Cartesian products¶
AUTHORS:
Nicolas Thiery (2010-03): initial version
- class sage.sets.cartesian_product.CartesianProduct(sets, category, flatten=False)[source]¶
Bases:
UniqueRepresentation
,Parent
A class implementing a raw data structure for Cartesian products of sets (and elements thereof). See
cartesian_product
for how to construct full fledged Cartesian products.EXAMPLES:
sage: G = cartesian_product([GF(5), Permutations(10)]) sage: G.cartesian_factors() (Finite Field of size 5, Standard permutations of 10) sage: G.cardinality() 18144000 sage: G.random_element() # random (1, [4, 7, 6, 5, 10, 1, 3, 2, 8, 9]) sage: G.category() Join of Category of finite monoids and Category of Cartesian products of monoids and Category of Cartesian products of finite enumerated sets
>>> from sage.all import * >>> G = cartesian_product([GF(Integer(5)), Permutations(Integer(10))]) >>> G.cartesian_factors() (Finite Field of size 5, Standard permutations of 10) >>> G.cardinality() 18144000 >>> G.random_element() # random (1, [4, 7, 6, 5, 10, 1, 3, 2, 8, 9]) >>> G.category() Join of Category of finite monoids and Category of Cartesian products of monoids and Category of Cartesian products of finite enumerated sets
- _cartesian_product_of_elements(elements)[source]¶
Return the Cartesian product of the given
elements
.This implements
Sets.CartesianProducts.ParentMethods._cartesian_product_of_elements()
. INPUT:elements
– an iterable (e.g. tuple, list) with one element of each Cartesian factor ofself
Warning
This is meant as a fast low-level method. In particular, no coercion is attempted. When coercion or sanity checks are desirable, please use instead
self(elements)
orself._element_constructor_(elements)
.EXAMPLES:
sage: S1 = Sets().example() sage: S2 = InfiniteEnumeratedSets().example() sage: C = cartesian_product([S2, S1, S2]) sage: C._cartesian_product_of_elements([S2.an_element(), S1.an_element(), S2.an_element()]) (42, 47, 42)
>>> from sage.all import * >>> S1 = Sets().example() >>> S2 = InfiniteEnumeratedSets().example() >>> C = cartesian_product([S2, S1, S2]) >>> C._cartesian_product_of_elements([S2.an_element(), S1.an_element(), S2.an_element()]) (42, 47, 42)
- class Element[source]¶
Bases:
ElementWrapperCheckWrappedClass
- cartesian_factors()[source]¶
Return the tuple of elements that compose this element.
EXAMPLES:
sage: A = cartesian_product([ZZ, RR]) sage: A((1, 1.23)).cartesian_factors() # needs sage.rings.real_mpfr (1, 1.23000000000000) sage: type(_) <... 'tuple'>
>>> from sage.all import * >>> A = cartesian_product([ZZ, RR]) >>> A((Integer(1), RealNumber('1.23'))).cartesian_factors() # needs sage.rings.real_mpfr (1, 1.23000000000000) >>> type(_) <... 'tuple'>
- cartesian_projection(i)[source]¶
Return the projection of
self
on the \(i\)-th factor of the Cartesian product, as perSets.CartesianProducts.ElementMethods.cartesian_projection()
.INPUT:
i
– the index of a factor of the Cartesian product
EXAMPLES:
sage: C = Sets().CartesianProducts().example(); C The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the nonnegative integers, An example of a finite enumerated set: {1,2,3}) sage: x = C.an_element(); x (47, 42, 1) sage: x.cartesian_projection(1) 42
>>> from sage.all import * >>> C = Sets().CartesianProducts().example(); C The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the nonnegative integers, An example of a finite enumerated set: {1,2,3}) >>> x = C.an_element(); x (47, 42, 1) >>> x.cartesian_projection(Integer(1)) 42
- wrapped_class¶
alias of
tuple
- an_element()[source]¶
EXAMPLES:
sage: C = Sets().CartesianProducts().example(); C The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the nonnegative integers, An example of a finite enumerated set: {1,2,3}) sage: C.an_element() (47, 42, 1)
>>> from sage.all import * >>> C = Sets().CartesianProducts().example(); C The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the nonnegative integers, An example of a finite enumerated set: {1,2,3}) >>> C.an_element() (47, 42, 1)
- cartesian_factors()[source]¶
Return the Cartesian factors of
self
.EXAMPLES:
sage: cartesian_product([QQ, ZZ, ZZ]).cartesian_factors() (Rational Field, Integer Ring, Integer Ring)
>>> from sage.all import * >>> cartesian_product([QQ, ZZ, ZZ]).cartesian_factors() (Rational Field, Integer Ring, Integer Ring)
- cartesian_projection(i)[source]¶
Return the natural projection onto the \(i\)-th Cartesian factor of
self
as perSets.CartesianProducts.ParentMethods.cartesian_projection()
.INPUT:
i
– the index of a Cartesian factor ofself
EXAMPLES:
sage: C = Sets().CartesianProducts().example(); C The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the nonnegative integers, An example of a finite enumerated set: {1,2,3}) sage: x = C.an_element(); x (47, 42, 1) sage: pi = C.cartesian_projection(1) sage: pi(x) 42 sage: C.cartesian_projection('hey') Traceback (most recent call last): ... ValueError: i (=hey) must be in {0, 1, 2}
>>> from sage.all import * >>> C = Sets().CartesianProducts().example(); C The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the nonnegative integers, An example of a finite enumerated set: {1,2,3}) >>> x = C.an_element(); x (47, 42, 1) >>> pi = C.cartesian_projection(Integer(1)) >>> pi(x) 42 >>> C.cartesian_projection('hey') Traceback (most recent call last): ... ValueError: i (=hey) must be in {0, 1, 2}
- construction()[source]¶
Return the construction functor and its arguments for this Cartesian product.
OUTPUT:
A pair whose first entry is a Cartesian product functor and its second entry is a list of the Cartesian factors.
EXAMPLES:
sage: cartesian_product([ZZ, QQ]).construction() (The cartesian_product functorial construction, (Integer Ring, Rational Field))
>>> from sage.all import * >>> cartesian_product([ZZ, QQ]).construction() (The cartesian_product functorial construction, (Integer Ring, Rational Field))