Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$

Release 10.2

The Sage Development Team

Dec 06, 2023
CONTENTS

1 Arithmetic subgroups, finite index subgroups of $\text{SL}_2(\mathbb{Z})$ 3
2 Arithmetic subgroups defined by permutations of cosets 17
3 Elements of arithmetic subgroups 39
4 Congruence arithmetic subgroups of $\text{SL}_2(\mathbb{Z})$ 43
5 Congruence subgroup $\Gamma_H(N)$ 49
6 Congruence subgroup $\Gamma_1(N)$ 59
7 Congruence subgroup $\Gamma_0(N)$ 65
8 Congruence subgroup $\Gamma(N)$ 71
9 The modular group $\text{SL}_2(\mathbb{Z})$ 75
10 Farey symbol for arithmetic subgroups of $\text{PSL}_2(\mathbb{Z})$ 77
11 Helper functions for congruence subgroups 87
12 Indices and Tables 91

Python Module Index 93

Index 95
This chapter describes the basic functionality for finite index subgroups of the modular group $\text{SL}_2(\mathbb{Z})$.
ARITHMETIC SUBGROUPS, FINITE INDEX SUBGROUPS OF $\text{SL}_2(\mathbb{Z})$

class sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup
 Bases: Group
 Base class for arithmetic subgroups of $\text{SL}_2(\mathbb{Z})$. Not intended to be used directly, but still includes quite a few general-purpose routines which compute data about an arithmetic subgroup assuming that it has a working element testing routine.

 Element
 alias of ArithmeticSubgroupElement

are_equivalent(x, y, trans=False)
 Test whether or not cusps x and y are equivalent modulo self.
 If self has a reduce_cusp() method, use that; otherwise do a slow explicit test.
 If trans = False, returns True or False. If trans = True, then return either False or an element of self mapping x onto y.

 EXAMPLES:

 sage: Gamma0(7).are_equivalent(Cusp(1/3), Cusp(0), trans=True)
 [3 -1]
 [-14 5]
 sage: Gamma0(7).are_equivalent(Cusp(1/3), Cusp(1/7))
 False

as_permutation_group()
 Return self as an arithmetic subgroup defined in terms of the permutation action of $\text{SL}_2(\mathbb{Z})$ on its right cosets.

 This method uses Todd-Coxeter enumeration (via the method todd_coxeter()) which can be extremely slow for arithmetic subgroups with relatively large index in $\text{SL}_2(\mathbb{Z})$.

 EXAMPLES:

 sage: # needs sage.groups
 sage: G = Gamma(3)
 sage: P = G.as_permutation_group(); P
 Arithmetic subgroup of index 24
 sage: G.ncusps() == P.ncusps()
 True
 sage: G.nu2() == P.nu2()
 True
 sage: G.nu3() == P.nu3()
coset_reps(G=None)

Return right coset representatives for self \ G, where G is another arithmetic subgroup that contains self. If G = None, default to G = SL2Z.

For generic arithmetic subgroups G this is carried out by Todd-Coxeter enumeration; here G is treated as a black box, implementing nothing but membership testing.

EXAMPLES:

```python
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().coset_reps()
Traceback (most recent call last):
... NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>
```

```
[ [1 0] [ 0 -1] [ 0 -1] [ 0 -1], [0 1], [ 1 0], [ 1 1], [ 1 2]
```
These should be returned in a reduced form where this makes sense.

INPUT:

- `algorithm` – which algorithm to use to compute the cusps of `self`. 'default' finds representatives for a known complete set of cusps. 'modsym' computes the boundary map on the space of weight two modular symbols associated to `self`, which finds the cusps for `self` in the process.

EXAMPLES:

```sage
gamma0(36).cusps()
[0, 1/18, 1/12, 1/9, 1/6, 1/4, 1/3, 5/12, 1/2, 2/3, 5/6, Infinity]
gamma0(36).cusps(algorithm='modsym') == gamma0(36).cusps()  # needs sage.libs.flint
True
GammaH(36, [19,29]).cusps() == gamma0(36).cusps()
True
Gamma0(1).cusps()
[Infinity]
```

dimension_cusp_forms\((k=2) \)

Return the dimension of the space of weight \(k \) cusp forms for this group. For \(k \geq 2 \), this is given by a standard formula in terms of \(k \) and various invariants of the group; see Diamond + Shurman, "A First Course in Modular Forms", section 3.5 and 3.6. If \(k \) is not given, default to \(k = 2 \).

For dimensions of spaces of cusp forms with character for Gamma1, use the dimension_cusp_forms method of the Gamma1 class, or the standalone function dimension_cusp_forms().

For weight 1 cusp forms this generic implementation only works in cases where one can prove solely via Riemann-Roch theory that there aren’t any cusp forms (i.e. when the number of regular cusps is strictly greater than the degree of the canonical divisor). Otherwise a NotImplementedError is raised.

EXAMPLES:

```sage
Gamma1(31).dimension_cusp_forms(2)
26
Gamma(5).dimension_cusp_forms(1)
0
Gamma1(4).dimension_cusp_forms(1) # irregular cusp
0
Gamma(13).dimension_cusp_forms(1)
Traceback (most recent call last):
...
NotImplementedError: Computation of dimensions of weight 1 cusp forms spaces...
not implemented in general
```

dimension_eis\((k=2) \)

Return the dimension of the space of weight \(k \) Eisenstein series for this group, which is a subspace of the space of modular forms complementary to the space of cusp forms.

INPUT:

- \(k \) - an integer (default 2).

EXAMPLES:

```sage
GammaH(33,[2]).dimension_eis()
7
```
dimension_modular_forms(k=2)

Return the dimension of the space of weight k modular forms for this group. This is given by a standard formula in terms of k and various invariants of the group; see Diamond + Shurman, “A First Course in Modular Forms”, section 3.5 and 3.6. If k is not given, defaults to k = 2.

For dimensions of modular forms with character for Gamma1, use the dimension_modular_forms method of the Gamma1 class, or the standalone function dimension_modular_forms().

For weight 1 modular forms this generic implementation only works in cases where one can prove solely via Riemann-Roch theory that there aren’t any cusp forms (i.e. when the number of regular cusps is strictly greater than the degree of the canonical divisor). Otherwise a NotImplementedError is raised.

EXAMPLES:

\begin{verbatim}
sage: Gamma1(31).dimension_modular_forms(2) 55
sage: Gamma1(3).dimension_modular_forms(1) 1
sage: Gamma1(4).dimension_modular_forms(1) # irregular cusp
1
sage: Gamma1(13).dimension_modular_forms(1)
Traceback (most recent call last):
...
NotImplementedError: Computation of dimensions of weight 1 cusp forms spaces...
not implemented in general
\end{verbatim}

farey_symbol()

Return the Farey symbol associated to this subgroup. See the farey_symbol module for more information.

EXAMPLES:

\begin{verbatim}
sage: Gamma1(4).farey_symbol()
FareySymbol(Congruence Subgroup Gamma1(4))
\end{verbatim}

gen(i)

Return the i-th generator of self, i.e. the i-th element of the tuple self.gens().

EXAMPLES:

\begin{verbatim}
sage: SL2Z.gen(1)
[1 1]
[0 1]
\end{verbatim}

generalised_level()

Return the generalised level of self, i.e., the least common multiple of the widths of all cusps.

If self is even, Wohlfart’s theorem tells us that this is equal to the (conventional) level of self when self is a congruence subgroup. This can fail if self is odd, but the actual level is at most twice the generalised level. See the paper by Kiming, Schuett and Verrill for more examples.
EXAMPLES:

```
sage: Gamma0(18).generalised_level()
18
sage: from sage.modular.arithgroup.arithgroup_perm import HsuExample18  #needs sage.groups
˓→
sage: HsuExample18().generalised_level()  #needs sage.groups
24
```

In the following example, the actual level is twice the generalised level. This is the group G_2 from Example 17 of K-S-V.

```
sage: G = CongruenceSubgroup(8, [ [1,1,0,1], [3,-1,4,-1] ])  
  sage: G.level()  
   8  
  sage: G.generalised_level()  
   4
```

`generators` (*algorithm='farey'*)

Return a list of generators for this congruence subgroup. The result is cached.

INPUT:

- `algorithm` (string): either `farey` or `todd-coxeter`.

If `algorithm` is set to "farey", then the generators will be calculated using Farey symbols, which will always return a minimal generating set. See `farey_symbol` for more information.

If `algorithm` is set to "todd-coxeter", a simpler algorithm based on Todd-Coxeter enumeration will be used. This is exceedingly slow for general subgroups, and the list of generators will be far from minimal (indeed it may contain repetitions).

EXAMPLES:

```
sage: Gamma(2).generators()
[  
  [1 2] [3 -2] [-1 0]
  [0 1], [2 -1], [0 -1]
]
  sage: Gamma(2).generators(algorithm='todd-coxeter')
  [  
  [1 2] [-1 0] [1 0] [-1 0] [-1 2] [-1 0] [1 0]
  [0 1], [0 -1], [-2 1], [0 -1], [-2 3], [2 -1], [2 1]
]
```

`gens` (*args, **kwds*)

Return a tuple of generators for this congruence subgroup.

The generators need not be minimal. For arguments, see `generators()`.

EXAMPLES:

```
sage: SL2Z.gens()
(  
  [ 0 -1], [1 1]
  [ 1 0], [0 1]
 )
```
genus()

Return the genus of the modular curve of self.

EXAMPLES:

```
sage: Gamma1(5).genus()
0
sage: Gamma1(31).genus()
26
sage: from sage.modular.dims import dimension_cusp_forms
sage: Gamma1(157).genus() == dimension_cusp_forms(Gamma1(157), 2)
True
sage: GammaH(7, [2]).genus()
0
sage: [Gamma0(n).genus() for n in [1..23]]
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2]
sage: [n for n in [1..200] if Gamma0(n).genus() == 1]
[11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49]
```

index()

Return the index of self in the full modular group.

EXAMPLES:

```
sage: Gamma0(17).index()
18
sage: sage.modular.arithgroup.congroup_generic.CongruenceSubgroup(5).index()
Traceback (most recent call last):
  ... Not ImplementedError
```

is_abelian()

Return True if this arithmetic subgroup is abelian.

Since arithmetic subgroups are always nonabelian, this always returns False.

EXAMPLES:

```
sage: SL2Z.is_abelian()
False
sage: Gamma0(3).is_abelian()
False
sage: Gamma1(12).is_abelian()
False
sage: GammaH(4, [3]).is_abelian()
False
```

is_congruence()

Return True if self is a congruence subgroup.

EXAMPLES:

```
sage: Gamma0(5).is_congruence()
True
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().is_...
```

(continues on next page)
is_even()

Return True precisely if this subgroup contains the matrix -1.

EXAMPLES:

```
sage: SL2Z.is_even()
True
sage: Gamma0(20).is_even()
True
sage: Gamma1(5).is_even()
False
sage: GammaH(11, [3]).is_even()
False
```

is_finite()

Return True if this arithmetic subgroup is finite.

Since arithmetic subgroups are always infinite, this always returns False.

EXAMPLES:

```
sage: SL2Z.is_finite()
False
sage: Gamma0(3).is_finite()
False
sage: Gamma1(12).is_finite()
False
sage: GammaH(4, [3]).is_finite()
False
```

is_normal()

Return True precisely if this subgroup is a normal subgroup of SL2Z.

EXAMPLES:

```
sage: Gamma(3).is_normal()
True
sage: Gamma1(3).is_normal()
False
```

is_odd()

Return True precisely if this subgroup does not contain the matrix -1.

EXAMPLES:

```
sage: SL2Z.is_odd()
False
sage: Gamma0(20).is_odd()
False
sage: Gamma1(5).is_odd()
```

(continues on next page)
True
\texttt{sage}: \texttt{Gamma1(11, [3]).is_odd()}
True

\textbf{is_parent_of}(x)
Check whether this group is a valid parent for the element x. Required by Sage's testing framework.

EXAMPLES:

\texttt{sage}: \texttt{Gamma(3).is_parent_of(ZZ(1))}
False
\texttt{sage}: \texttt{Gamma(3).is_parent_of([1,0,0,1])}
False
\texttt{sage}: \texttt{Gamma(3).is_parent_of(SL2Z([1,1,0,1]))}
False
\texttt{sage}: \texttt{Gamma(3).is_parent_of(SL2Z(1))}
True

\textbf{is_regular_cusp}(c)
Return True if the orbit of the given cusp is a regular cusp for self, otherwise False. This is automatically true if -1 is in self.

EXAMPLES:

\texttt{sage}: \texttt{Gamma1(4).is_regular_cusp(Cusps(1/2))}
False
\texttt{sage}: \texttt{Gamma1(4).is_regular_cusp(Cusps(oo))}
True

\textbf{is_subgroup}(right)
Return True if self is a subgroup of right, and False otherwise. For generic arithmetic subgroups this is done by the absurdly slow algorithm of checking all of the generators of self to see if they are in right.

EXAMPLES:

\texttt{sage}: \texttt{sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().is_subgroup(SL2Z)}
Traceback (most recent call last):
 ...\nNotImplementedError: Please implement _contains_sl2 for \langle class \ 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'\rangle\n\texttt{sage}: \texttt{sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category.is_subgroup(Gamma1(18), Gamma0(6))}
True

\textbf{matrix_space}()
Return the parent space of the matrices, which is always \texttt{MatrixSpace(ZZ, 2)}.

EXAMPLES:

\texttt{sage}: \texttt{Gamma(3).matrix_space()}
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
ncusps()
Return the number of cusps of this arithmetic subgroup. This is provided as a separate function since for
dimension formulae in even weight all we need to know is the number of cusps, and this can be calculated
very quickly, while enumerating all cusps is much slower.

EXAMPLES:

```sage
ccusps(Gamma0(7))
```

ngens()
Return the size of the minimal generating set of self returned by generators().

EXAMPLES:

```sage
Gamma0(22).ngens()
```

```sage
Gamma1(14).ngens()
```

```sage
GammaH(11, [3]).ngens()
```

```sage
SL2Z.ngens()
```

nirregcusps()
Return the number of cusps of self that are “irregular”, i.e. their stabiliser can only be generated by elements
with both eigenvalues -1 rather than +1. If the group contains -1, every cusp is clearly regular.

EXAMPLES:

```sage
nirregcusps(Gamma1(4))
```

nregcusps()
Return the number of cusps of self that are “regular”, i.e. their stabilizer has a generator with both eigen-
values +1 rather than -1. If the group contains -1, every cusp is clearly regular.

EXAMPLES:

```sage
nregcusps(Gamma1(4))
```

nu2()
Return the number of orbits of elliptic points of order 2 for this arithmetic subgroup.

EXAMPLES:

```sage
nu2()
```

Traceback (most recent call last):
...
NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>

(continues on next page)
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

(continued from previous page)

```
    \rightarrow nu2(Gamma0(1105)) == 8
True
```

nu3()

Return the number of orbits of elliptic points of order 3 for this arithmetic subgroup.

EXAMPLES:

```
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().nu3()
Traceback (most recent call last):
  ...
NotImplementedError: Please implement _contains_sl2 for <class 'sage.modular.
    \rightarrow arithgroup.arithgroup_generic.ArithmeticSubgroup_with_category'>
    \rightarrow nu3(Gamma0(1729)) == 8
True
```

We test that a bug in handling of subgroups not containing -1 is fixed:

```
    \rightarrow nu3(GammaH(7, [2]))
2
```

order()

Return the number of elements in this arithmetic subgroup.

Since arithmetic subgroups are always infinite, this always returns infinity.

EXAMPLES:

```
sage: SL2Z.order()
+Infinity
sage: Gamma0(5).order()
+Infinity
sage: Gamma1(2).order()
+Infinity
sage: GammaH(12, [5]).order()
+Infinity
```

projective_index()

Return the index of the image of self in $\text{PSL}_2(\mathbb{Z})$. This is equal to the index of self if self contains -1, and half of this otherwise.

This is equal to the degree of the natural map from the modular curve of self to the j-line.

EXAMPLES:

```
sage: Gamma0(5).projective_index()
6
sage: Gamma1(5).projective_index()
12
```

reduce_cusp(c)

Given a cusp $c \in \mathbb{P}^1(\mathbb{Q})$, return the unique reduced cusp equivalent to c under the action of self, where a
reduced cusp is an element \(\frac{r}{s} \) with \(r, s \) coprime non-negative integers, \(s \) as small as possible, and \(r \) as small as possible for that \(s \).

NOTE: This function should be overridden by all subclasses.

EXAMPLES:

```python
sage: sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup().reduce_cusp(1/4)
Traceback (most recent call last):
  ... 
NotImplementedError
```

sturm_bound(weight=2)

Returns the Sturm bound for modular forms of the given weight and level this subgroup.

INPUT:

- weight - an integer \(\geq 2 \) (default: 2)

EXAMPLES:

```python
sage: Gamma0(11).sturm_bound(2)
2
sage: Gamma0(389).sturm_bound(2)
65
sage: Gamma0(1).sturm_bound(12)
1
sage: Gamma0(100).sturm_bound(2)
30
sage: Gamma0(1).sturm_bound(36)
3
sage: Gamma0(11).sturm_bound()
2
sage: Gamma0(13).sturm_bound()
3
sage: Gamma0(16).sturm_bound()
4
sage: GammaH(16,[13]).sturm_bound()
8
sage: GammaH(16,[15]).sturm_bound()
16
sage: Gamma1(16).sturm_bound()
32
sage: Gamma1(13).sturm_bound()
28
sage: Gamma1(13).sturm_bound(5)
70
```

FURTHER DETAILS: This function returns a positive integer \(n \) such that the Hecke operators \(T_1, \ldots, T_n \) acting on cusp forms generate the Hecke algebra as a \(\mathbb{Z} \)-module when the character is trivial or quadratic. Otherwise, \(T_1, \ldots, T_n \) generate the Hecke algebra at least as a \(\mathbb{Z}[\epsilon] \)-module, where \(\mathbb{Z}[\epsilon] \) is the ring generated by the values of the Dirichlet character \(\epsilon \). Alternatively, this is a bound such that if two cusp forms associated to this space of modular symbols are congruent modulo \((\lambda, q^n) \), then they are congruent modulo \(\lambda \).

REFERENCES:
• See the Agashe-Stein appendix to Lario and Schoof, Some computations with Hecke rings and deformation rings, Experimental Math., 11 (2002), no. 2, 303-311.

• This result originated in the paper Sturm, On the congruence of modular forms, Springer LNM 1240, 275-280, 1987.

REMARK: Kevin Buzzard pointed out to me (William Stein) in Fall 2002 that the above bound is fine for $\Gamma_1(N)$ with character, as one sees by taking a power of f. More precisely, if $f \equiv 0 \pmod{p}$ for first s coefficients, then $f^r \equiv 0 \pmod{p}$ for first sr coefficients. Since the weight of f^r is $r \cdot k(f)$, it follows that if $s \geq b$, where b is the Sturm bound for $\Gamma_0(N)$ at weight $k(f)$, then f^r has valuation large enough to be forced to be 0 at $r \cdot k(f)$ by Sturm bound (which is valid if we choose r correctly). Thus $f \equiv 0 \pmod{p}$.

Conclusion: For $\Gamma_1(N)$ with fixed character, the Sturm bound is exactly the same as for $\Gamma_0(N)$.

A key point is that we are finding $\mathbb{Z}[\varepsilon]$ generators for the Hecke algebra here, not \mathbb{Z}-generators. So if one wants generators for the Hecke algebra over \mathbb{Z}, this bound must be suitably modified (and I’m not sure what the modification is).

AUTHORS:
• William Stein

to_even_subgroup()
Return the smallest even subgroup of $SL(2,\mathbb{Z})$ containing self.

EXAMPLES:

```
sage: sage_modular_arithgroup_arithgroup_generic_ArithmeticSubgroup().to_even_
↳ subgroup()  # Return the smallest even subgroup of SL(2, Z) containing self.
Traceback (most recent call last):
...
NotImplementedError: Please implement _contains_sl2 for <class 'sage_modular_
↳ arithgroup_arithgroup_generic_ArithmeticSubgroup_with_category'>
```

todd_coxeter(G=None, on_right=True)

Compute coset representatives for self \ G and action of standard generators on them via Todd-Coxeter enumeration.

If G is None, default to SL2Z. The method also computes generators of the subgroup at same time.

INPUT:
• G - intermediate subgroup (currently not implemented if different from $SL(2,\mathbb{Z})$)
• on_right - boolean (default: True) - if True return right coset enumeration, if False return left one.

This is extremely slow in general.

OUTPUT:
• a list of coset representatives
• a list of generators for the group
• l - list of integers that correspond to the action of the standard parabolic element $[[1,1],[0,1]]$ of $SL(2,\mathbb{Z})$ on the cosets of self.
• s - list of integers that correspond to the action of the standard element of order 2 $[[0,-1],[1,0]]$ on the cosets of self.

EXAMPLES:
sage: L = SL2Z([1,1,0,1])
sage: S = SL2Z([0,-1,1,0])

sage: G = Gamma(2)
sage: reps, gens, l, s = G.todd_coxeter()
sage: len(reps) == G.index()
True
sage: all(reps[i] * L * ~reps[l[i]] in G for i in range(6))
True
sage: all(reps[i] * S * ~reps[s[i]] in G for i in range(6))
True

sage: G = Gamma0(7)
sage: reps, gens, l, s = G.todd_coxeter()
sage: len(reps) == G.index()
True
sage: all(reps[i] * L * ~reps[l[i]] in G for i in range(8))
True
sage: all(reps[i] * S * ~reps[s[i]] in G for i in range(8))
True

sage: G = Gamma1(3)
sage: reps, gens, l, s = G.todd_coxeter(on_right=False)
sage: len(reps) == G.index()
True
sage: all(~reps[l[i]] * L * reps[i] in G for i in range(8))
True
sage: all(~reps[s[i]] * S * reps[i] in G for i in range(8))
True

sage: G = Gamma0(5)
sage: reps, gens, l, s = G.todd_coxeter(on_right=False)
sage: len(reps) == G.index()
True
sage: all(~reps[l[i]] * L * reps[i] in G for i in range(6))
True
sage: all(~reps[s[i]] * S * reps[i] in G for i in range(6))
True

sage.modular.arithgroup.arithgroup_generic.is_ArithmeticSubgroup(x)
Return True if x is of type ArithmeticSubgroup.

EXAMPLES:

sage: from sage.modular.arithgroup.all import is_ArithmeticSubgroup
sage: is_ArithmeticSubgroup(GL(2, GF(7)))
False
sage: is_ArithmeticSubgroup(Gamma0(4))
True
CHAPTER TWO

ARITHMETIC SUBGROUPS DEFINED BY PERMUTATIONS OF COSETS

A subgroup of finite index H of a finitely generated group G is completely described by the action of a set of generators of G on the right cosets $H \backslash G = \{ Hg \}_{g \in G}$. After some arbitrary choice of numbering one can identify the action of generators as elements of a symmetric group acting transitively (and satisfying the relations of the relators in G). As $\text{SL}_2(\mathbb{Z})$ has a very simple presentation as a central extension of a free product of cyclic groups, one can easily design algorithms from this point of view.

The generators of $\text{SL}_2(\mathbb{Z})$ used in this module are named as follows s_2, s_3, l, r which are defined by

$$s_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \quad l = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad r = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Those generators satisfy the following relations

$$s_2^2 = s_3^3 = -1, \quad r = s_2^{-1} l^{-1} s_2.$$

In particular not all four are needed to generate the whole group $\text{SL}_2(\mathbb{Z})$. Three couples which generate $\text{SL}_2(\mathbb{Z})$ are of particular interest:

- (l, r) as they are also semigroup generators for the semigroup of matrices in $\text{SL}_2(\mathbb{Z})$ with non-negative entries,
- (l, s_2) as they are closely related to the continued fraction algorithm,
- (s_2, s_3) as the group $\text{PSL}_2(\mathbb{Z})$ is the free product of the finite cyclic groups generated by these two elements.

Part of these functions are based on Chris Kurth’s $KFarey$ package [Kur2008]. For tests see the file sage.modular.arithgroup.tests.

REFERENCES:

- [ASD1971]
- [Gor2009]
- [HL2014]
- [Hsu1996]
- [Hsu1997]
- [KSV2011]
- [Kul1991]
- [Kur2008]
- [KL2008]
- [Ver]
Todo:

• modular Farey symbols
• computation of generators of a modular subgroup with a standard surface group presentation. In other words, compute a presentation of the form

\[
\langle x_i, y_i, c_j | \prod_i [x_i, y_i] \prod_j c_j^\nu_j = 1 \rangle
\]

where the elements \(x_i \) and \(y_i \) are hyperbolic and \(c_j \) are parabolic (\(\nu_j = \infty \)) or elliptic elements (\(\nu_j < \infty \)).
• computation of centralizer.
• generation of modular (even) subgroups of fixed index.

AUTHORS:

• Chris Kurth (2008): created KFarey package
• David Loeffler (2009): adapted functions from KFarey for inclusion into Sage
• Vincent Delecroix (2010): implementation for odd groups, new design, improvements, documentation
• David Loeffler (2011): congruence testing for odd subgroups, enumeration of liftings of projective subgroups
• David Loeffler & Thomas Hamilton (2012): generalised Hsu congruence test for odd subgroups

sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation(L=None, R=None, S2=None, S3=None, relabel=False, check=True)

Construct a subgroup of \(\text{SL}_2(\mathbb{Z}) \) from the action of generators on its right cosets.

Return an arithmetic subgroup knowing the action, given by permutations, of at least two standard generators on the its cosets. The generators considered are the following matrices:

\[
\begin{align*}
 s_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \\
 s_3 &= \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \\
 l &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \\
 r &= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.
\end{align*}
\]

An error will be raised if only one permutation is given. If no arguments are given at all, the full modular group \(\text{SL}(2, \mathbb{Z}) \) is returned.

INPUT:

• \(S2, S3, L, R \) - permutations - action of matrices on the right cosets (each coset is identified to an element of \(\{1, \ldots, n\} \) where 1 is reserved for the identity coset).
• relabel - boolean (default: False) - if True, renumber the cosets in a canonical way.
• check - boolean (default: True) - check that the input is valid (it may be time efficient but less safe to set it to False)

EXAMPLES:

\[
\begin{align*}
sage: & G = \text{ArithmeticSubgroup_Permutation}(S2="(1,2)(3,4)", S3="(1,2,3)") \\
sage: & G \\
& \text{Arithmetic subgroup with permutations of right cosets} \\
& S2=(1,2)(3,4) \\
& S3=(1,2,3) \\
& L=(1,4,3)
\end{align*}
\]
Arithmetic Subgroups of SL₂(Z), Release 10.2

\[R = (2, 4, 3) \]

```
sage: G.index()
sage: G = ArithmeticSubgroup_Permutation(); G
Arithmetic subgroup with permutations of right cosets
S2=
S3=
L=
R=
sage: G == SL2Z
True
```

Some invalid inputs:

```
sage: ArithmeticSubgroup_Permutation(S2="(1,2)")
Traceback (most recent call last):
...
ValueError: Need at least two generators
sage: ArithmeticSubgroup_Permutation(S2="(1,2)", S3="(3,4,5)"
Traceback (most recent call last):
...
ValueError: Permutations do not generate a transitive group
sage: ArithmeticSubgroup_Permutation(L="(1,2)", R="(1,2,3)"
Traceback (most recent call last):
...
ValueError: Wrong relations between generators
sage: ArithmeticSubgroup_Permutation(S2="(1,2,3,4)", S3="()"
Traceback (most recent call last):
...
ValueError: S2^2 does not equal to S3^3
sage: ArithmeticSubgroup_Permutation(S2="(1,4,2,5,3)", S3="(1,3,5,2,4)"
Traceback (most recent call last):
...
ValueError: S2^2 = S3^3 must have order 1 or 2
```

The input checks can be disabled for speed:

```
sage: ArithmeticSubgroup_Permutation(S2="(1,2)", S3="(3,4,5)", check=False) # don't do this!
Arithmetic subgroup with permutations of right cosets
S2=(1,2)
S3=(3,4,5)
L=(1,2)(3,5,4)
R=(1,2)(3,4,5)
```

class `sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class`

Bases: `ArithmeticSubgroup`

A subgroup of $SL_2(Z)$ defined by the action of generators on its coset graph.

The class stores the action of generators s_2, s_3, l, r on right cosets Hg of a finite index subgroup $H < SL_2(Z)$.
In particular the action of \(\text{SL}_2(\mathbb{Z}) \) on the cosets is on right.

\[
s_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \quad l = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad r = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.
\]

L()

Return the action of the matrix \(l \) as a permutation of cosets.

\[
l = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

EXAMPLES:

```
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)",S3="(1,2,3)")
sage: G.L()
(1,3)
```

R()

Return the action of the matrix \(r \) as a permutation of cosets.

\[
r = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}
\]

EXAMPLES:

```
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)",S3="(1,2,3)")
sage: G.R()
(2,3)
```

S2()

Return the action of the matrix \(s_2 \) as a permutation of cosets.

\[
s_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

EXAMPLES:

```
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)",S3="(1,2,3)")
sage: G.S2()
(1,2)
```

S3()

Return the action of the matrix \(s_3 \) as a permutation of cosets.

\[
s_3 = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}
\]

EXAMPLES:

```
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)",S3="(1,2,3)")
sage: G.S3()
(1,2,3)
```
congruence_closure()
Returns the smallest congruence subgroup containing self. If self is congruence, this is just self, but represented as a congruence subgroup data type. If self is not congruence, then it may be larger.

In practice, we use the following criterion: let \(m \) be the generalised level of self. If this subgroup is even, let \(n = m \), else let \(n = 2m \). Then any congruence subgroup containing self contains \(\Gamma(n) \) (a generalisation of Wohlfahrt’s theorem due to Kiming, Verrill and Schuett). So we compute the image of self modulo \(n \) and return the preimage of that.

Note: If you just want to know if the subgroup is congruence or not, it is much faster to use is_congruence().

EXAMPLES:

```
sage: Gamma1(3).as_permutation_group().congruence_closure()
Congruence subgroup of SL(2,Z) of level 3, preimage of:
   Matrix group over Ring of integers modulo 3 with 2 generators (  
[1 1]  [1 2]  
[0 1], [0 1]  )
sage: sage.modular.arithgroup.arithgroup_perm.HsuExample10().congruence_closure()  # long time (11s on sage.math, 2012)
Modular Group SL(2,Z)
```

coset_graph(right_cosets=False, s2_edges=True, s3_edges=True, l_edges=False, r_edges=False, s2_label='s2', s3_label='s3', l_label='l', r_label='r')
Return the right (or left) coset graph.

INPUT:

- **right_cosets** - bool (default: False) - right or left coset graph
- **s2_edges** - bool (default: True) - put edges associated to s2
- **s3_edges** - bool (default: True) - put edges associated to s3
- **l_edges** - bool (default: False) - put edges associated to l
- **r_edges** - bool (default: False) - put edges associated to r
- **s2_label**, **s3_label**, **l_label**, **r_label** - the labels to put on the edges corresponding to the generators action. Use None for no label.

EXAMPLES:

```
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)",S3="()")
sage: G
Arithmetic subgroup with permutations of right cosets  
S2=(1,2)  
S3=()  
L=(1,2)  
R=(1,2)
sage: G.index()
2  
sage: G.coset_graph()
Looped multi-digraph on 2 vertices
```
generalised_level()

Return the generalised level of this subgroup.

The *generalised level* of a subgroup of the modular group is the least common multiple of the widths of the cusps. It was proven by Wohlfart that for even congruence subgroups, the (conventional) level coincides with the generalised level. For odd congruence subgroups the level is either the generalised level, or twice the generalised level [KSV2011].

EXAMPLES:

```sage
sage: G = Gamma(2).as_permutation_group()
sage: G.generalised_level()
2
sage: G = Gamma0(3).as_permutation_group()
sage: G.generalised_level()
3
```

index()

Returns the index of this modular subgroup in the full modular group.

EXAMPLES:

```sage
sage: G = Gamma(2)
sage: P = G.as_permutation_group()
sage: P.index()
6
sage: G.index() == P.index()
True
sage: G = Gamma0(8)
sage: P = G.as_permutation_group()
sage: P.index()
12
sage: G.index() == P.index()
True
sage: G = Gamma1(6)
sage: P = G.as_permutation_group()
sage: P.index()
24
sage: G.index() == P.index()
True
```

is_congruence()

Return True if this is a congruence subgroup, and False otherwise.

ALGORITHM:

Uses Hsu’s algorithm [Hsu1996]. Adapted from Chris Kurth’s implementation in KFarey [Kur2008].

For odd subgroups, Hsu’s algorithm still works with minor modifications, using the extension of Wohlfarht’s theorem due to Kiming, Schuett and Verrill [KSV2011]. See [HL2014] for details.

The algorithm is as follows. Let G be a finite-index subgroup of $\text{SL}(2, \mathbb{Z})$, and let L and R be the permutations of the cosets of G given by the elements $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Let N be the generalized level of G (if G is even) or twice the generalized level (if G is odd). Then:
• if N is odd, G is congruence if and only if the relation
\[(LR^{-1}L)^2 = (R^2L^{1/2})^3\]
holds, where $1/2$ is understood as the multiplicative inverse of 2 modulo N.

• if N is a power of 2, then G is congruence if and only if the relations
\[(LR^{-1}L)^{-1}S(LR^{-1}L)S = 1 \quad (A1)\]
\[S^{-1}RS = R^{25} \quad (A2)\]
\[(LR^{-1}L)^2 = (SR^5LR^{-1}L)^3 \quad (A3)\]
hold, where $S = L^{20}R^{1/5}L^{-4}R^{-1}$, $1/5$ being the inverse of 5 modulo N.

• if N is neither odd nor a power of 2, seven relations (B1-7) hold, for which see [HL2014], or the source code of this function.

If the Sage verbosity flag is set (using `set_verbose()`), then extra output will be produced indicating which of the relations (A1-3) or (B1-7) is not satisfied.

EXAMPLES:
Test if $SL_2(\mathbb{Z})$ is congruence:

```
sage: a = ArithmeticSubgroup_Permutation(L=' ',R=' ')
sage: a.index()
1
sage: a.is_congruence()
True
```
This example is congruence – it is $\Gamma_0(3)$ in disguise:

```
sage: S2 = SymmetricGroup(4)
sage: l = S2((2,3,4))
sage: r = S2((1,3,4))
sage: G = ArithmeticSubgroup_Permutation(L=l,R=r)
sage: G
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,4)
S3=(1,4,2)
L=(2,3,4)
R=(1,3,4)
sage: G.is_congruence()
True
```
This one is noncongruence:

```
sage: import sage.modular.arithgroup.arithgroup_perm as ap
tsage: ap.HsuExample10().is_congruence()
False
```
The following example (taken from [KSV2011]) shows that a lifting of a congruence subgroup of $PSL(2, \mathbb{Z})$ to a subgroup of $SL(2, \mathbb{Z})$ need not necessarily be congruence:

```
sage: S2 = "(1,3,13,15)(2,4,14,16)(5,7,17,19)(6,10,18,22)(8,12,20,24)(9,11,21,23)"
sage: S3 = "(1,14,15,13,2,3)(4,5,6,16,17,18)(7,8,9,19,20,21)(10,11,12,22,23,24)"
```
(continues on next page)
In fact G is a lifting to $\text{SL}(2, \mathbb{Z})$ of the group $\bar{\Gamma}_0(6)$:

```python
sage: G.to_even_subgroup() == Gamma0(6)
True
```

is_normal()

Test whether the group is normal

EXAMPLES:

```python
sage: G = Gamma(2).as_permutation_group()
sage: G.is_normal()
True
sage: G = Gamma1(2).as_permutation_group()
sage: G.is_normal()
False
```

perm_group()

Return the underlying permutation group.

The permutation group returned is isomorphic to the action of the generators s_2 (element of order two), s_3 (element of order 3), l (parabolic element) and r (parabolic element) on right cosets (the action is on the right).

EXAMPLES:

```python
sage: import sage.modular.arithgroup.arithgroup_perm as ap
sage: ap.HsuExample10().perm_group()
Permutation Group with generators [(1,2)(3,4)(5,6)(7,8)(9,10), (1,8,3)(2,4,6)(5,7,10), (1,4)(2,5,9,10,8)(3,7,6), (1,7,9,10,6)(2,3)(4,5,8)]
```

permutation_action(x)

Given an element x of $\text{SL}_2(\mathbb{Z})$, compute the permutation of the cosets of self given by right multiplication by x.

EXAMPLES:

```python
sage: import sage.modular.arithgroup.arithgroup_perm as ap
sage: ap.HsuExample10().permutation_action(SL2Z([32, -21, -67, 44]))
(1,4,6,2,10,5,3,7,8,9)
```

random_element(initial_steps=30)

Returns a random element in this subgroup.

The algorithm uses a random walk on the Cayley graph of $\text{SL}_2(\mathbb{Z})$ stopped at the first time it reaches the subgroup after at least initial_steps steps.

INPUT:
initial_steps - positive integer (default: 30)

EXAMPLES:

```
sage: G = ArithmeticSubgroup_Permutation(S2='(1,3)(4,5)',S3='(1,2,5)(3,4,6)')
sage: all(G.random_element() in G for _ in range(10))
True
```

relabel (inplace=True)

Relabel the cosets of this modular subgroup in a canonical way.

The implementation of modular subgroup by action of generators on cosets depends on the choice of a numbering. This function provides canonical labels in the sense that two equal subgroups with different labels are relabeled the same way. The default implementation relabels the group itself. If you want to get a relabeled copy of your modular subgroup, put to False the option inplace.

ALGORITHM:

We give an overview of how the canonical labels for the modular subgroup are built. The procedure only uses the permutations S_3 and S_2 that define the modular subgroup and can be used to renumber any transitive action of the symmetric group. In other words, the algorithm construct a canonical representative of a transitive subgroup in its conjugacy class in the full symmetric group.

1. The identity is still numbered 0 and set the current vertex to be the identity.

2. Number the cycle of S_3 the current vertex belongs to: if the current vertex is labeled n then the numbering in such way that the cycle becomes $(n, n+1, \ldots, n+k)$.

3. Find a new current vertex using the permutation S_2. If all vertices are relabeled then it's done, otherwise go to step 2.

EXAMPLES:

```
sage: S2 = "(1,2)(3,4)(5,6)"; S3 = "(1,2,3)(4,5,6)"
sage: G1 = ArithmeticSubgroup_Permutation(S2=S2,S3=S3); G1
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,4)(5,6)
S3=(1,2,3)(4,5,6)
L=(1,4,5,3)
R=(2,4,6,3)
sage: G1.relabel(); G1
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,4)(5,6)
S3=(1,2,3)(4,5,6)
L=(1,4,5,3)
R=(2,4,6,3)
sage: S2 = "(1,2)(3,5)(4,6)"; S3 = "(1,2,3)(4,5,6)"
sage: G2 = ArithmeticSubgroup_Permutation(S2=S2,S3=S3); G2
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,5)(4,6)
S3=(1,2,3)(4,5,6)
L=(1,5,6,3)
R=(2,5,4,3)
sage: G2.relabel(); G2
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,4)(5,6)
```

(continues on next page)
S3=(1,2,3)(4,5,6)
L=(1,4,5,3)
R=(2,4,6,3)

sage: S2 = "(1,2)(3,6)(4,5)"; S3 = "(1,2,3)(4,5,6)"
sage: G3 = ArithmeticSubgroup_Permutation(S2=S2, S3=S3); G3
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,6)(4,5)
S3=(1,2,3)(4,5,6)
L=(1,6,4,3)
R=(2,6,5,3)

sage: G4 = G3.relabel(inplace=False)
sage: G4
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,4)(5,6)
S3=(1,2,3)(4,5,6)
L=(1,4,5,3)
R=(2,4,6,3)

sage: G3 is G4
False

surgroups()

Return an iterator through the non-trivial intermediate groups between \(SL_2(\mathbb{Z}) \) and this finite index group.

EXAMPLES:

sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)(3,4)(5,6)", S3="(1,2,3)(4,5,6)")
sage: H = next(G.surgroups())
sage: H
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,4)(5,6)
S3=(1,2,3)(4,5,6)
L=(1,3)
R=(2,3)

sage: G.is_subgroup(H)
True

The principal congruence group \(\Gamma(3) \) has thirteen surgroups:

sage: G = Gamma(3).as_permutation_group()
sage: G.index()
24

sage: l = []
sage: for H in G.surgroups():
...: l.append(H.index())
...: assert G.is_subgroup(H) and H.is_congruence()
sage: l
[6, 3, 4, 8, 4, 8, 4, 12, 4, 6, 6, 8, 8]

class sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation(S2, S3, L, R, canonical_labels=False)
Bases: \texttt{ArithmeticSubgroup_Permutation_class}

An arithmetic subgroup of $\text{SL}(2, \mathbb{Z})$ containing -1, represented in terms of the right action of $\text{SL}(2, \mathbb{Z})$ on its cosets.

EXAMPLES:

Construct a noncongruence subgroup of index 7 (the smallest possible):

```
sage: a2 = \text{SymmetricGroup}(7)([(1,2),(3,4),(6,7)]); a3 = \text{SymmetricGroup}(7)([(1,2,3),
\rightarrow(4,5,6)])
sage: G = \text{ArithmeticSubgroup\_Permutation}(S2=a2, S3=a3); G
Arithmetic subgroup with permutations of right cosets
S2=(1,2)(3,4)(6,7)
S3=(1,2,3)(4,5,6)
L=(1,4,7,6,5,3)
R=(2,4,5,7,6,3)
sage: G.index()  
7
sage: G.dimension\_cusp\_forms(4)  
1
sage: G.is\_congruence()  
False
```

Convert some standard congruence subgroups into permutation form:

```
sage: G = \text{Gamma0}(8).\text{as\_permutation\_group}()
sage: G.index()  
12
sage: G.is\_congruence()  
True
sage: G = \text{Gamma0}(12).\text{as\_permutation\_group}()
sage: G  
Arithmetic subgroup of index 24
sage: G.is\_congruence()  
True
```

The following is the unique index 2 even subgroup of $\text{SL}(2, \mathbb{Z})$:

```
sage: w = \text{SymmetricGroup}(2)([2,1])
sage: G = \text{ArithmeticSubgroup\_Permutation}(L=w, R=w)
sage: G.dimension\_cusp\_forms(6)  
1
sage: G.genus()  
0
```

\texttt{coset_reps}()

Return coset representatives.

EXAMPLES:

```
sage: G = \text{ArithmeticSubgroup\_Permutation}(S2="(1,2)(3,4)\"),S3="(1,2,3)\")
sage: c = G.coset\_reps()
sage: len(c)  
4
```

(continues on next page)
sage: [g in G for g in c]
[True, False, False, False]

cusp widths

Return the list of cusp widths of the group.

EXAMPLES:

```
sage: G = Gamma(2).as_permutation_group()
sage: G.cusp_widths()
[2, 2, 2]
sage: G.cusp_widths(exp=True)
{2: 3}

sage: S2 = "(1,2)(3,4)(5,6)"
sage: S3 = "(1,2,3)(4,5,6)"
sage: G = ArithmeticSubgroup_Permutation(S2=S2,S3=S3)
sage: G.cusp_widths()
[1, 1, 4]
sage: G.cusp_widths(exp=True)
{1: 2, 4: 1}

sage: S2 = "(1,2)(3,4)(5,6)"
sage: S3 = "(1,3,5)(2,4,6)"
sage: G = ArithmeticSubgroup_Permutation(S2=S2,S3=S3)
sage: G.cusp_widths()
[6]
sage: G.cusp_widths(exp=True)
{6: 1}
```

is_even()
Returns True if this subgroup contains the matrix $-Id$.

EXAMPLES:

```
sage: G = Gamma(2).as_permutation_group()
sage: G.is_even()
True
```

is_odd()
Returns True if this subgroup does not contain the matrix $-Id$.

EXAMPLES:

```
sage: G = Gamma(2).as_permutation_group()
sage: G.is_odd()
False
```

ncusps()
Return the number of cusps of this arithmetic subgroup.

EXAMPLES:
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

```
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)(3,4)(5,6)", S3="(1,2,3)(4,5,6)
˓→")
sage: G.ncusps()
3
```

nu2()

Returns the number of orbits of elliptic points of order 2 for this arithmetic subgroup.

EXAMPLES:

```
sage: G = ArithmeticSubgroup_Permutation(S2="(1,4)(2)(3)", S3="(1,2,3)(4)")
sage: G.nu2()
2
```

nu3()

Returns the number of orbits of elliptic points of order 3 for this arithmetic subgroup.

EXAMPLES:

```
sage: G = ArithmeticSubgroup_Permutation(S2="(1,4)(2)(3)", S3="(1,2,3)(4)")
sage: G.nu3()
1
```

odd_subgroups()

Return a list of the odd subgroups of index 2 in Γ, where Γ is this subgroup. (Equivalently, return the liftings of $\bar{\Gamma} \leq \text{PSL}(2, \mathbb{Z})$ to $\text{SL}(2, \mathbb{Z})$.) This can take rather a long time if the index of this subgroup is large.

See also:

one_odd_subgroup(), which returns just one of the odd subgroups (which is much quicker than enumerating them all).

ALGORITHM:

- If Γ has an element of order 4, then there are no index 2 odd subgroups, so return the empty set.
- If Γ has no elements of order 4, then the permutation S_2 is a combination of 2-cycles with no fixed points on $\{1, \ldots, N\}$. We construct the permutation \tilde{S}_2 of $\{1, \ldots, 2N\}$ which has a 4-cycle $(a, b, a + N, b + N)$ for each 2-cycle (a, b) in S_2. Similarly, we construct a permutation \tilde{S}_3 which has a 6-cycle $(a, b, c, a + N, b + N, c + N)$ for each 3-cycle (a, b, c) in S_3, and a 2-cycle $(a, a + N)$ for each fixed point a of S_3.

Then the permutations \tilde{S}_2 and \tilde{S}_3 satisfy $\tilde{S}_2^2 = \tilde{S}_3^3 = \iota$ where ι is the order 2 permutation interchanging a and $a + N$ for each a. So the subgroup corresponding to these permutations is an index 2 odd subgroup of Γ.

- The other index 2 odd subgroups of Γ are obtained from the pairs $\tilde{S}_2, \tilde{S}_3^\sigma$ where σ is an element of the group generated by the 2-cycles $(a, a + N)$.

Studying the permutations in the first example below gives a good illustration of the algorithm.

EXAMPLES:

```
sage: G = sage.modular.arithgroup.arithgroup_perm.HsuExample10()
sage: [G.S2(), G.S3()]
[(1,2)(3,4)(5,6)(7,8)(9,10), (1,8,3)(2,4,6)(5,7,10)]
sage: X = G.odd_subgroups()
```

(continues on next page)
A projective congruence subgroup may have noncongruence liftings, as the example of \(\bar{\Gamma}_0(6) \) illustrates (see [KSV2011]):

```python
sage: X = Gamma0(6).as_permutation_group().odd_subgroups(); Sequence([u.S2(), u.S3() for u in X], cr=True)
```

A projective congruence subgroup may have noncongruence liftings, as the example of \(\bar{\Gamma}_0(6) \) illustrates (see [KSV2011]):

```python
sage: X = Gamma0(6).as_permutation_group().odd_subgroups(); Sequence([u.S2(), u.S3() for u in X], cr=True)
```

one_odd_subgroup(random=False)

Return an odd subgroup of index 2 in \(\Gamma \), where \(\Gamma \) is this subgroup. If the optional argument random is False (the default), this returns an arbitrary but consistent choice from the set of index 2 odd subgroups. If random is True, then it will choose one of these at random.

For details of the algorithm used, see the docstring for the related function `odd_subgroups()`, which returns a list of all the index 2 odd subgroups.

EXAMPLES:

Starting from \(\Gamma(4) \) we get back \(\Gamma(4) \):

```python
sage: G = Gamma(4).as_permutation_group()
sage: G.is_odd(), G.index()
(True, 48)
sage: Ge = G.to_even_subgroup()
sage: Go = Ge.one_odd_subgroup()
sage: Go.is_odd(), Go.index()
```
Strating from $\Gamma(6)$ we get a different group:

```python
sage: G = Gamma(6).as_permutation_group()
sage: G.is_odd(), G.index()
(True, 144)
sage: Ge = G.to_even_subgroup()
sage: Go = Ge.one_odd_subgroup()
sage: Go.is_odd(), Go.index()
(True, 144)
sage: Go == G
False
```

An error will be raised if there are no such subgroups, which occurs if and only if the group contains an element of order 4:

```python
sage: Gamma0(10).as_permutation_group().one_odd_subgroup()
Traceback (most recent call last):
  ... ValueError: Group contains an element of order 4, hence no index 2 odd subgroups
```

Testing randomness:

```python
sage: G = Gamma(6).as_permutation_group().to_even_subgroup()
sage: G1 = G.one_odd_subgroup(random=True) # random
sage: G1.is_subgroup(G)
True
```

```
(continued from previous page)
(continues on next page)
```

to_even_subgroup(relabel=True)

Return the subgroup generated by self and $-\text{Id}$. Since self is even, this is just self. Provided for compatibility.

EXAMPLES:

```python
sage: G = Gamma0(4).as_permutation_group()
sage: H = G.to_even_subgroup()
sage: H == G
True
```

todd_coxeter()

Returns a 4-tuple (coset_reps, gens, l, s2) where coset_reps is a list of coset representatives of the subgroup, gens a list of generators, l and s2 are list that corresponds to the action of the matrix $S2$ and L on the cosets.

EXAMPLES:

```python
sage: G = ArithmeticSubgroup_Permutation(S2='(1,2)(3,4)', S3='(1,2,3)')
sage: reps, gens, l, s2 = G.todd_coxeter_l_s2()
sage: reps
[]
```
Arithmetic Subgroups of $SL_2(Z)$, Release 10.2

[1 0] [0 -1] [1 2] [1 1]
[0 1], [1 0], [0 1], [0 1]
]
sage: len(gens) 3
sage: Matrix(2, 2, [1, 3, 0, 1]) in gens True
sage: Matrix(2, 2, [1, 0, -1, 1]) in gens True
sage: Matrix(2, 2, [1, -3, 1, -2]) in gens or Matrix(2, 2, [2, -3, 1, -1]) in gens True
sage: l = [3, 1, 0, 2]
sage: s = [1, 0, 3, 2]
sage: S2 = SL2Z([0,-1,1,0])
sage: L = SL2Z([1,1,0,1])
sage: reps[0] == SL2Z([1,0,0,1]) True
sage: all(reps[i]*S2*~reps[s[i]] in G for i in range(4)) True
sage: all(reps[i]*L*~reps[l[i]] in G for i in range(4)) True

\texttt{todd_coxeter_l_s2()}
Returns a 4-tuple (coset_reps, gens, l, s2) where coset_reps is a list of coset representatives of the subgroup, gens a list of generators, l and s2 are list that corresponds to the action of the matrix $S2$ and L on the cosets.

EXAMPLES:

sage: G = ArithmeticSubgroup_Permutation(S2='(1,2)(3,4)',S3='(1,2,3)')
sage: reps,gens,l,s=G.todd_coxeter_l_s2()
sage: reps
[
[1 0] [0 -1] [1 2] [1 1]
[0 1], [1 0], [0 1], [0 1]
]
sage: len(gens) 3
sage: Matrix(2, 2, [1, 3, 0, 1]) in gens True
sage: Matrix(2, 2, [1, 0, -1, 1]) in gens True
sage: Matrix(2, 2, [1, -3, 1, -2]) in gens or Matrix(2, 2, [2, -3, 1, -1]) in gens True
sage: l = [3, 1, 0, 2]
sage: s = [1, 0, 3, 2]
(continues on next page)
sage: S2 = SL2Z([[0,-1,1,0]])
sage: L = SL2Z([[1,1,0,1]])
sage: reps[0] == SL2Z([[1,0,0,1]])
True
sage: all(reps[i]*S2*~reps[s2[i]] in G for i in range(4))
True
sage: all(reps[i]*L*~reps[l[i]] in G for i in range(4))
True

todd_coxeter_s2_s3()

Returns a 4-tuple `(coset_reps, gens, s2, s3)` where `coset_reps` are coset representatives of the subgroup, `gens` is a list of generators, `s2` and `s3` are the action of the matrices S_2 and S_3 on the list of cosets.

The so called *Todd-Coxeter algorithm* is a general method for coset enumeration for a subgroup of a group given by generators and relations.

EXAMPLES:

sage: G = ArithmeticSubgroup_Permutation(S2='(1,2)(3,4)',S3='(1,2,3)')
sage: G.genus()
0
sage: reps,gens,s2,s3=G.todd_coxeter_s2_s3()
sage: g1,g2 = gens
sage: g1 in G and g2 in G
True
sage: Matrix(2, 2, [-1, 3, -1, 2]) in gens
True
sage: Matrix(2, 2, [-1, 0, 1, -1]) in gens or Matrix(2, 2, [1, 0, 1, 1]) in gens
True
sage: S2 = SL2Z([[0,-1,1,0]])
sage: S3 = SL2Z([[0,1,-1,1]])
sage: reps[0] == SL2Z([[1,0,0,1]])
True
sage: all(reps[i]*S2*~reps[s2[i]] in G for i in range(4))
True
sage: all(reps[i]*S3*~reps[s3[i]] in G for i in range(4))
True

sage.modular.arithgroup.arithgroup_perm.HsuExample10()

An example of an index 10 arithmetic subgroup studied by Tim Hsu.

EXAMPLES:

sage: import sage.modular.arithgroup.arithgroup_perm as ap
sage: ap.HsuExample10()
Arithmetic subgroup with permutations of right cosets
 S2=(1,2)(3,4)(5,6)(7,8)(9,10)
 S3=(1,8,3)(2,4,6)(5,7,10)
 L=(1,4)(2,5,9,10,8)(3,7,6)
 R=(1,7,9,10,6)(2,3)(4,5,8)

sage.modular.arithgroup.arithgroup_perm.HsuExample18()

An example of an index 18 arithmetic subgroup studied by Tim Hsu.
Class `sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation(S2, S3, L, R, canonical_labels=False)`

Bases: `ArithmeticSubgroup_Permutation_class`

An arithmetic subgroup of \(SL(2, \mathbb{Z})\) not containing \(-1\), represented in terms of the right action of \(SL(2, \mathbb{Z})\) on its cosets.

Examples:

```python
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2,3,4)",S3="(1,3)(2,4)"
```

```python
sage: G
Arithmetic subgroup with permutations of right cosets
S2=(1,2,3,4)
S3=(1,3)(2,4)
L=(1,2,3,4)
R=(1,4,3,2)
```

```python
sage: type(G)
<class 'sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation_class'>
```

.. note::
 This class represents a subgroup of \(SL(2, \mathbb{Z})\) that does not contain \(-1\), and it is determined by permutations of right cosets. The examples show how to create such a subgroup and how to use its methods.

The `cusp_widths` method returns the list of cusp widths.

```python
sage: G = Gamma1(5).as_permutation_group()
sage: G.cusp_widths()
[1, 1, 5, 5]
```

The `cusp_widths` method can also return a dictionary that maps cusp widths to the number of cusps with that width.

```python
sage: G = Gamma1(5).as_permutation_group()
sage: G.cusp_widths(exp=True)
{1: 2, 5: 2}
```

The `is_even()` method tests whether the group is even.

```python
sage: G = ArithmeticSubgroup_Permutation(S2="(1,6,4,3)(2,7,5,8)",S3="(1,2,3,4,5,6)(7,8)"
```

```python
sage: G.is_even()
False
```

Arithmetic Subgroups of \(SL_2(\mathbb{Z})\), Release 10.2

Chapter 2. Arithmetic subgroups defined by permutations of cosets
is_odd()
Test whether the group is odd.

EXAMPLES:

```python
sage: G = ArithmeticSubgroup_Permutation(S2="(1,6,4,3)(2,7,5,8)",S3="(1,2,3,4,5,6)(7,8)"
 sage: G.is_odd()
True
```

ncusps()
Returns the number of cusps.

EXAMPLES:

```python
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2,3,4)",S3="(1,3)(2,4)"
 sage: G.ncusps()
1
 sage: G = Gamma1(3).as_permutation_group()
 sage: G.ncusps()
2
```

nirregcusps()
Return the number of irregular cusps.

The cusps are associated to cycles of the permutations L or R. The irregular cusps are the one which are stabilised by $-Id$.

EXAMPLES:

```python
sage: S2 = "(1,3,2,4)(5,7,6,8)(9,11,10,12)"
 sage: S3 = "(1,3,5,2,4,6)(7,9,11,8,10,12)"
 sage: G = ArithmeticSubgroup_Permutation(S2=S2,S3=S3)
 sage: G.nirregcusps()
3
```

nregcusps()
Return the number of regular cusps of the group.

The cusps are associated to cycles of L or R. The irregular cusps correspond to the ones which are not stabilised by $-Id$.

EXAMPLES:

```python
sage: G = Gamma1(3).as_permutation_group()
 sage: G.nregcusps()
2
```

nu2()
Return the number of elliptic points of order 2.

EXAMPLES:

```python
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2,3,4)",S3="(1,3)(2,4)"
 sage: G.nu2()
```

(continues on next page)
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

(continued from previous page)

0

\begin{verbatim}
sage: G = Gamma1(2).as_permutation_group()
sage: G.nu2()
1
\end{verbatim}

nu3()

Return the number of elliptic points of order 3.

EXAMPLES:

\begin{verbatim}
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2,3,4)", S3="(1,3)(2,4)"

sage: G.nu3()
2

sage: G = Gamma1(3).as_permutation_group()
sage: G.nu3()
1
\end{verbatim}

\begin{verbatim}
to_even_subgroup(relabel=True)

Returns the group with $-Id$ added in it.

EXAMPLES:

\begin{verbatim}
sage: G = Gamma1(3).as_permutation_group()
sage: G.to_even_subgroup()
Arithmetic subgroup with permutations of right cosets
S2=(1,3)(2,4)
S3=(1,2,3)
L=(2,3,4)
R=(1,4,2)

sage: H = ArithmeticSubgroup_Permutation(S2 = '(1,4,11,14)(2,7,12,17)(3,5,6,9)(8,10,18,20)

S3 = '(1,2,3,11,12,13)(4,5,6,14,15,16)(7,8,9,17,18,19)(10,20)

sage: G = H.to_even_subgroup(relabel=False); G
Arithmetic subgroup with permutations of right cosets
S2=(1,4)(2,7)(3,5)(6,9)(8,10)
S3=(1,2,3)(4,5,6)(7,8,9)
L=(1,5)(2,4,9,10,8)(3,7,6)
R=(1,7,10,8,6)(2,5,9)(3,4)

sage: H.is_subgroup(G)
True
\end{verbatim}

\begin{verbatim}
sage.modular.arithgroup.arithgroup_perm.eval_sl2z_word(w)

Given a word in the format output by \texttt{sl2z_word_problem()}, convert it back into an element of $\text{SL}_2(\mathbb{Z})$.

EXAMPLES:

\begin{verbatim}
sage: from sage.modular.arithgroup.arithgroup_perm import eval_sl2z_word
sage: eval_sl2z_word([[0, 1], (1, -1), (0, 0), (1, 3), (0, 2), (1, 9), (0, -1)])
[66 -59
 47 -42]
\end{verbatim}

36 Chapter 2. Arithmetic subgroups defined by permutations of cosets
Given an element of $\text{SL}_2(\mathbb{Z})$, express it as a word in the generators $L = [1,1,0,1]$ and $R = [1,0,1,1]$.

The return format is a list of pairs (a,b), where $a = 0$ or 1 denoting L or R respectively, and b is an integer exponent.

See also the function `eval_sl2z_word()`.

EXAMPLES:
```python
sage: from sage.modular.arithgroup.arithgroup_perm import eval_sl2z_word, sl2z_word_problem
sage: m = SL2Z([1,0,0,1])
sage: eval_sl2z_word(sl2z_word_problem(m)) == m
True
sage: m = SL2Z([0,-1,1,0])
sage: eval_sl2z_word(sl2z_word_problem(m)) == m
True
sage: m = SL2Z([7,8,-50,-57])
sage: eval_sl2z_word(sl2z_word_problem(m)) == m
True
```

Given a word w as a list of 2-tuples $(index, power)$ and permutations $p1$ and $p2$ return the product of $p1$ and $p2$ that corresponds to w.

EXAMPLES:
```python
sage: import sage.modular.arithgroup.arithgroup_perm as ap
sage: S2 = SymmetricGroup(4)
sage: p1 = S2('(1,2)(3,4)')
sage: p2 = S2('(1,2,3,4)')
sage: ap.word_of_perms([[(1,1),(0,1)], p1, p2]) == p2 * p1
True
sage: ap.word_of_perms([[(0,1),(1,1)], p1, p2]) == p1 * p2
True
```
class sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement

Bases: MultiplicativeGroupElement

An element of the group $\text{SL}_2(\mathbb{Z})$, i.e. a 2x2 integer matrix of determinant 1.

a()

Return the upper left entry of self.

EXAMPLES:

```
sage: Gamma0(13)([7,1,13,2]).a()
sage: 7
```

acton(z)

Return the result of the action of self on z as a fractional linear transformation.

EXAMPLES:

```
sage: G = Gamma0(15)
sage: g = G([1, 2, 15, 31])

An example of g acting on a symbolic variable:

```
sage: z = var('z')
sage: g.acton(z)
sage: (z + 2)/(15*z + 31)
```

An example involving the Gaussian numbers:

```
sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: g.acton(i)
sage: 1/1186*i + 77/1186
```

An example with complex numbers:

```
sage: C.<i> = ComplexField()
sage: g.acton(i)
sage: 0.0649241146711636 + 0.000843170320404721*I
```
An example with the cusp infinity:

```
sage: g.acton(infinity)
1/15
```

An example which maps a finite cusp to infinity:

```
sage: g.acton(-31/15)
+Infinity
```

Note that when acting on instances of cusps the return value is still a rational number or infinity (Note the presence of ‘+’, which does not show up for cusp instances):

```
sage: g.acton(Cusp(-31/15))
+Infinity
```

\(b()\)

Return the upper right entry of \(\text{self}\).

```
sage: Gamma0(13)([7,1,13,2]).b()
1
```

\(c()\)

Return the lower left entry of \(\text{self}\).

```
sage: Gamma0(13)([7,1,13,2]).c()
13
```

\(d()\)

Return the lower right entry of \(\text{self}\).

```
sage: Gamma0(13)([7,1,13,2]).d()
2
```

\(\text{det()}\)

Return the determinant of \(\text{self}\), which is always 1.

```
sage: Gamma1(11)([12,11,-11,-10]).det()
1
```

\(\text{determinant()}\)

Return the determinant of \(\text{self}\), which is always 1.

```
sage: Gamma0(691)([1,0,691,1]).determinant()
1
```
matrix()

Return the matrix corresponding to self.

EXAMPLES:

```python
sage: x = Gamma1(3)([4,5,3,4]) ; x
[4 5]
[3 4]
sage: x.matrix()
[4 5]
[3 4]
sage: type(x.matrix())
<class 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>
```

multiplicative_order()

Return the multiplicative order of this element.

EXAMPLES:

```python
sage: SL2Z.one().multiplicative_order()
1
sage: SL2Z([-1,0,0,-1]).multiplicative_order()
2
sage: s,t = SL2Z.gens()
sage: ((t^3*s*t^2) * s * -(t^3*s*t^2)).multiplicative_order()
4
sage: (t^3 * s * t * t^-3).multiplicative_order()
6
sage: (t^3 * s * t * s * t^-2).multiplicative_order()
3
sage: SL2Z([2,1,1,1]).multiplicative_order()
+Infinity
sage: SL2Z([-2,1,1,-1]).multiplicative_order()
+Infinity
```
CONGRUENCE ARITHMETIC SUBGROUPS OF $\text{SL}_2(\mathbb{Z})$

Sage can compute extensively with the standard congruence subgroups $\Gamma_0(N)$, $\Gamma_1(N)$, and $\Gamma_H(N)$.

AUTHORS:

- William Stein
- David Loeffler (2009, 10) – modifications to work with more general arithmetic subgroups

```python
class sage.modular.arithgroup.congroup_generic.CongruenceSubgroup(*args, **kwds):
 Bases: CongruenceSubgroupFromGroup

 One of the “standard” congruence subgroups $\Gamma_0(N)$, $\Gamma_1(N)$, $\Gamma(N)$, or $\Gamma_H(N)$ (for some H).

 This class is not intended to be instantiated directly. Derived subclasses must override _contains_sl2, _repr_,
 and image_mod_n.

 image_mod_n()
 Raise an error: all derived subclasses should override this function.

 EXAMPLES:

 sage: sage.modular.arithgroup.congroup_generic.CongruenceSubgroup(5).image_mod_n()
 Traceback (most recent call last):
 ...
 NotImplementedError

 modular_abelian_variety()
 Return the modular abelian variety corresponding to the congruence subgroup self.

 EXAMPLES:

 sage: Gamma0(11).modular_abelian_variety()
 Abelian variety $J_0(11)$ of dimension 1
 sage: Gamma1(11).modular_abelian_variety()
 Abelian variety $J_1(11)$ of dimension 1
 sage: GammaH(11,[3]).modular_abelian_variety()
 Abelian variety $J_H(11,[3])$ of dimension 1

 modular_symbols(sign=0, weight=2, base_ring=Rational Field)
 Return the space of modular symbols of the specified weight and sign on the congruence subgroup self.

 EXAMPLES:
```
Arithmetic Subgroups of \( \text{SL}_2(\mathbb{Z}) \), Release 10.2

```python
sage: G = Gamma0(23)
sage: G.modular_symbols()
Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0
→ over Rational Field
sage: G.modular_symbols(weight=4)
Modular Symbols space of dimension 12 for Gamma_0(23) of weight 4 with sign 0
→ over Rational Field
sage: G.modular_symbols(base_ring=GF(7))
Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0
→ over Finite Field of size 7
sage: G.modular_symbols(sign=1)
Modular Symbols space of dimension 3 for Gamma_0(23) of weight 2 with sign 1
→ over Rational Field
```

class sage.modular.arithgroup.congroup_generic.CongruenceSubgroupBase(level)

Bases: ArithmeticSubgroup

Create a congruence subgroup with given level.

EXAMPLES:

```python
sage: Gamma0(500)
Congruence Subgroup Gamma0(500)
```

is_congruence()

Return True, since this is a congruence subgroup.

EXAMPLES:

```python
sage: Gamma0(7).is_congruence()
True
```

level()

Return the level of this congruence subgroup.

EXAMPLES:

```python
sage: SL2Z.level()
1
sage: Gamma0(20).level()
20
sage: Gamma1(11).level()
11
sage: GammaH(14, [5]).level()
14
```

class sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup(G)

Bases: CongruenceSubgroupBase

A congruence subgroup, defined by the data of an integer \( N \) and a subgroup \( G \) of the finite group \( SL(2, \mathbb{Z}/N\mathbb{Z}) \); the congruence subgroup consists of all the matrices in \( SL(2, \mathbb{Z}) \) whose reduction modulo \( N \) lies in \( G \).

This class should not be instantiated directly, but created using the factory function CongruenceSubgroup_constructor(), which accepts much more flexible input, and checks the input to make sure it is valid.
image_mod_n()

Return the subgroup of $SL(2, \mathbb{Z}/N\mathbb{Z})$ of which this is the preimage, where $N$ is the level of self.

EXAMPLES:

```python
sage: G = MatrixGroup([[matrix(Zmod(2), 2, [1,1,1,0])]])
sage: H = sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup(G).image_mod_n()
Matrix group over Ring of integers modulo 2 with 1 generators (
[1 1]
[1 0])
sage: H.image_mod_n() == G
True
```

index()

Return the index of self in the full modular group. This is equal to the index in $SL(2, \mathbb{Z}/N\mathbb{Z})$ of the image of this group modulo $\Gamma(N)$.

EXAMPLES:

```python
sage: sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup(MatrixGroup([[matrix(Zmod(2), 2, [1,1,1,0])]])).index()
2
```

to_even_subgroup()

Return the smallest even subgroup of $SL(2, \mathbb{Z})$ containing self.

EXAMPLES:

```python
sage: G = Gamma(3)
sage: G.to_even_subgroup()
Congruence subgroup of SL(2,Z) of level 3, preimage of:
Matrix group over Ring of integers modulo 3 with 1 generators (
[2 0]
[0 2])
```

sage.modular.arithgroup.congroup_generic.CongruenceSubgroup_construcor(*args)

Attempt to create a congruence subgroup from the given data.

The allowed inputs are as follows:

- A MatrixGroup object. This must be a group of matrices over $\mathbb{Z}/N\mathbb{Z}$ for some $N$, with determinant 1, in which case the function will return the group of matrices in $SL(2, \mathbb{Z})$ whose reduction mod $N$ is in the given group.
- A list of matrices over $\mathbb{Z}/N\mathbb{Z}$ for some $N$. The function will then compute the subgroup of $SL(2, \mathbb{Z})$ generated by these matrices, and proceed as above.
- An integer $N$ and a list of matrices (over any ring coercible to $\mathbb{Z}/N\mathbb{Z}$, e.g. over $\mathbb{Z}$). The matrices will then be coerced to $\mathbb{Z}/N\mathbb{Z}$.

The function checks that the input G is valid. It then tests to see if $G$ is the preimage mod $N$ of some group of matrices modulo a proper divisor $M$ of $N$, in which case it replaces $G$ with this group before continuing.

EXAMPLES:
### Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

#### sage: from sage.modular.arithgroup.congroup_generic import CongruenceSubgroup_ ...

- `sage: CS(2, [[1,1,0,1]])`
  - Congruence subgroup of $\text{SL}(2,\mathbb{Z})$ of level 2, preimage of:
    - Matrix group over Ring of integers modulo 2 with 1 generators (
      - \[
        \begin{bmatrix}
          1 & 1 \\
          0 & 1
        \end{bmatrix}
      \]
    )

- `sage: CS([matrix(Zmod(2), 2, [1,1,0,1])] -)
  - Congruence subgroup of $\text{SL}(2,\mathbb{Z})$ of level 2, preimage of:
    - Matrix group over Ring of integers modulo 2 with 1 generators (
      - \[
        \begin{bmatrix}
          1 & 1 \\
          0 & 1
        \end{bmatrix}
      \]
    )

- `sage: CS(MatrixGroup([matrix(Zmod(2), 2, [1,1,0,1])]))`
  - Congruence subgroup of $\text{SL}(2,\mathbb{Z})$ of level 2, preimage of:
    - Matrix group over Ring of integers modulo 2 with 1 generators (
      - \[
        \begin{bmatrix}
          1 & 1 \\
          0 & 1
        \end{bmatrix}
      \]
    )

- `sage: CS(SL(2, 2))`
  - Modular Group $\text{SL}(2,\mathbb{Z})$

Some invalid inputs:

- `sage: CS(SU(2, 7))`
  - Traceback (most recent call last):
    - ...
    - TypeError: Ring of definition must be $Z / N\mathbb{Z}$ for some $N$

### sage.modular.arithgroup.congroup_generic.is_CongruenceSubgroup(x)

Return True if x is of type CongruenceSubgroup.

Note that this may be False even if x really is a congruence subgroup – it tests whether x is “obviously” congruence, i.e., whether it has a congruence subgroup datatype. To test whether or not an arithmetic subgroup of $\text{SL}(2,\mathbb{Z})$ is congruence, use the `is_congruence()` method instead.

#### EXAMPLES:

- `sage: from sage.modular.arithgroup.congroup_generic import is_CongruenceSubgroup`
- `sage: is_CongruenceSubgroup(SL2Z)`
  - True
- `sage: is_CongruenceSubgroup(Gamma0(13))`
  - True
- `sage: is_CongruenceSubgroup(Gamma1(6))`
  - True
- `sage: is_CongruenceSubgroup(GammaH(11, [3]))`
  - True
- `sage: G = ArithmeticSubgroup_Permutation(L = "(1, 2)", R = "(1, 2)"); is_...
  - False
- `sage: G.is_congruence()`
  - True
- `sage: is_CongruenceSubgroup(SymmetricGroup(3))`
  - (continues on next page)
CONGRUENCE SUBGROUP $\Gamma_H(N)$

AUTHORS:

- Jordi Quer
- David Loeffler

class sage.modular.arithgroup.congroup_gammaH.GammaH_class(level, H, Hlist=None)

Bases: CongruenceSubgroup

The congruence subgroup $\Gamma_H(N)$ for some subgroup $H \subseteq (\mathbb{Z}/N\mathbb{Z})^\times$, which is the subgroup of $\text{SL}_2(\mathbb{Z})$ consisting of matrices of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $N \mid c$ and $a, d \in H$.

atkin_lehner_matrix$(Q)$

Return the matrix of the Atkin–Lehner–Li operator $W_Q$ associated to an exact divisor $Q$ of $N$, where $N$ is the level of this group; that is, $\gcd(Q, N/Q) = 1$.

Note: We follow the conventions of [AL1978] here, so $W_Q$ is given by the action of any matrix of the form $\begin{pmatrix} Qx & y \\ Nz & Qw \end{pmatrix}$ where $x, y, z, w$ are integers such that $y = 1 \mod Q$, $x = 1 \mod N/Q$, and $\det(W_Q) = Q$. For convenience, we actually always choose $x = y = 1$.

INPUT:

- $Q$ (integer): an integer dividing $N$, where $N$ is the level of this group. If this divisor does not satisfy $\gcd(Q, N/Q) = 1$, it will be replaced by the unique integer with this property having the same prime factors as $Q$.

EXAMPES:

```
sage: Gamma1(994).atkin_lehner_matrix(71)
[[71 1]
 [4970 71]]
sage: Gamma1(996).atkin_lehner_matrix(2)
[4 1]
[-996 -248]
sage: Gamma1(15).atkin_lehner_matrix(7)
Traceback (most recent call last):
 ...
ValueError: Q must divide the level
```
characters_mod_H(sign=None, galois_orbits=False)

Return the characters of \((\mathbb{Z}/N\mathbb{Z})^*\), of the specified sign, which are trivial on \(H\).

INPUT:

• sign (default: None): if not None, return only characters of the given sign

• galois_orbits (default: False): if True, return only one character from each Galois orbit.

EXAMPLES:

```
sage: GammaH(5, [-1]).characters_mod_H()
[Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -1,
Dirichlet character modulo 5 of conductor 1 mapping 2 |--> 1]
sage: Gamma1(31).characters_mod_H(galois_orbits=True, sign=-1)
[Dirichlet character modulo 31 of conductor 31 mapping 3 |--> zeta30,
Dirichlet character modulo 31 of conductor 31 mapping 3 |--> zeta30^3,
Dirichlet character modulo 31 of conductor 31 mapping 3 |--> zeta30^5,
Dirichlet character modulo 31 of conductor 31 mapping 3 |--> -1]
sage: GammaH(31, [-1]).characters_mod_H(sign=-1)
[]
```

coset_reps()

Return a set of coset representatives for \(self \setminus \text{SL}_2\mathbb{Z}\).

EXAMPLES:

```
sage: list(Gamma1(3).coset_reps())
[[1 0] [0 1], [1 0], [0 1], [1 0], [0 -1], [0 1], [0 1], [1 0], [0 -1], [0 1]]
sage: len(list(Gamma1(31).coset_reps())) == 31**2 - 1
True
```
dimension_cusp_forms(k=2)

Return the dimension of the space of weight \(k\) cusp forms for this group. For \(k \geq 2\), this is given by a standard formula in terms of \(k\) and various invariants of the group; see Diamond + Shurman, “A First Course in Modular Forms”, section 3.5 and 3.6. If \(k\) is not given, default to \(k = 2\).

For dimensions of spaces of cusp forms with character for Gamma1, use the dimension_cusp_forms method of the Gamma1 class, or the standalone function dimension_cusp_forms().

For weight 1 cusp forms, there is no simple formula for the dimensions, so we first try to rule out nonzero cusp forms existing via Riemann-Roch, and if this fails, we trigger computation of the cusp form space using Schaeffer’s algorithm; this can be quite expensive in large levels.

EXAMPLES:

```
sage: GammaH(31, [23]).dimension_cusp_forms(10)
69
sage: GammaH(31, [7]).dimension_cusp_forms(1)
1
```
dimension_new_cusp_forms(k=2, p=0)

Return the dimension of the space of new (or \(p\)-new) weight \(k\) cusp forms for this congruence subgroup.

INPUT:
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

- $k$ - an integer (default: 2), the weight. Not fully implemented for $k = 1$.
- $p$ - integer (default: 0); if nonzero, compute the $p$-new subspace.

**OUTPUT:** Integer

**EXAMPLES:**

```python
sage: GammaH(33, [2]).dimension_new_cusp_forms()
3
sage: Gamma1(4*25).dimension_new_cusp_forms(2, p=5)
225
sage: Gamma1(33).dimension_new_cusp_forms(2)
19
sage: Gamma1(33).dimension_new_cusp_forms(2, p=11)
21
```

divisor_subgroups()

Given this congruence subgroup $\Gamma_H(N)$, return all subgroups $\Gamma_G(M)$ for $M$ a divisor of $N$ and such that $G$ is equal to the image of $H$ modulo $M$.

**EXAMPLES:**

```python
sage: G = GammaH(33, [2]); G
Congruence Subgroup Gamma_H(33) with H generated by [2]
sage: G._list_of_elements_in_H()
[1, 2, 4, 8, 16, 17, 25, 29, 31, 32]
sage: G.divisor_subgroups()
[Modular Group SL(2,Z),
 Congruence Subgroup Gamma0(3),
 Congruence Subgroup Gamma0(11),
 Congruence Subgroup Gamma_H(33) with H generated by [2]]
```

extend($M$)

Return the subgroup of $\Gamma_0(M)$, for $M$ a multiple of $N$, obtained by taking the preimage of this group under the reduction map; in other words, the intersection of this group with $\Gamma_0(M)$.

**EXAMPLES:**

```python
sage: G = GammaH(33, [2])
sage: G.extend(99)
Congruence Subgroup Gamma_H(99) with H generated by [2, 17, 68]
sage: G.extend(11)
Traceback (most recent call last):
...
ValueError: M (=11) must be a multiple of the level (33) of self
```

gamma0_coset_reps()

Return a set of coset representatives for self \ $\Gamma_0(N)$, where $N$ is the level of self.

**EXAMPLES:**

```python
sage: GammaH(108, [1, -1]).gamma0_coset_reps()
[...
[1 0] [-43 -2] [31 2] [-49 -5] [25 3] [-19 -3]
[0 1], [108 5], [108 7], [108 11], [108 13], [108 17],
```
**Arithmetic Subgroups of** $\text{SL}_2(\mathbb{Z})$, **Release 10.2**

(continued from previous page)

| [-17, -3] | [47, 10] | [13, 3] | [41, 11] | [7, 2] | [-37, -12] |
| [108, 19], [108, 23], [108, 25], [108, 29], [108, 31], [108, 35], |

| [-35, -12] | [29, 11] | [-5, -2] | [23, 10] | [-11, -5] | [53, 26] |
| [108, 37], [108, 41], [108, 43], [108, 47], [108, 49], [108, 53] |

---

**generators**(algorithm='farey')

Return generators for this congruence subgroup. The result is cached.

**INPUT:**

- **algorithm** (string): either *farey* (default) or *todd-coxeter*.

If **algorithm** is set to "farey", then the generators will be calculated using Farey symbols, which will always return a *minimal* generating set. See *farey_symbol* for more information.

If **algorithm** is set to "todd-coxeter", a simpler algorithm based on Todd-Coxeter enumeration will be used. This tends to return far larger sets of generators.

**EXAMPLES:**

```python
sage: GammaH(7, [2]).generators()
[[1 1] [2 -1] [4 -3]
[0 1], [7 -3], [7 -5]]
sage: GammaH(7, [2]).generators(algorithm="todd-coxeter")
[[1 1] [-13 4] [15 4] [-3 -1] [1 -1] [1 0] [1 1] [-3 -1]
[0 1], [42 -13], [-49 -13], [7 2], [0 1], [7 1], [0 1], [7 2],

[-13 4] [-5 -1] [-5 -2] [-10 3] [1 0] [2 -1] [1 0]
[42 -13], [21 4], [28 11], [63 -19], [-7 1], [7 -3], [7 1],

[-3 -1] [15 -4] [2 -1] [-5 1] [8 -3] [11 5] [-13 -4]
[7 2], [49 -13], [7 -3], [14 -3], [-21 8], [35 16], [-42 -13]]
```

---

**image_mod_n()**

Return the image of this group in $\text{SL}(2, \mathbb{Z}/N\mathbb{Z})$.

**EXAMPLES:**

```python
sage: Gamma0(3).image_mod_n()
Matrix group over Ring of integers modulo 3 with 2 generators (
[2 0] [1 1]
[0 2], [0 1]
)
```

---

**index()**

Return the index of **self** in $\text{SL}2\mathbb{Z}$.

**EXAMPLES:**

---
Arithmetic Subgroups of $SL_2(\mathbb{Z})$, Release 10.2

\begin{verbatim}
sage: [G.index() for G in Gamma0(40).gamma_h_subgroups()]
[72, 144, 144, 144, 144, 288, 288, 288, 288, 144, 288, 288, 576, 576, 144, 288, ...

is_even()
Return True precisely if this subgroup contains the matrix -1.

EXAMPLES:
\begin{verbatim}
sage: GammaH(10, [3]).is_even()
True
sage: GammaH(14, [1]).is_even()
False
\end{verbatim}

is_subgroup(other)
Return True if self is a subgroup of right, and False otherwise.

EXAMPLES:
\begin{verbatim}
sage: GammaH(24, [7]).is_subgroup(SL2Z)
True
sage: GammaH(24, [7]).is_subgroup(Gamma0(8))
True
sage: GammaH(24, []).is_subgroup(GammaH(24, [7]))
True
sage: GammaH(24, []).is_subgroup(Gamma1(24))
True
sage: GammaH(24, [17]).is_subgroup(GammaH(24, [7]))
False
sage: GammaH(1371, [169]).is_subgroup(GammaH(457, [169]))
True
\end{verbatim}

ncusps()
Return the number of orbits of cusps (regular or otherwise) for this subgroup.

EXAMPLES:
\begin{verbatim}
sage: GammaH(33, [2]).ncusps()
8
sage: GammaH(32079, [21676]).ncusps()
28800
\end{verbatim}

AUTHORS:
• Jordi Quer

nirregcusps()
Return the number of irregular cusps for this subgroup.

EXAMPLES:
\begin{verbatim}
sage: GammaH(3212, [2045, 2773]).nirregcusps()
720
\end{verbatim}

nregcusps()
Return the number of orbits of regular cusps for this subgroup. A cusp is regular if we may find a parabolic
element generating the stabiliser of that cusp whose eigenvalues are both +1 rather than -1. If \( G \) contains -1, all cusps are regular.

EXAMPLES:

```python
sage: GammaH(20, [17]).nregcusps()
4
sage: GammaH(20, [17]).nirregcusps()
2
sage: GammaH(3212, [2045, 2773]).nregcusps()
1440
sage: GammaH(3212, [2045, 2773]).nirregcusps()
720
```

AUTHOR:

- Jordi Quer

\textbf{\texttt{nu2()}}

Return the number of orbits of elliptic points of order 2 for this group.

EXAMPLES:

```python
sage: [H.nu2() for n in [1..10] for H in Gamma0(n).gamma_h_subgroups()]
[1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0]
```

AUTHORS:

- Jordi Quer

\textbf{\texttt{nu3()}}

Return the number of orbits of elliptic points of order 3 for this group.

EXAMPLES:

```python
sage: [H.nu3() for n in [1..10] for H in Gamma0(n).gamma_h_subgroups()]
[1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0]
```

AUTHORS:

- Jordi Quer

\textbf{\texttt{reduce_cusp(c)}}

Compute a minimal representative for the given cusp \( c \). Returns a cusp \( c' \) which is equivalent to the given cusp, and is in lowest terms with minimal positive denominator, and minimal positive numerator for that denominator.

Two cusps \( u_1/v_1 \) and \( u_2/v_2 \) are equivalent modulo \( \Gamma_H(N) \) if and only if

\[ v_1 = hv_2 \mod N \quad \text{and} \quad u_1 = h^{-1}u_2 \mod \gcd(v_1, N) \]
or
\[ v_1 = -hv_2 \mod N \quad \text{and} \quad u_1 = -h^{-1}u_2 \mod \gcd(v_1, N) \]
for some \( h \in H \).

**EXAMPLES:**

```
 sage: GammaH(6,[5]).reduce_cusp(5/3)
 1/3
 sage: GammaH(12,[5]).reduce_cusp(Cusp(8,9))
 1/3
 sage: GammaH(12,[5]).reduce_cusp(5/12)
 Infinity
 sage: GammaH(12,[]).reduce_cusp(Cusp(5,12))
 5/12
 sage: GammaH(21,[5]).reduce_cusp(Cusp(-9/14))
 1/7
 sage: Gamma1(5).reduce_cusp(oo)
 Infinity
 sage: Gamma1(5).reduce_cusp(0)
 0
```

**restrict** \((M)\)

Return the subgroup of \( \Gamma_0(M) \), for \( M \) a divisor of \( N \), obtained by taking the image of this group under reduction modulo \( N \).

**EXAMPLES:**

```
 sage: G = GammaH(33,[2])
 sage: G.restrict(11)
 Congruence Subgroup Gamma0(11)
 sage: G.restrict(1)
 Modular Group SL(2,Z)
 sage: G.restrict(15)
 Traceback (most recent call last):
 ... ValueError: M (=15) must be a divisor of the level (33) of self
```

**to_even_subgroup** ()

Return the smallest even subgroup of \( SL(2,Z) \) containing self.

**EXAMPLES:**

```
 sage: GammaH(11, [4]).to_even_subgroup()
 Congruence Subgroup Gamma0(11)
 sage: Gamma1(11).to_even_subgroup()
 Congruence Subgroup Gamma_H(11) with H generated by [10]
```

```
 sage.modular.arithgroup.congroup_gammaH.GammaH_constructor(level, H)

 Return the congruence subgroup \(\Gamma_H(N) \), which is the subgroup of \(SL(2,Z) \) consisting of matrices of the form
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]
with \(N|c \) and \(a, d \in H \), for \(H \) a specified subgroup of \((\mathbb{Z}/N\mathbb{Z})^\times \).

INPUT:

- level – an integer
```
• **H** – either 0, 1, or a list
  
  – If **H** is a list, return $\Gamma_H(N)$, where $H$ is the subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$ generated by the elements of the list.
  
  – If **H** = 0, returns $\Gamma_0(N)$.
  
  – If **H** = 1, returns $\Gamma_1(N)$.

**EXAMPLES:**

```python
sage: GammaH(11,0) # indirect doctest
Congruence Subgroup Gamma0(11)
sage: GammaH(11,1)
Congruence Subgroup Gamma1(11)
sage: GammaH(11,[10])
Congruence Subgroup Gamma_H(11) with **H** generated by [10]
sage: GammaH(11,[10,1])
Congruence Subgroup Gamma_H(11) with **H** generated by [10]
sage: GammaH(14,[10])
Traceback (most recent call last):
 ... ArithmeticError: The generators [10] must be units modulo 14
```

```python
sage.modular.arithgroup.congroup_gammaH.is_GammaH(x)
Return True if **x** is a congruence subgroup of type GammaH.

EXAMPLES:

```python
sage: from sage.modular.arithgroup.all import is_GammaH
sage: is_GammaH(GammaH(13, [2]))
True
sage: is_GammaH(Gamma0(6))
True
sage: is_GammaH(Gamma1(6))
True
sage: is_GammaH(sage.modular.arithgroup.congroup_generic.CongruenceSubgroup(5))
False
```

```python
sage.modular.arithgroup.congroup_gammaH.mumu(N)
Return 0 if any cube divides **N**. Otherwise return $(-2)^v$ where $v$ is the number of primes that exactly divide **N**.
This is similar to the Möbius function.

**INPUT:**

• **N** – an integer at least 1

**OUTPUT:** Integer

**EXAMPLES:**

```python
sage: from sage.modular.arithgroup.congroup_gammaH import mumu
sage: mumu(27) 0
sage: mumu(6*25) 4
sage: mumu(7*9*25)
```

(continues on next page)
-2
\texttt{sage: mumu(9*25)}
\texttt{1}
Chapter 5. Congruence subgroup $\Gamma_H(N)$
CONGRUENCE SUBGROUP $\Gamma_1(N)$

class sage.modular.arithgroup.congroup_gamma1.Gamma1_class(level)
    Bases: GammaH_class
    The congruence subgroup $\Gamma_1(N)$.

dimension_cusp_forms(k=2, eps=None, algorithm='CohenOesterle')
    Return the dimension of the space of cusp forms for self, or the dimension of the subspace corresponding to the given character if one is supplied.

    INPUT:
    - $k$ - an integer (default: 2), the weight.
    - $\text{eps}$ - either None or a Dirichlet character modulo $N$, where $N$ is the level of this group. If this is None, then the dimension of the whole space is returned; otherwise, the dimension of the subspace of forms of character $\text{eps}$.
    - $\text{algorithm}$ – either “CohenOesterle” (the default) or “Quer”. This specifies the method to use in the case of nontrivial character: either the Cohen–Oesterle formula as described in Stein's book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer). Ignored for weight 1.

    EXAMPLES:
    We compute the same dimension in two different ways

    sage: # needs sage.rings.number_field
    sage: K = CyclotomicField(3)
    sage: eps = DirichletGroup(7*43,K).0^2
    sage: G = Gamma1(7*43)
    Via Cohen–Oesterle:

    sage: G.dimension_cusp_forms(2, eps)  # needs sage.rings.number_field
    28

    Via Quer's method:

    sage: G.dimension_cusp_forms(2, eps, algorithm="Quer")  # needs sage.rings.number_field
    28

    Some more examples:
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

```python
sage: G.<eps> = DirichletGroup(9)
sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [1..10]]
[0, 0, 1, 0, 3, 0, 5, 0, 7, 0]
sage: [Gamma1(9).dimension_cusp_forms(k, eps^2) for k in [1..10]]
[0, 0, 2, 0, 4, 0, 6, 0, 8, 0]
```

In weight 1, we can sometimes rule out cusp forms existing via Riemann-Roch, but if this does not work, we trigger computation of the cusp forms space via Schaeffer’s algorithm:

```python
sage: chi = [u for u in DirichletGroup(40) if u(-1) == -1 and u(21) == 1][0]
sage: G = DirichletGroup(57); chi = (G.0) * (G.1)^6
sage: Gamma1(40).dimension_cusp_forms(1, chi)
0
sage: Gamma1(57).dimension_cusp_forms(1, chi)
1
```

`dimension_eis(k=2, eps=None, algorithm='CohenOesterle')`

Return the dimension of the space of Eisenstein series forms for self, or the dimension of the subspace corresponding to the given character if one is supplied.

**INPUT:**

- `k` - an integer (default: 2), the weight.
- `eps` - either None or a Dirichlet character modulo $N$, where $N$ is the level of this group. If this is None, then the dimension of the whole space is returned; otherwise, the dimension of the subspace of Eisenstein series of character eps.
- `algorithm` – either “CohenOesterle” (the default) or “Quer”. This specifies the method to use in the case of nontrivial character: either the Cohen–Oesterle formula as described in Stein’s book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer).

**AUTHORS:**

- William Stein - Cohen–Oesterle algorithm
- Jordi Quer - algorithm based on GammaH subgroups
- David Loeffler (2009) - code refactoring

**EXAMPLES:**

The following two computations use different algorithms:

```python
sage: [Gamma1(36).dimension_eis(1, eps) for eps in DirichletGroup(36)]
[0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
sage: [Gamma1(36).dimension_eis(1,eps,algorithm="Quer") for eps in DirichletGroup(36)]
[0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
```

So do these:

```python
sage: [Gamma1(48).dimension_eis(3, eps) for eps in DirichletGroup(48)]
[0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
sage: [Gamma1(48).dimension_eis(3,eps,algorithm="Quer") for eps in DirichletGroup(48)]
[0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
```
**dimension_modular_forms** (*k=2, eps=None, algorithm='CohenOesterle')

Return the dimension of the space of modular forms for self, or the dimension of the subspace corresponding to the given character if one is supplied.

**INPUT:**

- *k* - an integer (default: 2), the weight.
- *eps* - either None or a Dirichlet character modulo N, where N is the level of this group. If this is None, then the dimension of the whole space is returned; otherwise, the dimension of the subspace of forms of character eps.
- *algorithm* – either “CohenOesterle” (the default) or “Quer”. This specifies the method to use in the case of nontrivial character: either the Cohen–Oesterle formula as described in Stein's book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer).

**EXAMPLES:**

```sage
sage: # needs sage.rings.number_field
sage: K = CyclotomicField(3)
sage: eps = DirichletGroup(7*43,K).0^2
sage: G = Gamma1(7*43)
sage: G.dimension_modular_forms(2, eps)
32
sage: G.dimension_modular_forms(2, eps, algorithm="Quer")
32
```

**dimension_new_cusp_forms** (*k=2, eps=None, p=0, algorithm='CohenOesterle')

Dimension of the new subspace (or *p*-new subspace) of cusp forms of weight *k* and character *ε*.

**INPUT:**

- *k* - an integer (default: 2)
- *eps* - a Dirichlet character
- *p* - a prime (default: 0); just the *p*-new subspace if given
- *algorithm* - either “CohenOesterle” (the default) or “Quer”. This specifies the method to use in the case of nontrivial character: either the Cohen–Oesterle formula as described in Stein’s book, or by Möbius inversion using the subgroups GammaH (a method due to Jordi Quer).

**EXAMPLES:**

```sage
sage: G = DirichletGroup(9)
sage: eps = G.0^3
sage: eps.conductor()
3
sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]]
[0, 0, 0, 2, 0, 4, 0, 6, 0]
sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
```

Double check using modular symbols (independent calculation):

```sage
sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().
... dimension() for k in [2..10]]
```

(continues on next page)


```
[0, 0, 0, 2, 0, 2, 0, 2, 0]
sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).
 dimension() for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
```

Another example at level 33:

```
sage: G = DirichletGroup(33)
sage: eps = G.1
generator of eps
sage: eps.conductor()
11
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]]
[0, 4, 0]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]]
[0, 4, 0]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]]
[2, 0, 6]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]]
[2, 0, 6]
```

generators(algorithm='farey')

Return generators for this congruence subgroup. The result is cached.

INPUT:

- algorithm (string): either farey (default) or todd-coxeter.

If algorithm is set to "farey", then the generators will be calculated using Farey symbols, which will always return a minimal generating set. See farey_symbol for more information.

If algorithm is set to "todd-coxeter", a simpler algorithm based on Todd-Coxeter enumeration will be used. This tends to return far larger sets of generators.

EXAMPLES:

```
sage: Gamma1(3).generators()
[[1 1]
 [0 1],
[3 -2]]
sage: Gamma1(3).generators(algorithm="todd-coxeter")
[[1 1] [-2 1] [1 1] [1 -1] [1 0] [1 1] [-5 2] [1 0]
 [0 1], [-3 1], [0 1], [0 1], [3 1], [0 1], [12 -5], [-3 1],
 [1 -1] [1 -1] [4 -1] [-5 3]
 [3 -2], [3 -2], [9 -2], [-12 7]]
```

index()

Return the index of self in the full modular group. This is given by the formula

\[
N^2 \prod_{\text{p}|N} \left(1 - \frac{1}{p^2}\right).
\]
EXAMPLES:

```python
sage: Gamma1(180).index()
20736
sage: [Gamma1(n).projective_index() for n in [1..16]]
[1, 3, 4, 6, 12, 12, 24, 24, 36, 36, 60, 48, 84, 72, 96, 96]
```

`is_even()`

Return True precisely if this subgroup contains the matrix -1.

EXAMPLES:

```python
sage: Gamma1(1).is_even()
True
sage: Gamma1(2).is_even()
True
sage: Gamma1(15).is_even()
False
```

`is_subgroup(right)`

Return True if self is a subgroup of right.

EXAMPLES:

```python
sage: Gamma1(3).is_subgroup(SL2Z)
True
sage: Gamma1(3).is_subgroup(Gamma1(5))
False
sage: Gamma1(3).is_subgroup(Gamma1(6))
False
sage: Gamma1(6).is_subgroup(Gamma1(3))
True
sage: Gamma1(6).is_subgroup(Gamma0(2))
True
sage: Gamma1(80).is_subgroup(GammaH(40, []))
True
sage: Gamma1(80).is_subgroup(GammaH(40, [21]))
True
```

`ncusps()`

Return the number of cusps of this subgroup \( \Gamma_1(N) \).

EXAMPLES:

```python
sage: [Gamma1(n).ncusps() for n in [1..15]]
[1, 2, 2, 3, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 16]
sage: [Gamma1(n).ncusps() for n in prime_range(2, 100)]
[2, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96]
```

`nu2()`

Calculate the number of orbits of elliptic points of order 2 for this subgroup \( \Gamma_1(N) \). This is known to be 0 if \( N > 2 \).

EXAMPLES:
sage: Gamma1(2).nu2()
sage: 1
sage: Gamma1(457).nu2()
sage: 0
sage: [Gamma1(n).nu2() for n in [1..16]]
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

nu3()
Calculate the number of orbits of elliptic points of order 3 for this subgroup \( \Gamma_1(N) \). This is known to be 0 if \( N > 3 \).

EXAMPLES:
sage: Gamma1(2).nu3()
sage: 0
sage: Gamma1(3).nu3()
sage: 1
sage: Gamma1(457).nu3()
sage: 0
sage: [Gamma1(n).nu3() for n in [1..10]]
1, 0, 1, 0, 0, 0, 0, 0, 0, 0

sage.modular.arithgroup.congroup_gamma1.Gamma1_constructor(N)
Return the congruence subgroup \( \Gamma_1(N) \).

EXAMPLES:
sage: Gamma1(5)
Congruence Subgroup Gamma1(5)
sage: G = Gamma1(23)
sage: G is Gamma1(23)
True
sage: G is GammaH(23, [1])
True
sage: TestSuite(G).run()
sage: G is loads(dumps(G))
True

sage.modular.arithgroup.congroup_gamma1.is_Gamma1(x)
Return True if \( x \) is a congruence subgroup of type Gamma1.

EXAMPLES:
sage: from sage.modular.arithgroup.all import is_Gamma1
sage: is_Gamma1(SL2Z)
False
sage: is_Gamma1(Gamma1(13))
True
sage: is_Gamma1(Gamma0(6))
False
sage: is_Gamma1(GammaH(12, [])) # trick question!
True
sage: is_Gamma1(GammaH(12, [5]))
False
CONGRUENCE SUBGROUP $\Gamma_0(N)$

class sage.modular.arithgroup.congroup_gamma0.Gamma0_class(level)
    Bases: GammaH_class

The congruence subgroup $\Gamma_0(N)$.

coset_reps()

Return representatives for the right cosets of this congruence subgroup in $\text{SL}_2(\mathbb{Z})$ as a generator object. Use `list(self.coset_reps())` to obtain coset reps as a list.

EXAMPLES:

```python
sage: list(Gamma0(5).coset_reps())
[[1 0] [0 -1] [1 0] [0 -1] [0 -1] [0 -1]
 [0 1], [1 0], [1 1], [1 2], [1 3], [1 4]]
sage: list(Gamma0(4).coset_reps())
[[1 0] [0 -1] [1 0] [0 -1] [0 -1] [1 0]
 [0 1], [1 0], [1 1], [1 2], [1 3], [2 1]]
sage: list(Gamma0(1).coset_reps())
[[1 0]
 [0 1]]
```

dimension_new_cusp_forms($k=2, p=0$)

Return the dimension of the space of new (or $p$-new) weight $k$ cusp forms for this congruence subgroup.

INPUT:

- $k$ – an integer (default: 2), the weight. Not fully implemented for $k = 1$.
- $p$ – integer (default: 0); if nonzero, compute the $p$-new subspace.

OUTPUT: Integer

ALGORITHM:

This comes from the formula given in Theorem 1 of http://www.math.ubc.ca/~gerg/papers/downloads/DSCFN.pdf

EXAMPLES:
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

```
sage: Gamma0(11000).dimension_new_cusp_forms()
240
sage: Gamma0(11000).dimension_new_cusp_forms(k=1)
0
sage: Gamma0(22).dimension_new_cusp_forms(k=4)
3
sage: Gamma0(389).dimension_new_cusp_forms(k=2,p=17)
32
```

divisor_subgroups()

Return the subgroups of $\text{SL}_2\mathbb{Z}$ of the form $\Gamma_0(M)$ that contain this subgroup, i.e. those for $M$ a divisor of $N$.

EXAMPLES:

```
sage: Gamma0(24).divisor_subgroups()
[Modular Group $\text{SL}(2,\mathbb{Z})$,
 Congruence Subgroup $\Gamma_0(2)$,
 Congruence Subgroup $\Gamma_0(3)$,
 Congruence Subgroup $\Gamma_0(4)$,
 Congruence Subgroup $\Gamma_0(6)$,
 Congruence Subgroup $\Gamma_0(8)$,
 Congruence Subgroup $\Gamma_0(12)$,
 Congruence Subgroup $\Gamma_0(24)$]
```

gamma_h_subgroups()

Return the subgroups of the form $\Gamma_H(N)$ contained in self, where $N$ is the level of self.

EXAMPLES:

```
sage: G = Gamma0(11)
sage: G.gamma_h_subgroups()
[Congruence Subgroup $\Gamma_0(11)$,
 Congruence Subgroup $\Gamma_H(11)$ with H generated by [3],
 Congruence Subgroup $\Gamma_H(11)$ with H generated by [10],
 Congruence Subgroup $\Gamma_1(11)$]
sage: G = Gamma0(12)
sage: G.gamma_h_subgroups()
[Congruence Subgroup $\Gamma_0(12)$,
 Congruence Subgroup $\Gamma_H(12)$ with H generated by [7],
 Congruence Subgroup $\Gamma_H(12)$ with H generated by [11],
 Congruence Subgroup $\Gamma_H(12)$ with H generated by [5],
 Congruence Subgroup $\Gamma_1(12)$]
```

generators(algorithm='farey')

Return generators for this congruence subgroup.

INPUT:

- algorithm (string): either "farey" (default) or "todd-coxeter".

If algorithm is set to "farey", then the generators will be calculated using Farey symbols, which will always return a minimal generating set. See farey_symbol for more information.

If algorithm is set to "todd-coxeter", a simpler algorithm based on Todd-Coxeter enumeration will be used. This tends to return far larger sets of generators.
EXAMPLES:

```python
sage: Gamma0(3).generators()
[[(1 1) [-1 1], [0 1), [-3 2]],
sage: Gamma0(3).generators(algorithm="todd-coxeter")
[[(1 1) [-1 0], [1 -1] [1 0], [1 0], [0 1), [0 -1], [0 1], [3 1], [0 1], [3 -1], [-3 1]],
```

```python
sage: SL2Z.gens()
()
```

**index()**

Return the index of self in the full modular group.

This is given by

\[
N \prod_{p \mid N} \left( 1 + \frac{1}{p} \right).
\]

EXAMPLES:

```python
sage: [Gamma0(n).index() for n in [1..19]]
[1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20]
sage: Gamma0(32041).index()
32220
```

**is_even()**

Return True precisely if this subgroup contains the matrix -1.

Since \( \Gamma_0(N) \) always contains the matrix -1, this always returns True.

EXAMPLES:

```python
sage: Gamma0(12).is_even()
True
sage: SL2Z.is_even()
True
```

**is_subgroup(right)**

Return True if self is a subgroup of right.

EXAMPLES:

```python
sage: G = Gamma0(20)
sage: G.is_subgroup(SL2Z)
True
sage: G.is_subgroup(Gamma0(4))
True
```

(continues on next page)
sage: G.is_subgroup(Gamma0(20))
True
sage: G.is_subgroup(Gamma0(7))
False
sage: G.is_subgroup(Gamma1(20))
False
sage: G.is_subgroup(GammaH(40, []))
False
sage: Gamma0(80).is_subgroup(GammaH(40, [31, 21, 17]))
True
sage: Gamma0(2).is_subgroup(Gamma1(2))
True

ncusps()

Return the number of cusps of this subgroup $\Gamma_0(N)$.

EXAMPLES:

```
sage: [Gamma0(n).ncusps() for n in [1..19]]
[1, 2, 2, 3, 2, 4, 2, 4, 4, 2, 6, 2, 4, 4, 6, 2, 8, 2]
sage: [Gamma0(n).ncusps() for n in prime_range(2,100)]
[2, 2]
```

nu2()

Return the number of elliptic points of order 2 for this congruence subgroup $\Gamma_0(N)$.

The number of these is given by a standard formula: 0 if $N$ is divisible by 4 or any prime congruent to -1 mod 4, and otherwise $2^d$ where $d$ is the number of odd primes dividing $N$.

EXAMPLES:

```
sage: Gamma0(2).nu2()
1
sage: Gamma0(4).nu2()
0
sage: Gamma0(21).nu2()
0
sage: Gamma0(1105).nu2()
8
sage: [Gamma0(n).nu2() for n in [1..19]]
[1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0]
```

nu3()

Return the number of elliptic points of order 3 for this congruence subgroup $\Gamma_0(N)$. The number of these is given by a standard formula: 0 if $N$ is divisible by 9 or any prime congruent to -1 mod 3, and otherwise $2^d$ where $d$ is the number of primes other than 3 dividing $N$.

EXAMPLES:

```
sage: Gamma0(2).nu3()
0
sage: Gamma0(3).nu3()
1
sage: Gamma0(9).nu3()
```
sage.modular.arithgroup.congroup_gamma0.Gamma0_constructor(N)

Return the congruence subgroup Gamma0(N).

EXAMPLES:

```
sage: G = Gamma0(51) ; G # indirect doctest
Congruence Subgroup Gamma0(51)
sage: G == Gamma0(51)
True
sage: G is Gamma0(51)
True
```

sage.modular.arithgroup.congroup_gamma0.is_Gamma0(x)

Return True if x is a congruence subgroup of type Gamma0.

EXAMPLES:

```
sage: from sage.modular.arithgroup.all import is_Gamma0
sage: is_Gamma0(SL2Z)
True
sage: is_Gamma0(Gamma0(13))
True
sage: is_Gamma0(Gamma1(6))
False
```
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

Chapter 7. Congruence subgroup $\Gamma_0(N)$
CONGRUENCE SUBGROUP \( \Gamma(N) \)

class `sage.modular.arithmetic.congroup_gamma.Gamma_class(*args, **kwds)`

Bases: `CongruenceSubgroup`

The principal congruence subgroup \( \Gamma(N) \).

`are_equivalent(x, y, trans=False)`

Check if the cusps \( x \) and \( y \) are equivalent under the action of this group.

ALGORITHM: The cusps \( u_1/v_1 \) and \( u_2/v_2 \) are equivalent modulo \( \Gamma(N) \) if and only if \( (u_1, v_1) = \pm (u_2, v_2) \mod N \).

EXAMPLES:

```python
sage: Gamma(7).are_equivalent(Cusp(2/3), Cusp(5/4))
True
```

`image_mod_n()`

Return the image of this group modulo \( N \), as a subgroup of \( SL(2, \mathbb{Z}/N\mathbb{Z}) \). This is just the trivial subgroup.

EXAMPLES:

```python
sage: Gamma(3).image_mod_n()
Matrix group over Ring of integers modulo 3 with 1 generators ((1 0) (0 1))
```

`index()`

Return the index of self in the full modular group. This is given by

\[
\prod_{p \mid N} (p^{3e} - p^{3e-2}).
\]

EXAMPLES:

```python
sage: [Gamma(n).index() for n in [1..19]]
[1, 6, 24, 48, 120, 144, 336, 384, 648, 720, 1320, 1152, 2184, 2016, 2880, 3072, 4896, 3888, 6840]
sage: Gamma(32041).index()
32893086819240
```
ncusps()  
Return the number of cusps of this subgroup $\Gamma(N)$.

EXAMPLES:

```python
sage: [Gamma(n).ncusps() for n in [1..19]]
[1, 3, 4, 6, 12, 12, 24, 24, 36, 36, 60, 48, 84, 72, 96, 96, 144, 108, 180]
sage: Gamma(30030).ncusps()
278691840
sage: Gamma(2^30).ncusps()
432345564227567616
```

nirregcusps()  
Return the number of irregular cusps of self. For principal congruence subgroups this is always 0.

EXAMPLES:

```python
sage: Gamma(17).nirregcusps()
0
```

nu3()  
Return the number of elliptic points of order 3 for this arithmetic subgroup. Since this subgroup is $\Gamma(N)$ for $N \geq 2$, there are no such points, so we return 0.

EXAMPLES:

```python
sage: Gamma(89).nu3()
0
```

reduce_cusp($c$)  
Calculate the unique reduced representative of the equivalence of the cusp $c$ modulo this group. The reduced representative of an equivalence class is the unique cusp in the class of the form $u/v$ with $u, v \geq 0$ coprime, $v$ minimal, and $u$ minimal for that $v$.

EXAMPLES:

```python
sage: Gamma(5).reduce_cusp(1/5)
Infinity
sage: Gamma(5).reduce_cusp(7/8)
3/2
sage: Gamma(6).reduce_cusp(4/3)
2/3
```

sage.modular.arithgroup.congroup_gamma.Gamma_constructor($N$)  
Return the congruence subgroup $\Gamma(N)$.

EXAMPLES:

```python
sage: Gamma(5) # indirect doctest
Congruence Subgroup Gamma(5)
sage: G = Gamma(23)
sage: G is Gamma(23)
True
sage: TestSuite(G).run()
```

Test global uniqueness:
sage: G = Gamma(17)
sage: G is loads(dumps(G))
True
sage: G2 = sage.modular.arithgroup.congroup_gamma.Gamma_class(17)
sage: G == G2
True
sage: G is G2
False

sage.modular.arithgroup.congroup_gamma.is_Gamma(x)
    Return True if x is a congruence subgroup of type Gamma.

    EXAMPLES:

    sage: from sage.modular.arithgroup.all import is_Gamma
    sage: is_Gamma(Gamma0(13))
    False
    sage: is_Gamma(Gamma(4))
    True
THE MODULAR GROUP $\text{SL}_2(\mathbb{Z})$

AUTHORS:

- Niles Johnson (2010-08): [github issue #3893](https://github.com/sagemath/sage/issues/3893): `random_element()` should pass on `*args` and `**kwds`.

```python
class sage.modular.arithgroup.congroup_sl2z.SL2Z_class
 Bases: Gamma0_class

 The full modular group $\text{SL}_2(\mathbb{Z})$, regarded as a congruence subgroup of itself.

 is_subgroup(right)
 Return True if self is a subgroup of right.

 EXAMPLES:

 sage: SL2Z.is_subgroup(SL2Z)
 True
 sage: SL2Z.is_subgroup(Gamma1(1))
 True
 sage: SL2Z.is_subgroup(Gamma0(6))
 False
```

```python
random_element(bound=100, *args, **kwds)
 Return a random element of $\text{SL}_2(\mathbb{Z})$ with entries whose absolute value is strictly less than bound (default 100). Additional arguments and keywords are passed to the random_element method of ZZ.

 (Algorithm: Generate a random pair of integers at most bound. If they are not coprime, throw them away and start again. If they are, find an element of $\text{SL}_2(\mathbb{Z})$ whose bottom row is that, and left-multiply it by $\begin{pmatrix} 1 & w \\ 0 & 1 \end{pmatrix}$ for an integer w randomly chosen from a small enough range that the answer still has entries at most bound.)

 It is, unfortunately, not true that all elements of SL2Z with entries $<\text{bound}$ appear with equal probability; those with larger bottom rows are favoured, because there are fewer valid possibilities for w.

 EXAMPLES:

 sage: s = SL2Z.random_element()
 sage: s.parent() is SL2Z
 True
 sage: all(a in range(-99, 100) for a in list(s))
 True
 sage: S = set()
 sage: while len(S) < 180:
 : s = SL2Z.random_element(5)
 : S.add(s)
```

(continues on next page)
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

(continued from previous page)

```python
....: assert all(a in range(-4, 5) for a in list(s))
....: assert s.parent() is SL2Z
....: assert s in SL2Z
....: S.add(s)
```

Passes extra positional or keyword arguments through:

```python
sage: SL2Z.random_element(5, distribution='1/n').parent() is SL2Z
True
```

**reduce_cusp(c)**

Return the unique reduced cusp equivalent to $c$ under the action of $\text{self}$. Always returns Infinity, since there is only one equivalence class of cusps for $\text{SL}_2(\mathbb{Z})$.

**EXAMPLES:**

```python
sage: SL2Z.reduce_cusp(Cusps(-1/4))
Infinity
```

**sage.modular.arithgroup.congroup_sl2z.is_SL2Z(x)**

Return True if $x$ is the modular group $\text{SL}_2(\mathbb{Z})$.

**EXAMPLES:**

```python
sage: from sage.modular.arithgroup.all import is_SL2Z
sage: is_SL2Z(SL2Z)
True
sage: is_SL2Z(Gamma0(6))
False
```
FAREY SYMBOL FOR ARITHMETIC SUBGROUPS OF $\text{PSL}_2(\mathbb{Z})$

AUTHORS:

- Hartmut Monien (08 - 2011)

based on the K\textit{Farey} package by Chris Kurth. Implemented as C++ module for speed.

\texttt{class sage.modular.arithgroup.farey_symbol.Farey}

Bases: object

A class for calculating Farey symbols of arithmetics subgroups of $\text{PSL}_2(\mathbb{Z})$.

The arithmetic subgroup can be either any of the congruence subgroups implemented in Sage, i.e. Gamma, Gamma0, Gamma1 and GammaH or a subgroup of $\text{PSL}_2(\mathbb{Z})$ which is given by a user written helper class defining membership in that group.

REFERENCES:


INPUT:

- $G$ - an arithmetic subgroup of $\text{PSL}_2(\mathbb{Z})$

EXAMPLES:

Create a Farey symbol for the group $\Gamma_0(11)$:

\begin{verbatim}
sage: f = FareySymbol(Gamma0(11)); f
FareySymbol(Congruence Subgroup Gamma0(11))
\end{verbatim}

Calculate the generators:

\begin{verbatim}
sage: f.generators()
[ [1 1] [7 -2] [8 -3] [-1 0],
[0 1], [11 -3], [11 -4], [0 -1] ]
\end{verbatim}

Pickling the FareySymbol and recovering it:

\begin{verbatim}
sage: f == loads(dumps(f))
True
\end{verbatim}

Calculate the index of $\Gamma_H(33, [2, 5])$ in $\text{PSL}_2(\mathbb{Z})$ via FareySymbol:
Calculate the generators of $\Gamma_1(4)$:

```
sage: FareySymbol(Gamma1(4)).generators()
[[1 0], [-3 1], [0 1], [-4 1]]
```

Calculate the generators of the example of an index 10 arithmetic subgroup given by Tim Hsu:

```
sage: from sage.modular.arithgroup.arithgroup_perm import HsuExample10
sage: FareySymbol(HsuExample10()).generators()
[[1 2], [-2 1], [4 -3], [0 1], [-7 3], [3 -2]]
```

Calculate the generators of the group $\Gamma' = \Gamma_0(8) \cap \Gamma_1(4)$ using a helper class to define group membership:

```
sage: class GPrime:
 : def __contains__(self, M):
 : return M in Gamma0(8) and M in Gamma1(4)
sage: FareySymbol(GPrime()).generators()
[[1 0], [5 -1], [5 -2], [0 1], [16 -3], [8 -3]]
```

Calculate cusps of arithmetic subgroup defined via permutation group:

```
sage: L = SymmetricGroup(4)("(1, 2, 3)"
```

```
sage: R = SymmetricGroup(4)("(1, 2, 4)"
```

```
sage: FareySymbol(ArithmeticSubgroup_Permutation(L, R)).cusps()
[-1, Infinity]
```

Calculate the left coset representation of $\Gamma_H(8, [3])$:

```
sage: FareySymbol(GammaH(8, [3])).coset_reps()
```

```
[[1 0], [4 -1], [3 -1], [2 -1], [1 0], [1 0], [3 -1], [3 -1], [2 -1], [-1 0], [0 1], [1 0], [1 0], [1 0], [4 -1], [3 -1], [3 -1], [1 -1], [-1 0], [0 1], [-1 0], [2 -1], [2 -1], [1 -1], [1 -1]]
```

```
coset_reps()
 Left coset of the arithmetic group of the FareySymbol.
```

EXAMPLES:
Calculate the left coset of $\Gamma_0(6)$:

```
sage: FareySymbol(Gamma0(6)).coset_reps()
[[1 0], [3 -1], [2 -1], [1 -1], [2 -1], [3 -2], [1 -1], [-1 0],
 [0 1], [1 0], [1 0], [1 0], [3 -1], [2 -1], [2 -1], [2 -1],
 [1 -1], [0 -1], [-1 0], [-2 1], [3 -2], [1 -1], [1 -1], [1 -1]]
```

cusp_class($c$)
Cusp class of a cusp in the FareySymbol.

**INPUT:**

- $c$ – a cusp

**EXAMPLES:**

```
sage: FareySymbol(Gamma0(12)).cusp_class(Cusp(1, 12))
5
```

cusp_widths()
Cusps widths of the FareySymbol.

**EXAMPLES:**

```
sage: FareySymbol(Gamma0(6)).cusp_widths()
[6, 2, 3, 1]
```

cusps()
Cusps of the FareySymbol.

**EXAMPLES:**

```
sage: FareySymbol(Gamma0(6)).cusps()
[0, 1/3, 1/2, Infinity]
```

fractions()
Fractions of the FareySymbol.

**EXAMPLES:**

```
sage: FareySymbol(Gamma(4)).fractions()
[0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4]
```

fundamental_domain($alpha=1$, $fill=True$, $thickness=1$, $color='lightgray'$, $color_even='white'$, $zorder=2$, $linestyle='solid'$, $show_pairing=True$, $tesselation='Dedekind'$, $ymax=1$, **options)
Plot a fundamental domain of an arithmetic subgroup of $\text{PSL}_2(\mathbb{Z})$ corresponding to the Farey symbol.

**OPTIONS:**

- `fill` – boolean (default `True`) fill the fundamental domain
- `linestyle` – string (default: `solid`) The style of the line, which is one of `dashed`, `dotted`, `solid`, `dashdot`, or `-`, `:`, `--`, ``, ``, ``, respectively
- `color` – (default: `lightgray`) fill color; fill color for odd part of Dedekind tesselation.
• `show_pairing` – boolean (default: True) flag for pairing
• `tessellation` – (default: ‘Dedekind’) The type of hyperbolic tessellation which is one of ‘coset’, ‘Dedekind’ or `None` respectively
• `color_even` – fill color for even parts of Dedekind tessellation (default ‘white’); ignored for other tessellations
• `thickness` – float (default: 1) the thickness of the line
• `ymax` – float (default: 1) maximal height

EXAMPLES:

For example, to plot the fundamental domain of \( \Gamma_0(11) \) with pairings use the following command:

```
sage: FareySymbol(Gamma0(11)).fundamental_domain() # needs sage.plot sage.symbolic
```

indicating that side 1 is paired with side 3 and side 2 is paired with side 4, see also `paired_sides()`.

To plot the fundamental domain of \( \Gamma(3) \) without pairings use the following command:

```
sage: FareySymbol(Gamma(3)).fundamental_domain(show_pairing=False) # needs sage.plot sage.symbolic
```

Plot the fundamental domain of \( \Gamma_0(23) \) showing the left coset representatives:

```
sage: FareySymbol(Gamma0(23)).fundamental_domain(tesselation='coset') # needs sage.plot sage.symbolic
```

The same as above but with a custom linestyle:

```
sage: FareySymbol(Gamma0(23)).fundamental_domain(tesselation='coset', linestyle=':', thickness='2')
```

**generators()**

Minimal set of generators of the group of the FareySymbol.

EXAMPLES:

Calculate the generators of \( \Gamma_0(6) \):

```
sage: FareySymbol(Gamma0(6)).generators()
```

Calculate the generators of \( \text{SL}_2(\mathbb{Z}) \):
sage: FareySymbol(SL2Z).generators()
[[0 -1] [0 -1], [1 0], [1 -1]]

The unique index 2 even subgroup and index 4 odd subgroup each get handled correctly:

sage: # needs sage.groups
sage: FareySymbol(ArithmeticSubgroup_Permutation(S2="(1,2)", S3="()")).generators()
[[0 1] [-1 1], [-1 -1], [-1 0]]
sage: FareySymbol(ArithmeticSubgroup_Permutation(S2="(1,2, 3, 4)", S3="(1,3)(2, 4)")].generators()
[[0 1] [-1 1], [-1 -1], [-1 0]]

genus()
Return the genus of the arithmetic group of the FareySymbol.

EXAMPLES:

sage: [FareySymbol(Gamma0(n)).genus() for n in range(16, 32)]
[0, 1, 0, 1, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 3, 2]

index()
Return the index of the arithmetic group of the FareySymbol in $\text{PSL}_2(\mathbb{Z})$.

EXAMPLES:

sage: [FareySymbol(Gamma0(n)).index() for n in range(1, 16)]
[1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24]

level()
Return the level of the arithmetic group of the FareySymbol.

EXAMPLES:

sage: [FareySymbol(Gamma0(n)).level() for n in range(1, 16)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

nu2()
Return the number of elliptic points of order two.

EXAMPLES:

sage: [FareySymbol(Gamma0(n)).nu2() for n in range(1, 16)]
[1, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0]
nu3()

Return the number of elliptic points of order three.

EXAMPLES:

```python
sage: [FareySymbol(Gamma0(n)).nu3() for n in range(1, 16)]
[1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0]
```

paired_sides()

Pairs of index of the sides of the fundamental domain of the Farey symbol of the arithmetic group. The sides of the hyperbolic polygon are numbered 0, 1, ... from left to right.

```python
sage: FareySymbol(Gamma0(11)).paired_sides()
[(0, 5), (1, 3), (2, 4)]
```

indicating that the side 0 is paired with 5, 1 with 3 and 2 with 4.

pairing_matrices()

Pairing matrices of the sides of the fundamental domain. The sides of the hyperbolic polygon are numbered 0, 1, ... from left to right.

EXAMPLES:

```python
sage: FareySymbol(Gamma0(6)).pairing_matrices()

[[1 1]
 [5 -1]
 [7 -3]
 [5 -3]
 [1 -1]
 [-1 1]
 [0 1]
 [6 -1]
 [12 -5]
 [12 -7]
 [6 -5]
 [0 -1]]
```

pairing_matrices_to_tietze_index()

Obtain the translation table from pairing matrices to generators.

The result is cached.

OUTPUT:
a list where the $i$-th entry is a nonzero integer $k$, such that if $k > 0$ then the $i$-th pairing matrix is (up to sign) the $(k-1)$-th generator and, if $k < 0$, then the $i$-th pairing matrix is (up to sign) the inverse of the $(-k-1)$-th generator.

EXAMPLES:

```sage
F = Gamma0(40).farey_symbol()
sage: table = F.pairing_matrices_to_tietze_index()
sage: table[12]
(-2, -1)
sage: F.pairing_matrices()[12]
[3 -1]
[40 -13]
sage: F.generators()[1]**-1
[-3 1]
[-40 13]
```

pairings()

Pairings of the sides of the fundamental domain of the Farey symbol of the arithmetic group.

The sides of the hyperbolic polygon are numbered 0, 1, ... from left to right. Conventions: even pairings are denoted by -2, odd pairings by -3 while free pairings are denoted by an integer number greater than zero.

EXAMPLES:

Odd pairings:

```sage
FareySymbol(Gamma0(7)).pairings()
[1, -3, -3, 1]
```

Even and odd pairings:

```sage
FareySymbol(Gamma0(13)).pairings()
[1, -3, -2, -2, -3, 1]
```

Only free pairings:

```sage
FareySymbol(Gamma0(23)).pairings()
[1, 2, 3, 5, 3, 4, 2, 4, 5, 1]
```

reduce_to_cusp(r)

Transformation of a rational number to cusp representative.

INPUT:

r – a rational number

EXAMPLES:

```sage
FareySymbol(Gamma0(12)).reduce_to_cusp(5/8)
[5 -3]
[12 -7]
```

Reduce 11/17 to a cusp of for HsuExample10():
word_problem(M, output='standard', check=True)

Solve the word problem (up to sign) using this Farey symbol.

INPUT:

• M – An element M of SL₂(Z).
• output – (default: 'standard') Should be one of 'standard', 'syllables', 'gens'.
• check – (default: True) Whether to check for correct input and output.

OUTPUT:

A solution to the word problem for the matrix M. The format depends on the output parameter, as follows.

• standard returns the so called the Tietze representation, consists of a tuple of nonzero integers i, where if i > 0 then it indicates the ithgenerator(self.generators()[0]) would correspond to i = 1, and if i < 0 then it indicates the inverse of the i-th generator.
• syllables returns a tuple of tuples of the form (i, n), where (i, n) represents self.generators()[i] ^ n, whose product equals M up to sign.
• gens returns tuple of tuples of the form (g, n), (g, n) such that the product of the matrices g^n equals M up to sign.

EXAMPLES:

sage: F = Gamma0(30).farey_symbol()
sage: gens = F.generators()
sage: g
[-628597  73008]
[-692130  80387]
sage: F.word_problem(g)
(4, 11, -9, 6)
sage: g
[-5048053 586303]
[-5558280 645563]
sage: F.word_problem(g, output = 'gens')
((
[109  -10]
[120  -11], 1
),
(
[ 19   -7]
[ 30  -11], 2

(continues on next page)
(continued from previous page)

sage: F.word_problem(g, output = 'syllables')
((3, 1), (10, 2), (8, -1), (5, 1))
Chapter 10. Farey symbol for arithmetic subgroups of \( \text{PSL}_2(\mathbb{Z}) \)
CHAPTER
ELEVEN

HELPER FUNCTIONS FOR CONGRUENCE SUBGROUPS

This file contains optimized Cython implementations of a few functions related to the standard congruence subgroups $\Gamma_0, \Gamma_1, \Gamma_H$. These functions are for internal use by routines elsewhere in the Sage library.

\begin{verbatim}
sage.modular.arithgroup.congroup.degeneracy_coset_representatives_gamma0(N, M, t)

Let $N$ be a positive integer and $M$ a divisor of $N$. Let $t$ be a divisor of $N/M$, and let $T$ be the $2 \times 2$ matrix $(1, 0; 0, t)$. This function returns representatives for the orbit set $\Gamma_0(N) \backslash T \Gamma_0(M)$, where $\Gamma_0(N)$ acts on the left on $T \Gamma_0(M)$.

INPUT:
• $N$ – int
• $M$ – int (divisor of $N$)
• $t$ – int (divisor of $N/M$

OUTPUT:
list – list of lists $[a, b, c, d]$, where $[a, b, c, d]$ should be viewed as a 2x2 matrix.

This function is used for computation of degeneracy maps between spaces of modular symbols, hence its name.

We use that $T^{-1} \cdot (a, b; c, d) \cdot T = (a, bt; c/t, d)$, that the group $T^{-1} \Gamma_0(N)T$ is contained in $\Gamma_0(M)$, and that $\Gamma_0(N)T$ is contained in $T \Gamma_0(M)$.

ALGORITHM:
1. Compute representatives for $\Gamma_0(N/t, t)$ inside of $\Gamma_0(M)$:

   • COSET EQUIVALENCE: Two right cosets represented by $[a, b; c, d]$ and $[a', b'; c', d']$ of $\Gamma_0(N/t, t)$ in $\text{SL}_2(\mathbb{Z})$ are equivalent if and only if $(a, b) = (a', b')$ as points of $\mathbb{P}^1(\mathbb{Z}/t\mathbb{Z})$, i.e., $ab' \equiv ba'$ (mod $t$), and $(c, d) = (c', d')$ as points of $\mathbb{P}^1(\mathbb{Z}/(N/t)\mathbb{Z})$.

   • ALGORITHM to list all cosets:
     a) Compute the number of cosets.
     b) Compute a random element $x$ of $\Gamma_0(M)$.
     c) Check if $x$ is equivalent to anything generated so far; if not, add $x$ to the list.
     d) Continue until the list is as long as the bound computed in step (a).

2. There is a bijection between $\Gamma_0(N) \backslash T \Gamma_0(M)$ and $\Gamma_0(N/t, t) \backslash \Gamma_0(M)$ given by $Tr \leftrightarrow r$. Consequently we obtain coset representatives for $\Gamma_0(N) \backslash T \Gamma_0(M)$ by left multiplying by $T$ each coset representative of $\Gamma_0(N/t, t) \backslash \Gamma_0(M)$ found in step 1.

EXAMPLES:
\end{verbatim}
sage: from sage.modular.arithgroup.all import degeneracy_coset_representatives_
˓→gamma0
sage: len(degeneracy_coset_representatives_gamma0(13, 1, 1))
14
sage: len(degeneracy_coset_representatives_gamma0(13, 13, 1))
1
sage: len(degeneracy_coset_representatives_gamma0(13, 1, 13))
14

sage.modular.arithgroup.congroup.degeneracy_coset_representatives_gamma1\(N,M,t\)

Let \(N\) be a positive integer and \(M\) a divisor of \(N\). Let \(t\) be a divisor of \(N/M\), and let \(T\) be the \(2 \times 2\) matrix \((1, 0; 0, t)\). This function returns representatives for the orbit set \(\Gamma_1(N) \setminus T\Gamma_1(M)\), where \(\Gamma_1(N)\) acts on the left on \(T\Gamma_1(M)\).

INPUT:

• \(N\) – int
• \(M\) – int (divisor of \(N\))
• \(t\) – int (divisor of \(N/M\))

OUTPUT:

list – list of lists \([a, b, c, d]\), where \([a, b, c, d]\) should be viewed as a \(2\times2\) matrix.

This function is used for computation of degeneracy maps between spaces of modular symbols, hence its name.

ALGORITHM:

Everything is the same as for \(degeneracy\_coset\_representatives\_gamma0()\), except for coset equivalence. Here \(\Gamma_1(N/t, t)\) consists of matrices that are of the form \((1, *, 0, 1)\) mod \(N/t\) and \((1, 0; *, 1)\) mod \(t\).

COSET EQUIVALENCE: Two right cosets represented by \([a, b; c, d]\) and \([a', b'; c', d']\) of \(\Gamma_1(N/t, t)\) in \(SL_2(\mathbb{Z})\) are equivalent if and only if

\[
a \equiv a' \pmod{t}, b \equiv b' \pmod{t}, c \equiv c' \pmod{N/t}, d \equiv d' \pmod{N/t}.
\]

EXAMPLES:

sage: from sage.modular.arithgroup.all import degeneracy_coset_representatives_
˓→gamma1
sage: len(degeneracy_coset_representatives_gamma1(13, 1, 1))
168
sage: len(degeneracy_coset_representatives_gamma1(13, 13, 1))
1
sage: len(degeneracy_coset_representatives_gamma1(13, 1, 13))
168

sage.modular.arithgroup.congroup.generators_helper\(coset\_reps, level\)

Helper function for generators of Gamma0, Gamma1 and GammaH.

These are computed using coset representatives, via an “inverse Todd-Coxeter” algorithm, and generators for \(SL_2(\mathbb{Z})\).

ALGORITHM: Given coset representatives for a finite index subgroup \(G\) of \(SL_2(\mathbb{Z})\) we compute generators for \(G\) as follows. Let \(R\) be a set of coset representatives for \(G\). Let \(S, T \in SL_2(\mathbb{Z})\) be defined by \((0, -1; 1, 0)\) and \((1, 1, 0, 1)\), respectively. Define maps \(s, t : R \rightarrow G\) as follows. If \(r \in R\), then there exists a unique \(r' \in R\) such that \(GrS = Gr'\). Let \(s(r) = rSr'^{-1}\). Likewise, there is a unique \(r'\) such that \(GrT = Gr'\) and we let \(t(r) = rTr'^{-1}\). Note that \(s(r)\) and \(t(r)\) are in \(G\) for all \(r\). Then \(G\) is generated by \(s(R) \cup t(R)\).
There are more sophisticated algorithms using group actions on trees (and Farey symbols) that give smaller generating sets – this code is now deprecated in favour of the newer implementation based on Farey symbols.

EXAMPLES:

```
sage: Gamma0(7).generators(algorithm="todd-coxeter") # indirect doctest
[
[1 1] [-1 0] [1 -1] [1 0] [1 1] [-3 -1] [-2 -1] [-5 -1]
[0 1], [0 -1], [0 1], [7 1], [0 1], [7 2], [7 3], [21 4],

[-4 -1] [-1 0] [1 0]
[21 5], [7 -1], [-7 1]
]```
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.modular.arithgroup.arithgroup_element, 39
sage.modular.arithgroup.arithgroup_generic, 3
sage.modular.arithgroup.arithgroup_perm, 17
sage.modular.arithgroup.congroup, 87
sage.modular.arithgroup.congroup_gamma, 71
sage.modular.arithgroup.congroup_gamma0, 65
sage.modular.arithgroup.congroup_gamma1, 59
sage.modular.arithgroup.congroup_gammaH, 49
sage.modular.arithgroup.congroup_generic, 43
sage.modular.arithgroup.congroup_sl2z, 75
sage.modular.arithgroup.farey_symbol, 77
INDEX

A

a() (sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement method), 39

acton() (sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement method), 39

are_equivalent() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 3

are_equivalent() (sage.modular.arithgroup.congroup_gamma.Gamma_class method), 71

ArithmeticSubgroup (class in sage.modular.arithgroup.arithgroup_generic), 3

ArithmeticSubgroup_Permutation() (in module sage.modular.arithgroup.arithgroup_perm), 18

ArithmeticSubgroup_Permutation_class (class in sage.modular.arithgroup.arithgroup_perm), 19

ArithmeticSubgroupElement (class in sage.modular.arithgroup.arithgroup_element), 39

as_permutation_group() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 3

atkin_lehner_matrix() (sage.modular.arithgroup.congroup_gammaH.GammaH_class method), 49

B

b() (sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement method), 40

C

c() (sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement method), 40

characters_mod_H() (sage.modular.arithgroup.congroup_gammaH.GammaH_class method), 49

congruence_closure() (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method), 20

CongruenceSubgroup (class in sage.modular.arithgroup.congroup_generic), 43

CongruenceSubgroup_constructor() (in module sage.modular.arithgroup.congroup_generic), 45

CongruenceSubgroupBase (class in sage.modular.arithgroup.congroup_generic), 44

CongruenceSubgroupFromGroup (class in sage.modular.arithgroup.congroup_generic), 44

coset_graph() (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method), 21

coset_reps() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 4

coset_reps() (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation method), 27

coset_reps() (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method), 65

coset_reps() (sage.modular.arithgroup.congroup_gammaH.GammaH_class method), 50

coset_reps() (sage.modular.arithgroup.farey_symbol.Farey method), 78

cusp_class() (sage.modular.arithgroup.farey_symbol.Farey method), 79

cusp_data() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 4

cusp_width() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 4

cusp_widths() (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation method), 28

cusp_widths() (sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation method), 34

cusp_widths() (sage.modular.arithgroup.farey_symbol.Farey method), 34

cusps() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 49

cusps() (sage.modular.arithgroup.farey_symbol.Farey method), 79

D

d() (sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement method), 40

degeneracy_cosem_repsgamma0() (in
Arithmetic Subgroups of \(\text{SL}_2(\mathbb{Z}) \), Release 10.2

generators() (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method), 52
generators() (sage.modular.arithgroup.farey_symbol.Farey method), 80
generators_helper() (in module sage.modular.arithgroup.congroup), 88
gens() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 7
genus() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 7
genus() (sage.modular.arithgroup.farey_symbol.Farey method), 81

H
HsuExample10() (in module sage.modular.arithgroup.arithgroup_perm), 33
HsuExample18() (in module sage.modular.arithgroup.arithgroup_perm), 33

I
image_mod_n() (sage.modular.arithgroup.congroup_gamma.Gamma_class method), 71
image_mod_n() (sage.modular.arithgroup.congroup_gamma.H.GammaH_class method), 52
image_mod_n() (sage.modular.arithgroup.congroup_generic.CongruenceSubgroup method), 43
image_mod_n() (sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup method), 44
index() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 8
index() (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method), 22
index() (sage.modular.arithgroup.congroup_gamma.Gamma_class method), 71
index() (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method), 67
index() (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method), 62
index() (sage.modular.arithgroup.congroup_gammaH.GammaH_class method), 52
index() (sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup method), 45
index() (sage.modular.arithgroup.farey_symbol.Farey method), 81
is_abelian() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 8
is_ArithmeticSubgroup() (in module sage.modular.arithgroup.arithgroup_generic), 15
is_CongruenceSubgroup() (in module sage.modular.arithgroup.congroup_generic), 44
is_even() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 9
is_even() (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup method), 28
is_even() (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method), 67
is_even() (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method), 63
is_even() (sage.modular.arithgroup.congroup_gammaH.GammaH_class method), 53
is_finite() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 9
is_Gamma() (in module sage.modular.arithgroup.congroup_gamma), 73
is_Gamma0() (in module sage.modular.arithgroup.congroup_gamma0), 69
is_Gamma1() (in module sage.modular.arithgroup.congroup_gamma1), 64
is_GammaH() (in module sage.modular.arithgroup.congroup_gammaH), 56
is_even() (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method), 28
is_odd() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 9
is_odd() (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup method), 24
is_odd() (sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup method), 10
is_odd() (sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup method), 28
is_parent_of() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 34
is_regular_cusp() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 10
is_SL2Z() (in module sage.modular.arithgroup.congroup_sl2z), 76
is_subgroup() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 10
is_subgroup() (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method), 63
is_congruence() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 8
is_congruence() (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method), 22

Index
Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$, Release 10.2

is_subgroup() (sage.modular.arithgroup.congroup_gamma.Gamma_class method), 53

is_subgroup() (sage.modular.arithgroup.congroup_sl2z.SL2Z_class method), 75

ncusps() (sage.modular.arithgroup.congroup_gamma.Gamma_class method), 71

cusps() (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method), 68

cusps() (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method), 63

cusps() (sage.modular.arithgroup.congroup_gammaH.GammaH_class method), 53

ngens() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 11

nu-reg cusps() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method), 11

nu-reg cusps() (sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation method), 11

nu-reg cusps() (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation method), 29

nu-reg cusps() (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method), 68

nu-reg cusps() (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method), 63

nu-reg cusps() (sage.modular.arithgroup.congroup_gammaH.GammaH_class method), 54

nu-reg cusps() (sage.modular.arithgroup.farey_symbol.Farey method), 81

nu-reg cusps() (sage.modular.arithgroup.farey_symbol.Farey method), 35

nu-reg cusps() (sage.modular.arithgroup.farey_vector.Farey method), 43

nu-reg cusps() (sage.modular.arithgroup.farey_vector.Farey method), 29

nu-reg cusps() (sage.modular.arithgroup.farey_vector.Farey method), 22

nu-reg cusps() (sage.modular.arithgroup.farey_vector.Farey method), 22
todd_coxeter_s2_s3()
(sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation
method), 33

W

word_of_perms() (in module
sage.modular.arithgroup.arithgroup_perm), 37

word_problem() (sage.modular.arithgroup.farey_symbol.Farey
method), 84