
PREP Tutorials
Release 10.6

Rob Beezer, Karl-Dieter Crisman, and Jason Grout

Apr 02, 2025

CONTENTS

1 Logging on and Making a Worksheet 3
1.1 The Export screen and Jupyter notebook . 3

2 Introductory Sage Tutorial 7
2.1 Evaluating Sage Commands . 7
2.2 Functions in Sage . 9
2.3 Help inside Sage . 14
2.4 Annotating with Sage . 16
2.5 Conclusion . 18

3 Tutorial for Symbolics and Plotting 19
3.1 Symbolic Expressions . 19
3.2 Basic 2D Plotting . 23
3.3 Basic 3D Plotting . 26

4 Tutorial for Calculus 29
4.1 Calculus 1 . 29
4.2 Calculus 2 . 33
4.3 Calculus 3 . 39
4.4 ‘Exam’ . 43

5 Sage Introductory Programming Tutorial 45
5.1 Methods and Dot Notation . 45
5.2 Lists, Loops, and Set Builders . 48
5.3 Defining Functions . 53
5.4 Gotchas from names and copies . 55
5.5 Appendix: Advanced Introductory Topics . 58

6 Tutorial for Advanced 2d Plotting 61
6.1 Graphing Functions and Plotting Curves . 61
6.2 Plotting Data . 68
6.3 Contour-type Plots . 69
6.4 Miscellaneous Plot Information . 75

7 PREP Quickstart Tutorials 79
7.1 Sage Quickstart for Abstract Algebra . 79
7.2 Sage Quickstart for Differential Equations . 89
7.3 Sage Quickstart for Graph Theory and Discrete Mathematics . 93
7.4 Sage Quickstart for Linear Algebra . 102
7.5 Sage Quickstart for Multivariable Calculus . 115
7.6 Sage Quickstart for Numerical Analysis . 123

i

7.7 Sage Quickstart for Number Theory . 130
7.8 Sage Quickstart for Statistics . 136
7.9 Sage Interact Quickstart . 141

ii

PREP Tutorials, Release 10.6

This is a set of tutorials developed for the MAA PREP workshops “Sage: Using Open-Source Mathematics Software with
Undergraduates” (funding provided by the National Science Foundation under grant DUE 0817071) in the summers of
2010-2012. It is licensed under the Creative Commons Attribution-ShareAlike 3.0 license (CC BY-SA).

The original audience for these tutorials was mathematics faculty at undergraduate institutions with little or no experience
with programming or computer mathematics software. Because the computer experience required is quite minimal, this
should be useful to anyone coming with little such experience to Sage.

Although any mathematics the reader is not familiar with can simply be skipped at first, we do assume throughout that
the reader is familiar with the concept of a function and different kinds of numbers. We also make liberal use of basic
examples from calculus, linear algebra, and other areas. In the Quickstart tutorials, we assume familiarity with the topics
at the level of a student who has just completed a course in the subject, or of a faculty member who is about to teach it.

Contents:

CONTENTS 1

http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

2 CONTENTS

CHAPTER

ONE

LOGGING ON AND MAKING A WORKSHEET

This Sage worksheet is from a series of tutorials developed for the MAA PREP Workshop “Sage: Using Open-Source
Mathematics Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative
Commons Attribution-ShareAlike 3.0 license (CC BY-SA).

This document describes how to get into a Sage worksheet in the first place. If you already feel comfortable with this
process, or at least comfortable enough to see how to actually use Sage, the main content of the tutorials begins with the
introductory tutorial.

There are three main types of worksheets for Sage, all of which have somewhat similar behavior.

• If you are using the Jupyter notebook or starting Sage from the command line, you may see some screens about
exporting. We have basic information about this.

• If you are using the CoCalc SageMath worksheets, you will want to contact them or read some of their documen-
tation for further assistance.

1.1 The Export screen and Jupyter notebook
Starting in Sage 8.0, the default is to provide the Jupyter notebook for your worksheet experience via an export screen.
When you start Sage you may see a screen like this.

3

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/sagemathinc/cocalc/wiki/sagews
https://github.com/sagemathinc/cocalc/wiki/sagews

PREP Tutorials, Release 10.6

There are three actions you can take, each of which is highlighted in the next picture. Note that if you have no previous
worksheets, the third option to “export” them will not make sense.

The legacy SageNB has been retired in Sage 9.1. Please use the Jupyter notebook. Jupyter will bring you to a screen that

4 Chapter 1. Logging on and Making a Worksheet

PREP Tutorials, Release 10.6

is simply a listing of files in whatever folder Sage has opened in.

If you want to start a worksheet, you will look at the upper right corner and ask for a new worksheet:

INFO-CIRCLE Note

The Jupyter notebook saves your files locally in your normal filesystem, as normal file names. So if you start the
notebook from a different location than usual, you may have to navigate a bit to find your worksheet.

Jupyter will allow you many types of files to open. To use SageMath directly, just choose the Sage type; this will ensure
that Jupyter runs using Sage and not pure Python or some other language.

1.1. The Export screen and Jupyter notebook 5

PREP Tutorials, Release 10.6

You should now have a worksheet that looks more or less like this.

Now you are ready to begin to evaluate Sage commands!

6 Chapter 1. Logging on and Making a Worksheet

CHAPTER

TWO

INTRODUCTORY SAGE TUTORIAL

This Sage document is the first in a series of tutorials developed for theMAAPREPWorkshop “Sage: Using Open-Source
Mathematics Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative
Commons Attribution-ShareAlike 3.0 license (CC BY-SA).

If you are unsure how to log on to a Sage server, start using a local installation, or to create a new worksheet, you might
find the prelude on logging in helpful.

Otherwise, you can continue with this tutorial, which has the following sections:

• Evaluating Sage Commands

– See Evaluating in the Jupyter notebook for the Jupyter notebook

• Functions in Sage

• Help inside Sage

• Annotating with Sage

– See Jupyter Annotation for the Jupyter notebook

This tutorial only introduces the most basic level of functionality. Later tutorials address topics such as calculus, advanced
plotting, and a wide variety of specific mathematical topics.

2.1 Evaluating Sage Commands
Or, How do I get Sage to do some math?

• See Evaluating in the Jupyter notebook for the Jupyter notebook

2.1.1 Evaluating in the Jupyter notebook
In a Jupyter worksheet, there are little boxes called input cells or code cells. They should be about the width of your
browser.

7

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

To do math in a Jupyter cell, one must do two things.

• First, click inside the cell so that the cell is active (i.e., has a bright green border). This was already the case in the
first cell above. (If it is blue, the Jupyter notebook is in “command mode”). Type some math in it.

• Then, there are two options. A not-very-evident icon that looks like the “play” symbol on a recording device can
be clicked:

Or one can use the keyboard shortcut of holding down the Shift key while you press the Enter key. We call this
Shift + Enter.

Sage prints out its response just below the cell (that’s the 4 below, so Sage confirms that 2 + 2 = 4). Note also that Sage
has automatically made a new cell, and made it active, after you evaluated your first cell.

To do more mathematics, just do the same thing with more cells!

8 Chapter 2. Introductory Sage Tutorial

PREP Tutorials, Release 10.6

One has to learn a variety of keyboard shortcuts or click on various menu items to manipulate cells. There is a help menu
to get you started on this; the Jupyter developers also maintain an example notebook which may assist you.

2.2 Functions in Sage
To start out, let’s explore how to define and use functions in Sage.

For a typical mathematical function, it’s pretty straightforward to define it. Below, we define a function.

𝑓(𝑥) = 𝑥2

sage: f(x)=x^2

2.2. Functions in Sage 9

http://nbviewer.jupyter.org/github/ipython/ipython/blob/3.x/examples/Notebook/Index.ipynb

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x**Integer(2)).function(x)

Since all we wanted was to create the function 𝑓(𝑥), Sage just does this and doesn’t print anything out back to us.

We can check the definition by asking Sage what f(x) is:

sage: f(x)

x^2

>>> from sage.all import *

>>> f(x)

x^2

If we just ask Sage what f is (as opposed to f(x)), Sage prints out the standard mathematical notation for a function that
maps a variable 𝑥 to the value 𝑥2 (with the “maps to” arrow ↦→ as |-->).

sage: f

x |--> x^2

>>> from sage.all import *

>>> f

x |--> x^2

We can evaluate 𝑓 at various values.

sage: f(3)

9

>>> from sage.all import *

>>> f(Integer(3))

9

sage: f(3.1)

9.61000000000000

>>> from sage.all import *

>>> f(RealNumber(�3.1�))

9.61000000000000

sage: f(31/10)

961/100

>>> from sage.all import *

>>> f(Integer(31)/Integer(10))

961/100

Notice that the output type changes depending on whether the input had a decimal; we’ll see that again below.

Naturally, we are not restricted to 𝑥 as a variable. In the next cell, we define the function 𝑔(𝑦) = 2𝑦 − 1.

sage: g(y)=2*y-1

10 Chapter 2. Introductory Sage Tutorial

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> __tmp__=var("y"); g = symbolic_expression(Integer(2)*y-Integer(1)).function(y)

However, we need to make sure we do define a function if we use a new variable. In the next cell, we see what happens
if we try to use a random input by itself.

sage: z^2

Traceback (most recent call last):

...

NameError: name �z� is not defined

>>> from sage.all import *

>>> z**Integer(2)

Traceback (most recent call last):

...

NameError: name �z� is not defined

This is explained in some detail in following tutorials. At this point, it suffices to know using the function notation (like
g(y)) tells Sage you are serious about y being a variable.

One can also do this with the var(�z�) notation below.

sage: var(�z�)

z

sage: z^2

z^2

>>> from sage.all import *

>>> var(�z�)

z

>>> z**Integer(2)

z^2

This also demonstrates that we can put several commands in one cell, each on a separate line. The output of the last
command (if any) is printed as the output of the cell.

Sage knows various common mathematical constants, like 𝜋 (pi) and 𝑒.

sage: f(pi)

pi^2

>>> from sage.all import *

>>> f(pi)

pi^2

sage: f(e^-1)

e^(-2)

>>> from sage.all import *

>>> f(e**-Integer(1))

e^(-2)

In order to see a numeric approximation for an expression, just type the expression inside the parentheses of N().

2.2. Functions in Sage 11

PREP Tutorials, Release 10.6

sage: N(f(pi))

9.86960440108936

>>> from sage.all import *

>>> N(f(pi))

9.86960440108936

Another option, often more useful in practice, is having the expression immediately followed by .n() (note the dot).

sage: f(pi).n()

9.86960440108936

>>> from sage.all import *

>>> f(pi).n()

9.86960440108936

For now, we won’t go in great depth explaining the reasons behind this syntax, which may be new to you. For those who
are interested, Sage often uses this type of syntax (known as “object-oriented”) because…

• Sage uses the Python programming language, which uses this syntax, ‘under the hood’, and

• Because it makes it easier to distinguish among

• The mathematical object,

• The thing you are doing to it, and

• Any ancillary arguments.

For example, the following numerically evaluates (n) the constant 𝜋 (pi) to twenty digits (digits=20).

sage: pi.n(digits=20)

3.1415926535897932385

>>> from sage.all import *

>>> pi.n(digits=Integer(20))

3.1415926535897932385

Sage has lots of common mathematical functions built in, like
√
𝑥 (sqrt(x)) and ln(𝑥) (ln(x) or log(x)).

sage: log(3)

log(3)

>>> from sage.all import *

>>> log(Integer(3))

log(3)

Notice that there is no reason to numerically evaluate log(3), so Sage keeps it symbolic. The same is true in the next cell
- 2 log(3) = log(9), but there isn’t any reason to do that; after all, depending on what you want, log(9)may be simpler or
less simple than you need.

sage: log(3)+log(3)

2*log(3)

12 Chapter 2. Introductory Sage Tutorial

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> log(Integer(3))+log(Integer(3))

2*log(3)

sage: log(3).n()

1.09861228866811

>>> from sage.all import *

>>> log(Integer(3)).n()

1.09861228866811

Notice again that Sage tries to respect the type of input as much as possible; adding the decimal tells Sage that we have
approximate input and want a more approximate answer. (Full details are a little too complicated for this introduction.)

sage: log(3.)

1.09861228866811

>>> from sage.all import *

>>> log(RealNumber(�3.�))

1.09861228866811

sage: sqrt(2)

sqrt(2)

>>> from sage.all import *

>>> sqrt(Integer(2))

sqrt(2)

If we want this to look nicer, we can use the show command. We’ll see more of this sort of thing below.

sage: show(sqrt(2))

>>> from sage.all import *

>>> show(sqrt(Integer(2)))

√
2

sage: sqrt(2).n()

1.41421356237310

>>> from sage.all import *

>>> sqrt(Integer(2)).n()

1.41421356237310

Do you remember what 𝑓 does?

sage: f(sqrt(2))

2

2.2. Functions in Sage 13

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> f(sqrt(Integer(2)))

2

We can also plot functions easily.

sage: plot(f, (x,-3,3))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> plot(f, (x,-Integer(3),Integer(3)))

Graphics object consisting of 1 graphics primitive

In another tutorial, we will go more in depth with plotting. Here, note that the preferred syntax has the variable and
endpoints for the plotting domain in parentheses, separated by commas.

If you are feeling bold, plot the sqrt function in the next cell between 0 and 100.

2.3 Help inside Sage
There are various ways to get help for doing things in Sage. Here are several common ways to get help as you are working
in a Sage worksheet.

2.3.1 Documentation
Sage includes extensive documentation covering thousands of functions, with many examples, tutorials, and other helps.

• One way to access these is to click the “Help” link at the top right of any worksheet, then click your preferred option
at the top of the help page.

• They are also available any time online at the Sage website, which has many other links, like video introductions.

• The Quick Reference cards are another useful tool once you get more familiar with Sage.

Our main focus in this tutorial, though, is help you can immediately access from within a worksheet, where you don’t have
to do any of those things.

2.3.2 Tab completion
The most useful help available in the notebook is “tab completion”. The idea is that even if you aren’t one hundred percent
sure of the name of a command, the first few letters should still be enough to help find it. Here’s an example.

• Suppose you want to do a specific type of plot - maybe a slope field plot - but aren’t quite sure what will do it.

• Still, it seems reasonable that the command might start with pl.

• Then one can type pl in an input cell, and then press the Tab key to see all the commands that start with the letters
pl.

Try tabbing after the pl in the following cell to see all the commands that start with the letters pl. You should see that
plot_slope_field is one of them.

sage: pl

>>> from sage.all import *

>>> pl

14 Chapter 2. Introductory Sage Tutorial

http://www.sagemath.org/help.html
http://wiki.sagemath.org/quickref

PREP Tutorials, Release 10.6

To pick one, just click on it; to stop viewing them, press the Escape key.

You can also use this to see what you can do to an expression or mathematical object.

• Assuming your expression has a name, type it;

• Then type a period after it,

• Then press tab.

You will see a list pop up of all the things you can do to the expression.

To try this, evaluate the following cell, just to make sure 𝑓 is defined.

sage: f(x)=x^2

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x**Integer(2)).function(x)

Now put your cursor after the period and press your Tab key.

sage: f.

>>> from sage.all import *

>>> f.

Again, Escape should remove the list.

One of the things in that list above was integrate. Let’s try it.

sage: f.integrate(x)

x |--> 1/3*x^3

>>> from sage.all import *

>>> f.integrate(x)

x |--> 1/3*x^3

2.3.3 Finding documentation
Or, Why all the question marks?

In the previous example, you might have wondered why I needed to put f.integrate(x) rather than just f.
integrate(), by analogy with sqrt(2).n().

To find out, there is another help tool one can use from right inside the notebook. Almost all documentation in Sage has
extensive examples that can illustrate how to use the function.

• As with tab completion, type the expression, period, and the name of the function.

• Then type a question mark.

• Press tab or evaluate to see the documentation.

To see how this help works, move your cursor after the question mark below and press Tab.

sage: f.integrate?

>>> from sage.all import *

>>> f.integrate?

2.3. Help inside Sage 15

PREP Tutorials, Release 10.6

The examples illustrate that the syntax requires f.integrate(x) and not just f.integrate(). (After all, the latter
could be ambiguous if several variables had already been defined).

To stop viewing the documentation after pressing Tab, you can press the Escape key, just like with the completion of
options.

If you would like the documentation to be visible longer-term, you can evaluate a command with the question mark (like
below) to access the documentation, rather than just tabbing. Then it will stay there until you remove the input cell.

sage: binomial?

>>> from sage.all import *

>>> binomial?

Try this with another function!

2.3.4 Finding the source
There is one more source of help you may find useful in the long run, though perhaps not immediately.

• One can use two question marks after a function name to pull up the documentation and the source code for the
function.

• Again, to see this help, you can either evaluate a cell like below, or just move your cursor after the question mark
and press tab.

The ability to see the code (the underlying instructions to the computer) is one of Sage’s great strengths. You can see all
the code to everything .

This means:

• You can see what Sage is doing.

• Your curious students can see what is going on.

• And if you find a better way to do something, then you can see how to change it!

sage: binomial??

>>> from sage.all import *

>>> binomial??

2.4 Annotating with Sage
Whether one uses Sage in the classroom or in research, it is usually helpful to describe to the reader what is being done,
such as in the description you are now reading.

• Jupyter Annotation

2.4.1 Jupyter Annotation
Thanks to a styling language called Markdown and the TeX rendering engine called MathJax, you can type much more
in Sage than just Sage commands. This math-aware setup makes Sage perfect for annotating computations.

Jupyter notebook can function as a word processor. To use this functionality, we create a Markdown cell (as opposed to
a input cell that contains Sage commands that Sage evaluates).

To do this without the keyboard shortcut, there is a menu for each cell; select “Markdown”.

16 Chapter 2. Introductory Sage Tutorial

http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Working%20With%20Markdown%20Cells.html
http://www.mathjax.org/

PREP Tutorials, Release 10.6

Now you can type in whatever you want, including mathematics using LaTeX.

Then evaluate the cell (for instance, with “Shift-Enter”):

Markdown supports a fair amount of basic formatting, such as bold, underline, basic lists, and so forth.

It can be fun to type in fairly complicated math, like this:

𝜁(𝑠) =

∞∑︁
𝑛=1

1

𝑛𝑠
=
∏︁
𝑝

(︂
1

1− 𝑝−𝑠

)︂
.

One just types things like:

2.4. Annotating with Sage 17

PREP Tutorials, Release 10.6

$$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}=\prod_p \left(\frac{1}{1-p^{-s}}\right)$$

in a Markdown cell.

Of course, one can do much more, since Sage can execute arbitrary commands in the Python programming language, as
well as output nicely formatted HTML, and so on. If you have enough programming experience to do things like this, go
for it!

sage: html("Sage is somewhat really

→˓ cool! <p style=�color:red�>(It even does HTML.)</p>")

>>> from sage.all import *

>>> html("Sage is somewhat really␣

→˓cool! <p style=�color:red�>(It even does HTML.)</p>")

2.5 Conclusion
This concludes the introductory tutorial. Our hope is that now you can try finding and using simple commands and
functions in Sage. Remember, help is as close as the notebook, or at the Sage website.

18 Chapter 2. Introductory Sage Tutorial

http://www.python.org
http://www.sagemath.org

CHAPTER

THREE

TUTORIAL FOR SYMBOLICS AND PLOTTING

This Sage document is one of the tutorials developed for the MAA PREP Workshop “Sage: Using Open-Source Math-
ematics Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative
Commons Attribution-ShareAlike 3.0 license (CC BY-SA).

This tutorial has the following sections:

• Symbolic Expressions

• Basic 2D Plotting

• Basic 3D Plotting

It assumes that one is familiar with the absolute basics of functions and evaluation in Sage. We provide a (very) brief
refresher.

1. Make sure the syntax below for defining a function and getting a value makes sense.

2. Then evaluate the cell by clicking the “evaluate” link, or by pressing Shift + Enter (hold down Shift while
pressing the Enter key).

sage: f(x)=x^3+1

sage: f(2)

9

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x**Integer(3)+Integer(1)).function(x)

>>> f(Integer(2))

9

3.1 Symbolic Expressions
In the first tutorial, we defined functions using notation similar to that one would use in (say) a calculus course.

There is a useful variant on this - defining expressions involving variables. This will give us the opportunity to point out
several important, and sometimes subtle, things.

In the cell below, we define an expression 𝐹𝑉 which is the future value of an investment of $100, compounded contin-
uously. We then substitute in values for 𝑟 and 𝑡 which calculate the future value for 𝑡 = 5 years and 𝑟 = 5% nominal
interest.

sage: var(�r,t�)

(r, t)

sage: FV=100*e^(r*t)

19

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> var(�r,t�)

(r, t)

>>> FV=Integer(100)*e**(r*t)

sage: FV(r=.05,t=5)

128.402541668774

>>> from sage.all import *

>>> FV(r=RealNumber(�.05�),t=Integer(5))

128.402541668774

The previous cells point out several things to remember whenworkingwith symbolic expressions. Some are fairly standard.

• An asterisk (*) signifies multiplication. This should be how you always do multiplication.

• Although it is possible to allow implicit multiplication, this can easily lead to ambiguity.

• We can access the most important constants; for instance, 𝑒 stands for the constant 2.71828.... Likewise, pi (or
𝜋) and 𝐼 (think complex numbers) are also defined.

• Of course, if you redefine 𝑒 to be something else, all bets are off!

However, two others may be unfamiliar, especially if you have not used much mathematical software before.

• You must tell Sage what the variables are before using them in a symbolic expression.

• We did that above by typing var(�r,t�).

• This is automatically done with the 𝑓(𝑥) notation, but without that it is necessary, so that Sage knows one intends
t (for instance) is a symbolic variable and not a number or something else.

• If you then wish to substitute some values into the expression, you must explicitly tell Sage which variables are
being assigned which values.

• For instance, above we used FV(r=.05,t=5) to indicate the precise values of 𝑟 and 𝑡.

Notice that when we define a function, we don’t need to specify which variable has which value. In the function defined
below, we have already specified an order.

sage: FV2(r,t)=100*e^(r*t)

sage: FV2(.05,5)

128.402541668774

>>> from sage.all import *

>>> __tmp__=var("r,t"); FV2 = symbolic_expression(Integer(100)*e**(r*t)).function(r,t)

>>> FV2(RealNumber(�.05�),Integer(5))

128.402541668774

In this case it is clear that 𝑟 is first and 𝑡 is second.

But with FV=100*e^(r*t), there is no particular reason 𝑟 or 𝑡 should be first.

sage: FV(r=.05,t=5); FV(t=5,r=.05)

128.402541668774

128.402541668774

20 Chapter 3. Tutorial for Symbolics and Plotting

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> FV(r=RealNumber(�.05�),t=Integer(5)); FV(t=Integer(5),r=RealNumber(�.05�))

128.402541668774

128.402541668774

Also remember that when we don’t use function notation, we’ll need to define our variables.

One of the great things we can do with expressions is manipulate them. Let’s make a typical expression.

sage: z = (x+1)^3

>>> from sage.all import *

>>> z = (x+Integer(1))**Integer(3)

In the cells below, you’ll notice something new: the character #. In Sage (and in Python), anything on a single line after
the number/pound sign (the octothorp) is ignored. We say that # is a comment character. We use it below to mention
alternative ways to do the same thing.

sage: expand(z) # or z.expand()

x^3 + 3*x^2 + 3*x + 1

>>> from sage.all import *

>>> expand(z) # or z.expand()

x^3 + 3*x^2 + 3*x + 1

sage: y = expand(z)

sage: y.factor() # or factor(y)

(x + 1)^3

>>> from sage.all import *

>>> y = expand(z)

>>> y.factor() # or factor(y)

(x + 1)^3

In the previous cell, we assigned the expression which is the expansion of 𝑧 to the variable 𝑦 with the first line. After that,
anything we want to do to the expansion of 𝑧 can be done by doing it to 𝑦.

There are more commands like this as well. Notice that 𝑧 will no longer be (𝑥 + 1)3 after this cell is evaluated, since
we’ve assigned 𝑧 to a (much more complex) expression.

sage: z = ((x - 1)^(3/2) - (x + 1)*sqrt(x - 1))/sqrt((x - 1)*(x + 1))

sage: z.simplify_full()

-2*sqrt(x - 1)/sqrt(x^2 - 1)

>>> from sage.all import *

>>> z = ((x - Integer(1))**(Integer(3)/Integer(2)) - (x + Integer(1))*sqrt(x -␣

→˓Integer(1)))/sqrt((x - Integer(1))*(x + Integer(1)))

>>> z.simplify_full()

-2*sqrt(x - 1)/sqrt(x^2 - 1)

This is a good place for a few reminders of basic help.

• You can see various methods for simplifying an expression by using tab completion. Put your cursor at the end of
the next cell (after the simplify) and press tab to see lots of different methods.

3.1. Symbolic Expressions 21

http://www.python.org
http://en.wikipedia.org/wiki/Number_sign

PREP Tutorials, Release 10.6

• Also remember that you can use the question mark (e.g., z.simplify_rational?) to get help about a particular
method.

sage: z.simplify

<built-in method simplify of sage.symbolic.expression.Expression object at ...>

>>> from sage.all import *

>>> z.simplify

<built-in method simplify of sage.symbolic.expression.Expression object at ...>

Finally, recall that you can get nicely typeset versions of the output in several ways.

• One option is to click the ‘Typeset’ button at the top.

• Another - which does not require scrolling! - is to use the show command.

sage: show(z.simplify_rational())

>>> from sage.all import *

>>> show(z.simplify_rational())

−2
√
𝑥− 1√

𝑥2 − 1

Another Sage command that is useful in this context is solve.

Here, we solve the simple equation 𝑥2 = −1.

sage: solve(x^2==-1,x) # solve x^2==-1 for x

[x == -I, x == I]

>>> from sage.all import *

>>> solve(x**Integer(2)==-Integer(1),x) # solve x^2==-1 for x

[x == -I, x == I]

• In the solve command, one types an equals sign in the equation as two equal signs.

• This is because the single equals sign means assignment to a variable, as we’ve done above, so Sage (along with
Python) uses the double equals sign for symbolic equality.

• We also include the variable we’d like to solve for after the comma.

It’s also possible to solve more than one expression simultaneously.

sage: solve([x^2==1,x^3==1],x)

[[x == 1]]

>>> from sage.all import *

>>> solve([x**Integer(2)==Integer(1),x**Integer(3)==Integer(1)],x)

[[x == 1]]

22 Chapter 3. Tutorial for Symbolics and Plotting

PREP Tutorials, Release 10.6

3.2 Basic 2D Plotting
One of the other basic uses of mathematics software is easy plotting. Here, we include a brief introduction to the sorts
of plotting which will prepare us to use Sage in calculus. (There will be a separate tutorial for more advanced plotting
techniques.)

Recall that we can generate a plot using fairly simple syntax. Here, we define a function of 𝑥 and plot it between −1 and
1.

sage: f(x)=x^3+1

sage: plot(f,(x,-1,1))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x**Integer(3)+Integer(1)).function(x)

>>> plot(f,(x,-Integer(1),Integer(1)))

Graphics object consisting of 1 graphics primitive

We can give the plot a name, so that if we want to do something with the plot later, we don’t have to type out the entire
plot command. Remember, this is called assigning the plot to the name/variable.

In the next cell, we give the plot the name 𝑃 .

sage: P=plot(f,(x,-1,1))

>>> from sage.all import *

>>> P=plot(f,(x,-Integer(1),Integer(1)))

One plot is nice, but one might want to superimpose plots as well. For instance, the tangent line to 𝑓 at 𝑥 = 0 is just the
line 𝑦 = 1, and we might want to show this together with the plot.

So let’s plot this line in a different color, and with a different style for the line, but over the same interval.

sage: Q=plot(1,(x,-1,1),color="red", linestyle="--")

sage: Q

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> Q=plot(Integer(1),(x,-Integer(1),Integer(1)),color="red", linestyle="--")

>>> Q

Graphics object consisting of 1 graphics primitive

Because we put 𝑄 in a line by itself at the end, it shows. We were able to use just one cell to define 𝑄 and show it, by
putting each command in a separate line in the same input cell.

Now to show the plots superimposed on each other, we simply add them.

sage: P+Q

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> P+Q

Graphics object consisting of 2 graphics primitives

Suppose we wanted to view a detail of this.

3.2. Basic 2D Plotting 23

PREP Tutorials, Release 10.6

• We could create another plot with different endpoints.

• Another way is to keep the currently created plots, but to set the viewing window using the show command, as
below.

sage: (P+Q).show(xmin=-.1,xmax=.1,ymin=.99,ymax=1.01)

>>> from sage.all import *

>>> (P+Q).show(xmin=-RealNumber(�.1�),xmax=RealNumber(�.1�),ymin=RealNumber(�.99�),

→˓ymax=RealNumber(�1.01�))

Since the axes no longer cross in the frame of reference, Sage shows a short gap between the horizontal and vertical axes.

There are many options one can pass in for various purposes.

• Some require quotes around the values.

• Such as the color option when we made a "red" line.

• Some do not.

• Such as the xmin in the previous plot, where the minimum x value was just −.1

Usually (though not always) quotes are required for option values which are words or strings of characters, and not required
for numerical values.

Two of the most useful of these options help in labeling graphs.

• The axes_labels option labels the axes.

• As with the word processor, we can use dollar signs (like in LaTeX) to make the labels typeset nicely.

• Here we need both quotes and brackets for proper syntax, since there are two axes to label and the labels are not
actually numbers.

sage: plot(f,(x,-1,1),axes_labels=[�x�,�y�],legend_label=�$f(x)$�,show_

→˓legend=True)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> plot(f,(x,-Integer(1),Integer(1)),axes_labels=[�x�,�y�],legend_label=�$f(x)$�,

→˓show_legend=True)

Graphics object consisting of 1 graphics primitive

• The legend_label option is especially useful with multiple plots.

• LaTeX notation works here too.

• In the graphic above, we needed to explicitly ask to show the label. With multiple graphs this should not be
necessary.

sage: P1 = plot(f,(x,-1,1),axes_labels=[�x�,�y�],legend_label=�$f(x)$�)

sage: P2 = plot(sin,(x,-1,1),axes_labels=[�x�,�y�],legend_label=r�$\sin(x)$�,

→˓color=�red�)

sage: P1+P2

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> P1 = plot(f,(x,-Integer(1),Integer(1)),axes_labels=[�x�,�y�],legend_label=�

(continues on next page)

24 Chapter 3. Tutorial for Symbolics and Plotting

PREP Tutorials, Release 10.6

(continued from previous page)

→˓$f(x)$�)

>>> P2 = plot(sin,(x,-Integer(1),Integer(1)),axes_labels=[�x�,�y�],legend_label=r�

→˓$\sin(x)$�,color=�red�)

>>> P1+P2

Graphics object consisting of 2 graphics primitives

One additional useful note is that plots of functions with vertical asymptotes may need their vertical viewing range set
manually; otherwise the asymptote may really go to infinity!

sage: plot(1/x^2,(x,-10,10),ymax=10)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> plot(Integer(1)/x**Integer(2),(x,-Integer(10),Integer(10)),ymax=Integer(10))

Graphics object consisting of 1 graphics primitive

Remember, you can use the command plot? to find out about most of the options demonstrated above.

Below, you can experiment with several of the plotting options.

• Just evaluate the cell and play with the sliders, buttons, color picker, etc., to change the plot options.

• You can access low-level options like the initial number of plotted points, or high-level ones like whether axes are
shown or not.

• This uses a feature of Sage called “interacts”, which is a very powerful way to engage students in exploring a
problem.

sage: x = var(�x�)

sage: @interact

sage: def plot_example(f=sin(x^2),r=range_slider(-5,5,step_size=1/4,default=(-3,3)),

....: color=color_selector(widget=�colorpicker�),

....: thickness=(3,(1..10)),

....: adaptive_recursion=(5,(0..10)), adaptive_tolerance=(0.01,(0.

→˓001,1)),

....: plot_points=(20,(1..100)),

....: linestyle=[�-�,�--�,�-.�,�:�],

....: gridlines=False, fill=False,

....: frame=False, axes=True

....:):

....: show(plot(f, (x,r[0],r[1]), color=color, thickness=thickness,

....: adaptive_recursion=adaptive_recursion,

....: adaptive_tolerance=adaptive_tolerance, plot_points=plot_points,

....: linestyle=linestyle, fill=fill if fill else None),

....: gridlines=gridlines, frame=frame, axes=axes)

>>> from sage.all import *

>>> x = var(�x�)

>>> @interact

>>> def plot_example(f=sin(x**Integer(2)),r=range_slider(-Integer(5),Integer(5),step_

→˓size=Integer(1)/Integer(4),default=(-Integer(3),Integer(3))),

... color=color_selector(widget=�colorpicker�),

... thickness=(Integer(3),(ellipsis_iter(Integer(1),Ellipsis,

→˓Integer(10)))),

(continues on next page)

3.2. Basic 2D Plotting 25

PREP Tutorials, Release 10.6

(continued from previous page)

... adaptive_recursion=(Integer(5),(ellipsis_iter(Integer(0),

→˓Ellipsis,Integer(10)))), adaptive_tolerance=(RealNumber(�0.01�),(RealNumber(�0.001

→˓�),Integer(1))),

... plot_points=(Integer(20),(ellipsis_iter(Integer(1),Ellipsis,

→˓Integer(100)))),

... linestyle=[�-�,�--�,�-.�,�:�],

... gridlines=False, fill=False,

... frame=False, axes=True

...):

... show(plot(f, (x,r[Integer(0)],r[Integer(1)]), color=color,␣

→˓thickness=thickness,

... adaptive_recursion=adaptive_recursion,

... adaptive_tolerance=adaptive_tolerance, plot_points=plot_points,

... linestyle=linestyle, fill=fill if fill else None),

... gridlines=gridlines, frame=frame, axes=axes)

3.3 Basic 3D Plotting
Plotting a 3D plot is similar to plotting a 2D plot, but we need to specify ranges for two variables instead of one.

sage: g(x,y)=sin(x^2+y^2)

sage: plot3d(g,(x,-5,5),(y,-5,5))

Graphics3d Object

>>> from sage.all import *

>>> __tmp__=var("x,y"); g = symbolic_expression(sin(x**Integer(2)+y**Integer(2))).

→˓function(x,y)

>>> plot3d(g,(x,-Integer(5),Integer(5)),(y,-Integer(5),Integer(5)))

Graphics3d Object

There is a lot you can do with the 3D plots.

• Try rotating the plot above by clicking and dragging the mouse inside of the plot.

• Also, right-click (Control-click if you have only one mouse button) just to the right of the plot to see other options
in a menu.

• If you have a wheel on your mouse or a multi-touch trackpad, you can scroll to zoom.

• You can also right-click to see other options, such as

• spinning the plot,

• changing various colors,

• and evenmaking the plot suitable for viewing through 3D glasses (under the “style”, then “stereographic” submenus),

When using the plot3d command, the first variable range specified is plotted along the usual “x” axis, while the second
range specified is plotted along the usual “y” axis.

The plot above is somewhat crude because the function is not sampled enough times - this is fairly rapidly changing
function, after all. We can make the plot smoother by telling Sage to sample the function using a grid of 300 by 300
points. Sage then samples the function at 90,000 points!

sage: plot3d(g,(x,-5,5),(y,-5,5),plot_points=300)

Graphics3d Object

26 Chapter 3. Tutorial for Symbolics and Plotting

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> plot3d(g,(x,-Integer(5),Integer(5)),(y,-Integer(5),Integer(5)),plot_

→˓points=Integer(300))

Graphics3d Object

As with 2D plots, we can superimpose 3D plots by adding them together.

Note that in this one, we do not define the functions, but only use expressions (see the first set of topics in this tutorial),
so it is wisest to define the variables ahead of time.

sage: var(�x,y�)

(x, y)

sage: b = 2.2

sage: P=plot3d(sin(x^2-y^2),(x,-b,b),(y,-b,b), opacity=.7)

sage: Q=plot3d(0, (x,-b,b), (y,-b,b), color=�red�)

sage: P+Q

Graphics3d Object

>>> from sage.all import *

>>> var(�x,y�)

(x, y)

>>> b = RealNumber(�2.2�)

>>> P=plot3d(sin(x**Integer(2)-y**Integer(2)),(x,-b,b),(y,-b,b), opacity=RealNumber(�.

→˓7�))

>>> Q=plot3d(Integer(0), (x,-b,b), (y,-b,b), color=�red�)

>>> P+Q

Graphics3d Object

As usual, only the last command shows up in the notebook, though clearly all are evaluated. This also demonstrates that
many of the same options work for 3D plots as for 2D plots.

We close this tutorial with a cool plot that we define implicitly as a 3D contour plot.

sage: var(�x,y,z�)

(x, y, z)

sage: T = golden_ratio

sage: p = 2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) + cos(z -␣

→˓T*x) + cos(z + T*x))

sage: r = 4.78

sage: implicit_plot3d(p, (x, -r, r), (y, -r, r), (z, -r, r), plot_points=50, color=

→˓�yellow�)

Graphics3d Object

>>> from sage.all import *

>>> var(�x,y,z�)

(x, y, z)

>>> T = golden_ratio

>>> p = Integer(2) - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) +␣

→˓cos(z - T*x) + cos(z + T*x))

>>> r = RealNumber(�4.78�)

>>> implicit_plot3d(p, (x, -r, r), (y, -r, r), (z, -r, r), plot_points=Integer(50),␣

→˓color=�yellow�)

Graphics3d Object

3.3. Basic 3D Plotting 27

PREP Tutorials, Release 10.6

The next tutorial will use all that you have learned about Sage basics, symbolics, and plotting in a specific mathematical
venue - the calculus sequence!

28 Chapter 3. Tutorial for Symbolics and Plotting

CHAPTER

FOUR

TUTORIAL FOR CALCULUS

This Sage document is one of the tutorials developed for the MAA PREP Workshop “Sage: Using Open-Source Math-
ematics Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative
Commons Attribution-ShareAlike 3.0 license (CC BY-SA).

This tutorial has the following sections. The first three are based on the topics encountered in a typical three-semester
calculus sequence in the United States; the final section is a checkpoint of sorts.

• Calculus 1

• Calculus 2

• Calculus 3

• ‘Exam’

The tutorial assumes that one is familiar with the basics of Sage, such as outlined in the previous tutorials.

For a refresher, make sure the syntax below for defining a function and getting a value makes sense; then evaluate the cell
by clicking the “evaluate” link, or by pressing Shift + Enter (hold down Shift while pressing the Enter key).

sage: f(x)=x^3+1

sage: f(2)

9

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x**Integer(3)+Integer(1)).function(x)

>>> f(Integer(2))

9

We’ll use this function several times in this tutorial, so it’s important that it is evaluated!

4.1 Calculus 1
The calculus is amazing not so much because it solves problems of tangency or area - individual solutions to these problems
have been known before. It is amazing because it gives a remarkably comprehensive set of rules for symbolic manipulation
for solving such problems in great generality!

Thus, the most typical use of a computer system like Sage in this context is simply to help check (or make less tedious)
basic symbolic manipulation of things like derivatives. Let’s first show what our function 𝑓 is again, then do things with
it.

sage: show(f)

29

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> show(f)

𝑥 ↦→ 𝑥3 + 1

Something most (but not all) curricula for first-semester calculus do is spend a fair amount of time with limits.

What is the limit of this function as 𝑥 approaches 1?

sage: lim(f,x=1)

x |--> 2

>>> from sage.all import *

>>> lim(f,x=Integer(1))

x |--> 2

Sage gives the answer we expect. The syntax for limits is pretty straightforward, though it may differ slightly from that of
other systems.

Since a limit may exist even if the function is not defined, Sage uses the syntax x=1 to show the input value approached
in all situations.

sage: lim((x^2-1)/(x-1),x=1)

2

>>> from sage.all import *

>>> lim((x**Integer(2)-Integer(1))/(x-Integer(1)),x=Integer(1))

2

Next, we’ll return to the original function, and check the two directional limits.

The syntax uses the extra keyword dir.

• Notice that we use dir=�right�, not dir=right.

• It’s also okay to use dir=�+�, like we use dir=�-� below.

• This is basically because otherwise we might have done something like let right=55 earlier, so instead Sage - and
Python - requires us to put �right� and �-� in quotes to make it clear they are not variables.

sage: lim(f,x=1,dir=�-�); lim(f,x=1,dir=�right�); f(1)

x |--> 2

x |--> 2

2

>>> from sage.all import *

>>> lim(f,x=Integer(1),dir=�-�); lim(f,x=Integer(1),dir=�right�); f(Integer(1))

x |--> 2

x |--> 2

2

By comparing with 𝑓(1), we see that 𝑓(𝑥) is continuous at 𝑥 = 1.

This cell also reminds us of something else:

30 Chapter 4. Tutorial for Calculus

PREP Tutorials, Release 10.6

• By separating several commands with semicolons, we can tell Sage to evaluate all of them while still seeing all their
outputs.

What we spend the most time on in Calculus 1 is derivatives, and Sage is fully-featured here.

For example, here are three ways to get the basic, single-variable derivative of 𝑓(𝑥) = 𝑥3 + 1.

sage: diff(f,x); derivative(f,x); f.derivative(x)

x |--> 3*x^2

x |--> 3*x^2

x |--> 3*x^2

>>> from sage.all import *

>>> diff(f,x); derivative(f,x); f.derivative(x)

x |--> 3*x^2

x |--> 3*x^2

x |--> 3*x^2

Naturally, Sage knows all of the derivatives you want.

sage: derivative(sinh(x^2+sqrt(x-1)),x)

1/2*(4*x + 1/sqrt(x - 1))*cosh(x^2 + sqrt(x - 1))

>>> from sage.all import *

>>> derivative(sinh(x**Integer(2)+sqrt(x-Integer(1))),x)

1/2*(4*x + 1/sqrt(x - 1))*cosh(x^2 + sqrt(x - 1))

And maybe even knows those you do not want. In this case, we put the computation inside show() since the output is so
long.

sage: show(derivative(sinh(x^2+sqrt(x-1)),x,3))

>>> from sage.all import *

>>> show(derivative(sinh(x**Integer(2)+sqrt(x-Integer(1))),x,Integer(3)))

1

8

(︂
4𝑥+

1√
𝑥− 1

)︂3

cosh
(︀√

𝑥− 1 + 𝑥2
)︀
− 3

8

(︃
1

(𝑥− 1)
3
2

− 8

)︃(︂
4𝑥+

1√
𝑥− 1

)︂
sinh

(︀√
𝑥− 1 + 𝑥2

)︀
+

3 cosh
(︀√

𝑥− 1 + 𝑥2
)︀

8 (𝑥− 1)
(︀
5
2

)︀
A common question is why Sage might not check automatically if there is some “simpler” version. But simplifying an
expression, or indeed, even defining what a ‘simple’ expression is, turns out to be a very hard technical and mathematical
problem in general. Computers will not solve every problem!

As a brief interlude, let’s consider an application of our ability to do some basic differential calculus.

First, as a reminder of plotting from the previous tutorial, try to plot the function 𝑓(𝑥), together with its tangent line at
𝑥 = 1, in the empty cells below. (If you can, do it without looking at the previous tutorial for a reminder.)

Did you get it?

Of course, in general we might want to see tangent lines at lots of different points - for instance, for a class demonstration.

So in the following cell, there are several auxiliary elements:

• We define the plot P of the original function.

• There is a parameter c=1/3, which is the 𝑥-value where we want a tangent line.

4.1. Calculus 1 31

PREP Tutorials, Release 10.6

• We let fprime be the derivative function simply by declaring it equal to the derivative.

• We let L be the tangent line defined by the point-slope formula at 𝑥 = 𝑐.

• We make Q be the plot of this line.

Finally, we plot everything together in the last line by adding 𝑃 +𝑄.

sage: P=plot(f,(x,-1,1))

sage: c=1/3

sage: fprime=derivative(f,x)

sage: L(x)=fprime(c)*(x-c)+f(c)

sage: Q=plot(L,(x,-1,1), color="red", linestyle="--")

sage: P+Q

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> P=plot(f,(x,-Integer(1),Integer(1)))

>>> c=Integer(1)/Integer(3)

>>> fprime=derivative(f,x)

>>> __tmp__=var("x"); L = symbolic_expression(fprime(c)*(x-c)+f(c)).function(x)

>>> Q=plot(L,(x,-Integer(1),Integer(1)), color="red", linestyle="--")

>>> P+Q

Graphics object consisting of 2 graphics primitives

You may want to experiment by

• Changing c to some other value, or

• Changing the function f, or

• Changing the colors, or

• Changing something else (like the linestyle used for the tangent line).

Ideally, it would be extremely easy to change that parameter 𝑐. In the cell below, we show our second example of a Sage
“interact” (or “Sagelet”).

In this one, dragging a slider will show the tangent line moving.

• Future tutorials will explain this process in more detail; here it’s just as an example.

• However, the reader will note how very similar the code for the two cells is.

sage: %auto

sage: f(x)=x^3+1

sage: @interact

sage: def _(c=(1/3,(-1,1))):

....: P=plot(f,(x,-1,1))

....: fprime=derivative(f,x)

....: L(x)=fprime(c)*(x-c)+f(c)

....: Q=plot(L,(x,-1,1),color="red", linestyle="--")

....: show(P+Q+point((c,f(c)), pointsize=40, color=�red�),ymin=0,ymax=2)

>>> from sage.all import *

>>> %auto

>>> __tmp__=var("x"); f = symbolic_expression(x**Integer(3)+Integer(1)).function(x)

>>> @interact

(continues on next page)

32 Chapter 4. Tutorial for Calculus

PREP Tutorials, Release 10.6

(continued from previous page)

>>> def _(c=(Integer(1)/Integer(3),(-Integer(1),Integer(1)))):

... P=plot(f,(x,-Integer(1),Integer(1)))

... fprime=derivative(f,x)

... __tmp__=var("x"); L = symbolic_expression(fprime(c)*(x-c)+f(c)).function(x)

... Q=plot(L,(x,-Integer(1),Integer(1)),color="red", linestyle="--")

... show(P+Q+point((c,f(c)), pointsize=Integer(40), color=�red�),ymin=Integer(0),

→˓ymax=Integer(2))

A very sharp-eyed reader will also have noticed that the previous cell had %auto at the very top, and that it was not
necessary to evaluate the cell to use it.

• The command %auto allows us to have a cell, especially an interactive one, all loaded up as soon as we start -
particularly convenient for a classroom situation.

• Such instructions are called percent directives . Most are documented in the notebook help one can access at the
top of any worksheet.

A final topic in Calculus 1 usually is basic integration. The syntax for indefinite integration is similar to that for differenti-
ation.

sage: integral(cos(x),x)

sin(x)

>>> from sage.all import *

>>> integral(cos(x),x)

sin(x)

We do not get the whole indefinite integral, just a convenient antiderivative.

• (If you were to get a different answer ‘by hand’, remember that being an antiderivative means the answer is correct
up to a constant - and deciding whether this is the case with two expressions has the same problems as the issue of
“simplification” above.)

Definite integration has similar syntax to plotting.

sage: integral(cos(x),(x,0,pi/2))

1

>>> from sage.all import *

>>> integral(cos(x),(x,Integer(0),pi/Integer(2)))

1

4.2 Calculus 2
Second-semester calculus is typically more challenging.

• One reason for that is that the computational problems are not so straightforward as computing derivatives and
basic integrals.

• Another reason is that the second semester is usually where the harder versions of problems from the first semester
show up.

Nonetheless, Sage can handle this as well.

Sage includes a large number of indefinite integrals (via Maxima), though not all the ones you will find in a comprehensive
table.

4.2. Calculus 2 33

PREP Tutorials, Release 10.6

sage: h(x)=sec(x)

sage: h.integrate(x)

x |--> log(sec(x) + tan(x))

>>> from sage.all import *

>>> __tmp__=var("x"); h = symbolic_expression(sec(x)).function(x)

>>> h.integrate(x)

x |--> log(sec(x) + tan(x))

Since I defined h as a function, the answer I get is also a function. If I just want an expression as the answer, I can do the
following.

sage: integrate(sec(x),x)

log(sec(x) + tan(x))

>>> from sage.all import *

>>> integrate(sec(x),x)

log(sec(x) + tan(x))

Here is another (longer) example. Do you remember what command would help it look nicer in the browser?

sage: integrate(1/(1+x^5),x)

1/5*sqrt(5)*(sqrt(5) + 1)*arctan((4*x + sqrt(5) - 1)/sqrt(2*sqrt(5) + 10))/

→˓sqrt(2*sqrt(5) + 10)

+ 1/5*sqrt(5)*(sqrt(5) - 1)*arctan((4*x - sqrt(5) - 1)/sqrt(-2*sqrt(5) + 10))/sqrt(-

→˓2*sqrt(5) + 10)

- 1/10*(sqrt(5) + 3)*log(2*x^2 - x*(sqrt(5) + 1) + 2)/(sqrt(5) + 1)

- 1/10*(sqrt(5) - 3)*log(2*x^2 + x*(sqrt(5) - 1) + 2)/(sqrt(5) - 1)

+ 1/5*log(x + 1)

>>> from sage.all import *

>>> integrate(Integer(1)/(Integer(1)+x**Integer(5)),x)

1/5*sqrt(5)*(sqrt(5) + 1)*arctan((4*x + sqrt(5) - 1)/sqrt(2*sqrt(5) + 10))/

→˓sqrt(2*sqrt(5) + 10)

+ 1/5*sqrt(5)*(sqrt(5) - 1)*arctan((4*x - sqrt(5) - 1)/sqrt(-2*sqrt(5) + 10))/sqrt(-

→˓2*sqrt(5) + 10)

- 1/10*(sqrt(5) + 3)*log(2*x^2 - x*(sqrt(5) + 1) + 2)/(sqrt(5) + 1)

- 1/10*(sqrt(5) - 3)*log(2*x^2 + x*(sqrt(5) - 1) + 2)/(sqrt(5) - 1)

+ 1/5*log(x + 1)

Some integrals are a little tricky, of course. Sage tries hard to integrate usingMaxima, Sympy, and (optionally, if installed)
Giac. The following can only be integrated by Giac:

sage: # needs sage.libs.giac

sage: integral(1/(1+x^10),x)

...1/20*(sqrt(5) + 1)*arctan((4*x + sqrt(-2*sqrt(5) + 10))/(sqrt(5) + 1))

+ 1/20*(sqrt(5) + 1)*arctan((4*x - sqrt(-2*sqrt(5) + 10))/(sqrt(5) + 1))

+ 1/20*(sqrt(5) - 1)*arctan((4*x + sqrt(2*sqrt(5) + 10))/(sqrt(5) - 1))

+ 1/20*(sqrt(5) - 1)*arctan((4*x - sqrt(2*sqrt(5) + 10))/(sqrt(5) - 1))

+ 1/40*sqrt(2*sqrt(5) + 10)*log(x^2 + 1/2*x*sqrt(2*sqrt(5) + 10) + 1)

- 1/40*sqrt(2*sqrt(5) + 10)*log(x^2 - 1/2*x*sqrt(2*sqrt(5) + 10) + 1)

+ 1/40*sqrt(-2*sqrt(5) + 10)*log(x^2 + 1/2*x*sqrt(-2*sqrt(5) + 10) + 1)

(continues on next page)

34 Chapter 4. Tutorial for Calculus

PREP Tutorials, Release 10.6

(continued from previous page)

- 1/40*sqrt(-2*sqrt(5) + 10)*log(x^2 - 1/2*x*sqrt(-2*sqrt(5) + 10) + 1)

+ 1/5*arctan(x)

>>> from sage.all import *

>>> # needs sage.libs.giac

>>> integral(Integer(1)/(Integer(1)+x**Integer(10)),x)

...1/20*(sqrt(5) + 1)*arctan((4*x + sqrt(-2*sqrt(5) + 10))/(sqrt(5) + 1))

+ 1/20*(sqrt(5) + 1)*arctan((4*x - sqrt(-2*sqrt(5) + 10))/(sqrt(5) + 1))

+ 1/20*(sqrt(5) - 1)*arctan((4*x + sqrt(2*sqrt(5) + 10))/(sqrt(5) - 1))

+ 1/20*(sqrt(5) - 1)*arctan((4*x - sqrt(2*sqrt(5) + 10))/(sqrt(5) - 1))

+ 1/40*sqrt(2*sqrt(5) + 10)*log(x^2 + 1/2*x*sqrt(2*sqrt(5) + 10) + 1)

- 1/40*sqrt(2*sqrt(5) + 10)*log(x^2 - 1/2*x*sqrt(2*sqrt(5) + 10) + 1)

+ 1/40*sqrt(-2*sqrt(5) + 10)*log(x^2 + 1/2*x*sqrt(-2*sqrt(5) + 10) + 1)

- 1/40*sqrt(-2*sqrt(5) + 10)*log(x^2 - 1/2*x*sqrt(-2*sqrt(5) + 10) + 1)

+ 1/5*arctan(x)

If you ask for Maxima specifically, the result can be partial:

sage: integral(1/(1+x^10),x, algorithm=�maxima�)

1/5*arctan(x)

- 1/5*integrate((x^6 - 2*x^4 + 3*x^2 - 4)/(x^8 - x^6 + x^4 - x^2 + 1), x)

>>> from sage.all import *

>>> integral(Integer(1)/(Integer(1)+x**Integer(10)),x, algorithm=�maxima�)

1/5*arctan(x)

- 1/5*integrate((x^6 - 2*x^4 + 3*x^2 - 4)/(x^8 - x^6 + x^4 - x^2 + 1), x)

If no antiderivative is found, the result is just the input:

sage: result = integral(sinh(x^2+sqrt(x-1)),x) # long time (15s on sage.math, 2012)

...

sage: result # long time

integrate(sinh(x^2 + sqrt(x - 1)), x)

>>> from sage.all import *

>>> result = integral(sinh(x**Integer(2)+sqrt(x-Integer(1))),x) # long time (15s on␣

→˓sage.math, 2012)

...

>>> result # long time

integrate(sinh(x^2 + sqrt(x - 1)), x)

This last one stumps other systems too.

However, if there is a special function which helps compute the integral, Sage will look for it. In the following case there
is no elementary antiderivative, but the erf function helps us out.

sage: integral(e^(-x^2),x)

1/2*sqrt(pi)*erf(x)

>>> from sage.all import *

>>> integral(e**(-x**Integer(2)),x)

1/2*sqrt(pi)*erf(x)

4.2. Calculus 2 35

PREP Tutorials, Release 10.6

Do not forget, if this function is unfamiliar to you (as it might be to students trying this integral), Sage’s contextual help
system comes to the rescue.

sage: erf?

>>> from sage.all import *

>>> erf?

There are several ways to do definite integrals in Sage.

The most obvious one is simply turning ∫︁
𝑓(𝑥)𝑑𝑥

into ∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ,

as indicated in the Calculus I section.

sage: integral(cos(x),(x,0,pi/2))

1

>>> from sage.all import *

>>> integral(cos(x),(x,Integer(0),pi/Integer(2)))

1

The preferred syntax puts the variable and endpoints together in parentheses.

Just like with derivatives, we can visualize this integral using some of the plotting options from the plotting tutorial.

sage: plot(cos(x),(x,0,pi/2),fill=True,ticks=[[0,pi/4,pi/2],None],tick_formatter=pi)

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> plot(cos(x),(x,Integer(0),pi/Integer(2)),fill=True,ticks=[[Integer(0),pi/

→˓Integer(4),pi/Integer(2)],None],tick_formatter=pi)

Graphics object consisting of 2 graphics primitives

It is possible to be completely symbolic in doing integration. If you do this, you’ll have to make sure you define anything
that’s a symbolic variable - which includes constants, naturally.

sage: var(�a,b�)

(a, b)

sage: integral(cos(x),(x,a,b))

-sin(a) + sin(b)

>>> from sage.all import *

>>> var(�a,b�)

(a, b)

>>> integral(cos(x),(x,a,b))

-sin(a) + sin(b)

On the numerical side, sometimes the answer one gets from the Fundamental Theorem of Calculus is not entirely helpful.
Recall that ℎ is the secant function.

36 Chapter 4. Tutorial for Calculus

PREP Tutorials, Release 10.6

sage: integral(h,(x,0,pi/7))

1/2*log(sin(1/7*pi) + 1) - 1/2*log(-sin(1/7*pi) + 1)

>>> from sage.all import *

>>> integral(h,(x,Integer(0),pi/Integer(7)))

1/2*log(sin(1/7*pi) + 1) - 1/2*log(-sin(1/7*pi) + 1)

Here, just a number might be more helpful. Sage has several ways of numerical evaluating integrals.

• Doing a definite integral symbolically, then approximating it numerically

• The numerical_integral function

• The . nintegrate method

The first one, using the n or N function for numerical approximation, was also mentioned in the introductory tutorial.

sage: N(integral(h,(x,0,pi/8)))

0.403199719161511

>>> from sage.all import *

>>> N(integral(h,(x,Integer(0),pi/Integer(8))))

0.403199719161511

The second function, numerical_integral, uses a powerful numerical program (the GNU Scientific Library).

• Unfortunately, the syntax for this function is not yet consistent with the rest of Sage.

• Helpfully, the output has two elements - the answer you desire, and its error tolerance.

sage: numerical_integral(h,0,pi/8)

(0.4031997191615114, 4.476416117355069e-15)

>>> from sage.all import *

>>> numerical_integral(h,Integer(0),pi/Integer(8))

(0.4031997191615114, 4.476416117355069e-15)

To access just the number, one asks for the ‘zeroth’ element of this sequence of items. This is done with the following
bracket notation.

sage: numerical_integral(h,0,pi/8)[0]

0.4031997191615114

>>> from sage.all import *

>>> numerical_integral(h,Integer(0),pi/Integer(8))[Integer(0)]

0.4031997191615114

Notice that we began counting at zero. This is fairly typical in computer programs (though certainly not universal).

To aid readability (more important than one might think), we often assign the numerical integral to a variable, and then
take the zeroth element of that.

sage: ni = numerical_integral(h,0,pi/8)

sage: ni[0]

0.4031997191615114

4.2. Calculus 2 37

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> ni = numerical_integral(h,Integer(0),pi/Integer(8))

>>> ni[Integer(0)]

0.4031997191615114

Finally, the .nintegrate() method from Maxima gives even more extra information.

• Notice again the period/dot needed to use this.

• It is only possible to use h(x); doing h.nintegrate() raises an error.

sage: h(x).nintegrate(x,0,pi/8)

(0.4031997191615114, 4.47641611735507e-15, 21, 0)

>>> from sage.all import *

>>> h(x).nintegrate(x,Integer(0),pi/Integer(8))

(0.4031997191615114, 4.47641611735507e-15, 21, 0)

Second-semester calculus usually also covers various topics in summation. Sage can summany abstract series; the notation
is similar to plotting and integration.

sage: var(�n�) # Do not forget to declare your variables

n

sage: sum((1/3)^n,n,0,oo)

3/2

>>> from sage.all import *

>>> var(�n�) # Do not forget to declare your variables

n

>>> sum((Integer(1)/Integer(3))**n,n,Integer(0),oo)

3/2

This is the geometric series, of course.

The next one is the famous result that a row of Pascal’s triangle is a power of 2 -(︂
𝑛

0

)︂
+

(︂
𝑛

1

)︂
+

(︂
𝑛

2

)︂
+ · · ·+

(︂
𝑛

𝑛− 1

)︂
+

(︂
𝑛

𝑛

)︂
= 2𝑛 ,

which has many pleasing combinatorial interpretations.

sage: k = var(�k�) # We already declared n, so now we just need k

sage: sum(binomial(n,k), k, 0, n)

2^n

>>> from sage.all import *

>>> k = var(�k�) # We already declared n, so now we just need k

>>> sum(binomial(n,k), k, Integer(0), n)

2^n

Do you remember what to do to see how we typed the nice sum in the text above? That’s right, we can double-click the
text area/cell to see this.

Sage also can compute Taylor polynomials.

Taylor expansions depend on a lot of things. Whenever there are several inputs, keeping syntax straight is important.
Here we have as inputs:

38 Chapter 4. Tutorial for Calculus

PREP Tutorials, Release 10.6

• the function,

• the variable,

• the point around which we are expanding the function, and

• the degree.

In the next cell, we call 𝑔(𝑥) the Taylor polynomial in question.

sage: g(x)=taylor(log(x),x,1,6); g(x)

-1/6*(x - 1)^6 + 1/5*(x - 1)^5 - 1/4*(x - 1)^4 + 1/3*(x - 1)^3 - 1/2*(x - 1)^2 + x - 1

>>> from sage.all import *

>>> __tmp__=var("x"); g = symbolic_expression(taylor(log(x),x,Integer(1),Integer(6))).

→˓function(x); g(x)

-1/6*(x - 1)^6 + 1/5*(x - 1)^5 - 1/4*(x - 1)^4 + 1/3*(x - 1)^3 - 1/2*(x - 1)^2 + x - 1

Notice how close the approximation is to the function on this interval!

sage: plot(g,(x,0,2))+plot(log(x),(x,0,2),color=�red�)

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> plot(g,(x,Integer(0),Integer(2)))+plot(log(x),(x,Integer(0),Integer(2)),color=�red

→˓�)

Graphics object consisting of 2 graphics primitives

4.3 Calculus 3
We have already seen three-dimensional plotting, so it is not surprising that Sage has support for a variety of multivariable
calculus problems.

Exclamation-Triangle Warning

We will often need to define all variables other than 𝑥.

sage: var(�y�)

y

sage: f(x,y)=3*sin(x)-2*cos(y)-x*y

>>> from sage.all import *

>>> var(�y�)

y

>>> __tmp__=var("x,y"); f = symbolic_expression(Integer(3)*sin(x)-Integer(2)*cos(y)-

→˓x*y).function(x,y)

Above, we have defined a typical function of two variables.

Below, we use the separating semicolons to demonstrate several things one might do with such a function, including:

• The gradient vector of all 𝜕𝑓
𝜕𝑥𝑖

• The Hessian of all possible second derivatives

4.3. Calculus 3 39

PREP Tutorials, Release 10.6

• A double partial derivative of 𝑓 with respect to 𝑥, then 𝑦 (that is, 𝜕𝑓
𝜕𝑦𝜕𝑥)

sage: f.gradient(); f.hessian(); f.diff(x,y)

(x, y) |--> (-y + 3*cos(x), -x + 2*sin(y))

[(x, y) |--> -3*sin(x) (x, y) |--> -1]

[(x, y) |--> -1 (x, y) |--> 2*cos(y)]

(x, y) |--> -1

>>> from sage.all import *

>>> f.gradient(); f.hessian(); f.diff(x,y)

(x, y) |--> (-y + 3*cos(x), -x + 2*sin(y))

[(x, y) |--> -3*sin(x) (x, y) |--> -1]

[(x, y) |--> -1 (x, y) |--> 2*cos(y)]

(x, y) |--> -1

In an effort to make the syntax simpler, the gradient and Hessian are also available by asking for a total derivative. We
also ask for nicer output again.

sage: show(f.diff()); show(f.diff(2))

>>> from sage.all import *

>>> show(f.diff()); show(f.diff(Integer(2)))

(𝑥, 𝑦) ↦→ (−𝑦 + 3 cos (𝑥) , −𝑥+ 2 sin (𝑦))(︂
(𝑥, 𝑦) ↦→ − 3 sin (𝑥) (𝑥, 𝑦) ↦→ − 1

(𝑥, 𝑦) ↦→ − 1 (𝑥, 𝑦) ↦→ 2 cos (𝑦)

)︂
If we take the determinant of the Hessian, we get something useful for evaluating (the two-dimensional) critical points of
𝑓 .

sage: show(f.diff(2).det())

>>> from sage.all import *

>>> show(f.diff(Integer(2)).det())

(𝑥, 𝑦) ↦→ − 6 sin (𝑥) cos (𝑦)− 1

These ideas are particularly helpful if one wants to plot a vector field.

The following example is of the gradient. The vector plotted in the cell below is the unit vector in the direction (1, 2).

sage: P=plot_vector_field(f.diff(), (x,-3,3), (y,-3,3))

sage: u=vector([1,2])

sage: Q=plot(u/u.norm())

sage: P+Q

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> P=plot_vector_field(f.diff(), (x,-Integer(3),Integer(3)), (y,-Integer(3),

(continues on next page)

40 Chapter 4. Tutorial for Calculus

PREP Tutorials, Release 10.6

(continued from previous page)

→˓Integer(3)))

>>> u=vector([Integer(1),Integer(2)])

>>> Q=plot(u/u.norm())

>>> P+Q

Graphics object consisting of 2 graphics primitives

Rather than actually figure out the unit vector in that direction, it’s easier to let Sage compute it by dividing the vector by
its norm.

The directional derivative itself (in that direction, at the origin) can also be computed in this way.

sage: (f.diff()*u/u.norm())(0,0)

3/5*sqrt(5)

>>> from sage.all import *

>>> (f.diff()*u/u.norm())(Integer(0),Integer(0))

3/5*sqrt(5)

Another useful type of plot in these situations is a contour plot.

Notice that the one below uses several options. Try to correlate the options with features of the graphic.

sage: y = var(�y�)

sage: contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi),\

....: contours=[-8,-4,0,4,8], colorbar=True, labels=True, label_colors=�red�)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> y = var(�y�)

>>> contour_plot(y**Integer(2) + Integer(1) - x**Integer(3) - x, (x,-pi,pi), (y,-pi,

→˓pi), contours=[-Integer(8),-Integer(4),Integer(0),Integer(4),Integer(8)],␣

→˓colorbar=True, labels=True, label_colors=�red�)

Graphics object consisting of 1 graphics primitive

In this one, we have used options to:

• Explicitly list the contours we want to show,

• Label these contours,

• Place a color bar on the side to show the different levels.

(Incidentally, the True and False valued options are some of the few non-numerical ones that do not need quotes.)

This is another good time to remind us we must explicitly ask for 𝑦 to be a variable here, as will be the case a few more
times.

As you gain experience in Sage, we will slowly explain less and less of the syntax of commands in these tutorials. You
can think of places where not everything is explained as a mini-quiz.

For example, the next example shows how one currently does a multiple integral. What have we done here?

sage: integrate(integrate(f,(x,0,pi)),(y,0,pi))

6*pi - 1/4*pi^4

4.3. Calculus 3 41

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> integrate(integrate(f,(x,Integer(0),pi)),(y,Integer(0),pi))

6*pi - 1/4*pi^4

Answer: notice that integrate(f,(x,0,pi)) has been itself placed as the function inside integrate(...,(y,0,
pi)).

We could use a 3D plot to help visualize this; these were already mentioned in the symbolics and plotting tutorial.

sage: plot3d(f,(x,0,pi),(y,0,pi),color=�red�)+plot3d(0,(x,0,pi),(y,0,pi))

Graphics3d Object

>>> from sage.all import *

>>> plot3d(f,(x,Integer(0),pi),(y,Integer(0),pi),color=�red�)+plot3d(Integer(0),(x,

→˓Integer(0),pi),(y,Integer(0),pi))

Graphics3d Object

In addition to multivariate calculus, Calculus 3 often covers parametric calculus of a single variable. Sage can do arbitrary
parametric plots, with fairly natural syntax.

This plot shows the tangent line to the most basic Lissajous curve at 𝑡 = 1. The commands should be strongly reminiscent
of the ones at the beginning of this tutorial.

sage: t = var(�t�)

sage: my_curve(t)=(sin(t), sin(2*t))

sage: PP=parametric_plot(my_curve, (t, 0, 2*pi), color="purple")

sage: my_prime=my_curve.diff(t)

sage: L=my_prime(1)*t+my_curve(1) # tangent line at t=1

sage: parametric_plot(L, (t,-2,2))+PP

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> t = var(�t�)

>>> __tmp__=var("t"); my_curve = symbolic_expression((sin(t), sin(Integer(2)*t))).

→˓function(t)

>>> PP=parametric_plot(my_curve, (t, Integer(0), Integer(2)*pi), color="purple")

>>> my_prime=my_curve.diff(t)

>>> L=my_prime(Integer(1))*t+my_curve(Integer(1)) # tangent line at t=1

>>> parametric_plot(L, (t,-Integer(2),Integer(2)))+PP

Graphics object consisting of 2 graphics primitives

Lightbulb Tip

• After a while, you’ll find that giving things names other than f and g becomes quite helpful in distinguishing
things from each other. Use descriptive names! We have tried to do so here.

• If you are adventurous, try turning this into an interactive cell along the lines of the single variable example
earlier!

42 Chapter 4. Tutorial for Calculus

PREP Tutorials, Release 10.6

4.4 ‘Exam’
Before moving out of the calculus world, it is good to have a sort of miniature exam.

In the cell below, we have plotted and given:

• A slope field for a differential equation,

• A solution to an initial value problem,

• And a symbolic formula for that solution.

We assume you have never seen several of the commands before. Can you nonetheless figure out which commands are
doing each piece, and what their syntax is? How would you look for help to find out more?

sage: y = var(�y�)

sage: Plot1=plot_slope_field(2-y,(x,0,3),(y,0,20))

sage: y = function(�y�,x) # declare y to be a function of x

sage: h = desolve(diff(y,x) + y - 2, y, ics=[0,7])

sage: Plot2=plot(h,0,3)

sage: show(expand(h)); show(Plot1+Plot2)

>>> from sage.all import *

>>> y = var(�y�)

>>> Plot1=plot_slope_field(Integer(2)-y,(x,Integer(0),Integer(3)),(y,Integer(0),

→˓Integer(20)))

>>> y = function(�y�,x) # declare y to be a function of x

>>> h = desolve(diff(y,x) + y - Integer(2), y, ics=[Integer(0),Integer(7)])

>>> Plot2=plot(h,Integer(0),Integer(3))

>>> show(expand(h)); show(Plot1+Plot2)

5 𝑒(−𝑥) + 2

Ready to see the answers? Do not peek until you have really tried it.

In this cell we do the following:

• Make sure that y is indeed a variable for the first plot.

• Create a slope field for the DE for appropriate inputs of 𝑥 and 𝑦, and give the plot the name Plot1.

• Use the formalism of the function command to get ready for the DE.

• Notice we have here once again used # to indicate a comment.

• In this case, in order to use common terminology, we now have told Sage y is no longer a variable, but instead a
function (abstract) of the variable x.

• Use the differential equation solving command, with I**nitial **C**ondition **S of 2 and 2.

• Plot the solution and give it the name Plot2.

• Show a simplification of the symbolic version of the solution (which we did not know ahead of time!) as well as
the sum of the two graphs - the solution against the slope field.

As you gain experience, you will see how to glean what you are looking for from examples in the documentation like this
- which is one of the real goals of these tutorials.

Congratulations! You are now armed with the basics of deploying Sage in the calculus sequence.

4.4. ‘Exam’ 43

PREP Tutorials, Release 10.6

44 Chapter 4. Tutorial for Calculus

CHAPTER

FIVE

SAGE INTRODUCTORY PROGRAMMING TUTORIAL

This Sage document is one of the tutorials developed for the MAA PREP Workshop “Sage: Using Open-Source Math-
ematics Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative
Commons Attribution-ShareAlike 3.0 license (CC BY-SA).

This tutorial will cover the following topics (and various others throughout):

• Methods and Dot Notation

• Lists, Loops, and Set Builders

• Defining Functions

• Gotchas from names and copies

• Appendix: Advanced Introductory Topics

We will motivate our examples using basic matrices and situations one might want to handle in everyday use of matrices
in the classroom.

5.1 Methods and Dot Notation
Making a new matrix is not too hard in Sage.

sage: A = matrix([[1,2],[3,4]])

>>> from sage.all import *

>>> A = matrix([[Integer(1),Integer(2)],[Integer(3),Integer(4)]])

As we can see, this gives the matrix with rows given in the two bracketed sets.

sage: A

[1 2]

[3 4]

>>> from sage.all import *

>>> A

[1 2]

[3 4]

Some commands are available right off the bat, like derivatives are. This is the determinant.

sage: det(A)

-2

45

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> det(A)

-2

But some things are not available this way - for instance a row-reduced echelon form. We can ‘tab’ after this to make sure.

sage: r

>>> from sage.all import *

>>> r

So, as we’ve already seen in previous tutorials, many of the commands in Sage are “methods” of objects.

That is, we access them by typing:

• the name of the mathematical object,

• a dot/period,

• the name of the method, and

• parentheses (possibly with an argument).

This is a huge advantage, once you get familiar with it, because it allows you to do only the things that are possible, and
all such things.

First, let’s do the determinant again.

sage: A.det()

-2

>>> from sage.all import *

>>> A.det()

-2

Then we do the row-reduced echelon form.

sage: A.rref()

[1 0]

[0 1]

>>> from sage.all import *

>>> A.rref()

[1 0]

[0 1]

It is very important to keep in the parentheses.

INFO-CIRCLE Note

Things that would be legal without them would be called ‘attributes’, but Sage prefers stylistically to hide them, since
math is made of functions and not elements of sets. Or so a category-theorist would say.

sage: A.det # Won�t work

<built-in method det of sage.matrix.matrix_integer_dense.Matrix_integer_dense␣

→˓object at ...>

46 Chapter 5. Sage Introductory Programming Tutorial

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> A.det # Won�t work

<built-in method det of sage.matrix.matrix_integer_dense.Matrix_integer_dense␣

→˓object at ...>

This is so useful because we can use the ‘tab’ key, remember!

sage: A.

>>> from sage.all import *

>>> A.

Sometimes you will have surprises. Subtle changes in an object can affect what commands are available, or what their
outcomes are.

sage: A.echelon_form()

[1 0]

[0 2]

>>> from sage.all import *

>>> A.echelon_form()

[1 0]

[0 2]

This is because our original matrix had only integer coefficients, and you can’t make the last entry one via elementary
operations unless you multiply by a rational number!

sage: B = A.change_ring(QQ); B.echelon_form()

[1 0]

[0 1]

>>> from sage.all import *

>>> B = A.change_ring(QQ); B.echelon_form()

[1 0]

[0 1]

Another question is whether one needs an argument. Remember, it’s easy to just read the documentation!

Below, let’s see whether we need an argument to get a column.

sage: A.column?

>>> from sage.all import *

>>> A.column?

It looks like we do. Let’s input 1.

sage: A.column(1)

(2, 4)

5.1. Methods and Dot Notation 47

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> A.column(Integer(1))

(2, 4)

Notice that this gives the SECOND column!

sage: A

[1 2]

[3 4]

>>> from sage.all import *

>>> A

[1 2]

[3 4]

What is that about?

5.2 Lists, Loops, and Set Builders
(Especially List Comprehensions!)

In the previous example, we saw that the 1 choice for the column of a matrix gives the second column.

sage: matrix([[1,2],[3,4]]).column(1)

(2, 4)

>>> from sage.all import *

>>> matrix([[Integer(1),Integer(2)],[Integer(3),Integer(4)]]).column(Integer(1))

(2, 4)

You might have thought that the would give the first column, but Sage (along with the Python programming language)
begins numbering of anything that is like a sequence at zero. We’ve mentioned this once before, but it’s very important
to remember.

To reinforce this, let’s formally introduce a fundamental object we’ve seen once or twice before, called a list.

You should think of a list as an ordered set, where the elements of the set can be pretty much anything - including other
lists.

sage: my_list=[2,�Grover�,[3,2,1]]; my_list

[2, �Grover�, [3, 2, 1]]

>>> from sage.all import *

>>> my_list=[Integer(2),�Grover�,[Integer(3),Integer(2),Integer(1)]]; my_list

[2, �Grover�, [3, 2, 1]]

You can access any elements of such a list quite easily using square brackets. Just remember that the counting starts at
zero.

sage: my_list[0]; my_list[2]

2

[3, 2, 1]

48 Chapter 5. Sage Introductory Programming Tutorial

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> my_list[Integer(0)]; my_list[Integer(2)]

2

[3, 2, 1]

There are lots of advanced things one can do with lists.

sage: my_list[0:2]

[2, �Grover�]

>>> from sage.all import *

>>> my_list[Integer(0):Integer(2)]

[2, �Grover�]

However, our main reason for introducing this is more practical, as we’ll now see.

• One of the best uses of the computer in the classroom is to quickly show tedious things.

• One of the most tedious things to do by hand in linear algebra is taking powers of matrices.

• Here we make the first four powers of our matrix ‘by hand’.

sage: A = matrix([[1,2],[3,4]])

sage: A^0; A^1; A^2; A^3; A^4

[1 0]

[0 1]

[1 2]

[3 4]

[7 10]

[15 22]

[37 54]

[81 118]

[199 290]

[435 634]

>>> from sage.all import *

>>> A = matrix([[Integer(1),Integer(2)],[Integer(3),Integer(4)]])

>>> A**Integer(0); A**Integer(1); A**Integer(2); A**Integer(3); A**Integer(4)

[1 0]

[0 1]

[1 2]

[3 4]

[7 10]

[15 22]

[37 54]

[81 118]

[199 290]

[435 634]

This is not terrible, but it’s not exactly nice either, particularly if you might want to do something with these new matrices.

Instead, we can do what is known as a loop construction. See the notation below; it’s at least vaguely mathematical.

sage: for i in [0,1,2,3,4]:

....: A^i

(continues on next page)

5.2. Lists, Loops, and Set Builders 49

PREP Tutorials, Release 10.6

(continued from previous page)

[1 0]

[0 1]

[1 2]

[3 4]

[7 10]

[15 22]

[37 54]

[81 118]

[199 290]

[435 634]

>>> from sage.all import *

>>> for i in [Integer(0),Integer(1),Integer(2),Integer(3),Integer(4)]:

... A**i

[1 0]

[0 1]

[1 2]

[3 4]

[7 10]

[15 22]

[37 54]

[81 118]

[199 290]

[435 634]

What did we do?

• For each 𝑖 in the set {0, 1, 2, 3, 4}, return 𝐴𝑖.

Yeah, that makes sense. The square brackets created a list, and the powers of the original matrix come in the same order
as the list.

(The colon in the first line and the indentation in the second line are extremely important; they are the basic syntactical
structure of Python.)

For the curious: this is better, but still not perfect. It would be best to find a quicker way to write the possible values for
𝑖. There are two ways to do this in Sage.

sage: for i in [0..4]:

....: det(A^i)

1

-2

4

-8

16

>>> from sage.all import *

>>> for i in (ellipsis_range(Integer(0),Ellipsis,Integer(4))):

... det(A**i)

1

-2

4

-8

16

50 Chapter 5. Sage Introductory Programming Tutorial

PREP Tutorials, Release 10.6

sage: for i in range(5):

....: det(A^i)

1

-2

4

-8

16

>>> from sage.all import *

>>> for i in range(Integer(5)):

... det(A**i)

1

-2

4

-8

16

These ways of constructing lists are very useful - and demonstrate that, like many Sage/Python things, that counting begins
at zero and ends at one less than the “end” in things like range.

Below, we show that one can get step sizes other than one as well.

sage: list(range(3, 23, 2))

[3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

sage: [3,5..21]

[3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

>>> from sage.all import *

>>> list(range(Integer(3), Integer(23), Integer(2)))

[3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

>>> (ellipsis_range(Integer(3),Integer(5),Ellipsis,Integer(21)))

[3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

INFO-CIRCLE Note

It is also important to emphasize that the range command does not include its last value! For a quick quiz, confirm
this in the examples above.

This all works well. However, after a short time this will seem tedious as well (you may have to trust us on this). It turns
out that there is a very powerful way to create such lists in a way that very strongly resembles the so-called set builder
notation, called a list comprehension .

We start with a relatively easy example:

{𝑛2 | 𝑛 ∈ ;, 3 ≤ 𝑛 ≤ 12}

Who hasn’t written something like this at some point in a course?

This is a natural for the list comprehension, and can be very powerful when used in Sage.

sage: [n^2 for n in [3..12]]

[9, 16, 25, 36, 49, 64, 81, 100, 121, 144]

5.2. Lists, Loops, and Set Builders 51

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> [n**Integer(2) for n in (ellipsis_range(Integer(3),Ellipsis,Integer(12)))]

[9, 16, 25, 36, 49, 64, 81, 100, 121, 144]

That’s it. This sort of turns the loop around.

• The notation is easiest if you think of it mathematically; “The set of 𝑛2, for (all) 𝑛 in the range between 3 and 13.”

This is phenomenally useful. Here is a nice plotting example:

sage: plot([x^n for n in [2..6]],(x,0,1))

Graphics object consisting of 5 graphics primitives

>>> from sage.all import *

>>> plot([x**n for n in (ellipsis_range(Integer(2),Ellipsis,Integer(6)))],(x,

→˓Integer(0),Integer(1)))

Graphics object consisting of 5 graphics primitives

Now we apply it to the example we were doing in the first place. Notice we now have a nice concise description of all
determinants of these matrices, without the syntax of colon and indentation:

sage: [det(A^i) for i in [0..4]]

[1, -2, 4, -8, 16]

>>> from sage.all import *

>>> [det(A**i) for i in (ellipsis_range(Integer(0),Ellipsis,Integer(4)))]

[1, -2, 4, -8, 16]

5.2.1 Tables
Finally, getting away from strictly programming, here is a useful tip.

Some of you may be familiar with a way to take such data and put it in tabular form from other programs. The table
command does this for us:

sage: table([(i,det(A^i)) for i in [0..4]])

0 1

1 -2

2 4

3 -8

4 16

>>> from sage.all import *

>>> table([(i,det(A**i)) for i in (ellipsis_range(Integer(0),Ellipsis,Integer(4)))␣

→˓])

0 1

1 -2

2 4

3 -8

4 16

Notice that each element of this list is two items in parentheses (a so-called tuple).

Even better, we can put a header line on it to make it really clear what we are doing, by adding lists. We’ve seen keywords
like header=True when doing some of our plotting and limits. What do you think will happen if you put dollar signs

52 Chapter 5. Sage Introductory Programming Tutorial

PREP Tutorials, Release 10.6

around the labels in the header?

sage: table([(�i�, �det(A^i)�)] + [(i,det(A^i)) for i in [0..4]], header_row=True)

i det(A^i)

├───┼──────────┤

0 1

1 -2

2 4

3 -8

4 16

>>> from sage.all import *

>>> table([(�i�, �det(A^i)�)] + [(i,det(A**i)) for i in (ellipsis_range(Integer(0),

→˓Ellipsis,Integer(4)))], header_row=True)

i det(A^i)

├───┼──────────┤

0 1

1 -2

2 4

3 -8

4 16

5.3 Defining Functions
Or, Extending Sage

It is often the case that Sage can do something, but doesn’t have a simple command for it. For instance, you might want
to take a matrix and output the square of that matrix minus the original matrix.

sage: A = matrix([[1,2],[3,4]])

sage: A^2-A

[6 8]

[12 18]

>>> from sage.all import *

>>> A = matrix([[Integer(1),Integer(2)],[Integer(3),Integer(4)]])

>>> A**Integer(2)-A

[6 8]

[12 18]

Howmight one do this for other matrices? Of course, you could just always do𝐴2−𝐴 again and again. But this would be
tedious and hard to follow, as with so many things that motivate a little programming. Here is how we solve this problem.

sage: def square_and_subtract(mymatrix):

....: return mymatrix^2-mymatrix

>>> from sage.all import *

>>> def square_and_subtract(mymatrix):

... return mymatrix**Integer(2)-mymatrix

The def command has created a new function called square_and_subtract. It should even be available using
tab-completion.

Here are things to note about its construction:

5.3. Defining Functions 53

PREP Tutorials, Release 10.6

• The input is inside the parentheses.

• The indentation and colon are crucial, as above.

• There will usually be a return value, given by return. This is what Sage will give below the input cell.

sage: square_and_subtract(A)

[6 8]

[12 18]

>>> from sage.all import *

>>> square_and_subtract(A)

[6 8]

[12 18]

sage: square_and_subtract(matrix([[1.5,0],[0,2]]))

[0.750000000000000 0.000000000000000]

[0.000000000000000 2.00000000000000]

>>> from sage.all import *

>>> square_and_subtract(matrix([[RealNumber(�1.5�),Integer(0)],[Integer(0),

→˓Integer(2)]]))

[0.750000000000000 0.000000000000000]

[0.000000000000000 2.00000000000000]

We can get a documentation string available by putting it in triple quotes """.

sage: def square_and_subtract(mymatrix):

....: """

....: Return AA^2-AA

....: """

....: return mymatrix^2-mymatrix

>>> from sage.all import *

>>> def square_and_subtract(mymatrix):

... """

... Return AA^2-AA

... """

... return mymatrix**Integer(2)-mymatrix

sage: square_and_subtract?

>>> from sage.all import *

>>> square_and_subtract?

Pretty cool! And potentially quite helpful to students - and you - especially if the function is complicated. The𝐴 typesets
properly because we put it in backticks (see above).

A very careful reader may have noticed that there is nothing that requires the input mymatrix to be a matrix. Sage will
just try to square whatever you give it and subtract the original thing.

sage: square_and_subtract(sqrt(5))

-sqrt(5) + 5

54 Chapter 5. Sage Introductory Programming Tutorial

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> square_and_subtract(sqrt(Integer(5)))

-sqrt(5) + 5

This is a typical thing to watch out for; just because you define something doesn’t mean it’s useful (though in this case it
was).

Try to define a function which inputs a matrix and returns the determinant of the cube of the matrix. (There are a few
ways to do this, of course!)

5.4 Gotchas from names and copies
Or, What’s in a Name

Before we finish the tutorial, we want to point out a few programming-related things that often trip people up.

The first ‘gotcha’ is that it’s possible to clobber constants!

sage: i

4

>>> from sage.all import *

>>> i

4

Can you figure out why i=4? Look carefully above to see when this happened.

• This gives a valuable lesson; any time you use a name there is potential for renaming.

This may seem quite bad, but could be quite logical to do - for instance, if you are only dealing with real matrices. It is
definitely is something a Sage user needs to know, though.

Luckily, it’s possible to restore symbolic constants.

sage: reset(�i�)

sage: i; i^2

I

-1

>>> from sage.all import *

>>> reset(�i�)

>>> i; i**Integer(2)

I

-1

sage: type(e)

<class �sage.symbolic.expression.E�>

>>> from sage.all import *

>>> type(e)

<class �sage.symbolic.expression.E�>

sage: type(pi)

<class �sage.symbolic.expression.Expression�>

5.4. Gotchas from names and copies 55

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> type(pi)

<class �sage.symbolic.expression.Expression�>

Variables are another thing to keep in mind. As mentioned briefly in earlier tutorials, in order to maintain maximum
flexibility while not allowing things to happen which shouldn’t, only x is predefined, nothing else.

sage: type(x)

<class �sage.symbolic.expression.Expression�>

>>> from sage.all import *

>>> type(x)

<class �sage.symbolic.expression.Expression�>

sage: type(y)

Traceback (most recent call last):

...

NameError: name �y� is not defined

>>> from sage.all import *

>>> type(y)

Traceback (most recent call last):

...

NameError: name �y� is not defined

Exclamation-Triangle Warning

There is a way to get around this, but it unleashes a horde of potential misuse. See the cells below if you are interested
in this.
sage: automatic_names(True) # not tested

sage: trig_expand((2*x + 4*y + sin(2*theta))^2) # not tested

4*(sin(theta)*cos(theta) + x + 2*y)^2

>>> from sage.all import *

>>> automatic_names(True) # not tested

>>> trig_expand((Integer(2)*x + Integer(4)*y + sin(Integer(2)*theta))**Integer(2))

→˓# not tested

4*(sin(theta)*cos(theta) + x + 2*y)^2

This only works in the notebook. Now we’ll turn it off.

sage: automatic_names(False) # not tested

>>> from sage.all import *

>>> automatic_names(False) # not tested

Another related issue is that a few names are “reserved” by Python/Sage, and which aren’t allowed as variable names.

It’s not surprising that ‘for’ is not allowed, but neither is ‘lambda’ (𝜆)! People often request a workaround for that.

56 Chapter 5. Sage Introductory Programming Tutorial

PREP Tutorials, Release 10.6

sage: var(�lambda�)

Traceback (most recent call last):

...

ValueError: The name "lambda" is not a valid Python identifier.

>>> from sage.all import *

>>> var(�lambda�)

Traceback (most recent call last):

...

ValueError: The name "lambda" is not a valid Python identifier.

There are lots of ways to get around this. One popular, though annoying, way is this.

sage: var(�lambda_�)

lambda_

>>> from sage.all import *

>>> var(�lambda_�)

lambda_

sage: lambda_^2-1

lambda_^2 - 1

>>> from sage.all import *

>>> lambda_**Integer(2)-Integer(1)

lambda_^2 - 1

Still, in this one case, showing the expression still shows the Greek letter.

sage: show(lambda_^2-1)

>>> from sage.all import *

>>> show(lambda_**Integer(2)-Integer(1))

𝜆2 − 1

Finally, there is another thing that can happen if you rename things too loosely.

sage: A = matrix(QQ,[[1,2],[3,4]])

sage: B = A

sage: C = copy(A)

>>> from sage.all import *

>>> A = matrix(QQ,[[Integer(1),Integer(2)],[Integer(3),Integer(4)]])

>>> B = A

>>> C = copy(A)

This actually has just made B and A refer to the same matrix. B isn’t like A, it is A. The copy command gets around this
(though not always).

5.4. Gotchas from names and copies 57

PREP Tutorials, Release 10.6

sage: A[0,0]=987

>>> from sage.all import *

>>> A[Integer(0),Integer(0)]=Integer(987)

sage: show([A,B,C])

>>> from sage.all import *

>>> show([A,B,C])

[︂(︂
987 2
3 4

)︂
,

(︂
987 2

3 4

)︂
,

(︂
1 2
3 4

)︂]︂
This is very subtle if you’ve never programmed before. Suffice it to say that it is safest to let each = sign stand for one
thing, and to avoid redundant equals (unlike students at times).

5.5 Appendix: Advanced Introductory Topics
There are several things which are useful to know about, but which are not always introduced immediately in programming.
We give a few examples here, but they are mainly here to make sure you have seen them so that they are not completely
surprising when they come up again.

We saw the “block” structure of Python earlier, with the indentation. This gives the opportunity to introduce conditional
statements and comparisons. Here, we just give an example for those who have seen conditionals (“if” clauses) before.

sage: B = matrix([[0,1,0,0],[0,0,1,0],[0,0,0,1],[0,0,0,0]])

sage: for i in range(5): # all integers from 0 to 4, remember

....: if B^i==0: # We ask if the power is the zero matrix

....: print(i)

4

>>> from sage.all import *

>>> B = matrix([[Integer(0),Integer(1),Integer(0),Integer(0)],[Integer(0),Integer(0),

→˓Integer(1),Integer(0)],[Integer(0),Integer(0),Integer(0),Integer(1)],[Integer(0),

→˓Integer(0),Integer(0),Integer(0)]])

>>> for i in range(Integer(5)): # all integers from 0 to 4, remember

... if B**i==Integer(0): # We ask if the power is the zero matrix

... print(i)

4

We use the double equals sign to test for equality, because = assigns something to a variable name. Notice again that
colons and indentation are the primary way that Sage/Python indicate syntax, just as commas and spaces do in English.

Another useful concept is that of a dictionary . This can be thought of as a mathematical mapping from “keys” to “values”.
The order is not important and not guaranteed. A dictionary is delimited by curly brackets and correspondence is indicated
by colons.

Again, we will just give a small example to illustrate the idea.

What if one wants to specify a matrix using just the nonzero entries? A dictionary is a great way to do this.

This one puts 3 as an entry in the (2, 3) spot, for example (remember, this is the third row and fourth column, since we
start with zero).

58 Chapter 5. Sage Introductory Programming Tutorial

PREP Tutorials, Release 10.6

sage: D = {(2,3):3, (4,5):6, (6,0):-3}

sage: C = matrix(D)

sage: C

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 3 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 6]

[0 0 0 0 0 0]

[-3 0 0 0 0 0]

>>> from sage.all import *

>>> D = {(Integer(2),Integer(3)):Integer(3), (Integer(4),Integer(5)):Integer(6),␣

→˓(Integer(6),Integer(0)):-Integer(3)}

>>> C = matrix(D)

>>> C

[0 0 0 0 0 0]

[0 0 0 0 0 0]

[0 0 0 3 0 0]

[0 0 0 0 0 0]

[0 0 0 0 0 6]

[0 0 0 0 0 0]

[-3 0 0 0 0 0]

That was a lot easier than inputting the whole matrix!

Finally, although Sage tries to anticipate what you want, sometimes it does matter how you define a given element in Sage.

• We saw this above with matrices over the rationals versus integers, for instance.

Here’s an example with straight-up numbers.

sage: a = 2

sage: b = 2/1

sage: c = 2.0

sage: d = 2 + 0*I

sage: e = 2.0 + 0.0*I

>>> from sage.all import *

>>> a = Integer(2)

>>> b = Integer(2)/Integer(1)

>>> c = RealNumber(�2.0�)

>>> d = Integer(2) + Integer(0)*I

>>> e = RealNumber(�2.0�) + RealNumber(�0.0�)*I

We will not go in great depth about this, either, but it is worth knowing about. Notice that each of these types of numbers
has or does not have 𝐼 =

√
−1, decimal points, or division.

sage: parent(a)

Integer Ring

sage: parent(b)

Rational Field

sage: parent(c)

Real Field with 53 bits of precision

(continues on next page)

5.5. Appendix: Advanced Introductory Topics 59

PREP Tutorials, Release 10.6

(continued from previous page)

sage: parent(d)

Number Field in I with defining polynomial x^2 + 1 with I = 1*I

sage: parent(e)

Complex Field with 53 bits of precision

>>> from sage.all import *

>>> parent(a)

Integer Ring

>>> parent(b)

Rational Field

>>> parent(c)

Real Field with 53 bits of precision

>>> parent(d)

Number Field in I with defining polynomial x^2 + 1 with I = 1*I

>>> parent(e)

Complex Field with 53 bits of precision

60 Chapter 5. Sage Introductory Programming Tutorial

CHAPTER

SIX

TUTORIAL FOR ADVANCED 2D PLOTTING

This Sage document is one of the tutorials developed for the MAA PREP Workshop “Sage: Using Open-Source Math-
ematics Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative
Commons Attribution-ShareAlike 3.0 license (CC BY-SA).

Thanks to Sage’s integration of projects like matplotlib, Sage has comprehensive two-dimensional plotting capabilities.
This worksheet consists of the following sections:

• Cartesian Plots

• Parametric Plots

• Polar Plots

• Plotting Data Points

• Contour Plots

• Vector fields

• Complex Plots

• Region plots

• Builtin Graphics Objects

• Saving Plots

This tutorial assumes that one is familiar with the basics of Sage, such as evaluating a cell by clicking the “evaluate” link,
or by pressing Shift + Enter (hold down Shift while pressing the Enter key).

6.1 Graphing Functions and Plotting Curves

6.1.1 Cartesian Plots
A simple quadratic is easy.

sage: plot(x^2, (x,-2,2))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> plot(x**Integer(2), (x,-Integer(2),Integer(2)))

Graphics object consisting of 1 graphics primitive

You can combine “plot objects” by adding them.

61

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/
http://matplotlib.sourceforge.net/

PREP Tutorials, Release 10.6

sage: regular = plot(x^2, (x,-2,2), color= �purple�)

sage: skinny = plot(4*x^2, (x,-2,2), color = �green�)

sage: regular + skinny

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> regular = plot(x**Integer(2), (x,-Integer(2),Integer(2)), color= �purple�)

>>> skinny = plot(Integer(4)*x**Integer(2), (x,-Integer(2),Integer(2)), color = �green

→˓�)

>>> regular + skinny

Graphics object consisting of 2 graphics primitives

Problem : Plot a green 𝑦 = sin(𝑥) together with a red 𝑦 = 2 cos(𝑥). (Hint: you can use pi as part of your range.)

Boundaries of a plot can be specified, in addition to the overall size.

sage: plot(1+e^(-x^2), xmin=-2, xmax=2, ymin=0, ymax=2.5, figsize=10)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> plot(Integer(1)+e**(-x**Integer(2)), xmin=-Integer(2), xmax=Integer(2),␣

→˓ymin=Integer(0), ymax=RealNumber(�2.5�), figsize=Integer(10))

Graphics object consisting of 1 graphics primitive

Problem : Plot 𝑦 = 5 + 3 sin(4𝑥) with suitable boundaries.

You can add lots of extra information.

sage: exponential = plot(1+e^(-x^2), xmin=-2, xmax=2, ymin=0, ymax=2.5)

sage: max_line = plot(2, xmin=-2, xmax=2, linestyle=�-.�, color = �red�)

sage: min_line = plot(1, xmin=-2, xmax=2, linestyle=�:�, color = �red�)

sage: exponential + max_line + min_line

Graphics object consisting of 3 graphics primitives

>>> from sage.all import *

>>> exponential = plot(Integer(1)+e**(-x**Integer(2)), xmin=-Integer(2),␣

→˓xmax=Integer(2), ymin=Integer(0), ymax=RealNumber(�2.5�))

>>> max_line = plot(Integer(2), xmin=-Integer(2), xmax=Integer(2), linestyle=�-.�,␣

→˓color = �red�)

>>> min_line = plot(Integer(1), xmin=-Integer(2), xmax=Integer(2), linestyle=�:�,␣

→˓color = �red�)

>>> exponential + max_line + min_line

Graphics object consisting of 3 graphics primitives

You can fill regions with transparent color, and thicken the curve. This example uses several options to fine-tune our
graphic.

sage: exponential = plot(1+e^(-x^2), xmin=-2, xmax=2, ymin=0, ymax=2.5, fill=0.5,␣

→˓fillcolor=�grey�, fillalpha=0.3)

sage: min_line = plot(1, xmin=-2, xmax=2, linestyle=�-�, thickness= 6, color = �red�)

sage: exponential + min_line

Graphics object consisting of 3 graphics primitives

62 Chapter 6. Tutorial for Advanced 2d Plotting

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> exponential = plot(Integer(1)+e**(-x**Integer(2)), xmin=-Integer(2),␣

→˓xmax=Integer(2), ymin=Integer(0), ymax=RealNumber(�2.5�), fill=RealNumber(�0.5�),␣

→˓fillcolor=�grey�, fillalpha=RealNumber(�0.3�))

>>> min_line = plot(Integer(1), xmin=-Integer(2), xmax=Integer(2), linestyle=�-�,␣

→˓thickness= Integer(6), color = �red�)

>>> exponential + min_line

Graphics object consisting of 3 graphics primitives

sage: sum([plot(x^n,(x,0,1),color=rainbow(5)[n]) for n in [0..4]])

Graphics object consisting of 5 graphics primitives

>>> from sage.all import *

>>> sum([plot(x**n,(x,Integer(0),Integer(1)),color=rainbow(Integer(5))[n]) for n in␣

→˓(ellipsis_range(Integer(0),Ellipsis,Integer(4)))])

Graphics object consisting of 5 graphics primitives

Problem : Create a plot showing the cross-section area for the following solid of revolution problem: Consider the area
bounded by 𝑦 = 𝑥2 − 3𝑥+ 6 and the line 𝑦 = 4. Find the volume created by rotating this area around the line 𝑦 = 1.

6.1.2 Parametric Plots
A parametric plot needs a list of two functions of the parameter; in Sage, we use square brackets to delimit the list.
Notice also that we must declare t as a variable first. Because the graphic is slightly wider than it is tall, we use the
aspect_ratio option (such options are called keywords) to ensure the axes are correct for how we want to view this
object.

sage: t = var(�t�)

sage: parametric_plot([cos(t) + 3 * cos(t/9), sin(t) - 3 * sin(t/9)], (t, 0, 18*pi),␣

→˓fill = True, aspect_ratio=1)

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> t = var(�t�)

>>> parametric_plot([cos(t) + Integer(3) * cos(t/Integer(9)), sin(t) - Integer(3) *␣

→˓sin(t/Integer(9))], (t, Integer(0), Integer(18)*pi), fill = True, aspect_

→˓ratio=Integer(1))

Graphics object consisting of 2 graphics primitives

Problem : These parametric equations will create a hypocycloid.

𝑥(𝑡) = 17 cos(𝑡) + 3 cos(17𝑡/3)

𝑦(𝑡) = 17 sin(𝑡)− 3 sin(17𝑡/3)

Create this as a parametric plot.

Sage automatically plots a 2d or 3d plot, and a curve or a surface, depending on how many variables and coordinates you
specify.

sage: t = var(�t�)

sage: parametric_plot((t^2,sin(t)), (t,0,pi))

Graphics object consisting of 1 graphics primitive

6.1. Graphing Functions and Plotting Curves 63

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> t = var(�t�)

>>> parametric_plot((t**Integer(2),sin(t)), (t,Integer(0),pi))

Graphics object consisting of 1 graphics primitive

sage: parametric_plot((t^2,sin(t),cos(t)), (t,0,pi))

Graphics3d Object

>>> from sage.all import *

>>> parametric_plot((t**Integer(2),sin(t),cos(t)), (t,Integer(0),pi))

Graphics3d Object

sage: r = var(�r�)

sage: parametric_plot((t^2,sin(r*t),cos(r*t)), (t,0,pi),(r,-1,1))

Graphics3d Object

>>> from sage.all import *

>>> r = var(�r�)

>>> parametric_plot((t**Integer(2),sin(r*t),cos(r*t)), (t,Integer(0),pi),(r,-

→˓Integer(1),Integer(1)))

Graphics3d Object

6.1.3 Polar Plots
Sage can also do polar plots.

sage: polar_plot(2 + 2*cos(x), (x, 0, 2*pi), color=hue(0.5), thickness=4)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> polar_plot(Integer(2) + Integer(2)*cos(x), (x, Integer(0), Integer(2)*pi),␣

→˓color=hue(RealNumber(�0.5�)), thickness=Integer(4))

Graphics object consisting of 1 graphics primitive

Although they aren’t essential, many of these examples try to demonstrate things like coloring, fills, and shading to give
you a sense of the possibilities.

More than one polar curve can be specified in a list (square brackets). Notice the automatic graded shading of the fill
color.

sage: t = var(�t�)

sage: polar_plot([cos(4*t) + 1.5, 0.5 * cos(4*t) + 2.5], (t, 0, 2*pi),

....: color=�black�, thickness=2, fill=True, fillcolor=�orange�)

Graphics object consisting of 4 graphics primitives

>>> from sage.all import *

>>> t = var(�t�)

>>> polar_plot([cos(Integer(4)*t) + RealNumber(�1.5�), RealNumber(�0.5�) *␣

→˓cos(Integer(4)*t) + RealNumber(�2.5�)], (t, Integer(0), Integer(2)*pi),

... color=�black�, thickness=Integer(2), fill=True, fillcolor=�orange�)

Graphics object consisting of 4 graphics primitives

64 Chapter 6. Tutorial for Advanced 2d Plotting

PREP Tutorials, Release 10.6

Problem: Create a plot for the following problem. Find the area that is inside the circle 𝑟 = 2, but outside the cardioid
2 + 2 cos(𝜃).

6.1.4 Interactive Demonstration
It may be of interest to see all these things put together in a very nice pedagogical graphic. Even though this is fairly
advanced, and so you may want to skip the code, it is not as difficult as you might think to put together.

sage: html(�<h2>Sine and unit circle (by Jurgis Pralgauskis)</h2> inspired by <a href=

→˓"http://www.youtube.com/watch?v=Ohp6Okk_tww&feature=related">this video�)

sage: # http://doc.sagemath.org/html/en/reference/sage/plot/plot.html

sage: radius = 100 # scale for radius of "unit" circle

sage: graph_params = dict(xmin = -2*radius, xmax = 360,

....: ymin = -(radius+30), ymax = radius+30,

....: aspect_ratio=1,

....: axes = False

....:)

sage: def sine_and_unit_circle(angle=30, instant_show = True, show_pi=True):

....: ccenter_x, ccenter_y = -radius, 0 # center of circle on real coords

....: sine_x = angle # the big magic to sync both graphs :)

....: current_y = circle_y = sine_y = radius * sin(angle*pi/180)

....: circle_x = ccenter_x + radius * cos(angle*pi/180)

....: graph = Graphics()

....: # we�ll put unit circle and sine function on the same graph

....: # so there will be some coordinate mangling ;)

....: # CIRCLE

....: unit_circle = circle((ccenter_x, ccenter_y), radius, color="#ccc")

....: # SINE

....: x = var(�x�)

....: sine = plot(radius * sin(x*pi/180) , (x, 0, 360), color="#ccc")

....: graph += unit_circle + sine

....: # CIRCLE axis

....: # x axis

....: graph += arrow([-2*radius, 0], [0, 0], color = "#666")

....: graph += text("$(1, 0)$", [-16, 16], color = "#666")

....: # circle y axis

....: graph += arrow([ccenter_x,-radius], [ccenter_x, radius], color = "#666")

....: graph += text("$(0, 1)$", [ccenter_x, radius+15], color = "#666")

....: # circle center

....: graph += text("$(0, 0)$", [ccenter_x, 0], color = "#666")

....: # SINE x axis

....: graph += arrow([0,0], [360, 0], color = "#000")

....: # let�s set tics

....: # or http://aghitza.org/posts/tweak_labels_and_ticks_in_2d_plots_using_

→˓matplotlib/

....: # or wayt for https://github.com/sagemath/sage/issues/1431

....: # [�$-\pi/3$�, �$2\pi/3$�, �$5\pi/3$�]

....: for x in range(0, 361, 30):

....: graph += point([x, 0])

....: angle_label = ". $%3d^{\circ}$ " % x

....: if show_pi: angle_label += " $(%s\pi) $"% x/180

....: graph += text(angle_label, [x, 0], rotation=-90,

....: vertical_alignment=�top�, fontsize=8, color="#000")

(continues on next page)

6.1. Graphing Functions and Plotting Curves 65

PREP Tutorials, Release 10.6

(continued from previous page)

....: # CURRENT VALUES

....: # SINE -- y

....: graph += arrow([sine_x,0], [sine_x, sine_y], width=1, arrowsize=3)

....: graph += arrow([circle_x,0], [circle_x, circle_y], width=1, arrowsize=3)

....: graph += line(([circle_x, current_y], [sine_x, current_y]), rgbcolor="#0F0

→˓", linestyle = "--", alpha=0.5)

....: # LABEL on sine

....: graph += text("$(%d^{\circ}, %3.2f)$"%(sine_x, float(current_y)/radius), ␣

→˓[sine_x+30, current_y], color = "#0A0")

....: # ANGLE -- x

....: # on sine

....: graph += arrow([0,0], [sine_x, 0], width=1, arrowsize=1, color=�red�)

....: # on circle

....: graph += disk((ccenter_x, ccenter_y), float(radius)/4, (0, angle*pi/180),␣

→˓color=�red�, fill=False, thickness=1)

....: graph += arrow([ccenter_x, ccenter_y], [circle_x, circle_y],

....: rgbcolor="#cccccc", width=1, arrowsize=1)

....: if instant_show:

....: show (graph, **graph_params)

....: return graph

sage: #####################

sage: # make Interaction

sage: ######################

sage: @interact

sage: def _(angle = slider([0..360], default=30, step_size=5,

....: label="Pasirinkite kampą: ", display_value=True)):

....: sine_and_unit_circle(angle, show_pi = False)

>>> from sage.all import *

>>> html(�<h2>Sine and unit circle (by Jurgis Pralgauskis)</h2> inspired by <a href=

→˓"http://www.youtube.com/watch?v=Ohp6Okk_tww&feature=related">this video�)

>>> # http://doc.sagemath.org/html/en/reference/sage/plot/plot.html

>>> radius = Integer(100) # scale for radius of "unit" circle

>>> graph_params = dict(xmin = -Integer(2)*radius, xmax = Integer(360),

... ymin = -(radius+Integer(30)), ymax = radius+Integer(30),

... aspect_ratio=Integer(1),

... axes = False

...)

>>> def sine_and_unit_circle(angle=Integer(30), instant_show = True, show_pi=True):

... ccenter_x, ccenter_y = -radius, Integer(0) # center of circle on real coords

... sine_x = angle # the big magic to sync both graphs :)

... current_y = circle_y = sine_y = radius * sin(angle*pi/Integer(180))

... circle_x = ccenter_x + radius * cos(angle*pi/Integer(180))

... graph = Graphics()

... # we�ll put unit circle and sine function on the same graph

... # so there will be some coordinate mangling ;)

... # CIRCLE

... unit_circle = circle((ccenter_x, ccenter_y), radius, color="#ccc")

... # SINE

... x = var(�x�)

... sine = plot(radius * sin(x*pi/Integer(180)) , (x, Integer(0), Integer(360)),␣

→˓color="#ccc")
(continues on next page)

66 Chapter 6. Tutorial for Advanced 2d Plotting

PREP Tutorials, Release 10.6

(continued from previous page)

... graph += unit_circle + sine

... # CIRCLE axis

... # x axis

... graph += arrow([-Integer(2)*radius, Integer(0)], [Integer(0), Integer(0)],␣

→˓color = "#666")

... graph += text("$(1, 0)$", [-Integer(16), Integer(16)], color = "#666")

... # circle y axis

... graph += arrow([ccenter_x,-radius], [ccenter_x, radius], color = "#666")

... graph += text("$(0, 1)$", [ccenter_x, radius+Integer(15)], color = "#666")

... # circle center

... graph += text("$(0, 0)$", [ccenter_x, Integer(0)], color = "#666")

... # SINE x axis

... graph += arrow([Integer(0),Integer(0)], [Integer(360), Integer(0)], color =

→˓"#000")

... # let�s set tics

... # or http://aghitza.org/posts/tweak_labels_and_ticks_in_2d_plots_using_

→˓matplotlib/

... # or wayt for https://github.com/sagemath/sage/issues/1431

... # [�$-\pi/3$�, �$2\pi/3$�, �$5\pi/3$�]

... for x in range(Integer(0), Integer(361), Integer(30)):

... graph += point([x, Integer(0)])

... angle_label = ". $%3d^{\circ}$ " % x

... if show_pi: angle_label += " $(%s\pi) $"% x/Integer(180)

... graph += text(angle_label, [x, Integer(0)], rotation=-Integer(90),

... vertical_alignment=�top�, fontsize=Integer(8), color="#000")

... # CURRENT VALUES

... # SINE -- y

... graph += arrow([sine_x,Integer(0)], [sine_x, sine_y], width=Integer(1),␣

→˓arrowsize=Integer(3))

... graph += arrow([circle_x,Integer(0)], [circle_x, circle_y],␣

→˓width=Integer(1), arrowsize=Integer(3))

... graph += line(([circle_x, current_y], [sine_x, current_y]), rgbcolor="#0F0",␣

→˓linestyle = "--", alpha=RealNumber(�0.5�))

... # LABEL on sine

... graph += text("$(%d^{\circ}, %3.2f)$"%(sine_x, float(current_y)/radius), ␣

→˓[sine_x+Integer(30), current_y], color = "#0A0")

... # ANGLE -- x

... # on sine

... graph += arrow([Integer(0),Integer(0)], [sine_x, Integer(0)],␣

→˓width=Integer(1), arrowsize=Integer(1), color=�red�)

... # on circle

... graph += disk((ccenter_x, ccenter_y), float(radius)/Integer(4), (Integer(0),␣

→˓angle*pi/Integer(180)), color=�red�, fill=False, thickness=Integer(1))

... graph += arrow([ccenter_x, ccenter_y], [circle_x, circle_y],

... rgbcolor="#cccccc", width=Integer(1), arrowsize=Integer(1))

... if instant_show:

... show (graph, **graph_params)

... return graph

>>> #####################

>>> # make Interaction

>>> ######################

>>> @interact

(continues on next page)

6.1. Graphing Functions and Plotting Curves 67

PREP Tutorials, Release 10.6

(continued from previous page)

>>> def _(angle = slider((ellipsis_range(Integer(0),Ellipsis,Integer(360))),␣

→˓default=Integer(30), step_size=Integer(5),

... label="Pasirinkite kampą: ", display_value=True)):

... sine_and_unit_circle(angle, show_pi = False)

6.2 Plotting Data

6.2.1 Plotting Data Points
Sometimes one wishes to simply plot data. Here, we demonstrate several ways of plotting points and data via the simple
approximation to the Fibonacci numbers given by

𝐹𝑛 =
1√
5

(︃
1 +

√
5

2

)︃𝑛

,

which is quite good after about 𝑛 = 5.

First, we notice that the Fibonacci numbers are built in.

sage: fibonacci_sequence(6)

<generator object fibonacci_sequence at ...>

>>> from sage.all import *

>>> fibonacci_sequence(Integer(6))

<generator object fibonacci_sequence at ...>

sage: list(fibonacci_sequence(6))

[0, 1, 1, 2, 3, 5]

>>> from sage.all import *

>>> list(fibonacci_sequence(Integer(6)))

[0, 1, 1, 2, 3, 5]

The enumerate command is useful for taking a list and coordinating it with the counting numbers.

sage: list(enumerate(fibonacci_sequence(6)))

[(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)]

>>> from sage.all import *

>>> list(enumerate(fibonacci_sequence(Integer(6))))

[(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)]

So we just define the numbers and coordinate pairs we are about to plot.

sage: fibonacci = list(enumerate(fibonacci_sequence(6)))

sage: f(n)=(1/sqrt(5))*((1+sqrt(5))/2)^n

sage: asymptotic = [(i, f(i)) for i in range(6)]

sage: fibonacci

[(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)]

sage: asymptotic

[(0, 1/5*sqrt(5)), (1, 1/10*sqrt(5)*(sqrt(5) + 1)), (2, 1/20*sqrt(5)*(sqrt(5) + 1)^2),

(continues on next page)

68 Chapter 6. Tutorial for Advanced 2d Plotting

PREP Tutorials, Release 10.6

(continued from previous page)

→˓ (3, 1/40*sqrt(5)*(sqrt(5) + 1)^3), (4, 1/80*sqrt(5)*(sqrt(5) + 1)^4), (5, 1/

→˓160*sqrt(5)*(sqrt(5) + 1)^5)]

>>> from sage.all import *

>>> fibonacci = list(enumerate(fibonacci_sequence(Integer(6))))

>>> __tmp__=var("n"); f = symbolic_expression((Integer(1)/

→˓sqrt(Integer(5)))*((Integer(1)+sqrt(Integer(5)))/Integer(2))**n).function(n)

>>> asymptotic = [(i, f(i)) for i in range(Integer(6))]

>>> fibonacci

[(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5)]

>>> asymptotic

[(0, 1/5*sqrt(5)), (1, 1/10*sqrt(5)*(sqrt(5) + 1)), (2, 1/20*sqrt(5)*(sqrt(5) + 1)^2),

→˓ (3, 1/40*sqrt(5)*(sqrt(5) + 1)^3), (4, 1/80*sqrt(5)*(sqrt(5) + 1)^4), (5, 1/

→˓160*sqrt(5)*(sqrt(5) + 1)^5)]

Now we can plot not just the two sets of points, but also use several of the documented options for plotting points. Those
coming from other systems may prefer list_plot.

sage: fib_plot=list_plot(fibonacci, color=�red�, pointsize=30)

sage: asy_plot = list_plot(asymptotic, marker=�D�,color=�black�,thickness=2,

→˓plotjoined=True)

sage: show(fib_plot+asy_plot, aspect_ratio=1)

>>> from sage.all import *

>>> fib_plot=list_plot(fibonacci, color=�red�, pointsize=Integer(30))

>>> asy_plot = list_plot(asymptotic, marker=�D�,color=�black�,thickness=Integer(2),

→˓plotjoined=True)

>>> show(fib_plot+asy_plot, aspect_ratio=Integer(1))

Other options include line, points, and scatter_plot. Having the choice of markers for different data is particularly
helpful for generating publishable graphics.

sage: fib_plot=scatter_plot(fibonacci, facecolor=�red�, marker=�o�,markersize=40)

sage: asy_plot = line(asymptotic, marker=�D�,color=�black�,thickness=2)

sage: show(fib_plot+asy_plot, aspect_ratio=1)

>>> from sage.all import *

>>> fib_plot=scatter_plot(fibonacci, facecolor=�red�, marker=�o�,

→˓markersize=Integer(40))

>>> asy_plot = line(asymptotic, marker=�D�,color=�black�,thickness=Integer(2))

>>> show(fib_plot+asy_plot, aspect_ratio=Integer(1))

6.3 Contour-type Plots

6.3.1 Contour Plots
Contour plotting can be very useful when trying to get a handle on multivariable functions, as well as modeling. The basic
syntax is essentially the same as for 3D plotting - simply an extension of the 2D plotting syntax.

6.3. Contour-type Plots 69

PREP Tutorials, Release 10.6

sage: f(x,y)=y^2+1-x^3-x

sage: contour_plot(f, (x,-pi,pi), (y,-pi,pi))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> __tmp__=var("x,y"); f = symbolic_expression(y**Integer(2)+Integer(1)-

→˓x**Integer(3)-x).function(x,y)

>>> contour_plot(f, (x,-pi,pi), (y,-pi,pi))

Graphics object consisting of 1 graphics primitive

We can change colors, specify contours, label curves, and many other things. When there are many levels, the colorbar
keyword becomes quite useful for keeping track of them. Notice that, as opposed to many other options, it can only be
True or False (corresponding to whether it appears or does not appear).

sage: contour_plot(f, (x,-pi,pi), (y,-pi,pi),colorbar=True,labels=True)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> contour_plot(f, (x,-pi,pi), (y,-pi,pi),colorbar=True,labels=True)

Graphics object consisting of 1 graphics primitive

This example is fairly self-explanatory, but demonstrates the power of formatting, labeling, and the wide variety of built-in
color gradations (colormaps or cmap). The strange-looking construction corresponding to label_fmt is a Sage/Python
data type called a dictionary , and turns out to be useful for more advanced Sage use; it consists of pairs connected by a
colon, all inside curly braces.

sage: contour_plot(f, (x,-pi,pi), (y,-pi,pi), contours=[-4,0,4], fill=False,

....: cmap=�cool�, labels=True, label_inline=True,

....: label_fmt={-4:"low", 0:"medium", 4: "hi"}, label_colors=�black�)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> contour_plot(f, (x,-pi,pi), (y,-pi,pi), contours=[-Integer(4),Integer(0),

→˓Integer(4)], fill=False,

... cmap=�cool�, labels=True, label_inline=True,

... label_fmt={-Integer(4):"low", Integer(0):"medium", Integer(4): "hi"}, label_

→˓colors=�black�)

Graphics object consisting of 1 graphics primitive

Implicit plots are a special type of contour plot (they just plot the zero contour).

sage: f(x,y)

-x^3 + y^2 - x + 1

>>> from sage.all import *

>>> f(x,y)

-x^3 + y^2 - x + 1

sage: implicit_plot(f(x,y)==0,(x,-pi,pi),(y,-pi,pi))

Graphics object consisting of 1 graphics primitive

70 Chapter 6. Tutorial for Advanced 2d Plotting

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> implicit_plot(f(x,y)==Integer(0),(x,-pi,pi),(y,-pi,pi))

Graphics object consisting of 1 graphics primitive

A density plot is like a contour plot, but without discrete levels.

sage: density_plot(f, (x, -2, 2), (y, -2, 2))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> density_plot(f, (x, -Integer(2), Integer(2)), (y, -Integer(2), Integer(2)))

Graphics object consisting of 1 graphics primitive

Sometimes contour plots can be a little misleading (which makes for a great classroom discussion about the problems of
ignorantly relying on technology). Here we combine a density plot and contour plot to show even better what is happening
with the function.

sage: density_plot(f,(x,-2,2),(y,-2,2))+contour_plot(f,(x,-2,2),(y,-2,2),fill=False,

→˓labels=True,label_inline=True,cmap=�jet�)

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> density_plot(f,(x,-Integer(2),Integer(2)),(y,-Integer(2),Integer(2)))+contour_

→˓plot(f,(x,-Integer(2),Integer(2)),(y,-Integer(2),Integer(2)),fill=False,labels=True,

→˓label_inline=True,cmap=�jet�)

Graphics object consisting of 2 graphics primitives

It can be worth getting familiar with the various options for different plots, especially if you will be doing a lot of them in
a given worksheet or pedagogical situation.

Here are the options for contour plots.

• They are given as an “attribute” - no parentheses - of the contour_plot object.

• They are given as a dictionary (see the programming tutorial).

sage: contour_plot.options

{�aspect_ratio�: 1,

�axes�: False,

�colorbar�: False,

�contours�: None,

�fill�: True,

�frame�: True,

�labels�: False,

�legend_label�: None,

�linestyles�: None,

�linewidths�: None,

�plot_points�: 100,

�region�: None}

>>> from sage.all import *

>>> contour_plot.options

{�aspect_ratio�: 1,

�axes�: False,

(continues on next page)

6.3. Contour-type Plots 71

PREP Tutorials, Release 10.6

(continued from previous page)

�colorbar�: False,

�contours�: None,

�fill�: True,

�frame�: True,

�labels�: False,

�legend_label�: None,

�linestyles�: None,

�linewidths�: None,

�plot_points�: 100,

�region�: None}

Let’s change it so that all future contour plots don’t have the fill. That’s how some of us might use them in a class. We’ll
also check that the change happened.

sage: contour_plot.options["fill"]=False

sage: contour_plot.options

{�aspect_ratio�: 1,

�axes�: False,

�colorbar�: False,

�contours�: None,

�fill�: False,

�frame�: True,

�labels�: False,

�legend_label�: None,

�linestyles�: None,

�linewidths�: None,

�plot_points�: 100,

�region�: None}

>>> from sage.all import *

>>> contour_plot.options["fill"]=False

>>> contour_plot.options

{�aspect_ratio�: 1,

�axes�: False,

�colorbar�: False,

�contours�: None,

�fill�: False,

�frame�: True,

�labels�: False,

�legend_label�: None,

�linestyles�: None,

�linewidths�: None,

�plot_points�: 100,

�region�: None}

And it works!

sage: contour_plot(f,(x,-2,2),(y,-2,2))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> contour_plot(f,(x,-Integer(2),Integer(2)),(y,-Integer(2),Integer(2)))

(continues on next page)

72 Chapter 6. Tutorial for Advanced 2d Plotting

PREP Tutorials, Release 10.6

(continued from previous page)

Graphics object consisting of 1 graphics primitive

We can always access the default options, of course, to remind us.

sage: contour_plot.defaults()

{�aspect_ratio�: 1,

�axes�: False,

�colorbar�: False,

�contours�: None,

�fill�: True,

�frame�: True,

�labels�: False,

�legend_label�: None,

�linestyles�: None,

�linewidths�: None,

�plot_points�: 100,

�region�: None}

>>> from sage.all import *

>>> contour_plot.defaults()

{�aspect_ratio�: 1,

�axes�: False,

�colorbar�: False,

�contours�: None,

�fill�: True,

�frame�: True,

�labels�: False,

�legend_label�: None,

�linestyles�: None,

�linewidths�: None,

�plot_points�: 100,

�region�: None}

6.3.2 Vector fields
The syntax for vector fields is very similar to other multivariate constructions. Notice that the arrows are scaled appropri-
ately, and colored by length in the 3D case.

sage: var(�x,y�)

(x, y)

sage: plot_vector_field((-y+x,y*x),(x,-3,3),(y,-3,3))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> var(�x,y�)

(x, y)

>>> plot_vector_field((-y+x,y*x),(x,-Integer(3),Integer(3)),(y,-Integer(3),

→˓Integer(3)))

Graphics object consisting of 1 graphics primitive

6.3. Contour-type Plots 73

PREP Tutorials, Release 10.6

sage: var(�x,y,z�)

(x, y, z)

sage: plot_vector_field3d((-y,-z,x), (x,-3,3),(y,-3,3),(z,-3,3))

Graphics3d Object

>>> from sage.all import *

>>> var(�x,y,z�)

(x, y, z)

>>> plot_vector_field3d((-y,-z,x), (x,-Integer(3),Integer(3)),(y,-Integer(3),

→˓Integer(3)),(z,-Integer(3),Integer(3)))

Graphics3d Object

3d vector field plots are ideally viewed with 3d glasses (right-click on the plot and select “Style” and “Stereographic”)

6.3.3 Complex Plots
We can plot functions of complex variables, where the magnitude is indicated by the brightness (black is zero magnitude)
and the argument is indicated by the hue (red is a positive real number).

sage: f(z) = exp(z) #z^5 + z - 1 + 1/z

sage: complex_plot(f, (-5,5),(-5,5))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> __tmp__=var("z"); f = symbolic_expression(exp(z)).function(z)#z^5 + z - 1 + 1/z

>>> complex_plot(f, (-Integer(5),Integer(5)),(-Integer(5),Integer(5)))

Graphics object consisting of 1 graphics primitive

6.3.4 Region plots
These plot where an expression is true, and are useful for plotting inequalities.

sage: region_plot(cos(x^2+y^2) <= 0, (x, -3, 3), (y, -3, 3),aspect_ratio=1)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> region_plot(cos(x**Integer(2)+y**Integer(2)) <= Integer(0), (x, -Integer(3),␣

→˓Integer(3)), (y, -Integer(3), Integer(3)),aspect_ratio=Integer(1))

Graphics object consisting of 1 graphics primitive

We can get fancier options as well.

sage: region_plot(sin(x)*sin(y) >= 1/4, (x,-10,10), (y,-10,10), incol=�yellow�,␣

→˓bordercol=�black�, borderstyle=�dashed�, plot_points=250,aspect_ratio=1)

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> region_plot(sin(x)*sin(y) >= Integer(1)/Integer(4), (x,-Integer(10),Integer(10)),␣

→˓(y,-Integer(10),Integer(10)), incol=�yellow�, bordercol=�black�, borderstyle=�dashed

→˓�, plot_points=Integer(250),aspect_ratio=Integer(1))

Graphics object consisting of 2 graphics primitives

Remember, what command would give full information about the syntax, options, and examples?

74 Chapter 6. Tutorial for Advanced 2d Plotting

PREP Tutorials, Release 10.6

6.4 Miscellaneous Plot Information

6.4.1 Builtin Graphics Objects
Sage includes a variety of built-in graphics objects. These are particularly useful for adding to one’s plot certain objects
which are difficult to describe with equations, but which are basic geometric objects nonetheless. In this section we will
try to demonstrate the syntax of some of the most useful of them; for most of them the contextual (remember, append ?)
help will give more details.

Points

To make one point, a coordinate pair suffices.

sage: point((3,5))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> point((Integer(3),Integer(5)))

Graphics object consisting of 1 graphics primitive

It doesn’t matter how multiple point are generated; they must go in as input via a list (square brackets). Here, we demon-
strate the hard (but naive) and easy (but a little more sophisticated) way to do this.

sage: f(x)=x^2

sage: points([(0,f(0)), (1,f(1)), (2,f(2)), (3,f(3)), (4,f(4))])

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x**Integer(2)).function(x)

>>> points([(Integer(0),f(Integer(0))), (Integer(1),f(Integer(1))), (Integer(2),

→˓f(Integer(2))), (Integer(3),f(Integer(3))), (Integer(4),f(Integer(4)))])

Graphics object consisting of 1 graphics primitive

sage: points([(x,f(x)) for x in range(5)])

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> points([(x,f(x)) for x in range(Integer(5))])

Graphics object consisting of 1 graphics primitive

Sage tries to tell how many dimensions you are working in automatically.

sage: f(x,y)=x^2-y^2

sage: points([(x,y,f(x,y)) for x in range(5) for y in range(5)])

Graphics3d Object

>>> from sage.all import *

>>> __tmp__=var("x,y"); f = symbolic_expression(x**Integer(2)-y**Integer(2)).

→˓function(x,y)

>>> points([(x,y,f(x,y)) for x in range(Integer(5)) for y in range(Integer(5))])

Graphics3d Object

6.4. Miscellaneous Plot Information 75

PREP Tutorials, Release 10.6

Lines

The syntax for lines is the same as that for points, but you get… well, you get connecting lines too!

sage: f(x)=x^2

sage: line([(x,f(x)) for x in range(5)])

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x**Integer(2)).function(x)

>>> line([(x,f(x)) for x in range(Integer(5))])

Graphics object consisting of 1 graphics primitive

Balls

Sage has disks and spheres of various types available. Generally the center and radius are all that is needed, but other
options are possible.

sage: circle((0,1),1,aspect_ratio=1)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> circle((Integer(0),Integer(1)),Integer(1),aspect_ratio=Integer(1))

Graphics object consisting of 1 graphics primitive

sage: disk((0,0), 1, (pi, 3*pi/2), color=�yellow�,aspect_ratio=1)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> disk((Integer(0),Integer(0)), Integer(1), (pi, Integer(3)*pi/Integer(2)), color=

→˓�yellow�,aspect_ratio=Integer(1))

Graphics object consisting of 1 graphics primitive

There are also ellipses and various arcs; see the full plot documentation.

Arrows

sage: arrow((0,0), (1,1))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> arrow((Integer(0),Integer(0)), (Integer(1),Integer(1)))

Graphics object consisting of 1 graphics primitive

Polygons

Polygons will try to complete themselves and fill in the interior; otherwise the syntax is fairly self-evident.

sage: polygon([[0,0],[1,1],[1,2]])

Graphics object consisting of 1 graphics primitive

76 Chapter 6. Tutorial for Advanced 2d Plotting

http://doc.sagemath.org/html/en/reference/plotting/index.html

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> polygon([[Integer(0),Integer(0)],[Integer(1),Integer(1)],[Integer(1),Integer(2)]])

Graphics object consisting of 1 graphics primitive

Text

In 2d, one can typeset mathematics using the text command. This can be used to fine-tune certain types of labels.
Unfortunately, in 3D the text is just text.

sage: text(r�$\int_0^2 x^2\, dx$�, (0.5,2))+plot(x^2,(x,0,2),fill=True)

Graphics object consisting of 3 graphics primitives

>>> from sage.all import *

>>> text(r�$\int_0^2 x^2\, dx$�, (RealNumber(�0.5�),Integer(2)))+plot(x**Integer(2),

→˓(x,Integer(0),Integer(2)),fill=True)

Graphics object consisting of 3 graphics primitives

6.4.2 Saving Plots
We can save 2d plots to many different formats. Sage can determine the format based on the filename for the image.

sage: p=plot(x^2,(x,-1,1))

sage: p

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> p=plot(x**Integer(2),(x,-Integer(1),Integer(1)))

>>> p

Graphics object consisting of 1 graphics primitive

For testing purposes, we use the Sage standard temporary filename; however, you could use any string for a name that
you wanted, like "my_plot.png".

sage: name = tmp_filename() # this is a string

sage: png_savename = name+�.png�

sage: p.save(png_savename)

>>> from sage.all import *

>>> name = tmp_filename() # this is a string

>>> png_savename = name+�.png�

>>> p.save(png_savename)

In the notebook, these are usually ready for downloading in little links by the cells.

sage: pdf_savename = name+�.pdf�

sage: p.save(pdf_savename)

>>> from sage.all import *

>>> pdf_savename = name+�.pdf�

>>> p.save(pdf_savename)

Notably, we can export in formats ready for inclusion in web pages.

6.4. Miscellaneous Plot Information 77

PREP Tutorials, Release 10.6

sage: svg_savename = name+�.svg�

sage: p.save(svg_savename)

>>> from sage.all import *

>>> svg_savename = name+�.svg�

>>> p.save(svg_savename)

78 Chapter 6. Tutorial for Advanced 2d Plotting

CHAPTER

SEVEN

PREP QUICKSTART TUTORIALS

Sometimes all one needs to start using Sage in a field is a little help. These “Quickstart” tutorials are designed to get you
up and running in one of these fields with a minimum of fuss and muss.

The assumed background in most of these is the first several tutorials in this set of documents. Similarly, keep in mind
that these documents are concise; the next step from each of them is really the Sage reference manual.

Finally, the last tutorial is a special one introducing the reader to creation of interactive material in Sage. It’s highly
recommended that you study the Programming tutorial before tackling this one.

Contents:

7.1 Sage Quickstart for Abstract Algebra
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license (CC BY-SA).

As computers are discrete and finite, anything with a discrete, finite set of generators is natural to implement and explore.

7.1.1 Group Theory
Many common groups are pre-defined, usually as permutation groups: that is, explicitly described as subgroups of sym-
metric groups.

• Every group of order 15 or less is available as a permutation group.

• Sometimes they are available under special names, though.

sage: G = QuaternionGroup()

sage: G

Quaternion group of order 8 as a permutation group

>>> from sage.all import *

>>> G = QuaternionGroup()

>>> G

Quaternion group of order 8 as a permutation group

sage: H = AlternatingGroup(5)

sage: H

Alternating group of order 5!/2 as a permutation group

79

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> H = AlternatingGroup(Integer(5))

>>> H

Alternating group of order 5!/2 as a permutation group

sage: H.is_simple()

True

>>> from sage.all import *

>>> H.is_simple()

True

sage: D = DihedralGroup(8)

sage: D

Dihedral group of order 16 as a permutation group

>>> from sage.all import *

>>> D = DihedralGroup(Integer(8))

>>> D

Dihedral group of order 16 as a permutation group

We can access a lot of information about groups, such as:

• A list of subgroups up to conjugacy,

• or a stabilizer,

• or other things demonstrated below.

sage: for K in D.conjugacy_classes_subgroups():

....: print(K)

Subgroup generated by [()] of (Dihedral group of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8)] of (Dihedral group of order 16 as a␣

→˓permutation group)

Subgroup generated by [(2,8)(3,7)(4,6)] of (Dihedral group of order 16 as a␣

→˓permutation group)

Subgroup generated by [(1,2)(3,8)(4,7)(5,6)] of (Dihedral group of order 16 as a␣

→˓permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8)] of (Dihedral group␣

→˓of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (2,8)(3,7)(4,6)] of (Dihedral group of␣

→˓order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,2)(3,8)(4,7)(5,6)] of (Dihedral group␣

→˓of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8), (2,8)(3,7)(4,6)] of␣

→˓(Dihedral group of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8), (1,2,3,4,5,6,7,8)]␣

→˓of (Dihedral group of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8), (1,2)(3,8)(4,7)(5,

→˓6)] of (Dihedral group of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8), (2,8)(3,7)(4,6), (1,

→˓2,3,4,5,6,7,8)] of (Dihedral group of order 16 as a permutation group)

80 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> for K in D.conjugacy_classes_subgroups():

... print(K)

Subgroup generated by [()] of (Dihedral group of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8)] of (Dihedral group of order 16 as a␣

→˓permutation group)

Subgroup generated by [(2,8)(3,7)(4,6)] of (Dihedral group of order 16 as a␣

→˓permutation group)

Subgroup generated by [(1,2)(3,8)(4,7)(5,6)] of (Dihedral group of order 16 as a␣

→˓permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8)] of (Dihedral group␣

→˓of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (2,8)(3,7)(4,6)] of (Dihedral group of␣

→˓order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,2)(3,8)(4,7)(5,6)] of (Dihedral group␣

→˓of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8), (2,8)(3,7)(4,6)] of␣

→˓(Dihedral group of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8), (1,2,3,4,5,6,7,8)]␣

→˓of (Dihedral group of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8), (1,2)(3,8)(4,7)(5,

→˓6)] of (Dihedral group of order 16 as a permutation group)

Subgroup generated by [(1,5)(2,6)(3,7)(4,8), (1,3,5,7)(2,4,6,8), (2,8)(3,7)(4,6), (1,

→˓2,3,4,5,6,7,8)] of (Dihedral group of order 16 as a permutation group)

In the previous cell we once again did a for loop over a set of objects rather than just a list of numbers. This can be very
powerful.

sage: D.stabilizer(3)

Subgroup generated by [(1,5)(2,4)(6,8)] of (Dihedral group of order 16 as a␣

→˓permutation group)

>>> from sage.all import *

>>> D.stabilizer(Integer(3))

Subgroup generated by [(1,5)(2,4)(6,8)] of (Dihedral group of order 16 as a␣

→˓permutation group)

sage: len(D.normal_subgroups())

7

sage: for K in sorted(D.normal_subgroups()):

....: print(K)

Subgroup generated by [()] of (Dihedral group of order 16 as a permutation group)

...

Subgroup generated by [(1,2,3,4,5,6,7,8), (1,8)(2,7)(3,6)(4,5)] of (Dihedral group of␣

→˓order 16 as a permutation group)

>>> from sage.all import *

>>> len(D.normal_subgroups())

7

>>> for K in sorted(D.normal_subgroups()):

... print(K)

Subgroup generated by [()] of (Dihedral group of order 16 as a permutation group)

(continues on next page)

7.1. Sage Quickstart for Abstract Algebra 81

PREP Tutorials, Release 10.6

(continued from previous page)

...

Subgroup generated by [(1,2,3,4,5,6,7,8), (1,8)(2,7)(3,6)(4,5)] of (Dihedral group of␣

→˓order 16 as a permutation group)

We can access specific subgroups if we know the generators as a permutation group.

sage: L = D.subgroup(["(1,3,5,7)(2,4,6,8)"])

>>> from sage.all import *

>>> L = D.subgroup(["(1,3,5,7)(2,4,6,8)"])

sage: L.is_normal(D)

True

>>> from sage.all import *

>>> L.is_normal(D)

True

sage: Q=D.quotient(L)

sage: Q

Permutation Group with generators [(1,2)(3,4), (1,3)(2,4)]

>>> from sage.all import *

>>> Q=D.quotient(L)

>>> Q

Permutation Group with generators [(1,2)(3,4), (1,3)(2,4)]

sage: Q.is_isomorphic(KleinFourGroup())

True

>>> from sage.all import *

>>> Q.is_isomorphic(KleinFourGroup())

True

There are some matrix groups as well, both finite and infinite.

sage: S = SL(2, GF(3))

sage: S

Special Linear Group of degree 2 over Finite Field of size 3

>>> from sage.all import *

>>> S = SL(Integer(2), GF(Integer(3)))

>>> S

Special Linear Group of degree 2 over Finite Field of size 3

We can print out all of the elements of this group.

sage: for a in S:

....: print(a)

[1 0]

(continues on next page)

82 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

[0 1]

...

[2 2]

[2 1]

>>> from sage.all import *

>>> for a in S:

... print(a)

[1 0]

[0 1]

...

[2 2]

[2 1]

sage: SS = SL(2, ZZ)

>>> from sage.all import *

>>> SS = SL(Integer(2), ZZ)

Of course, you have to be careful what you try to do!

sage: SS.list()

Traceback (most recent call last):

...

NotImplementedError: group must be finite

>>> from sage.all import *

>>> SS.list()

Traceback (most recent call last):

...

NotImplementedError: group must be finite

sage: for a in SS.gens():

....: print(a)

[0 1]

[-1 0]

...

>>> from sage.all import *

>>> for a in SS.gens():

... print(a)

[0 1]

[-1 0]

...

7.1.2 Rings
Sage has many pre-defined rings to experiment with. Here is how one would access ;/12;, for instance.

7.1. Sage Quickstart for Abstract Algebra 83

PREP Tutorials, Release 10.6

sage: twelve = Integers(12)

sage: twelve

Ring of integers modulo 12

>>> from sage.all import *

>>> twelve = Integers(Integer(12))

>>> twelve

Ring of integers modulo 12

sage: twelve.is_field()

False

>>> from sage.all import *

>>> twelve.is_field()

False

sage: twelve.is_integral_domain()

False

>>> from sage.all import *

>>> twelve.is_integral_domain()

False

Quaternions, and generalizations

We can define generalized quaternion algebras, where 𝑖2 = 𝑎, 𝑗2 = 𝑏, and 𝑘 = 𝑖 · 𝑗, all over Q:

sage: quat = QuaternionAlgebra(-1, -1)

sage: quat

Quaternion Algebra (-1, -1) with base ring Rational Field

>>> from sage.all import *

>>> quat = QuaternionAlgebra(-Integer(1), -Integer(1))

>>> quat

Quaternion Algebra (-1, -1) with base ring Rational Field

sage: quat.is_field()

False

>>> from sage.all import *

>>> quat.is_field()

False

sage: quat.is_commutative()

False

>>> from sage.all import *

>>> quat.is_commutative()

False

84 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

sage: quat.is_division_algebra()

True

>>> from sage.all import *

>>> quat.is_division_algebra()

True

sage: quat2 = QuaternionAlgebra(5, -7)

>>> from sage.all import *

>>> quat2 = QuaternionAlgebra(Integer(5), -Integer(7))

sage: quat2.is_division_algebra()

True

>>> from sage.all import *

>>> quat2.is_division_algebra()

True

sage: quat2.is_field()

False

>>> from sage.all import *

>>> quat2.is_field()

False

Polynomial Rings

Polynomial arithmetic in Sage is a very important tool.

The first cell brings us back to the symbolic world. This is not the same thing as polynomials!

sage: reset(�x�) # This returns x to being a variable

sage: (x^4 + 2*x).parent()

Symbolic Ring

>>> from sage.all import *

>>> reset(�x�) # This returns x to being a variable

>>> (x**Integer(4) + Integer(2)*x).parent()

Symbolic Ring

Now we will turn 𝑥 into the generator of a polynomial ring. The syntax is a little unusual, but you will see it often.

sage: R.<x> = QQ[]

sage: R

Univariate Polynomial Ring in x over Rational Field

>>> from sage.all import *

>>> R = QQ[�x�]; (x,) = R._first_ngens(1)

>>> R

Univariate Polynomial Ring in x over Rational Field

7.1. Sage Quickstart for Abstract Algebra 85

PREP Tutorials, Release 10.6

sage: R.random_element() # random

-5/2*x^2 - 1/4*x - 1

>>> from sage.all import *

>>> R.random_element() # random

-5/2*x^2 - 1/4*x - 1

sage: R.is_integral_domain()

True

>>> from sage.all import *

>>> R.is_integral_domain()

True

sage: (x^4 + 2*x).parent()

Univariate Polynomial Ring in x over Rational Field

>>> from sage.all import *

>>> (x**Integer(4) + Integer(2)*x).parent()

Univariate Polynomial Ring in x over Rational Field

sage: (x^2+x+1).is_irreducible()

True

>>> from sage.all import *

>>> (x**Integer(2)+x+Integer(1)).is_irreducible()

True

sage: F = GF(5)

sage: P.<y> = F[]

>>> from sage.all import *

>>> F = GF(Integer(5))

>>> P = F[�y�]; (y,) = P._first_ngens(1)

sage: P.random_element() # random

2*y

>>> from sage.all import *

>>> P.random_element() # random

2*y

sage: I = P.ideal(y^3+2*y)

sage: I

Principal ideal (y^3 + 2*y) of Univariate Polynomial Ring in y over Finite Field of␣

→˓size 5

>>> from sage.all import *

>>> I = P.ideal(y**Integer(3)+Integer(2)*y)

(continues on next page)

86 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

>>> I

Principal ideal (y^3 + 2*y) of Univariate Polynomial Ring in y over Finite Field of␣

→˓size 5

sage: Q = P.quotient(I)

>>> from sage.all import *

>>> Q = P.quotient(I)

sage: Q

Univariate Quotient Polynomial Ring in ybar over Finite Field of size 5 with modulus␣

→˓y^3 + 2*y

>>> from sage.all import *

>>> Q

Univariate Quotient Polynomial Ring in ybar over Finite Field of size 5 with modulus␣

→˓y^3 + 2*y

7.1.3 Fields
Sage has superb support for finite fields and extensions of the rationals.

Finite Fields

sage: F.<a> = GF(3^4)

sage: F

Finite Field in a of size 3^4

>>> from sage.all import *

>>> F = GF(Integer(3)**Integer(4), names=(�a�,)); (a,) = F._first_ngens(1)

>>> F

Finite Field in a of size 3^4

The generator satisfies a Conway polynomial, by default, or the polynomial can be specified.

sage: F.polynomial()

a^4 + 2*a^3 + 2

>>> from sage.all import *

>>> F.polynomial()

a^4 + 2*a^3 + 2

sage: F.list()

[0, a, a^2, a^3, a^3 + 1, a^3 + a + 1, a^3 + a^2 + a + 1, 2*a^3 + a^2 + a + 1, a^2 +␣

→˓a + 2, a^3 + a^2 + 2*a, 2*a^3 + 2*a^2 + 1, a^3 + a + 2, a^3 + a^2 + 2*a + 1, 2*a^3␣

→˓+ 2*a^2 + a + 1, a^3 + a^2 + a + 2, 2*a^3 + a^2 + 2*a + 1, 2*a^2 + a + 2, 2*a^3 + a^

→˓2 + 2*a, 2*a^2 + 2, 2*a^3 + 2*a, 2*a^3 + 2*a^2 + 2, a^3 + 2*a + 2, a^3 + 2*a^2 +␣

→˓2*a + 1, 2*a^2 + a + 1, 2*a^3 + a^2 + a, a^2 + 2, a^3 + 2*a, a^3 + 2*a^2 + 1, a + 1,

→˓ a^2 + a, a^3 + a^2, 2*a^3 + 1, 2*a^3 + a + 2, 2*a^3 + a^2 + 2*a + 2, 2*a^2 + 2*a +␣

→˓2, 2*a^3 + 2*a^2 + 2*a, a^3 + 2*a^2 + 2, 2*a + 1, 2*a^2 + a, 2*a^3 + a^2, 2, 2*a,␣

(continues on next page)

7.1. Sage Quickstart for Abstract Algebra 87

PREP Tutorials, Release 10.6

(continued from previous page)

→˓2*a^2, 2*a^3, 2*a^3 + 2, 2*a^3 + 2*a + 2, 2*a^3 + 2*a^2 + 2*a + 2, a^3 + 2*a^2 +␣

→˓2*a + 2, 2*a^2 + 2*a + 1, 2*a^3 + 2*a^2 + a, a^3 + a^2 + 2, 2*a^3 + 2*a + 1, 2*a^3␣

→˓+ 2*a^2 + a + 2, a^3 + a^2 + 2*a + 2, 2*a^3 + 2*a^2 + 2*a + 1, a^3 + 2*a^2 + a + 2,␣

→˓a^2 + 2*a + 1, a^3 + 2*a^2 + a, a^2 + 1, a^3 + a, a^3 + a^2 + 1, 2*a^3 + a + 1, 2*a^

→˓3 + a^2 + a + 2, a^2 + 2*a + 2, a^3 + 2*a^2 + 2*a, 2*a^2 + 1, 2*a^3 + a, 2*a^3 + a^

→˓2 + 2, 2*a + 2, 2*a^2 + 2*a, 2*a^3 + 2*a^2, a^3 + 2, a^3 + 2*a + 1, a^3 + 2*a^2 + a␣

→˓+ 1, a^2 + a + 1, a^3 + a^2 + a, 2*a^3 + a^2 + 1, a + 2, a^2 + 2*a, a^3 + 2*a^2, 1]

>>> from sage.all import *

>>> F.list()

[0, a, a^2, a^3, a^3 + 1, a^3 + a + 1, a^3 + a^2 + a + 1, 2*a^3 + a^2 + a + 1, a^2 +␣

→˓a + 2, a^3 + a^2 + 2*a, 2*a^3 + 2*a^2 + 1, a^3 + a + 2, a^3 + a^2 + 2*a + 1, 2*a^3␣

→˓+ 2*a^2 + a + 1, a^3 + a^2 + a + 2, 2*a^3 + a^2 + 2*a + 1, 2*a^2 + a + 2, 2*a^3 + a^

→˓2 + 2*a, 2*a^2 + 2, 2*a^3 + 2*a, 2*a^3 + 2*a^2 + 2, a^3 + 2*a + 2, a^3 + 2*a^2 +␣

→˓2*a + 1, 2*a^2 + a + 1, 2*a^3 + a^2 + a, a^2 + 2, a^3 + 2*a, a^3 + 2*a^2 + 1, a + 1,

→˓ a^2 + a, a^3 + a^2, 2*a^3 + 1, 2*a^3 + a + 2, 2*a^3 + a^2 + 2*a + 2, 2*a^2 + 2*a +␣

→˓2, 2*a^3 + 2*a^2 + 2*a, a^3 + 2*a^2 + 2, 2*a + 1, 2*a^2 + a, 2*a^3 + a^2, 2, 2*a,␣

→˓2*a^2, 2*a^3, 2*a^3 + 2, 2*a^3 + 2*a + 2, 2*a^3 + 2*a^2 + 2*a + 2, a^3 + 2*a^2 +␣

→˓2*a + 2, 2*a^2 + 2*a + 1, 2*a^3 + 2*a^2 + a, a^3 + a^2 + 2, 2*a^3 + 2*a + 1, 2*a^3␣

→˓+ 2*a^2 + a + 2, a^3 + a^2 + 2*a + 2, 2*a^3 + 2*a^2 + 2*a + 1, a^3 + 2*a^2 + a + 2,␣

→˓a^2 + 2*a + 1, a^3 + 2*a^2 + a, a^2 + 1, a^3 + a, a^3 + a^2 + 1, 2*a^3 + a + 1, 2*a^

→˓3 + a^2 + a + 2, a^2 + 2*a + 2, a^3 + 2*a^2 + 2*a, 2*a^2 + 1, 2*a^3 + a, 2*a^3 + a^

→˓2 + 2, 2*a + 2, 2*a^2 + 2*a, 2*a^3 + 2*a^2, a^3 + 2, a^3 + 2*a + 1, a^3 + 2*a^2 + a␣

→˓+ 1, a^2 + a + 1, a^3 + a^2 + a, 2*a^3 + a^2 + 1, a + 2, a^2 + 2*a, a^3 + 2*a^2, 1]

sage: (a^3 + 2*a^2 + 2)*(2*a^3 + 2*a + 1)

2*a^3 + a^2 + a + 1

>>> from sage.all import *

>>> (a**Integer(3) + Integer(2)*a**Integer(2) + Integer(2))*(Integer(2)*a**Integer(3)␣

→˓+ Integer(2)*a + Integer(1))

2*a^3 + a^2 + a + 1

𝐹 should be the splitting field of the polynomial 𝑥81 − 𝑥, so it is very good that we get no output from the following cell,
which combines a loop and a conditional statement.

sage: for a in F:

....: if not (a^81 - a == 0):

....: print("Oops!")

>>> from sage.all import *

>>> for a in F:

... if not (a**Integer(81) - a == Integer(0)):

... print("Oops!")

Field Extensions, Number Fields

Most things you will need in an undergraduate algebra classroom are already in Sage.

sage: N = QQ[sqrt(2)]

sage: N

(continues on next page)

88 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095?

>>> from sage.all import *

>>> N = QQ[sqrt(Integer(2))]

>>> N

Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095?

sage: var(�z�)

z

sage: M.<a>=NumberField(z^2-2)

sage: M

Number Field in a with defining polynomial z^2 - 2

>>> from sage.all import *

>>> var(�z�)

z

>>> M = NumberField(z**Integer(2)-Integer(2), names=(�a�,)); (a,) = M._first_ngens(1)

>>> M

Number Field in a with defining polynomial z^2 - 2

sage: M.degree()

2

>>> from sage.all import *

>>> M.degree()

2

sage: M.is_galois()

True

>>> from sage.all import *

>>> M.is_galois()

True

sage: M.is_isomorphic(N)

True

>>> from sage.all import *

>>> M.is_isomorphic(N)

True

7.2 Sage Quickstart for Differential Equations
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license (CC BY-SA).

Solving differential equations is a combination of exact and numerical methods, and hence a great place to explore with
the computer. We have already seen one example of this in the calculus tutorial, which is worth reviewing.

7.2. Sage Quickstart for Differential Equations 89

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

7.2.1 Basic Symbolic Techniques
sage: y = function(�y�)(x)

sage: de = diff(y,x) + y -2

sage: h = desolve(de, y)

>>> from sage.all import *

>>> y = function(�y�)(x)

>>> de = diff(y,x) + y -Integer(2)

>>> h = desolve(de, y)

Forgetting about plotting for the moment, notice that there are three things one needs to solve a differential equation
symbolically:

• an abstract function y;

• a differential equation, which here we put in a separate line;

• the actual differential equation solve command (bold for the acronym desolve).

sage: show(expand(h))

>>> from sage.all import *

>>> show(expand(h))

𝑐𝑒(−𝑥) + 2

Since we did not specify any initial conditions, Sage (from Maxima) puts in a parameter. If we want to put in an initial
condition, we use ics (for initial conditions). For example, we set ics=[0,3] to specify that when 𝑥 = 0, 𝑦 = 3.

sage: h = desolve(de, y, ics=[0,3]); h

(2*e^x + 1)*e^(-x)

>>> from sage.all import *

>>> h = desolve(de, y, ics=[Integer(0),Integer(3)]); h

(2*e^x + 1)*e^(-x)

And of course we have already noted that we can plot all this with a slope field.

sage: y = var(�y�) # Needed so we can plot

sage: Plot1=plot_slope_field(2-y,(x,0,3),(y,0,5))

sage: Plot2=plot(h,x,0,3)

sage: Plot1+Plot2

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> y = var(�y�) # Needed so we can plot

>>> Plot1=plot_slope_field(Integer(2)-y,(x,Integer(0),Integer(3)),(y,Integer(0),

→˓Integer(5)))

>>> Plot2=plot(h,x,Integer(0),Integer(3))

>>> Plot1+Plot2

Graphics object consisting of 2 graphics primitives

90 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

INFO-CIRCLE Note

Regarding symbolic functions versus symbolic variables:

• If you wanted to make y an abstract function again instead of a variable, you’d have to do that separately. A
differential equation requires a function but plotting requires a var.

• Another option is to let z be the name of the vertical axis variable.

• Either way something will have to give, since in common speaking about these things we treat y as both a
variable and a function, which is much trickier to accomplish with a computer.

There are many other differential equation facilities in Sage. We can’t cover all the variants of this in a quickstart, but the
documentation is good for symbolic solvers.

sage: desolvers?

>>> from sage.all import *

>>> desolvers?

For instance, Maxima can do systems, as well as use Laplace transforms, and we include versions of these wrapped for
ease of use.

In all differential equation solving routines, it is important to pay attention to the syntax! In the following example, we
have placed the differential equation in the body of the command, and had to specify that f was the dependent variable
(dvar), as well as give initial conditions 𝑓(0) = 1 and 𝑓 ′(0) = 2, which gives the last list in the example.

sage: f=function(�f�)(x)

sage: desolve_laplace(diff(f,x,2) == 2*diff(f,x)-f, dvar = f, ics = [0,1,2])

x*e^x + e^x

>>> from sage.all import *

>>> f=function(�f�)(x)

>>> desolve_laplace(diff(f,x,Integer(2)) == Integer(2)*diff(f,x)-f, dvar = f, ics =␣

→˓[Integer(0),Integer(1),Integer(2)])

x*e^x + e^x

sage: g(x)=x*e^x+e^x

sage: derivative(g,x,2)-2*derivative(g,x)+g

x |--> 0

>>> from sage.all import *

>>> __tmp__=var("x"); g = symbolic_expression(x*e**x+e**x).function(x)

>>> derivative(g,x,Integer(2))-Integer(2)*derivative(g,x)+g

x |--> 0

7.2.2 Numerical and Power Series Methods
There are also numerical methods.

For instance, one of the options above was desolve_rk4. This is a fourth-order Runge-Kutta method, and returns
appropriate (numerical) output. Here, we must give the dependent variable and initial conditions.

7.2. Sage Quickstart for Differential Equations 91

PREP Tutorials, Release 10.6

sage: y = function(�y�)(x)

sage: de = diff(y,x) + y -2

sage: h = desolve_rk4(de, y, step=.05, ics=[0,3])

>>> from sage.all import *

>>> y = function(�y�)(x)

>>> de = diff(y,x) + y -Integer(2)

>>> h = desolve_rk4(de, y, step=RealNumber(�.05�), ics=[Integer(0),Integer(3)])

It can be fun to compare this with the original, symbolic solution. We use the points command from the advanced
plotting tutorial.

sage: h1 = desolve(de, y, ics=[0,3])

sage: plot(h1,(x,0,5),color=�red�)+points(h)

Graphics object consisting of 2 graphics primitives

>>> from sage.all import *

>>> h1 = desolve(de, y, ics=[Integer(0),Integer(3)])

>>> plot(h1,(x,Integer(0),Integer(5)),color=�red�)+points(h)

Graphics object consisting of 2 graphics primitives

The primary use of numerical routines from here is pedagogical in nature.

For more advanced numerical routines, we primarily use the GNU scientific library. Using this is a little more sophisti-
cated, but gives a wealth of options.

sage: ode_solver?

>>> from sage.all import *

>>> ode_solver?

We can even do power series solutions. In order to do this, we must first define a special power series ring , including the
precision.

sage: R.<t> = PowerSeriesRing(QQ, default_prec=10)

sage: a = -1 + 0*t

sage: b = 2 + 0*t

sage: h=a.solve_linear_de(b=b,f0=3,prec=10)

>>> from sage.all import *

>>> R = PowerSeriesRing(QQ, default_prec=Integer(10), names=(�t�,)); (t,) = R._first_

→˓ngens(1)

>>> a = -Integer(1) + Integer(0)*t

>>> b = Integer(2) + Integer(0)*t

>>> h=a.solve_linear_de(b=b,f0=Integer(3),prec=Integer(10))

This power series solution is pretty good for a while!

sage: h = h.polynomial()

sage: plot(h,-2,5)+plot(2+e^-x,(x,-2,5),color=�red�,linestyle=�:�,thickness=3)

Graphics object consisting of 2 graphics primitives

92 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> h = h.polynomial()

>>> plot(h,-Integer(2),Integer(5))+plot(Integer(2)+e**-x,(x,-Integer(2),Integer(5)),

→˓color=�red�,linestyle=�:�,thickness=Integer(3))

Graphics object consisting of 2 graphics primitives

This was just an introduction; there are a lot of resources for differential equations using Sage elsewhere, including a book
by David Joyner, who wrote much of the original code wrapping Maxima for Sage to do just this.

7.3 Sage Quickstart for Graph Theory and Discrete Mathematics
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license (CC BY-SA).

As computers are discrete and finite, topics from discrete mathematics are natural to implement and use. We’ll start with
Graph Theory.

7.3.1 Graph Theory
The pre-defined graphs object provides an abundance of examples. Just tab to see!

sage: graphs.[tab]

>>> from sage.all import *

>>> graphs.[tab]

Its companion digraphs has many built-in examples as well.

Visualizing a graph is similar to plotting functions.

sage: G = graphs.HeawoodGraph()

sage: plot(G)

Graphics object consisting of 36 graphics primitives

>>> from sage.all import *

>>> G = graphs.HeawoodGraph()

>>> plot(G)

Graphics object consisting of 36 graphics primitives

Defining your own graph is easy. One way is the following.

• Put a vertex next to a list (recall this concept from the programming tutorial) with a colon, to show its adjacent
vertices. For example, to put vertex 4 next to vertices 0 and 2, use 4:[0,2].

• Now combine all these in curly braces (in the advanced appendix to the programming tutorial, this is called a
dictionary).

sage: H=Graph({0:[1,2,3], 4:[0,2], 6:[1,2,3,4,5]})

sage: plot(H)

Graphics object consisting of 18 graphics primitives

7.3. Sage Quickstart for Graph Theory and Discrete Mathematics 93

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> H=Graph({Integer(0):[Integer(1),Integer(2),Integer(3)], Integer(4):[Integer(0),

→˓Integer(2)], Integer(6):[Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)]})

>>> plot(H)

Graphics object consisting of 18 graphics primitives

Adjacency matrices, other graphs, and similar inputs are also recognized.

Graphs have “position” information for location of vertices. There are several different ways to compute a layout, or you
can compute your own. Pre-defined graphs often come with “nice” layouts.

sage: H.set_pos(H.layout_circular())

sage: plot(H)

Graphics object consisting of 18 graphics primitives

>>> from sage.all import *

>>> H.set_pos(H.layout_circular())

>>> plot(H)

Graphics object consisting of 18 graphics primitives

Vertices can be lots of things, for example the codewords of an error-correcting code.

INFO-CIRCLE Note

Technical caveat: they need to be “immutable”, like Python’s tuples.

Here we have a matrix over the integers and a matrix of variables as vertices.

sage: a=matrix([[1,2],[3,4]])

sage: var(�x y z w�)

(x, y, z, w)

sage: b=matrix([[x,y],[z,w]])

sage: a.set_immutable()

sage: b.set_immutable()

sage: K=DiGraph({a:[b]})

sage: show(K, vertex_size=800)

>>> from sage.all import *

>>> a=matrix([[Integer(1),Integer(2)],[Integer(3),Integer(4)]])

>>> var(�x y z w�)

(x, y, z, w)

>>> b=matrix([[x,y],[z,w]])

>>> a.set_immutable()

>>> b.set_immutable()

>>> K=DiGraph({a:[b]})

>>> show(K, vertex_size=Integer(800))

Edges can be labeled.

sage: L=graphs.CycleGraph(5)

sage: for edge in L.edges(sort=True):

....: u = edge[0]

(continues on next page)

94 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

....: v = edge[1]

....: L.set_edge_label(u, v, u*v)

sage: plot(L, edge_labels=True)

Graphics object consisting of 16 graphics primitives

>>> from sage.all import *

>>> L=graphs.CycleGraph(Integer(5))

>>> for edge in L.edges(sort=True):

... u = edge[Integer(0)]

... v = edge[Integer(1)]

... L.set_edge_label(u, v, u*v)

>>> plot(L, edge_labels=True)

Graphics object consisting of 16 graphics primitives

There are natural connections to other areas of mathematics. Here we compute the automorphism group and eigenvalues
of the skeleton of a cube.

sage: C = graphs.CubeGraph(3)

sage: plot(C)

Graphics object consisting of 21 graphics primitives

>>> from sage.all import *

>>> C = graphs.CubeGraph(Integer(3))

>>> plot(C)

Graphics object consisting of 21 graphics primitives

sage: Aut=C.automorphism_group()

sage: print("Order of automorphism group: {}".format(Aut.order()))

Order of automorphism group: 48

sage: print("Group: \n{}".format(Aut)) # random

Group:

Permutation Group with generators [(�010�,�100�)(�011�,�101�), (�001�,�010�)(�101�,

→˓�110�), (�000�,�001�)(�010�,�011�)(�100�,�101�)(�110�,�111�)]

>>> from sage.all import *

>>> Aut=C.automorphism_group()

>>> print("Order of automorphism group: {}".format(Aut.order()))

Order of automorphism group: 48

>>> print("Group: \n{}".format(Aut)) # random

Group:

Permutation Group with generators [(�010�,�100�)(�011�,�101�), (�001�,�010�)(�101�,

→˓�110�), (�000�,�001�)(�010�,�011�)(�100�,�101�)(�110�,�111�)]

sage: C.spectrum()

[3, 1, 1, 1, -1, -1, -1, -3]

>>> from sage.all import *

>>> C.spectrum()

[3, 1, 1, 1, -1, -1, -1, -3]

There is a huge amount of LaTeX support for graphs. The following graphic shows an example of what can be done; this
is the Heawood graph.

7.3. Sage Quickstart for Graph Theory and Discrete Mathematics 95

PREP Tutorials, Release 10.6

Press ‘tab’ at the next command to see all the available options.

sage: sage.graphs.graph_latex.GraphLatex.set_option?

>>> from sage.all import *

>>> sage.graphs.graph_latex.GraphLatex.set_option?

7.3.2 More Discrete Mathematics
Discrete mathematics is a broad area, and Sage has excellent support for much of it. This is largely due to the
“sage-combinat” group. These developers previously developed for MuPad (as “mupad-combinat”) but switched over
to Sage shortly before MuPad was sold.

Simple Combinatorics

Sage can work with basic combinatorial structures like combinations and permutations.

sage: pets = [�dog�, �cat�, �snake�, �spider�]

sage: C=Combinations(pets)

sage: C.list()

[[], [�dog�], [�cat�], [�snake�], [�spider�], [�dog�, �cat�], [�dog�, �snake�], [�dog

→˓�, �spider�], [�cat�, �snake�], [�cat�, �spider�], [�snake�, �spider�], [�dog�, �cat

→˓�, �snake�], [�dog�, �cat�, �spider�], [�dog�, �snake�, �spider�], [�cat�, �snake�,

→˓�spider�], [�dog�, �cat�, �snake�, �spider�]]

>>> from sage.all import *

>>> pets = [�dog�, �cat�, �snake�, �spider�]

>>> C=Combinations(pets)

>>> C.list()

[[], [�dog�], [�cat�], [�snake�], [�spider�], [�dog�, �cat�], [�dog�, �snake�], [�dog

(continues on next page)

96 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

→˓�, �spider�], [�cat�, �snake�], [�cat�, �spider�], [�snake�, �spider�], [�dog�, �cat

→˓�, �snake�], [�dog�, �cat�, �spider�], [�dog�, �snake�, �spider�], [�cat�, �snake�,

→˓�spider�], [�dog�, �cat�, �snake�, �spider�]]

sage: for a, b in Combinations(pets, 2):

....: print("The {} chases the {}.".format(a, b))

The dog chases the cat.

The dog chases the snake.

The dog chases the spider.

The cat chases the snake.

The cat chases the spider.

The snake chases the spider.

>>> from sage.all import *

>>> for a, b in Combinations(pets, Integer(2)):

... print("The {} chases the {}.".format(a, b))

The dog chases the cat.

The dog chases the snake.

The dog chases the spider.

The cat chases the snake.

The cat chases the spider.

The snake chases the spider.

sage: for pair in Permutations(pets, 2):

....: print(pair)

[�dog�, �cat�]

[�dog�, �snake�]

[�dog�, �spider�]

[�cat�, �dog�]

[�cat�, �snake�]

[�cat�, �spider�]

[�snake�, �dog�]

[�snake�, �cat�]

[�snake�, �spider�]

[�spider�, �dog�]

[�spider�, �cat�]

[�spider�, �snake�]

>>> from sage.all import *

>>> for pair in Permutations(pets, Integer(2)):

... print(pair)

[�dog�, �cat�]

[�dog�, �snake�]

[�dog�, �spider�]

[�cat�, �dog�]

[�cat�, �snake�]

[�cat�, �spider�]

[�snake�, �dog�]

[�snake�, �cat�]

[�snake�, �spider�]

[�spider�, �dog�]

(continues on next page)

7.3. Sage Quickstart for Graph Theory and Discrete Mathematics 97

PREP Tutorials, Release 10.6

(continued from previous page)

[�spider�, �cat�]

[�spider�, �snake�]

Of course, we often want these for numbers, and these are present as well. Some are familiar:

sage: Permutations(5).cardinality()

120

>>> from sage.all import *

>>> Permutations(Integer(5)).cardinality()

120

Others somewhat less so:

sage: D = Derangements([1,1,2,2,3,4,5])

sage: D.list()[:5]

[[2, 2, 1, 1, 4, 5, 3], [2, 2, 1, 1, 5, 3, 4], [2, 2, 1, 3, 1, 5, 4], [2, 2, 1, 3, 4,␣

→˓5, 1], [2, 2, 1, 3, 5, 1, 4]]

>>> from sage.all import *

>>> D = Derangements([Integer(1),Integer(1),Integer(2),Integer(2),Integer(3),

→˓Integer(4),Integer(5)])

>>> D.list()[:Integer(5)]

[[2, 2, 1, 1, 4, 5, 3], [2, 2, 1, 1, 5, 3, 4], [2, 2, 1, 3, 1, 5, 4], [2, 2, 1, 3, 4,␣

→˓5, 1], [2, 2, 1, 3, 5, 1, 4]]

And some somewhat more advanced – in this case, symmetric polynomials.

sage: s = SymmetricFunctions(QQ).schur()

sage: a = s([2,1])

sage: a.expand(3)

x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2

>>> from sage.all import *

>>> s = SymmetricFunctions(QQ).schur()

>>> a = s([Integer(2),Integer(1)])

>>> a.expand(Integer(3))

x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2

Various functions related to this are available as well.

sage: binomial(25,3)

2300

>>> from sage.all import *

>>> binomial(Integer(25),Integer(3))

2300

sage: multinomial(24,3,5)

589024800

98 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> multinomial(Integer(24),Integer(3),Integer(5))

589024800

sage: falling_factorial(10,4)

5040

>>> from sage.all import *

>>> falling_factorial(Integer(10),Integer(4))

5040

Do you recognize this famous identity?

sage: var(�k,n�)

(k, n)

sage: sum(binomial(n,k),k,0,n)

2^n

>>> from sage.all import *

>>> var(�k,n�)

(k, n)

>>> sum(binomial(n,k),k,Integer(0),n)

2^n

Cryptography (for education)

This is also briefly mentioned in the Number theory quickstart. Sage has a number of good pedagogical resources for
cryptography.

sage: # Two objects to make/use encryption scheme

sage: #

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES

sage: sdes = SimplifiedDES()

sage: bin = BinaryStrings()

sage: #

sage: # Convert English to binary

sage: #

sage: P = bin.encoding("Encrypt this using S-DES!")

sage: print("Binary plaintext: {}\n".format(P))

sage: #

sage: # Choose a random key

sage: #

sage: K = sdes.list_to_string(sdes.random_key())

sage: print("Random key: {}\n".format(K))

sage: #

sage: # Encrypt with Simplified DES

sage: #

sage: C = sdes(P, K, algorithm="encrypt")

sage: print("Encrypted: {}\n".format(C))

sage: #

sage: # Decrypt for the round-trip

sage: #

(continues on next page)

7.3. Sage Quickstart for Graph Theory and Discrete Mathematics 99

PREP Tutorials, Release 10.6

(continued from previous page)

sage: plaintxt = sdes(C, K, algorithm="decrypt")

sage: print("Decrypted: {}\n".format(plaintxt))

sage: #

sage: # Verify easily

sage: #

sage: print("Verify encryption/decryption: {}".format(P == plaintxt))

Binary plaintext: 0100010101101110011000110111001001111001011100000111010000100000011

→˓101000110100001101001011100110010000001110101011100110110100101101110011001110010000

→˓0010100110010110101000100010001010101001100100001

Random key: 0100000011

Encrypted: 00100001100001010011000111000110010000011011101011111011100011011111101111

→˓110111110010101000010010001101101010101000010011001010100001010111000010001101000011

→˓001001111111110100001000010000110001011000

Decrypted: 01000101011011100110001101110010011110010111000001110100001000000111010001

→˓101000011010010111001100100000011101010111001101101001011011100110011100100000010100

→˓110010110101000100010001010101001100100001

Verify encryption/decryption: True

>>> from sage.all import *

>>> # Two objects to make/use encryption scheme

>>> #

>>> from sage.crypto.block_cipher.sdes import SimplifiedDES

>>> sdes = SimplifiedDES()

>>> bin = BinaryStrings()

>>> #

>>> # Convert English to binary

>>> #

>>> P = bin.encoding("Encrypt this using S-DES!")

>>> print("Binary plaintext: {}\n".format(P))

>>> #

>>> # Choose a random key

>>> #

>>> K = sdes.list_to_string(sdes.random_key())

>>> print("Random key: {}\n".format(K))

>>> #

>>> # Encrypt with Simplified DES

>>> #

>>> C = sdes(P, K, algorithm="encrypt")

>>> print("Encrypted: {}\n".format(C))

>>> #

>>> # Decrypt for the round-trip

>>> #

>>> plaintxt = sdes(C, K, algorithm="decrypt")

>>> print("Decrypted: {}\n".format(plaintxt))

>>> #

>>> # Verify easily

>>> #

>>> print("Verify encryption/decryption: {}".format(P == plaintxt))
(continues on next page)

100 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

Binary plaintext: 0100010101101110011000110111001001111001011100000111010000100000011

→˓101000110100001101001011100110010000001110101011100110110100101101110011001110010000

→˓0010100110010110101000100010001010101001100100001

Random key: 0100000011

Encrypted: 00100001100001010011000111000110010000011011101011111011100011011111101111

→˓110111110010101000010010001101101010101000010011001010100001010111000010001101000011

→˓001001111111110100001000010000110001011000

Decrypted: 01000101011011100110001101110010011110010111000001110100001000000111010001

→˓101000011010010111001100100000011101010111001101101001011011100110011100100000010100

→˓110010110101000100010001010101001100100001

Verify encryption/decryption: True

Coding Theory

Here is a brief example of a linear binary code (group code).

Start with a generator matrix over ;/2;.

sage: G = matrix(GF(2), [[1,1,1,0,0,0,0], [1,0,0,1,1,0,0], [0,1,0,1,0,1,0], [1,1,0,1,

→˓0,0,1]])

sage: C = LinearCode(G)

>>> from sage.all import *

>>> G = matrix(GF(Integer(2)), [[Integer(1),Integer(1),Integer(1),Integer(0),

→˓Integer(0),Integer(0),Integer(0)], [Integer(1),Integer(0),Integer(0),Integer(1),

→˓Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0),Integer(1),

→˓Integer(0),Integer(1),Integer(0)], [Integer(1),Integer(1),Integer(0),Integer(1),

→˓Integer(0),Integer(0),Integer(1)]])

>>> C = LinearCode(G)

sage: C.is_self_dual()

False

>>> from sage.all import *

>>> C.is_self_dual()

False

sage: D = C.dual_code()

sage: D

[7, 3] linear code over GF(2)

>>> from sage.all import *

>>> D = C.dual_code()

>>> D

[7, 3] linear code over GF(2)

7.3. Sage Quickstart for Graph Theory and Discrete Mathematics 101

PREP Tutorials, Release 10.6

sage: D.basis()

[(1, 0, 1, 0, 1, 0, 1), (0, 1, 1, 0, 0, 1, 1), (0, 0, 0, 1, 1, 1, 1)]

>>> from sage.all import *

>>> D.basis()

[(1, 0, 1, 0, 1, 0, 1), (0, 1, 1, 0, 0, 1, 1), (0, 0, 0, 1, 1, 1, 1)]

sage: D.permutation_automorphism_group()

Permutation Group with generators [(4,5)(6,7), (4,6)(5,7), (2,3)(6,7), (2,4)(3,5), (1,

→˓2)(5,6)]

>>> from sage.all import *

>>> D.permutation_automorphism_group()

Permutation Group with generators [(4,5)(6,7), (4,6)(5,7), (2,3)(6,7), (2,4)(3,5), (1,

→˓2)(5,6)]

7.4 Sage Quickstart for Linear Algebra
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license (CC BY-SA).

Linear algebra underpins a lot of Sage’s algorithms, so it is fast, robust and comprehensive. We’ve already seen some
basic linear algebra, including matrices, determinants, and the .rref() method for row-reduced echelon form in the
Programming Tutorial, so the content here continues from there to some extent.

7.4.1 Matrices and Vectors
We can make a matrix easily by passing a list of the rows. Don’t forget to use tab-completion to see routines that are
possible.

sage: A = matrix([[1,2,3],[4,5,6]]); A

[1 2 3]

[4 5 6]

>>> from sage.all import *

>>> A = matrix([[Integer(1),Integer(2),Integer(3)],[Integer(4),Integer(5),

→˓Integer(6)]]); A

[1 2 3]

[4 5 6]

But there are lots of other ways to make matrices. Each of these shows what is assumed with different input; can you
figure out how Sage interprets them before you read the documentation which the command matrix? provides?

It’s a good idea to get in the habit of telling Sage what ring to make the matrix over. Otherwise, Sage guesses based on
the elements, so you may not have a matrix over a field! Here, we tell Sage to make the ring over the rationals.

sage: B = matrix(QQ, 3, 2, [1,2,3,4,5,6]); B

[1 2]

[3 4]

[5 6]

102 Chapter 7. PREP Quickstart Tutorials

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> B = matrix(QQ, Integer(3), Integer(2), [Integer(1),Integer(2),Integer(3),

→˓Integer(4),Integer(5),Integer(6)]); B

[1 2]

[3 4]

[5 6]

sage: C = matrix(QQ, 3, [1,2,3,4,5,6]); C

[1 2]

[3 4]

[5 6]

>>> from sage.all import *

>>> C = matrix(QQ, Integer(3), [Integer(1),Integer(2),Integer(3),Integer(4),

→˓Integer(5),Integer(6)]); C

[1 2]

[3 4]

[5 6]

sage: D = matrix(CC, 20, range(400)); D

20 x 20 dense matrix over Complex Field with 53 bits of precision (use the �.str()�␣

→˓method to see the entries)

>>> from sage.all import *

>>> D = matrix(CC, Integer(20), range(Integer(400))); D

20 x 20 dense matrix over Complex Field with 53 bits of precision (use the �.str()�␣

→˓method to see the entries)

Don’t forget that when viewing this in the notebook, you can click to the left of the matrix in order to cycle between
“wrapped”, “unwrapped” and “hidden” modes of output.

sage: print(D.str())

[0.000000000000000 1.00000000000000 2.00000000000000 3.00000000000000 4.

→˓00000000000000 5.00000000000000 6.00000000000000 7.00000000000000 8.

→˓00000000000000 9.00000000000000 10.0000000000000 11.0000000000000 12.

→˓0000000000000 13.0000000000000 14.0000000000000 15.0000000000000 16.

→˓0000000000000 17.0000000000000 18.0000000000000 19.0000000000000]

[20.0000000000000 21.0000000000000 22.0000000000000 23.0000000000000 24.

→˓0000000000000 25.0000000000000 26.0000000000000 27.0000000000000 28.

→˓0000000000000 29.0000000000000 30.0000000000000 31.0000000000000 32.

→˓0000000000000 33.0000000000000 34.0000000000000 35.0000000000000 36.

→˓0000000000000 37.0000000000000 38.0000000000000 39.0000000000000]

[40.0000000000000 41.0000000000000 42.0000000000000 43.0000000000000 44.

→˓0000000000000 45.0000000000000 46.0000000000000 47.0000000000000 48.

→˓0000000000000 49.0000000000000 50.0000000000000 51.0000000000000 52.

→˓0000000000000 53.0000000000000 54.0000000000000 55.0000000000000 56.

→˓0000000000000 57.0000000000000 58.0000000000000 59.0000000000000]

[60.0000000000000 61.0000000000000 62.0000000000000 63.0000000000000 64.

→˓0000000000000 65.0000000000000 66.0000000000000 67.0000000000000 68.

→˓0000000000000 69.0000000000000 70.0000000000000 71.0000000000000 72.

→˓0000000000000 73.0000000000000 74.0000000000000 75.0000000000000 76.

→˓0000000000000 77.0000000000000 78.0000000000000 79.0000000000000]

(continues on next page)

7.4. Sage Quickstart for Linear Algebra 103

PREP Tutorials, Release 10.6

(continued from previous page)

[80.0000000000000 81.0000000000000 82.0000000000000 83.0000000000000 84.

→˓0000000000000 85.0000000000000 86.0000000000000 87.0000000000000 88.

→˓0000000000000 89.0000000000000 90.0000000000000 91.0000000000000 92.

→˓0000000000000 93.0000000000000 94.0000000000000 95.0000000000000 96.

→˓0000000000000 97.0000000000000 98.0000000000000 99.0000000000000]

[100.000000000000 101.000000000000 102.000000000000 103.000000000000 104.

→˓000000000000 105.000000000000 106.000000000000 107.000000000000 108.

→˓000000000000 109.000000000000 110.000000000000 111.000000000000 112.

→˓000000000000 113.000000000000 114.000000000000 115.000000000000 116.

→˓000000000000 117.000000000000 118.000000000000 119.000000000000]

[120.000000000000 121.000000000000 122.000000000000 123.000000000000 124.

→˓000000000000 125.000000000000 126.000000000000 127.000000000000 128.

→˓000000000000 129.000000000000 130.000000000000 131.000000000000 132.

→˓000000000000 133.000000000000 134.000000000000 135.000000000000 136.

→˓000000000000 137.000000000000 138.000000000000 139.000000000000]

[140.000000000000 141.000000000000 142.000000000000 143.000000000000 144.

→˓000000000000 145.000000000000 146.000000000000 147.000000000000 148.

→˓000000000000 149.000000000000 150.000000000000 151.000000000000 152.

→˓000000000000 153.000000000000 154.000000000000 155.000000000000 156.

→˓000000000000 157.000000000000 158.000000000000 159.000000000000]

[160.000000000000 161.000000000000 162.000000000000 163.000000000000 164.

→˓000000000000 165.000000000000 166.000000000000 167.000000000000 168.

→˓000000000000 169.000000000000 170.000000000000 171.000000000000 172.

→˓000000000000 173.000000000000 174.000000000000 175.000000000000 176.

→˓000000000000 177.000000000000 178.000000000000 179.000000000000]

[180.000000000000 181.000000000000 182.000000000000 183.000000000000 184.

→˓000000000000 185.000000000000 186.000000000000 187.000000000000 188.

→˓000000000000 189.000000000000 190.000000000000 191.000000000000 192.

→˓000000000000 193.000000000000 194.000000000000 195.000000000000 196.

→˓000000000000 197.000000000000 198.000000000000 199.000000000000]

[200.000000000000 201.000000000000 202.000000000000 203.000000000000 204.

→˓000000000000 205.000000000000 206.000000000000 207.000000000000 208.

→˓000000000000 209.000000000000 210.000000000000 211.000000000000 212.

→˓000000000000 213.000000000000 214.000000000000 215.000000000000 216.

→˓000000000000 217.000000000000 218.000000000000 219.000000000000]

[220.000000000000 221.000000000000 222.000000000000 223.000000000000 224.

→˓000000000000 225.000000000000 226.000000000000 227.000000000000 228.

→˓000000000000 229.000000000000 230.000000000000 231.000000000000 232.

→˓000000000000 233.000000000000 234.000000000000 235.000000000000 236.

→˓000000000000 237.000000000000 238.000000000000 239.000000000000]

[240.000000000000 241.000000000000 242.000000000000 243.000000000000 244.

→˓000000000000 245.000000000000 246.000000000000 247.000000000000 248.

→˓000000000000 249.000000000000 250.000000000000 251.000000000000 252.

→˓000000000000 253.000000000000 254.000000000000 255.000000000000 256.

→˓000000000000 257.000000000000 258.000000000000 259.000000000000]

[260.000000000000 261.000000000000 262.000000000000 263.000000000000 264.

→˓000000000000 265.000000000000 266.000000000000 267.000000000000 268.

→˓000000000000 269.000000000000 270.000000000000 271.000000000000 272.

→˓000000000000 273.000000000000 274.000000000000 275.000000000000 276.

→˓000000000000 277.000000000000 278.000000000000 279.000000000000]

[280.000000000000 281.000000000000 282.000000000000 283.000000000000 284.

→˓000000000000 285.000000000000 286.000000000000 287.000000000000 288.

(continues on next page)

104 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

→˓000000000000 289.000000000000 290.000000000000 291.000000000000 292.

→˓000000000000 293.000000000000 294.000000000000 295.000000000000 296.

→˓000000000000 297.000000000000 298.000000000000 299.000000000000]

[300.000000000000 301.000000000000 302.000000000000 303.000000000000 304.

→˓000000000000 305.000000000000 306.000000000000 307.000000000000 308.

→˓000000000000 309.000000000000 310.000000000000 311.000000000000 312.

→˓000000000000 313.000000000000 314.000000000000 315.000000000000 316.

→˓000000000000 317.000000000000 318.000000000000 319.000000000000]

[320.000000000000 321.000000000000 322.000000000000 323.000000000000 324.

→˓000000000000 325.000000000000 326.000000000000 327.000000000000 328.

→˓000000000000 329.000000000000 330.000000000000 331.000000000000 332.

→˓000000000000 333.000000000000 334.000000000000 335.000000000000 336.

→˓000000000000 337.000000000000 338.000000000000 339.000000000000]

[340.000000000000 341.000000000000 342.000000000000 343.000000000000 344.

→˓000000000000 345.000000000000 346.000000000000 347.000000000000 348.

→˓000000000000 349.000000000000 350.000000000000 351.000000000000 352.

→˓000000000000 353.000000000000 354.000000000000 355.000000000000 356.

→˓000000000000 357.000000000000 358.000000000000 359.000000000000]

[360.000000000000 361.000000000000 362.000000000000 363.000000000000 364.

→˓000000000000 365.000000000000 366.000000000000 367.000000000000 368.

→˓000000000000 369.000000000000 370.000000000000 371.000000000000 372.

→˓000000000000 373.000000000000 374.000000000000 375.000000000000 376.

→˓000000000000 377.000000000000 378.000000000000 379.000000000000]

[380.000000000000 381.000000000000 382.000000000000 383.000000000000 384.

→˓000000000000 385.000000000000 386.000000000000 387.000000000000 388.

→˓000000000000 389.000000000000 390.000000000000 391.000000000000 392.

→˓000000000000 393.000000000000 394.000000000000 395.000000000000 396.

→˓000000000000 397.000000000000 398.000000000000 399.000000000000]

>>> from sage.all import *

>>> print(D.str())

[0.000000000000000 1.00000000000000 2.00000000000000 3.00000000000000 4.

→˓00000000000000 5.00000000000000 6.00000000000000 7.00000000000000 8.

→˓00000000000000 9.00000000000000 10.0000000000000 11.0000000000000 12.

→˓0000000000000 13.0000000000000 14.0000000000000 15.0000000000000 16.

→˓0000000000000 17.0000000000000 18.0000000000000 19.0000000000000]

[20.0000000000000 21.0000000000000 22.0000000000000 23.0000000000000 24.

→˓0000000000000 25.0000000000000 26.0000000000000 27.0000000000000 28.

→˓0000000000000 29.0000000000000 30.0000000000000 31.0000000000000 32.

→˓0000000000000 33.0000000000000 34.0000000000000 35.0000000000000 36.

→˓0000000000000 37.0000000000000 38.0000000000000 39.0000000000000]

[40.0000000000000 41.0000000000000 42.0000000000000 43.0000000000000 44.

→˓0000000000000 45.0000000000000 46.0000000000000 47.0000000000000 48.

→˓0000000000000 49.0000000000000 50.0000000000000 51.0000000000000 52.

→˓0000000000000 53.0000000000000 54.0000000000000 55.0000000000000 56.

→˓0000000000000 57.0000000000000 58.0000000000000 59.0000000000000]

[60.0000000000000 61.0000000000000 62.0000000000000 63.0000000000000 64.

→˓0000000000000 65.0000000000000 66.0000000000000 67.0000000000000 68.

→˓0000000000000 69.0000000000000 70.0000000000000 71.0000000000000 72.

→˓0000000000000 73.0000000000000 74.0000000000000 75.0000000000000 76.

→˓0000000000000 77.0000000000000 78.0000000000000 79.0000000000000]

[80.0000000000000 81.0000000000000 82.0000000000000 83.0000000000000 84.
(continues on next page)

7.4. Sage Quickstart for Linear Algebra 105

PREP Tutorials, Release 10.6

(continued from previous page)

→˓0000000000000 85.0000000000000 86.0000000000000 87.0000000000000 88.

→˓0000000000000 89.0000000000000 90.0000000000000 91.0000000000000 92.

→˓0000000000000 93.0000000000000 94.0000000000000 95.0000000000000 96.

→˓0000000000000 97.0000000000000 98.0000000000000 99.0000000000000]

[100.000000000000 101.000000000000 102.000000000000 103.000000000000 104.

→˓000000000000 105.000000000000 106.000000000000 107.000000000000 108.

→˓000000000000 109.000000000000 110.000000000000 111.000000000000 112.

→˓000000000000 113.000000000000 114.000000000000 115.000000000000 116.

→˓000000000000 117.000000000000 118.000000000000 119.000000000000]

[120.000000000000 121.000000000000 122.000000000000 123.000000000000 124.

→˓000000000000 125.000000000000 126.000000000000 127.000000000000 128.

→˓000000000000 129.000000000000 130.000000000000 131.000000000000 132.

→˓000000000000 133.000000000000 134.000000000000 135.000000000000 136.

→˓000000000000 137.000000000000 138.000000000000 139.000000000000]

[140.000000000000 141.000000000000 142.000000000000 143.000000000000 144.

→˓000000000000 145.000000000000 146.000000000000 147.000000000000 148.

→˓000000000000 149.000000000000 150.000000000000 151.000000000000 152.

→˓000000000000 153.000000000000 154.000000000000 155.000000000000 156.

→˓000000000000 157.000000000000 158.000000000000 159.000000000000]

[160.000000000000 161.000000000000 162.000000000000 163.000000000000 164.

→˓000000000000 165.000000000000 166.000000000000 167.000000000000 168.

→˓000000000000 169.000000000000 170.000000000000 171.000000000000 172.

→˓000000000000 173.000000000000 174.000000000000 175.000000000000 176.

→˓000000000000 177.000000000000 178.000000000000 179.000000000000]

[180.000000000000 181.000000000000 182.000000000000 183.000000000000 184.

→˓000000000000 185.000000000000 186.000000000000 187.000000000000 188.

→˓000000000000 189.000000000000 190.000000000000 191.000000000000 192.

→˓000000000000 193.000000000000 194.000000000000 195.000000000000 196.

→˓000000000000 197.000000000000 198.000000000000 199.000000000000]

[200.000000000000 201.000000000000 202.000000000000 203.000000000000 204.

→˓000000000000 205.000000000000 206.000000000000 207.000000000000 208.

→˓000000000000 209.000000000000 210.000000000000 211.000000000000 212.

→˓000000000000 213.000000000000 214.000000000000 215.000000000000 216.

→˓000000000000 217.000000000000 218.000000000000 219.000000000000]

[220.000000000000 221.000000000000 222.000000000000 223.000000000000 224.

→˓000000000000 225.000000000000 226.000000000000 227.000000000000 228.

→˓000000000000 229.000000000000 230.000000000000 231.000000000000 232.

→˓000000000000 233.000000000000 234.000000000000 235.000000000000 236.

→˓000000000000 237.000000000000 238.000000000000 239.000000000000]

[240.000000000000 241.000000000000 242.000000000000 243.000000000000 244.

→˓000000000000 245.000000000000 246.000000000000 247.000000000000 248.

→˓000000000000 249.000000000000 250.000000000000 251.000000000000 252.

→˓000000000000 253.000000000000 254.000000000000 255.000000000000 256.

→˓000000000000 257.000000000000 258.000000000000 259.000000000000]

[260.000000000000 261.000000000000 262.000000000000 263.000000000000 264.

→˓000000000000 265.000000000000 266.000000000000 267.000000000000 268.

→˓000000000000 269.000000000000 270.000000000000 271.000000000000 272.

→˓000000000000 273.000000000000 274.000000000000 275.000000000000 276.

→˓000000000000 277.000000000000 278.000000000000 279.000000000000]

[280.000000000000 281.000000000000 282.000000000000 283.000000000000 284.

→˓000000000000 285.000000000000 286.000000000000 287.000000000000 288.

→˓000000000000 289.000000000000 290.000000000000 291.000000000000 292.

(continues on next page)

106 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

→˓000000000000 293.000000000000 294.000000000000 295.000000000000 296.

→˓000000000000 297.000000000000 298.000000000000 299.000000000000]

[300.000000000000 301.000000000000 302.000000000000 303.000000000000 304.

→˓000000000000 305.000000000000 306.000000000000 307.000000000000 308.

→˓000000000000 309.000000000000 310.000000000000 311.000000000000 312.

→˓000000000000 313.000000000000 314.000000000000 315.000000000000 316.

→˓000000000000 317.000000000000 318.000000000000 319.000000000000]

[320.000000000000 321.000000000000 322.000000000000 323.000000000000 324.

→˓000000000000 325.000000000000 326.000000000000 327.000000000000 328.

→˓000000000000 329.000000000000 330.000000000000 331.000000000000 332.

→˓000000000000 333.000000000000 334.000000000000 335.000000000000 336.

→˓000000000000 337.000000000000 338.000000000000 339.000000000000]

[340.000000000000 341.000000000000 342.000000000000 343.000000000000 344.

→˓000000000000 345.000000000000 346.000000000000 347.000000000000 348.

→˓000000000000 349.000000000000 350.000000000000 351.000000000000 352.

→˓000000000000 353.000000000000 354.000000000000 355.000000000000 356.

→˓000000000000 357.000000000000 358.000000000000 359.000000000000]

[360.000000000000 361.000000000000 362.000000000000 363.000000000000 364.

→˓000000000000 365.000000000000 366.000000000000 367.000000000000 368.

→˓000000000000 369.000000000000 370.000000000000 371.000000000000 372.

→˓000000000000 373.000000000000 374.000000000000 375.000000000000 376.

→˓000000000000 377.000000000000 378.000000000000 379.000000000000]

[380.000000000000 381.000000000000 382.000000000000 383.000000000000 384.

→˓000000000000 385.000000000000 386.000000000000 387.000000000000 388.

→˓000000000000 389.000000000000 390.000000000000 391.000000000000 392.

→˓000000000000 393.000000000000 394.000000000000 395.000000000000 396.

→˓000000000000 397.000000000000 398.000000000000 399.000000000000]

sage: E = diagonal_matrix([0..40,step=4]); E

[0 0 0 0 0 0 0 0 0 0 0]

[0 4 0 0 0 0 0 0 0 0 0]

[0 0 8 0 0 0 0 0 0 0 0]

[0 0 0 12 0 0 0 0 0 0 0]

[0 0 0 0 16 0 0 0 0 0 0]

[0 0 0 0 0 20 0 0 0 0 0]

[0 0 0 0 0 0 24 0 0 0 0]

[0 0 0 0 0 0 0 28 0 0 0]

[0 0 0 0 0 0 0 0 32 0 0]

[0 0 0 0 0 0 0 0 0 36 0]

[0 0 0 0 0 0 0 0 0 0 40]

>>> from sage.all import *

>>> E = diagonal_matrix((ellipsis_range(Integer(0),Ellipsis,Integer(40),

→˓step=Integer(4)))); E

[0 0 0 0 0 0 0 0 0 0 0]

[0 4 0 0 0 0 0 0 0 0 0]

[0 0 8 0 0 0 0 0 0 0 0]

[0 0 0 12 0 0 0 0 0 0 0]

[0 0 0 0 16 0 0 0 0 0 0]

[0 0 0 0 0 20 0 0 0 0 0]

[0 0 0 0 0 0 24 0 0 0 0]

(continues on next page)

7.4. Sage Quickstart for Linear Algebra 107

PREP Tutorials, Release 10.6

(continued from previous page)

[0 0 0 0 0 0 0 28 0 0 0]

[0 0 0 0 0 0 0 0 32 0 0]

[0 0 0 0 0 0 0 0 0 36 0]

[0 0 0 0 0 0 0 0 0 0 40]

sage: column_matrix(QQ,[[1,2,3],[4,5,6],[7,8,9]])

[1 4 7]

[2 5 8]

[3 6 9]

>>> from sage.all import *

>>> column_matrix(QQ,[[Integer(1),Integer(2),Integer(3)],[Integer(4),Integer(5),

→˓Integer(6)],[Integer(7),Integer(8),Integer(9)]])

[1 4 7]

[2 5 8]

[3 6 9]

You can also combine matrices in different ways.

sage: F1=matrix(QQ,2,2,[0,1,1,0])

sage: F2=matrix(QQ,2,2,[1,2,3,4])

sage: F3=matrix(QQ,1,2,[3,1])

sage: block_matrix(2,2,[F1,F2,0,F3])

[0 1|1 2]

[1 0|3 4]

[---+---]

[0 0|3 1]

>>> from sage.all import *

>>> F1=matrix(QQ,Integer(2),Integer(2),[Integer(0),Integer(1),Integer(1),Integer(0)])

>>> F2=matrix(QQ,Integer(2),Integer(2),[Integer(1),Integer(2),Integer(3),Integer(4)])

>>> F3=matrix(QQ,Integer(1),Integer(2),[Integer(3),Integer(1)])

>>> block_matrix(Integer(2),Integer(2),[F1,F2,Integer(0),F3])

[0 1|1 2]

[1 0|3 4]

[---+---]

[0 0|3 1]

sage: F1.augment(F2)

[0 1 1 2]

[1 0 3 4]

>>> from sage.all import *

>>> F1.augment(F2)

[0 1 1 2]

[1 0 3 4]

sage: F1.stack(F2)

[0 1]

[1 0]

(continues on next page)

108 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

[1 2]

[3 4]

>>> from sage.all import *

>>> F1.stack(F2)

[0 1]

[1 0]

[1 2]

[3 4]

sage: block_diagonal_matrix([F1,F2])

[0 1|0 0]

[1 0|0 0]

[---+---]

[0 0|1 2]

[0 0|3 4]

>>> from sage.all import *

>>> block_diagonal_matrix([F1,F2])

[0 1|0 0]

[1 0|0 0]

[---+---]

[0 0|1 2]

[0 0|3 4]

Vectors are rows or columns, whatever you please, and Sage interprets them as appropriate in multiplication contexts.

sage: row = vector((3, -1, 4))

sage: col = vector(QQ, [4, 5])

sage: row; col

(3, -1, 4)

(4, 5)

>>> from sage.all import *

>>> row = vector((Integer(3), -Integer(1), Integer(4)))

>>> col = vector(QQ, [Integer(4), Integer(5)])

>>> row; col

(3, -1, 4)

(4, 5)

sage: F = matrix(QQ, 3, 2, range(6)); F

[0 1]

[2 3]

[4 5]

>>> from sage.all import *

>>> F = matrix(QQ, Integer(3), Integer(2), range(Integer(6))); F

[0 1]

[2 3]

[4 5]

7.4. Sage Quickstart for Linear Algebra 109

PREP Tutorials, Release 10.6

sage: F*col

(5, 23, 41)

>>> from sage.all import *

>>> F*col

(5, 23, 41)

sage: row*F

(14, 20)

>>> from sage.all import *

>>> row*F

(14, 20)

Although our “vectors” (especially over rings other than fields) might be considered as elements of an appropriate free
module, they basically behave as vectors for our purposes.

sage: ring_vec = vector(SR, [2, 12, -4, 9])

sage: field_vec = vector(QQ, (2, 3, 14))

sage: ring_vec; field_vec

(2, 12, -4, 9)

(2, 3, 14)

>>> from sage.all import *

>>> ring_vec = vector(SR, [Integer(2), Integer(12), -Integer(4), Integer(9)])

>>> field_vec = vector(QQ, (Integer(2), Integer(3), Integer(14)))

>>> ring_vec; field_vec

(2, 12, -4, 9)

(2, 3, 14)

sage: type(ring_vec)

<class �sage.modules.free_module.FreeModule_ambient_field_with_category.element_class

→˓�>

sage: type(field_vec)

<class �sage.modules.vector_rational_dense.Vector_rational_dense�>

>>> from sage.all import *

>>> type(ring_vec)

<class �sage.modules.free_module.FreeModule_ambient_field_with_category.element_class

→˓�>

>>> type(field_vec)

<class �sage.modules.vector_rational_dense.Vector_rational_dense�>

7.4.2 Left-Handed or Right-handed?
Sage “prefers” rows to columns. For example, the kernel method for a matrix 𝐴 computes the left kernel – the vector
space of all vectors 𝑣 for which 𝑣 ·𝐴 = 0 – and prints out the vectors as the rows of a matrix.

sage: G = matrix(QQ, 2, 3, [[1,2,3],[2,4,6]])

sage: G.kernel()

Vector space of degree 2 and dimension 1 over Rational Field

(continues on next page)

110 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

Basis matrix:

[1 -1/2]

>>> from sage.all import *

>>> G = matrix(QQ, Integer(2), Integer(3), [[Integer(1),Integer(2),Integer(3)],

→˓[Integer(2),Integer(4),Integer(6)]])

>>> G.kernel()

Vector space of degree 2 and dimension 1 over Rational Field

Basis matrix:

[1 -1/2]

sage: G.left_kernel()

Vector space of degree 2 and dimension 1 over Rational Field

Basis matrix:

[1 -1/2]

>>> from sage.all import *

>>> G.left_kernel()

Vector space of degree 2 and dimension 1 over Rational Field

Basis matrix:

[1 -1/2]

The right_kernel method computes the space of vectors 𝑤 so that 𝐴 · 𝑤 = 0, of course.

7.4.3 Vector Spaces
Since Sage knows the kernel is a vector space, you can compute things that make sense for a vector space.

sage: V=G.right_kernel()

sage: V

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[1 0 -1/3]

[0 1 -2/3]

>>> from sage.all import *

>>> V=G.right_kernel()

>>> V

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[1 0 -1/3]

[0 1 -2/3]

sage: V.dimension()

2

>>> from sage.all import *

>>> V.dimension()

2

Here we compute the coordinate vector of (1, 4,−3) relative to 𝑉 :

7.4. Sage Quickstart for Linear Algebra 111

PREP Tutorials, Release 10.6

sage: V.coordinate_vector([1,4,-3])

(1, 4)

>>> from sage.all import *

>>> V.coordinate_vector([Integer(1),Integer(4),-Integer(3)])

(1, 4)

Here we get the basis matrix (note that the basis vectors are the rows of the matrix):

sage: V.basis_matrix()

[1 0 -1/3]

[0 1 -2/3]

>>> from sage.all import *

>>> V.basis_matrix()

[1 0 -1/3]

[0 1 -2/3]

Or we can get the basis vectors explicitly as a list of vectors:

sage: V.basis()

[(1, 0, -1/3), (0, 1, -2/3)]

>>> from sage.all import *

>>> V.basis()

[(1, 0, -1/3), (0, 1, -2/3)]

INFO-CIRCLE Note

Kernels are vector spaces and bases are “echelonized” (canonicalized).

This is why the ring for the matrix is important. Compare the kernels above with the kernel using a matrix which is
only defined over the integers.

sage: G = matrix(ZZ,2, 3, [[1,2,3],[2,4,6]])

sage: G.kernel()

Free module of degree 2 and rank 1 over Integer Ring

Echelon basis matrix:

[2 -1]

>>> from sage.all import *

>>> G = matrix(ZZ,Integer(2), Integer(3), [[Integer(1),Integer(2),Integer(3)],

→˓[Integer(2),Integer(4),Integer(6)]])

>>> G.kernel()

Free module of degree 2 and rank 1 over Integer Ring

Echelon basis matrix:

[2 -1]

112 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

7.4.4 Computations
Here are some more computations with matrices and vectors.

As you might expect, random matrices are random.

sage: H = random_matrix(QQ, 5, 5, num_bound = 10, den_bound = 4)

sage: H.det() # random

15416

sage: H.eigenvalues() # random

[-10.08361801792048?, -2.682220984496031?, 4.739405672111427?, -1.320116668180795? -␣

→˓10.88676412262347?*I, -1.320116668180795? + 10.88676412262347?*I]

>>> from sage.all import *

>>> H = random_matrix(QQ, Integer(5), Integer(5), num_bound = Integer(10), den_bound␣

→˓= Integer(4))

>>> H.det() # random

15416

>>> H.eigenvalues() # random

[-10.08361801792048?, -2.682220984496031?, 4.739405672111427?, -1.320116668180795? -␣

→˓10.88676412262347?*I, -1.320116668180795? + 10.88676412262347?*I]

According to the Numerical analysis quickstart, the question marks indicate that the actual number is inside the interval
found by incrementing and decrementing the last digit of the printed number. So 9.1? is a number between 9.0 and
9.2. Sage knows exactly what number this is (since it’s a root of a polynomial), but uses interval notation to print an
approximation for ease of use.

The eigenvectors_right command prints out a list of (eigenvalue, [list of eigenvectors], algebraic

multiplicity) tuples for each eigenvalue.

sage: H.eigenvectors_right() # random

[(-10.08361801792048?, [(1, -0.3820692683963385?, -0.4659857618614747?, -0.

→˓1264082922197715?, -0.3548156445133095?)], 1), (-2.682220984496031?, [(1, -1.

→˓855347152382563?, -0.4203899923232704?, 0.004411201577480876?, -0.5050698736445243?

→˓)], 1), (4.739405672111427?, [(1, 0.3284800982819703?, 2.059182569319718?, -1.

→˓428547399599918?, 0.5455069936349178?)], 1), (-1.320116668180795? - 10.

→˓88676412262347?*I, [(1, 0.710831790589076? + 0.2646474741698805?*I, 0.

→˓4504038344112447? + 3.145667601780920?*I, 2.763061217778457? + 0.9994136057023008?

→˓*I, 3.092272491890536? - 2.105461094305392?*I)], 1), (-1.320116668180795? + 10.

→˓88676412262347?*I, [(1, 0.710831790589076? - 0.2646474741698805?*I, 0.

→˓4504038344112447? - 3.145667601780920?*I, 2.763061217778457? - 0.9994136057023008?

→˓*I, 3.092272491890536? + 2.105461094305392?*I)], 1)]

>>> from sage.all import *

>>> H.eigenvectors_right() # random

[(-10.08361801792048?, [(1, -0.3820692683963385?, -0.4659857618614747?, -0.

→˓1264082922197715?, -0.3548156445133095?)], 1), (-2.682220984496031?, [(1, -1.

→˓855347152382563?, -0.4203899923232704?, 0.004411201577480876?, -0.5050698736445243?

→˓)], 1), (4.739405672111427?, [(1, 0.3284800982819703?, 2.059182569319718?, -1.

→˓428547399599918?, 0.5455069936349178?)], 1), (-1.320116668180795? - 10.

→˓88676412262347?*I, [(1, 0.710831790589076? + 0.2646474741698805?*I, 0.

→˓4504038344112447? + 3.145667601780920?*I, 2.763061217778457? + 0.9994136057023008?

→˓*I, 3.092272491890536? - 2.105461094305392?*I)], 1), (-1.320116668180795? + 10.

→˓88676412262347?*I, [(1, 0.710831790589076? - 0.2646474741698805?*I, 0.

(continues on next page)

7.4. Sage Quickstart for Linear Algebra 113

PREP Tutorials, Release 10.6

(continued from previous page)

→˓4504038344112447? - 3.145667601780920?*I, 2.763061217778457? - 0.9994136057023008?

→˓*I, 3.092272491890536? + 2.105461094305392?*I)], 1)]

It may be more convenient to use the eigenmatrix_right command, which gives a diagonal matrix of eigenvalues and
a column matrix of eigenvectors.

sage: D,P=H.eigenmatrix_right()

sage: P*D-H*P

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

>>> from sage.all import *

>>> D,P=H.eigenmatrix_right()

>>> P*D-H*P

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

7.4.5 Matrix Solving
We can easily solve linear equations using the backslash, like in Matlab.

sage: A = random_matrix(QQ, 3, algorithm=�unimodular�)

sage: v = vector([2,3,1])

sage: A,v # random

(

[0 -1 1]

[-1 -1 -1]

[0 2 2], (2, 3, 1)

)

sage: x=A\v; x # random

(-7/2, -3/4, 5/4)

sage: A*x # random

(2, 3, 1)

>>> from sage.all import *

>>> A = random_matrix(QQ, Integer(3), algorithm=�unimodular�)

>>> v = vector([Integer(2),Integer(3),Integer(1)])

>>> A,v # random

(

[0 -1 1]

[-1 -1 -1]

[0 2 2], (2, 3, 1)

)

>>> x=A * BackslashOperator() * v; x # random

(-7/2, -3/4, 5/4)

(continues on next page)

114 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

>>> A*x # random

(2, 3, 1)

For lots more (concise) information, see the Sage Linear Algebra Quick Reference.

7.5 Sage Quickstart for Multivariable Calculus
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license (CC BY-SA).

Because much related material was covered in the calculus tutorial, this quickstart is designed to:

• Give concrete examples of some things not covered there, without huge amounts of commentary, and

• Remind the reader of a few of the things in that tutorial.

7.5.1 Vector Calculus
In Sage, vectors are primarily linear algebra objects, but they are slowly becoming simultaneously analytic continuous
functions.

Dot Product, Cross Product

sage: v = vector(RR, [1.2, 3.5, 4.6])

sage: w = vector(RR, [1.7,-2.3,5.2])

sage: v*w

17.9100000000000

>>> from sage.all import *

>>> v = vector(RR, [RealNumber(�1.2�), RealNumber(�3.5�), RealNumber(�4.6�)])

>>> w = vector(RR, [RealNumber(�1.7�),-RealNumber(�2.3�),RealNumber(�5.2�)])

>>> v*w

17.9100000000000

sage: v.cross_product(w)

(28.7800000000000, 1.58000000000000, -8.71000000000000)

>>> from sage.all import *

>>> v.cross_product(w)

(28.7800000000000, 1.58000000000000, -8.71000000000000)

Lines and Planes

Intersect 𝑥− 2𝑦 − 7𝑧 = 6 with 𝑥−3
2 = 𝑦+4

−3 = 𝑧−1
1 . One way to plot the equation of a line in three dimensions is with

parametric_plot3d.

sage: # designed with intersection at t = 2, i.e. (7, -10, 3)

sage: var(�t, x, y�)

(t, x, y)

sage: line = parametric_plot3d([2*t+3, -3*t-4, t+1], (t, 0, 4),color=�red�)

sage: plane = plot3d((1/5)*(-12+x-2*y), (x, 4, 10), (y, -13,-7), opacity=0.5)

(continues on next page)

7.5. Sage Quickstart for Multivariable Calculus 115

http://wiki.sagemath.org/quickref?action=AttachFile&do=get&target=quickref-linalg.pdf
http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

(continued from previous page)

sage: intersect=point3d([7,-10,3],color=�black�,size=30)

sage: line+plane+intersect

Graphics3d Object

>>> from sage.all import *

>>> # designed with intersection at t = 2, i.e. (7, -10, 3)

>>> var(�t, x, y�)

(t, x, y)

>>> line = parametric_plot3d([Integer(2)*t+Integer(3), -Integer(3)*t-Integer(4),␣

→˓t+Integer(1)], (t, Integer(0), Integer(4)),color=�red�)

>>> plane = plot3d((Integer(1)/Integer(5))*(-Integer(12)+x-Integer(2)*y), (x,␣

→˓Integer(4), Integer(10)), (y, -Integer(13),-Integer(7)), opacity=RealNumber(�0.5�))

>>> intersect=point3d([Integer(7),-Integer(10),Integer(3)],color=�black�,

→˓size=Integer(30))

>>> line+plane+intersect

Graphics3d Object

Vector-Valued Functions

We can make vector-valued functions and do the usual analysis with them.

sage: var(�t�)

t

sage: r=vector((2*t-4, t^2, (1/4)*t^3))

sage: r

(2*t - 4, t^2, 1/4*t^3)

>>> from sage.all import *

>>> var(�t�)

t

>>> r=vector((Integer(2)*t-Integer(4), t**Integer(2), (Integer(1)/

→˓Integer(4))*t**Integer(3)))

>>> r

(2*t - 4, t^2, 1/4*t^3)

sage: r(t=5)

(6, 25, 125/4)

>>> from sage.all import *

>>> r(t=Integer(5))

(6, 25, 125/4)

The following makes the derivative also a vector-valued expression.

sage: velocity = r.diff(t) # velocity(t) = list(r.diff(t)) also would work

sage: velocity

(2, 2*t, 3/4*t^2)

>>> from sage.all import *

>>> velocity = r.diff(t) # velocity(t) = list(r.diff(t)) also would work

(continues on next page)

116 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

>>> velocity

(2, 2*t, 3/4*t^2)

Currently, this expression does not function as a function, so we need to substitute explicitly.

sage: velocity(t=1)

(2, 2, 3/4)

>>> from sage.all import *

>>> velocity(t=Integer(1))

(2, 2, 3/4)

sage: T=velocity/velocity.norm()

>>> from sage.all import *

>>> T=velocity/velocity.norm()

sage: T(t=1).n()

(0.683486126173409, 0.683486126173409, 0.256307297315028)

>>> from sage.all import *

>>> T(t=Integer(1)).n()

(0.683486126173409, 0.683486126173409, 0.256307297315028)

Here we compute the arclength between 𝑡 = 0 and 𝑡 = 1 by integrating the normalized derivative. As pointed out in the
calculus tutorial, the syntax for numerical_integral is slightly nonstandard – we just put in the endpoints, not the
variable.

sage: arc_length = numerical_integral(velocity.norm(), 0,1)

sage: arc_length

(2.3169847271197814, 2.572369791753217e-14)

>>> from sage.all import *

>>> arc_length = numerical_integral(velocity.norm(), Integer(0),Integer(1))

>>> arc_length

(2.3169847271197814, 2.572369791753217e-14)

We can also plot vector fields, even in three dimensions.

sage: x,y,z=var(�x y z�)

sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),

→˓colors=[�red�,�green�,�blue�])

Graphics3d Object

>>> from sage.all import *

>>> x,y,z=var(�x y z�)

>>> plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,Integer(0),pi), (y,Integer(0),

→˓pi), (z,Integer(0),pi),colors=[�red�,�green�,�blue�])

Graphics3d Object

If we know a little vector calculus, we can also do line integrals. Here, based on an example by Ben Woodruff of
BYU-Idaho, we compute a number of quantities in a physical three-dimensional setting.

7.5. Sage Quickstart for Multivariable Calculus 117

PREP Tutorials, Release 10.6

Try to read through the entire code. We make an auxiliary function that will calculate
∫︀
(integrand) 𝑑𝑡. We’ll use our

formulas relating various differentials to 𝑑𝑡 to easily specify the integrands.

sage: density(x,y,z)=x^2+z

sage: r=vector([3*cos(t), 3*sin(t),4*t])

sage: tstart=0

sage: tend=2*pi

sage: t = var(�t�)

sage: t_range=(t,tstart,tend)

sage: def line_integral(integrand):

....: return RR(numerical_integral((integrand).subs(x=r[0], y=r[1],z=r[2]),␣

→˓tstart, tend)[0])

sage: _ = var(�x,y,z,t�)

sage: r_prime = diff(r,t)

sage: ds=diff(r,t).norm()

sage: s=line_integral(ds)

sage: centroid_x=line_integral(x*ds)/s

sage: centroid_y=line_integral(y*ds)/s

sage: centroid_z=line_integral(z*ds)/s

sage: dm=density(x,y,z)*ds

sage: m=line_integral(dm)

sage: avg_density = m/s

sage: moment_about_yz_plane=line_integral(x*dm)

sage: moment_about_xz_plane=line_integral(y*dm)

sage: moment_about_xy_plane=line_integral(z*dm)

sage: center_mass_x = moment_about_yz_plane/m

sage: center_mass_y = moment_about_xz_plane/m

sage: center_mass_z = moment_about_xy_plane/m

sage: Ix=line_integral((y^2+z^2)*dm)

sage: Iy=line_integral((x^2+z^2)*dm)

sage: Iz=line_integral((x^2+y^2)*dm)

sage: Rx = sqrt(Ix/m)

sage: Ry = sqrt(Iy/m)

sage: Rz = sqrt(Iz/m)

>>> from sage.all import *

>>> __tmp__=var("x,y,z"); density = symbolic_expression(x**Integer(2)+z).function(x,y,

→˓z)

>>> r=vector([Integer(3)*cos(t), Integer(3)*sin(t),Integer(4)*t])

>>> tstart=Integer(0)

>>> tend=Integer(2)*pi

>>> t = var(�t�)

>>> t_range=(t,tstart,tend)

>>> def line_integral(integrand):

... return RR(numerical_integral((integrand).subs(x=r[Integer(0)],␣

→˓y=r[Integer(1)],z=r[Integer(2)]), tstart, tend)[Integer(0)])

>>> _ = var(�x,y,z,t�)

>>> r_prime = diff(r,t)

>>> ds=diff(r,t).norm()

>>> s=line_integral(ds)

>>> centroid_x=line_integral(x*ds)/s

>>> centroid_y=line_integral(y*ds)/s

>>> centroid_z=line_integral(z*ds)/s

(continues on next page)

118 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

>>> dm=density(x,y,z)*ds

>>> m=line_integral(dm)

>>> avg_density = m/s

>>> moment_about_yz_plane=line_integral(x*dm)

>>> moment_about_xz_plane=line_integral(y*dm)

>>> moment_about_xy_plane=line_integral(z*dm)

>>> center_mass_x = moment_about_yz_plane/m

>>> center_mass_y = moment_about_xz_plane/m

>>> center_mass_z = moment_about_xy_plane/m

>>> Ix=line_integral((y**Integer(2)+z**Integer(2))*dm)

>>> Iy=line_integral((x**Integer(2)+z**Integer(2))*dm)

>>> Iz=line_integral((x**Integer(2)+y**Integer(2))*dm)

>>> Rx = sqrt(Ix/m)

>>> Ry = sqrt(Iy/m)

>>> Rz = sqrt(Iz/m)

Finally, we can display everything in a nice table. Recall that we use the r"stuff" syntax to indicate “raw” strings so
that backslashes from LaTeX won’t cause trouble.

sage: html.table([

....: [r"Density $\delta(x,y)$", density],

....: [r"Curve $\vec r(t)$",r],

....: [r"t range", t_range],

....: [r"$\vec r�(t)$", r_prime],

....: [r"ds, a little bit of arclength", ds],

....: [r"s - arclength", s],

....: [r"Centroid (constant density) $\left(\frac{1}{m}\int x\,ds,\frac{1}{m}\int␣

→˓y\,ds, \frac{1}{m}\int z\,ds\right)$", (centroid_x,centroid_y,centroid_z)],

....: [r"$dm=\delta ds$ - a little bit of mass", dm],

....: [r"$m=\int \delta ds$ - mass", m],

....: [r"average density $\frac{1}{m}\int ds$" , avg_density.n()],

....: [r"$M_{yz}=\int x dm$ - moment about yz plane", moment_about_yz_plane],

....: [r"$M_{xz}=\int y dm$ - moment about xz plane", moment_about_xz_plane],

....: [r"$M_{xy}=\int z dm$ - moment about xy plane", moment_about_xy_plane],

....: [r"Center of mass $\left(\frac1m \int xdm, \frac1m \int ydm, \frac1m \int z␣

→˓dm\right)$", (center_mass_x, center_mass_y, center_mass_z)],

....: [r"$I_x = \int (y^2+z^2) dm$", Ix],[r"$I_y=\int (x^2+z^2) dm$", Iy],[mp(r"

→˓$I_z=\int (x^2+y^2)dm$"), Iz],

....: [r"$R_x=\sqrt{I_x/m}$", Rx],[mp(r"$R_y=\sqrt{I_y/m}"), Ry],[mp(r"$R_z=\sqrt

→˓{I_z/m}"),Rz]

....:])

>>> from sage.all import *

>>> html.table([

... [r"Density $\delta(x,y)$", density],

... [r"Curve $\vec r(t)$",r],

... [r"t range", t_range],

... [r"$\vec r�(t)$", r_prime],

... [r"ds, a little bit of arclength", ds],

... [r"s - arclength", s],

... [r"Centroid (constant density) $\left(\frac{1}{m}\int x\,ds,\frac{1}{m}\int y\

→˓,ds, \frac{1}{m}\int z\,ds\right)$", (centroid_x,centroid_y,centroid_z)],

(continues on next page)

7.5. Sage Quickstart for Multivariable Calculus 119

PREP Tutorials, Release 10.6

(continued from previous page)

... [r"$dm=\delta ds$ - a little bit of mass", dm],

... [r"$m=\int \delta ds$ - mass", m],

... [r"average density $\frac{1}{m}\int ds$" , avg_density.n()],

... [r"$M_{yz}=\int x dm$ - moment about yz plane", moment_about_yz_plane],

... [r"$M_{xz}=\int y dm$ - moment about xz plane", moment_about_xz_plane],

... [r"$M_{xy}=\int z dm$ - moment about xy plane", moment_about_xy_plane],

... [r"Center of mass $\left(\frac1m \int xdm, \frac1m \int ydm, \frac1m \int z␣

→˓dm\right)$", (center_mass_x, center_mass_y, center_mass_z)],

... [r"$I_x = \int (y^2+z^2) dm$", Ix],[r"$I_y=\int (x^2+z^2) dm$", Iy],[mp(r"$I_

→˓z=\int (x^2+y^2)dm$"), Iz],

... [r"$R_x=\sqrt{I_x/m}$", Rx],[mp(r"$R_y=\sqrt{I_y/m}"), Ry],[mp(r"$R_z=\sqrt{I_

→˓z/m}"),Rz]

...])

7.5.2 Functions of Several Variables
This connects directly to other issues of multivariable functions.

How to view these was mostly addressed in the various plotting tutorials. Here is a reminder of what can be done.

sage: # import matplotlib.cm; matplotlib.cm.datad.keys()

sage: # �Spectral�, �summer�, �blues�

sage: g(x,y)=e^-x*sin(y)

sage: contour_plot(g, (x, -2, 2), (y, -4*pi, 4*pi), cmap = �Blues�, contours=10,␣

→˓colorbar=True)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> # import matplotlib.cm; matplotlib.cm.datad.keys()

>>> # �Spectral�, �summer�, �blues�

>>> __tmp__=var("x,y"); g = symbolic_expression(e**-x*sin(y)).function(x,y)

>>> contour_plot(g, (x, -Integer(2), Integer(2)), (y, -Integer(4)*pi, Integer(4)*pi),␣

→˓cmap = �Blues�, contours=Integer(10), colorbar=True)

Graphics object consisting of 1 graphics primitive

Partial Differentiation

The following exercise is from Hass, Weir, and Thomas, University Calculus, Exercise 12.7.35. This function has a local
minimum at (4,−2).

sage: f(x, y) = x^2 + x*y + y^2 - 6*x + 2

>>> from sage.all import *

>>> __tmp__=var("x,y"); f = symbolic_expression(x**Integer(2) + x*y + y**Integer(2) -␣

→˓Integer(6)*x + Integer(2)).function(x,y)

Quiz: Why did we not need to declare the variables in this case?

sage: fx(x,y)= f.diff(x)

sage: fy(x,y) = f.diff(y)

sage: fx; fy

(continues on next page)

120 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

(x, y) |--> 2*x + y - 6

(x, y) |--> x + 2*y

>>> from sage.all import *

>>> __tmp__=var("x,y"); fx = symbolic_expression(f.diff(x)).function(x,y)

>>> __tmp__=var("x,y"); fy = symbolic_expression(f.diff(y)).function(x,y)

>>> fx; fy

(x, y) |--> 2*x + y - 6

(x, y) |--> x + 2*y

sage: f.gradient()

(x, y) |--> (2*x + y - 6, x + 2*y)

>>> from sage.all import *

>>> f.gradient()

(x, y) |--> (2*x + y - 6, x + 2*y)

sage: solve([fx==0, fy==0], (x, y))

[[x == 4, y == -2]]

>>> from sage.all import *

>>> solve([fx==Integer(0), fy==Integer(0)], (x, y))

[[x == 4, y == -2]]

sage: H = f.hessian()

sage: H(x,y)

[2 1]

[1 2]

>>> from sage.all import *

>>> H = f.hessian()

>>> H(x,y)

[2 1]

[1 2]

And of course if the Hessian has positive determinant and 𝑓𝑥𝑥 is positive, we have a local minimum.

sage: html("$f_{xx}=%s$"%H(4,-2)[0,0])

sage: html("$D=%s$"%H(4,-2).det())

>>> from sage.all import *

>>> html("$f_{xx}=%s$"%H(Integer(4),-Integer(2))[Integer(0),Integer(0)])

>>> html("$D=%s$"%H(Integer(4),-Integer(2)).det())

Notice how we were able to use many things we’ve done up to now to solve this.

• Matrices

• Symbolic functions

• Solving

• Differential calculus

7.5. Sage Quickstart for Multivariable Calculus 121

PREP Tutorials, Release 10.6

• Special formatting commands

• And, below, plotting!

sage: plot3d(f,(x,-5,5),(y,-5,5))+point((4,-2,f(4,-2)),color=�red�,size=20)

Graphics3d Object

>>> from sage.all import *

>>> plot3d(f,(x,-Integer(5),Integer(5)),(y,-Integer(5),Integer(5)))+point((Integer(4),

→˓-Integer(2),f(Integer(4),-Integer(2))),color=�red�,size=Integer(20))

Graphics3d Object

Multiple Integrals and More

Naturally, there is lots more that one can do.

sage: f(x,y)=x^2*y

sage: # integrate in the order dy dx

sage: f(x,y).integrate(y,0,4*x).integrate(x,0,3)

1944/5

sage: # another way to integrate, and in the opposite order too

sage: integrate(integrate(f(x,y), (x, y/4, 3)), (y, 0, 12))

1944/5

>>> from sage.all import *

>>> __tmp__=var("x,y"); f = symbolic_expression(x**Integer(2)*y).function(x,y)

>>> # integrate in the order dy dx

>>> f(x,y).integrate(y,Integer(0),Integer(4)*x).integrate(x,Integer(0),Integer(3))

1944/5

>>> # another way to integrate, and in the opposite order too

>>> integrate(integrate(f(x,y), (x, y/Integer(4), Integer(3))), (y, Integer(0),␣

→˓Integer(12)))

1944/5

sage: var(�u v�)

(u, v)

sage: surface = plot3d(f(x,y), (x, 0, 3.2), (y, 0, 12.3), color = �blue�, opacity=0.3)

sage: domain = parametric_plot3d([3*u, 4*(3*u)*v,0], (u, 0, 1), (v, 0,1), color =

→˓�green�, opacity = 0.75)

sage: image = parametric_plot3d([3*u, 4*(3*u)*v, f(3*u, 12*u*v)], (u, 0, 1), (v, 0,1),

→˓ color = �green�, opacity = 1.00)

sage: surface+domain+image

Graphics3d Object

>>> from sage.all import *

>>> var(�u v�)

(u, v)

>>> surface = plot3d(f(x,y), (x, Integer(0), RealNumber(�3.2�)), (y, Integer(0),␣

→˓RealNumber(�12.3�)), color = �blue�, opacity=RealNumber(�0.3�))

>>> domain = parametric_plot3d([Integer(3)*u, Integer(4)*(Integer(3)*u)*v,Integer(0)],

→˓ (u, Integer(0), Integer(1)), (v, Integer(0),Integer(1)), color = �green�, opacity␣

→˓= RealNumber(�0.75�))

>>> image = parametric_plot3d([Integer(3)*u, Integer(4)*(Integer(3)*u)*v,␣

(continues on next page)

122 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

(continued from previous page)

→˓f(Integer(3)*u, Integer(12)*u*v)], (u, Integer(0), Integer(1)), (v, Integer(0),

→˓Integer(1)), color = �green�, opacity = RealNumber(�1.00�))

>>> surface+domain+image

Graphics3d Object

Quiz: why did we need to declare variables this time?

7.6 Sage Quickstart for Numerical Analysis
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license (CC BY-SA).

Sage includes many tools for numerical analysis investigations.

The place to begin is the default decimal number types in Sage.

7.6.1 Basic Analysis
• The RealField class using arbitrary precision (implemented with MPFR).

• The default real numbers (RR) is RealField(53) (i.e., 53 bits of precision).

• But you can make them live at whatever precision you wish.

sage: ring=RealField(3)

>>> from sage.all import *

>>> ring=RealField(Integer(3))

To print the actual number (without rounding off the last few imprecise digits to only display correct digits), call the
.str() method:

sage: print(ring(�1�).nextabove())

1.2

>>> from sage.all import *

>>> print(ring(�1�).nextabove())

1.2

sage: print(ring(�1�).nextabove().str())

1.2

sage: print(ring(�1�).nextbelow().str())

0.88

>>> from sage.all import *

>>> print(ring(�1�).nextabove().str())

1.2

>>> print(ring(�1�).nextbelow().str())

0.88

Let’s change our precision.

7.6. Sage Quickstart for Numerical Analysis 123

http://www.sagemath.org/
http://creativecommons.org/licenses/by-sa/3.0/
http://www.mpfr.org/

PREP Tutorials, Release 10.6

sage: ring=RealField(20)

sage: print(ring(�1�).nextabove().str())

1.0000019

sage: print(ring(�1�).nextbelow().str())

0.99999905

>>> from sage.all import *

>>> ring=RealField(Integer(20))

>>> print(ring(�1�).nextabove().str())

1.0000019

>>> print(ring(�1�).nextbelow().str())

0.99999905

You can also specify the rounding mode.

sage: ringup=RealField(3,rnd=�RNDU�)

sage: ringdown=RealField(3,rnd=�RNDD�)

>>> from sage.all import *

>>> ringup=RealField(Integer(3),rnd=�RNDU�)

>>> ringdown=RealField(Integer(3),rnd=�RNDD�)

sage: ring(1/9).str()

�0.11111116�

>>> from sage.all import *

>>> ring(Integer(1)/Integer(9)).str()

�0.11111116�

sage: ringup(1/9).str()

�0.13�

>>> from sage.all import *

>>> ringup(Integer(1)/Integer(9)).str()

�0.13�

sage: ringdown(1/9).str()

�0.10�

>>> from sage.all import *

>>> ringdown(Integer(1)/Integer(9)).str()

�0.10�

sage: ring(1/9).str(base=2)

�0.00011100011100011100100�

>>> from sage.all import *

>>> ring(Integer(1)/Integer(9)).str(base=Integer(2))

�0.00011100011100011100100�

Let’s see exactly what the fraction is.

124 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

sage: ring(1/9).exact_rational()

233017/2097152

>>> from sage.all import *

>>> ring(Integer(1)/Integer(9)).exact_rational()

233017/2097152

sage: n(233017/2097152)

0.111111164093018

>>> from sage.all import *

>>> n(Integer(233017)/Integer(2097152))

0.111111164093018

7.6.2 Converting to floating point binary (IEEE format)
sage: x=13.28125

>>> from sage.all import *

>>> x=RealNumber(�13.28125�)

Here is x as a binary floating point number.

sage: x.str(base=2)

�1101.0100100�

>>> from sage.all import *

>>> x.str(base=Integer(2))

�1101.0100100�

From this binary floating point representation, we can construct x again.

sage: xbin=2^3 +2^2 + 2^0+2^-2+2^-5; xbin

425/32

>>> from sage.all import *

>>> xbin=Integer(2)**Integer(3) +Integer(2)**Integer(2) +␣

→˓Integer(2)**Integer(0)+Integer(2)**-Integer(2)+Integer(2)**-Integer(5); xbin

425/32

sage: xbin.n()

13.2812500000000

>>> from sage.all import *

>>> xbin.n()

13.2812500000000

To check, let’s ask Sage what x is as an exact fraction (no rounding involved).

sage: x.exact_rational()

425/32

7.6. Sage Quickstart for Numerical Analysis 125

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> x.exact_rational()

425/32

Now let’s convert x to the IEEE 754 binary format that is commonly used in computers. For IEEE 754, the first step in
getting the binary format is to normalize the number, or express the number as a number between 1 and 2 multiplied by
a power of 2. For our x above, we multiply by 2−3 to get a number between 1 and 2.

sage: (x*2^(-3)).str(base=2)

�1.1010100100�

>>> from sage.all import *

>>> (x*Integer(2)**(-Integer(3))).str(base=Integer(2))

�1.1010100100�

The fraction part of the normalized number is called the mantissa (or significand).

sage: f=(x*2^(-3)).frac() # .frac() gets the fraction part, the part after the decimal

sage: mantissa=f.str(base=2)

sage: mantissa

�0.10101001000�

>>> from sage.all import *

>>> f=(x*Integer(2)**(-Integer(3))).frac() # .frac() gets the fraction part, the part␣

→˓after the decimal

>>> mantissa=f.str(base=Integer(2))

>>> mantissa

�0.10101001000�

Since we multiplied by 2−3 to normalize the number, we need to store this information. We add 1023 in order to not
have to worry about storing negative numbers. In the below, c will be our exponent.

sage: c=(3+1023).str(base=2)

sage: c

�10000000010�

>>> from sage.all import *

>>> c=(Integer(3)+Integer(1023)).str(base=Integer(2))

>>> c

�10000000010�

Note that c has 11 bits, which is exactly what we want.

sage: len(c)

11

>>> from sage.all import *

>>> len(c)

11

Evaluating mantissa[2:54] will give the first 52 binary digits after the decimal point of the mantissa. Note that we
don’t need to store the leading 1 before the decimal point because it will always be there from the way we normalized
things. This lets us get 53-bit precision using only 52 bits of storage.

126 Chapter 7. PREP Quickstart Tutorials

http://grouper.ieee.org/groups/754/

PREP Tutorials, Release 10.6

sage: len(mantissa[2:54])

52

>>> from sage.all import *

>>> len(mantissa[Integer(2):Integer(54)])

52

Since the original number was positive, our sign bit is zero.

sage: sign=�0�

>>> from sage.all import *

>>> sign=�0�

So here is our 64-bit double-precision floating point number.

sage: sign+� �+c+� �+mantissa[2:54] # the [2:] just chops off the �0.�, since we just␣

→˓need to store the digits after the decimal point

�0 10000000010 1010100100�

>>> from sage.all import *

>>> sign+� �+c+� �+mantissa[Integer(2):Integer(54)] # the [2:] just chops off the �0.

→˓�, since we just need to store the digits after the decimal point

�0 10000000010 1010100100�

sage: len(sign+c+mantissa[2:54]) # it�s 64 bits!

64

>>> from sage.all import *

>>> len(sign+c+mantissa[Integer(2):Integer(54)]) # it�s 64 bits!

64

Here we convert back to our original number from the floating point representation that we constructed.

sage: ((-1)^(int(sign)) * 2^(int(c,base=2)-1023)*(1+RR(mantissa[:54], base=2)))

13.2812500000000

>>> from sage.all import *

>>> ((-Integer(1))**(int(sign)) * Integer(2)**(int(c,base=Integer(2))-

→˓Integer(1023))*(Integer(1)+RR(mantissa[:Integer(54)], base=Integer(2))))

13.2812500000000

sage: x

13.2812500000000

>>> from sage.all import *

>>> x

13.2812500000000

So they agree!

Sage uses a cutting-edge numerical library, MPFR, to carry out precise floating point arithmetic using any precision a
user specifies. MPFR has a slightly different convention for normalization. In MPFR, we normalize by multiplying by

7.6. Sage Quickstart for Numerical Analysis 127

PREP Tutorials, Release 10.6

an appropriate power of 2 to make the mantissa an integer, instead of a binary fraction. This allows us to use big integer
libraries and sophisticated techniques to carry out calculations at an arbitrary precision.

sage: x.sign_mantissa_exponent()

(1, 7476679068876800, -49)

>>> from sage.all import *

>>> x.sign_mantissa_exponent()

(1, 7476679068876800, -49)

sage: 7476679068876800*2^(-49)

425/32

>>> from sage.all import *

>>> Integer(7476679068876800)*Integer(2)**(-Integer(49))

425/32

Note that the mantissa here has the same zero/nonzero bits as the mantissa above (before we chopped off the leading 1
above).

sage: 7476679068876800.str(base=2)

�11010100100�

>>> from sage.all import *

>>> Integer(7476679068876800).str(base=Integer(2))

�11010100100�

7.6.3 Interval Arithmetic
Sage also lets you compute using intervals to keep track of error bounds. These basically use the round up and round
down features shown above.

sage: ring=RealIntervalField(10)

sage: a=ring(1/9)

sage: a

0.112?

>>> from sage.all import *

>>> ring=RealIntervalField(Integer(10))

>>> a=ring(Integer(1)/Integer(9))

>>> a

0.112?

The question mark notation means that the number is contained in the interval found by incrementing and decrementing
the last digit of the number. See the documentation for real interval fields for details. In the above case, Sage is saying
that 1/9 is somewhere between 0.111 and 0.113. Below, we see that 1/a is somewhere between 8.9 and 9.1.

sage: 1/a

9.0?

128 Chapter 7. PREP Quickstart Tutorials

http://doc.sagemath.org/html/en/reference/sage/rings/real_mpfi.html

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> Integer(1)/a

9.0?

We can get a more precise estimate of the interval if we explicitly print out the interval.

sage: print((1/a).str(style=�brackets�))

[8.9843 .. 9.0157]

>>> from sage.all import *

>>> print((Integer(1)/a).str(style=�brackets�))

[8.9843 .. 9.0157]

7.6.4 Included Software
Scipy (included in Sage) has a lot of numerical algorithms. See the Scipy docs.

Mpmath is also included in Sage, and contains a huge amount of numerical stuff. See the mpmath codebase.

The Decimal python module has also been useful for textbook exercises which involved rounding in base 10.

7.6.5 Plotting with precision
Sometimes plotting involves some rather bad rounding errors because plotting calculations are done with
machine-precision floating point numbers.

sage: f(x)=x^2*(sqrt(x^4+16)-x^2)

sage: plot(f,(x,0,2e4))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_

→˓expression(x**Integer(2)*(sqrt(x**Integer(4)+Integer(16))-x**Integer(2))).

→˓function(x)

>>> plot(f,(x,Integer(0),RealNumber(�2e4�)))

Graphics object consisting of 1 graphics primitive

We can instead make a function that specifically evaluates all intermediate steps to 100 bits of precision using the
fast_callable system.

sage: R=RealField(100) # 100 bits

sage: g=fast_callable(f, vars=[x], domain=R)

sage: plot(g,(x,0,2e4))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> R=RealField(Integer(100)) # 100 bits

>>> g=fast_callable(f, vars=[x], domain=R)

>>> plot(g,(x,Integer(0),RealNumber(�2e4�)))

Graphics object consisting of 1 graphics primitive

7.6. Sage Quickstart for Numerical Analysis 129

http://docs.scipy.org/doc/scipy/reference/
https://github.com/fredrik-johansson/mpmath/
http://docs.python.org/library/decimal.html

PREP Tutorials, Release 10.6

7.7 Sage Quickstart for Number Theory
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license (CC BY-SA).

Since Sage began life as a project in algebraic and analytic number theory (and this continues to be a big emphasis), it is
no surprise that functionality in this area is extremely comprehensive. And it’s also just enjoyable to explore elementary
number theory by computer.

7.7.1 Modular Arithmetic
Conveniently, the ring of integers modulo 𝑛 is always available in Sage, so we can do modular arithmetic very easily. For
instance, we can create a number in ;/11;. The type command tells us that 𝑎 is not a regular integer.

sage: a = mod(2,11); a; type(a); a^10; a^1000000

2

<class �sage.rings.finite_rings.integer_mod.IntegerMod_int�>

1

1

>>> from sage.all import *

>>> a = mod(Integer(2),Integer(11)); a; type(a); a**Integer(10); a**Integer(1000000)

2

<class �sage.rings.finite_rings.integer_mod.IntegerMod_int�>

1

1

Note that we verified Fermat’s “Little Theorem” in the previous cell, for the prime 𝑝 = 11 and input 𝑎 = 2.

Recalling the basic programming construct called a loop , we can verify this for all 𝑎 in the integers modulo 𝑝. Here,
instead of looping over an explicit list like [0,1,2,3,...8,9,10], we loop over a Sage object.

sage: for a in Integers(11):

....: print("{} {}".format(a, a^10))

0 0

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

>>> from sage.all import *

>>> for a in Integers(Integer(11)):

... print("{} {}".format(a, a**Integer(10)))

0 0

1 1

2 1

3 1

(continues on next page)

130 Chapter 7. PREP Quickstart Tutorials

http://www.sagemath.org
http://creativecommons.org/licenses/by-sa/3.0/

PREP Tutorials, Release 10.6

(continued from previous page)

4 1

5 1

6 1

7 1

8 1

9 1

10 1

Notice that Integers(11) gave us an algebraic object which is the ring of integers modulo the prime ideal generated
by the element 11.

This works for much bigger numbers too, of course.

sage: p=random_prime(10^200,proof=True)

sage: Zp=Integers(p) # Here we give ourselves shorthand for the modular integers

sage: a=Zp(2) # Here we ask for 2 as an element of that ring

sage: p; a; a^(p-1); a^(10^400)

83127880126958116183078749835647757239842289608629126718968330784897646881689610705533

→˓628095938824110164366160161355539845499311180100402016248362566463907409939681883876

→˓411550651284088712896660589151

2

1

21428062940380156097538386722913390559445420264965409656232714664156136144920173818936

→˓415427844953758774658350253363113516712541610660591925149144205368271119123211091215

→˓746697984955519927521190733305

>>> from sage.all import *

>>> p=random_prime(Integer(10)**Integer(200),proof=True)

>>> Zp=Integers(p) # Here we give ourselves shorthand for the modular integers

>>> a=Zp(Integer(2)) # Here we ask for 2 as an element of that ring

>>> p; a; a**(p-Integer(1)); a**(Integer(10)**Integer(400))

83127880126958116183078749835647757239842289608629126718968330784897646881689610705533

→˓628095938824110164366160161355539845499311180100402016248362566463907409939681883876

→˓411550651284088712896660589151

2

1

21428062940380156097538386722913390559445420264965409656232714664156136144920173818936

→˓415427844953758774658350253363113516712541610660591925149144205368271119123211091215

→˓746697984955519927521190733305

Whenever you encounter a new object, you should try tab-completion to see what you can do to it. Try it here, and pick
one (hopefully one that won’t be too long!).

sage: Zp.

>>> from sage.all import *

>>> Zp.

Here’s one that sounds interesting.

sage: Zp.zeta?

7.7. Sage Quickstart for Number Theory 131

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> Zp.zeta?

And we use it to find the fifth roots of unity in this field. We use the list comprehension (set-builder) notation from the
programming tutorial this time.

sage: root_list = Zp.zeta(5,all=True); root_list

[8019977038856332410033454862634524008129427328910986643699665252532826865292250889294

→˓606853864153831605437318701916878121187603684953133782483222621668467771758016559217

→˓5377569174402189281574130719978, 698397838955722862975688344850250735578853643480710

→˓617154654770618734003597949893674234076839712993618172452139471823440907398433670761

→˓97016322541936552333837227080274674865687645877633828974738751695, 57407444219199061

→˓498801298672323590163238592201574572482836619025676869537007609315386800852204337587

→˓805249250896651467970585450518157701115893749407382500580682168292929753154872678880

→˓962261809848942, 4193664187753967665253156772324936791710863898713187952160624374181

→˓440209534372454084460721299929706481623082862106402626329660280553597009169657013877

→˓2210094329631491849238240260893562065879302446837]

>>> from sage.all import *

>>> root_list = Zp.zeta(Integer(5),all=True); root_list

[8019977038856332410033454862634524008129427328910986643699665252532826865292250889294

→˓606853864153831605437318701916878121187603684953133782483222621668467771758016559217

→˓5377569174402189281574130719978, 698397838955722862975688344850250735578853643480710

→˓617154654770618734003597949893674234076839712993618172452139471823440907398433670761

→˓97016322541936552333837227080274674865687645877633828974738751695, 57407444219199061

→˓498801298672323590163238592201574572482836619025676869537007609315386800852204337587

→˓805249250896651467970585450518157701115893749407382500580682168292929753154872678880

→˓962261809848942, 4193664187753967665253156772324936791710863898713187952160624374181

→˓440209534372454084460721299929706481623082862106402626329660280553597009169657013877

→˓2210094329631491849238240260893562065879302446837]

Are these really fifth roots of unity?

sage: [root^5 for root in root_list]

[1, 1, 1, 1]

>>> from sage.all import *

>>> [root**Integer(5) for root in root_list]

[1, 1, 1, 1]

Luckily, it checked out. (If you didn’t get any, then your random prime ended up being one for which there are no fifth
roots of unity – try doing the sequence over again!)

7.7.2 More basic functionality
Similarly to the situation in linear algebra, there is much more we can access at the elementary level, such as

• primitive roots,

• ways to write a number as a sum of squares,

• Legendre symbols,

• modular solving of basic equations,

• etc.

132 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

A good way to use Sage in this context is to allow students to experiment with pencil and paper first, then use Sage to see
whether patterns they discover hold true before attempting to prove them.

sage: p = 13

sage: primitive_root(p); two_squares(p); is_prime(p)

2

(2, 3)

True

>>> from sage.all import *

>>> p = Integer(13)

>>> primitive_root(p); two_squares(p); is_prime(p)

2

(2, 3)

True

This makes it easy to construct elementary cryptographic examples as well. Here is a standard example of a Diffie-Hellman
key exchange, for instance. If we didn’t do the second line, exponentiation would be impractical.

sage: p=random_prime(10^20,10^30) # a random prime between these numbers

sage: q=mod(primitive_root(p),p) # makes the primitive root a number modulo p, not an␣

→˓integer

sage: n=randint(1,p) # Alice�s random number

sage: m=randint(1,p) # Bob�s random number

sage: x=q^n; y=q^m

sage: x; y; x^m; y^n

66786436189350477660

77232558812003408270

45432410008036883324

45432410008036883324

>>> from sage.all import *

>>> p=random_prime(Integer(10)**Integer(20),Integer(10)**Integer(30)) # a random␣

→˓prime between these numbers

>>> q=mod(primitive_root(p),p) # makes the primitive root a number modulo p, not an␣

→˓integer

>>> n=randint(Integer(1),p) # Alice�s random number

>>> m=randint(Integer(1),p) # Bob�s random number

>>> x=q**n; y=q**m

>>> x; y; x**m; y**n

66786436189350477660

77232558812003408270

45432410008036883324

45432410008036883324

The final line of the cell first requests Alice and Bob’s (possibly) public information, and then verifies that the private keys
they get are the same.

It is hard to resist including just one interact. How many theorems do you see here?

sage: @interact

sage: def power_table_plot(p=(7,prime_range(50))):

....: P=matrix_plot(matrix(p-1,[mod(a,p)^b for a in range(1,p) for b in␣

(continues on next page)

7.7. Sage Quickstart for Number Theory 133

PREP Tutorials, Release 10.6

(continued from previous page)

→˓srange(p)]),cmap=�jet�)

....: show(P)

>>> from sage.all import *

>>> @interact

>>> def power_table_plot(p=(Integer(7),prime_range(Integer(50)))):

... P=matrix_plot(matrix(p-Integer(1),[mod(a,p)**b for a in range(Integer(1),p)␣

→˓for b in srange(p)]),cmap=�jet�)

... show(P)

This is a graphic giving the various powers of integers modulo 𝑝 as colors, not numbers. The columns are the powers, so
the first column is the zeroth power (always 1) and the second column gives the colors for the numbers modulo the given
prime (first power).

One more very useful object is the prime counting function 𝜋(𝑥). This comes with its own custom plotting.

sage: prime_pi(100); plot(prime_pi,1,100)

25

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> prime_pi(Integer(100)); plot(prime_pi,Integer(1),Integer(100))

25

Graphics object consisting of 1 graphics primitive

A very nice aspect of Sage is combining several aspects of mathematics together. It can be very eye-opening to students
to see analytic aspects of number theory early on. (Note that we have to reassign 𝑥 to a variable, since above it was a
cryptographic key!)

sage: var(�x�)

x

sage: plot(prime_pi,2,10^6,thickness=2)+plot(Li,2,10^6,color=�red�)+plot(x/ln(x),2,10^

→˓6,color=�green�)

Graphics object consisting of 3 graphics primitives

>>> from sage.all import *

>>> var(�x�)

x

>>> plot(prime_pi,Integer(2),Integer(10)**Integer(6),thickness=Integer(2))+plot(Li,

→˓Integer(2),Integer(10)**Integer(6),color=�red�)+plot(x/ln(x),Integer(2),

→˓Integer(10)**Integer(6),color=�green�)

Graphics object consisting of 3 graphics primitives

7.7.3 Advanced Number Theory
For those who are interested, more advanced number-theoretic objects are easy to come by; we end with a brief sampler
of these.

In the first example,𝐾 is the field extension Q(
√
−14), where the symbol a plays the role of

√
−14; we discover several

basic facts about𝐾 in the next several cells.

sage: K.<a> = NumberField(x^2+14); K

Number Field in a with defining polynomial x^2 + 14

134 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> K = NumberField(x**Integer(2)+Integer(14), names=(�a�,)); (a,) = K._first_

→˓ngens(1); K

Number Field in a with defining polynomial x^2 + 14

sage: K.discriminant(); K.class_group().order(); K.class_group().is_cyclic()

-56

4

True

>>> from sage.all import *

>>> K.discriminant(); K.class_group().order(); K.class_group().is_cyclic()

-56

4

True

Various zeta functions are also available; here is a complex plot of the Riemann zeta.

sage: complex_plot(zeta, (-30,30), (-30,30))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> complex_plot(zeta, (-Integer(30),Integer(30)), (-Integer(30),Integer(30)))

Graphics object consisting of 1 graphics primitive

7.7.4 Cryptography
Sage supports various more advanced cryptographic procedures as well as some basic pedagogical ones natively. This
example is adapted from the documentation.

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES

sage: sdes = SimplifiedDES(); sdes

Simplified DES block cipher with 10-bit keys

>>> from sage.all import *

>>> from sage.crypto.block_cipher.sdes import SimplifiedDES

>>> sdes = SimplifiedDES(); sdes

Simplified DES block cipher with 10-bit keys

sage: bin = BinaryStrings()

sage: P = [0,1,0,0,1,1,0,1] # our message

sage: K = sdes.random_key() # generate a random key

sage: C = sdes.encrypt(P, K) # encrypt our message

sage: plaintxt = sdes.decrypt(C, K) # decrypt it

sage: plaintxt # print it

[0, 1, 0, 0, 1, 1, 0, 1]

>>> from sage.all import *

>>> bin = BinaryStrings()

>>> P = [Integer(0),Integer(1),Integer(0),Integer(0),Integer(1),Integer(1),Integer(0),

→˓Integer(1)] # our message

(continues on next page)

7.7. Sage Quickstart for Number Theory 135

PREP Tutorials, Release 10.6

(continued from previous page)

>>> K = sdes.random_key() # generate a random key

>>> C = sdes.encrypt(P, K) # encrypt our message

>>> plaintxt = sdes.decrypt(C, K) # decrypt it

>>> plaintxt # print it

[0, 1, 0, 0, 1, 1, 0, 1]

See also the cryptography example in the discrete math quickstart.

7.8 Sage Quickstart for Statistics
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071). It is licensed under the Creative Commons
Attribution-ShareAlike 3.0 license (CC BY-SA).

7.8.1 Basic Descriptive Statistics
Basic statistical functions are best to get from numpy and scipy.stats.

NumPy provides, for example, functions to compute the arithmetic mean and the standard deviation:

sage: import numpy as np

sage: if int(np.version.short_version[0]) > 1:

....: _ = np.set_printoptions(legacy="1.25")

sage: np.mean([1, 2, 3, 5])

2.75

sage: np.std([1, 2, 2, 4, 5, 6, 8]) # rel to 1e-13

2.32992949004287

>>> from sage.all import *

>>> import numpy as np

>>> if int(np.version.short_version[Integer(0)]) > Integer(1):

... _ = np.set_printoptions(legacy="1.25")

>>> np.mean([Integer(1), Integer(2), Integer(3), Integer(5)])

2.75

>>> np.std([Integer(1), Integer(2), Integer(2), Integer(4), Integer(5), Integer(6),␣

→˓Integer(8)]) # rel to 1e-13

2.32992949004287

SciPy offers many more functions, for example a function to compute the harmonic mean:

sage: from scipy.stats import hmean

sage: hmean([1, 2, 2, 4, 5, 6, 8]) # rel to 1e-13

2.5531914893617023

>>> from sage.all import *

>>> from scipy.stats import hmean

>>> hmean([Integer(1), Integer(2), Integer(2), Integer(4), Integer(5), Integer(6),␣

→˓Integer(8)]) # rel to 1e-13

2.5531914893617023

136 Chapter 7. PREP Quickstart Tutorials

https://www.sagemath.org
https://creativecommons.org/licenses/by-sa/3.0/
https://numpy.org/doc/stable/reference/routines.statistics.html
https://docs.scipy.org/doc/scipy/reference/stats.html

PREP Tutorials, Release 10.6

We do not recommend to use Python’s built in statistics module with Sage. It has a known incompatibility with
number types defined in Sage, see Issue #28234.

7.8.2 Distributions
Let’s generate a random sample from a given type of continuous distribution using native Python random generators.

• We use the simplest method of generating random elements from a log normal distribution with (normal) mean 2
and 𝜎 = 3.

• Notice that there is really no way around making some kind of loop.

sage: my_data = [lognormvariate(2, 3) for i in range(10)]

sage: my_data # random

[13.189347821530054, 151.28229284782799, 0.071974845847761343, 202.62181449742425, 1.

→˓9677158880100207, 71.959830176932542, 21.054742855786007, 3.9235315623286406, 4129.

→˓9880239483346, 16.41063858663054]

>>> from sage.all import *

>>> my_data = [lognormvariate(Integer(2), Integer(3)) for i in range(Integer(10))]

>>> my_data # random

[13.189347821530054, 151.28229284782799, 0.071974845847761343, 202.62181449742425, 1.

→˓9677158880100207, 71.959830176932542, 21.054742855786007, 3.9235315623286406, 4129.

→˓9880239483346, 16.41063858663054]

We can check whether the mean of the log of the data is close to 2.

sage: np.mean([log(item) for item in my_data]) # random

3.0769518857697618

>>> from sage.all import *

>>> np.mean([log(item) for item in my_data]) # random

3.0769518857697618

Here is an example using the Gnu scientific library under the hood.

• Let dist be the variable assigned to a continuous Gaussian/normal distribution with standard deviation of 3.

• Then we use the .get_random_element()method ten times, adding 2 each time so that the mean is equal to 2.

sage: dist=RealDistribution(�gaussian�,3)

sage: my_data=[dist.get_random_element()+2 for _ in range(10)]

sage: my_data # random

[3.18196848067, -2.70878671264, 0.445500746768, 0.579932075555, -1.32546445128, 0.

→˓985799587162, 4.96649083229, -1.78785287243, -3.05866866979, 5.90786474822]

>>> from sage.all import *

>>> dist=RealDistribution(�gaussian�,Integer(3))

>>> my_data=[dist.get_random_element()+Integer(2) for _ in range(Integer(10))]

>>> my_data # random

[3.18196848067, -2.70878671264, 0.445500746768, 0.579932075555, -1.32546445128, 0.

→˓985799587162, 4.96649083229, -1.78785287243, -3.05866866979, 5.90786474822]

For now, it’s a little annoying to get histograms of such things directly. Here, we get a larger sampling of this distribution
and plot a histogram with 10 bins.

7.8. Sage Quickstart for Statistics 137

https://github.com/sagemath/sage/issues/28234
http://www.gnu.org/software/gsl/

PREP Tutorials, Release 10.6

sage: my_data2 = [dist.get_random_element()+2 for _ in range(1000)]

sage: T = stats.TimeSeries(my_data)

sage: T.plot_histogram(normalize=False,bins=10)

Graphics object consisting of 10 graphics primitives

>>> from sage.all import *

>>> my_data2 = [dist.get_random_element()+Integer(2) for _ in range(Integer(1000))]

>>> T = stats.TimeSeries(my_data)

>>> T.plot_histogram(normalize=False,bins=Integer(10))

Graphics object consisting of 10 graphics primitives

To access discrete distributions, we again use Scipy.

• We have to import the module scipy.stats.

• We use binom_dist to denote the binomial distribution with 20 trials and 5% expected failure rate.

• The .pmf(x) method gives the probability of 𝑥 failures, which we then plot in a bar chart for 𝑥 from 0 to 20.
(Don’t forget that range(21) means all integers from zero to twenty.)

sage: import scipy.stats

sage: binom_dist = scipy.stats.binom(20,.05)

sage: bar_chart([binom_dist.pmf(x) for x in range(21)])

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> import scipy.stats

>>> binom_dist = scipy.stats.binom(Integer(20),RealNumber(�.05�))

>>> bar_chart([binom_dist.pmf(x) for x in range(Integer(21))])

Graphics object consisting of 1 graphics primitive

The bar_chart function performs some of the duties of histograms.

Scipy’s statistics can do other things too. Here, we find the median (as the fiftieth percentile) of an earlier data set.

sage: scipy.stats.scoreatpercentile(my_data, 50) # random

0.51271641116183286

>>> from sage.all import *

>>> scipy.stats.scoreatpercentile(my_data, Integer(50)) # random

0.51271641116183286

The key thing to remember here is to look at the documentation!

7.8.3 Using R from within Sage
The R project is a leading software package for statistical analysis with widespread use in industry and academics.

There are several ways to access R; they are based on the rpy2 package.

• One of the easiest is to just put r() around things you want to make into statistical objects, and then …

• Use R commands via r.method() to pass them on to Sage for further processing.

The following example of the Kruskal-Wallis test comes directly from the examples in r.kruskal_test? in the note-
book.

138 Chapter 7. PREP Quickstart Tutorials

http://www.scipy.org
http://www.r-project.org

PREP Tutorials, Release 10.6

sage: # optional - rpy2

sage: x = r([2.9, 3.0, 2.5, 2.6, 3.2]) # normal subjects

sage: y = r([3.8, 2.7, 4.0, 2.4]) # with obstructive airway disease

sage: z = r([2.8, 3.4, 3.7, 2.2, 2.0]) # with asbestosis

sage: a = r([x,y,z]) # make a long R vector of all the data

sage: b = r.factor(5*[1] + 4*[2] + 5*[3]) # create something for R to tell

....: # which subjects are which

sage: a; b # show them

[1] 2.9 3.0 2.5 2.6 3.2 3.8 2.7 4.0 2.4 2.8 3.4 3.7 2.2 2.0

[1] 1 1 1 1 1 2 2 2 2 3 3 3 3 3

Levels: 1 2 3

>>> from sage.all import *

>>> # optional - rpy2

>>> x = r([RealNumber(�2.9�), RealNumber(�3.0�), RealNumber(�2.5�), RealNumber(�2.6�),

→˓ RealNumber(�3.2�)]) # normal subjects

>>> y = r([RealNumber(�3.8�), RealNumber(�2.7�), RealNumber(�4.0�), RealNumber(�2.4

→˓�)]) # with obstructive airway disease

>>> z = r([RealNumber(�2.8�), RealNumber(�3.4�), RealNumber(�3.7�), RealNumber(�2.2�),

→˓ RealNumber(�2.0�)]) # with asbestosis

>>> a = r([x,y,z]) # make a long R vector of all the data

>>> b = r.factor(Integer(5)*[Integer(1)] + Integer(4)*[Integer(2)] +␣

→˓Integer(5)*[Integer(3)]) # create something for R to tell

... # which subjects are which

>>> a; b # show them

[1] 2.9 3.0 2.5 2.6 3.2 3.8 2.7 4.0 2.4 2.8 3.4 3.7 2.2 2.0

[1] 1 1 1 1 1 2 2 2 2 3 3 3 3 3

Levels: 1 2 3

sage: r.kruskal_test(a,b) # do the KW test! #␣

→˓optional - rpy2

Kruskal-Wallis rank sum test

data: sage17 and sage33

Kruskal-Wallis chi-squared = 0.7714, df = 2, p-value = 0.68

>>> from sage.all import *

>>> r.kruskal_test(a,b) # do the KW test! #␣

→˓optional - rpy2

Kruskal-Wallis rank sum test

data: sage17 and sage33

Kruskal-Wallis chi-squared = 0.7714, df = 2, p-value = 0.68

Looks like we can’t reject the null hypothesis here.

The best way to use R seriously is to simply ask each individual cell to evaluate completely in R, using a so-called “percent
directive”. Here is a sample linear regression from John Verzani’s simpleR text. Notice that R also uses the # symbol to
indicate comments.

sage: %r #␣

→˓optional - rpy2

....: x = c(18,23,25,35,65,54,34,56,72,19,23,42,18,39,37) # ages of individuals
(continues on next page)

7.8. Sage Quickstart for Statistics 139

http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf

PREP Tutorials, Release 10.6

(continued from previous page)

....: y = c(202,186,187,180,156,169,174,172,153,199,193,174,198,183,178) # maximum␣

→˓heart rate of each one

....: png() # turn on plotting

....: plot(x,y) # make a plot

....: lm(y ~ x) # do the linear regression

....: abline(lm(y ~ x)) # plot the regression line

....: dev.off() # turn off the device so it plots

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

210.0485 -0.7977

null device

1

>>> from sage.all import *

>>> %r #␣

→˓optional - rpy2

... x = c(Integer(18),Integer(23),Integer(25),Integer(35),Integer(65),Integer(54),

→˓Integer(34),Integer(56),Integer(72),Integer(19),Integer(23),Integer(42),Integer(18),

→˓Integer(39),Integer(37)) # ages of individuals

... y = c(Integer(202),Integer(186),Integer(187),Integer(180),Integer(156),

→˓Integer(169),Integer(174),Integer(172),Integer(153),Integer(199),Integer(193),

→˓Integer(174),Integer(198),Integer(183),Integer(178)) # maximum heart rate of each␣

→˓one

... png() # turn on plotting

... plot(x,y) # make a plot

... lm(y ~ x) # do the linear regression

... abline(lm(y ~ x)) # plot the regression line

... dev.off() # turn off the device so it plots

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

210.0485 -0.7977

null device

1

140 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

To get a whole worksheet to evaluate in R (and be able to ignore the %), you could also drop down the r option in the
menu close to the top which currently has sage in it.

7.9 Sage Interact Quickstart
This Sage quickstart tutorial was developed for the MAA PREP Workshop “Sage: Using Open-Source Mathematics
Software with Undergraduates” (funding provided by NSF DUE 0817071).

Invaluable resources are the Sage wiki http://wiki.sagemath.org/interact (type “sage interact” into Google), UTMOST
Sage Cell Repository (a collection of contributed interacts).

7.9.1 Start with just one command
How would one create an interactive cell? First, let’s focus on a new thing to do! Perhaps we just want a graph plotter
that has some options.

So let’s start by getting the commands for what you want the output to look like. Here we just want a simple plot.

sage: plot(x^2,(x,-3,3))

Graphics object consisting of 1 graphics primitive

7.9. Sage Interact Quickstart 141

http://www.sagemath.org/
http://wiki.sagemath.org/interact
http://utmost-sage-cell.org/interacts
http://utmost-sage-cell.org/interacts

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> plot(x**Integer(2),(x,-Integer(3),Integer(3)))

Graphics object consisting of 1 graphics primitive

Then abstract out the parts you want to change. We’ll be letting the user change the function, so let’s make that a variable
f.

sage: f=x^3

sage: plot(f,(x,-3,3))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> f=x**Integer(3)

>>> plot(f,(x,-Integer(3),Integer(3)))

Graphics object consisting of 1 graphics primitive

This was important because it allowed you to step back and think about what you would really be doing.

Now for the technical part. We make this a def function - see the programming tutorial.

sage: def myplot(f=x^2):

....: show(plot(f,(x,-3,3)))

>>> from sage.all import *

>>> def myplot(f=x**Integer(2)):

... show(plot(f,(x,-Integer(3),Integer(3))))

Let’s test the def function myplot by just calling it.

sage: myplot()

>>> from sage.all import *

>>> myplot()

If we call it with a different value for f, we should get a different plot.

sage: myplot(x^3)

>>> from sage.all import *

>>> myplot(x**Integer(3))

So far, we’ve only defined a new function, so this was review. To make a “control” to allow the user to interactively enter
the function, we just preface the function with @interact.

sage: @interact

sage: def myplot(f=x^2):

....: show(plot(f,(x,-3,3)))

>>> from sage.all import *

>>> @interact

>>> def myplot(f=x**Integer(2)):

... show(plot(f,(x,-Integer(3),Integer(3))))

142 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

INFO-CIRCLE Note

Technically what @interact does is wrap the function, so the above is equivalent to:

def myplot(..): ...

myplot=interact(myplot)

Note that we can still call our function, even when we’ve used @interact. This is often useful in debugging it.

sage: myplot(x^4)

>>> from sage.all import *

>>> myplot(x**Integer(4))

7.9.2 Adding Complexity
We can go ahead and replace other parts of the expression with variables. Note that _ is the function name now. That is
a just convention for throw-away names that we don’t care about.

sage: @interact

sage: def _(f=x^2, a=-3, b=3):

....: show(plot(f,(x,a,b)))

>>> from sage.all import *

>>> @interact

>>> def _(f=x**Integer(2), a=-Integer(3), b=Integer(3)):

... show(plot(f,(x,a,b)))

If we pass (�label�, default_value) in for a control, then the control gets the label when printed. Here, we’ve
put in some text for all three of them. Remember that the text must be in quotes! Otherwise Sage will think that you are
referring (for example) to some variable called “lower”, which it will think you forgot to define.

sage: @interact

sage: def _(f=(�f�, x^2), a=(�lower�, -3), b=(�upper�, 3)):

....: show(plot(f,(x,a,b)))

>>> from sage.all import *

>>> @interact

>>> def _(f=(�f�, x**Integer(2)), a=(�lower�, -Integer(3)), b=(�upper�,␣

→˓Integer(3))):

... show(plot(f,(x,a,b)))

We can specify the type of control explicitly, along with options. See below for more detail on the possibilities.

sage: @interact

sage: def _(f=input_box(x^2, width=20, label="f")):

....: show(plot(f,(x,-3,3)))

>>> from sage.all import *

>>> @interact

>>> def _(f=input_box(x**Integer(2), width=Integer(20), label="f")):

... show(plot(f,(x,-Integer(3),Integer(3))))

7.9. Sage Interact Quickstart 143

PREP Tutorials, Release 10.6

Here we demonstrate a bunch of options. Notice the new controls:

• range_slider, which passes in two values, zoom[0] and zoom[1]

• True/False gets converted to checkboxes for the end user

sage: @interact

sage: def _(f=input_box(x^2,width=20),

....: color=color_selector(widget=�colorpicker�, label=""),

....: axes=True,

....: fill=True,

....: zoom=range_slider(-3,3,default=(-3,3))):

....: show(plot(f,(x,zoom[0], zoom[1]), color=color, axes=axes,fill=fill))

>>> from sage.all import *

>>> @interact

>>> def _(f=input_box(x**Integer(2),width=Integer(20)),

... color=color_selector(widget=�colorpicker�, label=""),

... axes=True,

... fill=True,

... zoom=range_slider(-Integer(3),Integer(3),default=(-Integer(3),Integer(3)))):

... show(plot(f,(x,zoom[Integer(0)], zoom[Integer(1)]), color=color, axes=axes,

→˓fill=fill))

There is also one button type to disable automatic updates.

The previous interact was a bit ugly, because all of the controls were stacked on top of each other. We can control the
layout of the widget controls in a grid (at the top, bottom, left, or right) using the layout parameter.

sage: @interact(layout=dict(top=[[�f�, �color�]],

....: left=[[�axes�],[�fill�]],

....: bottom=[[�zoom�]]))

sage: def _(f=input_box(x^2,width=20),

....: color=color_selector(widget=�colorpicker�, label=""),

....: axes=True,

....: fill=True,

....: zoom=range_slider(-3,3, default=(-3,3))):

....: show(plot(f,(x,zoom[0], zoom[1]), color=color, axes=axes,fill=fill))

>>> from sage.all import *

>>> @interact(layout=dict(top=[[�f�, �color�]],

... left=[[�axes�],[�fill�]],

... bottom=[[�zoom�]]))

>>> def _(f=input_box(x**Integer(2),width=Integer(20)),

... color=color_selector(widget=�colorpicker�, label=""),

... axes=True,

... fill=True,

... zoom=range_slider(-Integer(3),Integer(3), default=(-Integer(3),Integer(3)))):

... show(plot(f,(x,zoom[Integer(0)], zoom[Integer(1)]), color=color, axes=axes,

→˓fill=fill))

144 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

7.9.3 Control Types
There are many potential types of widgets one might want to use for interactive control. Sage has all of the following:

• boxes

• sliders

• range sliders

• checkboxes

• selectors (dropdown lists or buttons)

• grid of boxes

• color selectors

• plain text

We illustrate some more of these below.

sage: @interact

sage: def _(frame=checkbox(True, label=�Use frame�)):

....: show(plot(sin(x), (x,-5,5)), frame=frame)

>>> from sage.all import *

>>> @interact

>>> def _(frame=checkbox(True, label=�Use frame�)):

... show(plot(sin(x), (x,-Integer(5),Integer(5))), frame=frame)

sage: var(�x,y�)

sage: colormaps=sage.plot.colors.colormaps.keys()

sage: @interact

sage: def _(cmap=selector(colormaps)):

....: contour_plot(x^2-y^2,(x,-2,2),(y,-2,2),cmap=cmap).show()

>>> from sage.all import *

>>> var(�x,y�)

>>> colormaps=sage.plot.colors.colormaps.keys()

>>> @interact

>>> def _(cmap=selector(colormaps)):

... contour_plot(x**Integer(2)-y**Integer(2),(x,-Integer(2),Integer(2)),(y,-

→˓Integer(2),Integer(2)),cmap=cmap).show()

sage: var(�x,y�)

sage: colormaps=sage.plot.colors.colormaps.keys()

sage: @interact

sage: def _(cmap=selector([�RdBu�, �jet�, �gray�,�gray_r�],buttons=True),

sage: type=[�density�,�contour�]):

....: if type==�contour�:

....: contour_plot(x^2-y^2,(x,-2,2),(y,-2,2),cmap=cmap, aspect_ratio=1).show()

....: else:

....: density_plot(x^2-y^2,(x,-2,2),(y,-2,2),cmap=cmap, frame=True,axes=False,

→˓aspect_ratio=1).show()

7.9. Sage Interact Quickstart 145

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> var(�x,y�)

>>> colormaps=sage.plot.colors.colormaps.keys()

>>> @interact

>>> def _(cmap=selector([�RdBu�, �jet�, �gray�,�gray_r�],buttons=True),

>>> type=[�density�,�contour�]):

... if type==�contour�:

... contour_plot(x**Integer(2)-y**Integer(2),(x,-Integer(2),Integer(2)),(y,-

→˓Integer(2),Integer(2)),cmap=cmap, aspect_ratio=Integer(1)).show()

... else:

... density_plot(x**Integer(2)-y**Integer(2),(x,-Integer(2),Integer(2)),(y,-

→˓Integer(2),Integer(2)),cmap=cmap, frame=True,axes=False,aspect_ratio=Integer(1)).

→˓show()

By default, ranges are sliders that divide the range into 50 steps.

sage: @interact

sage: def _(n=(1,20)):

....: print(factorial(n))

>>> from sage.all import *

>>> @interact

>>> def _(n=(Integer(1),Integer(20))):

... print(factorial(n))

You can set the step size to get, for example, just integer values.

sage: @interact

sage: def _(n=slider(1,20, step_size=1)):

....: print(factorial(n))

>>> from sage.all import *

>>> @interact

>>> def _(n=slider(Integer(1),Integer(20), step_size=Integer(1))):

... print(factorial(n))

Or you can explicitly specify the slider values.

sage: @interact

sage: def _(n=slider([1..20])):

....: print(factorial(n))

>>> from sage.all import *

>>> @interact

>>> def _(n=slider((ellipsis_range(Integer(1),Ellipsis,Integer(20))))):

... print(factorial(n))

And the slider values don’t even have to be numbers!

sage: @interact

sage: def _(fun=(�function�, slider([sin,cos,tan,sec,csc,cot]))):

....: print(fun(4.39293))

146 Chapter 7. PREP Quickstart Tutorials

PREP Tutorials, Release 10.6

>>> from sage.all import *

>>> @interact

>>> def _(fun=(�function�, slider([sin,cos,tan,sec,csc,cot]))):

... print(fun(RealNumber(�4.39293�)))

Matrices are automatically converted to a grid of input boxes.

sage: @interact

sage: def _(m=(�matrix�, identity_matrix(2))):

....: print(m.eigenvalues())

>>> from sage.all import *

>>> @interact

>>> def _(m=(�matrix�, identity_matrix(Integer(2)))):

... print(m.eigenvalues())

Here’s how to get vectors from a grid of boxes.

sage: @interact

sage: def _(v=(�vector�, input_grid(1, 3, default=[[1,2,3]], to_value=lambda x:␣

→˓vector(flatten(x))))):

....: print(v.norm())

>>> from sage.all import *

>>> @interact

>>> def _(v=(�vector�, input_grid(Integer(1), Integer(3), default=[[Integer(1),

→˓Integer(2),Integer(3)]], to_value=lambda x: vector(flatten(x))))):

... print(v.norm())

7.9.4 The option not to update
As a final problem, what happens when the controls get so complicated that it would counterproductive to see the interact
update for each of the changes one wants to make? Think changing the endpoints and order of integration for a triple
integral, for instance, or the example below where a whole matrix might be changed.

In this situation, where we don’t want any updates until we specifically say so, we can use the auto_update=False
option. This will create a button to enable the user to update as soon as he or she is ready.

sage: @interact

sage: def _(m=(�matrix�, identity_matrix(2)), auto_update=False):

....: print(m.eigenvalues())

>>> from sage.all import *

>>> @interact

>>> def _(m=(�matrix�, identity_matrix(Integer(2))), auto_update=False):

... print(m.eigenvalues())

7.9. Sage Interact Quickstart 147

	Logging on and Making a Worksheet
	The Export screen and Jupyter notebook

	Introductory Sage Tutorial
	Evaluating Sage Commands
	Evaluating in the Jupyter notebook

	Functions in Sage
	Help inside Sage
	Documentation
	Tab completion
	Finding documentation
	Finding the source

	Annotating with Sage
	Jupyter Annotation

	Conclusion

	Tutorial for Symbolics and Plotting
	Symbolic Expressions
	Basic 2D Plotting
	Basic 3D Plotting

	Tutorial for Calculus
	Calculus 1
	Calculus 2
	Calculus 3
	‘Exam’

	Sage Introductory Programming Tutorial
	Methods and Dot Notation
	Lists, Loops, and Set Builders
	Tables

	Defining Functions
	Gotchas from names and copies
	Appendix: Advanced Introductory Topics

	Tutorial for Advanced 2d Plotting
	Graphing Functions and Plotting Curves
	Cartesian Plots
	Parametric Plots
	Polar Plots
	Interactive Demonstration

	Plotting Data
	Plotting Data Points

	Contour-type Plots
	Contour Plots
	Vector fields
	Complex Plots
	Region plots

	Miscellaneous Plot Information
	Builtin Graphics Objects
	Points
	Lines
	Balls
	Arrows
	Polygons
	Text

	Saving Plots

	PREP Quickstart Tutorials
	Sage Quickstart for Abstract Algebra
	Group Theory
	Rings
	Quaternions, and generalizations
	Polynomial Rings

	Fields
	Finite Fields
	Field Extensions, Number Fields

	Sage Quickstart for Differential Equations
	Basic Symbolic Techniques
	Numerical and Power Series Methods

	Sage Quickstart for Graph Theory and Discrete Mathematics
	Graph Theory
	More Discrete Mathematics
	Simple Combinatorics
	Cryptography (for education)
	Coding Theory

	Sage Quickstart for Linear Algebra
	Matrices and Vectors
	Left-Handed or Right-handed?
	Vector Spaces
	Computations
	Matrix Solving

	Sage Quickstart for Multivariable Calculus
	Vector Calculus
	Dot Product, Cross Product
	Lines and Planes
	Vector-Valued Functions

	Functions of Several Variables
	Partial Differentiation
	Multiple Integrals and More

	Sage Quickstart for Numerical Analysis
	Basic Analysis
	Converting to floating point binary (IEEE format)
	Interval Arithmetic
	Included Software
	Plotting with precision

	Sage Quickstart for Number Theory
	Modular Arithmetic
	More basic functionality
	Advanced Number Theory
	Cryptography

	Sage Quickstart for Statistics
	Basic Descriptive Statistics
	Distributions
	Using R from within Sage

	Sage Interact Quickstart
	Start with just one command
	Adding Complexity
	Control Types
	The option not to update

