
Release 8.2

The Sage Development Team

May 07, 2018
CONTENTS

1 Non Negative Integer Semiring
2 Tropical Semirings
3 Indices and Tables
Python Module Index
Index
class sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring
 Bases: sage.sets.non_negative_integers.NonNegativeIntegers

A class for the semiring of the non negative integers

This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural
semiring structure.

EXAMPLES:

```
sage: NonNegativeIntegerSemiring()
Non negative integer semiring

For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

```
sage: NN == NonNegativeIntegerSemiring()
True

```
sage: NN.category()
Category of facade infinite enumerated commutative semirings
```

Here is a piece of the Cayley graph for the multiplicative structure:

```
sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
sage: G
Looped multi-digraph on 9 vertices

```
sage: G.plot()
Graphics object consisting of 48 graphics primitives

This is the Hasse diagram of the divisibility order on NN.

```
sage: Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show()
```

Note: as for NonNegativeIntegers, NN is currently just a “facade” parent; namely its elements are plain
Sage Integers with Integer Ring as parent:

```
sage: x = NN(15); type(x)
<type 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring

additive_semigroup_generators()
    Returns the additive semigroup generators of self.
EXAMPLES:

```
sage: NN.additive_semigroup_generators()
Family (0, 1)
```
TROPICAL SEMIRINGS

AUTHORS:
- Travis Scrimshaw (2013-04-28) - Initial version

class sage.rings.semirings.tropical_semiring.TropicalSemiring(base, 
    use_min=True)

Bases: sage.structure.parent.Parent, 
    sage.structure.unique_representation.UniqueRepresentation

The tropical semiring.

Given an ordered additive semigroup $R$, we define the tropical semiring $T = R \cup \{+\infty\}$ by defining tropical addition and multiplication as follows:

\[ a \oplus b = \min(a, b), \quad a \odot b = a + b. \]

In particular, note that there are no (tropical) additive inverses (except for $\infty$), and every element in $R$ has a (tropical) multiplicative inverse.

There is an alternative definition where we define $T = R \cup \{-\infty\}$ and alter tropical addition to be defined by

\[ a \oplus b = \max(a, b). \]

To use the $\max$ definition, set the argument $use\_min = False$.

Warning: $zero()$ and $one()$ refer to the tropical additive and multiplicative identities respectively. These are not the same as calling $T(0)$ and $T(1)$ respectively as these are not the tropical additive and multiplicative identities respectively.

Specifically do not use $sum(...)$ as this converts 0 to 0 as a tropical element, which is not the same as $zero()$. Instead use the $sum$ method of the tropical semiring:

```sage
T = TropicalSemiring(QQ)

sage: sum([T(1), T(2)]) # This is wrong
0
sage: T.sum([T(1), T(2)]) # This is correct
1
```

Be careful about using code that has not been checked for tropical safety.

INPUT:
- $base$ – the base ordered additive semigroup $R$
• use_min – (default: True) if True, then the semiring uses \( a \oplus b = \min(a, b) \); otherwise uses \( a \oplus b = \max(a, b) \)

EXAMPLES:

```
sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2
Recall that tropical addition is the minimum of two elements:
```
```
sage: T(3) + T(5)
3
Tropical multiplication is the addition of two elements:
```
```
sage: T(2) * T(3)
5
sage: T(0) * T(-2)
-2
We can also do tropical division and arbitrary tropical exponentiation:
```
```
sage: T(2) / T(1)
1
sage: T(2)^(-3/7)
-6/7
```
```
Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are not the elements 0 and 1 of \(R \), respectively, even if such elements exist (e.g., for \(R = \mathbb{Z} \)), but instead the (tropical) additive and multiplicative identities \(+\infty\) and 0 respectively:
```
```
sage: T.zero() + T(3) == T(3)
True
sage: T.one() * T(3) == T(3)
True
sage: T.zero() == T(0)
False
sage: T.one() == T(1)
False
```

**Element**

alias of **TropicalSemiringElement**

**additive_identity ()**

Return the (tropical) additive identity element \(+\infty\).

**EXAMPLES:**

```
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

**gens ()**

Return the generators of **self**.

**EXAMPLES:**
```python
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)
```

**infinity()**
Return the (tropical) additive identity element $+\infty$.

**EXAMPLES:**
```python
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

**multiplicative_identity()**
Return the (tropical) multiplicative identity element 0.

**EXAMPLES:**
```python
sage: T = TropicalSemiring(QQ)
sage: T.one()
0
```

**one()**
Return the (tropical) multiplicative identity element 0.

**EXAMPLES:**
```python
sage: T = TropicalSemiring(QQ)
sage: T.one()
0
```

**zero()**
Return the (tropical) additive identity element $+\infty$.

**EXAMPLES:**
```python
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

```python
class sage.rings.semirings.tropical_semiring.TropicalSemiringElement
Bases: sage.structure.element.Element

An element in the tropical semiring over an ordered additive semigroup R. Either in R or ∞. The operators $+, \cdot$ are defined as the tropical operators \oplus, \odot respectively.

lift()
Return the value of self lifted to the base.

EXAMPLES:
```python
sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift()
2
sage: elt.lift().parent() is QQ
True
sage: T.additive_identity().lift().parent()
The Infinity Ring
```
multiplicative_order()

Return the multiplicative order of `self`.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.multiplicative_identity().multiplicative_order()
1
sage: T.additive_identity().multiplicative_order()
+Infinity
```

class `sage.rings.semirings.tropical_semiring.TropicalToTropical`

Bases: `sage.categories.map.Map`

Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
CHAPTER THREE

INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.rings.semirings.non_negative_integer_semiring, 1
sage.rings.semirings.tropical_semiring, 3
A
additive_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4
additive_semigroup_generators() (sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring
method), 1
E
Element (sage.rings.semirings.tropical_semiring.TropicalSemiring attribute), 4
G
gens() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4
I
infinity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
L
lift() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5
M
multiplicative_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
multiplicative_order() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5
N
NonNegativeIntegerSemiring (class in sage.rings.semirings.non_negative_integer_semiring), 1
O
one() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
S
sage.rings.semirings.non_negative_integer_semiring (module), 1
sage.rings.semirings.tropical_semiring (module), 3
T
TropicalSemiring (class in sage.rings.semirings.tropical_semiring), 3
TropicalSemiringElement (class in sage.rings.semirings.tropical_semiring), 5
TropicalToTropical (class in sage.rings.semirings.tropical_semiring), 6
Z
zero() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5