CONTENTS

1 Non Negative Integer Semiring 1
2 Tropical Semirings 3
3 Indices and Tables 7
Python Module Index 9
Index 11
A class for the semiring of the non negative integers

This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural semiring structure.

EXAMPLES:

```sage
sage: NonNegativeIntegerSemiring()
Non negative integer semiring

For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

```sage
sage: NN == NonNegativeIntegerSemiring()
True

sage: NN.category()
Category of facade infinite enumerated commutative semirings
```

Here is a piece of the Cayley graph for the multiplicative structure:

```sage
sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
sage: G
Looped multi-digraph on 9 vertices
sage: G.plot()
Graphics object consisting of 48 graphics primitives
```

This is the Hasse diagram of the divisibility order on NN.

```sage
sage: Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show()
```

Note: as for NonNegativeIntegers, NN is currently just a “facade” parent; namely its elements are plain Sage Integers with Integer Ring as parent:
additive_semigroup_generators()
Returns the additive semigroup generators of self.

EXAMPLES:

```
sage: NN.additive_semigroup_generators()
Family (0, 1)
```
AUTHORS:

- Travis Scrimshaw (2013-04-28) - Initial version

```python
class sage.rings.semirings.tropical_semiring.TropicalSemiring(base, use_min=True):
 Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

The tropical semiring.

Given an ordered additive semigroup R, we define the tropical semiring $T = R \cup \{+\infty\}$ by defining tropical addition and multiplication as follows:

$$a \oplus b = \min(a, b), \quad a \otimes b = a + b.$$

In particular, note that there are no (tropical) additive inverses (except for ∞), and every element in R has a (tropical) multiplicative inverse.

There is an alternative definition where we define $T = R \cup \{-\infty\}$ and alter tropical addition to be defined by

$$a \oplus b = \max(a, b).$$

To use the max definition, set the argument $use_min = False$.

Warning: $zero()$ and $one()$ refer to the tropical additive and multiplicative identities respectively. These are not the same as calling $T(0)$ and $T(1)$ respectively as these are not the tropical additive and multiplicative identities respectively.

Specifically do not use $\text{sum}(\ldots)$ as this converts 0 to 0 as a tropical element, which is not the same as $zero()$. Instead use the sum method of the tropical semiring:

```python
sage: T = TropicalSemiring(QQ)
sage: \text{sum}([T(1), T(2)]) # This is wrong
0
sage: T.\text{sum}([T(1), T(2)]) # This is correct
1
```

Be careful about using code that has not been checked for tropical safety.

INPUT:

- $base$ – the base ordered additive semigroup R
• use_min – (default: True) if True, then the semiring uses \(a \oplus b = \min(a, b) \); otherwise uses \(a \oplus b = \max(a, b) \).

EXAMPLES:

```
sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2
```

Recall that tropical addition is the minimum of two elements:

```
sage: T(3) + T(5)
3
```

Tropical multiplication is the addition of two elements:

```
sage: T(2) * T(3)
5
sage: T(0) * T(-2)
-2
```

We can also do tropical division and arbitrary tropical exponentiation:

```
sage: T(2) / T(1)
1
sage: T(2)^(-3/7)
-6/7
```

Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are not the elements 0 and 1 of \(R \), respectively, even if such elements exist (e.g., for \(R = \mathbb{Z} \)), but instead the (tropical) additive and multiplicative identities \(+\infty\) and 0 respectively:

```
sage: T.zero() + T(3) == T(3)
True
sage: T.one() * T(3) == T(3)
True
sage: T.zero() == T(0)
False
sage: T.one() == T(1)
False
```

Element

alias of `TropicalSemiringElement`

additive_identity()

Return the (tropical) additive identity element \(+\infty\).

EXAMPLES:

```
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

gens()

Return the generators of `self`.

EXAMPLES:

Chapter 2. Tropical Semirings
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)

infinity()
Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

multiplicative_identity()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

one()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

zero()
Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

class sage.rings.semirings.tropical_semiring.TropicalSemiringElement
Bases: sage.structure.element.Element

An element in the tropical semiring over an ordered additive semigroup R. Either in R or ∞. The operators $+, \cdot$ are defined as the tropical operators \oplus, \odot respectively.

lift()
Return the value of self lifted to the base.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift()
2
sage: elt.lift().parent() is QQ
True
sage: T.additive_identity().lift().parent()
The Infinity Ring
\textbf{multiplicative_order}()

Return the multiplicative order of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: T = TropicalSemiring(QQ)
sage: T.multiplicative_identity().multiplicative_order()
1
sage: T.additive_identity().multiplicative_order()
+Infinity
\end{verbatim}

\textbf{class} \texttt{sage.rings.semirings.tropical_semiring.TropicalToTropical}

\textbf{Bases:} \texttt{sage.categories.map.Map}

Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
CHAPTER
THREE

INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.rings.semirings.non_negative_integer_semiring, 1
sage.rings.semirings.tropical_semiring, 3
additive_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4
additive_semigroup_generators() (sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring method), 1

Element (sage.rings.semirings.tropical_semiring.TropicalSemiring attribute), 4

gens() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4

infinity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5

lift() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5

multiplicative_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
multiplicative_order() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5

NN (in module sage.rings.semirings.non_negative_integer_semiring), 1
NonNegativeIntegerSemiring (class in sage.rings.semirings.non_negative_integer_semiring), 1

one() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5

sage.rings.semirings.non_negative_integer_semiring (module), 1
sage.rings.semirings.tropical_semiring (module), 3

TropicalSemiring (class in sage.rings.semirings.tropical_semiring), 3
TropicalSemiringElement (class in sage.rings.semirings.tropical_semiring), 5
TropicalToTropical (class in sage.rings.semirings.tropical_semiring), 6
Z

zero() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5