Logic Tables#
A logic table is essentially a 2-D array that is created by the statement class and stored in the private global variable table, along with a list containing the variable names to be used, in order.
The order in which the table is listed essentially amounts to counting in binary. For instance, with the variables \(A\), \(B\), and \(C\) the truth table looks like:
A B C value
False False False ?
False False True ?
False True False ?
False True True ?
True False False ?
True False True ?
True True False ?
True True True ?
This is equivalent to counting in binary, where a table would appear thus;
2^2 2^1 2^0 value
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7
Given that a table can be created corresponding to any range of acceptable values for a given statement, it is easy to find the value of a statement for arbitrary values of its variables.
AUTHORS:
William Stein (2006): initial version
Chris Gorecki (2006): initial version
Paul Scurek (2013-08-03): updated docstring formatting
EXAMPLES:
Create a truth table of a boolean formula:
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a&b|~(c|a)")
sage: s.truthtable()
a b c value
False False False True
False False True False
False True False True
False True True False
True False False False
True False True False
True True False True
True True True True
>>> from sage.all import *
>>> import sage.logic.propcalc as propcalc
>>> s = propcalc.formula("a&b|~(c|a)")
>>> s.truthtable()
a b c value
False False False True
False False True False
False True False True
False True True False
True False False False
True False True False
True True False True
True True True True
Get the LaTeX code for a truth table:
sage: latex(s.truthtable(5,11))
\\\begin{tabular}{llll}c & b & a & value \\\hline True & False & True & False \\True & True & False & True \\True & True & True & True\end{tabular}
>>> from sage.all import *
>>> latex(s.truthtable(Integer(5),Integer(11)))
\\\begin{tabular}{llll}c & b & a & value \\\hline True & False & True & False \\True & True & False & True \\True & True & True & True\end{tabular}
It is not an error to use nonsensical numeric inputs:
sage: s = propcalc.formula("a&b|~(c|a)")
sage: s.truthtable(5, 9)
a b c value
True False True False
True True False True
True True True True
sage: s.truthtable(9, 5)
a b c value
>>> from sage.all import *
>>> s = propcalc.formula("a&b|~(c|a)")
>>> s.truthtable(Integer(5), Integer(9))
a b c value
True False True False
True True False True
True True True True
>>> s.truthtable(Integer(9), Integer(5))
a b c value
If one argument is provided, truthtable defaults to the end:
sage: s.truthtable(-1)
a b c value
False False False True
False False True False
False True False True
False True True False
True False False False
True False True False
True True False True
True True True True
>>> from sage.all import *
>>> s.truthtable(-Integer(1))
a b c value
False False False True
False False True False
False True False True
False True True False
True False False False
True False True False
True True False True
True True True True
If the second argument is negative, truthtable defaults to the end:
sage: s.truthtable(4, -2)
a b c value
True False False False
True False True False
True True False True
True True True True
>>> from sage.all import *
>>> s.truthtable(Integer(4), -Integer(2))
a b c value
True False False False
True False True False
True True False True
True True True True
Note
For statements that contain a variable list that when printed is longer than the latex page, the columns of the table will run off the screen.
- class sage.logic.logictable.Truthtable(t, vo)[source]#
Bases:
object
A truth table.
INPUT:
t
– a 2-D array containing the table valuesvo
– a list of the variables in the expression in order, with each variable occurring only once
- get_table_list()[source]#
Return a list representation of the calling table object.
OUTPUT:
A list representation of the table.
EXAMPLES:
This example illustrates how to show the table as a list:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("man->monkey&human") sage: s.truthtable().get_table_list() [['man', 'monkey', 'human'], [False, False, False, True], [False, False, True, True], [False, True, False, True], [False, True, True, True], [True, False, False, False], [True, False, True, False], [True, True, False, False], [True, True, True, True]]
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("man->monkey&human") >>> s.truthtable().get_table_list() [['man', 'monkey', 'human'], [False, False, False, True], [False, False, True, True], [False, True, False, True], [False, True, True, True], [True, False, False, False], [True, False, True, False], [True, True, False, False], [True, True, True, True]]