Calculus is done using symbolic expressions which consist of symbols and numeric objects linked by operators (functions).

Note: While polynomial manipulation can be done with expressions, it is more efficient to use polynomial ring elements.
CHAPTER ONE

USING CALCULUS

• Symbolic Computation
• Examples
 – Calculus examples
 – Calculus Tests and Examples
 – Further examples from Wester’s paper
• More about symbolic variables and functions
• Main operations on symbolic expressions
• Assumptions about symbols and functions
• Symbolic Equations and Inequalities
• Symbolic Integration
• Solving ordinary differential equations
• Solving ODE numerically by GSL
• Numerical Integration
• Real Interpolation using GSL
• Transforms
 – Discrete Wavelet Transform
 – Discrete Fourier Transforms
 – Fast Fourier Transforms Using GSL
• Vector Calculus
• Riemann Mapping
• Other calculus functionality
• Complexity Measures
• Units of measurement
INTERNAL FUNCTIONALITY SUPPORTING CALCULUS

- The symbolic ring
- Subrings of the Symbolic Ring
- Operators
- Classes for symbolic functions
- Functional notation support for common calculus methods
- Factory for symbolic functions
- Internals of Callable Symbolic Expressions
- Conversion of symbolic expressions to other types
- Benchmarks
- Randomized tests of GiNaC / PyNaC
- Access to Maxima methods
- External integrators
- External interpolators

2.1 Symbolic Expressions

RELATIONAL EXPRESSIONS:

We create a relational expression:

```
sage: x = var('x')
sage: eqn = (x-1)^2 <= x^2 - 2*x + 3
sage: eqn.subs(x == 5)
16 <= 18
```

Notice that squaring the relation squares both sides.

```
sage: eqn^2
(x - 1)^4 <= (x^2 - 2*x + 3)^2
sage: eqn.expand()
x^2 - 2*x + 1 <= x^2 - 2*x + 3
```

This can transform a true relation into a false one:
We can do arithmetic with relations:

```
sage: e = x+1 <= x-2
sage: e + 2
x + 3 <= x
sage: e - 1
x <= x - 3
sage: e*(-1)
-x - 1 <= -x + 2
sage: (-2)*e
-2*x - 2 <= -2*x + 4
sage: e^5
5*x + 5 <= 5*x - 10
sage: e/5
1/5*x + 1/5 <= 1/5*x - 2/5
sage: 5/e
5/(x + 1) <= 5/(x - 2)
```

We can even add together two relations, as long as the operators are the same:

```
sage: (x^3 + x <= x - 17) + (-x <= x - 10)
x^3 <= 2*x - 27
```

Here they are not:

```
sage: (x^3 + x <= x - 17) + (-x >= x - 10)
Traceback (most recent call last):
...
TypeError: incompatible relations
```

ARBITRARY SAGE ELEMENTS:

You can work symbolically with any Sage data type. This can lead to nonsense if the data type is strange, e.g., an element of a finite field (at present).

We mix Singular variables with symbolic variables:
class `sage.symbolic.expression.E`

Bases: `Expression`

Dummy class to represent base of the natural logarithm.

The base of the natural logarithm \(e \) is not a constant in GiNaC/Sage. It is represented by `exp(1)`.

This class provides a dummy object that behaves well under addition, multiplication, etc. and on exponentiation calls the function `exp`.

EXAMPLES:

The constant defined at the top level is just `exp(1)`:

```
sage: e.operator()
exp
sage: e.operands()
[1]
```

Arithmetic works:

```
sage: e + 2
e + 2
sage: 2 + e
e + 2
sage: 2*e
2*e
sage: e^2
2^e
sage: x^e
x^e
sage: var('a,b')
(a, b)
sage: t = e^(a+b); t
e^(a + b)
sage: t.operands()
[a + b]
```

Numeric evaluation, conversion to other systems, and pickling works as expected. Note that these are properties of the `exp()` function, not this class:

```
sage: RR(e)
2.71828182845905
sage: R = RealField(200); R
Real Field with 200 bits of precision
sage: R(e)
2.718281828459045235360287471352662497757247093699959574967032
sage: em = 1 + e^(1-e); em
e^(-e + 1) + 1
sage: R(em)
1.1793740787334612211945025043282337888794800549504927422281
sage: maxima(e).float()
```

(continues on next page)
Chapter 2. Internal functionality supporting calculus

class sage.symbolic.expression.Expression

Bases: Expression

Nearly all expressions are created by calling new_expression_from_*, but we need to make sure this at least does not leave self._gobj uninitialized and segfault.

Order *(hold=False)*

Return the order of the expression, as in big oh notation.

** OUTPUT:**

A symbolic expression.

** EXAMPLES:**

```
sage: n = var('n')
sage: t = (17*n^3).Order(); t
Order(n^3)
```

To prevent automatic evaluation use the hold argument:

```
sage: (17*n^3).Order(hold=True)
Order(17*n^3)
```

WZ_certificate(n, k)

Return the Wilf-Zeilberger certificate for this hypergeometric summand in n, k.

To prove the identity \(\sum_k F(n, k) = \text{const} \) it suffices to show that \(F(n+1, k) - F(n, k) = G(n, k+1) - G(n, k) \), with \(G = RF \) and \(R \) the WZ certificate.
EXAMPLES:

To show that $\sum_k \binom{n}{k} = 2^n$ do:

```sage
def check(n):
    _ = var('k n')
    F(n,k) = binomial(n,k) / 2^n
    c = F(n,k).WZ_certificate(n,k); c
    G(n,k) = c * F(n,k)
    return (F(n+1,k) - F(n,k) - G(n,k+1) + G(n,k)).simplify_full()
```

```
sage: check(5)
0
```

abs(hold=False)

Return the absolute value of this expression.

EXAMPLES:

```sage
sage: abs(x + y)
abs(x + y)
```

Using the `hold` parameter it is possible to prevent automatic evaluation:

```sage
sage: SR(-5).abs(hold=True)
abs(-5)
```

To then evaluate again, we use `unhold()`:

```sage
sage: a = SR(-5).abs(hold=True); a.unhold()
5
```

add(hold=False, *args)

Return the sum of the current expression and the given arguments.

To prevent automatic evaluation use the `hold` argument.

EXAMPLES:

```sage
sage: x.add(x)
2*x
```

```sage
sage: x.add(x, hold=True)
x + x
```

```sage
sage: x.add(x, (2*x), hold=True)
(x + 2) + x + x
```

```sage
sage: x.add(x, (2*x), x, hold=True)
(x + 2) + x + x + x
```

To then evaluate again, we use `unhold()`:

```sage
sage: a = x.add(x, hold=True); a.unhold()
2*x
```
add_to_both_sides(x)

Return a relation obtained by adding x to both sides of this relation.

EXAMPLES:

```
sage: var('x y z')
(x, y, z)
sage: eqn = x^2 + y^2 + z^2 <= 1
sage: eqn.add_to_both_sides(-z^2)
x^2 + y^2 <= -z^2 + 1
sage: eqn.add_to_both_sides(I)
x^2 + y^2 + z^2 + I <= (I + 1)
```

arccos($\text{hold}=\text{False}$)

Return the arc cosine of self.

EXAMPLES:

```
sage: x.arccos()
arccos(x)
sage: SR(1).arccos()
0
sage: SR(1/2).arccos()
1/3*pi
sage: SR(0.4).arccos()
1.15927948072741
sage: plot(lambda x: SR(x).arccos(), -1,1)
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(1).arccos($\text{hold}=\text{True}$)
arccos(1)
```

This also works using functional notation:

```
sage: arccos(1,$\text{hold}=\text{True}$)
arccos(1)
sage: arccos(1)
0
```

To then evaluate again, we use unhold():

```
sage: a = SR(1).arccos($\text{hold}=\text{True}$); a.unhold()
0
```

arccosh($\text{hold}=\text{False}$)

Return the inverse hyperbolic cosine of self.

EXAMPLES:

```
sage: x.arccosh()
arccosh(x)
sage: SR(0).arccosh()
```

(continues on next page)
1/2*I*pi
\[\text{sage: SR(1/2).arccosh()} \]
\[\text{arccosh}(1/2) \]
\[\text{sage: SR(CDF(1/2)).arccosh()} \] # rel tol 1e-15
\[1.0471975511965976*I \]
\[\text{sage: z = maxima('acosh(0.5)')} \]
\[\text{sage: z.real(), z.imag()} \] # abs tol 1e-15
\[(0.0, 1.047197551196598) \]

To prevent automatic evaluation use the \texttt{hold} argument:

\[\text{sage: SR(-1).arccosh()} \]
\[I*pi \]
\[\text{sage: SR(-1).arccosh(\texttt{hold=True})} \]
\[\text{arccosh}(-1) \]

This also works using functional notation:

\[\text{sage: arccosh(-1,\texttt{hold=\texttt{True}})} \]
\[\text{arccosh}(-1) \]
\[\text{sage: arccosh(-1)} \]
\[I*pi \]

To then evaluate again, we use \texttt{unhold()}:

\[\text{sage: a = SR(-1).arccosh(\texttt{hold=True}); a.unhold()} \]
\[I*pi \]

\texttt{arcsin(\texttt{hold=False})}

Return the arcsin of \(x\), i.e., the number \(y\) between \(-\pi\) and \(\pi\) such that \(\sin(y) = x\).

\textbf{EXAMPLES:}

\[\text{sage: x.arcsin()} \]
\[\text{arcsin}(x) \]
\[\text{sage: SR(0.5).arcsin()} \]
\[1/6*pi \]
\[\text{sage: SR(0.999).arcsin()} \]
\[1.52607123962616 \]
\[\text{sage: SR(1/3).arcsin()} \]
\[\text{arcsin}(1/3) \]
\[\text{sage: SR(-1/3).arcsin()} \]
\[-\text{arcsin}(1/3) \]

To prevent automatic evaluation use the \texttt{hold} argument:

\[\text{sage: SR(0).arcsin()} \]
\[0 \]
\[\text{sage: SR(0).arcsin(\texttt{hold=True})} \]
\[\text{arcsin}(0) \]

This also works using functional notation:
Symbolic Calculus, Release 10.2

```
sage: arcsin(0,hold=True)
arcsin(0)
sage: arcsin(0)
0
```

To then evaluate again, we use `unhold()`:

```
sage: a = SR(0).arcsin(hold=True); a.unhold()
0
```

arcsinh (`hold=False`)

Return the inverse hyperbolic sine of self.

EXAMPLES:

```
sage: x.arcsinh()
arcsinh(x)
sage: SR(0).arcsinh()
0
sage: SR(1).arcsinh()
arcsinh(1)
sage: SR(1.0).arcsinh()
0.881373587019543
sage: maxima('asinh(2.0)')
1.4436354751788...
```

Sage automatically applies certain identities:

```
sage: SR(3/2).arcsinh().cosh()
1/2*sqrt(13)
```

To prevent automatic evaluation use the `hold` argument:

```
sage: SR(-2).arcsinh()
arcsinh(-2)
sage: SR(-2).arcsinh(hold=True)
arcsinh(-2)
```

This also works using functional notation:

```
sage: arcsinh(-2,hold=True)
arcsinh(-2)
sage: arcsinh(-2)
arcsinh(-2)
```

To then evaluate again, we use `unhold()`:

```
sage: a = SR(-2).arcsinh(hold=True); a.unhold()
-arcsinh(2)
```

arctan (`hold=False`)

Return the arc tangent of self.

EXAMPLES:
Symbolic Calculus, Release 10.2

\begin{verbatim}
 sage: x = var('x')
sage: x.arctan()
arctan(x)
sage: SR(1).arctan()
1/4*pi
sage: SR(1/2).arctan()
arctan(1/2)
sage: SR(0.5).arctan()
0.463647609000806

sage: plot(lambda x: SR(x).arctan(), -20,20)

needs sage.plot
Graphics object consisting of 1 graphics primitive

To prevent automatic evaluation use the hold argument:

sage: SR(1).arctan(hold=True)
arctan(1)

This also works using functional notation:

sage: arctan1,hold=True)
arctan(1)
sage: arctan1)
arctan(1)

To then evaluate again, we use unhold():

sage: a = SR(1).arctan(hold=True); a.unhold()
1/4*pi

\texttt{arctan2(x, hold=False)}

Return the inverse of the 2-variable tan function on self and x.

EXAMPLES:

sage: var('x,y')
(x, y)
sage: x.arctan2(y)
arctan2(x, y)
sage: SR(1/2).arctan2(1/2)
1/4*pi
sage: maxima.eval('atan2(1/2,1/2)')
'-%pi/4'
sage: SR(-0.7).arctan2(SR(-0.6))
-2.27942259892257

To prevent automatic evaluation use the hold argument:

sage: SR(1/2).arctan2(1/2, hold=True)
arctan2(1/2, 1/2)

This also works using functional notation:
\end{verbatim}
Symbolic Calculus, Release 10.2

```
sage: arctan2(1,2,hold=True)
arctan2(1, 2)
sage: arctan2(1,2)
arctan(1/2)
```

To then evaluate again, we use `unhold()`:

```
sage: a = SR(1/2).arctan2(1/2, hold=True); a.unhold()
1/4*pi
```

arctanh *(hold=False)*

Return the inverse hyperbolic tangent of self.

EXAMPLES:

```
sage: x.arctanh()
arctanh(x)
sage: SR(0).arctanh()
0
sage: SR(1/2).arctanh()
1/2*log(3)
sage: SR(0.5).arctanh()
0.549306144334055
sage: SR(0.5).arctanh().tanh()
0.500000000000000
sage: maxima('atanh(0.5)')  # abs tol 2e-16
0.5493061443340548
```

To prevent automatic evaluation use the `hold` argument:

```
sage: SR(-1/2).arctanh()
-1/2*log(3)
sage: SR(-1/2).arctanh(hold=True)
arctanh(-1/2)
```

This also works using functional notation:

```
sage: arctanh(-1/2,hold=True)
arctanh(-1/2)
```

To then evaluate again, we use `unhold()`:

```
sage: a = SR(-1/2).arctanh(hold=True); a.unhold()
-1/2*log(3)
```

args()

EXAMPLES:

```
sage: x,y = var('x,y')
sage: f = x + y
sage: f.arguments()
(x, y)
```

(continues on next page)


```python
sage: g = f.function(x)
sage: g.arguments()
(x,)
```

arguments()

EXAMPLES:

```python
sage: x, y = var('x, y')
sage: f = x + y
sage: f.arguments()
(x, y)
sage: g = f.function(x)
sage: g.arguments()
(x,)
```

assume()

Assume that this equation holds. This is relevant for symbolic integration, among other things.

EXAMPLES: We call the assume method to assume that $x > 2$:

```python
sage: (x > 2).assume()
```

Bool returns True below if the inequality is *definitely* known to be True.

```python
sage: bool(x > 0)
True
sage: bool(x < 0)
False
```

This may or may not be True, so bool returns False:

```python
sage: bool(x > 3)
False
```

If you make inconsistent or meaningless assumptions, Sage will let you know:

```python
sage: forget()
sage: assume(x<0)
sage: assume(x>0)
Traceback (most recent call last):
  ...
ValueError: Assumption is inconsistent
sage: assumptions()
[x < 0]
sage: forget()
```

binomial(k, hold=False)

Return binomial coefficient “self choose k”.

OUTPUT:

A symbolic expression.
EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: SR(5).binomial(SR(3))
10
sage: x.binomial(SR(3))
1/6*(x - 1)*(x - 2)*x
sage: x.binomial(y)
binomial(x, y)
```

To prevent automatic evaluation use the `hold` argument:

```
sage: x.binomial(3, hold=True)
binomial(x, 3)
sage: SR(5).binomial(3, hold=True)
binomial(5, 3)
```

To then evaluate again, we use `unhold()`:

```
sage: a = SR(5).binomial(3, hold=True); a.unhold()
10
```

The `hold` parameter is also supported in functional notation:

```
sage: binomial(5,3, hold=True)
binomial(5, 3)
```

`canonicalize_radical()`

Choose a canonical branch of the given expression.

The square root, cube root, natural log, etc. functions are multi-valued. The `canonicalize_radical()` method will choose *one* of these values based on a heuristic.

For example, \(\sqrt{x^2}\) has two values: \(x\), and \(-x\). The `canonicalize_radical()` function will choose *one* of them, consistently, based on the behavior of the expression as \(x\) tends to positive infinity. The solution chosen is the one which exhibits this same behavior. Since \(\sqrt{x^2}\) approaches positive infinity as \(x\) does, the solution chosen is \(x\) (which also tends to positive infinity).

Warning: As shown in the examples below, a canonical form is not always returned, i.e., two mathematically identical expressions might be converted to different expressions.

Assumptions are not taken into account during the transformation. This may result in a branch choice inconsistent with your assumptions.

ALGORITHM:

This uses the Maxima `radcan()` command. From the Maxima documentation:

Simplifies an expression, which can contain logs, exponentials, and radicals, by converting it into a form which is canonical over a large class of expressions and a given ordering of variables; that is, all functionally equivalent forms are mapped into a unique form. For a somewhat larger class of expressions, radcan produces a regular form. Two equivalent expressions in this class do not necessarily have the same appearance, but their difference can be simplified by radcan to zero.
For some expressions radcan is quite time consuming. This is the cost of exploring certain relationships among the components of the expression for simplifications based on factoring and partial fraction expansions of exponents.

EXAMPLES:

canonicalize_radical() can perform some of the same manipulations as \texttt{log_expand()}:

![Code example]

And also handles some exponential functions:

![Code example]

It can also be used to change the base of a logarithm when the arguments to \texttt{log()} are positive real numbers:

![Code example]

The simplest example of counter-intuitive behavior is what happens when we take the square root of a square:

![Code example]

If you don’t want this kind of “simplification,” don’t use \texttt{canonicalize_radical()}. This behavior can also be triggered when the expression under the radical is not given explicitly as a square:

![Code example]

Another place where this can become confusing is with logarithms of complex numbers. Suppose x is complex with $x = r^*e^{(1^*t)}$ (r real). Then $\log(x)$ is $\log(r) + 1^*(t + 2^*k^*pi)$ for some integer k.

Calling \texttt{canonicalize_radical()} will choose a branch, eliminating the solutions for all choices of k but one. Simplified by hand, the expression below is $(1/2)^*\log(2) + 1^*pi^*k$ for integer k. However, \texttt{canonicalize_radical()} will take each log expression, and choose one particular solution, dropping the other. When the results are subtracted, we’re left with no imaginary part:

![Code example]
Naturally the result is wrong for some choices of \(x \):

\[
\text{sage: } f(x = -1) \\
1*i*pi + 1/2*log(2)
\]

The example below shows two expressions \(e_1 \) and \(e_2 \) which are “simplified” to different expressions, while their difference is “simplified” to zero; thus \texttt{canonicalize_radical()} does not return a canonical form:

\[
\begin{align*}
\text{sage: } & e_1 = 1/(\sqrt{5}+\sqrt{2}) \\
\text{sage: } & e_2 = (\sqrt{5}-\sqrt{2})/3 \\
\text{sage: } & e_1\text{.canonicalize_radical()} \\
& 1/(\sqrt{5} + \sqrt{2}) \\
\text{sage: } & e_2\text{.canonicalize_radical()} \\
& 1/3*\sqrt{5} - 1/3*\sqrt{2} \\
\text{sage: } & (e_1-e_2)\text{.canonicalize_radical()} \\
& 0
\end{align*}
\]

The issue reported in \texttt{github issue #3520} is a case where \texttt{canonicalize_radical()} causes a numerical integral to be calculated incorrectly:

\[
\begin{align*}
\text{sage: } & f_1 = \sqrt{25 - x} * \sqrt{ 1 + 1/(4*\left(25-\text{x}\right)) } \\
\text{sage: } & f_2 = f_1\text{.canonicalize_radical()} \\
\text{sage: } & \text{numerical_integral}(f_1\text{.real()}, 0, 1)[0] \# \text{ abs tol 1e-10} \\
& 4.974852579915647 \\
\text{sage: } & \text{numerical_integral}(f_2\text{.real()}, 0, 1)[0] \# \text{ abs tol 1e-10} \\
& -4.974852579915647
\end{align*}
\]

\texttt{coefficient}(s, n=1)

Return the coefficient of \(s^n \) in this symbolic expression.

INPUT:

- \(s \) - expression
- \(n \) - expression, default 1

OUTPUT:

A symbolic expression. The coefficient of \(s^n \).

Sometimes it may be necessary to expand or factor first, since this is not done automatically.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{var('x,y,a')} \\
& (x, y, a) \\
\text{sage: } & f = 100 + a*x + x^3*sin(x^y) + x^y + x/y + 2*sin(x^y)/x; f \\
& x^3*sin(x^y) + a*x + x^y + x/y + 2*sin(x^y)/x + 100 \\
\text{sage: } & f\text{.collect(x)} \\
& x^3*sin(x^y) + (a + y + 1/y)*x + 2*sin(x^y)/x + 100 \\
\text{sage: } & f\text{.coefficient(x,0)} \\
& 100 \\
\text{sage: } & f\text{.coefficient(x,-1)} \\
& 2*sin(x^y) \\
\text{sage: } & f\text{.coefficient(x,1)} \\
& a + y + 1/y \\
\text{sage: } & f\text{.coefficient(x,2)} \\
\end{align*}
\]

(continues on next page)
0
sage: f.coeficient(x, 3)
sin(x*y)
sage: f.coeficient(x^3)
sin(x*y)
sage: f.coeficient(sin(x*y))
x^3 + 2/x
sage: f.collect(sin(x*y))
a*x + x*y + (x^3 + 2/x)*sin(x*y) + x/y + 100

sage: var('a, x, y, z')
(a, x, y, z)
sage: f = (a*sqrt(2))*x^2 + sin(y)*x^(1/2) + z^z
sage: f.coeficient(sin(y))
sqrt(x)
sage: f.coeficient(x^2)
sqrt(2)*a
sage: f.coeficient(x^(1/2))
sin(y)
sage: f.coeficient(1)
0
sage: f.coeficient(x, 0)
z^z

Any coefficient can be queried:

sage: (x^2 + 3*x^pi).coefficient(x, pi)
3
sage: (2^x + 5*x^x).coefficient(x, x)
5

coefficients(x=None, sparse=True)

Return the coefficients of this symbolic expression as a polynomial in x.

INPUT:

• x – optional variable.

OUTPUT:

Depending on the value of sparse,

• A list of pairs (expr, n), where expr is a symbolic expression and n is a power (sparse=True, default)

• A list of expressions where the n-th element is the coefficient of x^n when self is seen as polynomial in x (sparse=False).

EXAMPLES:

sage: var('x, y, a')
(x, y, a)
sage: p = x^3 - (x-3)*(x^2+x) + 1
sage: p.coeficients()
[[1, 0], [3, 1], [2, 2]]
sage: p.coeficients(sparse=False)
symbol:
\[p = x - x^3 + \frac{5}{7}x^5 \]
\[p \text{.coefficients()} \]
\[[[1, 1], [-1, 3], [5/7, 5]] \]
\[p \text{.coefficients(sparse=False)} \]
\[[0, 1, 0, -1, 0, 5/7] \]
\[p = \text{expand}((x-a*\text{sqrt}(2))^2 + x + 1); p \]
\[-2*\text{sqrt}(2)*a*x + 2*a^2 + x^2 + x + 1 \]
\[p \text{.coefficients(a)} \]
\[[[x^2 + x + 1, 0], [-2*\text{sqrt}(2)*x, 1], [2, 2]] \]
\[p \text{.coefficients(a, sparse=False)} \]
\[[x^2 + x + 1, -2*\text{sqrt}(2)*x, 2] \]
\[p \text{.coefficients(x)} \]
\[[[2*a^2 + 1, 0], [-2*\text{sqrt}(2)*a + 1, 1], [1, 2]] \]
\[p \text{.coefficients(x, sparse=False)} \]
\[[2*a^2 + 1, -2*\text{sqrt}(2)*a + 1, 1] \]

collect(s)

Collect the coefficients of \(s \) into a group.

INPUT:
- \(s \) – the symbol whose coefficients will be collected.

OUTPUT:

A new expression, equivalent to the original one, with the coefficients of \(s \) grouped.

Note: The expression is not expanded or factored before the grouping takes place. For best results, call **expand()** on the expression before **collect()**.

EXAMPLES:

In the first term of \(f \), \(x \) has a coefficient of \(4y \). In the second term, \(x \) has a coefficient of \(z \). Therefore, if we collect those coefficients, \(x \) will have a coefficient of \(4y + z \):

\[f = 4*x^2*y + x^2*z + 20*y^2 + 21*y*z + 4*z^2 + x^2*y^2*z^2 \]
\[f \text{.collect(x)} \]
\[x^2*y^2*z^2 + x*(4*y + z) + 20*y^2 + 21*y*z + 4*z^2 \]

Here we do the same thing for \(y \) and \(z \); however, note that we do not factor the \(y^2 \) and \(z^2 \) terms before collecting coefficients:

\[f \text{.collect(y)} \]
\[(x^2*z^2 + 20*y^2 + (4*x + 21*z)*y + x*z + 4*z^2 \]
\[f \text{.collect(z)} \]
\[(x^2*y^2 + 4)*z^2 + 4*x*y + 20*y^2 + (x + 21*y)*z \]

The terms are collected, whether the expression is expanded or not:

\[f = (x + y)*(x - z) \]
\[f \text{.collect(x)} \]
\[x^2 + x*(y - z) - y*z \]
collect_common_factors()

This function does not perform a full factorization but only looks for factors which are already explicitly present.

Polynomials can often be brought into a more compact form by collecting common factors from the terms of sums. This is accomplished by this function.

EXAMPLES:

```sage
def f(x, y, z):
    return x**2 + x*(y - z) - y*z
f.expand().collect(x)
x^2 + x*(y - z) - y*z
```

combine(deep=False)

Return a simplified version of this symbolic expression by combining all toplevel terms with the same denominator into a single term.

Please use the keyword `deep=True` to apply the process recursively.

EXAMPLES:

```sage
def f(x, y, a, b, c):
    return (x - 1)*x/(x^2 - 7) + y^2/(x^2 - 7) + b/a + c/a + 1/(x + 1)
f.combine()
((x - 1)*x + y^2)/(x^2 - 7) + (b + c)/a + 1/(x + 1)
```

conjugate(hold=False)

Return the complex conjugate of this symbolic expression.

EXAMPLES:

```sage
def f(x):
    return (1+sin(x + 1)/x - 1/x).combine(deep=True)
sin(1) + 1
```
```python
sage: a = 1 + 2*I
sage: a.conjugate()
-2*I + 1
sage: a = sqrt(2) + 3^(1/3)*I; a
sqrt(2) + I*3^(1/3)
sage: a.conjugate()
sqrt(2) - I*3^(1/3)
sage: SR(CDF.0).conjugate()
-1.0*I
sage: x.conjugate()
conjugate(x)
sage: SR(RDF(1.5)).conjugate()
1.5
sage: SR(float(1.5)).conjugate()
1.5
sage: SR(I).conjugate()
-I
sage: ( 1+I + (2-3*I)*x).conjugate()
(3*I + 2)*conjugate(x) - I + 1
```

Using the `hold` parameter it is possible to prevent automatic evaluation:

```python
sage: SR(I).conjugate(hold=True)
conjugate(I)
```

This also works in functional notation:

```python
sage: conjugate(I)
-I
sage: conjugate(I,hold=True)
conjugate(I)
```

To then evaluate again, we use `unhold()`:

```python
sage: a = SR(I).conjugate(hold=True); a.unhold()
-I
```

`content(s)`

Return the content of this expression when considered as a polynomial in `s`.

See also `unit()`, `primitive_part()`, and `unit_content_primitive()`.

INPUT:

- `s` – a symbolic expression.

OUTPUT:

The content part of a polynomial as a symbolic expression. It is defined as the gcd of the coefficients.

Warning: The expression is considered to be a univariate polynomial in `s`. The output is different from the `content()` method provided by multivariate polynomial rings in Sage.

EXAMPLES:
Symbolic Calculus, Release 10.2

```
sage: (2*x+4).content(x)
2
sage: (2*x+1).content(x)
1
sage: (2*x+1/2).content(x)
1/2
sage: var('y')
y
sage: (2*x + 4*sin(y)).content(sin(y))
2
```

`contradicts(soln)`

Return True if this relation is violated by the given variable assignment(s).

EXAMPLES:

```
sage: (x<3).contradicts(x==0)
False
sage: (x<3).contradicts(x==3)
True
sage: (x<=3).contradicts(x==3)
False
sage: y = var('y')
sage: (x<y).contradicts(x==30)
False
sage: (x<y).contradicts({x: 30, y: 20})
True
```

`convert(target=None)`

Call the convert function in the units package. For symbolic variables that are not units, this function just
returns the variable.

INPUT:

- `self` – the symbolic expression converting from
- `target` – (default None) the symbolic expression converting to

OUTPUT:
A symbolic expression.

EXAMPLES:

```
sage: units.length.foot.convert()
381/1250*meter
sage: units.mass.kilogram.convert(units.mass.pound)
100000000/45359237*pound
```

We do not get anything new by converting an ordinary symbolic variable:

```
sage: a = var('a')
sage: a - a.convert()
0
```

Raises ValueError if self and target are not convertible:
Recognizes derived unit relationships to base units and other derived units:

```plaintext
sage: (units.length.foot/units.time.second^2).convert(units.acceleration.˓→galileo)
762/25*galileo
sage: (units.mass.kilogram*units.length.meter/units.time.second^2).
  →convert(units.force.newton)
newton
sage: (units.length.foot^3).convert(units.area.acre*units.length.inch)
1/3630*(acre*inch)
```

For decimal answers multiply by 1.0:

```plaintext
sage: (units.pressure.pascal*units.si_prefixes.kilo).convert(units.pressure.
  →pounds_per_square_inch)*1.0
0.145037737730209*pounds_per_square_inch
```

Converting temperatures works as well:

```plaintext
sage: s = 68*units.temperature.fahrenheit
sage: s.convert(units.temperature.celsius)
20*celsius
sage: s.convert()
293.150000000000*kelvin
```

Trying to multiply temperatures by another unit then converting raises a ValueError:

```plaintext
sage: wrong = 50*units.temperature.celsius*units.length.foot
sage: wrong.convert()
Traceback (most recent call last):
  ...
ValueError: cannot convert
```

\textbf{cos}(\texttt{hold=False})

Return the cosine of self.

\textbf{EXAMPLES:}

```plaintext
sage: var('x, y')
(x, y)
```
Symbolic Calculus, Release 10.2

(continued from previous page)

\[
\begin{align*}
\text{sage: } & \cos(x^2 + y^2) \\
& \cos(x^2 + y^2) \\
\text{sage: } & \cos(\text{sage.symbolic.constants.pi}) \\
& -1 \\
\text{sage: } & \cos(\text{SR}(1)) \\
& \cos(1) \\
\text{sage: } & \cos(\text{SR(RealField(150)}(1))) \\
& 0.54030230586813971740093660744297660373231042 \\
\end{align*}
\]

In order to get a numeric approximation use .n():

\[
\begin{align*}
\text{sage: } & \text{SR(RR}(1)).\cos().n() \\
& 0.540302305868140 \\
\text{sage: } & \text{SR(float}(1)).\cos().n() \\
& 0.540302305868140 \\
\end{align*}
\]

To prevent automatic evaluation use the hold argument:

\[
\begin{align*}
\text{sage: } & \pi.\cos() \\
& -1 \\
\text{sage: } & \pi.\cos(\text{hold=True}) \\
& \cos(\pi) \\
\end{align*}
\]

This also works using functional notation:

\[
\begin{align*}
\text{sage: } & \cos(\pi,\text{hold=True}) \\
& \cos(\pi) \\
\text{sage: } & \cos(\pi) \\
& -1 \\
\end{align*}
\]

To then evaluate again, we use unhold():

\[
\begin{align*}
\text{sage: } & a = \pi.\cos(\text{hold=True}); a.\text{unhold}() \\
& -1 \\
\end{align*}
\]

cosh *(hold=False)*

Return cosh of self.

We have \(\cosh(x) = (e^x + e^{-x})/2\).

EXAMPLES:

\[
\begin{align*}
\text{sage: } & x.\cosh() \\
& \cosh(x) \\
\text{sage: } & \text{SR}(1).\cosh() \\
& \cosh(1) \\
\text{sage: } & \text{SR}(0).\cosh() \\
& 1 \\
\text{sage: } & \text{SR(1.0).cosh()} \\
& 1.54308063481524 \\
\text{sage: } & \text{maxima}(\text{''cosh}(1.0)'')) \\
& 1.54308063481524... \\
\text{sage: } & \text{SR(1.00000000000000000000000000).cosh()} \\
& 1.5430806348152437784779056 \\
\end{align*}
\]

(continues on next page)
To prevent automatic evaluation use the \texttt{hold} argument:

\begin{verbatim}
sage: arcsinh(x).cosh()
sqrt(x^2 + 1)
sage: arcsinh(x).cosh(hold=True)
cosh(arcsinh(x))
\end{verbatim}

This also works using functional notation:

\begin{verbatim}
sage: cosh(arcsinh(x),hold=True)
cosh(arcsinh(x))
sage: cosh(arcsinh(x))
sqrt(x^2 + 1)
\end{verbatim}

To then evaluate again, we use \texttt{unhold()}:

\begin{verbatim}
sage: a = arcsinh(x).cosh(hold=True); a.unhold()
sqrt(x^2 + 1)
\end{verbatim}

\texttt{csgn}(\texttt{hold=False})

Return the sign of self, which is -1 if self < 0, 0 if self == 0, and 1 if self > 0, or unevaluated when self is a nonconstant symbolic expression.

If self is not real, return the complex half-plane (left or right) in which the number lies. If self is pure imaginary, return the sign of the imaginary part of self.

EXAMPLES:

\begin{verbatim}
sage: x = var('x')
sage: SR(-2).csgn()
-1
sage: SR(0.0).csgn()
0
sage: SR(10).csgn()
1
sage: x.csgn()
csgn(x)
sage: SR(CDF.0).csgn()
1
sage: SR(I).csgn()
1
sage: SR(-I).csgn()
-1
sage: SR(1+I).csgn()
1
sage: SR(1-I).csgn()
1
sage: SR(-1+I).csgn()
-1
sage: SR(-1-I).csgn()
-1
\end{verbatim}
Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(I).csgn(hold=True)
csgn(I)
```

decl_assume(decl)

decl_forget(decl)

default_variable()

Return the default variable, which is by definition the first variable in self, or \(x\) is there are no variables in self. The result is cached.

EXAMPLES:

```
sage: sqrt(2).default_variable()
x
sage: x, theta, a = var('x, theta, a')
sage: f = x^2 + theta^3 - a*x
sage: f.default_variable()
a
Note that this is the first variable, not the first argument:

sage: f(theta, a, x) = a + theta^3
sage: f.default_variable()
a
sage: f.variables()
(a, theta)
sage: f.arguments()
(theta, a, x)
```

degree(s)

Return the exponent of the highest power of \(s\) in self.

OUTPUT:

An integer

EXAMPLES:

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y^10 + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + 2*sin(x*y)/x + x/y^10 + 100
sage: f.degree(x)
3
sage: f.degree(y)
1
sage: f.degree(sin(x*y))
1
sage: (x^3+y).degree(x)
0
sage: (1/x+1/x^2).degree(x)
-1
```
demoivre (force=False)

Return this symbolic expression with complex exponentials (optionally all exponentials) replaced by (at least partially) trigonometric/hyperbolic expressions.

EXAMPLES:

```
sage: x, a, b = SR.var("x, a, b")
sage: exp(a + I*b).demoivre()
(cos(b) + I*sin(b))*e^a
sage: exp(I*x).demoivre()
cos(x) + I*sin(x)
sage: exp(x).demoivre(force=True)
cosh(x) + sinh(x)
```

denominator (normalize=True)

Return the denominator of this symbolic expression

INPUT:

* normalize – (default: True) a boolean.

If normalize is True, the expression is first normalized to have it as a fraction before getting the denominator.

If normalize is False, the expression is kept and if it is not a quotient, then this will just return 1.

See also:

normalize(), numerator(), numerator_denominator(), combine()

EXAMPLES:

```
sage: x, y, z, theta = var("x, y, z, theta")
sage: f = (sqrt(x) + sqrt(y) + sqrt(z))/(x^10 - y^10 - sqrt(theta))
sage: f.numerator()
sqrt(x) + sqrt(y) + sqrt(z)
sage: f.denominator()
x^10 - y^10 - sqrt(theta)
sage: f.numerator(normalize=False)
(sqrt(x) + sqrt(y) + sqrt(z))
sage: f.denominator(normalize=False)
x^10 - y^10 - sqrt(theta)
sage: y = var('y')
sage: g = x + y/(x + 2); g
x + y/(x + 2)
sage: g.numerator(normalize=False)
x + y/(x + 2)
sage: g.denominator(normalize=False)
1
```

derivative (*args)

Return the derivative of this expressions with respect to the variables supplied in args.
Multiple variables and iteration counts may be supplied; see documentation for the global `derivative()` function for more details.

See also:

This is implemented in the `_derivative` method (see the source code).

EXAMPLES:

```python
sage: var("x y")
(x, y)
sage: t = (x^2+y)^2
sage: t.derivative(x)
4*(x^2 + y)*x
sage: t.derivative(x, 2)
12*x^2 + 4*y
sage: t.derivative(x, 2, y)
4
sage: t.derivative(y)
2*x^2 + 2*y
```

If the function depends on only one variable, you may omit the variable. Giving just a number (for the order of the derivative) also works:

```python
sage: f(x) = x^3 + sin(x)
sage: f.derivative()
x |--> 3*x^2 + cos(x)
sage: f.derivative(2)
x |--> 6*x - sin(x)
```

Some expressions can’t be cleanly differentiated by the chain rule:

```python
sage: _ = var('x', domain='real')
sage: _ = var('w z')
sage: (x^z).conjugate().diff(x)
conjugate(x^(z - 1))*conjugate(z)
sage: (w^z).conjugate().diff(w)
w^(z - 1)*z*D[0](conjugate)(w^z)
sage: atanh(x).real_part().diff(x)
-1/(x^2 - 1)
sage: atanh(x).imag_part().diff(x)
0
sage: atanh(w).real_part().diff(w)
-D[0](real_part)(arctanh(w))/(w^2 - 1)
sage: atanh(w).imag_part().diff(w)
-D[0](imag_part)(arctanh(w))/(w^2 - 1)
sage: abs(log(x)).diff(x)
1/2*(conjugate(log(x))/x + log(x)/x)/abs(log(x))
sage: abs(log(z)).diff(z)
1/2*(conjugate(log(z))/z + log(z)/conjugate(z))/abs(log(z))
sage: forget()
sage: t = sin(x+y^2)^tan(x^y)
sage: t.derivative(x)
(tan(x^y)*y^2 + 1)*y^2*sin(y^2 + x) + cos(y^2 + x)*tan(x^y)
```

(continues on next page)
sage: t.derivative(y)
(tan(x*y)^2 + 1)*x*sin(y^2 + x) + 2*y*cos(y^2 + x)*tan(x*y)

sage: h = sin(x)/cos(x)
sage: derivative(h,x,x,x)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2

sage: derivative(h,x,3)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2

sage: var('x, y')
(x, y)
sage: u = (sin(x) + cos(y))*(cos(x) - sin(y))
sage: derivative(u,x,y)
-cos(x)*cos(y) + sin(x)*sin(y)

sage: f = ((x^2+1)/(x^2-1))^(1/4)
sage: g = derivative(f, x); g
-1/2*((x^2 + 1)*x/(x^2 - 1)^2 - x/(x^2 - 1))/((x^2 + 1)/(x^2 - 1))^(3/4)

sage: g.factor()
-x/((x + 1)^2*(x - 1)^2*((x^2 + 1)/(x^2 - 1))^(3/4))

sage: y = var('y')
sage: f = y^(sin(x))
sage: derivative(f, x)
y^sin(x)*cos(x)*log(y)

sage: g(x) = sqrt(5-2*x)
sage: g_3 = derivative(g, x, 3); g_3(2)
-3

sage: f = x*e^(-x)
sage: derivative(f, 100)
x*e^(-x) - 100*e^(-x)

sage: g = 1/(sqrt((x^2-1)*(x+5)^6))
sage: derivative(g, x)
-(x + 5)^6*x + 3*(x^2 - 1)*(x + 5)^5)/((x^2 - 1)*(x + 5)^6)^(3/2)

\texttt{diff(*args)}

Return the derivative of this expression with respect to the variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global \texttt{derivative()} function for more details.

\textbf{See also:}

This is implemented in the _\texttt{derivative} method (see the source code).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: var("x y")
(x, y)
sage: t = (x^2+y)^2
\end{verbatim}
If the function depends on only one variable, you may omit the variable. Giving just a number (for the order of the derivative) also works:

```
sage: f(x) = x^3 + sin(x)
sage: f.derivative()
x |--> 3*x^2 + cos(x)
sage: f.derivative(2)
x |--> 6*x - sin(x)
```

Some expressions can't be cleanly differentiated by the chain rule:

```
sage: _ = var('x', domain='real')
sage: _ = var('w z')
sage: (x^z).conjugate().diff(x)  
conjugate(x^(z - 1))*conjugate(z)
sage: (w^z).conjugate().diff(w)  
w^(z - 1)*z*D[0](conjugate)(w^z)
sage: atanh(x).real_part().diff(x)  
-1/(x^2 - 1)
sage: atanh(x).imag_part().diff(x)  
0
sage: atanh(w).real_part().diff(w)  
-D[0](real_part)(arctanh(w))/(w^2 - 1)
sage: atanh(w).imag_part().diff(w)  
-D[0](imag_part)(arctanh(w))/(w^2 - 1)
sage: abs(log(x)).diff(x)  
1/2*(conjugate(log(x))/x + log(x)/x)/abs(log(x))
sage: abs(log(z)).diff(z)  
1/2*(conjugate(log(z))/z + log(z)/conjugate(z))/abs(log(z))
sage: forget()
```

```
sage: h = sin(x)/cos(x)
sage: derivative(h,x,x,x)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
sage: derivative(h,x,3)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
```
Symbolic Calculus, Release 10.2

```
sage: var('x, y')
(x, y)
sage: u = (sin(x) + cos(y))*(cos(x) - sin(y))
sage: derivative(u,x,y)
-cos(x)*cos(y) + sin(x)*sin(y)
sage: f = ((x^2+1)/(x^2-1))^(1/4)
sage: g = derivative(f, x); g
# this is a complex expression
-1/2*((x^2 + 1)*x/(x^2 - 1)^2 - x/(x^2 - 1))/((x^2 + 1)/(x^2 - 1))^(3/4)
sage: g.factor()
-x/((x + 1)^2*(x - 1)^2*((x^2 + 1)/(x^2 - 1))^(3/4))
sage: y = var('y')
sage: f = y^(sin(x))
sage: derivative(f, x)
y*sin(x)*cos(x)*log(y)
sage: g(x) = sqrt(5-2*x)
sage: g_3 = derivative(g, x, 3); g_3(2)
-3
sage: f = x^2*e^(-x)
sage: derivative(f, 100)
x*e^(-x) - 100*e^(-x)
sage: g = 1/(sqrt((x^2-1)*(x+5)^6))
sage: derivative(g, x)
-(x + 5)^6*x + 3*(x^2 - 1)*(x + 5)^5)/((x^2 - 1)*(x + 5)^6)^(3/2)
```

differentiate(*args)

Return the derivative of this expressions with respect to the variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

This is implemented in the _derivative method (see the source code).

EXAMPLES:

```
sage: var("x y")
(x, y)
sage: t = (x^2+y)^2
sage: t.derivative(x)
4*(x^2 + y)*x
sage: t.derivative(x, 2)
12*x^2 + 4*y
sage: t.derivative(x, 2, y)
4
sage: t.derivative(y)
2*x^2 + 2*y
```

If the function depends on only one variable, you may omit the variable. Giving just a number (for the order of the derivative) also works:
Symbolic Calculus, Release 10.2

```python
sage: f(x) = x^3 + sin(x)
sage: f.derivative()
x |--> 3*x^2 + cos(x)
sage: f.derivative(2)
x |--> 6*x - sin(x)

Some expressions can't be cleanly differentiated by the chain rule:

```python
sage: _ = var('x', domain='real')
sage: (x^z).conjugate().diff(x)
conjugate(x^(z - 1))*conjugate(z)
sage: (w^z).conjugate().diff(w)
w^(z - 1)*z*D[0](conjugate)(w^z)
sage: atanh(x).real_part().diff(x)
-1/(x^2 - 1)
sage: atanh(x).imag_part().diff(x)

sage: atanh(w).real_part().diff(w)
-D[0](real_part)(arctanh(w))/(w^2 - 1)
sage: atanh(w).imag_part().diff(w)
-D[0](imag_part)(arctanh(w))/(w^2 - 1)
sage: abs(log(x)).diff(x)
1/2*(conjugate(log(x))/x + log(x)/x)/abs(log(x))
sage: abs(log(z)).diff(z)
1/2*(conjugate(log(z))/z + log(z)/conjugate(z))/abs(log(z))
```

```python
sage: forget()
```

```python
sage: t = sin(x+y^2)*tan(x*y)
sage: t.derivative(x)
(tan(x*y)^2 + 1)*y*sin(y^2 + x) + cos(y^2 + x)*tan(x*y)
sage: t.derivative(y)
(tan(x*y)^2 + 1)*x*sin(y^2 + x) + 2*y*cos(y^2 + x)*tan(x*y)
```

```python
sage: h = sin(x)/cos(x)
sage: derivative(h, x, x, x)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
```

```python
sage: var('x, y')
(x, y)
sage: u = (sin(x) + cos(y))*(cos(x) - sin(y))
sage: derivative(u, x, y)
-cos(x)*cos(y) + sin(x)*sin(y)
sage: f = ((x^2+1)/(x^2-1))^1/4
g = derivative(f, x); g # this is a complex expression
-x/((x + 1)^2*(x - 1)^2*(x^2 - 1)^2 - x/(x^2 - 1))/(x^2 + 1)/(x^2 - 1)^(3/4)
g.factor()
-x/((x + 1)^2*(x - 1)^2*(x^2 - 1)^2*(x^2 + 1)/(x^2 - 1))^(3/4)
```

```python
sage: y = var('y')
(continues on next page)
```
Symbolic Calculus, Release 10.2

(continued from previous page)

```
sage: f = y^(sin(x))
sage: derivative(f, x)
y^sin(x)*cos(x)*log(y)
```

```
sage: g(x) = sqrt(5-2^x)
sage: g_3 = derivative(g, x, 3); g_3(2)
-3
```

```
sage: f = x*e^(-x)
sage: derivative(f, 100)
x*e^(-x) - 100*e^(-x)
```

```
sage: g = 1/(sqrt((x^2-1)*(x+5)^6))
sage: derivative(g, x)
-((x + 5)^6*x + 3*(x^2 - 1)*(x + 5)^5)/((x^2 - 1)*(x + 5)^6)^(3/2)
```

```
distribute(recurse=True)
Distribute some indexed operators over similar operators in order to allow further groupings or simplifications.

Implemented cases (so far):

• Symbolic sum of a sum ==> sum of symbolic sums

• Integral (definite or not) of a sum ==> sum of integrals.

• Symbolic product of a product ==> product of symbolic products.

INPUT:

• recursive – (default : True) the distribution proceeds along the subtrees of the expression.

AUTHORS:

• Emmanuel Charpentier, Ralf Stephan (05-2017)

```
divide_both_sides(x, checksign=None)
Return a relation obtained by dividing both sides of this relation by x.

Note: The checksign keyword argument is currently ignored and is included for backward compatibility reasons only.

EXAMPLES:

```
sage: theta = var('theta')
sage: eqn = (x^3 + theta < sin(x*theta))
sage: eqn.divide_both_sides(theta, checksign=False)
(x^3 + theta)/theta < sin(theta*x)/theta
sage: eqn.divide_both_sides(theta)
(x^3 + theta)/theta < sin(theta*x)/theta
sage: eqn/theta
(x^3 + theta)/theta < sin(theta*x)/theta
```

34 Chapter 2. Internal functionality supporting calculus
exp\( (\text{hold}=\text{False}) \)

Return exponential function of self, i.e., \( e \) to the power of self.

EXAMPLES:

```
sage: x.exp()
e^x
sage: SR(0).exp()
1
sage: SR(1/2).exp()
e^{(1/2)}
sage: SR(0.5).exp()
1.64872127070013
sage: math.exp(0.5)
1.6487212707001282
sage: SR(0.5).exp().log()
0.500000000000000
sage: (pi*I).exp()
-1
```

To prevent automatic evaluation use the \texttt{hold} argument:

```
sage: (pi*I).exp(hold=True)
e^{(\text{I}*\text{pi})}
```

This also works using functional notation:

```
sage: exp(I*pi,\text{hold}=\text{True})
e^{(\text{I}*\text{pi})}
sage: exp(I*pi)
-1
```

To then evaluate again, we use \texttt{unhold()}:

```
sage: a = (pi*I).exp(hold=True); a.unhold()
-1
```

expand\( (\text{side}=\text{None}) \)

Expand this symbolic expression. Products of sums and exponentiated sums are multiplied out, numerators of rational expressions which are sums are split into their respective terms, and multiplications are distributed over addition at all levels.

EXAMPLES:

We expand the expression \((x - y)^5\) using both method and functional notation.

```
sage: x,y = var('x,y')
sage: a = (x-y)^5
sage: a.expand()
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
sage: expand(a)
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
```

We expand some other expressions:
Symbolic Calculus, Release 10.2

\[
sage: \text{expand}((x-1)^3/(y-1))
\]
\[
x^3/(y - 1) - 3*x^2/(y - 1) + 3*x/(y - 1) - 1/(y - 1)
\]

\[
sage: \text{expand}((x+\sin((x+y)^2))^2)
\]
\[
x^2 + 2*x*\sin(x^2 + 2*x*y + y^2) + \sin(x^2 + 2*x*y + y^2)^2
\]

Observe that \texttt{expand()} also expands function arguments:

\[
sage: f(x) = \text{function('f')}(x)
\]
\[
sage: fx = f(x*(x+1)); fx
\]
\[
f((x + 1)*x)
\]
\[
sage: fx.\text{expand()}
\]
\[
f(x^2 + x)
\]

We can expand individual sides of a relation:

\[
sage: a = (16*x-13)^2 == (3*x+5)^2/2
\]
\[
sage: a.\text{expand()}
\]
\[
256*x^2 - 416*x + 169 == 9/2*x^2 + 15*x + 25/2
\]
\[
sage: a.\text{expand('left')}
\]
\[
256*x^2 - 416*x + 169 == 1/2*(3*x + 5)^2
\]
\[
sage: a.\text{expand('right')}
\]
\[
(16*x - 13)^2 == 9/2*x^2 + 15*x + 25/2
\]

\texttt{expand_log(algorithm=\textquoteleft products\textquoteright )}

Simplify symbolic expression, which can contain logs.

Expands logarithms of powers, logarithms of products and logarithms of quotients. The option \texttt{algorithm} specifies which expression types should be expanded.

INPUT:

- \texttt{self} - expression to be simplified
- \texttt{algorithm} - (default: ‘products’) optional, governs which expression is expanded. Possible values are
  - ‘nothing’ (no expansion),
  - ‘powers’ (log(a^r) is expanded),
  - ‘products’ (like ‘powers’ and also log(a*b) are expanded),
  - ‘all’ (all possible expansion).

DETAILS: This uses the Maxima simplifier and sets \texttt{logexpand} option for this simplifier. From the Maxima documentation: “Logexpand: true causes log(a^b) to become b*log(a). If it is set to all, log(a*b) will also simplify to log(a)+log(b). If it is set to super, then log(a/b) will also simplify to log(a)-log(b) for rational numbers a/b, a\#1. (log(1/b), for integer b, always simplifies.) If it is set to false, all of these simplifications will be turned off. “

ALIAS: \texttt{log_expand()} and \texttt{expand_log()} are the same

EXAMPLES:

By default powers and products (and quotients) are expanded, but not quotients of integers:

\[
sage: (\log(3/4*x^pi)).\log\text{\_expand()}
\]
\[
\pi^*\log(x) + \log(3/4)
\]
To expand also \( \log(3/4) \) use `algorithm='all'`:

```python
sage: (log(3/4*x*pi)).log_expand('all')
pi*log(x) + log(3) - 2*log(2)
```

To expand only the power use `algorithm='powers'`:

```python
sage: (log(x^6)).log_expand('powers')
6*log(x)
```

The expression \( \log((3^x)^6) \) is not expanded with `algorithm='powers'`, since it is converted into product first:

```python
sage: (log((3^x)^6)).log_expand('powers')
log(729*x^6)
```

This shows that the option `algorithm` from the previous call has no influence to future calls (we changed some default Maxima flag, and have to ensure that this flag has been restored):

```python
sage: (log(3/4*x*pi)).log_expand()
pi*log(x) + log(3/4)
sage: (log(3/4*x*pi)).log_expand('all')
pi*log(x) + log(3) - 2*log(2)
sage: (log(3/4*x*pi)).log_expand()
pi*log(x) + log(3/4)
```

**AUTHORS:**

- Robert Marik (11-2009)

### expand_rational \( (side=None) \)

Expand this symbolic expression. Products of sums and exponentiated sums are multiplied out, numerators of rational expressions which are sums are split into their respective terms, and multiplications are distributed over addition at all levels.

**EXAMPLES:**

We expand the expression \((x - y)^5\) using both method and functional notation.

```python
sage: x,y = var('x,y')
sage: a = (x-y)^5
sage: a.expand()
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
sage: expand(a)
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
```

We expand some other expressions:

```python
sage: expand((x-1)^3/(y-1))
x^3/(y - 1) - 3*x^2/(y - 1) + 3*x/(y - 1) - 1/(y - 1)
sage: expand((x+sin((x+y)^2))^2)
x^2 + 2*x*sin(x^2 + 2*x*y + y^2) + sin(x^2 + 2*x*y + y^2)^2
```

Observe that `expand()` also expands function arguments:
Symbolic Calculus, Release 10.2

```
sage: f(x) = function('f')(x)
sage: fx = f(x*(x+1)); fx
f((x + 1)*x)
sage: fx.expand()
f(x^2 + x)
```

We can expand individual sides of a relation:

```
sage: a = (16*x-13)^2 == (3*x+5)^2/2
sage: a.expand()
256*x^2 - 416*x + 169 == 9/2*x^2 + 15*x + 25/2
sage: a.expand('left')
256*x^2 - 416*x + 169 == 1/2*(3*x + 5)^2
sage: a.expand('right')
(16*x - 13)^2 == 9/2*x^2 + 15*x + 25/2
```

**expand_sum()**

For every symbolic sum in the given expression, try to expand it, symbolically or numerically.

While symbolic sum expressions with constant limits are evaluated immediately on the command line, unevaluated sums of this kind can result from, e.g., substitution of limit variables.

**INPUT:**

- **self** - symbolic expression

**EXAMPLES:**

```
sage: (k,n) = var('k,n')
sage: ex = sum(abs(-k*k+n),k,1,n)(n=8); ex
sum(abs(-k^2 + 8), k, 1, 8)
sage: ex.expand_sum()
162
sage: f(x,k) = sum((2/n)*(sin(n*x)*(-1)^(n+1)), n, 1, k)
sage: f(x,2)
-2*sum((-1)^n*sin(n*x)/n, n, 1, 2)
sage: f(x,2).expand_sum()
-sin(2*x) + 2*sin(x)
```

We can use this to do floating-point approximation as well:

```
sage: (k,n) = var('k,n')
sage: f(n)=sum(sqrt(abs(-k*k+n)),k,1,n)
sage: f(n=8)
sum(sqrt(abs(-k^2 + 8)), k, 1, 8)
sage: f(8).expand_sum()
sqrt(41) + sqrt(17) + 2*sqrt(14) + 3*sqrt(7) + 2*sqrt(2) + 3
sage: f(8).expand_sum().n()
31.7752256945384
```

See [github issue #9424](https://github.com/sage/sage/issues/9424) for making the following no longer raise an error:

```
sage: f(8).n()
31.7752256945384
```
**expand_trig**\((full=False, half_angles=False, plus=True, times=True)\)

Expand trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in \texttt{self}.

For best results, \texttt{self} should already be expanded.

**INPUT:**

- **full** – (default: \texttt{False}) To enhance user control of simplification, this function expands only one level at a time by default, expanding sums of angles or multiple angles. To obtain full expansion into sines and cosines immediately, set the optional parameter full to \texttt{True}.
- **half_angles** - (default: \texttt{False}) If \texttt{True}, causes half-angles to be simplified away.
- **plus** – (default: \texttt{True}) Controls the sum rule; expansion of sums (e.g. \texttt{sin(x + y)}) will take place only if \texttt{plus} is \texttt{True}.
- **times** – (default: \texttt{True}) Controls the product rule, expansion of products (e.g. \texttt{sin(2x)}) will take place only if \texttt{times} is \texttt{True}.

**OUTPUT:**

A symbolic expression.

**EXAMPLES:**

\begin{verbatim}
sage: sin(5*x).expand_trig() 5*cos(x)^4*sin(x) - 10*cos(x)^2*sin(x)^3 + sin(x)^5
sage: cos(2*x + var('y')).expand_trig() cos(2*x)*cos(y) - sin(2*x)*sin(y)
sage: f = sin(sin(3*cos(2*x))*x)
sage: f.expand_trig() sin((3*cos(cos(2*x))^2*sin(cos(2*x)) - sin(cos(2*x))^3)*x)
sage: f.expand_trig(full=True) sin((3*(cos(cos(x)^2)*cos(sin(x)^2) + sin(cos(x)^2)*sin(sin(x)^2))^2*(cos(sin(x)^2)*sin(cos(x)^2) - cos(cos(x)^2)*sin(sin(x)^2)) - (cos(sin(x)^2)*sin(cos(x)^2) - cos(cos(x)^2)*sin(sin(x)^2))^3)*x)
sage: sin(2*x).expand_trig(times=False) sin(2*x)
sage: sin(2*x).expand_trig(times=True) 2*cos(x)*sin(x)
sage: sin(2 + x).expand_trig(plus=False) sin(x + 2)
sage: sin(2 + x).expand_trig(plus=True) cos(x)*sin(2) + cos(2)*sin(x)
sage: sin(x/2).expand_trig(half_angles=False) sin(1/2*x)
sage: sin(x/2).expand_trig(half_angles=True) (-1)^floor(1/2*x/pi)*sqrt(-1/2*cos(x) + 1/2)
\end{verbatim}

If the expression contains terms which are factored, we expand first:

\begin{verbatim}
sage: (x, k1, k2) = var('x, k1, k2')
sage: cos((k1-k2)*x).expand().expand_trig() cos(k1*x)*cos(k2*x) + sin(k1*x)*sin(k2*x)
\end{verbatim}
**ALIAS:**

*trig_expand()* and *expand_trig()* are the same

**exponentialize()**

Return this symbolic expression with all circular and hyperbolic functions replaced by their respective exponential expressions.

**EXAMPLES:**

```sage
sage: x = SR.var("x")
sage: sin(x).exponentialize()
 -1/2*I*e^(I*x) + 1/2*I*e^(-I*x)
sage: sec(x).exponentialize()
 2/(e^(I*x) + e^(-I*x))
sage: tan(x).exponentialize()
 (-I*e^(I*x) + I*e^(-I*x))/(e^(I*x) + e^(-I*x))
sage: sinh(x).exponentialize()
 -1/2*e^(-x) + 1/2*e^x
sage: sech(x).exponentialize()
 2/(e^(-x) + e^x)
sage: tanh(x).exponentialize()
 -(e^(-x) - e^x)/(e^(-x) + e^x)
```

**factor(dontfactor=None)**

Factor the expression, containing any number of variables or functions, into factors irreducible over the integers.

**INPUT:**

- **self** - a symbolic expression
- **dontfactor** - list (default: []), a list of variables with respect to which factoring is not to occur.
  Factoring also will not take place with respect to any variables which are less important (using the variable ordering assumed for CRE form) than those on the ‘dontfactor’ list.

**EXAMPLES:**

```sage
sage: x,y,z = var('x, y, z')
sage: (x^3-y^3).factor()
 (x^2 + x*y + y^2)*(x - y)
sage: factor(-8*y - 4*x + z^2*(2*y + x))
 (x + 2*y)*(z + 2)*(z - 2)
sage: f = -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2
sage: F = factor(f/(36*(1 + 2*y + y^2)), dontfactor=[x]); F
1/36*(x^2 + 2*x + 1)*(y - 1)/(y + 1)
```

If you are factoring a polynomial with rational coefficients (and dontfactor is empty) the factorization is done using Singular instead of Maxima, so the following is very fast instead of dreadfully slow:

```sage
sage: var('x,y')
(x, y)
sage: (x^99 + y^99).factor()
 (x^69 + x^57*y^3 - x^51*y^9 - x^48*y^12 + x^42*y^18 + x^39*y^21 -
 x^33*y^27 - x^30*y^30 - x^27*y^33 + x^21*y^39 + x^18*y^42 -
 x^12*y^48 - x^9*y^51 + x^3*y^57 + y^60)*(x^20 + x^19*y -
 x^17*y^3 - x^16*y^4 + x^14*y^6 + x^13*y^7 - x^11*y^9 -
```

(continues on next page)
Symbolic Calculus, Release 10.2

x^{10}y^{10} - x^{9}y^{11} + x^{7}y^{13} + x^{6}y^{14} - x^{4}y^{16} -
x^{3}y^{17} + x^{2}y^{19} + y^{20})*(x^{10} - x^{9}y + x^{8}y^{2} - x^{7}y^{3} +
x^{6}y^{4} - x^{5}y^{5} + x^{4}y^{6} - x^{3}y^{7} + x^{2}y^{8} - x*y^{9} +
y^{10})*(x^{6} - x^{3}y^{3} + y^{6})*(x^{2} - x*y + y^{2})*(x + y)

**factor_list**(dontfactor=None)

Return a list of the factors of self, as computed by the factor command.

**INPUT:**

- **self** – a symbolic expression
- **dontfactor** – see docs for **factor()**

**Note:** If you already have a factored expression and just want to get at the individual factors, use the **_factor_list** method instead.

**EXAMPLES:**

sage: var('x, y, z')
(x, y, z)

sage: f = x^3-y^3
sage: f.factor()
(x^2 + x*y + y^2)*(x - y)

Notice that the -1 factor is separated out:

sage: f.factor_list()
[(x^2 + x*y + y^2, 1), (x - y, 1)]

We factor a fairly straightforward expression:

sage: factor(-8*y - 4*x + z^2*(2*y + x)).factor_list()
[(x + 2*y, 1), (z + 2, 1), (z - 2, 1)]

A more complicated example:

sage: var('x, u, v')
(x, u, v)

sage: f = expand((2*u*v^2-v^2-4*u^3)^2 * (-u)^3 * (x-sin(x))^3)

sage: f.factor()
-(4*u^3 - 2*u*v^2 + v^2)^2*u^3*(x - sin(x))^3

sage: g = f.factor_list(); g
[(4*u^3 - 2*u*v^2 + v^2, 2), (u, 3), (x - sin(x), 3), (-1, 1)]

This function also works for quotients:

sage: f = -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2

sage: g = f/(36*(1 + 2*y + y^2)); g
1/36*(x^2*y^2 + 2*x*y^2 + x^2 - 2*x^2 + y^2 - 2*x - 1)/(y^2 + 2*y + 1)

sage: g.factor(dontfactor=[x])
1/36*(x^2 + 2*x + 1)*(y - 1)/(y + 1)

sage: g.factor_list(dontfactor=[x])
[(x^2 + 2*x + 1, 1), (y + 1, -1), (y - 1, 1), (1/36, 1)]

2.1. Symbolic Expressions 41
This example also illustrates that the exponents do not have to be integers:

```
sage: f = x^(2*sin(x)) * (x-1)^(sqrt(2)*x); f
(x - 1)^(sqrt(2)*x)*x^(2*sin(x))
sage: f.factor_list()
[(x - 1, sqrt(2)*x), (x, 2*sin(x))]
```

```
factorial

factorial_simplify()
Simplify by combining expressions with factorials, and by expanding binomials into factorials.

ALIAS: factorial_simplify and simplify_factorial are the same

EXAMPLES:

Some examples are relatively clear:

```
sage: var('n,k')
(n, k)
sage: f = factorial(n+1)/factorial(n); f
factorial(n + 1)/factorial(n)
sage: f.simplify_factorial()
n + 1
```
sage: f = factorial(n)*(n+1); f
(n + 1)*factorial(n)
sage: simplify(f)
(n + 1)*factorial(n)
sage: f.simplify_factorial()
factorial(n + 1)

sage: f = binomial(n, k)*factorial(k)*factorial(n-k); f
binomial(n, k)*factorial(k)*factorial(-k + n)
sage: f.simplify_factorial()
factorial(n)

A more complicated example, which needs further processing:

sage: f = factorial(x)/factorial(x-2)/2 + factorial(x+1)/factorial(x)/2; f
1/2*factorial(x + 1)/factorial(x) + 1/2*factorial(x)/factorial(x - 2)
sage: g = f.simplify_factorial(); g
1/2*(x - 1)*x + 1/2*x + 1/2
sage: g.simplify_rational()
1/2*x^2 + 1/2

find(pattern)
Find all occurrences of the given pattern in this expression.
Note that once a subexpression matches the pattern, the search does not extend to subexpressions of it.

EXAMPLES:

sage: var('x,y,z,a,b')
(x, y, z, a, b)
sage: w0 = SR.wild(0); w1 = SR.wild(1)
sage: (sin(x)*sin(y)).find(sin(w0))
[sin(y), sin(x)]
sage: ((sin(x)+sin(y))**(a+b)).expand().find(sin(w0))
[sin(y), sin(x)]
sage: (1+x+x^2+x^3).find(x)
[x]
sage: (1+x+x^2+x^3).find(x^w0)
[x^2, x^3]
sage: (1+x+x^2+x^3).find(y)
[]
subexpressions of a match are not listed
sage: ((x*y)^z).find(w0^w1)
[(x*y)^z]

find_local_maximum(a, b, var=None, tol=1.48e-08, maxfun=500, imaginary_tolerance=1e-08)
Numerically find a local maximum of the expression self on the interval [a,b] (or [b,a]) along with the point at which the maximum is attained.
See the documentation for find_local_minimum() for more details.
 EXAMPLES:

```
sage: f = x*cos(x)
sage: f.find_local_maximum(0,5)                       # needs scipy
(0.5610963381910451, 0.8603335890...)
sage: f.find_local_maximum(0,5, tol=0.1, maxfun=10)  # needs scipy
(0.561090323458081..., 0.857926501456...)
```

```
find_local_minimum(a, b, var=None, tol=1.48e-08, maxfun=500, imaginary_tolerance=1e-08)
```

Numerically find a local minimum of the expression self on the interval [a,b] (or [b,a]) and the point at which it attains that minimum. Note that self must be a function of (at most) one variable.

INPUT:

- a - real number; left endpoint of interval on which to minimize
- b - real number; right endpoint of interval on which to minimize
- var - variable (default: first variable in self); the variable in self to maximize over
- tol - positive real (default: 1.48e-08); the convergence tolerance
- maxfun - natural number (default: 500); maximum function evaluations
- imaginary_tolerance – (default: 1e-8); if an imaginary number arises (due, for example, to numerical issues), this tolerance specifies how large it has to be in magnitude before we raise an error. In other words, imaginary parts smaller than this are ignored when we are expecting a real answer.

OUTPUT:

A tuple (minval, x), where

- minval – float. The minimum value that self takes on in the interval [a,b].
- x – float. The point at which self takes on the minimum value.

EXAMPLES:

```
sage: # needs scipy
sage: f = x*cos(x)
sage: f.find_local_minimum(1, 5)
(-3.288371395590..., 3.4256184695...)
sage: f.find_local_minimum(1, 5, tol=1e-3)
(-3.288370845983..., 3.4250840220...)
sage: show(f.plot(0, 20))  # needs sage.plot
```

ALGORITHM:

Uses sage.numerical.optimize.find_local_minimum().

AUTHORS:

- William Stein (2007-12-07)
find_root(a, b, var=None, xtol=1e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, imaginary_tolerance=1e-08)

Numerically find a root of self on the closed interval [a,b] (or [b,a]) if possible, where self is a function in the one variable. Note: this function only works in fixed (machine) precision, it is not possible to get arbitrary precision approximations with it.

INPUT:

- a, b - endpoints of the interval
- var - optional variable
- xtol, rtol - the routine converges when a root is known to lie within xtol of the value return. Should be >= 0. The routine modifies this to take into account the relative precision of doubles.
- maxiter - integer; if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0.
- full_output - bool (default: False), if True, also return object that contains information about convergence.
- imaginary_tolerance – (default: 1e-8); if an imaginary number arises (due, for example, to numerical issues), this tolerance specifies how large it has to be in magnitude before we raise an error. In other words, imaginary parts smaller than this are ignored when we are expecting a real answer.

EXAMPLES:

Note that in this example both f(-2) and f(3) are positive, yet we still find a root in that interval:

```
sage: # needs scipy
sage: f = x^2 - 1
sage: f.find_root(-2, 3)
1.0
sage: f.find_root(-2, 3, x)
1.0
sage: z, result = f.find_root(-2, 3, full_output=True)
sage: result.converged
True
sage: result.flag
'converged'
sage: result.function_calls
11
sage: result.iterations
10
sage: result.root
1.0
```

More examples:

```
sage: (sin(x) + exp(x)).find_root(-10, 10)  # needs scipy
-0.588532743981862...
sage: sin(x).find_root(-1,1)  # needs scipy
0.0
```

This example was fixed along with github issue #4942 - there was an error in the example pi is a root for tan(x), but an asymptote to 1/tan(x) added an example to show handling of both cases.
Symbolic Calculus, Release 10.2

sage: (tan(x)).find_root(3,3.5) # needs scipy
3.1415926535...
sage: (1/tan(x)).find_root(3, 3.5) # needs scipy
Traceback (most recent call last):
... NotImplementedError: Brent's method failed to find a zero for f on the interval

An example with a square root:
sage: f = 1 + x + sqrt(x+2); f.find_root(-2,10) # needs scipy
-1.618033988749895

Some examples that Ted Kosan came up with:
sage: t = var('t')
sage: v = 0.004*(9600*e^(-(1200*t)) - 2400*e^(-(300*t)))
sage: v.find_root(0, 0.002) # needs scipy
0.001540327067911417...

With this expression, we can see there is a zero very close to the origin:
sage: a = .004*(8*e^(-(300*t)) - 8*e^(-(1200*t)))*(720000*e^(-(300*t)) - 11520000*e^(-(1200*t))) +.004*(9600*e^(-(1200*t)) - 2400*e^(-(300*t)))^2
sage: show(plot(a, 0, .002), xmin=0, xmax=.002) # needs sage.plot

It is easy to approximate with find_root:
sage: a.find_root(0,0.002) # needs scipy
0.000411051404934985

Using solve takes more effort, and even then gives only a solution with free (integer) variables:
sage: a.solve(t)
[]
sage: b = a.canonicalize_radical(); b
(46080.0*e^(1800*t) - 576000.0*e^(900*t) + 737280.0)*e^(-2400*t)
sage: b.solve(t)
[]
sage: b.solve(t, to_poly_solve=True)
[t == 1/450*I*pi*z... + 1/900*log(-3/4*sqrt(41) + 25/4),
 t == 1/450*I*pi*z... + 1/900*log(3/4*sqrt(41) + 25/4)]
sage: n(1/900*log(-3/4*sqrt(41) + 25/4))
0.000411051404934985

We illustrate that root finding is only implemented in one dimension:
sage: x, y = var('x,y')
sage: (x-y).find_root(-2,2)
forget()

Forget the given constraint.

EXAMPLES:

```python
sage: var('x,y')
(x, y)
sage: forget()
sage: assume(x>0, y < 2)
sage: assumptions()
[x > 0, y < 2]
sage: forget(y < 2)
sage: assumptions()
[x > 0]
```

fraction(base_ring)

Return this expression as element of the algebraic fraction field over the base ring given.

EXAMPLES:

```python
sage: fr = (1/x).fraction(ZZ); fr
1/x
```

```python
sage: parent(fr)
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
```

```python
sage: parent(((pi+sqrt(2))/x).fraction(SR))
Fraction Field of Univariate Polynomial Ring in x over Symbolic Ring
```

```python
sage: y = var('y')
sage: fr = ((3*x^5 - 5*y^5)^7/(x*y)).fraction(GF(7)); fr
(3*x^35 + 2*y^35)/(x*y)
sage: parent(fr)
Fraction Field of Multivariate Polynomial Ring in x, y over Finite Field of size 7
```

free_variables()

Return sorted tuple of unbound variables that occur in this expression.

EXAMPLES:

```python
sage: (x,y,z) = var('x,y,z')
sage: (x+y).free_variables()
(x, y)
sage: (2*x).free_variables()
(x,)
sage: (x*y).free_variables()
(x, y)
sage: sin(x*y*z).free_variables()
(x, y, z)
```
Symbolic Calculus, Release 10.2

(sage: _ = function('f')
(sage: e = limit(f(x,y), x=0); e
limit(f(x, y), x, 0)
(sage: e.free_variables()
(y,)

full_simplify()
Applying simplify_factorial(), simplify_rectform(), simplify_trig(),
simplify_rational(), and then expand_sum() to self (in that order).
ALIAS: simplify_full and full_simplify are the same.
EXAMPLES:

(sage: f = sin(x)^2 + cos(x)^2
(sage: f.simplify_full()
1

(sage: f = sin(x/(x^2 + x))
(sage: f.simplify_full()
sin(1/(x + 1))

(sage: var('n,k')
(n, k)
(sage: f = binomial(n,k)*factorial(k)*factorial(n-k)
(sage: f.simplify_full()
factorial(n)

function(*args)
Return a callable symbolic expression with the given variables.
EXAMPLES:

We will use several symbolic variables in the examples below:

(sage: var('x, y, z, t, a, w, n')
(x, y, z, t, a, w, n)

(sage: u = sin(x) + x*cos(y)
(sage: g = u.function(x,y)
(sage: g(x,y)
x*cos(y) + sin(x)
(sage: g(t,z)
t*cos(z) + sin(t)
(sage: g(x^2, x*y)
x^2*cos(x*y) + sin(x^2)

(sage: f = (x^2 + sin(a*w)).function(a,x,w); f
(a, x, w) |--> x^2 + sin(a*w)
(sage: f(1,2,3)
sin(3) + 4

Using the function() method we can obtain the above function f, but viewed as a function of different variables:
Symbolic Calculus, Release 10.2

```python
sage: h = f.function(w,a); h
(w, a) |--> x^2 + sin(a*w)
```

This notation also works:

```python
sage: h(w,a) = f
sage: h
(w, a) |--> x^2 + sin(a*w)
```

You can even make a symbolic expression \(f\) into a function by writing \(f(x,y) = f:\)

```python
sage: f = x^n + y^n; f
x^n + y^n
sage: f(x,y) = f
sage: f
(x, y) |--> x^n + y^n
sage: f(2,3)
3^n + 2^n
```

gamma(hold=False)

Return the Gamma function evaluated at self.

EXAMPLES:

```python
sage: x = var('x')
sage: x.gamma()  # For ARM: rel tol 2e-15
gamma(x)
sage: SR(2).gamma()  # For ARM: rel tol 2e-15
1
sage: SR(10).gamma()
362880
sage: SR(10.0r).gamma()  # For ARM: rel tol 2e-15
362880.0
sage: SR(CDF(1,1)).gamma()
0.49801566811835607 - 0.15494982830181067*I
sage: gp('gamma(1+I)')
0.4980156681183560427136911175 - 0.1549498283018106851249551304838660520*I  # 64-bit
```

We plot the familiar plot of this log-convex function:

```python
sage: plot(gamma(x), -6, 4).show(ymin=-3, ymax=3)  # needs sage.plot
```

To prevent automatic evaluation use the hold argument:

```python
sage: SR(1/2).gamma()  # needs sage.plot
sqrt(pi)
sage: SR(1/2).gamma(hold=True)
gamma(1/2)
```

This also works using functional notation:
To then evaluate again, we use \texttt{unhold()}:}

\begin{verbatim}
 sage: a = SR(1/2).gamma(hold=True); a.unhold()
sqrt(pi)
\end{verbatim}

\textbf{gamma_normalize()}

Return the expression with any gamma functions that have a common base converted to that base.

Additionally the expression is normalized so any fractions can be simplified through cancellation.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: m,n = var('m n', domain='integer')
 sage: (gamma(n+2)/gamma(n)).gamma_normalize()
 (n + 1)*n
 sage: (gamma(n+2)*gamma(n)).gamma_normalize()
 (n + 1)*n^2*gamma(n)^2
 sage: (gamma(n+2)*gamma(m-1)/gamma(n)/gamma(m+1)).gamma_normalize()
 (n + 1)/(n - 1)*m)
\end{verbatim}

Check that \texttt{github issue \#22826} is fixed:

\begin{verbatim}
 sage: _ = var('n')
 sage: (n-1).gcd(n+1)
 1
 sage: ex = (n-1)^2*gamma(2*n+5)/gamma(n+3) + gamma(2*n+3)/gamma(n+1)
 sage: ex.gamma_normalize()
 (4*n^3 - 2*n^2 - 7*n + 7)*gamma(2*n + 3)/((n + 1)*gamma(n + 1))
\end{verbatim}

\textbf{gcd(b)}

Return the symbolic gcd of \texttt{self} and \texttt{b}.

Note that the polynomial GCD is unique up to the multiplication by an invertible constant. The following examples make sure all results are caught.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: var('x,y')
 (x, y)
 sage: SR(10).gcd(SR(15))
 5
 sage: (x^3 - 1).gcd(x-1) / (x-1) in QQ
 True
 sage: (x^3 - 1).gcd(x^2+x+1) / (x^2+x+1) in QQ
 True
 sage: (x^3 - x^2*pi + x^2 - pi^2).gcd(x-pi) / (x-pi) in QQ
 True
 sage: gcd(sin(x)^2 + sin(x), sin(x)^2 - 1) / (sin(x) + 1) in QQ
 True
 sage: gcd(x^3 - y^3, -x-y) / (-x-y) in QQ
\end{verbatim}

(continues on next page)
True

```sage
gcd(x^100-y^100, x^10-y^10) / (x^10-y^10) in QQ
True
```

```sage
r = gcd(expand( (x^2+17*x+3/7*y)*(x^5 - 17*y + 2/3) ), expand((x^5 - 17*y + 2/3)) )
esage: r / (x^5 - 17*y + 2/3) in QQ
```

True

Embedded Sage objects of all kinds get basic support. Note that full algebraic GCD is not implemented yet:

```sage
gcd(I - I*x, x^2 - 1)
x - 1
sage: gcd(I + I*x, x^2 - 1)
x + 1
esage: alg = SR(QQbar(sqrt(2) + I*sqrt(3)))
esage: gcd(alg + alg*x, x^2 - 1)  # known bug (trac #28489)
x + 1
esage: gcd(alg - alg*x, x^2 - 1)  # known bug (trac #28489)
x - 1
esage: sqrt2 = SR(QQbar(sqrt(2)))
esage: gcd(sqrt2 + x, x^2 - 2)  # known bug
1
```

```
gosper_sum(*args)

Return the summation of this hypergeometric expression using Gosper’s algorithm.

INPUT:

- a symbolic expression that may contain rational functions, powers, factorials, gamma function terms, binomial coefficients, and Pochhammer symbols that are rational-linear in their arguments
- the main variable and, optionally, summation limits

EXAMPLES:

```sage
a,b,k,m,n = var('a b k m n')
esage: SR(1).gosper_sum(n)
n
sage: SR(1).gosper_sum(n,5,8)
4
sage: n.gosper_sum(n)
1/2*(n - 1)*n
sage: n.gosper_sum(n,0,5)
15
sage: n.gosper_sum(n,0,m)
1/2*(m + 1)*m
sage: n.gosper_sum(n,a,b)
-1/2*(a + b)*(a - b - 1)
```

```sage
(factorial(m + n)/factorial(n)).gosper_sum(n)
```

(continues on next page)
Symbolic Calculus, Release 10.2

\begin{verbatim}
sage: (binomial(m + n, n)).gosper_sum(n, 0, a)
  (a + m + 1)*binomial(a + m, a)/(m + 1)
sage: (binomial(m + n, n)).gosper_sum(n, 0, 5)
  1/120*(m + 6)*(m + 5)*(m + 4)*(m + 3)*(m + 2)
sage: (rising_factorial(a,n)/rising_factorial(b,n)).gosper_sum(n)
  (b + n - 1)*gamma(a + n)*gamma(b)/((a - b + 1)*gamma(a)*gamma(b + n))
sage: factorial(n).gosper_term(n)
  Traceback (most recent call last):
  ...
  ValueError: expression not Gosper-summable
\end{verbatim}

\textbf{gosper\_term} \((n)\)

Return Gosper’s hypergeometric term for \texttt{self}.

Suppose \(f = \texttt{self}\) is a hypergeometric term such that:

\[
s_n = \sum_{k=0}^{n-1} f_k
\]

and \(f_k\) doesn’t depend on \(n\). Return a hypergeometric term \(g_n\) such that \(g_{n+1} - g_n = f_n\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: _ = var('n')
sage: SR(1).gosper_term(n)
n
sage: n.gosper_term(n)
1/2*(n^2 - n)/n
sage: (n*factorial(n)).gosper_term(n)
1/n
sage: factorial(n).gosper_term(n)
  Traceback (most recent call last):
  ...
  ValueError: expression not Gosper-summable
\end{verbatim}

\textbf{gradient} \((\text{variables}=\text{None})\)

Compute the gradient of a symbolic function.

This function returns a vector whose components are the derivatives of the original function with respect to the arguments of the original function. Alternatively, you can specify the variables as a list.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: x,y = var('x y')
sage: f = x^2+y^2
sage: f.gradient()
  (2*x, 2*y)
sage: g(x,y) = x^2+y^2
sage: g.gradient()
  (x, y) |--> (2*x, 2*y)
sage: n = var('n')
sage: f(x,y) = x^n*y^n
sage: f.gradient()
  (x, y) |--> (n*x^(n - 1), n*y^(n - 1))
\end{verbatim}

(continues on next page)
sage: f.gradient([y,x])
(x, y) |--> (n*y^(n - 1), n*x^(n - 1))

See also: gradient() of scalar fields on Euclidean spaces (and more generally pseudo-Riemannian manifolds), in particular for computing the gradient in curvilinear coordinates.

**has(pattern)**

EXAMPLES:

sage: var('x,y,a'); w0 = SR.wild(); w1 = SR.wild()
(x, y, a)
sage: (x*sin(x + y + 2*a)).has(y)
True

Here “x+y” is not a subexpression of “x+y+2*a” (which has the subexpressions “x”, “y” and “2*a”):

sage: (x*sin(x + y + 2*a)).has(x+y)
False
sage: (x*sin(x + y + 2*a)).has(x + y + w0)
True

The following fails because “2*(x+y)” automatically gets converted to “2*x+2*y” of which “x+y” is not a subexpression:

sage: (x*sin(2*(x+y) + 2*a)).has(x+y)
False

Although x^1==x and x^0==1, neither “x” nor “1” are actually of the form “x^something”:

sage: (x+1).has(x^w0)
False

Here is another possible pitfall, where the first expression matches because the term “-x” has the form “(-1)*x” in GiNaC. To check whether a polynomial contains a linear term you should use the coefficient() function instead.

sage: (4*x^2 - x + 3).has(w0*x)
True
sage: (4*x^2 + x + 3).has(w0*x)
False
sage: (4*x^2 + x + 3).has(x)
True
sage: (4*x^2 - x + 3).coefficient(x,1)
-1
sage: (4*x^2 + x + 3).coefficient(x,1)
1

**has_wild()**

Return True if this expression contains a wildcard.

EXAMPLES:
Symbolic Calculus, Release 10.2

```python
sage: (1 + x^2).has_wild()
False
sage: (SR.wild(0) + x^2).has_wild()
True
sage: SR.wild(0).has_wild()
True
```

**hessian()**

Compute the hessian of a function. This returns a matrix components are the 2nd partial derivatives of the original function.

**EXAMPLES:**

```python
sage: x, y = var('x y')
sage: f = x^2 + y^2
sage: f.hessian()
[2 0]
[0 2]
sage: g(x, y) = x^2 + y^2
sage: g.hessian()
[(x, y) |--> 2 (x, y) |--> 0]
[(x, y) |--> 0 (x, y) |--> 2]
```

**horner(x)**

Rewrite this expression as a polynomial in Horner form in x.

**EXAMPLES:**

```python
sage: add((i+1)*x^i for i in range(5)).horner(x)
(((5*x + 4)*x + 3)*x + 2)*x + 1
sage: x, y, z = SR.var('x,y,z')
sage: (x^5 + y*cos(x) + z^3 + (x + y)^2 + y^x).horner(x)
z^3 + ((x^3 + 1)*x + 2*y)*x + y^2 + y*cos(x) + y^x
```

**hypergeometric_simplify(algorithm='maxima')**

Simplify an expression containing hypergeometric or confluent hypergeometric functions.

**INPUT:**

- algorithm – (default: 'maxima') the algorithm to use for for simplification. Implemented are 'maxima', which uses Maxima's hgfred function, and 'sage', which uses an algorithm implemented in the hypergeometric module

**ALIASES:** `hypergeometric_simplify()` and `simplify_hypergeometric()` are the same

**EXAMPLES:**
Symbolic Calculus, Release 10.2

\begin{verbatim}
sage: hypergeometric((5, 4), (4, 1, 2, 3), x).simplify_hypergeometric()
1/144*x^2*hypergeometric(((), (3, 4), x) +
1/3*x*hypergeometric(((), (2, 3), x) + hypergeometric(((), (1, 2), x))
sage: (2*hypergeometric(((), ()), x)).simplify_hypergeometric()
2*e^x
sage: (nest(lambda y: hypergeometric([y], [1], x), 3, 1) # not tested, unstable
....: .simplify_hypergeometric())
laguerre(-laguerre(-e^x, x), x)
sage: (nest(lambda y: hypergeometric([y], [1], x), 3, 1) # not tested, unstable
....: .simplify_hypergeometric(algorithm='sage'))
hypergeometric((hypergeometric((e^x,), (1,), x),), (1,), x)
sage: hypergeometric_M(1, 3, x).simplify_hypergeometric()
-2*((x + 1)*e^(-x) - 1)*e^x/x^2
sage: (2 * hypergeometric_U(1, 3, x)).simplify_hypergeometric()
2*(x + 1)/x^2
\end{verbatim}

\textbf{imag}(\texttt{hold=False})

Return the imaginary part of this symbolic expression.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: sqrt(-2).imag_part()
sqrt(2)
sage: log(exp(z)).simplify()
z
sage: forget()
sage: var('a, b')
(a, b)
sage: f = log(a + b*I)
sage: f.imag_part()
arctan2(imag_part(a) + real_part(b), -imag_part(b) + real_part(a))
\end{verbatim}

Using the \texttt{hold} parameter it is possible to prevent automatic evaluation:

\begin{verbatim}
sage: SR(I).imag_part()
1
sage: SR(I).imag_part(hold=True)
imag_part(I)
\end{verbatim}

This also works using functional notation:

2.1. Symbolic Expressions 55
Symbolic Calculus, Release 10.2

\begin{verbatim}
\begin{verbatim}
sage: imag_part(I, hold=True)
imag_part(I)
sage: imag_part(SR(I))
1
To then evaluate again, we use \texttt{unhold()}:

\begin{verbatim}
sage: a = SR(I).imag_part(hold=True); a.unhold()
1
\end{verbatim}
\end{verbatim}

\texttt{imag_part(hold=False)}

Return the imaginary part of this symbolic expression.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: sqrt(-2).imag_part()
sqrt(2)
\end{verbatim}

We simplify \(\ln(\exp(z))\) to \(z\). This should only be for \(-\pi < \text{Im}(z) <= \pi\), but Maxima does not have a symbolic imaginary part function, so we cannot use \texttt{assume} to assume that first:

\begin{verbatim}
sage: var('z')
sage: f = log(exp(z))
sage: f
log(e^z)
sage: f.simplify()
z
sage: forget()
\end{verbatim}

A more symbolic example:

\begin{verbatim}
sage: var('a, b')
(a, b)
sage: f = log(a + b*I)
sage: f.imag_part()
arctan2(imag_part(a) + real_part(b), -imag_part(b) + real_part(a))
\end{verbatim}

Using the \texttt{hold} parameter it is possible to prevent automatic evaluation:

\begin{verbatim}
sage: SR(I).imag_part()
1
sage: SR(I).imag_part(hold=True)
imag_part(I)
\end{verbatim}

This also works using functional notation:

\begin{verbatim}
sage: imag_part(I, hold=True)
imag_part(I)
sage: imag_part(SR(I))
1
\end{verbatim}

To then evaluate again, we use \texttt{unhold()}:

\begin{verbatim}
sage: a = SR(I).imag_part(hold=True); a.unhold()
1
\end{verbatim}
\end{verbatim}

Chapter 2. Internal functionality supporting calculus
**implicit_derivative**(Y, X, n=1)

Return the \(n\)-th derivative of \(Y\) with respect to \(X\) given implicitly by this expression.

**INPUT:**

- \(Y\) – The dependent variable of the implicit expression.
- \(X\) – The independent variable with respect to which the derivative is taken.
- \(n\) – (default: 1) the order of the derivative.

**EXAMPLES:**

```python
sage: var('x, y')
(x, y)
sage: f = cos(x)*sin(y)
sage: f.implicit_derivative(y, x)
sin(x)*sin(y)/(cos(x)*cos(y))
sage: g = x*y^2
sage: g.implicit_derivative(y, x, 3)
-1/4*(y + 2*y/x)/x^2 + 1/4*(2*y^2/x - y^2/x^2)/(x*y) - 3/4*y/x^3
```

It is an error to not include an independent variable term in the expression:

```python
sage: (cos(x)*sin(x)).implicit_derivative(y, x)
Traceback (most recent call last):
 ... ValueError: Expression cos(x)*sin(x) contains no y terms
```

**integral**(*args, **kwargs)

Compute the integral of self.

Please see `sage.symbolic.integration.integral.integrate()` for more details.

**EXAMPLES:**

```python
sage: sin(x).integral(x,0,3)
-cos(3) + 1
sage: sin(x).integral(x)
-cos(x)
```

**integrate**(*args, **kwargs)

Compute the integral of self.

Please see `sage.symbolic.integration.integral.integrate()` for more details.

**EXAMPLES:**

```python
sage: sin(x).integral(x,0,3)
-cos(3) + 1
sage: sin(x).integral(x)
-cos(x)
```

**inverse_laplace**(t, s)

Return inverse Laplace transform of self.

See `sage.calculus.calculus.inverse_laplace`

**EXAMPLES:**
```
sage: var('w, m')
(w, m)
sage: f = (1/(w^2+10)).inverse_laplace(w, m); f
1/10*sqrt(10)*sin(sqrt(10)*m)
```

**is_algebraic()**

Return True if this expression is known to be algebraic.

**EXAMPLES:**

```
sage: sqrt(2).is_algebraic()
True
sage: (5*sqrt(2)).is_algebraic()
True
sage: (sqrt(2) + 2^(1/3) - 1).is_algebraic()
True
sage: (I*golden_ratio + sqrt(2)).is_algebraic()
True
sage: (sqrt(2) + pi).is_algebraic()
False
sage: SR(QQ(2/3)).is_algebraic()
True
sage: SR(1.2).is_algebraic()
False
sage: complex_root_of(x^3 - x^2 - x - 1, 0).is_algebraic()
True
```

**is_callable()**

Return True if self is a callable symbolic expression.

**EXAMPLES:**

```
sage: var('a x y z')
(a, x, y, z)
sage: f(x, y) = a + 2*x + 3*y + z
sage: f.is_callable()
True
sage: (a+2*x).is_callable()
False
```

**is_constant()**

Return whether this symbolic expression is a constant.

A symbolic expression is constant if it does not contain any variables.

**EXAMPLES:**

```
sage: pi.is_constant()
True
sage: SR(1).is_constant()
True
sage: SR(2).is_constant()
True
sage: log(2).is_constant()
```

(continues on next page)
is_exact()  
Return True if this expression only contains exact numerical coefficients.

EXAMPLES:

```python
sage: x, y = var('x, y')
sage: (x+y-1).is_exact()
True
sage: (x+y-1.9).is_exact()
False
sage: x.is_exact()
True
sage: pi.is_exact()
True
sage: (sqrt(x-y) - 2*x + 1).is_exact()
True
sage: ((x-y)^0.5 - 2*x + 1).is_exact()
False
```

is_infinity()  
Return True if self is an infinite expression.

EXAMPLES:

```python
sage: SR(oo).is_infinity()
True
sage: x.is_infinity()
False
```

is_integer()  
Return True if this expression is known to be an integer.

EXAMPLES:

```python
sage: SR(5).is_integer()
True
```

is_negative()  
Return True if this expression is known to be negative.

EXAMPLES:

```python
sage: SR(-5).is_negative()
True
```

Check if we can correctly deduce negativity of mul objects:
Symbolic Calculus, Release 10.2

```python
sage: t0 = SR.symbol("t0", domain='positive')
sage: t0.is_negative()
False
sage: (-t0).is_negative()
True
sage: (-pi).is_negative()
True
```

Assumptions on symbols are handled correctly:

```python
sage: y = var('y')
sage: assume(y < 0)
sage: y.is_positive()
False
sage: y.is_negative()
True
sage: forget()
```

**is_negative_infinity()**

Return True if self is a negative infinite expression.

EXAMPLES:

```python
sage: SR(oo).is_negative_infinity()
False
sage: SR(-oo).is_negative_infinity()
True
sage: x.is_negative_infinity()
False
```

**is_numeric()**

A Pynac numeric is an object you can do arithmetic with that is not a symbolic variable, function, or constant. Return True if this expression only consists of a numeric object.

EXAMPLES:

```python
sage: SR(1).is_numeric()
True
sage: x.is_numeric()
False
sage: pi.is_numeric()
False
sage: sin(x).is_numeric()
False
```

**is_polynomial(var)**

Return True if self is a polynomial in the given variable.

EXAMPLES:

```python
sage: var('x,y,z')
(x, y, z)
sage: t = x^2 + y; t
x^2 + y
```
```plaintext
sage: t.is_polynomial(x)
True
sage: t.is_polynomial(y)
True
sage: t.is_polynomial(z)
True

sage: t = sin(x) + y; t
y + sin(x)
sage: t.is_polynomial(x)
False
sage: t.is_polynomial(y)
True
sage: t.is_polynomial(sin(x))
True

```

**is_positive()**

Return True if this expression is known to be positive.

**EXAMPLES:**

```plaintext
sage: t0 = SR.symbol("t0", domain='positive')
sage: t0.is_positive()
True
sage: t0.is_negative()
False
sage: t0.is_real()
True

sage: t1 = SR.symbol("t1", domain='positive')
sage: (t0*t1).is_positive()
True
sage: (t0 + t1).is_positive()
True
sage: (t0*x).is_positive()
False

sage: forget()
sage: assume(x>0)
sage: x.is_positive()
True
sage: cosh(x).is_positive()
True

sage: f = function('f')(x)
sage: assume(f>0)
sage: f.is_positive()
True

sage: forget()
```

**is_positive_infinity()**

Return True if self is a positive infinite expression.

**EXAMPLES:**

```plaintext

```
Symbolic Calculus, Release 10.2

```python
sage: SR(oo).is_positive_infinity()
True
sage: SR(-oo).is_positive_infinity()
False
sage: x.is_infinity()
False
```

**is_rational_expression()**

Return True if this expression if a rational expression, i.e., a quotient of polynomials.

**EXAMPLES:**

```python
sage: var('x y z')
(x, y, z)
sage: ((x + y + z)/(1 + x^2)).is_rational_expression()
True
sage: ((1 + x + y)^10).is_rational_expression()
True
sage: ((1/x + z)^5 - 1).is_rational_expression()
True
sage: (1/(x + y)).is_rational_expression()
True
sage: (exp(x) + 1).is_rational_expression()
False
sage: (sin(x*y) + z^3).is_rational_expression()
False
sage: (exp(x) + exp(-x)).is_rational_expression()
False
```

**is_real()**

Return True if this expression is known to be a real number.

**EXAMPLES:**

```python
sage: t0 = SR.symbol("t0", domain='real')
sage: t0.is_real()
True
sage: t0.is_positive()
False
sage: t1 = SR.symbol("t1", domain='positive')
sage: (t0+t1).is_real()
True
sage: (t0+x).is_real()
False
sage: (t0*t1).is_real()
True
sage: t2 = SR.symbol("t2", domain='positive')
sage: (t1^t2).is_real()
True
sage: (t0*x).is_real()
False
sage: (t0^t1).is_real()
False
sage: (t1^t2).is_real()
```

(continues on next page)
True
\texttt{sage: \gamma(\pi).is_real()}
True
\texttt{sage: \cosh(-3).is_real()}
True
\texttt{sage: \cos(\exp(-3) + \log(2)).is_real()}
True
\texttt{sage: \gamma(t1).is_real()}
True
\texttt{sage: \left(x^\pi\right).is_real()}
False
\texttt{sage: \left(\cos(\exp(t0) + \log(t1))^8\right).is_real()}
True
\texttt{sage: \cos(I + 1).is_real()}
False
\texttt{sage: \sin(2 - I).is_real()}
False
\texttt{sage: \left(2^t0\right).is_real()}
True

The following is real, but we cannot deduce that:
\texttt{sage: \left(x^*x.conjugate()\right).is_real()}
False

Assumption of real has the same effect as setting the domain:
\texttt{sage: \text{forget()}}
\texttt{sage: \text{assume(x, 'real')}}
\texttt{sage: x.is_real()}
True
\texttt{sage: \cosh(x).is_real()}
True
\texttt{sage: \text{forget()}}

The real domain is also set with the integer domain:
\texttt{sage: \text{SR.var('x', domain='integer').is_real()}}
True

\textbf{is\_relational()}

Return \texttt{True} if \texttt{self} is a relational expression.

\textbf{EXAMPLES:}

\texttt{sage: x = var('x')}
\texttt{sage: eqn = (x-1)^2 == x^2 - 2*x + 3}
\texttt{sage: eqn.is\_relational()}
True
\texttt{sage: \sin(x).is\_relational()}
False

\textbf{is\_square()}

Return \texttt{True} if \texttt{self} is the square of another symbolic expression.
This is True for all constant, non-relational expressions (containing no variables or comparison), and not implemented otherwise.

EXAMPLES:

```python
sage: SR(4).is_square()
True
sage: SR(5).is_square()
True
sage: pi.is_square()
True
sage: x.is_square()
Traceback (most recent call last):
 ... Not ImplementedError: is_square() not implemented for non-constant or relational elements of Symbolic Ring
```

is_symbol()

Return True if this symbolic expression consists of only a symbol, i.e., a symbolic variable.

EXAMPLES:

```python
sage: x.is_symbol()
True
sage: var('y')
y
sage: y.is_symbol()
True
sage: (x*y).is_symbol()
False
sage: pi.is_symbol()
False

sage: ((x*y)/y).is_symbol()
True
sage: (x*y).is_symbol()
False
```

is_terminating_series()

Return True if self is a series without order term.

A series is terminating if it can be represented exactly, without requiring an order term. You can explicitly request terminating series by setting the order to positive infinity.

OUTPUT:

Boolean. Whether self was constructed by `series()` and has no order term.

EXAMPLES:
is_trivial_zero()  
Check if this expression is trivially equal to zero without any simplification.

This method is intended to be used in library code where trying to obtain a mathematically correct result by applying potentially expensive rewrite rules is not desirable.

EXAMPLES:

```python
sage: SR(0).is_trivial_zero()
True
sage: SR(0.0).is_trivial_zero()
True
sage: SR(float(0.0)).is_trivial_zero()
True
sage: (SR(1)/2^1000).is_trivial_zero()
False
sage: SR(1./2^10000).is_trivial_zero()
False
```

The is_zero() method is more capable:

```python
sage: t = pi + (pi - 1)*pi - pi^2
sage: t.is_trivial_zero()
False
sage: t.is_zero()
True
sage: t = pi + x*pi + (pi - 1 - x)*pi - pi^2
sage: t.is_trivial_zero()
False
sage: t.is_zero()
True
sage: u = sin(x)^2 + cos(x)^2 - 1
sage: u.is_trivial_zero()
False
sage: u.is_zero()
True
```

is_trivially_equal(other)  
Check if this expression is trivially equal to the argument expression, without any simplification.

Note that the expressions may still be subject to immediate evaluation.

This method is intended to be used in library code where trying to obtain a mathematically correct result by applying potentially expensive rewrite rules is not desirable.
EXAMPLES:

```
sage: (x^2).is_trivially_equal(x^2)
True
sage: ((x+1)^2 - 2*x - 1).is_trivially_equal(x^2)
False
sage: (x*(x+1)).is_trivially_equal((x+1)*x)
True
sage: (x^2 + x).is_trivially_equal((x+1)*x)
False
sage: ((x+1)*(x+1)).is_trivially_equal((x+1)^2)
True
sage: (x^2 + 2*x + 1).is_trivially_equal((x+1)^2)
False
sage: (x^-1).is_trivially_equal(1/x)
True
sage: (x/x^2).is_trivially_equal(1/x)
True
sage: ((x^2+x) / (x+1)).is_trivially_equal(1/x)
False
```

**is_unit()**

Return True if this expression is a unit of the symbolic ring.

Note that a proof may be attempted to get the result. To avoid this use (ex-1).is_trivial_zero().

EXAMPLES:

```
sage: SR(1).is_unit()
True
sage: SR(-1).is_unit()
True
sage: SR(0).is_unit()
False
```

**iterator()**

Return an iterator over the operands of this expression.

EXAMPLES:

```
sage: x,y,z = var('x,y,z')
sage: list((x+y+z).iterator())
[x, y, z]
sage: list((x*y*z).iterator())
[x, y, z]
sage: list((x*y*z*(x+y)).iterator())
[x + y, x*y, z]
```

Note that symbols, constants and numeric objects do not have operands, so the iterator function raises an error in these cases:

```
sage: x.iterator()
Traceback (most recent call last):
... ValueError: expressions containing only a numeric coefficient,
```
constant or symbol have no operands

sage: pi.iterator()
Traceback (most recent call last):
...
ValueError: expressions containing only a numeric coefficient, constant or symbol have no operands

sage: SR(5).iterator()
Traceback (most recent call last):
...
ValueError: expressions containing only a numeric coefficient, constant or symbol have no operands

**laplace**(t, s)

Return Laplace transform of self.

See *sage.calculus.calculus.laplace*

**EXAMPLES:**

sage: var('x,s,z')
(x, s, z)

sage: (z + exp(x)).laplace(x, s)
z/s + 1/(s - 1)

**laurent_polynomial**(base_ring=None, ring=None)

Return this symbolic expression as a Laurent polynomial over the given base ring, if possible.

**INPUT:**

- **base_ring** - (optional) the base ring for the polynomial
- **ring** - (optional) the parent for the polynomial

You can specify either the base ring (**base_ring**) you want the output Laurent polynomial to be over, or you can specify the full laurent polynomial ring (**ring**) you want the output laurent polynomial to be an element of.

**EXAMPLES:**

sage: f = x^2 -2/3/x + 1
sage: f.laurent_polynomial(QQ)
-2/3*x^-1 + 1 + x^2
sage: f.laurent_polynomial(GF(19))
12*x^-1 + 1 + x^2

**lcm**(b)

Return the lcm of self and b.

The lcm is computed from the gcd of self and b implicitly from the relation self * b = gcd(self, b) * lcm(self, b).

**Note:** In agreement with the convention in use for integers, if self * b == 0, then gcd(self, b) == max(self, b) and lcm(self, b) == 0.
Note: Since the polynomial lcm is computed from the gcd, and the polynomial gcd is unique up to a constant factor (which can be negative), the polynomial lcm is unique up to a factor of -1.

EXAMPLES:

```
sage: var('x,y')
(x, y)
sage: SR(10).lcm(SR(15))
30
sage: (x^3 - 1).lcm(x-1)
x^3 - 1
sage: (x^3 - 1).lcm(x^2+x+1)
x^3 - 1
sage: (x^3 - sage.symbolic.constants.pi).lcm(x-sage.symbolic.constants.pi)
(pi - x^3)*(pi - x)
sage: lcm(x^3 - y^3, x-y) / (x^3 - y^3) in [1,-1]
True
sage: lcm(x^100-y^100, x^10-y^10) / (x^100 - y^100) in [1,-1]
True
sage: a = expand((x^2+17*x+3/7*y)*(x^5 - 17*y + 2/3))
sage: b = expand((x^13+17*x+3/7*y)*(x^5 - 17*y + 2/3))
sage: gcd(a,b) * lcm(a,b) / (a * b) in [1,-1]
True
```

The result is not automatically simplified:

```
sage: ex = lcm(sin(x)^2 - 1, sin(x)^2 + sin(x)); ex
(sin(x)^2 + sin(x))*(sin(x)^2 - 1)/(sin(x) + 1)
sage: ex.simplify_full()
sin(x)^3 - sin(x)
```

**leading_coeff(s)**

Return the leading coefficient of s in self.

EXAMPLES:

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + x/y + 2*sin(x*y)/x + 100
sage: f.leading_coefficient(x)
sin(x*y)
sage: f.leading_coefficient(y)
x
sage: f.leading_coefficient(sin(x*y))
x^3 + 2/x
```

**leading_coefficient(s)**

Return the leading coefficient of s in self.

EXAMPLES:
Symbolic Calculus, Release 10.2

```python
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + x/y + 2*sin(x*y)/x + 100
sage: f.leading_coefficient(x)
sin(x*y)
sage: f.leading_coefficient(y)
x
sage: f.leading_coefficient(sin(x*y))
x^3 + 2/x
```

**left()**

If `self` is a relational expression, return the left hand side of the relation. Otherwise, raise a `ValueError`.

**EXAMPLES:**

```python
sage: x = var('x')
sage: eqn = (x-1)^2 == x^2 - 2*x + 3
sage: eqn.left_hand_side()
(x - 1)^2
sage: eqn.lhs()
(x - 1)^2
sage: eqn.left()
(x - 1)^2
```

**left_hand_side()**

If `self` is a relational expression, return the left hand side of the relation. Otherwise, raise a `ValueError`.

**EXAMPLES:**

```python
sage: x = var('x')
sage: eqn = (x-1)^2 == x^2 - 2*x + 3
sage: eqn.left_hand_side()
(x - 1)^2
sage: eqn.lhs()
(x - 1)^2
sage: eqn.left()
(x - 1)^2
```

**lhs()**

If `self` is a relational expression, return the left hand side of the relation. Otherwise, raise a `ValueError`.

**EXAMPLES:**

```python
sage: x = var('x')
sage: eqn = (x-1)^2 == x^2 - 2*x + 3
sage: eqn.left_hand_side()
(x - 1)^2
sage: eqn.lhs()
(x - 1)^2
sage: eqn.left()
(x - 1)^2
```

**limit(*args, **kwds)**

Return a symbolic limit.
See `sage.calculus.calculus.limit`.

**EXAMPLES:**

```python
sage: (sin(x)/x).limit(x=0)
1
```

**list**(x=None)

Return the coefficients of this symbolic expression as a polynomial in x.

**INPUT:**

- x – optional variable.

**OUTPUT:**

A list of expressions where the n-th element is the coefficient of x^n when self is seen as polynomial in x.

**EXAMPLES:**

```python
sage: var('x, y, a')
(x, y, a)
sage: (x^5).list()
[0, 0, 0, 0, 0, 1]
sage: p = x - x^3 + 5/7*x^5
sage: p.list()
[0, 1, 0, -1, 0, 5/7]
sage: p = expand((x-a*sqrt(2))^2 + x + 1); p
-x^2 + 2*a*x + 2*a^2 + x + 1
sage: p.list(a)
[x^2 + x + 1, -2*sqrt(2)*x, 2]
sage: s = (1/(1-x)).series(x,6); s
1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 + Order(x^6)
sage: s.list()
[1, 1, 1, 1, 1, 1]
```

**log**(b=None, hold=False)

Return the logarithm of self.

**EXAMPLES:**

```python
sage: x, y = var('x, y')
sage: x.log()
log(x)
sage: (x*y + y*x).log()
log(x*y + y*x)
sage: SR(0).log()
Infinity
sage: SR(-1).log()
I*pi
sage: SR(1).log()
0
sage: SR(1/2).log()
log(1/2)
sage: SR(0.5).log()
-0.693147180559945
sage: SR(0.5).log().exp()
1
```
0.500000000000000
sage: math.log(0.5)
-0.6931471805599453
sage: plot(lambda x: SR(x).log(), 0.1,10)  # needs sage.plot
Graphics object consisting of 1 graphics primitive

To prevent automatic evaluation use the hold argument:

sage: I.log()
1/2*I*pi
sage: I.log(hold=True)
log(I)

To then evaluate again, we use unhold():

sage: a = I.log(hold=True); a.unhold()
1/2*I*pi

The hold parameter also works in functional notation:

sage: log(-1,hold=True)
log(-1)
sage: log(-1)
I*pi

\texttt{log\_expand(algorithm='products')}

Simplify symbolic expression, which can contain logs.

Expands logarithms of powers, logarithms of products and logarithms of quotients. The option algorithm specifies which expression types should be expanded.

INPUT:

- self - expression to be simplified
- algorithm - (default: ‘products’) optional, governs which expression is expanded. Possible values are
  - ‘nothing’ (no expansion),
  - ‘powers’ (log(a^r) is expanded),
  - ‘products’ (like ‘powers’ and also log(a*b) are expanded),
  - ‘all’ (all possible expansion).

DETAILS: This uses the Maxima simplifier and sets \texttt{logexpand} option for this simplifier. From the Maxima documentation: “Logexpand:true causes log(a^b) to become b*log(a). If it is set to all, log(a*b) will also simplify to log(a)+log(b). If it is set to super, then log(a/b) will also simplify to log(a)-log(b) for rational numbers a/b, a\#1. (log(1/b), for integer b, always simplifies.) If it is set to false, all of these simplifications will be turned off. “

ALIAS: \texttt{log\_expand()} and \texttt{expand\_log()} are the same

EXAMPLES:

By default powers and products (and quotients) are expanded, but not quotients of integers:
\begin{verbatim}
sage: (log(3/4*x^pi)).log_expand()
pixlog(x) + log(3/4)
\end{verbatim}
To expand also log(3/4) use algorithm='all':
\begin{verbatim}
sage: (log(3/4*x^pi)).log_expand('all')
pixlog(x) + log(3) - 2*log(2)
\end{verbatim}
To expand only the power use algorithm='powers':
\begin{verbatim}
sage: (log(x^6)).log_expand('powers')
6pixlog(x)
\end{verbatim}
The expression log((3x)^6) is not expanded with algorithm='powers', since it is converted into product first:
\begin{verbatim}
sage: (log((3x)^6)).log_expand('powers')
loget(729x^6)
\end{verbatim}
This shows that the option algorithm from the previous call has no influence to future calls (we changed some default Maxima flag, and have to ensure that this flag has been restored):
\begin{verbatim}
sage: (log(3/4*x^pi)).log_expand()
pixlog(x) + log(3/4)
sage: (log(3/4*x^pi)).log_expand('all')
pixlog(x) + log(3) - 2*log(2)
sage: (log(3/4*x^pi)).log_expand()
pixlog(x) + log(3/4)
\end{verbatim}

AUTHORS:
- Robert Marik (11-2009)

\texttt{log\_gamma\(\texttt{hold=False}\)}

Return the log gamma function evaluated at self. This is the logarithm of gamma of self, where gamma is a complex function such that \(\gamma(n)\) equals \(\text{factorial}(n-1)\).

EXAMPLES:
\begin{verbatim}
sage: x = var('x')
sage: x.log_gamma()
logGamma(x)
sage: SR(2).log_gamma()
0
sage: SR(5).log_gamma()
log(24)
sage: a = SR(5).log_gamma(); a.n()
3.17805383034795
sage: SR(5-1).factorial().log()
log(24)
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(-1)
sage: plot(lambda x: SR(x).log_gamma(), -7,8, plot_points=1000).show()
\end{verbatim}
Symbolic Calculus, Release 10.2

(continued from previous page)

```python
sage: math.exp(0.5)
1.6487212707001282
sage: plot(lambda x: (SR(x).exp() - SR(-x).exp())/2 - SR(x).sinh(), -1, 1) # needs sage.plot
```

Graphics object consisting of 1 graphics primitive

To prevent automatic evaluation use the `hold` argument:

```python
sage: SR(5).log_gamma(hold=True)
log_gamma(5)
```

To evaluate again, currently we must use numerical evaluation via `n()`:

```python
sage: a = SR(5).log_gamma(hold=True); a.n()
3.17805383034795
```

**log_simplify(algorithm=None)**

Simplify a (real) symbolic expression that contains logarithms.

The given expression is scanned recursively, transforming subexpressions of the form \(a \log(b) + c \log(d)\) into \(\log(b^a d^c)\) before simplifying within the `log()`.

The user can specify conditions that \(a\) and \(c\) must satisfy before this transformation will be performed using the optional parameter `algorithm`.

**Warning:** This is only safe to call if every variable in the given expression is assumed to be real. The simplification it performs is in general not valid over the complex numbers. For example:

```python
sage: x, y = SR.var('x,y')
sage: f = log(x*y) - (log(x) + log(y))
sage: f(x=-1, y=i)
-2*I*pi
sage: f.simplify_log()
0
```

**INPUT:**

- `self` - expression to be simplified
- `algorithm` - (default: None) optional, governs the condition on \(a\) and \(c\) which must be satisfied to contract expression \(a \log(b) + c \log(d)\). Values are
  - `None` (use Maxima default, integers),
  - `'one'` (1 and -1),
  - `'ratios'` (rational numbers),
  - `'constants'` (constants),
  - `'all'` (all expressions).

**ALGORITHM:**

This uses the Maxima `logcontract()` command.

**ALIAS:**
*log_simplify()* and *simplify_log()* are the same.

EXAMPLES:

```python
sage: x,y,t = var('x y t')
```

Only two first terms are contracted in the following example; the logarithm with coefficient $\frac{1}{2}$ is not contracted:

```python
sage: f = log(x)+2*log(y)+1/2*log(t)
sage: f.simplify_log()
log(x*y^2) + 1/2*log(t)
```

To contract all terms in the previous example, we use the 'ratios' algorithm:

```python
sage: f.simplify_log(algorithm='ratios')
log(sqrt(t)*x*y^2)
```

To contract terms with no coefficient (more precisely, with coefficients 1 and $-1$), we use the 'one' algorithm:

```python
sage: f = log(x)+2*log(y)-log(t)
sage: f.simplify_log('one')
2*log(y) + log(x/t)
```

```python
sage: f = log(x)+log(y)-1/3*log((x+1))
sage: f.simplify_log()
log(x*y) - 1/3*log(x + 1)
sage: f.simplify_log('ratios')
log(x*y/(x + 1)^(1/3))
```

$\pi$ is an irrational number; to contract logarithms in the following example we have to set *algorithm* to 'constants' or 'all':

```python
sage: f = log(x)+log(y)-pi*log((x+1))
sage: f.simplify_log('constants')
log(x*y/(x + 1)^pi)
```

$x*log(9)$ is contracted only if *algorithm* is 'all':

```python
sage: (x*log(9)).simplify_log()
2*x*log(3)
sage: (x*log(9)).simplify_log('all')
log(3^(2*x))
```

AUTHORS:

- Robert Marik (11-2009)

`low_degree(s)`

Return the exponent of the lowest power of $s$ in *self*.

OUTPUT:

An integer.

EXAMPLES:
Symbolic Calculus, Release 10.2

sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y^10 + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + 2*sin(x*y)/x + x/y^10 + 100
sage: f.low_degree(x)
-1
sage: f.low_degree(y)
-10
sage: f.low_degree(sin(x*y))
0
sage: (x^3+y).low_degree(x)
0
sage: (x+x^2).low_degree(x)
1

match(pattern)
Check if self matches the given pattern.

INPUT:

• pattern – a symbolic expression, possibly containing wildcards to match for

OUTPUT:
One of

None if there is no match, or a dictionary mapping the wildcards to the matching values if a match was found. Note that the dictionary is empty if there were no wildcards in the given pattern.

See also http://www.ginac.de/tutorial/Pattern-matching-and-advanced-substitutions.html

EXAMPLES:

sage: var('x,y,z,a,b,c,d,f,g')
(x, y, z, a, b, c, d, f, g)
sage: w0 = SR.wild(0); w1 = SR.wild(1); w2 = SR.wild(2)
sage: ((x+y)^a).match((x+y)^a)  # no wildcards, so empty dict
{}
sage: print(((x+y)^a).match((x+y)^b))
None
sage: t = ((x+y)^a).match(w0^w1)
sage: t[w0], t[w1]
(x + y, a)
sage: print(((x+y)^a).match(w0^w0))
None
sage: ((x+y)^x+y).match(w0^w0)
{x: x + y}
sage: t = ((a+b)*(a+c)).match((a+w0)*(a+w1))
sage: set([t[w0], t[w1]]) == set([b, c])
True
sage: ((a+b)*(a+c)).match((w0+b)*(w0+c))
{x: a}
sage: t = ((a+b)*(a+c)).match((w0+w1)*(w0+w2))
sage: t[w0]  
a
sage: set([t[w1], t[w2]]) == set([b, c])

True
sage: t = ((a+b)*(a+c)).match((w0+w1)*(w1+w2))
sage: t[w1]
a
sage: set([t[w0], t[w2]]) == set([b, c])
True
sage: t = (a*(x+y)+a*z+b).match(a*w0+w1)
sage: s = set([t[w0], t[w1]])
sage: s == set([x+y, a*z+b]) or s == set([z, a*(x+y)+b])
True
sage: print((a+b+c+d+f+g).match(c))
None
sage: (a+b+c+d+f+g).has(c)
True
sage: (a+b+c+d+f+g).match(c+w0)
{$0: a + b + d + f + g}$
sage: (a+b+c+d+f+g).match(c+g+w0)
{$0: a + b + d + f}$
sage: (a+b).match(a+b+w0) # known bug
{$0: 0}$
sage: print((a*b^2).match(a^w0*b^w1))
None
sage: (a*b^2).match(a*b^w1)
{$1: 2}$
(x*x.arctan2(x^2)).match(w0*w0.arctan2(w0^2))
{$0: x}$

Beware that behind-the-scenes simplification can lead to surprising results in matching:

sage: print((x+x).match(w0+w1))
None
sage: t = x+x; t
2^x
sage: t.operator()
<function mul_vararg ...>

Since asking to match w0+w1 looks for an addition operator, there is no match.

**maxima_methods()**

Provide easy access to maxima methods, converting the result to a Sage expression automatically.

**EXAMPLES:**

sage: t = log(sqrt(2) - 1) + log(sqrt(2) + 1); t
log(sqrt(2) + 1) + log(sqrt(2) - 1)
sage: res = t.maxima_methods().logcontract(); res
log((sqrt(2) + 1)*(sqrt(2) - 1))
sage: type(res)
<class 'sage.symbolic.expression.Expression'>

**minpoly(*args, **kwds)**

Return the minimal polynomial of this symbolic expression.

**EXAMPLES:**
sage: golden_ratio.minpoly()
x^2 - x - 1

mul(\texttt{hold=False}, *\texttt{args})

Return the product of the current expression and the given arguments.

To prevent automatic evaluation use the \texttt{hold} argument.

EXAMPLES:

\begin{verbatim}
sage: x.mul(x)
x^2
sage: x.mul(x, hold=True)
x^2
sage: x.mul(x, (2+x), hold=True)
(2+x)*x^2
sage: x.mul(x, (2+x), x, hold=True)
(2+x)*x^2
sage: x.mul(x, (2+x), x, 2*x, hold=True)
(2+x)*x^2*(x + 2)*x^2
\end{verbatim}

To then evaluate again, we use \texttt{unhold()}:

\begin{verbatim}
sage: a = x.mul(x, hold=True); a.unhold()
x^2
\end{verbatim}

multiply_both_sides(\texttt{x}, \texttt{checksign=None})

Return a relation obtained by multiplying both sides of this relation by \texttt{x}.

\textbf{Note:} The \texttt{checksign} keyword argument is currently ignored and is included for backward compatibility reasons only.

EXAMPLES:

\begin{verbatim}
sage: var('x,y'); f = x + 3 < y - 2
(sage, y)
sage: f.multiply_both_sides(7)
7*x + 21 < 7*y - 14
sage: f.multiply_both_sides(-1/2)
-1/2*x - 3/2 < -1/2*y + 1
sage: f*(-2/3)
-2/3*x - 2 < -2/3*y + 4/3
sage: f*(-pi)
-pi*(x + 3) < -pi*(y - 2)
\end{verbatim}

Since the direction of the inequality never changes when doing arithmetic with equations, you can multiply or divide the equation by a quantity with unknown sign:

\begin{verbatim}
sage: f^(1+i)
(I + 1)*x + 3*I + 3 < (I + 1)*y - 2*I - 2
sage: f = sqrt(2) + x == y^3
sage: f.multiply_both_sides(I)
I*x + I*sqrt(2) == I*y^3
\end{verbatim}

(continues on next page)
sage: f.multiply_both_sides(-1)
-x - sqrt(2) == -y^3

Note that the direction of the following inequalities is not reversed:

sage: (x^3 + 1 > 2*sqrt(3)) * (-1)
-x^3 - 1 > -2*sqrt(3)
sage: (x^3 + 1 >= 2*sqrt(3)) * (-1)
-x^3 - 1 >= -2*sqrt(3)
sage: (x^3 + 1 <= 2*sqrt(3)) * (-1)
-x^3 - 1 <= -2*sqrt(3)

negation()

Return the negated version of self.

This is the relation that is False iff self is True.

EXAMPLES:

sage: (x < 5).negation()
x >= 5
sage: (x == sin(3)).negation()
x != sin(3)
sage: (2*x >= sqrt(2)).negation()
2*x < sqrt(2)

nintegral(*args, **kwds)

Compute the numerical integral of self.

Please see sage.calculus.calculus.nintegral for more details.

EXAMPLES:

sage: sin(x).nintegral(x,0,3)
(1.989992496600..., 2.209335488557...e-14, 21, 0)

nintegrate(*args, **kwds)

Compute the numerical integral of self.

Please see sage.calculus.calculus.nintegral for more details.

EXAMPLES:

sage: sin(x).nintegral(x,0,3)
(1.989992496600..., 2.209335488557...e-14, 21, 0)

nops()

Return the number of operands of this expression.

EXAMPLES:

sage: var('a,b,c,x,y')
(a, b, c, x, y)
sage: a.number_of_operands()
0
sage: (a^2 + b^2 + (x+y)^2).number_of_operands()
3
sage: (a^2).number_of_operands()
2
sage: (a*b^2*c).number_of_operands()
3

norm()

Return the complex norm of this symbolic expression, i.e., the expression times its complex conjugate. If $c = a + bi$ is a complex number, then the norm of $c$ is defined as the product of $c$ and its complex conjugate

$$\text{norm}(c) = \text{norm}(a + bi) = c \cdot \overline{c} = a^2 + b^2.$$

The norm of a complex number is different from its absolute value. The absolute value of a complex number is defined to be the square root of its norm. A typical use of the complex norm is in the integral domain $\mathbb{Z}[i]$ of Gaussian integers, where the norm of each Gaussian integer $c = a + bi$ is defined as its complex norm.

See also:

sage.misc.functional.norm()

EXAMPLES:

sage: a = 1 + 2*I
sage: a.norm()
5
sage: a = sqrt(2) + 3^(1/3)*I; a
sqrt(2) + I*3^(1/3)
sage: a.norm()
3^(2/3) + 2
sage: CDF(a).norm()
4.080083823051...

normalize()

Return this expression normalized as a fraction

See also:

numerator(), denominator(), numerator_denominator(), combine()

EXAMPLES:

sage: var('x, y, a, b, c')
(x, y, a, b, c)
sage: g = x + y/(x + 2)
sage: g.normalize()
(x^2 + 2*x + y)/(x + 2)
sage: f = x*(x-1)/(x^2 - 7) + y^2/(x^2-7) + 1/(x+1) + b/a + c/a
sage: f.normalize()
(a*x^3 + b*x^3 + c*x^3 + a*x*y^2 + a*x^2 + b*x^2 + c*x^2 +
 a*y^2 - a*x - 7*b*x - 7*c*x - 7*a - 7*b - 7*c)/((x^2 - 7)*a*(x + 1))
ALGORITHM: Uses GiNaC.

`number_of_arguments()`

EXAMPLES:

```python
sage: x, y = var('x, y')
sage: f = x + y
sage: f.number_of_arguments()
2
sage: g = f.function(x)
sage: g.number_of_arguments()
1
```

```python
sage: x, y, z = var('x, y, z')
sage: (x + y).number_of_arguments()
2
sage: (x + 1).number_of_arguments()
1
sage: (sin(x) + 1).number_of_arguments()
1
sage: (sin(z) + x + y).number_of_arguments()
3
sage: (sin(x + y)).number_of_arguments()
2
```

`number_of_operands()`

Return the number of operands of this expression.

EXAMPLES:

```python
sage: var('a,b,c,x,y')
(a, b, c, x, y)
sage: a.number_of_operands()
0
sage: (a^2 + b^2 + (x+y)^2).number_of_operands()
3
sage: (a^2).number_of_operands()
2
sage: (a*b^2*c).number_of_operands()
3
```

`numerator(normalize=True)`

Return the numerator of this symbolic expression

**INPUT:**

- `normalize` – (default: True) a boolean.

If `normalize` is True, the expression is first normalized to have it as a fraction before getting the numerator.

If `normalize` is False, the expression is kept and if it is not a quotient, then this will return the expression itself.

**See also:**

`normalize()`, `denominator()`, `numerator_denominator()`, `combine()`
EXAMPLES:

```
sage: a, x, y = var(’a,x,y’)
sage: f = x*(x-a)/((x^2 - y)*(x-a)); f
x/(x^2 - y)
sage: f.numerator()
x
sage: f.denominator()
x^2 - y
sage: f.numerator(normalize=False)
x
sage: f.denominator(normalize=False)
x^2 - y

sage: y = var(’y’)
sage: g = x + y/(x + 2); g
x + y/(x + 2)
sage: g.numerator()
x^2 + 2*x + y
sage: g.denominator()
x + 2
sage: g.numerator(normalize=False)
x + y/(x + 2)
sage: g.denominator(normalize=False)
1
```

`numerator_denominator(normalize=True)`

Return the numerator and the denominator of this symbolic expression

**INPUT:**

- `normalize` – (default: True) a boolean.

If `normalize` is True, the expression is first normalized to have it as a fraction before getting the numerator and denominator.

If `normalize` is False, the expression is kept and if it is not a quotient, then this will return the expression itself together with 1.

**See also:**

`normalize()`, `numerator()`, `denominator()`, `combine()`

**EXAMPLES:**

```
sage: x, y, a = var(“x y a”)
sage: ((x+y)^2/(x-y)^3*x^3).numerator_denominator()
((x + y)^2*x^3, (x - y)^3)
sage: ((x+y)^2/(x-y)^3*x^3).numerator_denominator(False)
((x + y)^2*x^3, (x - y)^3)

sage: g = x + y/(x + 2)
sage: g.numerator_denominator()
(x^2 + 2*x + y, x + 2)
sage: g.numerator_denominator(normalize=False)
(x + y/(x + 2), 1)
```

(continues on next page)
sage: g = x^2*(x + 2)
sage: g.numerator_denominator()
((x + 2)*x^2, 1)
sage: g.numerator_denominator(normalize=False)
((x + 2)*x^2, 1)

numerical_approx(prec=None, digits=None, algorithm=None)

Return a numerical approximation of self with prec bits (or decimal digits) of precision.
No guarantee is made about the accuracy of the result.

INPUT:

• prec – precision in bits
• digits – precision in decimal digits (only used if prec is not given)
• algorithm – which algorithm to use to compute this approximation

If neither prec nor digits is given, the default precision is 53 bits (roughly 16 digits).

EXAMPLES:

sage: sin(x).subs(x=5).n()
-0.958924274663138
sage: sin(x).subs(x=5).n(100)
-0.9589242746631384689315440616
sage: sin(x).subs(x=5).n(digits=50)
-0.9589242746631384689315440615599397335246154396460
sage: zeta(x).subs(x=2).numerical_approx(digits=50)
1.6449340668482264364724151666460251892189499012068
sage: cos(3).numerical_approx(200)
-0.9899924966044545727157297473126130239367909661558832881409
sage: numerical_approx(cos(3),200)
-0.9899924966044545727157297473126130239367909661558832881409
sage: numerical_approx(cos(3), digits=10)
-0.9899924966
sage: (i + 1).numerical_approx(32)
1.00000000 + 1.00000000*I
sage: (pi + e + sqrt(2)).numerical_approx(100)
7.2740880444219335226246195788

op

Provide access to the operands of an expression through a property.

EXAMPLES:

sage: t = 1+x+x^2
sage: t.op
Operands of x^2 + x + 1
sage: x.op
Traceback (most recent call last):
...TypeError: expressions containing only a numeric coefficient,
constant or symbol have no operands
sage: t.op[0]
x^2

Indexing directly with \( t[1] \) causes problems with numpy types.

sage: t[1] Traceback (most recent call last): ... TypeError: 'sage.symbolic.expression.Expression' object ...

 operands()

Return a list containing the operands of this expression.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{var('a,b,c,x,y')} \\
& (a, b, c, x, y) \\
\text{sage: } & (a^2 + b^2 + (x+y)^2).operands() \\
& [a^2, b^2, (x + y)^2] \\
\text{sage: } & (a^2).operands() \\
& [a, 2] \\
\text{sage: } & (a*b^2*c).operands() \\
& [a, b^2, c]
\end{align*}
\]

 operator()

Return the topmost operator in this expression.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & x,y,z = \text{var('x,y,z')} \\
\text{sage: } & (x+y).operator() \\
& \text{<function add_vararg ...>} \\
\text{sage: } & (x^y).operator() \\
& \text{<built-in function pow>} \\
\text{sage: } & (x^y * z).operator() \\
& \text{<function mul_vararg ...>} \\
\text{sage: } & (x < y).operator() \\
& \text{<built-in function lt>}
\end{align*}
\]

\[
\begin{align*}
\text{sage: } & \text{abs(x).operator()} \\
& \text{abs} \\
\text{sage: } & r = \text{gamma(x).operator()}; \text{type(r)} \\
& \text{<class 'sage.functions.gamma.Function_gamma'>} \\
\text{sage: } & \text{psi} = \text{function('psi', nargs=1)} \\
\text{sage: } & \text{psi(x).operator()} \\
& \text{psi} \\
\text{sage: } & r = \text{psi(x).operator()} \\
\text{sage: } & r == \text{psi} \\
& \text{True} \\
\text{sage: } & f = \text{function('f', nargs=1, conjugate_func=\text{lambda self, x: 2*x})} \\
\text{sage: } & \text{nf} = f(x).operator() \\
\text{sage: } & \text{nf(x).conjugate()}
\end{align*}
\]
Symbolic Calculus, Release 10.2

2*x

\[
\text{sage: } f = \text{function('f')}
\]
\[
\text{sage: } a = f(x).\text{diff}(x); a
\]
\[
\text{diff}(f(x), x)
\]
\[
\text{sage: } a.\text{operator()}
\]
\[
D[0](f)
\]

partial_fraction(var=None)
Return the partial fraction expansion of self with respect to the given variable.

INPUT:
- *var* – variable name or string (default: first variable)

OUTPUT:
A symbolic expression

See also:
partial_fraction_decomposition()

EXAMPLES:

\[
\text{sage: } f = x^2/(x+1)^3
\]
\[
\text{sage: } f.\text{partial_fraction()}
\]
\[
1/(x + 1) - 2/(x + 1)^2 + 1/(x + 1)^3
\]

Notice that the first variable in the expression is used by default:

\[
\text{sage: } y = \text{var('y')}
\]
\[
\text{sage: } f = y^2/(y+1)^3
\]
\[
\text{sage: } f.\text{partial_fraction()}
\]
\[
1/(y + 1) - 2/(y + 1)^2 + 1/(y + 1)^3
\]
\[
\text{sage: } f = y^2/(y+1)^3 + x/(x-1)^3
\]
\[
\text{sage: } f.\text{partial_fraction()}
\]
\[
y^2/(y^3 + 3*y^2 + 3*y + 1) + 1/(x - 1)^2 + 1/(x - 1)^3
\]

You can explicitly specify which variable is used:

\[
\text{sage: } f.\text{partial_fraction(y)}
\]
\[
x/(x^3 - 3*x^2 + 3*x - 1) + 1/(y + 1) - 2/(y + 1)^2 + 1/(y + 1)^3
\]

partial_fraction_decomposition(var=None)
Return the partial fraction decomposition of self with respect to the given variable.

INPUT:
- *var* – variable name or string (default: first variable)

OUTPUT:
A list of symbolic expressions

See also:
partial_fraction()
EXAMPLES:

```python
sage: f = x^2/(x+1)^3
sage: f.partial_fraction_decomposition()
[1/(x + 1), -2/(x + 1)^2, (x + 1)^(-3)]
sage: (4+f).partial_fraction_decomposition()
[1/(x + 1), -2/(x + 1)^2, (x + 1)^(-3), 4]
```

Notice that the first variable in the expression is used by default:

```python
sage: y = var('y')
sage: f = y^2/(y+1)^3
sage: f.partial_fraction_decomposition()
[1/(y + 1), -2/(y + 1)^2, (y + 1)^(-3)]
sage: f = y^2/(y+1)^3 + x/(x-1)^3
sage: f.partial_fraction_decomposition()
[y^2/(y^3 + 3*y^2 + 3*y + 1), (x - 1)^(-2), (x - 1)^(-3)]
```

You can explicitly specify which variable is used:

```python
sage: f.partial_fraction_decomposition(y)
[1/(y + 1), -2/(y + 1)^2, (y + 1)^(-3), x/(x^3 - 3*x^2 + 3*x - 1)]
```

```
plot(*args, **kwds)

Plot a symbolic expression. All arguments are passed onto the standard plot command.

EXAMPLES:

This displays a straight line:

```python
sage: sin(2).plot((x,0,3))
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

This draws a red oscillatory curve:

```python
sage: sin(x^2).plot((x,0,2*pi), rgbcolor=(1,0,0))
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

Another plot using the variable theta:

```python
sage: var('theta')
theta
sage: (cos(theta) - erf(theta)).plot((theta,-2*pi,2*pi))
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

A very thick green plot with a frame:

```python
sage: sin(x).plot((x, -4*pi, 4*pi),
# needs sage.plot
....: thickness=20, rgbcolor=(0,0.7,0)).show(frame=True)
```

You can embed 2d plots in 3d space as follows:
Symbolic Calculus, Release 10.2

\begin{verbatim}
from sage.plot import Graphics3d

long time,
needs sage.plot
plot(sin(x^2), (x, -pi, pi), thickness=2).plot3d(z=1)

A more complicated family:

from sage.plot import Graphics3d

G = sum(plot(sin(n*x), (x, -2*pi, 2*pi)).plot3d(z=n) # long time (5s on sage.math, 2012),
 for n in [0,0.1,..1])
G.show(frame_aspect_ratio=[1,1,1/2])

A plot involving the floor function:

plot(1.0 - x * floor(1/x), (x,0.00001,1.0)) # long time,
needs sage.plot

Sage used to allow symbolic functions with “no arguments”; this no longer works:

plot(2*sin, -4, 4) # long time,
needs sage.plot

Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'Integer Ring' and '<class 'sage.functions.trig.Function_sin'>'

You should evaluate the function first:

plot(2*sin(x), -4, 4) # long time,
needs sage.plot

Graphics object consisting of 1 graphics primitive

poly(x=\texttt{None})

Express this symbolic expression as a polynomial in \(x\). If this is not a polynomial in \(x\), then some coefficients may be functions of \(x\).

\textbf{Warning:} This is different from \texttt{polynomial()} which returns a Sage polynomial over a given base ring.

EXAMPLES:

\begin{verbatim}
sage: var('a, x')
\(a, x\)
sage: p = expand((x-a*sqrt(2))^2 + x + 1); p
-2*a*sqrt(2)*a*x + 2*a^2 + x^2 + x + 1
sage: p.poly(a)
-2*a*sqrt(2)*a*x + 2*a^2 + x^2 + x + 1
sage: bool(p.poly(a) == (x-a*sqrt(2))^2 + x + 1)
True
sage: p.poly(x)
2*a^2 - (2*sqrt(2)*a - 1)*x + x^2 + 1
\end{verbatim}
\end{verbatim}

Chapter 2. Internal functionality supporting calculus
polynomial(base_ring=None, ring=None)

Return this symbolic expression as an algebraic polynomial over the given base ring, if possible.

The point of this function is that it converts purely symbolic polynomials into optimised algebraic polynomials over a given base ring.

You can specify either the base ring (base_ring) you want the output polynomial to be over, or you can specify the full polynomial ring (ring) you want the output polynomial to be an element of.

INPUT:

- base_ring - (optional) the base ring for the polynomial
- ring - (optional) the parent for the polynomial

Warning: This is different from **poly()** which is used to rewrite self as a polynomial in terms of one of the variables.

EXAMPLES:

```sage
sage: f = x^2 - 2/3*x + 1
sage: f.polynomial(QQ)
x^2 - 2/3*x + 1
sage: f.polynomial(GF(19))
x^2 + 12*x + 1
```

Polynomials can be useful for getting the coefficients of an expression:

```sage
sage: g = 6*x^2 - 5
sage: g.coefficients()  
[[-5, 0], [6, 2]]
sage: g.polynomial(QQ).list()  
[-5, 0, 6]
sage: g.polynomial(QQ).dict()  
{0: -5, 2: 6}
```

```sage
sage: f = x^2*e + x + pi/e
sage: f.polynomial(RDF)  # abs tol 5e-16
2.718281828459045*x^2 + x + 1.1557273497909217
sage: g = f.polynomial(RR); g
2.71828182845905*x^2 + x + 1.15572734979092
sage: g.parent()
Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: f.polynomial(RealField(100))
2.7182818284590452353602874714*x^2 + x + 1.1557273497909217179100931833
sage: f.polynomial(CDF)  # abs tol 5e-16
2.718281828459045*x^2 + x + 1.1557273497909217
sage: f.polynomial(CC)
2.71828182845905*x^2 + x + 1.15572734979092
```

We coerce a multivariate polynomial with complex symbolic coefficients:

```sage
sage: x, y, n = var('x, y, n')
sage: f = pi^3*x - y^2*e - I; f
pi^3*x - y^2*e - I
```

(continues on next page)
Another polynomial:

\[
\text{sage: } f = \sum ((n^4 I)^n x^n \text{ for } n \text{ in range}(5)); f
\]
\[x^4 e^4 - I x^3 e^3 - x^2 e^2 + I x e + 1\]
\[
\text{sage: } f.\text{polynomial}(\text{CDF}) \quad \# \text{ abs tol } 5e-16
\]
\[54.598150033144236 x^4 - 20.085536923187668 I x^3 - 7.38905609893065 x^2 + 2.718281828459045 I x + 1.0\]
\[
\text{sage: } f.\text{polynomial}(\text{CC})
\]
\[54.5981500331442 x^4 - 20.0855369231877 I x^3 - 7.38905609893065 x^2 + 2.71828182845905 I x + 1.00000000000000\]

A multivariate polynomial over a finite field:

\[
\text{sage: } f = (3 x^5 - 5 y^5)^7; f
\]
\[(3 x^5 - 5 y^5)^7\]
\[
\text{sage: } g = f.\text{polynomial}(\text{GF}(7)); g
\]
\[3 x^35 + 2 y^35\]
\[
\text{sage: } \text{parent}(g)
\]
Multivariate Polynomial Ring in x, y over Finite Field of size 7

We check to make sure constants are converted appropriately:

\[
\text{sage: } (\text{pi} x).\text{polynomial}(\text{SR})
\]
\[\pi x\]

Using the ring parameter, you can also create polynomials rings over the symbolic ring where only certain variables are considered generators of the polynomial ring and the others are considered "constants":

\[
\text{sage: } a, x, y = \text{var}(['a', 'x', 'y'])
\]
\[
\text{sage: } f = a x^{10} y + 3 x
\]
\[
\text{sage: } B = f.\text{polynomial}(\text{ring=SR['x, y']})
\]
\[\text{sage: } B.\text{coefficients}()
\]
\[[a, 3]\]

\textbf{power}(exp, hold=False)

Return the current expression to the power exp.

To prevent automatic evaluation use the hold argument.

EXAMPLES:

\[
\text{sage: } (x^2).\text{power}(2)
\]
\[x^4\]
\[
\text{sage: } (x^2).\text{power}(2, \text{hold}=\text{True})
\]
\[(x^2)^2\]

To then evaluate again, we use \textit{unhold}():
Symbolic Calculus, Release 10.2

```
sage: a = (x**2).power(2, hold=True); a.unhold()
x^4
```

power_series(base_ring)

Return algebraic power series associated to this symbolic expression, which must be a polynomial in one variable, with coefficients coercible to the base ring.

The power series is truncated one more than the degree.

EXAMPLES:

```
sage: theta = var('theta')
sage: f = theta^3 + (1/3)*theta - 17/3
sage: g = f.power_series(QQ); g
-17/3 + 1/3*theta + theta^3 + O(theta^4)
sage: g^3
-4913/27 + 289/9*theta - 17/9*theta^2 + 2602/27*theta^3 + O(theta^4)
sage: g.parent()
Power Series Ring in theta over Rational Field
```

primitive_part(s)

Return the primitive polynomial of this expression when considered as a polynomial in s.

See also `unit()`, `content()`, and `unit_content_primitive()`.

INPUT:

- s – a symbolic expression.

OUTPUT:

The primitive polynomial as a symbolic expression. It is defined as the quotient by the `unit()` and `content()` parts (with respect to the variable s).

EXAMPLES:

```
sage: (2*x+4).primitive_part(x)
x + 2
sage: (2*x+1).primitive_part(x)
2*x + 1
sage: (2*x+1/2).primitive_part(x)
4*x + 1
sage: var('y')
y
sage: (2*x + 4*sin(y)).primitive_part(sin(y))
x + 2*sin(y)
```

prod(args, **kwds)

Return the symbolic product $\prod_{v=a}^{b} \text{self}$. This is the product respect to the variable v with endpoints a and b.

INPUT:

- expression – a symbolic expression
- v – a variable or variable name
- a – lower endpoint of the product
• b – upper endpoint of the product
• algorithm – (default: 'maxima') one of
 – 'maxima' – use Maxima (the default)
 – 'giac' – (optional) use Giac
 – 'sympy' – use SymPy
• hold – (default: False) if True, don’t evaluate

pyobject()
Get the underlying Python object.

OUTPUT:
The Python object corresponding to this expression, assuming this expression is a single numerical value
or an infinity representable in Python. Otherwise, a TypeError is raised.

EXAMPLES:

```
sage: var('x')
x
sage: b = -17.3
sage: a = SR(b)
sage: a.pyobject()
-17.3000000000000
sage: a.pyobject() is b
True
```

Integers and Rationals are converted internally though, so you won’t get back the same object:

```
sage: b = -17/3
sage: a = SR(b)
sage: a.pyobject()
-17/3
sage: a.pyobject() is b
False
```

rational_expand(side=None)
Expand this symbolic expression. Products of sums and exponentiated sums are multiplied out, numer-
ators of rational expressions which are sums are split into their respective terms, and multiplications are
distributed over addition at all levels.

EXAMPLES:
We expand the expression \((x - y)^5\) using both method and functional notation.

```
sage: x,y = var('x,y')
sage: a = (x-y)^5
sage: a.expand()
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
sage: expand(a)
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
```

We expand some other expressions:
```sage
expand((x-1)^3/(y-1))
x^3/(y - 1) - 3*x^2/(y - 1) + 3*x/(y - 1) - 1/(y - 1)
```

Observe that `expand()` also expands function arguments:

```sage
f(x) = function('f')(x)
f(x*(x+1)); f(x + 1)*x)
f(x^2 + x)
```

We can expand individual sides of a relation:

```sage
a = (16*x-13)^2 == (3*x+5)^2/2
```

```sage
rational_simplify(algorithm='full', map=False)
Simplify rational expressions.
```

```sage
• self - symbolic expression
• algorithm - (default: ‘full’) string which switches the algorithm for simplifications. Possible values are
  – ‘simple’ (simplify rational functions into quotient of two polynomials),
  – ‘full’ (apply repeatedly, if necessary)
  – ‘noexpand’ (convert to common denominator and add)
• map - (default: False) if True, the result is an expression whose leading operator is the same as that of the expression self but whose subparts are the results of applying simplification rules to the corresponding subparts of the expressions.

ALIAS: `rational_simplify()` and `simplify_rational()` are the same

DETAILS: We call Maxima functions ratsimp, fullratsimp and xthru. If each part of the expression has to be simplified separately, we use Maxima function map.

EXAMPLES:

```sage
f = sin(x/(x^2 + x))
sin(x/(x^2 + x))
```
Symbolic Calculus, Release 10.2

\[
sage: f = ((x - 1)^{3/2} - (x + 1)\sqrt{x - 1})/\sqrt{(x - 1)(x + 1)}; f \\
-((x + 1)\sqrt{x - 1} - (x - 1)^{3/2})/\sqrt{(x + 1)(x - 1)}
\]

\[
sage: f.simplify_rational()
-2\sqrt{x - 1}/\sqrt{x^2 - 1}
\]

With map=True each term in a sum is simplified separately and thus the results are shorter for functions which are combination of rational and nonrational functions. In the following example, we use this option if we want not to combine logarithm and the rational function into one fraction:

\[
sage: f = (x^2 - 1)/(x+1) - \ln(x)/(x+2)
\]

\[
sage: f.simplify_rational()
(x^2 + x - \log(x) - 2)/(x + 2)
\]

\[
sage: f.simplify_rational(map=True)
x - \log(x)/(x + 2) - 1
\]

Here is an example from the Maxima documentation of where algorithm='simple' produces an (possibly useful) intermediate step:

\[
sage: y = var('y')
\]

\[
sage: g = (x^{(y/2)} + 1)^2*(x^{(y/2)} - 1)^2/(x^y - 1)
\]

\[
sage: g.simplify_rational(algorithm='simple')
(x^{2*y} - 2*x^y + 1)/(x^y - 1)
\]

\[
sage: g.simplify_rational()
x^y - 1
\]

With option algorithm='noexpand' we only convert to common denominators and add. No expansion of products is performed:

\[
sage: f = 1/(x+1)+x/(x+2)^2
\]

\[
sage: f.simplify_rational()
(2*x^2 + 5*x + 4)/(x^3 + 5*x^2 + 8*x + 4)
\]

\[
sage: f.simplify_rational(algorithm='noexpand')
((x + 2)^2 + (x + 1)*x)/((x + 2)^2*(x + 1))
\]

\textbf{real}(\texttt{hold=False})

Return the real part of this symbolic expression.

EXAMPLES:

\[
sage: x = var('x')
\]

\[
sage: x.real_part()
real_part(x)
\]

\[
sage: SR(2+3*I).real_part()
2
\]

\[
sage: SR(CDF(2,3)).real_part()
2.0
\]

\[
sage: SR(CC(2,3)).real_part()
2.00000000000000
\]

\[
sage: f = \log(x)
\]

\[
sage: f.real_part()
\log(\text{abs}(x))
\]

Using the \texttt{hold} parameter it is possible to prevent automatic evaluation:
sage: SR(2).real_part()
2
sage: SR(2).real_part(hold=True)
real_part(2)

This also works using functional notation:

sage: real_part(I,hold=True)
real_part(I)
sage: real_part(I)
0

To then evaluate again, we use unhold():

sage: a = SR(2).real_part(hold=True); a.unhold()
2

real_part(hold=False)

Return the real part of this symbolic expression.

EXAMPLES:

sage: x = var('x')
sage: x.real_part()
real_part(x)
sage: SR(2+3*I).real_part()
2
sage: SR(CDF(2,3)).real_part()
2.0
sage: SR(CC(2,3)).real_part()
2.00000000000000
sage: f = log(x)
sage: f.real_part()
log(abs(x))

Using the hold parameter it is possible to prevent automatic evaluation:

sage: SR(2).real_part()
2
sage: SR(2).real_part(hold=True)
real_part(2)

This also works using functional notation:

sage: real_part(I,hold=True)
real_part(I)
sage: real_part(I)
0

To then evaluate again, we use unhold():

sage: a = SR(2).real_part(hold=True); a.unhold()
2
rectform()

Convert this symbolic expression to rectangular form; that is, the form \(a + bi\) where \(a\) and \(b\) are real numbers and \(i\) is the imaginary unit.

**Note:** The name "rectangular" comes from the fact that, in the complex plane, \(a\) and \(bi\) are perpendicular.

**INPUT:**
- `self` – the expression to convert.

**OUTPUT:**
A new expression, equivalent to the original, but expressed in the form \(a + bi\).

**ALGORITHM:**
We call Maxima’s `rectform()` and return the result unmodified.

**EXAMPLES:**
The exponential form of \(\sin(x)\):

```python
sage: f = (e^(I*x) - e^(-I*x)) / (2*I)
sage: f.rectform()
sin(x)
```

And \(\cos(x)\):

```python
sage: f = (e^(I*x) + e^(-I*x)) / 2
sage: f.rectform()
cos(x)
```

In some cases, this will simplify the given expression. For example, here, \(e^{i\pi k}, \sin(k\pi) = 0\) should cancel leaving only \(\cos(k\pi)\) which can then be simplified:

```python
sage: k = var('k')
sage: assume(k, 'integer')
sage: f = e^(I*pi*k)
sage: f.rectform()
(-1)^k
```

However, in general, the resulting expression may be more complicated than the original:

```python
sage: f = e^(I*x)
sage: f.rectform()
cos(x) + I*sin(x)
```

**reduce_trig(var=None)**

Combine products and powers of trigonometric and hyperbolic sin’s and cos’s of \(x\) into those of multiples of \(x\). It also tries to eliminate these functions when they occur in denominators.

**INPUT:**
- `self` – a symbolic expression
- `var` – (default: `None`) the variable which is used for these transformations. If not specified, all variables are used.
OUTPUT:
A symbolic expression.

EXAMPLES:

```
sage: y = var('y')
sage: f = sin(x)*cos(x)^3+sin(y)^2
sage: f.reduce_trig()
-1/2*cos(2*y) + 1/8*sin(4*x) + 1/4*sin(2*x) + 1/2
```

To reduce only the expressions involving x we use optional parameter:

```
sage: f.reduce_trig(x)
sin(y)^2 + 1/8*sin(4*x) + 1/4*sin(2*x)
```

ALIAS: `trig_reduce()` and `reduce_trig()` are the same

```
residue(symbol)
```
Calculate the residue of `self` with respect to `symbol`.

INPUT:
- `symbol` - a symbolic variable or symbolic equality such as `x == 5`. If an equality is given, the expansion is around the value on the right hand side of the equality, otherwise at 0.

OUTPUT:
The residue of `self`.

Say, `symbol` is `x == a`, then this function calculates the residue of `self` at `x = a`, i.e., the coefficient of `1/(x - a)` of the series expansion of `self` around `a`.

EXAMPLES:

```
sage: (1/x).residue(x == 0)
1
sage: (1/x).residue(x == oo)
-1
sage: (1/x^2).residue(x == 0)
0
sage: (1/sin(x)).residue(x == 0)
1
sage: var('q, n, z')
(q, n, z)
sage: (-z^(-n-1)/(1-z/q)^2).residue(z == q).simplify_full()
(n + 1)/q^n
sage: var('s')
sage: zeta(s).residue(s == 1)
1
```

We can also compute the residue at more general places, given that the pole is recognized:

```
sage: k = var('k', domain='integer')
sage: (gamma(1+x)/(1 - exp(-x))).residue(x==2*I*pi*k)
gamma(2*I*pi*k + 1)
sage: csc(x).residue(x==2*pi*k)
1
```
resultant(\textit{other}, \textit{var})

Compute the resultant of this polynomial expression and the first argument with respect to the variable given as the second argument.

EXAMPLES:

\begin{verbatim}sage: _ = var('a b n k u x y')
sage: x.resultant(y, x)
y
sage: (x+y).resultant(x-y, x)
-2*y
sage: r = (x^4*y^2+x^2*y-y).resultant(x*y-y*a-x*b+a*b+u,x)
sage: r.coefficient(a^4)
b^4*y^2 - 4*b^3*y^3 + 6*b^2*y^4 - 4*b*y^5 + y^6
sage: x.resultant(sin(x), x)
Traceback (most recent call last):
...  
RuntimeError: resultant(): arguments must be polynomials
\end{verbatim}

rhs()

If \textit{self} is a relational expression, return the right hand side of the relation. Otherwise, raise a \texttt{ValueError}.

EXAMPLES:

\begin{verbatim}sage: x = var('x')
sage: eqn = (x-1)^2 <= x^2 - 2*x + 3
sage: eqn.right_hand_side()
x^2 - 2*x + 3
sage: eqn.rhs()
x^2 - 2*x + 3
sage: eqn.right()
x^2 - 2*x + 3
\end{verbatim}

right()

If \textit{self} is a relational expression, return the right hand side of the relation. Otherwise, raise a \texttt{ValueError}.

EXAMPLES:

\begin{verbatim}sage: x = var('x')
sage: eqn = (x-1)^2 <= x^2 - 2*x + 3
sage: eqn.right_hand_side()
x^2 - 2*x + 3
sage: eqn.rhs()
x^2 - 2*x + 3
sage: eqn.right()
x^2 - 2*x + 3
\end{verbatim}

right_hand_side()

If \textit{self} is a relational expression, return the right hand side of the relation. Otherwise, raise a \texttt{ValueError}.

EXAMPLES:

\begin{verbatim}sage: x = var('x')
sage: eqn = (x-1)^2 <= x^2 - 2*x + 3
sage: eqn.right_hand_side()
x^2 - 2*x + 3
sage: eqn.rhs()
x^2 - 2*x + 3
sage: eqn.right()
x^2 - 2*x + 3
\end{verbatim}
\[
x^2 - 2x + 3
\]

\texttt{sage: eqn.rhs()}
\[
x^2 - 2x + 3
\]

\texttt{sage: eqn.right()}
\[
x^2 - 2x + 3
\]

\begin{verbatim}
roots(x=None, explicit_solutions=True, multiplicities=True, ring=None)
\end{verbatim}

Return roots of \texttt{self} that can be found exactly, possibly with multiplicities. Not all roots are guaranteed to be found.

\textbf{Warning:} This is \textit{not} a numerical solver - use \texttt{find_root} to solve for \texttt{self} == 0 numerically on an interval.

\textbf{INPUT:}

\begin{itemize}
\item \texttt{x} - variable to view the function in terms of (use default variable if not given)
\item \texttt{explicit_solutions} – bool (default True); require that roots be explicit rather than implicit
\item \texttt{multiplicities} – bool (default True); when True, return multiplicities
\item \texttt{ring} – a ring (default None): if not None, convert \texttt{self} to a polynomial over ring and find roots over ring
\end{itemize}

\textbf{OUTPUT:}

A list of pairs (root, multiplicity) or list of roots.

If there are infinitely many roots, e.g., a function like \(\sin(x)\), only one is returned.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: var('x, a')
(x, a)
\end{verbatim}

A simple example:

\begin{verbatim}
sage: ((x^2-1)^2).roots()  
[(-1, 2), (1, 2)]
sage: ((x^2-1)^2).roots(multiplicities=False)  
[-1, 1]
\end{verbatim}

A complicated example:

\begin{verbatim}
sage: f = expand((x^2 - 1)^3*(x^2 + 1)*(x-a)); f  
-a*x^8 + x^9 + 2*a*x^6 - 2*x^7 - 2*a*x^2 + 2*x^3 + a - x
\end{verbatim}

The default variable is \(a\), since it is the first in alphabetical order:

\begin{verbatim}
sage: f.roots()  
[(x, 1)]
\end{verbatim}

As a polynomial in \(a\), \(x\) is indeed a root:
Symbolic Calculus, Release 10.2

```plaintext
sage: f.poly(a)
x^9 - 2*x^7 + 2*x^3 - (x^8 - 2*x^6 + 2*x^2 - 1)*a - x
sage: f(a=x)
0
```

The roots in terms of $x$ are what we expect:

```plaintext
sage: f.roots(x)
[(a, 1), (-I, 1), (I, 1), (1, 3), (-1, 3)]
```

Only one root of $\sin(x) = 0$ is given:

```plaintext
sage: f = sin(x)
sage: f.roots(x)
[(0, 1)]
```

**Note:** It is possible to solve a greater variety of equations using `solve()` and the keyword `to_poly_solve`, but only at the price of possibly encountering approximate solutions. See documentation for `f.solve` for more details.

We derive the roots of a general quadratic polynomial:

```plaintext
sage: var('a,b,c,x')
(a, b, c, x)
sage: (a*x^2 + b*x + c).roots(x)
[(-1/2*(b + sqrt(b^2 - 4*a*c))/a, 1), (-1/2*(b - sqrt(b^2 - 4*a*c))/a, 1)]
```

By default, all the roots are required to be explicit rather than implicit. To get implicit roots, pass `explicit_solutions=False` to `.roots()`

```plaintext
sage: var('x')
x
sage: f = x^(1/9) + (2^(8/9) - 2^(1/9))*(x - 1) - x^(8/9)
sage: f.roots() # Default
Traceback (most recent call last):
... # Runtime error
sage: f.roots(explicit_solutions=False)
[((2^(8/9) + x^(1/9) - 2^(8/9)))/(2^(8/9) - 2^(1/9)), 1)]
```

Another example, but involving a degree 5 poly whose roots do not get computed explicitly:

```plaintext
sage: f = x^5 + x^3 + 17*x + 1
sage: f.roots() # Default
Traceback (most recent call last):
... # Runtime error
sage: f.roots(explicit_solutions=False)
[(x^5 + x^3 + 17*x + 1, 1)]
```

Now let us find some roots over different rings:
\begin{verbatim}
sage: f.roots(ring=CC)
[(-0.0588115223184..., 1),
 (-1.331099917875... - 1.52241655183732*I, 1),
 (-1.331099917875... + 1.52241655183732*I, 1),
 (1.36050567903502 - 1.51880872209965*I, 1),
 (1.36050567903502 + 1.51880872209965*I, 1)]
sage: (2.5*f).roots(ring=RR)
[(-0.058811522318449..., 1)]
sage: f.roots(ring=CC, multiplicities=False)
[-0.05881152231844944?,
 -1.331099917875796? - 1.522416551837318?*I,
 -1.331099917875796? + 1.522416551837318?*I,
 1.360505679035020? - 1.518808722099650?*I,
 1.360505679035020? + 1.518808722099650?*I]
sage: f.roots(ring=QQ)
[]
sage: f.roots(ring=QQbar, multiplicities=False)
[-0.05881152231844944?,
 -1.331099917875796? - 1.522416551837318?*I,
 -1.331099917875796? + 1.522416551837318?*I,
 1.360505679035020? - 1.518808722099650?*I,
 1.360505679035020? + 1.518808722099650?*I]

Root finding over finite fields:

\begin{verbatim}
sage: f.roots(ring=GF(7^2, 'a'))
[['a', 1], (4*a + 6, 2), (3*a + 3, 2)]
\end{verbatim}
\end{verbatim}

\texttt{round(\texttt{expr})}

Round this expression to the nearest integer.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: u = sqrt(43203735824841025516773866131535024)
sage: u.round() 207855083711803945
sage: t = sqrt(Integer('1'*1000)).round(); print(str(t)[-10:])
3333333333
sage: (-sqrt(110)).round() -10
sage: (-sqrt(115)).round() -11
sage: (sqrt(-3)).round()
Traceback (most recent call last):
...
ValueError: could not convert sqrt(-3) to a real number
\end{verbatim}

\texttt{series(\texttt{symbol}, order=None)}

Return the power series expansion of \texttt{self} in terms of the given variable to the given order.

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{symbol} – a symbolic variable or symbolic equality such as \texttt{x == 5}; if an equality is given, the expansion is around the value on the right hand side of the equality
\end{itemize}
Symbolic Calculus, Release 10.2

- **order** – an integer; if nothing given, it is set to the global default \(20\), which can be changed using `set_series_precision()`

**OUTPUT:**

A power series.

To truncate the power series and obtain a normal expression, use the `truncate()` command.

**EXAMPLES:**

We expand a polynomial in \(x\) about 0, about \(1\), and also truncate it back to a polynomial:

```sage
sage: var('x,y')
(x, y)
sage: f = (x^3 - sin(y)*x^2 - 5*x + 3); f
x^3 - x^2*sin(y) - 5*x + 3
sage: g = f.series(x, 4); g
3 + (-5)*x + (-sin(y))*x^2 + 1*x^3 + Order(x^4)
g.
sage: g.truncate()
x^3 - x^2*sin(y) - 5*x + 3
sage: g = f.series(x==1, 4); g
(-sin(y) - 1) + (-2*sin(y) - 2)*(x - 1) + (-sin(y) + 3)*(x - 1)^2
+ 1*(x - 1)^3 + Order((x - 1)^4)
sage: g.truncate(); h
(x - 1)^3 - (x - 1)^2*(sin(y) - 3) - 2*(x - 1)*(sin(y) + 1) - sin(y) - 1
h.
sage: h.expand()
x^3 - x^2*sin(y) - 5*x + 3
```

We compute another series expansion of an analytic function:

```sage
sage: f = sin(x)/x^2
sage: f.series(x,7)
1*x^(-1) + (-1/6)*x + 1/120*x^3 + (-1/5040)*x^5 + Order(x^7)
sage: f.series(x)
1*x^(-1) + (-1/6)*x + ... + Order(x^20)
sage: f.series(x==1,3)
(sin(1)) + (cos(1) - 2*sin(1))*(x - 1) + (-2*cos(1) + 5/2*sin(1))*(x - 1)^2
+ Order((x - 1)^3)
sage: f.series(x==1,3).truncate().expand()
-2*x^2*cos(1) + 5/2*x^2*sin(1) + 5*x*cos(1) - 7*x*sin(1) - 3*cos(1) + 11/
˓→2*sin(1)
```

Expressions formed by combining series can be expanded by applying series again:

```sage
sage: (1/(1-x)).series(x, 3)+(1/(1+x)).series(x,3)
(1 + x + x^2 + Order(x^3)) + (1 + (-1)*x + 1*x^2 + Order(x^3))
sage: _.series(x,3)
2 + 2*x^2 + Order(x^3)
sage: (1/(1-x)).series(x, 3)*(1/(1+x)).series(x,3)
(1 + x + x^2 + Order(x^3))*(1 + (-1)*x + 1*x^2 + Order(x^3))
sage: _.series(x,3)
1 + x^2 + Order(x^3)
```

Following the GiNaC tutorial, we use John Machin’s amazing formula \(\pi = 16 \tan^{-1}(1/5) - 4 \tan^{-1}(1/239)\) to compute digits of \(\pi\). We expand the arc tangent around 0 and insert the fractions 1/5 and 1/239.
```python
sage: x = var('x')
sage: f = atan(x).series(x, 10); f
1*x + (-1/3)*x^3 + 1/5*x^5 + (-1/7)*x^7 + 1/9*x^9 + Order(x^10)
sage: float(16*f.subs(x==1/5) - 4*f.subs(x==1/239))
3.1415926824043994
```

```python
def show():
 """Pretty-print this symbolic expression."
 This typesets it nicely and prints it immediately.
 OUTPUT:
 This method does not return anything. Like print, output is sent directly to the screen.
 Note that the output depends on the display preferences. For details, see pretty_print().

 EXAMPLES:

 sage: (x^2 + 1).show()
 x^2 + 1

 EXAMPLES:

 sage: %display ascii_art # not tested
 sage: (x^2 + 1).show()
 2
 x + 1
```

```python
def simplify(algorithm='maxima', **kwds):
 """Return a simplified version of this symbolic expression."
 INPUT:
 • algorithm – one of :
 - maxima : (default) sends the expression to maxima and converts it back to Sage
 - sympy : converts the expression to sympy, simplifies it (passing any optional keyword(s)), and
 converts the result to Sage
 - giac : converts the expression to giac, simplifies it, and converts the result to Sage
 - fricas : converts the expression to fricas, simplifies it, and converts the result to Sage

 See also:
 simplify_full(), simplify_trig(), simplify_rational(), simplify_rectform()
 simplify_factorial(), simplify_log(), simplify_real(), simplify_hypergeometric(),
 canonicalize_radical()

 EXAMPLES:

 sage: a = var('a'); f = x*sin(2)/(x^a); f
 x*sin(2)/x^a
 sage: f.simplify()
 x^(-a + 1)*sin(2)
 x^(-a + 1)*sin(2)

 Some simplifications are quite algorithm-specific:
```

2.1. Symbolic Expressions
Symbolic Calculus, Release 10.2

```
sage: x, t = var("x, t")
sage: ex = cos(t).exponentialize()
sage: ex = ex.subs((sin(t).exponentialize()==x).solve(t)[0])
sage: ex
1/2*I*x + 1/2*I*sqrt(x^2 - 1) + 1/2/(I*x + I*sqrt(x^2 - 1))
sage: ex.simplify()
1/2*I*x + 1/2*I*sqrt(x^2 - 1) + 1/(2*I*x + 2*I*sqrt(x^2 - 1))
sage: ex.simplify(algorithm="sympy")
I*(x^2 + sqrt(x^2 - 1)*x - 1)/(x + sqrt(x^2 - 1))
sage: ex.simplify(algorithm="giac")
I*sqrt(x^2 - 1)
sage: ex.simplify(algorithm="fricas") # optional - fricas
(I*x^2 + I*sqrt(x^2 - 1)*x - I)/(x + sqrt(x^2 - 1))
```

`simplify_factorial()`
Simplify by combining expressions with factorials, and by expanding binomials into factorials.

ALIAS: `factorial_simplify` and `simplify_factorial` are the same

EXAMPLES:
Some examples are relatively clear:

```
sage: var('n,k')
(n, k)
sage: f = factorial(n+1)/factorial(n); f
factorial(n + 1)/factorial(n)
sage: f.simplify_factorial()
(n + 1)
```

```
sage: f = factorial(n)*(n+1); f
(n + 1)*factorial(n)
sage: simplify(f)
(n + 1)*factorial(n)
sage: f.simplify_factorial()
factorial(n + 1)
```

```
sage: f = binomial(n, k)*factorial(k)*factorial(n-k); f
binomial(n, k)*factorial(k)*factorial(-k + n)
sage: f.simplify_factorial()
factorial(n)
```

A more complicated example, which needs further processing:

```
sage: f = factorial(x)/factorial(x-2)/2 + factorial(x+1)/factorial(x)/2; f
1/2*factorial(x + 1)/factorial(x) + 1/2*factorial(x)/factorial(x - 2)
sage: g = f.simplify_factorial(); g
1/2*(x - 1)*x + 1/2*x + 1/2
sage: g.simplify_rational()
1/2*x^2 + 1/2
```

`simplify_full()`
Apply `simplify_factorial()`, `simplify_rectform()`, `simplify_trig()`, `simplify_rational()`, and then `expand_sum()` to self (in that order).
ALIAS: `simplify_full` and `full_simplify` are the same.

EXAMPLES:

```
sage: f = sin(x)^2 + cos(x)^2
sage: f.simplify_full()
1
```

```
sage: f = sin(x/(x^2 + x))
sage: f.simplify_full()
sin(1/(x + 1))
```

```
sage: var('n,k')
(n, k)
sage: f = binomial(n,k)*factorial(k)*factorial(n-k)
sage: f.simplify_full()
factorial(n)
```

`simplify_hypergeometric(algorithm='maxima')`

Simplify an expression containing hypergeometric or confluent hypergeometric functions.

INPUT:

* algorithm – (default: 'maxima') the algorithm to use for for simplification. Implemented are 'maxima', which uses Maxima's hgfred function, and 'sage', which uses an algorithm implemented in the hypergeometric module

ALIAS: `hypergeometric_simplify()` and `simplify_hypergeometric()` are the same

EXAMPLES:

```
sage: hypergeometric((5, 4), (4, 1, 2, 3), x).simplify_hypergeometric()
1/144*x^2*hypergeometric((,), (3, 4), x) +...
1/3*x*hypergeometric((,), (2, 3), x) + hypergeometric((,), (1, 2), x)
sage: (2*hypergeometric((,), (x)).simplify_hypergeometric())
2*e^x
```

```
sage: (nest(lambda y: hypergeometric([y], [1], x), 3, 1) # not tested, unstable
.....: .simplify_hypergeometric())
laguerre(-laguerre(-e^x, x), x)
```

```
sage: (nest(lambda y: hypergeometric([y], [1], x), 3, 1) # not tested, unstable
.....: .simplify_hypergeometric(algorithm='sage'))
hypergeometric((hypergeometric((e^x,), (1,), x),), (1,), x)
sage: hypergeometric_M(1, 3, x).simplify_hypergeometric()
-2*((x + 1)*e^(-x) - 1)*e^x/x^2
sage: (2 * hypergeometric_U(1, 3, x)).simplify_hypergeometric()
2*(x + 1)/x^2
```

`simplify_log(algorithm=None)`

Simplify a (real) symbolic expression that contains logarithms.

The given expression is scanned recursively, transforming subexpressions of the form \( a \log(b) + c \log(d) \) into \( \log(b^a d^c) \) before simplifying within the \( \log() \).

The user can specify conditions that \( a \) and \( c \) must satisfy before this transformation will be performed using the optional parameter algorithm.
**Warning:** This is only safe to call if every variable in the given expression is assumed to be real. The simplification it performs is in general not valid over the complex numbers. For example:

```
sage: x, y = SR.var('x, y')
sage: f = log(x*y) - (log(x) + log(y))
sage: f(x=-1, y=i)
-2*I*pi
sage: f.simplify_log()
0
```

**INPUT:**

- `self` - expression to be simplified
- `algorithm` - (default: None) optional, governs the condition on \(a\) and \(c\) which must be satisfied to contract expression \(a \log(b) + c \log(d)\). Values are
  - `None` (use Maxima default, integers),
  - `'one'` (1 and -1),
  - `'ratios'` (rational numbers),
  - `'constants'` (constants),
  - `'all'` (all expressions).

**ALGORITHM:**

This uses the Maxima `logcontract()` command.

**ALIAS:**

`log_simplify()` and `simplify_log()` are the same.

**EXAMPLES:**

```
sage: x, y, t = var('x y t')
```

Only two first terms are contracted in the following example; the logarithm with coefficient \(\frac{1}{2}\) is not contracted:

```
sage: f = log(x)+2*log(y)+1/2*log(t)
sage: f.simplify_log()
log(x*y^2) + 1/2*log(t)
```

To contract all terms in the previous example, we use the 'ratios' algorithm:

```
sage: f.simplify_log(algorithm='ratios')
log(sqrt(t)*x*y^2)
```

To contract terms with no coefficient (more precisely, with coefficients 1 and -1), we use the 'one' algorithm:

```
sage: f = log(x)+2*log(y)-log(t)
sage: f.simplify_log('one')
2*log(y) + log(x/t)
```
\texttt{sage}: f = \log(x)+\log(y)-\frac{1}{3}\log((x+1))
\texttt{sage}: f.simplify_log()
\log(x^y) - \frac{1}{3}\log(x + 1)
\texttt{sage}: f.simplify_log('ratios')
\log(x^y/(x + 1)^{(1/3)})

\(\pi\) is an irrational number; to contract logarithms in the following example we have to set \texttt{algorithm} to 'constants' or 'all':

\texttt{sage}: f = \log(x)+\log(y)-\pi\log((x+1))
\texttt{sage}: f.simplify_log('constants')
\log(x^y/(x + 1)^\pi)

\(x\log(9)\) is contracted only if \texttt{algorithm} is 'all':

\texttt{sage}: (x*\log(9)).simplify_log()
2xy*\log(3)
\texttt{sage}: (x*\log(9)).simplify_log('all')
\log(3^{(2x)})

AUTHORS:
- Robert Marik (11-2009)

\texttt{simplify_rational}(\texttt{algorithm='full', map=False})
Simplify rational expressions.

INPUT:
- \texttt{self} - symbolic expression
- \texttt{algorithm} - (default: 'full') string which switches the algorithm for simplifications. Possible values are
  - ‘simple’ (simplify rational functions into quotient of two polynomials),
  - ‘full’ (apply repeatedly, if necessary)
  - ‘noexpand’ (convert to common denominator and add)
- \texttt{map} - (default: \texttt{False}) if \texttt{True}, the result is an expression whose leading operator is the same as that of the expression \texttt{self} but whose subparts are the results of applying simplification rules to the corresponding subparts of the expressions.

ALIAS: \texttt{rational_simplify()} and \texttt{simplify_rational()} are the same

DETAILS: We call Maxima functions ratsimp, fullratsimp and xthru. If each part of the expression has to be simplified separately, we use Maxima function map.

EXAMPLES:
\texttt{sage}: f = \sin(x/(x^2 + x))
\texttt{sage}: f
\sin(x/(x^2 + x))
\texttt{sage}: f.simplify_rational()
\sin(1/(x + 1))
Symbolic Calculus, Release 10.2

\begin{Verbatim}
sage: f = ((x - 1)^{3/2} - (x + 1)\sqrt{x - 1})/\sqrt{(x - 1)^*(x + 1)}; f
-(x + 1)^*\sqrt{x - 1} - (x - 1)^*(3/2))/\sqrt{(x + 1)^*(x - 1)}
sage: f.simplify_rational()
-2^*\sqrt{x - 1}/\sqrt{x^2 - 1}
\end{Verbatim}

With map=True each term in a sum is simplified separately and thus the results are shorter for functions which are combination of rational and nonrational functions. In the following example, we use this option if we want not to combine logarithm and the rational function into one fraction:

\begin{Verbatim}
sage: f = (x^2-1)/(x+1)-\ln(x)/(x+2)
sage: f.simplify_rational()
(x^2 + x - \log(x) - 2)/(x + 2)
sage: f.simplify_rational(map=True)
x - \log(x)/(x + 2) - 1
\end{Verbatim}

Here is an example from the Maxima documentation of where algorithm='simple' produces an (possibly useful) intermediate step:

\begin{Verbatim}
sage: y = var('y')
sage: g = (x^(y/2) + 1)^2*(x^(y/2) - 1)^2/(x^y - 1)
sage: g.simplify_rational(algorithm='simple')
(x^(2*y) - 2*x^y + 1)/(x^y - 1)
sage: g.simplify_rational()
x^y - 1
\end{Verbatim}

With option algorithm='noexpand' we only convert to common denominators and add. No expansion of products is performed:

\begin{Verbatim}
sage: f = 1/(x+1)+x/((x+2)^2)
sage: f.simplify_rational()
(2^*x^2 + 5^*x + 4)/(x^3 + 5^*x^2 + 8^*x + 4)
sage: f.simplify_rational(algorithm='noexpand')
((x + 2)^2 + (x + 1)^*x)/((x + 2)^2*(x + 1))
\end{Verbatim}

\textbf{simplify_real()}

Simplify the given expression over the real numbers. This allows the simplification of $\sqrt{x^2}$ into $|x|$ and the contraction of $\log(x) + \log(y)$ into $\log(xy)$.

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{self} – the expression to convert.
\end{itemize}

\textbf{OUTPUT:}

A new expression, equivalent to the original one under the assumption that the variables involved are real.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: f = sqrt(x^2)
sage: f.simplify_real()
abs(x)
\end{Verbatim}

\begin{Verbatim}
sage: y = SR.var('y')
sage: f = log(x) + 2^*log(y)
sage: f.simplify_real()
\log(x*y^2)
\end{Verbatim}
**simplify_rectform**(complexity_measure='string_length')

Attempt to simplify this expression by expressing it in the form \(a + bi\) where both \(a\) and \(b\) are real. This transformation is generally not a simplification, so we use the given complexity_measure to discard non-simplifications.

**INPUT:**

- *self* – the expression to simplify.
- *complexity_measure* – (default: sage.symbolic.complexity_measures.string_length) a function taking a symbolic expression as an argument and returning a measure of that expressions complexity. If None is supplied, the simplification will be performed regardless of the result.

**OUTPUT:**

If the transformation produces a simpler expression (according to complexity_measure) then that simpler expression is returned. Otherwise, the original expression is returned.

**ALGORITHM:**

We first call rectform() on the given expression. Then, the supplied complexity measure is used to determine whether or not the result is simpler than the original expression.

**EXAMPLES:**

The exponential form of \(\tan(x)\):

```sage
f = (e^(I*x) - e^(-I*x)) / (I*e^(I*x) + I*e^(-I*x))
f.simplify_rectform()
```

This should not be expanded with Euler’s formula since the resulting expression is longer when considered as a string, and the default complexity_measure uses string length to determine which expression is simpler:

```sage
f = e^(I*x)
f.simplify_rectform()
e^(I*x)
```

However, if we pass None as our complexity measure, it is:

```sage
f = e^(I*x)
f.simplify_rectform(complexity_measure = None)
cos(x) + I*sin(x)
```

**simplify_trig**(expand=True)

Optionally expand and then employ identities such as \(\sin(x)^2 + \cos(x)^2 = 1\), \(\cosh(x)^2 - \sinh(x)^2 = 1\), \(\sin(x) \csc(x) = 1\), or \(\tanh(x) = \sinh(x) / \cosh(x)\) to simplify expressions containing tan, sec, etc., to sin, cos, sinh, cosh.

**INPUT:**

- *self* - symbolic expression
- *expand* - (default:True) if True, expands trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in self first. For best results, self should be expanded. See also expand_trig() to get more controls on this expansion.

**ALIAS:** trig_simplify() and simplify_trig() are the same

**EXAMPLES:**
Symbolic Calculus, Release 10.2

```
sage: f = sin(x)^2 + cos(x)^2; f
 cos(x)^2 + sin(x)^2
sage: f.simplify()
 cos(x)^2 + sin(x)^2
sage: f.simplify_trig()
 1
sage: h = sin(x)*csc(x)
sage: h.simplify_trig()
 1
sage: k = tanh(x)*cosh(2*x)
sage: k.simplify_trig()
 (2*sinh(x)^3 + sinh(x))/cosh(x)
```

In some cases we do not want to expand:

```
sage: f = tan(3*x)
sage: f.simplify_trig()
 -(4*cos(x)^2 - 1)*sin(x)/(4*cos(x)*sin(x)^2 - cos(x))
sage: f.simplify_trig(False)
 sin(3*x)/cos(3*x)
```

**sin**(hold=False)

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: sin(x^2 + y^2)
 sin(x^2 + y^2)
sage: sin(sage.symbolic.constants.pi)
 0
sage: sin(SR(1))
 sin(1)
sage: sin(SR(RealField(150)(1)))
 0.84147098480789650665250232163029899962256306
```

Using the **hold** parameter it is possible to prevent automatic evaluation:

```
sage: SR(0).sin()
 0
sage: SR(0).sin(hold=True)
 sin(0)
```

This also works using functional notation:

```
sage: sin(0,hold=True)
 sin(0)
sage: sin(0)
 0
```

To then evaluate again, we use **unhold()**:

```
sage: a = SR(0).sin(hold=True); a.unhold()
 0
```
\texttt{sinh}(\textit{hold}=\textit{False})

Return sinh of self.

We have $\sinh(x) = \frac{e^x - e^{-x}}{2}$.

EXAMPLES:

\begin{verbatim}
sage: x.sinh()
sinh(x)
sage: SR(1).sinh()
sinh(1)
sage: SR(0).sinh()
0
sage: SR(1.0).sinh()
1.17520119364380
sage: maxima('sinh(1.0)')
1.17520119364380...
sinh(1.00000000000000)
sage: SR(1).sinh().n(90)
1.1752011936438014568823819
sage: SR(RIF(1)).sinh()
1.175201193643802?
\end{verbatim}

To prevent automatic evaluation use the \textit{hold} argument:

\begin{verbatim}
sage: arccosh(x).sinh()
sqrt(x + 1)*sqrt(x - 1)
sage: arccosh(x).sinh(hold=\text{True})
sinh(arccosh(x))
\end{verbatim}

This also works using functional notation:

\begin{verbatim}
sage: sinh(arccosh(x),hold=\text{True})
sinh(arccosh(x))
sage: sinh(arccosh(x))
sqrt(x + 1)*sqrt(x - 1)
\end{verbatim}

To then evaluate again, we use \texttt{unhold()}: 

\begin{verbatim}
sage: a = arccosh(x).sinh(hold=\text{True}); a.simplify()
sqrt(x + 1)*sqrt(x - 1)
\end{verbatim}

\texttt{solve}(\textit{x}, \textit{multiplicities}=\text{False}, \textit{solution_dict}=\text{False}, \textit{explicit_solutions}=\text{False}, \textit{to_poly_solve}=\text{False}, \textit{algorithm}=\text{None}, \textit{domain}=\text{None})

Analytically solve the equation \textit{self} == 0 or a univariate inequality for the variable \textit{x}.

\textbf{Warning:} This is not a numerical solver – use \texttt{find_root()} to solve for \textit{self} == 0 numerically on an interval.

\textbf{INPUT:}

- \textit{x} – variable(s) to solve for
• **multiplicities** – bool (default: False): if True, return corresponding multiplicities. This keyword is incompatible with `to_poly_solve=True` and does not make any sense when solving an inequality.

• **solution_dict** – bool (default: False): if True or non-zero, return a list of dictionaries containing solutions. Not used when solving an inequality.

• **explicit_solutions** – bool (default: False): require that all roots be explicit rather than implicit. Not used when solving an inequality.

• **to_poly_solve** – bool (default: False) or string; use Maxima’s `to_poly_solver` package to search for more possible solutions, but possibly encounter approximate solutions. This keyword is incompatible with `multiplicities=True` and is not used when solving an inequality. Setting `to_poly_solve` to ’force’ omits Maxima’s solve command (useful when some solutions of trigonometric equations are lost).

**EXAMPLES:**

```python
sage: z = var('z')
sage: (z^5 - 1).solve(z)
(z == 1/4*sqrt(5) + 1/4*I*sqrt(2*sqrt(5) + 10) - 1/4,
 z == -1/4*sqrt(5) + 1/4*I*sqrt(-2*sqrt(5) + 10) - 1/4,
 z == -1/4*sqrt(5) - 1/4*I*sqrt(-2*sqrt(5) + 10) - 1/4,
 z == 1/4*sqrt(5) - 1/4*I*sqrt(2*sqrt(5) + 10) - 1/4,
 z == 1)
sage: solve((z^3-1)^3, z, multiplicities=True)
([z == 1/2*I*sqrt(3) - 1/2, z == -1/2*I*sqrt(3) - 1/2, z == 1], [3, 3, 3])
```

**solve_diophantine**(x=None, solution_dict=False)

Solve a polynomial equation in the integers (a so called Diophantine).

If the argument is just a polynomial expression, equate to zero. If `solution_dict=True` return a list of dictionaries instead of a list of tuples.

**EXAMPLES:**

```python
sage: x, y = var('x,y')
sage: solve_diophantine(3*x == 4) # needs sympy
[]
sage: solve_diophantine(x^2 - 9) # needs sympy
[-3, 3]
sage: sorted(solve_diophantine(x^2 + y^2 == 25)) # needs sympy
[(-5, 0), (-4, -3), (-4, 3), (-3, -4), (-3, 4), (0, -5)...]
```

The function is used when `solve()` is called with all variables assumed integer:

```python
sage: assume(x, 'integer')
sage: assume(y, 'integer')
sage: sorted(solve(x*y == 1, (x,y))) # needs sympy
[(-1, -1), (1, 1)]
```

You can also pick specific variables, and get the solution as a dictionary:
Symbolic Calculus, Release 10.2

```python
sage: # needs sympy
sage: solve_diophantine(x^2*y == 10, x)
[-10, -5, -2, -1, 1, 2, 5, 10]
sage: sorted(solve_diophantine(x^2*y - y == 10, (x,y)))
[(-9, -1), (-4, -2), (-1, -5), (0, -10), (2, 10), (3, 5), (6, 2), (11, 1)]
sage: res = solve_diophantine(x^2*y - y == 10, solution_dict=True)
sage: sol = [{y: -5, x: -1}, {y: -10, x: 0}, {y: -1, x: -9}, {y: -2, x: -4},
 {y: 10, x: 2}, {y: 1, x: 11}, {y: 2, x: 6}, {y: 5, x: 3}]
sage: all(solution in res for solution in sol) and bool(len(res) == len(sol))
True
```

If the solution is parametrized the parameter(s) are not defined, but you can substitute them with specific integer values:

```python
sage: # needs sympy
sage: x,y,z = var('x,y,z')
sage: sol = solve_diophantine(x^2-y == 0); sol
(t, t^2)
sage: [(sol[0].subs(t=t),sol[1].subs(t=t)) for t in range(-3,4)]
[(-3, 9), (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9)]
sage: sol = solve_diophantine(x^2 + y^2 == z^2); sol
(2*p*q, p^2 - q^2, p^2 + q^2)
sage: [(sol[0].subs(p=p,q=q), sol[1].subs(p=p,q=q), sol[2].subs(p=p,q=q))
 for p in range(1,4) for q in range(1,4)]
[(2, 0, 2), (4, -3, 5), (6, -8, 10), (4, 3, 5), (8, 0, 8),
 (12, -5, 13), (6, 8, 10), (12, 5, 13), (18, 0, 18)]
```

Solve Brahmagupta-Pell equations:

```python
sage: sol = sorted(solve_diophantine(x^2 - 2*y^2 == 1), key=str); sol
needs sympy
[(-sqrt(2)*(2*sqrt(2) + 3)^t + sqrt(2)*(-2*sqrt(2) + 3)^t - 3/2*(2*sqrt(2) + 3)^t - 3/2*(-2*sqrt(2) + 3)^t,...
 sage: [(sol[1][0].subs(t=t).simplify_full(),
 # needs sympy
 for t in range(-1,5)]
[(1, 0), (3, -2), (17, -12), (99, -70), (577, -408), (3363, -2378)]
```

See also:

http://docs.sympy.org/latest/modules/solvers/diophantine.html

sqrt(hold=False)

Return the square root of this expression

EXAMPLES:

```python
sage: var('x, y')
(x, y)
sage: SR(2).sqrt()
sqrt(2)
sage: (x^2+y^2).sqrt()
sqrt(x^2 + y^2)
```

(continues on next page)
Immediate simplifications are applied:

```python
sage: sqrt(x^2)
sqrt(x^2)
```

```python
sage: x = SR.symbol('x', domain='real')
sage: sqrt(x^2)
abs(x)
sage: forget()
sage: assume(x<0)
sage: sqrt(x^2)
-x
```

```python
sage: sqrt(x^4)
x^2
```

```python
sage: sqrt(sin(x)^2)
abs(sin(x))
sage: sqrt((x+1)^2)
abs(x + 1)
sage: forget()
sage: assume(x<0)
sage: sqrt((x-1)^2)
-x + 1
```

Using the `hold` parameter it is possible to prevent automatic evaluation:

```python
sage: SR(4).sqrt()
2
sage: SR(4).sqrt(hold=True)
sqrt(4)
```

To then evaluate again, we use `unhold()`:

```python
sage: a = SR(4).sqrt(hold=True); a.unhold()
2
```

To use this parameter in functional notation, you must coerce to the symbolic ring:

```python
sage: sqrt(SR(4),hold=True)
sqrt(4)
sage: sqrt(4,hold=True)
Traceback (most recent call last):
 ..._do_sqrt() got an unexpected keyword argument 'hold'
```

```python
step(hold=False)
```

Return the value of the unit step function, which is 0 for negative x, 1 for 0, and 1 for positive x.
See also:

`sage.functions.generalized.FunctionUnitStep`

EXAMPLES:

```python
sage: x = var('x')
sage: SR(1.5).step()
1
sage: SR(0).step()
1
sage: SR(-1/2).step()
0
sage: SR(float(-1)).step()
0
```

Using the `hold` parameter it is possible to prevent automatic evaluation:

```python
sage: SR(2).step()
1
sage: SR(2).step(hold=True)
unit_step(2)
```

`subs(*args, **kwds)`

Substitute the given subexpressions in this expression.

EXAMPLES:

```python
sage: var('x,y,z,a,b,c,d,f,g')
(x, y, z, a, b, c, d, f, g)
sage: w0 = SR.wild(0); w1 = SR.wild(1)
sage: t = a^2 + b^2 + (x+y)^3
sage: t.subs(a=c)
(x + y)^3 + b^2 + c^2
sage: t.subs(b=19, x=z)
(y + z)^3 + a^2 + 361
sage: t.subs({a^2: c})
(x + y)^3 + b^2 + c
sage: t.subs({w0^2: w0^3})
a^3 + b^3 + (x + y)^3
sage: t.subs(w0 == w0^2)
a^8 + b^8 + (x^2 + y^2)^6
```

Substitute with keyword arguments (works only with symbols):

```python
sage: t.subs(a=c)
(x + y)^3 + b^2 + c^2
sage: t.subs(b=19, x=z)
(y + z)^3 + a^2 + 361
```

Substitute with a dictionary argument:

```python
sage: t.subs({a^2: c})
(x + y)^3 + b^2 + c
sage: t.subs({w0^2: w0^3})
a^3 + b^3 + (x + y)^3
```

Substitute with one or more relational expressions:

```python
sage: t.subs(w0^2 == w0^3)
a^3 + b^3 + (x + y)^3
sage: t.subs(w0 == w0^2)
a^8 + b^8 + (x^2 + y^2)^6
```

(continues on next page)
Any number of arguments is accepted:

```
sage: t.subs(a == b, b == c)
(x + y)^3 + b^2 + c^2
```

```
sage: t.subs(a=b, b=c)
(x + y)^3 + b^2 + c^2
```

```
sage: t.subs({a:b}, b=c)
(x + y)^3 + b^2 + c^2
```

```
sage: t.subs([x == 3, y == 2], a == 2, {b:3})
138
```

It can even accept lists of lists:

```
sage: eqn1 = (a*x + b*y == 0)
sage: eqn2 = (1 + y == 0)
sage: soln = solve([eqn1, eqn2], [x, y])
sage: soln
[[x == b/a, y == -1]]
sage: f = x + y
sage: f.subs(soln)
```

```
b/a - 1
```

Duplicate assignments will throw an error:

```
sage: t.subs({a:b}, a=c)
Traceback (most recent call last):
 ...
ValueError: duplicate substitution for a, got values b and c
```

```
sage: t.subs([x == 1], a = 1, b = 2, x = 2)
Traceback (most recent call last):
 ...
ValueError: duplicate substitution for x, got values 1 and 2
```

All substitutions are performed at the same time:

```
sage: t.subs({a:b, b:c})
(x + y)^3 + b^2 + c^2
```

Substitutions are done term by term, in other words Sage is not able to identify partial sums in a substitution (see github issue #18396):

```
sage: f = x + x^2 + x^4
sage: f.subs(x = y)
y^4 + y^2 + y
```

```
sage: f.subs(x^2 == y) # one term is fine
x^4 + x + y
```

```
sage: f.subs(x + x^2 == y) # partial sum does not work
x^4 + x^2 + x
```

(continues on next page)
Note that it is the very same behavior as in Maxima:

```
sage: E = 'x^4 + x^2 + x'
sage: subs = [('x', 'y'), ('x^2', 'y'), ('x^2+x', 'y'), ('x^4+x^2+x', 'y')]
sage: cmd = '{}', '{}={}'
sage: for s1, s2 in subs:
 : maxima.eval(cmd.format(E, s1, s2))
'y^4+y^2+y'
'y+x^4+x'
'x^4+x^2+x'
'y'
```

Or as in Maple:

```
sage: cmd = 'subs({}, {})', '{}={}'
sage: for s1, s2 in subs:
 : maple.eval(cmd.format(s1, s2, E))
'y^4+y^2+y'
'x^4+x+y'
'x^4+x^2+x'
'y'
```

But Mathematica does something different on the third example:

```
sage: cmd = '{} /. {} -> {}'
sage: for s1, s2 in subs:
 : mathematica.eval(cmd.format(E, s1, s2))
2 4
y + y + y
4
x + x + y
4
x + y
y
```

The same, with formatting more suitable for cut and paste:

```
sage: for s1, s2 in subs:
 : mathematica(cmd.format(E, s1, s2))
y + y^2 + y^4
x + x^4 + y
x^4 + y
y
```

**Warning:** Unexpected results may occur if the left-hand side of some substitution is not just a single variable (or a “wildcard” variable). For example, the result of \( \cos(\cos(\cos(x))) \).subs({\( \cos(x) \) : \( x \)}) is \( x \), because the substitution is applied repeatedly. Such repeated substitutions (and pattern-matching code that may be somewhat unpredictable) are disabled only in the basic case where the
left-hand side of every substitution is a variable. In particular, although the result of \((x^2).subs({x: \sqrt{x}})\) is \(x\), the result of \((x^2).subs({x: \sqrt{x}, y^2 : y})\) is \(\sqrt{x}\), because repeated substitution is enabled by the presence of the expression \(y^2\) in the left-hand side of one of the substitutions, even though that particular substitution does not get applied.

\[\text{EXAMPLES:}\]

```
sage: var('x,y,z,a,b,c,d,f,g')
(x, y, z, a, b, c, d, f, g)
sage: w0 = SR.wild(0); w1 = SR.wild(1)
sage: t = a^2 + b^2 + (x+y)^3

Substitute with keyword arguments (works only with symbols):
```

```
sage: t.subs(a=c)
(x + y)^3 + b^2 + c^2
sage: t.subs(b=19, x=z)
(y + z)^3 + a^2 + 361
```

```
Substitute with a dictionary argument:
```

```
sage: t.subs({a^2: c})
(x + y)^3 + b^2 + c
sage: t.subs({w0^2: w0^3})
a^3 + b^3 + (x^2 + y^2)^6
```

```
Substitute with one or more relational expressions:
```

```
sage: t.subs(w0^2 == w0^3)
a^3 + b^3 + (x + y)^3
sage: t.subs(w0 == w0^2)
a^8 + b^8 + (x^2 + y^2)^6
sage: t.subs(a == b, b == c)
(x + y)^3 + b^2 + c^2
```

```
Any number of arguments is accepted:
```

```
sage: t.subs(a=b, b=c)
(x + y)^3 + b^2 + c^2
sage: t.subs({a:b}, b=c)
(x + y)^3 + b^2 + c^2
sage: t.subs([x == 3, y == 2], a == 2, {b:3})
138
```

It can even accept lists of lists:
sage: eqn1 = (a*x + b*y == 0)
sage: eqn2 = (1 + y == 0)
sage: soln = solve([eqn1, eqn2], [x, y])
sage: soln
[x == b/a, y == -1]
sage: f = x + y
sage: f.subs(soln)
b/a - 1

Duplicate assignments will throw an error:

sage: t.subs({a:b}, a=c)
Traceback (most recent call last):
... ValueErrors: duplicate substitution for a, got values b and c

sage: t.subs([x == 1], a = 1, b = 2, x = 2)
Traceback (most recent call last):
... ValueErrors: duplicate substitution for x, got values 1 and 2

All substitutions are performed at the same time:

sage: t.subs({a:b, b:c})
(x + y)^3 + b^2 + c^2

Substitutions are done term by term, in other words Sage is not able to identify partial sums in a substitution
(see github issue #18396):

sage: f = x + x^2 + x^4
sage: f.subs(x = y)
y^4 + y^2 + y
sage: f.subs(x^2 == y) # one term is fine
x^4 + x + y
sage: f.subs(x + x^2 == y) # partial sum does not work
x^4 + x^2 + x
sage: f.subs(x + x^2 + x^4 == y) # whole sum is fine
y

Note that it is the very same behavior as in Maxima:

sage: E = 'x^4 + x^2 + x'
sage: subs = [(['x', 'y'], ('x^2', 'y')), ('x^2+x', 'y'), ('x^4+x^2+x', 'y')]sage: cmd = '{}, {}={}'
sage: for s1,s2 in subs:
    ....:     maxima.eval(cmd.format(E, s1, s2))
'y^4+y^2+y'
'y+x^4+x'
'y^4+x^2+x'
y'

Or as in Maple:
Warning: Unexpected results may occur if the left-hand side of some substitution is not just a single variable (or is a “wildcard” variable). For example, the result of \( \cos(\cos(\cos(x))) \).subs({\( \cos(x) \) : \( x \)}) is \( x \), because the substitution is applied repeatedly. Such repeated substitutions (and pattern-matching code that may be somewhat unpredictable) are disabled only in the basic case where the left-hand side of every substitution is a variable. In particular, although the result of \( (x^2) \).subs({\( x \) : \( \sqrt{x} \)}) is \( x \), the result of \( (x^2) \).subs({\( x \) : \( \sqrt{x} \), \( y^2 \) : \( y \)}) is \( \sqrt{x} \), because repeated substitution is enabled by the presence of the expression \( y^2 \) in the left-hand side of one of the substitutions, even though that particular substitution does not get applied.

```
sage: cmd = '{} /. {} -> {}' # optional - mathematica
sage: for s1,s2 in subs: # optional - mathematica
 : mathematica.eval(cmd.format(E,s1,s2))
 2 4
 y + y + y
 4
 x + x + y
 4
 x + y
 y
```

```
sage: for s1,s2 in subs: # optional - mathematica
 : mathematica(cmd.format(E,s1,s2))
y + y^2 + y^4
x + x^4 + y
x^4 + y
y
```

---

`substitute_function(*args, **kwds)`
Substitute the given functions by their replacements in this expression.

**EXAMPLES:**

```
sage: x,y = var('x,y')
sage: foo = function('foo'); bar = function('bar')
sage: f = foo(x) + 1/foo(pi*y)
```

```
sage: f.substitute_function({foo: bar})
1/bar(pi*y) + bar(x)
```

(continues on next page)
If the function expression to be substituted includes its arguments, the right hand side can be an arbitrary symbolic expression:

```
sage: f.substitute_function({foo(x): x^2})
x^2 + 1/(pi^2*y^2)
```

Substitute with keyword arguments (works only if no function arguments are given):

```
sage: f.substitute_function(foo=bar)
1/bar(pi*y) + bar(x)
```

Substitute with a relational expression:

```
sage: f.substitute_function(foo(x)==bar(x+1))
1/bar(pi*y + 1) + bar(x + 1)
```

All substitutions are performed at the same time:

```
sage: g = foo(x) + 1/bar(pi*y)
sage: g.substitute_function({foo: bar, bar: foo})
1/foo(pi*y) + bar(x)
```

Any number of arguments is accepted:

```
sage: g.substitute_function({foo: bar}, bar(x) == x^2)
1/(pi^2*y^2) + bar(x)
```

As well as lists of substitutions:

```
sage: g.substitute_function([foo(x) == 1, bar(x) == x])
1/(pi*y) + 1
```

Alternative syntax:

```
sage: g.substitute_function(foo, bar)
1/bar(pi*y) + bar(x)
```

Duplicate assignments will throw an error:

```
sage: g.substitute_function({foo:bar}, foo(x) == x^2)
Traceback (most recent call last):
 ... ValueError: duplicate substitution for foo, got values bar and x |--> x^2
```

```
sage: g.substitute_function([foo(x) == x^2], foo = bar)
Traceback (most recent call last):
 ... ValueError: duplicate substitution for foo, got values x |--> x^2 and bar
```
substitution_delayed(pattern, replacement)

Replace all occurrences of pattern by the result of replacement.

In contrast to subs(), the pattern may contain wildcards and the replacement can depend on the particular term matched by the pattern.

INPUT:

• pattern – an Expression, usually containing wildcards.
• replacement – a function. Its argument is a dictionary mapping the wildcard occurring in pattern to the actual values. If it returns None, this occurrence of pattern is not replaced. Otherwise, it is replaced by the output of replacement.

OUTPUT:

An Expression.

EXAMPLES:

```sage
var('x y')
(x, y)
sage: w0 = SR.wild(0)
sage: sqrt(1 + 2*x + x^2).substitution_delayed(sqrt(w0), lambda d: sqrt(factor(d[w0])))
sqrt((x + 1)^2)
sage: def r(d):
 : if x not in d[w0].variables():
 : return cos(d[w0])
sage: (sin(x^2 + x) + sin(y^2 + y)).substitution_delayed(sin(w0), r)
cos(y^2 + y) + sin(x^2 + x)
```

See also:

match()
• algorithm - (default: 'maxima') one of
  – 'maxima' – use Maxima (the default)
  – 'maple' – (optional) use Maple
  – 'mathematica' – (optional) use Mathematica
  – 'giac' – (optional) use Giac
  – 'sympy' – use SymPy

EXAMPLES:

```
sage: k, n = var('k, n')
sage: k.sum(k, 1, n).factor()
1/2*(n + 1)*n
```

```
sage: (1/k^4).sum(k, 1, oo)
1/90*pi^4
```

```
sage: (1/k^5).sum(k, 1, oo)
zeta(5)
```

A well known binomial identity:

```
sage: assume(n>=0)
sage: binomial(n,k).sum(k, 0, n)
2^n
```

And some truncations thereof:

```
sage: binomial(n,k).sum(k,1,n)
2^n - 1
```

```
sage: binomial(n,k).sum(k,2,n)
2^n - n - 1
```

```
sage: binomial(n,k).sum(k,0,n-1)
2^n - 1
```

```
sage: binomial(n,k).sum(k,1,n-1)
2^n - 2
```

The binomial theorem:

```
sage: x, y = var('x, y')
sage: (binomial(n,k) * x^k * y^(n-k)).sum(k, 0, n)
(x + y)^n
```

```
sage: (k * binomial(n,k)).sum(k, 1, n)
2^(n - 1)*n
```

```
sage: ((-1)^k*binomial(n,k)).sum(k, 0, n)
0
```

```
sage: (2^(-k)/(k*(k+1))).sum(k, 1, oo)
-log(2) + 1
```

2.1. Symbolic Expressions 121
Summing a hypergeometric term:

\[
\text{sage: } (\binom{n}{k} \times \text{factorial}(k) / \text{factorial}(n+1+k)).\text{sum}(k, 0, n)
\]

\[
1/2*\sqrt{\pi}/\text{factorial}(n + 1/2)
\]

We check a well known identity:

\[
\text{sage: bool((k^3).\text{sum}(k, 1, n) == k.\text{sum}(k, 1, n)^2)}
\]

True

A geometric sum:

\[
\text{sage: } a, q = \text{var('a, q')}
\]

\[
\text{sage: } (a*q^k).\text{sum}(k, 0, n)
\]

\[
(a*q^(n + 1) - a)/(q - 1)
\]

The geometric series:

\[
\text{sage: assume(abs(q) < 1)}
\]

\[
\text{sage: } (a*q^k).\text{sum}(k, 0, oo)
\]

\[
-a/(q - 1)
\]

A divergent geometric series. Do not forget to forget your assumptions:

\[
\text{sage: forget()}
\]

\[
\text{sage: assume(q > 1)}
\]

\[
\text{sage: } (a*q^k).\text{sum}(k, 0, oo)
\]

Traceback (most recent call last):
...
ValueError: Sum is divergent.

This summation only Mathematica can perform:

\[
\text{sage: } (1/(1+k^2)).\text{sum}(k, -oo, oo, \text{algorithm = 'mathematica'})
\]

\[
\pi*\coth(\pi)
\]

Use Giac to perform this summation:

\[
\text{sage: } (\text{sum}(1/(1+k^2), k, -oo, oo, \text{algorithm = 'giac'})).\text{factor()}
\]

\[
\pi*(e^(2*pi) + 1)/((e^pi + 1)*(e^pi - 1))
\]

Use Maple as a backend for summation:

\[
\text{sage: } (\text{binomial}(n,k)*x^k).\text{sum}(k, 0, n, \text{algorithm = 'maple'})
\]

\[
(x + 1)^n
\]

Note:

1. Sage can currently only understand a subset of the output of Maxima, Maple and Mathematica, so even if the chosen backend can perform the summation the result might not be convertible into a usable Sage expression.
\texttt{tan}(\texttt{hold}=\texttt{False})

EXAMPILES:

\begin{verbatim}
sage: var('x, y')
(x, y)
sage: tan(x^2 + y^2)
tan(x^2 + y^2)
sage: tan(sage.symbolic.constants.pi/2)
Infinity
sage: tan(SR(1))
tan(1)
sage: tan(SR(RealField(150)(1)))
1.5574077246549022305069748074583601730872508
\end{verbatim}

To prevent automatic evaluation use the \texttt{hold} argument:

\begin{verbatim}
sage: (pi/12).tan()
-sqrt(3) + 2
sage: (pi/12).tan(hold=\texttt{True})
tan(1/12*pi)
\end{verbatim}

This also works using functional notation:

\begin{verbatim}
sage: tan(pi/12,hold=\texttt{True})
tan(1/12*pi)
sage: tan(pi/12)
-sqrt(3) + 2
\end{verbatim}

To then evaluate again, we use \texttt{unhold()}:

\begin{verbatim}
sage: a = (pi/12).tan(hold=\texttt{True}); a.unhold()
-sqrt(3) + 2
\end{verbatim}

\texttt{tanh}(\texttt{hold}=\texttt{False})

Return tanh of self.

We have \( \tanh(x) = \frac{\sinh(x)}{\cosh(x)} \).

EXAMPLES:

\begin{verbatim}
sage: x.tanh()
tanh(x)
sage: SR(1).tanh()
tanh(1)
sage: SR(0).tanh()
0
sage: SR(1.0).tanh()
0.761594155955765
sage: maxima('tanh(1.0)')
0.7615941559557649
sage: plot(\texttt{lambda} x: SR(x).tanh(), -1, 1)  # needs sage.plot
\end{verbatim}

Graphics object consisting of 1 graphics primitive

To prevent automatic evaluation use the \texttt{hold} argument:
Symbolic Calculus, Release 10.2

```
sage: arcsinh(x).tanh()
x/sqrt(x^2 + 1)
sage: arcsinh(x).tanh(hold=True)
tanh(arcsinh(x))
```

This also works using functional notation:

```
sage: tanh(arcsinh(x), hold=True)
tanh(arcsinh(x))
sage: tanh(arcsinh(x))
x/sqrt(x^2 + 1)
```

To then evaluate again, we use `unhold()`:

```
sage: a = arcsinh(x).tanh(hold=True); a.unhold()
x/sqrt(x^2 + 1)
```

taylor(*args)

Expand this symbolic expression in a truncated Taylor or Laurent series in the variable \( v \) around the point \( a \), containing terms through \((x - a)^n\). Functions in more variables is also supported.

INPUT:

- *args – the following notation is supported
  - \( x, a, n \) – variable, point, degree
  - \((x, a), (y, b), n\) – variables with points, degree of polynomial

EXAMPLES:

```
sage: var('a, x, z')
(a, x, z)
sage: taylor(a*log(z), z, 2, 3)
1/24*a*(z - 2)^3 - 1/8*a*(z - 2)^2 + 1/2*a*(z - 2) + a*log(2)
sage: taylor(sqrt(sin(x) + a*x + 1), x, 0, 3)
1/48*(3*a^3 + 9*a^2 + 9*a - 1)*x^3 - 1/8*(a^2 + 2*a + 1)*x^2 + 1/2*(a + 1)*x + 1
sage: taylor(sqrt(x + 1), x, 0, 5)
7/256*x^5 - 5/128*x^4 + 1/16*x^3 - 1/8*x^2 + 1/2*x + 1
sage: taylor(1/log(x + 1), x, 0, 3)
-19/720*x^3 + 1/24*x^2 - 1/12*x + 1/2
sage: taylor(cos(x) - sec(x), x, 0, 5)
-1/6*x^4 - x^2
sage: taylor((cos(x) - sec(x))^3, x, 0, 9)
-1/2*x^8 - x^6
sage: taylor(1/(cos(x) - sec(x))^3, x, 0, 5)
-15377/7983360*x^4 - 6767/604800*x^2 + 11/120/x^2 + 1/2/x^4 - 1/x^6 - 347/15120
```
**test_relation**(ntests=20, domain=None, proof=True)

Test this relation at several random values, attempting to find a contradiction. If this relation has no variables, it will also test this relation after casting into the domain.

Because the interval fields never return false positives, we can be assured that if True or False is returned (and proof is False) then the answer is correct.

**INPUT:**

- **ntests** – (default 20) the number of iterations to run
- **domain** – (optional) the domain from which to draw the random values defaults to CIF for equality testing and RIF for order testing
- **proof** – (default True) if False and the domain is an interval field, regard overlapping (potentially equal) intervals as equal, and return True if all tests succeeded.

**OUTPUT:**

Boolean or NotImplemented, meaning

- **True** – this relation holds in the domain and has no variables.
- **False** – a contradiction was found.
- **NotImplemented** – no contradiction found.

**EXAMPLES:**

```python
sage: (3 < pi).test_relation()
True
sage: (0 >= pi).test_relation()
False
sage: (exp(pi) - pi).n()
19.9990999791895
sage: (exp(pi) - pi == 20).test_relation()
False
sage: (sin(x)^2 + cos(x)^2 == 1).test_relation()
NotImplemented
sage: (sin(x)^2 + cos(x)^2 == 1).test_relation(proof=False)
True
sage: (x == 1).test_relation()
False
sage: var('x,y')
(x, y)
sage: (x < y).test_relation()
False
```

**to_gamma()**

Convert factorial, binomial, and Pochhammer symbol expressions to their gamma function equivalents.

**EXAMPLES:**

```python
sage: m,n = var('m n', domain='integer')
sage: factorial(n).to_gamma()
gamma(n + 1)
sage: binomial(m,n).to_gamma()
gamma(m + 1)/(gamma(m - n + 1)*gamma(n + 1))
```
trailing_coeff(s)

Return the trailing coefficient of s in self, i.e., the coefficient of the smallest power of s in self.

EXAMPLES:

```
sage: var('x, y, a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + x/y + 2*sin(x*y)/x + 100
sage: f.trailing_coefficient(x)
2*sin(x*y)
sage: f.trailing_coefficient(y)
x
sage: f.trailing_coefficient(sin(x*y))
a*x + x*y + x/y + 100
```

trailing_coefficient(s)

Return the trailing coefficient of s in self, i.e., the coefficient of the smallest power of s in self.

EXAMPLES:

```
sage: var('x, y, a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + x/y + 2*sin(x*y)/x + 100
sage: f.trailing_coefficient(x)
2*sin(x*y)
sage: f.trailing_coefficient(y)
x
sage: f.trailing_coefficient(sin(x*y))
a*x + x*y + x/y + 100
```

trig_expand(full=False, half_angles=False, plus=True, times=True)

Expand trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in self.

For best results, self should already be expanded.

INPUT:

- **full** – (default: False) To enhance user control of simplification, this function expands only one level at a time by default, expanding sums of angles or multiple angles. To obtain full expansion into sines and cosines immediately, set the optional parameter full to True.
- **half_angles** - (default: False) If True, causes half-angles to be simplified away.
- **plus** – (default: True) Controls the sum rule; expansion of sums (e.g. sin(x + y)) will take place only if plus is True.
- **times** – (default: True) Controls the product rule, expansion of products (e.g. sin(2x)) will take place only if times is True.

OUTPUT:

A symbolic expression.

EXAMPLES:
sage: sin(5*x).expand_trig()
5*cos(x)^4*sin(x) - 10*cos(x)^2*sin(x)^3 + sin(x)^5
sage: cos(2*x + var('y')).expand_trig()
\cos(2*x)\cdot \cos(y) - \sin(2*x)\cdot \sin(y)

We illustrate various options to this function:

sage: f = sin(sin(3*cos(2*x))*x)
sage: f.expand_trig()
sin((3*cos(cos(2*x))^2*sin(cos(2*x)) - sin(cos(2*x))^3)*x)
sage: f.expand_trig(full=True)
\sin((3*(\cos(\cos(x)^2)*\cos(\sin(x)^2) + \sin(\cos(x)^2)*\sin(\sin(x)^2))^2*(\cos(\sin(x)^2)*\sin(\cos(x)^2) - \cos(\cos(x)^2)*\sin(\sin(x)^2))
\quad - (\cos(\sin(x)^2)*\sin(\cos(x)^2) - \cos(\cos(x)^2)*\sin(\sin(x)^2))^3)*x)
sage: sin(2*x).expand_trig(times=False)
sin(2*x)
sage: sin(2*x).expand_trig(times=True)
2*cos(x)*\sin(x)
sage: sin(2 + x).expand_trig(plus=False)
\sin(x + 2)
sage: sin(2 + x).expand_trig(plus=True)
\cos(x)\cdot \sin(2) + \cos(2)\cdot \sin(x)
sage: sin(x/2).expand_trig(half_angles=False)
\sin(1/2*x)
sage: sin(x/2).expand_trig(half_angles=True)
(-1)^\text{floor}(1/2\cdot x/\pi)\cdot \sqrt{-1/2 \cdot \cos(x) + 1/2}

If the expression contains terms which are factored, we expand first:

sage: (x, k1, k2) = var('x, k1, k2')
sage: cos((k1-k2)*x).expand().expand_trig()
\cos(k1\cdot x)\cdot \cos(k2\cdot x) + \sin(k1\cdot x)\cdot \sin(k2\cdot x)

ALIAS:

\text{trig\_expand()} and \text{expand\_trig()} are the same

\text{trig\_reduce}(\text{var=None})

Combine products and powers of trigonometric and hyperbolic \sin's and \cos's of \(x\) into those of multiples of \(x\). It also tries to eliminate these functions when they occur in denominators.

INPUT:

\begin{itemize}
\item \text{self} – a symbolic expression
\item \text{var} – (default: None) the variable which is used for these transformations. If not specified, all variables are used.
\end{itemize}

OUTPUT:

A symbolic expression.

EXAMPLES:

sage: y = var('y')
sage: f = sin(x)*cos(x)^3+sin(y)^2
sage: f.reduce_trig()
-1/2*cos(2*y) + 1/8*sin(4*x) + 1/4*sin(2*x) + 1/2

To reduce only the expressions involving x we use optional parameter:

sage: f.reduce_trig(x)
sin(y)^2 + 1/8*sin(4*x) + 1/4*sin(2*x)

ALIAS: trig_reduce() and reduce_trig() are the same

trig_simplify(expand=True)

Optionally expand and then employ identities such as \(\sin(x)^2 + \cos(x)^2 = 1\), \(\cosh(x)^2 - \sinh(x)^2 = 1\), \(\sin(x) \csc(x) = 1\), or \(\tanh(x) = \sinh(x)/\cosh(x)\) to simplify expressions containing tan, sec, etc., to sin, cos, sinh, cosh.

INPUT:

- self - symbolic expression
- expand - (default:True) if True, expands trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in self first. For best results, self should be expanded. See also expand_trig() to get more controls on this expansion.

ALIAS: trig_simplify() and simplify_trig() are the same

EXAMPLES:

sage: f = sin(x)^2 + cos(x)^2; f
cos(x)^2 + sin(x)^2
sage: f.simplify()  
cos(x)^2 + sin(x)^2
sage: f.simplify_trig()  
1
sage: h = sin(x)*csc(x)

sage: h.simplify_trig()  
1
sage: k = tanh(x)*cosh(2*x)

sage: k.simplify_trig()  
(2*sinh(x)^3 + sinh(x))/cosh(x)

In some cases we do not want to expand:

sage: f = tan(3*x)

sage: f.simplify_trig()  
-(4*cos(x)^2 - 1)*sin(x)/(4*cos(x)*sin(x)^2 - cos(x))

sage: f.simplify_trig(False)  
sin(3*x)/cos(3*x)

truncate()

Given a power series or expression, return the corresponding expression without the big oh.

INPUT:

- self - a series as output by the series() command.

OUTPUT:

A symbolic expression.
EXAMPLES:

```
sage: f = sin(x)/x^2
sage: f.truncate()
sin(x)/x^2
sage: f.series(x,7)
1*x^(-1) + (-1/6)*x + 1/120*x^3 + (-1/5040)*x^5 + Order(x^7)
sage: f.series(x==1,3).truncate().expand()
-2*x^2*cos(1) + 5/2*x^2*sin(1) + 5*x*cos(1) - 7*x*sin(1) - 3*cos(1) + 11/˓→2*sin(1)
```

unhold(exclude=None)

Evaluates any held operations (with the hold keyword) in the expression

**INPUT:**

- `self` – an expression with held operations
- `exclude` – (default: None) a list of operators to exclude from evaluation. Excluding arithmetic operators does not yet work (see github issue #10169).

**OUTPUT:**

A new expression with held operations, except those in `exclude`, evaluated

**EXAMPLES:**

```
sage: a = exp(I * pi, hold=True)
sage: a
e^(I*pi)
sage: a.unhold()
-1
sage: b = x.add(x, hold=True)
sage: b
x + x
sage: b.unhold()
2*x
sage: (a + b).unhold()
2*x - 1
sage: c = (x.mul(x, hold=True)).add(x.mul(x, hold=True), hold=True)
sage: c
x*x + x*x
sage: c.unhold()
2*x^2
sage: sin(tan(0, hold=True), hold=True).unhold()
0
sage: sin(tan(0, hold=True), hold=True).unhold(exclude=[sin])
sin(0)
sage: (e^sgn(0, hold=True)).unhold()
1
sage: (e^sgn(0, hold=True)).unhold(exclude=[exp])
e^0
sage: log(3).unhold()
log(3)
```
unit(s)

Return the unit of this expression when considered as a polynomial in $s$.

See also content(), primitive_part(), and unit_content_primitive().

INPUT:

• $s$ – a symbolic expression.

OUTPUT:

The unit part of a polynomial as a symbolic expression. It is defined as the sign of the leading coefficient.

EXAMPLES:

```
sage: (2*s+4).unit(s)
1
sage: (-2*s+1).unit(s)
-1
sage: (2*s+1/2).unit(s)
1
sage: var('y')
y
sage: (2*s - 4*sin(y)).unit(sin(y))
-1
```

unit_content_primitive(s)

Return the factorization into unit, content, and primitive part.

INPUT:

• $s$ – a symbolic expression, usually a symbolic variable. The whole symbolic expression self will be considered as a univariate polynomial in $s$.

OUTPUT:

A triple (unit, content, primitive polynomial) containing the unit, content, and primitive polynomial. Their product equals self.

EXAMPLES:

```
sage: var('x,y')
(x, y)
sage: ex = 9*x^3*y+3*y
sage: ex.unit_content_primitive(x)
(1, 3*y, 3*x^3 + 1)
sage: ex.unit_content_primitive(y)
(1, 9*x^3 + 3, y)
```

variables()

Return sorted tuple of variables that occur in this expression.

EXAMPLES:

```
sage: (x,y,z) = var('x,y,z')
sage: (x+y).variables()
(x, y)
sage: (2*x).variables()
(x,)
```

(continues on next page)
Symbolic Calculus, Release 10.2

```python
sage: (x^y).variables()
(x, y)
sage: sin(x+y^z).variables()
(x, y, z)
```

**zeta**(hold=False)

**EXAMPLES:**

```python
sage: x, y = var('x, y')
sage: (x/y).zeta()
zeta(x/y)
sage: SR(2).zeta()
1/6*pi^2
sage: SR(3).zeta()
zeta(3)
sage: SR(CDF(0,1)).zeta() # abs tol 1e-16
→ needs sage.libs.pari
0.003300223685324103 - 0.4181554491413217*I
sage: CDF(0,1).zeta() # abs tol 1e-16
→ needs sage.libs.pari
0.003300223685324103 - 0.4181554491413217*I
sage: plot(lambda x: SR(x).zeta(), -10,10).show(ymin=-3, ymax=3) # needs sage.plot
```

To prevent automatic evaluation use the hold argument:

```python
sage: SR(2).zeta(hold=True)
zeta(2)
```

This also works using functional notation:

```python
sage: zeta(2,hold=True)
zeta(2)
sage: zeta(2)
1/6*pi^2
```

To then evaluate again, we use `unhold()`:

```python
sage: a = SR(2).zeta(hold=True); a.unhold()
1/6*pi^2
```

**class** sage.symbolic.expression.ExpressionIterator

Bases: object

**class** sage.symbolic.expression.OperandsWrapper

Bases: SageObject

Operands wrapper for symbolic expressions.

**EXAMPLES:**

```python
sage: x,y,z = var('x,y,z')
sage: e = x + x*y + z^y + 3*y*z; e
x*y + 3*y*z + x + z^y
```

(continues on next page)
Symbolic Calculus, Release 10.2

(continued from previous page)

```
sage: e.op[1]
3*y*z
sage: e.op[1,1]
z
sage: e.op[-1]
z^y
sage: e.op[1:]
[3*y*z, x, z^y]
sage: e.op[:2]
[x*y, 3*y*z]
sage: e.op[-2:]
[x, z^y]
sage: e.op[:-2]
[x*y, 3*y*z]
sage: e.op[-5]
Traceback (most recent call last):
 ... IndexError: operand index out of range, got -5, expect between -4 and 3
sage: e.op[5]
Traceback (most recent call last):
 ... IndexError: operand index out of range, got 5, expect between -4 and 3
sage: e.op[1,1,0]
Traceback (most recent call last):
 ... TypeError: expressions containing only a numeric coefficient, constant or symbol have no operands
sage: e.op[:1.5]
Traceback (most recent call last):
 ... TypeError: slice indices must be integers or None or have an __index__ method
sage: e.op[:2:1.5]
Traceback (most recent call last):
 ... ValueError: step value must be an integer
```

class sage.symbolic.expression.PynacConstant
Bases: object

expression()

Returns this constant as an Expression.

EXAMPLES:

```
sage: from sage.symbolic.expression import PynacConstant
sage: f = PynacConstant('foo', 'foo', 'real')
sage: f + 2
Traceback (most recent call last):
 ...
TypeError: unsupported operand parent(s) for +: '<class 'sage.symbolic.expression.PynacConstant'' and 'Integer Ring''

sage: foo = f.expression(); foo
```
foo
sage: foo + 2
foo + 2

name()

Returns the name of this constant.

EXAMPLES:

sage: from sage.symbolic.expression import PynacConstant
sage: f = PynacConstant('foo', 'foo', 'real')
sage: f.name()
'foo'

serial()

Returns the underlying Pynac serial for this constant.

EXAMPLES:

sage: from sage.symbolic.expression import PynacConstant
sage: f = PynacConstant('foo', 'foo', 'real')
sage: f.serial()  # random
15

class sage.symbolic.expression.SubstitutionMap

Bases: SageObject

apply_to(expr, options)

Apply the substitution to a symbolic expression

EXAMPLES:

sage: from sage.symbolic.expression import make_map
sage: subs = make_map({x:x+1})
sage: subs.apply_to(x^2, 0)
(x + 1)^2

class sage.symbolic.expression.SymbolicSeries

Bases: Expression

Trivial constructor.

EXAMPLES:

sage: loads(dumps((x+x^3).series(x,2)))
1^x + Order(x^2)

coefficients(x=None, sparse=True)

Return the coefficients of this symbolic series as a list of pairs.

INPUT:

• x – optional variable.

• sparse – Boolean. If False return a list with as much entries as the order of the series.
Depending on the value of `sparse`,
- A list of pairs `(expr, n)`, where `expr` is a symbolic expression and `n` is a power (`sparse=True`, default)
- A list of expressions where the `n`-th element is the coefficient of `x^n` when self is seen as polynomial in `x` (`sparse=False`).

**EXAMPLES:**

```sage
sage: s = (1/(1-x)).series(x,6); s
1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 + Order(x^6)
sage: s.coefficients()
[[1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5]]
sage: s.coefficients(x, sparse=False)
[1, 1, 1, 1, 1, 1]
sage: x,y = var("x,y")
sage: s = (1/(1-y*x-x)).series(x,3); s
1 + (y + 1)*x + ((y + 1)^2)*x^2 + Order(x^3)
sage: s.coefficients(x, sparse=False)
[1, y + 1, (y + 1)^2]
```

**default_variable()**
Return the expansion variable of this symbolic series.

**EXAMPLES:**

```sage
sage: s = (1/(1-x)).series(x,3); s
1 + 1*x + 1*x^2 + Order(x^3)
sage: s.default_variable()
x
```

**is_terminating_series()**
Return True if the series is without order term.
A series is terminating if it can be represented exactly, without requiring an order term. You can explicitly request terminating series by setting the order to positive infinity.

**OUTPUT:**
Boolean. True if the series has no order term.

**EXAMPLES:**

```sage
sage: (x^5+x^2+1).series(x, +oo)
1 + 1*x^2 + 1*x^5
sage: (x^5+x^2+1).series(x,+oo).is_terminating_series()
True
sage: SR(5).is_terminating_series()
False
sage: exp(x).series(x,10).is_terminating_series()
False
```

**power_series(base_ring)**
Return the algebraic power series associated to this symbolic series.
The coefficients must be coercible to the base ring.
EXAMPLES:

```
sage: ex = (gamma(1-x)).series(x,3); ex
1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + Order(x^3)
sage: g = ex.power_series(SR); g
1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + O(x^3)
sage: g.parent()
Power Series Ring in x over Symbolic Ring
```

**truncate()**

Given a power series or expression, return the corresponding expression without the big oh.

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: f = sin(x)/x^2
sage: f.truncate()
sin(x)/x^2
```
The double factorial combinatorial function:

\[ n!! = n \times (n-2) \times (n-4) \times \ldots \times (\{1\}2) \] with 0!! == (-1)!! == 1.

**INPUT:**
- \( n \) – an integer \( \geq 1 \)

**EXAMPLES:**

```python
sage: from sage.symbolic.expression import doublefactorial
dsage: doublefactorial(-1)
1
sage: doublefactorial(0)
1
sage: doublefactorial(1)
1
sage: doublefactorial(5)
15
sage: doublefactorial(20)
3715891200
sage: prod([20,18,..,2])
3715891200
```

Look up a function registered with Pynac (GiNaC).

Raise a `ValueError` if the function is not registered.

**OUTPUT:**

- serial number of the function, for use in `call_registered_function()`

**EXAMPLES:**

```python
sage: from sage.symbolic.expression import find_registered_function
sage: find_registered_function('arctan', 1) # random
19
sage: find_registered_function('archenemy', 1)
Traceback (most recent call last):
 ... ValueError: cannot find GiNaC function with name archenemy and 1 arguments
```

Return the overall size of the Pynac function registry which corresponds to the last serial value plus one.

**EXAMPLES:**

```python
sage: from sage.symbolic.expression import get_fn_serial
sage: from sage.symbolic.function import get_sfunction_from_serial
```

(continues on next page)
sage: get_fn_serial() > 125
True
sage: print(get_sfunction_from_serial(get_fn_serial()))
None
sage: get_sfunction_from_serial(get_fn_serial() - 1) is not None
True

sage.symbolic.expression.get_ginac_serial()
Number of C++ level functions defined by GiNaC. (Defined mainly for testing.)

EXAMPLES:

sage: sage.symbolic.expression.get_ginac_serial() >= 35
True

sage.symbolic.expression.get_sfunction_from_hash(myhash)
Return an already created SymbolicFunction given the hash.

EXAMPLES:

sage: from sage.symbolic.expression import get_sfunction_from_hash
sage: get_sfunction_from_hash(1) # random

sage.symbolic.expression.get_sfunction_from_serial(serial)
Return an already created SymbolicFunction given the serial.

These are stored in the dictionary sfunction_serial_dict.

EXAMPLES:

sage: from sage.symbolic.function import get_sfunction_from_serial
sage: get_sfunction_from_serial(65) #random
f

class sage.symbolic.expression.hold_class
Bases: object

Instances of this class can be used with Python with.

EXAMPLES:

sage: with hold:  
.....:     tan(1/12*pi)
.....:     tan(1/12*pi)

sage: tan(1/12*pi)
sage: -sqrt(3) + 2

sage: with hold:  
.....:         2^5
.....:         32

sage: with hold:  
.....:     SR(2)^5
.....:

2.1. Symbolic Expressions
sage: with hold:
....: t=tan(1/12*pi)
....:
sage: t
\tan(1/12\pi)
sage: t.unhold()
\sqrt{3} + 2

start()
Start a hold context.

EXAMPLES:

sage: hold.start()
sage: SR(2)^5
2^5
sage: hold.stop()
sage: SR(2)^5
32

stop()
Stop any hold context.

EXAMPLES:

sage: hold.start()
sage: SR(2)^5
2^5
sage: hold.stop()
sage: SR(2)^5
32

sage.symbolic.expression.init_function_table()
Initializes the function pointer table in Pynac. This must be called before Pynac is used; otherwise, there will be segfaults.

sage.symbolic.expression.init_pynac_I()
Initialize the numeric I object in pynac. We use the generator of \( \mathbb{Q}(i) \).

EXAMPLES:

sage: from sage.symbolic.constants import I as symbolic_I
sage: symbolic_I
I
sage: symbolic_I^2
-1

Note that conversions to real fields will give \texttt{TypeError}:

sage: float(symbolic_I)
Traceback (most recent call last):
...
TypeError: unable to simplify to float approximation
sage: gp(symbolic_I)
We can convert to complex fields:

```
sage: C = ComplexField(200); C
Complex Field with 200 bits of precision
sage: C(symbolic_I)
1.00*I
sage: symbolic_I._complex_mpfr_field_(ComplexField(53))
1.00000000000000*I
sage: symbolic_I._complex_double_(CDF)
1.0*I
sage: CDF(symbolic_I)
1.0*I
```

```
sage: z = symbolic_I + symbolic_I; z
2*I
sage: C(z)
2.00*I
sage: 1e8*symbolic_I
1.00000000000000e8*I
sage: complex(symbolic_I)
1j
sage: QQbar(symbolic_I)
I
sage: abs(symbolic_I)
1
sage: symbolic_I.minpoly()
x^2 + 1
sage: maxima(2*symbolic_I)
2*%i
```

```
sage.symbolic.expression.is_SymbolicEquation(x)
Return True if x is a symbolic equation.
This function is deprecated.

EXAMPLES:
The following two examples are symbolic equations:
```
sage: from sage.symbolic.expression import is_SymbolicEquation
sage: is_SymbolicEquation(sin(x) == x)
doctest:warning...
DeprecationWarning: is_SymbolicEquation is deprecated; use
```

(continues on next page)
'isinstance(x, sage.structure.element.Expression) and x.is_relational()' instead
See https://github.com/sagemath/sage/issues/35505 for details.
True
sage: is_SymbolicEquation(sin(x) < x)
True
sage: is_SymbolicEquation(x)
False

This is not, since 2==3 evaluates to the boolean False:

sage: is_SymbolicEquation(2 == 3)
False

However here since both 2 and 3 are coerced to be symbolic, we obtain a symbolic equation:

sage: is_SymbolicEquation(SR(2) == SR(3))
True

sage.symbolic.expression.make_map(subs_dict)
Construct a new substitution map
OUTPUT:
A new SubstitutionMap for doctesting
EXAMPLES:

sage: from sage.symbolic.expression import make_map
sage: make_map({x:x+1})
SubsMap

sage.symbolic.expression.math_sorted(expressions)
Sort a list of symbolic numbers in the “Mathematics” order
INPUT:

• expressions – a list/tuple/iterable of symbolic expressions, or something that can be converted to one.
OUTPUT:
The list sorted by ascending (real) value. If an entry does not define a real value (or plus/minus infinity), or if
the comparison is not known, a ValueError is raised.
EXAMPLES:

sage: from sage.symbolic.expression import math_sorted
sage: math_sorted([SR(1), SR(e), SR(pi), sqrt(2)])
[1, sqrt(2), e, pi]

sage.symbolic.expression.mixed_order(lhs, rhs)
Comparison in the mixed order
INPUT:

• lhs, rhs – two symbolic expressions or something that can be converted to one.
OUTPUT:
Either -1, 0, or $+1$ indicating the comparison. An exception is raised if the arguments cannot be converted into the symbolic ring.

EXAMPLES:

```python
sage: from sage.symbolic.expression import mixed_order
sage: mixed_order(1, oo)
-1
sage: mixed_order(e, oo)
-1
sage: mixed_order(pi, oo)
-1
sage: mixed_order(1, sqrt(2))
-1
sage: mixed_order(x + x^2, x*(x+1))
-1
```

Check that github issue #12967 is fixed:

```python
sage: mixed_order(SR(oo), sqrt(2))
1
```

Ensure that github issue #32185 is fixed:

```python
sage: mixed_order(pi, 0)
1
sage: mixed_order(golden_ratio, 0)
1
sage: mixed_order(log2, 0)
1
```

`sage.symbolic.expression.mixed_sorted(expressions)`

Sort a list of symbolic numbers in the “Mixed” order

INPUT:

- `expressions` – a list/tuple/iterable of symbolic expressions, or something that can be converted to one.

OUTPUT:

In the list the numeric values are sorted by ascending (real) value, and the expressions with variables according to print order. If an entry does not define a real value (or plus/minus infinity), or if the comparison is not known, a `ValueError` is raised.

EXAMPLES:

```python
sage: from sage.symbolic.expression import mixed_sorted
sage: mixed_sorted([SR(1), SR(e), SR(pi), sqrt(2), x, sqrt(x), sin(1/x)])
[1, sqrt(2), e, pi, sin(1/x), sqrt(x), x]
```

`sage.symbolic.expression.new_Expression(parent, x)`

Convert `x` into the symbolic expression ring `parent`.

This is the element constructor.

EXAMPLES:
Symbolic Calculus, Release 10.2

```python
sage: a = SR(-3/4); a
-3/4
sage: type(a)
<class 'sage.symbolic.expression.Expression'>
sage: a.parent()
Symbolic Ring
sage: K.<a> = QuadraticField(-3) # needs sage.rings.number_field
sage: a + sin(x) # needs sage.rings.number_field
I*sqrt(3) + sin(x)
sage: x = var('x'); y0,y1 = PolynomialRing(ZZ,2,'y').gens()
sage: x+y0/y1
x + y0/y1
sage: x.subs(x=y0/y1)
y0/y1
sage: x + int(1)
x + 1
```

`sage.symbolic.expression.new_Expression_from_pyobject(parent, x, force=True, recursive=True)`

Wrap the given Python object in a symbolic expression even if it cannot be coerced to the Symbolic Ring.

INPUT:

- `parent` - a symbolic ring.
- `x` - a Python object.
- `force` - bool, default True, if True, the Python object is taken as is without attempting coercion or list traversal.
- `recursive` - bool, default True, disables recursive traversal of lists.

EXAMPLES:

```python
sage: t = SR._force_pyobject(QQ); t # indirect doctest
Rational Field
sage: type(t)
<class 'sage.symbolic.expression.Expression'>
sage: from sage.symbolic.expression import new_Expression_from_pyobject
sage: t = new_Expression_from_pyobject(SR, 17); t
17
sage: type(t)
<class 'sage.symbolic.expression.Expression'>
sage: t2 = new_Expression_from_pyobject(SR, t, False); t2
17
sage: t2 is t
True
sage: tt = new_Expression_from_pyobject(SR, t, True); tt
17
sage: tt is t
False
```
sage.symbolic.expression.new_Expression_symbol

Look up or create a symbol.

EXAMPLES:

```
sage: t0 = SR.symbol("t0")
sage: t0.conjugate()
conjugate(t0)

sage: t1 = SR.symbol("t1", domain='real')
sage: t1.conjugate()
t1

sage: t0.abs()
abs(t0)

sage: t0_2 = SR.symbol("t0", domain='positive')
sage: t0_2.abs()
t0

sage: bool(t0_2 == t0)
True

sage: SR.symbol() # temporary variable
symbol...
```

sage.symbolic.expression.new_Expression_wild

Return the n-th wild-card for pattern matching and substitution.

INPUT:

- parent - a symbolic ring.
- n - a nonnegative integer.

OUTPUT:

- n-th wildcard expression.

EXAMPLES:

```
sage: x,y = var('x,y')
sage: w0 = SR.wild(0); w1 = SR.wild(1)
sage: pattern = sin(x)*w0*w1^2; pattern
$1^2*$0*sin(x)
sage: f = atan(sin(x)*3*x^2); f
arctan(3*x^2*sin(x))
sage: f.has(pattern)
True

sage: f.subs(pattern == x^2)
arctan(x^2)
```

sage.symbolic.expression.normalize_index_for_doctests

Wrapper function to test normalize_index.
sage.symbolic.expression.paramset_from_Expression(e)

EXAMPLES:

```python
sage: from sage.symbolic.expression import paramset_from_Expression
sage: f = function('f')
sage: paramset_from_Expression(f(x).diff(x))
[0]
```

sage.symbolic.expression.print_order(lhs, rhs)

Comparison in the print order

INPUT:

- lhs, rhs – two symbolic expressions or something that can be converted to one.

OUTPUT:

Either −1, 0, or +1 indicating the comparison. An exception is raised if the arguments cannot be converted into the symbolic ring.

EXAMPLES:

```python
sage: from sage.symbolic.expression import print_order
sage: print_order(1, oo)
1
sage: print_order(e, oo)
-1
sage: print_order(pi, oo)
1
sage: print_order(1, sqrt(2))
1
```

Check that github issue #12967 is fixed:

```python
sage: print_order(SR(oo), sqrt(2))
1
```

sage.symbolic.expression.print_sorted(expressions)

Sort a list in print order

INPUT:

- expressions – a list/tuple/iterable of symbolic expressions, or something that can be converted to one.

OUTPUT:

The list sorted by `print_order()`.

EXAMPLES:

```python
sage: from sage.symbolic.expression import print_sorted
sage: print_sorted([SR(1), SR(e), SR(pi), sqrt(2)])
[e, sqrt(2), pi, 1]
```

sage.symbolic.expression.py_atan2_for_doctests(x, y)

Wrapper function to test py_atan2.
symbolic.expression.py_denom_for_doctests(n)

This function is used to test py_denom().

EXAMPLES:

```
sage: from sage.symbolic.expression import py_denom_for_doctests
sage: py_denom_for_doctests(2/3)
3
```

symbolic.expression.py_eval_infinity_for_doctests()

This function tests py_eval_infinity.

symbolic.expression.py_eval_neg_infinity_for_doctests()

This function tests py_eval_neg_infinity.

symbolic.expression.py_eval_unsigned_infinity_for_doctests()

This function tests py_eval_unsigned_infinity.

symbolic.expression.py_exp_for_doctests(x)

This function tests py_exp.

EXAMPLES:

```
sage: from sage.symbolic.expression import py_exp_for_doctests
sage: py_exp_for_doctests(CC(2))
7.38905609893065
```

symbolic.expression.py_factorial_py(x)

This function is a python wrapper around py_factorial(). This wrapper is needed when we override the eval() method for GiNaC’s factorial function in sage.functions.other.Function_factorial.

symbolic.expression.py_float_for_doctests(n, kwds)

This function is for testing py_float.

EXAMPLES:

```
sage: from sage.symbolic.expression import py_float_for_doctests
sage: py_float_for_doctests(pi, {'parent':RealField(80)})
3.1415926535897932384626
sage: py_float_for_doctests(I, {'parent':RealField(80)})
1.0000000000000000000000*I
sage: py_float_for_doctests(I, {'parent':float})
1j
sage: py_float_for_doctests(pi, {'parent':complex})
(3.141592653589793+0j)
```

symbolic.expression.py_imag_for_doctests(x)

Used for doctesting py_imag.

symbolic.expression.py_is_cinteger_for_doctest(x)

Returns True if pynac should treat this object as an element of \(\mathbb{Z}(i) \).

symbolic.expression.py_is_crational_for_doctest(x)

Returns True if pynac should treat this object as an element of \(\mathbb{Q}(i) \).

symbolic.expression.py_is_integer_for_doctests(x)

Used internally for doctesting purposes.
sage.symbolic.expression.py_latex_fderivative_for_doctests\((id, \text{params}, \text{args}) \)

Used internally for writing doctests for certain cdef’d functions.

EXAMPLES:

```python
sage: from sage.symbolic.expression import py_latex_fderivative_for_doctests as py_latex_fderivative, get_ginac_serial, get_fn_serial
sage: var('x,y,z')
(x, y, z)
sage: from sage.symbolic.function import get_sfunction_from_serial
sage: foo = function('foo', nargs=2)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
    if get_sfunction_from_serial(i) == foo: break
sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_fderivative(i, (0, 1, 0, 1), (x, y^z))
\text{D}_{0, 1, 0, 1}(\text{foo})(x, y^{z})
```

Test latex_name:

```python
sage: foo = function('foo', nargs=2, latex_name=r'\text{bar}')
sage: for i in range(get_ginac_serial(), get_fn_serial()):
    if get_sfunction_from_serial(i) == foo: break
sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_fderivative(i, (0, 1, 0, 1), (x, y^z))
\text{D}_{0, 1, 0, 1}(\text{bar})(x, y^{z})
```

Test custom func:

```python
sage: def my_print(self, *args): return "func_with_args(" + ', '.join(map(repr, args)) + ")"
```

sage.symbolic.expression.py_latex_function_pystring\((id, \text{args}, \text{fname_paren}=False) \)

Return a string with the latex representation of the symbolic function specified by the given id applied to args.

See documentation of py_print_function_pystring for more information.

EXAMPLES:

```python
sage: from sage.symbolic.expression import py_latex_function_pystring, get_ginac_serial, get_fn_serial
sage: var('x,y,z')
```
(continued from previous page)

```python
(x, y, z)
sage: foo = function('foo', nargs=2)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
....:   if get_sfunction_from_serial(i) == foo: break

sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_function_pystring(i, (x,y^z))
'\{\rm foo}\left(x, y^{z}\right)'
```

Test latex_name:

```python
sage: foo = function('foo', nargs=2, latex_name=r'\mathrm{bar}')
sage: for i in range(get_ginac_serial(), get_fn_serial()):
....:   if get_sfunction_from_serial(i) == foo: break

sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_function_pystring(i, (x,y^z))
'\mathrm{bar}\left(x, y^{z}\right)'
```

Test custom func:

```python
sage: def my_print(self, *args):
    return "my args are: " + ', '.join(map(repr, args))
sage: foo = function('foo', nargs=2, print_latex_func=my_print)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
....:   if get_sfunction_from_serial(i) == foo: break

sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_function_pystring(i, (x,y^z))
'my args are: x, y^z'
```

```python
sage.symbolic.expression.py_latex_variable_for_doctests(x)

Internal function used so we can doctest a certain cdef’d method.

EXAMPLES:

```python
sage: sage.symbolic.expression.py_latex_variable_for_doctests('x')
x
sage: sage.symbolic.expression.py_latex_variable_for_doctests('sigma')
\sigma
```

```python
sage.symbolic.expression.py_lgamma_for_doctests(x)

This function tests py_lgamma.

EXAMPLES:

```python
```
sage: from sage.symbolic.expression import py_lgamma_for_doctests
sage: py_lgamma_for_doctests(CC(I))
-0.650923199301856 - 1.87243664726243*I

sage.symbolic.expression.py_li2_for_doctests(x)
This function is a python wrapper so py_psi2 can be tested. The real tests are in the docstring for py_psi2.

EXAMPLES:

sage: from sage.symbolic.expression import py_li2_for_doctests
sage: py_li2_for_doctests(-1.1)
-0.890838090262283

sage.symbolic.expression.py_li_for_doctests(x, n, parent)
This function is a python wrapper so py_li can be tested. The real tests are in the docstring for py_li.

EXAMPLES:

sage: from sage.symbolic.expression import py_li_for_doctests
sage: py_li_for_doctests(0, 2, float)
0.000000000000000

sage.symbolic.expression.py_log_for_doctests(x)
This function tests py_log.

EXAMPLES:

sage: from sage.symbolic.expression import py_log_for_doctests
sage: py_log_for_doctests(CC(e))
1.00000000000000

sage.symbolic.expression.py_mod_for_doctests(x, n)
This function is a python wrapper so py_mod can be tested. The real tests are in the docstring for py_mod.

EXAMPLES:

sage: from sage.symbolic.expression import py_mod_for_doctests
sage: py_mod_for_doctests(5, 2)
1

sage.symbolic.expression.py_numer_for_doctests(n)
This function is used to test py_numer().

EXAMPLES:

sage: from sage.symbolic.expression import py_numer_for_doctests
sage: py_numer_for_doctests(2/3)
2

sage.symbolic.expression.py_print_fderivative_for_doctests(id, params, args)
Used for testing a cdef’d function.

EXAMPLES:
```sage
from sage.symbolic.expression import py_print_fderivative_for_doctests as py_print_fderivative, get_ginac_serial, get_fn_serial
sage: var('x,y,z')
(x, y, z)
sage: from sage.symbolic.function import get_sfunction_from_serial
sage: foo = function('foo', nargs=2)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
....:   if get_sfunction_from_serial(i) == foo: break
sage: get_sfunction_from_serial(i) == foo
True
sage: py_print_fderivative(i, (0, 1, 0, 1), (x, y^z))
D[0, 1, 0, 1](foo)(x, y^z)
```

Test custom print function:

```sage
def my_print(self, *args): return "func_with_args(" + ', '.join(map(repr, args)) + '")'
sage: foo = function('foo', nargs=2, print_func=my_print)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
....:   if get_sfunction_from_serial(i) == foo: break
sage: get_sfunction_from_serial(i) == foo
True
sage: py_print_fderivative(i, (0, 1, 0, 1), (x, y^z))
D[0, 1, 0, 1]func_with_args(x, y^z)
```

`sage.symbolic.expression.py_print_function_pystring(id, args, fname_paren=False)`

Return a string with the representation of the symbolic function specified by the given id applied to args.

INPUT:
- `id` – serial number of the corresponding symbolic function
- `params` – Set of parameter numbers with respect to which to take the derivative.
- `args` – arguments of the function.

EXAMPLES:

```sage
from sage.symbolic.expression import py_print_function_pystring, get_ginac_serial, get_fn_serial
sage: var('x,y,z')
(x, y, z)
sage: foo = function('foo', nargs=2)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
....:   if get_sfunction_from_serial(i) == foo: break
sage: get_sfunction_from_serial(i) == foo
True
sage: py_print_function_pystring(i, (x,y))
'foo(x, y)'
sage: py_print_function_pystring(i, (x,y), True)
'(foo)(x, y)'
```

(continues on next page)
sage: def my_print(self, *args): return "my args are: " + ', '.join(map(repr, args))
sage: foo = function('foo', nargs=2, print_func=my_print)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
 ...: if get_sfunction_from_serial(i) == foo: break
sage: get_sfunction_from_serial(i) == foo
True
sage: py_print_function_pystring(i, (x,y))
"my args are: x, y"

sage.symbolic.expression.py_psi2_for_doctests(n, x)
This function is a python wrapper so py_psi2 can be tested. The real tests are in the docstring for py_psi2.

EXAMPLES:

sage: from sage.symbolic.expression import py_psi2_for_doctests
sage: py_psi2_for_doctests(1, 2)
0.644934066848226

sage.symbolic.expression.py_psi_for_doctests(x)
This function is a python wrapper so py_psi can be tested. The real tests are in the docstring for py_psi.

EXAMPLES:

sage: from sage.symbolic.expression import py_psi_for_doctests
sage: py_psi_for_doctests(2)
0.422784335098467

sage.symbolic.expression.py_real_for_doctests(x)
Used for doctesting py_real.

sage.symbolic.expression.py_stieltjes_for_doctests(x)
This function is for testing py_stieltjes().

EXAMPLES:

sage: from sage.symbolic.expression import py_stieltjes_for_doctests
sage: py_stieltjes_for_doctests(0.0)
0.577215664901533

sage.symbolic.expression.py_tgamma_for_doctests(x)
This function is for testing py_tgamma().

sage.symbolic.expression.py_zeta_for_doctests(x)
This function is for testing py_zeta().

EXAMPLES:

sage: from sage.symbolic.expression import py_zeta_for_doctests
sage: py_zeta_for_doctests(CC.0)
0.00330022368532410 - 0.418155449141322*I

sage.symbolic.expression.register_or_update_function(self, name, latex_name, nargs, evalf_params_first, update)
Register the function `self` with Pynac (GiNaC).

OUTPUT:

- serial number of the function, for use in `call_registered_function()`

EXAMPLES:

```python
sage: from sage.symbolic.function import BuiltinFunction
sage: class Archosaurian(BuiltinFunction):
    ....: def __init__(self):
    ....:     BuiltinFunction.__init__(self, 'archsaur', nargs=1)
    ....: def _eval_(self, x):
    ....:     return x * exp(x)
sage: archsaur = Archosaurian()  # indirect doctest
sage: archsaur(2)
2*e^2
```

`sage.symbolic.expression.restore_op_wrapper(expr)`

`sage.symbolic.expression.solve_diophantine(f, *args, **kwds)`

Solve a Diophantine equation.

The argument, if not given as symbolic equation, is set equal to zero. It can be given in any form that can be converted to symbolic. Please see `Expression.solve_diophantine()` for a detailed synopsis.

EXAMPLES:

```python
sage: R.<a,b> = PolynomialRing(ZZ); R
Multivariate Polynomial Ring in a, b over Integer Ring
sage: solve_diophantine(a^2 - 3*b^2 + 1)
[]
sage: sorted(solve_diophantine(a^2 - 3*b^2 + 2), key=str)
[(-1/2*sqrt(3)*(sqrt(3) + 2)^t + 1/2*sqrt(3)*(-sqrt(3) + 2)^t → - 1/2*(-sqrt(3) + 2)^t,
-1/6*sqrt(3)*(sqrt(3) + 2)^t + 1/6*sqrt(3)*(-sqrt(3) + 2)^t → - 1/2*(sqrt(3) + 2)^t,
-1/2*(-sqrt(3) + 2)^t),
(1/2*sqrt(3)*(sqrt(3) + 2)^t - 1/2*sqrt(3)*(-sqrt(3) + 2)^t + 1/2*(sqrt(3) + 2)^t → + 1/2*(-sqrt(3) + 2)^t,
1/6*sqrt(3)*(sqrt(3) + 2)^t - 1/6*sqrt(3)*(-sqrt(3) + 2)^t + 1/2*(sqrt(3) + 2)^t → + 1/2*(-sqrt(3) + 2)^t]
```

`sage.symbolic.expression.test_binomial(n, k)`

The Binomial coefficients. It computes the binomial coefficients. For integer n and k and positive n this is the number of ways of choosing k objects from n distinct objects. If n is negative, the formula binomial(n,k) == (-1)^k*binomial(k-n-1,k) is used to compute the result.

INPUT:

- n, k – integers, with k >= 0.

OUTPUT:

- integer

EXAMPLES:
sage: import sage.symbolic.expression
sage: sage.symbolic.expression.test_binomial(5,2)
10
sage: sage.symbolic.expression.test_binomial(-5,3)
-35
sage: -sage.symbolic.expression.test_binomial(3-(-5)-1, 3)
-35

\texttt{sage.symbolic.expression.tolerant_is_symbol}(a)

Utility function to test if something is a symbol.

Returns False for arguments that do not have an \texttt{is_symbol} attribute. Returns the result of calling the \texttt{is_symbol} method otherwise.

\textbf{EXAMPLES:}

sage: from sage.symbolic.expression import tolerant_is_symbol
sage: tolerant_is_symbol(var("x"))
True
sage: tolerant_is_symbol(None)
False
sage: None.is_symbol()
Traceback (most recent call last):
 ... AttributeError: 'NoneType' object has no attribute 'is_symbol'

\texttt{sage.symbolic.expression.unpack_operands}(ex)

\textbf{EXAMPLES:}

sage: from sage.symbolic.expression import unpack_operands
sage: t = SR._force_pyobject((1, 2, x, x+1, x+2))

sage: unpack_operands(t)
(1, 2, x, x + 1, x + 2)

sage: type(unpack_operands(t))
<... 'tuple'>

sage: list(map(type, unpack_operands(t)))
[<class 'sage.rings.integer.Integer'>, <class 'sage.rings.integer.Integer'>, <class 'sage.symbolic.expression.Expression'>, <class 'sage.symbolic.expression.Expression'>, <class 'sage.symbolic.expression.Expression'>]

sage: u = SR._force_pyobject((t, x^2))

sage: unpack_operands(u)
((1, 2, x, x + 1, x + 2), x^2)

sage: type(unpack_operands(u)[0])
<... 'tuple'>
2.2 Callable Symbolic Expressions

EXAMPLES:

When you do arithmetic with:

```sage
cf(x, y, z) = \sin(x+y+z)
cg(x, y) = y + 2^x
c(f + g)
```

\[(x, y, z) \rightarrow 2^x + y + \sin(x + y + z)\]

```sage
cf(x, y, z) = \sin(x+y+z)
cg(w, t) = \cos(w - t)
c(f + g)
```

\[(t, w, x, y, z) \rightarrow \cos(-t + w) + \sin(x + y + z)\]

```sage
cf(x, y, t) = y*(x^2-t)
cg(x, y, w) = x + y - \cos(w)
c(f*g)
```

\[(x, y, t, w) \rightarrow (x^2 - t)*(x + y - \cos(w))*y\]

```sage
cf(x, y, t) = x+y
cg(x, y, w) = w + t
c(f + g)
```

\[(x, y, t, w) \rightarrow t + w + x + y\]

class sage.symbolic.callable.CallableSymbolicExpressionFunctor(\texttt{arguments})

Bases: ConstructionFunctor

A functor which produces a CallableSymbolicExpressionRing from the SymbolicRing.

EXAMPLES:

```sage
from sage.symbolic.callable import CallableSymbolicExpressionFunctor
cx, cy = var('x, y')
cf = CallableSymbolicExpressionFunctor((x, y)); cf
```

CallableSymbolicExpressionFunctor(x, y)

```sage:
Callable function ring with arguments (x, y)
```

```sage:
loads(dumps(cf))
```

CallableSymbolicExpressionFunctor(x, y)

arguments()

EXAMPLES:

```sage
from sage.symbolic.callable import CallableSymbolicExpressionFunctor
cx, cy = var('x, y')
ca = CallableSymbolicExpressionFunctor((x, y))
ca.arguments()
```

(x, y)

merge(\texttt{other})

EXAMPLES:
CallableSymbolicExpressionFunctor

```
sage: from sage.symbolic.callable import CallableSymbolicExpressionFunctor
sage: x,y = var('x,y')
sage: a = CallableSymbolicExpressionFunctor((x,))
sage: b = CallableSymbolicExpressionFunctor((y,))
sage: a.merge(b)
CallableSymbolicExpressionFunctor(x, y)
```

unify_arguments(x)

Takes the variable list from another CallableSymbolicExpression object and compares it with the current CallableSymbolicExpression object’s variable list, combining them according to the following rules:

Let a be self’s variable list, let b be y’s variable list.

1. If a == b, then the variable lists are identical, so return that variable list.
2. If a ≠ b, then check if the first \(n \) items in a are the first \(n \) items in b, or vice versa. If so, return a list with these \(n \) items, followed by the remaining items in a and b sorted together in alphabetical order.

Note: When used for arithmetic between CallableSymbolicExpression’s, these rules ensure that the set of CallableSymbolicExpression’s will have certain properties. In particular, it ensures that the set is a commutative ring, i.e., the order of the input variables is the same no matter in which order arithmetic is done.

INPUT:

- x - A CallableSymbolicExpression

OUTPUT: A tuple of variables.

EXAMPLES:

```
sage: from sage.symbolic.callable import CallableSymbolicExpressionFunctor
sage: x,y = var('x,y')
sage: a = CallableSymbolicExpressionFunctor((x,))
sage: b = CallableSymbolicExpressionFunctor((y,))
sage: a.unify_arguments(b)
(x, y)
```

AUTHORS:

- Bobby Moretti: thanks to William Stein for the rules

class sage.symbolic.callable.CallableSymbolicExpressionRingFactory

Bases: UniqueFactory

create_key(args, check=True)

EXAMPLES:

```
sage: from sage.symbolic.callable import CallableSymbolicExpressionFunctor
sage: x,y = var('x,y')
sage: a = CallableSymbolicExpressionFunctor((x,))
sage: b = CallableSymbolicExpressionFunctor((y,))
sage: a.unify_arguments(b)
(x, y)
```

create_object(version, key, **extra_args)

Return a CallableSymbolicExpressionRing given a version and a key.

EXAMPLES:
sage: x, y = var('x, y')
sage: CallableSymbolicExpressionRing.create_object(0, (x, y))
Callable function ring with arguments (x, y)

class sage.symbolic.callable.CallableSymbolicExpressionRing_class(\textit{arguments})
Bases: SymbolicRing, CallableSymbolicExpressionRing

EXAMPLES:
We verify that coercion works in the case where \textit{x} is not an instance of SymbolicExpression, but its parent is still the SymbolicRing:

sage: \textit{f}(x) = 1
sage: \textit{f}*e
x |\mapsto e

\textbf{\textit{args}()}
Return the arguments of \textit{self}.
The order that the variables appear in \textit{self.arguments}() is the order that is used in evaluating the elements of \textit{self}.

EXAMPLES:

sage: x, y = var('x, y')
sage: f(x, y) = 2*x+y
sage: f.parent().arguments()
(x, y)
sage: f(y, x) = 2*x+y
sage: f.parent().arguments()
(y, x)

\textbf{\textit{arguments}()}
Return the arguments of \textit{self}.
The order that the variables appear in \textit{self.arguments}() is the order that is used in evaluating the elements of \textit{self}.

EXAMPLES:

sage: x, y = var('x, y')
sage: f(x, y) = 2*x+y
sage: f.parent().arguments()
(x, y)

\textbf{\textit{construction}()}
EXAMPLES:

sage: f(x, y) = x^2 + y
sage: f.parent().construction()
CallableSymbolicExpressionFunctor(x, y), Symbolic Ring
2.3 Assumptions

The GenericDeclaration class provides assumptions about a symbol or function in verbal form. Such assumptions can be made using the assume() function in this module, which also can take any relation of symbolic expressions as argument. Use forget() to clear all assumptions. Creating a variable with a specific domain is equivalent with making an assumption about it.

There is only rudimentary support for consistency and satisfiability checking in Sage. Assumptions are used both in Maxima and Pynac to support or refine some computations. In the following we show how to make and query assumptions. Please see the respective modules for more practical examples.

In addition to the global assumptions() database, assuming() creates reusable, stackable context managers allowing for temporary updates of the database for evaluation of a (block of) statements.

EXAMPLES:

The default domain of a symbolic variable is the complex plane:

```sage
sage: var('x')
x
sage: x.is_real()
False
sage: assume(x, 'real')
sage: x.is_real()
True
sage: forget()
sage: x.is_real()
False
```

Here is the list of acceptable features:

```sage
sage: ', '.join(map(str, maxima("features")._sage_()))
'integer, noninteger, even, odd, rational, irrational, real, imaginary, complex, analytic, increasing, decreasing, oddfun, evenfun, posfun, constant, commutative, lassociative, rassociative, symmetric, antisymmetric, integervalued'
```

Set positive domain using a relation:

```sage
sage: assume(x>0)
sage: x.is_positive()
True
sage: x.is_real()
True
sage: assumptions()
[x > 0]
```

Assumptions also affect operations that do not use Maxima:

```sage
sage: forget()
sage: assume(x, 'even')
sage: assume(x, 'real')
sage: (-1)^x
1
sage: (-gamma(pi))^x
```

(continues on next page)
gamma(pi)^x
sage: binomial(2*x, x).is_integer()
True

Assumptions are added and in some cases checked for consistency:

sage: assume(x>0)
sage: assume(x<0)
Traceback (most recent call last):
... ValueError: Assumption is inconsistent
sage: forget()

class sage.symbolic.assumptions.GenericDeclaration(var, assumption)

 Bases: UniqueRepresentation

 This class represents generic assumptions, such as a variable being an integer or a function being increasing. It
 passes such information to Maxima's declare (wrapped in a context so it is able to forget) and to Pynac.

 INPUT:

 - var – the variable about which assumptions are being made
 - assumption – a string containing a Maxima feature, either user defined or in the list given by
 maxima('features')

 EXAMPLES:

 sage: from sage.symbolic.assumptions import GenericDeclaration
 sage: decl = GenericDeclaration(x, 'integer')
 sage: decl.assume()
 sage: sin(x*pi)
 0
 sage: decl.forget()
 sage: sin(x*pi)
 sin(pi*x)
 sage: sin(x*pi).simplify()
 sin(pi*x)

 Here is the list of acceptable features:

 sage: ','.join(map(str, maxima('features')._sage_()))
 'integer, noninteger, even, odd, rational, irrational, real, imaginary, complex, analytic, increasing, decreasing, oddfun, evenfun, posfun, constant, commutative, lassociative, rassociative, symmetric, antisymmetric, integervalued'

 Test unique representation behavior:

 sage: GenericDeclaration(x, 'integer') is GenericDeclaration(SR.var("x"), 'integer')
 True

 assume()
 Make this assumption.

2.3. Assumptions
contradicts(soln)

Return True if this assumption is violated by the given variable assignment(s).

INPUT:

• soln – Either a dictionary with variables as keys or a symbolic relation with a variable on the left hand side.

EXAMPLES:

```python
sage: from sage.symbolic.assumptions import GenericDeclaration
sage: GenericDeclaration(x, 'integer').contradicts(x==4) False
sage: GenericDeclaration(x, 'integer').contradicts(x==4.0) False
sage: GenericDeclaration(x, 'integer').contradicts(x==4.5) True
sage: GenericDeclaration(x, 'integer').contradicts(x==sqrt(17)) True
sage: GenericDeclaration(x, 'noninteger').contradicts(x==sqrt(17)) False
sage: GenericDeclaration(x, 'noninteger').contradicts(x==17) True
sage: GenericDeclaration(x, 'even').contradicts(x==3) True
sage: GenericDeclaration(x, 'complex').contradicts(x==3) False
sage: GenericDeclaration(x, 'imaginary').contradicts(x==3) True
sage: GenericDeclaration(x, 'imaginary').contradicts(x==I) False
sage: var('y, z')
(y, z)
sage: GenericDeclaration(x, 'imaginary').contradicts(x==y+z) False
sage: GenericDeclaration(x, 'rational').contradicts(y==pi) False
sage: GenericDeclaration(x, 'rational').contradicts(x==pi) True
sage: GenericDeclaration(x, 'irrational').contradicts(x!=pi) False
sage: GenericDeclaration(x, 'rational').contradicts({x: pi, y: pi}) True
sage: GenericDeclaration(x, 'rational').contradicts({z: pi, y: pi}) False
```

forget()

Forget this assumption.

has(arg)

Check if this assumption contains the argument arg.

EXAMPLES:
sage: from sage.symbolic.assumptions import GenericDeclaration as GDecl
sage: var('y')
y
sage: d = GDecl(x, 'integer')
sage: d.has(x)
True
sage: d.has(y)
False

sage.symbolic.assumptions.assume(*args)
Make the given assumptions.

INPUT:
• *args – a variable-length sequence of assumptions, each consisting of:
 – any number of symbolic inequalities, like $0 < x$, $x < 1$
 – a subsequence of variable names, followed by some property that should be assumed for those variables; for example, x, y, z, 'integer' would assume that each of x, y, and z are integer variables, and x, 'odd' would assume that x is odd (as opposed to even).

The two types can be combined, but a symbolic inequality cannot appear in the middle of a list of variables.

OUTPUT:
If everything goes as planned, there is no output.
If you assume something that is not one of the two forms above, then an AttributeError is raised as we try to call its assume method.
If you make inconsistent assumptions (for example, that x is both even and odd), then a ValueError is raised.

Warning: Do not use Python’s chained comparison notation in assumptions. Python literally translates the expression $0 < x < 1$ to $(0 < x)$ and $(x < 1)$, but the value of bool($0 < x$) is False when x is a symbolic variable. Therefore, by the definition of Python’s logical “and” operator, the entire expression is equal to $0 < x$.

EXAMPLES:
Assumptions are typically used to ensure certain relations are evaluated as true that are not true in general.
Here, we verify that for $x > 0$, $\sqrt{x^2} = x$:

```
sage: assume(x > 0)
sage: bool(sqrt(x^2) == x)
True
```
This will be assumed in the current Sage session until forgotten:

```
sage: bool(sqrt(x^2) == x)
True
sage: forget()
sage: bool(sqrt(x^2) == x)
False
```
Another major use case is in taking certain integrals and limits where the answers may depend on some sign condition:
Symbolic Calculus, Release 10.2

```
 sage: var('x, n')
 (x, n)
 sage: assume(n+1>0)
 sage: integral(x^n,x)
 x^(n + 1)/(n + 1)
 sage: forget()
```

```
 sage: var('q, a, k')
 (q, a, k)
 sage: assume(q > 1)
 sage: sum(a*q^k, k, 0, oo)
 Traceback (most recent call last):
 ... 
 ValueError: Sum is divergent.
 sage: forget()
 sage: assume(abs(q) < 1)
 sage: sum(a*q^k, k, 0, oo)
 -a/(q - 1)
 sage: forget()
```

An integer constraint:

```
 sage: n,P,r,r2 = SR.var('n, P, r, r2')
 sage: assume(n, 'integer')
 sage: c = P*e^(r*n)
 sage: d = P*(1+r2)^n
 sage: solve(c==d,r2)
 [r2 == e^r - 1]
 sage: forget()
```

Simplifying certain well-known identities works as well:

```
 sage: n = SR.var('n')
 sage: assume(n, 'integer')
 sage: sin(n*pi)
 0
 sage: forget()
 sage: sin(n*pi).simplify()
 sin(pi*n)
```

Instead of using chained comparison notation, each relationship should be passed as a separate assumption:

```
 sage: x = SR.var('x')
 sage: assume(0 < x, x < 1)  # instead of assume(0 < x < 1)
 sage: assumptions()
 [0 < x, x < 1]
 sage: forget()
```

If you make inconsistent or meaningless assumptions, Sage will let you know:

```
 sage: assume(x<0)
 sage: assume(x>0)
 Traceback (most recent call last):
```
Symbolic Calculus, Release 10.2

... ValueError: Assumption is inconsistent
sage: assume(x<1)
Traceback (most recent call last):
...
ValueError: Assumption is redundant
sage: assumptions()
[x < 0]
sage: forget()
sage: assume(x,'even')
sage: assume(x,'odd')
Traceback (most recent call last):
...
ValueError: Assumption is inconsistent
sage: forget()

You can also use assumptions to evaluate simple truth values:

sage: x, y, z = var('x, y, z')
sage: assume(x>=y,y>=z,z>=x)
sage: bool(x==z)
True
sage: bool(z<x)
False
sage: bool(z>y)
False
sage: bool(y==z)
True
sage: forget()
sage: assume(x>=1,x<=1)
sage: bool(x==1)
True
sage: bool(x>1)
False
sage: forget()

class sage.symbolic.assumptions.assuming(*args, **kwds)

 Bases: object

 Temporarily modify assumptions.

 Create a context manager in which temporary assumptions are added (or substituted) to the current assumptions set.

 The set of possible assumptions and declarations is the same as for assume().

 This can be useful in interactive mode to discover the assumptions necessary to a given integration, or the exact solution to a system of equations.

 It can also be used to explore the branches of a cases() expression.

 As with assume(), it is an error to add an assumption either redundant or inconsistent with the current assumption set (unless replace=True is used). See examples.

 INPUT:

 - *args – assumptions (same format as for assume()).
• **replace** – a boolean (default [False].) Specifies whether the new assumptions are added to (default) or replace (if replace=True) the current assumption set.

OUTPUT:

A context manager useable in a with statement (see examples).

EXAMPLES:

Basic functionality : inside a with assuming:() block, Sage uses the updated assumptions database. After exit, the original database is restored.

```python
sage: var("x")
x
sage: forget(assumptions())
sage: solve(x^2 == 4,x)
[x == -2, x == 2]
sage: with assuming(x > 0):
....:
....: solve(x^2 == 4,x)
[x == 2]
sage: assumptions()
[]
```

The local assumptions can be stacked. We can use this functionality to discover incrementally the assumptions necessary to a given calculation (and by the way, to check that Sage’s default integrator (Maxima’s, that is), sometimes nitpicks for naught).

```python
sage: var("y,k,theta")
(y, k, theta)
sage: dgamma(y,k,theta)=y^(k-1)*e^((-y/theta))/((theta^k*gamma(k))
sage: integrate(dgamma(y,k,theta),y,0,oo)
Traceback (most recent call last):
... ValueError: Computation failed since Maxima requested additional constraints; using...
... the 'assume' command before evaluation *may* help (example of legal syntax is...
... 'assume(theta>0)', see 'assume?' for more details)
Is theta positive or negative?
sage: a1=assuming(theta>0)
sage: with a1:integrate(dgamma(y,k,theta),y,0,oo)
Traceback (most recent call last):
... ValueError: Computation failed since Maxima requested additional constraints; using...
... the 'assume' command before evaluation *may* help (example of legal syntax is...
... 'assume(k>0)', see 'assume?' for more details)
Is k positive, negative or zero?
sage: a2=assuming(k>0)
sage: with a1,a2:integrate(dgamma(y,k,theta),y,0,oo)
Traceback (most recent call last):
... ValueError: Computation failed since Maxima requested additional constraints; using...
... the 'assume' command before evaluation *may* help (example of legal syntax is...
... 'assume(k>0)', see 'assume?' for more details)
Is k an integer?
sage: a3=assuming(k,"noninteger")
sage: with a1,a2,a3:integrate(dgamma(y,k,theta),y,0,oo)
```

(continues on next page)
As mentioned above, it is an error to try to introduce redundant or inconsistent assumptions.

```python
sage: assume(x > 0)
sage: with assuming(x > -1): "I won't see this"
Traceback (most recent call last):
  ... ValueError: Assumption is redundant
sage: with assuming(x < -1): "I won't see this"
Traceback (most recent call last):
  ... ValueError: Assumption is inconsistent
```

```python
sage.symbolic.assumptions.assumptions(*args)
List all current symbolic assumptions.
```

INPUT:

• `args` – list of variables which can be empty.

OUTPUT:

• list of assumptions on variables. If `args` is empty it returns all assumptions

EXAMPLES:

```python
sage: var('x, y, z, w')
(x, y, z, w)
sage: forget()
sage: assume(x^2 + y^2 > 0)
sage: assumptions()
[x^2 + y^2 > 0]
sage: forget(x^2 + y^2 > 0)
sage: assumptions()
[]
sage: assume(x > y)
sage: assume(z > w)
sage: sorted(assumptions(), key=lambda x: str(x))
[x > y, z > w]
sage: forget()
sage: assumptions()
[]
```

It is also possible to query for assumptions on a variable independently:

```python
sage: x, y, z = var('x y z')
sage: assume(x, 'integer')
sage: assume(y > 0)
sage: assume(y**2 + z**2 == 1)
sage: assume(x < 0)
```
sage: assumptions()
[x is integer, y > 0, y^2 + z^2 == 1, x < 0]
sage: assumptions(x)
[x is integer, x < 0]
sage: assumptions(x, y)
[x is integer, x < 0, y > 0, y^2 + z^2 == 1]
sage: assumptions(z)
[y^2 + z^2 == 1]

sage.symbolic.assumptions.forget(*args)
Forget the given assumption, or call with no arguments to forget all assumptions.

Here an assumption is some sort of symbolic constraint.

INPUT:

• *args – assumptions (default: forget all assumptions)

EXAMPLES:

We define and forget multiple assumptions:

sage: forget()
sage: var('x,y,z')
(x, y, z)
sage: assume(x>0, y>0, z == 1, y>0)
sage: sorted(assumptions(), key=lambda x: str(x))
[x > 0, y > 0, z == 1]
sage: forget(x>0, z==1)
sage: assumptions()
[y > 0]
sage: assume(y, 'even', z, 'complex')
sage: assumptions()
[y > 0, y is even, z is complex]
sage: cos(y*pi).simplify()
1
sage: forget(y,'even')
sage: cos(y*pi).simplify()
cos(pi*y)
sage: assumptions()
[y > 0, z is complex]
sage: forget()
sage: assumptions()
[]

sage.symbolic.assumptions.preprocess_assumptions(*args)

Turn a list of the form (var1, var2, ..., 'property') into a sequence of declarations (var1 is property), (var2 is property), ...

EXAMPLES:

sage: from sage.symbolic.assumptions import preprocess_assumptions
sage: preprocess_assumptions([x, 'integer', x > 4])
[x is integer, x > 4]
sage: var('x, y')
(x, y)
```
sage: preprocess_assumptions([x, y, 'integer', x > 4, y, 'even'])
[x is integer, y is integer, x > 4, y is even]
```

2.4 Symbolic Equations and Inequalities

Sage can solve symbolic equations and inequalities. For example, we derive the quadratic formula as follows:

```
sage: a, b, c = var('a,b,c')
sage: qe = (a*x^2 + b*x + c == 0)
sage: qe
a*x^2 + b*x + c == 0
sage: print(solve(qe, x))
[ x == -1/2*(b + sqrt(b^2 - 4*a*c))/a,
  x == -1/2*(b - sqrt(b^2 - 4*a*c))/a
]
```

2.4.1 The operator, left hand side, and right hand side

Operators:

```
sage: eqn = x^3 + 2/3 >= x - pi
sage: eqn.operator()
<built-in function ge>
sage: (x^3 + 2/3 < x - pi).operator()
<built-in function lt>
sage: (x^3 + 2/3 == x - pi).operator()
<built-in function eq>
```

Left hand side:

```
sage: eqn = x^3 + 2/3 >= x - pi
sage: eqn.lhs()
x^3 + 2/3
sage: eqn.left()
x^3 + 2/3
sage: eqn.left_hand_side()
x^3 + 2/3
```

Right hand side:

```
sage: (x + sqrt(2) >= sqrt(3) + 5/2).right()
sqrt(3) + 5/2
sage: (x + sqrt(2) >= sqrt(3) + 5/2).rhs()
sqrt(3) + 5/2
sage: (x + sqrt(2) >= sqrt(3) + 5/2).right_hand_side()
sqrt(3) + 5/2
```
2.4.2 Arithmetic

Add two symbolic equations:

```
sage: var('a,b')
(a, b)
sage: m = 144 == -10 * a + b
sage: n = 136 == 10 * a + b
sage: m + n
280 == 2b
```

```
sage: int(-144) + m
0 == -10*a + b - 144
```

Subtract two symbolic equations:

```
sage: var('a,b')
(a, b)
sage: m = 144 == 20 * a + b
sage: n = 136 == 10 * a + b
sage: m - n
8 == 10*a
```

```
sage: int(144) - m
0 == -20*a - b + 144
```

Multiply two symbolic equations:

```
sage: x = var('x')
sage: m = x == 5*x + 1
sage: n = sin(x) == sin(x+2*pi, hold=True)
sage: m * n
x*sin(x) == (5*x + 1)*sin(2*pi + x)
```

```
sage: m = 2*x == 3*x^2 - 5
sage: int(-1) * m
-2*x == -3*x^2 + 5
```

Divide two symbolic equations:

```
sage: x = var('x')
sage: m = x == 5*x + 1
sage: n = sin(x) == sin(x+2*pi, hold=True)
sage: m/n
x/sin(x) == (5*x + 1)/sin(2*pi + x)
```

```
sage: m = x != 5*x + 1
sage: n = sin(x) != sin(x+2*pi, hold=True)
sage: m/n
x/sin(x) != (5*x + 1)/sin(2*pi + x)
```
2.4.3 Substitution

Substitution into relations:

```
sage: x, a = var('x, a')
sage: eq = (x^3 + a == sin(x/a)); eq
x^3 + a == sin(x/a)
sage: eq.substitute(x=5*x)
125*x^3 + a == sin(5*x/a)
sage: eq.substitute(a=1)
x^3 + 1 == sin(x)
sage: eq.substitute(a=x)
x^3 + x == sin(1)
sage: eq.substitute(a=x, x=1)
x + 1 == sin(1/x)
sage: eq.substitute({a:x, x:1})
x + 1 == sin(1/x)
```

You can even substitute multivariable and matrix expressions:

```
sage: x,y = var('x, y')
sage: M = Matrix([[x+1,y],[x^2,y^3]]); M
[x + 1   y]
[x^2  y^3]
sage: M.substitute({x:0,y:1})
[1   1]
[0   1]
```

2.4.4 Solving

We can solve equations:

```
sage: x = var('x')
sage: S = solve(x^3 - 1 == 0, x)
sage: S
[x == 1/2*I*sqrt(3) - 1/2, x == -1/2*I*sqrt(3) - 1/2, x == 1]
sage: S[0]
x == 1/2*I*sqrt(3) - 1/2
sage: S[0].right()
1/2*I*sqrt(3) - 1/2
sage: S = solve(x^3 - 1 == 0, x, solution_dict=True)
sage: S
[{x: 1/2*I*sqrt(3) - 1/2}, {x: -1/2*I*sqrt(3) - 1/2}, {x: 1}]
sage: z = 5
sage: solve(z^2 == sqrt(3),z)
Traceback (most recent call last):
  ...TypeError: 5 is not a valid variable.
```

We can also solve equations involving matrices. The following example defines a multivariable function \(f(x,y) \), then solves for where the partial derivatives with respect to \(x \) and \(y \) are zero. Then it substitutes one of the solutions into the Hessian matrix \(H \) for \(f \):
```python
sage: f(x,y) = x^2*y+y^2+y
sage: solutions = solve(list(f.diff()),[x,y],solution_dict=True)
sage: solutions == [{x: -I, y: 0}, {x: I, y: 0}, {x: 0, y: -1/2}]
True
sage: H = f.diff(2)  # Hessian matrix
sage: H.subs(solutions[2])
[(x, y) |--> -1 (x, y) |--> 0]
[(x, y) |--> 0 (x, y) |--> 2]
sage: H(x,y).subs(solutions[2])
[-1 0]
[ 0 2]

We illustrate finding multiplicities of solutions:

```python
sage: f = (x-1)^5*(x^2+1)
sage: solve(f == 0, x)
[x == -I, x == I, x == 1]
sage: solve(f == 0, x, multiplicities=True)
([x == -I, x == I, x == 1], [1, 1, 5])

We can also solve many inequalities:

```python
sage: solve(1/(x-1)<=8,x)
[[x < 1], [x >= (9/8)]]

We can numerically find roots of equations:

```python
sage: (x == sin(x)).find_root(-2,2)
0.0
sage: (x^5 + 3*x + 2 == 0).find_root(-2,2,x)
-0.6328345202421523
sage: (cos(x) == sin(x)).find_root(10,20)
19.634954084936208

We illustrate some valid error conditions:

```python
sage: (cos(x) != sin(x)).find_root(10,20)
Traceback (most recent call last):
  ... ValueError: Symbolic equation must be an equality.
sage: (SR(3)==SR(2)).find_root(-1,1)
Traceback (most recent call last):
  ... RuntimeError: no zero in the interval, since constant expression is not 0.

There must be at most one variable:

```python
sage: x, y = var('x,y')
sage: (x == y).find_root(-2,2)
Traceback (most recent call last):
 ... NotImplementedError: root finding currently only implemented in 1 dimension.
```
2.4.5 Assumptions

Forgetting assumptions:

```
sage: var('x,y')
(x, y)
sage: forget() #Clear assumptions
sage: assume(x>0, y < 2)
sage: assumptions()
[x > 0, y < 2]
sage: (y < 2).forget()
sage: assumptions()
[x > 0]
sage: forget()
sage: assumptions()
[]
```

2.4.6 Miscellaneous

Conversion to Maxima:

```
sage: x = var('x')
sage: eq = (x^(3/5) >= pi^2 + e^i)
sage: eq._maxima_init_()
'(_SAGE_VAR_x)^(3/5) >= ((%pi)^(2))+(exp(0+%i*1))'
sage: el = x^3 + x == sin(2*x)
sage: z = el._maxima_()
sage: z.parent() is sage.calculus.calculus.maxima
True
sage: z = el._maxima_(maxima)
sage: z.parent() is maxima
True
sage: z = maxima(el)
sage: z.parent() is maxima
True
```

Conversion to Maple:

```
sage: x = var('x')
sage: eq = (x == 2)
sage: eq._maple_init_()
'x = 2'
```

Comparison:

```
sage: x = var('x')
sage: (x>0) == (x>0)
True
sage: (x>0) == (x>1)
False
sage: (x>0) != (x>1)
True
```
Variables appearing in the relation:

```
sage: var('x,y,z,w')
(x, y, z, w)
sage: f = (x+y+w) == (x^2 - y^2 - z^3); f
w + x + y == -z^3 + x^2 - y^2
sage: f.variables()
(w, x, y, z)
```

LaTeX output:

```
sage: latex(x^(3/5) >= pi)
x^\frac{3}{5} \geq \pi
```

When working with the symbolic complex number $I$, notice that comparisons do not automatically simplify even in trivial situations:

```
sage: SR(I)^2 == -1
-1 == -1
sage: SR(I)^2 < 0
-1 < 0
sage: (SR(I)+1)^4 > 0
-4 > 0
```

Nevertheless, if you force the comparison, you get the right answer (github issue #7160):

```
sage: bool(SR(I)^2 == -1)
True
sage: bool(SR(I)^2 < 0)
True
sage: bool((SR(I)+1)^4 > 0)
False
```

### 2.4.7 More Examples

```
sage: x,y,a = var('x,y,a')
sage: f = x^2 + y^2 == 1
sage: f.solve(x)
[x == -sqrt(-y^2 + 1), x == sqrt(-y^2 + 1)]
```

```
sage: f = x^5 + a
sage: solve(f==0,x)
[x == 1/4*(-a)^(1/5)*(sqrt(5) + I*sqrt(2*sqrt(5) + 10) - 1), x == -1/4*(-a)^(1/5)*(sqrt(5) - I*sqrt(-2*sqrt(5) + 10) + 1), x == -1/4*(-a)^(1/5)*(sqrt(5) + I*sqrt(-2*sqrt(5) + 10) + 1), x == 1/4*(-a)^(1/5)*(sqrt(5) - I*sqrt(2*sqrt(5) + 10) - 1), x == -(-a)^(1/5)]
```

You can also do arithmetic with inequalities, as illustrated below:

```
sage: var('x y')
(x, y)
sage: f = x + 3 == y - 2
```
Symbolic Equations and Inequalities

AUTHORS:

- Bobby Moretti: initial version (based on a trick that Robert Bradshaw suggested).
- William Stein: second version
- William Stein (2007-07-16): added arithmetic with symbolic equations

`sage.symbolic.relation.solve(f, *args, **kwds)`

Algebraically solve an equation or system of equations (over the complex numbers) for given variables. Inequalities and systems of inequalities are also supported.

**INPUT:**

- `f` - equation or system of equations (given by a list or tuple)
- `*args` - variables to solve for.
- `solution_dict` - bool (default: False); if True or non-zero, return a list of dictionaries containing the solutions. If there are no solutions, return an empty list (rather than a list containing an empty dictionary). Likewise, if there's only a single solution, return a list containing one dictionary with that solution.

There are a few optional keywords if you are trying to solve a single equation. They may only be used in that context.

- `multiplicities` - bool (default: False); if True, return corresponding multiplicities. This keyword is incompatible with `to_poly_solve=True` and does not make any sense when solving inequalities.
- `explicit_solutions` - bool (default: False); require that all roots be explicit rather than implicit. Not used when solving inequalities.
- `to_poly_solve` - bool (default: False) or string; use Maxima's `to_poly_solver` package to search for more possible solutions, but possibly encounter approximate solutions. This keyword is incompatible with `multiplicities=True` and is not used when solving inequalities. Setting `to_poly_solve` to 'force' (string) omits Maxima's solve command (useful when some solutions of trigonometric equations are lost).
- `algorithm` - string (default: 'maxima'); to use SymPy’s solvers set this to ‘sympy’. Note that SymPy is always used for diophantine equations. Another choice is ‘giac’.

2.4. Symbolic Equations and Inequalities
• **domain** - string (default: ‘complex’); setting this to ‘real’ changes the way SymPy solves single equations; inequalities are always solved in the real domain.

**EXAMPLES:**

```python
sage: x, y = var(’x, y’)
sage: solve([x+y==6, x-y==4], x, y)
[[x == 5, y == 1]]
sage: solve([x^2+y^2 == 1, y^2 == x^3 + x + 1], x, y)
[[x == -1/2*I*sqrt(3) - 1/2, y == sqrt(1/2*I*sqrt(3) + 3/2)],
 [x == 1/2*I*sqrt(3) - 1/2, y == sqrt(1/2*I*sqrt(3) + 3/2)],
 [x == 0, y == -1],
 [x == 0, y == 1]]
sage: solve([sqrt(x) + sqrt(y) == 5, x + y == 10], x, y)
[[x == -5/2*I*sqrt(5) + 5, y == 5/2*I*sqrt(5) + 5],
 [x == 5/2*I*sqrt(5) + 5, y == -5/2*I*sqrt(5) + 5]]
sage: solutions = solve([x^2+y^2 == 1, y^2 == x^3 + x + 1], x, y, solution_dict=True)
sage: for solution in solutions: print("{} , {}").format(solution[x].n(digits=3),
solution[y].n(digits=3))
-0.500 - 0.866*I , -1.27 + 0.341*I
-0.500 - 0.866*I , 1.27 - 0.341*I
-0.500 + 0.866*I , -1.27 - 0.341*I
-0.500 + 0.866*I , 1.27 + 0.341*I
0.000 , -1.00
0.000 , 1.00
```

Whenever possible, answers will be symbolic, but with systems of equations, at times approximations will be given by Maxima, due to the underlying algorithm:

```python
sage: sols = solve([x^3==y,y^2==x], [x,y]); sols[-1], sols[0] # abs tol 1e-15
([x == 0, y == 0],
 [x == (0.3090169943749475 + 0.9510565162951535*I),
y == (-0.8090169943749475 - 0.5877852522924731*I)])
sage: sols[0][0].rhs().pyobject().parent()
Complex Double Field
```

Here we demonstrate very basic use of the optional keywords:

```python
sage: ((x^2-1)^2).solve(x)
[x == -1, x == 1]
sage: ((x^2-1)^2).solve(x,multiplicities=True)
```

(continues on next page)
We must solve with respect to actual variables:

```python
sage: z = 5
sage: solve([8*z + y == 3, -z + 7*y == 0], y, z)
Traceback (most recent call last):
 ...TypeError: 5 is not a valid variable.
```

If we ask for dictionaries containing the solutions, we get them:

```python
sage: solve([x^2-1], x, solution_dict=True)

```

Expressions which are not equations are assumed to be set equal to zero, as with $x$ in the following example:

```
((x == -1, x == 1), [2, 2])
sage: solve(sin(x)==x,x)
[x == sin(x)]
sage: solve(sin(x)==x,x,explicit_solutions=True)
[]
sage: solve(abs(1-abs(1-x)) == 10, x)
[abs(abs(x - 1) - 1) == 10]
sage: solve(abs(1-abs(1-x)) == 10, x, to_poly_solve=True)
[x == -10, x == 12]
sage: from sage.symbolic.expression import Expression
sage: Expression.solve(x^2==1,x)
[x == -1, x == 1]
```

Especially with trigonometric functions, the dummy variable may be implicitly an integer (hence the z):

```python
sage: solve(sin(x)==cos(x), x, to_poly_solve=True)
[x == 1/4*pi + pi*z...]
sage: solve((cos(x))^2*sin(x) == 1/2, x+y == 0], x, y)
[x == 1/4*pi + pi*z..., y == -1/4*pi - pi*z...]```
If True appears in the list of equations it is ignored, and if False appears in the list then no solutions are returned. E.g., note that the first 3==3 evaluates to True, not to a symbolic equation.

Here, the first equation evaluates to False, so there are no solutions:

Completely symbolic solutions are supported:

Inequalities can be also solved:

A simple example to show the use of the keyword multiplicities:

Here is how the explicit_solutions keyword functions:
The following examples show the use of the keyword `to_poly_solve`:

```
sage: solve(abs(1-abs(1-x)) == 10, x)
[abs(abs(x - 1) - 1) == 10]
sage: solve(abs(1-abs(1-x)) == 10, x, to_poly_solve=True)
[x == -10, x == 12]
sage: var('Q')
Q
sage: solve(Q*sqrt(Q^2 + 2) - 1, Q)
[Q == 1/sqrt(Q^2 + 2)]
```

The following example is a regression in Maxima 5.39.0. It used to be possible to get one more solution here, namely $1/sqrt(sqrt(2) + 1)$, see https://sourceforge.net/p/maxima/bugs/3276/:

```
sage: solve(Q*sqrt(Q^2 + 2) - 1, Q, to_poly_solve=True)
[Q == -sqrt(-sqrt(2) - 1), Q == sqrt(sqrt(2) + 1)*(sqrt(2) - 1)]
```

An effort is made to only return solutions that satisfy the current assumptions:

```
sage: solve(x^2==4, x)
[x == -2, x == 2]
sage: assume(x<0)
sage: solve(x^2==4, x)
[x == -2]
sage: solve((x^2-4)^2 == 0, x, multiplicities=True)
([x == -2], [2])
sage: solve(x^2==2, x)
[x == -sqrt(2)]
sage: z = var('z')
sage: solve(x^2==2-z, x)
[x == -sqrt(-z + 2)]
sage: assume(x, 'rational')
sage: solve(x^2 == 2, x)
[]
```

In some cases it may be worthwhile to directly use `to_poly_solve` if one suspects some answers are being missed:

```
sage: forget()
sage: solve(cos(x)==0, x)
[x == 1/2*pi]
sage: solve(cos(x)==0, x, to_poly_solve=True)
[x == 1/2*pi]
```

(continues on next page)
sage: solve(cos(x)==0, x, to_poly_solve='force')
[x == 1/2*pi + pi*z...]

The same may also apply if a returned unsolved expression has a denominator, but the original one did not:

sage: solve(cos(x) * sin(x) == 1/2, x, to_poly_solve=True)
[sin(x) == 1/2/cos(x)]
sage: solve(cos(x) * sin(x) == 1/2, x, to_poly_solve=True, explicit_solutions=True)
[x == 1/4*pi + pi*z...]
sage: solve(cos(x) * sin(x) == 1/2, x, to_poly_solve='force')
[x == 1/4*pi + pi*z...]

We use use_grobner in Maxima if no solution is obtained from Maxima's to_poly_solve:

sage: x,y = var('x y')
sage: c1(x,y) = (x-5)^2+y^2-16
sage: c2(x,y) = (y-3)^2+x^2-9
sage: solve([c1(x,y),c2(x,y)],[x,y])
[[x == -9/68*sqrt(55) + 135/68, y == -15/68*sqrt(55) + 123/68],
 [x == 9/68*sqrt(55) + 135/68, y == 15/68*sqrt(55) + 123/68]]

We use SymPy for Diophantine equations, see Expression.solve_diophantine:

sage: assume(x, 'integer')
sage: assume(z, 'integer')
sage: solve((x-z)^2==2, x)
[]
sage: forget()

The following shows some more of SymPy's capabilities that cannot be handled by Maxima:

sage: _ = var('t')
sage: r = solve([x^2 - y^2/exp(x), y-1], x, y, algorithm='sympy')
sage: (r[0][x], r[0][y])
(2*lambert_w(-1/2), 1)
sage: solve(-2*x**3 + 4*x**2 - 2*x + 6 > 0, x, algorithm='sympy')
[x < 1/3*(1/2)^(1/3)*(9*sqrt(77) + 79)^(1/3) + 2/3*(1/2)^(2/3)/(9*sqrt(77) + 79)^(1/3) + 2/3]
sage: solve(sqrt(2*x^2 - 7) - (3 - x),x,algorithm='sympy')
[x == -8, x == 2]
sage: solve(sqrt(x^2 + x + 9) - sqrt(x + 1) - sqrt(x + 4),x,algorithm='sympy')
[x == 0]
sage: r = solve([x + y + z + t, -z - t], x, y, z, t, algorithm='sympy')
(-y, -t)
sage: solve(sqrt(x^2 + 3) - 2*abs(x - 3),x,algorithm='sympy',domain='real')
[x == 9]
We cannot translate all results from SymPy but we can at least print them:

```
sage: solve(sinh(x) - 2*cosh(x), x, algorithm='sympy')
[[ImageSet(Lambda(_n, I*(2*_n*pi + pi/2) + log(sqrt(3))), Integers),
  ImageSet(Lambda(_n, I*(2*_n*pi - pi/2) + log(sqrt(3))), Integers)]

sage: solve(2*sin(x) - 2*sin(2*x), x, algorithm='sympy')
[[ImageSet(Lambda(_n, 2*_n*pi), Integers),
  ImageSet(Lambda(_n, 2*_n*pi + pi), Integers),
  ImageSet(Lambda(_n, 2*_n*pi + 5*pi/3), Integers),
  ImageSet(Lambda(_n, 2*_n*pi + pi/3), Integers)]

sage: solve(x^5 + 3*x^3 + 7, x, algorithm='sympy') # known bug
[complex_root_of(x^5 + 3*x^3 + 7, 0)]
```

A basic interface to Giac is provided:

```
sage: solve(((2/3)^x-2), x, algorithm='giac')
...[-log(2)/(log(3) - log(2))]

sage: f = (sin(x) - 8*cos(x)*sin(x))*(sin(x)^2 + cos(x)) - (2*cos(x)*sin(x) - sin(x))*(-2*sin(x)^2 + 2*cos(x)^2 - cos(x))

sage: solve(f, x, algorithm='giac')
...[-2*arctan(sqrt(2)), 0, 2*arctan(sqrt(2)), pi]

sage: x, y = SR.var('x,y')

sage: solve([x+y-4, x*y-3], [x,y], algorithm='giac')
[[1, 3], [3, 1]]
```

```
sage.symbolic.relation.solve_ineq(ineq, vars=None)
```

Solves inequalities and systems of inequalities using Maxima. Switches between rational inequalities (sage.symbolic.relation.solve_ineq_rational) and Fourier elimination (sage.symbolic.relation.solve_ineq_fouried). See the documentation of these functions for more details.

INPUT:

- **ineq** - one inequality or a list of inequalities

 Case1: If **ineq** is one equality, then it should be rational expression in one variable. This input is passed to sage.symbolic.relation.solve_ineq_univar function.

 Case2: If **ineq** is a list involving one or more inequalities, than the input is passed to sage.symbolic.relation.solve_ineq_fourier function. This function can be used for system of linear inequalities and for some types of nonlinear inequalities. See http://maxima.cvs.sourceforge.net/viewvc/maxima/maxima/share/contrib/fourier_elim/rtest_fourier_elim.mac for a big gallery of problems covered by this algorithm.

- **vars** - optional parameter with list of variables. This list is used only if Fourier elimination is used. If omitted or if rational inequality is solved, then variables are determined automatically.

OUTPUT:

- **list** – output is list of solutions as a list of simple inequalities output [A,B,C] means (A or B or C) each A, B, C is again a list and if A=[a,b], then A means (a and b).

EXAMPLES:

```
sage: from sage.symbolic.relation import solve_ineq
```
Inequalities in one variable. The variable is detected automatically:

```python
sage: solve_ineq(x^2-1>3)
[[x < -2], [x > 2]]
sage: solve_ineq(1/(x-1)<=8)
[[x < 1], [x >= (9/8)]]
```

System of inequalities with automatically detected inequalities:

```python
sage: y = var('y')
sage: solve_ineq([x-y<0,x+y-3<0],[y,x])
[[x < y, y < -x + 3, x < (3/2)]]
sage: solve_ineq([x-y<0,x+y-3<0],[x,y])
[[x < min(-y + 3, y)]]
```

Note that although Sage will detect the variables automatically, the order it puts them in may depend on the system, so the following command is only guaranteed to give you one of the above answers:

```python
sage: solve_ineq([x-y<0,x+y-3<0]) # random
[[x < y, y < -x + 3, x < (3/2)]]
```

ALGORITHM:

Calls `solve_ineq_fourier` if inequalities are list and `solve_ineq_univar` of the inequality is symbolic expression. See the description of these commands for more details related to the set of inequalities which can be solved. The list is empty if there is no solution.

AUTHORS:

- Robert Marik (01-2010)

```python
sage.symbolic.relation.solve_ineq_fourier(ineq, vars=None)
```

Solves system of inequalities using Maxima and Fourier elimination

Can be used for system of linear inequalities and for some types of nonlinear inequalities. For examples, see the example section below and http://maxima.cvs.sourceforge.net/viewvc/maxima/maxima/share/contrib/fourier_elim/rtest_fourier_elim.mac

INPUT:

- `ineq` - list with system of inequalities
- `vars` - optionally list with variables for Fourier elimination.

OUTPUT:

- `list` - output is list of solutions as a list of simple inequalities output `[A,B,C]` means `(A or B or C)` each `A, B, C` is again a list and if `A=[a,b]`, then `A` means `(a and b)`. The list is empty if there is no solution.

EXAMPLES:

```python
sage: from sage.symbolic.relation import solve_ineq_fourier
sage: y = var('y')
sage: solve_ineq_fourier([x+y<9,x-y>4],[x,y])
[[y + 4 < x, x < -y + 9, y < (5/2)]]
sage: solve_ineq_fourier([x+y<9,x-y>4],[y,x])[0][0](x=42)
y < -33
```
sage: solve_ineq_fourier([x^2>=0])
[[x < +Infinity]]

sage: solve_ineq_fourier([log(x)>log(y)],[x,y])
[[y < x, 0 < y]]

sage: solve_ineq_fourier([log(x)>log(y)],[y,x])
[[0 < y, y < x, 0 < x]]

Note that different systems will find default variables in different orders, so the following is not tested:

sage: solve_ineq_fourier([log(x)>log(y)]) # random (one of the following appears)
[[0 < y, y < x, 0 < x]]
[[y < x, 0 < y]]

ALGORITHM:
Calls Maxima command fourier_elim

AUTHORS:
• Robert Marik (01-2010)

sage.symbolic.relation.solve_ineq_univar(ineq)
Function solves rational inequality in one variable.

INPUT:
• ineq - inequality in one variable

OUTPUT:
• list – output is list of solutions as a list of simple inequalities output [A,B,C] means (A or B or C) each
A, B, C is again a list and if A=[a,b], then A means (a and b). The list is empty if there is no solution.

EXAMPLES:

sage: from sage.symbolic.relation import solve_ineq_univar
sage: solve_ineq_univar(x-1/x>0)
[[x > -1, x < 0], [x > 1]]

sage: solve_ineq_univar(x^2-1/x>0)
[[x < 0], [x > 1]]

sage: solve_ineq_univar((x^3-1)*x<=0)
[[x >= 0, x <= 1]]

ALGORITHM:
Calls Maxima command solve_rat_ineq

AUTHORS:
• Robert Marik (01-2010)

sage.symbolic.relation.solve_mod(eqns, modulus, solution_dict=False)
Return all solutions to an equation or list of equations modulo the given integer modulus. Each equation must
involve only polynomials in 1 or many variables.

By default the solutions are returned as n-tuples, where n is the number of variables appearing anywhere in the
given equations. The variables are in alphabetical order.
INPUT:

- **eqns** - equation or list of equations
- **modulus** - an integer
- **solution_dict** - bool (default: False); if True or non-zero, return a list of dictionaries containing the solutions. If there are no solutions, return an empty list (rather than a list containing an empty dictionary). Likewise, if there’s only a single solution, return a list containing one dictionary with that solution.

EXAMPLES:

```python
sage: var('x,y')
(x, y)
sage: solve_mod([x^2 + 2 == x, x^2 + y == y^2], 14)
[(4, 2), (4, 6), (4, 9), (4, 13)]
sage: solve_mod([x^2 == 1, 4*x == 11], 15)
[(14,)]
```

Fermat’s equation modulo 3 with exponent 5:

```python
sage: var('x,y,z')
(x, y, z)
sage: solve_mod([x^5 + y^5 == z^5], 3)
[(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 1, 0), (2, 2, 1)]
```

We can solve with respect to a bigger modulus if it consists only of small prime factors:

```python
sage: [d] = solve_mod([5*x + y == 3, 2*x - 3*y == 9], 3*5*7*11*19*23*29, solution_dict = True)
sage: d[x]
12915279
sage: d[y]
8610183
```

For cases where there are relatively few solutions and the prime factors are small, this can be efficient even if the modulus itself is large:

```python
sage: sorted(solve_mod([x^2 == 41], 10^20))
[(4538602480526452429,), (4538602480526452430,), (4538602480526452431,),
 (4538602480526452432,),
 (4538602480526452433,), (4538602480526452434,), (4538602480526452435,),
 (4538602480526452436,),
 (4538602480526452437,), (4538602480526452438,), (4538602480526452439,)]
```

We solve a simple equation modulo 2:

```python
sage: x,y = var('x,y')
sage: solve_mod([x == y], 2)
[(0, 0), (1, 1)]
```

Warning: The current implementation splits the modulus into prime powers, then naively enumerates all possible solutions (starting modulo primes and then working up through prime powers), and finally combines the solution using the Chinese Remainder Theorem. The interface is good, but the algorithm is very inefficient if the modulus has some larger prime factors! Sage does have the ability to do something much faster in
certain cases at least by using Groebner basis, linear algebra techniques, etc. But for a lot of toy problems this function as is might be useful. At least it establishes an interface.

sage.symbolic.relation.string_to_list_of_solutions(s)
Used internally by the symbolic solve command to convert the output of Maxima’s solve command to a list of solutions in Sage’s symbolic package.

EXAMPLES:
We derive the (monic) quadratic formula:

```sage
code
sage: var('x,a,b')
(x, a, b)
sage: solve(x^2 + a*x + b == 0, x)
[x == -1/2*a - 1/2*sqrt(a^2 - 4*b), x == -1/2*a + 1/2*sqrt(a^2 - 4*b)]
```

Behind the scenes when the above is evaluated the function `string_to_list_of_solutions()` is called with input the string `s` below:

```sage
code
sage: s  = '[x=-(sqrt(a^2-4*b)+a)/2,x=(sqrt(a^2-4*b)-a)/2]'
sage: sage.symbolic.relation.string_to_list_of_solutions(s)
[x == -1/2*a - 1/2*sqrt(a^2 - 4*b), x == -1/2*a + 1/2*sqrt(a^2 - 4*b)]
```

sage.symbolic.relation.test_relation_maxima(relation)
Return True if this (in)equality is definitely true. Return False if it is false or the algorithm for testing (in)equality is inconclusive.

EXAMPLES:

```sage
code
sage: from sage.symbolic.relation import test_relation_maxima
sage: k = var('k')
sage: pol = 1/(k-1) - 1/k - 1/k/(k-1)
sage: test_relation_maxima(pol == 0)
True
sage: f = sin(x)^2 + cos(x)^2 - 1
sage: test_relation_maxima(f == 0)
True
sage: test_relation_maxima( x == x )
True
sage: test_relation_maxima( x != x )
False
sage: test_relation_maxima( x > x )
False
sage: test_relation_maxima( x^2 > x )
False
sage: test_relation_maxima( x + 2 > x )
True
sage: test_relation_maxima( x - 2 > x )
False
```

Here are some examples involving assumptions:

```sage
code
sage: x, y, z = var('x, y, z')
sage: assume(x>=y,y>=z,z>=x)
```
sage: test_relation_maxima(x==z)
True
sage: test_relation_maxima(z<x)
False
sage: test_relation_maxima(z>y)
False
sage: test_relation_maxima(y==z)
True
sage: forget()
sage: assume(x>=1,x<=1)
sage: test_relation_maxima(x==1)
True
sage: test_relation_maxima(x>1)
False
sage: test_relation_maxima(x>=1)
True
sage: test_relation_maxima(x!=1)
False
sage: forget()
sage: assume(x>0)
sage: test_relation_maxima(x==0)
False
sage: test_relation_maxima(x>-1)
True
sage: test_relation_maxima(x!=0)
True
sage: test_relation_maxima(x!=1)
False
sage: forget()

2.5 Symbolic Computation

AUTHORS:

• Bobby Moretti and William Stein (2006-2007)
• Robert Bradshaw (2007-10): minpoly(), numerical algorithm
• Robert Bradshaw (2008-10): minpoly(), algebraic algorithm
• Golam Mortuza Hossain (2009-06-15): _limit_latex()
• Golam Mortuza Hossain (2009-06-22): _laplace_latex(), _inverse_laplace_latex()
• Tom Coates (2010-06-11): fixed github issue #9217

EXAMPLES:
The basic units of the calculus package are symbolic expressions which are elements of the symbolic expression ring (SR). To create a symbolic variable object in Sage, use the var() function, whose argument is the text of that variable. Note that Sage is intelligent about LaTeXing variable names.

sage: x1 = var('x1'); x1
x1

(continues on next page)
Sage predefines x to be a global indeterminate. Thus the following works:

```python
sage: x^2
x^2
sage: type(x)
<class 'sage.symbolic.expression.Expression'>
```

More complicated expressions in Sage can be built up using ordinary arithmetic. The following are valid, and follow the rules of Python arithmetic: (The `=` operator represents assignment, and not equality)

```python
sage: var('x,y,z')
(x, y, z)
sage: f = x + y + z/(2*sin(y*z/55))
sage: g = f^f; g
(x + y + 1/2*z/sin(1/55*y*z))^(x + y + 1/2*z/sin(1/55*y*z))
```

Differentiation and integration are available, but behind the scenes through Maxima:

```python
sage: f = sin(x)/cos(2*y)
sage: f.derivative(y)
2*sin(x)*sin(2*y)/cos(2*y)^2
sage: g = f.integral(x); g
-cos(x)/cos(2*y)
```

Note that these methods usually require an explicit variable name. If none is given, Sage will try to find one for you.

```python
sage: f = sin(x); f.derivative()
cos(x)
```

If the expression is a callable symbolic expression (i.e., the variable order is specified), then Sage can calculate the matrix derivative (i.e., the gradient, Jacobian matrix, etc.) if no variables are specified. In the example below, we use the second derivative test to determine that there is a saddle point at (0,-1/2).

```python
sage: f(x,y) = x^2*y + y^2 + y
sage: f.diff()  # gradient
(x, y) |---> (2*x*y, x^2 + 2*y + 1)
sage: solve(list(f.diff()), [x,y])
[[x == -I, y == 0], [x == I, y == 0], [x == 0, y == (-1/2)]]
sage: H=f.diff(2); H  # Hessian matrix
[(x, y) |---> 2*y^2 (x, y) |---> 2*x]
[(x, y) |---> 2*x (x, y) |---> 2]
sage: H(x=0, y=-1/2)
[-1 0]
[ 0 2]
sage: H(x=0, y=-1/2).eigenvalues()
[-1, 2]
```
Here we calculate the Jacobian for the polar coordinate transformation:

```
sage: T(r,theta) = [r*cos(theta), r*sin(theta)]
sage: T
(r, theta) |--> (r*cos(theta), r*sin(theta))
sage: T.diff()  # Jacobian matrix
[(r, theta) |--> cos(theta) (r, theta) |--> -r*sin(theta)]
[(r, theta) |--> sin(theta) (r, theta) |--> r*cos(theta)]
sage: diff(T)  # Jacobian matrix
[(r, theta) |--> cos(theta) (r, theta) |--> -r*sin(theta)]
[(r, theta) |--> sin(theta) (r, theta) |--> r*cos(theta)]
sage: T.diff().det()  # Jacobian
(r, theta) |--> r*cos(theta)^2 + r*sin(theta)^2
```

When the order of variables is ambiguous, Sage will raise an exception when differentiating:

```
sage: f = sin(x+y); f.derivative()
Traceback (most recent call last):
  ... ValueError: No differentiation variable specified.
```

Simplifying symbolic sums is also possible, using the `sum()` command, which also uses Maxima in the background:

```
sage: k, m = var('k, m')
sage: sum(1/k^4, k, 1, oo)
1/90*pi^4
sage: sum(binomial(m,k), k, 0, m)
2^m
```

Symbolic matrices can be used as well in various ways, including exponentiation:

```
sage: M = matrix([[x,x^2],[1/x,x]])
sage: M^2
[ x^2 + x  2*x^3 ]
[    2*x^2 + x    ]
sage: e^M
[ 1/2*(e^(2*sqrt(x)) + 1)*e^(x - sqrt(x))  1/2*(x*e^(2*sqrt(x)) - x)*sqrt(x)*e^(x - sqrt(x))] [ 1/2*(e^(2*sqrt(x)) - 1)*e^(x - sqrt(x))/x^(3/2)  1/2*(e^(2*sqrt(x)) + 1)*e^(x - sqrt(x))]```

Complex exponentiation works, but may require a patched version of maxima (github issue #32898) for now:

```
sage: M = i*matrix([[pi]])
sage: e^M # not tested, requires patched maxima
[-1]
sage: M = i*matrix([[pi],[0,2*pi]])
sage: e^M
[[-1 0]
 [0 1]]
sage: M = matrix([[0,pi],[-pi,0]])
sage: e^M
[[-1 0]
 [0 -1]]```
Substitution works similarly. We can substitute with a python dict:

```sage
f = sin(x*y - z)
sage: f({x: var('t'), y: z})
sin(t*z - z)
```

Also we can substitute with keywords:

```sage
f = sin(x*y - z)
sage: f(x=t, y=z)
sin(t*z - z)
```

Another example:

```sage
f = sin(2*pi*x/y)
sage: f(x=4)
sin(8*pi/y)
```

It is no longer allowed to call expressions with positional arguments:

```sage
f = sin(x)
sage: f(y)
Traceback (most recent call last):
...  
TypeError: Substitution using function-call syntax and unnamed arguments has been removed. You can use named arguments instead, like EXPR(x=..., y=...)
sage: f(x=pi)
0
```

We can also make a `CallableSymbolicExpression`, which is a `SymbolicExpression` that is a function of specified variables in a fixed order. Each `SymbolicExpression` has a `function(...) method that is used to create a `CallableSymbolicExpression`, as illustrated below:

```sage
u = log((2-x)/(y+5))
sage: f = u.function(x, y); f
(x, y) |--> log(-(x - 2)/(y + 5))
```

There is an easier way of creating a `CallableSymbolicExpression`, which relies on the Sage preparser.

```sage
f(x, y) = log(x)*cos(y); f
(x, y) |--> cos(y)*log(x)
```

Then we have fixed an order of variables and there is no ambiguity substituting or evaluating:

```sage
f(x, y) = log((2-x)/(y+5))
sage: f(7,t)
log(-5/(t + 5))
```

Some further examples:

```sage
f = 5*sin(x)
sage: f
5*sin(x)
sage: f(x=2)
```

(continues on next page)
Another example:

```python
sage: f = integrate(1/sqrt(9+x^2), x); f
arcsinh(1/3*x)
sage: f(x=3)
arcsinh(1)
sage: f.derivative(x)
1/sqrt(x^2 + 9)
```

We compute the length of the parabola from 0 to 2:

```python
sage: x = var('x')
sage: y = x^2
sage: dy = derivative(y,x)
sage: z = integral(sqrt(1 + dy^2), x, 0, 2)
sage: z
sqrt(17) + 1/4*arcsinh(4)
sage: n(z,200)
4.646783762432935873381340591885104869874232887508703
sage: float(z)
4.646783762432936
```

We test pickling:

```python
sage: x, y = var('x,y')
sage: f = -sqrt(pi)*(x^3 + sin(x/cos(y)))
sage: bool(loads(dumps(f)) == f)
True
```

Coercion examples:

We coerce various symbolic expressions into the complex numbers:

```python
sage: CC(I)
1.00000000000000*I
sage: CC(2*I)
2.00000000000000*I
sage: ComplexField(200)(2*I)
2.0000000000000000000000000000000000000000000000000000000000*I
sage: ComplexField(200)(sin(I))
1.1752011936438014568823818505956008151557179813340958702296*I
sage: f = sin(I) + cos(I/2); f
cosh(1/2) + I*sinh(1)
sage: CC(f)
1.12762596520638 + 1.17520119364380*I
sage: ComplexField(200)(f)
1.1276259652063807852262251614026720125478471180986674836290
```
We illustrate construction of an inverse sum where each denominator has a new variable name:

```
sage: f = sum(1/var('n%s' % i)**i for i in range(10))
sage: f
1/n1 + 1/n2^2 + 1/n3^3 + 1/n4^4 + 1/n5^5 + 1/n6^6 + 1/n7^7 + 1/n8^8 + 1/n9^9 + 1
```

Note that after calling var, the variables are immediately available for use:

```
sage: (n1 + n2)^5
(n1 + n2)^5
```

We can, of course, substitute:

```
sage: f(n9=9, n7=n6)
1/n1 + 1/n2^2 + 1/n3^3 + 1/n4^4 + 1/n5^5 + 1/n6^6 + 1/n6^7 + 1/n8^8 + 387420490/387420489
```

```
sage.calculus.calculus.at(ex, *args, **kwds)
```

Parses at formulations from other systems, such as Maxima. Replaces evaluation ‘at’ a point with substitution method of a symbolic expression.

EXAMPLES:

We do not import at at the top level, but we can use it as a synonym for substitution if we import it:

```
sage: g = x^3 - 3
sage: from sage.calculus.calculus import at
sage: at(g, x=1)
-2
sage: g.subs(x=1)
-2
```

We find a formal Taylor expansion:

```
sage: h, x = var('h, x')
sage: u = function('u')
sage: u(x + h)
u(h + x)
sage: diff(u(x+h), x)
D[0](u)(h + x)
sage: taylor(u(x+h), h, 0, 4)
1/24*h^4*diff(u(x), x, x, x, x) + 1/6*h^3*diff(u(x), x, x) + 1/2*h^2*diff(u(x), x) + h*diff(u(x), x) + u(x)
```

We compute a Laplace transform:

```
sage: var('s, t')
(s, t)
sage: f = function('f')(t)
sage: f.diff(t, 2)
```

(continues on next page)
We can also accept a non-keyword list of expression substitutions, like Maxima does (github issue #12796):

```
sage: from sage.calculus.calculus import at
sage: f = function('f')
sage: at(f(x), [x == 1])
f(1)
```

sage.calculus.calculus.dummy_diff(*args)

This function is called when ‘diff’ appears in a Maxima string.

EXAMPLES:

```
sage: from sage.calculus.calculus import dummy_diff
sage: x,y = var('x,y')
sage: dummy_diff(sin(x*y), x, SR(2), y, SR(1))
-x*y^2*cos(x*y) - 2*y*sin(x*y)
```

Here the function is used implicitly:

```
sage: a = var('a')
sage: f = function('cr')(a)
sage: g = f.diff(a); g
diff(cr(a), a)
```

sage.calculus.calculus.dummy_integrate(*args)

This function is called to create formal wrappers of integrals that Maxima can’t compute:

EXAMPLES:

```
sage: from sage.calculus.calculus import dummy_integrate
sage: f = function('f')
sage: dummy_integrate(f(x), x)
integrate(f(x), x)
sage: a,b = var('a,b')
sage: dummy_integrate(f(x), x, a, b)
integrate(f(x), x, a, b)
```

sage.calculus.calculus.dummy_inverse_laplace(*args)

This function is called to create formal wrappers of inverse Laplace transforms that Maxima can’t compute:

EXAMPLES:

```
sage: from sage.calculus.calculus import dummy_inverse_laplace
sage: s,t = var('s,t')
sage: F = function('F')
sage: dummy_inverse_laplace(F(s), s, t)
ilt(F(s), s, t)
```

sage.calculus.calculus.dummy_laplace(*args)

This function is called to create formal wrappers of laplace transforms that Maxima can’t compute:
EXAMPLES:

```python
sage: from sage.calculus.calculus import dummy_laplace
sage: s, t = var('s, t')
```
```
sage: f = function('f')
sage: dummy_laplace(f(t), t, s)
```
```
sage.calculus.calculus.dummy_pochhammer(*args)
```

This function is called to create formal wrappers of Pochhammer symbols

EXAMPLES:

```python
sage: from sage.calculus.calculus import dummy_pochhammer
sage: s, t = var('s, t')
```
```
sage: dummy_pochhammer(s, t)
gamma(s + t)/gamma(s)
```
```
sage.calculus.calculus.inverse_laplace(ex, s, t, algorithm='maxima')
```

Return the inverse Laplace transform with respect to the variable \(t\) and transform parameter \(s\), if possible.

If this function cannot find a solution, a formal function is returned. The function that is returned may be viewed as a function of \(t\).

DEFINITION:

The inverse Laplace transform of a function \(F(s)\) is the function \(f(t)\), defined by

\[
f(t) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} e^{st} F(s) ds,
\]

where \(\gamma\) is chosen so that the contour path of integration is in the region of convergence of \(F(s)\).

INPUT:

- \(ex\) – a symbolic expression
- \(s\) – transform parameter
- \(t\) – independent variable
- \(algorithm\) – (default: 'maxima') one of
 - 'maxima' – use Maxima (the default)
 - 'sympy' – use SymPy
 - 'giac' – use Giac

See also:

`laplace()`

EXAMPLES:

```python
sage: var('w, m')
(w, m)
```
```
sage: f = (1/(w^2+10)).inverse_laplace(w, m); f
```
```
1/10*sqrt(10)*sin(sqrt(10)*m)
```
```
sage: laplace(f, m, w)
```
```
1/(w^2 + 10)
```
```
(continues on next page)
sage: f(t) = t*cos(t)
sage: s = var('s')
sage: L = laplace(f, t, s); L
\( t \mapsto \frac{2s^2}{(s^2 + 1)^2} - \frac{1}{s^2 + 1} \)
sage: inverse_laplace(L, s, t)
\( t \mapsto t\cos(t) \)
sage: inverse_laplace(1/(s^3+1), s, t)
\frac{1}{3}\left(\frac{\sqrt{3}\sin\left(\frac{1}{2}\sqrt{3}(t - 1)\right)}{2} - \cos\left(\frac{1}{2}\sqrt{3}(t - 1)\right)\right)e^{\frac{1}{2}(t - 1)} + \frac{2}{3}(2\cos\left(\frac{1}{2}\sqrt{3}(t - 2)\right)e^{\frac{1}{2}(t - 2)} + e^{-t + 2})e^{\frac{1}{2}(t - 2)}

No explicit inverse Laplace transform, so one is returned formally a function \( \text{ilt} \):
sage: inverse_laplace(cos(s), s, t)
\text{ilt(cos(s), s, t)}

Transform an expression involving a time-shift, via SymPy:
sage: inverse_laplace(1/s^2*exp(-s), s, t, algorithm='sympy').simplify()
\( (t - 1)\text{heaviside}(t - 1) \)

The same instance with Giac:
sage: inverse_laplace(1/s^2*exp(-s), s, t, algorithm='giac')
\( (t - 1)\text{heaviside}(t - 1) \)

Transform a rational expression:
sage: inverse_laplace((2*s^2*exp(-2*s) - exp(-s))/(s^3+1), s, t, algorithm='giac')
\begin{align*}
-\frac{1}{3}\left(\sqrt{3}\sin\left(\frac{1}{2}\sqrt{3}(t - 1)\right)e^{\frac{1}{2}(t - 1)} \right) & - \cos\left(\frac{1}{2}\sqrt{3}(t - 1)\right)e^{\frac{1}{2}(t - 1)} + e^{-t + 1} \text{heaviside}(t - 1) \\
& + 2\left(2\cos\left(\frac{1}{2}\sqrt{3}(t - 2)\right)e^{\frac{1}{2}(t - 2)} + e^{-t + 2}\right)\text{heaviside}(t - 2)
\end{align*}
sage: inverse_laplace(1/(s - 1), s, x)
e^x

The inverse Laplace transform of a constant is a delta distribution:
sage: inverse_laplace(1, s, t)
dirac_delta(t)
sage: inverse_laplace(1, s, t, algorithm='sympy')
dirac_delta(t)
sage: inverse_laplace(1, s, t, algorithm='giac')
dirac_delta(t)

\sage.calculus.calculus.laplace\( (ex, t, s, \text{algorithm='maxima'}) \)

Return the Laplace transform with respect to the variable \( t \) and transform parameter \( s \), if possible.

If this function cannot find a solution, a formal function is returned. The function that is returned may be viewed as a function of \( s \).

\text{DEFINITION:}
The Laplace transform of a function $f(t)$, defined for all real numbers $t \geq 0$, is the function $F(s)$ defined by

$$F(s) = \int_0^\infty e^{-st}f(t)dt.$$ 

INPUT:

- ex – a symbolic expression
- t – independent variable
- s – transform parameter
- algorithm – (default: 'maxima') one of
  - 'maxima' – use Maxima (the default)
  - 'sympy' – use SymPy
  - 'giac' – use Giac

**Note:** The 'sympy' algorithm returns the tuple $(F, a, cond)$ where $F$ is the Laplace transform of $f(t)$, $Re(s) > a$ is the half-plane of convergence, and cond are auxiliary convergence conditions.

**See also:**

*inverse_laplace()*

**EXAMPLES:**

We compute a few Laplace transforms:

\begin{verbatim}
sage: var('x, s, z, t, t0')
(x, s, z, t, t0)
sage: sin(x).laplace(x, s)
1/(s^2 + 1)
sage: (z + exp(x)).laplace(x, s)
z/s + 1/(s - 1)
sage: log(t/t0).laplace(t, s)
(-(euler_gamma + log(s) + log(t0))/s
\end{verbatim}

We do a formal calculation:

\begin{verbatim}
sage: f = function('f')(x)
sage: g = f.diff(x); g
diff(f(x), x)
sage: g.laplace(x, s)
s*laplace(f(x), x, s) - f(0)
\end{verbatim}

A BATTLE BETWEEN the X-women and the Y-men (by David Joyner): Solve

$$x' = -16y, x(0) = 270, y' = -x + 1, y(0) = 90.$$ 

This models a fight between two sides, the “X-women” and the “Y-men”, where the X-women have 270 initially and the Y-men have 90, but the Y-men are better at fighting, because of the higher factor of “-16” vs “-1”, and also get an occasional reinforcement, because of the “+1” term.
Next we form the augmented matrix of the above system:

```
sage: A = matrix([[s, 16, 270], [1, s, 90+1/s]])
sage: E = A.echelon_form()
sage: xt = E[0,2].inverse_laplace(s,t)
sage: yt = E[1,2].inverse_laplace(s,t)
sage: xt
-91/2*e^(4*t) + 629/2*e^(-4*t) + 1
sage: yt
91/8*e^(4*t) + 629/8*e^(-4*t)
```

Another example:

```
sage: var('a,s,t')
(a, s, t)
sage: f = exp (2*t + a) * sin(t) * t; f
t*e^(a + 2*t)*sin(t)
sage: L = laplace(f, t, s); L
2*(s - 2)*e^a/(s^2 - 4*s + 5)^2
sage: inverse_laplace(L, s, t)
t*e^(a + 2*t)*sin(t)
```

The Laplace transform of the exponential function:

```
sage: laplace(exp(x), x, s)
1/(s - 1)
```

Dirac’s delta distribution is handled (the output of SymPy is related to a choice that has to be made when defining Laplace transforms of distributions):

```
sage: laplace(dirac_delta(t), t, s)
1
sage: F, a, cond = laplace(dirac_delta(t), t, s, algorithm='sympy')
```
sage: a, cond  # random - sympy <1.10 gives (-oo, True)
(0, True)
sage: F       # random - sympy <1.9 includes undefined heaviside(0) in answer
1
sage: laplace(dirac_delta(t), t, s, algorithm='giac')
1

Heaviside step function can be handled with different interfaces. Try with Maxima:

sage: laplace(heaviside(t-1), t, s)
e^(-s)/s

Try with giac:

sage: laplace(heaviside(t-1), t, s, algorithm='giac')
e^(-s)/s

Try with SymPy:

sage: laplace(heaviside(t-1), t, s, algorithm='sympy')
(e^(-s)/s, 0, True)

sage.calculus.calculus.lim(expr, dir=None, taylor=False, algorithm='maxima', **argv)

Return the limit as the variable $v$ approaches $a$ from the given direction.

expr.limit(x = a)
expr.limit(x = a, dir='+')

INPUT:

- dir – (default: None); may have the value 'plus' (or '+') or 'right' or 'above') for a limit from above, 'minus' (or '-' or 'left' or 'below') for a limit from below, or may be omitted (implying a two-sided limit is to be computed).
- taylor – (default: False); if True, use Taylor series, which allows more limits to be computed (but may also crash in some obscure cases due to bugs in Maxima).
- **argv - 1 named parameter

Note: The output may also use und (undefined), ind (indefinite but bounded), and infinity (complex infinity).

EXAMPLES:

sage: x = var('x')
sage: f = (1 + 1/x)^x
sage: f.limit(x=oo)
e
sage: f.limit(x=5)
7776/3125

Domain to real, a regression in 5.46.0, see https://sf.net/p/maxima/bugs/4138
symbolic_calculus.eval("domain:real")
...

 sage: f.limit(x=1.2).n()
 2.06961575467...
 sage: maxima_calculus.eval("domain:complex");

Otherwise, it works

 sage: f.limit(x=I, taylor=True)
 (-I + 1)^I
 sage: f(x=1.2)
 2.0696157546720...
 sage: f(x=I)
 (-I + 1)^I
 sage: CDF(f(x=I))
 2.0628722350809046 + 0.7450070621797239*I
 sage: CDF(f.limit(x=I))
 2.0628722350809046 + 0.7450070621797239*I

Notice that Maxima may ask for more information:

 sage: var('a')
a
 sage: limit(x^a,x=0)
 Traceback (most recent call last):
 ...
 ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(a>0)', see `assume?` for more details)

Is a positive, negative or zero?

With this example, Maxima is looking for a LOT of information:

 sage: assume(a>0)
 sage: limit(x^a,x=0)  # random - maxima 5.46.0 does not need extra assumption
 Traceback (most recent call last):
 ...
 ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(a>0)', see `assume?` for more details)

Is a an integer?

 sage: assume(a,'integer')
 sage: limit(x^a, x=0)  # random - maxima 5.46.0 does not need extra assumption
 Traceback (most recent call last):
 ...
 ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(a>0)', see `assume?` for more details)

Is a an even number?

(continues on next page)
sage: assume(a, 'even')

sage: limit(x^a, x=0)
0

sage: forget()

More examples:

sage: limit(x*log(x), x=0, dir='+')
0

sage: lim((x+1)^(1/x), x=0)
e

sage: lim(e^x/x, x=oo)
+Infinity

sage: lim(e^x/x, x=-oo)
0

sage: lim(-e^x/x, x=oo)
-Infinity

sage: lim((cos(x))/(x^2), x=0)
+Infinity

sage: lim(sqrt(x^2+1) - x, x=oo)
0

sage: lim(x^2/(sec(x)-1), x=0)
2

sage: lim(cos(x)/(cos(x)-1), x=0)
-Infinity

sage: lim(x*sin(1/x), x=0)
0

sage: limit(e^(-1/x), x=0, dir='right')
0

sage: limit(e^(-1/x), x=0, dir='left', algorithm='giac')
+Infinity

Here ind means "indefinite but bounded":

sage: lim(sin(1/x), x = 0)
ind

We can use other packages than maxima, namely "sympy", "giac", "fricas".

With the standard package Giac:

sage: f = log(log(x)) / log(x)
sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
0

sage: forget()
Symbolic Calculus, Release 10.2

(continued from previous page)

\begin{verbatim}
sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='giac')
1

With the optional package FriCAS:

\begin{verbatim}
sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='fricas')  # optional - fricas
1
sage: limit(e^(-1/x), x=0, dir='right', algorithm='fricas')  # optional - fricas
0
sage: limit(e^(-1/x), x=0, dir='left', algorithm='fricas')  # optional - fricas
+Infinity
\end{verbatim}

One can also call Mathematica's online interface:

\begin{verbatim}
sage: limit(pi+log(x)/x,x=oo, algorithm='mathematica_free')  # optional - internet
pi
\end{verbatim}

\end{verbatim}

sage.calculus.calculus.limit(expr, dir=None, taylor=False, algorithm='maxima', **argv)

Return the limit as the variable \( v \) approaches \( a \) from the given direction.

\begin{verbatim}
expr.limit(x = a)
expr.limit(x = a, dir='+')
\end{verbatim}

INPUT:

- \( \text{dir} \) – (default: None); may have the value 'plus' (or '+') or 'right' or 'above') for a limit from above, 'minus' (or '-' or 'left' or 'below') for a limit from below, or may be omitted (implying a two-sided limit is to be computed).
- \( \text{taylor} \) – (default: False); if True, use Taylor series, which allows more limits to be computed (but may also crash in some obscure cases due to bugs in Maxima).
- **argv - 1 named parameter

Note: The output may also use \text{und} (undefined), \text{ind} (indefinite but bounded), and \text{infinity} (complex infinity).

EXAMPLES:

\begin{verbatim}
sage: x = var('x')
sage: f = (1 + 1/x)^x
sage: f.limit(x=oo)
e
sage: f.limit(x=5)
7776/3125
\end{verbatim}

Domain to real, a regression in 5.46.0, see https://sf.net/p/maxima/bugs/4138

\begin{verbatim}
sage: maxima_calculus.eval("domain:real")
...
sage: f.limit(x=1.2).n()
\end{verbatim}

(continues on next page)
2.06961575467...

sage: maxima_calculus.eval("domain:complex");
...

Otherwise, it works

sage: f.limit(x=I, taylor=True)
(-I + 1)^I
sage: f(x=1.2)
2.0696157546720...
sage: f(x=I)
(-I + 1)^I
sage: CDF(f(x=I))
2.0628722350809046 + 0.7450070621797239*I
sage: CDF(f.limit(x=I))
2.0628722350809046 + 0.7450070621797239*I

Notice that Maxima may ask for more information:

sage: var('a')
a
sage: limit(x^a, x=0)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(a>0)', see `assume?' for more details)
Is a positive, negative or zero?

With this example, Maxima is looking for a LOT of information:

sage: assume(a>0)
sage: limit(x^a, x=0)  # random - maxima 5.46.0 does not need extra assumption
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(a>0)', see `assume?' for more details)
Is a an integer?
sage: assume(a, 'integer')
sage: limit(x^a, x=0)  # random - maxima 5.46.0 does not need extra assumption
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(a>0)', see `assume?' for more details)
Is a an even number?
sage: assume(a, 'even')
sage: limit(x^a, x=0)
More examples:

```python
sage: limit(x*log(x), x=0, dir='+')
0
sage: lim((x+1)^(1/x), x=0)
e
sage: lim(e^x/x, x=oo)
+Infinity
sage: lim(e^x/x, x=-oo)
0
sage: lim(-e^x/x, x=oo)
-Infinity
sage: lim((cos(x))/(x^2), x=0)
+Infinity
sage: lim(sqrt(x^2+1) - x, x=oo)
0
sage: lim(x^2/(sec(x)-1), x=0)
2
sage: lim(cos(x)/(cos(x)-1), x=0)
-Infinity
sage: lim(x*sin(1/x), x=0)
0
sage: limit(e^(-1/x), x=0, dir='right')
0
sage: limit(e^(-1/x), x=0, dir='left', algorithm='giac')
+Infinity
```

Here ind means “indefinite but bounded”:

```python
sage: lim(sin(1/x), x = 0)
ind
```

We can use other packages than maxima, namely “sympy”, “giac”, “fricas”.

With the standard package Giac:

```python
sage: f = log(log(x)) / log(x)
sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
0
sage: forget()
```

```python
sage: f = log(log(x)) / log(x)
sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
0
sage: forget()
```

```python
sage: f = log(log(x)) / log(x)
sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
0
sage: forget()
```

```python
sage: f = log(log(x)) / log(x)
sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
0
sage: forget()
```

```python
sage: f = log(log(x)) / log(x)
sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
0
sage: forget()
```
With the optional package FriCAS:

```
sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='fricas') # optional - fricas
1
sage: limit(e^(-1/x), x=0, dir='right', algorithm='fricas') # optional - fricas
0
sage: limit(e^(-1/x), x=0, dir='left', algorithm='fricas') # optional - fricas
+Infinity
```

One can also call Mathematica's online interface:

```
sage: limit(pi+log(x)/x,x=oo, algorithm='mathematica_free') # optional - internet
pi
```

```
sage.calculus.calculus.mapped_opts(v)
Used internally when creating a string of options to pass to Maxima.

INPUT:
• v – an object

OUTPUT: a string.

The main use of this is to turn Python bools into lower case strings.

EXAMPLES:

```
sage: sage.calculus.calculus.mapped_opts(True)
'true'
sage: sage.calculus.calculus.mapped_opts(False)
'false'
sage: sage.calculus.calculus.mapped_opts('bar')
'bar'
```

```
sage.calculus.calculus.maxima_options(**kwds)
Used internally to create a string of options to pass to Maxima.

EXAMPLES:

```
sage: sage.calculus.calculus.maxima_options(an_option=True, another=False, foo='bar')
'an_option=true,another=false,foo=bar'
```

```
sage.calculus.calculus.minpoly(ex, var='x', algorithm=None, bits=None, degree=None, epsilon=0)
Return the minimal polynomial of self, if possible.

INPUT:
• var – polynomial variable name (default 'x')
• algorithm – 'algebraic' or 'numerical' (default both, but with numerical first)
• bits – the number of bits to use in numerical approx
• degree – the expected algebraic degree
```
Symbolic Calculation, Release 10.2

- **epsilon** – return without error as long as \( f(\text{self}) \) is less than \( \text{epsilon} \), in the case that the result cannot be proven.

  All of the above parameters are optional, with \( \text{epsilon}=0 \), \( \text{bits} \) and \( \text{degree} \) tested up to 1000 and 24 by default respectively. The numerical algorithm will be faster if \( \text{bits} \) and/or \( \text{degree} \) are given explicitly. The algebraic algorithm ignores the last three parameters.

**OUTPUT**: The minimal polynomial of \( \text{self} \). If the numerical algorithm is used, then it is proved symbolically when \( \text{epsilon}=0 \) (default).

  If the minimal polynomial could not be found, two distinct kinds of errors are raised. If no reasonable candidate was found with the given \( \text{bits}/\text{degree} \) parameters, a **ValueError** will be raised. If a reasonable candidate was found but (perhaps due to limits in the underlying symbolic package) was unable to be proved correct, a **NotImplementedError** will be raised.

**ALGORITHM**: Two distinct algorithms are used, depending on the algorithm parameter. By default, the numerical algorithm is attempted first, then the algebraic one.

  **Algebraic**: Attempt to evaluate this expression in \( \mathbb{Q}[\bar{x}] \), using cyclotomic fields to resolve exponential and trig functions at rational multiples of \( \pi \), field extensions to handle roots and rational exponents, and computing compositums to represent the full expression as an element of a number field where the minimal polynomial can be computed exactly. The \( \text{bits} \), \( \text{degree} \), and \( \text{epsilon} \) parameters are ignored.

  **Numerical**: Computes a numerical approximation of \( \text{self} \) and use PARI’s \texttt{pari:algdep} to get a candidate minpoly \( f \). If \( f(\text{self}) \), evaluated to a higher precision, is close enough to 0 then evaluate \( f(\text{self}) \) symbolically, attempting to prove vanishing. If this fails, and \( \text{epsilon} \) is non-zero, return \( f \) if and only if \( f(\text{self}) < \text{epsilon} \). Otherwise raise a **ValueError** (if no suitable candidate was found) or a **NotImplementedError** (if a likely candidate was found but could not be proved correct).

**EXAMPLES**: First some simple examples:

```
sage: sqrt(2).minpoly()
x^2 - 2
sage: minpoly(2^(1/3))
x^3 - 2
sage: minpoly(sqrt(2) + sqrt(-1))
x^4 - 2*x^2 + 9
sage: minpoly(sqrt(2)-3^(1/3))
x^6 - 6*x^4 + 6*x^3 + 12*x^2 + 36*x + 1
```

Works with trig and exponential functions too.

```
sage: sin(pi/3).minpoly()
x^2 - 3/4
sage: sin(pi/7).minpoly()
x^6 - 7/4*x^4 + 7/8*x^2 - 7/64
sage: minpoly(exp(I*pi/17))
x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8
- x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
```

Here we verify it gives the same result as the abstract number field.

```
sage: (sqrt(2) + sqrt(3) + sqrt(6)).minpoly()
x^4 - 22*x^2 - 48*x - 23
sage: K.<a,b> = NumberField([x^2-2, x^2-3])
sage: (a+b*a^b).absolute_minpoly()
x^4 - 22*x^2 - 48*x - 23
```

The **minpoly()** function is used implicitly when creating number fields:
Here we solve a cubic and then recover it from its complicated radical expansion.

```sage
sage: f = x^3 - x + 1
sage: a = f.solve(x)[0].rhs(); a
-1/2*(1/18*sqrt(23)*sqrt(3) - 1/2)^(1/3)*(I*sqrt(3) + 1)
 - 1/6*(-I*sqrt(3) + 1)/(1/18*sqrt(23)*sqrt(3) - 1/2)^(1/3)
sage: a.minpoly()
x^3 - x + 1
```

Note that simplification may be necessary to see that the minimal polynomial is correct.

```sage
sage: a = sqrt(2)+sqrt(3)+sqrt(5)
sage: f = a.minpoly(); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
sage: f(a)
(sqrt(5) + sqrt(3) + sqrt(2))^8 - 40*(sqrt(5) + sqrt(3) + sqrt(2))^6
 + 352*(sqrt(5) + sqrt(3) + sqrt(2))^4 - 960*(sqrt(5) + sqrt(3) + sqrt(2))^2
 + 576
sage: f(a).expand()
0
```

The degree must be high enough (default tops out at 24).

```sage
sage: a = sqrt(3) + sqrt(2)
sage: a.minpoly(algorithm='numerical', bits=100, degree=3)
Traceback (most recent call last):
 ... ValueError: Could not find minimal polynomial (100 bits, degree 3).
sage: a.minpoly(algorithm='numerical', bits=100, degree=10)
x^4 - 10*x^2 + 1
```

Sometimes it fails, as it must given that some numbers aren’t algebraic:
```python
sage: sin(1).minpoly(algorithm='numerical')
Traceback (most recent call last):
...
ValueError: Could not find minimal polynomial (1000 bits, degree 24).
```

**Note:** Of course, failure to produce a minimal polynomial does not necessarily indicate that this number is transcendental.

```python
sage.calculus.calculus.mma_free_limit(expression, v, a, dir=None)
```

Limit using Mathematica’s online interface.

**INPUT:**
- `expression` – symbolic expression
- `v` – variable
- `a` – value where the variable goes to
- `dir` – `'+'`, `'-'` or `None` (optional, default: `None`)

**EXAMPLES:**

```python
sage: from sage.calculus.calculus import mma_free_limit
sage: mma_free_limit(sin(x)/x, x, a=0) # optional - internet
1
```

Another simple limit:

```python
sage: mma_free_limit(e^(-x), x, a=oo) # optional - internet
0
```

```python
sage.calculus.calculus.nintegral(ex, a, b, desired_relative_error='1e-8', maximum_num_subintervals=200)
```

Return a floating point machine precision numerical approximation to the integral of self from `a` to `b`, computed using floating point arithmetic via maxima.

**INPUT:**
- `x` – variable to integrate with respect to
- `a` – lower endpoint of integration
- `b` – upper endpoint of integration
- `desired_relative_error` – (default: `1e-8`) the desired relative error
- `maximum_num_subintervals` – (default: 200) maximal number of subintervals

**OUTPUT:**
- `float` – approximation to the integral
- `float` – estimated absolute error of the approximation
- `int` – the number of integrand evaluations
- an error code:
  - `0` – no problems were encountered
- 1 – too many subintervals were done
- 2 – excessive roundoff error
- 3 – extremely bad integrand behavior
- 4 – failed to converge
- 5 – integral is probably divergent or slowly convergent
- 6 – the input is invalid; this includes the case of desired_relative_error being too small to be achieved

ALIAS: nintegrate() is the same as nintegral()

REMARK: There is also a function numerical_integral() that implements numerical integration using the GSL C library. It is potentially much faster and applies to arbitrary user defined functions.

Also, there are limits to the precision to which Maxima can compute the integral due to limitations in quadpack. In the following example, remark that the last value of the returned tuple is 6, indicating that the input was invalid, in this case because of a too high desired precision.

```sage
f = x
sage: f.nintegral(x, 0, 1, 1e-14)
(0.0, 0.0, 0, 6)
```

EXAMPLES:

```sage
f(x) = exp(-sqrt(x))
sage: f.nintegral(x, 0, 1)
(0.5284822353142306, 4.163...e-11, 231, 0)
```

We can also use the numerical_integral() function, which calls the GSL C library.

```sage
numerical_integral(f, 0, 1)
(0.528482232253147, 6.83928460...e-07)
```

Note that in exotic cases where floating point evaluation of the expression leads to the wrong value, then the output can be completely wrong:

```sage
f = exp(pi*sqrt(163)) - 262537412640768744
```

Despite appearance, \( f \) is really very close to 0, but one gets a nonzero value since the definition of float(f) is that it makes all constants inside the expression floats, then evaluates each function and each arithmetic operation using float arithmetic:

```sage
float(f)
-480.0
```

Computing to higher precision we see the truth:

```sage
f.n(200)
-7.49992740280181431101206461436662234865207889513653359335718e-13
```

```sage
f.n(300)
-7.4999274028018143111206461436662630009137292462589621789352095066181709095575681963967103004e-13
```

Now numerically integrating, we see why the answer is wrong:
It is just because every floating point evaluation of \( f \) returns \(-480.0\) in floating point.

Important note: using PARI/GP one can compute numerical integrals to high precision:

\[
\text{sage}: \text{gp}.\text{eval}('\text{intnum}(x=17,42,\exp(-x^2)*\log(x))')
\]
\[
'2.565728500561051474934096410 E-127' \quad \# 32\text{-bit}
\]
\[
'2.5657285005610514829176211363206621657 E-127' \quad \# 64\text{-bit}
\]
\[
\text{sage}: \text{old_prec} = \text{gp}.\text{set_real_precision}(50)
\]
\[
\text{sage}: \text{gp}.\text{eval}('\text{intnum}(x=17,42,\exp(-x^2)*\log(x))')
\]
\[
'2.5657285005610514829173563961304957417746108003917 E-127'
\]
\[
\text{sage}: \text{gp}.\text{set_real_precision(old_prec)}
\]

Note that the input function above is a string in PARI syntax.

\[
\text{sage}.\text{calculus}.\text{calculus}.\text{nintegrate}(\text{ex}, \text{x}, a, b, \text{desired_relative_error}'1e-8',
\text{maximum_num_subintervals}=200)
\]

Return a floating point machine precision numerical approximation to the integral of \text{self} from \( a \) to \( b \), computed using floating point arithmetic via maxima.

**INPUT:**

- \( x \) – variable to integrate with respect to
- \( a \) – lower endpoint of integration
- \( b \) – upper endpoint of integration
- \text{desired_relative_error} – (default: \( 1e-8 \)) the desired relative error
- \text{maximum_num_subintervals} – (default: 200) maximal number of subintervals

**OUTPUT:**

- float: approximation to the integral
- float: estimated absolute error of the approximation
- the number of integrand evaluations
- an error code:
  - 0 – no problems were encountered
  - 1 – too many subintervals were done
  - 2 – excessive roundoff error
  - 3 – extremely bad integrand behavior
  - 4 – failed to converge
  - 5 – integral is probably divergent or slowly convergent
  - 6 – the input is invalid; this includes the case of \text{desired_relative_error} being too small to be achieved

**ALIAS:** \text{nintegrate()} is the same as \text{nintegral()}

**REMARK:** There is also a function \text{numerical_integral()} that implements numerical integration using the GSL C library. It is potentially much faster and applies to arbitrary user defined functions.
Also, there are limits to the precision to which Maxima can compute the integral due to limitations in quadpack. In the following example, remark that the last value of the returned tuple is 6, indicating that the input was invalid, in this case because of a too high desired precision.

```python
sage: f = x
sage: f.nintegral(x, 0, 1, 1e-14)
(0.0, 0.0, 0, 6)
```

**EXAMPLES:**

```python
sage: f(x) = exp(-sqrt(x))
sage: f.nintegral(x, 0, 1)
(0.5284822353142306, 4.163...e-11, 231, 0)
```

We can also use the `numerical_integral()` function, which calls the GSL C library.

```python
sage: numerical_integral(f, 0, 1)
(0.528482232253147, 6.83928460...e-07)
```

Note that in exotic cases where floating point evaluation of the expression leads to the wrong value, then the output can be completely wrong:

```python
sage: f = exp(pi*sqrt(163)) - 262537412640768744

Despite appearance, \(f\) is really very close to 0, but one gets a nonzero value since the definition of \(\text{float}(f)\) is that it makes all constants inside the expression floats, then evaluates each function and each arithmetic operation using float arithmetic:

```python
sage: float(f)
-480.0
```

Computing to higher precision we see the truth:

```python
sage: f.n(200)
-7.49927402801814311206461436662234865207889513653359355718e-13
sage: f.n(300)
-7.4992740280181431120646143666266300913729246258962178935209506618170909557681963967103004e-13
```

Now numerically integrating, we see why the answer is wrong:

```python
sage: f.nintegrate(x,0,1)
(-480.000000000000..., 5.32907051820075...e-12, 21, 0)
```

It is just because every floating point evaluation of \(f\) returns \(-480.0\) in floating point.

Important note: using PARI/GP one can compute numerical integrals to high precision:

```python
sage: gp.eval("intnum(x=17,42,exp(-x^2)*log(x))")
'2.565728500561051474934096410 E-127' # 32-bit
'sage: gp.eval("intnum(x=17,42,exp(-x^2)*log(x))")
'2.565728500561051474934096410 E-127' # 64-bit
```

(continues on next page)
Note that the input function above is a string in PARI syntax.

```
sage: from sage.calculus.calculus import symbolic_expression_from_maxima_string as sefms
sage: sefms('x^e + e^pi + i + sin(0)')
x^e + e^pi + I
sage: f = function('f')(x)
sage: sefms('?%at(f(x),x=2)#1')
f(2) != 1
sage: a = sage.calculus.calculus.maxima("x#0"); a
x # 0
sage: a.sage()
x != 0
```

Given a string representation of a Maxima expression, parse it and return the corresponding Sage symbolic expression.

INPUT:

- `x` – a string
- `equals_sub` – (default: `False`) if `True`, replace `=' by `==' in self
- `maxima` – (default: the calculus package's copy of Maxima) the Maxima interpreter to use.

EXAMPLES:

```
sage: y = var('y')
sage: symbolic_expression_from_string(['[sin(0)*x^2,3*spam+e^pi]'],
        syms={'spam',0}: y, accept_sequence=True)
[0, 3*y + e^pi]
```

Given a string, (attempt to) parse it and return the corresponding Sage symbolic expression. Normally used to return Maxima output to the user.

INPUT:

- `s` – a string
- `sym` – (default: `{}`) dictionary of strings to be regarded as symbols or functions; keys are pairs (string, number of arguments)
- `accept_sequence` – (default: `False`) controls whether to allow a (possibly nested) set of lists and tuples as input
- `parser` – (default: `SR_parser`) parser for internal use

EXAMPLES:

```
sage: y = var('y')
sage: symbolic_expression_from_string(['[sin(0)*x^2,3*spam+e^pi]'],
        syms={'spam',0}: y, accept_sequence=True)
[0, 3*y + e^pi]
```
sage.calculus.calculus.symbolic_product(expression, v, a, b, algorithm='maxima', hold=False)

Return the symbolic product $\prod_{v=a}^{b} expression$ with respect to the variable v with endpoints a and b.

INPUT:

- $expression$ – a symbolic expression
- v – a variable or variable name
- a – lower endpoint of the product
- b – upper endpoint of the product
- $algorithm$ – (default: 'maxima') one of
 - 'maxima' – use Maxima (the default)
 - 'giac' – use Giac
 - 'sympy' – use SymPy
 - 'mathematica' – (optional) use Mathematica
- $hold$ - (default: False) if True, don’t evaluate

EXAMPLES:

```python
sage: i, k, n = var('i,k,n')
sage: from sage.calculus.calculus import symbolic_product
sage: symbolic_product(k, k, 1, n)  # factorial(n)
sage: symbolic_product(x + i*(i+1)/2, i, 1, 4)  # x^4 + 20*x^3 + 127*x^2 + 288*x + 180
sage: symbolic_product(i^2, i, 1, 7)  # 25401600
sage: f = function('f')
sage: symbolic_product(f(i), i, 1, 7)  # f(7)*f(6)*f(5)*f(4)*f(3)*f(2)*f(1)
sage: symbolic_product(f(i), i, 1, n)  # product(f(i), i, 1, n)
sage: assume(k>0)
sage: symbolic_product(integrate (x^k, x, 0, 1), k, 1, n)  # 1/factorial(n + 1)
sage: symbolic_product(f(i), i, 1, n).log().log_expand()  # sum(log(f(i)), i, 1, n)
```

sage.calculus.calculus.symbolic_sum(expression, v, a, b, algorithm='maxima', hold=False)

Return the symbolic sum $\sum_{v=a}^{b} expression$ with respect to the variable v with endpoints a and b.

INPUT:

- $expression$ – a symbolic expression
- v – a variable or variable name
- a – lower endpoint of the sum
- b – upper endpoint of the sum
- $algorithm$ – (default: 'maxima') one of
 - 'maxima' – use Maxima (the default)
Symbolic Calculus, Release 10.2

- 'maple' – (optional) use Maple
- 'mathematica' – (optional) use Mathematica
- 'giac' – (optional) use Giac
- 'sympy' – use SymPy

• hold – (default: False) if True, don’t evaluate

EXAMPLES:

```python
sage: k, n = var('k,n')
sage: from sage.calculus.calculus import symbolic_sum
sage: symbolic_sum(k, k, 1, n).factor()
1/2*(n + 1)*n
```

```python
sage: symbolic_sum(1/k^4, k, 1, oo)
1/90*pi^4
```

```python
sage: symbolic_sum(1/k^5, k, 1, oo)
zeta(5)
```

A well known binomial identity:

```python
sage: symbolic_sum(binomial(n,k), k, 0, n)
2^n
```

And some truncations thereof:

```python
sage: assume(n>1)
sage: symbolic_sum(binomial(n,k), k, 1, n)
2^n - 1
```

```python
sage: symbolic_sum(binomial(n,k), k, 2, n)
2^n - n - 1
```

```python
sage: symbolic_sum(binomial(n,k), k, 0, n-1)
2^n - 1
```

```python
sage: symbolic_sum(binomial(n,k), k, 1, n-1)
2^n - 2
```

The binomial theorem:

```python
sage: x, y = var('x, y')
sage: symbolic_sum(binomial(n,k) * x^k * y^(n-k), k, 0, n)
(x + y)^n
```

```python
sage: symbolic_sum(k * binomial(n,k), k, 1, n)
2^(n - 1)*n
```

```python
sage: symbolic_sum((-1)^k*binomial(n,k), k, 0, n)
0
```

```python
sage: symbolic_sum(2^(-k)/(k*(k+1)), k, 1, oo)
-log(2) + 1
```

Summing a hypergeometric term:

```python
```

208 Chapter 2. Internal functionality supporting calculus
We check a well known identity:

```python
sage: bool(symbolic_sum(k^3, k, 1, n) == symbolic_sum(k, k, 1, n)^2)
True
```

A geometric sum:

```python
sage: a, q = var('a, q')
sage: symbolic_sum(a*q^k, k, 0, n)
(a*q^(n + 1) - a)/(q - 1)
```

For the geometric series, we will have to assume the right values for the sum to converge:

```python
sage: assume(abs(q) < 1)
sage: symbolic_sum(a*q^k, k, 0, oo)
-a/(q - 1)
```

A divergent geometric series. Don’t forget to forget your assumptions:

```python
sage: forget()
sage: assume(q > 1)
sage: symbolic_sum(a*q^k, k, 0, oo)
Traceback (most recent call last):
  ... ValueError: Sum is divergent.
```

A summation performed by Mathematica:

```python
sage: symbolic_sum(1/(1+k^2), k, -oo, oo, algorithm='mathematica') # optional -...
pi*coth(pi)
```

An example of this summation with Giac:

```python
sage: symbolic_sum(1/(1+k^2), k, -oo, oo, algorithm='giac')
(pi*e^(2*pi) - pi*e^(-2*pi))/(e^(2*pi) + e^(-2*pi) - 2)
```

The same summation is solved by SymPy:

```python
sage: symbolic_sum(1/(1+k^2), k, -oo, oo, algorithm='sympy')
pi/tanh(pi)
```

SymPy and Maxima 5.39.0 can do the following (see github issue #22005):

```python
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='sympy')
1/64*pi^2
```
Use Maple as a backend for summation:

```
sage: symbolic_sum(binomial(n,k)*x^k, k, 0, n, algorithm='maple')  # optional - maple
(x + 1)^n
```

If you don’t want to evaluate immediately give the hold keyword:

```
sage: s = sum(n, n, 1, k, hold=True); s
sum(n, n, 1, k)
sage: s.unhold()
1/2*k^2 + 1/2*k
sage: s.subs(k == 10)
sum(n, n, 1, 10)
sage: s.subs(k == 10).unhold()
55
sage: s.subs(k == 10).n()
55.0000000000000
```

Note: Sage can currently only understand a subset of the output of Maxima, Maple and Mathematica, so even if the chosen backend can perform the summation the result might not be convertible into a Sage expression.

2.6 Units of measurement

This is the units package. It contains information about many units and conversions between them.

TUTORIAL:

To return a unit:

```
sage: units.length.meter
meter
```

This unit acts exactly like a symbolic variable:

```
sage: s = units.length.meter
sage: s^2
meter^2
sage: s + var('x')
meter + x
```

Units have additional information in their docstring:

```
sage: # You would type: units.force.dyne?
sage: print(units.force.dyne.__doc__)
CGS unit for force defined to be gram*centimeter/second^2.
Equal to 10^-5 newtons.
```

You may call the convert function with units:

```
sage: t = units.mass.gram*units.length.centimeter/units.time.second^2
sage: t.convert(units.mass.pound*units.length.foot/units.time.hour^2)
```

(continues on next page)
Calling the convert function with no target returns base SI units:

```
sage: t.convert(units.force.newton)
1/100000*newton
```

Giving improper units to convert to raises a ValueError:

```
sage: t.convert(units.charge.coulomb)
Traceback (most recent call last):
  ...  
ValueError: Incompatible units
```

Converting temperatures works as well:

```
sage: s = 68*units.temperature.fahrenheit
sage: s.convert(units.temperature.celsius)
20*celsius
sage: s.convert()
293.150000000000*kelvin
```

Trying to multiply temperatures by another unit then converting raises a ValueError:

```
sage: wrong = 50*units.temperature.celsius*units.length.foot
sage: wrong.convert()
Traceback (most recent call last):
  ...  
ValueError: cannot convert
```

AUTHORS:

• David Ackerman

• William Stein

class sage.symbolic.units.UnitExpression

 Bases: Expression

 A symbolic unit.

 EXAMPLES:

```
sage: acre = units.area.acre
sage: type(acre)
<class 'sage.symbolic.units.UnitExpression'>
```

class sage.symbolic.units.Units(data, name="")

 Bases: ExtraTabCompletion

 A collection of units of some type.

 EXAMPLES:
sage: units.power
Collection of units of power: cheval_vapeur horsepower watt

sage.symbolic.units.base_units(unit)
Converting unit to base SI units.

INPUT:
 • unit – a unit

OUTPUT:
 • a symbolic expression

EXAMPLES:

sage: sage.symbolic.units.base_units(units.length.foot)
381/1250*meter

If unit is already a base unit, it just returns that unit:

sage: sage.symbolic.units.base_units(units.length.meter)
meter

Derived units get broken down into their base parts:

sage: sage.symbolic.units.base_units(units.force.newton)
kilogram*meter/second^2
sage: sage.symbolic.units.base_units(units.volume.liter)
1/1000*meter^3

Returns variable if ‘unit’ is not a unit:

sage: sage.symbolic.units.base_units(var('x'))
x

sage.symbolic.units.convert(expr, target)
Converts units between expr and target. If target is None then converts to SI base units.

INPUT:
 • expr – the symbolic expression converting from
 • target – (default None) the symbolic expression converting to

OUTPUT:
 • a symbolic expression

EXAMPLES:

sage: sage.symbolic.units.convert(units.length.foot, None)
381/1250*meter
sage: sage.symbolic.units.convert(units.mass.kilogram, units.mass.pound)
100000000/45359237*pound

Raises ValueError if expr and target are not convertible:
Recognizes derived unit relationships to base units and other derived units:

```
sage: sage.symbolic.units.convert(units.length.foot/units.time.second^2, units.˓→acceleration.galileo)
762/25*galileo
sage: sage.symbolic.units.convert(units.mass.kilogram*units.length.meter/units.time.˓→second^2, units.force.newton)
newton
sage: sage.symbolic.units.convert(units.length.foot^3, units.area.acre*units.length.˓→inch)
1/3630*(acre*inch)
```

For decimal answers multiply 1.0:

```
sage: sage.symbolic.units.convert(units.pressure.pascal*units.si_prefixes.kilo,␣˓→units.pressure.pounds_per_square_inch)*1.0
0.145037737730209*pounds_per_square_inch
```

You can also convert quantities of units:

```
sage: sage.symbolic.units.convert(cos(50) * units.angles.radian, units.angles.˓→degree)
degree*(180*cos(50)/pi)
sage: sage.symbolic.units.convert(cos(30) * units.angles.radian, units.angles.˓→degree).polynomial(RR)
8.83795706233228*degree
sage: sage.symbolic.units.convert(50 * units.length.light_year / units.time.year,␣˓→units.length.foot / units.time.second)
6249954068750/127*(foot/second)
```

Quantities may contain variables (not for temperature conversion, though):

```
sage: sage.symbolic.units.convert(50 * x * units.area.square_meter, units.area.acre)  
acre*(1953125/158080329*x)
```

```
sage.symbolic.units.convert_temperature(expr, target)  
```

Function for converting between temperatures.

INPUT:
Symbolic Calculus, Release 10.2

- **expr** – a unit of temperature
- **target** – a units of temperature

OUTPUT:
- a symbolic expression

EXAMPLES:

```python
sage: t = 32*units.temperature.fahrenheit
sage: t.convert(units.temperature.celsius)
0
sage: t.convert(units.temperature.kelvin)
273.150000000000*kelvin
```

If target is None then it defaults to kelvin:

```python
sage: t.convert()
273.150000000000*kelvin
```

Raises ValueError when either input is not a unit of temperature:

```python
sage: t.convert(units.length.foot)
Traceback (most recent call last):
  ... ValueError: cannot convert
```

We directly call the convert_temperature function:

```python
sage: sage.symbolic.units.convert_temperature(37*units.temperature.celsius, units.
  ⨶temperature.fahrenheit)
493/5*fahrenheit
```

```python
493/5.0
98.6000000000000
```

`sage.symbolic.units.evalunitdict()`

Replace all the string values of the unitdict variable by their evaluated forms, and builds some other tables for ease of use. This function is mainly used internally, for efficiency (and flexibility) purposes, making it easier to describe the units.

EXAMPLES:

```python
sage: sage.symbolic.units.evalunitdict()
```

`sage.symbolic.units.is_unit(s)`

Return a boolean when asked whether the input is in the list of units.

INPUT:
- **s** – an object

OUTPUT:
• a boolean

EXAMPLES:

```
sage: sage.symbolic.units.is_unit(1)
False
sage: sage.symbolic.units.is_unit(units.length.meter)
True
```

The square of a unit is not a unit:

```
sage: sage.symbolic.units.is_unit(units.length.meter^2)
False
```

You can also directly create units using var, though they won’t have a nice docstring describing the unit:

```
sage: sage.symbolic.units.is_unit(var('meter'))
True
```

```
sage.symbolic.units.str_to_unit(name)

Create the symbolic unit with given name. A symbolic unit is a class that derives from symbolic expression, and has a specialized docstring.

INPUT:
• name – a string

OUTPUT:
• a UnitExpression

EXAMPLES:

```
sage: sage.symbolic.units.str_to_unit('acre')
acre
sage: type(sage.symbolic.units.str_to_unit('acre'))
<class 'sage.symbolic.units.UnitExpression'>
```

```
sage.symbolic.units.unit_derivations_expr(v)

Given derived units name, returns the corresponding units expression. For example, given ‘acceleration’ output the symbolic expression length/time^2.

INPUT:
• v – a string, name of a unit type such as ‘area’, ‘volume’, etc.

OUTPUT:
• a symbolic expression

EXAMPLES:

```
sage: sage.symbolic.units.unit_derivations_expr('volume')
length^3
sage: sage.symbolic.units.unit_derivations_expr('electric_potential')
length^2*mass/(current*time^3)
```

If the unit name is unknown, a KeyError is raised:
sage: sage.symbolic.units.unit_derivations_expr('invalid')
Traceback (most recent call last):
...
KeyError: 'invalid'

sage.symbolic.units.unitdocs(unit)

Returns docstring for the given unit.

INPUT:
 - unit – a unit

OUTPUT:
 - a string

EXAMPLES:

sage: sage.symbolic.units.unitdocs('meter')
'SI base unit of length. Defined to be the distance light travels in vacuum in 1/299792458 of a second.'
sage: sage.symbolic.units.unitdocs('amu')
'Abbreviation for atomic mass unit. Approximately equal to 1.660538782*10^-27 kilograms.'

Units not in the list unit_docs will raise a ValueError:

sage: sage.symbolic.units.unitdocs('earth')
Traceback (most recent call last):
...
ValueError: no documentation exists for the unit earth

sage.symbolic.units.vars_in_str(s)

Given a string like ‘mass/(length*time)’, return the list ['mass', 'length', 'time'].

INPUT:
 - s – a string

OUTPUT:
 - a list of strings (unit names)

EXAMPLES:

sage: sage.symbolic.units.vars_in_str('mass/(length*time)')
['mass', 'length', 'time']
2.7 The symbolic ring

```python
class sage.symbolic.ring.NumpyToSRMorphism:
    Bases: Morphism
    A morphism from numpy types to the symbolic ring.

class sage.symbolic.ring.SymbolicRing:
    Bases: SymbolicRing
    Symbolic Ring, parent object for all symbolic expressions.

    I()
    The imaginary unit, viewed as an element of the symbolic ring.
    EXAMPLES:
    sage: SR.I()^2
    -1
    sage: SR.I().parent()
    Symbolic Ring

    characteristic()
    Return the characteristic of the symbolic ring, which is 0.
    OUTPUT:
    • a Sage integer
    EXAMPLES:
    sage: c = SR.characteristic(); c
    0
    sage: type(c)
    <class 'sage.rings.integer.Integer'>

    cleanup_var(symbol)
    Cleans up a variable, removing assumptions about the variable and allowing for it to be garbage collected
    INPUT:
    • symbol – a variable or a list of variables

    is_exact()
    Return False, because there are approximate elements in the symbolic ring.
    EXAMPLES:
    sage: SR.is_exact()
    False

    Here is an inexact element.
    sage: SR(1.9393)
    1.93930000000000
```

2.7. The symbolic ring 217
is_field(proof=True)
Returns True, since the symbolic expression ring is (for the most part) a field.
EXAMPLES:

```
sage: SR.is_field()
True
```

is_finite()
Return False, since the Symbolic Ring is infinite.
EXAMPLES:

```
sage: SR.is_finite()
False
```

pi()
EXAMPLES:

```
sage: SR.pi() is pi
True
```

subring(*args, **kwds)
Create a subring of this symbolic ring.

INPUT:
Choose one of the following keywords to create a subring.
- accepting_variables (default: None) – a tuple or other iterable of variables. If specified, then a symbolic subring of expressions in only these variables is created.
- rejecting_variables (default: None) – a tuple or other iterable of variables. If specified, then a symbolic subring of expressions in variables distinct to these variables is created.
- no_variables (default: False) – a boolean. If set, then a symbolic subring of constant expressions (i.e., expressions without a variable) is created.

OUTPUT:
A ring.
EXAMPLES:
Let us create a couple of symbolic variables first:

```
sage: V = var('a, b, r, s, x, y')
```

Now we create a symbolic subring only accepting expressions in the variables a and b:

```
sage: A = SR.subring(accepting_variables=(a, b))
Symbolic Subring accepting the variables a, b
```

An element is

```
sage: A.an_element()
a
```

From our variables in V the following are valid in A:
Next, we create a symbolic subring rejecting expressions with given variables:

\begin{verbatim}
sage: R = SR.subring(rejecting_variables=(r, s)); R
Symbolic Subring rejecting the variables r, s
\end{verbatim}

An element is

\begin{verbatim}
sage: R.an_element()
some_variable
\end{verbatim}

From our variables in V the following are valid in R:

\begin{verbatim}
sage: tuple(v for v in V if v in R)
(a, b, x, y)
\end{verbatim}

We have a third kind of subring, namely the subring of symbolic constants:

\begin{verbatim}
sage: C = SR.subring(no_variables=True); C
Symbolic Constants Subring
\end{verbatim}

Note that this subring can be considered as a special accepting subring; one without any variables.

An element is

\begin{verbatim}
sage: C.an_element()
I*pi*e
\end{verbatim}

None of our variables in V is valid in C:

\begin{verbatim}
sage: tuple(v for v in V if v in C)
()
\end{verbatim}

See also:

Subrings of the Symbolic Ring

symbol(name=None, latex_name=None, domain=None)

\begin{verbatim}
EXAMPLES:
sage: t0 = SR.symbol("t0")
sage: t0.conjugate()
conjugate(t0)
sage: t1 = SR.symbol("t1", domain='real')
sage: t1.conjugate()
t1
sage: t0.abs()
abs(t0)
sage: t0_2 = SR.symbol("t0", domain='positive')
sage: t0_2.abs()
\end{verbatim}
t0
sage: bool(t0_2 == t0)
True
sage: t0.conjugate()
t0
sage: SR.symbol() # temporary variable
symbol...

We propagate the domain to the assumptions database:

sage: n = var('n', domain='integer')
sage: solve([n^2 == 3],n)
[]

symbols
temp_var(n=None, domain=None)

Return one or multiple new unique symbolic variables as an element of the symbolic ring. Use this instead of SR.var() if there is a possibility of name clashes occurring. Call SR.cleanup_var() once the variables are no longer needed or use a `with SR.temp_var() as ...` construct.

INPUT:

• n – (optional) positive integer; number of symbolic variables
• domain – (optional) specify the domain of the variable(s);

EXAMPLES:

Simple definition of a functional derivative:

sage: def functional_derivative(expr,f,x):
....: with SR.temp_var() as a:
....: return expr.subs({f(x):a}).diff(a).subs({a:f(x)})
sage: f = function('f')
sage: a = var('a')
sage: functional_derivative(f(a)^2+a,f,a)
2*f(a)

Contrast this to a similar implementation using SR.var(), which gives a wrong result in our example:

sage: def functional_derivative(expr,f,x):
....: a = SR.var('a')
....: return expr.subs({f(x):a}).diff(a).subs({a:f(x)})
....: return expr.subs({f(x):a}).diff(a).subs({a:f(x)})
sage: f = function('f')
sage: a = var('a')
sage: functional_derivative(f(a)^2+a,f,a)
2*f(a) + 1

var(name, latex_name=None, n=None, domain=None)

Return a symbolic variable as an element of the symbolic ring.

INPUT:

• name – string or list of strings with the name(s) of the symbolic variable(s)
Symbolic Calculus, Release 10.2

- `latex_name` – (optional) string used when printing in latex mode, if not specified use 'name'
- `n` – (optional) positive integer; number of symbolic variables, indexed from 0 to \(n - 1 \)
- `domain` – (optional) specify the domain of the variable(s); it is the complex plane by default, and possible options are (non-exhaustive list, see note below): 'real', 'complex', 'positive', 'integer' and 'noninteger'

OUTPUT:

Symbolic expression or tuple of symbolic expressions.

See also:

This function does not inject the variable(s) into the global namespace. For that purpose see `var()`.

Note: For a comprehensive list of acceptable features type 'maxima('features')', and see also the documentation of `Assumptions`.

EXAMPLES:

Create a variable \(z z \) (complex by default):

```python
sage: zz = SR.var('zz'); zz
zz
```

The return type is a symbolic expression:

```python
sage: type(zz)
<class 'sage.symbolic.expression.Expression'>
```

We can specify the domain as well:

```python
sage: zz = SR.var('zz', domain='real')
sage: zz.is_real()
True
```

The real domain is also set with the integer domain:

```python
sage: SR.var('x', domain='integer').is_real()
True
```

The name argument does not have to match the left-hand side variable:

```python
sage: t = SR.var('theta2'); t
theta2
```

Automatic indexing is available as well:

```python
sage: x = SR.var('x', 4)
sage: x[0], x[3]
(x0, x3)
sage: sum(x)
x0 + x1 + x2 + x3
```
wild\((n=0)\)

Return the n-th wild-card for pattern matching and substitution.

INPUT:
- n - a nonnegative integer

OUTPUT:
- n-th wildcard expression

EXAMPLES:

```python
sage: x, y = var('x, y')
sage: w0 = SR.wild(0); w1 = SR.wild(1)
sage: pattern = sin(x)\*w0\*w1^2; pattern
\$1^2*\$0*sin(x)
sage: f = atan(sin(x)*3*x^2); f
arctan(3*x^2*sin(x))
sage: f.has(pattern)
True
sage: f.subs(pattern == x^2)
arctan(x^2)
```

class sage.symbolic.ring.TemporaryVariables(iterable=(), /)

Bases: tuple

Instances of this class can be used with Python with to automatically clean up after themselves.

class sage.symbolic.ring.UnderscoreSageMorphism

Bases: Morphism

A Morphism which constructs Expressions from an arbitrary Python object by calling the _sage_() method on the object.

EXAMPLES:

```python
sage: # needs sympy
sage: import sympy
sage: from sage.symbolic.ring import UnderscoreSageMorphism
sage: b = sympy.var('b')
sage: f = UnderscoreSageMorphism(type(b), SR)
sage: f(b)
b
sage: _.parent()
Symbolic Ring
```

sage.symbolic.ring.isidentifier\((x)\)

Return whether x is a valid identifier.

INPUT:
- x - a string

OUTPUT:
Boolean. Whether the string x can be used as a variable name.

This function should return False for keywords, so we can not just use the isidentifier method of strings, because, for example, it returns True for "def" and for "None".
EXAMPLES:

```
sage: from sage.symbolic.ring import isidentifier
sage: isidentifier('x')
True
sage: isidentifier(' x ')   # can't start with space
False
sage: isidentifier('ceci_n_est_pas_une_pipe')
True
sage: isidentifier('1 + x ')
False
sage: isidentifier('2good')
False
sage: isidentifier('good2')
True
sage: isidentifier('lambda s:s+1')
False
sage: isidentifier('None')
False
sage: isidentifier('lambda')
False
sage: isidentifier('def')
False
```

```
sage.symbolic.ring.the_SymbolicRing()
Return the unique symbolic ring object.
(This is mainly used for unpickling.)
EXAMPLES:
```
```
sage: sage.symbolic.ring.the_SymbolicRing()
Symbolic Ring
sage: sage.symbolic.ring.the_SymbolicRing() is sage.symbolic.ring.the_SymbolicRing()
True
sage: sage.symbolic.ring.the_SymbolicRing() is SR
True
```

```
sage.symbolic.ring.var(name, **kwds)
EXAMPLES:
```
```
sage: from sage.symbolic.ring import var
sage: var("x y z")
(x, y, z)
sage: var("x,y,z")
(x, y, z)
sage: var("x , y , z")
(x, y, z)
sage: var("z")
z
```
2.8 Subrings of the Symbolic Ring

Subrings of the symbolic ring can be created via the `subring()` method of SR. This will call `SymbolicSubring` of this module.

The following kinds of subrings are supported:

- A symbolic subring of expressions, whose variables are contained in a given set of symbolic variables (see `SymbolicSubringAcceptingVars`). E.g.

  ```sage```
  ```
 SR.subring(accepting_variables=('a', 'b'))
 Symbolic Subring accepting the variables a, b
  ```

- A symbolic subring of expressions, whose variables are disjoint to a given set of symbolic variables (see `SymbolicSubringRejectingVars`). E.g.

  ```sage```
  ```
  SR.subring(rejecting_variables=('r', 's'))
  Symbolic Subring rejecting the variables r, s
  ```

- The subring of symbolic constants (see `SymbolicConstantsSubring`). E.g.

  ```sage```
  ```
 SR.subring(no_variables=True)
 Symbolic Constants Subring
  ```

AUTHORS:

- Daniel Krenn (2015)

2.8.1 Classes and Methods

```class``
```sage.symbolic.subring.GenericSymbolicSubring```

```vars```

```Bases: SymbolicRing```

An abstract base class for a symbolic subring.

INPUT:

- `vars` – a tuple of symbolic variables.

```has_valid_variable```

```variable```

Return whether the given variable is valid in this subring.

INPUT:

- `variable` – a symbolic variable.

OUTPUT:

A boolean.

EXAMPLES:

```sage```
```from sage.symbolic.subring import GenericSymbolicSubring
generic = GenericSymbolicSubring(v=Tuple()).has_valid_variable(x)
Traceback (most recent call last):
...,
NotImplementedError: Not implemented in this abstract base class
```
class sage.symbolic.subring_GenericSymbolicSubringFunctor(vars)

Bases: ConstructionFunctor

A base class for the functors constructing symbolic subrings.

INPUT:

• vars – a tuple, set, or other iterable of symbolic variables.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: S = SymbolicSubring(no_variables=True).construction()[0]  # indirect doctest
Subring<accepting no variable>
```

See also:

sage.categories.pushout.ConstructionFunctor.

coercion_reversed = True

merge(other)

Merge this functor with other if possible.

INPUT:

• other – a functor.

OUTPUT:

A functor or None.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: F = SymbolicSubring(accepting_variables=('a',)).construction()[0]
sage: F.merge(F) is F
True
```

rank = 11

class sage.symbolic.subring.SymbolicConstantsSubring(vars)

Bases: SymbolicSubringAcceptingVars

The symbolic subring consisting of symbolic constants.

has_valid_variable(variable)

Return whether the given variable is valid in this subring.

INPUT:

• variable – a symbolic variable.

OUTPUT:

A boolean.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: S = SymbolicSubring(no_variables=True)
sage: S.has_valid_variable('a')
```

(continues on next page)
False

```
sage: S.has_valid_variable('r')
False
sage: S.has_valid_variable('x')
False
```

```python
class sage.symbolic.subring.SymbolicSubringAcceptingVars(vars)

Bases: GenericSymbolicSubring

The symbolic subring consisting of symbolic expressions in the given variables.

```
def construction(self):
 r"Return the functorial construction of this symbolic subring."
 return (Subring<accepting a>, Symbolic Ring)
```

```
def has_valid_variable(self, variable):
 r"Return whether the given variable is valid in this subring."
 return True
```

```
class sage.symbolic.subring.SymbolicSubringAcceptingVarsFunctor(vars)

Bases: GenericSymbolicSubringFunctor

merge(self, other)

```
def merge(self, other):
    r"Merge this functor with other if possible."
    return None
```
EXAMPLES:

```python
sage: from sage.symbolic.subring import SymbolicSubring
sage: F = SymbolicSubring(accepting_variables=('a',)).construction()[0]
sage: G = SymbolicSubring(rejecting_variables=('r',)).construction()[0]
sage: F.merge(F) is F
True
sage: F.merge(G) is G
True
```

```python
class sage.symbolic.subring.SymbolicSubringFactory
Bases: UniqueFactory

A factory creating a symbolic subring.

INPUT:

Specify one of the following keywords to create a subring.

- `accepting_variables` (default: None) – a tuple or other iterable of variables. If specified, then a symbolic subring of expressions in only these variables is created.
- `rejecting_variables` (default: None) – a tuple or other iterable of variables. If specified, then a symbolic subring of expressions in variables distinct to these variables is created.
- `no_variables` (default: False) – a boolean. If set, then a symbolic subring of constant expressions (i.e., expressions without a variable) is created.

EXAMPLES:

```python
sage: from sage.symbolic.subring import SymbolicSubring
sage: V = var('a, b, c, r, s, t, x, y, z')

sage: A = SymbolicSubring(accepting_variables=(a, b, c)); A
Symbolic Subring accepting the variables a, b, c

sage: tuple((v, v in A) for v in V)
((a, True), (b, True), (c, True), (r, False), (s, False), (t, False), (x, False), (y, False), (z, False))

sage: R = SymbolicSubring(rejecting_variables=(r, s, t)); R
Symbolic Subring rejecting the variables r, s, t

sage: tuple((v, v in R) for v in V)
((a, True), (b, True), (c, True), (r, False), (s, False), (t, False), (x, True), (y, True), (z, True))

sage: C = SymbolicSubring(no_variables=True); C
Symbolic Constants Subring

sage: tuple((v, v in C) for v in V)
((a, False), (b, False), (c, False), (r, False), (s, False), (t, False), (x, False), (y, False), (z, False))
```

```python
def create_key_and_extra_args(accepting_variables=None, rejecting_variables=None, no_variables=False, **kwds):
 """Given the arguments and keyword, create a key that uniquely determines this object."""
```
```
2.8. Subrings of the Symbolic Ring

227
Symbolic Calculus, Release 10.2

See SymbolicSubringFactory for details.

create_object\((version, key, *kwds)\)
Create an object from the given arguments.
See SymbolicSubringFactory for details.

class sage.symbolic.subring.SymbolicSubringRejectingVars\((vars)\)
Bases: GenericSymbolicSubring
The symbolic subring consisting of symbolic expressions whose variables are none of the given variables.

class sage.symbolic.subring.SymbolicSubringRejectingVarsFunctor\((vars)\)
Bases: GenericSymbolicSubringFunctor

merge\((other)\)
Merge this functor with other if possible.

INPUT:
• other – a functor.

OUTPUT:
A functor or None.

EXAMPLES:
2.9 Classes for symbolic functions

To enable their usage as part of symbolic expressions, symbolic function classes are derived from one of the subclasses of Function:

- **BuiltinFunction**: the code of these functions is written in Python; many special functions are of this type
- **GinacFunction**: the code of these functions is written in C++ and part of the Pynac support library; most elementary functions are of this type
- **SymbolicFunction**: symbolic functions defined on the Sage command line are of this type

Sage uses BuiltinFunction and GinacFunction for its symbolic builtin functions. Users can define any other additional SymbolicFunction through the function() factory, see Factory for symbolic functions

Several parameters are supported by the superclass' __init__() method. Examples follow below.

- **nargs**: the number of arguments
- **name**: the string that is printed on the CLI; the name of the member functions that are attempted for evaluation of Sage element arguments; also the name of the Pynac function that is associated with a GinacFunction
- **alt_name**: the second name of the member functions that are attempted for evaluation of Sage element arguments
- **latex_name**: what is printed when \(\text{latex}(f(...)) \) is called
- **conversions**: a dict containing the function’s name in other CAS
- **evalf_params_first**: if False, when floating-point evaluating the expression do not evaluate function arguments before calling the _evalf_() member of the function
- **preserved_arg**: if nonzero, the index (starting with 1) of the function argument that determines the return type. Note that, e.g,\(\text{atan2()} \) uses both arguments to determine return type, through a different mechanism

Function classes can define the following Python member functions:

- **_eval_(*args)**: the only mandatory member function, evaluating the argument and returning the result; if None is returned the expression stays unevaluated
- **_eval_numy_(*args)**: evaluation of \(f(args) \) with arguments of numpy type
- **_evalf_(*args, **kwds)**: called when the expression is floating-point evaluated; may receive a parent keyword specifying the expected parent of the result. If not defined an attempt is made to convert the result of _eval_.
- **_conjugate_(*args), _real_part_(*args), _imag_part_(*args)**: return conjugate, real part, imaginary part of the expression \(f(args) \)
- **_derivative_(*args, index)**: return derivative with respect to the parameter indexed by index (starting with 0) of \(f(args) \)
- **_tderivative_()**: same as _derivative_() but don’t apply chain rule; only one of the two functions may be defined
Symbolic Calculus, Release 10.2

- `_power_(args, expo)`: return \(f(args)^{expo} \)
- `_series_(args, **kwds)`: return the power series at \(\text{at} \) up to \text{order} with respect to \text{var} of \(f(args) \); these three values are received in \(kwds \). If not defined the series is attempted to be computed by differentiation.
- `print(args)`: return what should be printed on the CLI with \(f(args) \)
- `print_latex(args)`: return what should be output with `latex(f(args))`

The following examples are intended for Sage developers. Users can define functions interactively through the `function()` factory, see `Factory for symbolic functions`.

EXAMPLES:

The simplest example is a function returning nothing, it practically behaves like a symbol. Setting `nargs=0` allows any number of arguments:

```python
class Test1(BuiltinFunction):
    def __init__(self):
        BuiltinFunction.__init__(self, 'test', nargs=0)
    def _eval_(self, *args):
        pass
f = Test1()
f()  # `_ needs sage.symbolic`
test()  # `_ needs sage.symbolic`
f(1,2,3)*f(1,2,3)  # `_ needs sage.symbolic`
test(1, 2, 3)**2
```

In the following the `sin` function of `CBF(0)` is called because with floating point arguments the `CBF` element's `my_sin()` member function is attempted, and after that `sin()` which succeeds:

```python
class Test2(BuiltinFunction):
    def __init__(self):
        BuiltinFunction.__init__(self, 'my_sin', alt_name='sin',
                                      latex_name=r'$\SIN$', nargs=1)
    def _eval_(self, x):
        return 5
    def _evalf_(self, x, **kwds):
        return 3.5
f = Test2()
f(0)  # `_ needs sage.symbolic`
```

(continues on next page)
Symbolic calculus, release 10.2

\[\text{\textbackslash SIN} \left(0 \right) \]

\texttt{sage: f(1,2)}

Traceback (most recent call last):
...
TypeError: Symbolic function \texttt{my_sin} takes exactly 1 arguments (2 given)

\texttt{class sage.symbolic.function.BuiltinFunction}

Bases: \texttt{Function}

This is the base class for symbolic functions defined in Sage.

If a function is provided by the Sage library, we don’t need to pickle the custom methods, since we can just initialize the same library function again. This allows us to use Cython for custom methods.

We assume that each subclass of this class will define one symbolic function. Make sure you use subclasses and not just call the initializer of this class.

\texttt{class sage.symbolic.function.Function}

Bases: \texttt{SageObject}

Base class for symbolic functions defined through Pynac in Sage.

This is an abstract base class, with generic code for the interfaces and a \texttt{_call_()} method. Subclasses should implement the \texttt{_is_registered()} and \texttt{_register_function()} methods.

This class is not intended for direct use, instead use one of the subclasses \texttt{BuiltinFunction} or \texttt{SymbolicFunction}.

\texttt{default_variable()}

Return a default variable.

\texttt{EXAMPLES:}

\begin{verbatim}
\texttt{sage: sin.default_variable()}
\end{verbatim}

\texttt{name()}

Return the name of this function.

\texttt{EXAMPLES:}

\begin{verbatim}
\texttt{sage: foo = function("foo", nargs=2)}
\end{verbatim}

\texttt{number_of_arguments()}

Return the number of arguments that this function takes.

\texttt{EXAMPLES:}

\begin{verbatim}
\texttt{sage: foo = function("foo", nargs=2)}
\texttt{sage: foo.number_of_arguments()}
\end{verbatim}
Symbolic Calculus, Release 10.2

```
sage: foo(x, x)
foo(x, x)
sage: foo(x)
Traceback (most recent call last):
...
TypeError: Symbolic function foo takes exactly 2 arguments (1 given)
```

variables()

Return the variables (of which there are none) present in this function.

EXAMPLES:

```
sage: sin.variables()
()```

class sage.symbolic.function.GinacFunction

Bases: BuiltinFunction

This class provides a wrapper around symbolic functions already defined in Pynac/GiNaC.

GiNaC provides custom methods for these functions defined at the C++ level. It is still possible to define new custom functionality or override those already defined.

There is also no need to register these functions.

class sage.symbolic.function.SymbolicFunction

Bases: Function

This is the basis for user defined symbolic functions. We try to pickle or hash the custom methods, so subclasses must be defined in Python not Cython.

sage.symbolic.function.pickle_wrapper(f)

Return a pickled version of the function f.

If f is None, just return None.

This is a wrapper around pickle_function().

EXAMPLES:

```
sage: from sage.symbolic.function import pickle_wrapper
sage: def f(x): return x^x
sage: isinstance(pickle_wrapper(f), bytes)
True
sage: pickle_wrapper(None) is None
True```

sage.symbolic.function.unpickle_wrapper(p)

Return a unpickled version of the function defined by p.

If p is None, just return None.

This is a wrapper around unpickle_function().

EXAMPLES:
sage: from sage.symbolic.function import pickle_wrapper, unpickle_wrapper
sage: def f(x):
 return x*x
sage: s = pickle_wrapper(f)
sage: g = unpickle_wrapper(s)
sage: g(2)
4
sage: unpickle_wrapper(None) is None
True

2.10 Factory for symbolic functions

sage.symbolic.function_factory.function(s, **kwds)

Create a formal symbolic function with the name s.

INPUT:

• nargs=0 - number of arguments the function accepts, defaults to variable number of arguments, or 0
• latex_name - name used when printing in latex mode
• conversions - a dictionary specifying names of this function in other systems, this is used by the interfaces internally during conversion
• eval_func - method used for automatic evaluation
• evalf_func - method used for numeric evaluation
• evalf_params_first - bool to indicate if parameters should be evaluated numerically before calling the custom evalf function
• conjugate_func - method used for complex conjugation
• real_part_func - method used when taking real parts
• imag_part_func - method used when taking imaginary parts
• derivative_func - method to be used for (partial) derivation This method should take a keyword argument deriv_param specifying the index of the argument to differentiate w.r.t
• tderivative_func - method to be used for derivatives
• power_func - method used when taking powers This method should take a keyword argument power_param specifying the exponent
• series_func - method used for series expansion This method should expect keyword arguments - order - order for the expansion to be computed - var - variable to expand w.r.t. - at - expand at this value
• print_func - method for custom printing
• print_latex_func - method for custom printing in latex mode

Note that custom methods must be instance methods, i.e., expect the instance of the symbolic function as the first argument.

EXAMPLES:

sage: from sage.symbolic.function_factory import function
sage: var('a, b')
(a, b)
sage: cr = function('cr')
sage: f = cr(a)
sage: g = f.diff(a).integral(b); g
\frac{b \cdot \text{diff}(cr(a), a)}{}
sage: foo = function("foo", nargs=2)
sage: x,y,z = var("x y z")
sage: foo(x, y) + foo(y, z)^2
foo(y, z)^2 + foo(x, y)

You need to use substitute_function() to replace all occurrences of a function with another:

sage: g.substitute_function(cr, cos)
-b \cdot \sin(a)
sage: g.substitute_function(cr, (\sin(x) + \cos(x)).function(x))
\frac{b \cdot (\cos(a) - \sin(a))}{}

Basic arithmetic with unevaluated functions is no longer supported:

sage: x = var('x')
sage: f = function('f')
sage: 2*f
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'Integer Ring' and '<class 'sage.symbolic.function_factory...NewSymbolicFunction'>'

You now need to evaluate the function in order to do the arithmetic:

sage: 2*f(x)
2f(x)

We create a formal function of one variable, write down an expression that involves first and second derivatives, and extract off coefficients.

sage: r, kappa = var('r,kappa')
sage: psi = function('psi', nargs=1)(r); psi
psi(r)
sage: g = 1/r^2*(2*r*psi.derivative(r,1) + r^2*psi.derivative(r,2)); g
\frac{2 \cdot \text{diff}(psi(r), r, r) + 2 \cdot r \cdot \text{diff}(psi(r), r)}{r^2}
sage: g.expand()
2 \cdot \text{diff}(psi(r), r) / r + \text{diff}(psi(r), r, r)
sage: g.coefficient(psi.derivative(r,2))
1
sage: g.coefficient(psi.derivative(r,1))
2 / r

Defining custom methods for automatic or numeric evaluation, derivation, conjugation, etc. is supported:

sage: def ev(self, x):
 return 2*x
sage: foo = function("foo", nargs=1, eval_func=ev)
sage: foo(x)
2x

(continues on next page)
sage: foo = function("foo", nargs=1, eval_func=lambda self, x: 5)
sage: foo(x)
5
sage: def ef(self, x): pass
sage: bar = function("bar", nargs=1, eval_func=ef)
sage: bar(x)
bar(x)

sage: def evalf_f(self, x, parent=None, algorithm=None):
 return 6
sage: foo = function("foo", nargs=1, evalf_func=evalf_f)
sage: foo(x)
foo(x)

sage: foo(x).n()
6

sage: foo = function("foo", nargs=1, conjugate_func=ev)
sage: foo(x).conjugate()
2*x

sage: def deriv(self, *args,**kwds):
 : print("{} {}".format(args, kwds))
 : return args[0]**2
sage: foo = function("foo", nargs=2, derivative_func=deriv)
sage: foo(x,y).derivative(y)
(x, y) {'diff_param': 1}
y^2

sage: def pow(self, x, power_param=None):
 : print("{} {}".format(x, power_param))
 : return x*power_param
sage: foo = function("foo", nargs=1, power_func=pow)
sage: foo(y)^(x+y)

sage: def expand(self, *args, **kwds):
 : print("{} {}".format(args, sorted(kwds.items())))
 : return sum(args[0]**i for i in range(kwds['order']))

sage: foo = function("foo", nargs=1, series_func=expand)
sage: foo(y).series(y, 5)
(y,) [(at', 0), ('options', 0), ('order', 5), ('var', y)]
y^4 + y^3 + y^2 + y + 1

sage: def my_print(self, *args):
 return "my args are: " + ','.join(map(repr, args))
sage: foo = function('t', nargs=2, print_func=my_print)
sage: foo(x,y^z)
my args are: x, y^z

sage: latex(foo(x,y^z))
t(x, y^{z})

sage: def my_print(self, *args):
 return "my args are: " + ','.join(map(repr, args))
sage: foo = function('t', nargs=2, print_latex_func=my_print)
sage: foo(x,y^z)
\begin{verbatim}
t(x, y^z)
sage: latex(foo(x,y^z))
my args are: x, y^z
sage: foo = function('t', nargs=2, latex_name='foo')
sage: latex(foo(x,y^z))
foo\left(x, y^{z}\right)

Chain rule:
sage: def print_args(self, *args, **kwds): print("args: {}\)".format(args)); print(˓→"kwds: {}\)".format(kwds)); return args[0]
sage: foo = function('t', nargs=2, tderivative_func=print_args)
sage: foo(x,x).derivative(x)
args: (x, x)
kwds: {'diff_param': x}
x
sage: foo = function('t', nargs=2, derivative_func=print_args)
sage: foo(x,x).derivative(x)
args: (x, x)
kwds: {'diff_param': 0}
args: (x, x)
kwds: {'diff_param': 1}
2*x
\end{verbatim}

Create a formal symbolic function. For an explanation of the arguments see the documentation for the method \texttt{function()}. EXAMPLES:

\begin{verbatim}
sage: from sage.symbolic.function_factory import function_factory
sage: f = function_factory('f', 2, '\\foo', {'\mathematica': 'Foo'})
sage: f(2,4)
f(2, 4)
sage: latex(f(1,2))
\foo\left(1, 2\right)
sage: f._mathematica_init_()
'Foo'
sage: def evalf_f(self, x, parent=None, algorithm=None): return x*.5r
sage: g = function_factory('g',1,evalf_func=evalf_f)
sage: g(2)
g(2)
sage: g(2).n()
1.00000000000000
\end{verbatim}
symbolic.function_factory.unpickle_function(name, nargs, latex_name, conversions, evalf_params_first, pickled_funcs)

This is returned by the __reduce__ method of symbolic functions to be called during unpickling to recreate the given function.

It calls function_factory() with the supplied arguments.

EXAMPLES:

```python
sage: from sage.symbolic.function_factory import unpickle_function
sage: nf = unpickle_function('f', 2, '\foo', {'mathematica':'Foo'}, True, [])
sage: nf
f
sage: nf(1,2)
f(1, 2)
sage: latex(nf(x,x))
\foo\left(x, x\right)
sage: nf._mathematica_init_()
'Foo'
```

```python
sage: from sage.symbolic.function import pickle_wrapper
sage: def evalf_f(self, x, parent=None, algorithm=None): return 2r*x + 5r
sage: def conjugate_f(self, x): return x/2r
sage: def conj(self, x): return x
sage: def integral(a*x**2, x): return x**3/3
sage: def limit(a*x**2, x): return a*x**2
sage: def max(a*x**2, x): return a*x**2
sage: def min(a*x**2, x): return a*x**2

sage: from sage.symbolic.function_factory import unpickle_function
sage: nf = unpickle_function('g', 1, None, None, True, [None, pickle_wrapper(evalf_f), pickle_wrapper(conjugate_f)] + [None]*8)
sage: nf
g
sage: nf(2)
g(2)
sage: nf(2).n()
9.0000000000000
sage: nf(2).conjugate()
1
```

2.11 Functional notation support for common calculus methods

EXAMPLES: We illustrate each of the calculus functional functions.

```python
sage: simplify(x - x)
0
sage: a = var('a')
sage: derivative(x^a + sin(x), x)
a*x^(a - 1) + cos(x)
sage: diff(x^a + sin(x), x)
a*x^(a - 1) + cos(x)
sage: derivative(x^a + sin(x), x)
a*x^(a - 1) + cos(x)
sage: integral(a*x^2, x)
-(x*cos(x) - sin(x))*a
sage: integrate(a*x^2, x)
-(x*cos(x) - sin(x))*a
sage: limit(a*x^2, x=0)
```

(continues on next page)
symbolic: taylor(a*sin(x)/x, x, 0, 4)
1/120*a*x^4 - 1/6*a*x^2 + a
symbolic: expand((x - a)^3)
-a^3 + 3*a^2*x - 3*a*x^2 + x^3

sage: taylor(a*sin(x)/x, x, 0, 4)
1/120*a*x^4 - 1/6*a*x^2 + a
sage: expand((x - a)^3)
-a^3 + 3*a^2*x - 3*a*x^2 + x^3

sage.calculus.functional.derivative(f, *args, **kwds)
The derivative of \(f \).
Repeated differentiation is supported by the syntax given in the examples below.

ALIAS: diff

EXAMPLES: We differentiate a callable symbolic function:

\begin{verbatim}
sage: f(x,y) = x*y + sin(x^2) + e^(-x)
sage: f(x, y) |--> x*y + e^(-x) + sin(x^2)
sage: derivative(f, x)
(x, y) |--> 2*x*cos(x^2) + y - e^(-x)
sage: derivative(f, y)
(x, y) |--> x
\end{verbatim}

We differentiate a polynomial:

\begin{verbatim}
sage: t = polygen(QQ, 't')
sage: f = (1-t)^5; f
-t^5 + 5*t^4 - 10*t^3 + 10*t^2 - 5*t + 1
sage: derivative(f)
-t^4 + 20*t^3 - 30*t^2 + 20*t - 5
sage: derivative(f, t)
-t^4 + 20*t^3 - 30*t^2 + 20*t - 5
sage: derivative(f, t, t)
-20*t^3 + 60*t^2 - 60*t + 20
sage: derivative(f, t, 2)
-20*t^3 + 60*t^2 - 60*t + 20
sage: derivative(f, 2)
-20*t^3 + 60*t^2 - 60*t + 20
\end{verbatim}

We differentiate a symbolic expression:

\begin{verbatim}
sage: var('a x')
(a, x)
sage: f = exp(sin(a - x^2))/x
sage: derivative(f, x)
-2*cos(-x^2 + a)*e^((sin(-x^2 + a)) - e^(sin(-x^2 + a))/x^2
sage: derivative(f, a)
cos(-x^2 + a)*e^((sin(-x^2 + a)))/x
\end{verbatim}

Syntax for repeated differentiation:

\begin{verbatim}
sage: R.<u, v> = PolynomialRing(QQ)
sage: f = u^4*v^5
sage: derivative(f, u)
\end{verbatim}
We differentiate a scalar field on a manifold:

```
sage: M = Manifold(2, 'M')
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field(x^2*y, name='f')
sage: derivative(f)
1-form df on the 2-dimensional differentiable manifold M
sage: derivative(f).display()
\mathrm{df} = 2\, x\, y\, dx + x^2\, dy
```

We differentiate a differentiable form, getting its exterior derivative:

```
sage: a = M.one_form(-y, x, name='a'); a.display()
a = -y\, dx + x\, dy
sage: derivative(a)
2-form da on the 2-dimensional differentiable manifold M
sage: derivative(a).display()
da = 2\, dx\wedge dy
```

The derivative of f.

Repeated differentiation is supported by the syntax given in the examples below.

ALIAS: diff

EXAMPLES: We differentiate a callable symbolic function:

```
sage: f(x,y) = x*y + sin(x^2) + e^(-x)
sage: f
(x, y) |--> x*y + \sin(x^2) + e^(-x)
sage: derivative(f, x)
(x, y) |--> 2\, x\, \cos(x^2) + y - e^(-x)
```

2.11. Functional notation support for common calculus methods
We differentiate a polynomial:

```
sage: t = polygen(QQ, 't')
sage: f = (1-t)^5; f
-t^5 + 5*t^4 - 10*t^3 + 10*t^2 - 5*t + 1
sage: derivative(f)
-5*t^4 + 20*t^3 - 30*t^2 + 20*t - 5
sage: derivative(f, t)
-5*t^4 + 20*t^3 - 30*t^2 + 20*t - 5
sage: derivative(f, t, t)
-20*t^3 + 60*t^2 - 60*t + 20
sage: derivative(f, t, 2)
-20*t^3 + 60*t^2 - 60*t + 20
sage: derivative(f, 2)
-20*t^3 + 60*t^2 - 60*t + 20
```

We differentiate a symbolic expression:

```
sage: var('a x')
(a, x)
sage: f = exp(sin(a - x^2))/x
sage: derivative(f, x)
-2*cos(-x^2 + a)*e^(sin(-x^2 + a)) - e^(sin(-x^2 + a))/x^2
sage: derivative(f, a)
cos(-x^2 + a)*e^(sin(-x^2 + a))/x
```

Syntax for repeated differentiation:

```
sage: R.<u, v> = PolynomialRing(QQ)
sage: f = u^4*v^5
sage: derivative(f, u)
4*u^3*v^5
sage: derivative(f, u, u)
12*u^2*v^5
sage: derivative(f, u, u, u)
24*u*v^5
sage: derivative(f, u, 3)
24*u*v^5
sage: derivative(f, u, v)
20*u^3*v^4
sage: derivative(f, u, 2, v)
60*u^2*v^4
sage: derivative(f, u, v, 2)
80*u^3*v^3
sage: derivative(f, [u, v, v])
```

(continues on next page)
We differentiate a scalar field on a manifold:

\[
\frac{\partial}{\partial x} \left(x^2 y \right) = 2xy,
\]
\[
\frac{\partial}{\partial y} \left(x^2 y \right) = x^2.
\]

We differentiate a differentiable form, getting its exterior derivative:

\[
da = \text{exterior derivative of } a.
\]

You can also use expand on polynomial, integer, and other factorizations:

\[
x^3 - x^2 - x + 1
\]

Note: If you want to compute the expanded form of a polynomial arithmetic operation quickly and the coefficients of the polynomial all lie in some ring, e.g., the integers, it is vastly faster to create a polynomial ring and do the arithmetic there.
The integral of f.

EXAMPLES:

```
sage: integral(sin(x), x)
sage: -cos(x)
sage: integral(sin(x)^2, x, pi, 123*pi/2)
sage: 121/4*pi
sage: integral( sin(x), x, 0, pi)
sage: 2
```

We integrate a symbolic function:

```
sage: f(x,y,z) = x*y/z + sin(z)
sage: integral(f, z)
(x, y, z) |--> x*y*log(z) - cos(z)
sage: var('a,b')
(a, b)
sage: assume(b-a>0)
sage: integral( sin(x), x, a, b)
sage: cos(a) - cos(b)
sage: forget()
sage: integral(x/(x^3-1), x)
1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/6*log(x^2 + x + 1) + 1/3*log(x - 1)
```

We define the Gaussian, plot and integrate it numerically and symbolically:

```
sage: f(x) = 1/(sqrt(2*pi)) * e^(-x^2/2)
sage: P = plot(f, -4, 4, hue=0.8, thickness=2)
sage: P.show(ymin=0, ymax=0.4)
sage: numerical_integral(f, -4, 4) # random output
(0.99993665751633376, 1.1101527003413533e-14)
sage: integrate(f, x)
x |--> 1/2*erf(1/2*sqrt(2)*x)
```

You can have Sage calculate multiple integrals. For example, consider the function e^y on the region between the lines $x = y$, $x = 1$, and $y = 0$. We find the value of the integral on this region using the command:

```
sage: area = integral(integral(exp(y^2),x,0,y),y,0,1); area
1/2*e - 1/2
sage: float(area)
0.859140914229522...
```

We compute the line integral of $\sin(x)$ along the arc of the curve $x = y^4$ from $(1, -1)$ to $(1, 1)$:

```
sage: t = var('t')
sage: (x,y) = (t^4,t)
sage: (dx,dy) = (diff(x,t), diff(y,t))
```

(continues on next page)
sage: integral(sin(x)*dx, t, -1, 1)
0
sage: restore('x,y') # restore the symbolic variables x and y

Sage is now (github issue #27958) able to compute the following integral:

sage: integral(exp(-x^2)*log(x), x) # long time
1/2*sqrt(pi)*erf(x)*log(x) - x*hypergeometric((1/2, 1/2), (3/2, 3/2), -x^2)

and its value:

sage: integral(exp(-x^2)*log(x), x, 0, oo)
-1/4*sqrt(pi)*(euler_gamma + 2*log(2))

This definite integral is easy:

sage: integral(ln(x)/x, x, 1, 2)
1/2*log(2)^2

Sage cannot do this elliptic integral (yet):

sage: integral(1/sqrt(2*t^4 - 3*t^2 - 2), t, 2, 3)
sage: integrate(1/(sqrt(2*t^2 + 1)*sqrt(t^2 - 2)), t, 2, 3)

A double integral:

sage: y = var('y')
sage: integral(integral(x*y^2, x, 0, y), y, -2, 2)
32/5

This illustrates using assumptions:

sage: integral(abs(x), x, 0, 5)
25/2
sage: a = var("a")
sage: integral(abs(x), x, 0, a)
1/2*a*abs(a)
sage: integral(abs(x)*x, x, 0, a)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(a>0)'), see 'assume?' for more details
Is a positive, negative or zero?
sage: assume(a>0)
sage: integral(abs(x)*x, x, 0, a)
1/3*a^3
sage: forget() # forget the assumptions.

We integrate and differentiate a huge mess:
Symbolic Calculus, Release 10.2

```
sage: f = (x^2-1+3*(1+x^2)^(1/3))/(1+x^2)^(2/3)*x/(x^2+2)^2
sage: g = integral(f, x)
sage: h = f - diff(g, x)

sage: [float(h(x=i)) for i in range(5)] #random
[0.0, -1.1102230246251565e-16, -5.5511151231257827e-17, -5.5511151231257827e-17, -6.9388939039072284e-17]

sage: h.factor()
0
sage: bool(h == 0)
True
```

```
sage: integral(f, x)

EXAMPLES:

sage: integral(sin(x), x)
-cos(x)
sage: integral(sin(x)^2, x, pi, 123*pi/2)
121/4*pi
sage: integral( sin(x), x, 0, pi)
2

We integrate a symbolic function:

```
sage: f(x,y,z) = x*y/z + sin(z)
sage: integral(f, z)
(x, y, z) |--> x*y*log(z) - cos(z)
```

```
sage: var('a,b')
(a, b)
sage: assume(b-a>0)
sage: integral(sin(x), x, a, b)
cos(a) - cos(b)
sage: forget()
sage: integral(x/(x^3-1), x)
1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/6*log(x^2 + x + 1) + 1/3*log(x - 1)
```

We define the Gaussian, plot and integrate it numerically and symbolically:

```
sage: f(x) = 1/(sqrt(2*pi)) * e^(-x^2/2)
sage: P = plot(f, -4, 4, hue=0.8, thickness=2)
sage: P.show(ymin=0, ymax=0.4)
```

(continues on next page)
You can have Sage calculate multiple integrals. For example, consider the function $e^{x^2}$ on the region between the lines $x = y$, $x = 1$, and $y = 0$. We find the value of the integral on this region using the command:

```sage
sage: area = integral(integral(exp(y^2), x, 0, y), y, 0, 1); area
1/2*e - 1/2
sage: float(area)
0.859140914229522...
```

We compute the line integral of $\sin(x)$ along the arc of the curve $x = y^4$ from $(1, -1)$ to $(1, 1)$:

```sage
t = var('t')
x, y = (t^4, t)
(dx, dy) = (diff(x,t), diff(y,t))
integral(sin(x)*dx, t, -1, 1)
0
```

Sage is now (github issue #27958) able to compute the following integral:

```sage
sage: integral(exp(-x^2)*log(x), x) # long time
1/2*sqrt(pi)*erf(x)*log(x) - x*hypergeometric((1/2, 1/2), (3/2, 3/2), -x^2)
```

and its value:

```sage
sage: integral(exp(-x^2)*ln(x), x, 0, oo)
-1/4*sqrt(pi)*(euler_gamma + 2*log(2))
```

This definite integral is easy:

```sage
sage: integral(ln(x)/x, x, 1, 2)
1/2*log(2)^2
```

Sage cannot do this elliptic integral (yet):

```sage
sage: integral(1/sqrt(2*t^4 - 3*t^2 - 2), t, 2, 3)
integrate(1/(sqrt(2*t^2 + 1)*sqrt(t^2 - 2))), t, 2, 3)
```

A double integral:

```sage
y = var('y')
sage: integral(integral(x*y^2, x, 0, y), y, -2, 2)
32/5
```

This illustrates using assumptions:

```sage
sage: integral(abs(x), x, 0, 5)
25/2
sage: a = var("a")
sage: integral(abs(x), x, 0, a)
```

(continues on next page)
We integrate and differentiate a huge mess:

```sage
f = (x^2-1+3*(1+x^2)^(1/3))/(1+x^2)^(2/3)*x/(x^2+2)^2
g = integral(f, x)
h = f - diff(g, x)
```

```sage
[sage(float(h(x=i)) for i in range(5)) for i in range(5)] #random
```

```
[0.0, -1.1102230246251565e-16, -5.5511151231257827e-17, -5.5511151231257827e-17, -6.9388939039072284e-17]
```

```
h.factor()
```

```
0
```

```
bool(h == 0)
```

True
Sage does not know how to do this limit (which is 0), so it returns it unevaluated:

```
sage: limit(exp(x^2)*(1-erf(x)), x=+Infinity)
-limit((erf(x) - 1)*e^(x^2), x, +Infinity)
```

sage.calculus.functional.limit(f, dir=None, taylor=False, **argv)
Return the limit as the variable \( v \) approaches \( a \) from the given direction.

INPUT:

- **dir** - (default: None); dir may have the value ‘plus’ (or ‘above’) for a limit from above, ‘minus’ (or ‘below’) for a limit from below, or may be omitted (implying a two-sided limit is to be computed).
- **taylor** - (default: False); if True, use Taylor series, which allows more limits to be computed (but may also crash in some obscure cases due to bugs in Maxima).
- **\*\*argv** - 1 named parameter

ALIAS: You can also use lim instead of limit.

EXAMPLES:

```
sage: limit(sin(x)/x, x=0)
1
sage: limit(exp(x), x=oo)
+Infinity
sage: limit(exp(x), x=-oo)
0
sage: lim(1/x, x=0)
Infinity
sage: limit(sqrt(x^2+x+1)+x, taylor=True, x=-oo)
-1/2
sage: limit(((tan(sin(x)) - sin(tan(x)))/x^7, taylor=True, x=0)
1/30
```

Sage does not know how to do this limit (which is 0), so it returns it unevaluated:
\texttt{sage: \textbf{lim}(\exp(x^2)*(1-\texttt{erf}(x)), x=\texttt{infinity})}
\texttt{-limit((\texttt{erf}(x) - 1)*e^{x^2}), x, +\texttt{infinity})}

\texttt{sage.calculus.functional.simplify}(f, \texttt{algorithm='maxima'}, **\texttt{kwds})
Simplify the expression \(f\).

See the documentation of the \texttt{simplify()} method of symbolic expressions for details on options.

EXAMPLES:
We simplify the expression \(i + x - x\):
\[
\texttt{sage: } f = I + x - x; \texttt{simplify(f)}
\]
I

In fact, printing \(f\) yields the same thing - i.e., the simplified form.

Some simplifications are algorithm-specific:
\[
\texttt{sage: } x, t = \texttt{var}("x, t")
\texttt{sage: } ex = 1/2*I*x + 1/2*I*\texttt{sqrt}(x^2 - 1) + 1/2/(I*x + I*\texttt{sqrt}(x^2 - 1))
\texttt{sage: } \texttt{simplify(ex)}
1/2*I*x + 1/2*I*\texttt{sqrt}(x^2 - 1) + 1/(2*I*x + 2*I*\texttt{sqrt}(x^2 - 1))
\texttt{sage: } \texttt{simplify(ex, algorithm='\texttt{giac}')}\]
I*\texttt{sqrt}(x^2 - 1)

\texttt{sage.calculus.functional.taylor}(f, *\texttt{args})
Expands self in a truncated Taylor or Laurent series in the variable \(v\) around the point \(a\), containing terms through \((x - a)^n\). Functions in more variables are also supported.

INPUT:
- *\texttt{args} - the following notation is supported
  - \(x, a, n\) - variable, point, degree
  - \((x, a), (y, b), \ldots, n\) - variables with points, degree of polynomial

EXAMPLES:
\[
\texttt{sage: } \texttt{var}(\"x, k, n\")
\texttt{(x, k, n)}
\texttt{sage: } \texttt{taylor (sqrt (1 - k^2*sin(x)^2), x, 0, 6)}
-1/720*(45*k^6 - 60*k^4 + 16*k^2)*x^6 - 1/24*(3*k^4 - 4*k^2)*x^4 - 1/2*(k^2 - n)*x^2 + k*x + 1
\]
\[
\texttt{sage: } \texttt{taylor ( ((x + 1)^n, x, 0, 4)}
1/24*(n^4 - 6*n^3 + 11*n^2 - 6*n)*x^4 + 1/6*(n^3 - 3*n^2 + 2*n)*x^3 + 1/2*(n^2 - n)*x^2 + n*x + 1
\]
\[
\texttt{sage: } \texttt{taylor ( ((x + 1)^n, x, 0, 4)}
1/24*(n^4 - 6*n^3 + 11*n^2 - 6*n)*x^4 + 1/6*(n^3 - 3*n^2 + 2*n)*x^3 + 1/2*(n^2 - n)*x^2 + n*x + 1
\]

Taylor polynomial in two variables:
2.12 Symbolic Integration

**class** sage.symbolic.integration.integral.DefiniteIntegral

- **Bases:** BuiltinFunction

  The symbolic function representing a definite integral.

  **EXAMPLES:**

  ```python
 sage: from sage.symbolic.integration.integral import definite_integral
 sage: definite_integral(sin(x), x, 0, pi)
 2
  ```

**class** sage.symbolic.integration.integral.IndefiniteIntegral

- **Bases:** BuiltinFunction

  Class to represent an indefinite integral.

  **EXAMPLES:**

  ```python
 sage: from sage.symbolic.integration.integral import indefinite_integral
 sage: indefinite_integral(log(x), x) # indirect doctest
 x*log(x) - x
 sage: indefinite_integral(x^2, x)
 1/3*x^3
 sage: indefinite_integral(4*x^2*log(x), x)
 2*x^2*log(x) - x^2
 sage: indefinite_integral(exp(x), 0, x)
 2*exp(x)
  ```

**sage.symbolic.integration.integral.integral** (*expression*, *v=None*, *a=None*, *b=None*, *algorithm=None*, *hold=False*)

- Return the indefinite integral with respect to the variable *v*, ignoring the constant of integration. Or, if endpoints *a* and *b* are specified, returns the definite integral over the interval [a, b].

  If self has only one variable, then it returns the integral with respect to that variable.

  If definite integration fails, it could be still possible to evaluate the definite integral using indefinite integration with the Newton-Leibniz theorem (however, the user has to ensure that the indefinite integral is continuous on the compact interval [a, b] and this theorem can be applied).

**INPUT:**

- *v* - a variable or variable name. This can also be a tuple of the variable (optional) and endpoints (i.e., (x, 0, 1) or (0, 1)).
- *a* - (optional) lower endpoint of definite integral
- *b* - (optional) upper endpoint of definite integral
- *algorithm* - (default: ‘maxima’, ‘libgiac’ and ‘sympy’) one of
  - ‘maxima’ - use maxima

---

Base dimensions: 612.00 x 792.00

Basis: BuiltinFunction

The symbolic function representing a definite integral.

**EXAMPLES:**

```python
sage: from sage.symbolic.integration.integral import definite_integral
sage: definite_integral(sin(x), x, 0, pi)
2
```
– ‘sympy’ - use sympy (also in Sage)
– ‘mathematica_free’ - use http://integrals.wolfram.com/
– ‘fricas’ - use FriCAS (the optional fricas spkg has to be installed)
– ‘giac’ - use Giac
– ‘libgiac’ - use libgiac

To prevent automatic evaluation use the hold argument.

See also:

To integrate a polynomial over a polytope, use the optional latte_int package sage.geometry.polyhedron.base.Polyhedron_base.integrate().

EXAMPLES:

```sage
sage: x = var('x')
sage: h = sin(x)/(cos(x))**2
sage: h.integral(x)
1/cos(x)
```

```sage
sage: f = x**2/(x+1)**3
sage: f.integral(x)
1/2*(4*x + 3)/(x^2 + 2*x + 1) + log(x + 1)
```

```sage
sage: f = x*cos(x^2)

sage: f.integral(x, 0, sqrt(pi))
0

sage: f.integral(x, a=-pi, b=pi)
0
```

```sage
sage: f(x) = sin(x)

sage: f.integral(x, 0, pi/2)
1
```

The variable is required, but the endpoints are optional:

```sage
sage: y = var('y')

sage: integral(sin(x), x, -cos(x))
y*sin(x)

sage: integral(sin(x), x, pi, 2*pi)
2

sage: integral(sin(x), y, pi, 2*pi)
pi*sin(x)

sage: integral(sin(x), (x, pi, 2*pi))
pi*sin(x)
```

Using the hold parameter it is possible to prevent automatic evaluation, which can then be evaluated via simplify():

```sage
```
Symbolic Calculus, Release 10.2

sage: integral(x^2, x, 0, 3)
9
sage: a = integral(x^2, x, 0, 3, hold=True); a
integrate(x^2, x, 0, 3)
sage: a.simplify()
9

Constraints are sometimes needed:

```python
sage: var('x, n')
(x, n)
sage: integral(x^n,x)
Traceback (most recent call last):
 ... ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(n>0)', see `assume?' for more details)
Is n equal to -1?
sage: assume(n > 0)
sage: integral(x^n,x)
x^(n + 1)/(n + 1)
sage: forget()
```

Usually the constraints are of sign, but others are possible:

```python
sage: assume(n==-1)
sage: integral(x^n,x)
log(x)
```

Note that an exception is raised when a definite integral is divergent:

```python
sage: forget() # always remember to forget assumptions you no longer need
sage: integrate(1/x^3,(x,0,1))
Traceback (most recent call last):
 ... ValueError: Integral is divergent.
sage: integrate(1/x^3,x,-1,3)
Traceback (most recent call last):
 ... ValueError: Integral is divergent.
```

But Sage can calculate the convergent improper integral of this function:

```python
sage: integrate(1/x^3,x,1,infinity)
1/2
```

The examples in the Maxima documentation:

```python
sage: var('x, y, z, b')
(x, y, z, b)
sage: integral(sin(x)^3, x)
1/3*cos(x)^3 - cos(x)
sage: integral(x/sqrt(b^2-x^2), b)
(continues on next page)
```

2.12. Symbolic Integration 251
We integrate the same function in both Mathematica and Sage (via Maxima):

\[
\text{sage: } \int \frac{x}{\sqrt{b^2-x^2}} \, dx
\]
\[
-\sqrt{b^2 - x^2}
\]
\[
\text{sage: } \int \cos(x)^2 \exp(x) \, dx, \ 0, \ \pi
\]
\[
\frac{3}{5}e^{\pi} - \frac{3}{5}
\]
\[
\text{sage: } \int x^2 \exp(-x^2) \, dx, \ -\infty, \ \infty
\]
\[
\frac{1}{2}\sqrt{\pi}
\]

Alternatively, just use algorithm='mathematica_free' to integrate via Mathematica over the internet (does NOT require a Mathematica license!):

\[
\text{sage: } \int \frac{x}{\sqrt{b^2-x^2}} \, dx
\]
\[
x^2 \log(2b + 2\sqrt{b^2 - x^2})
\]
\[
\text{sage: } \int \frac{x}{\sqrt{b^2-x^2}} \, dx
\]
\[
-\sqrt{b^2 - x^2}
\]
\[
\text{sage: } \int \cos(x)^2 \exp(x) \, dx, \ 0, \ \pi
\]
\[
\frac{3}{5}e^{\pi} - \frac{3}{5}
\]
\[
\text{sage: } \int x^2 \exp(-x^2) \, dx, \ -\infty, \ \infty
\]
\[
\frac{1}{2}\sqrt{\pi}
\]

We integrate the same function in both Mathematica and Sage (via Maxima):

\[
\text{sage: } \int x \sin(\log(x)) \, dx
\]
\[
-\frac{1}{5}x^2(\cos(\log(x)) - 2\sin(\log(x)))
\]
\[
\text{sage: } \int x \sin(\log(x)) \, dx, \ \text{algorithm='sympy'}
\]
\[
-\frac{1}{5}x^2\cos(\log(x)) + 2\frac{5}{2}x^2\sin(\log(x))
\]
\[
\text{sage: } \int y^z - z \, dy
\]
\[
y^z + x^y/\log(x)
\]
\[
\text{sage: } \int y^z - z \, dy, \ \text{algorithm='sympy'}
\]
\[
y^z + \text{cases}(((\log(x)) != 0, x^y/\log(x)), (1, y)))
\]

We integrate the above function in Maple now:

\[
\text{sage: } g = \text{maple}(f); g \text{.sort()}
\]
\[
y^z + \text{cas}((\log(x)) != 0, x^y/\log(x)), (1, y)))
\]

We can also use Sympy:

\[
\text{sage: } \int \frac{x}{\sqrt{b^2-x^2}} \, dx
\]
\[
x^2 \log(2b + 2\sqrt{b^2 - x^2})
\]
\[
\text{sage: } \int \frac{x}{\sqrt{b^2-x^2}} \, dx
\]
\[
-\sqrt{b^2 - x^2}
\]
\[
\text{sage: } \int \cos(x)^2 \exp(x) \, dx, \ 0, \ \pi
\]
\[
\frac{3}{5}e^{\pi} - \frac{3}{5}
\]
\[
\text{sage: } \int x^2 \exp(-x^2) \, dx, \ -\infty, \ \infty
\]
\[
\frac{1}{2}\sqrt{\pi}
\]

We integrate the same function in both Mathematica and Sage (via Maxima):

\[
\text{sage: } \int x \sin(\log(x)) \, dx
\]
\[
-\frac{1}{5}x^2(\cos(\log(x)) - 2\sin(\log(x)))
\]
\[
\text{sage: } \int x \sin(\log(x)) \, dx, \ \text{algorithm='sympy'}
\]
\[
-\frac{1}{5}x^2\cos(\log(x)) + 2\frac{5}{2}x^2\sin(\log(x))
\]
\[
\text{sage: } \int \frac{x}{\sqrt{b^2-x^2}} \, dx
\]
\[
x^2 \log(2b + 2\sqrt{b^2 - x^2})
\]
\[
\text{sage: } \int \frac{x}{\sqrt{b^2-x^2}} \, dx
\]
\[
-\sqrt{b^2 - x^2}
\]
\[
\text{sage: } \int \cos(x)^2 \exp(x) \, dx, \ 0, \ \pi
\]
\[
\frac{3}{5}e^{\pi} - \frac{3}{5}
\]
\[
\text{sage: } \int x^2 \exp(-x^2) \, dx, \ -\infty, \ \infty
\]
\[
\frac{1}{2}\sqrt{\pi}
\]

We integrate the above function in Maple now:
We next integrate a function with no closed form integral. Notice that the answer comes back as an expression that contains an integral itself.

```sage
A = integral(1/((x-4) * (x^4+x+1)), x); A
```

Sometimes, in this situation, using the algorithm “maxima” gives instead a partially integrated answer:

```sage
integral(1/(x**7-1),x,algorithm='maxima')
```

We now show that floats are not converted to rationals automatically since we by default have keepfloat: true in maxima.

```sage
integral(e^(-x^2),(x, 0, 0.1))
```

An example of an integral that fricas can integrate:

```sage
f(x) = sqrt(x+sqrt(1+x^2))/x
sage: integrate(f(x), x, algorithm="fricas") # optional - fricas
```

where the default integrator obtains another answer:

```sage
integrate(f(x), x, 1, 2, algorithm='maxima')
```

The following definite integral is not found by maxima:

```sage
f(x) = (x^4 - 3*x^2 + 6) / (x^6 - 5*x^4 + 5*x^2 + 4)
```

but is nevertheless computed:

```sage
integrate(f(x), x, 1, 2)
```

Both fricas and sympy give the correct result:

```sage
integrate(f(x), x, 1, 2, algorithm="fricas") # optional - fricas
```

Using Giac to integrate the absolute value of a trigonometric expression:

```sage
integrate(abs(cos(x)), x, 0, 2*pi, algorithm='giac')
```
ALIASES: integral() and integrate() are the same.

EXAMPLES:

Here is an example where we have to use assume:

```
sage: a,b = var('a,b')
sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation may help (example of legal syntax is 'assume(a>0)', see 'assume?' for more details)
Is a positive or negative?
```

So we just assume that $a > 0$ and the integral works:

```
sage: assume(a>0)
sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x)
```

```
2/9*b^2*sqrt(3)*arctan(1/3*sqrt(3)*(2*(b*x + a)^(1/3) + a^(1/3))/a^(1/3))/a^(7/3) -
1/9*b^2*log((b*x + a)^(1/3) + 1/6*(4*(b*x + a)^(5/3)*b^2 - 7*(b*x + a)*a^3 + a^4))
```

```
sage.symbolic.integration.integral.integrate(expression, v=None, a=None, b=None, algorithm=None, hold=False)
```

Return the indefinite integral with respect to the variable $v$, ignoring the constant of integration. Or, if endpoints $a$ and $b$ are specified, returns the definite integral over the interval $[a, b]$.

If `self` has only one variable, then it returns the integral with respect to that variable.

If definite integration fails, it could be still possible to evaluate the definite integral using indefinite integration with the Newton - Leibniz theorem (however, the user has to ensure that the indefinite integral is continuous on the compact interval $[a, b]$ and this theorem can be applied).

INPUT:

- `v` - a variable or variable name. This can also be a tuple of the variable (optional) and endpoints (i.e., $(x, 0, 1)$ or $(0, 1)$).
- `a` - (optional) lower endpoint of definite integral
- `b` - (optional) upper endpoint of definite integral
- `algorithm` - (default: ‘maxima’, ‘libgiac’ and ‘sympy’) one of
  - ‘maxima’ - use maxima
  - ‘sympy’ - use sympy (also in Sage)
  - ‘mathematica_free’ - use http://integrals.wolfram.com/
  - ‘fricas’ - use FriCAS (the optional fricas spkg has to be installed)
  - ‘giac’ - use Giac
- ‘libgiac’ - use libgiac

To prevent automatic evaluation use the hold argument.

See also:

To integrate a polynomial over a polytope, use the optional latte_int package sage.geometry.polyhedron.base.Polyhedron_base.integrate().

EXAMPLES:

```
sage: x = var('x')
sage: h = sin(x)/(cos(x))^2
sage: h.integral(x)
1/cos(x)
```

```
sage: f = x^2/(x+1)^3
sage: f.integral(x)
1/2*(4*x + 3)/(x^2 + 2*x + 1) + log(x + 1)
```

```
sage: f = x*cos(x^2)
sage: f.integral(x, 0, sqrt(pi))
0
sage: f.integral(x, a=-pi, b=pi)
0
```

```
sage: f(x) = sin(x)
sage: f.integral(x, 0, pi/2)
1
```

The variable is required, but the endpoints are optional:

```
sage: y = var('y')
sage: integral(sin(x), x)
-cos(x)
sage: integral(sin(x), y)
y*sin(x)
sage: integral(sin(x), x, pi, 2*pi)
-2
```

```
sage: integral(sin(x), (x, pi, 2*pi))
-pi*sin(x)
sage: integral(sin(x), (y, pi, 2*pi))
-pi*sin(x)
```

Using the hold parameter it is possible to prevent automatic evaluation, which can then be evaluated via simplify():

```
sage: integral(x^2, x, 0, 3)
9
sage: a = integral(x^2, x, 0, 3, hold=True) ; a
integrate(x^2, x, 0, 3)
sage: a.simplify()
9
```
Constraints are sometimes needed:

```
sage: var('x, n')
(x, n)
sage: integral(x^n,x)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation may help (example of legal syntax is 'assume(n>0)', see 'assume?' for more details)
Is n equal to -1?
sage: assume(n > 0)
sage: integral(x^n,x)
x^(n + 1)/(n + 1)
sage: forget()
```

Usually the constraints are of sign, but others are possible:

```
sage: assume(n==-1)
sage: integral(x^n,x)
log(x)
```

Note that an exception is raised when a definite integral is divergent:

```
sage: forget() # always remember to forget assumptions you no longer need
sage: integrate(1/x^3,(x,0,1))
Traceback (most recent call last):
...
ValueError: Integral is divergent.
sage: integrate(1/x^3,x,-1,3)
Traceback (most recent call last):
...
ValueError: Integral is divergent.
```

But Sage can calculate the convergent improper integral of this function:

```
sage: integrate(1/x^3,x,1,infinity)
1/2
```

The examples in the Maxima documentation:

```
sage: var('x, y, z, b')
(x, y, z, b)
sage: integral(sin(x)^3, x)
1/3*cos(x)^3 - cos(x)
sage: integral(x/sqrt(b^2-x^2), b)
x*log(2*b + 2*sqrt(b^2 - x^2))
sage: integral(x/sqrt(b^2-x^2), x)
-sqrt(b^2 - x^2)
sage: integral(cos(x)^2 * exp(x), x, 0, pi)
3/5*e^pi - 3/5
sage: integral(x^2 * exp(-x^2), x, -oo, oo)
1/2*sqrt(pi)
```
We integrate the same function in both Mathematica and Sage (via Maxima):

```
sage: _ = var('x, y, z')
sage: f = sin(x^2) + y^z
sage: g = mathematica(f) # optional - mathematica
sage: print(g) # optional - mathematica
z 2
y + Sin[x]
sage: print(g.Integrate(x)) # optional - mathematica
z Pi 2
x y + Sqrt[--] FresnelS[Sqrt[--] x]
2 Pi
```

Alternatively, just use algorithm='mathematica_free' to integrate via Mathematica over the internet (does NOT require a Mathematica license!):

```
sage: _ = var('x, y, z') # optional - internet
sage: f = sin(x^2) + y^z # optional - internet
sage: f.integrate(x, algorithm="mathematica_free") # optional - internet
x*y^z + sqrt(1/2)*sqrt(pi)*fresnel_sin(sqrt(2)*x/sqrt(pi))
```

We can also use Sympy:

```
sage: integrate(x*sin(log(x)), x)
-1/5*x^2*(cos(log(x)) - 2*sin(log(x)))
sage: integrate(x*sin(log(x)), x, algorithm='sympy') # needs sympy
-1/5*x^2*cos(log(x)) + 2/5*x^2*sin(log(x))
sage: _ = var('y, z')
sage: (x*y - z).integrate(y)
-y*z + x^y/log(x)
sage: (x*y - z).integrate(y, algorithm="sympy") # needs sympy
-y*z + cases(((log(x) != 0, x^y/log(x)), (1, y)))
```

We integrate the above function in Maple now:

```
sage: g = maple(f); g.sort() # optional - maple
y^z+sin(x^2)
sage: g.integrate(x).sort() # optional - maple
x*y^z+1/2*2^(1/2)*Pi^(1/2)*FresnelS(2^(1/2)/Pi^(1/2)*x)
```

We next integrate a function with no closed form integral. Notice that the answer comes back as an expression that contains an integral itself.

```
sage: A = integral(1/((x-4) * (x^4+x+1)), x); A
integrate(1/((x^4 + x + 1)^2(x - 4)), x)
```

Sometimes, in this situation, using the algorithm “maxima” gives instead a partially integrated answer:
We now show that floats are not converted to rationals automatically since we by default have keepfloat: true in maxima.

```plaintext
sage: integral(e^(-x^2),(x, 0, 0.1))
0.05623145800914245*sqrt(pi)
```

An example of an integral that fricas can integrate:

```plaintext
sage: f(x) = sqrt(x+sqrt(1+x^2))/x
sage: integrate(f(x), x, algorithm="fricas")
```

where the default integrator obtains another answer:

```plaintext
sage: integrate(f(x), x)
```

Both fricas and sympy give the correct result:

```plaintext
sage: integrate(f(x), x, 1, 2, algorithm="fricas")
-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2)
```

Using Giac to integrate the absolute value of a trigonometric expression:

```plaintext
sage: integrate(abs(cos(x)), x, 0, 2*pi, algorithm='giac')
4
```

ALIASES: integral() and integrate() are the same.

EXAMPLES:

Here is an example where we have to use assume:
Symbolic Calculus, Release 10.2

```
sage: a,b = var('a,b')
sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(a>0)', see `assume?' for more details)
Is a positive or negative?

So we just assume that $a > 0$ and the integral works:

```
sage: assume(a>0)
sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x)
2/9*sqrt(3)*b^2*arctan(1/3*sqrt(3)*(2*(b*x + a)^(1/3) + a^(1/3))/a^(1/3))/a^(7/3) -
2/9*b^2*log((b^2 + a^2)^(1/3) + (b*x + a)^(1/3))/a^7/3 + 2/9*b^2*(
2*log((b*x + a)^(1/3) - a^(1/3))/a^7/3 + 1/6*(4*(b*x + a)^(5/3)*b^2 - 7*(b^2 + a^2))/((b*x + a)^2*a^2 - 2*(b*x + a)*a^3 + a^4)
```

2.13 TESTS::

sage.symbolic.integration.external.fricas_integrator *(expression, v, a=None, b=None, noPole=True)*

Integration using FriCAS

EXAMPLES:

```
sage: # optional - fricas
sage: from sage.symbolic.integration.external import fricas_integrator
sage: fricas_integrator(sin(x), x)
-cos(x)
sage: fricas_integrator(cos(x), x)
sin(x)
sage: fricas_integrator(1/(x^2-2), x, 0, 1)
-1/8*sqrt(2)*log(log(-24*sqrt(2) + 34))
sage: fricas_integrator(1/(x^2+6), x, -oo, oo)
1/6*sqrt(6)*pi
```

sage.symbolic.integration.external.giac_integrator *(expression, v, a=None, b=None)*

Integration using Giac

EXAMPLES:

```
sage: from sage.symbolic.integration.external import giac_integrator
sage: giac_integrator(sin(x), x)
-cos(x)
sage: giac_integrator(1/(x^2+6), x, -oo, oo)
1/6*sqrt(6)*pi
```

sage.symbolic.integration.external.libgiac_integrator *(expression, v, a=None, b=None)*

Integration using libgiac

EXAMPLES:

```
```

2.13. TESTS::
sage: import sage.libs.giac
...
sage: from sage.symbolic.integration.external import libgiac_integrator
sage: libgiac_integrator(sin(x), x)
-cos(x)
sage: libgiac_integrator(1/(x^2+6), x, -oo, oo)
No checks were made for singular points of antiderivative...
1/6*sqrt(6)*pi

sage.symbolic.integration.external.maxima_integrator(expression, v, a=None, b=None)
Integration using Maxima
EXAMPLES:

sage: from sage.symbolic.integration.external import maxima_integrator
sage: maxima_integrator(sin(x), x)
-cos(x)
sage: maxima_integrator(cos(x), x)
sin(x)
sage: f(x) = function('f')(x)
sage: maxima_integrator(f(x), x)
integrate(f(x), x)

sage.symbolic.integration.external.mma_free_integrator(expression, v, a=None, b=None)
Integration using Mathematica’s online integrator
EXAMPLES:

sage: from sage.symbolic.integration.external import mma_free_integrator
sage: mma_free_integrator(sin(x), x) # optional - internet
-cos(x)
A definite integral:

sage: mma_free_integrator(e^(-x), x, a=0, b=oo) # optional - internet
1

sage.symbolic.integration.external.sympy_integrator(expression, v, a=None, b=None)
Integration using SymPy
EXAMPLES:

sage: from sage.symbolic.integration.external import sympy_integrator
sage: sympy_integrator(sin(x), x) # needs sympy
-cos(x)
sage: sympy_integrator(cos(x), x) # needs sympy
sin(x)
2.14 A Sample Session using SymPy

In this first part, we do all of the examples in the SymPy tutorial (https://github.com/sympy/sympy/wiki/Tutorial), but using Sage instead of SymPy.

```sage
sage: a = Rational((1,2))
sage: a
1/2
sage: a*2
1
sage: Rational(2)^50 / Rational(10)^50
1/88817841970012523233890533447265625
sage: 1.0/2
0.500000000000000
sage: 1/2
1/2
sage: pi^2
pi^2
sage: float(pi)
3.141592653589793
sage: RealField(200)(pi)
3.1415926535897932384626433832795028841971693993751058209749
sage: float(pi + exp(1))
5.8597748204883...

sage: oo != 2
True
```

```sage
sage: var('x y')
(x, y)
sage: x + y + x - y
2*x
sage: (x+y)^2
(x + y)^2
sage: ((x+y)^2).expand()
x^2 + 2*x*y + y^2
sage: ((x+y)^2).subs(x=1)
(y + 1)^2
sage: ((x+y)^2).subs(x=y)
4*y^2

sage: limit(sin(x)/x, x=0)
1
sage: limit(x, x=oo)
+Infinity
sage: limit((5^x + 3^x)^(1/x), x=oo)
5

sage: diff(sin(x), x)
cos(x)
sage: diff(sin(2*x), x)
2*cos(2*x)
sage: diff(tan(x), x)
(continues on next page)
```
\[
\tan(x)^2 + 1
\]

```
sage: limit((\tan(x+y) - \tan(x))/y, y=0)
```

```
sage: cos(x)^(-2)
```

```
sage: diff(sin(2*x), x, 1)
```
```
2*cos(2*x)
```

```
sage: diff(sin(2*x), x, 2)
```
```
-4*sin(2*x)
```

```
sage: diff(sin(2*x), x, 3)
```
```
-8*cos(2*x)
```

```
sage: cos(x).taylor(x,0,10)
```
```
-1/3628800*x^10 + 1/40320*x^8 - 1/720*x^6 + 1/24*x^4 - 1/2*x^2 + 1
```

```
sage: (1/cos(x)).taylor(x,0,10)
```
```
50521/3628800*x^10 + 277/8064*x^8 + 61/720*x^6 + 5/24*x^4 + 1/2*x^2 + 1
```

```
sage: matrix([[1,0], [0,1]])
```
```
\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]
```

```
sage: var('x y')
```

```
sage: A = matrix([[1,x], [y,1]])
```
```
\[
\begin{bmatrix}
x & y \\
y & 1
\end{bmatrix}
\]
```

```
sage: A^2
```
```
\[
\begin{bmatrix}
x*y + 1 & 2*x \\
2*y & x*y + 1
\end{bmatrix}
\]
```

```
sage: R.<x,y> = QQ[]
```

```
sage: A = matrix([[1,x], [y,1]])
```

```
sage: A^10
```
```
\[
\begin{bmatrix}
x^{5}*y^{5} + 45*x^{4}*y^{4} + 210*x^{3}*y^{3} + 210*x^{2}*y^{2} + 45*x*y + 1 & 10*x^{5}*y^{4} + 120*x^{4}*y^{3} + 252*x^{3}*y^{2} + 120*x^{2}*y + 10*x \\
10*x^{4}*y^{5} + 252*x^{3}*y^{4} + 120*x^{2}*y^{3} + 252*x*y^{2} + 120*y^{2} + 10*y & x^{5}*y^{5} + 45*x^{4}*y^{4} + 210*x^{3}*y^{3} + 210*x^{2}*y^{2} + 45*x*y + 1 + 252*x^{2}*y^{2} + 252*y^{2} + 252\)
\]
```

```
sage: var('x y')
```

And here are some actual tests of sympy:

```
sage: from sympy import Symbol, cos, sympify, pprint
```
```
#needs sympy
```

```
sage: from sympy.abc import x
```
```
#needs sympy
```

```
sage: e = (1/cos(x)^3)._sympy_(); e
```
```
#needs sympy
```
```
cos(x)**(-3)
```

```
sage: f = e.series(x, 0, int(10)); f
```
```
#needs sympy
```

```
1 + 3*x**2/2 + 11*x**4/8 + 241*x**6/240 + 8651*x**8/13440 + 0(x**10)
```

And the pretty-printer. Since unicode characters are not working on some architectures, we disable it:
And the functionality to convert from sympy format to Sage format:

Mixing SymPy with Sage:
\[
\sin(y) + \cos(x)
\]

\[
sage: e = e._sage_
\]

\[
sage: type(e)
\]

\[
<\text{class } \text{ `sage.symbolic.expression.Expression'}\text{>}
\]

\[
sage: e = \cos(x) + \sin(y)
\]

\[
sage: e = \text{sage.all.cos(var("y")**3)**4+var("x")**2}
\]

\[
sage: e = e._sympy_
\]

\[
sage: e = x**2 + \cos(y**3)**4
\]

\[
sage: a = \text{sympy.Matrix([[1, 2, 3]])} \quad #\text{needs sympy}
\]

\[
sage: a[1] \quad #\text{needs sympy}
\]

\[
sage: \text{sympify(1.5)} \quad #\text{needs sympy}
\]

\[
1.50000000000000
\]

\[
sage: \text{sympify(2)} \quad #\text{needs sympy}
\]

\[
2
\]

\[
sage: \text{sympify(-2)} \quad #\text{needs sympy}
\]

\[
-2
\]

2.15 Calculus Tests and Examples

Compute the Christoffel symbol.

\[
sage: \text{var('r t theta phi')}\]

\[
(r, t, theta, phi)
\]

\[
sage: m = \text{matrix(SR, \[((1-1/r),0,0,0),(0,-(1-1/r)^(-1),0,0),(0,0,-r^2,0),(0,0,0,-r^2*sin(theta))^2]])}
\]

\[
sage: m
\]

\[
\begin{bmatrix}
-1/r + 1 & 0 & 0 & 0 \\
0 & 1/(1/r - 1) & 0 & 0 \\
0 & 0 & -r^2 & 0 \\
0 & 0 & 0 & -r^2*sin(theta)^2
\end{bmatrix}
\]

\[
sage: \text{def christoffel(i,j,k,vars,g):}
\]

\[
....: s = 0
\]

\[
....: \text{ginv} = g^(-1)
\]

\[
....: \text{for } l \text{ in range(g.nrows()):}
\]

\[
....: s = s + (1/2)*ginv[k,l]*(g[j,l].diff(vars[i])+g[i,l].diff(vars[j])-g[i,j].diff(vars[l]))
\]

\[
....: \text{return } s
\]
Symbolic Calculus, Release 10.2

```python
sage: christoffel(3,3,2, [t,r,theta,phi], m)
-cos(theta)*sin(theta)
sage: X = christoffel(1,1,1,[t,r,theta,phi],m)
sage: X
1/2/(r^2*(1/r - 1))
sage: X.rational_simplify()
-1/2/(r^2 - r)
```

Some basic things:

```python
sage: f(x,y) = x^3 + sinh(1/y)
sage: f
(x, y) |--> x^3 + sinh(1/y)
sage: f^3
(x, y) |--> (x^3 + sinh(1/y))^3
sage: (f^3).expand()
(x, y) |--> x^9 + 3*x^6*sinh(1/y) + 3*x^3*sinh(1/y)^2 + sinh(1/y)^3
```

A polynomial over a symbolic base ring:

```python
sage: R = SR['x']
sage: f = R([1/sqrt(2), 1/(4*sqrt(2))])
sage: f
1/8*sqrt(2)*x + 1/2*sqrt(2)
sage: -f
-1/8*sqrt(2)*x - 1/2*sqrt(2)
sage: (-f).degree()
1
```

A big product. Notice that simplifying simplifies the product further:

```python
sage: A = exp(I*pi/7)
sage: b = A^14
sage: b
1
```

We check a statement made at the beginning of Friedlander and Joshi’s book on Distributions:

```python
sage: f(x) = sin(x^2)
sage: g(x) = cos(x) + x^3
sage: u = f(x+t) + g(x-t)
sage: u
-(t - x)^3 + cos(-t + x) + sin((t + x)^2)
sage: u.diff(t,2) - u.diff(x,2)
0
```

Restoring variables after they have been turned into functions:

```python
sage: x = function('x')
sage: type(x)
<class 'sage.symbolic.function_factory...NewSymbolicFunction'>
sage: x(2/3)
x(2/3)
sage: restore('x')
```

(continues on next page)
Symbolic Calculus, Release 10.2

\begin{verbatim}

sage: sin(x).variables()
(x,)

MATHEMATICA: Some examples of integration and differentiation taken from some Mathematica docs:

\begin{verbatim}
sage: var('x n a')
(x, n, a)
sage: diff(x^n, x) # the output looks funny, but is correct
n*x^(n - 1)
sage: diff(x^2 * log(x-a), x)
2*x*log(a + x) + x^2/(a + x)
sage: derivative(arctan(x), x)
1/(x^2 + 1)
sage: derivative(x^n, x, 3)
(n - 1)^2*(n - 2)*n*x^(n - 3)
sage: derivative(function('f')(x), x)
diff(f(x), x)
sage: diff(2*x*f(x^2), x)
4*x^2*D[0](f)(x^2) + 2*f(x^2)
sage: integrate(1/(x^4 - a^4), x)
-1/2*arctan(x/a)/a^3 - 1/4*log(a + x)/a^3 + 1/4*log(-a + x)/a^3
sage: expand(integrate(log(1-x^2), x))
x*log(-x^2 + 1) - 2*x + log(x + 1) - log(x - 1)

This is an apparent regression in Maxima 5.39.0, although the antiderivative is correct, assuming we work with (poly)logs of complex argument. More convenient form is 1/2*log(x^2)*log(-x^2 + 1) + 1/2*dilog(-x^2 + 1). See also https://sourceforge.net/p/maxima/bugs/3275/:

sage: integrate(log(1-x^2)/x, x)
log(-x)*log(x + 1) + log(x)*log(-x + 1) + dilog(x + 1) + dilog(-x + 1)

No problems here:

sage: integrate(exp(1-x^2),x)
1/2*sqrt(pi)*erf(x)*e
sage: integrate(sin(x^2),x)
1/16*sqrt(pi)*((I + 1)*sqrt(2)*erf((1/2*I + 1/2)*sqrt(2)*x) + (I - 1)*sqrt(2)*erf((1/2*I - 1/2)*sqrt(2)*x) - (I - 1)*sqrt(2)*erf(sqrt(-I)*x) + (I + 1)*sqrt(2)*erf((-1)^(1/4)*x))

\end{verbatim}

\end{verbatim}

(continues on previous page)
sage: integrate(exp(-c*x^2), x, -oo, oo)
sqrt(pi)/sqrt(c)
sage: forget()

Other examples that now (github issue #27958) work:

sage: integrate(log(x)*exp(-x^2), x)
long time
1/2*sqrt(pi)*erf(x)*log(x) - x*hypergeometric((1/2, 1/2), (3/2, 3/2), -x^2)

sage: integrate(log(1+sqrt(1+4*x)/2)/x, x, 0, 1)
Traceback (most recent call last):
...
ValueError: Integral is divergent.

The following is an example of integral that Mathematica can do, but Sage currently cannot do:

sage: integrate(ceil(x^2 + floor(x)), x, 0, 5, algorithm='maxima')
integrate(ceil(x^2) + floor(x), x, 0, 5)

MAPLE: The basic differentiation and integration examples in the Maple documentation:

sage: diff(sin(x), x)
cos(x)
sage: diff(sin(x), y)
0
sage: diff(sin(x), x, 3)
-cos(x)
sage: diff(x*sin(cos(x)), x)
-x*cos(cos(x))*sin(x) + sin(cos(x))
sage: diff(tan(x), x)
tan(x)^2 + 1

sage: f = function('f'); f
f
sage: diff(f(x), x)
diff(f(x), x)
sage: diff(f(x,y), x, y)
diff(f(x, y), x, y)
sage: diff(f(x,y), x, y) - diff(f(x,y), y, x)
0
sage: g = function('g')
sage: var('x y z')
(x, y, z)
sage: diff(g(x,y,z), x,y,z)
diff(g(x, y, z), x, y, z)
sage: integrate(sin(x), x)
-cos(x)
sage: integrate(sin(x), x, 0, pi)
2

.sage: var('a b')
(a, b)
sage: integrate(sin(x), x, a, b)
cos(a) - cos(b)

2.15. Calculus Tests and Examples
Symbolic Calculus, Release 10.2

sage: integrate(x/(x^3-1), x)
1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/6*log(x^2 + x + 1) + 1/3*log(x - 1)
sage: integrate(exp(-x^2), x)
1/2*sqrt(pi)*erf(x)
sage: integrate(exp(-x^2)*log(x), x) # long time
1/2*sqrt(pi)*erf(x)*log(x) - x*hypergeometric((1/2, 1/2), (3/2, 3/2), -x^2)
sage: f = exp(-x^2)*log(x)
sage: f.nintegral(x, 0, 999)
(-0.87005772672831..., 7.5584...e-10, 567, 0)
sage: integral(1/sqrt(2*t^4 - 3*t^2 - 2), t, 2, 3) # long time # todo: maple can do...
˓→
sage: integral(1/(sqrt(2*t^2 + 1)*sqrt(t^2 - 2)), t, 2, 3)
sage: integral(integral(x*y^2, x, 0, y), y, -2, 2)
32/5

We verify several standard differentiation rules:

sage: function('f, g')
(f, g)
sage: diff(f(t)*g(t), t)
g(t)*diff(f(t), t) + f(t)*diff(g(t), t)
sage: diff(f(t)/g(t), t)
diff(f(t), t)/g(t) - f(t)*diff(g(t), t)/g(t)^2
sage: diff(f(t) + g(t), t)
diff(f(t), t) + diff(g(t), t)
sage: diff(c*f(t), t)
c*diff(f(t), t)

2.16 Conversion of symbolic expressions to other types

This module provides routines for converting new symbolic expressions to other types. Primarily, it provides a class Converter which will walk the expression tree and make calls to methods overridden by subclasses.

class sage.symbolic.expression_conversions.Converter(use_fake_div=False)

Bases: object

If use_fake_div is set to True, then the converter will try to replace expressions whose operator is operator.mul with the corresponding expression whose operator is operator.truediv.

EXAMPLES:

sage: from sage.symbolic.expression_conversions import Converter
sage: c = Converter(use_fake_div=True)
sage: c.use_fake_div
True

arithmetic(ex, operator)
The input to this method is a symbolic expression and the infix operator corresponding to that expression. Typically, one will convert all of the arguments and then perform the operation afterward.

composition(ex, operator)
The input to this method is a symbolic expression and its operator. This method will get called when you have a symbolic function application.
derivative \((\text{ex}, \text{operator})\)

The input to this method is a symbolic expression which corresponds to a relation.

get_fake_div \((\text{ex})\)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import Converter
sage: c = Converter(use_fake_div=True)
sage: c.get_fake_div(sin(x)/x)
FakeExpression([sin(x), x], <built-in function truediv>)
sage: c.get_fake_div(-1*sin(x))
FakeExpression([sin(x)], <built-in function neg>)
sage: c.get_fake_div(-x)
FakeExpression([x], <built-in function neg>)
sage: c.get_fake_div((2*x^3+2*x-1)/((x-2)*(x+1)))
FakeExpression([2*x^3 + 2*x - 1, FakeExpression([x + 1, x - 2], <built-in ...
  function mul>)], <built-in function truediv>)
```

Check if github issue #8056 is fixed, i.e., if numerator is 1.:
```
sage: c.get_fake_div(1/pi/x)
FakeExpression([1, FakeExpression([pi, x], <built-in function mul>)], <built-in ...
  function truediv>)
```

pyobject \((\text{ex}, \text{obj})\)

The input to this method is the result of calling **pyobject()** on a symbolic expression.

relation \((\text{ex}, \text{operator})\)

The input to this method is a symbolic expression which corresponds to a relation.

symbol \((\text{ex})\)

The input to this method is a symbolic expression which corresponds to a single variable. For example, this method could be used to return a generator for a polynomial ring.

class `sage.symbolic.expression_conversions.DeMoivre` \((\text{ex}, \text{force}=False)\)

Bases: `ExpressionTreeWalker`

A class that walks a symbolic expression tree and replaces occurrences of complex exponentials (optionally, all exponentials) by their respective trigonometric expressions.

INPUT:

- `force` – boolean (default: False); replace \(\exp(x)\) with \(\cosh(x) + \sinh(x)\)

EXAMPLES:

```
sage: a, b = SR.var("a, b")
sage: from sage.symbolic.expression_conversions import DeMoivre
sage: d = DeMoivre(e^a)
sage: d(e^(a+I*b))
(cos(b) + I*sin(b))*e^a
```

2.16. Conversion of symbolic expressions to other types
composition\((ex, op)\)

Return the composition of self with ex by op.

EXAMPLES:

```
sage: x, a, b = SR.var('x, a, b')
sage: from sage.symbolic.expression_conversions import DeMoivre
sage: p = exp(x)
sage: s = DeMoivre(p)
sage: q = exp(a+I*b)
sage: s.composition(q, q.operator())
(cos(b) + I*min(b))^e^a
```

class sage.symbolic.expression_conversions.Exponentialize\((ex)\)

Bases: ExpressionTreeWalker

A class that walks a symbolic expression tree and replace circular and hyperbolic functions by their respective exponential expressions.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import Exponentialize
sage: d = Exponentialize(sin(x))
sage: d(sin(x))
-1/2*I*e^(I*x) + 1/2*I*e^(-I*x)
sage: d(cosh(x))
1/2*e^(-x) + 1/2*e^x
```

CircDict = {sinh: x |--> -1/2*e^(-x) + 1/2*e^x, cosh: x |--> 1/2*e^(-x) + 1/2*e^x,
 tanh: x |--> -(e^(-x) - e^x)/(e^(-x) + e^x),
 coth: x |--> (e^(-x) + e^x)/(e^(-x) - e^x),
 sech: x |--> 2/(e^(I*x) + e^(-I*x)),
 csch: x |--> -2/(e^(I*x) - e^(-I*x)),
 sin: x |--> -1/2*I*e^(I*x) + 1/2*I*e^(-I*x),
 cos: x |--> 1/2*e^(-x) + 1/2*e^x,
 tan: x |--> (-I*e^(I*x) + I*e^(-I*x))/(e^(I*x) + e^(-I*x)),
 cot: x |--> (I*e^(I*x) - I*e^(-I*x))/(e^(I*x) - e^(-I*x)),
 sec: x |--> 2/(e^(I*x) + e^(-I*x)),
 csc: x |--> 2*I/(e^(I*x) - e^(-I*x))}

Circs = [sin, cos, sec, csc, tan, cot, sinh, cosh, sech, csch, tanh, coth]

I = I

Integer

 alias of Integer

SR = Symbolic Ring

composition\((ex, op)\)

Return the composition of self with ex by op.

EXAMPLES:

```
sage: x = SR.var("x")
sage: from sage.symbolic.expression_conversions import Exponentialize
sage: p = x
sage: s = Exponentialize(p)
sage: q = sin(x)
sage: s.composition(q, q.operator())
-1/2*I*e^(I*x) + 1/2*I*e^(-I*x)
```
cos = cos
\cosh = \cosh
\cot = \cot
\coth = \coth
\csc = \csc
\csch = \csch
\e = \e
\exp = \exp

function(s, **kwds)
Create a formal symbolic function with the name s.

INPUT:

- nargs=0 - number of arguments the function accepts, defaults to variable number of arguments, or 0
- latex_name - name used when printing in latex mode
- conversions - a dictionary specifying names of this function in other systems, this is used by the interfaces internally during conversion
- eval_func - method used for automatic evaluation
- evalf_func - method used for numeric evaluation
- evalf_params_first - bool to indicate if parameters should be evaluated numerically before calling the custom evalf function
- conjugate_func - method used for complex conjugation
- real_part_func - method used when taking real parts
- imag_part_func - method used when taking imaginary parts
- derivative_func - method to be used for (partial) derivation This method should take a keyword argument deriv_param specifying the index of the argument to differentiate w.r.t
- tderivative_func - method to be used for derivatives
- power_func - method used when taking powers This method should take a keyword argument power_param specifying the exponent
- series_func - method used for series expansion This method should expect keyword arguments - order - order for the expansion to be computed - var - variable to expand w.r.t. - at - expand at this value
- print_func - method for custom printing
- print_latex_func - method for custom printing in latex mode

Note that custom methods must be instance methods, i.e., expect the instance of the symbolic function as the first argument.

Note: The new function is both returned and automatically injected into the global namespace. If you use this function in library code, it is better to use sage.symbolic.function_factory.function, since it will not touch the global namespace.
EXAMPLES:

We create a formal function called supersin:

```
sage: function('supersin')
supersin
```

We can immediately use supersin in symbolic expressions:

```
sage: y, z, A = var('y z A')
sage: supersin(y+z) + A^3
A^3 + supersin(y + z)
```

We can define other functions in terms of supersin:

```
sage: g(x,y) = supersin(x)^2 + sin(y/2)
sage: g
(x, y) |--> supersin(x)^2 + sin(1/2*y)
sage: g.diff(y)
(x, y) |--> 1/2*cos(1/2*y)
sage: k = g.diff(x); k
(x, y) |--> 2*supersin(x)*diff(supersin(x), x)
```

We create a formal function of one variable, write down an expression that involves first and second derivatives, and extract off coefficients:

```
sage: r, kappa = var('r,kappa')
sage: psi = function('psi', nargs=1)(r); psi
psi(r)
sage: g = 1/r^2*(2*r*psi.derivative(r,1) + r^2*psi.derivative(r,2)); g
(r^2*diff(psi(r), r, r) + 2*r*diff(psi(r), r))/r^2
sage: g.expand()
2*diff(psi(r), r)/r + diff(psi(r), r, r)
sage: g.coefficient(psi.derivative(r,2))
1
sage: g.coefficient(psi.derivative(r,1))
2/r
```

Custom typesetting of symbolic functions in LaTeX, either using latex_name keyword:

```
sage: function('riemann', latex_name="\mathcal{R}")
riemann
sage: latex(riemann(x))
\mathcal{R}(x)
```

or passing a custom callable function that returns a latex expression:

```
sage: mu,nu = var('mu,nu')
sage: def my_latex_print(self, *args):
    return "\psi_{%s}"%(', '.join(map(latex, args)))
sage: function('psi', print_latex_func=my_latex_print)
psi
sage: latex(psi(mu,nu))
\psi_{\mu, \nu}
```

Defining custom methods for automatic or numeric evaluation, derivation, conjugation, etc. is supported:
sage: def ev(self, x): return 2*x
sage: foo = function("foo", nargs=1, eval_func=ev)
sage: foo(x)
2*x
sage: foo = function("foo", nargs=1, eval_func=lambda self, x: 5)
sage: foo(x)
5
sage: def ef(self, x): pass
sage: bar = function("bar", nargs=1, eval_func=ef)
sage: bar(x)
bar(x)

sage: def evalf_f(self, x, parent=None, algorithm=None): return 6
sage: foo = function("foo", nargs=1, evalf_func=evalf_f)
sage: foo(x)
foo(x)
sage: foo(x).n()
6

sage: foo = function("foo", nargs=1, conjugate_func=ev)
sage: foo(x).conjugate()
2*x

sage: def deriv(self, *args,**kwds): print("{} {}".format(args, kwds)); return
˓→args[kwds['diff_param']]^2
sage: foo = function("foo", nargs=2, derivative_func=deriv)
sage: foo(x,y).derivative(y)
(x, y) {'diff_param': 1}
y^2

sage: def pow(self, x, power_param=None): print("{} {}".format(x, power_param)); →return x^power_param
sage: foo = function("foo", nargs=1, power_func=pow)
sage: foo(y)^{(x+y)
y x + y
(x + y)^y

sage: def my_print(self, *args):
....: return "my args are: " + ', '.join(map(repr, args))

sage: foo = function('t', nargs=2, print_func=my_print)
sage: foo(x,y^z)
my args are: x, y^z

sage: latex(foo(x,y^z))
Symbolic Calculus, Release 10.2

\[
t(x, y^z)
\]

\[
sage: foo = function('t', nargs=2, print_latex_func=my_print)
sage: foo(x,y^z)
t(x, y^z)
\]

\[
sage: latex(foo(x,y^z))
\]

my args are: x, y^z

\[
sage: foo = function('t', nargs=2, latex_name='foo')
sage: latex(foo(x,y^z))
\]

foo\left(x, y^{z}\right)

Chain rule:

\[
sage: def print_args(self, *args, **kwds): print("args: {}").format(args));...
\]

\[
sage: def print_args(self, *args, **kwds): print("args: {}").format(args)); return args[0]
\]

\[
sage: foo = function('t', nargs=2, tderivative_func=print_args)
sage: foo(x,x).derivative(x)
\]

\[
args: (x, x)
kwds: {'diff_param': x}
x
\]

\[
sage: foo = function('t', nargs=2, derivative_func=print_args)
sage: foo(x,x).derivative(x)
\]

\[
args: (x, x)
kwds: {'diff_param': 0}
args: (x, x)
kwds: {'diff_param': 1}
2^x
\]

Since Sage 4.0, basic arithmetic with unevaluated functions is no longer supported:

\[
sage: x = var('x')
sage: f = function('f')
sage: 2*f
\]

Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'Integer Ring' and '<class 'sage.symbolic.function_factory...NewSymbolicFunction'>'

You now need to evaluate the function in order to do the arithmetic:

\[
sage: 2*f(x)
\]

\[
2^x f(x)
\]

Since Sage 4.0, you need to use substitute_function() to replace all occurrences of a function with another:

\[
sage: var('a, b')
(a, b)
sage: cr = function('cr')
sage: f = cr(a)
sage: g = f.diff(a).integral(b)
sage: g
\]

\[
b^*\text{diff}(cr(a), a)
\]

\[
sage: g.substitute_function(cr, cos)
\]
\[-b \sin(a)\]

```
sage: g.substitute_function(cr, (\sin(x) + \cos(x)).function(x))
b*(\cos(a) - \sin(a))
```

```python
half = 1/2
sec = sec
sech = sech
sin = sin
sinh = sinh
tan = tan
tanh = tanh
two = 2
x = x
```

class sage.symbolic.expression_conversions.ExpressionTreeWalker(ex)

Bases: Converter

A class that walks the tree. Mainly for subclassing.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = x*foo(x) + pi/\text{foo}(x)
sage: s = ExpressionTreeWalker(f)
sage: bool(s.arithmetic(f, f.operator()) == f)
True
```

arithmetic(ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = x*foo(x) + pi/\text{foo}(x)
sage: s = ExpressionTreeWalker(f)
sage: bool(s.arithmetic(f, f.operator()) == f)
True
```

composition(ex, operator)

EXAMPLES:
Symbolic Calculus, Release 10.2

```python
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = foo(atan2(0, 0, hold=True))
sage: s = ExpressionTreeWalker(f)
sage: bool(s.composition(f, f.operator()) == f)
True

 derivative(ex, operator)

   EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = foo(x).diff(x)
sage: s = ExpressionTreeWalker(f)
sage: bool(s.derivative(f, f.operator()) == f)
True

 pyobject(ex, obj)

 EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: f = SR(2)
sage: s = ExpressionTreeWalker(f)
sage: bool(s.pyobject(f, f.pyobject()) == f.pyobject())
True

 relation(ex, operator)

   EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: eq = foo(x) == x
sage: s = ExpressionTreeWalker(eq)
sage: s.relation(eq, eq.operator()) == eq
True

 symbol(ex)

 EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: s = ExpressionTreeWalker(x)
sage: bool(s.symbol(x) == x)
True

 tuple(ex)

   EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = hypergeometric([1,2,3,],(x,),x)
sage: s = ExpressionTreeWalker(f)
sage: bool(s() == f)
True
```
class `sage.symbolic.expression_conversions.FakeExpression(operands, operator)`

**Bases:** object

Pynac represents $x/y$ as $xy^{-1}$. Often, tree-walkers would prefer to see divisions instead of multiplications and negative exponents. To allow for this (since Pynac internally doesn’t have division at all), there is a possibility to pass `use_fake_div=True`; this will rewrite an Expression into a mixture of Expression and FakeExpression nodes, where the FakeExpression nodes are used to represent divisions. These nodes are intended to act sufficiently like Expression nodes that tree-walkers won’t care about the difference.

**operands()**

**EXAMPLES:**

```python
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.truediv)
sage: f.operands()
[x, y]
```

**operator()**

**EXAMPLES:**

```python
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.truediv)
sage: f.operator()
<built-in function truediv>
```

**pyobject()**

**EXAMPLES:**

```python
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.truediv)
sage: f.pyobject()
Traceback (most recent call last):
 ...: TypeError: self must be a numeric expression
```

class `sage.symbolic.expression_conversions.FastCallableConverter(ex, etb)`

**Bases:** Converter

**EXAMPLES:**

```python
sage: from sage.symbolic.expression_conversions import FastCallableConverter
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x'])
sage: f = FastCallableConverter(x+2, etb)
sage: f.ex
x + 2
sage: f.etc
<sage.ext.fast_callable.ExpressionTreeBuilder object at 0x...>
sage: f.use_fake_div
True
```
**arithmetic**(ex, operator)

**EXAMPLES:**

```
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x', 'y'])
sage: var('x, y')
(x, y)
sage: (x+y)._fast_callable_(etb)
add(v_0, v_1)
sage: (-x)._fast_callable_(etb)
neg(v_0)
sage: (x+y+x^2)._fast_callable_(etb)
add(add(ipow(v_0, 2), v_0), v_1)
```

**composition**(ex, function)

Given an ExpressionTreeBuilder, return an Expression representing this value.

**EXAMPLES:**

```
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x', 'y'])
sage: x, y = var('x,y')
sage: sin(sqrt(x+y))._fast_callable_(etb)
sin(sqrt(add(v_0, v_1))
sage: arctan2(x,y)._fast_callable_(etb)
{arctan2}(v_0, v_1)
```

**pyobject**(ex, obj)

**EXAMPLES:**

```
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x'])
sage: pi._fast_callable_(etb)
pi
sage: etb = ExpressionTreeBuilder(vars=['x'], domain=RDF)
sage: pi._fast_callable_(etb)
3.141592653589793
```

**relation**(ex, operator)

**EXAMPLES:**

```
sage: ff = fast_callable(x == 2, vars=['x'])
sage: ff(2)
0
sage: ff(4)
2
sage: ff = fast_callable(x < 2, vars=['x'])
Traceback (most recent call last):
... Not ImplementedError
```

**symbol**(ex)

Given an ExpressionTreeBuilder, return an Expression representing this value.

**EXAMPLES:**
```python
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x', 'y'])

sage: x, y, z = var('x,y,z')

sage: x._fast_callable_(etb)

ValueError: Variable 'z' not found...

```
Symbolic Calculus, Release 10.2

(continued from previous page)

```
sage: f(x)._fricas_() # optional - fricas
F(x)
sage: diff(f(x,y,z), x, z, x)._fricas_() # optional - fricas
F (x,y,z)
,1,1,3

Check that github issue #25838 is fixed:

```
sage: var('x')
x
sage: F = function('F')
sage: integrate(F(x), x, algorithm="fricas")  # optional - fricas
integral(F(x), x)
sage: integrate(diff(F(x), x)*sin(F(x)), x, algorithm="fricas")  # optional - fricas
-cos(F(x))

Check that github issue #27310 is fixed:

```
sage: f = function("F")
sage: var("y")
y
sage: ex = (diff(f(x,y), x, x, y)).subs(y=x+y); ex
D[0, 0, 1](F)(x, x + y)
sage: fricas(ex) # optional - fricas
F (x,y + x)
,1,1,2
```

\textbf{pyobject} (ex, obj)

Return a string which, when evaluated by FriCAS, returns the object as an expression.

We explicitly add the coercion to the FriCAS domains \texttt{ExpressionInteger} and \texttt{ExpressionComplexInteger} to make sure that elements of the symbolic ring are translated to these. In particular, this is needed for integration, see github issue #28641 and github issue #28647.

\textbf{EXAMPLES}:

```
sage: 2._fricas_().domainOf() # optional - fricas
PositiveInteger()
sage: (-1/2)._fricas_().domainOf() # optional - fricas
Fraction(Integer())
sage: SR(2)._fricas_().domainOf() # optional - fricas
Expression(Integer())
```

(continues on next page)
symbol(ex)

Convert the argument, which is a symbol, to FriCAS.

In this case, we do not return an `ExpressionInteger`, because FriCAS frequently requires elements of domain `Symbol` or `Variable` as arguments, for example to `integrate`. Moreover, FriCAS is able to do the conversion itself, whenever the argument should be interpreted as a symbolic expression.

EXAMPLES:

<table>
<thead>
<tr>
<th>Example</th>
<th>FriCAS Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ex = (I+sqrt(2)+2)</code></td>
<td><code>I+2*sqrt(2)</code></td>
</tr>
<tr>
<td><code>ex^2</code></td>
<td><code>(4 + 2 %i)^2 + 5 + 4 %i</code></td>
</tr>
</tbody>
</table>

symbol(ex)

Convert the argument, which is a symbol, to FriCAS.

In this case, we do not return an `ExpressionInteger`, because FriCAS frequently requires elements of domain `Symbol` or `Variable` as arguments, for example to `integrate`. Moreover, FriCAS is able to do the conversion itself, whenever the argument should be interpreted as a symbolic expression.

EXAMPLES:

<table>
<thead>
<tr>
<th>Example</th>
<th>FriCAS Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x^2</code></td>
<td><code>x^2</code></td>
</tr>
<tr>
<td><code>x^2</code></td>
<td><code>x^2</code></td>
</tr>
</tbody>
</table>
Symbolic Calculus, Release 10.2

```python
sage: (2*x).integral(x) # optional - fricas
2
x
```

```python
class sage.symbolic.expression_conversions.HoldRemover(ex, exclude=None)

Bases: ExpressionTreeWalker

A class that walks the tree and evaluates every operator that is not in a given list of exceptions.

EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import HoldRemover
sage: ex = sin(pi*cos(0, hold=True), hold=True); ex
sin(pi*cos(0))
sage: h = HoldRemover(ex)
sage: h()
0
sage: h = HoldRemover(ex, [sin])
sage: h()
sin(pi)
sage: h = HoldRemover(ex, [cos])
sage: h()
sin(pi*cos(0))
sage: ex = atan2(0, 0, hold=True) + hypergeometric([1,2], [3,4], 0, hold=True)
sage: h = HoldRemover(ex, [atan2])
sage: h()
atan2(0, 0) + 1
sage: h = HoldRemover(ex, [hypergeometric])
sage: h()
NaN + hypergeometric((1, 2), (3, 4), 0)
```

```python
composition(ex, operator)

EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import HoldRemover
sage: ex = sin(pi*cos(0, hold=True), hold=True); ex
sin(pi*cos(0))
sage: h = HoldRemover(ex)
sage: h()
0
```

```python
class sage.symbolic.expression_conversions.InterfaceInit(interface)

Bases: Converter

EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: a = pi + 2
sage: m(a)
'(%pi)+2'
sage: m(sin(a))
```
Symbolic Calculus, Release 10.2

(continued from previous page)

'sin((%pi)+(2))'
sage: m(exp(x^2) + pi + 2)
'(%pi)+((exp(_SAGE_VAR_x)+(2))+(2))'

arithmetic *(ex, operator)*

EXAMPLES:

```
sage: import operator
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.arithmetic(x+2, sage.symbolic.operators.add_vararg)
'(_SAGE_VAR_x)+(2)'
```

composition *(ex, operator)*

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.composition(sin(x), sin)
'sin(_SAGE_VAR_x)'
sage: m.composition(ceil(x), ceil)
'ceiling(_SAGE_VAR_x)'
sage: m = InterfaceInit(mathematica)
sage: m.composition(sin(x), sin)
'Sin[x]'
```

derivative *(ex, operator)*

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: f = function('f')
sage: a = f(x).diff(x); a
diff(f(x), x)
sage: print(m.derivative(a, a.operator()))
diff(_SAGE_VAR_x, 1)
sage: b = f(x).diff(x, x)
sage: print(m.derivative(b, b.operator()))
diff(_SAGE_VAR_x, 2)
```

We can also convert expressions where the argument is not just a variable, but the result is an “at” expression using temporary variables:

```
sage: y = var('y')
sage: t = (f(x*y).diff(x))/y
sage: t
D[0](f)(x*y)
sage: m.derivative(t, t.operator())
"at(diff(f(_SAGE_VAR__symbol0), _SAGE_VAR__symbol0, 1), [__symbol0 = (_SAGE_VAR_x)*(_SAGE_VAR_y)])"
```

2.16. Conversion of symbolic expressions to other types 283
symbolic_calculator, release 10.2

pyobject(ex, obj)

EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: ii = InterfaceInit(gp)
sage: f = 2+SR(I)
sage: ii.pyobject(f, f.pyobject())
'I + 2'
sage: ii.pyobject(SR(2), 2)
'2'
sage: ii.pyobject(pi, pi.pyobject())
'Pi'
```

relation(ex, operator)

EXAMPLES:

```python
sage: import operator
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.relation(x==3, operator.eq)
'_SAGE_VAR_x = 3'
sage: m.relation(x==3, operator.lt)
'_SAGE_VAR_x < 3'
```

symbol(ex)

EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.symbol(x)
'_SAGE_VAR_x'
sage: f(x) = x
sage: m.symbol(f)
'_SAGE_VAR_x'
sage: ii = InterfaceInit(gp)
sage: ii.symbol(x)
'x'
sage: g = InterfaceInit(giac)
sage: g.symbol(x)
'sageVARx'
```

tuple(ex)

EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: t = SR._force_pyobject((3, 4, e^x))
sage: m.tuple(t)
'[3,4,exp(_SAGE_VAR_x)]'
```

class sage.symbolic.expression_conversions.LaurentPolynomialConverter(ex, base_ring=None, ring=None)
Bases: PolynomialConverter
A converter from symbolic expressions to Laurent polynomials.
See laurent_polynomial() for details.

class sage.symbolic.expression_conversions.PolynomialConverter(ex, base_ring=None, ring=None)
Bases: Converter
A converter from symbolic expressions to polynomials.
See polynomial() for details.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: x, y = var('x,y')
sage: p = PolynomialConverter(x+y, base_ring=QQ)
sage: p.base_ring
Rational Field
sage: p.ring
Multivariate Polynomial Ring in x, y over Rational Field

sage: p = PolynomialConverter(x, base_ring=QQ)
sage: p.base_ring
Rational Field
sage: p.ring
Univariate Polynomial Ring in x over Rational Field

sage: p = PolynomialConverter(x, ring=QQ['x,y'])
sage: p.base_ring
Rational Field
sage: p.ring
Multivariate Polynomial Ring in x, y over Rational Field

sage: p = PolynomialConverter(x+y, ring=QQ['x'])
Traceback (most recent call last):
  ...TypeError: y is not a variable of Univariate Polynomial Ring in x over Rational Field
```

arithmetic(ex, operator)

EXAMPLES:

```
sage: import operator
sage: from sage.symbolic.expression_conversions import PolynomialConverter

sage: x, y = var('x, y')
sage: p = PolynomialConverter(x, base_ring=RR)
sage: p.arithmetic(pi+e, operator.add)
5.85978748204884
sage: p.arithmetic(x^2, operator.pow)
x^2
```

(continues on next page)
Symbolic Calculus, Release 10.2

sage: p.arithmetic(x*y+y^2, operator.add)
x*y + y^2

sage: p = PolynomialConverter(y^(3/2), ring=SR['x'])
sage: p.arithmetic(y^(3/2), operator.pow)
y^(3/2)
sage: _.parent()
Symbolic Ring

composition(ex, operator)
EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: a = sin(2)
sage: p = PolynomialConverter(a*x, base_ring=RR)
sage: p.composition(a, a.operator())
0.909297426825682

pyobject(ex, obj)
EXAMPLES:
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: p = PolynomialConverter(x, base_ring=QQ)
sage: f = SR(2)
sage: p.pyobject(f, f.pyobject())
2
sage: _.parent()
Rational Field

relation(ex, op)
EXAMPLES:
sage: import operator
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: x, y = var('x, y')
sage: p = PolynomialConverter(x, base_ring=RR)
sage: p.relation(x==3, operator.eq)
x - 3.00000000000000
sage: p.relation(x==3, operator.lt)
Traceback (most recent call last):
... ValueError: Unable to represent as a polynomial
sage: p = PolynomialConverter(x - y, base_ring=QQ)
sage: p.relation(x^2 - y^3 + 1 == x^3, operator.eq)
-x^3 - y^3 + x^2 + 1

symbol(ex)
Returns a variable in the polynomial ring.
EXAMPLES:
```python
from sage.symbolic.expression_conversions import PolynomialConverter

p = PolynomialConverter(x, base_ring=QQ)
p.symbol(x)

_.parent()

Univariate Polynomial Ring in x over Rational Field

y = var('y')
p = PolynomialConverter(x*y, ring=SR['x'])
p.symbol(y)
```

class sage.symbolic.expression_conversions.RingConverter(R, subs_dict=None)

Bases: Converter

A class to convert expressions to other rings.

EXAMPLES:

```python
from sage.symbolic.expression_conversions import RingConverter

R = RingConverter(RIF, subs_dict={x:2})
R.ring
Real Interval Field with 53 bits of precision
R.subs_dict
{x: 2}
R(pi+e)
5.85987448204884?
loads(dumps(R))
<sage.symbolic.expression_conversions.RingConverter object at 0x...>
```

arithmetic(ex, operator)

EXAMPLES:

```python
from sage.symbolic.expression_conversions import RingConverter
P.<z> = ZZ[]
P.<z> = ZZ[]
R = RingConverter(P, subs_dict={x:z})
a = 2\cdot x^2 + x + 3
R(a)
2\cdot z^2 + z + 3
```

composition(ex, operator)

EXAMPLES:

```python
from sage.symbolic.expression_conversions import RingConverter

R = RingConverter(RIF)
R(cos(2))
-0.4161468365471424?
```

pyobject(ex, obj)

EXAMPLES:

```python
from sage.symbolic.expression_conversions import RingConverter

R = RingConverter(RIF)
R(SR(5/2))
2.5000000000000000?
```

2.16. Conversion of symbolic expressions to other types
symbol(ex)

All symbols appearing in the expression must either appear in subs_dict or be convertible by the ring’s element constructor in order for the conversion to be successful.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import RingConverter
sage: R = RingConverter(RIF, subs_dict={x:2})
sage: R(x+pi)
5.141592653589794?
sage: R = RingConverter(RIF)
sage: R(x+pi)
Traceback (most recent call last):
...
TypeError: unable to simplify to a real interval approximation
sage: R = RingConverter(QQ['x'])
sage: R(x^2+x)
x^2 + x
sage: R(x^2+x).parent()
Univariate Polynomial Ring in x over Rational Field
```

class sage.symbolic.expression_conversions.SubstituteFunction(ex, *args)

Bases: ExpressionTreeWalker

A class that walks the tree and replaces occurrences of a function with another.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), {foo: bar})
sage: s(1/foo(foo(x)) + foo(2))
1/bar(bar(x)) + bar(2)
sage: s.composition(f, f.operator())
bar(x)
sage: s = SubstituteFunction(foo(x), {foo: bar})
sage: s.composition(f, f.operator())
bar(bar(x))
sage: s = sin(foo(x))
sage: s.composition(f, f.operator())
sin(bar(x))
sage: s = foo(sin(x))
sage: s.composition(f, f.operator())
bar(sin(x))
```

composition(ex, operator)

EXAMPLES:
Symbolic Calculus, Release 10.2

derivative(ex, operator)

EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), {foo: bar})
sage: f = foo(x).diff(x)
sage: s.derivative(f, f.operator())
```

```python
diff(bar(x), x)
```

sage.symbolic.expression_conversions.fast_callable(ex, etb)

Given an ExpressionTreeBuilder `etb`, return an Expression representing the symbolic expression `ex`.

EXAMPLES:

```python
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x', 'y'])
sage: x,y = var('x,y')
sage: f = y+2*x^2
sage: f._fast_callable_(etb)
```

```python
add(mul(ipow(v_0, 2), 2), v_1)
```

```python
sage: f = (2*x^3+2*x-1)/((x-2)*(x+1))
sage: f._fast_callable_(etb)
```

```python
div(add(add(mul(ipow(v_0, 3), 2), mul(v_0, 2)), -1), mul(add(v_0, 1), add(v_0, -2)))
```

sage.symbolic.expression_conversions.laurent_polynomial(ex, base_ring=None, ring=None)

Return a Laurent polynomial from the symbolic expression `ex`.

INPUT:

- `ex` – a symbolic expression
- `base_ring`, `ring` – Either a base_ring or a Laurent polynomial ring can be specified for the parent of result. If just a base_ring is given, then the variables of the base_ring will be the variables of the expression `ex`.

OUTPUT:

A Laurent polynomial.

EXAMPLES:

```python
sage: from sage.symbolic.expression_conversions import laurent_polynomial
sage: f = x^2 + 2/x
sage: laurent_polynomial(f, base_ring=QQ)
```

```python
2*x^-1 + x^2
```

```python
_.parent()
```

Univariate Laurent Polynomial Ring in x over Rational Field

```python
sage: laurent_polynomial(f, ring=LaurentPolynomialRing(QQ, 'x, y'))
```

```python
x^2 + 2*x^-1
```

```python
_.parent()
```

Multivariate Laurent Polynomial Ring in x, y over Rational Field

```python
sage: x, y = var('x, y')
sage: laurent_polynomial(x + 1/y^2, ring=LaurentPolynomialRing(QQ, 'x, y'))
```

(continues on next page)
sage: x, y = var('x, y')
sage: polynomial(x + y^2, ring=QQ['x,y'])
y^2 + x
sage: _.parent()
Multivariate Polynomial Ring in x, y over Rational Field

sage: expr = t^2 - 2*s*t + 1
sage: expr.polynomial(None, ring=SR['t'])
t^2 - 2*s*t + 1
sage: _.parent()
Univariate Polynomial Ring in t over Symbolic Ring

sage: polynomial(x*y, ring=SR['x'])
y*x
sage: polynomial(y - sqrt(x), ring=SR['y'])
y - sqrt(x)
sage: _.list()
[-sqrt(x), 1]

The polynomials can have arbitrary (constant) coefficients so long as they coerce into the base ring:
2.17 Complexity Measures

Some measures of symbolic expression complexity. Each complexity measure is expected to take a symbolic expression as an argument, and return a number.

`sage.symbolic.complexity_measures.string_length(expr)`

Returns the length of `expr` after converting it to a string.

INPUT:
- `expr` – the expression whose complexity we want to measure.

OUTPUT:
A real number representing the complexity of `expr`.

RATIONALE:
If the expression is longer on-screen, then a human would probably consider it more complex.

EXAMPLES:
This expression has three characters, `x`, `^`, and `2`:

```sage
sage: from sage.symbolic.complexity_measures import string_length
sage: f = x^2
sage: string_length(f)
3
```

2.18 Further examples from Wester’s paper

These are all the problems at http://yacas.sourceforge.net/essaysmanual.html

They come from the 1994 paper “Review of CAS mathematical capabilities”, by Michael Wester, who put forward 123 problems that a reasonable computer algebra system should be able to solve and tested the then current versions of various commercial CAS on this list. Sage can do most of the problems natively now, i.e., with no explicit calls to Maxima or other systems.

```sage
sage: # (YES) factorial of 50, and factor it
sage: factorial(50)
304140932017133780436126081660647688443776415689605120000000000000000000000
sage: factor(factorial(50))
2^47 * 3^22 * 5^12 * 7^8 * 11^4 * 13^3 * 17^2 * 19^2 * 23^2 * 29 * 31 * 37 * 41 * 43 * 47
```

```sage
sage: # (YES) 1/2+...+1/10 = 4861/2520
sage: sum(1/n for n in range(2,10+1)) == 4861/2520
True
```

2.17. Complexity Measures 291
sage: # (YES) Evaluate $e^{(\pi \sqrt{163})}$ to 50 decimal digits
sage: a = e^(pi*sqrt(163)); a
e^{(\sqrt{163} \pi)}
sage: RealField(150)(a)
2.6253741264076874399999999999925007259719820e17

sage: # (YES) Evaluate the Bessel function $J[2]$ numerically at $z=1+i$.
sage: bessel_J(2, 1+I).n()
0.0415798869439621 + 0.247397641513306*I

sage: # (YES) Obtain period of decimal fraction $1/7=0.(142857)$.
sage: a = 1/7
sage: a
1/7
sage: a.period()
6

sage: # (YES) Continued fraction of 3.1415926535
sage: a = 3.1415926535
sage: continued_fraction(a)
[3; 7, 15, 1, 292, 1, 1, 6, 2, 13, 4]

sage: # (YES) $\sqrt{2 \sqrt{3} + 4} = 1 + \sqrt{3}$.
 # The Maxima backend equality checker does this;
 # note the equality only holds for one choice of sign,
 # but Maxima always chooses the "positive" one
sage: a = sqrt(2*sqrt(3) + 4); b = 1 + sqrt(3)

sage: float(a-b)
0.0
sage: bool(a == b)
True
sage: # We can, of course, do this in a quadratic field
sage: k.<sqrt3> = QuadraticField(3)

sage: asqr = 2*sqrt3 + 4
sage: b = 1+sqrt3
sage: asqr == b^2
True

sage: # (YES) $\sqrt{14+3\sqrt{3+2\sqrt{5-12\sqrt{3-2\sqrt{2}}}}} = 3+\sqrt{2}$.
 # 2*Infinity-3=Infinity.
 # We can, of course, do this in a quadratic field
sage: a = sqrt(14+3*sqrt(3+2*sqrt(5-12*sqrt(3-2*sqrt(2)))))

sage: b = 3+sqrt(2)

sage: a, b
(sqrt(3*sqrt(2*sqrt(-12*sqrt(-2*sqrt(2) + 3) + 5) + 3) + 14), sqrt(2) + 3)
sage: bool(a==b)
True
sage: abs(float(a-b)) < 1e-10
True
sage: # 2*Infinity-3=Infinity.
sage: 2*infinity-3 == infinity
True
sage: # (YES) Standard deviation of the sample (1, 2, 3, 4, 5).
sage: v = vector(RDF, 5, [1,2,3,4,5])
sage: v.standard_deviation()
1.5811388300841898

sage: # (NO) Hypothesis testing with t-distribution.
sage: # (NO) Hypothesis testing with chi^2 distribution
sage: # (But both are included in Scipy and R)

sage: # (YES) (x^2-4)/(x^2+4*x+4)=(x-2)/(x+2).
sage: R.<x> = QQ[]
sage: (x^2-4)/(x^2+4*x+4) == (x-2)/(x+2)
True
sage: restore('x')

sage: # (YES -- Maxima doesn't immediately consider them
sage: # equal, but simplification shows that they are)
sage: # (Exp(x)-1)/(Exp(x/2)+1)=Exp(x/2)-1.
sage: f = (exp(x)-1)/(exp(x/2)+1)
sage: g = exp(x/2)-1
sage: f
(e^x - 1)/(e^(1/2*x) + 1)
sage: g
e^(1/2*x) - 1
sage: f.canonicalize_radical()
e^(1/2*x) - 1
sage: g
e^(1/2*x) - 1
sage: f(x=10.0).n(53), g(x=10.0).n(53)
(147.413159102577, 147.413159102577)
sage: bool(f == g)
True

sage: # (YES) Expand (1+x)^20, take derivative and factorize.
sage: # first do it using algebraic polys
sage: R.<x> = QQ[]
sage: f = (1+x)^20; f
x^20 + 20*x^19 + 190*x^18 + 1140*x^17 + 4845*x^16 + 15504*x^15 + 38760*x^14 + 77520*x^13 +
 + 125970*x^12 + 167960*x^11 + 184756*x^10 + 167960*x^9 + 125970*x^8 + 77520*x^7 +
 + 38760*x^6 + 15504*x^5 + 4845*x^4 + 1140*x^3 + 190*x^2 + 20*x + 1
sage: deriv = f.derivative()
sage: deriv
20*x^19 + 380*x^18 + 3420*x^17 + 19380*x^16 + 77520*x^15 + 232560*x^14 + 542640*x^13 +
 + 1007760*x^12 + 1511640*x^11 + 1847560*x^10 + 1847560*x^9 + 1511640*x^8 + 1007760*x^7 +
 + 542640*x^6 + 232560*x^5 + 77520*x^4 + 19380*x^3 + 3420*x^2 + 380*x + 20
sage: deriv.factor()
(20) * (x + 1)^19
sage: restore('x')

sage: # next do it symbolically
sage: var('y')
y
sage: f = (1+y)^20; f

2.18. Further examples from Wester's paper 293
\[(y + 1)^{20}\]

```python
sage: g = f.expand(); g
y^{20} + 20*y^{19} + 190*y^{18} + 1140*y^{17} + 4845*y^{16} + 15504*y^{15} + 38760*y^{14} + 77520*y^{13} + 125970*y^{12} + 167960*y^{11} + 184756*y^{10} + 167960*y^9 + 125970*y^8 + 77520*y^7 + 38760*y^6 + 15504*y^5 + 4845*y^4 + 1140*y^3 + 190*y^2 + 20*y + 1
```

```python
sage: deriv = g.derivative(); deriv
20*y^{19} + 380*y^{18} + 3420*y^{17} + 19380*y^{16} + 77520*y^{15} + 232560*y^{14} + 542640*y^{13} + 1007760*y^{12} + 1511640*y^{11} + 1847560*y^{10} + 1511640*y^9 + 1007760*y^8 + 542640*y^7 + 232560*y^6 + 77520*y^5 + 19380*y^4 + 3420*y^3 + 380*y^2 + 20*y + 2
```

```python
sage: deriv.factor()
20*(y + 1)^{19}
```

```python
sage: # (YES) Factorize \(x^{100} - 1\).
```

```python
sage: factor(x^{100} - 1)
(x^{40} - x^{30} + x^{20} - x^{10} + 1)*(x^{40} - x^{30} + x^{20} - x^{10} + 1)\cdot (x^{40} - x^{30} + x^{20} - x^{10} + 1)\cdot (x^{40} - x^{30} + x^{20} - x^{10} + 1)
```

```python
sage: # Also, algebraically
```

```python
sage: x = polygen(QQ)
```

```python
sage: factor(x^{100} - 1)
(x - 1)\cdot (x + 1)\cdot (x^{2} + 1)\cdot (x^{4} - x^{3} + x^{2} - x + 1)\cdot (x^{4} + x^{3} + x^{2} + x + 1)\cdot (x^{4} - x^{3} + x^{2} - x + 1)
```

```python
sage: # (YES) Factorize \(x^{4} - 3x^{2} + 1\) in the field of rational numbers extended by roots of \(x^{2} - x - 1\).
```

```python
sage: x = polygen(ZZ, 'x')
sage: k.< a> = NumberField(x^2 - x - 1)
sage: R.< y> = k[
```

```python
sage: f = y^4 - 3*y^2 + 1
```

```python
sage: f
y^4 - 3*y^2 + 1
```

```python
sage: factor(f)
(y - a)\cdot (y - a + 1)\cdot (y + a - 1)\cdot (y + a)
```

```python
sage: # (YES) Factorize \(x^{4} - 3x^{2} + 1\) mod 5.
```

```python
sage: k.< x > = GF(5) []
sage: f = x^4 - 3*x^2 + 1
```

```python
sage: f.factor()
(x + 2)^{2}\cdot (x + 3)^{2}
```

```python
sage: # Alternatively, from symbol x as follows:
```

```python
sage: reset('x')
sage: f = x^4 - 3*x^2 + 1
```

```python
sage: f.polynomial(GF(5)).factor()
(x + 2)^{2}\cdot (x + 3)^{2}
```

```python
sage: # (YES) Partial fraction decomposition of \((x^2+2*x+3)/(x^3+4*x^2+5*x+2)\)
```

```python
sage: f = (x^2+2*x+3)/(x^3+4*x^2+5*x+2); f
```

```python
(\begin{align*}
(x^2 + 2*x + 3)/(x^3 + 4*x^2 + 5*x + 2)
\end{align*})
```

```python
sage: f.partial_fraction()
```

(continues on next page)
\[\frac{3}{x + 2} - \frac{2}{x + 1} + \frac{2}{(x + 1)^2} \]

```
sage: # (YES) Assuming x>=y, y>=z, z>=x, deduce x=z.
sage: forget()
sage: var('x,y,z')
(x, y, z)
sage: assume(x>=y, y>=z, z>=x)
sage: bool(x==z)
True
```

```
sage: # (YES) Assuming x>y, y>0, deduce 2*x^2>2*y^2.
sage: forget()
sage: assume(x>y, y>0)
sage: sorted(assumptions())
[x > y, y > 0]
sage: bool(2*x^2 > 2*y^2)
True
sage: forget()
sage: assumptions()
[]
```

```
sage: # (NO) Solve the inequality Abs(x-1)>2.
sage: # Maxima doesn't solve inequalities
sage: # (but some Maxima packages do):
sage: eqn = abs(x-1) > 2
sage: eqn.solve(x)
[[x < -1], [3 < x]]
```

```
sage: # (NO) Solve the inequality (x-1)*...*(x-5)<0.
sage: eqn = prod(x-i for i in range(1,5 +1)) < 0
sage: eqn.solve(x)
[[x < 1], [x > 2, x < 3], [x > 4, x < 5]]
```

```
sage: # (YES) \( \cos(3x)/\cos(x) = \cos(x)^2 - 3\sin(x)^2 \) or similar equivalent combination.
sage: f = cos(3*x)/cos(x)
sage: g = cos(x)^2 - 3*sin(x)^2
sage: h = f-g
sage: h.trig_simplify()
0
```

```
sage: # (YES) \( \cos(3x)/\cos(x) = 2\cos(2x)-1 \).
sage: f = cos(3*x)/cos(x)
sage: g = 2*cos(2*x) - 1
sage: h = f-g
sage: h.trig_simplify()
0
```

```
sage: # (GOOD ENOUGH) Define rewrite rules to match \( \cos(3x)/\cos(x) = \cos(x)^2 - 3\sin(x)^2 \).
sage: # Sage has no notion of "rewrite rules", but
```

2.18. Further examples from Wester’s paper
Symbolic Calculus, Release 10.2

```
sage: # it can simplify both to the same thing.
sage: (cos(3*x)/cos(x)).simplify_full()
4*cos(x)^2 - 3
sage: (cos(x)^2-3*sin(x)^2).simplify_full()
4*cos(x)^2 - 3

sage: # (YES) Sqrt(997)-(997^3)^(1/6)=0
sage: a = sqrt(997) - (997^3)^(1/6)
sage: a.simplify()
0
sage: bool(a == 0)
True
sage: # (YES) Sqrt(99983)-(99983^3)^(1/6)=0
sage: a = sqrt(99983) - (99983^3)^(1/6)
sage: bool(a==0)
True
sage: float(a)
1.1368683772...e-13
sage: 13*7691
99983

sage: # (YES) (2^(1/3) + 4^(1/3))^3 - 6*(2^(1/3) + 4^(1/3))-6 = 0
sage: a = (2^(1/3) + 4^(1/3))^3 - 6*(2^(1/3) + 4^(1/3)) - 6; a
(4^(1/3) + 2^(1/3))^3 - 6*4^(1/3) - 6*2^(1/3) - 6
sage: bool(a==0)
True
sage: abs(float(a)) < 1e-10
True
```

Or we can do it using number fields.

```
sage: reset('x')
sage: k.<b> = NumberField(x^3-2)
sage: a = (b + b^2)^3 - 6*(b + b^2) - 6
sage: a
0
```

```
sage: # (NO, except numerically) Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x))=0
# Sage uses the Maxima convention when comparing symbolic expressions and
# returns True only when it can prove equality. Thus, in this case, we get
# False even though the equality holds.
sage: f = log(tan(x/2 + pi/4)) - arcsinh(tan(x))
sage: bool(f == 0)
False
sage: [abs(float(f(x=i/10))) < 1e-15 for i in range(1,5)]
[True, True, True, True]
sage: # Numerically, the expression Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x))=0 and its
# derivative at x=0 are zero.
sage: g = f.derivative()
sage: abs(float(f(x=0))) < 1e-10
```

(continues on next page)
True
sage: abs(float(g(x=0))) < 1e-10
True
sage: g
-sqrt(tan(x)^2 + 1) + 1/2*(tan(1/4*pi + 1/2*x)^2 + 1)/tan(1/4*pi + 1/2*x)

sage: # (NO) Ln((2*Sqrt(r) + 1)/Sqrt(4*r 4*Sqrt(r) 1))=0.
sage: var('r')
r
sage: f = log((2*sqrt(r) + 1) / sqrt(4*r + 4*sqrt(r) + 1)); f
log((2*sqrt(r) + 1)/sqrt(4*r + 4*sqrt(r) + 1))
sage: bool(f == 0)
False
sage: [abs(float(f(r=i))) < 1e-10 for i in [0.1, 0.3, 0.5]]
[True, True, True]

sage: # (NO)
sage: # (4*r+4*Sqrt(r)+1)*(Sqrt(r)/(2*Sqrt(r)+1))*(2*Sqrt(r)+1)^(2*Sqrt(r)+1)^(-1) -=
˓
2*Sqrt(r)-1=0, assuming r>0.
sage: assume(r>0)
sage: f = (4*r+4*sqrt(r)+1)^(sqrt(r)/(2*sqrt(r)+1))*(2*sqrt(r)+1)^(1/(2*sqrt(r)+1)) - ˓
2*sqrt(r)-1
sage: f
(4*r + 4*sqrt(r) + 1)^(sqrt(r)/(2*sqrt(r) + 1))*(2*sqrt(r) + 1)^(-1)
˓
2*sqrt(r)-1
sage: bool(f == 0)
False
sage: [abs(float(f(r=i))) < 1e-10 for i in [0.1, 0.3, 0.5]]
[True, True, True]

sage: # (YES) Obtain real and imaginary parts of Ln(3+4*I).
sage: a = log(3+4*I); a
log(4*I + 3)
sage: a.real()
log(5)
sage: a.imag()
arctan(4/3)

sage: # (YES) Obtain real and imaginary parts of Tan(x+I*y)
sage: z = var('z')
sage: a = tan(z); a
tan(z)
sage: a.real()
\sin(2*\text{real_part}(z)) / (\cos(2*\text{real_part}(z)) + \cosh(2*\text{imag_part}(z)))
sage: a.imag()
\sinh(2*\text{imag_part}(z)) / (\cos(2*\text{real_part}(z)) + \cosh(2*\text{imag_part}(z)))

sage: # (YES) Simplify Ln(Exp(z)) to z for -Pi<Im(z)<=Pi.
sage: # Unfortunately (?), Maxima does this even without
sage: # any assumptions.
sage: # We *would* use assume(-pi < imag(z))

2.18. Further examples from Wester’s paper 297
sage: # and assume(imag(z) <= pi)
sage: f = log(exp(z)); f
log(e^z)
sage: f.simplify()
z
sage: forget()

sage: # (YES) Assuming Re(x)>0, Re(y)>0, deduce x^(1/n)*y^(1/n)-(x*y)^(1/n)=0.
sage: # Maxima 5.26 has different behaviours depending on the current
sage: # domain.
sage: # To stick with the behaviour of previous versions, the domain is set
sage: # to 'real' in the following.
sage: # See Issue #10682 for further details.
sage: n = var('n')
sage: f = x^(1/n)*y^(1/n)-(x*y)^(1/n)
sage: assume(real(x) > 0, real(y) > 0)
sage: f.simplify()
x^(1/n)*y^(1/n) - (x*y)^(1/n)
sage: maxima = sage.calculus.calculus.maxima
sage: maxima.set('domain', 'real') # set domain to real
sage: f.simplify()
0
sage: maxima.set('domain', 'complex') # set domain back to its default value
sage: forget()

sage: # (YES) Transform equations, (x==2)/2+(1==1)=>x/2+1==2.
sage: eq1 = x == 2
sage: eq2 = SR(1) == SR(1)
sage: eq1/2 + eq2
1/2*x + 1 == 2

sage: # (SOMEWHAO) Solve Exp(x)=1 and get all solutions.
sage: solve(exp(x) == 1, x)
[x == 0]

sage: # (SOMEWHAT) Solve Tan(x)=1 and get all solutions.
sage: solve(tan(x) == 1, x)
[x == 1/4*pi]

sage: # (YES) Solve a degenerate 3x3 linear system.
sage: # x+y+z==6,2*x+y+2*z==10,x+3*y+z==10
sage: # First symbolically:
sage: solve([x+y+z==6, 2*x+y+2*z==10, x+3*y+z==10], x,y,z)
[[x == -r1 + 4, y == 2, z == r1]]

sage: # (YES) Invert a 2x2 symbolic matrix.
sage: #[[a,b],[1,a*b]]
sage: # Using multivariate poly ring -- much nicer
sage: R.<a,b> = QQ[]
sage: m = matrix(2,2,[a,b, 1, a*b])
sage: zz = m^(-1)
sage: zz
\[
\begin{bmatrix}
a/(a^2 - 1) & (-1)/(a^2 - 1)
(-1)/(a^2*b - b) & a/(a^2*b - b)
\end{bmatrix}
\]

sage: # (YES) Compute and factor the determinant of the 4x4 Vandermonde matrix in a, b, c, d.
sage: var('a,b,c,d')
(a, b, c, d)
sage: m = matrix(SR, 4, 4, [[z^i for i in range(4)] for z in [a,b,c,d]])
sage: m
\[
\begin{bmatrix}
1 & a & a^2 & a^3 \\
1 & b & b^2 & b^3 \\
1 & c & c^2 & c^3 \\
1 & d & d^2 & d^3
\end{bmatrix}
\]
sage: d = m.determinant()
sage: d.factor()
(a - b)*(a - c)*(a - d)*(b - c)*(b - d)*(c - d)

sage: # (YES) Compute and factor the determinant of the 4x4 Vandermonde matrix in a, b, c, d.
Do it instead in a multivariate ring
sage: R.<a,b,c,d> = QQ[]
sage: m = matrix(R, 4, 4, [[z^i for i in range(4)] for z in [a,b,c,d]])
sage: m
\[
\begin{bmatrix}
1 & a & a^2 & a^3 \\
1 & b & b^2 & b^3 \\
1 & c & c^2 & c^3 \\
1 & d & d^2 & d^3
\end{bmatrix}
\]
sage: d = m.determinant()
sage: d
a^3*b^2*c - a^2*b^3*c - a^3*b*c^2 + a*b^3*c^2 + a^2*b*c^3 - a*b^2*c^3 - a^3*b^2*d + a^2*b^3*d + a^3*b*c^2*d - a^2*b^2*c^3 - a^3*b^3*d - a^2*b*c^3*d + a^3*b*d^2 - a*b^3*d^2 - a^3*c^2*d - b^3*c^2*d + a^2*c^3*d + a*b^2*d^2 - a*b*c^3*d - b*c^3*d^2 - a^2*b*d^3 + a*b^2*d^3 + a^2*b*c^3*d - b^3*c*d^2 + a^2*c^2*d^3 + a*b*c^2*d^3
sage: d.factor()
(-1) * (c - d) * (-b + c) * (b - d) * (-a + c) * (-a + b) * (a - d)

sage: # (YES) Find the eigenvalues of a 3x3 integer matrix.

sage: m = matrix(QQ, 3, [5,-3,-7, -2,1,2, 2,-3,-4])
sage: m.eigenspaces_left()
\[
(3, \text{Vector space of degree 3 and dimension 1 over Rational Field})
\begin{align*}
\text{User basis matrix:} \\
&\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}, \\
\text{(1, Vector space of degree 3 and dimension 1 over Rational Field)}
\begin{align*}
\text{User basis matrix:} \\
&\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}, \\
\text{(-2, Vector space of degree 3 and dimension 1 over Rational Field)}
\end{align*}
\end{align*}
\]
Symbolic Calculus, Release 10.2

User basis matrix:
[0 1 1]

\[
\begin{bmatrix}
0 & 1 & 1
\end{bmatrix}
\]

```
sage: # (YES) Verify some standard limits found by L'Hopital's rule:
sage: # Verify(Limit(x,Infinity) (1+1/x)^x, Exp(1));
sage: # Verify(Limit(x,0) (1-Cos(x))/x^2, 1/2);
sage: limit( (1+1/x)^x, x = oo)
e
sage: limit( (1-cos(x))/(x^2), x = 1/2)
-4*cos(1/2) + 4
```

```
sage: # (OK-ish) D(x)Abs(x)
sage: # Verify(D(x) Abs(x), Sign(x));
sage: diff(abs(x))
1/2*(x + conjugate(x))/abs(x)
sage: _.simplify_full()
x/abs(x)
sage: _ = var('x', domain='real')
sage: diff(abs(x))
x/abs(x)
sage: forget()
```

```
sage: # (YES) (Integrate(x)Abs(x))=Abs(x)*x/2
sage: integral(abs(x), x)
1/2*x*abs(x)
```

```
sage: # (YES) Compute derivative of Abs(x), piecewise defined.
sage: # Verify(D(x)if(x<0) (-x) else x, 
# Simplify(if(x<0) -1 else 1))
Piecewise defined function with 2 parts, [[(-10, 0), -1], [(0, 10), 1]]
sage: # (NOT really) Integrate Abs(x), piecewise defined.
sage: # Verify(Simplify(Integrate(x)
# if(x<0) (-x^2/2) else x^2/2));
sage: f = piecewise([((-10, 0), -x), ((0, 10), x)])
sage: f.integral(definite=True)
100
```

```
sage: # (YES) Taylor series of 1/Sqrt(1-v^2/c^2) at v=0.
sage: var('v,c')
(v, c)
sage: taylor(1/sqrt(1-v^2/c^2), v, 0, 7)
1/2*v^2/c^2 + 3/8*v^4/c^4 + 5/16*v^6/c^6 + 1
```

```
sage: # (OK-ish) (Taylor expansion of Sin(x))/(Taylor expansion of Cos(x)) = (Taylor_
˓→ expansion of Tan(x)).
sage: # TestYacas(Taylor(x,0,5)(Taylor(x,0,5)Sin(x))/
sage: # (Taylor(x,0,5)Cos(x)), Taylor(x,0,5)Tan(x));
sage: f = taylor(sin(x), x, 0, 8)
```

(continues on next page)
sage: g = taylor(cos(x), x, 0, 8)
sage: h = taylor(tan(x), x, 0, 8)
sage: f = f.power_series(QQ)
sage: g = g.power_series(QQ)
sage: h = h.power_series(QQ)
sage: f - g*h
0(x^8)

sage: # (YES) Taylor expansion of Ln(x)^a*Exp(-b*x) at x=1.
sage: a,b = var('a,b')
sage: taylor(log(x)^a*exp(-b*x), x, 1, 3)
-1/48*(a^3*(x - 1)^a + a^2*(6*b + 5)*(x - 1)^a + 8*b^3*(x - 1)^a + 2*(6*b^2 + 5*b +
 3)*a*(x - 1)^a)*e^(-b) + 1/24*(3*a^2*(x - 1)^a + a*(12*b + 5)*(x - 1)^a +
 4*b^2*(x - 1)^a)*(x - 1)^2*e^(-b) - 1/2*(a*(x - 1)^a + 2*b*(x - 1)^a)*(x - 1)^2*e^(-b) +
 (x - 1)*a*e^(-b)

sage: # (YES) Taylor expansion of Ln(Sin(x)/x) at x=0.
sage: taylor(log(sin(x)/x), x, 0, 10)
-1/467775*x^10 - 1/37800*x^8 - 1/2835*x^6 - 1/180*x^4 - 1/6*x^2

sage: # (NO) Compute n-th term of the Taylor series of Ln(Sin(x)/x) at x=0.
sage: # need formal functions

sage: # (NO) Compute n-th term of the Taylor series of Exp(-x)*Sin(x) at x=0.
sage: # (Sort of, with some work)
sage: # Solve x=Sin(y)+Cos(y) for y as Taylor series in x at x=1.
sage: # TestYacas(Inv

sage: # (OK) Compute Legendre polynomials directly from Rodriguez's formula, P[n]=1/(2^n
 *Deriv(x,n)1/2-1)^n).n).
sage: P(n, x) := Simplify(1/(2^n) * Deriv(x,n)^(x^2-1))

sage: # (YES) Define the polynomial p=Sum(i,1,5,a[i]*x^i).
sage: # symbolically

(continues on next page)
Symbolic Calculus, Release 10.2

```
sage: ps = sum(var('a%s'*i)*x^i for i in range(1,6)); ps
a5*x^5 + a4*x^4 + a3*x^3 + a2*x^2 + a1*x
sage: ps.parent()
Symbolic Ring
sage: # algebraically
sage: R = PolynomialRing(QQ,5,names='a')
sage: S.<x> = PolynomialRing(R)
sage: p = S(list(R.gens()))*x; p
a4*x^5 + a3*x^4 + a2*x^3 + a1*x^2 + a0*x
sage: p.parent()
Univariate Polynomial Ring in x over Multivariate Polynomial Ring in a0, a1, a2, a3, a4
    over Rational Field
sage: # (YES) Convert the above to Horner's form.
sage: # Verify(Horner(p, x), ((((a[5]*x+a[4])*x
sage: # +a[3])*x+a[2])*x+a[1])*x);
sage: restore('x')
sage: SR(p).horner(x)
 ((((a4*x + a3)*x + a2)*x + a1)*x + a0)*x
sage: # (NO) Convert the result of problem 127 to Fortran syntax.
sage: # CForm(Horner(p, x));

sage: # (YES) Verify that True And False=False.
sage: # (True and False) is False
(True and False) is False
sage: for x in [True, False]:
    ....:     print(x or (not x))
True False

sage: # (YES) Prove x Or Not x.
sage: for x in [True, False]:
    ....:     for y in [True, False]:
    ....:         if x or y or x and y:
    ....:             if not (x or y):
    ....:                 print("failed!")

2.19 Solving ordinary differential equations

This file contains functions useful for solving differential equations which occur commonly in a 1st semester differential equations course. For another numerical solver see the ode_solver() function and the optional package Octave.

Solutions from the Maxima package can contain the three constants _C, _K1, and _K2 where the underscore is used to distinguish them from symbolic variables that the user might have used. You can substitute values for them, and make them into accessible usable symbolic variables, for example with var("_C").

Commands:
Symbolic Calculus, Release 10.2

- **desolve()** - Compute the “general solution” to a 1st or 2nd order ODE via Maxima.
- **desolve_laplace()** - Solve an ODE using Laplace transforms via Maxima. Initial conditions are optional.
- **desolve_rk4()** - Solve numerically an IVP for one first order equation, return list of points or plot.
- **desolve_system_rk4()** - Solve numerically an IVP for a system of first order equations, return list of points.
- **desolve_odeint()** - Solve numerically a system of first-order ordinary differential equations using odeint from scipy.integrate module.
- **desolve_system()** - Solve a system of 1st order ODEs of any size using Maxima. Initial conditions are optional.
- **eulers_method()** - Approximate solution to a 1st order DE, presented as a table.
- **eulers_method_2x2()** - Approximate solution to a 1st order system of DEs, presented as a table.
- **eulers_method_2x2_plot()** - Plot the sequence of points obtained from Euler’s method.

The following functions require the optional package tides:
- **desolve_mintides()** - Numerical solution of a system of 1st order ODEs via the Taylor series integrator method implemented in TIDES.
- **desolve_tides_mpfr()** - Arbitrary precision Taylor series integrator implemented in TIDES.

**AUTHORS:**
- David Joyner (3-2006) - Initial version of functions
- Marshall Hampton (7-2007) - Creation of Python module and testing
- Robert Marik (10-2009) - Some bugfixes and enhancements
- Miguel Marco (06-2014) - Tides desolvers

```python
sage.calculus.desolvers.desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False, algorithm='maxima')
```

Solve a 1st or 2nd order linear ODE, including IVP and BVP.

**INPUT:**
- **de** – an expression or equation representing the ODE
- **dvar** – the dependent variable (hereafter called y)
- **ics** – (optional) the initial or boundary conditions
  - for a first-order equation, specify the initial x and y
  - for a second-order equation, specify the initial x, y, and dy/dx, i.e. write \([x_0, y(x_0), y'(x_0)]\)
  - for a second-order boundary solution, specify initial and final x and y boundary conditions, i.e. write \([x_0, y(x_0), x_1, y(x_1)]\).
  - gives an error if the solution is not SymbolicEquation (as happens for example for a Clairaut equation)
- **ivar** – (optional) the independent variable (hereafter called x), which must be specified if there is more than one independent variable in the equation
- **show_method** – (optional) if True, then Sage returns pair \([\text{solution}, \text{method}]\), where method is the string describing the method which has been used to get a solution (Maxima uses the following order for first order equations: linear, separable, exact (including exact with integrating factor), homogeneous, bernoulli, generalized homogeneous) - use carefully in class, see below the example of an equation which is separable but this property is not recognized by Maxima and the equation is solved as exact.
Symbolic Calculus, Release 10.2

• **contrib_ode** – (optional) if `True`, `desolve` allows to solve Clairaut, Lagrange, Riccati and some other equations. This may take a long time and is thus turned off by default. Initial conditions can be used only if the result is one `SymbolicEquation` (does not contain a singular solution, for example).

• **algorithm** – (default: 'maxima') one of
  - 'maxima' - use maxima
  - 'fricas' - use FriCAS (the optional fricas spkg has to be installed)

**OUTPUT:**

In most cases return a `SymbolicEquation` which defines the solution implicitly. If the result is in the form \( y(x) = \ldots \) (happens for linear eqs.), return the right-hand side only. The possible constant solutions of separable ODEs are omitted.

---

**Note:** Use `desolve? <tab>` if the output in the Sage notebook is truncated.

**EXAMPLES:**

```sage
sage: x = var('x')
sage: y = function('y')(x)
sage: desolve(diff(y,x) + y - 1, y)
(_C + e^x)*e^(-x)
```

```sage
sage: f = desolve(diff(y,x) + y - 1, y, ics=[10,2]); f
(e^10 + e^x)*e^(-x)
```

```sage
sage: plot(f)
Graphics object consisting of 1 graphics primitive
```

We can also solve second-order differential equations:

```sage
sage: de = diff(y,x,2) - y == x
sage: desolve(de, y)
_K2*e^(-x) + _K1*e^x - x
```

```sage
sage: f = desolve(de, y, [10,2,1]); f
-x + 7*e^(x - 10) + 5*e^(-x + 10)
```

```sage
sage: f(x=10)
2
```

```sage
sage: diff(f,x)(x=10)
1
```

```sage
sage: de = diff(y,x,2) + y == 0
sage: desolve(de, y)
_K2*cos(x) + _K1*sin(x)
```

```sage
sage: desolve(de, y, [0,1,pi/2,4])
cos(x) + 4*sin(x)
```

304 Chapter 2. Internal functionality supporting calculus
Symbolic Calculus, Release 10.2

\[
\text{sage: } \text{desolve}(y \cdot \text{diff}(y,x) + \sin(x) == 0, y) \\
-1/2 \cdot y(x)^2 \_C - \cos(x)
\]

Clairaut equation: general and singular solutions:

\[
\text{sage: } \text{desolve}(\text{diff}(y,x)^2 + x \cdot \text{diff}(y,x) - y == 0, y, \text{contrib_ode=\text{True}}, \text{show_method=\text{True}}) \\
[[y(x) == \_C^2 + \_C^2*x, y(x) == -1/4*x^2]], 'clairau...']
\]

For equations involving more variables we specify an independent variable:

\[
\text{sage: } a, b, c, n = \text{var('a b c n')} \\
\text{sage: } \text{desolve}(x^2 \cdot \text{diff}(y,x) == a + b*x^n + c*x^2*y^2, y, \text{ivar=x}, \text{contrib_ode=\text{True}}) \\
[[y(x) == 0, (b*x^(n - 2) + a/x^2)*c^2*u == 0]], 'riccati'
\]

Higher order equations, not involving independent variable:

\[
\text{sage: } \text{desolve}(\text{diff}(y,x,2) + y \cdot (\text{diff}(y,x,1))^3 == 0, y).\text{expand()} \\
1/6*y(x)^3 + \_K1*y(x) == \_K2 + x
\]

\[
\text{sage: } \text{desolve}(\text{diff}(y,x,2) + y \cdot (\text{diff}(y,x,1))^3 == 0, y, [0,1,1,3]).\text{expand()} \\
1/6*y(x)^3 - 5/3*y(x) == x - 3/2
\]

Separable equations - Sage returns solution in implicit form:

\[
\text{sage: } \text{desolve}(\text{diff}(y,x)*\sin(y) == \cos(x), y) \\
-\cos(y(x)) == \_C + \sin(x)
\]

\[
\text{sage: } \text{desolve}(\text{diff}(y,x)*\sin(y) == \cos(x), y, \text{show_method=\text{True}}) \\
[-\cos(y(x)) == \_C + \sin(x)], 'separable'
\]

Linear equation - Sage returns the expression on the right hand side only:

\[
\text{sage: } \text{desolve}(\text{diff}(y,x) + y == \cos(x), y) \\
1/2*(((\cos(x) + \sin(x))^2*e^x + 2^*\_C)*e^(-x)
\]

\[
\text{sage: } \text{desolve}(\text{diff}(y,x) + y == \cos(x), y, \text{show_method=\text{True}}) \\
[1/2*((\cos(x) + \sin(x))^2*e^x + 2^*\_C)*e^(-x)], 'linear'
\]

This ODE with separated variables is solved as exact. Explanation - factor does not split $e^{x-y}$ in Maxima into $e^x e^y$:

2.19. Solving ordinary differential equations
Symbolic Calculus, Release 10.2

\begin{verbatim}
  sage: desolve(diff(y,x)==exp(x-y),y,show_method=True)
[-e^x + e^y(x) == _C, 'exact']
\end{verbatim}

You can solve Bessel equations, also using initial conditions, but you cannot put (sometimes desired) the initial condition at \( x = 0 \), since this point is a singular point of the equation. Anyway, if the solution should be bounded at \( x = 0 \), then \( _K_2 = 0 \).

\begin{verbatim}
  sage: desolve(x^2*diff(y,x,x)+x*diff(y,x)+(x^2-4)*y==0,y)
  _K_1*bessel_J(2, x) + _K_2*bessel_Y(2, x)
\end{verbatim}

Example of difficult ODE producing an error:

\begin{verbatim}
  sage: desolve(sqrt(y)*diff(y,x)+exp(y)+cos(x)-sin(x+y)==0,y)  
# not tested
Traceback (click to the left for traceback)
...  
NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option contrib_ode to True."
\end{verbatim}

Another difficult ODE with error - moreover, it takes a long time:

\begin{verbatim}
  sage: desolve(sqrt(y)*diff(y,x)+exp(y)+cos(x)-sin(x+y)==0,y,contrib_ode=True)  
# not tested
\end{verbatim}

Some more types of ODEs:

\begin{verbatim}
  sage: desolve(x^2*diff(y,x)^2-(1+x*y)*diff(y,x)+y==0,y,contrib_ode=True,show_method=True)
  [[y(x) == _C + log(x), y(x) == _C*e^x], 'factor']
\end{verbatim}

These two examples produce an error (as expected, Maxima 5.18 cannot solve equations from initial conditions). Maxima 5.18 returns false answer in this case!

\begin{verbatim}
  sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,2]).expand()  
# not tested
Traceback (click to the left for traceback)
...  
NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option contrib_ode to True."
\end{verbatim}

Second order linear ODE:

\begin{verbatim}
  sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y)
(_K_2*x + _K_1)*e^(-x) + 1/2*sin(x)
\end{verbatim}
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,show_method=True)
[(_K2*x + _K1)*e^(-x) + 1/2*sin(x), 'variationofparameters']

sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,1])
1/2*(7*x + 6)*e^(-x) + 1/2*sin(x)

sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,pi/2,2],show_method=True)
[3*(x*(e^(1/2*pi) - 2)/pi + 1)*e^(-x) + 1/2*sin(x), 'variationofparameters']

sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y)
(_K2*x + _K1)*e^(-x)

sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,ics=[1,3,7],show_method=True)
1/15*(x^5 + 15*x^3 + 50*x^2 - 21)/x

FriCAS can also solve some non-linear equations:

sage: de = diff(y, x) == y / (x+y*log(y))
sage: Y = desolve(de, y, algorithm="fricas")
1/2*(log(y(x))^2*y(x) - 2*x)/y(x)

Using algorithm='fricas' we can invoke the differential equation solver from FriCAS. For example, it can solve higher order linear equations:

sage: de = x^3*diff(y, x, 3) + x^2*diff(y, x, 2) - 2*x*diff(y, x) + 2*y - 2*x^4
sage: Y = desolve(de, y, algorithm="fricas"); Y
(2*x^3 - 3*x^2 + 1)*_C0/x + (x^3 - 1)*_C1/x
+(x^3 - 3*x^2 - 1)*_C2/x + 1/15*(x^5 - 10*x^3 + 20*x^2 + 4)/x

The initial conditions are then interpreted as [x_0, y(x_0), y′(x_0), ..., y^(n)(x_0)]:

sage: Y = desolve(de, y, ics=[1,3,7,1,5], algorithm="fricas"); Y
1/15*(x^5 + 15*x^3 + 50*x^2 - 21)/x

FriCAS can also solve some non-linear equations:
AUTHORS:
- David Joyner (1-2006)
- Robert Bradshaw (10-2008)
- Robert Marik (10-2009)

`sage.calculus.desolvers.desolve_laplace(de, dvar, ics=None, ivar=None)`
Solve an ODE using Laplace transforms. Initial conditions are optional.

**INPUT:**
- `de` - a lambda expression representing the ODE (e.g. `de = diff(y,x,2) == diff(y,x)+sin(x)`)
- `dvar` - the dependent variable (e.g. `y`)
- `ivar` - (optional) the independent variable (hereafter called `x`), which must be specified if there is more than one independent variable in the equation.
- `ics` - a list of numbers representing initial conditions, (e.g. `f(0)=1, f'(0)=2` corresponds to `ics = [0, 1, 2]`)

**OUTPUT:**
Solution of the ODE as symbolic expression

**EXAMPLES:**
```
sage: u=function('u')(x)
sage: eq = diff(u,x) - exp(-x) - u == 0
sage: desolve_laplace(eq,u)
1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
```

We can use initial conditions:
```
sage: desolve_laplace(eq,u,ics=[0,3])
-1/2*e^(-x) + 7/2*e^x
```

The initial conditions do not persist in the system (as they persisted in previous versions):
```
sage: desolve_laplace(eq,u)
1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
```

AUTHORS:
sage.calculus.desolvers.desolve_mintides(f, ics, initial, final, delta, tolrel=1e-16, tolabs=1e-16)

Solve numerically a system of first order differential equations using the taylor series integrator implemented in mintides.

INPUT:
- \( f \) – symbolic function. Its first argument will be the independent variable. Its output should be the derivatives of the dependent variables.
- \( ics \) – a list or tuple with the initial conditions.
- \( \text{initial} \) – the starting value for the independent variable.
- \( \text{final} \) – the final value for the independent value.
- \( \text{delta} \) – the size of the steps in the output.
- \( \text{tolrel} \) – the relative tolerance for the method.
- \( \text{tolabs} \) – the absolute tolerance for the method.

OUTPUT:
- A list with the positions of the IVP.

EXAMPLES:
We integrate a periodic orbit of the Kepler problem along 50 periods:

```python
sage: var(’t,x,y,X,Y’)
(t, x, y, X, Y)
sage: f(t,x,y,X,Y)=[X, Y, -x/(x^2+y^2)^(3/2), -y/(x^2+y^2)^(3/2)]
sage: ics = [0.8, 0, 0, 1.22474487139159]
sage: t = 100*pi
sage: sol = desolve_mintides(f, ics, 0, t, t, 1e-12, 1e-12) # optional -tides
sage: sol # optional -tides # abs tol 1e-5
[[0.000000000000000, 0.800000000000000, 0.000000000000000, 1.22474487139159],
[314.159265358979, 0.800000000000000, 0.000000000000000, 1.22474487139159],
[314.159265358979, 0.800000000000000, 0.000000000000000, 1.22474487139159],
[314.159265358979, 0.800000000000000, 0.000000000000000, 1.22474487139159]]
```

ALGORITHM:
Uses TIDES.

REFERENCES:
Solve numerically a system of first-order ordinary differential equations using \texttt{odeint} from \texttt{scipy.integrate} module.

**INPUT:**

- \texttt{des} – right hand sides of the system
- \texttt{ics} – initial conditions
- \texttt{times} – a sequence of time points in which the solution must be found
- \texttt{dvars} – dependent variables. ATTENTION: the order must be the same as in \texttt{des}, that means:
  \[ \frac{d(dvars[i])}{dt} = des[i] \]
- \texttt{ivar} – independent variable, optional.
- \texttt{compute_jac} – boolean. If True, the Jacobian of \texttt{des} is computed and used during the integration of stiff systems. Default value is False.

**Other Parameters** (taken from the documentation of \texttt{odeint} function from \texttt{scipy.integrate} module.)

- \texttt{rtol}, \texttt{atol} : float The input parameters \texttt{rtol} and \texttt{atol} determine the error control performed by the solver. The solver will control the vector, \( e \), of estimated local errors in \( y \), according to an inequality of the form:
  \[ \max \text{-norm of } (e / ewt) \leq 1 \]
  where \( ewt \) is a vector of positive error weights computed as:
  \[ ewt = rtol * abs(y) + atol \]
  \texttt{rtol} and \texttt{atol} can be either vectors the same length as \( y \) or scalars.
- \texttt{tcrit} : array Vector of critical points (e.g. singularities) where integration care should be taken.
- \texttt{h0} : float, (0: solver-determined) The step size to be attempted on the first step.
- \texttt{hmax} : float, (0: solver-determined) The maximum absolute step size allowed.
- \texttt{hmin} : float, (0: solver-determined) The minimum absolute step size allowed.
- \texttt{ixpr} : boolean. Whether to generate extra printing at method switches.
- \texttt{mxstep} : integer, (0: solver-determined) Maximum number of (internally defined) steps allowed for each integration point in \( t \).
- \texttt{mxhnil} : integer, (0: solver-determined) Maximum number of messages printed.
- \texttt{mxordn} : integer, (0: solver-determined) Maximum order to be allowed for the nonstiff (Adams) method.
- \texttt{mxords} : integer, (0: solver-determined) Maximum order to be allowed for the stiff (BDF) method.

**OUTPUT:**

Return a list with the solution of the system at each time in \texttt{times}.

**EXAMPLES:**

Lotka Volterra Equations:
Symbolic Calculus, Release 10.2

from sage.calculus.desolvers import desolve_odeint

x, y = var('x, y')

f = [x*(1-y), -y*(1-x)]
sol = desolve_odeint(f, [0.5, 2], srange(0, 10, 0.1), [x, y])

# ~ needs scipy

p = line(zip(sol[:,0], sol[:,1]))

# ~ needs scipy sage.plot

p.show()

Lorenz Equations:

x, y, z = var('x, y, z')

# Next we define the parameters
sigma = 10
rho = 28
beta = 8/3

# The Lorenz equations
lorenz = [sigma*(y-x), x*(rho-z)-y, x*y-beta*z]

# Time and initial conditions
times = srange(0, 50.05, 0.05)
ics = [0, 1, 1]
sol = desolve_odeint(lorenz, ics, times, [x, y, z],
                      rtol=1e-13, atol=1e-14)

One-dimensional stiff system:

y = var('y')
epsilon = 0.01
f = y^2*(1-y)
ic = epsilon
t = srange(0, 2/epsilon, 1)
sol = desolve_odeint(f, ic, t, y,
                     rtol=1e-9, atol=1e-10, compute_jac=True)
p = points(zip(t, sol[:,0]))
p.show()

Another stiff system with some optional parameters with no default value:

y1, y2, y3 = var('y1, y2, y3')
f1 = 77.27*(y2*y1*(1-8.375*1e-6*y1-y2))
f2 = 1/77.27*(y3-(1+y1)*y2)
f3 = 0.16*(y1-y3)
f = [f1, f2, f3]
ci = [0.2, 0.4, 0.7]
t = srange(0, 10, 0.01)
v = [y1, y2, y3]
sol = desolve_odeint(f, ci, t, v, rtol=1e-3, atol=1e-4,
                     h0=0.1, hmax=1, hmin=1e-4, mxstep=1000, mxords=17)
Symbolic Calculus, Release 10.2

AUTHOR:
  • Oriol Castejon (05-2010)

sage.calculus.desolvers.desolve_rk4(de, dvar, ics=None, ivar=None, end_points=None, step=0.1, output='list', **kwds)

Solve numerically one first-order ordinary differential equation.

INPUT:
Input is similar to desolve command. The differential equation can be written in a form close to the plot_slope_field or desolve command.
  • Variant 1 (function in two variables)
    – de - right hand side, i.e. the function \( f(x, y) \) from ODE \( y' = f(x, y) \)
    – dvar - dependent variable (symbolic variable declared by var)
  • Variant 2 (symbolic equation)
    – de - equation, including term with \( \text{diff}(y, x) \)
    – dvar - dependent variable (declared as function of independent variable)
  • Other parameters
    – ivar - should be specified, if there are more variables or if the equation is autonomous
    – ics - initial conditions in the form \([x0, y0]\)
    – end_points - the end points of the interval
      * if \( \text{end_points} \) is a or [a], we integrate between \( \text{min}(\text{ics}[0], a) \) and \( \text{max}(\text{ics}[0], a) \)
      * if \( \text{end_points} \) is None, we use \( \text{end_points} = \text{ics}[0] + 10 \)
      * if \( \text{end_points} \) is [a,b] we integrate between \( \text{min}(\text{ics}[0], a) \) and \( \text{max}(\text{ics}[0], b) \)
    – step - (optional, default:0.1) the length of the step (positive number)
    – output - (optional, default: 'list') one of 'list', 'plot', 'slope_field' (graph of the solution with slope field)

OUTPUT:
Return a list of points, or plot produced by list_plot, optionally with slope field.

See also:
ode_solver().

EXAMPLES:

sage: from sage.calculus.desolvers import desolve_rk4

Variant 2 for input - more common in numerics:

sage: x, y = var('x, y')
sage: desolve_rk4(x*y*(2-y), y, ics=[0,1], end_points=1, step=0.5)
[[[0, 1], [0.5, 1.12419127424558], [1.0, 1.46159016228882...]]

Variant 1 for input - we can pass ODE in the form used by desolve function In this example we integrate backwards, since \( \text{end_points} < \text{ics}[0] \):
Here we show how to plot simple pictures. For more advanced applications use list_plot instead. To see the resulting picture use show(P) in Sage notebook.

```python
sage: x,y = var('x,y')
sage: P=desolve_rk4(y*(2-y),y,ics=[0,.1],ivar=x,output='slope_field',end_points=[-4, 6],thickness=3)
```

**ALGORITHM:**

4th order Runge-Kutta method. Wrapper for command rk in Maxima’s dynamics package. Perhaps could be faster by using fast_float instead.

**AUTHORS:**

• Robert Marik (10-2009)

```python
sage.calculus.desolvers.desolve_rk4_determine_bounds(ics, end_points=None)
```

Used to determine bounds for numerical integration.

- If `end_points` is None, the interval for integration is from `ics[0]` to `ics[0]+10`
- If `end_points` is a or [a], the interval for integration is from min(`ics[0]`, a) to max(`ics[0]`, a)
- If `end_points` is [a,b], the interval for integration is from min(`ics[0]`, a) to max(`ics[0]`, b)

**EXAMPLES:**

```python
sage: from sage.calculus.desolvers import desolve_rk4_determine_bounds
sage: desolve_rk4_determine_bounds([0,2],1)
(0, 1)
sage: desolve_rk4_determine_bounds([0,2],[0,1])
(0, 10)
sage: desolve_rk4_determine_bounds([0,2],[2])
(-2, 0)
sage: desolve_rk4_determine_bounds([0,2],[2,4])
(-2, 4)
```

```python
sage.calculus.desolvers.desolve_system(des, vars=None, ics=None, ivar=None, algorithm='maxima')
```

Solve a system of any size of 1st order ODEs. Initial conditions are optional.

One dimensional systems are passed to `desolve_laplace()`.

**INPUT:**

- `des` – list of ODEs
- `vars` – list of dependent variables
- `ics` – (optional) list of initial values for `ivar` and `vars`; if `ics` is defined, it should provide initial conditions for each variable, otherwise an exception would be raised
- `ivar` – (optional) the independent variable, which must be specified if there is more than one independent variable in the equation
Symbolic Calculus, Release 10.2

- algorithm – (default: 'maxima') one of
  - 'maxima' - use maxima
  - 'fricas' - use FriCAS (the optional fricas spkg has to be installed)

EXAMPLES:

```
sage: t = var('t')
sage: x = function('x')(t)
sage: y = function('y')(t)
sage: de1 = diff(x,t) + y - 1 == 0
sage: de2 = diff(y,t) - x + 1 == 0
sage: desolve_system([de1, de2], [x,y])
[x(t) == (x(0) - 1)*cos(t) - (y(0) - 1)*sin(t) + 1,
y(t) == (y(0) - 1)*cos(t) + (x(0) - 1)*sin(t) + 1]
```

The same system solved using FriCAS:

```
sage: desolve_system([de1, de2], [x,y], algorithm='fricas') # optional - fricas
[x(t) == _C0*cos(t) + cos(t)^2 + _C1*sin(t) + sin(t)^2,
y(t) == _C1*cos(t) + _C0*sin(t) + 1]
```

Now we give some initial conditions:

```
sage: sol = desolve_system([de1, de2], [x,y], ics=[0,1,2]); sol
[x(t) == -sin(t) + 1, y(t) == cos(t) + 1]
sage: solnx, solny = sol[0].rhs(), sol[1].rhs()
sage: plot([solnx,solny],(0,1)) # not tested
sage: parametric_plot((solnx,solny),(0,1)) # not tested
```

AUTHORS:

- Robert Bradshaw (10-2008)
- Sergey Bykov (10-2014)

```
sage.calculus.desolvers.desolve_system_rk4(des, vars=None, ics=None, ivar=None, end_points=None, step=0.1)
```

Solve numerically a system of first-order ordinary differential equations using the 4th order Runge-Kutta method.

Wrapper for Maxima command rk.

INPUT:

input is similar to desolve_system and desolve_rk4 commands

- des - right hand sides of the system
- vars - dependent variables
- ivar - (optional) should be specified, if there are more variables or if the equation is autonomous and the independent variable is missing
- ics - initial conditions in the form \([x0,y01,y02,y03,\ldots]\)
- end_points - the end points of the interval
  - if end_points is a or \([a]\), we integrate on between \(\min(ics[0], a)\) and \(\max(ics[0], a)\)
  - if end_points is None, we use end_points=ics[0]+10
– if end_points is [a,b] we integrate on between min(ics[0], a) and max(ics[0], b)

• step – (optional, default: 0.1) the length of the step

OUTPUT:
Return a list of points.

See also:
ode_solver().

EXAMPLES:

```sage
from sage.calculus.desolvers import desolve_system_rk4
```

Lotka Volterra system:

```sage
desolve_system_rk4(x*(1-y), -y*(1-x), ics=[0,0.5,2], ics=0, ics=0.5, ics=2, end_points=20)
p = plot(Q, [i.j for i,j,k in P])
q = plot(Q, [j,k for i,j,k in P])
```

ALGORITHM:
4th order Runge-Kutta method. Wrapper for command rk in Maxima’s dynamics package. Perhaps could be faster by using fast_float instead.

AUTHOR:
• Robert Marik (10-2009)

Solve numerically a system of first order differential equations using the taylor series integrator in arbitrary precision implemented in tides.

INPUT:
• f – symbolic function. Its first argument will be the independent variable. Its output should be the derivatives of the dependent variables.
• ics – a list or tuple with the initial conditions.
• initial – the starting value for the independent variable.
• final – the final value for the independent value.
• delta – the size of the steps in the output.
• tolrel – the relative tolerance for the method.
• tolabs – the absolute tolerance for the method.
• digits – the digits of precision used in the computation.

OUTPUT:
EXAMPLES:

We integrate the Lorenz equations with Saltzman values for the parameters along 10 periodic orbits with 100 digits of precision:

```
sage: var('t, x, y, z')
(t, x, y, z)
sage: s = 10
sage: r = 28
sage: b = 8/3
sage: f(t,x,y,z)= [s*(y-x),x*(r-z)-y,x*y-b*z]
sage: x0 = -13.
sage: y0 = -19.
sage: z0 = 27
sage: T = 15.
sage: sol = desolve_tides_mpfr(f, [x0, y0, z0], 0, T, T, 1e-100, 1e-100, 100) #
optional - tides
```

ALGORITHM:
Uses TIDES.

**Warning:** This requires the package tides.

REFERENCES:
sage.calculus.desolvers.eulers_method(f, x0, y0, h, x1, algorithm='table')

This implements Euler’s method for finding numerically the solution of the 1st order ODE $y’ = f(x, y), y(a) = c$. The $x$ column of the table increments from $x_0$ to $x_1$ by $h$ (so $(x_1 - x_0)/h$ must be an integer). In the $y$ column, the new $y$-value equals the old $y$-value plus the corresponding entry in the last column.

Note: This function is for pedagogical purposes only.

EXAMPLES:

```python
sage: from sage.calculus.desolvers import eulers_method
sage: x,y = PolynomialRing(QQ,2,"xy").gens()
sage: eulers_method(5*x+y-5,0,1,1/2,1,algorithm='table')

x y h*f(x,y)
0 1 -2
1/2 -1 -7/4
1 -11/4 -11/8
```

```python
sage: x,y = PolynomialRing(QQ,2,"xy").gens()
sage: eulers_method(5*x+y-5,0,1,1/2,1,algorithm="none")
[[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
```

```python
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU')
sage: x,y = PolynomialRing(RR,2,"xy").gens()
sage: eulers_method(5*x+y-5,0,1,1/2,1,algorithm="None")
[[0, 1], [1/2, -1.0], [1, -2.7], [3/2, -4.0]]
```

```python
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU')
sage: x,y=PolynomialRing(RR,2,"xy").gens()
sage: eulers_method(5*x+y-5,1,1,1/3,2)

x y h*f(x,y)
1 1 1/3
4/3 4/3 1
5/3 7/3 17/9
2 38/9 83/27
```

```python
sage: pts = eulers_method(5*x+y-5,0,1,1/2,1,algorithm="none")
sage: P1 = list_plot(pts)
```

(continues on next page)
needs sage.plot
sage: P2 = line(pts)

needs sage.plot
sage: (P1 + P2).show() #~

AUTHORS:
• David Joyner

sage.calculus.desolvers.eulers_method_2x2(f, g, t0, x0, y0, t1, h, algorithm='table')

This implements Euler’s method for finding numerically the solution of the 1st order system of two ODEs
\[
\begin{align*}
x' &= f(t, x, y), x(t_0) = x_0 \\
y' &= g(t, x, y), y(t_0) = y_0.
\end{align*}
\]

The \( t \) column of the table increments from \( t_0 \) to \( t_1 \) by \( h \) (so \( \frac{t_1-t_0}{h} \) must be an integer). In the \( x \) column, the new \( x \)-value equals the old \( x \)-value plus the corresponding entry in the next (third) column. In the \( y \) column, the new \( y \)-value equals the old \( y \)-value plus the corresponding entry in the next (last) column.

Note: This function is for pedagogical purposes only.

EXAMPLES:

```python
sage: from sage.calculus.desolvers import eulers_method_2x2
sage: t, x, y = PolynomialRing(QQ,3,"txy").gens()
sage: f = x+y+t; g = x-y
sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1,algorithm='none')
[[0, 0, 0], [1/3, 0, 0], [2/3, 1/9, 0], [1, 10/27, 1/27], [4/3, 68/81, 4/27]]
```

```
sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1)
\begin{array}{ccc}
\hline
\text{t} & \text{x} & \h^f(t,x,y) \\
\hline
0 & 0 & 0 \\
0 & 0 & 0 \\
1/3 & 0 & 1/9 \\
2/3 & 1/9 & 7/27 \\
1 & 10/27 & 38/81 \\
1/9 & 1/9 & \\
\hline
\end{array}
```

```python
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU')
sage: t,x,y=PolynomialRing(RR,3,"txy").gens()
sage: f = x+y+t; g = x-y
sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1)
```

```
sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1)
\begin{array}{ccc}
\hline
\text{t} & \text{x} & \h^f(t,x,y) \\
\hline
0 & 0 & 0.00 \\
0 & 0.00 & 0.00 \\
1/3 & 0.00 & 0.13 \\
0.00 & \\
\hline
\end{array}
```

(continues on next page)
To numerically approximate $y(1)$, where $(1 + t^2) y'' + y' - y = 0$, $y(0) = 1$, $y'(0) = -1$, using 4 steps of Euler's method, first convert to a system: $y_1' = y_2$, $y_1(0) = 1$; $y_2' = \frac{y_1 - y_2}{1 + t^2}$, $y_2(0) = -1$.

```
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU')
sage: t, x, y=PolynomialRing(RR,3,"txy").gens()
sage: f = y; g = (x-y)/(1+t^2)
sage: eulers_method_2x2(f,g, 0, 1, -1, 1/4, 1)
```

<table>
<thead>
<tr>
<th>t</th>
<th>x</th>
<th>h*f(t,x,y)</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-0.25</td>
<td>-1</td>
</tr>
<tr>
<td>1/4</td>
<td>0.75</td>
<td>-0.12</td>
<td>-0.50</td>
</tr>
<tr>
<td>1/2</td>
<td>0.63</td>
<td>-0.054</td>
<td>-0.21</td>
</tr>
<tr>
<td>3/4</td>
<td>0.63</td>
<td>-0.0078</td>
<td>-0.031</td>
</tr>
<tr>
<td>1</td>
<td>0.63</td>
<td>0.020</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.071</td>
<td></td>
</tr>
</tbody>
</table>

To numerically approximate $y(1)$, where $y'' + ty' + y = 0$, $y(0) = 1$, $y'(0) = 0$:

```
sage: t,x,y=PolynomialRing(RR,3,"txy").gens()
sage: f = y; g = -x-y*t
sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
```

<table>
<thead>
<tr>
<th>t</th>
<th>x</th>
<th>h*f(t,x,y)</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>1/4</td>
<td>1.0</td>
<td>-0.062</td>
<td>-0.25</td>
</tr>
<tr>
<td>1/2</td>
<td>0.94</td>
<td>-0.11</td>
<td>-0.46</td>
</tr>
<tr>
<td>3/4</td>
<td>0.88</td>
<td>-0.15</td>
<td>-0.62</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>-0.17</td>
<td>-0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.015</td>
<td></td>
</tr>
</tbody>
</table>

AUTHORS:

- David Joyner

sage.calculus.desolvers.eulers_method_2x2_plot(f, g, t0, x0, y0, h, t1)

Plot solution of ODE.

This plots the solution in the rectangle with sides (xrange[0],xrange[1]) and (yrange[0],yrange[1]), and plots using Euler's method the numerical solution of the 1st order ODEs $x' = f(t,x,y)$, $x(a) = x_0$, $y' = g(t,x,y)$, $y(a) = y_0$. 2.19. Solving ordinary differential equations 319
Note: This function is for pedagogical purposes only.

EXAMPLES:
The following example plots the solution to $\theta'' + \sin(\theta) = 0$, $\theta(0) = \frac{3}{4}$, $\theta'(0) = 0$. Type P[0].show() to plot the solution, (P[0]+P[1]).show() to plot $(t, \theta(t))$ and $(t, \theta'(t))$:

```python
sage: from sage.calculus.desolvers import eulers_method_2x2_plot
sage: f = lambda z : z[2]; g = lambda z : -sin(z[1])

sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0) # needs sage.plot
```

Solve an ODE using FriCAS.

EXAMPLES:

```python
sage: x = var('x')
sage: y = function('y')(x)

sage: desolve(diff(y,x) + y - 1, y, algorithm="fricas") # optional ~
˓→fricas
_C0*e^(-x) + 1

sage: desolve(diff(y, x) + y == y^3*sin(x), y, algorithm="fricas") # optional ~
˓→fricas
-1/5*(2*cos(x)*y(x)^2 + 4*sin(x)*y(x)^2 - 5)*e^(-2*x)/y(x)^2
```

Solve a system of first order ODEs using FriCAS.

EXAMPLES:

```python
sage: t = var('t')
sage: x = function('x')(t)
sage: y = function('y')(t)

sage: de1 = diff(x,t) + y - 1 == 0
sage: de2 = diff(y,t) - x + 1 == 0

sage: desolve_system([de1, de2], [x, y], algorithm="fricas") # optional ~
˓→fricas
[x(t) == _C0*cos(t) + cos(t)^2 + _C1*sin(t) + sin(t)^2,
y(t) == -_C1*cos(t) + _C0*sin(t) + 1]

sage: desolve_system([de1, de2], [x,y], [0,1,2], algorithm="fricas") # optional ~
˓→fricas
[x(t) == cos(t)^2 + sin(t)^2 - sin(t), y(t) == cos(t) + 1]
```
2.20 Discrete Wavelet Transform

Wraps GSL’s `gsl_wavelet_transform_forward()` and `gsl_wavelet_transform_inverse()` and creates plot methods.

AUTHOR:
• Josh Kantor (2006-10-07) - initial version
• David Joyner (2006-10-09) - minor changes to docstrings and examples.

```python
sage.calculus.transforms.dwt.DWT(n, wavelet_type, wavelet_k)
```
This function initializes an GSLDoubleArray of length n which can perform a discrete wavelet transform.

INPUT:
• n – a power of 2
• T – the data in the GSLDoubleArray must be real
• wavelet_type – the name of the type of wavelet, valid choices are:
  - 'daubechies'
  - 'daubechies_centered'
  - 'haar'
  - 'haar_centered'
  - 'bspline'
  - 'bspline_centered'

For daubechies wavelets, `wavelet_k` specifies a daubechies wavelet with \( k/2 \) vanishing moments. \( k = 4, 6, ..., 20 \) for \( k \) even are the only ones implemented.

For Haar wavelets, `wavelet_k` must be 2.

For bspline wavelets, `wavelet_k` of 103, 105, 202, 204, 206, 208, 301, 305, 307, 309 will give biorthogonal B-spline wavelets of order \((i, j)\) where `wavelet_k` is \( 100 * i + j \). The wavelet transform uses \( J = \log_2(n) \) levels.

OUTPUT:
An array of the form \((s_{-1,0}, d_{0,0}, d_{1,0}, d_{1,1}, d_{2,0}, ..., d_{J-1,2^{J-1}-1})\) for \( d_{j,k} \) the detail coefficients of level \( j \). The centered forms align the coefficients of the sub-bands on edges.

EXAMPLES:
```
sage: a = WaveletTransform(128,'daubechies',4)
sage: for i in range(1, 11):
 a[i] = 1
 a[128-i] = 1
sage: a.plot().show(ymin=0) # needs sage.plot
```
```
sage: a.forward_transform()
sage: a.plot().show() # needs sage.plot
```
```
sage: a = WaveletTransform(128,'haar',2)
sage: for i in range(1, 11): a[i] = 1; a[128-i] = 1
sage: a.forward_transform()
sage: a.plot().show(ymin=0) # needs sage.plot
```
(continues on next page)
This example gives a simple example of wavelet compression:

```python
sage: # needs sage.symbolic
sage: a = DWT(2048, 'daubechies', 6)

sage: for i in range(2048): a[i] = float(sin((i*5/2048)**2))

sage: a.plot().show() # long time (7s on sage.math, 2011), needs sage.plot
sage: a.forward_transform()

sage: for i in range(1800): a[2048-i-1] = 0

sage: a.backward_transform()

sage: a.plot().show() # long time (7s on sage.math, 2011), needs sage.plot
```

```python
class sage.calculus.transforms.dwt.DiscreteWaveletTransform

Bases: GSLDoubleArray

Discrete wavelet transform class.

backward_transform()

forward_transform()

plot(xmin=None, xmax=None, **args)
```

sage.calculus.transforms.dwt.WaveletTransform(n, wavelet_type, wavelet_k)

This function initializes an GSLDoubleArray of length n which can perform a discrete wavelet transform.

INPUT:

- n – a power of 2
- T – the data in the GSLDoubleArray must be real
- wavelet_type – the name of the type of wavelet, valid choices are:
  - 'daubechies'
  - 'daubechies_centered'
  - 'haar'
  - 'haar_centered'
  - 'bspline'
  - 'bspline_centered'

For daubechies wavelets, wavelet_k specifies a daubechies wavelet with \( k/2 \) vanishing moments. \( k = 4, 6, \ldots, 20 \) for \( k \) even are the only ones implemented.

For Haar wavelets, wavelet_k must be 2.

For bspline wavelets, wavelet_k of 103, 105, 202, 204, 206, 208, 301, 305, 307, 309 will give biorthogonal B-spline wavelets of order \((i, j)\) where wavelet_k is 100 * i + j. The wavelet transform uses \( J = \log_2(n) \) levels.
OUTPUT:

An array of the form \((s_{-1,0}, d_{0,0}, d_{1,0}, d_{1,1}, d_{2,0}, \ldots, d_{j-1,2^j-1})\) for \(d_{j,h}\), the detail coefficients of level \(j\). The centered forms align the coefficients of the sub-bands on edges.

EXAM P L E S:

```python
sage: a = WaveletTransform(128, 'daubechies', 4)
sage: for i in range(1, 11):
....: a[i] = 1
....: a[128-i] = 1
sage: a.plot().show(ymin=0) # needs sage.plot
sage: a.forward_transform()
sage: a.plot().show() # needs sage.plot
sage: a = WaveletTransform(128, 'haar', 2)
sage: for i in range(1, 11): a[i] = 1; a[128-i] = 1
sage: a.forward_transform()
sage: a.plot().show(ymin=0) # needs sage.plot
sage: a = WaveletTransform(128, 'bspline_centered', 103)
sage: for i in range(1, 11): a[i] = 1; a[100+i] = 1
sage: a.forward_transform()
sage: a.plot().show(ymin=0) # needs sage.plot
```

This example gives a simple example of wavelet compression:

```python
sage: # needs sage.symbolic
sage: a = DWT(2048, 'daubechies', 6)
sage: for i in range(2048): a[i] = float(sin((i*5/2048)**2))
sage: a.plot().show() # long time (7s on sage.math, 2011), needs sage.plot
sage: a.forward_transform()
sage: for i in range(1800): a[2048-i-1] = 0
sage: a.backward_transform()
sage: a.plot().show() # long time (7s on sage.math, 2011), needs sage.plot
```

sage.calculus.transforms.dwt.is2pow(n)

## 2.21 Discrete Fourier Transforms

This file contains functions useful for computing discrete Fourier transforms and probability distribution functions for discrete random variables for sequences of elements of \( \mathbb{Q} \) or \( \mathbb{C} \), indexed by a range \( \mathbb{N} \), \( \mathbb{Z}/N\mathbb{Z} \), an abelian group, the conjugacy classes of a permutation group, or the conjugacy classes of a matrix group.

This file implements:

- \.__eq__()\n- \.__mul__()\n  (for right multiplication by a scalar)
- plotting, printing – \(\text{IndexedSequence.plot()}\), \(\text{IndexedSequence.plot_histogram()}\), \._repr_()\n- \.__str__()\n
### 2.21. Discrete Fourier Transforms
• **dft()** – computes the discrete Fourier transform for the following cases:
  - a sequence (over \( \mathbb{Q} \) or CyclotomicField) indexed by range(\( N \)) or \( \mathbb{Z}/N\mathbb{Z} \)
  - a sequence (as above) indexed by a finite abelian group
  - a sequence (as above) indexed by a complete set of representatives of the conjugacy classes of a finite permutation group
  - a sequence (as above) indexed by a complete set of representatives of the conjugacy classes of a finite matrix group

• **idft()** – computes the discrete Fourier transform for the following cases:
  - a sequence (over \( \mathbb{Q} \) or CyclotomicField) indexed by range(\( N \)) or \( \mathbb{Z}/N\mathbb{Z} \)

• **dct(), dst()** (for discrete Fourier/Cosine/Sine transform)

• **convolution** (in `IndexedSequence.convolution()` and `IndexedSequence.convolution_periodic()`)

• **fft(), ifft()** – (fast Fourier transforms) wrapping GSL’s `gsl_fft_complex_forward()`, `gsl_fft_complex_inverse()`, using William Stein’s `FastFourierTransform()`

• **dwt(), idwt()** – (fast wavelet transforms) wrapping GSL’s `gsl_dwt_forward()`, `gsl_dwt_backward()` using Joshua Kantor’s `WaveletTransform()` class. Allows for wavelets of type:
  - “haar”
  - “daubechies”
  - “daubechies_centered”
  - “haar_centered”
  - “bspline”
  - “bspline_centered”

**Todo:**
- “filtered” DFTs
- more idfts
- more examples for probability, stats, theory of FTs

**AUTHORS:**
- David Joyner (2006-10)
- William Stein (2006-11) – fix many bugs

**class** `sage.calculus.transforms.dft.IndexedSequence(L, index_object)`

**Bases:** `SageObject`

An indexed sequence.

**INPUT:**
- \( L \) – A list
- `index_object` must be a Sage object with an `__iter__` method containing the same number of elements as `self`, which is a list of elements taken from a field.
base_ring()

This just returns the common parent \( R \) of the \( N \) list elements. In some applications (say, when computing the discrete Fourier transform, dft), it is more accurate to think of the base_ring as the group ring \( \mathbb{Q}(\zeta_N)[R] \).

EXAMPLES:

```
sage: J = list(range(10))
sage: A = [1/10 for j in J]
sage: s = IndexedSequence(A,J)
sage: s.base_ring()
Rational Field
```

\textbf{convolution}\texttt{(other)}

Convolves two sequences of the same length (automatically expands the shortest one by extending it by 0 if they have different lengths).

If \( \{a_n\} \) and \( \{b_n\} \) are sequences indexed by \( (n = 0, 1, ..., N - 1) \), extended by zero for all \( n \) in \( \mathbb{Z} \), then the convolution is

\[ c_j = \sum_{i=0}^{N-1} a_i b_{j-i}. \]

INPUT:

- \texttt{other} – a collection of elements of a ring with index set a finite abelian group (under +)

OUTPUT:

The Dirichlet convolution of \texttt{self} and \texttt{other}.

EXAMPLES:

```
sage: J = list(range(5))
sage: A = [ZZ(1) for i in J]
sage: B = [ZZ(1) for i in J]
sage: s = IndexedSequence(A,J)
sage: t = IndexedSequence(B,J)
sage: s.convolution(t)
[1, 2, 3, 4, 5, 4, 3, 2, 1]
```

AUTHOR: David Joyner (2006-09)

\textbf{convolution\_periodic}\texttt{(other)}

Convolves two collections indexed by a range(...) of the same length (automatically expands the shortest one by extending it by 0 if they have different lengths).

If \( \{a_n\} \) and \( \{b_n\} \) are sequences indexed by \( (n = 0, 1, ..., N - 1) \), extended periodically for all \( n \) in \( \mathbb{Z} \), then the convolution is

\[ c_j = \sum_{i=0}^{N-1} a_i b_{j-i}. \]

INPUT:

- \texttt{other} – a sequence of elements of \( \mathbb{C}, \mathbb{R} \) or \( \mathbb{F}_q \)

OUTPUT:

The Dirichlet convolution of \texttt{self} and \texttt{other}.

EXAMPLES:
AUTHOR: David Joyner (2006-09)

dct()
A discrete Cosine transform.

EXAMPLES:

```python
sage: J = list(range(5))
sage: A = [exp(-2*pi*i*1j/5) for i in J] # needs sage.symbolic
sage: s = IndexedSequence(A, J) # needs sage.symbolic
sage: s.dct() # needs sage.symbolic
Indexed sequence: [0, 1/16*(sqrt(5) + I*sqrt(-2*sqrt(5) + 10) + ... indexed by [0, 1, 2, 3, 4]
```

dft(chi=None)
A discrete Fourier transform “over $\mathbb{Q}$” using exact $N$-th roots of unity.

EXAMPLES:

```python
sage: J = list(range(6))
sage: A = [ZZ(1) for i in J]
sage: s = IndexedSequence(A, J)
sage: s.dft(lambda x: x^2) # needs sage.rings.number_field
Indexed sequence: [6, 0, 0, 6, 0, 0] indexed by [0, 1, 2, 3, 4, 5]
sage: s.dft() # needs sage.rings.number_field
Indexed sequence: [6, 0, 0, 0, 0, 0] indexed by [0, 1, 2, 3, 4, 5]
sage: J = AbelianGroup(2, [2,3], names='ab')
sage: s = IndexedSequence([1,2,3,4,5,6], J) # the precision of output is somewhat random and architecture-dependent.
sage: s.dft() # the "scalar-valued Fourier transform" of this class fcn
Indexed sequence: [8, 2, 2] indexed by [(0, 1,2), (1,2,3)]
sage: J = AbelianGroup(2, [2,3], names='ab')
sage: s = IndexedSequence([1,2,3,4,5,6], J) # needs sage.groups
sage: G = SymmetricGroup(3)
sage: J = G.conjugacy_classes_representatives()
sage: s = IndexedSequence([1,2,3], J) # 1,2,3 are the values of a class fcn on G
sage: s.dft() # \# needs sage.rings.number_field
```

(continues on next page)
Indexed sequence: [21.0000000000000, 
-2.99999999999997 - 1.73205080756885*I, 
-2.99999999999999 + 1.73205080756888*I, 
-9.00000000000000 + 0.0000000000000485744257349999*I, 
-0.000000000000097696261670137 - 0. 
→ 0.0000000000000159872115546022*I, 
→ 0.0000000000000106581410364015*I] 
indexed by Multiplicative Abelian group isomorphic to C2 x C3 
sage: J = CyclicPermutationGroup(6) 
sage: s = IndexedSequence([1,2,3,4,5,6], J) 
sage: s.dft()  # the precision of output is somewhat random and architecture-dependent. 
Indexed sequence: [21.0000000000000, 
-2.99999999999997 - 1.73205080756885*I, 
-2.99999999999999 + 1.73205080756888*I, 
-9.00000000000000 + 0.0000000000000485744257349999*I, 
-0.000000000000097696261670137 - 0. 
→ 0.0000000000000159872115546022*I, 
→ 0.0000000000000106581410364015*I] 
indexed by Cyclic group of order 6 as a permutation group 
sage: # needs sage.rings.number_field 
sage: p = 7; J = list(range(p)); A = [kronecker_symbol(j,p) for j in J] 
sage: s = IndexedSequence(A, J) 
sage: Fs = s.dft() 
sage: c = Fs.list()[1]; [x/c for x in Fs.list()]; s.list() 
[0, 1, 1, -1, 1, -1, -1] 
[0, 1, 1, -1, 1, -1, -1] 
The DFT of the values of the quadratic residue symbol is itself, up to a constant factor (denoted c on the last line above). 

Todo: Read the parent of the elements of S; if Q or C leave as is; if AbelianGroup, use abelian_group_dual; if some other implemented Group (permutation, matrix), call .characters() and test if the index list is the set of conjugacy classes.

dict() 
Return a python dict of self where the keys are elements in the indexing set. 
EXAMPLES: 

dst() 
A discrete Sine transform.
EXAMPLES:

```
sage: J = list(range(5))
sage: I = CC.0; pi = CC.pi()
sage: A = [exp(-2*pi*i*I/5) for i in J]
sage: s = IndexedSequence(A, J)

sage: s.dst() # discrete sine
Indexed sequence: [0.000000000000000, 1.11022302462516e-16 - 2.50000000000000*I, ...
 → ...
indexed by [0, 1, 2, 3, 4]
```

**dwt** *(other='haar', wavelet_k=2)*

Wraps the gsl WaveletTransform.forward in *dwt* (written by Joshua Kantor). Assumes the length of the sample is a power of 2. Uses the GSL function *gsl_wavelet_transform_forward()*.

**INPUT:**

- **other** – the name of the type of wavelet; valid choices are:
  - 'daubchies'
  - 'daubchies_centered'
  - 'haar' (default)
  - 'haar_centered'
  - 'bspline'
  - 'bspline_centered'

- **wavelet_k** – For daubchies wavelets, *wavelet_k* specifies a daubchies wavelet with $k/2$ vanishing moments. $k = 4, 6, ..., 20$ for $k$ even are the only ones implemented.

  For Haar wavelets, *wavelet_k* must be 2.

  For bspline wavelets, *wavelet_k* equal to 103, 105, 202, 204, 206, 208, 301, 305, 307, 309 will give biorthogonal B-spline wavelets of order $(i, j)$ where *wavelet_k* equals $100 \cdot i + j$.

  The wavelet transform uses $J = \log_2(n)$ levels.

**EXAMPLES:**

```
sage: J = list(range(8))
sage: A = [RR(1) for i in J]
sage: s = IndexedSequence(A, J)
sage: t = s.dwt()

sage: t # slightly random output
Indexed sequence: [2.82842712474999, 0.000000000000000, 0.000000000000000, 0.
 → 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.
 → 0.000000000000000]
indexed by [0, 1, 2, 3, 4, 5, 6, 7]
```

**fft()**

Wraps the gsl FastFourierTransform.forward() in *fft*.

If the length is a power of 2 then this automatically uses the radix2 method. If the number of sample points in the input is a power of 2 then the wrapper for the GSL function *gsl_fft_complex_radix2_forward()* is automatically called. Otherwise, *gsl_fft_complex_forward()* is used.

**EXAMPLES:**
sage: J = list(range(5))
sage: A = [RR(1) for i in J]
sage: s = IndexedSequence(A, J)
sage: t = s.fft(); t
Indexed sequence: [5.00000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000]
indexed by [0, 1, 2, 3, 4]

idft()

A discrete inverse Fourier transform. Only works over $\mathbb{Q}$.

EXAMPLES:

sage: J = list(range(5))
sage: A = [ZZ(1) for i in J]
sage: s = IndexedSequence(A, J)
sage: fs = s.dft(); fs
#→ needs sage.rings.number_field
Indexed sequence: [5, 0, 0, 0, 0]
indexed by [0, 1, 2, 3, 4]
sage: it = fs.idft(); it
#→ needs sage.rings.number_field
Indexed sequence: [1, 1, 1, 1, 1]
indexed by [0, 1, 2, 3, 4]
sage: it == s
#→ needs sage.rings.number_field
True

idwt(other='haar', wavelet_k=2)

Implements the gsl WaveletTransform.backward() in dwt.

Assumes the length of the sample is a power of 2. Uses the GSL function gsl_wavelet_transform_backward() in dwt.

INPUT:

• other – Must be one of the following:
  – "haar"
  – "daubechies"
  – "daubechies_centered"
  – "haar_centered"
  – "bspline"
  – "bspline_centered"

• wavelet_k – For daubechies wavelets, wavelet_k specifies a daubechies wavelet with $k/2$ vanishing moments. $k = 4, 6, ..., 20$ for $k$ even are the only ones implemented.

  For Haar wavelets, wavelet_k must be 2.

  For bspline wavelets, wavelet_k equal to 103, 105, 202, 204, 206, 208, 301, 305, 307, 309 will give biorthogonal B-spline wavelets of order $(i, j)$ where wavelet_k equals $100 \cdot i + j$.

EXAMPLES:
sage: J = list(range(8))
sage: A = [RR(1) for i in J]
sage: s = IndexedSequence(A,J)
sage: t = s.dwt()
sage: t   # random arch dependent output
Indexed sequence: [2.8284271247499999, 0.0000000000000000, 0.0000000000000000, 0.
˓→0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.
˓→0000000000000000]
indexed by [0, 1, 2, 3, 4, 5, 6, 7]
sage: t.idwt()   # random arch dependent output
Indexed sequence: [1.0000000000000000, 1.0000000000000000, 1.0000000000000000, 1.
˓→0000000000000000, 1.0000000000000000, 1.0000000000000000, 1.0000000000000000, 1.
˓→0000000000000000]
indexed by [0, 1, 2, 3, 4, 5, 6, 7]
sage: t.idwt() == s
True
sage: J = list(range(16))
sage: A = [RR(1) for i in J]
sage: s = IndexedSequence(A,J)
sage: t = s.dwt("bspline", 103)
sage: t   # random arch dependent output
Indexed sequence: [4.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.
˓→0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.
˓→0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.
˓→0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.
˓→0000000000000000]
indexed by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: t.idwt("bspline", 103) == s
True

ifft()
Implements the gsl FastFourierTransform.inverse in fft.
If the number of sample points in the input is a power of 2 then the wrapper for the
GSL function gsl_fft_complex_radix2_inverse() is automatically called. Otherwise,
gsl_fft_complex_inverse() is used.
EXAMPLES:

sage: J = list(range(5))
sage: A = [RR(1) for i in J]
sage: s = IndexedSequence(A,J)
sage: t = s.fft(); t
Indexed sequence: [5.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.
˓→0000000000000000, 0.0000000000000000]
indexed by [0, 1, 2, 3, 4]
sage: t.ifft()
Indexed sequence: [1.0000000000000000, 1.0000000000000000, 1.0000000000000000, 1.
˓→0000000000000000, 1.0000000000000000]
indexed by [0, 1, 2, 3, 4]
sage: t.ifft() == s
1

index_object()
Return the indexing object.

EXAMPLES:

```
sage: J = list(range(10))
sage: A = [1/10 for j in J]
sage: s = IndexedSequence(A,J)
sage: s.index_object()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

`list()`

Return the list of self.

EXAMPLES:

```
sage: J = list(range(10))
sage: A = [1/10 for j in J]
sage: s = IndexedSequence(A,J)
sage: s.list()
[1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10]
```

`plot()`

Plot the points of the sequence.

Elements of the sequence are assumed to be real or from a finite field, with a real indexing set \( I = \text{range}(|\text{len}(\text{self})|) \).

EXAMPLES:

```
sage: I = list(range(3))
sage: A = [ZZ(i^2)+1 for i in I]
sage: s = IndexedSequence(A,I)
sage: P = s.plot() # needs sage.plot
```

`plot_histogram(clr=(0, 0, 1), eps=0.4)`

Plot the histogram plot of the sequence.

The sequence is assumed to be real or from a finite field, with a real indexing set \( I \) coercible into \( \mathbb{R} \).

Options are `clr`, which is an RGB value, and `eps`, which is the spacing between the bars.

EXAMPLES:

```
sage: J = list(range(3))
sage: A = [ZZ(i^2)+1 for i in J]
sage: s = IndexedSequence(A,J)
sage: P = s.plot_histogram() # needs sage.plot
```

2.21. Discrete Fourier Transforms 331
2.22 Fast Fourier Transforms Using GSL

AUTHORS:
- William Stein (2006-9): initial file (radix2)
- D. Joyner (2006-10): Minor modifications (from radix2 to general case and some documentation).
- M. Hansen (2013-3): Fix radix2 backwards transformation

`sage.calculus.transforms.fft.FFT(size, base_ring=None)`
Create an array for fast Fourier transform conversion using gsl.

INPUT:
- `size` – The size of the array
- `base_ring` – Unused (2013-03)

EXAMPLES:
We create an array of the desired size:

```
sage: a = FastFourierTransform(8)
sage: a
[(0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),
 → (0.0, 0.0)]
```

Now, set the values of the array:

```
sage: for i in range(8): a[i] = i + 1
sage: a
[(1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0), (6.0, 0.0), (7.0, 0.0),
 → (8.0, 0.0)]
```

We can perform the forward Fourier transform on the array:

```
sage: a.forward_transform()
#abs tol 1e-2
sage: a
[(36.0, 0.0), (-4.00, 9.65), (-4.0, 4.0), (-4.0, 1.65), (-4.0, 0.0), (-4.0, -1.65),
 → (-4.0, -4.0), (-4.0, -9.65)]
```

And backwards:

```
sage: a.backward_transform()
#abs tol 1e-2
sage: a
[(8.0, 0.0), (16.0, 0.0), (24.0, 0.0), (32.0, 0.0), (40.0, 0.0), (48.0, 0.0), (56.0,
 → 0.0), (64.0, 0.0)]
```

Other example:

```
sage: a = FastFourierTransform(128)
sage: for i in range(1, 11):
 a[i] = 1
 a[128-i] = 1
sage: a[:6:2]
(continues on next page)
sage: a = FastFourierTransform(8)
sage: a
[(0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0)]

Now, set the values of the array:

sage: for i in range(8): a[i] = i + 1
sage: a
[(1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0), (6.0, 0.0), (7.0, 0.0), (8.0, 0.0)]

We can perform the forward Fourier transform on the array:

sage: a.forward_transform()
sage: a
[(36.0, 0.0), (-4.00, 9.65), (-4.0, 4.0), (-4.0, 1.65), (-4.0, 0.0), (-4.0, -1.65), (-4.0, -4.0), (-4.0, -9.65)]

And backwards:

sage: a.backward_transform()
sage: a
[(8.0, 0.0), (16.0, 0.0), (24.0, 0.0), (32.0, 0.0), (40.0, 0.0), (48.0, 0.0), (56.0, 0.0), (64.0, 0.0)]

Other example:

sage: a = FastFourierTransform(128)
sage: for i in range(1, 11):
.....: a[i] = 1
.....: a[128-i] = 1
sage: a[:6:2]
[(0.0, 0.0), (1.0, 0.0), (1.0, 0.0)]

sage: a.plot().show(ymin=0)
Symbolic Calculus, Release 10.2

```python
needs sage.plot
sage: a.forward_transform()
sage: a.plot().show()
# needs sage.plot
```

class sage.calculus.transforms.fft.FastFourierTransform_base

Bases: object

class sage.calculus.transforms.fft.FastFourierTransform_complex

Bases: FastFourierTransform_base

Wrapper class for GSL's fast Fourier transform.

`backward_transform()`

Compute the in-place backwards Fourier transform of this data using the Cooley-Tukey algorithm.

OUTPUT:

- None, the transformation is done in-place.

This is the same as `inverse_transform()` but lacks normalization so that `f.forward_transform().backward_transform() == n*f`. Where n is the size of the array.

EXAMPLES:

```python
sage: a = FastFourierTransform(125)
sage: b = FastFourierTransform(125)
sage: for i in range(1, 60): a[i]=1
sage: for i in range(1, 60): b[i]=1
sage: a.forward_transform()
sage: a.backward_transform()
sage: (a.plot() + b.plot()).show(ymin=0)  # long time (2s on sage.math, 2011), needs sage.plot
sage: abs(sum([CDF(a[i])/125-CDF(b[i]) for i in range(125)])) < 2**-16
True
```

Here we check it with a power of two:

```python
sage: a = FastFourierTransform(128)
sage: b = FastFourierTransform(128)
sage: for i in range(1, 60): a[i]=1
sage: for i in range(1, 60): b[i]=1
sage: a.forward_transform()
sage: a.backward_transform()
sage: (a.plot() + b.plot()).show(ymin=0)  # needs sage.plot
```

`forward_transform()`

Compute the in-place forward Fourier transform of this data using the Cooley-Tukey algorithm.

OUTPUT:

- None, the transformation is done in-place.

If the number of sample points in the input is a power of 2 then the gsl function `gsl_fft_complex_radix2_forward` is automatically called. Otherwise, `gsl_fft_complex_forward` is called.
EXAMPLES:

```python
sage: a = FastFourierTransform(4)
sage: for i in range(4): a[i] = i
sage: a.forward_transform()
sage: a #abs tol 1e-2
[(6.0, 0.0), (-2.0, 2.0), (-2.0, 0.0), (-2.0, -2.0)]
```

inverse_transform()
Compute the in-place inverse Fourier transform of this data using the Cooley-Tukey algorithm.

OUTPUT:
- None, the transformation is done in-place.

If the number of sample points in the input is a power of 2 then the function `gsl_fft_complex_radix2_inverse` is automatically called. Otherwise, `gsl_fft_complex_inverse` is called.

This transform is normalized so $f.forward_transform().inverse_transform() = f$ modulo round-off errors. See also `backward_transform()`.

EXAMPLES:

```python
sage: a = FastFourierTransform(125)
sage: b = FastFourierTransform(125)
sage: for i in range(1, 60): a[i] = 1
sage: for i in range(1, 60): b[i] = 1
sage: a.forward_transform()
sage: a.inverse_transform()
sage: a.plot() + b.plot()  #→ needs sage.plot
```

Here we check it with a power of two:

```python
sage: a = FastFourierTransform(128)
sage: b = FastFourierTransform(128)
sage: for i in range(1, 60): a[i] = 1
sage: for i in range(1, 60): b[i] = 1
sage: a.forward_transform()
sage: a.inverse_transform()
sage: a.plot() + b.plot()  #→ needs sage.plot
```

plot(style='rect', xmin=None, xmax=None, **args)
Plot a slice of the array.

- **style** – Style of the plot, options are "rect" or "polar"
 - rect – height represents real part, color represents imaginary part.
 - polar – height represents absolute value, color represents argument.
- **xmin** – The lower bound of the slice to plot. 0 by default.
• \(\texttt{xmax} \) – The upper bound of the slice to plot. \texttt{len(self)} by default.
• \texttt{**args} – passed on to the line plotting function.

OUTPUT:
• A plot of the array.

EXAMPLES:

```python
sage: a = FastFourierTransform(16)
sage: for i in range(16): a[i] = (random(),random())
sage: A = plot(a)  # needs sage.plot
sage: B = plot(a, style='polar')  # needs sage.plot
sage: type(A)  # needs sage.plot
<class 'sage.plot.graphics.Graphics'>
sage: type(B)  # needs sage.plot
<class 'sage.plot.graphics.Graphics'>
sage: a = FastFourierTransform(125)
sage: b = FastFourierTransform(125)
sage: for i in range(1, 60): a[i]=1
sage: for i in range(1, 60): b[i]=1
sage: a.forward_transform()
sage: a.inverse_transform()
sage: a.plot() + b.plot()  # needs sage.plot
```

```python
Graphics object consisting of 250 graphics primitives```

```
class sage.calculus.transforms.fft.FourierTransform_complex
 Bases: object
class sage.calculus.transforms.fft.FourierTransform_real
 Bases: object
```

### 2.23 Solving ODE numerically by GSL

AUTHORS:
• Joshua Kantor (2004-2006)
• Robert Marik (2010 - fixed docstrings)

```
class sage.calculus.ode.PyFunctionWrapper
 Bases: object
class sage.calculus.ode.ode_solver(func=\texttt{None}, jacobian=\texttt{None}, h=0.01, error_abs=1e-10, error_rel=1e-10, a=False, a_dydt=False, scale_abs=False, algorithm='rkf45', y_0=\texttt{None}, t_span=\texttt{None}, params=[])
 Bases: object

ode_solver() is a class that wraps the GSL library's ode solver routines.
To use it, instantiate the class:
```
To solve a system of the form \(\frac{dy_i}{dt} = f_i(t,y)\), you must supply a vector or tuple/list valued function \(f\) representing \(f_i\). The functions \(f\) and the jacobian should have the form \(\text{foo}(t,y)\) or \(\text{foo}(t,y,\text{params})\). \(\text{params}\) which is optional allows for your function to depend on one or a tuple of parameters. Note if you use it, \(\text{params}\) must be a tuple even if it only has one component. For example if you wanted to solve \(y'' + y = 0\), you would need to write it as a first order system:

\[
\begin{align*}
y_0' &= y_1 \\
y_1' &= -y_0
\end{align*}
\]

In code:

```
sage: f = lambda t, y: [y[1], -y[0]]
sage: T.function = f
```

For some algorithms, the jacobian must be supplied as well, the form of this should be a function returning a list of lists of the form \([\text{df_1/dy_1,...,df_1/dy_n}], \ldots, [\text{df_n/dy_1,...,df_n/dy_n}], [\text{df_1/dt}, \ldots,\text{df_n/dt}]\].

There are examples below, if your jacobian was the function \(\text{my_jacobian}\) you would do:

```
sage: T.jacobian = my_jacobian # not tested, since it doesn't make sense to test...
```

There are a variety of algorithms available for different types of systems. Possible algorithms are:

- 'rkf45' – Runge-Kutta-Fehlberg (4,5)
- 'rk2' – embedded Runge-Kutta (2,3)
- 'rk4' – 4th order classical Runge-Kutta
- 'rk8pd' – Runge-Kutta Prince-Dormand (8,9)
- 'rk2imp' – implicit 2nd order Runge-Kutta at gaussian points
- 'rk4imp' – implicit 4th order Runge-Kutta at gaussian points
- 'bsimp' – implicit Burlisch-Stoer (requires jacobian)
- 'gear1' – M=1 implicit gear
- 'gear2' – M=2 implicit gear

The default algorithm is 'rkf45'. If you instead wanted to use 'bsimp' you would do:

```
sage: T.algorithm = "bsimp"
```

The user should supply initial conditions in \(y_0\). For example if your initial conditions are \(y_0 = 1, y_1 = 1\), do:

```
sage: T.y_0 = [1,1]
```

The actual solver is invoked by the method \(ode\_solve()\). It has arguments \(t\_span, y\_0, \text{num\_points}, \text{params}\). \(y_0\) must be supplied either as an argument or above by assignment. \(\text{params}\) which are optional and only necessary if your system uses \(\text{params}\) can be supplied to \(ode\_solve\) or by assignment.

\(t\_span\) is the time interval on which to solve the ode. There are two ways to specify \(t\_span\):
• If `num_points` is not specified, then the sequence `t_span` is used as the time points for the solution. Note that the first element `t_span[0]` is the initial time, where the initial condition `y_0` is the specified solution, and subsequent elements are the ones where the solution is computed.

• If `num_points` is specified and `t_span` is a sequence with just 2 elements, then these are the starting and ending times, and the solution will be computed at `num_points` equally spaced points between `t_span[0]` and `t_span[1]`. The initial condition is also included in the output so that `num_points + 1` total points are returned. E.g. if `t_span = [0.0, 1.0]` and `num_points = 10`, then solution is returned at the 11 time points `[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]`.

(Note that if `num_points` is specified and `t_span` is not length 2 then `t_span` are used as the time points and `num_points` is ignored.)

Error is estimated via the expression 

\[ D_i = \text{error} \cdot s_i + \text{error\_rel} \cdot (a |y_i| + a_{dydt} h |y_i'|) \]

The user can specify

• `error\_abs` (1e-10 by default),
• `error\_rel` (1e-10 by default),
• `a` (1 by default),
• `a_{dydt}` (0 by default) and
• `s_i` (as `scaling\_abs` which should be a tuple and is 1 in all components by default).

If you specify one of `a` or `a_{dydt}` you must specify the other. You may specify `a` and `a_{dydt}` without `scaling\_abs` (which will be taken =1 be default). `h` is the initial step size, which is 1e-2 by default.

`ode_solve` solves the solution as a list of tuples of the form, 

\[ \{ (t_0, [y_1, ..., y_n]), (t_1, [y_1, ..., y_n]), ..., (t_n, [y_1, ..., y_n])\} \]

This data is stored in the variable `solutions`:

```
sage: T.solution # not tested
```

EXAMPLES:

Consider solving the Van der Pol oscillator 

\[ x''(t) + u x'(t)(x(t)^2 - 1) + x(t) = 0 \]

between \( t = 0 \) and \( t = 100 \). As a first order system it is 

\[ x' = y, \quad y' = -x + uy(1 - x^2) \].

Let us take \( u = 10 \) and use initial conditions 

\( (x, y) = (1, 0) \) and use the Runge-Kutta Prince-Dormand algorithm.

```
sage: def f_1(t, y, params):
... return [y[1], -y[0] - params[0]*y[1]*(y[0]**2-1.0)]
sage: def j_1(t, y, params):
... return [[0.0, 1.0],
... [-2.0*params[0]*y[0]*y[1] - 1.0, -params[0]*(y[0]**2-y[0]-1.0)],
... [0.0, 0.0]]
sage: T = ode_solver()
sage: T.algorithm = "rk8pd"
sage: T.function = f_1
sage: T.jacobian = j_1
sage: T.ode_solve(y_0=[1.0], t_span=[0,100], params=[10.0], num_points=1000)
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix=".png") as f:
... T.plot_solution(filename=f.name)
```
The solver line is equivalent to:

```python
sage: T.ode_solve(y_0=[1,0], t_span=[x/10.0 for x in range(1000)], params=[10.0])
```

Let’s try a system:

```python
y_0' = y_1*y_2
y_1' = -y_0*y_2
y_2' = -0.51*y_0*y_1
```

We will not use the jacobian this time and will change the error tolerances.

```python
sage: g_1 = lambda t,y: [y[1]*y[2], -y[0]*y[2], -0.51*y[0]*y[1]]
sage: T.function = g_1
sage: T.y_0 = [0,1,1]
sage: T.scale_abs = [1e-4, 1e-4, 1e-5]
sage: T.error_rel = 1e-4
sage: T.ode_solve(t_span=[0,12], num_points=100)
```

By default `T.plot_solution()` plots the $y_0$; to plot general $y_i$, use:

```python
sage: with tempfile.NamedTemporaryFile(suffix=".png") as f:
 # needs sage.plot
 T.plot_solution(i=0, filename=f.name)
 T.plot_solution(i=1, filename=f.name)
 T.plot_solution(i=2, filename=f.name)
```

The method `interpolate_solution` will return a spline interpolation through the points found by the solver. By default, $y_0$ is interpolated. You can interpolate $y_i$ through the keyword argument `i`.

```python
sage: f = T.interpolate_solution()
sage: plot(f,0,12).show() # needs sage.plot
sage: f = T.interpolate_solution(i=1)
sage: plot(f,0,12).show() # needs sage.plot
sage: f = T.interpolate_solution(i=2)
sage: plot(f,0,12).show() # needs sage.plot
sage: f = T.interpolate_solution()
sage: from math import pi
sage: f(pi)
0.5379...
```

The solver attributes may also be set up using arguments to `ode_solver`. The previous example can be rewritten as:

```python
sage: T = ode_solver(g_1, y_0=[0,1,1], scale_abs=[1e-4,1e-4,1e-5],
 error_rel=1e-4, algorithm="rk8pd")
sage: T.ode_solve(t_span=[0,12], num_points=100)
sage: f = T.interpolate_solution()
sage: f(pi)
0.5379...
```

Unfortunately because Python functions are used, this solver is slow on systems that require many function
evaluations. It is possible to pass a compiled function by deriving from the class `ode_system` and overloading `c_f` and `c_j` with C functions that specify the system. The following will work in the notebook:

```python
%cython
cimport sage.calculus.ode
import sage.calculus.ode
from sage.libs.gsl.all cimport *

cdef class van_der_pol(sage.calculus.ode.ode_system):
cdef int c_f(self, double t, double *y, double *dydt):
 dydt[0]=y[1]
 dydt[1]=-y[0]-1000*y[1]*(y[0]*y[0]-1)
 return GSL_SUCCESS

cdef int c_j(self, double t,double *y,double *dfdy,double *dfdt):
 dfdy[0]=0
 dfdy[1]=1.0
 dfdy[2]=-2.0*1000*y[0]*y[1]-1.0
 dfdy[3]=-1000*(y[0]*y[0]-1.0)
 dfdt[0]=0
 dfdt[1]=0
 return GSL_SUCCESS

After executing the above block of code you can do the following (WARNING: the following is not automatically doctested):

```python
sage: # not tested
sage: T = ode_solver()
sage: T.algorithm = "bsimp"
sage: vander = van_der_pol()
sage: T.function = vander
sage: T.ode_solve(y_0=[1, 0], t_span=[0, 2000],
    ....:     num_points=1000)
sage: from tempfile import NamedTemporaryFile
sage: with NamedTemporaryFile(suffix=".png") as f:
    ....:     T.plot_solution(i=0, filename=f.name)
```

`interpolate_solution(i=0)`

`ode_solve(t_span=False, y_0=False, num_points=False, params=[])`

`plot_solution(i=0, filename=None, interpolate=False, **kwds)`

Plot a one dimensional projection of the solution.

INPUT:

- `i` – (non-negative integer) composant of the projection
- `filename` – (string or `None`) whether to plot the picture or save it in a file
- `interpolate` – whether to interpolate between the points of the discretized solution
- additional keywords are passed to the graphics primitive

EXAMPLES:

```python
sage: T = ode_solver()
sage: T.function = lambda t,y: [cos(y[0]) * sin(t)]
```

(continues on next page)
(continued from previous page)

```
sage: T.jacobian = lambda t,y: [-sin(y[0]) * sin(t)]
sage: T.ode_solve(y_0=[1],t_span=[0,20],num_points=1000)
sage: T.plot_solution()
```

And with some options:

```
sage: T.plot_solution(color='red', axes_labels=['t', 'x(t)'])
```

```
class sage.calculus.ode.ode_system
    Bases: object

2.24 Numerical Integration

AUTHORS:

- Josh Kantor (2007-02): first version
- William Stein (2007-02): rewrite of docs, conventions, etc.
- Robert Bradshaw (2008-08): fast float integration
- Jeroen Demeyer (2011-11-23): github issue #12047: return 0 when the integration interval is a point; reformat
documentation and add to the reference manual.

class sage.calculus.integration.PyFunctionWrapper
    Bases: object

class sage.calculus.integration.compiled_integrand
    Bases: object

sage.calculus.integration.monte_carlo_integral(func, xl, xu, calls, algorithm='plain', params=None)
    Integrate func by Monte-Carlo method.

    Integrate func over the dim-dimensional hypercubic region defined by the lower and upper limits in the arrays
    xl and xu, each of size dim.

    The integration uses a fixed number of function calls and obtains random sampling points using the default gsl’s
    random number generator.

    ALGORITHM: Uses calls to the GSL (GNU Scientific Library) C library. Documentation can be found in [GSL] chapter “Monte Carlo Integration”.

    INPUT:

    - func – the function to integrate
    - params – used to pass parameters to your function
    - xl – list of lower limits
    - xu – list of upper limits
    - calls – number of functions calls used
    - algorithm – valid choices are:
– ‘plain’ – The plain Monte Carlo algorithm samples points randomly from the integration region to estimate the integral and its error.
– ‘miser’ – The MISER algorithm of Press and Farrar is based on recursive stratified sampling
– ‘vegas’ – The VEGAS algorithm of Lepage is based on importance sampling.

OUTPUT:
A tuple whose first component is the approximated integral and whose second component is an error estimate.

EXAMPLES:

```python
sage: x, y = SR.var('x,y')
sage: monte_carlo_integral(x*y, [0,0], [2,2], 10000) # abs tol 0.1
(4.0, 0.0)
sage: integral(integral(x*y, (x,0,2)), (y,0,2))
4
```

An example with a parameter:

```python
sage: x, y, z = SR.var('x,y,z')
sage: monte_carlo_integral(x*y*z, [0,0], [2,2], 10000, params=[1.2]) # abs tol 0.1
(4.8, 0.0)
```

Integral of a constant:

```python
sage: monte_carlo_integral(3, [0,0], [2,2], 10000) # abs tol 0.1
(12, 0.0)
```

Test different algorithms:

```python
sage: x, y, z = SR.var('x,y,z')
sage: f(x,y,z) = exp(z) * cos(x + sin(y))
sage: for algo in ['plain', 'miser', 'vegas']: # abs tol 0.01
...: monte_carlo_integral(f, [0,0,-1], [2,2,1], 10^6, algorithm=algo)
(-1.06, 0.01)
(-1.06, 0.01)
(-1.06, 0.01)
```

Tests with Python functions:

```python
sage: def f(u, v): return u * v
sage: monte_carlo_integral(f, [0,0], [2,2], 10000) # abs tol 0.1
(4.0, 0.0)
sage: monte_carlo_integral(lambda u,v: u*v, [0,0], [2,2], 10000) # abs tol 0.1
(4.0, 0.0)
sage: f(x1,x2,x3,x4): return x1*x2*x3*x4
sage: monte_carlo_integral(f, [0,0], [2,2], 1000, params=[0.6,2]) # abs tol 0.2
(4.8, 0.0)
```

AUTHORS:

• Vincent Delecroix
• Vincent Klein
Return the numerical integral of the function on the interval from a to b and an error bound.

**INPUT:**
- `a, b` – The interval of integration, specified as two numbers or as a tuple/list with the first element the lower bound and the second element the upper bound. Use `+Infinity` and `-Infinity` for plus or minus infinity.
- `algorithm` – valid choices are:
  - `‘qag’` – for an adaptive integration
  - `‘qags’` – for an adaptive integration with (integrable) singularities
  - `‘qng’` – for a non-adaptive Gauss-Kronrod (samples at a maximum of 87pts)
- `max_points` – sets the maximum number of sample points
- `params` – used to pass parameters to your function
- `eps_abs, eps_rel` – sets the absolute and relative error tolerances which satisfies the relation $|\text{RESULT} - I| \leq \max(\text{eps}_\text{abs}, \text{eps}_\text{rel} \times |I|)$, where $I = \int_a^b f(x) \, dx$.
- `rule` – This controls the Gauss-Kronrod rule used in the adaptive integration:
  - `rule=1` – 15 point rule
  - `rule=2` – 21 point rule
  - `rule=3` – 31 point rule
  - `rule=4` – 41 point rule
  - `rule=5` – 51 point rule
  - `rule=6` – 61 point rule
  Higher key values are more accurate for smooth functions but lower key values deal better with discontinuities.

**OUTPUT:**
A tuple whose first component is the answer and whose second component is an error estimate.

**REMARK:**
There is also a method `nintegral` on symbolic expressions that implements numerical integration using Maxima. It is potentially very useful for symbolic expressions.

**EXAMPLES:**
To integrate the function $x^2$ from 0 to 1, we do

```
sage: numerical_integral(x^2, 0, 1, max_points=100)
(0.3333333333333333, 3.700743415417188e-15)
```

To integrate the function $\sin(x)^3 + \sin(x)$ we do

```
sage: numerical_integral(sin(x)^3 + sin(x), 0, pi)
(3.333333333333333, 3.700743415417188e-14)
```

The input can be any callable:

```
sage: numerical_integral(lambda x: sin(x)^3 + sin(x), 0, pi)
(3.333333333333333, 3.700743415417188e-14)
```
We check this with a symbolic integration:

```
sage: (sin(x)**3+sin(x)).integral(x,0,pi)
10/3
```

If we want to change the error tolerances and Gauss rule used:

```
sage: f = x^2
sage: numerical_integral(f, 0, 1, max_points=200, eps_abs=1e-7, eps_rel=1e-7, rule=4)
(0.3333333333333333, 3.700743154171888e-15)
```

For a Python function with parameters:

```
sage: f(x,a) = 1/(a+x^2)
sage: [numerical_integral(f, 1, 2, max_points=100, params=[n]) for n in range(10)]
random output (architecture and os dependent)
([(0.4999999999999866, 5.551115123125663e-15),
 (0.3217505543664557, 3.572148736706477e-15),
 (0.2483098317249229, 2.6678768435816325e-15),
 (0.19253082576711697, 2.13752155716746e-15),
 (0.1698727719832367, 1.780743683853337e-15),
 (0.1531956521343915, 1.551659539393151e-15),
 (0.1212975935702741, 1.3669757956262e-15),
 (0.1080667419168306, 1.199718507228919e-15),
 (0.0974544625548845, 1.081961700849381e-15),
 (0.08875068305021757, 9.853305177356117e-16)]
sage: y = var('y')
sage: numerical_integral(x*y, 0, 1)
Traceback (most recent call last):
 ... ValueError: The function to be integrated depends on 2 variables (x, y),
and so cannot be integrated in one dimension. Please fix additional
variables with the 'params' argument
```

Note the parameters are always a tuple even if they have one component.

It is possible to integrate on infinite intervals as well by using +Infinity or -Infinity in the interval argument. For example:

```
sage: f = exp(-x)
sage: numerical_integral(f, 0, +Infinity) # random output
(0.9999999999999865, 1.8429811298996553e-07)
```

Note the coercion to the real field RR, which prevents underflow:

```
sage: f = exp(-x^2)
sage: numerical_integral(f, -Infinity, +Infinity) # random output
(1.77245385090606035, 3.4295195216588987e-08)
```

One can integrate any real-valued callable function:

```
sage: numerical_integral(lambda x: abs(zeta(x)), [1.1,1.5]) # random output
(1.8488570602160455, 2.652643677492633e-14)
```
We can also numerically integrate symbolic expressions using either this function (which uses GSL) or the native integration (which uses Maxima):

```sage
sage: exp(-1/x).nintegral(x, 1, 2) # via maxima
(0.50479221787318..., 5.60431942934407...e-15, 21, 0)
sage: numerical_integral(exp(-1/x), 1, 2)
(0.50479221787318..., 5.60431942934407...e-15)
```

We can also integrate constant expressions:

```sage
sage: numerical_integral(2, 1, 7)
(12.0, 0.0)
```

If the interval of integration is a point, then the result is always zero (this makes sense within the Lebesgue theory of integration), see github issue #12047:

```sage
sage: numerical_integral(log, 0, 0)
(0.0, 0.0)
sage: numerical_integral(lambda x: sqrt(x), (-2.0, -2.0))
(0.0, 0.0)
```

In the presence of integrable singularity, the default adaptive method might fail and it is advised to use 'qags':

```sage
sage: b = 1.81759643554688
sage: F(x) = sqrt((-x + b)/((x - 1.0)*x))
sage: numerical_integral(F, 1, b)
(inf, nan)
sage: numerical_integral(F, 1, b, algorithm='qags') # abs tol 1e-10
(1.1817104238446596, 3.387268288079781e-07)
```

AUTHORS:
- Josh Kantor
- William Stein
- Robert Bradshaw
- Jeroen Demeyer

ALGORITHM: Uses calls to the GSL (GNU Scientific Library) C library. Documentation can be found in [GSL] chapter “Numerical Integration”.

### 2.25 Riemann Mapping

AUTHORS:
- Ethan Van Andel (2009-2011): initial version and upgrades
- Robert Bradshaw (2009): his “complex_plot” was adapted for plot_colored

Development supported by NSF award No. 0702939.

```python
class sage.calculus.riemann.Riemann_Map
 Bases: object
```

2.25. Riemann Mapping 345
The Riemann_Map class computes an interior or exterior Riemann map, or an Ahlfors map of a region given by the supplied boundary curve(s) and center point. The class also provides various methods to evaluate, visualize, or extract data from the map.

A Riemann map conformally maps a simply connected region in the complex plane to the unit disc. The Ahlfors map does the same thing for multiply connected regions.

Note that all the methods are numerical. As a result all answers have some imprecision. Moreover, maps computed with small number of collocation points, or for unusually shaped regions, may be very inaccurate. Error computations for the ellipse can be found in the documentation for analytic_boundary() and analytic_interior().

[BSV2010] provides an overview of the Riemann map and discusses the research that lead to the creation of this module.

INPUT:

- \( fs \) – A list of the boundaries of the region, given as complex-valued functions with domain 0 to 2 * \( \pi \).
  Note that the outer boundary must be parameterized counter clockwise (i.e. \( e^{I*t} \)) while the inner boundaries must be clockwise (i.e. \( e^{(-I*t)} \)).

- \( fprimes \) – A list of the derivatives of the boundary functions. Must be in the same order as \( fs \).

- \( a \) – Complex, the center of the Riemann map. Will be mapped to the origin of the unit disc. Note that \( a \) MUST be within the region in order for the results to be mathematically valid.

The following inputs may be passed in as named parameters:

- \( N \) – integer (default: 500), the number of collocation points used to compute the map. More points will give more accurate results, especially near the boundaries, but will take longer to compute.

- \( exterior \) – boolean (default: False), if set to True, the exterior map will be computed, mapping the exterior of the region to the exterior of the unit circle.

The following inputs may be passed as named parameters in unusual circumstances:

- \( ncorners \) – integer (default: 4), if mapping a figure with (equally t-spaced) corners – corners that make a significant change in the direction of the boundary – better results may be sometimes obtained by accurately giving this parameter. Used to add the proper constant to the theta correspondence function.

- \( opp \) – boolean (default: False), set to True in very rare cases where the theta correspondence function is off by \( \pi \), that is, if red is mapped left of the origin in the color plot.

EXAMPLES:

The unit circle identity map:

```
sage: f(t) = e^{I*t}
sage: fprime(t) = I*e^{I*t}
sage: m = Riemann_Map([f], [fprime], 0) # long time (4 sec)
sage: m.plot_colored() + m.plot_spiderweb() # long time
Graphics object consisting of 22 graphics primitives
```

The exterior map for the unit circle:

```
sage: m = Riemann_Map([f], [fprime], 0, exterior=True) # long time (4 sec)
sage: #spiderwebs are not supported for exterior maps
sage: m.plot_colored() # long time
Graphics object consisting of 1 graphics primitive
```

The unit circle with a small hole:
Symbolic Calculus, Release 10.2

```
sage: f(t) = e^(I*t)
sage: fprime(t) = I*e^(I*t)
sage: hf(t) = 0.5*e^(-I*t)
sage: hfprime(t) = 0.5*-I*e^(-I*t)
sage: m = Riemann_Map([f, hf], [fprime, hfprime], 0.5 + 0.5*I)
sage: #spiderweb and color plots cannot be added for multiply
sage: #connected regions. Instead we do this.
sage: m.plot_spiderweb(withcolor = True) # long time
```

A square:

```
sage: ps = polygon_spline([(-1, -1), (1, -1), (1, 1), (-1, 1)])
sage: f = lambda t: ps.value(real(t))
sage: fprime = lambda t: ps.derivative(real(t))
sage: m = Riemann_Map([f], [fprime], 0.25, ncorners=4)
sage: m.plot_colored() + m.plot_spiderweb() # long time
```

Compute rough error for this map:

```
sage: x = 0.75 # long time
sage: print("error = {}\.format(m.inverse_riemann_map(m.riemann_map(x)) - x))
```

A fun, complex region for demonstration purposes:

```
sage: f(t) = e^(I*t)
sage: fp(t) = I*e^(I*t)
sage: ef1(t) = .2*e^(-I*t) +.4+.4*I
sage: ef1p(t) = -I*.2*e^(-I*t)
sage: ef2(t) = .2*e^(-I*t) -.4+.4*I
sage: ef2p(t) = -I*.2*e^(-I*t)
sage: pts = [(-.5,-.15-20/1000),(-.6,-.27-10/1000),(-.45,-.45),(0,-.65+10/1000),(.45,-.45),(.6,-.27-10/1000),(.5,-.15-10/1000),(0,-.43+10/1000)]
sage: pts.reverse()
sage: cs = complex_cubic_spline(pts)
sage: mf = lambda x:cs.value(x)
sage: mfprime = lambda x: cs.derivative(x)
sage: m = Riemann_Map([f,ef1,ef2,mf],[fp,ef1p,ef2p,mfprime],0,N = 400) # long time
sage: p = m.plot_colored(plot_points = 400) # long time
```

**ALGORITHM:**

This class computes the Riemann Map via the Szego kernel using an adaptation of the method described by [KT1986].

```
compute_on_grid(plot_range, x_points)
```

Compute the Riemann map on a grid of points.

Note that these points are complex of the form $z = x + y*i$.

**INPUT:**
• *plot_range* – a tuple of the form \([\text{xmin}, \text{xmax}, \text{ymin}, \text{ymax}]\). If the value is [], the default plotting window of the map will be used.

• *x_points* – int, the size of the grid in the x direction. The number of points in the y_direction is scaled accordingly.

**OUTPUT:**

• a tuple containing \([\text{z_values}, \text{xmin}, \text{xmax}, \text{ymin}, \text{ymax}]\) where \(\text{z_values}\) is the evaluation of the map on the specified grid.

**EXAMPLES:**

General usage:

```sage
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: data = m.compute_on_grid([],5)
sage: data[0][8,1]
(-0.0879...+0.9709...j)
```

**get_szego**(boundary=-1, absolute_value=False)

Return a discretized version of the Szego kernel for each boundary function.

**INPUT:**

The following inputs may be passed in as named parameters:

• *boundary* – integer (default: -1) if < 0, *get_theta_points()* will return the points for all boundaries. If >= 0, *get_theta_points()* will return only the points for the boundary specified.

• *absolute_value* – boolean (default: False) if True, will return the absolute value of the (complex valued) Szego kernel instead of the kernel itself. Useful for plotting.

**OUTPUT:**

A list of points of the form \([t \text{ value}, \text{value of the Szego kernel at that } t]\).

**EXAMPLES:**

Generic use:

```sage
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: sz = m.get_szego(boundary=0)
sage: points = m.get_szego(absolute_value=True)
sage: list_plot(points)
```

Extending the points by a spline:

```sage
sage: s = spline(points)
sage: s(3*pi / 4)
0.0012158...
```

The unit circle with a small hole:
sage: f(t) = e^(I^t)
sage: fprime(t) = I^e^(I^t)
sage: hf(t) = 0.5^e^(-I^t)
sage: hfprime(t) = 0.5^e^(-I^t)
sage: m = Riemann_Map([f, hf], [fprime, hfprime], 0.5 + 0.5*I)

Getting the szego for a specific boundary:

sage: sz0 = m.get_szego(boundary=0)
sage: sz1 = m.get_szego(boundary=1)

**get_theta_points**(boundary=-1)

Return an array of points of the form [t value, theta in e^(I*theta)], that is, a discretized version of the theta/boundary correspondence function. In other words, a point in this array [t1, t2] represents that the boundary point given by f(t1) is mapped to a point on the boundary of the unit circle given by e^(I*t2).

For multiply connected domains, get_theta_points will list the points for each boundary in the order that they were supplied.

**INPUT:**

The following input must all be passed in as named parameters:

- boundary – integer (default: -1) if < 0, get_theta_points() will return the points for all boundaries. If >= 0, get_theta_points() will return only the points for the boundary specified.

**OUTPUT:**

A list of points of the form [t value, theta in e^(I*theta)].

**EXAMPLES:**

Getting the list of points, extending it via a spline, getting the points for only the outside of a multiply connected domain:

sage: f(t) = e^(I^t) - 0.5^e^(-I^t)
sage: fprime(t) = I^e^(I^t) + 0.5^I^e^(-I^t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: points = m.get_theta_points()
sage: list_plot(points)
Graphics object consisting of 1 graphics primitive

Extending the points by a spline:

sage: s = spline(points)
sage: s(3*pi / 4)
1.627660...

The unit circle with a small hole:

sage: f(t) = e^(I^t)
sage: fprime(t) = I^e^(I^t)
sage: hf(t) = 0.5^e^(-I^t)
sage: hfprime(t) = 0.5^-I^e^(-I^t)
sage: m = Riemann_Map([f, hf], [hf, hfprime], 0.5 + 0.5*I)

Getting the boundary correspondence for a specific boundary:
inverse_riemann_map(pt)

Return the inverse Riemann mapping of a point.

That is, given pt on the interior of the unit disc, inverse_riemann_map() will return the point on the original region that would be Riemann mapped to pt. Note that this method does not work for multiply connected domains.

INPUT:

• pt – A complex number (usually with absolute value <= 1) representing the point to be inverse mapped.

OUTPUT:

The point on the region that Riemann maps to the input point.

EXAMPLES:

Can work for different types of complex numbers:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: m.inverse_riemann_map(0.5 + sqrt(-0.5))
(0.406880...+0.3614702...j)
sage: m.inverse_riemann_map(0.95)
(0.486319...-4.90019052...j)
sage: m.inverse_riemann_map(0.25 - 0.3*I)
(0.1653244...-0.180936...j)
sage: m.inverse_riemann_map(complex(-0.2, 0.5))
(-0.156280...+0.321819...j)
```

plot_boundaries(plotjoined=True, rgbcolor=[0, 0, 0], thickness=1)

Plots the boundaries of the region for the Riemann map. Note that this method DOES work for multiply connected domains.

INPUT:

The following inputs may be passed in as named parameters:

• plotjoined – boolean (default: True) If False, discrete points will be drawn; otherwise they will be connected by lines. In this case, if plotjoined=False, the points shown will be the original collocation points used to generate the Riemann map.

• rgbcolor – float array (default: [0, 0, 0]) the red-green-blue color of the boundary.

• thickness – positive float (default: 1) the thickness of the lines or points in the boundary.

EXAMPLES:

General usage:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
```

Default plot:
plot_colored(*plot_range=*, *plot_points=*, *interpolation=*, **options)

Generates a colored plot of the Riemann map. A red point on the colored plot corresponds to a red point on the unit disc.

INPUT:

The following inputs may be passed in as named parameters:

- plot_range – (default: []) list of 4 values (xmin, xmax, ymin, ymax). Declare if you do not want the plot to use the default range for the figure.
- plot_points – integer (default: 100), number of points to plot in the x direction. Points in the y direction are scaled accordingly. Note that very large values can cause this function to run slowly.

EXAMPLES:

Given a Riemann map m, general usage:

```python
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: m.plot_colored()
```

Plot zoomed in on a specific spot:

```python
sage: m.plot_colored(plot_range=[0,1,.25,.75])
```

High resolution plot:

```python
sage: m.plot_colored(plot_points=1000) # long time (29s on sage.math, 2012)
```

To generate the unit circle map, it’s helpful to see what the colors correspond to:

```python
sage: f(t) = e^(I*t)
sage: fprime(t) = I*e^(I*t)
sage: m = Riemann_Map([f], [fprime], 0, 1000)
sage: m.plot_colored()
```

plot_spiderweb(*spokes=*, *circles=*, *pts=*, *linescale=*, *rgbcolor=*, *thickness=*, **options)

Generate a traditional “spiderweb plot” of the Riemann map.

This shows what concentric circles and radial lines map to. The radial lines may exhibit erratic behavior near the boundary; if this occurs, decreasing linescale may mitigate the problem.
For multiply connected domains the spiderweb is by necessity generated using the forward mapping. This method is more computationally intensive. In addition, these spiderwebs cannot be added to color plots. Instead the withcolor option must be used.

In addition, spiderweb plots are not currently supported for exterior maps.

**INPUT:**

The following inputs may be passed in as named parameters:

- **spokes** – integer (default: 16) the number of equally spaced radial lines to plot.
- **circles** – integer (default: 4) the number of equally spaced circles about the center to plot.
- **pts** – integer (default: 32) the number of points to plot. Each radial line is made by $1 \times pts$ points, each circle has $2 \times pts$ points. Note that high values may cause erratic behavior of the radial lines near the boundaries. - only for simply connected domains
- **linescale** – float between 0 and 1. Shrinks the radial lines away from the boundary to reduce erratic behavior. - only for simply connected domains
- **rgbcolor** – float array (default: [0, 0, 0]) the red-green-blue color of the spiderweb.
- **thickness** – positive float (default: 1) the thickness of the lines or points in the spiderweb.
- **plotjoined** – boolean (default: True) If False, discrete points will be drawn; otherwise they will be connected by lines. - only for simply connected domains
- **withcolor** – boolean (default: False) If True, The spiderweb will be overlaid on the basic color plot.
- **plot_points** – integer (default: 200) the size of the grid in the x direction The number of points in the y direction is scaled accordingly. Note that very large values can cause this function to run slowly. - only for multiply connected domains
- **min_mag** – float (default: 0.001) The magnitude cutoff below which spiderweb points are not drawn. This only applies to multiply connected domains and is designed to prevent “fuzz” at the edge of the domain. Some complicated multiply connected domains (particularly those with corners) may require a larger value to look clean outside.

**EXAMPLES:**

General usage:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
```

Default plot:

```
sage: m.plot_spiderweb()
Graphics object consisting of 21 graphics primitives
```

Simplified plot with many discrete points:

```
sage: m.plot_spiderweb(spokes=4, circles=1, pts=400, linescale=0.95, plotjoined=False)
Graphics object consisting of 6 graphics primitives
```

Plot with thick, red lines:
To generate the unit circle map, it's helpful to see what the original spiderweb looks like:

```
sage: f(t) = e^(I*t)
sage: fprime(t) = I*e^(I*t)
sage: m = Riemann_Map([f], [fprime], 0, 1000)
sage: m.plot_spiderweb()
```

Graphics object consisting of 21 graphics primitives

A multiply connected region with corners. We set min_mag higher to remove “fuzz” outside the domain:

```
sage: ps = polygon_spline([(-4,-2),(4,-2),(4,2),(-4,2)])
sage: z1 = lambda t: ps.value(t); z1p = lambda t: ps.derivative(t)
sage: z2(t) = -2+exp(-I*t); z2p(t) = -I*exp(-I*t)
sage: z3(t) = 2+exp(-I*t); z3p(t) = -I*exp(-I*t)
sage: m = Riemann_Map([z1,z2,z3],[z1p,z2p,z3p],0,ncorners=4) # long time
sage: p = m.plot_spiderweb(withcolor=True,plot_points=500, thickness = 2.0, min_mag=0.1) # long time
```

```
riemann_map(pt)
```

Return the Riemann mapping of a point.

That is, given pt on the interior of the mapped region, `riemann_map` will return the point on the unit disk that pt maps to. Note that this method only works for interior points; accuracy breaks down very close to the boundary. To get boundary correspondence, use `get_theta_points()`.

**INPUT:**

- pt – A complex number representing the point to be inverse mapped.

**OUTPUT:**

A complex number representing the point on the unit circle that the input point maps to.

**EXAMPLES:**

Can work for different types of complex numbers:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: m.riemann_map(0.25 + sqrt(-0.5))
(0.137514...+0.876696...j)
sage: I = CDF.gen()
sage: m.riemann_map(1.3*I)
(-1.56...e-05+0.989694...j)
sage: m.riemann_map(0.4)
(0.73324...+3.2...e-06j)
sage: m.riemann_map(complex(-3, 0.0001))
(1.405757...e-05+8.06...e-10j)
```

```
sage.calculus.riemann.analytic_boundary(t, n, epsilon)
```

Provides an exact (for n = infinity) Riemann boundary correspondence for the ellipse with axes 1 + epsilon and 1 - epsilon. The boundary is therefore given by \(e^{i(t)}+epsilon*e^{-i(t)}\). It is primarily useful for testing the accuracy of the numerical `Riemann_Map`.

### 2.25. Riemann Mapping
INPUT:
- \( t \) – The boundary parameter, from 0 to 2\( \pi \)
- \( n \) – integer - the number of terms to include. 10 is fairly accurate, 20 is very accurate.
- \( \epsilon \) – float - the skew of the ellipse (0 is circular)

OUTPUT:
A theta value from 0 to 2\( \pi \), corresponding to the point on the circle \( e^{i \theta} \)

```
sage.calculus.riemann.analytic_interior(z, n, \epsilon)
```

Provides a nearly exact computation of the Riemann Map of an interior point of the ellipse with axes \( 1 + \epsilon \) and \( 1 - \epsilon \). It is primarily useful for testing the accuracy of the numerical Riemann Map.

INPUT:
- \( z \) – complex - the point to be mapped.
- \( n \) – integer - the number of terms to include. 10 is fairly accurate, 20 is very accurate.

```
sage.calculus.riemann.cauchy_kernel(t, args)
```

Intermediate function for the integration in `analytic_interior()`.

INPUT:
- \( t \) – The boundary parameter, meant to be integrated over
- \( args \) – a tuple containing:
  - \( \epsilon \) – float - the skew of the ellipse (0 is circular)
  - \( z \) – complex - the point to be mapped.
  - \( n \) – integer - the number of terms to include. 10 is fairly accurate, 20 is very accurate.
  - \( \text{part} \) – will return the real (‘r’), imaginary (‘i’) or complex (‘c’) value of the kernel

```
sage.calculus.riemann.complex_to_rgb(z_values)
```

Convert from a (Numpy) array of complex numbers to its corresponding matrix of RGB values. For internal use of `plot_colored()` only.

INPUT:
- \( z_{\text{values}} \) – A Numpy array of complex numbers.

OUTPUT:
An \( N \times M \times 3 \) floating point Numpy array \( X \), where \( X[i,j] \) is an (r,g,b) tuple.

EXAMPLES:
```
sage: from sage.calculus.riemann import complex_to_rgb
sage: import numpy
sage: complex_to_rgb(numpy.array([[0, 1, 1000]], dtype=numpy.complex128))
array([[1. , 1. , 1.],
 [1. , 0.05558355, 0.05558355],
 [0.17301243, 0. , 0.]])
```
```
sage: complex_to_rgb(numpy.array([[0, 1j, 1000j]], dtype=numpy.complex128))
array([[1. , 1. , 1.],
 [0.52779177, 1. , 0.05558355],
 [0.08650622, 0.17301243, 0.]])
```
Converts a grid of complex numbers into a matrix containing rgb data for the Riemann spiderweb plot.

INPUT:

- **z_values** – A grid of complex numbers, as a list of lists.
- **dr** – grid of floats, the r derivative of z_values. Used to determine precision.
- **dtheta** – grid of floats, the theta derivative of z_values. Used to determine precision.
- **spokes** – integer - the number of equally spaced radial lines to plot.
- **circles** – integer - the number of equally spaced circles about the center to plot.
- **rgbcolor** – float array - the red-green-blue color of the lines of the spiderweb.
- **thickness** – positive float - the thickness of the lines or points in the spiderweb.
- **withcolor** – boolean - If True the spiderweb will be overlaid on the basic color plot.
- **min_mag** – float - The magnitude cutoff below which spiderweb points are not drawn. This only applies to multiply connected domains and is designed to prevent “fuzz” at the edge of the domain. Some complicated multiply connected domains (particularly those with corners) may require a larger value to look clean outside.

OUTPUT:

An $N \times M \times 3$ floating point Numpy array $X$, where $X[i,j]$ is an (r,g,b) tuple.

EXAMPLES:

```python
sage: from sage.calculus.riemann import complex_to_spiderweb
sage: import numpy
sage: zval = numpy.array([[0,1,1000], [.2+.3j,1,-.3j], [0,0,0]],
 dtype=numpy.complex128)
```

```python
sage: deriv = numpy.array([.1], dtype = numpy.float64)
```

```python
sage: complex_to_spiderweb(zval, deriv, deriv, 4, 4, [0,0,0], 1, False, 0.001)
array([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]],

 [[1., 1., 1.],
 [0., 0., 0.],
 [1., 1., 1.]],

 [[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]]])
```

```python
sage: complex_to_spiderweb(zval, deriv, deriv, 4, 4, [0,0,0], 1, True, 0.001)
array([[1. , 1. , 1.],
 [1. , 0.05558355, 0.05558355],
 [0.17301243, 0. , 0.]],

 [[1. , 0.96804683, 0.48044583],
 [0. , 0. , 0.],
 [0.77351965, 0.5470393 , 1.]],

(continues on next page)
sage.calculus.riemann.get_derivatives(z_values, xstep, ystep)

Computes the r*e^(I*theta) form of derivatives from the grid of points. The derivatives are computed using quick-and-dirty taylor expansion and assuming analyticity. As such get_derivatives is primarily intended to be used for comparisons in plot_spiderweb and not for applications that require great precision.

INPUT:

- **z_values** – The values for a complex function evaluated on a grid in the complex plane, usually from compute_on_grid.
- **xstep** – float, the spacing of the grid points in the real direction

OUTPUT:

- A tuple of arrays, [dr, dtheta], with each array 2 less in both dimensions than z_values
 - `dr` - the abs of the derivative of the function in the +r direction
 - `dtheta` - the rate of accumulation of angle in the +theta direction

EXAMPLES:

Standard usage with compute_on_grid:

```python
sage: from sage.calculus.riemann import get_derivatives
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: data = m.compute_on_grid([],19)
sage: xstep = (data[2]-data[1])/19
sage: ystep = (data[4]-data[3])/19
sage: dr, dtheta = get_derivatives(data[0],xstep,ystep)
sage: dr[8,8]
0.241...
sage: dtheta[5,5]
5.907...
```

2.26 Real Interpolation using GSL

class sage.calculus.interpolation.Spline

Create a spline interpolation object.

Given a list \(v \) of pairs, \(s = \text{spline}(v) \) is an object \(s \) such that \(s(x) \) is the value of the spline interpolation through the points in \(v \) at the point \(x \).

The values in \(v \) do not have to be sorted. Moreover, one can append values to \(v \), delete values from \(v \), or change values in \(v \), and the spline is recomputed.

EXAMPLES:
```python
sage: S = spline([(0, 1), (1, 2), (4, 5), (5, 3)]); S
[(0, 1), (1, 2), (4, 5), (5, 3)]
sage: S(1.5)
2.76136363636...
```

Changing the points of the spline causes the spline to be recomputed:

```python
sage: S[0] = (0, 2); S
[(0, 2), (1, 2), (4, 5), (5, 3)]
sage: S(1.5)
2.507575757575...
```

We may delete interpolation points of the spline:

```python
sage: del S[2]; S
[(0, 2), (1, 2), (5, 3)]
sage: S(1.5)
2.04296875
```

We may append to the list of interpolation points:

```python
sage: S.append((4, 5)); S
[(0, 2), (1, 2), (5, 3), (4, 5)]
sage: S(1.5)
2.507575757575...
```

If we set the \(n \)-th interpolation point, where \(n \) is larger than `len(S)`, then points \((0, 0)\) will be inserted between the interpolation points and the point to be added:

```python
sage: S[6] = (6, 3); S
[(0, 2), (1, 2), (5, 3), (4, 5), (0, 0), (0, 0), (6, 3)]
```

This example is in the GSL documentation:

```python
sage: v = [(i + RDF(i).sin()/2, i + RDF(i^2).cos()) for i in range(10)]
sage: s = spline(v)
sage: show(point(v) + plot(s,0,9, hue=.8))  # needs sage.plot
```

We compute the area underneath the spline:

```python
sage: s.definite_integral(0, 9)
41.196516041067...
```

The definite integral is additive:

```python
sage: s.definite_integral(0, 4) + s.definite_integral(4, 9)
41.196516041067...
```

Switching the order of the bounds changes the sign of the integral:

```python
sage: s.definite_integral(9, 0)
-41.196516041067...
```

We compute the first and second-order derivatives at a few points:

```python
```

2.26. Real Interpolation using GSL

357
Symbolic Calculus, Release 10.2

```python
sage: s.derivative(5)
-0.1623008526180...
sage: s.derivative(6)
0.2099798628571...
sage: s.derivative(5, order=2)
-3.0874707456138...
sage: s.derivative(6, order=2)
2.6187684827485...
```

Only the first two derivatives are supported:

```python
sage: s.derivative(4, order=3)
Traceback (most recent call last):
  ...  
ValueError: Order of derivative must be 1 or 2.
```

append

EXAMPLES:

```python
sage: S = spline([(1,1), (2,3), (4,5)]); S.append((5,7)); S
[(1, 1), (2, 3), (4, 5), (5, 7)]
```

The spline is recomputed when points are appended (github issue #13519):

```python
sage: S = spline([(1,1), (2,3), (4,5)]); S
[(1, 1), (2, 3), (4, 5)]
sage: S(3)
4.25
sage: S.append((5, 5)); S
[(1, 1), (2, 3), (4, 5), (5, 5)]
sage: S(3)
4.375
```

definite_integral (a, b)

Value of the definite integral between a and b.

INPUT:

- a – Lower bound for the integral.
- b – Upper bound for the integral.

EXAMPLES:

We draw a cubic spline through three points and compute the area underneath the curve:

```python
sage: s = spline([(0, 0), (1, 3), (2, 0)])
sage: s.definite_integral(0, 2)
3.75
sage: s.definite_integral(0, 1)
1.875
sage: s.definite_integral(0, 1) + s.definite_integral(1, 2)
3.75
sage: s.definite_integral(2, 0)
-3.75
```
derivative\((x, \text{order}=1) \)

Value of the first or second derivative of the spline at \(x \).

INPUT:

- \(x \) – value at which to evaluate the derivative.
- \(\text{order} \) (default: 1) – order of the derivative. Must be 1 or 2.

EXAMPLES:

We draw a cubic spline through three points and compute the derivatives:

```sage
s = spline([(0, 0), (2, 3), (4, 0)])
s.derivative(0)
2.25
s.derivative(2)
0.0
s.derivative(4)
-2.25
s.derivative(1, order=2)
-1.125
s.derivative(3, order=2)
-1.125
```

list()

Underlying list of points that this spline goes through.

EXAMPLES:

```sage
S = spline([(1,1), (2,3), (4,5)]); S.list()
[(1, 1), (2, 3), (4, 5)]
```

This is a copy of the list, not a reference (github issue #13530):

```sage
S = spline([(1,1), (2,3), (4,5)])
L = S.list(); L
[(1, 1), (2, 3), (4, 5)]
L[2] = (3, 2)
L
[(1, 1), (2, 3), (3, 2)]
S.list()
[(1, 1), (2, 3), (4, 5)]
```

```sage
calculus.interpolation.spline
alias of Spline
```
2.27 Complex Interpolation

AUTHORS:

- Ethan Van Andel (2009): initial version

Development supported by NSF award No. 0702939.

class sage.calculus.interpolators.CCSpline

Bases: object

A CCSpline object contains a cubic interpolation of a figure in the complex plane.

EXAMPLES:

A simple square:

sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: cs = complex_cubic_spline(pts)
sage: cs.value(0)
(-1-1j)
sage: cs.derivative(0)
(0.9549296...-0.9549296...j)

derivative(t)

Return the derivative (speed and direction of the curve) of a given point from the parameter \(t \).

INPUT:

- \(t \) – double, the parameter value for the parameterized curve, between 0 and 2*pi.

OUTPUT:

A complex number representing the derivative at the point on the figure corresponding to the input \(t \).

EXAMPLES:

sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: cs = complex_cubic_spline(pts)
sage: cs.derivative(3 / 5)
(1.40578892327...-0.225417136326...j)
sage: from math import pi
sage: cs.derivative(0) - cs.derivative(2 * pi)
0j
sage: cs.derivative(-6)
(2.52047692949...-1.89392588310...j)

value(t)

Return the location of a given point from the parameter \(t \).

INPUT:

- \(t \) – double, the parameter value for the parameterized curve, between 0 and 2*pi.

OUTPUT:

A complex number representing the point on the figure corresponding to the input \(t \).

EXAMPLES:
```python
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: cs = complex_cubic_spline(pts)
sage: cs.value(4 / 7)
(-0.303961332787...-1.34716728183...j)
sage: from math import pi
sage: cs.value(0) - cs.value(2*pi)
0j
sage: cs.value(-2.73452)
(0.934561222231...+0.881366116402...j)
```

```python
class sage.calculus.interpolators.PSpline

Bases: object

A CCSpline object contains a polygon interpolation of a figure in the complex plane.

EXAMPLES:

A simple square:

```python
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: ps = polygon_spline(pts)
sage: ps.value(0)
(-1-1j)
sage: ps.derivative(0)
(1.27323954473...+0j)
sage: from math import pi
sage: ps.derivative(0) - ps.derivative(2*pi)
0j
sage: ps.derivative(10)
(-1.27323954473...+0j)
```

```python
def derivative(t):
 Return the derivative (speed and direction of the curve) of a given point from the parameter t.

 INPUT:

 • t – double, the parameter value for the parameterized curve, between 0 and 2*pi.

 OUTPUT:

 A complex number representing the derivative at the point on the polygon corresponding to the input t.

 EXAMPLES:

```python
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: ps = polygon_spline(pts)
sage: ps.derivative(1 / 3)
(1.27323954473...+0j)
sage: from math import pi
sage: ps.derivative(0) - ps.derivative(2*pi)
0j
sage: ps.derivative(10)
(-1.27323954473...+0j)
```

```python
def value(t):
    Return the derivative (speed and direction of the curve) of a given point from the parameter t.

    INPUT:

    • t – double, the parameter value for the parameterized curve, between 0 and 2*pi.

    OUTPUT:

    A complex number representing the point on the polygon corresponding to the input t.
```
```
EXAMPLES:

```sage
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: ps = polygon_spline(pts)
sage: ps.value(0.5)
(-0.363380227632...-1j)
sage: ps.value(0) - ps.value(2*RDF.pi())
0j
sage: ps.value(10)
(0.26760455264...+1j)
```

`sage.calculus.interpolators.complex_cubic_spline(pts)`

Creates a cubic spline interpolated figure from a set of complex or \((x, y)\) points. The figure will be a parametric curve from 0 to 2\(*\pi\). The returned values will be complex, not \((x, y)\).

**INPUT:**

- • pts – A list or array of complex numbers, or tuples of the form \((x, y)\).

**EXAMPLES:**

A simple square:

```sage
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: cs = complex_cubic_spline(pts)
sage: fx = lambda x: cs.value(x).real
sage: fy = lambda x: cs.value(x).imag
sage: from math import pi
sage: show(parametric_plot((fx, fy), (0, 2*pi))) # needs sage.plot
```

Polygon approximation of a circle:

```sage
sage: from cmath import exp
sage: pts = [exp(1j * t / 25) for t in range(25)]
sage: cs = complex_cubic_spline(pts)
sage: cs.derivative(2)
(-0.0497765406583...+0.151095006434...j)
```

`sage.calculus.interpolators.polygon_spline(pts)`

Creates a polygon from a set of complex or \((x, y)\) points. The polygon will be a parametric curve from 0 to 2\(*\pi\). The returned values will be complex, not \((x, y)\).

**INPUT:**

- • pts – A list or array of complex numbers of tuples of the form \((x, y)\).

**EXAMPLES:**

A simple square:

```sage
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: ps = polygon_spline(pts)
```
Symbolic Calculus, Release 10.2

sage: fx = lambda x: ps.value(x).real
sage: fy = lambda x: ps.value(x).imag
sage: show(parametric_plot((fx, fy), (0, 2*pi)))  #→
needs sage.plot
sage: m = Riemann_Map([lambda x: ps.value(real(x))],
....:[lambda x: ps.derivative(real(x))], 0)

show(m.plot_colored() + m.plot_spiderweb())  #→
needs sage.plot

Polygon approximation of an circle:

sage: pts = [e^(I*t / 25) for t in range(25)]
sage: ps = polygon_spline(pts)
sage: ps.derivative(2)
(-0.0470303661...+0.1520363883...j)

2.28 Calculus functions

sage.calculus.functions.jacobian(functions, variables)
Return the Jacobian matrix, which is the matrix of partial derivatives in which the i,j entry of the Jacobian matrix is the partial derivative diff(functions[i], variables[j]).

EXAMPLES:

sage: x,y = var('x,y')
sage: g=x^2-2*x*y
sage: jacobian(g, (x,y))
[2*x - 2*y -2*x]

The Jacobian of the Jacobian should give us the “second derivative”, which is the Hessian matrix:

sage: jacobian(jacobian(g, (x,y)), (x,y))
[ 2 -2]
[-2 0]

sage: g.hessian()
[ 2 -2]
[-2 0]

sage: f=(x^3*sin(y), cos(x)*sin(y), exp(x))
sage: jacobian(f, (x,y))
[ 3*x^2*sin(y) x^3*cos(y)]
[-sin(x)*sin(y) cos(x)*cos(y)]
[e^x 0]
sage: jacobian(f, (y,x))
[ x^3*cos(y) 3*x^2*sin(y)]
[ cos(x)*cos(y) -sin(x)*sin(y)]
[ 0 e^x]

sage.calculus.functions.wronskian(*args)
Return the Wronskian of the provided functions, differentiating with respect to the given variable.

If no variable is provided, diff(f) is called for each function f.
wronskian(f1,...,fn, x) returns the Wronskian of f1,...,fn, with derivatives taken with respect to x.

wronskian(f1,...,fn) returns the Wronskian of f1,...,fn where k'th derivatives are computed by doing derivative(k) on each function.

The Wronskian of a list of functions is a determinant of derivatives. The nth row (starting from 0) is a list of the nth derivatives of the given functions.

For two functions:

\[
\begin{vmatrix}
  f & g \\
  f' & g'
\end{vmatrix}
\]

wronskian(f, g) = \det | f g | = f*g' - g*f'.

\[
| f' g' |
\]

EXAMPLES:

```
sage: wronskian(e^x, x^2)
-x^2*e^x + 2*x*e^x
```

```
sage: x,y = var('x, y')
sage: wronskian(x*y, log(x), x)
-y*log(x) + y
```

If your functions are in a list, you can use *toturnthemintoargumentsto : func : 'wronskian:*

```
sage: wronskian(*[x^k for k in range(1, 5)])
12*x^4
```

If you want to use 'x' as one of the functions in the Wronskian, you can't put it last or it will be interpreted as the variable with respect to which we differentiate. There are several ways to get around this.

Two-by-two Wronskian of sin(x) and e^x:

```
sage: wronskian(sin(x), e^x, x)
-cos(x)*e^x + e^x*sin(x)
```

Or don't put x last:

```
sage: wronskian(x, sin(x), e^x)
(cos(x)*e^x + e^x*sin(x))*x - 2*e^x*sin(x)
```

Example where one of the functions is constant:

```
sage: wronskian(1, e^(-x), e^(2*x))
-6*e^x
```

REFERENCES:

- Wikipedia article Wronskian
- http://planetmath.org/encyclopedia/WronskianDeterminant.html

AUTHORS:

- Dan Drake (2008-03-12)
2.29 Symbolic variables

sage.calculus.var.clear_vars()

Delete all 1-letter symbolic variables that are predefined at startup of Sage.

Any one-letter global variables that are not symbolic variables are not cleared.

EXAMPLES:

```python
sage: var('x y z')
(x, y, z)
sage: (x+y)^z
(x + y)^z
sage: k = 15
sage: clear_vars()
sage: (x+y)^z
Traceback (most recent call last):
... NameError: name 'x' is not defined
```

sage.calculus.var.function(s, **kwds)

Create a formal symbolic function with the name \(s\).

INPUT:

- **nargs=0** - number of arguments the function accepts, defaults to variable number of arguments, or 0
- **latex_name** - name used when printing in latex mode
- **conversions** - a dictionary specifying names of this function in other systems, this is used by the interfaces internally during conversion
- **eval_func** - method used for automatic evaluation
- **evalf_func** - method used for numeric evaluation
- **evalf_params_first** - bool to indicate if parameters should be evaluated numerically before calling the custom evalf function
- **conjugate_func** - method used for complex conjugation
- **real_part_func** - method used when taking real parts
- **imag_part_func** - method used when taking imaginary parts
- **derivative_func** - method to be used for (partial) derivation This method should take a keyword argument deriv_param specifying the index of the argument to differentiate w.r.t
- **tderivative_func** - method to be used for derivatives
- **power_func** - method used when taking powers This method should take a keyword argument power_param specifying the exponent
- **series_func** - method used for series expansion This method should expect keyword arguments - **order** - order for the expansion to be computed - **var** - variable to expand w.r.t. - **at** - expand at this value
- **print_func** - method for custom printing
• **print_latex_func** - method for custom printing in latex mode

Note that custom methods must be instance methods, i.e., expect the instance of the symbolic function as the first argument.

**Note:** The new function is both returned and automatically injected into the global namespace. If you use this function in library code, it is better to use `sage.symbolic.function_factory.function`, since it will not touch the global namespace.

**EXAMPLES:**

We create a formal function called `supersin`

```sage```
function('supersin')
supersin
```

We can immediately use `supersin` in symbolic expressions:

```sage```
y, z, A = var('y z A')
supersin(y+z) + A^3
A^3 + supersin(y + z)
```

We can define other functions in terms of `supersin`:

```sage```
g(x,y) = supersin(x)^2 + sin(y/2)
g
(x, y) |--> supersin(x)^2 + sin(1/2*y)
g.diff(y)
(x, y) |--> 1/2*cos(1/2*y)
g.diff(x); k
(x, y) |--> 2*supersin(x)*diff(supersin(x), x)
```

We create a formal function of one variable, write down an expression that involves first and second derivatives, and extract off coefficients:

```sage```
r, kappa = var('r,kappa')
psi = function('psi', nargs=1)(r); psi
psir(r)
g = 1/r^2*(2*r*psi.derivative(r,1) + r^2*psi.derivative(r,2)); g
(r^2*diff(psi(r), r, r) + 2*r*diff(psi(r), r))/r^2
g.expand()
2*diff(psi(r), r)/r + diff(psi(r), r, r)
g.coefficient(psi.derivative(r,2))
1
g.coefficient(psi.derivative(r,1))
2/r
```

Custom typesetting of symbolic functions in LaTeX, either using `latex_name` keyword:

```sage```
function('riemann', latex_name="\\mathcal{R}")
riemann
latex(riemann(x))
\mathcal{R}(x)\right)
```

or passing a custom callable function that returns a latex expression:
sage: mu,nu = var('mu,nu')
sage: def my_latex_print(self, *args): return r'\psi_{%s}'%(', '.join(map(latex, args)))
sage: function('psi', print_latex_func=my_latex_print)

psi
\psi_{\mu, \nu}

Defining custom methods for automatic or numeric evaluation, derivation, conjugation, etc. is supported:

sage: def ev(self, x): return 2^x
sage: foo = function("foo", nargs=1, eval_func=ev)
sage: foo(x)
2^x
sage: foo = function("foo", nargs=1, eval_func=lambda self, x: 5)
sage: foo(x)
5
sage: def ef(self, x): pass
sage: bar = function("bar", nargs=1, eval_func=ef)
sage: bar(x)
bar(x)

sage: def evalf_f(self, x, parent=None, algorithm=None): return 6
sage: foo = function("foo", nargs=1, evalf_func=evalf_f)
sage: foo(x)
foo(x)
6
sage: foo = function("foo", nargs=1, conjugate_func=ev)
sage: foo(x).conjugate()
2^x

sage: def deriv(self, *args,**kwds): return {args[kwds['diff_param']]}^2
sage: foo = function("foo", nargs=2, derivative_func=deriv)
sage: foo(x,y).derivative(y)
(x, y) {'diff_param': 1} y^2

sage: def pow(self, x, power_param=None): return x*power_param
sage: foo = function("foo", nargs=1, power_func=pow)
sage: foo(y)^(x+y)
y y x + y

sage: from pprint import pformat
sage: def expand(self, *args, **kwds):
....: return sum(args[0]^i for i in range(kwds['order']))

sage: foo = function("foo", nargs=1, series_func=expand)
sage: foo(y).series(y, 5)

(continues on next page)
\(y,\) \{'at': 0, 'options': 0, 'order': 5, 'var': y\}
\(y^4 + y^3 + y^2 + y + 1\)

```
sage: def my_print(self, *args):
 : return "my args are: " + ', '.join(map(repr, args))
sage: foo = function('t', nargs=2, print_func=my_print)
sage: foo(x,y^z)
my args are: x, y^z
```

```
sage: latex(foo(x,y^z))
t\left(x, y^{z}\right)
sage: foo = function('t', nargs=2, print_latex_func=my_print)
sage: foo(x,y^z)
t(x, y^z)
sage: latex(foo(x,y^z))
my args are: x, y^z
```

Chain rule:

```
sage: def print_args(self, *args, **kwds):
 print("args: {}\nkwds: {}".format(args), kwds);
return args[0]
sage: foo = function('t', nargs=2, tderivative_func=print_args)
sage: foo(x,x).derivative(x)
args: (x, x)
kwds: {'diff_param': 0}
args: (x, x)
kwds: {'diff_param': 1}
2*x
```

Since Sage 4.0, basic arithmetic with unevaluated functions is no longer supported:

```
sage: x = var('x')
sage: f = function('f')
sage: 2*f
Traceback (most recent call last):
 ...
TypeError: unsupported operand parent(s) for *: 'Integer Ring' and '<class 'sage.rings.integer.Integer'>'
```

You now need to evaluate the function in order to do the arithmetic:

```
sage: 2*f(x)
2*f(x)
```

Since Sage 4.0, you need to use substitute_function() to replace all occurrences of a function with another:
\begin{Verbatim}
sage: var('a, b')
(a, b)
sage: cr = function('cr')
sage: f = cr(a)
sage: g = f.diff(a).integral(b)
sage: g
b*diff(cr(a), a)
sage: g.substitute_function(cr, cos)
-b*sin(a)
sage: g.substitute_function(cr, (sin(x) + cos(x)).function(x))
b*(cos(a) - sin(a))
\end{Verbatim}

\texttt{sage.calculus.var.var(*args, **kwds)}

Create a symbolic variable with the name \textit{s}.

\textbf{INPUT:}

- \texttt{args} – A single string \texttt{var('x y')}, a list of strings \texttt{var(['x', 'y'])}, or multiple strings \texttt{var('x', 'y')}. A single string can be either a single variable name, or a space or comma separated list of variable names. In a list or tuple of strings, each entry is one variable. If multiple arguments are specified, each argument is taken to be one variable. Spaces before or after variable names are ignored.

- \texttt{kwds} – keyword arguments can be given to specify domain and custom latex_name for variables. See \texttt{EXAMPLES} for usage.

\textbf{Note:} The new variable is both returned and automatically injected into the global namespace. If you need a symbolic variable in library code, you must use either \texttt{SR.var()} or \texttt{SR.symbol()}.

\textbf{OUTPUT:}

If a single symbolic variable was created, the variable itself. Otherwise, a tuple of symbolic variables. The variable names are checked to be valid Python identifiers and a \texttt{ValueError} is raised otherwise.

\textbf{EXAMPLES:}

Here are the different ways to define three variables \texttt{x}, \texttt{y}, and \texttt{z} in a single line:

\begin{Verbatim}
sage: var('x y z')
(x, y, z)
sage: var('x, y, z')
(x, y, z)
sage: var(['x', 'y', 'z'])
(x, y, z)
sage: var('x', 'y', 'z')
(x, y, z)
sage: var('x'), var('y'), var(z)
(x, y, z)
\end{Verbatim}

We define some symbolic variables:

\begin{Verbatim}
sage: var('n xx yy zz')
(n, xx, yy, zz)
\end{Verbatim}

Then we make an algebraic expression out of them:
**Symbolic Calculus, Release 10.2**

```
sage: f = xx^n + yy^n + zz^n; f
xx^n + yy^n + zz^n
```

By default, `var` returns a complex variable. To define real or positive variables we can specify the domain as:

```
sage: x = var('x', domain=RR); x; x.conjugate()
x
x
sage: y = var('y', domain='real'); y.conjugate()
y
sage: y = var('y', domain='positive'); y.abs()
y
```

Custom latex expression can be assigned to variable:

```
sage: x = var('sui', latex_name="s_{u,i}"); x._latex_()
'{s_{u,i}}'
```

In notebook, we can also colorize latex expression:

```
sage: x = var('sui', latex_name="\color{red}{s_{u,i}}"); x._latex_()
'{\color{red}{s_{u,i}}}'
```

We can substitute a new variable name for `n`:

```
sage: f(n = var('sigma'))
xx^sigma + yy^sigma + zz^sigma
```

If you make an important built-in variable into a symbolic variable, you can get back the original value using `restore`:

```
sage: var('QQ RR')
(QQ, RR)
sage: QQ
RR
sage: restore('QQ')
sage: QQ
Rational Field
```

We make two new variables separated by commas:

```
sage: var('theta, gamma')
(theta, gamma)
sage: theta^2 + gamma^3
gamma^3 + theta^2
```

The new variables are of type `Expression`, and belong to the symbolic expression ring:

```
sage: type(theta)
<class 'sage.symbolic.expression.Expression'>
sage: parent(theta)
Symbolic Ring
```
2.30 Access to Maxima methods

```python
class sage.symbolic.maxima_wrapper.MaximaFunctionElementWrapper(obj, name)
 Bases: InterfaceFunctionElement
class sage.symbolic.maxima_wrapper.MaximaWrapper(exp)
 Bases: SageObject
 Wrapper around Sage expressions to give access to Maxima methods.
 We convert the given expression to Maxima and convert the return value back to a Sage expression. Tab completion and help strings of Maxima methods also work as expected.
 EXAMPLES:
 sage: t = log(sqrt(2) - 1) + log(sqrt(2) + 1); t
 log(sqrt(2) + 1) + log(sqrt(2) - 1)
 sage: u = t.maxima_methods(); u
 MaximaWrapper(log(sqrt(2) + 1) + log(sqrt(2) - 1))
 sage: type(u)
 <class 'sage.symbolic.maxima_wrapper.MaximaWrapper'>
 sage: u.logcontract()
 log((sqrt(2) + 1)*(sqrt(2) - 1))
 sage: u.logcontract().parent()
 Symbolic Ring
 sage()
 Return the Sage expression this wrapper corresponds to.
 EXAMPLES:
 sage: t = log(sqrt(2) - 1) + log(sqrt(2) + 1); t
 log(sqrt(2) + 1) + log(sqrt(2) - 1)
 sage: u = t.maxima_methods().sage()
 sage: u is t
 True
```

2.31 Operators

```python
class sage.symbolic.operators.DerivativeOperator
 Bases: object
 Derivative operator.
 Acting with this operator onto a function gives a new operator (of type FDerivativeOperator) representing
 the function differentiated with respect to one or multiple of its arguments.
 This operator takes a list of indices specifying the position of the arguments to differentiate. For example, D[0, 0, 1] is an operator that differentiates a function twice with respect to its first argument and once with respect to its second argument.
 EXAMPLES:
```
Symbolic Calculus, Release 10.2

```python
sage: x, y = var('x,y'); f = function('f')
sage: D[0](f)(x)
 diff(f(x), x)
sage: D[0](f)(x, y)
 diff(f(x, y), x)
sage: D[0, 1](f)(x, y)
 diff(f(x, y), x, y)
sage: D[0, 1](f)(x, x^2)
 D[0, 1](f)(x, x^2)
```

```python
class DerivativeOperatorWithParameters(parameter_set)
 Bases: object
class sage.symbolic.operators.FDerivativeOperator(function, parameter_set)
 Bases: object
 Function derivative operators.
 A function derivative operator represents a partial derivative of a function with respect to some variables.
 The underlying data are the function, and the parameter set, a list recording the indices of the variables with
 respect to which the partial derivative is taken.

 change_function(new)
 Return a new function derivative operator with the same parameter set but for a new function.

 EXAMPLES:

    ```python
    sage: from sage.symbolic.operators import FDerivativeOperator
    sage: f = function('foo')
    sage: b = function('bar')
    sage: op = FDerivativeOperator(f, [0, 1])
    sage: op.change_function(bar)
    D[0, 1](bar)
    ```

 function()
 Return the function associated to this function derivative operator.

 EXAMPLES:

    ```python
    sage: from sage.symbolic.operators import FDerivativeOperator
    sage: f = function('foo')
    sage: op = FDerivativeOperator(f, [0, 1])
    sage: op.function()
    foo
    ```

 parameter_set()
 Return the parameter set of this function derivative operator.
 This is the list of indices of variables with respect to which the derivative is taken.

 EXAMPLES:

    ```python
    sage: from sage.symbolic.operators import FDerivativeOperator
    sage: f = function('foo')
    sage: op = FDerivativeOperator(f, [0, 1])
    ```
```

(continues on next page)
sage: op.parameter_set()
[0, 1]

sage.symbolic.operators.add_vararg(first, *rest)
Return the sum of all the arguments.

INPUT:
• first, *rest – arguments to add

OUTPUT: sum of the arguments

EXAMPLES:

```
sage: from sage.symbolic.operators import add_vararg
sage: add_vararg(1, 2, 3, 4, 5, 6, 7)
28
sage: x = SR.var('x')
sage: s = 1 + x + x^2 # symbolic sum
sage: bool(s.operator()(*s.operands()) == s)
True
```

sage.symbolic.operators.mul_vararg(first, *rest)
Return the product of all the arguments.

INPUT:
• first, *rest – arguments to multiply

OUTPUT: product of the arguments

EXAMPLES:

```
sage: from sage.symbolic.operators import mul_vararg
sage: mul_vararg(9, 8, 7, 6, 5, 4)
60480
sage: x = SR.var('x')
sage: p = x * cos(x) * sin(x) # symbolic product
sage: bool(p.operator()(*p.operands()) == p)
True
```

### 2.32 Benchmarks

Tests that will take a long time if something is wrong, but be very quick otherwise. See [https://wiki.sagemath.org/symbench](https://wiki.sagemath.org/symbench). The parameters chosen below are such that with pynac most of these take well less than a second, but would not even be feasible using Sage's Maxima-based symbolics.

Problem R1

Important note. Below we do s.expand().real() because s.real() takes forever (TODO?).

```
sage: f(z) = sqrt(1/3)*z^2 + i/3
sage: s = f(f(f(f(f(f(f(f(f(f(i/2))))))))))
sage: s.expand().real()
```

(continues on next page)
Problem R2:

```
sage: def hermite(n,y):
 : if n == 1: return 2*y
 : if n == 0: return 1
 : return expand(2*y*hermite(n-1,y) - 2*(n-1)*hermite(n-2,y))
sage: hermite(15,var('y'))
32768*y^15 - 1720320*y^13 + 33546240*y^11 - 307507200*y^9 + 1383782400*y^7 -
2905943040*y^5 + 2421619200*y^3 - 518918400*y
```

Problem R3:

```
sage: f = sum(var('x,y,z')); a = [bool(f==f) for _ in range(100000)]
```

Problem R4:

```
sage: u = [e,pi,sqrt(2)]; Tuples(u,3).cardinality()
27
```

Problem R5:

```
sage: def blowup(L,n):
 : for i in [0..n]:
 : L.append((L[i] + L[i+1]) * L[i+2])
sage: L = list(var('x,y,z'))
sage: blowup(L,15)
sage: len(set(L))
19
```

Problem R6:

```
sage: sum(((x+sin(i))/x+(x-sin(i))/x) for i in range(100)).expand()
200
```

Problem R7:

```
sage: f = x^24+34*x^12+45*x^3+9*x^18 +34*x^10+ 32*x^21
sage: a = [f(x=random()) for _ in range(10^4)]
```

Problem R10:

```
sage: v = [float(z) for z in [-pi,-pi+1/100..,pi]]
```

Problem R11:

```
sage: a = [random() + random() for w in [0..100]]
sage: a.sort()
```

Problem W3:
Symbolic Calculus, Release 10.2

**PROBLEM S1:**
```python
sage: _ = var('x,y,z')
sage: f = (x+y+z+1)^10
sage: g = expand(f*(f+1))
```

**PROBLEM S2:**
```python
sage: _ = var('x,y')
sage: a = expand((x^sin(x) + y^cos(y) - z^(x+y))^100)
```

**PROBLEM S3:**
```python
sage: _ = var('x,y,z')
sage: f = expand((x^y + y^z + z^x)^50)
sage: g = f.diff(x)
```

**PROBLEM S4:**
```python
sage: w = (sin(x)*cos(x)).series(x,400)
```

---

### 2.33 Randomized tests of GiNaC / PyNaC

sage.symbolic.random_tests.assert_strict_weak_order(a, b, c, cmp_func)

Check that `cmp_func` is a strict weak order on the elements `a,b,c`.

A strict weak order is a binary relation `<` such that

- For all `x`, it is not the case that `x < x` (irreflexivity).
- For all `x != y`, if `x < y` then it is not the case that `y < x` (asymmetry).
- For all `x, y, z`, if `x < y` and `y < z` then `x < z` (transitivity).
- For all `x, y, z`, if `x` is incomparable with `y`, and `y` is incomparable with `z`, then `x` is incomparable with `z` (transitivity of incomparability).

**INPUT:**

- `a, b, c` – anything that can be compared by `cmp_func`.
- `cmp_func` – function of two arguments that returns their comparison (i.e. either True or False).

**OUTPUT:**

Does not return anything. Raises a `ValueError` if `cmp_func` is not a strict weak order on the three given elements.

**REFERENCES:**

Wikipedia article Strict_weak_ordering

**EXAMPLES:**

The usual ordering of integers is a strict weak order:
```python
sage: from sage.symbolic.random_tests import assert_strict_weak_order
sage: a, b, c = [randint(-10, 10) for i in range(3)]

sage: assert_strict_weak_order(a, b, c, lambda x, y: x < y)

sage: cmp_M = matrix(3, 3, 0)

sage: for i in range(3):
... for j in range(3):
... if x[i] < x[j]:
... cmp_M[i, j] = -1
... elif x[i] > x[j]:
... cmp_M[i, j] = 1

sage: cmp_M
[0 -1 -1]
[1 0 -1]
[1 1 0]
```

```
sage.symbolic.random_tests.choose_from_prob_list(lst)

INPUT:

• lst - A list of tuples, where the first element of each tuple is a nonnegative float (a probability), and the probabilities sum to one.

OUTPUT:

A tuple randomly selected from the list according to the given probabilities.

EXAMPLES:

```
sage: from sage.symbolic.random_tests import *

sage: v = [(0.1, False), (0.9, True)]

sage: choose_from_prob_list(v)  # random
(0.900000000000000, True)

sage: true_count = 0

sage: total_count = 0

sage: def more_samples():
...    global true_count, total_count
...    for _ in range(10000):
...        total_count += 1.0
...        if choose_from_prob_list(v)[1]:
...            true_count += 1.0

sage: more_samples()

sage: while abs(true_count/total_count - 0.9) > 0.01:
...    more_samples()
```

```
sage.symbolic.random_tests.normalize_prob_list(pl, extra=())

INPUT:

• pl - A list of tuples, where the first element of each tuple is a floating-point number (representing a relative probability). The second element of each tuple may be a list or any other kind of object.

• extra - A tuple which is to be appended to every tuple in pl.

This function takes such a list of tuples (a “probability list”) and normalizes the probabilities so that they sum to one. If any of the values are lists, then those lists are first normalized; then the probabilities in the list are multiplied by the main probability and the sublist is merged with the main list.
```
For example, suppose we want to select between group A and group B with 50% probability each. Then within group A, we select A1 or A2 with 50% probability each (so the overall probability of selecting A1 is 25%); and within group B, we select B1, B2, or B3 with probabilities in a 1:2:2 ratio.

EXAMPLES:

```python
sage: from sage.symbolic.random_tests import *

sage: A = [(0.5, 'A1'), (0.5, 'A2')]
sage: B = [(1, 'B1'), (2, 'B2'), (2, 'B3')]
sage: top = [(50, A, 'Group A'), (50, B, 'Group B')]
sage: normalize_prob_list(top)
[(0.250000000000000, 'A1', 'Group A'),
 (0.250000000000000, 'A2', 'Group A'),
 (0.1, 'B1', 'Group B'),
 (0.2, 'B2', 'Group B'),
 (0.2, 'B3', 'Group B')]
```
sage.symbolic.random_tests.random_expr(size, nvars=1, ncoeffs=None, var_frac=0.5, internal=[(0.6, [0.3, <built-in function add>], (0.1, <built-in function sub>), (0.3, <built-in function mul>), (0.2, <built-in function truediv>), (0.1, <built-in function pow>), 2], (0.2, [(0.8, <built-in function neg>), (0.2, <built-in function inv>)]), 1), (0.2, [(1.0, Ei, 1), (1.0, Order, 1), (1.0, swap_harmonic, 2), (1.0, abs, 1), (1.0, airy_ai, 1), (1.0, airy_ai_prime, 1), (1.0, airy_bi, 1), (1.0, airy_bi_prime, 1), (1.0, arccos, 1), (1.0, arccosh, 1), (1.0, arcctan, 1), (1.0, arctan, 1), (1.0, arctan2, 2), (1.0, arcsinh, 1), (1.0, arg, 1), (1.0, bessel_I, 2), (1.0, bessel_J, 2), (1.0, bessel_K, 2), (1.0, beta, 2), (1.0, binomial, 2), (1.0, ceil, 1), (1.0, chebyshev_T, 2), (1.0, chebyshev_U, 2), (1.0, complex_root_of, 2), (1.0, conjugate, 1), (1.0, cos, 1), (1.0, cos_integral, 1), (1.0, cosh, 1), (1.0, cos_integral, 1), (1.0, cot, 1), (1.0, coth, 1), (1.0, csch, 1), (1.0, dickman_rh, 1), (1.0, dilog, 1), (1.0, dirac_delta, 1), (1.0, elliptic_e, 2), (1.0, elliptic_ec, 1), (1.0, elliptic_eu, 2), (1.0, elliptic_f, 2), (1.0, elliptic_fc, 1), (1.0, elliptic_pi, 3), (1.0, erf, 1), (1.0, erfc, 1), (1.0, erfci, 1), (1.0, erfinv, 1), (1.0, exp, 1), (1.0, exp_integral_e, 2), (1.0, exp_integral_e1, 1), (1.0, exp_integral_e2, 1), (1.0, floor, 1), (1.0, frac, 1), (1.0, fresnel_c, 1), (1.0, fresnel_s, 1), (1.0, gamma_inc_lower, 2), (1.0, gegenbauer, 3), (1.0, gen_laguerre, 3), (1.0, gen_legendre_P, 3), (1.0, gen_legendre_Q, 3), (1.0, bessel_J, 2), (1.0, bessel_Y, 2), (1.0, spherical_bessel_J, 2), (1.0, spherical_bessel_Y, 2), (1.0, spherical_hankel1, 2), (1.0, spherical_hankel2, 2), (1.0, spherical_harmonic, 4), (1.0, stieltjes, 1), (1.0, struve_H, 2), (1.0, struve_L, 2), (1.0, sum, 4), (1.0, tan, 1), (1.0, tanh, 1), (1.0, unit_step, 1), (1.0, zeta, 1), (1.0, zetaderiv, 2)]), nullary=[(1.0, pi), (1.0, e), (0.05, golden_ratio), (0.05, log2), (0.05, euler_gamma), (0.05, catalan), (0.05, khinchin), (0.05, twinprime), (0.05, mertens)], nullary_frac=0.2, coeff_generator=<bound method RationalField.random_element of Rational Field>, verbose=False)
Symbolic Calculus, Release 10.2

Produce a random symbolic expression of the given size. By default, the expression involves (at most) one variable, an arbitrary number of coefficients, and all of the symbolic functions and constants (from the probability lists full_internal and full_nullary). It is possible to adjust the ratio of leaves between symbolic constants, variables, and coefficients (var_frac gives the fraction of variables, and nullary_frac the fraction of symbolic constants; the remaining leaves are coefficients).

The actual mix of symbolic constants and internal nodes can be modified by specifying different probability lists.

To use a different type for coefficients, you can specify coeff_generator, which should be a function that will return a random coefficient every time it is called.

This function will often raise an error because it tries to create an erroneous expression (such as a division by zero).

EXAMPLES:

```sage
from sage.symbolic.random_tests import *
some_functions = [arcsinh, arctan, arctan2, arctanh,
                 arg, beta, binomial, ceil, conjugate, cos, cosh, cot, coth,
                 elliptic_pi, erf, exp, factorial, floor, heaviside, imag_part,
                 sech, sgn, sin, sinh, tan, tanh, unit_step, zeta, zetaderiv]
my_internal = [(0.6, full_binary, 2), (0.2, full_unary, 1),
               (0.2, [(f, f.number_of_arguments()) for f in some_functions])]
set_random_seed(1)
random_expr(50, nvars=3, internal=my_internal,
coeff_generator=CDF.random_element)
```

2.33. Randomized tests of GiNaC / PyNaC

Produce a random symbolic expression of size n_nodes (or slightly larger). Internal nodes are selected from the internal probability list; leaves are selected from leaves. If verbose is True, then a message is printed before creating an internal node.

EXAMPLES:

```sage
from sage.symbolic.random_tests import *
a = random_expr_helper(9, [(0.5, operator.add, 2),
(0.5, operator.neg, 1)], [(0.5, 1), (0.5, x)], True)
```

In small cases we will see all cases quickly:

```sage
def next_expr():
    return random_expr_helper(6, [(0.5, operator.add, 2), (0.5, operator.neg, 1)],
[(0.5, 1), (0.5, x)], False)
```

(continues on next page)
Symbolic Calculus, Release 10.2

(continued from previous page)

```python
sage: all_exprs = set()
sage: for a in range(-4, 5):
.....:     for b in range(-4+abs(a), 5-abs(a)):
.....:         if a % 2 and abs(a) + abs(b) == 4 and sign(a) != sign(b):
.....:             continue
.....:         all_exprs.add(a*x + b)
sage: our_exprs = set()
sage: while our_exprs != all_exprs:
.....:     our_exprs.add(next_expr())
```

`sage.symbolic.random_tests.random_integer_vector(n, length)`

Give a random list of length `length`, consisting of nonnegative integers that sum to `n`.

This is an approximation to `IntegerVectors(n, length).random_element()`. That gives values uniformly at random, but might be slow; this routine is not uniform, but should always be fast.

(This routine is uniform if `length` is 1 or 2; for longer vectors, we prefer approximately balanced vectors, where all the values are around \(n/\text{length}\).)

EXAMPLES:

```python
sage: from sage.symbolic.random_tests import *
sage: a = random_integer_vector(100, 2); a
# random
[11, 89]
sage: len(a)
2
sage: sum(a)
100

sage: b = random_integer_vector(10000, 20)
sage: len(b)
20
sage: sum(b)
10000
```

The routine is uniform if `length` is 2:

```python
sage: true_count = 0
sage: total_count = 0
sage: def more_samples():
.....:     global true_count, total_count
.....:     for _ in range(1000):
.....:         total_count += 1.0
.....:     if a == random_integer_vector(100, 2):
.....:         true_count += 1.0
sage: more_samples()

sage: while abs(true_count/total_count - 0.01) > 0.01:
.....:     more_samples()
```

`sage.symbolic.random_tests.test_symbolic_expression_order(repetitions=100)`

Tests whether the comparison of random symbolic expressions satisfies the strict weak order axioms.

This is important because the C++ extension class uses `std::sort()` which requires a strict weak order. See also github issue #9880.
EXAMPLES:

```
sage: from sage.symbolic.random_tests import test_symbolic_expression_order
sage: test_symbolic_expression_order(200)
sage: test_symbolic_expression_order(10000)  # long time
```
INDICES AND TABLES

- Index
- Module Index
- Search Page
PYTHON MODULE INDEX

C
sage.calculus.calculus, 182
sage.calculus.desolvers, 302
sage.calculus.functional, 237
sage.calculus.functions, 363
sage.calculus.integration, 341
sage.calculus.interpolation, 356
sage.calculus.interpolators, 360
sage.calculus.ode, 336
sage.calculus.riemann, 345
sage.calculus.test_sympy, 261
sage.calculus.tests, 264
sage.calculus.transforms.dft, 323
sage.calculus.transforms.dwt, 321
sage.calculus.transforms.fft, 332
sage.calculus.var, 365
sage.calculus.wester, 291

S
sage.symbolic.assumptions, 156
sage.symbolic.benchmark, 373
sage.symbolic.callable, 153
sage.symbolic.complexity_measures, 291
sage.symbolic.expression, 5
sage.symbolic.expression_conversions, 268
sage.symbolic.function, 229
sage.symbolic.function_factory, 233
sage.symbolic.integration.external, 259
sage.symbolic.integration.integral, 249
sage.symbolic.maxima_wrapper, 371
sage.symbolic.operators, 371
sage.symbolic.random_tests, 375
sage.symbolic.relation, 165
sage.symbolic.ring, 217
sage.symbolic.subring, 224
sage.symbolic.units, 210
INDEX

A

abs() (sage.symbolic.expression.Expression method), 9
add() (sage.symbolic.expression.Expression method), 9
add_to_both_sides() (sage.symbolic.expression.Expression method), 9
add_vararg() (in module sage.symbolic.operators), 373
analytic_boundary() (in module sage.calculus.riemann), 353
analytic_interior() (in module sage.calculus.riemann), 354
append() (sage.calculus.interpolation.Spline method), 358
apply_to() (sage.symbolic.expression.SubstitutionMap method), 133
arccos() (sage.symbolic.expression.Expression method), 10
arccosh() (sage.symbolic.expression.Expression method), 10
arcsin() (sage.symbolic.expression.Expression method), 11
arcsinh() (sage.symbolic.expression.Expression method), 12
arctan() (sage.symbolic.expression.Expression method), 12
arctan2() (sage.symbolic.expression.Expression method), 13
arctanh() (sage.symbolic.expression.Expression method), 14
args() (sage.symbolic.callable.CallableSymbolicExpressionRing_class method), 155
args() (sage.symbolic.expression.Expression method), 14
arguments() (sage.symbolic.callable.CallableSymbolicExpressionRing_class method), 153
arguments() (sage.symbolic.callable.CallableSymbolicExpressionRing_class method), 155
arithmetic() (sage.symbolic.expression_conversions.FastCallableConverter method), 277
arithmetic() (sage.symbolic.expression_conversions.InterfaceInit method), 283
arithmetic() (sage.symbolic.expression_conversions.PolynomialConverter method), 285
arithmetic() (sage.symbolic.expression_conversions.RingConverter method), 287
assert_strict_weak_order() (in module sage.symbolic.random_tests), 375
assume() (in module sage.symbolic.assumptions), 159
assume() (sage.symbolic.assumptions.GenericDeclaration method), 157
assuming (class in sage.symbolic.assumptions), 161
assumptions() (in module sage.symbolic.assumptions), 163
at() (in module sage.calculus.calculus), 187

B

backward_transform() (sage.calculus.transforms.dwt.DiscreteWaveletTransform method), 322
backward_transform() (sage.calculus.transforms.fft.FastFourierTransform_complex method), 334
base_ring() (sage.calculus.transforms.dft.IndexedSequence method), 324
base_units() (in module sage.symbolic.units), 212
binomial() (sage.symbolic.expression.Expression method), 15
BuiltinFunction (class in sage.symbolic.function), 231

call_registered_function() (in module sage.symbolic.expression), 135
CallableSymbolicExpressionFunctor (class in sage.symbolic.callable), 153
CallableSymbolicExpressionRing_class (class in sage.symbolic.callable), 155

C

method), 275

387
CallableSymbolicExpressionRingFactory (class in sage.symbolic.callable), 154
canonicalize_radical() (sage.symbolic.expression.Expression method), 16
cauchy_kernel() (in module sage.calculus.riemann), 354
CCSpline (class in sage.calculus.interpolators), 360
change_function() (sage.symbolic.functions.FDerivative method), 372
characteristic() (sage.symbolic.ring.SymbolicRing method), 217
choose_from_prob_list() (in module sage.symbolic.random_tests), 376
CircDict (sage.symbolic.expression_conversions.Exponentialize method), 270
Circs (sage.symbolic.expression_conversions.Exponentialize method), 270
cleanup_var() (sage.symbolic.ring.SymbolicRing method), 217
clear_vars() (in module sage.calculus.var), 365
coefficient() (sage.symbolic.expression.Expression method), 18
coefficients() (sage.symbolic.expression.Expression method), 19
coefficients() (sage.symbolic.expression.SymbolicSeries method), 133
correction_reversed (sage.symbolic.subring.GenericSymbolicSubringFunctor method), 225
collect() (sage.symbolic.expression.Expression method), 20
collect_common_factors() (sage.symbolic.expression.Expression method), 21
combine() (sage.symbolic.expression.Expression method), 21
compiled_integrand (class in sage.calculus.integration), 341
complex_cubic_spline() (in module sage.calculus.interpolators), 362
complex_to_rgb() (in module sage.calculus.riemann), 354
complex_to_spiderweb() (in module sage.calculus.riemann), 354
composition() (sage.symbolic.expression_conversions.Converter method), 268
composition() (sage.symbolic.expression_conversions.DeMoivre method), 269
composition() (sage.symbolic.expression_conversions.Exponentialize method), 270
composition() (sage.symbolic.expression_conversions.ExpressionGainConversion method), 275
composition() (sage.symbolic.expression_conversions.FastCallableSymbolicSubringFactory method), 278
composition() (sage.symbolic.expression_conversions.HoldRemover method), 282
composition() (sage.symbolic.expression_conversions.InterfaceInit method), 283
composition() (sage.symbolic.expression_conversions.PolynomialConverter method), 286
composition() (sage.symbolic.expression_conversions.RingConverter method), 287
composition() (sage.symbolic.expression_conversions.SubstituteFunction method), 288
compute_on_grid() (sage.calculus.riemann.Riemann_Map method), 347
conjugate() (sage.symbolic.expression.Expression method), 21
decomposition() (sage.symbolic.callable.CallableSymbolicExpressionRingFactory method), 275
decomposition() (sage.symbolic.subring.SymbolicSubringAcceptingVars method), 226
decomposition() (sage.symbolic.subring.SymbolicSubringRejectingVars method), 228
cos (sage.symbolic.expression_conversions.Exponentialize attribute), 270
cos() (sage.symbolic.expression.Expression method), 24
cosh (sage.symbolic.expression_conversions.Exponentialize attribute), 271
cosh() (sage.symbolic.expression.Expression method), 25
cot (sage.symbolic.expression_conversions.Exponentialize attribute), 271
coth (sage.symbolic.expression_conversions.Exponentialize attribute), 271
create_key() (sage.symbolic.callable.CallableSymbolicExpressionRingFactory method), 154
create_key_and_extra_args() (sage.symbolic.callable.CallableSymbolicExpressionRingFactory method), 227
create_key() (sage.symbolic.callable.CallableSymbolicExpressionRingFactory method), 275
decomposition() (sage.symbolic.expression_conversions.ExpressionGainConversion method), 275

copied_to_grid() (sage.calculus.riemann.Riemann_Map method), 347
convert() (in module sage.symbolic.units), 212
convert() (sage.symbolic.expression.Expression method), 23
convert_temperature() (in module sage.symbolic.units), 213
Converter (class in sage.symbolic.expression_conversions), 268
convolution() (sage.calculus.transforms.dft.IndexedSequence method), 325
convolution() (sage.calculus.transforms.dft.IndexedSequence method), 325

collection() (sage.symbolic.expression.Expression method), 22
collection() (sage.symbolic.expression.Expression method), 23
conversion() (sage.symbolic.expression_conversions.HoldRemover method), 282
conversion() (sage.symbolic.expression_conversions.InterfaceInit method), 283
conversion() (sage.symbolic.expression_conversions.PolynomialConverter method), 286
conversion() (sage.symbolic.expression_conversions.RingConverter method), 287
conversion() (sage.symbolic.expression_conversions.SubstituteFunction method), 288
conversion() (sage.calculus.riemann.Riemann_Map method), 347
create_object() (sage.symbolic.callable.CallableSymbolicExpressionRingFactory method), 154
create_object() (sage.symbolic.subring.SymbolicSubringFactory method), 228
csc (sage.symbolic.expression_conversions.Exponentialize attribute), 271
csch (sage.symbolic.expression_conversions.Exponentialize attribute), 271
csgn() (sage.symbolic.expression.Expression method), 26

dct() (sage.calculus.transforms.dft.IndexedSequence method), 326
decl_assume() (sage.symbolic.expression.Expression method), 27
decl_forget() (sage.symbolic.expression.Expression method), 27
default_variable() (sage.symbolic.expression.SymbolicSeries method), 134
default_variable() (sage.symbolic.function.Function method), 231
definite_integral() (sage.calculus.interpolation.Spline method), 358
DefiniteIntegral (class in sage.symbolic.integration.integral), 249
degree() (sage.symbolic.expression.Expression method), 27
DeMoivre (class in sage.symbolic.expression_conversions), 269
demoivre() (sage.symbolic.expression.Expression method), 27
denominator() (sage.symbolic.expression.Expression method), 28
derivative() (in module sage.calculus.functional), 238
derivative() (sage.calculus.interpolation.CCSpline method), 358
derivative() (sage.calculus.interpolators.CCSpline method), 360
derivative() (sage.calculus.interpolators.PSpline method), 361
derivative() (sage.symbolic.expressions.Expression method), 28
derivative() (sage.symbolic.expression_conversions.Conversion method), 268
derivative() (sage.symbolic.expression_conversions.ExpressionConversion method), 276
derivative() (sage.symbolic.expression_conversions.FractionExpression method), 279
derivative() (sage.symbolic.expression_conversions.IntermediateExpression method), 283
desolve() (in module sage.calculus.desolvers), 303
desolve_laplace() (in module sage.calculus.desolvers), 308
desolve_mintides() (in module sage.calculus.desolvers), 309
desolve_odeint() (in module sage.calculus.desolvers), 309
desolve_rk4() (in module sage.calculus.desolvers), 312
desolve_rk4_determine_bounds() (in module sage.calculus.desolvers), 313
desolve_system() (in module sage.calculus.desolvers), 313
desolve_system_rk4() (in module sage.calculus.desolvers), 314
desolve_tides_mpf() (in module sage.calculus.desolvers), 315
dft() (sage.calculus.transforms.dft.IndexedSequence method), 326
dict() (sage.calculus.transforms.dft.IndexedSequence method), 327
diff() (in module sage.calculus.functional), 239
diff() (sage.symbolic.expression.Expression method), 30
differentiate() (sage.symbolic.expression.Expression method), 32
DiscreteWaveletTransform (class in sage.calculus.transforms.dwt), 322
distribute() (sage.symbolic.expression.Expression method), 34
divide_both_sides() (sage.symbolic.expression.Expression method), 34
doublefactorial() (in module sage.symbolic.expression), 136
dst() (sage.calculus.transforms.dft.IndexedSequence method), 327
dummy_diff() (in module sage.calculus.calculus), 188
dummy_integrate() (in module sage.calculus.calculus), 188
dummy_inverse_laplace() (in module sage.calculus.desolvers), 188
dummy_pochhammer() (in module sage.calculus.desolvers), 189
dummy_psplinediff() (in module sage.calculus.desolvers), 189
dwt() (sage.calculus.transforms.dft.IndexedSequence method), 321

Index 389
<table>
<thead>
<tr>
<th>Symbolic Calculus, Release 10.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
</tr>
<tr>
<td>E (class in sage.symbolic.expression), 7</td>
</tr>
<tr>
<td>e (sage.symbolic.expression_conversions.Exponentialize attribute), 271</td>
</tr>
<tr>
<td>eulers_method() (in module sage.calculus.desolvers), 317</td>
</tr>
<tr>
<td>eulers_method_2x2() (in module sage.calculus.desolvers), 318</td>
</tr>
<tr>
<td>eulers_method_2x2_plot() (in module sage.calculus.desolvers), 319</td>
</tr>
<tr>
<td>evalunitdict() (in module sage.symbolic.units), 214</td>
</tr>
<tr>
<td>exp (sage.symbolic.expression_conversions.Exponentialize attribute), 271</td>
</tr>
<tr>
<td>exp() (sage.symbolic.expression.Expression method), 35</td>
</tr>
<tr>
<td>exp() (in module sage.calculus.functional), 241</td>
</tr>
<tr>
<td>expand() (sage.symbolic.expression.Expression method), 35</td>
</tr>
<tr>
<td>expand_log() (sage.symbolic.expression.Expression method), 36</td>
</tr>
<tr>
<td>expand_rational() (sage.symbolic.expression.Expression method), 37</td>
</tr>
<tr>
<td>expand_sum() (sage.symbolic.expression.Expression method), 38</td>
</tr>
<tr>
<td>expand_trig() (sage.symbolic.expression.Expression method), 38</td>
</tr>
<tr>
<td>Exponentialize (class in sage.symbolic.expression_conversions), 270</td>
</tr>
<tr>
<td>exponentialize() (sage.symbolic.expression.Expression method), 40</td>
</tr>
<tr>
<td>Expression (class in sage.symbolic.expression), 8</td>
</tr>
<tr>
<td>expression() (sage.symbolic.expression.PynacConstant method), 132</td>
</tr>
<tr>
<td>ExpressionIterator (class in sage.symbolic.expression), 131</td>
</tr>
<tr>
<td>ExpressionTreeWalker (class in sage.symbolic.expression_conversions), 275</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>factor() (sage.symbolic.expression.Expression method), 40</td>
</tr>
<tr>
<td>factor_list() (sage.symbolic.expression.Expression method), 41</td>
</tr>
<tr>
<td>factorial() (sage.symbolic.expression.Expression method), 42</td>
</tr>
<tr>
<td>factorial_simplify() (sage.symbolic.expression.Expression method), 42</td>
</tr>
<tr>
<td>FakeExpression (class in sage.symbolic.expression_conversions), 276</td>
</tr>
<tr>
<td>fast_callable() (in module sage.symbolic.expression_conversions), 289</td>
</tr>
<tr>
<td>FastCallableConverter (class in sage.symbolic.expression_conversions), 277</td>
</tr>
<tr>
<td>FastFourierTransform() (in module sage.calculus.transforms.fft), 333</td>
</tr>
<tr>
<td>FastFourierTransform_base (class in sage.calculus.transforms.fft), 334</td>
</tr>
<tr>
<td>FastFourierTransform_complex (class in sage.calculus.transforms.fft), 334</td>
</tr>
<tr>
<td>FDerivativeOperator (class in sage.symbolic.operators), 372</td>
</tr>
<tr>
<td>FFT() (in module sage.calculus.transforms.fft), 332</td>
</tr>
<tr>
<td>fft() (sage.calculus.transforms.dft.IndexedSequence method), 328</td>
</tr>
<tr>
<td>find() (sage.symbolic.expression.Expression method), 43</td>
</tr>
<tr>
<td>find_local_maximum() (sage.symbolic.expression.Expression method), 43</td>
</tr>
<tr>
<td>find_local_minimum() (sage.symbolic.expression.Expression method), 44</td>
</tr>
<tr>
<td>find_registered_function() (in module sage.symbolic.expression), 136</td>
</tr>
<tr>
<td>find_root() (sage.symbolic.expression.Expression method), 44</td>
</tr>
<tr>
<td>forget() (in module sage.symbolic.assumptions), 164</td>
</tr>
<tr>
<td>forget() (sage.symbolic.assumptions.GenericDeclaration method), 158</td>
</tr>
<tr>
<td>forget() (sage.symbolic.expression.Expression method), 47</td>
</tr>
<tr>
<td>forward_transform() (sage.calculus.transforms.dwt.DiscreteWaveletTransform method), 322</td>
</tr>
<tr>
<td>forward_transform() (sage.calculus.transforms.fft.FastFourierTransform_complex method), 334</td>
</tr>
<tr>
<td>FourierTransform_complex (class in sage.calculus.transforms.fft), 336</td>
</tr>
<tr>
<td>FourierTransform_real (class in sage.calculus.transforms.fft), 336</td>
</tr>
<tr>
<td>fraction() (sage.symbolic.expression.Expression method), 47</td>
</tr>
<tr>
<td>free_variables() (sage.symbolic.expression.Expression method), 47</td>
</tr>
<tr>
<td>fricas_desolve() (in module sage.calculus.desolvers), 320</td>
</tr>
<tr>
<td>fricas_desolve_system() (in module sage.calculus.desolvers), 320</td>
</tr>
<tr>
<td>fricas_integrator() (in module sage.symbolic.integration.external), 259</td>
</tr>
<tr>
<td>FriCASConverter (class in sage.symbolic.expression_conversions), 279</td>
</tr>
<tr>
<td>full_simplify() (sage.symbolic.expression.Expression method), 48</td>
</tr>
</tbody>
</table>
Index 391

Function (class in sage.symbolic.function), 231
function() (in module sage.calculus.var), 365
function() (in module sage.symbolic.function_factory), 233
function() (sage.symbolic.expression.Expression method), 48
function() (sage.symbolic.expression_conversions.Exponentialize method), 271
function() (sage.symbolic.operators.FDerivativeOperator method), 372
function_factory() (in module sage.symbolic.function_factory), 236
G
 gamma() (sage.symbolic.expression.Expression method), 49
gamma_normalize() (sage.symbolic.expression.Expression method), 50
gcd() (sage.symbolic.expression.Expression method), 50
GenericDeclaration (class in sage.symbolic.assumptions), 157
GenericSymbolicSubring (class in sage.symbolic.subring), 224
GenericSymbolicSubringFunctor (class in sage.symbolic.subring), 224
get_derivatives() (in module sage.calculus.riemann), 356
get_fake_div() (sage.symbolic.expression_conversions.Converter method), 269
get_fn_serial() (in module sage.symbolic.expression), 136
get_ginac_serial() (in module sage.symbolic.expression), 137
get_sfunction_from_hash() (in module sage.symbolic.expression), 137
get_sfunction_from_serial() (in module sage.symbolic.expression), 137
get_szego() (sage.calculus.riemann.Riemann_Map method), 348
get_theta_points() (sage.calculus.riemann.Riemann_Map method), 349
giac_integrator() (in module sage.symbolic.integration.external), 259
GinacFunction (class in sage.symbolic.function), 232
gosper_sum() (sage.symbolic.expression.Expression method), 51
gosper_term() (sage.symbolic.expression.Expression method), 52
gradient() (sage.symbolic.expression.Expression method), 52
H
 half (sage.symbolic.expression_conversions.Exponentialize attribute), 275
has() (sage.symbolic.assumptions.GenericDeclaration method), 158
has() (sage.symbolic.expression.Expression method), 53
has_valid_variable() (sage.symbolic.subring.GenericSymbolicSubring method), 224
has_valid_variable() (sage.symbolic.subring.SymbolicConstantsSubring method), 225
has_valid_variable() (sage.symbolic.subring.SymbolicSubringAcceptingVars method), 226
has_valid_variable() (sage.symbolic.subring.SymbolicSubringRejectingVars method), 228
has_wild() (sage.symbolic.expression.Expression method), 53
hessian() (sage.symbolic.expression.Expression method), 54
hold_class (class in sage.symbolic.expression), 137
HoldRemover (class in sage.symbolic.expression_conversions), 282
horner() (sage.symbolic.expression.Expression method), 54
hypergeometric_simplify() (sage.symbolic.expression.Expression method), 54
I
 I() (sage.symbolic.ring.SymbolicRing method), 217
idft() (sage.calculus.transforms.dft.IndexedSequence method), 329
idwt() (sage.calculus.transforms.dft.IndexedSequence method), 329
ifft() (sage.calculus.transforms.dft.IndexedSequence method), 330
imag() (sage.symbolic.expression.Expression method), 55
imag_part() (sage.symbolic.expression.Expression method), 56
implicit_derivative() (sage.symbolic.expression.Expression method), 56
IndefiniteIntegral (class in sage.symbolic.integration.integral), 249
index_object() (sage.calculus.transforms.dft.IndexedSequence method), 330
IndexedSequence (class in sage.calculus.transforms.dft), 324
init_function_table() (in module sage.symbolic.expression), 138
Symbolic Calculus, Release 10.2

init_pynac_I() (in module sage.symbolic.expression), 138

is_positive() (sage.symbolic.expression.Expression method), 61

is_positive_infinity() (sage.symbolic.expression.Expression method), 61

Integral (sage.symbolic.expression_conversions.Exponentialize attribute), 270

Integral (in module sage.calculus.functional), 241

Integral (in module sage.symbolic.integration.integral), 249

Integral (sage.symbolic.expression.Expression method), 57

Integral (sage.symbolic.expression.Expression method), 57

InterfaceInit (class in sage.symbolic.expression_conversions), 282

InterpolatedSolution() (sage.calculus.ode.ode_solver method), 340

InverseLaplace() (sage.symbolic.expression.Expression method), 57

InverseLaplace() (sage.symbolic.expression.Expression method), 57

InverseRiemannMap() (sage.calculus.riemann.Riemann_Map method), 350

InverseTransform() (sage.calculus.transforms.fft.FastFourierTransform method), 335

Is2Pow() (in module sage.calculus.transforms.dwt), 323

IsAlgebraic() (sage.symbolic.expression.Expression method), 58

IsCallable() (sage.symbolic.expression.Expression method), 58

IsConstant() (sage.symbolic.expression.Expression method), 58

IsExact() (sage.symbolic.expression.Expression method), 59

IsExact() (sage.symbolic.expression.Expression method), 59

IsExact() (sage.symbolic.expression.Expression method), 59

IsExact() (sage.symbolic.expression.Expression method), 59

IsField() (sage.symbolic.expression.Expression method), 217

IsFinite() (sage.symbolic.expression.Expression method), 217

IsInfinity() (sage.symbolic.expression.Expression method), 59

IsInteger() (sage.symbolic.expression.Expression method), 59

IsNegative() (sage.symbolic.expression.Expression method), 59

IsNegativeInfinity() (sage.symbolic.expression.Expression method), 60

IsNumeric() (sage.symbolic.expression.Expression method), 60

Is Polynomial() (sage.symbolic.expression.Expression method), 60

IsRationalExpression() (sage.symbolic.expression.Expression method), 61

IsReal() (sage.symbolic.expression.Expression method), 62

IsRelational() (sage.symbolic.expression.Expression method), 62

IsSquare() (sage.symbolic.expression.Expression method), 63

IsSymbol() (sage.symbolic.expression.Expression method), 63

IsSymbolicEquation() (in module sage.symbolic.expression), 139

IsTerminatingSeries() (sage.symbolic.expression.Expression method), 64

IsTerminatingSeries() (sage.symbolic.expression.SymbolicSeries method), 134

IsTriviallyEqual() (sage.symbolic.expression.Expression method), 65

IsUnit() (in module sage.symbolic.units), 214

IsUnit() (sage.symbolic.expression.Expression method), 66

IsIdentifier() (in module sage.symbolic.ring), 222

Iterator() (sage.symbolic.expression.Expression method), 66

J

Jacobian() (in module sage.calculus.functions), 363

L

Laplace() (in module sage.calculus.functional), 190

Laplace() (sage.symbolic.expression.Expression method), 67

LaurentPolynomial() (in module sage.symbolic.expression_conversions), 289

LaurentPolynomial() (sage.symbolic.expression.Expression method), 67

LaurentPolynomialConverter (class in sage.symbolic.expression_conversions), 284

lcm() (sage.symbolic.expression.Expression method), 67
polynomial() (in module sage.symbolic.expression_conversions), 290

PolynomialConverter (class in sage.symbolic.expression_conversions), 285

power() (sage.symbolic.expression.Expression method), 88

power_series() (sage.symbolic.expression.Expression method), 89

power_series() (sage.symbolic.expression.SymbolSeries method), 134

preprocess_assumptions() (in module sage.symbolic.assumptions), 164

primitive_part() (sage.symbolic.expression.Expression method), 89

print_order() (in module sage.symbolic.expression), 144

print_sorted() (in module sage.symbolic.expression), 144

prod() (sage.symbolic.expression.Expression method), 89

PSpline (class in sage.calculus.interpolators), 361

py_atan2_for_doctests() (in module sage.symbolic.expression), 144

py_denom_for_doctests() (in module sage.symbolic.expression), 144

py_eval_infinity_for_doctests() (in module sage.symbolic.expression), 145

py_eval_neg_infinity_for_doctests() (in module sage.symbolic.expression), 145

py_eval_unsigned_infinity_for_doctests() (in module sage.symbolic.expression), 145

py_exp_for_doctests() (in module sage.symbolic.expression), 145

py_factorial_py() (in module sage.symbolic.expression), 145

py_float_for_doctests() (in module sage.symbolic.expression), 145

py_imag_for_doctests() (in module sage.symbolic.expression), 145

py_is_cinteger_for_doctests() (in module sage.symbolic.expression), 145

py_is_crational_for_doctests() (in module sage.symbolic.expression), 145

py_is_integer_for_doctests() (in module sage.symbolic.expression), 145

py_lgamma_for_doctests() (in module sage.symbolic.expression), 145

py_latex_for_doctests() (in module sage.symbolic.expression), 145

py_latex_function_pystring() (in module sage.symbolic.expression), 146

py_latex_variable_for_doctests() (in module sage.symbolic.expression), 147

py_log_for_doctests() (in module sage.symbolic.expression), 148

py_mod_for_doctests() (in module sage.symbolic.expression), 148

py_numer_for_doctests() (in module sage.symbolic.expression), 148

py_psi2_for_doctests() (in module sage.symbolic.expression), 150

py_print_function_pystring() (in module sage.symbolic.expression), 149

py_psi_for_doctests() (in module sage.symbolic.expression), 150

py_real_for_doctests() (in module sage.symbolic.expression), 150

py_stieltjes_for_doctests() (in module sage.symbolic.expression), 150

py_tgamma_for_doctests() (in module sage.symbolic.expression), 150

py_zeta_for_doctests() (in module sage.symbolic.expression), 150

PyFunctionWrapper (class in sage.calculus.integration), 341

PyFunctionWrapper (class in sage.calculus.ode), 336

PynacConstant (class in sage.symbolic.expression), 132

pyobject() (sage.symbolic.expression.Expression method), 90

R

random_expr() (in module sage.symbolic.random_tests), 377
random_expr_helper() (in module sage.symbolic.random_tests), 379
random_integer_vector() (in module sage.symbolic.random_tests), 380
rank (sage.symbolic.subring.GenericSymbolicSubringFunctor attribute), 225
rational_expand() (sage.symbolic.expression.Expression method), 90
rational_simplify() (sage.symbolic.expression.Expression method), 91
real() (sage.symbolic.expression.Expression method), 92
real_part() (sage.symbolic.expression.Expression method), 93
rectform() (sage.symbolic.expression.Expression method), 93
reduce_trig() (sage.symbolic.expression.Expression method), 94
register_or_update_function() (in module sage.symbolic.expression), 150
relation() (sage.symbolic.expression_conversions.Converter method), 269
relation() (sage.symbolic.expression_conversions.Expression method), 276
relation() (sage.symbolic.expression_conversions.FastCallableConverter method), 278
relation() (sage.symbolic.expression_conversions.InterfaceInit method), 284
relation() (sage.symbolic.expression_conversions.PolynomialConverter method), 286
residue() (sage.symbolic.expression.Expression method), 95
restore_op_wrapper() (in module sage.symbolic.expression), 151
resultant() (sage.symbolic.expression.Expression method), 95
rhs() (sage.symbolic.expression.Expression method), 96
Riemann_Map (class in sage.calculus.riemann), 345
riemann_map() (sage.calculus.riemann.Riemann_Map method), 353
right() (sage.symbolic.expression.Expression method), 96
right_hand_side() (sage.symbolic.expression.Expression method), 96
RingConverter (class in sage.symbolic.expression_conversions), 287
roots() (sage.symbolic.expression.Expression method), 97
round() (sage.symbolic.expression.Expression method), 99
sage() (sage.symbolic.maxima_wrapper.MaximaWrapper method), 371
symbol() (sage.symbolic.expression.Expression method), 108

symbol() (sage.symbolic.expression_conversions.Converter method), 269

solve() (in module sage.symbolic.relation), 171

solve() (sage.symbolic.expression.Expression method), 109

solve_diophantine() (in module sage.symbolic.expression.Expression method), 109

solve_diophantine() (sage.symbolic.expression.Expression method), 151

solve_ineq() (in module sage.symbolic.relation), 177

solve_ineq_fourier() (in module sage.symbolic.relation), 178

solve_ineq_univar() (in module sage.symbolic.relation), 179

solve_mod() (in module sage.symbolic.relation), 179

Spline (class in sage.calculus.interpolation), 356

spline (in module sage.calculus.interpolation), 359

sqrt() (sage.symbolic.expression.Expression method), 111

SR (sage.symbolic.expression_conversions.Exponentialize attribute), 270

start() (sage.symbolic.expression.expression.Hold_class method), 138

step() (sage.symbolic.expression.Expression method), 112

stop() (sage.symbolic.expression.expression.Hold_class method), 138

str_to_unit() (in module sage.symbolic.units), 215

string_length() (in module sage.symbolic.complexity_measures), 291

string_to_list_of_solutions() (in module sage.symbolic.relation), 181

subring() (sage.symbolic.ring.SymbolicRing method), 218

subs() (sage.symbolic.expression.Expression method), 113

substitute() (sage.symbolic.expression.Expression method), 116

substitute_function() (sage.symbolic.expression.Expression method), 118

SubstituteFunction (class in sage.symbolic.expression_conversions), 288

substitution_delayed() (sage.symbolic.expression.Expression method), 119

SubstitutionMap (class in sage.symbolic.expression), 133

subtract_from_both_sides() (sage.symbolic.expression.Expression method), 120
Symbolic Calculus, Release 10.2

symbol() (sage.symbolic.expression_conversions.Expression method), 276
symbol() (sage.symbolic.expression_conversions.FastCallableConverter method), 228
dummy_var() (sage.symbolic.ring.SymbolicRing method), 220
temp_var() (sage.symbolic.ring.SymbolicRing method), 281
temporary_variables (class in sage.symbolic.ring), 222
test_binomial() (in module sage.symbolic.expression), 151
test_relation() (sage.symbolic.expression.Expression method), 146
test_relation_maxima() (in module sage.symbolic.ring.random_tests), 380
test_symbolic_expression_order() (in module sage.symbolic.ring), 225
test_relation() (in module sage.symbolic.ring), 284
test_symbolic_expression_order() (in module sage.symbolic.ring), 287
test_relation() (in module sage.symbolic.ring), 290
the_SymbolicRing() (in module sage.symbolic.ring), 222
to_gamma() (sage.symbolic.expression.Expression method), 125
tolerant_is_symbol() (in module sage.symbolic.expression), 152
trailing_coeff() (sage.symbolic.expression.Expression method), 125
trailing_coefficient() (sage.symbolic.expression.Expression method), 126
trig_expand() (sage.symbolic.expression.Expression method), 126
trig_reduce() (sage.symbolic.expression.Expression method), 127
trig_simplify() (sage.symbolic.expression.Expression method), 128
truncation() (sage.symbolic.expression.Expression method), 128
truncation() (sage.symbolic.expression.SymbolicSeries method), 135
tuple() (sage.symbolic.expression_conversions.ExpressionTreeWalker method), 276
tuple() (sage.symbolic.expression_conversions.FastCallableConverter method), 279
tuple() (sage.symbolic.expression_conversions.InterfaceInit method), 284
two (sage.symbolic.expression_conversions.Exponentialize attribute), 275
UnderscoreSageMorphism (class in sage.symbolic.ring), 222
unhold() (sage.symbolic.expression.Expression method), 129
unify_arguments() (sage.symbolic.callable.CallableSymbolicExpression method), 154
unit() (sage.symbolic.expression.Expression method), 129
unit_content_primitive() (sage.symbolic.expression.Expression method), 275

T

tan (sage.symbolic.expression_conversions.Exponentialize attribute), 275
tan() (sage.symbolic.expression.Expression method), 122
tanh (sage.symbolic.expression_conversions.Exponentialize attribute), 275
tanh() (sage.symbolic.expression.Expression method), 123
taylor() (in module sage.calculus.functional), 248
130

unit_derivations_expr() (in module sage.symbolic.units), 215
unitdocs() (in module sage.symbolic.units), 216
UnitExpression (class in sage.symbolic.units), 211
Units (class in sage.symbolic.units), 211
unpack_operands() (in module sage.symbolic.expression), 152
unpickle_function() (in module sage.symbolic.function_factory), 236
unpickle_wrapper() (in module sage.symbolic.function), 232

V

value() (sage.calculus.interpolators.CCSpline method), 360
value() (sage.calculus.interpolators.PSpline method), 361
var() (in module sage.calculus.var), 369
var() (in module sage.symbolic.ring), 223
variables() (sage.symbolic.expression.Expression method), 130
variables() (sage.symbolic.function.Function method), 232
vars_in_str() (in module sage.symbolic.units), 216

W

WaveletTransform() (in module sage.calculus.transforms.dwt), 322
wild() (sage.symbolic.ring.SymbolicRing method), 221
wronskian() (in module sage.calculus.functions), 363
WZ_certificate() (sage.symbolic.expression.Expression method), 8

X

x (sage.symbolic.expression_conversions.Exponentialize attribute), 275

Z

zeta() (sage.symbolic.expression.Expression method), 131