
Installation Guide
Release 10.2

The Sage Development Team

Dec 06, 2023

CONTENTS

1 macOS 3

2 Windows 5

3 Linux 7

4 In the cloud 9
4.1 Linux Package Managers . 9
4.2 Install from Pre-Built Binaries . 9
4.3 Install from conda-forge . 10
4.4 Install from Source Code . 12
4.5 Launching SageMath . 31
4.6 Troubleshooting . 35

Index 37

i

ii

Installation Guide, Release 10.2

If you are reading this manual at https://doc.sagemath.org/, note that it was built at the time the most recent stable
release of SageMath was made.

More up-to-date information and details regarding supported platforms may have become available afterwards and can
be found in the section “Availability and installation help” of the release tour for each SageMath release.

Where would you like to run SageMath? Pick one of the following sections.

CONTENTS 1

https://doc.sagemath.org/
https://wiki.sagemath.org/ReleaseTours

Installation Guide, Release 10.2

2 CONTENTS

CHAPTER

ONE

MACOS

• Do you want to do SageMath development?
– Yes, development:

Obtain the SageMath sources via git as described in The Sage Developer’s Guide.

∗ Then build SageMath from source as described in section Install from Source Code.

∗ Alternatively, follow the instructions in section Using conda to provide all dependencies for the Sage
library; these describe an experimental method that gets all required packages, including Python pack-
ages, from conda-forge.

– No development:
∗ Install the binary build of SageMath from the 3-manifolds project. It is a signed and notarized app,

which works for macOS 10.12 and newer. It is completely self-contained and provides the standard
Sage distribution together with many optional packages. Additional optional Python packages can be
installed with the %pip magic command and will go into your ~/.sage directory.

∗ Alternatively, install SageMath from the conda-forge project, as described in section Install from
conda-forge.

∗ Alternatively, build SageMath from source as described in section Install from Source Code.

3

https://doc.sagemath.org/html/en/developer/walkthrough.html#chapter-walkthrough
https://github.com/3-manifolds/Sage_macOS/releases
https://conda-forge.org/

Installation Guide, Release 10.2

4 Chapter 1. macOS

CHAPTER

TWO

WINDOWS

• Do you want to do SageMath development?
– Yes, development:

Enable Windows Subsystem for Linux (WSL) by following the official WSL setup guide. Be sure to do the
steps to install WSL2 and set it as default. Make sure to allocate enough RAM to WSL: 5GB is known to
be enough, 2GB might not allow you to build some packages. Then go to the Microsoft Store and install
Ubuntu (or another Linux distribution). Start Ubuntu from the start menu.

Then follow the instructions for development on Linux below.

– No development:
∗ Enable Windows Subsystem for Linux (WSL) by following the official WSL setup guide. Be sure to

do the steps to install WSL2 and set it as default. Make sure to allocate enough RAM to WSL: 5GB
is known to be enough, 2GB might not allow you to build some packages. Then go to the Microsoft
Store and install Ubuntu (or another Linux distribution). Start Ubuntu from the start menu.

On the Linux running on WSL, you always have root access, so you can use any of the installation
methods described below for Linux.

5

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Installation Guide, Release 10.2

6 Chapter 2. Windows

CHAPTER

THREE

LINUX

• Do you want to do SageMath development?
– Yes, development:

Obtain the SageMath sources via git as described in The Sage Developer’s Guide.

∗ Then build SageMath from source as described in section Install from Source Code.

∗ Alternatively, follow the instructions in section Using conda to provide all dependencies for the Sage
library; these describe an experimental method that gets all required packages, including Python pack-
ages, from conda-forge.

– No development: Do you have root access (sudo)?
∗ Yes, root access: Then the easiest way to install SageMath is through a Linux distribution that pro-

vides it as a package. Most major Linux distributions have up-to-date versions of SageMath, see re-
pology.org: sagemath for an overview. See Linux Package Managers for additional information.

If you are on an older version of your distribution and a recent version of SageMath is only available on
a newer version of the distribution, consider upgrading your distribution. In particular, do not install a
version of Sage older than 9.2.

∗ No root access, or on an older distribution Install SageMath from the conda-forge project, as de-
scribed in section Install from conda-forge.

∗ Alternatively, build SageMath from source as described in section Install from Source Code.

7

https://doc.sagemath.org/html/en/developer/walkthrough.html#chapter-walkthrough
https://repology.org/project/sagemath/versions
https://repology.org/project/sagemath/versions
https://conda-forge.org/

Installation Guide, Release 10.2

8 Chapter 3. Linux

CHAPTER

FOUR

IN THE CLOUD

• Sage Binder repo provides a Binder badge to launch JupyterLab environment with Sage.

• Sage Cell Server is a free online service for quick computations with Sage.

• CoCalc is an online commercial service that provides Sage and many other tools.

• Docker image sagemathinc/cocalc can be used on any system with Docker to run CoCalc locally.

More information:

4.1 Linux Package Managers

SageMath is available from various distributions and can be installed by package managers.

See the _sagemath dummy package for the names of packages that provide a standard installation of SageMath, includ-
ing documentation and Jupyter.

See also repology.org: sagemath for information about versions of SageMath packages in various distributions. Do not
install a version of Sage older than 9.2. If you are on an older version of your distribution and a recent version of
SageMath is only available on a newer version of the distribution, consider upgrading your distribution.

Gentoo users might want to give a try to sage-on-gentoo.

The 𝐺𝑖𝑡𝐻𝑢𝑏𝑤𝑖𝑘𝑖𝑝𝑎𝑔𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 < ℎ𝑡𝑡𝑝𝑠 : //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑠𝑎𝑔𝑒𝑚𝑎𝑡ℎ/𝑠𝑎𝑔𝑒/𝑤𝑖𝑘𝑖/𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 > collects
information regarding packaging and distribution of SageMath.

4.2 Install from Pre-Built Binaries

4.2.1 Linux

SageMath used to provide pre-built binaries for several Linux flavors. This has been discontinued, as most major Linux
distributions have up-to-date distribution packages providing SageMath. See Linux Package Managers for information.

9

https://github.com/sagemath/sage-binder-env
https://sagecell.sagemath.org/
https://cocalc.com/
https://hub.docker.com/r/sagemathinc/cocalc
../reference/spkg/_sagemath.html
https://repology.org/project/sagemath/versions
https://github.com/cschwan/sage-on-gentoo

Installation Guide, Release 10.2

4.2.2 macOS

macOS binaries are available from the 3-manifolds project. These have been signed and notarized, eliminating various
errors caused by Apple’s gatekeeper antimalware protections.

SageMath used to provide pre-built binaries for macOS on its mirrors. This has been discontinued, and the old binaries
that are still available there are no longer supported.

4.2.3 Microsoft Windows

SageMath used to provide pre-built binaries for Windows based on Cygwin. This has been discontinued, and the old
binaries that can be found are no longer supported. Use Windows Subsystem for Linux instead.

4.3 Install from conda-forge

SageMath can be installed on Linux and macOS via Conda from the conda-forge conda channel.

Both the x86_64 (Intel) architecture and the arm64/aarch64 architectures (including Apple Silicon, M1) are sup-
ported.

You will need a working Conda installation: either Mambaforge/Miniforge, Miniconda or Anaconda. If you don’t have
one yet, we recommend installing Mambaforge as follows. In a terminal,

$ curl -L -O https://github.com/conda-forge/miniforge/releases/latest/download/
→˓Mambaforge-$(uname)-$(uname -m).sh
$ sh Mambaforge-$(uname)-$(uname -m).sh

• Mambaforge and Miniforge use conda-forge as the default channel.

• If you are using Miniconda or Anaconda, set it up to use conda-forge:

– Add the conda-forge channel: conda config --add channels conda-forge

– Change channel priority to strict: conda config --set channel_priority strict

Optionally, use mamba, which uses a faster dependency solver than conda. If you installed Mambaforge, it is already
provided. Otherwise, use

$ conda install mamba

4.3.1 Installing all of SageMath from conda (not for development)

Create a new conda environment containing SageMath, either with mamba or conda:

$ mamba create -n sage sage python=X # either
$ conda create -n sage sage python=X # or

where X is version of Python, e.g. 3.9.

To use Sage from there,

• Enter the new environment: conda activate sage

• Start SageMath: sage

10 Chapter 4. In the cloud

https://github.com/3-manifolds/Sage_macOS/releases/
https://conda-forge.org
https://github.com/conda-forge/miniforge#mambaforge
https://github.com/mamba-org/mamba

Installation Guide, Release 10.2

If there are any installation failures, please report them to the conda-forge maintainers by opening a GitHub Issue for
conda-forge/sage-feedstock.

4.3.2 Using conda to provide system packages for the Sage distribution

If Conda is installed (check by typing conda info), one can install SageMath from source as follows:

• If you are using a git checkout:

$./bootstrap-conda

• Create a new conda environment including all standard packages recognized by sage, and activate it:

$ conda env create --file environment-3.11.yml --name sage-build
$ conda activate sage-build

Alternatively, use environment-optional-3.11.yml in place of environment.yml to create an environ-
ment with all standard and optional packages recognized by sage.

A different Python version can be selected by replacing 3.11 by 3.9 or 3.10 in these commands.

• Then the SageMath distribution will be built using the compilers provided by Conda and using many packages
installed by Conda:

$./bootstrap
$./configure --with-python=$CONDA_PREFIX/bin/python \

--prefix=$CONDA_PREFIX
$ make

4.3.3 Using conda to provide all dependencies for the Sage library

You can build and install the Sage library from source, using conda to provide all of its dependencies. This bypasses
most of the build system of the Sage distribution and is the fastest way to set up an environment for Sage development.

Here we assume that you are using a git checkout.

• Optionally, set the build parallelism for the Sage library. Use whatever the meaningful value for your machine is
- no more than the number of cores:

$ export SAGE_NUM_THREADS=24

• As a recommended step, install the mamba package manager. If you skip this step, replace mamba by conda in
the following steps:

$ conda install mamba

• Generate the conda environment files src/environment*.yml used in the next step:

$./bootstrap-conda

• Create and activate a new conda environment with the dependencies of Sage and a few additional developer tools:

$ mamba env create --file src/environment-dev-3.11.yml --name sage-dev
$ conda activate sage-dev

4.3. Install from conda-forge 11

https://github.com/conda-forge/sage-feedstock/issues
https://github.com/conda-forge/sage-feedstock/issues

Installation Guide, Release 10.2

Alternatively, you can use src/environment-3.11.yml or src/environment-optional-3.11.yml, which
will only install standard (and optional) packages without any additional developer tools.

A different Python version can be selected by replacing 3.11 by 3.9 or 3.10 in these commands.

• Bootstrap the source tree and install the build prerequisites and the Sage library:

$./bootstrap
$ pip install --no-build-isolation -v -v --editable ./pkgs/sage-conf_conda ./pkgs/
→˓sage-setup
$ pip install --no-build-isolation --config-settings editable_mode=compat -v -v --
→˓editable ./src

• Verify that Sage has been installed:

$ sage -c 'print(version())'
SageMath version 10.2.beta4, Release Date: 2023-09-24

Note that make is not used at all. All dependencies (including all Python packages) are provided by conda.

Thus, you will get a working version of Sage much faster. However, note that this will invalidate the use of any Sage-
the-distribution commands such as sage -i. Do not use them.

By using pip install --editable in the above steps, the Sage library is installed in editable mode. This means
that when you only edit Python files, there is no need to rebuild the library; it suffices to restart Sage.

After editing any Cython files, rebuild the Sage library using:

$ pip install --no-build-isolation --config-settings editable_mode=compat -v -v --
→˓editable src

In order to update the conda environment later, you can run:

$ mamba env update --file src/environment-dev-3.11.yml --name sage-dev

To build the documentation, use:

$ pip install --no-build-isolation -v -v --editable ./pkgs/sage-docbuild
$ sage --docbuild all html

Note: The switch --config-settings editable_mode=compat restores the legacy setuptools implementation of
editable installations. Adventurous developers may omit this switch to try the modern, PEP-660 implementation of
editable installations, see github issue #34209.

4.4 Install from Source Code

Building Sage from the source code has the major advantage that your install will be optimized for your particular
computer and should therefore offer better performance and compatibility than a binary install.

Moreover, it offers you full development capabilities: you can change absolutely any part of Sage or the packages on
which it depends, and recompile the modified parts.

See the file README.md in SAGE_ROOT for information on supported platforms and step-by-step instructions.

The following sections provide some additional details. Most users will not need to read them. Some familiarity with
the use of the Unix command line may be required to build Sage from the source code.

12 Chapter 4. In the cloud

https://setuptools.pypa.io/en/latest/userguide/development_mode.html
https://setuptools.pypa.io/en/latest/userguide/development_mode.html
https://github.com/sagemath/sage/issues/34209
https://en.wikipedia.org/wiki/Source_code
https://github.com/sagemath/sage/#readme

Installation Guide, Release 10.2

4.4.1 Prerequisites

Disk space and memory

Your computer comes with at least 6 GB of free disk space. It is recommended to have at least 2 GB of RAM, but you
might get away with less (be sure to have some swap space in this case).

Software prerequisites and recommended packages

Sage depends on a large number of software packages. Sage provides its own software distribution providing most of
these packages, so you do not have to worry about having to download and install these packages yourself.

If you extracted Sage from a source tarball, the subdirectory upstream contains the source distributions for all standard
packages on which Sage depends. If cloned from a git repository, the upstream tarballs will be downloaded, verified,
and cached as part of the Sage installation process.

However, there are minimal prerequisites for building Sage that already must be installed on your system:

• Fundamental system packages required for installing from source

• C/C++ compilers

If you have sufficient privileges (for example, on Linux you can use sudo to become the root user), then you can
install these packages using the commands for your platform indicated in the pages linked above. If you do not have
the privileges to do this, ask your system administrator to do this for you.

In addition to these minimal prerequisites, we strongly recommend to use system installations of the following:

• Fortran compiler

• Python

Sage developers will also need the system packages required for bootstrapping; they cannot be installed by Sage.

When the ./configure script runs, it will check for the presence of many packages (including the above) and inform
you of any that are missing or have unsuitable versions. Please read the messages that ``./configure`` prints: It will
inform you which additional system packages you can install to avoid having to build them from source. This can save
a lot of time.

The following sections provide the commands to install a large recommended set of packages on various systems, which
will minimize the time it takes to build Sage. This is intended as a convenient shortcut, but of course you can choose
to take a more fine-grained approach.

Debian/Ubuntu package installation

On Debian (“buster” or newer) or Ubuntu (“bionic” or newer), we recommend that you install:

$ sudo apt-get install bc beautifulsoup4 binutils bzip2 ca-certificates cliquer cmake␣
→˓curl cython ecl eclib-tools fflas-ffpack furo g++ gcc gengetopt gfan gfortran glpk-
→˓utils gmp-ecm hatch-vcs importlib-resources ipykernel lcalc libatomic-ops-dev libboost-
→˓dev libbraiding-dev libbrial-dev libbrial-groebner-dev libbz2-dev libcdd-dev libcdd-
→˓tools libcliquer-dev libcurl4-openssl-dev libec-dev libecm-dev libffi-dev libflint-arb-
→˓dev libflint-dev libfplll-dev libfreetype-dev libgc-dev libgd-dev libgf2x-dev libgiac-
→˓dev libgivaro-dev libglpk-dev libgmp-dev libgsl-dev libhomfly-dev libiml-dev␣
→˓liblfunction-dev liblinbox-dev liblrcalc-dev liblzma-dev libm4ri-dev libm4rie-dev␣
→˓libmpc-dev libmpfi-dev libmpfr-dev libncurses5-dev libntl-dev libopenblas-dev libpari-
→˓dev libplanarity-dev libppl-dev libprimesieve-dev libpython3-dev libqhull-dev␣

(continues on next page)

4.4. Install from Source Code 13

../reference/spkg/index.html
../reference/spkg/_prereq.html
../reference/spkg/gcc.html
../reference/spkg/gfortran.html
../reference/spkg/python3.html
../reference/spkg/_bootstrap.html

Installation Guide, Release 10.2

(continued from previous page)

→˓libreadline-dev librw-dev libsingular4-dev libsqlite3-dev libssl-dev libsuitesparse-
→˓dev libsymmetrica2-dev libz-dev libzmq3-dev m4 make maxima maxima-sage meson meson-
→˓python nauty ninja-build openssl palp pari-doc pari-elldata pari-galdata pari-galpol␣
→˓pari-gp2c pari-seadata patch patchelf perl pkg-config planarity ppl-dev python-
→˓fastjsonschema python-hatch-fancy-pypi-readme python-tinycss2 python3 python3-babel␣
→˓python3-bleach python3-certifi python3-cvxopt python3-cycler python3-dateutil python3-
→˓decorator python3-distutils python3-gmpy2 python3-idna python3-importlib-metadata␣
→˓python3-ipython python3-jinja2 python3-jsonschema python3-matplotlib python3-mpmath␣
→˓python3-networkx python3-numpy python3-packaging python3-pandocfilters python3-
→˓pickleshare python3-pillow python3-pip python3-pkgconfig python3-pluggy python3-py␣
→˓python3-pygments python3-requests python3-scipy python3-setuptools python3-six python3-
→˓sympy python3-typing-extensions python3-tz python3-tzlocal python3-urllib3 python3-
→˓venv python3-webencodings python3-wheel rpy2 setuptools-scm singular singular-doc␣
→˓sphinx sphinx-basic-ng sphinxcontrib-websupport sqlite3 sympow tachyon tar texinfo tox␣
→˓xcas xz-utils

If you wish to do Sage development, we recommend that you additionally install the following:

$ sudo apt-get install autoconf automake gh git gpgconf libtool openssh-client pkg-
→˓config

For all users, we recommend that you install the following system packages, which provide additional functionality and
cannot be installed by Sage:

$ sudo apt-get install default-jdk dvipng ffmpeg imagemagick latexmk libavdevice-dev␣
→˓libjpeg-dev pandoc tex-gyre texlive-fonts-recommended texlive-lang-cyrillic texlive-
→˓lang-english texlive-lang-european texlive-lang-french texlive-lang-german texlive-
→˓lang-italian texlive-lang-japanese texlive-lang-polish texlive-lang-portuguese texlive-
→˓lang-spanish texlive-latex-extra texlive-xetex

In addition to these, if you don’t want Sage to build optional packages that might be available from your OS, cf. the
growing list of such packages on github issue #27330, install:

$ sudo apt-get install 4ti2 clang coinor-cbc coinor-libcbc-dev graphviz libfile-slurp-
→˓perl libgraphviz-dev libigraph-dev libisl-dev libjson-perl libmongodb-perl libnauty-
→˓dev libperl-dev libpolymake-dev libsvg-perl libtbb-dev libterm-readkey-perl libterm-
→˓readline-gnu-perl libxml-libxslt-perl libxml-writer-perl libxml2-dev lrslib pari-gp2c␣
→˓pdf2svg polymake python3-texttable r-base-dev r-cran-lattice

Fedora/Redhat/CentOS package installation

On Fedora/Redhat/CentOS, we recommend that you install:

$ sudo yum install --setopt=tsflags= Cython L-function L-function-devel Singular␣
→˓Singular-devel arb arb-devel babel binutils boost-devel brial brial-devel bzip2 bzip2-
→˓devel cddlib cliquer cliquer-devel cmake curl diffutils ecl eclib eclib-devel fflas-
→˓ffpack-devel findutils flint flint-devel gc gc-devel gcc gcc-c++ gcc-gfortran gd gd-
→˓devel gengetopt gf2x gf2x-devel gfan giac giac-devel givaro givaro-devel glpk glpk-
→˓devel glpk-utils gmp gmp-devel gmp-ecm gmp-ecm-devel gsl gsl-devel iml iml-devel info␣
→˓ipython libatomic_ops libatomic_ops-devel libbraiding libcurl-devel libffi libffi-
→˓devel libfplll libfplll-devel libhomfly-devel libmpc libmpc-devel linbox lrcalc-devel␣
→˓m4 m4ri-devel m4rie-devel make meson mpfr-devel nauty ncurses-devel ninja-build ntl-

(continues on next page)

14 Chapter 4. In the cloud

https://github.com/sagemath/sage/issues/27330

Installation Guide, Release 10.2

(continued from previous page)

→˓devel openblas-devel openssl openssl-devel palp pari-devel pari-elldata pari-galdata␣
→˓pari-galpol pari-gp pari-seadata patch patchelf perl perl-ExtUtils-MakeMaker perl-IPC-
→˓Cmd pkg-config planarity planarity-devel ppl ppl-devel primecount primecount-devel␣
→˓primesieve primesieve-devel python-argon2-cffi-bindings python-beautifulsoup4 python-
→˓bleach python-certifi python-cvxopt python-cycler python-dateutil python-decorator␣
→˓python-fastjsonschema python-furo python-gmpy2 python-hatch-fancy-pypi-readme python-
→˓hatch-vcs python-idna python-importlib-metadata python-ipykernel python-jinja2 python-
→˓jsonschema python-jupyter-sphinx python-matplotlib python-meson-python python-mpmath␣
→˓python-networkx python-numpy python-packaging python-pandocfilters python-pexpect␣
→˓python-pickleshare python-pillow python-pip python-pkgconfig python-pluggy python-
→˓pplpy python-prompt-toolkit python-ptyprocess python-py python-pygments python-pytz␣
→˓python-pyzmq python-requests python-scipy python-setuptools python-setuptools_scm␣
→˓python-six python-sphinx python-sphinx-basic-ng python-sphinx-copybutton python-
→˓sphinxcontrib-applehelp python-sphinxcontrib-devhelp python-sphinxcontrib-htmlhelp␣
→˓python-sphinxcontrib-jsmath python-sphinxcontrib-qthelp python-sphinxcontrib-
→˓serializinghtml python-sphinxcontrib-websupport python-sympy python-tinycss2 python-
→˓trove-classifiers python-typing-extensions python-tzlocal python-urllib3 python-
→˓webencodings python-wheel python-widgetsnbextension python3 python3-devel qhull qhull-
→˓devel readline-devel rw-devel sqlite sqlite-devel suitesparse suitesparse-devel␣
→˓symmetrica-devel sympow tachyon tachyon-devel tar texinfo tox which xz xz-devel zeromq␣
→˓zeromq-devel zlib-devel

If you wish to do Sage development, we recommend that you additionally install the following:

$ sudo yum install autoconf automake gh git gnupg2 libtool openssh pkg-config

For all users, we recommend that you install the following system packages, which provide additional functionality and
cannot be installed by Sage:

$ sudo yum install ImageMagick latexmk libjpeg-turbo-devel pandoc texlive texlive-
→˓collection-langcyrillic texlive-collection-langeuropean texlive-collection-langfrench␣
→˓texlive-collection-langgerman texlive-collection-langitalian texlive-collection-
→˓langjapanese texlive-collection-langpolish texlive-collection-langportuguese texlive-
→˓collection-langspanish texlive-collection-latexextra

In addition to these, if you don’t want Sage to build optional packages that might be available from your OS, cf. the
growing list of such packages on github issue #27330, install:

$ sudo yum install 4ti2 R R-devel clang coin-or-Cbc coin-or-Cbc-devel coxeter coxeter-
→˓devel coxeter-tools graphviz igraph igraph-devel isl-devel libnauty-devel libxml2-
→˓devel lrslib pari-galpol pari-seadata pdf2svg perl-ExtUtils-Embed perl-File-Slurp perl-
→˓JSON perl-MongoDB perl-Term-ReadLine-Gnu perl-TermReadKey perl-XML-LibXML perl-XML-
→˓LibXSLT perl-XML-Writer polymake python-texttable tbb-devel

4.4. Install from Source Code 15

https://github.com/sagemath/sage/issues/27330

Installation Guide, Release 10.2

Arch Linux package installation

On ArchLinux, we recommend that you install:

$ sudo pacman -S arb bc binutils boost brial cblas cddlib cmake cython ecl eclib␣
→˓fflas-ffpack gc gcc gcc-fortran gd gf2x gfan giac glpk gsl iml ipython jupyter-jsmol␣
→˓jupyter-notebook jupyter-widgetsnbextension jupyterlab-widgets lapack lcalc libatomic_
→˓ops libbraiding libgiac libhomfly linbox lrcalc m4 m4ri m4rie make maxima-fas meson␣
→˓meson-python nauty ninja openblas openssl palp pari pari-elldata pari-galdata pari-
→˓galpol pari-seadata patch perl pkgconf planarity ppl primecount primesieve python␣
→˓python-argon2-cffi-bindings python-babel python-beautifulsoup4 python-bleach python-
→˓calver python-certifi python-cvxopt python-cycler python-dateutil python-decorator␣
→˓python-fastjsonschema python-gmpy2 python-hatch-fancy-pypi-readme python-hatch-vcs␣
→˓python-idna python-importlib-metadata python-importlib_resources python-ipykernel␣
→˓python-jsonschema python-jupyter-sphinx python-matplotlib python-mpmath python-
→˓networkx python-numpy python-packaging python-pandocfilters python-pexpect python-
→˓pickleshare python-pillow python-pip python-pkgconfig python-pluggy python-pplpy␣
→˓python-ptyprocess python-py python-pygments python-pyparsing python-pytz python-pyzmq␣
→˓python-requests python-rpy2 python-scipy python-setuptools python-setuptools-scm␣
→˓python-six python-sphinx python-sphinx-basic-ng python-sphinx-copybutton python-sphinx-
→˓furo python-sphinxcontrib-applehelp python-sphinxcontrib-devhelp python-sphinxcontrib-
→˓htmlhelp python-sphinxcontrib-jsmath python-sphinxcontrib-qthelp python-sphinxcontrib-
→˓serializinghtml python-sphinxcontrib-websupport python-sympy python-tinycss2 python-
→˓tox python-trove-classifiers python-typing_extensions python-tzlocal python-urllib3␣
→˓python-webencodings python-wheel qhull rankwidth readline singular sqlite3 suitesparse␣
→˓symmetrica sympow tachyon tar which zeromq

If you wish to do Sage development, we recommend that you additionally install the following:

$ sudo pacman -S autoconf automake git github-cli gnupg libtool openssh pkgconf

For all users, we recommend that you install the following system packages, which provide additional functionality and
cannot be installed by Sage:

$ sudo pacman -S ffmpeg imagemagick libjpeg-turbo pandoc texlive-core texlive-
→˓langcyrillic texlive-langjapanese texlive-latexextra

In addition to these, if you don’t want Sage to build optional packages that might be available from your OS, cf. the
growing list of such packages on github issue #27330, install:

$ sudo pacman -S 4ti2 clang coin-or-cbc coxeter graphviz igraph intel-oneapi-tbb␣
→˓libxml2 lrs pari-elldata pari-galpol pari-seadata pdf2svg perl-term-readline-gnu␣
→˓polymake python-ipympl python-texttable r

16 Chapter 4. In the cloud

https://github.com/sagemath/sage/issues/27330

Installation Guide, Release 10.2

OpenSUSE package installation

On OpenSUSE, we recommend that you install:

$ sudo zypper install arb-devel bc binutils boost-devel brial-devel bzip2 ca-
→˓certificates cddlib-tools cliquer cliquer-devel cmake curl diffutils edge-addition-
→˓planarity-suite edge-addition-planarity-suite-devel findutils flint-devel fplll fplll-
→˓devel gawk gcc gcc-c++ gcc-fortran gd gfan giac-devel glibc-locale-base glpk glpk-
→˓devel gmp-devel gzip iml-devel jupyter-nbconvert jupyter-nbformat jupyter-
→˓widgetsnbextension libbraiding-devel libhomfly-devel libopenssl-3-devel libprimecount-
→˓devel m4 make mathjax maxima-exec-clisp meson mpc-devel mpfi-devel nauty nauty-devel␣
→˓ninja ntl-devel openblas-devel pari-devel pari-galdata pari-gp patch patchelf perl pkg-
→˓config pkgconf pkgconfig(atomic_ops) pkgconfig(bdw-gc) pkgconfig(bzip2)␣
→˓pkgconfig(cddlib) pkgconfig(fflas-ffpack) pkgconfig(fplll) pkgconfig(freetype2)␣
→˓pkgconfig(gdlib) pkgconfig(gf2x) pkgconfig(givaro) pkgconfig(gsl) pkgconfig(libcurl)␣
→˓pkgconfig(libffi) pkgconfig(liblzma) pkgconfig(libpng16) pkgconfig(libzmq)␣
→˓pkgconfig(linbox) pkgconfig(m4ri) pkgconfig(m4rie) pkgconfig(mpfr) pkgconfig(ncurses)␣
→˓pkgconfig(ncursesw) pkgconfig(readline) pkgconfig(sqlite3) pkgconfig(zlib) ppl-devel␣
→˓primecount primesieve python-argon2-cffi-bindings python-beautifulsoup4 python-calver␣
→˓python-fastjsonschema python-hatch-fancy-pypi-readme python-hatch_vcs python-jupyter-
→˓sphinx python-meson-python python-tinycss2 python3 python3${PYTHON_MINOR}-Babel python3
→˓${PYTHON_MINOR}-Cycler python3${PYTHON_MINOR}-Cython python3${PYTHON_MINOR}-MarkupSafe␣
→˓python3${PYTHON_MINOR}-Pillow python3${PYTHON_MINOR}-Send2Trash python3${PYTHON_MINOR}-
→˓Sphinx python3${PYTHON_MINOR}-alabaster python3${PYTHON_MINOR}-bleach python3${PYTHON_
→˓MINOR}-certifi python3${PYTHON_MINOR}-cffi python3${PYTHON_MINOR}-cvxopt python3$
→˓{PYTHON_MINOR}-decorator python3${PYTHON_MINOR}-devel python3${PYTHON_MINOR}-docutils␣
→˓python3${PYTHON_MINOR}-gmpy2 python3${PYTHON_MINOR}-idna python3${PYTHON_MINOR}-
→˓importlib-metadata python3${PYTHON_MINOR}-importlib_resources python3${PYTHON_MINOR}-
→˓ipykernel python3${PYTHON_MINOR}-ipython python3${PYTHON_MINOR}-jinja2 python3${PYTHON_
→˓MINOR}-jsonschema python3${PYTHON_MINOR}-jupyter-client python3${PYTHON_MINOR}-jupyter-
→˓core python3${PYTHON_MINOR}-jupyterlab-widgets python3${PYTHON_MINOR}-matplotlib␣
→˓python3${PYTHON_MINOR}-mpmath python3${PYTHON_MINOR}-networkx python3${PYTHON_MINOR}-
→˓numpy python3${PYTHON_MINOR}-packaging python3${PYTHON_MINOR}-pandocfilters python3$
→˓{PYTHON_MINOR}-pexpect python3${PYTHON_MINOR}-pickleshare python3${PYTHON_MINOR}-pip␣
→˓python3${PYTHON_MINOR}-pluggy python3${PYTHON_MINOR}-prometheus_client python3${PYTHON_
→˓MINOR}-ptyprocess python3${PYTHON_MINOR}-py python3${PYTHON_MINOR}-pycparser python3$
→˓{PYTHON_MINOR}-pygments python3${PYTHON_MINOR}-pyparsing python3${PYTHON_MINOR}-python-
→˓dateutil python3${PYTHON_MINOR}-pytz python3${PYTHON_MINOR}-pyzmq python3${PYTHON_
→˓MINOR}-requests python3${PYTHON_MINOR}-rpy2 python3${PYTHON_MINOR}-scipy python3$
→˓{PYTHON_MINOR}-setuptools python3${PYTHON_MINOR}-setuptools_scm python3${PYTHON_MINOR}-
→˓six python3${PYTHON_MINOR}-snowballstemmer python3${PYTHON_MINOR}-sphinxcontrib-
→˓applehelp python3${PYTHON_MINOR}-sphinxcontrib-devhelp python3${PYTHON_MINOR}-
→˓sphinxcontrib-htmlhelp python3${PYTHON_MINOR}-sphinxcontrib-jsmath python3${PYTHON_
→˓MINOR}-sphinxcontrib-qthelp python3${PYTHON_MINOR}-sphinxcontrib-serializinghtml␣
→˓python3${PYTHON_MINOR}-sphinxcontrib-websupport python3${PYTHON_MINOR}-sympy python3$
→˓{PYTHON_MINOR}-tornado python3${PYTHON_MINOR}-traitlets python3${PYTHON_MINOR}-typing_
→˓extensions python3${PYTHON_MINOR}-tzlocal python3${PYTHON_MINOR}-urllib3 python3$
→˓{PYTHON_MINOR}-wcwidth python3${PYTHON_MINOR}-webencodings python3${PYTHON_MINOR}-
→˓wheel qhull-devel readline-devel suitesparse-devel sympow tachyon tar texinfo which xz

If you wish to do Sage development, we recommend that you additionally install the following:

$ sudo zypper install autoconf automake gh git gpg2 libtool openssh pkgconfig

4.4. Install from Source Code 17

Installation Guide, Release 10.2

For all users, we recommend that you install the following system packages, which provide additional functionality and
cannot be installed by Sage:

$ sudo zypper install ImageMagick ffmpeg libjpeg-devel pandoc texlive

In addition to these, if you don’t want Sage to build optional packages that might be available from your OS, cf. the
growing list of such packages on github issue #27330, install:

$ sudo zypper install 4ti2 4ti2-devel R-base coxeter gp2c graphviz libxml2 llvm lrslib␣
→˓lrslib-devel pari-elldata pari-galpol pari-nftables pari-seadata pdf2svg␣
→˓perl(Term::ReadLine::Gnu) pkgconfig(isl) pkgconfig(libsemigroups) polymake python3$
→˓{PYTHON_MINOR}-texttable tbb

macOS prerequisites

On macOS systems, you need a recent version of Command Line Tools. It provides all the above requirements.

Run the command xcode-select --install from a Terminal window and click “Install” in the pop-up dialog box.

If you have already installed Xcode (which at the time of writing is freely available in the Mac App Store, or through
https://developer.apple.com/downloads/ provided you registered for an Apple Developer account), you can install the
command line tools from there as well.

If you have not installed Xcode you can get these tools as a relatively small download, but it does require a registration.

• First, you will need to register as an Apple Developer at https://developer.apple.com/register/.

• Having done so, you should be able to download it for free at https://developer.apple.com/downloads/index.
action?=command%20line%20tools

• Alternately, https://developer.apple.com/opensource/ should have a link to Command Line Tools.

macOS package installation

If you use the Homebrew package manager, you can install the following:

$ brew install arb bdw-gc boost bzip2 cddlib cmake curl cython docutils ecl flint␣
→˓fplll freetype gcc gd gengetopt gfortran glpk gmp gpatch gsl ipython libatomic_ops␣
→˓libffi libiconv libmpc libpng maxima meson mpfi mpfr nauty ncurses ninja ntl numpy␣
→˓openblas openssl pari pari-elldata pari-galdata pari-galpol pari-seadata patchelf pkg-
→˓config ppl primecount primesieve pybind11 pygments python3 qhull readline scipy␣
→˓singular sphinx-doc sqlite suite-sparse texinfo tox xz zeromq zlib

Some Homebrew packages are installed “keg-only,” meaning that they are not available in standard paths. To make
them accessible when building Sage, run

$ source SAGE_ROOT/.homebrew-build-env

(replacing SAGE_ROOT by Sage’s home directory). You can add a command like this to your shell profile if you want
the settings to persist between shell sessions.

If you wish to do Sage development, we recommend that you additionally install the following:

$ brew install autoconf automake gh git gnupg libtool pkg-config

For all users, we recommend that you install the following system packages, which provide additional functionality and
cannot be installed by Sage:

18 Chapter 4. In the cloud

https://github.com/sagemath/sage/issues/27330
https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/xcode/
https://developer.apple.com/downloads/
https://developer.apple.com/xcode/
https://developer.apple.com/register/
https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/opensource/
https://brew.sh

Installation Guide, Release 10.2

$ brew install ffmpeg imagemagick jpeg-turbo pandoc texinfo

Some additional optional packages are taken care of by:

$ brew install apaffenholz/polymake/polymake cbc graphviz igraph isl libxml2 llvm␣
→˓nauty pdf2svg r tbb

WSL prerequisites

Ubuntu on Windows Subsystem for Linux (WSL) prerequisite installation

Sage can be installed onto Linux running on Windows Subsystem for Linux (WSL). These instructions describe a fresh
install of Ubuntu 20.10, but other distributions or installation methods should work too, though have not been tested.

• Enable hardware-assisted virtualization in the EFI or BIOS of your system. Refer to your system (or motherboard)
maker’s documentation for instructions on how to do this.

• Set up WSL by following the official WSL setup guide. Be sure to do the steps to install WSL2 and set it as
default.

• Go to the Microsoft Store and install Ubuntu.

• Start Ubuntu from the start menu. Update all packages to the latest version.

• Reboot the all running WSL instances one of the following ways:

– Open Windows Services and restart the LxssManager service.

– Open the Command Prompt or Powershell and enter this command:

wsl --shutdown

• Upgrade to the Ubuntu 20.10. This step will not be necessary once Ubuntu 20.10 is available in the Microsoft
Store.

From this point on, follow the instructions in the Debian/Ubuntu package installation section. It is strongly recom-
mended to put the Sage source files in the Linux file system, for example, in the /home/username/sage directory,
and not in the Windows file system (e.g. /mnt/c/...).

WSL permission denied error when building 𝑝𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔 package.

You may encounter permission errors of the kind "[Errno 13] Permission denied: 'build/bdist.
linux-x86_64/wheel/<package>.dist-info'" during make. This usually comes from a permission conflict be-
tween the Windows and Linux file system. To fix it create a temporary build folder in the Linux file system using
mkdir -p ~/tmp/sage and use it for building by eval SAGE_BUILD_DIR="~/tmp/sage" make. Also see the re-
lated Github issue for other workarounds.

4.4. Install from Source Code 19

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://linuxconfig.org/how-to-upgrade-ubuntu-to-20-10
https://github.com/pypa/packaging-problems/issues/258
https://github.com/pypa/packaging-problems/issues/258

Installation Guide, Release 10.2

WSL post-installation notes

When the installation is complete, you may be interested in WSL Post-installation steps.

Cygwin prerequisite installation

Previous versions of Sage targeted the Windows platform using Cygwin.

As of Sage 9.7, we no longer recommend attempting to build Sage on Cygwin and instead suggest that users on Windows
10 and 11 switch to installing Sage using Windows Subsystem for Linux (WSL), which gives a better performance and
user/developer experience than Cygwin.

Users on hardware configurations that do not support running WSL, as well as users on legacy versions of Windows
such as Windows 8 may find it necessary to build Sage on Cygwin.

Warning: As of Sage 9.7, known issues with several packages will prevent a successful installation. Users need
to be prepared to contribute to Sage by fixing these issues.

Use the following instructions to get started.

1. Download the 64-bit version of Cygwin (do not get the 32-bit version; it is not supported by Sage).

2. Run the setup-x86_64.exe graphical installer. Pick the default options in most cases. At the package selection
screen, use the search bar to find and select at least the following packages: bzip2, coreutils, curl, gawk,
gzip, tar, wget, git.

3. Start the Cygwin terminal and ensure you get a working bash prompt.

4. Make sure the path of your Cygwin home directory does not contain space characters. Also avoid building in
home directories of Windows domain users or in paths with capital letters.

By default, your username in Cygwin is the same as your username in Windows. This might contain spaces and
other traditionally non-UNIX-friendly characters, e.g., if it is your full name. You can check this as follows:

$ whoami
Erik M. Bray

This means your default home directory on Cygwin contains this username verbatim; in the above example, /
home/Erik M. Bray. It will save some potential trouble if you change your Cygwin home directory to contain
only alphanumeric characters, for example, /home/embray. The easiest way to do this is to first create the home
directory you want to use instead, then create an /etc/passwd file specifying that directory as your home, as
follows:

$ whocanibe=embray
$ mkdir /home/$whocanibe
$ mkpasswd.exe -l -u "$(whoami)" | sed -r 's,/home/[^:]+,/home/'$whocanibe, > /etc/
→˓passwd

After this, close all Cygwin terminals (ensure nothing in C:\cygwin64 is running), then start a new Cygwin
terminal and your home directory should have moved.

There are other ways to do this, but the above seems to be the simplest that’s still supported.

5. (Optional) Although it is possible to install Sage’s dependencies using the Cygwin graphical installer, it is rec-
ommended to install the apt-cyg command-line package installer, which is used for the remainder of these in-
structions. To install apt-cyg, run:

20 Chapter 4. In the cloud

https://cygwin.com/
https://github.com/sagemath/sage/issues/query?status=closed&status=needs_info&status=needs_review&status=needs_work&status=new&status=positive_review&component=porting%3A+Cygwin&milestone=sage-9.8&milestone=sage-9.7&milestone=sage-9.6&milestone=sage-9.5&milestone=sage-9.4&milestone=sage-9.3&milestone=sage-9.2&milestone=sage-9.1&col=id&col=summary&col=milestone&col=status&col=priority&col=changetime&col=author&col=reviewer&desc=1&order=changetime
https://cygwin.com/install.html
https://stackoverflow.com/questions/1494658/how-can-i-change-my-cygwin-home-folder-after-installation
https://github.com/transcode-open/apt-cyg

Installation Guide, Release 10.2

$ curl -OL https://rawgit.com/transcode-open/apt-cyg/master/apt-cyg
$ install apt-cyg /usr/local/bin
$ rm -f apt-cyg

6. Then, to install the current set of system packages known to work for building Sage, run the following command
(or use the graphical installer to select and install these packages):

$ apt-cyg install binutils bzip2 cddlib-devel cddlib-tools cmake curl findutils␣
→˓gcc-core gcc-fortran gcc-g++ gengetopt glpk info libatomic_ops-devel libboost-
→˓devel libbz2-devel libcrypt-devel libcurl-devel libffi-devel libflint-devel␣
→˓libfreetype-devel libgc-devel libgd-devel libglpk-devel libgmp-devel libgsl-devel␣
→˓libiconv-devel liblapack-devel liblzma-devel libmpc-devel libmpfr-devel␣
→˓libncurses-devel libntl-devel libopenblas libreadline-devel libsqlite3-devel␣
→˓libssl-devel libsuitesparseconfig-devel libzmq-devel m4 make maxima ninja patch␣
→˓perl perl-ExtUtils-MakeMaker python-pip-wheel python-setuptools-wheel python39␣
→˓python39-devel python39-urllib3 qhull singular singular-devel sqlite3 tar which␣
→˓xz zlib-devel

Optional packages that are also known to be installable via system packages include:

$ apt-cyg install R clang graphviz lib4ti2-devel lib4ti2_0 libisl-devel libtirpc-
→˓devel libxml2-devel perl-Term-ReadLine-Gnu

Note: On Cygwin, at any point in time after building/installing software, it may be required to “rebase” dll files.
Sage provides some scripts, located in $SAGE_LOCAL/bin, to do so:

• sage-rebaseall.sh, a shell script which calls Cygwin’s rebaseall program. It must be run within a dash
shell from the SAGE_ROOT directory after all other Cygwin processes have been shut down and needs write-access
to the system-wide rebase database located at /etc/rebase.db.i386, which usually means administrator priv-
ileges. It updates the system-wide database and adds Sage dlls to it, so that subsequent calls to rebaseall will
take them into account.

• sage-rebase.sh, a shell script which calls Cygwin’s rebase program together with the -O/--oblivious
option. It must be run within a shell from SAGE_ROOT directory. Contrary to the sage-rebaseall.sh script,
it neither updates the system-wide database, nor adds Sage dlls to it. Therefore, subsequent calls to rebaseall
will not take them into account.

• sage-rebaseall.bat (respectively sage-rebase.bat), an MS-DOS batch file which calls the
sage-rebaseall.sh (respectively sage-rebase.sh) script. It must be run from a Windows command
prompt, after adjusting SAGE_ROOT to the Windows location of Sage’s home directory, and, if Cygwin is
installed in a non-standard location, adjusting CYGWIN_ROOT as well.

Some systems may encounter this problem frequently enough to make building or testing difficult. If executing the
above scripts or directly calling rebaseall does not solve rebasing issues, deleting the system-wide database and then
regenerating it from scratch, e.g., by executing sage-rebaseall.sh, might help.

4.4. Install from Source Code 21

Installation Guide, Release 10.2

Other platforms

On Solaris, you would use pkgadd and on OpenSolaris ipf to install the necessary software.

On other systems, check the documentation for your particular operating system.

Notes on using conda

If you don’t want conda to be used by sage, deactivate conda (for the current shell session).

• Type:

$ conda deactivate

• Repeat the command until conda info shows:

$ conda info

active environment : None
...

Then SageMath will be built either using the compilers provided by the operating system, or its own
compilers.

Tcl/Tk

If you want to use Tcl/Tk libraries in Sage, you need to install the Tcl/Tk and its development headers before building
Sage. Sage’s Python will then automatically recognize your system’s install of Tcl/Tk.

On Linux systems, these are usually provided by the tk and tk-dev (or tk-devel) packages which can be installed using:

$ sudo apt-get install tk tk-dev

or similar commands.

If you installed Sage first, all is not lost. You just need to rebuild Sage’s Python and any part of Sage relying on it:

$ sage -f python3 # rebuild Python3
$ make # rebuild components of Sage depending on Python

after installing the Tcl/Tk development libraries as above.

If

sage: import _tkinter
sage: import Tkinter

does not raise an ImportError, then it worked.

22 Chapter 4. In the cloud

https://www.tcl.tk/
https://docs.python.org/library/exceptions.html#ImportError

Installation Guide, Release 10.2

4.4.2 Installation steps

1. Follow the procedure in the file README.md in SAGE_ROOT.

2. Additional remarks: You do not need to be logged in as root, since no files are changed outside of the sage-x.y
directory. In fact, it is inadvisable to build Sage as root, as the root account should only be used when absolutely
necessary and mistyped commands can have serious consequences if you are logged in as root.

Typing make performs the usual steps for each Sage’s dependency, but installs all the resulting files into the
installation prefix. Depending on the age and the architecture of your system, it can take from a few tens of
minutes to several hours to build Sage from source. On really slow hardware, it can even take a few days to build
Sage.

Each component of Sage has its own build log, saved in SAGE_ROOT/logs/pkgs. If the build of Sage fails,
you will see a message mentioning which package(s) failed to build and the location of the log file for each
failed package. If this happens, then paste the contents of these log file(s) to the Sage support newsgroup at
https://groups.google.com/group/sage-support. If the log files are very large (and many are), then don’t paste
the whole file, but make sure to include any error messages. It would also be helpful to include the type of
operating system (Linux, macOS, Solaris, OpenSolaris, Cygwin, or any other system), the version and release
date of that operating system and the version of the copy of Sage you are using. (There are no formal requirements
for bug reports – just send them; we appreciate everything.)

See Make targets for some targets for the make command and Environment variables for additional information
on useful environment variables used by Sage.

3. To start Sage, you can now simply type from Sage’s home directory:

$./sage

You should see the Sage prompt, which will look something like this:

$ sage
+——————————————————————–+
| SageMath version 8.8, Release Date: 2019-06-26 |
| Using Python 3.10.4. Type "help()" for help. |
+——————————————————————–+
sage:

Note that Sage should take well under a minute when it starts for the first time, but can take several minutes if
the file system is slow or busy. Since Sage opens a lot of files, it is preferable to install Sage on a fast filesystem
if possible.

Just starting successfully tests that many of the components built correctly. Note that this should have been
already automatically tested during the build process. If the above is not displayed (e.g., if you get a massive
traceback), please report the problem, e.g., at https://groups.google.com/group/sage-support.

After Sage has started, try a simple command:

sage: 2 + 2
4

Or something slightly more complicated:

sage: factor(2005)
5 * 401

4. Optional, but highly recommended: Test the install by typing ./sage --testall. This runs most examples in
the source code and makes sure that they run exactly as claimed. To test all examples, use ./sage --testall

4.4. Install from Source Code 23

https://github.com/sagemath/sage/#readme
https://groups.google.com/group/sage-support
https://groups.google.com/group/sage-support

Installation Guide, Release 10.2

--optional=all --long; this will run examples that take a long time, and those that depend on optional
packages and software, e.g., Mathematica or Magma. Some (optional) examples will therefore likely fail.

Alternatively, from within $SAGE_ROOT, you can type make test (respectively make ptest) to run all the
standard test code serially (respectively in parallel).

Testing the Sage library can take from half an hour to several hours, depending on your hardware. On slow
hardware building and testing Sage can even take several days!

5. Optional: Check the interfaces to any other software that you have available. Note that each interface calls its
corresponding program by a particular name: Mathematica is invoked by calling math, Maple by calling maple,
etc. The easiest way to change this name or perform other customizations is to create a redirection script in
$SAGE_ROOT/local/bin. Sage inserts this directory at the front of your PATH, so your script may need to use
an absolute path to avoid calling itself; also, your script should pass along all of its arguments. For example, a
maple script might look like:

#!/bin/sh

exec /etc/maple10.2/maple.tty "$@"

6. Optional: There are different possibilities to make using Sage a little easier:

• Make a symbolic link from /usr/local/bin/sage (or another directory in your PATH) to $SAGE_ROOT/
sage:

$ ln -s /path/to/sage-x.y/sage /usr/local/bin/sage

Now simply typing sage from any directory should be sufficient to run Sage.

• Copy $SAGE_ROOT/sage to a location in your PATH. If you do this, make sure you edit the line:

#SAGE_ROOT=/path/to/sage-version

at the beginning of the copied sage script according to the direction given there to something like:

SAGE_ROOT=<SAGE_ROOT>

(note that you have to change <SAGE_ROOT> above!). It is best to edit only the copy, not the original.

• For KDE users, create a bash script called sage containing the lines (note that you have to change
<SAGE_ROOT> below!):

#!/usr/bin/env bash

konsole -T "sage" -e <SAGE_ROOT>/sage

make it executable:

$ chmod a+x sage

and put it somewhere in your PATH.

You can also make a KDE desktop icon with this line as the command (under the Application tab of the
Properties of the icon, which you get my right clicking the mouse on the icon).

• On Linux and macOS systems, you can make an alias to $SAGE_ROOT/sage. For example, put something
similar to the following line in your .bashrc file:

24 Chapter 4. In the cloud

https://www.wolfram.com/mathematica/
https://www.maplesoft.com/
https://www.kde.org/

Installation Guide, Release 10.2

alias sage=<SAGE_ROOT>/sage

(Note that you have to change <SAGE_ROOT> above!) Having done so, quit your terminal emulator and
restart it. Now typing sage within your terminal emulator should start Sage.

7. Optional: Install optional Sage packages and databases. See the list of optional packages in the reference manual
for detailed information, or type sage --optional (this requires an Internet connection).

Then type sage -i <package-name> to automatically download and install a given package.

8. Have fun! Discover some amazing conjectures!

4.4.3 Make targets

To build Sage from scratch, you would typically execute make in Sage’s home directory to build Sage and its HTML
documentation. The make command is pretty smart, so if your build of Sage is interrupted, then running make again
should cause it to pick up where it left off. The make command can also be given options, which control what is built
and how it is built:

• make build builds Sage: it compiles all of the Sage packages. It does not build the documentation.

• make doc builds Sage’s documentation in HTML format. Note that this requires that Sage be built first, so it
will automatically run make build first. Thus, running make doc is equivalent to running make.

• make doc-pdf builds Sage’s documentation in PDF format. This also requires that Sage be built first, so it will
automatically run make build.

• make doc-html-no-plot builds Sage’s documentation in html format but skips the inclusion of graphics auto-
generated using the .. PLOT markup and the sphinx_plot function. This is primarily intended for use when
producing certain binary distributions of Sage, to lower the size of the distribution. As of this writing (December
2014, Sage 6.5), there are only a few such plots, adding about 4M to the local/share/doc/sage/ directory.
In the future, this may grow, of course. Note: after using this, if you want to build the documentation and
include the pictures, you should run make doc-uninstall, because the presence, or lack, of pictures is cached
in the documentation output. You can benefit from this no-plot feature with other make targets by doing export
SAGE_DOCBUILD_OPTS+=' --no-plot'

• make ptest and make ptestlong: these run Sage’s test suite. The first version skips tests that need more
than a few seconds to complete and those which depend on optional packages or additional software. The second
version includes the former, and so it takes longer. The “p” in ptest stands for “parallel”: tests are run in parallel.
If you want to run tests serially, you can use make test or make testlong instead. If you want to run tests
depending on optional packages and additional software, you can use make testall, make ptestall, make
testalllong, or make ptestalllong.

• make doc-uninstall and make doc-clean each remove several directories which are produced when build-
ing the documentation.

• make distclean restores the Sage directory to its state before doing any building: it is almost equivalent to
deleting Sage’s entire home directory and unpacking the source tarfile again, the only difference being that the
.git directory is preserved, so git branches are not deleted.

4.4. Install from Source Code 25

../reference/spkg/index.html#optional-packages
https://en.wikipedia.org/wiki/HTML

Installation Guide, Release 10.2

4.4.4 Environment variables

Sage uses several environment variables to control its build process. Most users won’t need to set any of these: the build
process just works on many platforms. (Note though that setting MAKE, as described below, can significantly speed up
the process.) Building Sage involves building about 100 packages, each of which has its own compilation instructions.

The Sage source tarball already includes the sources for all standard packages, that is, it allows you to build Sage without
internet connection. The git repository, however, does not contain the source code for third-party packages. Instead, it
will be downloaded as needed (Note: you can run make download to force downloading packages before building).
Package downloads use the Sage mirror network, the nearest mirror will be determined automatically for you. This is
influenced by the following environment variable:

• SAGE_SERVER - Try the specified mirror first, before falling back to the official Sage mirror list. Note that Sage
will search the directory

– SAGE_SERVER/spkg/upstream

for upstream tarballs.

Here are some of the more commonly used variables affecting the build process:

• MAKE - one useful setting for this variable when building Sage is MAKE='make -jNUM' to tell the make program
to run NUM jobs in parallel when building. Note that some Sage packages may not support this variable.

Some people advise using more jobs than there are CPU cores, at least if the system is not heavily loaded and
has plenty of RAM; for example, a good setting for NUM might be between 1 and 1.5 times the number of cores.
In addition, the -l option sets a load limit: MAKE='make -j4 -l5.5, for example, tells make to try to use four
jobs, but to not start more than one job if the system load average is above 5.5. See the manual page for GNU
make: Command-line options and Parallel building.

Warning: Some users on single-core macOS machines have reported problems when building Sage with
MAKE='make -jNUM' with NUM greater than one.

• SAGE_NUM_THREADS - if set to a number, then when building the documentation, parallel doctesting, or running
sage -b, use this many threads. If this is not set, then determine the number of threads using the value of the
MAKE (see above) or MAKEFLAGS environment variables. If none of these specifies a number of jobs, use one
thread (except for parallel testing: there we use a default of the number of CPU cores, with a maximum of 8 and
a minimum of 2).

• V - if set to 0, silence the build. Instead of showing a detailed compilation log, only one line of output is shown
at the beginning and at the end of the installation of each Sage package. To see even less output, use:

$ make -s V=0

(Note that the above uses the syntax of setting a Makefile variable.)

• SAGE_CHECK - if set to yes, then during the build process, or when installing packages manually, run the test
suite for each package which has one, and stop with an error if tests are failing. If set to warn, then only a warning
is printed in this case. See also SAGE_CHECK_PACKAGES.

• SAGE_CHECK_PACKAGES - if SAGE_CHECK is set to yes, then the default behavior is to run test suites for all spkgs
which contain them. If SAGE_CHECK_PACKAGES is set, it should be a comma-separated list of strings of the form
package-name or !package-name. An entry package-name means to run the test suite for the named package
regardless of the setting of SAGE_CHECK. An entry !package-name means to skip its test suite. So if this is set
to ppl,!python3, then always run the test suite for PPL, but always skip the test suite for Python 3.

26 Chapter 4. In the cloud

https://www.gnu.org/software/make/manual/make.html#Options-Summary
https://www.gnu.org/software/make/manual/make.html#Parallel

Installation Guide, Release 10.2

Note: As of Sage 9.1, the test suites for the Python 2 and 3 spkgs fail on most platforms. So when this variable
is empty or unset, Sage uses a default of !python2,!python3.

• SAGE_INSTALL_GCC - Obsolete, do not use, to be removed
• SAGE_INSTALL_CCACHE - by default Sage doesn’t install ccache, however by setting
SAGE_INSTALL_CCACHE=yes Sage will install ccache. Because the Sage distribution is quite large, the
maximum cache is set to 4G. This can be changed by running sage -sh -c "ccache --max-size=SIZE",
where SIZE is specified in gigabytes, megabytes, or kilobytes by appending a “G”, “M”, or “K”.

Sage does not include the sources for ccache since it is an optional package. Because of this, it is necessary to
have an Internet connection while building ccache for Sage, so that Sage can pull down the necessary sources.

• SAGE_DEBUG - controls debugging support. There are three different possible values:

– Not set (or set to anything else than “yes” or “no”): build binaries with debugging symbols, but no special
debug builds. This is the default. There is no performance impact, only additional disk space is used.

– SAGE_DEBUG=no: no means no debugging symbols (that is, no gcc -g), which saves some disk space.

– SAGE_DEBUG=yes: build debug versions if possible (in particular, Python is built with additional debugging
turned on and Singular is built with a different memory manager). These will be notably slower but, for
example, make it much easier to pinpoint memory allocation problems.

Instead of using SAGE_DEBUG one can configure with --enable-debug={no|symbols|yes}.

• SAGE_PROFILE - controls profiling support. If this is set to yes, profiling support is enabled where possible.
Note that Python-level profiling is always available; This option enables profiling in Cython modules.

• SAGE_BUILD_DIR - the default behavior is to build each spkg in a subdirectory of $SAGE_ROOT/local/var/
tmp/sage/build/; for example, build version 7.27.0 of ipython in the directory $SAGE_ROOT/local/var/
tmp/sage/build/ipython-7.27.0/. If this variable is set, then build in $SAGE_BUILD_DIR/ipython-7.
27.0/ instead. If the directory $SAGE_BUILD_DIR does not exist, it is created. As of this writing (Sage 4.8),
when building the standard Sage packages, 1.5 gigabytes of free space are required in this directory (or more
if SAGE_KEEP_BUILT_SPKGS=yes – see below); the exact amount of required space varies from platform to
platform. For example, the block size of the file system will affect the amount of space used, since some spkgs
contain many small files.

Warning: The variable SAGE_BUILD_DIR must be set to the full path name of either an existing directory
for which the user has write permissions, or to the full path name of a nonexistent directory which the user
has permission to create. The path name must contain no spaces.

• SAGE_KEEP_BUILT_SPKGS - the default behavior is to delete each build directory – the appropriate subdirectory
of $SAGE_ROOT/local/var/tmp/sage/build or $SAGE_BUILD_DIR – after each spkg is successfully built,
and to keep it if there were errors installing the spkg. Set this variable to yes to keep the subdirectory regardless.
Furthermore, if you install an spkg for which there is already a corresponding subdirectory, for example left over
from a previous build, then the default behavior is to delete that old subdirectory. If this variable is set to yes, then
the old subdirectory is moved to $SAGE_ROOT/local/var/tmp/sage/build/old/ (or $SAGE_BUILD_DIR/
old), overwriting any already existing file or directory with the same name.

Note: After a full build of Sage (as of version 4.8), these subdirectories can take up to 6 gigabytes of storage,
in total, depending on the platform and the block size of the file system. If you always set this variable to yes,
it can take even more space: rebuilding every spkg would use double the amount of space, and any upgrades to
spkgs would create still more directories, using still more space.

4.4. Install from Source Code 27

Installation Guide, Release 10.2

Note: In an existing Sage installation, running sage -i -s <package-name> or sage -f -s
<package-name> installs the spkg <package-name> and keeps the corresponding build directory; thus setting
SAGE_KEEP_BUILT_SPKGS to yes mimics this behavior when building Sage from scratch or when installing
individual spkgs. So you can set this variable to yes instead of using the -s flag for sage -i and sage -f.

• SAGE_FAT_BINARY - to build binaries that will run on the widest range of target CPUs set this variable to yes
before building Sage or configure with --enable-fat-binary. This does not make the binaries relocatable,
it only avoids newer CPU instruction set extensions. For relocatable (=can be moved to a different directory)
binaries, you must use https://github.com/sagemath/binary-pkg

• SAGE_SUDO - set this to sudo -E or to any other command prefix that is necessary to write into a installation
hierarchy (SAGE_LOCAL) owned by root or another user. Note that this command needs to preserve environment
variable settings (plain sudo does not).

Not all Sage packages currently support SAGE_SUDO.

Therefore this environment variable is most useful when a system administrator wishes to install an additional
Sage package that supports SAGE_SUDO, into a root-owned installation hierarchy (SAGE_LOCAL).

Environment variables for documentation build:

• SAGE_DOCBUILD_OPTS - the value of this variable is passed as an argument to sage --docbuild all html
or sage --docbuild all pdf when you run make, make doc, or make doc-pdf. For example, you can
add --no-plot to this variable to avoid building the graphics coming from the .. PLOT directive within the
documentation, or you can add --include-tests-blocks to include all “TESTS” blocks in the reference
manual. Run sage --docbuild help to see the full list of options.

• SAGE_SPKG_INSTALL_DOCS - if set to yes, then install package-specific documentation to $SAGE_ROOT/
local/share/doc/PACKAGE_NAME/ when an spkg is installed. This option may not be supported by all sp-
kgs. Some spkgs might also assume that certain programs are available on the system (for example, latex or
pdflatex).

• SAGE_USE_CDNS – if set to yes, then build the documentation using CDNs (Content Distribution Networks) for
scripts necessary for HTML documentation, such as MathJax.

• SAGE_LIVE_DOC – if set to yes, then build live Sage documentation. If the Make live button on any webpage of
the live doc is clicked, every example code gets a CodeMirror code cell runnable via Thebe. Thebe is responsible
in sending the code to the Sage computing environment built by Binder and showing the output result. The Sage
computing environment can be specified to either a Binder repo or a local Jupyter server. The environment
variable SAGE_JUPYTER_SERVER is used for this purpose.

SAGE_JUPYTER_SERVER - set this to either binder, binder:repo with repo specifying a Binder repo or the
URL to a local Jupyter server.

– binder refers to Sage’s official Binder repo. This is assumed if the environment variable
SAGE_JUPYTER_SERVER is not set.

– binder:repo specifies a Binder repo with repo, which is a GitHub repository name, optionally added
with a branch name with / separator.

– To use a local Jupyter server instead of Binder, then set the URL to SAGE_JUPYTER_SERVER and the secret
token to environment variable SAGE_JUPYTER_SERVER_TOKEN, which can be left unset if the default token
secret is used. If the live doc was built with SAGE_JUPYTER_SERVER=http://localhost:8889, run a
local Jupyter server by

./sage --notebook=jupyterlab \
--ServerApp.token='secret' \
--ServerApp.allow_origin='null' \

(continues on next page)

28 Chapter 4. In the cloud

https://github.com/sagemath/binary-pkg
https://www.mathjax.org/
https://codemirror.net
https://thebe.readthedocs.io/en/stable/
https://mybinder.org/
https://github.com/sagemath/sage-binder-env

Installation Guide, Release 10.2

(continued from previous page)

--ServerApp.disable_check_xsrf=true \
--ServerApp.port=8889 \
--ServerApp.open_browser=false

before opening the Sage documentation webpage.

Environment variables dealing with specific Sage packages:

• SAGE_MATPLOTLIB_GUI - if set to anything non-empty except no, then Sage will attempt to build the graphical
backend when it builds the matplotlib package.

• PARI_CONFIGURE - use this to pass extra parameters to PARI’s Configure script, for example to specify graphics
support (which is disabled by default). See the file build/pkgs/pari/spkg-install for more information.

• SAGE_TUNE_PARI - if yes, enable PARI self-tuning. Note that this can be time-consuming. If you set this
variable to “yes”, you will also see this: WARNING: Tuning PARI/GP is unreliable. You may find
your build of PARI fails, or PARI/GP does not work properly once built. We recommend
to build this package with SAGE_CHECK="yes".

• PARI_MAKEFLAGS - The value of this variable is passed as an argument to the $MAKE command when compiling
PARI.

Some standard environment variables which are used by Sage:

• CC - while some programs allow you to use this to specify your C compiler, not every Sage package recognizes
this. If GCC is installed within Sage, CC is ignored and Sage’s gcc is used instead.

• CPP - similarly, this will set the C preprocessor for some Sage packages, and similarly, using it is likely quite
risky. If GCC is installed within Sage, CPP is ignored and Sage’s cpp is used instead.

• CXX - similarly, this will set the C++ compiler for some Sage packages, and similarly, using it is likely quite risky.
If GCC is installed within Sage, CXX is ignored and Sage’s g++ is used instead.

• FC - similarly, this will set the Fortran compiler. This is supported by all Sage packages which have Fortran code.
However, for historical reasons, the value is hardcoded during the initial make and subsequent changes to $FC
might be ignored (in which case, the original value will be used instead). If GCC is installed within Sage, FC is
ignored and Sage’s gfortran is used instead.

• CFLAGS, CXXFLAGS and FCFLAGS - the flags for the C compiler, the C++ compiler and the Fortran compiler,
respectively. The same comments apply to these: setting them may cause problems, because they are not univer-
sally respected among the Sage packages. Note also that export CFLAGS="" does not have the same effect as
unset CFLAGS. The latter is preferable.

• Similar comments apply to other compiler and linker flags like CPPFLAGS, LDFLAGS, CXXFLAG64, LDFLAG64,
and LD.

• OPENBLAS_CONFIGURE - adds additional configuration flags for the OpenBLAS package that gets added to the
make command. (see github issue #23272)

Environment variables dealing with doctesting:

• SAGE_TIMEOUT - used for Sage’s doctesting: the number of seconds to allow a doctest before timing it out. If
this isn’t set, the default is 300 seconds (5 minutes).

• SAGE_TIMEOUT_LONG - used for Sage’s doctesting: the number of seconds to allow a doctest before timing it
out, if tests are run using sage -t --long. If this isn’t set, the default is 1800 seconds (30 minutes).

• SAGE_TEST_GLOBAL_ITER, SAGE_TEST_ITER - these can be used instead of passing the flags
--global-iterations and --file-iterations, respectively, to sage -t. Indeed, these variables
are only used if the flags are unset. Run sage -t -h for more information on the effects of these flags (and
therefore these variables).

4.4. Install from Source Code 29

https://docs.python.org/using/configure.html#envvar-CC
https://docs.python.org/using/configure.html#envvar-CC
https://docs.python.org/using/configure.html#envvar-CXX
https://docs.python.org/using/configure.html#envvar-CXX
https://docs.python.org/using/configure.html#envvar-CFLAGS
https://docs.python.org/using/configure.html#envvar-CPPFLAGS
https://docs.python.org/using/configure.html#envvar-LDFLAGS
https://github.com/sagemath/sage/issues/23272

Installation Guide, Release 10.2

Sage sets some other environment variables. The most accurate way to see what Sage does is to first run env from a
shell prompt to see what environment variables you have set. Then run sage --sh -c env to see the list after Sage
sets its variables. (This runs a separate shell, executes the shell command env, and then exits that shell, so after running
this, your settings will be restored.) Alternatively, you can peruse the shell script src/bin/sage-env.

Sage also has some environment-like settings. Some of these correspond to actual environment variables while others
have names like environment variables but are only available while Sage is running. To see a list, execute sage.env.
[TAB] while running Sage.

4.4.5 Installation in a multiuser environment

This section addresses the question of how a system administrator can install a single copy of Sage in a multi-user
computer network.

1. Using sudo, create the installation directory, for example, /opt/sage/sage-x.y. We refer to it as SAGE_LOCAL
in the instructions below. Do not try to install into a directory that already contains other software, such as /
usr/local:

$ sudo mkdir -p SAGE_LOCAL

2. Make the directory writable for you and readable by everyone:

$ sudo chown $(id -un) SAGE_LOCAL
$ sudo chmod 755 SAGE_LOCAL

3. Build and install Sage, following the instructions in README.md, using the configure option
--prefix=SAGE_LOCAL.

Do not use sudo for this step; building Sage must be done using your normal user account.

4. Optionally, create a symbolic link to the installed sage script in a directory that is in the users’ PATH, for example
/usr/local/bin:

$ sudo ln -s SAGE_LOCAL/bin/sage /usr/local/bin/sage

5. Optionally, change permissions to prevent accidental changes to the installation by yourself:

$ sudo chown -R root SAGE_LOCAL

4.4.6 Additional software

The following programs are not strictly required at build time or at run time, but provide additional capabilities to Sage.
We highly recommend a Sage user to install them.

LaTeX

It is highly recommended that you have LaTeX installed, but it is not required. The most popular packaging is TeX
Live, which can be installed following the directions on their web site. On Linux systems you can alternatively install
your distribution’s texlive packages:

$ sudo apt-get install texlive # debian
$ sudo yum install texlive # redhat

30 Chapter 4. In the cloud

https://github.com/sagemath/sage/#readme
https://en.wikipedia.org/wiki/LaTeX
https://www.tug.org/texlive/
https://www.tug.org/texlive/

Installation Guide, Release 10.2

or similar commands. In addition to the base TeX Live install, you may need some optional TeX Live packages, for
example country-specific Babel packages for the localized Sage documentation.

Additionally, the following system packages are recommended on Debian/Ubuntu:

• texlive-generic-extra (to generate pdf documentation)

• texlive-xetex (to convert Jupyter notebooks to pdf)

• latexmk (to generate pdf documentation)

• dvipng (to render text with LaTeX in Matplotlib)

pandoc

This is useful to convert Jupyter notebooks to pdf.

ffmpeg, ImageMagick

If you don’t have either ImageMagick or ffmpeg, you won’t be able to view animations. ffmpeg can produce animations
in more different formats than ImageMagick, and seems to be faster than ImageMagick when creating animated GIFs.

libavdevice-dev is a component of ffmpeg to produce animations, and recommended to install on Debian/Ubuntu.

4.5 Launching SageMath

Now we assume that you installed SageMath properly on your system. This section quickly explains how to start the
Sage console and the Jupyter Notebook from the command line.

If you did install the Windows version or the macOS application you should have icons available on your desktops or
launching menus. Otherwise you are strongly advised to create shortcuts for Sage as indicated at the end of the “Linux”
Section in Install from Pre-Built Binaries. Assuming that you have this shortcut, running

sage

in a console starts a Sage session. To quit the session enter quit and then press <Enter>.

To start a Jupyter Notebook instead of a Sage console, run the command

sage -n jupyter

instead of just sage. To quit the Jupyter Notebook press <Ctrl> + <c> twice in the console where you launched the
command.

You can pass extra parameters to this command. For example,

sage -n jupyter --port 8899

will run the Jupyter server on a port different from the default (8888). In particular on WSL, this is very useful because
Jupyter may not be able to detect whether the default port is already taken by another instance of Jupyter running in
Windows.

4.5. Launching SageMath 31

Installation Guide, Release 10.2

4.5.1 Environment variables

Sage uses the following environment variables when it runs:

• DOT_SAGE - this is the directory, to which the user has read and write access, where Sage stores a number of files.
The default location is $HOME/.sage/.

• SAGE_STARTUP_FILE - a file including commands to be executed every time Sage starts. The default value is
$DOT_SAGE/init.sage.

• BROWSER - on most platforms, Sage will detect the command to run a web browser, but if this doesn’t seem to
work on your machine, set this variable to the appropriate command.

• TMPDIR - this variable is used by Python, and hence by Sage; it gives the directory in which temporary files
should be stored. This includes files used by the notebook. Some browsers have security settings which restrict
the locations of files that they will access, and users may need to set this variable to handle this situation.

• See https://docs.python.org/3/using/cmdline.html#environment-variables for more variables used by Python
(not an exhaustive list). With Python 3.11 or later, a brief summary can also be obtained by running 𝑝𝑦𝑡ℎ𝑜𝑛3−
−ℎ𝑒𝑙𝑝− 𝑒𝑛𝑣.

4.5.2 Using a Jupyter Notebook remotely

If Sage is installed on a remote machine to which you have ssh access, you can launch a Jupyter Notebook using a
command such as

ssh -L localhost:8888:localhost:8888 -t USER@REMOTE sage -n jupyter --no-browser --
→˓port=8888

where USER@REMOTE needs to be replaced by the login details to the remote machine. This uses local port forwarding
to connect your local machine to the remote one. The command will print a URL to the console which you can copy
and paste in a web browser.

Note that this assumes that a firewall which might be present between server and client allows connections on port
8888. See details on port forwarding on the internet, e.g. https://www.ssh.com/ssh/tunneling/example.

4.5.3 WSL Post-installation steps

If you’ve installed SageMath from source on WSL, there are a couple of extra steps you can do to make your life easier:

Create a notebook launch script

If you plan to use JupyterLab, install that first.

Now create a script called ~/sage_nb.sh containing the following lines, and fill in the correct paths for your desired
starting directory and SAGE_ROOT

#!/bin/bash
Switch to desired windows directory
cd /mnt/c/path/to/desired/starting/directory
Start the Jupyter notebook
SAGE_ROOT/sage --notebook
Alternatively you can run JupyterLab - delete the line above, and uncomment the line␣
→˓below
#SAGE_ROOT/sage --notebook jupyterlab

32 Chapter 4. In the cloud

https://docs.python.org/3/using/cmdline.html#environment-variables
https://www.ssh.com/ssh/tunneling/example

Installation Guide, Release 10.2

Make it executable:

chmod ug+x ~/sage_nb.sh

Run it to test:

cd ~
./sage_nb.sh

The Jupyter(Lab) server should start in the terminal window, and you windows browser should open a page showing
the Jupyter or JupyterLab starting page, at the directory you specified.

Create a shortcut

This is a final nicety that lets you start the Jupyter or JupyterLab server in one click:

• Open Windows explorer, and type %APPDATA%\Microsoft\Windows\Start Menu\Programs in the address
bar and press enter. This is the folder that contains you start menu shortcuts. If you want the sage shortcut
somewhere else (like your desktop), open that folder instead.

• Open a separate window and go to %LOCALAPPDATA%\Microsoft\WindowsApps\

• Right-click-drag the ubuntu.exe icon from the second window into the first, then choose Create shortcuts
here from the context menu when you drop it.

• To customize this shortcut, right-click on it and choose properties.

– On the General tab:

∗ Change the name to whatever you want, e.g. “Sage 9.2 JupyterLab”

– On the Shortcut tab:

∗ Change Target to: ubuntu.exe run ~/sage_nb.sh

∗ Change Start in to: %USERPROFILE%

∗ Change Run to: Minimised

∗ Change the icon if you want

Now hit the start button or key and type the name you gave it. it should appear in the list, and should load the server
and fire up your browser when you click on it.

For further reading you can have a look at the other documents in the SageMath documentation at http://doc.sagemath.
org/.

4.5.4 Setting up SageMath as a Jupyter kernel in an existing Jupyter notebook or
JupyterLab installation

You may already have a global installation of Jupyter. For added convenience, it is possible to link your installation of
SageMath into your Jupyter installation, adding it to the list of available kernels that can be selected in the notebook or
JupyterLab interface.

Assuming that SageMath can be invoked by typing sage, you can use

sage -sh -c 'ls -d $SAGE_VENV/share/jupyter/kernels/sagemath'

4.5. Launching SageMath 33

http://doc.sagemath.org/
http://doc.sagemath.org/

Installation Guide, Release 10.2

to find the location of the SageMath kernel description.

Now pick a name for the kernel that identifies it clearly and uniquely.

For example, if you install Sage from source tarballs, you could decide to include the version number in the name, such
as sagemath-9.6. If you build SageMath from a clone of the git repository, it is better to choose a name that identifies
the directory, perhaps sagemath-dev or sagemath-teaching because the version will change.

Now assuming that the Jupyter notebook can be started by typing jupyter notebook, the following command will
install SageMath as a new kernel named sagemath-dev.

jupyter kernelspec install --user $(sage -sh -c 'ls -d $SAGE_VENV/share/jupyter/kernels/
→˓sagemath') --name sagemath-dev

The jupyter kernelspec approach by default does lead to about 2Gb of SageMath documentation being copied into
your personal jupyter configuration directory. You can avoid that by instead putting a symlink in the relevant spot. and

jupyter --paths

to find valid data directories for your Jupyter installation. A command along the lines of

ln -s $(sage -sh -c 'ls -d $SAGE_VENV/share/jupyter/kernels/sagemath') $HOME/.local/
→˓share/jupyter/kernels/sagemath-dev

can then be used to create a symlink to the SageMath kernel description in a location where your own jupyter can
find it.

If you have installed SageMath from source, the alternative command

ln -s $(sage -sh -c 'ls -d $SAGE_ROOT/venv/share/jupyter/kernels/sagemath') $HOME/.local/
→˓share/jupyter/kernels/sagemath-dev

creates a symlink that will stay current even if you switch to a different Python version later.

To get the full functionality of the SageMath kernel in your global Jupyter installation, the following Notebook Exten-
sion packages also need to be installed (or linked) in the environment from which the Jupyter installation runs.

You can check the presence of some of these packages using the command jupyter nbextension list.

• For the Sage interacts, you will need the package widgetsnbextension installed in the Python environment
of the Jupyter installation. If your Jupyter installation is coming from the system package manager, it is best to
install widgetsnbextension in the same way. Otherwise, install it using pip.

To verify that interacts work correctly, you can evaluate the following code in the notebook:

@interact
def _(k=slider(vmin=-1.0, vmax= 3.0, step_size=0.1, default=0), auto_update=True):
plot([lambda u:u^2-1, lambda u:u+k], (-2,2),

ymin=-1, ymax=3, fill={1:[0]}, fillalpha=0.5).show()

• For 3D graphics using Three.js, by default, internet connectivity is needed, as SageMath’s custom build of the
Javascript package Three.js is retrieved from a content delivery network.

To verify that online 3D graphics with Three.js works correctly, you can evaluate the following code in the
notebook:

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2)).show()

However, it is possible to configure graphics with Three.js for offline use. In this case, the Three.js installation
from the Sage distribution needs to be made available in the environment of the Jupyter installation. This can

34 Chapter 4. In the cloud

Installation Guide, Release 10.2

be done by copying or symlinking. The Three.js installation in the environment of the Jupyter installation must
exactly match the version that comes from the Sage distribution. It is not supported to use several Jupyter kernels
corresponding to different versions of the Sage distribution.

To verify that offline 3D graphics with Three.js works correctly, you can evaluate the following code in the
notebook:

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2), online=False).show()

• For 3D graphics using jsmol, you will need the package jupyter-jsmol installed in the Python environment of
the Jupyter installation. You can install it using pip. (Alternatively, you can copy or symlink it.)

To verify that jsmol graphics work correctly, you can evaluate the following code in the notebook:

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2)).show(viewer="jmol")

Using Jupyter notebook through Visual Studio Code (VS Code) in WSL

If you have installed Sage on Windows using Windows Subsystem for Linux (WSL), it is convenient to use Visual
Studio Code (VS Code) to interact with Sage.

Here are steps to use SageMath in a Jupyter notebook in VS Code:

• Install and run VS Code in Windows.

• Click the “Extension” icon on the left (or press Ctrl + Shift + X) to open a list of extensions. Install the
“Remote - WSL” and “Jupyter” extensions.

• In the command palette (Ctrl + Shift + P), enter “Remote-WSL: New Window”, and hit Enter.

• In the command palette, enter “Create: New Jupyter Notebook”, and hit Enter.

• Click “Select Kernel” on the right (or press Ctrl + Alt + Enter), select SageMath, and hit Enter.

4.6 Troubleshooting

If no binary version is available for your system, you can fallback to the Install from Source Code or use one of the
alternatives proposed at the end of Welcome to Sage Installation Guide.

If you have any problems building or running Sage, please take a look at the Installation FAQ in the Sage Release Tour
corresponding to the version that you are installing. It may offer version-specific installation help that has become
available after the release was made and is therefore not covered by this manual.

Also please do not hesitate to ask for help in the SageMath forum or the sage-support mailing list at https://groups.
google.com/forum/#!forum/sage-support.

Also note the following. Each separate component of Sage is contained in an SPKG; these are stored in build/pkgs/.
As each one is built, a build log is stored in logs/pkgs/, so you can browse these to find error messages. If an SPKG
fails to build, the whole build process will stop soon after, so check the most recent log files first, or run:

grep -li "^Error" logs/pkgs/*

from the top-level Sage directory to find log files with error messages in them. Send the file config.log as well
as the log file(s) of the packages that have failed to build in their entirety to the sage-support mailing list at https:
//groups.google.com/group/sage-support; probably someone there will have some helpful suggestions.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

4.6. Troubleshooting 35

https://code.visualstudio.com/download
https://wiki.sagemath.org/ReleaseTours
https://ask.sagemath.org/questions/
https://groups.google.com/forum/#!forum/sage-support
https://groups.google.com/forum/#!forum/sage-support
https://groups.google.com/group/sage-support
https://groups.google.com/group/sage-support
http://creativecommons.org/licenses/by-sa/3.0/

Installation Guide, Release 10.2

36 Chapter 4. In the cloud

INDEX

B
BROWSER, 32

C
CC, 29
CFLAGS, 29
CPP, 29
CPPFLAGS, 29
CXX, 29
CXXFLAG64, 29
CXXFLAGS, 29
CYGWIN_ROOT, 21

D
DOT_SAGE, 32

E
environment variable

BROWSER, 32
CC, 29
CFLAGS, 29
CPP, 29
CPPFLAGS, 29
CXX, 29
CXXFLAG64, 29
CXXFLAGS, 29
CYGWIN_ROOT, 21
DOT_SAGE, 32
FC, 29
FCFLAGS, 29
LD, 29
LDFLAG64, 29
LDFLAGS, 29
MAKE, 26
MAKEFLAGS, 26
OPENBLAS_CONFIGURE, 29
PARI_CONFIGURE, 29
PARI_MAKEFLAGS, 29
PATH, 24, 30
SAGE_BUILD_DIR, 27
SAGE_CHECK, 26
SAGE_CHECK_PACKAGES, 26

SAGE_DEBUG, 27
SAGE_DOCBUILD_OPTS, 28
SAGE_FAT_BINARY, 28
SAGE_INSTALL_CCACHE, 27
SAGE_INSTALL_GCC, 27
SAGE_JUPYTER_SERVER, 28
SAGE_JUPYTER_SERVER_TOKEN, 28
SAGE_KEEP_BUILT_SPKGS, 27, 28
SAGE_LIVE_DOC, 28
SAGE_LOCAL, 28
SAGE_MATPLOTLIB_GUI, 29
SAGE_NUM_THREADS, 26
SAGE_PROFILE, 27
SAGE_ROOT, 21
SAGE_SERVER, 26
SAGE_SPKG_INSTALL_DOCS, 28
SAGE_STARTUP_FILE, 32
SAGE_SUDO, 28
SAGE_TEST_GLOBAL_ITER, 29
SAGE_TEST_ITER, 29
SAGE_TIMEOUT, 29
SAGE_TIMEOUT_LONG, 29
SAGE_TUNE_PARI, 29
SAGE_USE_CDNS, 28
TMPDIR, 32
V, 26

F
FC, 29
FCFLAGS, 29

L
LD, 29
LDFLAG64, 29
LDFLAGS, 29

M
MAKE, 26
MAKEFLAGS, 26

O
OPENBLAS_CONFIGURE, 29

37

Installation Guide, Release 10.2

P
PARI_CONFIGURE, 29
PARI_MAKEFLAGS, 29
PATH, 24, 30

S
SAGE_BUILD_DIR, 27
SAGE_CHECK, 26
SAGE_CHECK_PACKAGES, 26
SAGE_DEBUG, 27
SAGE_DOCBUILD_OPTS, 28
SAGE_FAT_BINARY, 28
SAGE_INSTALL_CCACHE, 27
SAGE_INSTALL_GCC, 27
SAGE_JUPYTER_SERVER, 28
SAGE_JUPYTER_SERVER_TOKEN, 28
SAGE_KEEP_BUILT_SPKGS, 27, 28
SAGE_LIVE_DOC, 28
SAGE_LOCAL, 28
SAGE_MATPLOTLIB_GUI, 29
SAGE_NUM_THREADS, 26
SAGE_PROFILE, 27
SAGE_ROOT, 21
SAGE_SERVER, 26
SAGE_SPKG_INSTALL_DOCS, 28
SAGE_STARTUP_FILE, 32
SAGE_SUDO, 28
SAGE_TEST_GLOBAL_ITER, 29
SAGE_TEST_ITER, 29
SAGE_TIMEOUT, 29
SAGE_TIMEOUT_LONG, 29
SAGE_TUNE_PARI, 29
SAGE_USE_CDNS, 28

T
TMPDIR, 32

V
V, 26

38 Index

	macOS
	Windows
	Linux
	In the cloud
	Linux Package Managers
	Install from Pre-Built Binaries
	Linux
	macOS
	Microsoft Windows

	Install from conda-forge
	Installing all of SageMath from conda (not for development)
	Using conda to provide system packages for the Sage distribution
	Using conda to provide all dependencies for the Sage library

	Install from Source Code
	Prerequisites
	Disk space and memory
	Software prerequisites and recommended packages
	Debian/Ubuntu package installation
	Fedora/Redhat/CentOS package installation
	Arch Linux package installation
	OpenSUSE package installation
	macOS prerequisites
	macOS package installation
	WSL prerequisites
	Ubuntu on Windows Subsystem for Linux (WSL) prerequisite installation
	WSL permission denied error when building packaging package.
	WSL post-installation notes

	Cygwin prerequisite installation
	Other platforms
	Notes on using conda
	Tcl/Tk

	Installation steps
	Make targets
	Environment variables
	Installation in a multiuser environment
	Additional software
	LaTeX
	pandoc
	ffmpeg, ImageMagick

	Launching SageMath
	Environment variables
	Using a Jupyter Notebook remotely
	WSL Post-installation steps
	Create a notebook launch script
	Create a shortcut

	Setting up SageMath as a Jupyter kernel in an existing Jupyter notebook or JupyterLab installation
	Using Jupyter notebook through Visual Studio Code (VS Code) in WSL

	Troubleshooting

	Index

