Plotting#
Sage can produce two-dimensional and three-dimensional plots.
Two-dimensional Plots#
In two dimensions, Sage can draw circles, lines, and polygons; plots of functions in rectangular coordinates; and also polar plots, contour plots and vector field plots. We present examples of some of these here. For more examples of plotting with Sage, see Solving Differential Equations and Maxima, and also the Sage Constructions documentation.
This command produces a yellow circle of radius 1, centered at the origin:
sage: circle((0,0), 1, rgbcolor=(1,1,0))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> circle((Integer(0),Integer(0)), Integer(1), rgbcolor=(Integer(1),Integer(1),Integer(0)))
Graphics object consisting of 1 graphics primitive
You can also produce a filled circle:
sage: circle((0,0), 1, rgbcolor=(1,1,0), fill=True)
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> circle((Integer(0),Integer(0)), Integer(1), rgbcolor=(Integer(1),Integer(1),Integer(0)), fill=True)
Graphics object consisting of 1 graphics primitive
You can also create a circle by assigning it to a variable; this does not plot it:
sage: c = circle((0,0), 1, rgbcolor=(1,1,0))
>>> from sage.all import *
>>> c = circle((Integer(0),Integer(0)), Integer(1), rgbcolor=(Integer(1),Integer(1),Integer(0)))
To plot it, use c.show()
or show(c)
, as follows:
sage: c.show()
>>> from sage.all import *
>>> c.show()
Alternatively, evaluating c.save('filename.png')
will save the
plot to the given file.
Now, these ‘circles’ look more like ellipses because the axes are scaled differently. You can fix this:
sage: c.show(aspect_ratio=1)
>>> from sage.all import *
>>> c.show(aspect_ratio=Integer(1))
The command show(c, aspect_ratio=1)
accomplishes the same
thing, or you can save the picture using
c.save('filename.png', aspect_ratio=1)
.
It’s easy to plot basic functions:
sage: plot(cos, (-5,5))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(cos, (-Integer(5),Integer(5)))
Graphics object consisting of 1 graphics primitive
Once you specify a variable name, you can create parametric plots also:
sage: x = var('x')
sage: parametric_plot((cos(x),sin(x)^3),(x,0,2*pi),rgbcolor=hue(0.6))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> x = var('x')
>>> parametric_plot((cos(x),sin(x)**Integer(3)),(x,Integer(0),Integer(2)*pi),rgbcolor=hue(RealNumber('0.6')))
Graphics object consisting of 1 graphics primitive
It’s important to notice that the axes of the plots will only intersect if the origin is in the viewing range of the graph, and that with sufficiently large values scientific notation may be used:
sage: plot(x^2,(x,300,500))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2),(x,Integer(300),Integer(500)))
Graphics object consisting of 1 graphics primitive
You can combine several plots by adding them:
sage: x = var('x')
sage: p1 = parametric_plot((cos(x),sin(x)),(x,0,2*pi),rgbcolor=hue(0.2))
sage: p2 = parametric_plot((cos(x),sin(x)^2),(x,0,2*pi),rgbcolor=hue(0.4))
sage: p3 = parametric_plot((cos(x),sin(x)^3),(x,0,2*pi),rgbcolor=hue(0.6))
sage: show(p1+p2+p3, axes=false)
>>> from sage.all import *
>>> x = var('x')
>>> p1 = parametric_plot((cos(x),sin(x)),(x,Integer(0),Integer(2)*pi),rgbcolor=hue(RealNumber('0.2')))
>>> p2 = parametric_plot((cos(x),sin(x)**Integer(2)),(x,Integer(0),Integer(2)*pi),rgbcolor=hue(RealNumber('0.4')))
>>> p3 = parametric_plot((cos(x),sin(x)**Integer(3)),(x,Integer(0),Integer(2)*pi),rgbcolor=hue(RealNumber('0.6')))
>>> show(p1+p2+p3, axes=false)
A good way to produce filled-in shapes is to produce a list of
points (L
in the example below) and then use the polygon
command to plot the shape with boundary formed by those points. For
example, here is a green deltoid:
sage: L = [[-1+cos(pi*i/100)*(1+cos(pi*i/100)),
....: 2*sin(pi*i/100)*(1-cos(pi*i/100))] for i in range(200)]
sage: p = polygon(L, rgbcolor=(1/8,3/4,1/2))
sage: p
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> L = [[-Integer(1)+cos(pi*i/Integer(100))*(Integer(1)+cos(pi*i/Integer(100))),
... Integer(2)*sin(pi*i/Integer(100))*(Integer(1)-cos(pi*i/Integer(100)))] for i in range(Integer(200))]
>>> p = polygon(L, rgbcolor=(Integer(1)/Integer(8),Integer(3)/Integer(4),Integer(1)/Integer(2)))
>>> p
Graphics object consisting of 1 graphics primitive
Type show(p, axes=false)
to see this without any axes.
You can add text to a plot:
sage: L = [[6*cos(pi*i/100)+5*cos((6/2)*pi*i/100),
....: 6*sin(pi*i/100)-5*sin((6/2)*pi*i/100)] for i in range(200)]
sage: p = polygon(L, rgbcolor=(1/8,1/4,1/2))
sage: t = text("hypotrochoid", (5,4), rgbcolor=(1,0,0))
sage: show(p+t)
>>> from sage.all import *
>>> L = [[Integer(6)*cos(pi*i/Integer(100))+Integer(5)*cos((Integer(6)/Integer(2))*pi*i/Integer(100)),
... Integer(6)*sin(pi*i/Integer(100))-Integer(5)*sin((Integer(6)/Integer(2))*pi*i/Integer(100))] for i in range(Integer(200))]
>>> p = polygon(L, rgbcolor=(Integer(1)/Integer(8),Integer(1)/Integer(4),Integer(1)/Integer(2)))
>>> t = text("hypotrochoid", (Integer(5),Integer(4)), rgbcolor=(Integer(1),Integer(0),Integer(0)))
>>> show(p+t)
Calculus teachers draw the following plot frequently on the board: not just one branch of arcsin but rather several of them: i.e., the plot of \(y=\sin(x)\) for \(x\) between \(-2\pi\) and \(2\pi\), flipped about the 45 degree line. The following Sage commands construct this:
sage: v = [(sin(x),x) for x in srange(-2*float(pi),2*float(pi),0.1)]
sage: line(v)
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> v = [(sin(x),x) for x in srange(-Integer(2)*float(pi),Integer(2)*float(pi),RealNumber('0.1'))]
>>> line(v)
Graphics object consisting of 1 graphics primitive
Since the tangent function has a larger range than sine, if you use the same trick to plot the inverse tangent, you should change the minimum and maximum coordinates for the x-axis:
sage: v = [(tan(x),x) for x in srange(-2*float(pi),2*float(pi),0.01)]
sage: show(line(v), xmin=-20, xmax=20)
>>> from sage.all import *
>>> v = [(tan(x),x) for x in srange(-Integer(2)*float(pi),Integer(2)*float(pi),RealNumber('0.01'))]
>>> show(line(v), xmin=-Integer(20), xmax=Integer(20))
Sage also computes polar plots, contour plots and vector field plots (for special types of functions). Here is an example of a contour plot:
sage: f = lambda x,y: cos(x*y)
sage: contour_plot(f, (-4, 4), (-4, 4))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> f = lambda x,y: cos(x*y)
>>> contour_plot(f, (-Integer(4), Integer(4)), (-Integer(4), Integer(4)))
Graphics object consisting of 1 graphics primitive
Three-Dimensional Plots#
Sage can also be used to create three-dimensional plots. In both the notebook and the REPL, these plots will be displayed by default using the open source package [ThreeJS], which supports interactively rotating and zooming the figure with the mouse.
Use plot3d
to graph a function of the form \(f(x, y) = z\):
sage: x, y = var('x,y')
sage: plot3d(x^2 + y^2, (x,-2,2), (y,-2,2))
Graphics3d Object
>>> from sage.all import *
>>> x, y = var('x,y')
>>> plot3d(x**Integer(2) + y**Integer(2), (x,-Integer(2),Integer(2)), (y,-Integer(2),Integer(2)))
Graphics3d Object
Alternatively, you can use parametric_plot3d
to graph a
parametric surface where each of \(x, y, z\) is determined by
a function of one or two variables (the parameters, typically
\(u\) and \(v\)). The previous plot can be expressed parametrically
as follows:
sage: u, v = var('u, v')
sage: f_x(u, v) = u
sage: f_y(u, v) = v
sage: f_z(u, v) = u^2 + v^2
sage: parametric_plot3d([f_x, f_y, f_z], (u, -2, 2), (v, -2, 2))
Graphics3d Object
>>> from sage.all import *
>>> u, v = var('u, v')
>>> __tmp__=var("u,v"); f_x = symbolic_expression(u).function(u,v)
>>> __tmp__=var("u,v"); f_y = symbolic_expression(v).function(u,v)
>>> __tmp__=var("u,v"); f_z = symbolic_expression(u**Integer(2) + v**Integer(2)).function(u,v)
>>> parametric_plot3d([f_x, f_y, f_z], (u, -Integer(2), Integer(2)), (v, -Integer(2), Integer(2)))
Graphics3d Object
The third way to plot a 3D surface in Sage is implicit_plot3d
,
which graphs a contour of a function like \(f(x, y, z) = 0\) (this
defines a set of points). We graph a sphere using the classical
formula:
sage: x, y, z = var('x, y, z')
sage: implicit_plot3d(x^2 + y^2 + z^2 - 4, (x,-2, 2), (y,-2, 2), (z,-2, 2))
Graphics3d Object
>>> from sage.all import *
>>> x, y, z = var('x, y, z')
>>> implicit_plot3d(x**Integer(2) + y**Integer(2) + z**Integer(2) - Integer(4), (x,-Integer(2), Integer(2)), (y,-Integer(2), Integer(2)), (z,-Integer(2), Integer(2)))
Graphics3d Object
Here are some more examples:
sage: u, v = var('u,v')
sage: fx = u*v
sage: fy = u
sage: fz = v^2
sage: parametric_plot3d([fx, fy, fz], (u, -1, 1), (v, -1, 1),
....: frame=False, color="yellow")
Graphics3d Object
>>> from sage.all import *
>>> u, v = var('u,v')
>>> fx = u*v
>>> fy = u
>>> fz = v**Integer(2)
>>> parametric_plot3d([fx, fy, fz], (u, -Integer(1), Integer(1)), (v, -Integer(1), Integer(1)),
... frame=False, color="yellow")
Graphics3d Object
sage: u, v = var('u,v')
sage: fx = (1+cos(v))*cos(u)
sage: fy = (1+cos(v))*sin(u)
sage: fz = -tanh((2/3)*(u-pi))*sin(v)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi),
....: frame=False, color="red")
Graphics3d Object
>>> from sage.all import *
>>> u, v = var('u,v')
>>> fx = (Integer(1)+cos(v))*cos(u)
>>> fy = (Integer(1)+cos(v))*sin(u)
>>> fz = -tanh((Integer(2)/Integer(3))*(u-pi))*sin(v)
>>> parametric_plot3d([fx, fy, fz], (u, Integer(0), Integer(2)*pi), (v, Integer(0), Integer(2)*pi),
... frame=False, color="red")
Graphics3d Object
Twisted torus:
sage: u, v = var('u,v')
sage: fx = (3+sin(v)+cos(u))*cos(2*v)
sage: fy = (3+sin(v)+cos(u))*sin(2*v)
sage: fz = sin(u)+2*cos(v)
sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi),
....: frame=False, color="red")
Graphics3d Object
>>> from sage.all import *
>>> u, v = var('u,v')
>>> fx = (Integer(3)+sin(v)+cos(u))*cos(Integer(2)*v)
>>> fy = (Integer(3)+sin(v)+cos(u))*sin(Integer(2)*v)
>>> fz = sin(u)+Integer(2)*cos(v)
>>> parametric_plot3d([fx, fy, fz], (u, Integer(0), Integer(2)*pi), (v, Integer(0), Integer(2)*pi),
... frame=False, color="red")
Graphics3d Object
Lemniscate:
sage: x, y, z = var('x,y,z')
sage: f(x, y, z) = 4*x^2 * (x^2 + y^2 + z^2 + z) + y^2 * (y^2 + z^2 - 1)
sage: implicit_plot3d(f, (x, -0.5, 0.5), (y, -1, 1), (z, -1, 1))
Graphics3d Object
>>> from sage.all import *
>>> x, y, z = var('x,y,z')
>>> __tmp__=var("x,y,z"); f = symbolic_expression(Integer(4)*x**Integer(2) * (x**Integer(2) + y**Integer(2) + z**Integer(2) + z) + y**Integer(2) * (y**Integer(2) + z**Integer(2) - Integer(1))).function(x,y,z)
>>> implicit_plot3d(f, (x, -RealNumber('0.5'), RealNumber('0.5')), (y, -Integer(1), Integer(1)), (z, -Integer(1), Integer(1)))
Graphics3d Object