CONTENTS

1. Non Negative Integer Semiring 1
2. Tropical Semirings .. 3
3. Indices and Tables 7
Python Module Index .. 9
Index .. 11
class sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring

Bases: sage.sets.non_negative_integers.NonNegativeIntegers

A class for the semiring of the non negative integers

This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural semiring structure.

EXAMPLES:

sage: NonNegativeIntegerSemiring()
Non negative integer semiring

For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

sage: NN == NonNegativeIntegerSemiring()
True
sage: NN.category()
Category of facade infinite enumerated commutative semirings

Here is a piece of the Cayley graph for the multiplicative structure:

sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
sage: G
Looped multi-digraph on 9 vertices
sage: G.plot()
Graphics object consisting of 48 graphics primitives

This is the Hasse diagram of the divisibility order on NN.

 sage: Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show()

Note: as for NonNegativeIntegers, NN is currently just a “facade” parent; namely its elements are plain Sage Integers with Integer Ring as parent:

sage: x = NN(15); type(x)
<type 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: x+3
18

additive_semigroup_generators()

Returns the additive semigroup generators of self.
EXAMPLES:

```
sage: NN.additive_semigroup_generators()
Family (0, 1)
```
TROPICAL SEMIRINGS

AUTHORS:

• Travis Scrimshaw (2013-04-28) - Initial version

class sage.rings.semirings.tropical_semiring.TropicalSemiring(base, use_min=True)

 Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

The tropical semiring.

Given an ordered additive semigroup R, we define the tropical semiring $T = R \cup \{+\infty\}$ by defining tropical addition and multiplication as follows:

$$a \oplus b = \min(a, b), \quad a \odot b = a + b.$$

In particular, note that there are no (tropical) additive inverses (except for ∞), and every element in R has a (tropical) multiplicative inverse.

There is an alternative definition where we define $T = R \cup \{-\infty\}$ and alter tropical addition to be defined by

$$a \oplus b = \max(a, b).$$

To use the max definition, set the argument use_min = False.

Warning: zero() and one() refer to the tropical additive and multiplicative identities respectively. These are not the same as calling $T(0)$ and $T(1)$ respectively as these are not the tropical additive and multiplicative identities respectively.

Specifically do not use sum(...) as this converts 0 to 0 as a tropical element, which is not the same as zero(). Instead use the sum method of the tropical semiring:

```
sage: T = TropicalSemiring(QQ)

sage: sum([T(1), T(2)]) # This is wrong 0
sage: T.sum([T(1), T(2)]) # This is correct 1
```

Be careful about using code that has not been checked for tropical safety.

INPUT:

• base – the base ordered additive semigroup R
- **use_min** — (default: True) if True, then the semiring uses $a \oplus b = \min(a, b)$; otherwise uses $a \oplus b = \max(a, b)$

EXAMPLES:

```sage
t = TropicalSemiring(QQ)
t elt = t(2); elt
2
```

Recall that tropical addition is the minimum of two elements:

```sage
t(3) + t(5)
3
```

Tropical multiplication is the addition of two elements:

```sage
t(2) * t(3)
5
t(0) * t(-2)
-2
```

We can also do tropical division and arbitrary tropical exponentiation:

```sage
t(2) / t(1)
1
t(2) ** (-3/7)
-6/7
```

Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are not the elements 0 and 1 of R, respectively, even if such elements exist (e.g., for $R = \mathbb{Z}$), but instead the (tropical) additive and multiplicative identities $+\infty$ and 0 respectively:

```sage
t.zero() + t(3) == t(3)
True
t.one() * t(3) == t(3)
True
t.zero() == t(0)
False
t.one() == t(1)
False
```

Element

alias of `TropicalSemiringElement`

additive_identity()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

```sage
t = TropicalSemiring(QQ)
t t.zero()
+infinity
```

gens()

Return the generators of `self`.

EXAMPLES:

```sage
```
```
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)
```

infinity()
Return the (tropical) additive identity element $+\infty$.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

multiplicative_identity()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: T.one()
0
```

one()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: T.one()
0
```

zero()
Return the (tropical) additive identity element $+\infty$.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

```python
class sage.rings.semirings.tropical_semiring.TropicalSemiringElement
Bases: sage.structure.element.Element

An element in the tropical semiring over an ordered additive semigroup $R$. Either in $R$ or $\infty$. The operators $+, \cdot$ are defined as the tropical operators $\oplus, \odot$ respectively.

**lift()**
Return the value of `self` lifted to the base.

**EXAMPLES:**
```
sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift()
2
sage: elt.lift().parent() is QQ
True
sage: T.additive_identity().lift().parent()
The Infinity Ring
```
multiplicative_order()

Return the multiplicative order of self.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.multiplicative_identity().multiplicative_order()
1
sage: T.additive_identity().multiplicative_order()
+Infinity
```

class sage.rings.semirings.tropical_semiring.TropicalToTropical

Bases: sage.categories.map.Map

Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
CHAPTER
THREE

INDICES AND TABLES

• Index
• Module Index
• Search Page
PYTHON MODULE INDEX

r
sage.rings.semirings.non_negative_integer_semiring, 1
sage.rings.semirings.tropical_semiring, 3
additive_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4
additive_semigroup_generators() (sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring method), 1

Element (sage.rings.semirings.tropical_semiring.TropicalSemiring attribute), 4

gens() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4

infinity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5

lift() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5

multiplicative_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
multiplicative_order() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5

NonNegativeIntegerSemiring (class in sage.rings.semirings.non_negative_integer_semiring), 1

one() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5

sage.rings.semirings.non_negative_integer_semiring (module), 1
sage.rings.semirings.tropical_semiring (module), 3

TropicalSemiring (class in sage.rings.semirings.tropical_semiring), 3
TropicalSemiringElement (class in sage.rings.semirings.tropical_semiring), 5
TropicalToTropical (class in sage.rings.semirings.tropical_semiring), 6

zero() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5