Mathematical constants¶
The following standard mathematical constants are defined in Sage, along with support for coercing them into GAP, PARI/GP, KASH, Maxima, Mathematica, Maple, Octave, and Singular:
sage: pi
pi
sage: e # base of the natural logarithm
e
sage: NaN # Not a number
NaN
sage: golden_ratio
golden_ratio
sage: log2 # natural logarithm of the real number 2
log2
sage: euler_gamma # Euler's gamma constant
euler_gamma
sage: catalan # the Catalan constant
catalan
sage: khinchin # Khinchin's constant
khinchin
sage: twinprime
twinprime
sage: mertens
mertens
>>> from sage.all import *
>>> pi
pi
>>> e # base of the natural logarithm
e
>>> NaN # Not a number
NaN
>>> golden_ratio
golden_ratio
>>> log2 # natural logarithm of the real number 2
log2
>>> euler_gamma # Euler's gamma constant
euler_gamma
>>> catalan # the Catalan constant
catalan
>>> khinchin # Khinchin's constant
khinchin
>>> twinprime
twinprime
>>> mertens
mertens
Support for coercion into the various systems means that if, e.g., you want to create \(\pi\) in Maxima and Singular, you don’t have to figure out the special notation for each system. You just type the following:
sage: maxima(pi)
%pi
sage: singular(pi)
pi
sage: gap(pi)
pi
sage: gp(pi)
3.141592653589793238462643383 # 32-bit
3.1415926535897932384626433832795028842 # 64-bit
sage: pari(pi)
3.14159265358979
sage: kash(pi) # optional - kash
3.14159265358979323846264338328
sage: mathematica(pi) # optional - mathematica
Pi
sage: pi._maple_init_()
'Pi'
sage: octave(pi) # optional - octave
3.14159
>>> from sage.all import *
>>> maxima(pi)
%pi
>>> singular(pi)
pi
>>> gap(pi)
pi
>>> gp(pi)
3.141592653589793238462643383 # 32-bit
3.1415926535897932384626433832795028842 # 64-bit
>>> pari(pi)
3.14159265358979
>>> kash(pi) # optional - kash
3.14159265358979323846264338328
>>> mathematica(pi) # optional - mathematica
Pi
>>> pi._maple_init_()
'Pi'
>>> octave(pi) # optional - octave
3.14159
Arithmetic operations with constants also yield constants, which can be coerced into other systems or evaluated.
sage: a = pi + e*4/5; a
pi + 4/5*e
sage: maxima(a)
%pi+(4*%e)/5
sage: RealField(15)(a) # 15 *bits* of precision
5.316
sage: gp(a)
5.316218116357029426750873360 # 32-bit
5.3162181163570294267508733603616328824 # 64-bit
sage: print(mathematica(a)) # optional - mathematica
4 E
--- + Pi
5
>>> from sage.all import *
>>> a = pi + e*Integer(4)/Integer(5); a
pi + 4/5*e
>>> maxima(a)
%pi+(4*%e)/5
>>> RealField(Integer(15))(a) # 15 *bits* of precision
5.316
>>> gp(a)
5.316218116357029426750873360 # 32-bit
5.3162181163570294267508733603616328824 # 64-bit
>>> print(mathematica(a)) # optional - mathematica
4 E
--- + Pi
5
EXAMPLES: Decimal expansions of constants
We can obtain floating point approximations to each of these constants by coercing into the real field with given precision. For example, to 200 binary places we have the following:
sage: R = RealField(200); R
Real Field with 200 bits of precision
>>> from sage.all import *
>>> R = RealField(Integer(200)); R
Real Field with 200 bits of precision
sage: R(pi)
3.1415926535897932384626433832795028841971693993751058209749
>>> from sage.all import *
>>> R(pi)
3.1415926535897932384626433832795028841971693993751058209749
sage: R(e)
2.7182818284590452353602874713526624977572470936999595749670
>>> from sage.all import *
>>> R(e)
2.7182818284590452353602874713526624977572470936999595749670
sage: R(NaN)
NaN
>>> from sage.all import *
>>> R(NaN)
NaN
sage: R(golden_ratio)
1.6180339887498948482045868343656381177203091798057628621354
>>> from sage.all import *
>>> R(golden_ratio)
1.6180339887498948482045868343656381177203091798057628621354
sage: R(log2)
0.69314718055994530941723212145817656807550013436025525412068
>>> from sage.all import *
>>> R(log2)
0.69314718055994530941723212145817656807550013436025525412068
sage: R(euler_gamma)
0.57721566490153286060651209008240243104215933593992359880577
>>> from sage.all import *
>>> R(euler_gamma)
0.57721566490153286060651209008240243104215933593992359880577
sage: R(catalan)
0.91596559417721901505460351493238411077414937428167213426650
>>> from sage.all import *
>>> R(catalan)
0.91596559417721901505460351493238411077414937428167213426650
sage: R(khinchin)
2.6854520010653064453097148354817956938203822939944629530512
>>> from sage.all import *
>>> R(khinchin)
2.6854520010653064453097148354817956938203822939944629530512
EXAMPLES: Arithmetic with constants
sage: f = I*(e+1); f
I*e + I
sage: f^2
(I*e + I)^2
sage: _.expand()
-e^2 - 2*e - 1
>>> from sage.all import *
>>> f = I*(e+Integer(1)); f
I*e + I
>>> f**Integer(2)
(I*e + I)^2
>>> _.expand()
-e^2 - 2*e - 1
sage: pp = pi+pi; pp
2*pi
sage: R(pp)
6.2831853071795864769252867665590057683943387987502116419499
>>> from sage.all import *
>>> pp = pi+pi; pp
2*pi
>>> R(pp)
6.2831853071795864769252867665590057683943387987502116419499
sage: s = (1 + e^pi); s
e^pi + 1
sage: R(s)
24.140692632779269005729086367948547380266106242600211993445
sage: R(s-1)
23.140692632779269005729086367948547380266106242600211993445
>>> from sage.all import *
>>> s = (Integer(1) + e**pi); s
e^pi + 1
>>> R(s)
24.140692632779269005729086367948547380266106242600211993445
>>> R(s-Integer(1))
23.140692632779269005729086367948547380266106242600211993445
sage: l = (1-log2)/(1+log2); l
-(log2 - 1)/(log2 + 1)
sage: R(l)
0.18123221829928249948761381864650311423330609774776013488056
>>> from sage.all import *
>>> l = (Integer(1)-log2)/(Integer(1)+log2); l
-(log2 - 1)/(log2 + 1)
>>> R(l)
0.18123221829928249948761381864650311423330609774776013488056
sage: pim = maxima(pi)
sage: maxima.eval('fpprec : 100')
'100'
sage: pim.bfloat()
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068b0
>>> from sage.all import *
>>> pim = maxima(pi)
>>> maxima.eval('fpprec : 100')
'100'
>>> pim.bfloat()
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068b0
AUTHORS:
Alex Clemesha (2006-01-15)
William Stein
Alex Clemesha, William Stein (2006-02-20): added new constants; removed todos
Didier Deshommes (2007-03-27): added constants from RQDF (deprecated)
- class sage.symbolic.constants.Catalan(name='catalan')[source]¶
Bases:
Constant
A number appearing in combinatorics defined as the Dirichlet beta function evaluated at the number 2.
EXAMPLES:
sage: catalan^2 + mertens mertens + catalan^2
>>> from sage.all import * >>> catalan**Integer(2) + mertens mertens + catalan^2
- class sage.symbolic.constants.Constant(name, conversions=None, latex=None, mathml='', domain='complex')[source]¶
Bases:
object
EXAMPLES:
sage: from sage.symbolic.constants import Constant sage: p = Constant('p') sage: loads(dumps(p)) p
>>> from sage.all import * >>> from sage.symbolic.constants import Constant >>> p = Constant('p') >>> loads(dumps(p)) p
- domain()[source]¶
Return the domain of this constant. This is either positive, real, or complex, and is used by Pynac to make inferences about expressions containing this constant.
EXAMPLES:
sage: p = pi.pyobject(); p pi sage: type(_) <class 'sage.symbolic.constants.Pi'> sage: p.domain() 'positive'
>>> from sage.all import * >>> p = pi.pyobject(); p pi >>> type(_) <class 'sage.symbolic.constants.Pi'> >>> p.domain() 'positive'
- expression()[source]¶
Return an expression for this constant.
EXAMPLES:
sage: a = pi.pyobject() sage: pi2 = a.expression() sage: pi2 pi sage: pi2 + 2 pi + 2 sage: pi - pi2 0
>>> from sage.all import * >>> a = pi.pyobject() >>> pi2 = a.expression() >>> pi2 pi >>> pi2 + Integer(2) pi + 2 >>> pi - pi2 0
- class sage.symbolic.constants.EulerGamma(name='euler_gamma')[source]¶
Bases:
Constant
The limiting difference between the harmonic series and the natural logarithm.
EXAMPLES:
sage: R = RealField() sage: R(euler_gamma) 0.577215664901533 sage: R = RealField(200); R Real Field with 200 bits of precision sage: R(euler_gamma) 0.57721566490153286060651209008240243104215933593992359880577 sage: eg = euler_gamma + euler_gamma; eg 2*euler_gamma sage: R(eg) 1.1544313298030657212130241801648048620843186718798471976115
>>> from sage.all import * >>> R = RealField() >>> R(euler_gamma) 0.577215664901533 >>> R = RealField(Integer(200)); R Real Field with 200 bits of precision >>> R(euler_gamma) 0.57721566490153286060651209008240243104215933593992359880577 >>> eg = euler_gamma + euler_gamma; eg 2*euler_gamma >>> R(eg) 1.1544313298030657212130241801648048620843186718798471976115
- class sage.symbolic.constants.Glaisher(name='glaisher')[source]¶
Bases:
Constant
The Glaisher-Kinkelin constant \(A = \exp(\frac{1}{12}-\zeta'(-1))\).
EXAMPLES:
sage: float(glaisher) 1.2824271291006226 sage: glaisher.n(digits=60) 1.28242712910062263687534256886979172776768892732500119206374 sage: a = glaisher + 2 sage: a glaisher + 2 sage: parent(a) Symbolic Ring
>>> from sage.all import * >>> float(glaisher) 1.2824271291006226 >>> glaisher.n(digits=Integer(60)) 1.28242712910062263687534256886979172776768892732500119206374 >>> a = glaisher + Integer(2) >>> a glaisher + 2 >>> parent(a) Symbolic Ring
- class sage.symbolic.constants.GoldenRatio(name='golden_ratio')[source]¶
Bases:
Constant
The number (1+sqrt(5))/2.
EXAMPLES:
sage: gr = golden_ratio sage: RR(gr) 1.61803398874989 sage: R = RealField(200) sage: R(gr) 1.6180339887498948482045868343656381177203091798057628621354 sage: grm = maxima(golden_ratio);grm (sqrt(5)+1)/2 sage: grm + grm sqrt(5)+1 sage: float(grm + grm) 3.23606797749979
>>> from sage.all import * >>> gr = golden_ratio >>> RR(gr) 1.61803398874989 >>> R = RealField(Integer(200)) >>> R(gr) 1.6180339887498948482045868343656381177203091798057628621354 >>> grm = maxima(golden_ratio);grm (sqrt(5)+1)/2 >>> grm + grm sqrt(5)+1 >>> float(grm + grm) 3.23606797749979
- class sage.symbolic.constants.Khinchin(name='khinchin')[source]¶
Bases:
Constant
The geometric mean of the continued fraction expansion of any (almost any) real number.
EXAMPLES:
sage: float(khinchin) 2.6854520010653062 sage: khinchin.n(digits=60) 2.68545200106530644530971483548179569382038229399446295305115 sage: m = mathematica(khinchin); m # optional - mathematica Khinchin sage: m.N(200) # optional - mathematica 2.685452001065306445309714835481795693820382293...32852204481940961807
>>> from sage.all import * >>> float(khinchin) 2.6854520010653062 >>> khinchin.n(digits=Integer(60)) 2.68545200106530644530971483548179569382038229399446295305115 >>> m = mathematica(khinchin); m # optional - mathematica Khinchin >>> m.N(Integer(200)) # optional - mathematica 2.685452001065306445309714835481795693820382293...32852204481940961807
- class sage.symbolic.constants.Log2(name='log2')[source]¶
Bases:
Constant
The natural logarithm of the real number 2.
EXAMPLES:
sage: log2 log2 sage: float(log2) 0.6931471805599453 sage: RR(log2) 0.693147180559945 sage: R = RealField(200); R Real Field with 200 bits of precision sage: R(log2) 0.69314718055994530941723212145817656807550013436025525412068 sage: l = (1-log2)/(1+log2); l -(log2 - 1)/(log2 + 1) sage: R(l) 0.18123221829928249948761381864650311423330609774776013488056 sage: maxima(log2) log(2) sage: maxima(log2).float() 0.6931471805599453 sage: gp(log2) 0.6931471805599453094172321215 # 32-bit 0.69314718055994530941723212145817656807 # 64-bit sage: RealField(150)(2).log() 0.69314718055994530941723212145817656807550013
>>> from sage.all import * >>> log2 log2 >>> float(log2) 0.6931471805599453 >>> RR(log2) 0.693147180559945 >>> R = RealField(Integer(200)); R Real Field with 200 bits of precision >>> R(log2) 0.69314718055994530941723212145817656807550013436025525412068 >>> l = (Integer(1)-log2)/(Integer(1)+log2); l -(log2 - 1)/(log2 + 1) >>> R(l) 0.18123221829928249948761381864650311423330609774776013488056 >>> maxima(log2) log(2) >>> maxima(log2).float() 0.6931471805599453 >>> gp(log2) 0.6931471805599453094172321215 # 32-bit 0.69314718055994530941723212145817656807 # 64-bit >>> RealField(Integer(150))(Integer(2)).log() 0.69314718055994530941723212145817656807550013
- class sage.symbolic.constants.Mertens(name='mertens')[source]¶
Bases:
Constant
The Mertens constant is related to the Twin Primes constant and appears in Mertens’ second theorem.
EXAMPLES:
sage: float(mertens) 0.26149721284764277 sage: mertens.n(digits=60) 0.261497212847642783755426838608695859051566648261199206192064
>>> from sage.all import * >>> float(mertens) 0.26149721284764277 >>> mertens.n(digits=Integer(60)) 0.261497212847642783755426838608695859051566648261199206192064
- class sage.symbolic.constants.TwinPrime(name='twinprime')[source]¶
Bases:
Constant
The Twin Primes constant is defined as \(\prod 1 - 1/(p-1)^2\) for primes \(p > 2\).
EXAMPLES:
sage: float(twinprime) 0.6601618158468696 sage: twinprime.n(digits=60) 0.660161815846869573927812110014555778432623360284733413319448
>>> from sage.all import * >>> float(twinprime) 0.6601618158468696 >>> twinprime.n(digits=Integer(60)) 0.660161815846869573927812110014555778432623360284733413319448
- sage.symbolic.constants.pi = pi[source]¶
The formal square root of -1.
EXAMPLES:
sage: SR.I() I sage: SR.I()^2 -1
>>> from sage.all import * >>> SR.I() I >>> SR.I()**Integer(2) -1
Note that conversions to real fields will give TypeErrors:
sage: float(SR.I()) Traceback (most recent call last): ... TypeError: unable to simplify to float approximation sage: gp(SR.I()) I sage: RR(SR.I()) Traceback (most recent call last): ... TypeError: unable to convert '1.00000000000000*I' to a real number
>>> from sage.all import * >>> float(SR.I()) Traceback (most recent call last): ... TypeError: unable to simplify to float approximation >>> gp(SR.I()) I >>> RR(SR.I()) Traceback (most recent call last): ... TypeError: unable to convert '1.00000000000000*I' to a real number
Expressions involving I that are real-valued can be converted to real fields:
sage: float(I*I) -1.0 sage: RR(I*I) -1.00000000000000
>>> from sage.all import * >>> float(I*I) -1.0 >>> RR(I*I) -1.00000000000000
We can convert to complex fields:
sage: C = ComplexField(200); C Complex Field with 200 bits of precision sage: C(SR.I()) 1.0000000000000000000000000000000000000000000000000000000000*I sage: SR.I()._complex_mpfr_field_(ComplexField(53)) 1.00000000000000*I sage: SR.I()._complex_double_(CDF) 1.0*I sage: CDF(SR.I()) 1.0*I sage: z = SR.I() + I; z 2*I sage: C(z) 2.0000000000000000000000000000000000000000000000000000000000*I sage: 1e8*SR.I() 1.00000000000000e8*I sage: complex(SR.I()) 1j sage: QQbar(SR.I()) I sage: abs(SR.I()) 1 sage: SR.I().minpoly() x^2 + 1 sage: maxima(2*SR.I()) 2*%i
>>> from sage.all import * >>> C = ComplexField(Integer(200)); C Complex Field with 200 bits of precision >>> C(SR.I()) 1.0000000000000000000000000000000000000000000000000000000000*I >>> SR.I()._complex_mpfr_field_(ComplexField(Integer(53))) 1.00000000000000*I >>> SR.I()._complex_double_(CDF) 1.0*I >>> CDF(SR.I()) 1.0*I >>> z = SR.I() + I; z 2*I >>> C(z) 2.0000000000000000000000000000000000000000000000000000000000*I >>> RealNumber('1e8')*SR.I() 1.00000000000000e8*I >>> complex(SR.I()) 1j >>> QQbar(SR.I()) I >>> abs(SR.I()) 1 >>> SR.I().minpoly() x^2 + 1 >>> maxima(Integer(2)*SR.I()) 2*%i
- sage.symbolic.constants.unpickle_Constant(class_name, name, conversions, latex, mathml, domain)[source]¶
EXAMPLES:
sage: from sage.symbolic.constants import unpickle_Constant sage: a = unpickle_Constant('Constant', 'a', {}, 'aa', '', 'positive') sage: a.domain() 'positive' sage: latex(a) aa
>>> from sage.all import * >>> from sage.symbolic.constants import unpickle_Constant >>> a = unpickle_Constant('Constant', 'a', {}, 'aa', '', 'positive') >>> a.domain() 'positive' >>> latex(a) aa
Note that if the name already appears in the
constants_name_table
, then that will be returned instead of constructing a new object:sage: pi = unpickle_Constant('Pi', 'pi', None, None, None, None) sage: pi._maxima_init_() '%pi'
>>> from sage.all import * >>> pi = unpickle_Constant('Pi', 'pi', None, None, None, None) >>> pi._maxima_init_() '%pi'