CONTENTS

1. Non Negative Integer Semiring
2. Tropical Semirings
3. Indices and Tables
Python Module Index
Index
class sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring

Bases: sage.sets.non_negative_integers.NonNegativeIntegers

A class for the semiring of the non negative integers

This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural semiring structure.

EXAMPLES:

```
sage: NonNegativeIntegerSemiring()
Non negative integer semiring

For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

```
sage: NN == NonNegativeIntegerSemiring()
True

sage: NN.category()
Category of facade infinite enumerated commutative semirings
```

Here is a piece of the Cayley graph for the multiplicative structure:

```
sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
sage: G
Looped multi-digraph on 9 vertices
sage: G.plot()
Graphics object consisting of 48 graphics primitives
```

This is the Hasse diagram of the divisibility order on NN.

```
sage: Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show()
```

Note: as for NonNegativeIntegers, NN is currently just a “facade” parent; namely its elements are plain Sage Integers with Integer Ring as parent:

```
sage: x = NN(15); type(x)
<type 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: x+3
18
```

additive_semigroup_generators()

Returns the additive semigroup generators of self.
EXAMPLES:

```python
sage: NN.additive_semigroup_generators()
Family (0, 1)
```
AUTHORS:

- Travis Scrimshaw (2013-04-28) - Initial version

```python
class sage.rings.semirings.tropical_semiring.TropicalSemiring(base, use_min=True)
```

**Bases:** `sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation`

The tropical semiring.

Given an ordered additive semigroup $R$, we define the tropical semiring $T = R \cup \{+\infty\}$ by defining tropical addition and multiplication as follows:

\[
a \oplus b = \min(a, b), \quad a \odot b = a + b.
\]

In particular, note that there are no (tropical) additive inverses (except for $\infty$), and every element in $R$ has a (tropical) multiplicative inverse.

There is an alternative definition where we define $T = R \cup \{-\infty\}$ and alter tropical addition to be defined by

\[
a \oplus b = \max(a, b).
\]

To use the `max` definition, set the argument `use_min = False`.

**Warning:** `zero()` and `one()` refer to the tropical additive and multiplicative identities respectively. These are **not** the same as calling $T(0)$ and $T(1)$ respectively as these are **not** the tropical additive and multiplicative identities respectively.

Specifically do not use `sum(...)` as this converts 0 to 0 as a tropical element, which is not the same as `zero()`. Instead use the `sum` method of the tropical semiring:

```python
sage: T = TropicalSemiring(QQ)
sage: sum([T(1), T(2)]) # This is wrong
0
sage: T.sum([T(1), T(2)]) # This is correct
1
```

Be careful about using code that has not been checked for tropical safety.

**INPUT:**

- `base` – the base ordered additive semigroup $R
• use_min – (default: True) if True, then the semiring uses \( a \oplus b = \min(a, b) \); otherwise uses \( a \oplus b = \max(a, b) \)

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2
```

Recall that tropical addition is the minimum of two elements:

```python
sage: T(3) + T(5)
3
```

Tropical multiplication is the addition of two elements:

```python
sage: T(2) * T(3)
5
sage: T(0) * T(-2)
-2
```

We can also do tropical division and arbitrary tropical exponentiation:

```python
sage: T(2) / T(1)
1
```

Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are not the elements 0 and 1 of \( R \), respectively, even if such elements exist (e.g., for \( R = \mathbb{Z} \)), but instead the (tropical) additive and multiplicative identities \( +\infty \) and 0 respectively:

```python
sage: T.zero() + T(3) == T(3)
True
sage: T.one() * T(3) == T(3)
True
sage: T.zero() == T(0)
False
sage: T.one() == T(1)
False
```

Element

alias of TropicalSemiringElement

additive_identity()

Return the (tropical) additive identity element \( +\infty \).

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

gens()

Return the generators of self.

EXAMPLES:
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)

infinity()
Return the (tropical) additive identity element +∞.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

multiplicative_identity()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

one()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

zero()
Return the (tropical) additive identity element +∞.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

class sage.rings.semirings.tropical_semiring.TropicalSemiringElement
Bases: sage.structure.element.Element

An element in the tropical semiring over an ordered additive semigroup R. Either in R or ∞. The operators +, · are defined as the tropical operators ⊕, ⊙ respectively.

lift()
Return the value of self lifted to the base.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift()
2
sage: elt.lift().parent() is QQ
True
sage: T.additive_identity().lift().parent()
The Infinity Ring
multiplicative_order()
    Return the multiplicative order of self.

    EXAMPLES:

    sage: T = TropicalSemiring(QQ)
    sage: T.multiplicative_identity().multiplicative_order()
    1
    sage: T.additive_identity().multiplicative_order()
    +Infinity

class sage.rings.semirings.tropical_semiring.TropicalToTropical
    Bases: sage.categories.map.Map

    Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
INDICES AND TABLES

• Index
• Module Index
• Search Page
r

sage.rings.semirings.non_negative_integer_semiring, 1
sage.rings.semirings.tropical_semiring, 3
<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>additive_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4</td>
</tr>
<tr>
<td></td>
<td>additive_semigroup_generators() (sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring method), 1</td>
</tr>
<tr>
<td>E</td>
<td>Element (sage.rings.semirings.tropical_semiring.TropicalSemiring attribute), 4</td>
</tr>
<tr>
<td>G</td>
<td>gens() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4</td>
</tr>
<tr>
<td>I</td>
<td>infinity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5</td>
</tr>
<tr>
<td>L</td>
<td>lift() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5</td>
</tr>
<tr>
<td>M</td>
<td>multiplicative_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5</td>
</tr>
<tr>
<td></td>
<td>multiplicative_order() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5</td>
</tr>
<tr>
<td>N</td>
<td>NonNegativeIntegerSemiring (class in sage.rings.semirings.non_negative_integer_semiring), 1</td>
</tr>
<tr>
<td>O</td>
<td>one() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5</td>
</tr>
<tr>
<td>S</td>
<td>sage.rings.semirings.non_negative_integer_semiring (module), 1</td>
</tr>
<tr>
<td></td>
<td>sage.rings.semirings.tropical_semiring (module), 3</td>
</tr>
<tr>
<td>T</td>
<td>TropicalSemiring (class in sage.rings.semirings.tropical_semiring), 3</td>
</tr>
<tr>
<td></td>
<td>TropicalSemiringElement (class in sage.rings.semirings.tropical_semiring), 5</td>
</tr>
<tr>
<td></td>
<td>TropicalToTropical (class in sage.rings.semirings.tropical_semiring), 6</td>
</tr>
<tr>
<td>Z</td>
<td>zero() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5</td>
</tr>
</tbody>
</table>