Space of morphisms between Ore modules¶
AUTHOR:
Xavier Caruso (2024-10)
- class sage.modules.ore_module_homspace.OreModule_homspace(domain, codomain, category=None)[source]¶
Bases:
UniqueRepresentation
,HomsetWithBase
Class for hom spaces between Ore modules.
- Element[source]¶
alias of
OreModuleMorphism
- identity()[source]¶
Return the identity morphism in this homspace.
EXAMPLES:
sage: K.<z> = GF(7^2) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^3 + z*X + 1) sage: End(M).identity() Ore module endomorphism of Ore module of rank 3 over Finite Field in z of size 7^2 twisted by z |--> z^7
>>> from sage.all import * >>> K = GF(Integer(7)**Integer(2), names=('z',)); (z,) = K._first_ngens(1) >>> S = OrePolynomialRing(K, K.frobenius_endomorphism(), names=('X',)); (X,) = S._first_ngens(1) >>> M = S.quotient_module(X**Integer(3) + z*X + Integer(1)) >>> End(M).identity() Ore module endomorphism of Ore module of rank 3 over Finite Field in z of size 7^2 twisted by z |--> z^7
- matrix_space()[source]¶
Return the matrix space used to represent the morphisms in this homspace.
EXAMPLES:
sage: K.<z> = GF(7^2) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^3 + z*X + 1) sage: End(M).matrix_space() Full MatrixSpace of 3 by 3 dense matrices over Finite Field in z of size 7^2
>>> from sage.all import * >>> K = GF(Integer(7)**Integer(2), names=('z',)); (z,) = K._first_ngens(1) >>> S = OrePolynomialRing(K, K.frobenius_endomorphism(), names=('X',)); (X,) = S._first_ngens(1) >>> M = S.quotient_module(X**Integer(3) + z*X + Integer(1)) >>> End(M).matrix_space() Full MatrixSpace of 3 by 3 dense matrices over Finite Field in z of size 7^2
sage: N = S.quotient_module(X^2 + z) sage: Hom(M, N).matrix_space() Full MatrixSpace of 3 by 2 dense matrices over Finite Field in z of size 7^2
>>> from sage.all import * >>> N = S.quotient_module(X**Integer(2) + z) >>> Hom(M, N).matrix_space() Full MatrixSpace of 3 by 2 dense matrices over Finite Field in z of size 7^2
- zero()[source]¶
Return the zero morphism in this homspace.
EXAMPLES:
sage: K.<z> = GF(7^2) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^3 + z*X + 1) sage: End(M).zero() Ore module endomorphism of Ore module of rank 3 over Finite Field in z of size 7^2 twisted by z |--> z^7
>>> from sage.all import * >>> K = GF(Integer(7)**Integer(2), names=('z',)); (z,) = K._first_ngens(1) >>> S = OrePolynomialRing(K, K.frobenius_endomorphism(), names=('X',)); (X,) = S._first_ngens(1) >>> M = S.quotient_module(X**Integer(3) + z*X + Integer(1)) >>> End(M).zero() Ore module endomorphism of Ore module of rank 3 over Finite Field in z of size 7^2 twisted by z |--> z^7