:

- `base_ring` – a ring
- `name` – a string
- `names` – a list or tuple of names, or a comma separated string
- `var_array` – a list or tuple of names, or a comma separated string
- `n` – an integer
- `sparse` – bool (default: False), whether or not elements are sparse
- `order` – string or `TermOrder` object, e.g.,
 - `'degrevlex'` (default) – degree reverse lexicographic
 - `'lex'` – lexicographic
 - `'deglex'` – degree lexicographic
 - `TermOrder('deglex', 3) + TermOrder('deglex', 3)` – block ordering
- `implementation` – string or None; selects an implementation in cases where Sage includes multiple choices (currently $\mathbb{Z}[x]$ can be implemented with ‘NTL’ or ‘FLINT’; default is ‘FLINT’).
Note: The following rules were introduced in trac ticket #9944, in order to preserve the “unique parent assumption” in Sage (i.e., if two parents evaluate equal then they should actually be identical).

- In the multivariate case, a dense representation is not supported. Hence, the argument \texttt{sparse=False} is silently ignored in that case.
- If the given implementation does not exist for rings with the given number of generators and the given sparsity, then an error results.

OUTPUT:

\texttt{PolynomialRing(base_ring, name, sparse=False)} returns a univariate polynomial ring; also, \texttt{PolynomialRing(base_ring, names, sparse=False)} yields a univariate polynomial ring, if names is a list or tuple providing exactly one name. All other input formats return a multivariate polynomial ring.

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one single-variate polynomial ring over each base ring in each choice of variable, sparseness, and implementation. There is also exactly one multivariate polynomial ring over each base ring for each choice of names of variables and term order. The names of the generators can only be temporarily changed after the ring has been created. Do this using the localvars context:

EXAMPLES of VARIABLE NAME CONTEXT:

```
sage: R.<x,y> = PolynomialRing(QQ,2); R
Multivariate Polynomial Ring in x, y over Rational Field
```

You can’t just globally change the names of those variables. This is because objects all over Sage could have pointers to that polynomial ring.

```
sage: R._assign_names(['z','w'])
Traceback (most recent call last):
  ...     ValueError: variable names cannot be changed after object creation.
```

However, you can very easily change the names within a with block:

```
sage: with localvars(R, ['z','w']):
    ...:
    print(f)
z^2 - 2*w^2
```

After the with block the names revert to what they were before.

```
sage: print(f)
x^2 - 2*y^2
```

SQUARE BRACKETS NOTATION: You can alternatively create a single or multivariate polynomial ring over a ring \(R \) by writing \(R[\text{\texttt{\textquotesingle varname\textquotesingle}}] \) or \(R[\text{\texttt{\textquotesingle var1,var2,var3,...\textquotesingle}}] \). This square brackets notation doesn’t allow for setting any of the optional arguments.

EXAMPLES:

1. \texttt{PolynomialRing(base_ring, name, sparse=False)}

```
sage: PolynomialRing(QQ, 'w')
Univariate Polynomial Ring in w over Rational Field
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:
You must specify a name:

```sage
sage: PolynomialRing(QQ)
Traceback (most recent call last):
...   TypeError: You must specify the names of the variables.
sage: R.<abc> = PolynomialRing(QQ, sparse=True); R
Sparse Univariate Polynomial Ring in abc over Rational Field
sage: R.<w> = PolynomialRing(PolynomialRing(GF(7),'k')); R
Univariate Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of size 7
```

The square bracket notation:

```sage
sage: R.<y> = QQ['y']; R
Univariate Polynomial Ring in y over Rational Field
sage: y^2 + y
y^2 + y
```

In fact, since the diamond brackets on the left determine the variable name, you can omit the variable from the square brackets:

```sage
sage: R.<zz> = QQ[]; R
Univariate Polynomial Ring in zz over Rational Field
sage: (zz + 1)^2
zz^2 + 2*zz + 1
```

This is exactly the same ring as what PolynomialRing returns:

```sage
sage: R is PolynomialRing(QQ, 'zz')
True

However, rings with different variables are different:

```sage
sage: QQ['x'] == QQ['y']
False
```

Sage has two implementations of univariate polynomials over the integers, one based on NTL and one based on FLINT. The default is FLINT. Note that FLINT uses a “more dense” representation for its polynomials than NTL, so in particular, creating a polynomial like \(2^{1000000} \cdot x^{1000000}\) in FLINT may be unwise.

```sage
sage: ZxNTL = PolynomialRing(ZZ, 'x', implementation='NTL'); ZxNTL
Univariate Polynomial Ring in x over Integer Ring (using NTL)
sage: ZxFLINT = PolynomialRing(ZZ, 'x', implementation='FLINT'); ZxFLINT
Univariate Polynomial Ring in x over Integer Ring
sage: ZxFLINT is ZZ['x']
True
sage: ZxFLINT is PolynomialRing(ZZ, 'x')
True
sage: xNTL = ZxNTL.gen()
```
There is a coercion from the non-default to the default implementation, so the values can be mixed in a single expression:

```
sage: (xNTL + xFLINT^2)
x^2 + x
```

The result of such an expression will use the default, i.e., the FLINT implementation:

```
sage: (xNTL + xFLINT^2).parent()
Univariate Polynomial Ring in x over Integer Ring
```

2. `PolynomialRing(base_ring, names, order='degrevlex')`

```
sage: R = PolynomialRing(QQ, 'a,b,c'); R
Multivariate Polynomial Ring in a, b, c over Rational Field

sage: S = PolynomialRing(QQ, ['a','b','c']); S
Multivariate Polynomial Ring in a, b, c over Rational Field

sage: T = PolynomialRing(QQ, ('a','b','c')); T
Multivariate Polynomial Ring in a, b, c over Rational Field
```

All three rings are identical.

```
sage: (R == S) and (S == T)
True
```

There is a unique polynomial ring with each term order:

```
sage: R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
Multivariate Polynomial Ring in x, y, z over Rational Field

sage: S = PolynomialRing(QQ, 'x,y,z', order='invlex'); S
Multivariate Polynomial Ring in x, y, z over Rational Field

sage: S == PolynomialRing(QQ, 'x,y,z', order='invlex')
True
```

Note that a univariate polynomial ring is returned, if the list of names is of length one. If it is of length zero, a multivariate polynomial ring with no variables is returned.

```
sage: PolynomialRing(QQ, ['x'])
Univariate Polynomial Ring in x over Rational Field

sage: PolynomialRing(QQ, [])
Multivariate Polynomial Ring in no variables over Rational Field
```

3. `PolynomialRing(base_ring, name, n, order='degrevlex')`

If you specify a single name as a string and a number of variables, then variables labeled with numbers are created.

1.1. Constructors for polynomial rings
sage: PolynomialRing(QQ, 'x', 10)
Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field

sage: PolynomialRing(QQ, 2, 'alpha0')
Multivariate Polynomial Ring in alpha00, alpha01 over Rational Field

sage: PolynomialRing(GF(7), 'y', 5)
Multivariate Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7

sage: PolynomialRing(QQ, 'y', 3, sparse=True)
Multivariate Polynomial Ring in y0, y1, y2 over Rational Field

Note that a multivariate polynomial ring is returned when an explicit number is given.

sage: PolynomialRing(QQ, "x", 1)
Multivariate Polynomial Ring in x over Rational Field

sage: PolynomialRing(QQ, "x", 0)
Multivariate Polynomial Ring in no variables over Rational Field

It is easy in Python to create fairly arbitrary variable names. For example, here is a ring with generators labeled by the first 100 primes:

sage: R = PolynomialRing(ZZ, ['x%s' % p for p in primes(100)]); R
Multivariate Polynomial Ring in x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, ...
...over Integer Ring

By calling the `inject_variables()` method, all those variable names are available for interactive use:

sage: R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, ...

sage: (x2 + x41 + x71)^2
x2^2 + 2*x2*x41 + x41^2 + 2*x2*x71 + 2*x41*x71 + x71^2

5. `PolynomialRing(base_ring, n, m, var_array=var_array, order='degrevlex')`

This creates an array of variables where each variables begins with an entry in `var_array` and is indexed from 0 to `n-1`.

sage: PolynomialRing(ZZ, 3, var_array=['x', 'y']) Multivariate Polynomial Ring in x0, y0, x1, y1, x2, y2 over Integer Ring sage: PolynomialRing(ZZ, 3, var_array='a,b') Multivariate Polynomial Ring in a0, b0, a1, b1, a2, b2 over Integer Ring

If `var_array` is a single string, this creates an `m x n` array of variables:

sage: PolynomialRing(ZZ, 2, 3, var_array='m')
Multivariate Polynomial Ring in m00, m01, m02, m10, m11, m12 over Integer Ring

If `var_array` is a single string and `m` is not specified, this creates an `n x n` array of variables:

sage: PolynomialRing(ZZ, 2, var_array='m')
Multivariate Polynomial Ring in m00, m01, m10, m11 over Integer Ring
Choose an appropriate category for a polynomial ring.

**INPUT:**

- **base_ring_category:** The category of ring over which the polynomial ring shall be defined.
- **multivariate:** Will the polynomial ring be multivariate?

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_ring_constructor import polynomial_default_category
sage: polynomial_default_category(Rings(), False) is Algebras(Rings())
True
sage: polynomial_default_category(Rings().Commutative(), False) is Algebras(Rings().Commutative()).Commutative()
True
sage: polynomial_default_category(Fields(), False) is EuclideanDomains() & CommutativeAlgebras(Fields())
True
sage: polynomial_default_category(Fields(), True) is UniqueFactorizationDomains() & CommutativeAlgebras(Fields())
True
sage: QQ['t'].category() is EuclideanDomains() & CommutativeAlgebras(QQ.category())
True
sage: QQ['s','t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ.category())
True
sage: QQ['s']['t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ['s'].category())
True
```
2.1 Univariate Polynomials and Polynomial Rings

Sage’s architecture for polynomials ‘under the hood’ is complex, interfacing to a variety of C/C++ libraries for polynomials over specific rings. In practice, the user rarely has to worry about which backend is being used.

The hierarchy of class inheritance is somewhat confusing, since most of the polynomial element classes are implemented as Cython extension types rather than pure Python classes and thus can only inherit from a single base class, whereas others have multiple bases.

2.1.1 Univariate Polynomial Rings

Sage implements sparse and dense polynomials over commutative and non-commutative rings. In the non-commutative case, the polynomial variable commutes with the elements of the base ring.

AUTHOR:

- William Stein
- Kiran Kedlaya (2006-02-13): added macaulay2 option
- Martin Albrecht (2006-08-25): removed it again as it isn’t needed anymore
- Simon King (2011-05): Dense and sparse polynomial rings must not be equal.

EXAMPLES:

```
sage: z = QQ['z'].0
sage: (z^3 + z - 1)^3
z^9 + 3*z^7 - 3*z^6 + 3*z^5 - 6*z^4 + 4*z^3 - 3*z^2 + 3*z - 1
```

Saving and loading of polynomial rings works:

```
sage: loads(dumps(QQ['x'])) == QQ['x']
True
sage: k = PolynomialRing(QQ['x'],'y'); loads(dumps(k)) == k
True
sage: k = PolynomialRing(ZZ,'y'); loads(dumps(k)) == k
True
sage: k = PolynomialRing(ZZ,'y', sparse=True); loads(dumps(k))
Sparse Univariate Polynomial Ring in y over Integer Ring
```
Rings with different variable names are not equal; in fact, by trac ticket #9944, polynomial rings are equal if and only if they are identical (which should be the case for all parent structures in Sage):

```
sage: QQ['y'] != QQ['x']
True
sage: QQ['y'] != QQ['z']
True
```

We create a polynomial ring over a quaternion algebra:

```
sage: A.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: R.<w> = PolynomialRing(A,sparse=True)
sage: f = w^3 + (i+j)*w + 1
sage: f
w^3 + (i + j)*w + 1
sage: f^2
w^6 + (2*i + 2*j)*w^4 + 2*w^3 - 2*w^2 + (2*i + 2*j)*w + 1
sage: f = w + i ; g = w + j
sage: f * g
w^2 + (i + j)*w + k
sage: g * f
w^2 + (i + j)*w - k
```

trac ticket #9944 introduced some changes related with coercion. Previously, a dense and a sparse polynomial ring with the same variable name over the same base ring evaluated equal, but of course they were not identical. Coercion maps are cached - but if a coercion to a dense ring is requested and a coercion to a sparse ring is returned instead (since the cache keys are equal!), all hell breaks loose.

Therefore, the coercion between rings of sparse and dense polynomials works as follows:

```
sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: S.<x> = QQ[]
sage: S == R
False
sage: S.has_coerce_map_from(R)
True
sage: R.has_coerce_map_from(S)
False
sage: (R.0+S.0).parent()
Univariate Polynomial Ring in x over Rational Field
sage: (S.0+R.0).parent()
Univariate Polynomial Ring in x over Rational Field
```

It may be that one has rings of dense or sparse polynomials over different base rings. In that situation, coercion works by means of the pushout() formalism:

```
sage: R.<x> = PolynomialRing(GF(5), sparse=True)
sage: S.<x> = PolynomialRing(ZZ)
sage: R.has_coerce_map_from(S)
False
sage: S.has_coerce_map_from(R)
False
sage: S.0 + R.0
2*x
sage: (S.0 + R.0).parent()
Univariate Polynomial Ring in x over Finite Field of size 5
sage: (S.0 + R.0).parent().is_sparse()
False
```
Similarly, there is a coercion from the (non-default) NTL implementation for univariate polynomials over the integers to the default FLINT implementation, but not vice versa:

```python
sage: R.<x> = PolynomialRing(ZZ, implementation = 'NTL')
sage: S.<x> = PolynomialRing(ZZ, implementation = 'FLINT')
sage: (S.0+R.0).parent() is S
True
sage: (R.0+S.0).parent() is S
True
```

```python
class sage.rings.polynomial.polynomial_ring.PolynomialRing_cdvf(base_ring,
name=None,
sparse=False,
element_class=None,
category=None)

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_cdvr, sage.rings.polynomial.polynomial_ring.PolynomialRing_field

A class for polynomial ring over complete discrete valuation fields
```

```python
class sage.rings.polynomial.polynomial_ring.PolynomialRing_cdvr(base_ring,
name=None,
sparse=False,
element_class=None,
category=None)

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain

A class for polynomial ring over complete discrete valuation rings
```

```python
class sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative(base_ring,
name=None,
sparse=False,
element_class=None,
category=None)

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_general, sage.rings.ring.CommutativeAlgebra

Univariate polynomial ring over a commutative ring.
```

```python
quotient_by_principal_ideal (f, names=None)
Return the quotient of this polynomial ring by the principal ideal (generated by) f.
```

INPUT:

- `f` - either a polynomial in `self`, or a principal ideal of `self`.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: I = (x^2-1)*R
sage: R.quotient_by_principal_ideal(I)
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus \rightarrow x^2 - 1
```

The same example, using the polynomial instead of the ideal, and customizing the variable name:

```python
sage: R.<x> = QQ[]
sage: R.quotient_by_principal_ideal(x^2-1, names=('foo',))
Univariate Quotient Polynomial Ring in foo over Rational Field with modulus x^2 - 1
```
weyl_algebra()
Return the Weyl algebra generated from self.

EXAMPLES:

```
sage: R = QQ['x']
sage: W = R.weyl_algebra(); W
Differential Weyl algebra of polynomials in x over Rational Field
sage: W.polynomial_ring() == R
True
```

```
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field(base_ring, name='x',
 element_class=None, implementation=None)

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_field

Univariate polynomial ring over a finite field.

EXAMPLES:

```
sage: R = PolynomialRing(GF(27, 'a'), 'x')
sage: type(R)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field_˓→with_category'>
```

irreducible_element (n, algorithm=None)
Construct a monic irreducible polynomial of degree n.

INPUT:

• n – integer: degree of the polynomial to construct
• algorithm – string: algorithm to use, or None
 - 'random': try random polynomials until an irreducible one is found.
 - 'first_lexicographic': try polynomials in lexicographic order until an irreducible one is found.

OUTPUT:

A monic irreducible polynomial of degree n in self.

EXAMPLES:

```
sage: GF(5^3, 'a')['x'].irreducible_element(2)
x^2 + (4*a^2 + a + 4)*x + 2*a^2 + 2
sage: GF(19)[x].irreducible_element(21, algorithm="first_lexicographic")
x^21 + x + 5
sage: GF(5^2, 'a')['x'].irreducible_element(17, algorithm="first.lexicographic")
x^17 + a*x + 4*a + 3
```
AUTHORS:

- Peter Bruin (June 2013)
- Jean-Pierre Flori (May 2014)

```python
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n(base_ring,
    name=None,
    element_class=None,
    implementation=None,
    category=None)
```

Bases: `sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative`

- `modulus()`

EXAMPLES:

```python
sage: R.<x> = Zmod(15)[]
sage: R.modulus()
15
```

- `residue_field(ideal, names=None)`

 Return the residue finite field at the given ideal.

EXAMPLES:

```python
sage: R.<t> = GF(2)[]
sage: k.<a> = R.residue_field(t^3+t+1); k
Residue field in a of Principal ideal (t^3 + t + 1) of Univariate Polynomial
˓→Ring in t over Finite Field of size 2 (using NTL)
sage: k.list()
[0, a, a^2, a + 1, a^2 + a, a^2 + a + 1, a^2 + 1, 1]
sage: R.residue_field(t)
Residue field of Principal ideal (t) of Univariate Polynomial Ring in t over
˓→Finite Field of size 2 (using NTL)
sage: P = R.irreducible_element(8) * R
sage: P
Principal ideal (t^8 + t^4 + t^3 + t^2 + 1) of Univariate Polynomial Ring in
˓→t over Finite Field of size 2 (using NTL)
sage: k.<a> = R.residue_field(P); k
Residue field in a of Principal ideal (t^8 + t^4 + t^3 + t^2 + 1) of
˓→Univariate Polynomial Ring in t over Finite Field of size 2 (using NTL)
sage: k.cardinality()
256
```

Non-maximal ideals are not accepted:

```python
sage: R.residue_field(t^2 + 1)
Traceback (most recent call last):
    ...
  ArithmeticError: ideal is not maximal
sage: R.residue_field(0)
Traceback (most recent call last):
    ...
  ArithmeticError: ideal is not maximal
sage: R.residue_field(1)
Traceback (most recent call last):
```
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p(base_ring, name='x', implementation=None, category=None):

 Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_finite_field,
 sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n,
 sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr

irreducible_element(n, algorithm=None)

 Construct a monic irreducible polynomial of degree n.
 INPUT:
 • n – integer: the degree of the polynomial to construct
 • algorithm – string: algorithm to use, or None. Currently available options are:
 - 'adleman-lenstra': a variant of the Adleman–Lenstra algorithm as implemented in
 PARI.
 - 'conway': look up the Conway polynomial of degree n over the field of p elements in the
 database; raise a RuntimeError if it is not found.
 - 'ffprimroot': use the ffprimroot() function from PARI.
 - 'first_lexicographic': return the lexicographically smallest irreducible polynomial of
 degree n.
 - 'minimal_weight': return an irreducible polynomial of degree n with minimal number of
 non-zero coefficients. Only implemented for $p = 2$.
 - 'primitive': return a polynomial f such that a root of f generates the multiplicative
 group of the finite field extension defined by f. This uses the Conway polynomial if possible, otherwise
 it uses ffprimroot.
 - 'random': try random polynomials until an irreducible one is found.

 If algorithm is None, use $x - 1$ in degree 1. In degree > 1, the Conway polynomial is used if it is found in the database. Otherwise, the algorithm minimal_weight is used if $p = 2$, and the algorithm adleman-lenstra if $p > 2$.

 OUTPUT:
 A monic irreducible polynomial of degree n in self.

 EXAMPLES:

 sage: GF(5)[x].irreducible_element(2)
x^2 + 4*x + 2
 sage: GF(5)[x].irreducible_element(2, algorithm="adleman-lenstra")
x^2 + x + 1
 sage: GF(5)[x].irreducible_element(2, algorithm="primitive")
x^2 + 4*x + 2
 sage: GF(5)[x].irreducible_element(32, algorithm="first_lexicographic")
x^32 + 2
In characteristic 2:

```python
sage: GF(2)['x'].irreducible_element(33)
x^33 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^3 + 1
sage: GF(2)['x'].irreducible_element(33, algorithm="minimal_weight")
x^33 + x^10 + 1
```

In degree 1:

```python
sage: GF(97)['x'].irreducible_element(1)
x + 96
sage: GF(97)['x'].irreducible_element(1, algorithm="conway")
x + 92
sage: GF(97)['x'].irreducible_element(1, algorithm="adleman-lenstra")
x
```

AUTHORS:

- Peter Bruin (June 2013)
- Jeroen Demeyer (September 2014): add “ffprimroot” algorithm, see trac ticket #8373.

2.1. Univariate Polynomials and Polynomial Rings
Bases: `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_field_generic`
class `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_absolute` (base_ring, name=None, element_class=None, category=None)

Bases: `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic`
class `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_relative` (base_ring, name=None, element_class=None, category=None)

Bases: `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic`
class `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_fixed_mod` (base_ring, name=None, element_class=None, category=None)

Bases: `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic`
class `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_lazy` (base_ring, name=None, element_class=None, category=None)

Bases: `sage.rings.polynomial.polynomial_ring.PolynomialRing_cdvr`
A class for dense polynomial ring over padic rings
class `sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_absolute` (base_ring, name=None, element_class=None, category=None)
class sage.rings.polynomial.polynomial_ring.PolynomialRing_field(base_ring,
 name='x',
 sparse=False,
 element_class=None,
 category=None)

Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain,
sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr,
sage.rings.ring.PrincipalIdealDomain
divided_difference(points, full_table=False)

Return the Newton divided-difference coefficients of the Lagrange interpolation polynomial through points.

INPUT:

• points – a list of pairs \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\) of elements of the base ring of self, where \(x_i - x_j\) is invertible for \(i \neq j\). This method converts the \(x_i\) and \(y_i\) into the base ring of self.

• full_table – boolean (default: False): If True, return the full divided-difference table. If False, only return entries along the main diagonal; these are the Newton divided-difference coefficients \(F_{i,i}\).

OUTPUT:

The Newton divided-difference coefficients of the \(n\)-th Lagrange interpolation polynomial \(P_n(x)\) that passes through the points in points (see lagrange_polynomial()). These are the coefficients \(F_{0,0}, F_{1,1}, \ldots, F_{n,n}\) in the base ring of self such that

\[
P_n(x) = \sum_{i=0}^{n} F_{i,i} \prod_{j=0}^{i-1}(x - x_j)
\]

EXAMPLES:

Only return the divided-difference coefficients \(F_{i,i}\). This example is taken from Example 1, page 121 of [BF05]:

```python
sage: points = [(1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022), (1.9, 0.2818186), (2.2, 0.1103623)]
sage: R = PolynomialRing(RR, "x")
sage: R.divided_difference(points)
[0.765197700000000,  
-0.483705666666666,  
-0.108733888888889,  
0.0658783950617283,  
0.00182510288066044]
```

Now return the full divided-difference table:

```python
sage: points = [(1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022), (1.9, 0.2818186), (2.2, 0.1103623)]
sage: R = PolynomialRing(RR, "x")
sage: R.divided_difference(points, full_table=True)
[[0.765197700000000],  
[0.620086000000000, -0.483705666666666],  
[0.455402200000000, -0.548946000000000, -0.108733888888889],  
[0.281818600000000, -0.578612000000000],  
[0.110362300000000, -0.721565700000000, -0.384526000000000, 0.058733888888889]]
```
The following example is taken from Example 4.12, page 225 of \cite{MF99}:

```python
sage: points = [(1, -3), (2, 0), (3, 15), (4, 48), (5, 105), (6, 192)]
sage: R = PolynomialRing(QQ, "x")
sage: R.divided_difference(points)
[-3, 3, 6, 1, 0, 0]
sage: R.divided_difference(points, full_table=True)
[[-3],
 [0, 3],
 [15, 15, 6],
 [48, 33, 9, 1],
 [105, 57, 12, 1, 0],
 [192, 87, 15, 1, 0, 0]]
```

REFERENCES:

fraction_field()

Returns the fraction field of self.

EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: R.fraction_field()
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
```

lagrange_polynomial (points, algorithm='divided_difference', previous_row=None)

Return the Lagrange interpolation polynomial through the given points.

INPUT:

- **points** – a list of pairs \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\) of elements of the base ring of \(self\), where \(x_i - x_j\) is invertible for \(i \neq j\). This method converts the \(x_i\) and \(y_i\) into the base ring of \(self\).

- **algorithm** – (default: 'divided_difference'): one of the following:

 - 'divided_difference': use the method of divided differences.

 - 'algorithm='neville': adapt Neville’s method as described on page 144 of \cite{BF05} to recursively generate the Lagrange interpolation polynomial. Neville’s method generates a table of approximating polynomials, where the last row of that table contains the \(n\)-th Lagrange interpolation polynomial. The adaptation implemented by this method is to only generate the last row of this table, instead of the full table itself. Generating the full table can be memory inefficient.

- **previous_row** – (default: None): This option is only relevant if used with \(\text{algorithm='neville'}\). If provided, this should be the last row of the table resulting from a previous use of Neville’s method. If such a row is passed, then \(\text{points}\) should consist of both previous and new interpolating points. Neville’s method will then use that last row and the interpolating points to generate a new row containing an interpolation polynomial for the new points.

OUTPUT:

The Lagrange interpolation polynomial through the points \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\). This is the unique polynomial \(P_n\) of degree at most \(n\) in \(self\) satisfying \(P_n(x_i) = y_i\) for \(0 \leq i \leq n\).
EXAMPLES:

By default, we use the method of divided differences:

```
sage: R = PolynomialRing(QQ, 'x')
sage: f = R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)]); f
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1
sage: f(0)
1
sage: f(2)
2
sage: f(3)
-2
sage: f(-4)
9
sage: R = PolynomialRing(GF(2**3,'a'), 'x')
sage: a = R.base_ring().gen()
sage: f = R.lagrange_polynomial([(a^2+a,a),(a,1),(a^2,a^2+a+1)]); f
a^2*x^2 + a^2*x + a^2
sage: f(a^2+a)
a
sage: f(a)
1
sage: f(a^2)
a^2 + a + 1
```

Now use a memory efficient version of Neville’s method:

```
sage: R = PolynomialRing(QQ, 'x')
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)], algorithm="neville")
[9,
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1]
```

Repeated use of Neville’s method to get better Lagrange interpolation polynomials:

```
sage: R = PolynomialRing(QQ, 'x')
sage: p = R.lagrange_polynomial([(0,1),(2,2)], algorithm="neville")
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)], algorithm="neville", previous_row=p)[-1]
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1
```

REFERENCES:

2.1. Univariate Polynomials and Polynomial Rings 19
class sage.rings.polynomial.polynomial_ring.PolynomialRing_general(base_ring, name=None, sparse=False, element_class=None, category=None)

Bases: sage.rings.ring.Algebra

Univariate polynomial ring over a ring.

base_extend(R)

Return the base extension of this polynomial ring to R.

EXAMPLES:

sage: R.<x> = RR[]; R
Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: R.base_extend(CC)
Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
sage: R.base_extend(QQ)
Traceback (most recent call last):
 ...TypeError: no such base extension
sage: R.change_ring(QQ)
Univariate Polynomial Ring in x over Rational Field

change_ring(R)

Return the polynomial ring in the same variable as self over R.

EXAMPLES:

sage: R.<ZZZ> = RealIntervalField()[]; R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
sage: R.change_ring(GF(19^2,'b'))
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2

change_var(var)

Return the polynomial ring in variable var over the same base ring.

EXAMPLES:

sage: R.<x> = ZZ[]; R
Univariate Polynomial Ring in x over Integer Ring
sage: R.change_var('y')
Univariate Polynomial Ring in y over Integer Ring

characteristic()

Return the characteristic of this polynomial ring, which is the same as that of its base ring.

EXAMPLES:

sage: R.<ZZZ> = RealIntervalField()[]; R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
sage: R.characteristic()
0
sage: S = R.change_ring(GF(19^2,'b'))
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2
sage: S.characteristic()
19

completion \((p, \text{prec}=20, \text{extras}=None)\)

Return the completion of self with respect to the irreducible polynomial \(p\). Currently only implemented for \(p=self.gen()\), i.e. you can only complete \(\mathbb{R}[x]\) with respect to \(x\), the result being a ring of power series in \(x\). The \text{prec} variable controls the precision used in the power series ring.

EXAMPLES:

```python
sage: P.<x>=PolynomialRing(QQ)
sage: P
Univariate Polynomial Ring in x over Rational Field
sage: PP=P.completion(x)
sage: PP
Power Series Ring in x over Rational Field
sage: f=1-x
sage: PP(f)
1 - x
sage: 1/f
1/(-x + 1)
sage: 1/PP(f)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + \cdots + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20)
```

construction()

cyclotomic_polynomial \((n)\)

Return the \(n\)th cyclotomic polynomial as a polynomial in this polynomial ring. For details of the implementation, see the documentation for `sage.rings.polynomial.cyclotomic.cyclotomic_coeffs()`.

EXAMPLES:

```python
sage: R = ZZ['x']
sage: R.cyclotomic_polynomial(8)
x^4 + 1
sage: R.cyclotomic_polynomial(12)
x^4 - x^2 + 1
sage: S = PolynomialRing(FiniteField(7), 'x')
sage: S.cyclotomic_polynomial(12)
x^4 + 6*x^2 + 1
sage: S.cyclotomic_polynomial(1)
x + 6
```

extend_variables \((\text{added_names}, \text{order}='\text{degrevlex}')\)

Returns a multivariate polynomial ring with the same base ring but with \text{added_names} as additional variables.

EXAMPLES:

```python
sage: R.<x> = ZZ[]; R
Univariate Polynomial Ring in x over Integer Ring
sage: R.extend_variables(('y', 'z'))
Multivariate Polynomial Ring in x, y, z over Integer Ring
```
gen \((n=0)\)
Return the indeterminate generator of this polynomial ring.

EXAMPLES:

```
sage: R.<abc> = Integers(8)[]; R
Univariate Polynomial Ring in abc over Ring of integers modulo 8
sage: t = R.gen(); t
abc
sage: t.is_gen()
True
```

An identical generator is always returned.

```
sage: t is R.gen()
True
```

gens_dict()
Return a dictionary whose entries are \{name:variable,...\}, where name stands for the variable names of this object (as strings) and variable stands for the corresponding generators (as elements of this object).

EXAMPLES:

```
sage: R.<y,x,a42> = RR[]
sage: R.gens_dict()
{'a42': a42, 'x': x, 'y': y}
```

is_exact()
EXAMPLES:

```
sage: class Foo:
    ....:     def __init__(self, x):
    ....:         self._x = x
    ....:     @cached_method
    ....:     def f(self):
    ....:         return self._x^2
sage: a = Foo(2)
sage: print(a.f.cache)
None
sage: a.f()
4
sage: a.f.cache
4
```

is_field \((proof=True)\)
Return False, since polynomial rings are never fields.

EXAMPLES:

```
sage: R.<z> = Integers(2)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 2 (using NTL)
sage: R.is_field()
False
```

is_finite()
Return False since polynomial rings are not finite (unless the base ring is 0.)

EXAMPLES:
sage: R = Integers(1)['x']
sage: R.is_finite()
True
sage: R = GF(7)['x']
sage: R.is_finite()
False
sage: R['x']['y'].is_finite()
False

is_integral_domain(proof=True)

EXAMPLES:

sage: ZZ['x'].is_integral_domain()
True
sage: Integers(8)['x'].is_integral_domain()
False

is_noetherian()

is_sparse()

Return true if elements of this polynomial ring have a sparse representation.

EXAMPLES:

sage: R.<z> = Integers(8)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 8
sage: R.is_sparse()
False
sage: R.<W> = PolynomialRing(QQ, sparse=True); R
Sparse Univariate Polynomial Ring in W over Rational Field
sage: R.is_sparse()
True

is_unique_factorization_domain(proof=True)

EXAMPLES:

sage: ZZ['x'].is_unique_factorization_domain()
True
sage: Integers(8)['x'].is_unique_factorization_domain()
False

karatsuba_threshold()

Return the Karatsuba threshold used for this ring by the method _mul_karatsuba to fall back to the school-
book algorithm.

EXAMPLES:

sage: K = QQ['x']
sage: K.karatsuba_threshold()
8
sage: K = QQ['x']['y']
sage: K.karatsuba_threshold()
0

krull_dimension()

Return the Krull dimension of this polynomial ring, which is one more than the Krull dimension of the base ring.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R.krull_dimension()
1
sage: R.<z> = GF(9,'a')[]; R
Univariate Polynomial Ring in z over Finite Field in a of size 3^2
sage: R.krull_dimension()
1
sage: S.<t> = R[]
sage: S.krull_dimension()
2
sage: for n in range(10):
....: S = PolynomialRing(S,'w')
sage: S.krull_dimension()
12
```

monics *(of_degree=None, max_degree=None)*

Return an iterator over the monic polynomials of specified degree.

INPUT: Pass exactly one of:

- `max_degree` - an int; the iterator will generate all monic polynomials which have degree less than or equal to `max_degree`
- `of_degree` - an int; the iterator will generate all monic polynomials which have degree `of_degree`

OUTPUT: an iterator

EXAMPLES:

```python
sage: P = PolynomialRing(GF(4,'a'),'y')
sage: for p in P.monics( of_degree = 2 ) : print(p)
y^2
y^2 + a
y^2 + a + 1
y^2 + 1
y^2 + a*y
y^2 + a*y + a
y^2 + a*y + a + 1
y^2 + a*y + 1
y^2 + (a + 1)*y
y^2 + (a + 1)*y + a
y^2 + (a + 1)*y + a + 1
y^2 + (a + 1)*y + 1
y^2 + y
y^2 + y + a
y^2 + y + a + 1
y^2 + y + 1
sage: for p in P.monics( max_degree = 1 ) : print(p)
1
y
y + a
y + a + 1
y + 1
sage: for p in P.monics( max_degree = 1, of_degree = 3 ) : print(p)
Traceback (most recent call last):
...
ValueError: you should pass exactly one of of_degree and max_degree
```

AUTHORS:
•Joel B. Mohler

`ngens()`
Return the number of generators of this polynomial ring, which is 1 since it is a univariate polynomial ring.

EXAMPLES:
```
sage: R.<z> = Integers(8)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 8
sage: R.ngens()
1
```

`parameter()`
Return the generator of this polynomial ring.
This is the same as `self.gen()`.

`polynomials(of_degree=None, max_degree=None)`
Return an iterator over the polynomials of specified degree.

INPUT: Pass exactly one of:
- `max_degree` - an int; the iterator will generate all polynomials which have degree less than or equal to `max_degree`
- `of_degree` - an int; the iterator will generate all polynomials which have degree `of_degree`

OUTPUT: an iterator

EXAMPLES:
```
sage: P = PolynomialRing(GF(3),'y')
sage: for p in P.polynomials(of_degree = 2):
    print(p)
y^2
y^2 + 1
y^2 + 2
y^2 + y
y^2 + y + 1
y^2 + y + 2
y^2 + 2*y
y^2 + 2*y + 1
y^2 + 2*y + 2
2*y^2
2*y^2 + 1
2*y^2 + 2
2*y^2 + y
2*y^2 + y + 1
2*y^2 + y + 2
2*y^2 + 2*y
2*y^2 + 2*y + 1
2*y^2 + 2*y + 2
sage: for p in P.polynomials(max_degree = 1):
    print(p)
0
1
2
y
y + 1
y + 2
2*y
2*y + 1
2*y + 2
```

2.1. Univariate Polynomials and Polynomial Rings
AUTHORS:

• Joel B. Mohler

random_element (degree=(-1,2), *args, **kwds)
Return a random polynomial of given degree or with given degree bounds.

INPUT:

• degree - optional integer for fixing the degree or or a tuple of minimum and maximum degrees. By default set to (-1,2).

• *args, **kwds - Passed on to the random_element method for the base ring

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: R.random_element(10, 5,10)
9*x^10 + 8*x^9 + 6*x^8 + 8*x^7 + 8*x^6 + 9*x^5 + 8*x^4 + 8*x^3 + 6*x^2 + 8*x
˓→+ 8
sage: R.random_element(6)
x^6 - 3*x^5 - x^4 + x^3 - x^2 + x + 1
sage: R.random_element(6)
-2*x^6 - 2*x^5 + 2*x^4 - 3*x^3 + 1
sage: R.random_element(6)
-x^6 + x^5 - x^4 + 4*x^3 - x^2 + x
```

If a tuple of two integers is given for the degree argument, a polynomial of degree in between the bound is given:

```
sage: R.random_element(degree=(0,8))
x^8 + 4*x^7 + 2*x^6 - x^4 + 4*x^3 - 5*x^2 + x + 14
sage: R.random_element(degree=(0,8))
-5*x^7 + x^6 - 3*x^5 + 4*x^4 - x^2 - 2*x + 1
```

Note that the zero polynomial has degree -1, so if you want to consider it set the minimum degree to -1:

```
sage: any(R.random_element(degree=(-1,2),x=-1,y=1) == R.zero() for _ in
˓→range(100))
True
```

set_karatsuba_threshold (Karatsuba_threshold)
Changes the default threshold for this ring in the method _mul_karatsuba to fall back to the schoolbook algorithm.

Warning: This method may have a negative performance impact in polynomial arithmetic. So use it at your own risk.

EXAMPLES:

```
sage: K = QQ['x']
sage: K.karatsuba_threshold() 8
```
some_elements()
Return a list of polynomials.
This is typically used for running generic tests.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: R.some_elements()
[x, 0, 1, 1/2, x^2 + 2*x + 1, x^3, x^2 - 1, x^2 + 1, 2*x^2 + 2]
```

variable_names_recursive(depth=+Infinity)
Return the list of variable names of this ring and its base rings, as if it were a single multi-variate polynomial.

INPUT:
*depth – an integer or Infinity.

OUTPUT:
A tuple of strings.

EXAMPLES:

```
sage: R = QQ['x']['y']['z']
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')
```

class sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain(base_ring, name='x', sparse=False, implementation=None, category=None)
Bases: sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative, sage.rings.ring.IntegralDomain
sage.rings.polynomial.polynomial_ring.is_PolynomialRing(x)
Return True if x is a univariate polynomial ring (and not a sparse multivariate polynomial ring in one variable).

EXAMPLES:

```
sage: from sage.rings.polynomial.polynomial_ring import is_PolynomialRing
sage: from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing
```
Univariate means not only in one variable, but is a specific data type. There is a multivariate (sparse) polynomial ring data type, which supports a single variable as a special case.

```python
sage: is_PolynomialRing(PolynomialRing(ZZ,1,'w'))
False
sage: R = PolynomialRing(ZZ,1,'w'); R
Multivariate Polynomial Ring in w over Integer Ring
sage: is_PolynomialRing(R)
False
sage: type(R)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'>
```

```
sage: sage.rings.polynomial.polynomial_ring.polygen(ring_or_element, name='x')
Return a polynomial indeterminate.

INPUT:

- polygen(base_ring, name="x")
- polygen(ring_element, name="x")

If the first input is a ring, return a polynomial generator over that ring. If it is a ring element, return a polynomial generator over the parent of the element.

EXAMPLES:

```python
sage: z = polygen(QQ,'z')
sage: z^3 + z +1
z^3 + z + 1
sage: parent(z)
Univariate Polynomial Ring in z over Rational Field
```

**Note:** If you give a list or comma separated string to polygen, you’ll get a tuple of indeterminates, exactly as if you called polygens.

```
sage: sage.rings.polynomial.polynomial_ring.polygens(base_ring, names='x')
Return indeterminates over the given base ring with the given names.

EXAMPLES:

```python
sage: x,y,z = polygens(QQ,'x,y,z')
sage: (x+y+z)^2
x^2 + 2*x*y + y^2 + 2*x*z + 2*y*z + z^2
```
2.1.2 Ring homomorphisms from a polynomial ring to another ring

This module currently implements the canonical ring homomorphism from $A[x]$ to $B[x]$ induced by a ring homomorphism from A to B.

Todo

Implement homomorphisms from $A[x]$ to an arbitrary ring R, given by a ring homomorphism from A to R and the image of x in R.

AUTHORS:

• Peter Bruin (March 2014): initial version

class sage.rings.polynomial.polynomial_ring_homomorphism.PolynomialRingHomomorphism_from_base

Bases: sage.rings.morphism.RingHomomorphism_from_base

The canonical ring homomorphism from $R[x]$ to $S[x]$ induced by a ring homomorphism from R to S.

EXAMPLES:

```python
sage: QQ['x'].coerce_map_from(ZZ['x'])
Ring morphism:
  From: Univariate Polynomial Ring in x over Integer Ring
  To:   Univariate Polynomial Ring in x over Rational Field
  Defn: Induced from base ring by
    Natural morphism:
      From: Integer Ring
      To:   Rational Field
```

2.1.3 Univariate Polynomial Base Class

AUTHORS:

• William Stein: first version.
• Martin Albrecht: Added singular coercion.
• Robert Bradshaw: Move Polynomial_generic_dense to Cython.
• Miguel Marco: Implemented resultant in the case where PARI fails.
• Simon King: Use a faster way of conversion from the base ring.
• Julian Rueth (2012-05-25,2014-05-09): Fixed is_squarefree() for imperfect fields, fixed division without remainder over QQbar; added _cache_key for polynomials with unhashable coefficients
• Kiran Kedlaya (2016-03): Added root counting.
class sage.rings.polynomial.polynomial_element.ConstantPolynomialSection
Bases: sage.categories.map.Map

This class is used for conversion from a polynomial ring to its base ring.

Since trac ticket #9944, it calls the constant_coefficient method, which can be optimized for a particular polynomial type.

EXAMPLES:

```
sage: P0.<y_1> = GF(3)[]
sage: P1.<y_2,y_1,y_0> = GF(3)[]
sage: P0(-y_1)  # indirect doctest
2*y_1

sage: phi = GF(3).convert_map_from(P0); phi
Generic map:
    From: Univariate Polynomial Ring in y_1 over Finite Field of size 3
    To:   Finite Field of size 3
sage: type(phi)
<type 'sage.rings.polynomial.polynomial_element.ConstantPolynomialSection'>
sage: phi(P0.one())
1
sage: phi(y_1)
Traceback (most recent call last):
  ...TypeError: not a constant polynomial
```

class sage.rings.polynomial.polynomial_element.Polynomial
Bases: sage.structure.element.CommutativeAlgebraElement

A polynomial.

EXAMPLES:

```
sage: R.<y> = QQ['y']
sage: S.<x> = R['x']
sage: S
Univariate Polynomial Ring in x over Univariate Polynomial Ring in y
over Rational Field
sage: f = x*y; f
y*x
sage: type(f)
<type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: p = (y+1)^10; p(1)
1024

__add__(right)
Add two polynomials.

EXAMPLES:

```
sage: R = ZZ['x']
sage: p = R([1,2,3,4])
sage: q = R([4,-3,2,-1])
sage: p + q # indirect doctest
3*x^3 + 5*x^2 - x + 5

__sub__(other)
Default implementation of subtraction using addition and negation.
lmul (left)
Multiply self on the left by a scalar.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: f = (x^3 + x + 5)
sage: f._lmul_(7)
7*x^3 + 7*x + 35
```

rmul (right)
Multiply self on the right by a scalar.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: f = (x^3 + x + 5)
sage: f._rmul_(7)
7*x^3 + 7*x + 35
```

mul (right)
EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: (x - 4)*(x^2 - 8*x + 16)
x^3 - 12*x^2 + 48*x - 64
sage: C.<t> = PowerSeriesRing(ZZ)
sage: D.<s> = PolynomialRing(C)
sage: z = (1 + O(t)) + t*s^2
sage: z*z
(t^4 + O(t^5))*s^4 + (2*t^3 + O(t^4))*s^3 + (3*t^2 + O(t^3))*s^2 + (2*t + O(t^\rightarrow 2))*s + 1
```

_mul_trunc_ (right, n)
Return the truncated multiplication of two polynomials up to n.

This is the default implementation that does the multiplication and then truncate! There are custom implementations in several subclasses:

- on dense polynomial over integers (via FLINT)
- on dense polynomial over \(Z/nZ\) (via FLINT)
- on dense rational polynomial (via FLINT)
- on dense polynomial on \(Z/nZ\) (via NTL)

EXAMPLES:
Todo

implement a generic truncated Karatsuba and use it here.

adams_operator (*n*, *monic=**False**)

Return the polynomial whose roots are the *n*-th power of the roots of this.

INPUT:

• *n* – an integer

• *monic* – boolean (default **False**) if set to **True**, force the output to be monic

EXAMPLES:

```
sage: f = cyclotomic_polynomial(30)
sage: f.adams_operator(7) == f
True
sage: f.adams_operator(6) == cyclotomic_polynomial(5)**2
True
sage: f.adams_operator(10) == cyclotomic_polynomial(3)**4
True
sage: f.adams_operator(15) == cyclotomic_polynomial(2)**8
True
sage: f.adams_operator(30) == cyclotomic_polynomial(1)**8
True
```

When *f* is monic the output will have leading coefficient ±1 depending on the degree, but we can force it to be monic:

```
sage: R.<a,b,c> = ZZ[]
sage: x = polygen(R)
sage: f = (x-a)*(x-b)*(x-c)
sage: f.adams_operator(3).factor()
(-1) * (x - c^3) * (x - b^3) * (x - a^3)
sage: f.adams_operator(3,monic=True).factor()
(x - c^3) * (x - b^3) * (x - a^3)
```

add_bigoh (*prec*)

Returns the power series of precision at most *prec* got by adding \(O(q^{\text{prec}})\) to self, where *q* is its variable.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: f = 1 + 4*x + x^3
```
all_roots_in_interval \((a=None, b=None) \)
Return True if the roots of this polynomial are all real and contained in the given interval.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x-1)^2 * (x-2)^2 * (x-3)
sage: pol.all_roots_in_interval(1, 3)
True
sage: pol.all_roots_in_interval(1.01, 3)
False
```

any_root \(\text{ring}=None, \text{degree}=None, \text{assume_squarefree}=False \)
Return a root of this polynomial in the given ring.

INPUT:

- `ring` – The ring in which a root is sought. By default this is the coefficient ring.
- `degree` (None or nonzero integer) – Used for polynomials over finite fields. Returns a root of degree \(\text{abs}(\text{degree}) \) over the ground field. If negative, also assumes that all factors of this polynomial are of degree \(\text{abs}(\text{degree}) \). If None, returns a root of minimal degree contained within the given ring.
- `assume_squarefree` (bool) – Used for polynomials over finite fields. If True, this polynomial is assumed to be squarefree.

EXAMPLES:

```python
sage: f = 7*x^7 + 8*x^6 + 4*x^5 + x^4 + 6*x^3 + 10*x^2 + 8*x + 5
sage: f.any_root()
2
```

```python
sage: g = (x-1)*(x^2 + 3*x + 9) * (x^5 + 5*x^4 + 8*x^3 + 5*x^2 + 3*x + 5)
sage: g.any_root(ring=GF(11^10, 'b'), degree=1)
1
sage: g.any_root(ring=GF(11^10, 'b'), degree=2)
5*b^9 + 4*b^7 + 4*b^6 + 8*b^5 + 10*b^2 + 10*b + 5
sage: g.any_root(ring=GF(11^10, 'b'), degree=5)
5*b^9 + b^8 + 3*b^7 + 2*b^6 + b^5 + 4*b^4 + 3*b^3 + 7*b^2 + 10*b
```

args()

Returns the generator of this polynomial ring, which is the (only) argument used when calling self.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: x.args()
(x,)
```

A constant polynomial has no variables, but still takes a single argument.

```python
sage: R(2).args()
(x,)
```

base_extend(R)

Return a copy of this polynomial but with coefficients in R, if there is a natural map from coefficient ring of self to R.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = x^3 - 17*x + 3
sage: f.base_extend(GF(7))
Traceback (most recent call last):
  ...  
TypeError: no such base extension
sage: f.change_ring(GF(7))
x^3 + 4*x + 3
```

base_ring()

Return the base ring of the parent of self.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: x.base_ring()
Integer Ring
sage: (2*x+3).base_ring()
Integer Ring
```

change_ring(R)

Return a copy of this polynomial but with coefficients in R, if at all possible.

INPUT:

- `R` - a ring or morphism.

EXAMPLES:

```python
sage: K.<z> = CyclotomicField(3)
sage: f = K.defining_polynomial()
```

Chapter 2. Univariate Polynomials
sage: f.change_ring(GF(7))
x^2 + x + 1

sage: K.<z> = CyclotomicField(3)
sage: R.<x> = K[]
sage: f = x^2 + z
sage: f.change_ring(K.embeddings(CC)[0])
x^2 - 0.500000000000000 - 0.866025403784439*I

change_variable_name(var)
Return a new polynomial over the same base ring but in a different variable.

EXAMPLES:

sage: x = polygen(QQ,'x')
sage: f = -2/7*x^3 + (2/3)*x - 19/993; f
-2/7*x^3 + 2/3*x - 19/993
sage: f.change_variable_name('theta')
-2/7*theta^3 + 2/3*theta - 19/993

coefficients(sparse=True)
Return the coefficients of the monomials appearing in self. If sparse=True (the default), it returns only the non-zero coefficients. Otherwise, it returns the same value as self.list(). (In this case, it may be slightly faster to invoke self.list() directly.)

EXAMPLES:

sage: _.<x> = PolynomialRing(ZZ)
sage: f = x^4+2*x^2+1
sage: f.coefficients()
[1, 2, 1]
sage: f.coefficients(sparse=False)
[1, 0, 2, 0, 1]

coeffs()
Using coeffs() is now deprecated (trac ticket #17518). Returns self.list(). (It is potentially slightly faster to use self.list() directly.)

EXAMPLES:

sage: x = QQ['x'].0
sage: f = 10*x^3 + 5*x + 2/17
sage: f.coeffs()
doctest:...: DeprecationWarning: The use of coeffs() is now deprecated in
 →favor of coefficients(sparse=False).
See http://trac.sagemath.org/17518 for details.
[2/17, 5, 0, 10]

complex_roots()
Return the complex roots of this polynomial, without multiplicities.

Calls self.roots(ring=CC), unless this is a polynomial with floating-point coefficients, in which case it is uses the appropriate precision from the input coefficients.

EXAMPLES:
```python
sage: x = polygen(ZZ)
sage: (x^3 - 1).complex_roots()  # note: low order bits slightly different on ppc
[1.00000000000000, -0.500000000000000 - 0.86602540378443...*I, -0.500000000000000 + 0.86602540378443...*I]
```

compose_power *(k, algorithm=None, monic=False)*

Return the \(k\)-th iterate of the composed product of this polynomial with itself.

INPUT:

- \(k\) – a non-negative integer
- \(algorithm\) – None (default), "resultant" or "BFSS". See `composed_op()`
- \(monic\) - False (default) or True. See `composed_op()`

OUTPUT:

The polynomial of degree \(d^k\) where \(d\) is the degree, whose roots are all \(k\)-fold products of roots of this polynomial. That is, \(f * f * \cdots * f\) where this is \(f\) and \(f * f = f.composed_op(f,operator.mul)\).

EXAMPLES:

```python
sage: R.<a,b,c> = ZZ[]
sage: x = polygen(R)
sage: f = (x-a)*(x-b)*(x-c)
sage: f.compose_power(2).factor()
(x - c^2) * (x - b^2) * (x - a^2) * (x - b*c)^2 * (x - a*c)^2 * (x - a*b)^2
sage: x = polygen(QQ)
sage: f = x^2-2*x+2
sage: f2 = f.compose_power(2); f2
x^4 - 4*x^3 + 8*x^2 - 16*x + 16
sage: f2 == f.composed_op(f,operator.mul)
True
sage: f3 = f.compose_power(3); f3
x^8 - 8*x^7 + 32*x^6 - 64*x^5 + 128*x^4 - 512*x^3 + 2048*x^2 - 4096*x + 4096
sage: f3 == f2.composed_op(f,operator.mul)
True
sage: f4 = f.compose_power(4)
sage: f4 == f3.composed_op(f,operator.mul)
True
```

compose_trunc *(other, n)*

Return the composition of self and other, truncated to \(O(x^n)\).

This method currently works for some specific coefficient rings only.

EXAMPLES:

```python
sage: Pol.<x> = CBF[]
sage: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120).compose_trunc(1 + x, 2)
((2.708333333333333 +/− 6.64e-16))*x + [2.71666666666667 +/- 4.29e-15]
sage: Pol.<x> = QQ['y'][]
sage: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120).compose_trunc(1 + x, 2)
Traceback (most recent call last):
  ...  
NotImplementedError: truncated composition is not implemented for this subclass of polynomials
```
\texttt{composed_op}(p1, p2, op, algorithm=None, monic=False)

Return the composed sum, difference, product or quotient of this polynomial with another one.

In the case of two monic polynomials \(p_1 \) and \(p_2 \) over an integral domain, the composed sum, difference, etc. are given by

\[
\prod_{p_1(a)=p_2(b)=0} (x - (a * b)), \quad * \in \{+, -, \times, /\}
\]

where the roots \(a \) and \(b \) are to be considered in the algebraic closure of the fraction field of the coefficients and counted with multiplicities. If the polynomials are not monic this quantity is multiplied by \(\alpha_{deg(p_2)} \alpha_{deg(p_1)} \) where \(\alpha_1 \) and \(\alpha_2 \) are the leading coefficients of \(p_1 \) and \(p_2 \) respectively.

INPUT:

- \(p2 \) – univariate polynomial belonging to the same polynomial ring as this polynomial
- \(op \) – \texttt{operator.OP} where \texttt{OP}=add or sub or mul or div.
- \(algorithm \) – can be “resultant” or “BFSS”; by default the former is used when the polynomials have few nonzero coefficients and small degrees or if the base ring is not \(\mathbb{Z} \) or \(\mathbb{Q} \). Otherwise the latter is used.
- \(monic \) – whether to return a monic polynomial. If True the coefficients of the result belong to the fraction field of the coefficients.

ALGORITHM:

The computation is straightforward using resultants. Indeed for the composed sum it would be \(\text{Res}_x(p_1(x - y), p_2(y)) \). However, the method from [BFSS] using series expansions is asymptotically much faster.

Note that the algorithm BFSS with polynomials with coefficients in \(\mathbb{Z} \) needs to perform operations over \(\mathbb{Q} \).

Todo

- The [BFSS] algorithm has been implemented here only in the case of polynomials over rationals. For other rings of zero characteristic (or if the characteristic is larger than the product of the degrees), one needs to implement a generic method \texttt{_exp_series}. In the general case of non-zero characteristic there is an alternative algorithm in the same paper.
- The Newton series computation can be done much more efficiently! See [BFSS].

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: p1 = x^2 - 1
sage: p2 = x^4 - 1
sage: p1.composed_op(p2, operator.add)
x^8 - 4*x^6 + 4*x^4 - 16*x^2
sage: p1.composed_op(p2, operator.mul)
x^8 - 2*x^4 + 1
sage: p1.composed_op(p2, operator.div)
x^8 - 2*x^4 + 1
```
This function works over any field. However for base rings other than \mathbb{Z} and \mathbb{Q} only the resultant algorithm is available:

```sage
sage: x = polygen(QQbar)
sage: p1 = x**2 - AA(2).sqrt()
sage: p2 = x**3 - AA(3).sqrt()
sage: r1 = p1.roots(multiplicities=False)
sage: r2 = p2.roots(multiplicities=False)
sage: p = p1.composed_op(p2, operator.add)
sage: p
1.000000000000000?*x^6 - 4.242640687119285?*x^4 - 3.464101615137755?*x^3 + 6.000000000000000?*x^2 - 14.69693845669907?*x + 0.1715728752538099?
sage: all(p(x+y).is_zero() for x in r1 for y in r2)
True
sage: x = polygen(GF(2))
sage: p1 = x**2 + x - 1
sage: p2 = x**3 + x - 1
sage: p_add = p1.composed_op(p2, operator.add)
sage: p_add
x^6 + x^5 + x^3 + x^2 + 1
sage: p_mul = p1.composed_op(p2, operator.mul)
sage: p_mul
x^6 + x^4 + x^2 + x + 1
sage: p_div = p1.composed_op(p2, operator.div)
sage: p_div
x^6 + x^5 + x^4 + x^2 + 1
sage: K = GF(2**6, 'a')
sage: r1 = p1.roots(K, multiplicities=False)
sage: r2 = p2.roots(K, multiplicities=False)
sage: all(p_add(x1+x2).is_zero() for x1 in r1 for x2 in r2)
True
sage: all(p_mul(x1*x2).is_zero() for x1 in r1 for x2 in r2)
True
sage: all(p_div(x1/x2).is_zero() for x1 in r1 for x2 in r2)
True
```

REFERENCES:

constant_coefficient()

Return the constant coefficient of this polynomial.

OUTPUT: element of base ring

EXAMPLES:

```sage
sage: R.<x> = QQ[]
sage: f = -2*x^3 + 2*x - 1/3
sage: f.constant_coefficient()
-1/3
```

content()

Return the content of self, which is the ideal generated by the coefficients of self.

EXAMPLES:

```sage
sage: R.<x> = IntegerModRing(4)[]
sage: f = x^4 + 3*x^2 + 2
```
sage: f.content()
Ideal (2, 3, 1) of Ring of integers modulo 4

cyclotomic_part()
Return the product of the irreducible factors of this polynomial which are cyclotomic polynomials.

See also:

is_cyclotomic() is_cyclotomic_product()

EXAMPLES:

sage: P.<x> = PolynomialRing(Integers())
sage: pol = 2*(x^4 + 1)
sage: pol.cyclotomic_part()
x^4 + 1
sage: pol = x^4 + 2
sage: pol.cyclotomic_part()
1
sage: pol = (x^4 + 1)^2 * (x^4 + 2)
sage: pol.cyclotomic_part()
x^8 + 2*x^4 + 1
sage: P.<x> = PolynomialRing(QQ)
sage: pol = (x^4 + 1)^2 * (x^4 + 2)
sage: pol.cyclotomic_part()
x^8 + 2*x^4 + 1
sage: P.<x> = PolynomialRing(RR)
sage: pol = (x^4 + 1)^2 * (x^4 + 2)
sage: pol.cyclotomic_part()
Traceback (most recent call last):
...
NotImplementedError: not implemented for inexact base rings
sage: x = polygen(Zmod(5))
sage: (x-1).cyclotomic_part()
Traceback (most recent call last):
...
NotImplementedError: not implemented in non-zero characteristic

degree (gen=None)
Return the degree of this polynomial. The zero polynomial has degree -1.

EXAMPLES:

sage: x = ZZ['x'].0
sage: f = x^93 + 2*x + 1
sage: f.degree()
93
sage: x = PolynomialRing(QQ, 'x', sparse=True).0
sage: f = x^100000
sage: f.degree()
100000
sage: x = QQ['x'].0
sage: f = 2006*x^2006 - x^2 + 3
sage: f.degree()
2006

2.1. Univariate Polynomials and Polynomial Rings 39
AUTHORS:

• Naqi Jaffery (2006-01-24): examples

denominator()

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.

Note that some subclasses may implement their own denominator function. For example, see sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint.

Warning: This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.

EXAMPLES:

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.

```sage
def R.<x> = ZZ
f = x^3 + 17*x + 1
f.denominator()
```

Next we compute the denominator of a polynomial with rational coefficients.

```sage
def R.<x> = PolynomialRing(QQ)
f = (1/17)*x^19 - (2/3)*x + 1/3; f
f.denominator()
```

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```sage
def R.<x> = RR
def f = x + RR('0.3'); f
f.denominator()
```

Check that the denominator is an element over the base whenever the base has no denominator function. This closes trac ticket #9063.
derivative (*args)
The formal derivative of this polynomial, with respect to variables supplied in args.
Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1
```
sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1

sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3*x^2 + t^4*x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2

differentiate(*args)
The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:
::_derivative()

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1

sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3*x^2 + t^4*x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2

discriminant()
Returns the discriminant of self.
The discriminant is

\[R_n := a_n^{2n-2} \prod_{1<i<j<n} (r_i - r_j)^2, \]

where \(n \) is the degree of self, \(a_n \) is the leading coefficient of self and the roots of self are \(r_1, \ldots, r_n \).

OUTPUT: An element of the base ring of the polynomial ring.

ALGORITHM:

Uses the identity \(R_n(f) := (-1)^{n(n-1)/2} R(f, f') a_n^{n-k-2} \), where \(n \) is the degree of self, \(a_n \) is the leading coefficient of self, \(f' \) is the derivative of \(f \), and \(k \) is the degree of \(f' \). Calls \texttt{resultant()}.

EXAMPLES:

In the case of elliptic curves in special form, the discriminant is easy to calculate:

```
sage: R.<x> = QQ[]
sage: f = x^3 + x + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant()/16
-31
```

We can compute discriminants over univariate and multivariate polynomial rings:

```
sage: R.<a> = QQ[]
sage: S.<x> = R[]
sage: f = a*x + x + a + 1
sage: d = f.discriminant(); d
1
sage: d.parent() is R
True
```

```
sage: R.<a, b> = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a + b
sage: d = f.discriminant(); d
-4*a - 4*b
sage: d.parent() is R
True
```

\texttt{dispersion (other=None)}

Compute the dispersion of a pair of polynomials.

The dispersion of \(f \) and \(g \) is the largest nonnegative integer \(n \) such that \(f(x + n) \) and \(g(x) \) have a nonconstant common factor.

When \texttt{other} is \texttt{None}, compute the auto-dispersion of \texttt{self}, i.e., its dispersion with itself.

See also:

\texttt{dispersion_set()}
EXAMPLES:

```python
sage: Pol.<x> = QQ[]
sage: x.dispersion(x + 1)
1
sage: (x + 1).dispersion(x)
-Infinity
sage: Pol.<x> = QQbar[]
sage: pol = Pol([sqrt(5), 1, 3/2])
sage: pol.dispersion()
0
sage: (pol*pol(x+3)).dispersion()
3
```

dispersion_set(other=None)

Compute the dispersion set of two polynomials.

The dispersion set of \(f \) and \(g \) is the set of nonnegative integers \(n \) such that \(f(x + n) \) and \(g(x) \) have a nonconstant common factor.

When `other` is `None`, compute the auto-dispersion set of `self`, i.e., its dispersion set with itself.

ALGORITHM:

See Section 4 of Man & Wright [*ManWright1994*].

See also:

`dispersion()`

EXAMPLES:

```python
sage: Pol.<x> = QQ[]
sage: x.dispersion_set(x + 1)
[1]
sage: (x + 1).dispersion_set(x)
[]
sage: pol = x^3 + x - 7
sage: (pol*pol(x+3)^2).dispersion_set()
[0, 3]
```

euclidean_degree()

Return the degree of this element as an element of an Euclidean domain.

If this polynomial is defined over a field, this is simply its `degree()`.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: x.euclidean_degree()
1
sage: R.<x> = ZZ[
:sage: x.euclidean_degree()
Traceback (most recent call last):
... ImplementedError
```

exponents()

Return the exponents of the monomials appearing in `self`.

Chapter 2. Univariate Polynomials
EXAMPLES:

```python
sage: _.<x> = PolynomialRing(ZZ)
sage: f = x^4+2*x^2+1
sage: f.exponents()
[0, 2, 4]
```

```python
factor(**kwargs)
```

Return the factorization of self over its base ring.

INPUT:

- `**kwargs` - any keyword arguments are passed to the method `_factor_univariate_polynomial()` of the base ring if it defines such a method.

OUTPUT:

- A factorization of self over its parent into a unit and irreducible factors. If the parent is a polynomial ring over a field, these factors are monic.

EXAMPLES:

Factorization is implemented over various rings. Over \mathbb{Q}:

```python
sage: x = QQ['x'].0
sage: f = (x^3 - 1)^2
sage: f.factor()
(x - 1)^2 * (x^2 + x + 1)^2
```

Since \mathbb{Q} is a field, the irreducible factors are monic:

```python
sage: f = 10*x^5 - 1
sage: f.factor()
(10) * (x^5 - 1/10)
```

```python
sage: f = 10*x^5 - 10
sage: f.factor()
(10) * (x - 1) * (x^4 + x^3 + x^2 + x + 1)
```

Over \mathbb{Z} the irreducible factors need not be monic:

```python
sage: x = ZZ['x'].0
sage: f = 10*x^5 - 1
sage: f.factor()
10*x^5 - 1
```

We factor a non-monic polynomial over a finite field of 25 elements:

```python
sage: k.<a> = GF(25)
sage: R.<x> = k[]
sage: f = 2*x^10 + 2*x + 2*a
sage: F = f.factor(); F
(2) * (x + a + 2) * (x^2 + 3*x + 4*a + 4) * (x^2 + (a + 1)*x + a + 2) * (x^5 + 3*a + 4)*x^4 + (3*a + 3)*x^3 + 2*a*x^2 + (3*a + 1)*x + 3*a + 1)
```

Notice that the unit factor is included when we multiply F back out:

```python
sage: expand(F)
2*x^10 + 2*x + 2*a
```
A new ring. In the example below, we set the special method
_factor_univariate_polynomial() in the base ring which is called to factor univariate
polynomials. This facility can be used to easily extend polynomial factorization to work over new rings
you introduce:

```
sage: R.<x> = PolynomialRing(IntegerModRing(4),implementation="NTL")
sage: (x^2).factor()
Traceback (most recent call last):
...
NotImplementedError: factorization of polynomials over rings with composite
˓→characteristic is not implemented
```

```
sage: R.base_ring()._factor_univariate_polynomial = lambda f: f.change_
˓→ring(ZZ).factor()
sage: (x^2).factor()
x^2
```

```
sage: del R.base_ring()._factor_univariate_polynomial  # clean up
```

Arbitrary precision real and complex factorization:

```
sage: R.<x> = RealField(100)[]
sage: F = factor(x^2-3); F
(x - 1.7320508075688772935274463415) * (x + 1.7320508075688772935274463415)
sage: expand(F)
x^2 - 3.0000000000000000000000000000
sage: factor(x^2 + 1)
x^2 + 1.0000000000000000000000000000
```

```
sage: R.<x> = ComplexField(100)[]
sage: F = factor(x^2+3); F
(x - 1.7320508075688772935274463415*I) * (x + 1.7320508075688772935274463415*I)
sage: expand(F)
x^2 + 3.0000000000000000000000000000
sage: factor(x^2+1)
(x - I) * (x + I)
```

```
sage: f = R(I) * (x^2 + 1) ; f
I*x^2 + I
sage: F = factor(f); F
(1.0000000000000000000000000000*I) * (x - I) * (x + I)
sage: expand(F)
I*x^2 + I
```

Over a number field:

```
sage: K.<z> = CyclotomicField(15)
sage: x = polygen(K)
sage: ((x^3 + z*x + 1)^3*(x - z)).factor()
(x - z) * (x^3 + z*x + 1)^3
sage: cyclotomic_polynomial(12).change_ring(K).factor()
(x^2 - z^5 - 1) * (x^2 + z^5)
```

```
sage: ((x^3 + z*x + 1)^3*(x/(z+2) - 1/3)).factor()
(-1/331*z^7 + 3/331*z^6 - 6/331*z^5 + 11/331*z^4 - 21/331*z^3 + 41/331*z^2 - 82/331*z + 165/331) * (x - 1/3*z - 2/3) * (x^3 + z*x + 1)^3
```

Over a relative number field:

```
sage: x = polygen(QQ)
sage: K.<z> = CyclotomicField(3)
```

46 Chapter 2. Univariate Polynomials
```python
sage: L.<a> = K.extension(x^3 - 2)
sage: t = polygen(L, 't')
sage: f = (t^3 + t + a) * (t^5 + t + z); f
t^8 + t^6 + a*t^5 + t^4 + z*t^3 + t^2 + (a + z)*t + z*a
sage: f.factor()
(t^3 + t + a) * (t^5 + t + z)
```

Over the real double field:

```python
sage: R.<x> = RDF[]
sage: (-2*x^2 - 1).factor()
(-2.0) * (x^2 + 0.5000000000000001)
sage: (-2*x^2 - 1).factor().expand()
-2.0*x^2 - 1.0000000000000002
sage: f = (x - 1)^3
sage: f.factor()  # abs tol 2e-5
(x - 1.0000065719436413) * (x^2 - 1.9999934280563585*x + 0.9999934280995487)
```

The above output is incorrect because it relies on the `roots()` method, which does not detect that all the roots are real:

```python
sage: f.roots()  # abs tol 2e-5
[(1.0000065719436413, 1)]
```

Over the complex double field the factors are approximate and therefore occur with multiplicity 1:

```python
sage: R.<x> = CDF[]
sage: f = (x^2 + 2*R(I))^3
sage: F = f.factor()
sage: F  # abs tol 3e-5
(x - 1.0000138879287663 + 1.0000013435286879*I) * (x - 0.9999942196864997 + 0.
˓
→ 9999985293216753 - 0.
˓
→ 9998615381807*I) * (x + 1.0000065719436413, 1])
```

Factoring polynomials over \(\mathbb{Z}/n\mathbb{Z}\) for composite \(n\) is not implemented:

```python
sage: R.<x> = PolynomialRing(Integers(35))
sage: f = (x^2+2*x+2)*(x^2+3*x+9)
sage: f.factor()  # abs tol 2e-5
Traceback (most recent call last):
  ... NotImplimentedError: factorization of polynomials over rings with composite
˓
→ characteristic is not implemented
```

Factoring polynomials over the algebraic numbers (see trac ticket #8544):

```python
sage: R.<x> = QQbar[]
sage: (x^8-1).factor()
(x - 1) * (x - 0.7071067811865475? - 0.7071067811865475?*I) * (x - 0.
˓
→ 0.7071067811865475? + 0.7071067811865475?*I) * (x - I) * (x + I) * (x + 0.
˓
→ 0.7071067811865475? - 0.7071067811865475?*I) * (x + 0.7071067811865475? + 0.
˓
→ 0.7071067811865475?*I) * (x + 1)
```

Factoring polynomials over the algebraic reals (see trac ticket #8544):

```python

```

2.1. Univariate Polynomials and Polynomial Rings 47
```python
sage: R.<x> = AA[]
sage: (x^8+1).factor()
(x^2 - 0.7653668647301795?*x + 1.000000000000000?) * (x^2 + 0.7653668647301795?*x + 1.000000000000000?) * (x^2 - 1.847759065022574?*x + 1.000000000000000?)

sage: R.<x0> = GF(9,'x')[]
# purposely calling it x to test robustness
sage: f = x0^3 + x0 + 1
sage: f.factor()
(x0 + 2) * (x0 + x) * (x0 + 2*x + 1)

sage: f = 0*x0
sage: f.factor()
Traceback (most recent call last):
  ...
ArithmeticError: factorization of 0 is not defined

sage: f = x0^0
sage: f.factor()
1

Over a complicated number field:

```python
sage: x = polygen(QQ, 'x')
sage: f = x^6 + 10/7*x^5 - 867/49*x^4 - 76/245*x^3 + 3148/35*x^2 - 25944/245*x + 48771/1225
sage: K.<a> = NumberField(f)
sage: S.<T> = K[]
sage: ff = S(f); ff
T^6 + 10/7*T^5 - 867/49*T^4 - 76/245*T^3 + 3148/35*T^2 - 25944/245*T + 48771/1225
sage: F = ff.factor()
sage: len(F)
4
sage: F[:2]
[(T - a, 1), (T - 401502691578/924556084127*a^5 - 1454745809920/924556084127*a^4 + 527617096480/924556084127*a^3 + 1289745809920/924556084127*a^2 - 3227142391585/924556084127*a - 401502691578/924556084127, 1)]

sage: expand(F)
T^6 + 10/7*T^5 - 867/49*T^4 - 76/245*T^3 + 3148/35*T^2 - 25944/245*T + 48771/1225

sage: f = x^2 - 1/3
sage: K.<a> = NumberField(f)
sage: A.<T> = K[]
sage: A(x^2 - 1).factor()
(T - 1) * (T + 1)

sage: A(3*x^2 - 1).factor()
(3) * (T - a) * (T + a)

sage: A(x^2 - 1/3).factor()
(T - a) * (T + a)

Test that trac ticket #10279 is fixed:
```
```python
sage: R.<t> = PolynomialRing(QQ)
sage: K.<a> = NumberField(t^4 - t^2 + 1)
sage: pol = t^3 + (-4*a^3 + 2*a)*t^2 - 11/3*a^2*t + 2/3*a^3 - 4/3*a
sage: pol.factor()
(t - 2*a^3 + a) * (t - 4/3*a^3 + 2/3*a) * (t - 2/3*a^3 + 1/3*a)
```

Test that this factorization really uses `nffactor()` internally:

```python
sage: pari.default("debug", 3)
sage: F = pol.factor()
Entering nffactor: ...
sage: pari.default("debug", 0)
```

Test that trac ticket #10369 is fixed:

```python
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
sage: R.<t> = PolynomialRing(K)
sage: pol = (-1/7*a^5 - 1/7*a^4 - 1/7*a^3 - 1/7*a^2 - 2/7*a - 1/7)*t^10 + (4/7*a^5 - 2/7*a^4 - 2/7*a^3 - 2/7*a^2 - 2/7*a - 6/7)*t^9 + (90/49*a^5 + 152/49*a^3 + 324/49*a^2 + 364/49*a + 364/49)*t^8 + (-10/49*a^5 + 10/7*a^4 + 20/7*a^3 + 16/7*a^2 + 2/7*a + 20/7)*t^7 + (40/49*a^5 + 60/49*a^4 + 277/49*a^3 + 324/49*a^2 + 78/49*a - 78/49)*t^6 + (40/49*a^5 - 32/49*a^4 + 10/49*a^3 + 4/49*a^2)*t^5
sage: pol.factor()
(-1/7*a^5 - 1/7*a^4 - 1/7*a^3 - 1/7*a^2 - 2/7*a - 1/7) * t * (t^5 + (-12/7*a^5 - 10/7*a^4 - 8/7*a^3 - 6/7*a^2 - 12/7*a + 2/7)*t^4 + (12/7*a^5 - 8/7*a^3 + 16/7*a^2 + 2/7*a + 20/7)*t^3 + (-20/7*a^5 - 20/7*a^3 - 20/7*a^2 + 4/7*a - 2)*t^2 + (12/7*a^5 + 12/7*a^3 + 2/7*a - 16/7)*t - 4/7*a^5 - 4/7*a^3 - 4/7*a - 2/7)
```

Factoring over a number field over which we cannot factor the discriminant by trial division:

```python
sage: pari.default("debug", 3)
sage: pari.default("debug", 3)
Entering nffactor: ...
sage: pari.default("debug", 0)
```

Factoring over a number field over which we cannot factor the discriminant by trial division:

```
Factoring over a number field over which we cannot factor the discriminant by trial division:
```

2.1. Univariate Polynomials and Polynomial Rings 49
Factorizing over a number field over which we cannot factor the discriminant and over which \texttt{nffactor()} fails:

```python
sage: p = next_prime(10^50); q = next_prime(10^51); n = p*q;
sage: K.<a> = QuadraticField(p*q)
sage: R.<x> = PolynomialRing(K)
sage: K.pari_polynomial('a').nffactor("x^2+1")
Mat([x^2 + 1, 1])
sage: factor(x^2 + 1)
x^2 + 1
sage: factor((x - a) * (x + 2*a))
(x - a) * (x + 2*a)
```

A test where \texttt{nffactor} used to fail without a nf structure:

```python
sage: x = polygen(QQ)
sage: K = NumberField([x^2-1099511627777, x^3-3],'a')
sage: x = polygen(K)
sage: f = x^3 - 3
sage: factor(f)
(a1 - a) * (x^2 + a1*x + a1^2)
```

We check that \texttt{trac ticket #7554} is fixed:

```python
sage: L.<q> = LaurentPolynomialRing(QQ)
sage: F = L.fraction_field()
sage: R.<x> = PolynomialRing(F)
sage: factor(x)
x
sage: factor(x^2 - q^2)
(-1) * (-x + q) * (x + q)
sage: factor(x^2 - q^-2)
(1/q^2) * (q*x - 1) * (q*x + 1)
```

\texttt{gcd(\texttt{other})}

Return a greatest common divisor of this polynomial and \texttt{other}.

INPUT:

- \texttt{other} – a polynomial in the same ring as this polynomial

OUTPUT:
A greatest common divisor as a polynomial in the same ring as this polynomial. If the base ring is a field, the return value is a monic polynomial.

**Note:** The actual algorithm for computing greatest common divisors depends on the base ring underlying the polynomial ring. If the base ring defines a method `_gcd_univariate_polynomial`, then this method will be called (see examples below).

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: (2*x^2).gcd(2*x)
x
sage: R.zero().gcd(0)
0
sage: (2*x).gcd(0)
x
```

One can easily add gcd functionality to new rings by providing a method `_gcd_univariate_polynomial`:

```python
sage: O = ZZ[-sqrt(5)]
sage: R.<x> = O[]
sage: a = O.1
sage: p = x + a
sage: q = x^2 - 5
sage: p.gcd(q)
Traceback (most recent call last):
 ...
NotImplementedError: Order in Number Field in a with defining polynomial x^2 - 5 does not provide a gcd implementation for univariate polynomials
sage: S.<x> = O.number_field()[]
sage: O._gcd_univariate_polynomial = lambda f,g : R(S(f).gcd(S(g)))
sage: p.gcd(q)
x + a
sage: del O._gcd_univariate_polynomial
```

Use multivariate implementation for polynomials over polynomials rings:

```python
sage: R.<x> = ZZ[]
sage: S.<y> = R[]
sage: T.<z> = S[]
sage: r = 2*x*y + z
sage: p = r * (3*x*y*z - 1)
sage: q = r * (x + y + z - 2)
sage: p.gcd(q)
z + 2*x*y
```

**gradient()**

Return a list of the partial derivative of `self` with respect to the variable of this univariate polynomial.
There is only one partial derivative.

**EXAMPLES:**

```sage
sage: P.<x> = QQ[]
sage: f = x^2 + (2/3)*x + 1
sage: f.gradient()
[2*x + 2/3]
sage: f = P(1)
sage: f.gradient()
[0]
```

**hamming_weight()**

Returns the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

**EXAMPLES:**

```sage
sage: R.<x> = ZZ[]
sage: f = x^3 - x
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+1)^100
sage: f.number_of_terms()
101
sage: S = GF(5)['y']
sage: S(f).number_of_terms()
5
sage: cyclotomic_polynomial(105).number_of_terms()
33
```

The method **hamming_weight()** is an alias:

```sage
sage: f.hamming_weight()
101
```

**homogenize**(var='h')

Return the homogenization of this polynomial.

The polynomial itself is returned if it is homogeneous already. Otherwise, its monomials are multiplied with the smallest powers of var such that they all have the same total degree.

**INPUT:**

- **var** – a variable in the polynomial ring (as a string, an element of the ring, or 0) or a name for a new variable (default: 'h')

**OUTPUT:**

If var specifies the variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable var.

**EXAMPLES:**

```sage
sage: R.<x> = QQ[]
sage: f = x^2 + 1
sage: f.homogenize()
```

The parameter var can be used to specify the name of the variable:
However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:

```python
sage: f = x^2
sage: g = f.homogenize('z'); g
x^2
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field
```

For compatibility with the multivariate case, if `var` specifies the variable of the polynomial ring, then the monomials are multiplied with the smallest powers of `var` such that the result is homogeneous; in other words, we end up with a monomial whose leading coefficient is the sum of the coefficients of the polynomial:

```python
sage: f = x^2 + x + 1
sage: f.homogenize('x')
3*x^2
```

In positive characteristic, the degree can drop in this case:

```python
sage: R.<x> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x) 0
```

For compatibility with the multivariate case, the parameter `var` can also be 0 to specify the variable in the polynomial ring:

```python
sage: R.<x> = QQ[]
sage: f = x^2 + x + 1
sage: f.homogenize(0)
3*x^2
```

**integral** (var=None)

Return the integral of this polynomial.

By default, the integration variable is the variable of the polynomial.

Otherwise, the integration variable is the optional parameter var

**Note:** The integral is always chosen so that the constant term is 0.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]

sage: R(0).integral()
0
sage: f = R(2).integral(); f
2*x
```

Note that the integral lives over the fraction field of the scalar coefficients:

**2.1. Univariate Polynomials and Polynomial Rings**
sage: f.parent()
Univariate Polynomial Ring in x over Rational Field
sage: R(0).integral().parent()
Univariate Polynomial Ring in x over Rational Field

sage: f = x^3 + x - 2
sage: g = f.integral(); g
1/4*x^4 + 1/2*x^2 - 2*x
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field

This shows that the issue at trac ticket #7711 is resolved:

sage: P.<x,z> = PolynomialRing(GF(2147483647))
sage: Q.<y> = PolynomialRing(P)
sage: p=x+y+z
sage: p.integral()
-1073741823*y^2 + (x + z)*y

sage: P.<x,z> = PolynomialRing(GF(next_prime(2147483647)))
sage: Q.<y> = PolynomialRing(P)
sage: p=x+y+z
sage: p.integral()
1073741830*y^2 + (x + z)*y

A truly convoluted example:

sage: A.<a1, a2> = PolynomialRing(ZZ)
sage: B.<b> = PolynomialRing(A)
sage: C.<c> = PowerSeriesRing(B)
sage: R.<x> = PolynomialRing(C)
sage: f = a2*x^2 + c*x - a1*b
sage: f.parent()
Univariate Polynomial Ring in x over Power Series Ring in c
  over Univariate Polynomial Ring in b over Multivariate Polynomial
  Ring in a1, a2 over Integer Ring
sage: f.integral()
1/3*a2*x^3 + 1/2*c*x^2 - a1*b*x
sage: f.integral().parent()
Univariate Polynomial Ring in x over Power Series Ring in c
  over Univariate Polynomial Ring in b over Multivariate Polynomial
  Ring in a1, a2 over Integer Ring

Integration with respect to a variable in the base ring:

sage: R.<x> = QQ[]
sage: t = PolynomialRing(R,'t').gen()
sage: f = x*t +5*t^2
sage: f.integral(x)
5*x^2*t^2 + 1/2*x^2*t
**inverse_mod**($a, m$)

Inverts the polynomial $a$ with respect to $m$, or raises a `ValueError` if no such inverse exists. The parameter $m$ may be either a single polynomial or an ideal (for consistency with `inverse_mod` in other rings).

**See also:**

If you are only interested in the inverse modulo a monomial $x^k$ then you might use the specialized method `inverse_series_trunc()` which is much faster.

**EXAMPLES:**

```python
sage: S.<t> = QQ[]
sage: f = inverse_mod(t^2 + 1, t^3 + 1); f
-1/2*t^2 - 1/2*t + 1/2
sage: f * (t^2 + 1) % (t^3 + 1)
1
sage: f = t.inverse_mod((t+1)^7); f
-t^6 - 7*t^5 - 21*t^4 - 35*t^3 - 35*t^2 - 21*t - 7
sage: (f * t) + (t+1)^7
1
sage: t.inverse_mod(S.ideal((t + 1)^7)) == f
True
```

This also works over inexact rings, but note that due to rounding error the product may not always exactly equal the constant polynomial 1 and have extra terms with coefficients close to zero.

```python
sage: R.<x> = RDF[]
sage: epsilon = RDF(1).ulp()*50 # Allow an error of up to 50 ulp
sage: f = inverse_mod(x^2 + 1, x^5 + x + 1); f # abs tol 1e-14
0.4*x^4 - 0.2*x^3 - 0.4*x^2 + 0.2*x + 0.8
sage: poly = f * (x^2 + 1) % (x^5 + x + 1)
sage: # Remove noisy zero terms:
sage: parent(poly)([0.0 if abs(c)<=epsilon else c for c in poly.˓→coefficients(sparse=False)])
1.0
sage: f = inverse_mod(x^3 - x + 1, x - 2); f
0.14285714285714285
sage: g = 5*x^3-x-7; m = x^4-12*x+13; f = inverse_mod(g, m); f
-0.0319636125...*x^3 - 0.038326976...*x^2 - 0.046305090...*x + 0.346479687... ˓→
.sage: poly = f*g % m
sage: # Remove noisy zero terms:
sage: parent(poly)([0.0 if abs(c)<=epsilon else c for c in poly.˓→coefficients(sparse=False)])
abs tol 1e-14
1.0000000000000004
```

**ALGORITHM:** Solve the system as $a + mt = 1$, returning $s$ as the inverse of $a$ mod $m$.

Uses the Euclidean algorithm for exact rings, and solves a linear system for the coefficients of $s$ and $t$ for inexact rings (as the Euclidean algorithm may not converge in that case).

**AUTHORS:**


**inverse_of_unit**()

**EXAMPLES:**
inverse_series_trunc (prec)

Return a polynomial approximation of precision prec of the inverse series of this polynomial.

See also:
The method inverse_mod() allows more generally to invert this polynomial with respect to any ideal.

EXAMPLES:

sage: x = polygen(ZZ)
sage: s = (1+x).inverse_series_trunc(5)
sage: s
x^4 - x^3 + x^2 - x + 1
sage: s * (1+x)
x^5 + 1

Note that the constant coefficient needs to be a unit:

sage: ZZx.<x> = ZZ[]
sage: ZZxy.<y> = ZZx[]
sage: (1+x + y**2).inverse_series_trunc(4)
Traceback (most recent call last):
  ... ValueError: constant term x + 1 is not a unit
sage: (1+x + y**2).change_ring(ZZx.fraction_field()).inverse_series_trunc(4)
(-1/(x^2 + 2*x + 1))*y^2 + 1/(x + 1)

The method works over any polynomial ring:

sage: R = Zmod(4)
sage: Rx.<x> = R[]
sage: Rxy.<y> = Rx[]

Even noncommutative ones:

sage: M = MatrixSpace(ZZ,2)
sage: x = polygen(M)
sage: p = M([1,2,3,4])*x^3 + M([-1,0,0,1])*x^2 + M([1,3,-1,0])*x + M.one()
sage: q = p.inverse_series_trunc(5)
sage: (p*q).truncade(11)
(2*x^4 + 3*x^2 + 3)*y^10 + 1
AUTHORS:

• David Harvey (2006-09-09): Newton’s method implementation for power series
• Vincent Delecroix (2014-2015): move the implementation directly in polynomial

is_constant()  
Return True if this is a constant polynomial.

OUTPUT:

• bool - True if and only if this polynomial is constant

EXAMPLES:

```sage
R.<x> = ZZ[]
sage: R(2).is_constant()
True
sage: R(0).is_constant()
True
```

is_cyclotomic(certificate=False, algorithm='pari')  
Test if this polynomial is a cyclotomic polynomial.

A cyclotomic polynomial is a monic, irreducible polynomial such that all roots are roots of unity.

By default the answer is a boolean. But if certificate is True, the result is a non-negative integer: it is 0 if self is not cyclotomic, and a positive integer n if self is the n-th cyclotomic polynomial.

See also:
is_cyclotomic_product() cyclotomic_part()

INPUT:

• certificate – boolean, default to False. Only works with algorithm set to “pari”.
• algorithm – either “pari” or “sage” (default is “pari”)

ALGORITHM:
The native algorithm implemented in Sage uses the first algorithm of [BD89]. The algorithm in pari is more subtle since it does compute the inverse of the Euler $\phi$ function to determine the $n$ such that the polynomial is the $n$-th cyclotomic polynomial.

EXAMPLES:

Quick tests:

```sage
P.<x> = ZZ['x']
sage: (x - 1).is_cyclotomic()
True
sage: (x + 1).is_cyclotomic()
True
sage: (x^2 - 1).is_cyclotomic()
False
sage: (x^2 + x + 1).is_cyclotomic(certificate=True)
3
```
Test first 100 cyclotomic polynomials:

```
sage: all(cyclotomic_polynomial(i).is_cyclotomic() for i in range(1,101))
True
```

Some more tests:

```
sage: (x^16 + x^14 - x^10 + x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="pari")
False
sage: (x^16 + x^14 - x^10 + x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="sage")
False
sage: (x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="pari")
True
sage: (x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1).is_cyclotomic(algorithm="sage")
True
```

Invalid arguments:

```
sage: (x - 3).is_cyclotomic(algorithm="sage", certificate=True)
Traceback (most recent call last):
 ...
ValueError: no implementation of the certificate within Sage
```

Test using other rings:

```
sage: z = polygen(GF(5))
```

```
sage: (z - 1).is_cyclotomic()
Traceback (most recent call last):
 ...
NotImplementedError: not implemented in non-zero characteristic
```

REFERENCES:

is_cyclotomic_product()
Test whether this polynomial is a product of cyclotomic polynomials.

This method simply calls the function poliscycloprod from the Pari library.

See also:

is_cyclotomic() cyclotomic_part()

EXAMPLES:
\begin{verbatim}
sage: x = polygen(ZZ)
sage: (x^5 - 1).is_cyclotomic_product()
True
sage: (x^5 + x^4 - x^2 + 1).is_cyclotomic_product()
False
sage: p = prod(cyclotomic_polynomial(i) for i in [2,5,7,12])
sage: p.is_cyclotomic_product()
True
sage: (x^5 - 1/3).is_cyclotomic_product()
False
sage: x = polygen(Zmod(5))
sage: (x-1).is_cyclotomic_product()
Traceback (most recent call last):
  ... NotImplementError: not implemented in non-zero characteristic
\end{verbatim}

\section*{is_gen()}
Return True if this polynomial is the distinguished generator of the parent polynomial ring.

\begin{verbatim}
sage: R.<x> = QQ[]
sage: x.is_gen()
True
sage: R(1).is_gen()
False
sage: R(x).is_gen()
True
\end{verbatim}

Important - this function doesn’t return True if self equals the generator; it returns True if self \emph{is} the generator.

\begin{verbatim}
sage: f = R([0,1]); f
x
sage: f.is_gen()
False
sage: f is x
False
sage: f == x
True
\end{verbatim}

\section*{is_homogeneous()}
Return True if this polynomial is homogeneous.

\begin{verbatim}
sage: P.<x> = PolynomialRing(QQ)
sage: x.is_homogeneous()
True
sage: P(0).is_homogeneous()
True
sage: (x+1).is_homogeneous()
False
\end{verbatim}

\section*{is_irreducible()}
Return whether this polynomial is irreducible.

\begin{verbatim}
\end{verbatim}
The base ring does matter: for example, $2x$ is irreducible as a polynomial in $\mathbb{Q}[x]$, but not in $\mathbb{Z}[x]$:

```
sage: R.<x> = ZZ[]
sage: R(2*x).is_irreducible()
False
sage: R.<x> = QQ[]
sage: R(2*x).is_irreducible()
True
```

**is_monic()**

Returns True if this polynomial is monic. The zero polynomial is by definition not monic.

**EXAMPLES:**

```
sage: x = QQ['x'].0
sage: f = x + 33
sage: f.is_monic()
True
sage: f = 0*x
sage: f.is_monic()
False
sage: f = 3*x^3 + x^4 + x^2
sage: f.is_monic()
True
sage: f = 2*x^2 + x^3 + 56*x^5
sage: f.is_monic()
False
```

**AUTHORS:**

• Naqi Jaffery (2006-01-24): examples

**is_monomial()**

Returns True if self is a monomial, i.e., a power of the generator.

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: x.is_monomial()
True
sage: (x+1).is_monomial()
False
sage: (x^2).is_monomial()
True
sage: R(1).is_monomial()
True
```

The coefficient must be 1:
**is_monomial()**

Return True if this polynomial is monomial.

**EXAMPLES:**

```
sage: 2*x^5).is_monomial()
False
```

To allow a non-1 leading coefficient, use is_term():

```
sage: 2*x^5).is_term()
True
```

**Warning:** The definition of is_monomial in Sage up to 4.7.1 was the same as is_term, i.e., it allowed a coefficient not equal to 1.

**is_nilpotent()**

Return True if this polynomial is nilpotent.

**EXAMPLES:**

```
sage: R = Integers(12)
sage: S.<x> = R[

sage: f = 5 + 6*x
sage: f.is_nilpotent()
False
sage: f = 6 + 6*x^2
sage: f.is_nilpotent()
True
sage: f^2
0
```

EXERCISE (Atiyah-McDonald, Ch 1): Let \( A[x] \) be a polynomial ring in one variable. Then \( f = \sum a_i x^i \in A[x] \) is nilpotent if and only if every \( a_i \) is nilpotent.

**is_one()**

Test whether this polynomial is 1.

**EXAMPLES:**

```
sage: R.<x> = QQ[

sage: (x-3).is_one()
False
sage: R(1).is_one()
True
sage: R2.<y> = R[

sage: R2(x).is_one()
False
sage: R2(1).is_one()
True
sage: R2(-1).is_one()
False
```

**is_primitive(n=None, n_prime_divs=None)**

Returns True if the polynomial is primitive. The semantics of “primitive” depend on the polynomial coefficients.

*(field theory)* A polynomial of degree \( m \) over a finite field \( \mathbb{F}_q \) is primitive if it is irreducible and its root in \( \mathbb{F}_{q^m} \) generates the multiplicative group \( \mathbb{F}_{q^m}^* \).

*(ring theory)* A polynomial over a ring is primitive if its coefficients generate the unit ideal.

2.1. Univariate Polynomials and Polynomial Rings 61
Calling \textit{is\_primitive} on a polynomial over an infinite field will raise an error.

The additional inputs to this function are to speed up computation for field semantics (see note).

\textbf{INPUT:}

- \texttt{n} (default: None) - if provided, should equal \( q - 1 \) where \texttt{self.parent()} is the field with \( q \) elements; otherwise it will be computed.

- \texttt{n\_prime\_divs} (default: None) - if provided, should be a list of the prime divisors of \( n \); otherwise it will be computed.

\textbf{Note:} Computation of the prime divisors of \( n \) can dominate the running time of this method, so performing this computation externally (e.g. \texttt{pdivs=n.prime\_divisors()}) is a good idea for repeated calls to \texttt{is\_primitive} for polynomials of the same degree.

Results may be incorrect if the wrong \( n \) and/or factorization are provided.

\textbf{EXAMPLES:}

\begin{verbatim}
Field semantics examples.
::

    sage: R.<x> = GF(2)['x']
    sage: f = x^4+x^3+x^2+x+1
    sage: f.is_irreducible(), f.is_primitive()
    (True, False)
    sage: f = x^3+x+1
    sage: f.is_irreducible(), f.is_primitive()
    (True, True)
    sage: R.<x> = GF(3)[]
    sage: f = x^3-x+1
    sage: f.is_irreducible(), f.is_primitive()
    (True, True)
    sage: f = x^2+1
    sage: f.is_irreducible(), f.is_primitive()
    (True, False)
    sage: R.<x> = GF(5)[]
    sage: f = x^2+x+1
    sage: f.is_primitive()
    False
    sage: f = x^2-x+2
    sage: f.is_primitive()
    True
    sage: x=polygen(QQ); f=x^2+1
    sage: f.is_primitive()
    Traceback (most recent call last):
      ...
    NotImplementedError: is\_primitive() not defined for polynomials over infinite fields.

Ring semantics examples.
::

    sage: x=polygen(ZZ)
    sage: f = 5*x^2+2
    sage: f.is_primitive()

\end{verbatim}
True
sage: f = 5*x^2+5
sage: f.isPrimitive()
False
sage: K=NumberField(x^2+5,'a')
sage: R=K.ring_of_integers()
sage: a=R.gen(1)
sage: a^2
-5
sage: f=a*x+2
sage: f.isPrimitive()
True
sage: f=(1+a)*x+2
sage: f.isPrimitive()
False
sage: x=polygen(Integers(10));
sage: f=5*x^2+2
sage: #f.isPrimitive() #BUG:: elsewhere in Sage, should return True
sage: f=4*x^2+2
sage: #f.isPrimitive() #BUG:: elsewhere in Sage, should return False

is_real_rooted()
Return True if the roots of this polynomial are all real.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = chebyshev_T(5, x)
sage: pol.is_real_rooted()
True
sage: pol = x^2 + 1
sage: pol.is_real_rooted()
False
```

is_square(root=False)
Returns whether or not polynomial is square. If the optional argument root is set to True, then also returns the square root (or None, if the polynomial is not square).

INPUT:

*root - whether or not to also return a square root (default: False)

OUTPUT:

*bool - whether or not a square

*root - (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: (x^2 + 2*x + 1).is_square()
True
sage: (x^4 + 2*x^3 - x^2 - 2*x + 1).is_square(root=True)
(True, x^2 + x - 1)
sage: f = 12*(x+1)^2 * (x+3)^2
sage: f.is_square()
```
False
sage: f.is_square(root=True)
(False, None)

sage: h = f/3; h
4*x^4 + 32*x^3 + 88*x^2 + 96*x + 36
sage: h.is_square(root=True)
(True, 2*x^2 + 8*x + 6)

sage: S.<y> = PolynomialRing(RR)
sage: g = 12*(y+1)^2 * (y+3)^2
sage: g.is_square()
True

**is_squarefree()**

Return False if this polynomial is not square-free, i.e., if there is a non-unit $g$ in the polynomial ring such that $g^2$ divides self.

**Warning:** This method is not consistent with *squarefree_decomposition()* since the latter does not factor the content of a polynomial. See the examples below.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = (x-1)*(x-2)*(x^2-5)*(x^17-3); f
x^21 - 3*x^20 - 3*x^19 + 15*x^18 - 10*x^17 - 3*x^4 + 9*x^3 + 9*x^2 - 45*x + 30
sage: f.is_squarefree()
True
sage: (f*(x^2-5)).is_squarefree()
False
```

A generic implementation is available, which relies on gcd computations:

```python
sage: R.<x> = ZZ[]
sage: (2*x).is_squarefree()
True
sage: (4*x).is_squarefree()
False
sage: (2*x^2).is_squarefree()
False
sage: R(0).is_squarefree()
False
sage: S.<y> = QQ[]
sage: R.<x> = S[]
sage: (2*x*y).is_squarefree()
True
sage: (2*x*y^2).is_squarefree()
False
```

In positive characteristic, we compute the square-free decomposition or a full factorization, depending on which is available:

```python
sage: K.<t> = FunctionField(GF(3))
sage: R.<x> = K[]
sage: (x^3-x).is_squarefree()
```

---

64 Chapter 2. Univariate Polynomials
In the following example, $t^2$ is a unit in the base field:

```python
sage: R(t^2).is_squarefree()
True
```

This method is not consistent with `squarefree_decomposition()`:

```python
sage: R.<x> = ZZ[]
sage: f = 4 * x
sage: f.is_squarefree()
False
sage: f.squarefree_decomposition()
(4) * x
```

If you want this method equally not to consider the content, you can remove it as in the following example:

```python
sage: c = f.content()
sage: (f/c).is_squarefree()
True
```

If the base ring is not an integral domain, the question is not mathematically well-defined:

```python
sage: R.<x> = IntegerModRing(9)[]
sage: pol = (x + 3)*(x + 6); pol
x^2
sage: pol.is_squarefree()
Traceback (most recent call last):
 ...TypeError: is_squarefree() is not defined for polynomials over Ring of _
˓→integers modulo 9
```

### is_term()

Return True if self is an element of the base ring times a power of the generator.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: x.is_term()
True
sage: R(1).is_term()
True
sage: (3*x^5).is_term()
True
sage: (1+3*x^5).is_term()
False
```

To require that the coefficient is 1, use is_monomial() instead:

```python
sage: (3*x^5).is_monomial()
False
```
is_unit()  
Return True if this polynomial is a unit.

EXAMPLES:

```python
sage: a = Integers(90384098234^3)
sage: b = a(2*191*236607587)
sage: b.is_nilpotent()
True
sage: R.<x> = a[]
sage: f = 3 + b*x + b^2*x^2
sage: f.is_unit()
True
sage: f = 3 + b*x + b^2*x^2 + 17*x^3
sage: f.is_unit()
False
```

EXERCISE (Atiyah-McDonald, Ch 1): Let $A[x]$ be a polynomial ring in one variable. Then $f = \sum a_i x^i \in A[x]$ is a unit if and only if $a_0$ is a unit and $a_1, \ldots, a_n$ are nilpotent.

is_zero()  
Test whether this polynomial is zero.

EXAMPLES:

```python
sage: R = GF(2)['x']['y']
sage: R([0,1]).is_zero()
False
sage: R([0]).is_zero()
True
sage: R([-1]).is_zero()
False
```

lc()  
Return the leading coefficient of this polynomial.

OUTPUT: element of the base ring  
This method is same as leading_coefficient().

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lc()
-2/5
```

lcm(other)  
Let $f$ and $g$ be two polynomials. Then this function returns the monic least common multiple of $f$ and $g$.

leading_coefficient()  
Return the leading coefficient of this polynomial.

OUTPUT: element of the base ring

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lead_coefficient()
-2/5
```
list (copy=True)
Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: v = f.list(); v
[-1/3, 2, 0, -2/5]
```

Note that v is a list, it is mutable, and each call to the list method returns a new list:

```
sage: type(v)
<... 'list'>
sage: v[0] = 5
sage: f.list()
[-1/3, 2, 0, -2/5]
```

Here is an example with a generic polynomial ring:

```
sage: R.<x> = QQ[]
sage: S.<y> = R[]
sage: f = y^3 + x*y -3*x; f
y^3 + x*y - 3*x
sage: type(f)
<type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: v = f.list(); v
[-3*x, x, 0, 1]
sage: v[0] = 10
sage: f.list()
[-3*x, x, 0, 1]
```

lm()
Return the leading monomial of this polynomial.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lm()
x^3
sage: R(5).lm()
1
sage: R(0).lm()
0
sage: R(0).lm().parent() is R
True
```

lt()
Return the leading term of this polynomial.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lt()
-2/5*x^3
sage: R(5).lt()
5
```
map_coefficients\( (f, \text{new\_base\_ring}=\text{None}) \)

Returns the polynomial obtained by applying \( f \) to the non-zero coefficients of \( \text{self} \).

If \( f \) is a \texttt{sage.categories.map.Map}, then the resulting polynomial will be defined over the codomain of \( f \). Otherwise, the resulting polynomial will be over the same ring as \( \text{self} \). Set \texttt{new\_base\_ring} to override this behaviour.

**INPUT:**

- \( f \) – a callable that will be applied to the coefficients of \( \text{self} \).
- \texttt{new\_base\_ring} (optional) – if given, the resulting polynomial will be defined over this ring.

**EXAMPLES:**

```python
sage: R.<x> = SR[]
sage: f = (1+I)*x^2 + 3*x - I
sage: f.map_coefficients(lambda z: z.conjugate())
(-I + 1)*x^2 + 3*x + I
sage: R.<x> = ZZ[]
sage: f = x^2 + 2
sage: f.map_coefficients(lambda a: a + 42)
43*x^2 + 44
sage: R.<x> = PolynomialRing(SR, sparse=True)
sage: f = (1+I)*x^(2^32) - I
sage: f.map_coefficients(lambda z: z.conjugate())
(-I + 1)*x^4294967296 + I
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: f = x^(2^32) + 2
sage: f.map_coefficients(lambda a: a + 42)
43*x^4294967296 + 44
```

Examples with different base ring:

```python
sage: R.<x> = ZZ[]
sage: k = GF(2)
sage: residue = lambda x: k(x)
sage: f = 4*x^2+x+3
sage: g = f.map_coefficients(residue); g
x + 1
sage: g.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: g = f.map_coefficients(residue, new_base_ring = k); g
x + 1
sage: g.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using NTL)
```

**mod**(other)

Remainder of division of \( \text{self} \) by other.
EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: x % (x+1)
-1
sage: (x^3 + x - 1) % (x^2 - 1)
2*x - 1
```

**monic()**

Return this polynomial divided by its leading coefficient. Does not change this polynomial.

EXAMPLES:

```python
sage: x = QQ['x'].0
sage: f = 2*x^2 + x^3 + 56*x^5
sage: f.monic()
x^5 + 1/56*x^3 + 1/28*x^2
sage: f = (1/4)*x^2 + 3*x + 1
sage: f.monic()
x^2 + 12*x + 4
```

The following happens because \( f = 0 \) cannot be made into a monic polynomial

```python
sage: f = 0*x
sage: f.monic()
Traceback (most recent call last):
 ...
ZeroDivisionError: rational division by zero
```

Notice that the monic version of a polynomial over the integers is defined over the rationals.

```python
sage: x = ZZ['x'].0
sage: f = 3*x^19 + x^2 - 37
sage: g = f.monic(); g
x^19 + 1/3*x^2 - 37/3
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field
```

AUTHORS:

• Naqi Jaffery (2006-01-24): examples

**monomial_coefficient**

Return the coefficient in the base ring of the monomial \( m \) in \( self \), where \( m \) must have the same parent as \( self \).

INPUT:

• \( m \) - a monomial

OUTPUT:

Coefficient in base ring.

EXAMPLES:

```python
sage: P.<x> = QQ[]
The parent of the return is a member of the base ring.
sage: f = 2 * x
sage: c = f.monomial_coefficient(x); c
```
monomials()

Return the list of the monomials in self in a decreasing order of their degrees.

EXAMPLES:

sage: P.<x> = QQ[]
sage: f = x^2 + (2/3)*x + 1
sage: f.monomials()
[x^2, x, 1]
sage: f = P(3/2)
sage: f.monomials()
[1]
sage: f = P(0)
sage: f.monomials()
[]
sage: f = x
sage: f.monomials()
[x]
sage: f = - 1/2*x^2 + x^9 + 7*x + 5/11
sage: f.monomials()
[x^9, x^2, x, 1]
sage: x = var('x')
sage: K.<rho> = NumberField(x**2 + 1)
sage: R.<y> = QQ[]
sage: p = rho*y
sage: p.monomials()
[y]

multiplication_trunc(other, n)

Truncated multiplication

EXAMPLES:

sage: R.<x> = ZZ[]
sage: (x^10 + 5*x^5 + x^2 - 3).multiplication_trunc(x^7 - 3*x^3 + 1, 11)
x^10 + x^9 - 15*x^8 - 3*x^7 + 2*x^5 + 9*x^3 + x^2 - 3

Check that coercion is working:

sage: R2 = QQ['x']
sage: x2 = R2.gen()
sage: p1 = (x^3 + 1).multiplication_trunc(x2^3 - 2, 5); p1
newton_raphson \((n, x0)\)

Return a list of \(n\) iterative approximations to a root of this polynomial, computed using the Newton-Raphson method.

The Newton-Raphson method is an iterative root-finding algorithm. For \(f(x)\) a polynomial, as is the case here, this is essentially the same as Horner’s method.

INPUT:

* \(n\) - an integer (=the number of iterations),
* \(x0\) - an initial guess \(x0\).

OUTPUT: A list of numbers hopefully approximating a root of \(f(x)=0\).

If one of the iterates is a critical point of \(f\) then a ZeroDivisionError exception is raised.

EXAMPLES:

```python
sage: x = PolynomialRing(RealField(), 'x').gen()
sage: f = x^2 - 2
sage: f.newton_raphson(4, 1)
[1.50000000000000, 1.41666666666667, 1.41421568627451, 1.41421356237469]
```

AUTHORS:

* David Joyner and William Stein (2005-11-28)

newton_slopes \((p, lengths=False)\)

Return the \(p\)-adic slopes of the Newton polygon of self, when this makes sense.

OUTPUT:

If \(lengths\) is \(False\), a list of rational numbers. If \(lengths\) is \(True\), a list of couples \((s, l)\) where \(s\) is the slope and \(l\) the length of the corresponding segment in the Newton polygon.

EXAMPLES:

```python
sage: x = QQ['x'].0
sage: f = x^3 + 2
sage: f.newton_slopes(2)
[1/3, 1/3, 1/3]
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^5 + 6*x^2 + 4
sage: p.newton_slopes(2)
[1/2, 1/2, 1/3, 1/3, 1/3]
sage: p.newton_slopes(2, lengths=True)
[(1/2, 2), (1/3, 3)]
sage: (x^2^100 + 27).newton_slopes(3, lengths=True)
[(3/12676506000228229401496703205376, 12676506000228229401496703205376)]
```

ALGORITHM: Uses PARI if \(lengths\) is \(False\).

norm \((p)\)

Return the \(p\)-norm of this polynomial.
DEFINITION: For integer \( p \), the \( p \)-norm of a polynomial is the \( p \)th root of the sum of the \( p \)th powers of the absolute values of the coefficients of the polynomial.

INPUT:

- \( p \) - (positive integer or +infinity) the degree of the norm

EXAMPLES:

```
sage: R.<x> = RR[]
sage: f = x^6 + x^2 + -x^4 - 2*x^3
sage: f.norm(2)
2.64575131106459
sage: (sqrt(1^2 + 1^2 + (-1)^2 + (-2)^2)).n()
2.64575131106459
sage: f.norm(1)
5.00000000000000
sage: f.norm(infinity)
2.00000000000000
```

```
sage: f.norm(-1)
Traceback (most recent call last):
...
ValueError: The degree of the norm must be positive
```

AUTHORS:

- Didier Deshommes
- William Stein: fix bugs, add definition, etc.

\texttt{nth\_root}(n)

Return a \( n \)-th root of this polynomial.

This is computed using Newton method in the ring of power series. This method works only when the base ring is an integral domain. Moreover, for polynomial whose coefficient of lower degree is different from 1, the elements of the base ring should have a method \texttt{nth\_root} implemented.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: a = 27 * (x+3)**6 * (x+5)**3
sage: a.nth_root(3)
3*x^3 + 33*x^2 + 117*x + 135
sage: b = 25 * (x^2 + x + 1)
sage: b.nth_root(2)
Traceback (most recent call last):
...
ValueError: not a 2nd power
```

```
sage: R.<x> = QQ[]
sage: a = 1/4 * (x/7 + 3/2)^2 * (x/2 + 5/3)^4
sage: a.nth_root(2)
1/56*x^3 + 103/336*x^2 + 365/252*x + 25/12
sage: K.<sqrt2> = QuadraticField(2)
sage: K.<sqrt2> = QuadraticField(2)
sage: R.<x> = K[]
```
Here we consider a base ring without `nth_root` method. The third example with a non-trivial coefficient of lowest degree raises an error:

```python
sage: R.<x> = QQ[]
sage: R2 = R.quotient(x**2 + 1)
sage: x = R2.gen()
sage: R3.<y> = R2[]
sage: (y**2 - 2*y + 1).nth_root(2)
-y + 1
sage: (y**3).nth_root(3)
y
```
sage: (y**2 + x).nth_root(2)
Traceback (most recent call last):
...
AttributeError: ... has no attribute 'nth_root'

**number_of_real_roots()**

Return the number of real roots of this polynomial, counted without multiplicity.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x-1)^2 * (x-2)^2 * (x-3)
sage: pol.number_of_real_roots()
3
sage: pol2 = pol.change_ring(CC)
sage: pol2.number_of_real_roots()
3
sage: R.<x> = PolynomialRing(CC)
sage: pol = (x-1)*(x-CC(I))
sage: pol.number_of_real_roots()
1
```

**number_of_roots_in_interval**(a=None, b=None)

Return the number of roots of this polynomial in the interval \([a,b]\), counted without multiplicity. The endpoints \(a, b\) default to \(-\infty, \infty\) (which are also valid input values).

Calls the PARI routine polsturm. Note that as of version 2.8, PARI includes the left endpoint of the interval (and no longer uses Sturm’s algorithm on exact inputs). polsturm requires a polynomial with real coefficients; in case PARI returns an error, we try again after taking the GCD of \(self\) with its complex conjugate.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x-1)^2 * (x-2)^2 * (x-3)
sage: pol.number_of_roots_in_interval(1, 2)
2
sage: pol.number_of_roots_in_interval(1.01, 2)
1
sage: pol.number_of_roots_in_interval(None, 2)
2
sage: pol.number_of_roots_in_interval(1, Infinity)
3
sage: pol.number_of_roots_in_interval()
3
sage: pol = (x-1)*(x-2)*(x-3)
sage: pol2 = pol.change_ring(CC)
sage: pol2.number_of_roots_in_interval()
3
sage: R.<x> = PolynomialRing(CC)
sage: pol = (x-1)*(x-CC(I))
sage: pol.number_of_roots_in_interval(0,2)
1
```

**number_of_terms()**

Returns the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x-1)^2 * (x-2)^2 * (x-3)
sage: pol.number_of_terms()
3
sage: pol2 = pol.change_ring(CC)
sage: pol2.number_of_terms()
3
sage: R.<x> = PolynomialRing(CC)
sage: pol = (x-1)*(x-CC(I))
sage: pol.number_of_terms()
1
```
The method `hamming_weight()` is an alias:

```
sage: f.hamming_weight()
101
```

**numerator()**

Return a numerator of self computed as `self * self.denominator()`

Note that some subclasses may implement its own numerator function. For example, see `sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint`

**Warning:** This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

**EXAMPLES:**

First we compute the numerator of a polynomial with integer coefficients, which is of course self.

```
sage: R.<x> = ZZ[]
sage: f = x^3 + 17*x + 1
sage: f.numerator()
x^3 + 17*x + 1
sage: f == f.numerator()
True
```

Next we compute the numerator of a polynomial with rational coefficients.

```
sage: R.<x> = PolynomialRing(QQ)
sage: f = (1/17)*x^19 - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/3
sage: f.numerator()
3*x^19 - 34*x + 17
sage: f == f.numerator()
False
```

We try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```
sage: R.<x> = RR[]
sage: f = x + RR('0.3'); f
x + 0.300000000000000
```
We check that the computation the numerator and denominator are valid

```
sage: K=NumberField(symbolic_expression('x^3+2'),'a')['s,t']['x']
sage: f=K.random_element()
sage: f.numerator() / f.denominator() == f
True
sage: R=RR['x']
sage: f=R.random_element()
sage: f.numerator() / f.denominator() == f
True
```

**ord**(p=None)
This is the same as the valuation of self at p. See the documentation for self.valuation.

**EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: (x^2+x).ord(x+1)
1
```

**padded_list**(n=None)
Return list of coefficients of self up to (but not including) \( q^n \).
Includes 0’s in the list on the right so that the list has length n.

**INPUT:**

- n - (default: None); if given, an integer that is at least 0

**EXAMPLES:**

```
sage: x = polygen(QQ)
sage: f = 1 + x^3 + 23*x^5
sage: f.padded_list()
[1, 0, 1, 0, 23]
sage: f.padded_list(10)
[1, 0, 1, 0, 23, 0, 0, 0, 0]
sage: len(f.padded_list(10))
10
sage: f.padded_list(3)
[1, 0, 0]
sage: f.padded_list(0)
[]
sage: f.padded_list(-1)
Traceback (most recent call last):
 ...
ValueError: n must be at least 0
```

**plot**(xmin=None, xmax=None, *args, **kwds)
Return a plot of this polynomial.

**INPUT:**

- xmin - float
- xmax - float
- *args, **kwds - passed to either plot or point
OUTPUT: returns a graphic object.

EXAMPLES:

```sage
tax = polygen(GF(389))
plot(x**2 + 1, rgbcolor=(0,0,1))
Graphics object consisting of 1 graphics primitive
tax = polygen(QQ)
plot(x**2 + 1, rgbcolor=(1,0,0))
Graphics object consisting of 1 graphics primitive```

polynomial *(var)*

Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.

For univariate polynomials, if var is the generator of the parent ring, we return this polynomial, otherwise raise an error.

EXAMPLES:

```sage
t.<x> = QQ[]
t(x+1).polynomial(x)
x + 1```

**power_trunc** *(n, prec)*

Truncated n-th power of this polynomial up to precision prec

INPUT:

- n – (non-negative integer) power to be taken
- prec – (integer) the precision

EXAMPLES:

```sage
t.<x> = ZZ[]
t(3*x^2 - 2*x + 1).power_trunc(5, 8)
-1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 - 200*x^2 + 55*x^2 - 10*x + 1
t((3*x^2 - 2*x + 1)^5).truncate(8)
-1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1
t.<y> = R[]
t(x+y).power_trunc(5,5)
5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5
t((x+y)^5).truncate(5)
5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5```

```sage
t.<x> = GF(3)[
t = x^2 - x + 1
t.q = p.power_trunc(80, 20)
t.q
x^19 + x^18 + ... + 2*x^4 + 2*x^3 + x + 1
t(p^80).truncate(20) == q
True```

```sage
t.<x> = GF(7)[
t = (x^2 + x + 1).power_trunc(2^100, 100)
t.p
2*x^99 + x^98 + x^95 + 2*x^94 + ... + 3*x^2 + 2*x + 1```

```sage: for i in range(100):
```
....: q1 = (x^2 + x + 1).power_trunc(2^100 + i, 100)
....: q2 = p * (x^2 + x + 1).power_trunc(i, 100)
....: q2 = q2.truncate(100)
....: assert q1 == q2, "i = {}".format(i)

prec()
Return the precision of this polynomial. This is always infinity, since polynomials are of infinite precision
by definition (there is no big-oh).

EXAMPLES:

sage: x = polygen(ZZ)
sage: (x^5 + x + 1).prec()
+Infinity
sage: x.prec()
+Infinity

pseudo_quo_rem(other)
Compute the pseudo-division of two polynomials.

INPUT:

• other – a nonzero polynomial

OUTPUT:

Q and R such that l^m-n+1self = Q \cdot other + R where m is the degree of this polynomial, n is the degree
of other, l is the leading coefficient of other. The result is such that deg(R) < deg(other).

ALGORITHM:
Algorithm 3.1.2 in [Coh1993].

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^4 + 6*x^3 + x^2 - x + 2
sage: q = 2*x^2 - 3*x - 1
sage: (quo,rem)=p.pseudo_quo_rem(q); quo,rem
(4*x^2 + 30*x + 51, 175*x + 67)

sage: 2^(4-2+1)*p == quo*q + rem
True
sage: S.<T> = R[
]

sage: p = (-3*x^2 - x)*T^3 - 3*x*T^2 + (x^2 - x)*T + 2*x^2 + 3*x - 2
sage: q = (-x^2 - 4*x - 5)*T^2 + (6*x^2 + x + 1)*T + 2*x^2 - x
sage: quo,rem=p.pseudo_quo_rem(q); quo,rem
((3*x^4 + 13*x^3 + 19*x^2 + 5*x)*T + 18*x^4 + 12*x^3 + 16*x^2 + 16*x,
-113*x^6 - 106*x^5 - 133*x^4 - 101*x^3 - 42*x^2 - 41*x)*T - 34*x^6 + 13*x^5
˓→+ 54*x^4 + 126*x^3 + 134*x^2 - 5*x - 50)

sage: (-x^2 - 4*x - 5)^(3-2+1) * p == quo*q + rem
True

radical()
Returns the radical of self; over a field, this is the product of the distinct irreducible factors of self. (This
is also sometimes called the “square-free part” of self, but that term is ambiguous; it is sometimes used to
mean the quotient of self by its maximal square factor.)

EXAMPLES:
```python
sage: P.<x> = ZZ[]
sage: t = (x^2-x+1)^3 * (3*x-1)^2
sage: t.radical()
3*x^3 - 4*x^2 + 4*x - 1
sage: radical(12 * x^5)
6*x
```

If self has a factor of multiplicity divisible by the characteristic (see trac ticket #8736):

```python
sage: P.<x> = GF(2)[]
sage: (x^3 + x^2).radical()
x^2 + x
```

real_roots()

Return the real roots of this polynomial, without multiplicities.

Calls self.roots(ring=RR), unless this is a polynomial with floating-point real coefficients, in which case it calls self.roots().

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: (x^2 - x - 1).real_roots()
[-0.618033988749895, 1.61803398874989]
```

resultant(other)

Return the resultant of self and other.

INPUT:

- `other` – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

ALGORITHM:

Uses PARI's `polresultant` function. For base rings that are not supported by PARI, the resultant is computed as the determinant of the Sylvester matrix.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
sage: r.parent() is QQ
True
```

We can compute resultants over univariate and multivariate polynomial rings:

```python
sage: R.<a> = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a; g = x^3 + a
sage: r = f.resultant(g); r
a^3 + a^2
sage: r.parent() is R
True
```

```python
sage: R.<a, b> = QQ[]
sage: S.<x> = R[]
```

2.1. Univariate Polynomials and Polynomial Rings
reverse (degree=None)
Return polynomial but with the coefficients reversed. If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary before reversing it. Assuming that the constant coefficient of self is nonzero, the reverse polynomial will have the specified degree.

EXAMPLES:

```python
sage: R.<x> = ZZ[]; S.<y> = R[
    sage: f = y^3 + x*y - 3*x; f
    y^3 + x*y - 3*x
    sage: f.reverse()
    -3*x*y^3 + x*y^2 + 1
    sage: f.reverse(degree=2)
    -3*x*y^2 + x*y
    sage: f.reverse(degree=5)
    -3*x*y^5 + x*y^4 + y^2
```

root_field (names, check_irreducible=True)
Return the field generated by the roots of the irreducible polynomial self. The output is either a number field, relative number field, a quotient of a polynomial ring over a field, or the fraction field of the base ring.

EXAMPLES:

```python
sage: R.<x> = QQ['x']
    sage: f = x^3 + x + 17
    sage: f.root_field('a')
    Number Field in a with defining polynomial x^3 + x + 17
    sage: R.<x> = QQ['x']
    sage: f = x - 3
    sage: f.root_field('b')
    Rational Field
    sage: R.<x> = ZZ['x']
    sage: f = x^3 + x + 17
    sage: f.root_field('b')
    Number Field in b with defining polynomial x^3 + x + 17
    sage: y = QQ['x'].0
    sage: L.<a> = NumberField(y^3-2)
    sage: R.<x> = L['x']
    sage: f = x^3 + x + 17
    sage: f.root_field('c')
    Number Field in c with defining polynomial x^3 + x + 17 over its base field
    sage: R.<x> = PolynomialRing(GF(9,'a'))
    sage: f = x^3 + x^2 + 8
    sage: K.<alpha> = f.root_field(); K
```
Univariate Quotient Polynomial Ring in alpha over Finite Field in a of size 3^→2 with modulus x^3 + x^2 + 2

```
sage: alpha^2 + 1
alpha^2 + 1
sage: alpha^3 + alpha^2
```

```
sage: R.<x> = QQ[]
sage: f = x^2
sage: K.<alpha> = f.root_field()
Traceback (most recent call last):
 ...
ValueError: polynomial must be irreducible
```

```python
def roots(ring=None, multiplicities=True, algorithm=None, **kwds):
    Return the roots of this polynomial (by default, in the base ring of this polynomial).

    INPUT:

    * `ring` - the ring to find roots in
    * `multiplicities` - bool (default: True) if True return list of pairs (r, n),
      where r is the root and n is the multiplicity. If False, just return the unique roots,
      with no information about multiplicities.
    * `algorithm` - the root-finding algorithm to use. We attempt to select a
      reasonable algorithm by default, but this lets the caller override our choice.

    By default, this finds all the roots that lie in the base ring of the polynomial.
    However, the ring parameter can be used to specify a ring to look for roots in.

    If the polynomial and the output ring are both exact (integers, rationals, finite fields,
    etc.), then the output should always be correct (or raise an exception, if that case is
    not yet handled).

    If the output ring is approximate (floating-point real or complex numbers), then the
    answer will be estimated numerically, using floating-point arithmetic of at least the
    precision of the output ring. If the polynomial is ill-conditioned, meaning that a small
    change in the coefficients of the polynomial will lead to a relatively large change in
    the location of the roots, this may give poor results. Distinct roots may be returned
    as multiple roots, multiple roots may be returned as distinct roots, real roots may be
    lost entirely (because the numerical estimate thinks they are complex roots). Note
    that polynomials with multiple roots are always ill-conditioned; there’s a footnote at
    the end of the docstring about this.

    If the output ring is a RealIntervalField or ComplexIntervalField of a given
    precision, then the answer will always be correct (or raise an exception, if a case
    is not implemented). Each root will be contained in one of the returned intervals,
    and the intervals will be disjoint. (The returned intervals may be of higher
    precision than the specified output ring.)

    At the end of this docstring (after the examples) is a description of all the cases
    implemented in this function, and the algorithms used. That section also describes
    the possibilities for “algorithm=”, for the cases where multiple algorithms exist.

EXAMPLES:

```
sage: x = QQ['x'].0
sage: f = x^3 - 1
sage: f.roots()
[(1, 1)]
sage: f.roots(ring=CC) # note -- low order bits slightly different on ppc.
[(1.00000000000000, 1), (-0.500000000000000 - 0.86602540378443...*I, 1), (-0.
 →500000000000000 + 0.86602540378443...*I, 1)]
sage: f = (x^3 - 1)^2
```

2.1. Univariate Polynomials and Polynomial Rings 81
A new ring. In the example below, we add the special method \_roots_univariate_polynomial to the base ring, and observe that this method is called instead to find roots of polynomials over this ring. This facility can be used to easily extend root finding to work over new rings you introduce:

```
sage: R.<x> = QQ[]
sage: (x^2 + 1).roots()
[]
sage: g = lambda f, *args, **kwds: f.change_ring(CDF).roots()
sage: QQ._roots_univariate_polynomial = g
sage: (x^2 + 1).roots() # abs tol 1e-14
[(2.7755575615628914e-17 - 1.0*I, 1), (0.999999999999997*I, 1)]
sage: del QQ._roots_univariate_polynomial
```

An example over RR, which illustrates that only the roots in RR are returned:

```
sage: x = RR['x'].0
sage: f = x^3 -2
sage: f.roots()
[(1.25992104989487, 1)]
sage: f.factor() # abs tol 1e-14
(x - 1.25992104989487) * (x^2 + 1.25992104989487*x + 1.58740105196820)
sage: x = RealField(100)['x'].0
sage: f = x^3 -2
sage: f.roots()
[(1.2599210498948731647631647672106073, 1)]
sage: f.roots(algorithm='pari')
[(1.25992104989487, 1), (-0.629960524947437 - 1.0911236597172*I, 1), (-0.629960524947437 + 1.0911236597172*I, 1)]
```

Another example showing that only roots in the base ring are returned:
An example involving large numbers:

```python
sage: x = RR['x'].0
sage: f = x^2 - 1e100
sage: f.roots()
[(-1.00000000000000e50, 1), (1.00000000000000e50, 1)]
```

Describing roots using radical expressions:

```python
sage: x = QQ['x'].0
sage: f = x^2 + 2
sage: f.roots(SR)
[(-I*sqrt(2), 1), (I*sqrt(2), 1)]
```

The roots of some polynomials can’t be described using radical expressions:

```python
sage: (x^5 - x + 1).roots(SR)
[]
```

For some other polynomials, no roots can be found at the moment due to the way roots are computed. trac ticket #17516 addresses these defects. Until that gets implemented, one such example is the following:

```python
sage: f = x^6-300*x^5+30361*x^4-1061610*x^3+1141893*x^2-915320*x+101724
sage: f.roots()
[]
```

A purely symbolic roots example:

```python
sage: X = var('X')
sage: f = expand((X-1)*(X-I)^3*(X^2 - sqrt(2))); f
X^6 - (3*I + 1)*X^5 - sqrt(2)*X^4 + (3*I - 3)*X^4 + (3*I + 1)*sqrt(2)*X^3 +
 (-I + 3)*X^3 - (3*I - 3)*sqrt(2)*X^2 + 1*I*X^2 + (I + 3)*sqrt(2)*X + I*sqrt(2)
```

The same operation, performed over a polynomial ring with symbolic coefficients:
```python
sage: X = SR['X'].0
sage: f = (X-1)*(X-I)^3*(X^2 - sqrt(2)); f
X^6 + (-3*I - 1)*X^5 + (-sqrt(2) + 3*I - 3)*X^4 + ((3*I + 1)*sqrt(2) + I +
-3)*X^3 + (-3*I - 3)*sqrt(2) - I)*X^2 + (-I + 3)*sqrt(2))*X + I*sqrt(2)
sage: f.roots()
[(I, 3), (-2^(1/4), 1), (2^(1/4), 1), (1, 1)]
sage: f.roots(multiplicities=False)
[I, -2^(1/4), 2^(1/4), 1]
```

A couple of examples where the base ring doesn’t have a factorization algorithm (yet). Note that this is currently done via naive enumeration, so could be very slow:

```python
sage: R = Integers(6)
sage: S.<x> = R['x']
sage: p = x^2-1
sage: p.roots()
Traceback (most recent call last):
 ...
NotImplementedError: root finding with multiplicities for this polynomial not implemented (try the multiplicities=False option)
sage: p.roots(multiplicities=False)
[1, 5]
sage: R = Integers(9)
sage: A = PolynomialRing(R, 'y')
sage: y = A.gen()
sage: f = 10*y^2 - y^3 - 9
sage: f.roots(multiplicities=False)
[0, 1, 3, 6]
```

An example over the complex double field (where root finding is fast, thanks to NumPy):

```python
sage: R.<x> = CDF[]
sage: f = R.cyclotomic_polynomial(5); f
x^4 + x^3 + x^2 + x + 1.0
sage: r = f.roots(multiplicities=False)
```

More examples involving the complex double field:
\begin{verbatim}
sage: x = CDF['x'].0
sage: i = CDF.0
sage: f = x^3 + 2*i; f
x^3 + 2.0*I
sage: f.roots()
# abs tol 1e-14
[(-1.0911236359717227 - 0.6299605249474374*I, 1), (3.885780586188048e-16 + 1.0911236359717211 - 0.6299605249474363*I, 1)]
sage: f.roots(multiplicities=False)
# abs tol 1e-14
[-1.0911236359717227 - 0.6299605249474374*I, 3.885780586188048e-16 + 1.0911236359717211 - 0.6299605249474363*I]
sage: [abs(f(z)) for z in f.roots(multiplicities=False)]
# abs tol 1e-14
[8.95090418262362e-16, 8.728374398092689e-16, 1.0235750533041806e-15]
sage: f = i*x^3 + 2; f
I*x^3 + 2.0
sage: f.roots()
# abs tol 1e-14
[(-1.0911236359717227 + 0.6299605249474374*I, 1), (3.885780586188048e-16 - 1.0911236359717211 + 0.6299605249474363*I, 1)]
sage: abs(f(f.roots()[0][0]))
# abs tol 1e-13
1.1102230246251565e-16

Examples using real root isolation:
sage: x = polygen(ZZ)
sage: f = x^2 - x - 1
sage: f.roots()
[]
sage: f.roots(ring=RIF)
[(-0.618033988749894848204586834657?, 1), (1.618033988749894848204586834657?, 1)]
sage: f.roots(ring=RealIntervalField(150))
[(-0.618033988749894848204586834657381317720309179805762862135448227?, 1),
 (1.618033988749894848204586834657381317720309179805762862135448223?, 1)]
sage: f.roots(ring=AA)
[(-0.618033988749894848204586834657?, 1), (1.618033988749894848204586834657?, 1)]
sage: f = f^2 * (x - 1)
sage: f.roots(ring=RIF)
[(-0.618033988749894848204586834657?, 2), (1.0000000000000000000000000000000?, 1),
 (1.618033988749894848204586834657?, 2)]
sage: f.roots(ring=RIF, multiplicities=False)
[-0.618033988749894848204586834657?, 1.0000000000000000000000000000000?, 1.618033988749894848204586834657?]

Examples using complex root isolation:
sage: x = polygen(ZZ)
sage: p = x^5 - x - 1
sage: p.roots()
[]
sage: p.roots(ring=CIF)
[(1.167303978261419?, 1), (-0.7648844336005855? - 0.3524715460317277?*I, 1), (-0.7648844336005855? + 0.3524715460317277?*I, 1), (0.181232446469876? + 1.0839541013177117?*I, 1), (0.181232446469876? - 1.0839541013177117?*I, 1)]
sage: p.roots(ring=ComplexIntervalField(200))
[(1.167303978261419?, 1), (-0.76488443360058472602982318777054173032899965194736756700778?, -0.76488443360058472602982318777054173032899965194736756700778?), (-0.76488443360058472602982318777054173032899965194736756700778?, 0.76488443360058472602982318777054173032899965194736756700778?), (0.181232446469876? + 1.0839541013177117?*I, 1), (0.181232446469876? - 1.0839541013177117?*I, 1)]
sage: f = f^2 * (x - 1)
sage: f.roots(ring=RIF)
[(-0.618033988749894848204586834657?, 2), (1.0000000000000000000000000000000?, 1),
 (1.618033988749894848204586834657?, 2)]
sage: f.roots(ring=RIF, multiplicities=False)
[-0.618033988749894848204586834657?, 1.0000000000000000000000000000000?, 1.618033988749894848204586834657?]
\end{verbatim}

Examples using real root isolation:

Examples using complex root isolation:

2.1. Univariate Polynomials and Polynomial Rings 85
sage: rts = p.roots(ring=QQbar); rts
[(1.167303978261419?, 1), (-0.7648844336005847? + 0.3524715460317263?*I, 1), (-0.7648844336005847? - 0.3524715460317263?*I, 1), (0.181232444698754? + 1.083954101317711?*I, 1), (0.181232444698754? - 1.083954101317711?*I, 1)]
sage: p.roots(ring=AA)
[(1.167303978261419?, 1)]
sage: p = (x - rts[4][0])^2 * (3*x^2 + x + 1)
sage: p.roots(ring=QQbar)
[(-0.16666666666666677 - 0.552770798392567?*I, 1), (-0.16666666666666677 + 0.552770798392567?*I, 1), (0.181232444698754? + 1.083954101317711?*I, 2), (0.181232444698754? - 1.083954101317711?*I, 2)]
sage: p.roots(ring=CIF)
[(-0.16666666666666677 - 0.552770798392567?*I, 1), (-0.16666666666666677 + 0.552770798392567?*I, 1), (0.181232444698754? + 1.083954101317711?*I, 2), (0.181232444698754? - 1.083954101317711?*I, 2)]

Note that coefficients in a number field with defining polynomial $x^2 + 1$ are considered to be Gaussian rationals (with the generator mapping to $+I$), if you ask for complex roots.

sage: K.<im> = QuadraticField(-1)
sage: y = polygen(K)
sage: p = y^4 - 2 - im
sage: p.roots(ring=CC)
[(-1.214638932244183? - 0.141425052582394?*I, 1), (-0.141425052582394? + 1.214638932244183?*I, 1), (0.141425052582394? - 1.214638932244183?*I, 1), (1.214638932244183? + 0.141425052582394?*I, 1)]
sage: p = p^2 * (y^2 - 2)
sage: p.roots(ring=CIF)
[(-1.414213562373095?, 1), (1.414213562373095?, 1), (-0.141425052582394? + 1.214638932244183?*I, 2), (0.141425052582394? - 1.214638932244183?*I, 2), (0.141425052582394? - 0.141425052582394?*I, 2), (1.214638932244183? + 0.141425052582394?*I, 2)]

Note that one should not use NumPy when wanting high precision output as it does not support any of the high precision types:

sage: R.<x> = RealField(200)

sage: f = x^2 - R(pi)

sage: f.roots()
[(-1.772453850905516027981674833411451827975494561223871282138, 1), (1.772453850905516027981674833411451827975494561223871282138, 1)]
sage: f.roots(algorithm='numpy')
doctest... UserWarning: NumPy does not support arbitrary precision arithmetic.
The roots found will likely have less precision than you expect.
[(-1.77245385090551..., 1), (1.77245385090551..., 1)]

We can also find roots over number fields:

sage: K.<z> = CyclotomicField(15)
sage: R.<x> = PolynomialRing(K)
sage: (x^2 + x + 1).roots()
[(z^5, 1), (-z^5 - 1, 1)]

There are many combinations of floating-point input and output types that work. (Note that some of them are quite pointless like using `algorithm='numpy'` with high-precision types.)

sage: rflds = (RR, RDF, RealField(100))
sage: cflds = (CC, CDF, ComplexField(100))
sage: def cross(a, b):
....:     return list(cartesian_product_iterator([a, b]))
 sage: flds = cross(rflds, rflds) + cross(rflds, cflds) + cross(cflds, cflds)
sage: for (fld_in, fld_out) in flds:
....:     x = polygen(fld_in)
....:     f = x^3 - fld_in(2)
....:     f2 = x2^3 - fld_out(2)
....:     for algo in (None, 'pari', 'numpy'):
....:         rts = f.roots(ring=fld_out, multiplicities=False)
....:         if fld_in == fld_out and algo is None:
....:             print('{} {}'.format(fld_in, rts))
....:         for rt in rts:
....:             assert(abs(f2(rt)) <= 1e-10)
....:             assert(rt.parent() == fld_out)
Real Field with 53 bits of precision [1.25992104989487]
Real Double Field [1.25999999999999997880720499286569105078125]
Real Field with 100 bits of precision [1.2599210498948731647672106073]
Complex Field with 53 bits of precision [1.25992104989487, -0.62996052494743.. → - 1.09112363597172*I, -0.62996052494743... + 1.09112363597172*I]
Complex Double Field [1.25992104989..., -0.629960524947... - 1.0911236359717... → ±*I, -0.629960524947... + 1.0911236359717...*I]
Complex Field with 100 bits of precision [1.2599210498948731647672106073, -0.62996052494743658238365030364 - 1.0911236359717214035600726142*I, -0.62996052494743658238365030364 + 1.0911236359717214035600726142*I]

Note that we can find the roots of a polynomial with algebraic coefficients:

 sage: rts = f.roots(ring=flod_out, multiplicities=False)
 sage: if fld_in == fld_out and algo is None:
 sage: print('{} {}'.format(fld_in, rts))
 sage: for rt in rts:
 sage: assert(abs(f2(rt)) <= 1e-10)
 sage: assert(rt.parent() == fld_out)

We can handle polynomials with huge coefficients.

This number doesn’t even fit in an IEEE double-precision float, but RR and CC allow a much larger range of floating-point numbers:

 sage: bigc = 2^1500
 sage: CDF(bigc)
 +infinity
 sage: CC(bigc)
 3.50746621104340e451

Polynomials using such large coefficients can’t be handled by numpy, but pari can deal with them:

 sage: x = polygen(QQ)
 sage: p = x + bigc
 sage: p.roots(ring=RR, algorithm='numpy')
 Traceback (most recent call last):
 ... LinAlgError: Array must not contain infs or NaNs
Algorithms used:

For brevity, we will use RR to mean any RealField of any precision; similarly for RIF, CC, and CIF. Since
Sage has no specific implementation of Gaussian rationals (or of number fields with embedding, at all),
when we refer to Gaussian rationals below we will accept any number field with defining polynomial
\(x^2 + 1\), mapping the field generator to \(+I\).

We call the base ring of the polynomial \(K\), and the ring given by the ring= argument \(L\). (If ring= is not
specified, then \(L\) is the same as \(K\).)

If \(K\) and \(L\) are floating-point (RDF, CDF, RR, or CC), then a floating-point root-finder is used. If \(L\) is RDF
or CDF then we default to using NumPy’s roots(); otherwise, we use PARI’s polroots(). This choice can
be overridden with algorithm=’pari’ or algorithm=’numpy’. If the algorithm is unspecified and NumPy’s
roots() algorithm fails, then we fall back to pari (numpy will fail if some coefficient is infinite, for instance).

If \(L\) is SR, then the roots will be radical expressions, computed as the solutions of a symbolic polynomial
expression. At the moment this delegates to sage.symbolic.expression.Expression.solve() which in turn uses Maxima to find radical solutions. Some solutions may be lost in this approach. Once trac ticket #17516 gets implemented, all possible radical solutions should become available.

If \(L\) is AA or RIF, and \(K\) is ZZ, QQ, or AA, then the root isolation algorithm
sage.rings.polynomial.real_roots.real_roots() is used. (You can call real_roots() directly to get more
control than this method gives.)

If \(L\) is QQbar or CIF, and \(K\) is ZZ, QQ, AA, QQbar, or the Gaussian rationals, then the root isolation
algorithm sage.rings.polynomial.complex_roots.complex_roots() is used. (You can call complex_roots()
directly to get more control than this method gives.)

If \(L\) is AA and \(K\) is QQbar or the Gaussian rationals, then complex_roots() is used (as above) to find roots
in QQbar, then these roots are filtered to select only the real roots.

If \(L\) is floating-point and \(K\) is not, then we attempt to change the polynomial ring to \(L\) (using
/change_ring()) (or, if \(L\) is complex and \(K\) is not, to the corresponding real field). Then we use either
PARI or numpy as specified above.

For all other cases where \(K\) is different than \(L\), we just use/change_ring(L) and proceed as below.

The next method, which is used if \(K\) is an integral domain, is to attempt to factor the polynomial. If this
succeeds, then for every degree-one factor \(ax+b\), we add \(-b/a\) as a root (as long as this quotient is actually
in the desired ring).
If factoring over \( K \) is not implemented (or \( K \) is not an integral domain), and \( K \) is finite, then we find the roots by enumerating all elements of \( K \) and checking whether the polynomial evaluates to zero at that value.

**Note:** We mentioned above that polynomials with multiple roots are always ill-conditioned; if your input is given to \( n \) bits of precision, you should not expect more than \( n/k \) good bits for a \( k \)-fold root. (You can get solutions that make the polynomial evaluate to a number very close to zero; basically the problem is that with a multiple root, there are many such numbers, and it’s difficult to choose between them.)

To see why this is true, consider the naive floating-point error analysis model where you just pretend that all floating-point numbers are somewhat imprecise - a little ‘fuzzy’, if you will. Then the graph of a floating-point polynomial will be a fuzzy line. Consider the graph of \((x - 1)^3\): this will be a fuzzy line with a horizontal tangent at \( x = 1, y = 0 \). If the fuzziness extends up and down by about \( j \), then it will extend left and right by about \( \text{cube_root}(j) \).

### shift \((n)\)

Returns this polynomial multiplied by the power \( x^n \). If \( n \) is negative, terms below \( x^n \) will be discarded. Does not change this polynomial (since polynomials are immutable).

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: p = x^2 + 2*x + 4
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(-5)
0
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```

One can also use the infix shift operator:

```
sage: f = x^3 + x
sage: f >> 2
x
sage: f << 2
x^5 + x^3
```

**AUTHORS:**

- David Harvey (2006-08-06)

### specialization \((D=None, \phi=None)\)

Specialization of this polynomial.

Given a family of polynomials defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a `SpecializationMorphism`.

**INPUT:**

- \( D \) – dictionary (optional)
- \( \phi \) – `SpecializationMorphism` (optional)
OUTPUT: a new polynomial

EXAMPLES:

```
sage: R.<c> = PolynomialRing(ZZ)
sage: S.<z> = PolynomialRing(R)
sage: F = c*z^2 + c^2
sage: F.specialization(dict({c:2}))
2*z^2 + 4
```

```
sage: R.<x> = PolynomialRing(ZZ)
sage: K.<a> = (x^3 + 2).splitting_field(); K
Number Field in a with defining polynomial x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1
sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K
Number Field in a with defining polynomial x^3 - 3*x + 1
```

Relative situation:

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 + 2)
sage: S.<t> = PolynomialRing(K)
sage: L. = (t^2 - a).splitting_field()
sage: L
Number Field in b with defining polynomial t^6 + 2
```

With map=True, we also get the embedding of the base field into the splitting field:

```
sage: L., phi = (t^2 - a).splitting_field(map=True)
sage: phi
Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Number Field in b with defining polynomial t^6 + 2
 Defn: a |--> b^2
```

An example over a finite field:

```
sage: P.<x> = PolynomialRing(GF(7))
sage: t = x^2 + 1
sage: t.splitting_field('b')
Finite Field in b of size 7^2
```
sage: P.<x> = PolynomialRing(GF(7^3, 'a'))
sage: t = x^2 + 1
sage: t.splitting_field('b', map=True)
(Finite Field in b of size 7^6,
 Ring morphism:
    From: Finite Field in a of size 7^3
    To:   Finite Field in b of size 7^6
    Defn: a |--> 2*b^4 + 6*b^3 + 2*b^2 + 3*b + 2)

If the extension is trivial and the generators have the same name, the map will be the identity:

sage: t = 24*x^13 + 2*x^12 + 14
sage: t.splitting_field('a', map=True)
(Finite Field in a of size 7^3,
 Identity endomorphism of Finite Field in a of size 7^3)

sage: t = x^56 - 14*x^3
sage: t.splitting_field('b', map=True)
(Finite Field in b of size 7^3,
 Ring morphism:
    From: Finite Field in a of size 7^3
    To:   Finite Field in b of size 7^3
    Defn: a |--> b)

See also:
sage.rings.number_field.splitting_field.splitting_field() for more examples over number fields

square()
Returns the square of this polynomial.

TODO:

• This is just a placeholder; for now it just uses ordinary multiplication. But generally speaking, squaring is faster than ordinary multiplication, and it’s frequently used, so subclasses may choose to provide a specialised squaring routine.

• Perhaps this even belongs at a lower level? RingElement or something?

AUTHORS:

• David Harvey (2006-09-09)

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^3 + 1
sage: f.square()
x^6 + 2*x^3 + 1
sage: f*f
x^6 + 2*x^3 + 1

squarefree_decomposition()
Return the square-free decomposition of this polynomial. This is a partial factorization into square-free, coprime polynomials.

EXAMPLES:
```python
sage: x = polygen(QQ)
sage: p = 37 * (x-1)^3 * (x-2)^3 * (x-1/3)^7 * (x-3/7)
sage: p.squarefree_decomposition()
(37*x - 111/7) * (x^2 - 3*x + 2)^3 * (x - 1/3)^7
sage: p = 37 * (x-2/3)^2
sage: p.squarefree_decomposition()
(37) * (x - 2/3)^2
sage: x = polygen(GF(3))
sage: x.squarefree_decomposition()
x
sage: f = QQbar['x'](1)
sage: f.squarefree_decomposition()
1
```

**subs (**x, **kwds)**

Identical to self(*x*).

See the docstring for self.__call__.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x - 3
sage: f.subs(x=5)
127
sage: f.subs(5)
127
sage: f.subs({x:2})
7
sage: f.subs({})
x^3 + x - 3
sage: f.subs({'x':2})
Traceback (most recent call last):
 ...
TypeError: keys do not match self's parent
```

**substitute (**x, **kwds)**

Identical to self(*x*).

See the docstring for self.__call__.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x - 3
sage: f.subs(x=5)
127
sage: f.subs(5)
127
sage: f.subs({x:2})
7
sage: f.subs({})
x^3 + x - 3
sage: f.subs({'x':2})
Traceback (most recent call last):
 ...
TypeError: keys do not match self's parent
```

**sylvester_matrix**(*right, variable=None*)
Returns the Sylvester matrix of self and right.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

INPUT:

• right: a polynomial in the same ring as self.
• variable: optional, included for compatibility with the multivariate case only. The variable of the polynomials.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
sage: M = f.sylvester_matrix(g)
sage: M
[42 317 134 1786 0 0 0]
[0 42 317 134 1786 0 0]
[0 0 42 317 134 1786 0]
[18 141 12 100 47 0 0]
[0 18 141 12 100 47 0]
[0 0 18 141 12 100 47]
[0 0 0 18 141 12 100]

If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will be zero:

```python
sage: M.determinant()
0
```

If self and right are polynomials of positive degree, the determinant of the Sylvester matrix is the resultant of the polynomials:

```python
sage: h1 = R.random_element()
sage: h2 = R.random_element()
sage: M1 = h1.sylvester_matrix(h2)
sage: M1.determinant() == h1.resultant(h2)
True
```

The rank of the Sylvester matrix is related to the degree of the gcd of self and right:

```python
sage: f.gcd(g).degree() == f.degree() + g.degree() - M.rank()
True
sage: h1.gcd(h2).degree() == h1.degree() + h2.degree() - M1.rank()
True
```

symmetric_power *(k, monic=False)*

Return the polynomial whose roots are products of *k*-th distinct roots of this.

EXAMPLES:

```python
sage: x = polygen(QQ)
sage: f = x^4-x^2
sage: [f.symmetric_power(k) for k in range(5)]
[x - 1, x^4 - x^2, x^6 - 2*x^4 - x^3 + 4*x^2 + 8, x^4 - x^3 + 8, x - 2]
sage: f = x^5-2*x^2
sage: [f.symmetric_power(k) for k in range(6)]
```

2.1. Univariate Polynomials and Polynomial Rings 93
\[(x - 1, \quad x^5 - 2x + 2, \quad x^{10} + 2x^8 - 4x^6 - 8x^5 - 8x^4 - 8x^3 + 16, \quad x^{10} + 4x^7 - 8x^6 + 16x^5 - 16x^4 + 32x^2 + 64, \quad x^5 + 2x^4 - 16, \quad x + 2)\]

sage:

\[
R.<a,b,c,d> = ZZ[]
\]

sage:

\[
x = \text{polygen}(R)
\]

sage:

\[
f = (x-a)*(x-b)*(x-c)*(x-d)
\]

sage:

\[
[f.\text{symmetric}_\text{power}(k).\text{factor()} \text{ for } k \text{ in } \text{range}(5)]
\]

\[
[x - 1, \quad (-x + d) \times (-x + c) \times (-x + b) \times (-x + a), \quad (x - c*d) \times (x - b*d) \times (x - a*d) \times (x - a*c) \times (x - a*b), \quad (x - b*c*d) \times (x - a*c*d) \times (x - a*b*d) \times (x - a*b*c), \quad x - a*b*c*d]
\]

truncate *(n)*

Returns the polynomial of degree `< n` which is equivalent to self modulo \(x^n\).

EXAMPLES:

sage:

\[
R.<x> = ZZ[]; S.<y> = \text{PolynomialRing}(R, \text{sparse=True})
\]

sage:

\[
f = y^3 + x*y - 3*x; f
\]

\[
y^3 + x*y - 3*x
\]

sage:

\[
f.\text{truncate}(2)
\]

\[
x*y - 3*x
\]

sage:

\[
f.\text{truncate}(1)
\]

\[
-3*x
\]

sage:

\[
f.\text{truncate}(0)
\]

\[
0
\]

valuation *(p=None)*

If \(f = a_r x^r + a_{r-1} x^{r-1} + \cdots\), with \(a_r\) nonzero, then the valuation of \(f\) is \(r\). The valuation of the zero polynomial is \(\infty\).

If a prime (or non-prime) \(p\) is given, then the valuation is the largest power of \(p\) which divides self.

The valuation at \(\infty\) is -self.degree().

EXAMPLES:

sage:

\[
P.<x> = ZZ[]
\]

sage:

\[
(x^2+x).\text{valuation()}
\]

\[
1
\]

sage:

\[
(x^2+x).\text{valuation(x+1)}
\]

\[
1
\]

sage:

\[
(x^2+1).\text{valuation()}
\]

\[
0
\]

sage:

\[
(x^3+1).\text{valuation(infinity)}
\]

\[
-3
\]

sage:

\[
P(0).\text{valuation()}
\]

\[
+\text{Infinity}
\]

variable_name ()

Return name of variable used in this polynomial as a string.

OUTPUT: string

EXAMPLES:
variables()

Returns the tuple of variables occurring in this polynomial.

EXAMPLES:

```sage
definition
R.<x> = QQ[]
definition
(x,)
```

A constant polynomial has no variables.

```sage
definition
R(2).variables()
definition
()```

xgcd(other)

Return an extended gcd of this polynomial and other.

INPUT:

- `other` – a polynomial in the same ring as this polynomial

OUTPUT:

A tuple \((r, s, t)\) where \(r\) is a greatest common divisor of this polynomial and \(\text{other}\), and \(s\) and \(t\) are such that \(r = s*\text{self} + t*\text{other}\) holds.

Note: The actual algorithm for computing the extended gcd depends on the base ring underlying the polynomial ring. If the base ring defines a method `_xgcd_univariate_polynomial`, then this method will be called (see examples below).

EXAMPLES:

```sage
definition
R.<x> = QQbar[]
definition
(2*x^2).gcd(2*x)
definition
x
definition
R.zero().gcd(0)
definition
0
definition
(2*x).gcd(0)
definition
x```

One can easily add xgcd functionality to new rings by providing a method `_xgcd_univariate_polynomial`:

```sage
definition
R.<x> = QQ[]
definition
S.<y> = R[]
definition
h1 = y*x
definition
h2 = y^2*x^2
definition
h1.xgcd(h2)
definition
Traceback (most recent call last):
definition
...NotImplementedError: Univariate Polynomial Ring in x over Rational Field does not provide an xgcd implementation for univariate polynomials```
```python
def poor_xgcd(f, g):
 ret = S(T(f).gcd(g))
 if ret == f:
 return ret, S.one(), S.zero()
 if ret == g:
 return ret, S.zero(), S.one()
 raise NotImplementedError
```

```python
R._xgcd_univariate_polynomial = poor_xgcd
```

```python
h1.xgcd(h2)
```

```
x*y, 1, 0
```

```python
del R._xgcd_univariate_polynomial
```

```python
class sage.rings.polynomial.polynomial_element.PolynomialBaseringInjection
Bases: sage.categories.morphism.Morphism

This class is used for conversion from a ring to a polynomial over that ring.

It calls the _new_constant_poly method on the generator, which should be optimized for a particular polynomial type.

Technically, it should be a method of the polynomial ring, but few polynomial rings are cython classes, and so, as a method of a cython polynomial class, it is faster.

EXAMPLES:

We demonstrate that most polynomial ring classes use polynomial base injection maps for coercion. They are supposed to be the fastest maps for that purpose. See trac ticket #9944.

```python
R.<x> = Qp(3)[]
R.coerce_map_from(R.base_ring())
```

```
Polynomial base injection morphism:
  From: 3-adic Field with capped relative precision 20
  To: Univariate Polynomial Ring in x over 3-adic Field with capped relative precision 20
```

```python
R.<x,y> = Qp(3)[]
R.coerce_map_from(R.base_ring())
```

```
Polynomial base injection morphism:
  From: 3-adic Field with capped relative precision 20
  To: Multivariate Polynomial Ring in x, y over 3-adic Field with capped relative precision 20
```

```python
R.<x,y> = QQ[]
R.coerce_map_from(R.base_ring())
```

```
Polynomial base injection morphism:
  From: Rational Field
  To: Multivariate Polynomial Ring in x, y over Rational Field
```

```python
R.<x> = QQ[]
R.coerce_map_from(R.base_ring())
```

```
Polynomial base injection morphism:
  From: Rational Field
  To: Univariate Polynomial Ring in x over Rational Field
```

By trac ticket #9944, there are now only very few exceptions:

```python
PolynomialRing(QQ,names=[]).coerce_map_from(QQ)
```

```
Generic morphism:
  From: Rational Field
  To: Multivariate Polynomial Ring in no variables over Rational Field
```

```python
section()
```

```python
class sage.rings.polynomial.polynomial_element.Polynomial_generic_dense
Bases: sage.rings.polynomial.polynomial_element.Polynomial
```
A generic dense polynomial.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = t + 2/3
sage: loads(f.dumps()) == f
True
```

constant_coefficient()

Return the constant coefficient of this polynomial.

OUTPUT: element of base ring

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: S.<x> = R[]
sage: f = x*t + x + t
sage: f.constant_coefficient() t
```

degree(gen=None)

EXAMPLES:

```python
sage: R.<x> = RDF[]
sage: f = (1+2*x^7)^5
sage: f.degree()
35
```

list(copy=True)

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```python
sage: R.<x> = GF(17)[]
sage: f = (1+2*x)^3 + 3*x
sage: f.list()
[1, 9, 12, 8]
```

quo_rem(other)

Returns the quotient and remainder of the Euclidean division of self and other. Raises ZerodivisionError if other is zero. Raises ArithmeticError if the division is not exact.

AUTHORS:

- Kwankyu Lee (2013-06-02)
- Bruno Grenet (2014-07-13)

EXAMPLES:

```python
sage: P.<x> = QQ[]
sage: R.<y> = P[]
sage: f = R.random_element(10)
sage: g = y^5+R.random_element(4)
sage: f.quo_rem(g)
Traceback (most recent call last):
  ...TypeError: Cannot compute quotient and remainder of polynomials over
  univariate polynomial ring in y over the Fraction Field of
  Univariate Polynomial Ring in x over Rational Field

sage: g = 0
sage: f.quo_rem(g)
Traceback (most recent call last):
  ...ArithmeticError: Division non exact (consider coercing to polynomials over
  the fraction field)
```
shift \((n)\)
Returns this polynomial multiplied by the power \(x^n\). If \(n\) is negative, terms below \(x^n\) will be discarded. Does not change this polynomial.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(PolynomialRing(QQ,'y'), 'x')
sage: p = x^2 + 2*x + 4
sage: type(p)
<type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```

AUTHORS:
- David Harvey (2006-08-06)

truncate \((n)\)
Returns the polynomial of degree ‘\(< n\)’ which is equivalent to self modulo \(x^n\).

EXAMPLES:

```python
sage: S.<q> = QQ['t']['q']
sage: f = (1+q^10+q^11+q^12).truncate(11); f
q^10 + 1
sage: f = (1+q^10+q^100).truncate(50); f
q^10 + 1
sage: f.degree()
10
sage: f = (1+q^10+q^100).truncate(500); f
q^100 + q^10 + 1
```

```python
sage: type(f)
<type 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
```

class `sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact`
Bases: `sage.rings.polynomial.polynomial_element.Polynomial_generic_dense`

A dense polynomial over an inexact ring.

AUTHOR:
- Xavier Caruso (2013-03)

degree \((secure=False)\)
INPUT:
- `secure` – a boolean (default: False)

OUTPUT:
The degree of self.
If `true` is True and the degree of this polynomial is not determined (because the leading coefficient is indistinguishable from 0), an error is raised.

If `true` is False, the returned value is the largest n so that the coefficient of x^n does not compare equal to 0.

EXAMPLES:

```text
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.degree()
1
sage: (f-T).degree()
0
sage: (f-T).degree(secure=True)
Traceback (most recent call last):
  ...  
PrecisionError: the leading coefficient is indistinguishable from 0
```

```text
sage: x = O(3^5)
sage: li = [3^i * x for i in range(0,5)]; li
[O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)]
sage: f = R(li); f
(O(3^9))*T^4 + (O(3^8))*T^3 + (O(3^7))*T^2 + (O(3^6))*T + (O(3^5))
sage: f.prec_degree()
1
sage: g = f - T; g
(O(3^9))*T^4 + (O(3^8))*T^3 + (O(3^7))*T^2 + (O(3^6))*T + (O(3^5))
sage: g.prec_degree()
1
```

AUTHOR:

Xavier Caruso (2013-03)

prec_degree()

Returns the largest n so that precision information is stored about the coefficient of x^n.

Always greater than or equal to degree.

EXAMPLES:

```text
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.degree()
1
sage: f.prec_degree()
1
```

```
```

AUTHOR:
sage.rings.polynomial.polynomial_element.generic_power_trunc(p, n, prec)
Generic truncated power algorithm

INPUT:
• p - a polynomial
• n - an integer (of type sage.rings.integer.Integer)
• prec - a precision (should fit into a C long)

sage.rings.polynomial.polynomial_element.is_Polynomial(f)
Return True if f is of type univariate polynomial.

INPUT:
• f - an object

EXAMPLES:

```
sage: from sage.rings.polynomial.polynomial_element import is_Polynomial
sage: R.<x> = ZZ[]
sage: is_Polynomial(x^3 + x + 1)
True
sage: S.<y> = R[]
sage: f = y^3 + x*y -3*x; f
y^3 + x*y - 3*x
sage: is_Polynomial(f)
True
```

However this function does not return True for genuine multivariate polynomial type objects or symbolic polynomials, since those are not of the same data type as univariate polynomials:

```
sage: R.<x,y> = QQ[]
sage: f = y^3 + x*y -3*x; f
y^3 + x*y - 3*x
sage: is_Polynomial(f)
False
sage: var('x,y')(x, y)
sage: f = y^3 + x*y -3*x; f
y^3 + x*y - 3*x
sage: is_Polynomial(f)
False
```

sage.rings.polynomial.polynomial_element.make_generic_polynomial(parent, coeffs)
sage.rings.polynomial.polynomial_element.universal_discriminant(n)
Return the discriminant of the 'universal' univariate polynomial \(a_n x^n + \cdots + a_1 x + a_0 \) in \(\mathbb{Z}[a_0, \ldots, a_n] [x] \).

INPUT:
• n - degree of the polynomial

OUTPUT:
The discriminant as a polynomial in \(n + 1 \) variables over \(\mathbb{Z} \). The result will be cached, so subsequent computations of discriminants of the same degree will be faster.

EXAMPLES:
sage: from sage.rings.polynomial.polynomial_element import universal_discriminant
sage: universal_discriminant(1)
1
sage: universal_discriminant(2)
a1^2 - 4*a0*a2
sage: universal_discriminant(3)
a1^2*a2^2 - 4*a0*a2^3 - 4*a1^3*a3 + 18*a0*a1*a2*a3 - 27*a0^2*a3^2
sage: universal_discriminant(4).degrees()
(3, 4, 4, 4, 3)

See also:

Polynomial.discriminant()

2.1.4 Univariate Polynomials over domains and fields

AUTHORS:

• William Stein: first version
• Martin Albrecht: Added singular coercion.
• David Harvey: split off polynomial_integer_dense_ntl.pyx (2007-09)
• Robert Bradshaw: split off polynomial_modn_dense_ntl.pyx (2007-09)

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv (parent, is_gen=False, construct=False)

Bases:

sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain

A generic class for polynomials over complete discrete valuation domains and fields.

AUTHOR:

• Xavier Caruso (2013-03)

factor_of_slope (slope=None)

INPUT:

• slope – a rational number (default: the first slope in the Newton polygon of self)

OUTPUT:

The factor of self corresponding to the slope slope (i.e. the unique monic divisor of self whose slope is slope and degree is the length of slope in the Newton polygon).

EXAMPLES:

sage: K = Qp(5)
sage: R.<x> = K[]
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_slopes()
[1, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
sage: g = f.factor_of_slope(0)
sage: g.newton_slopes()
If `slope` is not a slope of `self`, the corresponding factor is 1:

```
sage: f.factor_of_slope(-1)
(1 + O(5^20))
```

AUTHOR:

• Xavier Caruso (2013-03-20)

hensel_lift \((a)\)

Lift \(a\) to a root of this polynomial (using Newton iteration).

If \(a\) is not close enough to a root (so that Newton iteration does not converge), an error is raised.

EXAMPLES:

```
sage: K = Qp(5, 10)
sage: P.<x> = PolynomialRing(K)
sage: f = x^2 + 1
sage: root = f.hensel_lift(2); root
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: f(root)
O(5^10)
sage: g = (x^2 + 1)*(x - 7)
sage: g.hensel_lift(2) # here, 2 is a multiple root modulo \(p\)
Traceback (most recent call last):
  ... Value Error: \(a\) is not close enough to a root of this polynomial
```

AUTHOR:

• Xavier Caruso (2013-03-23)

newton_polygon ()

Returns a list of vertices of the Newton polygon of this polynomial.

Note: If some coefficients have not enough precision an error is raised.

EXAMPLES:

```
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
sage: g = f + K(0,0)*t^4; g
```

102 Chapter 2. Univariate Polynomials
\[(5^2 + O(5^{22})) \cdot t^{10} + (O(5^0)) \cdot t^4 + (3 + O(5^{20})) \cdot t + (5 + O(5^{21}))\]

```
Sage: g.newton_polygon()
Traceback (most recent call last):
...
PrecisionError: The coefficient of t^4 has not enough precision
```

AUTHOR:
• Xavier Caruso (2013-03-20)

```python
newton_slopes (repetition=True)
```

Returns a list of the Newton slopes of this polynomial.

These are the valuations of the roots of this polynomial.

If repetition is True, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.

EXAMPLES:
```
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
sage: f.newton_slopes()
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
sage: f.newton_slopes(repetition=False)
[1, 0, -1/3]
```

AUTHOR:
• Xavier Caruso (2013-03-20)

```python
slope_factorization()
```

Return a factorization of self into a product of factors corresponding to each slope in the Newton polygon.

EXAMPLES:
```
sage: K = Qp(5)
sage: R.<x> = K[]
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_slopes()
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
sage: F = f.slope_factorization()
sage: F.prod() == f
True
sage: for (f,_) in F:
.....: print(f.newton_slopes())
[-1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
[0, 0, 0]
[1]
```

AUTHOR:
• Xavier Caruso (2013-03-20)
Sage Reference Manual: Polynomials, Release 8.0

```python
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvf (
    parent, is_gen=False, construct=False)
Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv, 
      sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvr (
    parent, is_gen=False, construct=False)
Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdv
    Bases: sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact, 
           sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdvr
    Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdv, 
           sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvr

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field (
    parent, x=None, check=True, is_gen=False, construct=False)
Bases: sage.rings.polynomial.polynomial_element.Polynomial_generic_dense, 
      sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain
    Bases: sage.rings.polynomial.polynomial_element.Polynomial, 
           sage.structure.element.IntegralDomainElement

is_unit ()
    Return True if this polynomial is a unit.

**EXERCISE** (Atiyah-McDonald, Ch 1): Let $A[x]$ be a polynomial ring in one variable. Then $f = \sum a_i x^i \in A[x]$ is a unit if and only if $a_0$ is a unit and $a_1, \ldots, a_n$ are nilpotent.

**EXAMPLES:**
```
sage: R.<z> = PolynomialRing(ZZ, sparse=True)
sage: (2 + z^3).is_unit()
False
sage: f = -1 + 3*z^3; f
3*z^3 - 1
sage: f.is_unit()
False
```
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field(parent, is_gen=False, construct=False)


quo_rem(other)

Returns a tuple (quotient, remainder) where self = quotient * other + remainder.

EXAMPLES:

```python
sage: R.<y> = PolynomialRing(QQ)
sage: K.<t> = NumberField(y^2 - 2)
sage: P.<x> = PolynomialRing(K)
sage: x.quo_rem(K(1))
(x, 0)
sage: x.xgcd(K(1))
(1, 0, 1)
```

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse(parent, x=None, check=True, is_gen=False, construct=False)

Bases: sage.rings.polynomial.polynomial_element.Polynomial

A generic sparse polynomial.

The Polynomial_generic_sparse class defines functionality for sparse polynomials over any base ring. A sparse polynomial is represented using a dictionary which maps each exponent to the corresponding coefficient. The coefficients must never be zero.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(PolynomialRing(QQ, 'y'), sparse=True)
sage: f = x^3 - x + 17
sage: type(f)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category.element_class'>
sage: loads(f.dumps()) == f
True
```

A more extensive example:

```python
sage: A.<T> = PolynomialRing(Integers(5),sparse=True) ; f = T^2+1 ; B = A.quotient(f)
sage: C.<s> = PolynomialRing(B)
sage: C
```
Univariate Polynomial Ring in s over Univariate Quotient Polynomial Ring in Tbar
→ over Ring of integers modulo 5 with modulus T^2 + 1

sage: s + T
s + Tbar
sage: (s + T)**2
s^2 + 2*Tbar*s + 4

\textbf{coefficients (sparse=True)}

Return the coefficients of the monomials appearing in \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: f.coefficients()
[5, 1, 7]
\end{verbatim}

\textbf{degree (gen=None)}

Return the degree of this sparse polynomial.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<z> = PolynomialRing(ZZ, sparse=True)
sage: f = 13*z^50000 + 15*z^2 + 17*z
sage: f.degree()
50000
\end{verbatim}

\textbf{dict ()}

Return a new copy of the dict of the underlying elements of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: d = f.dict(); d
{0: 5, 1997: 1, 10000: 7}
sage: d[0] = 10
sage: f.dict()
{0: 5, 1997: 1, 10000: 7}
\end{verbatim}

\textbf{exponents ()}

Return the exponents of the monomials appearing in \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: d = f.dict(); d
{0: 5, 1997: 1, 10000: 7}
sage: d[0] = 10
sage: f.exponents()
[0, 1997, 10000]
\end{verbatim}

\textbf{gcd (other, algorithm=None)}

Return the gcd of this polynomial and \texttt{other}

\textbf{INPUT:}

- \texttt{other} – a polynomial defined over the same ring as this polynomial.
ALGORITHM:

Two algorithms are provided:

• *generic:* Uses the generic implementation, which depends on the base ring being a UFD or a field.

• *dense:* The polynomials are converted to the dense representation, their gcd is computed and is converted back to the sparse representation.

Default is *dense* for polynomials over ZZ and *generic* in the other cases.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^6 + 7*x^5 + 8*x^4 + 6*x^3 + 2*x^2 + x + 2
sage: q = 2*x^4 - x^3 - 2*x^2 - 4*x - 1
sage: gcd(p, q)
x^2 + x + 1
sage: gcd(p, q, algorithm = "dense")
x^2 + x + 1
sage: gcd(p, q, algorithm = "generic")
x^2 + x + 1
sage: gcd(p, q, algorithm = "foobar")
Traceback (most recent call last):
 ... ValueError: Unknown algorithm 'foobar'
```

**integral** *(var=None)*

Return the integral of this polynomial.

By default, the integration variable is the variable of the polynomial.

Otherwise, the integration variable is the optional parameter *var*

**Note:** The integral is always chosen so that the constant term is 0.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: (1 + 3*x^10 - 2*x^100).integral()
-2/101*x^101 + 3/11*x^11 + x
```

**list** *(copy=True)*

Return a new copy of the list of the underlying elements of *self*.

EXAMPLES:

```python
sage: R.<z> = PolynomialRing(Integers(100), sparse=True)
sage: f = 13*z^5 + 15*z^2 + 17*z
sage: f.list()
[0, 17, 15, 0, 0, 13]
```

**number_of_terms** *

Return the number of nonzero terms.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^100 - 3*x^10 + 12
```
\texttt{sage}: p.number_of_terms()

3

\texttt{quo\_rem}(\textit{other})

Returns the quotient and remainder of the Euclidean division of \texttt{self} and \texttt{other}.

Raises \texttt{ZerodivisionError} if \texttt{other} is zero. Raises \texttt{ArithmeticError} if \texttt{other} has a nonunit leading coefficient.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: P.<x> = PolynomialRing(ZZ, sparse=True)
\texttt{sage}: R.<y> = PolynomialRing(P, sparse=True)
\texttt{sage}: f = R.random_element(10)
\texttt{sage}: g = y^5+R.random_element(4)
\texttt{sage}: q, r = f.quo_rem(g)
\texttt{sage}: q == g*r + r and r.degree() < g.degree()
\texttt{True}
\texttt{sage}: g = x*y^5
\texttt{sage}: f.quo_rem(g)
Traceback (most recent call last):
  ...
\texttt{ArithmeticError}: Division non exact (consider coercing to polynomials over \rightarrow the fraction field)
\texttt{sage}: g = 0
\texttt{sage}: f.quo_rem(g)
Traceback (most recent call last):
  ...
\texttt{ZeroDivisionError}: Division by zero polynomial
\end{verbatim}

\textbf{AUTHORS:}

• Bruno Grenet (2014-07-09)

\texttt{reverse}(\textit{degree=\texttt{None}})

Return this polynomial but with the coefficients reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: R.<x> = PolynomialRing(ZZ, sparse=True)
\texttt{sage}: p = x^4 + 2\times^2\times100
\texttt{sage}: p.reverse()
\times^{1267650600228229401496703205372} + 2
\texttt{sage}: p.reverse(10)
\times^6
\end{verbatim}

\texttt{shift}(n)

Returns this polynomial multiplied by the power $x^n$.

If $n$ is negative, terms below $x^n$ will be discarded. Does not change this polynomial.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: R.<x> = PolynomialRing(ZZ, sparse=True)
\texttt{sage}: p = x^100000 + 2\times + 4
\texttt{sage}: type(p)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_{\rightarrow with category.element_class}'>
\end{verbatim}
AUTHOR: - David Harvey (2006-08-06)

**truncate** \((n)\)

Return the polynomial of degree \(< n\) equal to \(self\) modulo \(x^n\).

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: (x^11 + x^10 + 1).truncate(11)
x^10 + 1
sage: (x^2^500 + x^2^100 + 1).truncate(2^101)
x^1267650600228229401496703205376 + 1
```

**valuation()**

Return the valuation of \(self\).

**EXAMPLES:**

```python
sage: R.<w> = PolynomialRing(GF(9,'a'), sparse=True)
sage: f = w^1997 - w^10000
sage: f.valuation()
1997
sage: R(19).valuation()
0
sage: R(0).valuation()
+Infinity
```

```python
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvv
 parent, x=None, check=True, is_gen=False, construct=False
```

```python
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvf
 parent, x=None, check=True, is_gen=False, construct=False
```
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvr\(\text{parent,} x=\text{None,}\ \check{\text{check=}}\text{True,}\ \text{is_gen=}\text{False,}\ \text{construct=}\text{False}\)


class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_field\(\text{parent,} x=\text{None,}\ \check{\text{check=}}\text{True,}\ \text{is_gen=}\text{False,}\ \text{construct=}\text{False}\)

Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse, sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Frac(RR['t']), sparse=True)
sage: f = x^3 - x + 17
sage: type(f)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category.element_class'>
sage: loads(f.dumps()) == f
True
```

2.1.5 Univariate Polynomials over GF(2) via NTL’s GF2X.

AUTHOR: - Martin Albrecht (2008-10) initial implementation

sage.rings.polynomial.polynomial_gf2x.GF2X_BuildIrred_list\(n\)
Return the list of coefficients of the lexicographically smallest irreducible polynomial of degree \(n\) over the field of 2 elements.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
sage: GF2X_BuildIrred_list(2)
[1, 1, 1]
sage: GF2X_BuildIrred_list(3)
[1, 1, 0, 1]
sage: GF2X_BuildIrred_list(4)
[1, 0, 0, 1]
sage: GF(2)('x')['x'](GF2X_BuildIrred_list(33))
x^33 + x^6 + x^3 + x + 1
```

sage.rings.polynomial.polynomial_gf2x.GF2X_BuildRandomIrred_list\(n\)
Return the list of coefficients of an irreducible polynomial of degree \(n\) of minimal weight over the field of 2 elements.

EXAMPLES:
```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildRandomIrred_list
sage: GF2X_BuildRandomIrred_list(2)
[1, 1, 1]
sage: GF2X_BuildRandomIrred_list(3) in [[1, 1, 0, 1], [1, 0, 1, 1]]
True
```

`sage.rings.polynomial.polynomial_gf2x.GF2X_BuildSparseIrred_list(n)`

Returns the list of coefficients of an irreducible polynomial of degree $n$ of minimal weight over the field of 2 elements.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list,
 GF2X_BuildSparseIrred_list
sage: all([GF2X_BuildSparseIrred_list(n) == GF2X_BuildIrred_list(n)
 for n in range(1,33)])
True
sage: GF(2)['x'](GF2X_BuildSparseIrred_list(33))
x^33 + x^10 + 1
```

**class** `sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X`

**Bases:** `sage.rings.polynomial.polynomial_gf2x.Polynomial_template`

Univariate Polynomials over GF(2) via NTL's GF2X.

**EXAMPLES:**

```python
sage: P.<x> = GF(2)[]
sage: x^3 + x^2 + 1
```

`is_irreducible()`

Return whether this polynomial is irreducible over $\mathbb{F}_2$.

**EXAMPLES:**

```python
sage: R.<x> = GF(2)[]
sage: (x^2 + 1).is_irreducible()
False
sage: (x^3 + x + 1).is_irreducible()
True
```

Test that caching works:

```python
sage: R.<x> = GF(2)[]
sage: f = x^2 + 1
sage: f.is_irreducible()
False
sage: f.is_irreducible.cache
False
```

`modular_composition(g, h, algorithm=None)`

Compute $f(g)$ (mod $h$).


**INPUT:**

- $g$ – a polynomial
• h – a polynomial

• algorithm – either ‘native’ or ‘ntl’ (default: ‘native’)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: r = 279
sage: f = x^r + x +1
sage: g = x^r
sage: g.modular_composition(g, f) == g(g) % f
True

sage: P.<x> = GF(2)[]
sage: f = x^29 + x^24 + x^22 + x^21 + x^16 + x^15 + x^14 + x^10 + x^9 +
 ... x^8 + x^7 + x^6 + x^5 + x^2
sage: g = x^31 + x^30 + x^28 + x^26 + x^24 + x^21 + x^19 + x^18 + x^11 + x^10 +
 ... x^9 + x^8 + x^5 + x^2 + 1
sage: h = x^30 + x^28 + x^26 + x^25 + x^24 + x^22 + x^21 + x^18 + x^17 + x^15 +
 ... x^13 + x^12 + x^11 + x^10 + x^9 + x^4
sage: f.modular_composition(g,h) == f(g) % h
True
```

AUTHORS:

• Paul Zimmermann (2008-10) initial implementation

• Martin Albrecht (2008-10) performance improvements

class sage.rings.polynomial.polynomial_gf2x.Polynomial_template

Bases: sage.rings.polynomial.polynomial_element.Polynomial

Template for interfacing to external C / C++ libraries for implementations of polynomials.

AUTHORS:

• Robert Bradshaw (2008-10): original idea for templating

• Martin Albrecht (2008-10): initial implementation

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a ‘linkage’ file which implements the celement_ functions (see sage.libs.ntl.ntl_GF2X_linkage for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See sage.rings.polynomial.polynomial_gf2x for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).

Note: Implementations using this template MUST implement coercion from base ring elements and get_unsafe(). See Polynomial_GF2X for an example.

def degree() :

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
```
gcd(other)
Return the greatest common divisor of self and other.

EXAMPLES:
```
sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x
```

get_cparent()
is_gen()
is_one()
is_zero()
list(copy=True)
quo_rem(right)
shift(n)

2.1. Univariate Polynomials and Polynomial Rings 113
```
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
 x^4 + x^3 + x
sage: f.shift(-1)
 x^2 + x
```

### truncate \((n)\)

Returns this polynomial mod \(x^n\).

**EXAMPLES:**

```
sage: R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
 x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
 x^5 + x^4 + x^3 + x^2 + x + 1
```

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

```
sage: f.truncate(10) is f
 True
```

### xgcd \((other)\)

Computes extended gcd of self and other.

**EXAMPLES:**

```
sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
 (x + 1, 0, 1)
sage: f.xgcd(x^2)
 (x, 1, 6)
```

```
sage: sage.rings.polynomial.polynomial_gf2x.make_element (parent, args)
```

## 2.1.6 Univariate polynomials over number fields.

**AUTHOR:**


**EXAMPLES:**

Define a polynomial over an absolute number field and perform basic operations with them:

```
sage: N.<a> = NumberField(x^2-2)
sage: K.<x> = N[]
sage: f = x - a
sage: g = x^3 - 2*a + 1
sage: f*(x + a)
 x^2 - 2
sage: f + g
 x^3 + x - 3*a + 1
sage: g // f
 x^2 + a*x + 2
sage: g % f
```
Polynomials are aware of embeddings of the underlying field:

```python
sage: x = var('x')
sage: Q7 = Qp(7)
sage: r1 = Q7(3 + 7 + 2*7^2 + 6*7^3 + 7^4 + 2*7^5 + 7^6 + 2*7^7 + 4*7^8 +\n6*7^9 + 6*7^10 + 2*7^11 + 7^12 + 7^13 + 2*7^15 + 7^16 + 7^17 +\n4*7^18 + 6*7^19)
sage: N. = NumberField(x^2-2, embedding = r1)
sage: K.<t> = N[]
sage: f = t^3-2*t+1
sage: f(r1)
1 + O(7^20)
```

We can also construct polynomials over relative number fields:

```python
sage: N.<i, s2> = QQ[I, sqrt(2)]
sage: K.<x> = N[]
sage: f = x - s2
sage: g = x^3 - 2*i*x^2 + s2*x
sage: f*(x + s2)
x^2 - 2
sage: f + g
x^3 - 2*I*x^2 + (sqrt2 + 1)*x - sqrt2
sage: g // f
x^2 + (-2*I + sqrt2)*x - 2*sqrt2*I + sqrt2 + 2
sage: g % f
-4*I + 2*sqrt2 + 2
sage: factor(i*x^4 - 2*i*x^2 + 9*i)
(I) * (x - I + sqrt2) * (x + I - sqrt2) * (x - I - sqrt2) * (x + I + sqrt2)
sage: gcd(f, x-i)
1
```

```python
class sage.rings.polynomial.polynomial_number_field.Polynomial_absolute_number_field_dense

Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field

Class of dense univariate polynomials over an absolute number field.

gcd(\textit{other})

Compute the monic gcd of two univariate polynomials using PARI.

INPUT:

\textbullet\ \textit{other} – a polynomial with the same parent as \textit{self}.

OUTPUT:

\textbullet\ The monic gcd of \textit{self} and \textit{other}.
```

2.1. Univariate Polynomials and Polynomial Rings
EXAMPLES:

```python
sage: N.<a> = NumberField(x^3-1/2, 'a')
sage: R.<r> = N['r']
sage: f = (5/4*a^2 - 2*a + 4)*r^2 + (5*a^2 - 81/5*a - 17/2)*r + 4/5*a^2 + 24*a + 6
sage: g = (5/4*a^2 - 2*a + 4)*r^2 + (-11*a^2 + 79/5*a - 7/2)*r - 4/5*a^2 - 24*a - 6
sage: gcd(f, g**2)
r - 60808/96625*a^2 - 69936/96625*a - 149212/96625
```

```
class sage.rings.polynomial.polynomial_number_field.Polynomial_relative_number_field_dense(parent, x=None, check=True, is_gen=False, construct=False)
Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field
Class of dense univariate polynomials over a relative number field.
gcd(other)

Compute the monic gcd of two polynomials.

Currently, the method checks corner cases in which one of the polynomials is zero or a constant. Then, computes an absolute extension and performs the computations there.

INPUT:

• `other` – a polynomial with the same parent as `self`.

OUTPUT:

• The monic gcd of `self` and `other`.

See `Polynomial_absolute_number_field_dense.gcd()` for more details.

EXAMPLES:

```python
sage: N = QQ[sqrt(2), sqrt(3)]
sage: s2, s3 = N.gens()
sage: x = polygen(N)
sage: f = x^4 - 5*x^2 + 6
sage: g = x^3 + (-2*s2 + s3)*x^2 + (-2*s3*s2 + 2)*x + 2*s3
sage: gcd(f, g)
x^2 + (-sqrt2 + sqrt3)*x - sqrt3*sqrt2
sage: f.gcd(g)
x^2 + (-sqrt2 + sqrt3)*x - sqrt3*sqrt2
```
2.1.7 Dense univariate polynomials over \(\mathbb{Z} \), implemented using FLINT.

AUTHORS:

- David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler’s recent rewrite of the NTL wrapper
- David Harvey: split off from polynomial_element_generic.py (2007-09)
- Burcin Erocal: rewrote to use FLINT (2008-06-16)

class sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint
Bases: sage.rings.polynomial.polynomial_element.Polynomial

A dense polynomial over the integers, implemented via FLINT.

__add__ (right)
Returns self plus right.

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(ZZ)
sage: f = 2*x + 1
sage: g = -3*x^2 + 6
sage: f + g
-3*x^2 + 2*x + 7
```

__sub__ (right)
Return self minus right.

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(ZZ)
sage: f = 2*x + 1
sage: g = -3*x^2 + 6
sage: f - g
3*x^2 + 2*x - 5
```

__lmul__ (right)
Returns self multiplied by right, where right is a scalar (integer).

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(ZZ)
sage: x*3
3*x
sage: (2*x^2 + 4)*3
6*x^2 + 12
```

__rmul__ (right)
Returns self multiplied by right, where right is a scalar (integer).

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(ZZ)
sage: 3*x
3*x
sage: 3*(2*x^2 + 4)
6*x^2 + 12
```
__mul__ (right)
Returns self multiplied by right.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: (x - 2)*(x^2 - 8*x + 16)
x^3 - 10*x^2 + 32*x - 32
```

__mul_trunc__ (right, n)
Truncated multiplication

See also:
__mul__ () for standard multiplication

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: p1 = 1 + x + x^2 + x^4
sage: p2 = -2 + 3*x^2 + 5*x^4
sage: p1._mul_trunc_(p2, 4)
3*x^3 + x^2 - 2*x - 2
```

content ()
Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: (2*x^2 - 4*x^4 + 14*x^7).content()
2
sage: x.content()
1
sage: R(1).content()
1
sage: R(0).content()
0
```

degree (gen=None)
Return the degree of this polynomial.

The zero polynomial has degree -1.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: x.degree()
1
sage: (x^2).degree()
2
sage: R(1).degree()
0
sage: R(0).degree()
-1
```
\textbf{disc (proof=True)}

Return the discriminant of self, which is by definition

\[(−1)^{m−1}/2 \text{resultant}(a, a')/\text{lc}(a),\]

where \(m = \text{deg}(a)\), and \(\text{lc}(a)\) is the leading coefficient of \(a\). If \(\text{proof} \) is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \(2^{−80}\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = ZZ[]
sage: f = 3*x^3 + 2*x + 1
sage: f.discriminant() -339
sage: f.discriminant(proof=False) -339
\end{verbatim}

\textbf{discriminant (proof=True)}

Return the discriminant of self, which is by definition

\[(−1)^{m−1}/2 \text{resultant}(a, a')/\text{lc}(a),\]

where \(m = \text{deg}(a)\), and \(\text{lc}(a)\) is the leading coefficient of \(a\). If \(\text{proof} \) is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \(2^{−80}\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = ZZ[]
sage: f = 3*x^3 + 2*x + 1
sage: f.discriminant() -339
sage: f.discriminant(proof=False) -339
\end{verbatim}

\textbf{factor ()}

This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use Pari or NTL based on some benchmarking.

Note: This function factors the content of the polynomial, which can take very long if it’s a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x>=ZZ[]
sage: f=x^4-1
sage: f.factor() (x - 1) * (x + 1) * (x^2 + 1)
sage: f=1-x
sage: f.factor() (-1) * (x - 1)
sage: f.factor().unit() -1
sage: f = -30*x; f.factor() (-1) * 2 * 3 * 5 * x
\end{verbatim}

\textbf{factor_mod (p)}

Return the factorization of self modulo the prime \(p\).

\textbf{INPUT:}
• p – prime

OUTPUT:

factorization of self reduced modulo p.

EXAMPLES:

```sage
R.<x> = ZZ['x']
f = -3*x*(x-2)*(x-9) + x
f.factor_mod(3)
```

```
x
```

```sage
f = -3*x*(x-2)*(x-9)
f.factor_mod(3)
Traceback (most recent call last):
  ...
ArithmeticError: factorization of 0 is not defined
```

```sage
f = 2*x*(x-2)*(x-9)
f.factor_mod(7)
```

```
(2) * x * (x + 5)^2
```

\textbf{factor_padic} \((p, \text{prec}=10)\)

Return \(p\)-adic factorization of self to given precision.

INPUT:

• p – prime
• prec – integer; the precision

OUTPUT:

• factorization of self over the completion at p.

EXAMPLES:

```sage
R.<x> = PolynomialRing(ZZ)
f = x^2 + 1
f.factor_padic(5, 4)
```

```
((1 + O(5^4))*x + (2 + 5 + 2*5^2 + 5^3 + O(5^4))) * ((1 + O(5^4))*x + (3 + ...
```

A more difficult example:

```sage
f = 100 * (5*x + 1)^2 * (x + 5)^2
f.factor_padic(5, 10)
```

```
(4 + O(5^10)) * ((5 + O(5^11)))^2 * ((1 + O(5^10))*x + (5 + O(5^10)))^2 * ((5 ...
```

\textbf{gcd} \((\text{right})\)

Return the GCD of self and right. The leading coefficient need not be 1.

EXAMPLES:

```sage
R.<x> = PolynomialRing(ZZ)
f = (6*x + 47)*(7*x^2 - 2*x + 38)
g = (6*x + 47)*(3*x^3 + 2*x + 1)
f.gcd(g)
```

```
6*x + 47
```
inverse_series_trunc(prec)

Return a polynomial approximation of precision \(\text{prec}\) of the inverse series of this polynomial.

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: p = 1+x+2*x^2
sage: q5 = p.inverse_series_trunc(5)
sage: q5
-x^4 + 3*x^3 - x^2 - x + 1
sage: p*q5
-2*x^6 + 5*x^5 + 1
sage: (x-1).inverse_series_trunc(5)
-x^4 - x^3 - x^2 - x - 1
sage: q100 = p.inverse_series_trunc(100)
sage: (q100 * p).truncate(100)
1
```

is_zero()

Returns True if self is equal to zero.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: R(0).is_zero()
True
sage: R(1).is_zero()
False
sage: x.is_zero()
False
```

lcm(right)

Return the LCM of self and right.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
sage: h = f.lcm(g); h
126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786
sage: h == (6*x + 47)*(7*x^2 - 2*x + 38)*(3*x^3 + 2*x + 1)
True
```

list(copy=True)

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```
sage: x = PolynomialRing(ZZ,'x').0
sage: f = x^3 + 3*x - 17
sage: f.list()
[-17, 3, 0, 1]
sage: f = PolynomialRing(ZZ,'x')(0)
sage: f.list()
[]
```
pseudo_divrem(B)
Write $A = self$. This function computes polynomials Q and R and an integer d such that

$$\text{lead}(B)^d A = BQ + R$$

where R has degree less than that of B.

INPUT:
• B – a polynomial over \mathbb{Z}

OUTPUT:
• Q, R – polynomials
• d – nonnegative integer

EXAMPLES:

```sage
sage: R.<x> = ZZ['x']
sage: A = R(range(10))
sage: B = 3*R([-1, 0, 1])
sage: Q, R, d = A.pseudo_divrem(B)
sage: Q, R, d
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 75*x + 60, 1)
sage: B.leading_coefficient()^d * A == B*Q + R
True
```

quo_rem($right$)
Attempts to divide self by $right$, and return a quotient and remainder.

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(ZZ)
sage: f = R(range(10)); g = R([-1, 0, 1])
sage: q, r = f.quo_rem(g)
sage: q, r
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 25*x + 20)
sage: q*g + r == f
True
sage: f = x^2
sage: f.quo_rem(0)
Traceback (most recent call last):
...
ZeroDivisionError: division by zero polynomial
sage: f = (x^2 + 3) * (2*x - 1)
sage: f.quo_rem(2*x - 1)
(x^2 + 3, 0)
sage: f = x^2
sage: f.quo_rem(2*x - 1)
(0, x^2)
```

real_root_intervals()
Returns isolating intervals for the real roots of this polynomial.

EXAMPLES: We compute the roots of the characteristic polynomial of some Salem numbers:
resultant (other, proof=True)

Returns the resultant of self and other, which must lie in the same polynomial ring.

If proof = False (the default is proof=True), then this function may use a randomized strategy
that errors with probability no more than 2^{-80}.

INPUT:

•other – a polynomial

OUTPUT:

an element of the base ring of the polynomial ring

EXAMPLES:

```
sage: x = PolynomialRing(ZZ, 'x').0
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
sage: r.parent() is ZZ
True
```

reverse (degree=None)

Return a polynomial with the coefficients of this polynomial reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary
and the reverse polynomial will have the specified degree.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
sage: p.reverse()
x^3 + 2*x^2 + 3*x + 4
sage: p.reverse(degree=6)
x^6 + 2*x^5 + 3*x^4 + 4*x^3
sage: p.reverse(degree=2)
x^2 + 2*x + 3
```

revert_series (n)

Return a polynomial f such that $f(self(x)) = self(f(x)) = x^{mod \ n}$.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: f = t - t^3 + t^5
sage: f.revert_series(6)
2*t^5 + t^3 + t
sage: f.revert_series(-1)
Traceback (most recent call last):
  ...
ValueError: argument n must be a non-negative integer, got -1
```
sage: g = - t^3 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
...
ValueError: self must have constant coefficient 0 and a unit for coefficient -t^1

\textbf{squarefree_decomposition}()

Return the square-free decomposition of self. This is a partial factorization of self into square-free, relatively prime polynomials.

This is a wrapper for the NTL function SquareFreeDecomp.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)
sage: p = (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
sage: p.squarefree_decomposition()
(x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
sage: p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
sage: p.squarefree_decomposition()
(37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3

\textbf{xgcd} (right)

Return a triple \((g, s, t)\) such that \(g = s \cdot \text{self} + t \cdot \text{right}\) and such that \(g\) is the \(gcd\) of \text{self} and \text{right} up to a divisor of the resultant of \text{self} and \text{other}.

As integer polynomials do not form a principal ideal domain, it is not always possible given \(a\) and \(b\) to find a pair \(s, t\) such that \(gcd(a, b) = sa + tb\). Take \(a = x + 2\) and \(b = x + 4\) as an example for which the gcd is 1 but the best you can achieve in the Bezout identity is 2.

If \text{self} and \text{right} are coprime as polynomials over the rationals, then \(g\) is guaranteed to be the resultant of \text{self} and \text{right}, as a constant polynomial.

EXAMPLES:

sage: P.<x> = PolynomialRing(ZZ)
sage: (x+2).xgcd(x+4)
(2, -1, 1)
sage: (x+2).resultant(x+4)
2
sage: (x+2).gcd(x+4)
1
sage: F = (x^2 + 2)*x^3; G = (x^2+2)*(x-3)
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(27*x^2 + 54, 1, -x^2 - 3*x - 9)
sage: u*F + v*G
27*x^2 + 54
sage: zero = P(0)
sage: x.xgcd(zero)
(x, 1, 0)
sage: zero.xgcd(x)
(x, 0, 1)
sage: F = (x-3)^3; G = (x-15)^2
2.1.8 Dense univariate polynomials over \(\mathbb{Z} \), implemented using NTL.

AUTHORS:

- David Harvey: split off from polynomial_element_generic.py (2007-09)
- David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler's recent rewrite of the NTL wrapper

Sage includes two implementations of dense univariate polynomials over \(\mathbb{Z} \); this file contains the implementation based on NTL, but there is also an implementation based on FLINT in `sage.rings.polynomial.polynomial_integer_dense_flint`.

The FLINT implementation is preferred (FLINT's arithmetic operations are generally faster), so it is the default; to use the NTL implementation, you can do:

```
sage: K.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: K
Univariate Polynomial Ring in x over Integer Ring (using NTL)
```

```python
class sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl
Bases: sage.rings.polynomial.polynomial_element.Polynomial

A dense polynomial over the integers, implemented via NTL.

**content()**

Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: (2*x^2 - 4*x^4 + 14*x^7).content()
sage: (2*x^2 - 4*x^4 - 14*x^7).content()
sage: x.content()
sage: R(1).content()
sage: R(0).content()
```

**degree**(gen=None)

Return the degree of this polynomial. The zero polynomial has degree -1.

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: x.degree()
sage: (x^2).degree()
```
2
sage: R(1).degree()
0
sage: R(0).degree()
-1

**discriminant** *(proof=True)*

Return the discriminant of self, which is by definition

\[ (-1)^{m(m-1)/2} \text{resultant}(a, a')/\text{lc}(a), \]

where \( m = \text{deg}(a) \), and \( \text{lc}(a) \) is the leading coefficient of \( a \). If \( \text{proof} \) is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \( 2^{-80} \).

**EXAMPLES:**

sage: f = ntl.ZZX([1,2,0,3])
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339

**factor()**

This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use Pari or NTL based on some benchmarking.

Note: This function factors the content of the polynomial, which can take very long if it’s a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.

**EXAMPLES:**

sage: R.<x>=ZZ[

sage: f=x^4-1
dsage: f.factor()
(x - 1) * (x + 1) * (x^2 + 1)
sage: f=1-x
dsage: f.factor()
(-1) * (x - 1)
sage: f.factor().unit()
-1
sage: f = -30*x; f.factor()
(-1) * 2 * 3 * 5 * x

**factor_mod** *(p)*

Return the factorization of self modulo the prime \( p \).

**INPUT:**

\*p – prime

**OUTPUT:** factorization of self reduced modulo \( p \).

**EXAMPLES:**

sage: R.<x> = PolynomialRing(ZZ, 'x', implementation='NTL')
sage: f = -3*x*(x-2)*(x-9) + x
dsage: f.factor_mod(3)
x
sage: f = -3*x*(x-2)*(x-9)
```python
sage: f.factor_mod(3)
Traceback (most recent call last):
...
ArithmeticError: factorization of 0 is not defined
sage: f = 2*x*(x-2)*(x-9)
sage: f.factor_mod(7)
(2) * x * (x + 5)^2
```

**factor_padic** $(p, \text{prec}=10)$

Return $p$-adic factorization of self to given precision.

**INPUT:**

- $p$ – prime
- $\text{prec}$ – integer; the precision

**OUTPUT:**

- factorization of self over the completion at $p$.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = x^2 + 1
sage: f.factor_padic(5, 4)
((1 + O(5^4))*x + (2 + 5 + 2*5^2 + 5^3 + O(5^4)))*((1 + O(5^4))*x + (3 +...
˓→3*5 + 2*5^2 + 3*5^3 + O(5^4)))
```

A more difficult example:

```python
sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
sage: f.factor_padic(5, 10)
(4 + O(5^10)) * ((5 + O(5^11))^2 * ((1 + O(5^10))^2 + O(5^10)) + O(5^10))
```

**gcd** $(\text{right})$

Return the GCD of self and right. The leading coefficient need not be 1.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
sage: f.gcd(g)
6*x + 47
```

**lcm** $(\text{right})$

Return the LCM of self and right.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = (6*x + 47)*(7*x^2 - 2*x + 38)
sage: g = (6*x + 47)*(3*x^3 + 2*x + 1)
sage: h = f.lcm(g); h
126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786
sage: h == (6*x + 47)*(7*x^2 - 2*x + 38)*(3*x^3 + 2*x + 1)
True
```
list (copy=True)
Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```python
sage: x = PolynomialRing(ZZ,'x',implementation='NTL').0
sage: f = x^3 + 3*x - 17
sage: f.list()
[-17, 3, 0, 1]
sage: f = PolynomialRing(ZZ,'x',implementation='NTL')(0)
sage: f.list()
[]
```

quo_rem(right)
Attempts to divide self by right, and return a quotient and remainder.
If right is monic, then it returns \((q, r)\) where \(self = q \cdot right + r\) and \(deg(r) < deg(right)\).
If right is not monic, then it returns \((q, 0)\) where \(q = self/right\) if right exactly divides self, otherwise it raises an exception.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = R(range(10)); g = R([-1, 0, 1])
sage: q, r = f.quo_rem(g)
sage: q*g + r == f
True
sage: 0//(2*x)
0
sage: f = x^2
sage: f.quo_rem(0)
Traceback (most recent call last):
 ... ArithmeticError: division by zero polynomial
sage: f = (x^2 + 3) * (2*x - 1)
sage: f.quo_rem(2*x - 1)
(x^2 + 3, 0)
sage: f = x^2
sage: f.quo_rem(2*x - 1)
Traceback (most recent call last):
 ... ArithmeticError: division not exact in Z[x] (consider coercing to Q[x] first)
```

real_root_intervals()
Returns isolating intervals for the real roots of this polynomial.

EXAMPLES: We compute the roots of the characteristic polynomial of some Salem numbers:

```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = 1 - x^2 - x^3 - x^4 + x^6
sage: f.real_root_intervals()
[((1/2, 3/4), 1), ((1, 3/2), 1)]
```
resultant (other, proof=True)

Returns the resultant of self and other, which must lie in the same polynomial ring.

If proof = False (the default is proof=True), then this function may use a randomized strategy that errors
with probability no more than $2^{-80}$.

INPUT:

- other – a polynomial

OUTPUT:

an element of the base ring of the polynomial ring

EXAMPLES:

```
sage: x = PolynomialRing(ZZ, 'x', implementation='NTL').0/nsage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
sage: r.parent() is ZZ
True
```

squarefree_decomposition()

Return the square-free decomposition of self. This is a partial factorization of self into square-free, rela-
tively prime polynomials.

This is a wrapper for the NTL function SquareFreeDecomp.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)
sage: p.squarefree_decomposition()
(37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
```

xgcd(right)

This function can’t in general return $(g, s, t)$ as above, since they need not exist. Instead, over the
integers, we first multiply $g$ by a divisor of the resultant of $a/g$ and $b/g$, up to sign, and return $g, u, v$
such that $g = s*\text{self} + s*\text{right}$. But note that this $g$ may be a multiple of the gcd.

If self and right are coprime as polynomials over the rationals, then $g$ is guaranteed to be the resultant
of self and right, as a constant polynomial.

EXAMPLES:

```
sage: P.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: F = (x^2 + 2)*x^3; G = (x^2+2)*(x-3)
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(27*x^2 + 54, 1, -x^2 - 3*x - 9)
sage: u*F + v*G
27*x^2 + 54
sage: x.xgcd(P(0))
(x, 1, 0)
sage: f = P(0)
sage: f.xgcd(x)
(x, 0, 1)
sage: F = (x-3)^3; G = (x-15)^2
sage: g, u, v = F.xgcd(G)
sage: g, u, v
```

2.1.9 Univariate polynomials over \( Q \) implemented via FLINT

AUTHOR:
- Sebastian Pancratz

class sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint

Bases: sage.rings.polynomial.polynomial_element.Polynomial

Univariate polynomials over the rationals, implemented via FLINT.

Internally, we represent rational polynomial as the quotient of an integer polynomial and a positive denominator which is coprime to the content of the numerator.

__add__(right)

Returns the sum of two rational polynomials.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = 2/3 + t + 2*t^3
sage: g = -1 + t/3 - 10/11*t^4
sage: f + g
-10/11*t^4 + 2*t^3 + 4/3*t - 1/3
```

__sub__(right)

Returns the difference of two rational polynomials.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = -10/11*t^4 + 2*t^3 + 4/3*t - 1/3
sage: g = 2*t^3
sage: f - g
indirect doctest
-10/11*t^4 + 4/3*t - 1/3
```

__lmul__(right)

Returns self * right, where right is a rational number.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = 3/2*t^3 - t + 1/3
sage: f * 6
indirect doctest
9*t^3 - 6*t + 2
```

__rmul__(left)

Returns left * self, where left is a rational number.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = 3/2*t^3 - t + 1/3
sage: 6 * f
indirect doctest
9*t^3 - 6*t + 2
```
\_mul\_\_ (right)
Returns the product of self and right.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = -1 + 3*t/2 - t^3
sage: g = 2/3 + 7/3*t + 3*t^2
sage: f * g # indirect doctest
-3*t^5 - 7/3*t^4 + 23/6*t^3 + 1/2*t^2 - 4/3*t - 2/3
```

\_mul\_trunc\_ (right, n)
Truncated multiplication.

EXAMPLES:

```
sage: x = polygen(QQ)
sage: p1 = 1/2 - 3*x + 2/7*x**3
sage: p2 = x + 2/5*x**5 + x**7
sage: p1._mul_trunc_(p2, 5)
2/7*x^4 - 3*x^2 + 1/2*x
sage: (p1*p2).truncate(5)
2/7*x^4 - 3*x^2 + 1/2*x
sage: p1._mul_trunc_(p2, 1)
0
sage: p1._mul_trunc_(p2, 0)
Traceback (most recent call last):
 ... ValueError: n must be > 0
```

ALGORITHM:
Call the FLINT method fmpq_poly_mullow.

degree()
Return the degree of self.

By convention, the degree of the zero polynomial is -1.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2/2 + t^3/3 + t^4/4
sage: f.degree()
4
sage: g = R(0)

sage: g.degree()
-1
```

denominator()
Returns the denominator of self.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = (3 * t^3 + 1) / -3
sage: f.denominator()
3
```

2.1. Univariate Polynomials and Polynomial Rings 131
disc()  
Returns the discriminant of this polynomial.

The discriminant $R_n$ is defined as

$$R_n = a_n^{2n-2} \prod_{1 \leq i < j \leq n} (r_i - r_j)^2,$$

where $n$ is the degree of this polynomial, $a_n$ is the leading coefficient and the roots over $\mathbb{Q}$ are $r_1, \ldots, r_n$.

The discriminant of constant polynomials is defined to be 0.

OUTPUT:

- Discriminant, an element of the base ring of the polynomial ring

Note: Note the identity $R_n(f) := (-1)^n(n-1)/2)R(f, f')a_n^{n-k-2}$, where $n$ is the degree of this polynomial, $a_n$ is the leading coefficient, $f'$ is the derivative of $f$, and $k$ is the degree of $f'$. Calls resultant().

ALGORITHM:
Use PARI.

EXAMPLES:
In the case of elliptic curves in special form, the discriminant is easy to calculate:

```
sage: R.<t> = QQ[]
sage: f = t^3 + t + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant() / 16
-31
```

```
sage: R.<t> = QQ[]
sage: f = 2*t^3 + t + 1
sage: d = f.discriminant(); d
-116
```

```
sage: R.<t> = QQ[]
sage: f = t^3 + 3*t - 17
sage: f.discriminant()
-7911
```

discriminant()  
Returns the discriminant of this polynomial.

The discriminant $R_n$ is defined as

$$R_n = a_n^{2n-2} \prod_{1 \leq i < j \leq n} (r_i - r_j)^2,$$

where $n$ is the degree of this polynomial, $a_n$ is the leading coefficient and the roots over $\mathbb{Q}$ are $r_1, \ldots, r_n$.

The discriminant of constant polynomials is defined to be 0.

OUTPUT:
• Discriminant, an element of the base ring of the polynomial ring

Note: Note the identity $R_n(f) := (-1)^n(n-1)/2R(f,f')a_n^{-n-k-2}$, where $n$ is the degree of this polynomial, $a_n$ is the leading coefficient, $f'$ is the derivative of $f$, and $k$ is the degree of $f'$. Calls resultant().

ALGORITHM:
Use PARI.

EXAMPLES:
In the case of elliptic curves in special form, the discriminant is easy to calculate:

```python
sage: R.<t> = QQ[]
sage: f = t^3 + t + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant() / 16
-31
```

```python
sage: R.<t> = QQ[]
sage: f = 2*t^3 + t + 1
sage: d = f.discriminant(); d
-116
```

```python
sage: R.<t> = QQ[]
sage: f = t^3 + 3*t - 17
sage: f.discriminant()
-7911
```

**factor_mod**(p)
Returns the factorization of self modulo the prime $p$.

Assumes that the degree of this polynomial is at least one, and raises a ValueError otherwise.

INPUT:
• $p$ - Prime number

OUTPUT:
• Factorization of this polynomial modulo $p$

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: (x^5 + 17*x^3 + x + 3).factor_mod(3)
x * (x^2 + 1)^2
```

```python
sage: (x^5 + 2).factor_mod(5)
(x + 2)^5
```

Variable names that are reserved in PARI, such as $\zeta$, are supported (see trac ticket #20631):

```python
sage: R.<zeta> = QQ[]
sage: (zeta^2 + zeta + 1).factor_mod(7)
(zeta + 3) * (zeta + 5)
```
factor_padic \( (p, \text{prec}=10) \)

Return the \( p \)-adic factorization of this polynomial to the given precision.

**INPUT:**

- \( p \) - Prime number
- \( \text{prec} \) - Integer; the precision

**OUTPUT:**

- factorization of \( \text{self} \) viewed as a \( p \)-adic polynomial

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^3 - 2
sage: f.factor_padic(2)
(1 + O(2^10))*x^3 + (O(2^10))*x^2 + (O(2^10))*x + (2 + 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^6 + 2^7 + 2^8 + O(2^10))
sage: f.factor_padic(3)
(1 + O(3^10))*x^3 + (O(3^10))*x^2 + (O(3^10))*x + (1 + 2*3 + 3*3^2 + O(3^10))
\rightarrow 2*3^4 + 2*3^5 + 2*3^6 + O(3^10)
sage: f.factor_padic(5)
((1 + O(5^10))*x + (2 + 4*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + O(5^10))) * ((1 + O(5^10))*x + (2 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + O(5^10)))
```

The input polynomial is considered to have “infinite” precision, therefore the \( p \)-adic factorization of the polynomial is not the same as first coercing to \( \mathbb{Q}_p \) and then factoring (see also trac ticket #15422):

```python
sage: f = x^2 - 3^6
sage: f.factor_padic(3,5)
((1 + O(3^5))*x + (3^3 + O(3^5))) * ((1 + O(3^5))*x + (2*3^3 + 2*3^4 + O(3^5))
\rightarrow 6 + 2*3^5 + 3*3^6 + O(3^10))
sage: f.change_ring(Qp(3,5)).factor()
Traceback (most recent call last):
... PrecisionError: \(p \)-adic factorization not well-defined since the discriminant is zero up to the requested \(p \)-adic precision
```

A more difficult example:

```python
sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
sage: f.factor_padic(5, 10)
(4*5^4 + O(5^14)) * ((1 + O(5^9))*x + (5^-1 + O(5^9)))^2 * ((1 + O(5^10))*x + (5 + O(5^10)))^2
```

Try some bogus inputs:

```python
sage: f.factor_padic(3,-1)
Traceback (most recent call last):
... ValueError: prec_cap must be non-negative.
sage: f.factor_padic(6,10)
Traceback (most recent call last):
... ValueError: p must be prime
sage: f.factor_padic('hello', 'world')
```
Traceback (most recent call last):
...  
TypeError: unable to convert 'hello' to an integer

galois_group(pari_group=False, algorithm='pari')
Returns the Galois group of self as a permutation group.

INPUT:
• self - Irreducible polynomial
• pari_group - bool (default: False); if True instead return the Galois group as a PARI group.
  This has a useful label in it, and may be slightly faster since it doesn’t require looking up a group in
  Gap. To get a permutation group from a PARI group \( P \), type \( \text{PermutationGroup}(P) \).
• algorithm - 'pari', 'kash', 'magma' (default: 'pari', except when the degree is at least
  12 in which case 'kash' is tried).

OUTPUT:
• Galois group

ALGORITHM:
The Galois group is computed using PARI in C library mode, or possibly KASH or MAGMA.

Note: The PARI documentation contains the following warning: The method used is that of resolvent
polynomials and is sensitive to the current precision. The precision is updated internally but, in very rare
cases, a wrong result may be returned if the initial precision was not sufficient.

MAGMA does not return a provably correct result. Please see the MAGMA documentation for how to
obtain a provably correct result.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: G = f.galois_group(); G # optional - database_gap
Transitive group number 5 of degree 4
sage: G.gens() # optional - database_gap
[(1,2), (1,2,3,4)]
sage: G.order() # optional - database_gap
24
```

It is potentially useful to instead obtain the corresponding PARI group, which is little more than a 4-tuple.
See the PARI manual for the exact details. (Note that the third entry in the tuple is in the new standard
ordering.)

```python
sage: G = f.galois_group(pari_group=True); G
PARI group [24, -1, 5, "S4"] of degree 4
sage: PermutationGroup(G) # optional - database_gap
Transitive group number 5 of degree 4
```

You can use KASH to compute Galois groups as well. The advantage is that KASH can compute Galois
groups of fields up to degree 21, whereas PARI only goes to degree 11. (In my not-so-thorough experiments
PARI is faster than KASH.)
gcd(right)
Returns the (monic) greatest common divisor of self and right.

Corner cases: if self and right are both zero, returns zero. If only one of them is zero, returns the other polynomial, up to normalisation.

EXAMPLES:

```sage
R.<t> = QQ[]
sage: f = -2 + 3*t/2 + 4*t^2/7 - t^3
g = 1/2 + 4*t + 2*t^4/3
f.gcd(g)
1
sage: f = (-3*t + 1/2) * f
g = (-3*t + 1/2) * (4*t^2/3 - 1) * g
f.gcd(g)
t - 1/6
```

hensel_lift(p, e)
Assuming that this polynomial factors modulo \( p \) into distinct monic factors, computes the Hensel lifts of these factors modulo \( p^e \). We assume that self has integer coefficients.

Returns an empty list if this polynomial has degree less than one.

INPUT:

• p - Prime number; coercable to Integer
• e - Exponent; coercable to Integer

OUTPUT:

• Hensel lifts; list of polynomials over \( \mathbb{Z}/p^e\mathbb{Z} \)

EXAMPLES:

```sage
R.<x> = QQ[]
sage: R((x-1)*(x+1)).hensel_lift(7, 2)
[x + 1, x + 48]
```

If the input polynomial \( f \) is not monic, we get a factorization of \( f/\text{lcm}(f) \):

```sage
R(2*x^2 - 2).hensel_lift(7, 2)
[x + 1, x + 48]
```

inverse_series_trunc(prec)
Return a polynomial approximation of precision \( \text{prec} \) of the inverse series of this polynomial.

EXAMPLES:

```sage
x = polygen(QQ)
p = 2 + x - 3/5*x**2
q5 = p.inverse_series_trunc(5)
```
is_irreducible()  
Return whether this polynomial is irreducible.

This method computes the primitive part as an element of \( \mathbb{Z}[t] \) and calls the method \( \text{is_irreducible} \) for elements of that polynomial ring.

By definition, over any integral domain, an element \( r \) is irreducible if and only if it is non-zero, not a unit and whenever \( r = ab \) then \( a \) or \( b \) is a unit.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: (t^2 + 2).is_irreducible()
True
sage: (t^2 - 1).is_irreducible()
False
```

is_one()  
Returns whether or not this polynomial is one.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R([0,1]).is_one()
False
sage: R([1]).is_one()
True
sage: R([0]).is_one()
False
sage: R([-1]).is_one()
False
sage: R([1,1]).is_one()
False
```

is_zero()  
Returns whether or not self is the zero polynomial.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = 1 - t + 1/2*t^2 - 1/3*t^3
sage: f.is_zero()
False
sage: R(0).is_zero()
True
```

lcm(right)  
Returns the monic (or zero) least common multiple of self and right.

Corner cases: if either of self and right are zero, returns zero. This behaviour is ensures that the relation \( \text{lcm}(a,b) \ \text{gcd}(a,b) = a \ b \) holds up to multiplication by rationals.
EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = -2 + 3*t/2 + 4*t^2/7 - t^3
eval: 91
sage: g = 1/2 + 4*t + 2*t^4/3
eval: 91
sage: f.lcm(g)
t^7 - 4/7*t^6 - 3/2*t^5 + 8*t^4 - 75/28*t^3 - 66/7*t^2 + 87/8*t + 3/2
sage: f.lcm(g) * f.gcd(g) // (f * g)
-3/2
```

**list** *(copy=True)*

Return a list with the coefficients of self.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2/2 + t^3/3 + t^4/4
eval: 91
sage: f.list()
[1, 1, 1/2, 1/3, 1/4]
sage: g = R(0)
sage: g.list()
[]
```

**numerator()?**

Returns the numerator of self.

Representing self as the quotient of an integer polynomial and a positive integer denominator (coprime to the content of the polynomial), returns the integer polynomial.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = (3 * t^3 + 1) / -3
eval: 91
sage: f.numerator()
-3*t^3 - 1
```

**quo_rem**(right)

Returns the quotient and remainder of the Euclidean division of self and right.

Raises a ZerodivisionError if right is zero.

EXAMPLES:

```
sage: R.<t> = QQ[]
eval: 91
sage: g = R.random_element(1000)
eval: 91
sage: q, r = f.quo_rem(g)
eval: 91
sage: f == q*g + r
True
```

**real_root_intervals()**

Returns isolating intervals for the real roots of self.

EXAMPLES:

We compute the roots of the characteristic polynomial of some Salem numbers:

```
sage: R.<t> = QQ[]
sage: f = 1 - t^2 - t^3 - t^4 + t^6
sage: f.real_root_intervals()
[[(1/2, 3/4), 1], ((1, 3/2), 1)]
```
resultant (right)

Returns the resultant of self and right.

Enumerating the roots over \(\mathbb{Q}\) as \(r_1, \ldots, r_m\) and \(s_1, \ldots, s_n\) and letting \(x\) and \(y\) denote the leading coefficients of \(f\) and \(g\), the resultant of the two polynomials is defined by

\[ x^{\deg g} y^{\deg f} \prod_{i,j} (r_i - s_j). \]

Corner cases: if one of the polynomials is zero, the resultant is zero. Note that otherwise if one of the polynomials is constant, the last term in the above is the empty product.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = (t - 2/3) * (t + 4/5) * (t - 1)
sage: g = (t - 1/3) * (t + 1/2) * (t + 1)
sage: f.resultant(g)
119/1350
sage: h = (t - 1/3) * (t + 1/2) * (t - 1)
sage: f.resultant(h)
0
```

reverse (degree=None)

Reverse the coefficients of this polynomial (thought of as a polynomial of degree `degree`).

INPUT:

- `degree` (None or integral value that fits in an unsigned long, default: degree of self) - if specified, truncate or zero pad the list of coefficients to this degree before reversing it.

EXAMPLES:

We first consider the simplest case, where we reverse all coefficients of a polynomial and obtain a polynomial of the same degree:

```python
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3 + t^4 / 4
sage: f.reverse()
t^4 + t^3 + 1/2*t^2 + 1/3*t + 1/4
```

Next, an example we the returned polynomial has lower degree because the original polynomial has low coefficients equal to zero:

```python
sage: R.<t> = QQ[]
sage: f = 3/4*t^2 + 6*t^7
sage: f.reverse()
3/4*t^5 + 6
```

The next example illustrates the passing of a value for `degree` less than the length of self, notationally resulting in truncation prior to reversing:

```python
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3 + t^4 / 4
sage: f.reverse(2)
t^2 + t + 1/2
```

Now we illustrate the passing of a value for `degree` greater than the length of self, notationally resulting in zero padding at the top end prior to reversing:
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3
def f.reverse(4):
t^4 + t^3 + 1/2*t^2 + 1/3*t

revert_series(n)
Return a polynomial \( f \) such that \( f(self(x)) = self(f(x)) = x \text{ mod } n \).

EXAMPLES:

sage: R.<t> = QQ[]
sage: f = t - t^3/6 + t^5/120
sage: f.revert_series(6)
3/40*t^5 + 1/6*t^3 + t
sage: f.revert_series(-1)
Traceback (most recent call last):
  ... ValueError: argument n must be a non-negative integer, got -1
sage: g = - t^3/3 + t^5/5
sage: g.revert_series(6)
Traceback (most recent call last):
  ... ValueError: self must have constant coefficient 0 and a unit for coefficient \(-t^1\)

truncate(n)
Returns self truncated modulo \( t^n \).

INPUT:

* \( n \) - The power of \( t \) modulo which self is truncated

EXAMPLES:

sage: R.<t> = QQ[]
sage: f = 1 - t + 1/2*t^2 - 1/3*t^3
sage: f.truncate(0)
0
sage: f.truncate(2)
-t + 1

xgcd(right)
Returns polynomials \( d, s, \) and \( t \) such that \( d == s \ast self + t \ast right \), where \( d \) is the (monic) greatest common divisor of \( self \) and \( right \). The choice of \( s \) and \( t \) is not specified any further.

Corner cases: if \( self \) and \( right \) are zero, returns zero polynomials. Otherwise, if only \( self \) is zero, returns \( (d, s, t) = (right, 0, 1) \) up to normalisation, and similarly if only \( right \) is zero.

EXAMPLES:

sage: R.<t> = QQ[]
sage: f = 2/3 + 3/4 * t - t^2
sage: g = -3 + 1/7 * t
sage: f.xgcd(g)
(1, -12/5095, -84/5095*t - 1701/5095)
2.1.10 Dense univariate polynomials over \(\mathbb{Z}/n\mathbb{Z}\), implemented using FLINT.

This module gives a fast implementation of \((\mathbb{Z}/n\mathbb{Z})[x]\) whenever \(n\) is at most \(\text{sys.maxsize}\). We use it by default in preference to NTL when the modulus is small, falling back to NTL if the modulus is too large, as in the example below.

**EXAMPLES:**

```python
sage: R.<a> = PolynomialRing(Integers(100))
sage: type(a)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: R.<a> = PolynomialRing(Integers(5*2^64))
sage: type(a)
<type 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ'>
sage: R.<a> = PolynomialRing(Integers(5*2^64), implementation="FLINT")
Traceback (most recent call last):
...
ValueError: FLINT does not support modulus 92233720368547758080
```

**AUTHORS:**

- Burcin Erocal (2008-11) initial implementation
- Martin Albrecht (2009-01) another initial implementation

```python
class sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template
 Bases: sage.rings.polynomial.polynomial_element.Polynomial

Template for interfacing to external C / C++ libraries for implementations of polynomials.

AUTHORS:

- Robert Bradshaw (2008-10): original idea for templating
- Martin Albrecht (2008-10): initial implementation
```

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a ‘linkage’ file which implements the `c_element_` functions (see `sage.libs.ntl.ntl_GF2X_linkage` for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See `sage.rings.polynomial.polynomial_gf2x` for an example.

We illustrate the generic glueing using univariate polynomials over \(\text{GF}(2)\).

**Note:** Implementations using this template MUST implement coercion from base ring elements and `get_unsafe()`. See `Polynomial_GF2X` for an example.

**degree()**

**EXAMPLES:**

```python
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
```

**gcd(other)**

Return the greatest common divisor of self and other.
EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x
```

**get_cparent()**

**is_gen()**

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.is_gen()
True
sage: (x+1).is_gen()
False
```

**is_one()**

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True
```

**is_zero()**

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.is_zero()
False
```

**list**(copy=True)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```

**quo_rem**(right)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
```

**shift**(n)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
```
sage: f.shift(-1)
x^2 + x

**truncate** \((n)\)

Returns this polynomial mod \(x^n\).

**EXAMPLES:**

```sage
code
R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

```sage
code
sage: f.truncate(10) is f
True
```

**xgcd** \((\text{other})\)

Computes extended gcd of self and other.

**EXAMPLES:**

```sage
code
P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)
```

### Class: Sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint

Polynomial on \(\mathbb{Z}/n\mathbb{Z}\) implemented via FLINT.

**_add_(right)**

**EXAMPLES:**

```sage
code
P.<x> = GF(2)[]
sage: x + 1
x + 1
```

**_sub_(right)**

**EXAMPLES:**

```sage
code
P.<x> = GF(2)[]
sage: x - 1
x + 1
```

**_lmul_(left)**

**EXAMPLES:**

```sage
code
P.<x> = GF(2)[]
sage: t = x^2 + x + 1
sage: 0*t
0
sage: 1*t
x^2 + x + 1
```
sage: R.<y> = GF(5)[]
sage: u = y^2 + y + 1
sage: 3*u
3*y^2 + 3*y + 3
sage: 5*u
0
sage: (2^81)*u
2*y^2 + 2*y + 2
sage: (-2^81)*u
3*y^2 + 3*y + 3

sage: P.<x> = GF(2)[]
sage: t = x^2 + x + 1
sage: t*0
0
sage: t*1
x^2 + x + 1
sage: R.<y> = GF(5)[]
sage: u = y^2 + y + 1
sage: u*3
3*y^2 + 3*y + 3
sage: u*5
0

_rmul_(right)
Multiply self on the right by a scalar.

EXAMPLES:

sage: R.<x> = ZZ[

sage: f = x^3 + x + 5
sage: f._rmul_(7)
7*x^3 + 7*x + 35
sage: f*7
7*x^3 + 7*x + 35

_mul_(right)

EXAMPLES:

sage: P.<x> = GF(2)[

sage: x*(x+1)
x^2 + x

_mul_trunc_(right, n)
Return the product of this polynomial and other truncated to the given length n.

This function is usually more efficient than simply doing the multiplication and then truncating. The function is tuned for length n about half the length of a full product.

EXAMPLES:

sage: P.<a>=GF(7)[

sage: a = P(range(10)); b = P(range(5, 15))
sage: a._mul_trunc_(b, 5)
4*a^4 + 6*a^3 + 2*a^2 + 5*a
factor()  
Returns the factorization of the polynomial.

EXAMPLES:

``` sage: R.<x> = GF(5)[]  
sage: (x^2 + 1).factor()
(x + 2) * (x + 3) ```

is_irreducible()
Return whether this polynomial is irreducible.

EXAMPLES:

``` sage: R.<x> = GF(5)[]  
sage: (x^2 + 1).is_irreducible()  
False  
sage: (x^3 + x + 1).is_irreducible()  
True ```

Not implemented when the base ring is not a field:

``` sage: S.<s> = Zmod(10)[]  
sage: (s^2).is_irreducible()
Traceback (most recent call last):
...
NotImplementedError: checking irreducibility of polynomials over rings with composite characteristic is not implemented ```

monic()
Return this polynomial divided by its leading coefficient.
Raises ValueError if the leading coefficient is not invertible in the base ring.

EXAMPLES:

``` sage: R.<x> = GF(5)[]  
sage: (2*x^2+1).monic()  
x^2 + 3 ```

rational_reconstruct(m, n_deg=0, d_deg=0)  
Construct a rational function n/d such that p*d is equivalent to n modulo m where p is this polynomial.

EXAMPLES:

``` sage: P.<x> = GF(5)[]  
sage: p = 4*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + 4*x + 2
sage: n, d = p.rational_reconstruct(x^9, 4, 4); n, d
(3*x^4 + 2*x^3 + x^2 + 2*x, x^9 + 3*x^3 + x^2 + x)
sage: (p*d % x^9) == n
True ```

resultant(other)
Returns the resultant of self and other, which must lie in the same polynomial ring.

INPUT:

• other – a polynomial

OUTPUT: an element of the base ring of the polynomial ring
EXAMPLES:

```
sage: R.<x> = GF(19)[x]
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
11
sage: r.parent() is GF(19)
True
```

The following example shows that trac ticket #11782 has been fixed:

```
sage: R.<x> = ZZ.quo(9)[x]
sage: f = 2*x^3 + x^2 + x; g = 6*x^2 + 2*x + 1
sage: f.resultant(g)
5
```

```
reverse(degree=None)

Return a polynomial with the coefficients of this polynomial reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

EXAMPLES:

```
sage: R.<x> = GF(5)[]
sage: p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
sage: p.reverse()
x^3 + 2*x^2 + 3*x + 4
sage: p.reverse(degree=6)
x^6 + 2*x^5 + 3*x^4 + 4*x^3
sage: p.reverse(degree=2)
x^2 + 2*x + 3
```

Note that if \( f \) has zero constant coefficient, its reverse will have lower degree.

```
sage: f = x^3 + 2*x
sage: f.reverse()
2*x^2 + 1
```

In this case, reverse is not an involution unless we explicitly specify a degree.

```
sage: f
x^3 + 2*x
sage: f.reverse().reverse()
x^2 + 2
sage: f.reverse(5).reverse(5)
x^3 + 2*x
```

```
revert_series(n)

Return a polynomial \(f \) such that \(f(\text{self}(x)) = \text{self}(f(x)) = x \mod x^n \).
```
EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: f = t + 2*t^2 - t^3 - 3*t^4
sage: f.revert_series(5)
3*t^4 + 4*t^3 + 3*t^2 + t
sage: f.revert_series(-1)
Traceback (most recent call last):
 ... ValueError: argument n must be a non-negative integer, got -1
sage: g = - t^3 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
 ... ValueError: self must have constant coefficient 0 and a unit for coefficient
→t^1
sage: g = t + 2*t^2 - t^3 -3*t^4 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
 ... ValueError: the integers 1 up to n=5 are required to be invertible over the
→base field
```

small_roots(*args, **kwds)

See `sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()` for the documentation of this function.

EXAMPLES:

```python
sage: N = 10001
sage: K = Zmod(10001)
sage: P.<x> = PolynomialRing(K)
sage: f = x^3 + 10*x^2 + 5000*x - 222
sage: f.small_roots()
[4]
```

squarefree_decomposition()

Returns the squarefree decomposition of this polynomial.

EXAMPLES:

```python
sage: R.<x> = GF(5)[]
sage: ((x+1)*(x^2+1)^2*x^3).squarefree_decomposition()
(x + 1) * (x^2 + 1)^2 * x^3
```

2.1.11 Dense univariate polynomials over \( \mathbb{Z}/n\mathbb{Z} \), implemented using NTL.

This implementation is generally slower than the FLINT implementation in `polynomial_zmod_flint`, so we use FLINT by default when the modulus is small enough; but NTL does not require that \( n \) be int-sized, so we use it as default when \( n \) is too large for FLINT.

Note that the classes `Polynomial_dense_modn_ntl_zz` and `Polynomial_dense_modn_tntl_ZZ` are different; the former is limited to moduli less than a certain bound, while the latter supports arbitrarily large moduli.
AUTHORS:

- Robert Bradshaw: Split off from polynomial_element_generic.py (2007-09)
- Robert Bradshaw: Major rewrite to use NTL directly (2007-09)

class sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n

Bases: sage.rings.polynomial.polynomial_element.Polynomial

A dense polynomial over the integers modulo n, where n is composite, with the underlying arithmetic done using NTL.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(Integers(16), implementation='NTL')
sage: f = x^3 - x + 17
sage: f^2
x^6 + 14*x^4 + 2*x^3 + x^2 + 14*x + 1
sage: loads(f.dumps()) == f
True
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: p = 3*x
sage: q = 7*x
sage: p+q
10*x
sage: R.<x> = PolynomialRing(Integers(8), implementation='NTL')
sage: parent(p)
Univariate Polynomial Ring in x over Ring of integers modulo 100 (using NTL)
sage: p + q
10*x
sage: R({10:-1})
7*x^10
```

degree (gen=\text{None})

Return the degree of this polynomial. The zero polynomial has degree -1.

int_list()

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```
sage: _.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: f = x^3 + 3*x - 17
sage: f.list()
[83, 3, 0, 1]
```

ntl_ZZ_pX()

Return underlying NTL representation of this polynomial. Additional “bonus” functionality is available through this function.

**Warning:** You must call ntl.set_modulus(ntl.ZZ(n)) before doing arithmetic with this object!

ntl_set_directly(v)

Set the value of this polynomial directly from a vector or string.
Polynomials over the integers modulo \( n \) are stored internally using NTL’s \( \texttt{ZZ}_pX \) class. Use this function to set the value of this polynomial using the NTL constructor, which is potentially very fast. The input \( v \) is either a vector of ints or a string of the form \( [\text{n}_1 \text{n}_2 \text{n}_3 \ldots] \) where the \( \text{n}_i \) are integers and there are no commas between them. The optimal input format is the string format, since that’s what NTL uses by default.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_˓→dense_mod_n as poly_modn_dense
sage: poly_modn_dense(R, ([1,-2,3]))
3*x^2 + 98*x + 1
sage: f = poly_modn_dense(R, 0)
sage: fntl_set_directly([1,-2,3])
sage: f
3*x^2 + 98*x + 1
sage: fntl_set_directly('[1 -2 3 4]')
sage: f
4*x^3 + 3*x^2 + 98*x + 1
```

**quo_rem** *(right)*

Returns a tuple (quotient, remainder) where \( \text{self} = \text{quotient} \times \text{other} + \text{remainder} \).

**shift** *(n)*

Returns this polynomial multiplied by the power \( x^n \). If \( n \) is negative, terms below \( x^n \) will be discarded. Does not change this polynomial.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(Integers(12345678901234567890), implementation='NTL')
sage: p = x^2 + 2*x + 4
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(-5)
0
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```

**AUTHOR:**

•David Harvey (2006-08-06)

**small_roots** *(\*args, **kwds)*

See `sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()` for the documentation of this function.

**EXAMPLES:**

```python
sage: N = 10001
sage: K = Zmod(10001)
sage: P.<x> = PolynomialRing(K, implementation='NTL')
sage: f = x^3 + 10*x^2 + 5000*x - 222
sage: f.small_roots()
[4]
```
A dense polynomial over the integers modulo p, where p is prime.

discriminant ()
EXAMPLES:

```
sage: _.<x> = PolynomialRing(GF(19),implementation='NTL')
sage: f = x^3 + 3*x - 17
sage: f.discriminant()
sage: 12
```

gcd (right)
Return the greatest common divisor of this polynomial and other, as a monic polynomial.

INPUT:

• other – a polynomial defined over the same ring as self

EXAMPLES:

```
sage: R.<x> = PolynomialRing(GF(3),implementation="NTL")
sage: f,g = x + 2, x^2 - 1
sage: f.gcd(g)
sage: x + 2
```

resultant (other)
Returns the resultant of self and other, which must lie in the same polynomial ring.

INPUT:

• other – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

EXAMPLES:

```
sage: R.<x> = PolynomialRing(GF(19),implementation='NTL')
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
11
sage: r.parent() is GF(19)
True
```

xgcd (other)
Compute the extended gcd of this element and other.

INPUT:

• other – an element in the same polynomial ring

OUTPUT:
A tuple (r, s, t) of elements in the polynomial ring such that \( r = s \times \text{self} + t \times \text{other} \).

EXAMPLES:

```
sage: R.<x> = PolynomialRing(GF(3),implementation='NTL')
sage: x.xgcd(x)
(x, 0, 1)
sage: (x^2 - 1).xgcd(x - 1)
```
class sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ
    Bases: sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n

    degree()
    EXAMPLES:

    sage: R.<x> = PolynomialRing(Integers(14^34), implementation='NTL')
    sage: f = x^4 - x - 1
    sage: f.degree()
    4
    sage: f = 14^43*x + 1
    sage: f.degree()
    0

    is_gen()

    list (copy=True)

    quo_rem(right)
    Returns q and r, with the degree of r less than the degree of right, such that q * right + r = self.
    EXAMPLES:

    sage: R.<x> = PolynomialRing(Integers(10^30), implementation='NTL')
    sage: f = x^5+1; g = (x+1)^2
    sage: q, r = f.quo_rem(g)
    sage: q
    x^3 + 999999999999999999999999999996
    sage: r
    5*x + 5
    sage: q*g + r
    x^5 + 1

    reverse()
    Reverses the coefficients of self. The reverse of f(x) is x^n f(1/x).
    The degree will go down if the constant term is zero.
    EXAMPLES:

    sage: R.<x> = PolynomialRing(Integers(12^29), implementation='NTL')
    sage: f = x^4 + 2*x + 5
    sage: f.reverse()
    5*x^4 + 2*x^3 + 1
    sage: f = x^3 + x
    sage: f.reverse()
    x^2 + 1

    shift (n)
    Shift self to left by n, which is multiplication by x^n, truncating if n is negative.
EXAMPLES:

```
sage: R.<x> = PolynomialRing(Integers(12^30), implementation='NTL')
sage: f = x^7 + x + 1
sage: f.shift(1)
x^8 + x^2 + x
sage: f.shift(-1)
x^6 + 1
sage: f.shift(10).shift(-10) == f
True
```

`truncate(n)`

Returns this polynomial mod $x^n$.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(Integers(15^30), implementation='NTL')
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

`valuation()`

Returns the valuation of self, that is, the power of the lowest non-zero monomial of self.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(Integers(10^50), implementation='NTL')
sage: x.valuation()
1
sage: f = x-3; f.valuation()
0
sage: f = x^99; f.valuation()
99
sage: f = x-x; f.valuation()
+Infinity
```

class `sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz`

Bases: `sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n`

Polynomial on $\mathbb{Z}/n\mathbb{Z}$ implemented via NTL.

```
add(_right)
sub(_right)
lmul(c)
rmul(c)
mul(_right)
_mul_trunc_(right, n)
```

Return the product of self and right truncated to the given length $n$.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(Integers(100), implementation="NTL")
sage: f = x - 2
sage: g = x^2 - 8*x + 16
sage: f*g
```

Chapter 2. Univariate Polynomials
```
x^3 + 90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 42)
x^3 + 90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 3)
90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 2)
32*x + 68
sage: f._mul_trunc_(g, 1)
68
sage: f._mul_trunc_(g, 0)
0
sage: f = x^2 - 8*x + 16
sage: f._mul_trunc_(f, 2)
44*x + 56
```

### degree()

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^4 - x - 1
sage: f.degree()
4
sage: f = 77*x + 1
sage: f.degree()
0
```

### int_list()

Returns the coefficients of self as efficiently as possible as a list of python ints.

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_modn_dense
sage: f = poly_modn_dense(R,[5,0,0,1])
```

```
[5, 0, 0, 1]
```

```
[<... 'int'>, <... 'int'>, <... 'int'>, <... 'int'>]
```

### is_gen()

### ntl_set_directly(v)

### quo_rem(right)

Returns \( q \) and \( r \), with the degree of \( r \) less than the degree of \( right \), such that \( q \cdot right + r = self \).

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(Integers(125), implementation='NTL')
sage: f = x^5+1; g = (x+1)^2
sage: q, r = f.quo_rem(g)
sage: q
x^3 + 123*x^2 + 3*x + 121
sage: r
5*x + 5
sage: q*g + r
x^5 + 1
```
**reverse()**

Reverses the coefficients of self. The reverse of \( f(x) \) is \( x^n f(1/x) \).

The degree will go down if the constant term is zero.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^4 - x - 1
sage: f.reverse()
76*x^4 + 76*x^3 + 1
sage: f = x^3 - x
sage: f.reverse()
76*x^2 + 1
```

**shift(n)**

Shift self to left by \( n \), which is multiplication by \( x^n \), truncating if \( n \) is negative.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^7 + x + 1
sage: f.shift(1)
x^8 + x^2 + x
sage: f.shift(-1)
x^6 + 1
sage: f.shift(10).shift(-10) == f
True
```

**truncate(n)**

Returns this polynomial mod \( x^n \).

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

**valuation()**

Returns the valuation of self, that is, the power of the lowest non-zero monomial of self.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(Integers(10), implementation='NTL')
sage: x.valuation()
1
sage: f = x-3; f.valuation()
0
sage: f = x^99; f.valuation()
99
sage: f = x-x; f.valuation()
+Infinity
```

sage.rings.polynomial.polynomial_modn_dense_ntl.make_element (parent, args)

sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots (self, \( X=\text{None} \), \( \beta=1.0 \), \( \epsilon=\text{None} \), **kwds)
Let $N$ be the characteristic of the base ring this polynomial is defined over: $N = \text{self.base_ring().characteristic()}$. This method returns small roots of this polynomial modulo some factor $b$ of $N$ with the constraint that $b \geq N^\beta$. Small in this context means that if $x$ is a root of $f$ modulo $b$ then $|x| < X$. This $X$ is either provided by the user or the maximum $X$ is chosen such that this algorithm terminates in polynomial time. If $X$ is chosen automatically it is $X = \text{ceil}(1/2N^{\beta^2/\delta - \epsilon})$. The algorithm may also return some roots which are larger than $X$. ‘This algorithm’ in this context means Coppersmith’s algorithm for finding small roots using the LLL algorithm. The implementation of this algorithm follows Alexander May’s PhD thesis referenced below.

**INPUT:**

- $X$ – an absolute bound for the root (default: see above)
- $\beta$ – compute a root mod $b$ where $b$ is a factor of $N$ and $b \geq N^\beta$. (Default: 1.0, so $b = N$.)
- $\epsilon$ – the parameter $\epsilon$ described above. (Default: $\beta/8$)
- **kwds** – passed through to method `Matrix_integer_dense.LLL()`.

**EXAMPLES:**

First consider a small example:

```python
sage: N = 10001
sage: K = Zmod(10001)
sage: P.<x> = PolynomialRing(K, implementation='NTL')
sage: f = x^3 + 10*x^2 + 5000*x - 222
```

This polynomial has no roots without modular reduction (i.e. over $\mathbb{Z}$):

```python
sage: f.change_ring(ZZ).roots()
[]
```

To compute its roots we need to factor the modulus $N$ and use the Chinese remainder theorem:

```python
sage: p,q = N.prime_divisors()
sage: f.change_ring(GF(p)).roots()
[(4, 1)]
sage: f.change_ring(GF(q)).roots()
[(4, 1)]
sage: crt(4, 4, p, q)
4
```

This root is quite small compared to $N$, so we can attempt to recover it without factoring $N$ using Coppersmith’s small root method:

```python
sage: f.small_roots()
[4]
```

An application of this method is to consider RSA. We are using 512-bit RSA with public exponent $e = 3$ to encrypt a 56-bit DES key. Because it would be easy to attack this setting if no padding was used we pad the key $K$ with 1s to get a large number:

```python
sage: Nbits, Kbits = 512, 56
sage: e = 3
```

We choose two primes of size 256-bit each:
We choose a random key:

```python
sage: K = ZZ.random_element(0, 2^Kbits)
```

and pad it with 512-56=456 1s:

```python
sage: Kdigits = K.digits(2)
sage: for i in range(len(Kdigits)): M[i] = Kdigits[i]
sage: M = ZZ(M, 2)
```

Now we encrypt the resulting message:

```python
sage: C = ZmodN(M)^e
```

To recover $K$ we consider the following polynomial modulo $N$:

```python
sage: P.<x> = PolynomialRing(ZmodN, implementation='NTL')
sage: f = (2^Nbits - 2^Kbits + x)^e - C
```

and recover its small roots:

```python
sage: Kbar = f.small_roots()[0]
sage: K == Kbar
True
```

The same algorithm can be used to factor $N = pq$ if partial knowledge about $q$ is available. This example is from the Magma handbook:

First, we set up $p$, $q$ and $N$:

```python
sage: length = 512
sage: hidden = 110
sage: p = next_prime(2^int(round(length/2)))
sage: q = next_prime(round(pi.n()*p))
sage: N = p*q
```

Now we disturb the low 110 bits of $q$:

```python
sage: qbar = q + ZZ.random_element(0,2^hidden-1)
```

And try to recover $q$ from it:

```python
sage: F.<x> = PolynomialRing(Zmod(N), implementation='NTL')
sage: f = x - qbar
```

We know that the error is $\leq 2^{\text{hidden}} - 1$ and that the modulus we are looking for is $\geq \sqrt{N}$:

```python
sage: set_verbose(2)
sage: d = f.small_roots(X=2^hidden-1, beta=0.5)[0] # time random
verbose 2 (<module>) m = 4
verbose 2 (<module>) t = 4
```
REFERENCES:


### 2.1.12 Dense univariate polynomials over $\mathbb{R}$, implemented using MPFR

#### class

```python
class PolynomialRealDense
```

**Bases:**
```
sage.rings.polynomial.polynomial_element.Polynomial
```

**change_ring($R$)**

EXAMPLES:
```
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [-2, 0, 1.5])
sage: f.change_ring(QQ)
3/2*x^2 - 2
sage: f.change_ring(RealField(10))
1.5*x^2 - 2.0
sage: f.change_ring(RealField(100))
1.5000000000000000000000000000*x^2 - 2.0000000000000000000000000000
```

**degree()**

Return the degree of the polynomial.

EXAMPLES:
```
sage: f = PolynomialRealDense(RR['x'], [1, 2, 3]); f
3.00000000000000*x^2 + 2.00000000000000*x + 1.00000000000000
sage: f.degree()
2
```

**integral()**

EXAMPLES:
```
sage: f = PolynomialRealDense(RR['x'], [3, pi, 1])
sage: f.integral()
0.333333333333333*x^3 + 1.57079632679490*x^2 + 3.00000000000000*x
```

**list($copy=True$)**

EXAMPLES:
```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [1, 0, -2]); f
-2.00000000000000*x^2 + 1.00000000000000
sage: f.list()
[1.00000000000000, 0.000000000000000, -2.00000000000000]
```

**quo_rem** *(other)*

Return the quotient with remainder of *self* by *other*.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [-2, 0, 1])
sage: g = PolynomialRealDense(RR['x'], [5, 1])
sage: q, r = f.quo_rem(g)
sage: q
x - 5.00000000000000
sage: r
23.0000000000000
sage: q*g + r == f
True
sage: fg = f*g
sage: fg.quo_rem(f)
(x + 5.00000000000000, 0)
sage: fg.quo_rem(g)
(x^2 - 2.00000000000000, 0)
sage: f = PolynomialRealDense(RR['x'], range(5))
sage: g = PolynomialRealDense(RR['x'], [pi,3000,4])
sage: q, r = f.quo_rem(g)
sage: g*q + r == f
True
```

**reverse** ()

Returns \( x^d f(1/x) \) where \( d \) is the degree of \( f \).

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [-3, pi, 0, 1])
3.00000000000000*x^3 + 3.14159265358979*x^2 + 1.00000000000000
sage: f.reverse()
-3.00000000000000*x^3 + 3.14159265358979*x^2 + 1.00000000000000
```

**shift** *(n)*

Returns this polynomial multiplied by the power \( x^n \). If \( n \) is negative, terms below \( x^n \) will be discarded. Does not change this polynomial.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [1, 2, 3]); f
3.00000000000000*x^2 + 2.00000000000000*x + 1.00000000000000
sage: f.shift(10)
3.00000000000000*x^12 + 2.00000000000000*x^11 + x^10
sage: f.shift(-1)
```
### truncate(n)

Returns the polynomial of degree < n which is equivalent to self modulo $x^n$.

#### EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [1, 2, 4, 8])
sage: f.truncate(3)
4.0*x^2 + 2.0*x + 1.0
sage: f.truncate(100)
8.0*x^3 + 4.0*x^2 + 2.0*x + 1.0
sage: f.truncate(1)
1.0
sage: f.truncate(0)
0
```

### truncate_abs(bound)

Truncate all high order coefficients below bound.

#### EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [10^-k for k in range(10)])
sage: f
1.0e-9*x^9 + 1.0e-8*x^8 + 1.0e-7*x^7 + 1.0e-6*x^6 + 0.000010*x^5 + 0.00010*x^4 + 0.0010*x^3 + 0.010*x^2 + 0.10*x + 1.0
sage: f.truncate_abs(0.5e-6)
1.0e-6*x^6 + 0.000010*x^5 + 0.00010*x^4 + 0.0010*x^3 + 0.010*x^2 + 0.10*x + 1.0
sage: f.truncate_abs(10.0)
0
sage: f.truncate_abs(1e-100) == f
True
```

sage.rings.polynomial.polynomial_real_mpfr_dense.make_PolynomialRealDense(parent, data)

#### EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import make_PolynomialRealDense
sage: make_PolynomialRealDense(RR['x'], [1,2,3])
3.00000000000000*x^2 + 2.00000000000000*x + 1.00000000000000
```

### 2.1.13 Polynomial Interfaces to Singular

#### AUTHORS:
- Martin Albrecht <malb@informatik.uni-bremen.de> (2006-04-21)
- Robert Bradshaw: Re-factor to avoid multiple inheritance vs. Cython (2007-09)
• Syed Ahmad Lavasani: Added function field to _singular_init_ (2011-12-16)  Added non-prime finite fields to _singular_init_ (2012-1-22)

class sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr
Implements methods to convert polynomial rings to Singular.
This class is a base class for all univariate and multivariate polynomial rings which support conversion from and to Singular rings.

class sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr
Implements coercion of polynomials to Singular polynomials.
This class is a base class for all (univariate and multivariate) polynomial classes which support conversion from and to Singular polynomials.
Due to the incompatibility of Python extension classes and multiple inheritance, this just defers to module-level functions.

can_convert_to_singular(R)
Returns True if this ring’s base field or ring can be represented in Singular, and the polynomial ring has at least one generator. If this is True then this polynomial ring can be represented in Singular.
The following base rings are supported: finite fields, rationals, number fields, and real and complex fields.

EXAMPLES:

```
sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
True
sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
False
```

2.1.14 Base class for generic \( p\)-adic polynomials

This provides common functionality for all \( p\)-adic polynomials, such as printing and factoring.

AUTHORS:

• Jeroen Demeyer (2013-11-22): initial version, split off from other files, made Polynomial_padic the common base class for all \( p\)-adic polynomials.

class sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic(parent, x=None, check=True, is_gen=False, construct=False)

Bases: sage.rings.polynomial.polynomial_element.Polynomial

content()
Compute the content of this polynomial.

OUTPUT:
If this is the zero polynomial, return the constant coefficient. Otherwise, since the content is only defined up to a unit, return the content as \( \pi^k \) with maximal precision where \( k \) is the minimal valuation of any of the coefficients.

EXAMPLES:
sage: K = Zp(13,7)
sage: R.<t> = K[]
sage: f = 13^7*t^3 + K(169,4)*t - 13^-4
sage: f.content()
13^-4 + O(13^3)
sage: f = R(0)
0
sage: f = R(K(0,3)); f
(0)

sage: P.<x> = ZZ[]
sage: f = x + 2
sage: f.content()
1

sage: fp = f.change_ring(pAdicRing(2, 10))
sage: fp
(1+O(2^10))*x + (2+O(2^11))

Over a field it would be sufficient to return only zero or one, as the content is only defined up to multiplication with a unit. However, we return $\pi^k$ where $k$ is the minimal valuation of any coefficient:

sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: f = 13^7*t^3 + K(169,4)*t - 13^-4
sage: f.content()
13^-4 + O(13^3)
sage: f = R(0)
0
sage: f = R(K(0,3))
0
sage: f = 13*t^3 + K(0,1)*t
sage: f.content()
13 + O(13^8)

factor()

Return the factorization of this polynomial.

EXAMPLES:

sage: R.<t> = PolynomialRing(Qp(3,3,print_mode='terse',print_pos=False))
sage: pol = t^8 - 1
sage: for p,e in pol.factor():
....:     print("{} {}".format(e, p))
1 (1 + O(3^3))*t + (1 + O(3^3))
1 (1 + O(3^3))*t + (-1 + O(3^3))
1 (1 + O(3^3))*t^2 + (5 + O(3^3))*t + (-1 + O(3^3))
1 (1 + O(3^3))*t^2 + (-5 + O(3^3))*t + (-1 + O(3^3))
1 (1 + O(3^3))*t^2 + (0 + O(3^3))*t + (1 + O(3^3))

sage: R.<t> = PolynomialRing(Qp(5,6,print_mode='terse',print_pos=False))
sage: pol = 100 * (5*t - 1) * (t - 5)
The same factorization over $\mathbb{Z}_p$. In this case, the “unit” part is a $p$-adic unit and the power of $p$ is considered to be a factor:

```
sage: R.<t> = PolynomialRing(Zp(5,6,print_mode='terse',print_pos=False))
sage: pol = 100 * (5*t - 1) * (t - 5)
sage: pol
(500 + O(5^9))*t^2 + (-2600 + O(5^8))*t + (500 + O(5^9))
sage: pol.factor()
(4 + O(5^6)) * ((5 + O(5^7)))^2 * ((1 + O(5^6)) * t + (-5 + O(5^6))) * ((5 +
˓→O(5^6))*t + (-1 + O(5^6)))
sage: pol.factor().value()
(500 + O(5^8))*t^2 + (-2600 + O(5^8))*t + (500 + O(5^8))
```

In the following example, the discriminant is zero, so the $p$-adic factorization is not well defined:

```
sage: factor(t^2)
Traceback (most recent call last):
...
PrecisionError: p-adic factorization not well-defined since the discriminant
˓→is zero up to the requestion p-adic precision
```

More examples over $\mathbb{Z}_p$:

```
sage: R.<w> = PolynomialRing(Zp(5, prec=6, type = 'capped-abs', print_mode =
˓→'val-unit'))
sage: f = w^5-1
sage: f.factor()
((1 + O(5^6))*w + (3124 + O(5^6))) * ((1 + O(5^6))*w^4 + (12501 + O(5^6))*w^3
˓→+ (9376 + O(5^6))*w^2 + (6251 + O(5^6))*w + (3126 + O(5^6)))
```

See trac ticket #4038:
2.1.15 p-adic Capped Relative Dense Polynomials

class sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense(
    parent, x=None, check=True, is_gen=False, construct=False, absprec=+Infinity, relprec=+Infinity)

Bases: sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv, sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic

degree (secure=False)
Return the degree of self.

INPUT:

*secure – a boolean (default: False)

If secure is True and the degree of this polynomial is not determined (because the leading coefficient is indistinguishable from 0), an error is raised.

If secure is False, the returned value is the largest \( n \) so that the coefficient of \( x^n \) does not compare equal to 0.

EXAMPLES:

```sage
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.degree()
1
sage: (f-T).degree()
0
sage: (f-T).degree(secure=True)
Traceback (most recent call last):
 ...
PrecisionError: the leading coefficient is indistinguishable from 0
```

```sage
sage: x = O(3^5)
sage: li = [3^i * x for i in range(0,5)]; li
[O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)]
sage: f = R(li); f
(0(3^9))*T^4 + (O(3^8))*T^3 + (O(3^7))*T^2 + (O(3^6))*T + (O(3^5))
sage: f.degree()
-1
sage: f.degree(secure=True)
Traceback (most recent call last):
 ...
PrecisionError: the leading coefficient is indistinguishable from 0
```

```
disc()

factor_mod()
Return the factorization of self modulo \(p \).
```
**is_eisenstein** *(secure=False)*

Return True if this polynomial is an Eisenstein polynomial.

**EXAMPLES:**

```
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 5*t + t^4
sage: f.is_eisenstein()
True
```

**AUTHOR:**

• Xavier Caruso (2013-03)

**lift** ()

Return an integer polynomial congruent to this one modulo the precision of each coefficient.

**Note:** The lift that is returned will not necessarily be the same for polynomials with the same coefficients (i.e. same values and precisions): it will depend on how the polynomials are created.

**EXAMPLES:**

```
sage: K = Qp(13, 7)
sage: R.<t> = K[]
sage: a = 13^7*t^3 + K(169,4)*t - 13^4
sage: a.lift()
62748517*t^3 + 169*t - 28561
```

**list** *(copy=True)*

Return a list of coefficients of self.

**Note:** The length of the list returned may be greater than expected since it includes any leading zeros that have finite absolute precision.

**EXAMPLES:**

```
sage: K = Qp(13, 7)
sage: R.<t> = K[]
sage: a = 2*t^3 + 169*t - 1
sage: a
(2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + (12 + 12*13 + 12*13^2 + 12*13^3 +
12*13^4 + 12*13^5 + 12*13^6 + O(13^7))
sage: a.list()
[12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7),
13^2 + O(13^9),
0,
2 + O(13^7)]
```

**lshift_coeffs** *(shift, no_list=False)*

Return a new polynomials whose coefficients are multiplied by p^shift.

**EXAMPLES:**

```
sage: K = Qp(13, 4)
sage: R.<t> = K[]
```
sage: a = t + 52
sage: a.lshift_coeffs(3)
(13^3 + O(13^7))*t + (4*13^4 + O(13^8))

newton_polygon()
Return the Newton polygon of this polynomial.

**Note:** If some coefficients have not enough precision an error is raised.

**OUTPUT:**

• a Newton polygon

**EXAMPLES:**

```
sage: K = Qp(2, prec=5)
sage: P.<x> = K[]
sage: f = x^4 + 2^3*x^3 + 2^13*x^2 + 2^21*x + 2^37
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0)
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
```

Here is an example where the computation fails because precision is not sufficient:

```
sage: g = f + K(0,0)*t^4; g
(5^2 + O(5^22))*t^10 + (O(5^0))*t^4 + (3 + O(5^20))*t + (5 + O(5^21))
sage: g.newton_polygon()
Traceback (most recent call last):
...
PrecisionError: The coefficient of t^4 has not enough precision
```

**AUTHOR:**

• Xavier Caruso (2013-03-20)

newton_slopes (repetition=True)
Return a list of the Newton slopes of this polynomial.

These are the valuations of the roots of this polynomial.

If repetition is True, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.

**INPUT:**

• repetition – boolean (default True)

**OUTPUT:**

• a list of rationals

**EXAMPLES:**

```
sage: K = Qp(5)
sage: R.<t> = K[]
```
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
sage: f.newton_slopes()
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
sage: f.newton_slopes(repetition=False)
[1, 0, -1/3]

AUTHOR:

• Xavier Caruso (2013-03-20)

prec_degree()
Return the largest \( n \) so that precision information is stored about the coefficient of \( x^n \).
Always greater than or equal to degree.

EXAMPLES:

sage: K = Qp(3,10)
sage: R.<T> = K[
]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.prec_degree()
1

precision_absolute(n=None)
Return absolute precision information about \( self \).

INPUT:

\( self \) – a p-adic polynomial
\( n \) – None or an integer (default None).

OUTPUT:

If \( n == None \), returns a list of absolute precisions of coefficients. Otherwise, returns the absolute precision of the coefficient of \( x^n \).

EXAMPLES:

sage: K = Qp(3,10)
sage: R.<T> = K[
]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.precision_absolute()
[10, 10]

precision_relative(n=None)
Return relative precision information about \( self \).

INPUT:

\( self \) – a p-adic polynomial
\( n \) – None or an integer (default None).

OUTPUT:
If \( n == \) None, returns a list of relative precisions of coefficients. Otherwise, returns the relative precision of the coefficient of \( x^n \).

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.precision_relative()
[10, 10]
```

**quo_rem** *(right, secure=False)*

Return the quotient and remainder in division of \( \textit{self} \) by \( \textit{right} \).

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2
sage: g = T**4 + 3*T+22
sage: g.quo_rem(f)
((1 + O(3^10))*T^3 + (1 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10))*T^2 + (1 + 3 + O(3^10))*T + (1 + 3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10)),
(2 + 3 + 3^3 + O(3^10)))
```

**rescale** *(a)*

Return \( f(a*X) \)

**Todo**

Need to write this function for integer polynomials before this works.

**EXAMPLES:**

```python
sage: K = Zp(13, 5)
sage: R.<t> = K[]
sage: f = t^3 + K(13, 3) * t
sage: f.rescale(2) # not implemented
```

**reverse** *(n=None)*

Return a new polynomial whose coefficients are the reversed coefficients of \( \textit{self} \), where \( \textit{self} \) is considered as a polynomial of degree \( n \).

If \( n \) is None, defaults to the degree of \( \textit{self} \).

If \( n \) is smaller than the degree of \( \textit{self} \), some coefficients will be discarded.

**EXAMPLES:**

```python
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: f = t^3 + 4*t; f
(1 + O(13^7))*t^3 + (4 + O(13^7))*t
sage: f.reverse()
(4 + O(13^7))*t^2 + (1 + O(13^7))
sage: f.reverse(3)
(4 + O(13^7))*t^2 + (1 + O(13^7))
```
### rshift_coeffs

**Function:**

Return a new polynomial whose coefficients are p-adically shifted to the right by shift.

**NOTES:** Type \texttt{Qp(5)(0).__rshift__?} for more information.

**EXAMPLES:**

```python
sage: K = Zp(13, 4)
sage: R.<t> = K[]
sage: a = t^2 + K(13,3)*t + 169; a
(1 + O(13^4))*t^2 + (13 + O(13^3))*t + (13^2 + O(13^6))
sage: b = a.rshift_coeffs(1); b
(0(13^3))*t^2 + (1 + O(13^2))*t + (13 + O(13^5))
sage: b.list()
[13 + O(13^5), 1 + O(13^2), O(13^3)]
sage: b = a.rshift_coeffs(2); b
(0(13^2))*t^2 + (O(13))*t + (1 + O(13^4))
sage: b.list()
[1 + O(13^4), O(13), O(13^2)]
```

### valuation

**Function:**

Return the valuation of \texttt{self}.

**INPUT:**

- \texttt{self} – a p-adic polynomial

- \texttt{val_of_var} – None or a rational (default None).

**OUTPUT:**

If \texttt{val_of_var} == None, returns the largest power of the variable dividing \texttt{self}. Otherwise, returns the valuation of \texttt{self} where the variable is assigned valuation \texttt{val_of_var}

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + (2 + O(3^10))
sage: f.valuation()
0
```

### valuation_of_coefficient

**Function:**

Return valuation information about \texttt{self}'s coefficients.

**INPUT:**

- \texttt{self} – a p-adic polynomial

- \texttt{n} – None or an integer (default None).

**OUTPUT:**
If \( n = \text{None} \), returns a list of valuations of coefficients. Otherwise, returns the valuation of the coefficient of \( x^n \).

**EXAMPLES:**

```python
sage: K = Qp(3,10)
sage: R.<T> = K[

```

**xgcd** *(right)*

Extended gcd of *self* and *other*.

**INPUT:**

\*other \– an element with the same parent as *self*

**OUTPUT:**

Polynomials \( g, u, \) and \( v \) such that \( g = u*\text{self} + v*\text{other} \)

**Warning:** The computations are performed using the standard Euclidean algorithm which might produce mathematically incorrect results in some cases. See trac ticket #13439.

**EXAMPLES:**

```python
sage: R.<x> = Qp(3,3)[

```

In these examples the results are incorrect, see trac ticket #13439:

```python
sage: R.<x> = Qp(3,3)[

```
2.1.16 p-adic Flat Polynomials

```python
class sage.rings.polynomial.padics.polynomial_padic_flat.Polynomial_padic_flat(
 parent, x=None, check=True, is_gen=False, construct=False, absprec=None)
```

Bases: `sage.rings.polynomial.polynomial_element.Polynomial_generic_dense`, `sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic`

2.1.17 Univariate Polynomials over GF(p^e) via NTL's ZZ_pEX.

**AUTHOR:**
- Yann Laigle-Chapuy (2010-01) initial implementation

```python
class sage.rings.polynomial.polynomial_zz_pex.Polynomial_ZZ_pEX
Bases: sage.rings.polynomial.polynomial_zz_pex.Polynomial_template
Univariate Polynomials over GF(p^n) via NTL’s ZZ_pEX.

EXAMPLES:

```python
sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K, implementation='NTL')
sage: (x^3 + a*x^2 + 1) * (x + a)
x^4 + 2*a*x^3 + a^2*x^2 + x + a
```

```python
is_irreducible(algorithm='fast_when_false', iter=1)

Returns `True` precisely when self is irreducible over its base ring.

**INPUT:**

**Parameters**

- `algorithm` – a string (default “fast_when_false”), there are 3 available algorithms: “fast_when_true”, “fast_when_false” and “probabilistic”.
- `iter` – (default: 1) if the algorithm is “probabilistic” defines the number of iterations. The error probability is bounded by \( q^{-\text{iter}} \) for polynomials in \( GF(q)[x] \).

**EXAMPLES:**

```python
sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K, implementation='NTL')
sage: P = x^3+(2-a)*x+1
sage: P.is_irreducible(algorithm='fast_when_false')
True
sage: P.is_irreducible(algorithm='fast_when_true')
True
sage: P.is_irreducible(algorithm='probabilistic')
True
sage: Q = (x^2+a)*(x+a^3)
```

```
False
sage: Q.is_irreducible(algorithm="probabilistic")
False

list (copy=True)
Returs the list of coefficients.

EXAMPLES:

sage: K.<a> = GF(5^3)
sage: P = PolynomialRing(K, 'x')
sage: f = P.random_element(100)
sage: f.list() == [f[i] for i in range(f.degree()+1)]
True
sage: P.0.list()
[0, 1]

resultant (other)
Returns the resultant of self and other, which must lie in the same polynomial ring.

INPUT:

Parameters other – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

EXAMPLES:

sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K,implementation='NTL')
sage: f=(x-a)*(x-a**2)*(x+1)
sage: g=(x-a**3)*(x-a**4)*(x+a)
sage: r = f.resultant(g)
sage: r == prod(u-v for (u,eu) in f.roots() for (v,ev) in g.roots())
True

shift (n)
EXAMPLES:

sage: K.<a>=GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K,implementation='NTL')
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x

class sage.rings.polynomial.polynomial_zz_pex.Polynomial_ZZ_pX
Bases: sage.rings.polynomial.polynomial_zz_pex.Polynomial_template

class sage.rings.polynomial.polynomial_zz_pex.Polynomial_template
Bases: sage.rings.polynomial.polynomial_element.Polynomial

Template for interfacing to external C / C++ libraries for implementations of polynomials.

AUTHORS:

•Robert Bradshaw (2008-10): original idea for templating
•Martin Albrecht (2008-10): initial implementation
This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a ‘linkage’ file which implements the `celement_` functions (see `sage.libs.ntl.ntl_GF2X_linkage` for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See `sage.rings.polynomial.polynomial_gf2x` for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).

Note: Implementations using this template MUST implement coercion from base ring elements and `get_unsafe()`. See `Polynomial_GF2X` for an example.

degree()
EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
```

gcd(other)
Return the greatest common divisor of self and other.

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x
```

g_ecn_parent()
is_gen()
EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x.is_gen()
True
sage: (x+1).is_gen()
False
```

is_one()
EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True
```

is_zero()
EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x.is_zero()
False
```
list *(copy=True)*

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```

quo_rem *(right)*

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
```

shift *(n)*

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
```

truncate *(n)*

Returns this polynomial mod x^n.

EXAMPLES:

```python
sage: R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

```python
sage: f.truncate(10) is f
True
```

xgcd *(other)*

Computes extended gcd of self and other.

EXAMPLES:

```python
sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)
```
2.1.18 Isolate Real Roots of Real Polynomials

AUTHOR:

• Carl Witty (2007-09-19): initial version

This is an implementation of real root isolation. That is, given a polynomial with exact real coefficients, we compute isolating intervals for the real roots of the polynomial. (Polynomials with integer, rational, or algebraic real coefficients are supported.)

We convert the polynomials into the Bernstein basis, and then use de Casteljau’s algorithm and Descartes’ rule of signs on the Bernstein basis polynomial (using interval arithmetic) to locate the roots. The algorithm is similar to that in “A Descartes Algorithm for Polynomials with Bit-Stream Coefficients”, by Eigenwillig, Kettner, Krandick, Mehlhorn, Schmitt, and Wolpert, but has three crucial optimizations over the algorithm in that paper:

• Precision reduction: at certain points in the computation, we discard the low-order bits of the coefficients, widening the intervals.

• Degree reduction: at certain points in the computation, we find lower-degree polynomials that are approximately equal to our high-degree polynomial over the region of interest.

• When the intervals are too wide to continue (either because of a too-low initial precision, or because of precision or degree reduction), and we need to restart with higher precision, we recall which regions have already been proven not to have any roots and do not examine them again.

The best description of the algorithms used (other than this source code itself) is in the slides for my Sage Days 4 talk, currently available from https://wiki.sagemath.org/days4schedule.

sage.rings.polynomial.real_roots.bernstein_down(d1, d2, s)
Given polynomial degrees d1 and d2 (where d1 < d2), and a number of samples s, computes a matrix bd.

If you have a Bernstein polynomial of formal degree d2, and select s of its coefficients (according to subsample_vec), and multiply the resulting vector by bd, then you get the coefficients of a Bernstein polynomial of formal degree d1, where this second polynomial is a good approximation to the first polynomial over the region of the Bernstein basis.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_down(3, 8, 5)
[ 612/245  -348/245   -37/49   338/245  -172/245]
[-724/441  132/49   395/441  -290/147   452/441]
[ 452/441  -290/147   395/441   132/49  -724/441]
[-172/245   338/245   -37/49  -348/245   612/245]
```

sage.rings.polynomial.real_roots.bernstein_expand(c, d2)
Given an integer vector representing a Bernstein polynomial p, and a degree d2, compute the representation of p as a Bernstein polynomial of formal degree d2.

This is similar to multiplying by the result of bernstein_up, but should be faster for large d2 (this has about the same number of multiplies, but in this version all the multiplies are by single machine words).

Returns a pair consisting of the expanded polynomial, and the maximum error E. (So if an element of the returned polynomial is a, and the true value of that coefficient is b, then a <= b < a + E.)

EXAMPLES:
class sage.rings.polynomial.real_roots.bernstein_polynomial_factory
An abstract base class for Bernstein polynomial factories. That is, elements of subclasses represent Bernstein polynomials (exactly), and are responsible for creating interval Bernstein polynomial integer approximations at arbitrary precision.

Supports four methods, coeffs_bitsize(), bernstein_polynomial(), lsign(), and usign(). The coeffs_bitsize() method gives an integer approximation to the log2 of the max of the absolute values of the Bernstein coefficients. The bernstein_polynomial(scale_log2) method gives an approximation where the maximum coefficient has approximately coeffs_bitsize() - scale_log2 bits. The lsign() and usign() methods give the (exact) sign of the first and last coefficient, respectively.

lsign()
Returns the sign of the first coefficient of this Bernstein polynomial.

usign()
Returns the sign of the last coefficient of this Bernstein polynomial.

class sage.rings.polynomial.real_roots.bernstein Polynomial_factory_ar(poly, neg)
Bases: sage.rings.polynomial.real_roots.bernstein_polynomial_factory

This class holds an exact Bernstein polynomial (represented as a list of algebraic real coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

bernstein_polynomial(scale_log2)
Compute an interval Bernstein polynomial integer that approximates this polynomial, using the given scale_log2. (Smaller scale_log2 values give more accurate approximations.)

EXAMPLES:

coeffs_bitsize()
Computes the approximate log2 of the maximum of the absolute values of the coefficients.

EXAMPLES:
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: bernstein_polynomial_factory_ar(p, False).coeffs_bitsize()
1

class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist(coeffs)
Bases: sage.rings.polynomial.real_roots.bernstein_polynomial_factory

This class holds an exact Bernstein polynomial (represented as a list of integer coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

bernstein_polynomial (scale_log2)
Compute an interval_bernstein_polynomial_integer that approximates this polynomial, using the given scale_log2. (Smaller scale_log2 values give more accurate approximations.)

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: bpf = bernstein_polynomial_factory_intlist([10, -20, 30, -40])
sage: print (bpf.bernstein_polynomial(0))
dergree 3 IBP with 6-bit coefficients
sage: bpf.bernstein_polynomial(20)
<IBP: ((0, -1, 0, -1) + [0 .. 1)) * 2^20; lsign 1>
sage: bpf.bernstein_polynomial(0)
<IBP: (0, -4, 2, -2) + [0 .. 1); lsign 1>

coeffs_bitsize()
Computes the approximate log2 of the maximum of the absolute values of the coefficients.

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_polynomial_factory_intlist([1, 2, 3, -60000]).coeffs_bitsize()
16

class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ratlist(coeffs)
Bases: sage.rings.polynomial.real_roots.bernstein_polynomial_factory

This class holds an exact Bernstein polynomial (represented as a list of rational coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

bernstein_polynomial (scale_log2)
Compute an interval_bernstein_polynomial_integer that approximates this polynomial, using the given scale_log2. (Smaller scale_log2 values give more accurate approximations.)

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: bpf = bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99])
sage: print (bpf.bernstein_polynomial(0))
dergree 3 IBP with 3-bit coefficients
sage: bpf.bernstein_polynomial(20)
<IBP: ((0, -1, 0, -1) + [0 .. 1)) * 2^20; lsign 1>
sage: bpf.bernstein_polynomial(0)
<IBP: ((10485760, -20971520, 31457280, -41943040) + [0 .. 1)) * 2^-20>
coeffs_bitsize()

Computes the approximate log2 of the maximum of the absolute values of the coefficients.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_polynomial_factory_ratlist([1, 2, 3, -60000]).coeffs_bitsize()
sage: bernstein_polynomial_factory_ratlist([65535/65536]).coeffs_bitsize()
sage: bernstein_polynomial_factory_ratlist([65536/65535]).coeffs_bitsize()
```

sage.rings.polynomial.real_roots.bernstein_up(d1, d2, s=None)

Given polynomial degrees d1 and d2, where d1 < d2, compute a matrix bu.

If you have a Bernstein polynomial of formal degree d1, and multiply its coefficient vector by bu, then the result is the coefficient vector of the same polynomial represented as a Bernstein polynomial of formal degree d2.

If s is not None, then it represents a number of samples; then the product only gives s of the coefficients of the new Bernstein polynomial, selected according to subsample_vec.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_down(3, 7, 4)
[ 12/5  -4   3  -2/5]
[-13/15  16/3  -4   8/15]
[  8/15  -4  16/3 -13/15]
[-2/5   3  -4  12/5]
```

sage.rings.polynomial.real_roots.bitsize_doctest(n)

sage.rings.polynomial.real_roots.cl_maximum_root(cl)

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.

Uses two algorithms of Akritas, Strzeboński, and Vigklas, and picks the better result.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root([RIF(-1), RIF(0), RIF(1)])
1.00000000000000
```

sage.rings.polynomial.real_roots.cl_maximum_root_first_lambda(cl)

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root_first_lambda([RIF(-1), RIF(0), RIF(1)])
1.00000000000000
```
Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root_local_max([RIF(-1), RIF(0), RIF(1)])
1.41421356237310
```

class sage.rings.polynomial.real_roots.context

A simple context class, which is passed through parts of the real root isolation algorithm to avoid global variables.

Holds logging information, a random number generator, and the target machine wordsize.

```python
get_be_log()
get_dc_log()
```

de_casteljau_doublevec(c, x)

Given a polynomial in Bernstein form with floating-point coefficients over the region \([0 .. 1]\), and a split point \(x\), use de Casteljau’s algorithm to give polynomials in Bernstein form over \([0 .. x]\) and \([x .. 1]\).

This function will work for an arbitrary rational split point \(x\), as long as \(0 < x < 1\); but it has a specialized code path for \(x==1/2\).

INPUT:

- \(c\) – vector of coefficients of polynomial in Bernstein form
- \(x\) – rational splitting point; \(0 < x < 1\)

OUTPUT:

- \(c1\) – coefficients of polynomial over range \([0 .. x]\)
- \(c2\) – coefficients of polynomial over range \([x .. 1]\)
- \(err_inc\) – number of half-ulps by which error intervals widened

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(RDF, [0.7, 0, 0, 0, 0, 0])
sage: de_casteljau_doublevec(c, 1/2)
((0.7, 0.35, 0.175, 0.0875, 0.04375, 0.021875), (0.021875, 0.0, 0.0, 0.0, 0.0, 0.0), 5)
sage: de_casteljau_doublevec(c, 1/3)  # rel tol
((0.7, 0.4666666666666667, 0.31111111111111117, 0.20740740740740746, 0.13827160493827165, 0.09218106995884777), (0.09218106995884777, 0.0, 0.0, 0.0, 0.0, 0.0), 15)
sage: de_casteljau_doublevec(c, 7/22)  # rel tol
((0.7, 0.4772727272727272, 0.325432231404959, 0.22187265214124724, 0.15127680827812312, 0.10314327837144759), (0.10314327837144759, 0.0, 0.0, 0.0, 0.0, 0.0), 15)
```
Given a polynomial in Bernstein form with integer coefficients over the region \([0 .. 1]\), and a split point \(x\), use de Casteljau’s algorithm to give polynomials in Bernstein form over \([0 .. x]\) and \([x .. 1]\).

This function will work for an arbitrary rational split point \(x\), as long as \(0 < x < 1\); but it has specialized code paths that make some values of \(x\) faster than others. If \(x = a/(a + b)\), there are special efficient cases for \(a==1, b==1, a+b \text{ fits in a machine word, } a+b \text{ is a power of 2, } a \text{ fits in a machine word, } b \text{ fits in a machine word}\). The most efficient case is \(x==1/2\).

Given split points \(x = a/(a + b)\) and \(y = c/(c + d)\), where \(\min(a, b)\) and \(\min(c, d)\) fit in the same number of machine words and \(a+b\) and \(c+d\) are both powers of two, then \(x\) and \(y\) should be equally fast split points.

If \(\text{use}_\text{ints}\) is nonzero, then instead of checking whether numerators and denominators fit in machine words, we check whether they fit in ints (32 bits, even on 64-bit machines). This slows things down, but allows for identical results across machines.

INPUT:
- \(c\) – vector of coefficients of polynomial in Bernstein form
- \(c_\text{bitsize}\) – approximate size of coefficients in \(c\) (in bits)
- \(x\) – rational splitting point; \(0 < x < 1\)

OUTPUT:
- \(c1\) – coefficients of polynomial over range \([0 .. x]\)
- \(c2\) – coefficients of polynomial over range \([x .. 1]\)
- \(\text{err}_\text{inc}\) – amount by which error intervals widened

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(ZZ, [1048576, 0, 0, 0, 0, 0])
sage: de_casteljau_intvec(c, 20, 1/2, 1)
((1048576, 524288, 262144, 131072, 65536, 32768), (32768, 0, 0, 0, 0, 0), 1)
sage: de_casteljau_intvec(c, 20, 1/3, 1)
((1048576, 699050, 466033, 310689, 207126, 138084), (138084, 0, 0, 0, 0, 0), 1)
sage: de_casteljau_intvec(c, 20, 7/22, 1)
((1048576, 714938, 487457, 332357, 226607, 154505), (154505, 0, 0, 0, 0, 0), 1)
```

Given \(n\) (a polynomial degree), returns either a smaller integer or None. This defines the sequence of degrees followed by our degree reduction implementation.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: degree_reduction_next_size(1000)
30
sage: degree_reduction_next_size(20)
15
sage: degree_reduction_next_size(3)
2
sage: degree_reduction_next_size(2) is None
True
```

Computes the dot product of row \(k\) of the matrix \(m\) with the vector \(v\) (that is, compute one element of the product \(m^*v\)).
If \(v \) has more elements than \(m \) has columns, then elements of \(v \) are selected using \texttt{subsample_vec}.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: m = matrix(3, range(9))
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 0, 0, 0]), 1)
0
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 1, 0, 0]), 1)
3
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 1, 0]), 1)
4
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 0, 1]), 1)
5
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 0, 0]), 1)
3
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 1, 0]), 1)
4
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 1]), 1)
5
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 2, 3]), 1)
26
```

\texttt{sage.rings.polynomial.real_roots.get_realfield_rndu}(n)

A simple cache for RealField fields (with rounding set to round-to-positive-infinity).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: get_realfield_rndu(20)
Real Field with 20 bits of precision and rounding RNDU
sage: get_realfield_rndu(53)
Real Field with 53 bits of precision and rounding RNDU
sage: get_realfield_rndu(20)
Real Field with 20 bits of precision and rounding RNDU
```

class \texttt{sage.rings.polynomial.real_roots.interval_bernstein_polynomial}

Bases: object

An interval_bernstein_polynomial is an approximation to an exact polynomial. This approximation is in the form of a Bernstein polynomial (a polynomial given as coefficients over a Bernstein basis) with interval coefficients.

The Bernstein basis of degree \(n \) over the region \([a .. b]\) is the set of polynomials

\[
\binom{n}{k} (x-a)^k (b-x)^{n-k} / (b-a)^n
\]

for \(0 \leq k \leq n \).

A degree-\(n \) interval Bernstein polynomial \(P \) with its region \([a .. b]\) can represent an exact polynomial \(p \) in two different ways: it can “contain” the polynomial or it can “bound” the polynomial.

We say that \(P \) contains \(p \) if, when \(p \) is represented as a degree-\(n \) Bernstein polynomial over \([a .. b]\), its coefficients are contained in the corresponding interval coefficients of \(P \). For instance, \([0.9 .. 1.1]\)*x^2 (which is a degree-2 interval Bernstein polynomial over \([0 .. 1]\)) contains \(x^2 \).

We say that \(P \) bounds \(p \) if, for all \(a \leq x \leq b \), there exists a polynomial \(p' \) contained in \(P \) such that \(p(x) = p'(x) \). For instance, \([0 .. 1]\)*x is a degree-1 interval Bernstein polynomial which bounds \(x^2 \) over \([0 .. 1]\).

If \(P \) contains \(p \), then \(P \) bounds \(p \); but the converse is not necessarily true. In particular, if \(n < m \), it is possible for a degree-\(n \) interval Bernstein polynomial to bound a degree-\(m \) polynomial; but it cannot contain the polynomial.
In the case where P bounds p, we maintain extra information, the “slope error”. We say that P (over $[a .. b]$) bounds p with a slope error of E (where E is an interval) if there is a polynomial p' contained in P such that the derivative of $(p - p')$ is bounded by E in the range $[a .. b]$. If P bounds p with a slope error of 0 then P contains p.

(Note that “contains” and “bounds” are not standard terminology; I just made them up.)

Interval Bernstein polynomials are useful in finding real roots because of the following properties:

- Given an exact real polynomial p, we can compute an interval Bernstein polynomial over an arbitrary region containing p.

- Given an interval Bernstein polynomial P over $[a .. c]$, where $a < b < c$, we can compute interval Bernstein polynomials P_1 over $[a .. b]$ and P_2 over $[b .. c]$, where P_1 and P_2 contain (or bound) all polynomials that P contains (or bounds).

- Given a degree-n interval Bernstein polynomial P over $[a .. b]$, and $m < n$, we can compute a degree-m interval Bernstein polynomial P' over $[a .. b]$ that bounds all polynomials that P bounds.

- It is sometimes possible to prove that no polynomial bounded by P over $[a .. b]$ has any roots in $[a .. b]$. (Roughly, this is possible when no polynomial contained by P has any complex roots near the line segment $[a .. b]$, where “near” is defined relative to the length $b-a$.)

- It is sometimes possible to prove that every polynomial bounded by P over $[a .. b]$ with slope error E has exactly one root in $[a .. b]$. (Roughly, this is possible when every polynomial contained by P over $[a .. b]$ has exactly one root in $[a .. b]$, there are no other complex roots near the line segment $[a .. b]$, and every polynomial contained in P has a derivative which is bounded away from zero over $[a .. b]$ by an amount which is large relative to E.)

- Starting from a sufficiently precise interval Bernstein polynomial, it is always possible to split it into polynomials which provably have 0 or 1 roots (as long as your original polynomial has no multiple real roots).

So a rough outline of a family of algorithms would be:

- Given a polynomial p, compute a region $[a .. b]$ in which any real roots must lie.

- Compute an interval Bernstein polynomial P containing p over $[a .. b]$.

- Keep splitting P until you have isolated all the roots. Optionally, reduce the degree or the precision of the interval Bernstein polynomials at intermediate stages (to reduce computation time). If this seems not to be working, go back and try again with higher precision.

Obviously, there are many details to be worked out to turn this into a full algorithm, like:

- What initial precision is selected for computing P?

- How do you decide when to reduce the degree of intermediate polynomials?

- How do you decide when to reduce the precision of intermediate polynomials?

- How do you decide where to split the interval Bernstein polynomial regions?

- How do you decide when to give up and start over with higher precision?

Each set of answers to these questions gives a different algorithm (potentially with very different performance characteristics), but all of them can use this `interval_bernstein_polynomial` class as their basic building block.

To save computation time, all coefficients in an `interval_bernstein_polynomial` share the same interval width. (There is one exception: when creating an `interval_bernstein_polynomial`, the first and last coefficients can be marked as “known positive” or “known negative”. This has some of the same effect as having a (potentially) smaller interval width for these two coefficients, although it does not...
affect de Casteljau splitting.) To allow for widely varying coefficient magnitudes, all coefficients in an
`interval_bernstein_polynomial` are scaled by 2^n (where n may be positive, negative, or zero).

There are two representations for `interval_bernstein_polynomials`, integer and floating-point. These are the two
subclasses of this class; `interval_bernstein_polynomial` itself is an abstract class.

`interval_bernstein_polynomial` and its subclasses are not expected to be used outside this file.

```python
region()
region_width()
```

try_rand_split (ctx, logging_note)

Compute a random split point r (using the random number generator embedded in ctx). We require $1/4 \leq r < 3/4$ (to ensure that recursive algorithms make progress).

Then, try doing a de Casteljau split of this polynomial at r, resulting in polynomials p_1 and p_2. If we see
that the sign of this polynomial is determined at r, then return (p_1, p_2, r); otherwise, return None.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
sage: bp1
<IBP: (50, 29, -27, -56, -11) + [0 .. 6) over [0 .. 43/64]>
sage: bp2
<IBP: (-11, 10, 49, 111, 200) + [0 .. 6) over [43/64 .. 1]>
```

```python
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(seed=42), None)
sage: bp1
<IBP: (50, 32, -11, -41, -29) + [0 .. 6) over [0 .. 583/1024]>
sage: bp2
<IBP: (-29, -20, 13, 83, 200) + [0 .. 6) over [583/1024 .. 1]>
```

```python
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
sage: bp1
<IBP: (0.5, 0.2984375, -0.2642578125, -0.5511661529541015, -0.3145806974172592) + [-0.1 .. 0.01] over [0 .. 1/2]>
sage: bp2
<IBP: (-0.3145806974172592, -0.19903896331787108, 0.04135986328125002, 0.43546875, 0.99) + [-0.1 .. 0.01] over [1/2 .. 1]>
```

try_split (ctx, logging_note)

Try doing a de Casteljau split of this polynomial at $1/2$, resulting in polynomials p_1 and p_2. If we see that
the sign of this polynomial is determined at $1/2$, then return $(p_1, p_2, 1/2)$; otherwise, return None.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: bp1, bp2, _ = bp.try_split(mk_context(), None)
sage: bp1
<IBP: (50, 35, 0, -29, -31) + [0 .. 6) over [0 .. 1/2]>
sage: bp2
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1]>
```

```python
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, _ = bp.try_split(mk_context(), None)
sage: bp1
<IBP: (0.5, 0.35, 0, -0.2875, -0.369375) + [-0.1 .. 0.01] over [0 .. 1/2]>
sage: bp2
<IBP: (-0.369375, -0.45125, -0.3275, 0.14500000000000002, 0.99) + [-0.1 .. 0.01] over [1/2 .. 1]>
```
Consider a polynomial (written in either the normal power basis or the Bernstein basis). Take its list of coefficients, omitting zeroes. Count the number of positions in the list where the sign of one coefficient is opposite the sign of the next coefficient.

This count is the number of sign variations of the polynomial. According to Descartes’ rule of signs, the number of real roots of the polynomial (counted with multiplicity) in a certain interval is always less than or equal to the number of sign variations, and the difference is always even. (If the polynomial is written in the power basis, the region is the positive reals; if the polynomial is written in the Bernstein basis over a particular region, then we count roots in that region.)

In particular, a polynomial with no sign variations has no real roots in the region, and a polynomial with one sign variation has one real root in the region.

In an interval Bernstein polynomial, we do not necessarily know the signs of the coefficients (if some of the coefficient intervals contain zero), so the polynomials contained by this interval polynomial may not all have the same number of sign variations. However, we can compute a range of possible numbers of sign variations.

This function returns the range, as a 2-tuple of integers.

```python
class sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float:
    Bases: sage.rings.polynomial.real_roots.interval_bernstein_polynomial

    This is the subclass of interval_bernstein_polynomial where polynomial coefficients are represented using floating-point numbers.

    In the floating-point representation, each coefficient is represented as an IEEE double-precision float A, and the (shared) lower and upper interval widths E1 and E2. These represent the coefficients (A+E1)*2^n <= c <= (A+E2)*2^n.

    Note that we always have E1 <= 0 <= E2. Also, each floating-point coefficient has absolute value less than one.

    (Note that mk_ibpf is a simple helper function for creating elements of interval_bernstein_polynomial_float in doctests.)

    EXAMPLES:

    sage: from sage.rings.polynomial.real_roots import *
    sage: bp = mk_ibpf([0.1, 0.2, 0.3], pos_err=0.5); print(bp)
    degree 2 IBP with floating-point coefficients
    sage: bp
    <IBP: (0.1, 0.2, 0.3) + [0.0 .. 0.5]>
    sage: bp.variations()
    (0, 0)
    sage: bp = mk_ibpf([-0.3, -0.1, 0.1, -0.1, -0.3, -0.1], lower=1, upper=5/4, usign=1, pos_err=0.2, scale_log2=-3, level=2, slope_err=RIF(pi)); print(bp)
    degree 5 IBP with floating-point coefficients
    sage: bp
    <IBP: ((-0.3, -0.1, 0.1, -0.1, -0.3, -0.1) + [0.0 .. 0.2]) * 2^-3 over [1 .. 5/4]; usign 1; level 2; slope_err 3.141592653589794?>
    sage: bp.variations()
    (3, 3)

    as_float()

de_casteljau(ctx, mid, msign=0)
    Uses de Casteljau’s algorithm to compute the representation of this polynomial in a Bernstein basis over new regions.
```

2.1. Univariate Polynomials and Polynomial Rings 183
INPUT:

• \texttt{mid} – where to split the Bernstein basis region; $0 < \texttt{mid} < 1$

• \texttt{msign} – default 0 (unknown); the sign of this polynomial at \texttt{mid}

OUTPUT:

• \texttt{bp1}, \texttt{bp2} – the new interval Bernstein polynomials

• \texttt{ok} – a boolean; True if the sign of the original polynomial at \texttt{mid} is known

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: ctx = mk_context()
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)
sage: bp1
<IBP: (0.5, 0.35, 0.0, -0.2875, -0.369375) + [-0.1 .. 0.01] over [0 .. 1/2]>
sage: bp2
<IBP: (-0.369375, -0.45125, -0.3275, 0.14500000000000002, 0.99) + [-0.1 .. 0.01] over [1/2 .. 1]>
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 2/3)
sage: bp1
# rel tol 2e-16
<IBP: (0.5, 0.30000000000000004, -0.25555555555555555, -0.54444444444444444, -0.32172839506172846) + [-0.1 .. 0.01] over [0 .. 2/3]>
sage: bp2
# rel tol 3e-15
<IBP: (-0.32172839506172846, -0.21037037037037046, 0.02888888888888888, 0.99) + [-0.1 .. 0.01] over [2/3 .. 1]>
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 7/39)
sage: bp1
# rel tol
<IBP: (0.5, 0.4461538461538461, 0.36653517422748183, 0.27328680523946786, 0.1765692706232836) + [-0.1 .. 0.01] over [0 .. 7/39]>
sage: bp2
# rel tol
<IBP: (0.4461538461538461, -0.2656803047927313, -0.7802038132807364, -0.39666666666666666, 0.99) + [-0.1 .. 0.01] over [7/39 .. 1]>
```

\texttt{get_msb_bit}()

Returns an approximation of the log2 of the maximum of the absolute values of the coefficients, as an integer.

\texttt{slope_range}()

Compute a bound on the derivative of this polynomial, over its region.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp.slope_range().str(style='brackets')
'[-4.8400000000000017 .. 7.2000000000000011]'
```

\texttt{class sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer}

\texttt{Bases: sage.rings.polynomial.real_roots.interval_bernstein_polynomial}

This is the subclass of interval_bernstein_polynomial where polynomial coefficients are represented using integers.

In this integer representation, each coefficient is represented by a GMP arbitrary-precision integer \(A \), and a (shared) interval width \(E \) (which is a machine integer). These represent the coefficients \(A \cdot 2^n \leq c < (A+E) \cdot 2^n \).
(Note that mk_ibpi is a simple helper function for creating elements of interval_bernstein_polynomial_integer in doctests.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([1, 2, 3], error=5); print(bp)
degree 2 IBP with 2-bit coefficients
sage: bp
<IBP: (1, 2, 3) + [0 .. 5)>
sage: bp.variations()
(0, 0)
sage: bp = mk_ibpi([-3, -1, 1, -1, -3, -1], lower=1, upper=5/4, usign=1, error=2,
    scale_log2=-3, level=2, slope_err=RIF(pi)); print(bp)
degree 5 IBP with 2-bit coefficients
sage: bp
<IBP: ((-3, -1, 1, -1, -3, -1) + [0 .. 2)) * 2^-3 over [1 .. 5/4]; usign 1; level
    2; slope_err 3.141592653589794?>
sage: bp.variations()
(3, 3)
```

as_float()

Compute an interval_bernstein_polynomial_float which contains (or bounds) all the polynomials this interval polynomial contains (or bounds).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: print(bp.as_float())
degree 4 IBP with floating-point coefficients
sage: bp.as_float()
<IBP: ((0.1953125, 0.078125, -0.3515625, -0.2734375, 0.78125) + [-1.
    →12757025938e-16 .. 0.01953125]) * 2^8>
```

de_casteljau(ctx, mid, msign=0)

Uses de Casteljau’s algorithm to compute the representation of this polynomial in a Bernstein basis over new regions.

INPUT:
- `mid` – where to split the Bernstein basis region; 0 < mid < 1
- `msign` – default 0 (unknown); the sign of this polynomial at mid

OUTPUT:
- `bp1, bp2` – the new interval Bernstein polynomials
- `ok` – a boolean; True if the sign of the original polynomial at mid is known

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: ctx = mk_context()
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)
sage: bp1
<IBP: (50, 35, 0, -29, -31) + [0 .. 6) over [0 .. 1/2]>
sage: bp2
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1]>
```
down_degree (*ctx, max_err, exp_err_shift*)

Compute an interval_bernstein_polynomial_integer which bounds all the polynomials this interval polynomial bounds, but is of lesser degree.

During the computation, we find an “expected error” expected_err, which is the error inherent in our approach (this depends on the degrees involved, and is proportional to the error of the current polynomial).

We require that the error of the new interval polynomial be bounded both by max_err, and by expected_err << exp_err_shift. If we find such a polynomial p, then we return a pair of p and some debugging/logging information. Otherwise, we return the pair (None, None).

If the resulting polynomial would have error more than 2^17, then it is downscaled before returning.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: ctx = mk_context()
sage: bp
<IBP: (0, 100, 400, 903) + [0 .. 2)>
sage: dbp, _ = bp.down_degree(ctx, 10, 32)
sage: dbp
<IBP: (-1, 148, 901) + [0 .. 4); level 1; slope_err 0.?e2>
```

down_degree_iter (*ctx, max_scale*)

Compute a degree-reduced version of this interval polynomial, by iterating down_degree.

We stop when degree reduction would give a polynomial which is too inaccurate, meaning that either we think the current polynomial may have more roots in its region than the degree of the reduced polynomial, or that the least significant accurate bit in the result (on the absolute scale) would be larger than 1 << max_scale.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903, 1600, 2500], error=2)
sage: ctx = mk_context()
sage: bp
<IBP: (0, 100, 400, 903, 1600, 2500) + [0 .. 2)>
sage: rbp = bp.down_degree_iter(ctx, 6)
sage: rbp
<IBP: (-4, 249, 2497) + [0 .. 9); level 2; slope_err 0.?e3>
```

downscale (*bits*)

Compute an interval_bernstein_polynomial_integer which contains (or bounds) all the polynomials this interval polynomial contains (or bounds), but uses “bits” fewer bits.

EXAMPLES:
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: bp.downscale(5)
<IBP: ((0, 3, 12, 28) + [0 .. 1)) * 2^5>

get_msb_bit()
Returns an approximation of the log2 of the maximum of the absolute values of the coefficients, as an integer.

slope_range()
Compute a bound on the derivative of this polynomial, over its region.

EXAMPLES:
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: bp.slope_range().str(style='brackets')
'[294.0000000000000 .. 1515.0000000000000]'

sage.rings.polynomial.real_roots.intvec_to_doublevec(b, err)
Given a vector of integers A = [a1, ..., an], and an integer error bound E, returns a vector of floating-point numbers B = [b1, ..., bn], lower and upper error bounds F1 and F2, and a scaling factor d, such that

\[(bk + F1) \times 2^d \leq ak\]

and

\[ak + E \leq (bk + F2) \times 2^d\]

If bj is the element of B with largest absolute value, then 0.5 <= abs(bj) < 1.0.

EXAMPLES:
sage: from sage.rings.polynomial.real_roots import *
sage: intvec_to_doublevec(vector(ZZ, [1, 2, 3, 4, 5]), 3)
((0.125, 0.25, 0.375, 0.5, 0.625), -1.1275702593849246e-16, 0.37500000000000017, \n\rightarrow 3)

class sage.rings.polynomial.real_roots.island
Bases: object

This implements the island portion of my ocean-island root isolation algorithm. See the documentation for class ocean, for more information on the overall algorithm.

Island root refinement starts with a Bernstein polynomial whose region is the whole island (or perhaps slightly more than the island in certain cases). There are two subalgorithms; one when looking at a Bernstein polynomial covering a whole island (so we know that there are gaps on the left and right), and one when looking at a Bernstein polynomial covering the left segment of an island (so we know that there is a gap on the left, but the right is in the middle of an island). An important invariant of the left-segment subalgorithm over the region [l .. r] is that it always finds a gap [r0 .. r] ending at its right endpoint.

Ignoring degree reduction, downscaling (precision reduction), and failures to split, the algorithm is roughly:

Whole island:
1. If the island definitely has exactly one root, then return.
2. Split the island in (approximately) half.
3. If both halves definitely have no roots, then remove this island from its doubly-linked list (merging its left and right gaps) and return.
4. If either half definitely has no roots, then discard that half and call the whole-island algorithm with the other half, then return.

5. If both halves may have roots, then call the left-segment algorithm on the left half.

6. We now know that there is a gap immediately to the left of the right half, so call the whole-island algorithm on the right half, then return.

Left segment:

1. Split the left segment in (approximately) half.

2. If both halves definitely have no roots, then extend the left gap over the segment and return.

3. If the left half definitely has no roots, then extend the left gap over this half and call the left-segment algorithm on the right half, then return.

4. If the right half definitely has no roots, then split the island in two, creating a new gap. Call the whole-island algorithm on the left half, then return.

5. Both halves may have roots. Call the left-segment algorithm on the left half.

6. We now know that there is a gap immediately to the left of the right half, so call the left-segment algorithm on the right half, then return.

Degree reduction complicates this picture only slightly. Basically, we use heuristics to decide when degree reduction might be likely to succeed and be helpful; whenever this is the case, we attempt degree reduction.

Precision reduction and split failure add more complications. The algorithm maintains a stack of different-precision representations of the interval Bernstein polynomial. The base of the stack is at the highest (currently known) precision; each stack entry has approximately half the precision of the entry below it. When we do a split, we pop off the top of the stack, split it, then push whichever half we’re interested in back on the stack (so the different Bernstein polynomials may be over different regions). When we push a polynomial onto the stack, we may heuristically decide to push further lower-precision versions of the same polynomial onto the stack.

In the algorithm above, whenever we say “split in (approximately) half”, we attempt to split the top-of-stack polynomial using try_split() and try_rand_split(). However, these will fail if the sign of the polynomial at the chosen split point is unknown (if the polynomial is not known to high enough precision, or if the chosen split point actually happens to be a root of the polynomial). If this fails, then we discard the top-of-stack polynomial, and try again with the next polynomial down (which has approximately twice the precision). This next polynomial may not be over the same region; if not, we split it using de Casteljau’s algorithm to get a polynomial over (approximately) the same region first.

If we run out of higher-precision polynomials (if we empty out the entire stack), then we give up on root refinement for this island. The ocean class will notice this, provide the island with a higher-precision polynomial, and restart root refinement. Basically the only information kept in that case is the lower and upper bounds on the island. Since these are updated whenever we discover a “half” (of an island or a segment) that definitely contains no roots, we never need to re-examine these gaps. (We could keep more information. For example, we could keep a record of split points that succeeded and failed. However, a split point that failed at lower precision is likely to succeed at higher precision, so it’s not worth avoiding. It could be useful to select split points that are known to succeed, but starting from a new Bernstein polynomial over a slightly different region, hitting such split points would require de Casteljau splits with non-power-of-two denominators, which are much much slower.)

bp_done *(bp)*

Examine the given Bernstein polynomial to see if it is known to have exactly one root in its region. (In addition, we require that the polynomial region not include 0 or 1. This makes things work if the user gives explicit bounds to real_roots(), where the lower or upper bound is a root of the polynomial. real_roots() deals with this by explicitly detecting it, dividing out the appropriate linear polynomial, and adding the root to the returned list of roots; but then if the island considers itself “done” with a region including 0 or 1, the returned root regions can overlap with each other.)
done \((ctx)\)
Check to see if the island is known to contain zero roots or is known to contain one root.

has_root ()
Assuming that the island is done (has either 0 or 1 roots), reports whether the island has a root.

less_bits \((ancestors, bp)\)
Heuristically pushes lower-precision polynomials on the polynomial stack. See the class documentation for class island for more information.

more_bits \((ctx, ancestors, bp, rightmost)\)
Find a Bernstein polynomial on the “ancestors” stack with more precision than bp; if it is over a different region, then shrink its region to (approximately) match that of bp. (If this is rightmost – if bp covers the whole island – then we only require that the new region cover the whole island fairly tightly; if this is not rightmost, then the new region will have exactly the same right boundary as bp, although the left boundary may vary slightly.)

refine \((ctx)\)
Attempts to shrink and/or split this island into sub-island that each definitely contain exactly one root.

refine_recurse \((ctx, bp, ancestors, history, rightmost)\)
This implements the root isolation algorithm described in the class documentation for class island. This is the implementation of both the whole-island and the left-segment algorithms; if the flag rightmost is True, then it is the whole-island algorithm, otherwise the left-segment algorithm.

The precision-reduction stack is \((ancestors + [bp])\); that is, the top-of-stack is maintained separately.

reset_root_width \((target_width)\)
Modify the criteria for this island to require that it is not “done” until its width is less than or equal to target_width.

shrink_bp \((ctx)\)
If the island’s Bernstein polynomial covers a region much larger than the island itself (in particular, if either the island’s left gap or right gap are totally contained in the polynomial’s region) then shrink the polynomial down to cover the island more tightly.

class sage.rings.polynomial.real_roots.linear_map \((lower, upper)\)
A simple class to map linearly between original coordinates (ranging from \([lower .. upper]\)) and ocean coordinates (ranging from \([0 .. 1]\)).

from_ocean \((region)\)

to_ocean \((region)\)

sage.rings.polynomial.real_roots.max_abs_doublevec \((c)\)
Given a floating-point vector, return the maximum of the absolute values of its elements.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: max_abs_doublevec(vector(RDF, [0.1, -0.767, 0.3, 0.693]))
0.767
```

sage.rings.polynomial.real_roots.max_bitsize_intvec_doctest \((b)\)

sage.rings.polynomial.real_roots.maximum_root_first_lambda \((p)\)
Given a polynomial with real coefficients, computes an upper bound on its largest real root, using the first-lambda algorithm from “Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials”, by Akritas, Strzebo’nski, and Vigklas.

EXAMPLES:
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: maximum_root_first_lambda((x-1)*(x-2)*(x-3))
6.00000000000001
sage: maximum_root_first_lambda((x+1)*(x+2)*(x+3))
0.000000000000000
sage: maximum_root_first_lambda(x^2 - 1)
1.00000000000000

sage.rings.polynomial.real_roots.maximum_root_local_max(p)
Given a polynomial with real coefficients, computes an upper bound on its largest real root, using the local-max
algorithm from “Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials”,
by Akritas, Strzeboński, and Vigklas.

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: maximum_root_local_max((x-1)*(x-2)*(x-3))
12.00000000000001
sage: maximum_root_local_max((x+1)*(x+2)*(x+3))
0.000000000000000
sage: maximum_root_local_max(x^2 - 1)
1.41421356237310

sage.rings.polynomial.real_roots.min_max_delta_intvec(a, b)
Given two integer vectors a and b (of equal, nonzero length), return a pair of the minimum and maximum values
taken on by a[i] - b[i].

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: a = vector(ZZ, [10, -30])
sage: b = vector(ZZ, [15, -60])
sage: min_max_delta_intvec(a, b)
(30, -5)

sage.rings.polynomial.real_roots.min_max_diff_doublevec(c)
Given a floating-point vector b = (b0, ..., bn), compute the minimum and maximum values of b_{j+1} - b_{j}.

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: min_max_diff_doublevec(vector(RDF, [1, 7, -2]))
(-9.0, 6.0)

sage.rings.polynomial.real_roots.min_max_diff_intvec(b)
Given an integer vector b = (b0, ..., bn), compute the minimum and maximum values of b_{j+1} - b_{j}.

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: min_max_diff_intvec(vector(ZZ, [1, 7, -2]))
(-9, 6)

sage.rings.polynomial.real_roots.mk_context(do_logging=False, seed=0, wordsize=32)
A simple wrapper for creating context objects with coercions, defaults, etc.

For use in doctests.
EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: mk_context(do_logging=True, seed=3, wordsize=64)
root isolation context: seed=3; do_logging=True; wordsize=64
```

sage.rings.polynomial.real_roots.mk_ibpf(coeffs, lower=0, upper=1, lsign=0, usign=0, neg_err=0, pos_err=0, scale_log2=0, level=0, slope_err=None)

A simple wrapper for creating interval_bernstein_polynomial_float objects with coercions, defaults, etc.
For use in doctests.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: print(mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], pos_err=0.1, neg_err=-0.01))
degree 4 IBP with floating-point coefficients
```

sage.rings.polynomial.real_roots.mk_ibpi(coeffs, lower=0, upper=1, lsign=0, usign=0, error=1, scale_log2=0, level=0, slope_err=None)

A simple wrapper for creating interval_bernstein_polynomial_integer objects with coercions, defaults, etc.
For use in doctests.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: print(mk_ibpi([50, 20, -90, -70, 200], error=5))
degree 4 IBP with 8-bit coefficients
```

class sage.rings.polynomial.real_roots.ocean
Bases: object

Given the tools we’ve defined so far, there are many possible root isolation algorithms that differ on where to select split points, what precision to work at when, and when to attempt degree reduction.

Here we implement one particular algorithm, which I call the ocean-island algorithm. We start with an interval Bernstein polynomial defined over the region \([0 .. 1]\). This region is the “ocean”. Using de Casteljau’s algorithm and Descartes’ rule of signs, we divide this region into subregions which may contain roots, and subregions which are guaranteed not to contain roots. Subregions which may contain roots are “islands”; subregions known not to contain roots are “gaps”.

All the real root isolation work happens in class island. See the documentation of that class for more information.

An island can be told to refine itself until it contains only a single root. This may not succeed, if the island’s interval Bernstein polynomial does not have enough precision. The ocean basically loops, refining each of its islands, then increasing the precision of islands which did not succeed in isolating a single root; until all islands are done.

Increasing the precision of unsuccessful islands is done in a single pass using split_for_target(); this means it is possible to share work among multiple islands.

all_done()

Returns true iff all islands are known to contain exactly one root.

EXAMPLES:
approx_bp (scale_log2)
Returns an approximation to our Bernstein polynomial with the given scale_log2.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.approx_bp(0)
<IBP: (0, -4, 2, -2) + [0 .. 1); lsign 1>
sage: oc.approx_bp(-20)
<IBP: ((349525, -3295525, 2850354, -1482835) + [0 .. 1)) * 2^-20>
```

find_roots()
Isolate all roots in this ocean.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.find_roots()
sage: oc
ocean with precision 120 and 3 island(s)
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1, 0, -111/2, 0, 11108889/14, 0, 0, 0, 0, -1]), lmap)
sage: oc.find_roots()
sage: oc
ocean with precision 240 and 3 island(s)
```

increase_precision()
Increase the precision of the interval Bernstein polynomial held by any islands which are not done. (In normal use, calls to this function are separated by calls to self.refine_all().)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.increase_precision()
sage: oc.increase_precision()
sage: oc.increase_precision()
sage: oc
ocean with precision 960 and 1 island(s)
```

refine_all()
Refine all islands which are not done (which are not known to contain exactly one root).

EXAMPLES:
```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.refine_all()
sage: oc
ocean with precision 120 and 3 island(s)

reset_root_width(isle_num, target_width)

Require that the isle_num island have a width at most target_width.

If this is followed by a call to find_roots(), then the corresponding root will be refined to the specified width.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([-1, -1, 1]), lmap)
sage: oc.find_roots()
sage: oc.roots()
[(1/2, 3/4)]
sage: oc.reset_root_width(0, 1/2^200)
sage: oc.find_roots()
sage: oc
ocean with precision 240 and 1 island(s)
sage: RR(RealIntervalField(300)(oc.roots()[0]).absolute_diameter()).log2()
-232.668979560890

roots()

Return the locations of all islands in this ocean. (If run after find_roots(), this is the location of all roots in the ocean.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.find_roots()
sage: oc.roots()
[(1/32, 1/16), (1/2, 5/8), (3/4, 7/8)]
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1, 0, -1111/2, 0, 11108889/14, 0, 0, 0, 0, 0, 0, -1]), lmap)
sage: oc.find_roots()
sage: oc.roots()
[(95761241267509487747625/9671406556917033397649408, 191522482605387719863145/19342813113834066795298816), (14962693959043473736805/15115727451828646838272, 374067366568272936175/37778931862957161709568), (31/32, 63/64)]
```

sage.rings.polynomial.real_roots.precompute_degree_reduction_cache(n)

Compute and cache the matrices used for degree reduction, starting from degree n.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: precompute_degree_reduction_cache(5)
sage: dr_cache[5]
```
sage.rings.polynomial.real_roots.pseudoinverse(m)

sage.rings.polynomial.real_roots.rational_root_bounds(p)
Given a polynomial p with real coefficients, computes rationals a and b, such that for every real root r of p, $a < r < b$. We try to find rationals which bound the roots somewhat tightly, yet are simple (have small numerators and denominators).

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: rational_root_bounds((x-1)*(x-2)*(x-3))
(0, 7)
sage: rational_root_bounds(x^2)
(-1/2, 1/2)
sage: rational_root_bounds(x*(x+1))
(-3/2, 1/2)
sage: rational_root_bounds((x+2)*(x-3))
(-3, 6)
sage: rational_root_bounds(x^995 * (x^2 - 9999) - 1)
(-100, 1000/7)
sage: rational_root_bounds(x^995 * (x^2 - 9999) + 1)
(-142, 213/2)
```

If we can see that the polynomial has no real roots, return None.

```
sage: rational_root_bounds(x^2 + 7) is None
True
```

sage.rings.polynomial.real_roots.real_roots(p, bounds=None, seed=None, skip_squarefree=False, do_logging=False, wordsize=32, retval='rational', strategy=None, max_diameter=None)

Compute the real roots of a given polynomial with exact coefficients (integer, rational, and algebraic real coefficients are supported). Returns a list of pairs of a root and its multiplicity.

The root itself can be returned in one of three different ways. If retval=='rational’, then it is returned as a pair of rationals that define a region that includes exactly one root. If retval=='interval’, then it is returned as a RealIntervalFieldElement that includes exactly one root. If retval=='algebraic_real’, then it is returned as an AlgebraicReal. In the former two cases, all the intervals are disjoint.

An alternate high-level algorithm can be used by selecting strategy='warp’. This affects the conversion into Bernstein polynomial form, but still uses the same ocean-island algorithm as the default algorithm. The ‘warp’ algorithm performs the conversion into Bernstein polynomial form much more quickly, but performs the rest of the computation slightly slower in some benchmarks. The ‘warp’ algorithm is particularly likely to be helpful for low-degree polynomials.
Part of the algorithm is randomized; the seed parameter gives a seed for the random number generator. (By default, the same seed is used for every call, so that results are repeatable.) The random seed may affect the running time, or the exact intervals returned, but the results are correct regardless of the seed used.

The bounds parameter lets you find roots in some proper subinterval of the reals; it takes a pair of a rational lower and upper bound and only roots within this bound will be found. Currently, specifying bounds does not work if you select strategy='warp', or if you use a polynomial with algebraic real coefficients.

By default, the algorithm will do a squarefree decomposition to get squarefree polynomials. The skip_squarefree parameter lets you skip this step. (If this step is skipped, and the polynomial has a repeated real root, then the algorithm will loop forever! However, repeated non-real roots are not a problem.)

For integer and rational coefficients, the squarefree decomposition is very fast, but it may be slow for algebraic reals. (It may trigger exact computation, so it might be arbitrarily slow. The only other way that this algorithm might trigger exact computation on algebraic real coefficients is that it checks the constant term of the input polynomial for equality with zero.)

Part of the algorithm works (approximately) by splitting numbers into word-size pieces (that is, pieces that fit into a machine word). For portability, this defaults to always selecting pieces suitable for a 32-bit machine; the wordsize parameter lets you make choices suitable for a 64-bit machine instead. (This affects the running time, and the exact intervals returned, but the results are correct on both 32- and 64-bit machines even if the wordsize is chosen “wrong”.)

The precision of the results can be improved (at the expense of time, of course) by specifying the max_diameter parameter. If specified, this sets the maximum diameter() of the intervals returned. (Sage defines diameter() to be the relative diameter for intervals that do not contain 0, and the absolute diameter for intervals containing 0.) This directly affects the results in rational or interval return mode; in algebraic_real mode, it increases the precision of the intervals passed to the algebraic number package, which may speed up some operations on that algebraic real.

Some logging can be enabled with do_logging=True. If logging is enabled, then the normal values are not returned; instead, a pair of the internal context object and a list of all the roots in their internal form is returned.

ALGORITHM: We convert the polynomial into the Bernstein basis, and then use de Casteljau’s algorithm and Descartes’ rule of signs (using interval arithmetic) to locate the roots.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: real_roots(x^3 - x^2 - x - 1)

[((7/4, 19/8), 1)]
sage: real_roots((x-1)*(x-2)*(x-3)*(x-5)*(x-8)*(x-13)*(x-21)*(x-34))

[((11/16, 33/32), 1), ((11/8, 33/16), 1), ((11/4, 55/16), 1), ((77/16, 165/32), 1), ((11/2, 33/4), 1), ((11/4, 55/4), 1), ((165/8, 341/16), 1), ((22, 44), 1)]
sage: real_roots(x^5 * (x^2 - 9999)^2 - 1, seed=42)

[((-123196838480289/18014398509481984, 29396474358749/9007199254740992), 1), ((8307295973995190784169638196376143/83076749736557242056487941267521536, 1), (1661451915098103378943790437845325503/166153499473114484112975882535043072, 1), ((51920372352692175810152497797434335/5192296858534827628530496329220096, 1), (60443268924081068060312817/60446290807314587353088), 1)]
```
sage: real_roots(x*(x-1)*(x-2), bounds=(0, 2), retval='algebraic_real')

sage: real_roots(x-1)

sage: real_roots(x^2 - 2, max_diameter=1/2^30)

sage: v = 2^40

sage: real_roots((x^2-1)^2 * (x^2 - (v+1)/v))

sage: real_roots(x^2 - 2, retval='interval', max_diameter=1/2^30)
If the polynomial has no real roots, we get an empty list.

```
sage: (x^2 + 1).real_root_intervals()
[]
```

We can compute Conway’s constant (see http://mathworld.wolfram.com/ConwaysConstant.html) to arbitrary precision.

```
sage: p = x^71 - x^69 - 2*x^68 - x^67 + 2*x^66 + 2*x^65 + x^64 - x^63 - x^62 - x^61 - x^60 - x^59 + 2*x^58 + 5*x^57 + 3*x^56 - 2*x^55 - 10*x^54 - 3*x^53 - 2*x^52 + 6*x^51 + 6*x^50 + x^49 + 9*x^48 - 3*x^47 - 7*x^46 - 8*x^45 - 8*x^44 + 10*x^43 + 6*x^42 + 8*x^41 - 5*x^40 - 12*x^39 + 7*x^38 - 7*x^37 + 7*x^36 + x^35 - 3*x^34 + 10*x^33 + x^32 - 6*x^31 - 2*x^30 - 10*x^29 - 3*x^28 + 2*x^27 + 9*x^26 - 3*x^25 + 14*x^24 - 8*x^23 - 7*x^21 + 9*x^20 + 3*x^19 - 4*x^18 - 4*x^17 - 7*x^16 + 12*x^15 + 7*x^14 + 2*x^13 - 12*x^12 - 4*x^11 - 2*x^10 + 5*x^9 + x^7 - 7*x^6 + 7*x^5 - 4*x^4 + 12*x^3 - 6*x^2 + 3*x - 6
sage: cc = real_roots(p, retval='algebraic_real')[2][0]  # long time
sage: RealField(180)(cc)  # long time
1.3035772690342963912570991121525518907307025046594049
```

Now we play with algebraic real coefficients.

```
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: real_roots(p)
[((499/525, 2171/1925), 1), ((1173/875, 2521/1575), 1), ((337/175, 849/175), 1)]
sage: ar_rts = real_roots(p, retval='algebraic_real'); ar_rts
[(1.000000000000000?, 1), (1.414213562373095?, 1), (2.000000000000000?, 1)]
sage: ar_rts[1][0]^2 == 2
True
```

2.1. Univariate Polynomials and Polynomial Rings 197
sage: real_roots(p2, retval='interval')
[(1.00?, 1), (1.1?, 1), (1.38?, 1), (1.5?, 1), (2.00?, 1), (2.1?, 1)]
sage: p = (x - 1) * (x - sqrt(AA(2)))^2 * (x - 2)^3 * sqrt(AA(3))
sage: real_roots(p, retval='interval')
[(1.000000000000000?, 1), (1.414213562373095?, 2), (2.000000000000000?, 3)]

sage.rings.polynomial.real_roots.relative_bounds\((a, b)\)

INPUT:

- \((al, ah)\) – pair of rationals
- \((bl, bh)\) – pair of rationals

OUTPUT:

- \((cl, ch)\) – pair of rationals

Computes the linear transformation that maps \((al, ah)\) to \((0, 1)\); then applies this transformation to \((bl, bh)\) and returns the result.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: relative_bounds((1/7, 1/4), (1/6, 1/5))
(2/9, 8/15)
```

sage.rings.polynomial.real_roots.reverse_intvec\((c)\)

Given a vector of integers, reverse the vector (like the reverse() method on lists).

Modifies the input vector; has no return value.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: v = vector(ZZ, [1, 2, 3, 4]); v
(1, 2, 3, 4)
sage: reverse_intvec(v)
sage: v
(4, 3, 2, 1)
```

sage.rings.polynomial.real_roots.root_bounds\((p)\)

Given a polynomial with real coefficients, computes a lower and upper bound on its real roots. Uses algorithms of Akritas, Strzebo’nski, and Vigklas.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: root_bounds((x-1)*(x-2)*(x-3))
(0.545454545454545, 6.00000000000001)
sage: root_bounds(x^2)
(0.000000000000000, 0.000000000000000)
sage: root_bounds(x*(x+1))
(-1.000000000000000, 0.000000000000000)
sage: root_bounds((x+2)*(x-3))
(-2.44948974278317, 3.46410161513776)
sage: root_bounds(x^995 * (x^2 - 9999) - 1)
(-99.9949998749937, 141.41284992713)
sage: root_bounds(x^995 * (x^2 - 9999) + 1)
(-141.41284992712, 99.9949998749938)
```
If we can see that the polynomial has no real roots, return None.

```
sage: root_bounds(x^2 + 1) is None
True
```

class `sage.rings.polynomial.real_roots.rr_gap`

Bases: `object`

A simple class representing the gaps between islands, in my ocean-island root isolation algorithm. Named “rr_gap” for “real roots gap”, because “gap” seemed too short and generic.

```
region()
```

sage.rings.polynomial.real_roots.scale_intvec_var *(c, k)*

Given a vector of integers c of length n+1, and a rational k ≡ kn / kd, multiplies each element c[i] by (kd^i)*(kn^(n-i)).

Modifies the input vector; has no return value.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: v = vector(ZZ, [1, 1, 1, 1])
sage: scale_intvec_var(v, 3/4)
sage: v
(64, 48, 36, 27)
```

sage.rings.polynomial.real_roots.split_for_targets *(ctx, bp, target_list, precise=False)*

Given an interval Bernstein polynomial over a particular region (assumed to be a (not necessarily proper) sub-region of [0 .. 1]), and a list of targets, uses de Casteljau’s method to compute representations of the Bernstein polynomial over each target. Uses degree reduction as often as possible while maintaining the requested precision.

Each target is of the form (lgap, ugap, b). Suppose lgap.region() is (l1, l2), and ugap.region() is (u1, u2). Then we will compute an interval Bernstein polynomial over a region [l .. u], where l1 <= l <= l2 and u1 <= u <= u2. (split_for_targets() is free to select arbitrary region endpoints within these bounds; it picks endpoints which make the computation easier.) The third component of the target, b, is the maximum allowed scale_log2 of the result; this is used to decide when degree reduction is allowed.

The pair (l1, l2) can be replaced by None, meaning [-infinity .. 0]; or, (u1, u2) can be replaced by None, meaning [1 .. infinity].

There is another constraint on the region endpoints selected by split_for_targets() for a target ((l1, l2), (u1, u2), b). We set a size goal g, such that (u - l) <= g * (u1 - l2). Normally g is 256/255, but if precise is True, then g is 65536/65535.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([1000000, -2000000, 3000000, -4000000, -5000000, -6000000])
sage: ctx = mk_context()
sage: bps = split_for_targets(ctx, bp, [(rr_gap(1/1234567893, 1/1234567892, 1), rr_gap(1/1234567891, 1/1234567890, 1), 12), (rr_gap(1/3, 1/2, -1), rr_gap(2/3, 3/4, -1), 6)])
sage: bps[0]<IBP: (999992, 999992, 999992) + [0 .. 15] over [8613397477114467984778830327/10633823966279326983230456482242756608 .. 59190816802593494813836527495938294787/730750818665451459101842416358141509827966271488]; level 2; slope_err 0.?e12>
sage: bps[1]<IBP: (-1562500, -1875001, -2222223, -2592593, -2969137, -3337450) + [0 .. 4] over [1/2 .. 2863115314294967296]
```
 sage.rings.polynomial.real_roots.subsample_vec_doctest \((a, \text{slen}, \text{llen}) \)

 sage.rings.polynomial.real_roots.taylor_shift1_intvec \((c) \)

 Given a vector of integers \(c \) of length \(d+1 \), representing the coefficients of a degree-\(d \) polynomial \(p \), modify the vector to perform a Taylor shift by 1 (that is, \(p \) becomes \(p(x+1) \)).

 This is the straightforward algorithm, which is not asymptotically optimal.

 Modifies the input vector; has no return value.

 EXAMPLES:

 sage: from sage.rings.polynomial.real_roots import *
 sage: x = polygen(ZZ)
 sage: p = (x-1)*(x-2)*(x-3)
 sage: v = vector(ZZ, p.list())
 sage: p, v
 \((x^3 - 6*x^2 + 11*x - 6, (-6, 11, -6, 1)) \)
 sage: taylor_shift1_intvec(v)
 sage: p(x+1), v
 \((x^3 - 3*x^2 + 2*x, (0, 2, -3, 1)) \)

 sage.rings.polynomial.real_roots.to_bernstein \((p, \text{low}=0, \text{high}=1, \text{degree}=\text{None}) \)

 Given a polynomial \(p \) with integer coefficients, and rational bounds \(\text{low} \) and \(\text{high} \), compute the exact rational Bernstein coefficients of \(p \) over the region \([\text{low} .. \text{high}] \). The optional parameter degree can be used to give a formal degree higher than the actual degree.

 The return value is a pair \((c, \text{scale}) \); \(c \) represents the same polynomial as \(p*\text{scale} \). (If you only care about the roots of the polynomial, then of course \(\text{scale} \) can be ignored.)

 EXAMPLES:

 sage: from sage.rings.polynomial.real_roots import *
 sage: x = polygen(ZZ)
 sage: to_bernstein(x)
 \(([0, 1], 1) \)
 sage: to_bernstein(x, degree=5)
 \(([0, 1/5, 2/5, 3/5, 4/5, 1], 1) \)
 sage: to_bernstein(x^3 + x^2 - x - 1, low=-3, high=3)
 \(([-16, 24, -32, 32], 1) \)
 sage: to_bernstein(x^3 + x^2 - x - 1, low=3, high=22/7)
 \(([296352, 310464, 325206, 340605], 9261) \)

 sage.rings.polynomial.real_roots.to_bernstein_warp \((p) \)

 Given a polynomial \(p \) with rational coefficients, compute the exact rational Bernstein coefficients of \(p(x/(x+1)) \).

 EXAMPLES:

 sage: from sage.rings.polynomial.real_roots import *
 sage: x = polygen(ZZ)
 sage: to_bernstein_warp(1 + x + x^2 + x^3 + x^4 + x^5)
 \([1, 1/5, 1/10, 1/10, 1/5, 1] \)

 class sage.rings.polynomial.real_roots.warp_map \((\text{neg}) \)

 A class to map between original coordinates and ocean coordinates. If \(\text{neg} \) is False, then the original->ocean transform is \(x \rightarrow x/(x+1) \), and the ocean->original transform is \(x/(1-x) \); this maps between \[0 .. \text{infinity}] and \[0 .. 1]. If \(\text{neg} \) is True, then the original->ocean transform is \(x \rightarrow -x/(1-x) \), and the ocean->original transform is the same thing: \(-x/(1-x) \). This maps between \[0 .. -\text{infinity}] and \[0 .. 1].

 200 Chapter 2. Univariate Polynomials
Given rationals \(a \) and \(b \), selects a de Casteljau split point \(r \) between \(a \) and \(b \). An attempt is made to select an efficient split point (according to the criteria mentioned in the documentation for de_casteljau_intvec), with a bias towards split points near \(a \).

In full detail:

Takes as input two rationals, \(a \) and \(b \), such that \(0 \leq a \leq 1 \), \(0 \leq b \leq 1 \), and \(a \neq b \). Returns rational \(r \), such that \(a \leq r \leq b \) or \(b \leq r \leq a \). The denominator of \(r \) is a power of 2. Let \(m \) be \(\min(r, 1-r) \), \(nm \) be numerator\((m)\), and \(dml \) be \(\log_2(\text{denominator}(m)) \). The return value \(r \) is taken from the first of the following classes to have any members between \(a \) and \(b \) (except that if \(a \leq 1/8 \), or \(7/8 \leq a \), then class 2 is preferred to class 1).

1. \(dml < \text{wordsize} \)
2. \(\text{bitsize}(nm) \leq \text{wordsize} \)
3. \(\text{bitsize}(nm) \leq 2 \times \text{wordsize} \)
4. \(\text{bitsize}(nm) \leq 3 \times \text{wordsize} \)
 ...
11. \(\text{bitsize}(nm) \leq (k-1) \times \text{wordsize} \)

From the first class to have members between \(a \) and \(b \), \(r \) is chosen as the element of the class which is closest to \(a \).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: wordsize_rational(1/5, 1/7, 32)
429496729/2147483648
sage: wordsize_rational(1/7, 1/5, 32)
306783379/2147483648
sage: wordsize_rational(1/5, 1/7, 64)
184467407370955161/9223372036854775808
sage: wordsize_rational(1/7, 1/5, 64)
65881228836769701/4611686018427387904
sage: wordsize_rational(1/17, 1/19, 32)
252645135/4294967296
sage: wordsize_rational(1/17, 1/19, 64)
1085102592571150095/1844674407370955161
sage: wordsize_rational(1/1234567890, 1/1234567891, 32)
933866427/1152921504606846976
sage: wordsize_rational(1/1234567890, 1/1234567891, 64)
4010925763784056541/4951760157141521099596496896
```

2.1.19 Isolate Complex Roots of Polynomials

AUTHOR:

- Carl Witty (2007-11-18): initial version

This is an implementation of complex root isolation. That is, given a polynomial with exact complex coefficients, we compute isolating intervals for the complex roots of the polynomial. (Polynomials with integer, rational, Gaussian rational, or algebraic coefficients are supported.)
We use a simple algorithm. First, we compute a squarefree decomposition of the input polynomial; the resulting polynomials have no multiple roots. Then, we find the roots numerically, using NumPy (at low precision) or Pari (at high precision). Then, we verify the roots using interval arithmetic.

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: (x^5 - x - 1).roots(ring=CIF)
[(1.167303978261419?, 1), (-0.764884433600585? - 0.352471546031727?*I, 1), (0.18123244469876? - 1.083954101317712?*I, 1)]
```

Sage computes the complex roots of a given polynomial with exact coefficients (integer, rational, Gaussian rational, and algebraic coefficients are supported). Returns a list of pairs of a root and its multiplicity.

Roots are returned as a ComplexIntervalFieldElement; each interval includes exactly one root, and the intervals are disjoint.

By default, the algorithm will do a squarefree decomposition to get squarefree polynomials. The skip_squarefree parameter lets you skip this step. (If this step is skipped, and the polynomial has a repeated root, then the algorithm will loop forever!)

You can specify retval='interval' (the default) to get roots as complex intervals. The other options are retval='algebraic' to get elements of QQbar, or retval='algebraic_real' to get only the real roots, and to get them as elements of AA.

EXAMPLES:

```python
sage: from sage.rings.polynomial.complex_roots import complex_roots
sage: x = polygen(ZZ)
sage: complex_roots(x^5 - x - 1)
[(1.167303978261419?, 1), (-0.764884433600585? - 0.352471546031727?*I, 1), (0.18123244469876? - 1.083954101317712?*I, 1)]
```

Unfortunately due to numerical noise there can be a small imaginary part to each root depending on CPU, compiler, etc, and that affects the printing order. So we verify the real part of each root and check that the imaginary part is small in both cases:

```python
sage: v = complex_roots(x^2 + 27*x + 181)
```

This polynomial actually has all-real coefficients, and is very, very close to \((x-1)^5\):
We can get roots either as intervals, or as elements of QQbar or AA.

```python
sage: p = (x^2 + x - 1)
sage: p = p * p(x*im)
sage: p
-x^4 + (im - 1)*x^3 + im*x^2 + (-im - 1)*x + 1
```

Two of the roots have a zero real component; two have a zero imaginary component. These zero components will be found slightly inaccurately, and the exact values returned are very sensitive to the (non-portable) results of NumPy. So we post-process the roots for printing, to get predictable doctest results.

```python
sage: def tiny(x):
....:     return x.contains_zero() and x.absolute_diameter() < 1e-14
sage: def smash(x):
....:     x = CIF(x[0]) # discard multiplicity
....:     if tiny(x.imag()): return x.real()
....:     if tiny(x.real()): return CIF(0, x.imag())

sage: rts = complex_roots(p); type(rts[0][0]), sorted(map(smash, rts))
(<type 'sage.rings.complex_interval.ComplexIntervalFieldElement'>, [-1.618033988749895?, -0.618033988749895?*I, 1.618033988749895?*I, 0.618033988749895?])

sage: rts = complex_roots(p, retval='algebraic'); type(rts[0][0]), rts
(<class 'sage.rings.qqbar.AlgebraicNumber'>, [-1.618033988749895?, -0.618033988749895?*I, 1.618033988749895?*I, 0.618033988749895?])

sage: rts = complex_roots(p, retval='algebraic_real'); type(rts[0][0]), rts
(<class 'sage.rings.qqbar.AlgebraicReal'>, [(-1.618033988749895?, 1), (0.618033988749895?, 1)])
```

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: p = x^3 - 1
sage: from sage.rings.polynomial.complex_roots import interval_roots
sage: interval_roots(p, rts, 53)
[1, -0.500000000000000? + 0.866025403784439?*I, -0.500000000000000? - 0.866025403784439?*I]

sage: interval_roots(p, rts, 200)
[1, -0.500000000000000000000000000000000000000000000000000000000000? + 0.866025403784439?*I, -0.500000000000000000000000000000000000000000000000000000000000? - 0.866025403784439?*I]
```

sage.rings.polynomial.complex_roots

We are given a squarefree polynomial p, a list of estimated roots, and a precision.

We attempt to verify that the estimated roots are in fact distinct roots of the polynomial, using interval arithmetic of precision prec. If we succeed, we return a list of intervals bounding the roots; if we fail, we return None.

EXAMPLES:

```python
sage: rts = [CC.zeta(3)^i for i in range(0, 3)]
sage: from sage.rings.polynomial.complex_roots import interval_roots
sage: interval_roots(p, rts, 53)
[1, -0.500000000000000? + 0.866025403784439?*I, -0.500000000000000? - 0.866025403784439?*I]

sage: interval_roots(p, rts, 200)
[1, -0.500000000000000000000000000000000000000000000000000000000000? + 0.866025403784439?*I, -0.500000000000000000000000000000000000000000000000000000000000? - 0.866025403784439?*I]
```

sage.rings.polynomial.complex_roots

Given a list of complex intervals, check whether they are pairwise disjoint.

2.1. Univariate Polynomials and Polynomial Rings 203
EXAMPLES:

```python
sage: from sage.rings.polynomial.complex_roots import intervals_disjoint
sage: a = CIF(RIF(0, 3), 0)
sage: b = CIF(0, RIF(1, 3))
sage: c = CIF(RIF(1, 2), RIF(1, 2))
sage: d = CIF(RIF(2, 3), RIF(2, 3))
sage: intervals_disjoint([a, b, c, d])
False
sage: d2 = CIF(RIF(2, 3), RIF(2.001, 3))
sage: intervals_disjoint([a, b, c, d2])
True
```

2.1.20 Refine polynomial roots using Newton–Raphson

This is an implementation of the Newton–Raphson algorithm to approximate roots of complex polynomials. The implementation is based on interval arithmetic.

AUTHORS:

- Carl Witty (2007-11-18): initial version

```python
sage.rings.polynomial.refine_root.refine_root(ip, ipd, irt, fld)
```

We are given a polynomial and its derivative (with complex interval coefficients), an estimated root, and a complex interval field to use in computations. We use interval arithmetic to refine the root and prove that we have in fact isolated a unique root.

If we succeed, we return the isolated root; if we fail, we return None.

EXAMPLES:

```python
sage: from sage.rings.polynomial.refine_root import refine_root
sage: x = polygen(ZZ)
sage: p = x^9 - 1
sage: ip = CIF['x'](p); ip
x^9 - 1
sage: ipd = CIF['x'](p.derivative()); ipd
9*x^8
sage: irt = CIF(CC(cos(2*pi/9), sin(2*pi/9))); irt
0.76604444311897802? + 0.64278760968653926?*I
sage: ip(irt)
0.?e-14 + 0.?e-14*I
sage: ipd(irt)
6.89439998807080? - 5.78508848717885?*I
sage: refine_root(ip, ipd, irt, CIF)
0.766044443118978? + 0.642787609686540?*I
```

2.1.21 Ideals in Univariate Polynomial Rings.

AUTHORS:

- David Roe (2009-12-14) – initial version.

```python
class sage.rings.polynomial.ideal.Ideal_1poly_field(ring, gen)
Bases: sage.rings.ideal.Ideal_pid
```

An ideal in a univariate polynomial ring over a field.
\textbf{groebner_basis}(\textit{algorithm=None})

Return a Gröbner basis for this ideal.

The Gröbner basis has 1 element, namely the generator of the ideal. This trivial method exists for compatibility with multi-variate polynomial rings.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{algorithm} – ignored
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = QQ[]
sage: I = R.ideal([x^2 - 1, x^3 - 1])
sage: G = I.groebner_basis(); G
[x - 1]
sage: type(G)
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>
sage: list(G)
[x - 1]
\end{verbatim}

\textbf{residue_class_degree}()

Returns the degree of the generator of this ideal.

This function is included for compatibility with ideals in rings of integers of number fields.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = GF(5)[]
sage: P = R.ideal(t^4 + t + 1)
sage: P.residue_class_degree()
4
\end{verbatim}

\textbf{residue_field}(\textit{names=None, check=True})

If this ideal is $\mathcal{P} \subset \mathcal{F}_p[t]$, returns the quotient $\mathcal{F}_p[t]/\mathcal{P}$.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + 2*t + 9)
sage: k.<a> = P.residue_field(); k
Residue field in a of Principal ideal (t^3 + 2*t + 9) of Univariate Polynomial Ring in t over Finite Field of size 17
\end{verbatim}

\section*{2.1.22 Quotients of Univariate Polynomial Rings}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = QQ[]
sage: S = R.quotient(x**3-3*x+1, 'alpha')
sage: S.gen()**2 in S
True
sage: x in S
True
sage: S.gen() in R
False
sage: 1 in S
True
\end{verbatim}
Create a quotient of a polynomial ring.

INPUT:

- `ring` - a univariate polynomial ring in one variable.
- `polynomial` - element with unit leading coefficient
- `names` - (optional) name for the variable

OUTPUT: Creates the quotient ring R/I, where R is the ring and I is the principal ideal generated by the polynomial.

EXAMPLES:

We create the quotient ring $\mathbb{Z}[x]/(x^3 + 7)$, and demonstrate many basic functions with it:

```sage
sage: Z = IntegerRing()
sage: R = PolynomialRing(Z,'x'); x = R.gen()
sage: S = R.quotient(x^3 + 7, 'a'); a = S.gen()
sage: S
Univariate Quotient Polynomial Ring in a over Integer Ring with modulus x^3 + 7
sage: a^3
-7
sage: S.is_field()
False
sage: a in S
True
sage: x in S
True
sage: a in R
False
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Integer Ring
sage: S.modulus()
x^3 + 7
sage: S.degree()
3
```

We create the “iterated” polynomial ring quotient

$$ R = \left(\mathbb{F}_2[y]/(y^2 + y + 1) \right)[x]/(x^3 - 5). $$

```sage
sage: A.<y> = PolynomialRing(GF(2)); A
Univariate Polynomial Ring in y over Finite Field of size 2 (using NTL)
sage: B = A.quotient(y^2 + y + 1, 'y2'); B
Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2 with
  modulus y^2 + y + 1
sage: C = PolynomialRing(B, 'x'); x=C.gen(); C
Univariate Polynomial Ring in x over Univariate Quotient Polynomial Ring in y2
  over Finite Field of size 2 with modulus y^2 + y + 1
sage: R = C.quotient(x^3 - 5); R
Univariate Quotient Polynomial Ring in xbar over Univariate Quotient Polynomial
  Ring in y2 over Finite Field of size 2 with modulus y^2 + y + 1 with modulus x^3 + 1
```
Next we create a number field, but viewed as a quotient of a polynomial ring over \(\mathbb{Q}\):

```python
sage: R = PolynomialRing(RationalField(), 'x'); x = R.gen()
sage: S = R.quotient(x^3 + 2*x - 5, 'a')
sage: S
Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^3 + 2*x - 5
sage: S.is_field()
True
sage: S.degree()
3
```

There are conversion functions for easily going back and forth between quotients of polynomial rings over \(\mathbb{Q}\) and number fields:

```python
sage: K = S.number_field(); K
Number Field in a with defining polynomial x^3 + 2*x - 5
sage: K.polynomial_quotient_ring()
Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^3 + 2*x - 5
```

The leading coefficient must be a unit (but need not be 1).

```python
sage: R = PolynomialRing(Integers(9), 'x'); x = R.gen()
sage: S = R.quotient(2*x^4 + 2*x^3 + x + 2, 'a')
sage: S = R.quotient(3*x^4 + 2*x^3 + x + 2, 'a')
Traceback (most recent call last):
...  
TypeError: polynomial must have unit leading coefficient
```

Another example:

```python
sage: R.<x> = PolynomialRing(IntegerRing())
sage: f = x^2 + 1
sage: R.quotient(f)
Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
```

This shows that the issue at trac ticket #5482 is solved:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = x^2 - 1
sage: R.quotient_by_principal_ideal(f)
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
```

\begin{class}
\texttt{sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain(ring, polynomial, name=None, category=None)}
\end{class}

\textbf{Bases:} \texttt{sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic, sage.rings.ring.IntegralDomain}

\textbf{EXAMPLES:}
sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True

def field_extension(names)
 Takes a polynomial quotient ring, and returns a tuple with three elements: the NumberField defined by
 the same polynomial quotient ring, a homomorphism from its parent to the NumberField sending the
 generators to one another, and the inverse isomorphism.

 OUTPUT:
 • field
 • homomorphism from self to field
 • homomorphism from field to self

 EXAMPLES:

 sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^3-2)
sage: F, f, g = S.field_extension()
sage: F
Number Field in b with defining polynomial x^3 - 2
sage: a = F.gen()
sage: f(alpha)
b
sage: g(a)
alpha

 Note that the parent ring must be an integral domain:

 sage: R.<x> = GF(25, 'a')['x']
sage: S.<a> = R.quotient(x^3 + 2*x + 1)
sage: F, g, h = S.field_extension('b')
 Traceback (most recent call last):
 ...
 AttributeError: 'PolynomialQuotientRing_generic_with_category' object has no attribute 'field_extension'

 Over a finite field, the corresponding field extension is not a number field:

 sage: R.<x> = GF(25, 'f25')['x']
sage: S.<a> = R.quotient(x^3 - 2)
sage: F, g, h = S.field_extension('b')
sage: b^2 + 3
a^2 + 3
sage: g(x^2 + 2)
b^2 + 2

 We do an example involving a relative number field:

 sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3 - 2)
We slightly change the example above so it works.

```sage
R.<x> = QQ['x']
K.<a> = NumberField(x^3 - 2)
S.<X> = K['X']
f = (X+a)^3 + 2*(X+a) + 1
f
X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
Q.<z> = S.quo(f)
F.<w>, g, h = Q.field_extension()
c = g(z)
f(c)
0
g(h(z))
z
h(g(z))
```

AUTHORS:

•Craig Citro (2006-08-07)
•William Stein (2006-08-06)

```sage
is_finite()
```

Return whether or not this quotient ring is finite.

EXAMPLES:

```sage
R.<x> = ZZ[]
R.quo(1).is_finite()
True
R.quo(x^3-2).is_finite()
False
```

```sage
R.<x> = GF(9, 'a')[]
R.quo(2*x^3+x+1).is_finite()
True
R.quo(2).is_finite()
True
```

```sage
class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field
```

2.1. Univariate Polynomials and Polynomial Rings
Bases: \texttt{sage.rings.polynomial.polynomial_quotient_ring.\texttt{PolynomialQuotientRing} \texttt{domain}, sage.rings.ring.Field}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = PolynomialRing(QQ)
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
\end{verbatim}

\textbf{base_field()}

Alias for base_ring, when we’re defined over a field.

\textbf{complex_embeddings_(prec=53)}

Return all homomorphisms of this ring into the approximate complex field with precision prec.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = QQ[]
sage: f = x^5 + x + 17
sage: k = R.quotient(f)
sage: v = k.complex_embeddings(100)
sage: [phi(k.0^2) for phi in v]
[2.975720740376676146967194565, -2.4088994371613850098316292196 + 1.902531845779473265418086*I, -2.4088994371613850098316292196 - 1.902531845779473265418086*I, 0.92103906697304693480755331845779473265418086*I, 0.92103906697304693480755331845779473265418086*I]
\end{verbatim}

\textbf{class} \texttt{sage.rings.polynomial.polynomial_quotient_ring.\texttt{PolynomialQuotientRing} \texttt{generic}(\texttt{ring}, \texttt{polynomial}, \texttt{name=\texttt{None}, category=\texttt{None}})}

Bases: \texttt{sage.rings.ring.CommutativeRing}

Quotient of a univariate polynomial ring by an ideal.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = PolynomialRing(Integers(8)); R
Univariate Polynomial Ring in x over Ring of integers modulo 8
sage: S.<xbar> = R.quotient(x^2 + 1); S
Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 8 with modulus x^2 + 1
We demonstrate object persistence.
\end{verbatim}

\begin{verbatim}
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
\end{verbatim}
We create some sample homomorphisms:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: S = R.quo(x^2-4)
sage: f = S.hom([2])
sage: f
Ring morphism:
  From: Univariate Quotient Polynomial Ring in xbar over Integer Ring with
         modulus x^2 - 4
  To:   Integer Ring
  Defn: xbar |--> 2
sage: f(x)
2
sage: f(x^2 - 4)
0
sage: f(x^2)
4
```

Element

alias of `PolynomialQuotientRingElement`

`.class_group` *(S, proof=True)*

If self is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), return a list of generators of the \(S\)-class group of \(D\).

NOTE:

Since the `ideal` function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs `(gen, order)`, where `gen` is a tuple of generators of an ideal \(I\) and `order` is the order of \(I\) in the \(S\)-class group.

INPUT:

- `S` - a set of primes of the coefficient ring
- `proof` - if False, assume the GRH in computing the class group

OUTPUT:

A list of generators of the \(S\)-class group, in the form `(gen, order)`, where `gen` is a tuple of elements generating a fractional ideal \(I\) and `order` is the order of \(I\) in the \(S\)-class group.

EXAMPLES:

A trivial algebra over \(Q(\sqrt{-5})\) has the same class group as its base:

```python
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.class_group([])
[((2, -a + 1), 2)]
```

When we include the prime \((2, -a + 1)\), the \(S\)-class group becomes trivial:

```python
sage: S.class_group([K.ideal(2, -a+1)])
[]
```

Here is an example where the base and the extension both contribute to the class group:

2.1. Univariate Polynomials and Polynomial Rings
```python
sage: K.<a> = QuadraticField(-5)
sage: K.class_group()
Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 5
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x^2 + 23)
sage: S.S_class_group([])
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
sage: S.S_class_group([K.ideal(3, a-1)])
[]
sage: S.S_class_group([K.ideal(2, a+1)])
[]
sage: S.S_class_group([K.ideal(a)])
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
```

Now we take an example over a nontrivial base with two factors, each contributing to the class group:

```python
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
sage: S.S_class_group([])
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*a*xbar + 31/16*a + 31/8), 6),
 ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 2))
```

By using the ideal \((a)\), we cut the part of the class group coming from \(x^2 + 31\) from 12 to 2, i.e. we lose a generator of order 6 (this was fixed in trac ticket #14489):

```python
sage: S.S_class_group([K.ideal(a)])
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*a*xbar + 31/16*a + 31/8), 6),
 ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 2))
```

Note that all the returned values live where we expect them to:

```python
sage: CG = S.S_class_group([])
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic_with_category.element_class'>
sage: type(CG[0][1])
<type 'sage.rings.integer.Integer'>
```

S_units \((S, \text{proof=True})\)

If self is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial)
and S is a finite set of places of K, return a list of generators of the group of S-units of D.

INPUT:
- S - a set of primes of the base field
- `proof` - if False, assume the GRH in computing the class group

OUTPUT:
A list of generators of the S-unit group, in the form `(gen, order)`, where `gen` is a unit of order `order`.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-3)
sage: S = K.unit_group()
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: u, o = K.S_units([])[0]; u, o
(1/2*a + 1/2, 6)
sage: u^6
1
sage: u^3
-1
sage: u^2
1/2*a - 1/2
```

```python
sage: K.<a> = QuadraticField(-3)
sage: y = polygen(K)
sage: L.<b> = K['y'].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2 + 3 with modulus y^3 + 5
sage: L.S_units([])
[(1/2*a + 1/2, 6),
 (-1/3*a - 1)*b^2 + 4/3*a*b - 5/6*a - 5/6*a + 7/2, +Infinity),
 (2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2, +Infinity)]
sage: L.S_units([K.ideal(1/2*a - 3/2)])
[(1/2*a - 1/2)*b^2 + (1/2*a + 1/2)*b + 4/3*a, +Infinity),
 (1/2*a + 1/2, 6),
 (-1/3*a + 1)*b^2 + 4/3*a*b - 5/6*a + 7/2, +Infinity),
 (2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2, +Infinity)]
sage: L.S_units([K.ideal(2)])
[((1/2*a + 1/2)*b^2 + (a + 1)*b + 3, +Infinity),
 (1/6*a + 1/2)*b^2 + (-1/3*a + 1)*b - 5/6*a + 1/2, +Infinity),
 (1/6*a + 1/2)*b^2 + (-1/3*a + 1)*b - 5/6*a - 1/2, +Infinity),
 (1/2*a + 1/2, 6),
 (-1/3*a - 1)*b^2 + 4/3*a*b - 5/6*a + 7/2, +Infinity),
 (2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2, +Infinity)]
```

Note that all the returned values live where we expect them to:

```python
sage: U = L.S_units([[]])
sage: type(U[0][0])
'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field_with_category.element_class'
sage: type(U[0][1])
'sage.rings.integer.Integer'
```

2.1. Univariate Polynomials and Polynomial Rings 213
ambient()

base_ring()

Return the base ring of the polynomial ring, of which this ring is a quotient.

EXAMPLES:

The base ring of \(\mathbb{Z}[z]/(z^3 + z^2 + z + 1) \) is \(\mathbb{Z} \).

```
sage: R.<z> = PolynomialRing(ZZ)
sage: S.<beta> = R.quo(z^3 + z^2 + z + 1)
sage: S.base_ring()
Integer Ring
```

Next we make a polynomial quotient ring over \(S \) and ask for its base ring.

```
sage: T.<t> = PolynomialRing(S)
sage: W = T.quotient(t^99 + 99)
sage: W.base_ring()
Univariate Quotient Polynomial Ring in beta over Integer Ring with modulus z^3 + z^2 + z + 1
```

cardinality()

Return the number of elements of this quotient ring.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: R.quo(1).cardinality()
1
sage: R.quo(x^3-2).cardinality()
+Infinity
```

```
sage: R.<x> = GF(9,'a')[]
sage: R.quo(2*x^3+x+1).cardinality()
729
sage: GF(9,'a').extension(2*x^3+x+1).cardinality()
729
sage: R.quo(2).cardinality()
1
```

characteristic()

Return the characteristic of this quotient ring.

This is always the same as the characteristic of the base ring.

EXAMPLES:

```
sage: R.<z> = PolynomialRing(ZZ)
sage: S.<a> = R.quo(z - 19)
sage: S.characteristic()
0
sage: R.<x> = PolynomialRing(GF(9,'a'))
sage: S = R.quotient(x^3 + 1)
sage: S.characteristic()
3
```
class_group (proof=True)

If self is a quotient ring of a polynomial ring over a number field \(K \), by a polynomial of nonzero discriminant, return a list of generators of the class group.

NOTE:
Since the ideal function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs \((\text{gen}, \text{order})\), where \text{gen} is a tuple of generators of an ideal \(I \) and \text{order} is the order of \(I \) in the class group.

INPUT:

• proof - if False, assume the GRH in computing the class group

OUTPUT:
A list of pairs \((\text{gen}, \text{order})\), where \text{gen} is a tuple of elements generating a fractional ideal and \text{order} is the order of \(I \) in the class group.

EXAMPLES:

sage: K.<a> = QuadraticField(-3)
sage: K.class_group()
Class group of order 1 of Number Field in a with defining polynomial x^2 + 3
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: K.class_group()
[]

A trivial algebra over \(\mathbb{Q}(\sqrt{-5}) \) has the same class group as its base:

sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.class_group()
[((2, -a + 1), 2)]

The same algebra constructed in a different way:

sage: K.<a> = QQ['x'].quotient(x^2 + 5)
sage: K.class_group()
[((2, a + 1), 2)]

Here is an example where the base and the extension both contribute to the class group:

sage: K.<a> = QuadraticField(-5)
sage: K.class_group()
Class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 5
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x^2 + 23)
sage: S.class_group()
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]

Here is an example of a product of number fields, both of which contribute to the class group:

sage: R.<x> = QQ[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 47))
sage: S.class_group()
[((1/12*xbar^2 + 47/12, 1/48*xbar^3 - 1/48*xbar^2 + 47/48*xbar - 47/48), 3),((-1/12*xbar^2 - 23/12, -1/48*xbar^3 - 1/48*xbar^2 - 23/48*xbar - 23/48), 5)]
Now we take an example over a nontrivial base with two factors, each contributing to the class group:

```python
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23)*(x^2 + 31))
sage: S.class_group()
[((1/4*xbar^2 + 31/4,
  (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8,
  1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16,
  -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8),
  6),
  ((-1/4*xbar^2 - 23/4,
    (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8,
    -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16,
    1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8),
    6),
  ((-5/4*xbar^2 - 115/4,
    1/4*a*xbar^2 + 23/4*a,
    -1/16*xbar^3 - 7/16*xbar^2 - 23/16*xbar - 161/16,
    1/16*a*xbar^3 + 1/16*a*xbar^2 + 23/16*a*xbar + 23/16*a),
    2))]
```

Note that all the returned values live where we expect them to:

```python
sage: CG = S.class_group()
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_'
  \rightarrow\text{generic_with_category.element_class}'>
sage: type(CG[0][1])
<type 'sage.rings.integer.Integer'>
```

construction()

Functorial construction of self

EXAMPLES:

```python
sage: P.<t>=ZZ[]
sage: Q = P.quot(5+t^2)
sage: F, R = Q.construction()
sage: F(R) == Q
True
sage: P.<t> = GF(3)[]
sage: Q = P.quot([2+t^2])
sage: F, R = Q.construction()
sage: F(R) == Q
True
```

AUTHOR:

– Simon King (2010-05)

cover_ring()

Return the polynomial ring of which this ring is the quotient.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2-2)
```
Sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field

degree()
Return the degree of this quotient ring. The degree is the degree of the polynomial that we quotiented out by.

EXAMPLES:
```
sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2005 + 1)
sage: S.degree()
2005
```

discriminant (v=None)
Return the discriminant of this ring over the base ring. This is by definition the discriminant of the polynomial that we quotiented out by.

EXAMPLES:
```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^3 + x^2 + x + 1)
sage: S.discriminant()
-16
sage: S = R.quotient((x + 1) * (x + 1))
sage: S.discriminant()
0
```

The discriminant of the quotient polynomial ring need not equal the discriminant of the corresponding number field, since the discriminant of a number field is by definition the discriminant of the ring of integers of the number field:
```
sage: S = R.quotient(x^2 - 8)
sage: S.number_field().discriminant()
8
sage: S.discriminant()
32
```

gen (n=0)
Return the generator of this quotient ring. This is the equivalence class of the image of the generator of the polynomial ring.

EXAMPLES:
```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 8, 'gamma')
sage: S.gen()
gamma
```

is_field (proof=True)
Return whether or not this quotient ring is a field.

EXAMPLES:
```
sage: R.<z> = PolynomialRing(ZZ)
sage: S = R.quo(z^2-2)
sage: S.is_field()
False
```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 2)
sage: S.is_field()
True

If proof is True, requires the is_irreducible method of the modulus to be implemented:

sage: R1.<x> = GF(5)[]
sage: F1 = R1.quotient_ring(x^2+x+1)
sage: R2.<x> = F1[]
sage: F2 = R2.quotient_ring(x^2+x+1)
sage: F2.is_field()
Traceback (most recent call last):
 ...
NotImplementedError
sage: F2.is_field(proof = False)
False

krull_dimension()
lift(x)
Return an element of the ambient ring mapping to the given argument.

EXAMPLES:

sage: P.<x> = QQ[]
sage: Q = P.quotient(x^2+2)
sage: Q.lift(Q.0^3)
-2*x
sage: Q(-2*x)
-2*xbar
sage: Q.0^3
-2*xbar

modulus()
Return the polynomial modulus of this quotient ring.

EXAMPLES:

sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2 - 2)
sage: S.modulus()
x^2 + 1

ngens()
Return the number of generators of this quotient ring over the base ring. This function always returns 1.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<y> = PolynomialRing(R)
sage: T.<z> = S.quotient(y + x)
sage: T
Univariate Quotient Polynomial Ring in z over Univariate Polynomial Ring in x
 →over Rational Field with modulus y + x
sage: T.ngens()
1
number_field()

Return the number field isomorphic to this quotient polynomial ring, if possible.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^29 - 17*x - 1)
sage: K = S.number_field()
sage: K
Number Field in alpha with defining polynomial x^29 - 17*x - 1
sage: alpha = K.gen()
sage: alpha^29
17*alpha + 1
```

order()

Return the number of elements of this quotient ring.

EXAMPLES:

```
sage: F1.<a> = GF(2^7)
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.order()
16384
sage: F1 = QQ
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.order()
+Infinity
```

polynomial_ring()

Return the polynomial ring of which this ring is the quotient.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2-2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

random_element(*args, **kwds)

Return a random element of this quotient ring.

INPUT:

- *args, **kwds - Arguments for randomization that are passed on to the random_element method of the polynomial ring, and from there to the base ring

OUTPUT:

- Element of this quotient ring

EXAMPLES:

```
sage: F1.<a> = GF(2^7)
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2+x+1, 'u')
sage: F2.random_element()
(a^6 + 1)*u + a^5 + a^4 + a^3 + 1
```
retract \((x)\)
Return the coercion of \(x\) into this polynomial quotient ring.

The rings that coerce into the quotient ring canonically are:
- this ring
- any canonically isomorphic ring
- anything that coerces into the ring of which this is the quotient

selmer_group \((S, m, \text{proof}=\text{True})\)
If self is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), compute the Selmer group \(D(S, m)\). This is the subgroup of \(D^*/(D^*)^n\) consisting of elements \(a\) such that \(D(\sqrt[n]{a})/D\) is unramified at all primes of \(D\) lying above a place outside of \(S\).

INPUT:
- \(S\) - A set of primes of the coefficient ring (which is a number field).
- \(m\) - a positive integer
- \(\text{proof}\) - if False, assume the GRH in computing the class group

OUTPUT:
A list of generators of \(D(S, m)\).

EXAMPLES:
```
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: D.<T> = R.quotient(x)
sage: D.selmer_group((), 2)
[-1, 2]
sage: D.selmer_group([K.ideal(2, -a+1)], 2)
[2, -1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 2)
[2, a + 1, -1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 4)
[2, a + 1, -1]
sage: D.selmer_group([K.ideal(2, -a+1)], 3)
[2]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1)], 3)
[2, a + 1]
sage: D.selmer_group([K.ideal(2, -a+1), K.ideal(3, a+1), K.ideal(a)], 3)
[2, a + 1, a]
```

units \((\text{proof}=\text{True})\)
If this quotient ring is over a number field \(K\), by a polynomial of nonzero discriminant, returns a list of generators of the units.

INPUT:
- \(\text{proof}\) - if False, assume the GRH in computing the class group

OUTPUT:
A list of generators of the unit group, in the form \((\text{gen}, \text{order})\), where \(\text{gen}\) is a unit of order \(\text{order}\).

EXAMPLES:
```python
sage: K.<a> = QuadraticField(-3)
sage: K.unit_group()
Unit group with structure C6 of Number Field in a with defining polynomial \( x^2 + 3 \)
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: u = K.units()[0][0]; u
1/2*a + 1/2
sage: u^6
1
sage: u^3
-1
sage: u^2
1/2*a - 1/2
sage: K.<a> = QQ['x'].quotient(x^2 + 5)
sage: K.units()()
[(-1, 2)]
```

```python
sage: K.<a> = QuadraticField(-3)
sage: y = polygen(K)
sage: L.<b> = K['y'].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial \( x^2 + 3 \) with modulus \( y^3 + 5 \)
sage: L.units()
[(1/2*a + 1/2, 6),
 (1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, +Infinity),
 (2/3*a*b + (2/3*a - 2)*b - 5/6*a - 7/2, +Infinity)]
sage: L.<b> = K.extension(y^3 + 5)
sage: L.unit_group()
Unit group with structure C6 x Z x Z of Number Field in b with defining polynomial \( x^3 + 5 \) over its base field
sage: L.unit_group().gens()  
# abstract generators
(u0, u1, u2)
sage: L.unit_group().gens_values()
[1/2*a + 1/2, (1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, 2/3*a*b + (2/3*a - 2)*b - 5/6*a - 7/2]
```

Note that all the returned values live where we expect them to:

```python
sage: L.<b> = K['y'].quotient(y^3 + 5)
sage: U = L.units()
sage: type(U[0][0])  
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field_with_category.element_class'>
sage: type(U[0][1])  
<type 'sage.rings.integer.Integer'>
sage: type(U[1][1])  
<class 'sage.rings.infinity.PlusInfinity'>
sage.rings.polynomial.polynomial_quotient_ring.is_PolynomialQuotientRing(x)
```

2.1.23 Elements of Quotients of Univariate Polynomial Rings

EXAMPLES: We create a quotient of a univariate polynomial ring over \(\mathbb{Z} \).

```python
sage: R.<x> = ZZ[]
sage: S.<a> = R.quotient(x^3 + 3*x - 1)
```
Next we make a univariate polynomial ring over \(\mathbb{Z}[x]/(x^3 + 3x - 1) \).

```python
sage: S1.<y> = S[]
```

And, we quotient out that by \(y^2 + a \).

```python
sage: T.<z> = S1.quotient(y^2+a)
```

In the quotient \(z^2 \) is \(-a\).

```python
sage: z^2
-a
```

And since \(a^3 = -3x + 1 \), we have:

```python
sage: z^6
3*a - 1
```

For the purposes of comparison in Sage the quotient element \(a^3 \) is equal to \(x^3 \). This is because when the comparison is performed, the right element is coerced into the parent of the left element, and \(x^3 \) coerces to \(a^3 \).

```python
sage: a^100
7*a^3 + 8*a + 7
```

```python
sage: R.<x> = PolynomialRing(Integers(9))
sage: S.<a> = R.quotient(x^4 + 2*x^3 + x + 2)
sage: a^100
7*a^3 + 8*a + 7
```

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3-2)
sage: a
a
sage: a^3
2
```

AUTHORS:

- William Stein

```python
class sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement():
    Bases:
        sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr,
        sage.structure.element.CommutativeRingElement
    Element of a quotient of a polynomial ring.
```

Chapter 2. Univariate Polynomials
EXAMPLES:

```
sage: P.<x> = QQ[]
sage: Q.<xi> = P.quo([(x^2+1)])
sage: xi^2
-1
sage: singular(xi)
xi
sage: (singular(xi)*singular(xi)).NF('std(0)')
-1
```

charpoly *(var)*

The characteristic polynomial of this element, which is by definition the characteristic polynomial of right multiplication by this element.

INPUT:

• `var` - string - the variable name

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quo(x^3 -389*x^2 + 2*x - 5)
sage: a.charpoly('X')
X^3 - 389*X^2 + 2*X - 5
```

fcp *(var='x')*

Return the factorization of the characteristic polynomial of this element.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3-2)
sage: a.fcp('x')
x^3 - 2
sage: S(1).fcp('y')
(y - 1)^3
```

field_extension *(names)*

Given a polynomial with base ring a quotient ring, return a 3-tuple: a number field defined by the same polynomial, a homomorphism from its parent to the number field sending the generators to one another, and the inverse isomorphism.

INPUT:

• `names` - name of generator of output field

OUTPUT:

• `field`

• `homomorphism from self to field`

• `homomorphism from field to self`

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^3-2)
sage: F.<a>, f, g = alpha.field_extension()
sage: F
Number Field in a with defining polynomial x^3 - 2
```
sage: a = F.gen()
sage: f(alpha)
a
sage: g(a)
alpha

Over a finite field, the corresponding field extension is not a number field:

sage: R.<x> = GF(25,'b')['x']
sage: S.<a> = R.quo(x^3 + 2*x + 1)
sage: F., g, h = a.field_extension()
sage: h(b^2 + 3)
a^2 + 3
sage: g(x^2 + 2)
b^2 + 2

We do an example involving a relative number field:

sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3-2)
sage: S.<X> = K['X']
sage: Q. = S.quo(X^3 + 2*X + 1)
sage: F, g, h = b.field_extension('c')

Another more awkward example:

sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3-2)
sage: S.<X> = K['X']
sage: f = (X+a)^3 + 2*(X+a) + 1
sage: f
X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
sage: Q.<z> = S.quo(f)
sage: F.<<w>, g, h = z.field_extension()sage: c = g(z)
sage: f(c)
0
sage: h(g(z))
z
sage: g(h(w))
w

AUTHORS:
•Craig Citro (2006-08-06)
•William Stein (2006-08-06)

is_unit()
Return True if self is invertible.

Warning: Only implemented when the base ring is a field.

EXAMPLES:

sage: R.<x> = QQ[]
sage: S.<y> = R.quotient(x^2 + 2*x + 1)
lift()
Return lift of this polynomial quotient ring element to the unique equivalent polynomial of degree less than the modulus.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3-2)
sage: b = a^2 - 3
sage: b
a^2 - 3
sage: b.lift()
>>> x^2 - 3
```

list (copy=True)
Return list of the elements of self, of length the same as the degree of the quotient polynomial ring.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: a^10
-134*a^2 - 35*a + 300
sage: (a^10).list()
>>> [300, -35, -134]
```

matrix()
The matrix of right multiplication by this element on the power basis for the quotient ring.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: a.matrix()
>>> [0 1 0]
>>> [0 0 1]
>>> [5 -2 0]
```

minpoly()
The minimal polynomial of this element, which is by definition the minimal polynomial of right multiplication by this element.

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
sage: a.norm()
5
```

norm()
The norm of this element, which is the norm of the matrix of right multiplication by this element.

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
sage: a.norm()
5
```

trace()
The trace of this element, which is the trace of the matrix of right multiplication by this element.
EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
sage: a.trace()
389
```

2.1.24 Polynomial Compilers

AUTHORS:

- Tom Boothby, initial design & implementation
- Robert Bradshaw, bug fixes / suggested & assisted with significant design improvements

class sage.rings.polynomial.polynomial_compiled.CompiledPolynomialFunction

Bases: object

Builds a reasonably optimized directed acyclic graph representation for a given polynomial. A CompiledPolynomialFunction is callable from python, though it is a little faster to call the eval function from pyrex.

This class is not intended to be called by a user, rather, it is intended to improve the performance of immutable polynomial objects.

TODO:

- [] Recursive calling
- [] Faster casting of coefficients / argument
- [] Multivariate polynomials
- [] Cython implementation of Pippenger’s Algorithm that doesn’t depend heavily upon dicts.
- [] Computation of parameter sequence suggested by Pippenger
- [] Univariate exponentiation can use Brauer’s method to improve extremely sparse polynomials of very high degree

```
class sage.rings.polynomial.polynomial_compiled.abc_pd
    Bases: sage.rings.polynomial.polynomial_compiled.binary_pd
class sage.rings.polynomial.polynomial_compiled.add_pd
    Bases: sage.rings.polynomial.polynomial_compiled.binary_pd
class sage.rings.polynomial.polynomial_compiled.binary_pd
    Bases: sage.rings.polynomial.polynomial_compiled.generic_pd
class sage.rings.polynomial.polynomial_compiled.coeff_pd
    Bases: sage.rings.polynomial.polynomial_compiled.generic_pd
class sage.rings.polynomial.polynomial_compiled.dummy_pd
    Bases: sage.rings.polynomial.polynomial_compiled.generic_pd
class sage.rings.polynomial.polynomial_compiled.generic_pd
    Bases: object
class sage.rings.polynomial.polynomial_compiled.mul_pd
    Bases: sage.rings.polynomial.polynomial_compiled.binary_pd
class sage.rings.polynomial.polynomial_compiled.pow_pd
    Bases: sage.rings.polynomial.polynomial_compiled.unary_pd
class sage.rings.polynomial.polynomial_compiled.sqr_pd
    Bases: sage.rings.polynomial.polynomial_compiled.unary_pd
```
class sage.rings.polynomial.polynomial_compiled.unary_pd
 Bases: sage.rings.polynomial.polynomial_compiled.generic_pd

class sage.rings.polynomial.polynomial_compiled.univar_pd
 Bases: sage.rings.polynomial.polynomial_compiled.generic_pd

class sage.rings.polynomial.polynomial_compiled.var_pd
 Bases: sage.rings.polynomial.polynomial_compiled.generic_pd

2.1.25 Polynomial multiplication by Kronecker substitution

2.2 Generic Convolution

Asymptotically fast convolution of lists over any commutative ring in which the multiply-by-two map is injective. (More precisely, if $x \in R$, and $x = 2^k \ast y$ for some $k \geq 0$, we require that $R(x/2^k)$ returns y.)

The main function to be exported is convolution().

EXAMPLES:

```
sage: convolution([1, 2, 3, 4, 5], [6, 7])
[6, 19, 32, 45, 58, 35]
```

The convolution function is reasonably fast, even though it is written in pure Python. For example, the following takes less than a second:

```
sage: v = convolution(list(range(1000)), list(range(1000)))
```

ALGORITHM: Converts the problem to multiplication in the ring $S[x]/(x^M - 1)$, where $S = R[y]/(y^K + 1)$ (where R is the original base ring). Performs FFT with respect to the roots of unity $1, y, y^2, \ldots, y^{2K-1}$ in S. The FFT/IFFT are accomplished with just additions and subtractions and rotating python lists. (I think this algorithm is essentially due to Schonhage, not completely sure.) The pointwise multiplications are handled recursively, switching to a classical algorithm at some point.

Complexity is $O(n \log(n) \log(\log(n)))$ additions/subtractions in R and $O(n \log(n))$ multiplications in R.

AUTHORS:

- David Harvey (2007-07): first implementation
- William Stein: editing the docstrings for inclusion in Sage.

```
sage: sage.rings.polynomial.convolution.convolution(L1, L2)
```

Returns convolution of non-empty lists $L1$ and $L2$. $L1$ and $L2$ may have arbitrary lengths.

EXAMPLES:

```
sage: convolution([1, 2, 3], [4, 5, 6, 7])
[4, 13, 28, 34, 32, 21]
sage: R = Integers(47)
sage: L1 = [R.random_element() for _ in range(1000)]
sage: L2 = [R.random_element() for _ in range(3756)]
sage: L3 = convolution(L1, L2)
True
sage: len(L3) == 1000 + 3756 - 1
True
```
2.3 Fast calculation of cyclotomic polynomials

This module provides a function `cyclotomic_coeffs()`, which calculates the coefficients of cyclotomic polynomials. This is not intended to be invoked directly by the user, but it is called by the method `cyclotomic_polynomial()` method of univariate polynomial ring objects and the top-level `cyclotomic_polynomial()` function.

```python
sage.rings.polynomial.cyclotomic.bateman_bound(nn)
```

Reference:
Bateman, P. T.; Pomerance, C.; Vaughan, R. C. On the size of the coefficients of the cyclotomic polynomial.

```python
sage.rings.polynomial.cyclotomic.cyclotomic_coeffs(nn, sparse=None)
```

This calculates the coefficients of the n-th cyclotomic polynomial by using the formula

\[\Phi_n(x) = \prod_{d|n} (1 - x^{n/d})^\mu(d) \]

where \(\mu(d) \) is the Möbius function that is 1 if \(d \) has an even number of distinct prime divisors, -1 if it has an odd number of distinct prime divisors, and 0 if \(d \) is not squarefree.

Multiplications and divisions by polynomials of the form \(1 - x^n \) can be done very quickly in a single pass.

If sparse is True, the result is returned as a dictionary of the non-zero entries, otherwise the result is returned as a list of python ints.

EXAMPLES:

```python
sage: from sage.rings.polynomial.cyclotomic import cyclotomic_coeffs
sage: cyclotomic_coeffs(30)
[1, 1, 0, -1, -1, -1, 0, 1, 1]
sage: cyclotomic_coeffs(10^5)
{0: 1, 10000: -1, 20000: 1, 30000: -1, 40000: 1}
sage: R = QQ['x']
sage: R(cyclotomic_coeffs(30))
x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
```

Check that it has the right degree:

```python
sage: euler_phi(30)
8
sage: R(cyclotomic_coeffs(14)).factor()
x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
```

The coefficients are not always +/-1:

```python
sage: cyclotomic_coeffs(105)
[1, 1, 0, 1, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1, 0, 0, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, 0, 0, 1, 1, 1, 0, 0, -1, 0, -1, -2, -1, -1, 0, 0, 1, 1, 0, 0, 1, 1, -1, -1, -1, -1]
```

In fact the height is not bounded by any polynomial in n (Erdos), although takes a while just to exceed linear:

```python
sage: v = cyclotomic_coeffs(1181895)
sage: max(v)
14102773
```

The polynomial is a palindrome for any n:
AUTHORS:

• Robert Bradshaw (2007-10-27): initial version (inspired by work of Andrew Arnold and Michael Mogan)

sage.rings.polynomial.cyclotomic.cyclotomic_value(n, x)

Return the value of the n-th cyclotomic polynomial evaluated at x.

INPUT:

• n – an Integer, specifying which cyclotomic polynomial is to be evaluated.
• x – an element of a ring.

OUTPUT:

• the value of the cyclotomic polynomial Φ_n at x.

ALGORITHM:

• Reduce to the case that n is squarefree: use the identity

 $\Phi_n(x) = \Phi_q(x^{n/q})$

 where q is the radical of n.

• Use the identity

 $\Phi_n(x) = \prod_{d|n}(x^d - 1)^{\mu(n/d)}$,

 where μ is the Möbius function.

• Handles the case that $x^d = 1$ for some d, but not the case that $x^d - 1$ is non-invertible: in this case polynomial evaluation is used instead.

EXAMPLES:

sage: cyclotomic_value(51, 3)
1282860140677441
sage: cyclotomic_polynomial(51)(3)
1282860140677441

It works for non-integral values as well:

sage: cyclotomic_value(144, 4/3)
7914874543504023621920372161/79766443076872509863361
sage: cyclotomic_polynomial(144)(4/3)
7914874543504023621920372161/79766443076872509863361
3.1 Multivariate Polynomials and Polynomial Rings

Sage implements multivariate polynomial rings through several backends. The most generic implementation uses the classes `sage.rings.polynomial.polydict.PolyDict` and `sage.rings.polynomial.polydict.ETuple` to construct a dictionary with exponent tuples as keys and coefficients as values.

Additionally, specialized and optimized implementations over many specific coefficient rings are implemented via a shared library interface to SINGULAR, and polynomials in the boolean polynomial ring

\[\mathbb{F}_2[x_1, \ldots, x_n]/(x_1^2 + \ldots, x_n^2 + x_n). \]

are implemented using the PolyBoRi library (cf. `sage.rings.polynomial.pbori`).

3.1.1 Term orders

Sage supports the following term orders:

Lexicographic (lex) \(x^a < x^b \) if and only if there exists \(1 \leq i \leq n \) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘lp’ in Singular.

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: x > y  
True
sage: x > y^2  
True
sage: x > 1  
True
sage: x^1*y^2 > y^3*z^4  
True
sage: x^3*y^2*z^4 < x^3*y^2*z^1  
False
```

Degree reverse lexicographic (degrevlex) Let \(\deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \(x^a < x^b \) if and only if \(\deg(x^a) < \deg(x^b) \) or \(\deg(x^a) = \deg(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘dp’ in Singular.

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='degrevlex')
sage: x > y  
True
```
Degree lexicographic (deglex) Let \(\deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \(x^a < x^b \) if and only if \(\deg(x^a) < \deg(x^b) \) or \(\deg(x^a) = \deg(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i \). This term order is called ‘Dp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='deglex')
sage: x > y
True
sage: x > y^2*z
False
sage: x > 1
True
sage: x^1*y^2*z^3 > x^3*y^2*z^0
True
sage: x^2*y*z^2 > x*y^3*z
True
```

Inverse lexicographic (invlex) \(x^a < x^b \) if and only if there exists \(1 \leq i \leq n \) such that \(a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i < b_i \). This order is called ‘rp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='invlex')
sage: x > y
False
sage: y > x^2
True
sage: x > 1
True
sage: x*y > z
False
```

This term order only makes sense in a non-commutative setting because if \(P \) is the ring \(k[x_1, \ldots, x_n] \) and term order ‘invlex’ then it is equivalent to the ring \(k[x_n, \ldots, x_1] \) with term order ‘lex’.

Negative lexicographic (neglex) \(x^a < x^b \) if and only if there exists \(1 \leq i \leq n \) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i \). This term order is called ‘ls’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='neglex')
sage: x > y
False
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
False
sage: x^3*y^2*z^4 < x^3*y^2*z^1
True
```
Negative degree reverse lexicographic (negdegrevlex) Let \(\deg(x^n) = a_1 + a_2 + \cdots + a_n \), then \(x^a < x^b \) if and only if \(\deg(x^a) > \deg(x^b) \) or \(\deg(x^a) = \deg(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘ds’ in Singular.

EXAMPLES:

```sage
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdegrevlex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
True
sage: x^2*y*z^2 > x*y^3*z
False
```

Negative degree lexicographic (negdeglex) Let \(\deg(x^n) = a_1 + a_2 + \cdots + a_n \), then \(x^a < x^b \) if and only if \(\deg(x^a) > \deg(x^b) \) or \(\deg(x^a) = \deg(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘Ds’ in Singular.

EXAMPLES:

```sage
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdeglex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
True
sage: x^2*y*z^2 > x*y^3*z
True
```

Weighted degree reverse lexicographic (wdegrevlex), positive integral weights Let \(\deg_w(x^n) = a_1 w_1 + a_2 w_2 + \cdots + a_n w_n \) with weights \(w \), then \(x^a < x^b \) if and only if \(\deg_w(x^a) < \deg_w(x^b) \) or \(\deg_w(x^a) = \deg_w(x^b) \) and there exists \(1 \leq i \leq n \) such that \(a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘wp’ in Singular.

EXAMPLES:

```sage
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='wdegrevlex', (1,2,3))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2+z
True
sage: y*z > x^3*y
False
```

Weighted degree lexicographic (wdeglex), positive integral weights Let \(\deg_w(x^n) = a_1 w_1 + a_2 w_2 + \cdots + a_n w_n \)
with weights w, then $x^a < x^b$ if and only if $\text{deg}_w(x^a) < \text{deg}_w(x^b)$ or $\text{deg}_w(x^a) = \text{deg}_w(x^b)$ and there exists $1 \leq i \leq n$ such that $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i$. This term order is called ‘Wp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('wdeglex',(1,2,3)))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
False
sage: y*z > x^3*y
False
```

Negative weighted degree reverse lexicographic (negwdegrevlex), positive integral weights Let $\text{deg}_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n$ with weights w, then $x^a < x^b$ if and only if $\text{deg}_w(x^a) > \text{deg}_w(x^b)$ or $\text{deg}_w(x^a) = \text{deg}_w(x^b)$ and there exists $1 \leq i \leq n$ such that $a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i$. This term order is called ‘ws’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdegrevlex',(1,2,3)))
sage: x > y
True
sage: x > x^2
True
sage: x > 1
False
sage: x^1*y^2 > x^2*z
True
sage: y*z > x^3*y
False
```

Degree negative lexicographic (degneglex) Let $\text{deg}(x^a) = a_1 + a_2 + \cdots + a_n$, then $x^a < x^b$ if and only if $\text{deg}(x^a) < \text{deg}(x^b)$ or $\text{deg}(x^a) = \text{deg}(x^b)$ and there exists $1 \leq i \leq n$ such that $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i$. This term order is called ‘dp_asc’ in PolyBoRi. Singular has the extra weight vector ordering ‘(r(1:n),rp)’ for this purpose.

EXAMPLES:

```python
sage: t = TermOrder('degneglex')
sage: P.<x,y,z> = PolynomialRing(QQ, order=t)
sage: x*y > y*z # indirect doctest
False
sage: x*y > x
True
```

Negative weighted degree lexicographic (negwdeglex), positive integral weights Let $\text{deg}_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n$ with weights w, then $x^a < x^b$ if and only if $\text{deg}_w(x^a) > \text{deg}_w(x^b)$ or $\text{deg}_w(x^a) = \text{deg}_w(x^b)$ and there exists $1 \leq i \leq n$ such that $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i$. This term order is called ‘Ws’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdeglex',(1,2,3)))
sage: x > y
True
```
Of these, only ‘degrevlex’, ‘deglex’, ‘degneglex’, ‘wdegrevlex’, ‘wdeglex’, ‘invlex’ and ‘lex’ are global orders.

Sage also supports matrix term order. Given a square matrix A,

$$x^a <_A x^b$$

if and only if $Aa < Ab$

where $<$ is the lexicographic term order.

EXAMPLES:

```python
sage: m = matrix(2,[[2,3],[0,1]]); m
[2 3]
[0 1]
sage: T = TermOrder(m); T
Matrix term order with matrix
[2 3]
[0 1]
sage: P.<a,b> = PolynomialRing(QQ,2,order=T)
sage: P
Multivariate Polynomial Ring in a, b over Rational Field
sage: a > b
False
sage: a^3 < b^2
True
```

Additionally all these monomial orders may be combined to product or block orders, defined as:

Let $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_m)$ be two ordered sets of variables, $<_1$ a monomial order on $k[x]$ and $<_2$ a monomial order on $k[y]$.

The product order (or block order) $<_B := (<_1, <_2)$ on $k[x, y]$ is defined as: $x^a y^b < x^A y^B$ if and only if $x^a <_1 x^A$ or $(x^a = x^A$ and $y^b <_2 y^B)$.

These block orders are constructed in Sage by giving a comma separated list of monomial orders with the length of each block attached to them.

EXAMPLES:

As an example, consider constructing a block order where the first four variables are compared using the degree reverse lexicographical order while the last two variables in the second block are compared using negative lexicographical order.

```python
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6,order='degrevlex(4),neglex(2)')
sage: a > c^4
False
sage: a > e^4
True
sage: e > f^2
False
```
The same result can be achieved by:

```
sage: T1 = TermOrder('degrevlex',4)
sage: T2 = TermOrder('neglex',2)
sage: T = T1 + T2
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6, order=T)
sage: a > c^4
False
sage: a > e^4
True
```

If any other unsupported term order is given the provided string can be forced to be passed through as is to Singular, Macaulay2, and Magma. This ensures that it is for example possible to calculate a Groebner basis with respect to some term order Singular supports but Sage doesn’t:

```
sage: T = TermOrder("royalorder")
Traceback (most recent call last):
...  
ValueError: unknown term order 'royalorder'
sage: T = TermOrder("royalorder",force=True)
sage: T
royalorder term order
sage: T.singular_str()
'royalorder'
```

AUTHORS:

- David Joyner and William Stein: initial version of multi_polynomial_ring
- Kiran S. Kedlaya: added macaulay2 interface
- Martin Albrecht: implemented native term orders, refactoring
- Kwankyu Lee: implemented matrix and weighted degree term orders, refactoring

```python
class sage.rings.polynomial.term_order.TermOrder(name='lex', n=0, force=False)
Bases: sage.structure.sage_object.SageObject

A term order.

See sage.rings.polynomial.term_order for details on supported term orders.

blocks()
Return the term order blocks of self.

NOTE:
This method has been added in trac ticket #11316. There used to be an attribute of the same name and the same content. So, it is a backward incompatible syntax change.

EXAMPLES:
```
sage: t=TermOrder('deglex',2)+TermOrder('lex',2)
sage: t.blocks()
(Degree lexicographic term order, Lexicographic term order)
```

```python
compare_tuples_block(f, g)
DEPRECATED in trac ticket #21766
```

```python
compare_tuples_deglex(f, g)
DEPRECATED in trac ticket #21766
```
compare_tuples_degneglex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_degrevlex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_invlex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_lex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_matrix \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_negdeglex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_negdegrevlex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_neglex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_negwdeglex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_negwdegrevlex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_wdeglex \((f, g)\)
DEPRECATED in trac ticket #21766

compare_tuples_wdegrevlex \((f, g)\)
DEPRECATED in trac ticket #21766

greater_tuple_block \((f, g)\)

Return the greater exponent tuple with respect to the block order as specified when constructing this element.

This method is called by the \texttt{lm/lc/Lt} methods of \texttt{MPolynomial_polydict}.

INPUT:

• \(f\) - exponent tuple

• \(g\) - exponent tuple

EXAMPLES:

```sage
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3), →degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest
c^4
sage: g = a + e^4; g.lm()
a
```

greater_tuple_deglex \((f, g)\)

Return the greater exponent tuple with respect to the total degree lexicographical term order.

INPUT:

• \(f\) - exponent tuple

• \(g\) - exponent tuple
EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='deglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the lm/lc/lt methods of `MPolynomial_polydict`.

`greater_tuple_degneglex(f, g)`

Return the greater exponent tuple with respect to the degree negative lexicographical term order.

INPUT:

- `f` - exponent tuple
- `g` - exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degneglex')
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the lm/lc/lt methods of `MPolynomial_polydict`.

`greater_tuple_degrevlex(f, g)`

Return the greater exponent tuple with respect to the total degree reversed lexicographical term order.

INPUT:

- `f` - exponent tuple
- `g` - exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + y^2*z; f.lm()
y^2*z
```

This method is called by the lm/lc/lt methods of `MPolynomial_polydict`.

`greater_tuple_invlex(f, g)`

Return the greater exponent tuple with respect to the inversed lexicographical term order.

INPUT:

- `f` - exponent tuple
- `g` - exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='invlex')
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = y + x^2; f.lm()
y
```

This method is called by the lm/lc/lt methods of `MPolynomial_polydict`.
This method is called by the lm/lc/lt methods of \texttt{MPolynomial\_polydict}.

\textbf{\texttt{greater\_tuple\_lex}(f, g)}

Return the greater exponent tuple with respect to the lexicographical term order.

**INPUT:**

- $f$ - exponent tuple
- $g$ - exponent tuple

**EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='lex')
sage: f = x + y^2; f.lm() # indirect doctest
x
```

This method is called by the lm/lc/lt methods of \texttt{MPolynomial\_polydict}.

\textbf{\texttt{greater\_tuple\_matrix}(f, g)}

Return the greater exponent tuple with respect to the matrix term order.

**INPUT:**

- $f$ - exponent tuple
- $g$ - exponent tuple

**EXAMPLES:**

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='m(1,3,1,0)')
sage: y > x^2 # indirect doctest
True
sage: y > x^3
False
```

\textbf{\texttt{greater\_tuple\_negdeglex}(f, g)}

Return the greater exponent tuple with respect to the negative degree lexicographical term order.

**INPUT:**

- $f$ - exponent tuple
- $g$ - exponent tuple

**EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdeglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x^2*y*z^2
```

This method is called by the lm/lc/lt methods of \texttt{MPolynomial\_polydict}.

\textbf{\texttt{greater\_tuple\_negdegrevlex}(f, g)}

Return the greater exponent tuple with respect to the negative degree reverse lexicographical term order.

**INPUT:**

- $f$ - exponent tuple
- $g$ - exponent tuple

**EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdegrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
```

3.1. Multivariate Polynomials and Polynomial Rings
EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdegrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x*y^3*z
```

This method is called by the `lm/lc/lt` methods of `MPolynomial_polydict`.

**greater_tuple_neglex**(f, g)

Return the greater exponent tuple with respect to the negative lexicographical term order.

This method is called by the `lm/lc/lt` methods of `MPolynomial_polydict`.

**INPUT:**

- `f` - exponent tuple
- `g` - exponent tuple

**EXAMPLES:**

```python
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3), –degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest
c^4
sage: g = a + e^4; g.lm()
a
```

**greater_tuple_negwdeglex**(f, g)

Return the greater exponent tuple with respect to the negative weighted degree lexicographical term order.

**INPUT:**

- `f` - exponent tuple
- `g` - exponent tuple

**EXAMPLES:**

```python
sage: t = TermOrder('negwdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^3 + z; f.lm()
x^3
```

This method is called by the `lm/lc/lt` methods of `MPolynomial_polydict`.

**greater_tuple_negwdegrevlex**(f, g)

Return the greater exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

**INPUT:**

- `f` - exponent tuple
- `g` - exponent tuple

**EXAMPLES:**

```python
sage: t = TermOrder('negwdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^3 + z; f.lm()
x^3
```

This method is called by the `lm/lc/lt` methods of `MPolynomial_polydict`.

**greater_tuple_negwdegrevlex**(f, g)

Return the greater exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

**INPUT:**

- `f` - exponent tuple
- `g` - exponent tuple
EXAMPLES:

```
sage: t = TermOrder('negwdegrevlex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
 x
sage: f = x + x^2; f.lm()
 x
sage: f = x^3 + z; f.lm()
 x^3
```

This method is called by the lm/lc/lt methods of MPolynomial_polydict.

`greater_tuple_wdeglex(f, g)`
Return the greater exponent tuple with respect to the weighted degree lexicographical term order.

**INPUT:**

- `f` - exponent tuple
- `g` - exponent tuple

**EXAMPLES:**

```
sage: t = TermOrder('wdeglex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
 y
sage: f = x*y + z; f.lm()
 x*y
```

This method is called by the lm/lc/lt methods of MPolynomial_polydict.

`greater_tuple_wdegrevlex(f, g)`
Return the greater exponent tuple with respect to the weighted degree reverse lexicographical term order.

**INPUT:**

- `f` - exponent tuple
- `g` - exponent tuple

**EXAMPLES:**

```
sage: t = TermOrder('wdegrevlex',(1,2,3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t)
sage: f = x + y; f.lm() # indirect doctest
 y
sage: f = x + y^2*z; f.lm()
 y^2*z
```

This method is called by the lm/lc/lt methods of MPolynomial_polydict.

`is_block_order()`
Return true if self is a block term order.

**EXAMPLES:**

```
sage: t=TermOrder('deglex',2)+TermOrder('lex',2)
sage: t.is_block_order()
 True
```
**is_global()**

Return true if this term order is definitely global. Return false otherwise, which includes unknown term orders.

**EXAMPLES:**

```sage
t = TermOrder('lex')
sage: t.is_global()
True
```

**is_local()**

Return true if this term order is definitely local. Return false otherwise, which includes unknown term orders.

**EXAMPLES:**

```sage
t = TermOrder('lex')
sage: t.is_local()
False
```

**is_weighted_degree_order()**

Return true if self is a weighted degree term order.

**EXAMPLES:**

```sage
t = TermOrder('wdeglex', (2, 3))
sage: t.is_weighted_degree_order()
True
```

**macaulay2_str()**

Return a Macaulay2 representation of self.

Used to convert polynomial rings to their Macaulay2 representation.

**EXAMPLES:**

```sage
P = PolynomialRing(GF(127), 8, names='x', order='degrevlex(3), lex(5)')
sage: T = P.term_order()
sage: T.macaulay2_str()
'{GRevLex => 3, Lex => 5}'
```

---

Chapter 3. Multivariate Polynomials
magma_str()
Return a MAGMA representation of self.
Used to convert polynomial rings to their MAGMA representation.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(127), 10, names='x', order='degrevlex')
sage: magma(P) # optional - magma
Polynomial ring of rank 10 over GF(127)
Order: Graded Reverse Lexicographical
Variables: x0, x1, x2, x3, x4, x5, x6, x7, x8, x9
```

matrix()
Return the matrix defining matrix term order.

EXAMPLES:

```python
sage: t = TermOrder("M(1,2,0,1)")
sage: t.matrix()
[1 2]
[0 1]
```

name()
EXAMPLES:

```python
sage: TermOrder('lex').name()
'lex'
```

singular_moreblocks()
Return a the number of additional blocks SINGULAR needs to allocate for handling non-native orderings like degneglex.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(127),10, names='x', order='lex(3),deglex(5),lex(2)')
sage: T = P.term_order()
sage: P.singular_moreblocks() 0
sage: P = PolynomialRing(GF(127),10, names='x', order='lex(3),degneglex(5),
 lex(2)')
sage: T = P.term_order()
sage: P.singular_moreblocks() 1
sage: P = PolynomialRing(GF(127),10, names='x', order='degneglex(5),degneglex(5)
 lex(2)')
sage: T = P.term_order()
sage: P.singular_moreblocks() 2
```
sage_str()  
Return a SINGULAR representation of self.  
Used to convert polynomial rings to their SINGULAR representation.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(127), 10, names='x', order='lex(3),deglex(5),lex(2)')
sage: T = P._singular_()
sage: T.singular_str()
'(lp(3),Dp(5),lp(2))'
sage: P._singular_()
```

sortkey_block(f)  
Return the sortkey of an exponent tuple with respect to the block order as specified when constructing this element.

INPUT:

- `f` – exponent tuple

EXAMPLES:

```python
sage: P.<a,b,c,d,e,f>=PolynomialRing(QQbar, 6, order='degrevlex(3),
˓→degrevlex(3)')
sage: a > c^4 # indirect doctest
False
sage: a > e^4
True
```

sortkey_deglex(f)  
Return the sortkey of an exponent tuple with respect to the degree lexicographical term order.

INPUT:

- `f` – exponent tuple

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='deglex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
True
```

sortkey_degneglex(f)  
Return the sortkey of an exponent tuple with respect to the degree negative lexicographical term order.

INPUT:
•f – exponent tuple

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degrevlex')
sage: x*y > y*z # indirect doctest
False
sage: x*y > x
True
```

**sortkey_degrevlex** *(f)*

Return the sortkey of an exponent tuple with respect to the degree reversed lexicographical term order.

INPUT:

•f – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='degrevlex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
True
```

**sortkey_invlex** *(f)*

Return the sortkey of an exponent tuple with respect to the inversed lexicographical term order.

INPUT:

•f – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='invlex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
True
```

**sortkey_lex** *(f)*

Return the sortkey of an exponent tuple with respect to the lexicographical term order.

INPUT:

•f – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='lex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
True
```

**sortkey_matrix** *(f)*

Return the sortkey of an exponent tuple with respect to the matrix term order.

INPUT:

•f – exponent tuple

EXAMPLES:
sortkey_negdeglex ($f$)
Return the sortkey of an exponent tuple with respect to the negative degree lexicographical term order.

INPUT:

- $f$ – exponent tuple

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdeglex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
False
```

sortkey_negdegrevlex ($f$)
Return the sortkey of an exponent tuple with respect to the negative degree reverse lexicographical term order.

INPUT:

- $f$ – exponent tuple

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdegrevlex')
sage: x > y^2 # indirect doctest
True
sage: x > 1
False
```

sortkey_neglex ($f$)
Return the sortkey of an exponent tuple with respect to the negative lexicographical term order.

INPUT:

- $f$ – exponent tuple

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='neglex')
sage: x > y^2 # indirect doctest
False
sage: x > 1
False
```

sortkey_negwdeglex ($f$)
Return the sortkey of an exponent tuple with respect to the negative weighted degree lexicographical term order.

INPUT:

- $f$ – exponent tuple

EXAMPLES:
sortkey_negwdegrevlex(f)
Return the sortkey of an exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```
sage: t = TermOrder('negwdegrevlex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
True
sage: x^2 > y^3
True
```

sortkey_wdeglex(f)
Return the sortkey of an exponent tuple with respect to the weighted degree lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```
sage: t = TermOrder('wdeglex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
False
sage: x > y
True
```

sortkey_wdegrevlex(f)
Return the sortkey of an exponent tuple with respect to the weighted degree reverse lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```
sage: t = TermOrder('wdegrevlex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)
sage: x > y^2 # indirect doctest
False
sage: x^2 > y^3
True
```

tuple_weight(f)
Return the weight of tuple f.

INPUT:
• \( f \) - exponent tuple

**EXAMPLES:**

```python
sage: t = TermOrder('wdeglex', (1, 2, 3))
sage: P.<a,b,c> = PolynomialRing(QQbar, order=t)
sage: P.term_order().tuple_weight([3, 2, 1])
10
```

**weights()**

Return the weights for weighted term orders.

**EXAMPLES:**

```python
sage: t = TermOrder('wdeglex', (2, 3))
sage: t.weights()
(2, 3)
```

`sage.rings.polynomial.term_order.termorder_from_singular(S)`

Return the Sage term order of the basering in the given Singular interface.

**INPUT:**

An instance of the Singular interface.

**NOTE:**

A term order in Singular also involves information on orders for modules. This is not taken into account in Sage.

**EXAMPLES:**

```python
sage: singular.eval('ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp)')
'sage: from sage.rings.polynomial.term_order import termorder_from_singular
sage: termorder_from_singular(singular)
Block term order with blocks:
 Matrix term order with matrix
 [1 2]
 [3 0],
 Weighted degree reverse lexicographic term order with weights (2, 3),
 Lexicographic term order of length 2)
```

**AUTHOR:**

• Simon King (2011-06-06)

### 3.1.2 Base class for multivariate polynomial rings

```python
class sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic
 Bases: sage.rings.ring.CommutativeRing

Create a polynomial ring in several variables over a commutative ring.

EXAMPLES:

```python
sage: R.<x,y> = ZZ['x,y']; R
Multivariate Polynomial Ring in x, y over Integer Ring
sage: class CR(CommutativeRing):
    ....:     def __init__(self):
    ....:         CommutativeRing.__init__(self)
    ....:     def __call__(self, x):
```

Chapter 3. Multivariate Polynomials
.. code::

 sage: cr = CR()
 sage: cr.is_commutative()
 True
 sage: cr['x,y']
 Multivariate Polynomial Ring in x, y over <class '....CR_with_category'>

change_ring\((base_ring=None, names=None, order=None) \)

Return a new multivariate polynomial ring which isomorphic to self, but has a different ordering given by
the parameter ‘order’ or names given by the parameter ‘names’.

INPUT:

- \texttt{base_ring} – a base ring
- \texttt{names} – variable names
- \texttt{order} – a term order

EXAMPLES:

.. code::

 sage: P.<x,y,z> = PolynomialRing(GF(127),3,order='lex')
 sage: x > y^2
 True
 sage: Q.<x,y,z> = P.change_ring(order='degrevlex')
 sage: x > y^2
 False

characteristic()

Return the characteristic of this polynomial ring.

EXAMPLES:

.. code::

 sage: R = PolynomialRing(QQ, 'x', 3)
 sage: R.characteristic()
 0
 sage: R = PolynomialRing(GF(7),'x', 20)
 sage: R.characteristic()
 7

completion\((p, prec=20, extras=None) \)

Return the completion of self with respect to the ideal generated by the variable(s) \texttt{p}.

INPUT:

- \texttt{p} – variable or tuple of variables
- \texttt{prec} – default precision of resulting power series ring
- \texttt{extras} – ignored; present for backward compatibility

EXAMPLES:

.. code::

 sage: P.<x,y,z,w> = PolynomialRing(ZZ)
 sage: P.completion((w,x,y))
 Multivariate Power Series Ring in w, x, y over Univariate Polynomial Ring in z over Integer Ring
 sage: P.completion((w,x,y,z))
 Multivariate Power Series Ring in w, x, y, z over Integer Ring
 sage: H = PolynomialRing(PolynomialRing(ZZ,3,'z'),4,'f'); H
Multivariate Polynomial Ring in f0, f1, f2, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring

```
sage: H.completion(H.gens())
Multivariate Power Series Ring in f0, f1, f2, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
```

```
sage: H.completion(H.gens()[2])
Power Series Ring in f2 over
Multivariate Polynomial Ring in f0, f1, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
```

construction()

Returns a functor F and base ring R such that F(R) == self.

EXAMPLES:

```
sage: S = ZZ['x,y']
sage: F, R = S.construction(); R
Integer Ring
sage: F
MPoly[x,y]
sage: F(R) == S
True
sage: F(R) == ZZ['x']['y']
False
```

flattening_morphism()

Return the flattening morphism of this polynomial ring

EXAMPLES:

```
sage: QQ['a','b']['x','y'].flattening_morphism()
Flattening morphism:
    From: Multivariate Polynomial Ring in x, y over Multivariate Polynomial
    → Ring in a, b over Rational Field
    To:   Multivariate Polynomial Ring in a, b, x, y over Rational Field
```

gen(n=0)

irrelevant_ideal()

Return the irrelevant ideal of this multivariate polynomial ring, which is the ideal generated by all of the indeterminate generators of this ring.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: R.irrelevant_ideal()
Ideal (x, y, z) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

is_field(proof=True)

Return True if this multivariate polynomial ring is a field, i.e., it is a ring in 0 generators over a field.

is_finite()

Tell whether self is finite.

NOTE:

self is finite if and only if it has no variables and the base ring is finite.
EXAMPLES:

```python
sage: P = PolynomialRing(QQ, names=[])  
sage: P.is_finite()  
False  
sage: P = PolynomialRing(GF(5), names=[])  
sage: P.is_finite()  
True  
sage: P = PolynomialRing(GF(5), names=['x'])  
sage: P.is_finite()  
False
```

is_integral_domain(proof=True)

EXAMPLES:

```python
sage: ZZ['x,y'].is_integral_domain()  
True  
sage: Integers(8)['x,y'].is_integral_domain()  
False
```

is_noetherian()

EXAMPLES:

```python
sage: ZZ['x,y'].is_noetherian()  
True  
sage: Integers(8)['x,y'].is_noetherian()  
True
```

krull_dimension()

macaulay_resultant(*args, **kwds)

This is an implementation of the Macaulay Resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It’s based on the implementation in Maple by Manfred Minimair, which in turn is based on the references listed below: It calculates the Macaulay resultant for a list of polynomials, up to sign!

REFERENCES:

AUTHORS:

- Hao Chen, Solomon Vishkautsan (7-2014)

INPUT:

- `*args` – a list of \(n \) homogeneous polynomials in \(n \) variables. works when `args[0]` is the list of polynomials, or `args` is itself the list of polynomials

kwds:

- `sparse` – boolean (optional - default: `False`) if `True` function creates sparse matrices.

OUTPUT:

- the macaulay resultant, an element of the base ring of `self`

Todo

Working with sparse matrices should usually give faster results, but with the current implementation it actually works slower. There should be a way to improve performance with regards to this.
EXAMPLES:

The number of polynomials has to match the number of variables:

```sage
er.<x,y,z> = PolynomialRing(QQ,3)
er.macaulay_resultant([y,x+z])
```

Traceback (most recent call last):
...
`TypeError: number of polynomials(= 2) must equal number of variables (= 3)`

The polynomials need to be all homogeneous:

```sage
er.<x,y,z> = PolynomialRing(QQ,3)
er.macaulay_resultant([y, x+z, z+x^3])
```

Traceback (most recent call last):
...
`TypeError: resultant for non-homogeneous polynomials is not supported`

All polynomials must be in the same ring:

```sage
e.<x,y> = PolynomialRing(QQ, 2)
er.<x,y,z> = PolynomialRing(QQ,3)
es.macaulay_resultant([y, z+x])
```

Traceback (most recent call last):
...
`TypeError: not all inputs are polynomials in the calling ring`

The following example recreates Proposition 2.10 in Ch.3 in [CLO]:

```sage
ek.<x,y> = PolynomialRing(ZZ, 2)
flist,R = k._macaulay_resultant_universal_polynomials([1,1,2])
ne.macaulay_resultant(flist)
```

```
u2^2*u4^2*u6 - 2*u1*u2*u4*u5*u6 + u1^2*u5^2*u6 - u2^2*u3*u4*u7 +
  -u0*u1*u2*u3*u5*u7 + u0*u2*u4*u5*u7 - u0*u1*u5^2*u7 + u1*u2*u3*u4*u8 - u0*u2*u4^2
  -2*u8 - u1^2*u3*u5*u8 + u0*u1*u4*u5*u8 + u2^2*u3^2*u9 - 2*u0*u2*u3*u5*u9 +
  -u0^2*u5^2*u9 - u1*u2*u3^2*u10 + u0*u2*u3*u4*u10 + u0*u1*u3*u5*u10 - u0^2
  -2*u4*u5*u10 + u1^2*u3^2*u11 - 2*u0*u1*u3*u4*u11 + u0^2*u4^2*u11
```

The following example degenerates into the determinant of a 3 x 3 matrix:

```sage
ek.<x,y> = PolynomialRing(ZZ, 2)
flist,R = k._macaulay_resultant_universal_polynomials([1,1,1])
e.macaulay_resultant(flist)
```

```
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27
```

The following example is by Patrick Ingram(arxiv:1310.4114):

```sage
U = PolynomialRing(ZZ,'y',2); y0,y1 = U.gens()
R = PolynomialRing(U,'x',3); x0,x1,x2 = R.gens()
f0 = y0*x2^2 - x0^2 + 2*x1*x2
f1 = y1*x2^2 - x1^2 + 2*x0*x2
f2 = x0*x1 - x2^2
flist = [f0,f1,f2]
e.macaulay_resultant([f0,f1,f2])
```

```
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27
```

a simple example with constant rational coefficients:
an example where the resultant vanishes:

\begin{verbatim}
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([x+y,y^2,x])
0
\end{verbatim}

an example of bad reduction at a prime $p = 5$:

\begin{verbatim}
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([y,x^3+25*y^2*x,5*z])
125
\end{verbatim}

The input can given as an unpacked list of polynomials:

\begin{verbatim}
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant(y,x^3+25*y^2*x,5*z)
125
\end{verbatim}

an example when the coefficients live in a finite field:

\begin{verbatim}
sage: F = FiniteField(11)
sage: R.<x,y,z,w> = PolynomialRing(F,4)
sage: R.macaulay_resultant([z,x^3,5*y,w])
4
\end{verbatim}

example when the denominator in the algorithm vanishes(in this case the resultant is the constant term of the quotient of char polynomials of numerator/denominator):

\begin{verbatim}
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: R.macaulay_resultant([y, x+z, z^2])
-1
\end{verbatim}

when there are only 2 polynomials, macaulay resultant degenerates to the traditional resultant:

\begin{verbatim}
sage: R.<x> = PolynomialRing(QQ,1)
sage: f = x^2+1; g = x^5+1
sage: fh = f.homogenize()
sage: gh = g.homogenize()
sage: RH = fh.parent()
sage: f.resultant(g) == RH.macaulay_resultant([fh,gh])
True
\end{verbatim}

\texttt{monomial}\hspace{1em}(*\texttt{exponents})

Return the monomial with given exponents.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y,z> = PolynomialRing(ZZ, 3)
sage: R.monomial(1,1,1)
x*y*z
sage: e=(1,2,3)
sage: R.monomial(*e)
x*y^2*z^3
sage: m = R.monomial(1,2,3)
\end{verbatim}
def monomial(*m.degrees()) == m

Example:

sage: R.<x,y,z> = PolynomialRing(QQ)
sage: P.random_element(2, 5)
-6/5*x^2 + 2/3*z^2 - 1

Stacked rings:

sage: R = QQ['x,y']
sage: S = R['t,u']
sage: S.random_element(degree=2, terms=1)
-1/4*x^2 - 1/4*x*y - 1/14*x^2 - 1/4*x*y^2 - 1/3*x + 2*y + 9)*u^2

Default values apply if no degree and/or number of terms is provided:

sage: random_matrix(QQ[['x','y','z']], 2, 2)
[[357*x^2 + 4*x*y^2 + 2*x*y - 2*x*y^2 + 28*x, 2*x*y + 3/2*x^2 + 2*x*y - 2*x^2 - 4/3*x^2 + 2*x^2 - 4/3*x + 2*y + 9]*u^2

sage: random_matrix(QQ[['x','y','z']], 2, 2, terms=1, degree=2)
[-1/2*x^2]

sage: P.random_element(0, 1)
1
To produce a dense polynomial, pick terms=Infinity:

```
sage: P.<x,y,z> = GF(127)[]
sage: P.random_element(degree=2, terms=Infinity)
-55*x^2 - 51*x*y + 55*x*z - 59*y*z + 20*z^2 + 19*x - 55*y - 28*z + 17
sage: P.random_element(degree=3, terms=Infinity)
-54*x^3 + 15*x^2*y - 15*x^2*z - 12*x*y^2 + 20*y^2*z - 61*x*y*z
    + 2 - 5*y^2*z^2 + 62*z^3 + 15*x^2 - 47*x*y + 31*y^2 - 14*x*z + 29*y*z
    + 13*z^2 + 61*x - 40*y - 49*z + 30
sage: P.random_element(degree=3, terms=Infinity, choose_degree=True)
-57*x^3 - 58*x^2*y + 21*x^2*z + 36*y^2*z + 75*x*y*z + 8*y^2*z - 11*x*y*z
    + 2 + 7*y^2*z^2 + 6*z^3 - 38*x^2 - 18*x*y - 52*y^2 + 27*x*z + 4*y*z
    - 51*z^2 - 63*x + 7*y + 48*z + 14
```

The number of terms is silently reduced to the maximum available if more terms are requested:

```
sage: P.<x,y,z> = GF(127)[]
sage: P.random_element(degree=2, terms=1000)
5*x^2 - 10*x*y + 10*y^2 - 44*x*z + 31*y*z + 19*z^2 - 42*x - 50*y - 49*z - 60
```

```
remove_var(order=None, *var)

Remove a variable or sequence of variables from self.

If order is not specified, then the subring inherits the term order of the original ring, if possible.

EXAMPLES:

```
sage: P.<x,y,z,w> = PolynomialRing(ZZ)
sage: P.remove_var(z)
Multivariate Polynomial Ring in x, y, w over Integer Ring
sage: P.remove_var(z,x)
Multivariate Polynomial Ring in y, w over Integer Ring
sage: P.remove_var(y,z,x)
Univariate Polynomial Ring in w over Integer Ring
```

Removing all variables results in the base ring:

```
sage: P.remove_var(y,z,x,w)
Integer Ring
```

If possible, the term order is kept:

```
sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='deglex')
sage: R.remove_var(y).term_order()
Degree lexicographic term order
sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='lex')
sage: R.remove_var(y).term_order()
Lexicographic term order
```
Be careful with block orders when removing variables:

```python
sage: R.<x,y,z,u,v> = PolynomialRing(ZZ, order='deglex(2),lex(3)')
sage: R.remove_var(x,y,z)
Traceback (most recent call last):
...
ValueError: impossible to use the original term order (most likely because it was a block order). Please specify the term order for the subring
```

```python
sage: R.remove_var(x,y,z, order='degrevlex')
Multivariate Polynomial Ring in u, v over Integer Ring
```

repr_long()  
Return structured string representation of self.

```python
sage: P.<x,y,z> = PolynomialRing(QQ,order=TermOrder('degrevlex',1)+TermOrder('lex',2))
sage: print(P.repr_long())
Polynomial Ring
 Base Ring : Rational Field
 Size : 3 Variables
 Block 0 : Ordering : degrevlex
 Names : x
 Block 1 : Ordering : lex
 Names : y, z
```

term_order()  
univariate_ring(x)  
Return a univariate polynomial ring whose base ring comprises all but one variables of self.

INPUT:
• `x` – a variable of self.

```python
sage: P.<x,y,z> = QQ[]
sage: P.univariate_ring(y)
Univariate Polynomial Ring in y over Multivariate Polynomial Ring in x, z over Rational Field
```

variable_names_recursive (depth=None)  
Returns the list of variable names of this and its base rings, as if it were a single multi-variate polynomial.

EXAMPLES:

```python
sage: R = QQ['x,y,z']
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(3)
('y', 'z', 'w')
```

weyl_algebra()  
Return the Weyl algebra generated from `self`.

```python
sage: R = QQ['x,y,z'][['z,w']]
sage: R.variable_names_recursive()
('x', 'y', 'z', 'w')
sage: R.variable_names_recursive(3)
('y', 'z', 'w')
```

```python
sage: W = R.weyl_algebra(); W
Weyl Algebra in x, y, z over Rational Field
```
3.1.3 Base class for elements of multivariate polynomial rings

```python
class sage.rings.polynomial.multi_polynomial.MPolynomial
 Bases: sage.structure.element.CommutativeRingElement

 args()
 Returns the named of the arguments of self, in the order they are accepted from call.

 EXAMPLES:

 sage: R.<x,y> = ZZ[]
 sage: x.args()
 (x, y)

column_change_ring(R)
 Return a copy of this polynomial but with coefficients in R, if at all possible.

 INPUT:

 *R – a ring or morphism.

 EXAMPLES:

 sage: R.<x,y> = QQ[]
 sage: f = x^3 + 3/5*y + 1
 sage: f.change_ring(GF(7))
 x^3 + 2*y + 1
 sage: R.<x,y> = GF(9,'a')[]
 sage: (x+2*y).change_ring(GF(3))
 x - y
 sage: K.<z> = CyclotomicField(3)
 sage: R.<x,y> = K[]
 sage: f = x^2 + z*y
 sage: f.change_ring(K.embeddings(CC)[1])
 x^2 + (-0.500000000000000 + 0.866025403784439*I)*y
```
coefficients()

Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of self.parent(), i.e. the list of coefficients matches the list of monomials returned by sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular.monomials().

EXAMPLES:

```sage
sage: R.<x,y,z> = PolynomialRing(QQ,3,order='degrevlex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]
sage: R.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[6, 23, 1]
```

Test the same stuff with base ring \( \mathbb{Z} \) – different implementation:

```sage
sage: R.<x,y,z> = PolynomialRing(ZZ,3,order='degrevlex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]
sage: R.<x,y,z> = PolynomialRing(ZZ,3,order='lex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[6, 23, 1]
```

AUTHOR:

• Didier Deshommes

collection()

Returns the content of this polynomial. Here, we define content as the gcd of the coefficients in the base ring.

EXAMPLES:

```sage
sage: R.<x,y> = ZZ[]
sage: f = 4*x+6*y
sage: f.content()
2
sage: f.content().parent()
Integer Ring
```

denominator()

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.

Note that some subclasses may implement its own denominator function.

**Warning:** This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.

EXAMPLES:

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.
Next we compute the denominator of a polynomial over a number field.

```python
sage: R.<x,y> = NumberField(symbolic_expression(x^2+3) ,'a')['x,y']
sage: f = (1/17)*x^19 + (1/6)*y - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/6*y + 1/3
sage: f.denominator()
102
```

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```python
sage: R.<a,b,c> = RR[
]
sage: f = a + b + RR('0.3'); f
a + b + 0.300000000000000
sage: f.denominator()
1.00000000000000
```

Check that the denominator is an element over the base whenever the base has no denominator function. This closes trac ticket #9063:

```python
sage: R.<a,b,c> = GF(5)[
]
sage: x = R(0)
sage: x.denominator()
1
sage: type(x.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: type(a.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: from sage.rings.polynomial.multi_polynomial_element import MPolynomial
sage: isinstance(a / b, MPolynomial)
False
sage: isinstance(a.numerator() / a.denominator(), MPolynomial)
True
```

derivative(*args)
The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()

EXAMPLES:

Polynomials implemented via Singular:

```python
sage: R.<x, y> = PolynomialRing(FiniteField(5))
sage: f = x^3*y^5 + x^7*y
sage: type(f)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial...

```

3.1. Multivariate Polynomials and Polynomial Rings
Generic multivariate polynomials:

```
sage: R.<t> = PowerSeriesRing(QQ)
sage: S.<x, y> = PolynomialRing(R)
sage: f = (t^2 + O(t^3))*x^2*y^3 + (37*t^4 + O(t^5))*x^3
sage: type(f)
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
sage: f.derivative(x) # with respect to x
(2*t^2 + O(t^3))*x*y^3 + (111*t^4 + O(t^5))*x^2
sage: f.derivative(y) # with respect to y
(3*t^2 + O(t^3))*x^2*y^2
sage: f.derivative(t) # with respect to t (recurses into base ring)
(2*t + O(t^2))*x^2*y^3 + (148*t^3 + O(t^4))*x^3
sage: f.derivative(x, y) # with respect to x and then y
(6*t^2 + O(t^3))*x*y^2
sage: f.derivative(x, 3) # with respect to y three times
(6*t^2 + O(t^3))*x^2
sage: f.derivative() # can't figure out the variable
Traceback (most recent call last):
 ...
ValueError: must specify which variable to differentiate with respect to
```

Polynomials over the symbolic ring (just for fun....):

```
sage: x = var("x")
sage: S.<u, v> = PolynomialRing(SR)
sage: f = u*v*x
sage: f.derivative(x) == u*v
True
sage: f.derivative(u) == v*x
True
```

\texttt{gcd(other)}

Return a greatest common divisor of this polynomial and other.

INPUT:

- \texttt{other} -- a polynomial with the same parent as this polynomial

EXAMPLES:

```
sage: Q.<z> = Frac(QQ['z'])
sage: R.<x,y> = Q[]
sage: r = x*y - (2*z-1)/(z^2+z+1) * x + y/z
sage: p = r * (x + z*y - 1/z^2)
sage: q = r * (x*z*y + 1)
sage: gcd(p,q)
(z^3 + z^2 + z)*x*y + (-2*z^2 + z)*x + (z^2 + z + 1)*y
```

Polynomials over polynomial rings are converted to a simpler polynomial ring with all variables to compute the gcd:

```
sage: A.<z,t> = ZZ[]
sage: B.<x,y> = A[]
sage: r = x*y*z+t+1
```

Chapter 3. Multivariate Polynomials
Some multivariate polynomial rings have no gcd implementation:

```plaintext
sage: R.<x,y> = GaussianIntegers()[]
sage: x.gcd(x)
Traceback (most recent call last):
...
NotImplementedError: GCD is not implemented for multivariate polynomials over Gaussian Integers in Number Field in I with defining polynomial x^2 + 1
```

```
gradient()
```
Return a list of partial derivatives of this polynomial, ordered by the variables of self.parent().

```
EXAMPLES:
```
```plaintext
sage: P.<x,y,z> = PolynomialRing(ZZ,3)
sage: f = x*y + 1
sage: f.gradient()
[y, x, 0]
```

```
homogenize(var='h')
```
Return the homogenization of this polynomial.

The polynomial itself is returned if it is homogeneous already. Otherwise, the monomials are multiplied with the smallest powers of var such that they all have the same total degree.

INPUT:

• var – a variable in the polynomial ring (as a string, an element of the ring, or a zero-based index in the list of variables) or a name for a new variable (default: 'h')

OUTPUT:

If var specifies a variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable var.

EXAMPLES:

```plaintext
sage: R.<x,y> = QQ[]
sage: f = x^2 + y + 1 + 5*x*y^10
sage: f.homogenize()
5*x*y^10 + x^2*h^9 + y*h^10 + h^11
```

The parameter var can be used to specify the name of the variable:

```plaintext
sage: g = f.homogenize('z'); g
5*x*y^10 + x^2*z^9 + y*z^10 + z^11
```

However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:
sage: f = x^2 + y^2
sage: g = f.homogenize('z'); g
x^2 + y^2
sage: g.parent()
Multivariate Polynomial Ring in x, y over Rational Field

If you want the ring of the result to be independent of whether the polynomial is homogenized, you can use \texttt{var} to use an existing variable to homogenize:

sage: R.<x,y,z> = QQ[]
sage: f = x^2 + y^2
sage: g = f.homogenize(z); g
x^2 + y^2
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f = x^2 - y
sage: g = f.homogenize(z); g
x^2 - y*z
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field

The parameter \texttt{var} can also be given as a zero-based index in the list of variables:

sage: g = f.homogenize(2); g
x^2 - y*z

If the variable specified by \texttt{var} is not present in the polynomial, then setting it to 1 yields the original polynomial:

sage: g(x,y,1)
x^2 - y

If it is present already, this might not be the case:

sage: g = f.homogenize(x); g
x^2 - x*y
sage: g(1,y,z)
-y + 1

In particular, this can be surprising in positive characteristic:

sage: R.<x,y> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x)
0

\texttt{inverse\_mod(I)}

Returns an inverse of self modulo the polynomial ideal \(I\), namely a multivariate polynomial \(f\) such that \(self \cdot f - 1\) belongs to \(I\).

\textbf{INPUT:}

- \texttt{I} – an ideal of the polynomial ring in which self lives

\textbf{OUTPUT:}

- a multivariate polynomial representing the inverse of \(f\) modulo \(I\)

\textbf{EXAMPLES:}
Test a non-invertible element:

```
sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = x1 + x2
sage: f.inverse_mod(I)
Traceback (most recent call last):
...
ArithmeticError: element is non-invertible
```

### is_generator()

Returns True if this polynomial is a generator of its parent.

**EXAMPLES:**

```
sage: R.<x,y>=ZZ[]
sage: x.is_generator()
True
sage: (x+y-y).is_generator()
True
sage: (x+y).is_generator()
False
sage: R.<x,y>=QQ[]
sage: x.is_generator()
True
sage: (x+y-y).is_generator()
True
sage: (x+y).is_generator()
False
```

### is_homogeneous()

Return True if self is a homogeneous polynomial.

**Note:** This is a generic implementation which is likely overridden by subclasses.

### is_nilpotent()

Return True if self is nilpotent, i.e., some power of self is 0.

**EXAMPLES:**

```
sage: R.<x,y> = QQbar[]
sage: (x+y).is_nilpotent()
False
sage: R(0).is_nilpotent()
True
sage: _.<x,y> = Zmod(4)[]
sage: (2*x).is_nilpotent()
True
sage: (2+y*x).is_nilpotent()
False
```
is_unit()  
Return `True` if `self` is a unit, that is, has a multiplicative inverse.

**EXAMPLES:**

```python
sage: R.<x,y> = QQbar[]
sage: (x+y).is_unit() # False
sage: R(0).is_unit() # False
sage: R(-1).is_unit() # True
sage: R(-1 + x).is_unit() # False
sage: R(2).is_unit() # True
```

Check that trac ticket #22454 is fixed:

```python
sage: _.<x,y> = Zmod(4)[]
sage: (1 + 2*x).is_unit() # True
sage: (x*y).is_unit() # False
```

**jacobian_ideal()**  
Return the Jacobian ideal of the polynomial `self`.

**EXAMPLES:**

```python
sage: R.<x,y,z> = QQ[]
sage: f = x^3 + y^3 + z^3
sage: f.jacobian_ideal()
Ideal (3*x^2, 3*y^2, 3*z^2) of Multivariate Polynomial Ring in x, y, z over
˓→Rational Field
```

**lift()**  

given an ideal `I = (f_1,...,f_r)` and some `g` (== `self`) in `I`, find `s_1,...,s_r` such that `g = s_1 f_1 + ... + s_r f_r`.

**EXAMPLES:**

```python
sage: A.<x,y> = PolynomialRing(CC,2,order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7])
sage: f = x*y^13 + y^12
sage: M = f.lift(I)
sage: M
[y^7,x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + ,
˓→y^4]
```
macaulay_resultant (*args)
This is an implementation of the Macaulay Resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It’s based on the implementation in Maple by Manfred Minimair, which in turn is based on the references [CLO], [Can], [Mac]. It calculates the Macaulay resultant for a list of Polynomials, up to sign!

AUTHORS:
• Hao Chen, Solomon Vishkautsan (7-2014)

INPUT:
• *args – a list of \( n-1 \) homogeneous polynomials in \( n \) variables. works when *args[0] is the list of polynomials, or *args is itself the list of polynomials

OUTPUT:
• the macaulay resultant

EXAMPLES:
The number of polynomials has to match the number of variables:

\[
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant(x+z)
Traceback (most recent call last):
  ...TypeError: number of polynomials(= 2) must equal number of variables (= 3)
\]

The polynomials need to be all homogeneous:

\[
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x+z, z+x^3])
Traceback (most recent call last):
  ...TypeError: resultant for non-homogeneous polynomials is not supported
\]

All polynomials must be in the same ring:

\[
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: S.<x,y> = PolynomialRing(QQ, 2)
sage: y.macaulay_resultant(z+x,z)
Traceback (most recent call last):
  ...TypeError: not all inputs are polynomials in the calling ring
\]

The following example recreates Proposition 2.10 in Ch.3 of Using Algebraic Geometry:

\[
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,2])
sage: flist[0].macaulay_resultant(flist[1:])
u2^2+u4^2*v6 - 2*u1*u2*u4+u5*v6 + u1^2*u5^2*v6 - u2^2*u3+u4*u7 +
→u1*u2*u3+u5*u7 + u0*u2+u4+u5+u7 - u0*u1+u5^2*u7 + u1*u2*u3+u4+u8 - u0*u2+u4^+
→2*u8 - u1^2*u3+u5*u8 + u0*u1+u4+u5+u8 + u2^2*u3^2*u9 - 2*u0+u2*u3+u5*u9 +
→u0^2+u5^2*v9 - u1*u2+u3^2*v10 + u0*u2+u3+u4+u10 + u0*u1+u3+u5*u10 - u0^+
→2*u4+u5+u10 + u1^2*u3^2*u11 - 2*u0+u1+u3+u4+u11 + u0^2*u4^2*u11
\]
The following example degenerates into the determinant of a $3 \times 3$ matrix:

```python
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,1])
sage: flist[0].macaulay_resultant(flist[1:])
-u2*u4*u6 + u1*u5*u6 + u2*u3*u7 - u0*u5*u7 - u1*u3*u8 + u0*u4*u8
```

The following example is by Patrick Ingram (arxiv:1310.4114):

```python
sage: U = PolynomialRing(ZZ,'y',2); y0,y1 = U.gens()
sage: R = PolynomialRing(U,'x',3); x0,x1,x2 = R.gens()
sage: f0 = y0*x2^2 - x0^2 + 2*x1*x2
sage: f1 = y1*x2^2 - x1^2 + 2*x0*x2
sage: f2 = x0*x1 - x2^2
sage: f0.macaulay_resultant(f1,f2)
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27
```

da simple example with constant rational coefficients:

```python
sage: R.<x,y,z,w> = PolynomialRing(QQ,4)
sage: w.macaulay_resultant([z,y,x])
1
```

an example where the resultant vanishes:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: (x+y).macaulay_resultant([y^2,x])
0
```

an example of bad reduction at a prime $p = 5$:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x^3+25*y^2*x,5*z])
125
```

The input can be given as an unpacked list of polynomials:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant(x^3+25*y^2*x,5*z)
```

an example when the coefficients live in a finite field:

```python
sage: F = FiniteField(11)
sage: R.<x,y,z,w> = PolynomialRing(F,4)
sage: z.macaulay_resultant([x^3,5*y,w])
4
```

example when the denominator in the algorithm vanishes (in this case the resultant is the constant term of the quotient of char polynomials of numerator/denominator):

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x+z, z^2])
-1
```

when there are only 2 polynomials, macaulay resultant degenerates to the traditional resultant:
map_coefficients (f, new_base_ring=None)

Returns the polynomial obtained by applying f to the non-zero coefficients of self.

If f is a sage.categories.map.Map, then the resulting polynomial will be defined over the codomain of f. Otherwise, the resulting polynomial will be over the same ring as self. Set new_base_ring to override this behaviour.

INPUT:

- f – a callable that will be applied to the coefficients of self.
- new_base_ring (optional) – if given, the resulting polynomial will be defined over this ring.

EXAMPLES:

```python
sage: k.<a> = GF(9); R.<x,y> = k[]; f = x*a + 2*x^3*y*a + a
sage: f.map_coefficients(lambda a : a + 1)
(-a + 1)*x^3*y + (a + 1)*x + (a + 1)
```

Examples with different base ring:

```python
sage: R.<r> = GF(9); S.<s> = GF(81)
sage: h = Hom(R,S)[0]; h
Ring morphism:
 From: Finite Field in r of size 3^2
 To: Finite Field in s of size 3^4
 Defn: r |--> 2*s^3 + 2*s^2 + 1
sage: T.<X,Y> = R[

sage: g = f.map_coefficients(h); g
(-s^3 - s^2 + 1)*X + Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field in s of size 3^4
sage: g = f.map_coefficients(h, new_base_ring=GF(3)); g
X - Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field of size 3
```

newton_polytope ()

Return the Newton polytope of this polynomial.

EXAMPLES:

```python
sage: R.<x,y> = QQ[

sage: f = 1 + x*y + x^3 + y^3
sage: P = f.newton_polytope()
sage: P
```

3.1. Multivariate Polynomials and Polynomial Rings 267
A 2-dimensional polyhedron in $\mathbb{Z}^2$ defined as the convex hull of 3 vertices
```
sage: P.is_simple()
True
```

nth_root ($n$)
Return a $n$-th root of this element.
This method relies on factorization.

EXAMPLES:
```
sage: R.<x,y,z> = QQ[]
sage: a = 32 * (x*y + 1)^5 * (x+y+z)^5
sage: a.nth_root(5)
2*x^2*y + 2*x*y^2 + 2*x*y*z + 2*x + 2*y + 2*z
sage: b = x + 2*y + 3*z
sage: b.nth_root(42)
Traceback (most recent call last):
... ValueError: (x + 2*y + 3*z)^(1/42) does not lie in Multivariate Polynomial Ring in x, y, z over Rational Field
```

numerator ()
Return a numerator of self computed as self * self.denominator()
Note that some subclases may implement its own numerator function.

Warning: This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

EXAMPLES:
First we compute the numerator of a polynomial with integer coefficients, which is of course self.
```
sage: R.<x, y> = ZZ[]
sage: f = x^3 + 17*x + y + 1
sage: f.numerator()
x^3 + 17*x + y + 1
sage: f == f.numerator()
True
```
Next we compute the numerator of a polynomial over a number field.
```
sage: R.<x,y> = NumberField(symbolic_expression(x^2+3) ,'a')['x,y']
sage: f = (1/17)*y^19 - (2/3)*x + 1/3; f
1/17*y^19 - 2/3*x + 1/3; f
3*y^19 - 34*x + 17
sage: f == f.numerator()
False
```
We try to compute the numerator of a polynomial with coefficients in the finite field of 3 elements.
```
sage: K.<x,y,z> = GF(3)[['x', 'y', 'z']]
sage: f = 2*x*z + 2*z^2 + 2*y + 1; f
-x*z - z^2 - y + 1
```

sage: f.numerator()
-x*z - z^2 - y + 1

We check that the computation the numerator and denominator are valid

sage: K=NumberField(symbolic_expression('x^3+2'),'a')['x']['s,t']
sage: f=K.random_element()
sage: f.numerator() / f.denominator() == f
True
sage: R=RR['x,y,z']
sage: f=R.random_element()
sage: f.numerator() / f.denominator() == f
True

polynomial(var)

Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.

EXAMPLES:

sage: R.<x,w,z> = QQ[]
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5
sage: f.polynomial(x)
x^3 + (17*w^3 + 3*w)*x + w^5 + z^5
sage: parent(f.polynomial(x))
Univariate Polynomial Ring in x over Multivariate Polynomial Ring in w, z over Rational Field
sage: f.polynomial(w)
w^5 + 17*x*w^3 + 3*x*w + z^5 + 3*x*w
sage: f.polynomial(z)
z^5 + w^5 + 17*x*w^3 + x^3 + 3*x*w
sage: R.<x,w,z,k> = ZZ[]
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5 + x*w*z*k + 5
sage: f.polynomial(x)
x^3 + (17*w^3 + w*z*k + 3*w)*x + w^5 + z^5 + 5
sage: f.polynomial(w)
w^5 + 17*x*w^3 + (w*z*k + 3*x)*w + z^5 + x^3 + 5
sage: f.polynomial(z)
z^5 + x*w*k*z + w^5 + 17*x*w^3 + x^3 + 3*x*w + 5
sage: f.polynomial(k)
x*w*z*k + w^5 + z^5 + 17*x*w^3 + x^3 + 3*x*w + 5
sage: R.<x,y>=GF(5)[]
sage: f=x^2+x+y
sage: f.polynomial(y)
y + x^2 + x

reduced_form(prec=300, return_conjugation=True, error_limit=1e-06)

Returns a reduced form of this polynomial.

The algorithm is from Stoll and Cremona’s “On the Reduction Theory of Binary Forms” [SC]. This takes a two variable homogenous polynomial and finds a reduced form. This is a $SL(2, \mathbb{Z})$-equivalent binary form whose covariant in the upper half plane is in the fundamental domain. This should also minimize the sum of the squares of the coefficients, but this is not always the case.

A portion of the algorithm uses Newton’s method to find a solution to a system of equations. If Newton’s method fails to converge to a point in the upper half plane, the function will use the less precise $Q_0$
covariant as defined in [SC]. Additionally, if this polynomial has a root with multiplicity at least half the total degree of the polynomial, then we must also use the $Q_0$ covariant. See [SC] for details.

Note that, if the covariant is within error_limit of the boundry but outside the fundamental domain, our function will erroneously move it to within the fundamental domain, hence our conjugation will be off by 1. If you don’t want this to happen, decrease your error_limit and increase your precision.

Implemented by Rebecca Lauren Miller as part of GSOC 2016.

INPUT:

• prec – integer, sets the precision (default:300)

• return_conjugation – boolean. Returns element of $SL(2, \mathbb{Z})$ (default:True)

• error_limit – sets the error tolerance (default:0.000001)

OUTPUT:

• a polynomial (reduced binary form)

• a matrix (element of $SL(2, \mathbb{Z})$)

TODO: When Newton’s Method doesn’t converge to a root in the upper half plane. Now we just return z0. It would be better to modify and find the unique root in the upper half plane.

REFERENCES:

EXAMPLES:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: f = 19*x^8 - 262*x^7*h + 1507*x^6*h^2 - 4784*x^5*h^3 + 9202*x^4*h^4
 - 10962*x^3*h^5 + 7844*x^2*h^6 - 3040*x*h^7 + 475*h^8
sage: f.reduced_form(prec=200)
(-x^8 - 2*x^7*h + 7*x^6*h^2 + 16*x^5*h^3 + 2*x^4*h^4 - 2*x^3*h^5 + 4*x^2*h^6 -
 → 5*h^8,
[1 -2]
[1 -1])
```

An example were the multiplicity is too high:

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = x^3 + 378666*x^2*y - 12444444*x*y^2 + 1234567890*y^3
sage: j = f * (x-545*y)^9
sage: j.reduced_form(prec=200)
(x^12 + 374553*x^11*y - 1587470292*x^10*y^2 + 2960311881270*x^9*y^3 -
 → 3189673382015880*x^8*y^4 + 2180205736473134502*x^7*y^5 - 972679603186995463284*x^6*y^6
 → 785559350498817910176*x^5*y^7 - 47339497613591564056277355*x^4*y^8 + 3719790227462793441137663545*x^3*y^9
 + 4017321423785434880978464176*x^2*y^10 + 1605293849731195593699202674738*x*y^11
 → 27385267775493743375819069013598582*y^12,
[1 66]
[0 1])
```
An example where Newton’s Method doesn’t find the right root:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: f = 234*x^11*h + 104832*x^10*h^2 + 2134684*x^9*h^3 + 2608021728*x^8*h^4 + 212413000410*x^7*h^5 + 12109691106162*x^6*h^6 + 493106447396862*x^5*h^7 + 1434179793350646*x^4*h^8 + 291976289803277118*x^3*h^9 + 396262561855930456*x^2*h^10 + 322665262396789652*x*h^11 + 11942105805721796228*h^12
sage: f.reduced_form(prec=600) # long time
(234*x^11*h - 702*x^10*h^2 + 234*x^9*h^3 - 1638*x^8*h^4 + 17550*x^7*h^5 - 35568*x^6*h^6 - 42120*x^5*h^7 - 248508*x^4*h^8 + 35802*x^3*h^9 + 23868*x^2*h^10 - 936*x*h^11 - 468*h^12,
[1 -41]
[0 1])
```

An example with covariant on the boundary, therefore a non-unique form also a_0 is 0:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: g = -1872*x^5*h - 1375452*x^4*h^2 - 404242956*x^3*h^3 - 59402802888*x^2*h^4 - 4364544068352*x*h^5 - 128270946360960*h^6
sage: g.reduced_form()
(-1872*x^5*h + 468*x^4*h^2 + 2340*x^3*h^3 - 2340*x^2*h^4 + 468*x*h^5 + 1872*h^6,
[-1 147]
[0 -1])
```

An example where precision needs to be increased:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: f = -1872*x^5*h - 1375452*x^4*h^2 - 404242956*x^3*h^3 - 59402802888*x^2*h^4 - 4364544068352*x*h^5 - 128270946360960*h^6
sage: f.reduced_form(prec=200)
Traceback (most recent call last):
 ... ValueError: accuracy of Newton's root not within tolerance(1.5516238766869058731606056644107825877973928631765344695031 > 1e-06),
 increase precision
sage: f.reduced_form(prec=400)
(-1872*x^5*h + 468*x^4*h^2 + 2340*x^3*h^3 - 2340*x^2*h^4 - 468*x*h^5 + 1872*h^6,
[-1 147]
[0 -1])
```

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: F = - 8*x^4 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3 - 1825511633*y^4
```

3.1. Multivariate Polynomials and Polynomial Rings 271
```python
sage: F.reduced_form(return_conjugation=False)
x^4 + 9*x^3*y - 3*x*y^3 - 8*y^4
```

```python
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: F = x^4 + x^3*y*z + y^2*z
sage: F.reduced_form()
Traceback (most recent call last):
...
ValueError: (=x^3*y*z + x^4 + y^2*z) must have two variables
```

```python
sage: R.<x,y> = PolynomialRing(ZZ)
sage: F = -8*x^6 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3 - 99*y^6
sage: F.reduced_form(return_conjugation=False)
Traceback (most recent call last):
...
ValueError: (= -8*x^6 - 99*y^6 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3) must be homogenous
```

```python
sage: R.<x,y> = PolynomialRing(RR)
sage: F = 217.9921727372376*x^3 + 96023.1505442490*x^2*y + 1.
\rightarrow -39.567392565918*x^3 + 111.874026295229*x^2*y + 231.052762985229*x*y^2 - 138.
\rightarrow -38029811096*y^3,

[-147 -148]
[1 1]
```

```python
sage: R.<x,y> = PolynomialRing(CC)
sage: F = (0.759099196558145 + 0.845425869641446*CC.0)*x^3 + (84.
\rightarrow -317207268542 + 93.840848648033*CC.0)*x^2*y
+ (3159.07040755858 + 3475.3303777779*CC.0)*x*y^2 + (39202.596389079 +
\rightarrow -42882.513724962*CC.0)*x*y^3
sage: F.reduced_form()
(-0.759099196558145 - 0.845425869641446*I)*x^3 + (-0.571709908900118 - 0.
\rightarrow 0.41813346027929*I)*x^2*y
+ (0.856525964330103 - 0.0721403997649759*I)*x*y^2 + (-0.965531044130330 + 0.
\rightarrow 754252314465703*I)*x*y^3,

[-1 37]
[0 -1]
```

**specialization** *(D=None, phi=None)*

Specialization of this polynomial.

Given a family of polynomials defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

**INPUT:**

- **D** – dictionary (optional)
**phi** – SpecializationMorphism (optional)

OUTPUT: a new polynomial

EXAMPLES:

```
sage: R.<c> = PolynomialRing(QQ)
sage: S.<x,y> = PolynomialRing(R)
sage: F = x^2 + c*y^2
sage: F.specialization({c:2})
x^2 + 2*y^2
```

```
sage: S.<a,b> = PolynomialRing(QQ)
sage: P.<x,y,z> = PolynomialRing(S)
sage: RR.<c,d> = PolynomialRing(P)
sage: f = a*x^2 + b*y^3 + c*y^2 - b*a*d + d^2 - a*c*b*z^2
sage: f.specialization({a:2, z:4, d:2})
(y^2 - 32*b)*c + b*y^3 + 2*x^2 - 4*b + 4
```

Check that we preserve multi- versus uni-variate:

```
sage: R.<l> = PolynomialRing(QQ, 1)
sage: S.<k> = PolynomialRing(R)
sage: K.<a, b, c> = PolynomialRing(S)
sage: F = a*k^2 + b*l + c^2
sage: F.specialization({b:56, c:5}).parent()
Univariate Polynomial Ring in a over Univariate Polynomial Ring in k over Multivariate Polynomial Ring in l over Rational Field
```

**sylvester_matrix** (right, variable=None)

Given two nonzero polynomials self and right, returns the Sylvester matrix of the polynomials with respect
to a given variable.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

INPUT:

•self, right: multivariate polynomials

•variable: optional, compute the Sylvester matrix with respect to this variable. If variable is not pro-
vided, the first variable of the polynomial ring is used.

OUTPUT:

•The Sylvester matrix of self and right.

EXAMPLES:

```
sage: R.<x, y> = PolynomialRing(ZZ)
sage: f = (y + 1)*x + 3*x**2
sage: g = (y + 2)*x + 4*x**2
sage: M = f.sylvester_matrix(g, x)
sage: M
[3 y + 1 0 0]
[0 3 y + 1 0]
[4 y + 2 0 0]
[0 4 y + 2 0]
```

If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will be zero:
If both polynomials are of positive degree with respect to variable, the determinant of the Sylvester matrix is the resultant:

```python
sage: f = R.random_element(4)
sage: g = R.random_element(4)
sage: f.sylvester_matrix(g, x).determinant() == f.resultant(g, x)
True
```

**truncate**(var, n)

Returns a new multivariate polynomial obtained from self by deleting all terms that involve the given variable to a power at least n.

**weighted_degree**(weights)

Return the weighted degree of self, which is the maximum weighted degree of all monomials in self; the weighted degree of a monomial is the sum of all powers of the variables in the monomial, each power multiplied with its respective weight in weights.

This method is given for convenience. It is faster to use polynomial rings with weighted term orders and the standard degree function.

**INPUT:**

- weights - Either individual numbers, an iterable or a dictionary, specifying the weights of each variable. If it is a dictionary, it maps each variable of self to its weight. If it is a sequence of individual numbers or a tuple, the weights are specified in the order of the generators as given by self.parent().gens():

**EXAMPLES:**

```python
sage: R.<x,y,z> = GF(7)[]
sage: p = x^3 + y + x*z^2
sage: p.weighted_degree({z:0, x:1, y:2})
3
sage: p.weighted_degree(1, 2, 0)
3
sage: p.weighted_degree((1, 4, 2))
5
sage: p.weighted_degree((1, 4, 1))
4
sage: p.weighted_degree(2**64, 2**50, 2**128)
68056473841876926945195958937245974528
sage: q = R.random_element(100, 20) #random
sage: q.weighted_degree(1, 1, 1) == q.total_degree()
True
```

You may also work with negative weights

```python
sage: p.weighted_degree(-1, -2, -1)
-2
```

Note that only integer weights are allowed
The `weighted_degree` coincides with the `degree` of a weighted polynomial ring, but the later is faster.

```python
sage: K = PolynomialRing(QQ, 'x,y', order=TermOrder('wdegrevlex', (2,3)))
sage: p = K.random_element(10)
sage: p.degree() == p.weighted_degree(2,3)
True
```

3.1.4 Multivariate Polynomial Rings over Generic Rings

Sage implements multivariate polynomial rings through several backends. This generic implementation uses the classes `PolyDict` and `ETuple` to construct a dictionary with exponent tuples as keys and coefficients as values.

AUTHORS:
- David Joyner and William Stein
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of Singular features
- Martin Albrecht (2006-04-21): reorganize class hierarchy for singular rep
- Martin Albrecht (2007-04-20): reorganized class hierarchy to support Pyrex implementations

EXAMPLES:

We construct the Frobenius morphism on $\mathbb{F}_5[x,y,z]$ over $\mathbb{F}_5$:

```python
sage: R.<x,y,z> = GF(5)[]
sage: frob = R.hom([x^5, y^5, z^5])
sage: frob(x^2 + 2*y - z^4)
-z^20 + x^10 + 2*y^5
sage: frob((x + 2*y)^3)
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
sage: (x^5 + 2*y^5)^3
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
```

We make a polynomial ring in one variable over a polynomial ring in two variables:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: S.<t> = PowerSeriesRing(R)
sage: t*(x+y)
(x + y)*t
```

class `sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_macaulay2_repr`

```python
is_exact()
```
class sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict (base_ring, n, names, order)

Bases: sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_macaulay2_repr, sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr, sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic

Multivariable polynomial ring.

EXAMPLES:

```sage
R = PolynomialRing(Integers(12), 'x', 5); R
Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Ring of integers modulo 12
sage: loads(R.dumps()) == R
True
```

monomial_all_divisors(t)

Return a list of all monomials that divide t, coefficients are ignored.

INPUT:

• t - a monomial.

OUTPUT: a list of monomials.

EXAMPLES:

```sage
from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
```

ALGORITHM: addwithcarry idea by Toon Segers

monomial_divides(a, b)

Return False if a does not divide b and True otherwise.

INPUT:

• a - monomial.
• b - monomial.

OUTPUT: Boolean.

EXAMPLES:

```sage
P.<x,y,z> = PolynomialRing(ZZ,3, order='degrevlex')
P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
P.monomial_divides(x^3*y^2*z^4, x*y*z)
False
```

monomial_lcm(f, g)

LCM for monomials. Coefficients are ignored.

INPUT:

• f - monomial.
*g - monomial.

OUTPUT: monomial.

EXAMPLES:

```python
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_
 polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
sage: P.monomial_lcm(3/2*x*y, x)
x*y
```

```python
sage: P.monomial_lcm(P(3/2), P(2/3))
1
```

```python
sage: P.monomial_lcm(x, P(1))
x
```

`monomial_pairwise_prime (h, g)`

Return True if h and g are pairwise prime.

Both are treated as monomials.

INPUT:

• h - monomial.
• g - monomial.

OUTPUT: Boolean.

EXAMPLES:

```python
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_
 polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True
```

```python
sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False
```

```python
sage: P.monomial_pairwise_prime(1/2*x^3*y^2, Q(0))
True
```

```python
sage: P.monomial_pairwise_prime(P(1/2), x)
False
```

`monomial_quotient (f, g, coeff=False)`

Return f/g, where both f and g are treated as monomials.

Coefficients are ignored by default.

INPUT:

• f - monomial.
• g - monomial.
• coeff - divide coefficients as well (default: False).
OUTPUT: monomial.

EXAMPLES:

```
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
sage: P.monomial_quotient(3/2*x*y, x)
y
sage: P.monomial_quotient(3/2*x*y, 2*x, coeff=True)
3/4*y

sage: P.monomial_quotient(x*y, R.gen())
y

sage: P.monomial_quotient(P(0), P(1))
0

sage: P.monomial_quotient(P(1), P(0))
Traceback (most recent call last):
 ... ZeroDivisionError

sage: P.monomial_quotient(P(3/2), P(2/3), coeff=True)
9/4

sage: P.monomial_quotient(x, y) # Note the wrong result
x*y^-1

sage: P.monomial_quotient(x, P(1))
x
```

Note: Assumes that the head term of \( f \) is a multiple of the head term of \( g \) and return the multiplicant \( m \). If this rule is violated, funny things may happen.

**monomial_reduce** \((f, G)\)

Try to find a \( g \) in \( G \) where \( g.lm() \) divides \( f \).

If found, \((f_{lt}, g)\) is returned, \((0, 0)\) otherwise, where \( f_{lt} \) is \( f/g.lm() \). It is assumed that \( G \) is iterable and contains ONLY elements in this ring.

INPUT:

- \( f \) - monomial
- \( G \) - list/set of mpolynomials

EXAMPLES:

```
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
sage: f = x*y^2
sage: G = [3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, P(1/2)]
```
**class** `sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain`(*base_ring*, *n*, *names*, *order*)

Bases: `sage.rings.ring.IntegralDomain`, `sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict`

`ideal(*gens, **kwds)`
Create an ideal in this polynomial ring.

`is_field(*proof=True)`

`is_integral_domain(*proof=True)`

### 3.1.5 Generic Multivariate Polynomials

**AUTHORS:**
- David Joyner: first version
- William Stein: use dict’s instead of lists
- Martin Albrecht malb@informatik.uni-bremen.de: some functions added
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of some Singular features
- William Stein (2006-04-19): added e.g., \( f[1,3] \) to get coeff of \( xy^3 \); added examples of the new \( R.x,y = PolynomialRing(QQ,2) \) notation.
- Martin Albrecht: improved singular coercions (restructured class hierarchy) and added ETuples
- Robert Bradshaw (2007-08-14): added support for coercion of polynomials in a subset of variables (including multi-level univariate rings)

**EXAMPLES:**
We verify Lagrange’s four squares identity:
class sage.rings.polynomial.multi_polynomial_element.MPolynomial_element (parent, x)

Bases: sage.rings.polynomial.multi_polynomial.MPolynomial

EXAMPLES:

sage: K.<cuberoot2> = NumberField(x^3 - 2)
sage: L.<cuberoot3> = K.extension(x^3 - 3)
sage: S.<sqrt2> = L.extension(x^2 - 2)
sage: S
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
sage: P.<x,y,z> = PolynomialRing(S) # indirect doctest
change_ring (R)

Change the base ring of this polynomial to R.

INPUT:

• R – ring or morphism.

OUTPUT: a new polynomial converted to R.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = x^2 + 5*y
sage: f.change_ring(GF(5))
x^2
sage: K.<w> = CyclotomicField(5)
sage: R.<x,y> = K[]
sage: f = x^2 + w*y
sage: f.change_ring(K.embeddings(QQbar)[1])
x^2 + (-0.8090169943749474? + 0.5877852522924731?*I)*y

element ()

hamming_weight ()

Return the number of non-zero coefficients of this polynomial.

This is also called weight, hamming_weight () or sparsity.

EXAMPLES:

sage: R.<x, y> = CC[]
sage: f = x^3 - y
sage: f.number_of_terms ()
2
sage: R(0).number_of_terms ()
0
sage: f = (x+y)^100
sage: f.number_of_terms ()
101
The method `hamming_weight()` is an alias:

```python
sage: f.hamming_weight()
101
```

`number_of_terms()`
Return the number of non-zero coefficients of this polynomial.
This is also called weight, `hamming_weight()` or sparsity.

EXAMPLES:

```python
sage: R.<x, y> = CC[

sage: f = x^3 - y
sage: f.number_of_terms()
2

sage: R(0).number_of_terms()
0

sage: f = (x+y)^100
sage: f.number_of_terms()
101
```

The method `hamming_weight()` is an alias:

```python
sage: f.hamming_weight()
101
```

class `sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict (parent, x)`

Bases: `sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr, sage.rings.polynomial.multi_polynomial_element.MPolynomial_element`

Multivariate polynomials implemented in pure python using polydicts.

`coefficient (degrees)`
Return the coefficient of the variables with the degrees specified in the python dictionary `degrees`. Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in `degrees`. However, the result has the same parent as this polynomial.

This function contrasts with the function `monomial_coefficient()` which returns the coefficient in the base ring of a monomial.

INPUT:

*`degrees` - Can be any of:
  
  –a dictionary of degree restrictions
  
  –a list of degree restrictions (with None in the unrestricted variables)
  
  –a monomial (very fast, but not as flexible)

OUTPUT: element of the parent of self

See also:
For coefficients of specific monomials, look at `monomial_coefficient()`.

EXAMPLES:
sage: R.<x, y> = QQbar[]
sage: f = 2 + x + y
sage: c = f.coefficient({x:1,y:1}); c
2
sage: c.parent()
Multivariate Polynomial Ring in x, y over Algebraic Field
sage: c in PolynomialRing(QQbar, 2, names = ['x','y'])
True
sage: f = y^2 - x^9 - 7*x + 5*x*y
sage: f.coefficient({y:1})
5*x
sage: f.coefficient({y:0})
x^9 + (-7)*x
sage: f.coefficient({x:0,y:0})
0
sage: f=(1+y+y^2)*(1+x+x^2)

# Be aware that this may not be what you think!
# The physical appearance of the variable x is deceiving particularly if the exponent would be a variable.
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x*y^2 + x^2 + x*y + y^2 + x + y + 1

AUTHORS:

•Joel B. Mohler (2007-10-31)

constant_coefficient()

Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

sage: R.<x,y> = RR[

sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5.00000000000000
sage: parent(c)
Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision

degree (x=None, std_grading=False)

Return the degree of self in x, where x must be one of the generators for the parent of self.

INPUT:

•x - multivariate polynomial (a generator of the parent of self). If x is not specified (or is None), return the total degree, which is the maximum degree of any monomial. Note that a weighted
term ordering alters the grading of the generators of the ring; see the tests below. To avoid this behavior, set the optional argument `std_grading=True`.

OUTPUT: integer

EXAMPLES:

```
sage: R.<x,y> = RR[]
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9
sage: f.degree(y)
2
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10
```

Note that total degree takes into account if we are working in a polynomial ring with a weighted term order.

```
sage: R = PolynomialRing(QQ,'x,y',order=TermOrder('wdeglex',(2,3)))
sage: x,y = R.gens()
sage: x.degree()
2
sage: y.degree()
3
sage: x.degree(y),x.degree(x),y.degree(x),y.degree(y)
(0, 1, 0, 1)
sage: f = (x^2*y+x*y^2)
sage: f.degree(x)
2
sage: f.degree(y)
2
sage: f.degree()
8
sage: f.degree(std_grading=True)
3
```

Note that if \( x \) is not a generator of the parent of self, for example if it is a generator of a polynomial algebra which maps naturally to this one, then it is converted to an element of this algebra. (This fixes the problem reported in trac ticket #17366.)

```
sage: x, y = ZZ['x','y'].gens()
sage: GF(3037000453)['x','y'].gen(0).degree(x)
Traceback (most recent call last):
 ... TypeError: x must canonically coerce to parent
sage: GF(3037000453)['x','y'].gen(0).degree(x^2)
Traceback (most recent call last):
 ... TypeError: x must be one of the generators of the parent
```
Returns a tuple (precisely - an ETuple) with the degree of each variable in this polynomial. The list of degrees is, of course, ordered by the order of the generators.

**EXAMPLES:**

```python
sage: R.<x,y,z>=PolynomialRing(QQbar)
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.degrees()
(2, 2, 0)
sage: f = x^2+z^2
sage: f.degrees()
(2, 0, 2)
sage: f.total_degree() # this simply illustrates that total degree is not the sum of the degrees
2
sage: R.<x,y,z,u>=PolynomialRing(QQbar)
sage: f=(1-x)*(1+y+z+x^3)^5
sage: f.degrees()
(16, 5, 5, 0)
sage: R(0).degrees()
(0, 0, 0, 0)
```

dict()  
Return underlying dictionary with keys the exponents and values the coefficients of this polynomial.

**exponents (as_ETuples=True)**  
Return the exponents of the monomials appearing in self.

**INPUT:**

- **as_ETuples (default: True):** return the list of exponents as a list of ETuples.

**OUTPUT:**

Return the list of exponents as a list of ETuples or tuples.

**EXAMPLES:**

```python
sage: R.<a,b,c> = PolynomialRing(QQbar, 3)
sage: f = a^3 + b + 2*b^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
```

Be default the list of exponents is a list of ETuples:

```python
sage: type(f.exponents()[0])
<type 'sage.rings.polynomial.polydict.ETuple'>
sage: type(f.exponents(as_ETuples=False)[0])
<... 'tuple'>
```

**factor (proof=True)**  
Compute the irreducible factorization of this polynomial.

**INPUT:**

- **proof'' - insist on provably correct results (ignored, always 'True)  

**ALGORITHM:** Use univariate factorization code.

If a polynomial is univariate, the appropriate univariate factorization code is called:
sage: R.<z> = PolynomialRing(CC,1)
sage: f = z^4 - 6*z + 3
sage: f.factor()
(z - 1.60443920904349) * (z - 0.511399619393097) * (z + 1.05791941421830 - 1.59281852704435*I) * (z + 1.05791941421830 + 1.59281852704435*I)

integral (var=None)
Integrates self with respect to variable var.

Note: The integral is always chosen so the constant term is 0.

If var is not one of the generators of this ring, integral(var) is called recursively on each coefficient of this polynomial.

EXAMPLES:

On polynomials with rational coefficients:

sage: x, y = PolynomialRing(QQ, 'x, y').gens()
sage: ex = x*y + x - y
sage: it = ex.integral(x); it
1/2*x^2*y + 1/2*x^2 - x*y
sage: it.parent() == x.parent()
True

On polynomials with coefficients in power series:

sage: R.<t> = PowerSeriesRing(QQbar)
sage: S.<x, y> = PolynomialRing(R)
sage: f = (t^2 + O(t^3))*x^2*y^3 + (37*t^4 + O(t^5))*x^3
sage: f.integral(x) # with respect to x
(1/3*t^2 + O(t^3))*x^3*y^3 + (37/4*t^4 + O(t^5))*x^4
sage: f.integral(x).parent()
Multivariate Polynomial Ring in x, y over Power Series Ring in t over Algebraic Field

inverse_of_unit ()

is_constant ()
True if polynomial is constant, and False otherwise.

EXAMPLES:

sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*x*y + 7*x^2*y^2 + 5
sage: f.is_constant()
False
sage: g = 10*x^0
sage: g.is_constant()
True
is_generator() Returns True if self is a generator of it's parent.

EXAMPLES:

```
sage: R.<x,y>=QQbar[]
sage: x.is_generator()
True
sage: (x+y-y).is_generator()
True
sage: (x+y).is_generator()
False
```

is_homogeneous() Returns True if self is a homogeneous polynomial.

EXAMPLES:

```
sage: R.<x,y>=QQbar[]
sage: (x+y).is_homogeneous()
True
sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True
```

is_monomial() Returns True if self is a monomial, which we define to be a product of generators with coefficient 1.

Use is_term to allow the coefficient to not be 1.

EXAMPLES:

```
sage: R.<x,y>=QQbar[]
sage: x.is_monomial()
True
sage: (x+2*y).is_monomial()
False
sage: (2*x).is_monomial()
False
sage: (x+y).is_monomial()
True
```

To allow a non-1 leading coefficient, use is_term():

```
sage: (2*x+y).is_term()
True
sage: (2*x+y).is_monomial()
False
```

is_term() Returns True if self is a term, which we define to be a product of generators times some coefficient, which
need not be 1.

Use `is_monomial()` to require that the coefficient be 1.

EXAMPLES:

```python
sage: R.<x,y>=QQbar[]
sage: x.is_term()
True
sage: (x+2*y).is_term()
False
sage: (2*x).is_term()
True
sage: (7*x^5*y).is_term()
True
```

To require leading coefficient 1, use `is_monomial()`:

```python
sage: (2*x+y).is_monomial()
False
sage: (2*x+y).is_term()
True
```

**is_univariate()**

Returns True if this multivariate polynomial is univariate and False otherwise.

EXAMPLES:

```python
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.is_univariate()
False
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.is_univariate()
True
sage: f = x^0
sage: f.is_univariate()
True
```

**lc()**

Returns the leading coefficient of self i.e., `self.coefficient(self.lm())`

EXAMPLES:

```python
sage: R.<x,y,z>=QQbar[]
sage: f=3*x^2-y^2-x*y
sage: f.lc()
3
```

**lift(I)**

given an ideal \( I = (f_1, \ldots, f_r) \) and some \( g \) (== self) in \( I \), find \( s_1, \ldots, s_r \) such that \( g = s_1 f_1 + \ldots + s_r f_r \)

ALGORITHM: Use Singular.

EXAMPLES:

```python
sage: A.<x,y> = PolynomialRing(CC,2,order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7])
sage: f = x*y^13 + y^12
```
\begin{verbatim}
M = f.lift(I)
M

[y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + y^4]

sum( map( mul, zip( M, I.gens() ) ) ) == f
True

\end{verbatim}

\textbf{lm()}

Returns the lead monomial of self with respect to the term order of self.parent().

\textbf{EXAMPLES:}

\begin{verbatim}
R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
(x^1*y^2 + y^3*z^4).lm()
x*y^2
(R.<x,y,z>=PolynomialRing(CC,3,order='deglex'))
(x^1*y^2*z^3 + x^3*y^2*z^0).lm()
x*y^2*z^3
(R.<x,y,z>=PolynomialRing(QQbar))
(x^1*y^5*z^2 + x^4*y^1*z^3).lm()
x*y^5*z^2
\end{verbatim}

\textbf{lt()}

Returns the leading term of self i.e., \texttt{self.lc()*self.lm()}. The notion of “leading term” depends on the ordering defined in the parent ring.

\textbf{EXAMPLES:}

\begin{verbatim}
R.<x,y,z>=PolynomialRing(QQbar)
f=3*x^2-y^2-x*y
f.lt()
3*x^2
(R.<x,y,z>=PolynomialRing(QQbar,order="invlex"))
f=3*x^2-y^2-x*y
f.lt()
-y^2
\end{verbatim}

\textbf{monomial_coefficient (mon)}

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function \texttt{coefficient} which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{mon} - a monomial
\end{itemize}

\textbf{OUTPUT:} coefficient in base ring

See also:
monomials()

Returns the list of monomials in self. The returned list is decreasingly ordered by the term ordering of self.parent().

OUTPUT: list of MPolynomials representing Monomials

EXAMPLES:

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.monomials()
[x^2*y^2, x^2, y, 1]
```

```
sage: R.<fx,fy,gx,gy> = QQbar[]
sage: F = ((fx*gy - fy*gx)^3)
sage: F.monomials()
[fx^3*gx^3 + 3*fx*fy*gx^2*gy + (-3)*fx^2*fy*gx*gy^2 + fx^3*gy^3]
```

```
sage: R.<x,y> = QQbar[]
sage: P.<x,y> = R[]
sage: F = x*y + x + y
sage: F.monomials()
[x^1*y^1, x^1, y^1, 1]
```
**nvariables()**
Number of variables in this polynomial

**EXAMPLES:**

```python
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.nvariables ()
2
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.nvariables ()
1
```

**quo_rem(right)**
Returns quotient and remainder of self and right.

**EXAMPLES:**

```python
sage: R.<x,y> = CC[]
sage: f = y*x^2 + x + 1
sage: f.quo_rem(x)
(x*y + 1.000000000000000, 1.000000000000000)
sage: R = QQ['a','b']['x','y','z']
sage: p1 = R('a + (1+2*b)*x*y + (3-a^2)*z')
sage: p2 = R('x-1')
sage: p1.quo_rem(p2)
((2*b + 1)*y, (2*b + 1)*y + (-a^2 + 3)*z + a)
sage: R.<x,y> = Qp(5)[]
sage: x.quo_rem(y)
Traceback (most recent call last):
...
TypeError: no conversion of this ring to a Singular ring defined
```

ALGORITHM: Use Singular.

**reduce(I)**
Reduce this polynomial by the polynomials in $I$.

**INPUT:**

- $I$ - a list of polynomials or an ideal

**EXAMPLES:**

```python
sage: P.<x,y,z> = QQbar[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x* y
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
(-6)*y^2 + 2*y
sage: g.reduce(F.gens())
(-6)*y^2 + 2*y
```
\begin{verbatim}
sage: f = 3*x
sage: f.reduce([2*x, y])
0

sage: k.<w> = CyclotomicField(3)
sage: A.<y9,y12,y13,y15> = PolynomialRing(k)
sage: J = [ y9 + y12]
sage: f = y9 - y12; f.reduce(J)
-2*y12
sage: f = y13*y15; f.reduce(J)
y13*y15
sage: f = y13*y15 + y9 - y12; f.reduce(J)
y13*y15 - 2*y12

Make sure the remainder returns the correct type, fixing trac ticket #13903:

\begin{verbatim}
sage: R.<y1,y2>=PolynomialRing(Qp(5),2, order='lex')
sage: G=[y1^2 + y2^2, y1*y2 + y2^2, y2^3]
sage: type((y2^3).reduce(G))
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
\end{verbatim}
\end{verbatim}

resultant (other, variable=None)

Compute the resultant of self and other with respect to variable.

If a second argument is not provided, the first variable of self.parent() is chosen.

INPUT:

• other – polynomial in self.parent()

• variable – (optional) variable (of type polynomial) in self.parent()

EXAMPLES:

\begin{verbatim}
sage: P.<x,y> = PolynomialRing(QQ, 2)
sage: a = x + y
sage: b = x^3 - y^3
sage: a.resultant(b)
-2*y^3
sage: a.resultant(b, y)
2*x^3
\end{verbatim}

subs (fixed=None, **kw)

Fixes some given variables in a given multivariate polynomial and returns the changed multivariate polynomials. The polynomial itself is not affected. The variable,value pairs for fixing are to be provided as a dictionary of the form \{variable: value\}.

This is a special case of evaluating the polynomial with some of the variables constants and the others the original variables.

INPUT:

• fixed - (optional) dictionary of inputs

• **kw - named parameters

OUTPUT: new MPolynomial

EXAMPLES:
sage: R.<x,y> = QQbar[]
sage: f = x^2 + y + x^2*y^2 + 5
sage: f((5,y))
25*y^2 + y + 30
sage: f.subs({x:5})
25*y^2 + y + 30

total_degree()

Return the total degree of self, which is the maximum degree of any monomial in self.

EXAMPLES:

sage: R.<x,y,z> = QQbar[]
sage: f=2*x*y^3*z^2
sage: f.total_degree()
6
sage: f=4*x^2*y^2*z^3
sage: f.total_degree()
7
sage: f=99*x^6*y^3*z^9
sage: f.total_degree()
18
sage: f=x*y^3*z^6+3*x^2
sage: f.total_degree()
10
sage: f=z^3+8*x^4*y^5*z
sage: f.total_degree()
10
sage: f=z^9+10*x^4+y^8*x^2
sage: f.total_degree()
10

univariate_polynomial(R=None)

Returns a univariate polynomial associated to this multivariate polynomial.

INPUT:

• R (default: None) PolynomialRing

If this polynomial is not in at most one variable, then a ValueError exception is raised. This is checked using the is_univariate() method. The new Polynomial is over the same base ring as the given MPolynomial.

EXAMPLES:

sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.univariate_polynomial()
Traceback (most recent call last):
... TypeError: polynomial must involve at most one variable
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.univariate_polynomial()
700*y^2 - 2*y + 305
sage: g.univariate_polynomial(PolynomialRing(QQ,'z'))
700*z^2 - 2*z + 305

variable(i)

Returns i-th variable occurring in this polynomial.
EXAMPLES:

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.variable(0)
x
sage: f.variable(1)
y
```

`variables()`
Returns the tuple of variables occurring in this polynomial.

EXAMPLES:

```
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.variables()
(x, y)
sage: g = f.subs({x:10}); g
700*y^2 + (-2)*y + 305
sage: g.variables()
(y,)
```

`sage.rings.polynomial.multi_polynomial_element.degree_lowest_rational_function(r, x)`

**INPUT:**
- `r` - a multivariate rational function
- `x` - a multivariate polynomial ring generator

**OUTPUT:**
- `integer` - the degree of `r` in `x` and its “leading” (in the x-adic sense) coefficient.

**Note:** This function is dependent on the ordering of a python dict. Thus, it isn’t really mathematically well-defined. I think that it should made a method of the FractionFieldElement class and rewritten.

EXAMPLES:

```
sage: R1 = PolynomialRing(FiniteField(5), 3, names = ["a","b","c"])
sage: F = FractionField(R1)
sage: a,b,c = R1.gens()
sage: f = 3*a*b^2*c^3+4*a*b*c
sage: g = a^2*b*c^2+2*a^2*b^4*c^7
Consider the quotient \(\frac{f}{g} = \frac{4+3b^2}{ac+2b^2c^7} \) (note the cancellation).
```

```
sage: r = f/g; r
(-b*c^2 + 2)/(a*b^3*c^6 - 2*a*c)
sage: degree_lowest_rational_function(r,a)
(-1, 3)
sage: degree_lowest_rational_function(r,b)
(0, 4)
sage: degree_lowest_rational_function(r,c)
(-1, 4)
```

`sage.rings.polynomial.multi_polynomial_element.is_MPolynomial(x)`

3.1. Multivariate Polynomials and Polynomial Rings 293
3.1.6 Ideals in multivariate polynomial rings.

Sage has a powerful system to compute with multivariate polynomial rings. Most algorithms dealing with these ideals are centered on the computation of Groebner bases. Sage mainly uses Singular to implement this functionality. Singular is widely regarded as the best open-source system for Groebner basis calculation in multivariate polynomial rings over fields.

AUTHORS:

- William Stein
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of some Singular features
- Martin Albrecht (2009): added Groebner basis over rings functionality from Singular 3.1
- John Perry (2012): bug fixing equality & containment of ideals

EXAMPLES:

We compute a Groebner basis for some given ideal. The type returned by the groebner_basis method is PolynomialSequence, i.e. it is not a MPolynomialIdeal:

```
sage: x,y,z = QQ['x,y,z'].gens()
sage: I = ideal(x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1)
sage: B = I.groebner_basis()
sage: type(B)
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>
```

Groebner bases can be used to solve the ideal membership problem:

```
sage: f,g,h = B
sage: (2*x*f + g).reduce(B)
0
sage: (2*x*f + g) in I
True
sage: (2*x*f + 2*z*h + y^3).reduce(B)
y^3
sage: (2*x*f + 2*z*h + y^3) in I
False
```

We compute a Groebner basis for Cyclic 6, which is a standard benchmark and test ideal.

```
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis()
sage: len(B)
45
```

We compute in a quotient of a polynomial ring over \( \mathbb{Z}/17\mathbb{Z} \):

```
sage: R.<x,y> = ZZ[]
sage: S.<a,b> = R.quotient((x^2 + y^2, 17))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Integer Ring by the ideal (x^2 + y^2, 17)
```
sage: a^2 + b^2 == 0
True
sage: a^3 - b^2
-a*b^2 - b^2

Note that the result of a computation is not necessarily reduced:

sage: (a+b)^17
256*a*b^16 + 256*b^17
sage: S(17) == 0
True

Or we can work with \(\mathbb{Z}/17\mathbb{Z}\) directly:

sage: R.<x,y> = Zmod(17)[]
sage: S.<a,b> = R.quotient((x^2 + y^2,))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Ring of
integers modulo 17 by the ideal (x^2 + y^2)

sage: a^2 + b^2 == 0
True
sage: a^3 - b^2 == -a*b^2 - b^2 == 16*a*b^2 + 16*b^2
True
sage: (a+b)^17
a*b^16 + b^17
sage: S(17) == 0
True

Working with a polynomial ring over \(\mathbb{Z}\):

sage: R.<x,y,z,w> = ZZ[]
sage: I = ideal(x^2 + y^2 - z^2 - w^2, x-y)
sage: J = I^2
sage: J.groebner_basis()
[4*y^4 - 4*y^2*z^2 + z^4 - 4*y^2*w^2 + 2*z^2*w^2 + w^4,
  2*x*y^2 - 2*y^3 - x*z^2 + y*z^2 - x*w^2 + y*w^2,
  x^2 - 2*x*y + y^2]

sage: y^2 - 2*x*y + x^2 in J
True
sage: 0 in J
True

We do a Groebner basis computation over a number field:

sage: K.<zeta> = CyclotomicField(3)
sage: R.<x,y,z> = K[]; R
Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2
sage: i = ideal(x - zeta*y + 1, x^3 - zeta*y^3); i
Ideal (x + (-zeta)*y + 1, x^3 + (-zeta)*y^3) of Multivariate
Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2
sage: i.groebner_basis()
[y^3 + (2*zeta + 1)*y^2 + (zeta - 1)*y + (-1/3*zeta - 2/3), x + (-zeta)*y + 1]
sage: S = R.quotient(i); S

3.1. Multivariate Polynomials and Polynomial Rings 295
Quotient of Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2 by the ideal (x + (-zeta)*y + 1, x^3 + (-zeta)*y^3)

sage: S.0 - zeta*S.1
-1
sage: S.0^3 - zeta*S.1^3
0

Two examples from the Mathematica documentation (done in Sage):

We compute a Groebner basis:

```
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: ideal(x^2 - 2*y^2, x*y - 3).groebner_basis()
[x - 2/3*y^3, y^4 - 9/2]
```

We show that three polynomials have no common root:

```
sage: R.<x,y> = QQ[]
sage: ideal(x+y, x^2 - 1, y^2 - 2*x).groebner_basis()
[1]
```

The next example shows how we can use Groebner bases over \(\mathbb{Z}\) to find the primes modulo which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal \(I\) in \(\mathbb{Z}[x,y,z]\), and note that the Groebner basis of \(I\) over \(\mathbb{Q}\) contains 1, so there are no solutions over \(\mathbb{Q}\) or an algebraic closure of it (this is not surprising as there are 4 equations in 3 unknowns).

```
sage: P.<x,y,z> = PolynomialRing(ZZ,order='lex')
sage: I = ideal(-y^2 - 3*y + z^2 + 3, -2*y*z + z^2 + 2*z + 1, \
x*z + y*z + z^2, -3*x*y + 2*y*z + 6*z^2)
sage: I.change_ring(P.change_ring(QQ)).groebner_basis()
[1]
```

However, when we compute the Groebner basis of \(I\) (defined over \(\mathbb{Z}\)), we note that there is a certain integer in the ideal which is not 1.

```
sage: I.groebner_basis()
[x + 130433*y + 59079*z, y^2 + 3*y + 17220, y*z + 5*y + 14504, 2*y + 158864, \
→z^2 + 17223, 2*z + 41856, 164878]
```

Now for each prime \(p\) dividing this integer 164878, the Groebner basis of \(I\) modulo \(p\) will be non-trivial and will thus give a solution of the original system modulo \(p\).

```
sage: factor(164878)
2 * 7 * 11777
sage: I.change_ring(P.change_ring(GF(2))).groebner_basis()
[x + y + z, y^2 + y, y*z + y, z^2 + 1]
sage: I.change_ring(P.change_ring(GF(7))).groebner_basis()
[x + 1 + y, y + 3, z - 2]
sage: I.change_ring(P.change_ring(GF(11777))).groebner_basis()
[x + 5633, y - 3007, z - 2626]
```

The Groebner basis modulo any product of the prime factors is also non-trivial:
Modulo any other prime the Groebner basis is trivial so there are no other solutions. For example:

```python
sage: I.change_ring(P.change_ring(GF(3))).groebner_basis()
[1]
```

Note: Sage distinguishes between lists or sequences of polynomials and ideals. Thus an ideal is not identified with a particular set of generators. For sequences of multivariate polynomials see `sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic`.

class `sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal` *(ring, gens, coerce=True)*

Bases: `sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr`, `sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_macaulay2_repr`, `sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_magma_repr`, `sage.rings.ideal.Ideal_generic`

Create an ideal in a multivariate polynomial ring.

INPUT:

- **ring** - the ring the ideal is defined in
- **gens** - a list of generators for the ideal
- **coerce** - coerce elements to the ring ring?

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(IntegerRing(), 2, order='lex')
sage: R.ideal([x, y])
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Integer Ring
sage: R.<x0,x1> = GF(3)[]
sage: R.ideal([x0^2, x1^3])
Ideal (x0^2, x1^3) of Multivariate Polynomial Ring in x0, x1 over Finite Field of size 3
```

`basis`

Shortcut to `gens()`.

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1])
sage: I.basis
[x, y + 1]
```

`change_ring(P)`

Return the ideal I in P spanned by the generators \(g_1, \ldots, g_n\) of self as returned by self.gens().

INPUT:

- **P** - a multivariate polynomial ring

EXAMPLES:
degree_of_semi_regularity()  
Return the degree of semi-regularity of this ideal under the assumption that it is semi-regular.

Let \( \{f_1, \ldots, f_m\} \subset K[x_1, \ldots, x_n] \) be homogeneous polynomials of degrees \( d_1, \ldots, d_m \) respectively. This sequence is semi-regular if:

- \( \{f_1, \ldots, f_m\} \neq K[x_1, \ldots, x_n] \)
- for all \( 1 \leq i \leq m \) and \( g \in K[x_1, \ldots, x_n] \): \( \deg(g \cdot p_i) < D \) and \( g \cdot f_i \in < f_1, \ldots, f_{i-1} > \) implies that \( g \in < f_1, \ldots, f_{i-1} > \) where \( D \) is the degree of regularity.

This notion can be extended to affine polynomials by considering their homogeneous components of highest degree.

The degree of regularity of a semi-regular sequence \( f_1, \ldots, f_m \) of respective degrees \( d_1, \ldots, d_m \) is given by the index of the first non-positive coefficient of:

\[
\sum c_k z^k = \prod \left(1 - z^{d_i}\right) \left(1 - z^n\right)
\]

EXAMPLES:

We consider a homogeneous example:

```
sage: n = 8
sage: K = GF(127)
sage: P = PolynomialRing(K,n,'x')
sage: s = [K.random_element() for _ in range(n)]
sage: L = []
sage: for i in range(2*n):
 : f = P.random_element(degree=2, terms=binomial(n,2))
 : f -= f(*s)
 : L.append(f.homogenize())
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
4
```

From this, we expect a Groebner basis computation to reach at most degree 4. For homogeneous systems this is equivalent to the largest degree in the Groebner basis:
We increase the number of polynomials and observe a decrease in the degree of regularity:

```
sage: for i in range(2*n):
....: f = P.random_element(degree=2, terms=binomial(n,2))
....: f -= f(*s)
....: L.append(f.homogenize())
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
3
```

The degree of regularity approaches 2 for quadratic systems as the number of polynomials approaches $n^2$:

```
sage: for i in range((n-4)*n):
....: f = P.random_element(degree=2, terms=binomial(n,2))
....: f -= f(*s)
....: L.append(f.homogenize())
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
2
```

Note: It is unknown whether semi-regular sequences exist. However, it is expected that random systems are semi-regular sequences. For more details about semi-regular sequences see [BFS04].

REFERENCES:

gens()
Return a set of generators / a basis of this ideal. This is usually the set of generators provided during object creation.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]
```

groebner_basis(algorithm='', deg_bound=None, mult_bound=None, prot=False, *args, **kwds)
Return the reduced Groebner basis of this ideal.

A Groebner basis $g_1, ..., g_n$ for an ideal $I$ is a generating set such that $< LM(g_i) > = LM(I)$, i.e., the leading monomial ideal of $I$ is spanned by the leading terms of $g_1, ..., g_n$. Groebner bases are the key concept in computational ideal theory in multivariate polynomial rings which allows a variety of problems to be solved.

Additionally, a reduced Groebner basis $G$ is a unique representation for the ideal $< G >$ with respect to the chosen monomial ordering.
INPUT:

- **algorithm** - determines the algorithm to use, see below for available algorithms.
- **deg_bound** - only compute to degree `deg_bound`, that is, ignore all S-polynomials of higher degree. (default: None)
- **mult_bound** - the computation is stopped if the ideal is zero-dimensional in a ring with local ordering and its multiplicity is lower than `mult_bound`. Singular only. (default: None)
- **prot** - if set to True the computation protocol of the underlying implementation is printed. If an algorithm from the singular: or magma: family is used, prot may also be sage in which case the output is parsed and printed in a common format where the amount of information printed can be controlled via calls to set_verbose().

- **args** - additional parameters passed to the respective implementations
- ****kwds - additional keyword parameters passed to the respective implementations

ALGORITHMS:

- `"autoselect` (default)
- `"singular:groebner` Singular’s `groebner` command
- `"singular:std` Singular’s `std` command
- `"singular:stdhilb` Singular’s `stdhilb` command
- `"singular:stdfglm` Singular’s `stdfglm` command
- `"singular:slimgb` Singular’s `slimgb` command
- `"libsingular:groebner` libSingular’s `groebner` command
- `"libsingular:std` libSingular’s `std` command
- `"libsingular:slimgb` libSingular’s `slimgb` command
- `"libsingular:stdhilb` libSingular’s `stdhilb` command
- `"libsingular:stdfglm` libSingular’s `stdfglm` command
- `"toy:buchberger` Sage’s toy/educational buchberger without Buchberger criteria
- `"toy:buchberger2` Sage’s toy/educational buchberger with Buchberger criteria
- `"toy:d_basis` Sage’s toy/educational algorithm for computation over PIDs
- `"macaulay2:gb` Macaulay2’s `gb` command (if available)
- `"magma:GroebnerBasis` Magma’s `Groebnerbasis` command (if available)
- `"ginv:TQ`, `ginv:TQBlockHigh`, `ginv:TQBlockLow` and `ginv:TQDegree` One of GINV’s implementations (if available)
- `"giac:gbasis` Giac’s `gbasis` command (if available)

If only a system is given - e.g. ‘magma’ - the default algorithm is chosen for that system.

Note: The Singular and libSingular versions of the respective algorithms are identical, but the former calls an external Singular process while the later calls a C function, i.e. the calling overhead is smaller. However, the libSingular interface does not support pretty printing of computation protocols.

EXAMPLES:
Consider Katsura-3 over $\mathbb{Q}$ with lexicographical term ordering. We compute the reduced Groebner basis using every available implementation and check their equality.

```sage
sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex')
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis()
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```sage
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:groebner')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```sage
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:std')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```sage
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:stdhilb')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```sage
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:stdfglm')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```sage
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('libsingular:slimgb')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

Giac only supports the degree reverse lexicographical ordering:

```sage
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: J = I.change_ring(P.change_ring(order='degrevlex'))
sage: gb = J.groebner_basis('giac') # optional - giacpy_sage, random
sage: gb # optional - giacpy_sage
[c^3 - 79/210*c^2 + 1/30*b + 1/70*c, b^2 - 3/5*c^2 - 1/5*b + 1/5*c, b*c + 6/5*c^2 - 1/10*b - 2/5*c, a + 2*b + 2*c - 1]
```

```sage
sage: J.groebner_basis().set_cache(gb) # optional - giacpy_sage
sage: ideal(J.transformed_basis()).change_ring(P).interreduced_basis() # testing trac 21884
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

Giac’s gbasis over $\mathbb{Q}$ can benefit from a probabilistic lifting and multi threaded operations:

```sage
sage: A9=PolynomialRing(QQ,9,'x') # optional - giacpy_sage
sage: I9=sage.rings.ideal.Katsura(A9) # optional - giacpy_sage
sage: I9.groebner_basis("giac",proba_epsilon=1e-7) # optional - giacpy_sage
Running a probabilistic check for the reconstructed Groebner basis...
Polynomial Sequence with 143 Polynomials in 9 Variables
```

3.1. Multivariate Polynomials and Polynomial Rings
The list of available Giac options is provided at `sage.libs.giac.groebner_basis()`.

Note that `toy:buchberger` does not return the reduced Groebner basis,

```
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('toy:buchberger')
[a^2 - a + 2*b^2 + 2*c^2,
a*b + b*c - 1/2*b, a + 2*b + 2*c - 1,
b^2 + 3*b*c - 1/2*b + 3*c^2 - c,
b*c - 1/10*b + 6/5*c^2 - 2/5*c,
b + 30*c^3 - 79/7*c^2 + 3/7*c,
c^6 - 79/210*c^5 - 229/2100*c^4 + 121/2520*c^3 + 1/3150*c^2 - 11/12600*c,
c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

but that `toy:buchberger2` does:

```
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: I.groebner_basis('toy:buchberger2')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

Singular and libSingular can compute Groebner basis with degree restrictions:

```
sage: R.<x,y> = QQ[

sage: I = R*[x^3+y^2,x^2*y+1]

sage: I.groebner_basis(algorithm='singular')
[x^3 + y^2, x^2*y + 1, y^3 - x]

sage: I.groebner_basis(algorithm='singular',deg_bound=2)
[x^3 + y^2, x^2*y + 1]

sage: I.groebner_basis()
[x^3 + y^2, x^2*y + 1, y^3 - x]

sage: I.groebner_basis(deg_bound=2)
[x^3 + y^2, x^2*y + 1]

```

A protocol is printed, if the verbosity level is at least 2, or if the argument `prot` is provided. Historically, the protocol did not appear during doctests, so, we skip the examples with protocol output.

```
sage: set_verbose(2)
sage: I = R*[x^3+y^2,x^2*y+1]
sage: I.groebner_basis() # not tested
std in (QQ), (x,y), (dp(2),C)
[...:2]3ss4s6
(S:2)--
product criterion:1 chain criterion:0
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: I.groebner_basis(prot=False)
```
The list of available options is provided at LibSingularOptions.

Note that Groebner bases over \( \mathbb{Z} \) can also be computed:

```python
sage: P.<a,b,c> = PolynomialRing(ZZ,3)
sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
sage: I.groebner_basis()
```

Groebner bases over \( \mathbb{Z}/n\mathbb{Z} \) are also supported:

```python
sage: P.<a,b,c> = PolynomialRing(Zmod(1000),3)
sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
sage: I.groebner_basis()
```

Sage also supports local orderings:

```python
sage: P.<x,y,z> = PolynomialRing(QQ,3,order='negdegrevlex')
sage: I = P * (x*y*z + z^5, 2*x^2 + y^3 + z^7, 3*z^5 + y^5)
```
We can represent every element in the ideal as a combination of the generators using the `lift()` method:

```python
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = P * (x*y*z + z^5, 2*x^2 + y^3 + z^7, 3*z^5 + y^5)
sage: J = Ideal(I.groebner_basis())
sage: f = sum(P.random_element(terms=2)*f for f in I.gens())
sage: f
1/2*y^2*z^7 - 1/4*y*z^8 + 2*x*z^5 + 95*z^6 + 1/2*y^5 - 1/4*y^4*z + x^2*y^2 + ...
→ 3/2*x^2*y*z + 95*x*y*z^2
sage: f.lift(I.gens())
[2*x + 95*z, 1/2*y^2 - 1/4*y*z, 0]
sage: l = f.lift(J.gens()); l
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1/2*y^2 + 1/4*y*z, 1/2*y^2*z^2 - 1/4*y*z^3 + 2*x + 95*z]
sage: sum(map(mul, zip(l,J.gens()))) == f
True
```

Groebner bases over fraction fields of polynomial rings are also supported:

```python
sage: R.<a,b> = QQ[]; I = R.ideal(a^2+b^2-1)
sage: Q = QuotientRing(R,I); K = Frac(Q)
sage: R2.<x,y> = K[]; J = R2.ideal([(a^2+b^2)*x + y, x+y])
sage: J.groebner_basis()
verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation.
[x + y]
```

ALGORITHM:
Uses Singular, Magma (if available), Macaulay2 (if available), Giac (if available), or a toy implementation.

```
groebner_fan(is_groebner_basis=False, symmetry=None, verbose=False)
Return the Groebner fan of this ideal.

The base ring must be QQ or a finite field F_p of with p ≤ 32749.

EXAMPLES:
```
sage: g = i.groebner_fan()
sage: g.reduced_groebner_bases()
[[x^2 - y^2 + 1], [-x^2 + y^2 - 1]]

INPUT:

- `is_groebner_basis` - bool (default False), if True, then I.gens() must be a Groebner basis with respect to the standard degree lexicographic term order.
- `symmetry` - default: None; if not None, describes symmetries of the ideal
- `verbose` - default: False; if True, printout useful info during computations

homogenize (var='h')

Return homogeneous ideal spanned by the homogeneous polynomials generated by homogenizing the generators of this ideal.

INPUT:

- `h` - variable name or variable in cover ring (default: ‘h’)  

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(GF(2))
sage: I = Ideal([x^2*y + z + 1, x + y^2 + 1]); I
Ideal (x^2*y + z + 1, y^2 + x + 1) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2

sage: I.homogenize()
Ideal (x^2*y + z*h^2 + h^3, y^2 + x*h + h^2) of Multivariate Polynomial Ring in x, y, z, h over Finite Field of size 2

sage: I.homogenize(y)
Ideal (x^2*y + y^3 + y^2*z, x*y) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
```

is_homogeneous()

Return True if this ideal is spanned by homogeneous polynomials, i.e. if it is a homogeneous ideal.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P)
sage: I
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y) of Multivariate Polynomial Ring in x, y, z over Rational Field

sage: I.is_homogeneous()
False
```
plot (*args, **kwds)
Plot the real zero locus of this principal ideal.

INPUT:

- self - a principal ideal in 2 variables
- algorithm - set this to ‘surf’ if you want ‘surf’ to plot the ideal (default: None)
- *args - optional tuples (variable, minimum, maximum) for plotting dimensions
- **kwds - optional keyword arguments passed on to implicit_plot

EXAMPLES:

Implicit plotting in 2-d:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal([y^3 - x^2])
sage: I.plot() # cusp
Graphics object consisting of 1 graphics primitive
```

```
sage: I = R.ideal([y^2 - x^2 - 1])
sage: I.plot((x,-3, 3), (y, -2, 2)) # hyperbola
Graphics object consisting of 1 graphics primitive
```

```
sage: I = R.ideal([y^2 + x^2*(1/4) - 1])
sage: I.plot() # ellipse
Graphics object consisting of 1 graphics primitive
```

```
sage: I = R.ideal([y^2-(x^2-1)*(x-2)])
sage: I.plot() # elliptic curve
Graphics object consisting of 1 graphics primitive
```

```
sage: f = ((x+3)^3 + 2*(x+3)^2 - y^2)*(x^3 - y^2)*((x-3)^3-2*(x-3)^2-y^2)
sage: I = R.ideal(f)
sage: I.plot() # the Singular logo
Graphics object consisting of 1 graphics primitive
```

This used to be trac ticket #5267:

```
sage: I = R.ideal([-x^2*y+1])
sage: I.plot()
Graphics object consisting of 1 graphics primitive
```

AUTHORS:

- Martin Albrecht (2008-09)
random_element (degree, compute_gb=False, *args, **kwds)

Return a random element in this ideal as \( r = \sum h_i \cdot f_i \).

**INPUT:**

- `compute_gb` - if True then a Gröbner basis is computed first and \( f_i \) are the elements in the Gröbner basis. Otherwise whatever basis is returned by `self.gens()` is used.
- `*args` and `**kwds` are passed to `R.random_element()` with \( R = self.ring() \).

**EXAMPLES:**

We compute a uniformly random element up to the provided degree:

```
sage: P.<x,y,z> = GF(127)[]
sage: I = sage.rings.ideal.Katsura(P)
sage: I.random_element(degree=4, compute_gb=True, terms=infinity)
34*x^4 - 33*x^3*y + 45*x^2*y^2 - 51*x*y^3 - 55*y^4 + 43*x^3*z ... - 28*y - → 33*z + 45
```

Note that sampling uniformly at random from the ideal at some large enough degree is equivalent to computing a Gröbner basis. We give an example showing how to compute a Gröbner basis if we can sample uniformly at random from an ideal:

```
sage: n = 3; d = 4
sage: P = PolynomialRing(GF(127), n, 'x')
sage: I = sage.rings.ideal.Cyclic(P)

1. We sample \(n^d \) uniformly random elements in the ideal:

```
sage: F = Sequence(I.random_element(degree=d, compute_gb=True,<br>→ terms=infinity) for _ in range(n^d))
```

2. We linearize and compute the echelon form:

```
sage: A,v = F.coefficient_matrix()<br>sage: A.echelonize()<br>sage: G = Sequence((A*v).list())<br>sage: G.is_groebner()<br>True<br>sage: Ideal(G) == I<br>True
```

We return some element in the ideal with no guarantee on the distribution:

```
sage: P = PolynomialRing(GF(127), 10, 'x')
sage: I = sage.rings.ideal.Katsura(P)
sage: I.random_element(degree=3)
-25*x0^2*x1 + 14*x1^3 + 57*x0*x1*x2 + ... + 19*x7*x9 + 40*x8*x9 + 49*x1
```

We show that the default method does not sample uniformly at random from the ideal:

```
sage: P.<x,y,z> = GF(127)[]
sage: G = Sequence([x+7, y-2, z+110])
sage: I = Ideal([sum(P.random_element() * g for g in G) for _ in range(4)])
```
If degree equals the degree of the generators a random linear combination of the generators is returned:

```python
sage: P.<x,y> = QQ[]
sage: I = P.ideal([x^2,y^2])
sage: I.random_element(degree=2)
-x^2
```

reduce *(f)*

Reduce an element modulo the reduced Groebner basis for this ideal. This returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: I = (x^3 + y, y)*R
sage: I.reduce(y)
0
sage: I.reduce(x^3)
0
sage: I.reduce(x - y)
x
sage: I = (y^2 - (x^3 + x))*R
sage: I.reduce(x^3)
y^2 - x
sage: I.reduce(x^6)
y^4 - 2*x*y^2 + x^2
sage: (y^2 - x)^2
y^4 - 2*x*y^2 + x^2
```

Note: Requires computation of a Groebner basis, which can be a very expensive operation.

subs *(in_dict=None, **kwds)*

Substitute variables.

This method substitutes some variables in the polynomials that generate the ideal with given values. Variables that are not specified in the input remain unchanged.

INPUT:

- *in_dict* – (optional) dictionary of inputs
- **kwds** – named parameters

OUTPUT:

A new ideal with modified generators. If possible, in the same polynomial ring. Raises a *TypeError* if no common polynomial ring of the substituted generators can be found.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(ZZ,2,'xy')
sage: I = R.ideal(x^5+y^5, x^2 + y + x^2*y^2 + 5); I
Ideal (x^5 + y^5, x^2 + y + x^2*y^2 + 5) of Multivariate Polynomial Ring in x, y over Integer Ring
sage: I.subs(x=y)
Ideal (y^5, x^2 + y + x^2*y^2 + 5) of Multivariate Polynomial Ring in x, y over Integer Ring
```
The new ideal can be in a different ring:

```
sage: R.<a,b> = PolynomialRing(QQ,2)
sage: S.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal(a^2+b^2+a-b+2); I
Ideal (a^2 + b^2 + a - b + 2) of Multivariate Polynomial Ring in a, b over Rational Field
sage: I.subs(a=x, b=y)
Ideal (x^2 + y^2 + x - y + 2) of Multivariate Polynomial Ring in x, y over Rational Field
```

The resulting ring need not be a multivariate polynomial ring:

```
sage: T.<t> = PolynomialRing(QQ)
sage: I.subs(a=t, b=t)
Principal ideal (t^2 + 1) of Univariate Polynomial Ring in t over Rational Field
```

Variables that are not substituted remain unchanged:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal(x^2+y^2+x-y+2); I
Ideal (x^2 + y^2 + x - y + 2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.subs(x=1)
Ideal (y^2 - y + 4) of Multivariate Polynomial Ring in x, y over Rational Field
```

weil_restriction()(

Compute the Weil restriction of this ideal over some extension field. If the field is a finite field, then this computes the Weil restriction to the prime subfield.

A Weil restriction of scalars - denoted $\text{Res}_{L/k}$ - is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another corresponding variety $\text{Res}_{L/k}(X)$, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.

This function does not compute this Weil restriction directly but computes on generating sets of polynomial ideals:

Let d be the degree of the field extension L/k, let a a generator of L/k and p the minimal polynomial of L/k. Denote this ideal by I.

Specifically, this function first maps each variable x to its representation over k: $\sum_{i=0}^{d-1} a^i x_i$. Then each generator of I is evaluated over these representations and reduced modulo the minimal polynomial p. The result is interpreted as a univariate polynomial in a and its coefficients are the new generators of the returned ideal.

If the input and the output ideals are radical, this is equivalent to the statement about algebraic varieties
above.
OUTPUT: MPolynomial Ideal
EXAMPLES:
sage: k.<a> = GF(2^2)
sage: P.<x,y> = PolynomialRing(k,2)
sage: I = Ideal([x*y + 1, a*x + 1])
sage: I.variety()
[{y: a, x: a + 1}]
sage: J = I.weil_restriction()
sage: J
Ideal (x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1) of
Multivariate Polynomial Ring in x0, x1, y0, y1 over Finite Field of size
2
sage: J += sage.rings.ideal.FieldIdeal(J.ring()) # ensure radical ideal
sage: J.variety()
[{y1: 1, x1: 1, x0: 1, y0: 0}]
sage: J.weil_restriction() # returns J
Ideal (x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 +
x0, x1^2 + x1, y0^2 + y0, y1^2 + y1) of Multivariate Polynomial Ring in
x0, x1, y0, y1 over Finite Field of size 2
sage: k.<a> = GF(3^5)
sage: P.<x,y,z> = PolynomialRing(k)
sage: I = sage.rings.ideal.Katsura(P)
sage: I.dimension()
0
sage: I.variety()
[{y: 0, z: 0, x: 1}]
sage: J = I.weil_restriction(); J
Ideal (x0 - y0 - z0 - 1, x1 - y1 - z1, x2 - y2 - z2, x3 - y3 - z3, x4 y4 - z4, x0^2 + x2*x3 + x1*x4 - y0^2 - y2*y3 - y1*y4 - z0^2 - z2*z3 z1*z4 - x0, -x0*x1 - x2*x3 - x3^2 - x1*x4 + x2*x4 + y0*y1 + y2*y3 + y3^2
+ y1*y4 - y2*y4 + z0*z1 + z2*z3 + z3^2 + z1*z4 - z2*z4 - x1, x1^2 x0*x2 + x3^2 - x2*x4 + x3*x4 - y1^2 + y0*y2 - y3^2 + y2*y4 - y3*y4 z1^2 + z0*z2 - z3^2 + z2*z4 - z3*z4 - x2, -x1*x2 - x0*x3 - x3*x4 - x4^2
+ y1*y2 + y0*y3 + y3*y4 + y4^2 + z1*z2 + z0*z3 + z3*z4 + z4^2 - x3, x2^2
- x1*x3 - x0*x4 + x4^2 - y2^2 + y1*y3 + y0*y4 - y4^2 - z2^2 + z1*z3 +
z0*z4 - z4^2 - x4, -x0*y0 + x4*y1 + x3*y2 + x2*y3 + x1*y4 - y0*z0 +
y4*z1 + y3*z2 + y2*z3 + y1*z4 - y0, -x1*y0 - x0*y1 - x4*y1 - x3*y2 +
x4*y2 - x2*y3 + x3*y3 - x1*y4 + x2*y4 - y1*z0 - y0*z1 - y4*z1 - y3*z2 +
y4*z2 - y2*z3 + y3*z3 - y1*z4 + y2*z4 - y1, -x2*y0 - x1*y1 - x0*y2 x4*y2 - x3*y3 + x4*y3 - x2*y4 + x3*y4 - y2*z0 - y1*z1 - y0*z2 - y4*z2 y3*z3 + y4*z3 - y2*z4 + y3*z4 - y2, -x3*y0 - x2*y1 - x1*y2 - x0*y3 x4*y3 - x3*y4 + x4*y4 - y3*z0 - y2*z1 - y1*z2 - y0*z3 - y4*z3 - y3*z4 +
y4*z4 - y3, -x4*y0 - x3*y1 - x2*y2 - x1*y3 - x0*y4 - x4*y4 - y4*z0 y3*z1 - y2*z2 - y1*z3 - y0*z4 - y4*z4 - y4) of Multivariate Polynomial
Ring in x0, x1, x2, x3, x4, y0, y1, y2, y3, y4, z0, z1, z2, z3, z4 over
Finite Field of size 3
sage: J += sage.rings.ideal.FieldIdeal(J.ring()) # ensure radical ideal
sage: from sage.doctest.fixtures import reproducible_repr
sage: print(reproducible_repr(J.variety()))
[{x0: 1, x1: 0, x2: 0, x3: 0, x4: 0, y0: 0, y1: 0, y2: 0, y3: 0, y4: 0, z0: 0,
˓→ z1: 0, z2: 0, z3: 0, z4: 0}]

310

Chapter 3. Multivariate Polynomials


Weil restrictions are often used to study elliptic curves over extension fields so we give a simple example involving those:

```
sage: K.<a> = QuadraticField(1/3)
sage: E = EllipticCurve(K,[1,2,3,4,5])
```

We pick a point on E:

```
sage: p = E.lift_x(1); p
(1 : 2 : 1)
sage: I = E.defining_ideal(); I
Ideal (-x^3 - 2*x^2*z + x*y*z + y^2*z - 4*x*z^2 + 3*y*z^2 - 5*z^3)
of Multivariate Polynomial Ring in x, y, z over Number Field in a with defining polynomial x^2 - 1/3
```

Of course, the point p is a root of all generators of I:

```
sage: I.subs(x=1,y=2,z=1)
Ideal (0) of Multivariate Polynomial Ring in x, y, z over Number Field in a with defining polynomial x^2 - 1/3
```

I is also radical:

```
sage: I.radical() == I
True
```

So we compute its Weil restriction:

```
sage: J = I.weil_restriction()
sage: J
Ideal (-x0^3 - x0*x1^2 - 2*x0^2*z0 - 2/3*x1^2*z0 + x0*y0*z0 + y0^2*z0 + l/3*x1*y1*z0 + 1/3*y1^2*z0 - 4*x0*z0^2 + 3*y0*z0^2 - 5*z0^3 - 4/3*x0*x1*z1 + 1/3*x1*y0*z1 + 1/3*x0*y1*z1 + 2/3*y0*y1*z1 - 8/3*x1*z0*z1 + 2*y1*z0*z1 - 4/3*x0*x1*z0 + x1*y0*z0 + x0*y1*z0 + 2*y0*y1*z0 - 4*x1*z0^2 + 3*y1*z0^2 - 2*x0^2*z0 - 2/3*x1^2*z1 + x0*y0*z1 + y0^2*z1 + 1/3*x1*y1*z1 + l/3*y1^2*z1 - 8*x0*z0^2*z1 + 6*y0*y0*z1 - 15*z0^2*z1 - 4/3*x1*z1^2 + y1*z1^2 - 5/3*z1^3) of Multivariate Polynomial Ring in x0, x1, y0, y1, z0, z1 over Rational Field
```

We can check that the point p is still a root of all generators of J:

```
sage: J.subs(x0=1,y0=2,z0=1,x1=0,y1=0,z1=0)
Ideal (0, 0) of Multivariate Polynomial Ring in x0, x1, y0, y1, z0, z1 over Rational Field
```

Example for relative number fields:

```
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^5-2)
sage: R.<x> = K[]
sage: L.<v> = K.extension(x^2+1)
sage: S.<x,y> = L[]
sage: I = S.ideal([y^2-x^3-1])
sage: I.weil_restriction()
Ideal (-x0^3 + 3*x0*x1^2 + y0^2 - y1^2 - 1, -3*x0^2*x1 + x1^3 + 2*y0*y1) of Multivariate Polynomial Ring in x0, x1, y0, y1 over Number Field in w with defining polynomial x^5 - 2
```
class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_macaulay2_repr

An ideal in a multivariate polynomial ring, which has an underlying Macaulay2 ring associated to it.

EXAMPLES:

```
sage: R.<x,y,z,w> = PolynomialRing(ZZ, 4)
sage: I = ideal(x*y-z^2, y^2-w^2)
sage: I
Ideal (x*y - z^2, y^2 - w^2) of Multivariate Polynomial Ring in x, y, z, w over Integer Ring
```

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_magma_repr

```
```

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr

```
sage: M = I.syzygy_module(); M
[ -2 -1 1 ]
[ -y 2*x^2 + y 0 ]
```

ALGORITHM: Uses Singular's syz command

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr

Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr

An ideal in a multivariate polynomial ring, which has an underlying Singular ring associated to it.

associated_primes (algorithm='sy')

Return a list of the associated primes of primary ideals of which the intersection is \(I = \text{self} \).

An ideal \(Q \) is called primary if it is a proper ideal of the ring \(R \) and if whenever \(ab \in Q \) and \(a \notin Q \) then \(b^n \in Q \) for some \(n \in \mathbb{Z} \).

If \(Q \) is a primary ideal of the ring \(R \), then the radical ideal \(P \) of \(Q \), i.e. \(P = \{ a \in R, a^n \in Q \} \) for some \(n \in \mathbb{Z} \), is called the associated prime of \(Q \).

If \(I \) is a proper ideal of the ring \(R \) then there exists a decomposition in primary ideals \(Q_i \), such that

- their intersection is \(I \)
- none of the \(Q_i \) contains the intersection of the rest, and
- the associated prime ideals of \(Q_i \) are pairwise different.
This method returns the associated primes of the \(Q_i \).

INPUT:

- `algorithm` - string:
 - `'sy'` - (default) use the Shimoyama-Yokoyama algorithm
 - `'gtz'` - use the Gianni-Trager-Zacharias algorithm

OUTPUT:

- `list` - a list of associated primes

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.associated_primes(); pd
[Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over \( \text{Rational Field} \),
 Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over \( \text{Rational Field} \)]
```

ALGORITHM:
Uses Singular.

REFERENCES:


```
sage: sage.rings.ideal.Cyclic(R,4).basis_is_groebner()
False
sage: I2 = Ideal(I.groebner_basis())
sage: I2.basis_is_groebner()
True
```

A more complicated example:

```python
sage: R.<U6,U5,U4,U3,U2, u6,u5,u4,u3,u2, h> = PolynomialRing(GF(7583))
sage: I = [u6 + u5 + u4 + u3 + u2 - 3791*h, 
      U6 + U5 + U4 + U3 + U2 - 3791*h, 
      U2*u2 - h^2, U3*u3 - h^2, U4*u4 - h^2, 
```

3.1. Multivariate Polynomials and Polynomial Rings 313
```python
sage: Ideal(l).basis_is_groebner()
False
sage: gb = Ideal(l).groebner_basis()
sage: Ideal(gb).basis_is_groebner()
True
```

Note: From the Singular Manual for the reduce function we use in this method: ‘The result may have no meaning if the second argument (self) is not a standard basis’. I (malb) believe this refers to the mathematical fact that the results may have no meaning if self is no standard basis, i.e., Singular doesn’t ‘add’ any additional ‘nonsense’ to the result. So we may actually use reduce to determine if self is a Groebner basis.
complete_primary_decomposition(algorithm='sy')

Return a list of primary ideals such that their intersection is self, together with the associated prime ideals.

An ideal \(Q \) is called primary if it is a proper ideal of the ring \(R \), and if whenever \(ab \in Q \) and \(a \notin Q \), then \(b^n \in Q \) for some \(n \in \mathbb{Z} \).

If \(Q \) is a primary ideal of the ring \(R \), then the radical ideal \(P \) of \(Q \) (i.e. the ideal consisting of all \(a \in R \) with \(a^n \) in \(Q \) for some \(n \in \mathbb{Z} \)), is called the associated prime of \(Q \).

If \(I \) is a proper ideal of a Noetherian ring \(R \), then there exists a finite collection of primary ideals \(Q_i \) such that the following hold:

- the intersection of the \(Q_i \) is \(I \);
- none of the \(Q_i \) contains the intersection of the others;
- the associated prime ideals \(P_i \) of the \(Q_i \) are pairwise distinct.

INPUT:

- \texttt{algorithm} – string:
 - \texttt{'sy'} – (default) use the Shimoyama-Yokoyama algorithm
 - \texttt{'gtz'} – use the Gianni-Trager-Zacharias algorithm

OUTPUT:

- a list of pairs \((Q_i, P_i)\), where the \(Q_i \) form a primary decomposition of \self and \(P_i \) is the associated prime of \(Q_i \).

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.complete_primary_decomposition(); pd
[(Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
sage: I.primary_decomposition_complete(algorithm = 'gtz')
[(Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
sage: from functools import reduce
sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), [Qi for (Qi,radQi) in pd]) == I
True
sage: [Qi.radical() == radQi for (Qi,radQi) in pd]
```
```python
sage: P.<x,y,z> = PolynomialRing(ZZ)
sage: I = ideal( x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1 )
sage: I.complete_primary_decomposition()
Traceback (most recent call last):
  ...  
ValueError: Coefficient ring must be a field for function 'complete_primary_decomposition'.
```

ALGORITHM:

Uses Singular.

Note: See [BW93] for an introduction to primary decomposition.

```python

dimension(singular='singular_default')
The dimension of the ring modulo this ideal.

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(GF(32003),order='degrevlex')
sage: I = ideal(x^2-y,x^3)
sage: I.dimension()
1
```

If the ideal is the total ring, the dimension is \(-1\) by convention.

For polynomials over a finite field of order too large for Singular, this falls back on a toy implementation of Buchberger to compute the Groebner basis, then uses the algorithm described in Chapter 9, Section 1 of Cox, Little, and O’Shea’s “Ideals, Varieties, and Algorithms”.

**EXAMPLES:**

```python
sage: R.<x,y> = PolynomialRing(GF(2147483659),order='lex')
sage: I = R.ideal([x*y,x*y+1])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy implementation.
-1
sage: I=ideal([x*(x*y+1),y*(x*y+1)])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy implementation.
1
sage: I = R.ideal([x^3*y,x*y^2])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy implementation.
1
```

**ALGORITHM:**
Uses Singular, unless the characteristic is too large.

**Note:** Requires computation of a Groebner basis, which can be a very expensive operation.

### elimination_ideal (variables)

Return the elimination ideal of this ideal with respect to the variables given in variables.

**INPUT:**

- `variables` – a list or tuple of variables in `self.ring()`

**EXAMPLES:**

```python
sage: R.<x,y,t,s,z> = PolynomialRing(QQ,5)
sage: I = R * [x-t,y-t^2,z-t^3,s-x+y^3]
sage: I.elimination_ideal([t,s])
Ideal (y^2 - x*z, x*y - z, x^2 - y) of Multivariate Polynomial Ring in x, y, t, s, z over Rational Field
```

**ALGORITHM:**

Uses Singular.

**Note:** Requires computation of a Groebner basis, which can be a very expensive operation.

### genus ()

Return the genus of the projective curve defined by this ideal, which must be 1 dimensional.

**EXAMPLES:**

Consider the hyperelliptic curve \( y^2 = 4x^5 - 30x^3 + 45x - 22 \) over \( \mathbb{Q} \), it has genus 2:

```python
sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f); C
Hyperelliptic Curve over Rational Field defined by y^2 = 4*x^5 - 30*x^3 + 45*x - 22
sage: C.genus()
2
```

```python
sage: P.<x,y> = PolynomialRing(QQ)
sage: f = y^2 - 4*x^5 - 30*x^3 + 45*x - 22
sage: I = Ideal([f])
sage: I.genus()
2
```

### hilbert_numerator (singular=’singular_default’, grading=None)

Return the Hilbert numerator of this ideal.

Let \( I = \text{self} \) be a homogeneous ideal and \( R = \text{self.ring()} \) be a graded commutative algebra (\( R = \oplus R_d \)) over a field \( K \). Then the Hilbert function is defined as \( H(d) = \dim_K R_d \) and the Hilbert series of \( I \) is defined as the formal power series \( H(d) = \dim_K R_d \) and the Hilbert series of \( I \) is defined as the formal power series \( HS(t) = \sum_{d=0}^{\infty} H(d) t^d \).

This power series can be expressed as \( HS(t) = Q(t)/(1-t)^n \) where \( Q(t) \) is a polynomial over \( Z \) and \( n \) the number of variables in \( R \). This method returns \( Q(t) \), the numerator; hence the name, `hilbert_numerator`.

An optional `grading` can be given, in which case the graded (or weighted) Hilbert numerator is given.
**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_numerator()
-t^5 + 1
sage: R.<a,b> = PolynomialRing(QQ)
sage: J = R.ideal([a^2*b, a*b^2])
sage: J.hilbert_numerator()
t^4 - 2*t^3 + 1
sage: J.hilbert_numerator(grading=(10,3))
t^26 - t^23 - t^16 + 1
```

**hilbert_polynomial()**

Return the Hilbert polynomial of this ideal.

Let \( I = \text{self} \) be a homogeneous ideal and \( R = \text{self.ring()} \) be a graded commutative algebra \((R = \oplus R_d)\) over a field \( K \). The Hilbert polynomial is the unique polynomial \( HP(t) \) with rational coefficients such that \( HP(d) = \dim_K R_d \) for all but finitely many positive integers \( d \).

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_polynomial()
5*t - 5
```

**hilbert_series(singular=’singular_default’, grading=None)**

Return the Hilbert series of this ideal.

Let \( I = \text{self} \) be a homogeneous ideal and \( R = \text{self.ring()} \) be a graded commutative algebra \((R = \oplus R_d)\) over a field \( K \). Then the Hilbert function is defined as \( H(d) = \dim_K R_d \) and the Hilbert series of \( I \) is defined as the formal power series \( HS(t) = \sum_0^\infty H(d)t^d \).

This power series can be expressed as \( HS(t) = Q(t)/(1-t)^n \) where \( Q(t) \) is a polynomial over \( Z \) and \( n \) the number of variables in \( R \). This method returns \( Q(t)/(1-t)^n \).

An optional grading can be given, in which case the graded (or weighted) Hilbert series is given.

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_series()(-t^4 - t^3 - t^2 - t - 1)/(-t^2 + 2*t - 1)
sage: R.<a,b> = PolynomialRing(QQ)
sage: J = R.ideal([a^2*b, a*b^2])
sage: J.hilbert_series()
(t^3 - t^2 - t - 1)/(t - 1)
sage: J.hilbert_series(grading=(10,3))
(t^25 + t^24 + t^23 - t^15 - t^14 - t^13 - t^12 - t^11 - t^10 - t^9 - t^8 - t^7 - t^6 - t^5 - t^4 - t^3 - t^2 - t - 1)/(t^12 + t^11 + t^10 - t^2 - t - 1)
sage: J = R.ideal([a^2*b^3, a*b^4 + a^3*b^2])
sage: J.hilbert_series(grading=[1,2])
(t^11 + t^8 - t^6 - t^5 - t^4 - t^3 - t^2 - t - 1)/(t^2 - 1)
sage: J.hilbert_series(grading=[2,1])
(2*t^7 - t^6 - t^4 - t^2 - 1)/(t - 1)
```
integral_closure \( (p=0, r=True, \text{singular}='\text{singular\_default}') \)

Let \( I = \text{self} \).

Returns the integral closure of \( I, \ldots, I^p \), where \( sI \) is an ideal in the polynomial ring \( R = k[x(1), \ldots, x(n)] \).

If \( p \) is not given, or \( p = 0 \), compute the closure of all powers up to the maximum degree in \( t \) occurring in the closure of \( R[It] \) (so this is the last power whose closure is not just the sum/product of the smaller). If \( r \) is given and \( r \) is True, \( I.\text{integral\_closure}() \) starts with a check whether \( I \) is already a radical ideal.

**INPUT:**
- \( p \) - powers of \( I \) (default: 0)
- \( r \) - check whether \( \text{self} \) is a radical ideal first (default: True)

**EXAMPLES:**

```sage
R.<x,y> = QQ[]
sage: I = ideal([x^2,x*y^4,y^5])
sage: I.integral_closure()
x^2, x*y^4, y^5, x*y^3
```

**ALGORITHM:**
Uses libSINGULAR.

interreduced_basis()

If this ideal is spanned by \( (f_1, \ldots, f_n) \) this method returns \( (g_1, \ldots, g_s) \) such that:
- \( (f_1, \ldots, f_n) = (g_1, \ldots, g_s) \)
- \( \text{LT}(g_i)! = \text{LT}(g_j) \) for all \( i! = j \)
- \( \text{LT}(g_i) \) does not divide \( m \) for all monomials \( m \) of \( \{g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_s\} \)
- \( \text{LC}(g_i) == 1 \) for all \( i \) if the coefficient ring is a field.

**EXAMPLES:**

```sage
R.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([z*x+y^3,z+y^3,z+x*y])
sage: I.interreduced_basis()
y^3 + z, x*y + z, x*z - z
```

Note that tail reduction for local orderings is not well-defined:

```sage
R.<x,y,z> = PolynomialRing(QQ,order='negdegrevlex')
sage: I = Ideal([z*x+y^3,z+y^3,z+x*y])
sage: I.interreduced_basis()
z + x*y, x*y - y^3, x^2*y - y^3
```

A fixed error with nonstandard base fields:

```sage
R.<t>=QQ['t']
sage: K.<x,y>=R.fraction_field()['x,y']
sage: I=t*x*K
sage: I.interreduced_basis()
x
```

The interreduced basis of 0 is 0:
```
sage: P.<x,y,z> = GF(2)[]
sage: Ideal(P(0)).interreduced_basis()
[0]
```

**ALGORITHM:**

Uses Singular's `interred` command or `sage.rings.polynomial.toy_buchberger.inter_reduction()` if conversion to Singular fails.

**intersection (**`*others`**)**

Return the intersection of the arguments with this ideal.

**EXAMPLES:**

```
sage: R.<x,y> = PolynomialRing(QQ, 2, order='lex')
sage: I = x*R
sage: J = y*R
sage: I.intersection(J)
Ideal (x*y) of Multivariate Polynomial Ring in x, y over Rational Field
```

The following simple example illustrates that the product need not equal the intersection.

```
sage: I = (x^2, y)*R
sage: J = (y^2, x)*R
sage: K = I.intersection(J); K
Ideal (y^2, x*y, x^2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: IJ = I*J; IJ
Ideal (x^2*y^2, x^3, y^3, x*y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: IJ == K
False
```

Intersection of several ideals:

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I1 = x*R
sage: I2 = y*R
sage: I3 = (x, y)*R
sage: I4 = (x^2 + x*y*z, y^2 - z^3*y, z^3 + y^5*x*z)*R
sage: I1.intersection(I2, I3, I4)
Ideal (x*y*z^20 - x*y*z^3, x*y^2 - x*y*z^3, x^2*y + x*y*z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

The ideals must share the same ring:

```
sage: R2.<x,y> = PolynomialRing(QQ, 2, order='lex')
sage: R3.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I2 = x*R2
sage: I3 = x*R3
sage: I2.intersection(I3)
Traceback (most recent call last):
 ...
TypeError: Intersection is only available for ideals of the same ring.
```

**is_prime (**`*kwds`**)**

Return True if this ideal is prime.

**INPUT:**
• keyword arguments are passed on to complete_primary_decomposition; in this way you can specify the algorithm to use.

EXAMPLES:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: I = (x^2 - y^2 - 1)*R
sage: I.is_prime()
True
sage: (I^2).is_prime()
False
sage: J = (x^2 - y^2)*R
sage: J.is_prime()
False
sage: (J^3).is_prime()
False
sage: (I * J).is_prime()
False
```

The following is trac ticket #5982. Note that the quotient ring is not recognized as being a field at this time, so the fraction field is not the quotient ring itself:

```python
sage: Q = R.quotient(I); Q
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 - y^2 - 1)
sage: Q.fraction_field()
Fraction Field of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 - y^2 - 1)
```

`minimal_associated_primes()`

OUTPUT:

• list - a list of prime ideals

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, 'xyz')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: I.minimal_associated_primes ()
[Ideal (z^2 + 1, -z^2 + y) of Multivariate Polynomial Ring in x, y, z over Rational Field, Ideal (z^3 + 2, -z^2 + y) of Multivariate Polynomial Ring in x, y, z over Rational Field]
```

ALGORITHM:

Uses Singular.

`normal_basis(algorithm='libsingular', singular='singular_default')`

Returns a vector space basis (consisting of monomials) of the quotient ring by the ideal, resp. of a free module by the module, in case it is finite dimensional and if the input is a standard basis with respect to the ring ordering.

INPUT:

algorithm - defaults to use libsingular, if it is anything else we will use the kbase() command

EXAMPLES:
```python
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: I = R.ideal([x^2+y^2+z^2-4, x^2+2*y^2-5, x*z-1])
sage: I.normal_basis()
[y*z^2, z^2, y*z, z, x*y, y, x, 1]
sage: I.normal_basis(algorithm='singular')
[y*z^2, z^2, y*z, z, x*y, y, x, 1]
```

**plot** (singular=Singular)

If you somehow manage to install surf, perhaps you can use this function to implicitly plot the real zero locus of this ideal (if principal).

**INPUT:**

• **self** - must be a principal ideal in 2 or 3 vars over \( \mathbb{Q} \).

**EXAMPLES:**

Implicit plotting in 2-d:

```python
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal([y^3 - x^2])
sage: I.plot() # cusp
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2 - x^2 - 1])
sage: I.plot() # hyperbola
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2 + x^2*(1/4) - 1])
sage: I.plot() # ellipse
Graphics object consisting of 1 graphics primitive
sage: I = R.ideal([y^2-(x^2-1)*(x-2)])
sage: I.plot() # elliptic curve
Graphics object consisting of 1 graphics primitive
```

Implicit plotting in 3-d:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = R.ideal([y^2 + x^2*(1/4) - z])
sage: I.plot() # a cone; optional - surf
sage: I = R.ideal([y^2 + z^2*(1/4) - x])
sage: I.plot() # same code, from a different angle; optional - surf
sage: I = R.ideal([x^2*y^2+x^2*z^2+y^2*z^2-16*x*y*z])
sage: I.plot() # Steiner surface; optional - surf
```

**AUTHORS:**

• David Joyner (2006-02-12)

**primary_decomposition** (algorithm='sy')

Return a list of primary ideals such that their intersection is **self**.

An ideal \( Q \) is called primary if it is a proper ideal of the ring \( R \), and if whenever \( ab \in Q \) and \( a \not\in Q \), then \( b^n \in Q \) for some \( n \in \mathbb{Z} \).

If \( Q \) is a primary ideal of the ring \( R \), then the radical ideal \( P \) of \( Q \) (i.e. the ideal consisting of all \( a \in R \) with \( a^n \) in \( Q \) for some \( n \in \mathbb{Z} \)), is called the associated prime of \( Q \).

If \( I \) is a proper ideal of a Noetherian ring \( R \), then there exists a finite collection of primary ideals \( Q_i \) such that the following hold:

• the intersection of the \( Q_i \) is \( I \);
• none of the \( Q_i \) contains the intersection of the others;
• the associated prime ideals of the \( Q_i \) are pairwise distinct.

**INPUT:**

• `algorithm` – string:
  - `'sy'` – (default) use the Shimoyama-Yokoyama algorithm
  - `'gtz'` – use the Gianni-Trager-Zacharias algorithm

**OUTPUT:**

• a list of primary ideals \( Q_i \) forming a primary decomposition of `self`.

**EXAMPLES:**

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.primary_decomposition(); pd
[Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over
 Rational Field,
 Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z]
```

```python
sage: from functools import reduce
sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), pd) == I
True
```

**ALGORITHM:**

Uses Singular.

**REFERENCES:**


**primary_decomposition_complete**(algorithm='sy')

Return a list of primary ideals such that their intersection is `self`, together with the associated prime ideals.

An ideal \( Q \) is called primary if it is a proper ideal of the ring \( R \), and if whenever \( ab \in Q \) and \( a \notin Q \), then \( b^n \in Q \) for some \( n \in \mathbb{Z} \).

If \( Q \) is a primary ideal of the ring \( R \), then the radical ideal \( P \) of \( Q \) (i.e. the ideal consisting of all \( a \in R \) with \( a^n \) in \( Q \) for some \( n \in \mathbb{Z} \)), is called the associated prime of \( Q \).

If \( I \) is a proper ideal of a Noetherian ring \( R \), then there exists a finite collection of primary ideals \( Q_i \) such that the following hold:

• the intersection of the \( Q_i \) is \( I \);
• none of the \( Q_i \) contains the intersection of the others;
• the associated prime ideals \( P_i \) of the \( Q_i \) are pairwise distinct.

**INPUT:**

• `algorithm` – string:
  - `'sy'` – (default) use the Shimoyama-Yokoyama algorithm
  - `'gtz'` – use the Gianni-Trager-Zacharias algorithm
OUTPUT:

• a list of pairs \((Q_i, P_i)\), where the \(Q_i\) form a primary decomposition of \(\text{self}\) and \(P_i\) is the associated prime of \(Q_i\).

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: pd = I.complete_primary_decomposition(); pd
[(Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
sage: I.primary_decomposition_complete(algorithm = 'gtz')
[(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
 (Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
sage: from functools import reduce
sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), [Qi for (Qi,radQi) in pd]) == I
True
sage: [Qi.radical() == radQi for (Qi,radQi) in pd]
[True, True]
sage: P.<x,y,z> = PolynomialRing(ZZ)
sage: I = ideal(x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.complete_primary_decomposition()
Traceback (most recent call last):
 ... ValueError: Coefficient ring must be a field for function 'complete_primary_decomposition'.
```

ALGORITHM:

Uses Singular.

**Note:** See [BW93] for an introduction to primary decomposition.

**quotient** \((J)\)

Given ideals \(I = \text{self}\) and \(J\) in the same polynomial ring \(P\), return the ideal quotient of \(I\) by \(J\) consisting of the polynomials \(a\) of \(P\) such that \(\{aJ \subset I\}\).

This is also referred to as the colon ideal \((I:J)\).

**INPUT:**
• J - multivariate polynomial ideal

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(GF(181),3)
sage: I = Ideal([x^2+x*y*z,y^2-z^3*y,z^3+y^5*x*z])
sage: J = Ideal([x])
sage: Q = I.quotient(J)
sage: y*z + x in I
False
sage: x in J
True
sage: x * (y*z + x) in I
True
```

`radical()`

The radical of this ideal.

EXAMPLES:

This is an obviously not radical ideal:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: I = (x^2, y^3, (x*z)^4 + y^3 + 10*x^2)*R
sage: I.radical()
Ideal (y, x) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

That the radical is correct is clear from the Groebner basis.

```python
sage: I.groebner_basis()
[y^3, x^2]
```

This is the example from the Singular manual:

```python
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y-z^2)*R
sage: I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

Note: From the Singular manual: A combination of the algorithms of Krick/Logar and Kemper is used. Works also in positive characteristic (Kempers algorithm).

```python
sage: R.<x,y,z> = PolynomialRing(GF(37), 3)
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y - z^2)*R
sage: I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 37
```

`saturation(other)`

Returns the saturation (and saturation exponent) of the ideal `self` with respect to the ideal `other`.

INPUT:

• `other` – another ideal in the same ring

OUTPUT:
• a pair (ideal, integer)

EXAMPLES:

```python
sage: R.<x, y, z> = QQ[]
sage: I = R.ideal(x^5*z^3, x*y*z, y*z^4)
sage: J = R.ideal(z)
sage: I.saturation(J)
(Ideal (y, x^5) of Multivariate Polynomial Ring in x, y, z over Rational Field, 4)
```

**syzygy_module**

Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 2*x^2 + y
sage: g = y
sage: h = 2*f + g
sage: I = Ideal([f,g,h])
sage: M = I.syzygy_module(); M
[-2 -1 1]
[-y 2*x^2 + y 0]
sage: G = vector(I.gens())
sage: M*G
(0, 0)
```

**ALGORITHM:**

Uses Singular’s syz command.

**transformed_basis** (*algorithm=’gwalk’, other_ring=None, singular=’singular_default’)

Returns a lex or other_ring Groebner Basis for this ideal.

**INPUT:**

• algorithm - see below for options.

• other_ring - only valid for algorithm ‘fglm’, if provided conversion will be performed to this ring. Otherwise a lex Groebner basis will be returned.

**ALGORITHMS:**

• fglm - FGLM algorithm. The input ideal must be given with a reduced Groebner Basis of a zero-dimensional ideal

• gwalk - Groebner Walk algorithm *(default)*

• awalk1 - ‘first alternative’ algorithm

• awalk2 - ‘second alternative’ algorithm

• twalk - Tran algorithm

• fwalk - Fractal Walk algorithm

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = Ideal([y^3+x^2,x^2*y+x^2, x^3-x^2, z^4-x^2-y])
sage: I = Ideal(I.groebner_basis())
sage: S.<z,x,y> = PolynomialRing(QQ,3,order='lex')
sage: J = Ideal(I.transformed_basis('fglm',S))
```
sage: J
Ideal (z^4 + y^3 - y, x^2 + y^3, x*y^3 - y^3, y^4 + y^3)
of Multivariate Polynomial Ring in z, x, y over Rational Field

sage: R.<z,y,x>=PolynomialRing(GF(32003),3,order='lex')
sage: I=Ideal([y^3+x*y*z+y^2*z+x*z^3,3+x*y+x^2*y+y^2*z])
sage: I.transformed_basis('gwalk')
[z*y^2 + y*x^2 + y*x + 3,
  z*x + 8297*y^8*x^2 + 8297*y^8*x + 3556*y^7 - 8297*y^6*x^4 + 15409*y^6*x^3 -
  8297*y^6*x^2 - 15409*y^5*x^3 + 3556*y^5*x^2 + 3556*y^5*x +
  3556*y^4*x^3 + 3556*y^4*x^2 - 10668*y^4 - 10668*y^3*x - 8297*y^2*x^9 - 1185*y^2*x^8 +
  14224*y^2*x^7 - 1185*y^2*x^6 - 8297*y^2*x^5 - 14223*y^2*x^4 - 10666*y^2*x^3 - 10666*y^2*x^2 - 3*y^2*x^1 +
  3*x^5 + 2*x^4 + x^3,
  y^9 - y^7*x^2 - y^7*x - y^6*x^3 - y^6*x^2 - 3*y^6 - 3*y^5*x - y^3*x^7 - 3*y^3*x^6 - 3*y^3*x^5 -
  9*y^3*x^4 - 9*y^3*x^3 - 27*y^3*x^2 - 27*y^3*x - 27*y*x^2 - 27*x]

ALGORITHM:
Uses Singular.

triangular_decomposition(algorithm=None, singular='singular_default')
Decompose zero-dimensional ideal self into triangular sets.
This requires that the given basis is reduced w.r.t. to the lexicographical monomial ordering. If the basis
of self does not have this property, the required Groebner basis is computed implicitly.

INPUT:
  • algorithm - string or None (default: None)

ALGORITHMS:
  • singular:triangL - decomposition of self into triangular systems (Lazard).
  • singular:triangLfak - decom. of self into tri. systems plus factorization.
    - singular:triangM: decomposition of self into triangular systems (Moeller).

OUTPUT: a list \( T \) of lists \( t \) such that the variety of \( \text{self} \) is the union of the varieties of \( t \) in \( L \) and each \( t \)
is in triangular form.

EXAMPLES:

sage: P.<e,d,c,b,a> = PolynomialRing(QQ,5,order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: GB = Ideal(I.groebner_basis('libsingular:stdfglm'))
sage: GB.triangular_decomposition('singular:triangLfak')
[Ideal (a - 1, b - 1, c - 1, d^2 + 3*d + 1, e + d + 3) of Multivariate
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a - 1, b - 1, c^2 + 3*c + 1, d + c + 3, e - 1) of Multivariate
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a - 1, b^2 + 3*b + 1, c + b + 3, d - 1, e - 1) of Multivariate
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a - 1, b^4 + b^3 + b^2 + b + 1, -c + b^2, -d + b^3, e + b^3 + b^2 + b
  - 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^2 + 3*a + 1, b - 1, c - 1, d - 1, e + a + 3) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^2 + 3*a + 1, b + a + 3, c - 1, d - 1, e - 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 - 4*a^3 + 6*a^2 + a + 1, -11*b^2 + 6*b*a^3 - 26*b*a^2 + 41*b*a - 4*b - 8*a^3 + 31*a^2 - 40*a - 24, 11*c + 3*a^3 - 13*a^2 + 26*a - 2, 11*d + 3*a^3 + 13*a^2 + 26*a - 2, -11*e - 11*b + 6*a^3 - 26*a^2 + 41*a - 4) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b - 1, c + a^3 + a^2 + a + 1, -d + a^3, -e + a^2) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b - a, c - a, d^2 + 3*d*a + a^2, e + d + 3*a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b - a, c^2 + 3*c*a + a^2, d + 3*a, e - a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b^2 + 3*b*a + a^2, c + b + 3*a, d - a, e - a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b^3 + 3*b^2*a + b^2 + b*a^3 + b*a + b + a^3 + a^2 + a + 1, c + b^2*a^3 + b^2*a^2 + b^2*a + b^2, -d + b^2*a^2 + b^2*a + b^2, -e + b^2*a^3 - b^2*a - b - a^2 - a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + 6*a^2 - 4*a + 1, -11*b^2 + 6*b*a^3 + 10*b*a^2 + 39*b*a + 2*b + 16*a^3 + 23*a^2 + 104*a - 24, 11*c + 3*a^3 + 5*a^2 + 25*a + 1, 11*d + 3*a^3 + 5*a^2 + 25*a + 1, -11*e - 11*b + 6*a^3 + 10*a^2 + 39*a + 2) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field

sage: R.<x1,x2> = PolynomialRing(QQ, 2, order='lex')
sage: f1 = 1/2*((x1^2 + 2*x1 - 4)*x2^2 + 2*(x1^2 + x1)*x2 + x1^2)
sage: f2 = 1/2*((x1^2 + 2*x1 + 1)*x2^2 + 2*(x1^2 + x1)*x2 - 4*x1^2)
sage: I = Ideal(f1,f2)
sage: I.triangular_decomposition()  
[[Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field],
 [Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field],
 [Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field],
 [Ideal (x2^2 + 4*x2^3 - 6*x2^2 - 20*x2 + 5, 8*x1 - x2^3 + x2^2 + 13*x2 - 5) of Multivariate Polynomial Ring in x1, x2 over Rational Field]]

variety(ring=None)

Return the variety of this ideal.

Given a zero-dimensional ideal \(I(==\text{self})\) of a polynomial ring \(P\) whose order is lexicographic, return the variety of \(I\) as a list of dictionaries with (variable, value) pairs. By default, the variety of the ideal over its coefficient field \(K\) is returned; \text{ring} can be specified to find the variety over a different ring. These dictionaries have cardinality equal to the number of variables in \(P\) and represent assignments of values to these variables such that all polynomials in \(I\) vanish.

If \text{ring} is specified, then a triangular decomposition of \text{self} is found over the original coefficient field \(K\); then the triangular systems are solved using root-finding over \text{ring}. This is particularly useful when \(K\) is \(\mathbb{Q}\) (to allow fast symbolic computation of the triangular decomposition) and \text{ring} is \(\mathbb{R}, \mathbb{A}, \mathbb{C}, \text{or } \mathbb{Qbar}\) (to compute the whole real or complex variety of the ideal).

Note that with \text{ring}=\mathbb{R} or \mathbb{C}, computation is done numerically and potentially inaccurately; in particular, the number of points in the real variety may be miscomputed. With \text{ring}=\mathbb{A} or \mathbb{Qbar}, computation is done exactly (which may be much slower, of course).

INPUT:
• ring - return roots in the ring instead of the base ring of this ideal (default: None)
• proof - return a provably correct result (default: True)

EXAMPLES:

```
sage: K.<w> = GF(27) # this example is from the MAGMA handbook
sage: P.<x, y> = PolynomialRing(K, 2, order='lex')
sage: I = Ideal([x^8 + y + 2, y^6 + x*y^5 + x^2])
sage: I = Ideal(I.groebner_basis()); I
Ideal (x - y^47 - y^45 + y^44 - y^43 + y^41 - y^39 - y^38 - y^37 - y^36 - y^35 - y^34 - y^33 + y^32 - y^31 + y^30 + y^28 + y^27 + y^26 + y^25 - y^23 + y^22 + y^21 - y^19 - y^18 - y^16 + y^15 + y^13 - y^10 + y^9 + y^8 + y^7 - y^6 + y^4 + y^3 + y^2 + y - 1, y^48 + y^41 - y^40 + y^37 - y^36 - y^33 + y^32 - y^29 + y^28 - y^25 + y^24 + y^2 + y + 1) of Multivariate Polynomial Ring in x, y over Finite Field in w of size 3^3
sage: V = I.variety(); V
[{y: w^2 + 2, x: 2*w}, {y: w^2 + w, x: 2*w + 1}, {y: w^2 + 2*w, x: 2*w + 2}]
sage: [f.subs(v) for f in I.gens() for v in V] # check that all polynomials vanish
[0, 0, 0, 0, 0, 0]
sage: [I.subs(v).is_zero() for v in V] # same test, but nicer syntax
[True, True, True]
```

However, we only account for solutions in the ground field and not in the algebraic closure:

```
sage: I.vector_space_dimension()
48
```

Here we compute the points of intersection of a hyperbola and a circle, in several fields:

```
sage: K.<x, y> = PolynomialRing(QQ, 2, order='lex')
sage: I = Ideal([x*y - 1, (x-2)^2 + (y-1)^2 - 1])
sage: I = Ideal(I.groebner_basis()); I
Ideal (x + y^3 - 2*y^2 + 4*y - 4, y^4 - 2*y^3 + 4*y^2 - 4*y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
```

These two curves have one rational intersection:

```
sage: I.variety()
[(y: 1, x: 1)]
```

There are two real intersections:

```
sage: I.variety(ring=RR)
[({y: 0.361103080528647, x: 2.76929235423863}, {y: 1.00000000000000, x: 2.00000000000000})]
sage: I.variety(ring=AA)
[({x: 2.769292354238632?, y: 0.3611030805286474?}, {x: 1, y: 1})]
```

and a total of four intersections:

```
sage: I.variety(ring=CC)
[({y: 0.31944845973567... - 1.6331702409152...*I,}
```

3.1. Multivariate Polynomials and Polynomial Rings 329
Computation over floating point numbers may compute only a partial solution, or even none at all. Notice that x values are missing from the following variety:

```python
sage: R.<x,y> = CC
sage: I = ideal([x^2+y^2-1,x*y-1])
sage: I.variety()
```

This is due to precision error, which causes the computation of an intermediate Groebner basis to fail.

If the ground field’s characteristic is too large for Singular, we resort to a toy implementation:

```python
sage: R.<x,y> = PolynomialRing(GF(2147483659),order='lex')
sage: I=ideal([x^3-2*y^2,3*x+y^4])
sage: I.variety()
```

The dictionary expressing the variety will be indexed by generators of the polynomial ring after changing to the target field. But the mapping will also accept generators of the original ring, or even generator names as strings, when provided as keys:
ALGORITHM:

Uses triangular decomposition.

**vector_space_dimension()**

Return the vector space dimension of the ring modulo this ideal. If the ideal is not zero-dimensional, a TypeError is raised.

ALGORITHM:

Uses Singular.

EXAMPLES:

```python
sage: R.<u,v> = PolynomialRing(QQ)
sage: g = u^4 + v^4 + u^3 + v^3
sage: I = ideal(g) + ideal(g.gradient())
sage: I.dimension()
0
sage: I.vector_space_dimension()
4
```

When the ideal is not zero-dimensional, we return infinity:

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: I = R.ideal(x)
sage: I.dimension()
1
sage: I.vector_space_dimension()
+Infinity
```

**class** `sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal`

```
Bases: `sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr`,
`sage.rings.noncommutative_ideals.Ideal_nc`

Creates a non-commutative polynomial ideal.

INPUT:

- *ring* - the g-algebra to which this ideal belongs
- *gens* - the generators of this ideal
- *coerce* (optional - default True) - generators are coerced into the ring before creating the ideal
- *side* - optional string, either “left” (default) or “twosided”; defines whether this ideal is left of two-sided.

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False) # indirect doctest
sage: I
Left Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(I.gens(),key=str)
```

3.1. Multivariate Polynomials and Polynomial Rings
reduce \((p)\)

Reduce an element modulo a Groebner basis for this ideal.

It returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

NOTE:

There are left and two-sided ideals. Hence,

EXAMPLES:

\[\begin{align*}
\text{sage: } & A.<x,y,z> = \text{FreeAlgebra}(\mathbb{Q}, 3) \\
\text{sage: } & H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) \\
\text{sage: } & I = H.ideal([y^2, x^2, z^2-H.one()]) \\
\text{sage: } & Q = H.quotient(I); Q \\
\text{sage: } & Q.2^2 == Q.one() \quad \# \text{ indirect doctest} \\
\end{align*}\]

True

Here, we see that the relation that we just found in the quotient is actually a consequence of the given relations:

\[\text{sage: } H.2^2-H.one() \text{ in } I.std().gens() \]

True

Here is the corresponding direct test:

\[\text{sage: } I.reduce(z^2) \]

1

res \((\text{length})\)

Compute the resolution up to a given length of the ideal.

NOTE:

Only left syzygies can be computed. So, even if the ideal is two-sided, then the resolution is only one-sided. In that case, a warning is printed.

EXAMPLES:

\[\begin{align*}
\text{sage: } & A.<x,y,z> = \text{FreeAlgebra}(\mathbb{Q}, 3) \\
\text{sage: } & H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) \\
\text{sage: } & H.inject_variables() \\
\text{Defining } & x, y, z \\
\text{sage: } & I = H.ideal([y^2, x^2, z^2-H.one()]) \\
\end{align*}\]
\texttt{sage}: \texttt{I.res(3)}
\texttt{<Resolution>}

\texttt{std()}
Computes a GB of the ideal. It is two-sided if and only if the ideal is two-sided.

EXAMPLES:

\begin{verbatim}
\texttt{sage}: \texttt{A.<x,y,z> = FreeAlgebra(QQ, 3)}
\texttt{sage}: \texttt{H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})}
\texttt{sage}: \texttt{H.inject_variables()}
\texttt{Defining x, y, z}
\texttt{sage}: \texttt{I = H.ideal([y^2, x^2, z^2-H.one()]),coerce=False)}
\texttt{Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}}
\texttt{sage}: \texttt{sorted(I.std().gens(),key=str)}
\texttt{[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]}
\end{verbatim}

If the ideal is a left ideal, then \texttt{std} returns a left Groebner basis. But if it is a two-sided ideal, then the output of \texttt{std} and \texttt{twostd()} coincide:

\begin{verbatim}
\texttt{sage}: \texttt{JL = H.ideal([x^3, y^3, z^3 - 4*z])}
\texttt{sage}: \texttt{JL.gens(),key=str)}
\texttt{[x^3, y^3, z^3 - 4*z]}
\texttt{sage}: \texttt{JL.std() \#random}
\texttt{Left Ideal (z^3 - 4*z, y*z^2 - 2*y*z, x*z^2 + 2*x*z, 2*x*y*z - z^2 - 2*z, y^3, x^3) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}}
\texttt{sage}: \texttt{sorted(JL.gens(),key=str)}
\texttt{[2*x*y*z - z^2 - 2*z, x*z^2 + 2*x*z, x^3, y*z^2 - 2*y*z, y^3, z^3 - 4*z]}
\texttt{sage}: \texttt{JT = H.ideal([x^3, y^3, z^3 - 4*z], side='twosided')}
\texttt{Twosided Ideal (x^3, y^3, z^3 - 4*z) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}}
\texttt{sage}: \texttt{sorted(JT.gens(),key=str)}
\texttt{[x^3, y^3, z^3 - 4*z]}
\texttt{sage}: \texttt{JT.std() \#random}
\texttt{Twosided Ideal (z^3 - 4*z, y*z^2 - 2*y*z, x*z^2 + 2*x*z, y^2*z - 2*y^2, x^3) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}}
\texttt{sage}: \texttt{sorted(JT.std().gens(),key=str)}
\texttt{[2*x*y*z - z^2 - 2*z, x*z^2 + 2*x*z, x^3, y*z^2 - 2*y*z, y^2*z - 2*y^2, y^3, z^3 - 4*z]}
\texttt{sage}: \texttt{JT.std() == JL.twostd()}
\texttt{True}
\end{verbatim}

ALGORITHM: Uses Singular’s \texttt{std} command

\texttt{syzygy_module()}
Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.
NOTE:

Only left syzygies can be computed. So, even if the ideal is two-sided, then the syzygies are only one-sided. In that case, a warning is printed.

EXAMPLES:

```sage
A.<x,y,z> = FreeAlgebra(QQ, 3)
H = A.g_algebra([y*x*x*y-z, z*x*x+z+2*x, z*y*y*z-2*y])
H.inject_variables()
Defining x, y, z
I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
G = vector(I.gens()); G
D...: UserWarning: You are constructing a free module over a noncommutative ring. Sage does not have a concept of left/right and both sided modules, so be careful. It’s also not guaranteed that all multiplications are done from the right side.
D...: UserWarning: You are constructing a free module over a noncommutative ring. Sage does not have a concept of left/right and both sided modules, so be careful. It’s also not guaranteed that all multiplications are done from the right side.
(y^2, x^2, z^2 - 1)
sage: M = I.syzygy_module(); M
```

```
[2 - 8*z - 15 0 y^2]
[ 0 -z^2 + 8*z - 15 x^2]
[2*z + 15*x^2  2*z^2 + 8*y^2*z - 15*y^2  -4*x*y*z + 2*z^2 + 2*z]
[282*x*z - 360*x -y^3*z^2 + 7*y^3*z - 12*y^3  6*y*z^2]
[3*z + 12*x^3 -x*y^2*z^2 + 9*x*y^2*z - 4*y*z^3 + 20*x^2*2*y - 72*x*z^2 -
52*y*z^2 - 224*y^2*z + 320*y -6*x*z^2]
[x^2*y^2*z + 4*x^2*y^2 - 8*x*y*z^2 - 48*x*y*z + 12*z^3 - 64*x*y + 108*z^2 +
312*z + 288 -y^4*z + 4*y^4]
[2*x^3*y*z + 8*x^3*y + 9*x^2*z + 27*x^2 - 12*y^3 -
2*x*y^3*z + 8*x*y^3 - 12*y^2*z^2 + 99*y^2*z - 195*y^2 -
36*x*y*z + 24*z^2 + 18*z]
[4*z + 4*x^4 -x^2*y^2*z + 4*x^2*y^2 - 4*x*y*z^2 + 32*x*y*z - 6*z^3 -
64*x*y + 66*z^2 - 240*z + 288 -x^4]}
```

334 Chapter 3. Multivariate Polynomials
sage: M*G
(0, 0, 0, 0, 0, 0, 0, 0, 0)

ALGORITHM: Uses Singular’s syz command

twostd()
Computes a two-sided GB of the ideal (even if it is a left ideal).
EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)
sage: I.twostd() #random
TwosidedIdeal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of...

sage: sorted(I.twostd().gens(),key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]

ALGORITHM: Uses Singular’s twostd command

class sage.rings.polynomial.multi_polynomial_ideal.RequireField

Bases: sage.misc.method_decorator.MethodDecorator

Decorator which throws an exception if a computation over a coefficient ring which is not a field is attempted.

Note: This decorator is used automatically internally so the user does not need to use it manually.

sage.rings.polynomial.multi_polynomial_ideal.is_MPolynomialIdeal(x)

Return True if the provided argument x is an ideal in the multivariate polynomial ring.

INPUT:

• x - an arbitrary object

EXAMPLES:

sage: from sage.rings.polynomial.multi_polynomial_ideal import is_MPolynomialIdeal
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = [x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y]

Sage distinguishes between a list of generators for an ideal and the ideal itself. This distinction is inconsistent with Singular but matches Magma’s behavior.

sage: is_MPolynomialIdeal(I)
False
sage: I = Ideal(I)
sage: is_MPolynomialIdeal(I)
True

sage.rings.polynomial.multi_polynomial_ideal.require_field
alias of RequireField

3.1. Multivariate Polynomials and Polynomial Rings 335
3.1.7 Polynomial Sequences

We call a finite list of polynomials a Polynomial Sequence.

Polynomial sequences in Sage can optionally be viewed as consisting of various parts or sub-sequences. These kind of polynomial sequences which naturally split into parts arise naturally for example in algebraic cryptanalysis of symmetric cryptographic primitives. The most prominent examples of these systems are: the small scale variants of the AES [CMR2005] (cf. sage.crypto.mq.sr.SR()) and Flurry/Curry [BPW06]. By default, a polynomial sequence has exactly one part.

AUTHORS:

- Martin Albrecht (2007ff): initial version
- Martin Albrecht (2009): refactoring, clean-up, new functions
- Martin Albrecht (2011): refactoring, moved to sage.rings.polynomial
- Alex Raichev (2011-06): added algebraic_dependence()
- Charles Bouillaguet (2013-1): added solve()

EXAMPLES:

As an example consider a small scale variant of the AES:

```python
sage: sr = mq.SR(2,1,2,4, gf2=True, polybori=True)
sage: sr
SR(2,1,2,4)
```

We can construct a polynomial sequence for a random plaintext-ciphertext pair and study it:

```python
sage: set_random_seed(1)
sage: F,s = sr.polynomial_system()
sage: F
Polynomial Sequence with 112 Polynomials in 64 Variables

sage: r2 = F.part(2); r2
(w200 + k100 + x100 + x102 + x103,
w201 + k101 + x100 + x101 + x103 + 1,
w202 + k102 + x100 + x101 + x102 + 1,
w203 + k103 + x101 + x102 + x103,
w210 + k110 + x110 + x112 + x113,
w211 + k111 + x110 + x111 + x113 + 1,
w212 + k112 + x110 + x111 + x112 + 1,
w213 + k113 + x111 + x112 + x113,
x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100,
x100*w100 + x100*w101 + x101*w100 + x101*w103 + x102*w102 + x103*w101,
x100*w101 + x100*w102 + x101*w100 + x101*w101 + x102*w100 + x102*w103 + x103*w102,
x100*w100 + x100*w102 + x100*w103 + x101*w100 + x101*w101 + x102*w102 + x103*w100 +
\rightarrow x100,
x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 +
\rightarrow x101,
x100*w100 + x100*w102 + x101*w100 + x101*w102 + x101*w103 + x102*w100 + x102*w101 +
\rightarrow x103*w102 + x102,
x100*w101 + x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w103 + x103,
x100*w100 + x100*w101 + x100*w103 + x101*w101 + x102*w100 + x102*w102 + x103*w100 +
\rightarrow w100,
x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w100 + x103*w102 +
\rightarrow w101,
x100*w100 + x100*w101 + x100*w102 + x101*w102 + x102*w100 + x102*w101 + x102*w103 +
\rightarrow x103*w101 + w102,
```

336 Chapter 3. Multivariate Polynomials
We separate the system in independent subsystems:

```python
sage: C = Sequence(r2).connected_components(); C

[[w213 + k113 + x111 + x112 + x113,
  w212 + k112 + x110 + x111 + x112 + 1,
  w211 + k111 + x110 + x111 + x113 + 1,
  w210 + k110 + x110 + x112 + x113,
  x110*w112 + x111*w111 + x112*w110 + x113*w113 + 1],
 [w111,        x110*w111 + x111*w110 + x111*w112 + x112*w110 + x113*w113 + 1,
  x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x113*w110,
  x110*w110 + x110*w112 + x111*w110 + x111*w113 + x112*w110 + x112*w112 + x113*w110 + 1],
 [w110,        x110*w112 + x111*w110 + x111*w111 + x111*w113 + x112*w111 + x113*w110 + x113*w112 + 1,
  x110*w111 + x110*w112 + x111*w110 + x111*w113 + x112*w112 + x113*w111 + 1],
 [w100,        x110*w110 + x110*w112 + x111*w110 + x111*w112 + x112*w110 + x113*w112,
  x110*w110 + x110*w112 + x111*w110 + x111*w113 + x112*w110 + x112*w112 + x113*w110 + 1],
 [w100 + w101 + x101 + x102 + 1],
 [w202 + k102 + x100 + x101 + x102 + 1,
  w201 + k101 + x100 + x101 + x103 + 1,
  w200 + k100 + x100 + x102 + x103,
  x100*w102 + x101*w101 + x102*w100 + x103*w103 + 1,
  x100*w102 + x101*w100 + x102*w101 + x101*w103 + 102*w101 + x103*w100 + x103*w102 + 1],
 [w101,        x100*w101 + x101*w100 + x102*w102 + x103*w103 + 103*w101 + x103*w103 + 103,
  x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 + 1],
 [w100,        x100*w101 + x101*w100 + x102*w102 + x103*w103 + 103*w101 + x103*w103 + 103,
  x100*w101 + x100*w102 + x101*w100 + x101*w101 + x102*w100 + x102*w103 + x103*w102 + 1],
```
and compute the coefficient matrix:

```python
sage: A, v = Sequence(r2).coefficient_matrix()
sage: A.rank()
32
```

Using these building blocks we can implement a simple XL algorithm easily:

```python
sage: sr = mq.SR(1,1,1,4, gf2=True, polybori=True, order='lex')
sage: F, s = sr.polynomial_system()
sage: monomials = [a*b for a in F.variables() for b in F.variables() if a<b]
sage: len(monomials)
190
sage: F2 = Sequence(map(mul, cartesian_product_iterator((monomials, F))))
sage: A, v = F2.coefficient_matrix(sparse=False)
sage: A.echelonize()
sage: A
6840 x 4474 dense matrix over Finite Field of size 2 (use the '.str()' method to see the entries)
sage: A.rank()
4056
sage: A[4055]*v
(k001*k003)
```

Note: In many other computer algebra systems (cf. Singular) this class would be called `Ideal` but an ideal is a very distinct object from its generators and thus this is not an ideal in Sage.

Classes

```python
sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence(arg1, arg2=None, immutable=False, cr=False, cr_str=None)
```

Construct a new polynomial sequence object.

INPUT:

- `arg1` - a multivariate polynomial ring, an ideal or a matrix
• arg2 - an iterable object of parts or polynomials (default: None)
 – immutable - if True the sequence is immutable (default: False)
 – cr - print a line break after each element (default: False)
 – cr_str - print a line break after each element if 'str' is called (default: None)

EXAMPLES:

```python
sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
sage: I = sage.rings.ideal.Katsura(P)
```

If a list of tuples is provided, those form the parts:

```python
sage: F = Sequence([[I.gens(),I.gens()], I.ring()]); F # indirect doctest
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c,
a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
sage: F.nparts()
2
```

If an ideal is provided, the generators are used:

```python
sage: Sequence(I)
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
```

If a list of polynomials is provided, the system has only one part:

```python
sage: F = Sequence(I.gens(), I.ring()); F
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
sage: F.nparts()
1
```

We test that the ring is inferred correctly:

```python
sage: P.<x,y,z> = GF(2)[]
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
sage: PolynomialSequence([1,x,y]).ring()
Multivariate Polynomial Ring in x, y over Finite Field of size 2
sage: PolynomialSequence([[1,x,y], [0]]).ring()
Multivariate Polynomial Ring in x, y over Finite Field of size 2
```
class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic(parts, ring, immutable=False, cr=False, cr_str=None)

Construct a new system of multivariate polynomials.

INPUT:

• part - a list of lists with polynomials
• ring - a multivariate polynomial ring
• immutable - if True the sequence is immutable (default: False)
• cr - print a line break after each element (default: False)
• cr_str - print a line break after each element if ‘str’ is called (default: None)

EXAMPLES:

sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
sage: I = sage.rings.ideal.Katsura(P)
sage: Sequence([I.gens()], I.ring()) # indirect doctest
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

If an ideal is provided, the generators are used:

sage: Sequence(I)
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

If a list of polynomials is provided, the system has only one part:

sage: Sequence(I.gens(), I.ring())
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

algebraic_dependence()

Returns the ideal of annihilating polynomials for the polynomials in self, if those polynomials are algebraically dependent. Otherwise, returns the zero ideal.

OUTPUT:

If the polynomials f_1, \ldots, f_r in self are algebraically dependent, then the output is the ideal $\{F \in K[T_1, \ldots, T_r] : F(f_1, \ldots, f_r) = 0\}$ of annihilating polynomials of f_1, \ldots, f_r. Here K is the coefficient ring of polynomial ring of f_1, \ldots, f_r and T_1, \ldots, T_r are new indeterminates. If f_1, \ldots, f_r are algebraically independent, then the output is the zero ideal in $K[T_1, \ldots, T_r]$.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ)
sage: S = Sequence([x, x*y])
sage: I = S.algebraic_dependence(); I
Ideal (0) of Multivariate Polynomial Ring in T0, T1 over Rational Field
sage: R.<x,y> = PolynomialRing(QQ)
sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])
sage: I = S.algebraic_dependence(); I
Ideal (16 + 32*T2 - 8*T0^2 + 24*T2^2 - 8*T0^2*T2 + 8*T2^3 + 9*T0^4 - 2*T0^2*T2^2 + 2*T2^4 - T0^4*T1 + 8*T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) of
Multivariate Polynomial Ring in T0, T1, T2 over Rational Field
sage: [F(S) for F in I.gens()]
[0]

sage: R.<x,y> = PolynomialRing(GF(7))
sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])
sage: I = S.algebraic_dependence(); I
Ideal (2 - 3*T2 - T0^2 + 3*T2^2 - T0^2*T2 + T2^3 + 2*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) of Multivariate Polynomial Ring in T0, T1, T2 over Finite Field of size 7
sage: [F(S) for F in I.gens()]
[0]

Note: This function’s code also works for sequences of polynomials from a univariate polynomial ring, but i don’t know where in the Sage codebase to put it to use it to that effect.

AUTHORS:

• Alex Raichev (2011-06-22)

coefficient_matrix(sparse=True)
Return tuple \((A, v)\) where \(A\) is the coefficient matrix of this system and \(v\) the matching monomial vector. Thus value of \(A[i, j]\) corresponds the coefficient of the monomial \(v[j]\) in the \(i\)-th polynomial in this system.

Monomials are order w.r.t. the term ordering of \(\text{self.ring()}\) in reverse order, i.e. such that the smallest entry comes last.

INPUT:

• sparse - construct a sparse matrix (default: True)

EXAMPLES:

sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
sage: I = sage.rings.ideal.Katsura(P)
sage: I.gens()
[a + 2*b + 2*c + 2*d - 1,
 a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
 2*a*b + 2*b*c + 2*c*d - b,
 b^2 + 2*a*c + 2*b*d - c]
sage: F = Sequence(I)
sage: A, v = F.coefficient_matrix()
sage: A
[0 0 0 0 0 0 0 0 0 1 2 2 2 126]
[1 0 2 0 0 2 0 0 2 126 0 0 0 0]
[0 2 0 0 2 0 0 2 0 0 126 0 0 0]
[0 0 1 2 0 0 2 0 0 0 0 126 0 0]
sage: v
[a^2]
connected_components()

Split the polynomial system in systems which do not share any variables.

EXAMPLES:

As an example consider one part of AES, which naturally splits into four subsystems which are independent:

```sage
sage: Fz = Sequence(Fz.part(2))
sage: Fz.connected_components()
[Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables]
```

collection_graph()

Return the graph which has the variables of this system as vertices and edges between two variables if they appear in the same polynomial.

EXAMPLES:

```sage
sage: F = Sequence([x*y + y + 1, z + 1])
sage: F.collection_graph()
Graph on 3 vertices
```

grobner_basis(*args, **kwargs)

Compute and return a Groebner basis for the ideal spanned by the polynomials in this system.

INPUT:

• `args` - list of arguments passed to `MPolynomialIdeal.groebner_basis` call
• `kwargs` - dictionary of arguments passed to `MPolynomialIdeal.groebner_basis` call

EXAMPLES:
ideal()

Return ideal spanned by the elements of this system.

EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system()
sage: P = F.ring()
sage: I = F.ideal()
sage: I.elimination_ideal(P('s000*s001*s002*s003*w100*w101*w102*w103*x100*x101*x102*x103'))
Ideal (k002 + (a^3 + a + 1)*k003 + (a^2 + 1),
k001 + (a^3)*k003, k000 + (a)*k003 + (a^2),
k103 + k003 + (a^2 + a + 1),
k102 + (a^3 + a + 1)*k003 + (a + 1),
k101 + (a^3)*k003 + (a^2 + a + 1),
k100 + (a)*k003 + (a),
k003^2 + (a)*k003 + (a^2))
of Multivariate Polynomial Ring in k100, k101, k102, k103, x100, x101, x102, x103,
\rightarrow w100, w101, w102, w103, s000, s001, s002, s003, k000, k001, k002, k003 over
\rightarrow Finite Field in a of size 2^4
```

is_groebner(singular=Singular)

Returns True if the generators of this ideal (self.gens()) form a Groebner basis.

Let I be the set of generators of this ideal. The check is performed by trying to lift $Syz(LM(I))$ to $Syz(I)$ as I forms a Groebner basis if and only if for every element S in $Syz(LM(I))$:

$$ S \ast G = \sum_{i=0}^{m} h_i g_i - \cdots > G 0. $$

EXAMPLES:

```python
sage: R.<a,b,c,d,e,f,g,h,i,j> = PolynomialRing(GF(127),10)
sage: I = sage.rings.ideal.Cyclic(R,4)
sage: I.basis.is_groebner()
False
sage: I2 = Ideal(I.groebner_basis())
sage: I2.basis.is_groebner()
True
```

maximal_degree()

Return the maximal degree of any polynomial in this sequence.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(GF(7))
sage: F = Sequence([x*y + x, x])
sage: F.maximal_degree()
2
sage: P.<x,y,z> = PolynomialRing(GF(7))
sage: F = Sequence([], universe=P)
```

3.1. Multivariate Polynomials and Polynomial Rings 343
```
sage: F.maximal_degree()
-1

monomials()
Return an unordered tuple of monomials in this polynomial system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: len(F.monomials())
49
```

nmonomials()
Return the number of monomials present in this system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.nmonomials()
49
```

nparts()
Return number of parts of this system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.nparts()
4
```

nvariables()
Return number of variables present in this system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: F.nvariables()
20
```

part(i)
Return i-th part of this system.

EXAMPLES:
```
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F,s = sr.polynomial_system()
sage: R0 = F.part(1)
sage: R0
(k000^2 + k001, k001^2 + k002, k002^2 + k003, k003^2 + k000)
```

parts()
Return a tuple of parts of this system.

EXAMPLES:
reduced()

If this sequence is \((f_1, ..., f_n)\) then this method returns \((g_1, ..., g_s)\) such that:

- \((f_1, ..., f_n) = (g_1, ..., g_s)\)
- \(LT(g_i) \neq LT(g_j)\) for all \(i \neq j\)
- \(LT(g_i)\) does not divide \(m\) for all monomials \(m\) of \(\{g_1, ..., g_{i-1}, g_{i+1}, ..., g_s\}\)
- \(LC(g_i) = 1\) for all \(i\) if the coefficient ring is a field.

EXAMPLES:

```
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: F = Sequence([z+x+y^3,z+y^3,z+x*y])
sage: F.reduced()
[y^3 + z, x*y + z, x*z - z]
```

Note that tail reduction for local orderings is not well-defined:

```
sage: R.<x,y,z> = PolynomialRing(QQ, order='negdegrevlex')
sage: F = Sequence([z+x+y^3,z+y^3,z+x*y])
sage: F.reduced()
[z + x*y, x*y - y^3, x^2*y - y^3]
```

A fixed error with nonstandard base fields:

```
sage: R.<t>=QQ['t']
sage: K.<x,y>=R.fraction_field()['x,y']
sage: I=t*x*K
sage: I.basis.reduced()
[x]
```

The interreduced basis of 0 is 0:

```
sage: P.<x,y,z> = GF(2)[]
sage: Sequence([P(0)]).reduced()
[0]
```

Leading coefficients are reduced to 1:

```
sage: P.<x,y> = QQ[]
sage: Sequence([2*x,y]).reduced()
[x, y]
sage: P.<x,y> = CC[]
sage: Sequence([2*x,y]).reduced()
[x, y]
```

**ALGORITHM:**

Uses Singular’s interred command or `sage.rings.polynomial.toy_buchberger.inter_reduction()` if conversion to Singular fails.
ring()
Return the polynomial ring all elements live in.

EXAMPLES:

```sage
sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block')
sage: F, s = sr.polynomial_system()
sage: print(F.ring().repr_long())
Polynomial Ring
Base Ring : Finite Field of size 2
 Size : 20 Variables
 Block 0 : Ordering : deglex
 Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, ...
 ↪ w101, w102, w103, s000, s001, s002, s003
 Block 1 : Ordering : deglex
 Names : k000, k001, k002, k003
```

subs(*args, **kwargs)
Substitute variables for every polynomial in this system and return a new system. See MPolynomial.subs for calling convention.

INPUT:

• *args - arguments to be passed to MPolynomial.subs
• **kwargs - keyword arguments to be passed to MPolynomial.subs

EXAMPLES:

```sage
sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system(); F
Polynomial Sequence with 40 Polynomials in 20 Variables
sage: F = F.subs(s); F
Polynomial Sequence with 40 Polynomials in 16 Variables
```

universe()
Return the polynomial ring all elements live in.

EXAMPLES:

```sage
sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block')
sage: F, s = sr.polynomial_system()
sage: print(F.ring().repr_long())
Polynomial Ring
Base Ring : Finite Field of size 2
 Size : 20 Variables
 Block 0 : Ordering : deglex
 Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, ...
 ↪ w101, w102, w103, s000, s001, s002, s003
 Block 1 : Ordering : deglex
 Names : k000, k001, k002, k003
```

variables()
Return all variables present in this system. This tuple may or may not be equal to the generators of the ring of this system.

EXAMPLES:

```sage
sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block')
sage: F, s = sr.polynomial_system()
```
class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2(parts, ring, immutable=False, cr=False, cr_str=None)

Polynomial Sequences over $F_2$.

eliminate_linear_variables(maxlength=+Infinity, skip=None, return_reductors=False, use_polybori=False)

Return a new system where linear leading variables are eliminated if the tail of the polynomial has length at most maxlength.

INPUT:

*maxlength - an optional upper bound on the number of monomials by which a variable is replaced. If maxlength==+Infinity then no condition is checked. (default: +Infinity).

*skip - an optional callable to skip eliminations. It must accept two parameters and return either True or False. The two parameters are the leading term and the tail of a polynomial (default: None).

*return_reductors - if True the list of polynomials with linear leading terms which were used for reduction is also returned (default: False).

*use_polybori - if True then polybori.ll.eliminate is called. While this is typically faster what is implemented here, it is less flexible (skip` is not supported) and may increase the degree (default: False)

OUTPUT:

When return_reductors==True, then a pair of sequences of boolean polynomials are returned, along with the promises that:

1. The union of the two sequences spans the same boolean ideal as the argument of the method

2. The second sequence only contains linear polynomials, and it forms a reduced groebner basis (they all have pairwise distinct leading variables, and the leading variable of a polynomial does not occur anywhere in other polynomials).

3. The leading variables of the second sequence do not occur anywhere in the first sequence (these variables have been eliminated).

When return_reductors==False, only the first sequence is returned.

EXAMPLES:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: F = Sequence([c + d + b + 1, a + c + d, a+b + c, b*c+d + c])
sage: F.eliminate_linear_variables() # everything vanishes
[]
sage: F.eliminate_linear_variables(maxlength=2)
[b + c + d + 1, b*c + b*d + c, b*c*d + c]
sage: F.eliminate_linear_variables(skip=lambda lm, tail: str(lm)=='a')
[a + c + d, a*c + a*d + a + c, c*d + c]
```
The list of reductors can be requested by setting `return_reductors` to `True`:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: F = Sequence([a + b + d, a + b + c])
sage: F,R = F.eliminate_linear_variables(return_reductors=True)
sage: F
[]
sage: R
[a + b + d, c + d]
```

If the input system is detected to be inconsistent then `[1]` is returned and the list of reductors is empty:

```python
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y*z+x*y+z*y+x*z, x+y+z+1, x+y+z])
sage: S.eliminate_linear_variables()
[1]
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y*z+x*y+z*y+x*z, x+y+z+1, x+y+z])
sage: S.eliminate_linear_variables(return_reductors=True)
([1], [])
```

**Note:** This is called “massaging” in [CBJ07].

REFERENCES:

**reduced()**

If this sequence is \((f_1, \ldots, f_n)\) this method returns \((g_1, \ldots, g_s)\) such that:

- \(<f_1, \ldots, f_n> = <g_1, \ldots, g_s>
- \(LT(g_i)! = LT(g_j)\) for all \(i! = j\)
- \(LT(g_i)\) does not divide \(m\) for all monomials \(m\) of \(g_1, \ldots, g_i-1, g_i+1, \ldots, g_s\)

**EXAMPLES:**

```python
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: F.reduced()
[k100 + 1, k101 + k001 + 1, k102, k103 + 1, \ldots, s002, s003 + k001 + 1, k000 + 1, k002 + 1, k003 + 1]
```

**solve(algorithm='polybori', n=1, eliminate_linear_variables=True, verbose=False, **kwds)**

Find solutions of this boolean polynomial system.

This function provides a unified interface to several algorithms dedicated to solving systems of boolean equations. Depending on the particular nature of the system, some might be much faster than some others.

**INPUT:**

- `self` - a sequence of boolean polynomials
- `algorithm` - the method to use. Possible values are `polybori`, `sat` and `exhaustive_search`. (default: `polybori`, since it is always available)
- `n` - number of solutions to return. If `n == +Infinity` all solutions are returned. If `n < \infty` then `n` solutions are returned if the equations have at least `n` solutions. Otherwise, all the solutions are returned. (default: `1`)
• `eliminate_linear_variables` - whether to eliminate variables that appear linearly. This reduces the number of variables (makes solving faster a priori), but is likely to make the equations denser (may make solving slower depending on the method).

• `verbose` - whether to display progress and (potentially) useful information while the computation runs. (default: False)

EXAMPLES:

Without argument, a single arbitrary solution is returned:

```python
sage: from sage.doctest.fixtures import reproducible_repr
sage: R.<x,y,z> = BooleanPolynomialRing()

sage: S = Sequence([x*y+z, y*z+x, x+y+z+1])

sage: sol = S.solve()

sage: print(reproducible_repr(sol))
[x: 0, y: 1, z: 0]
```

We check that it is actually a solution:

```python
sage: S.subs(sol[0])
[0, 0, 0]
```

We obtain all solutions:

```python
sage: sols = S.solve(n=Infinity)

sage: print(reproducible_repr(sols))
[[x: 0, y: 1, z: 0], [x: 1, y: 1, z: 1]]

sage: [S.subs(x) for x in sols]
[[0, 0, 0], [0, 0, 0]]
```

We can force the use of exhaustive search if the optional package FES is present:

```python
sage: sol = S.solve(algorithm='exhaustive_search') # optional - FES

sage: print(reproducible_repr(sol)) # optional - FES
[x: 1, y: 1, z: 1]

sage: S.subs(sol[0])
[0, 0, 0]
```

And we may use SAT-solvers if they are available:

```python
sage: sol = S.solve(algorithm='sat') # optional - cryptominisat

sage: print(reproducible_repr(sol)) # optional - cryptominisat
[x: 0, y: 1, z: 0]

sage: S.subs(sol[0])
[0, 0, 0]
```

```python
class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2e(parts, ring, immutable=False, cr=False, cr_str=None)

Bases: sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic

PolynomialSequence over \(\mathbb{F}_2^e\), i.e extensions over GF(2).

weil_restriction()
 Project this polynomial system to \(\mathbb{F}_2\).
```

3.1. Multivariate Polynomials and Polynomial Rings
That is, compute the Weil restriction of scalars for the variety corresponding to this polynomial system and express it as a polynomial system over $\mathbb{F}_2$.

**EXAMPLES:**

```python
sage: k.<a> = GF(2^2)
sage: P.<x,y> = PolynomialRing(k,2)
sage: a = P.base_ring().gen()
sage: F = Sequence([x*y + 1, a*x + 1], P)
sage: F2 = F.weil_restriction()
sage: F2
[x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 + x0, x1^2 + x1, y0^2 + y0, y1^2 + y1]
```

Another bigger example for a small scale AES:

```python
sage: sr = mq.SR(1,1,1,4,gf2=False)
sage: F,s = sr.polynomial_system(); F
Polynomial Sequence with 40 Polynomials in 20 Variables
sage: F2 = F.weil_restriction(); F2
Polynomial Sequence with 240 Polynomials in 80 Variables
```

```python
sage.rings.polynomial.multi_polynomial_sequence.is_PolynomialSequence(F)
Return True if F is a PolynomialSequence.

INPUT:

- `F` - anything

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ)
sage: I = [[x^2 + y^2], [x^2 - y^2]]
sage: F = Sequence(I, P); F
[x^2 + y^2, x^2 - y^2]
sage: from sage.rings.polynomial.multi_polynomial_sequence import is_PolynomialSequence
sage: is_PolynomialSequence(F)
True
```

3.1.8 Multivariate Polynomials via libSINGULAR

This module implements specialized and optimized implementations for multivariate polynomials over many coefficient rings, via a shared library interface to SINGULAR. In particular, the following coefficient rings are supported by this implementation:

- the rational numbers \mathbb{Q},
- the ring of integers \mathbb{Z},
- $\mathbb{Z}/n\mathbb{Z}$ for any integer n,
- finite fields \mathbb{F}_{p^n} for p prime and $n > 0$,
- and absolute number fields $\mathbb{Q}(\alpha)$.

AUTHORS:
The libSINGULAR interface was implemented by
• Martin Albrecht (2007-01): initial implementation
• Joel Mohler (2008-01): misc improvements, polishing
• Martin Albrecht (2008-08): added $\mathbb{Q}(\alpha)$ and \mathbb{Z} support
• Simon King (2009-04): improved coercion
• Martin Albrecht (2009-05): added $\mathbb{Z}/n\mathbb{Z}$ support, refactoring
• Martin Albrecht (2009-06): refactored the code to allow better re-use
• Simon King (2011-03): Use a faster way of conversion from the base ring.
• Volker Braun (2011-06): Major cleanup, refcount singular rings, bugfixes.

TODO:
• implement Real, Complex coefficient rings via libSINGULAR

EXAMPLES:
We show how to construct various multivariate polynomial rings:

```
sage: P.<x,y,z> = QQ[]
sage: P
Multivariate Polynomial Ring in x, y, z over Rational Field

sage: f = 27/113 * x^2 + y*z + 1/2; f
27/113*x^2 + y*z + 1/2

sage: P.term_order()
Degree reverse lexicographic term order

sage: P = PolynomialRing(GF(127),3,names='abc', order='lex')
sage: P
Multivariate Polynomial Ring in a, b, c over Finite Field of size 127

sage: a,b,c = P.gens()
sage: f = 57 * a^2*b + 43 * c + 1; f
57*a^2*b + 43*c + 1

sage: P.term_order()
Lexicographic term order

sage: z = QQ['z'].0
sage: K.<s> = NumberField(z^2 - 2)
sage: P.<x,y> = PolynomialRing(K, 2)
sage: 1/2*s*x^2 + 3/4*s
(1/2*s)*x^2 + (3/4*s)

sage: P.<x,y,z> = ZZ[]; P
Multivariate Polynomial Ring in x, y, z over Integer Ring

sage: P.<x,y,z> = Zmod(2^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1024

sage: P.<x,y,z> = Zmod(3^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 59049

sage: P.<x,y,z> = Zmod(2^100)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1267650600228229401496703205376
```
We construct the Frobenius morphism on $\mathbb{F}_5[x, y, z]$ over \mathbb{F}_5:

```python
sage: R.<x,y,z> = PolynomialRing(GF(5), 3)
sage: frob = R.hom([x^5, y^5, z^5])
sage: frob(x^2 + 2*y - z^4)
-z^20 + x^10 + 2*y^5
sage: frob((x + 2*y)^3)
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
sage: (x^5 + 2*y^5)^3
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
```

We make a polynomial ring in one variable over a polynomial ring in two variables:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: S.<t> = PowerSeriesRing(R)
sage: t*(x+y)
(x + y)*t
```

class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular

```
Bases: sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic

Construct a multivariate polynomial ring subject to the following conditions:

INPUT:

- **base_ring** - base ring (must be either GF(q), ZZ, ZZ/nZZ, QQ or absolute number field)

- **n** - number of variables (must be at least 1)

- **names** - names of ring variables, may be string of list/tuple

- **order** - term order (default: degrevlex)

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: P
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f = 27/113 * x^2 + y*z + 1/2; f
27/113*x^2 + y*z + 1/2
sage: P.term_order()
Degree reverse lexicographic term order
sage: P = PolynomialRing(GF(127),3,names='abc', order='lex')
```
sage: P
Multivariate Polynomial Ring in a, b, c over Finite Field of size 127

sage: a, b, c = P.gens()

sage: f = 57 * a^2*b + 43 * c + 1; f
57*a^2*b + 43*c + 1

sage: P.term_order()
Lexicographic term order

sage: z = QQ['z']().0  

sage: K.<s> = NumberField(z^2 - 2)

sage: P.<x,y> = PolynomialRing(K, 2)

sage: 1/2*s*x^2 + 3/4*s
(1/2*s)*x^2 + (3/4*s)

sage: P.<x,y,z> = ZZ[]; P
Multivariate Polynomial Ring in x, y, z over Integer Ring

sage: P.<x,y,z> = Zmod(2^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1024

sage: P.<x,y,z> = Zmod(3^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 59049

sage: P.<x,y,z> = Zmod(2^100)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1267650600228229401496703205376

sage: P.<x,y,z> = Zmod(2521352)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 2521352

sage: type(P)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'>

sage: P.<x,y,z> = Zmod(25213521351515232)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 25213521351515232

sage: type(P)
<class 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_polydict_with_category'>

sage: P.<x,y,z> = PolynomialRing(Integers(2^32), order='lex')

sage: P(2^32-1)
4294967295

Element
   alias of MPolynomial_libsingular

gen(n=0)
   Returns the n-th generator of this multivariate polynomial ring.

INPUT:
   *n – an integer >= 0

EXAMPLES:
ideal(*gens, **kwds)
Create an ideal in this polynomial ring.

INPUT:

• *gens - list or tuple of generators (or several input arguments)
• coerce - bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: sage.rings.ideal.Katsura(P)
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y) of
 Multivariate Polynomial Ring in x, y, z over Rational Field
sage: P.ideal([x + 2*y + 2*z -1, 2*x*y + 2*y*z - y, x^2 + 2*y^2 + 2*z^2 - x])
Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 + 2*y^2 + 2*z^2 - x) of
 Multivariate Polynomial Ring in x, y, z over Rational Field
```

monomial_all_divisors(t)
Return a list of all monomials that divide t.

Coefficients are ignored.

INPUT:

• t - a monomial

OUTPUT: a list of monomials

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
```

ALGORITHM: addwithcarry idea by Toon Segers

monomial_divides(a, b)
Return False if a does not divide b and True otherwise.

Coefficients are ignored.

INPUT:

• a – monomial
• b – monomial
EXAMPLES:

```
sage: P.<x,y,z> = QQ[]
sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
False
```

**monomial_lcm**\((f, g)\)

LCM for monomials. Coefficients are ignored.

**INPUT:**
- \(f\) - monomial
- \(g\) - monomial

**EXAMPLES:**

```
sage: P.<x,y,z> = QQ[]
sage: P.monomial_lcm(3/2*x*y, x)
x*y
```

**monomial_pairwise_prime**\((g, h)\)

Return True if \(h\) and \(g\) are pairwise prime. Both are treated as monomials.

Coefficients are ignored.

**INPUT:**
- \(h\) - monomial
- \(g\) - monomial

**EXAMPLES:**

```
sage: P.<x,y,z> = QQ[]
sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True
sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False
```

**monomial_quotient**\((f, g, \text{coeff=False})\)

Return \(f/g\), where both \(f\) and \(g\) are treated as monomials.

Coefficients are ignored by default.

**INPUT:**
- \(f\) - monomial
- \(g\) - monomial
- \(\text{coeff}\) - divide coefficients as well (default: False)

**EXAMPLES:**

```
sage: P.<x,y,z> = QQ[]
sage: P.monomial_quotient(3/2*x*y, x)
y
sage: P.monomial_quotient(3/2*x*y, x, coeff=True)
3/2*y
```
Note, that $\mathbb{Z}$ behaves different if \texttt{coeff=True}:

```
sage: P.monomial_quotient(2*x,3*x)
1
sage: P.<x,y> = PolynomialRing(\mathbb{Z})
sage: P.monomial_quotient(2*x,3*x,coeff=True)
Traceback (most recent call last):
...
ArithmeticError: Cannot divide these coefficients.
```

\textbf{Warning:} Assumes that the head term of $f$ is a multiple of the head term of $g$ and return the multiplier $m$. If this rule is violated, funny things may happen.

\textbf{monomial\_reduce} ($f, G$)

Try to find a $g$ in $G$ where $g.lm()$ divides $f$. If found $(flt, g)$ is returned, $(0, 0)$ otherwise, where $flt$ is $f/g.lm().$

It is assumed that $G$ is iterable and contains only elements in this polynomial ring.

Coefficients are ignored.

**INPUT:**

- • $f$ - monomial
- • $G$ - list/set of mpolynomials

**EXAMPLES:**

```
sage: P.<x,y,z> = QQ[]
sage: f = x*y^2
sage: G = [3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, 1/2]
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)
```

\textbf{ngens}()

Returns the number of variables in this multivariate polynomial ring.

**EXAMPLES:**

```
sage: P.<x,y> = QQ[]
sage: P.ngens()
2
```

\textbf{class} \texttt{sage.rings.polynomial.multi\_polynomial\_libsingular.MPolynomial\_libsingular}

\textit{Bases:} \texttt{sage.rings.polynomial.multi\_polynomial\_MPolynomial}

A multivariate polynomial implemented using libSINGULAR.

\textbf{add\_mul\_q} ($m, q$)

Return $\texttt{self} + m\cdot q$, where $m$ must be a monomial and $q$ a polynomial.

**INPUT:**
• $m$ - a monomial
• $q$ - a polynomial

EXAMPLES:

```python
sage: P.<x,y,z>=PolynomialRing(QQ,3)
sage: x.add_m_mul_q(y,z)
y*z + x
```

coefficient (degrees)

Return the coefficient of the variables with the degrees specified in the python dictionary degrees. Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in degrees. However, the result has the same parent as this polynomial.

This function contrasts with the function `monomial_coefficient` which returns the coefficient in the base ring of a monomial.

INPUT:

• `degrees` - Can be any of:
  – a dictionary of degree restrictions
  – a list of degree restrictions (with None in the unrestricted variables)
  – a monomial (very fast, but not as flexible)

OUTPUT: element of the parent of this element.

Note: For coefficients of specific monomials, look at `monomial_coefficient()`.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f=x*y+y+5
sage: f.coefficient({x:0,y:1})
1
sage: f.coefficient({x:0})
y + 5
sage: f=(1+y+y^2)*(1+x+x^2)
sage: f.coefficient({x:0})
y^2 + y + 1
sage: f.coefficient([0,None])
y^2 + y + 1
sage: f.coefficient(x)
y^2 + y + 1
```

Be aware that this may not be what you think! The physical appearance of the variable $x$ is deceiving – particularly if the exponent would be a variable.

```python
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x*y^2 + x^2 + x*y + y^2 + x + y + 1
sage: R.<x,y> = GF(389)[]
sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5
sage: parent(c)
Multivariate Polynomial Ring in x, y over Finite Field of size 389
```
coefficients()

Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of the parent.

EXAMPLES:

```sage
R.<x,y,z> = PolynomialRing(QQ, order='degrevlex')
f=23*x^6*y^7 + x^3*y+6*x^7*z
f.coefficients()
[23, 6, 1]

R.<x,y,z> = PolynomialRing(QQ, order='lex')
f=23*x^6*y^7 + x^3*y+6*x^7*z
f.coefficients()
[6, 23, 1]
```

AUTHOR:

• Didier Deshommes

coefficients()

constant_coefficient()

Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

```sage
P.<x, y> = QQ[]
f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
f.constant_coefficient()
5
f = 3*x^2
f.constant_coefficient()
0
```

degree(x=None, std_grading=False)

Return the maximal degree of this polynomial in \( x \), where \( x \) must be one of the generators for the parent of this polynomial.

INPUT:

• \( x \) - (default: None) a multivariate polynomial which is (or coerces to) a generator of the parent of self. If \( x \) is None, return the total degree, which is the maximum degree of any monomial. Note that a matrix term ordering alters the grading of the generators of the ring; see the tests below. To avoid this behavior, use either exponents() for the exponents themselves, or the optional argument std_grading=False.

OUTPUT: integer

EXAMPLES:

```sage
R.<x, y> = QQ[]
f = y^2 - x^9 - x
f.degree(x)
9
f = y^2 - x^9 - x
f.degree(y)
2
f = (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
```

Chapter 3. Multivariate Polynomials
degrees()  
Returns a tuple with the maximal degree of each variable in this polynomial. The list of degrees is ordered  
by the order of the generators.

EXAMPLES:

sage: R.<y0,y1,y2> = PolynomialRing(QQ,3)  
sage: q = 3*y0*y1^2*y2; q  
3*y0*y1^2*y2  
sage: q.degrees()  
(1, 2, 1)  
sage: (q + y0^5).degrees()  
(5, 2, 1)

dict()  
Return a dictionary representing self. This dictionary is in the same format as the generic MPolynomial:  
The dictionary consists of E Tuple: coefficient pairs.

EXAMPLES:

sage: R.<x,y,z> = QQ[]  
sage: f=2*x*y^3*z^2 + 1/7*x^2 + 2/3  
sage: f.dict()  
{(0, 0, 0): 2/3, (1, 3, 2): 2, (2, 0, 0): 1/7}

discriminant(variable)  
Returns the discriminant of self with respect to the given variable.

INPUT:

• variable - The variable with respect to which we compute  the discriminant

OUTPUT:

• An element of the base ring of the polynomial ring.

EXAMPLES:

sage: R.<x,y,z>=QQ[]  
sage: f=4*x*y^2 + 1/4*x*y*z + 3/2*x*z^2 - 1/2*z^2  
sage: f.discriminant(x)  
1  
sage: f.discriminant(y)  
-383/16*x^2*z^2 + 8*x*z^2  
sage: f.discriminant(z)  
-383/16*x^2*y^2 + 8*x*y^2

Note that, unlike the univariate case, the result lives in the same ring as the polynomial:
AUTHOR: Miguel Marco

divides (other)
Return True if this polynomial divides other.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: p = 3*x*y + 2*y*z + x*z
sage: q = x + y + z + 1
sage: r = p*q
sage: p.divides(r)
True
sage: q.divides(p)
False
sage: r.divides(0)
True
sage: R.zero().divides(r)
False
sage: R.zero().divides(0)
True
```

exponents (as_ETuples=True)
Return the exponents of the monomials appearing in this polynomial.

INPUT:

• as_ETuples - (default: True) if true returns the result as a list of ETuples otherwise returns a list of tuples

EXAMPLES:

```
sage: R.<a,b,c> = QQ[]
sage: f = a^3 + b + 2*b^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
sage: f.exponents(as_ETuples=False)
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
```

factor (proof=True)
Return the factorization of this polynomial.

INPUT:

• proof - ignored.

EXAMPLES:

```
sage: R.<x, y> = QQ[]
sage: f = (x^3 + 2*y^2*x) * (x^2 + x + 1); f
x^5 + 2*x^3*y^2 + x^4 + 2*x^2*y^2 + x^3 + 2*x*y^2
sage: F = f.factor()
sage: F
x * (x^2 + x + 1) * (x^2 + 2*y^2)
```

Next we factor the same polynomial, but over the finite field of order 3.
Next we factor a polynomial, but over a finite field of order 9.:

```python
sage: K.<a> = GF(3^2)
sage: R.<x, y> = K[]
sage: f = (x^3 + 2*a*y^2*x) * (x^2 + x + 1); f
x^5 + (-a)*x^3*y^2 + x^4 + (-a)*x^2*y^2 + x^3 + (-a)*x*y^2
sage: F = f.factor()
sage: F
((-a)) * x * (x - 1)^2 * ((-a + 1)*x^2 + y^2)
sage: f - F
0
```

Next we factor a polynomial over a number field:

```python
sage: p = var('p')
sage: K.<s> = NumberField(p^3-2)
sage: KXY.<x,y> = K[]
sage: factor(x^3 - 2*y^3)
(x + (-s)*y) * (x^2 + (s)*x*y + (s^2)*y^2)
sage: k = (x^3-2*y^3)^5*(x+s*y)^2*(2/3 + s^2)
sage: k.factor()
((s^2 + 2/3)) * (x + (s)*y)^2 * (x + (-s)*y)^5 * (x^2 + (s)*x*y + (s^2)*y^2)^5
```

This shows that ticket trac ticket #2780 is fixed, i.e. that the unit part of the factorization is set correctly:

```python
sage: x = var('x')
sage: K.<a> = NumberField(x^2 + 1)
sage: R.<y, z> = PolynomialRing(K)
sage: f = 2*y^2 + 2*z^2
sage: F = f.factor(); F.unit()
2
```

Another example:

```python
sage: R.<x,y,z> = GF(32003)[]
sage: f = 9*(x-1)^2*(y+z)
sage: f.factor()
(9) * (y + z) * (x - 1)^2
sage: R.<a,b,c,d> = QQ[]
sage: p = (4*v^4*u^2 - 16*v^2*u^4 + 16*u^6 - 4*v^4*u + 8*v^2*u^3 + v^4)
sage: p.factor()
(-2*v^2*u + 4*u^3 + v^2)^2
sage: R.<a,b,c,d> = QQ[]
sage: f = (-2) * (a - d) * (-a + b) * (b - d) * (a - c) * (b - c) * (c - d)
sage: F = f.factor(); F
(-2) * (c - d) * (-b + c) * (b - d) * (-a + c) * (-a + b) * (a - d)
sage: F[0][0]
c - d
sage: F.unit()
-2
```
Constant elements are factorized in the base rings.

```python
sage: P.<x,y> = ZZ[
sage: P(2^3*7).factor()
2^3 * 7
sage: P.<x,y> = GF(2)[
sage: P(1).factor()
1
```

Factorization for finite prime fields with characteristic $> 2^{29}$ is not supported

```python
sage: q = 1073741789
sage: T.<aa, bb> = PolynomialRing(GF(q))
sage: f = aa^2 + 12124343*bb*aa + 32434598*bb^2
sage: f.factor()
Traceback (most recent call last):
... NotImplementedError: Factorization of multivariate polynomials over prime fields with characteristic $> 2^{29}$ is not implemented.
```

Factorization over the integers is now supported, see trac ticket #17840:

```python
sage: P.<x,y> = PolynomialRing(ZZ)
sage: f = 12 * (3*x*y + 4) * (5*x - 2) * (2*y + 7)^2
sage: f.factor()
2^2 * 3 * (2*y + 7)^2 * (5*x - 2) * (3*x*y + 4)
```

Factorization over non-integral domains is not supported

```python
sage: R.<x,y> = PolynomialRing(Zmod(4))
sage: f = (2*x + 1) * (x^2 + x + 1)
sage: f.factor()
Traceback (most recent call last):
... NotImplementedError: Factorization of multivariate polynomials over Ring of integers modulo 4 is not implemented.
```
```
sage: f - f.factor()
0

sage: R.<x,y> = GF(5)[]
sage: p=x^27*y^9 + x^32*y^3 + 2*x^20*y^10 - x^4*y^24 - 2*x^17*y
sage: q=-2*x^10*y^24 + x^9*y^24 - 2*x^3*y^30
sage: f=p*q; f-f.factor()
0

sage: R.<x,y> = GF(7)[]
sage: p=-3*x^47*y^24
sage: q=-3*x^47*y^37 - 3*x^24*y^49 + 2*x^56*y^8 + 3*x^29*y^15 - x^2*y^33
sage: f=p*q
sage: f-f.factor()
0

The following examples used to give a Segmentation Fault, see trac ticket #12918 and trac ticket #13129:

```
sage: R.<x,y> = GF(2)[]
sage: f = x^6 + x^5 + y^5 + y^4
sage: f.factor()
x^6 + x^5 + y^5 + y^4
sage: f = x^16*y + x^10*y + x^9*y + x^6*y + x^5 + x*y + y^2
sage: f.factor()
x^16*y + x^10*y + x^9*y + x^6*y + x^5 + x*y + y^2

Test trac ticket #12928:

```
sage: R.<x,y> = GF(2)[]
sage: p = x^2 + y^2 + x + 1
sage: q = x^4 + x^2*y^2 + y^4 + x*y^2 + x^2 + y^2 + 1
sage: factor(p*q)
(x^2 + y^2 + x + 1) * (x^4 + x^2*y^2 + y^4 + x*y^2 + x^2 + y^2 + 1)

Check that trac ticket #13770 is fixed:

```
sage: U.<y,t> = GF(2)[]
sage: f = y*t^8 + y^5*t^2 + y*t^6 + t^7 + y^6 + y^5*t + y^2*t^4 + y^2*t^2 + t^2
sage: l = f.factor()
sage: l[0][0]==t^2 + y + t + 1 or l[1][0]==t^2 + y + t + 1
True

The following used to sometimes take a very long time or get stuck, see trac ticket #12846. These 100
iterations should take less than 1 second:

```
sage: K.<a> = GF(4)
sage: R.<x,y> = K[]
sage: f = (a + 1)*x^145*y^84 + (a + 1)*x^205*y^17 + x^32*y^112 + x^92*y^45
sage: for i in range(100):
....: assert len(f.factor()) == 4

Test for trac ticket #20435:

```
sage: x,y = polygen(ZZ,'x,y')
sage: p = x**2-y**2
sage: z = factor(p); z
```

3.1. Multivariate Polynomials and Polynomial Rings
Test for trac ticket #17680:

```python
sage: R.<a,r,v,n,g,f,h,o> = QQ[]

sage: f = 248301045*a^2*r^10*n^2*o^10 + 570807000*a^2*r^9*n*o^9 - 137945025*a^2*r^8*n^2*o^8 + 32805000*a^2*r^7*n*o^7 - 253692000*a^2*r^6*n^1*o^6 + 3406050*a^2*r^5*n*o^5 - 189225*a^2*r^4*n^2*o^4 - 22457088*a^2*r^3*v*n^2*o^6 + 12150000*a^2*r^2*o^2 + 87000*a^2*r*n*o - 4205*a^2*n^2
```

```python
gcd(right, algorithm=None, **kwds)
```

Return the greatest common divisor of self and right.

INPUT:

- `right` - polynomial
- `algorithm` - `ezgcd` - EZGCD algorithm - `modular` - multi-modular algorithm (default)
- `**kwds` - ignored

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: f = (x*y*z)^6 - 1
sage: g = (x*y*z)^4 - 1
sage: f.gcd(g)
```

```
x^2*y^2*z^2 - 1
```

```python
sage: GCD([x^3 - 3*x + 2, x^4 - 1, x^6 - 1])
```

```
x - 1
```

```python
sage: R.<x,y> = QQ[]
sage: f = (x^3 + 2*y^2*x)^2
sage: g = x^2*y^2
sage: f.gcd(g)
```

```
x^2
```

We compute a gcd over a finite field:

```python
sage: F.<u> = GF(31^2)
sage: R.<x,y,z> = F[]
sage: p = x^3 + (1+u)*y^3 + z^3
sage: q = p^3 * (x - y + z*u)
sage: gcd(p,q)
```

```
x^3 + (u + 1)*y^3 + z^3
```

```python
sage: gcd(p,q) # yes, twice -- tests that singular ring is properly set.
```

```
x^3 + (u + 1)*y^3 + z^3
```

We compute a gcd over a number field:

```python
sage: x = polygen(QQ)
sage: F.<u> = NumberField(x^3 - 2)
sage: R.<x,y,z> = F[]
sage: p = x^3 + (1+u)*y^3 + z^3
```
sage: q = p^3 * (x - y + z*u)
sage: gcd(p, q)
x^3 + (u + 1)*y^3 + z^3

gradient()
Return a list of partial derivatives of this polynomial, ordered by the variables of the parent.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: f= x*y + 1
sage: f.gradient()
[y, x, 0]

hamming_weight()
Return the number of non-zero coefficients of this polynomial.

This is also called weight, hamming_weight() or sparsity.

EXAMPLES:

sage: R.<x, y> = ZZ[]
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)^100
sage: f.number_of_terms()
101

The method hamming_weight() is an alias:

sage: f.hamming_weight()
101

integral(var)
Integrates this polynomial with respect to the provided variable.

One requires that Q is contained in the ring.

INPUT:

• variable - the integral is taken with respect to variable

EXAMPLES:

sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: f = 3*x^3*y^2 + 5*y^2 + 3*x + 2
sage: f.integral(x)
3/4*x^4*y^2 + 5*x*y^2 + 3/2*x^2 + 2*x
sage: f.integral(y)
3/4*x^4*y^2 + 5/3*x*y^3 + 3*x*y + 2*y

Check that trac ticket #15896 is solved:

sage: s = x*y
sage: s.integral(x) + x
1/2*x^2 + x*y + x
```plaintext
sage: s.integral(x)*s
1/2*x^3 + 3/2*x^2*y + x*y^2
```

inverse_of_unit()

Return the inverse of this polynomial if it is a unit.

EXAMPLES:

```plaintext
sage: R.<x,y> = QQ[]
sage: x.inverse_of_unit()
Traceback (most recent call last):
...  
ArithmeticError: Element is not a unit.
sage: R(1/2).inverse_of_unit()
2
```

is_constant()

Return True if this polynomial is constant.

EXAMPLES:

```plaintext
sage: P.<x,y,z> = PolynomialRing(GF(127))
sage: x.is_constant()
False
sage: P(1).is_constant()
True
```

is_homogeneous()

Return True if this polynomial is homogeneous.

EXAMPLES:

```plaintext
sage: P.<x,y> = PolynomialRing(RationalField(), 2)
sage: (x+y).is_homogeneous()
True
sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True
```

is_monomial()

Return True if this polynomial is a monomial. A monomial is defined to be a product of generators with coefficient 1.

EXAMPLES:

```plaintext
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: x.is_monomial()
True
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
```

Chapter 3. Multivariate Polynomials
is_squarefree()
Return True if this polynomial is square free.

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: f= x^2 + 2*x*y + 1/2*z
sage: f.is_squarefree()  
True
sage: h = f^2
sage: h.is_squarefree()  
False
```

is_univariate()
Return True if self is a univariate polynomial, that is if self contains only one variable.

EXAMPLES:

```
sage: P.<x,y,z> = GF(2)[]
sage: f = x^2 + 1
sage: f.is_univariate()  
True
sage: f = y*x^2 + 1
sage: f.is_univariate()  
False
sage: f = P(0)
    sage: f.is_univariate()  
True
```

is_zero()
Return True if this polynomial is zero.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ)
sage: x.is_zero()  
False
sage: (x-x).is_zero()  
True
```

lc()
Leading coefficient of this polynomial with respect to the term order of self.parent().

EXAMPLES:

```
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lc()  
3
sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lc()  
5
```
\textbf{lcm}(g)\]

Return the least common multiple of \texttt{self} and \texttt{g}.

EXAMPLES:

\begin{verbatim}
 sage: P.<x,y,z> = QQ[]
 sage: p = (x+y)*(y+z)
 sage: q = (z^4+2)*(y+z)
 sage: lcm(p,q)
x*y*z^4 + y^2*z^4 + x*z^5 + y*z^5 + 2*x*y + 2*y^2 + 2*x*z + 2*y*z
 sage: P.<x,y,z> = ZZ[]
 sage: p = 2*(x+y)*(y+z)
 sage: q = 3*(z^4+2)*(y+z)
 sage: lcm(p,q)
6*x*y*z^4 + 6*y^2*z^4 + 6*x*z^5 + 6*y*z^5 + 12*x*y + 12*y^2 + 12*x*z + 12*y*z
 sage: r.<x,y> = PolynomialRing(GF(2**8, 'a'), 2)
 sage: a = r.base_ring().0
 sage: f = (a^2+a)*x^2*y + (a^4+a^3+a)*y + a^5
 sage: f.lcm(x^4)
(a^2 + a)*x^6*y + (a^4 + a^3 + a)*x^4*y + (a^5)*x^4
 sage: w = var('w')
 sage: r.<x,y> = PolynomialRing(NumberField(w^4 + 1, 'a'), 2)
 sage: a = r.base_ring().0
 sage: f = (a^2+a)*x^2*y + (a^4+a^3+a)*y + a^5
 sage: f.lcm(x^4)
(a^2 + a)*x^6*y + (a^3 + a - 1)*x^4*y + (-a)*x^4
\end{verbatim}

\textbf{lift}(I)

given an ideal \(I = (f_1, \ldots, f_r)\) and some \(g\) \((== \texttt{self})\) in \(I\), find \(s_1, \ldots, s_r\) such that \(g = s_1 f_1 + \ldots + s_r f_r\).

A \texttt{ValueError} exception is raised if \(g\) \((== \texttt{self})\) does not belong to \(I\).

EXAMPLES:

\begin{verbatim}
 sage: A.<x,y> = PolynomialRing(QQ,2,order='degrevlex')
 sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7])
 sage: f = x*y^13 + y^12
 sage: M = f.lift(I)
 sage: sum(map(mul , zip(M, I.gens()))) == f
 True
 sage: w = var('w')
 sage: r.<x,y> = PolynomialRing(GF(2**8, 'a'), 2)
 sage: a = r.base_ring().0
 sage: f = (a^2+a)*x^2*y + (a^4+a^3+a)*y + a^5
 sage: f.lcm(x^4)
 (a^2 + a)*x^6*y + (a^3 + a - 1)*x^4*y + (-a)*x^4
 sage: w = var('w')
 sage: r.<x,y> = PolynomialRing(NumberField(w^4 + 1, 'a'), 2)
 sage: a = r.base_ring().0
 sage: f = (a^2+a)*x^2*y + (a^4+a^3+a)*y + a^5
 sage: f.lcm(x^4)
 (a^2 + a)*x^6*y + (a^3 + a - 1)*x^4*y + (-a)*x^4
\end{verbatim}

Check that trac ticket \#13671 is fixed:

\begin{verbatim}
 sage: R.<x1,x2> = QQ[]
 sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
 sage: f = I.gen(0) + x2*I.gen(1)
 sage: f.lift(I)
 [1, x2]
 sage: (f+1).lift(I)
 Traceback (most recent call last):
 ...
 ValueError: polynomial is not in the ideal
\end{verbatim}
lm()
Returns the lead monomial of self with respect to the term order of self.parent(). In Sage a monomial is a product of variables in some power without a coefficient.

EXAMPLES:

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: f = x^1*y^2 + y^3*z^4
sage: f.lm()
x*y^2
sage: f = x^3*y^2*z^4 + x^3*y^2*z^1
sage: f.lm()
x^3*y^2*z^4
```

lt()
Leading term of this polynomial. In Sage a term is a product of variables in some power and a coefficient.

EXAMPLES:

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lt()
3*x*y^2
```

monomial_coefficient(mon)

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function coefficient which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

INPUT:

*mon - a monomial

OUTPUT:
coefficient in base ring

See also:

For coefficients in a base ring of fewer variables, look at \texttt{coefficient}.

EXAMPLES:

\begin{verbatim}
sage: P.<x,y> = QQ[]
The parent of the return is a member of the base ring.
sage: f = 2 * x * y
c
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Rational Field
sage: f = y^2 + y^2*x - x^9 + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
-1
sage: f.monomial_coefficient(x^10)
0
\end{verbatim}

\texttt{monomials}()

Return the list of monomials in self. The returned list is decreasingly ordered by the term ordering of \texttt{self.parent()}.

EXAMPLES:

\begin{verbatim}
sage: P.<x,y,z> = QQ[]
sage: f = x + 3/2*y*z^2 + 2/3
sage: f.monomials()
[y*z^2, x, 1]
sage: f = P(3/2)
sage: f.monomials()
[1]
\end{verbatim}

\texttt{number_of_terms}()

Return the number of non-zero coefficients of this polynomial.

This is also called weight, \texttt{hamming_weight()} or sparsity.

EXAMPLES:

\begin{verbatim}
sage: R.<x, y> = ZZ[]
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)^100
sage: f.number_of_terms()
101
\end{verbatim}

The method \texttt{hamming_weight()} is an alias:
numerators()
Return a numerator of self computed as self * self.denominator()

If the base_field of self is the Rational Field then the numerator is a polynomial whose base_ring is the Integer Ring, this is done for compatibility to the univariate case.

Warning: This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

EXAMPLES:

First we compute the numerator of a polynomial with integer coefficients, which is of course self.

```sage
def R.<x, y> = ZZ
def f = x^3 + 17*y + 1
sage: f.numerator()
x^3 + 17*y + 1
sage: f == f.numerator()
True
```

Next we compute the numerator of a polynomial with rational coefficients.

```sage
def R.<x,y> = PolynomialRing(QQ)
def f = (1/17)*x^19 - (2/3)*y + 1/3; f
1/17*x^19 - 2/3*y + 1/3
sage: f.numerator()
3*x^19 - 34*y + 17
sage: f == f.numerator()
False
sage: f.numerator().base_ring()
Integer Ring
```

We check that the computation of numerator and denominator is valid.

```sage
def K=QQ['x,y']
def f=K.random_element()
def f.numerator() / f.denominator() == f
True
```

The following tests against a bug fixed in trac ticket #11780:

```sage
def P.<foo,bar> = ZZ[
def Q.<foo,bar> = QQ[
def f = Q.random_element()
def f.numerator().parent() is P
True
```

nvariables()
Return the number variables in this polynomial.

EXAMPLES:

```sage
def P.<x,y,z> = PolynomialRing(GF(127))
def f = x*y + z
```
quo_rem(right)

Returns quotient and remainder of self and right.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = y*x^2 + x + 1
sage: f.quo_rem(x)
(x*y + 1, 1)
sage: f.quo_rem(y)
(x^2, x + 1)
sage: R.<x,y> = ZZ[]
sage: f = 2*y*x^2 + x + 1
sage: f.quo_rem(x)
(2*x*y + 1, 1)
sage: f.quo_rem(y)
(2*x^2, x + 1)
sage: f.quo_rem(3*x)
(0, 2*x^2*y + x + 1)
```

reduce(I)

Return the normal form of self w.r.t. \(I \), i.e. return the remainder of this polynomial with respect to the polynomials in \(I \). If the polynomial set/list \(I \) is not a (strong) Groebner basis the result is not canonical.

A strong Groebner basis \(G \) of \(I \) implies that for every leading term \(t \) of \(I \) there exists an element \(g \) of \(G \), such that the leading term of \(g \) divides \(t \).

INPUT:

- \(I \) - a list/set of polynomials. If \(I \) is an ideal, the generators are used.

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x*y
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
-6*y^2 + 2*y
sage: g.reduce(F.gens())
-6*y^2 + 2*y
```

\(\mathbb{Z} \) is also supported.

```python
sage: P.<x,y,z> = ZZ[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x*y
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
-6*y^2 + 2*y
sage: g.reduce(F.gens())
-6*y^2 + 2*y
```
...-6*y^2 + 2*y
sage: g.reduce(F.gens())
-6*y^2 + 2*y

sage: f = 3*x
sage: f.reduce([2*x,y])
3*x

resultant (other, variable=None)
Compute the resultant of this polynomial and the first argument with respect to the variable given as the second argument.

If a second argument is not provide the first variable of the parent is chosen.

INPUT:

• other - polynomial
• variable - optional variable (default: None)

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: a = x+y
sage: b = x^3-y^3
sage: c = a.resultant(b); c
-2*y^3
sage: d = a.resultant(b,y); d
2*x^3

The SINGULAR example:

sage: R.<x,y,z> = PolynomialRing(GF(32003),3)
sage: f = 3 * (x+2)^3 + y
sage: g = x+y+z
sage: f.resultant(g,x)
3*y^3 + 9*y^2*z + 9*y*z^2 + 3*z^3 - 18*y^2 - 36*y*z - 18*z^2 + 35*y + 36*z - 24

Resultants are also supported over the Integers:

sage: R.<x,y,a,b,u>=PolynomialRing(ZZ, 5, order='lex')
sage: r = (x^4*y^2+x^2*y-y).resultant(x*y-y+a*x+b+u,x)
sage: r
y^6*a^4 - 4*y^5*a^4*b - 4*y^5*a^3*u + y^5*a^2 - y^5 + 6*y^4*a^4*b^2 + 12*y^3*a^3*b^2 + 6*y^3*a^2*b^2 + 6*y^3*a^2*u^2 + 12*y^3*a*b*u + 4*y^3*b^3 - 2*y^3*a^2*b^2 - 4*y^3*a*b^2 - 4*y^3*a^2*u^2 + 12*y^3*b^3 - 4*y^3*a*b*u - 4*y^3*b^2 + 6*y^2*a^4*b^3 + 6*y^2*a^3*b^3 + 6*y^2*a^2*b^3 + 6*y^2*a^2*u^3 + 6*y^2*a*b^3 + 6*y^2*b^4 - 2*y^2*a^2*b^2 - 4*y^2*a*b^2 - 4*y^2*a^2*u^2 + 12*y^2*b^3 + 12*y^2*a*b*u + 4*y^2*b^2 + 6*y^2*a^2*b + 6*y^2*a*b + 6*y^2*b + 2*y*a^4*b + 2*y*a^4*u + 6*y*a^3*b^2 + 6*y*a^3*u^2 + 2*y*a^2*b^2 + 2*y*a^2*u^3 + 2*y*a*b^2 + 2*y*a*b + 6*y*b^3 + 2*y*b^2 + 2*y*b + 2*y + 2*a^4*b + 2*a^4*u + 6*a^3*b^2 + 6*a^3*u^2 + 2*a^2*b^2 + 2*a^2*u^3 + 2*a*b^2 + 2*a*b + 6*a*b + 2*b^3 + y^6*a^3*b + y^6*a^2*b^2 + y^6*a^2*u^3 + 2*y^6*a*b^2 + 2*y^6*b^3 + 2*y^6*a^2 + 2*y^6*a*b + 2*y^6*b + 2*y^6 + 2*y^5*a^3*b^2 + 2*y^5*a^3*u^2 + 2*y^5*a^2*b^2 + 2*y^5*a^2*u^3 + 2*y^5*a*b^2 + 2*y^5*a*b + 6*y^5*a*b + 6*y^5*b^3 + 2*y^5*b + 2*y^5 + y^5*a^3*b + y^5*a^2*b^2 + y^5*a^2*u^3 + 2*y^5*a*b^2 + 2*y^5*a*b + 6*y^5*a*b + 6*y^5*b^3 + 2*y^5*b + 2*y^5 + y^5*a^3*u^2 + 2*y^5*a^2*b^2 + 2*y^5*a^2*u^3 + 2*y^5*a*b^2 + 2*y^5*a*b + 6*y^5*a*b + 6*y^5*b^3 + 2*y^5*b + 2*y^5 + y^5*a^2*b^2 + 2*y^5*a^2*u^3 + 2*y^5*a*b^2 + 2*y^5*a*b + 6*y^5*a*b + 6*y^5*b^3 + 2*y^5*b + 2*y^5 + y^5*a*b^2 + 2*y^5*a*b + 6*y^5*a*b + 6*y^5*b^3 + 2*y^5*b + 2*y^5 + y^5*a*b + 6*y^5*a*b + 6*y^5*b^3 + 2*y^5*b + 2*y^5 + y^5*a + y^5 + 6*y^4*a^4*b^2 + 12*y^3*a^3*b^2 + 6*y^3*a^2*b^2 + 6*y^3*a^2*u^3 + 2*y^3*a*b^2 + 2*y^3*b^3 + 12*y^2*a^3*b^2 + 12*y^2*a^2*b^2 + 12*y^2*a^2*u^2 + 6*y^2*a*b^2 + 6*y^2*b^3 + 2*y^2*a^2*b + 2*y^2*a*b + 2*y^2 + 6*y*a^4*b + 6*y*a^4*u + 12*y*a^3*b^2 + 12*y*a^3*u^2 + 6*y*a^2*b^2 + 6*y*a^2*u^3 + 2*y*a*b^2 + 2*y*a*b + 2*y + 2*a^4*b + 2*a^4*u + 6*a^3*b^2 + 6*a^3*u^2 + 2*a^2*b^2 + 2*a^2*u^3 + 2*a*b^2 + 2*a*b + 6*a*b + 2*b^3 + y^6*a^3*b + y^6*a^2*b^2 + y^6*a^2*u^3 + 2*y^6*a*b^2 + 2*y^6*b^3 + 2*y^6*a^3*b + 2*y^6*a^2*b + 2*y^6*a^2*u^2 + 2*y^6*a*b^2 + 2*y^6*a*b + 2*y^6*b^3 + 2*y^6*b + 2*y^6 + 2*y^5*a^3*b + 2*y^5*a^2*b^2 + 2*y^5*a^2*u^2 + 2*y^5*a*b^2 + 2*y^5*a*b + 2*y^5*b^3 + 2*y^5*b + 2*y^5 + y^5*a^3*u + y^5*a^2*b^2 + y^5*a^2*u^3 + 2*y^5*a*b^2 + 2*y^5*a*b + 2*y^5*b^3 + 2*y^5*b + 2*y^5 + y^5*a^2*b + 2*y^5*a^2*u^2 + 2*y^5*a*b^2 + 2*y^5*a*b + 2*y^5*b + 2*y^5 + y^5*a + y^5 + 2*y^4*a^2*b^2 + 2*y^4*a^2*u^2 + 2*y^4*a*b^2 + 2*y^4*b^3 + 2*y^4*a^2 + 2*y^4*a*b + 2*y^4*b + 2*y^4 + y^4*a^2*b + 2*y^4*a*b + 2*y^4 + y^4*a + y^4 + 2*y^3*a^3*b + 2*y^3*a^3*u + 2*y^3*a^2*b + 2*y^3*a^2*u + 2*y^3*a*b + 2*y^3*b + 2*y^3 + y^3*a^3 + y^3*a^2*b + y^3*a^2*u + y^3*a*b + y^3*b + y^3 + y^2*a^2*b + y^2*a^2*u + y^2*a*b + y^2*b + y^2 + y*a^2 + y*a*u + y*a + y + 1

sub_m_mul_q (m, q)
Return self - m*q, where m must be a monomial and q a polynomial.

INPUT:

• m - a monomial
• q - a polynomial

3.1. Multivariate Polynomials and Polynomial Rings 373
EXAMPLES:

```python
sage: P.<x,y,z>=PolynomialRing(QQ,3)
sage: x.sub_m_mul_q(y,z)
-y*z + x
```

`subs (fixed=None, **kw)`

Fixes some given variables in a given multivariate polynomial and returns the changed multivariate polynomials. The polynomial itself is not affected. The variable,value pairs for fixing are to be provided as dictionary of the form `{variable: value}`.

This is a special case of evaluating the polynomial with some of the variables constants and the others the original variables, but should be much faster if only few variables are to be fixed.

INPUT:

- `fixed` - (optional) dict with variable:value pairs
- `**kw` - names parameters

OUTPUT: a new multivariate polynomial

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = x^2 + y + x^2*y^2 + 5
sage: f(5,y)
25*y^2 + y + 30
sage: f.subs({x:5})
25*y^2 + y + 30
sage: f.subs(x=5)
25*y^2 + y + 30
sage: P.<x,y,z> = PolynomialRing(GF(2),3)
sage: f = x + y + 1
sage: f.subs({x:y+1})
0
sage: f.subs(x=y)
1
sage: f.subs(x=x)
x + y + 1
sage: f.subs({x:x})
y + z + 1
sage: f.subs(x=z+1)
y + z
sage: f.subs(x=1/y)
(y^2 + y + 1)/y
sage: f.subs({x:1/y})
(y^2 + y + 1)/y
```

The parameters are subsituted in order and without side effects:

```python
sage: R.<x,y>=QQ[]
sage: g=x+y
sage: g.subs({x:x+1,y:x*y})
x*y + x + 1
sage: g.subs({x:x+1}).subs({y:x*y})
x*y + x + 1
```

```sage
sage: g.subs({y:x*y}).subs({x:x+1})
x*y + x + y + 1
```

```sage
sage: R.<x,y> = QQ[]
sage: f = x + 2*y
sage: f.subs(x=y,y=x)
2*x + y
```

total_degree(std_grading=False)

Return the total degree of *self*, which is the maximum degree of all monomials in *self*.

EXAMPLES:

```sage
sage: R.<x,y,z> = QQ[]
sage: f=2*x*y^3*z^2
sage: f.total_degree() 6
sage: f=4*x^2*y^2*z^3
sage: f.total_degree() 7
sage: f=99*x^6*y^3*z^9
sage: f.total_degree() 18
sage: f=x*y^3*z^6+3*x^2
sage: f.total_degree() 10
sage: f=z^3+8*x^4*y^5*z
sage: f.total_degree() 10
sage: f=z^9+10*x^4+y^8*x^2
sage: f.total_degree() 10
```

univariate_polynomial(R=None)

Returns a univariate polynomial associated to this multivariate polynomial.

INPUT:

- **R** *(default: None)* : :class:`PolynomialRing`

If this polynomial is not in at most one variable, then a :exc:`ValueError` exception is raised. This is checked using the :meth:`is_univariate()` method. The new Polynomial is over the same base ring as the given :class:`MPolynomial` and in the variable *x* if no ring *R* is provided.

EXAMPLES:

```sage
sage: R.<x, y> = QQ[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.univariate_polynomial()
Traceback (most recent call last):...
  TypeError: polynomial must involve at most one variable
sage: g = f.subs({x:10}); g
700*y^2 - 2*y + 305
sage: g.univariate_polynomial()
700*y^2 - 2*y + 305
sage: g.univariate_polynomial(PolynomialRing(QQ,'z'))
700*z^2 - 2*z + 305
```
Here's an example with a constant multivariate polynomial:

```python
sage: g = R(1)
sage: h = g.univariate_polynomial(); h
1
sage: h.parent()
Univariate Polynomial Ring in x over Rational Field
```

variable *(i=0)*

Return the i-th variable occurring in self. The index i is the index in self.variables().

EXAMPLES:

```python
sage: P.<x,y,z> = GF(2)[]
sage: f = x*z^2 + z + 1
sage: f.variables()
(x, z)
sage: f.variable(1)
z
```

variables()

Return a tuple of all variables occurring in self.

EXAMPLES:

```python
sage: P.<x,y,z> = GF(2)[]
sage: f = x*z^2 + z + 1
sage: f.variables()
(x, z)
```

inverse function for `MPolynomialRing_libsingular.__reduce__`

Deserializes an `MPolynomial_libsingular` object

INPUT:

- `R` - the base ring
- `d` - a Python dictionary as returned by `MPolynomial_libsingular.dict()`

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ)
sage: loads(dumps(P)) == P # indirect doctest
True
```
3.1.9 Direct low-level access to SINGULAR’s Groebner basis engine via libSINGULAR.

AUTHOR:
- Martin Albrecht (2007-08-08): initial version

EXAMPLES:

```python
sage: x,y,z = QQ['x,y,z'].gens()
sage: I = ideal(x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1)
sage: I.groebner_basis('libsingular:std')
[y^6 + x*y^4 + 2*y^3*z^2 + x*z^3 + z^4 - 2*y^3 - 2*z^2 - x + 1,
x^2*y^3 - y^4 + x^2*z^2 - z^3 - x^2 + 1, x^3 + y^3 + z^2 - 1]
```

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

```python
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis('libsingular:std')
sage: len(B)
45
```

Two examples from the Mathematica documentation (done in Sage):

- We compute a Groebner basis:

```python
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: ideal(x^2 - 2*y^2, x*y - 3).groebner_basis('libsingular:slimgb')
[x - 2/3*y^3, y^4 - 9/2]
```

- We show that three polynomials have no common root:

```python
sage: R.<x,y> = QQ[]
sage: ideal(x+y, x^2 - 1, y^2 - 2*x).groebner_basis('libsingular:slimgb')
[1]
```

SINGULAR’s interred() command.

INPUT:
- I – a Sage ideal

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(ZZ)
sage: I = ideal( x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1 )
sage: I.interreduced_basis()
[y*z^2 - 81*x*y - 9*y - z, z^3 - x, x^2 - 3*y, y^2 - 1/9*y*z + 1/9]
```

SINGULAR’s kbase() algorithm.

INPUT:
• I – a groebner basis of an ideal

OUTPUT:
Computes a vector space basis (consisting of monomials) of the quotient ring by the ideal, resp. of a free module by the module, in case it is finite dimensional and if the input is a standard basis with respect to the ring ordering. If the input is not a standard basis, the leading terms of the input are used and the result may have no meaning.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x^2-2*y^2, x*y-3)
sage: I.normal_basis()
[y^3, y^2, y, 1]
```

sage.rings.polynomial.multi_polynomial_ideal_libsingular.slimgb_libsingular(I)
SINGULAR’s slimgb() algorithm.

INPUT:
• I – a Sage ideal

sage.rings.polynomial.multi_polynomial_ideal_libsingular.std_libsingular(I)
SINGULAR’s std() algorithm.

INPUT:
• I – a Sage ideal

3.1.10 PolyDict engine for generic multivariate polynomial rings

This module provides an implementation of the underlying arithmetic for multi-variate polynomial rings using Python dicts.

This class is not meant for end users, but instead for implementing multivariate polynomial rings over a completely general base. It does not do strong type checking or have parents, etc. For speed, it has been implemented in Cython.

The functions in this file use the ‘dictionary representation’ of multivariate polynomials

\{(e_1, \ldots, e_r): c_1, \ldots\} \leftrightarrow c_1 x_1^{e_1} \cdots x_r^{e_r} + \ldots,

which we call a polydict. The exponent tuple \((e_1, \ldots, e_r)\) in this representation is an instance of the class `ETuple`. This class behaves like a normal Python tuple but also offers advanced access methods for sparse monomials like positions of non-zero exponents etc.

AUTHORS:
• William Stein
• David Joyner
• Martin Albrecht (ETuple)
• Joel B. Mohler (2008-03-17) – ETuple rewrite as sparse C array

class sage.rings.polynomial.polydict.ETuple
Bases: object

Representation of the exponents of a polydict monomial. If \((0,0,3,0,5)\) is the exponent tuple of \(x_2^3 x_4^5\) then this class only stores \((2,3,4,5)\) instead of the full tuple. This sparse information may be obtained by provided methods.

The index/value data is all stored in the _data C int array member variable. For the example above, the C array would contain 2,3,4,5. The indices are interlaced with the values.
This data structure is very nice to work with for some functions implemented in this class, but tricky for others. One reason that I really like the format is that it requires a single memory allocation for all of the values. A hash table would require more allocations and presumably be slower. I didn’t benchmark this question (although, there is no question that this is much faster than the prior use of python dicts).

combine_to_positives(other)

Given a pair of ETuples (self, other), returns a triple of ETuples (a, b, c) so that self = a + b, other = a + c and b and c have all positive entries.

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([-2,1,-5,3,1,0])
sage: f = ETuple([1,-3,-3,4,0,2])
sage: e.combine_to_positives(f)
((-2, -3, -5, 3, 0, 0), (0, 4, 0, 0, 1, 0), (3, 0, 2, 1, 0, 2))
```

common_nonzero_positions(other, sort=False)

Returns an optionally sorted list of non zero positions either in self or other, i.e. the only positions that need to be considered for any vector operation.

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,0,1])
sage: e.common_nonzero_positions(f)
{0, 2}
sage: e.common_nonzero_positions(f, sort=True)
[0, 2]
```

eadd(other)

Vector addition of self with other.

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
sage: f = ETuple([0,1,1])
sage: e.eadd(f)
(1, 1, 3)
```

Verify that trac ticket #6428 has been addressed:

```
sage: R.<y, z> = Frac(QQ['x'])[]
sage: type(y)
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
sage: y^(2^32)
Traceback (most recent call last):
... OverflowError: exponent overflow (2147483648)
```

eadd_p(other, pos)

Add other to self at position pos.

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2])
```
 sage: e.eadd_p(5, 1)
(1, 5, 2)
sage: e = ETuple([0]*7)
sage: e.eadd_p(5, 4)
(0, 0, 0, 0, 5, 0, 0)
sage: ETuple([0,1]).eadd_p(1, 0) == ETuple([1,1])
True

emax(other)

Vector of maximum of components of `self` and `other`.

EXAMPLES:

```python
code snippet
```

emin(other)

Vector of minimum of components of `self` and `other`.

EXAMPLES:

```python
code snippet
```

emul(factor)

Scalar Vector multiplication of `self`.

EXAMPLES:

```python
code snippet
```

esub(other)

Vector subtraction of `self` with `other`.

EXAMPLES:

```python
code snippet
```
```python
from sage.rings.polynomial.polydict import ETuple

e = ETuple([1,0,2])
f = ETuple([0,1,1])
e.esub(f)
(1, -1, 1)
```

is_constant()

Return if all exponents are zero in the tuple.

EXAMPLES:

```python
from sage.rings.polynomial.polydict import ETuple
e = ETuple([1,0,2])
e.is_constant()
False
e = ETuple([0,0])
e.is_constant()
True
```

nonzero_positions(sort=False)

Return the positions of non-zero exponents in the tuple.

INPUT:

• `sort` – (default: False) if True a sorted list is returned; if False an unsorted list is returned

EXAMPLES:

```python
from sage.rings.polynomial.polydict import ETuple
e = ETuple([1,0,2])
e.nonzero_positions()
[0, 2]
```

nonzero_values(sort=True)

Return the non-zero values of the tuple.

INPUT:

• `sort` – (default: True) if True the values are sorted by their indices; otherwise the values are returned unsorted

EXAMPLES:

```python
from sage.rings.polynomial.polydict import ETuple
e = ETuple([2,0,1])
e.nonzero_values()
[2, 1]
f = ETuple([0,-1,1])
f.nonzero_values(sort=True)
[-1, 1]
```

reversed()

Return the reversed ETuple of self.

EXAMPLES:

```python
from sage.rings.polynomial.polydict import ETuple
e = ETuple([1,2,3])
e.reversed()
(3, 2, 1)
```
sparse_iter()

Iterator over the elements of self where the elements are returned as \((i, e)\) where \(i\) is the position of \(e\) in the tuple.

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1,0,2,0,3])
sage: list(e.sparse_iter())
[(0, 1), (2, 2), (4, 3)]
```

class sage.rings.polynomial.polydict.ETupleIter

Bases: object

next()

\(x.next()\) -> the next value, or raise StopIteration

class sage.rings.polynomial.polydict.PolyDict

Bases: object

INPUT:

- \(pdict\) – list, which represents a multi-variable polynomial with the distribute representation (a copy is not made)
- \(zero\) – (optional) zero in the base ring
- \(force_int_exponents\) – bool (optional) arithmetic with int exponents is much faster than some of the alternatives, so this is True by default.
- \(force_etuples\) – bool (optional) enforce that the exponent tuples are instances of ETuple class

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: PolyDict({(2,3):2, (1,2):3, (2,1):4})
PolyDict with representation {(1, 2): 3, (2, 3): 2, (2, 1): 4}

# I've removed fractional exponent support in ETuple when moving to a sparse C
˓→integer array
#PolyDict with representation {(2, 1): 4, (1, 2, 1): 3, (2/3, 3, 5): 2}

sage: PolyDict({(2,3):0, (1,2):3, (2,1):4}, remove_zero=True)
PolyDict with representation {(1, 2): 3, (2, 1): 4}

sage: PolyDict({(0,0):RIF(-1,1)}, remove_zero=True)
PolyDict with representation {(0, 0): 0.?}
```

coefficient \((\text{mon})\)

Return a polydict that defines a polynomial in 1 less number of variables that gives the coefficient of \(\text{mon}\) in this polynomial.

The coefficient is defined as follows. If \(f\) is this polynomial, then the coefficient is the sum \(T/\text{mon}\) where the sum is over terms \(T\) in \(f\) that are exactly divisible by \(\text{mon}\).

coefficients()

Return the coefficients of self.

EXAMPLES:
Sage: from sage.rings.polynomial.polydict import PolyDict
Sage: f.coefficients()
[3, 2, 4]

\textbf{compare}(\textit{other}, \textit{key=None})

\textbf{degree}(\textit{x=None})

\textbf{dict}()

Return a copy of the dict that defines self. It is safe to change this. For a reference, use dictref.

\textbf{EXAMPLES:}

Sage: from sage.rings.polynomial.polydict import PolyDict
Sage: f.dict()
{(1, 2): 3, (2, 1): 4, (2, 3): 2}

\textbf{exponents}()

Return the exponents of self.

\textbf{EXAMPLES:}

Sage: from sage.rings.polynomial.polydict import PolyDict
Sage: f.exponents()
[(1, 2), (2, 3), (2, 1)]

\textbf{homogenize}(\textit{var})

\textbf{is_homogeneous}()

\textbf{latex}(\textit{vars}, \textit{atomic_exponents=True}, \textit{atomic_coefficients=True}, \textit{cmpfn=None}, \textit{sortkey=None})

Return a nice polynomial latex representation of this PolyDict, where the vars are substituted in.

\textbf{INPUT:}

• \textit{vars} – list
• \textit{atomic_exponents} – bool (default: True)
• \textit{atomic_coefficients} – bool (default: True)

\textbf{EXAMPLES:}

Sage: from sage.rings.polynomial.polydict import PolyDict
Sage: f.latex(['a', 'WW'], atomic_exponents=True)
'2 a^{2} WW^{3} + 4 a^{2} WW + 3 a WW^{2}'

When \textit{atomic_exponents} is False, the exponents are surrounded in parenthesis, since ^ has such high precedence:

I've removed fractional exponent support in ETuple when moving to a sparse C integer array
˓→exponents=False)
#sage: f.latex(['a', 'b', 'c'], atomic_exponents=False)
'4 a^{2}bc + 3 ab^{2}c + 2 a^{2/3}b^{3}c^{5}'
lcmt (greater_etuple)
Provides functionality of lc, lm, and lt by calling the tuple compare function on the provided term order \(T \).

INPUT:
- `greater_etuple` – a term order

list()
Return a list that defines self. It is safe to change this.

EXAMPLES:
```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.list()
[[3, [1, 2]], [2, [2, 3]], [4, [2, 1]]]
```

max_exp()
Returns an ETuple containing the maximum exponents appearing. If there are no terms at all in the PolyDict, it returns None.

The nvars parameter is necessary because a PolyDict doesn’t know it from the data it has (and an empty PolyDict offers no clues).

EXAMPLES:
```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.max_exp()
(2, 3)
sage: PolyDict({}).max_exp()  # returns None
```

min_exp()
Returns an ETuple containing the minimum exponents appearing. If there are no terms at all in the PolyDict, it returns None.

The nvars parameter is necessary because a PolyDict doesn’t know it from the data it has (and an empty PolyDict offers no clues).

EXAMPLES:
```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.min_exp()
(1, 1)
sage: PolyDict({}).min_exp()  # returns None
```

monomial_coefficient (mon)

EXAMPLES:
```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.monomial_coefficient(PolyDict({(2,1):1}).dict())
4
```

poly_repr (vars, atomic_exponents=True, atomic_coefficients=True, cmpfn=None, sortkey=None)
Return a nice polynomial string representation of this PolyDict, where the vars are substituted in.

INPUT:
- `vars` – list
atomic_exponents – bool (default: True)

atomic_coefficients – bool (default: True)

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.poly_repr(['a', 'WW'])
'2*a^2*WW^3 + 4*a^2*WW + 3*a*WW^2'
```

When `atomic_exponents` is `False`, the exponents are surrounded in parenthesis, since `^` has such high precedence.

```
# I've removed fractional exponent support in ETuple when moving to a sparse C integer array
#sage: f.poly_repr(['a', 'b', 'c'], atomic_exponents=False)
#"4*a^(2)*b*c + 3*a*b^(2)*c + 2*a^(2/3)*b^(3)*c^(5)"
```

We check to make sure that when we are in characteristic two, we don’t put negative signs on the generators.

```
sage: Integers(2) ['x, y'].gens()
(x, y)
```

We make sure that intervals are correctly represented.

```
sage: f = PolyDict({(2,3):RIF(1/2,3/2), (1,2):RIF(-1,1)})
sage: f.poly_repr(['x', 'y'])
'1.?*x^2*y^3 + 0.?*x*y^2'
```

polynomial_coefficient *(degrees)*

Return a polydict that defines the coefficient in the current polynomial viewed as a tower of polynomial extensions.

INPUT:

*degrees – a list of degree restrictions; list elements are None if the variable in that position should be unrestricted

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.polynomial_coefficient([2,None])
PolyDict with representation {(0, 3): 2, (0, 1): 4}
sage: f.polynomial_coefficient([0,None])
PolyDict with representation {(0, 3): 2, (0, 2): 3}
```

scalar_lmult *(s)*

Left Scalar Multiplication

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: x, y = FreeMonoid(2, 'x, y').gens()  # a strange object to live in a polydict, but non-commutative!
```

3.1. Multivariate Polynomials and Polynomial Rings
sage: f = PolyDict({(2,3):x})
sage: f.scalar_lmult(y)
PolyDict with representation {(2, 3): y*x}
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.scalar_lmult(-2)
PolyDict with representation {(1, 2): -6, (2, 3): -4, (2, 1): -8}
sage: f.scalar_lmult(RIF(-1,1))
PolyDict with representation {(1, 2): 0.?e1, (2, 3): 0.?e1, (2, 1): 0.?e1}

\textbf{scalar_rmult} (s)

Right Scalar Multiplication

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.rings.polynomial.polydict import PolyDict
sage: x, y = FreeMonoid(2, 'x, y').gens() # a strange object to live in a polydict, but non-commutative!
sage: f = PolyDict({(2,3):x})
sage: f.scalar_rmult(y)
PolyDict with representation {(2, 3): x*y}
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.scalar_rmult(-2)
PolyDict with representation {(1, 2): -6, (2, 3): -4, (2, 1): -8}
sage: f.scalar_rmult(RIF(-1,1))
PolyDict with representation {(1, 2): 0.?e1, (2, 3): 0.?e1, (2, 1): 0.?e1}
\end{verbatim}

\textbf{total_degree}()

\textbf{valuation} (x=None)

sage.rings.polynomial.polydict.make_ETuple (data, length)
sage.rings.polynomial.polydict.make_PolyDict (data)

\subsection{3.1.11 Class to flatten polynomial rings over polynomial ring}

For example $\mathbb{Q}[\text{'a','b'}],[\text{'x','y'}]$ flattens to $\mathbb{Q}[\text{'a','b','x','y'}}]$.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = QQ['x']['y']['s','t']['X']
sage: from sage.rings.polynomial.polydict import FlatteningMorphism
sage: phi = FlatteningMorphism(R); phi
Flattening morphism:
 From: Univariate Polynomial Ring in X over Multivariate Polynomial Ring in s, t
 over Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over
 Rational Field
 To: Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
sage: phi('x*y*s + t*X').parent()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
\end{verbatim}

Authors:

Vincent Delecroix, Ben Hutz (July 2016): initial implementation

\textbf{class} sage.rings.polynomial.flatten.FlatteningMorphism (domain)

\textbf{Bases:} sage.categories.morphism.Morphism

\textbf{EXAMPLES:}
```
sage: R = QQ['a','b']['x','y','z']['t1','t2']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: f = FlatteningMorphism(R)
sage: f.codomain()
Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field
sage: p = R('(a+b)*x + (a^2-b)*t2*(z+y)')
sage: p
(a^2 - b)*y + (a^2 - b)*z)*t2 + (a + b)*x
sage: f(p)
a^2*y*t2 + a^2*z*t2 - b*y*t2 - b*z*t2 + a*x + b*x
sage: f(p).parent()
Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field
```

Also works when univariate polynomial ring are involved:

```
sage: R = QQ['x']['y']['s','t']['X']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: f = FlatteningMorphism(R)
sage: f.codomain()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
sage: p = R('((x^2 + 1) + (x+2)*y + x*y^3)*(s+t) + x*y*X')
sage: p
x*y*X + (x*y^3 + (x + 2)*y + x^2 + 1)*s + (x*y^3 + (x + 2)*y + x^2 + 1)*t
sage: f(p)
x*y^3*s + x*y^3*t + x^2*s + x*y*s + x^2*t + x*y*t + x*y*X + 2*y*s + 2*y*t + s + t
sage: f(p).parent()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
```

```
section()
Inverse of this flattening morphism.

EXAMPLES:
```
sage: R = QQ['a','b','c']['x','y','z']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: h = FlatteningMorphism(R)
sage: h.section()
Unflattening morphism:
 From: Multivariate Polynomial Ring in a, b, c, x, y, z over Rational Field
 To: Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial
 → Multivariate Polynomial Ring in a, b, c over Rational Field
```

```
sage: R = ZZ['a']['b']['c']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: FlatteningMorphism(R).section()
Unflattening morphism:
 From: Multivariate Polynomial Ring in a, b, c over Integer Ring
 To: Univariate Polynomial Ring in c over Univariate Polynomial Ring in b
 → over Univariate Polynomial Ring in a over Integer Ring
```

```
class sage.rings.polynomial.flatten.SpecializationMorphism(domain, D)
Bases: sage.categories.morphism.Morphism

Morphisms to specialize parameters in (stacked) polynomial rings

EXAMPLES:
```
3.1. Multivariate Polynomials and Polynomial Rings
387
```python
sage: R.<c> = PolynomialRing(QQ)
sage: S.<x,y,z> = PolynomialRing(R)
sage: D = dict({c:1})
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: f = SpecializationMorphism(S, D)
sage: g = f(x^2 + c*y^2 - z^2); g
x^2 + y^2 - z^2
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
```

```python
sage: R.<c> = PolynomialRing(QQ)
sage: S.<x,y,z> = PolynomialRing(R)
sage: D = dict({c:1})
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: f = SpecializationMorphism(S, D)
sage: g = f(x^2 + c*y^2 - z^2); g
x^2 + y^2 - z^2
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
```

```python
class sage.rings.polynomial.flatten.UnflatteningMorphism(domain, codomain)
Bases: sage.categories.morphism.Morphism

Inverses for FlatteningMorphism

EXAMPLES:
```
```
3.12 Monomials

Given two lists \(v \) and \(n \), of exactly the same length, return all monomials in the elements of \(v \), where variable \(i \) (i.e., \(v[i] \)) in the monomial appears to degree strictly less than \(n[i] \).

INPUT:
- \(v \) – list of ring elements
- \(n \) – list of integers

EXAMPLES:

```python
sage: monomials([x], [3])
[1, x, x^2]
sage: R.<x,y,z> = QQ[]
sage: monomials([x,y], [5,5])
[1, y, y^2, y^3, y^4, x, x*y, x*y^2, x*y^3, x^2, x^2*y, x^2*y^2, x^2*y^3, x^2*y^4, x^3, x^3*y, x^3*y^2, x^3*y^3, x^3*y^4, x^4, x^4*y, x^4*y^2, x^4*y^3, x^4*y^4, x^4*y^5, x^4*y^6, x^4*y^7, x^4*y^8]
sage: monomials([x,y,z], [2,3,2])
[1, z, y, y*z, y^2, y^2*z, x, x*z, x*y, x*y*z, x*y^2, x*y^2*z]
```

3.2 Classical Invariant Theory

This module lists classical invariants and covariants of homogeneous polynomials (also called algebraic forms) under the action of the special linear group. That is, we are dealing with polynomials of degree \(d \) in \(n \) variables. The special linear group \(SL(n, \mathbb{C}) \) acts on the variables \((x_1, \ldots, x_n)\) linearly,

\[(x_1, \ldots, x_n)^t \rightarrow A(x_1, \ldots, x_n)^t, \quad A \in SL(n, \mathbb{C}) \]

The linear action on the variables transforms a polynomial \(p \) generally into a different polynomial \(gp \). We can think of it as an action on the space of coefficients in \(p \). An invariant is a polynomial in the coefficients that is invariant under this action. A covariant is a polynomial in the coefficients and the variables \((x_1, \ldots, x_n)\) that is invariant under the combined action.

For example, the binary quadratic \(p(x, y) = ax^2 + bxy + cy^2 \) has as its invariant the discriminant \(disc(p) = b^2 - 4ac \). This means that for any \(SL(2, \mathbb{C}) \) coordinate change

\[
\begin{pmatrix}
x' \\
y'
\end{pmatrix} = \begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
\]

the discriminant is invariant, \(disc\left(p(x', y')\right) = disc\left(p(x, y)\right) \).

To use this module, you should use the factory object `invariant_theory`. For example, take the quartic:

```python
sage: R.<x,y> = QQ[]
sage: q = x^4 + y^4
sage: quartic = invariant_theory.binary_quartic(q); quartic
Binary quartic with coefficients (1, 0, 0, 0, 1)
```
One invariant of a quartic is known as the Eisenstein D-invariant. Since it is an invariant, it is a polynomial in the coefficients (which are integers in this example):

```sage
sage: quartic.EisensteinD()
1
```

One example of a covariant of a quartic is the so-called g-covariant (actually, the Hessian). As with all covariants, it is a polynomial in \(x, y\) and the coefficients:

```sage
sage: quartic.g_covariant()
-x^2*y^2
```

As usual, use tab completion and the online help to discover the implemented invariants and covariants.

In general, the variables of the defining polynomial cannot be guessed. For example, the zero polynomial can be thought of as a homogeneous polynomial of any degree. Also, since we also want to allow polynomial coefficients we cannot just take all variables of the polynomial ring as the variables of the form. This is why you will have to specify the variables explicitly if there is any potential ambiguity. For example:

```sage
sage: invariant_theory.binary_quartic(R.zero(), [x,y])
Binary quartic with coefficients (0, 0, 0, 0, 0)
sage: invariant_theory.binary_quartic(x^4, [x,y])
Binary quartic with coefficients (0, 0, 0, 1)
sage: R.<x,t> = QQ[]
sage: invariant_theory.binary_quartic(x^4 + t*x^2*y^2, [x,y])
Binary quartic with coefficients (1, 0, t, 0, 1)
```

Finally, it is often convenient to use inhomogeneous polynomials where it is understood that one wants to homogenize them. This is also supported, just define the form with an inhomogeneous polynomial and specify one less variable:

```sage
sage: R.<x,t> = QQ[]
sage: invariant_theory.binary_quartic(x^4 + 1 + t*x^2, [x])
Binary quartic with coefficients (1, 0, t, 0, 1)
```

REFERENCES:

```python
class sage.rings.invariant_theory.AlgebraicForm(n, d, polynomial, *args, **kwds)
    Bases: sage.rings.invariant_theory.FormsBase
    The base class of algebraic forms (i.e. homogeneous polynomials).
    You should only instantiate the derived classes of this base class.
    Derived classes must implement coeffs() and scaled_coeffs()
```

INPUT:

- \(n\) – The number of variables.
- \(d\) – The degree of the polynomial.
- polynomial – The polynomial.
- *args – The variables, as a single list/tuple, multiple arguments, or None to use all variables of the polynomial.

Derived classes must implement the same arguments for the constructor.

EXAMPLES:

```python
sage: from sage.rings.invariant_theory import AlgebraicForm
sage: R.<x,y> = QQ[]

sage: p = x^2 + y^2
sage: AlgebraicForm(2, 2, p).variables()
(x, y)

sage: AlgebraicForm(2, 2, p, None).variables()
(x, y, None)

sage: AlgebraicForm(3, 2, p).variables()
(x, y, None)

sage: AlgebraicForm(3, 2, p, None).variables()
(x, y, None)

sage: from sage.rings.invariant_theory import AlgebraicForm

sage: R.<x,y,s,t> = QQ[]

sage: p = s*x^2 + t*y^2
sage: AlgebraicForm(2, 2, p, [x,y]).variables()
(x, y)

sage: AlgebraicForm(2, 2, p, x,y).variables()
(x, y)

sage: AlgebraicForm(3, 2, p, [x,y,None]).variables()
(x, y, None)

sage: AlgebraicForm(3, 2, p, x,y,None).variables()
(x, y, None)

sage: AlgebraicForm(2, 1, p, [x,y]).variables()
Traceback (most recent call last):
...
ValueError: Polynomial is of the wrong degree.

sage: AlgebraicForm(2, 2, x^2+y, [x,y]).variables()
Traceback (most recent call last):
...
ValueError: Polynomial is not homogeneous.
```

coeficients()

Alias for `coeffs()`.

See the documentation for `coeffs()` for details.

EXAMPLES:

```python
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]

sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: q = invariant_theory.quadratic_form(p, x,y,z)

sage: q.coefficients()
(a, b, c, d, e, f)

sage: q.coeffs()
(a, b, c, d, e, f)
```

form()

Return the defining polynomial.

OUTPUT:

The polynomial used to define the algebraic form.

EXAMPLES:

3.2. Classical Invariant Theory 391
homogenized (var='h')
Return form as defined by a homogeneous polynomial.

INPUT:

• var – either a variable name, variable index or a variable (default: 'h').

OUTPUT:
The same algebraic form, but defined by a homogeneous polynomial.

EXAMPLES:

```python
sage: T.<t> = QQ[]
sage: quadratic = invariant_theory.binary_quadratic(t^2 + 2*t + 3)
sage: quadratic
Binary quadratic with coefficients (1, 3, 2)
sage: quadratic.homogenized()
Binary quadratic with coefficients (1, 3, 2)
sage: quadratic == quadratic.homogenized()
True
sage: quadratic.form()
t^2 + 2*t + 3
sage: quadratic.homogenized().form()
t^2 + 2*t*h + 3*h^2
```

polynomial ()
Return the defining polynomial.

OUTPUT:
The polynomial used to define the algebraic form.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic.form()
x^4 + y^4
sage: quartic.polynomial()
x^4 + y^4
```

transformed (g)
Return the image under a linear transformation of the variables.

INPUT:

• g – a \(GL(n, C) \) matrix or a dictionary with the variables as keys. A matrix is used to define the linear transformation of homogeneous variables, a dictionary acts by substitution of the variables.
A new instance of a subclass of \texttt{AlgebraicForm} obtained by replacing the variables of the homogeneous polynomial by their image under \(g\).

\textbf{EXAMPLES:}

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3 + 2*y^3 + 3*z^3 + 4*x*y*z)
sage: cubic.transformed({x:y, y:z, z:x}).form()
3*x^3 + y^3 + 4*x*y*z + 2*z^3
sage: cyc = matrix([[0,1,0],[0,0,1],[1,0,0]])
sage: cubic.transformed(cyc) == cubic.transformed({x:y, y:z, z:x})
True
sage: g = matrix(QQ, [[1, 0, 0], [-1, 1, -3], [-5, -5, 16]])
sage: cubic.transformed(g)
Ternary cubic with coefficients (-356, -373, 12234, -1119, 3578, -1151, 3582, -11766, -11466, 7360)
sage: cubic.transformed(g).transformed(g.inverse()) == cubic
True
```

class \texttt{sage.rings.invariant_theory.BinaryQuartic}(n, d, polynomial, *args)

Invariant theory of a binary quartic.

You should use the \texttt{invariant_theory} factory object to construct instances of this class. See \texttt{binary_quartic()} for details.

\textbf{EisensteinD()}
One of the Eisenstein invariants of a binary quartic.

\textbf{OUTPUT:}

The Eisenstein D-invariant of the quartic.

\[f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \]

\[\Rightarrow D(f) = a_0 a_4 + 3a_2^2 - 4a_1 a_3 \]

\textbf{EXAMPLES:}

```python
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: f = a0*x1^4+4*a1*x0*x1^3+6*a2*x0^2*x1^2+4*a3*x0^3*x1+a4*x0^4
sage: inv = invariant_theory.binary_quartic(f, x0, x1)
sage: inv.EisensteinD()
3*a2^2 - 4*a1*a3 + a0*a4
```

\textbf{EisensteinE()}
One of the Eisenstein invariants of a binary quartic.

\textbf{OUTPUT:}

The Eisenstein E-invariant of the quartic.

\[f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \]

\[\Rightarrow E(f) = a_0 a_4^2 + a_3^2 a_4 - a_0 a_2 a_4 - 2a_1 a_2 a_3 + a_2^3 \]

\textbf{EXAMPLES:}
The coefficients of a binary quartic.

Given
\[f(x) = a_0 x_1^4 + a_1 x_0 x_1^3 + a_2 x_0^2 x_1^2 + a_3 x_0^3 x_1 + a_4 x_0^4 \]

this function returns \(a = (a_0, a_1, a_2, a_3, a_4) \)

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]

sage: f = a0*x1^4 + 4*a1*x0*x1^3 + 6*a2*x0^2*x1^2 + 4*a3*x0^3*x1 + a4*x0^4

sage: inv = invariant_theory.binary_quartic(f, x0, x1)

sage: inv.EisensteinE()
a2^3 - 2*a1*a2*a3 + a0*a3^2 + a1^2*a4 - a0*a2*a4
```

\[\text{coeffs}() \]

The coefficients of a binary quartic.

```python
sage: coeffs()
(a0, a1, a2, a3, a4)
```

\[g _\text{covariant}() \]

The \(g \)-covariant of a binary quartic.

OUTPUT:

The \(g \)-covariant of the quartic.

\[f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \]

\[\Rightarrow D(f) = \frac{1}{144} \left(\frac{\partial^2 f}{\partial x \partial y} \right) \]

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]

sage: p = a0*x^4 + 4*a1*x^3*y + 6*a2*x^2*y^2 + 4*a3*x*y^3 + a4*y^4

sage: g = inv.g_covariant(); g
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3*y - 2*a0*a3*x^3*y + 3*a2^2*x^2*y^2 - 2*a1*a3*x^2*y^2 - a0*a4*x^2*y^2 + 2*a2*a3*x*y^3 - 2*a1*a4*x*y^3 + a3^2*y^4 - a2*a4*y^4

sage: inv_inhomogeneous = invariant_theory.binary_quartic(p.subs(y=1), x)

sage: inv_inhomogeneous.g_covariant()
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3 - 2*a0*a3*x^3 + 3*a2^2*x^2 - 2*a1*a3*x^2 - a0*a4*x^2 + 2*a2*a3*x - 2*a1*a4*x + a3^2 - a2*a4

sage: g == 1/144 * (p.derivative(x,y)^2 - p.derivative(x,x)*p.derivative(y,y))
True
```

\[h _\text{covariant}() \]

The \(h \)-covariant of a binary quartic.

```python
sage: g == 1/144 * (p.derivative(x,y)^2 - p.derivative(x,x)*p.derivative(y,y))
True
```
The h-covariant of the quartic.

\[f(x) = a_0 x^4 + 4a_1 x_0 x^3_1 + 6a_2 x_0^2 x^2_1 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \]

\[\Rightarrow D(f) = \frac{1}{144} \left(\frac{\partial^2 f}{\partial x \partial x} \right) \]

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]
sage: p = a0*x^4 + 4*a1*x^3*y + 6*a2*x^2*y^2 + 4*a3*x*y^3 + a4*y^4
sage: inv = invariant_theory.binary_quartic(p, x, y)
sage: h = inv.h_covariant(); h
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - a0^2*a3*x^6 - 6*a1^2*a2*x^5*y + 9*a0*a2^2*x^5*y
- 2*a0*a1*a3*x^5*y - a0^2*a4*x^5*y - 10*a1^2*a3*x^4*y^2 + 15*a0*a2*a3*x^4*y^2
- 5*a0*a1*a4*x^4*y^3 + 10*a0*a3^2*x^3*y^3 - 10*a2^2*a4*x^3*y^3
+ 10*a1*a3^2*x^2*y^4 - 15*a1*a2*a4*x^2*y^4 + 5*a0*a3*a4*x^2*y^4
+ 6*a2*a3^2*x*y^5 - 9*a2^2*a4*x*y^5 + 2*a1^2*a3*a4*x*y^5 + a0*a4^2*x*y^5
+ 2*a3^3*y^6 - 3*a2*a3*a4*y^6 + a1*a4^2*y^6
sage: inv_inhomogeneous = invariant_theory.binary_quartic(p.subs(y=1), x)
sage: inv_inhomogeneous.h_covariant()
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - a0^2*a3*x^6 - 6*a1^2*a2*x^5 + 9*a0*a2^2*x^5
- 2*a0*a1*a3*x^5 - a0^2*a4*x^5 - 10*a1^2*a3*x^4 + 10*a1*a3^2*x^4
- 5*a0*a1*a4*x^4 + 10*a0*a3^2*x^3 + 10*a1*a3^2*x^2
- 15*a1*a2*a4*x^2 + 5*a0*a3*a4*x^2 - 9*a2^2*a4*x + 2*a1*a3*a4*x + a0*a4^2*x + 2*a3^3 - 3*a2*a3*a4 + a1*a4^2
sage: g = inv.g_covariant()
sage: h == 1/8 * (p.derivative(x)*g.derivative(y)-p.derivative(y)*g.˓→derivative(x))
True
```

monomials()

List the basis monomials in the form.

```
OUTPUT:

A tuple of monomials. They are in the same order as coeffs().
```

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic.monomials()
(y^4, x*y^3, x^2*y^2, x^3*y, x^4)
```

scaled_coeffs()

The coefficients of a binary quartic.

Given

\[f(x) = a_0 x^4 + 4a_1 x_0 x^3_1 + 6a_2 x_0^2 x^2_1 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \]

this function returns \(a = (a_0, a_1, a_2, a_3, a_4) \)

EXAMPLES:
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: quartic = a0*x1^4 + 4*a1*x1^3*x0 + 6*a2*x1^2*x0^2 + 4*a3*x1*x0^3 + a4*x0^4
sage: inv = invariant_theory.binary_quartic(quartic, x0, x1)
sage: inv.scaled_coeffs()
(a0, a1, a2, a3, a4)
sage: R.<a0, a1, a2, a3, a4, x> = QQ[]
sage: quartic = a0 + 4*a1*x + 6*a2*x^2 + 4*a3*x^3 + a4*x^4
sage: inv = invariant_theory.binary_quartic(quartic, x)
sage: inv.scaled_coeffs()
(a0, a1, a2, a3, a4)

class sage.rings.invariant_theory.FormsBase(n, homogeneous, ring, variables)
 Bases: sage.structure.sage_object.SageObject

The common base class of AlgebraicForm and SeveralAlgebraicForms.

This is an abstract base class to provide common methods. It does not make much sense to instantiate it.

is_homogeneous()

Return whether the forms were defined by homogeneous polynomials.

OUTPUT:

Boolean. Whether the user originally defined the form via homogeneous variables.

EXAMPLES:

sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.is_homogeneous()
True
sage: quartic.form()
x^2*y^2*t + x^4 + y^4
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
sage: quartic.is_homogeneous()
False
sage: quartic.form()
x^4 + x^2*t + 1

ring()

Return the polynomial ring.

OUTPUT:

A polynomial ring. This is where the defining polynomial(s) live. Note that the polynomials may be homogeneous or inhomogeneous, depending on how the user constructed the object.

EXAMPLES:

sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.ring()
Multivariate Polynomial Ring in x, y, t over Rational Field
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
variables()

Return the variables of the form.

OUTPUT:

A tuple of variables. If inhomogeneous notation is used for the defining polynomial then the last entry will be None.

EXAMPLES:

```
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4+t*x^2*y^2, [x,y])
sage: quartic.variables()
(x, y)
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+1+t*x^2, [x])
sage: quartic.variables()
(x, None)
```

class `sage.rings.invariant_theory.InvariantTheoryFactory`

Bases: object

Factory object for invariants of multilinear forms.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: invariant_theory.ternary_cubic(x^3+y^3+z^3)
Ternary cubic with coefficients (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
```

`binary_quadratic(quadratic, *args)`

Invariant theory of a quadratic in two variables.

INPUT:

- `quadratic` – a quadratic form.
- `x, y` – the homogeneous variables. If `y` is `None`, the quadratic is assumed to be inhomogeneous.

REFERENCES:

- Wikipedia article Invariant_of_a_binary_form

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: invariant_theory.binary_quadratic(x^2+y^2)
Binary quadratic with coefficients (1, 1, 0)
sage: T.<t> = QQ[]
sage: invariant_theory.binary_quadratic(t^2 + 2*t + 1, [t])
Binary quadratic with coefficients (1, 1, 2)
```

`binary_quartic(quartic, *args, **kwds)`

Invariant theory of a quartic in two variables.

The algebra of invariants of a quartic form is generated by invariants i, j of degrees 2, 3. This ring is naturally isomorphic to the ring of modular forms of level 1, with the two generators corresponding to the
Eisenstein series E_4 (see EisensteinD()) and E_6 (see EisensteinE()). The algebra of covariants is generated by these two invariants together with the form f of degree 1 and order 4, the Hessian g (see g_covariant()) of degree 2 and order 4, and a covariant h (see h_covariant()) of degree 3 and order 6. They are related by a syzygy

$$jf^3 - g^2f^i + 4g^3 + h^2 = 0$$

of degree 6 and order 12.

INPUT:
- quartic – a quartic.
- x, y – the homogeneous variables. If y is None, the quartic is assumed to be inhomogeneous.

REFERENCES:
- Wikipedia article Invariant_of_a_binary_form

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4+y^4)
sage: quartic
Binary quartic with coefficients (1, 0, 0, 0, 1)
sage: type(quartic)
<class 'sage.rings.invariant_theory.BinaryQuartic'>
```

inhomogeneous_quadratic_form(polynomial, *args)

Invariants of an inhomogeneous quadratic form.

INPUT:
- polynomial – an inhomogeneous quadratic form.
- *args – the variables as multiple arguments, or as a single list/tuple.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2+2*y^2+3*x*y+4*x+5*y+6
sage: inv3 = invariant_theory.inhomogeneous_quadratic_form(quadratic)
sage: type(inv3)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>
sage: inv4 = invariant_theory.inhomogeneous_quadratic_form(x^2+y^2+z^2)
sage: type(inv4)
<class 'sage.rings.invariant_theory.QuadraticForm'>
```

quadratic_form(polynomial, *args)

Invariants of a homogeneous quadratic form.

INPUT:
- polynomial – a homogeneous or inhomogeneous quadratic form.
- *args – the variables as multiple arguments, or as a single list/tuple. If the last argument is None, the cubic is assumed to be inhomogeneous.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2+y^2+z^2
sage: inv = invariant_theory.quadratic_form(quadratic)
```

398 Chapter 3. Multivariate Polynomials
If some of the ring variables are to be treated as coefficients you need to specify the polynomial variables:

```python
sage: R.<x,y,z, a,b> = QQ[]
sage: quadratic = a*x^2+b*y^2+z^2+2*y*z
sage: invariant_theory.quadratic_form(quadratic, x,y,z)  # alternate syntax
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
```

Inhomogeneous quadratic forms (see also `inhomogeneous_quadratic_form()`) can be specified by passing `None` as the last variable:

```python
sage: inhom = quadratic.subs(z=1)
sage: invariant_theory.quadratic_form(inhom, x,y,None)
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
```

quaternionary_biquadratic

Invariants of two quadratics in four variables.

INPUT:

- `quadratic1, quadratic2` – two polynomials. Either homogeneous quadratic in 4 homogeneous variables, or inhomogeneous quadratic in 3 variables.
- `w, x, y, z` – the variables. If `z` is `None`, the quadratics are assumed to be inhomogeneous.

EXAMPLES:

```python
sage: R.<w,x,y,z> = QQ[]
sage: q1 = w^2+x^2+y^2+z^2
sage: q2 = w*x + y*z
sage: inv = invariant_theory.quaternionary_biquadratic(q1, q2)
sage: type(inv)
<class 'sage.rings.invariant_theory.TwoQuaternionicQuadratics'>
```

Distance between two spheres [Salmon]

```python
sage: R.<x,y,z, a,b,c, r1,r2> = QQ[]
sage: S1 = -r1^2 + x^2 + y^2 + z^2
sage: S2 = -r2^2 + (x-a)^2 + (y-b)^2 + (z-c)^2
sage: inv = invariant_theory.quaternionary_biquadratic(S1, S2, [x, y, z])
sage: inv.Delta_invariant()
-r1^2
sage: inv.Delta_prime_invariant()
-r2^2
sage: inv.Theta_invariant()
a^2 + b^2 + c^2 - 3*r1^2 - r2^2
sage: inv.Theta_prime_invariant()
a^2 + b^2 + c^2 - r1^2 - 3*r2^2
sage: inv.Phi_invariant()
2*a^2 + 2*b^2 + 2*c^2 - 3*r1^2 - 3*r2^2
sage: inv.J_covariant()
0
```

quaternionary_quadratic

Invariant theory of a quadratic in four variables.
INPUT:

• \texttt{quadratic} – a quadratic form.

• \(w, x, y, z\) – the homogeneous variables. If \(z\) is \texttt{None}, the quadratic is assumed to be inhomogeneous.

REFERENCES:

EXAMPLES:

\begin{verbatim}
sage: R.<w,x,y,z> = QQ[]
sage: invariant_theory.quaternary_quadratic(w^2+x^2+y^2+z^2)
Quaternary quadratic with coefficients (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
sage: R.<x,y,z> = QQ[]
sage: invariant_theory.quaternary_quadratic(1+x^2+y^2+z^2)
Quaternary quadratic with coefficients (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
\end{verbatim}

ternary_biquadratic\texttt{(quadratic1, quadratic2, *args, **kwds)}

Invariants of two quadratics in three variables.

INPUT:

• \texttt{quadratic1, quadratic2} – two polynomials. Either homogeneous quadratic in 3 homogeneous variables, or inhomogeneous quadratic in 2 variables.

• \(x, y, z\) – the variables. If \(z\) is \texttt{None}, the quadratics are assumed to be inhomogeneous.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y,z> = QQ[]
sage: q1 = x^2+y^2+z^2
sage: q2 = x*y + y*z + x*z
sage: inv = invariant_theory.ternary_biquadratic(q1, q2)
sage: type(inv)
<class 'sage.rings.invariant_theory.TwoTernaryQuadratics'>
sage: inv.Delta_invariant()
-r1^2
sage: inv.Delta_prime_invariant()
-r2^2
sage: inv.Theta_invariant()
a^2 + b^2 - 2*r1^2 - r2^2
sage: inv.Theta_prime_invariant()
a^2 + b^2 - r1^2 - 2*r2^2
sage: inv.F_covariant()
2*x^2*a^2 + y^2*a^2 - 2*x*a^3 + a^4 + 2*x*y*a*b - 2*y*a^2*b + x^2*b^2 + 2*y^2*b^2 - 2*x*y*b^3 + b^4 - 2*x^2*r1^2 - 2*y^2*r1^2 + 2*x*a*r1^2 - 2*a^2*r1^2 + 2*y*b*r1^2 + r1^4 - 2*x^2*r2^2 - 2*y^2*r2^2 + 2*x*a*r2^2 - 2*a^2*r2^2 + 2*y*b*r2^2 + 2*r1^2*r2^2 + r2^4
sage: inv.J_covariant()
-8*x*y*a^3 + 8*x*y^2*a^4 + 8*x^3*a^2*b + 16*x*y^2*a^2*b - 8*x^2*a^3*b + 8*y^2*a^3*b + 16*x^2*a*b^2 - 8*y^3*a*b^2 + 8*x*y^2*b^3 - 8*x^2*a*b^3 + 8*y^2*a*b^3 - 8*x*y*b^4 + 8*x*y*a^2*r1^2 - 8*y*a^3*r1^2 - 8*x^2*a*b*r1^2 +
\end{verbatim}

Distance between two circles:

\begin{verbatim}
sage: R.<x,y, a,b, rl,r2> = QQ[]
sage: S1 = -r1^2 + x^2 + y^2
sage: S2 = -r2^2 + (x-a)^2 + (y-b)^2
sage: inv = invariant_theory.ternary_biquadratic(S1, S2, [x, y])
sage: inv.Delta_invariant()
-r1^2
sage: inv.Delta_prime_invariant()
-r2^2
sage: inv.Theta_invariant()
a^2 + b^2 - 2*a^2*r1^2 - 2*b^2*r2^2
sage: inv.Theta_prime_invariant()
a^2 + b^2 - 2*a^2*r1^2 - 2*b^2*r2^2
sage: inv.F_covariant()
-16*x*y*a^3 + 16*x*y^2*a^4 + 16*x^3*a^2*b - 32*x*y^2*a^2*b - 16*x^2*a^3*b + 16*y^2*a^3*b + 32*x^2*a*b^2 - 8*y^3*a*b^2 + 16*x*y^2*b^3 - 16*x^2*a*b^3 + 16*y^2*a*b^3 - 16*x*y*b^4 + 16*x*y*a^2*r1^2 - 16*y*a^3*r1^2 - 16*x^2*a*b*r1^2 +
\end{verbatim}
ternary_cubic (cubic, *args, **kwds)

Invariants of a cubic in three variables.

The algebra of invariants of a ternary cubic under $SL_3(\mathbb{C})$ is a polynomial algebra generated by two invariants S (see $S_{\text{invariant}}()$) and T (see $T_{\text{invariant}}()$) of degrees 4 and 6, called Aronhold invariants.

The ring of covariants is given as follows. The identity covariant U of a ternary cubic has degree 1 and order 3. The Hessian H (see $\text{Hessian}()$) is a covariant of ternary cubics of degree 3 and order 3. There is a covariant Θ (see $\text{Theta_covariant}()$) of ternary cubics of degree 8 and order 6 that vanishes on points x lying on the Salmon conic of the polar of x with respect to the curve and its Hessian curve. The Brioschi covariant J (see $J_{\text{covariant}}()$) is the Jacobian of U, Θ, and H of degree 12, order 9. The algebra of covariants of a ternary cubic is generated over the ring of invariants by U, Θ, H, and J, with a relation

$$J^2 = 4\Theta^3 + TU^2 \Theta^2 + \Theta(-4S^3U^4 + 2STU^3H - 72S^2U^2H^2$$
$$- 18TUH^3 + 108SH^4) - 16S^4U^5H - 11S^2TU^4H^2$$
$$- 4T^2U^3H^3 + 54STU^2H^4 - 432S^2UH^5 - 27TH^6$$

REFERENCES:

- Wikipedia article Invariant of a binary form

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: type(cubic)
<class 'sage.rings.invariant_theory.TernaryCubic'>
```

ternary_quadratic (quadratic, *args, **kwds)

Invariants of a quadratic in three variables.

INPUT:

- cubic – a homogeneous cubic in 3 homogeneous variables, or an inhomogeneous cubic in 2 variables.
- x, y, z – the variables. If z is None, the cubic is assumed to be inhomogeneous.

REFERENCES:

- Wikipedia article Invariant of a binary form

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: invariant_theory.ternary_quadratic(x^2+y^2+z^2)
Ternary quadratic with coefficients (1, 1, 1, 0, 0, 0)
sage: T.<u, v> = QQ[]
sage: invariant_theory.ternary_quadratic(1+u^2+v^2)
```

3.2. Classical Invariant Theory
Ternary quadratic with coefficients (1, 1, 0, 0, 0)
sage: quadratic = x^2+y^2+z^2
sage: inv = invariant_theory.ternary_quadratic(quadratic)
sage: type(inv)
<class 'sage.rings.invariant_theory.TernaryQuadratic'>

```
class sage.rings.invariant_theory.QuadraticForm(n, d, polynomial, *args)
    Bases: sage.rings.invariant_theory.AlgebraicForm

Invariant theory of a multivariate quadratic form.

You should use the invariant_theory factory object to construct instances of this class. See
quadratic_form() for details.

as_QuadraticForm()
    Convert into a QuadraticForm.

OUTPUT:

Sage has a special quadratic forms subsystem. This method converts self into this QuadraticForm
representation.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: p = x^2+y^2+z^2+2*x*y+3*x*z
sage: quadratic = invariant_theory.ternary_quadratic(p)
sage: matrix(quadratic)
[1 1 3/2]
[1 1 0]
[3/2 0 1]
sage: quadratic.as_QuadraticForm()
Quadratic form in 3 variables over Multivariate Polynomial
Ring in x, y, z over Rational Field with coefficients:
[1/2 1 3/2]
[* 1/2 0]
[* * 1/2]
sage: _.polynomial('X,Y,Z')
X^2 + 2*X*Y + Y^2 + 3*X*Z + Z^2
```

coeffs()
    The coefficients of a quadratic form.

Given

\[ f(x) = \sum_{0 \leq i < n} a_i x_i^2 + \sum_{0 \leq j < k < n} a_{jk} x_j x_k \]

this function returns \( a = (a_0, \ldots, a_n, a_{00}, a_{01}, \ldots, a_{n-1,n}) \)

EXAMPLES:

```
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: quadratic = invariant_theory.ternary_quadratic(p, x,y,z); inv
ternary quadratic with coefficients (a, b, c, d, e, f)
sage: inv.coeffs()
(a, b, c, d, e, f)
sage: inv.scaled_coeffs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)
```
**discriminant()**

Return the discriminant of the quadratic form.

Up to an overall constant factor, this is just the determinant of the defining matrix, see `matrix()`.

For a quadratic form in \( n \) variables, the overall constant is \( 2^{n-1} \) if \( n \) is odd and \((-1)^{n/2}2^n\) if \( n \) is even.

**EXAMPLES:**

```python
sage: R.<a,b,c, x,y> = QQ[]
sage: p = a*x^2+b*x*y+c*y^2
sage: quadratic = invariant_theory.quadratic_form(p, x,y)
sage: quadratic.discriminant()
b^2 - 4*a*c
```

```python
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[
```

```python
dual()
```

Return the dual quadratic form.

**OUTPUT:**

A new quadratic form (with the same number of variables) defined by the adjoint matrix.

**EXAMPLES:**

```python
sage: R.<a,b,c,x,y,z> = QQ[
```

```python
matrix()
```

Return the quadratic form as a symmetric matrix.

**OUTPUT:**

This method returns a symmetric matrix \( A \) such that the quadratic \( Q \) equals

\[
Q(x, y, z, \ldots) = (x, y, \ldots)A(x, y, \ldots)^t
\]

**EXAMPLES:**
```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2+x*y)
sage: matrix(quadratic)
[1 1/2 0]
[1/2 1 0]
[0 0 1]
sage: quadratic._matrix_() == matrix(quadratic)
True
```

**monomials()**

List the basis monomials in the form.

**OUTPUT:**

A tuple of monomials. They are in the same order as `coeffs()`.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]
sage: quadratic = invariant_theory.quadratic_form(x^2+y^2)
sage: quadratic.monomials()
(x^2, y^2, x*y)
sage: quadratic = invariant_theory.inhomogeneous_quadratic_form(x^2+y^2)
sage: quadratic.monomials()
(x^2, y^2, 1, x*y, x, y)
```

**scaled_coeffs()**

The scaled coefficients of a quadratic form.

Given

\[ f(x) = \sum_{0 \leq i < n} a_i x_i^2 + \sum_{0 \leq j < k < n} 2a_{jk} x_j x_k \]

this function returns \( a = (a_0, \cdots, a_n, a_{00}, a_{01}, \cdots, a_{n-1,n}) \)

**EXAMPLES:**

```python
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: inv = invariant_theory.quadratic_form(p, x,y,z); inv
Ternary quadratic with coefficients (a, b, c, d, e, f)
sage: inv.coefs()
(a, b, c, d, e, f)
sage: inv.scaled_coeffs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)
```

**class** `sage.rings.invariant_theory.SeveralAlgebraicForms(forms)`

**Bases:** `sage.rings.invariant_theory.FormsBase`

The base class of multiple algebraic forms (i.e. homogeneous polynomials).

You should only instantiate the derived classes of this base class.

See `AlgebraicForm` for the base class of a single algebraic form.

**INPUT:**

- `forms` – a list/tuple/iterable of at least one `AlgebraicForm` object, all with the same number of variables. Interpreted as multiple homogeneous polynomials in a common polynomial ring.
EXAMPLES:

```
sage: from sage.rings.invariant_theory import AlgebraicForm, SeveralAlgebraicForms
sage: R.<x,y> = QQ[]
sage: p = AlgebraicForm(2, 2, x^2, (x,y))
sage: q = AlgebraicForm(2, 2, y^2, (x,y))
sage: pq = SeveralAlgebraicForms([p, q])
```

get_form \((i)\)
Return the \(i\)-th form.

```
sage: R.<x,y> = QQ[]
sage: q1 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q2 = invariant_theory.quadratic_form(x*y)
sage: from sage.rings.invariant_theory import SeveralAlgebraicForms
sage: q12 = SeveralAlgebraicForms([q1, q2])
sage: q12.get_form(0) is q1
True
sage: q12.get_form(1) is q2
True
sage: q12[0] is q12.get_form(0) # syntactic sugar
True
sage: q12[1] is q12.get_form(1) # syntactic sugar
True
```

homogenized \((\text{var}'=h')\)
Return form as defined by a homogeneous polynomial.

INPUT:

*\text{var} – either a variable name, variable index or a variable (default: 'h').

OUTPUT:
The same algebraic form, but defined by a homogeneous polynomial.

```
sage: R.<x,y,z> = QQ[]
sage: q = invariant_theory.quaternary_biquadratic(x^2+1, y^2+1, [x,y,z])
sage: q
Joint quaternary quadratic with coefficients (1, 0, 0, 1, 0, 0, 0, 0, 0, 0) and quaternary quadratic with coefficients (0, 1, 0, 1, 0, 0, 0, 0, 0, 0)
sage: q.homogenized()
Joint quaternary quadratic with coefficients (1, 0, 0, 1, 0, 0, 0, 0, 0, 0) and quaternary quadratic with coefficients (0, 1, 0, 1, 0, 0, 0, 0, 0, 0)
sage: type(q) is type(q.homogenized())
True
```

n_forms()
Return the number of forms.

```
sage: R.<x,y> = QQ[]
sage: q1 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q2 = invariant_theory.quadratic_form(x*y)
sage: from sage.rings.invariant_theory import SeveralAlgebraicForms
sage: q12 = SeveralAlgebraicForms([q1, q2])
```
sage: q12.n_forms()
2
sage: len(q12) == q12.n_forms()  # syntactic sugar
True

class sage.rings.invariant_theory.TernaryCubic(n, d, polynomial, *args)

Bases: sage.rings.invariant_theory.AlgebraicForm

Invariant theory of a ternary cubic.

You should use the invariant_theory factory object to construct instances of this class. See ternary_cubic() for details.

Hessian()
Return the Hessian covariant.

OUTPUT:

The Hessian matrix multiplied with the conventional normalization factor 1/216.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.Hessian()
x*y*z

sage: R.<x,y> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
sage: cubic.Hessian()
x*y
```

J_covariant()
Return the J-covariant of the ternary cubic.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.J_covariant()
x^6*y^3 - x^3*y^6 - x^6*z^3 + y^6*z^3 + x^3*z^6 - y^3*z^6

sage: R.<x,y> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
sage: cubic.J_covariant()
x^6*y^3 - x^3*y^6 - x^6 + y^6 + x^3 - y^3
```

S_invariant()
Return the S-invariant.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^2*y+y^3+z^3+x*y*z)
sage: cubic.S_invariant()
-1/1296
```

T_invariant()
Return the T-invariant.

EXAMPLES:
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.T_invariant()
1
sage: R.<x,y,z,t> = GF(7)[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3+t*x*y*z, [x,y,z])
sage: cubic.T_invariant()
t^6 + t^3 + 1

Theta_covariant()

Return the $\Theta$ covariant.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+z^3)
sage: cubic.Theta_covariant()
-x^3*y^3 - x^3*z^3 - y^3*z^3
sage: R.<x,y> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y^3+1)
sage: cubic.Theta_covariant()
-x^3*y^3 - x^3 - y^3
sage: R.<x,y,z,a30,a21,a12,a03,a20,a11,a02,a10,a01,a00> = QQ[]
sage: p = ( a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z + 
....: a11*x*y*z + a02*y^2*z + a10*z^2 + a01*y*z^2 + a00*z^3 )
sage: cubic = invariant_theory.ternary_cubic(p, x,y,z)
sage: len(list(cubic.Theta_covariant()))
6952

coeffs()

Return the coefficients of a cubic.

Given

$$p(x, y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 + 
\quad a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

this function returns $a = (a_{30}, a_{03}, a_{00}, a_{21}, a_{20}, a_{12}, a_{02}, a_{10}, a_{01}, a_{11})$

EXAMPLES:

sage: R.<x,y,z,a30,a21,a12,a03,a20,a11,a02,a10,a01,a00> = QQ[]
sage: p = ( a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z + 
....: a11*x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3 )
sage: invariant_theory.ternary_cubic(p, x,y,z).coeffs()
(a30, a03, a00, a21, a20, a12, a02, a10, a01, a11)
sage: invariant_theory.ternary_cubic(p.subs(z=1), x, y).coeffs()
(a30, a03, a00, a21, a20, a12, a02, a10, a01, a11)

monomials()

List the basis monomials of the form.

OUTPUT:

A tuple of monomials. They are in the same order as coeffs().

EXAMPLES:
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3+y*z^2)
sage: cubic.monomials()
(x^3, y^3, z^3, x^2*y, x^2*z, x*y^2, y^2*z, x*z^2, y*z^2, x*y*z)

\textbf{polar_conic()}

Return the polar conic of the cubic.

\textbf{OUTPUT:}

Given the ternary cubic \(f(X, Y, Z)\), this method returns the symmetric matrix \(A(x, y, z)\) defined by

\[
xf_X + yf_Y + zf_Z = (X, Y, Z) \cdot A(x, y, z) \cdot (X, Y, Z)^t
\]

\textbf{EXAMPLES:}

sage: R.<x,y,z,X,Y,Z,a30,a21,a12,a03,a20,a11,a02,a10,a01,a00> = QQ[
  
  p = ( a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z +
  ....:     a11 *x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3 )
  
sage: cubic = invariant_theory.ternary_cubic(p, x,y,z)
sage: cubic.polar_conic()

\[
\begin{bmatrix}
  3 *x*a30 + y*a21 + z*a20 & x*a21 + y*a12 + 1/2*z*a11 & x*a20 + 1/2*y*a11 + z*a10 \\
  x*a21 + y*a12 + 1/2*z*a11 & x*a12 + 3*y*a03 + z*a02 1/2*x*a11 + y*a02 + z*a01 & x*a10 + y*a01 + z*a00 \\
  x*a20 + 1/2*y*a11 + z*a10 & 1/2*x*a11 + y*a02 + z*a01 & x*a10 + y*a01 + 3*z*a00
\end{bmatrix}
\]

sage: polar_eqn = X*p.derivative(x) + Y*p.derivative(y) + Z*p.derivative(z)
sage: polar = invariant_theory.ternary_quadratic(polar_eqn, [x,y,z])
sage: polar.matrix().subs(X=x,Y=y,Z=z) == cubic.polar_conic()
True

\textbf{scaled_coeffs()}

Return the coefficients of a cubic.

Compared to \texttt{coeffs()}, this method returns rescaled coefficients that are often used in invariant theory.

Given

\[
p(x, y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2z +
  a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}
\]

this function returns \(a = (a_{30}, a_{03}, a_{00}, a_{21}/3, a_{20}/3, a_{12}/3, a_{02}/3, a_{10}/3, a_{01}/3, a_{11}/6)\)

\textbf{EXAMPLES:}

sage: R.<x,y,z,a30,a21,a12,a03,a20,a11,a02,a10,a01,a00> = QQ[
  
  p = ( a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z +
  ....:     a11 *x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3 )
  
sage: invariant_theory.ternary_cubic(p, x,y,z).scaled_coeffs()

\[
(a30, a03, a00, 1/3*a21, 1/3*a20, 1/3*a12, 1/3*a02, 1/3*a10, 1/3*a01, 1/6*a11)
\]

\textbf{syzygy (U, S, T, H, Theta, J)}

Return the syzygy of the cubic evaluated on the invariants and covariants.

\textbf{INPUT:}

\texttt{U, S, T, H, Theta, J} – polynomials from the same polynomial ring.
OUTPUT:

0 if evaluated for the form, the S invariant, the T invariant, the Hessian, the Θ covariant and the J-covariant of a ternary cubic.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: monomials = (x^3, y^3, z^3, x^2*y, x^2*z, x*y^2,
.....: y^2*z, x*z^2, y*z^2, x*y*z)
sage: random_poly = sum([randint(0,10000) * m
: for m in monomials])
sage: cubic = invariant_theory.ternary_cubic(random_poly)
sage: U = cubic.form()
sage: S = cubic.S_invariant()
sage: T = cubic.T_invariant()
sage: H = cubic.Hessian()
sage: Theta = cubic.Theta_covariant()
sage: J = cubic.J_covariant()
sage: cubic.syzygy(U, S, T, H, Theta, J)
0
```

class sage.rings.invariant_theory.TernaryQuadratic(n, d, polynomial, *args)

Invariant theory of a ternary quadratic.

You should use the invariant_theory factory object to construct instances of this class. See ternary_quadratic() for details.

coeffs()

Return the coefficients of a quadratic.

Given

\[ p(x, y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00} \]

this function returns \( a = (a_{20}, a_{02}, a_{00}, a_{11}, a_{10}, a_{01}) \)

EXAMPLES:

```
sage: R.<x,y,z,a20,a11,a02,a10,a01,a00> = QQ[]
sage: p = (a20*x^2 + a11*x*y + a02*y^2 +
.....: a10*x*z + a01*y*z + a00*z^2)
sage: invariant_theory.ternary_quadratic(p, x,y,z).coeffs()
(a20, a02, a00, a11, a10, a01)
sage: invariant_theory.ternary_quadratic(p.subs(z=1), x, y).coeffs()
(a20, a02, a00, a11, a10, a01)
```

covariant_conic(other)

Return the ternary quadratic covariant to self and other.

INPUT:

*other – Another ternary quadratic.

OUTPUT:

The so-called covariant conic, a ternary quadratic. It is symmetric under exchange of self and other.

EXAMPLES:
sage: ring.<x,y,z> = QQ[]
sage: Q = invariant_theory.ternary_quadratic(x^2+y^2+z^2)
sage: R = invariant_theory.ternary_quadratic(x*y+x*z+y*z)
sage: Q.covariant_conic(R)
-x*y - x*z - y*z
sage: R.covariant_conic(Q)
-x*y - x*z - y*z

monomials()
List the basis monomials of the form.
OUTPUT:
A tuple of monomials. They are in the same order as coeffs().
EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y*z)
sage: quadratic.monomials()
(x^2, y^2, z^2, x*y, x*z, y*z)

scaled_coeffs()
Return the scaled coefficients of a quadratic.

Given
\[ p(x, y) = a_{20} x^2 + a_{11} x y + a_{02} y^2 + a_{10} x + a_{01} y + a_{00} \]
this function returns \( a = (a_{20}, a_{02}, a_{00}, a_{11}/2, a_{10}/2, a_{01}/2) \)

EXAMPLES:

sage: R.<x,y,z,a20,a11,a02,a10,a01,a00> = QQ[]
sage: p = ( a20*x^2 + a11*x*y + a02*y^2 +
....: a10*x*z + a01*y*z + a00*x^2 )
sage: invariant_theory.ternary_quadratic(p, x,y,z).scaled_coeffs()
(a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)
sage: invariant_theory.ternary_quadratic(p.subs(z=1), x, y).scaled_coeffs()
(a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)

class sage.rings.invariant_theory.TwoAlgebraicForms(forms)
Bases: sage.rings.invariant_theory.SeveralAlgebraicForms

The Python constructor.

first()
Return the first of the two forms.
OUTPUT:
The first algebraic form used in the definition.
EXAMPLES:

sage: R.<x,y> = QQ[]
sage: q0 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q1 = invariant_theory.quadratic_form(x*y)
sage: from sage.rings.invariant_theory import TwoAlgebraicForms
sage: q = TwoAlgebraicForms([q0, q1])
sage: q.first() is q0
sage: q.get_form(0) is q0
True
sage: q.first().polynomial()
x^2 + y^2

second()
Return the second of the two forms.

OUTPUT:
The second form used in the definition.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: q0 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q1 = invariant_theory.quadratic_form(x + y)
sage: from sage.rings.invariant_theory import TwoAlgebraicForms
sage: q = TwoAlgebraicForms([q0, q1])
sage: q.second() is q1
True
sage: q.get_form(1) is q1
True
sage: q.second().polynomial()
x*y

class sage.rings.invariant_theory.TwoQuaternaryQuadratics(forms)
Bases: sage.rings.invariant_theory.TwoAlgebraicForms

Invariant theory of two quaternary quadratics.

You should use the invariant_theory factory object to construct instances of this class. See quaternary_biquadratics() for details.

REFERENCES:

Delta_invariant()
Return the $\Delta$ invariant.

EXAMPLES:

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3 + b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3 + B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
True

Delta_prime_invariant()
Return the $\Delta'$ invariant.

EXAMPLES:
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
    coefficients(sparse=False)
sage: q.Delta_prime_invariant() == coeffs[0]
True

\textbf{J\_covariant} ()

The \(J\)-covariant.

This is the Jacobian determinant of the two biquadratics, the \(T\)-covariant, and the \(T'\)-covariant with respect to the four homogeneous variables.

\textbf{EXAMPLES:}

sage: R.<w,x,y,z,a0,a1,a2,a3,A0,A1,A2,A3> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [w, x, y, z])
sage: q.J_covariant().factor()
z * y * x * w * (a3*A2 - a2*A3) * (a3*A1 - a1*A3) * (-a2*A1 + a1*A2)
* (a3*A0 - a0*A3) * (-a2*A0 + a0*A2) * (-a1*A0 + a0*A1)

\textbf{Phi\_invariant} ()

Return the \(\Phi'\) invariant.

\textbf{EXAMPLES:}

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
    coefficients(sparse=False)
sage: q.Phi_invariant() == coeffs[2]
True

\textbf{T\_covariant} ()

The \(T\)-covariant.

\textbf{EXAMPLES:}

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: T = invariant_theory.quaternary_quadratic(q.T_covariant(), [x,y,z]).
    matrix()
sage: M = q[0].matrix().adjoint() + t*q[1].matrix().adjoint()
    # long time (4s on my thinkpad W530)
....:     lambda m: m.coefficient(t))
sage: M == q.Delta_invariant()*T
# long time
True

T_prime_covariant()  
The $T'$-covariant.

EXAMPLES:

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5>
    → QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: Tprime = invariant_theory.quaternary_quadratic(
    ....:     q.T_prime_covariant(), [x,y,z]).matrix()
sage: M = q[0].matrix().adjoint() + t*q[1].matrix().adjoint()
    # long time (4s on my thinkpad W530)
....:     lambda m: m.coefficient(t^2))
sage: M == q.Delta_prime_invariant() * Tprime
# long time
True

Theta_invariant()  
Return the $\Theta$ invariant.

EXAMPLES:

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5>
    → QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
    →coefficients(sparse=False)
sage: q.Theta_invariant() == coeffs[3]
True

Theta_prime_invariant()  
Return the $\Theta'$ invariant.

EXAMPLES:

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5>
    → QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
    →coefficients(sparse=False)
sage: q.Theta_prime_invariant() == coeffs[3]
True

3.2. Classical Invariant Theory

413
sage: q.Theta_prime_invariant() == coeffs[1]
True

syzygy (Delta, Theta, Phi, Theta_prime, Delta_prime, U, V, T, T_prime, J)
Return the syzygy evaluated on the invariants and covariants.

INPUT:

•Delta, Theta, Phi, Theta_prime, Delta_prime, U, V, T, T_prime, J – polynomials from the same polynomial ring.

OUTPUT:
Zero if the U is the first polynomial, V the second polynomial, and the remaining input are the invariants and covariants of a quaternary biquadratic.

EXAMPLES:

sage: R.<w,x,y,z> = QQ[]
sage: monomials = [x^2, x*y, y^2, x*z, y*z, z^2, x*w, y*w, z*w, w^2]
sage: def q_rnd():
    return sum(randint(-1000,1000)*m for m in monomials)
sage: biquadratic = invariant_theory.quaternary_biquadratic(q_rnd(), q_rnd())
sage: Delta = biquadratic.Delta_invariant()
sage: Theta = biquadratic.Theta_invariant()
sage: Phi = biquadratic.Phi_invariant()
sage: Theta_prime = biquadratic.Theta_prime_invariant()
sage: Delta_prime = biquadratic.Delta_prime_invariant()
sage: U = biquadratic.first().polynomial()
sage: V = biquadratic.second().polynomial()
sage: T = biquadratic.T_covariant()
sage: T_prime = biquadratic.T_prime_covariant()
sage: J = biquadratic.J_covariant()
sage: biquadratic.syzygy(Delta, Theta, Phi, Theta_prime, Delta_prime, U, V, T, → T_prime, J)
0

If the arguments are not the invariants and covariants then the output is some (generically non-zero) polynomial:

sage: biquadratic.syzygy(1, 1, 1, 1, 1, 1, 1, 1, 1, x)
-x^2 + 1

class sage.rings.invariant_theory.TwoTernaryQuadratics (forms)
Bases: sage.rings.invariant_theory.TwoAlgebraicForms

Invariant theory of two ternary quadratics.

You should use the invariant_theory factory object to construct instances of this class. See ternary_biquadratics() for details.

REFERENCES:

Delta_invariant ()
Return the Δ invariant.

EXAMPLES:

sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, → y2, t> = QQ[]
sage: pl = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + t → a22*y2^2
Delta_prime_invariant()  
Return the $\Delta'$ invariant.

EXAMPLES:

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
sage: q.Delta_prime_invariant() == coeffs[0]
True
```

F_covariant()  
Return the $F$ covariant.

EXAMPLES:

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y> = QQ[]
sage: p1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: p2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
sage: q.F_covariant()
-32566577*x^2 + 29060637/2*x*y + 20153633/4*y^2 - 30250497/2*x - 241241273/4*y - 323820473/16
```

J_covariant()  
Return the $J$ covariant.

EXAMPLES:

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y> = QQ[]
sage: p1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: p2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
sage: q.J_covariant()
1057324024445*x^3 + 1209531088209*x^2*y + 942116599708*x*y^2 + 984553030871*y^3 + 543715345505/2*x^2 - 3065093506021/2*x*y + 755263948570*y^2 - 1118430692650*x - 509948695327/4*y + 3369951531745/8
```

Theta_invariant()  
Return the $\Theta$ invariant.

EXAMPLES:
Theta_prime_invariant()  
Return the $\Theta'$ invariant.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y,z> = QQ[]
sage: monomials = [x^2, x*y, y^2, x*z, y*z, z^2]
sage: def q_rnd():
    return sum(randint(-1000,1000)*m for m in monomials)
sage: biquadratic = invariant_theory.ternary_biquadratic(q_rnd(), q_rnd(), [x, y, z])
sage: Delta = biquadratic.Delta_invariant()
sage: Theta = biquadratic.Theta_invariant()
sage: Theta_prime = biquadratic.Theta_prime_invariant()
sage: Delta_prime = biquadratic.Delta_prime_invariant()
sage: S = biquadratic.first().polynomial()
sage: S_prime = biquadratic.second().polynomial()
sage: F = biquadratic.F_covariant()
sage: J = biquadratic.J_covariant()
sage: biquadratic.syzygy(Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J)
0
\end{verbatim}

syzygy (Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J)  
Return the syzygy evaluated on the invariants and covariants.

INPUT:

- Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J – polynomials from the same polynomial ring.

OUTPUT:

Zero if $S$ is the first polynomial, $S$ _prime_ the second polynomial, and the remaining input are the invariants and covariants of a ternary biquadratic.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y,z> = QQ[]
sage: monomials = [x^2, x*y, y^2, x*z, y*z, z^2]
sage: def q_rnd():
    return sum(randint(-1000,1000)*m for m in monomials)
sage: biquadratic = invariant_theory.ternary_biquadratic(q_rnd(), q_rnd(), [x, y, z])
sage: Delta = biquadratic.Delta_invariant()
sage: Theta = biquadratic.Theta_invariant()
sage: Theta_prime = biquadratic.Theta_prime_invariant()
sage: Delta_prime = biquadratic.Delta_prime_invariant()
sage: S = biquadratic.first().polynomial()
sage: S_prime = biquadratic.second().polynomial()
sage: F = biquadratic.F_covariant()
sage: J = biquadratic.J_covariant()
sage: biquadratic.syzygy(Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J)
0
\end{verbatim}
If the arguments are not the invariants and covariants then the output is some (generically non-zero) polynomial:

\[
\text{sage: } \text{biquadratic.syzygy}(1, 1, 1, 1, 1, 1, 1, x) \\
1/64x^2 + 1
\]

3.3 Educational Versions of Groebner Basis and Related Algorithms

3.3.1 Educational Versions of Groebner Basis Algorithms.

Following [BW93] the original Buchberger algorithm (c.f. algorithm GROEBNER in [BW93]) and an improved version of Buchberger’s algorithm (c.g. algorithm GROEBNERNEW2 in [BW93]) are implemented.

No attempt was made to optimize either algorithm as the emphasis of these implementations is a clean and easy presentation. To compute a Groebner basis in Sage efficiently use the \texttt{sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal.groebner_basis()} method on multivariate polynomial objects.

\textbf{Note:} The notion of ‘term’ and ‘monomial’ in [BW93] is swapped from the notion of those words in Sage (or the other way around, however you prefer it). In Sage a term is a monomial multiplied by a coefficient, while in [BW93] a monomial is a term multiplied by a coefficient. Also, what is called LM (the leading monomial) in Sage is called HT (the head term) in [BW93].

\textbf{EXAMPLES:}

Consider Katsura-6 w.r.t. a \texttt{degrevlex} ordering:

\[
\text{sage: from sage.rings.polynomial.toy_buchberger import } * \\
\text{sage: P.<a,b,c,e,f,g,h,i,j,k> = PolynomialRing(GF(32003),10)} \\
\text{sage: I = sage.rings.ideal.Katsura(P,6)} \\
\text{sage: g1 = buchberger(I)} \\
\text{sage: g2 = buchberger_improved(I)} \\
\text{sage: g3 = I.groebner_basis()} \\
\]

All algorithms actually compute a Groebner basis:

\[
\text{sage: Ideal(g1).basis_is_groebner()} \\
\text{True} \\
\text{sage: Ideal(g2).basis_is_groebner()} \\
\text{True} \\
\text{sage: Ideal(g3).basis_is_groebner()} \\
\text{True}
\]

The results are correct:

\[
\text{sage: Ideal(g1) == Ideal(g2) == Ideal(g3)} \\
\text{True}
\]

If \texttt{get_verbose()} is \texttt{>= 1} a protocol is provided:
The original Buchberger algorithm performs 15 useless reductions to zero for this example:
(-5*b*c - 6*c^2 - 63*b + 2*c, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
   -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
   -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
   -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(-2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
   -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

(a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
   -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])

15 reductions to zero.
[a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
   -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c]

The ‘improved’ Buchberger algorithm in contrast only performs 3 reductions to zero:

```
sage: buchberger_improved(I)
(b^2 - 26*c^2 - 51*b + 51*c, b*c + 52*c^2 + 38*b + 25*c) => 11*c^3 - 12*c^2 + 30*b +
 31*c
G: set([a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, 11*c^3 - 12*c^2 + 30*b + 31*c,
 -b*c + 52*c^2 + 38*b + 25*c])

(11*c^3 - 12*c^2 + 30*b + 31*c, b*c + 52*c^2 + 38*b + 25*c) => 0
G: set([a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, 11*c^3 - 12*c^2 + 30*b + 31*c,
 -b*c + 52*c^2 + 38*b + 25*c])

1 reductions to zero.
[a + 2*b + 2*c - 1, b^2 - 26*c^2 - 51*b + 51*c, c^3 + 22*c^2 - 55*b + 49*c, b*c +
 -52*c^2 + 38*b + 25*c]
```

REFERENCES:

AUTHOR:

- Marshall Hampton (2009-07-08): some doctest additions

sage.rings.polynomial.toy_buchberger.LCM(f, g)
sage.rings.polynomial.toy_buchberger.LM(f)
sage.rings.polynomial.toy_buchberger.LT(f)
sage.rings.polynomial.toy_buchberger.buchberger(F)
The original version of Buchberger’s algorithm as presented in [BW93], page 214.

**INPUT:**
- $F$ - an ideal in a multivariate polynomial ring

**OUTPUT:**
a Groebner basis for $F$

**Note:** The verbosity of this function may be controlled with a `set_verbose()` call. Any value $\geq 1$ will result in this function printing intermediate bases.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.toy_buchberger import buchberger
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: set_verbose(0)
sage: buchberger(R.ideal([x^2 - z - 1, z^2 - y - 1, x*y^2 - x - 1]))
[-y^3 + x*z - x + y, y^2*z + y^2 - x - z - 1, x*y^2 - x - 1, x^2 - z - 1, z^2 - y]
```

**sage.rings.polynomial.toy_buchberger.buchberger_improved($F$)**

An improved version of Buchberger’s algorithm as presented in [BW93], page 232.

This variant uses the Gebauer-Moeller Installation to apply Buchberger’s first and second criterion to avoid useless pairs.

**INPUT:**
- $F$ - an ideal in a multivariate polynomial ring

**OUTPUT:**
a Groebner basis for $F$

**Note:** The verbosity of this function may be controlled with a `set_verbose()` call. Any value $\geq 1$ will result in this function printing intermediate Groebner bases.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.toy_buchberger import buchberger_improved
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: set_verbose(0)
sage: buchberger_improved(R.ideal([x^4-y-z,x*y*z-1]))
[x*y*z - 1, x^3 - y^2*z - y*z^2, y^3*z^2 + y^2*z^3 - x^2]
```

**sage.rings.polynomial.toy_buchberger.inter_reduction($Q$)**

If $Q$ is the set $(f_1,\ldots,f_n)$ this method returns $(g_1,\ldots,g_s)$ such that:
- $f_1,\ldots,f_n \equiv g_1,\ldots,g_s$
- $LM(g_i) \neq LM(g_j)$ for all $i \neq j$
- $LM(g_i)$ does not divide $m$ for all monomials $m$ of $\{g_1,\ldots,g_i-1, g_{i+1},\ldots,g_s\}$
- $LC(g_i) \equiv 1$ for all $i$.

**INPUT:**
- $Q$ - a set of polynomials
EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_buchberger import inter_reduction
sage: inter_reduction(set())
sage: set()
sage: P.<x,y> = QQ[]
sage: reduced = inter_reduction(set([x^2-5*y^2,x^3]))
\text{True}
sage: reduced == inter_reduction(set([2*(x^2-5*y^2),x^3]))
\text{True}
```

`sage.rings.polynomial.toy_buchberger.select(P)`

The normal selection strategy

INPUT:

• `P` - a list of critical pairs

OUTPUT:

an element of `P`

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_buchberger import select
sage: R.<x,y,z> = PolynomialRing(QQ,3, order='lex')
sage: ps = [x^3 - z - 1, z^3 - y - 1, x^5 - y - 2]
sage: pairs = [[ps[i],ps[j]] for i in range(3) for j in range(i+1,3)]
sage: select(pairs)
[x^3 - z - 1, -y + z^3 - 1]
```

`sage.rings.polynomial.toy_buchberger.spol(f, g)`

Computes the S-polynomial of `f` and `g`.

INPUT:

• `f`, `g` - polynomials

OUTPUT:

• The S-polynomial of `f` and `g`.

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: spol(x^2 - z - 1, z^2 - y - 1)
x^2*y - z^3 + x^2 - z^2
```

`sage.rings.polynomial.toy_buchberger.update(G, B, h)`

Update `G` using the list of critical pairs `B` and the polynomial `h` as presented in [BW93], page 230. For this, Buchberger’s first and second criterion are tested.

This function implements the Gebauer-Moeller Installation.

INPUT:

• `G` - an intermediate Groebner basis
• `B` - a list of critical pairs

3.3. Educational Versions of Groebner Basis and Related Algorithms
• h - a polynomial

OUTPUT:

a tuple of an intermediate Groebner basis and a list of critical pairs

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_buchberger import update
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: set_verbose(0)
sage: update(set(),set(),x*y*z)
((x*y*z), set())
sage: G,B = update(set(),set(),x*y*z-1)
sage: G,B = update(G,B,x*y^2-1)
sage: G,B
({x*y*z - 1, x*y^2 - 1}, {(x*y^2 - 1, x*y*z - 1)})
```

### 3.3.2 Educational Versions of Groebner Basis Algorithms: Triangular Factorization.

In this file is the implementation of two algorithms in [Laz92].

The main algorithm is Triangular; a secondary algorithm, necessary for the first, is ElimPolMin. As per Lazard’s formulation, the implementation works with any term ordering, not only lexicographic.

Lazard does not specify a few of the subalgorithms implemented as the functions

- `is_triangular`,
- `is_linearly_dependent`, and
- `linear_representation`.

The implementations are not hard, and the choice of algorithm is described with the relevant function.

No attempt was made to optimize these algorithms as the emphasis of this implementation is a clean and easy presentation.

Examples appear with the appropriate function.

AUTHORS:

- John Perry (2009-02-24): initial version, but some words of documentation were stolen shamelessly from Martin Albrecht’s `toy_buchberger.py`.

REFERENCES:

```
sage.rings.polynomial.toy_variety.coefficient_matrix(polys)
Generates the matrix M whose entries are the coefficients of polys. The entries of row i of M consist of the coefficients of polys[i].
```

INPUT:

- `polys` - a list/tuple of polynomials

OUTPUT:

A matrix M of the coefficients of polys.

EXAMPLES:
sage: from sage.rings.polynomial.toy_variety import coefficient_matrix
sage: R.<x,y> = PolynomialRing(QQ)
sage: coefficient_matrix([x^2 + 1, y^2 + 1, x*y + 1])
[1 0 0 1]
[0 0 1 1]
[0 1 0 1]

Note: This function may be merged with sage.rings.polynomial.
multi_polynomial_sequence PolynomialSequence_generic.coefficient_matrix() in the future.

sage.rings.polynomial.toy_variety.elim_pol(B, n=-1)
Finds the unique monic polynomial of lowest degree and lowest variable in the ideal described by B.

For the purposes of the triangularization algorithm, it is necessary to preserve the ring, so n specifies which variable to check. By default, we check the last one, which should also be the smallest.

The algorithm may not work if you are trying to cheat: B should describe the Groebner basis of a zero-dimensional ideal. However, it is not necessary for the Groebner basis to be lexicographic.

The algorithm is taken from a 1993 paper by Lazard [Laz92].

INPUT:
• B - a list/tuple of polynomials or a multivariate polynomial ideal
• n - the variable to check (see above) (default: -1)

EXAMPLES:

sage: set_verbose(0)
sage: from sage.rings.polynomial.toy_variety import elim_pol
sage: R.<x,y,z> = PolynomialRing(GF(32003))
sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
sage: p2 = z^2 - z
sage: p3 = (x-2)^2*(y-1)^3
sage: I = R.ideal(p1,p2,p3)
sage: elim_pol(I.groebner_basis())
z^2 - z

sage.rings.polynomial.toy_variety.is_linearly_dependent(polys)
Decides whether the polynomials of polys are linearly dependent. Here polys is a collection of polynomials.

The algorithm creates a matrix of coefficients of the monomials of polys. It computes the echelon form of the matrix, then checks whether any of the rows is the zero vector.

Essentially this relies on the fact that the monomials are linearly independent, and therefore is building a linear map from the vector space of the monomials to the canonical basis of \( \mathbb{R}^n \), where \( n \) is the number of distinct monomials in polys. There is a zero vector iff there is a linear dependence among polys.

The case where polys=[] is considered to be not linearly dependent.

INPUT:
• polys - a list/tuple of polynomials

OUTPUT:
True if the elements of polys are linearly dependent; False otherwise.

EXAMPLES:
sage: from sage.rings.polynomial.toy_variety import is_linearly_dependent
sage: R.<x,y> = PolynomialRing(QQ)

sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
sage: is_linearly_dependent(B + [p])
True

sage: p = x*B[0]
sage: is_linearly_dependent(B + [p])
False

sage: is_linearly_dependent([])
False

sage.rings.polynomial.toy_variety.is_triangular(B)
Check whether the basis B of an ideal is triangular. That is: check whether the largest variable in B[i] with respect to the ordering of the base ring R is R.gens()[i].

The algorithm is based on the definition of a triangular basis, given by Lazard in 1992 in [Laz92].

INPUT:
• B - a list/tuple of polynomials or a multivariate polynomial ideal

OUTPUT:
True if the basis is triangular; False otherwise.

EXAMPLES:

sage: from sage.rings.polynomial.toy_variety import is_triangular
sage: R.<x,y,z> = PolynomialRing(QQ)

sage: p1 = x^2*y + z^2
sage: p2 = y*z + z^3
sage: p3 = y+z

sage: is_triangular(R.ideal(p1,p2,p3))
False

sage: p3 = z^2 - 3
sage: is_triangular(R.ideal(p1,p2,p3))
True

sage.rings.polynomial.toy_variety.linear_representation(p, polys)
Assuming that p is a linear combination of polys, determines coefficients that describe the linear combination.
This probably doesn’t work for any inputs except p, a polynomial, and polys, a sequence of polynomials. If p is not in fact a linear combination of polys, the function raises an exception.

The algorithm creates a matrix of coefficients of the monomials of polys and p, with the coefficients of p in the last row. It augments this matrix with the appropriate identity matrix, then computes the echelon form of the augmented matrix. The last row should contain zeroes in the first columns, and the last columns contain a linear dependence relation. Solving for the desired linear relation is straightforward.

INPUT:
• p - a polynomial

• polys - a list/tuple of polynomials

OUTPUT:
If n == len(polys), returns [a[0],a[1],...,a[n-1]] such that p == a[0]*poly[0] + ... + a[n-1]*poly[n-1].

EXAMPLES:
sage: from sage.rings.polynomial.toy_variety import linear_representation
sage: R.<x,y> = PolynomialRing(GF(32003))

sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
sage: linear_representation(p, B)
[3, 32001, 1]

sage.rings.polynomial.toy_variety.triangular_factorization(B, n=-1)

Compute the triangular factorization of the Groebner basis $B$ of an ideal.

This will not work properly if $B$ is not a Groebner basis!

The algorithm used is that described in a 1992 paper by Daniel Lazard [Laz92]. It is not necessary for the term ordering to be lexicographic.

INPUT:

- $B$ - a list/tuple of polynomials or a multivariate polynomial ideal
- $n$ - the recursion parameter (default: -1)

OUTPUT:

A list $T$ of triangular sets $T_0, T_1, \ldots$.  

EXAMPLES:

```sage
sage: from sage.rings.polynomial.toy_variety import triangular_factorization
sage: R.<x,y,z> = PolynomialRing(GF(32003))

sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
sage: p2 = z^2 - z
sage: p3 = (x-2)^2*(y-1)^3
sage: I = R.ideal(p1,p2,p3)

sage: triangular_factorization(I.groebner_basis())
[[x^2 - 4*x + 4, y, z],
 [x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z],
 [x^2 - 4*x + 4, y, z - 1],
 [x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z - 1]]
```

### 3.3.3 Educational version of the $d$-Groebner Basis Algorithm over PIDs.

No attempt was made to optimize this algorithm as the emphasis of this implementation is a clean and easy presentation.

**Note:** The notion of ‘term’ and ‘monomial’ in [BW93] is swapped from the notion of those words in Sage (or the other way around, however you prefer it). In Sage a term is a monomial multiplied by a coefficient, while in [BW93] a monomial is a term multiplied by a coefficient. Also, what is called LM (the leading monomial) in Sage is called HT (the head term) in [BW93].

**EXAMPLES:**

```sage
sage: from sage.rings.polynomial.toy_d_basis import d_basis

First, consider an example from arithmetic geometry:
```

---

3.3. Educational Versions of Groebner Basis and Related Algorithms 425
A.<x,y> = PolynomialRing(ZZ, 2)
B.<X,Y> = PolynomialRing(Rationals(),2)
f = -y^2 - y + x^3 + 7*x + 1
fx = f.derivative(x)
fy = f.derivative(y)
I = B.ideal([B(f),B(fx),B(fy)])
I.groebner_basis()
[1]

Since the output is 1, we know that there are no generic singularities.

To look at the singularities of the arithmetic surface, we need to do the corresponding computation over $\mathbb{Z}$:

I = A.ideal([f,fx, fy])
gb = d_basis(I); gb
[x - 2020, y - 11313, 22627]

gb[-1].factor()
11^3 * 17

This Groebner Basis gives a lot of information. First, the only fibers (over $\mathbb{Z}$) that are not smooth are at 11 = 0, and 17 = 0. Examining the Groebner Basis, we see that we have a simple node in both the fiber at 11 and at 17. From the factorization, we see that the node at 17 is regular on the surface (an $I_1$ node), but the node at 11 is not. After blowing up this non-regular point, we find that it is an $I_3$ node.

Another example. This one is from the Magma Handbook:

P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
I = ideal( x^2 - 1, y^2 - 1, 2*x*y - z)
I = Ideal(d_basis(I))
x.reduce(I)
(2*x).reduce(I)
y*z

To compute modulo 4, we can add the generator 4 to our basis:.

I = ideal( x^2 - 1, y^2 - 1, 2*x*y - z, 4)
gb = d_basis(I)
R = P.change_ring(IntegerModRing(4))
gb = [R(f) for f in gb if R(f)]; gb
[x^2 - 1, x*z + 2*y, 2*x - y*z, y^2 - 1, z^2, 2*z]

A third example is also from the Magma Handbook.

This example shows how one can use Groebner bases over the integers to find the primes modulo which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal $I$ in $\mathbb{Z}[x, y, z]$, and note that the Groebner basis of $I$ over $\mathbb{Q}$ contains 1, so there are no solutions over $\mathbb{Q}$ or an algebraic closure of it (this is not surprising as there are 4 equations in 3 unknowns):.

P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='degneglex')
I = ideal( x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1 )
I.change_ring(P.change_ring(RationalField())).groebner_basis()
[1]

However, when we compute the Groebner basis of $I$ (defined over $\mathbb{Z}$), we note that there is a certain integer in the ideal which is not 1:
Now for each prime $p$ dividing this integer 282687803443, the Groebner basis of $I$ modulo $p$ will be non-trivial and will thus give a solution of the original system modulo $p$.

Of course, modulo any other prime the Groebner basis is trivial so there are no other solutions. For example:

```
sage: I.change_ring(P.change_ring(GF(3))).groebner_basis()
[1]
```

AUTHOR:

- Martin Albrecht (2008-08): initial version

```
sage.rings.polynomial.toy_d_basis.d_basis(F, strat=True)
```

Return the $d$-basis for the Ideal $F$ as defined in [BW93].

INPUT:

- $F$ - an ideal
- $\text{strat}$ - use update strategy (default: True)

EXAMPLES:

```
sage: from sage.rings.polynomial.toy_d_basis import d_basis
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: f = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: I = A.ideal([f,fx,fy])
sage: gb = d_basis(I); gb
[x - 2020, y - 11313, 22627]
```

```
sage.rings.polynomial.toy_d_basis.gpol(g1, g2)
```

Return G-Polynomial of $g_1$ and $g_2$. 
Let $a_it_i$ be $LT(g_i)$, $a = a_i * c_i + a_j * c_j$ with $a = GCD(a_i, a_j)$, and $s_i = t/t_i$ with $t = LCM(t_i, t_j)$. Then the G-Polynomial is defined as: $c_1s_1g_1 - c_2s_2g_2$.

**INPUT:**
- $g1$ - polynomial
- $g2$ - polynomial

**EXAMPLES:**
```python
sage: from sage.rings.polynomial.toy_d_basis import gpol
gpol(f, g)
x^2*y - y
```

**sage.rings.polynomial.toy_d_basis.select(P)**
The normal selection strategy.

**INPUT:**
- $P$ - a list of critical pairs

**OUTPUT:** an element of $P$

**EXAMPLES:**
```python
sage: from sage.rings.polynomial.toy_d_basis import select
select(B)
(-2*y - 1, 3*x^2 + 7)
```

**sage.rings.polynomial.toy_d_basis.spol(g1, g2)**
Return S-Polynomial of $g_1$ and $g_2$.

Let $a_it_i$ be $LT(g_i)$, $b_i = a/a_i$ with $a = LCM(a_i, a_j)$, and $s_i = t/t_i$ with $t = LCM(t_i, t_j)$. Then the S-Polynomial is defined as: $b_1s_1g_1 - b_2s_2g_2$.

**INPUT:**
- $g1$ - polynomial
- $g2$ - polynomial

**EXAMPLES:**
```python
sage: from sage.rings.polynomial.toy_d_basis import spol
spol(f, g)
x*z - 2*y
```
sage.rings.polynomial.toy_d_basis.update(G, B, h)

Update G using the list of critical pairs B and the polynomial h as presented in [BW93], page 230. For this, Buchberger’s first and second criterion are tested.

This function uses the Gebauer-Moeller Installation.

INPUT:
- G - an intermediate Groebner basis
- B - a list of critical pairs
- h - a polynomial

OUTPUT: G, B where G and B are updated

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_d_basis import update
sage: A.<x,y> = PolynomialRing(ZZ, 2)

sage: G = set([3*x^2 + 7, 2*y + 1, x^3 - y^2 + 7*x - y + 1])

sage: B = set([])

sage: h = x^2*y - x^2 + y - 3

sage: update(G, B, h)

{(2*y + 1, 3*x^2 + 7, x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1),
 (x^2*y - x^2 + y - 3, 2*x^2 + 7),
 (x^2*y - x^2 + y - 3, 3*x^2 + 7),
 (x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1))}
```
CHAPTER FOUR

SKEW POLYNOMIALS

4.1 Univariate Skew Polynomials

This module provides the `SkewPolynomial`, which constructs a single univariate skew polynomial over commu-
tative base rings and an automorphism over the base ring. Skew polynomials are non-commutative and so principal
methods such as gcd, lcm, monic, multiplication, and division are given in left and right forms.

The generic implementation of dense skew polynomials is `SkewPolynomial_generic_dense`. The classes
`ConstantSkewPolynomialSection` and `SkewPolynomialBaseringInjection` handle conversion
from a skew polynomial ring to its base ring and vice versa respectively.

**Warning:** The current semantics of `__call__()` are experimental, so a warning is thrown when a skew poly-
nomial is evaluated for the first time in a session. See the method documentation for details.

AUTHORS:

- Xavier Caruso (2012-06-29): initial version
- Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods
- Johan Rosenkilde (2016-08-03): changes for bug fixes, docstring and doctest errors

class `sage.rings.polynomial.skew_polynomial_element.ConstantSkewPolynomialSection`

**Bases:** `sage.categories.map.Map`

Representation of the canonical homomorphism from the constants of a skew polynomial ring to the base ring.

This class is necessary for automatic coercion from zero-degree skew polynomial ring into the base ring.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.skew_polynomial_element import ConstantSkewPolynomialSection
sage: R.<t> = QQ[]

sage: sigma = R.hom([t+1])

sage: S.<x> = R['x',sigma]

sage: m = ConstantSkewPolynomialSection(S, R); m
Generic map:
 From: Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
 To: Univariate Polynomial Ring in t over Rational Field
```
Abstract base class for skew polynomials.
This class must be inherited from and have key methods overridden.

Definition

Let $R$ be a commutative ring equipped with an automorphism $\sigma$.

Then, a skew polynomial is given by the equation:

$$F(X) = a_n X^n + \cdots + a_0,$$

where the coefficients $a_i \in R$ and $X$ is a formal variable.

Addition between two skew polynomials is defined by the usual addition operation and the modified multiplication is defined by the rule $X a = \sigma(a) X$ for all $a$ in $R$. Skew polynomials are thus non-commutative and the degree of a product is equal to the sum of the degrees of the factors.

Let $a$ and $b$ be two skew polynomials in the same ring $S$. The left (resp. right) euclidean division of $a$ by $b$ is a couple $(q, r)$ of elements in $S$ such that

- $a = qb + r$ (resp. $a = bq + r$)
- the degree of $r$ is less than the degree of $b$

$q$ (resp. $r$) is called the quotient (resp. the remainder) of this euclidean division.

Properties

Keeping the previous notation, if the leading coefficient of $b$ is a unit (e.g. if $b$ is monic) then the quotient and the remainder in the right euclidean division exist and are unique.

The same result holds for the left euclidean division if in addition the twist map defining the skew polynomial ring is invertible.

Evaluation

The value of a given a skew polynomial $p(x) = \sum_{i=0}^{d} a_i x^i$ at $r$ is calculated using the formula:

$$p(r) = \sum_{i=0}^{d} a_i \sigma^i(r)$$

where $\sigma$ is the base ring automorphism. This is called the operator evaluation method.

EXAMPLES:
We illustrate some functionalities implemented in this class.
We create the skew polynomial ring:

```
sage: R.<t> = ZZ[

sage: sigma = R.hom([t+1])

sage: S.<x> = R['x',sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
 twisted by t |--> t + 1
```

and some elements in it:
Ring operations are supported:

```python
sage: a + b
x^2 + (t + 2)*x + t^2 + t + 1
sage: a - b
-x^2 - t*x - t^2 + t + 1
sage: a * b
x^3 + (2*t + 3)*x^2 + (2*t^2 + 4*t + 2)*x + t^3 + t^2
sage: b * a
x^3 + (2*t + 4)*x^2 + (2*t^2 + 3*t + 2)*x + t^3 + t^2
sage: a * b == b * a
False
sage: b^2
x^4 + (2*t + 4)*x^3 + (3*t^2 + 7*t + 6)*x^2 + (2*t^3 + 4*t^2 + 3*t + 1)*x + t^4
sage: b^2 == b*b
True
```

Sage also implements arithmetic over skew polynomial rings. You will find below a short panorama:

```python
sage: q, r = c.right_quo_rem(b)
sage: q
x - 95*t^2
sage: r
(95*t^3 + 93*t^2 - t - 1)*x + 95*t^4 + 2*t - 8
sage: c == q*b + r
True
```

The operators `//` and `%` give respectively the quotient and the remainder of the right euclidean division:

```python
sage: q == c // b
True
sage: r == c % b
True
```

Left euclidean division won’t work over our current $S$ because Sage can’t invert the twist map:

```python
sage: q, r = c.left_quo_rem(b)
Traceback (most recent call last):
 ... Not Implemented Error: inversion of the twist map Ring endomorphism of Univariate Polynomial Ring in t over Integer Ring
Defn: t |--> t + 1
```

Here we can see the effect of the operator evaluation compared to the usual polynomial evaluation:

```python
sage: a = x^2
sage: a(t)
t + 2
```

4.1. Univariate Skew Polynomials
Here is a working example over a finite field:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^4 + (4*t + 1)*x^3 + (t^2 + 3*t + 3)*x^2 + (3*t^2 + 2*t + 2)*x + (3*t^2 + 3*t + 1)
sage: b = (2*t^2 + 3)*x^2 + (3*t^2 + 1)*x + 4*t + 2
sage: q,r = a.left_quo_rem(b)
sage: q
(4*t^2 + t + 1)*x^2 + (2*t^2 + 2*t + 2)*x + 2*t^2 + 4*t + 3
sage: r
(t + 2)*x + 3*t^2 + 2*t + 4
sage: a == b*q + r
True
```

Once we have euclidean divisions, we have for free gcd and lcm (at least if the base ring is a field):

```python
sage: a = (x + t) * (x + t^2)^2
sage: b = (x + t) * (t*x + t + 1) * (x + t^2)

sage: a.right_gcd(b)
x + t^2
sage: a.left_gcd(b)
x + t

The left lcm has the following meaning: given skew polynomials \(a\) and \(b\), their left lcm is the least degree polynomial \(c = u \ast a = v \ast b\) for some skew polynomials \(u, v\). Such a \(c\) always exist if the base ring is a field:

```python
sage: c = a.left_lcm(b); c
x^5 + (4*t^2 + t + 3)*x^4 + (3*t^2 + 4*t)*x^3 + 2*t^2*x^2 + (2*t^2 + t)*x + 4*t^2 + 4
sage: c.is_right_divisible_by(a)
True
sage: c.is_right_divisible_by(b)
True
```

The right lcm is defined similarly as the least degree polynomial \(c = a \ast u = b \ast v\) for some \(u, v\):

```python
sage: d = a.right_lcm(b); d
x^5 + (3*t^2 + t + 3)*x^4 + (3*t^2 + 3*t + 3)*x^3 + (3*t^2 + t + 2)*x^2 + (4*t^2 + 3*t)*x + 4*t + 4
sage: d.is_left_divisible_by(a)
True
sage: d.is_left_divisible_by(b)
True
```

See also:

- `sage.rings.polynomial.skew_polynomial_ring`
- `sage.rings.polynomial.skew_polynomial_ring_constructor`

`base_ring()`
Return the base ring of `self`.

EXAMPLES:

```python
sage: R.<t> = ZZ
sage: sigma = R.hom([t+1])
```
change_variable_name (var)

Change the name of the variable of self.

This will create the skew polynomial ring with the new name but same base ring and twist map. The returned skew polynomial will be an element of that skew polynomial ring.

INPUT:

• var – the name of the new variable

EXAMPLES:

```sage
R.<t> = ZZ[
sigma = R.hom([t+1])
S.<x> = R['x', sigma]
a = x^3 + (2*t + 1)*x + t^2 + 3*t + 5
b = a.change_variable_name('y'); b
y^3 + (2*t + 1)*y + t^2 + 3*t + 5
```

Note that a new parent is created at the same time:

```sage
b.parent()
Skew Polynomial Ring in y over Univariate Polynomial Ring in t over Integer
˓
→Ring
twisted by t |--> t + 1
```

coefficients (sparse=True)

Return the coefficients of the monomials appearing in self.

If sparse=True (the default), return only the non-zero coefficients. Otherwise, return the same value as self.list().

Note: This should be overridden in subclasses.

EXAMPLES:

```sage
R.<t> = QQ[
sigma = R.hom([t+1])
a = 1 + x^4 + (t+1)*x^2 + t^2
b = a.change_variable_name('y'); b
```

```sage
y^4 + (2*t + 1)*y^2 + t^2 + 3*t + 5
```

```sage
a.coefficients()
[1, 0, 0, 1, 1]
```

```sage
a.coefficients(sparse=False)
[1, 0, 0, 1, 1]
```

conjugate (n)

Return self conjugated by \(x^n \), where \(x \) is the variable of self.

The conjugate is obtained from self by applying the \(n \)-th iterate of the twist map to each of its coefficients.

INPUT:
\(n\) – an integer, the power of conjugation

EXAMPLES:

```python
sage: R.<t> = QQ[

sage: sigma = R.hom([t+1])

sage: S.<x> = R['x',sigma]

sage: a = t*x^3 + (t^2 + 1)*x^2 + 2*t

sage: b = a.conjugate(2); b

(t + 2)*x^3 + (t^2 + 4*t + 5)*x^2 + 2*t + 4

sage: x^2*a == b*x^2

True
```

In principle, negative values for \(n\) are allowed, but Sage needs to be able to invert the twist map:

```python
sage: b = a.conjugate(-1)

Traceback (most recent call last):
...
NotImplementedError: inversion of the twist map
```

Here is a working example:

```python
sage: k.<t> = GF(5^3)

sage: Frob = k.frobenius_endomorphism()

sage: T.<y> = k['y',Frob]

sage: u = T.random_element(); u

(2*t^2 + 3)*y^2 + (4*t^2 + t + 4)*y + 2*t^2 + 2

sage: v = u.conjugate(-1); v

(3*t^2 + t)*y^2 + (4*t^2 + 2*t + 4)*y + 3*t^2 + t + 4

sage: u*y == y*v

True
```

constant_coefficient()

Return the constant coefficient (i.e. the coefficient of term of degree 0) of \(self\).

EXAMPLES:

```python
sage: R.<t> = ZZ[

sage: sigma = R.hom([t+1])

sage: S.<x> = R['x',sigma]

sage: a = x + t^2 + 2

sage: a.constant_coefficient()

(t^2 + 2)
```

degree()

Return the degree of \(self\).

By convention, the zero skew polynomial has degree \(-1\).

EXAMPLES:

```python
sage: R.<t> = ZZ[

sage: sigma = R.hom([t+1])

sage: S.<x> = R['x',sigma]

sage: a = x^2 + t*x^3 + t^2*x + 1

sage: a.degree()

3

sage: S.zero().degree()

-1
```
sage: S(5).degree()
0

exponents()
Return the exponents of the monomials appearing in self.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.exponents()
[0, 2, 4]

hamming_weight()
Return the number of non-zero coefficients of self.
This is also known as the weight, hamming weight or sparsity.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.number_of_terms()
3

This is also an alias for hamming_weight:

sage: a.hamming_weight()
3

is_constant()
Return whether self is a constant polynomial.

EXAMPLES:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: R(2).is_constant()
True
sage: (x + 1).is_constant()
False

is_left_divisible_by(other)
Check if self is divisible by other on the left.

INPUT:

- other -- a skew polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:
```sage
k.<t> = GF(5^3)
k.<x> = k['x',Frob] a = x^2 + t*x + t^2 + 3 b = x^3 + (t + 1)*x^2 + 1 c = a+b c.is_left_divisible_by(a) True c.is_left_divisible_by(b) False
divisibility by 0 does not make sense:
c.is_left_divisible_by(S(0))
Traceback (most recent call last):
  ...  
ZeroDivisionError: division by zero is not valid
```

is_monic()

Return True if this skew polynomial is monic.

The zero polynomial is by definition not monic.

EXAMPLES:

```sage
R.<t> = ZZ[]
sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x + t a.is_monic() True a = 0*x a.is_monic() False a = t*x^3 + x^4 + (t+1)*x^2 a.is_monic() True a = (t^2 + 2*t)*x^2 + x^3 + t^10*x^5 a.is_monic() False
```

is_monomial()

Return True if self is a monomial, i.e., a power of the generator.

EXAMPLES:

```sage
R.<t> = ZZ[]
sigma = R.hom([t+1]) S.<x> = R['x',sigma] x.is_monomial() True (x+1).is_monomial() False (x^2).is_monomial() True S(1).is_monomial() True
```

The coefficient must be 1:
To allow a non-1 leading coefficient, use is_term():

```
sage: (2*x^5).is_term()
True
sage: S(t).is_term()
True
```

is_nilpotent()

Check if `self` is nilpotent.

Given a commutative ring \(R \) and a base ring automorphism \(\sigma \) of order \(n \), an element \(f \) of \(R[X, \sigma] \) is nilpotent if and only if all coefficients of \(f^n \) are nilpotent in \(R \).

Note: The paper “Nilpotents and units in skew polynomial rings over commutative rings” by M. Rimmer and K.R. Pearson describes the method to check whether a given skew polynomial is nilpotent. That method however, requires one to know the order of the automorphism which is not available in Sage. This method is thus not yet implemented.

EXAMPLES:

```
sage: R.<t> = ZZ
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.is_nilpotent()
Traceback (most recent call last):
  ...
NotImplementedError
```

is_one()

Test whether this polynomial is 1.

EXAMPLES:

```
sage: R.<t> = QQ
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: R(1).is_one()
True
sage: (x + 3).is_one()
False
```

is_right_divisible_by(*other*)

Check if `self` is divisible by `other` on the right.

INPUT:

*other – a skew polynomial in the same ring as `self`

OUTPUT:

Return True or False.

EXAMPLES:

4.1. Univariate Skew Polynomials
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: c.is_right_divisible_by(a)
False
sage: c.is_right_divisible_by(b)
True

Divisibility by 0 does not make sense:

sage: c.is_right_divisible_by(S(0))
Traceback (most recent call last):
...
ZeroDivisionError: division by zero is not valid

This function does not work if the leading coefficient of the divisor is not a unit:

sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + 2*x + t
sage: b = (t+1)*x + t^2
sage: c = a*b
sage: c.is_right_divisible_by(b)
Traceback (most recent call last):
...
NotImplementedError: the leading coefficient of the divisor is not invertible

is_term()

Return True if self is an element of the base ring times a power of the generator.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.is_term()
True
sage: R(1).is_term()
True
sage: (3+x^5).is_term()
True
sage: (1+3*x^5).is_term()
False

If you want to test that self also has leading coefficient 1, use is_monomial() instead:

sage: (3*x^5).is_monomial()
False

is_unit()

Return True if this skew polynomial is a unit.

When the base ring \(R \) is an integral domain, then a skew polynomial \(f \) is a unit if and only if degree of \(f \) is 0 and \(f \) is then a unit in \(R \).
Note: The case when R is not an integral domain is not yet implemented.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + (t+1)*x^5 + t^2*x^3 - x^5
sage: a.is_unit()                      # False
```

is_zero()

Return True if self is the zero polynomial.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + 1
sage: a.is_zero()                      # False
sage: b = S.zero()
sage: b.is_zero()                      # True
```

leading_coefficient()

Return the coefficient of the highest-degree monomial of self.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (t+1)*x^5 + t^2*x^3 + x
sage: a.leading_coefficient()          # t + 1
```

left_divides(other)

Check if self divides other on the left.

INPUT:

*other – a skew polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: a.left_divides(c)                # True
```
Divisibility by 0 does not make sense:

```
sage: S(0).left_divides(c)
Traceback (most recent call last):
...  
ZeroDivisionError: division by zero is not valid
```

left_gcd *(other, monic=True)*

Return the left gcd of self and other.

INPUT:

- `other` – a skew polynomial in the same ring as self
- `monic` – boolean (default: True). Return whether the left gcd should be normalized to be monic.

OUTPUT:

The left gcd of self and other, that is a skew polynomial g with the following property: any skew polynomial is divisible on the left by g iff it is divisible on the left by both self and other. If monic is True, g is in addition monic. (With this extra condition, it is uniquely determined.)

Note: Works only if two following conditions are fulfilled (otherwise left gcd do not exist in general): 1) the base ring is a field and 2) the twist map on this field is bijective.

EXAMPLES:

```
sage: k.<t> = GF(5^3)  
sage: Frob = k.frobenius_endomorphism()  
sage: S.<x> = k['x',Frob]  
sage: a = (x + t) * (x^2 + t*x + 1)  
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)  
sage: a.left_gcd(b)  
x + t
```

Specifying monic=False, we can get a nonmonic gcd:

```
sage: a.left_gcd(b,monic=False)  
2*t*x + 4*t + 2
```

The base ring needs to be a field:

```
sage: R.<t> = QQ[]  
sage: sigma = R.hom([t+1])  
sage: S.<x> = R['x',sigma]  
sage: a = (x + t) * (x^2 + t*x + 1)  
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)  
sage: a.left_gcd(b)  
Traceback (most recent call last):  
...  
TypeError: the base ring must be a field
```

And the twist map needs to be bijective:
```python
sage: FR = R.fraction_field()
sage: f = FR.hom([FR(t)^2])
sage: S.<x> = FR['x',f]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_gcd(b)
Traceback (most recent call last):
  ...  
NotImplementedError: inversion of the twist map Ring endomorphism of Fraction
  → Field of Univariate Polynomial Ring in t over Rational Field
    Defn: t |--> t^2

```

left lcm

Return the left lcm of self and other.

INPUT:

- `other` – a skew polynomial in the same ring as self
- `monic` – boolean (default: True). Return whether the left lcm should be normalized to be monic.

OUTPUT:

The left lcm of self and other, that is a skew polynomial g with the following property: any skew polynomial divides g on the right iff it divides both self and other on the right. If monic is True, g is in addition monic. (With this extra condition, it is uniquely determined.)

Note: Works only if the base ring is a field (otherwise left lcm do not exist in general).

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t^2) * (x + t)
sage: b = 2 * (x^2 + t + 1) * (x * t)
sage: c = a.left_lcm(b); c
x^5 + (2*t^2 + t + 4)*x^4 + (3*t^2 + 4)*x^3 + (3*t^2 + 3*t + 2)*x^2 + (t^2 + t + 2)*x
sage: c.is_right_divisible_by(a)
True
sage: c.is_right_divisible_by(b)
True
sage: a.degree() + b.degree() == c.degree() + a.right_gcd(b).degree()
True
```

Specifying monic=False, we can get a nonmonic gcd:

```python
sage: a.left_lcm(b,monic=False)
(t^2 + t)*x^5 + (4*t^2 + 4*t + 1)*x^4 + (t + 1)*x^3 + (t^2 + 2)*x^2 + (3*t + 4)*x
```

The base ring needs to be a field:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t^2) * (x + t)
```
\begin{verbatim}
 sage: b = 2 * (x^2 + t + 1) * (x * t)
 sage: a.left_lcm(b)
 Traceback (most recent call last):
 ...,
 TypeError: the base ring must be a field
\end{verbatim}

\texttt{left_mod}\quad(\texttt{other})

Return the remainder of left division of \texttt{self} by \texttt{other}.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: k.<t> = GF(5^3)
 sage: Frob = k.frobenius_endomorphism()
 sage: S.<x> = k['x',Frob]
 sage: a = 1 + t*x^2
 sage: b = x + 1
 sage: a.left_mod(b)
 2*t^2 + 4*t
\end{verbatim}

\texttt{left_monic}()

Return the unique monic skew polynomial m which divides \texttt{self} on the left and has the same degree.

Given a skew polynomial p of degree n, its left monic is given by $m = p\sigma^{-n}(1/k)$, where k is the leading coefficient of p, i.e. by the appropriate scalar multiplication on the right.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: k.<t> = GF(5^3)
 sage: Frob = k.frobenius_endomorphism()
 sage: S.<x> = k['x',Frob]
 sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2
 \quad\rightarrow 2
 sage: b = a.left_monic(); b
 x^3 + (4*t^2 + 3*t)*x^2 + (4*t + 2)*x + 2*t^2 + 4*t + 3
\end{verbatim}

Check list:

\begin{verbatim}
 sage: b.degree() == a.degree()
 True
 sage: b.is_left_divisible_by(a)
 True
 sage: twist = S.twist_map(-a.degree())
 sage: a == b * twist(a.leading_coefficient())
 True
\end{verbatim}

Note that b does not divide a on the right:

\begin{verbatim}
 sage: a.is_right_divisible_by(b)
 False
\end{verbatim}

This function does not work if the leading coefficient is not a unit:

\begin{verbatim}
 sage: R.<t> = QQ[]
 sage: sigma = R.hom([t+1])
 sage: S.<x> = R['x',sigma]
 sage: a = t*x
 sage: a.left_monic()
 Traceback (most recent call last):
 ...TypeError: the base ring must be a field
\end{verbatim}
left_xgcd (other, monic=True)

Return the left gcd of self and other along with the coefficients for the linear combination.

If \(a \) is self and \(b \) is other, then there are skew polynomials \(u \) and \(v \) such that \(g = au + bv \), where \(g \) is the left gcd of \(a \) and \(b \). This method returns \((g, u, v)\).

INPUT:

- `other` – a skew polynomial in the same ring as self
- `monic` – boolean (default: True). Return whether the left gcd should be normalized to be monic.

OUTPUT:

- The left gcd of self and other, that is a skew polynomial \(g \) with the following property: any skew polynomial is divisible on the left by \(g \) iff it is divisible on the left by both self and other. If monic is True, \(g \) is in addition monic. (With this extra condition, it is uniquely determined.)
- Two skew polynomials \(u \) and \(v \) such that:

\[g = a \cdot u + b \cdot v, \]

where \(s \) is self and \(b \) is other.

Note: Works only if following two conditions are fulfilled (otherwise left gcd do not exist in general): 1) the base ring is a field and 2) the twist map on this field is bijective.

EXAMPLES:

```sage
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: g,u,v = a.left_xgcd(b); g
x + t
sage: a*u + b*v == g
True
```

Specifying `monic=False`, we *can* get a nonmonic gcd:

```sage
sage: g,u,v = a.left_xgcd(b, monic=False); g
2*t*x + 4*t + 2
sage: a*u + b*v == g
True
```

The base ring must be a field:

```sage
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_xgcd(b)
Traceback (most recent call last):...
```

NotImplementedError: the leading coefficient is not a unit
...

TypeError: the base ring must be a field

And the twist map must be bijective:

```python
sage: FR = R.fraction_field()
sage: f = FR.hom([FR(t)^2])
sage: S.<x> = FR['x',f]
sage: a = (x + t) * (x^2 + t*x + 1)
sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2)
sage: a.left_xgcd(b)
Traceback (most recent call last):
  ...  
NotImplementedError: inversion of the twist map
```

multi_point_evaluation(eval_pts)

Evaluate *self* at list of evaluation points.

INPUT:

- `eval_pts` – list of points at which *self* is to be evaluated

OUTPUT:

List of values of *self* at the *eval_pts*.

Todo

This method currently trivially calls the evaluation function repeatedly. If fast skew polynomial multiplication is available, an asymptotically faster method is possible using standard divide and conquer techniques and `sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general.minimal_vanishing_polynomial()`.

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: c = x + t
sage: eval_pts = [1, t, t^2]
sage: c == a.multi_point_evaluation(eval_pts)  
True
```

number_of_terms()

Return the number of non-zero coefficients of *self*.

This is also known as the weight, hamming weight or sparsity.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
```
```
sage: a.number_of_terms()
3
```

This is also an alias for `hamming_weight`:

```
sage: a.hamming_weight()
3
```

operator_eval(eval_pt)
Evaluate `self` at `eval_pt` by the operator evaluation method.

INPUT:

- `eval_pt` – element of the base ring of `self`

OUTPUT:

The value of the polynomial at the point specified by the argument.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: T.<x> = k['x',Frob]
sage: a = 3*t^2*x^2 + (t + 1)*x + 2
sage: a.t()  # indirect test
2*t^2 + 2*t + 3
sage: a.operator_eval(t)
2*t^2 + 2*t + 3
```

Evaluation points outside the base ring is usually not possible due to the twist map:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = t*x + 1
sage: a.operator_eval(1/t)
Traceback (most recent call last):
  ...TypeError: 1/t fails to convert into the map's domain Univariate Polynomial
˓→Ring in t over Rational Field, but a 'pushforward' method is not properly
˓→implemented
```

padded_list(n=None)
Return list of coefficients of `self` up to (but not including) degree `n`.

Includes `0'sin the list on the right so that the list always has length exactly `n`.

INPUT:

- `n` – (default: None); if given, an integer that is at least 0

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + t*x^3 + t^2*x^5
sage: a.padded_list()
[1, 0, 0, t, 0, t^2]
sage: a.padded_list(10)
```

4.1. Univariate Skew Polynomials 447
prec()

Return the precision of self.

This is always infinity, since polynomials are of infinite precision by definition (there is no big-oh).

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: x.prec()
+Infinity
```

right_divides(other)

Check if self divides other on the right.

INPUT:

• other – a skew polynomial in the same ring as self

OUTPUT:

Return True or False.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x^2 + t*x + t^2 + 3
sage: b = x^3 + (t + 1)*x^2 + 1
sage: c = a*b
sage: c.right_divides(a)
False
sage: c.right_divides(b)
True
```

Divisibility by 0 does not make sense:

```
sage: S(0).right_divides(c)
Traceback (most recent call last):
  ...  
ZeroDivisionError: division by zero is not valid
```

This function does not work if the leading coefficient of the divisor is not a unit:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
```
```python
sage: S.<x> = R['x',sigma]
sage: a = x^2 + 2*x + t
sage: b = (t+1)*x + t^2
sage: c = a*b
sage: b.right_divides(c)
Traceback (most recent call last):
  ...
NotImplementedError: the leading coefficient of the divisor is not invertible
```

The `right_gcd` function returns the right gcd of `self` and `other`.

INPUT:

- `other` — a skew polynomial in the same ring as `self`
- `monic` — boolean (default: `True`). Return whether the right gcd should be normalized to be monic.

OUTPUT:

The right gcd of `self` and `other`, that is a skew polynomial `g` with the following property: any skew polynomial is divisible on the right by `g` iff it is divisible on the right by both `self` and `other`. If `monic` is `True`, `g` is in addition monic. (With this extra condition, it is uniquely determined.)

Note: Works only if the base ring is a field (otherwise right gcd do not exist in general).

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_gcd(b)
x + t
```

Specifying `monic=False`, we can get a nonmonic gcd:

```python
sage: a.right_gcd(b,monic=False)
(4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3
```

The base ring need to be a field:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_gcd(b)
Traceback (most recent call last):
  ...
TypeError: the base ring must be a field
```

The `right_lcm` function returns the right lcm of `self` and `other`.

INPUT:

- `other` — a skew polynomial in the same ring as `self`

EXAMPLES:

```python
sage: a.right_lcm(b)
```

4.1. Univariate Skew Polynomials 449
monic – boolean (default: True). Return whether the right lcm should be normalized to be monic.

OUTPUT:
The right lcm of self and other, that is a skew polynomial \(g \) with the following property: any skew polynomial divides \(g \) on the left iff it divides both self and other on the left. If monic is True, \(g \) is in addition monic. (With this extra condition, it is uniquely determined.)

Note: Works only if two following conditions are fulfilled (otherwise right lcm do not exist in general): 1) the base ring is a field and 2) the twist map on this field is bijective.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: c = a.right_lcm(b)
c
x^4 + (2*t^2 + t + 2)*x^3 + (3*t^2 + 4*t + 1)*x^2 + (3*t^2 + 4*t + 1)*x + t^2
˓→ 4
sage: c.is_left_divisible_by(a)
True
sage: c.is_left_divisible_by(b)
True
sage: a.degree() + b.degree() == c.degree() + a.left_gcd(b).degree()
True

Specifying monic=False, we can get a nonmonic gcd:

```
sage: a.right_lcm(b,monic=False)
2*t*x^4 + (3*t + 1)*x^3 + (4*t^2 + 4*t + 3)*x^2 + (3*t^2 + 4*t + 2)*x + 3*t^2 + 2*t + 3
```

The base ring needs to be a field:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: a.right_lcm(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field
```

And the twist map needs to be bijective:

```
sage: FR = R.fraction_field()
sage: f = FR.hom([FR(t)^2])
sage: S.<x> = FR['x',f]
sage: a = (x + t) * (x + t^2)
sage: b = 2 * (x + t) * (x^2 + t + 1)
sage: a.right_lcm(b)
Traceback (most recent call last):
...
```
right_mod\,(\text{other})
\hspace{1em}Return the remainder of right division of self by other.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + t*x^2
sage: b = x + 1
sage: a % b
\text{t + 1}
sage: (x^3 + x - 1).right_mod(x^2 - 1)
\text{2*x - 1}
\end{verbatim}

right_monic()
\hspace{1em}Return the unique monic skew polynomial \( m \) which divides self on the right and has the same degree.

Given a skew polynomial \( p \) of degree \( n \), its left monic is given by \( m = (1/k) \cdot p \), where \( k \) is the leading coefficient of \( p \), i.e. by the appropriate scalar multiplication on the left.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
\hspace{1em}→
\hspace{1em}+ 2
sage: b = a.right_monic(); b
\text{x^3 + (2*t^2 + 3*t + 4)*x^2 + (3*t^2 + 4*t + 1)*x + 2*t^2 + 4*t + 3}
\end{verbatim}

Check list:

\begin{verbatim}
sage: b.degree() == a.degree()
\text{True}
sage: b.is_right_divisible_by(a)
\text{True}
sage: a == a.leading_coefficient() * b
\text{True}
\end{verbatim}

Note that \( b \) does not divide \( a \) on the right:

\begin{verbatim}
sage: a.is_left_divisible_by(b)
\text{False}
\end{verbatim}

This function does not work if the leading coefficient is not a unit:

\begin{verbatim}
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = t*x
sage: a.right_monic()
\text{NotImplementedError: the leading coefficient is not a unit}
\end{verbatim}

4.1. Univariate Skew Polynomials
right_xgcd (other, monic=True)

Return the right gcd of self and other along with the coefficients for the linear combination.

If \(a\) is self and \(b\) is other, then there are skew polynomials \(u\) and \(v\) such that \(g = ua + vb\), where \(g\) is the right gcd of \(a\) and \(b\). This method returns \((g, u, v)\).

INPUT:

• other - a skew polynomial in the same ring as self
• monic - boolean (default: True). Return whether the right gcd should be normalized to be monic.

OUTPUT:

• The right gcd of self and other, that is a skew polynomial \(g\) with the following property: any skew polynomial is divisible on the right by \(g\) iff it is divisible on the right by both self and other. If monic is True, \(g\) is in addition monic. (With this extra condition, it is uniquely determined.)
• Two skew polynomials \(u\) and \(v\) such that:

\[
g = u \cdot a + v \cdot b
\]

where \(a\) is self and \(b\) is other.

Note: Works only if the base ring is a field (otherwise right gcd do not exist in general).

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: g,u,v = a.right_xgcd(b); g
x + t
sage: u*a + v*b == g
True
```

Specifying monic=False, we can get a nonmonic gcd:

```python
sage: g,u,v = a.right_xgcd(b,monic=False); g
(4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3
sage: u*a + v*b == g
True
```

The base ring must be a field:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (x^2 + t*x + 1) * (x + t)
sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t)
sage: a.right_xgcd(b)
Traceback (most recent call last):
...
TypeError: the base ring must be a field
```
shift \( (n) \)
Return \( \text{self} \) multiplied on the right by the power \( x^n \).
If \( n \) is negative, terms below \( x^n \) will be discarded.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^5 + t^4*x^4 + t^2*x^2 + t^10
sage: a.shift(0)
x^5 + t^4*x^4 + t^2*x^2 + t^10
sage: a.shift(-1)
x^4 + t^4*x^3 + t^2*x
sage: a.shift(-5)
1
sage: a.shift(2)
x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2
```

One can also use the infix shift operator:

```python
sage: a >> 2
x^3 + t^4*x^2 + t^2
sage: a << 2
x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2
```

square()
Return the square of \( \text{self} \).

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + t; a
x + t
sage: a.square()
x^2 + (2*t + 1)*x + t^2
sage: a.square() == a*a
True
```

variable_name()
Return the string name of the variable used in \( \text{self} \).

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x + t
sage: a.variable_name()
'x'
```

class sage.rings.polynomial.skew_polynomial_element.SkewPolynomialBaseringInjection
Bases: sage.categories.morphism.Morphism

Representation of the canonical homomorphism from a ring \( R \) into a skew polynomial ring over \( R \).
This class is necessary for automatic coercion from the base ring to the skew polynomial ring.
See also:

*PolynomialBaseringInjection*

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: S.coerce_map_from(S.base_ring()) #indirect doctest
```

Skew Polynomial base injection morphism:
From: Univariate Polynomial Ring in t over Rational Field
To: Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1

```python
an_element()
```

Return an element of the codomain of the ring homomorphism.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.skew_polynomial_element import SkewPolynomialBaseringInjection
```

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: m = SkewPolynomialBaseringInjection(k, k['x', Frob])
sage: m.an_element()
```

```python
section()
```

Return the canonical homomorphism from the constants of a skew polynomial ring to the base ring according to self.

**class** `sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense`

Bases: `sage.rings.polynomial.skew_polynomial_element.SkewPolynomial`

Generic implementation of dense skew polynomial supporting any valid base ring and twist map.

**coefficients** *(sparse=True)*

Return the coefficients of the monomials appearing in self.

If `sparse=True` (the default), return only the non-zero coefficients. Otherwise, return the same value as `self.list()`.

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: a.coefficients()
```

```python
t^2 + 1, t + 1, 1
```

```python
sage: a.coefficients(sparse=False)
```

```python
[t^2 + 1, 0, t + 1, 0, 1]
```

**degree()**

Return the degree of self.

By convention, the zero skew polynomial has degree −1.

**EXAMPLES:**

```python
```
```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x + 1
sage: a.degree()
3
```

By convention, the degree of 0 is $-1$:

```
sage: S(0).degree()
-1
```

dict()

Return a dictionary representation of self.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2012 + t*x^1006 + t^3 + 2*t
sage: a.dict()
{0: t^3 + 2*t, 1006: t, 2012: 1}
```

left_power_mod(exp, modulus)

Return the remainder of $self^\text{exp}$ in the left euclidean division by $modulus$.

INPUT:

- exp – an Integer
- modulus – a skew polynomial in the same ring as self

OUTPUT:

Remainder of $self^\text{exp}$ in the left euclidean division by $modulus$.

REMARK:

The quotient of the underlying skew polynomial ring by the principal ideal generated by $modulus$ is in general not a ring.

As a consequence, Sage first computes exactly $self^\text{exp}$ and then reduce it modulo $modulus$.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = x + t
sage: modulus = x^3 + t*x^2 + (t+3)*x - 2
sage: a.left_power_mod(100,modulus)
(4*t^2 + t + 1)*x^2 + (t^2 + 4*t + 1)*x + 3*t^2 + 3*t
```

left_quo_rem(other)

Return the quotient and remainder of the left euclidean division of self by other.

INPUT:

- other – a skew polynomial in the same ring as self

OUTPUT:
• the quotient and the remainder of the left Euclidean division of this skew polynomial by \texttt{other}

\textbf{Note:} This will fail if the leading coefficient of \texttt{other} is not a unit or if Sage can’t invert the twist map.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
sage: b = (3*t^2 + 4*t + 2)*x^2 + (2*t^2 + 4*t + 3)*x + 2*t^2 + t + 1
sage: q,r = a.left_quo_rem(b)
sage: a == b*q + r
True
\end{verbatim}

In the following example, Sage does not know the inverse of the twist map:

\begin{verbatim}
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = (-2*t^2 - t + 1)*x^3 + (-t^2 + t)*x^2 + (-12*t - 2)*x - t^2 - 95*t + 1
sage: b = x^2 + (5*t - 6)*x - 4*t^2 + 4*t - 1
sage: a.left_quo_rem(b)
Traceback (most recent call last):
  ...
NotImplementedError: inversion of the twist map Ring endomorphism of
  Univariate Polynomial Ring in t over Integer Ring
  Defn: t |--> t + 1
\end{verbatim}

\texttt{list} (\texttt{copy=\texttt{True}})

Return a list of the coefficients of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = 1 + x^4 + (t+1)*x^2 + t^2
sage: l = a.list(); l
[t^2 + 1, 0, t + 1, 0, 1]
\end{verbatim}

Note that \texttt{l} is a list, it is mutable, and each call to the list method returns a new list:

\begin{verbatim}
sage: type(l)
<... 'list'>
sage: l[0] = 5
sage: a.list()
[t^2 + 1, 0, t + 1, 0, 1]
\end{verbatim}

\texttt{right_power_mod} (\texttt{exp, modulus})

Return the remainder of \texttt{self}^{\texttt{exp}} in the right Euclidean division by \texttt{modulus}.

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{exp} – an Integer
  \item \texttt{modulus} – a skew polynomial in the same ring as \texttt{self}
\end{itemize}
OUTPUT:
Remainder of self**exp in the right euclidean division by modulus.

REMARK:
The quotient of the underlying skew polynomial ring by the principal ideal generated by modulus is in general not a ring.

As a consequence, Sage first computes exactly self**exp and then reduce it modulo modulus.

EXAMPLES:

```sage
k.<t> = GF(5^3)
k.<x> = k['x',Frob]
a = x + t
b = a^10 # short form for `a._pow_(10)`
b == a*a*a*a+a*a+a=0+a=0+a=0
True
modulus = x^3 + t*x^2 + (t+3)*x - 2
br = a.right_power_mod(10,modulus); br
(t^2 + t)*x^2 + (3*t^2 + 1)*x + t^2 + t
rq, rr = b.right_quo_rem(modulus)
br == rr
True
a.right_power_mod(100,modulus)
(2*t^2 + 3)*x^2 + (t^2 + 4*t + 2)*x + t^2 + 2*t + 1
```

```
right_quo_rem(other)
Return the quotient and remainder of the right euclidean division of self by other.

INPUT:
• other – a skew polynomial in the same ring as self

OUTPUT:
• the quotient and the remainder of the left euclidean division of this skew polynomial by other

Note: This will fail if the leading coefficient of the divisor is not a unit.

EXAMPLES:

```sage
R.<t> = ZZ[]
sigma = R.hom([t+1])
S.<x> = R['x',sigma]
a = S.random_element(degree=4); a
t^2*x^4 + (-12*t^2 - 2*t - 1)*x^3 + (-95*t^2 + t + 2)*x^2 + (-t^2 + t)*x + 2*t - 8
b = S.random_element(monic=True); b
x^2 + (4*t^2 - t - 2)*x + t^2 + t - 1
q,r = a.right_quo_rem(b)
a == q*b + r
True
```

The leading coefficient of the divisor need to be invertible:

```sage
c = S.random_element(); c
(-4*t^2 + t)*x^2 - 2*t^2*x + 5*t^2 - 6*t - 4
```

4.1. Univariate Skew Polynomials 457
`sage: a.right_quo_rem(c)`

```
Traceback (most recent call last):
...
NotImplementedError: the leading coefficient of the divisor is not invertible
```

truncate\((n) \)

Return the polynomial resulting from discarding all monomials of degree at least \(n \).

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = t*x^3 + x^4 + (t+1)*x^2
sage: a.truncate(4)
t*x^3 + (t + 1)*x^2
sage: a.truncate(3)
(t + 1)*x^2
```

valuation\()

Return the minimal degree of a non-zero monomial of `self`.

By convention, the zero skew polynomial has valuation \(+\infty\).

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]
sage: a = x^2 + t*x^3 + t^2*x
sage: a.valuation()
1
```

By convention, the valuation of 0 is \(+\infty\):

```
sage: S(0).valuation()
+Infinity
```

4.2 Constructor for skew polynomial rings

This module provides the function `SkewPolynomialRing()`, which constructs rings of univariate skew polynomials, and implements caching to prevent the same ring being created in memory multiple times (which is wasteful and breaks the general assumption in Sage that parents are unique).

AUTHOR:

- Xavier Caruso (2012-06-29): initial version
- Arpit Merchant (2016-08-04): improved docstrings, added doctests and refactored method
- Johan Rosenkilde (2016-08-03): changes to import format

```
sage.rings.polynomial.skew_polynomial_ring_constructor.SkewPolynomialRing(base_ring, base_ring_automorphism=None, names=None, sparse=False)

```

Return the globally unique skew polynomial ring with the given properties and variable names.
Given a ring R and a ring automorphism σ of R, the ring of skew polynomials $R[X, \sigma]$ is the usual abelian group polynomial $R[X]$ equipped with the modification multiplication deduced from the rule $Xa = \sigma(a)X$.

See also:

- `sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general`
- `sage.rings.polynomial.skew_polynomial_element.SkewPolynomial`

INPUT:

- `base_ring` — a commutative ring
- `base_ring_automorphism` — an automorphism of the base ring (also called twisting map)
- `names` — a string or a list of strings
- `sparse` — a boolean (default: `False`). Currently not supported.

Note: The current implementation of skew polynomial rings does not support derivations. Sparse skew polynomials and multivariate skew polynomials are also not implemented.

OUTPUT:

A univariate skew polynomial ring over $base_ring$ twisted by $base_ring_automorphism$ when $names$ is a string with no commas (,) or a list of length 1. Otherwise we raise a `NotImplementedError` as multivariate skew polynomial rings are not yet implemented.

UNIQUENESS and IMMUTABILITY:

In Sage, there is exactly one skew polynomial ring for each triple (base ring, twisting map, name of the variable).

EXAMPLES of VARIABLE NAME CONTEXT:

```
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = SkewPolynomialRing(R, sigma); S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
  twisted by t |--> t + 1
```

The names of the variables defined above cannot be arbitrarily modified because each skew polynomial ring is unique in Sage and other objects in Sage could have pointers to that skew polynomial ring.

However, the variable can be changed within the scope of a `with` block using the `localvars` context:

```
sage: with localvars(S, ['y']):
....:  print(S)
Skew Polynomial Ring in y over Univariate Polynomial Ring in t over Integer Ring
  twisted by t |--> t + 1
```

SQUARE BRACKETS NOTATION:

You can alternatively create a skew polynomial ring over R twisted by $base_ring_automorphism$ by writing $R['varname', base_ring_automorphism]$.

EXAMPLES:

We first define the base ring:
and the twisting map:

```sage
sage: base_ring_automorphism = R.hom([t+1]); base_ring_automorphism
Ring endomorphism of Univariate Polynomial Ring in t over Integer Ring
  Defn: t |--> t + 1
```

Now, we are ready to define the skew polynomial ring:

```sage
sage: S = SkewPolynomialRing(R, base_ring_automorphism, names='x'); S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
  twisted by t |--> t + 1
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:

```sage
sage: S.<x> = SkewPolynomialRing(R, base_ring_automorphism)
sage: (x + t)^2
x^2 + (2*t + 1)*x + t^2
```

Here is an example with the square bracket notations:

```sage
sage: S.<x> = R['x', base_ring_automorphism]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
  twisted by t |--> t + 1
```

Rings with different variables names are different:

```sage
sage: R['x', base_ring_automorphism] == R['y', base_ring_automorphism]
False
```

Todo

- Sparse Skew Polynomial Ring
- Multivariate Skew Polynomial Ring
- Add derivations.

4.3 Skew Univariate Polynomial Rings

This module provides the `SkewPolynomialRing_general`, which constructs a general dense univariate skew polynomials over commutative base rings with automorphisms over the base rings. This is usual accessed only indirectly through the constructor `sage.rings.polynomial.skew_polynomial_constructor.SkewPolynomialRing()`.

See `SkewPolynomialRing_general` for a definition of a univariate skew polynomial ring.

AUTHOR:

- Xavier Caruso (2012-06-29): initial version
- Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods
- Johan Rosenkilde (2016-08-03): changes for bug fixes, docstring and doctest errors
class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general(base_ring, twist_map, name, sparse, element_class)

Bases: sage.rings.ring.Algebra, sage.structure.unique_representation.UniqueRepresentation

A general implementation of univariate skew polynomial ring over a commutative ring.

Let R be a commutative ring, and let σ be an automorphism of R. The ring of skew polynomials $R[X, \sigma]$ is the polynomial ring $R[X]$, where the addition is the usual polynomial addition, but the multiplication operation is defined by the modified rule

$$X \ast a = \sigma(a)X.$$

This means that $R[X, \sigma]$ is a non-commutative ring. Skew polynomials were first introduced by Ore [Ore33].

EXAMPLES:

```python
sage: R.<t> = ZZ[

sage: sigma = R.hom([t+1])

sage: S.<x> = SkewPolynomialRing(R,sigma); S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring twisted by t |--> t + 1

sage: S.<x> = R['x',sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring twisted by t |--> t + 1

sage: Sy = R['y',sigma]

sage: y
Traceback (most recent call last):
...
NameError: name 'y' is not defined

sage: Sy.gen()
y
```

One can also use a shorter syntax:

```python
sage: S.<x> = R['x',sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring twisted by t |--> t + 1
```

If we omit the diamond notation, the variable holding the indeterminate is not assigned:

```python
sage: Sy = R['y',sigma]

sage: y
Traceback (most recent call last):
...
NameError: name 'y' is not defined

sage: Sy.gen()
y
```

Note however that contrary to usual polynomial rings, we cannot omit the variable name on the RHS, since this collides with the notation for creating polynomial rings:

```python
sage: Sz.<z> = R[sigma]
Traceback (most recent call last):
...
ValueError: variable name 'Ring endomorphism of Univariate Polynomial Ring in t over Integer Ring twisted by t |--> t + 1' is not alphanumeric
```

Of course, skew polynomial rings with different twist maps are not equal either:

```python
sage: R['x',sigma] == R['x',sigma^2]
False
```
Saving and loading of polynomial rings works:

```python
sage: loads(dumps(R['x',sigma])) == R['x',sigma]
True
```

There is a coercion map from the base ring of the skew polynomial rings:

```python
sage: S.has_coerce_map_from(R)
True
sage: x.parent()
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring
twisted by t |--> t + 1
sage: t.parent()
Univariate Polynomial Ring in t over Integer Ring
sage: y = x+t; y
x + t
sage: y.parent() is S
True
```

See also:

`sage.rings.polynomial.skew_polynomial_ring_constructor.SkewPolynomialRing()` `sage.rings.polynomial.skew_polynomial_element`

REFERENCES:

`change_var(var)`

Return the skew polynomial ring in variable `var` with the same base ring and twist map as `self`.

INPUT:

• `var` – a string representing the name of the new variable.

OUTPUT:

`self` with variable name name changed to `var`.

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: R.<x> = SkewPolynomialRing(k,Frob); R
Skew Polynomial Ring in x over Finite Field in t of size 5^3 twisted by t |--> t^5
sage: Ry = R.change_var('y'); Ry
Skew Polynomial Ring in y over Finite Field in t of size 5^3 twisted by t |--> t^5
sage: Ry is R.change_var('y')
True
```

`characteristic()`

Return the characteristic of the base ring of `self`.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: R['x',sigma].characteristic()
0
sage: k.<u> = GF(5^3)
```
gen\((n=0)\)

Return the indeterminate generator of this skew polynomial ring.

INPUT:

- \(n\) – index of generator to return (default: 0). Exists for compatibility with other polynomial rings.

EXAMPLES:

```python
sage: R.<t> = QQ[
  sage: sigma = R.hom([t+1])
  sage: S.<x> = R['x',sigma]; S
  Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
  sage: y = S.gen(); y
  x
  sage: y == x
  True
  sage: y is x
  True
  sage: S.gen(0)
  x
```

This is also known as the parameter:

```python
sage: S.parameter() is S.gen()
True
```

gens_dict()

Return a \{name: variable\} dictionary of the generators of self.

EXAMPLES:

```python
sage: R.<t> = ZZ[
  sage: sigma = R.hom([t+1])
  sage: S.<x> = SkewPolynomialRing(R,sigma)
  sage: S.gens_dict()
  \{'x': x\}
```

is_commutative()

Return True if this skew polynomial ring is commutative, i.e. if the twist map is the identity.

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
  sage: Frob = k.frobenius_endomorphism()
  sage: S.<x> = k['x',Frob]
  sage: S.is_commutative()
  False

sage: T.<y> = k['y',Frob^3]
  sage: T.is_commutative()
  True
```
is_exact()
Return True if elements of this skew polynomial ring are exact. This happens if and only if elements of the base ring are exact.

EXAMPLES:
```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: S.is_exact()
True
sage: S.base_ring().is_exact()
True
```
•points – a list of pairs \((x_1, y_1), \ldots, (x_n, y_n)\) of elements of the base ring of self. The \(x_i\) should be linearly independent over the fixed field of self.twist_map().

OUTPUT:
The lagrange polynomial.

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: points = [(t, 3*t^2 + 4*t + 4), (t^2, 4*t)]
sage: d = S.lagrange_polynomial(points); d
x + t
sage: R.<t> = ZZ[]
sage: sigma = R.hom([t+1])
sage: T.<x> = R['x', sigma]
sage: points = [(1, t^2 + 3*t + 4), (t, 2*t^2 + 3*t + 1), (t^2, t^2 + 3*t + 4)]
sage: p = T.lagrange_polynomial(points); p
((-t^4 - 2*t - 3)/-2)*x^2 + (-t^4 - t^3 - 3*t - 2)*x + (-t^4 - 2*t^3 - 4*t^2 - 10*t - 9)/-2
sage: p.multi_point_evaluation([1, t, t^2]) == [ t^2 + 3*t + 4, 2*t^2 + 3*t + 1, t^2 + 3*t + 4]
True
```

If the \(x_i\) are linearly dependent over the fixed field of self.twist_map(), then an error is raised:

```python
sage: T.lagrange_polynomial([(t, 1), (2*t, 3)])
Traceback (most recent call last):
  ... 
ValueError: the given evaluation points are linearly dependent over the fixed field of the twist map, so a Lagrange polynomial could not be determined (and might not exist).
```

minimal_vanishing_polynomial

Return the minimal-degree, monic skew polynomial which vanishes at all the given evaluation points.

The degree of the vanishing polynomial is at most the length of eval_pts. Equality holds if and only if the elements of eval_pts are linearly independent over the fixed field of self.twist_map().

INPUT:

•eval_pts – list of evaluation points which are linearly independent over the fixed field of the twist map of the associated skew polynomial ring

OUTPUT:
The minimal vanishing polynomial.

EXAMPLES:

```python
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]
sage: eval_pts = [1, t, t^2]
sage: b = S.minimal_vanishing_polynomial(eval_pts); b
x^3 + 4
```
The minimal vanishing polynomial evaluates to 0 at each of the evaluation points:

```
sage: eval = b.multi_point_evaluation(eval_pts); eval
[0, 0, 0]
```

If the evaluation points are linearly dependent over the fixed field of the twist map, then the returned polynomial has lower degree than the number of evaluation points:

```
sage: S.minimal_vanishing_polynomial([t])
x + 3*t^2 + 3*t
sage: S.minimal_vanishing_polynomial([t, 3*t])
x + 3*t^2 + 3*t
```

\section{ngens()}

Return the number of generators of this skew polynomial ring, which is 1.

EXAMPLES:

```
sage: R.<t> = RR[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x',sigma]; S
Skew Polynomial Ring in x over Univariate Polynomial Ring in t over Rational
˓→Field twisted by t |--> t + 1
sage: y = S.gen(); y
x
sage: y == x
True
sage: y is x
True
sage: S.gen(0)
x
```

This is also known as the parameter:

```
sage: S.parameter() is S.gen()
True
```

\section{random_element (degree=2, monic=False, *args, **kwds)}

Return a random skew polynomial in \texttt{self}.

INPUT:

- \texttt{degree} – (default: 2) integer with degree or a tuple of integers with minimum and maximum degrees
- \texttt{monic} – (default: False) if True, return a monic skew polynomial
• *args, **kwds – passed on to the random_element method for the base ring

OUTPUT:
Skew polynomial such that the coefficients of x^i, for i up to degree, are random elements from the base ring, randomized subject to the arguments *args and **kwds.

EXAMPLES:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: S.random_element()  # random
(2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2
sage: S.random_element(monic=True)  # random
x^2 + (2*t^2 + t + 1)*x + 3*t^2 + 3*t + 2
```

Use degree to obtain polynomials of higher degree

```
sage: p = S.random_element(degree=5)  # random
(t^2 + 3*t)*x^4 + (4*t + 4)*x^3 + (4*t^2 + 4*t)*x^2 + (2*t^2 + 1)*x + 3
```

When monic is False, the returned skew polynomial may have a degree less than degree (it happens when the random leading coefficient is zero). However, if monic is True, this can’t happen:

```
sage: p = S.random_element(degree=4, monic=True)
sage: p.leading_coefficient() == S.base_ring().one()
True
sage: p.degree() == 4
True
```

If a tuple of two integers is given for the degree argument, a random integer will be chosen between the first and second element of the tuple as the degree, both inclusive:

```
sage: S.random_element(degree=(2, 7))  # random
(3*t^2 + 1)*x^4 + (4*t + 2)*x^3 + (4*t + 1)*x^2 + (t^2 + 3*t + 3)*x + 3*t^2 + 2*t + 2
```

If the first tuple element is greater than the second, a a ValueError is raised:

```
sage: S.random_element(degree=(5, 4))
Traceback (most recent call last):
  ...
ValueError: first degree argument must be less or equal to the second
```

twist_map(n=1)
Return the twist map, the automorphism of the base ring of self, iterated n times.

INPUT:
- n - an integer (default: 1)

OUTPUT:
n-th iterative of the twist map of this skew polynomial ring.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: sigma = R.hom([t+1])
sage: S.<x> = R['x', sigma]
sage: S.twist_map()
```

4.3. Skew Univariate Polynomial Rings
If \(n \) is negative, Sage tries to compute the inverse of the twist map:

```
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: T.<y> = k['y',Frob]
sage: T.twist_map(-1)
Frobenius endomorphism \( t \mapsto t^{(5^2)} \) on Finite Field in \( t \) of size 5^3
```

Sometimes it fails, even if the twist map is actually invertible:

```
sage: S.twist_map(-1)
Traceback (most recent call last):
  ...
NotImplementedError: inversion of the twist map Ring endomorphism of
  Univariate Polynomial Ring in \( t \) over Rational Field
  \( \text{Defn: } t \mapsto t + 1 \)
```
5.1 Fraction Field of Integral Domains

AUTHORS:

- William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
- Burcin Erocal

EXAMPLES:

Quotienting is a constructor for an element of the fraction field:

```sage
R.<x> = QQ[]
sage: (x^2-1)/(x+1)
x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

The GCD is not taken (since it doesn’t converge sometimes) in the inexact case:

```sage
Z.<z> = CC[]
sage: I = CC.gen()
sage: (1+I*z)/(z+0.1*I)
(1.00000000000000 + 0.100000000000000*I) / (1.00000000000000 + 0.100000000000000*I)
sage: (1+I*z)/(z+1.1)
(1.00000000000000 + 1.00000000000000*I) / (1.00000000000000 + 1.10000000000000*I)
```

```sage
sage: F = FractionField(PolynomialRing(RationalField(),'x'))
sage: F == loads(dumps(F))
True
```

```sage
sage: F = FractionField(PolynomialRing(IntegerRing(),'x'))
sage: F == loads(dumps(F))
True
```

```sage
sage: F = FractionField(PolynomialRing(RationalField(),2,'x'))
sage: F == loads(dumps(F))
True
```

```
Create the fraction field of the integral domain \( R \).

INPUT:
```

sage.rings.fraction_field.\texttt{FractionField}(R, names=None)
• \(R \) – an integral domain
• \textit{names} – ignored

EXAMPLES:

We create some example fraction fields:

```python
sage: FractionField(IntegerRing())
Rational Field
sage: FractionField(PolynomialRing(RationalField(),'x'))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: FractionField(PolynomialRing(IntegerRing(),'x'))
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: FractionField(PolynomialRing(RationalField(),2,'x'))
Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field
```

Dividing elements often implicitly creates elements of the fraction field:

```python
sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f = x/(x+1)
sage: g = x**3/(x+1)
sage: f/g
1/x^2
sage: g/f
x^2
```

The input must be an integral domain:

```python
sage: Frac(Integers(4))
Traceback (most recent call last):
...  
TypeError: \( R \) must be an integral domain.
```

class `sage.rings.fraction_field.FractionField_1poly_field` \((R, \text{element_class=class 'sage.rings.fraction_field_element.FractionFieldElement'})\)

class `sage.rings.fraction_field.FractionField_generic`
The fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

class_number ()
Here for compatibility with number fields and function fields.

EXAMPLES:

```python
sage: R.<t> = GF(5)[]; K = R.fraction_field()
sage: K.class_number()
1
```

maximal_order ()
Return the maximal order in this fraction field.

EXAMPLES:

```python
sage: K = FractionField(GF(5)['t'])
sage: K.maximal_order()
Univariate Polynomial Ring in t over Finite Field of size 5
```
ring_of_integers()

Return the ring of integers in this fraction field.

EXAMPLES:

```
sage: K = FractionField(GF(5)[t])
sage: K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5
```

class sage.rings.fraction_field.FractionField_generic(R, element_class=<type
'sage.rings.fraction_field_element.FractionFieldElement'>, category=Category of quotient
fields)

Bases: sage.rings.ring.Field

The fraction field of an integral domain.

base_ring()

Return the base ring of self.

This is the base ring of the ring which this fraction field is the fraction field of.

EXAMPLES:

```
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
```

characteristic()

Return the characteristic of this fraction field.

EXAMPLES:

```
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
sage: R = Frac(ZZ['t']); R.characteristic()
0
sage: R = Frac(GF(5)['w']); R.characteristic()
5
```

construction()

EXAMPLES:

```
sage: Frac(ZZ['x']).construction()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)
sage: K = Frac(GF(3)['t'])
sage: f, R = K.construction()
sage: f(R)
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 3
sage: f(R) == K
True
```

gen(i=0)

Return the i-th generator of self.

EXAMPLES:

```
sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, \ldots
-+ z7, z8, z9 over Rational Field
```
sage: R.0
z0
sage: R.gen(3)
z3
sage: R.3
z3

is_exact()

Return if `self` is exact which is if the underlying ring is exact.

EXAMPLES:

```python
sage: Frac(ZZ['x']).is_exact()
True
sage: Frac(CDF['x']).is_exact()
False
```

is_field(`proof=True`)

Return `True`, since the fraction field is a field.

EXAMPLES:

```python
sage: Frac(ZZ).is_field()
True
```

is_finite()

Tells whether this fraction field is finite.

Note: A fraction field is finite if and only if the associated integral domain is finite.

EXAMPLES:

```python
sage: Frac(QQ['a','b','c']).is_finite()
False
```

ngens()

This is the same as for the parent object.

EXAMPLES:

```python
sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6,..., z7, z8, z9 over Rational Field
sage: R.ngens()
10
```

random_element(`*args`, `**kwds`)

Return a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

EXAMPLES:

```python
sage: F = ZZ['x'].fraction_field()
sage: F.random_element()  # random
(2*x - 8)/(-x^2 + x)
```
sage: f = F.random_element(degree=5)
sage: f.numerator().degree()
5
sage: f.denominator().degree()
5

ring()
Return the ring that this is the fraction field of.

EXAMPLES:

sage: R = Frac(QQ['x,y'])
sage: R
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ring()
Multivariate Polynomial Ring in x, y over Rational Field

sage.rings.fraction_field.is_FractionField(x)
Test whether or not x inherits from FractionField_generic.

EXAMPLES:

sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(ZZ['x']))
True
sage: is_FractionField(QQ)
False

5.2 Fraction Field Elements

AUTHORS:

• William Stein (input from David Joyner, David Kohel, and Joe Wetherell)
• Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici’s algorithms [Ho72]

REFERENCES:

class sage.rings.fraction_field_element.FractionFieldElement
 Bases: sage.structure.element.FieldElement

EXAMPLES:

sage: K = FractionField(PolynomialRing(QQ, 'x'))
sage: K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads(K.dumps()) == K
True
sage: x = K.gen()
sage: f = (x^3 + x)/(17 - x^19); f
(x^3 + x)/(-x^19 + 17)
sage: loads(f.dumps()) == f
True

denominator()
Return the denominator of self.
EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.denominator()
y
```

is_one()
Return True if this element is equal to one.

EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one()  # True
sage: (x/y).is_one()  # False
```

is_square(root=False)
Return whether or not self is a perfect square.

If the optional argument root is True, then also returns a square root (or None, if the fraction field element is not square).

INPUT:

- root - whether or not to also return a square root (default: False)

OUTPUT:

- bool - whether or not a square
- object - (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: (1/t).is_square()  # False
sage: (1/t^6).is_square()  # True
sage: ((1+t)^4/t^6).is_square()  # True
sage: (4*(1+t)^4/t^6).is_square()  # True
sage: (2*(1+t)^4/t^6).is_square()  # False
sage: ((1+t)/t^6).is_square()  # False
sage: (4*(1+t)^4/t^6).is_square(root=True)  # (True, (2*t^2 + 4*t + 2)/t^3)
sage: (2*(1+t)^4/t^6).is_square(root=True)  # (False, None)
sage: R.<x> = QQ[]
sage: a = 2*(x+1)^2 / (2*(x-1)^2); a
(2*x^2 + 4*x + 2)/(2*x^2 - 4*x + 2)
sage: a.numerator().is_square()  # False
```
False
sage: a.is_square()
True
sage: (0/x).is_square()
True

is_zero()
Return True if this element is equal to zero.

EXAMPLES:

sage: F = ZZ['x,y'].fraction_field()
sage: x, y = F.gens()
sage: t = F(0)/x
sage: t.is_zero()
True
sage: u = 1/x - 1/x
sage: u.is_zero()
True
sage: u.parent() is F
True

numerator()
Return the numerator of self.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.numerator()
x + y

reduce()
Divides out the gcd of the numerator and denominator.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must
be called manually in that case.

EXAMPLES:

sage: R.<x> = RealField(10)[]
sage: f = (x^2+2*x+1)/(x+1); f
(x^2 + 2.0*x + 1.0)/(x + 1.0)
sage: f.reduce(); f
x + 1.0

valuation(v=None)
Return the valuation of self, assuming that the numerator and denominator have valuation functions
defined on them.

EXAMPLES:

sage: x = PolynomialRing(RationalField(),'x').gen()
sage: f = (x^3 + x)/(x^2 - 2*x^3)
sage: f
(x^2 + 1)/(-2*x^2 + x)
sage: f.valuation()
-1
class sage.rings.fraction_field_element.FractionFieldElement_poly_field
Bases: sage.rings.fraction_field_element.FractionFieldElement

A fraction field element where the parent is the fraction field of a univariate polynomial ring.

Many of the functions here are included for coherence with number fields.

is_integral()

Returns whether this element is actually a polynomial.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: elt = (t^2 + t - 2) / (t + 2); elt
# == (t + 2)*(t - 1)/(t + 2)
t - 1
sage: elt.is_integral()
True
sage: elt = (t^2 - t) / (t+2); elt
# == t*(t - 1)/(t + 2)
(t^2 - t)/(t + 2)
sage: elt.is_integral()
False
```

support()

Returns a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: h = (t^14 + 2*t^12 - 4*t^11 - 8*t^9 + 6*t^8 + 12*t^6 - 4*t^5 - 8*t^3 +
   t^2 + 2)/(t^6 + 6*t^5 + 9*t^4 - 2*t^2 - 12*t - 18)
sage: h.support()
[t - 1, t + 3, t^2 + 2, t^2 + t + 1, t^4 - 2]
```

sage.rings.fraction_field_element.is_FractionFieldElement(x)

Return whether or not `x` is a `FractionFieldElement`.

EXAMPLES:

```
sage: from sage.rings.fraction_field_element import is_FractionFieldElement
sage: R.<x> = ZZ[]
sage: is_FractionFieldElement(x/2)
False
sage: is_FractionFieldElement(2/x)
True
sage: is_FractionFieldElement(1/3)
False
```

sage.rings.fraction_field_element.make_element(parent, numerator, denominator)

Used for unpickling `FractionFieldElement` objects (and subclasses).

EXAMPLES:

```
sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y']
sage: x,y = R.gens()
sage: F = R.fraction_field()
sage: make_element(F, x/y, y/x)
```

sage: f.valuation(x^2+1)
1
sage: make_element(F, 1+x, 1+y)
(x + 1)/(y + 1)

sage.rings.fraction_field_element.make_element_old(parent, cdict)
Used for unpickling old FractionFieldElement pickles.

EXAMPLES:

sage: from sage.rings.fraction_field_element import make_element_old
sage: R.<x,y> = ZZ[]

sage: F = R.fraction_field()

sage: make_element_old(F, {'_FractionFieldElement__numerator':x+y,'_FractionFieldElement__denominator':x-y})
(x + y)/(x - y)

5.3 Univariate rational functions over prime fields

class sage.rings.fraction_field_FpT.FpT(R, names=None)
Bases: sage.rings.fraction_field.FractionField_1poly_field

This class represents the fraction field GF(p)(T) for \(2 < p < 2^{16}\).

EXAMPLES:

sage: R.<T> = GF(71)[]

sage: K = FractionField(R); K
Fraction Field of Univariate Polynomial Ring in T over Finite Field of size 71

sage: 1-1/T
(T + 70)/T

sage: parent(1-1/T) is K
True

iter (bound=None, start=None)
EXAMPLES:

sage: from sage.rings.fraction_field_FpT import *

sage: R.<t> = FpT(GF(5)['t'])

sage: list(R.iter(2))
[(t^2 + t + 1)/(t + 2),
 (t^2 + t + 2)/(t + 2),
 (t^2 + t + 4)/(t + 2),
 (t^2 + 2*t + 1)/(t + 2),
 (t^2 + 2*t + 2)/(t + 2)]

class sage.rings.fraction_field_FpT.FpTElement
Bases: sage.structure.element.RingElement

An element of an FpT fraction field.

denom()
Returns the denominator of this element, as an element of the polynomial ring.

EXAMPLES:

sage: K = GF(11)['t'].fraction_field()

sage: t = K.gen(0); a = (t + 1/t)^3 - 1

5.3. Univariate rational functions over prime fields 477
denominator()

Returns the denominator of this element, as an element of the polynomial ring.

EXAMPLES:

```sage
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.denominator()
t^3
```

factor()

EXAMPLES:

```sage
sage: K = Frac(GF(5)['t'])
sage: t = K.gen()
sage: f = 2 * (t+1) * (t^2+t+1)^2 / (t-1)
sage: factor(f)
(2) * (t + 4)^-1 * (t + 1) * (t^2 + t + 1)^2
```

is_square()

Returns True if this element is the square of another element of the fraction field.

EXAMPLES:

```sage
sage: K = GF(13)['t'].fraction_field(); t = K.gen()
sage: t.is_square()
False
sage: (1/t^2).is_square()
True
sage: K(0).is_square()
True
```

next()

This function iterates through all polynomials, returning the “next” polynomial after this one.

The strategy is as follows:

- We always leave the denominator monic.
- We progress through the elements with both numerator and denominator monic, and with the denominator less than the numerator. For each such, we output all the scalar multiples of it, then all of the scalar multiples of its inverse.
- So if the leading coefficient of the numerator is less than p-1, we scale the numerator to increase it by 1.
- Otherwise, we consider the multiple with numerator and denominator monic.
 - If the numerator is less than the denominator (lexicographically), we return the inverse of that element.
 - If the numerator is greater than the denominator, we invert, and then increase the numerator (remaining monic) until we either get something relatively prime to the new denominator, or we reach the new denominator. In this case, we increase the denominator and set the numerator to 1.

EXAMPLES:
```
sage: from sage.rings.fraction_field_FpT import *
sage: R.<t> = FpT(GF(3)['t'])
sage: a = R(0)
sage: for _ in range(30):
....:     a = a.next()
....:     print(a)
1
2
1/t
2/t
t
2*t
1/(t + 1)
2/(t + 1)
t + 1
2*t + 2
t/(t + 1)
2*t/(t + 1)
(t + 1)/t
(2*t + 2)/t
1/(t + 2)
2/(t + 2)
t + 2
2*t + 1
t/(t + 2)
2*t/(t + 2)
(t + 2)/t
(2*t + 1)/t
(t + 1)/(t + 2)
(2*t + 2)/(t + 2)
(t + 2)/(t + 1)
(2*t + 1)/(t + 1)
1/t^2
2/t^2
t^2
2*t^2
```

numer()

Returns the numerator of this element, as an element of the polynomial ring.

EXAMPLES:

```
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.numer()
t^6 + 3*t^4 + 10*t^3 + 3*t^2 + 1
```

numerator()

Returns the numerator of this element, as an element of the polynomial ring.

EXAMPLES:

```
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.numerator()
t^6 + 3*t^4 + 10*t^3 + 3*t^2 + 1
```

sqrt(extend=True, all=False)

Returns the square root of this element.
INPUT:

- `extend` - bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a `ValueError` if the square is not in the base ring.
- `all` - bool (default: False); if True, return all square roots of self, instead of just one.

EXAMPLES:

```python
sage: from sage.rings.fraction_field_FpT import *
sage: K = GF(7)['t'].fraction_field(); t = K.gen(0)
sage: p = (t + 2)**2/(3*t**3 + 1)**4
sage: p.sqrt()
(3*t + 6)/(t**6 + 3*t**3 + 4)
sage: p.sqrt()^2 == p
True
```

```python
subs(*args, **kwds)
```

EXAMPLES:

```python
sage: K = Frac(GF(11)['t'])
sage: t = K.gen()
sage: f = (t+1)/(t-1)
sage: f.subs(t=2)
3
sage: f.subs(X=2)
(t + 1)/(t + 10)
```

```python
valuation(v)
```

Returns the valuation of self at `v`.

EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: f = (t+1)**2 * (t^2+t+1) / (t-1)**3
sage: f.valuation(t+1)
2
sage: f.valuation(t-1)
-3
sage: f.valuation(t)
0
```

```python
class sage.rings.fraction_field_FpT.FpT_Fp_section
```

This class represents the section from GF(p)(t) back to GF(p)[t]

EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = GF(5).convert_map_from(K); f
Section map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
  To:   Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.FpT_Fp_section'>
```

```python
class sage.rings.fraction_field_FpT.FpT_Polyring_section
```

Bases: sage.categories.map.Section

This class represents the section from GF(p)(t) back to GF(p)[t]

EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = GF(5).convert_map_from(K); f
Section map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
  To:   Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.FpT_Polyring_section'>
```
This class represents the section from GF(p)(t) back to GF(p)[t]

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Section map:
   From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
   To:    Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.FpT_Polyring_section'>
```

class `sage.rings.fraction_field_FpT.FpT_iter`

Bases: object

Returns a class that iterates over all elements of an FpT.

EXAMPLES:

```
sage: K = GF(3)['t'].fraction_field()
sage: I = K.iter(1)
sage: list(I)
[0, 1, 2, t, t + 1, t + 2, 2*t, 2*t + 1, 2*t + 2, 1/t, 2/t, (t + 1)/t, (t + 2)/t, (2*t + 1)/t, (2*t + 2)/t, 1/(t + 1), 2/(t + 1), t/(t + 1), (t + 2)/(t + 1), 2*t/(t + 1), (2*t + 1)/(t + 1), 1/(t + 2), 2/(t + 2), t/(t + 2), (t + 1)/(t + 2), 2*t/(t + 2), (2*t + 2)/(t + 2)]
```

next ()

`x.next()` -> the next value, or raise StopIteration

class `sage.rings.fraction_field_FpT.Fp_FpT_coerce`

Bases: `sage.rings.morphism.RingHomomorphism_coercion`

This class represents the coercion map from GF(p) to GF(p)(t)

EXAMPLES:
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(GF(5)); f
Ring Coercion morphism:
 From: Finite Field of size 5
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.Fp_FpT_coerce'>

section()

Returns the section of this inclusion: the partially defined map from GF(p)(t) back to GF(p), defined on constant elements.

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(GF(5))
sage: g = f.section(); g
Section map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
 To: Finite Field of size 5
sage: t = K.gen()
sage: g(f(1,3,reduce=False))
2
Traceback (most recent call last):
 ... ValueError: not constant
sage: g(1/t)
Traceback (most recent call last):
 ... ValueError: not integral

class sage.rings.fraction_field_FpT.Polyring_FpT_coerce

Bases: sage.rings.morphism.RingHomomorphism_coercion

This class represents the coercion map from GF(p)[t] to GF(p)(t)

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
Ring Coercion morphism:
 From: Univariate Polynomial Ring in t over Finite Field of size 5
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<type 'sage.rings.fraction_field_FpT.Polyring_FpT_coerce'>

section()

Returns the section of this inclusion: the partially defined map from GF(p)(t) back to GF(p)[t], defined on elements with unit denominator.

EXAMPLES:
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: g = f.section(); g
Section map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field
 of size 5
 To: Univariate Polynomial Ring in t over Finite Field of size 5
sage: t = K.gen()
sage: g(t)
t
sage: g(1/t)
Traceback (most recent call last):
 ... ValueError: not integral

class sage.rings.fraction_field_FpT.ZZ_FpT_coerce
 Bases: sage.rings.morphism.RingHomomorphism_coercion

This class represents the coercion map from ZZ to GF(p)(t)

EXAMPLES:

sage: R.<t> = GF(17)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(ZZ); f
Ring Coercion morphism:
 From: Integer Ring
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field
 of size 17
sage: type(f)
<type 'sage.rings.fraction_field_FpT.ZZ_FpT_coerce'>

section()

Returns the section of this inclusion: the partially defined map from GF(p)(t) back to ZZ, defined on constant elements.

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(ZZ)
sage: g = f.section(); g
Composite map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field
 of size 5
 To: Integer Ring
Defn: Section map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite
 Field of size 5
 then
 Lifting map:
 From: Finite Field of size 5
 To: Integer Ring
sage: t = K.gen()
sage: g(f(1,3,reduce=False))
2
sage: g(t)
Traceback (most recent call last):
...
ValueError: not constant
sage: g(1/t)
Traceback (most recent call last):
...
ValueError: not integral

sage.rings.fraction_field_FpT.unpickle_FpT_element(K, numer, denom)
Used for pickling.
LAURENT POLYNOMIALS

6.1 Ring of Laurent Polynomials

If R is a commutative ring, then the ring of Laurent polynomials in n variables over R is $R[x_1^{\pm 1}, x_2^{\pm 1}, \ldots, x_n^{\pm 1}]$. We implement it as a quotient ring

$$R[x_1, y_1, x_2, y_2, \ldots, x_n, y_n]/(x_1 y_1 - 1, x_2 y_2 - 1, \ldots, x_n y_n - 1).$$

AUTHORS:

- David Roe (2008-2-23): created
- David Loeffler (2009-07-10): cleaned up docstrings

```
sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing(base_ring, arg1=None, arg2=None, sparse=False, order='degrevlex', names=None, name=None)
```

Return the globally unique univariate or multivariate Laurent polynomial ring with given properties and variable name or names.

There are four ways to call the Laurent polynomial ring constructor:

1. `LaurentPolynomialRing(base_ring, name, sparse=False)`
2. `LaurentPolynomialRing(base_ring, names, order='degrevlex')`
3. `LaurentPolynomialRing(base_ring, name, n, order='degrevlex')`
4. `LaurentPolynomialRing(base_ring, n, name, order='degrevlex')`

The optional arguments `sparse` and `order` must be explicitly named, and the other arguments must be given positionally.

INPUT:

- `base_ring` – a commutative ring
- `name` – a string
- `names` – a list or tuple of names, or a comma separated string
- `n` – a positive integer
- `sparse` – bool (default: False), whether or not elements are sparse
• **order** – string or `TermOrder`, e.g.,
 – `'degrevlex'` (default) – degree reverse lexicographic
 – `'lex'` – lexicographic
 – `'deglex'` – degree lexicographic
 – `TermOrder('deglex', 3) + TermOrder('deglex', 3)` – block ordering

OUTPUT:

LaurentPolynomialRing(base_ring, name, sparse=False) returns a univariate Laurent polynomial ring; all other input formats return a multivariate Laurent polynomial ring.

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one single-variate Laurent polynomial ring over each base ring in each choice of variable and sparseness. There is also exactly one multivariate Laurent polynomial ring over each base ring for each choice of names of variables and term order.

```sage```
R.<x,y> = LaurentPolynomialRing(QQ,2); R
Multivariate Laurent Polynomial Ring in x, y over Rational Field

f = x^2 - 2*y^-2
```

You can’t just globally change the names of those variables. This is because objects all over Sage could have pointers to that polynomial ring.

```sage```
R._assign_names(['z','w'])
Traceback (most recent call last):
...
ValueError: variable names cannot be changed after object creation.
```

EXAMPLES:

1. **LaurentPolynomialRing**(base_ring, name, sparse=False)

```sage```
R = LaurentPolynomialRing(QQ, 'w'); R
Univariate Laurent Polynomial Ring in w over Rational Field
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:

```sage```
R.<w> = LaurentPolynomialRing(QQ)

(1 + w)^3
1 + 3*w + 3*w^2 + w^3
```

You must specify a name:

```sage```
R.<abc> = LaurentPolynomialRing(QQ, sparse=True); R
Univariate Laurent Polynomial Ring in abc over Rational Field
```

Rings with different variables are different:
2. **LaurentPolynomialRing**(*base_ring*, *names*, *order='degrevlex'*)

```python
sage: R = LaurentPolynomialRing(QQ, 'a,b,c'); R
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
sage: S = LaurentPolynomialRing(QQ, ['a','b','c']); S
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
sage: T = LaurentPolynomialRing(QQ, ('a','b','c')); T
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
```

All three rings are identical.

```python
sage: (R is S) and (S is T)
True
```

There is a unique Laurent polynomial ring with each term order:

```python
sage: R = LaurentPolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
Multivariate Laurent Polynomial Ring in x, y, z over Rational Field
sage: S = LaurentPolynomialRing(QQ, 'x,y,z', order='invlex'); S
Multivariate Laurent Polynomial Ring in x, y, z over Rational Field
sage: S is LaurentPolynomialRing(QQ, 'x,y,z', order='invlex')
True
sage: R == S
False
```

3. **LaurentPolynomialRing**(*base_ring*, *name*, *n*, *order='degrevlex'*)

If you specify a single name as a string and a number of variables, then variables labeled with numbers are created.

```python
sage: LaurentPolynomialRing(QQ, 'x', 10)
Multivariate Laurent Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, ...
    → over Rational Field
sage: LaurentPolynomialRing(GF(7), 'y', 5)
Multivariate Laurent Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field...
    → of size 7
sage: LaurentPolynomialRing(QQ, 'y', 3, sparse=True)
Multivariate Laurent Polynomial Ring in y0, y1, y2 over Rational Field
```

By calling the `inject_variables()` method, all those variable names are available for interactive use:

```python
sage: R = LaurentPolynomialRing(GF(7),15,'w'); R
Multivariate Laurent Polynomial Ring in w0, w1, w2, w3, w4, w5, w6, w7, w8, ...
    → over Finite Field of size 7
sage: R.inject_variables()
Defining w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14
sage: (w0 + 2*w8 + w13)^2
w0^2 + 4*w0*w8 + 4*w8^2 + 2*w0*w13 + 4*w8*w13 + w13^2
```

6.1. **Ring of Laurent Polynomials**
class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic(R, prepend_string, names)

Bases: sage.rings.ring.CommutativeRing, sage.structure.parent_gens.ParentWithGens

Laurent polynomial ring (base class).

EXAMPLES:

This base class inherits from CommutativeRing. Since trac ticket #11900, it is also initialised as such:

```
sage: R.<x1,x2> = LaurentPolynomialRing(QQ)
sage: R.category()
Category of commutative rings
sage: TestSuite(R).run()
```

change_ring (base_ring=None, names=None, sparse=False, order=None)

EXAMPLES:

```
sage: R = LaurentPolynomialRing(QQ,2,'x')
sage: R.change_ring(ZZ)
Multivariate Laurent Polynomial Ring in x0, x1 over Integer Ring
```

characteristic ()

Returns the characteristic of the base ring.

EXAMPLES:

```
sage: LaurentPolynomialRing(QQ,2,'x').characteristic()
0
sage: LaurentPolynomialRing(GF(3),2,'x').characteristic()
3
```

completion (p, prec=20, extras=None)

EXAMPLES:

```
sage: P.<x>=LaurentPolynomialRing(QQ)
sage: P
Univariate Laurent Polynomial Ring in x over Rational Field
sage: PP=P.completion(x)
sage: PP
Laurent Series Ring in x over Rational Field
sage: f=1-1/x
sage: PP(f)
-x^-1 + 1
sage: 1/PP(f)
-x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10 - x^11 - x^12 - x^13 - x^14 - x^15 - x^16 - x^17 - x^18 - x^19 - x^20 + O(x^21)
```

collection ()

Returns the construction of self.

EXAMPLES:

```
sage: LaurentPolynomialRing(QQ,2,'x,y').construction()
(LaurentPolynomialFunctor,
 Univariate Laurent Polynomial Ring in x over Rational Field)
```
fraction_field()
The fraction field is the same as the fraction field of the polynomial ring.

EXAMPLES:

```python
sage: L.<x> = LaurentPolynomialRing(QQ)
sage: L.fraction_field()
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: (x^-1 + 2) / (x - 1)
(2*x + 1)/(x^2 - x)
```

gen(i=0)
Returns the i^{th} generator of self. If i is not specified, then the first generator will be returned.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').gen()
x0
sage: LaurentPolynomialRing(QQ,2,'x').gen(0)
x0
sage: LaurentPolynomialRing(QQ,2,'x').gen(1)
x1
```

ideal()
EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').ideal()
Traceback (most recent call last):
  ...  
NotImplementedError
```

is_exact()
Returns True if the base ring is exact.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').is_exact()
True
sage: LaurentPolynomialRing(RDF,2,'x').is_exact()
False
```

is_field(proof=True)
EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').is_field()
False
```

is_finite()
EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').is_finite()
False
```

is_integral_domain(proof=True)
Returns True if self is an integral domain.

EXAMPLES:
The following used to fail; see trac ticket #7530:

```python
sage: L = LaurentPolynomialRing(ZZ, 'X')
sage: L['Y']
Univariate Polynomial Ring in Y over Univariate Laurent Polynomial Ring in X over Integer Ring
```

is_noetherian()

Returns True if self is Noetherian.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').is_noetherian()
Traceback (most recent call last):
  ...  
NotImplementedError
```

krull_dimension()

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').krull_dimension()
Traceback (most recent call last):
  ...  
NotImplementedError
```

ngens()

Returns the number of generators of self.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').ngens()
2
sage: LaurentPolynomialRing(QQ,1,'x').ngens()
1
```

polynomial_ring()

Returns the polynomial ring associated with self.

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').polynomial_ring()
Multivariate Polynomial Ring in x0, x1 over Rational Field
sage: LaurentPolynomialRing(QQ,1,'x').polynomial_ring()
Multivariate Polynomial Ring in x over Rational Field
```

random_element

*(low_degree=-2, high_degree=2, terms=5, choose_degree=False, *args, **kwds)*

EXAMPLES:

```python
sage: LaurentPolynomialRing(QQ,2,'x').random_element()
Traceback (most recent call last):
  ...  
NotImplementedError
```

remove_var(var)

EXAMPLES:

```python
```
Multivariate Laurent Polynomial Ring in y, z over Rational Field

Univariate Laurent Polynomial Ring in z over Rational Field

term_order()
Returns the term order of self.

EXAMPLES:

variable_names_recursive (depth=+Infinity)
Return the list of variable names of this ring and its base rings, as if it were a single multi-variate Laurent polynomial.

INPUT:
• depth – an integer or Infinity.

OUTPUT:
A tuple of strings.

EXAMPLES:

Class Definition

```python
class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_mpair(R, prepend_string, names):
    Bases: sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic
    EXAMPLES:
```

```python
class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_univariate(R, names):
    Bases: sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic
    EXAMPLES:
```

6.1. Ring of Laurent Polynomials

491
sage: L = LaurentPolynomialRing(QQ,'x')
sage: type(L)
<class 'sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_'
˓→univariate_with_category'>
sage: L == loads(dumps(L))
True

```
sage: from sage.rings.polynomial.laurent_polynomial_ring import is_LaurentPolynomialRing

sage: P = PolynomialRing(QQ,2,'x')
sage: is_LaurentPolynomialRing(P)
False
sage: R = LaurentPolynomialRing(QQ,3,'x')
sage: is_LaurentPolynomialRing(R)
True
```

6.2 Elements of Laurent polynomial rings

Class `sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_generic`

Bases: `sage.structure.element.CommutativeAlgebraElement`

A generic Laurent polynomial.

change_ring(R)

Return a copy of this Laurent polynomial, with coefficients in R.

EXAMPLES:

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: a = x^2 + 3*x^3 + 5*x^-1
sage: a.change_ring(GF(3))
2*x^-1 + x^2
```

Check that trac ticket #22277 is fixed:

```
sage: R.<x, y> = LaurentPolynomialRing(QQ)
sage: a = 2*x^2 + 3*x^3 + 4*x^-1
sage: a.change_ring(GF(3))
-x^2  + x^-1
```

Class `sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair`

Bases: `sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_generic`

Multivariate Laurent polynomials.

coefficient(mon)

Return the coefficient of `mon` in `self`, where `mon` must have the same parent as `self`.

The coefficient is defined as follows. If f is this polynomial, then the coefficient c_m is sum:

\[
c_m := \sum_T \frac{T}{m}
\]
where the sum is over terms T in f that are exactly divisible by m.

A monomial $m(x, y)$ 'exactly divides' $f(x, y)$ if $m(x, y)|f(x, y)$ and neither $x \cdot m(x, y)$ nor $y \cdot m(x, y)$ divides $f(x, y)$.

INPUT:

• `mon` – a monomial

OUTPUT:

Element of the parent of `self`.

Note: To get the constant coefficient, call `constant_coefficient()`.

EXAMPLES:

```python
sage: P.<x,y> = LaurentPolynomialRing(QQ)
```

The coefficient returned is an element of the parent of `self`; in this case, `P`.

```python
sage: f = 2 * x * y
sage: c = f.coefficient(x*y); c
2
sage: c.parent()
Multivariate Laurent Polynomial Ring in x, y over Rational Field
```

```python
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^2 + 5*x*y)*x^-3; f
-x^6 - 7*x^-2*y^2 + 5*x^-2*y + x^-3*y^2
sage: f.coefficient(y)
5*x^-2
sage: f.coefficient(y^2)
-7*x^-2 + x^-3
sage: f.coefficient(x*y)
0
sage: f.coefficient(x^-2)
-7*y^2 + 5*y
sage: f.coefficient(x^-2*y^2)
-7
sage: f.coefficient(1)
-x^6 - 7*x^-2*y^2 + 5*x^-2*y + x^-3*y^2
```

coefficients()

Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of `self.parent()`.

EXAMPLES:

```python
sage: L.<x,y,z> = LaurentPolynomialRing(QQ,order='degrevlex')
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.coefficients()
[4, 3, 2, 1]
sage: L.<x,y,z> = LaurentPolynomialRing(QQ,order='lex')
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.coefficients()
[4, 1, 2, 3]
```

6.2. Elements of Laurent polynomial rings
constant_coefficient()
Return the constant coefficient of self.

EXAMPLES:

```sage
P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^2 + 5*x*y)*x^-3; f
-x^6 - 7*x^-2*y^2 + 5*x^-2*y + x^-3*y^2
sage: f.constant_coefficient()
0
sage: f = (x^3 + 2*x^-2*y+y^3)*y^-3; f
x^3*y^-3 + 1 + 2*x^-2*y^-2
sage: f.constant_coefficient()
1
```

degree(x=None)
Returns the degree of x in self

EXAMPLES:

```sage
R.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
dsage: f.degree(x)
7
dsage: f.degree(y)
1
dsage: f.degree(z)
0
```

derivative(*args)
The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:
_derivative()

EXAMPLES:

```sage
R = LaurentPolynomialRing(ZZ,'x, y')
sage: x, y = R.gens()
sage: t = x**4*y+x*y+y+x**(-1)+y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
```

dict()

EXAMPLES:

```sage
L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: list(sorted(f.dict().items()))
[((3, 1, 0), 3), ((4, 0, -2), 2), ((6, -7, 0), 1), ((7, 0, -1), 4)]
```

diff(*args)
The formal derivative of this Laurent polynomial, with respect to variables supplied in args.
Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()

EXAMPLES:

```
sage: R = LaurentPolynomialRing(ZZ,'x, y')
sage: x, y = R.gens()
sage: t = x**4*y + x*y + y + x**(-1) + y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
```

differentiate(*args)

The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()

EXAMPLES:

```
sage: R = LaurentPolynomialRing(ZZ,'x, y')
sage: x, y = R.gens()
sage: t = x**4*y + x*y + y + x**(-1) + y**(-3)
sage: t.derivative(x, x)
12*x^2*y + 2*x^-3
sage: t.derivative(y, 2)
12*y^-5
```

exponents()

Returns a list of the exponents of self.

EXAMPLES:

```
sage: L.<w,z> = LaurentPolynomialRing(QQ)
sage: a = w^2*z^-1 + 3; a
w^2*z^-1 + 3
sage: e = a.exponents()
sage: e.sort(); e
[(0, 0), (2, -1)]
```

factor()

Returns a Laurent monomial (the unit part of the factorization) and a factored multi-polynomial.

EXAMPLES:

```
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.factor()
(4*x^4*y^7*z + 3*y^8*z^2 + 2*x*y^7 + x^3*z^2)
```

hamming_weight()

Return the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.
EXAMPLES:

```python
sage: R.<x, y> = LaurentPolynomialRing(ZZ)
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+1/y)^100
sage: f.number_of_terms()
101
```

The method `hamming_weight()` is an alias:

```python
sage: f.hamming_weight()
101
```

`has_any_inverse()`

Returns True if self contains any monomials with a negative exponent, False otherwise.

EXAMPLES:

```python
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.has_any_inverse()
True
sage: g = x^2 + y^2
sage: g.has_any_inverse()
False
```

`has_inverse_of(i)`

INPUT:

- `i` – The index of a generator of `self.parent()`

OUTPUT:

Returns True if self contains a monomial including the inverse of `self.parent().gen(i)`, False otherwise.

EXAMPLES:

```python
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.has_inverse_of(0)
False
sage: f.has_inverse_of(1)
True
sage: f.has_inverse_of(2)
True
```

`is_constant()`

Return whether this Laurent polynomial is constant.

EXAMPLES:

```python
sage: L.<a, b> = LaurentPolynomialRing(QQ)
sage: L(0).is_constant()
True
sage: L(42).is_constant()
False
```
True
sage: a.is_constant()
False
sage: (1/b).is_constant()
False

\textbf{is_monomial()}
Return True if this element is a monomial.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: k.<y,z> = LaurentPolynomialRing(QQ)
sage: z.is_monomial()
True
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^-2909).is_monomial()
True
sage: (38*z^-2909).is_monomial()
False
\end{verbatim}

\textbf{is_unit()}
Return True if self is a unit.

The ground ring is assumed to be an integral domain.
This means that the Laurent polynomial is a monomial with unit coefficient.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L.<x,y> = LaurentPolynomialRing(QQ)
sage: (x*y/2).is_unit()
True
sage: (x + y).is_unit()
False
sage: (L.zero()).is_unit()
False
sage: (L.one()).is_unit()
True
sage: L.<x,y> = LaurentPolynomialRing(ZZ)
sage: (2*x*y).is_unit()
False
\end{verbatim}

\textbf{is_univariate()}
Return True if this is a univariate or constant Laurent polynomial, and False otherwise.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = (x^3 + y^-3)*z
sage: f.is_univariate()
False
sage: g = f(1,y,4)
sage: g.is_univariate()
True
\end{verbatim}
monomial_coefficient (mon)

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function coefficient() which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

INPUT:

• mon - a monomial

See also:

For coefficients in a base ring of fewer variables, see coefficient().

EXAMPLES:

```
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^3 + 5*x*y)*x^-3
sage: f.monomial_coefficient(x^-2*y^3)
-7
sage: f.monomial_coefficient(x^2)
0
```

monomials()

Return the list of monomials in self.

EXAMPLES:

```
sage: P.<x,y> = LaurentPolynomialRing(QQ)
sage: f = (y^2 - x^9 - 7*x*y^3 + 5*x*y)*x^-3
sage: f.monomials()
[x^6, x^-3*y^2, x^-2*y, x^-2*y^3]
```

number_of_terms()

Return the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

EXAMPLES:

```
sage: R.<x, y> = LaurentPolynomialRing(ZZ)
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+1/y)^100
sage: f.number_of_terms()
101
```

The method hamming_weight() is an alias:

```
sage: f.hamming_weight()
101
```

quo_rem (right)

Divide this Laurent polynomial by right and return a quotient and a remainder.

INPUT:
• right – a Laurent polynomial

OUTPUT:
A pair of Laurent polynomials.

EXAMPLES:

```
sage: R.<s, t> = LaurentPolynomialRing(QQ)
sage: (s^2-t^2).quo_rem(s-t)
(s + t, 0)
sage: (s^2-t^2).quo_rem(s-t)
(s + t, -s^4 + 1)
sage: (s^-2-t^2).quo_rem(s^-1-t)
(t + s^-1, 0)
```

subs\((in_dict=None, **kwds)\)
Substitute some variables in this Laurent polynomial.

Variable/value pairs for the substitution may be given as a dictionary or via keyword-value pairs. If both are present, the latter take precedence.

INPUT:

- \(in_dict\) – dictionary (optional)
- \(**kwargs\) – keyword arguments

OUTPUT:
A Laurent polynomial.

EXAMPLES:

```
sage: L.<x, y, z> = LaurentPolynomialRing(QQ)
sage: f = x + 2*y + 3*z
sage: f.subs(x=1)
2*y + 3*z + 1
sage: f.subs(y=1)
x + 3*z + 2
sage: f.subs(z=1)
x + 2*y + 3
sage: f.subs(x=1, y=1, z=1)
6
sage: f = x^-1
sage: f.subs(x=2)
1/2
sage: f.subs({x: 2})
1/2
sage: f.substitute(x=1, y=1, z=1)
6
```

univariate_polynomial\((R=None)\)
Returns a univariate polynomial associated to this multivariate polynomial.

INPUT:

- \(R\) - (default: None) PolynomialRing
If this polynomial is not in at most one variable, then a ValueError exception is raised. The new polynomial is over the same base ring as the given LaurentPolynomial and in the variable x if no ring R is provided.

EXAMPLES:

```
sage: R.<x, y> = LaurentPolynomialRing(ZZ)
sage: f = 3*x^2 - 2*y^-1 + 7*x^2*y^2 + 5
sage: f.univariate_polynomial()
Traceback (most recent call last):
  ...TypeError: polynomial must involve at most one variable
sage: g = f(10,y); g
700*y^2 + 305 - 2*y^-1
sage: h = g.univariate_polynomial(); h
-2*y^-1 + 305 + 700*y^2
sage: h.parent()
Univariate Laurent Polynomial Ring in y over Integer Ring
sage: g.univariate_polynomial(LaurentPolynomialRing(QQ,'z'))
-2*z^-1 + 305 + 700*z^2
```

Here’s an example with a constant multivariate polynomial:

```
sage: g = R(1)
sage: h = g.univariate_polynomial(); h
1
sage: h.parent()
Univariate Laurent Polynomial Ring in x over Integer Ring
```

`variables(sort=True)`

Return a tuple of all variables occurring in self.

INPUT:

• `sort` – specifies whether the indices shall be sorted

EXAMPLES:

```
sage: L.<x,y,z> = LaurentPolynomialRing(QQ)
sage: f = 4*x^7*z^-1 + 3*x^3*y + 2*x^4*z^-2 + x^6*y^-7
sage: f.variables()
(z, y, x)
sage: f.variables(sort=False)  # random
(y, z, x)
```

class `sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate`

A univariate Laurent polynomial in the form of \(t^n \cdot f \) where \(f \) is a polynomial in \(t \).

INPUT:

• `parent` – a Laurent polynomial ring
• `f` – a polynomial (or something can be coerced to one)
• `n` – (default: 0) an integer

AUTHORS:

• Tom Boothby (2011) copied this class almost verbatim from `laurent_series_ring_element.pyx`, so most of the credit goes to William Stein, David Joyner, and Robert Bradshaw
• Travis Scrimshaw (09-2013): Cleaned-up and added a few extra methods

coefficients()
Return the nonzero coefficients of `self`.

EXAMPLES:

```sage
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.coefficients()
[-5, 1, 1, -10/3]
```

constant_coefficient()
Return the coefficient of the constant term of `self`.

EXAMPLES:

```sage
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 3*t^-2 - t^-1 + 3 + t^2
sage: f.constant_coefficient()
3
sage: g = -2*t^-2 + t^-1 + 3*t
sage: g.constant_coefficient()
0
```

degree()
Return the degree of this polynomial.

EXAMPLES:

```sage
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: g = x^2 - x^4
sage: g.degree()
4
sage: g = -10/x^5 + x^2 - x^7
sage: g.degree()
7
```

derivative(*args)
The formal derivative of this Laurent polynomial, with respect to variables supplied in `args`.

Multiple variables and iteration counts may be supplied. See documentation for the global `derivative()` function for more details.

See also:

-_derivative()_

EXAMPLES:

```sage
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: g = 1/x^10 - x + x^2 - x^4
sage: g.derivative()
-10*x^-11 - 1 + 2*x - 4*x^3
sage: g.derivative(x)
-10*x^-11 - 1 + 2*x - 4*x^3
```

```sage
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = LaurentPolynomialRing(R)
sage: f = 2*t/x + (3*t^2 + 6*t)*x
sage: f.derivative()
```

6.2. Elements of Laurent polynomial rings
dict()
Return a dictionary representing \(\text{self} \).

EXAMPLES:
sage: R.<x,y> = ZZ[] sage: Q.<t> = LaurentPolynomialRing(R) sage: f = (x^3 + y/t^3)^3 + t^2; f
y^3*t^-9 + 3*x^3*y^2*t^-6 + 3*x^6*y^3*t^-3 + x^9 + t^2 sage: f.dict() {1}
-9: y^3, -6: 3*x^3*y^2, -3: 3*x^6*y^0, 0: x^9, 2: 1

exponents()
Return the exponents appearing in \(\text{self} \) with nonzero coefficients.

EXAMPLES:

factor()
Return a Laurent monomial (the unit part of the factorization) and a factored polynomial.

EXAMPLES:

gcd(right)
Return the gcd of \(\text{self} \) with \(\text{right} \) where the common divisor \(d \) makes both \(\text{self} \) and \(\text{right} \) into polynomials with the lowest possible degree.

EXAMPLES:

hamming_weight()
Return the number of non-zero coefficients of \(\text{self} \). Also called weight, hamming weight or sparsity.

EXAMPLES:
The method `hamming_weight()` is an alias:

```python
sage: f.hamming_weight()
101
```

integral()

The formal integral of this Laurent series with 0 constant term.

EXAMPLES:

The integral may or may not be defined if the base ring is not a field.

```python
sage: t = LaurentPolynomialRing(ZZ, 't').0
sage: f = 2*t^-3 + 3*t^2
sage: f.integral()
-t^-2 + t^3
```

```python
sage: f = t^3
sage: f.integral()
Traceback (most recent call last):
  ... ArithmeticError: coefficients of integral cannot be coerced into the base ring
```

The integral of $1/t$ is \(\log(t) \), which is not given by a Laurent polynomial:

```python
sage: t = LaurentPolynomialRing(ZZ,'t').0
sage: f = -1/t^3 - 31/t
sage: f.integral()
Traceback (most recent call last):
  ... ArithmeticError: the integral of is not a Laurent polynomial, since t^-1 has
  → nonzero coefficient
```

Another example with just one negative coefficient:

```python
sage: A.<t> = LaurentPolynomialRing(QQ)
sage: f = -2*t^(-4)
sage: f.integral()
2/3*t^-3
sage: f.integral().derivative() == f
True
```

inverse_of_unit()

Return the inverse of `self` if a unit.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (t^-2).inverse_of_unit()
t^-2
sage: (t + 2).inverse_of_unit()
Traceback (most recent call last):
  ... ArithmeticError: element is not a unit
```
is_constant()
Return whether this Laurent polynomial is constant.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: x.is_constant()  
False  
sage: R.one().is_constant()  
True  
sage: (x^-2).is_constant()  
False  
sage: (x^2).is_constant()  
False  
sage: (x^-2 + 2).is_constant()  
False  
sage: R(0).is_constant()  
True  
sage: R(42).is_constant()  
True  
sage: x.is_constant()  
False  
sage:(1/x).is_constant()  
False
```

is_monomial()
Return True if this element is a monomial. That is, if self is \(x^n\) for some integer \(n\).

EXAMPLES:

```python
sage: k.<z> = LaurentPolynomialRing(QQ)
sage: z.is_monomial()  
True  
sage: k(1).is_monomial()  
True  
sage: (z+1).is_monomial()  
False  
sage: (z^-2909).is_monomial()  
True  
sage: (38*z^-2909).is_monomial()  
False
```

is_unit()
Return True if this Laurent polynomial is a unit in this ring.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (2+t).is_unit()  
False  
sage: f = 2*t
sage: f.is_unit()  
True  
sage: 1/f
1/2*t^-1
sage: R(0).is_unit()  
False  
sage: R.<s> = LaurentPolynomialRing(ZZ)
sage: g = 2*s
```
ALGORITHM: A Laurent polynomial is a unit if and only if its “unit part” is a unit.

is_zero()
Return 1 if self is 0, else return 0.

Examples:
```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x + x^2 + 3*x^4
sage: f.is_zero()
0
sage: z = 0*f
sage: z.is_zero()
1
```

number_of_terms()
Return the number of non-zero coefficients of self. Also called weight, hamming weight or sparsity.

Examples:
```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: f = x^3 - 1
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+1)^100
sage: f.number_of_terms()
101
```

The method `hamming_weight()` is an alias:
```python
sage: f.hamming_weight()
101
```

polynomial_construction()
Return the polynomial and the shift in power used to construct the Laurent polynomial $t^n u$.

Output:
A tuple (u, n) where u is the underlying polynomial and n is the power of the exponent shift.

Examples:
```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x + x^2 + 3*x^4
sage: f.polynomial_construction()
(3*x^5 + x^3 + 1, -1)
```

quo_rem(right_r)
Attempts to divide self by right and returns a quotient and a remainder.

Examples:
```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (t^-3 - t^3).quo_rem(t^-1 - t)
(t^-2 + 1 + t^2, 0)
sage: (t^-2 + 3 + t).quo_rem(t^-4)
(t^-2 + 3 + t, 0)
sage: (t^-2 + 3 + t).quo_rem(t^-4 + t)
(0, 1 + 3*t^2 + t^3)

residue()

Return the residue of self.

The residue is the coefficient of \( t^{-1} \).

EXAMPLES:

sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 3*t^-2 - t^-1 + 3 + t^2
sage: f.residue()
-1
sage: g = -2*t^-2 + 4 + 3*t
sage: g.residue()
0
sage: f.residue().parent()
Rational Field

shift(\( k \))

Return this Laurent polynomial multiplied by the power \( t^n \). Does not change this polynomial.

EXAMPLES:

sage: R.<t> = LaurentPolynomialRing(QQ['y'])
sage: f = (t+t^-1)^4; f
\( t^{-4} + 4*t^{-2} + 6 + 4*t^2 + t^4 \)
sage: f.shift(10)
\( t^6 + 4*t^8 + 6*t^{10} + 4*t^{12} + t^{14} \)
sage: f >> 10
\( t^{-14} + 4*t^{-12} + 6*t^{-10} + 4*t^{-8} + t^{-6} \)
sage: f << 4
\( 1 + 4*t^2 + 6*t^4 + 4*t^6 + t^8 \)

truncate(\( n \))

Return a polynomial with degree at most \( n - 1 \) whose \( j \)-th coefficients agree with \( self \) for all \( j < n \).

EXAMPLES:

sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x^12 + x^3 + x^5 + x^9
sage: f.truncate(10)
\( x^{-12} + x^3 + x^5 + x^9 \)
sage: f.truncate(10)
\( x^{-12} + x^3 \)
sage: f.truncate(-16)
0

valuation(\( p=None \))

Return the valuation of \( self \).

The valuation of a Laurent polynomial \( t^n u \) is \( n \) plus the valuation of \( u \).

EXAMPLES:
```
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: f = 1/x + x^2 + 3*x^4
g = 1 - x + x^2 - x^4
sage: f.valuation()
-1
g.valuation()
0
```

**variable_name()**

Return the name of variable of self as a string.

**EXAMPLES:**

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.variable_name()
'x'
```

**variables()**

Return the tuple of variables occurring in this Laurent polynomial.

**EXAMPLES:**

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.variables()
(x,)
sage: R.one().variables()
()```

6.3 MacMahon’s Partition Analysis Omega Operator

This module implements *MacMahon’s Omega Operator* [Mac1915], which takes a quotient of Laurent polynomials and removes all negative exponents in the corresponding power series.

6.3.1 Examples

In the following example, all negative exponents of \(\mu \) are removed. The formula

\[
\Omega \geq \frac{1}{(1-x\mu)(1-y/\mu)} = \frac{1}{(1-x)(1-xy)}
\]

can be calculated and verified by

```
sage: L.<mu, x, y> = LaurentPolynomialRing(ZZ)
sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1
```

6.3.2 Various

AUTHORS:

- Daniel Krenn (2016)
6.3.3 Functions

```
sage.rings.polynomial.omega.MacMahonOmega(var, expression, denominator=None, 
op=<built-in function ge>, Factorization_sort=False, Factorization_simplify=True)
```

Return Ω_{op} of expression with respect to var.
To be more precise, calculate

$$\Omega_{op} \frac{n}{d_1 \ldots d_n}$$

for the numerator n and the factors d_1, \ldots, d_n of the denominator, all of which are Laurent polynomials in var and return a (partial) factorization of the result.

INPUT:
- var – a variable or a representation string of a variable
- $expression$ – a Factorization of Laurent polynomials or, if denominator is specified, a Laurent polynomial interpreted as the numerator of the expression
- $denominator$ – a Laurent polynomial or a Factorization (consisting of Laurent polynomial factors) or a tuple/list of factors (Laurent polynomials)
- op – (default: operator.ge) an operator
 At the moment only operator.ge is implemented.
- $Factorization_sort$ (default: False) and $Factorization_simplify$ (default: True) – are passed on to `sage.structure.factorization.Factorization` when creating the result

OUTPUT:
A (partial) Factorization of the result whose factors are Laurent polynomials

Note: The numerator of the result may not be factored.

REFERENCES:
- [Mac1915]
- [APR2001]

EXAMPLES:
```
sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(ZZ)
sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1
sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1 * (-x*z + 1)^-1
sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y*mu, 1 - z/mu])
(-x*y*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1 * (-y*z + 1)^-1
```
We demonstrate the different allowed input variants:

```python
sage: MacMahonOmega(mu, mu^2, (1 - x*mu)*(1 - y/mu))
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
```

We demonstrate the different allowed input variants:
sage: MacMahonOmega(mu, mu^2 / ((1 - x*mu)*(1 - y/mu))) # not tested because not ...
˓→fully implemented
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

sage: MacMahonOmega(mu, Factorization([(1/mu, 1), (1 - x*mu, -1), ...
˓→(1 - y/mu, -2)], unit=2))
2*x * (-x + 1)^-1 * (-x*y + 1)^-2

sage: MacMahonOmega(mu, Factorization([(mu, -1), (1 - x*mu, -1), ...
˓→(1 - y/mu, -2)], unit=2))
2*x * (-x + 1)^-1 * (-x*y + 1)^-2

sage: MacMahonOmega(mu, Factorization([(2, -1)]))
0

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - z, 1 - y/mu])
1 * (-z + 1)^-1 * (-x + 1)^-1 * (-x*y + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu], op=operator.lt)
Traceback (most recent call last):
...
NotImplementedError: At the moment, only Omega_ge is implemented.

sage: MacMahonOmega(mu, 1, Factorization([(1 - x*mu, -1)]))
Traceback (most recent call last):
...
ValueError: Factorization (-mu*x + 1)^-1 of the denominator contains negative exponents.

sage: MacMahonOmega(2*mu, 1, [1 - x*mu])
Traceback (most recent call last):
...
ValueError: 2*mu is not a variable.

sage: MacMahonOmega(mu, 1, Factorization([(0, 2)]))
Traceback (most recent call last):
...
ZeroDivisionError: Denominator contains a factor 0.

sage: MacMahonOmega(mu, 1, [2 - x*mu])
Traceback (most recent call last):
...
NotImplementedError: Factor 2 - x*mu is not normalized.

sage: MacMahonOmega(mu, 1, [1 - x*mu - mu^2])
Traceback (most recent call last):
...
NotImplementedError: Cannot handle factor 1 - x*mu - mu^2.

sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(QQ)
sage: MacMahonOmega(mu, l/mu, ...
˓→Factorization([(1 - x*mu, 1), (1 - y/mu, 2)], unit=2))
1/2*x * (-x + 1)^-1 * (-x*y + 1)^-2

sage.rings.polynomial.omega.Omega_ge(a, exponents)

Return Ω_{\ge} of the expression specified by the input.
To be more precise, calculate

\[\Omega \geq \frac{\mu^a}{(1 - z_0 \mu^e_0) \cdots (1 - z_{n-1} \mu^e_{n-1})} \]

and return its numerator and a factorization of its denominator. Note that \(z_0, ..., z_{n-1} \) only appear in the output, but not in the input.

INPUT:

- \(a \) – an integer
- \(\text{exponents} \) – a tuple of integers

OUTPUT:

A pair representing a quotient as follows: Its first component is the numerator as a Laurent polynomial, its second component a factorization of the denominator as a tuple of Laurent polynomials, where each Laurent polynomial \(z \) represents a factor \(1 - z \).

The parents of these Laurent polynomials is always a Laurent polynomial ring in \(z_0, ..., z_{n-1} \) over \(\mathbb{Z} \), where \(n \) is the length of \(\text{exponents} \).

EXAMPLES:

```
sage: from sage.rings.polynomial.omega import Omega_ge
sage: Omega_ge(0, (1, -2))
(1, (z0, z0^2*z1))
sage: Omega_ge(0, (1, -3))
(1, (z0, z0^3*z1))
sage: Omega_ge(0, (1, -4))
(1, (z0, z0^4*z1))
sage: Omega_ge(0, (2, -1))
(z0*z1 + 1, (z0, z0*z1^2))
sage: Omega_ge(0, (3, -1))
(z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3))
sage: Omega_ge(0, (4, -1))
(z0*z1^3 + z0*z1^2 + z0*z1 + 1, (z0, z0*z1^4))
sage: Omega_ge(0, (1, 1, -2))
(-z0^2*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2))
sage: Omega_ge(0, (2, -1, -1))
(z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2))
sage: Omega_ge(0, (2, 1, -1))
(-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))
sage: Omega_ge(0, (2, -2))
(-z0*z1^2 + 1, (z0, z0*z1, z0*z1))
sage: Omega_ge(0, (2, -3))
(z0^2*z1 + 1, (z0, z0^3*z1^2))
sage: Omega_ge(0, (3, 1, -3))
(-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2 + z0^2*z2^2 + 2*z0*z2 + 1, (z0, z1, z0*z2, z1^3*z2))
sage: Omega_ge(0, (3, 6, -1))
(-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 + z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 - z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1, (z0, z1, z0*z2^3, z1*z2^6))
```
sage: Omega_ge(1, (2,))
(1, (z0,))

sage.rings.polynomial.omega.homogenous_symmetric_function(j, x)
Return a complete homogeneous symmetric polynomial (Wikipedia article Complete_homogeneous_symmetric_polynomial).

INPUT:
• j – the degree as a nonnegative integer
• x – an iterable of variables

OUTPUT:
A polynomial of the common parent of all entries of x

EXAMPLES:

```
sage: from sage.rings.polynomial.omega import homogenous_symmetric_function
sage: P = PolynomialRing(ZZ, 'X', 3)
sage: homogenous_symmetric_function(0, P.gens())
1
sage: homogenous_symmetric_function(1, P.gens())
X0 + X1 + X2
sage: homogenous_symmetric_function(2, P.gens())
X0^2 + X0*X1 + X1^2 + X0*X2 + X1*X2 + X2^2
sage: homogenous_symmetric_function(3, P.gens())
X0^3 + X0^2*X1 + X0*X1^2 + X1^3 + X0^2*X2 + X0*X1*X2 + X1^2*X2 + X0*X2^2 + X1*X2^2 + X2^3
```

sage.rings.polynomial.omega.partition(items, predicate=<type ‘bool’>)
Split items into two parts by the given predicate.

INPUT:
• item – an iterator
• predicate – a function

OUTPUT:
A pair of iterators; the first contains the elements not satisfying the predicate, the second the elements satisfying the predicate.

ALGORITHM:
Source of the code: http://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html

EXAMPLES:

```
sage: from sage.rings.polynomial.omega import partition
sage: E, O = partition(srange(10), is_odd)
sage: tuple(E), tuple(O)
((0, 2, 4, 6, 8), (1, 3, 5, 7, 9))
```
INFINITE POLYNOMIAL RINGS

7.1 Infinite Polynomial Rings.

By Infinite Polynomial Rings, we mean polynomial rings in a countably infinite number of variables. The implementation consists of a wrapper around the current finite polynomial rings in Sage.

AUTHORS:

- Simon King <simon.king@nuigalway.ie>
- Mike Hansen <mhansen@gmail.com>

An Infinite Polynomial Ring has finitely many generators \(x_*, y_* \) and infinitely many variables of the form \(x_0, x_1, x_2, ..., y_0, y_1, y_2, ..., \). We refer to the natural number \(n \) as the index of the variable \(x_n \).

INPUT:

- \(R \), the base ring. It has to be a commutative ring, and in some applications it must even be a field
- \(\text{names} \), a list of generator names. Generator names must be alpha-numeric.
- \(\text{order} \) (optional string). The default order is 'lex' (lexicographic). 'deglex' is degree lexicographic, and 'degrevlex' (degree reverse lexicographic) is possible but discouraged.

Each generator \(x \) produces an infinite sequence of variables \(x[1], x[2], ... \) which are printed on screen as \(x_1, x_2, ... \) and are latex typeset as \(x_1, x_2 \). Then, the Infinite Polynomial Ring is formed by polynomials in these variables.

By default, the monomials are ordered lexicographically. Alternatively, degree (reverse) lexicographic ordering is possible as well. However, we do not guarantee that the computation of Groebner bases will terminate in this case.

In either case, the variables of a Infinite Polynomial Ring \(X \) are ordered according to the following rule:

\[
\text{X.gen}(i)[m] > \text{X.gen}(j)[n] \text{ if and only if } i<j \text{ or } (i==j \text{ and } m>n)
\]

We provide a ‘dense’ and a ‘sparse’ implementation. In the dense implementation, the Infinite Polynomial Ring carries a finite polynomial ring that comprises all variables up to the maximal index that has been used so far. This is potentially a very big ring and may also comprise many variables that are not used.

In the sparse implementation, we try to keep the underlying finite polynomial rings small, using only those variables that are really needed. By default, we use the dense implementation, since it usually is much faster.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: A.<alpha,beta> = InfinitePolynomialRing(QQ, order='deglex')
sage: f = x[5] + 2; f
x_5 + 2
```
It has some advantages to have an underlying ring that is not univariate. Hence, we always have at least two variables:

```python
sage: g._p.parent()
Multivariate Polynomial Ring in y_1, y_0 over Integer Ring
```

Of course, we provide the usual polynomial arithmetic:

```python
sage: f+g
x_5 + 3*y_1 + 2
sage: p = x[10]^2*(f+g); p
x_10^2*x_5 + 3*x_10^2*y_1 + 2*x_10^2
```

There is a permutation action on the variables, by permuting positive variable indices:

```python
sage: P = Permutation(((10,1)))
sage: p^P
x_5*x_1^2 + 3*x_1^2*y_10 + 2*x_1^2
```

Note that $x_0^P = x_0$, since the permutations only change positive variable indices.

We also implemented ideals of Infinite Polynomial Rings. Here, it is thoroughly assumed that the ideals are set-wise invariant under the permutation action. We therefore refer to these ideals as Symmetric Ideals. Symmetric Ideals are finitely generated modulo addition, multiplication by ring elements and permutation of variables. If the base ring is a field, one can compute Symmetric Groebner Bases:

```python
sage: J = A*(alpha[1]*beta[2])
sage: J.groebner_basis()
[alpha_1*beta_2, alpha_2*beta_1]
```

For more details, see `SymmetricIdeal`.

Infinite Polynomial Rings can have any commutative base ring. If the base ring of an Infinite Polynomial Ring is a (classical or infinite) Polynomial Ring, then our implementation tries to merge everything into one ring. The basic requirement is that the monomial orders match. In the case of two Infinite Polynomial Rings, the implementations must match. Moreover, name conflicts should be avoided. An overlap is only accepted if the order of variables can be uniquely inferred, as in the following example:

```python
sage: A.<a,b,c> = InfinitePolynomialRing(ZZ)
sage: B.<b,c,d> = InfinitePolynomialRing(A)
sage: B
Infinite polynomial ring in a, b, c, d over Integer Ring
```

This is also allowed if finite polynomial rings are involved:
It is no problem if one generator of the Infinite Polynomial Ring is called \(x \) and one variable of the base ring is also called \(x \). This is since no variable of the Infinite Polynomial Ring will be called \(x \). However, a problem arises if the underlying classical Polynomial Ring has a variable \(x_1 \), since this can be confused with a variable of the Infinite Polynomial Ring. In this case, an error will be raised:

\[
\begin{align*}
\text{sage: } & X.<x,y_1> = ZZ[] \\
\text{sage: } & Y.<x,z> = InfinitePolynomialRing(X)
\end{align*}
\]

Note that \(X \) is not merged into \(Y \); this is since the monomial order of \(X \) is ‘degrevlex’, but of \(Y \) is ‘lex’.

\[
\begin{align*}
\text{sage: } & Y \\
& \text{Infinite polynomial ring in } x, z \text{ over Multivariate Polynomial Ring in } x, y_1 \text{ over Integer Ring}
\end{align*}
\]

The variable \(x \) of \(X \) can still be interpreted in \(Y \), although the first generator of \(Y \) is called \(x \) as well:

\[
\begin{align*}
\text{sage: } & x \\
\text{x__x} \\
\text{sage: } & X('x') \\
\text{x} \\
\text{sage: } & Y(X('x')) \\
\text{x} \\
\text{sage: } & Y('x') \\
\text{x}
\end{align*}
\]

But there is only merging if the resulting monomial order is uniquely determined. This is not the case in the following examples, and thus an error is raised:

\[
\begin{align*}
\text{sage: } & X.<y_1,x> = ZZ[] \\
\text{sage: } & Y.<y,z> = InfinitePolynomialRing(X) \\
\text{Traceback (most recent call last):} \\
& \ldots \\
& \text{CoercionException: Overlapping variables } (('y', 'z'),[y_1']) \text{ are incompatible} \\
\text{sage: } & Y.<z,y> = InfinitePolynomialRing(X) \\
\text{Traceback (most recent call last):} \\
& \ldots \\
& \text{CoercionException: Overlapping variables } (('z', 'y'),[y_1']) \text{ are incompatible} \\
\text{sage: } & X.<x_3,y_1,y_2> = PolynomialRing(ZZ,order='lex') \\
\text{sage: } & Y \text{.__y_1 and y_2 would be in opposite order in an Infinite Polynomial Ring} \\
\text{sage: } & Y.<y> = InfinitePolynomialRing(X) \\
\text{Traceback (most recent call last):} \\
& \ldots \\
& \text{CoercionException: Overlapping variables } (('y'),[y_1', 'y_2']) \text{ are incompatible}
\end{align*}
\]

If the type of monomial orderings (e.g., ‘degrevlex’ versus ‘lex’) or if the implementations don’t match, there is no simplified construction available:

\[
\begin{align*}
\text{sage: } & X.<x,y> = InfinitePolynomialRing(ZZ) \\
\text{sage: } & Y.<z> = InfinitePolynomialRing(X,order='degrevlex') \\
\text{sage: } & Y \\
& \text{Infinite polynomial ring in } z \text{ over Infinite polynomial ring in } x, y \text{ over Integer Ring}
\end{align*}
\]
sage: Y.<z> = InfinitePolynomialRing(X, implementation='sparse')
sage: Y
Infinite polynomial ring in z over Infinite polynomial ring in x, y over Integer Ring

all constituents coerce.

sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: X.<x> = InfinitePolynomialRing(R)
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1

sage: R.<a,b> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: X.<x> = InfinitePolynomialRing(R)
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1

sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: X.<x> = InfinitePolynomialRing(R, implementation='sparse')
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1

sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: X.<x> = InfinitePolynomialRing(R, implementation='sparse')
sage: x[2]/2+(5/3)*a[3]*x[4] + 1
5/3*a_3*x_4 + 1/2*x_2 + 1

class sage.rings.polynomial.infinite_polynomial_ring.GenDictWithBasering (parent, start)

A dictionary-like class that is suitable for usage in sage_eval.

This pseudo-dictionary accepts strings as index, and then walks down a chain of base rings of (infinite) polynomial rings until it finds one ring that has the given string as variable name, which is then returned.

EXAMPLES:

sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: D = R.gens_dict() # indirect doctest
sage: D
GenDict of Infinite polynomial ring in a, b over Integer Ring
sage: D['a_15']
a_15
sage: type(_)
<class 'sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense' ->>

sage: sage_eval('3*a_3*b_5-1/2*a_7', D)
-1/2*a_7 + 3*a_3*b_5

next ()

Return a dictionary that can be used to interprete strings in the base ring of self.

EXAMPLES:

sage: R.<a,b> = InfinitePolynomialRing(QQ['t'])
sage: D = R.gens_dict()
sage: D
GenDict of Infinite polynomial ring in a, b over Univariate Polynomial Ring in t over Rational Field
sage: next (D)
GenDict of Univariate Polynomial Ring in t over Rational Field
class sage.rings.polynomial.infinite_polynomial_ring.InfiniteGenDict(Gens)
A dictionary-like class that is suitable for usage in sage_eval.

The generators of an Infinite Polynomial Ring are not variables. Variables of an Infinite Polynomial Ring are returned by indexing a generator. The purpose of this class is to return a variable of an Infinite Polynomial Ring, given its string representation.

EXAMPLES:

```sage
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: D = R.gens_dict() # indirect doctest
def D: D = D
[InfiniteGenDict defined by ['a', 'b'], {'1': 1}]
sage: D._D[0]['a_15']
a_15
sage: type(_)
<class 'sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense'>
sage: sage_eval('3*a_3*b_5-1/2*a_7', D._D[0])
-1/2*a_7 + 3*a_3*b_5
```

class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialGen(parent, name)
Bases: sage.structure.sage_object.SageObject

This class provides the object which is responsible for returning variables in an infinite polynomial ring (implemented in __getitem__()).

EXAMPLES:

```sage
sage: X.<x1,x2> = InfinitePolynomialRing(RR)
sage: x1
x1_*
sage: x1[5]
x1_5
sage: x1 == loads(dumps(x1))
True
```

class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRingFactory
Bases: sage.structure.factory.UniqueFactory

A factory for creating infinite polynomial ring elements. It handles making sure that they are unique as well as handling pickling. For more details, see UniqueFactory and infinite_polynomial_ring.

EXAMPLES:

```sage
sage: A.<a> = InfinitePolynomialRing(QQ)
sage: B.<b> = InfinitePolynomialRing(A)
sage: B.construction()
[InfPoly([a,b], "lex", "dense"), Rational Field]
sage: R.<a,b> = InfinitePolynomialRing(QQ)
sage: R is B
True
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: X2.<x> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: X is X2
False
```

7.1. Infinite Polynomial Rings.
sage: X is loads(dumps(X))
True

create_key\((R, \text{names}=('x',), \text{order}='\text{lex}', \text{implementation}='\text{dense}')\)
Creates a key which uniquely defines the infinite polynomial ring.

create_object\((\text{version}, \text{key})\)
Returns the infinite polynomial ring corresponding to the key key.

class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense\((R, \text{names}, \text{order})\)

Bases:

\[
\text{sage.rings.polynomial.infinite_polynomial_ring.}
\text{InfinitePolynomialRing_sparse}
\]

Dense implementation of Infinite Polynomial Rings

Compared with InfinitePolynomialRing_sparse, from which this class inherits, it keeps a polynomial ring that comprises all elements that have been created so far.

construction()
Return the construction of self.

OUTPUT:

A pair \(F, R\), where \(F\) is a construction functor and \(R\) is a ring, so that \(F(R)\) is self.

EXAMPLES:

```
sage: R.<x,y> = InfinitePolynomialRing(GF(5))
sage: R.construction()
[InfPoly\{[x,y], "lex", "dense"}, \text{Finite Field of size 5}]
```

describe()
Returns the underlying finite polynomial ring.

Note: The ring returned can change over time as more variables are used.

Since the rings are cached, we create here a ring with variable names that do not occur in other doc tests, so that we avoid side effects.

EXAMPLES:

```
sage: X.<xx, yy> = InfinitePolynomialRing(ZZ)
sage: X.polynomial_ring()
Multivariate Polynomial Ring in xx_0, yy_0 over Integer Ring
sage: a = yy[3]
sage: X.polynomial_ring()
Multivariate Polynomial Ring in xx_3, xx_2, xx_1, xx_0, yy_3, yy_2, yy_1, yy_0 over Integer Ring
```

tensor_with_ring\((R)\)
Return the tensor product of self with another ring.

INPUT:

\(R\) - a ring.
OUTPUT:

An infinite polynomial ring that, mathematically, can be seen as the tensor product of self with \(R \).

NOTE:

It is required that the underlying ring of self coerces into \(R \). Hence, the tensor product is in fact merely an extension of the base ring.

EXAMPLES:

```sage
sage: R.<a,b> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: R.tensor_with_ring(QQ)
Infinite polynomial ring in a, b over Rational Field
sage: R
Infinite polynomial ring in a, b over Integer Ring
```

The following tests against a bug that was fixed at trac ticket #10468:

```sage
sage: R.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: R.tensor_with_ring(QQ) is R
True
```

class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse

Bases: sage.rings.ring.CommutativeRing

Sparse implementation of Infinite Polynomial Rings.

An Infinite Polynomial Ring with generators \(x_0, y_0, \ldots \) over a field \(F \) is a free commutative \(F \)-algebra generated by \(x_0, x_1, x_2, \ldots, y_0, y_1, y_2, \ldots, \) and is equipped with a permutation action on the generators, namely

\[x_n^P = x_{P(n)}, \quad y_n^P = y_{P(n)}, \quad \text{for any permutation } P \]

(note that variables of index zero are invariant under such permutation).

It is known that any permutation invariant ideal in an Infinite Polynomial Ring is finitely generated modulo the permutation action – see SymmetricIdeal for more details.

Usually, an instance of this class is created using InfinitePolynomialRing with the optional parameter implementation='sparse'. This takes care of uniqueness of parent structures. However, a direct construction is possible, in principle:

```sage
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: Y.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: X is Y
True
sage: from sage.rings.polynomial.infinite_polynomial_ring import InfinitePolynomialRing_sparse
sage: Z = InfinitePolynomialRing_sparse(QQ, ['x','y'], 'lex')
```

Nevertheless, since infinite polynomial rings are supposed to be unique parent structures, they do not evaluate equal.

```sage
sage: Z == X False
```

The last parameter (‘lex’ in the above example) can also be ‘deglex’ or ‘degrevlex’; this would result in an Infinite Polynomial Ring in degree lexicographic or degree reverse lexicographic order.

See infinite_polynomial_ring for more details.
characteristic()

Return the characteristic of the base field.

EXAMPLES:

```sage
sage: X.<x,y> = InfinitePolynomialRing(GF(25,'a'))
sage: X
Infinite polynomial ring in x, y over Finite Field in a of size 5^2
sage: X.characteristic()
5
```

collection()

Return the construction of self.

OUTPUT:

A pair \(F, R \), where \(F \) is a construction functor and \(R \) is a ring, so that \(F(R) \) is self.

EXAMPLES:

```sage
sage: R.<x,y> = InfinitePolynomialRing(GF(5))
sage: R.construction()
[(InfPoly([x,y], "lex", "dense"), Finite Field of size 5)]
```

gen

Returns the \(i \)th generator (see the description in \(\text{ngens()} \)) of this infinite polynomial ring.

EXAMPLES:

```sage
sage: X = InfinitePolynomialRing(QQ)
sage: x = X.gen()
sage: x[1]
x_1
sage: X.gen() is X.gen(0)
True
sage: XX = InfinitePolynomialRing(GF(5))
sage: XX.gen(0) is XX.gen()
True
```

gens_dict()

Return a dictionary-like object containing the infinitely many \(\{\text{var_name:variable}\} \) pairs.

EXAMPLES:

```sage
sage: R = InfinitePolynomialRing(ZZ, 'a')
sage: D = R.gens_dict()
sage: D
GenDict of Infinite polynomial ring in a over Integer Ring
sage: D['a_5']
a_5
```

is_field(*args, **kwds)

Return False: Since Infinite Polynomial Rings must have at least one generator, they have infinitely many variables and thus never are fields.

EXAMPLES:

```sage
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.is_field()
False
```
is_integral_domain(*args, **kwds)

An infinite polynomial ring is an integral domain if and only if the base ring is. Arguments are passed to is_integral_domain method of base ring.

EXAMPLES:

```
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.is_integral_domain()
True
```

is_noetherian(*args, **kwds)

Return False, since polynomial rings in infinitely many variables are never Noetherian rings.

Note, however, that they are noetherian modules over the group ring of the symmetric group of the natural numbers

EXAMPLES:

```
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: R.is_noetherian()
False
```

krull_dimension(*args, **kwds)

Return Infinity, since polynomial rings in infinitely many variables have infinite Krull dimension.

EXAMPLES:

```
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.krull_dimension()
+Infinity
```

ngens()

Returns the number of generators for this ring. Since there are countably infinitely many variables in this polynomial ring, by 'generators' we mean the number of infinite families of variables. See infinite_polynomial_ring for more details.

EXAMPLES:

```
sage: X.<x> = InfinitePolynomialRing(ZZ)
sage: X.ngens()
1
sage: X.<x1,x2> = InfinitePolynomialRing(QQ)
sage: X.ngens()
2
```

one()

order()

Return Infinity, since polynomial rings have infinitely many elements.

EXAMPLES:

```
sage: R.<x> = InfinitePolynomialRing(GF(2))
sage: R.order()
+Infinity
```

tensor_with_ring(R)

Return the tensor product of self with another ring.

INPUT:
R - a ring.

OUTPUT:

An infinite polynomial ring that, mathematically, can be seen as the tensor product of self with R.

NOTE:

It is required that the underlying ring of self coerces into R. Hence, the tensor product is in fact merely an extension of the base ring.

EXAMPLES:

```
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: R.tensor_with_ring(QQ)
Infinite polynomial ring in a, b over Rational Field
```

The following tests against a bug that was fixed at trac ticket #10468:

```
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: R.tensor_with_ring(QQ) is R
True
```

varname_cmp(x, y)

Comparison of two variable names.

INPUT:

x, y – two strings of the form a+'_'+str(n), where a is the name of a generator, and n is an integer

RETURN:

-1,0,1 if x<y, x==y, x>y, respectively

THEORY:

The order is defined as follows: x<y \iff the string x.split('_')[0] is later in the list of generator names of self than y.split('_')[0], or (x.split('_')[0]==y.split('_')[0] and int(x.split('_')[1])<int(y.split('_')[1]))

EXAMPLES:

```
sage: X.<alpha,beta> = InfinitePolynomialRing(ZZ)
sage: X.varname_cmp('alpha_1','beta_10')
doctest:...: DeprecationWarning: varname_cmp has been replaced by varname_key. See http://trac.sagemath.org/21035 for details.
1
sage: X.varname_cmp('beta_1','alpha_10')
-1
sage: X.varname_cmp('alpha_1','alpha_10')
-1
```

varname_key(x)

Key for comparison of variable names.

INPUT:

x – a string of the form a+'_'+str(n), where a is the name of a generator, and n is an integer

RETURN:

a key used to sort the variables
THEORY:

The order is defined as follows:

\[x < y \iff \text{the string } x\text{.split('_')}[0]\text{ is later in the list of generator names of } \text{self than } y\text{.split('_')}[0], \text{ or } (x\text{.split('_')}[0]==y\text{.split('_')}[0] \text{ and int}(x\text{.split('_')}[1])<\text{int}(y\text{.split('_')}[1])) \]

EXAMPLES:

```
sage: X.<alpha,beta> = InfinitePolynomialRing(ZZ)
sage: X.varname_key('alpha_1')
(0, 1)
sage: X.varname_key('beta_10')
(-1, 10)
sage: X.varname_key('beta_1')
(-1, 1)
sage: X.varname_key('alpha_10')
(0, 10)
sage: X.varname_key('alpha_1')
(0, 1)
sage: X.varname_key('alpha_10')
(0, 10)
```

7.2 Elements of Infinite Polynomial Rings

AUTHORS:

- Simon King <simon.king@nuigalway.ie>
- Mike Hansen <mhansen@gmail.com>

An Infinite Polynomial Ring has generators \(x_*, y_*, \ldots \), so that the variables are of the form \(x_0, x_1, x_2, \ldots, y_0, y_1, y_2, \ldots, \) (see `infinite_polynomial_ring`). Using the generators, we can create elements as follows:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: a = x[3]
sage: b = y[4]
sage: a
x_3
sage: b
y_4
sage: c = a*b+a^3-2*b^4
sage: c
x_3^3 + x_3*y_4 - 2*y_4^4
```

Any Infinite Polynomial Ring \(X \) is equipped with a monomial ordering. We only consider monomial orderings in which:

\[\text{X.gen(i)[m]} > \text{X.gen(j)[n]} \iff i<j \text{, or } i==j \text{ and } m>n \]

Under this restriction, the monomial ordering can be lexicographic (default), degree lexicographic, or degree reverse lexicographic. Here, the ordering is lexicographic, and elements can be compared as usual:

```
sage: X._order
'lex'
sage: a > b
True
```
Note that, when a method is called that is not directly implemented for 'InfinitePolynomial', it is tried to call this method for the underlying classical polynomial. This holds, e.g., when applying the `latex` function:

```sage
sage: latex(c)
x_{3}^{3} + x_{3} y_{4} - 2 y_{4}^{4}
```

There is a permutation action on Infinite Polynomial Rings by permuting the indices of the variables:

```sage
sage: P = Permutation(((4,5),(2,3)))
sage: c^P
x_2^3 + x_2*y_5 - 2*y_5^4
```

Note that `P(0)==0`, and thus variables of index zero are invariant under the permutation action. More generally, if `P` is any callable object that accepts non-negative integers as input and returns non-negative integers, then `c^P` means to apply `P` to the variable indices occurring in `c`.

```sage
sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial(A,p)
```

Create an element of a Polynomial Ring with a Countably Infinite Number of Variables.

Usually, an InfinitePolynomial is obtained by using the generators of an Infinite Polynomial Ring (see `infinite_polynomial_ring`) or by conversion.

INPUT:

- `A` – an Infinite Polynomial Ring.
- `p` – a classical polynomial that can be interpreted in `A`.

ASSUMPTIONS:

In the dense implementation, it must be ensured that the argument `p` coerces into `A._P` by a name preserving conversion map. In the sparse implementation, in the direct construction of an infinite polynomial, it is *not* tested whether the argument `p` makes sense in `A`.

EXAMPLES:

```sage
sage: from sage.rings.polynomial.infinite_polynomial_element import InfinitePolynomial
sage: X.<alpha> = InfinitePolynomialRing(ZZ)
sage: P.<alpha_1,alpha_2> = ZZ[]
```

Currently, `P` and `X._P` (the underlying polynomial ring of `X`) both have two variables:

```sage
sage: X._P
Multivariate Polynomial Ring in alpha_1, alpha_0 over Integer Ring
```

By default, a coercion from `P` to `X._P` would not be name preserving. However, this is taken care for; a name preserving conversion is impossible, and by consequence an error is raised:

```sage
sage: InfinitePolynomial(X, (alpha_1+alpha_2)^2)
Traceback (most recent call last):
  ... sutypeerror: Could not find a mapping of the passed element to this ring.
```

When extending the underlying polynomial ring, the construction of an infinite polynomial works:
In the sparse implementation, it is not checked whether the polynomial really belongs to the parent:

```
sage: Y.<alpha,beta> = InfinitePolynomialRing(GF(2), implementation='sparse')
sage: a = (alpha_1+alpha_2)^2
sage: InfinitePolynomial(Y, a)
alpha_1^2 + 2*alpha_1*alpha_2 + alpha_2^2
```

However, it is checked when doing a conversion:

```
sage: Y(a)
alpha_2^2 + alpha_1^2
```

class *sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense*(*A*, *p*)

Bases: *sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse*

Element of a dense Polynomial Ring with a Countably Infinite Number of Variables.

INPUT:

- *A* – an Infinite Polynomial Ring in dense implementation
- *p* – a *classical* polynomial that can be interpreted in *A*.

Of course, one should not directly invoke this class, but rather construct elements of *A* in the usual way.

This class inherits from *InfinitePolynomial_sparse*. See there for a description of the methods.

class *sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse*(*A*, *p*)

Bases: *sage.structure.element.RingElement*

Element of a sparse Polynomial Ring with a Countably Infinite Number of Variables.

INPUT:

- *A* – an Infinite Polynomial Ring in sparse implementation
- *p* – a *classical* polynomial that can be interpreted in *A*.

Of course, one should not directly invoke this class, but rather construct elements of *A* in the usual way.

EXAMPLES:

```
sage: A.<a> = QQ[]
sage: B.<b,c> = InfinitePolynomialRing(A, implementation='sparse')
sage: p = a*b[100] + 1/2*c[4]
sage: p
a*b_100 + 1/2*c_4
sage: p.parent()  # Infinite polynomial ring in b, c over Univariate Polynomial Ring in a over Rational Field
sage: p.polynomial().parent()  # Multivariate Polynomial Ring in b_100, b_0, c_4, c_0 over Univariate Polynomial in a over Rational Field
```

7.2. Elements of Infinite Polynomial Rings
coefficient (monomial)
Returns the coefficient of a monomial in this polynomial.

INPUT:

- A monomial (element of the parent of self) or
- A dictionary that describes a monomial (the keys are variables of the parent of self, the values are the corresponding exponents)

EXAMPLES:

We can get the coefficient in front of monomials:

```sage
X.<x> = InfinitePolynomialRing(QQ)
sage: a.coefficient(x[0])
2*x_1
sage: a.coefficient(x[1])
2*x_0 + 1
sage: a.coefficient(x[2])
1
sage: a.coefficient(x[0]*x[1])
2
```

We can also pass in a dictionary:

```sage
sage: a.coefficient({x[0]:1, x[1]:1})
2
```

footprint()
Leading exponents sorted by index and generator.

OUTPUT:

D – a dictionary whose keys are the occurring variable indices.

D[s] is a list [i_1,...,i_n], where i_j gives the exponent of self.parent().gen(j)[s] in the leading term of self.

EXAMPLES:

```sage
X.<x,y> = InfinitePolynomialRing(QQ)
sage: sorted(p.footprint().items())
[(1, [2, 3]), (30, [1, 0])]
```

gcd(x)
computes the greatest common divisor

EXAMPLES:

```sage
R.<x>=InfinitePolynomialRing(QQ)
sage: pl=x[0]+x[1]**2
sage: gcd(pl,pl+3)
l
sage: gcd(pl,pl)==pl
True
```

is_nilpotent()
Return True if self is nilpotent, i.e., some power of self is 0.
EXAMPLES:

```python
sage: R.<x> = InfinitePolynomialRing(QQbar)
sage: (x[0]+x[1]).is_nilpotent()  # False
sage: R(0).is_nilpotent()  # True
sage: _.<x> = InfinitePolynomialRing(Zmod(4))
sage: (2*x[0]).is_nilpotent()  # True
sage: (2+x[4]*x[7]).is_nilpotent()  # False
sage: _.<y> = InfinitePolynomialRing(Zmod(100))
sage: (5+2*y[0] + 10*(y[0]^2+y[1]^2)).is_nilpotent()  # False
```

`is_unit()`

Answer whether `self` is a unit.

EXAMPLES:

```python
sage: R1.<x,y> = InfinitePolynomialRing(ZZ)
sage: R2.<a,b> = InfinitePolynomialRing(QQ)
sage: (1+x[2]).is_unit()  # False
sage: R1(1).is_unit()  # True
sage: R1(2).is_unit()  # False
sage: R2(2).is_unit()  # True
sage: (1+a[2]).is_unit()  # False
```

Check that trac ticket #22454 is fixed:

```python
sage: _.<x> = InfinitePolynomialRing(Zmod(4))
sage: (1 + 2*x[0]).is_unit()  # True
sage: (x[0]*x[1]).is_unit()  # True
sage: _.<x> = InfinitePolynomialRing(Zmod(900))
sage: (7+150*x[0] + 30*x[1] + 120*x[1]*x[100]).is_unit()  # True
```

`lc()`

The coefficient of the leading term of `self`.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.lc()  # 3
```

`lm()`

The leading monomial of `self`.

7.2. Elements of Infinite Polynomial Rings
EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.lm()
x_10*x_1^2*y_1^3
```

`lt()`
The leading term (= product of coefficient and monomial) of `self`.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.lt()
3*x_10*x_1^2*y_1^3
```

`max_index()`
Return the maximal index of a variable occurring in `self`, or -1 if `self` is scalar.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.max_index() 4
sage: x[0].max_index() 0
sage: X(10).max_index() -1
```

`polynomial()`
Return the underlying polynomial.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(GF(7))
sage: p=x[2]*y[1]+3*y[0]
sage: p.polynomial() x_2*y_1 + 3*y_0
sage: p.polynomial().parent()
Multivariate Polynomial Ring in x_2, x_1, x_0, y_2, y_1, y_0 over Finite Field of size 7
sage: p.parent()
Infinite polynomial ring in x, y over Finite Field of size 7
```

`reduce(I, tailreduce=False, report=None)`
Symmetrical reduction of `self` with respect to a symmetric ideal (or list of Infinite Polynomials).

INPUT:

- `I` -- a `SymmetricIdeal` or a list of Infinite Polynomials.
- `tailreduce` -- (bool, default False) `Tail reduction` is performed if this parameter is True.
- `report` -- (object, default None) If not None, some information on the progress of computation is printed, since reduction of huge polynomials may take a long time.

OUTPUT:
Symmetrical reduction of \(\texttt{self} \) with respect to \(I \), possibly with tail reduction.

THEORY:

Reducing an element \(p \) of an Infinite Polynomial Ring \(X \) by some other element \(q \) means the following:

1. Let \(M \) and \(N \) be the leading terms of \(p \) and \(q \).
2. Test whether there is a permutation \(P \) that does not diminish the variable indices occurring in \(N \) and preserves their order, so that there is some term \(T \in X \) with \(TN^P = M \). If there is no such permutation, return \(p \).
3. Replace \(p \) by \(p - Tq^P \) and continue with step 1.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.reduce([y[2]*x[1]^2])
x_3^3*y_2 + y_3*y_1^2
```

The preceding is correct: If a permutation turns \(y[2]*x[1]^2 \) into a factor of the leading monomial \(y[2]*x[3]^3 \) of \(p \), then it interchanges the variable indices 1 and 2; this is not allowed in a symmetric reduction. However, reduction by \(y[1]*x[2]^2 \) works, since one can change variable index 1 into 2 and 2 into 3:

```
sage: p.reduce([y[1]*x[2]^2])
y_3*y_1^2
```

The next example shows that tail reduction is not done, unless it is explicitly advised. The input can also be a Symmetric Ideal:

```
sage: I = (y[3])*X
sage: p.reduce(I)
x_3^3*y_2 + y_3*y_1^2
sage: p.reduce(I, tailreduce=True)
x_3^3*y_2
```

Last, we demonstrate the `report` option:

```
sage: p.reduce(I, tailreduce=True, report=True)
:T[2]:>  
> x_1^2 + y_2^2
```

The output `:` means that there was one reduction of the leading monomial. `T[2]` means that a tail reduction was performed on a polynomial with two terms. At `>`, one round of the reduction process is finished (there could only be several non-trivial rounds if \(I \) was generated by more than one polynomial).

ring()

The ring which \(\texttt{self} \) belongs to.

This is the same as \(\texttt{self}.\texttt{parent()} \).

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(ZZ,implementation='sparse')
sage: p.ring()
Infinite polynomial ring in x, y over Integer Ring
```

7.2. Elements of Infinite Polynomial Rings
\textbf{squeezed()} \\
Reduce the variable indices occurring in \texttt{self}.

\textbf{OUTPUT:} \\
Apply a permutation to \texttt{self} that does not change the order of the variable indices of \texttt{self} but squeezes them into the range 1,2,...

\textbf{EXAMPLES:}

```sage
X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse')
p = x[1]*y[100] + x[50]*y[1000]
p.squeezed()
x_2*y_4 + x_1*y_3
```

\textbf{stretch}(k) \\
Stretch \texttt{self} by a given factor.

\textbf{INPUT:} \\
k – an integer.

\textbf{OUTPUT:} \\
Replace \(v_n\) with \(v_{n \cdot k}\) for all generators \(v\) occurring in \texttt{self}.

\textbf{EXAMPLES:}

```sage
X.<x> = InfinitePolynomialRing(QQ)
a = x[0] + x[1] + x[2]
a.stretch(2)
x_4 + x_2 + x_0
```

\textbf{symmetric_cancellation_order}(other) \\
Comparison of leading terms by Symmetric Cancellation Order, \(<_{sc}\).

\textbf{INPUT:} \\
self, other – two Infinite Polynomials

\textbf{ASSUMPTION:} \\
Both Infinite Polynomials are non-zero.

\textbf{OUTPUT:} \\
(c, sigma, w), where

- \(c = -1,0,1,\) or None if the leading monomial of \texttt{self} is smaller, equal, greater, or incomparable with respect to \texttt{other} in the monomial ordering of the Infinite Polynomial Ring

- \(\sigma\) is a permutation witnessing \texttt{self} \(<_{sc} other\) (resp. \texttt{self} \(>_{sc} other\)) or is 1 if \texttt{self}.\(\texttt{lm}()=\texttt{other.lm}()\)

- \(w\) is 1 or is a term so that \(w*\texttt{self.lt}()^\sigma = \texttt{other.lt}()\) if \(c \leq 0\), and \(w*\texttt{other.lt}()^\sigma = \texttt{self.lt}()\) if \(c = 1\)
THEORY:

If the Symmetric Cancellation Order is a well-quasi-ordering then computation of Groebner bases always terminates. This is the case, e.g., if the monomial order is lexicographic. For that reason, lexicographic order is our default order.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: (x[2]*x[1]).symmetric_cancellation_order(x[2]^2)
(None, 1, 1)
sage: (x[2]*x[1]).symmetric_cancellation_order(x[2]*x[3]*y[1])
(-1, [2, 3, 1], y_1)
sage: (x[2]*x[1]*y[1]).symmetric_cancellation_order(x[2]*x[3]*y[1])
(None, 1, 1)
sage: (x[2]*x[1]*y[1]).symmetric_cancellation_order(x[2]*x[3]*y[2])
(-1, [2, 3, 1], 1)
```

tail()
The tail of self (this is self minus its leading term).

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.tail()
2*x_10*y_30
```

variables() Return the variables occurring in self (tuple of elements of some polynomial ring).

EXAMPLES:

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: p.variables()
(x_3, x_2, x_1)
sage: x[1].variables()
(x_1,)
sage: X(1).variables()
()
```

7.3 Symmetric Ideals of Infinite Polynomial Rings

This module provides an implementation of ideals of polynomial rings in a countably infinite number of variables that are invariant under variable permutation. Such ideals are called ‘Symmetric Ideals’ in the rest of this document. Our implementation is based on the theory of M. Aschenbrenner and C. Hillar.

AUTHORS:

- Simon King <simon.king@nuigalway.ie>

EXAMPLES:

Here, we demonstrate that working in quotient rings of Infinite Polynomial Rings works, provided that one uses symmetric Groebner bases.
Note that I is not a symmetric Groebner basis:

```python
sage: G = R*I.groebner_basis()
sage: G
Symmetric Ideal (x_1^2 + x_1, x_2 - x_1) of Infinite polynomial ring in x over Rational Field
sage: Q = R.quotient(G)
sage: Q(p)
-2*x_1 + 3
```

By the second generator of G, variable x_n is equal to x_1 for any positive integer n. By the first generator of G, x_1^3 is equal to x_1 in Q. Indeed, we have

```python
sage: Q(p)*x[2] == Q(p)*x[1]*x[3]*x[5]
True
```

class `sage.rings.polynomial.symmetric_ideal.SymmetricIdeal(ring, gens, coerce=True)`

Ideal in an Infinite Polynomial Ring, invariant under permutation of variable indices

THEORY:

An Infinite Polynomial Ring with finitely many generators x_*, y_* over a field F is a free commutative F-algebra generated by infinitely many 'variables' $x_0, x_1, x_2, ..., y_0, y_1, y_2, ...$. We refer to the natural number n as the index of the variable x_n. See more detailed description at `infinite_polynomial_ring`.

Infinite Polynomial Rings are equipped with a permutation action by permuting positive variable indices, i.e., $x'_n = x_{P(n)}, y'_n = y_{P(n)}, ...$ for any permutation P. Note that the variables $x_0, y_0, ...$ of index zero are invariant under that action.

A Symmetric Ideal is an ideal in an infinite polynomial ring X that is invariant under the permutation action. In other words, if S_∞ denotes the symmetric group of $1, 2, ...$, then a Symmetric Ideal is a right $X[S_\infty]$-submodule of X.

It is known by work of Aschenbrenner and Hillar [AB2007] that an Infinite Polynomial Ring X with a single generator x_* is Noetherian, in the sense that any Symmetric Ideal $I \subset X$ is finitely generated modulo addition, multiplication by elements of X, and permutation of variable indices (hence, it is a finitely generated right $X[S_\infty]$-module).

Moreover, if X is equipped with a lexicographic monomial ordering with $x_1 < x_2 < x_3 ...$ then there is an algorithm of Buchberger type that computes a Groebner basis G for I that allows for computation of a unique normal form, that is zero precisely for the elements of I – see [AB2008]. See `groebner_basis()` for more details.

Our implementation allows more than one generator and also provides degree lexicographic and degree reverse lexicographic monomial orderings – we do, however, not guarantee termination of the Buchberger algorithm in these cases.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I == loads(dumps(I))
True
```
The default ordering is lexicographic. We now compute a Groebner basis:

```
sage: J = I.groebner_basis() ; J  # about 3 seconds
[x_1*y_2*y_1 + 2*x_1*y_2, x_2*y_2*y_1 + 2*x_2*y_1, x_2*x_1*y_1^2 + 2*x_2*x_1*y_1,
  → x_2*x_1*y_2 - x_2*x_1*y_1]
```

Note that even though the symmetric ideal can be generated by a single polynomial, its reduced symmetric Groebner basis comprises four elements. Ideal membership in I can now be tested by commuting symmetric reduction modulo J:

```
sage: I.reduce(J)
Symmetric Ideal (0) of Infinite polynomial ring in x, y over Rational Field
```

The Groebner basis is not point-wise invariant under permutation:

```
sage: P=Permutation([2, 1])
sage: J[2]
x_2*x_1*y_1^2 + 2*x_2*x_1*y_1
sage: J[2]^P
x_2*x_1*y_2^2 + 2*x_2*x_1*y_2
sage: J[2]^P in J
False
```

However, any element of J has symmetric reduction zero even after applying a permutation. This even holds when the permutations involve higher variable indices than the ones occurring in J:

```
sage: [[(p^P).reduce(J) for p in J] for P in Permutations(3)]
[[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
```

Since I is not a Groebner basis, it is no surprise that it can not detect ideal membership:

```
sage: [p.reduce(I) for p in J]
[0, x_2*y_2*y_1 + 2*x_2*y_1, x_2*x_1*y_1^2 + 2*x_2*x_1*y_1, x_2*x_1*y_2 - x_2*x_1*y_1]
```

Note that we give no guarantee that the computation of a symmetric Groebner basis will terminate in any order different from lexicographic.

When multiplying Symmetric Ideals or raising them to some integer power, the permutation action is taken into account, so that the product is indeed the product of ideals in the mathematical sense.

```
sage: I=X*(x[1])
sage: I*I
Symmetric Ideal (x_1^2, x_2*x_1) of Infinite polynomial ring in x, y over Rational Field
sage: I^3
Symmetric Ideal (x_1^3, x_2*x_1^2, x_2^2*x_1, x_3*x_2*x_1) of Infinite polynomial ring in x, y over Rational Field
sage: I*I == X*(x[1]^2)
False
```
\texttt{groebner_basis}(\texttt{tailreduce=False}, \texttt{reduced=True}, \texttt{algorithm=None}, \texttt{report=None}, \\
\texttt{use_full_group=False})

Return a symmetric Groebner basis (type \texttt{Sequence}) of \texttt{self}.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{tailreduce} – (bool, default False) If True, use tail reduction in intermediate computations
 \item \texttt{reduced} – (bool, default True) If True, return the reduced normalised symmetric Groebner basis.
 \item \texttt{algorithm} – (string, default None) Determine the algorithm (see below for available algorithms).
 \item \texttt{report} – (object, default None) If not None, print information on the progress of computation.
 \item \texttt{use_full_group} – (bool, default False) If True then proceed as originally suggested by [AB2008]. Our default method should be faster; see \texttt{symmetrisation()} for more details.
\end{itemize}

The computation of symmetric Groebner bases also involves the computation of classical Groebner bases, i.e., of Groebner bases for ideals in polynomial rings with finitely many variables. For these computations, Sage provides the following ALGORITHMS:

\begin{itemize}
 \item \texttt{\textbackslash autoselect} (default)
 \item \texttt{\textbackslash singular:groebner} \quad Singular’s \texttt{groebner} command
 \item \texttt{\textbackslash singular:std} \quad Singular’s \texttt{std} command
 \item \texttt{\textbackslash singular:stdhilb} \quad Singular’s \texttt{stdhilb} command
 \item \texttt{\textbackslash singular:stdfglm} \quad Singular’s \texttt{stdfglm} command
 \item \texttt{\textbackslash singular:slingb} \quad Singular’s \texttt{slingb} command
 \item \texttt{\textbackslash libSingular:std} \quad libSingular’s \texttt{std} command
 \item \texttt{\textbackslash libSingular:slingb} \quad libSingular’s \texttt{slingb} command
 \item \texttt{\textbackslash toy:buchberger} \quad Sage’s toy/educational \texttt{buchberger} without strategy
 \item \texttt{\textbackslash toy:buchberger2} \quad Sage’s toy/educational \texttt{buchberger} with strategy
 \item \texttt{\textbackslash toy:d_basis} \quad Sage’s toy/educational \texttt{d_basis} algorithm
 \item \texttt{\textbackslash magma:gb} \quad Macaulay2’s \texttt{gb} command (if available)
 \item \texttt{\textbackslash magma:GroebnerBasis} \quad Magma’s \texttt{GroebnerBasis} command (if available)
\end{itemize}

If only a system is given - e.g. ‘magma’ - the default algorithm is chosen for that system.

\textbf{Note:} The Singular and libSingular versions of the respective algorithms are identical, but the former calls an external Singular process while the later calls a C function, i.e. the calling overhead is smaller.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I1 = X*(x[1]+x[2],x[1]*x[2])
sage: I1.groebner_basis()
[x_1]
sage: I2.groebner_basis()
[x_1*y_2 + y_2^2*y_1, x_2*y_1 + y_2*y_1^2]
\end{verbatim}

Note that a symmetric Groebner basis of a principal ideal is not necessarily formed by a single polynomial.
When using the algorithm originally suggested by Aschenbrenner and Hillar, the result is the same, but the computation takes much longer:

```
sage: I2.groebner_basis(use_full_group=True)
[x_1*y_2 + y_2^2*y_1, x_2*y_1 + y_2*y_1^2]
```

Last, we demonstrate how the report on the progress of computations looks like:

```
sage: I1.groebner Basis(report=True, reduced=True)
Symmetric interreduction
[1/2] >
[2/2] :
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 2
Apply permutations
>
>
Symmetric interreduction
[1/3] >
[2/3] >
[3/3] :
-> 0
[1/2] >
[2/2] >
Symmetrisation done
Classical Groebner basis
-> 2 generators
Symmetric interreduction
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 3
Apply permutations
>
>
Symmetric interreduction
[1/4] >
[2/4] :
-> 0
[3/4] :
-> 0
[4/4] :
-> 0
[1/1] >
Apply permutations
 :
:
:
Symmetric interreduction
[1/1] >
Classical Groebner basis
-> 1 generators
Symmetric interreduction
[1/1] >
Symmetrise 1 polynomials at level 4
```
The Aschenbrenner-Hillar algorithm is only guaranteed to work if the base ring is a field. So, we raise a TypeError if this is not the case:

```
sage: R.<x,y> = InfinitePolynomialRing(ZZ)
sage: I = R*[x[1]+x[2],y[1]]
sage: I.groebner_basis()
Traceback (most recent call last):
...
TypeError: The base ring (= Integer Ring) must be a field
```

interreduced_basis()

A fully symmetrically reduced generating set (type `Sequence`) of self.

This does essentially the same as `interreduction()` with the option ‘tailreduce’, but it returns a `Sequence` rather than a `SymmetricIdeal`.

EXAMPLES:

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I=X*(x[1]+x[2],x[1]*x[2])
sage: I.interreduced_basis()
[-x_1^2, x_2 + x_1]
```

interreduction *(tailreduce=True, sorted=False, report=None, RStrat=None)*

Return symmetrically interreduced form of self

INPUT:

- **tailreduce** *(bool, default True)* If True, the interreduction is also performed on the non-leading monomials.

- **sorted** *(bool, default False)* If True, it is assumed that the generators of self are already increasingly sorted.

- **report** *(object, default None)* If not None, some information on the progress of computation is printed

- **RStrat** *(SymmetricReductionStrategy, default None)* A reduction strategy to which the polynomials resulting from the interreduction will be added. If RStrat already contains some polynomials, they will be used in the interreduction. The effect is to compute in a quotient ring.

OUTPUT:
A Symmetric Ideal J (sorted list of generators) coinciding with self as an ideal, so that any generator is symmetrically reduced w.r.t. the other generators. Note that the leading coefficients of the result are not necessarily 1.

EXAMPLES:

```sage
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I=X*(x[1]+x[2],x[1]*x[2])
sage: I.interreduction()
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
```

Here, we show the `report` option:

```sage
sage: I.interreduction(report=True)
Symmetric interreduction
[1/2] >
[2/2] :
[1/2] >
> Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
```

[m/n] indicates that polynomial number m is considered and the total number of polynomials under consideration is n. ’-> 0’ is printed if a zero reduction occurred. The rest of the report is as described in `sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy.reduce()`.

Last, we demonstrate the use of the optional parameter `RStrat`:

```sage
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: R = SymmetricReductionStrategy(X)
sage: R
Symmetric Reduction Strategy in Infinite polynomial ring in x over Rational Field
sage: I.interreduction(RStrat=R)
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
sage: R
Symmetric Reduction Strategy in Infinite polynomial ring in x over Rational Field, modulo x_1^2, x_2 + x_1
sage: R = SymmetricReductionStrategy(X, [x[1]^2])
sage: I.interreduction(RStrat=R)
Symmetric Ideal (x_2 + x_1) of Infinite polynomial ring in x over Rational Field
```

is_maximal()

Answers whether self is a maximal ideal.

ASSUMPTION:

self is defined by a symmetric Groebner basis.

NOTE:

It is not checked whether self is in fact a symmetric Groebner basis. A wrong answer can result if this
assumption does not hold. A `NotImplementedError` is raised if the base ring is not a field, since symmetric Groebner bases are not implemented in this setting.

EXAMPLES:

```sage
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: I = R.ideal([x[1]+y[2], x[2]-y[1]])
sage: I = R*I.groebner_basis()
sage: I
Symmetric Ideal (y_1, x_1) of Infinite polynomial ring in x, y over Rational
˓→Field
sage: I = R.ideal([x[1]+y[2], x[2]-y[1]])
sage: I.is_maximal()
False
```

The preceding answer is wrong, since it is not the case that I is given by a symmetric Groebner basis:

```sage
sage: I = R*I.groebner_basis()
sage: I
Symmetric Ideal (y_1, x_1) of Infinite polynomial ring in x, y over Rational
˓→Field
sage: I.is_maximal()
True
```

normalisation()

Return an ideal that coincides with self, so that all generators have leading coefficient 1. Possibly occurring zeroes are removed from the generator list.

EXAMPLES:

```sage
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(1/2*x[1]+2/3*x[2], 0, 4/5*x[1]*x[2])
sage: I.normalisation()
Symmetric Ideal (x_2 + 3/4*x_1, x_2*x_1) of Infinite polynomial ring in x, 
˓→over Rational Field
```

reduce(I, tailreduce=False)

Symmetric reduction of self by another Symmetric Ideal or list of Infinite Polynomials, or symmetric reduction of a given Infinite Polynomial by self.

INPUT:

- **I** – an Infinite Polynomial, or a Symmetric Ideal or a list of Infinite Polynomials.
- **tailreduce** – (bool, default `False`) If `True`, the non-leading terms will be reduced as well.

OUTPUT:

Symmetric reduction of `self` with respect to `I`.

THEORY:

Reduction of an element p of an Infinite Polynomial Ring X by some other element q means the following:

1. Let M and N be the leading terms of p and q.
2. Test whether there is a permutation P that does not does not diminish the variable indices occurring in N and preserves their order, so that there is some term $T \in X$ with $TN^P = M$. If there is no such permutation, return p.
3. Replace p by $p - Tq^P$ and continue with step 1.
EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I.reduce([x[1]^2*y[2]])
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field
```

The preceding is correct, since any permutation that turns $x[1]^2*y[2]$ into a factor of $x[3]^2*y[2]$ interchanges the variable indices 1 and 2 – which is not allowed. However, reduction by $x[2]^2*y[1]$ works, since one can change variable index 1 into 2 and 2 into 3:

```
sage: I.reduce([x[2]^2*y[1]])
Symmetric Ideal (y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field
```

The next example shows that tail reduction is not done, unless it is explicitly advised. The input can also be a symmetric ideal:

```
sage: J = (y[2])*X
sage: I.reduce(J)
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field
sage: I.reduce(J, tailreduce=True)
Symmetric Ideal (x_3^2*y_1) of Infinite polynomial ring in x, y over Rational Field
```

`squeezed()`
Reduce the variable indices occurring in `self`.

OUTPUT:
A Symmetric Ideal whose generators are the result of applying `squeezed()` to the generators of `self`.

NOTE:
The output describes the same Symmetric Ideal as `self`.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse')
sage: I = X*(x[1000]*y[100],x[50]*y[1000])
sage: I.squeezed()
Symmetric Ideal (x_2*y_1, x_1*y_2) of Infinite polynomial ring in x, y over Rational Field
```

`symmetric_basis()`
A symmetrised generating set (type `Sequence`) of `self`.

This does essentially the same as `symmetrisation()` with the option `tailreduce`, and it returns a `Sequence` rather than a `SymmetricIdeal`.

EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse')
sage: I = X*(x[1000]*y[100],x[50]*y[1000])
sage: I.symmetric_basis()
[x_1^2, x_2 + x_1]
```

`symmetrisation(N=None, tailreduce=False, report=None, use_full_group=False)`
Apply permutations to the generators of `self` and interreduce
INPUT:

• \(N\) – (integer, default None) Apply permutations in \(Sym(N)\). If it is not given then it will be replaced by the maximal variable index occurring in the generators of \(self.interreduction().squeezed()\).

• \(\text{tailreduce}\) – (bool, default False) If True, perform tail reductions.

• \(\text{report}\) – (object, default None) If not None, report on the progress of computations.

• \(\text{use_full_group}\) (optional) – If True, apply all elements of \(Sym(N)\) to the generators of \(self\) (this is what \([AB2008]\) originally suggests). The default is to apply all elementary transpositions to the generators of \(self.squeezed()\), interreduce, and repeat until the result stabilises, which is often much faster than applying all of \(Sym(N)\), and we are convinced that both methods yield the same result.

OUTPUT:

A symmetrically interreduced symmetric ideal with respect to which any \(Sym(N)\)-translate of a generator of \(self\) is symmetrically reducible, where by default \(N\) is the maximal variable index that occurs in the generators of \(self.interreduction().squeezed()\).

NOTE:

If \(I\) is a symmetric ideal whose generators are monomials, then \(I\)’s \(\text{symmetrisation()}\) is its reduced Groebner basis. It should be noted that without symmetrisation, monomial generators, in general, do not form a Groebner basis.

EXAMPLES:

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(x[1]+x[2], x[1]*x[2])
sage: I.symmetrisation()
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
sage: I.symmetrisation(N=3)
Symmetric Ideal (-2*x_1) of Infinite polynomial ring in x over Rational Field
sage: I.symmetrisation(N=3, use_full_group=True)
Symmetric Ideal (-2*x_1) of Infinite polynomial ring in x over Rational Field
```

7.4 Symmetric Reduction of Infinite Polynomials

\(\text{SymmetricReductionStrategy}\) provides a framework for efficient symmetric reduction of Infinite Polynomials, see \texttt{infinite_polynomial_element}.

AUTHORS:

• Simon King <simon.king@nuigalway.ie>

THEORY:

According to M. Aschenbrenner and C. Hillar\([AB2007]\), Symmetric Reduction of an element \(p\) of an Infinite Polynomial Ring \(X\) by some other element \(q\) means the following:

1. Let \(M\) and \(N\) be the leading terms of \(p\) and \(q\).
2. Test whether there is a permutation \(P\) that does not diminish the variable indices occurring in \(N\) and preserves their order, so that there is some term \(T \in X\) with \(TN^P = M\). If there is no such permutation, return \(p\).
3. Replace \(p\) by \(p - Tq^P\) and continue with step 1.
When reducing one polynomial \(p \) with respect to a list \(L \) of other polynomials, there usually is a choice of order on which the efficiency crucially depends. Also it helps to modify the polynomials on the list in order to simplify the basic reduction steps.

The preparation of \(L \) may be expensive. Hence, if the same list is used many times then it is reasonable to perform the preparation only once. This is the background of \texttt{SymmetricReductionStrategy}.

Our current strategy is to keep the number of terms in the polynomials as small as possible. For this, we sort \(L \) by increasing number of terms. If several elements of \(L \) allow for a reduction of \(p \), we chose the one with the smallest number of terms. Later on, it should be possible to implement further strategies for choice.

When adding a new polynomial \(q \) to \(L \), we first reduce \(q \) with respect to \(L \). Then, we test heuristically whether it is possible to reduce the number of terms of the elements of \(L \) by reduction modulo \(q \). That way, we see best chances to keep the number of terms in intermediate reduction steps relatively small.

EXAMPLES:

First, we create an infinite polynomial ring and one of its elements:

```sage
sage: X.<x,y> = InfinitePolynomialRing(QQ)
```

We want to symmetrically reduce it by another polynomial. So, we put this other polynomial into a list and create a Symmetric Reduction Strategy object:

```sage
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S = SymmetricReductionStrategy(X, [y[2]^2*x[1]])
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, \( \rightarrow \) modulo \( x_1*y_2^2 \)
```

```sage
sage: S.reduce(p)
x_3*y_1^2 + y_3*y_1
```

The preceding is correct, since any permutation that turns \(y[2]^2*x[1] \) into a factor of \(y[1]^2*x[3] \) interchanges the variable indices 1 and 2 – which is not allowed in a symmetric reduction. However, reduction by \(y[1]^2*x[2] \) works, since one can change variable index 1 into 2 and 2 into 3. So, we add this to \(S \):

```sage
sage: S.add_generator(y[1]^2*x[2])
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, \( \rightarrow \) modulo \( x_2*y_1^2, x_1*y_2^2 \)
```

```sage
sage: S.reduce(p)
y_3*y_1
```

The next example shows that tail reduction is not done, unless it is explicitly advised:

```sage
x_3 + 2*x_2*y_1^2 + 3*x_1*y_2^2
x_3
```

However, it is possible to ask for tailreduction already when the Symmetric Reduction Strategy is created:

```sage
sage: S2
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, \( \rightarrow \) modulo
```

7.4. Symmetric Reduction of Infinite Polynomials 541
x_2*y_1^2,
 x_1*y_2^2
with tailreduction
x_3

class sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy
Bases: object
A framework for efficient symmetric reduction of InfinitePolynomial, see
infinite_polynomial_element.

INPUT:

• Parent – an Infinite Polynomial Ring, see infinite_polynomial_element.
• L – (list, default the empty list) List of elements of Parent with respect to which will be reduced.
• good_input – (bool, default None) If this optional parameter is true, it is assumed that each element of L is symmetrically reduced with respect to the previous elements of L.

EXAMPLES:

sage: X.<y> = InfinitePolynomialRing(QQ)
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
y_3 + 3*y_2^2*y_1 + 2*y_2*y_1^2
y_3

add_generator(p, good_input=None)
Add another polynomial to self.

INPUT:

• p – An element of the underlying infinite polynomial ring.
• good_input – (bool, default None) If True, it is assumed that p is reduced with respect to self. Otherwise, this reduction will be done first (which may cost some time).

Note: Previously added polynomials may be modified. All input is prepared in view of an efficient symmetric reduction.

EXAMPLES:
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo x_3*y_1 + x_1*y_1 + y_3

Note that the first added polynomial will be simplified when adding a suitable second polynomial:

```
sage: S.add_generator(x[2]+x[1])
sage: S
```

By default, reduction is applied to any newly added polynomial. This can be avoided by specifying the optional parameter 'good_input':

```
sage: S.add_generator(y[2]+y[1]*x[2])
sage: S
```

In the previous example, x[3] + x[2] is added without being reduced to zero.

gens()
Return the list of Infinite Polynomials modulo which self reduces.

EXAMPLES:

```
sage: X.<y> = InfinitePolynomialRing(QQ)
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S
```

reduce(p, notail=False, report=None)
Symmetric reduction of an infinite polynomial.

INPUT:

• p – an element of the underlying infinite polynomial ring.
• **notail** – (bool, default False) If True, tail reduction is avoided (but there is no guarantee that there will be no tail reduction at all).
• **report** – (object, default None) If not None, print information on the progress of the computation.

OUTPUT:
Reduction of \(p \) with respect to self.

Note: If tail reduction shall be forced, use `tailreduce()`.

EXAMPLES:

```python
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: S = SymmetricReductionStrategy(X, [y[3]], tailreduce=True)
sage: S.reduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1
sage: S.reduce(y[4]*x[1] + y[1]*x[4], notail=True)
x_4*y_1 + x_1*y_4
```

Last, we demonstrate the ‘report’ option:

```python
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo y_3 + y_2, x_2 + y_1, x_1*y_2 + y_4 - y_3*y_1
:::>
  x_1*y_1 + y_4 - y_3*y_1 - y_1
```

Each ‘::’ indicates that one reduction of the leading monomial was performed. Eventually, the ‘>’ indicates that the computation is finished.

reset()
Remove all polynomials from self.

EXAMPLES:

```python
sage: X.<y> = InfinitePolynomialRing(QQ)
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in y over Rational Field, modulo y_2*y_1^2, y_2^2*y_1
sage: S.reset()
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in y over Rational Field
```

544 Chapter 7. Infinite Polynomial Rings
setgens \((L)\)
Define the list of Infinite Polynomials modulo which self reduces.

INPUT:

\(L\) – a list of elements of the underlying infinite polynomial ring.

Note: It is not tested if \(L\) is a good input. That method simply assigns a copy of \(L\) to the generators of self.

EXAMPLES:

```python
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<y> = InfinitePolynomialRing(QQ)
R = SymmetricReductionStrategy(X)
R.setgens(S.gens())
R
Symmetric Reduction Strategy in Infinite polynomial ring in y over Rational Field, modulo y_2*y_1^2, y_2^2*y_1
R.gens() is S.gens()
False
R.gens() == S.gens()
True
```

tailreduce \((p, report=None)\)
Symmetric reduction of an infinite polynomial, with forced tail reduction.

INPUT:

- \(p\) – an element of the underlying infinite polynomial ring.
- \(report\) – (object, default None) If not None, print information on the progress of the computation.

OUTPUT:

Reduction (including the non-leading elements) of \(p\) with respect to self.

EXAMPLES:

```python
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<x,y> = InfinitePolynomialRing(QQ)
S = SymmetricReductionStrategy(X, [y[3]])
S.reduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1 + x_1*y_4
S.tailreduce(y[4]*x[1] + y[1]*x[4])
x_4*y_1
Last, we demonstrate the ‘report’ option:
```

```python
S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field, modulo y_3 + y_2,
```

7.4. Symmetric Reduction of Infinite Polynomials
\[
x_2 + y_1,
\]
\[
x_1y_2 + y_4 + y_1^2
\]

T[3]::>
T[3]::>
\[
x_1y_1 - y_2 + y_1^2 - y_1
\]

The protocol means the following.

- 'T[3]' means that we currently do tail reduction for a polynomial with three terms.
- '::>' means that there were three reductions of leading terms.
- The tail of the result of the preceding reduction still has three terms. One reduction of leading terms was possible, and then the final result was obtained.
8.1 Boolean Polynomials

Elements of the quotient ring

\[F_2[x_1, \ldots, x_n]/ < x_1^2 + x_1, \ldots, x_n^2 + x_n >. \]

are called boolean polynomials. Boolean polynomials arise naturally in cryptography, coding theory, formal logic, chip design and other areas. This implementation is a thin wrapper around the PolyBoRi library by Michael Brickenstein and Alexander Dreyer.

“Boolean polynomials can be modelled in a rather simple way, with both coefficients and degree per variable lying in \(\{0, 1\} \). The ring of Boolean polynomials is, however, not a polynomial ring, but rather the quotient ring of the polynomial ring over the field with two elements modulo the field equations \(x^2 = x \) for each variable \(x \). Therefore, the usual polynomial data structures seem not to be appropriate for fast Groebner basis computations. We introduce a specialised data structure for Boolean polynomials based on zero-suppressed binary decision diagrams (ZDDs), which is capable of handling these polynomials more efficiently with respect to memory consumption and also computational speed. Furthermore, we concentrate on high-level algorithmic aspects, taking into account the new data structures as well as structural properties of Boolean polynomials.” - [BD07]

For details on the internal representation of polynomials see

http://polybori.sourceforge.net/zdd.html

AUTHORS:

- Michael Brickenstein: PolyBoRi author
- Alexander Dreyer: PolyBoRi author
- Burcin Erocal <burcin@erocal.org>: main Sage wrapper author
- Martin Albrecht <malb@informatik.uni-bremen.de>: some contributions to the Sage wrapper
- Simon King <simon.king@uni-jena.de>: Adopt the new coercion model. Fix conversion from univariate polynomial rings. Pickling of BooleanMonomialMonoid (via UniqueRepresentation) and BooleanMonomial.
- Charles Bouillaguet <charles.bouillaguet@gmail.com>: minor changes to improve compatibility with MPolynomial and make the variety() function work on ideals of BooleanPolynomial's.

EXAMPLES:

Consider the ideal

\[< ab + cd + 1, ace + de, abe + ce, be + cde + 1 >. \]
First, we compute the lexicographical Groebner basis in the polynomial ring

\[R = \mathbb{F}_2[a, b, c, d, e]. \]

```python
sage: P.<a,b,c,d,e> = PolynomialRing(GF(2), 5, order='lex')
sage: I1 = ideal([a*b + c*d + 1, a*c*e + d*e, a*b*e + c*e, b*c + c*d*e + 1])
sage: for f in I1.groebner_basis():
   ....: f
   a + c^2*d + c + d^2*e
   b*c + d^3*e^2 + d^2*e + d*e + e + 1
   b*e + d*e^2 + d*e + e
   c*e + d^3*e^2 + d^2*e + d^2*e^2 + d*e + e
   d^4*e^2 + d^3*e^2 + d^2*e + d*e + e
```

If one wants to solve this system over the algebraic closure of \(\mathbb{F}_2 \) then this Groebner basis was the one to consider. If one wants solutions over \(\mathbb{F}_2 \) only then one adds the field polynomials to the ideal to force the solutions in \(\mathbb{F}_2 \).

```python
sage: J = I1 + sage.rings.ideal.FieldIdeal(P)
sage: for f in J.groebner_basis():
   ....: f
   a + d + 1
   b + 1
   c + 1
   d^2 + d
   e
```

So the solutions over \(\mathbb{F}_2 \) are \(\{e = 0, d = 1, c = 1, b = 1, a = 0\} \) and \(\{e = 0, d = 0, c = 1, b = 1, a = 1\} \).

We can express the restriction to \(\mathbb{F}_2 \) by considering the quotient ring. If \(I \) is an ideal in \(\mathbb{F}[x_1, ..., x_n] \) then the ideals in the quotient ring \(\mathbb{F}[x_1, ..., x_n]/I \) are in one-to-one correspondence with the ideals of \(\mathbb{F}[x_0, ..., x_n] \) containing \(I \) (that is, the ideals \(J \) satisfying \(I \subseteq J \subseteq P \)).

```python
sage: Q = P.quotient( sage.rings.ideal.FieldIdeal(P) )
sage: I2 = ideal([Q(f) for f in I1.gens()])
sage: for f in I2.groebner_basis():
   ....: f
   a_bar + d_bar + 1
   b_bar + 1
   c_bar + 1
   e_bar
```

This quotient ring is exactly what PolyBoRi handles well:

```python
sage: B.<a,b,c,d,e> = BooleanPolynomialRing(5, order='lex')
sage: I2 = ideal([B(f) for f in I1.gens()])
sage: for f in I2.groebner_basis():
   ....: f
   a + d + 1
   b + 1
   c + 1
   e
```

Note that \(d^2 + d \) is not representable in \(B = Q \). Also note, that PolyBoRi cannot play out its strength in such small examples, i.e. working in the polynomial ring might be faster for small examples like this.
8.1.1 Implementation specific notes

PolyBoRi comes with a Python wrapper. However this wrapper does not match Sage’s style and is written using Boost. Thus Sage’s wrapper is a reimplementation of Python bindings to PolyBoRi’s C++ library. This interface is written in Cython like all of Sage’s C/C++ library interfaces. An interface in PolyBoRi style is also provided which is effectively a reimplementation of the official Boost wrapper in Cython. This means that some functionality of the official wrapper might be missing from this wrapper and this wrapper might have bugs not present in the official Python interface.

8.1.2 Access to the original PolyBoRi interface

The re-implementation PolyBoRi’s native wrapper is available to the user too:

```python
sage: from brial import *
sage: declare_ring([Block('x',2),Block('y',3)],globals())
Boolean PolynomialRing in x0, x1, y0, y1, y2
sage: r
Boolean PolynomialRing in x0, x1, y0, y1, y2
```

For details on this interface see:

Also, the interface provides functions for compatibility with Sage accepting convenient Sage data types which are slower than their native PolyBoRi counterparts. For instance, sets of points can be represented as tuples of tuples (Sage) or as BooleSet (PolyBoRi) and naturally the second option is faster.

REFERENCES:

class sage.rings.polynomial.pbori.BooleConstant
 Bases: object

 Construct a boolean constant (modulo 2) from integer value:

 INPUT:

 • `i` - an integer

 EXAMPLES:

```
sage: from brial import BooleConstant
sage: [BooleConstant(i) for i in range(5)]
[0, 1, 0, 1, 0]
```

def ()
 Get degree of boolean constant.

 EXAMPLES:

```
sage: from brial import BooleConstant
sage: BooleConstant(0).deg()
-1
sage: BooleConstant(1).deg()
0
```

has_constant_part ()
 This is true for for `BooleConstant(1)`.

8.1. Boolean Polynomials
EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(1).has_constant_part()
True
sage: BooleConstant(0).has_constant_part()
False
```

is_constant()
This is always true for in this case.

EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(1).is_constant()
True
sage: BooleConstant(0).is_constant()
True
```

is_one()
Check whether boolean constant is one.

EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(0).is_one()
False
sage: BooleConstant(1).is_one()
True
```

is_zero()
Check whether boolean constant is zero.

EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(1).is_zero()
False
sage: BooleConstant(0).is_zero()
True
```

variables()
Get variables (return always and empty tuple).

EXAMPLES:

```python
sage: from brial import BooleConstant
sage: BooleConstant(0).variables()
()  # Empty tuple
sage: BooleConstant(1).variables()
()  # Empty tuple
```

```python
class sage.rings.polynomial.pbori.BooleSet
    Bases: object

    Return a new set of boolean monomials. This data type is also implemented on the top of ZDDs and allows to see polynomials from a different angle. Also, it makes high-level set operations possible, which are in most cases faster than operations handling individual terms, because the complexity of the algorithms depends only on the structure of the diagrams.
```
Objects of type `BooleanPolynomial` can easily be converted to the type `BooleSet` by using the member function `BooleanPolynomial.set()`.

INPUT:

- `param` - either a `CCuddNavigator`, a `BooleSet` or None.
- `ring` - a boolean polynomial ring.

EXAMPLES:

```python
sage: from brial import BooleSet
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
```

```python
sage: BS = BooleSet(a.set())
sage: BS
{{a}}
```

```python
sage: BS = BooleSet((a*b + c + 1).set())
```

```python
sage: BS
{{a,b}, {c}, {}}
```

```python
sage: from brial import *
sage: BooleSet([Monomial(B)])
{{}}
```

Note: `BooleSet` prints as `{}` but are not Python dictionaries.

cartesian_product (rhs)

Return the Cartesian product of this set and the set `rhs`.

The Cartesian product of two sets `X` and `Y` is the set of all possible ordered pairs whose first component is a member of `X` and whose second component is a member of `Y`.

\[
X \times Y = \{(x, y) | x \in X \text{ and } y \in Y\}.
\]

EXAMPLES:

```python
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: g = x4 + 1
sage: t = g.set(); t
{{x4}, {}}
sage: s.cartesian_product(t)
{{x1,x2,x4}, {x1,x2}, {x2,x3,x4}, {x2,x3}}
```

change (ind)

Swaps the presence of \(x_i\) in each entry of the set.

EXAMPLES:

```python
sage: P.<a,b,c> = BooleanPolynomialRing()
sage: f = a+b
sage: s = f.set(); s
{(a), (b)}
sage: s.change(0)
```
diff (rhs)

Return the set theoretic difference of this set and the set rhs.

The difference of two sets X and Y is defined as:

$$ X \setminus Y = \{ x | x \in X \text{ and } x \not\in Y \}.$$

EXAMPLES:

\begin{verbatim}
 sage: B = BooleanPolynomialRing(5,'x')
 sage: x0,x1,x2,x3,x4 = B.gens()
 sage: f = x1*x2+x2*x3
 sage: s = f.set(); s
 {{x1,x2}, {x2,x3}}
 sage: g = x2*x3 + 1
 sage: t = g.set(); t
 {{x2,x3}, {}}
 sage: s.diff(t)
 {{x1,x2}}
\end{verbatim}

divide (rhs)

Divide each element of this set by the monomial rhs and return a new set containing the result.

EXAMPLES:

\begin{verbatim}
 sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='lex')
 sage: f = b*e + b*c*d + b
 sage: s = f.set(); s
 {{b,c,d}, {b,e}, {b}}
 sage: s.divide(b.lm())
 {{c,d}, {e}, {}}
 sage: f = b*e + b*c*d + b + c
 sage: s = f.set()
 sage: s.divide(b.lm())
 {{c,d}, {e}, {}}
\end{verbatim}

divisors_of (m)

Return those members which are divisors of m.

INPUT:

- m - a boolean monomial

EXAMPLES:

\begin{verbatim}
 sage: B = BooleanPolynomialRing(5,'x')
 sage: x0,x1,x2,x3,x4 = B.gens()
 sage: f = x1*x2+x2*x3
 sage: s = f.set()
 sage: s.divisors_of((x1*x2*x4).lead())
 {{x1,x2}}
\end{verbatim}
empty()
Return True if this set is empty.

EXAMPLES:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: BS = (a*b + c).set()
sage: BS.empty()
False
sage: BS = B(0).set()
sage: BS.empty()
True
```

include_divisors()
Extend this set to include all divisors of the elements already in this set and return the result as a new set.

EXAMPLES:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: f = a*d*e + a*f + b*d*e + c*d*e + 1
sage: s = f.set(); s
{{a,d,e}, {a,f}, {b,d,e}, {c,d,e}, {}}
sage: s.include_divisors()
{{a,d,e}, {a,d}, {a,e}, {a,f}, {a}, {b,d,e}, {b,d}, {b,e}, {b}, {c,d,e}, {c,d}, {c,e}, {c}, {d,e}, {d}, {e}, {f}, {}}
```

intersect(other)
Return the set theoretic intersection of this set and the set rhs.

The union of two sets X and Y is defined as:

$$X \cap Y = \{x | x \in X \text{ and } x \in Y\}.$$

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: g = x2*x3 + 1
sage: t = g.set(); t
{{x2,x3}, {}}
sage: s.intersect(t)
{{x2,x3}}
```

minimal_elements()
Return a new set containing a divisor of all elements of this set.

EXAMPLES:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: f = a*d*e + a*f + a*b*d*e + a*c*d*e + a
sage: s = f.set(); s
{{a,b,d,e}, {a,c,d,e}, {a,d,e}, {a,f}, {a}}
sage: s.minimal_elements()
{{a}}
```
multiples_of \((m) \)

Return those members which are multiples of \(m \).

INPUT:

\(\star m \) - a boolean monomial

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5, 'x')
sage: x0, x1, x2, x3, x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set()
sage: s.multiples_of(x1.lm())
{(x1, x2)}
```

n_nodes()

Return the number of nodes in the ZDD.

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5, 'x')
sage: x0, x1, x2, x3, x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{{x1,x2}, {x2,x3}}
sage: s.n_nodes()
4
```

navigation()

Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding then- and else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

EXAMPLES:

```
sage: from brial import BooleSet
sage: B = BooleanPolynomialRing(5, 'x')
sage: x0, x1, x2, x3, x4 = B.gens()
sage: f = x1*x2+x2*x3*x4+x2*x4+x3+x4+1
sage: s = f.set(); s
{{x1,x2}, {x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}
sage: nav = s.navigation()
sage: BooleSet(nav.s.ring())
{{x1,x2}, {x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}
sage: nav.value()
1
sage: nav_else = nav.else_branch()
sage: BooleSet(nav_else.s.ring())
{{x2,x3,x4}, {x2,x4}, {x3}, {x4}, {}}
sage: nav_else.value()
2
```
ring()
Return the parent ring.

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3+x4+x2*x4+x3+x4+1
sage: f.set().ring() is B
    True
```

set()
Return self.

EXAMPLES:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: BS = (a*b + c).set()
sage: BS.set() is BS
    True
```

size_double()
Return the size of this set as a floating point number.

EXAMPLES:

```
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
sage: s = f.set()
sage: s.size_double()
    2.0
```

stable_hash()
A hash value which is stable across processes.

EXAMPLES:

```
sage: B.<x,y> = BooleanPolynomialRing()
sage: s = x.set()
sage: s.stable_hash()
    -845955105 # 32-bit
    173100285919 # 64-bit
```

Note: This function is part of the upstream PolyBoRi interface. In Sage all hashes are stable.

subset0(i)
Return a set of those elements in this set which do not contain the variable indexed by i.

INPUT:

• i - an index

EXAMPLES:

```
sage: BooleanPolynomialRing(5,'x')
    Boolean PolynomialRing in x0, x1, x2, x3, x4
sage: B = BooleanPolynomialRing(5,'x')
sage: B.inject_variables()
```

8.1. Boolean Polynomials
Defining x_0, x_1, x_2, x_3, x_4

```python
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{(x1, x2), (x2, x3)}
```

```python
sage: s.subset0(1)
{(x2, x3)}
```

subset1(i)

Return a set of those elements in this set which do contain the variable indexed by i and evaluate the variable indexed by i to 1.

INPUT:

- i - an index

EXAMPLES:

```python
sage: BooleanPolynomialRing(5,'x')
Boolean PolynomialRing in x0, x1, x2, x3, x4
sage: B = BooleanPolynomialRing(5,'x')
```

```python
sage: B.inject_variables()
Defining x0, x1, x2, x3, x4
sage: f = x1*x2+x2*x3
sage: s = f.set(); s
{(x1, x2), (x2, x3)}
```

```python
sage: s.subset1(1)
{(x2, x3)}
```

union(rhs)

Return the set theoretic union of this set and the set `rhs`.

The union of two sets X and Y is defined as:

$X \cup Y = \{ x | x \in X \text{ or } x \in Y \}$.

EXAMPLES:

```python
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2+x2*x3
```

```python
sage: s = f.set()
sage: s
{(x1, x2), (x2, x3)}
```

```python
sage: g = x2*x3 + 1
```

```python
sage: t = g.set(); t
{(x2, x3), ()}
```

```python
sage: s.union(t)
{(x1, x2), (x2, x3), ()}
```

vars()

Return the variables in this set as a monomial.

EXAMPLES:

```python
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='lex')
sage: f = a + b*e + d*f + e + 1
```

```python
sage: s = f.set()
sage: s
{(a), (b,e), (d,f), (e), ()}
```

```python
sage: s.vars()
a*b*d*e*f
```

class sage.rings.polynomial.pbori.BooleSetIterator
 Bases: object

 Helper class to iterate over boolean sets.

 next ()
 x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.pbori.BooleanMonomial
 Bases: sage.structure.element.MonoidElement

 Construct a boolean monomial.

 INPUT:

 • parent - parent monoid this element lives in

 EXAMPLES:

 sage: from brial import BooleanMonomialMonoid, BooleanMonomial
 sage: P.<x,y,z> = BooleanPolynomialRing(3)
 sage: M = BooleanMonomialMonoid(P)
 sage: BooleanMonomial(M)
 1

 Note: Use the BooleanMonomialMonoid__call__() method and not this constructor to construct these objects.

deg ()

 Return degree of this monomial.

 EXAMPLES:

 sage: from brial import BooleanMonomialMonoid
 sage: P.<x,y,z> = BooleanPolynomialRing(3)
 sage: M = BooleanMonomialMonoid(P)
 sage: M(x*y).deg()
 2
 sage: M(x*x*y*z).deg()
 3

 Note: This function is part of the upstream PolyBoRi interface.

degree (x=None)

 Return the degree of this monomial in x, where x must be one of the generators of the polynomial ring.

 INPUT:

 • x - boolean multivariate polynomial (a generator of the polynomial ring). If x is not specified (or is None), return the total degree of this monomial.

 EXAMPLES:

 sage: from brial import BooleanMonomialMonoid
 sage: P.<x,y,z> = BooleanPolynomialRing(3)
 sage: M = BooleanMonomialMonoid(P)
 sage: M(x*y).degree()

8.1. Boolean Polynomials 557
\textbf{divisors()}

Return a set of boolean monomials with all divisors of this monomial.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
sage: m.divisors()
{(x,y), (x), (y), ()}
\end{verbatim}

\textbf{gcd(rhs)}

Return the greatest common divisor of this boolean monomial and \texttt{rhs}.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{rhs} - a boolean monomial
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: a,b,c,d = a.lm(), b.lm(), c.lm(), d.lm()
sage: (a*b).gcd(b*c)
b
sage: (a*b*c).gcd(d)
1
\end{verbatim}

\textbf{index()}

Return the variable index of the first variable in this monomial.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
sage: m.index()
0
\end{verbatim}

\textbf{Note:} This function is part of the upstream PolyBoRi interface.

\textbf{iterindex()}

Return an iterator over the indices of the variables in self.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from brial import BooleanMonomialMonoid
data: P.<x,y,z> = BooleanPolynomialRing(3)
sage: M = BooleanMonomialMonoid(P)
sage: list(M(x*z).iterindex())
[0, 2]
\end{verbatim}

Page 558 Chapter 8. Boolean Polynomials
multiples (*rhs*)
Return a set of boolean monomials with all multiples of this monomial up to the bound *rhs*.

INPUT:

• *rhs* - a boolean monomial

EXAMPLES:

```python
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x
sage: m = f.lm()
sage: g = x*y*z
sage: n = g.lm()
sage: m.multiples(n)
{{x,y,z}, {x,y}, {x,z}, {x}}
sage: n.multiples(m)
{{x,y,z}}
```

Note: The returned set always contains *self* even if the bound *rhs* is smaller than *self*.

navigation()
Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding then- and else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

EXAMPLES:

```python
sage: from brial import BooleSet
sage: B = BooleanPolynomialRing(5, 'x')
sage: x0, x1, x2, x3, x4 = B.gens()
sage: f = x1*x2+x2*x3*x4+x2*x4+x3+x4+1
sage: m = f.lm(); m
x1*x2
sage: nav = m.navigation()
sage: BooleSet(nav, B)
{{x1,x2}}
sage: nav.value()
1
```

reducible_by (*rhs*)
Return True if *self* is reducible by *rhs*.

INPUT:

• *rhs* - a boolean monomial

EXAMPLES:

```python
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
sage: m.reducible_by((x*y).lm())
True
```
\texttt{sage: m.reducible_by((x*z).lm())}
\texttt{False}

\textbf{ring()}
Return the corresponding boolean ring.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: a.lm().ring() is B
True
\end{verbatim}

\textbf{set()}
Return a boolean set of variables in this monomials.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*y
sage: m = f.lm()
sage: m.set()
\{\{x,y\}\}
\end{verbatim}

\textbf{stable_hash()}
A hash value which is stable across processes.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: B.<x,y> = BooleanPolynomialRing()
sage: m = x.lm()
sage: m.stable_hash()
-845955105 # 32-bit
173100285919 # 64-bit
\end{verbatim}

\textbf{variables()}
Return a tuple of the variables in this monomial.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: from brial import BooleanMonomialMonoid
data: P.<x,y,z> = BooleanPolynomialRing(3)
sage: M = BooleanMonomialMonoid(P)
sage: M(x*z).variables() # indirect doctest
\{(x, z)\}
\end{verbatim}

\textbf{class} \texttt{sage.rings.polynomial.pbori.BooleanMonomialIterator}
\textbf{Bases: object}
An iterator over the variable indices of a monomial.

\textbf{next ()}
x.next() -> the next value, or raise StopIteration

\textbf{class} \texttt{sage.rings.polynomial.pbori.BooleanMonomialMonoid} \texttt{(polring)}
\textbf{Bases: } \texttt{sage.structure.unique_representation.UniqueRepresentation, sage.monoids.monoid.Monoid_class}
Construct a boolean monomial monoid given a boolean polynomial ring.

This object provides a parent for boolean monomials.

INPUT:

- `polring` - the polynomial ring our monomials lie in

EXAMPLES:

```python
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: M = BooleanMonomialMonoid(P)
sage: M
MonomialMonoid of Boolean PolynomialRing in x, y
sage: M.gens()
(x, y)
```

Since trac ticket #9138, boolean monomial monoids are unique parents and are fit into the category framework:

```python
sage: loads(dumps(M)) is M
True
sage: TestSuite(M).run()
```

gen (i=0)

Return the i-th generator of self.

INPUT:

- `i` - an integer

EXAMPLES:

```python
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y,z> = BooleanPolynomialRing(3)
```

```python
sage: M = BooleanMonomialMonoid(P)
```

```python
sage: M.gen(0)
x
```

```python
sage: M.gen(2)
z
```

```python
sage: P = BooleanPolynomialRing(1000, 'x')
```

```python
sage: M = BooleanMonomialMonoid(P)
```

```python
sage: M.gen(50)
x50
```

gens ()

Return the tuple of generators of this monoid.

EXAMPLES:

```python
sage: from brial import BooleanMonomialMonoid
sage: P.<x,y,z> = BooleanPolynomialRing(3)
```

```python
sage: M = BooleanMonomialMonoid(P)
```

```python
sage: M.gens()
(x, y, z)
```
ngens()

Return the number of variables in this monoid.

EXAMPLES:

```python
sage: from brial import BooleanMonomialMonoid
sage: P = BooleanPolynomialRing(100, 'x')
sage: M = BooleanMonomialMonoid(P)
sage: M.ngens()
100
```

class sage.rings.polynomial.pbori.BooleanMonomialVariableIterator

Bases: object

`next()`

x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.pbori.BooleanMulAction

Bases: sage.categories.action.Action

class sage.rings.polynomial.pbori.BooleanPolynomial

Bases: sage.rings.polynomial.multi_polynomial.MPolynomial

Construct a boolean polynomial object in the given boolean polynomial ring.

INPUT:

- `parent` - a boolean polynomial ring

Note: Do not use this method to construct boolean polynomials, but use the appropriate `__call__` method in the parent.

constant()

Return `True` if this element is constant.

EXAMPLES:

```python
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: x.constant()
False
sage: B(1).constant()
True
```

Note: This function is part of the upstream PolyBoRi interface.

constant_coefficient()

Return the constant coefficient of this boolean polynomial.

EXAMPLES:

```python
sage: B.<a,b> = BooleanPolynomialRing()
sage: a.constant_coefficient()
0
sage: (a+1).constant_coefficient()
1
```
deg()
Return the degree of self. This is usually equivalent to the total degree except for weighted term orderings which are not implemented yet.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).degree()
1

sage: P(1).degree()
0

sage: (x*y + x + y + 1).degree()
2
```

Note: This function is part of the upstream PolyBoRi interface.

degree(x=None)
Return the maximal degree of this polynomial in x, where x must be one of the generators for the parent of this polynomial.

If x is not specified (or is None), return the total degree, which is the maximum degree of any monomial.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).degree()
1

sage: P(1).degree()
0

sage: (x*y + x + y + 1).degree()
2
sage: (x*y + x + y + 1).degree(x)
1
```

elementh()
Return elimination length as used in the SlimGB algorithm.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: x.elength()
1

sage: f = x*y + 1
sage: f.elength()
2
```

REFERENCES:

•Michael Brickenstein; SlimGB: Groebner Bases with Slim Polynomials http://www.mathematik.uni-kl.de/~zca/Reports_on_ca/35/paper_35_full.ps.gz
Note: This function is part of the upstream PolyBoRi interface.

first_term()
Return the first term with respect to the lexicographical term ordering.

EXAMPLES:

```sage
B.<a,b,z> = BooleanPolynomialRing(3,order='lex')
sage: f = b*z + a + 1
sage: f.first_term()
```

```
a
```

Note: This function is part of the upstream PolyBoRi interface.

graded_part(deg)
Return graded part of this boolean polynomial of degree deg.

INPUT:

• deg - a degree

EXAMPLES:

```sage
B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + c*d + a*b + 1
sage: f.graded_part(2)
a*b + c*d
```

```sage
sage: f.graded_part(0)
1
```

has_constant_part()
Return True if this boolean polynomial has a constant part, i.e. if 1 is a term.

EXAMPLES:

```sage
B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + c*d + a*b + 1
sage: f.has_constant_part()
```

```
True
```

```sage
sage: f = a*b*c + c*d + a*b
sage: f.has_constant_part()
```

```
False
```

is_constant()
Check if self is constant.

EXAMPLES:

```sage
P.<x,y> = BooleanPolynomialRing(2)
sage: P(1).is_constant()
```

```
True
```
is_constant()

```plaintext
sage: P(0).is_constant()
True

sage: x.is_constant()
False

sage: (x+y).is_constant()
False
```

is_equal(right)

EXAMPLES:

```plaintext
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*z + b + 1
sage: g = b + z
sage: f.is_equal(g)
False
sage: f.is_equal((f + 1) - 1)
True
```

Note: This function is part of the upstream PolyBoRi interface.

is_homogeneous()

Return True if this element is a homogeneous polynomial.

EXAMPLES:

```plaintext
sage: P.<x, y> = BooleanPolynomialRing()
sage: (x+y).is_homogeneous()
True
sage: P(0).is_homogeneous()
True
sage: (x+1).is_homogeneous()
False
```

is_one()

Check if self is 1.

EXAMPLES:

```plaintext
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(1).is_one()
True

sage: P.one().is_one()
True

sage: x.is_one()
False

sage: P(0).is_one()
False
```
is_pair()

Check if self has exactly two terms.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(0).is_singleton_or_pair()
True

sage: x.is_singleton_or_pair()
True

sage: P(1).is_singleton_or_pair()
True

sage: (x+y).is_singleton_or_pair()
True

sage: (x + y).is_singleton_or_pair()
True

sage: (x + 1).is_singleton_or_pair()
True

sage: (x*y + 1).is_singleton_or_pair()
True

sage: (x + y + 1).is_singleton_or_pair()
False

sage: ((x + 1)*(y + 1)).is_singleton_or_pair()
False
```

is_singleton()

Check if self has at most one term.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(0).is_singleton()
True

sage: x.is_singleton()
True

sage: P(1).is_singleton()
True

sage: (x*y).is_singleton()
True

sage: (x + y).is_singleton()
False

sage: ((x + 1)*(y + 1)).is_singleton()
False
```
\begin{verbatim}
 sage: (x + 1).is_singleton()
 False
 sage: (x*y + 1).is_singleton()
 False
 sage: (x + y + 1).is_singleton()
 False
 sage: ((x + 1)*(y + 1)).is_singleton()
 False
\end{verbatim}

is_singleton_or_pair()

Check if \texttt{self} has at most two terms.

EXAMPLES:

\begin{verbatim}
 sage: P.<x,y> = BooleanPolynomialRing(2)
 sage: P(0).is_singleton_or_pair()
 True
 sage: x.is_singleton_or_pair()
 True
 sage: P(1).is_singleton_or_pair()
 True
 sage: (x+y).is_singleton_or_pair()
 True
 sage: (x + y).is_singleton_or_pair()
 True
 sage: (x + 1).is_singleton_or_pair()
 True
 sage: (x*y + 1).is_singleton_or_pair()
 True
 sage: (x + y + 1).is_singleton_or_pair()
 False
 sage: ((x + 1)*(y + 1)).is_singleton_or_pair()
 False
\end{verbatim}

is_unit()

Check if \texttt{self} is invertible in the parent ring.

Note that this condition is equivalent to being 1 for boolean polynomials.

EXAMPLES:

\begin{verbatim}
 sage: P.<x,y> = BooleanPolynomialRing(2)
 sage: P.one().is_unit()
 True
\end{verbatim}

8.1. Boolean Polynomials
is_univariate()
Return True if self is a univariate polynomial, that is if self contains only one variable.

EXAMPLES:
```
sage: P.<x,y,z> = BooleanPolynomialRing()
sage: f = x + 1
sage: f.is_univariate()
True
sage: f = y*x + 1
sage: f.is_univariate()
False
sage: f = P(0)
Sage: f.is_univariate()
True
```

is_zero()
Check if self is zero.

EXAMPLES:
```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P(0).is_zero()
True
sage: x.is_zero()
False
sage: P(1).is_zero()
False
```

lead()
Return the leading monomial of boolean polynomial, with respect to to the order of parent ring.

EXAMPLES:
```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+z).lead()
x

sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+z).lead()
y*z
```

Note: This function is part of the upstream PolyBoRi interface.

lead_deg()
Return the total degree of the leading monomial of self.

EXAMPLES:
```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: p = x + y*z
```
sage: p.lead_deg()
1

sage: P.<x,y,z> = BooleanPolynomialRing(3,order='deglex')
sage: p = x + y*z
sage: p.lead_deg()
2

sage: P(0).lead_deg()
0

Note: This function is part of the upstream PolyBoRi interface.

lead_divisors()
Return a BooleanSet of all divisors of the leading monomial.

EXAMPLES:

sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*b + z + 1
sage: f.lead_divisors()
{(a,b), (a), (b), ()}

Note: This function is part of the upstream PolyBoRi interface.

lex_lead()
Return the leading monomial of boolean polynomial, with respect to the lexicographical term ordering.

EXAMPLES:

sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lex_lead()
x
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lex_lead()
x
sage: P(0).lex_lead()
0

Note: This function is part of the upstream PolyBoRi interface.

lex_lead_deg()
Return degree of leading monomial with respect to the lexicographical ordering.

EXAMPLES:

sage: B.<x,y,z> = BooleanPolynomialRing(3,order='lex')
sage: f = x + y*z
sage: f
x + y*z
```python
sage: B.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: f = x + y*z
sage: f
y*z + x
sage: f.lex_lead_deg()
1
```

Note: This function is part of the upstream PolyBoRi interface.

`lm()`
Return the leading monomial of this boolean polynomial, with respect to the order of parent ring.

EXAMPLES:

```python
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lm()
x
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lm()
y*z
sage: P(0).lm()
0
```

`lt()`
Return the leading term of this boolean polynomial, with respect to the order of the parent ring. Note that for boolean polynomials this is equivalent to returning leading monomials.

EXAMPLES:

```python
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x+y+y*z).lt()
x
sage: P.<x,y,z> = BooleanPolynomialRing(3, order='deglex')
sage: (x+y+y*z).lt()
y*z
```

`map_every_x_to_x_plus_one()`
Map every variable \(x_i\) in this polynomial to \(x_i + 1\).

EXAMPLES:

```python
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*b + z + 1; f
a*b + z + 1
sage: f.map_every_x_to_x_plus_one()
a*b + a + b + z + 1
sage: f(a+1,b+1,z+1)
a*b + a + b + z + 1
```
monomial_coefficient (\texttt{mon})

Return the coefficient of the monomial \texttt{mon} in \texttt{self}, where \texttt{mon} must have the same parent as \texttt{self}.

INPUT:

\texttt{mon} - a monomial

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: x.monomial_coefficient(x)
1
sage: x.monomial_coefficient(y)
0
sage: R.<x,y,z,a,b,c>=BooleanPolynomialRing(6)
sage: f=(1-x)*(1+y); f
x*y + x + y + 1
sage: f.monomial_coefficient(1)
1
sage: f.monomial_coefficient(0)
0
```

monomials ()

Return a list of monomials appearing in \texttt{self} ordered largest to smallest.

EXAMPLES:

```python
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='lex')
sage: f = a + c*b
sage: f.monomials()
[a, b*c]
```

```python
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='deglex')
sage: f = a + c*b
sage: f.monomials()
[b*c, a]
sage: P.zero().monomials()
[]
```

n_nodes ()

Return the number of nodes in the ZDD implementing this polynomial.

EXAMPLES:

```python
sage: B = BooleanPolynomialRing(5,'x')
sage: x0,x1,x2,x3,x4 = B.gens()
sage: f = x1*x2 + x2*x3 + 1
sage: f.n_nodes()
4
```

n_vars ()

Return the number of variables used to form this boolean polynomial.

EXAMPLES:

```python
```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + 1
sage: f.n_vars()
3

Note: This function is part of the upstream PolyBoRi interface.

navigation()

Navigators provide an interface to diagram nodes, accessing their index as well as the corresponding then- and else-branches.

You should be very careful and always keep a reference to the original object, when dealing with navigators, as navigators contain only a raw pointer as data. For the same reason, it is necessary to supply the ring as argument, when constructing a set out of a navigator.

EXAMPLES:

```python
sage: from brial import BooleSet
sage: B = BooleanPolynomialRing(5, 'x')
sage: x0, x1, x2, x3, x4 = B.gens()
sage: f = x1*x2 + x2*x3*x4 + x2*x4 + x3 + x4 + 1
sage: nav = f.navigation()
sage: BooleSet(nav, B)
{{x1, x2}, {x2, x3, x4}, {x2, x4}, {x3}, {x4}, {}}
sage: nav.value()
1
sage: nav_else = nav.else_branch()
sage: BooleSet(nav_else, B)
{{x2, x3, x4}, {x2, x4}, {x3}, {x4}, {}}
sage: nav_else.value()
2
```

Note: This function is part of the upstream PolyBoRi interface.

nvariables()

Return the number of variables used to form this boolean polynomial.

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b*c + 1
sage: f.nvariables()
3
```

reduce(I)

Return the normal form of self w.r.t. I, i.e. return the remainder of self with respect to the polynomials in I. If the polynomial set/list I is not a Groebner basis the result is not canonical.

INPUT:

- I - a list/set of polynomials in self.parent(). If I is an ideal, the generators are used.
EXAMPLES:

```python
sage: B.<x0,x1,x2,x3> = BooleanPolynomialRing(4)
sage: I = B.ideal((x0 + x1 + x2 + x3, 
    x0*x1 + x1*x2 + x0*x3 + x2*x3, 
    x0*x1*x2 + x0*x1*x3 + x0*x2*x3 + x1*x2*x3,  
    x0*x1*x2*x3 + 1))
sage: gb = I.groebner_basis()
sage: f,g,h,i = I.gens()
sage: f.reduce(gb)
0
sage: p = f*g + x0*h + x2*i
sage: p.reduce(gb)
0
sage: p.reduce(I)
x1*x2*x3 + x2
sage: p.reduce([])
x0*x1*x2 + x0*x1*x3 + x0*x2*x3 + x2
```

Note: If this function is called repeatedly with the same I then it is advised to use PolyBoRi’s `GroebnerStrategy` object directly, since that will be faster. See the source code of this function for details.

reducible_by *(rhs)*

Return True if this boolean polynomial is reducible by the polynomial rhs.

INPUT:

• rhs - a boolean polynomial

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing(4,order='deglex')
sage: f = (a*b + 1)*(c + 1)
sage: f.reducible_by(d)
False
sage: f.reducible_by(c)
True
sage: f.reducible_by(c + 1)
True
```

Note: This function is part of the upstream PolyBoRi interface.

ring()

Return the parent of this boolean polynomial.

EXAMPLES:

```python
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: a.ring() is B
True
```

set()

Return a BooleSet with all monomials appearing in this polynomial.

EXAMPLES:
sage:
\[\text{B.<a,b,z> = BooleanPolynomialRing(3)} \]
\[\text{sage: (a+b+z+1).set() \{\{a,b\}, \{z\}, \{\}\}} \]

sage

spoly (**rhs**)
Return the S-Polynomial of this boolean polynomial and the other boolean polynomial **rhs**.

EXAMPLES:

sage:
\[\text{B.<a,b,c,d> = BooleanPolynomialRing(4)} \]
\[\text{sage: f = a*b*c + c*d + a*b + 1} \]
\[\text{sage: g = c*d + b} \]
\[\text{sage: f.spoly(g)} \]
\[a*b + a*c*d + c*d + 1 \]

Note: This function is part of the upstream PolyBoRi interface.

stable_hash ()
A hash value which is stable across processes.

EXAMPLES:

sage:
\[\text{B.<x,y> = BooleanPolynomialRing()} \]
\[\text{sage: x.stable_hash()} \]
\[-845955105 \quad \# \text{ 32-bit} \]
\[173100285919 \quad \# \text{ 64-bit} \]

Note: This function is part of the upstream PolyBoRi interface. In Sage all hashes are stable.

subs (**in_dict=None, **kwds**)
Fixes some given variables in a given boolean polynomial and returns the changed boolean polynomials. The polynomial itself is not affected. The variable,value pairs for fixing are to be provided as dictionary of the form {variable:value} or named parameters (see examples below).

INPUT:

- **in_dict** - (optional) dict with variable:value pairs
- ****kwds - names parameters

EXAMPLES:

sage:
\[\text{P.<x,y,z> = BooleanPolynomialRing(3)} \]
\[\text{sage: f = x*y + z + y*z + 1} \]
\[\text{sage: f.subs(x=1)} \]
\[y*z + y + z + 1 \]
\[\text{sage: f.subs(x=0)} \]
\[y*z + z + 1 \]

sage:
\[f.subs(x=y) \]
\[y*z + y + z + 1 \]

sage:
\[f.subs({x:1},y=1) \]
\[0 \]
\[\text{sage: f.subs(y=1)} \]
This method can work fully symbolic:

```python
sage: f.subs(x=var('a'),y=var('b'),z=var('c'))
a*b + b*c + c + 1
sage: f.subs({'x':var('a'),'y':var('b'),'z':var('c')})
a*b + b*c + c + 1
```

terms()

Return a list of monomials appearing in `self` ordered largest to smallest.

EXAMPLES:

```python
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='lex')
sage: f = a + c*b
dsage: f.terms()
[a, b*c]
sage: P.<a,b,c> = BooleanPolynomialRing(3,order='deglex')
sage: f = a + c*b
dsage: f.terms()
[b*c, a]
```

total_degree()

Return the total degree of `self`.

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: (x+y).total_degree()
1
sage: P(1).total_degree() 0
sage: (x*y + x + y + 1).total_degree() 2
```

univariate_polynomial(`R=None`)

Return a univariate polynomial associated to this multivariate polynomial.

If this polynomial is not in at most one variable, then a `ValueError` exception is raised. This is checked using the `is_univariate()` method. The new Polynomial is over GF(2) and in the variable `x` if no ring `R` is provided.

```python
sage: R.<x, y> = BooleanPolynomialRing() sage: f = x - y + x*y + 1 sage: f.univariate_polynomial() Traceback (most recent call last): ... ValueError: polynomial must involve at most one variable sage: g = f.subs({x:0}); g y + 1 sage: g.univariate_polynomial() y + 1 sage: g.univariate_polynomial(GF(2)['foo']) foo + 1
```

Here's an example with a constant multivariate polynomial:
```sage
sage: g = R(1)
sage: h = g.univariate_polynomial(); h
1
sage: h.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using NTL)
```

variable \((i=0)\)

Return the \(i\)-th variable occurring in self. The index \(i\) is the index in \self.variables()\

EXAMPLES:

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: f = x*z + z + 1
sage: f.variables()
(x, z)
sage: f.variable(1)
z
```

variables()

Return a tuple of all variables appearing in self.

EXAMPLES:

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x + y).variables()
(x, y)
sage: (x*y + z).variables()
(x, y, z)
sage: P.zero().variables()
()
sage: P.one().variables()
()
```

vars_as_monomial()

Return a boolean monomial with all the variables appearing in self.

EXAMPLES:

```sage
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: (x + y).vars_as_monomial()
x*y
sage: (x*y + z).vars_as_monomial()
x*y*z
sage: P.zero().vars_as_monomial()
1
sage: P.one().vars_as_monomial()
1
```

Note: This function is part of the upstream PolyBoRi interface.
zeros_in(s)
Return a set containing all elements of s where this boolean polynomial evaluates to zero.

If s is given as a BooleSet, then the return type is also a BooleSet. If s is a set/list/tuple of tuple this function returns a tuple of tuples.

INPUT:

• s - candidate points for evaluation to zero

EXAMPLES:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b + c + d + 1
```
Now we create a set of points:

```
sage: s = a*b + a*b*c + c*d + 1
sage: s = s.set(); s
{{a,b,c}, {a,b}, {c,d}, {}}
```
This encodes the points (1,1,1,0), (1,1,0,0), (0,0,1,1) and (0,0,0,0). But of these only (1,1,0,0) evaluates to zero.

```
sage: f.zeros_in(s)
{{a,b}}
sage: f.zeros_in([(1,1,1,0), (1,1,0,0), (0,0,1,1), (0,0,0,0)])
((1, 1, 0, 0),)
```

class sage.rings.polynomial.pbori.BooleanPolynomialEntry
Bases: object

P

class sage.rings.polynomial.pbori.BooleanPolynomialIdeal(ring, gens=[], coerce=True)
Bases: sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal

Construct an ideal in the boolean polynomial ring.

INPUT:

• ring - the ring this ideal is defined in
• gens - a list of generators
• coerce - coerce all elements to the ring ring (default: True)

EXAMPLES:

```
sage: P.<x0, x1, x2, x3> = BooleanPolynomialRing(4)
sage: I = P.ideal(x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0)
sage: I
Ideal (x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0) of Boolean PolynomialRing in x0, x1, x2, x3
```
```
sage: loads(dumps(I)) == I
True
```

dimension()
Return the dimension of self, which is always zero.

8.1. Boolean Polynomials 577
groebner_basis(algorithm='polybori', **kwds)

Return a Groebner basis of this ideal.

INPUT:

- **algorithm** - either "polybori" (built-in default) or "magma" (requires Magma).
- **red_tail** - tail reductions in intermediate polynomials, this option affects mainly heuristics. The reducedness of the output polynomials can only be guaranteed by the option redsb (default: True)
- **minsb** - return a minimal Groebner basis (default: True)
- **redsb** - return a minimal Groebner basis and all tails are reduced (default: True)
- **deg_bound** - only compute Groebner basis up to a given degree bound (default: False)
- **faugere** - turn off or on the linear algebra (default: False)
- **linear_algebra_in_last_block** - this affects the last block of block orderings and degree orderings. If it is set to True linear algebra takes affect in this block. (default: True)
- **gauss_on_linear** - perform Gaussian elimination on linear polynomials (default: True)
- **selection_size** - maximum number of polynomials for parallel reductions (default: 1000)
- **heuristic** - Turn off heuristic by setting heuristic=False (default: True)
- **lazy** - (default: True)
- **invert** - setting invert=True input and output get a transformation x+1 for each variable x, which shouldn't effect the calculated GB, but the algorithm.
- **other_ordering_first** - possible values are False or an ordering code. In practice, many Boolean examples have very few solutions and a very easy Groebner basis. So, a complex walk algorithm (which cannot be implemented using the data structures) seems unnecessary, as such Groebner bases can be converted quite fast by the normal Buchberger algorithm from one ordering into another ordering. (default: False)
- **prot** - show protocol (default: False)
- **full_prot** - show full protocol (default: False)

EXAMPLES:

```python
sage: P.<x0, x1, x2, x3> = BooleanPolynomialRing(4)
sage: I = P.ideal(x0*x1*x2*x3 + x0*x1*x3 + x0*x1 + x0*x2 + x0)
sage: I.groebner_basis()
[x0*x1 + x0*x2 + x0, x0*x2*x3 + x0*x3]
```

Another somewhat bigger example:

```python
sage: sr = mq.SR(2,1,1,4,gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: I = F.ideal()
sage: I.groebner_basis()  
Polynomial Sequence with 36 Polynomials in 36 Variables
```

We compute the same example with Magma:

```python
sage: sr = mq.SR(2,1,1,4,gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: I = F.ideal()
sage: I.groebner_basis(algorithm='magma', prot='sage')  # optional - magma
```
Leading term degree: 3. Critical pairs: 101 (all pairs of current degree eliminated by criteria).

Highest degree reached during computation: 3.
Polynomial Sequence with 35 Polynomials in 36 Variables

interreduced_basis()
If this ideal is spanned by \((f_1, \ldots, f_n)\) this method returns \((g_1, \ldots, g_s)\) such that:

- \(<f_1, \ldots, f_n> = <g_1, \ldots, g_s>
- \text{LT}(g_i) \neq \text{LT}(g_j) \text{ for all } i \neq j
- \text{LT}(g_i) \text{ does not divide } m \text{ for all monomials } m \text{ of } \{g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_s\}

EXAMPLES:

```python
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True)
sage: F,s = sr.polynomial_system()
sage: I = F.ideal()
sage: I.interreduced_basis()
[k100 + 1, k101 + k001 + 1, k102, k103 + 1, x100 + k001 + 1, x101 + k001, x102, x103 + k001, w100 + 1, w101 + k001 + 1, w102 + 1, w103 + 1, s000 + k001, s001 + k001 + 1, s002, s003 + k001 + 1, k000 + 1, k002 + 1, k003 + 1]
```

reduce()
Reduce an element modulo the reduced Groebner basis for this ideal. This returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(2),10, 'x')
sage: B = BooleanPolynomialRing(10,'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I = B.ideal([B(f) for f in I.gens()])
sage: gb = I.groebner_basis()
sage: I.reduce(gb[0])
0
sage: I.reduce(gb[0] + 1)
1
sage: I.reduce(gb[0]*gb[1])
0
sage: I.reduce(gb[0]*B.gen(1))
0
```

variety(**kwds)
Return the variety associated to this boolean ideal.

EXAMPLES:

A Simple example:

```python
sage: from sage.doctest.fixtures import reproducible_repr
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: I = ideal( [ x*y*z + x+z + y + 1, x+y+z+1 ] )
```
```python
sage: print(reproducible_repr(I.variety()))
[(x: 0, y: 1, z: 0), (x: 1, y: 1, z: 1)]
```

```python
class sage.rings.polynomial.pbori.BooleanPolynomialIterator
    Bases: object
    Iterator over the monomials of a boolean polynomial.

    next ()
    x.next() -> the next value, or raise StopIteration
```

```python
class sage.rings.polynomial.pbori.BooleanPolynomialRing
    Bases: sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic
    Construct a boolean polynomial ring with the following parameters:

    INPUT:
    - n - number of variables (an integer > 1)
    - names - names of ring variables, may be a string or list/tuple
    - order - term order (default: lex)

    EXAMPLES:
```
```
When \texttt{base\_ring} is not specified, this function returns a \texttt{BooleanPolynomialRing} isomorphic to \texttt{self}. Otherwise, this returns a \texttt{MPolynomialRing}. Each argument above is optional.

**INPUT:**

\begin{itemize}
\item \texttt{base\_ring} – a base ring
\item \texttt{names} – variable names
\item \texttt{order} – a term order
\end{itemize}

**EXAMPLES:**

\begin{verbatim}
sage: P.<x, y, z> = BooleanPolynomialRing()
sage: P.term_order()
Lexicographic term order
sage: R = P.change_ring(names=('a', 'b', 'c'), order="deglex")
sage: R
Boolean PolynomialRing in a, b, c
sage: R.term_order()
Degree lexicographic term order
sage: T = P.change_ring(base_ring=GF(3))
sage: T
Multivariate Polynomial Ring in x, y, z over Finite Field of size 3
sage: T.term_order()
Lexicographic term order
\end{verbatim}

\textbf{clone (ordering=\texttt{None}, names=[], blocks=[])}

Shallow copy this boolean polynomial ring, but with different ordering, names or blocks if given. \texttt{ring.clone(ordering=..., names=..., block=...)} generates a shallow copy of \texttt{ring}, but with different ordering, names or blocks if given.

**EXAMPLES:**

\begin{verbatim}
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: B.clone()
Boolean PolynomialRing in a, b, c
sage: B.<x,y,z> = BooleanPolynomialRing(3,order='deglex')
sage: y*z > x
True

Now we call the clone method and generate a compatible, but ‘lex’ ordered, ring:

\begin{verbatim}
sage: C = B.clone(ordering=0)
sage: C(y*z) > C(x)
False
\end{verbatim}

Now we change variable names:

\begin{verbatim}
sage: P.<x0,x1> = BooleanPolynomialRing(2)
sage: P
Boolean PolynomialRing in x0, x1
sage: Q = P.clone(names=['t'])
sage: Q
Boolean PolynomialRing in t, x1
\end{verbatim}

We can also append blocks to block orderings this way:
```python
sage: R.<x1,x2,x3,x4> = BooleanPolynomialRing(order='deglex(1),deglex(3)')
sage: x2 > x3+x4
False

Now we call the internal method and change the blocks:

```python
sage: S = R.clone(blocks=[3])
sage: S(x2) > S(x3*x4)
True
```

Note: This is part of PolyBoRi’s native interface.

cover_ring()
Return $R = \mathbb{F}_2[x_1, x_2, \ldots, x_n]$ if x_1, x_2, \ldots, x_n is the ordered list of variable names of this ring. R also has the same term ordering as this ring.

EXAMPLES:

```python
sage: B.<x,y> = BooleanPolynomialRing(2)
sage: R = B.cover_ring(); R
Multivariate Polynomial Ring in x, y over Finite Field of size 2
```

```python
sage: B.term_order() == R.term_order()
True
```

The cover ring is cached:

```python
sage: B.cover_ring() is B.cover_ring()
True
```

defining_ideal()
Return $I = \langle x_i^2 + x_i \rangle \subset R$ where $R = \text{self.cover_ring}()$, and x_i any element in the set of variables of this ring.

EXAMPLES:

```python
sage: B.<x,y> = BooleanPolynomialRing(2)
sage: I = B.defining_ideal(); I
Ideal (x^2 + x, y^2 + y) of Multivariate Polynomial Ring in x, y over Finite Field of size 2
```

gen(i=0)
Return the i-th generator of this boolean polynomial ring.

INPUT:
• i - an integer or a boolean monomial in one variable

EXAMPLES:

```python
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.gen()
x
sage: P.gen(2)
z
sage: m = x.monomials()[0]
```
sage: P.gen(m)
x

gens()
Return the tuple of variables in this ring.

EXAMPLES:

sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.gens()
(x, y, z)

sage: P = BooleanPolynomialRing(10,'x')
sage: P.gens()
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)

get_base_order_code()
EXAMPLES:

sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: B.get_base_order_code()
0

sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='deglex')
sage: B.get_base_order_code()
1

sage: T = TermOrder('deglex',2) + TermOrder('deglex',2)
sage: B.<a,b,c,d> = BooleanPolynomialRing(4, order=T)
sage: B.get_base_order_code()
1

Note: This function which is part of the PolyBoRi upstream API works with a current global ring. This notion is avoided in Sage.

get_order_code()
EXAMPLES:

sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: B.get_order_code()
0

sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(order='deglex')
sage: B.get_order_code()
1

Note: This function which is part of the PolyBoRi upstream API works with a current global ring. This notion is avoided in Sage.

has_degree_order()
Return checks whether the order code corresponds to a degree ordering.

EXAMPLES:
id()

Return a unique identifier for this boolean polynomial ring.

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: print("id: {}"\".format(P.id()))
id: ...
```

```python
sage: P = BooleanPolynomialRing(10, 'x')
sage: Q = BooleanPolynomialRing(20, 'x')
sage: P.id() != Q.id()
True
```

ideal(*gens, **kwds)

Create an ideal in this ring.

INPUT:

- `gens` - list or tuple of generators
- `coerce` - bool (default: True) automatically coerce the given polynomials to this ring to form the ideal

EXAMPLES:

```python
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.ideal(x+y)
Ideal (x + y) of Boolean PolynomialRing in x, y, z
```

```python
sage: P.ideal(x*y, y*z)
Ideal (x*y, y*z) of Boolean PolynomialRing in x, y, z
```

```python
sage: P.ideal([x+y, z])
Ideal (x + y, z) of Boolean PolynomialRing in x, y, z
```

interpolation_polynomial(zeros, ones)

Return the lexicographically minimal boolean polynomial for the given sets of points.

Given two sets of points `zeros` - evaluating to zero - and `ones` - evaluating to one -, compute the lexicographically minimal boolean polynomial satisfying these points.

INPUT:

- `zeros` - the set of interpolation points mapped to zero
- `ones` - the set of interpolation points mapped to one

EXAMPLES:

First we create a random-ish boolean polynomial.

```python
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing(6)
sage: f = a*b*c*e + a*d*e + a*f + b + c + e + f + 1
```
Now we find interpolation points mapping to zero and to one.

```python
sage: zeros = set([(1, 0, 1, 0, 0, 0), (1, 0, 1, 1, 1, 1),
               (0, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 1),
               (1, 1, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0),
               (1, 0, 1, 0, 1, 1), (0, 0, 0, 1, 0, 1),
               (0, 0, 0, 0, 1, 0), (0, 1, 1, 1, 1, 0),
               (1, 1, 0, 1, 1, 1)])

sage: ones = set([(0, 0, 0, 0, 0, 0), (1, 0, 1, 0, 1, 0),
               (0, 0, 0, 1, 1, 1), (0, 0, 1, 0, 1, 1),
               (0, 0, 0, 0, 1, 1), (0, 1, 1, 0, 1, 1),
               (0, 1, 1, 1, 1, 1), (1, 0, 1, 1, 0, 0)])

[sage: f(*p) for p in zeros]  
[0, 0, 0, 0, 0, 0, 0, 0]  
[sage: f(*p) for p in ones]  
[1, 1, 1, 1, 1, 1, 1, 1]
```

Finally, we find the lexicographically smallest interpolation polynomial using PolyBoRi.

```python
sage: g = B.interpolation_polynomial(zeros, ones); g
b*f + c + d*f + d + e*f + e + 1

[sage: g(*p) for p in zeros]  
[0, 0, 0, 0, 0, 0, 0, 0]  
[sage: g(*p) for p in ones]  
[1, 1, 1, 1, 1, 1, 1, 1]
```

Alternatively, we can work with PolyBoRi’s native BooleSet’s. This example is from the PolyBoRi tutorial:

```python
sage: B = BooleanPolynomialRing(4,"x0,x1,x2,x3")
sage: x = B.gen
sage: V=(x(0)+x(1)+x(2)+x(3)+1).set(); V
{{x0}, {x1}, {x2}, {x3}, {}}
sage: f=x(0)*x(1)+x(1)+x(2)+1
sage: f.zeros_in(V); z
{{x1}, {x2}}
sage: o = V.diff(z); o
{{x0}, {x3}, {}}
sage: B.interpolation_polynomial(z,o)
x1 + x2 + 1
```

ALGORITHM: Calls `interpolate_smallest_lex` as described in the PolyBoRi tutorial.

n_variables()

Return the number of variables in this boolean polynomial ring.

EXAMPLES:

```python
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.n_variables()
2

sage: P = BooleanPolynomialRing(1000, 'x')
sage: P.n_variables()
1000
```

Note: This is part of PolyBoRi’s native interface.
ngens()

Return the number of variables in this boolean polynomial ring.

EXAMPLES:

```
sage: P.<x,y> = BooleanPolynomialRing(2)
sage: P.ngens()
2
```

```
sage: P = BooleanPolynomialRing(1000, 'x')
sage: P.ngens()
1000
```

one()

EXAMPLES:

```
sage: P.<x0,x1> = BooleanPolynomialRing(2)
sage: P.one()
1
```

random_element (degree=None, terms=None, choose_degree=False, vars_set=None)

Return a random boolean polynomial. Generated polynomial has the given number of terms, and at most given degree.

INPUT:

• degree - maximum degree (default: 2 for len(var_set) > 1, 1 otherwise)
• terms – number of terms requested (default: 5). If more terms are requested than exist, then this parameter is silently reduced to the maximum number of available terms.
• choose_degree - choose degree of monomials randomly first, rather than monomials uniformly random
• vars_set - list of integer indicies of generators of self to use in the generated polynomial

EXAMPLES:

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.random_element(degree=3, terms=4)
x*y*z + x*z + x + y*z
```

```
sage: P.random_element(degree=1, terms=2)
z + 1
```

In corner cases this function will return fewer terms by default:

```
sage: P = BooleanPolynomialRing(2,'y')
sage: P.random_element()
y0*y1 + y0
```

```
sage: P = BooleanPolynomialRing(1,'y')
sage: P.random_element()
y
```

We return uniformly random polynomials up to degree 2:

```
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: B.random_element(terms=Infinity)
a*b + a*c + a*d + b*c + b*d + d
```
remove_var (*order=None, *var*)

Remove a variable or sequence of variables from this ring.

If `order` is not specified, then the subring inherits the term order of the original ring, if possible.

EXAMPLES:

```python
sage: R.<x,y,z,w> = BooleanPolynomialRing()
sage: R.remove_var(z)
Boolean PolynomialRing in x, y, w
sage: R.remove_var(z,x)
Boolean PolynomialRing in y, w
sage: R.remove_var(y,z,x)
Boolean PolynomialRing in w
```

Removing all variables results in the base ring:

```python
sage: R.remove_var(y,z,x,w)
Finite Field of size 2
```

If possible, the term order is kept:

```python
sage: R.<x,y,z,w> = BooleanPolynomialRing(order='deglex')
sage: R.remove_var(y).term_order() Degree lexicographic term order
```

```python
sage: R.<x,y,z,w> = BooleanPolynomialRing(order='lex')
sage: R.remove_var(y).term_order()
Lexicographic term order
```

Be careful with block orders when removing variables:

```python
sage: R.<x,y,z,u,v> = BooleanPolynomialRing(order='deglex(2),deglex(3)')
sage: R.remove_var(x,y,z)
Traceback (most recent call last):
  ... ValueError: impossible to use the original term order (most likely because it was a block order). Please specify the term order for the subring
sage: R.remove_var(x,y,z, order='deglex')
Boolean PolynomialRing in u, v
```

variable (*i=0*)

Return the `i`-th generator of this boolean polynomial ring.

INPUT:

• `i` - an integer or a boolean monomial in one variable

EXAMPLES:

```python
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: P.variable()
x
sage: P.variable(2)
z
sage: m = x.monomials()[0]
sage: P.variable(m)
x
```

zero (*)

EXAMPLES:
class sage.rings.polynomial.pbori.BooleanPolynomialVector
 Bases: object

A vector of boolean polynomials.

EXAMPLES:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import BooleanPolynomialVector
sage: l = [B.random_element() for _ in range(3)]
sage: v = BooleanPolynomialVector(l)
sage: len(v)
3
sage: v[0]
a*b + a + b*e + c*d + e*f
sage: list(v)
[a*b + a + b*e + c*d + e*f, a*d + c*d + d*f + e + f, a*c + a*e + b*c + c*f + f]
```

append(el)

Append the element el to this vector.

EXAMPLES:

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import BooleanPolynomialVector
sage: v = BooleanPolynomialVector()
sage: for i in range(5):
....:     v.append(B.random_element())
sage: list(v)
[a*b + a + b*e + c*d + e*f, a*d + c*d + d*f + e + f, a*c + a*e + b*c + c*f + f, a*c + a*d + a*e + a*f + b*e, b*c + b*d + c*d + c + 1]
```

class sage.rings.polynomial.pbori.BooleanPolynomialVectorIterator
 Bases: object

 next ()
 x.next() -> the next value, or raise StopIteration

class sage.rings.polynomial.pbori.CCuddNavigator
 Bases: object

 constant ()
 else_branch ()
 terminal_one ()
 then_branch ()
 value ()

class sage.rings.polynomial.pbori.FGLMStrategy
 Bases: object

 Strategy object for the FGLM algorithm to translate from one Groebner basis with respect to a term ordering A to another Groebner basis with respect to a term ordering B.
main()

Execute the FGLM algorithm.

EXAMPLES:

```python
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: ideal = BooleanPolynomialVector([x+z, y+z])
sage: list(ideal)
[x + z, y + z]
sage: old_ring = B
sage: new_ring = B.clone(ordering=dp_asc)
sage: list(FGLMStrategy(old_ring, new_ring, ideal).main())
[y + x, z + x]
```

class sage.rings.polynomial.pbori.GrobnerStrategy

Bases: object

A Groebner strategy is the main object to control the strategy for computing Groebner bases.

Note: This class is mainly used internally.

add_as_you_wish(p)

Add a new generator but let the strategy object decide whether to perform immediate interreduction.

INPUT:

• p - a polynomial

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
sage: gbs.add_as_you_wish(a + b)
sage: list(gbs)
[a + b]
sage: gbs.add_as_you_wish(a + c)

Note that nothing happened immediately but that the generator was indeed added:

sage: list(gbs)
[a + b]
sage: gbs.symmGB_F2()
sage: list(gbs)
[a + c, b + c]
```

add_generator(p)

Add a new generator.

INPUT:

• p - a polynomial

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
```
add_generator_delayed(p)

Add a new generator but do not perform interreduction immediately.

INPUT:

• p - a polynomial

EXAMPLES:

```sage
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
sage: gbs.add_generator(a + b)
sage: list(gbs)
[a + b]
sage: gbs.add_generator_delayed(a + c)
sage: list(gbs)
[a + b]
sage: list(gbs.all_generators())
[a + b, a + c]
```

all_generators()

EXAMPLES:

```sage
sage: from brial import *
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: gbs = GroebnerStrategy(B)
sage: gbs.add_as_you_wish(a + b)
sage: list(gbs)
[a + b]
sage: gbs.add_as_you_wish(a + c)
sage: list(gbs)
[a + b]
sage: list(gbs.all_generators())
[a + b, a + c]
```

all_spolys_in_next_degree()

clean_top_by_chain_criterion()

contains_one()

Return True if 1 is in the generating system.

EXAMPLES:

We construct an example which contains 1 in the ideal spanned by the generators but not in the set of generators:

```python
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import GroebnerStrategy
gb = GroebnerStrategy(B)
gb.add_generator(a*c + a*f + d*f + d + f)
gb.add_generator(b*c + b*e + c + d + l)
gb.add_generator(a*f + a + c + d + l)
gb.add_generator(a+d + a*e + b*e + c + f)
gb.add_generator(b*d + c + d*f + e + f)
gb.add_generator(a*b + b + c*e + e + l)
gb.add_generator(a + b + c*d + c*e + l)
sage: gb.contains_one()
False
```

Still, we have that:

```python
sage: from brial import groebner_basis
groebner_basis(gb)
[1]
```

faugere_step_dense *(v)*

Reduces a vector of polynomials using linear algebra.

INPUT:

- `v` - a boolean polynomial vector

EXAMPLES:

```python
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import GroebnerStrategy
gb = GroebnerStrategy(B)
gb.add_generator(a*c + a*f + d*f + d + f)
gb.add_generator(b*c + b*e + c + d + l)
gb.add_generator(a*f + a + c + d + l)
gb.add_generator(a+d + a*e + b*e + c + f)
gb.add_generator(b*d + c + d*f + e + f)
gb.add_generator(a*b + b + c*e + e + l)
gb.add_generator(a + b + c*d + c*e + l)
sage: from brial import BooleanPolynomialVector
V= BooleanPolynomialVector([b*d, a*b])
sage: list(gb.faugere_step_dense(V))
[b + c*e + e + l, c + d*f + e + f]
```

implications *(i)*

Compute “useful” implied polynomials of *i*-th generator, and add them to the strategy, if it finds any.

INPUT:

- `i` - an index

ll_reduce_all ()

Use the built-in ll-encoded `BooleSet` of polynomials with linear lexicographical leading term, which coincides with leading term in current ordering, to reduce the tails of all polynomials in the strategy.

minimalize ()

Return a vector of all polynomials with minimal leading terms.

8.1. Boolean Polynomials 591
minimize_and_tail_reduce()
Return a vector of all polynomials with minimal leading terms and do tail reductions.

Note: Use this function if strat contains a GB.

next_spoly()

nf(p)
Compute the normal form of \(p \) with respect to the generating set.

INPUT:

*p - a boolean polynomial

EXAMPLES:

```
sage: P = PolynomialRing(GF(2),10, 'x')
sage: B = BooleanPolynomialRing(10,'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I = B.ideal([B(f) for f in I.gens()])
sage: gb = I.groebner_basis()
sage: from brial import GroebnerStrategy
sage: G = GroebnerStrategy(B)
sage: _ = [G.add_generator(f) for f in gb]
sage: G.nf(gb[0])
0
sage: G.nf(gb[0] + 1)
1
sage: G.nf(gb[0]*gb[1])
0
sage: G.nf(gb[0]*B.gen(1))
0
```

Note: The result is only canonical if the generating set is a Groebner basis.

npairs()
reduction_strategy
select(m)
Return the index of the generator which can reduce the monomial \(m \).

INPUT:

*m - a BooleanMonomial

EXAMPLES:

```
sage: B.<a,b,c,d,e> = BooleanPolynomialRing()
sage: f = B.random_element()
sage: g = B.random_element()
sage: from brial import GroebnerStrategy
```
sage: strat = GroebnerStrategy(B)
sage: strat.add_generator(f)
sage: strat.add_generator(g)
sage: strat.select(f.lm())
0
sage: strat.select(g.lm())
1
sage: strat.select(e.lm())
-1

small_spolys_in_next_degree(f, n)
some_spolys_in_next_degree(n)
suggest_plugin_variable()
symmGB_F2()

Compute a Groebner basis for the generating system.

Note: This implementation is out of date, but it will revived at some point in time. Use the groebner_basis() function instead.

top_sugar()
variable_has_value(v)

Computes, whether there exists some polynomial of the form \(v + c\) in the Strategy – where \(c\) is a constant – in the list of generators.

INPUT:

*\(v\) - the index of a variable

EXAMPLES::

sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing() sage: from brial import GroebnerStrategy sage: gb = GroebnerStrategy(B) sage: gb.add_generator(a*c + a*f + d*f + d + f) sage: gb.add_generator(b*c + b*e + c + d + 1) sage: gb.add_generator(a*f + a + c + d + 1) sage: gb.add_generator(a*d + a*e + b*e + c + f) sage: gb.add_generator(b*d + c + d*f + e + f) sage: gb.add_generator(a*b + b + c*e + e + 1) sage: gb.variable_has_value(0) False

sage: from brial import groebner_basis sage: g = groebner_basis(gb) sage: list(g) [a, b + 1, c + 1, d, e + 1, f]
sage: gb = GroebnerStrategy(B) sage: _ = [gb.add_generator(f) for f in g] sage: gb.variable_has_value(0) True

class sage.rings.polynomial.pbori.MonomialConstruct
Bases: object

Implements PolyBoRi’s Monomial() constructor.

class sage.rings.polynomial.pbori.MonomialFactory
Bases: object

Implements PolyBoRi’s Monomial() constructor. If a ring is given is can be used as a Monomial factory for the given ring.

EXAMPLES:

sage: from brial import *
sage: B.<a,b,c> = BooleanPolynomialRing()
class sage.rings.polynomial.pbori.PolynomialConstruct
 Bases: object

 Implements PolyBoRi's Polynomial() constructor.

 lead(x)
 Return the leading monomial of boolean polynomial x, with respect to the order of parent ring.

 EXAMPLES:

 sage: from brial import *
 sage: B.<a,b,c> = BooleanPolynomialRing()
 sage: PolynomialConstruct().lead(a)
 a

class sage.rings.polynomial.pbori.PolynomialFactory
 Bases: object

 Implements PolyBoRi's Polynomial() constructor and a polynomial factory for given rings.

 lead(x)
 Return the leading monomial of boolean polynomial x, with respect to the order of parent ring.

 EXAMPLES:

 sage: from brial import *
 sage: B.<a,b,c> = BooleanPolynomialRing()
 sage: PolynomialFactory().lead(a)
 a

class sage.rings.polynomial.pbori.ReductionStrategy
 Bases: object

 Functions and options for boolean polynomial reduction.

 add_generator(p)
 Add the new generator p to this strategy.

 INPUT:
 • p - a boolean polynomial.

 EXAMPLES:

 sage: from brial import *
 sage: B.<x,y,z> = BooleanPolynomialRing()
 sage: red = ReductionStrategy(B)
 sage: red.add_generator(x)
 sage: list([f.p for f in red])
 [x]

 can_rewrite(p)
 Return True if p can be reduced by the generators of this strategy.

 EXAMPLES:

 sage: from brial import *
 sage: B.<a,b,c,d> = BooleanPolynomialRing()
cheap_reductions(p)

Perform `cheap` reductions on p.

INPUT:

• p - a boolean polynomial

EXAMPLES:

```sage
define from brial import *
define B.<a,b,c,d> = BooleanPolynomialRing()
define red = ReductionStrategy(B)
define red.add_generator(a*b + c + 1)
define red.add_generator(b*c + d + 1)
define red.add_generator(a)
define red.cheap_reductions(a*b + a)
define 0
define red.cheap_reductions(b + c)
define b + c
define red.cheap_reductions(a*d + b*c + d + 1)
define b*c + d + 1
```

head_normal_form(p)

Compute the normal form of p with respect to the generators of this strategy but do not perform tail any reductions.

INPUT:

• p - a polynomial

EXAMPLES:

```sage
define from brial import *
define B.<x,y,z> = BooleanPolynomialRing()
define red = ReductionStrategy(B)
define red.opt_red_tail = True
define red.add_generator(x + y + 1)
define red.add_generator(y*z + z)
define red.head_normal_form(x + y*z)
define y + z + 1
```

nf(p)

Compute the normal form of p w.r.t. to the generators of this reduction strategy object.

EXAMPLES:
```python
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(x + y + 1)
sage: red.add_generator(y*z + z)
sage: red.nf(x)
y + 1
sage: red.nf(y*z + x)
y + z + 1
```

reduced_normal_form \((p) \)

Compute the normal form of \(p \) with respect to the generators of this strategy and perform tail reductions.

INPUT:

* \(p \) - a polynomial

EXAMPLES:

```python
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(x + y + 1)
sage: red.add_generator(y*z + z)
sage: red.reduced_normal_form(x)
y + 1
sage: red.reduced_normal_form(y*z + x)
y + z + 1
```

sage.rings.polynomial.pbori.TermOrder_from_pb_order \((n, order, blocks) \)

class sage.rings.polynomial.pbori.VariableBlock

Bases: object

class sage.rings.polynomial.pbori.VariableConstruct

Bases: object

Implements PolyBoRi’s `Variable()` constructor.

class sage.rings.polynomial.pbori.VariableFactory

Bases: object

Implements PolyBoRi’s `Variable()` constructor and a variable factory for given ring

sage.rings.polynomial.pbori.add_up_polynomials \((v, init) \)

Add up all entries in the vector \(v \).

INPUT:

* \(v \) - a vector of boolean polynomials

EXAMPLES:

```python
sage: from brial import *
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: v = BooleanPolynomialVector()
sage: l = [B.random_element() for _ in range(5)]
sage: _ = [v.append(e) for e in l]
sage: add_up_polynomials(v, B.zero())
a*d + b*c + b*d + c + 1
```
sage: \texttt{sum(l)}
\texttt{a*d + b*c + b*d + c + 1}

\texttt{sage.rings.polynomial.pbori.contained_vars}(m)
\texttt{sage.rings.polynomial.pbori.easy_linear_factors}(p)
\texttt{sage.rings.polynomial.pbori.gauss_on_polys(inp)}
Perform Gaussian elimination on the input list of polynomials.

\textbf{INPUT:}

\begin{itemize}
\item \texttt{inp} - an iterable
\end{itemize}

\textbf{EXAMPLES:}

```
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: from brial import *
sage: l = [B.random_element() for _ in range(B.ngens())]
sage: A,v = Sequence(l,B).coefficient_matrix()
sage: A
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
sage: e = gauss_on_polys(l)
sage: E,v = Sequence(e,B).coefficient_matrix()
sage: E
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
sage: A.echelon_form()
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
sage: \texttt{sage.rings.polynomial.pbori.get_var_mapping}(\texttt{ring}, \texttt{other})
Return a variable mapping between variables of \texttt{other} and \texttt{ring}. When \texttt{other} is a parent object, the mapping defines images for all variables of \texttt{other}. If it is an element, only variables occurring in \texttt{other} are mapped.

\textbf{Raises} \texttt{NameError} if no such mapping is possible.

\textbf{EXAMPLES:}

```
sage: P.<x,y,z> = BooleanPolynomialRing(3)
sage: R.<z,y> = QQ[]
sage: sage: sage.rings.polynomial.pbori.get_var_mapping(P,R)
[z, y]
sage: sage: sage.rings.polynomial.pbori.get_var_mapping(P, z^2)
[z, None]
```
sage: R.<z,x> = BooleanPolynomialRing(2)
sage: sage.rings.polynomial.pbori.get_var_mapping(P,R)
[z, x]
sage: sage.rings.polynomial.pbori.get_var_mapping(P, x^2)
[None, x]

sage.rings.polynomial.pbori.if_then_else(root, a, b)
The opposite of navigating down a ZDD using navigators is to construct new ZDDs in the same way, namely giving their else- and then-branch as well as the index value of the new node.

INPUT:

• root - a variable
• a - the if branch, a BooleSet or a BoolePolynomial
• b - the else branch, a BooleSet or a BoolePolynomial

EXAMPLES:

```
sage: from brial import if_then_else
sage: B = BooleanPolynomialRing(6,'x')
sage: x0,x1,x2,x3,x4,x5 = B.gens()
sage: f0 = x2*x3+x3
sage: f1 = x4
sage: if_then_else(x1, f0, f1)
{{x1,x2,x3}, {x1,x3}, {x4}}
sage: if_then_else(x1.lm().index(), f0, f1)
{{x1,x2,x3}, {x1,x3}, {x4}}
sage: if_then_else(x5, f0, f1)
Traceback (most recent call last):
 ... IndexError: index of root must be less than the values of roots of the branches.
```

sage.rings.polynomial.pbori.interpolate(zero, one)
Interpolate a polynomial evaluating to zero on zero and to one on ones.

INPUT:

• zero - the set of zero
• one - the set of ones

EXAMPLES:

```
sage: B = BooleanPolynomialRing(4,"x0,x1,x2,x3")
sage: x = B.gen
sage: from brial.interpolate import *
sage: V=(x(0)+x(1)+x(2)+x(3)+1).set()
sage: V
{{x0}, {x1}, {x2}, {x3}, {}}
sage: f=x(0)*x(1)+x(1)+x(2)+1
sage: nf_lex_points(f,V)
x1 + x2 + 1
sage: z=f.zeros_in(V)
```
sage: z
{{x1}, {x2}}

sage: o=V.diff(z)
sage: o
{{x0}, {x3}, {}}

sage: interpolate(z,o)
x0\times x1\times x2 + x0\times x1 + x0\times x2 + x1\times x2 + x1 + x2 + 1

sage.rings.polynomial.pbori.interpolate_smallest_lex(zero, one)
Interpolate the lexicographical smallest polynomial evaluating to zero on zero and to one on ones.

INPUT:

• zero - the set of zeros
• one - the set of ones

EXAMPLES:

Let V be a set of points in \( F_2^4 \) and f a Boolean polynomial. V can be encoded as a BooleSet. Then we are interested in the normal form of f against the vanishing ideal of V : I(V).

It turns out, that the computation of the normal form can be done by the computation of a minimal interpolation polynomial, which takes the same values as f on V:

sage: B = BooleanPolynomialRing(4,"x0,x1,x2,x3")
sage: x = B.gen
sage: from brial.interpolate import *
sage: V=(x(0)+x(1)+x(2)+x(3)+1).set()

We take V = \{e0,e1,e2,e3,0\}, where ei describes the i-th unit vector. For our considerations it does not play any role, if we suppose V to be embedded in \( F_2^4 \) or a vector space of higher dimension:

sage: V
{{x0}, {x1}, {x2}, {x3}, {}}

sage: f=x(0)*x(1)+x(1)+x(2)+1
sage: nf_lex_points(f,V)
x1 + x2 + 1

In this case, the normal form of f w.r.t. the vanishing ideal of V consists of all terms of f with degree smaller or equal to 1.

It can be easily seen, that this polynomial forms the same function on V as f. In fact, our computation is equivalent to the direct call of the interpolation function interpolate_smallest_lex, which has two arguments: the set of interpolation points mapped to zero and the set of interpolation points mapped to one:

sage: z=f.zeros_in(V)
sage: z
{{x1}, {x2}}

sage: o=V.diff(z)
sage: o
{{x0}, {x3}, {}}

sage: interpolate_smallest_lex(z,o)
x1 + x2 + 1
sage.rings.polynomial.pbori.\texttt{ll\_red\_nf\_noredsb}(p, \texttt{reductors})

Reduce the polynomial \( p \) by the set of \texttt{reductors} with linear leading terms.

INPUT:

\begin{itemize}
  \item \( p \) - a boolean polynomial
  \item \texttt{reductors} - a boolean set encoding a Groebner basis with linear leading terms.
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: from brial import ll_red_nf_noredsb
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: p = a*b + c + d + 1
sage: f, g = a + c + 1, b + d + 1;
sage: reductors = f.set().union( g.set() )
sage: ll_red_nf_noredsb(p, reductors)
b*c + b*d + c + d + 1
\end{verbatim}

sage.rings.polynomial.pbori.\texttt{ll\_red\_nf\_noredsb\_single\_recursive\_call}(p, \texttt{reductors})

Reduce the polynomial \( p \) by the set of \texttt{reductors} with linear leading terms. \texttt{ll\_red\_nf\_noredsb\_single\_recursive\_call()} call has the same specification as \texttt{ll\_red\_nf\_noredsb()}, but a different implementation: It is very sensitive to the ordering of variables, however it has the property, that it needs just one recursive call.

INPUT:

\begin{itemize}
  \item \( p \) - a boolean polynomial
  \item \texttt{reductors} - a boolean set encoding a Groebner basis with linear leading terms.
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: from brial import ll_red_nf_noredsb_single_recursive_call
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: p = a*b + c + d + 1
sage: f, g = a + c + 1, b + d + 1;
sage: reductors = f.set().union( g.set() )
sage: ll_red_nf_noredsb_single_recursive_call(p, reductors)
b*c + b*d + c + d + 1
\end{verbatim}

sage.rings.polynomial.pbori.\texttt{ll\_red\_nf\_redsb}(p, \texttt{reductors})

Reduce the polynomial \( p \) by the set of \texttt{reductors} with linear leading terms. It is assumed that the set \texttt{reductors} is a reduced Groebner basis.

INPUT:

\begin{itemize}
  \item \( p \) - a boolean polynomial
  \item \texttt{reductors} - a boolean set encoding a reduced Groebner basis with linear leading terms.
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: from brial import ll_red_nf_redsb
sage: B.<a,b,c,d> = BooleanPolynomialRing()
sage: p = a*b + c + d + 1
sage: f, g = a + c + 1, b + d + 1;
sage: reductors = f.set().union( g.set() )
sage: ll_red_nf_redsb(p, reductors)
b*c + b*d + c + d + 1
\end{verbatim}
sage.rings.polynomial.pbori.map_every_x_to_x_plus_one(p)
Map every variable \( x_i \) in this polynomial to \( x_i + 1 \).

**EXAMPLES:**

```python
sage: B.<a,b,z> = BooleanPolynomialRing(3)
sage: f = a*b + z + 1; f
a*b + z + 1
sage: from brial import map_every_x_to_x_plus_one
sage: map_every_x_to_x_plus_one(f)
a*b + a + b + z + 1
sage: f(a+1,b+1,z+1)
a*b + a + b + z + 1
```

sage.rings.polynomial.pbori.mod_mon_set(a_s, v_s)
sage.rings.polynomial.pbori.mod_var_set(a, v)
sage.rings.polynomial.pbori.mult_fact_sim_C(v, ring)
sage.rings.polynomial.pbori.nf3(s, p, m)
sage.rings.polynomial.pbori.parallel_reduce(inp, strat, average_steps, delay_f)
sage.rings.polynomial.pbori.random_set(variables, length)
Return a random set of monomials with \( \text{length} \) elements with each element in the variables \( \text{variables} \).

**EXAMPLES:**

```python
sage: from brial import *
sage: B.<a,b,c,d,e> = BooleanPolynomialRing()
sage: (a*b*c*d).lm()
(a*b*c*d)
sage: set_random_seed(1337)
sage: random_set((a*b*c*d).lm(),10)
{[a,b,c,d], [a,b], [a,c,d], [a,c], [b,c,d], [b,d], [b], [c,d], [c], [d]}
```

sage.rings.polynomial.pbori.recursively_insert(n, ind, m)
sage.rings.polynomial.pbori.red_tail(s, p)
Perform tail reduction on \( p \) using the generators of \( s \).

**INPUT:**

- \( s \) - a reduction strategy
- \( p \) - a polynomial

**EXAMPLES:**

```python
sage: from brial import *
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: red = ReductionStrategy(B)
sage: red.add_generator(x + y + 1)
sage: red.add_generator(y*z + z)
sage: red_tail(red,x)
x
sage: red_tail(red,x*y + x)
x*y + y + 1
```

sage.rings.polynomial.pbori.set_random_seed(seed)
The the PolyBoRi random seed to \( \text{seed} \)
EXAMPLES:

```
sage: from brial import random_set, set_random_seed
sage: B.<a,b,c,d,e> = BooleanPolynomialRing()
sage: (a+b+c+d).lm()
a*b*c*d
sage: set_random_seed(1337)
```

```
sage: random_set((a+b+c+d).lm(),2)
{(b), (c)}
sage: random_set((a+b+c+d).lm(),2)
{(a,c,d), (c)}
```

```
sage: set_random_seed(1337)
```

```
sage: random_set((a*b*c*d).lm(),2)
{(b), (c)}
sage: random_set((a*b*c*d).lm(),2)
{(a,c,d), (c)}
```

```
sage: set_random_seed(1337)
```

```
sage: random_set((a*b*c*d).lm(),2)
{(b), (c)}
sage: random_set((a*b*c*d).lm(),2)
{(a,c,d), (c)}
```

```
sage.rings.polynomial.pbori.substitute_variables (parent, vec, poly)
```

var(i) is replaced by vec[i] in poly.

EXAMPLES:

```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: f = a*b + c + 1
sage: from brial import substitute_variables
sage: substitute_variables(B, [a,b,c],f)
a*b + c + 1
sage: substitute_variables(B, [a+1,b,c],f)
a*b + b + c + 1
sage: substitute_variables(B, [a+1,b+1,c],f)
a*b + a + b + c
sage: substitute_variables(B, [a+1,b+1,B(0)],f)
a*b + a + b
```

Substitution is also allowed with different rings:

```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: f = a*b + c + 1
sage: B.<w,x,y,z> = BooleanPolynomialRing(order='deglex')
```

```
sage: from brial import substitute_variables
sage: substitute_variables(B, [x,y,z], f) * w
w*x*y + w*z + w
```

```
sage.rings.polynomial.pbori.top_index (s)
```

Return the highest index in the parameter s.

INPUT:

- •s - BooleSet, BooleMonomial, BoolePolynomial

EXAMPLES:

```
sage: B.<x,y,z> = BooleanPolynomialRing(3)
sage: from brial import top_index
sage: top_index(x.lm())
0
sage: top_index(y+z)
1
```
sage: top_index(x + 1)
0

sage.rings.polynomial.pbori.unpickle_BooleanPolynomial \( (\text{ring, string}) \)
Unpickle boolean polynomials

EXAMPLES:

sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
sage: loads(dumps(a+b)) == a+b \ # indirect doctest
True

sage.rings.polynomial.pbori.unpickle_BooleanPolynomial0 \( (\text{ring, } l) \)
Unpickle boolean polynomials

EXAMPLES:

sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
sage: loads(dumps(a+b)) == a+b \ # indirect doctest
True

sage.rings.polynomial.pbori.unpickle_BooleanPolynomialRing \( (n, names, order) \)
Unpickle boolean polynomial rings.

EXAMPLES:

sage: T = TermOrder('deglex',2)+TermOrder('deglex',2)
sage: P.<a,b,c,d> = BooleanPolynomialRing(4,order=T)
sage: loads(dumps(P)) == P \ # indirect doctest
True

sage.rings.polynomial.pbori.zeros \( (pol, s) \)
Return a BooleSet encoding on which points from s the polynomial pol evaluates to zero.

INPUT:

- pol - a boolean polynomial
- s - a set of points encoded as a BooleSet

EXAMPLES:

sage: B.<a,b,c,d> = BooleanPolynomialRing(4)
sage: f = a*b + a*c + d + b

Now we create a set of points:

sage: s = a*b + a*b*c + c*d + b*c
sage: s = s.set(); s
\{(a,b,c), (a,b), (b,c), (c,d)}

This encodes the points (1,1,0,0), (1,0,1,1) and (0,1,1,0). But of these only (1,1,0,0) evaluates to zero.:

sage: from brial import zeros
sage: zeros(f,s)
\{\{(a,b)\}}

For comparison we work with tuples:

8.1. Boolean Polynomials
sage: f.zeros_in([([1,1,1,0], (1,1,0,0), (0,0,1,1), (0,1,1,0))])
((1, 1, 0, 0),)
NONCOMMUTATIVE POLYNOMIALS

9.1 Noncommutative Polynomials via libSINGULAR/Plural

This module provides specialized and optimized implementations for noncommutative multivariate polynomials over many coefficient rings, via the shared library interface to SINGULAR. In particular, the following coefficient rings are supported by this implementation:

- the rational numbers $\mathbb{Q}$, and
- finite fields $\mathbb{F}_p$ for $p$ prime

AUTHORS:
The PLURAL wrapper is due to

- Burcin Erocal (2008-11 and 2010-07): initial implementation and concept
- Michael Brickenstein (2008-11 and 2010-07): initial implementation and concept
- Oleksandr Motsak (2010-07): complete overall noncommutative functionality and first release
- Alexander Dreyer (2010-07): noncommutative ring functionality and documentation
- Simon King (2011-09): left and two-sided ideals; normal forms; pickling; documentation

The underlying libSINGULAR interface was implemented by

- Martin Albrecht (2007-01): initial implementation
- Joel Mohler (2008-01): misc improvements, polishing
- Martin Albrecht (2008-08): added $\mathbb{Q}(\alpha)$ and $\mathbb{Z}$ support
- Simon King (2009-04): improved coercion
- Martin Albrecht (2009-05): added $\mathbb{Z}/n\mathbb{Z}$ support, refactoring
- Martin Albrecht (2009-06): refactored the code to allow better re-use

Todo
extend functionality towards those of libSINGULARs commutative part

EXAMPLES:
We show how to construct various noncommutative polynomial rings:
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -x*y}
sage: y*x + 1/2
-x*y + 1/2
sage: A.<x,y,z> = FreeAlgebra(GF(17), 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P
Noncommutative Multivariate Polynomial Ring in x, y, z over Finite Field of size 17, nc-relations: {y*x: -x*y}
sage: y*x + 7
-x*y + 7

Raw use of this class; this is not the intended use!

sage: from sage.matrix.constructor import Matrix
sage: c = Matrix(3)
sage: c[0,1] = -2
sage: c[0,2] = 1
sage: c[1,2] = 1
sage: d = Matrix(3)
sage: d[0, 1] = 17
sage: P = QQ['x','y','z']
sage: c = c.change_ring(P)
sage: d = d.change_ring(P)
sage: from sage.rings.polynomial.plural import NCPolynomialRing_plural
sage: R.<x,y,z> = NCPolynomialRing_plural(QQ, c = c, d = d, order=TermOrder('lex',3),
   category=Algebras(QQ))
sage: R
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -2*x*y + 17}
sage: R.term_order()
Lexicographic term order
sage: a,b,c = R.gens()
sage: f = 57 * a^2*b + 43 * c + 1; f
57*x^2*y + 43*z + 1

sage.rings.polynomial.plural.ExteriorAlgebra(base_ring, names, order='degrevlex')
Return the exterior algebra on some generators

This is also known as a Grassmann algebra. This is a finite dimensional algebra, where all generators anti-commute.

See Wikipedia article Exterior algebra

INPUT:

• base_ring – the ground ring
• names – a list of variable names
EXEMPLARY:

```python
sage: from sage.rings.polynomial.plural import ExteriorAlgebra
sage: E = ExteriorAlgebra(QQ, ['x', 'y', 'z']); E
#random
Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational
˓
→Field, nc-relations: (z*x: -x*z, z*y: -y*z, y*x: -x*y) by the ideal (z^2, y^2, x^2)
sage: sorted(E.cover().domain().relations().items(), key=str)
[(y*x, -x*y), (z*x, -x*z), (z*y, -y*z)]
sage: sorted(E.cover().kernel().gens(), key=str)
x^2, y^2, z^2
sage: E.inject_variables()
Defining xbar, ybar, zbar
sage: x, y, z = (xbar, ybar, zbar)
sage: y*x
-x*y
sage: all(v^2==0 for v in E.gens())
True
sage: E.one()
1
```

class sage.rings.polynomial.plural.ExteriorAlgebra_plural

Bases: sage.rings.polynomial.plural.NCPolynomialRing_plural

class sage.rings.polynomial.plural.G_AlgFactory

Bases: sage.structure.factory.UniqueFactory

A factory for the creation of g-algebras as unique parents.

create_key_and_extra_args(base_ring, c, d, names=None, order=None, category=None, check=None)

Create a unique key for g-algebras.

INPUT:

• `base_ring` - a ring
• `c, d` - two matrices
• `names` - a tuple or list of names
• `order` - (optional) term order
• `category` - (optional) category
• `check` - optional bool

create_object(version, key, **extra_args)

Create a g-algebra to a given unique key.

INPUT:

• `key` - a 6-tuple, formed by a base ring, a tuple of names, two matrices over a polynomial ring over the base ring with the given variable names, a term order, and a category
• `extra_args` - a dictionary, whose only relevant key is ‘check’.

class sage.rings.polynomial.plural.NCPolynomialRing_plural

Bases: sage.rings.ring.Ring

A non-commutative polynomial ring.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: H._is_category_initialized()  
True
sage: H.category()  
Category of algebras over Rational Field
sage: TestSuite(H).run()

Note that two variables commute if they are not part of the given relations:

sage: H.<x,y,z> = A.g_algebra({z*x:x*z+2*x, z*y:y*z-2*y})
sage: x*y == y*x
True

**gen**(n=0)

Returns the n-th generator of this noncommutative polynomial ring.

**INPUT:**

• n – an integer >= 0

**EXAMPLES:**

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.gen(), P.gen(1)
(x, y)

Note that the generators are not cached:

sage: P.gen(1) is P.gen(1)
False

**ideal**(gens, **kwds)

Create an ideal in this polynomial ring.

**INPUT:**

• *gens* - list or tuple of generators (or several input arguments)
  
• *coerce* - bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.

• *side* - string (either “left”, which is the default, or “twosided”) Must be a keyword argument. Defines whether the ideal is a left ideal or a two-sided ideal. Right ideals are not implemented.

**EXAMPLES:**

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.ideal([x + 2*y + 2*z-1, 2*x*y + 2*y*z-y, x^2 + 2*y^2 + 2*z^2-x])
Left Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 - x + 2*y^2 + 2*z^2) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -x*y}
sage: P.ideal([x + 2*y + 2*z-1, 2*x*y + 2*y*z-y, x^2 + 2*y^2 + 2*z^2-x], side="twosided")
Twosided Ideal (x + 2*y + 2*z - 1, 2*x*y + 2*y*z - y, x^2 - x + 2*y^2 + 2*z^2) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -x*y}
**is_commutative()**
Return False.

**Todo**
Provide a mathematically correct answer.

**EXAMPLES:**

```sage
A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.is_commutative()
False
```

**is_field(**args, **kwargs)**
Return False.

**EXAMPLES:**

```sage
A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.is_field()
False
```

**monomial_all_divisors(t)**
Return a list of all monomials that divide t.
Coefficients are ignored.

**INPUT:**
• t - a monomial

**OUTPUT:**
a list of monomials

**EXAMPLES:**

```sage
A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
```

**ALGORITHM:** addwithcarry idea by Toon Segers

**monomial_divides(a, b)**
Return False if a does not divide b and True otherwise.
Coefficients are ignored.

**INPUT:**
• a – monomial
• b – monomial

**EXAMPLES:**
```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
False
```

**monomial_lcm** *(f, g)*

LCM for monomials. Coefficients are ignored.

**INPUT:**

• *f* - monomial

• *g* - monomial

**EXAMPLES:**

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_lcm(3/2*x*y,x)
x*y
```

**monomial_pairwise_prime** *(g, h)*

Return True if *h* and *g* are pairwise prime.

Both *h* and *g* are treated as monomials.

Coefficients are ignored.

**INPUT:**

• *h* - monomial

• *g* - monomial

**EXAMPLES:**

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True
sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False
```

**monomial_quotient** *(f, g, coeff=False)*

Return *f*/*g*, where both *f* and *g* are treated as monomials.

Coefficients are ignored by default.

**INPUT:**
• f - monomial
• g - monomial
• coeff - divide coefficients as well (default: False)

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: P.monomial_quotient(3/2*x*y,x,coeff=True)
3/2*y
```

Note that \( \mathbb{Z} \) behaves differently if coeff=True:

```python
sage: P.monomial_quotient(2*x,3*x)
1
sage: P.monomial_quotient(2*x,3*x,coeff=True)
2/3
```

**Warning:** Assumes that the head term of \( f \) is a multiple of the head term of \( g \) and return the multiplicant \( m \). If this rule is violated, funny things may happen.

`monomial_reduce (f, G)`

Try to find a \( g \) in \( G \) where \( g.lm() \) divides \( f \). If found \( (flt,g) \) is returned, \((0,0)\) otherwise, where \( flt = f/g.lm() \).

It is assumed that \( G \) is iterable and contains only elements in this polynomial ring.

Coefficients are ignored.

INPUT:
• f - monomial
• G - list/set of mpolynomials

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order='lex')
sage: P.inject_variables()
Defining x, y, z
sage: f = x*y^2
sage: G = [3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, 1/2]
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)
```

`ngens ()`

Returns the number of variables in this noncommutative polynomial ring.

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
```
relations (add_commutative=False)

Return the relations of this g-algebra.

INPUT:
add_commutative (optional bool, default False)

OUTPUT:
The defining relations. There are some implicit relations: Two generators commute if they are not part of any given relation. The implicit relations are not provided, unless add_commutative==True.

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({z*x:x*z+2*x, z*y:y*z-2*y})
sage: x*y == y*x
True
tsage: H.relations()
{z*x: x*z + 2*x, z*y: y*z - 2*y}
tsage: H.relations(add_commutative=True)
{y*x: x*y, z*x: x*z + 2*x, z*y: y*z - 2*y}
```

term_order()

Return the term ordering of the noncommutative ring.

EXAMPLES:

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: P.term_order()
Lexicographic term order
sage: P = A.g_algebra(relations={y*x:-x*y})
sage: P.term_order()
Degree reverse lexicographic term order
```

class sage.rings.polynomial.plural.NCPolynomial_plural

Bases: sage.structure.element.RingElement

A noncommutative multivariate polynomial implemented using libSINGULAR.

coefficient (degrees)

Return the coefficient of the variables with the degrees specified in the python dictionary degrees.

Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in degrees. However, the result has the same parent as this polynomial.

This function contrasts with the function monomial_coefficient () which returns the coefficient in the base ring of a monomial.

INPUT:

*degrees - Can be any of:
  - a dictionary of degree restrictions
  - a list of degree restrictions (with None in the unrestricted variables)
  - a monomial (very fast, but not as flexible)
element of the parent of this element.

Note: For coefficients of specific monomials, look at :meth:`monomial_coefficient`.

EXAMPLES:

```python
sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=x*y+y+5
sage: f.coefficient({x:0,y:1})
1
sage: f.coefficient({x:0})
y + 5
sage: f=(1+y+y^2)*(1+x+x^2)
```

Be aware that this may not be what you think! The physical appearance of the variable x is deceiving –
particularly if the exponent would be a variable.

```python
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x^2 + x*y^2 - x*y + x + z + y^2 + y + 1
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=x*y+5
sage: c=f.coefficient({x:0,y:0}); c
5
sage: parent(c)
Noncommutative Multivariate Polynomial Ring in x, z, y over Finite Field of size 389, nc-relations: {y*x: -x*y + z}
```

AUTHOR:

- Joël B. Mohler (2007-10-31)

.. automethod:: constant_coefficient

Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

```python
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
```
**Sage Reference Manual: Polynomials, Release 8.0**

```python
sage: f.constant_coefficient()
5
sage: f = 3*x^2
sage: f.constant_coefficient()
0
```

**degree (x=None)**

Return the maximal degree of this polynomial in $x$, where $x$ must be one of the generators for the parent of this polynomial.

**INPUT:**

- $x$ - multivariate polynomial (a generator of the parent of self) If $x$ is not specified (or is `None`), return the total degree, which is the maximum degree of any monomial.

**OUTPUT:**

integer

**EXAMPLES:**

```python
sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9
sage: f.degree(y)
2
```

**degrees ()**

Returns a tuple with the maximal degree of each variable in this polynomial. The list of degrees is ordered by the order of the generators.

**EXAMPLES:**

```python
sage: A.<y0,y1,y2> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y1*y0:-y0*y1 + y2}, order='lex')
sage: R.inject_variables()
Defining y0, y1, y2
sage: q = 3*y0*y1*y2 + y1^2*y2
sage: q.degrees()
(1, 2, 1)
sage: (q + y0^5).degrees()
(5, 2, 1)
```

**dict ()**

Return a dictionary representing self. This dictionary is in the same format as the generic MPolynomial: The dictionary consists of ETuple:coefficient pairs.

**EXAMPLES:**

```python
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
```
sage: R.inject_variables()
Defining x, z, y

sage: f = (2*x*y^3*z^2 + (7)*x^2 + (3))
sage: f.dict()
{(0, 0, 0): 3, (1, 2, 3): 2, (2, 0, 0): 7}

\textbf{exponents (as\_ETuples=True)}

Return the exponents of the monomials appearing in this polynomial.

\textbf{INPUT:}

- \texttt{as\_ETuples} - (default: True) if True returns the result as an list of ETuples otherwise returns a list of tuples

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: f = x^3 + y + 2*z^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 0, 1)]
sage: f.exponents(as\_ETuples=False)
[(3, 0, 0), (0, 2, 0), (0, 0, 1)]
\end{verbatim}

\textbf{is\_constant()}

Return True if this polynomial is constant.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: x.is\_constant()
False
sage: P(1).is\_constant()
True
\end{verbatim}

\textbf{is\_homogeneous()}

Return True if this polynomial is homogeneous.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: (x+y+z).is\_homogeneous()
True
sage: (x.parent()(0)).is\_homogeneous()
True
sage: (x+y^2+z^3).is\_homogeneous()
False
sage: (x^2 + y^2).is\_homogeneous()
True
sage: (x^2 + y^2+x).is\_homogeneous()
\end{verbatim}
False
sage: (x^2*y + y^2*x).is_homogeneous()
True

\textbf{is\_monomial()}

Return \texttt{True} if this polynomial is a monomial.

A monomial is defined to be a product of generators with coefficient 1.

\textbf{EXAMPLES:}

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y
sage: x.is_monomial()
True
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True
sage: (x*y + x).is_monomial()
False
```

\textbf{is\_zero()}

Return \texttt{True} if this polynomial is zero.

\textbf{EXAMPLES:}

```
sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: x.is_zero()
False
sage: (x-x).is_zero()
True
```

\textbf{lc()}

Leading coefficient of this polynomial with respect to the term order of \texttt{self.parent()}.

\textbf{EXAMPLES:}

```
sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lc()
3
sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lc()
5
```

\textbf{lm()}

Returns the lead monomial of \texttt{self} with respect to the term order of \texttt{self.parent()}.
In Sage a monomial is a product of variables in some power without a coefficient.

**EXAMPLES:**

```python
sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1*y^2 + y^3*z^4
sage: f.lm()
x*y^2
sage: f = x^3*y^2*z^4 + x^3*y^2*z^1
sage: f.lm()
x^3*y^2*z^4
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='deglex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1*y^2*z^3 + x^3*y^2*z^0
sage: f.lm()
x*y^2*z^3
sage: f = x^1*y^2*z^4 + x^1*y^1*z^5
sage: f.lm()
x*y^2*z^4
sage: A.<x,y,z> = FreeAlgebra(GF(127), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='degrevlex')
sage: R.inject_variables()
Defining x, y, z
sage: f = x^1*y^5*z^2 + x^4*y^1*z^3
sage: f.lm()
x*y^5*z^2
sage: f = x^4*y^7*z^1 + x^4*y^2*z^3
sage: f.lm()
x^4*y^7*z
```

**lt()**

Leading term of this polynomial.

In Sage a term is a product of variables in some power and a coefficient.

**EXAMPLES:**

```python
sage: A.<x,y,z> = FreeAlgebra(GF(7), 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, y, z
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lt()
3*x*y^2
sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lt()
-2*x^3*y^2*z^4
```

**monomial_coefficient**(mon)

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.
This function contrasts with the function `coefficient()` which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

INPUT:

• `mon` - a monomial

OUTPUT:

coefficient in base ring

See also:

For coefficients in a base ring of fewer variables, look at `coefficient()`

EXAMPLES:

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y

The parent of the return is a member of the base ring.
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Finite Field of size 389

sage: f = y^2 + y^2*x - x^9 - 7*x + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
388
sage: f.monomial_coefficient(x^10)
0
```

```
monomials()
Return the list of monomials in self

The returned list is decreasingly ordered by the term ordering of self.parent().

EXAMPLES:

```
sage: A.<x,z,y> = FreeAlgebra(GF(389), 3)
sage: P = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: P.inject_variables()
Defining x, z, y

sage: f = x + (3*2)*y*z^2 + (2+3)
sage: f.monomials()
[x, z^2*y, 1]
sage: f = P(3^2)
sage: f.monomials()
[1]
```

```
reduce(I)
EXAMPLES:
```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()],coerce=False)

The result of reduction is not the normal form, if one reduces by a list of polynomials:

sage: (x*z).reduce(I.gens())
x*z

However, if the argument is an ideal, then a normal form (reduction with respect to a two-sided Groebner basis) is returned:

sage: (x*z).reduce(I)
-x

The Groebner basis shows that the result is correct:

sage: I.std() #random
Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational
Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(I.std().gens(),key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]

total_degree()

Return the total degree of self, which is the maximum degree of all monomials in self.

EXAMPLES:

sage: A.<x,z,y> = FreeAlgebra(QQ, 3)
sage: R = A.g_algebra(relations={y*x:-x*y + z}, order='lex')
sage: R.inject_variables()
Defining x, z, y
sage: f=2*x*y^3*z^2
sage: f.total_degree()
6
sage: f=4*x^2*y^2*z^3
sage: f.total_degree()
7
sage: f=99*x^6*y^3*z^9
sage: f.total_degree()
18
sage: f=x*y^3*z^6+3*x^2
sage: f.total_degree()
10
sage: f=z^3+8*x^4*y^5*z
sage: f.total_degree()
10
sage: f=z^9+10*x^4+y^8*x^2
sage: f.total_degree()
10

sage.rings.polynomial.plural.SCA(base_ring, names, alt_vars, order='degrevlex')

Return a free graded-commutative algebra

This is also known as a free super-commutative algebra.

INPUT:
• base_ring – the ground field
• names – a list of variable names
• alt_vars – a list of indices of to be anti-commutative variables (odd variables)
• order – ordering to be used for the constructed algebra

EXAMPLES:

```python
sage: from sage.rings.polynomial.plural import SCA
sage: E = SCA(QQ, ['x', 'y', 'z'], [0, 1], order = 'degrevlex')
sage: E
Quotient of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: (y*x: -x*y) by the ideal (y^2, x^2)
sage: E.inject_variables()
Defining xbar, ybar, zbar
sage: x,y,z = (xbar,ybar,zbar)
sage: y*x
-x*y
sage: z*x
x*z
sage: x^2
0
sage: y^2
0
sage: z^2
z^2
sage: E.one()
1
```

`sage.rings.polynomial.plural.new_CRing(rw, base_ring)`

Construct MPolynomialRing_libsingular from ringWrap, assumming the ground field to be base_ring

EXAMPLES:

```python
sage: H.<x,y,z> = PolynomialRing(QQ, 3)
sage: from sage.libs.singular.function import singular_function
sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")
sage: L = ringlist(H, ring=H); L
[0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0]]
sage: len(L)
4
sage: W = ring(L, ring=H); W
<RingWrap>
sage: from sage.rings.polynomial.plural import new_CRing
sage: R = new_CRing(W, H.base_ring())
sage: R # indirect doctest
Multivariate Polynomial Ring in x, y, z over Rational Field
```

Check that trac ticket #13145 has been resolved:

```python
sage: h = hash(R.gen() + 1) # sets currRing
sage: from sage.libs.singular.ring import ring_refcount_dict, currRing_wrapper
```
sage: currnt = ring_refcount_dict[currRing_wrapper()]
sage: newR = new_CRing(W, H.base_ring())
sage: ring_refcount_dict[currRing_wrapper()] - currnt
1

sage.rings.polynomial.plural.new_NRing(rw, base_ring)
Construct NCPolynomialRing_plural from ringWrap, assuming the ground field to be base_ring

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-1})
sage: H.inject_variables()
Defining x, y, z
sage: z*x
x*z
sage: z*y
y*z
sage: y*x
x*y - 1
sage: I = H.ideal([y^2, x^2, z^2-1])
sage: I._groebner_basis_libsingular()
[1]
sage: from sage.libs.singular.function import singular_function
sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")
sage: L = ringlist(H, ring=H); L

[[0 1 1]
 [0 0 1]
 [0 0 0]
 [0 0 0]]
sage: len(L)
6
sage: W = ring(L, ring=H); W
<noncommutative RingWrap>

sage: from sage.rings.polynomial.plural import new_NRing
sage: R = new_NRing(W, H.base_ring())

sage: R # indirect doctest
Noncommutative Multivariate Polynomial Ring in x, y, z over
Rational Field, nc-relations: {y*x: x*y - 1}

sage.rings.polynomial.plural.new_Ring(rw, base_ring)
Constructs a Sage ring out of low level RingWrap, which wraps a pointer to a Singular ring.

The constructed ring is either commutative or noncommutative depending on the Singular ring.

EXAMPLES:
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x:x*y-1})
sage: H.inject_variables()
Defining x, y, z
sage: z*x
x*z
sage: z*y
y*z
sage: y*x
x*y - 1
sage: I = H.ideal([y^2, x^2, z^2-1])
sage: I._groebner_basis_libsingular()
[1]
sage: from sage.libs.singular.function import singular_function
sage: ringlist = singular_function('ringlist')
sage: ring = singular_function("ring")
sage: L = ringlist(H, ring=H); L
[0 1 1]
[0 0 1]
0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0], [0 0 0],
[0 -1 0]
[0 0 0]
[0 0 0]
]
sage: len(L)
6
sage: W = ring(L, ring=H); W
<noncommutative RingWrap>
sage: from sage.rings.polynomial.plural import new_Ring
sage: R = new_Ring(W, H.base_ring()); R
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-
relations: {y*x: x*y - 1}
sage.rings.polynomial.plural.unpickle_NCPolynomial_plural(R, d)
Auxiliary function to unpickle a non-commutative polynomial.
• Index
• Module Index
• Search Page
BIBLIOGRAPHY

sage.rings.fraction_field, 469
sage.rings.fraction_field_element, 473
sage.rings.fraction_field_FpT, 477
sage.rings.invariant_theory, 389
sage.rings.monomials, 389
sage.rings.polynomial.complex_roots, 201
sage.rings.polynomial.convolution, 227
sage.rings.polynomial.cyclotomic, 228
sage.rings.polynomial.flatten, 386
sage.rings.polynomial.ideal, 204
sage.rings.polynomial.infinite_polynomial_element, 523
sage.rings.polynomial.infinite_polynomial_ring, 513
sage.rings.polynomial.laurent_polynomial, 492
sage.rings.polynomial.laurent_polynomial_ring, 485
sage.rings.polynomial.multi_polynomial, 257
sage.rings.polynomial.multi_polynomial_element, 279
sage.rings.polynomial.multi_polynomial_ideal, 294
sage.rings.polynomial.multi_polynomial_ideal_libsingular, 377
sage.rings.polynomial.multi_polynomial_libsingular, 350
sage.rings.polynomial.multi_polynomial_ring, 275
sage.rings.polynomial.multi_polynomial_ring_generic, 248
sage.rings.polynomial.multi_polynomial_sequence, 336
sage.rings.polynomial.omega, 507
sage.rings.polynomial.padics.polynomial_padic, 160
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense, 163
sage.rings.polynomial.padics.polynomial_padic_flatsingular, 160
sage.rings.polynomial.pbors, 547
sage.rings.polynomial.plural, 605
sage.rings.polynomial.polydict, 378
sage.rings.polynomial.polynomial compiled, 226
sage.rings.polynomial.polynomial_element, 29
sage.rings.polynomial.polynomial_element_generic, 101
sage.rings.polynomial.polynomial_fateman, 227
sage.rings.polynomial.polynomial_gf2x, 110
sage.rings.polynomial.polynomial_integer_dense_flint, 117
sage.rings.polynomial.polynomial_integer_dense_ntl, 125
sage.rings.polynomial.polynomial_modn_dense_ntl, 147
sage.rings.polynomial.polynomial_number_field, 114
sage.rings.polynomial.polynomial_quotient_ring, 205
sage.rings.polynomial.polynomial_quotient_ring_element, 221
sage.rings.polynomial.polynomial_rational_flint, 130
sage.rings.polynomial.polynomial_real_mpfr_dense, 157
sage.rings.polynomial.polynomial_ring, 9
sage.rings.polynomial.polynomial_ring_constructor, 1
sage.rings.polynomial.polynomial_ring_homomorphism, 29
sage.rings.polynomial.polynomial_singular_interface, 159
sage.rings.polynomial.polynomial_zmod_flint, 141
sage.rings.polynomial.polynomial_zz_pex, 170
sage.rings.polynomial.real_roots, 174
sage.rings.polynomial.refine_root, 204
sage.rings.polynomial.skew_polynomial_element, 431
sage.rings.polynomial.skew_polynomial_ring, 460
sage.rings.polynomial.skew_polynomial_ring_constructor, 458
sage.rings.polynomial.symmetric_ideal, 531
sage.rings.polynomial.symmetric_reduction, 540
sage.rings.polynomial.term_order, 231
sage.rings.polynomial.toy_buchberger, 417
sage.rings.polynomial.toy_d_basis, 425
sage.rings.polynomial.toy_variety, 422
INDEX

Symbols

add() (sage.rings.polynomial.polynomial_element.Polynomial method), 30
add() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 117
add() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 152
add() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 130
add() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 143
lmul() (sage.rings.polynomial.polynomial_element.Polynomial method), 30
lmul() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 117
lmul() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 152
lmul() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 130
lmul() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 143
mul() (sage.rings.polynomial.polynomial_element.Polynomial method), 31
mul() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 117
mul() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 152
mul() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 130
mul() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 144
_mul_trunc_() (sage.rings.polynomial.polynomial_element.Polynomial method), 31
_mul_trunc_() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118
_mul_trunc_() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 152
_mul_trunc_() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 131
_mul_trunc_() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 144
rmul() (sage.rings.polynomial.polynomial_element.Polynomial method), 31
rmul() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 117
rmul() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 152
rmul() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 130
rmul() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 144
sub() (sage.rings.polynomial.polynomial_element.Polynomial method), 30
sub() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 117
sub() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 152
sub() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 130
sub() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 143

A

abc_pd (class in sage.rings.polynomial.polynomial_compiled), 226
adams_operator() (sage.rings.polynomial.polynomial_element.Polynomial method), 32
add_as_you_wish() (sage.rings.polynomial.pbori.GroebnerStrategy method), 589
add_bigoh() (sage.rings.polynomial.polynomial_element.Polynomial method), 32
BinaryQuartic (class in sage.rings.invariant_theory), 393
bitsize_doctest() (in module sage.rings.polynomial.real_roots), 177
blocks() (sage.rings.polynomial.term_order.TermOrder method), 236
BooleanMonomial (class in sage.rings.polynomial.pbori), 557
BooleanMonomialIterator (class in sage.rings.polynomial.pbori), 560
BooleanMonomialMonoid (class in sage.rings.polynomial.pbori), 560
BooleanMonomialVariableIterator (class in sage.rings.polynomial.pbori), 562
BooleanMulAction (class in sage.rings.polynomial.pbori), 562
BooleanPolynomial (class in sage.rings.polynomial.pbori), 562
BooleanPolynomialEntry (class in sage.rings.polynomial.pbori), 577
BooleanPolynomialIdeal (class in sage.rings.polynomial.pbori), 577
BooleanPolynomialIterator (class in sage.rings.polynomial.pbori), 580
BooleanPolynomialRing (class in sage.rings.polynomial.pbori), 580
BooleanPolynomialRing_constructor() (in module sage.rings.polynomial.polynomial_ring_constructor), 1
BooleanPolynomialVector (class in sage.rings.polynomial.pbori), 588
BooleanPolynomialVectorIterator (class in sage.rings.polynomial.pbori), 588
BooleConstant (class in sage.rings.polynomial.pbori), 549
BooleSet (class in sage.rings.polynomial.pbori), 550
BooleSetIterator (class in sage.rings.polynomial.pbori), 556
bp_done() (sage.rings.polynomial.real_roots.island method), 188
buchberger() (in module sage.rings.polynomial.toy_buchberger), 419
buchberger_improved() (in module sage.rings.polynomial.toy_buchberger), 420

C
can_convert_to_singular() (in module sage.rings.polynomial.polynomial_singular_interface), 160
can_rewrite() (sage.rings.polynomial.pbori.ReductionStrategy method), 594
cardinality() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 214
cartesian_product() (sage.rings.polynomial.pbori.BooleSet method), 551
CCuddNavigator (class in sage.rings.polynomial.pbori), 588
canonical_copy() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 580
canonical_copy() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 580
canonical_copy() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 580
canonical_copy() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 580
change() (sage.rings.polynomial.pbori.BooleSet method), 551
change() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial_ring.LaurentPolynomial_generic method), 492
change() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 488
change() (sage.rings.polynomial.multi_polynomial.monomial.MPolynomial method), 257
change() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 280
change() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 297
change() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 249
change() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 580
change() (sage.rings.polynomial.polynomial_element.Polynomial method), 34
change() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 157
change() (sage.rings.polynomial.polynomial_ring_generic.MPolynomialRing_general method), 20
change() (sage.rings.polynomial.skew_polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 462
change() (sage.rings.polynomial.polynomial_element.Polynomial method), 35
change_variable_name() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 435
canonical_copy() (sage.rings.polynomial.polynomial_ring_generic.MPolynomialRing_general method), 20
characteristic() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 519
characteristic() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 488
characteristic() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 249
characteristic() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 214
characteristic() (sage.rings.polynomial.polynomial_ring_generic.MPolynomialRing_general method), 20

Index 631
convolution() (in module sage.rings.polynomial.convolution), 227

covariant_conic() (sage.rings.invariant_theory.TernaryQuadratic method), 409

cover_ring() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 582

cover_ring() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 216

create_key() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRingFactory method), 518

create_key_and_extra_args() (sage.rings.polynomial.plural.G_AlgFactory method), 607

create_object() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRingFactory method), 518

create_object() (sage.rings.polynomial.plural.G_AlgFactory method), 607

cyclotomic_coeffs() (in module sage.rings.polynomial.cyclotomic), 228

cyclotomic_part() (sage.rings.polynomial.polynomial_element.Polynomial method), 39

cyclotomic_polynomial() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 21

cyclotomic_value() (in module sage.rings.polynomial.cyclotomic), 229

D

d_basis() (in module sage.rings.polynomial.toy_d_basis), 427

d_casteljau() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 183

d_casteljau() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 185

d_casteljau_doublevec() (in module sage.rings.polynomial.real_roots), 178

d_casteljau_intvec() (in module sage.rings.polynomial.real_roots), 178

defining_ideal() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 582

deg() (sage.rings.polynomial.pbori.BooleanMonomial method), 557

deg() (sage.rings.polynomial.pbori.BooleanPolynomial method), 562

deg() (sage.rings.polynomial.pbori.BooleConstant method), 549

degree() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 494

degree() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 501

degree() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 282

degree() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 358

degree() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 163

degree() (sage.rings.polynomial.pbori.BooleanMonomial method), 557

degree() (sage.rings.polynomial.pbori.BooleanPolynomial method), 563

degree() (sage.rings.polynomial.plural.NCPolynomial_plural method), 614

degree() (sage.rings.polynomial.polydict.PolyDict method), 383

degree() (sage.rings.polynomial.polynomial_element.Polynomial method), 39

degree() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 97

degree() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact method), 98

degree() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 106

degree() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 112

degree() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118

degree() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 125

degree() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn method), 148

degree() (sage.rings.polynomial.polynomial_modn_dense_ntl_Polynomial_dense_modn method), 151

degree() (sage.rings.polynomial.polynomial_modn_dense_ntl_Polynomial_dense_modn_ZZ method), 153

degree() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 217

degree() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 131

degree() (sage.rings.polynomial.polynomial_real mpfr_dense.PolynomialRealDense method), 157

degree() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 141

degree() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 172

degree() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 436

degree() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense method), 454
degree_lowest_rational_function() (in module sage.rings.polynomial.multi_polynomial_element), 293
degree_of_semi_regularity() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 298
deregression_next_size() (in module sage.rings.polynomial.real_roots), 179
degrees() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 283
degrees() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 359
degrees() (sage.rings.polynomial.plural.NCPolynomial_plural method), 614
Delta_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 411
Delta_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 414
Delta_prime_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 411
Delta_prime_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 415
denom() (sage.rings.fraction_field_FpT.FpTElement method), 477
denominator() (sage.rings.fraction_field_element.FractionFieldElement method), 473
denominator() (sage.rings.fraction_field_FpT.FpTElement method), 478
denominator() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 258
denominator() (sage.rings.polynomial.multi_polynomial_element.Polynomial method), 40
denominator() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118
disc() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 163
disc() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118
disc() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 131
dimension() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 316
dimension() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 126
degrees() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 150
discriminant() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 217
discriminant() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 132
discriminant() (sage.rings.polynomial.polynomial_element.Polynomial method), 43
discriminant() (sage.rings.polynomial.multi_polynomial_element.Polynomial method), 293

degrees() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 283

degrees() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 359

degrees() (sage.rings.polynomial.plural.NCPolynomial_plural method), 614
Delta_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 411
Delta_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 414
Delta_prime_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 411
Delta_prime_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 415
denom() (sage.rings.fraction_field_FpT.FpTElement method), 477
denominator() (sage.rings.fraction_field_element.FractionFieldElement method), 473
denominator() (sage.rings.fraction_field_FpT.FpTElement method), 478
denominator() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 258
denominator() (sage.rings.polynomial.multi_polynomial_element.Polynomial method), 40
denominator() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118
disc() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 163
disc() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118
disc() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 131
dimension() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 316
dimension() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 126
degrees() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 150
discriminant() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 217
discriminant() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 132
discriminant() (sage.rings.polynomial.polynomial_element.Polynomial method), 43
discriminant() (sage.rings.polynomial.multi_polynomial_element.Polynomial method), 293

degrees() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 283

degrees() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 359

degrees() (sage.rings.polynomial.plural.NCPolynomial_plural method), 614
Delta_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 411
Delta_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 414
Delta_prime_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 411
Delta_prime_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 415
denom() (sage.rings.fraction_field_FpT.FpTElement method), 477
denominator() (sage.rings.fraction_field_element.FractionFieldElement method), 473
denominator() (sage.rings.fraction_field_FpT.FpTElement method), 478
denominator() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 258
denominator() (sage.rings.polynomial.multi_polynomial_element.Polynomial method), 40
denominator() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118
disc() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 163
disc() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 118
disc() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 131
distribution() (sage.rings.polynomial.InvariantTheory method), 614
F

F_covariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 415
factor() (sage.rings.fraction_field_FpT.FpTElement method), 478
factor() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 495
factor() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 502
factor() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 284
factor() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 360
factor() (sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic method), 161
factor() (sage.rings.polynomial.polynomial_element.Polynomial method), 45
factor() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 119
factor() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 126
factor() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 144
factor() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 144
factor_mod() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 163
factor_mod() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 119
factor_mod() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 126
factor_mod() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 133
factor_of_slope() (sage.rings.polynomial.pbori.BooleanPolynomial method), 564
Faugere_step_dense() (sage.rings.polynomial.pbori.GroebnerStrategy method), 591
Fcp() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 223
FGLMStrategy (class in sage.rings.polynomial.pbori), 588
field_extension() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 223
field_extension() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain method), 208
field_extension() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 223
find_roots() (sage.rings.polynomial.real_roots.ocean method), 192
first() (sage.rings.invariant_theory.TwoAlgebraicForms method), 410
first_term() (sage.rings.polynomial.pbori.BooleanPolynomial method), 564
FlatteningMorphism (class in sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 250
flatfootprint() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 526
form() (sage.rings.invariant_theory.AlgebraicForm method), 391
FormsBase (class in sage.rings.invariant_theory), 396
Fp_FpT_coerce (class in sage.rings.fraction_field_FpT), 481
FpFpT (class in sage.rings.fraction_field_FpT), 477
FpTFpT (class in sage.rings.fraction_field_FpT), 477
FpTFpTSection (class in sage.rings.fraction_field_FpT), 480
FpT_iter (class in sage.rings.fraction_field_FpT), 481
FpT_Polyring_section (class in sage.rings.fraction_field_FpT), 480
FpTElement (class in sage.rings.fraction_field_FpT), 477
fraction_field() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 488
fraction_field() (sage.rings.polynomial.polynomial_ring.PolynomialRing_field method), 18
FractionField() (in module sage.rings.fraction_field), 469
FractionField_1poly_field (class in sage.rings.fraction_field), 470
FractionField_generic (class in sage.rings.fraction_field), 471
FractionFieldElement (class in sage.rings.fraction_field_element), 473
FractionFieldElement_1poly_field (class in sage.rings.fraction_field_element), 476
from_ocean() (sage.rings.polynomial.real_roots.linear_map method), 189
from_ocean() (sage.rings.polynomial.real_roots.warp_map method), 200

G
G_AlgFactory (class in sage.rings.polynomial.plural), 607
g_covariant() (sage.rings.invariant_theory.BinaryQuartic method), 394
galois_group() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 135
gauss_on_polys() (in module sage.rings.polynomial.pbori), 597
gcd() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 526
gcd() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 502
gcd() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 260
gcd() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 364
gcd() (sage.rings.polynomial.pbori.BooleanMonomial method), 558
gcd() (sage.rings.polynomial.polynomial_element.Polynomial method), 50
gcd() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 106
gcd() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 120
gcd() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 127
gcd() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 150
gcd() (sage.rings.polynomial.polynomial_number_field.Polynomial_absolute_number_field_dense method), 115
gcd() (sage.rings.polynomial.polynomial_number_field.Polynomial_relative_number_field_dense method), 116
gcd() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 136
gcd() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 141
gcd() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 172
gen() (sage.rings.fraction_field.FractionField_generic method), 471
gen() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 520
gen() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 489
gen() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 353
gen() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 250
gen() (sage.rings.polynomial.pbori.BooleanMonomialMonoid method), 561
gen() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 582
gen() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 608
gen() (sage.rings.polynomial.polynomial_quotient_ring PolynomialQuotientRing_generic method), 217
gen() (sage.rings.polynomial.polynomial_ring PolynomialRing_general method), 21
gen() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 463
GenDictWithBasering (class in sage.rings.polynomial.infinite_polynomial_ring), 516
generic_pd (class in sage.rings.polynomial.polynomial_compiled), 226
generic_power_trunc() (in module sage.rings.polynomial.polynomial_element), 100
gens() (sage.rings.polynomial.multi_polynomialideal.MPolynomialIdeal method), 299
gens() (sage.rings.polynomial.pbori.BooleanMonomialMonoid method), 561
gens() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 583
gens() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 543
gens_dict() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 520
gens_dict() (sage.rings.polynomial.polynomial_ring PolynomialRing_general method), 22
gens_dict() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 463
genus() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 317
get_base_order_code() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 583
get_be_log() (sage.rings.polynomial.real_roots.context method), 178
get_cparent() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 113
get_cparent() (sage.rings.polynomial.polynomial_modn_flint.Polynomial_template method), 142
get_cparent() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 172
get_dc_log() (sage.rings.polynomial.real_roots.context method), 178
get_form() (sage.rings.invariant_theory.SeveralAlgebraicForms method), 405
get_msb_bit() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 184
get_msb_bit() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 187
get_order_code() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 583
get_realfield_rndu() (in module sage.rings.polynomial.real_roots), 180
greater_tuple_block() (sage.rings.polynomial.term_order.TermOrder method), 237
greater_tuple_deglex() (sage.rings.polynomial.term_order.TermOrder method), 237
greater_tuple_degrevlex() (sage.rings.polynomial.term_order.TermOrder method), 238
greater_tuple_invlex() (sage.rings.polynomial.term_order.TermOrder method), 238
greater_tuple_lex() (sage.rings.polynomial.term_order.TermOrder method), 239
greater_tuple_matrix() (sage.rings.polynomial.term_order.TermOrder method), 239
greater_tuple_negdeglex() (sage.rings.polynomial.term_order.TermOrder method), 239
greater_tuple_negdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 239
greater_tuple_neglex() (sage.rings.polynomial.term_order.TermOrder method), 240
greater_tuple_negwdeglex() (sage.rings.polynomial.term_orderTERMORDER method), 240
greater_tuple_negwdegrevlex() (sage.rings.polynomial.term_orderTERMORDER method), 240
groebner_basis() (sage.rings.polynomial.ideal.Ideal_1poly_field method), 204
groebner_basis() (sage.rings.polynomial.multi_polynomial.ideal.Ideal) (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 204
groebner_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 299
groebner_basis() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 342
groebner_basis() (sage.rings.polynomial.pbori.BooleConstant method), 549
groebner_basis() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 533
groebner_fan() (sage.rings.polynomial.multi_polynomial.ideal.MPolynomialIdeal method), 304
GroebnerStrategy (class in sage.rings.polynomial.pbori), 589

h_covariant() (sage.rings.invariant_theory.BinaryQuartic method), 394
hamming_weight() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 495
hamming_weight() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 502
hamming_weight() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 280
hamming_weight() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 365
hamming_weight() (sage.rings.polynomial.polynomial_element.Polynomial method), 52
has_any_inverse() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 496
has_constant_part() (sage.rings.polynomial.pbori.BooleanPolynomial method), 564
has_constant_part() (sage.rings.polynomial.pbori.BooleConstant method), 549
has_degree_order() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 583
has_inverse_of() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 496

Index 639
has_root() (sage.rings.polynomial.real_roots.island method), 189
head_normal_form() (sage.rings.polynomial.pbori.ReductionStrategy method), 595
hensel_lift() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 102
hensel_lift() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 136
Hessian() (sage.rings.invariant_theory.TernaryCubic method), 406
hilbert_numerator() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 317
hilbert_polynomial() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 318
homogenize() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 261
homogenize() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 305
homogenize() (sage.rings.polynomial.polydict.PolyDict method), 383
homogenize() (sage.rings.polynomial.polynomial_element.Polynomial method), 52
homogenized() (sage.rings.invariant_theory.AlgebraicForm method), 392
homogenized() (sage.rings.invariant_theory.SeveralAlgebraicForms method), 405
homogenous_symmetric_function() (in module sage.rings.polynomial.omega), 512
id() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 584
ideal() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 489
ideal() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 354
ideal() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method), 279
ideal() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 343
ideal() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 584
ideal() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 608
Ideal_1poly_field (class in sage.rings.polynomial.ideal), 204
if_then_else() (in module sage.rings.polynomial.pbori), 598
implications() (sage.rings.polynomial.pbori.GroebnerStrategy method), 591
include_divisors() (sage.rings.polynomial.pbori.BooleSet method), 553
increase_precision() (sage.rings.polynomial.real_roots.ocean method), 192
index() (sage.rings.polynomial.pbori.BooleanMonomial method), 558
InfiniteGenDict (class in sage.rings.polynomial.infinite_polynomial_ring), 517
InfinitePolynomial() (in module sage.rings.polynomial.infinite_polynomial_element), 524
InfinitePolynomial_dense (class in sage.rings.polynomial.infinite_polynomial_element), 525
InfinitePolynomial_sparse (class in sage.rings.polynomial.infinite_polynomial_element), 525
InfinitePolynomialGen (class in sage.rings.polynomial.infinite_polynomial_ring), 517
InfinitePolynomialRing_dense (class in sage.rings.polynomial.infinite_polynomial_ring), 518
InfinitePolynomialRing_sparse (class in sage.rings.polynomial.infinite_polynomial_ring), 519
InfinitePolynomialRingFactory (class in sage.rings.polynomial.infinite_polynomial_ring), 517
inhomogeneous_quadratic_form() (sage.rings.invariant_theory.InvariantTheoryFactory method), 398
int_list() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_density_mod_n method), 148
int_list() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 153
integral() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 503
integral() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 285
integral() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 365
integral() (sage.rings.polynomial.polynomial_element.Polynomial method), 53
integral() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 107
integral() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 157
integral_closure() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 318
inter_reduction() (in module sage.rings.polynomial.toy_buchberger), 420
interpolate() (in module sage.rings.polynomial.pbori), 598
interpolate_smallest_lex() (in module sage.rings.polynomial.pbori), 599
interpolation_polynomial() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 584
interred_libsingular() (in module sage.rings.polynomial.multi_polynomial_ideal_libsingular), 377
interreduced_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 319
interreduced_basis() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 579
interreduced_basis() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 536
interreduction() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 536
intersect() (sage.rings.polynomial.pbori.BooleSet method), 553
intersection() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 320
interval_bernstein_polynomial (class in sage.rings.polynomial.real_roots), 180
interval_bernstein_polynomial_float (class in sage.rings.polynomial.real_roots), 183
interval_bernstein_polynomial_integer (class in sage.rings.polynomial.real_roots), 184
interval_roots() (in module sage.rings.polynomial.complex_roots), 203
intervals_disjoint() (in module sage.rings.polynomial.complex_roots), 203
intvec_to_doublevec() (in module sage.rings.polynomial.real_roots), 187
InvariantTheoryFactory (class in sage.rings.invariant_theory), 397
inverse_mod() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 262
inverse_mod() (sage.rings.polynomial.polynomial_element.Polynomial method), 54
inverse_of_unit() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 503
inverse_of_unit() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 285
inverse_of_unit() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 366
inverse_of_unit() (sage.rings.polynomial.polynomial_element.Polynomial method), 55
inverse_series_trunc() (sage.rings.polynomial.polynomial_element.Polynomial method), 56
inverse_series_trunc() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 120
irreducible_element() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 136
irreducible_element() (sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_flint method), 12
irreducible_element() (sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p method), 14
irrelevant_ideal() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 250
is_block_order() (sage.rings.polynomial.term_order.TermOrder method), 241
is_commutative() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 608
is_commutative() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_generic method), 463
is_constant() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 496
is_constant() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 503
is_constant() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 285
is_constant() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 366
is_constant() (sage.rings.polynomial.pbori.BoolePolynomial method), 564
is_constant() (sage.rings.polynomial.pbori.BooleConstant method), 550
is_constant() (sage.rings.polynomial.plural.NCPolynomial_plural method), 615
is_constant() (sage.rings.polynomial.polydict.ETuple method), 381
is_constant() (sage.rings.polynomial.pbori.BoolePolynomial method), 564
is_equal() (sage.rings.polynomial.pbori.BooleanPolynomial method), 565
is_exact() (sage.rings.fraction_field.FractionField_generic method), 472
is_exact() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 489
is_exact() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_macaulay2_repr method), 275

Index
is_LaurentPolynomialRing() (in module sage.rings.polynomial.laurent_polynomial_ring), 492
is_left_divisible_by() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 437
is_linearly_dependent() (in module sage.rings.polynomial.toy_variety), 423
is_local() (sage.rings.polynomial.term_order.TermOrder method), 242
is_maximal() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 537
is_monic() (sage.rings.polynomial.polynomial_element.Polynomial method), 60
is_monic() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 438
is_monomial() (sage.rings.polynomial.skew_polynomial_element.LaurentPolynomialSkewPolynomial method), 497
is_monomial() (sage.rings.polynomial.skew_polynomial_element.LaurentPolynomial_univariate method), 504
is_monomial() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 286
is_monomial() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 366
is_monomial() (sage.rings.polynomial.plural.NCPolynomial_plural method), 616
is_monomial() (sage.rings.polynomial.polynomial_element.Polynomial method), 60
is_monomial() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 438
is_MPolynomial() (in module sage.rings.polynomial.multi_polynomial), 275
is_MPolynomial() (in module sage.rings.polynomial.multi_polynomial_element), 293
is_MPolynomialIdeal() (in module sage.rings.polynomial.multi_polynomial_ideal), 335
is_MPolynomialRing() (in module sage.rings.polynomial.multi_polynomial_ring_generic), 257
is_nilpotent() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 526
is_nilpotent() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 263
is_nilpotent() (sage.rings.polynomial.polynomial_element.Polynomial method), 61
is_nilpotent() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 439
is_noetherian() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 521
is_noetherian() (sage.rings.polynomial.skew_polynomial_element.LaurentPolynomialSkewPolynomial method), 490
is_real_rooted() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomialRing_sparse method), 251
is_one() (sage.rings.fraction_field_element.FractionFieldElement method), 474
is_one() (sage.rings.polynomial.pbori.BooleanPolynomial method), 565
is_one() (sage.rings.polynomial.pbori.BooleConstant method), 550
is_one() (sage.rings.polynomial.polynomial_element.Polynomial method), 61
is_one() (sage.rings.polynomial.polynomial_element.gf2x.Polynomial_template method), 113
is_one() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 137
is_one() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 142
is_one() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 172
is_pair() (sage.rings.polynomial.pbori.BooleanPolynomial method), 565
is_Polynomial() (in module sage.rings.polynomial.polynomial_element), 100
is_PolynomialQuotientRing() (in module sage.rings.polynomial.polynomial_quotient_ring), 221
is_PolynomialRing() (in module sage.rings.polynomial.polynomial_ring), 27
is_PolynomialSequence() (in module sage.rings.polynomial.multi_polynomial_sequence), 350
is_prime() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 320
is_primitive() (sage.rings.polynomial.polynomial_element.Polynomial method), 61
is_real_rooted() (sage.rings.polynomial.polynomial_element.Polynomial method), 63
is_right_divisible_by() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 439
is_singleton() (sage.rings.polynomial.pbori.BooleanPolynomial method), 566
is_singleton_or_pair() (sage.rings.polynomial.pbori.BooleanPolynomial method), 567
is_sparse() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
is_square() (sage.rings.fraction_field_element.FractionFieldElement method), 474
is_square() (sage.rings.fraction_field_FpT.FpTElement method), 478
is_square() (sage.rings.polynomial.polynomial_element.Polynomial method), 63
is_squarefree() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 367
is_squarefree() (sage.rings.polynomial.polynomial_element.Polynomial method), 64
is_term() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 286
is_term() (sage.rings.polynomial.polynomial_element.Polynomial method), 65
is_term() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 440
is_triangular() (in module sage.rings.polynomial.toy_variety), 424
is_unique_factorization_domain() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
is_unit() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 527
is_unit() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 497
is_unit() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 504
is_unit() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 264
is_unit() (sage.rings.polynomial.polynomial_element.Polynomial method), 65
is_unit() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain method), 104
is_univariate() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 504
is_univariate() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 264
is_univariate() (sage.rings.polynomial.pbori.BooleanPolynomial method), 567
is_univariate() (sage.rings.polynomial.pbori.BooleConstant method), 550
is_weighted_degree_order() (sage.rings.polynomial.term_order.TermOrder method), 242
is_zero() (sage.rings.fraction_field_element.FractionFieldElement method), 475
is_zero() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 504
is_zero() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 264
is_zero() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 367
is_zero() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 441
island (class in sage.rings.polynomial.real_roots), 187
iter() (sage.rings.fraction_field_FpT.FpT method), 477
iterindex() (sage.rings.polynomial.pbori.BooleMonomial method), 558

J

J_covariant() (sage.rings.invariant_theory.TernaryCubic method), 406
J_covariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 412
J_covariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 415
jacobian_ideal() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 264

K

karatsuba_threshold() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23
kbase_libsingular() (in module sage.rings.polynomial.multi_polynomial_ideal_libsingular), 377
krull_dimension() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 521
krull_dimension() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial_ring.LaurentPolynomialRing_general method), 490
krull_dimension() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 251
krull_dimension() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 218
krull_dimension() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 23

L
lagrange_polynomial() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 464
lagrange_polynomial() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_general method), 464
latex() (sage.rings.polynomial.polydict.PolyDict method), 383
LaurentPolynomial_generic (class in sage.rings.polynomial.laurent_polynomial), 492
LaurentPolynomial_univariate (class in sage.rings.polynomial.laurent_polynomial), 500
LaurentPolynomialRing() (in module sage.rings.polynomial.laurent_polynomial_ring), 485
LaurentPolynomialRing_generic (class in sage.rings.polynomial.laurent_polynomial_ring), 487
LaurentPolynomialRing_mpair (class in sage.rings.polynomial.laurent_polynomial), 492
LaurentPolynomialRing_univariate (class in sage.rings.polynomial.laurent_polynomial), 491
LC() (in module sage.rings.polynomial.toy_d_basis), 427
lc() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 527
lc() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 287
lc() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 367
lc() (sage.rings.polynomial.plural.NCPolynomial_plural method), 616
lc() (sage.rings.polynomial.polynomial_element.Polynomial method), 66
LCM() (in module sage.rings.polynomial.toy_buchberger), 419
lcm() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 367
lcm() (sage.rings.polynomial.polydict.PolyDict method), 383
lead() (sage.rings.polynomial.pbori.BooleanPolynomial method), 568
lead() (sage.rings.polynomial.pbori.PolynomialConstruct method), 594
lead() (sage.rings.polynomial.prime_element.PolynomialFactory method), 594
lead_deg() (sage.rings.polynomial.pbori.BooleanPolynomial method), 568
lead_divisors() (sage.rings.polynomial.pbori.BooleanPolynomial method), 568
leading_coefficient() (sage.rings.polynomial.polynomial_element.Polynomial method), 66
leading_coefficient() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 441
left_divides() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 441
left_gcd() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 442
left_lcm() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 443
left_mod() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 444
left_monic() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 444
left_power_mod() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 455
left_quo_rem() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 455
left_xgcd() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 445
less_bits() (sage.rings.polynomial.real_roots.island method), 189
lex_lead() (sage.rings.polynomial.pbori.BooleanPolynomial method), 569
lex_lead_deg() (sage.rings.polynomial.pbori.BooleanPolynomial method), 569
lift() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 264
lift() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 287
lift() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 368
lift() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial padic_capped_relative_dense method), 645

Index

lift() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 218
lift() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 225
linear_map (class in sage.rings.polynomial.real_roots), 189
linear_representation() (in module sage.rings.polynomial.toy_variety), 424
list() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
method), 164
list() (sage.rings.polynomial.polydict.PolyDict method), 384
list() (sage.rings.polynomial.polynomial_element.Polynomial method), 66
list() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 97
list() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 107
list() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 225
list() (sage.rings.polynomial.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
method), 164
ll_red_nf_noredsb() (in module sage.rings.polynomial.pbori), 599
ll_red_nf_noredsb_single_recursive_call() (in module sage.rings.polynomial.pbori), 600
ll_red_nf_redsb() (in module sage.rings.polynomial.pbori), 600
ll_reduce_all() (sage.rings.polynomial.pbori.GroebnerStrategy method), 591
LM() (in module sage.rings.polynomial.toy_buchberger), 419
LM() (in module sage.rings.polynomial.toy_d_basis), 427
lm() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 527
lm() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 288
lm() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 369
lm() (sage.rings.polynomial.pbori.BooleanPolynomial method), 570
lm() (sage.rings.polynomial.plural.NCPolynomial_plural method), 616
lm() (sage.rings.polynomial.polynomial_element.Polynomial method), 67
lshift_coeffs() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense
method), 164
lsign() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory method), 175
LT() (in module sage.rings.polynomial.toy_buchberger), 419
lt() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 528
lt() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 288
lt() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 369
lt() (sage.rings.polynomial.pbori.BooleanPolynomial method), 570
lt() (sage.rings.polynomial.plural.NCPolynomial_plural method), 617
lt() (sage.rings.polynomial.polynomial_element.Polynomial method), 67

M
macaulay2_str() (sage.rings.polynomial.term_order.TermOrder method), 242
macaulay_resultant() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 265
macaulay_resultant() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method),
MacMahonOmega() (in module sage.rings.polynomial.omega), 508
magma_str() (sage.rings.polynomial.term_order.TermOrder method), 243
main() (sage.rings.polynomial.pbori.FGLMStrategy method), 588
make_element() (in module sage.rings.polynomial.fraction_field_element), 476
make_element() (in module sage.rings.polynomial.polynomial_gf2x), 114
make_element() (in module sage.rings.polynomial.polynomial_modn_dense_ntl), 154
make_element() (in module sage.rings.polynomial.polynomial_zmod_flint), 147
make_element() (in module sage.rings.polynomial.polynomial_zz_pex), 173
make_element_old() (in module sage.rings.polynomial.fraction_field_element), 477
make_ETuple() (in module sage.rings.polynomial.polydict), 386
make_generic_polynomial() (in module sage.rings.polynomial.polynomial_element), 100
make_padic_poly() (in module sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense), 169
make_PolyDict() (in module sage.rings.polynomial.polydict), 386
make_PolynomialRealDense() (in module sage.rings.polynomial.polynomial_real_mpfr_dense), 159
map_coefficients() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 267
map_coefficients() (sage.rings.polynomial.polynomial_element.Polynomial method), 68
map_every_x_to_x_plus_one() (in module sage.rings.polynomial.pbori), 600
map_every_x_to_x_plus_one() (sage.rings.polynomial.pbori.BooleanPolynomial method), 570
matrix() (sage.rings.invariant_theory.QuadraticForm method), 403
matrix() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 225
matrix() (sage.rings.polynomial.polynomial_term_order.PolynomialTermOrder method), 243
max_abs_doublevec() (in module sage.rings.polynomial.real_roots), 189
max_bitsize_intvec_doctest() (in module sage.rings.polynomial.real_roots), 189
max_exp() (sage.rings.polynomial.polydict.PolyDict method), 384
max_index() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 528
maximal_degree() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 343
maximal_order() (sage.rings.fraction_field.FractionField_1poly_field method), 470
maximum_root_first_lambda() (in module sage.rings.polynomial.real_roots), 189
minimum_root_local_max() (in module sage.rings.polynomial.real_roots), 190
min_exp() (sage.rings.polynomial.polydict.PolyDict method), 384
min_max_delta_intvec() (in module sage.rings.polynomial.real_roots), 190
min_max_diff_doublevec() (in module sage.rings.polynomial.real_roots), 190
min_max_diff_intvec() (in module sage.rings.polynomial.real_roots), 190
minimal_associated_primes() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 321
minimal_elements() (sage.rings.polynomial.pbori.BooleSet method), 553
minimalize() (sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_element method), 465
minpoly() (sage.rings.polynomial.pbori.BooleSet method), 591
minpoly() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 225
mk_context() (in module sage.rings.polynomial.real_roots), 190
mk_ibp() (in module sage.rings.polynomial.real_roots), 191
mk_ibp() (in module sage.rings.polynomial.real_roots), 191
mod() (sage.rings.polynomial.polynomial_element.Polynomial method), 68
mod_mon_set() (in module sage.rings.polynomial.pbori), 601
mod_var_set() (in module sage.rings.polynomial.pbori), 601
modular_composition() (sage.rings.polynomial.polynomial_gf2x.Polynomial_gf2x method), 111
modulus() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_element method), 218
modulus() (sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n method), 13
monic() (sage.rings.polynomial.polynomial_element.Polynomial method), 69
monic() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 145
monics() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 24
monomial() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 253
monomial_all_divisors() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 354
monomial_all_divisors() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 276
monomial_all_divisors() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 609
monomial_coefficient() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial method), 498
monomial_coefficient() (sage.rings.polynomial.multi_polynomial_element.MPolynomialRing_libsingular method), 288
monomial_coefficient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 369
monomial_coefficient() (sage.rings.polynomial.pbori.BooleanPolynomial method), 570
monomial_coefficient() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 617
monomial_coefficient() (sage.rings.polynomial.polydict.PolyDict method), 384
monomial_coefficient() (sage.rings.polynomial.polynomial_element.Polynomial method), 69
monomial_divides() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 354
monomial_divides() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 276
monomial_divides() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 609
monomial_lcm() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 355
monomial_lcm() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 276
monomial_lcm() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 610
monomial_pairwise_prime() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 355
monomial_pairwise_prime() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 277
monomial_quotient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 355
monomial_quotient() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 610
monomial_reduce() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 356
monomial_reduce() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 278
monomial_reduce() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 611
MonomialConstruct (class in sage.rings.polynomial.pbori), 593
MonomialFactory (class in sage.rings.polynomial.pbori), 593
monomials() (in module sage.rings.monomials), 389
monomials() (sage.rings.invariant_theory.BinaryQuartic method), 395
monomials() (sage.rings.invariant_theory.QuadraticForm method), 404
monomials() (sage.rings.invariant_theory.TernaryCubic method), 407
monomials() (sage.rings.invariant_theory.TernaryQuadratic method), 410
monomials() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 498
monomials() (sage.rings.polynomial.multi_polynomial_element.MPolynomialPolydict method), 289
monomials() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 370
monomials() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 344
monomials() (sage.rings.polynomial.pbori.BooleanPolynomial method), 571
monomials() (sage.rings.polynomial.plural.NCPolynomial_plural method), 618
monomials() (sage.rings.polynomial.polynomial_element.Polynomial method), 70
more_bits() (sage.rings.polynomial.real_roots.island method), 189
MPolynomial (class in sage.rings.polynomial.multi_polynomial), 257
MPolynomial_element (class in sage.rings.polynomial.multi_polynomial_element), 280
MPolynomial_libsingular (class in sage.rings.polynomial.multi_polynomial_libsingular), 356
MPolynomial_polydict (class in sage.rings.polynomial.multi_polynomial_element), 281
MPolynomialIdeal (class in sage.rings.polynomial.multi_polynomial_ideal), 297
MPolynomialIdeal_macaulay2_repr (class in sage.rings.polynomial.multi_polynomial_ideal), 312
MPolynomialIdeal_magma_repr (class in sage.rings.polynomial.multi_polynomial_ideal), 312
MPolynomialIdeal_singular_base_repr (class in sage.rings.polynomial.multi_polynomial_ideal), 312
MPolynomialIdeal_singular_repr (class in sage.rings.polynomial.multi_polynomial_ideal), 312
MPolynomialRing_generic (class in sage.rings.polynomial.multi_polynomial_ring_generic), 248
MPolynomialRing_libsingular (class in sage.rings.polynomial.multi_polynomial_libsingular), 356
MPolynomialRing_macaulay2_repr (class in sage.rings.polynomial.multi_polynomial_ring), 275
MPolynomialRing_polydict (class in sage.rings.polynomial.multi_polynomial_ring), 275
MPolynomialRing_polydict_domain (class in sage.rings.polynomial.multi_polynomial_ring), 279
mul_pd (class in sage.rings.polynomial.polynomial_compiled), 226
multi_point_evaluation() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 446
multiples() (sage.rings.polynomial.pbori.BooleanMonomial method), 558
multiples_of() (sage.rings.polynomial.pbori.BooleSet method), 553
multiplication_trunc() (sage.rings.polynomial.polynomial_element.Polynomial method), 70

N
n_forms() (sage.rings.invariant_theory.SeveralAlgebraicForms method), 405
n_nodes() (sage.rings.polynomial.pbori.BooleanPolynomial method), 571
n_nodes() (sage.rings.polynomial.pbori.BooleSet method), 554
n_variables() (sage.rings.polynomial.pbori.BoolePolynomialRing method), 585
n_vars() (sage.rings.polynomial.pbori.BooleanMonomial method), 571
name() (sage.rings.polynomial.term_order.TermOrder method), 243
navigation() (sage.rings.polynomial.pbori.BooleanPolynomial method), 559
navigation() (sage.rings.polynomial.pbori.BoolePolynomial method), 572
navigation() (sage.rings.polynomial.pbori.BooleSet method), 554
NCPolynomial_plural (class in sage.rings.polynomial.plural), 612
NCPolynomialIdeal (class in sage.rings.polynomial.multi_polynomial_ideal), 331
NCPolynomialRing_plural (class in sage.rings.polynomial.plural), 607
new_CRing() (in module sage.rings.polynomial.plural), 620
new_NRing() (in module sage.rings.polynomial.plural), 621
new_Ring() (in module sage.rings.polynomial.plural), 621
newton_polygon() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 165
newton_polygon() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 102
newton_polytope() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 267
newton_raphson() (sage.rings.polynomial.polynomial_element.Polynomial method), 71
newton_slopes() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 165
newton_slopes() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 102
next() (sage.rings.fraction_field_FpT.FpT_iter method), 481
next() (sage.rings.fraction_field_FpT.FpTElement method), 478
next() (sage.rings.polynomial.infinite_polynomial_ring.GenDictWithBasering method), 516

Index
Polynomial_generic_cdv (class in sage.rings.polynomial.polynomial_element_generic), 101
Polynomial_generic_cdvf (class in sage.rings.polynomial.polynomial_element_generic), 103
Polynomial_generic_cdvr (class in sage.rings.polynomial.polynomial_element_generic), 104
Polynomial_generic_dense (class in sage.rings.polynomial.polynomial_element), 96
Polynomial_generic_dense_cdv (class in sage.rings.polynomial.polynomial_element_generic), 104
Polynomial_generic_dense_cdvf (class in sage.rings.polynomial.polynomial_element_generic), 104
Polynomial_generic_dense_cdvr (class in sage.rings.polynomial.polynomial_element_generic), 104
Polynomial_generic_dense_field (class in sage.rings.polynomial.polynomial_element_generic), 104
Polynomial_generic_inexact (class in sage.rings.polynomial.polynomial_element), 98
Polynomial_generic_domain (class in sage.rings.polynomial.polynomial_element_generic), 104
Polynomial_generic_field (class in sage.rings.polynomial.polynomial_element_generic), 105
Polynomial_generic_sparse (class in sage.rings.polynomial.polynomial_element_generic), 105
Polynomial_generic_sparse_cdv (class in sage.rings.polynomial.polynomial_element_generic), 109
Polynomial_generic_sparse_cdvf (class in sage.rings.polynomial.polynomial_element_generic), 109
Polynomial_generic_sparse_cdvr (class in sage.rings.polynomial.polynomial_element_generic), 109
Polynomial_generic_sparse_field (class in sage.rings.polynomial.polynomial_element_generic), 110
Polynomial_GF2X (class in sage.rings.polynomial.polynomial_gf2x), 111
Polynomial_integer_dense_flint (class in sage.rings.polynomial.polynomial_integer_dense_flint), 117
Polynomial_integer_dense_ntl (class in sage.rings.polynomial.polynomial_integer_dense_ntl), 125
Polynomial_padic (class in sage.rings.polynomial.polynomial_padic), 160
Polynomial_padic_capped_relative_dense (class in sage.rings.polynomial.polynomial_padic_capped_relative_dense), 163
Polynomial_padic_flat (class in sage.rings.polynomial.polynomial_padic), 160
Polynomial_rational_flint (class in sage.rings.polynomial.polynomial_rational_flint), 130
Polynomial_relative_number_field_dense (class in sage.rings.polynomial.polynomial_relative_field), 116
polynomial_ring() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense method), 518
polynomial_ring() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 490
polynomial_ring() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 219
Polynomial_singular_repr (class in sage.rings.polynomial.polynomial_singular_interface), 160
Polynomial_template (class in sage.rings.polynomial.polynomial_template), 141
Polynomial_template (class in sage.rings.polynomial.polynomial_zmod_flint), 171
Polynomial_zmod_flint (class in sage.rings.polynomial.polynomial_zmod_flint), 143
Polynomial_ZZ_pEX (class in sage.rings.polynomial.polynomial_zz_pex), 170
Polynomial_ZZ_pX (class in sage.rings.polynomial.polynomial_zz_pex), 171
PolynomialBaseringInjection (class in sage.rings.polynomial.polynomial_quotient_ring_element), 594
PolynomialConstr (class in sage.rings.polynomial.polynomial_constr), 594
PolynomialFactory (class in sage.rings.polynomial.polynomial_factory), 594
PolynomialQuotientRing() (in module sage.rings.polynomial.polynomial_quotient_ring), 205
PolynomialQuotientRing_domain (class in sage.rings.polynomial.polynomial_quotient_ring), 207
PolynomialQuotientRing_field (class in sage.rings.polynomial.polynomial_quotient_ring), 209
PolynomialQuotientRing_generic (class in sage.rings.polynomial.polynomial_quotient_ring), 210
PolynomialRealDense (class in sage.rings.polynomial.polynomial_real_mpfr_dense), 157
PolynomialRing() (in module sage.rings.polynomial.polynomial_ring_constructor), 2
PolynomialRing_cdv (class in sage.rings.polynomial.polynomial_ring), 11
PolynomialRing_cdvf (class in sage.rings.polynomial.polynomial_ring), 11
PolynomialRing_commutative (class in sage.rings.polynomial.polynomial_ring), 11
PolynomialRing_density_field (class in sage.rings.polynomial.polynomial_ring), 12
PolynomialRing_dense_mod_n (class in sage.rings.polynomial.polynomial_ring), 13
PolynomialRing_dense_mod_p (class in sage.rings.polynomial.polynomial_ring), 14
PolynomialRing_dense_padic_field_capped_relative (class in sage.rings.polynomial.polynomial_ring), 15
PolynomialRing_dense_padic_field_generic (class in sage.rings.polynomial.polynomial_ring), 15
PolynomialRing_dense_padic_field_lazy (class in sage.rings.polynomial.polynomial_ring), 15
PolynomialRing_dense_padic_ring_capped_absolute (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_dense_padic_ring_capped_relative (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_dense_padic_ring_fixed_mod (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_dense_padic_ring_generic (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_field (class in sage.rings.polynomial.polynomial_ring), 16
PolynomialRing_general (class in sage.rings.polynomial.polynomial_ring), 19
PolynomialRing_integral_domain (class in sage.rings.polynomial.polynomial_ring), 27
PolynomialRing_singular_repr (class in sage.rings.polynomial.polynomial_singular_interface), 160
PolynomialRing_homomorphism_from_base (class in sage.rings.polynomial.polynomial_ring_homomorphism), 29
polynomials() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 25
PolynomialSequence() (in module sage.rings.polynomial.multi_polynomial_sequence), 338
PolynomialSequence_generic (class in sage.rings.polynomial.multi_polynomial_sequence), 339
PolynomialSequence_gf2 (class in sage.rings.polynomial.multi_polynomial_sequence), 347
PolynomialSequence_gf2e (class in sage.rings.polynomial.multi_polynomial_sequence), 349
Polyring_FpT_coerce (class in sage.rings.fraction_field_FpT), 482
pow_pd (class in sage.rings.polynomial.polynomial_compiled), 226
power_trunc() (sage.rings.polynomial.polynomial_element.Polynomial method), 77
prec() (sage.rings.polynomial.polynomial_element.Polynomial method), 78
prec() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 448
prec_degree() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 166
prec_degree() (sage.rings.polynomial.padics.polynomial_element.Polynomial method), 77
primary_decomposition() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 322
primary_decomposition_complete() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 323
pseudo_divrem() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 121
pseudo_quo_rem() (sage.rings.polynomial.polynomial_element.Polynomial method), 78
pseudoinverse() (in module sage.rings.polynomial.real_roots), 194

Quadratic form (sage.rings.invariant_theory.InvariantTheoryFactory method), 398
QuadraticForm (class in sage.rings.invariant_theory), 402
quaternary_biquadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 399
quaternary_quadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 399
quo_rem() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 498
quo_rem() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 505
quo_rem() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 290

Index
quo_rem() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 372
quo_rem() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 167
quo_rem() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 97
quo_rem() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field method), 105
quo_rem() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 108
quo_rem() (sage.rings.polynomial.polynomial_template.Polynomial_template method), 113
quo_rem() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 122
quo_rem() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 128
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl.Polynomial_modn_dense_mod_n method), 149
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_modnℤZ method), 151
quo_rem() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_modnZZ method), 153
quo_rem() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 138
quo_rem() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 158
quo_rem() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 142
quo_rem() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 173
quotient_by_principal_ideal() (sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative method), 11

R
radical() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 325
radical() (sage.rings.polynomial.polynomial_element.Polynomial method), 78
random_element() (sage.rings.fraction_field.FractionField_generic method), 472
random_element() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomialRing_generic method), 490
random_element() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 306
random_element() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 254
random_element() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 586
random_element() (sage.rings.polynomial.polynomial_quotient_field.PolynomialQuotientField_generic method), 219
random_element() (sage.rings.polynomial.skeew PolynomialRing.Skeew PolynomialRing_generic method), 466
random_set() (in module sage.rings.polynomial.pbori), 601
rational_reconstruct() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 601
rational_root_bounds() (in module sage.rings.polynomial.real_roots), 194
real_root_intervals() (in module sage.rings.polynomial.integer_dense_flint.Polynomial_integer_dense_flint method), 122
real_root_intervals() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 128
real_root_intervals() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 138
real_roots() (in module sage.rings.polynomial.real_roots), 194
real_roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 79
recursively_insert() (in module sage.rings.polynomial.pbori), 601
red_tail() (in module sage.rings.polynomial.pbori), 601
reduce() (sage.rings.fraction_field_element.FractionFieldElement method), 475
reduce() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 528
reduce() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 290
reduce() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 308
reduce() (sage.rings.polynomial.multi_polynomial_real_mpfr_dense.PolynomialRealDense method), 158
reduce() (sage.rings.polynomial.multi_polynomial_template.Polynomial_template method), 113
reduce() (sage.rings.polynomial.pbori.BooleanPolynomial method), 572
reduce() (sage.rings.polynomial.pbori.BooleanPolynomialIdeal method), 579
reverse() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 123
reverse() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ method), 151
reverse() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz method), 153
reverse() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 139
reverse() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 158
reverse() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 146
reverse_intvec() (in module sage.rings.polynomial.real_roots), 198
reversed() (sage.rings.polynomial.polydict.ETuple method), 381
revert_series() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 123
revert_series() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 140
revert_series() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 146
right_divides() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 448
right_gcd() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 449
right_lcm() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 449
right_mod() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 451
right_monic() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 451
right_power_mod() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense method), 456
right_quo_rem() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense method), 457
right_xgcd() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 452
ring() (sage.rings.fraction_field.FractionField_generic method), 473
ring() (sage.rings.invariant_theory.FormsBase method), 396
ring() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 529
ring() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 345
ring() (sage.rings.polynomial.pbori.BooleanMonomial method), 560
ring() (sage.rings.polynomial.pbori.BooleanPolynomial method), 573
ring() (sage.rings.polynomial.pbori.BooleSet method), 554
ring_of_integers() (sage.rings.fraction_field.FractionField_1poly_field method), 470
root_bounds() (in module sage.rings.polynomial.real_roots), 198
root_field() (sage.rings.polynomial.polynomial_element.Polynomial method), 80
roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 81
roots() (sage.rings.polynomial.real_roots.ocean method), 193
rr_gap (class in sage.rings.polynomial.real_roots), 199
rshift_coeffs() (sage.rings.polynomial.padic.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 168

S
S_class_group() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 211
S_invariant() (sage.rings.invariant_theory.TernaryCubic method), 406
S_units() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 212
sage.rings.fraction_field (module), 469
sage.rings.fraction_field_element (module), 473
sage.rings.fraction_field_FpT (module), 477
sage.rings.invariant_theory (module), 389
sage.rings.monomials (module), 389
sage.rings.polynomial.complex_roots (module), 201
sage.rings.polynomial.convolution (module), 227
sage.rings.polynomial.cyclotomic (module), 228
sage.rings.polynomial.flatten (module), 386
sage.rings.polynomial.ideal (module), 204
sage.rings.polynomial.infinite_polynomial_element (module), 523
Index
scalar_lmult() (sage.rings.polynomial.polydict.PolyDict method), 385
scalar_rmult() (sage.rings.polynomial.polydict.PolyDict method), 386
scale_intvec_var() (in module sage.rings.polynomial.real_roots), 199
scaled_coeffs() (sage.rings.invariant_theory.BinaryQuartic method), 395
scaled_coeffs() (sage.rings.invariant_theory.QuadraticForm method), 404
scaled_coeffs() (sage.rings.invariant_theory.TernaryCubic method), 408
scaled_coeffs() (sage.rings.invariant_theory.TernaryQuadratic method), 410
second() (sage.rings.invariant_theory.TwoAlgebraicForms method), 411
section() (sage.rings.fraction_field_FpT.Fp_FpT_coerce method), 482
section() (sage.rings.fraction_field_FpT.Polyring_FpT_coerce method), 482
section() (sage.rings.fraction_field_FpT.ZZ_FpT_coerce method), 483
section() (sage.rings.polynomial.flatten.FlatteningMorphism method), 387
section() (sage.rings.polynomial.polynomial_element.PolynomialBaseringInjection method), 96
section() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomialBaseringInjection method), 454
select() (in module sage.rings.polynomial.toy_buchberger), 421
select() (in module sage.rings.polynomial.toy_d_basis), 428
select() (sage.rings.polynomial.pbori.GroebnerStrategy method), 592
selmer_group() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 220
set() (sage.rings.polynomial.pbori.BooleanMonomial method), 560
set() (sage.rings.polynomial.pbori.BooleanPolynomial method), 573
set() (sage.rings.polynomial.pbori.BooleSet method), 555
set_karatsuba_threshold() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 26
set_random_seed() (in module sage.rings.polynomial.pbori), 601
setgens() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 544
SeveralAlgebraicForms (class in sage.rings.invariant_theory), 404
shift() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 506
shift() (sage.rings.polynomial.polynomial_element.Polynomial method), 89
shift() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 98
shift() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 108
shift() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 113
shift() (sage.rings.polynomial.polynomial_modn_dense_ntl.PolynomialModn_dense_mod_n method), 149
shift() (sage.rings.polynomial.polynomial_modn_dense_ntl.PolynomialModn_dense_modn_ZZ method), 151
shift() (sage.rings.polynomial.polynomial_modn_dense_ntl.PolynomialModn_dense_modntl_ZZ method), 154
shift() (sage.rings.polynomial.polynomial_real_mpf_dense.PolynomialRealDense method), 158
shift() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 142
shift() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template_method), 173
shift() (sage.rings.polynomial.polynomial_zz_pex.PolynomialZZ_pEX method), 171
shift() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 452
shrink_bp() (sage.rings.polynomial.real_roots.island method), 189
singular_moreblocks() (sage.rings.polynomial.term_order.TermOrder method), 243
singular_str() (sage.rings.polynomial.term_order.TermOrder method), 244
size_double() (sage.rings.polynomial.pbori.BooleSet method), 555
SkewPolynomial (class in sage.rings.polynomial.skew_polynomial_element), 431
SkewPolynomial_generic_dense (class in sage.rings.polynomial.skew_polynomial_element), 454
SkewPolynomialBaseringInjection (class in sage.rings.polynomial.skew_polynomial_element), 453
SkewPolynomialRing() (in module sage.rings.polynomial.skew_polynomial_ring_constructor), 458
SkewPolynomialRing_general (class in sage.rings.polynomial.skew_polynomial_ring), 460
slimgb_libsingular() (in module sage.rings.polynomial.multi_polynomial_ideal_libsingular), 378
slope_factorization() (sage.rings.polynomial.polynomial_element_generic.PolynomialGeneric_cdv method), 103
slope_range() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 184
slope_range() (sage.rings.polynomial.real_roots.interval_berstein_polynomial_integer method), 187
small_roots() (in module sage.rings.polynomial.polynomial_modn_dense_ntl), 154
small_roots() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 149
small_roots() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 147
small_spolys_in_next_degree() (sage.rings.polynomial.pbori.GroebnerStrategy method), 593
solve() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_GF2 method), 348
some_elements() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 27
some_spolys_in_next_degree() (sage.rings.polynomial.pbori.GroebnerStrategy method), 593
sortkey_block() (sage.rings.polynomial.term_order.TermOrder method), 244
sortkey_deglex() (sage.rings.polynomial.term_order.TermOrder method), 244
sortkey_degneglex() (sage.rings.polynomial.term_order.TermOrder method), 244
sortkey_invlex() (sage.rings.polynomial.term_order.TermOrder method), 245
sortkey_lex() (sage.rings.polynomial.term_order.TermOrder method), 245
sortkey_matrix() (sage.rings.polynomial.term_order.TermOrder method), 245
sortkey_negdeglex() (sage.rings.polynomial.term_order.TermOrder method), 246
sortkey_negdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 246
sortkey_neglex() (sage.rings.polynomial.term_order.TermOrder method), 246
sortkey_negwddeglex() (sage.rings.polynomial.term_order.TermOrder method), 246
sortkey_negwdgrevlex() (sage.rings.polynomial.term_order.TermOrder method), 247
sortkey_wdeglex() (sage.rings.polynomial.term_order.TermOrder method), 247
sortkey_wdegrevlex() (sage.rings.polynomial.term_order.TermOrder method), 247
sparse_iter() (sage.rings.polynomial.polydict.ETuple method), 381
specialization() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 272
specialization() (sage.rings.polynomial.polynomial_element.Polynomial method), 89
SpecializationMorphism (class in sage.rings.polynomial.flaten), 387
split_for_targets() (in module sage.rings.polynomial.real_roots), 199
splitting_field() (sage.rings.polynomial.polynomial_element.Polynomial method), 90
spol() (in module sage.rings.polynomial.toy_buchberger), 421
spol() (in module sage.rings.polynomial.toy_d_basis), 428
spoly() (sage.rings.polynomial.pbori.BooleanPolynomial method), 574
sqr_pd (class in sage.rings.polynomial.polynomial_compiled), 226
sqr() (sage.rings.fraction_field_FpT.FpTElement method), 479
square() (sage.rings.polynomial.polynomial_element.Polynomial method), 91
square() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 453
squarefree_decomposition() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 124
squarefree_decomposition() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 129
squarefree_decomposition() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 147
squeezed() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 529
squeezed() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 539
stable_hash() (sage.rings.polynomial.pbori.BooleSet method), 555
std() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 333
std_libsingular() (in module sage.rings.polynomial.multi_polynomial_ideal_libsingular), 378
stretch() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 530
sub_m_mul_q() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 373
subs() (sage.rings.fraction_field_FpT.FpTElement method), 480
subs() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 499
subs() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 291
subs() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 308
subs() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 374
subs() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 346
subs() (sage.rings.polynomial.pbori.BooleanPolynomial method), 574
subs() (sage.rings.polynomial.polynomial_element.Polynomial method), 92
subsample_vec_doctest() (in module sage.rings.polynomial.real_roots), 200
subset0() (sage.rings.polynomial.pbori.BooleSet method), 555
subset1() (sage.rings.polynomial.pbori.BooleSet method), 556
substitute() (sage.rings.polynomial.polynomial_element.Polynomial method), 92
substitute_variables() (in module sage.rings.polynomial.pbori), 602
suggest_plugin_variable() (sage.rings.polynomial.pbori.GroebnerStrategy method), 593
support() (sage.rings.fraction_field_element.FractionFieldElement_1poly_field method), 476
sylvester_matrix() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 273
sylvester_matrix() (sage.rings.polynomial.polynomial_element.Polynomial method), 92
symmetric_basis() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 539
symmetric_cancellation_order() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 530
symmetric_power() (sage.rings.polynomial.polynomial_element.Polynomial method), 93
SymmetricIdeal (class in sage.rings.polynomial.symmetric_ideal), 532
SymmetricReductionStrategy (class in sage.rings.polynomial.symmetric_reduction), 542
symmetrisation() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 539
syzygy() (sage.rings.polynomial.pbori.GroebnerStrategy method), 593
syzygy() (sage.rings.invariant_theory.TernaryCubic method), 408
syzygy() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 414
syzygy() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 416
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr method), 312
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 326
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 333

T

T_covariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 412
T_invariant() (sage.rings.invariant_theory.TernaryCubic method), 406
T_prime_covariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 413
tax() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 531
tailreduce() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 545
taylor_shift1_intvec() (in module sage.rings.polynomial.real_roots), 200
tensor_with_ring() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense method), 518
tensor_with_ring() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 521
term_order() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 491
term_order() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 256
term_order() (sage.rings.polynomial.plural.NCPolynomialRing_plural method), 612
terminal_one() (sage.rings.polynomial.pbori.CCuddNavigator method), 588
TermOrder (class in sage.rings.polynomial.term_order), 236
TermOrder_from_pb_order() (in module sage.rings.polynomial.pbori), 596
termorder_from_singular() (in module sage.rings.polynomial.term_order), 248
terms() (sage.rings.polynomial.pbori.BooleanPolynomial method), 575
ternary_biquadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 400
ternary_cubic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 401
ternary_quadratic() (sage.rings.invariant_theory.InvariantTheoryFactory method), 401
TernaryCubic (class in sage.rings.invariant_theory), 406
TernaryQuadratic (class in sage.rings.invariant_theory), 409
then_branch() (sage.rings.polynomial.pbori.CCuddNavigator method), 588
Theta_covariant() (sage.rings.invariant_theory.TernaryCubic method), 407
Theta_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 413
Theta_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 415
Theta_prime_invariant() (sage.rings.invariant_theory.TwoQuaternaryQuadratics method), 413
Theta_prime_invariant() (sage.rings.invariant_theory.TwoTernaryQuadratics method), 416
to_bernstein() (in module sage.rings.polynomial.real_roots), 200
to_bernstein_warp() (in module sage.rings.polynomial.real_roots), 200
to_ocean() (sage.rings.polynomial.real_roots.linear_map method), 189
to_ocean() (sage.rings.polynomial.real_roots.warp_map method), 201
top_index() (in module sage.rings.polynomial.pbori), 602
top_sugar() (sage.rings.polynomial.pbori.GroebnerStrategy method), 593
total_degree() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 292
total_degree() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libsingular method), 375
total_degree() (sage.rings.polynomial.pbori.BooleanPolynomial method), 575
total_degree() (sage.rings.polynomial.plural.NCPolynomial_plural method), 619
total_degree() (sage.rings.polynomial.polydict.PolyDict method), 386
trace() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 225
transformed() (sage.rings.invariant_theory.AlgebraicForm method), 392
transformed_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 326
triangular_decomposition() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 327
triangular_factorization() (in module sage.rings.polynomial.toy_variety), 425
truncate() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 506
truncate() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 274
truncate() (sage.rings.polynomial.polynomial_element.Element.Polynomial method), 94
truncate() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 98
truncate() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 109
truncate() (sage.rings.polynomial.polynomial_element_generic.gf2x.Polynomial_template method), 114
truncate() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_ZZ method), 152
truncate() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 154
truncate() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 140
truncate() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 159
truncate() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 143
truncate() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 173
truncate() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomialGeneric_dense method), 458
truncate_abs() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 159
try_rand_split() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 182
try_split() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 182
tuple_weight() (sage.rings.polynomial.term_order.TermOrder method), 247
twist_map() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomialRing_general method), 467
TwoAlgebraicForms (class in sage.rings.invariant_theory), 410
TwoQuaternaryQuadratics (class in sage.rings.invariant_theory), 411
twostd() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 335
TwoTernaryQuadratics (class in sage.rings.invariant_theory), 414

Index 661
unary_pd (class in sage.rings.polynomial.polynomial_compiled), 226
UnflatteningMorphism (class in sage.rings.polynomial.flatten), 388
union() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 220
univar_pd (class in sage.rings.polynomial.polynomial_compiled), 227
univariate_polynomial() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 499
univariate_polynomial() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 292
univariate_polynomial() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 375
univariate_polynomial() (sage.rings.polynomial.pbori.BooleanPolynomial method), 575
univariate_ring() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 256
universal_discriminant() (in module sage.rings.polynomial.polynomial_element), 100
universe() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 346
unpickle:BooleanPolynomial() (in module sage.rings.polynomial.pbori), 603
unpickle:BooleanPolynomial0() (in module sage.rings.polynomial.pbori), 603
unpickle:BooleanPolynomialRing() (in module sage.rings.polynomial.pbori), 603
unpickle:FpT_element() (in module sage.rings.fraction_field_FpT), 484
unpickle:MPolynomial_libsingular() (in module sage.rings.polynomial.multi_polynomial_libsingular), 376
unpickle:MPolynomialRing_generic() (in module sage.rings.polynomial.multi_polynomial_ring_generic), 257
unpickle:MPolynomialRing_generic_v1() (in module sage.rings.polynomial.multi_polynomial_ring_generic), 257
unpickle:NCPolynomial_plural() (in module sage.rings.polynomial.plural), 622
update() (in module sage.rings.polynomial.toy_buchberger), 421
update() (in module sage.rings.polynomial.toy_d_basis), 428
usign() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory method), 175

valuation() (sage.rings.fraction_field_element.FractionFieldElement method), 475
valuation() (sage.rings.fraction_field_FpT.FpTElement method), 480
valuation() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 506
valuation() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 168
valuation() (sage.rings.polynomial.polynomial_element.Polynomial method), 94
valuation() (sage.rings.polynomial.polynomial_element_element.Polynomial method), 94
valuation() (sage.rings.polynomial.polynomial_element_element_generic.Polynomial_element_generic_sparse method), 109
valuation() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_modnntl_ZZ method), 152
valuation() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_modnntl_zz method), 154
valuation() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial_generic_dense method), 458
valuation_of_coefficient() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 168
value() (sage.rings.polynomial.pbori.CCuddNavigator method), 588
var_pd (class in sage.rings.polynomial.polynomial_compiled), 227
variable() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 292
variable() (sage.rings.polynomial.multi_polynomial_element_libsingular.MPolynomial_libsingular method), 376
variable() (sage.rings.polynomial.pbori.BooleanPolynomial method), 576
variable() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 587
variable_has_value() (sage.rings.polynomial.pbori.GroebnerStrategy method), 593
variable_name() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 507
variable_name() (sage.rings.polynomial.polynomial_element.Polynomial method), 94
variable_name() (sage.rings.polynomial.skew_polynomial_element.SkewPolynomial method), 453
variable_names_recursive() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 491
variable_names_recursive() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 256
variable_names_recursive() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 27
VariableBlock (class in sage.rings.polynomial.pbori), 596
VariableConstruct (class in sage.rings.polynomial.pbori), 596
VariableFactory (class in sage.rings.polynomial.pbori), 596
variables() (sage.rings.invariant_theory.FormsBase method), 397
variables() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_sparse method), 531
variables() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair method), 500
variables() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_sharmpair method), 507
variables() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 293
variables() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 376
variables() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 346
variables() (sage.rings.polynomial.pbori.BooleanMonomial method), 560
variables() (sage.rings.polynomial.pbori.BooleanPolynomial method), 576
variables() (sage.rings.polynomial.pbori.BooleConstant method), 550
variables() (sage.rings.polynomial.pbori.BooleMonomial method), 95
variables() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 183
variety() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 328
variety() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 579
varname_cmp() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 183
varname_key() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 522
vars() (sage.rings.polynomial.bioleBooleanSet method), 556
vars_as_monomial() (sage.rings.polynomial.pbori.BoolePolynomial method), 576
vector_space_dimension() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 331

W
warp_map (class in sage.rings.polynomial.real_roots), 200
weighted_degree() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 274
weights() (sage.rings.polynomial.term_order.TermOrder method), 248
weil_restriction() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 309
weil_restriction() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2e method), 349
weyl_algebra() (sage.rings.polynomial.multi_polynomial_ring_generic.MPolynomialRing_generic method), 256
weyl_algebra() (sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative method), 12
wordsize_rational() (in module sage.rings.polynomial.real_roots), 201

X
xgcd() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 169
xgcd() (sage.rings.polynomial.polynomial_element.Polynomial method), 95
xgcd() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 114
xgcd() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 124
xgcd() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 129
xgcd() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 150
xgcd() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 140
xgcd() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 143
Z

zero() (sage.rings.polynomial.pbori.BooleanPolynomialRing method), 587
zeros() (in module sage.rings.polynomial.pbori), 603
zeros_in() (sage.rings.polynomial.pbori.BooleanPolynomial method), 576

ZZ_FpT_coerce (class in sage.rings.fraction_field_FpT), 483

xgcd() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 173