CONTENTS

1 The Sage Category Framework
- 1.1 Elements, parents, and categories in Sage: a (draft of) primer .. 1
- 1.2 Categories .. 27
- 1.3 Axioms ... 62
- 1.4 Functors ... 95
- 1.5 Implementing a new parent: a (draft of) tutorial ... 99

2 Maps and Morphisms .. 101
- 2.1 Base class for maps .. 101
- 2.2 Homsets ... 110
- 2.3 Morphisms ... 117
- 2.4 Coercion via construction functors ... 121

3 Individual Categories ... 149
- 3.1 Group, ring, etc. actions on objects ... 149
- 3.2 Additive groups .. 152
- 3.3 Additive magmas ... 154
- 3.4 Additive monoids .. 165
- 3.5 Additive semigroups .. 166
- 3.6 Affine Weyl groups .. 168
- 3.7 Algebra ideals .. 171
- 3.8 Algebra modules ... 171
- 3.9 Algebras .. 172
- 3.10 Algebras With Basis ... 175
- 3.11 Aperiodic semigroups ... 180
- 3.12 Associative algebras ... 180
- 3.13 Bialgebras ... 181
- 3.14 Bialgebras with basis ... 182
- 3.15 Bimodules .. 186
- 3.16 Classical Crystals ... 187
- 3.17 Coalgebras ... 191
- 3.18 Coalgebras with basis ... 196
- 3.19 Commutative additive groups .. 198
- 3.20 Commutative additive monoids ... 199
- 3.21 Commutative additive semigroups ... 199
- 3.22 Commutative algebra ideals .. 200
- 3.23 Commutative algebras .. 201
- 3.24 Commutative ring ideals ... 201
- 3.25 Commutative rings .. 201
- 3.26 Complete Discrete Valuation Rings (CDVR) and Fields (CDVF) 206
3.27 Complex reflection groups ... 209
3.28 Common category for Generalized Coxeter Groups or Complex Reflection Groups 211
3.29 Coxeter Group Algebras ... 228
3.30 Coxeter Groups ... 231
3.31 Crystals ... 259
3.32 CW Complexes ... 282
3.33 Discrete Valuation Rings (DVR) and Fields (DVF) 284
3.34 Distributive Magmas and Additive Magmas .. 287
3.35 Division rings .. 288
3.36 Domains .. 289
3.37 Enumerated sets ... 289
3.38 Euclidean domains ... 296
3.39 Fields ... 298
3.40 Filtered Algebras .. 303
3.41 Filtered Algebras With Basis .. 303
3.42 Filtered Modules ... 311
3.43 Filtered Modules With Basis .. 312
3.44 Finite Complex Reflection Groups .. 326
3.45 Finite Coxeter Groups ... 342
3.46 Finite Crystals .. 353
3.47 Finite dimensional algebras with basis ... 354
3.48 Finite dimensional bialgebras with basis .. 372
3.49 Finite dimensional coalgebras with basis ... 372
3.50 Finite Dimensional Graded Lie Algebras With Basis 373
3.51 Finite dimensional Hopf algebras with basis 374
3.52 Finite Dimensional Lie Algebras With Basis 375
3.53 Finite dimensional modules with basis .. 390
3.54 Finite Dimensional Nilpotent Lie Algebras With Basis 396
3.55 Finite dimensional semisimple algebras with basis 398
3.56 Finite Enumerated Sets ... 400
3.57 Finite fields .. 405
3.58 Finite groups .. 406
3.59 Finite lattice posets ... 409
3.60 Finite monoids .. 411
3.61 Finite Permutation Groups .. 415
3.62 Finite posets ... 419
3.63 Finite semigroups ... 440
3.64 Finite sets .. 441
3.65 Finite Weyl Groups ... 443
3.66 Finitely Generated Lambda bracket Algebras 443
3.67 Finitely Generated Lie Conformal Algebras 444
3.68 Finitely generated magmas .. 445
3.69 Finitely generated semigroups .. 446
3.70 Function fields .. 448
3.71 G-Sets .. 449
3.72 Gcd domains .. 449
3.73 Generalized Coxeter Groups ... 450
3.74 Graded Algebras .. 451
3.75 Graded algebras with basis .. 452
3.76 Graded bialgebras ... 454
3.77 Graded bialgebras with basis .. 454
3.78 Graded Coalgebras ... 454
3.79 Graded coalgebras with basis .. 455
3.80 Graded Hopf algebras .. 456
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.81</td>
<td>Graded Hopf algebras with basis</td>
<td>456</td>
</tr>
<tr>
<td>3.82</td>
<td>Graded Lie Algebras</td>
<td>458</td>
</tr>
<tr>
<td>3.83</td>
<td>Graded Lie Algebras With Basis</td>
<td>459</td>
</tr>
<tr>
<td>3.84</td>
<td>Graded Lie Conformal Algebras</td>
<td>459</td>
</tr>
<tr>
<td>3.85</td>
<td>Graded modules</td>
<td>460</td>
</tr>
<tr>
<td>3.86</td>
<td>Graded modules with basis</td>
<td>461</td>
</tr>
<tr>
<td>3.87</td>
<td>Graphs</td>
<td>462</td>
</tr>
<tr>
<td>3.88</td>
<td>Group Algebras</td>
<td>464</td>
</tr>
<tr>
<td>3.89</td>
<td>Groupoid</td>
<td>469</td>
</tr>
<tr>
<td>3.90</td>
<td>Groups</td>
<td>469</td>
</tr>
<tr>
<td>3.91</td>
<td>Hecke modules</td>
<td>477</td>
</tr>
<tr>
<td>3.92</td>
<td>Highest Weight Crystals</td>
<td>478</td>
</tr>
<tr>
<td>3.93</td>
<td>Hopf algebras</td>
<td>486</td>
</tr>
<tr>
<td>3.94</td>
<td>Hopf algebras with basis</td>
<td>488</td>
</tr>
<tr>
<td>3.95</td>
<td>H-trivial semigroups</td>
<td>491</td>
</tr>
<tr>
<td>3.96</td>
<td>Infinite Enumerated Sets</td>
<td>492</td>
</tr>
<tr>
<td>3.97</td>
<td>Integral domains</td>
<td>493</td>
</tr>
<tr>
<td>3.98</td>
<td>J-trivial semigroups</td>
<td>494</td>
</tr>
<tr>
<td>3.99</td>
<td>Kac-Moody Algebras</td>
<td>494</td>
</tr>
<tr>
<td>3.100</td>
<td>Lambda Bracket Algebras</td>
<td>495</td>
</tr>
<tr>
<td>3.101</td>
<td>Lambda Bracket Algebras With Basis</td>
<td>497</td>
</tr>
<tr>
<td>3.102</td>
<td>Lattice posets</td>
<td>499</td>
</tr>
<tr>
<td>3.103</td>
<td>Left modules</td>
<td>500</td>
</tr>
<tr>
<td>3.104</td>
<td>Lie Algebras</td>
<td>500</td>
</tr>
<tr>
<td>3.105</td>
<td>Lie Algebras With Basis</td>
<td>500</td>
</tr>
<tr>
<td>3.106</td>
<td>Lie Conformal Algebras</td>
<td>510</td>
</tr>
<tr>
<td>3.107</td>
<td>Lie Conformal Algebras With Basis</td>
<td>510</td>
</tr>
<tr>
<td>3.108</td>
<td>Lie Groups</td>
<td>512</td>
</tr>
<tr>
<td>3.109</td>
<td>Loop Crystals</td>
<td>516</td>
</tr>
<tr>
<td>3.110</td>
<td>L-trivial semigroups</td>
<td>518</td>
</tr>
<tr>
<td>3.111</td>
<td>Magmas</td>
<td>518</td>
</tr>
<tr>
<td>3.112</td>
<td>Magmas and Additive Magmas</td>
<td>530</td>
</tr>
<tr>
<td>3.113</td>
<td>Non-unital non-associative algebras</td>
<td>531</td>
</tr>
<tr>
<td>3.114</td>
<td>Manifolds</td>
<td>545</td>
</tr>
<tr>
<td>3.115</td>
<td>Matrix algebras</td>
<td>547</td>
</tr>
<tr>
<td>3.116</td>
<td>Metric Spaces</td>
<td>550</td>
</tr>
<tr>
<td>3.117</td>
<td>Modular abelian varieties</td>
<td>554</td>
</tr>
<tr>
<td>3.118</td>
<td>Modules</td>
<td>554</td>
</tr>
<tr>
<td>3.119</td>
<td>Modules With Basis</td>
<td>558</td>
</tr>
<tr>
<td>3.120</td>
<td>Monoid algebras</td>
<td>559</td>
</tr>
<tr>
<td>3.121</td>
<td>Monoids</td>
<td>569</td>
</tr>
<tr>
<td>3.122</td>
<td>Number fields</td>
<td>594</td>
</tr>
<tr>
<td>3.123</td>
<td>Objects</td>
<td>594</td>
</tr>
<tr>
<td>3.124</td>
<td>Partially ordered monoids</td>
<td>600</td>
</tr>
<tr>
<td>3.125</td>
<td>Permutation groups</td>
<td>602</td>
</tr>
<tr>
<td>3.126</td>
<td>Pointed sets</td>
<td>603</td>
</tr>
<tr>
<td>3.127</td>
<td>Polyhedral subsets of free ZZ, QQ or RR-modules</td>
<td>604</td>
</tr>
<tr>
<td>3.128</td>
<td>Posets</td>
<td>605</td>
</tr>
<tr>
<td>3.129</td>
<td>Principal ideal domains</td>
<td>605</td>
</tr>
<tr>
<td>3.130</td>
<td>Quotient fields</td>
<td>614</td>
</tr>
<tr>
<td>3.131</td>
<td>Quantum Group Representations</td>
<td>615</td>
</tr>
<tr>
<td>3.132</td>
<td>Regular Crystals</td>
<td>621</td>
</tr>
<tr>
<td>3.133</td>
<td>Regular Supercrystals</td>
<td>627</td>
</tr>
<tr>
<td>3.134</td>
<td>Right modules</td>
<td>635</td>
</tr>
</tbody>
</table>
4 Functorial constructions

4.1 Covariant Functorial Constructions
4.2 Cartesian Product Functorial Construction
4.3 Tensor Product Functorial Construction
4.4 Signed Tensor Product Functorial Construction
4.5 Dual functorial construction
4.6 Group algebras and beyond: the Algebra functorial construction
4.7 Subquotient Functorial Construction
4.8 Quotients Functorial Construction
4.9 Subobjects Functorial Construction
4.10 Isomorphic Objects Functorial Construction
4.11 Homset categories
4.12 Realizations Covariant Functorial Construction
4.13 With Realizations Covariant Functorial Construction

5 Examples of parents using categories

5.1 Examples of algebras with basis
5.2 Examples of commutative additive monoids
5.3 Examples of commutative additive semigroups
5.4 Examples of Coxeter groups
5.5 Example of a crystal
5.6 Examples of CW complexes
5.7 Example of facade set
1.1 Elements, parents, and categories in Sage: a (draft of) primer

1.1.1 Abstract

The purpose of categories in Sage is to translate the mathematical concept of categories (category of groups, of vector spaces, …) into a concrete software engineering design pattern for:

• organizing and promoting generic code
• fostering consistency across the Sage library (naming conventions, doc, tests)
• embedding more mathematical knowledge into the system

This design pattern is largely inspired from Axiom and its followers (Aldor, Fricas, MuPAD, …). It differs from those by:

• blending in the Magma inspired concept of Parent/Element
• being built on top of (and not into) the standard Python object oriented and class hierarchy mechanism. This did not require changing the language, and could in principle be implemented in any language supporting the creation of new classes dynamically.
The general philosophy is that *Building mathematical information into the system yields more expressive, more conceptual and, at the end, easier to maintain and faster code* (within a programming realm; this would not necessarily apply to specialized libraries like gmp!).

One line pitch for mathematicians

Categories in Sage provide a library of interrelated bookshelves, with each bookshelf containing algorithms, tests, documentation, or some mathematical facts about the objects of a given category (e.g. groups).

One line pitch for programmers

Categories in Sage provide a large hierarchy of abstract classes for mathematical objects. To keep it maintainable, the inheritance information between the classes is not hardcoded but instead reconstructed dynamically from duplication free semantic information.

1.1.2 Introduction: Sage as a library of objects and algorithms

The Sage library, with more than one million lines of code, documentation, and tests, implements:

- Thousands of different kinds of objects (classes):

 Integers, polynomials, matrices, groups, number fields, elliptic curves, permutations, morphisms, languages, ... and a few racoons ...

- Tens of thousands methods and functions:

 Arithmetic, integer and polynomial factorization, pattern matching on words, ...

Some challenges

- How to organize this library?

 One needs some bookshelves to group together related objects and algorithms.

- How to ensure consistency?

 Similar objects should behave similarly:

  ```sage
  sage: Permutations(5).cardinality()
  120
  sage: GL(2,2).cardinality()
  6
  sage: A=random_matrix(ZZ,6,3,x=7)
  sage: L=LatticePolytope(A.rows())
  sage: L.npoints()
  # oops!  # random
  37
  ```

- How to ensure robustness?

- How to reduce duplication?

 Example: binary powering:
We want to implement binary powering only once, as *generic* code that will apply in all cases.

1.1.3 A bit of help from abstract algebra

The hierarchy of categories

What makes binary powering work in the above examples? In both cases, we have a set endowed with a *multiplicative binary operation* which is *associative* and which has a unit element. Such a set is called a *monoid*, and binary powering (to a non-negative power) works generally for any monoid.

Sage knows about monoids:

```sage
sage: Monoids()
Category of monoids
```

and sure enough, binary powering is defined there:

```sage
sage: m._pow_int.__module__
'sage.categories.monoids'
```

That’s our bookshelf! And it’s used in many places:

```sage
sage: GL(2,ZZ) in Monoids()
True
sage: NN in Monoids()
True
```

For a less trivial bookshelf we can consider euclidean rings: once we know how to do euclidean division in some set \mathcal{R}, we can compute gcd’s in \mathcal{R} generically using the Euclidean algorithm.

We are in fact very lucky: abstract algebra provides us right away with a large and robust set of bookshelves which is the result of centuries of work of mathematicians to identify the important concepts. This includes for example:

```sage
sage: Sets()
Category of sets
sage: Groups()
Category of groups
sage: Rings()
Category of rings
sage: Fields()
Category of fields
sage: HopfAlgebras(QQ)
Category of hopf algebras over Rational Field
```
Each of the above is called a category. It typically specifies what are the operations on the elements, as well as the axioms satisfied by those operations. For example the category of groups specifies that a group is a set endowed with a binary operation (the multiplication) which is associative and admits a unit and inverses.

Each set in Sage knows which bookshelf of generic algorithms it can use, that is to which category it belongs:

```python
sage: G = GL(2, ZZ)
sage: G.category()
Category of infinite groups
```

In fact a group is a semigroup, and Sage knows about this:

```python
sage: Groups().is_subcategory(Semigroups())
True
sage: G in Semigroups()
True
```

Altogether, our group gets algorithms from a bunch of bookshelves:

```python
sage: G.categories()
[Category of infinite groups, Category of groups, Category of monoids,
 ...,
 Category of magmas,
 Category of infinite sets, ...]
```

Those can be viewed graphically:

```python
sage: g = Groups().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g)  # not tested
```

In case `dot2tex` is not available, you can use instead:

```python
sage: g.show(vertex_shape=None, figsize=20)
```

Here is an overview of all categories in Sage:

```python
sage: g = sage.categories.category.category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g)  # not tested
```

Wrap-up: generic algorithms in Sage are organized in a hierarchy of bookshelves modelled upon the usual hierarchy of categories provided by abstract algebra.

Elements, Parents, Categories

Parent

A *parent* is a Python instance modelling a set of mathematical elements together with its additional (algebraic) structure.

Examples include the ring of integers, the group S_3, the set of prime numbers, the set of linear maps between two given vector spaces, and a given finite semigroup.

These sets are often equipped with additional structure: the set of all integers forms a ring. The main way of encoding this information is specifying which categories a parent belongs to.
It is completely possible to have different Python instances modelling the same set of elements. For example, one might want to consider the ring of integers, or the poset of integers under their standard order, or the poset of integers under divisibility, or the semiring of integers under the operations of maximum and addition. Each of these would be a different instance, belonging to different categories.

For a given model, there should be a unique instance in Sage representing that parent:

```
sage: IntegerRing() is IntegerRing()
True
```

Element

An *element* is a Python instance modelling a mathematical element of a set.

Examples of element include 5 in the integer ring, $x^3 - x$ in the polynomial ring in x over the rationals, $4 + O(3^3)$ in the 3-adics, the transposition (12) in S_3, and the identity morphism in the set of linear maps from Q^3 to Q^3.

Every element in Sage has a parent. The standard idiom in Sage for creating elements is to create their parent, and then provide enough data to define the element:

```
sage: R = PolynomialRing(ZZ, name='x')
sage: R([1,2,3])
3*x^2 + 2*x + 1
```

One can also create elements using various methods on the parent and arithmetic of elements:

```
sage: x = R.gen()
sage: 1 + 2*x + 3*x^2
3*x^2 + 2*x + 1
```

Unlike parents, elements in Sage are not necessarily unique:

```
sage: ZZ(5040) is ZZ(5040)
False
```

Many parents model algebraic structures, and their elements support arithmetic operations. One often further wants to do arithmetic by combining elements from different parents: adding together integers and rationals for example. Sage supports this feature using coercion (see `sage.structure.coerce` for more details).

It is possible for a parent to also have simultaneously the structure of an element. Consider for example the monoid of all finite groups, endowed with the Cartesian product operation. Then, every finite group (which is a parent) is also an element of this monoid. This is not yet implemented, and the design details are not yet fixed but experiments are underway in this direction.

Todo: Give a concrete example, typically using `ElementWrapper`.
Category

A category is a Python instance modelling a mathematical category. Examples of categories include the category of finite semigroups, the category of all (Python) objects, the category of \(\mathbb{Z} \)-algebras, and the category of Cartesian products of \(\mathbb{Z} \)-algebras:

\[
\begin{align*}
\text{sage: } & \text{FiniteSemigroups}() \\
& \text{Category of finite semigroups} \\
\text{sage: } & \text{Objects}() \\
& \text{Category of objects} \\
\text{sage: } & \text{Algebras}(\mathbb{Z}) \\
& \text{Category of algebras over Integer Ring} \\
\text{sage: } & \text{Algebras}(\mathbb{Z}).\text{CartesianProducts}() \\
& \text{Category of Cartesian products of algebras over Integer Ring}
\end{align*}
\]

Mind the ‘s’ in the names of the categories above; \texttt{GroupAlgebra} and \texttt{GroupAlgebras} are distinct things.

Every parent belongs to a collection of categories. Moreover, categories are interrelated by the super categories relation. For example, the category of rings is a super category of the category of fields, because every field is also a ring.

A category serves two roles:

- to provide a model for the mathematical concept of a category and the associated structures: homsets, morphisms, functorial constructions, axioms.
- to organize and promote generic code, naming conventions, documentation, and tests across similar mathematical structures.

CategoryObject

Objects of a mathematical category are not necessarily parents. Parent has a superclass that provides a means of modeling such.

For example, the category of schemes does not have a faithful forgetful functor to the category of sets, so it does not make sense to talk about schemes as parents.

Morphisms, Homsets

As category theorists will expect, Morphisms and Homsets will play an ever more important role, as support for them will improve.

Much of the mathematical information in Sage is encoded as relations between elements and their parents, parents and their categories, and categories and their super categories:

\[
\begin{align*}
\text{sage: } & l.\text{parent()} \\
& \text{Integer Ring} \\
\text{sage: } & \mathbb{Z} \\
& \text{Integer Ring} \\
\text{sage: } & \mathbb{Z}.\text{category}() \\
& \text{Join of Category of euclidean domains} \\
& \quad \text{and Category of infinite enumerated sets}
\end{align*}
\]

(continues on next page)
and Category of metric spaces

```
sage: ZZ.categories()
[Join of Category of euclidean domains
    and Category of infinite enumerated sets
    and Category of metric spaces,
  Category of euclidean domains, Category of principal ideal domains,
  Category of unique factorization domains, Category of gcd domains,
  Category of integral domains, Category of domains,
  Category of commutative rings, Category of rings,...
  Category of magmas and additive magmas,...
  Category of monoids, Category of semigroups,
  Category of commutative magmas, Category of unital magmas, Category of magmas,
  Category of commutative additive groups,..., Category of additive magmas,
  Category of infinite enumerated sets, Category of enumerated sets,
  Category of infinite sets, Category of metric spaces,
  Category of topological spaces, Category of sets,
  Category of sets with partial maps,
  Category of objects]
```

```
sage: g = EuclideanDomains().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g)  # not tested
```

1.1.4 A bit of help from computer science

Hierarchy of classes

How are the bookshelves implemented in practice?

Sage uses the classical design paradigm of Object Oriented Programming (OOP). Its fundamental principle is that any object that a program is to manipulate should be modelled by an instance of a class. The class implements:

- a **data structure**: which describes how the object is stored,
- **methods**: which describe the operations on the object.

The instance itself contains the data for the given object, according to the specified data structure.

Hence, all the objects mentioned above should be instances of some classes. For example, an integer in Sage is an instance of the class `Integer` (and it knows about it!):

```
sage: i = 12
sage: type(i)
<type 'sage.rings.integer.Integer'>
```

Applying an operation is generally done by calling a method:

```
sage: i.factor()
2^2 * 3
sage: x = var('x')
sage: p = 6*x^2 + 12*x + 6
sage: type(p)
<type 'sage.symbolic.expression.Expression'>
sage: p.factor()
```

(continues on next page)
Factoring integers, expressions, or polynomials are distinct tasks, with completely different algorithms. Yet, from a user (or caller) point of view, all those objects can be manipulated alike. This illustrates the OOP concepts of polymorphism, data abstraction, and encapsulation.

Let us be curious, and see where some methods are defined. This can be done by introspection:

```
sage: i._mul_                      # not tested
```

For plain Python methods, one can also just ask in which module they are implemented:

```
sage: i._pow_.__module__          # not tested (Trac #24275)
'sage.categories.semigroups'
sage: pQ._mul_.__module__        'sage.rings.polynomial.polynomial_element_generic'
sage: pQ._pow_.__module__         # not tested (Trac #24275)
'sage.categories.semigroups'
```

We see that integers and polynomials have each their own multiplication method: the multiplication algorithms are indeed unrelated and deeply tied to their respective datastructures. On the other hand, as we have seen above, they share the same powering method because the set \mathbb{Z} of integers, and the set $\mathbb{Q}[x]$ of polynomials are both semigroups. Namely, the class for integers and the class for polynomials both derive from an abstract class for semigroup elements, which factors out the generic methods like _pow_. This illustrates the use of hierarchy of classes to share common code between classes having common behaviour.

OOP design is all about isolating the objects that one wants to model together with their operations, and designing an appropriate hierarchy of classes for organizing the code. As we have seen above, the design of the class hierarchy is easy since it can be modelled upon the hierarchy of categories (bookshelves). Here is for example a piece of the hierarchy of classes for an element of a group of permutations:

```
sage: P = Permutations(4)
sage: m = P.an_element()
sage: for cls in m.__class__.mro(): print(cls)
<class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class'>
<class 'sage.combinat.permutation.StandardPermutations_n.Element'>
<class 'sage.combinat.permutation.Permutation'>
...   <class 'sage.categories.groups.Groups.element_class'>
<class 'sage.categories.monoids.Monoids.element_class'>
```
On the top, we see concrete classes that describe the data structure for matrices and provide the operations that are tied to this data structure. Then follow abstract classes that are attached to the hierarchy of categories and provide generic algorithms.

The full hierarchy is best viewed graphically:

```python
sage: g = class_graph(m.__class__)
sage: g.set_latex_options(format="dot2tex")
sage: view(g)  # not tested
```

Parallel hierarchy of classes for parents

Let us recall that we do not just want to compute with elements of mathematical sets, but with the sets themselves:

```python
sage: ZZ.one()
1
sage: R = QQ['x,y']
sage: R.krull_dimension()
2
sage: A = R.quotient( R.ideal(x^2 - 2) )
sage: A.krull_dimension()  # todo: not implemented
```

Here are some typical operations that one may want to carry on various kinds of sets:

- The set of permutations of 5, the set of rational points of an elliptic curve: counting, listing, random generation
- A language (set of words): rationality testing, counting elements, generating series
- A finite semigroup: left/right ideals, center, representation theory
- A vector space, an algebra: Cartesian product, tensor product, quotient

Hence, following the OOP fundamental principle, parents should also be modelled by instances of some (hierarchy of) classes. For example, our group G is an instance of the following class:

```python
sage: G = GL(2,ZZ)
sage: type(G)
<class 'sage.groups.matrix_gps.linear.LinearMatrixGroup_gap_with_category'>
```

Here is a piece of the hierarchy of classes above it:

```python
sage: for cls in G.__class__.mro(): print(cls)
<class 'sage.groups.matrix_gps.linear.LinearMatrixGroup_gap_with_category'>
...<class 'sage.categories.groups.Groups.parent_class'>
<class 'sage.categories.monoids.Monoids.parent_class'>
<class 'sage.categories.semigroups.Semigroups.parent_class'>
...
```

Note that the hierarchy of abstract classes is again attached to categories and parallel to that we had seen for the elements. This is best viewed graphically:
Note: This is a progress upon systems like Axiom or MuPAD where a parent is modelled by the class of its elements; this oversimplification leads to confusion between methods on parents and elements, and makes parents special; in particular it prevents potentially interesting constructions like “groups of groups”.

1.1.5 Sage categories

Why this business of categories? And to start with, why don’t we just have a good old hierarchy of classes Group, Semigroup, Magma, …?

Dynamic hierarchy of classes

As we have just seen, when we manipulate groups, we actually manipulate several kinds of objects:

• groups
• group elements
• morphisms between groups
• and even the category of groups itself!

Thus, on the group bookshelf, we want to put generic code for each of the above. We therefore need three, parallel hierarchies of abstract classes:

• Group, Monoid, Semigroup, Magma,…
• GroupElement, MonoidElement, SemigroupElement, MagmaElement, …
• GroupMorphism, SemigroupElement, SemigroupMorphism, MagmaMorphism, …

(and in fact many more as we will see).

We could implement the above hierarchies as usual:

```
class Group(Monoid):
    # generic methods that apply to all groups

class GroupElement(MonoidElement):
    # generic methods that apply to all group elements

class GroupMorphism(MonoidMorphism):
    # generic methods that apply to all group morphisms
```

And indeed that’s how it was done in Sage before 2009, and there are still many traces of this. The drawback of this approach is duplication: the fact that a group is a monoid is repeated three times above!

Instead, Sage now uses the following syntax, where the Groups bookshelf is structured into units with nested classes:

```
class Groups(Category):
    def super_categories(self):
```

(continues on next page)
return [Monoids(), ...]

class ParentMethods:
 # generic methods that apply to all groups

class ElementMethods:
 # generic methods that apply to all group elements

class MorphismMethods:
 # generic methods that apply to all group morphisms (not yet implemented)

class SubcategoryMethods:
 # generic methods that apply to all subcategories of Groups()

With this syntax, the information that a group is a monoid is specified only once, in the Category. super_categories() method. And indeed, when the category of inverse unital magmas was introduced, there was a single point of truth to update in order to reflect the fact that a group is an inverse unital magma:

```
sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]
```

The price to pay (there is no free lunch) is that some magic is required to construct the actual hierarchy of classes for parents, elements, and morphisms. Namely, Groups.ElementMethods should be seen as just a bag of methods, and the actual class Groups().element_class is constructed from it by adding the appropriate super classes according to Groups().super_categories():

```
sage: Groups().element_class
<class 'sage.categories.groups.Groups.element_class'>
sage: Groups().element_class.__bases__
(<class 'sage.categories.monoids.Monoids.element_class'>,
 <class 'sage.categories.magmas.Magmas.Unital.Inverse.element_class'>)
```

We now see that the hierarchy of classes for parents and elements is parallel to the hierarchy of categories:

```
sage: Groups().all_super_categories()
[Category of groups,
 Category of monoids,
 Category of semigroups,
 ...
 Category of magmas,
 Category of sets,
 ...]
sage: for cls in Groups().element_class.mro(): print(cls)
<class 'sage.categories.groups.Groups.element_class'>
<class 'sage.categories.monoids.Monoids.element_class'>
<class 'sage.categories.semigroups.Semigroups.element_class'>
...
<class 'sage.categories.magmas.Magmas.element_class'>
...
```

(continues on next page)
Another advantage of building the hierarchy of classes dynamically is that, for parametrized categories, the hierarchy may depend on the parameters. For example an algebra over \mathbb{Q} is a \mathbb{Q}-vector space, but an algebra over \mathbb{Z} is not (it is just a \mathbb{Z}-module)!

Note: At this point this whole infrastructure may feel like overdesigning, right? We felt like this too! But we will see later that, once one gets used to it, this approach scales very naturally.

From a computer science point of view, this infrastructure implements, on top of standard multiple inheritance, a dynamic composition mechanism of mixin classes (Wikipedia article Mixin), governed by mathematical properties.

For implementation details on how the hierarchy of classes for parents and elements is constructed, see `Category`.

On the category hierarchy: subcategories and super categories

We have seen above that, for example, the category of sets is a super category of the category of groups. This models the fact that a group can be unambiguously considered as a set by forgetting its group operation. In object-oriented parlance, we want the relation “a group is a set”, so that groups can directly inherit code implemented on sets.

Formally, a category \mathcal{C}_S is a super category of a category \mathcal{D}_S if Sage considers any object of \mathcal{D}_S to be an object of \mathcal{C}_S, up to an implicit application of a canonical functor from \mathcal{D}_S to \mathcal{C}_S. This functor is normally an inclusion of categories or a forgetful functor. Reciprocally, \mathcal{D}_S is said to be a subcategory of \mathcal{C}_S.

Warning: This terminology deviates from the usual mathematical definition of subcategory and is subject to change. Indeed, the forgetful functor from the category of groups to the category of sets is not an inclusion of categories, as it is not injective: a given set may admit more than one group structure. See trac ticket #16183 for more details. The name supercategory is also used with a different meaning in certain areas of mathematics.

Categories are instances and have operations

Note that categories themselves are naturally modelled by instances because they can have operations of their own. An important one is:

```
sage: Groups().example()
General Linear Group of degree 4 over Rational Field
```

which gives an example of object of the category. Besides illustrating the category, the example provides a minimal template for implementing a new object in the category:

```
sage: S = Semigroups().example(); S
An example of a semigroup: the left zero semigroup
```

Its source code can be obtained by introspection:

```
sage: S?? # not tested
```

This example is also typically used for testing generic methods. See `Category.example()` for more.

Other operations on categories include querying the super categories or the axioms satisfied by the operations of a category:
or constructing the intersection of two categories, or the smallest category containing them:

```python
sage: Groups() & FiniteSets()
Category of finite groups
sage: Algebras(QQ) | Groups()
Category of monoids
```

Specifications and generic documentation

Categories do not only contain code but also the specifications of the operations. In particular a list of mandatory and optional methods to be implemented can be found by introspection with:

```python
sage: Groups().required_methods()
{'element': {'optional': ['_mul_'], 'required': []},
 'parent': {'optional': [], 'required': ['__contains__']}}
```

Documentation about those methods can be obtained with:

```python
sage: G = Groups()
sage: G.element_class._mul_?  # not tested
sage: G.parent_class.one?      # not tested
```

See also the `abstract_method()` decorator.

Warning: Well, more precisely, that’s how things should be, but there is still some work to do in this direction. For example, the inverse operation is not specified above. Also, we are still missing a good programmatic syntax to specify the input and output types of the methods. Finally, in many cases the implementer must provide at least one of two methods, each having a default implementation using the other one (e.g. listing or iterating for a finite enumerated set); there is currently no good programmatic way to specify this.

Generic tests

Another feature that parents and elements receive from categories is generic tests; their purpose is to check (at least to some extent) that the parent satisfies the required mathematical properties (is my semigroup indeed associative?) and is implemented according to the specifications (does the method `an_element` indeed return an element of the parent?):

```python
sage: S = FiniteSemigroups().example(alphabet=('a', 'b'))
sage: TestSuite(S).run(verbosity = True)
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
   Running the test suite of self.an_element()
   Running the test suite of self.list()
running ._test_category() . . . pass
```

(continues on next page)
Tests can be run individually:

```
sage: S._test_associativity()
```

Here is how to access the code of this test:

```
sage: S._test_associativity?? # not tested
```

Here is how to run the test on all elements:

```
sage: L = S.list()
sage: S._test_associativity(elements=L)
```

See `TestSuite` for more information.

Let us see what happens when a test fails. Here we redefine the product of S to something definitely not associative:

```
sage: S.product = lambda x, y: S("({x.value +y.value})")
```

And rerun the test:

```
sage: S._test_associativity(elements=L)
```

Traceback (most recent call last):
...
File ".../sage/categories/semigroups.py", line ..., in _test_associativity
 tester.assertTrue((x * y) * z == x * (y * z))
...
AssertionError: '(((aa)a)') != '(a(aa))'
```

We can recover instantly the actual values of $x$, $y$, $z$, that is, a counterexample to the associativity of our broken semigroup, using post mortem introspection with the Python debugger `pdb` (this does not work yet in the notebook):

```
sage: import pdb
sage: pdb.pm() # not tested
> /opt/sage-5.11.rc1/local/lib/python/unittest/case.py(424)assertTrue()
-> raise self.failureException(msg)
(Pdb) u
> /opt/sage-5.11.rc1/local/lib/python2.7/site-packages/sage/categories/semigroups.
-->py(145)_test_associativity()
```

(continues on next page)
Wrap-up

- Categories provide a natural hierarchy of bookshelves to organize not only code, but also specifications and testing tools.
- Everything about, say, algebras with a distinguished basis is gathered in `AlgebrasWithBasis` or its super categories. This includes properties and algorithms for elements, parents, morphisms, but also, as we will see, for constructions like Cartesian products or quotients.
- The mathematical relations between elements, parents, and categories translate dynamically into a traditional hierarchy of classes.
- This design enforces robustness and consistency, which is particularly welcome given that Python is an interpreted language without static type checking.

1.1.6 Case study

In this section, we study an existing parent in detail; a good followup is to go through the `sage.categories.tutorial` or the thematic tutorial on coercion and categories (“How to implement new algebraic structures in Sage”) to learn how to implement a new one!

We consider the example of finite semigroup provided by the category:

```
sage: S = FiniteSemigroups().example(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')
sage: S # not tested
```

Where do all the operations on `S` and its elements come from?

```
sage: x = S('a')
```

`_repr_` is a technical method which comes with the data structure (`ElementWrapper`); since it’s implemented in Cython, we need to use Sage’s introspection tools to recover where it’s implemented:

```
sage: x._repr_.__module__
sage: sage.misc.sageinspect.sage_getfile(x._repr_)
'.../sage/structure/element_wrapper.pyx'
```

`_pow_int` is a generic method for all finite semigroups:

```
sage: x._pow_int.__module__
sage: x.categories.semigroups
'sage.categories.semigroups'
```

`__mul__` is a generic method provided by the `Magmas` category (a `magma` is a set with an inner law `*`, not necessarily associative). If the two arguments are in the same parent, it will call the method `__mul__`, and otherwise let the coercion model try to discover how to do the multiplication:

**sage:** $x._\text{mul}_2$ # not tested

Since it is a speed critical method, it is implemented in Cython in a separate file:

**sage:** $x._\text{mul}_3$ \\
'sage.categories.coercion_methods'

$\text{_mul_}$ is a default implementation, also provided by the *Magmas* category, that delegates the work to the method \text{product} of the parent (following the advice: if you do not know what to do, ask your parent); it’s also a speed critical method:

**sage:** $x._\text{mul}_4$ # not tested \\
'sage.categories.coercion_methods'

\text{product} is a mathematical method implemented by the parent:

**sage:** $S.$product.__module__ \\
'sage.categories.examples.finite_semigroups'

c\text{ayley\_graph} is a generic method on the parent, provided by the *FiniteSemigroups* category:

**sage:** $S.$cayley\_graph.__module__ \\
'sage.categories.semigroups'

\text{multiplication\_table} is a generic method on the parent, provided by the *Magmas* category (it does not require associativity):

**sage:** $S.$multiplication\_table.__module__ \\
'sage.categories.magmas'

Consider now the implementation of the semigroup:

**sage:** $S$ \\
# not tested

This implementation specifies a data structure for the parents and the elements, and makes a promise: the implemented parent is a finite semigroup. Then it fulfills the promise by implementing the basic operation \text{product}. It also implements the optional method \text{semigroup\_generators}. In exchange, $S$ and its elements receive generic implementations of all the other operations. $S$ may override any of those by more efficient ones. It may typically implement the element method \text{idempotent\_} to always return True.

A (not yet complete) list of mandatory and optional methods to be implemented can be found by introspection with:

**sage:** FiniteSemigroups().required\_methods() \\
{'element': {'optional': ['\_\text{mul}_'], 'required': []}, \\
'parent': {'optional': ['\text{semigroup\_generators}'], \\
'required': ['\_\text{contains\_}']}}

\text{product} does not appear in the list because a default implementation is provided in term of the method $\text{\_mul\_}$ on elements. Of course, at least one of them should be implemented. On the other hand, a default implementation for \_\text{contains\_} is provided by $\text{Parent}$.

Documentation about those methods can be obtained with:
See also the `abstract_method()` decorator.

Here is the code for the finite semigroups category:

```python
c = FiniteSemigroups().element_class
C._mul_
```

## 1.1.7 Specifying the category of a parent

Some parent constructors (not enough!) allow to specify the desired category for the parent. This can typically be used to specify additional properties of the parent that we know to hold a priori. For example, permutation groups are by default in the category of finite permutation groups (no surprise):

```python
P = PermutationGroup([[(1,2,3)]]); P
Permutation Group with generators [(1,2,3)]
P.category()
Category of finite enumerated permutation groups
```

In this case, the group is commutative, so we can specify this:

```python
P = PermutationGroup([[(1,2,3)]]), category=PermutationGroups().Finite().˓→Commutative()); P
Permutation Group with generators [(1,2,3)]
P.category()
Category of finite enumerated commutative permutation groups
```

This feature can even be used, typically in experimental code, to add more structure to existing parents, and in particular to add methods for the parents or the elements, without touching the code base:

```python
class Foos(Category):
 : def super_categories(self):
 : return [PermutationGroups().Finite().Commutative()]
 : class ParentMethods:
 : def foo(self): print("foo")
 : class ElementMethods:
 : def bar(self): print("bar")
```

```python
P = PermutationGroup([[(1,2,3)]]), category=Foos())
P.foo()
foo
P = P.an_element()
p.bar()
bar
```

In the long run, it would be thinkable to use this idiom to implement forgetful functors; for example the above group could be constructed as a plain set with:

```python
P = PermutationGroup([[(1,2,3)]]), category=Sets()) # todo: not implemented
```

At this stage though, this is still to be explored for robustness and practicality. For now, most parents that accept a category argument only accept a subcategory of the default one.
1.1.8 Scaling further: functorial constructions, axioms, ... 

In this section, we explore more advanced features of categories. Along the way, we illustrate that a large hierarchy of categories is desirable to model complicated mathematics, and that scaling to support such a large hierarchy is the driving motivation for the design of the category infrastructure.

Functorial constructions

Sage has support for a certain number of so-called covariant functorial constructions which can be used to construct new parents from existing ones while carrying over as much as possible of their algebraic structure. This includes:

- Cartesian products: See `cartesian_product`.
- Tensor products: See `tensor`.
- Subquotients / quotients / subobjects / isomorphic objects: See:
  - `Sets().Subquotients`,
  - `Sets().Quotients`,
  - `Sets().Subobjects`,
  - `Sets().IsomorphicObjects`
- Dual objects: See `Modules().DualObjects`.

Let for example $A$ and $B$ be two parents, and let us construct the Cartesian product $A \times B \times B$:

```
sage: A = AlgebrasWithBasis(QQ).example(); A.rename("A")
sage: B = HopfAlgebrasWithBasis(QQ).example(); B.rename("B")
sage: C = cartesian_product([A, B, B]); C
```

A (+) B (+) B

In which category should this new parent be? Since $A$ and $B$ are vector spaces, the result is, as a vector space, the direct sum $A \oplus B \oplus B$, hence the notation. Also, since both $A$ and $B$ are monoids, $A \times B \times B$ is naturally endowed with a monoid structure for pointwise multiplication:

```
sage: C in Monoids()
True
```

the unit being the Cartesian product of the units of the operands:

```
sage: C.one()
B[(0, word:)] + B[(1, ())] + B[(2, ())]
sage: cartesian_product([A.one(), B.one(), B.one()])
B[(0, word:)] + B[(1, ())] + B[(2, ())]
```

The pointwise product can be implemented generically for all magmas (i.e. sets endowed with a multiplicative operation) that are constructed as Cartesian products. It’s thus implemented in the `Magmas` category:

```
sage: C.product.__module__
'sage.categories.magmas'
```

More specifically, keeping on using nested classes to structure the code, the product method is put in the nested class `Magmas.CartesianProducts.ParentMethods`:
class Magmas(Category):
    class ParentMethods:
        # methods for magmas
    class ElementMethods:
        # methods for elements of magmas
class CartesianProduct(CartesianProductCategory):
    class ParentMethods:
        # methods for magmas that are constructed as Cartesian products
        def product(self, x, y):
            # ...
    class ElementMethods:
        # ...

Note: The support for nested classes in Python is relatively recent. Their intensive use for the category infrastructure did reveal some glitches in their implementation, in particular around class naming and introspection. Sage currently works around the more annoying ones but some remain visible. See e.g. sage.misc.nested_class_test.

Let us now look at the categories of C:

```
sage: C.categories()
[Category of finite dimensional Cartesian products of algebras with basis over Rational Field, ...
 Category of Cartesian products of algebras over Rational Field, ...
 Category of Cartesian products of semigroups, Category of semigroups, ...
 Category of Cartesian products of magmas, ..., Category of magmas, ...
 Category of Cartesian products of additive magmas, ..., Category of additive magmas,
 Category of Cartesian products of sets, Category of sets, ...]
```

This reveals the parallel hierarchy of categories for Cartesian products of semigroups magmas, ... We are thus glad that Sage uses its knowledge that a monoid is a semigroup to automatically deduce that a Cartesian product of monoids is a Cartesian product of semigroups, and build the hierarchy of classes for parents and elements accordingly.

In general, the Cartesian product of $A$ and $B$ can potentially be an algebra, a coalgebra, a differential module, and be finite dimensional, or graded, or ... This can only be decided at runtime, by introspection into the properties of $A$ and $B$; furthermore, the number of possible combinations (e.g. finite dimensional differential algebra) grows exponentially with the number of properties.

### Axioms

#### First examples

We have seen that Sage is aware of the axioms satisfied by, for example, groups:

```
sage: Groups().axioms()
frozenset({'Associative', 'Inverse', 'Unital'})
```

In fact, the category of groups can be defined by stating that a group is a magma, that is a set endowed with an internal binary multiplication, which satisfies the above axioms. Accordingly, we can construct the category of groups from the category of magmas:

```
sage: Magmas().Associative().Unital().Inverse()
Category of groups
```
In general, we can construct new categories in Sage by specifying the axioms that are satisfied by the operations of the super categories. For example, starting from the category of magmas, we can construct all the following categories just by specifying the axioms satisfied by the multiplication:

```plaintext
sage: Magmas()
Category of magmas
sage: Magmas().Unital()
Category of unital magmas
```

```plaintext
sage: Magmas().Commutative().Unital()
Category of commutative unital magmas
sage: Magmas().Unital().Commutative()
Category of commutative unital magmas
```

```plaintext
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().Unital()
Category of monoids
sage: Magmas().Associative().Unital().Commutative()
Category of commutative monoids
sage: Magmas().Associative().Unital().Inverse()
Category of groups
```

**Axioms and categories with axioms**

Here, `Associative`, `Unital`, `Commutative` are axioms. In general, any category $C_s$ in Sage can declare a new axiom $A$. Then, the category with axiom $C_s.A()$ models the subcategory of the objects of $C_s$ satisfying the axiom $A$. Similarly, for any subcategory $D_s$ of $C_s$, $D_s.A()$ models the subcategory of the objects of $D_s$ satisfying the axiom $A$. In most cases, it’s a full subcategory (see Wikipedia article Subcategory).

For example, the category of sets defines the `Finite` axiom, and this axiom is available in the subcategory of groups:

```plaintext
sage: Sets().Finite()
Category of finite sets
sage: Groups().Finite()
Category of finite groups
```

The meaning of each axiom is described in the documentation of the corresponding method, which can be obtained as usual by introspection:

```plaintext
sage: C = Groups()
sage: C.Finite
not tested
```

The purpose of categories with axioms is no different from other categories: to provide bookshelves of code, documentation, mathematical knowledge, tests, for their objects. The extra feature is that, when intersecting categories, axioms are automatically combined together:

```plaintext
sage: C = Magmas().Associative() & Magmas().Unital().Inverse() & Sets().Finite(); C
Category of finite groups
sage: sorted(C.axioms())
['Associative', 'Finite', 'Inverse', 'Unital']
```
For a more advanced example, Sage knows that a ring is a set $C$ endowed with a multiplication which distributes over addition, such that $(C, +)$ is a commutative additive group and $(C, *)$ is a monoid:

```
sage: C = (CommutativeAdditiveGroups() & Monoids()).Distributive(); C
Category of rings
```

```
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital', 'Associative', 'Distributive', 'Unital']
```

The infrastructure allows for specifying further deduction rules, in order to encode mathematical facts like Wedderburn’s theorem:

```
sage: DivisionRings() & Sets().Finite()
Category of finite enumerated fields
```

**Note:** When an axiom specifies the properties of some operations in Sage, the notations for those operations are tied to this axiom. For example, as we have seen above, we need two distinct axioms for associativity: the axiom “AdditiveAssociative” is about the properties of the addition $+$, whereas the axiom “Associative” is about the properties of the multiplication $*$. We are touching here an inherent limitation of the current infrastructure. There is indeed no support for providing generic code that is independent of the notations. In particular, the category hierarchy about additive structures (additive monoids, additive groups, ...) is completely duplicated by that for multiplicative structures (monoids, groups, ...).

As far as we know, none of the existing computer algebra systems has a good solution for this problem. The difficulty is that this is not only about a single notation but a bunch of operators and methods: $+$, $-$, zero, summation, sum, ... in one case, $*$, $/$, one, product, prod, factor, ... in the other. Sharing something between the two hierarchies of categories would only be useful if one could write generic code that applies in both cases; for that one needs to somehow automatically substitute the right operations in the right spots in the code. That’s kind of what we are doing manually between e.g. `AdditiveMagmas.ParentMethods.addition_table()` and `Magmas.ParentMethods.multiplication_table()`, but doing this systematically is a different beast from what we have been doing so far with just usual inheritance.

### Single entry point and name space usage

A nice feature of the notation `Cs.A()` is that, from a single entry point (say the category `Magmas` as above), one can explore a whole range of related categories, typically with the help of introspection to discover which axioms are available, and without having to import new Python modules. This feature will be used in trac ticket #15741 to unclutter the global name space from, for example, the many variants of the category of algebras like:

```
sage: FiniteDimensionalAlgebrasWithBasis(QQ)
Category of finite dimensional algebras with basis over Rational Field
```

There will of course be a deprecation step, but it’s recommended to prefer right away the more flexible notation:

```
sage: Algebras(QQ).WithBasis().FiniteDimensional()
Category of finite dimensional algebras with basis over Rational Field
```

### Design discussion

**1.1. Elements, parents, and categories in Sage: a (draft of) primer**
How far should this be pushed? *Fields* should definitely stay, but should *FiniteGroups* or *DivisionRings* be removed from the global namespace? Do we want to further completely deprecate the notation `FiniteGroups()` in favor of `Groups().Finite()`?

On the potential combinatorial explosion of categories with axioms

Even for a very simple category like *Magmas*, there are about $2^5$ potential combinations of the axioms! Think about what this becomes for a category with two operations $+$ and $*$:

```python
sage: C = (Magmas() & AdditiveMagmas()).Distributive(); C
Category of distributive magmas and additive magmas

sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
 ...AdditiveInverse()
Category of rngs

sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
 ...Unital()
Category of semirings

sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
 ...AdditiveInverse().Unital()
Category of rings

sage: Rings().Division()
Category of division rings

sage: Rings().Division().Commutative()
Category of fields

sage: Rings().Division().Finite()
Category of finite enumerated fields
```

or for more advanced categories:

```python
sage: g = HopfAlgebras(QQ).WithBasis().Graded().Connected().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested
```

Difference between axioms and regressive covariant functorial constructions

Our running examples here will be the axiom *FiniteDimensional* and the regressive covariant functorial construction *Graded*. Let $C_s$ be some subcategory of *Modules*, say the category of modules itself:

```python
sage: Cs = Modules(QQ)
```

Then, $C_s.FiniteDimensional()$ (respectively $C_s.Graded()$) is the subcategory of the objects $O$ of $C_s$ which are finite dimensional (respectively graded).

Let also $D_s$ be a subcategory of $C_s$, say:

```python
sage: Ds = Algebras(QQ)
```

A finite dimensional algebra is also a finite dimensional module:
Similarly a graded algebra is also a graded module:

```
sage: Algebras(QQ).Graded().is_subcategory(Modules(QQ).Graded())
True
```

This is the *covariance* property: for $A$ an axiom or a covariant functorial construction, if $D$ is a subcategory of $C$, then $D.A()$ is a subcategory of $C.A()$.

What happens if we consider reciprocally an object of $C.A()$ which is also in $D$? A finite dimensional module which is also an algebra is a finite dimensional algebra:

```
sage: Modules(QQ).FiniteDimensional() & Algebras(QQ)
Category of finite dimensional algebras over Rational Field
```

On the other hand, a graded module $O$ which is also an algebra is not necessarily a graded algebra! Indeed, the grading on $O$ may not be compatible with the product on $O$:

```
sage: Modules(QQ).Graded() & Algebras(QQ)
Join of Category of algebras over Rational Field
and Category of graded vector spaces over Rational Field
```

The relevant difference between `FiniteDimensional` and `Graded` is that `FiniteDimensional` is a statement about the properties of $O$ seen as a module (and thus does not depend on the given category), whereas `Graded` is a statement about the properties of $O$ and all its operations in the given category.

In general, if a category satisfies a given axiom, any subcategory also satisfies that axiom. Another formulation is that, for an axiom $A$ defined in a super category $C$ of $D$, $D.A()$ is the intersection of the categories $D$ and $C.A()$:

```
sage: As = Algebras(QQ).FiniteDimensional(); As
Category of finite dimensional algebras over Rational Field
sage: Bs = Algebras(QQ).WithBasis().FiniteDimensional(); Bs
Category of finite dimensional algebras with basis over Rational Field
sage: As is Bs
True
```

An immediate consequence is that, as we have already noticed, axioms commute:

```
sage: As = Algebras(QQ).FiniteDimensional().WithBasis(); As
Category of finite dimensional algebras with basis over Rational Field
sage: Bs = Algebras(QQ).WithBasis().FiniteDimensional(); Bs
Category of finite dimensional algebras with basis over Rational Field
sage: As is Bs
True
```

On the other hand, axioms do not necessarily commute with functorial constructions, even if the current printout may missuggest so:

```
sage: As = Algebras(QQ).Graded().WithBasis(); As
Category of graded algebras with basis over Rational Field
sage: Bs = Algebras(QQ).WithBasis().Graded(); Bs
Category of graded algebras with basis over Rational Field
sage: As is Bs
False
```
This is because $B$s is the category of algebras endowed with basis, which are further graded; in particular the basis must respect the grading (i.e. be made of homogeneous elements). On the other hand, $A$s is the category of graded algebras, which are further endowed with some basis; that basis need not respect the grading. In fact $A$s is really a join category:

```
{sage: type(As)}
<class 'sage.categories.category.JoinCategory_with_category'>
{sage: As._repr_(as_join=True)}
'Join of Category of algebras with basis over Rational Field and Category of graded_algebras over Rational Field'
```

**Todo:** Improve the printing of functorial constructions and joins to raise this potentially dangerous ambiguity.

**Further reading on axioms**

We refer to `sage.categories.category_with_axiom` for how to implement axioms.

**Wrap-up**

As we have seen, there is a combinatorial explosion of possible classes. Constructing by hand the full class hierarchy would not scale unless one would restrict to a very rigid subset. Even if it was possible to construct automatically the full hierarchy, this would not scale with respect to system resources.

When designing software systems with large hierarchies of abstract classes for business objects, the difficulty is usually to identify a proper set of key concepts. Here we are lucky, as the key concepts have been long identified and are relatively few:

- Operations ($+,*,...$)
- Axioms on those operations (associativity, $...$)
- Constructions (Cartesian products, $...$)

Better, those concepts are sufficiently well known so that a user can reasonably be expected to be familiar with the concepts that are involved for his own needs.

Instead, the difficulty is concentrated in the huge number of possible combinations, an unpredictable large subset of which being potentially of interest; at the same time, only a small – but moving – subset has code naturally attached to it.

This has led to the current design, where one focuses on writing the relatively few classes for which there is actual code or mathematical information, and lets Sage *compose dynamically and lazily* those building blocks to construct the minimal hierarchy of classes needed for the computation at hand. This allows for the infrastructure to scale smoothly as bookshelves are added, extended, or reorganized.
### 1.1.9 Writing a new category

Each category \( C \) must be provided with a method `C.super_categories()` and can be provided with a method `C._subcategory_hook_(D)`. Also, it may be needed to insert \( C \) into the output of the `super_categories()` method of some other category. This determines the position of \( C \) in the category graph.

A category may provide methods that can be used by all its objects, respectively by all elements of its objects.

Each category should come with a good example, in `sage.categories.examples`.

#### Inserting the new category into the category graph

`C.super_categories()` must return a list of categories, namely the immediate super categories of \( C \). Of course, if you know that your new category \( C \) is an immediate super category of some existing category \( D \), then you should also update the method `D.super_categories` to include \( C \).

The immediate super categories of \( C \) should not be join categories. Furthermore, one always should have:

```python
Cs().is_subcategory(Category.join(Cs().super_categories()))
Cs()._cmp_key > other._cmp_key for other in Cs().super_categories()
```

This is checked by `_test_category()`.

In several cases, the category \( C \) is directly provided with a generic implementation of `super_categories`; a typical example is when \( C \) implements an axiom or a functorial construction; in such a case, \( C \) may implement `C.extra_super_categories()` to complement the super categories discovered by the generic implementation.

This method needs not return immediate super categories; instead it’s usually best to specify the largest super category providing the desired mathematical information. For example, the category `Magmas.Commutative.Algebras` just states that the algebra of a commutative magma is a commutative magma. This is sufficient to let Sage deduce that it’s in fact a commutative algebra.

#### Methods for objects and elements

Different objects of the same category share some algebraic features, and very often these features can be encoded in a method, in a generic way. For example, for every commutative additive monoid, it makes sense to ask for the sum of a list of elements. Sage’s category framework allows to provide a generic implementation for all objects of a category.

If you want to provide your new category with generic methods for objects (or elements of objects), then you simply add a nested class called `ParentMethods` (or `ElementMethods`). The methods of that class will automatically become methods of the objects (or the elements). For instance:

```python
sage: P.<x,y> = ZZ[]
sage: P.prod([x,y,2])
2*x*y
sage: P.prod.__module__
'sage.categories.monoids'
sage: P.prod.__func__ is rawgetattr(Monoids().ParentMethods, "prod")
True
```

We recommend to study the code of one example:

```python
sage: C = CommutativeAdditiveMonoids()
sage: C
```

---

1.1. Elements, parents, and categories in Sage: a (draft of) primer
On the order of super categories

The generic method \( C . \text{all\_super\_categories()} \) determines recursively the list of all super categories of \( C \).

The order of the categories in this list does influence the inheritance of methods for parents and elements. Namely, if \( P \) is an object in the category \( C \) and if \( C_1 \) and \( C_2 \) are both super categories of \( C \) defining some method \( \text{foo} \) in \textit{ParentMethods}, then \( P \) will use \( C_1 \)'s version of \( \text{foo} \) if and only if \( C_1 \) appears in \( C . \text{all\_super\_categories()} \) before \( C_2 \).

However this must be considered as an implementation detail: if \( C_1 \) and \( C_2 \) are incomparable categories, then the order in which they appear must be mathematically irrelevant: in particular, the methods \( \text{foo} \) in \( C_1 \) and \( C_2 \) must have the same semantic. Code should not rely on any specific order, as it is subject to later change. Whenever one of the implementations is preferred in some common subcategory of \( C_1 \) and \( C_2 \), for example for efficiency reasons, the ambiguity should be resolved explicitly by defining a method \( \text{foo} \) in this category. See the method \textit{some\_elements} in the code of the category \textit{FiniteCoxeterGroups} for an example.

Since trac ticket \#11943, \( C . \text{all\_super\_categories()} \) is computed by the so-called \( C3 \) algorithm used by Python to compute Method Resolution Order of new-style classes. Thus the order in \( C . \text{all\_super\_categories()} \), \( C . \text{parent\_class.mro()} \) and \( C . \text{element\_class.mro()} \) are guaranteed to be consistent.

Since trac ticket \#13589, the \( C3 \) algorithm is put under control of some total order on categories. This order is not necessarily meaningful, but it guarantees that \( C3 \) always finds a consistent Method Resolution Order. For background, see \textit{sage.misc.c3\_controlled}. A visible effect is that the order in which categories are specified in \( C . \text{super\_categories()} \), or in a join category, no longer influences the result of \( C . \text{all\_super\_categories()} \).

Subcategory hook (advanced optimization feature)

The default implementation of the method \( C . \text{is\_subcategory}(D) \) is to look up whether \( D \) appears in \( C . \text{all\_super\_categories()} \). However, building the list of all the super categories of \( C \) is an expensive operation that is sometimes best avoided. For example, if both \( C \) and \( D \) are categories defined over a base, but the bases differ, then one knows right away that they can not be subcategories of each other.

When such a short-path is known, one can implement a method \_\text{subcategory\_hook}_. Then, \( C . \text{is\_subcategory}(D) \) first calls \( D . \text{\_subcategory\_hook}(C) \). If this returns Unknown, then \( C . \text{is\_subcategory}(D) \) tries to find \( D \) in \( C . \text{all\_super\_categories()} \). Otherwise, \( C . \text{is\_subcategory}(D) \) returns the result of \( D . \text{\_subcategory\_hook}(C) \).

By default, \( D . \text{\_subcategory\_hook}(C) \) tests whether \texttt{issubclass}(\( C . \text{parent\_class}, \text{D. parent\_class} \)), which is very often giving the right answer:

```python
sage: Rings()._subcategory_hook_(Algebras(QQ))
True
sage: HopfAlgebras(QQ)._subcategory_hook_(Algebras(QQ))
False
sage: Algebras(QQ)._subcategory_hook_(HopfAlgebras(QQ))
True
```
1.2 Categories

AUTHORS:

- David Kohel, William Stein and Nicolas M. Thiery

Every Sage object lies in a category. Categories in Sage are modeled on the mathematical idea of category, and are distinct from Python classes, which are a programming construct.

In most cases, typing `x.category()` returns the category to which `x` belongs. If `C` is a category and `x` is any object, `C(x)` tries to make an object in `C` from `x`. Checking if `x` belongs to `C` is done as usually by `x in C`.

See *Category* and *sage.categories.primer* for more details.

EXAMPLES:

We create a couple of categories:

```python
sage: Sets()
Category of sets
sage: GSets(AbelianGroup([2,4,9]))
Category of G-sets for Multiplicative Abelian group isomorphic to C2 x C4 x C9
sage: Semigroups()
Category of semigroups
sage: VectorSpaces(FiniteField(11))
Category of vector spaces over Finite Field of size 11
sage: Ideals(IntegerRing())
Category of ring ideals in Integer Ring
```

Let’s request the category of some objects:

```python
sage: V = VectorSpace(RationalField(), 3)
sage: V.category()
Category of finite dimensional vector spaces with basis
together with modules over (field extensions and quotient fields and metric spaces)
sage: G = SymmetricGroup(9)
sage: G.category()
Join of Category of finite enumerated permutation groups and
Category of finite wak by groups and
Category of well generated finite irreducible complex reflection groups
sage: P = PerfectMatchings(3)
sage: P.category()
Category of finite enumerated sets
```

Let’s check some memberships:

```python
sage: V in VectorSpaces(QQ)
True
sage: V in VectorSpaces(FiniteField(11))
False
sage: G in Monoids()
True
sage: P in Rings()
False
```

For parametrized categories one can use the following shorthand:
A parent $P$ is in a category $C$ if $P.category()$ is a subcategory of $C$.

**Note:** Any object of a category should be an instance of `CategoryObject`.

For backward compatibility this is not yet enforced:

```python
sage: class A:
 ...: def category(self):
 ...: return Fields()

sage: A() in Rings()
True
```

By default, the category of an element $x$ of a parent $P$ is the category of all objects of $P$ (this is dubious and may be deprecated):

```python
sage: V = VectorSpace(RationalField(), 3)
sage: v = V.gen(1)
sage: v.category()
Category of elements of Vector space of dimension 3 over Rational Field
```

```python
class sage.categories.category.Category(s=None):
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.sage_object.SageObject

The base class for modeling mathematical categories, like for example:

- `Groups()`: the category of groups
- `EuclideanDomains()`: the category of euclidean rings
- `VectorSpaces(QQ)`: the category of vector spaces over the field of rationals

See `sage.categories.primer` for an introduction to categories in Sage, their relevance, purpose, and usage. The documentation below will focus on their implementation.

Technically, a category is an instance of the class `Category` or some of its subclasses. Some categories, like `VectorSpaces`, are parametrized: `VectorSpaces(QQ)` is one of many instances of the class `VectorSpaces`. On the other hand, `EuclideanDomains()` is the single instance of the class `EuclideanDomains`.

Recall that an algebraic structure (say, the ring $\mathbb{Q}[x]$) is modelled in Sage by an object which is called a parent. This object belongs to certain categories (here `EuclideanDomains()` and `Algebras()`). The elements of the ring are themselves objects.

The class of a category (say `EuclideanDomains`) can define simultaneously:

- Operations on the category itself (what is its super categories? its category of morphisms? its dual category?).
- Generic operations on parents in this category, like the ring $\mathbb{Q}[x]$.
- Generic operations on elements of such parents (e. g., the Euclidean algorithm for computing gcds).
- Generic operations on morphisms of this category.
This is achieved as follows:

```python
sage: from sage.categories.all import Category
sage: class EuclideanDomains(Category):
    # operations on the category itself
    def super_categories(self):
        [Rings()]
    def dummy(self): # TODO: find some good examples
        pass

class ParentMethods: # holds the generic operations on parents
    # TODO: find a good example of an operation
    pass

class ElementMethods: # holds the generic operations on elements
    def gcd(x,y):
        # Euclid algorithms
        pass

class MorphismMethods: # holds the generic operations on morphisms
    # TODO: find a good example of an operation
    pass
```

Note that the nested class `ParentMethods` is merely a container of operations, and does not inherit from anything. Instead, the hierarchy relation is defined once at the level of the categories, and the actual hierarchy of classes is built in parallel from all the `ParentMethods` nested classes, and stored in the attributes `parent_class`. Then, a parent in a category `C` receives the appropriate operations from all the super categories by usual class inheritance from `C.parent_class`.

Similarly, two other hierarchies of classes, for elements and morphisms respectively, are built from all the `ElementMethods` and `MorphismMethods` nested classes.

EXAMPLES:

We define a hierarchy of four categories `As()`, `Bs()`, `Cs()`, `Ds()` with a diamond inheritance. Think for example:

- `As()`: the category of sets
- `Bs()`: the category of additive groups
- `Cs()`: the category of multiplicative monoids
- `Ds()`: the category of rings

```python
sage: from sage.categories.all import Category
sage: from sage.misc.lazy_attribute import lazy_attribute
sage: class As (Category):
    def super_categories(self):
        return []

class ParentMethods:
    def fA(self):
        return "A"

sage: class Bs (Category):
    def super_categories(self):
        return []

class ElementMethods:
    def gcd(x,y):
        return "Euclid algorithms"

sage: class Cs (Category):
    def super_categories(self):
        return []

sage: class Ds (Category):
    def super_categories(self):
```

(continues on next page)
....: return [As()]
....:
....: class ParentMethods:
....:
....: def fB(self):
....: return "B"

sage: class Cs (Category):
....:
....: def super_categories(self):
....: return [As()]
....:
....: class ParentMethods:
....:
....: def fC(self):
....: return "C"
....:
....: f = fC

sage: class Ds (Category):
....:
....: def super_categories(self):
....: return [Bs(),Cs()]
....:
....: class ParentMethods:
....:
....: def fD(self):
....: return "D"

Categories should always have unique representation; by trac ticket #12215, this means that it will be kept in cache, but only if there is still some strong reference to it.

We check this before proceeding:

sage: import gc
sage: idAs = id(As())
sage: _ = gc.collect()
sage: n == id(As())
False
sage: a = As()
sage: id(As()) == id(As())
True
sage: As().parent_class == As().parent_class
True

We construct a parent in the category Ds() (that, is an instance of Ds().parent_class), and check that it has access to all the methods provided by all the categories, with the appropriate inheritance order:

sage: D = Ds().parent_class()
sage: [D.fA(), D.fB(), D.fC(), D.fD()]
['A', 'B', 'C', 'D']
sage: D.f()
'C'

sage: C = Cs().parent_class()
sage: [C.fA(), C.fC()]
['A', 'C']
sage: C.f()
'C'

Here is the parallel hierarchy of classes which has been built automatically, together with the method resolution order (.mro()):
Note that two categories in the same class need not have the same super_categories. For example, \texttt{Algebras(QQ)} has \texttt{VectorSpaces(QQ)} as super category, whereas \texttt{Algebras(ZZ)} only has \texttt{Modules(ZZ)} as super category. In particular, the constructed parent class and element class will differ (inhерiting, or not, methods specific for vector spaces):

\begin{verbatim}
sage: Algebras(QQ).parent_class is Algebras(ZZ).parent_class False
sage: issubclass(Algebras(QQ).parent_class, VectorSpaces(QQ).parent_class) True
\end{verbatim}

On the other hand, identical hierarchies of classes are, preferably, built only once (e.g. for categories over a base ring):

\begin{verbatim}
sage: Algebras(GF(5)).parent_class is Algebras(GF(7)).parent_class True
sage: F = FractionField(ZZ['t'])
sage: Coalgebras(F).parent_class is Coalgebras(FractionField(F['x'])).parent_class True
\end{verbatim}

We now construct a parent in the usual way:

\begin{verbatim}
sage: class myparent(Parent):
..... def __init__(self):
..... Parent.__init__(self, category=Ds())
..... def g(self):
\end{verbatim}
.. code-block:: python

 : return "myparent"
 : class Element(object):
 : pass
 sage: D = myparent()
 sage: D._class_
 <class '__main__.myparent_with_category'>
 sage: D._class__bases__
 (<class '__main__.myparent'>, <class '__main__.Ds.parent_class'>)
 sage: D._class__.mro()
 [<class '__main__.myparent_with_category'>,
 <class '__main__.myparent'>,
 <type 'sage.structure.parent.Parent'>,
 <type 'sage.structure.category_object.CategoryObject'>,
 <type 'sage.structure.sage_object.SageObject'>,
 <class '__main__.Ds.parent_class'>,
 <class '__main__.Cs.parent_class'>,
 <class '__main__.Bs.parent_class'>,
 <class '__main__.As.parent_class'>,
 <... 'object'>]
 sage: D.fA()
 'A'
 sage: D.fB()
 'B'
 sage: D.fC()
 'C'
 sage: D.fD()
 'D'
 sage: D.f()
 'C'
 sage: D.g()
 'myparent'
 sage: D.element_class
 <class '__main__.myparent_with_category.element_class'>
 sage: D.element_class.mro()
 [<class '__main__.myparent_with_category.element_class'>,
 <class '__main__.Element'>,
 <class '__main__.Ds.element_class'>,
 <class '__main__.Cs.element_class'>,
 <class '__main__.Bs.element_class'>,
 <class '__main__.As.element_class'>,
 <... 'object'>]

 _super_categories()

 The immediate super categories of this category.

 This lazy attribute caches the result of the mandatory method
 super_categories() for speed. It also does some mangling (flattening
 join categories, sorting, ...).

 Whenever speed matters, developers are advised to use this lazy
 attribute rather than calling super_categories().

 Note: This attribute is likely to eventually become a tuple. When
 this happens, we might as well use Category._sort(), if not
 Category._sort_uniq().

 EXAMPLES:
sage: Rings()._super_categories
[Category of rngs, Category of semirings]

_super_categories_for_classes()
The super categories of this category used for building classes.

This is a close variant of **_super_categories()** used for constructing the list of the bases for **parent_class()**, **element_class()**, and friends. The purpose is ensure that Python will find a proper Method Resolution Order for those classes. For background, see **sage.misc.c3_controlled**.

See also:
_cmp_key().

Note: This attribute is calculated as a by-product of computing **_all_super_categories()**.

EXAMPLES:

```
sage: Rings()._super_categories_for_classes
[Category of rngs, Category of semirings]
```

_all_super_categories()
All the super categories of this category, including this category.

Since **trac ticket #11943**, the order of super categories is determined by Python’s method resolution order C3 algorithm.

See also:
all_super_categories()

Note: this attribute is likely to eventually become a tuple.

Note: this sets **_super_categories_for_classes()** as a side effect

EXAMPLES:

```
sage: C = Rings(); C
Category of rings
sage: C._all_super_categories
[Category of rings, Category of rngs, Category of semirings, ...
 Category of monoids, ...
 Category of commutative additive groups, ...
 Category of sets, Category of sets with partial maps,
 Category of objects]
```

_all_super_categories_proper()
All the proper super categories of this category.

Since **trac ticket #11943**, the order of super categories is determined by Python’s method resolution order C3 algorithm.

See also:
all_super_categories()
Note: this attribute is likely to eventually become a tuple.

EXAMPLES:

```sage
sage: C = Rings(); C
Category of rings
sage: C._all_super_categories_proper
[Category of rngs, Category of semirings, ...  
 Category of monoids, ...  
 Category of commutative additive groups, ...  
 Category of sets, Category of sets with partial maps,  
 Category of objects]
```

```python
_set_of_super_categories()
```

The frozen set of all proper super categories of this category.

Note: this is used for speeding up category containment tests.

See also:

`all_super_categories()`

EXAMPLES:

```sage
sage: sorted(Groups()._set_of_super_categories, key=str)
[Category of inverse unital magmas,  
 Category of magmas,  
 Category of monoids,  
 Category of objects,  
 Category of semigroups,  
 Category of sets,  
 Category of sets with partial maps,  
 Category of unital magmas]
sage: sorted(Groups()._set_of_super_categories, key=str)
[Category of inverse unital magmas, Category of magmas, Category of monoids,  
 Category of objects, Category of semigroups, Category of sets,  
 Category of sets with partial maps, Category of unital magmas]
```

```python
_make_named_class(name, method_provider, cache=False, picklable=True)
```

Construction of the parent/element/... class of self.

INPUT:

- `name` - a string; the name of the class as an attribute of `self`. E.g. “parent_class”
- `method_provider` - a string; the name of an attribute of `self` that provides methods for the new class (in addition to those coming from the super categories). E.g. “ParentMethods”
- `cache` - a boolean or `ignore_reduction` (default: `False`) (passed down to `dynamic_class`; for internal use only)
- `picklable` - a boolean (default: `True`)

ASSUMPTION:

It is assumed that this method is only called from a lazy attribute whose name coincides with the given name.

OUTPUT:

34 Chapter 1. The Sage Category Framework
A dynamic class with bases given by the corresponding named classes of \texttt{self}'s super categories, and methods taken from the class \texttt{getattr(self,method_provider)}.

Note:
- In this default implementation, the reduction data of the named class makes it depend on \texttt{self}. Since the result is going to be stored in a lazy attribute of \texttt{self} anyway, we may as well disable the caching in \texttt{dynamic_class} (hence the default value \texttt{cache=False}).
- \texttt{CategoryWithParameters} overrides this method so that the same parent/element/\ldots{} classes can be shared between closely related categories.
- The bases of the named class may also contain the named classes of some indirect super categories, according to \texttt{_super_categories_for_classes()}. This is to guarantee that Python will build consistent method resolution orders. For background, see \texttt{sage.misc.c3_controlled}.

See also:
\texttt{CategoryWithParameters._make_named_class()}

EXAMPLES:

```
sage: PC = Rings()._make_named_class("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
sage: type(PC)
<class 'sage.structure.dynamic_class.DynamicMetaClass'>
sage: PC.__bases__
(<class 'sage.categories.rings.Rings.parent_class'>,
 <class 'sage.categories.semirings.Semirings.parent_class'>)
```

Note that, by default, the result is not cached:

```
sage: PC is Rings()._make_named_class("parent_class", "ParentMethods")
False
```

Indeed this method is only meant to construct lazy attributes like \texttt{parent_class} which already handle this caching:

```
sage: Rings().parent_class
<class 'sage.categories.rings.Rings.parent_class'>
```

Reduction for pickling also assumes the existence of this lazy attribute:

```
sage: PC._reduction
{(built-in function getattr), (Category of rings, 'parent_class')}
sage: loads(dumps(PC)) is Rings().parent_class
True
```

\texttt{._repr_()}
Return the print representation of this category.

EXAMPLES:

```
sage: Sets() # indirect doctest
Category of sets
```

\texttt{._repr_object_names()}
Return the name of the objects of this category.
EXAMPLES:

```
sage: FiniteGroups()._repr_object_names()
'finite groups'
sage: AlgebrasWithBasis(QQ)._repr_object_names()
'algebras with basis over Rational Field'
```

`_test_category(**options)`

Run generic tests on this category

See also:

TestSuite.

EXAMPLES:

```
sage: Sets()._test_category()
```

Let us now write a couple broken categories:

```
sage: class MyObjects(Category):
....:     pass
sage: MyObjects()._test_category()
Traceback (most recent call last):
  ...:
NotImplementedError: <abstract method super_categories at ...>
```

```
sage: class MyObjects(Category):
....:     def super_categories(self):
....:         return tuple()
```

```
sage: MyObjects()._test_category()
Traceback (most recent call last):
  ...:
AssertionError: Category of my objects.super_categories() should return a list
```

```
sage: class MyObjects(Category):
....:     def super_categories(self):
....:         return []
```

```
sage: MyObjects()._test_category()
Traceback (most recent call last):
  ...:
AssertionError: Category of my objects is not a subcategory of Objects()
```

`_with_axiom(axiom)`

Return the subcategory of the objects of self satisfying the given axiom.

INPUT:

- `axiom` -- a string, the name of an axiom

EXAMPLES:

```
sage: Sets()._with_axiom("Finite")
Category of finite sets
```

```
sage: type(Magmas().Finite().Commutative())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: Magmas().Finite().Commutative().super_categories()
[Category of commutative magmas, Category of finite sets]
```
When `axiom` is not defined for `self`, `self` is returned:

```python
sage: Sets()._with_axiom("Associative")
Category of sets
```

Warning: This may be changed in the future to raising an error.

`_with_axiom_as_tuple(axiom)`

Return a tuple of categories whose join is `self._with_axiom()`.

INPUT:

- `axiom` – a string, the name of an axiom

This is a lazy version of `_with_axiom()` which is used to avoid recursion loops during join calculations.

Note: The order in the result is irrelevant.

EXAMPLES:

```python
sage: Sets()._with_axiom_as_tuple('Finite')
(Category of finite sets,)
sage: Magmas()._with_axiom_as_tuple('Finite')
(Category of magmas, Category of finite sets)
sage: Rings().Division()._with_axiom_as_tuple('Finite')
(Category of division rings,
  Category of finite monoids,
  Category of commutative magmas,
  Category of finite additive groups)
sage: HopfAlgebras(QQ)._with_axiom_as_tuple('FiniteDimensional')
(Category of hopf algebras over Rational Field,
  Category of finite dimensional modules over Rational Field)
```

`_without_axioms(named=False)`

Return the category without the axioms that have been added to create it.

INPUT:

- `named` – a boolean (default: `False`)

Todo: Improve this explanation.

If `named` is `True`, then this stops at the first category that has an explicit name of its own. See `category_with_axiom.CategoryWithAxiom._without_axioms()`.

EXAMPLES:

```python
sage: Sets()._without_axioms()
Category of sets
```
sage: Semigroups()._without_axioms()
Category of magmas
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms()
Category of magmatic algebras over Rational Field
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms(named=True)
Category of algebras over Rational Field

\texttt{static _sort (categories)}

Return the categories after sorting them decreasingly according to their comparison key.

See also:

_cmp_key()

INPUT:

\begin{itemize}
\item categories – a list (or iterable) of non-join categories
\end{itemize}

OUTPUT:

A sorted tuple of categories, possibly with repeats.

\textbf{Note:} The auxiliary function _\texttt{latten_categories} used in the test below expects a second argument, which is a type such that instances of that type will be replaced by its super categories. Usually, this type is \texttt{JoinCategory}.

\textbf{EXAMPLES:}

sage: Category._sort([Sets(), Objects(), Coalgebras(QQ), Monoids(), Sets().Finite()])
(Category of monoids,
 Category of coalgebras over Rational Field,
 Category of finite sets,
 Category of sets,
 Category of objects)
sage: Category._sort([Sets().Finite(), Semigroups().Finite(), Sets().Facade(),
 --> Magmas().Commutative()])
(Category of finite semigroups,
 Category of commutative magmas,
 Category of finite sets,
 Category of facade sets)
sage: Category._sort(Category._\texttt{flatten_categories}([Sets().Finite(),
 --> Algebras(QQ).WithBasis(), Semigroups().Finite(), Sets().Facade(),
 --> categories.category.JoinCategory))
(Category of algebras with basis over Rational Field,
 Category of algebras with basis over Rational Field,
 Category of graded algebras over Rational Field,
 Category of commutative algebras over Rational Field,
 Category of finite semigroups,
 Category of finite sets,
 Category of facade sets)

\texttt{static _sort_uniq (categories)}

Return the categories after sorting them and removing redundant categories.

Redundant categories include duplicates and categories which are super categories of other categories in the input.
INPUT:
• categories – a list (or iterable) of categories

OUTPUT: a sorted tuple of mutually incomparable categories

EXAMPLES:

```
sage: Category._sort_uniq([Rings(), Monoids(), Coalgebras(QQ)])
(Category of rings, Category of coalgebras over Rational Field)
```

Note that, in the above example, Monoids() does not appear in the result because it is a super category of Rings().

```
static __classcall__(*args, **options)
Input mangling for unique representation.

Let C = Cs(...) be a category. Since trac ticket #12895, the class of C is a dynamic subclass Cs_with_category of Cs in order for C to inherit code from the SubcategoryMethods nested classes of its super categories.

The purpose of this __classcall__ method is to ensure that reconstructing C from its class with Cs_with_category(...) actually calls properly Cs(...) and gives back C.

See also:
subcategory_class()
```

EXAMPLES:

```
sage: A = Algebras(QQ)
sage: A.__class__
<class 'sage.categories.algebras.Algebras_with_category'>
sage: A
is Algebras(QQ)
True
sage: A
is A.__class__(QQ)
True
```

```
__init__(s=None)
Initialize this category.

EXAMPLES:

```
sage: class SemiprimitiveRings(Category):
 : def super_categories(self):
 : return [Rings()]
 : class ParentMethods:
 : def jacobson_radical(self):
 : return self.ideal(0)
 sage: C = SemiprimitiveRings()
sage: C
Category of semiprimitive rings
sage: C.__class__
<class '__main__.SemiprimitiveRings_with_category'>
```

Note: Specifying the name of this category by passing a string is deprecated. If the default name (built from the name of the class) is not adequate, please use __repr_object_names() to customize it.

```
Realizations()
Return the category of realizations of the parent self or of objects of the category self
```

1.2. Categories
INPUT:

- `self` – a parent or a concrete category

Note: this function is actually inserted as a method in the class `Category` (see `Realizations()`). It is defined here for code locality reasons.

EXAMPLES:

The category of realizations of some algebra:

```sage
Algebras(QQ).Realizations()
```
Join of Category of algebras over Rational Field and Category of realizations of unital magmas

The category of realizations of a given algebra:

```sage
A = Sets().WithRealizations().example(); A
```
The subset algebra of {1, 2, 3} over Rational Field

```sage
A.Realizations()
```
Category of realizations of The subset algebra of {1, 2, 3} over Rational Field

```sage
C = GradedHopfAlgebrasWithBasis(QQ).Realizations(); C
```
Join of Category of graded hopf algebras with basis over Rational Field and Category of realizations of hopf algebras over Rational Field

```sage
C.super_categories()
```
[Category of graded hopf algebras with basis over Rational Field, Category of realizations of hopf algebras over Rational Field]

```sage
TestSuite(C).run()
```

See also:

- `Sets().WithRealizations`
- `ClasscallMetaclass`

Todo: Add an optional argument to allow for:

```sage
Realizations(A, category = Blahs()) # todo: not implemented
```

`WithRealizations()`

Return the category of parents in `self` endowed with multiple realizations.

INPUT:

- `self` – a category

See also:

- The documentation and code (`sage.categories.examples.with_realizations`) of `Sets().WithRealizations().example()` for more on how to use and implement a parent with several realizations.
- Various use cases:
• The Implementing Algebraic Structures thematic tutorial.
• sage.categories.realizations

Note: this function is actually inserted as a method in the class Category (see WithRealizations()). It is defined here for code locality reasons.

EXAMPLES:

```sage```
Sets().WithRealizations()
Category of sets with realizations
```

Parent with realizations

Let us now explain the concept of realizations. A parent with realizations is a facade parent (see Sets. Facade) admitting multiple concrete realizations where its elements are represented. Consider for example an algebra $A$ which admits several natural bases:

```sage```
A = Sets().WithRealizations().example(); A
The subset algebra of \{1, 2, 3\} over Rational Field
```

For each such basis $B$ one implements a parent $P_B$ which realizes $A$ with its elements represented by expanding them on the basis $B$:

```sage```
A.F()
The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis
sage: A.Out()
The subset algebra of \{1, 2, 3\} over Rational Field in the Out basis
sage: A.In()
The subset algebra of \{1, 2, 3\} over Rational Field in the In basis
sage: A.an_element()
F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]
```

If $B$ and $B'$ are two bases, then the change of basis from $B$ to $B'$ is implemented by a canonical coercion between $P_B$ and $P_{B'}$:

```sage```
F = A.F(); In = A.In(); Out = A.Out()
sage: i = In.an_element(); i
F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]
sage: F(i)
```

(continues on next page)
allowed for mixed arithmetic:

\[
\text{sage: } (1 + \text{Out.from.set}(1)) \times \text{In.from.set}(2,3)
\]
\[
\text{Out}[[{}]] + 2\times\text{Out}[[1]] + 2\times\text{Out}[[2]] + 2\times\text{Out}[[3]] + 2\times\text{Out}[[1, 2]] + 2\times\text{Out}[[1, 3]] + 4\times\text{Out}[[2, 3]] + 4\times\text{Out}[[1, 2, 3]]
\]

In our example, there are three realizations:

\[
\text{sage: } A\text{.realizations()}
\]
\[
[\text{The subset algebra of } \{1, 2, 3\} \text{ over Rational Field in the Fundamental basis,} \\
\text{The subset algebra of } \{1, 2, 3\} \text{ over Rational Field in the In basis,} \\
\text{The subset algebra of } \{1, 2, 3\} \text{ over Rational Field in the Out basis}]
\]

Instead of manually defining the shorthands \(F\), \(In\), and \(Out\), as above one can just do:

\[
\text{sage: } A\text{.inject.shorthands()}
\]
\[
\text{Defining } F \text{ as shorthand for } \text{The subset algebra of } \{1, 2, 3\} \text{ over Rational Field in the Fundamental basis} \\
\text{Defining } In \text{ as shorthand for } \text{The subset algebra of } \{1, 2, 3\} \text{ over Rational Field in the In basis} \\
\text{Defining } Out \text{ as shorthand for } \text{The subset algebra of } \{1, 2, 3\} \text{ over Rational Field in the Out basis}
\]

Rationale

Besides some goodies described below, the role of \(A\) is threefold:

- To provide, as illustrated above, a single entry point for the algebra as a whole: documentation, access to its properties and different realizations, etc.
- To provide a natural location for the initialization of the bases and the coercions between, and other methods that are common to all bases.
- To let other objects refer to \(A\) while allowing elements to be represented in any of the realizations.

We now illustrate this second point by defining the polynomial ring with coefficients in \(A\):

\[
\text{sage: } P = A[\text{'}x\text{'}]; P
\]
\[
\text{Univariate Polynomial Ring in } x \text{ over } \text{The subset algebra of } \{1, 2, 3\} \text{ over Rational Field}
\]
\[
\text{sage: } x = P\text{.gen()}
\]

In the following examples, the coefficients turn out to be all represented in the \(F\) basis:

\[
\text{sage: } P\text{.one()}
\]
\[
F[[{}]]
\]
\[
\text{sage: } (P\text{.an.element()} + 1)^2
\]
\[
F[[{}]]\times^2 + 2\times F[[{}]]\times + F[[{}]]
\]

However we can create a polynomial with mixed coefficients, and compute with it:
sage: p = P([1, In[{1}], Out[{2}] ]); p
Out[{2}]*x^2 + In[{1}]*x + F[{}]
sage: p^2
Out[{2}]*x^4 + (-8*In[{}]+4*In[{1}]+8*In[{2}]+4*In[{3}]-2*In[{1, 2}]-4*In[{2, 3}]+2*In[{1, 2, 3}])*x^3 + (F[{}]+3*F[{1}]+2*F[{2}]-2*F[{1, 2}]-2*F[{2, 3}]+2*F[{1, 2, 3}])*x^2 + (2*F[{}]+2*F[{1}])*x + F[{}]

Note how each coefficient involves a single basis which need not be that of the other coefficients. Which
basis is used depends on how coercion happened during mixed arithmetic and needs not be deterministic.

One can easily coerce all coefficient to a given basis with:

sage: p.map_coefficients(In)
(-4*In[{}]+2*In[{1}]+4*In[{2}]+2*In[{3}]-2*In[{1, 2}]-2*In[{2, 3}]+2*In[{1, 2, 3}])*x^2 + In[{1}]*x + In[{}]

Alas, the natural notation for constructing such polynomials does not yet work:

sage: In[{1}]*x
Traceback (most recent call last):
...TypeError: unsupported operand parent(s) for *: 'The subset algebra of (1, 2, 3) over Rational Field in the In basis' and 'Univariate Polynomial Ring in x over The subset algebra of (1, 2, 3) over Rational Field'

The category of realizations of \(A\)

The set of all realizations of \(A\), together with the coercion morphisms is a category (whose class inherits from \texttt{Category\_realization\_of\_parent}):

sage: A.Realizations()
Category of realizations of The subset algebra of (1, 2, 3) over Rational Field

The various parent realizing \(A\) belong to this category:

sage: A.F() in A.Realizations()
True

\(A\) itself is in the category of algebras with realizations:

sage: A in Algebras(QQ).WithRealizations()
True

The (mostly technical) \texttt{WithRealizations} categories are the analogs of the \texttt{WithSeveralBases} categories in MuPAD-Combinat. They provide support tools for handling the different realizations and the morphisms between them.

Typically, \texttt{VectorSpaces(QQ).FiniteDimensional().WithRealizations()} will eventually be in charge, whenever a coercion \(\phi: A \rightarrow B\) is registered, to register \(\phi^{-1}\) as coercion \(B \rightarrow A\) if there is none defined yet. To achieve this, \texttt{FiniteDimensionalVectorSpaces} would provide a nested class \texttt{WithRealizations} implementing the appropriate logic.
WithRealizations is a **recessive covariant functorial construction**. On our example, this simply means that $A$ is automatically in the category of rings with realizations (covariance):

```sage
A in Rings().WithRealizations()
```

```
True
```

and in the category of algebras (regressiveness):

```sage
A in Algebras(QQ)
```

```
True
```

**Note:** For $C$ a category, $C\text{.WithRealizations()}$ in fact calls `sage.categories.with_realizations\text{.WithRealizations}(C)`. The later is responsible for building the hierarchy of the categories with realizations in parallel to that of their base categories, optimizing away those categories that do not provide a `WithRealizations` nested class. See `sage.categories.covariant_functorial_construction` for the technical details.

**Note:** Design question: currently `WithRealizations` is a recessive construction. That is `self. WithRealizations()` is a subcategory of `self` by default:

```sage
Algebras(QQ).WithRealizations().super_categories()
```

```
[Category of algebras over Rational Field,
Category of monoids with realizations,
Category of additive unital additive magmas with realizations]
```

Is this always desirable? For example, `AlgebrasWithBasis(QQ).WithRealizations()` should certainly be a subcategory of `Algebras(QQ)`, but not of `AlgebrasWithBasis(QQ)`. This is because `AlgebrasWithBasis(QQ)` is specifying something about the concrete realization.

### `additional_structure()`

Return whether `self` defines additional structure.

**OUTPUT:**

- `self` if `self` defines additional structure and `None` otherwise. This default implementation returns `self`.

A category $C$ **defines additional structure** if $C$-morphisms shall preserve more structure (e.g. operations) than that specified by the super categories of $C$. For example, the category of magmas defines additional structure, namely the operation $\ast$ that shall be preserved by magma morphisms. On the other hand the category of rings does not define additional structure: a function between two rings that is both a unital magma morphism and a unital additive magma morphism is automatically a ring morphism.

Formally speaking $C$ **defines additional structure**, if $C$ is not a full subcategory of the join of its super categories: the morphisms need to preserve more structure, and thus the homsets are smaller.

By default, a category is considered as defining additional structure, unless it is a **category with axiom**.

**EXAMPLES:**

Here are some typical structure categories, with the additional structure they define:

```sage
Sets().additional_structure()
```

```
Category of sets
```

```sage
Magmas().additional_structure()
```

```
`*`
```
On the other hand, the category of semigroups is not a structure category, since its operation + is already defined by the category of magmas:

```python
sage: Semigroups().additional_structure()
```

Most categories with axiom don’t define additional structure:

```python
sage: Sets().Finite().additional_structure()
sage: Rings().Commutative().additional_structure()
sage: Modules(QQ).FiniteDimensional().additional_structure()
sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras(QQ).Unital().additional_structure()
```

As of Sage 6.4, the only exceptions are the category of unital magmas or the category of unital additive magmas (both define a unit which shall be preserved by morphisms):

```python
sage: Magmas().Unital().additional_structure()
```

Similarly, functorial construction categories don’t define additional structure, unless the construction is actually defined by their base category. For example, the category of graded modules defines a grading which shall be preserved by morphisms:

```python
sage: Modules(ZZ).Graded().additional_structure()
```

On the other hand, the category of graded algebras does not define additional structure; indeed an algebra morphism which is also a module morphism is a graded algebra morphism:

```python
sage: Algebras(ZZ).Graded().additional_structure()
```

Similarly, morphisms are requested to preserve the structure given by the following constructions:

```python
sage: Sets().Quotients().additional_structure()
sage: Sets().CartesianProducts().additional_structure()
sage: Modules(QQ).TensorProducts().additional_structure()
```

This might change, as we are lacking enough data points to guarantee that this was the correct design decision.

**Note:** In some cases a category defines additional structure, where the structure can be useful to manipulate morphisms but where, in most use cases, we don’t want the morphisms to necessarily preserve
it. For example, in the context of finite dimensional vector spaces, having a distinguished basis allows for representing morphisms by matrices; yet considering only morphisms that preserve that distinguished basis would be boring.

In such cases, we might want to eventually have two categories, one where the additional structure is preserved, and one where it’s not necessarily preserved (we would need to find an idiom for this).

At this point, a choice is to be made each time, according to the main use cases. Some of those choices are yet to be settled. For example, should by default:

- an euclidean domain morphism preserve euclidean division?

  ```python
 sage: EuclideanDomains().additional_structure()
 Category of euclidean domains
  ```

- an enumerated set morphism preserve the distinguished enumeration?

  ```python
 sage: EnumeratedSets().additional_structure()
  ```

- a module with basis morphism preserve the distinguished basis?

  ```python
 sage: Modules(QQ).WithBasis().additional_structure()
  ```

See also:

This method together with the methods overloading it provide the basic data to determine, for a given category, the super categories that define some structure (see `structure()`), and to test whether a category is a full subcategory of some other category (see `is_full_subcategory()`). For example, the category of Coxeter groups is not full subcategory of the category of groups since morphisms need to preserve the distinguished generators:

```python
sage: CoxeterGroups().is_full_subcategory(Groups())
False
```

The support for modeling full subcategories has been introduced in trac ticket #16340.

**all_super_categories**(proper=False)

Returns the list of all super categories of this category.

**INPUT:**

- `proper` – a boolean (default: False); whether to exclude this category.

Since trac ticket #11943, the order of super categories is determined by Python’s method resolution order C3 algorithm.

**Note:** Whenever speed matters, the developers are advised to use instead the lazy attributes `__all_super_categories()`, `__all_super_categories_proper()`, or `__set_of_super_categories()`, as appropriate. Simply because lazy attributes are much faster than any method.

**EXAMPLES:**

```python
sage: C = Rings(); C
Category of rings
sage: C.all_super_categories()
[Category of rings, Category of rngs, Category of semirings, ...
```
Category of monoids, ...
Category of commutative additive groups, ...
Category of sets, Category of sets with partial maps,
Category of objects]
sage: C.all_super_categories(proper = True)
[Category of rngs, Category of semirings, ...
Category of monoids, ...
Category of commutative additive groups, ...
Category of sets, Category of sets with partial maps,
Category of objects]
sage: Sets().all_super_categories()    # (continued from previous page)
[Category of sets, Category of sets with partial maps, Category of objects]
sage: Sets().all_super_categories(proper=True)    # (continued from previous page)
[Category of sets with partial maps, Category of objects]
sage: Sets().all_super_categories()    # (continued from previous page)
is Sets()._all_super_categories
True
sage: Sets().all_super_categories(proper=True)    # (continued from previous page)
is Sets()._all_super_categories
True

classmethod an_instance()    # (continued from previous page)
Return an instance of this class.

EXAMPLES:

sage: Rings.an_instance()
Category of rings

Parametrized categories should overload this default implementation to provide appropriate arguments:

sage: Algebras.an_instance()
Category of algebras over Rational Field
sage: Bimodules.an_instance()
Category of bimodules over Rational Field on the left and Real Field with 53 bits of precision on the right
sage: AlgebraIdeals.an_instance()
Category of algebra ideals in Univariate Polynomial Ring in x over Rational Field

axioms()    # (continued from previous page)
Return the axioms known to be satisfied by all the objects of self.

Technically, this is the set of all the axioms A such that, if Cs is the category defining A, then self is a subcategory of Cs().A(). Any additional axiom A would yield a strict subcategory of self, at the very least self & Cs().A() where Cs is the category defining A.

EXAMPLES:

sage: Monoids().axioms()
frozenset({'Associative', 'Unital'})
sage: (EnumeratedSets().Infinite() & Sets().Facade()).axioms()
frozenset({'Enumerated', 'Facade', 'Infinite'})

category()    # (continued from previous page)
Return the category of this category. So far, all categories are in the category of objects.

1.2. Categories
EXAMPLES:

```
sage: Sets().category()
Category of objects
sage: VectorSpaces(QQ).category()
Category of objects
```

category_graph()

Returns the graph of all super categories of this category

EXAMPLES:

```
sage: C = Algebras(QQ)
sage: G = C.category_graph()
sage: G.is_directed_acyclic()
True
```

The girth of a directed acyclic graph is infinite, however, the girth of the underlying undirected graph is 4 in this case:

```
sage: Graph(G).girth()
4
```

element_class()

A common super class for all elements of parents in this category (and its subcategories).

This class contains the methods defined in the nested class `self.ElementMethods` (if it exists), and has as bases the element classes of the super categories of `self`.

See also:

- `parent_class()`, `morphism_class()`
- `Category` for details

EXAMPLES:

```
sage: C = Algebras(QQ).element_class; C
<class 'sage.categories.algebras.Algebras.element_class'>
sage: type(C)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
```

By trac ticket #11935, some categories share their element classes. For example, the element class of an algebra only depends on the category of the base. A typical example is the category of algebras over a field versus algebras over a non-field:

```
sage: Algebras(GF(5)).element_class is Algebras(GF(3)).element_class
True
sage: Algebras(QQ).element_class is Algebras(ZZ).element_class
False
sage: Algebras(ZZ['t']).element_class is Algebras(ZZ['t','x']).element_class
True
```

These classes are constructed with `__slots__ = ()`, so instances may not have a `__dict__`:

```
sage: E = FiniteEnumeratedSets().element_class
sage: E.__dictoffset__
0
```
See also:

\texttt{parent\_class()}

\texttt{example(*args, **keywords)}

Returns an object in this category. Most of the time, this is a parent.

This serves three purposes:

- Give a typical example to better explain what the category is all about. (and by the way prove that the category is non empty :-) )
- Provide a minimal template for implementing other objects in this category
- Provide an object on which to test generic code implemented by the category

For all those applications, the implementation of the object shall be kept to a strict minimum. The object is therefore not meant to be used for other applications; most of the time a full featured version is available elsewhere in Sage, and should be used instead.

Technical note: by default \texttt{FooBar(...).example()} is constructed by looking up \texttt{sage.categories.examples.foo_bar.Example} and calling it as \texttt{Example()}. Extra positional or named parameters are also passed down. For a category over base ring, the base ring is further passed down as an optional argument.

Categories are welcome to override this default implementation.

EXAMPLES:

```
\texttt{sage: Semigroups().example()}
An example of a semigroup: the left zero semigroup
\texttt{sage: Monoids().Subquotients().example()}
NotImplemented
```

\texttt{full\_super\_categories()}

Return the immediate full super categories of \texttt{self}.

See also:

- \texttt{super\_categories()}
- \texttt{is\_full\_subcategory()}

Warning: The current implementation selects the full subcategories among the immediate super categories of \texttt{self}. This assumes that, if \( C \subseteq B \subseteq A \) is a chain of categories and \( C \) is a full subcategory of \( A \), then \( C \) is a full subcategory of \( B \) and \( B \) is a full subcategory of \( A \).

This assumption is guaranteed to hold with the current model and implementation of full subcategories in Sage. However, mathematically speaking, this is too restrictive. This indeed prevents the complete modelling of situations where any \( A \) morphism between elements of \( C \) automatically preserves the \( B \) structure. See below for an example.

EXAMPLES:

A semigroup morphism between two finite semigroups is a finite semigroup morphism:

```
\texttt{sage: Semigroups().Finite().full_super_categories()}
[Category of semigroups]`
On the other hand, a semigroup morphism between two monoids is not necessarily a monoid morphism (which must map the unit to the unit):

```
sage: Monoids().super_categories()
[Category of semigroups, Category of unital magmas]
sage: Monoids().full_super_categories()
[Category of unital magmas]
```

Any semigroup morphism between two groups is automatically a monoid morphism (in a group the unit is the unique idempotent, so it has to be mapped to the unit). Yet, due to the limitation of the model advertised above, Sage currently cannot be taught that the category of groups is a full subcategory of the category of semigroups:

```
sage: Groups().full_super_categories()  # todo: not implemented
[Category of monoids, Category of semigroups, Category of inverse unital magmas]
sage: Groups().full_super_categories()
[Category of monoids, Category of inverse unital magmas]
```

is_abelian()

Return whether this category is abelian.

An abelian category is a category satisfying:

- It has a zero object;
- It has all pullbacks and pushouts;
- All monomorphisms and epimorphisms are normal.

Equivalently, one can define an increasing sequence of conditions:

- A category is pre-additive if it is enriched over abelian groups (all homsets are abelian groups and composition is bilinear);
- A pre-additive category is additive if every finite set of objects has a biproduct (we can form direct sums and direct products);
- An additive category is pre-abelian if every morphism has both a kernel and a cokernel;
- A pre-abelian category is abelian if every monomorphism is the kernel of some morphism and every epimorphism is the cokernel of some morphism.

EXAMPLES:

```
sage: Modules(ZZ).is_abelian()
True
sage: FreeModules(ZZ).is_abelian()
False
sage: FreeModules(QQ).is_abelian()
True
sage: CommutativeAdditiveGroups().is_abelian()
True
sage: Semigroups().is_abelian()
Traceback (most recent call last):
...
NotImplementedError: is_abelian
```

is_full_subcategory(other)

Return whether self is a full subcategory of other.
A subcategory B of a category A is a full subcategory if any A-morphism between two objects of B

is also a B-morphism (the reciprocal always holds: any B-morphism between two objects of B is an

A-morphism).

This is computed by testing whether self is a subcategory of other and whether they have the same

structure, as determined by structure() from the result of additional_structure() on the

super categories.

Warning: A positive answer is guaranteed to be mathematically correct. A negative answer may

mean that Sage has not been taught enough information (or can not yet within the current model) to
derive this information. See full_super_categories() for a discussion.

See also:

• is_subcategory()

• full_super_categories()

EXAMPLES:

```python
sage: Magmas().Associative().is_full_subcategory(Magmas())
True
sage: Magmas().Unital().is_full_subcategory(Magmas())
False
sage: Rings().is_full_subcategory(Magmas().Unital() & AdditiveMagmas().
˓→AdditiveUnital())
True
```

Here are two typical examples of false negatives:

```python
sage: Groups().is_full_subcategory(Semigroups())
False
sage: Groups().is_full_subcategory(Semigroups())
# todo: not implemented
sage: Fields().is_full_subcategory(Rings())
False
sage: Fields().is_full_subcategory(Rings())
# todo: not implemented
```

Todo: The latter is a consequence of EuclideanDomains currently being a structure category. Is this

what we want?

```python
sage: EuclideanDomains().is_full_subcategory(Rings())
False
```

is_subcategory(c)

Returns True if self is naturally embedded as a subcategory of c.

EXAMPLES:

```python
sage: AbGrps = CommutativeAdditiveGroups()
sage: Rings().is_subcategory(AbGrps)
True
```
The \texttt{is_subcategory} function takes into account the base.

\begin{verbatim}
 sage: AbGrps.is_subcategory(Rings())
 False

 sage: M3 = VectorSpaces(FiniteField(3))
 sage: M9 = VectorSpaces(FiniteField(9, 'a'))
 sage: M3.is_subcategory(M9)
 False
\end{verbatim}

Join categories are properly handled:

\begin{verbatim}
 sage: CatJ = Category.join((CommutativeAdditiveGroups(), Semigroups()))
 sage: Rings().is_subcategory(CatJ)
 True
 sage: V3 = VectorSpaces(FiniteField(3))
 sage: POSet = PartiallyOrderedSets()
 sage: PoV3 = Category.join((V3, POSet))
 sage: A3 = AlgebrasWithBasis(FiniteField(3))
 sage: PoA3 = Category.join((A3, POSet))
 sage: PoA3.is_subcategory(PoV3)
 True
 sage: PoV3.is_subcategory(PoV3)
 True
 sage: PoV3.is_subcategory(PoA3)
 False
\end{verbatim}

\texttt{static join}(\texttt{categories, as_list=False, ignore_axioms=(), axioms=()})

Return the join of the input categories in the lattice of categories.

At the level of objects and morphisms, this operation corresponds to intersection: the objects and morphisms of a join category are those that belong to all its super categories.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{categories} – a list (or iterable) of categories
 \item \texttt{as_list} – a boolean (default: \texttt{False}); whether the result should be returned as a list
 \item \texttt{axioms} – a tuple of strings; the names of some supplementary axioms
\end{itemize}

\textbf{See also:}

\texttt{__and__()} for a shortcut

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: J = Category.join((Groups(), CommutativeAdditiveMonoids())); J
 Join of Category of groups and Category of commutative additive monoids
 sage: J.super_categories()
 [Category of groups, Category of commutative additive monoids]
 sage: J.all_super_categories(proper=True)
 [Category of groups, ..., Category of magmas,
 Category of commutative additive monoids, ..., Category of additive magmas,
 Category of sets, ...]
\end{verbatim}

As a short hand, one can use:
This is a commutative and associative operation:

```
sage: Groups() & CommutativeAdditiveMonoids()
Join of Category of groups and Category of commutative additive monoids
```

The join of a single category is the category itself:

```
sage: Category.join([Monoids()])
Category of monoids
```

Similarly, the join of several mutually comparable categories is the smallest one:

```
sage: Category.join((Sets(), Rings(), Monoids()))
Category of rings
```

In particular, the unit is the top category :obj:`Objects`:

```
sage: Groups() & Objects()
Category of groups
```

If the optional parameter :obj:`as_list` is :obj:`True`, this returns the super categories of the join as a list, without constructing the join category itself:

```
sage: Category.join((Groups(), CommutativeAdditiveMonoids()), as_list=True)
[Category of groups, Category of commutative additive monoids]
sage: Category.join((Sets(), Rings(), Monoids()), as_list=True)
[Category of rings]
sage: Category.join((Modules(ZZ), FiniteFields()), as_list=True)
[Category of finite enumerated fields, Category of modules over Integer Ring]
sage: Category.join([], as_list=True)
[]
sage: Category.join([Groups()], as_list=True)
[Category of groups]
sage: Category.join([Groups() & Posets()], as_list=True)
[Category of groups, Category of posets]
```

Support for axiom categories (TODO: put here meaningful examples):

```
sage: Sets().Facade() & Sets().Infinite()
Category of facade infinite sets
sage: Magmas().Infinite() & Sets().Facade()
Category of facade infinite magmas
```
Note that several of the above examples are actually join categories; they are just nicely displayed:

\[
\text{sage: } \text{AlgebrasWithBasis(QQ) \& FiniteSets().Algebras(QQ)} \\
\text{Join of Category of finite dimensional algebras with basis over Rational Field} \\
\quad \text{and Category of finite set algebras over Rational Field}
\]

\[
\text{sage: } \text{UniqueFactorizationDomains() \& Algebras(QQ)} \\
\text{Join of Category of unique factorization domains} \\
\quad \text{and Category of commutative algebras over Rational Field}
\]

static meet (categories)

Returns the meet of a list of categories

INPUT:

- categories - a non empty list (or iterable) of categories

See also:

___or___() for a shortcut

EXAMPLES:

\[
\text{sage: } \text{Category.meet([Algebras(ZZ), Algebras(QQ), Groups()])} \\
\text{Category of monoids}
\]

That meet of an empty list should be a category which is a subcategory of all categories, which does not make practical sense:

\[
\text{sage: } \text{Category.meet([])} \\
\text{Traceback (most recent call last):} \\
\quad \ldots \\
\text{ValueError: The meet of an empty list of categories is not implemented}
\]

morphism_class ()

A common super class for all morphisms between parents in this category (and its subcategories).

This class contains the methods defined in the nested class self.MorphismMethods (if it exists), and has as bases the morphism classes of the super categories of self.

See also:

- parent_class(), element_class()
- Category for details

EXAMPLES:

\[
\text{sage: } \text{C = Algebras(QQ).morphism_class(); C} \\
\text{<class 'sage.categories.algebras.Algebras.morphism_class'>} \\
\text{sage: } \text{type(C)} \\
\text{<class 'sage.structure.dynamic_class.DynamicMetaClass'>}
\]
or_subcategory *(category=None, join=False)*

Return **category** or **self** if **category** is **None**.

INPUT:
- **category** – a sub category of **self**, tuple/list thereof, or **None**
- **join** – a boolean (default: **False**)

OUTPUT:
- a category

EXAMPLES:

```python
sage: Monoids().or_subcategory(Groups())
Category of groups
sage: Monoids().or_subcategory(None)
Category of monoids
```

If **category** is a list/tuple, then a join category is returned:

```python
sage: Monoids().or_subcategory((CommutativeAdditiveMonoids(), Groups()))
Join of Category of groups and Category of commutative additive monoids
```

If **join** is **False**, an error if raised if **category** is not a subcategory of **self**:

```python
sage: Monoids().or_subcategory(EnumeratedSets())
Traceback (most recent call last):
...
ValueError: Subcategory of 'Category of monoids' required; got 'Category of enumerated sets'
```

Otherwise, the two categories are joined together:

```python
sage: Monoids().or_subcategory(EnumeratedSets(), join=True)
Category of enumerated monoids
```

parent_class()

A common super class for all parents in this category (and its subcategories).

This class contains the methods defined in the nested class **self.ParentMethods** (if it exists), and has as bases the parent classes of the super categories of **self**.

See also:

- **element_class()**, **morphism_class()**
- **Category** for details

EXAMPLES:

```python
sage: C = Algebras(QQ).parent_class; C
<class 'sage.categories.algebras.Algebras.parent_class'>
sage: type(C)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
```

By trac ticket #11935, some categories share their parent classes. For example, the parent class of an algebra only depends on the category of the base ring. A typical example is the category of algebras over a finite field versus algebras over a non-field:
sage: Algebras(GF(7)).parent_class is Algebras(GF(5)).parent_class
True
sage: Algebras(QQ).parent_class is Algebras(ZZ).parent_class
False
sage: Algebras(ZZ['t']).parent_class is Algebras(ZZ['t','x']).parent_class
True

See :class:`CategoryWithParameters` for an abstract base class for categories that depend on parameters, even though the parent and element classes only depend on the parent or element classes of its super categories. It is used in :class:`Bimodules`, :class:`Category_over_base` and :meth:`sage.categories.category.JoinCategory`.

required_methods()

Returns the methods that are required and optional for parents in this category and their elements.

EXAMPLES:

```
sage: Algebras(QQ).required_methods()  # py2
{'element': {'optional': ['_add_', '_mul_'], 'required': ['__nonzero__']},
 'parent': {'optional': ['algebra_generators'], 'required': ['__contains__']}}
sage: Algebras(QQ).required_methods()  # py3
{'element': {'optional': ['_add_', '_mul_'], 'required': ['__bool__']},
 'parent': {'optional': ['algebra_generators'], 'required': ['__contains__']}}
```

structure()

Return the structure :class:`self` is endowed with.

This method returns the structure that morphisms in this category shall be preserving. For example, it tells that a ring is a set endowed with a structure of both a unital magma and an additive unital magma which satisfies some further axioms. In other words, a ring morphism is a function that preserves the unital magma and additive unital magma structure.

In practice, this returns the collection of all the super categories of :class:`self` that define some additional structure, as a frozen set.

EXAMPLES:

```
sage: Objects().structure()
frozenset()
sage: def structure(C):
....:     return Category._sort(C.structure())
sage: structure(Sets())
(Category of sets, Category of sets with partial maps)
sage: structure(Magmas())
(Category of magmas, Category of sets, Category of sets with partial maps)
```

In the following example, we only list the smallest structure categories to get a more readable output:

```
sage: def structure(C):
....:     return Category._sort_uniq(C.structure())
sage: structure(Magmas())
(Category of magmas)
sage: structure(Rings())
(Category of unital magmas, Category of additive unital additive magmas)
sage: structure(Fields())
```

(continues on next page)
This method is used in `is_full_subcategory()` for deciding whether a category is a full subcategory of some other category, and for documentation purposes. It is computed recursively from the result of `additional_structure()` on the super categories of `self`.

subcategory_class()

A common superclass for all subcategories of this category (including this one).

This class derives from `Dsubcategory_class` for each super category `D` of `self`, and includes all the methods from the nested class `self.SubcategoryMethods`, if it exists.

See also:

- trac ticket #12895
- `parent_class()`
- `element_class()`
- `_make_named_class()`

EXAMPLES:

```python
sage: cls = Rings().subcategory_class; cls
<class 'sage.categories.rings.Rings.subcategory_class'>
sage: type(cls)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
```

Rings() is an instance of this class, as well as all its subcategories:

```python
sage: isinstance(Rings(), cls)
True
sage: isinstance(AlgebrasWithBasis(QQ), cls)
True
```

super_categories()

Return the immediate super categories of `self`.

OUTPUT:

- a duplicate-free list of categories.

Every category should implement this method.

EXAMPLES:

```python
sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]
sage: Objects().super_categories()
[]
```
Note: Since trac ticket #10963, the order of the categories in the result is irrelevant. For details, see On the order of super categories.

Note: Whenever speed matters, developers are advised to use the lazy attribute _super_categories() instead of calling this method.

class sage.categories.category.CategoryWithParameters(s=None)
 Bases: sage.categories.category.Category

A parametrized category whose parent/element classes depend only on its super categories.

Many categories in Sage are parametrized, like C = Algebras(K) which takes a base ring as parameter. In many cases, however, the operations provided by C in the parent class and element class depend only on the super categories of C. For example, the vector space operations are provided if and only if K is a field, since VectorSpaces(K) is a super category of C only in that case. In such cases, and as an optimization (see trac ticket #11935), we want to use the same parent and element class for all fields. This is the purpose of this abstract class.

Currently, JoinCategory, Category_over_base and Bimodules inherit from this class.

EXAMPLES:

```python
sage: C1 = Algebras(GF(5))
sage: C2 = Algebras(GF(3))
sage: C3 = Algebras(ZZ)
sage: from sage.categories.category import CategoryWithParameters
sage: isinstance(C1, CategoryWithParameters)
True
sage: C1.parent_class is C2.parent_class
True
sage: C1.parent_class is C3.parent_class
False
```

Category._make_named_class(name, method_provider, cache=False, picklable=True)

Construction of the parent/element/... class of self.

INPUT:

- name -- a string; the name of the class as an attribute of self. E.g. “parent_class”
- method_provider -- a string; the name of an attribute of self that provides methods for the new class (in addition to those coming from the super categories). E.g. “ParentMethods”
- cache -- a boolean or ignore_reduction (default: False) (passed down to dynamic_class; for internal use only)
- picklable -- a boolean (default: True)

ASSUMPTION:

It is assumed that this method is only called from a lazy attribute whose name coincides with the given name.

OUTPUT:

A dynamic class with bases given by the corresponding named classes of self’s super_categories, and methods taken from the class getattr(self,method_provider).
Note:

- In this default implementation, the reduction data of the named class makes it depend on `self`. Since the result is going to be stored in a lazy attribute of `self` anyway, we may as well disable the caching in `dynamic_class` (hence the default value `cache=False`).

- `CategoryWithParameters` overrides this method so that the same parent/element/... classes can be shared between closely related categories.

- The bases of the named class may also contain the named classes of some indirect super categories, according to `_super_categories_for_classes()`). This is to guarantee that Python will build consistent method resolution orders. For background, see `sage.misc.c3_controlled`.

See also:

`CategoryWithParameters._make_named_class()`

EXAMPLES:

```
sage: PC = Rings()._make_named_class("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
sage: type(PC)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
sage: PC.__bases__
(<class 'sage.categories.rngs.Rngs.parent_class'>,
 <class 'sage.categories.semirings.Semirings.parent_class'>)
```

Note that, by default, the result is not cached:

```
sage: PC is Rings()._make_named_class("parent_class", "ParentMethods")
False
```

Indeed this method is only meant to construct lazy attributes like `parent_class` which already handle this caching:

```
sage: Rings().parent_class
<class 'sage.categories.rings.Rings.parent_class'>
```

Reduction for pickling also assumes the existence of this lazy attribute:

```
sage: PC._reduction
(<built-in function getattr>, (Category of rings, 'parent_class'))
sage: loads(dumps(PC)) is Rings().parent_class
True
```

```
class sage.categories.category.JoinCategory(super_categories, **kwds)
Bases: sage.categories.category.CategoryWithParameters
A class for joins of several categories. Do not use directly; see Category.join instead.

EXAMPLES:
```
```
sage: from sage.categories.category import JoinCategory
sage: J = JoinCategory((Groups(), CommutativeAdditiveMonoids())); J
Join of Category of groups and Category of commutative additive monoids
sage: J.super_categories()
[Category of groups, Category of commutative additive monoids]
sage: J.all_super_categories(proper=True)
[Category of groups, Category of commutative additive monoids]
```

(continues on next page)
By trac ticket #11935, join categories and categories over base rings inherit from CategoryWithParameters. This allows for sharing parent and element classes between similar categories. For example, since group algebras belong to a join category and since the underlying implementation is the same for all finite fields, we have:

```python
sage: G = SymmetricGroup(10)
sage: A3 = G.algebra(GF(3))
sage: A5 = G.algebra(GF(5))
sage: type(A3.category())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: type(A3) is type(A5)
True
```

Category._repr_object_names()
Return the name of the objects of this category.

EXAMPLES:

```python
sage: FiniteGroups()._repr_object_names()
'finite groups'
sage: AlgebrasWithBasis(QQ)._repr_object_names()
'algebras with basis over Rational Field'
```

Category._repr()
Return the print representation of this category.

EXAMPLES:

```python
sage: Sets() # indirect doctest
Category of sets
```

Category._without_axioms(named=False)
Return the category without the axioms that have been added to create it.

INPUT:

* named – a boolean (default: False)

Todo: Improve this explanation.

If named is True, then this stops at the first category that has an explicit name of its own. See category_with_axiom.CategoryWithAxiom._without_axioms()
additional_structure()
Return None.
Indeed, a join category defines no additional structure.

See also:
Category.additional_structure()

EXAMPLES:
sage: Modules(ZZ).additional_structure()

is_subcategory(C)
Check whether this join category is subcategory of another category C.

EXAMPLES:
sage: Category.join([Rings(), Modules(QQ)]).is_subcategory(Category.
→join([Rings(), Bimodules(QQ, QQ)]))
True

super_categories()
Returns the immediate super categories, as per Category.super_categories().

EXAMPLES:
sage: from sage.categories.category import JoinCategory
sage: JoinCategory((Semigroups(), FiniteEnumeratedSets())).super_categories()
[Category of semigroups, Category of finite enumerated sets]

sage.categories.category.category_graph(categories=None)
Return the graph of the categories in Sage.

INPUT:
• categories – a list (or iterable) of categories
If categories is specified, then the graph contains the mentioned categories together with all their super
categories. Otherwise the graph contains (an instance of) each category in sage.categories.all (e.g.
Algebras(QQ) for algebras).
For readability, the names of the category are shortened.

Todo: Further remove the base ring (see also trac ticket #15801).

EXAMPLES:
sage: G = sage.categories.category.category_graph(categories = [Groups()])
sage: G.vertices()
['groups', 'inverse unital magmas', 'magmas', 'monoids', 'objects',
'semigroups', 'sets', 'sets with partial maps', 'unital magmas']
sage: G.plot()
Graphics object consisting of 20 graphics primitives

sage: sage.categories.category.category_graph().plot()
Graphics object consisting of ... graphics primitives

sage.categories.category.category_sample()
Return a sample of categories.

1.2. Categories 61
It is constructed by looking for all concrete category classes declared in \texttt{sage.categories.all}, calling \texttt{Category.an_instance()} on those and taking all their super categories.

EXAMPLES:

```python
sage: from sage.categories.category import category_sample
sage: sorted(category_sample(), key=str)
```

```
[Category of G-sets for Symmetric group of order 8! as a permutation group, 
Category of Hecke modules over Rational Field, 
Category of Lie algebras over Rational Field, 
Category of additive magmas, ..., 
Category of fields, ..., 
Category of graded hopf algebras with basis over Rational Field, ..., 
Category of modular abelian varieties over Rational Field, ..., 
Category of simplicial complexes, ..., 
Category of vector spaces over Rational Field, ..., 
Category of weyl groups, ...
```

\texttt{sage.categories.category.is_Category(x)}

Returns True if \(x\) is a category.

EXAMPLES:

```python
sage: sage.categories.category.is\_Category(CommutativeAdditiveSemigroups())
True
sage: sage.categories.category.is\_Category(ZZ)
False
```

1.3 Axioms

This documentation covers how to implement axioms and proceeds with an overview of the implementation of the axiom infrastructure. It assumes that the reader is familiar with the \textit{category primer}, and in particular its \textit{section about axioms}.

1.3.1 Implementing axioms

Simple case involving a single predefined axiom

Suppose that one wants to provide code (and documentation, tests, ...) for the objects of some existing category \(Cs()\) that satisfy some predefined axiom \(A\).

The first step is to open the hood and check whether there already exists a class implementing the category \(Cs()\). \(A()\). For example, taking \(Cs=\text{Semigroups}^}\) and the \texttt{Finite} axiom, there already exists a class for the category of finite semigroups:

```python
sage: Semigroups().Finite()
Category of finite semigroups
sage: type(Semigroups().Finite())
<class 'sage.categories.finite_semigroups.FiniteSemigroups_with_category'>
```

In this case, we say that the category of semigroups \textit{implements} the axiom \texttt{Finite}, and code about finite semigroups should go in the class \texttt{FiniteSemigroups} (or, as usual, in its nested classes \texttt{ParentMethods}, \texttt{ElementMethods}, and so on).

On the other hand, there is no class for the category of infinite semigroups:
This category is indeed just constructed as the intersection of the categories of semigroups and of infinite sets respectively:

```python
sage: Semigroups().Infinite().super_categories()
[Category of semigroups, Category of infinite sets]
```

In this case, one needs to create a new class to implement the axiom `Infinite` for this category. This boils down to adding a nested class `Semigroups.Infinite` inheriting from `CategoryWithAxiom`.

In the following example, we implement a category `Cs`, with a subcategory for the objects satisfying the `Finite` axiom defined in the super category `Sets` (we will see later on how to define new axioms):

```python
sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: class Cs(Category):
....: def super_categories(self):
....:     return [Sets()]
....: class Finite(CategoryWithAxiom):
....:     class ParentMethods:
....:         def foo(self):
....:             print("I am a method on finite C's")
```

Now a parent declared in the category `Cs().Finite()` inherits from all the methods of finite sets and of finite `C`'s, as desired:

```python
sage: P = Parent(category=Cs().Finite())
sage: P.is_finite() # Provided by Sets.Finite.ParentMethods
True
sage: P.foo()     # Provided by Cs.Finite.ParentMethods
I am a method on finite C's
```

Note:

- This follows the same idiom as for `Covariant Functorial Constructions`.
- From an object oriented point of view, any subcategory `Cs()` of `Sets` inherits a `Finite` method. Usually `Cs` could complement this method by overriding it with a method `Cs.Finite` which would make a super call to `Sets.Finite` and then do extra stuff.

 In the above example, `Cs` also wants to complement `Sets.Finite`, though not by doing more stuff, but by providing it with an additional mixin class containing the code for finite `Cs`. To keep the analogy, this mixin class is to be put in `Cs.Finite`.

1.3. Axioms
• By defining the axiom `Finite`, `Sets` fixes the semantic of `Cs.Finite()` for all its subcategories `Cs`: namely “the category of `Cs` which are finite as sets”. Hence, for example, `Modules.Free.Finite` cannot be used to model the category of free modules of finite rank, even though their traditional name “finite free modules” might suggest it.

• It may come as a surprise that we can actually use the same name `Finite` for the mixin class and for the method defining the axiom; indeed, by default a class does not have a binding behavior and would completely override the method. See the section *Defining a new axiom* for details and the rationale behind it.

An alternative would have been to give another name to the mixin class, like `FiniteCategory`. However this would have resulted in more namespace pollution, whereas using `Finite` is already clear, explicit, and easier to remember.

• Under the hood, the category `Cs().Finite()` is aware that it has been constructed from the category `Cs()` by adding the axiom `Finite`:

```python
sage: Cs().Finite().base_category()
Category of cs
sage: Cs().Finite()._axiom
'Finite'
```

Over time, the nested class `Cs.Finite` may become large and too cumbersome to keep as a nested subclass of `Cs`. Or the category with axiom may have a name of its own in the literature, like `semigroups` rather than `associative magmas`, or `fields` rather than `commutative division rings`. In this case, the category with axiom can be put elsewhere, typically in a separate file, with just a link from `Cs`:

```python
sage: class Cs(Category):
    ....:    def super_categories(self):
    ....:        return [Sets()]

sage: class FiniteCs(CategoryWithAxiom):
    ....:    class ParentMethods:
    ....:        def foo(self):
    ....:            print("I am a method on finite C's")

sage: Cs.Finite = FiniteCs
sage: Cs().Finite()
Category of finite cs
```

For a real example, see the code of the class `FiniteGroups` and the link to it in `Groups`. Note that the link is implemented using `LazyImport`; this is highly recommended: it makes sure that `FiniteGroups` is imported after `Groups` it depends upon, and makes it explicit that the class `Groups` can be imported and is fully functional without importing `FiniteGroups`.

Note: Some categories with axioms are created upon Sage’s startup. In such a case, one needs to pass the `at_startup=True` option to `LazyImport`, in order to quiet the warning about that lazy import being resolved upon startup. See for example `Sets.Finite`.

This is undoubtedly a code smell. Nevertheless, it is preferable to stick to lazy imports, first to resolve the import order properly, and more importantly as a reminder that the category would be best not constructed upon Sage’s startup. This is to spur developers to reduce the number of parents (and therefore categories) that are constructed upon startup. Each `at_startup=True` that will be removed will be a measure of progress in this direction.

Note: In principle, due to a limitation of `LazyImport` with nested classes (see trac ticket #15648), one should pass the option `as_name` to `LazyImport`:
Finite = LazyImport('sage.categories.finite_groups', 'FiniteGroups', as_name='Finite')

in order to prevent Groups.Finite to keep on reimporting FiniteGroups.

Given that passing this option introduces some redundancy and is error prone, the axiom infrastructure includes a little workaround which makes the as_name unnecessary in this case.

Making the category with axiom directly callable

If desired, a category with axiom can be constructed directly through its class rather than through its base category:

```python
sage: Semigroups()
Category of semigroups
sage: Semigroups() is Magmas().Associative()
True
sage: FiniteGroups()
Category of finite groups
sage: FiniteGroups() is Groups().Finite()
True
```

For this notation to work, the class `Semigroups` needs to be aware of the base category class (here, `Magmas`) and of the axiom (here, `Associative`):

```python
sage: Semigroups._base_category_class_and_axiom
(<class 'sage.categories.magmas.Magmas'>, 'Associative')
sage: Fields._base_category_class_and_axiom
(<class 'sage.categories.division_rings.DivisionRings'>, 'Commutative')
sage: FiniteGroups._base_category_class_and_axiom
(<class 'sage.categories.groups.Groups'>, 'Finite')
sage: FiniteDimensionalAlgebrasWithBasis._base_category_class_and_axiom
(<class 'sage.categories.algebras_with_basis.AlgebrasWithBasis'>, 'FiniteDimensional')
```

In our example, the attribute `_base_category_class_and_axiom` was set upon calling `Cs().Finite()`, which makes the notation seemingly work:

```python
sage: FiniteCs()
Category of finite cs
sage: FiniteCs._base_category_class_and_axiom
(<class '__main__.Cs'>, 'Finite')
sage: FiniteCs._base_category_class_and_axiom_origin
'set by __classget__'
```

But calling `FiniteCs()` right after defining the class would have failed (try it!). In general, one needs to set the attribute explicitly:

```python
sage: class FiniteCs(CategoryWithAxiom):
....:     _base_category_class_and_axiom = (Cs, 'Finite')
....:     class ParentMethods:
....:         def foo(self):
....:             print("I am a method on finite C's")
```

Having to set explicitly this link back from `FiniteCs` to `Cs` introduces redundancy in the code. It would therefore be desirable to have the infrastructure set the link automatically instead (a difficulty is to achieve this while supporting lazy imported categories with axiom).
As a first step, the link is set automatically upon accessing the class from the base category class:

```python
sage: Algebras.WithBasis._base_category_class_and_axiom
(<class 'sage.categories.algebras.Algebras'>, 'WithBasis')
sage: Algebras.WithBasis._base_category_class_and_axiom_origin
'set by __classget__'
```

Hence, for whatever this notation is worth, one can currently do:

```python
sage: Algebras.WithBasis(QQ)
Category of algebras with basis over Rational Field
```

We don’t recommend using syntax like `Algebras.WithBasis(QQ)`, as it may eventually be deprecated.

As a second step, Sage tries some obvious heuristics to deduce the link from the name of the category with axiom (see `base_category_class_and_axiom()` for the details). This typically covers the following examples:

```python
sage: FiniteCoxeterGroups()
Category of finite coxeter groups
sage: FiniteCoxeterGroups() is CoxeterGroups().Finite()
True
sage: FiniteCoxeterGroups._base_category_class_and_axiom_origin
'deduced by base_category_class_and_axiom'
```

```python
sage: FiniteDimensionalAlgebrasWithBasis(QQ)
Category of finite dimensional algebras with basis over Rational Field
sage: FiniteDimensionalAlgebrasWithBasis(QQ) is Algebras(QQ).FiniteDimensional().˓
→WithBasis()
True
```

If the heuristic succeeds, the result is guaranteed to be correct. If it fails, typically because the category has a name of its own like `Fields`, the attribute `_base_category_class_and_axiom` should be set explicitly. For more examples, see the code of the classes `Semigroups` or `Fields`.

Note: When printing out a category with axiom, the heuristic determines whether a category has a name of its own by checking out how `_base_category_class_and_axiom` was set:

```python
sage: Fields._base_category_class_and_axiom_origin
'hardcoded'
```

See `CategoryWithAxiom._without_axioms()`, `CategoryWithAxiom._repr_object_names_static()`.

In our running example `FiniteCs`, Sage failed to deduce automatically the base category class and axiom because the class `Cs` is not in the standard location `sage.categories.cs`.

Design discussion

The above deduction, based on names, is undoubtedly inelegant. But it’s safe (either the result is guaranteed to be correct, or an error is raised), it saves on some redundant information, and it is only used for the simple shorthands like `FiniteGroups()` for `Groups().Finite()`. Finally, most if not all of these shorthands are likely to eventually disappear (see trac ticket #15741 and the related discussion in the primer).
Defining a new axiom

We describe now how to define a new axiom. The first step is to figure out the largest category where the axiom makes sense. For example, `Sets` for `Finite`, `Magmas` for `Associative`, or `Modules` for `FiniteDimensional`. Here we define the axiom `Green` for the category `Cs` and its subcategories:

```
sage: from sage.categories.category_with_axiom import CategoryWithAxiom
def super_categories(self):
    return [Sets()]
class SubcategoryMethods:
    def Green(self):
        return self._with_axiom("Green")
class Green(CategoryWithAxiom):
class ParentMethods:
    def foo(self):
        print("I am a method on green C's")
```

With the current implementation, the name of the axiom must also be added to a global container:

```
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: all_axioms += ("Green",)
```

We can now use the axiom as usual:

```
sage: Cs().Green()
Category of green cs
sage: P = Parent(category=Cs().Green())
sage: P.foo()
I am a method on green C's
```

Compared with our first example, the only newcomer is the method `.Green()` that can be used by any subcategory `Ds()` of `Cs()` to add the axiom `Green`. Note that the expression `Ds().Green` always evaluates to this method, regardless of whether `Ds` has a nested class `Ds.Green` or not (an implementation detail):

```
sage: Cs().Green
<bound method Cs_with_category.Green of Category of cs>
```

Thanks to this feature (implemented in `CategoryWithAxiom.__classget__()`), the user is systematically referred to the documentation of this method when doing introspection on `Ds().Green`:

```
sage: C = Cs()
sage: C.Green
# not tested
sage: Cs().Green.__doc__
'<documentation of the axiom Green>'
```

It is therefore the natural spot for the documentation of the axiom.

Note: The presence of the nested class `Green` in `Cs` is currently mandatory even if it is empty.

Todo: Specify whether or not one should systematically use `@cached_method` in the definition of the axiom. And make sure all the definition of axioms in Sage are consistent in this respect!
Todo: We could possibly define an @axiom decorator? This could hide two little implementation details: whether or not to make the method a cached method, and the call to _with_axiom(...) under the hood. It could do possibly do some more magic. The gain is not obvious though.

Note: all_axioms is only used marginally, for sanity checks and when trying to derive automatically the base category class. The order of the axioms in this tuple also controls the order in which they appear when printing out categories with axioms (see CategoryWithAxiom._repr_object_names_static()).

During a Sage session, new axioms should only be added at the end of all_axioms, as above, so as to not break the cache of axioms_rank(). Otherwise, they can be inserted statically anywhere in the tuple. For axioms defined within the Sage library, the name is best inserted by editing directly the definition of all_axioms in sage.categories.category_with_axiom.

Design note

Let us state again that, unlike what the existence of all_axioms might suggest, the definition of an axiom is local to a category and its subcategories. In particular, two independent categories Cs() and Ds() can very well define axioms with the same name and different semantics. As long as the two hierarchies of subcategories don’t intersect, this is not a problem. And if they do intersect naturally (that is if one is likely to create a parent belonging to both categories), this probably means that the categories Cs and Ds are about related enough areas of mathematics that one should clear the ambiguity by having either the same semantic or different names.

This caveat is no different from that of name clashes in hierarchy of classes involving multiple inheritance.

Todo: Explore ways to get rid of this global all_axioms tuple, and/or have automatic registration there, and/or having a register_axiom(...) method.

Special case: defining an axiom depending on several categories

In some cases, the largest category where the axiom makes sense is the intersection of two categories. This is typically the case for axioms specifying compatibility conditions between two otherwise unrelated operations, like Distributive which specifies a compatibility between * and +. Ideally, we would want the Distributive axiom to be defined by:

```sage```
```
Magmas() & AdditiveMagmas() # todo: not implemented
```
```
Join of Category of magmas and Category of additive magmas
```

The current infrastructure does not support this perfectly: indeed, defining an axiom for a category C requires C to have a class of its own; hence a JoinCategory as above won’t do; we need to implement a new class like MagmasAndAdditiveMagmas; furthermore, we cannot yet model the fact that MagmasAndAdditiveMagmas() is the intersection of Magmas() and AdditiveMagmas() rather than a mere subcategory:

```sage```
```
from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
Magmas() & AdditiveMagmas() is MagmasAndAdditiveMagmas()
False
Category of magmas and additive magmas
```
```
Chapter 1. The Sage Category Framework
```
Still, there is a workaround to get the natural notations:

```
sage: (Magmas() & AdditiveMagmas()).Distributive()
Category of distributive magmas and additive magmas
sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
Category of rings
```

The trick is to define `Distributive` as usual in `MagmasAndAdditiveMagmas`, and to add a method `Magmas.SubcategoryMethods.Distributive()` which checks that `self` is a subcategory of both `Magmas()` and `AdditiveMagmas()`, complains if not, and otherwise takes the intersection of `self` with `MagmasAndAdditiveMagmas()` before calling `Distributive`.

The downsides of this workaround are:

- Creation of an otherwise empty class `MagmasAndAdditiveMagmas`.
- Pollution of the namespace of `Magmas()` (and subcategories like `Groups()`) with a method that is irrelevant (but safely complains if called).
- `C._with_axiom('Distributive')` is not strictly equivalent to `C.Distributive()`, which can be unpleasantly surprising:

```
sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
Category of rings
sage: (Monoids() & CommutativeAdditiveGroups())._with_axiom('Distributive')
Join of Category of monoids and Category of commutative additive groups
```

Todo: Other categories that would be better implemented via an axiom depending on a join category include:

- **Algebras:** defining an associative unital algebra as a ring and a module satisfying the suitable compatibility axiom between inner multiplication and multiplication by scalars (bilinearity). Of course this should be implemented at the level of `MagmaticAlgebras`, if not higher.
- **Bialgebras:** defining a bialgebra as an algebra and coalgebra where the coproduct is a morphism for the product.
- **Bimodules:** defining a bimodule as a left and right module where the two actions commute.

Todo:

- Design and implement an idiom for the definition of an axiom by a join category.
- Or support more advanced joins, through some hook or registration process to specify that a given category is the intersection of two (or more) categories.
- Or at least improve the above workaround to avoid the last issue; this possibly could be achieved using a class `Magmas.Distributive` with a bit of `__classcall__` magic.
Handling multiple axioms, arborescence structure of the code

Prelude

Let us consider the category of magmas, together with two of its axioms, namely Associative and Unital. An associative magma is a semigroup and a unital semigroup is a monoid. We have also seen that axioms commute:

```
sage: Magmas().Unital()
Category of unital magmas
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().Unital()
Category of monoids
sage: Magmas().Unital().Associative()
Category of monoids
```

At the level of the classes implementing these categories, the following comes as a general naturalization of the previous section:

```
sage: Magmas.Unital
<class 'sage.categories.magmas.Magmas.Unital'>
sage: Magmas.Associative
<class 'sage.categories.semigroups.Semigroups'>
sage: Magmas.Associative.Unital
<class 'sage.categories.monoids.Monoids'>
```

However, the following may look suspicious at first:

```
sage: Magmas.Unital.Associative
Traceback (most recent call last):
...  
AttributeError: type object 'Magmas.Unital' has no attribute 'Associative'
```

The purpose of this section is to explain the design of the code layout and the rationale for this mismatch.

Abstract model

As we have seen in the Primer, the objects of a category $\mathcal{C}_S()$ can usually satisfy, or not, many different axioms. Out of all combinations of axioms, only a small number are relevant in practice, in the sense that we actually want to provide features for the objects satisfying these axioms.

Therefore, in the context of the category class \mathcal{C}_S, we want to provide the system with a collection $(D_S)_{S \in \mathcal{S}}$ where each S is a subset of the axioms and the corresponding D_S is a class for the subcategory of the objects of $\mathcal{C}_S()$ satisfying the axioms in S. For example, if $\mathcal{C}_S()$ is the category of magmas, the pairs (S, D_S) would include:

```
{Associative} : Semigroups
{Associative, Unital} : Monoids
{Associative, Unital, Inverse} : Groups
{Associative, Commutative} : Commutative Semigroups
{Unital, Inverse} : Loops
```

Then, given a subset T of axioms, we want the system to be able to select automatically the relevant classes $(D_S)_{S \in \mathcal{T}}$, and build from them a category for the objects of \mathcal{C}_S satisfying the axioms in T, together with its hierarchy of super categories. If T is in the indexing set \mathcal{S}, then the class of the resulting category is directly D_T:
sage: C = Magmas().Unital().Inverse().Associative(); C
Category of groups
sage: type(C)
<class 'sage.categories.groups.Groups_with_category'>
Otherwise, we get a join category:
sage: C = Magmas().Infinite().Unital().Associative(); C
Category of infinite monoids
sage: type(C)
<class 'sage.categories.category.JoinCategory_with_category'>
sage: C.super_categories()
[Category of monoids, Category of infinite sets]

Concrete model as an arborescence of nested classes

We further want the construction to be efficient and amenable to laziness. This led us to the following design decision: the collection \((D_S)_{S \in \mathcal{S}}\) of classes should be structured as an arborescence (or equivalently a rooted forest). The root is \(C_\emptyset\), corresponding to \(S = \emptyset\). Any other class \(D_S\) should be the child of a single class \(D_{S'}\) where \(S'\) is obtained from \(S\) by removing a single axiom \(A\). Of course, \(D_{S'}\) and \(A\) are respectively the base category class and axiom of the category with axiom \(D_S\) that we have met in the first section.

At this point, we urge the reader to explore the code of \texttt{Magmas} and \texttt{DistributiveMagmasAndAdditiveMagmas} and see how the arborescence structure on the categories with axioms is reflected by the nesting of category classes.

Discussion of the design

Performance

Thanks to the arborescence structure on subsets of axioms, constructing the hierarchy of categories and computing intersections can be made efficient with, roughly speaking, a linear/quadratic complexity in the size of the involved category hierarchy multiplied by the number of axioms (see Section \textit{Algorithms}). This is to be put in perspective with the manipulation of arbitrary collections of subsets (aka boolean functions) which can easily raise NP-hard problems.

Furthermore, thanks to its locality, the algorithms can be made suitably lazy: in particular, only the involved category classes need to be imported.

Flexibility

This design also brings in quite some flexibility, with the possibility to support features such as defining new axioms depending on other axioms and deduction rules. See below.

1.3. Axioms
Asymmetry

As we have seen at the beginning of this section, this design introduces an asymmetry. It’s not so bad in practice, since in most practical cases, we want to work incrementally. It’s for example more natural to describe `FiniteFields` as `Fields` with the axiom `Finite` rather than `Magmas` and `AdditiveMagmas` with all (or at least sufficiently many) of the following axioms:

```python
sage: sorted(Fields().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital', 'Associative', 'Commutative', 'Distributive', 'Division', 'NoZeroDivisors', 'Unital']
```

The main limitation is that the infrastructure currently imposes to be incremental by steps of a single axiom.

In practice, among the roughly 60 categories with axioms that are currently implemented in Sage, most admitted a (rather) natural choice of a base category and single axiom to add. For example, one usually thinks more naturally of a monoid as a semigroup which is unital rather than as a unital magma which is associative. Modeling this asymmetry in the code actually brings a bonus: it is used for printing out categories in a (heuristically) mathematician-friendly way:

```python
sage: Magmas().Commutative().Associative()
Category of commutative semigroups
```

Only in a few cases is a choice made that feels mathematically arbitrary. This is essentially in the chain of nested classes `distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative`.

Placeholder classes

Given that we can only add a single axiom at a time when implementing a `CategoryWithAxiom`, we need to create a few category classes that are just placeholders. For the worst example, see the chain of nested classes `distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative`.

This is suboptimal, but fits within the scope of the axiom infrastructure which is to reduce a potentially exponential number of placeholder category classes to just a couple.

Note also that, in the above example, it’s likely that some of the intermediate classes will grow to non placeholder ones, as people will explore more weaker variants of rings.

Mismatch between the arborescence of nested classes and the hierarchy of categories

The fact that the hierarchy relation between categories is not reflected directly as a relation between the classes may sound suspicious at first! However, as mentioned in the primer, this is actually a big selling point of the axioms infrastructure: by calculating automatically the hierarchy relation between categories with axioms one avoids the nightmare of maintaining it by hand. Instead, only a rather minimal number of links needs to be maintained in the code (one per category with axiom).

Besides, with the flexibility introduced by runtime deduction rules (see below), the hierarchy of categories may depend on the parameters of the categories and not just their class. So it’s fine to make it clear from the onset that the two relations do not match.
Evolutivity

At this point, the arborescence structure has to be hardcoded by hand with the annoyances we have seen. This does not preclude, in a future iteration, to design and implement some idiom for categories with axioms that adds several axioms at once to a base category; maybe some variation around:

```python
class DistributiveMagmasAndAdditiveMagmas:
    ...
    @category_with_axiom(
        AdditiveAssociative,
        AdditiveCommutative,
        AdditiveUnital,
        AdditiveInverse,
        Associative)
    def _(): return LazyImport('sage.categories.rngs', 'Rngs', at_startup=True)
```

or:

```python
register_axiom_category(DistributiveMagmasAndAdditiveMagmas,
    {AdditiveAssociative,
     AdditiveCommutative,
     AdditiveUnital,
     AdditiveInverse,
     Associative},
    'sage.categories.rngs', 'Rngs', at_startup=True)
```

The infrastructure would then be in charge of building the appropriate arborescence under the hood. Or rely on some database (see discussion on trac ticket #10963, in particular at the end of comment 332).

Axioms defined upon other axioms

Sometimes an axiom can only be defined when some other axiom holds. For example, the axiom `NoZeroDivisors` only makes sense if there is a zero, that is if the axiom `AdditiveUnital` holds. Hence, for the category `MagmasAndAdditiveMagmas`, we consider in the abstract model only those subsets of axioms where the presence of `NoZeroDivisors` implies that of `AdditiveUnital`. We also want the axiom to be only available if meaningful:

```python
sage: Rings().NoZeroDivisors()
Category of domains
sage: Rings().Commutative().NoZeroDivisors()
Category of integral domains
sage: Semirings().NoZeroDivisors()
Traceback (most recent call last):
  ...
AttributeError: 'Semirings_with_category' object has no attribute 'NoZeroDivisors'
```

Concretely, this is to be implemented by defining the new axiom in the (SubcategoryMethods nested class of the) appropriate category with axiom. For example the axiom `NoZeroDivisors` would be naturally defined in `magmas_and_additive_magmas.MagmasAndAdditiveMagmas.Distributive.AdditiveUnital`.

Note: The axiom `NoZeroDivisors` is currently defined in `Rings`, by simple lack of need for the feature; it should be lifted up as soon as relevant, that is when some code will be available for parents with no zero divisors that are not

1.3. Axioms
necessarily rings.

Deduction rules

A similar situation is when an axiom A of a category Cs implies some other axiom B, with the same consequence as above on the subsets of axioms appearing in the abstract model. For example, a division ring necessarily has no zero divisors:

```
sage: 'NoZeroDivisors' in Rings().Division().axioms()
True
sage: 'NoZeroDivisors' in Rings().axioms()
False
```

This deduction rule is implemented by the method `Rings().Division().extra_super_categories()`:

```
sage: Rings().Division().extra_super_categories()
(Category of domains,)
```

In general, this is to be implemented by a method $Cs.A\math.sf extra_super_categories$ returning a tuple $(Cs().B(),)$, or preferably $(Ds().B(),)$ where Ds is the category defining the axiom B.

This follows the same idiom as for deduction rules about functorial constructions (see `covariant_functorial_construction.CovariantConstructionCategory_.extra_super_categories()`). For example, the fact that a Cartesian product of associative magmas (i.e. of semigroups) is an associative magma is implemented in `Semigroups.CartesianProducts_.extra_super_categories()`:

```
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().CartesianProducts().extra_super_categories()
[Category of semigroups]
```

Similarly, the fact that the algebra of a commutative magma is commutative is implemented in `Magmas._Commutative._Algebras_.extra_super_categories()`:

```
sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
```

Warning: In some situations this idiom is inapplicable as it would require to implement two classes for the same category. This is the purpose of the next section.

Special case

In the previous examples, the deduction rule only had an influence on the super categories of the category with axiom being constructed. For example, when constructing `Rings().Division()`, the rule `Rings().Division().extra_super_categories()` simply adds `Rings().NoZeroDivisors()` as a super category thereof.

In some situations this idiom is inapplicable because a class for the category with axiom under construction already exists elsewhere. Take for example Wedderburn’s theorem: any finite division ring is commutative, i.e. is a finite field. In other words, `DivisionRings().Finite() coincides with Fields().Finite()`.
Therefore we cannot create a class `DivisionRings().Finite` to hold the desired `extra_super_categories` method, because there is already a class for this category with axiom, namely `Fields().Finite`.

A natural idiom would be to have `DivisionRings().Finite` be a link to `Fields().Finite` (locally introducing an undirected cycle in the arborescence of nested classes). It would be a bit tricky to implement though, since one would need to detect, upon constructing `DivisionRings().Finite()`, that `DivisionRings().Finite` is actually `Fields().Finite`, in order to construct appropriately `Fields().Finite()`, and reciprocally, upon computing the super categories of `Fields().Finite()`, to not try to add `DivisionRings().Finite()` as a super category.

Instead the current idiom is to have a method `DivisionRings().Finite_extra_super_categories` which mimics the behavior of the would-be `DivisionRings().Finite.extra_super_categories`:

```
sage: DivisionRings().Finite_extra_super_categories()
(Category of commutative magmas,)
```

This idiom is admittedly rudimentary, but consistent with how mathematical facts specifying non trivial inclusion relations between categories are implemented elsewhere in the various `extra_super_categories` methods of axiom categories and covariant functorial constructions. Besides, it gives a natural spot (the docstring of the method) to document and test the modeling of the mathematical fact. Finally, Wedderburn’s theorem is arguably a theorem about division rings (in the context of division rings, finiteness implies commutativity) and therefore lives naturally in `DivisionRings`.

An alternative would be to implement the category of finite division rings (i.e. finite fields) in a class `DivisionRings().Finite` rather than `Fields().Finite`:

```
sage: from sage.categories.category_with_axiom import CategoryWithAxiom

sage: class MyDivisionRings(Category):
....:     def super_categories(self):
....:         return [Rings()]

sage: class MyFields(Category):
....:     def super_categories(self):
....:         return [MyDivisionRings()]

sage: class MyFiniteFields(CategoryWithAxiom):
....:     _base_category_class_and_axiom = (MyDivisionRings, "Finite")
....:     def extra_super_categories(self): # Wedderburn's theorem
....:         return [MyFields()]

sage: MyDivisionRings().Finite = MyFiniteFields

sage: MyDivisionRings().Finite()
Category of my finite fields
sage: MyFields().Finite() is MyDivisionRings().Finite()
True
```

In general, if several categories `C1s(), C2s()`, ... are mapped to the same category when applying some axiom A (that is `C1s().A() == C2s().A() == ...`), then one should be careful to implement this category in a single class `Cs.A`, and set up methods `extra_super_categories` or `A_extra_super_categories` methods as appropriate. Each such method should return something like `[C2s()]` and not `[C2s().A()]` for the latter would likely lead to an infinite recursion.
Design discussion

Supporting similar deduction rules will be an important feature in the future, with quite a few occurrences already implemented in upcoming tickets. For the time being though there is a single occurrence of this idiom outside of the tests. So this would be an easy thing to refactor after trac ticket #10963 if a better idiom is found.

Larger synthetic examples

We now consider some larger synthetic examples to check that the machinery works as expected. Let us start with a category defining a bunch of axioms, using `axiom()` for conciseness (don’t do it for real axioms; they deserve a full documentation!):

```python
sage: from sage.categories.category_singleton import Category_singleton
sage: from sage.categories.category_with_axiom import axiom
sage: import sage.categories.category_with_axiom
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: all_axioms += ("B","C","D","E","F")

sage: class As(Category_singleton):
....:     def super_categories(self):
....:         return [Objects()]
....:
....:     class SubcategoryMethods:
....:
....:         B = axiom("B")
....:         C = axiom("C")
....:         D = axiom("D")
....:         E = axiom("E")
....:         F = axiom("F")
....:
....:         class B(CategoryWithAxiom):
....:             pass
....:         class C(CategoryWithAxiom):
....:             pass
....:         class D(CategoryWithAxiom):
....:             pass
....:         class E(CategoryWithAxiom):
....:             pass
....:         class F(CategoryWithAxiom):
....:             pass
```

Now we construct a subcategory where, by some theorem of William, axioms B and C together are equivalent to E and F together:

```python
sage: class A1s(Category_singleton):
....:     def super_categories(self):
....:         return [As()]
....:
....:     class B(CategoryWithAxiom):
....:         def _extra_super_categories(self):
....:             return [As().E(), As().F()]
....:     class C(CategoryWithAxiom):
....:         def _extra_super_categories(self):
....:             return [As().B(), As().C()]
```

(continues on next page)
The axioms B and C do not show up in the name of the obtained category because, for concision, the printing uses some heuristics to not show axioms that are implied by others. But they are satisfied:

```
sage: sorted(A1s().B().C().axioms())
['B', 'C', 'E', 'F']
```

Note also that this is a join category:

```
sage: type(A1s().B().C())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: A1s().B().C().super_categories()
[Category of e a1s, 
 Category of f a1s, 
 Category of b a1s, 
 Category of c a1s]
```

As desired, William’s theorem holds:

```
sage: A1s().B().C().is_A1s().E().F()
True
```

and propagates appropriately to subcategories:

```
sage: C = A1s().E().F().D().B().C()
sage: C.is_A1s().B().C().E().F().D()  # commutativity
True
sage: C.is_A1s().E().F().E().F().D()  # William's theorem
True
sage: C.is_A1s().E().E().F().F().D()  # commutativity
True
sage: C.is_A1s().E().F().D()  # idempotency
True
sage: C.is_A1s().D().E().F()
True
```

In this quick variant, we actually implement the category of $\mathsf{b c a2s}$, and choose to do so in $\mathsf{A2s.B.C}$:

```
sage: class A2s(Category_singleton):
    ....:     def super_categories(self):
    ....:         return [As()]
    ....:
    ....:     class B(CategoryWithAxiom):
    ....:         class C(CategoryWithAxiom):
    ....:             def extra_super_categories(self):
    ....:                 return [As().E(), As().F()]
    ....:         ....:
    ....:         class E(CategoryWithAxiom):
    ....:             def F_extra_super_categories(self):
    ....:                 return [As().B(), As().C()]

sage: A2s().B().C()
```

(continues on next page)
As desired, William’s theorem and its consequences hold:

```python
sage: A2s().B().C() is A2s().E().F()
True
sage: C = A2s().E().F().D().B().C()
sage: C is A2s().B().C().E().F().D()  # commutativity
True
sage: C is A2s().E().F().E().F().D()  # William's theorem
True
sage: C is A2s().E().E().F().F().D()  # commutativity
True
sage: C is A2s().E().F().D()         # idempotency
True
sage: C is A2s().D().E().F()
True
```

Finally, we “accidentally” implement the category of \(b\ c\ a3s\), both in \(A3s.B.C\) and \(A3s.E.F\):

```python
sage: class A3s(Category_singleton):
    ....:     def super_categories(self):
    ....:         return [As()]
    ....:     class B(CategoryWithAxiom):
    ....:         class C(CategoryWithAxiom):
    ....:             def extra_super_categories(self):
    ....:                 return [As().E(), As().F()]
    ....:     class E(CategoryWithAxiom):
    ....:         class F(CategoryWithAxiom):
    ....:             def extra_super_categories(self):
    ....:                 return [As().B(), As().C()]
```

We can still construct, say:

```python
sage: A3s().B()
Category of b a3s
sage: A3s().C()
Category of c a3s
```

However,

```python
sage: A3s().B().C()  # not tested
```

runs into an infinite recursion loop, as \(A3s().B().C()\) wants to have \(A3s().E().F()\) as super category and reciprocally.

Todo: The above example violates the specifications (a category should be modelled by at most one class), so it’s appropriate that it fails. Yet, the error message could be usefully complemented by some hint at what the source of the problem is (a category implemented in two distinct classes). Leaving a large enough piece of the backtrace would be
useful though, so that one can explore where the issue comes from (e.g. with post mortem debugging).

1.3.2 Specifications

After fixing some vocabulary, we summarize here some specifications about categories and axioms.

The lattice of constructible categories

A mathematical category C is *implemented* if there is a class in Sage modelling it; it is *constructible* if it is either implemented, or is the intersection of *implemented* categories; in the latter case it is modelled by a `JoinCategory`. The comparison of two constructible categories with the `Category.is_subcategory()` method is supposed to model the comparison of the corresponding mathematical categories for inclusion of the objects (see *On the category hierarchy: subcategories and super categories* for details). For example:

```sage
sage: Fields().is_subcategory(Rings())
True
```

However this modelling may be incomplete. It can happen that a mathematical fact implying that a category A is a subcategory of a category B is not implemented. Still, the comparison should endow the set of constructible categories with a poset structure and in fact a lattice structure.

In this lattice, the join of two categories (`Category.join()`) is supposed to model their intersection. Given that we compare categories for inclusion, it would be more natural to call this operation the *meet*; blames go to me (Nicolas) for originally comparing categories by amount of structure rather than by inclusion. In practice, the join of two categories may be a strict super category of their intersection; first because this intersection might not be constructible; second because Sage might miss some mathematical information to recover the smallest constructible super category of the intersection.

Axioms

We say that an axiom A is *defined by* a category $Cs()$ if Cs defines an appropriate method Cs. `SubcategoryMethods.A`, with the semantic of the axiom specified in the documentation; for any subcategory $Ds()$, $Ds().A()$ models the subcategory of the objects of $Ds()$ satisfying A. In this case, we say that the axiom A is *defined for* the category $Ds()$. Furthermore, Ds implements the axiom A if Ds has a category with axiom as nested class $Ds.A$. The category $Ds()$ satisfies the axiom if $Ds()$ is a subcategory of $Cs().A()$ (meaning that all the objects of $Ds()$ are known to satisfy the axiom A).

A digression on the structure of fibers when adding an axiom

Consider the application ϕ_A which maps a category to its category of objects satisfying A. Equivalently, ϕ_A is computing the intersection with the defining category with axiom of A. It follows immediately from the latter that ϕ_A is a regressive endomorphism of the lattice of categories. It restricts to a regressive endomorphism $Cs() \rightarrow Cs().A()$ on the lattice of constructible categories.

This endomorphism may have non trivial fibers, as in our favorite example: `DivisionRings()` and `Fields()` are in the same fiber for the axiom `Finite`:

```sage
sage: DivisionRings().Finite() is Fields().Finite()
True
```
Consider the intersection S of such a fiber of ϕ_A with the upper set I_A of categories that do not satisfy A. The fiber itself is a sublattice. However I_A is not guaranteed to be stable under intersection (though exceptions should be rare). Therefore, there is a priori no guarantee that S would be stable under intersection. Also it’s presumably finite, in fact small, but this is not guaranteed either.

Specifications

- Any constructible category C should admit a finite number of larger constructible categories.

- The methods `super_categories`, `extra_super_categories`, and friends should always return strict supercategories.

 For example, to specify that a finite division ring is a finite field, `DivisionRings.Finite_extra_super_categories` should not return `Fields().Finite()`. It could possibly return `Fields()`, but it’s preferable to return the largest category that contains the relevant information, in this case `Magmas().Commutative()`, and to let the infrastructure apply the derivations.

- The base category of a `CategoryWithAxiom` should be an implemented category (i.e. not a `JoinCategory`). This is checked by `CategoryWithAxiom._test_category_with_axiom()`.

- Arborescent structure: Let $Cs()$ be a category, and S be some set of axioms defined in some super categories of $Cs()$ but not satisfied by $Cs()$. Suppose we want to provide a category with axiom for the elements of $Cs()$ satisfying the axioms in S. Then, there should be a single enumeration A_1, A_2, ..., A_k without repetition of axioms of S such that $Cs.A_1.A_2....A_k$ is an implemented category. Furthermore, every intermediate step $Cs.A_1.A_2....A_i$ with $i \leq k$ should be a category with axiom having A_i as axiom and $Cs.A_1.A_2....A_{i-1}$ as base category class; this base category class should not satisfy A_i. In particular, when some axioms of S can be deduced from previous ones by deduction rules, they should not appear in the enumeration A_1, A_2, ..., A_k.

- In particular, if $Cs()$ is a category that satisfies some axiom A (e.g. from one of its super categories), then it should not implement that axiom. For example, a category class Cs can never have a nested class $Cs.A.A$. Similarly, applying the specification recursively, a category satisfying A cannot have a nested class $Cs.A_1.A_2.A_3.A$ where A_1, A_2, A_3 are axioms.

- A category can only implement an axiom if this axiom is defined by some super category. The code has not been systematically checked to support having two super categories defining the same axiom (which should of course have the same semantic). You are welcome to try, at your own risk. :-)

- When a category defines an axiom or functorial construction A, this fixes the semantic of A for all the subcategories. In particular, if two categories define A, then these categories should be independent, and either the semantic of A should be the same, or there should be no natural intersection between the two hierarchies of subcategories.

- Any super category of a `CategoryWithParameters` should either be a `CategoryWithParameters` or a `Category_singleton`.

- A `CategoryWithAxiom` having a `Category_singleton` as base category should be a `CategoryWithAxiom_singleton`. This is handled automatically by `CategoryWithAxiom.__init__()` and checked in `CategoryWithAxiom._test_category_with_axiom()`.

- A `CategoryWithAxiom` having a `Category_over_base_ring` as base category should be a `Category_over_base_ring`. This currently has to be handled by hand, using `CategoryWithAxiom_over_base_ring._test_category_with_axiom()`.

Todo: The following specifications would be desirable but are not yet implemented:
• A functorial construction category (Graded, CartesianProducts, . . .) having a `Category_singleton` as base category should be a `CategoryWithAxiom_singleton`.

Nothing difficult to implement, but this will need to rework the current “no subclass of a concrete class” assertion test of `Category_singleton.__classcall__()`.

• Similarly, a covariant functorial construction category having a `Category_over_base_ring` as base category should be a `Category_over_base_ring`.

The following specification might be desirable, or not:

• A join category involving a `Category_over_base_ring` should be a `Category_over_base_ring`.

In the mean time, a `base_ring` method is automatically provided for most of those by `Modules.SubcategoryMethods.base_ring()`.

1.3.3 Design goals

As pointed out in the primer, the main design goal of the axioms infrastructure is to subdue the potential combinatorial explosion of the category hierarchy by letting the developer focus on implementing a few bookshelves for which there is actual code or mathematical information, and let Sage compose dynamically and lazily these building blocks to construct the minimal hierarchy of classes needed for the computation at hand. This allows for the infrastructure to scale smoothly as bookshelves are added, extended, or reorganized.

Other design goals include:

• Flexibility in the code layout: the category of, say, finite sets can be implemented either within the Sets category (in a nested class `Sets.Finite`), or in a separate file (typically in a class `FiniteSets` in a lazily imported module `sage.categories.finite_sets`).

• Single point of truth: a theorem, like Wedderburn’s, should be implemented in a single spot.

• Single entry point: for example, from the entry `Rings`, one can explore a whole range of related categories just by applying axioms and constructions:

```python
sage: Rings().Commutative().Finite().NoZeroDivisors()
Category of finite integral domains
sage: Rings().Finite().Division()
Category of finite enumerated fields
```

This will allow for progressively getting rid of all the entries like `GradedHopfAlgebrasWithBasis` which are polluting the global name space.

Note that this is not about precluding the existence of multiple natural ways to construct the same category:

```python
sage: Groups().Finite()
Category of finite groups
sage: Monoids().Finite().Inverse()
Category of finite groups
sage: Sets().Finite() & Monoids().Inverse()
Category of finite groups
```

• Concise idioms for the users (adding axioms, . . .)

• Concise idioms and well highlighted hierarchy of bookshelves for the developer (especially with code folding)

• Introspection friendly (listing the axioms, recovering the mixins)
Note: The constructor for instances of this class takes as input the base category. Hence, they should in principle be constructed as:

```
sage: FiniteSets(Sets())
Category of finite sets
```
```
sage: Sets.Finite(Sets())
Category of finite sets
```
None of these idioms are really practical for the user. So instead, this object is to be constructed using any of the following idioms:

```
sage: Sets()._with_axiom('Finite')
Category of finite sets
```
```
sage: FiniteSets()
Category of finite sets
```
```
sage: Sets().Finite()
Category of finite sets
```
The later two are implemented using respectively `CategoryWithAxiom.__classcall__()` and `CategoryWithAxiom.__classget__()`.

1.3.4 Upcoming features

Todo:

- Implement compatibility axiom / functorial constructions. For example, one would want to have:

```
A.CartesianProducts() & B.CartesianProducts() = (A&B).CartesianProducts()
```

- Once full subcategories are implemented (see trac ticket #10668), make the relevant categories with axioms be such. This can be done systematically for, e.g., the axioms Associative or Commutative, but not for the axiom Unital: a semigroup morphism between two monoids need not preserve the unit.

Should all full subcategories be implemented in term of axioms?

1.3.5 Algorithms

Computing joins

The workhorse of the axiom infrastructure is the algorithm for computing the join J of a set C_1, \ldots, C_k of categories (see `Category.join()`). Formally, J is defined as the largest constructible category such that $J \subseteq C_i$ for all i, and $J \subseteq C.A()$ for every constructible category $C \supset J$ and any axiom A satisfied by J.

The join J is naturally computed as a closure in the lattice of constructible categories: it starts with the C_i’s, gathers the set S of all the axioms satisfied by them, and repeatedly adds each axiom A to those categories that do not yet satisfy A using `Category._with_axiom()`. Due to deduction rules or (extra) super categories, new categories or new axioms may appear in the process. The process stops when each remaining category has been combined with each axiom. In practice, only the smallest categories are kept along the way; this is correct because adding an axiom is covariant: $C.A(.)$ is a subcategory of $D.A(.)$ whenever C is a subcategory of D.
As usual in such closure computations, the result does not depend on the order of execution. Furthermore, given that adding an axiom is an idempotent and regressive operation, the process is guaranteed to stop in a number of steps which is bounded by the number of super categories of J. In particular, it is a finite process.

Todo: Detail this a bit. What could typically go wrong is a situation where, for some category $C_1, C_1.A()$ specifies a category C_2 as super category such that $C_2.A()$ specifies C_3 as super category such that \ldots; this would clearly cause an infinite execution. Note that this situation violates the specifications since $C_1.A()$ is supposed to be a subcategory of $C_2.A(), \ldots$ so we would have an infinite increasing chain of constructible categories.

It’s reasonable to assume that there is a finite number of axioms defined in the code. There remains to use this assumption to argue that any infinite execution of the algorithm would give rise to such an infinite sequence.

Adding an axiom

Let C_s be a category and A an axiom defined for this category. To compute $Cs().A()$, there are two cases.

Adding an axiom A to a category $Cs()$ not implementing it

In this case, $Cs().A()$ returns the join of:

- $Cs()$
- $Bs().A()$ for every direct super category $Bs()$ of $Cs()$
- the categories appearing in $Cs().A_{\text{extra_super_categories}}()$

This is a highly recursive process. In fact, as such, it would run right away into an infinite loop! Indeed, the join of $Cs()$ with $Bs().A()$ would trigger the construction of $Cs().A()$ and reciprocally. To avoid this, the Category. join() method itself does not use Category._with_axiom() to add axioms, but its sister Category._with_axiom_as_tuple(); the latter builds a tuple of categories that should be joined together but leaves the computation of the join to its caller, the master join calculation.

Adding an axiom A to a category $Cs()$ implementing it

In this case $Cs().A()$ simply constructs an instance D of $Cs.A$ which models the desired category. The non trivial part is the construction of the super categories of D. Very much like above, this includes:

- $Cs()$
- $Bs().A()$ for every super category $Bs()$ of $Cs()$
- the categories appearing in $D.\text{extra_super_categories}()$

This by itself may not be sufficient, due in particular to deduction rules. On may for example discover a new axiom A_1 satisfied by D, imposing to add A_1 to all of the above categories. Therefore the super categories are computed as the join of the above categories. Up to one twist: as is, the computation of this join would trigger recursively a recalculation of $Cs().A()$! To avoid this, Category.join() is given an optional argument to specify that the axiom A should not be applied to $Cs()$.

1.3. Axioms 83
Sketch of proof of correctness and evaluation of complexity

As we have seen, this is a highly recursive process! In particular, one needs to argue that, as long as the specifications are satisfied, the algorithm won’t run in an infinite recursion, in particular in case of deduction rule.

Theorem

Consider the construction of a category C by adding an axiom to a category (or computing of a join). Let H be the hierarchy of implemented categories above C. Let n and m be respectively the number of categories and the number of inheritance edges in H.

Assuming that the specifications are satisfied, the construction of C involves constructing the categories in H exactly once (and no other category), and at most n join calculations. In particular, the time complexity should be, roughly speaking, bounded by n^2. In particular, it’s finite.

Remark

It’s actually to be expected that the complexity is more of the order of magnitude of $na + m$, where a is the number of axioms satisfied by C. But this is to be checked in detail, in particular due to the many category inclusion tests involved.

The key argument is that Category.join cannot call itself recursively without going through the construction of some implemented category. In turn, the construction of some implemented category C only involves constructing strictly smaller categories, and possibly a direct join calculation whose result is strictly smaller than C. This statement is obvious if C implements the super_categories method directly, and easy to check for functorial construction categories. It requires a proof for categories with axioms since there is a recursive join involved.

Lemma

Let C be a category implementing an axiom A. Recall that the construction of $C.A()$ involves a single direct join calculation for computing the super categories. No other direct join calculation occur, and the calculation involves only implemented categories that are strictly smaller than $C.A()$.

Proof

Let D be a category involved in the join calculation for the super categories of $C.A()$, and assume by induction that D is strictly smaller than $C.A()$. A category E newly constructed from D can come from:

- $D.(extra_)super_categories()$

 In this case, the specifications impose that E should be strictly smaller than D and therefore strictly smaller than C.

- $D.with_axiom_as_tuple('B')$ or $D._extra_super_categories()$ for some axiom B

 In this case, the axiom B is satisfied by some subcategory of $C.A()$, and therefore must be satisfied by $C.A()$ itself. Since adding an axiom is a regressive construction, E must be a subcategory of $C.A()$. If there is equality, then E and $C.A()$ must have the same class, and therefore, E must be directly constructed as $C.A()$. However the join construction explicitly prevents this call.
Note that a call to `D.with_axiom_as_tuple('B')` does not trigger a direct join calculation; but of course, if D implements B, the construction of the implemented category $E = D.B()$ will involve a strictly smaller join calculation.

1.3.6 Conclusion

This is the end of the axioms documentation. Congratulations on having read that far!

1.3.7 Tests

Note: Quite a few categories with axioms are constructed early on during Sage’s startup. Therefore, when playing around with the implementation of the axiom infrastructure, it is easy to break Sage. The following sequence of tests is designed to test the infrastructure from the ground up even in a partially broken Sage. Please don’t remove the imports!

```python
class sage.categories.category_with_axiom.Bars(s=None):
    Bases: sage.categories.category_singleton.Category_singleton
    A toy singleton category, for testing purposes.

    See also:
    Blahs

    Unital_extra_super_categories()
    Return extraneous super categories for the unital objects of self.
    
    This method specifies that a unital bar is a test object. Thus, the categories of unital bars and of unital test objects coincide.
    EXAMPLES:

    sage: from sage.categories.category_with_axiom import Bars, TestObjects
    sage: Bars().Unital_extra_super_categories()
    [Category of test objects]
    sage: Bars().Unital()
    Category of unital test objects
    sage: TestObjects().Unital().all_super_categories()
    [Category of unital test objects,
     Category of unital blahs,
     Category of test objects,
     Category of bars,
     Category of blahs,
     Category of sets,
     Category of sets with partial maps,
     Category of objects]

    super_categories()

class sage.categories.category_with_axiom.Blahs(s=None):
    Bases: sage.categories.category_singleton.Category_singleton
    A toy singleton category, for testing purposes.

    This is the root of a hierarchy of mathematically meaningless categories, used for testing Sage’s category framework:
```

1.3. Axioms
• Bars
• TestObjects
• TestObjectsOverBaseRing

Blue_extra_super_categories()
Illustrates a current limitation in the way to have an axiom imply another one.

Here, we would want Blue to imply Unital, and to put the class for the category of unital blue blahs in Blahs.Unital.Blue rather than Blahs.Blue.

This currently fails because Blahs is the category where the axiom Blue is defined, and the specifications currently impose that a category defining an axiom should also implement it (here in an category with axiom Blahs.Blue). In practice, due to this violation of the specifications, the axiom is lost during the join calculation.

Todo: Decide whether we care about this feature. In such a situation, we are not really defining a new axiom, but just defining an axiom as an alias for a couple others, which might not be that useful.

Todo: Improve the infrastructure to detect and report this violation of the specifications, if this is easy. Otherwise, it’s not so bad: when defining an axiom A in a category Cs the first thing one is supposed to doctest is that Cs().A() works. So the problem should not go unnoticed.

class Commutative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Connected(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class FiniteDimensional(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Flying(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom
 extra_super_categories()
 This illustrates a way to have an axiom imply another one.

 Here, we want Flying to imply Unital, and to put the class for the category of unital flying blahs in Blahs.Flying rather than Blahs.Unital.Flying.

class SubcategoryMethods
 Bases: object
 Blue()
 Commutative()
 Connected()
 FiniteDimensional()
 Flying()
 Unital()

class Unital(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom
class Blue(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom

super_categories()

class sage.categories.category_with_axiom.CategoryWithAxiom(base_category)

Bases: sage.categories.category.Category

An abstract class for categories obtained by adding an axiom to a base category.

See the category primer, and in particular its section about axioms for an introduction to axioms, and CategoryWithAxiom for how to implement axioms and the documentation of the axiom infrastructure.

static __classcall__(*args, **options)

Make FoosBar(**) an alias for Foos(**)._with_axiom("Bar").

EXAMPLES:

sage: FiniteGroups()
Category of finite groups
sage: ModulesWithBasis(ZZ)
Category of modules with basis over Integer Ring
sage: AlgebrasWithBasis(QQ)
Category of algebras with basis over Rational Field

This is relevant when e.g. Foos(**) does some non trivial transformations:

sage: Modules(QQ) is VectorSpaces(QQ)
True
sage: type(Modules(QQ))
<class 'sage.categories.vector_spaces.VectorSpaces_with_category'>

sage: ModulesWithBasis(QQ) is VectorSpaces(QQ).WithBasis()
True
sage: type(ModulesWithBasis(QQ))
<class 'sage.categories.vector_spaces.VectorSpaces.WithBasis_with_category'>

static __classget__(base_category, base_category_class)

Implement the binding behavior for categories with axioms.

This method implements a binding behavior on category with axioms so that, when a category Cs implements an axiom A with a nested class Cs.A, the expression Cs().A evaluates to the method defining the axiom A and not the nested class. See those design notes for the rationale behind this behavior.

EXAMPLES:

sage: Sets().Infinite()
Category of infinite sets
sage: Sets().Infinite
Cached version of <function ...Infinite at ...>

sage: Sets().Infinite.f == Sets.SubcategoryMethods.Infinite.f
True

We check that this also works when the class is implemented in a separate file, and lazy imported:

sage: Sets().Finite
Cached version of <function ...Finite at ...>

There is no binding behavior when accessing Finite or Infinite from the class of the category instead of the category itself:
This method also initializes the attribute `_base_category_class_and_axiom` if not already set:

```python
sage: Sets.Infinite._base_category_class_and_axiom
<class 'sage.categories.sets_cat.Sets.Infinite'>
sage: Sets.Infinite._base_category_class_and_axiom_origin
'set by __classget__'
```

__init__(base_category)

_repr_object_names()

The names of the objects of this category, as used by _repr_.

See also:

`Category._repr_object_names()`

EXAMPLES:

```python
sage: FiniteSets()._repr_object_names()
'finite sets'
sage: AlgebrasWithBasis(QQ).FiniteDimensional()._repr_object_names()
'finite dimensional algebras with basis over Rational Field'
sage: Monoids()._repr_object_names()
'monoids'
sage: Semigroups().Unital().Finite()._repr_object_names()
'finite monoids'
sage: Algebras(QQ).Commutative()._repr_object_names()
'commutative algebras over Rational Field'
```

Note: This is implemented by taking _repr_object_names from self._without_axioms(named=True), and adding the names of the relevant axioms in appropriate order.

static _repr_object_names_static(category, axioms)

INPUT:

- base_category – a category
- axioms – a list or iterable of strings

EXAMPLES:

```python
sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: CategoryWithAxiom._repr_object_names_static(Semigroups(), ['Flying', 'Blue'])
'flying blue semigroups'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ['Flying', 'WithBasis', 'Blue'])
'flying blue algebras with basis over Rational Field'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ['WithBasis'])
'algebras with basis over Rational Field'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ['Subquotients'])
'subquotients of finite sets'
```

(continues on next page)
sage: CategoryWithAxiom._repr_object_names_static(Monoids(), ["Unital"])
'monoids'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ['x']['y']), [
"Flying", "WithBasis", "Blue"])
'flying blue algebras with basis over Univariate Polynomial Ring in y over_
Univariate Polynomial Ring in x over Rational Field'

If the axioms is a set or frozen set, then they are first sorted using `canonicalize_axioms()`:

sage: CategoryWithAxiom._repr_object_names_static(Semigroups(), set(["Finite",
"Commutative", "Facade"]))
'facade finite commutative semigroups'

See also:

_repr_object_names()

Note: The logic here is shared between _repr_object_names() and category.
JoinCategory._repr_object_names()

_test_category_with_axiom(**options)
Run generic tests on this category with axioms.

See also:

TestSuite.

This check that an axiom category of a `Category_singleton` is a singleton category, and similarwise
for `Category_over_base_ring`.

EXAMPLES:

sage: Sets().Finite()._test_category_with_axiom()
sage: Modules(ZZ).FiniteDimensional()._test_category_with_axiom()

_without_axioms (named=False)
Return the category without the axioms that have been added to create it.

EXAMPLES:

sage: Sets().Finite()._without_axioms()
Category of sets
sage: Monoids().Finite()._without_axioms()
Category of magmas

This is because:

sage: Semigroups().Unital() is Monoids()
True

If named is True, then _without_axioms stops at the first category that has an explicit name of its
own:

sage: Sets().Finite()._without_axioms(named=True)
Category of sets
sage: Monoids().Finite()._without_axioms(named=True)
Category of monoids

1.3. Axioms
Technically we test this by checking if the class specifies explicitly the attribute _base_category_class_and_axiom by looking up _base_category_class_and_axiom_origin.

Some more examples:

```python
sage: Algebras(QQ).Commutative()._without_axioms()
Category of magmatic algebras over Rational Field
sage: Algebras(QQ).Commutative()._without_axioms(named=True)
Category of algebras over Rational Field
```

additional_structure()

Return the additional structure defined by self.

OUTPUT: None

By default, a category with axiom defines no additional structure.

See also:

Category.additional_structure()

EXAMPLES:

```python
sage: Sets().Finite().additional_structure()
sage: Monoids().additional_structure()
```

axioms()

Return the axioms known to be satisfied by all the objects of self.

See also:

Category.axioms()

EXAMPLES:

```python
sage: C = Sets.Finite(); C
Category of finite sets
sage: C.axioms()
frozenset({'Finite'})

sage: C = Modules(GF(5)).FiniteDimensional(); C
Category of finite dimensional vector spaces over Finite Field of size 5
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital', 'Finite', 'FiniteDimensional']

sage: sorted(FiniteMonoids().Algebras(QQ).axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital', 'Associative', 'Distributive', 'FiniteDimensional', 'Unital', 'WithBasis']

sage: sorted(FiniteMonoids().Algebras(GF(3)).axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital', 'Associative', 'Distributive', 'Finite', 'FiniteDimensional', 'Unital', 'WithBasis']

```

```
```
sage: D = MagmasAndAdditiveMagmas().Distributive()
sage: X = D.AdditiveAssociative().AdditiveCommutative().Associative()
sage: X.Unital().super_categories()[1]
Category of monoids
sage: X.Unital().super_categories()[1] is Monoids()
True

base_category()

Return the base category of `self`.

EXAMPLES:

sage: C = Sets.Finite(); C
Category of finite sets
sage: C.base_category()
Category of sets
sage: C._without_axioms()
Category of sets

extra_super_categories()

Return the extra super categories of a category with axiom.

Default implementation which returns `[]`.

EXAMPLES:

sage: FiniteSets().extra_super_categories()
[]

super_categories()

Return a list of the (immediate) super categories of `self`, as per `Category.super_categories()`.

This implements the property that if `As` is a subcategory of `Bs`, then the intersection of `As` with `FiniteSets()` is a subcategory of `As` and of the intersection of `Bs` with `FiniteSets()`.

EXAMPLES:

A finite magma is both a magma and a finite set:

sage: Magmas().Finite().super_categories()
[Category of magmas, Category of finite sets]

Variants:

sage: Sets().Finite().super_categories()
[Category of sets]

sage: Monoids().Finite().super_categories()
[Category of monoids, Category of finite semigroups]

class `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom`, `sage.categories.category_types.Category_over_base_ring`

class `sage.categories.category_with_axiom.CategoryWithAxiom_singleton(base_category)`

Bases: `sage.categories.category_singleton.Category_singleton`, `sage.categories.category_with_axiom.CategoryWithAxiom`

1.3. Axioms
class sage.categories.category_with_axiom.TestObjects(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

A toy singleton category, for testing purposes.

See also:

Blahs

class Commutative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Facade(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Finite(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class FiniteDimensional(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class FiniteDimensional(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Finite(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Unital(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Commutative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Unital(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

super_categories()

class sage.categories.category_with_axiom.TestObjectsOverBaseRing(base, name=None)
 Bases: sage.categories.category_types.Category_over_base_ring

A toy singleton category, for testing purposes.

See also:

Blahs

class Commutative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Facade(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Finite(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class FiniteDimensional(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class FiniteDimensional(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
class Finite(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Unital(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Commutative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Unital(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

super_categories()

sage.categories.category_with_axiom.axiom(axiom)
 Return a function/method self -> self._with_axiom(axiom).

This can be used as a shorthand to define axioms, in particular in the tests below. Usually one will want to attach
documentation to an axiom, so the need for such a shorthand in real life might not be that clear, unless we start
creating lots of axioms.

In the long run maybe this could evolve into an @axiom decorator.

EXAMPLES:

sage: from sage.categories.category_with_axiom import axiom
sage: axiom("Finite") (Semigroups())
Category of finite semigroups

Upon assigning the result to a class this becomes a method:

sage: class As:
 : def _with_axiom(self, axiom): return self._with_axiom(axiom)
 : Finite = axiom("Finite")

sage: As().Finite()
(<__main__.As ... at ...>, 'Finite')

sage.categories.category_with_axiom.axiom_of_nested_class(cls, nested_cls)
 Given a class and a nested axiom class, return the axiom.

EXAMPLES:

This uses some heuristics like checking if the nested_cls carries the name of the axiom, or is built by appending
or prepending the name of the axiom to that of the class:

sage: from sage.categories.category_with_axiom import TestObjects, axiom_of_nested_class
sage: axiom_of_nested_class(TestObjects, TestObjects.FiniteDimensional)
'FiniteDimensional'
sage: axiom_of_nested_class(TestObjects.FiniteDimensional, TestObjects.
 FiniteDimensional.Finite)
'Finite'
sage: axiom_of_nested_class(Sets, FiniteSets)
'Finite'
sage: axiom_of_nested_class(Algebras, AlgebrasWithBasis)
'WithBasis'

In all other cases, the nested class should provide an attribute _base_category_class_and_axiom:
sage: Semigroups._base_category_class_and_axiom
(<class 'sage.categories.magmas.Magmas'>, 'Associative')
sage: axiom_of_nested_class(Magmas, Semigroups)
'Associative'

sage.categories.category_with_axiom._base_category_class_and_axiom(cls)
Try to deduce the base category and the axiom from the name of cls.

The heuristic is to try to decompose the name as the concatenation of the name of a category and the name of an
axiom, and looking up that category in the standard location (i.e. in sage.categories.hopf_algebras
for HopfAlgebras, and in sage.categories.sets_cat as a special case for Sets).

If the heuristic succeeds, the result is guaranteed to be correct. Otherwise, an error is raised.

EXAMPLES:

sage: from sage.categories.category_with_axiom import base_category_class_and_axiom
sage: base_category_class_and_axiom(FiniteSets)
(<class 'sage.categories.sets_cat.Sets'>, 'Finite')
sage: Sets.Finite
<class 'sage.categories.finite_sets.FiniteSets'>
sage: base_category_class_and_axiom(Sets.Finite)
(<class 'sage.categories.sets_cat.Sets'>, 'Finite')

sage: base_category_class_and_axiom(FiniteDimensionalHopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis'>,
 'FiniteDimensional')
sage: base_category_class_and_axiom(HopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras.HopfAlgebras'>, 'WithBasis')

Along the way, this does some sanity checks:

sage: class FacadeSemigroups(CategoryWithAxiom):
 : pass
sage: base_category_class_and_axiom(FacadeSemigroups)
Traceback (most recent call last):
 ... AssertionError: Missing (lazy import) link for <class 'sage.categories.semigroups.Semigroups'> to <class '__main__.FacadeSemigroups'> for axiom Facade?
sage: Semigroups.Facade = FacadeSemigroups
sage: base_category_class_and_axiom(FacadeSemigroups)
(<class 'sage.categories.semigroups.Semigroups'>, 'Facade')

Note: In the following example, we could possibly retrieve Sets from the class name. However this cannot
be implemented robustly until trac ticket #9107 is fixed. Anyway this feature has not been needed so far:

sage: Sets.Infinite
<class 'sage.categories.sets_cat.Sets.Infinite'>
sage: base_category_class_and_axiom(Sets.Infinite)
Traceback (most recent call last):
 ... TypeError: Could not retrieve the base category class and axiom for <class 'sage.
categories.sets_cat.Sets.Infinite'>.
 ...
sage.categories.category_with_axiom.uncamelcase(s, separator='')

EXAMPLES:

```python
sage: sage.categories.category_with_axiom.uncamelcase("FiniteDimensionalAlgebras")
'finite dimensional algebras'
sage: sage.categories.category_with_axiom.uncamelcase("JTrivialMonoids")
'j trivial monoids'
sage: sage.categories.category_with_axiom.uncamelcase("FiniteDimensionalAlgebras", → "_")
'finite_dimensional_algebras'
```

1.4 Functors

AUTHORS:
- David Kohel and William Stein
- David Joyner (2005-12-17): examples
- Simon King (2010-04-30): more examples, several bug fixes, re-implementation of the default call method, making functors applicable to morphisms (not only to objects)
- Simon King (2010-12): Pickling of functors without losing domain and codomain

`sage.categories.functor.ForgetfulFunctor(domain, codomain)`

Construct the forgetful function from one category to another.

INPUT:
- \(C, D \) - two categories

OUTPUT:
A functor that returns the corresponding object of \(D \) for any element of \(C \), by forgetting the extra structure.

ASSUMPTION:
The category \(C \) must be a sub-category of \(D \).

EXAMPLES:

```python
sage: rings = Rings()
sage: abgrps = CommutativeAdditiveGroups()
sage: F = ForgetfulFunctor(rings, abgrps)
sage: F
The forgetful functor from Category of rings to Category of commutative additive
→ groups
```

It would be a mistake to call it in opposite order:

```python
sage: F = ForgetfulFunctor(abgrps, rings)
Traceback (most recent call last):
...
ValueError: Forgetful functor not supported for domain Category of commutative
→ additive groups
```

If both categories are equal, the forgetful functor is the same as the identity functor:
sage: ForgetfulFunctor(abgrps, abgrps) == IdentityFunctor(abgrps)
True

class sage.categories.functor.ForgetfulFunctor_generic
 Bases: sage.categories.functor.Functor

The forgetful functor, i.e., embedding of a subcategory.

NOTE:
Forgetful functors should be created using ForgetfulFunctor(), since the init method of this class does not check whether the domain is a subcategory of the codomain.

EXAMPLES:

sage: F = ForgetfulFunctor(FiniteFields(),Fields()) #indirect doctest
sage: F
The forgetful functor from Category of finite enumerated fields to Category of...
→fields
sage: F(GF(3))
Finite Field of size 3

class sage.categories.functor.Functor
 Bases: sage.structure.sage_object.SageObject

A class for functors between two categories

NOTE:

• In the first place, a functor is given by its domain and codomain, which are both categories.

• When defining a sub-class, the user should not implement a call method. Instead, one should implement three methods, which are composed in the default call method:
 - _coerce_into_domain(self, x): Return an object of self’s domain, corresponding to x, or raise a TypeError.
 * Default: Raise TypeError if x is not in self’s domain.
 - _apply_functor(self, x): Apply self to an object x of self’s domain.
 * Default: Conversion into self’s codomain.
 - _apply_functor_to_morphism(self, f): Apply self to a morphism f in self’s domain. - Default: Return self(f.domain()).hom(f, self(f.codomain())).

EXAMPLES:

sage: rings = Rings()
sage: abgrps = CommutativeAdditiveGroups()
sage: F = ForgetfulFunctor(rings, abgrps)
sage: F.domain()
Category of rings
sage: F.codomain()
Category of commutative additive groups
sage: from sage.categories_functor import is_Functor
sage: is_Functor(F)
True
sage: I = IdentityFunctor(abgrps)
sage: I
The identity functor on Category of commutative additive groups
sage: I.domain()
Note that by default, an instance of the class Functor is coercion from the domain into the codomain. The above subclasses overloaded this behaviour. Here we illustrate the default:

```python
sage: from sage.categories.functor import Functor
sage: F = Functor(Rings(),Fields())
sage: F
Functor from Category of rings to Category of fields
sage: F(ZZ)
Rational Field
sage: F(GF(2))
Finite Field of size 2
```

Functors are not only about the objects of a category, but also about their morphisms. We illustrate it, again, with the coercion functor from rings to fields.

```python
sage: R1.<x> = ZZ[]
sage: R2.<a,b> = QQ[

```
codomain()
The codomain of self

EXAMPLES:

```
sage: F = ForgetfulFunctor(FiniteFields(),Fields())
sage: F.codomain()
Category of fields
```

domain()
The domain of self

EXAMPLES:

```
sage: F = ForgetfulFunctor(FiniteFields(),Fields())
sage: F.domain()
Category of finite enumerated fields
```

sage.categories.functor.IdentityFunctor(C)
Construct the identity functor of the given category.

INPUT:
A category, C.

OUTPUT:
The identity functor in C.

EXAMPLES:

```
sage: rings = Rings()
sage: F = IdentityFunctor(rings)
sage: F(ZZ['x','y'])
is ZZ['x','y']
True
```

class sage.categories.functor.IdentityFunctor_generic(C)
Bases: sage.categories.functor.ForgetfulFunctor_generic

Generic identity functor on any category

NOTE:
This usually is created using IdentityFunctor().

EXAMPLES:

```
sage: F = IdentityFunctor(Fields())  #indirect doctest
sage: F
The identity functor on Category of fields
sage: F(RR) is RR
True
sage: F(ZZ)
Traceback (most recent call last):
...
TypeError: x (=Integer Ring) is not in Category of fields
```

sage.categories.functor.is_Functor(x)
Test whether the argument is a functor

NOTE:
There is a deprecation warning when using it from top level. Therefore we import it in our doc test.
EXAMPLES:

```python
from sage.categories.functor import is_Functor
sage: F1 = QQ.construction()[0]
sage: F1
FractionField
sage: is_Functor(F1)
True
sage: is_Functor(FractionField)
False
sage: F2 = ForgetfulFunctor(Fields(), Rings())
sage: F2
The forgetful functor from Category of fields to Category of rings
sage: is_Functor(F2)
True
```

1.5 Implementing a new parent: a (draft of) tutorial

The easiest approach for implementing a new parent is to start from a close example in sage.categories.examples. Here, we will get through the process of implementing a new finite semigroup, taking as starting point the provided example:

```python
S = FiniteSemigroups().example()
sage: S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', ...
```

You may lookup the implementation of this example with:

```python
S
```

Or by browsing the source code of `sage.categories.examples.finite_semigroups.LeftRegularBand`.

Copy-paste this code into, say, a cell of the notebook, and replace every occurrence of `FiniteSemigroups().example(...) in the documentation by `LeftRegularBand`. This will be equivalent to:

```python
from sage.categories.examples.finite_semigroups import LeftRegularBand
```

Now, try:

```python
S = LeftRegularBand(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', ...
```

and play around with the examples in the documentation of `S` and of `FiniteSemigroups`.

Rename the class to `ShiftSemigroup`, and modify the product to implement the semigroup generated by the given alphabet such that `a u = u` for any `u` of length 3.

Use `TestSuite` to test the newly implemented semigroup; draw its Cayley graph.

Add another option to the constructor to generalize the construction to any `u` of length `k`.

Lookup the Sloane for the sequence of the sizes of those semigroups.

Now implement the commutative monoid of subsets of `{1, ..., n}` endowed with union as product. What is its category? What are the extra functionalities available there? Implement iteration and cardinality.
TODO: the tutorial should explain there how to reuse the enumerated set of subsets, and endow it with more structure.
2.1 Base class for maps

AUTHORS:

- Robert Bradshaw: initial implementation
- Sebastien Besnier (2014-05-5): `FormalCompositeMap` contains a list of Map instead of only two Map. See trac ticket #16291.

```python
class sage.categories.map.FormalCompositeMap
    Bases: sage.categories.map.Map

Formal composite maps.

A formal composite map is formed by two maps, so that the codomain of the first map is contained in the domain of the second map.

Note: When calling a composite with additional arguments, these arguments are only passed to the second underlying map.

EXAMPLES:

```sage
R.<x> = QQ[]
S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())
sage: g = S.hom([2*x])
sage: f*g
Composite map:
 From: Univariate Polynomial Ring in a over Rational Field
 To: Univariate Polynomial Ring in a over Rational Field
 Defn: Ring morphism:
 From: Univariate Polynomial Ring in a over Rational Field
 To: Univariate Polynomial Ring in x over Rational Field
 Defn: a |--> 2*x
 then
 Generic morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in a over Rational Field
 sage: g*f
 Composite map:
```

(continues on next page)
From: Univariate Polynomial Ring in x over Rational Field  
To:  Univariate Polynomial Ring in x over Rational Field  
Defn: Generic morphism:  
   From: Univariate Polynomial Ring in x over Rational Field  
   To:  Univariate Polynomial Ring in a over Rational Field  
then  
Ring morphism:  
   From: Univariate Polynomial Ring in a over Rational Field  
   To:  Univariate Polynomial Ring in x over Rational Field  
Defn: a |--> 2*x  
sage: (f*g)(2*a^2+5)  
5*a^2  
sage: (g*f)(2*x^2+5)  
20*x^2  

domains()  
Iterate over the domains of the factors of this map.  
(This is useful in particular to check for loops in coercion maps.)  
See also:  
Map.domains()  

EXAMPLES:  
sage: f = QQ.coerce_map_from(ZZ)  
sage: g = MatrixSpace(QQ, 2, 2).coerce_map_from(QQ)  
sage: list((g*f).domains())  
[Integer Ring, Rational Field]  

first()  
Return the first map in the formal composition.  
If self represents \( f_n \circ f_{n-1} \circ \cdots \circ f_1 \circ f_0 \), then self.first() returns \( f_0 \). We have self == self.then() * self.first().  

EXAMPLES:  
sage: R.<x> = QQ[]  
sage: S.<a> = QQ[]  
sage: from sage.categories.morphism import SetMorphism  
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())  
sage: g = S.hom([2*a])  
sage: fg = f * g  
sage: fg.first() == g  
True  
sage: fg == fg.then() * fg.first()  
True  

is_injective()  
Tell whether self is injective.  
It raises NotImplementedError if it can’t be determined.  

EXAMPLES:  
sage: V1 = QQ^2  
sage: V2 = QQ^3
If both constituents are injective, the composition is injective:

```sage
sage: from sage.categories.map import FormalCompositeMap
sage: c1 = FormalCompositeMap(Hom(QQ^1, V2, phi1.category_for()), phi1, phi2)
sage: c1.is_injective()
True
```

If it cannot be determined whether the composition is injective, an error is raised:

```sage
sage: psi1 = V2.hom(Matrix([[1, 2], [3, 4], [5, 6]]), V1)
sage: c2 = FormalCompositeMap(Hom(V1, V1, phi2.category_for()), phi2, psi1)
sage: c2.is_injective()
Traceback (most recent call last):
...
NotImplementedError: Not enough information to deduce injectivity.
```

If the first map is surjective and the second map is not injective, then the composition is not injective:

```sage
sage: psi2 = V1.hom([[1], [1]], QQ^1)
sage: c3 = FormalCompositeMap(Hom(V2, QQ^1, phi2.category_for()), psi2, psi1)
sage: c3.is_injective()
False
```

**is_surjective()**

Tell whether self is surjective.

It raises `NotImplementedError` if it can’t be determined.

**EXAMPLES:**

```sage
sage: from sage.categories.map import FormalCompositeMap
sage: V3 = QQ^3
sage: V2 = QQ^2
sage: V1 = QQ^1

If both maps are surjective, the composition is surjective:

```sage
sage: phi32 = V3.hom(Matrix([[1, 2], [3, 4], [5, 6]]), V2)
sage: phi21 = V2.hom(Matrix([[1, [1]]], V1)
sage: c_phi = FormalCompositeMap(Hom(V3, V1, phi32.category_for()), phi32, phi21)
sage: c_phi.is_surjective()
True
```

If the second map is not surjective, the composition is not surjective:

```sage
sage: FormalCompositeMap(Hom(V3, V1, phi32.category_for()), phi32, V2.
˓→hom(Matrix([[0], [0]]), V1)).is_surjective()
False
```

If the second map is an isomorphism and the first map is not surjective, then the composition is not surjective:
Otherwise, surjectivity of the composition cannot be determined:

```
sage: FormalCompositeMap(Hom(V2, V1, phi32.category_for()), V2.hom(Matrix([[1, 1], [1, 1]]), V2), V2.hom(Matrix([[1], [1]]), V1)).is_surjective()
Traceback (most recent call last):
  ... Not ImplementedError: Not enough information to deduce surjectivity.
```

`section()`

Compute a section map from sections of the factors of `self` if they have been implemented.

EXAMPLES:

```
sage: P.<x> = QQ[]
sage: incl = P.coerce_map_from(ZZ)
sage: sect = incl.section(); sect
Composite map:
  From: Univariate Polynomial Ring in x over Rational Field
  To: Integer Ring
  Defn: Generic map:
    From: Univariate Polynomial Ring in x over Rational Field
    To: Rational Field
    then
    Generic map:
    From: Rational Field
    To: Integer Ring
sage: p = x + 5; q = x + 2
sage: sect(p-q)
3
```

the following example has been attached to `_integer_()` of `sage.rings.polynomial.polynomial_element.Polynomial` before (see comment there):

```
sage: k = GF(47)
sage: R.<x> = PolynomialRing(k)
sage: R.coerce_map_from(ZZ).section()
Composite map:
  From: Univariate Polynomial Ring in x over Finite Field of size 47
  To: Integer Ring
  Defn: Generic map:
    From: Univariate Polynomial Ring in x over Finite Field of size 47
    To: Finite Field of size 47
    then
    Lifting map:
    From: Finite Field of size 47
    To: Integer Ring
sage: ZZ(R(45))  # indirect doctest
45
sage: ZZ(3*x + 45)  # indirect doctest
Traceback (most recent call last):
  ... TypeError: not a constant polynomial
```
then()

Return the tail of the list of maps.

If self represents \(f_n \circ f_{n-1} \circ \cdots \circ f_1 \circ f_0 \), then self.first() returns \(f_n \circ f_{n-1} \circ \cdots \circ f_1 \). We have self == self.then() * self.first.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())
sage: g = S.hom([2*x])
sage: (f*g).then() == f
True
```

```python
sage: f = QQ.coerce_map_from(ZZ)
sage: f = f.extend_domain(ZZ).extend_codomain(QQ)
sage: f.then()
Composite map:
From: Integer Ring
To: Rational Field
Defn: Natural morphism:
From: Integer Ring
To: Rational Field
then
Identity endomorphism of Rational Field
```

class sage.categories.map.Map

Bases: sage.structure.element.Element

Basic class for all maps.

Note: The call method is of course not implemented in this base class. This must be done in the sub classes, by overloading _call_ and possibly also _call_with_args.

EXAMPLES:

Usually, instances of this class will not be constructed directly, but for example like this:

```python
sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[]
sage: Y = ZZ
sage: phi = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi(x^2+2*x-1)
-1
```

```python
sage: R.<x,y> = QQ[]
sage: f = R.hom([x+y, x-y], R)
sage: f(x^2+2*x*y + y^2 + 2*x + 2*y - 1)
x^2 + 2*x*y + y^2 + 2*x + 2*y - 1
```

category_for()

Returns the category self is a morphism for.

Note: This is different from the category of maps to which this map belongs as an object.

EXAMPLES:
```python
sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ
sage: Y = ZZ
sage: phi = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi.category_for()
Category of rings
sage: phi.category()
Category of homsets of unital magmas and additive unital additive magmas
sage: R.<x,y> = QQ
sage: f = R.hom([x+y, x-y], R)
sage: f.category_for()
Join of Category of unique factorization domains
and Category of commutative algebras
over (number fields and quotient fields and metric spaces)
and Category of infinite sets
sage: f.category()
Category of endsets of unital magmas
and right modules over (number fields and quotient fields and metric spaces)
and left modules over (number fields and quotient fields and metric spaces)
```

FIXME: find a better name for this method

codomain

domain

domains()

Iterate over the domains of the factors of a (composite) map.

This default implementation simply yields the domain of this map.

See also:

FormalCompositeMap.domains()

EXAMPLES:

```python
sage: list(QQ.coerce_map_from(ZZ).domains())
[Integer Ring]
```

extend_codomain

INPUT:

- `self` – a member of Hom(X, Y)
- `new_codomain` – an object Z such that there is a canonical coercion \(\phi \) in Hom(Y, Z)

OUTPUT:

An element of Hom(X, Z) obtained by composing self with \(\phi \). If no canonical \(\phi \) exists, a TypeError is raised.

EXAMPLES:

```python
sage: mor = QQ.coerce_map_from(ZZ)
sage: mor.extend_codomain(RDF)
Composite map:
    From: Integer Ring
    To:   Real Double Field
    Defn: Natural morphism:
          From: Integer Ring
```

(continues on next page)
To: Rational Field
then
Native morphism:
From: Rational Field
To: Real Double Field
\texttt{sage}: \texttt{mor.extend_codomain(GF(7))}

Traceback (most recent call last):
...
TypeError: No coercion from Rational Field to Finite Field of size 7

\textbf{extend_domain}\texttt{(new_domain)}

INPUT:

\begin{itemize}
\item \texttt{self} – a member of $\text{Hom}(Y, Z)$
\item \texttt{new_codomain} – an object X such that there is a canonical coercion ϕ in $\text{Hom}(X, Y)$
\end{itemize}

OUTPUT:

An element of $\text{Hom}(X, Z)$ obtained by composing self with ϕ. If no canonical ϕ exists, a TypeError is raised.

EXAMPLES:

\begin{verbatim}
\texttt{sage}: \texttt{mor = CDF.coerce_map_from(RDF)}
\texttt{sage}: \texttt{mor.extend_domain(QQ)}
\texttt{Composite map:}
\texttt{From: Rational Field}
\texttt{To: Complex Double Field}
\texttt{Defn: Native morphism:}
\texttt{From: Rational Field}
\texttt{To: Real Double Field}
then
\texttt{Native morphism:}
\texttt{From: Real Double Field}
\texttt{To: Complex Double Field}
\texttt{sage}: \texttt{mor.extend_domain(ZZ['x'])}
\texttt{Traceback (most recent call last):}
...
\texttt{TypeError: No coercion from Univariate Polynomial Ring in x over Integer Ring\rightarrow to Real Double Field}
\end{verbatim}

\textbf{is_surjective\texttt{()}}

Tells whether the map is surjective (not implemented in the base class).

\textbf{parent\texttt{()}}

Return the homset containing this map.

\textbf{Note:} The method \texttt{_make_weak_references\texttt{()}} , that is used for the maps found by the coercion system, needs to remove the usual strong reference from the coercion map to the homset containing it. As long as the user keeps strong references to domain and codomain of the map, we will be able to reconstruct the homset. However, a strong reference to the coercion map does not prevent the domain from garbage collection!

\textbf{EXAMPLES:}
We now demonstrate that the reference to the coercion map \(\phi \) does not prevent \(Q \) from being garbage collected:

```python
sage: import gc
data: del Q
data: _ = gc.collect()
data: phi.parent()
```

Python Traceback (most recent call last):
...
ValueError: This map is in an invalid state, the domain has been garbage-collected

You can still obtain copies of the maps used by the coercion system with strong references:

```python
data: import gc
data: del Q
data: _ = gc.collect()
data: phi.parent()
```

post_compose \(\text{(left)}\)

INPUT:

- `self` - a Map in some \(\text{Hom}(X, Y, \text{category}_right)\)
- `left` - a Map in some \(\text{Hom}(Y, Z, \text{category}_left)\)

Returns the composition of `self` followed by `right` as a morphism in \(\text{Hom}(X, Z, \text{category})\)

where `category` is the meet of `category_left` and `category_right`.

Caveat: see the current restrictions on `Category.meet()`

EXAMPLES:

```python
data: from sage.categories.morphism import SetMorphism
data: X.<x> = ZZ[]
data: Y = ZZ
data: Z = QQ
data: phi_xy = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
data: phi_yz = SetMorphism(Hom(Y, Z, Monoids()), lambda y: QQ(y**2))
data: phi_xz = phi_xy.post_compose(phi_yz); phi_xz
```

Composite map:

- From: Univariate Polynomial Ring in x over Integer Ring
- To: Rational Field
- Defn: Generic morphism:
 - From: Univariate Polynomial Ring in x over Integer Ring
 - To: Integer Ring

(continues on next page)
then
 Generic morphism:
 From: Integer Ring
 To: Rational Field

\texttt{sage}: \texttt{phi_xz.category_for()}

Category of monoids

\texttt{pre_compose}(\texttt{right})

INPUT:

- \texttt{self} – a Map in some \texttt{Hom(Y, Z, category_left)}
- \texttt{left} – a Map in some \texttt{Hom(X, Y, category_right)}

Returns the composition of \texttt{right} followed by \texttt{self} as a morphism in \texttt{Hom(X, Z, category)} where \texttt{category} is the meet of \texttt{category_left} and \texttt{category_right}.

EXAMPLES:

\begin{verbatim}
\texttt{sage}: \texttt{from sage.categories.morphism import SetMorphism}
\texttt{sage}: \texttt{X.<x> = ZZ[]}
\texttt{sage}: \texttt{Y = ZZ}
\texttt{sage}: \texttt{Z = QQ}
\texttt{sage}: \texttt{phi_xy = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])}
\texttt{sage}: \texttt{phi_yz = SetMorphism(Hom(Y, Z, Monoids()), lambda y: QQ(y**2))}
\texttt{sage}: \texttt{phi_xz = phi_yz.pre_compose(phi_xy); phi_xz}

Composite map:
 From: Univariate Polynomial Ring in x over Integer Ring
 To: Rational Field
 Defn: Generic morphism:
 From: Univariate Polynomial Ring in x over Integer Ring
 To: Integer Ring
 then
 Generic morphism:
 From: Integer Ring
 To: Rational Field

\texttt{sage}: \texttt{phi_xz.category_for()}

Category of monoids
\end{verbatim}

\texttt{section}()

Return a section of \texttt{self}.

\textbf{Note:} By default, it returns None. You may override it in subclasses.

\textbf{class} \texttt{sage.categories.map\textunderscore Section}

\textbf{Bases:} \texttt{sage.categories.map.Map}

A formal section of a map.

\textbf{Note:} Call methods are not implemented for the base class \texttt{Section}.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: \texttt{from sage.categories.map import Section}
\texttt{sage}: \texttt{R.<x,y> = ZZ[]}
\end{verbatim}
sage: S.<a,b> = QQ[]
sage: f = R.hom([a+b, a-b])
sage: sf = Section(f); sf
Section map:
 From: Multivariate Polynomial Ring in a, b over Rational Field
 To: Multivariate Polynomial Ring in x, y over Integer Ring
sage: sf(a)
Traceback (most recent call last):
 ...
NotImplementedError: <type 'sage.categories.map.Section'>

inverse()
Return inverse of self.

sage.categories.map.is_Map(x)
Auxiliary function: Is the argument a map?

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = R.hom([x+y, x-y], R)
sage: from sage.categories.map import is_Map
sage: is_Map(f)
True

sage.categories.map.unpickle_map(_class, parent, _dict, _slots)
Auxiliary function for unpickling a map.

2.2 Homsets

The class \texttt{Hom} is the base class used to represent sets of morphisms between objects of a given category. \texttt{Hom} objects are usually “weakly” cached upon creation so that they don’t have to be generated over and over but can be garbage collected together with the corresponding objects when these are not strongly ref’ed anymore.

EXAMPLES:

In the following, the \texttt{Hom} object is indeed cached:

sage: K = GF(17)
sage: H = Hom(ZZ, K)
sage: H
Set of Homomorphisms from Integer Ring to Finite Field of size 17
sage: H is Hom(ZZ, K)
True

Nonetheless, garbage collection occurs when the original references are overwritten:

sage: for p in prime_range(200):
 : K = GF(p)
 : H = Hom(ZZ, K)
sage: import gc
sage: _ = gc.collect()
sage: from sage.rings.finite_rings.finite_field_prime_modn import FiniteField_prime_modn as FF
sage: L = [x for x in gc.get_objects() if isinstance(x, FF)]
AUTHORS:

- David Kohel and William Stein
- David Joyner (2005-12-17): added examples
- Nicolas M. Thiery (2008-12-): Updated for the new category framework
- Simon King (2011-12): Use a weak cache for homsets
- Simon King (2013-02): added examples

```
sage: from sage.categories.homset import is_Endset
sage: is_Endset(S)
True
sage: S.domain()
Alternating group of order 3!/2 as a permutation group
```

To avoid creating superfluous categories, a homset in a category \(Cs()\) is in the homset category of the lowest full super category \(Bs()\) of \(Cs()\) that implements \(Bs.Homsets\) (or the join thereof if there are several). For example, finite groups form a full subcategory of unital magmas: any unital magma morphism between two finite groups is a finite group morphism. Since finite groups currently implement nothing more than unital magmas about their homsets, we have:

```
sage: G = GL(3,3)
sage: G.category()
Category of finite groups
```
Similarly, a ring morphism just needs to preserve addition, multiplication, zero, and one. Accordingly, and since the category of rings implements nothing specific about its homsets, a ring homset is currently constructed in the category of homsets of unital magmas and unital additive magmas:

```python
sage: H = Hom(ZZ, ZZ, Rings())
sage: H.category()
Category of endsets of unital magmas and additive unital additive magmas
```

```
 sage.categories.homset.Hom(X, Y, category=None, check=True)
 Create the space of homomorphisms from X to Y in the category category.

 INPUT:

 - X – an object of a category
 - Y – an object of a category
 - category – a category in which the morphisms must be. (default: the meet of the categories of X and Y)
  Both X and Y must belong to that category.
 - check – a boolean (default: True): whether to check the input, and in particular that X and Y belong to category.

 OUTPUT: a homset in category

 EXAMPLES:

```
 sage: V = VectorSpace(QQ, 3)
sage: Hom(V, V)
Set of Morphisms (Linear Transformations) from Vector space of dimension 3 over Rational Field to Vector space of dimension 3 over Rational Field
sage: G = AlternatingGroup(3)
sage: Hom(G, G)
Set of Morphisms from Alternating group of order 3!/2 as a permutation group to Alternating group of order 3!/2 as a permutation group in Category of finite enumerated permutation groups
sage: Hom(ZZ, QQ, Sets())
Set of Morphisms from Integer Ring to Rational Field in Category of sets
sage: Hom(FreeModule(ZZ, 1), FreeModule(QQ, 1))
Set of Morphisms from Ambient free module of rank 1 over the principal ideal domain Integer Ring to Vector space of dimension 1 over Rational Field in Category of commutative additive groups
sage: Hom(FreeModule(QQ, 1), FreeModule(ZZ, 1))
Set of Morphisms from Vector space of dimension 1 over Rational Field to Ambient free module of rank 1 over the principal ideal domain Integer Ring in Category of commutative additive groups
```

Here, we test against a memory leak that has been fixed at trac ticket #11521 by using a weak cache:

```
sage: for p in prime_range(10^3):
 : K = GF(p)
```

(continues on next page)
To illustrate the choice of the category, we consider the following parents as running examples:

```python
sage: X = ZZ; X
Integer Ring
sage: Y = SymmetricGroup(3); Y
Symmetric group of order 3! as a permutation group
```

By default, the smallest category containing both $X$ and $Y$, is used:

```python
sage: Hom(X, Y)
Set of Morphisms from Integer Ring to Symmetric group of order 3! as a permutation group
in Category of enumerated monoids
```

Otherwise, if `category` is specified, then `category` is used, after checking that $X$ and $Y$ are indeed in `category`:

```python
sage: Hom(X, Y, Magmas())
Set of Morphisms from Integer Ring to Symmetric group of order 3! as a permutation group in Category of magmas
sage: Hom(X, Y, Groups())
Traceback (most recent call last):
... ValueError: Integer Ring is not in Category of groups
```

A parent (or a parent class of a category) may specify how to construct certain homsets by implementing a method `_Hom_(self, codomain, category)`. This method should either construct the requested homset or raise a `TypeError`. This hook is currently mostly used to create homsets in some specific subclass of `Homset` (e.g. `sage.rings.homset.RingHomset`):

```python
data: Hom(QQ, QQ).__class__
<class 'sage.rings.homset.RingHomset_generic_with_category'>
data: Hom(QQ, QQ) == QQ._Hom_(QQ, category=QQ.category())
True
data: Hom(QQ, QQ) is QQ._Hom_(QQ, category=QQ.category())
False
```

**Todo:**

- Design decision: how much of the homset comes from the category of $X$ and $Y$, and how much from the specific $X$ and $Y$. In particular, do we need several parent classes depending on $X$ and $Y$, or does the difference only lie in the elements (i.e. the morphism), and of course how the parent calls their constructors.
- Specify the protocol for the \_Hom\_ hook in case of ambiguity (e.g. if both a parent and some category thereof provide one).

```python
class sage.categories.homset.Homset(X, Y, category=None, base=None, check=True)
Bases: sage.structure.parent.Set_generic

The class for collections of morphisms in a category.

EXAMPLES:

```sage```
H = Hom(QQ^2, QQ^3)
sage: loads(H.dumps()) is H
True

Homsets of unique parents are unique as well:

```sage```
H = End(AffineSpace(2, names='x,y'))
sage: loads(dumps(AffineSpace(2, names='x,y'))) is AffineSpace(2, names='x,y')
True
sage: loads(dumps(H)) is H
True

Conversely, homsets of non-unique parents are non-unique:

```sage```
H = End(ProductProjectiveSpaces(QQ, [1, 1]))
sage: loads(dumps(ProductProjectiveSpaces(QQ, [1, 1]))) == ProductProjectiveSpaces(QQ, [1, 1])
False
sage: loads(dumps(H)) == H
True
```

codomain()

Return the codomain of this homset.

EXAMPLES:

```sage```
P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: f.parent().codomain()
Univariate Polynomial Ring in t over Rational Field
sage: f.codomain() is f.parent().codomain()
True
```

domain()

Return the domain of this homset.

EXAMPLES:

```sage```
P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: f.parent().domain()
Univariate Polynomial Ring in t over Integer Ring
sage: f.domain() is f.parent().domain()
True
```
element_class_set_morphism()
A base class for elements of this homset which are also SetMorphism, i.e. implemented by mean of a Python function.

This is currently plain SetMorphism, without inheritance from categories.

Todo: Refactor during the upcoming homset cleanup.

EXAMPLES:

```
sage: H = Hom(ZZ, ZZ)
sage: H.element_class_set_morphism
<type 'sage.categories.morphism.SetMorphism'>
```

homset_category()
Return the category that this is a Hom in, i.e., this is typically the category of the domain or codomain object.

EXAMPLES:

```
sage: H = Hom(AlternatingGroup(4), AlternatingGroup(7))
sage: H.homset_category()
Category of finite enumerated permutation groups
```

identity()
The identity map of this homset.

Note: Of course, this only exists for sets of endomorphisms.

EXAMPLES:

```
sage: H = Hom(QQ, QQ)
sage: H.identity()
Identity endomorphism of Rational Field
sage: H = Hom(ZZ, QQ)
sage: H.identity()
Traceback (most recent call last):
...TypeError: Identity map only defined for endomorphisms. Try natural_map() instead.
sage: H.natural_map()
```

natural_map()
Return the “natural map” of this homset.

Note: By default, a formal coercion morphism is returned.

EXAMPLES:

```
sage: H = Hom(ZZ['t'], QQ['t'], CommutativeAdditiveGroups())
sage: H.natural_map()
```

(continues on next page)
Coercion morphism:
 From: Univariate Polynomial Ring in t over Integer Ring
 To: Univariate Polynomial Ring in t over Rational Field

```
sage: H = Hom(QQ['t'],GF(3)['t'])
sage: H.natural_map()
Traceback (most recent call last):
  ...
TypeError: natural coercion morphism from Univariate Polynomial Ring in t
over Rational Field to Univariate Polynomial Ring in t over Finite Field of
size 3 not defined
```

one()
The identity map of this homset.

Note: Of course, this only exists for sets of endomorphisms.

EXAMPLES:

```
sage: K = GaussianIntegers()
sage: End(K).one()
Identity endomorphism of Gaussian Integers in Number Field in I with defining
polynomial x^2 + 1 with I = 1*I
```

reversed()
Return the corresponding homset, but with the domain and codomain reversed.

EXAMPLES:

```
sage: H = Hom(ZZ^2, ZZ^3); H
Set of Morphisms from Ambient free module of rank 2 over
the principal ideal domain Integer Ring to Ambient free module
of rank 3 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (euclidean
domains and infinite enumerated sets and metric spaces)
sage: type(H)
<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>
sage: H.reversed()
Set of Morphisms from Ambient free module of rank 3 over
the principal ideal domain Integer Ring to Ambient free module
of rank 2 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (euclidean
domains and infinite enumerated sets and metric spaces)
sage: type(H.reversed())
<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>
```

class sage.categories.homset.HomsetWithBase (X, Y, category= None, check= True, base= None)

Bases: `sage.categories.homset.Homset`

```
sage.categories.homset.end (X,f)
Return End (X) (f), where f is data that defines an element of End (X).

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: phi = end(R, [x + 1])
```
sage: phi
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
    Defn: x |--> x + 1
sage: phi(x^2 + 5)
x^2 + 2*x + 6

sage.categories.homset.hom(X, Y, f)
Return Hom(X, Y)(f), where f is data that defines an element of Hom(X, Y).

EXAMPLES:

sage: phi = hom(QQ['x'], QQ, [2])
sage: phi(x^2 + 3)
7

sage.categories.homset.is_Endset(x)
Return True if x is a set of endomorphisms in a category.

EXAMPLES:

sage: from sage.categories.homset import is_Endset
sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: is_Endset(f.parent())
False
sage: g = P.hom([2*t])
sage: is_Endset(g.parent())
True

sage.categories.homset.is_Homset(x)
Return True if x is a set of homomorphisms in a category.

EXAMPLES:

sage: from sage.categories.homset import is_Homset
sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: is_Homset(f)
False
sage: is_Homset(f.category())
False
sage: is_Homset(f.parent())
True

## 2.3 Morphisms

AUTHORS:

- William Stein: initial version
- David Joyner (12-17-2005): added examples

class sage.categories.morphism.CallMorphism
    Bases: sage.categories.morphism.Morphism

2.3. Morphisms
class sage.categories.morphism.FormalCoercionMorphism
    Bases: sage.categories.morphism.Morphism

class sage.categories.morphism.IdentityMorphism
    Bases: sage.categories.morphism.Morphism

    is_identity()
    Return True if this morphism is the identity morphism.

    EXAMPLES:
    sage: E = End(Partitions(5))
    sage: E.identity().is_identity()
    True

    Check that trac ticket #15478 is fixed:
    sage: K.<z> = GF(4)
    sage: phi = End(K)([z^2])
    sage: R.<t> = K[]
    sage: psi = End(R)(phi)
    sage: psi.is_identity()
    False

    is_injective()
    Return whether this morphism is injective.

    EXAMPLES:
    sage: Hom(ZZ, ZZ).identity().is_injective()
    True

    is_surjective()
    Return whether this morphism is surjective.

    EXAMPLES:
    sage: Hom(ZZ, ZZ).identity().is_surjective()
    True

    section()
    Return a section of this morphism.

    EXAMPLES:
    sage: T = Hom(ZZ, ZZ).identity()
    sage: T.section() is T
    True

class sage.categories.morphism.Morphism
    Bases: sage.categories.map.Map

category()
    Return the category of the parent of this morphism.

    EXAMPLES:
    sage: R.<t> = ZZ[]
    sage: f = R.hom([t**2])
    sage: f.category()
Category of endsets of unital magmas and right modules over (euclidean domains and infinite enumerated sets and metric spaces) and left modules over (euclidean domains and infinite enumerated sets and metric spaces)

```python
sage: K = CyclotomicField(12)
sage: L = CyclotomicField(132)
sage: phi = L._internal_coerce_map_from(K)
sage: phi.category()
Category of homsets of number fields
```

**is_endomorphism()**
Return `True` if this morphism is an endomorphism.

**EXAMPLES:**

```python
sage: R.<t> = ZZ[]
sage: f = R.hom([t])
sage: f.is_endomorphism()
True
```

```python
sage: K = CyclotomicField(12)
sage: L = CyclotomicField(132)
sage: phi = L._internal_coerce_map_from(K)
sage: phi.is_endomorphism()
False
```

**is_identity()**
Return `True` if this morphism is the identity morphism.

**Note:** Implemented only when the domain has a method gens()

**EXAMPLES:**

```python
sage: R.<t> = ZZ[]
sage: f = R.hom([t])
sage: f.is_identity()
True
sage: g = R.hom([t+1])
sage: g.is_identity()
False
```

A morphism between two different spaces cannot be the identity:

```python
sage: R2.<t2> = QQ[]
sage: h = R2.hom([t2])
sage: h.is_identity()
False
```

**pushforward()**

**register_as_coercion()**
Register this morphism as a coercion to Sage’s coercion model (see `sage.structure.coerce`).

**EXAMPLES:**

By default, adding polynomials over different variables triggers an error:

2.3. Morphisms
Let us declare a coercion from \( \mathbb{Z}[x] \) to \( \mathbb{Z}[z] \):

```sage
define Z.<z> = ZZ[]
sage: phi = Hom(X, Z)(z)
sage: phi(x^2+1)
z^2 + 1
sage: phi.register_as_coercion()
```

Now we can add elements from \( \mathbb{Z}[x] \) and \( \mathbb{Z}[z] \), because the elements of the former are allowed to be implicitly coerced into the later:

```sage
define x^2 + z
z^2 + z
```

Caveat: the registration of the coercion must be done before any other coercion is registered or discovered:

```sage
define phi = Hom(X, Z)(z^2)
sage: phi.register_as_coercion()
```

\[\text{register\_as\_conversion()}\]

Register this morphism as a conversion to Sage’s coercion model

(see `sage.structure.coerce`).

**EXAMPLES:**

Let us declare a conversion from the symmetric group to \( \mathbb{Z} \) through the sign map:

```sage
define S = SymmetricGroup(4)
sage: phi = Hom(S, ZZ)(\text{lambda} x: ZZ(x.sign()))
sage: x = S.an_element(); x
(2,3,4)
sage: phi(x)
1
sage: phi.register_as_conversion()
sage: ZZ(x)
1
```

\[\text{class} \ sage\text{.categories.morphism.\textit{SetMorphism}}\]

\[\text{Bases:} \ sage\text{.categories.morphism.Morphism}\]

\[\text{INPUT:}\]

- \text{parent} – a \text{Homset}
• function – a Python function that takes elements of the domain as input and returns elements of the domain.

EXAMPLES:
```
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(QQ, ZZ, Sets()), numerator)
sage: f.parent()
Set of Morphisms from Rational Field to Integer Ring in Category of sets
sage: f.domain()
Rational Field
sage: f.codomain()
Integer Ring
sage: TestSuite(f).run()
```

`sage.categories.morphism.is_Morphism(x)`

### 2.4 Coercion via construction functors

#### class `sage.categories.pushout.AlgebraicClosureFunctor`

Bases: `sage.categories.pushout.ConstructionFunctor`

Algebraic Closure.

EXAMPLES:
```
sage: F = CDF.construction()[0]
sage: F(QQ)
Algebraic Field
sage: F(RR)
Complex Field with 53 bits of precision
sage: F(F(QQ)) is F(QQ)
True
```

`merge(other)`

Mathematically, Algebraic Closure subsumes Algebraic Extension. However, it seems that people do want to work with algebraic extensions of `RR`. Therefore, we do not merge with algebraic extension.

#### class `sage.categories.pushout.AlgebraicExtensionFunctor`

Bases: `sage.categories.pushout.ConstructionFunctor`

Algebraic extension (univariate polynomial ring modulo principal ideal).

EXAMPLES:
```
sage: K.<a> = NumberField(x^3+x^2+1)
sage: F = K.construction()[0]
sage: F(ZZ['t'])
Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in t
˓
over Integer Ring with modulus a^3 + a^2 + 1
```

2.4. Coercion via construction functors
Note that, even if a field is algebraically closed, the algebraic extension will be constructed as the quotient of a univariate polynomial ring:

```sage
F(CC)
Univariate Quotient Polynomial Ring in a over Complex Field with 53 bits of precision with modulus a^3 + a^2 + 1.00000000000000
F(RR)
Univariate Quotient Polynomial Ring in a over Real Field with 53 bits of precision with modulus a^3 + a^2 + 1.00000000000000
```

Note that the construction functor of a number field applied to the integers returns an order (not necessarily maximal) of that field, similar to the behaviour of `ZZ.extension(...)`:

```sage
F(ZZ)
Order in Number Field in a with defining polynomial x^3 + x^2 + 1
```

This also holds for non-absolute number fields:

```sage
K.<a,b> = NumberField([x^3+x^2+1,x^2+x+1])
F = K.construction()[0]
O = F(ZZ); O
Relative Order in Number Field in a with defining polynomial x^3 + x^2 + 1 over its base field
is K
True
```

Special cases are made for cyclotomic fields and residue fields:

```sage
C = CyclotomicField(8)
F, R = C.construction()
F
AlgebraicExtensionFunctor
R
Rational Field
F(R)
Cyclotomic Field of order 8 and degree 4
F(ZZ)
Maximal Order in Cyclotomic Field of order 8 and degree 4
```

```sage
K.<z> = CyclotomicField(7)
P = K.factor(17)[0][0]
k = K.residue_field(P)
F, R = k.construction()
F
AlgebraicExtensionFunctor
R
Cyclotomic Field of order 7 and degree 6
F(R) is k
True
F(ZZ)
Residue field of Integers modulo 17
F(CyclotomicField(49))
Residue field in zbar of Fractional ideal (17)
```

`expand()` Decompose the functor $F$ into sub-functors, whose product returns $F$.

**EXAMPLES:**
merge(other)

Merging with another \texttt{AlgebraicExtensionFunctor}.

INPUT:

\begin{itemize}
  \item \texttt{other} – Construction Functor.
\end{itemize}

OUTPUT:

\begin{itemize}
  \item If \texttt{self==other}, \texttt{self} is returned.
  \item If \texttt{self} and \texttt{other} are simple extensions and both provide an embedding, then it is tested whether one of the number fields provided by the functors coerces into the other; the functor associated with the target of the coercion is returned. Otherwise, the construction functor associated with the pushout of the codomains of the two embeddings is returned, provided that it is a number field.
  \item If these two extensions are defined by Conway polynomials over finite fields, merges them into a single extension of degree the lcm of the two degrees.
  \item Otherwise, None is returned.
\end{itemize}

REMARK:

Algebraic extension with embeddings currently only works when applied to the rational field. This is why we use the admittedly strange rule above for merging.

EXAMPLES:

The following demonstrate coercions for finite fields using Conway or pseudo-Conway polynomials:

\begin{verbatim}
sage: k = GF(3^2, prefix='z'); a = k.gen()
sage: l = GF(3^3, prefix='z'); b = l.gen()
sage: a + b # indirect doctest
z6^5 + 2*z6^4 + 2*z6^3 + z6^2 + 2*z6 + 1
\end{verbatim}

Note that embeddings are compatible in lattices of such finite fields:

\begin{verbatim}
sage: m = GF(3^5, prefix='z'); c = m.gen()
sage: (a+b)+c == a+(b+c) # indirect doctest
True
\end{verbatim}
Coercion is also available for number fields:

```python
sage: P.<x> = QQ[]
sage: L. = NumberField(x^8-x^4+1, embedding=CDF(0))
sage: M1.<c1> = NumberField(x^2+x+1, embedding=b^4-1)
sage: M2.<c2> = NumberField(x^2+1, embedding=-b^6)
sage: M1.coerce_map_from(M2)
sage: M2.coerce_map_from(M1)
sage: c1+c2; parent(c1+c2) # indirect doctest
-b^6 + b^4 - 1
Number Field in b with defining polynomial x^8 - x^4 + 1 with b = -0.2588190451025208? + 0.9659258262890683?*I
sage: pushout(M1['x'],M2['x'])
Univariate Polynomial Ring in x over Number Field in b with defining polynomial x^8 - x^4 + 1 with b = -0.2588190451025208? + 0.9659258262890683?*I
```

In the previous example, the number field \( L \) becomes the pushout of \( M_1 \) and \( M_2 \) since both are provided with an embedding into \( L \), and since \( L \) is a number field. If two number fields are embedded into a field that is not a numberfield, no merging occurs:

```python
sage: K.<a> = NumberField(x^3-2, embedding=CDF(1/2*I*2^(1/3)*sqrt(3) - 1/2*2^(1/3)));

sage: L. = NumberField(x^6-2, embedding=1.1)

sage: L.coerce_map_from(K)
sage: K.coerce_map_from(L)
sage: pushout(K,L)
Traceback (most recent call last):
 ... CoercionException: ('Ambiguous Base Extension', Number Field in a with defining polynomial x^3 - 2 with a = -0.6299605249474365? + 1.09112363971722?*I, Number Field in b with defining polynomial x^6 - 2 with b = 1.122462048309373?)
```

```
class sage.categories.pushout.BlackBoxConstructionFunctor(box)
Bases: sage.categories.pushout.ConstructionFunctor

Construction functor obtained from any callable object.

EXAMPLES:

```python
sage: from sage.categories.pushout import BlackBoxConstructionFunctor
sage: FG = BlackBoxConstructionFunctor(gap)
sage: FS = BlackBoxConstructionFunctor(singular)
sage: FG
BlackBoxConstructionFunctor
sage: FG(ZZ)
Integers
sage: FG(ZZ).parent()
Gap
sage: FG(QQ['t']).parent()

polynomial ring, over a field, global ordering
// coefficients: QQ
// number of vars : 1
//    block 1 : ordering lp
//    : names t
//    block 2 : ordering C
sage: FG == FS
```
False

```python
sage: FG == loads(dumps(FG))
True
```

```python
class sage.categories.pushout.CompletionFunctor(p, prec, extras=None)
    Bases: sage.categories.pushout.ConstructionFunctor

Completion of a ring with respect to a given prime (including infinity).

EXAMPLES:

```python
sage: R = Zp(5)
sage: R
5-adic Ring with capped relative precision 20
sage: F1 = R.construction()[0]
sage: F1
Completion[5, prec=20]
sage: F1(ZZ) is R
True
sage: F1(QQ)
5-adic Field with capped relative precision 20
sage: F2 = RR.construction()[0]
sage: F2
Completion[+Infinity, prec=53]
sage: F2(QQ) is RR
True
sage: P.<x> = ZZ[]
sage: Px = P.completion(x) # currently the only implemented completion of P
sage: Px
Power Series Ring in x over Integer Ring
sage: F3 = Px.construction()[0]
sage: F3(GF(3)['x'])
Power Series Ring in x over Finite Field of size 3
```

```python
commutes(other)
 Completion commutes with fraction fields.

EXAMPLES:
```
```
```
```

merge(other)
 Two Completion functors are merged, if they are equal. If the precisions of both functors coincide, then a Completion functor is returned that results from updating the extras dictionary of self by other. extras. Otherwise, if the completion is at infinity then merging does not increase the set precision, and if the completion is at a finite prime, merging does not decrease the capped precision.

EXAMPLES:
```
```
```
```
class sage.categories.pushout.CompositeConstructionFunctor(*args)
 Bases: sage.categories.pushout.ConstructionFunctor

A Construction Functor composed by other Construction Functors.

INPUT:
F1, F2, ...: A list of Construction Functors. The result is the composition F1 followed by F2 followed by ...

EXAMPLES:

```
sage: from sage.categories.pushout import CompositeConstructionFunctor
sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0])
sage: F
Poly[y](FractionField(Poly[x](FractionField(...))))
sage: F == loads(dumps(F))
True
sage: F == CompositeConstructionFunctor(*F.all)
True
```

expand()

Return expansion of a CompositeConstructionFunctor.

Note: The product over the list of components, as returned by the expand() method, is equal to self.

EXAMPLES:

```
sage: from sage.categories.pushout import CompositeConstructionFunctor
sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0])
sage: prod(F.expand()) == F
True
```

class sage.categories.pushout.ConstructionFunctor
 Bases: sage.categories.functor.Functor

Base class for construction functors.

A construction functor is a functorial algebraic construction, such as the construction of a matrix ring over a given ring or the fraction field of a given ring.

In addition to the class Functor, construction functors provide rules for combining and merging constructions. This is an important part of Sage’s coercion model, namely the pushout of two constructions: When a polynomial \(p \) in a variable \(x \) with integer coefficients is added to a rational number \(q \), then Sage finds that the
parents $\mathbb{Z}[x]$ and \mathbb{Q} are obtained from \mathbb{Z} by applying a polynomial ring construction respectively the fraction field construction. Each construction functor has an attribute rank, and the rank of the polynomial ring construction is higher than the rank of the fraction field construction. This means that the pushout of \mathbb{Q} and $\mathbb{Z}[x]$, and thus a common parent in which p and q can be added, is $\mathbb{Q}[x]$, since the construction functor with a lower rank is applied first.

```
sage: F1, R = QQ.construction()
sage: F1
FractionField
sage: R
Integer Ring
sage: F2, R = (ZZ['x']).construction()
sage: F2
Poly[x]
sage: R
Integer Ring
sage: F3 = F2.pushout(F1)
sage: F3
Poly[x](FractionField(...))
sage: F3(R)
Univariate Polynomial Ring in x over Rational Field
```

When composing two construction functors, they are sometimes merged into one, as is the case in the Quotient construction:

```
sage: Q15, R = (ZZ.quo(15*ZZ)).construction()
sage: Q15
QuotientFunctor
sage: Q35, R = (ZZ.quo(35*ZZ)).construction()
sage: Q35
QuotientFunctor
sage: Q15.merge(Q35)
QuotientFunctor
sage: Q15.merge(Q35)(ZZ)
Ring of integers modulo 5
```

Functors can not only be applied to objects, but also to morphisms in the respective categories. For example:

```
sage: P.<x,y> = ZZ[]
sage: F = P.construction()[0]; F
MPoly[x,y]
sage: A.<a,b> = GF(5)[]
sage: f = A.hom([a+b,a-b],A)
sage: F(A)
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b
→ over Finite Field of size 5
sage: F(f)
Ring endomorphism of Multivariate Polynomial Ring in x, y over Multivariate
→ Polynomial Ring in a, b over Finite Field of size 5
Defn: Induced from base ring by
→ Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite
→ Field of size 5
```

(continues on next page)
Defn: \(a \mapsto a + b \)
\(b \mapsto a - b \)

\[
\text{sage: } F(f)(F(A)(x) \cdot a)
\]
\[
(a + b) \cdot x
\]

\textbf{common_base} \((\text{other_functor}, \text{self_bases}, \text{other_bases})\)
This function is called by \texttt{pushout()} when no common parent is found in the construction tower.

\textbf{Note:} The main use is for multivariate construction functors, which use this function to implement recursion for \texttt{pushout()}.

\textbf{INPUT:}
- \texttt{other_functor} – a construction functor.
- \texttt{self_bases} – the arguments passed to this functor.
- \texttt{other_bases} – the arguments passed to the functor \texttt{other_functor}.

\textbf{OUTPUT:}
Nothing, since a \texttt{CoercionException} is raised.

\textbf{Note:} Overload this function in derived class, see e.e. \texttt{MultivariateConstructionFunctor}.

\textbf{commutes} \((\text{other})\)
Determine whether \texttt{self} commutes with another construction functor.

\textbf{Note:} By default, \texttt{False} is returned in all cases (even if the two functors are the same, since in this case \texttt{merge()} will apply anyway). So far there is no construction functor that overloads this method. Anyway, this method only becomes relevant if two construction functors have the same rank.

\textbf{EXAMPLES:}

\[
\text{sage: } F = \texttt{QQ.construction()[0]}
\]
\[
\text{sage: } P = \texttt{ZZ['t'].construction()[0]}
\]
\[
\text{sage: } F.\text{commutes}(P)
\]
\[
\text{False}
\]
\[
\text{sage: } P.\text{commutes}(F)
\]
\[
\text{False}
\]
\[
\text{sage: } F.\text{commutes}(F)
\]
\[
\text{False}
\]

\textbf{expand()}\)
Decompose \texttt{self} into a list of construction functors.

\textbf{Note:} The default is to return the list only containing \texttt{self}.

\textbf{EXAMPLES:}

\[
\text{sage: } F = \texttt{QQ.construction()[0]}
\]
\[
\text{sage: } F.\text{expand()}
\]
merge *(other)*

Merge self with another construction functor, or return None.

Note: The default is to merge only if the two functors coincide. But this may be overloaded for subclasses, such as the quotient functor.

```python
sage: F = QQ.construction()[0]
sage: P = ZZ['t'].construction()[0]
sage: F.merge(F)
FractionField
sage: F.merge(P)
FractionField
sage: P.merge(F)
FractionField
sage: P.merge(P)
Poly[t]
```

pushout *(other)*

Composition of two construction functors, ordered by their ranks.

Note:
- This method seems not to be used in the coercion model.
- By default, the functor with smaller rank is applied first.

```python
sage: F = QQ.construction()[0]
sage: P = ZZ['t'].construction()[0]
sage: F.pushout(F)
FractionField
sage: F.pushout(P)
FractionField
sage: P.pushout(F)
FractionField
sage: P.pushout(P)
Poly[t]
```

class `sage.categories.pushout.FractionField`

Construction functor for fraction fields.

EXAMPLES:

```python
sage: F = QQ.construction()[0]
sage: F
FractionField
sage: F.domain()
Category of integral domains
sage: F.codomain()
Category of fields
sage: F(GF(5)) is GF(5)
True
sage: F(ZZ['t'])
Fraction Field of Univariate Polynomial Ring in t over Integer Ring
sage: P.<x,y> = QQ[]
sage: f = P.hom([x+2*y,3*x-y],P)
```

2.4. Coercion via construction functors
class sage.categories.pushout.IdentityConstructionFunctor

Bases: sage.categories.pushout.ConstructionFunctor

A construction functor that is the identity functor.

class sage.categories.pushout.InfinitePolynomialFunctor(gens, order, implementation)

Bases: sage.categories.pushout.ConstructionFunctor

A Construction Functor for Infinite Polynomial Rings (see infinite_polynomial_ring).

AUTHOR:

– Simon King

This construction functor is used to provide uniqueness of infinite polynomial rings as parent structures. As usual, the construction functor allows for constructing pushouts.

Another purpose is to avoid name conflicts of variables of the to-be-constructed infinite polynomial ring with variables of the base ring, and moreover to keep the internal structure of an Infinite Polynomial Ring as simple as possible: If variables v_1, \ldots, v_n of the given base ring generate an ordered sub-monoid of the monomials of the ambient Infinite Polynomial Ring, then they are removed from the base ring and merged with the generators of the ambient ring. However, if the orders don’t match, an error is raised, since there was a name conflict without merging.

EXAMPLES:

```
sage: A.<a,b> = InfinitePolynomialRing(ZZ['t'])
sage: A.construction()
[InfPoly{[a,b], "lex", "dense"},
 Univariate Polynomial Ring in t over Integer Ring]
sage: type(_[0])
<class 'sage.categories.pushout.InfinitePolynomialFunctor'>
sage: B.<x,y,a_3,a_1> = PolynomialRing(QQ, order='lex')
sage: B.construction()
(MPoly[x,y,a_3,a_1], Rational Field)
sage: A.construction()[0]*B.construction()[0]
InfPoly{[a,b], "lex", "dense"}(MPoly[x,y](...))
```

Apparently the variables a_1, a_3 of the polynomial ring are merged with the variables a_0, a_1, a_3, \ldots of the infinite polynomial ring: indeed, they form an ordered sub-structure. However, if the polynomial ring was given a different ordering, merging would not be allowed, resulting in a name conflict:

```
sage: A.construction()[0]*PolynomialRing(QQ,names=['x','y','a_3','a_1']).
 ←construction()[0]
Traceback (most recent call last):
...
CoercionException: Incompatible term orders lex, degrevlex
```
In an infinite polynomial ring with generator a_*, the variable a_3 will always be greater than the variable a_1. Hence, the orders are incompatible in the next example as well:

```python
sage: A.construction()[0]*PolynomialRing(QQ,names=['x','y','a_1','a_3'], order='lex').construction()[0]
Traceback (most recent call last):
  ... 
CoercionException: Overlapping variables (('a', 'b'),['a_1', 'a_3']) are incompatible
```

Another requirement is that after merging the order of the remaining variables must be unique. This is not the case in the following example, since it is not clear whether the variables x, y should be greater or smaller than the variables b_*:

```python
sage: A.construction()[0]*PolynomialRing(QQ,names=['a_3','a_1','x','y'], order='lex').construction()[0]
Traceback (most recent call last):
  ... 
CoercionException: Overlapping variables (('a', 'b'),['a_3', 'a_1']) are incompatible
```

Since the construction functors are actually used to construct infinite polynomial rings, the following result is no surprise:

```python
sage: C.<a,b> = InfinitePolynomialRing(B); C
Infinite polynomial ring in a, b over Multivariate Polynomial Ring in x, y over Rational Field
```

There is also an overlap in the next example:

```python
sage: X.<w,x,y> = InfinitePolynomialRing(ZZ)
sage: Y.<x,y,z> = InfinitePolynomialRing(QQ)
X and Y have an overlapping generators $x, y$. Since the default lexicographic order is used in both rings, it gives rise to isomorphic sub-monoids in both $X$ and $Y$. They are merged in the pushout, which also yields a common parent for doing arithmetic:

```python
sage: P = sage.categories.pushout.pushout(Y,X); P
Infinite polynomial ring in w, x, y, z over Rational Field
w_2 + z_3
sage: _.parent() is P
True
```

**expand()**

Decompose the functor $F$ into sub-functors, whose product returns $F$.

**EXAMPLES:**

```python
sage: F = InfinitePolynomialRing(QQ, ['x','y'],order='degrevlex').
 ~construction()[0]; F
InfPoly([x,y], "degrevlex", "dense")
sage: F.expand()
[InfPoly([y], "degrevlex", "dense"), InfPoly([x], "degrevlex", "dense")]
sage: F = InfinitePolynomialRing(QQ, ['x','y','z'],order='degrevlex').
 ~construction()[0]; F
InfPoly([x,y,z], "degrevlex", "dense")
sage: F.expand()
```
[InfPoly[\{z\}, "degrevlex", "dense"], InfPoly[\{y\}, "degrevlex", "dense"], InfPoly[\{x\}, "degrevlex", "dense"]]

```python
sage: prod(F.expand()) == F
True
```

**merge** *(other)*

Merge two construction functors of infinite polynomial rings, regardless of monomial order and implementation.

The purpose is to have a pushout (and thus, arithmetic) even in cases when the parents are isomorphic as rings, but not as ordered rings.

**EXAMPLES:**

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: Y.<x,y> = InfinitePolynomialRing(QQ, order='degrevlex')
sage: X.construction()
[InfPoly[\{x,y\}, "lex", "sparse"], Rational Field]
sage: Y.construction()
[InfPoly[\{x,y\}, "degrevlex", "dense"], Rational Field]
sage: Y.construction()[0].merge(Y.construction()[0])
InfPoly[\{x,y\}, "degrevlex", "dense"]
sage: y[3] + X(x[2])
x_2 + y_3
```

### Laurent Polynomial Functors

#### Class

```python
class sage.categories.pushout.LaurentPolynomialFunctor(var, multi_variate=False):
 Bases: sage.categories.pushout.ConstructionFunctor

Construction functor for Laurent polynomial rings.

EXAMPLES:

```python
sage: L.<t> = LaurentPolynomialRing(ZZ)
sage: F = L.construction()[0]
sage: F
LaurentPolynomialFunctor
sage: F(QQ)
Univariate Laurent Polynomial Ring in t over Rational Field
sage: K.<x> = LaurentPolynomialRing(ZZ)
sage: F(K)
Univariate Laurent Polynomial Ring in x over Univariate Laurent Polynomial Ring
˓→\text{in} x over Integer Ring
sage: P.<x,y> = ZZ[]
sage: f = P.hom([x+2*y,3*x-y],P)
sage: F(f)
Ring endomorphism of Univariate Laurent Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Integer Ring
    Defn: Induced from base ring by
    Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
    Defn: x |--> x + 2*y
           y |--> 3*x - y
sage: F(f)(x*F(P).gen()^-2+y*F(P).gen()^3)
(x + 2*y)*t^-2 + (3*x - y)*t^3
```

Chapter 2. Maps and Morphisms
merge (other)
Two Laurent polynomial construction functors merge if the variable names coincide.

The result is multivariate if one of the arguments is multivariate.

EXAMPLES:

```
sage: from sage.categories.pushout import LaurentPolynomialFunctor
sage: F1 = LaurentPolynomialFunctor('t')
sage: F2 = LaurentPolynomialFunctor('t', multi_variate=True)
sage: F1.merge(F2)
LaurentPolynomialFunctor
sage: F1.merge(F2)(LaurentPolynomialRing(GF(2),'a'))
Multivariate Laurent Polynomial Ring in a, t over Finite Field of size 2
sage: F1.merge(F1)(LaurentPolynomialRing(GF(2),'a'))
Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial
->Ring in a over Finite Field of size 2
```

class sage.categories.pushout.MatrixFunctor(nrows, ncols, is_sparse=False)
Bases: sage.categories.pushout.ConstructionFunctor
A construction functor for matrices over rings.

EXAMPLES:

```
sage: MS = MatrixSpace(ZZ,2, 3)
sage: F = MS.construction()[0]; F
MatrixFunctor
sage: MS = MatrixSpace(ZZ,2)
sage: F = MS.construction()[0]; F
MatrixFunctor
sage: P.<x,y> = QQ[

```
(...continued)
MatrixFunctor

```
sage: F13 = F1.merge(F3)
sage: F13.is_sparse
False
sage: F1.is_sparse
False
sage: F3.is_sparse
True
sage: F3.merge(F3).is_sparse
True
```

class sage.categories.pushout.MultiPolynomialFunctor(vars, term_order)

Bases: sage.categories.pushout.ConstructionFunctor

A constructor for multivariate polynomial rings.

EXAMPLES:

```
sage: P.<x,y> = ZZ[]
sage: F = P.construction()[0]; F
MPoly[x,y]
sage: A.<a,b> = GF(5)[]
sage: F(A)
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b
  over Finite Field of size 5
sage: f = A.hom([a+b,a-b],A)
sage: F(f)
Ring endomorphism of Multivariate Polynomial Ring in x, y over Multivariate
  Polynomial Ring in a, b over Finite Field of size 5
  Defn: Induced from base ring by
  Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite
    Field of size 5
  Defn: a |--> a + b
  b |--> a - b
sage: F(f)(F(A)(x)*a)
(a + b)*x
```

expand() Decompose self into a list of construction functors.

EXAMPLES:

```
sage: F = QQ['x,y,z,t'].construction()[0]; F
MPoly[x,y,z,t]
sage: F.expand()
[MPoly[t], MPoly[z], MPoly[y], MPoly[x]]
```

Now an actual use case:

```
sage: R.<x,y,z> = ZZ[]
sage: S.<z,t> = QQ[]
sage: x+t
x + t
sage: parent(x+t)
Multivariate Polynomial Ring in x, y, z, t over Rational Field
sage: T.<y,s> = QQ[]
sage: x + s
```

(continues on next page)
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Multivariate Polynomial Ring\n→ in x, y, z over Integer Ring' and 'Multivariate Polynomial Ring in y, s\n→ over Rational Field'
sage: R = PolynomialRing(ZZ, 'x', 500)
sage: S = PolynomialRing(GF(5), 'x', 200)
sage: R.gen(0) + S.gen(0)
2*x0

merge (other)
Merge self with another construction functor, or return None.

EXAMPLES:

sage: F = sage.categories.pushout.MultiPolynomialFunctor(['x','y'], None)
sage: G = sage.categories.pushout.MultiPolynomialFunctor(['t'], None)
sage: F.merge(G) is None
True
sage: F.merge(F)
MPoly[x,y]

2.4. Coercion via construction functors
sage

```python
sage: P1 = PermutationGroup([(1,2)])
sage: PF, P = P1.construction()
sage: PF.gens()
[(1,2)]
```

merge (other)

Merge self with another construction functor, or return None.

EXAMPLES:

```python
sage: P1 = PermutationGroup([(1,2)])
sage: PF1, P = P1.construction()
sage: P2 = PermutationGroup([(1,3)])
sage: PF2, P = P2.construction()
sage: PF1.merge(PF2)
PermutationGroupFunctor([(1,2), (1,3)]
```

class sage.categories.pushout.PolynomialFunctor

Bases: sage.categories.pushout.ConstructionFunctor

Construction functor for univariate polynomial rings.

EXAMPLES:

```python
sage: P = ZZ['t'].construction()[0]
sage: P(GF(3))
Univariate Polynomial Ring in t over Finite Field of size 3
sage: P == loads(dumps(P))
True
sage: R.<x,y> = GF(5)[]
sage: f = R.hom([x+2*y,3*x-y],R)
sage: P(f)((x+y)*P(R).0)
(-x + y)*t
```

By trac ticket #9944, the construction functor distinguishes sparse and dense polynomial rings. Before, the following example failed:

```python
sage: R.<x> = PolynomialRing(GF(5), sparse=True)
sage: F,B = R.construction()
sage: F(B)
is R
True
sage: S.<x> = PolynomialRing(ZZ)
sage: R.has_coerce_map_from(S)
False
sage: S.has_coerce_map_from(R)
False
sage: S.0 + R.0
2*x
sage: (S.0 + R.0).parent()
Univariate Polynomial Ring in x over Finite Field of size 5
sage: (S.0 + R.0).parent().is_sparse()
False
```

merge (other)

Merge self with another construction functor, or return None.

Note: Internally, the merging is delegated to the merging of multipolynomial construction functors. But
in effect, this does the same as the default implementation, that returns `None` unless the to-be-merged functors coincide.

EXAMPLES:

```python
sage: P = ZZ[‘x’].construction()[0]
sage: Q = ZZ[‘y’, ‘x’].construction()[0]
sage: P.merge(Q)
sage: P.merge(P) is P
True
```

```python
class sage.categories.pushout.QuotientFunctor(I, names=None, as_field=False, domain=None, codomain=None, **kwds)
    Construction functor for quotient rings.

    Note: The functor keeps track of variable names. Optionally, it may keep track of additional properties of the quotient, such as its category or its implementation.

    EXAMPLES:
    ```python
 sage: P.<x,y> = ZZ[]
sage: Q = P.quo([x^2+y^2]*P)
sage: F = Q.construction()[0]
sage: F(QQ[‘x’, ‘y’])
 Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal
 →(x^2 + y^2)
 sage: F(QQ[‘x’, ‘y’]) == QQ[‘x’, ‘y’].quo([x^2+y^2]+QQ[‘x’, ‘y’])
 True
 sage: F(QQ[‘x’, ‘y’, ‘z’])
 Traceback (most recent call last):
 ...
 CoercionException: Cannot apply this quotient functor to Multivariate Polynomial
 →Ring in x, y, z over Rational Field
 sage: F(QQ[‘y’, ‘z’])
 Traceback (most recent call last):
 ...
 TypeError: Could not find a mapping of the passed element to this ring.
```

```python
merge(other)
 Two quotient functors with coinciding names are merged by taking the gcd of their moduli, the meet of their domains, and the join of their codomains.

 In particular, if one of the functors being merged knows that the quotient is going to be a field, then the merged functor will return fields as well.

 EXAMPLES:
    ```python
    sage: P.<x> = QQ[]
sage: Q1 = P.quo([(x^2+1)^2*(x^2-3)])
sage: Q2 = P.quo([(x^2+1)^2*(x^5+3)])
sage: from sage.categories.pushout import pushout
    sage: pushout(Q1,Q2)  # indirect doctest
    Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus
    →x^4 + 2*x^2 + 1
    ```
```
The following was fixed in trac ticket #8800:

```python
sage: pushout(GF(5), Integers(5))
Finite Field of size 5
```

```python
class sage.categories.pushout.SubspaceFunctor(basis)
Bases: sage.categories.pushout.ConstructionFunctor

Constructing a subspace of an ambient free module, given by a basis.

Note: This construction functor keeps track of the basis. It can only be applied to free modules into which this basis coerces.

EXAMPLES:

```python
sage: M = ZZ^3
sage: S = M.submodule(((1,2,3),(4,5,6))); S
Free module of degree 3 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1 2 3]
[ 0 3 6]
sage: F = S.construction()[0]
sage: F(GF(2)^3)
Vector space of degree 3 and dimension 2 over Finite Field of size 2
User basis matrix:
[1 0 1]
[0 1 0]
```

```python
merge(other)
```

Two Subspace Functors are merged into a construction functor of the sum of two subspaces.

EXAMPLES:

```python
sage: M = GF(5)^3
sage: S1 = M.submodule(((1,2,3),(4,5,6)))
sage: S2 = M.submodule(((2,2,3)))
sage: F1 = S1.construction()[0]
sage: F2 = S2.construction()[0]
sage: F1.merge(F2)
SubspaceFunctor
sage: F1.merge(F2)(GF(5)^3) == S1+S2
True
sage: F1.merge(F2)(GF(5)['t']^3)
Free module of degree 3 and rank 3 over Univariate Polynomial Ring in t over Finite Field of size 5
User basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]
```

```python
class sage.categories.pushout.VectorFunctor(n, is_sparse=False, inner_product_matrix=None)
Bases: sage.categories.pushout.ConstructionFunctor

A construction functor for free modules over commutative rings.

**EXAMPLES:**
merge (other)

Two constructors of free modules merge, if the module ranks and the inner products coincide. If both have explicitly given inner product matrices, they must coincide as well.

EXAMPLES:

Two modules without explicitly given inner product allow coercion:

```sage
M1 = QQ^3
sage: P, t = ZZ[]
M2 = FreeModule(P, 3)
M1([[1,1/2,1/3]]) + M2([[t,t^2+t,3]]) # indirect doctest
(t + 1, t^2 + t + 1/2, 10/3)
```

If only one summand has an explicit inner product, the result will be provided with it:

```sage
M3 = FreeModule(P, 3, inner_product_matrix = Matrix(3,3,range(9)))
M1([[1,1/2,1/3]]) + M3([[t,t^2+t,3]])
(M1([[1,1/2,1/3]]) + M3([[t,t^2+t,3]]).parent().inner_product_matrix()
[0 1 2]
[3 4 5]
[6 7 8]
```

If both summands have an explicit inner product (even if it is the standard inner product), then the products must coincide. The only difference between M1 and M4 in the following example is the fact that the default inner product was explicitly requested for M4. It is therefore not possible to coerce with a different inner product:

```sage
M4 = FreeModule(QQ, 3, inner_product_matrix = Matrix(3,3,1))
M4 == M1
True
M4.inner_product_matrix() == M1.inner_product_matrix()
True
M4([[1,1/2,1/3]]) + M3([[t,t^2+t,3]]) # indirect doctest
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Ambient quadratic space of dimension 3 over Rational Field' and 'Ambient free quadratic module of rank 3 over the integral domain Univariate Polynomial Ring in t over Integer Ring'
```

An auxiliary function that is used in `pushout()` and `pushout_lattice()`.

2.4. Coercion via construction functors
INPUT:
An object

OUTPUT:
A constructive description of the object from scratch, by a list of pairs of a construction functor and an object to which the construction functor is to be applied. The first pair is formed by None and the given object.

EXAMPLES:

```python
sage: from sage.categories.pushout import construction_tower
sage: construction_tower(MatrixSpace(FractionField(QQ['t']),2))
[(None, Full MatrixSpace of 2 by 2 dense matrices over Fraction Field of Univariate Polynomial Ring in t over Rational Field), (MatrixFunctor, Fraction Field of Univariate Polynomial Ring in t over Rational Field), (FractionField, Univariate Polynomial Ring in t over Rational Field), (Poly[t], Rational Field), (FractionField, Integer Ring)]
```

```
sage.categories.pushout.expand_tower(tower)
An auxiliary function that is used in pushout().

INPUT:
A construction tower as returned by construction_tower().

OUTPUT:
A new construction tower with all the construction functors expanded.

EXAMPLES:

```python
sage: from sage.categories.pushout import construction_tower, expand_tower
sage: construction_tower(QQ['x,y,z'])
[(None, Multivariate Polynomial Ring in x, y, z over Rational Field), (MPoly[x,y,z], Rational Field), (FractionField, Integer Ring)]
```

```
sage: expand_tower(construction_tower(QQ['x,y,z']))
[(None, Multivariate Polynomial Ring in x, y, z over Rational Field), (MPoly[z], Univariate Polynomial Ring in y over Univariate Polynomial Ring in y over Rational Field), (MPoly[y], Univariate Polynomial Ring in x over Univariate Polynomial Ring in x over Rational Field), (MPoly[x], Rational Field), (FractionField, Integer Ring)]
```

```
sage.categories.pushout.pushout(R, S)
Given a pair of objects R and S, try to construct a reasonable object Y and return maps such that canonically R ← Y → S.

ALGORITHM:
This incorporates the idea of functors discussed at Sage Days 4. Every object R can be viewed as an initial object and a series of functors (e.g. polynomial, quotient, extension, completion, vector/matrix, etc.). Call the series of increasingly simple objects (with the associated functors) the “tower” of R. The construction method is used to create the tower.

Given two objects R and S, try to find a common initial object Z. If the towers of R and S meet, let Z be their join. Otherwise, see if the top of one coerces naturally into the other.

Now we have an initial object and two ordered lists of functors to apply. We wish to merge these in an unambiguous order, popping elements off the top of one or the other tower as we apply them to Z.

- If the functors are of distinct types, there is an absolute ordering given by the rank attribute. Use this.
• Otherwise:
  – If the tops are equal, we (try to) merge them.
  – If exactly one occurs lower in the other tower, we may unambiguously apply the other (hoping for a later merge).
  – If the tops commute, we can apply either first.
  – Otherwise fail due to ambiguity.

The algorithm assumes by default that when a construction $F$ is applied to an object $X$, the object $F(X)$ admits a coercion map from $X$. However, the algorithm can also handle the case where $F(X)$ has a coercion map to $X$ instead. In this case, the attribute coercion_reversed of the class implementing $F$ should be set to True.

EXAMPLES:
Here our “towers” are $R = \text{Complete}_7(\text{Frac}(\mathbb{Z}))$ and $\text{Frac}(\text{Poly}_x(\mathbb{Z}))$, which give us $\text{Frac}(\text{Poly}_x(\text{Complete}_7(\text{Frac}(\mathbb{Z}))))$:

```python
sage: from sage.categories.pushout import pushout
sage: pushout(Qp(7), Frac(ZZ['x']))
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20
```

Note we get the same thing with

```python
sage: pushout(Zp(7), Frac(QQ['x']))
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20
sage: pushout(Zp(7)['x'], Frac(QQ['x']))
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20
```

Note that polynomial variable ordering must be unambiguously determined.

```python
sage: pushout(ZZ['x,y,z'], QQ['w,z,t'])
Traceback (most recent call last):
... CoercionException: ('Ambiguous Base Extension', Multivariate Polynomial Ring in x, y, z over Integer Ring, Multivariate Polynomial Ring in w, z, t over Rational Field)
```

Some other examples:

```python
sage: pushout(Zp(7)['y'], Frac(QQ['t'])['x,y,z'])
Multivariate Polynomial Ring in x, y, z over Fraction Field of Univariate Polynomial Ring in t over 7-adic Field with capped relative precision 20
sage: pushout(ZZ['x,y,z'], Frac(ZZ['x'])['y'])
Multivariate Polynomial Ring in y over Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: pushout(MatrixSpace(RDF, 2, 2), Frac(ZZ['x']))
Full MatrixSpace of 2 by 2 dense matrices over Fraction Field of Univariate Polynomial Ring in x over Real Double Field
sage: pushout(ZZ, MatrixSpace(ZZ[['x']]), 3, 3)
Full MatrixSpace of 3 by 3 dense matrices over Power Series Ring in x over Integer Ring
sage: pushout(QQ[['x,y']], ZZ[['x']])
```

(continues on next page)
Univariate Polynomial Ring in y over Power Series Ring in x over Rational Field

```
sage: pushout(Frac(ZZ['x']), QQ[['x']])
Laurent Series Ring in x over Rational Field
```

A construction with `coercion_reversed = True` (currently only the `SubspaceFunctor` construction) is only applied if it leads to a valid coercion:

```
sage: A = ZZ^2
sage: V = span([[1, 2]], QQ)
sage: P = sage.categories.pushout.pushout(A, V)
sage: P
Vector space of dimension 2 over Rational Field
sage: P.has_coerce_map_from(A)
True

sage: V = (QQ^3).span([[1, 2, 3/4]])
sage: A = ZZ^3
sage: pushout(A, V)
Vector space of dimension 3 over Rational Field
sage: B = A.span([[0, 0, 2/3]])
sage: pushout(B, V)
Vector space of degree 3 and dimension 2 over Rational Field
User basis matrix:

```
[1 2 0]
[0 0 1]
```

Some more tests with `coercion_reversed = True`:

```
sage: from sage.categories.pushout import ConstructionFunctor
sage: class EvenPolynomialRing(type(QQ['x'])):
....:     def __init__(self, base, var):
....:         super(EvenPolynomialRing, self).__init__(base, var)
....:         self.register_embedding(base[var])
....:     def __repr__(self):
....:         return "Even Power " + super(EvenPolynomialRing, self).__repr__()
....:     def construction(self):
....:         return EvenPolynomialFunctor(), self.base()[self.variable_name()]
....:     def _coerce_map_from_(self, R):
....:         return self.base().has_coerce_map_from(R)

sage: class EvenPolynomialFunctor(ConstructionFunctor):
....:     rank = 10
....:     coercion_reversed = True
....:     def __init__(self):
....:         ConstructionFunctor.__init__(self, Rings(), Rings())
....:     def _apply_functor(self, R):
....:         return EvenPolynomialRing(R.base(), R.variable_name())
sage: pushout(EvenPolynomialRing(QQ, 'x'), ZZ)
Even Power Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), QQ)
Even Power Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), RR)
Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: pushout(EvenPolynomialRing(QQ, 'x'), ZZ['x'])
Univariate Polynomial Ring in x over Rational Field
```

Some more tests related to univariate/multivariate constructions. We consider a generalization of polynomial rings, where in addition to the coefficient ring C we also specify an additive monoid E for the exponents of the indeterminate. In particular, the elements of such a parent are given by

$$\sum_{i=0}^{f} c_i x^{e_i}$$

with $c_i \in C$ and $e_i \in E$. We define

```python
sage: class GPolynomialRing(Parent):
    ....: def __init__(self, coefficients, var, exponents):
    ....:     self.coefficients = coefficients
    ....:     self.var = var
    ....:     self.exponents = exponents
    ....:     super(GPolynomialRing, self).__init__(category=Rings())
    ....: def __repr__(self):
    ....:     return 'Generalized Polynomial Ring in %s(%s) over %s' % (self.var, self.exponents, self.coefficients)
    ....: def construction(self):
    ....:     return GPolynomialFunctor(self.var, self.exponents), self.coefficients
    ....: def _coerce_map_from_(self, R):
    ....:     return self.coefficients.has_coerce_map_from(R)
```

and

```python
sage: class GPolynomialFunctor(ConstructionFunctor):
    ....: rank = 10
    ....: def __init__(self, var, exponents):
    ....:     self.var = var
    ....:     self.exponents = exponents
    ....:     ConstructionFunctor.__init__(self, Rings(), Rings())
    ....: def __repr__(self):
    ....:     return 'GPoly[%s(%s)]' % (self.var, self.exponents)
    ....: def _apply_functor(self, coefficients):
    ....:     return GPolynomialRing(coefficients, self.var, self.exponents)
    ....: def merge(self, other):
    ....:     if isinstance(other, GPolynomialFunctor) and self.var == other.var:
```

(continues on next page)
We can construct a parent now in two different ways:

```python
sage: GPolynomialRing(QQ, 'X', ZZ)
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field
sage: GP_ZZ = GPolynomialFunctor('X', ZZ); GP_ZZ
GPol[Y^(Integer Ring)]
```

Since the construction

```python
sage: GP_ZZ(QQ).construction()
(GPoly[X^(Integer Ring)], Rational Field)
```

uses the coefficient ring, we have the usual coercion with respect to this parameter:

```python
sage: pushout(GP_ZZ(ZZ), GP_ZZ(QQ))
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field
sage: pushout(GP_ZZ(ZZ['t']), GP_ZZ(QQ))
Generalized Polynomial Ring in X^(Integer Ring) over Univariate Polynomial Ring → in t over Rational Field
sage: pushout(GP_ZZ([a,b]), GP_ZZ([b,c]))
Generalized Polynomial Ring in X^(Integer Ring) over Multivariate Polynomial Ring in a, b, c over Integer Ring
sage: pushout(GP_ZZ([a,b]), GP_ZZ([b,c]))
Generalized Polynomial Ring in X^(Integer Ring) over Multivariate Polynomial Ring in a, b, c over Rational Field
sage: pushout(GP_ZZ([a,b]), GP_ZZ([c,d]))
Traceback (most recent call last):
... CoercionException: ('Ambiguous Base Extension', ...)
```
over Rational Field) over Rational Field

sage: pushout(GP_ZZt(ZZ['a,b']), GP_QQ(ZZ['c,d']))
Traceback (most recent call last):
...
CoercionException: ('Ambiguous Base Extension', ...)
sage: pushout(GP_ZZt(ZZ['a,b']), GP_QQ(ZZ['b,c']))
Generalized Polynomial Ring in X^2(Univariate Polynomial Ring in t over Rational Field)
 over Multivariate Polynomial Ring in a, b, c over Integer Ring

Some tests with Cartesian products:

sage: from sage.sets.cartesian_product import CartesianProduct
sage: A = CartesianProduct((ZZ['x'], QQ['y'], QQ['z'])), Sets().CartesianProducts()
sage: B = CartesianProduct((ZZ['x'], ZZ['y'], ZZ['t']['z'])), Sets().CartesianProducts()
sage: A.construction()
(The cartesian_product functorial construction,
 (Univariate Polynomial Ring in x over Integer Ring,
 Univariate Polynomial Ring in y over Rational Field,
 Univariate Polynomial Ring in z over Rational Field))
sage: pushout(A, B)
The Cartesian product of
 (Univariate Polynomial Ring in x over Integer Ring,
 Univariate Polynomial Ring in y over Rational Field,
 Univariate Polynomial Ring in z over Univariate Polynomial Ring in t over Rational Field)
sage: pushout(ZZ, cartesian_product([ZZ, QQ]))
Traceback (most recent call last):
...
CoercionException: 'NoneType' object is not iterable

sage: from sage.categories.pushout import PolynomialFunctor
sage: from sage.sets.cartesian_product import CartesianProduct
sage: class CartesianProductPoly(CartesianProduct):
 ... def __init__(self, polynomial_rings):
 sort = sorted(polynomial_rings, key=lambda P: P.variable_name())
 super(CartesianProductPoly, self).__init__(sort, Sets().CartesianProducts())
 ... def vars(self):
 return tuple(P.variable_name() for P in self.cartesian_factors())
 ... def _pushout_(self, other):
 if isinstance(other, CartesianProductPoly):
 s_vars = self.vars()
 o_vars = other.vars()
 if s_vars == o_vars:
 return pushout(CartesianProductPoly(
 self.cartesian_factors() +
 tuple(f for f in other.cartesian_factors()
 if f.variable_name() not in s_vars)),
 CartesianProductPoly(
 other.cartesian_factors() +
 tuple(f for f in self.cartesian_factors()
 if f.variable_name() not in o_vars)))

(continues on next page)
C = other.construction()
if C is None:
 return
elif isinstance(C[0], PolynomialFunctor):
 return pushout(self, CartesianProductPoly((other,)))

sage: pushout(CartesianProductPoly((ZZ['x'],)),
CartesianProductPoly((ZZ['y'],)))
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
 Univariate Polynomial Ring in y over Integer Ring)

sage: pushout(CartesianProductPoly((ZZ['x'], ZZ['y'])),
CartesianProductPoly((ZZ['x'], ZZ['z'])))
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
 Univariate Polynomial Ring in y over Integer Ring,
 Univariate Polynomial Ring in z over Integer Ring)

sage: pushout(CartesianProductPoly((QQ['a,b']['x'], QQ['y'])),
CartesianProductPoly((ZZ['b,c']['x'], SR['z'])))
The Cartesian product of
(Univariate Polynomial Ring in x over
 Multivariate Polynomial Ring in a, b, c over Rational Field,
 Univariate Polynomial Ring in y over Rational Field,
 Univariate Polynomial Ring in z over Symbolic Ring)

sage: pushout(CartesianProductPoly((ZZ['x'],)), ZZ['y'])
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
 Univariate Polynomial Ring in y over Integer Ring)

sage: pushout(QQ['b,c']['y'], CartesianProductPoly((ZZ['a,b']['x'],)))
The Cartesian product of
(Univariate Polynomial Ring in x over
 Multivariate Polynomial Ring in a, b over Integer Ring,
 Univariate Polynomial Ring in y over
 Multivariate Polynomial Ring in b, c over Rational Field)

sage: pushout(CartesianProductPoly((ZZ['x'],)), ZZ)
Traceback (most recent call last):
...
CoercionException: No common base ("join") found for
The cartesian_product functorial construction(...) and None(Integer Ring):
(Multivariate) functors are incompatible.

AUTHORS:

- Robert Bradshaw
- Peter Bruin
- Simon King
- Daniel Krenn
- David Roe

sage.categories.pushout.pushout_lattice(R, S)
Given a pair of objects R and S, try to construct a reasonable object Y and return maps such that canonically $R \leftarrow Y \rightarrow S$.
ALGORITHM:

This is based on the model that arose from much discussion at Sage Days 4. Going up the tower of constructions of R and S (e.g. the reals come from the rationals come from the integers), try to find a common parent, and then try to fill in a lattice with these two towers as sides with the top as the common ancestor and the bottom will be the desired ring.

See the code for a specific worked-out example.

EXAMPLES:

```python
sage: from sage.categories.pushout import pushout_lattice
sage: A, B = pushout_lattice(Qp(7), Frac(ZZ['x']))
sage: A.codomain()
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20
sage: A.codomain() is B.codomain()
True
sage: A, B = pushout_lattice(ZZ, MatrixSpace(ZZ[['x']], 3, 3))
sage: B
Identity endomorphism of Full MatrixSpace of 3 by 3 dense matrices over Power Series Ring in x over Integer Ring
```

AUTHOR:

- Robert Bradshaw

`sage.categories.pushout.type_to_parent(P)`

An auxiliary function that is used in `pushout()`.

INPUT:

A type

OUTPUT:

A Sage parent structure corresponding to the given type
3.1 Group, ring, etc. actions on objects

The terminology and notation used is suggestive of groups acting on sets, but this framework can be used for modules, algebras, etc.

A group action \(G \times S \to S \) is a functor from \(G \) to \(\text{Sets} \).

Warning: An \texttt{Action} object only keeps a weak reference to the underlying set which is acted upon. This decision was made in trac ticket \#715 in order to allow garbage collection within the coercion framework (this is where actions are mainly used) and avoid memory leaks.

\[
\begin{align*}
\text{sage: } & \text{from sage.categories.action import Action} \\
\text{sage: } & \text{class P: pass} \\
\text{sage: } & A = \text{Action}(P(),P()) \\
\text{sage: } & \text{import gc} \\
\text{sage: } & _ = \text{gc.collect()} \\
\text{sage: } & A \\
\text{<repr(<sage.categories.action.Action at 0x...>) failed: RuntimeError: This action_} \\
\text{acted on a set that became garbage collected>}
\end{align*}
\]

To avoid garbage collection of the underlying set, it is sufficient to create a strong reference to it before the action is created.

\[
\begin{align*}
\text{sage: } & _ = \text{gc.collect()} \\
\text{sage: } & \text{from sage.categories.action import Action} \\
\text{sage: } & \text{class P: pass} \\
\text{sage: } & q = P() \\
\text{sage: } & A = \text{Action}(P(),q) \\
\text{sage: } & \text{gc.collect()} \\
\text{0} \\
\text{sage: } & A \\
\text{Left action by } & \langle\text{main}_\text{.P ... at ...} \rangle \text{ on } \langle\text{main}_\text{.P ... at ...} \rangle
\end{align*}
\]

AUTHOR:

- Robert Bradshaw: initial version

```python
class sage.categories.action.Action
    Bases: sage.categories.functor.Functor

The action of \( G \) on \( S \).
```

INPUT:
• G – a parent or Python type
• S – a parent or Python type
• $\textit{is_left}$ – (boolean, default: True) whether elements of G are on the left
• \textit{op} – (default: None) operation. This is not used by Action itself, but other classes may use it

$$G\ \text{act}(g, x)$$

This is a consistent interface for acting on x by g, regardless of whether it’s a left or right action.

If needed, g and x are converted to the correct parent.

EXAMPLES:

```
sage: R.<x> = ZZ []
sage: from sage.structure.coerce_actions import IntegerMulAction
sage: A = IntegerMulAction(ZZ, R, True)  # Left action
sage: A.act(5, x)
5*x
sage: A.act(int(5), x)
5*x
sage: A = IntegerMulAction(ZZ, R, False)  # Right action
sage: A.act(5, x)
5*x
sage: A.act(int(5), x)
5*x
```

150 Chapter 3. Individual Categories
An action that acts as the inverse of the given action.

EXAMPLES:

```python
sage: V = QQ^3
sage: v = V((1, 2, 3))
sage: cm = get_coercion_model()
sage: a = cm.get_action(V, QQ, operator.mul)
sage: a
Right scalar multiplication by Rational Field on Vector space of dimension 3 over...
\rightarrow Rational Field
sage: ~(a)
Right inverse action by Rational Field on Vector space of dimension 3 over...
\rightarrow Rational Field
sage: ~(a)(v, 1/3)
(3, 6, 9)
sage: b = cm.get_action(QQ, V, operator.mul)
sage: b
Left scalar multiplication by Rational Field on Vector space of dimension 3 over...
\rightarrow Rational Field
sage: ~(b)
Left inverse action by Rational Field on Vector space of dimension 3 over...
\rightarrow Rational Field
sage: ~(b)(1/3, v)
(3, 6, 9)
sage: c = cm.get_action(ZZ, list, operator.mul)
sage: c
Left action by Integer Ring on <... 'list'>
sage: ~(c)
Traceback (most recent call last):
  ... TypeError: no inverse defined for Left action by Integer Ring on <... 'list'>
```

```python
codomain()
```

class sage.categories.action.PrecomposedAction
Bases: sage.categories.action.Action

A precomposed action first applies given maps, and then applying an action to the return values of the maps.

EXAMPLES:

We demonstrate that an example discussed on trac ticket #14711 did not become a problem:

```python
sage: E = ModularSymbols(11).2
sage: s = E.modular_symbol_rep()
sage: del E, s
sage: import gc
sage: _ = gc.collect()
```

```python
sage: E = ModularSymbols(11).2
sage: v = E.manin_symbol_rep()
sage: c, x = v[0]
sage: y = x.modular_symbol_rep()
sage: coercion_model.get_action(QQ, parent(y), op=operator.mul)
Left scalar multiplication by Rational Field on Abelian Group of all Formal...
\rightarrow Finite Sums over Rational Field with precomposition on right by Coercion map:
```

(continues on next page)
From: Abelian Group of all Formal Finite Sums over Integer Ring
To: Abelian Group of all Formal Finite Sums over Rational Field

codomain()

domain()

left_precomposition
 The left map to precompose with, or None if there is no left precomposition map.

right_precomposition
 The right map to precompose with, or None if there is no right precomposition map.

3.2 Additive groups

class sage.categories.additive_groups.AdditiveGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of additive groups.

An additive group is a set with an internal binary operation + which is associative, admits a zero, and where every element can be negated.

EXAMPLES:

```
sage: from sage.categories.additive_groups import AdditiveGroups
sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: AdditiveGroups()
Category of additive groups
sage: AdditiveGroups().super_categories()
[Category of additive inverse additive unital additive magmas,
 Category of additive monoids]
```

```
sage: AdditiveGroups().all_super_categories()
[Category of additive groups,
 Category of additive inverse additive unital additive magmas,
 Category of additive monoids,
 Category of additive unital additive magmas,
 Category of additive semigroups,
 Category of additive magmas,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

```
sage: AdditiveGroups().axioms()
frozenset({'AdditiveAssociative', 'AdditiveInverse', 'AdditiveUnital'})
sage: AdditiveGroups() is AdditiveMonoids().AdditiveInverse()
True
```

AdditiveCommutative
 alias of sage.categories.commutative_additive_groups.CommutativeAdditiveGroups

class Algebras(category, *args)
 Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
 Bases: object
group()

Return the underlying group of the group algebra.

EXAMPLES:

```
sage: GroupAlgebras(QQ).example(GL(3, GF(11))).group()
General Linear Group of degree 3 over Finite Field of size 11
sage: SymmetricGroup(10).algebra(QQ).group()
Symmetric group of order 10! as a permutation group
```

class Finite(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

class Algebras(category, *args)

Bases: `sage.categories.algebra_functor.AlgebrasCategory`

class ParentMethods

Bases: object

extra_super_categories()

Implement Maschke’s theorem.

In characteristic 0 all finite group algebras are semisimple.

EXAMPLES:

```
sage: FiniteGroups().Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
True
sage: FiniteGroups().Algebras(FiniteField(7)).is_subcategory(Algebras(FiniteField(7)).Semisimple())
False
sage: FiniteGroups().Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
False
sage: FiniteGroups().Algebras(Fields()).is_subcategory(Algebras(Fields()).Semisimple())
False
sage: Cat = CommutativeAdditiveGroups().Finite()
sage: Cat.Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
True
sage: Cat.Algebras(GF(7)).is_subcategory(Algebras(GF(7)).Semisimple())
False
sage: Cat.Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
False
sage: Cat.Algebras(Fields()).is_subcategory(Algebras(Fields()).Semisimple())
False
```

3.2. Additive groups
3.3 Additive magmas

class sage.categories.additive_magmas.AdditiveMagmas(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

The category of additive magmas.

An additive magma is a set endowed with a binary operation +.

EXAMPLES:

sage: AdditiveMagmas()
Category of additive magmas
sage: AdditiveMagmas().super_categories()
[Category of sets]

The following axioms are defined by this category:

sage: AdditiveMagmas().AdditiveAssociative()
Category of additive semigroups
sage: AdditiveMagmas().AdditiveUnital()
Category of additive unital additive magmas
sage: AdditiveMagmas().AdditiveCommutative()
Category of additive commutative additive magmas
sage: AdditiveMagmas().AdditiveUnital().AdditiveInverse()
Category of additive inverse additive unital additive magmas
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative()
Category of commutative additive semigroups
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().
 AdditiveUnital()
Category of commutative additive monoids
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().
 AdditiveUnital().AdditiveInverse()
Category of commutative additive groups

AdditiveAssociative
 alias of sage.categories.additive_semigroups.AdditiveSemigroups

class AdditiveCommutative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Algebras(category, *args)
 Bases: sage.categories.algebra_functor.AlgebrasCategory

extra_super_categories()
 Implement the fact that the algebra of a commutative additive magmas is commutative.

EXAMPLES:

sage: AdditiveMagmas().AdditiveCommutative().Algebras(QQ).extra_super_...
 categories()]

sage: AdditiveMagmas().AdditiveCommutative().Algebras(QQ).super_...
 categories()]

154 Chapter 3. Individual Categories
class CartesianProducts (category, *args)
 Bases: sage.categories.cartesian_product.CartesianProductsCategory

 extra_super_categories()
 Implement the fact that a Cartesian product of commutative additive magmas is a commutative
 additive magma.

 EXAMPLES:

 sage: C = AdditiveMagmas().AdditiveCommutative().CartesianProducts()
 sage: C.extra_super_categories()
 [Category of additive commutative additive magmas]
 sage: C.axioms()
 frozenset({'AdditiveCommutative'})

class AdditiveUnital (base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveInverse (base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class CartesianProducts (category, *args)
 Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ElementMethods
 Bases: object

 extra_super_categories()
 Implement the fact that a Cartesian product of additive magmas with inverses is an additive
 magma with inverse.

 EXAMPLES:

 sage: C = AdditiveMagmas().AdditiveUnital().AdditiveInverse().CartesianProducts()
 sage: C.extra_super_categories()
 [Category of additive inverse additive unital additive magmas]
 sage: C.axioms()
 ['AdditiveInverse', 'AdditiveUnital']

class Algebras (category, *args)
 Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
 Bases: object

 one_basis()
 Return the zero of this additive magma, which index the one of this algebra, as per
 AlgebrasWithBasis.ParentMethods.one_basis().

 EXAMPLES:

 sage: S = CommutativeAdditiveMonoids().example(); S
 An example of a commutative monoid: the free commutative monoid,
 generated by ('a', 'b', 'c', 'd')
 sage: A = S.algebra(ZZ)
 sage: A.one_basis()
 0
 sage: A.one()
 (continues on next page)
extra_super_categories()

EXAMPLES:

```
sage: C = AdditiveMagmas().AdditiveUnital().Algebras(QQ)
sage: C.extra_super_categories()
[Category of unital magmas]
sage: C.super_categories()
[Category of unital algebras with basis over Rational Field, Category of additive magma algebras over Rational Field]
```

class CartesianProducts(category, *args)

Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

class ParentMethods

Bases: object

```
zero()

Returns the zero of this group

EXAMPLES:

```
sage: GF(8, 'x').cartesian_product(GF(5)).zero()
(0, 0)
```

extra_super_categories()

Implement the fact that a Cartesian product of unital additive magmas is a unital additive magma.

EXAMPLES:

```
sage: C = AdditiveMagmas().AdditiveUnital().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive unital additive magmas]
sage: C.axioms()
frozenset({'AdditiveUnital'})
```

class ElementMethods

Bases: object

class Homsets(category, *args)

Bases: `sage.categories.homsets.HomsetsCategory`

class ParentMethods

Bases: object

```
zero()

EXAMPLES:

```
sage: R = QQ['x']
sage: H = Hom(ZZ, R, AdditiveMagmas().AdditiveUnital())
sage: f = H.zero()
sage: f
Generic morphism:
  From: Integer Ring
(continues on next page)
To: Univariate Polynomial Ring in x over Rational Field
sage: f(3)
0
sage: f(3) is R.zero()
True

**extra_super_categories**
Implement the fact that a homset between two unital additive magmas is a unital additive magma.

**EXAMPLES:**

```python
sage: AdditiveMagmas().AdditiveUnital().Homsets().extra_super_categories()
[Category of additive unital additive magmas]
sage: AdditiveMagmas().AdditiveUnital().Homsets().super_categories()
[Category of additive unital additive magmas, Category of homsets]
```

**class ParentMethods**
Bases: object

**is_empty**
Return whether this set is empty.

Since this set is an additive magma it has a zero element and hence is not empty. This method thus always returns False.

**EXAMPLES:**

```python
sage: A = AdditiveAbelianGroup([3,3])
sage: A in AdditiveMagmas()
True
sage: A.is_empty()
False
sage: B = CommutativeAdditiveMonoids().example()
```

**zero**
Return the zero of this additive magma, that is the unique neutral element for .

The default implementation is to coerce 0 into self.

It is recommended to override this method because the coercion from the integers:
• is not always meaningful (except for 0), and
• often uses self.zero() otherwise.

**EXAMPLES:**

```python
sage: S = CommutativeAdditiveMonoids().example()
sage: S.zero()
0
```

**class SubcategoryMethods**
Bases: object

**AdditiveInverse**
Return the full subcategory of the additive inverse objects of self.

3.3. Additive magmas
An inverse *additive magma* is a unital additive magma such that every element admits both an additive inverse on the left and on the right. Such an additive magma is also called an *additive loop*.

**See also:**

Wikipedia article Inverse_element, Wikipedia article Quasigroup

**EXAMPLES:**

```python
sage: AdditiveMagmas().AdditiveUnital().AdditiveInverse()
Category of additive inverse additive unital additive magmas
sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: AdditiveMonoids().AdditiveInverse()
Category of additive groups
```

class **WithRealizations** *(category, *args)*

Bases: `sage.categories.with_realizations.WithRealizationsCategory`

**class ParentMethods**

Bases: `object`

```
zero()
Return the zero of this unital additive magma.

This default implementation returns the zero of the realization of self given by `a_realization()`.

EXAMPLES:
```
```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.zero.__module__
'sage.categories.additive_magmas'
sage: A.zero()
0
```

```
additional_structure()
Return whether self is a structure category.

See also:

`Category.additional_structure()`

The category of unital additive magmas defines the zero as additional structure, and this zero shall be preserved by morphisms.

EXAMPLES:
```
```
sage: AdditiveMagmas().AdditiveUnital().additional_structure()
Category of additive unital additive magmas
```

class **Algebras** *(category, *args)*

Bases: `sage.categories.algebra_functor.AlgebrasCategory`

**class ParentMethods**

Bases: `object`

```
algebra_generators()
The generators of this algebra, as per `MagmaticAlgebras.ParentMethods.algebra_generators()`.

They correspond to the generators of the additive semigroup.
```
EXAMPLES:

```
sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup →
generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: A.algebra_generators()
Finite family {0: B[a], 1: B[b], 2: B[c], 3: B[d]}
```

**Todo:** This doctest does not actually test this method, but rather the method of the same name for AdditiveSemigroups. Find a better doctest!

**product_on_basis**(g1, g2)

Product, on basis elements, as per `MagmaticAlgebras.WithBasis.ParentMethods.product_on_basis()`.

The product of two basis elements is induced by the addition of the corresponding elements of the group.

EXAMPLES:

```
sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup →
generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: a,b,c,d = A.algebra_generators()
sage: a * d * b
B[a + b + d]
```

**Todo:** This doctest does not actually test this method, but rather the method of the same name for AdditiveSemigroups. Find a better doctest!

**extra_super_categories**()

EXAMPLES:

```
sage: AdditiveMagmas().Algebras(QQ).extra_super_categories()
[Category of magmatic algebras with basis over Rational Field]
```

```
sage: AdditiveMagmas().Algebras(QQ).super_categories()
[Category of magmatic algebras with basis over Rational Field, Category →
of set algebras over Rational Field]
```

class CartesianProducts(category, *args)

Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

class ElementMethods

Bases: object

**extra_super_categories**()

Implement the fact that a Cartesian product of additive magmas is an additive magma.

EXAMPLES:

```
sage: C = AdditiveMagmas().CartesianProducts()
sage: C.extra_super_categories()
```
class ElementMethods
    Bases: object

class Homsets (category, *args)
    Bases: sage.categories.homsets.HomsetsCategory

    extra_super_categories ()
    Implement the fact that a homset between two magmas is a magma.

    EXAMPLES:

    sage: AdditiveMagmas().Homsets().extra_super_categories()
    [Category of additive magmas]
    sage: AdditiveMagmas().Homsets().super_categories()
    [Category of additive magmas, Category of homsets]

class ParentMethods
    Bases: object

    addition_table (names='letters', elements=None)
    Return a table describing the addition operation.

    Note: The order of the elements in the row and column headings is equal to the order given by the table’s column_keys () method. The association can also be retrieved with the translation () method.

    INPUT:
    • names – the type of names used:
      – 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements’ positions in the list given by column_keys (), padded to a common width with leading 'a's.
      – 'digits' - base 10 representation of the elements’ positions in the list given by column_keys (), padded to a common width with leading zeros.
      – 'elements' - the string representations of the elements themselves.
      – a list - a list of strings, where the length of the list equals the number of elements.
    • elements – (default: None) A list of elements of the additive magma, in forms that can be coerced into the structure, eg. their string representations. This may be used to impose an alternate ordering on the elements, perhaps when this is used in the context of a particular structure. The default is to use whatever ordering the S.list method returns. Or the elements can be a subset which is closed under the operation. In particular, this can be used when the base set is infinite.

    OUTPUT:
    The addition table as an object of the class OperationTable which defines several methods for manipulating and displaying the table. See the documentation there for full details to supplement the documentation here.

    EXAMPLES:
    All that is required is that an algebraic structure has an addition defined. The default is to represent elements as lowercase ASCII letters.
```python
sage: R=IntegerModRing(5)
sage: R.addition_table()
+ a b c d e
| a| a b c d e
| b| b c d e a
| c| c d e a b
| d| d e a b c
| e| e a b c d
```

The `names` argument allows displaying the elements in different ways. Requesting `elements` will use the representation of the elements of the set. Requesting `digits` will include leading zeros as padding.

```python
sage: R=IntegerModRing(11)
sage: P=R.addition_table(names='elements')
sage: P
+ 0 1 2 3 4 5 6 7 8 9 10
| 0| 0 1 2 3 4 5 6 7 8 9 10
| 1| 1 2 3 4 5 6 7 8 9 10 0
| 2| 2 3 4 5 6 7 8 9 10 0 1
| 3| 3 4 5 6 7 8 9 10 0 1 2
| 4| 4 5 6 7 8 9 10 0 1 2 3
| 5| 5 6 7 8 9 10 0 1 2 3 4
| 6| 6 7 8 9 10 0 1 2 3 4 5
| 7| 7 8 9 10 0 1 2 3 4 5 6
| 8| 8 9 10 0 1 2 3 4 5 6 7
| 9| 9 10 0 1 2 3 4 5 6 7 8
| 10| 10 0 1 2 3 4 5 6 7 8 9

sage: T=R.addition_table(names='digits')
sage: T
+ 00 01 02 03 04 05 06 07 08 09 10
| 00| 00 01 02 03 04 05 06 07 08 09 10
| 01| 01 02 03 04 05 06 07 08 09 10 00
| 02| 02 03 04 05 06 07 08 09 10 00 01
| 03| 03 04 05 06 07 08 09 10 00 01 02
| 04| 04 05 06 07 08 09 10 00 01 02 03
| 05| 05 06 07 08 09 10 00 01 02 03 04
| 06| 06 07 08 09 10 00 01 02 03 04 05
| 07| 07 08 09 10 00 01 02 03 04 05 06
| 08| 08 09 10 00 01 02 03 04 05 06 07
| 09| 09 10 00 01 02 03 04 05 06 07 08
| 10| 10 00 01 02 03 04 05 06 07 08 09
```

Specifying the elements in an alternative order can provide more insight into how the operation behaves.

```python
sage: S=IntegerModRing(7)
sage: elts = [0, 3, 6, 2, 5, 1, 4]
sage: S.addition_table(elements=elts)
+ a b c d e f g
| a| a b c d e f g
| b| b c d e f g a
```
(continues on next page)
The \texttt{elements} argument can be used to provide a subset of the elements of the structure. The subset must be closed under the operation. Elements need only be in a form that can be coerced into the set. The \texttt{names} argument can also be used to request that the elements be represented with their usual string representation.

\begin{verbatim}
sage: T=IntegerModRing(12)
sage: elts=[0, 3, 6, 9]
sage: T.addition_table(names='elements', elements=elts) + 0 3 6 9 +-------- 0| 0 3 6 9 3| 3 6 9 0 6| 6 9 0 3 9| 9 0 3 6
\end{verbatim}

The table returned can be manipulated in various ways. See the documentation for \texttt{OperationTable} for more comprehensive documentation.

\begin{verbatim}
sage: R=IntegerModRing(3)
sage: T=R.addition_table()
sage: T.column_keys() (0, 1, 2)
sage: sorted(T.translation().items()) [('a', 0), ('b', 1), ('c', 2)]
sage: T.change_names(['x', 'y', 'z'])
sage: sorted(T.translation().items()) [('x', 0), ('y', 1), ('z', 2)]
sage: T
+ x y z +-------- x| x y z y| y z x z| z x y
\end{verbatim}

\texttt{summation}(x, y)

Return the sum of \(x\) and \(y\).

The binary addition operator of this additive magma.

INPUT:

• \(x, y\) – elements of this additive magma

EXAMPLES:

\begin{verbatim}
sage: S = CommutativeAdditiveSemigroups().example()
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: Ssummation(a, b)
a + b
\end{verbatim}

A parent in \texttt{AdditiveMagmas} must either implement \texttt{summation()} in the parent class or \texttt{_add_} in the element class. By default, the addition method on elements \(x \_\_add\_ (y)\) calls \texttt{S} \texttt{summation(x,y)}, and reciprocally.
As a bonus effect, \( S.\text{summation} \) by itself models the binary function from \( S \) to \( S \):

```
sage: bin = S.\text{summation}
sage: bin(a,b)
a + b
```

Here, \( S.\text{summation} \) is just a bound method. Whenever possible, it is recommended to enrich \( S.\text{summation} \) with extra mathematical structure. Lazy attributes can come handy for this.

Todo: Add an example.

### summation\_from\_element\_class\_add\((x, y)\)

Return the sum of \( x \) and \( y \).

The binary addition operator of this additive magma.

**INPUT:**

- \( x, y \) – elements of this additive magma

**EXAMPLES:**

```
sage: S = CommutativeAdditiveSemigroups().example()
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: S.\text{summation}(a, b)
a + b
```

A parent in \texttt{AdditiveMagmas()} must either implement \texttt{summation()} in the parent class or \texttt{\_add\_} in the element class. By default, the addition method on elements \( x.\text{\_add\_}(y) \) calls \( S.\text{summation}(x,y) \), and reciprocally.

As a bonus effect, \( S.\text{summation} \) by itself models the binary function from \( S \) to \( S \):

```
sage: bin = S.\text{summation}
sage: bin(a,b)
a + b
```

Here, \( S.\text{summation} \) is just a bound method. Whenever possible, it is recommended to enrich \( S.\text{summation} \) with extra mathematical structure. Lazy attributes can come handy for this.

Todo: Add an example.

```python
class SubcategoryMethods
 Bases: object

 AdditiveAssociative()
 Return the full subcategory of the additive associative objects of self.

 An additive magma \(M \) is associative if, for all \(x, y, z \in M \),
 \[
x + (y + z) = (x + y) + z
 \]

 See also:
 Wikipedia article Associative_property

 EXAMPLES:
```

3.3. Additive magmas
AdditiveCommutative()

Return the full subcategory of the commutative objects of self.

An additive magma $M$ is commutative if, for all $x, y \in M$,

$$x + y = y + x$$

See also:
Wikipedia article Commutative_property

EXAMPLES:

```
sage: AdditiveMagmas().AdditiveCommutative()
Category of additive commutative additive magmas
```

AdditiveUnital()

Return the subcategory of the unital objects of self.

An additive magma $M$ is unital if it admits an element 0, called neutral element, such that for all $x \in M$,

$$0 + x = x + 0 = x$$

This element is necessarily unique, and should be provided as $M$.zero().

See also:
Wikipedia article Unital_magma#unital

EXAMPLES:

```
sage: AdditiveMagmas().AdditiveUnital()
Category of additive unital additive magmas
```

super_categories()

EXAMPLES:

```
sage: AdditiveMagmas().super_categories()
[Category of sets]
```
3.4 Additive monoids

class sage.categories.additive_monoids.AdditiveMonoids (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of additive monoids.

An additive monoid is a unital additive semigroup, that is a set endowed with a binary operation + which is associative and admits a zero (see Wikipedia article Monoid).

EXAMPLES:

```python
sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: C = AdditiveMonoids(); C
Category of additive monoids
sage: C.super_categories()
[Category of additive unital additive magmas, Category of additive semigroups]
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveUnital']
sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: C is AdditiveSemigroups().AdditiveUnital()
True
```

AdditiveCommutative
alias of sage.categories.commutative_additive_monoids.CommutativeAdditiveMonoids

AdditiveInverse
alias of sage.categories.additive_groups.AdditiveGroups

class Homsets (category, *args)
Bases: sage.categories.homsets.HomsetsCategory

extra_super_categories()
Implement the fact that a homset between two monoids is associative.

EXAMPLES:

```python
sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: AdditiveMonoids().Homsets().extra_super_categories()
[Category of additive unital additive magmas, Category of additive semigroups]
sage: AdditiveMonoids().Homsets().super_categories()
[Category of homsets of additive unital additive magmas, Category of additive monoids]
```

Todo: This could be deduced from AdditiveSemigroups.Homsets.
extra_super_categories(). See comment in Objects.SubcategoryMethods.
Homsets().

class ParentMethods
Bases: object

sum (args)
Return the sum of the elements in args, as an element of self.

INPUT:
- args – a list (or iterable) of elements of self

EXAMPLES:
3.5 Additive semigroups

**class** sage.categories.additive_semigroups.AdditiveSemigroups(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of additive semigroups.

An additive semigroup is an associative additive magma, that is a set endowed with an operation + which is associative.

**EXAMPLES:**

```python
sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: C = AdditiveSemigroups(); C
Category of additive semigroups
sage: C.super_categories()
[Category of additive magmas]
sage: C.all_super_categories()
[Category of additive semigroups, Category of additive magmas, Category of sets, Category of sets with partial maps, Category of objects]
```

AdditiveCommutative

alias of sage.categories.commutative_additive_semigroups.CommutativeAdditiveSemigroups

AdditiveUnital

alias of sage.categories.additive_monoids.AdditiveMonoids

**class** Algebras(category, *args)

Bases: sage.categories.algebra_functor.AlgebrasCategory

**class** ParentMethods

Bases: object

algebra_generators()  
Return the generators of this algebra, as per MagmaicAlgebras.ParentMethods.algebra_generators().

They correspond to the generators of the additive semigroup.

**EXAMPLES:**
sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup
  generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: A.algebra_generators()
Finite family {0: B[a], 1: B[b], 2: B[c], 3: B[d]}

product_on_basis(gl, g2)

Product, on basis elements, as per MagmaticAlgebras.WithBasis.ParentMethods.
product_on_basis().

The product of two basis elements is induced by the addition of the corresponding elements of
the group.

EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup
  generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: a,b,c,d = A.algebra_generators()
sage: b * d * c
B[b + c + d]

extra_super_categories()

EXAMPLES:

sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: AdditiveSemigroups().Algebras(QQ).extra_super_categories()
[Category of semigroups]
sage: CommutativeAdditiveSemigroups().Algebras(QQ).super_categories()
[Category of additive semigroup algebras over Rational Field,
 Category of additive commutative additive magma algebras over Rational
   Field]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()

Implement the fact that a Cartesian product of additive semigroups is an additive semigroup.

EXAMPLES:

sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: C = AdditiveSemigroups().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive semigroups]
sage: C.axioms()
frozenset({'AdditiveAssociative'})

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

extra_super_categories()

Implement the fact that a homset between two semigroups is a semigroup.

EXAMPLES:
3.6 Affine Weyl groups

class sage.categories.affine_weyl_groups.AffineWeylGroups\(s=None\)
    Bases: sage.categories.category_singleton.Category_singleton

The category of affine Weyl groups

Todo: add a description of this category

See also:

- Wikipedia article Affine_weyl_group
- WeylGroups, WeylGroup

EXAMPLES:

    sage: C = AffineWeylGroups(); C
    Category of affine weyl groups
    sage: C.super_categories()  # doctest: +ELLIPSIS
    [Category of infinite weyl groups]

    sage: C.example()
    NotImplemented

    sage: W = WeylGroup(['A', 4, 1]); W
    Weyl Group of type ['A', 4, 1] (as a matrix group acting on the root space)
    sage: W.category()
    Category of irreducible affine weyl groups

class ElementMethods
    Bases: object

    affine_grassmannian_to_core()
        Bijection between affine Grassmannian elements of type \(A_k^{(1)}\) and \((k+1)\)-cores.
        INPUT:
            - self – an affine Grassmannian element of some affine Weyl group of type \(A_k^{(1)}\)
        Recall that an element \(w\) of an affine Weyl group is affine Grassmannian if all its all reduced words end in 0, see is_affine_grassmannian().
        OUTPUT:
            - a \((k+1)\)-core
        See also:
            affine_grassmannian_to_partition()

    EXAMPLES:
sage: W = WeylGroup(['A',2,1])
sage: w = W.from_reduced_word([0,2,1,0])
sage: la = w.affine_grassmannian_to_core(); la
[4, 2]
sage: type(la)
<class 'sage.combinat.core.Cores_length_with_category.element_class'>
sage: la.to_grassmannian() == w
True
sage: w = W.from_reduced_word([0,2,1])
sage: w.affine_grassmannian_to_core()
Traceback (most recent call last):
... ValueError: this only works on type 'A' affine Grassmannian elements

affine_grassmannian_to_partition()
Bijection between affine Grassmannian elements of type $A^{(1)}_k$ and $k$-bounded partitions.

INPUT:
• self is affine Grassmannian element of the affine Weyl group of type $A^{(1)}_k$ (i.e. all reduced words end in 0)

OUTPUT:
• $k$-bounded partition

See also:
affine_grassmannian_to_core()

EXAMPLES:

sage: k = 2
sage: W = WeylGroup(['A',k,1])
sage: w = W.from_reduced_word([0,2,1,0])
sage: la = w.affine_grassmannian_to_partition(); la
[2, 2]
sage: la.from_kbounded_to_grassmannian(k) == w
True

is_affine_grassmannian()
Test whether self is affine Grassmannian.

An element of an affine Weyl group is affine Grassmannian if any of the following equivalent properties holds:
• all reduced words for self end with 0.
• self is the identity, or 0 is its single right descent.
• self is a minimal coset representative for $W/\text{cl } W$.

EXAMPLES:

sage: W = WeylGroup(['A',3,1])
sage: w = W.from_reduced_word([2,1,0])
sage: w.is_affine_grassmannian()
True
sage: w = W.from_reduced_word([2,0])
sage: w.is_affine_grassmannian()
False
sage: W.one().is_affine_grassmannian()
True
Bases: object

affine_grassmannian_elements_of_given_length\( (k) \)

Return the affine Grassmannian elements of length \( k \).

This is returned as a finite enumerated set.

EXAMPLES:

```
sage: W = WeylGroup(['A',3,1])
sage: [x.reduced_word() for x in W.affine_grassmannian_elements_of_given_length(3)]
[[2, 1, 0], [3, 1, 0], [2, 3, 0]]
```

See also:
\texttt{AffineWeylGroups.ElementMethods.is_affine_grassmannian()}

special_node\()

Return the distinguished special node of the underlying Dynkin diagram.

EXAMPLES:

```
sage: W = WeylGroup(['A',3,1])
sage: W.special_node()
0
```

additional_structure\()

Return None.

Indeed, the category of affine Weyl groups defines no additional structure: affine Weyl groups are a special class of Weyl groups.

See also:
\texttt{Category.additional_structure()}

Todo: Should this category be a \texttt{CategoryWithAxiom}?

EXAMPLES:

```
sage: AffineWeylGroups().additional_structure()
```

super_categories\()

EXAMPLES:

```
sage: AffineWeylGroups().super_categories()
[Category of infinite weyl groups]```
3.7 Algebra ideals

```python
class sage.categories.algebra_ideals.AlgebraIdeals(A):
    Bases: sage.categories.category_types.Category_ideal

The category of two-sided ideals in a fixed algebra A.

EXAMPLES:

```

Todo:

- Add support for non commutative rings (this is currently not supported by the subcategory AlgebraModules).
- Make AlgebraIdeals(R).return CommutativeAlgebraIdeals(R) when R is commutative.
- If useful, implement AlgebraLeftIdeals and AlgebraRightIdeals of which AlgebraIdeals would be a subcategory.

algebra()

EXAMPLES:

```

super_categories()

The category of algebra modules should be a super category of this category.

However, since algebra modules are currently only available over commutative rings, we have to omit it if our ring is non-commutative.

EXAMPLES:

```

3.8 Algebra modules

```
Note: as of now, $A$ is required to be commutative, ensuring that the categories of left and right modules are isomorphic. Feedback and use cases for potential generalizations to the non-commutative case are welcome.

**algebra()**

EXAMPLES:

```python
sage: AlgebraModules(QQ['x']).algebra()
Univariate Polynomial Ring in x over Rational Field
```

**classmethod an_instance()**

Returns an instance of this class

EXAMPLES:

```python
sage: AlgebraModules.an_instance()
Category of algebra modules over Univariate Polynomial Ring in x over Rational Field
```

**super_categories()**

EXAMPLES:

```python
sage: AlgebraModules(QQ['x']).super_categories()
[Category of modules over Univariate Polynomial Ring in x over Rational Field]
```

### 3.9 Algebras

**AUTHORS:**

- David Kohel & William Stein (2005): initial revision

**class sage.categories.algebras.Algebras(base_category)**

The category of associative and unital algebras over a given base ring.

An associative and unital algebra over a ring $R$ is a module over $R$ which is itself a ring.

**Warning:** Algebras will be eventually be replaced by magmatic_algebras. MagmaticAlgebras for consistency with e.g. Wikipedia article Algebras which assumes neither associativity nor the existence of a unit (see trac ticket #15043).

**Todo:** Should $R$ be a commutative ring?

**EXAMPLES:**
sage: Algebras(ZZ)
Category of algebras over Integer Ring

sage: sorted(Algebras(ZZ).super_categories(), key=str)
[Category of associative algebras over Integer Ring,
 Category of rings,
 Category of unital algebras over Integer Ring]

class CartesianProducts(category, *args)
    Bases: sage.categories.cartesian_product.CartesianProductsCategory

    The category of algebras constructed as Cartesian products of algebras

    This construction gives the direct product of algebras. See discussion on:
    • http://groups.google.fr/group/sage-devel/browse_thread/thread/35a72b1d0a2fc77a/
      348f42ae77a66d16#348f42ae77a66d16
    • Wikipedia article Direct_product

    extra_super_categories()
    A Cartesian product of algebras is endowed with a natural algebra structure.

    EXAMPLES:

    sage: C = Algebras(QQ).CartesianProducts()
    sage: C.extra_super_categories()
    [Category of algebras over Rational Field]
    sage: sorted(C.super_categories(), key=str)
    [Category of Cartesian products of distributive magmas and additive,
     Category of Cartesian products of monoids,
     Category of Cartesian products of vector spaces over Rational Field,
     Category of algebras over Rational Field]

Commutative
    alias of sage.categories.commutative_algebras.CommutativeAlgebras

class DualObjects(category, *args)
    Bases: sage.categories.dual.DualObjectsCategory

    extra_super_categories()
    Return the dual category

    EXAMPLES:

    The category of algebras over the Rational Field is dual to the category of coalgebras over the same field:

    sage: C = Algebras(QQ)
    sage: C.dual()
    Category of duals of algebras over Rational Field
    sage: C.dual().extra_super_categories()
    [Category of coalgebras over Rational Field]

    Warning: This is only correct in certain cases (finite dimension, ...). See trac ticket #15647.

class ElementMethods
    Bases: object
Filtered
   alias of sage.categories.filtered_algebras.FilteredAlgebras

Graded
   alias of sage.categories.graded_algebras.GradedAlgebras

class Quotients (category, *args)
   Bases: sage.categories.quotients.QuotientsCategory

class ParentMethods
   Bases: object

   algebra_generators()
   Return algebra generators for self.
   This implementation retracts the algebra generators from the ambient algebra.

   EXAMPLES:

   sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
   An example of a finite dimensional algebra with basis:
   the path algebra of the Kronecker quiver
   (containing the arrows a:x->y and b:x->y) over Rational Field
   sage: S = A.semisimple_quotient()
   sage: S.algebra_generators()
   Finite family {'x': B['x'], 'y': B['y'], 'a': 0, 'b': 0}

   Todo: this could possibly remove the elements that retract to zero.

Semisimple
   alias of sage.categories.semisimple_algebras.SemisimpleAlgebras

class SubcategoryMethods
   Bases: object

   Semisimple()
   Return the subcategory of semisimple objects of self.

   Note: This mimics the syntax of axioms for a smooth transition if Semisimple becomes one.

   EXAMPLES:

   sage: Algebras(QQ).Semisimple()
   Category of semisimple algebras over Rational Field
   sage: Algebras(QQ).WithBasis().FiniteDimensional().Semisimple()
   Category of finite dimensional semisimple algebras with basis over Rational Field

Supercommutative()
   Return the full subcategory of the supercommutative objects of self.
   This is shorthand for creating the corresponding super category.

   EXAMPLES:

   sage: Algebras(ZZ).Supercommutative()
   Category of supercommutative algebras over Integer Ring

   (continues on next page)
sage: Algebras(ZZ).WithBasis().Supercommutative()
Category of supercommutative super algebras with basis over Integer Ring
sage: Cat = Algebras(ZZ).Supercommutative()
sage: Cat is Algebras(ZZ).Super().Supercommutative()
True

Super
alias of \texttt{sage.categories.super_algebras.SuperAlgebras}

class \texttt{TensorProducts}(\texttt{category, *args})
Bases: \texttt{sage.categories.tensor.TensorProductsCategory}

class \texttt{ElementMethods}
Bases: \texttt{object}

class \texttt{ParentMethods}
Bases: \texttt{object}

\texttt{extra_super_categories()}
EXAMPLES:

sage: Algebras(QQ).TensorProducts().extra_super_categories()
[Category of algebras over Rational Field]
sage: Algebras(QQ).TensorProducts().super_categories()
[Category of algebras over Rational Field, 
Category of tensor products of vector spaces over Rational Field]

Meaning: a tensor product of algebras is an algebra

\texttt{WithBasis}
alias of \texttt{sage.categories.algebras_with_basis.AlgebrasWithBasis}

3.10 Algebras With Basis

class \texttt{sage.categories.algebras_with_basis.AlgebrasWithBasis}(\texttt{base_category})
Bases: \texttt{sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring}

The category of algebras with a distinguished basis.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ); C
Category of algebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of algebras over Rational Field, 
Category of unital algebras with basis over Rational Field]

We construct a typical parent in this category, and do some computations with it:

sage: A = C.example(); A
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
sage: A.category()
Category of algebras with basis over Rational Field

(continues on next page)
sage: A.one_basis()
word:
sage: A.one()
B[word: ]
sage: A.base_ring()
Rational Field
sage: A.basis().keys()
Finite words over {'a', 'b', 'c'}

sage: (a,b,c) = A.algebra_generators()
sage: a^3, b^2
(B[word: aaa], B[word: bb])
sage: a*c+b
B[word: acb]
sage: A.product
<bound method FreeAlgebra_with_category._product_from_product_on_basis_multiply of
An example of an algebra with basis: the free algebra on the generators ('a', 'b
˓→', 'c') over Rational Field>
sage: A.product(a*b,b)
B[word: abb]
sage: TestSuite(A).run(\text{verbose=\texttt{True}})
running \_test_additive_associativity() . . . pass
running \_test_an_element() . . . pass
running \_test_associativity() . . . pass
running \_test_cardinality() . . . pass
running \_test_category() . . . pass
running \_test_characteristic() . . . pass
running \_test_construction() . . . pass
running \_test_distributivity() . . . pass
running \_test_elements() . . .
  Running the test suite of self.an_element()
running \_test_category() . . . pass
running \_test_eq() . . . pass
running \_test_new() . . . pass
running \_test_nonzero_equal() . . . pass
running \_test_not_implemented_methods() . . . pass
running \_test_pickling() . . . pass
  pass
running \_test_elements_eq_reflexive() . . . pass
running \_test_elements_eq_symmetric() . . . pass
running \_test_elements_eq_transitive() . . . pass
running \_test_eq() . . . pass
running \_test_new() . . . pass
running \_test_not_implemented_methods() . . . pass
running \_test_one() . . . pass
running \_test_pickling() . . . pass
running \_test_prod() . . . pass
running \_test_some_elements() . . . pass
running \_test_zero() . . . pass
sage: A.__class__
<class 'sage.categories.examples.algebras_with_basis.FreeAlgebra_with_category'>
sage: A.element_class

(continues on next page)
May 2020


(continued from previous page)

Please see the source code of \(A\) (with \(A??\)) for how to implement other algebras with basis.

```python
class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of algebras with basis, constructed as Cartesian products of algebras with basis.

Note: this construction give the direct products of algebras with basis. See comment in Algebras. CartesianProducts

class ParentMethods
 Bases: object

 one()

 one_from_cartesian_product_of_one_basis()
 Returns the one of this Cartesian product of algebras, as per Monoids.ParentMethods.one

 It is constructed as the Cartesian product of the ones of the summands, using their one_basis() methods.

 This implementation does not require multiplication by scalars nor calling cartesian_product.
 This might help keeping things as lazy as possible upon initialization.

 EXAMPLES:

 sage: A = AlgebrasWithBasis(QQ).example(); A
 An example of an algebra with basis: the free algebra on the
generators ('a', 'b', 'c') over Rational Field
 sage: A.one_basis()
 word:

 sage: B = cartesian_product((A, A, A))
 sage: B.one()

 sage: cartesian_product([SymmetricGroupAlgebra(QQ, 3),
 ... SymmetricGroupAlgebra(QQ, 4)]).one()
 B[0, [1, 2, 3]] + B[1, [1, 2, 3, 4]]
```

extrスーパーキャテゴリーズ()
A Cartesian product of algebras with basis is endowed with a natural algebra with basis structure.

EXAMPLES:

```python
sage: AlgebrasWithBasis(QQ).CartesianProducts().extra_super_categories()
[Category of algebras with basis over Rational Field]

sage: AlgebrasWithBasis(QQ).CartesianProducts().super_categories()
[Category of algebras with basis over Rational Field, Category of Cartesian products of algebras over Rational Field, Category of Cartesian products of vector spaces with basis over Rational Field]
```

class ElementMethods
    Bases: object

3.10. Algebras With Basis

177
Filtered
alias of  
sage.categories.filtered_algebras_with_basis.
FilteredAlgebrasWithBasis

FiniteDimensional
alias of  
sage.categories.finite_dimensional_algebras_with_basis.
FiniteDimensionalAlgebrasWithBasis

Graded
alias of  
sage.categories.graded_algebras_with_basis.
GradedAlgebrasWithBasis

class ParentMethods

hochschild_complex(M)
Return the Hochschild complex of self with coefficients in M.
See also:
HochschildComplex

EXAMPLES:

```
sage: R.<x> = QQ[]

sage: A = algebras.DifferentialWeyl(R)

sage: H = A.hochschild_complex(A)

sage: SGA = SymmetricGroupAlgebra(QQ, 3)

sage: T = SGA.trivial_representation()

sage: H = SGA.hochschild_complex(T)
```

one()
Return the multiplicative unit element.

EXAMPLES:

```
sage: A = AlgebrasWithBasis(QQ).example()

sage: A.one_basis()
word:

sage: A.one()
B[word:]
```

Super
alias of  
sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis

class TensorProducts category, *args

Bases: sage.categories.tensor.TensorProductsCategory

The category of algebras with basis constructed by tensor product of algebras with basis

class ElementMethods

Bases: object

Implements operations on elements of tensor products of algebras with basis

class ParentMethods

Bases: object

implements operations on tensor products of algebras with basis
one_basis()

Returns the index of the one of this tensor product of algebras, as per AlgebrasWithBasis.ParentMethods.one_basis.

It is the tuple whose operands are the indices of the ones of the operands, as returned by their one_basis() methods.

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the
→-generators ('a', 'b', 'c') over Rational Field
sage: A.one_basis()
word:
word: a
word: b
word: c
sage: B = tensor( (A, A, A))
(sage: )
word: ,
word: ,
word: 

product_on_basis(t1, t2)

The product of the algebra on the basis, as per AlgebrasWithBasis.ParentMethods.product_on_basis.

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the
→-generators ('a', 'b', 'c') over Rational Field
sage: (a,b,c) = A.algebra_generators()
sage: x = tensor( (a, b, c) ); x
sage: y = tensor( (c, b, a) ); y
sage: x*y
sage: x = tensor( ((a+2*b), c) ) ; x
sage: y = tensor( (c, a) ) + 1; y
sage: x*y

TODO: optimize this implementation!

extra_super_categories()

EXAMPLES:

sage: AlgebrasWithBasis(QQ).TensorProducts().extra_super_categories()
[Category of algebras with basis over Rational Field]
sage: AlgebrasWithBasis(QQ).TensorProducts().super_categories()
[Category of algebras with basis over Rational Field,
Category of tensor products of algebras over Rational Field,
Category of tensor products of vector spaces with basis over Rational Field]
example (alphabet='a', 'b', 'c')

Return an example of algebra with basis.

EXAMPLES:

```
sage: AlgebrasWithBasis(QQ).example()
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
```

An other set of generators can be specified as optional argument:

```
sage: AlgebrasWithBasis(QQ).example((1,2,3))
An example of an algebra with basis: the free algebra on the generators (1, 2, 3) over Rational Field
```

3.11 Aperiodic semigroups

class sage.categories.aperiodic_semigroups.AperiodicSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

extra_super_categories()

Implement the fact that an aperiodic semigroup is $H$-trivial.

EXAMPLES:

```
sage: Semigroups().Aperiodic().extra_super_categories()
[Category of h trivial semigroups]
```

3.12 Associative algebras

class sage.categories.associative_algebras.AssociativeAlgebras(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of associative algebras over a given base ring.

An associative algebra over a ring $R$ is a module over $R$ which is also a not necessarily unital ring.

**Warning:** Until trac ticket #15043 is implemented, Algebras is the category of associative unital algebras; thus, unlike the name suggests, AssociativeAlgebras is not a subcategory of Algebras but of MagmaticAlgebras.

EXAMPLES:

```
sage: from sage.categories.associative_algebras import AssociativeAlgebras
sage: C = AssociativeAlgebras(ZZ); C
Category of associative algebras over Integer Ring
```

Unital

alias of sage.categories.algebras.Algebras
3.13 Bialgebras

class sage.categories.bialgebras.Bialgebras(base, name=None):
    Bases: sage.categories.category_types.Category_over_base_ring

    The category of bialgebras

    EXAMPLES:

    sage: Bialgebras(ZZ)
    Category of bialgebras over Integer Ring
    sage: Bialgebras(ZZ).super_categories()
    [Category of algebras over Integer Ring, Category of coalgebras over Integer Ring]

class ElementMethods
    Bases: object

    is_grouplike()
        Return whether self is a grouplike element.

        EXAMPLES:

        sage: s = SymmetricFunctions(QQ).schur()
        sage: s([[5]]).is_grouplike()
        False
        sage: s([]).is_grouplike()
        True

    is_primitive()
        Return whether self is a primitive element.

        EXAMPLES:

        sage: p = SymmetricFunctions(QQ).powersum()
        sage: p([[5]]).is_primitive()
        True

class Super(base_category):
    Bases: sage.categories.super_modules.SuperModulesCategory

    WithBasis
        alias of sage.categories.bialgebras_with_basis.BialgebrasWithBasis

    additional_structure()
        Return None.

        Indeed, the category of bialgebras defines no additional structure: a morphism of coalgebras and of algebras between two bialgebras is a bialgebra morphism.

        See also:

        Category.additional_structure()

        Todo: This category should be a CategoryWithAxiom.

        EXAMPLES:
**sage:** Bialgebras(QQ).additional_structure()

**super_categories()**

**EXAMPLES:**

```
sage: Bialgebras(QQ).super_categories()
[Category of algebras over Rational Field, Category of coalgebras over Rational Field]
```

### 3.14 Bialgebras with basis

**class** `sage.categories.bialgebras_with_basis.BialgebrasWithBasis` (`base_category`)

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of bialgebras with a distinguished basis.

**EXAMPLES:**

```
sage: C = BialgebrasWithBasis(QQ); C
Category of bialgebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of algebras with basis over Rational Field,
 Category of bialgebras over Rational Field,
 Category of coalgebras with basis over Rational Field]
```

**class** `ElementMethods`

**Bases:** `object`

**adams_operator** (`n`)

Compute the $n$-th convolution power of the identity morphism $Id$ on `self`.

**INPUT:**

- `n` – a nonnegative integer

**OUTPUT:**

- the image of `self` under the convolution power $Id^n$

**Note:** In the literature, this is also called a Hopf power or Sweedler power, cf. [AL2015].

**See also:**

`sage.categories.bialgebras.ElementMethods.convolution_product()`

**Todo:** Remove dependency on `modules_with_basis` methods.

**EXAMPLES:**

```
sage: h = SymmetricFunctions(QQ).h()
sage: h[5].adams_operator(2)
sage: h[5].plethysm(2*h[1])
sage: h([]).adams_operator(0)
```

(continues on next page)
convolution_product(*maps)

Return the image of self under the convolution product (map) of the maps.

Let $A$ and $B$ be bialgebras over a commutative ring $R$. Given maps $f_i : A \to B$ for $1 \leq i < n$, define the convolution product

$$(f_1 * f_2 * \cdots * f_n) := \mu^{(n-1)} \circ (f_1 \otimes f_2 \otimes \cdots \otimes f_n) \circ \Delta^{(n-1)},$$

where $\Delta^{(k)} := (\Delta \otimes \text{Id}^{(k-1)}) \circ \Delta^{(k-1)}$, with $\Delta^{(1)} = \Delta$ (the ordinary coproduct in $A$) and $\Delta^{(0)} = \text{Id}$; and with $\mu^{(k)} := \mu \circ (\mu^{(k-1)} \otimes \text{Id})$ and $\mu^{(1)} = \mu$ (the ordinary product in $B$). See [Swe1969].

(In the literature, one finds, e.g., $\Delta^{(2)}$ for what we denote above as $\Delta^{(1)}$. See [KMN2012].)

INPUT:
- maps – any number $n \geq 0$ of linear maps $f_1, f_2, \ldots, f_n$ on self.parent(); or a single list or tuple of such maps

OUTPUT:
- the convolution product of maps applied to self

AUTHORS:
- Amy Pang - 12 June 2015 - Sage Days 65

Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:

We compute convolution products of the identity and antipode maps on Schur functions:

```python
sage: Id = lambda x: x
sage: Antipode = lambda x: x.antipode()
```

```python
sage: s = SymmetricFunctions(QQ).schur()
```

```python
sage: s[3].convolution_product(Id, Id)
 2*s[2, 1] + 4*s[3]
```

The method accepts multiple arguments, or a single argument consisting of a list of maps:
We test the defining property of the antipode morphism; namely, that the antipode is the inverse of the identity map in the convolution algebra whose identity element is the composition of the counit and unit:

\[
\text{sage: } \text{s}[:3,2].\text{convolution_product}(\text{Id}, \text{Id}) \equiv \text{s}[:3,2].\text{convolution_product}(\text{Antipode}, \rightarrow \text{Id}) \equiv \text{s}[:3,2].\text{convolution_product}(\text{Id}, \text{Antipode})
\]

\[
\text{True}
\]

\[
\text{sage: } \Psi = \text{NonCommutativeSymmetricFunctions(QQ).Psi()}
\]
\[
\text{sage: } \Psi[:2,1].\text{convolution_product}(\text{Id}, \text{Id}, \text{Id})
\]
\[
3\Psi[1, 2] + 6\Psi[2, 1]
\]
\[
\text{sage: } (\Psi[5,1] - \Psi[1,5]).\text{convolution_product}(\text{Id}, \text{Id}, \text{Id})
\]
\[
-3\Psi[1, 5] + 3\Psi[5, 1]
\]

\[
\text{sage: } G = \text{SymmetricGroup(3)}
\]
\[
\text{sage: } QG = \text{GroupAlgebra(G,QQ)}
\]
\[
\text{sage: } x = QG.\text{sum_of_terms}((p.p.length()) \text{ for } p \text{ in } \text{Permutations(3)})); x
\]
\[
[1, 3, 2] + [2, 1, 3] + 2*[2, 3, 1] + 2*[3, 1, 2] + 3*[3, 2, 1]
\]
\[
\text{sage: } x.\text{convolution_product}(\text{Id}, \text{Id})
\]
\[
5*[1, 2, 3] + 2*[2, 3, 1] + 2*[3, 1, 2]
\]
\[
\text{sage: } x.\text{convolution_product}(\text{Id}, \text{Id}, \text{Id})
\]
\[
4*[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + 3*[3, 2, 1]
\]
\[
\text{sage: } x.\text{convolution_product}([\text{Id}]*6)
\]
\[
9*[1, 2, 3]
\]

```python
class ParentMethods
 Bases: object

 convolution_product(*maps)
 Return the convolution product (a map) of the given maps.

 Let \(A \) and \(B \) be bialgebras over a commutative ring \(R \). Given maps \(f_i : A \rightarrow B \) for \(1 \leq i < n \), define the convolution product

 \[
 (f_1 \ast f_2 \ast \cdots \ast f_n) := \mu^{(n-1)} \circ (f_1 \otimes f_2 \otimes \cdots \otimes f_n) \circ \Delta^{(n-1)},
 \]

 where \(\Delta^{(k)} := \left(\Delta \otimes \text{Id} \right)^{\otimes (k-1)} \circ \Delta^{(k-1)} \), with \(\Delta^{(1)} = \Delta \) (the ordinary coproduct in \(A \)) and \(\Delta^{(0)} = \text{Id} \); and with \(\mu^{(k)} := \mu \circ (\mu^{(k-1)} \otimes \text{Id}) \) and \(\mu^{(1)} = \mu \) (the ordinary product in \(B \)). See [Swe1969].

 (In the literature, one finds, e.g., \(\Delta^{(2)} \) for what we denote above as \(\Delta^{(1)} \). See [KMN2012].)

 INPUT:
 • maps – any number \(n \geq 0 \) of linear maps \(f_1, f_2, \ldots, f_n \) on \(\text{self} \); or a single list or tuple of such maps

 OUTPUT:
 • the new map \(f_1 \ast f_2 \ast \cdots \ast f_n \) representing their convolution product

 See also:
 sage.categories.bialgebras.ElementMethods.convolution_product()

 AUTHORS:
```
Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:

We construct some maps: the identity, the antipode and projection onto the homogeneous component of degree 2:

```
sage: Id = lambda x: x
sage: Antipode = lambda x: x.antipode()
sage: Proj2 = lambda x: x.parent().sum_of_terms([(m, c) for (m, c) in x, ... if m.size() == 2])
```

Compute the convolution product of the identity with itself and with the projection Proj2 on the Hopf algebra of non-commutative symmetric functions:

```
sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: T = R.convolution_product([Id, Id])
sage: [T(R(comp)) for comp in Compositions(3)]
[4*R[1, 1, 1] + R[1, 2] + R[2, 1],
 2*R[1, 1, 1] + 4*R[1, 2] + 2*R[2, 1] + 2*R[3],
 2*R[1, 1, 1] + 2*R[1, 2] + 4*R[2, 1] + 2*R[3],
 R[1, 2] + R[2, 1] + 4*R[3]]
sage: T = R.convolution_product(Proj2, Id)
sage: [T(R([i])) for i in range(1, 5)]
[0, R[2], R[2, 1] + R[3], R[2, 2] + R[4]]
```

Compute the convolution product of no maps on the Hopf algebra of symmetric functions in non-commuting variables. This is the composition of the counit with the unit:

```
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: T = m.convolution_product()
sage: [T(m(lam)) for lam in SetPartitions(0).list() + SetPartitions(2).list()]
[m{}, 0, 0]
```

Compute the convolution product of the projection Proj2 with the identity on the Hopf algebra of symmetric functions in non-commuting variables:

```
sage: T = m.convolution_product(Proj2, Id)
sage: [T(m(lam)) for lam in SetPartitions(3)]
[0,
 m{{1, 2}, {3}} + m{{1, 2, 3}},
 m{{1, 2}, {3}} + m{{1, 2, 3}},
 m{{1, 2}, {3}} + m{{1, 2, 3}},
 3*m{{1}, {2}, {3}} + 3*m{{1}, {2, 3}} + 3*m{{1, 3}, {2}}]
```

Compute the convolution product of the antipode with itself and the identity map on group algebra of the symmetric group:

```
sage: G = SymmetricGroup(3)
sage: QG = GroupAlgebra(G, QQ)
sage: x = QG.sum_of_terms([(p.number_of_peaks() + p.number_of_ ... inversions()) for p in Permutations(3))]; x
2*[1, 3, 2] + [2, 1, 3] + 3*[2, 3, 1] + 2*[3, 1, 2] + 3*[3, 2, 1]
sage: T = QG.convolution_product(Antipode, Antipode, Id)
```
3.15 Bimodules

class sage.categories.bimodules.Bimodules(left_base, right_base, name=None)
Bases: sage.categories.category.CategoryWithParameters

The category of \((R, S)\)-bimodules

For \(R\) and \(S\) rings, a \((R, S)\)-bimodule \(X\) is a left \(R\)-module and right \(S\)-module such that the left and right actions commute: \(r \ast (x \ast s) = (r \ast x) \ast s\).

EXAMPLES:

```python
sage: Bimodules(QQ, ZZ)
Category of bimodules over Rational Field on the left and Integer Ring on the right
sage: Bimodules(QQ, ZZ).super_categories()
[Category of left modules over Rational Field, Category of right modules over Integer Ring]
```

class ElementMethods
Bases: object

class ParentMethods
Bases: object

additional_structure()
Return None.

Indeed, the category of bimodules defines no additional structure: a left and right module morphism between two bimodules is a bimodule morphism.

See also:
Category.additionastructure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

```python
sage: Bimodules(QQ, ZZ).additional_structure()
```

classmethod an_instance()
Return an instance of this class.

EXAMPLES:

```python
sage: Bimodules.an_instance()
Category of bimodules over Rational Field on the left and Real Field with 53 bits of precision on the right
```

left_base_ring()
Return the left base ring over which elements of this category are defined.
EXAMPLES:

```
sage: Bimodules(QQ, ZZ).left_base_ring()
Rational Field
```

**right_base_ring()**

Return the right base ring over which elements of this category are defined.

EXAMPLES:

```
sage: Bimodules(QQ, ZZ).right_base_ring()
Integer Ring
```

**super_categories()**

EXAMPLES:

```
sage: Bimodules(QQ, ZZ).super_categories()
[Category of left modules over Rational Field, Category of right modules over Integer Ring]
```

---

### 3.16 Classical Crystals

**class** `sage.categories.classical_crystals.ClassicalCrystals(s=None)`

**Bases:** `sage.categories.category_singleton.Category_singleton`

The category of classical crystals, that is crystals of finite Cartan type.

**EXAMPLES:**

```
sage: C = ClassicalCrystals()
sage: C
Category of classical crystals
sage: C.super_categories()
[Category of regular crystals, Category of finite crystals, Category of highest weight crystals]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1
```

**class** `ElementMethods`

**Bases:** `object`

**lusztig_involution()**

Return the Lusztig involution on the classical highest weight crystal `self`.

The Lusztig involution on a finite-dimensional highest weight crystal $B(\lambda)$ of highest weight $\lambda$ maps the highest weight vector to the lowest weight vector and the Kashiwara operator $f_i$ to $e_i^*$, where $i^*$ is defined as $\alpha_i^* = -w_0(\alpha_i)$. Here $w_0$ is the longest element of the Weyl group acting on the $i$-th simple root $\alpha_i$.

**EXAMPLES:**

```
sage: B = crystals.Tableaux(['A',3],shape=[2,1])
sage: b = B(rows=[[1,2],[4]])
sage: b.lusztig_involution()
[[1, 4], [3]]
sage: b.to_tableau().schuetzenberger_involution(n=4)
```

(continues on next page)
sage: all(b.lusztig_involution().to_tableau() == b.to_tableau().→schuetzenberger_involution(n=4) for b in B)
True
sage: B = crystals.Tableaux(['D',4],shape=[1])

sage: [[b,b.lusztig_involution()] for b in B]

[[[1]], [[-1]], [[2]], [[-2]], [[3]], [[-3]], [[4]], [[-4]],
[[[4]]], [[[-3]], [3]], [[[2]], [[2]], [[-1]], [1]]]  

sage: B = crystals.Tableaux(['D',3],shape=[1])

sage: [[b,b.lusztig_involution()] for b in B]

[[[1]], [[-1]], [[2]], [[-2]], [[3]], [[-3]],
[[[2]], [[2]], [[-1]], [1]]]

sage: C = CartanType(['E',6])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: t = T[3]; t

(-4, 2, 5)

sage: t.lusztig_involution()

(-2, -3, 4)

class ParentMethods
Bases: object

cardinality()

Returns the number of elements of the crystal, using Weyl’s dimension formula on each connected component.

EXAMPLES:

sage: C = ClassicalCrystals().example(5)
sage: C.cardinality()
6

class ParentMethods
Bases: object

cardinality()

Returns the number of elements of the crystal, using Weyl’s dimension formula on each connected component.

EXAMPLES:

sage: C = ClassicalCrystals().example(5)
sage: C.cardinality()
6

class ParentMethods
Bases: object

cardinality()

Returns the number of elements of the crystal, using Weyl’s dimension formula on each connected component.

EXAMPLES:

sage: C = ClassicalCrystals().example(5)
sage: C.cardinality()
6
One may specify an alternate `WeylCharacterRing`:

```python
sage: R = WeylCharacterRing("A2", style="coroots")
sage: chiT = T.character(R); chiT
A2(0,0) + 2*A2(1,1) + A2(0,3) + A2(3,0) + A2(2,2)
sage: chiT in R
True
```

It should have the same Cartan type and use the same realization of the weight lattice as `self`:

```python
sage: R = WeylCharacterRing("A3", style="coroots")
sage: T.character(R)
Traceback (most recent call last):
 ... ValueError: Weyl character ring does not have the right Cartan type
```

demazure_character(w, f=None)

Return the Demazure character associated to `w`.

**INPUT:**

- `w` – an element of the ambient weight lattice realization of the crystal, or a reduced word, or an element in the associated Weyl group

**OPTIONAL:**

- `f` – a function from the crystal to a module

This is currently only supported for crystals whose underlying weight space is the ambient space.

The Demazure character is obtained by applying the Demazure operator $D_w$ (see `sage.categories.regular_crystals.RegularCrystals.ParentMethods.demazure_operator()`) to the highest weight element of the classical crystal. The simple Demazure operators $D_i$ (see `sage.categories.regular_crystals.RegularCrystals.ElementMethods.demazure_operator_simple()`) do not braid on the level of crystals, but on the level of characters they do. That is why it makes sense to input `w` either as a weight, a reduced word, or as an element of the underlying Weyl group.

**EXAMPLES:**

```python
sage: T = crystals.Tableaux(['A',2], shape = [2,1])
sage: e = T.weight_lattice_realization().basis()
sage: weight = e[0] + 2*e[2]
sage: weight.reduced_word()
[2, 1]
sage: T.demazure_character(weight)
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x1*x3^2

sage: T = crystals.Tableaux(['A',3], shape=[2,1])
sage: T.demazure_character([1,2,3])
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x2^2*x3

sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([1,2,3])
sage: T.demazure_character(w)
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x2^2*x3

sage: T = crystals.Tableaux(['B',2], shape = [2])
sage: e = T.weight_lattice_realization().basis()
sage: weight = -2*e[1]
sage: T.demazure_character(weight)
x1^2 + x1*x2 + x2^2 + x1 + x2 + x1/x2 + 1/x2 + 1/x2^2 + 1
```
sage: T = crystals.Tableaux("B2",shape=[1/2,1/2])
sage: b2=WeylCharacterRing("B2",base_ring=QQ).ambient()
sage: T.demazure_character([1,2],f=lambda x:b2(x.weight()))

b2(-1/2,1/2) + b2(1/2,-1/2) + b2(1/2,1/2)

REFERENCES:
• [De1974]
• [Ma2009]

class TensorProducts (category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of classical crystals constructed by tensor product of classical crystals.

extra_super_categories()

EXAMPLES:

sage: ClassicalCrystals().TensorProducts().extra_super_categories()
[Category of classical crystals]

additional_structure()

Return None.

Indeed, the category of classical crystals defines no additional structure: it only states that its objects are $U_q(g)$-crystals, where $g$ is of finite type.

See also:

Category.additional_structure()

EXAMPLES:

sage: ClassicalCrystals().additional_structure()

example (n=3)

Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

sage: B = ClassicalCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1

super_categories()

EXAMPLES:

sage: ClassicalCrystals().super_categories()
[Category of regular crystals,
 Category of finite crystals,
 Category of highest weight crystals]
3.17 Coalgebras

class sage.categories.coalgebras.Coalgebras(base, name=None)

Bases: sage.categories.category_types.Category_over_base_ring

The category of coalgebras

EXAMPLES:

sage: Coalgebras(QQ)
Category of coalgebras over Rational Field
sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]

class Cocommutative(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of cocommutative coalgebras.

class DualObjects(category, *args)

Bases: sage.categories.dual.DualObjectsCategory

extra_super_categories()

Return the dual category.

EXAMPLES:

The category of coalgebras over the Rational Field is dual to the category of algebras over the same field:

sage: C = Coalgebras(QQ)
sage: C.dual()
Category of duals of coalgebras over Rational Field
sage: C.dual().super_categories() # indirect doctest
[Category of algebras over Rational Field, Category of duals of vector spaces over Rational Field]

Warning: This is only correct in certain cases (finite dimension, ...). See trac ticket #15647.

class ElementMethods

Bases: object

coproduct()

Return the coproduct of self.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation
--group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.coproduct()
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, b.coproduct()
(B[(1,3)], B[(1,3)] # B[(1,3)])
counit() 
Return the counit of self.

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
 the group algebra of the Dihedral group of order 6 as a permutation,
 group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.counit()
(B[(1,2,3)], 1)
sage: b, b.counit()
(B[(1,3)], 1)
```

class Filtered(base_category)
Bases: `sage.categories.filtered_modules.FilteredModulesCategory`

Category of filtered coalgebras.

Graded
alias of `sage.categories.graded_coalgebras.GradedCoalgebras`

class ParentMethods
Bases: object

coproduct(x)
Return the coproduct of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forcing the conversion back

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
 the group algebra of the Dihedral group of order 6 as a permutation,
 group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.coproduct(a)
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, A.coproduct(b)
(B[(1,3)], B[(1,3)] # B[(1,3)])
```

counit(x)
Return the counit of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forcing the conversion back

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
 the group algebra of the Dihedral group of order 6 as a permutation,
 group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.counit(a)
(B[(1,2,3)], 1)
sage: b, A.counit(b)
(B[(1,3)], 1)
```
TODO: implement some tests of the axioms of coalgebras, bialgebras and Hopf algebras using the counit.

class Realizations\(\text{(category, *args)}\)
Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods
Bases: object

coproduct_by_coercion\(x\)
Return the coproduct by coercion if coproduct\_by\_basis is not implemented.

EXAMPLES:

\begin{verbatim}
sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.monomial()
sage: f = m[2,1]
sage: f.coproduct.__module__
'sage.categories.coalgebras'
sage: m.coproduct_on_basis
NotImplemented
sage: m.coproduct == m.coproduct_by_coercion
True
sage: f.coproduct()
sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.coproduct_by_coercion.__module__
'sage.categories.coalgebras'
sage: R.coproduct_on_basis
NotImplemented
sage: R.coproduct == R.coproduct_by_coercion
True
sage: R[1].coproduct()
\end{verbatim}

counit\_by\_coercion\(x\)
Return the counit of \(x\) if counit\_by\_basis is not implemented.

EXAMPLES:

\begin{verbatim}
sage: sp = SymmetricFunctions(QQ).sp()
sage: sp.an_element()
2*sp[] + 2*sp[1] + 3*sp[2]
sage: sp.counit(sp.an_element())
2
sage: o = SymmetricFunctions(QQ).o()
sage: o.an_element()
2*o[] + 2*o[1] + 3*o[2]
sage: o.counit(o.an_element())
-1
\end{verbatim}

class SubcategoryMethods
Bases: object

Cocommutative()
Return the full subcategory of the cocommutative objects of self.
A coalgebra $C$ is said to be \textit{cocommutative} if

$$\Delta(c) = \sum_{(c)} c_{(1)} \otimes c_{(2)} = \sum_{(c)} c_{(2)} \otimes c_{(1)}$$

in Sweedler's notation for all $c \in C$.

\textbf{EXAMPLES:}

```
sage: C1 = Coalgebras(ZZ).Cocommutative().WithBasis(); C1
Category of cocommutative coalgebras with basis over Integer Ring
sage: C2 = Coalgebras(ZZ).WithBasis().Cocommutative()
sage: C1 is C2
True
sage: BialgebrasWithBasis(QQ).Cocommutative()
Category of cocommutative bialgebras with basis over Rational Field
```
class TensorProducts (category, *args)
    Bases: sage.categories.tensor.TensorProductsCategory

class ElementMethods
    Bases: object

class ParentMethods
    Bases: object

extra_super_categories()
EXAMPLES:

sage: Coalgebras(QQ).TensorProducts().extra_super_categories()
[Category of coalgebras over Rational Field]
sage: Coalgebras(QQ).TensorProducts().super_categories()
[Category of tensor products of vector spaces over Rational Field,
Category of coalgebras over Rational Field]

Meaning: a tensor product of coalgebras is a coalgebra

WithBasis
    alias of sage.categories.coalgebras_with_basis.CoalgebrasWithBasis

class WithRealizations (category, *args)
    Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
    Bases: object

coproduct (x)
    Return the coproduct of x.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: N.coproduct.__module__
'sage.categories.coalgebras'
sage: N.coproduct(S[2])

counit (x)
    Return the counit of x.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: f = s[2,1]
sage: f.counit.__module__
'sage.categories.coalgebras'
sage: f.counit()
0

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.counit.__module__
'sage.categories.coalgebras'
sage: N.counit(N.one())
1
sage: x = N.an_element(); x

(continues on next page)
\[ 2 \cdot S[] + 2 \cdot S[1] + 3 \cdot S[1, 1] \]

**sage:** N.counit(x)

2

**super_categories()**

**EXAMPLES:**

```python
sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]
```

### 3.18 Coalgebras with basis

**class** `sage.categories.coalgebras_with_basis.CoalgebrasWithBasis(base_category)`

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of coalgebras with a distinguished basis.

**EXAMPLES:**

```python
sage: CoalgebrasWithBasis(ZZ)
Category of coalgebras with basis over Integer Ring
sage: sorted(CoalgebrasWithBasis(ZZ).super_categories(), key=str)
[Category of coalgebras over Integer Ring, Category of modules with basis over Integer Ring]
```

**class** `ElementMethods`

**Bases:** `object`

**coproduct_iterated**(n=1)

Apply \( n \) coproducts to `self`.

**Todo:** Remove dependency on `modules_with_basis` methods.

**EXAMPLES:**

```python
sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()
sage: Psi[2,2].coproduct_iterated(0)
Psi[2, 2]
sage: Psi[2,2].coproduct_iterated(2)
```

**class** `Filtered(base_category)`

**Bases:** `sage.categories.filtered_modules.FilteredModulesCategory`

Category of filtered coalgebras.

**Graded**

**alias** of `sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis`

**class** `ParentMethods`

**Bases:** `object`
**coproduct()**

If `coproduct_on_basis()` is available, construct the coproduct morphism from `self` to `self ⊗ self` by extending it by linearity. Otherwise, use `coproduct_by_coercion()`, if available.

**EXAMPLES:**

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.coproduct(a)
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, A.coproduct(b)
(B[(1,3)], B[(1,3)] # B[(1,3)])
```

**coproduct_on_basis(i)**

The coproduct of the algebra on the basis (optional).

**INPUT:**

- `i` – the indices of an element of the basis of `self`

Returns the coproduct of the corresponding basis elements. If implemented, the coproduct of the algebra is defined from it by linearity.

**EXAMPLES:**

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: (a, b) = A._group.gens()
sage: A.coproduct_on_basis(a)
B[(1,2,3)] # B[(1,2,3)]
```

**counit()**

If `counit_on_basis()` is available, construct the counit morphism from `self` to `self ⊗ self` by extending it by linearity.

**EXAMPLES:**

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.counit(a)
(B[(1,2,3)], 1)
sage: b, A.counit(b)
(B[(1,3)], 1)
```

**counit_on_basis(i)**

The counit of the algebra on the basis (optional).

**INPUT:**

- `i` – the indices of an element of the basis of `self`

Returns the counit of the corresponding basis elements. If implemented, the counit of the algebra is defined from it by linearity.

**EXAMPLES:**

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.counit(a)
(B[(1,2,3)], 1)
sage: b, A.counit(b)
(B[(1,3)], 1)
```
3.19 Commutative additive groups

class sage.categories.commutative_additive_groups.CommutativeAdditiveGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton, sage.categories.category_types.AbelianCategory

The category of abelian groups, i.e. additive abelian monoids where each element has an inverse.

EXAMPLES:

sage: C = CommutativeAdditiveGroups(); C
Category of commutative additive groups
sage: C.super_categories()
[Category of additive groups, Category of commutative additive monoids]

Note:  This category is currently empty. It’s left there for backward compatibility and because it is likely to grow in the future.

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ElementMethods
Bases: object

additive_order()
    Return the additive order of this element.

EXAMPLES:
3.20 Commutative additive monoids

```python
sage: G = cartesian_product([Zmod(3), Zmod(6), Zmod(5)])
sage: G((1,1,1)).additive_order()
30
sage: any((i * G((1,1,1))).is_zero() for i in range(1,30))
False
sage: 30 * G((1,1,1))
(0, 0, 0)
sage: G = cartesian_product([ZZ, ZZ])
sage: G((0,0)).additive_order()
1
sage: G((0,1)).additive_order()
+Infinity
sage: K = GF(9)
sage: H = cartesian_product([cartesian_product([Zmod(2),Zmod(9)]), K])
sage: z = H(((1,2), K.gen()))
sage: z.additive_order()
18
```

### 3.20 Commutative additive monoids

The category of commutative additive monoids, that is abelian additive semigroups with a unit.

**EXAMPLES:**

```python
sage: C = CommutativeAdditiveMonoids(); C
Category of commutative additive monoids
sage: C.super_categories()
[Category of additive monoids, Category of commutative additive semigroups]
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveUnital']
sage: C.is(AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().AdditiveUnital())
True
```

**Note:** This category is currently empty and only serves as a place holder to make `C.example()` work.

3.21 Commutative additive semigroups

```python
sage: C = CommutativeAdditiveSemigroups(); C
Category of commutative additive monoids
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveUnital']
sage: C.is(AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().AdditiveUnital())
True
```

The category of commutative additive semigroups, i.e. sets with an associative and abelian operation +.

**EXAMPLES:**
sage: C = CommutativeAdditiveSemigroups(); C
Category of commutative additive semigroups
sage: C.example()
An example of a commutative semigroup: the free commutative semigroup generated by ('a', 'b', 'c', 'd')

sage: sorted(C.super_categories(), key=str)
[Category of additive commutative additive magmas, Category of additive semigroups]

sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative']

sage: C is AdditiveMagmas().AdditiveAssociative().AdditiveCommutative()
True

Note: This category is currently empty and only serves as a place holder to make C.example() work.

### 3.22 Commutative algebra ideals

```python
class sage.categories.commutative_algebra_ideals.CommutativeAlgebraIdeals(A):
 Bases: sage.categories.category_types.Category_ideal

 The category of ideals in a fixed commutative algebra A.

 EXAMPLES:

 sage: C = CommutativeAlgebraIdeals(QQ['x'])
 sage: C
 Category of commutative algebra ideals in Univariate Polynomial Ring in x over Rational Field

 algebra()

 EXAMPLES:

 sage: CommutativeAlgebraIdeals(QQ['x']).algebra()
 Univariate Polynomial Ring in x over Rational Field

 super_categories()

 EXAMPLES:

 sage: CommutativeAlgebraIdeals(QQ['x']).super_categories()
 [Category of algebra ideals in Univariate Polynomial Ring in x over Rational Field]```
3.23 Commutative algebras

```python
class sage.categories.commutative_algebras.CommutativeAlgebras(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

    The category of commutative algebras with unit over a given base ring.

    EXAMPLES:
    sage: M = CommutativeAlgebras(GF(19))
    sage: M
    Category of commutative algebras over Finite Field of size 19
    sage: CommutativeAlgebras(QQ).super_categories()
    [Category of algebras over Rational Field, Category of commutative rings]

    This is just a shortcut for:
    sage: Algebras(QQ).Commutative()
    Category of commutative algebras over Rational Field
```

3.24 Commutative ring ideals

```python
class sage.categories.commutative_ring_ideals.CommutativeRingIdeals(R):
    Bases: sage.categories.category_types.Category_ideal

    The category of ideals in a fixed commutative ring.

    EXAMPLES:
    sage: C = CommutativeRingIdeals(IntegerRing())
    sage: C
    Category of commutative ring ideals in Integer Ring
    sage: CommutativeRingIdeals(ZZ).super_categories()
    [Category of ring ideals in Integer Ring]

    super_categories()
    EXAMPLES:
    sage: CommutativeRingIdeals(ZZ).super_categories()
    [Category of ring ideals in Integer Ring]
```

3.25 Commutative rings

```python
class sage.categories.commutative_rings.CommutativeRings(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

    The category of commutative rings
    commutative rings with unity, i.e. rings with commutative * and a multiplicative identity

    EXAMPLES:
    sage: C = CommutativeRings(); C
    Category of commutative rings
    sage: C.super_categories()
    [Category of rings, Category of commutative monoids]
```

3.23. Commutative algebras
class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

e extra_super_categories()
Let Sage knows that Cartesian products of commutative rings is a commutative ring.

EXAMPLES:

```
sage: CommutativeRings().Commutative().CartesianProducts().extra_super_categories()
[Category of commutative rings]
sage: cartesian_product([ZZ, Zmod(34), QQ, GF(5)]) in CommutativeRings()
True
```

class ElementMethods
Bases: object

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

Check that Sage knows that Cartesian products of finite commutative rings is a finite commutative ring.

EXAMPLES:

```
sage: cartesian_product([Zmod(34), GF(5)]) in Rings().Commutative().Finite()
True
```

class ParentMethods
Bases: object

cyclotomic_cosets(q, cosets=None)
Return the (multiplicative) orbits of q in the ring.

Let R be a finite commutative ring. The group of invertible elements R^* in R gives rise to a group action on R by multiplication. An orbit of the subgroup generated by an invertible element q is called a q-cyclotomic coset (since in a finite ring, each invertible element is a root of unity).

These cosets arise in the theory of minimal polynomials of finite fields, duadic codes and combinatorial designs. Fix a primitive element z of $GF(q^k)$. The minimal polynomial of z^s over $GF(q)$ is given by

$$M_s(x) = \prod_{i \in C_s} (x - z^i),$$

where C_s is the q-cyclotomic coset mod n containing s, $n = q^k - 1$.

Note: When $R = \mathbb{Z}/n\mathbb{Z}$ the smallest element of each coset is sometimes called a coset leader. This function returns sorted lists so that the coset leader will always be the first element of the coset.

INPUT:
- q – an invertible element of the ring
- cosets – an optional lists of elements of self. If provided, the function only return the list of cosets that contain some element from cosets.

OUTPUT:
A list of lists.

EXAMPLES:
Since the group of invertible elements of a finite field is cyclic, the set of squares is a particular case of cyclotomic coset:

```python
sage: K = GF(25, 'z')
sage: a = K.multiplicative_generator()
sage: H = K.cyclotomic_cosets(a**2, cosets=[1]); H
[[1, 4, z + 1, z + 3],
  2*z + 1, 2*z + 2, 3*z + 3,
  3*z + 4, 4*z + 2, 4*z + 4]]
sage: sorted(x-y for D in H for x in D for y in D if x != y)
[1, 2, 3, 4]
sage: K = GF(37)
sage: a = K.multiplicative_generator()
sage: H = K.cyclotomic_cosets(a**4, cosets=[1]); H
[[1, 7, 9, 10, 12, 16, 26, 33, 34],
  [1, 1, 2, 3, 4, 5, 5, ..., 33, 34, 34, 35, 35, 36, 36]]
sage: sorted(x-y for D in H for x in D for y in D if x != y)
[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ..., 33, 34, 34, 35, 35, 36, 36]
```

We compute some examples of minimal polynomials:

```python
cyc3 = Zmod(26).cyclotomic_cosets(3, cosets=[1]); cyc3
[[1, 3, 9]]
sage: prod(X - a**i for i in cyc3[0])
X^3 + 2*X + 1
```

Cyclotomic cosets of fields are useful in combinatorial design theory to provide so called difference families (see Wikipedia article Difference_set and difference_family). This is illustrated on the following examples:

```python
cyc7 = Zmod(26).cyclotomic_cosets(3, cosets=[7]); cyc7
[[7, 11, 21]]
sage: prod(X - a**i for i in cyc7[0])
X^3 + 2*X + 1
```

The method `cyclotomic_cosets` works on any finite commutative ring:
```python
sage: R = cartesian_product([GF(7), Zmod(14)])
sage: a = R((3,5))
sage: R.cyclotomic_cosets((3,5), [(1,1)])
```

```python
class ParentMethods
    Bases: object

    over(base=None, gen=None, gens=None, name=None, names=None)
    Return this ring, considered as an extension of base.

    INPUT:
    • base – a commutative ring or a morphism or None (default: None); the base of this extension or its defining morphism
    • gen – a generator of this extension (over its base) or None (default: None);
    • gens – a list of generators of this extension (over its base) or None (default: None);
    • name – a variable name or None (default: None)
    • names – a list or a tuple of variable names or None (default: None)

    EXAMPLES:
    We construct an extension of finite fields:

    ```
sage: F = GF(5^2)
sage: k = GF(5^4)
sage: z4 = k.gen()
sage: K = k.over(F)
sage: K
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
```

If not explicitly given, the default generator of the top ring (here k) is used and the same name is kept:

```python
sage: K.gen()
z4
sage: K(z4)
z4
```

However, it is possible to specify another generator and/or another name. For example:

```python
sage: Ka = k.over(F, name='a')
sage: Ka
Field in a with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
sage: Ka.gen()
a
sage: Kb = k.over(F, gen=-z4+1, name='b')
sage: Kb
Field in b with defining polynomial x^2 + z2*x + 4 over its base
sage: Kb.gen()
b
```

Note that the shortcut K.<a> is also available:
Building an extension on top of another extension is allowed:

```python
sage: KKa.<a> = k.over(F)
sage: KKa is Ka
True
```

The successive bases of an extension are accessible via the method `sage.rings.
ring_extension.RingExtension_generic.bases()`:

```python
sage: L = GF(5^12).over(K)
sage: L
Field in z12 with defining polynomial x^3 + (1 + (4*z2 + 2)*z4)*x^2 + (2
\rightarrow 2*z4)*x - z4 over its base
sage: L.base_ring()
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
```

When base is omitted, the canonical base of the ring is used:

```python
sage: S.<x> = QQ[]
sage: E = S.over()
sage: E
Univariate Polynomial Ring in x over Rational Field over its base
sage: E.base_ring()
Rational Field
```

Here is an example where base is a defining morphism:

```python
sage: k.<a> = QQ.extension(x^2 - 2)
sage: l. = QQ.extension(x^4 - 2)
sage: f = k.hom([b^2])
sage: L = l.over(f)
sage: L
Field in b with defining polynomial x^2 - a over its base
sage: L.base_ring()
Number Field in a with defining polynomial x^2 - 2
```

Similarly, one can create a tower of extensions:

```python
sage: K = k.over()
sage: L = l.over(Hom(K,l)(f))
sage: L
Field in b with defining polynomial x^2 - a over its base
sage: L.base_ring()
Field in a with defining polynomial x^2 - 2 over its base
sage: L.bases()
[Field in b with defining polynomial x^2 - a over its base, Field in a with defining polynomial x^2 - 2 over its base, Rational Field]
```
3.26 Complete Discrete Valuation Rings (CDVR) and Fields (CDVF)

class sage.categories.complete_discretevaluation.CompleteDiscreteValuationFields(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

The category of complete discrete valuation fields

EXAMPLES:

sage: Zp(7) in CompleteDiscreteValuationFields()
False
sage: QQ in CompleteDiscreteValuationFields()
False
sage: LaurentSeriesRing(QQ,'u') in CompleteDiscreteValuationFields()
True
sage: Qp(7) in CompleteDiscreteValuationFields()
True
sage: TestSuite(CompleteDiscreteValuationFields()).run()

class ElementMethods

    Bases: object

    denominator()

    Return the denominator of this element normalized as a power of the uniformizer

    EXAMPLES:

sage: K = Qp(7)
sage: x = K(1/21)
sage: x.denominator()
7 + O(7^21)
sage: x = K(7)
sage: x.denominator()
1 + O(7^20)

Note that the denominator lives in the ring of integers:

sage: x.denominator().parent()
7-adic Ring with capped relative precision 20

When the denominator is indistinguishable from 0 and the precision on the input is \(O(p^n)\), the return value is 1 if \(n\) is nonnegative and \(p^{-n}\) otherwise:

sage: x = K(0,5); x
O(7^5)
sage: x.denominator()
1 + O(7^20)
sage: x = K(0,-5); x
O(7^-5)
sage: x.denominator()
7^5 + O(7^25)

numerator()

Return the numerator of this element, normalized in such a way that \(x = x.numerator()/x.denominator()\) always holds true.

EXAMPLES:
sage: K = Qp(7, 5)
sage: x = K(1/21)
sage: x.numerator()
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + O(7^5)
sage: x == x.numerator() / x.denominator()
True

Note that the numerator lives in the ring of integers:

sage: x.numerator().parent()
7-adic Ring with capped relative precision 5

valuation()
Return the valuation of this element.

EXAMPLES:

sage: K = Qp(7)
sage: x = K(7); x
7 + O(7^21)
sage: x.valuation()
1

super_categories()
EXAMPLES:

sage: CompleteDiscreteValuationFields().super_categories()
[Category of discrete valuation fields]

class sage.categories.complete_discrete_valuation.CompleteDiscreteValuationRings(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of complete discrete valuation rings

EXAMPLES:

sage: Zp(7) in CompleteDiscreteValuationRings()
True
sage: QQ in CompleteDiscreteValuationRings()
False
sage: QQ[['u']] in CompleteDiscreteValuationRings()
True
sage: Qp(7) in CompleteDiscreteValuationRings()
False
sage: TestSuite(CompleteDiscreteValuationRings()).run()

class ElementMethods
Bases: object
denominator()
Return the denominator of this element normalized as a power of the uniformizer

EXAMPLES:

sage: K = Qp(7)
sage: x = K(1/21)
sage: x.denominator()
(continues on next page)
Note that the denominator lives in the ring of integers:

```
sage: x.denominator().parent()
7-adic Ring with capped relative precision 20
```

When the denominator is indistinguishable from 0 and the precision on the input is \(O(p^n)\), the return value is 1 if \(n\) is nonnegative and \(p^l - n\) otherwise:

```
sage: x = K(0,5); x
O(7^5)
sage: x.denominator()
1 + O(7^20)
sage: x = K(0,-5); x
O(7^-5)
sage: x.denominator()
7^5 + O(7^25)
```

**lift_to_precision** *(absprec=None)*

Return another element of the same parent with absolute precision at least \(\text{absprec}\), congruent to this element modulo the precision of this element.

**INPUT:**

- \(\text{absprec}\) – an integer or None (default: None), the absolute precision of the result. If None, lifts to the maximum precision allowed.

**Note:** If setting \(\text{absprec}\) that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.

**EXAMPLES:**

```
sage: R = ZpCA(17)
sage: R(-1,2).lift_to_precision(10)
16 + 16*17 + O(17^10)
sage: R(1,15).lift_to_precision(10)
1 + O(17^15)
sage: R(1,15).lift_to_precision(30)
Traceback (most recent call last):
 ...PrecisionError: Precision higher than allowed by the precision cap.
sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_˓→cap()
True
sage: R = Zp(5); c = R(17,3); c.lift_to_precision(8)
2 + 3*5 + O(5^8)
sage: c.lift_to_precision().precision_relative() == R.precision_cap()
True
```

**numerator** ()
Return the numerator of this element, normalized in such a way that $x = x.numerator() / x.denominator()$ always holds true.

**EXAMPLES:**

```
sage: K = Qp(7, 5)
sage: x = K(1/21)
sage: x.numerator()
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + O(7^5)
sage: x == x.numerator() / x.denominator()
True
```

Note that the numerator lives in the ring of integers:

```
sage: x.numerator().parent()
7-adic Ring with capped relative precision 5
```

**valuation()**

Return the valuation of this element.

**EXAMPLES:**

```
sage: R = Zp(7)
sage: x = R(7); x
7 + O(7^21)
sage: x.valuation()
1
```

**super_categories()**

**EXAMPLES:**

```
sage: CompleteDiscreteValuationRings().super_categories()
[Category of discrete valuation rings]
```

### 3.27 Complex reflection groups

**class** `sage.categories.complex_reflection_groups.ComplexReflectionGroups(s=None)`

**Bases:** `sage.categories.category_singleton.Category_singleton`

The category of complex reflection groups.

Let $V$ be a complex vector space. A *complex reflection* is an element of $\text{GL}(V)$ fixing an hyperplane pointwise and acting by multiplication by a root of unity on a complementary line.

A *complex reflection group* is a group $W$ that is (isomorphic to) a subgroup of some general linear group $\text{GL}(V)$ generated by a distinguished set of complex reflections.

The dimension of $V$ is the *rank* of $W$.

For a comprehensive treatment of complex reflection groups and many definitions and theorems used here, we refer to [LT2009]. See also Wikipedia article [Reflection group].

**See also:**

`ReflectionGroup()` for usage examples of this category.

**EXAMPLES:**
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups

sage: ComplexReflectionGroups()
Category of complex reflection groups
sage: ComplexReflectionGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]

sage: ComplexReflectionGroups().all_super_categories()
[Category of complex reflection groups, Category of complex reflection or generalized coxeter groups, Category of groups, Category of monoids, Category of finitely generated semigroups, Category of semigroups, Category of finitely generated magmas, Category of inverse unital magmas, Category of unital magmas, Category of magmas, Category of enumerated sets, Category of sets, Category of sets with partial maps, Category of objects]

An example of a reflection group:

sage: W = ComplexReflectionGroups().example(); W
5-colored permutations of size 3

W is in the category of complex reflection groups:

sage: W in ComplexReflectionGroups()
True

Finite alias of sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups
class ParentMethods
    Bases: object
    rank()
    Return the rank of self.
    The rank of self is the dimension of the smallest faithfull reflection representation of self.

    EXAMPLES:

    sage: W = CoxeterGroups().example(); W
    The symmetric group on {0, ..., 3}
    sage: W.rank()
    3

    additional_structure()
    Return None.
    Indeed, all the structure complex reflection groups have in addition to groups (simple reflections, ...) is already defined in the super category.

    See also:

    Category.additional_structure()
EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().additional_structure()
```

```python
example()
Return an example of a complex reflection group.
```

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().example()
5-colored permutations of size 3
```

```python
super_categories()
Return the super categories of self.
```

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]
```

### 3.28 Common category for Generalized Coxeter Groups or Complex Reflection Groups

**class** `sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups`

**Bases:** `sage.categories.category_singleton.Category_singleton`

The category of complex reflection groups or generalized Coxeter groups.

Finite Coxeter groups can be defined equivalently as groups generated by reflections, or by presentations. Over the last decades, the theory has been generalized in both directions, leading to the study of (finite) complex reflection groups on the one hand, and (finite) generalized Coxeter groups on the other hand. Many of the features remain similar, yet, in the current state of the art, there is no general theory covering both directions.

This is reflected by the name of this category which is about factoring out the common code, tests, and declarations.

A group in this category has:

- A distinguished finite set of generators \((s_i)\), called *simple reflections*. The set \(I\) is called the *index set*. The name “reflection” is somewhat of an abuse as they can have higher order; still, they are all of finite order: \(s_i^k = 1\) for some \(k\).

- A collection of *distinguished reflections* which are the conjugates of the simple reflections. For complex reflection groups, they are in one-to-one correspondence with the reflection hyperplanes and share the same index set.

- A collection of *reflections* which are the conjugates of all the non trivial powers of the simple reflections.

The usual notions of reduced words, length, irreducibility, etc can be canonically defined from the above.

The following methods must be implemented:

- `ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods.index_set()`
Optionally one can define analog methods for distinguished reflections and reflections (see below). At least one of the following methods must be implemented:

- `ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection()`
- `ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection_left()`
- `ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection_right()`
- `ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods._mul_()`

It's recommended to implement either `_mul_` or both `apply_simple_reflection_left` and `apply_simple_reflection_right`.

See also:

- `complex_reflection_groups.ComplexReflectionGroups`
- `generalized_coxeter_groups.GeneralizedCoxeterGroups`

**EXAMPLES:**

```python
sage: from sage.categories.complex_reflection_or_generalized_coxeter_groups import ComplexReflectionOrGeneralizedCoxeterGroups
sage: C = ComplexReflectionOrGeneralizedCoxeterGroups(); C
Category of complex reflection or generalized coxeter groups
sage: C.super_categories()
[Category of finitely generated enumerated groups]
sage: C.required_methods()
{'element': {'optional': ['reflection_length'],
'required': []},
'parent': {'optional': ['distinguished_reflection', 'hyperplane_index_set',
'irreducible_components',
'reflection', 'reflection_index_set'],
'required': ['__contains__', 'index_set']}}
```

**class ElementMethods**

Bases: object

**apply_conjugation_by_simple_reflection**(i)
Conjugate self by the i-th simple reflection.

**EXAMPLES:**

```python
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.apply_conjugation_by_simple_reflection(1).reduced_word()
[3, 2]
```

**apply_reflections**(word, side='right', word_type='all')
Return the result of the (left/right) multiplication of self by word.

**INPUT:**
- word – a sequence of indices of reflections
- `side` - (default: 'right') indicates multiplying from left or right
- `word_type` - (optional, default: 'all'): either 'simple', 'distinguished', or 'all'

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.one().apply_reflections([1]) # optional - gap3
(1, 4)(2, 3)(5, 6)
sage: W.one().apply_reflections([2]) # optional - gap3
(1, 3)(2, 5)(4, 6)
sage: W.one().apply_reflections([2, 1]) # optional - gap3
(1, 2, 6)(3, 4, 5)

sage: W = CoxeterGroups().example()
(continues on next page)
```
apply_simple_reflection($i$, $side='right'$)

Return self multiplied by the simple reflection $s[i]$.

**INPUT:**

- $i$ – an element of the index set
- $side$ – (default: "right") "left" or "right"

This default implementation simply calls $apply_simple_reflection_left()$ or $apply_simple_reflection_right()$.

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection(0, side = "left")
(0, 2, 3, 1)
sage: w.apply_simple_reflection(1, side = "left")
(2, 1, 3, 0)
sage: w.apply_simple_reflection(2, side = "left")
(1, 3, 2, 0)
sage: w.apply_simple_reflection(0, side = "right")
(2, 1, 3, 0)
sage: w.apply_simple_reflection(1, side = "right")
(1, 3, 2, 0)
sage: w.apply_simple_reflection(2, side = "right")
(1, 2, 0, 3)
```

By default, $side$ is "right":

```python
sage: w.apply_simple_reflection(0)
(2, 1, 3, 0)
```

Some tests with a complex reflection group:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: W = ComplexReflectionGroups().example(); W
5-colored permutations of size 3
sage: w = W.an_element(); w
[[1, 0, 0], [3, 1, 2]]
```

```python
sage: w.apply_simple_reflection(1, side="left")
[[0, 1, 0], [1, 3, 2]]
```

```python
sage: w.apply_simple_reflection(2, side="left")
[[1, 0, 0], [3, 2, 1]]
```

```python
sage: w.apply_simple_reflection(3, side="left")
[[1, 0, 1], [3, 1, 2]]
```

```python
sage: w.apply_simple_reflection(1, side="right")
[[1, 0, 0], [3, 2, 1]]
```

```python
sage: w.apply_simple_reflection(2, side="right")
[[1, 0, 0], [2, 1, 3]]
```

```python
sage: w.apply_simple_reflection(3, side="right")
[[2, 0, 0], [3, 1, 2]]
```
apply_simple_reflection_left \( (i) \)
Return \( \text{self} \) multiplied by the simple reflection \( s[i] \) on the left.

This low level method is used intensively. Coxeter groups are encouraged to override this straightforward implementation whenever a faster approach exists.

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection_left(0)
(0, 2, 3, 1)
sage: w.apply_simple_reflection_left(1)
(2, 1, 3, 0)
sage: w.apply_simple_reflection_left(2)
(1, 3, 2, 0)
```

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: W = ComplexReflectionGroups().example()
sage: w = W.an_element(); w
[[1, 0, 0], [3, 1, 2]]
sage: w.apply_simple_reflection_left(1)
[[0, 1, 0], [1, 3, 2]]
sage: w.apply_simple_reflection_left(2)
[[1, 0, 0], [3, 2, 1]]
sage: w.apply_simple_reflection_left(3)
[[1, 0, 1], [3, 1, 2]]
```

apply_simple_reflection_right \( (i) \)
Return \( \text{self} \) multiplied by the simple reflection \( s[i] \) on the right.

This low level method is used intensively. Coxeter groups are encouraged to override this straightforward implementation whenever a faster approach exists.

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection_right(0)
(2, 1, 3, 0)
sage: w.apply_simple_reflection_right(1)
(1, 3, 2, 0)
sage: w.apply_simple_reflection_right(2)
(1, 2, 0, 3)
```

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: W = ComplexReflectionGroups().example()
sage: w = W.an_element(); w
[[1, 0, 0], [3, 1, 2]]
sage: w.apply_simple_reflection_right(1)
[[1, 0, 0], [3, 2, 1]]
sage: w.apply_simple_reflection_right(2)
[[1, 0, 0], [2, 1, 3]]
```

(continues on next page)
sage: w.apply_simple_reflection_right(3)
[[2, 0, 0], [3, 1, 2]]

**apply_simple_reflections** *(word, side='right', type='simple')*

Return the result of the (left/right) multiplication of *self* by *word*.

**INPUT:**
- *word* – a sequence of indices of simple reflections
- *side* – (default: 'right') indicates multiplying from left or right

This is a specialized implementation of **apply_reflections()** for the simple reflections. The rationale for its existence are:
- It can take advantage of **apply_simple_reflection**, which often is less expensive than computing a product.
- It reduced burden on implementations that would want to provide an optimized version of this method.

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflections([0,1])
(2, 3, 1, 0)
sage: w
(1, 2, 3, 0)
sage: w.apply_simple_reflections([0,1],side='left')
(0, 1, 3, 2)
```

**inverse()**

Return the inverse of *self*.

**EXAMPLES:**

```python
sage: W = WeylGroup(['B',7])
sage: w = W.an_element()
sage: u = w.inverse()
sage: u == ~w
True
sage: u * w == w * u
True
sage: u * w
[1 0 0 0 0 0 0]
[0 1 0 0 0 0 0]
[0 0 1 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 1 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 0 0 1]
```

**is_reflection()**

Return whether *self* is a reflection.

**EXAMPLES:**

```python
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: [t.is_reflection() for t in W.reflections()] # optional - gap3
[True, True, True, True, True, True]
```
reflection_length()

Return the reflection length of self.

This is the minimal length of a factorization of self into reflections.

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,2))
optional - gap3
sage: sorted([t.reflection_length() for t in W])
optional - gap3
[0, 1]
```

```python
sage: W = ReflectionGroup((2,2,2))
optional - gap3
sage: sorted([t.reflection_length() for t in W])
optional - gap3
[0, 1, 1, 2]
```

```python
class Irreducible(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
 Bases: object

 irreducible_components()

 Return a list containing all irreducible components of self as finite reflection groups.

 EXAMPLES:

    ```python
    sage: W = ColoredPermutations(4, 3)
    sage: W.irreducible_components()
    [4-colored permutations of size 3]
    ```

class ParentMethods
 Bases: object

 distinguished_reflection(i)

 Return the i-th distinguished reflection of self.

 INPUT:
 • i – an element of the index set of the distinguished reflections.

 See also:
• distinguished_reflections()
• hyperplane_index_set()

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=('a','b','c','d',
                   'e','f'))  # optional - gap3
sage: for i in W.hyperplane_index_set():                 # optional - gap3
    ....: print('%s %s'(i, W.distinguished_reflection(i))) # optional - gap3
a (1,7)(2,4)(5,6)(8,10)(11,12)
b (1,4)(2,8)(3,5)(7,10)(9,11)
c (2,5)(3,9)(4,6)(8,11)(10,12)
d (1,8)(2,7)(3,6)(4,10)(9,12)
e (1,6)(2,9)(3,8)(5,11)(7,12)
f (1,11)(3,10)(4,9)(5,7)(6,12)
```

distinguished_reflections()

Return a finite family containing the distinguished reflections of self, indexed by hyperplane_index_set().

A distinguished reflection is a conjugate of a simple reflection. For a Coxeter group, reflections and distinguished reflections coincide. For a Complex reflection groups this is a reflection acting on the complement of the fixed hyperplane H as $\exp(2\pi i/n)$, where n is the order of the reflection subgroup fixing H.

See also:
• distinguished_reflection()
• hyperplane_index_set()

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,3))  # optional - gap3
sage: distinguished_reflections = W.distinguished_reflections() # optional - gap3
sage: for index in sorted(distinguished_reflections.keys()):  # optional - gap3
    ....: print('%s %s'(index, distinguished_reflections[index])) # optional - gap3
1 (1,4)(2,3)(5,6)
2 (1,3)(2,5)(4,6)
3 (1,5)(2,4)(3,6)

sage: W = ReflectionGroup((1,1,3),hyperplane_index_set=['a','b','c'])  # optional - gap3
sage: distinguished_reflections = W.distinguished_reflections() # optional - gap3
sage: for index in sorted(distinguished_reflections.keys()):  # optional - gap3
    ....: print('%s %s'(index, distinguished_reflections[index])) # optional - gap3
a (1,4)(2,3)(5,6)
b (1,3)(2,5)(4,6)
c (1,5)(2,4)(3,6)

sage: W = ReflectionGroup((3,1,1))  # optional - gap3
sage: distinguished_reflections = W.distinguished_reflections() # optional - gap3
```

(continues on next page)
...: print('%s %s'%(index, distinguished_reflections[index])) #
 sage: for index in sorted(distinguished_reflections.keys()):
 #
 : print('%s %s'%(index, distinguished_reflections[index])) #
 1 (1,2,3)
 sage: W = ReflectionGroup((1,1,3), (3,1,2)) # optional - gap3
 sage: distinguished_reflections = W.distinguished_reflections() #
 #
 sage: for index in sorted(distinguished_reflections.keys()):
 #
 : print('%s %s'%(index, distinguished_reflections[index])) #
 1 (1,6)(2,5)(7,8)
 2 (1,5)(2,7)(6,8)
 3 (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30)
 5 (1,7)(2,6)(5,8)

from_reduced_word (word, word_type='simple')

Return an element of self from its (reduced) word.

INPUT:
• word – a list (or iterable) of elements of the index set of self (resp. of the distinguished or of
 all reflections)
• word_type – (optional, default: 'simple'): either 'simple', 'distinguished', or
 'all'

If word is [i_1, i_2, ..., i_k], then this returns the corresponding product of simple reflections
s_{i_1}s_{i_2}...s_{i_k}.

If word_type is 'distinguished' (resp. 'all'), then the product of the distinguished reflections
(resp. all reflections) is returned.

Note: The main use case is for constructing elements from reduced words, hence the name of this
method. However, the input word need not be reduced.

See also:
• index_set()
• reflection_index_set()
• hyperplane_index_set()
• apply_simple_reflections()
• reduced_word()
• _test_reduced_word()

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: W

3.28. Common category for Generalized Coxeter Groups or Complex Reflection Groups 219
The symmetric group on \{0, ..., 3\}

```python
sage: s = W.simple_reflections()
sage: W.from_reduced_word([0,2,0,1])
(0, 3, 1, 2)
sage: W.from_reduced_word((0,2,0,1))
(0, 3, 1, 2)
sage: s[0]*s[2]*s[0]*s[1]
(0, 3, 1, 2)
```

We now experiment with the different values for `word_type` for the colored symmetric group:

```python
sage: W = ColoredPermutations(1,4)
sage: W.from_reduced_word([1,2,1,2,1,2])
[[0, 0, 0, 0], [1, 2, 3, 4]]
sage: W.from_reduced_word([1, 2, 3]).reduced_word()
[1, 2, 3]
sage: W = WeylGroup("A3", prefix='s')
sage: AS = W.domain()
sage: r1 = AS.roots()[4]
sage: r1
(0, 1, 0, -1)
sage: r2 = AS.roots()[5]
sage: r2
(0, 0, 1, -1)
sage: W.from_reduced_word([r1, r2], word_type='all')
s3*s2
sage: W = WeylGroup("G2", prefix='s')
sage: W.from_reduced_word(W.domain().positive_roots(), word_type='all')
s1*s2
sage: W = ReflectionGroup((1,1,4))
# optional - gap3
sage: W.from_reduced_word([1,2,3], word_type='all').reduced_word_in_reflections()  # optional - gap3
[1, 2, 3]
sage: W.from_reduced_word([1,2,3]).reduced_word_in_reflections()  # optional - gap3
[1, 2, 3]
```

group_generators()

Return the simple reflections of `self`, as distinguished group generators.

See also:

- `simple_reflections()`
- `Groups.ParentMethods.group_generators()`
- `Semigroups.ParentMethods.semigroup_generators()`

EXAMPLES:
sage: D10 = FiniteCoxeterGroups().example(10)
sage: D10.group_generators()
Finite family {1: (1,), 2: (2,)}
sage: SymmetricGroup(5).group_generators()
Finite family {1: (1,2), 2: (2,3), 3: (3,4), 4: (4,5)}

sage: W = ColoredPermutations(3,2)
sage: W.group_generators()
Finite family {1: [[0, 0],
 [2, 1]],
 2: [[0, 1],
 [1, 2]]}

The simple reflections are also semigroup generators, even for an infinite group:

sage: W = WeylGroup(["A",2,1])
sage: W.semigroup_generators()
Finite family {0: [-1 1 1]
 [0 1 0]
 [0 0 1],
 1: [1 0 0]
 [1 1 1]
 [0 0 1],
 2: [1 0 0]
 [0 1 0]
 [1 1 1]}

hyperplane_index_set()

Return the index set of the distinguished reflections of self.

This is also the index set of the reflection hyperplanes of self, hence the name. This name is slightly
abusive since the concept of reflection hyperplanes is not defined for all generalized Coxeter groups.
However for all practical purposes this is only used for complex reflection groups, and there this is
the desirable name.

See also:

• distinguished_reflection()
• distinguished_reflections()

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
(1, 2, 3, 4, 5, 6)
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=[1,3,'asdf',7,9,
-11]) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
(1, 3, 'asdf', 7, 9, 11)
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=('a','b','c','d',
'e','f')) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
('a', 'b', 'c', 'd', 'e', 'f')

index_set()

Return the index set of (the simple reflections of) self, as a list (or iterable).

See also:

• simple_reflection()
• `simple_reflections()`

EXAMPLES:

```
sage: W = CoxeterGroups().Finite().example(); W
The 5-th dihedral group of order 10
sage: W.index_set()
(1, 2)

sage: W = ColoredPermutations(1, 4)
sage: W.index_set()
(1, 2, 3)

sage: W = ReflectionGroup((1,1,4), index_set=[1,3,'asdf'])  # optional - gap3
sage: W.index_set()  # optional - gap3
(1, 3, 'asdf')

sage: W = ReflectionGroup((1,1,4), index_set=('a','b','c'))  # optional - gap3
sage: W.index_set()  # optional - gap3
('a', 'b', 'c')
```

`irreducible_component_index_sets()`

Return a list containing the index sets of the irreducible components of self as finite reflection groups.

EXAMPLES:

```
sage: W = ReflectionGroup((1,1,3), [3,1,3], 4); W  # optional - gap3
Reducible complex reflection group of rank 7 and type A2 x G(3,1,3) x ST4
sage: sorted(W.irreducible_component_index_sets())  # optional - gap3
[[1, 2], [3, 4, 5], [6, 7]]
```

ALGORITHM:

Take the connected components of the graph on the index set with edges (i, j), where s[i] and s[j] do not commute.

`irreducible_components()`

Return the irreducible components of self as finite reflection groups.

EXAMPLES:

```
sage: W = ReflectionGroup((1,1,3), [3,1,3], 4)  # optional - gap3
sage: W.irreducible_components()  # optional - gap3
[Irreducible real reflection group of rank 2 and type A2,  
Irreducible complex reflection group of rank 3 and type G(3,1,3),  
Irreducible complex reflection group of rank 2 and type ST4]
```

`is_irreducible()`

Return True if self is irreducible.

EXAMPLES:

```
sage: W = ColoredPermutations(1,3); W
1-colored permutations of size 3
sage: W.is_irreducible()
True

sage: W = ReflectionGroup((1,1,3),(2,1,3)); W  # optional - gap3
Reducible real reflection group of rank 5 and type A2 x B3
```

(continues on next page)
sage: W.is_irreducible() # optional - gap3
False

is_reducible()

Return True if self is not irreducible.

EXAMPLES:

```
sage: W = ColoredPermutations(1,3); W
1-colored permutations of size 3
sage: W.is_reducible()
False

sage: W = ReflectionGroup((1,1,3), (2,1,3)); W  # optional - gap3
Reducible real reflection group of rank 5 and type A2 x B3
sage: W.is_reducible()  # optional - gap3
True
```

number_of_irreducible_components()

Return the number of irreducible components of self.

EXAMPLES:

```
sage: SymmetricGroup(3).number_of_irreducible_components()
1
sage: ColoredPermutations(1,3).number_of_irreducible_components()
1
sage: ReflectionGroup((1,1,3), (2,1,3)).number_of_irreducible_components()  # optional - gap3
2
```

number_of_simple_reflections()

Return the number of simple reflections of self.

EXAMPLES:

```
sage: W = ColoredPermutations(1,3)
sage: W.number_of_simple_reflections()
2
sage: W = ColoredPermutations(2,3)
sage: W.number_of_simple_reflections()
3
sage: W = ColoredPermutations(4,3)
sage: W.number_of_simple_reflections()
3
sage: W = ReflectionGroup((4,2,3))  # optional - gap3
sage: W.number_of_simple_reflections()  # optional - gap3
4
```

reflection(i)

Return the i-th reflection of self.

For i in 1, ..., N, this gives the i-th reflection of self.

See also:
• reflections_index_set()
• \texttt{reflections()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: for i in W.reflection_index_set(): # optional - gap3
 : print('%s %s' % (i, W.reflection(i))) # optional - gap3
1 (1,7)(2,4)(5,6)(8,10)(11,12)
2 (1,4)(2,8)(3,5)(7,10)(9,11)
3 (2,5)(3,9)(4,6)(8,11)(10,12)
4 (1,8)(2,7)(3,6)(4,10)(9,12)
5 (1,6)(2,9)(3,8)(5,11)(7,12)
6 (1,11)(3,10)(4,9)(5,7)(6,12)
\end{verbatim}

\textbf{reflection_index_set()}

Return the index set of the reflections of \texttt{self}.

\textbf{See also:}

• \texttt{reflection()}
• \texttt{reflections()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
(1, 2, 3, 4, 5, 6)
sage: W = ReflectionGroup((1,1,4), reflection_index_set=[1,3,'asdf',7,9,11]) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
(1, 3, 'asdf', 7, 9, 11)
sage: W = ReflectionGroup((1,1,4), reflection_index_set=('a','b','c','d','e','f')) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
('a', 'b', 'c', 'd', 'e', 'f')
\end{verbatim}

\textbf{reflections()}

Return a finite family containing the reflections of \texttt{self}, indexed by \texttt{reflection_index_set()}.

\textbf{See also:}

• \texttt{reflection()}
• \texttt{reflection_index_set()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: reflections = W.reflections() # optional - gap3
sage: for index in sorted(reflections.keys()): # optional - gap3
 : print('%s %s' % (index, reflections[index])) # optional - gap3
1 (1,4)(2,3)(5,6)
2 (1,3)(2,5)(4,6)
3 (1,5)(2,4)(3,6)
sage: W = ReflectionGroup((1,1,3),reflection_index_set=['a','b','c']) # optional - gap3
sage: reflections = W.reflections() # optional - gap3
sage: for index in sorted(reflections.keys()): # optional - gap3
 : print('%s %s' % (index, reflections[index])) # optional - gap3
1 (a)(b)(c)
2 (b,a)(c)
3 (c,a)(b)
\end{verbatim}

(continues on next page)
\texttt{a (1,4) (2,3) (5,6)}
\texttt{b (1,3) (2,5) (4,6)}
\texttt{c (1,5) (2,4) (3,6)}

\texttt{sage: W = ReflectionGroup((3,1,1))} \# optional - gap3
\texttt{sage: reflections = W.reflections()} \# optional - gap3
\texttt{sage: for index in \texttt{sorted(reflections.keys())}:} \# optional - gap3
\texttt{.....: print(\texttt{\'\%s \%s\%(index, reflections[index])})} \# optional - gap3
\texttt{1 (1,2,3)}
\texttt{2 (1,3,2)}

\texttt{sage: W = ReflectionGroup((1,1,3), (3,1,2))} \# optional - gap3
\texttt{sage: reflections = W.reflections()} \# optional - gap3
\texttt{sage: for index in \texttt{sorted(reflections.keys())}:} \# optional - gap3
\texttt{.....: print(\texttt{\'\%s \%s\%(index, reflections[index])})} \# optional - gap3
\texttt{1 (1,6)(2,5)(7,8)}
\texttt{2 (1,5)(2,7)(6,8)}
\texttt{3 (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30)}
\texttt{5 (1,7)(2,6)(5,8)}
\texttt{7 (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29)}
\texttt{9 (3,15,9)(4,16,10)(12,23,17)(14,24,18)(20,29,25)(21,26,22)(27,30,28)}

\texttt{semigroup_generators()}
Return the simple reflections of \texttt{self}, as distinguished group generators.

See also:

\begin{itemize}
\item \texttt{simple_reflections()}
\item \texttt{Groups.ParentMethods.group_generators()}
\item \texttt{Semigroups.ParentMethods.semigroup_generators()}
\end{itemize}

EXAMPLES:

\begin{verbatim}
\texttt{sage: D10 = FiniteCoxeterGroups().example(10)}
\texttt{sage: D10.group_generators()} \texttt{Finite family \{1: (1,), 2: (2,\)}}
\texttt{sage: SymmetricGroup(5).group_generators()} \texttt{Finite family \{1: (1,2), 2: (2,3), 3: (3,4), 4: (4,5)\}}
\end{verbatim}

\begin{verbatim}
\texttt{sage: W = ColoredPermutations(3,2)}
\texttt{sage: W.group_generators()} \texttt{Finite family \{1: [[[0, 0], [2, 1]], 2: [[[0, 1], [1, 2]]]\}}
\end{verbatim}

The simple reflections are also semigroup generators, even for an infinite group:

\begin{verbatim}
\texttt{sage: W = WeylGroup(["A",2,1])}
\texttt{sage: W.semigroup_generators()} \texttt{(continues on next page)}
\end{verbatim}
Finite family {0: [-1 1 1]
 [0 1 0]
 [0 0 1],
1: [1 0 0]
 [1 -1 1]
 [0 0 1],
2: [1 0 0]
 [0 1 0]
 [1 1 -1]}

\textbf{simple_reflection}(i)

Return the i-th simple reflection s_i of \texttt{self}.

INPUT:

• i – an element from the index set

See also:

• \texttt{index_set()}

EXAMPLES:

\begin{verbatim}
 sage: W = CoxeterGroups().example()
sage: W
The symmetric group on {0, ..., 3}
sage: W.simple_reflection(1)
(0, 2, 1, 3)
sage: s = W.simple_reflections()
sage: s[1]
(0, 2, 1, 3)
sage: W = ReflectionGroup((1,1,4), index_set=[1,3,'asdf'])
optional - gap3
sage: for i in W.index_set():
 # optional - gap3
 : print('%s %s
 # optional - gap3
1 (1,7)(2,4)(5,6)(8,10)(11,12)
3 (1,4)(2,8)(3,5)(7,10)(9,11)
asdf (2,5)(3,9)(4,6)(8,11)(10,12)
\end{verbatim}

\textbf{simple_reflection_orders()}

Return the orders of the simple reflections.

EXAMPLES:

\begin{verbatim}
 sage: W = WeylGroup(['B',3])
sage: W.simple_reflection_orders()
[2, 2, 2]
sage: W = CoxeterGroup(['C',4])
sage: W.simple_reflection_orders()
[2, 2, 2]
sage: SymmetricGroup(5).simple_reflection_orders()
[2, 2, 2, 2]
sage: C = ColoredPermutations(4, 3)
sage: C.simple_reflection_orders()
[2, 2, 4]
\end{verbatim}

\textbf{simple_reflections()}

Return the simple reflections $(s_i)_{i \in I}$ of \texttt{self} as a family indexed by \texttt{index_set()}.

See also:

- `simple_reflection()`
- `index_set()`

EXAMPLES:

For the symmetric group, we recognize the simple transpositions:

```
sage: W = SymmetricGroup(4); W
Symmetric group of order 4! as a permutation group
sage: s = W.simple_reflections()
sage: s
Finite family {1: (1,2), 2: (2,3), 3: (3,4)}
sage: s[1]
(1,2)
sage: s[2]
(2,3)
sage: s[3]
(3,4)
```

Here are the simple reflections for a colored symmetric group and a reflection group:

```
sage: W = ColoredPermutations(1,3)
sage: W.simple_reflections()
Finite family {1: [[0, 0, 0], [2, 1, 3]], 2: [[0, 0, 0], [1, 3, 2]]}
sage: W = ReflectionGroup((1,1,3), index_set=['a','b'])  # optional - gap3
sage: W.simple_reflections()  # optional - gap3
Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6)}
```

This default implementation uses `index_set()` and `simple_reflection()`.

`sage_elements()`

Implement `Sets.ParentMethods.sage_elements()` by returning some typical elements of `self`.

The result is currently composed of the simple reflections together with the unit and the result of `an_element()`.

EXAMPLES:

```
sage: W = WeylGroup(['A',3])
sage: W.sage_elements()
[ [0 1 0 0] [1 0 0 0] [1 0 0 0] [1 0 0 0] [0 0 0 1]
 [1 0 0 0] [0 0 1 0] [0 1 0 0] [0 1 0 0] [1 0 0 0]
 [0 0 1 0] [0 1 0 0] [0 0 0 1] [0 0 1 0] [0 1 0 0]
 [0 0 0 1], [0 0 0 1], [0 0 1 0], [0 0 0 1], [0 0 1 0]
 ]
sage: W = ColoredPermutations(1,4)
sage: W.sage_elements()
[[[0, 0, 0, 0], [2, 1, 3, 4]],
 [[0, 0, 0, 0], [1, 3, 2, 4]],
 [[0, 0, 0, 0], [1, 2, 4, 3]],
 [[0, 0, 0, 0], [1, 2, 3, 4]],
 [[0, 0, 0, 0], [4, 1, 2, 3]]]
```
Category Framework

Irreducible

Return the full subcategory of irreducible objects of `self`.

A complex reflection group, or generalized coxeter group is *reducible* if its simple reflections can be split in two sets X and Y such that the elements of X commute with that of Y. In particular, the group is then direct product of $\langle X \rangle$ and $\langle Y \rangle$. It's *irreducible* otherwise.

EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Irreducible()
Category of irreducible complex reflection groups
sage: CoxeterGroups().Irreducible()
Category of irreducible coxeter groups
```

super_categories

Return the super categories of `self`.

EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]
```

3.29 Coxeter Group Algebras

class sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras(category, *args)

Bases: `sage.categories.algebra_functor.AlgebrasCategory`

class ParentMethods

bases: `object`

demazure_lusztig_eigenvectors(q1, q2)

Return the family of eigenvectors for the Cherednik operators.

INPUT:

- `self` – a finite Coxeter group W
- q_1, q_2 – two elements of the ground ring K

The affine Hecke algebra $H_{q_1,q_2}(W)$ acts on the group algebra of W through the Demazure-Lusztig operators T_i. Its Cherednik operators Y^λ can be simultaneously diagonalized as long as q_1/q_2 is not a small root of unity [HST2008].

This method returns the family of joint eigenvectors, indexed by W.

See also:

- `demazure_lusztig_operators()`
- `sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors`

EXAMPLES:

```python
sage: W = WeylGroup(["B",2])
sage: W.element_class._repr_ = lambda x: "".join(str(i) for i in x.reduced_word())
```
sage: K = QQ[‘q1,q2’].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1,q2)
sage: E.keys()
Weyl Group of type ['B', 2] (as a matrix group acting on the ambient → space)
sage: w = W.an_element()
sage: E[w]
(q2/(-q1+q2))*2121 + ((-q2)/(-q1+q2))*121 - 212 + 12

demazure_lusztig_operator_on_basis (w, i, q1, q2, side='right')
Return the result of applying the \textit{i}-th Demazure Lusztig operator on \textit{w}.

INPUT:
\begin{itemize}
 \item \textit{w} – an element of the Coxeter group
 \item \textit{i} – an element of the index set
 \item \textit{q1}, \textit{q2} – two elements of the ground ring
 \item bar – a boolean (default False)
\end{itemize}
See \texttt{demazure_lusztig_operators()} for details.

EXAMPLES:
\begin{verbatim}
sage: W = WeylGroup(["B",3])
sage: W.element_class._repr_=
 lambda x: ".join(str(i) for i in x.reduced_word())
sage: K = QQ[‘q1,q2’]
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: w = W.an_element()
sage: KW.demazure_lusztig_operator_on_basis(w, 0, q1, q2)
(-q2)*323123 + (q1+q2)*123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, q1, q2)
q1*1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, q1, q2)
q1*1232
sage: KW.demazure_lusztig_operator_on_basis(w, 3, q1, q2)
(q1+q2)*123 + (-q2)*12
\end{verbatim}

At \(q_1 = 1\) and \(q_2 = 0\) we recover the action of the isobaric divided differences \(\pi_i\):
\begin{verbatim}
sage: KW.demazure_lusztig_operator_on_basis(w, 0, 1, 0)
123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, 1, 0)
1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, 1, 0)
1232
sage: KW.demazure_lusztig_operator_on_basis(w, 3, 1, 0)
123
\end{verbatim}

At \(q_1 = 1\) and \(q_2 = -1\) we recover the action of the simple reflection \(s_i\):
\begin{verbatim}
sage: KW.demazure_lusztig_operator_on_basis(w, 0, 1, -1)
323123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, 1, -1)
1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, 1, -1)
\end{verbatim}
demazure_lusztig_operators(q1, q2, side='right', affine=True)

Return the Demazure Lusztig operators acting on self.

INPUT:

• q1, q2 — two elements of the ground ring K
• side = "left" or "right" (default: "right"); which side to act upon
• affine — a boolean (default: True)

The Demazure-Lusztig operator T_i is the linear map $R \to R$ obtained by interpolating between the simple projection π_i (see CoxeterGroups.ElementMethods.simple_projection()) and the simple reflection s_i so that T_i has eigenvalues q_1 and q_2:

$$(q_1 + q_2)\pi_i - q_2 s_i.$$

The Demazure-Lusztig operators give the usual representation of the operators T_i of the q_1, q_2 Hecke algebra associated to the Coxeter group.

For a finite Coxeter group, and if affine=True, the Demazure-Lusztig operators T_1, \ldots, T_n are completed by T_0 to implement the level 0 action of the affine Hecke algebra.

EXAMPLES:

sage: W = WeylGroup(['B',3])
sage: W.element_class._repr_=lambda x: ''.join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
sage: x = KW.monomial(W.an_element()); x
123
sage: T[0](x)
(-q2)*323123 + (q1+q2)*123
sage: T[1](x)
q1*1231
sage: T[2](x)
q1*1232
sage: T[3](x)
(q1+q2)*123 + (-q2)*12
sage: T._test_relations()

Note: For a finite Weyl group W, the level 0 action of the affine Weyl group \tilde{W} only depends on the Coxeter diagram of the affinization, not its Dynkin diagram. Hence it is possible to explore all cases using only untwisted affinizations.
3.30 Coxeter Groups

```python
class sage.categories.coxeter_groups.CoxeterGroups(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

    The category of Coxeter groups.

    A Coxeter group is a group \(W\) with a distinguished (finite) family of involutions \((s_i)_{i \in I}\), called the simple reflections, subject to relations of the form \((s_i s_j)^{m_{i,j}} = 1\).

    \(I\) is the index set of \(W\) and \(|I|\) is the rank of \(W\).

    See Wikipedia article Coxeter_group for details.
```

EXAMPLES:

```python
sage: C = CoxeterGroups(); C
Category of coxeter groups
sage: C.super_categories()
[Category of generalized coxeter groups]
```

```python
sage: W = C.example(); W
The symmetric group on {0, ..., 3}
sage: W.simple_reflections()
Finite family {0: (1, 0, 2, 3), 1: (0, 2, 1, 3), 2: (0, 1, 3, 2)}
```

Here are some further examples:

```python
sage: FiniteCoxeterGroups().example()
The 5-th dihedral group of order 10
sage: FiniteWeylGroups().example()
The symmetric group on {0, ..., 3}
sage: WeylGroup(['B', 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
sage: S4 = SymmetricGroup(4); S4
Symmetric group of order 4! as a permutation group
sage: S4 in CoxeterGroups().Finite()
True
```

Those will eventually be also in this category:

```python
sage: DihedralGroup(5)
Dihedral group of order 10 as a permutation group
```

Todo: add a demo of usual computations on Coxeter groups.

See also:

- `sage.combinat.root_system`
- `WeylGroups`
- `GeneralizedCoxeterGroups`
Warning: It is assumed that morphisms in this category preserve the distinguished choice of simple reflections. In particular, subobjects in this category are parabolic subgroups. In this sense, this category might be better named Coxeter Systems. In the long run we might want to have two distinct categories, one for Coxeter groups (with morphisms being just group morphisms) and one for Coxeter systems:

```python
sage: CoxeterGroups().is_full_subcategory(Groups())
False
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: CoxeterGroups().is_full_subcategory(GeneralizedCoxeterGroups())
True
```

Algebras
alias of `sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras`

```python
class ElementMethods
    Bases: object

    absolute_covers()
    Return the list of covers of self in absolute order.

    See also:
    absolute_length()

    EXAMPLES:

    sage: W = WeylGroup(['A', 3])
sage: s = W.simple_reflections()
sage: w0 = s[1]
sage: w1 = s[1]*s[2]*s[3]
sage: w0.absolute_covers()
[ 0 0 0 1, 0 1 0 0, 0 0 1 0, 0 1 0 0, 1 0 0 0]
```

```python
absolute_le(other)
Return whether self is smaller than other in the absolute order.

A general reflection is an element of the form \( w_s w^{-1} \), where \( s \) is a simple reflection. The absolute order is defined analogously to the weak order but using general reflections rather than just simple reflections.

This partial order can be used to define noncrossing partitions associated with this Coxeter group.

See also:
absolute_length()

EXAMPLES:

```python
sage: W = WeylGroup(['A', 3])
sage: s = W.simple_reflections()
sage: w0 = s[1]
sage: w1 = s[1]*s[2]*s[3]
sage: w0.absolute_le(w1)
```

(continues on next page)
sage: w1.absolute_le(w0)
False
sage: w1.absolute_le(w1)
True

**absolute_length()**

Return the absolute length of `self`.

The absolute length is the length of the shortest expression of the element as a product of reflections.

For permutations in the symmetric groups, the absolute length is the size minus the number of its disjoint cycles.

**See also:**

`absolute_le()`

**EXAMPLES:**

```python
sage: W = WeylGroup(['A', 3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).absolute_length()
3
sage: W = SymmetricGroup(4)
sage: s = W.simple_reflections()
sage: (s[3]*s[2]*s[1]).absolute_length()
3
```

**apply_demazure_product** *(element, side='right', length_increasing=True)*

Returns the Demazure or 0-Hecke product of `self` with another Coxeter group element.


**INPUT:**

- `element` – either an element of the same Coxeter group as `self` or a tuple or a list (such as a reduced word) of elements from the index set of the Coxeter group.
- `side` – ‘left’ or ‘right’ (default: ‘right’); the side of `self` on which the element should be applied. If `side` is ‘left’ then the operation is applied on the left.
- `length_increasing` – a boolean (default True) whether to act length increasingly or decreasingly

**EXAMPLES:**

```python
sage: W = WeylGroup(['C',4],prefix="s")
sage: v = W.from_reduced_word([1,2,3,4,3,1])
sage: v.apply_demazure_product([1,3,4,3,3])
s4*s1*s2*s3*s4*s3*s1
sage: v.apply_demazure_product([1,3,4,3],side='left')
s3*s4*s1*s2*s3*s4*s2*s3*s1
sage: v.apply_demazure_product((1,3,4,3),side='left')
s3*s4*s1*s2*s3*s4*s2*s3*s1
sage: v.apply_demazure_product(v)
s2*s3*s4*s1*s2*s3*s4*s2*s3*s2*s1
```

**apply_simple_projection** *(i, side='right', length_increasing=True)*

**INPUT:**

- `i` - an element of the index set of the Coxeter group
- `side` - ‘left’ or ‘right’ (default: ‘right’)

3.30. Coxeter Groups 233
• length_increasing - a boolean (default: True) specifying the direction of the projection
Returns the result of the application of the simple projection $\pi_i$ (resp. $\pi_i$) on self.

See CoxeterGroups.ParentMethods.simple_projections() for the definition of the simple projections.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element()
sage: w
(1, 2, 3, 0)
sage: w.apply_simple_projection(2)
(1, 2, 3, 0)
sage: w.apply_simple_projection(2, length_increasing=False)
(1, 2, 0, 3)
sage: W = WeylGroup(['C',4],prefix="s")
sage: v = W.from_reduced_word([1,2,3,4,3,1])
sage: v
s1*s2*s3*s4*s3*s1
sage: v.apply_simple_projection(2)
s1*s2*s3*s4*s3*s1*s2
sage: v.apply_simple_projection(2, side='left')
s1*s2*s3*s4*s3*s1
sage: v.apply_simple_projection(1, length_increasing = False)
s1*s2*s3*s4*s3
```

**binary_factorizations** *(predicate=The constant function (...) -> True)*

Return the set of all the factorizations $self = uv$ such that $l(self) = l(u) + l(v)$.

Iterating through this set is Constant Amortized Time (counting arithmetic operations in the Coxeter group as constant time) complexity, and memory linear in the length of $self$.

One can pass as optional argument a predicate $p$ such that $p(u)$ implies $p(u')$ for any $u$ left factor of $self$ and $u'$ left factor of $u$. Then this returns only the factorizations $self = uv$ such $p(u)$ holds.

EXAMPLES:

We construct the set of all factorizations of the maximal element of the group:

```python
sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: w0 = W.from_reduced_word([1,2,3,1,2,1])
sage: w0.binary_factorizations().cardinality()
24
```

The same number of factorizations, by bounded length:

```python
sage: [w0.binary_factorizations(lambda u: u.length() <= l).cardinality() for l in [-1,0,1,2,3,4,5,6]]
[0, 1, 4, 9, 15, 20, 23, 24]
```

The number of factorizations of the elements just below the maximal element:

```python
sage: [(s[i]*w0).binary_factorizations().cardinality() for i in [1,2,3]]
[12, 12, 12]
sage: w0.binary_factorizations(lambda u: False).cardinality()
0
```
bruhat_le (other)
Bruhat comparison

INPUT:
• other – an element of the same Coxeter group

OUTPUT: a boolean

Returns whether self <= other in the Bruhat order.

EXAMPLES:

```python
sage: W = WeylGroup(['A',3])
sage: u = W.from_reduced_word([1,2,1])
sage: v = W.from_reduced_word([1,2,3,2,1])
sage: u.bruhat_le(u)
True
sage: u.bruhat_le(v)
True
sage: v.bruhat_le(u)
False
sage: v.bruhat_le(v)
True
sage: s = W.simple_reflections()
sage: s[1].bruhat_le(W.one())
False
```

The implementation uses the equivalent condition that any reduced word for other contains a reduced word for self as subword. See Stembridge, A short derivation of the Möbius function for the Bruhat order. J. Algebraic Combin. 25 (2007), no. 2, 141–148, Proposition 1.1.

Complexity: $O(l \cdot c)$, where $l$ is the minimum of the lengths of $u$ and of $v$, and $c$ is the cost of the low level methods `first_descent()`, `has_descent()`, `apply_simple_reflection()`, etc. Those are typically $O(n)$, where $n$ is the rank of the Coxeter group.

bruhat_lower_covers ()
Returns all elements that self covers in (strong) Bruhat order.

If $w = \text{self}$ has a descent at $i$, then the elements that $w$ covers are exactly \{ws_i, u_1s_i, u_2s_i, ..., u_js_i\}, where the $u_k$ are elements that $ws_i$ covers that also do not have a descent at $i$.

EXAMPLES:

```python
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,2,3])
sage: print([v.reduced_word() for v in w.bruhat_lower_covers()])
[[3, 2], [2, 3]]
sage: W = WeylGroup(['A',3])
sage: print([v.reduced_word() for v in W.simple_reflection(1).bruhat_lower_covers()])
[]
sage: print([v.reduced_word() for v in W.one().bruhat_lower_covers()])
[]
sage: W = WeylGroup(['B',4,1])
sage: w = W.from_reduced_word([0,2])
sage: print([v.reduced_word() for v in w.bruhat_lower_covers()])
[[2], [0]]
sage: W = WeylGroup('A3',prefix='s',implementation='permutation')
sage: [s1,s2,s3]=W.simple_reflections()
```

(continues on next page)
We now show how to construct the Bruhat poset:

```python
sage: W = WeylGroup(['A',3])
sage: covers = tuple([u, v] for v in W for u in v.bruhat_lower_covers())
sage: P = Poset((W, covers), cover_relations = True)
sage: P.show()
```

Alternatively, one can just use:

```python
sage: P = W.bruhat_poset()
```

The algorithm is taken from Stembridge's 'coxeter/weyl' package for Maple.

**bruhat_lower_covers_reflections()**

Returns all 2-tuples of lower_covers and reflections \((v, r)\) where \(v\) is covered by \(self\) and \(r\) is the reflection such that \(self = vr\).

**ALGORITHM:**

See `bruhat_lower_covers()`

**EXAMPLES:**

```python
sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_lower_covers_reflections()
[(s1*s2*s1, s1*s2*s3*s2*s1), (s3*s2*s1, s2), (s3*s1*s2, s1)]
```

**bruhat_upper_covers()**

Returns all elements that cover \(self\) in (strong) Bruhat order.

The algorithm works recursively, using the 'inverse' of the method described for lower covers `bruhat_lower_covers()`. Namely, it runs through all \(i\) in the index set. Let \(w\) equal \(self\). If \(w\) has no right descent \(i\), then \(ws_i\) is a cover; if \(w\) has a descent at \(i\), then \(u_js_i\) is a cover of \(w\) where \(u_j\) is a cover of \(ws_i\).

**EXAMPLES:**

```python
sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([1,2,1])
```

S = [v for v in W if w in v.bruhat_lower_covers()]
C = w.bruhat_upper_covers()
set(S) == set(C)
True
bruhat_upper_covers_reflections()
Returns all 2-tuples of covers and reflections \((v, r)\) where \(v\) covers \(self\) and \(r\) is the reflection such that \(self = vr\).

ALGORITHM:
See bruhat_upper_covers()

EXAMPLES:
```
sage: W = WeylGroup(['A',4], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_upper_covers_reflections()
[(s1*s2*s3*s2*s1, s3), (s2*s3*s1*s2*s1, s2*s3*s2), (s3*s4*s1*s2*s1, s4),
 (s4*s3*s1*s2*s1, s1*s2*s3*s4*s3*s2*s1)]
```

canonical_matrix()
Return the matrix of \(self\) in the canonical faithful representation.

This is an \(n\)-dimension real faithful essential representation, where \(n\) is the number of generators of the Coxeter group. Note that this is not always the most natural matrix representation, for instance in type \(A_n\).

EXAMPLES:
```
sage: W = WeylGroup(['A', 3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).canonical_matrix()
[0 0 -1]
[1 0 -1]
[0 1 -1]
```

coset_representative (index_set, side='right')

INPUT:
- **index_set** - a subset (or iterable) of the nodes of the Dynkin diagram
- **side** - 'left' or 'right'

Returns the unique shortest element of the Coxeter group \(W\) which is in the same left (resp. right) coset as \(self\), with respect to the parabolic subgroup \(W_I\).

EXAMPLES:
```
sage: W = CoxeterGroups().example(5)
sage: s = W.simple_reflections()
sage: w = s[2]*s[1]*s[3]
sage: w.coset_representative([]).reduced_word()
[2, 3, 1]
sage: w.coset_representative([1]).reduced_word()
[2, 3]
sage: w.coset_representative([1,2]).reduced_word()
[2, 3]
sage: w.coset_representative([1,3]).reduced_word()
[2]
sage: w.coset_representative([2,3]).reduced_word()
[2, 1]
sage: w.coset_representative([1,2,3]).reduced_word()
[]
sage: w.coset_representative([], side='left').reduced_word()
[2, 3, 1]
sage: w.coset_representative([1], side='left').reduced_word()
```
(continues on next page)
cover_reflections (side='right')

Return the set of reflections \( t \) such that \( \text{self} t \) covers \( \text{self} \).

If \( \text{side} \) is 'left', \( t \) \text{self} covers \( \text{self} \).

EXAMPLES:

```python
sage: W = WeylGroup(['A',4], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.cover_reflections()
[s3, s2*s3*s2, s4, s1*s2*s3*s4*s3*s2*s1]
sage: w.cover_reflections(side='left')
[s4, s2, s1*s2*s1, s3*s4*s3]
```

coxeter_sorting_word (c)

Return the \( c \)-sorting word of \( \text{self} \).

For a Coxeter element \( c \) and an element \( w \), the \( c \)-sorting word of \( w \) is the lexicographic minimal reduced expression of \( w \) in the infinite word \( c^\infty \).

INPUT:

- \( c \) – a Coxeter element.

OUTPUT:

the \( c \)-sorting word of \( \text{self} \) as a list of integers.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: c = W.from_reduced_word([0,2,1])
sage: w = W.from_reduced_word([1,2,1,0,1])
sage: w.coxeter_sorting_word(c)
[2, 1, 2, 0, 1]
```

deodhar_factor_element (w, index_set)

Returns Deodhar's Bruhat order factoring element.

INPUT:

- \( w \) is an element of the same Coxeter group \( W \) as \( \text{self} \)
- \( \text{index_set} \) is a subset of Dynkin nodes defining a parabolic subgroup \( W' \) of \( W \)

It is assumed that \( v = \text{self} \) and \( w \) are minimum length coset representatives for \( W/W' \) such that \( v \leq w \) in Bruhat order.

OUTPUT:

Deodhar's element \( f(v, w) \) is the unique element of \( W' \) such that, for all \( v' \) and \( w' \) in \( W' \), \( v v' \leq w w' \) in \( W \) if and only if \( v' \leq f(v, w) \ast w' \) in \( W' \) where \( \ast \) is the Demazure product.

EXAMPLES:
sage: W = WeylGroup(['A',5],prefix="s")
sage: v = W.from_reduced_word([5])
sage: w = W.from_reduced_word([4,5,2,3,1,2])
sage: v.deodhar_factor_element(w, [1,3,4])
s3*s1
sage: W = WeylGroup(['C',2])
sage: w = W.from_reduced_word([2,1])
sage: w.deodhar_factor_element(W.from_reduced_word([2]), [1])
Traceback (most recent call last):
...
ValueError: [2, 1] is not of minimum length in its coset for the parabolic subgroup with index set [1]

REFERENCES:
  * [Deo1987a]

\texttt{deodhar\_lift\_down}(w, index\_set)

Letting \(v = \texttt{self}\), given a Bruhat relation \(v \ W' \geq w \ W'\) among cosets with respect to the subgroup \(W'\) given by the Dynkin node subset \(\text{index\_set}\), returns the Bruhat-maximum lift \(x\) of \(wW'\) such that \(v \geq x\).

INPUT:
  * \(w\) is an element of the same Coxeter group \(W\) as \(\text{self}\).
  * \(\text{index\_set}\) is a subset of Dynkin nodes defining a parabolic subgroup \(W'\).

OUTPUT:

The unique Bruhat-maximum element \(x\) in \(W\) such that \(x \ W' = w \ W'\) and \(v \geq x\).

See also:
  * \texttt{sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.deodhar\_lift\_up()}

EXAMPLES:

\begin{verbatim}
sage: W = WeylGroup(['A',3],prefix="s")
sage: v = W.from_reduced_word([1,2,3,2])
sage: w = W.from_reduced_word([1,2,3])
sage: v.deodhar_lift_down(w, [3])
s2*s3*s2
\end{verbatim}

\texttt{deodhar\_lift\_up}(w, index\_set)

Letting \(v = \texttt{self}\), given a Bruhat relation \(v \ W' \leq w \ W'\) among cosets with respect to the subgroup \(W'\) given by the Dynkin node subset \(\text{index\_set}\), returns the Bruhat-minimum lift \(x\) of \(wW'\) such that \(v \leq x\).

INPUT:
  * \(w\) is an element of the same Coxeter group \(W\) as \(\text{self}\).
  * \(\text{index\_set}\) is a subset of Dynkin nodes defining a parabolic subgroup \(W'\).

OUTPUT:

The unique Bruhat-minimum element \(x\) in \(W\) such that \(x \ W' = w \ W'\) and \(v \leq x\).

See also:
  * \texttt{sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.deodhar\_lift\_down()}

EXAMPLES:
sage: W = WeylGroup(['A',3],prefix="s")
sage: v = W.from_reduced_word([1,2,3])
sage: w = W.from_reduced_word([1,3,2])
sage: v.deodhar_lift_up(w, [3])
s1*s2*s3*s2

descents (side='right', index_set=None, positive=False)

INPUT:
• index_set - a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: all of them)
• side - 'left' or 'right' (default: 'right')
• positive - a boolean (default: False)

Returns the descents of self, as a list of elements of the index_set.

The index_set option can be used to restrict to the parabolic subgroup indexed by index_set.

If positive is True, then returns the non-descents instead.

Todo: find a better name for positive: complement? non_descent?

Caveat: the return type may change to some other iterable (tuple, ...) in the future. Please use keyword arguments also, as the order of the arguments may change as well.

EXAMPLES:

```
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]
sage: w.descents()
[1]
sage: w = s[0]*s[2]
sage: w.descents()
[0, 2]
```

Todo: side, index_set, positive

first_descent (side='right', index_set=None, positive=False)

Return the first left (resp. right) descent of self, as an element of index_set, or None if there is none.

See descents() for a description of the options.

EXAMPLES:

```
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[2]*s[0]
sage: w.first_descent()
0
sage: w = s[0]*s[2]
sage: w.first_descent()
0
sage: w = s[0]*s[1]
sage: w.first_descent()
1
```
**has_descent** (*i, side='right', positive=False*)

Returns whether *i* is a (left/right) descent of *self*.

See `descents()` for a description of the options.

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0] * s[1] * s[2]
sage: w.has_descent(2)
True
sage: [w.has_descent(i) for i in [0,1,2]]
[False, False, True]
sage: [w.has_descent(i, side='left') for i in [0,1,2]]
[True, False, False]
sage: [w.has_descent(i, positive=True) for i in [0,1,2]]
[True, True, False]
```

This default implementation delegates the work to `has_left_descent()` and `has_right_descent()`.

**has_full_support()**

Return whether *self* has full support.

An element is said to have full support if its support contains all simple reflections.

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.has_full_support()
False
sage: w = W.from_reduced_word([1,2,1,0,1])
sage: w.has_full_support()
True
```

**has_left_descent** (*i*)

Returns whether *i* is a left descent of *self*.

This default implementation uses that a left descent of *w* is a right descent of *w*⁻¹.

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.has_left_descent(0)
True
sage: w.has_left_descent(1)
False
sage: w.has_left_descent(2)
False
```

**has_right_descent** (*i*)

Returns whether *i* is a right descent of *self*.

**EXAMPLES:**
sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.has_right_descent(0)
False
sage: w.has_right_descent(1)
False
sage: w.has_right_descent(2)
True

inversions_as_reflections()

Returns the set of reflections \( r \) such that \( s e l f r < self \).

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.inversions_as_reflections()
[s1, s1*s2*s1, s2, s1*s2*s3*s2*s1]

is_coxeter_sortable(c, sorting_word=None)

Return whether \( self \) is c-sortable.

Given a Coxeter element \( c \), an element \( w \) is c-sortable if its c-sorting word decomposes into a sequence of weakly decreasing subwords of \( c \).

INPUT:
• \( c \) – a Coxeter element.
• \( sorting_word \) – sorting word (default: None) used to not recompute the c-sorting word if already computed.

OUTPUT:

is self c-sortable

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: c = W.from_reduced_word([0,2,1])
sage: w = W.from_reduced_word([1,2,1,0,1])
sage: w.coxeter_sorting_word(c)
[2, 1, 2, 0, 1]
sage: w.is_coxeter_sortable(c)
False
sage: w = W.from_reduced_word([0,2,1,0,2])
sage: w.coxeter_sorting_word(c)
[2, 0, 1, 2, 0]
sage: w.is_coxeter_sortable(c)
True

sage: W = CoxeterGroup(['A',3])
sage: c = W.from_reduced_word([1,2,3])
sage: len([w for w in W if w.is_coxeter_sortable(c)]) # number of c-sortable elements in A_3 (Catalan number)
14

is_grassmannian(side='right')

Return whether \( self \) is Grassmannian.

INPUT:
• side – “left” or “right” (default: “right”)

An element is Grassmannian if it has at most one descent on the right (resp. on the left).

EXAMPLES:

```python
sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: s = W.simple_reflections()
sage: W.one().is_grassmannian()
True
sage: s[1].is_grassmannian()
True
sage: (s[1]*s[2]).is_grassmannian()
True
sage: (s[0]*s[1]).is_grassmannian()
True
sage: (s[1]*s[2]*s[1]).is_grassmannian()
False
sage: (s[0]*s[2]*s[1]).is_grassmannian(side="left")
False
sage: (s[0]*s[2]*s[1]).is_grassmannian(side="right")
True
sage: (s[0]*s[2]*s[1]).is_grassmannian()
True
```

`left_inversions_as_reflections()`

Returns the set of reflections \( r \) such that \( r \ self < self \).

EXAMPLES:

```python
sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.left_inversions_as_reflections()
[s1, s3, s1*s2*s3*s2*s1, s2*s3*s2]
```

`length()`

Return the length of `self`.

This is the minimal length of a product of simple reflections giving `self`.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: s1 = W.simple_reflection(1)
sage: s2 = W.simple_reflection(2)
sage: s1.length()
1
sage: (s1*s2).length()
2
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]*s[0]
sage: w.length()
3
sage: W = CoxeterGroups().example()
sage: sum((x^w.length()) for w in W) - expand(prod(sum(x^i for i in range(j+1)) for j in range(4))) # This is scandalously slow!!!
0
```
See also:

\textit{reduced\_word()}

\textbf{Todo:} Should use \textit{reduced\_word\_iterator} (or \textit{reverse\_iterator})

\textbf{lower\_cover\_reflections} \textbf{\textit{(side='right')}}

Returns the reflections \(t\) such that \(self\) covers \(self\ t\).

If \textit{side} is 'left', \textit{self} covers \(t\ \textit{self}\).

EXAMPLES:

```
sage: W = WeylGroup(['A',3],prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.lower_cover_reflections()
[s1*s2*s3*s2*s1, s2, s1]
sage: w.lower_cover_reflections(side='left')
[s2*s3*s2, s3, s1]
```

\textbf{lower\_covers} \textbf{\textit{(side='right', index\_set=None)}}

Return all elements that \textit{self} covers in weak order.

INPUT:

\begin{itemize}
  \item \textit{side} – 'left' or 'right' (default: 'right')
  \item \textit{index\_set} – a list of indices or None
\end{itemize}

OUTPUT: a list

EXAMPLES:

```
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,2,1])
[s2, 3, 2]
```

To obtain covers for left weak order, set the option \textit{side} to 'left':

```
sage: [x.reduced_word() for x in w.lower_covers(side='left')]
[[2, 1]]
```

Covers w.r.t. a parabolic subgroup are obtained with the option \textit{index\_set}:

```
sage: [x.reduced_word() for x in w.lower_covers(index_set=[1,2])]
[[2, 3, 2]]
sage: [x.reduced_word() for x in w.lower_covers(side='left')]
[[3, 2, 1], [2, 3, 1]]
```

\textbf{min\_demazure\_product\_greater} \textbf{\textit{(element)}}

Find the unique Bruhat-minimum element \(u\) such that \(v \leq w \ast u\) where \(v\) is \textit{self}, \(w\) is \textit{element}
and \(\ast\) is the Demazure product.

INPUT:

\begin{itemize}
  \item \textit{element} is either an element of the same Coxeter group as \textit{self} or a list (such as a reduced
word) of elements from the index set of the Coxeter group.
\end{itemize}

EXAMPLES:
sage: W = WeylGroup(['A',4],prefix="s")
sage: v = W.from_reduced_word([2,3,4,1,2])
sage: u = W.from_reduced_word([2,3,2,1])
sage: v.min_demazure_product_greater(u)
s4*s2
sage: v.min_demazure_product_greater([2,3,2,1])
s4*s2
sage: v.min_demazure_product_greater((2,3,2,1))
s4*s2

reduced_word()
Return a reduced word for self.

This is a word \([i_1, i_2, \ldots, i_k]\) of minimal length such that \(s_{i_1} s_{i_2} \cdots s_{i_k} = \text{self}\), where the \(s_i\) are the simple reflections.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]*s[2]
sage: w.reduced_word()
[0, 1, 2]
sage: w = s[0]*s[2]
sage: w.reduced_word()
[2, 0]

See also:
• reduced_words(), reduced_word_reverse_iterator(),
• length(), reduced_word_graph()

reduced_word_graph()
Return the reduced word graph of self.

The reduced word graph of an element \(w\) in a Coxeter group is the graph whose vertices are the reduced words for \(w\) (see reduced_word() for a definition of this term), and which has an \(m\)-colored edge between two reduced words \(x\) and \(y\) whenever \(x\) and \(y\) differ by exactly one length-\(m\) braid move (with \(m \geq 2\)).

This graph is always connected (a theorem due to Tits) and has no multiple edges.

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix='s')
sage: w0 = W.long_element()
sage: G = w0.reduced_word_graph()
sage: G.num_verts()
16
sage: len(w0.reduced_words())
16
sage: G.num_edges()
18
sage: len([e for e in G.edges() if e[2] == 2])
10
sage: len([e for e in G.edges() if e[2] == 3])
8

See also:
reduced_words(), reduced_word_reverse_iterator(), length(),
reduced_word()

reduced_word_reverse_iterator()

Return a reverse iterator on a reduced word for self.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: sigma = s[0]*s[1]*s[2]
sage: rI=sigma.reduced_word_reverse_iterator()
sage: [i for i in rI]
[2, 1, 0]
sage: s[0]*s[1]*s[2]==sigma
True
sage: sigma.length()
3
```

See also:

reduced_word()

Default implementation: recursively remove the first right descent until the identity is reached (see first_descent() and apply_simple_reflection()).

reduced_words()

Return all reduced words for self.

See reduced_word() for the definition of a reduced word.

The algorithm uses the Matsumoto property that any two reduced expressions are related by braid relations, see Theorem 3.3.1(ii) in [BB2005].

See also:

braid_orbit()

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0] * s[2]
sage: sorted(w.reduced_words())
[[0, 2], [2, 0]]
sage: W = WeylGroup(['E',6])
sage: w = W.from_reduced_word([2,3,4,2])
sage: sorted(w.reduced_words())
[[2, 3, 4, 2], [3, 2, 4, 2], [3, 4, 2, 4]]
sage: W = ReflectionGroup(['A',3], index_set=['AA', 'BB', 5]) # optional -- gap3
sage: w = W.long_element() # optional -- gap3
sage: w.reduced_words() # optional -- gap3
```
Todo: The result should be full featured finite enumerated set (e.g., counting can be done much faster than iterating).

See also:

- reduced_word()
- reduced_word_reverse_iterator()
- length()
- reduced_word_graph()

reflection_length()

Return the reflection length of self.

The reflection length is the length of the shortest expression of the element as a product of reflections.

See also:

- absolute_length()

EXAMPLES:

```
sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).reflection_length()
sage: 3

sage: W = SymmetricGroup(4)
sage: s = W.simple_reflections()
sage: (s[3]*s[2]*s[3]).reflection_length()
sage: 1
```

support()

Return the support of self, that is the simple reflections that appear in the reduced expressions of self.

OUTPUT:

The support of self as a set of integers

EXAMPLES:

```
sage: W = CoxeterGroups().example()
sage: w = W.from_reduced_word([1,2,1])
sage: w.support()
sage: {1, 2}
```
**upper_covers** *(side='right', index_set=None)*

Return all elements that cover **self** in weak order.

**INPUT:**
- side – ‘left’ or ‘right’ (default: ‘right’)
- index_set – a list of indices or None

**OUTPUT:** a list

**EXAMPLES:**

```python
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([2,3])
sage: [x.reduced_word() for x in w.upper_covers()]
[[2, 3, 1], [2, 3, 2]]
```

To obtain covers for left weak order, set the option side to ‘left’:

```python
sage: [x.reduced_word() for x in w.upper_covers(side='left')]
[[1, 2, 3], [2, 3, 2]]
```

Covers w.r.t. a parabolic subgroup are obtained with the option **index_set**:

```python
sage: [x.reduced_word() for x in w.upper_covers(index_set = [1])]
[[2, 3, 1]]
sage: [x.reduced_word() for x in w.upper_covers(side='left', index_set = [1])]
[[1, 2, 3]]
```

**weak_covers** *(side='right', index_set=None, positive=False)*

Return all elements that **self** covers in weak order.

**INPUT:**
- side – ‘left’ or ‘right’ (default: ‘right’)
- positive – a boolean (default: False)
- index_set – a list of indices or None

**OUTPUT:** a list

**EXAMPLES:**

```python
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,2,1])
sage: [x.reduced_word() for x in w.weak_covers()]
[[3, 2]]
```

To obtain instead elements that cover **self**, set **positive=True**:

```python
sage: [x.reduced_word() for x in w.weak_covers(positive=True)]
[[3, 1, 2, 1], [2, 3, 2, 1]]
```

To obtain covers for left weak order, set the option side to ‘left’:

```python
sage: [x.reduced_word() for x in w.weak_covers(side='left')]
[[2, 1]]
```

```python
sage: w = W.from_reduced_word([3,2,3,1])
sage: [x.reduced_word() for x in w.weak_covers()]
[[2, 3, 2], [3, 2, 1]]
sage: [x.reduced_word() for x in w.weak_covers(side='left')]
[[3, 2, 1], [2, 3, 1]]
```
Covers w.r.t. a parabolic subgroup are obtained with the option `index_set`:

```python
sage: [x.reduced_word() for x in w.weak_covers(index_set = [1,2])]
[[2, 3, 2]]
```

### weak_le(other, side='right')

Comparison in weak order

**INPUT:**
- `other` – an element of the same Coxeter group
- `side` – ‘left’ or ‘right’ (default: ‘right’)

**OUTPUT:** a boolean

Returns whether `self <= other` in left (resp. right) weak order, that is if `v` can be obtained from `v` by length increasing multiplication by simple reflections on the left (resp. right).

**EXAMPLES:**

```python
sage: W = WeylGroup(['A',3])
sage: u = W.from_reduced_word([1,2])
sage: v = W.from_reduced_word([1,2,3,2])
sage: u.weak_le(u) True
sage: u.weak_le(v) True
sage: v.weak_le(u) False
sage: v.weak_le(v) True
```

Comparison for left weak order is achieved with the option `side`:

```python
sage: u.weak_le(v, side='left') False
```

The implementation uses the equivalent condition that any reduced word for `u` is a right (resp. left) prefix of some reduced word for `v`.

**Complexity:** $O(l \times c)$, where $l$ is the minimum of the lengths of `u` and of `v`, and $c$ is the cost of the low level methods `first_descent()`, `has_descent()`, `apply_simple_reflection()`), etc. Those are typically $O(n)$, where $n$ is the rank of the Coxeter group.

We now run consistency tests with permutations:

```python
sage: W = WeylGroup(['A',3])
sage: P4 = Permutations(4)
sage: def P4toW(w):
....: return W.from_reduced_word(w.reduced_word())
...:
....: for u in P4: # long time (5s on sage.math, 2011)
....: for v in P4:
....: assert u.permutohedron_lequal(v) == P4toW(u).weak_le(P4toW(v))
....: assert u.permutohedron_lequal(v, side='left') == P4toW(u).weak_le(P4toW(v), side='left')
```

`Finite` alias of `sage.categories.finite_coxeter_groups.FiniteCoxeterGroups`

**class ParentMethods**

Bases: `object`
braid_group_as_finitely_presented_group()

Return the associated braid group.

EXAMPLES:

```sage
sage: W = CoxeterGroup(['A',2])
sage: W.braid_group_as_finitely_presented_group()
Finitely presented group < S1, S2 | S1*S2*S1*S2^-1*S1^-1*S2^-1 >

sage: W = WeylGroup(['B',2])
sage: W.braid_group_as_finitely_presented_group()
Finitely presented group < S1, S2 | (S1*S2)^2*(S1^-1*S2^-1)^2 >

sage: W = ReflectionGroup(['B',3], index_set=['AA','BB',5]) # optional - gap3
sage: W.braid_group_as_finitely_presented_group() # optional - gap3
Finitely presented group < SAA, SBB, S5 | SAA*SBB*SAA*SBB^-1*SAA^-1*SBB^-1, SAA*S5*SAA^-1*S5^-1*SBB^-1*SBB^-1 >
```

braid_orbit(word)

Return the braid orbit of a word `word` of indices.

The input word does not need to be a reduced expression of an element.

INPUT:

- `word`: a list (or iterable) of indices in `self.index_set()`

OUTPUT: a list of all lists that can be obtained from `word` by replacements of braid relations

See `braid_relations()` for the definition of braid relations.

EXAMPLES:

```sage
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: word = w.reduced_word(); word
[0, 1, 2, 1]
sage: sorted(W.braid_orbit(word))
[[0, 1, 2, 1], [0, 2, 1, 2], [2, 0, 1, 2]]

sage: sorted(W.braid_orbit([2,1,1,2,1]))
[[1, 2, 1, 1, 2], [2, 1, 1, 2, 1], [2, 1, 2, 1, 2], [2, 2, 1, 2, 2]]

sage: W = ReflectionGroup(['A',3], index_set=['AA','BB',5]) # optional - gap3
sage: w = W.long_element() # optional - gap3
sage: W.braid_orbit(w.reduced_word()) # optional - gap3
['AA', 5, 'BB', 5, 'AA', 'BB'],
['AA', 'BB', 5, 'BB', 'AA', 'BB'],
[5, 'BB', 'AA', 5, 'BB', 5],
['BB', 5, 'AA', 'BB', 5, 'AA'],
[5, 'BB', 5, 'AA', 'BB', 5],
['BB', 5, 'AA', 'BB', 'AA', 5],
[5, 'AA', 'BB', 'AA', 5, 'BB'],
```

(continues on next page)
Todo: The result should be full featured finite enumerated set (e.g., counting can be done much faster than iterating).

See also:

reduced_words()

braid_relations()

Return the braid relations of self as a list of reduced words of the braid relations.

EXAMPLES:

sage: W = WeylGroup(['A',2])
sage: W.braid_relations()
[[[1, 2, 1], [2, 1, 2]]]

sage: W = WeylGroup(['B',3])
sage: W.braid_relations()
[[[1, 2, 1], [2, 1, 2]], [[1, 3], [3, 1]], [[2, 3, 2, 3], [3, 2, 3, 2]]]

bruhat_graph (x=None, y=None, edge_labels=False)

Return the Bruhat graph as a directed graph, with an edge \( u \to v \) if and only if \( u < v \) in the Bruhat order, and \( u = r \cdot v \).

The Bruhat graph \( \Gamma(x, y) \), defined if \( x \leq y \) in the Bruhat order, has as its vertices the Bruhat interval \( \{ t | x \leq t \leq y \} \), and as its edges are the pairs \( (u, v) \) such that \( u = r \cdot v \) where \( r \) is a reflection, that is, a conjugate of a simple reflection.

REFERENCES:


EXAMPLES:

sage: W = CoxeterGroup(['H',3])
sage: G = W.bruhat_graph(); G
Digraph on 120 vertices

sage: W = CoxeterGroup(['A',2,1])
sage: s1, s2, s3 = W.simple_reflections()
sage: W.bruhat_graph(s1, s3*s2*s3)
Digraph on 6 vertices

sage: W.bruhat_graph(s1, s3*s2*s3)
Digraph on 0 vertices

sage: W = WeylGroup("A3", prefix="s")
sage: s1, s2, s3 = W.simple_reflections()
sage: G = W.bruhat_graph(s1*s3, s1*s2*s3*s2*s1); G
Digraph on 10 vertices

Check that the graph has the correct number of edges (see trac ticket #17744):

sage: len(G.edges())
16

bruhat_interval \((x, y)\)
Return the list of \(t\) such that \(x \leq t \leq y\).

**EXAMPLES:**

sage: W = WeylGroup("A3", prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: W.bruhat_interval(s2,s1*s3*s2*s1*s3)
[\text{s1\cdot s2\cdot s3\cdot s2\cdot s1}, \text{s2\cdot s3\cdot s2\cdot s1}, \text{s3\cdot s1\cdot s2\cdot s1}, \text{s1\cdot s2\cdot s3}, \text{s1\cdot s2\cdot s1}, \text{s3\cdot s1\cdot s2}, \text{s1\cdot s2\cdot s3\cdot s2\cdot s1}, \text{s2\cdot s3\cdot s2\cdot s1}, \text{s3\cdot s1\cdot s2\cdot s1}, \text{s2\cdot s3\cdot s2\cdot s1}

sage: W = WeylGroup(['A',2,1], prefix="s")
sage: [s0,s1,s2] = W.simple_reflections()
sage: W.bruhat_interval(1,s0*s1*s2)
[\text{s0\cdot s1\cdot s2}, \text{s1\cdot s2}, \text{s0\cdot s2}, \text{s0\cdot s1}, \text{s2}, \text{s1}, \text{s0}, \text{1}]

bruhat_interval_poset \((x, y, \text{facade}=\text{False})\)
Return the poset of the Bruhat interval between \(x\) and \(y\) in Bruhat order.

**EXAMPLES:**

sage: W = WeylGroup("A3", prefix="s")
sage: s1,s2,s3 = W.simple_reflections()
sage: W.bruhat_interval_poset(s2,s1*s3*s2*s1*s3)
Finite poset containing 16 elements

sage: W = WeylGroup(['A',2,1], prefix="s")
sage: s0,s1,s2 = W.simple_reflections()
sage: W.bruhat_interval_poset(1,s0*s1*s2)
Finite poset containing 8 elements

canonical_representation \((\text{})\)
Return the canonical faithful representation of \(\text{self}\).

**EXAMPLES:**

sage: W = WeylGroup("A3")
sage: W.canonical_representation()
Finite Coxeter group over Integer Ring with Coxeter matrix:
[1 3 2]
[3 1 3]
[2 3 1]

coxeter_diagram \((\text{})\)
Return the Coxeter diagram of \(\text{self}\).
EXAMPLES:

```python
sage: W = CoxeterGroup(['H',3], implementation="reflection")
sage: G = W.coxeter_diagram(); G
 Graph on 3 vertices
sage: G.edges()
 [(1, 2, 3), (2, 3, 5)]
sage: CoxeterGroup(G) is W
 True
sage: G = Graph([(0, 1, 3), (1, 2, oo)])
sage: W = CoxeterGroup(G)

sage: W.coxeter_diagram() == G
 True
sage: CoxeterGroup(W.coxeter_diagram()) is W
 True
```

**coxeter_element()**

Return a Coxeter element.

The result is the product of the simple reflections, in some order.

**Note:** This implementation is shared with well generated complex reflection groups. It would be nicer to put it in some joint super category; however, in the current state of the art, there is none where it is clear that this is the right construction for obtaining a Coxeter element.

In this context, this is an element having a regular eigenvector (a vector not contained in any reflection hyperplane of self).

EXAMPLES:

```python
sage: CoxeterGroup(['A', 4]).coxeter_element().reduced_word()
 [1, 2, 3, 4]
sage: CoxeterGroup(['B', 4]).coxeter_element().reduced_word()
 [1, 2, 3, 4]
sage: CoxeterGroup(['D', 4]).coxeter_element().reduced_word()
 [1, 2, 4, 3]
sage: CoxeterGroup(['F', 4]).coxeter_element().reduced_word()
 [1, 2, 3, 4]
sage: CoxeterGroup(['E', 8]).coxeter_element().reduced_word()
 [1, 3, 2, 4, 5, 6, 7, 8]
sage: CoxeterGroup(['H', 3]).coxeter_element().reduced_word()
 [1, 2, 3]
```

This method is also used for well generated finite complex reflection groups:

```python
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
 sage: W.coxeter_element().reduced_word()
 [1, 2, 3]
sage: W = ReflectionGroup((2,1,4)) # optional - gap3
 sage: W.coxeter_element().reduced_word()
 [1, 2, 3, 4]
sage: W = ReflectionGroup((4,1,4)) # optional - gap3
 sage: W.coxeter_element().reduced_word()
 [1, 2, 3, 4]
```

(continues on next page)
coxeter_matrix()

Return the Coxeter matrix associated to self.

EXAMPLES:

```python
sage: G = WeylGroup(['A',3])
sage: G.coxeter_matrix()
[1 3 2]
[3 1 3]
[2 3 1]
```

coxeter_type()

Return the Coxeter type of self.

EXAMPLES:

```python
sage: W = CoxeterGroup(['H',3])
sage: W.coxeter_type()
Coxeter type of ['H', 3]
```

demazure_product(Q)

Return the Demazure product of the list Q in self.

INPUT:

- Q is a list of elements from the index set of self.

This returns the Coxeter group element that represents the composition of 0-Hecke or Demazure operators.


EXAMPLES:

```python
sage: W = WeylGroup(['A',2])
sage: w = W.demazure_product([2,2,1])
sage: w.reduced_word() # optional - gap3
[2, 1]

sage: w = W.demazure_product([2,1,2,1,2])
sage: w.reduced_word() # optional - gap3
[1, 2, 1]

sage: W = WeylGroup(['B',2])
sage: w = W.demazure_product([2,1,2,1,2])
sage: w.reduced_word() # optional - gap3
[2, 1, 2, 1]
```

elements_of_length(n)

Return all elements of length n.

EXAMPLES:

```python
sage: A = AffinePermutationGroup(['A',2,1])
sage: [len(list(A.elements_of_length(i))) for i in [0..5]]
[1, 3, 6, 9, 12, 15]
```
sage: W = CoxeterGroup(['H',3])
sage: [len(list(W.elements_of_length(i))) for i in range(4)]
[1, 3, 5, 7]
sage: W = CoxeterGroup(['A',2])
sage: [len(list(W.elements_of_length(i))) for i in range(6)]
[1, 2, 2, 1, 0, 0]

fully_commutative_elements()
Return the set of fully commutative elements in this Coxeter group.

See also:
FullyCommutativeElements

EXAMPLES:

sage: CoxeterGroup(['A', 3]).fully_commutative_elements()
Fully commutative elements of Finite Coxeter group over Integer Ring with Coxeter matrix:
\[ \begin{pmatrix}
1 & 3 & 2 \\
3 & 1 & 3 \\
2 & 3 & 1
\end{pmatrix} \]

grassmannian_elements(side='right')
Return the left or right Grassmannian elements of self as an enumerated set.

INPUT:
• side – (default: "right") "left" or "right"

EXAMPLES:

sage: S = CoxeterGroups().example()
sage: G = S.grassmannian_elements()
sage: G.cardinality()
12
sage: sorted(tuple(w.descents()) for w in G)
[(), (0,), (0,), (0,), (1,), (1,), (1,), (1,), (1,), (2,), (2,), (2,)]
sage: G = S.grassmannian_elements(side = "left")
sage: G.cardinality()
12
sage: sorted(tuple(w.descents(side = "left")) for w in G)
[(), (0,), (0,), (0,), (1,), (1,), (1,), (1,), (1,), (1,), (1,), (2,), (2,), (2,)]

index_set()
Return the index set of self.

EXAMPLES:

sage: W = CoxeterGroup([[1,3],[3,1]])
sage: W.index_set()
(1, 2)
sage: W = CoxeterGroup([[1,3],[3,1]], index_set=['x', 'y'])
sage: W.index_set()
random_element_of_length\(_{(n)}\)

Return a random element of length \(n\) in \(self\).

Starts at the identity, then chooses an upper cover at random.

Not very uniform: actually constructs a uniformly random reduced word of length \(n\). Thus we most likely get elements with lots of reduced words!

EXAMPLES:

```python
sage: A = AffinePermutationGroup(['A', 7, 1])
sage: p = A.random_element_of_length(10)
sage: p in A
True
sage: p.length() == 10
True
sage: W = CoxeterGroup(['A', 4])
sage: p = W.random_element_of_length(5)
sage: p in W
True
sage: p.length() == 5
True
```

sign_representation\((base\_ring=None, side='twosided')\)

Return the sign representation of \(self\) over \(base\_ring\).

INPUT:

• base\_ring – (optional) the base ring; the default is \(\mathbb{Z}\)
• side – ignored

EXAMPLES:

```python
sage: W = WeylGroup(['A', 1, 1])
sage: W.sign_representation()
Sign representation of Weyl Group of type ['A', 1, 1] (as a matrix group \(\rightarrow\) acting on the root space) over Integer Ring
```

simple_projection\((i, side='right', length\_increasing=True)\)

Return the simple projection \(\pi_i\) (or \(\pi_i\) if \(length\_increasing\) is False).

INPUT:

• \(i\) – an element of the index set of \(self\)

See `simple_projections()` for the options and for the definition of the simple projections.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: W
The symmetric group on {0, ..., 3}
sage: s = W.simple_reflections()
sage: sigma = W.an_element()
sage: sigma
(1, 2, 3, 0)
```
sage: u0 = W.simple_projection(0)
sage: d0 = W.simple_projection(0, length_increasing=False)
sage: sigma.length()
3
sage: pi = sigma*s[0]
sage: pi.length()
4
sage: u0(sigma)
(2, 1, 3, 0)
sage: pi
(2, 1, 3, 0)
sage: u0(pi)
(2, 1, 3, 0)
sage: d0(sigma)
(1, 2, 3, 0)
sage: d0(pi)
(1, 2, 3, 0)

\texttt{simple\_projections}(side='right', length\_increasing=True)

Return the family of simple projections, also known as 0-Hecke or Demazure operators.

\textbf{INPUT:}

\begin{itemize}
\item \texttt{self} – a Coxeter group \(W\)
\item \texttt{side} – ‘left’ or ‘right’ (default: ‘right’)
\item \texttt{length\_increasing} – a boolean (default: True) specifying whether the operator increases or decreases length
\end{itemize}

Returns the simple projections of \(W\), as a family.

To each simple reflection \(s_i\) of \(W\), corresponds a \textit{simple projection} \(\pi_i\) from \(W\) to \(W\) defined by:

\[ \pi_i(w) = ws_i \text{ if } i \text{ is not a descent of } w \]
\[ \pi_i(w) = w \text{ otherwise.} \]

The simple projections \((\pi_i)_{i\in I}\) move elements down the right permutohedron, toward the maximal element. They satisfy the same braid relations as the simple reflections, but are idempotents \(\pi_i^2 = \pi\) not involutions \(s_i^2 = 1\). As such, the simple projections generate the 0-Hecke monoid.

By symmetry, one can also define the projections \((\pi_i)_{i\in I}\) (when the option \texttt{length\_increasing} is False):

\[ \pi_i(w) = ws_i \text{ if } i \text{ is a descent of } w \]
\[ \pi_i(w) = w \text{ otherwise.} \]

as well as the analogues acting on the left (when the option \texttt{side} is ‘left’).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: s = W.simple_reflections()
sage: sigma = W.an_element(); sigma
(1, 2, 3, 0)
sage: pi = W.simple_projections(); pi
Finite family {0: <function ...<lambda> at ...>, 1: <function ...<lambda> at ...>, 2: <function ...<lambda> at ...>}
sage: pi[1](sigma)
(1, 3, 2, 0)
sage: W.simple_projection(1)(sigma)
(1, 3, 2, 0)
\end{verbatim}

\texttt{standard\_coxeter\_elements}()

Return all standard Coxeter elements in \texttt{self}.

This is the set of all elements in \texttt{self} obtained from any product of the simple reflections in \texttt{self}.

3.30. Coxeter Groups
Note:
• self is assumed to be well-generated.
• This works even beyond real reflection groups, but the conjugacy class is not unique and we only obtain one such class.

EXAMPLES:

```python
sage: W = ReflectionGroup(4) # optional - gap3
sage: sorted(W.standard_coxeter_elements()) # optional - gap3
[(1,7,6,12,23,20)(2,8,17,24,9,5) (3,16,10,19,15,21)(4,14,11,22,18,13),
(1,10,4,12,21,22)(2,11,19,24,13,3) (5,15,7,17,16,23) (6,18,8,20,14,9)]
```

`weak_order_ideal (predicate, side='right', category=None)`

Return a weak order ideal defined by a predicate

**INPUT:**
• predicate: a predicate on the elements of self defining an weak order ideal in self
• side: “left” or “right” (default: “right”)

**OUTPUT:** an enumerated set

**EXAMPLES:**

```python
sage: D6 = FiniteCoxeterGroups().example(5)
sage: I = D6.weak_order_ideal(predicate = lambda w: w.length() <= 3)
sage: I.cardinality()
7
sage: list(I)
[(), (1,), (2,), (1, 2), (2, 1), (1, 2, 1), (2, 1, 2)]
```

We now consider an infinite Coxeter group:

```python
sage: W = WeylGroup("A",1,1)
sage: I = W.weak_order_ideal(predicate = lambda w: w.length() <= 2)
sage: list(iter(I))
[(1 0) [-1 2] [1 0] [3 -2] [-1 2]
(0 1), [0 1], [2 -1], [2 -1], [-2 3]]
```

Even when the result is finite, some features of `FiniteEnumeratedSets` are not available:

```python
sage: I.cardinality() # todo: not implemented
5
sage: list(I) # todo: not implemented
```

unless this finiteness is explicitly specified:

```python
sage: I = W.weak_order_ideal(predicate = lambda w: w.length() <= 2,
....: category = FiniteEnumeratedSets())
5
sage: list(I)
[(1 0) [-1 2] [1 0] [3 -2] [-1 2]
(0 1), [0 1], [2 -1], [2 -1], [-2 3]]
```
Background

The weak order is returned as a RecursivelyEnumeratedSet_forest. This is achieved by assigning to each element \( u \) of the ideal a single ancestor \( u = u_1s_i \), where \( i \) is the smallest descent of \( u \).

This allows for iterating through the elements in roughly Constant Amortized Time and constant memory (taking the operations and size of the generated objects as constants).

```
additional_structure()
Return None.

Indeed, all the structure Coxeter groups have in addition to groups (simple reflections, ...) is already defined in the super category.

See also:
Category.additional_structure()
```

```
EXAMPLES:
sage: CoxeterGroups().additional_structure()
```

```
super_categories()
EXAMPLES:
```
```
sage: CoxeterGroups().super_categories()
[Category of generalized coxeter groups]
```

3.31 Crystals

```
class sage.categories.crystals.CrystalHomset (X, Y, category=None)
 Bases: sage.categories.homset.Homset

The set of crystal morphisms from one crystal to another.

An \(U_q(g) \) I-crystal morphism \(\Psi : B \rightarrow C \) is a map \(\Psi : B \cup \{0\} \rightarrow C \cup \{0\} \) such that:

- \(\Psi(0) = 0 \).
- If \(b \in B \) and \(\Psi(b) \in C \), then \(\wt(\Psi(b)) = \wt(b), \varepsilon_i(\Psi(b)) = \varepsilon_i(b) \), and \(\varphi_i(\Psi(b)) = \varphi_i(b) \) for all \(i \in I \).
- If \(b, b' \in B \), \(\Psi(b), \Psi(b') \in C \) and \(f_i b = b' \), then \(f_i \Psi(b) = \Psi(b') \) and \(\Psi(b) = e_i \Psi(b') \) for all \(i \in I \).

If the Cartan type is unambiguous, it is suppressed from the notation.

We can also generalize the definition of a crystal morphism by considering a map of \(\sigma \) of the (now possibly different) Dynkin diagrams corresponding to \(B \) and \(C \) along with scaling factors \(\gamma_i \in \mathbb{Z} \) for \(i \in I \). Let \(\sigma_i \) denote the orbit of \(i \) under \(\sigma \). We write objects for \(B \) as \(X \) with corresponding objects of \(C \) as \(\tilde{X} \). Then a virtual crystal morphism \(\Psi \) is a map such that the following holds:

- \(\Psi(0) = 0 \).
- If \(b \in B \) and \(\Psi(b) \in C \), then for all \(j \in \sigma_i \):
 \[
 \varepsilon_i(b) = \frac{1}{\gamma_j} \tilde{\varepsilon}_j(\Psi(b)), \quad \varphi_i(b) = \frac{1}{\gamma_j} \tilde{\varphi}_j(\Psi(b)), \quad \wt(\Psi(b)) = \sum_i e_i \sum_{j \in \sigma_i} \gamma_j \Lambda_j,
 \]
 where \(\wt(b) = \sum_i c_i \Lambda_i \).
• If \(b, b' \in B, \Psi(b), \Psi(b') \in C \) and \(f_i b = b' \), then independent of the ordering of \(\sigma_i \) we have:

\[
\Psi(b') = e_i \Psi(b) = \prod_{j \in \sigma_i} \hat{e}_j^\dagger \Psi(b), \quad \Psi(b') = f_i \Psi(b) = \prod_{j \in \sigma_i} \hat{f}_j^\dagger \Psi(b).
\]

If \(\gamma_i = 1 \) for all \(i \in I \) and the Dynkin diagrams are the same, then we call \(\Psi \) a twisted crystal morphism.

INPUT:

- \(X \) – the domain
- \(Y \) – the codomain
- \(\text{category} \) – (optional) the category of the crystal morphisms

See also:

For the construction of an element of the homset, see `CrystalMorphismByGenerators` and `crystal_morphism()`.

EXAMPLES:

We begin with the natural embedding of \(B(2\Lambda_1) \) into \(B(\Lambda_1) \otimes B(\Lambda_1) \) in type \(A_1 \):

```python
sage: B = crystals.Tableaux(['A',1], shape=[2])
sage: F = crystals.Tableaux(['A',1], shape=[1])
sage: T = crystals.TensorProduct(F, F)
sage: v = T.highest_weight_vectors()[0]; v
[[[1]], [[1]]]
sage: H = Hom(B, T)
sage: psi = H([v])
sage: psi(b)
[[[1]], [[1]]]
sage: psi(b.f(1))
[[[1], [2]]]
```

We now look at the decomposition of \(B(\Lambda_1) \otimes B(\Lambda_1) \) into \(B(2\Lambda_1) \oplus B(0) \):

```python
sage: B0 = crystals.Tableaux(['A',1], shape=[2])
sage: D = crystals.DirectSum([B, B0])
sage: H = Hom(T, D)
sage: psi = H(D.module_generators)
sage: psi
['A', 1] Crystal morphism:
From: Full tensor product of the crystals
  (The crystal of tableaux of type ['A', 1] and shape(s) [[1]],
   The crystal of tableaux of type ['A', 1] and shape(s) [[1]])
To:  Direct sum of the crystals
  (The crystal of tableaux of type ['A', 1] and shape(s) [[2]],
   The crystal of tableaux of type ['A', 1] and shape(s) [[1]])
Defn: [[[[1]], [[1]]]] |--> [[1, 1]]
       [[[2]], [[1]]]] |--> []
sage: psi.is_isomorphism()
True
```

We can always construct the trivial morphism which sends everything to 0:
For Kirillov-Reshetikhin crystals, we consider the map to the corresponding classical crystal:

\[
\begin{align*}
\text{sage: } & K = \text{crystals.KirillovReshetikhin(['D',4,1], 2,1)} \\
& B = K.\text{classical_decomposition()} \\
& H = \text{Hom}(K, B) \\
& \text{psi = H(lambda x: x.lift(), cartan_type=['D',4])} \\
& L = [\text{psi(mg) for mg in K.module_generators}; L \\
& \text{[[], [[1], [2]]]} \\
\text{sage: } & \text{all(x.parent() == B for x in L)} \\
& \text{True}
\end{align*}
\]

Next we consider a type D_4 crystal morphism where we twist by $3 \leftrightarrow 4$:

\[
\begin{align*}
\text{sage: } & B = \text{crystals.Tableaux(['D',4], shape=[1])} \\
& H = \text{Hom}(B, B) \\
& d = \{1:1, 2:2, 3:4, 4:3\} \\
& \text{psi = H(B.module_generators, automorphism=d)} \\
& b = B.\text{highest_weight_vector()} \\
& \text{b.f_string([[1,2,3]])} \\
& \text{[[4]]} \\
& \text{b.f_string([[1,2,4]])} \\
& \text{[[4]]} \\
& \text{psi(b.f_string([[1,2,3]]))} \\
& \text{[[[-4]]]} \\
& \text{psi(b.f_string([[1,2,4]]))} \\
& \text{[[4]]}
\end{align*}
\]

We construct the natural virtual embedding of a type B_3 into a type D_4 crystal:

\[
\begin{align*}
\text{sage: } & B = \text{crystals.Tableaux(['B',3], shape=[1])} \\
& C = \text{crystals.Tableaux(['D',4], shape=[2])} \\
& H = \text{Hom}(B, C) \\
& \text{psi = H(C.module_generators)} \\
& \text{psi} \\
& ['B', 3] \rightarrow ['D', 4] \text{ Virtual Crystal morphism:} \\
& \text{From: The crystal of tableaux of type ['B', 3] and shape(s) [[1]]} \\
& \text{To: The crystal of tableaux of type ['D', 4] and shape(s) [[2]]} \\
& \text{Defn: [[1]] \rightarrow [[1, 1]]} \\
\text{sage: for b in B: print("{} |--> {}").format(b, psi(b))} \\
& [[1]] \rightarrow [[1, 1]] \\
& [[2]] \rightarrow [[2, 2]] \\
& [[3]] \rightarrow [[3, 3]] \\
& [[0]] \rightarrow [[3, -3]] \\
& [[-3]] \rightarrow [[-3, -3]] \\
& [[-2]] \rightarrow [[-2, -2]] \\
& [[-1]] \rightarrow [[-1, -1]]
\end{align*}
\]
Bases: `sage.categories.morphism.Morphism`

A crystal morphism.

INPUT:

- **parent** – a homset
- **cartan_type** – (optional) a Cartan type; the default is the Cartan type of the domain
- **virtualization** – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain
- **scaling_factors** – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, ε and φ

cartan_type()

Return the Cartan type of `self`.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: psi = Hom(B, B).an_element()
sage: psi.cartan_type()
['A', 2]
```

is_injective()

Return if `self` is an injective crystal morphism.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: psi = Hom(B, B).an_element()
sage: psi.is_injective()
False
```

is_surjective()

Check if `self` is a surjective crystal morphism.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_surjective()
False
```

```python
sage: im_gens = [None, B.module_generators[0]]
sage: psi = C.crystal_morphism(im_gens, codomain=B)
sage: psi.is_surjective()
True
```

```python
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: B = crystals.infinity.Tableaux(['A',2])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: W = crystals.elementary.T(['A',2], La[1]+La[2])
sage: T = W.tensor(B)
sage: mg = T(W.module_generators[0], B.module_generators[0])
sage: psi = Hom(C,T)([mg])
sage: psi.is_surjective()
False
```
scaling_factors()
Return the scaling factors γ_i.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: psi = B.crystal_morphism(C.module_generators)
sage: psi.scaling_factors()
Finite family {1: 2, 2: 2, 3: 1}
```

virtualization()
Return the virtualization sets σ_i.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: psi = B.crystal_morphism(C.module_generators)
sage: psi.virtualization()
Finite family {1: (1,), 2: (2,), 3: (3, 4)}
```

class sage.categories.crystals.CrystalMorphismByGenerators

A crystal morphism defined by a set of generators which create a virtual crystal inside the codomain.

INPUT:

- `parent` – a homset
- `on_gens` – a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of the domain under self
- `cartan_type` – (optional) a Cartan type; the default is the Cartan type of the domain
- `virtualization` – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain
- `scaling_factors` – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, ε and φ
- `gens` – (optional) a finite list of generators to define the morphism; the default is to use the highest weight vectors of the crystal
- `check` – (default: True) check if the crystal morphism is valid

See also:

`sage.categories.crystals.Crystals.ParentMethods.crystal_morphism()`

im_gens()
Return the image of the generators of self as a tuple.

EXAMPLES:
```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: F = crystals.Tableaux(['A',2], shape=[1])
sage: T = crystals.TensorProduct(F, F, F)
sage: H = Hom(T, B)
sage: b = B.highest_weight_vector()
sage: psi = H((None, b, b, None), generators=T.highest_weight_vectors())
sage: psi.im_gens()
(None, [[[1, 1], [2]], [[1, 1], [2]], None])
```

Return the image of `self` in the codomain as a Subcrystal.

Warning: This assumes that `self` is a strict crystal morphism.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: H = Hom(B, C)
sage: psi = H(C.module_generators)
sage: psi.image()
Virtual crystal of The crystal of tableaux of type ['D', 4] and shape(s) \rightarrow[[[2]]] of type ['B', 3]
```

to_module_generator(x)

Return a generator `mg` and a path of e_i and f_i operations to `mg`.

OUTPUT:

A tuple consisting of:

- a module generator,
- a list of 'e' and 'f' to denote which operation, and
- a list of matching indices.

EXAMPLES:

```python
sage: B = crystals.elementary.Elementary(['A',2], 2)
sage: psi = B.crystal_morphism(B.module_generators)
sage: psi.to_module_generator(B(4))
(0, ['f', 'f', 'f', 'f'], [2, 2, 2, 2])
sage: psi.to_module_generator(B(-2))
(0, ['e', 'e'], [2, 2])
```

class sage.categories.crystals.Crystals(s=None)

Bases: `sage.categories.category_singleton.Category_singleton`

The category of crystals.

See `sage.combinat.crystals.crystals` for an introduction to crystals.

EXAMPLES:

```python
sage: C = Crystals()
sage: C
Category of crystals
```

(continues on next page)
Parents in this category should implement the following methods:

- either an attribute `_cartan_type` or a method `cartan_type`
- `module_generators`: a list (or container) of distinct elements which generate the crystal using f_i

Furthermore, their elements x should implement the following methods:

- $x.e(i)$ (returning $e_i(x)$)
- $x.f(i)$ (returning $f_i(x)$)
- $x.epsilon(i)$ (returning $\epsilon_i(x)$)
- $x.phi(i)$ (returning $\phi_i(x)$)

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 5])
sage: C(0).Epsilon()
(0, 0, 0, 0, 0)
sage: C(1).Epsilon()
(0, 0, 0, 0, 0)
sage: C(2).Epsilon()
(1, 0, 0, 0, 0)
```

```python
sage: C = crystals.Letters(['A', 5])
sage: C(0).Phi()
(0, 0, 0, 0, 0)
sage: C(1).Phi()
(1, 0, 0, 0, 0)
sage: C(2).Phi()
(1, 1, 0, 0, 0)
```

```python
sage: all_paths_to_highest_weight(index_set=None)
```

Iterate over all paths to the highest weight from `self` with respect to `index_set`.

INPUT:

- `index_set` - (optional) a subset of the index set of `self`

EXAMPLES:
```python
sage: B = crystals.infinity.Tableaux("A2")
sage: b0 = B.highest_weight_vector()
sage: b = b0.f_string([1, 2, 1, 2])
sage: L = b.all_paths_to_highest_weight()
sage: list(L)
[[2, 1, 2, 1], [2, 2, 1, 1]]
sage: Y = crystals.infinity.GeneralizedYoungWalls(3)
sage: y0 = Y.highest_weight_vector()
sage: y = y0.f_string([0, 1, 2, 3, 2, 1, 0])
sage: list(y.all_paths_to_highest_weight())
[[0, 1, 2, 3, 2, 1, 0],
 [0, 1, 3, 2, 2, 1, 0],
 [0, 3, 1, 2, 2, 1, 0],
 [0, 3, 2, 1, 1, 0, 2],
 [0, 3, 2, 1, 1, 2, 0]]
sage: B = crystals.Tableaux("A3", shape=[4,2,1])
sage: b0 = B.highest_weight_vector()
sage: b = b0.f_string([1, 1, 2, 3])
sage: list(b.all_paths_to_highest_weight())
[[1, 1, 2, 3], [1, 3, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1]]
```

carton_type()

Returns the Cartan type associated to self

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 5])
sage: C(1).cartan_type()
['A', 5]
```

e(i)

Return e_i of self if it exists or None otherwise.

This method should be implemented by the element class of the crystal.

EXAMPLES:

```python
sage: C = Crystals().example(5)
sage: x = C[2]; x
3
sage: x.e(1), x.e(2), x.e(3)
(None, 2, None)
```

e_string(list)

Applies $e_{i_1} \cdots e_{i_r}$ to self for list as $[i_1, \ldots, i_r]$

EXAMPLES:

```python
sage: C = crystals.Letters(['A',3])
sage: b = C(3)
sage: b.e_string([2,1])
1
sage: b.e_string([1,2])
```

epsilon(i)

EXAMPLES:

```python
```
sage: C = crystals.Letters(['A',5])
sage: C(1).epsilon(1)
0
sage: C(2).epsilon(1)
1

\(f(i)\)

Return \(f_i\) of \(self\) if it exists or None otherwise.

This method should be implemented by the element class of the crystal.

EXAMPLES:

```
sage: C = Crystals().example(5)
sage: x = C[1]; x
2
sage: x.f(1), x.f(2), x.f(3)
(\text{None}, 3, \text{None})
```

\(f_\text{string}(list)\)

Applies \(f_{i_1} \cdots f_{i_r}\) to \(self\) for \(list \equiv [i_1, \ldots, i_r]\)

EXAMPLES:

```
sage: C = crystals.Letters(['A',3])
sage: b = C(1)
sage: b.f_string([1,2])
3
sage: b.f_string([2,1])
```

\(\text{index_set}\()\)

EXAMPLES:

```
sage: C = crystals.Letters(['A',5])
sage: C(1).index_set()
(1, 2, 3, 4, 5)
```

\(\text{is_highest_weight}(index_set=\text{None})\)

Returns True if \(\text{self}\) is a highest weight. Specifying the option index_set to be a subset \(I\) of the index set of the underlying crystal, finds all highest weight vectors for arrows in \(I\).

EXAMPLES:

```
sage: C = crystals.Letters(['A',5])
sage: C(1).is_highest_weight()
True
sage: C(2).is_highest_weight()
False
sage: C(2).is_highest_weight(index_set = [2,3,4,5])
True
```

\(\text{is_lowest_weight}(index_set=\text{None})\)

Returns True if \(\text{self}\) is a lowest weight. Specifying the option index_set to be a subset \(I\) of the index set of the underlying crystal, finds all lowest weight vectors for arrows in \(I\).

EXAMPLES:
sage: C = crystals.Letters(['A',5])
sage: C(1).is_lowest_weight()
False
sage: C(6).is_lowest_weight()
True
sage: C(4).is_lowest_weight(index_set = [1,3])
True

\texttt{phi}(i)

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi(1)
1
sage: C(2).phi(1)
0

\texttt{phi_minus_epsilon}(i)

Return $\varphi_i - \varepsilon_i$ of self.

There are sometimes better implementations using the weight for this. It is used for reflections along a string.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi_minus_epsilon(1)
1

\texttt{s}(i)

Return the reflection of self along its i-string.

EXAMPLES:

sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: b = C(rows=[[1,1],[3]])
sage: b.s(1)
[[2, 2], [3]]
sage: b = C(rows=[[1,2],[3]])
sage: b.s(2)
[[1, 2], [3]]
sage: T = crystals.Tableaux(['A',2],shape=[4])
sage: t = T(rows=[[1,2,2,2]])
sage: t.s(1)
[[1, 1, 1, 2]]

\texttt{subcrystal}(index_set=None, max_depth=inf, direction='both', contained=None,
cartan_type=None, category=None)

Construct the subcrystal generated by self using e_i and/or f_i for all i in index_set.

INPUT:

- \texttt{index_set} – (default: None) the index set; if None then use the index set of the crystal
- \texttt{max_depth} – (default: infinity) the maximum depth to build
- \texttt{direction} – (default: 'both') the direction to build the subcrystal; it can be one of the following:
 - 'both' - using both e_i and f_i
 - 'upper' - using e_i
 - 'lower' - using f_i
• contained – (optional) a set (or function) defining the containment in the subcrystal
• cartan_type – (optional) specify the Cartan type of the subcrystal
• category – (optional) specify the category of the subcrystal

See also:
• `Crystals.ParentMethods.subcrystal()`

EXAMPLES:

```python
tensor (*elts)
Return the tensor product of self with the crystal elements elts.

EXAMPLES:

```python
to_highest_weight (index_set=None)
Return the highest weight element u and a list [i₁, ..., iₖ] such that self = f₁...fₖ u, where i₁, ..., iₖ
are elements in index set. By default the index set is assumed to be the full index set of self.

EXAMPLES:

```python
```
to_lowest_weight \((\text{index set=None}) \)

Return the lowest weight element \(u \) and a list \([i_1, \ldots, i_k]\) such that \(self = e_{i_1} \cdots e_{i_k} u \), where \(i_1, \ldots, i_k \) are elements in \(\text{index set} \). By default the index set is assumed to be the full index set of \(self \).

EXAMPLES:

```python
sage: T = crystals.Tableaux(['A',3], shape = [1])
sage: t = T(rows = [[3]])
sage: t.to_lowest_weight()
[[[4]], [3]]
sage: T = crystals.Tableaux(['A',3], shape = [2,1])
sage: t = T(rows = [[1,2],[4]])
sage: t.to_lowest_weight()
[[[3, 4], [4]], [1, 2, 2, 3]]
sage: t.to_lowest_weight(index_set = [3])
[[[1, 2], [4]], []]
sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: t = K.module_generator(); t
[[1], [2]]
sage: t.to_lowest_weight(index_set=[1,2,3])
[[[3], [4]], [2, 1, 3, 2]]
sage: t.to_lowest_weight()
Traceback (most recent call last):
...  
ValueError: This is not a highest weight crystals!
```

weight()

Return the weight of this crystal element.

This method should be implemented by the element class of the crystal.

EXAMPLES:

```python
sage: C = crystals.Letters(['A',5])
sage: C(1).weight()
(1, 0, 0, 0, 0, 0)
```

Finite

alias of `sage.categories.finite_crystals.FiniteCrystals`

class MorphismMethods

is_embedding()

Check if \(self \) is an injective crystal morphism.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], [(2,1), [1,1]])
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_embedding()
```

(continues on next page)
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: B = crystals.infinity.Tableaux(['A',2])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: W = crystals.elementary.T(['A',2], La[1]+La[2])
sage: T = W.tensor(B)
sage: mg = T(W.module_generators[0], B.module_generators[0])
sage: psi = Hom(C,T)([mg])
sage: psi.is_embedding()
True

is_isomorphism()
Check if self is a crystal isomorphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_isomorphism()
False

is_strict()
Check if self is a strict crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_strict()
True

class ParentMethods

Bases: object

Lambda()
Returns the fundamental weights in the weight lattice realization for the root system associated with the crystal

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C.Lambda()
Finite family {1: (1, 0, 0, 0, 0, 0), 2: (1, 1, 0, 0, 0, 0), 3: (1, 1, 1, 0, 0, 0), 4: (1, 1, 1, 1, 0, 0), 5: (1, 1, 1, 1, 1, 0)}

an_element()
Returns an element of self

sage: C = crystals.Letters(['A', 5])
sage: C.an_element()
1

cartan_type()
Returns the Cartan type of the crystal

EXAMPLES:

3.31. Crystals
sage: C = crystals.Letters(['A',2])
sage: C.cartan_type()
['A', 2]

connected_components()

Return the connected components of self as subcrystals.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.connected_components()
[Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
 The crystal of letters for type ['A', 2]],
Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
 The crystal of letters for type ['A', 2]],
Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
 The crystal of letters for type ['A', 2]]]

connected_components_generators()

Return a tuple of generators for each of the connected components of self.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.connected_components_generators()
([[[1, 1], [2]], 1], [[[1, 2], [2]], 1], [[[1, 2], [3]], 1])

crystal_morphism(on_gens, codomain=None, cartan_type=None, index_set=None, generators=None, automorphism=None, virtualization=None, scaling_factors=None, category=None, check=True)

Construct a crystal morphism from self to another crystal codomain.

INPUT:

- on_gens – a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of self under the crystal morphism
- codomain – (default: self) the codomain of the morphism
- cartan_type – (optional) the Cartan type of the morphism; the default is the Cartan type of self
- index_set – (optional) the index set of the morphism; the default is the index set of the Cartan type
- generators – (optional) the generators to define the morphism; the default is the generators of self
- automorphism – (optional) the automorphism to perform the twisting
- virtualization – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain; the default is the identity dictionary
- scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \(\varepsilon \) and \(\varphi \); the default are all scaling factors to be one
• **category** – (optional) the category for the crystal morphism; the default is the category of Crystals.
 • **check** – (default: True) check if the crystal morphism is valid

See also:

For more examples, see `sage.categories.crystals.CrystalHomset`.

EXAMPLES:

We construct the natural embedding of a crystal using tableaux into the tensor product of single boxes via the reading word:

```
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: F = crystals.Tableaux(['A',2], shape=[1])
sage: T = crystals.TensorProduct(F, F, F)
sage: mg = T.highest_weight_vectors()[2]; mg
[[[1]], [[2]], [[1]]]
sage: psi = B.crystal_morphism([mg], codomain=T); psi
['A', 2] Crystal morphism:
  From: The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]
  To:  Full tensor product of the crystals
       [The crystal of tableaux of type ['A', 2] and shape(s) [[1]],
        The crystal of tableaux of type ['A', 2] and shape(s) [[1]],
        The crystal of tableaux of type ['A', 2] and shape(s) [[1]]]
  Defn: [[1, 1], [2]] |--> [[[1]], [[2]], [[1]]]
sage: b = B.module_generators[0]
sage: b.pp()
1 1
2
sage: psi(b)
[[[1]], [[2]], [[1]]]
sage: psi(b.f(2))
[[[1]], [[3]], [[1]]]
sage: psi(b.f_string([2,1,1]))
[[[2]], [[3]], [[2]]]
sage: lw = b.to_lowest_weight()[0]
sage: lw.pp()
2 3
3
sage: psi(lw)
[[[3]], [[3]], [[2]]]
sage: psi(lw) == mg.to_lowest_weight()[0]
True
```

We now take the other isomorphic highest weight component in the tensor product:

```
sage: mg = T.highest_weight_vectors()[1]; mg
[[[2]], [[1]], [[1]]]
sage: psi = B.crystal_morphism([mg], codomain=T)
sage: psi(lw)
[[[3]], [[2]], [[3]]]
```

We construct a crystal morphism of classical crystals using a Kirillov-Reshetikhin crystal:

```
sage: B = crystals.Tableaux(['D', 4], shape=[1,1])
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: K.module_generators
[[[], [[1]], [2]], [[1, 1], [2, 2]]]
sage: v = K.module_generators[1]
```
sage: psi = B.crystal_morphism([v], codomain=K, category=FiniteCrystals())
sage: psi
['D', 4] -> ['D', 4, 1] Virtual Crystal morphism:
 From: The crystal of tableaux of type ['D', 4] and shape(s) [[1, 1]]
 To: Kirillov-Reshetikhin crystal of type ['D', 4, 1] with (r,s)=(2,2)
 Defn: [[1], [2]] |--> [[1], [2]]
sage: b = B.module_generators[0]
sage: psi(b)
[[1], [2]]
sage: psi(b.to_lowest_weight()[0])
[[-2], [-1]]

We can define crystal morphisms using a different set of generators. For example, we construct an example using the lowest weight vector:

sage: B = crystals.Tableaux(['A',2], shape=[1])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(['A',2], La[2])
sage: Bp = T.tensor(B)
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: x = C.module_generators[0].f_string([1,2])
sage: psi = Bp.crystal_morphism([x], generators=Bp.lowest_weight_vectors())
sage: psi(Bp.highest_weight_vector())
[[1, 1], [2]]

We can also use a dictionary to specify the generators and their images:

sage: psi = Bp.crystal_morphism({Bp.lowest_weight_vectors()[0]: x})
sage: psi(Bp.highest_weight_vector())
[[1, 1], [2]]

We construct a twisted crystal morphism induced from the diagram automorphism of type $A_3^{(1)}$:

sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_weights()
sage: B0 = crystals.GeneralizedYoungWalls(3, La[0])
sage: B1 = crystals.GeneralizedYoungWalls(3, La[1])
sage: phi = B0.crystal_morphism(B1.module_generators, automorphism={0:1, 1:2, 2:3, 3:0})
sage: phi
['A', 3, 1] Twisted Crystal morphism:
 From: Highest weight crystal of generalized Young walls of Cartan type ['A', 3, 1] and highest weight Lambda[0]
 To: Highest weight crystal of generalized Young walls of Cartan type ['A', 3, 1] and highest weight Lambda[1]
 Defn: [] |--> []
sage: x = B0.module_generators[0].f_string([0,1,2,3]); x
[[0, 3], [1], [2]]
sage: phi(x)
[[], [1, 0], [2], [3]]

We construct a virtual crystal morphism from type G_2 into type D_4:

sage: D = crystals.Tableaux(['D',4], shape=[1,1])
sage: G = crystals.Tableaux(['G',2], shape=[1])

(continues on next page)
psi = G.crystal_morphism(D.module_generators,
....: virtualization={1:[2], 2:[1, 3, 4]},
....: scaling_factors={1:1, 2:1})

for x in G:
....: ascii_art(x, psi(x), sep=' |--> ')
....: print("")

1 |--> 2
 |
1 |--> 3
 |
2 |--> -3
 |
3 |--> -2
 |
-3 |--> -1
 |
-1 |--> -1

digraph (subset=None, index_set=None)

Return the DiGraph associated to self.

INPUT:
• subset – (optional) a subset of vertices for which the digraph should be constructed
• index_set – (optional) the index set to draw arrows

EXAMPLES:

sage: C = Crystals().example(5)
sage: C.digraph()
Digraph on 6 vertices

The edges of the crystal graph are by default colored using blue for edge 1, red for edge 2, and green for edge 3:

sage: C = Crystals().example(3)
sage: G = C.digraph()
sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)

One may also overwrite the colors:

sage: C = Crystals().example(3)
sage: G = C.digraph()
sage: G.set_latex_options(color_by_label = {1:"red", 2:"purple", 3:"blue"})
sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)

Or one may add colors to yet unspecified edges:
Here is an example of how to take the top part up to a given depth of an infinite dimensional crystal:

```python
sage: C = CartanType(['C',2,1])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[0])
sage: S = T.subcrystal(max_depth=3)
sage: G = T.digraph(subset=S); G
Digraph on 5 vertices
```

Here is a way to construct a picture of a Demazure crystal using the `subset` option:

```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = B.highest_weight_vector()
sage: D = B.demazure_subcrystal(t, [2,1])
sage: list(D)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
 [[1, 3], [2]], [[1, 3], [3]]]
sage: view(D)  # optional - dot2tex graphviz, not tested (opens external...)
```

We can also choose to display particular arrows using the `index_set` option:

```python
sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: G = C.digraph(index_set=[1,3])
sage: len(G.edges())
20
sage: view(G)  # optional - dot2tex graphviz, not tested (opens external...)
```

Todo: Add more tests.

direct_sum \((X)\)

Return the direct sum of self with \(X\).

EXAMPLES:

```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: B.direct_sum(C)
Direct sum of the crystals Family
(The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
The crystal of letters for type ['A', 2])
```
As a shorthand, we can use `+`:

```
sage: B + C
Direct sum of the crystals Family
(The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
The crystal of letters for type ['A', 2])
```

dot_tex()

Return a dot_tex string representation of self.

EXAMPLES:

```
sage: C = crystals.Letters(['A',2])
sage: C.dot_tex()
'digraph G {
 node [ shape=plaintext ];
 N_0 [ label = " ", texlbl = "1" ];
 N_1 [ label = " ", texlbl = "2" ];
 N_2 [ label = " ", texlbl = "3" ];
 N_0 -> N_1 [ label = " ", texlbl = "1" ];
 N_1 -> N_2 [ label = " ", texlbl = "2" ];
}
```

index_set()

Returns the index set of the Dynkin diagram underlying the crystal

EXAMPLES:

```
sage: C = crystals.Letters(['A', 5])
sage: C.index_set()
(1, 2, 3, 4, 5)
```

is_connected()

Return True if self is a connected crystal.

EXAMPLES:

```
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: B.is_connected()
True
sage: T.is_connected()
False
```

latex(**options**)**

Returns the crystal graph as a latex string. This can be exported to a file with self.latex_file('filename').

EXAMPLES:

```
sage: T = crystals.Tableaux(['A',2], shape=[1])
sage: T._latex_()
'...tikzpicture...'
sage: view(T) # optional - dot2tex graphviz, not tested (opens external window)
```

One can for example also color the edges using the following options:

```
sage: T = crystals.Tableaux(['A',2], shape=[1])
sage: T._latex_(color_by_label={0:"black", 1:"red", 2:"blue"})
'...tikzpicture...'
```
latex_file (filename)
Export a file, suitable for pdflatex, to ‘filename’.

This requires a proper installation of dot2tex in sage-python. For more information see the documentation for self.latex().

EXAMPLES:

```
sage: C = crystals.Letters(['A', 5])
sage: fn = tmp_filename(ext='.tex')
sage: C.latex_file(fn)
```

metapost (filename, thicklines=False, labels=True, scaling_factor=1.0, tallness=1.0)
Use C.metapost("filename.mp",[options]), where options can be:

- thicklines = True (for thicker edges)
- labels = False (to suppress labeling of the vertices)
- scaling_factor=value, where value is a floating point number, 1.0 by default. Increasing or decreasing the scaling factor changes the size of the image. tallness=1.0. Increasing makes the image taller without increasing the width.

Root operators e(1) or f(1) move along red lines, e(2) or f(2) along green. The highest weight is in the lower left. Vertices with the same weight are kept close together. The concise labels on the nodes are strings introduced by Berenstein and Zelevinsky and Littelmann; see Littelmann’s paper Cones, Crystals, Patterns, sections 5 and 6.

For Cartan types B2 or C2, the pattern has the form

```
a2 a3 a4 a1
```

where $c*a2 = a3 = 2*a4 =0$ and $a1=0$, with $c=2$ for B2, $c=1$ for C2. Applying $e(2)$ a1 times, $e(1)$ a2 times, $e(2)$ a3 times, $e(1)$ a4 times returns to the highest weight. (Observe that Littelmann writes the roots in opposite of the usual order, so our $e(1)$ is his $e(2)$ for these Cartan types.) For type A2, the pattern has the form

```
a3 a2 a1
```

where applying $e(1)$ a1 times, $e(2)$ a2 times then $e(3)$ a1 times returns to the highest weight. These data determine the vertex and may be translated into a Gelfand-Tsetlin pattern or tableau.

EXAMPLES:

```
sage: C = crystals.Letters(['A', 2])
sage: C.metapost(tmp_filename())
sage: C = crystals.Letters(['A', 5])
sage: C.metapost(tmp_filename())
```

number_of_connected_components ()
Return the number of connected components of self.

EXAMPLES:

```
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.number_of_connected_components()
3
```
plot (**options)**

Return the plot of self as a directed graph.

EXAMPLES:

```
sage: C = crystals.Letters(['A', 5])
sage: print(C.plot())
Graphics object consisting of 17 graphics primitives
```

plot3d (**options)**

Return the 3-dimensional plot of self as a directed graph.

EXAMPLES:

```
sage: C = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: print(C.plot3d())
Graphics3d Object
```

subcrystal (**index_set=None, generators=None, max_depth=inf, direction='both', contained=None, virtualization=None, scaling_factors=None, cartan_type=None, category=None)**

Construct the subcrystal from generators using e_i and/or f_i for all i in index_set.

INPUT:

- **index_set** – (default: None) the index set; if None then use the index set of the crystal
- **generators** – (default: None) the list of generators; if None then use the module generators of the crystal
- **max_depth** – (default: infinity) the maximum depth to build
- **direction** – (default: 'both') the direction to build the subcrystal; it can be one of the following:
 - 'both' - using both e_i and f_i
 - 'upper' - using e_i
 - 'lower' - using f_i
- **contained** – (optional) a set or function defining the containment in the subcrystal
- **virtualization, scaling_factors** – (optional) dictionaries whose key i corresponds to the sets σ_i and γ_i respectively used to define virtual crystals; see VirtualCrystal
- **cartan_type** – (optional) specify the Cartan type of the subcrystal
- **category** – (optional) specify the category of the subcrystal

EXAMPLES:

```
sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2)
sage: S = list(C.subcrystal(index_set=[1,2])); S
[[[1, 1]], [[1, 2]], [[2, 2]], [[1, 3]], [[2, 3]], [[3, 3]]]
sage: C.cardinality()
10
sage: len(S)
6
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)]))
[[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], max_depth=1))
[[[1, 4]], [[2, 4]], [[1, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction='upper'))
[[[1, 4]], [[1, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction='lower'))
```

(continues on next page)

(continued from previous page)

\[
[[[1, 4]], [[2, 4]]]
\]

```python
sage: G = C.subcrystal(index_set=[1,2,3]).digraph()
sage: GA = crystals.Tableaux('A3', shape=[2]).digraph()
sage: G.is_isomorphic(GA, edge_labels=True)
True
```

We construct the subcrystal which contains the necessary data to construct the corresponding dual equivalence graph:

```python
sage: C = crystals.Tableaux(['A',5], shape=[3,3])
sage: is_wt0 = lambda x: all(x.epsilon(i) == x.phi(i) for i in x.parent().index_set())
sage: def check(x):
    if is_wt0(x):
        return True
    for i in x.parent().index_set()[:-1]:
        L = [x.e(i), x.e_string([i,i+1]), x.f(i), x.f_string([i, i+1])]
        if any(y is not None and is_wt0(y) for y in L):
            return True
    return False
sage: wt0 = [x for x in C if is_wt0(x)]
sage: S = C.subcrystal(contained=check, generators=wt0)
sage: S.module_generators[0]
[[1, 3, 5], [2, 4, 6]]
```

```python
sage: S.module_generators[0].e(2).e(3).f(2).f(3)
[[1, 2, 5], [3, 4, 6]]
```

An example of a type \(B_2 \) virtual crystal inside of a type \(A_3 \) ambient crystal:

```python
sage: A = crystals.Tableaux(['A',3], shape=[2,1,1])
sage: S = A.subcrystal(virtualization={1:[1,3], 2:[2]},
...: scaling_factors={1:1,2:1}, cartan_type=['B',2])
sage: B = crystals.Tableaux(['B',2], shape=[1])
sage: S.digraph().is_isomorphic(B.digraph(), edge_labels=True)
True
```

tensor (*crystals, **options)

Return the tensor product of self with the crystals B.

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 3])
sage: B = crystals.infinity.Tableaux(['A', 3])
sage: T = C.tensor(C, B); T
Full tensor product of the crystals
[The crystal of letters for type ['A', 3],
 The crystal of letters for type ['A', 3],
 The infinity crystal of tableaux of type ['A', 3]]
sage: tensor([C, C, B])
is T
True
```

(continues on next page)
weight_lattice_realization()

Return the weight lattice realization used to express weights in self.

This default implementation uses the ambient space of the root system for (non relabelled) finite types and the weight lattice otherwise. This is a legacy from when ambient spaces were partially implemented, and may be changed in the future.

For affine types, this returns the extended weight lattice by default.

EXAMPLES:

```
sage: C = crystals.Letters(['A', 5])
sage: C.weight_lattice_realization()
Ambient space of the Root system of type ['A', 5]
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.weight_lattice_realization()
Weight lattice of the Root system of type ['A', 2, 1]
```

class SubcategoryMethods

Methods for all subcategories.

TensorProducts()

Return the full subcategory of objects of self constructed as tensor products.

See also:

- `tensor.TensorProductsCategory`
- `RegressiveCovariantFunctorialConstruction`.

EXAMPLES:

```
sage: HighestWeightCrystals().TensorProducts()
Category of tensor products of highest weight crystals
```

class TensorProducts(category, *args)

The category of crystals constructed by tensor product of crystals.

extra_super_categories()

EXAMPLES:

```
sage: Crystals().TensorProducts().extra_super_categories()
[Category of crystals]
```

element (choice='highwt', **kwds)

Returns an example of a crystal, as per `Category.example()`.

INPUT:

- `choice` - str [default: ‘highwt’]. Can be either ‘highwt’ for the highest weight crystal of type A, or ‘naive’ for an example of a broken crystal.
• **kwds** – keyword arguments passed onto the constructor for the chosen crystal.

EXAMPLES:

```python
sage: Crystals().example(choice='highwt', n=5)
Highest weight crystal of type A_5 of highest weight omega_1
sage: Crystals().example(choice='naive')
A broken crystal, defined by digraph, of dimension five.
```

super_categories()

EXAMPLES:

```python
sage: Crystals().super_categories()
[Category of enumerated sets]
```

3.32 CW Complexes

class `sage.categories.cw_complexes.CWComplexes(s=None)`

Bases: `sage.categories.category_singleton.Category_singleton`

The category of CW complexes.

A CW complex is a Closure-finite cell complex in the Weak topology.

REFERENCES:

- Wikipedia article CW_complex

Note: The notion of “finite” is that the number of cells is finite.

EXAMPLES:

```python
sage: from sage.categories.cw_complexes import CWComplexes
sage: C = CWComplexes(); C
Category of CW complexes
```

Compact_extra_super_categories()

Return extraneous super categories for `CWComplexes().Compact()`.

A compact CW complex is finite, see Proposition A.1 in [Hat2002].

Todo: Fix the name of finite CW complexes.

EXAMPLES:

```python
sage: from sage.categories.cw_complexes import CWComplexes
sage: CWComplexes().Compact() # indirect doctest
Category of finite finite dimensional CW complexes
sage: CWComplexes().Compact() is CWComplexes().Finite()
True
```

class `Connected(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom`

The category of connected CW complexes.
class ElementMethods
Bases: object

dimension()
 Return the dimension of self.

EXAMPLES:

 sage: from sage.categories.cw_complexes import CWComplexes
 sage: X = CWComplexes().example()
 sage: X.an_element().dimension()
 2

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
Category of finite CW complexes.
A finite CW complex is a CW complex with a finite number of cells.
class ParentMethods
 Bases: object
 dimension()
 Return the dimension of self.

 EXAMPLES:

 sage: from sage.categories.cw_complexes import CWComplexes
 sage: X = CWComplexes().example()
 sage: X.dimension()
 2

extrasuper_categories()
 Return the extra super categories of self.

 A finite CW complex is a compact finite-dimensional CW complex.

 EXAMPLES:

 sage: from sage.categories.cw_complexes import CWComplexes
 sage: C = CWComplexes().Finite()
 sage: C.extrasuper_categories()
 [Category of finite dimensional CW complexes,
 Category of compact topological spaces]

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
Category of finite dimensional CW complexes.
class ParentMethods
 Bases: object
 cells()
 Return the cells of self.

 EXAMPLES:

 sage: from sage.categories.cw_complexes import CWComplexes
 sage: X = CWComplexes().example()
 sage: C = X.cells()
sage: sorted((d, C[d]) for d in C.keys())
[(0, (0-cell v,)),
 (1, (0-cell e1, 0-cell e2)),
 (2, (2-cell f,))]

dimension()
Return the dimension of self.

EXAMPLES:
sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: X.dimension()
2

class SubcategoryMethods
Bases: object

Connected()
Return the full subcategory of the connected objects of self.

EXAMPLES:
sage: from sage.categories.cw_complexes import CWComplexes
sage: CWComplexes().Connected()
Category of connected CW complexes

FiniteDimensional()
Return the full subcategory of the finite dimensional objects of self.

EXAMPLES:
sage: from sage.categories.cw_complexes import CWComplexes
sage: C = CWComplexes().FiniteDimensional(); C
Category of finite dimensional CW complexes

super_categories()
EXAMPLES:
sage: from sage.categories.cw_complexes import CWComplexes
sage: CWComplexes().super_categories()
[Category of topological spaces]

3.33 Discrete Valuation Rings (DVR) and Fields (DVF)

class sage.categories.discrete_valuation.DiscreteValuationFields(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of discrete valuation fields

EXAMPLES:
sage: Qp(7) in DiscreteValuationFields()
True
sage: TestSuite(DiscreteValuationFields()).run()
class ElementMethods
Bases: object

valuation()
Return the valuation of this element.

EXAMPLES:

```
sage: x = Qp(5)(50)
sage: x.valuation()
2
```

class ParentMethods
Bases: object

residue_field()
Return the residue field of the ring of integers of this discrete valuation field.

EXAMPLES:

```
sage: Qp(5).residue_field()
Finite Field of size 5
sage: K.<u> = LaurentSeriesRing(QQ)
sage: K.residue_field()
Rational Field
```

uniformizer()
Return a uniformizer of this ring.

EXAMPLES:

```
sage: Qp(5).uniformizer()
5 + O(5^21)
```

super_categories()

EXAMPLES:

```
sage: DiscreteValuationFields().super_categories()
[Category of fields]
```

class sage.categories.discrete_valuation.DiscreteValuationRings(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of discrete valuation rings

EXAMPLES:

```
sage: GF(7)[['x']] in DiscreteValuationRings()
True
sage: TestSuite(DiscreteValuationRings()).run()
```

class ElementMethods
Bases: object

euclidean_degree()
Return the Euclidean degree of this element.

gcd(other)
Return the greatest common divisor of self and other, normalized so that it is a power of the distinguished uniformizer.
is_unit()
Return True if self is invertible.

EXAMPLES:

```
sage: x = Zp(5)(50)
sage: x.is_unit()
False

sage: x = Zp(7)(50)
sage: x.is_unit()
True
```

lcm(other)
Return the least common multiple of self and other, normalized so that it is a power of the distinguished uniformizer.

quo_rem(other)
Return the quotient and remainder for Euclidean division of self by other.

valuation()
Return the valuation of this element.

EXAMPLES:

```
sage: x = Zp(5)(50)
sage: x.valuation()
2
```

```python
class ParentMethods
Bases: object

residue_field()
Return the residue field of this ring.

**EXAMPLES:**

```
sage: Zp(5).residue_field()
Finite Field of size 5

sage: K.<u> = QQ[]
sage: K.residue_field()
Rational Field
```

uniformizer()
Return a uniformizer of this ring.

**EXAMPLES:**

```
sage: Zp(5).uniformizer()
5 + O(5^21)

sage: K.<u> = QQ[]
sage: K.uniformizer()
u
```

super_categories()
**EXAMPLES:**
3.34 Distributive Magmas and Additive Magmas

```python
sage: DiscreteValuationRings().super_categories()
[Category of euclidean domains]
```

The category of sets \((S, +, *)\) with \(*\) distributing on \(+\).

This is similar to a ring, but \(+\) and \(*\) are only required to be (additive) magmas.

**EXAMPLES:**

```python
sage: from sage.categories.distributive_magmas_and_additive_magmas import ...
 DistributiveMagmasAndAdditiveMagmas
sage: C = DistributiveMagmasAndAdditiveMagmas(); C
Category of distributive magmas and additive magmas
sage: C.super_categories()
[Category of magmas and additive magmas]
```

```python
class AdditiveAssociative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveCommutative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveUnital(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Associative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

AdditiveInverse
 alias of sage.categories.rngs.Rngs

Unital
 alias of sage.categories.semirings.Semirings

class CartesianProducts(category, *args)
 Bases: sage.categories.cartesian_product.CartesianProductsCategory

 extra_super_categories()
 Implement the fact that a Cartesian product of magmas distributing over additive magmas is a magma distributing over an additive magma.

 EXAMPLES:
 sage: C = (Magmas() & AdditiveMagmas()).Distributive().CartesianProducts()
 sage: C.extra_super_categories()
 [Category of distributive magmas and additive magmas]
 sage: C.axioms()
 frozenset({'Distributive'})
```
class ParentMethods
    Bases: object

3.35 Division rings

class sage.categories.division_rings.DivisionRings(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of division rings

A division ring (or skew field) is a not necessarily commutative ring where all non-zero elements have multiplicative inverses

EXAMPLES:

```
sage: DivisionRings()
Category of division rings
sage: DivisionRings().super_categories()
[Category of domains]
```

Commutative
    alias of sage.categories.fields.Fields

class ElementMethods
    Bases: object

Finite_extra_super_categories()
    Return extraneous super categories for DivisionRings().Finite().

    EXAMPLES:

    Any field is a division ring:

```
sage: Fields().is_subcategory(DivisionRings())
True
```

This methods specifies that, by Weddeburn theorem, the reciprocal holds in the finite case: a finite division ring is commutative and thus a field:

```
sage: DivisionRings().Finite_extra_super_categories()
(Category of commutative magmas,)
sage: DivisionRings().Finite()
Category of finite enumerated fields
```

Warning: This is not implemented in DivisionRings.Finite.
    extra_super_categories because the categories of finite division rings and of finite
    fields coincide. See the section Deduction rules in the documentation of axioms.

class ParentMethods
    Bases: object

typesuper_categories()
    Return the Domains category.

    This method specifies that a division ring has no zero divisors, i.e. is a domain.

    See also:
The *Deduction rules* section in the documentation of axioms

**EXAMPLES:**

```python
dsage: DivisionRings().extra_super_categories()
(Category of domains,)
dsage: "NoZeroDivisors" in DivisionRings().axioms()
True
```

### 3.36 Domains

**class** `sage.categories.domains.Domains` *(base_category)*

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of domains

A domain (or non-commutative integral domain), is a ring, not necessarily commutative, with no nonzero zero divisors.

**EXAMPLES:**

```python
dsage: C = Domains(); C
Category of domains
dsage: C.super_categories()
[Category of rings]
dsage: C is Rings().NoZeroDivisors()
True
```

**Commutative**

alias of `sage.categories.integral_domains.IntegralDomains`

**class** `ElementMethods`

**Bases:** `object`

**class** `ParentMethods`

**Bases:** `object`

**super_categories()**

**EXAMPLES:**

```python
dsage: Domains().super_categories()
[Category of rings]
```

### 3.37 Enumerated sets

**class** `sage.categories.enumerated_sets.EnumeratedSets` *(base_category)*

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of enumerated sets

An *enumerated set* is a *finite* or *countable* set or multiset $S$ together with a canonical enumeration of its elements; conceptually, this is very similar to an immutable list. The main difference lies in the names and the return type of the methods, and of course the fact that the list of elements is not supposed to be expanded in memory. Whenever possible one should use one of the two sub-categories `FiniteEnumeratedSets` or `InfiniteEnumeratedSets`. 
The purpose of this category is threefold:
- to fix a common interface for all these sets;
- to provide a bunch of default implementations;
- to provide consistency tests.

The standard methods for an enumerated set $S$ are:
- $S.cardinality()$: the number of elements of the set. This is the equivalent for `len` on a list except that the return value is specified to be a Sage Integer or infinity, instead of a Python int.
- $iter(S)$: an iterator for the elements of the set;
- $S.list()$: the list of the elements of the set, when possible; raises a NotImplemented error if the list is predictably too large to be expanded in memory.
- $S.unrank(n)$: the $n$-th element of the set when $n$ is a sage Integer. This is the equivalent for $l[n]$ on a list.
- $S.rank(e)$: the position of the element $e$ in the set; This is equivalent to $l.index(e)$ for a list except that the return value is specified to be a Sage Integer, instead of a Python int.
- $S.first()$: the first object of the set; it is equivalent to $S.unrank(0)$.
- $S.next(e)$: the object of the set which follows $e$; It is equivalent to $S.unrank(S.rank(e) + 1)$.
- $S.random_element()$: a random generator for an element of the set. Unless otherwise stated, and for finite enumerated sets, the probability is uniform.

For examples and tests see:
- `FiniteEnumeratedSets().example()`
- `InfiniteEnumeratedSets().example()`

EXAMPLES:

```python
sage: EnumeratedSets()
Category of enumerated sets
sage: EnumeratedSets().super_categories()
[Category of sets]
sage: EnumeratedSets().all_super_categories()
[Category of enumerated sets, Category of sets, Category of sets with partial maps, Category of objects]
```

class CartesianProducts(category, *args)

    Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

class ParentMethods

    Bases: object

    first()

        Return the first element.

        EXAMPLES:

        ```python
 sage: cartesian_product([ZZ]*10).first()
 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
        ```

class ElementMethods

    Bases: object
**rank()**

Return the rank of `self` in its parent.

See also `EnumeratedSets.ElementMethods.rank()`

**EXAMPLES:**

```python
sage: F = FiniteSemigroups().example(("a", "b", "c"))
sage: L = list(F)
sage: L[7].rank()
7
sage: all(x.rank() == i for i, x in enumerate(L))
True
```

**Finite**

alias of `sage.categories.finite EnumeratedSets.FiniteEnumeratedSets`

**Infinite**

alias of `sage.categories.infinite EnumeratedSets.InfiniteEnumeratedSets`

```python
class ParentMethods
 Bases: object

 first()
 The “first” element of `self`.

 `self.first()` returns the first element of the set `self`. This is a generic implementation from the category `EnumeratedSets()` which can be used when the method `__iter__` is provided.

 EXAMPLES:
    ```python
    sage: C = FiniteEnumeratedSets().example()
sage: C.first() # indirect doctest
    1
    ```

 is_empty()
 Return whether this set is empty.

 EXAMPLES:
    ```python
    sage: F = FiniteEnumeratedSet([1,2,3])
sage: F.is_empty()
    False
    sage: F = FiniteEnumeratedSet([])
sage: F.is_empty()
    True
    ```

 iterator_range(start=None, stop=None, step=None)
 Iterate over the range of elements of `self` starting at `start`, ending at `stop`, and stepping by `step`.

 See also:
 `unrank()`, `unrank_range()`

 EXAMPLES:
    ```python
    sage: P = Partitions()
sage: list(P.iterator_range(stop=5))
    [[], [1], [2], [1, 1], [3]]
sage: list(P.iterator_range(0, 5))
    [[], [1], [2], [1, 1], [3]]
    ```
```
sage: list(P.iterator_range(3, 5))
[[1, 1], [3]]
sage: list(P.iterator_range(3, 10))
[[1, 1], [3], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2]]
sage: list(P.iterator_range(3, 10, 2))
[[1, 1], [2, 1], [4], [2, 2]]
sage: it = P.iterator_range(3)
sage: [next(it) for _ in range(10)]
[[1, 1], [3], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1], [5]]
sage: it = P.iterator_range(3, step=2)
sage: [next(it) for _ in range(5)]
[[1, 1], [2, 1], [4], [2, 2], [1, 1, 1, 1]]
sage: next(P.iterator_range(stop=-3))
Traceback (most recent call last):
... Not ImplementedError: cannot list an infinite set
sage: next(P.iterator_range(start=-3))
Traceback (most recent call last):
... Not ImplementedError: cannot list an infinite set

list()

Return a list of the elements of self.

The elements of set \( x \) are created and cached on the first call of \( x.list() \). Then each call of \( x.list() \) returns a new list from the cached result. Thus in looping, it may be better to do for \( e \) in \( x ; \) not for \( e \) in \( x.list() ; \).

If \( x \) is not known to be finite, then an exception is raised.

EXAMPLES:

sage: (GF(3)^2).list()
[(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)]
sage: R = Integers(11)
sage: R.list()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: l = R.list(); l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: l.remove(0); l
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: R.list()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

map (f, name=None)

Return the image \( \{ f(x) \mid x \in self \} \) of this enumerated set by \( f \), as an enumerated set.

\( f \) is supposed to be injective.

EXAMPLES:

sage: R = Compositions(4).map(attrcall('partial_sums')); R
Image of Compositions of 4 by *.partial_sums()
The “next” element after \texttt{obj} in \texttt{self}.

\texttt{self.next(e)} returns the element of the set \texttt{self} which follows \texttt{e}. This is a generic implementation from the category \texttt{EnumeratedSets()}; which can be used when the method \texttt{__iter__} is provided.

Remark: this is the default (brute force) implementation of the category \texttt{EnumeratedSets()}. Its complexity is $O(r)$, where $r$ is the rank of \texttt{obj}.

\begin{verbatim}
EXAMPLES:
sage: C = InfiniteEnumeratedSets().example()
sage: C._next_from_iterator(10) # indirect doctest
11
end of doctest output
\end{verbatim}

\texttt{random_element()}

Return a random element in \texttt{self}.

Unless otherwise stated, and for finite enumerated sets, the probability is uniform.

This is a generic implementation from the category \texttt{EnumeratedSets()}. It raise a \texttt{NotImplementedError} since one does not know whether the set is finite.

\begin{verbatim}
EXAMPLES:
\end{verbatim}
sage: class broken(UniqueRepresentation, Parent):
....:   def __init__(self):
....:       Parent.__init__(self, category = EnumeratedSets())
sage: broken().random_element()
Traceback (most recent call last):
...:
NotImplementedError: unknown cardinality

rank(x)
The rank of an element of self

self.rank(x) returns the rank of x, that is its position in the enumeration of self. This is an integer between 0 and n-1 where n is the cardinality of self, or None if x is not in self.

This is the default (brute force) implementation from the category EnumeratedSets() which can be used when the method __iter__ is provided. Its complexity is $O(r)$, where r is the rank of obj. For infinite enumerated sets, this won’t terminate when x is not in self.

EXAMPLES:

```
sage: C = FiniteEnumeratedSets().example()
sage: list(C)
[1, 2, 3]
sage: C.rank(3) # indirect doctest
2
sage: C.rank(5) # indirect doctest
```

some_elements()
Return some elements in self.

See TestSuite for a typical use case.

This is a generic implementation from the category EnumeratedSets() which can be used when the method __iter__ is provided. It returns an iterator for up to the first 100 elements of self

EXAMPLES:

```
sage: C = FiniteEnumeratedSets().example()
sage: list(C.some_elements()) # indirect doctest
[1, 2, 3]
```

unrank(r)
The r-th element of self

self.unrank(r) returns the r-th element of self, where r is an integer between 0 and n-1 where n is the cardinality of self.

This is the default (brute force) implementation from the category EnumeratedSets() which can be used when the method __iter__ is provided. Its complexity is $O(r)$, where r is the rank of obj.

EXAMPLES:

```
sage: C = FiniteEnumeratedSets().example()
sage: C.unrank(2) # indirect doctest
3
sage: C._unrank_from_iterator(5)
Traceback (most recent call last):
...:
ValueError: the value must be between 0 and 2 inclusive
```
**unrank_range** *(start=None, stop=None, step=None)*

Return the range of elements of *self* starting at *start*, ending at *stop*, and stepping by *step*.

See also:

unrank(), iterator_range()

**EXAMPLES:**

```python
sage: P = Partitions()
sage: P.unrank_range(stop=5)
[[], [1], [2], [1, 1], [3]]
sage: P.unrank_range(0, 5)
[[], [1], [2], [1, 1], [3]]
sage: P.unrank_range(3, 5)
[[1, 1], [3]]
sage: P.unrank_range(3, 10)
[[1, 1], [3], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2]]
sage: P.unrank_range(3, 10, 2)
[[1, 1], [2, 1], [4], [2, 2]]
sage: P.unrank_range(3)
Traceback (most recent call last):
 ...
NotImplementedError: cannot list an infinite set
sage: P.unrank_range(stop=-3)
Traceback (most recent call last):
 ...
NotImplementedError: cannot list an infinite set
sage: P.unrank_range(start=-3)
Traceback (most recent call last):
 ...
NotImplementedError: cannot list an infinite set
```

**additional_structure()**

Return None.

Indeed, morphisms of enumerated sets are not required to preserve the enumeration.

See also:

*Category*.additional_structure()

**EXAMPLES:**

```python
sage: EnumeratedSets().additional_structure()
```

**super_categories()**

**EXAMPLES:**

```python
sage: EnumeratedSets().super_categories()
[Category of sets]
```
3.38 Euclidean domains

AUTHORS:

• Teresa Gomez-Diaz (2008): initial version
• Julian Rueth (2013-09-13): added euclidean degree, quotient remainder, and their tests

class sage.categories.euclidean_domains.EuclideanDomains (s=None)
   Bases: sage.categories.category_singleton.Category_singleton

The category of constructive euclidean domains, i.e., one can divide producing a quotient and a remainder where the remainder is either zero or its ElementMethods.euclidean_degree() is smaller than the divisor.

EXAMPLES:

sage: EuclideanDomains()
Category of euclidean domains
sage: EuclideanDomains().super_categories()
[Category of principal ideal domains]

class ElementMethods
   Bases: object

   euclidean_degree()
       Return the degree of this element as an element of an Euclidean domain, i.e., for elements a, b the euclidean degree f satisfies the usual properties:
       1. if b is not zero, then there are elements q and r such that a = bq + r with r = 0 or f(r) < f(b)
       2. if a, b are not zero, then f(a) ≤ f(ab)

   Note: The name euclidean_degree was chosen because the euclidean function has different names in different contexts, e.g., absolute value for integers, degree for polynomials.

OUTPUT:

For non-zero elements, a natural number. For the zero element, this might raise an exception or produce some other output, depending on the implementation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: x.euclidean_degree()
1
sage: ZZ.one().euclidean_degree()
1

gcd (other)
   Return the greatest common divisor of this element and other.

   INPUT:
   • other - an element in the same ring as self

   ALGORITHM:
   Algorithm 3.2.1 in [Coh1993].

   EXAMPLES:
sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: EuclideanDomains().element_class.gcd(x,x+1)
-1

**quo_rem**(other)
Return the quotient and remainder of the division of this element by the non-zero element other.

**INPUT:**
- other – an element in the same euclidean domain

**OUTPUT:**
a pair of elements

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: x.quo_rem(x)
(1, 0)
```

class ParentMethods
Bases: object

**gcd_free_basis**(elts)
Compute a set of coprime elements that can be used to express the elements of els.

**INPUT:**
- els - A sequence of elements of self.

**OUTPUT:**
A GCD-free basis (also called a coprime base) of els; that is, a set of pairwise relatively prime elements of self such that any element of els can be written as a product of elements of the set.

**ALGORITHM:**
Naive implementation of the algorithm described in Section 4.8 of Bach & Shallit [BS1996].

**EXAMPLES:**

```
sage: ZZ.gcd_free_basis([1])
[]
sage: ZZ.gcd_free_basis([4, 30, 14, 49])
[2, 15, 7]
sage: Pol.<x> = QQ[
 sage: sorted(Pol.gcd_free_basis([...:
 (x+1)^3*(x+2)^3*(x+3), (x+1)*(x+2)*(x+3),
: (x+1)*(x+2)*(x+4))])
[x + 3, x + 4, x^2 + 3*x + 2]
```

**is_euclidean_domain**( )
Return True, since this is in object of the category of Euclidean domains.

**EXAMPLES:**

```
sage: Parent(QQ,category=EuclideanDomains()).is_euclidean_domain()
True
```

**super_categories**( )
**EXAMPLES:**
3.39 Fields

class sage.categories.fields.Fields(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

    The category of (commutative) fields, i.e. commutative rings where all non-zero elements have multiplicative inverses

    EXAMPLES:

    sage: K = Fields()
sage: K
    Category of fields
    sage: Fields().super_categories()
    [Category of euclidean domains, Category of division rings]

    sage: K(IntegerRing())
    Rational Field
    sage: K(PolynomialRing(GF(3), 'x'))
    Fraction Field of Univariate Polynomial Ring in x over Finite Field of size 3
    sage: K(RealField())
    Real Field with 53 bits of precision

class ElementMethods
    Bases: object

    euclidean_degree()
        Return the degree of this element as an element of an Euclidean domain.

        In a field, this returns 0 for all but the zero element (for which it is undefined).

        EXAMPLES:

        sage: QQ.one().euclidean_degree()
        0

    factor()
        Return a factorization of self.

        Since self is either a unit or zero, this function is trivial.

        EXAMPLES:

        sage: x = GF(7)(5)
sage: x.factor()
      5
    sage: RR(0).factor()
    Traceback (most recent call last):
      ...
    ArithmeticError: factorization of 0.000000000000000 is not defined

gcd(other)
    Greatest common divisor.
Note: Since we are in a field and the greatest common divisor is only determined up to a unit, it is correct to either return zero or one. Note that fraction fields of unique factorization domains provide a more sophisticated gcd.

EXAMPLES:

```sage
sage: K = GF(5)
sage: K(2).gcd(K(1))
1
sage: K(0).gcd(K(0))
0
sage: all(x.gcd(y) == (0 if x == 0 and y == 0 else 1) for x in K for y in K)
True
```

For field of characteristic zero, the gcd of integers is considered as if they were elements of the integer ring:

```sage
sage: gcd(15.0,12.0)
3.00000000000000
```

But for other floating point numbers, the gcd is just 0.0 or 1.0:

```sage
sage: gcd(3.2, 2.18)
1.00000000000000
sage: gcd(0.0, 0.0)
0.000000000000000
```

AUTHOR:
• Simon King (2011-02) – trac ticket #10771
• Vincent Delecroix (2015) – trac ticket #17671

inverse_of_unit()
Return the inverse of this element.

EXAMPLES:

```sage
sage: NumberField(x^7+2,'a')(2).inverse_of_unit()
1/2
```

Trying to invert the zero element typically raises a ZeroDivisionError:

```sage
sage: QQ(0).inverse_of_unit()
Traceback (most recent call last):
... ZeroDivisionError: rational division by zero
```

To catch that exception in a way that also works for non-units in more general rings, use something like:

```sage
sage: try:
....: QQ(0).inverse_of_unit()
....: except ArithmeticError:
....: pass
```

Also note that some “fields” allow one to invert the zero element:
is_unit()
Returns True if self has a multiplicative inverse.

EXAMPLES:
```
sage: QQ(2).is_unit()
True
sage: QQ(0).is_unit()
False
```

lcm(other)
Least common multiple.

Note: Since we are in a field and the least common multiple is only determined up to a unit, it is correct to either return zero or one. Note that fraction fields of unique factorization domains provide a more sophisticated lcm.

EXAMPLES:
```
sage: GF(2)(1).lcm(GF(2)(0))
0
sage: GF(2)(1).lcm(GF(2)(1))
1
```

For field of characteristic zero, the lcm of integers is considered as if they were elements of the integer ring:
```
sage: lcm(15.0,12.0)
60.0000000000000
```

But for others floating point numbers, it is just 0.0 or 1.0:
```
sage: lcm(3.2, 2.18)
1.00000000000000
sage: lcm(0.0, 0.0)
0.000000000000000
```

AUTHOR:
• Simon King (2011-02) – trac ticket #10771
• Vincent Delecroix (2015) – trac ticket #17671

quo_rem(other)
Return the quotient with remainder of the division of this element by other.

INPUT:
• other – an element of the field

EXAMPLES:
```
sage: f,g = QQ(1), QQ(2)
sage: f.quo_rem(g)
(1/2, 0)
```
xgcd\( (\text{other}) \)
Compute the extended gcd of \textit{self} and \textit{other}.

\textbf{INPUT:}

\begin{itemize}
  \item \textit{other} – an element with the same parent as \textit{self}
\end{itemize}

\textbf{OUTPUT:}

A tuple \((r, s, t)\) of elements in the parent of \textit{self} such that \( r = s * \text{self} + t * \text{other}\). Since the computations are done over a field, \( r \) is zero if \textit{self} and \textit{other} are zero, and one otherwise.

\textbf{AUTHORS:}

\begin{itemize}
  \item Julian Rueth (2012-10-19): moved here from \texttt{sage.structure.element.FieldElement}
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K = GF(5)
sage: K(2).xgcd(K(1))
(1, 3, 0)
sage: K(0).xgcd(K(4))
(1, 0, 4)
sage: K(1).xgcd(K(1))
(1, 1, 0)
sage: GF(5)(0).xgcd(GF(5)(0))
(0, 0, 0)
\end{verbatim}

The xgcd of non-zero floating point numbers will be a triple of floating points. But if the input are two integral floating points the result is a floating point version of the standard gcd on \( \mathbb{Z} \):

\begin{verbatim}
sage: xgcd(12.0, 8.0)
(4.00000000000000, 1.00000000000000, -1.00000000000000)
sage: xgcd(3.1, 2.98714)
(1.00000000000000, 0.322580645161290, 0.000000000000000)
sage: xgcd(0.0, 1.1)
(1.00000000000000, 0.000000000000000, 0.909090909090909)
\end{verbatim}

\textbf{Finite}
alias of \texttt{sage.categories.finite_fields.FiniteFields}

\textbf{class ParentMethods}
Bases: \texttt{object}

\begin{verbatim}
fraction_field()
\end{verbatim}

Returns the fraction field of \textit{self}, which is \textit{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: QQ.fraction_field()
\texttt{is QQ}
True
\end{verbatim}

\begin{verbatim}
is_field\( (\text{proof}=\text{True}) \)
\end{verbatim}

Returns True as \textit{self} is a field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: QQ.is_field()
\texttt{True}
\end{verbatim}

(continues on next page)
is_integrally_closed()
Return True, as per IntegralDomain.is_integrally_closed(): for every field \( F \), \( F \) is its own field of fractions, hence every element of \( F \) is integral over \( F \).

EXAMPLES:

```python
sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()
True
sage: Z5 = GF(5); Z5
Finite Field of size 5
sage: Z5.is_integrally_closed()
True
```

is_perfect()
Return whether this field is perfect, i.e., its characteristic is \( p = 0 \) or every element has a \( p \)-th root.

EXAMPLES:

```python
sage: QQ.is_perfect()
True
sage: GF(2).is_perfect()
True
sage: FunctionField(GF(2), 'x').is_perfect()
False
```

vector_space(*args, **kwds)
Gives an isomorphism of this field with a vector space over a subfield.

This method is an alias for free_module, which may have more documentation.

INPUT:
- base – a subfield or morphism into this field (defaults to the base field)
- basis – a basis of the field as a vector space over the subfield; if not given, one is chosen automatically
- map – whether to return maps from and to the vector space

OUTPUT:
- \( V \) – a vector space over \( base \)
- from_\( V \) – an isomorphism from \( V \) to this field
- to_\( V \) – the inverse isomorphism from this field to \( V \)

EXAMPLES:

```python
sage: K.<a> = Qq(125)
sage: V, fr, to = K.vector_space()
sage: v = V([1,2,3])
sage: fr(v, 7)
(3*a^2 + 2*a + 1) + O(5^7)
```

extra_super_categories()
EXAMPLES:

```python
sage: Fields().extra_super_categories()
[Category of euclidean domains]
```
3.40 Filtered Algebras

```
class sage.categories.filtered_algebras.FilteredAlgebras(base_category)
 Bases: sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered algebras.

An algebra A over a commutative ring R is filtered if A is endowed with a structure of a filtered R-module (whose underlying R-module structure is identical with that of the R-algebra A) such that the indexing set I (typically $I = \mathbb{N}$) is also an additive abelian monoid, the unity 1 of A belongs to F_0, and we have $F_i \cdot F_j \subseteq F_{i+j}$ for all $i, j \in I$.

EXAMPLES:
```
sage: Algebras(ZZ).Filtered()
Category of filtered algebras over Integer Ring
sage: Algebras(ZZ).Filtered().super_categories()
[Category of algebras over Integer Ring,
 Category of filtered modules over Integer Ring]
```

REFERENCES:

- Wikipedia article Filtered_algebra

```
class ParentMethods
   Bases: object
   graded_algebra()
       Return the associated graded algebra to self.

Todo: Implement a version of the associated graded algebra which does not require self to have a distinguished basis.
```

EXAMPLES:
```
sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.graded_algebra()
Graded Algebra of An example of a filtered algebra with basis:
the universal enveloping algebra of
Lie algebra of RR'3 with cross product over Integer Ring
```

3.41 Filtered Algebras With Basis

A filtered algebra with basis over a commutative ring R is a filtered algebra over R endowed with the structure of a filtered module with basis (with the same underlying filtered-module structure). See FilteredAlgebras and FilteredModulesWithBasis for these two notions.

```
class sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis(base_category)
   Bases: sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered algebras with a distinguished homogeneous basis.

A filtered algebra with basis over a commutative ring $R$ is a filtered algebra over $R$ endowed with the structure of a filtered module with basis (with the same underlying filtered-module structure). See FilteredAlgebras and FilteredModulesWithBasis for these two notions.
```
EXAMPLES:

```python
sage: C = AlgebrasWithBasis(ZZ).Filtered(); C
Category of filtered algebras with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of algebras with basis over Integer Ring,
 Category of filtered algebras over Integer Ring,
 Category of filtered modules with basis over Integer Ring]
```

class ElementMethods
Bases: object

class ParentMethods
Bases: object

```
from_graded_conversion()
```

Return the inverse of the canonical R-module isomorphism $A \rightarrow \text{gr} A$ induced by the basis of A (where $A =$). This inverse is an isomorphism $\text{gr} A \rightarrow A$.

This is an isomorphism of R-modules, not of algebras. See the class documentation AssociatedGradedAlgebra.

See also:

```
to_graded_conversion()
```

EXAMPLES:

```python
sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']^2*U['z']^3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.to_graded_conversion()(p)
sage: A.from_graded_conversion()(q) == p
True
sage: q.parent() is A.graded_algebra()
True
```

```
graded_algebra()
```

Return the associated graded algebra to `self`.

See AssociatedGradedAlgebra for the definition and the properties of this.

If the filtered algebra `self` with basis is called A, then this method returns $\text{gr} A$. The method `to_graded_conversion()` returns the canonical R-module isomorphism $A \rightarrow \text{gr} A$ induced by the basis of A, and the method `from_graded_conversion()` returns the inverse of this isomorphism. The method `projection()` projects elements of A onto $\text{gr} A$ according to their place in the filtration on A.

```
Warning: When not overridden, this method returns the default implementation of an associated graded algebra – namely, AssociatedGradedAlgebra(self), where AssociatedGradedAlgebra is AssociatedGradedAlgebra. But many instances of FilteredAlgebrasWithBasis override this method, as the associated graded algebra often is (isomorphic) to a simpler object (for instance, the associated graded algebra of a graded algebra can be identified with the graded algebra itself). Generic code that uses associated graded algebras (such as the code of the induced_graded_map() method below) should make sure to only communicate with them via the `to_graded_conversion()`, `from_graded_conversion()`, and `projection()` methods (in particular, do not expect there to be a conversion from `self` to `self.graded_algebra()`; this currently does not
```
work for Clifford algebras). Similarly, when overriding `graded_algebra()`, make sure to accordingly redefine these three methods, unless their definitions below still apply to your case (this will happen whenever the basis of your `graded_algebra()` has the same indexing set as `self`, and the partition of this indexing set according to degree is the same as for `self`).

Todo: Maybe the thing about the conversion from `self` to `self.graded_algebra()` on the Clifford at least could be made to work? (I would still warn the user against ASSUMING that it must work – as there is probably no way to guarantee it in all cases, and we shouldn’t require users to mess with element constructors.)

EXAMPLES:

```sage```
A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.graded_algebra()
Graded Algebra of An example of a filtered algebra with basis:
  the universal enveloping algebra of
  Lie algebra of RR^3 with cross product over Integer Ring
```

`induced_graded_map(other,f)`

Return the graded linear map between the associated graded algebras of `self` and `other` canonically induced by the filtration-preserving map `f : self -> other`.

Let `A` and `B` be two filtered algebras with basis, and let `(F_i)_{i \in I}` and `(G_i)_{i \in I}` be their filtrations. Let `f : A \to B` be a linear map which preserves the filtration (i.e., satisfies `f(F_i) \subseteq G_i` for all `i \in I`). Then, there is a canonically defined graded linear map `gr f : gr A \to gr B` which satisfies

\[(gr f)(p_i(a)) = p_i(f(a)) \quad \text{for all } i \in I \text{ and } a \in F_i,\]

where the `p_i` on the left hand side is the canonical projection from `F_i` onto the `i`-th graded component of `gr A`, while the `p_i` on the right hand side is the canonical projection from `G_i` onto the `i`-th graded component of `gr B`.

INPUT:
- `other` – a filtered algebra with basis
- `f` – a filtration-preserving linear map from `self` to `other` (can be given as a morphism or as a function)

OUTPUT:
The graded linear map `gr f`.

EXAMPLES:

Example 1.

We start with the universal enveloping algebra of the Lie algebra `R^3` (with the cross product serving as Lie bracket):

```sage```
A = AlgebrasWithBasis(QQ).Filtered().example(); A
sage: A.graded_algebra()
Graded Algebra of An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Rational Field
sage: M = A.indices(); M
Free abelian monoid indexed by ('x', 'y', 'z')
sage: x,y,z = [A.basis()[M.gens()[i]] for i in "xyz"
```

Let us define a stupid filtered map from `A` to itself:
```python
sage: def map_on_basis(m):
....:     d = m.dict()
....:     i = d.get('x', 0); j = d.get('y', 0); k = d.get('z', 0)
....:     g = (y ** (i+j)) * (z ** k)
....:     if i > 0:
....:         g += i * (x ** (i-1)) * (y ** j) * (z ** k)
....:     return g
sage: f = A.module_morphism(on_basis=map_on_basis,
....:                         codomain=A)
sage: f(x)
U['y'] + 1
sage: f(x*y*z)
U['y']^2*U['z'] + U['y']*U['z']
sage: f(x*x*y*z)
U['y']^3*U['z'] + 2*U['x']*U['y']*U['z']
sage: f(A.one())
1
sage: f(y*z)
U['y']*U['z']
```

(There is nothing here that is peculiar to this universal enveloping algebra; we are only using its module structure, and we could just as well be using a polynomial algebra in its stead.)

We now compute \(gr f \)

```python
sage: grA = A.graded_algebra(); grA
Graded Algebra of An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Rational Field
sage: xx, yy, zz = [A.to_graded_conversion()(i) for i in [x, y, z]]
sage: xx+yy*zz
bar(U['y']*U['z']) + bar(U['x'])
sage: grf = A.induced_graded_map(A, f); grf
Generic endomorphism of Graded Algebra of An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Rational Field
sage: grf(xx)
bar(U['y'])
sage: grf(xx*yy*zz)
bar(U['y']^2*U['z'])
sage: grf(xx*xx*yy*zz)
bar(U['y']^3*U['z'])
sage: grf(grA.one())
bar(1)
sage: grf(yy*zz)
bar(U['y']*U['z'])
sage: grf(yy*zz-2*yy)
bar(U['y']*U['z']) - 2*bar(U['y'])
```

Example 2.

We shall now construct \(gr f \) for a different map \(f \) out of the same \(A \); the new map \(f \) will lead into a graded algebra already, namely into the algebra of symmetric functions:

```python
sage: h = SymmetricFunctions(QQ).h()
sage: def map_on_basis(m):  # redefining map_on_basis
....:     d = m.dict()
```
The algebra h of symmetric functions in the h-basis is already graded, so its associated graded algebra is implemented as itself:

```python
sage: grh = h.graded_algebra(); grh is h
True
sage: grf = A.induced_graded_map(h, f); grf
Generic morphism:
  From: Graded Algebra of An example of a filtered
        algebra with basis: the universal enveloping
        algebra of Lie algebra of RR^3 with cross
        product over Rational Field
  To:  Symmetric Functions over Rational Field
        in the homogeneous basis

sage: grf(xx)
2*h[1]
sage: grf(yy)
0
sage: grf(zz)
0
sage: grf(yy**2)
h[2]
sage: grf(xx**2)
3*h[1, 1]
sage: grf(xx*yy*zz)
h[1, 1, 1]
sage: grf(xx*xx*yy*yy*zz)
2*h[1, 1, 1, 1, 1]
sage: grf(grA.one())
h[]
```

Example 3.

After having had a graded algebra as the codomain, let us try to have one as the domain instead. Our
new \(f \) will go from \(h \) to \(A \):

```python
sage: def map_on_basis(lam):
    # redefining map_on_basis
    ....: return h[lam] + h[len(lam)]
sage: f = h.module_morphism(on_basis=map_on_basis,
    ....:                       codomain=h)  # redefining f
sage: f(h[1])
2*h[1]
sage: f(h[2])
h[1] + h[2]
sage: f(h[1, 1])
h[1, 1] + h[2]
sage: f(h[2, 1])
h[2] + h[2, 1]
sage: f(h.one())
2*h[]
sage: grf = h.induced_graded_map(h, f); grf
Generic morphism:
    From: Symmetric Functions over Rational Field
    in the homogeneous basis
    To:  Graded Algebra of An example of a filtered
         algebra with basis: the universal enveloping
         algebra of Lie algebra of RR^3 with cross
         product over Rational Field
sage: grf(h[1])
2*h[1]
sage: grf(h[2])
h[1] + h[2]
sage: grf(h[1, 1])
h[1, 1] + h[2]
sage: grf(h[2, 1])
h[2] + h[2, 1]
sage: grf(h.one())
2*h[]
```

Example 4.
The construct \(\text{gr}_f \) also makes sense when \(f \) is a filtration-preserving map between graded algebras.

```python
sage: def map_on_basis(lam):
    # redefining map_on_basis
    ....: return h[lam] + h[len(lam)]
sage: f = h.module_morphism(on_basis=map_on_basis,
    ....:                       codomain=h)  # redefining f
sage: f(h[1])
2*h[1]
sage: f(h[2])
h[1] + h[2]
sage: f(h[1, 1])
h[1, 1] + h[2]
sage: f(h[2, 1])
h[2] + h[2, 1]
sage: f(h.one())
2*h[]
sage: grf = h.induced_graded_map(h, f); grf
```

(continues on next page)
Generic endomorphism of Symmetric Functions over Rational Field in the homogeneous basis

```
sage: grf(h[1])
2*h[1]
```
```
sage: grf(h[2])
h[2]
```
```
sage: grf(h[1, 1])
h[1, 1] + h[2]
```
```
sage: grf(h[2, 1])
h[2, 1]
```
```
sage: grf(h.one())
2*h[]
```

Example 5.

For another example, let us compute $\text{gr } f$ for a map f between two Clifford algebras:

```
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: B = CliffordAlgebra(Q, names=['u','v']); B
The Clifford algebra of the Quadratic form in 2 variables over Integer Ring with coefficients:
[ 1 2 ]
[ * 3 ]
```
```
sage: m = Matrix(ZZ, [[1, 2], [1, -1]])
sage: f = B.lift_module_morphism(m, names=['x','y'])
sage: A = f.domain(); A
The Clifford algebra of the Quadratic form in 2 variables over Integer Ring with coefficients:
[ 6 0 ]
[ * 3 ]
```
```
sage: x, y = A.gens()
sage: f(x)
u + v
```
```
sage: f(y)
2*u - v
```
```
sage: f(x**2)
6
```
```
sage: f(x*y)
-3*u*v + 3
```
```
sage: grA = A.graded_algebra(); grA
The exterior algebra of rank 2 over Integer Ring
```
```
sage: A.to_graded_conversion()(x)
x
```
```
sage: A.to_graded_conversion()(y)
y
```
```
sage: A.to_graded_conversion()(x*y)
x*y
```
```
sage: u = A.to_graded_conversion()(x*y+1); u
x*y + 1
```
```
sage: A.from_graded_conversion()(u)
x*y + 1
```
```
sage: A.projection(2)(x*y+1)
x*y
```
```
sage: A.projection(1)(x+2*y-2)
x + 2*y
```
```
sage: grf = A.induced_graded_map(B, f); grf
Generic morphism:
```
(continues on next page)
projection\((i)\)

Return the \(i\)-th projection \(p_i : F_i \rightarrow G_i\) (in the notations of the class documentation `AssociatedGradedAlgebra`, where \(A = \)).

This method actually does not return the map \(p_i\) itself, but an extension of \(p_i\) to the whole \(\mathcal{R}\)-module \(A\). This extension is the composition of the \(\mathcal{R}\)-module isomorphism \(\mathcal{A} \rightarrow \text{gr } \mathcal{A}\) with the canonical projection of the graded \(\mathcal{R}\)-module \(\text{gr } \mathcal{A}\) onto its \(i\)-th graded component \(G_i\). The codomain of this map is \(\text{gr } A\), although its actual image is \(G_i\). The map \(p_i\) is obtained from this map by restricting its domain to \(F_i\) and its image to \(G_i\).

EXAMPLES:

```
sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']^2*U['z']^3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.projection(7)(p); q
\text{bar}(U['x']^2*U['y']^2*U['z']^3) + 3*\text{bar}(U['x'])
+ 3*\text{bar}(U['y']) + 3*\text{bar}(1)
sage: q.parent() \text{ is A.graded_algebra()}
True
sage: A.projection(8)(p)
0
```

to_graded_conversion()

Return the canonical \(\mathcal{R}\)-module isomorphism \(A \rightarrow \text{gr } A\) induced by the basis of \(A\) (where \(A =\)).

This is an isomorphism of \(\mathcal{R}\)-modules, not of algebras. See the class documentation `AssociatedGradedAlgebra`.

See also:

`from_graded_conversion()`

EXAMPLES:

```
sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']^2*U['z']^3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.to\_graded\_conversion()(p); q
\text{bar}(U['x']^2*U['y']^2*U['z']^3) + 3*\text{bar}(U['x'])
+ 3*\text{bar}(U['y']) + 3*\text{bar}(1)
sage: q.parent() \text{ is A.graded_algebra()}
True
```
3.42 Filtered Modules

A *filtered module* over a ring R with a totally ordered indexing set I (typically $I = \mathbb{N}$) is an R-module M equipped with a family $(F_i)_{i \in I}$ of R-submodules satisfying $F_i \subseteq F_j$ for all $i, j \in I$ having $i \leq j$, and $M = \bigcup_{i \in I} F_i$. This family is called a *filtration* of the given module M.

Todo: Implement a notion for decreasing filtrations: where $F_j \subseteq F_i$ when $i \leq j$.

Todo: Implement filtrations for all concrete categories.

Todo: Implement gr as a functor.

```python
class sage.categories.filtered_modules.FilteredModules(base_category):
    Bases: sage.categories.filtered_modules.FilteredModulesCategory

    The category of filtered modules over a given ring $R$.

    A filtered module over a ring $R$ with a totally ordered indexing set $I$ (typically $I = \mathbb{N}$) is an $R$-module $M$ equipped with a family $(F_i)_{i \in I}$ of $R$-submodules satisfying $F_i \subseteq F_j$ for all $i, j \in I$ having $i \leq j$, and $M = \bigcup_{i \in I} F_i$. This family is called a filtration of the given module $M$.

    EXAMPLES:
    ```sage```
 sage: Modules(ZZ).Filtered()
 Category of filtered modules over Integer Ring
 sage: Modules(ZZ).Filtered().super_categories()
 [Category of modules over Integer Ring]
    ```

    REFERENCES:
    - Wikipedia article Filtration_(mathematics)

    ```python
class Connected(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

 class SubcategoryMethods
 Bases: object

 Connected()
    ```

    Return the full subcategory of the connected objects of self.

    A filtered $R$-module $M$ with filtration $(F_0, F_1, F_2, \ldots)$ (indexed by $\mathbb{N}$) is said to be connected if $F_0$ is isomorphic to $R$.

    EXAMPLES:
    ```sage```
 sage: Modules(ZZ).Filtered().Connected()
 Category of filtered connected modules over Integer Ring
 sage: Coalgebras(QQ).Filtered().Connected()
 Category of filtered connected coalgebras over Rational Field
 sage: AlgebrasWithBasis(QQ).Filtered().Connected()
 Category of filtered connected algebras with basis over Rational Field
    ```

    extra_super_categories()
    ```
 Add VectorSpaces to the super categories of self if the base ring is a field.
    ```
EXAMPLES:

```
sage: Modules(QQ).Filtered().is_subcategory(VectorSpaces(QQ))
True
sage: Modules(ZZ).Filtered().extra_super_categories()
[]
```

This makes sure that `Modules(QQ).Filtered()` returns an instance of `FilteredModules` and not a join category of an instance of this class and of `VectorSpaces(QQ)`:

```
sage: type(Modules(QQ).Filtered())
<class 'sage.categories.vector_spaces.VectorSpaces.Filtered_with_category'>
```

**Todo:** Get rid of this workaround once there is a more systematic approach for the alias `Modules(QQ) -> VectorSpaces(QQ)`. Probably the latter should be a category with axiom, and covariant constructions should play well with axioms.

```python
class sage.categories.filtered_modules.FilteredModulesCategory(base_category)
 Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory, sage.categories.category_types.Category_over_base_ring

EXAMPLES:

```
sage: C = Algebras(QQ).Filtered()
sage: C
Category of filtered algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of algebras over Rational Field, Category of filtered vector spaces over Rational Field]
sage: AlgebrasWithBasis(QQ).Filtered().base_ring()
Rational Field
sage: HopfAlgebrasWithBasis(QQ).Filtered().base_ring()
Rational Field
```

3.43 Filtered Modules With Basis

A **filtered module with basis** over a ring R means (for the purpose of this code) a filtered R-module M with filtration $(F_i)_{i \in I}$ (typically $I = \mathbb{N}$) endowed with a basis $(b_j)_{j \in J}$ of M and a partition $J = \bigcup_{i \in I} J_i$ of the set J (it is allowed that some J_i are empty) such that for every $n \in I$, the subfamily $(b_j)_{j \in U_n}$, where $U_n = \bigcup_{i \leq n} J_i$, is a basis of the R-submodule F_n.

For every $i \in I$, the R-submodule of M spanned by $(b_j)_{j \in J_i}$ is called the i-th graded component (aka the i-th homogeneous component) of the filtered module with basis M; the elements of this submodule are referred to as homogeneous elements of degree i.

See the class documentation `FilteredModulesWithBasis` for further details.

```python
class sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis(base_category)
    Bases: sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered modules with a distinguished basis.
```
A filtered module with basis over a ring \(R \) means (for the purpose of this code) a filtered \(R \)-module \(M \) with filtration \((F_i)_{i \in I}\) (typically \(I = \mathbb{N} \)) endowed with a basis \((b_j)_{j \in J}\) of \(M \) and a partition \(J = \bigcup_{i \in I} J_i \) of the set \(J \) (it is allowed that some \(J_i \) are empty) such that for every \(n \in I \), the subfamily \((b_j)_{j \in U_n}\), where \(U_n = \bigcup_{i \leq n} J_i \), is a basis of the \(R \)-submodule \(F_n \).

For every \(i \in I \), the \(R \)-submodule of \(M \) spanned by \((b_j)_{j \in J_i}\) is called the \(i \)-th graded component (aka the \(i \)-th homogeneous component) of the filtered module with basis \(M \); the elements of this submodule are referred to as homogeneous elements of degree \(i \). The \(R \)-module \(M \) is the direct sum of its \(i \)-th graded components over all \(i \in I \), and thus becomes a graded \(R \)-module with basis. Conversely, any graded \(R \)-module with basis canonically becomes a filtered \(R \)-module with basis (by defining \(F_n = \bigoplus_{i \leq n} G_i \) where \(G_i \) is the \(i \)-th graded component, and defining \(J_i \) as the indexing set of the basis of the \(i \)-th graded component). Hence, the notion of a filtered \(R \)-module with basis is equivalent to the notion of a graded \(R \)-module with basis.

However, the category of filtered \(R \)-modules with basis is not the category of graded \(R \)-modules with basis. Indeed, the morphisms of filtered \(R \)-modules with basis are defined to be morphisms of \(R \)-modules which send each \(F_n \) of the domain to the corresponding \(F_n \) of the target; in contrast, the morphisms of graded \(R \)-modules with basis must preserve each homogeneous component. Also, the notion of a filtered algebra with basis differs from that of a graded algebra with basis.

Note: Currently, to make use of the functionality of this class, an instance of `FilteredModulesWithBasis` should fulfill the contract of a `CombinatorialFreeModule` (most likely by inheriting from it). It should also have the indexing set \(J \) encoded as its `_indices` attribute, and `_indices.subset(size=i)` should yield the subset \(J_i \) (as an iterable). If the latter conditions are not satisfied, then `basis()` must be overridden.

Note: One should implement a `degree_on_basis` method in the parent class in order to fully utilize the methods of this category. This might become a required abstract method in the future.

EXAMPLES:

```python
sage: C = ModulesWithBasis(ZZ).Filtered(); C
Category of filtered modules with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of filtered modules over Integer Ring,
 Category of modules with basis over Integer Ring]
sage: C is ModulesWithBasis(ZZ).Filtered()
True
```

```python
class ElementMethods
    Bases: object

    degree()
    The degree of a nonzero homogeneous element self in the filtered module.

    **Note:** This raises an error if the element is not homogeneous. To compute the maximum of the degrees of the homogeneous summands of a (not necessarily homogeneous) element, use `maximal_degree()` instead.
```

EXAMPLES:

```python
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
```
An example in a graded algebra:

```python
sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.homogeneous_degree()
2
sage: (x^3 + 4*y^2).homogeneous_degree()
6
sage: ((1 + x)^3).homogeneous_degree()
Traceback (most recent call last):
... ValueError: element is not homogeneous
```

Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the choice of a basis):

```python
sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x, y, z = A.algebra_generators()
sage: (x*y).homogeneous_degree()
2
sage: (y*x).homogeneous_degree()
Traceback (most recent call last):
... ValueError: element is not homogeneous
sage: A.one().homogeneous_degree()
0
```

degree_on_basis (*m*)

Return the degree of the basis element indexed by *m* in self.

EXAMPLES:

```python
sage: A = GradedModulesWithBasis(QQ).example()
sage: A.degree_on_basis(Partition((2,1)))
3
sage: A.degree_on_basis(Partition((4,2,1,1,1,1)))
10
```

homogeneous_component (*n*)

Return the homogeneous component of degree *n* of the element self.

Let *m* be an element of a filtered *R*-module *M* with basis. Then, *m* can be uniquely written in the form \(m = \sum_{i \in I} m_i \), where each \(m_i \) is a homogeneous element of degree *i*. For \(n \in I \), we define the homogeneous component of degree *n* of the element *m* to be \(m_n \).

EXAMPLES:
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A.an_element(); x
sage: x.homogeneous_component(-1)
0
sage: x.homogeneous_component(0)
2*P[

sage: x.homogeneous_component(1)
2*P[1]
sage: x.homogeneous_component(2)
3*P[2]
sage: x.homogeneous_component(3)
0

sage: A = ModulesWithBasis(ZZ).Graded().example()
sage: x = A.an_element(); x
sage: x.homogeneous_component(-1)
0
sage: x.homogeneous_component(0)
2*P[

sage: x.homogeneous_component(1)
2*P[1]
sage: x.homogeneous_component(2)
3*P[2]
sage: x.homogeneous_component(3)
0

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: G = A.algebra_generators()
sage: g = A.an_element() - 2 * G['x'] * G['y']; g
U['x']^2*U['y']^2*U['z']^3 - 2*U['x']*U['y']
+ 2*U['x'] + 3*U['y'] + 1
sage: g.homogeneous_component(-1)
0
sage: g.homogeneous_component(0)
1
sage: g.homogeneous_component(2)
-2*U['x']*U['y']
sage: g.homogeneous_component(5)
0
sage: g.homogeneous_component(7)
U['x']^2*U['y']^2*U['z']^3
sage: g.homogeneous_component(8)
0

homogeneous_degree()

The degree of a nonzero homogeneous element self in the filtered module.

Note: This raises an error if the element is not homogeneous. To compute the maximum
of the degrees of the homogeneous summands of a (not necessarily homogeneous) element, use
maximal_degree() instead.

EXAMPLES:
An example in a graded algebra:

```
sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.homogeneous_degree()
2
sage: (x^3 + 4*y^2).homogeneous_degree()
6
sage: ((1 + x)^3).homogeneous_degree()
Traceback (most recent call last):
  ... ValueError: element is not homogeneous
```

Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the choice of a basis):

```
sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x,y,z = A.algebra_generators()
sage: (x*y).homogeneous_degree()
2
sage: (y*x).homogeneous_degree()
Traceback (most recent call last):
  ... ValueError: element is not homogeneous
sage: A.one().homogeneous_degree()
0
```

```
is_homogeneous()
```

Return whether the element self is homogeneous.

EXAMPLES:

```
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x=A(Partition((3,2,1)))
sage: y=A(Partition((4,4,1)))
sage: z=A(Partition((2,2,2)))
sage: (3*x).is_homogeneous()
True
sage: (x - y).is_homogeneous()
False
sage: (x+2*z).is_homogeneous()
True
```

Here is an example with a graded algebra:
Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the choice of a basis, or at least on a definition of homogeneous components):

```
sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x,y,z = A.algebra_generators()
sage: (x*y).is_homogeneous()  
True
sage: (y*x).is_homogeneous()  
False
sage: A.one().is_homogeneous()  
True
sage: A.zero().is_homogeneous()  
True
sage: (A.one()+x).is_homogeneous()  
False
```

maximal_degree()

The maximum of the degrees of the homogeneous components of `self`. This is also the smallest i such that `self` belongs to F_i. Hence, it does not depend on the basis of the parent of `self`.

See also:

`homogeneous_degree()`

EXAMPLES:

```
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
sage: y = A(Partition((4,4,1)))
sage: z = A(Partition((2,2,2)))
sage: x.maximal_degree()  
6
sage: (x + 2*z).maximal_degree()  
6
sage: (y - x).maximal_degree()  
9
sage: (3*z).maximal_degree()  
6
```

Now, we test this on a graded algebra:

```
sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.maximal_degree()  
2
sage: (x^3 + 4*y^2).maximal_degree()  
6
```

(continues on next page)
Let us now test a filtered algebra:

```
\begin{verbatim}
sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x,y,z = A.algebra_generators()
sage: (x*y).maximal_degree()
2
sage: (y*x).maximal_degree()
2
sage: A.one().maximal_degree()
0
sage: A.zero().maximal_degree()
Traceback (most recent call last):
  ...  
ValueError: the zero element does not have a well-defined degree
sage: (A.one()+x).maximal_degree()
1
\end{verbatim}
```

`truncate(n)`

Return the sum of the homogeneous components of degree strictly less than \(n \) of \(\text{self} \).

See `homogeneous_component()` for the notion of a homogeneous component.

EXAMPLES:

```
\begin{verbatim}
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A.an_element(); x
sage: x.truncate(0)
0
sage: x.truncate(1)
2*P[0]
sage: x.truncate(2)
2*P[0] + 2*P[1]
sage: x.truncate(3)

sage: A = ModulesWithBasis(ZZ).Graded().example()
sage: x = A.an_element(); x
sage: x.truncate(0)
0
sage: x.truncate(1)
2*P[0]
sage: x.truncate(2)
2*P[0] + 2*P[1]
sage: x.truncate(3)

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: G = A.algebra_generators()
sage: g = A.an_element() - 2 * G['x'] * G['y']; g
U['x']^2*U['y']^2*U['z']^3 - 2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(-1)
\end{verbatim}
```
sage: g.truncate(0)
0
sage: g.truncate(2)
2*U['x'] + 3*U['y'] + 1
sage: g.truncate(3)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(5)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(7)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(8)
U['x']^2*U['y']^2*U['z']^3 - 2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1

class ParentMethods
 Bases: object

basis(d=None)
 Return the basis for (the d-th homogeneous component of) self.

 INPUT:
 • d – (optional, default None) nonnegative integer or None

 OUTPUT:
 If d is None, returns the basis of the module. Otherwise, returns the basis of the homogeneous component of degree d (i.e., the subfamily of the basis of the whole module which consists only of the basis vectors lying in \(F_d \setminus \bigcup_{i<d} F_i \)).

 The basis is always returned as a family.

 EXAMPLES:

 sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Lazy family (Term map from Partitions to An example of a filtered module with basis: the free module on partitions over Integer Ring(i))_{i in Partitions of the integer 4}

Without arguments, the full basis is returned:

 sage: A.basis()
Lazy family (Term map from Partitions to An example of a filtered module with basis: the free module on partitions over Integer Ring(i))_{i in Partitions}

Checking this method on a filtered algebra. Note that this will typically raise a \texttt{NotImplementedError} when this feature is not implemented.

 sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Traceback (most recent call last):
 ...
NotImplementedError: infinite set
Without arguments, the full basis is returned:

```python
sage: A.basis()
Lazy family (Term map from Free abelian monoid indexed by
{\text{'x', 'y', 'z'}} to An example of a filtered algebra with
basis: the universal enveloping algebra of Lie algebra
of RR^3 with cross product over Integer Ring(i))_{i in
Free abelian monoid indexed by {'x', 'y', 'z'}}
```

An example with a graded algebra:

```python
sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.basis()
Lazy family (Term map from Subsets of {0, 1} to
The exterior algebra of rank 2 over Rational Field(i))_{i in
Subsets of {0, 1}}
```

from_graded_conversion()

Return the inverse of the canonical R-module isomorphism $A \to \text{gr} \ A$ induced by the basis of A (where $A =$). This inverse is an isomorphism $\text{gr} \ A \to A$.

This is an isomorphism of R-modules. See the class documentation AssociatedGradedAlgebra.

See also:

to_graded_conversion()

EXAMPLES:

```python
sage: A = Modules(QQ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
sage: q = A.to_graded_conversion()(p); q
sage: A.from_graded_conversion()(q) == p
True
sage: q.parent() is A.graded_algebra()
True
```

graded_algebra()

Return the associated graded module to self.

See AssociatedGradedAlgebra for the definition and the properties of this.

If the filtered module self with basis is called A, then this method returns $\text{gr} \ A$. The method `to_graded_conversion()` returns the canonical R-module isomorphism $A \to \text{gr} \ A$ induced by the basis of A, and the method `from_graded_conversion()` returns the inverse of this isomorphism. The method `projection()` projects elements of A onto $\text{gr} \ A$ according to their place in the filtration on A.

Warning: When not overridden, this method returns the default implementation of an associated graded module — namely, AssociatedGradedAlgebra(self), where AssociatedGradedAlgebra is AssociatedGradedAlgebra. But some instances of `FilteredModulesWithBasis` override this method, as the associated graded module often is (isomorphic) to a simpler object (for instance, the associated graded module of a graded module can be identified with the graded module itself). Generic code that uses associated graded modules (such as the code of the `induced_graded_map()` method below)
should make sure to only communicate with them via the \texttt{to_graded_conversion()}, \texttt{from_graded_conversion()} and \texttt{projection()} methods (in particular, do not expect there to be a conversion from \texttt{self} to \texttt{self.graded_algebra()}; this currently does not work for Clifford algebras). Similarly, when overriding \texttt{graded_algebra()}, make sure to accordingly redefine these three methods, unless their definitions below still apply to your case (this will happen whenever the basis of your \texttt{graded_algebra()} has the same indexing set as \texttt{self}, and the partition of this indexing set according to degree is the same as for \texttt{self}).

EXAMPLES:

```python
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.graded_algebra()
Graded Module of An example of a filtered module with basis: the free module on partitions over Integer Ring
```

homogeneous_component \((d)\)

Return the \(d\)-th homogeneous component of \texttt{self}.

EXAMPLES:

```python
sage: A = GradedModulesWithBasis(ZZ).example()
sage: A.homogeneous_component(4)
Degree 4 homogeneous component of An example of a graded module with basis: the free module on partitions over Integer Ring
```

homogeneous_component_basis \((d)\)

Return a basis for the \(d\)-th homogeneous component of \texttt{self}.

EXAMPLES:

```python
sage: A = GradedModulesWithBasis(ZZ).example()
sage: A.homogeneous_component_basis(4)
Lazy family (Term map from Partitions to An example of a graded module \rightarrow with basis: the free module on partitions over Integer Ring(i))_{i \in Partitions of the integer 4}
```

induced_graded_map \((other,f)\)

Return the graded linear map between the associated graded modules of \texttt{self} and \texttt{other} canonically induced by the filtration-preserving map \(f : \texttt{self} \rightarrow \texttt{other}.

Let \(A\) and \(B\) be two filtered modules with basis, and let \((F_i)_{i \in I}\) and \((G_i)_{i \in I}\) be their filtrations. Let \(f : A \rightarrow B\) be a linear map which preserves the filtration (i.e., satisfies \(f(F_i) \subseteq G_i\) for all \(i \in I\)). Then, there is a canonically defined graded linear map \(gr f : gr A \rightarrow gr B\) which satisfies

\[
(gr f)(p_i(a)) = p_i(f(a)) \quad \text{for all } i \in I \text{ and } a \in F_i,
\]

where the \(p_i\) on the left hand side is the canonical projection from \(F_i\) onto the \(i\)-th graded component of \(gr A\), while the \(p_i\) on the right hand side is the canonical projection from \(G_i\) onto the \(i\)-th graded component of \(gr B\).
INPUT:

• other – a filtered algebra with basis
• f – a filtration-preserving linear map from self to other (can be given as a morphism or as a function)

OUTPUT:

The graded linear map $\text{gr}f$.

EXAMPLES:

Example 1.

We start with the free \mathbb{Q}-module with basis the set of all partitions:

```sage
A = Modules(QQ).WithBasis().Filtered().example(); A
An example of a filtered module with basis: the free module on partitions over Rational Field
```

```sage
M = A.indices(); M
Partitions
```

```sage
p1, p2, p21, p321 = [A.basis()[Partition(i)] for i in [[1], [2], [2, -1], [3, 2, 1]]
```

Let us define a map from A to itself which acts on the basis by sending every partition λ to the sum of the conjugates of all partitions μ for which λ/μ is a horizontal strip:

```sage
def map_on_basis(lam):
    ....: return A.sum_of_monomials([Partition(mu).conjugate() for k in range(sum(lam) + 1)]
    ....:     for mu in lam.remove_horizontal_border_strip(k))
f = A.module_morphism(on_basis=map_on_basis,
    ....:                      codomain=A)
sage: f(p1)
P[1] + P[1, 1]
sage: f(p2)
P[1] + P[1] + P[1, 1]
sage: f(p21)
sage: f(p21 - p1)
sage: f(p321)
```

We now compute $\text{gr}f$

```sage
grA = A.graded_algebra(); grA
Graded Module of An example of a filtered module with basis: the free module over Rational Field
```

```sage
pp1, pp2, pp21, pp321 = [A.to_graded_conversion()(i) for i in [p1, p2, p21, p321]]
```

```sage
pp2 + 4 * pp21
Bbar[[2]] + 4*Bbar[[2, 1]]
```

```sage
grf = A.induced_graded_map(A, f); grf
Generic endomorphism of Graded Module of An example of a filtered module with basis: the free module on partitions over Rational Field
```

```sage
grf(pp1)
Bbar[[1]]
```

(continues on next page)
Example 2.

We shall now construct \(\text{gr} f \) for a different map \(f \) out of the same \(A \); the new map \(f \) will lead into a graded algebra already, namely into the algebra of symmetric functions:

\[
\text{sage: } h = \text{SymmetricFunctions}(\mathbb{Q}).h()
\]
\[
\text{sage: def } \text{map_on_basis}(\text{lam}): \quad # \text{redefining } \text{map_on_basis}
\]
\[
\text{....: } \quad \text{return } h.\text{sum_of_monomials}([\text{Partition}(\mu).\text{conjugate()} \text{ for } k \text{ in } \text{range}(\text{sum(lam) + 1}) \text{ for } \mu \in \text{lam.remove_horizontal_strip(k)})
\]
\[
\text{sage: f = A.module_morphism(on_basis=map_on_basis, } \text{codomain= } h \text{) } # \text{redefining } f
\]
\[
\text{sage: f(p1)}
\]
\[
\text{h[]} + h[1]
\]
\[
\text{sage: f(p2)}
\]
\[
\text{h[]} + h[1] + h[1, 1]
\]
\[
\text{sage: f(A.zero())} = 0
\]
\[
\text{sage: f(p2 - 3*p1)}
\]
\[
-2*h[] - 2*h[1] + h[1, 1]
\]

The algebra \(h \) of symmetric functions in the \(h \)-basis is already graded, so its associated graded algebra is implemented as itself:

\[
\text{sage: grh = h.graded_algebra(); grh is h}
\]
\[
\text{True}
\]
\[
\text{sage: grf = A.induced_graded_map(h, f); grf}
\]

Generic morphism:

From: Graded Module of An example of a filtered module with basis: the free module on partitions over Rational Field
To: Symmetric Functions over Rational Field in the homogeneous basis

\[
\text{sage: grf(pp1)}
\]
\[
\text{h[1]}
\]
\[
\text{sage: grf(pp2)}
\]
\[
\text{h[1, 1]}
\]
\[
\text{sage: grf(pp321)}
\]
\[
\text{h[3, 2, 1]}
\]
\[
\text{sage: grf(pp2 - 3*pp1)}
\]
\[
-3*h[1] + h[1, 1]
\]
\[
\text{sage: grf(pp21)}
\]
\[
\text{h[2, 1]}
\]
\[
\text{sage: grf(grA.zero())} = 0
\]

Example 3.

After having had a graded module as the codomain, let us try to have one as the domain instead. Our new \(f \) will go from \(h \) to \(A \):

\[
\text{sage: def } \text{map_on_basis}(\text{lam}): \quad # \text{redefining } \text{map_on_basis}
\]
\[
\text{....: } \quad \text{return } A.\text{sum_of_monomials}([\text{Partition}(\mu).\text{conjugate()} \text{ for } k \text{ in } \text{range}(\text{sum(lam) + 1}) \text{ for } \mu \in \text{lam.remove_horizontal_strip(k)})
\]

(continues on next page)
....:
 for mu in lam.remove_horizontal_
 ←border_strip(k))
sage: f = h.module_morphism(on_basis=map_on_basis,
 : codomain=A) # redefining f
sage: f(h[1])
P[] + P[1]
sage: f(h[2])
P[1] + [P[1]] + [1, 1]
sage: f(h[1, 1])
sage: f(h[2, 2])
sage: f(h[3, 2, 1]) # redefining f
sage: f(h[1])
P[] + P[1]
sage: f(h[2])
P[1] + P[1, 1]
sage: f(h[1, 1])
sage: f(h[2, 2])
P[1, 1] + P[2, 1] + P[2, 2]
sage: f(h[3, 2, 1])
sage: f(h[1])
P[]
sage: f(h[2])
P[1] + P[1, 1]
sage: f(h[1, 1])
sage: f(h[2, 2])
P[1, 1] + P[2, 1] + P[2, 2]
sage: f(h[3, 2, 1])
sage: f(h[1])
P[]
....:

Example 4.
The construct gr f also makes sense when f is a filtration-preserving map between graded modules.

sage: def map_on_basis(lam):
 : return h.sum_of_monomials([Partition(mu).conjugate() for k in
 : range(sum(lam) + 1)
 : for mu in lam.remove_horizontal_
 : ←border_strip(k))
sage: f = h.module_morphism(on_basis=map_on_basis,
 : codomain=h) # redefining f
sage: f(h[1])
h[] + h[1]
sage: f(h[2])
h[1] + h[1] + h[1, 1]
sage: f(h[1, 1])
h[1] + h[2]
sage: f(h[2, 1])
sage: f(h[1])
h[] + h[1]
projection(i)
Return the i-th projection $p_i : F_i \to G_i$ (in the notations of the class documentation AssociatedGradedAlgebra, where $A =$.)

This method actually does not return the map p_i itself, but an extension of p_i to the whole R-module A. This extension is the composition of the R-module isomorphism $A \to \text{gr} A$ with the canonical projection of the graded R-module $\text{gr} A$ onto its i-th graded component G_i. The codomain of this map is $\text{gr} A$, although its actual image is G_i. The map p_i is obtained from this map by restricting its domain to F_i and its image to G_i.

EXAMPLES:

```python
sage: A = Modules(ZZ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
sage: q = A.projection(2)(p); q
-6*Bbar[[2]]
sage: q.parent() is A.graded_algebra()
True
sage: A.projection(3)(p)
0
```

to_graded_conversion()
Return the canonical R-module isomorphism $A \to \text{gr} A$ induced by the basis of A (where $A =$.)

This is an isomorphism of R-modules. See the class documentation AssociatedGradedAlgebra.

See also:
```
from_graded_conversion()
```

EXAMPLES:

```python
sage: A = Modules(QQ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
sage: q = A.to_graded_conversion()(p); q
sage: q.parent() is A.graded_algebra()
True
```
3.44 Finite Complex Reflection Groups

class sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups(base_category):

 The category of finite complex reflection groups.

 See ComplexReflectionGroups for the definition of complex reflection group. In the finite case, most of
 the information about the group can be recovered from its degrees and codegrees, and to a lesser extent to the
 explicit realization as subgroup of $GL(V)$. Hence the most important optional methods to implement are:

 • ComplexReflectionGroups.Finite.ParentMethods.degrees(),
 • ComplexReflectionGroups.Finite.ParentMethods.codegrees(),
 • ComplexReflectionGroups.Finite.ElementMethods.to_matrix().

 Finite complex reflection groups are completely classified. In particular, if the group is irreducible, then it’s
 uniquely determined by its degrees and codegrees and whether it’s reflection representation is primitive or not
 (see [LT2009] Chapter 2.1 for the definition of primitive).

 See also:

 Wikipedia article Complex_reflection_groups

 EXAMPLES:

 sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
 sage: ComplexReflectionGroups().Finite()
 Category of finite complex reflection groups
 sage: ComplexReflectionGroups().Finite().super_categories()
 [Category of complex reflection groups,
 Category of finite groups,
 Category of finite finitely generated semigroups]

 An example of a finite reflection group:

 sage: W = ComplexReflectionGroups().Finite().example(); W
 # optional - gap3
 Reducible real reflection group of rank 4 and type A2 x B2
 sage: W.reflections()
 # optional - gap3
 Finite family {1: (1,8)(2,5)(9,12), 2: (1,5)(2,9)(8,12),
 3: (3,10)(4,7)(11,14), 4: (3,6)(4,11)(10,13),
 5: (1,9)(2,8)(5,12), 6: (4,14)(6,13)(7,11),
 7: (3,13)(6,10)(7,14)}

 W is in the category of complex reflection groups:

 sage: W in ComplexReflectionGroups().Finite() # optional - gap3
 True

 class ElementMethods
 Bases: object

 character_value()
 Return the value at self of the character of the reflection representation given by to_matrix().

 EXAMPLES:
sage: W = ColoredPermutations(1, 3); W
1-colored permutations of size 3
sage: [t.character_value() for t in W]
[3, 1, 1, 0, 0, 1]

Note that this could be a different (faithful) representation than that given by the corresponding root system:

sage: W = ReflectionGroup((1, 1, 3)); W
Irreducible real reflection group of rank 2 and type A2
sage: [t.character_value() for t in W] # optional - gap3
[2, 0, 0, -1, -1, 0]

reflection_length (in_unitary_group=False)
Return the reflection length of self.

This is the minimal numbers of reflections needed to obtain self.

INPUT:
- • in_unitary_group – (default: False) if True, the reflection length is computed in the unitary group which is the dimension of the move space of self

EXAMPLES:

sage: W = ReflectionGroup((1, 1, 3)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 2, 2]

sage: W = ReflectionGroup((2, 1, 2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 2, 2, 2]

sage: W = ReflectionGroup((3, 2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 2]

sage: W = ReflectionGroup((3, 1, 2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

to_matrix()
Return the matrix presentation of self acting on a vector space \(V \).

EXAMPLES:

sage: W = ReflectionGroup((1, 1, 3)) # optional - gap3
sage: [t.to_matrix() for t in W] # optional - gap3
[[1 0] [1 1] [-1 0] [-1 -1] [0 1] [0 -1]]
A different representation is given by the colored permutations:

```
sage: W = ColoredPermutations(3, 1)
sage: [t.to_matrix() for t in W]
[[1], [zeta3], [-zeta3 - 1]]
```

```python
class Irreducible(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
    Bases: object

    absolute_order_ideal(gens=None, in_unitary_group=True, return_lengths=False)
    Return all elements in self below given elements in the absolute order of self.

    This order is defined by
    \[
    \omega \leq_R \tau \iff \ell_R(\omega) + \ell_R(\omega^{-1}\tau) = \ell_R(\tau),
    \]
    where \(\ell_R\) denotes the reflection length.

    This is, if in_unitary_group is False, then
    \[
    \ell_R(w) = \min\{\ell : w = r_1 \cdots r_\ell, r_i \in R\},
    \]
    and otherwise
    \[
    \ell_R(w) = \dim \text{im}(w - 1).
    \]

    Note: If gens are not given, self is assumed to be well-generated.
```

INPUT:
- `gens` — (default: None) if one or more elements are given, the order ideal in the absolute order generated by gens is returned. Otherwise, the standard Coxeter element is used as unique maximal element.
- `in_unitary_group` (default: True) determines the length function used to compute the order. For real groups, both possible orders coincide, and for complex non-real groups, the order in the unitary group is much faster to compute.
- `return_lengths` (default: False) whether or not to also return the lengths of the elements.

EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3
˓→
sage: sorted(w.reduced_word() for w in W.absolute_order_ideal())
[[], [1], [1, 2], [1, 2, 1], [2]]

sage: sorted(w.reduced_word() for w in W.absolute_order_ideal(W.from_reduced_word([2,1]))) # optional - gap3
[[], [1], [1, 2, 1], [2], [2, 1]]

sage: sorted(w.reduced_word() for w in W.absolute_order_ideal(W.from_reduced_word([2]))) # optional - gap3
[[], [2]]

sage: W = CoxeterGroup(['A', 3])
sage: len(list(W.absolute_order_ideal()))
14

sage: W = CoxeterGroup(['A', 2])
sage: for (w, l) in W.absolute_order_ideal(return_lengths=True):
 : print(w.reduced_word(), l)
[1, 2] 2
[1, 2, 1] 1
[2] 1
[1] 1
[] 0

absolute_poset (in_unitary_group=False)
Return the poset induced by the absolute order of self as a finite lattice.

INPUT:
- in_unitary_group - (default: False) if False, the relation is given by \sigma \leq \tau if \ell_R(\sigma) + \ell_R(\sigma^{-1}\tau) = \ell_R(\tau) If True, the relation is given by \sigma \leq \tau if dim(Fix(\sigma)) + dim(Fix(\sigma^{-1}\tau)) = dim(Fix(\tau))

See also:
noncrossing_partition_lattice()

EXAMPLES:

sage: P = ReflectionGroup((1,1,3)).absolute_poset(); P # optional - gap3
Finite poset containing 6 elements

sage: sorted(W.reduced_word() for w in P) # optional - gap3
[[], [1], [1, 2], [1, 2, 1], [2], [2, 1]]

sage: W = ReflectionGroup(4); W # optional - gap3
Irreducible complex reflection group of rank 2 and type ST4

sage: W.absolute_poset() # optional - gap3
Finite poset containing 24 elements

coxeter_number()
Return the Coxeter number of an irreducible reflection group.

3.44. Finite Complex Reflection Groups 329
This is defined as $\frac{N + N^*}{n}$ where N is the number of reflections, N^* is the number of reflection hyperplanes, and n is the rank of `self`.

EXEMPLARY:

```
sage: W = ReflectionGroup(31)                      # optional - gap3
sage: W.coxeter_number()                            # optional - gap3
30
```

`elements_below_coxeter_element (c=\text{None})`

Deprecated method.

Superseded by `absolute_order_ideal()`

`generalized_noncrossing_partitions (m, c=\text{None}, positive=\text{False})`

Return the set of all chains of length m in the noncrossing partition lattice of `self`, see `noncrossing_partition_lattice()`.

Note: `self` is assumed to be well-generated.

INPUT:

- `c` – (default: None) if an element `c` in `self` is given, it is used as the maximal element in the interval
- `positive` – (default: False) if True, only those generalized noncrossing partitions of full support are returned

EXEMPLARY:

```
sage: W = ReflectionGroup((1,1,3))                  # optional - gap3
sage: sorted([w.reduced_word() for w in chain])    # optional - gap3
...... for chain in W.generalized_noncrossing_partitions(2) # _optional - gap3
[[[]], [[1, 2]],
 [[1], [2]],
 [[1], [], [2]],
 [[1], [2]],
 [[1, 2], [1]],
 [[1, 2, 1], [1]],
 [[1, 2, 1], [2]],
 [[2], [1, 2, 1]],
 [[2], [1, 2]],
 [[2], [1], [2]],
 [[2], [1], [2, 1]],
 [[2], [1], [2, 1], [1]]
```

```
sage: sorted([w.reduced_word() for w in chain])    # optional - gap3
...... for chain in W.generalized_noncrossing_partitions(2, positive=True) # _optional - gap3
[[[]], [[1, 2]],
 [[1], [2]],
 [[1], [], [2]],
 [[1], [2]],
 [[1, 2], [1]],
 [[1, 2, 1], [1]],
 [[1, 2, 1], [2]],
 [[2], [1, 2], [1]],
 [[2], [1, 2], [1], [2]],
 [[2], [1, 2, 1], [1], [1]]
```

(continues on next page)
noncrossing_partition_lattice \((c=None, L=None, in_unitary_group=True) \)

Return the interval \([1, c]\) in the absolute order of \(self\) as a finite lattice.

See also:

absolute_order_ideal()

INPUT:

- \(c\) – (default: None) if an element \(c\) in \(self\) is given, it is used as the maximal element in the interval
- \(L\) – (default: None) if a subset \(L\) (must be hashable!) of \(self\) is given, it is used as the underlying set (only cover relations are checked).
- \(in_unitary_group\) – (default: False) if False, the relation is given by \(\sigma \leq \tau\) if \(l_R(\sigma) + l_R(\sigma^{-1}\tau) = l_R(\tau)\); if True, the relation is given by \(\sigma \leq \tau\) if \(\text{dim}(\text{Fix}(\sigma)) + \text{dim}(\text{Fix}(\sigma^{-1}\tau)) = \text{dim}(\text{Fix}(\tau))\)

Note: If \(L\) is given, the parameter \(c\) is ignored.

EXAMPLES:

```python
sage: W = SymmetricGroup(4)
sage: W.noncrossing_partition_lattice()
Finite lattice containing 14 elements
sage: W = WeylGroup(['G', 2])
sage: W.noncrossing_partition_lattice()
Finite lattice containing 8 elements
sage: W = ReflectionGroup((1,1,3))
  # optional: gap3
  sage: sorted( w.reduced_word() for w in W.noncrossing_partition_lattice() )
  # optional - gap3
  [[], [1], [1, 2], [1, 2, 1], [2]]
sage: sorted( w.reduced_word() for w in W.noncrossing_partition_lattice(W.from_reduced_word([2,1])) )
  # optional - gap3
  [[], [1], [1, 2, 1], [2], [2, 1]]
sage: sorted( w.reduced_word() for w in W.noncrossing_partition_lattice(W.from_reduced_word([2])) )
  # optional - gap3
  [[], [2]]
```

example()

Return an example of an irreducible complex reflection group.

EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().Irreducible().example()
# optional - gap3
Irreducible complex reflection group of rank 3 and type G(4,2,3)
```
class ParentMethods
 Bases: object

 base_change_matrix()
 Return the base change from the standard basis of the vector space of self to the basis given by the independent roots of self.

 Todo: For non-well-generated groups there is a conflict with construction of the matrix for an element.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3))
 # optional - gap3
sage: W.base_change_matrix()
 # optional - gap3
 [1 0]
 [0 1]

sage: W = ReflectionGroup(23)
 # optional - gap3
sage: W.base_change_matrix()
 # optional - gap3
 [1 0 0]
 [0 1 0]
 [0 0 1]

sage: W = ReflectionGroup((3,1,2))
 # optional - gap3
sage: W.base_change_matrix()
 # optional - gap3
 [1 0]
 [1 1]

sage: W = ReflectionGroup((4,2,2))
 # optional - gap3
sage: W.base_change_matrix()
 # optional - gap3
 [1 0]
 [E(4) 1]

 cardinality()
 Return the cardinality of self.

 It is given by the product of the degrees of self.

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.cardinality()
6
sage: W = ColoredPermutations(2,3)
sage: W.cardinality()
48
sage: W = ColoredPermutations(4,3)
sage: W.cardinality()
384
codegrees()
Return the codegrees of self.

OUTPUT: a tuple of Sage integers

EXAMPLES:

```python
sage: W = ColoredPermutations(1,4)
sage: W.codegrees()
(2, 1, 0)
sage: W = ColoredPermutations(3,3)
sage: W.codegrees()
(6, 3, 0)
sage: W = ReflectionGroup(31)  # optional - gap3
sage: W.codegrees()  # optional - gap3
(28, 16, 12, 0)
```

degrees()
Return the degrees of self.

OUTPUT: a tuple of Sage integers

EXAMPLES:

```python
sage: W = ColoredPermutations(1,4)
sage: W.degrees()
(2, 3, 4)
sage: W = ColoredPermutations(3,3)
sage: W.degrees()
(3, 6, 9)
sage: W = ReflectionGroup(31)  # optional - gap3
sage: W.degrees()  # optional - gap3
(8, 12, 20, 24)
```

is_real()
Return whether self is real.

A complex reflection group is real if it is isomorphic to a reflection group in $GL(V)$ over a real vector space V. Equivalently its character table has real entries.

This implementation uses the following statement: an irreducible complex reflection group is real if and only if 2 is a degree of self with multiplicity one. Hence, in general we just need to compare the number of occurrences of 2 as degree of self and the number of irreducible components.

EXAMPLES:

```python
sage: W = ColoredPermutations(1,3)
sage: W.is_real()
True
```
Todo: Add an example of non real finite complex reflection group that is generated by order 2 reflections.

\textbf{is_well_generated()}
Return whether \texttt{self} is well-generated.

A finite complex reflection group is \textit{well generated} if the number of its simple reflections coincides with its rank.

See also:
\texttt{ComplexReflectionGroups.Finite.WellGenerated()}

Note:
- All finite real reflection groups are well generated.
- The complex reflection groups of type \(G(r, 1, n)\) and of type \(G(r, r, n)\) are well generated.
- The complex reflection groups of type \(G(r, p, n)\) with \(1 < p < r\) are \textit{not} well generated.
- The direct product of two well generated finite complex reflection group is still well generated.

EXAMPLES:

\begin{verbatim}
sage: W = ColoredPermutations(1,3) sage: W.is_well_generated() True
sage: W = ColoredPermutations(4,3) sage: W.is_well_generated() True
sage: W = ReflectionGroup((4,2,3)) # optional - gap3 sage: W.is_well_generated() # optional - gap3 False
sage: W = ReflectionGroup((4,4,3)) # optional - gap3 sage: W.is_well_generated() # optional - gap3 True
\end{verbatim}

\textbf{number_of_reflection_hyperplanes()}
Return the number of reflection hyperplanes of \texttt{self}.

This is also the number of distinguished reflections. For real groups, this coincides with the number of reflections.

This implementation uses that it is given by the sum of the codegrees of \texttt{self} plus its rank.

See also:
\texttt{number_of_reflections()}

EXAMPLES:
number_of_reflections()
Return the number of reflections of self.

For real groups, this coincides with the number of reflection hyperplanes.

This implementation uses that it is given by the sum of the degrees of self minus its rank.

See also:

number_of_reflection_hyperplanes()

EXAMPLES:

```python
sage: [SymmetricGroup(i).number_of_reflections() for i in range(int(8))]
[0, 0, 1, 3, 6, 10, 15, 21]
```

rank()
Return the rank of self.

The rank of self is the dimension of the smallest faithful reflection representation of self.

This default implementation uses that the rank is the number of degrees().

See also:

ComplexReflectionGroups.rank()

EXAMPLES:

```python
sage: W = ColoredPermutations(1,3)  # optional - gap3
sage: W.rank()  # optional - gap3
2
```
```sage
 sage: W = ColoredPermutations(4,3)
sage: W.rank()
3
sage: W = ReflectionGroup((4,2,3))  # optional - gap3
sage: W.rank()  # optional - gap3
3
```

```sage
class SubcategoryMethods
Bases: object

WellGenerated()

Return the full subcategory of well-generated objects of self.

A finite complex generated group is well generated if it is isomorphic to a subgroup of the general linear group $\text{GL}_n$ generated by $n$ reflections.

See also:
ComplexReflectionGroups.Finite.ParentMethods.is_well_generated()

EXAMPLES:

```sage
 sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
 sage: C = ComplexReflectionGroups().Finite().WellGenerated(); C
Category of well generated finite complex reflection groups
```

Here is an example of a finite well-generated complex reflection group:

```sage
 sage: W = C.example(); W # optional - gap3
Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
```

All finite Coxeter groups are well generated:

```sage
 sage: CoxeterGroups().Finite().is_subcategory(C)
True
 sage: SymmetricGroup(3) in C
True
```

**Note:** The category of well generated finite complex reflection groups is currently implemented as an axiom. See discussion on trac ticket #11187. This may be a bit of overkill. Still it’s nice to have a full subcategory.

```sage
class WellGenerated(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Irreducible(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite irreducible well-generated finite complex reflection groups.

class ParentMethods
Bases: object

catalan_number (positive=False, polynomial=False)

Return the Catalan number associated to self.
It is defined by

\[\prod_{i=1}^{n} \frac{d_i + h}{d_i}, \]

where \(d_1, \ldots, d_n \) are the degrees and where \(h \) is the Coxeter number. See [Ar2006] for further information.

INPUT:
• positive – optional boolean (default False) if True, return instead the positive Catalan number
• polynomial – optional boolean (default False) if True, return instead the \(q \)-analogue as a polynomial in \(q \)

Note:
• For the symmetric group \(S_n \), it reduces to the Catalan number \(\frac{1}{n+1} \binom{2n}{n} \).
• The Catalan numbers for \(G(r, 1, n) \) all coincide for \(r > 1 \).

EXAMPLES:

```python
sage: [ColoredPermutations(1,n).catalan_number() for n in [3,4,5]]
[5, 14, 42]
sage: [ColoredPermutations(2,n).catalan_number() for n in [3,4,5]]
[20, 70, 252]
sage: [ReflectionGroup((2,2,n)).catalan_number() for n in [3,4,5]]
˓→ \# optional - gap3
[14, 50, 182]
```

coxeter_number()
Return the Coxeter number of a well-generated, irreducible reflection group. This is defined to be the order of a regular element in \(\text{self} \), and is equal to the highest degree of \(\text{self} \).

See also:
ComplexReflectionGroups.Finite.Irreducible()

Note: This method overwrites the more general method for complex reflection groups since the expression given here is quicker to compute.

EXAMPLES:

```python
sage: W = ColoredPermutations(1,3)
sage: W.coxeter_number()
3
sage: W = ColoredPermutations(4,3)
sage: W.coxeter_number()
12
sage: W = ReflectionGroup((4,4,3)) \# optional - gap3
sage: W.coxeter_number() \# optional - gap3
8
```

fuss_catalan_number\((m, \text{positive}=\text{False}, \text{polynomial}=\text{False})\)
Return the \(m \)-th Fuss-Catalan number associated to \(\text{self} \).
This is defined by
\[
\prod_{i=1}^{n} \frac{d_i + mh}{d_i},
\]
where \(d_1, \ldots, d_n\) are the degrees and \(h\) is the Coxeter number.

INPUT:
- **positive** – optional boolean (default False) if True, return instead the positive Fuss-Catalan number
- **polynomial** – optional boolean (default False) if True, return instead the \(q\)-analogue as a polynomial in \(q\)

See [Ar2006] for further information.

Note:
- For the symmetric group \(S_n\), it reduces to the Fuss-Catalan number \(\frac{1}{mn+1}(\binom{m+1}{n})\).
- The Fuss-Catalan numbers for \(G(r, 1, n)\) all coincide for \(r > 1\).

EXAMPLES:

```python
sage: W = ColoredPermutations(1,3)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[5, 12, 22]
sage: W = ColoredPermutations(1,4)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[14, 55, 140]
sage: W = ColoredPermutations(1,5)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[42, 273, 969]
sage: W = ColoredPermutations(2,2)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[6, 15, 28]
sage: W = ColoredPermutations(2,3)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[20, 84, 220]
sage: W = ColoredPermutations(2,4)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[70, 495, 1820]
```

number_of_reflections_of_full_support()

Return the number of reflections with full support.

EXAMPLES:

```python
sage: W = Permutations(4)
sage: W.number_of_reflections_of_full_support()
1
sage: W = ColoredPermutations(1,4)
sage: W.number_of_reflections_of_full_support()
1
```

(continues on next page)
sage: W = CoxeterGroup("B3")
sage: W.number_of_reflections_of_full_support()
3

sage: W = ColoredPermutations(3,3)
sage: W.number_of_reflections_of_full_support()
3

rational_catalan_number(p, polynomial=False)

Return the \(p \)-th rational Catalan number associated to \(self \).

It is defined by

\[
\prod_{i=1}^{n} \frac{p + (p(d_i - 1)) \mod h}{d_i},
\]

where \(d_1, \ldots, d_n \) are the degrees and \(h \) is the Coxeter number. See [STW2016] for this formula.

INPUT:

- \(polynomial \) – optional boolean (default False) if True, return instead the \(q \)-analogue as a polynomial in \(q \)

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: [W.rational_catalan_number(p) for p in [5,7,8]]
[7, 12, 15]
sage: W = ColoredPermutations(2,2)
sage: [W.rational_catalan_number(p) for p in [7,9,11]]
[10, 15, 21]

example()

Return an example of an irreducible well-generated complex reflection group.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().WellGenerated().Irreducible().example()
4-colored permutations of size 3

class ParentMethods

Bases: object

coxeter_element()

Return a Coxeter element.

The result is the product of the simple reflections, in some order.

Note: This implementation is shared with well generated complex reflection groups. It would be nicer to put it in some joint super category; however, in the current state of the art, there is none where it is clear that this is the right construction for obtaining a Coxeter element.

In this context, this is an element having a regular eigenvector (a vector not contained in any reflection hyperplane of \(self \)).
EXAMPLES:

```python
sage: CoxeterGroup(['A', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['B', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['D', 4]).coxeter_element().reduced_word()
[1, 2, 4, 3]
sage: CoxeterGroup(['F', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['E', 8]).coxeter_element().reduced_word()
[1, 3, 2, 4, 5, 6, 7, 8]
sage: CoxeterGroup(['H', 3]).coxeter_element().reduced_word()
[1, 2, 3]
```

This method is also used for well generated finite complex reflection groups:

```python
sage: W = ReflectionGroup((1,1,4))
# optional - gap3
sage: W.coxeter_element().reduced_word()
# optional - gap3
[1, 2, 3]
sage: W = ReflectionGroup((2,1,4))
# optional - gap3
sage: W.coxeter_element().reduced_word()
# optional - gap3
[1, 2, 3, 4]
sage: W = ReflectionGroup((4,1,4))
# optional - gap3
sage: W.coxeter_element().reduced_word()
# optional - gap3
[1, 2, 3, 4]
sage: W = ReflectionGroup((4,4,4))
# optional - gap3
sage: W.coxeter_element().reduced_word()
# optional - gap3
[1, 2, 3]
```

coxeter_elements()

Return the (unique) conjugacy class in `self` containing all Coxeter elements.

A Coxeter element is an element that has an eigenvalue $e^{2\pi i/h}$ where h is the Coxeter number.

In case of finite Coxeter groups, these are exactly the elements that are conjugate to one (or, equivalently, all) standard Coxeter element, this is, to an element that is the product of the simple generators in some order.

See also:

standard_coxeter_elements()

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,3))
# optional - gap3
sage: sorted(c.reduced_word() for c in W.coxeter_elements())
# optional - gap3
[[1, 2], [2, 1]]
sage: W = ReflectionGroup((1,1,4))
# optional - gap3
sage: sorted(c.reduced_word() for c in W.coxeter_elements())
# optional - gap3
[[1, 2, 1, 3, 2], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 1, 3, 2, 1], [3, 2, 1]]
```
is_well_generated()

Return True as self is well-generated.

EXAMPLES:

```
sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: W.is_well_generated() # optional - gap3
True
```

standard_coxeter_elements()

Return all standard Coxeter elements in self.

This is the set of all elements in self obtained from any product of the simple reflections in self.

Note:
- self is assumed to be well-generated.
- This works even beyond real reflection groups, but the conjugacy class is not unique and we only obtain one such class.

EXAMPLES:

```
sage: W = ReflectionGroup(4) # optional - gap3
sage: sorted(W.standard_coxeter_elements()) # optional - gap3
[(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13),
 (1,10,4,12,21,22)(2,11,19,24,13,3)(5,15,7,17,16,23)(6,18,8,20,14,9)]
```

example()

Return an example of a well-generated complex reflection group.

EXAMPLES:

```
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().WellGenerated().example() # optional - gap3
Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
```

example()

Return an example of a complex reflection group.

EXAMPLES:

```
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().example() # optional - gap3
Reducible real reflection group of rank 4 and type A2 x B2
```
3.45 Finite Coxeter Groups

```python
class sage.categories.finite_coxeter_groups.FiniteCoxeterGroups(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite Coxeter groups.

EXAMPLES:

```python
sage: CoxeterGroups().Finite()
Category of finite coxeter groups
sage: FiniteCoxeterGroups().super_categories()
[Category of finite generalized coxeter groups,
 Category of coxeter groups]
sage: G = CoxeterGroups().Finite().example()
sage: G.cayley_graph(side = "right").plot()
Graphics object consisting of 40 graphics primitives
```

Here are some further examples:

```python
sage: WeylGroups().Finite().example()
The symmetric group on (0, ..., 3)
sage: WeylGroup(['B', 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
```

Those other examples will eventually be also in this category:

```python
sage: SymmetricGroup(4)
Symmetric group of order 4! as a permutation group
sage: DihedralGroup(5)
Dihedral group of order 10 as a permutation group
```

class ElementMethods

Bases: object

```
bruhat_upper_covers()

Returns all the elements that cover self in Bruhat order.

EXAMPLES:

```python
sage: W = WeylGroup(['A',4])
sage: w = W.from_reduced_word([3,2])
sage: print([v.reduced_word() for v in w.bruhat_upper_covers()])
[[4, 3, 2], [3, 4, 2], [2, 3, 2], [3, 1, 2], [3, 2, 1]]
sage: W = WeylGroup(['B',6])
sage: w = W.from_reduced_word([1,2,1,4,5])
sage: C = w.bruhat_upper_covers()
sage: len(C)
9
sage: print([v.reduced_word() for v in C])
[[6, 4, 5, 1, 2, 1], [4, 5, 6, 1, 2, 1], [3, 4, 5, 1, 2, 1], [2, 3, 4, 5, 6, 1], [2, 3, 4, 5, 6, 1], [1, 2, 3, 4, 5, 1], [4, 5, 4, 1, 2, 1], [4, 5, 3, 1, 2, 1], [4, 5, 2, 3, 1], [4, 5, 1, 2, 3, 1]]
```
sage: ww = W.from_reduced_word([5,6,5])
sage: CC = ww.bruhat_upper_covers()
sage: print([v.reduced_word() for v in CC])
[[6, 5, 6, 5], [4, 5, 6, 5], [5, 6, 4, 5], [5, 6, 5, 3], [5, 6, 5, 2], [5, 6, 5, 1]]

Recursive algorithm: write \(w \) for \(\text{self} \). If \(i \) is a non-descent of \(w \), then the covers of \(w \) are exactly \(\{ws_i, u_1s_i, u_2s_i, \ldots, u_js_i\} \), where the \(u_k \) are those covers of \(ws_i \) that have a descent at \(i \).

covered_reflections_subgroup()

Return the subgroup of \(W \) generated by the conjugates by \(w \) of the simple reflections indexed by right descents of \(w \).

This is used to compute the shard intersection order on \(W \).

EXAMPLES:

sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: len(W.long_element().covered_reflections_subgroup())
24
sage: s = W.simple_reflection(1)
sage: Gs = s.covered_reflections_subgroup()
sage: len(Gs)
2
sage: s in [u.lift() for u in Gs]
True
sage: len(W.one().covered_reflections_subgroup())
1

coxeter_knuth_graph()

Return the Coxeter-Knuth graph of type \(A \).

The Coxeter-Knuth graph of type \(A \) is generated by the Coxeter-Knuth relations which are given by \(aa + 1a \sim a + 1aa + 1, abc \sim acb \) if \(b < a < c \) and \(abc \sim bac \) if \(a < c < b \).

EXAMPLES:

sage: W = WeylGroup(['A',4], prefix='s')
sage: w = W.from_reduced_word([1,2,1,3,2])
sage: D = w.coxeter_knuth_graph()
sage: D.vertices()
[(1, 2, 1, 3, 2), (1, 2, 3, 1, 2), (2, 1, 2, 3, 2), (2, 1, 3, 2, 3), (2, 3, 1, 2, 3)]
sage: D.edges()
[((1, 2, 1, 3, 2), (1, 2, 3, 1, 2), None), ((1, 2, 1, 3, 2), (2, 1, 2, 3, 2), None), ((2, 1, 2, 3, 2), (2, 1, 3, 2, 3), None), ((2, 1, 3, 2, 3), (2, 3, 1, 2, 3), None)]
sage: w = W.from_reduced_word([1,3])
sage: D = w.coxeter_knuth_graph()
sage: D.vertices()
[(1, 3), (3, 1)]
sage: D.edges()
[]

coxeter_knuth_neighbor(w)

Return the Coxeter-Knuth (oriented) neighbors of the reduced word w of self.

INPUT:

- w – reduced word of self

The Coxeter-Knuth relations are given by \(aa + 1 a \sim a + 1 a a + 1 \), \(abc \sim acb \) if \(b < a < c \) and \(abc \sim bac \) if \(a < c < b \). This method returns all neighbors of w under the Coxeter-Knuth relations oriented from left to right.

EXAMPLES:

```python
sage: W = WeylGroup(['A',4], prefix='s')
sage: word = [1,2,1,3,2]
sage: w = W.from_reduced_word(word)
sage: w.coxeter_knuth_neighbor(word)
{(1, 2, 3, 1, 2), (2, 1, 2, 3, 2)}

sage: word = [1,2,1,3,2,4,3]
sage: w = W.from_reduced_word(word)
sage: w.coxeter_knuth_neighbor(word)
{(1, 2, 1, 3, 4, 2, 3), (1, 2, 3, 1, 2, 4, 3), (2, 1, 2, 3, 2, 4, 3)}
```

is_coxeter_element()

Return whether this is a Coxeter element.

This is, whether self has an eigenvalue \(e^{2\pi i/h} \) where \(h \) is the Coxeter number.

See also:

coxeter_elements()

EXAMPLES:

```python
sage: W = CoxeterGroup(['A',2])
sage: c = prod(W.gens())
sage: c.is_coxeter_element()  # True
sage: W.one().is_coxeter_element()  # False

sage: W = WeylGroup(['G', 2])
sage: c = prod(W.gens())
sage: c.is_coxeter_element()  # True
sage: W.one().is_coxeter_element()  # False
```

class ParentMethods

Bases: object

Ambiguity resolution: the implementation of some_elements is preferable to that of FiniteGroups. The same holds for __iter__, although a breadth first search would be more natural; at least this maintains backward compatibility after trac ticket #13589.

bhz_poset()

Return the Bergeron-Hohlweg-Zabrocki partial order on the Coxeter group.
This is a partial order on the elements of a finite Coxeter group \(W\), which is distinct from the Bruhat order, the weak order and the shard intersection order. It was defined in [BHZ2005].

This partial order is not a lattice, as there is no unique maximal element. It can be succinctly defined as follows.

Let \(u\) and \(v\) be two elements of the Coxeter group \(W\). Let \(S(u)\) be the support of \(u\). Then \(u \leq v\) if and only if \(v_{S(u)} = u\) (here \(v = v^l v_l\) denotes the usual parabolic decomposition with respect to the standard parabolic subgroup \(W_I\)).

See also:

\texttt{bruhat_poset()}, \texttt{shard_poset()}, \texttt{weak_poset()}

EXAMPLES:

```
sage: W = CoxeterGroup(['A', 3], base_ring=ZZ)
sage: P = W.bhz_poset(); P
Finite poset containing 24 elements
sage: P.relations_number()
103
sage: P.chain_polynomial()
34*q^4 + 90*q^3 + 79*q^2 + 24*q + 1
sage: len(P.maximal_elements())
13
```

\texttt{bruhat_poset}(\texttt{facade=False})

Return the Bruhat poset of \texttt{self}.

See also:

\texttt{bhz_poset()}, \texttt{shard_poset()}, \texttt{weak_poset()}

EXAMPLES:

```
sage: W = WeylGroup(['A', 2])
sage: P = W.bruhat_poset()
sage: P
Finite poset containing 6 elements
sage: P.show()
```

Here are some typical operations on this poset:

```
sage: W = WeylGroup(['A', 3])
sage: P = W.bruhat_poset()
sage: u = W.from_reduced_word([3,1])
sage: v = W.from_reduced_word([3,2,1,2,3])
sage: P(u) <= P(v)
True
sage: len(P.interval(P(u), P(v)))
10
sage: P.is_join_semilattice()
False
```

By default, the elements of \(P\) are aware that they belong to \(P\):

```
sage: P.an_element().parent()
Finite poset containing 24 elements
```

If instead one wants the elements to be plain elements of the Coxeter group, one can use the \texttt{facade} option:
```python
sage: W = WeylGroup(['A', 3])
```

```python
sage: P = W.bruhat_poset(facade = True)
```

```python
sage: P.an_element().parent()
```

Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space)

See also:

`Poset()` for more on posets and facade posets.

Todo:

- Use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
- The constructed poset should be lazy, in order to handle large / infinite Coxeter groups.

```python
cambrian_lattice(c, on_roots=False)
```

Return the \(c\)-Cambrian lattice on delta sequences.

Delta sequences are certain 2-colored minimal factorizations of \(c\) into reflections.

INPUT:

- \(c\) – a standard Coxeter element in self (as a tuple, or as an element of self)
- on_roots (optional, default False) – if on_roots is True, the lattice is realized on roots rather than on reflections. In order for this to work, the ElementMethod reflection_to_root must be available.

EXAMPLES:

```python
sage: CoxeterGroup(['A', 2]).cambrian_lattice((1,2))
```

Finite lattice containing 5 elements

```python
sage: CoxeterGroup(['B', 2]).cambrian_lattice((1,2))
```

Finite lattice containing 6 elements

```python
sage: CoxeterGroup(['G', 2]).cambrian_lattice((1,2))
```

Finite lattice containing 8 elements

```python
codegrees()
```

Return the codegrees of the Coxeter group.

These are just the degrees minus 2.

EXAMPLES:

```python
sage: CoxeterGroup(['A', 4]).codegrees()
```

(0, 1, 2, 3)

```python
sage: CoxeterGroup(['B', 4]).codegrees()
```

(0, 2, 4, 6)

```python
sage: CoxeterGroup(['D', 4]).codegrees()
```

(0, 2, 2, 4)

```python
sage: CoxeterGroup(['F', 4]).codegrees()
```

(0, 4, 6, 10)

```python
sage: CoxeterGroup(['E', 8]).codegrees()
```

(0, 6, 10, 12, 16, 18, 22, 28)

```python
sage: CoxeterGroup(['H', 3]).codegrees()
```

(0, 4, 8)

(continues on next page)
sage: WeylGroup(["A",3], ["A",3], ["B",2]).codegrees()
(0, 1, 2, 0, 1, 2, 0, 2)

degrees()

Return the degrees of the Coxeter group.

The output is an increasing list of integers.

EXAMPLES:

sage: CoxeterGroup(["A", 4]).degrees()
(2, 3, 4, 5)

sage: CoxeterGroup(["B", 4]).degrees()
(2, 4, 6, 8)

sage: CoxeterGroup(["D", 4]).degrees()
(2, 4, 4, 6)

sage: CoxeterGroup(["F", 4]).degrees()
(2, 6, 12)

sage: CoxeterGroup(["E", 8]).degrees()
(2, 8, 12, 14, 18, 20, 24, 30)

sage: CoxeterGroup(["H", 3]).degrees()
(2, 6, 10)

sage: WeylGroup(["A",3], ["A",3], ["B",2]).degrees()
(2, 3, 4, 2, 3, 4, 2, 4)

inversion_sequence(word)

Return the inversion sequence corresponding to the word in indices of simple generators of self.

If word corresponds to \([w_0, w_1, \ldots w_k]\), the output is \([w_0, w_0 w_1, w_0 w_1 w_0, \ldots, w_0 w_1 \cdots w_k \cdots w_1 w_0]\).

INPUT:
 * word – a word in the indices of the simple generators of self.

EXAMPLES:

sage: CoxeterGroup(["A", 2]).inversion_sequence([1,2,1])
[[1], [2], [-1, 1], [0, -1], [1, 0], [0, 1], [-1, 0], [1, -1]]

sage: [t.reduced_word() for t in CoxeterGroup(["A",3]).inversion_sequence([2,1,3,2,1,3])]
[[2], [1, 2, 1], [2, 3, 2], [1, 2, 3, 2, 1], [3], [1]]

is_real()

Return True since self is a real reflection group.

EXAMPLES:

sage: CoxeterGroup(["F",4]).is_real()
True

sage: CoxeterGroup(["H",4]).is_real()
True

long_element(index_set=None, as_word=False)

Return the longest element of self, or of the parabolic subgroup corresponding to the given index_set.
INPUT:

- `index_set` – a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: all of them)
- `as_word` – boolean (default False). If True, then return instead a reduced decomposition of the longest element.

Should this method be called `maximal_element`? `longest_element`?

EXAMPLES:

```python
sage: D10 = FiniteCoxeterGroups().example(10)
sage: D10.long_element()
(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)
sage: D10.long_element([1])
(1,)
sage: D10.long_element([2])
(2,)
sage: D10.long_element([])
()
sage: D7 = FiniteCoxeterGroups().example(7)
sage: D7.long_element()
(1, 2, 1, 2, 1, 2, 1)
```

One can require instead a reduced word for w0:

```python
sage: A3 = CoxeterGroup(['A', 3])
sage: A3.long_element(as_word=True)
[1, 2, 1, 3, 2, 1]
```

m_cambrian_lattice

Return the m-Cambrian lattice on m-delta sequences.

The m-delta sequences are certain m-colored minimal factorizations of c into reflections.

INPUT:

- `c` – a Coxeter element of `self` (as a tuple, or as an element of `self`)
- `m` – a positive integer (optional, default 1)
- `on_roots` (optional, default False) – if on_roots is True, the lattice is realized on roots rather than on reflections. In order for this to work, the ElementMethod `reflection_to_root` must be available.

EXAMPLES:

```python
sage: CoxeterGroup(['A',2]).m_cambrian_lattice((1,2))
Finite lattice containing 5 elements
sage: CoxeterGroup(['A',2]).m_cambrian_lattice((1,2),2)
Finite lattice containing 12 elements
```

permutahedron

Return the permutahedron of `self`.

This is the convex hull of the point `point` in the weight basis under the action of `self` on the underlying vector space V.

See also:

```python
permutahedron()
```
INPUT:
- point – optional, a point given by its coordinates in the weight basis (default is (1, 1, 1, ...))
- base_ring – optional, the base ring of the polytope

Note: The result is expressed in the root basis coordinates.

Note: If function is too slow, switching the base ring to RDF will almost certainly speed things up.

EXAMPLES:

```python
sage: W = CoxeterGroup(['H',3], base_ring=RDF)
sage: W.permutahedron()
doctest:warning...
UserWarning: This polyhedron data is numerically complicated; cdd could...
→ not convert between the inexact V and H representation without loss of...
→ data. The resulting object might show inconsistencies.
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of 120...
→ vertices

sage: W = CoxeterGroup(['I',7])
sage: W.permutahedron()
A 2-dimensional polyhedron in AA^2 defined as the convex hull of 14...
→ vertices
sage: W.permutahedron(base_ring=RDF)
A 2-dimensional polyhedron in RDF^2 defined as the convex hull of 14...
→ vertices

sage: W = ReflectionGroup(['A',3])
# optional -
→ gap3
sage: W.permutahedron()  # optional -
→ gap3
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 24 vertices

sage: W = ReflectionGroup(['A',3],['B',2])
# optional -
→ gap3
sage: W.permutahedron()  # optional -
→ gap3
A 5-dimensional polyhedron in QQ^5 defined as the convex hull of 192...
→ vertices
```

reflections_from_w0()

Return the reflections of `self` using the inversion set of \(w_0 \).

EXAMPLES:

```python
sage: WeylGroup(['A',2]).reflections_from_w0()
[ [0 1 0] [0 0 1] [1 0 0]
 [1 0 0] [0 1 0] [0 0 1]
 [0 0 1], [1 0 0], [0 1 0]
]
sage: WeylGroup(['A',3]).reflections_from_w0()
```

(continues on next page)
Return the shard intersection order attached to W.

This is a lattice structure on W, introduced in [Rea2009]. It contains the noncrossing partition lattice, as the induced lattice on the subset of c-sortable elements.

The partial order is given by simultaneous inclusion of inversion sets and subgroups attached to every element.

The precise description used here can be found in [STW2018].

Another implementation for the symmetric groups is available as `shard_poset()`.

See also:

`bhz_poset()`, `bruhat_poset()`, `weak_poset()`

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: SH = W.shard_poset(); SH
Finite lattice containing 24 elements
sage: SH.is_graded()
True
sage: SH.characteristic_polynomial()
q^3 - 11*q^2 + 23*q - 13
sage: SH.f_polynomial()
34*q^3 + 22*q^2 + q
```

Return the longest element of `self`.

This attribute is deprecated, use `long_element()` instead.

EXAMPLES:
sage: D8 = FiniteCoxeterGroups().example(8)
sage: D8.w0
(1, 2, 1, 2, 1, 2, 1, 2)
sage: D3 = FiniteCoxeterGroups().example(3)
sage: D3.w0
(1, 2, 1)

weak_lattice (side='right', facade=False)

INPUT:
 • side – “left”, “right”, or “twosided” (default: “right”)
 • facade – a boolean (default: False)

Returns the left (resp. right) poset for weak order. In this poset, \(u \) is smaller than \(v \) if some reduced word of \(u \) is a right (resp. left) factor of some reduced word of \(v \).

See also:

bhz_poset (), bruhat_poset (), shard_poset ()

EXAMPLES:

sage: W = WeylGroup(['A', 2])
sage: P = W.weak_poset()
sage: P
Finite lattice containing 6 elements
sage: P.show()

This poset is in fact a lattice:

sage: W = WeylGroup(['B', 3])
sage: P = W.weak_poset(side = "left")
sage: P.is_lattice()
True

so this method has an alias weak_lattice():

sage: W.weak_lattice(side = "left") == W.weak_poset(side = "left")
True

As a bonus feature, one can create the left-right weak poset:

sage: W = WeylGroup(['A',2])
sage: P = W.weak_poset(side = "twosided")
sage: P.show()
sage: len(P.hasse_diagram().edges())
8

This is the transitive closure of the union of left and right order. In this poset, \(u \) is smaller than \(v \) if some reduced word of \(u \) is a factor of some reduced word of \(v \). Note that this is not a lattice:

sage: P.is_lattice()
False

By default, the elements of \(P \) are aware of that they belong to \(P \):

sage: P.an_element().parent()
Finite poset containing 6 elements

If instead one wants the elements to be plain elements of the Coxeter group, one can use the facade option:
sage: P = W.weak_poset(facade = True)
sage: P.an_element().parent()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient _space_

See also:

Poset() for more on posets and facade posets.

Todo:

• Use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
• The constructed poset should be lazy, in order to handle large / infinite Coxeter groups.

weak_poset(side='right', facade=False)

INPUT:
• side – “left”, “right”, or “twosided” (default: “right”)
• facade – a boolean (default: False)

Returns the left (resp. right) poset for weak order. In this poset, \(u \) is smaller than \(v \) if some reduced word of \(u \) is a right (resp. left) factor of some reduced word of \(v \).

See also:

bhz_poset(), bruhat_poset(), shard_poset()

EXAMPLES:

sage: W = WeylGroup(['A', 2])
sage: P = W.weak_poset()
sage: P
Finite lattice containing 6 elements
sage: P.show()

This poset is in fact a lattice:

sage: W = WeylGroup(['B', 3])
sage: P = W.weak_poset(side = "left")
sage: P.is_lattice()
True

so this method has an alias weak_lattice():

sage: W.weak_lattice(side = "left") is W.weak_poset(side = "left")
True

As a bonus feature, one can create the left-right weak poset:

sage: W = WeylGroup(['A',2])
sage: P = W.weak_poset(side = "twosided")
sage: P.show()
sage: len(P.hasse_diagram().edges())
8

This is the transitive closure of the union of left and right order. In this poset, \(u \) is smaller than \(v \) if some reduced word of \(u \) is a factor of some reduced word of \(v \). Note that this is not a lattice:
By default, the elements of P are aware of that they belong to P:

```python
sage: P.is_lattice()
False
```

If instead one wants the elements to be plain elements of the Coxeter group, one can use the `facade` option:

```python
sage: P = W.weak_poset(facade = True)
sage: P.an_element().parent()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)
```

See also:

`Poset()` for more on posets and facade posets.

Todo:
- Use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
- The constructed poset should be lazy, in order to handle large / infinite Coxeter groups.

```python
extra_super_categories()
```

EXAMPLES:

```python
sage: CoxeterGroups().Finite().super_categories()
[Category of finite generalized coxeter groups, Category of coxeter groups]
```

3.46 Finite Crystals

class `sage.categories.finite_crystals.FiniteCrystals(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of finite crystals.

EXAMPLES:

```python
sage: C = FiniteCrystals()
sage: C
Category of finite crystals
sage: C.super_categories()
[Category of crystals, Category of finite enumerated sets]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1
```

class `TensorProducts(category, *args)`

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of finite crystals constructed by tensor product of finite crystals.
extra_super_categories()

EXAMPLES:

```python
sage: FiniteCrystals().TensorProducts().extra_super_categories()
[Category of finite crystals]
```

example \(n=3\)

Returns an example of highest weight crystals, as per `Category.example()`.

EXAMPLES:

```python
sage: B = FiniteCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1
```

extra_super_categories()

EXAMPLES:

```python
sage: FiniteCrystals().extra_super_categories()
[Category of finite enumerated sets]
```

3.47 Finite dimensional algebras with basis

Todo: Quotients of polynomial rings.

Quotients in general.

Matrix rings.

REFERENCES:

- [CR1962]

```python
class FiniteDimensionalAlgebrasWithBasis(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finite dimensional algebras with a distinguished basis.

EXAMPLES:

```python
sage: C = FiniteDimensionalAlgebrasWithBasis(QQ); C
Category of finite dimensional algebras with basis over Rational Field
sage: C.super_categories()
[Category of algebras with basis over Rational Field, Category of finite dimensional magmatic algebras with basis over Rational Field]
```

```python
class Cellular(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Cellular algebras.
```

```python
```
Let $R$ be a commutative ring. A $R$-algebra $A$ is a \textit{cellular algebra} if it has a \textit{cell datum}, which is a tuple $(\Lambda, i, M, C)$, where $\Lambda$ is finite poset with order $\geq$, if $\mu \in \Lambda$ then $T(\mu)$ is a finite set and

$$C: \prod_{\mu \in \Lambda} T(\mu) \times T(\mu) \rightarrow A; (\mu, s, t) \mapsto c_{st}^{(\mu)}$$

is an injective map

such that the following holds:

- The set $\{ c_{st}^{(\mu)} | \mu \in \Lambda, s, t \in T(\mu) \}$ is a basis of $A$.
- If $a \in A$ and $\mu \in \Lambda, s, t \in T(\mu)$ then:
  $$a c_{st}^{(\mu)} = \sum_{u \in T(\mu)} r_{a}(s, u)c_{ut}^{(\mu)} \pmod{A^{>\mu}},$$

  where $A^{>\mu}$ is spanned by
  $$\{ c_{ab}^{(\nu)} | \nu > \mu \text{ and } a, b \in T(\nu) \}.$$

  Moreover, the scalar $r_{a}(s, u)$ depends only on $a, s$ and $u$ and, in particular, is independent of $t$.
- The map $\iota: A \rightarrow A; c_{st}^{(\mu)} \mapsto c_{ts}^{(\mu)}$ is an algebra anti-isomorphism.

A \textit{cellular basis} for $A$ is any basis of the form $\{ c_{st}^{(\mu)} | \mu \in \Lambda, s, t \in T(\mu) \}$.

Note that in particular, the scalars $r_{a}(u, s)$ in the second condition do not depend on $t$.

REFERENCES:

- [GrLe1996]
- [KX1998]
- [Mat1999]
- Wikipedia article Cellular_algebra

\begin{verbatim}
class ElementMethods
    Bases: object

    cellular_involution()
    Return the cellular involution on self.

    EXAMPLES:

    sage: S = SymmetricGroupAlgebra(QQ, 4)
    sage: elt = S([3,1,2,4])
    sage: ci = elt.cellular_involution(); ci
    7/48*[1, 3, 2, 4] + 49/48*[2, 3, 1, 4]
    - 1/48*[3, 1, 2, 4] - 7/48*[3, 2, 1, 4]
    sage: ci.cellular_involution()
    [3, 1, 2, 4]

    class ParentMethods
    Bases: object

    cell_module(mu, **kwds)
    Return the cell module indexed by mu.

    EXAMPLES:

    sage: S = SymmetricGroupAlgebra(QQ, 4)
    sage: S.cell_module([3,1,2,4])
    \end{verbatim}
\begin{verbatim}
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cell_module(Partition([2,1]))
Cell module indexed by [2, 1] of Cellular basis of
Symmetric group algebra of order 3 over Rational Field
\end{verbatim}

\textbf{cell_module_indices}(\textit{mu})

Return the indices of the cell module of \textit{self} indexed by \textit{mu}.
This is the finite set $M(\lambda)$.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cell_module_indices([2,1])
Standard tableaux of shape [2, 1]
\end{verbatim}

\textbf{cell_poset}()

Return the cell poset of \textit{self}.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cell_poset()
Finite poset containing 5 elements
\end{verbatim}

\textbf{cells}()

Return the cells of \textit{self}.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: dict(S.cells())
{
[1, 1, 1]: Standard tableaux of shape [1, 1, 1],
[2, 1]: Standard tableaux of shape [2, 1],
[3]: Standard tableaux of shape [3]
}\end{verbatim}

\textbf{cellular_basis}()

Return the cellular basis of \textit{self}.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cellular_basis()
Cellular basis of Symmetric group algebra of order 3
over Rational Field
\end{verbatim}

\textbf{cellular_involution}(\textit{x})

Return the cellular involution of \textit{x} in \textit{self}.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: for b in S.basis(): b, S.cellular_involution(b)
([1, 2, 3], [1, 2, 3])
([1, 3, 2], 49/48*[1, 3, 2] + 7/48*[2, 3, 1]
- 7/48*[3, 1, 2] - 1/48*[3, 2, 1])
([2, 1, 3], [2, 1, 3])
([2, 3, 1], -7/48*[1, 3, 2] - 1/48*[2, 3, 1]
+ 49/48*[3, 1, 2] + 7/48*[3, 2, 1])
\end{verbatim}
(continues on next page)
simple_module_parameterization()

Return a parameterization of the simple modules of self.

The set of simple modules are parameterized by $\lambda \in \Lambda$ such that the cell module bilinear form $\Phi_\lambda \neq 0$.

EXAMPLES:

```python
sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.simple_module_parameterization()
([4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1])
```

class TensorProducts (category, *args)

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of cellular algebras constructed by tensor product of cellular algebras.

class ParentMethods

Bases: object

`cell_module_indices` ($\mu$)

Return the indices of the cell module of self indexed by $\mu$.

This is the finite set $M(\lambda)$.

EXAMPLES:

```python
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: T.cell_module_indices(([1,1], [2,1]))
```

`cell_poset()`

Return the cell poset of self.

EXAMPLES:

```python
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: T.cell_poset()
```

`cellular_involution()`

Return the image of the cellular involution of the basis element indexed by $i$.

EXAMPLES:

```python
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: for b in T.basis(): b, T.cellular_involution(b)
```
extra_super_categories()

Tensor products of cellular algebras are cellular.

EXAMPLES:

```
sage: cat = Algebras(QQ).FiniteDimensional().WithBasis()
sage: cat.Cellular().TensorProducts().extra_super_categories()
[Category of finite dimensional cellular algebras with basis over Rational Field]
```

class ElementMethods

Bases: object

```
on_left_matrix(base_ring=None, action=<built-in function mul>, side='left')

Return the matrix of the action of self on the algebra.

INPUT:

• base_ring – the base ring for the matrix to be constructed
• action – a bivariate function (default: operator.mul())
• side – ‘left’ or ‘right’ (default: ‘left’)

EXAMPLES:

```
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])
sage: a.to_matrix(side='left')
[0 0 1 0 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 0]
```
```
AUTHORS: Mike Hansen, ...

to_matrix (base_ring=None, action=<built-in function mul>, side='left')

Return the matrix of the action of self on the algebra.

INPUT:

• base_ring – the base ring for the matrix to be constructed
• action – a bivariate function (default: operator.mul())
• side – 'left' or 'right' (default: 'left')

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])
sage: a.to_matrix(side='left')
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 0 0 0 1]
[0 0 0 0 0 1]
sage: a.to_matrix(side='right')
[0 0 0 0 0 1]
[0 0 0 0 0 1]
[0 0 0 0 0 1]
[0 0 0 0 0 1]
[0 0 0 0 1 0]
[0 0 0 1 0 0]
sage: a.to_matrix(base_ring=RDF, side="left")
[0.0 0.0 1.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 1.0 0.0]
[1.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 1.0]
[0.0 1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 1.0 0.0 0.0]

AUTHORS: Mike Hansen, ...
cartan_invariants_matrix()

Return the Cartan invariants matrix of the algebra.

OUTPUT: a matrix of non negative integers

Let $A$ be this finite dimensional algebra and $(S_i)_{i \in I}$ be representatives of the right simple modules of $A$. Note that their adjoints $S_i^*$ are representatives of the left simple modules.

Let $(P^i_L)_{i \in I}$ and $(P^i_R)_{i \in I}$ be respectively representatives of the corresponding indecomposable projective left and right modules of $A$. In particular, we assume that the indexing is consistent so that $S_i^* = \text{top } P^i_L$ and $S_i = \text{top } P^i_R$.

The Cartan invariant matrix $(C_{i,j})_{i,j \in I}$ is a matrix of non negative integers that encodes much of the representation theory of $A$; namely:

- $C_{i,j}$ counts how many times $S_i^* \otimes S_j$ appears as composition factor of $A$ seen as a bimodule over itself;
- $C_{i,j} = \dim \text{Hom}_A(P^R_j, P^R_i)$;
- $C_{i,j}$ counts how many times $S_j$ appears as composition factor of $P^R_i$;
- $C_{i,j} = \dim \text{Hom}_A(P^L_i, P^L_j)$;
- $C_{i,j}$ counts how many times $S_i^*$ appears as composition factor of $P^L_j$.

In the commutative case, the Cartan invariant matrix is diagonal. In the context of solving systems of multivariate polynomial equations of dimension zero, $A$ is the quotient of the polynomial ring by the ideal generated by the equations, the simple modules correspond to the roots, and the numbers $C_{i,i}$ give the multiplicities of those roots.

Note: For simplicity, the current implementation assumes that the index set $I$ is of the form $\{0, \ldots, n - 1\}$. Better indexations will be possible in the future.

ALGORITHM:

The Cartan invariant matrix of $A$ is computed from the dimension of the summands of its Peirce decomposition.

See also:

- peirce_decomposition()
- isotypic_projective_modules()

EXAMPLES:

For a semisimple algebra, in particular for group algebras in characteristic zero, the Cartan invariants matrix is the identity:

```
sage: A3 = SymmetricGroup(3).algebra(QQ)
sage: A3.cartan_invariants_matrix()
[[1 0 0]
 [0 1 0]
 [0 0 1]]
```

For the path algebra of a quiver, the Cartan invariants matrix counts the number of paths between two vertices:

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: A.cartan_invariants_matrix()
[[1 2]
 [0 1]]
```

In the commutative case, the Cartan invariant matrix is diagonal:
An example of a finite multiplicative monoid: the integers modulo 12

```python
sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid: the integers modulo 12
sage: A = Z12.algebra(QQ)
sage: A.cartan_invariants_matrix()

| 1 0 0 0 0 0 0 0 |
| 0 1 0 0 0 0 0 0 |
| 0 0 2 0 0 0 0 0 |
| 0 0 0 1 0 0 0 0 |
| 0 0 0 0 2 0 0 0 |
| 0 0 0 0 0 1 0 0 |
| 0 0 0 0 0 0 2 0 |
| 0 0 0 0 0 0 0 1 |
```

With the algebra of the 0-Hecke monoid:

```python
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: A.cartan_invariants_matrix()

| 1 0 0 0 0 0 0 0 |
| 0 2 1 0 1 1 0 0 |
| 0 1 1 0 1 0 0 0 |
| 0 0 0 1 0 1 1 0 |
| 0 1 1 0 1 0 0 0 |
| 0 1 0 1 0 2 1 0 |
| 0 0 0 1 0 1 1 0 |
| 0 0 0 0 0 0 1 0 |
```

**center()**

Return the center of **self**.

See also:

**center_basis()**

**EXAMPLES:**

```python
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(Containing the arrows a:x->y and b:x->y) over Rational Field
sage: center = A.center(); center
Center of An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(Containing the arrows a:x->y and b:x->y) over Rational Field
sage: center in Algebras(QQ).WithBasis().FiniteDimensional().Commutative()
True
sage: center.dimension()
1
sage: center.basis()
Finite family {0: B[0]}
sage: center.ambient() is A
True
sage: [c.lift() for c in center.basis()]
[x + y]
```

The center of a semisimple algebra is semisimple:
Todo:

- Pickling by construction, as `A.center()`?
- Lazy evaluation of `_repr_`

**center_basis()**

Return a basis of the center of `self`.

**OUTPUT:**

- a list of elements of `self`.

**See also:**

`center()`

**EXAMPLES:**

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.center_basis()
(x + y,)
```

**idempotent_lift(x)**

Lift an idempotent of the semisimple quotient into an idempotent of `self`.

Let `A` be this finite dimensional algebra and `π` be the projection `A → \overline{A}` on its semisimple quotient. Let \( \overline{\pi} \) be an idempotent of \( \overline{A} \), and \( x \) any lift thereof in \( A \). This returns an idempotent `e` of `A` such that \( \pi(e) = \pi(x) \) and `e` is a polynomial in `x`.

**INPUT:**

- `x` – an element of `A` that projects on an idempotent \( \overline{\pi} \) of the semisimple quotient of `A`. Alternatively one may give as input the idempotent \( \overline{\pi} \), in which case some lift thereof will be taken for `x`.

**OUTPUT:** the idempotent `e` of `self`.

**ALGORITHM:**

Iterate the formula `1 - (1 - x^2)^2` until having an idempotent.

See [CR1962] for correctness and termination proofs.

**EXAMPLES:**

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: S = A.semisimple_quotient()
sage: A.idempotent_lift(S.basis()['x'])
x
sage: A.idempotent_lift(A.basis()['y'])
y
```

Todo: Add some non trivial example
**is_commutative()**

Return whether `self` is a commutative algebra.

**EXAMPLES:**

```python
sage: S4 = SymmetricGroupAlgebra(QQ, 4)
sage: S4.is_commutative()
False
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S2.is_commutative()
True
```

**is_identity_decomposition_into_orthogonal_idempotents(l)**

Return whether `l` is a decomposition of the identity into orthogonal idempotents.

**INPUT:**

- `l` – a list or iterable of elements of `self`

**EXAMPLES:**

```python
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field
sage: x,y,a,b = A.algebra_generators(); x,y,a,b
(x, y, a, b)
sage: A.is_identity_decomposition_into_orthogonal_idempotents([A.one()])
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x,y])
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x+a, y-a])
True

Here the idempotents do not sum up to 1:

```python
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x])
False
```

Here 1 + x and −x are neither idempotent nor orthogonal:

```python
sage: A.is_identity_decomposition_into_orthogonal_idempotents([1+x,-x])
False
```

With the algebra of the 0-Hecke monoid:

```python
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True
```

Here are some more counterexamples:

1. Some orthogonal elements summing to 1 but not being idempotent:

```python
sage: class PQAlgebra(CombinatorialFreeModule):
    ....:     def __init__(self, F, p):
    ....:         # Construct the quotient algebra F[x] / p,
(continues on next page)```
....: # where p is a univariate polynomial.
....: R = parent(p); x = R.gen()
....: I = R.ideal(p)
....: self._xbar = R.quotient(I).gen()
....: basis_keys = [self._xbar**i for i in range(p.degree())]
....: CombinatorialFreeModule.__init__(self, F, basis_keys,
....: category=Algebras(F).FiniteDimensional()].
....: def x(self):
....: return self(self._xbar)
....: def one(self):
....: return self.basis()[self.base_ring().one()]
....: def product_on_basis(self, w1, w2):
....: return self.from_vector(vector(w1*w2))

sage: R.<x> = PolynomialRing(QQ)
sage: A = PQAlgebra(QQ, x**3 - x**2 + x + 1); y = A.x()
sage: a, b = y, 1-y
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
False

For comparison:

sage: A = PQAlgebra(QQ, x**2 - x); y = A.x()
sage: a, b = y, 1-y
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, A.zero(), b))
True
sage: A = PQAlgebra(QQ, x**3 - x**2 + x - 1); y = A.x()
sage: a = (y**2 + 1) / 2
sage: b = 1 - a
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
True

2. Some idempotents summing to 1 but not orthogonal:

sage: R.<x> = PolynomialRing(GF(2))
sage: A = PQAlgebra(GF(2), x)
sage: a = A.one()
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,))
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, a, a))
False

3. Some orthogonal idempotents not summing to the identity:

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,a))
False
sage: A.is_identity_decomposition_into_orthogonal_idempotents(())
False

isotypic_projective_modules (side='left')

Return the isotypic projective side self-modules.

Let $P_i$ be representatives of the indecomposable projective side-modules of this finite dimensional algebra $A$, and $S_i$ be the associated simple modules.
The regular side representation of $A$ can be decomposed as a direct sum $A = \bigoplus_i Q_i$ where each $Q_i$ is an isotypic projective module; namely $Q_i$ is the direct sum of $\dim S_i$ copies of the indecomposable projective module $P_i$. This decomposition is not unique.

The isotypic projective modules are constructed as $Q_i = e_i A$, where the $(e_i)_i$ is the decomposition of the identity into orthogonal idempotents obtained by lifting the central orthogonal idempotents of the semisimple quotient of $A$.

**INPUT:**
- `side` – ‘left’ or ‘right’ (default: ‘left’)

**OUTPUT:** a list of subspaces of `self`.

**EXAMPLES:**

```python
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: Q = A.isotypic_projective_modules(side="left"); Q
[Free module generated by {0} over Rational Field,
 Free module generated by {0, 1, 2} over Rational Field]
sage: [[x.lift() for x in Qi.basis()] for Qi in Q]
[[x],
 [y, a, b]]
```

We check that the sum of the dimensions of the isotypic projective modules is the dimension of `self`:

```python
sage: sum([Qi.dimension() for Qi in Q]) == A.dimension()
True
```

See also:
- `orthogonal_idempotents_central_mod_radical()`
- `peirce_decomposition()`

**orthogonal_idempotents_central_mod_radical()**

Return a family of orthogonal idempotents of `self` that project on the central orthogonal idempotents of the semisimple quotient.

**OUTPUT:**
- a list of orthogonal idempotents obtained by lifting the central orthogonal idempotents of the semisimple quotient.

**ALGORITHM:**

The orthogonal idempotents of $A$ are obtained by lifting the central orthogonal idempotents of the semisimple quotient $\overline{A}$.

Namely, let $(\overline{f_i})$ be the central orthogonal idempotents of the semisimple quotient of $A$. We recursively construct orthogonal idempotents of $A$ by the following procedure: assuming $(f_i)_{i<n}$ is a set of already constructed orthogonal idempotent, we construct $f_k$ by idempotent lifting of $(1-f)g(1-f)$, where $g$ is any lift of $\overline{e_k}$ and $f = \sum_{i<k} f_i$.

See [CR1962] for correctness and termination proofs.

See also:
- `idempotent_lift()`
EXAMPLES:

```sage
A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.orthogonal_idempotents_central_mod_radical()
(x, y)
sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid: the integers modulo 12
sage: A = Z12.algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: sorted(idempotents, key=str) # py2
[-1/2*B[8] + 1/2*B[4],
 1/2*B[9] - 1/2*B[3],
 B[0],
sage: sorted(idempotents, key=str) # py3
 1/2*B[9] - 1/2*B[3],
 B[0]]
sage: sum(idempotents) == 1
True
sage: all(e*e == e
 for e in idempotents)
True
sage: all(e*f == 0
 and f*e == 0
 for e in idempotents
 for f in idempotents
 if e != f)
True
This is best tested with:

```sage
A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
```True
```
We construct orthogonal idempotents for the algebra of the 0-Hecke monoid:

```sage
from sage.monoids.hecke_monoid import HeckeMonoid
A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True
```peirce_decomposition
(idempotents=None, check=True)

Return a Peirce decomposition of self.
Let \((e_i)_i\) be a collection of orthogonal idempotents of \(A\) with sum 1. The Peirce decomposition of \(A\) is the decomposition of \(A\) into the direct sum of the subspaces \(e_i A e_j\).

With the default collection of orthogonal idempotents, one has

\[
\dim e_i A e_j = C_{i,j} \dim S_i \dim S_j
\]

where \((S_i)_i\) are the simple modules of \(A\) and \((C_{i,j})_{i,j}\) is the Cartan invariants matrix.

INPUT:
- \texttt{idempotents} – a list of orthogonal idempotents \((e_i)_{i=0,...,n}\) of the algebra that sum to 1 (default: the idempotents returned by \texttt{orthogonal_idempotents_central_mod_radical()})
- \texttt{check} – (default: \texttt{True}) whether to check that the idempotents are indeed orthogonal and idempotent and sum to 1

OUTPUT:
A list of lists \(l\) such that \(l[i][j]\) is the subspace \(e_i A e_j\).

See also:
- \texttt{orthogonal_idempotents_central_mod_radical()}
- \texttt{cartan_invariants_matrix()}

EXAMPLES:

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.orthogonal_idempotents_central_mod_radical()
(x, y)
sage: decomposition = A.peirce_decomposition(); decomposition
[[Free module generated by {0} over Rational Field,
 Free module generated by {0, 1} over Rational Field],
 [Free module generated by {} over Rational Field,
 Free module generated by {0} over Rational Field]]
sage: [[x.lift() for x in decomposition[i][j].basis()] for j in range(len(decomposition))
 for i in range(len(decomposition))]
[[[x], [a, b]],
 [x], [y]]
```

We recover that the group algebra of the symmetric group \(S_4\) is a block matrix algebra:

```
sage: A = SymmetricGroup(4).algebra(QQ)
sage: decomposition = A.peirce_decomposition() # long time
sage: [[decomposition[i][j].dimension() for j in range(len(decomposition))]
 for i in range(len(decomposition))]
[[9, 0, 0, 0, 0],
 [0, 9, 0, 0, 0],
 [0, 0, 4, 0, 0],
 [0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1]]
```

The dimension of each block is \(d^2\), where \(d\) is the dimension of the corresponding simple module of \(S_4\). The latter are given by:
\begin{verbatim}
sage: [p.standard_tableaux().cardinality() for p in Partitions(4)]
[1, 3, 2, 3, 1]
\end{verbatim}

\textbf{peirce_summand}(ei, ej)

Return the Peirce decomposition summand \(e_iAe_j\).

\textbf{INPUT:}
\begin{itemize}
\item \texttt{self} – an algebra \(A\)
\item \(ei, ej\) – two idempotents of \(A\)
\end{itemize}

\textbf{OUTPUT:} \(e_iAe_j\), as a subspace of \(A\).

\textbf{See also:}
\begin{itemize}
\item \texttt{peirce_decomposition()}
\item \texttt{principal_ideal()}
\end{itemize}

\textbf{EXAMPLES:}
\begin{verbatim}
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: idemp = A.orthogonal_idempotents_central_mod_radical()
sage: A.peirce_summand(idemp[0], idemp[1])
Free module generated by \{0, 1\} over Rational Field
sage: A.peirce_summand(idemp[1], idemp[0])
Free module generated by {} over Rational Field
\end{verbatim}

We recover the \(2 \times 2\) block of \(Q[S_4]\) corresponding to the unique simple module of dimension 2 of the symmetric group \(S_4\):
\begin{verbatim}
sage: A4 = SymmetricGroup(4).algebra(QQ)
sage: e = A4.central_orthogonal_idempotents()[2]
sage: A4.peirce_summand(e, e)
Free module generated by \{0, 1, 2, 3\} over Rational Field
\end{verbatim}

\textbf{principal_ideal}(a, side='left')

Construct the \texttt{side} principal ideal generated by \(a\).

\textbf{EXAMPLES:}

In order to highlight the difference between left and right principal ideals, our first example deals with a non commutative algebra:
\begin{verbatim}
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x, y, a, b = A.basis()
\end{verbatim}

In this algebra, multiplication on the right by \(x\) annihilates all basis elements but \(x\):
\begin{verbatim}
sage: x*x, y*x, a*x, b*x
(x, 0, 0, 0)
\end{verbatim}

so the left ideal generated by \(x\) is one-dimensional:
\begin{verbatim}
sage: Ax = A.principal_ideal(x, side='left'); Ax
Free module generated by \{0\} over Rational Field
sage: [B.lift() for B in Ax.basis()]
[x]
\end{verbatim}
Multiplication on the left by $x$ annihilates only $x$ and fixes the other basis elements:

```
sage: x*x, x*y, x*a, x*b
(x, 0, a, b)
```

so the right ideal generated by $x$ is 3-dimensional:

```
sage: xA = A.principal_ideal(x, side='right'); xA
Free module generated by {0, 1, 2} over Rational Field
sage: [B.lift() for B in xA.basis()]
x, a, b
```

See also:
- `peirce_summand()`

**radical()**

Return the Jacobson radical of `self`.

This uses `radical_basis()`, whose default implementation handles algebras over fields of characteristic zero or fields of characteristic $p$ in which we can compute $x^1/p$.

See also:
- `radical_basis()`, `semisimple_quotient()`

**EXAMPLES:**

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(Containing the arrows a:x->y and b:x->y) over Rational Field
sage: radical = A.radical(); radical
Radical of An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(Containing the arrows a:x->y and b:x->y) over Rational Field
```

The radical is an ideal of $A$, and thus a finite dimensional non unital associative algebra:

```
sage: from sage.categories.associative_algebras import AssociativeAlgebras
sage: radical in AssociativeAlgebras(QQ).WithBasis().FiniteDimensional()
True
sage: radical in Algebras(QQ)
False

sage: radical.dimension()
2
sage: radical.basis()
Finite family {0: B[0], 1: B[1]}
sage: radical.ambient() is A
True
sage: [c.lift() for c in radical.basis()]
[a, b]
```

**Todo:**
- Tell Sage that the radical is in fact an ideal;
- Pickling by construction, as `A.center()`;
- Lazy evaluation of `__repr__`.  

3.47. Finite dimensional algebras with basis
radical_basis()

Return a basis of the Jacobson radical of this algebra.

**Note:** This implementation handles algebras over fields of characteristic zero (using Dixon’s lemma) or fields of characteristic \( p \) in which we can compute \( x^{1/p} \) [FR1985], [Eb1989].

**OUTPUT:**
- a list of elements of self.

**See also:**
- radical()
- Algebras.Semisimple

**EXAMPLES:**

```sage
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.radical_basis()
(a, b)
```

We construct the group algebra of the Klein Four-Group over the rationals:

```sage
sage: A = KleinFourGroup().algebra(QQ)
```

This algebra belongs to the category of finite dimensional algebras over the rationals:

```sage
sage: A in Algebras(QQ).FiniteDimensional().WithBasis()
True
```

Since the field has characteristic 0, Maschke’s Theorem tells us that the group algebra is semisimple. So its radical is the zero ideal:

```sage
sage: A in Algebras(QQ).Semisimple()
True
sage: A.radical_basis()
()```

Let’s work instead over a field of characteristic 2:

```sage
sage: A = KleinFourGroup().algebra(GF(2))
sage: A in Algebras(GF(2)).Semisimple()
False
sage: A.radical_basis()
(() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4))
```

We now implement the algebra \(A = K[x]/(x^p - 1) \), where \(K \) is a finite field of characteristic \(p \), and check its radical; alas, we currently need to wrap \(A \) to make it a proper ModulesWithBasis:

```sage
sage: class AnAlgebra(CombinatorialFreeModule):
  ....:     def __init__(self, F):
  ....:         R.<x> = PolynomialRing(F)
  ....:         I = R.ideal(x**F.characteristic()-F.one())
  ....:         self._xbar = R.quotient(I).gen()
  ....:         basis_keys = [self._xbar**i for i in range(F.characteristic())]
  ....:         CombinatorialFreeModule.__init__(self, F, basis_keys,
  ....:      (continues on next page)
semisimple_quotient()

Return the semisimple quotient of self.

This is the quotient of self by its radical.

See also:

radical()

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x→y and b:x→y) over Rational Field
sage: a,b,x,y = sorted(A.basis())
sage: S = A.semisimple_quotient(); S
Semisimple quotient of An example of a finite dimensional algebra with,

basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x→y and b:x→y) over Rational Field
sage: S in Algebras(QQ).Semisimple()
True
sage: S.basis()
Finite family {'x': B['x'], 'y': B['y']}
sage: xs,ys = sorted(S.basis())
sage: (xs + ys) * xs
B['x']

Sanity check: the semisimple quotient of the $n$-th descent algebra of the symmetric group is of di-
mension the number of partitions of $n$:

sage: [ DescentAlgebra(QQ,n).B().semisimple_quotient().dimension()
    ....:   for n in range(6) ]
[1, 1, 2, 3, 5, 7]
sage: [Partitions(n).cardinality() for n in range(10)]
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]

Todo:

- Pickling by construction, as A.semisimple_quotient()?
- Lazy evaluation of _repr_
class SubcategoryMethods
    Bases: object

    Cellular()
    Return the full subcategory of the cellular objects of self.

See also:
    Wikipedia article Cellular_algebra

EXAMPLES:

    sage: Algebras(QQ).FiniteDimensional().WithBasis().Cellular()
    Category of finite dimensional cellular algebras with basis over Rational Field

3.48 Finite dimensional bialgebras with basis

sage.categories.finite_dimensional_bialgebras_with_basis.FiniteDimensionalBialgebrasWithBasis
    The category of finite dimensional bialgebras with a distinguished basis

    EXAMPLES:

    sage: C = FiniteDimensionalBialgebrasWithBasis(QQ); C
    Category of finite dimensional bialgebras with basis over Rational Field
    sage: sorted(C.super_categories(), key=str)
    [Category of bialgebras with basis over Rational Field,
     Category of finite dimensional algebras with basis over Rational Field]
    sage: C is Bialgebras(QQ).WithBasis().FiniteDimensional()
    True

3.49 Finite dimensional coalgebras with basis

sage.categories.finite_dimensional_coalgebras_with_basis.FiniteDimensionalCoalgebrasWithBasis
    The category of finite dimensional coalgebras with a distinguished basis

    EXAMPLES:

    sage: C = FiniteDimensionalCoalgebrasWithBasis(QQ); C
    Category of finite dimensional coalgebras with basis over Rational Field
    sage: sorted(C.super_categories(), key=str)
    [Category of coalgebras with basis over Rational Field,
     Category of finite dimensional modules with basis over Rational Field]
    sage: C is Coalgebras(QQ).WithBasis().FiniteDimensional()
    True
3.50 Finite Dimensional Graded Lie Algebras With Basis

AUTHORS:

- Eero Hakavuori (2018-08-16): initial version

```python
class FiniteDimensionalGradedLieAlgebrasWithBasis(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

 Category of finite dimensional graded Lie algebras with a basis.
```

A grading of a Lie algebra $g$ is a direct sum decomposition $g = \bigoplus_i V_i$ such that $[V_i, V_j] \subseteq V_{i+j}$.

EXAMPLES:

```python
sage: C = LieAlgebras(ZZ).WithBasis().FiniteDimensional().Graded(); C
Category of finite dimensional graded lie algebras with basis over Integer Ring
sage: C.super_categories()
[Category of graded lie algebras with basis over Integer Ring,
 Category of finite dimensional lie algebras with basis over Integer Ring]
```

```python
class ParentMethods
 Bases: object

 homogeneous_component_as_submodule(d)
 Return the d-th homogeneous component of self as a submodule.
```

```python
sage: C = LieAlgebras(QQ).WithBasis().Graded().Stratified().˓→FiniteDimensional()
```

```python
sage: C
Category of finite dimensional stratified lie algebras with basis over Rational Field
```

```python
A finite-dimensional stratified Lie algebra is nilpotent:
```

```
```
### 3.51 Finite dimensional Hopf algebras with basis

The category of finite dimensional Hopf algebras with a distinguished basis.

**EXAMPLES:**

```python
sage: FiniteDimensionalHopfAlgebrasWithBasis(QQ) # fixme: Hopf should be capitalized
Category of finite dimensional hopf algebras with basis over Rational Field
sage: FiniteDimensionalHopfAlgebrasWithBasis(QQ).super_categories()
[Category of hopf algebras with basis over Rational Field,
 Category of finite dimensional algebras with basis over Rational Field]
```

```python
sage: C = LieAlgebras(QQ).WithBasis().Graded()
sage: C = C.FiniteDimensional().Stratified().Nilpotent()
sage: sc = {('X','Y'): {'Z': 1}}
sage: L.<X,Y,Z> = LieAlgebra(QQ, sc, nilpotent=True, category=C)
sage: L.degree_on_basis(X.leading_support())
1
sage: X.degree()
1
sage: Y.degree()
1
sage: L[X, Y]
Z
sage: Z.degree()
2
```
**3.52 Finite Dimensional Lie Algebras With Basis**

**AUTHORS:**

- Travis Scrimshaw (07-15-2013): Initial implementation

```python
class sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis(Bases):
 class ElementMethods:
 def adjoint_matrix(self):
 return self.adjoint_matrix() # Return the matrix of the adjoint action of self.

 def to_vector(order=None):
 return self.to_vector(order) # Return the vector in g.module() corresponding to the element self of g.
```

**Todo:** Many of these tests should use non-abelian Lie algebras and need to be added after trac ticket #16820.

**Nilpotent**

alias of sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis.FiniteDimensionalNilpotentLieAlgebrasWithBasis
class ParentMethods
    Bases: object

    as_finite_dimensional_algebra()
    Return self as a FiniteDimensionalAlgebra.

    EXAMPLES:
    sage: L = lie_algebras.cross_product(QQ)
    sage: x,y,z = L.basis()
    sage: F = L.as_finite_dimensional_algebra()
    sage: X,Y,Z = F.basis()
    sage: x.bracket(y)
    Z
    sage: X * Y  # Z

    center()
    Return the center of self.

    EXAMPLES:
    sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
    sage: Z = L.center(); Z
    An example of a finite dimensional Lie algebra with basis: the
    3-dimensional abelian Lie algebra over Rational Field
    sage: Z.basis_matrix()
    [1 0 0]
    [0 1 0]
    [0 0 1]

    centralizer(S)
    Return the centralizer of S in self.

    INPUT:
    • S – a subalgebra of self or a list of elements that represent generators for a subalgebra

    See also:
    centralizer_basis()

    EXAMPLES:
    sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
    sage: a,b,c = L.lie_algebra_generators()
    sage: S = L.centralizer([a + b, 2*a + c]); S
    An example of a finite dimensional Lie algebra with basis: the
    3-dimensional abelian Lie algebra over Rational Field
    sage: S.basis_matrix()
    [1 0 0]
    [0 1 0]
    [0 0 1]

    centralizer_basis(S)
    Return a basis of the centralizer of S in self.

    INPUT:
    • S – a subalgebra of self or a list of elements that represent generators for a subalgebra

    See also:
    centralizer()
EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: L.centralizer_basis([a + b, 2*a + c])
[(1, 0, 0), (0, 1, 0), (0, 0, 1)]
sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: H.centralizer_basis(H)
[z]
sage: D = DescentAlgebra(QQ, 4).D()
sage: L = LieAlgebra(associative=D)
sage: L.centralizer_basis(L)
[D{},
 D{1} + D{1, 2} + D{2, 3} + D{3},
 D{1, 2, 3} + D{1, 3} + D{2}]
sage: D.center_basis()
(D{},
 D{1} + D{1, 2} + D{2, 3} + D{3},
 D{1, 2, 3} + D{1, 3} + D{2})
```

**chevalley_eilenberg_complex** *(M=None, dual=False, sparse=True, ncpus=None)*

Return the Chevalley-Eilenberg complex of self.

Let $\mathfrak{g}$ be a Lie algebra and $M$ be a right $\mathfrak{g}$-module. The Chevalley-Eilenberg complex is the chain complex on

$$C_\bullet(\mathfrak{g}, M) = M \otimes \bigwedge^\bullet \mathfrak{g},$$

where the differential is given by

$$d(m \otimes g_1 \wedge \cdots \wedge g_p) = \sum_{i=1}^{p} (-1)^{i+1} (mg_i) \otimes g_1 \wedge \cdots \wedge \hat{g}_i \wedge \cdots \wedge g_p + \sum_{1 \leq i < j \leq p} (-1)^{i+j} m \otimes [g_i, g_j] \wedge g_1 \wedge \cdots \wedge \hat{g}_i \wedge \cdots \wedge \hat{g}_j \wedge \cdots \wedge g_p.$$

**INPUT:**
- $M$ -- (default: the trivial 1-dimensional module) the module $M$
- `dual` -- (default: False) if True, causes the dual of the complex to be computed
- `sparse` -- (default: True) whether to use sparse or dense matrices
- `ncpus` -- (optional) how many cpus to use

**EXAMPLES:**

```python
sage: L = lie_algebras.sl(ZZ, 2)
sage: C = L.chevalley_eilenberg_complex(); C
Chain complex with at most 4 nonzero terms over Integer Ring
sage: ascii_art(C)
[2 0 0] [0]
[0 -1 0] [0]
[0 0 0] [0]
0 <--- C_0 <-------- C_1 <-------- C_2 <----- C_3 <--- 0

sage: L = LieAlgebra(QQ, cartan_type=['C',2])
sage: C = L.chevalley_eilenberg_complex();
long time
sage: [C.free_module_rank(i) for i in range(11)]
long time
[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1]
```

**REFERENCES:**

3.52. Finite Dimensional Lie Algebras With Basis  377
Todo: Currently this is only implemented for coefficients given by the trivial module \( R \), where \( R \) is the base ring and \( qR = 0 \) for all \( g \in \mathfrak{g} \). Allow generic coefficient modules \( M \).

**cohomology**(*deg=None, M=None, sparse=True, ncpus=None*)

Return the Lie algebra cohomology of \( \text{self} \).

The Lie algebra cohomology is the cohomology of the Chevalley-Eilenberg cochain complex (which is the dual of the Chevalley-Eilenberg chain complex).

Let \( \mathfrak{g} \) be a Lie algebra and \( M \) a left \( \mathfrak{g} \)-module. It is known that \( H^0(\mathfrak{g}; M) \) is the subspace of \( \mathfrak{g} \)-invariants of \( M \):

\[
H^0(\mathfrak{g}; M) = M^\mathfrak{g} = \{ m \in M \mid gm = 0 \text{ for all } g \in \mathfrak{g} \}.
\]

Additionally, \( H^1(\mathfrak{g}; M) \) is the space of derivations \( \mathfrak{g} \to M \) modulo the space of inner derivations, and \( H^2(\mathfrak{g}; M) \) is the space of equivalence classes of Lie algebra extensions of \( \mathfrak{g} \) by \( M \).

**INPUT:**
- \( \text{deg} \) – the degree of the homology (optional)
- \( M \) – (default: the trivial module) a right module of \( \text{self} \)
- \( \text{sparse} \) – (default: True) whether to use sparse matrices for the Chevalley-Eilenberg chain complex
- \( \text{ncpus} \) – (optional) how many cpus to use when computing the Chevalley-Eilenberg chain complex

**EXAMPLES:**

```
sage: L = lie_algebras.so(QQ, 4)
sage: L.cohomology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 0 over Rational Field,
 2: Vector space of dimension 0 over Rational Field,
 3: Vector space of dimension 2 over Rational Field,
 4: Vector space of dimension 0 over Rational Field,
 5: Vector space of dimension 0 over Rational Field,
 6: Vector space of dimension 1 over Rational Field}

sage: L = lie_algebras.Heisenberg(QQ, 2)
sage: L.cohomology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 4 over Rational Field,
 2: Vector space of dimension 5 over Rational Field,
 3: Vector space of dimension 5 over Rational Field,
 4: Vector space of dimension 4 over Rational Field,
 5: Vector space of dimension 1 over Rational Field}

sage: d = {('x', 'y'): {'y': 2}}
sage: L.<x,y> = LieAlgebra(ZZ, d)
sage: L.cohomology()
{0: Z, 1: Z, 2: C2}
```

See also:

*chevalley_eilenberg_complex()*

**REFERENCES:**
Return a basis for the Lie algebra of derivations of self as matrices.

A derivation $D$ of an algebra is an endomorphism of $A$ such that

$$D([a, b]) = [D(a), b] + [a, D(b)]$$

for all $a, b \in A$. The set of all derivations form a Lie algebra.

**EXAMPLES:**

We construct the derivations of the Heisenberg Lie algebra:

```python
sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: H.derivations_basis()
```

```
[1 0 0] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [1 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 1], [0 0 0], [0 0 0], [0 0 1], [1 0 0], [0 1 0]
```

We construct the derivations of $\mathfrak{sl}_2$:

```python
sage: sl2 = lie_algebras.sl(QQ, 2)
sage: sl2.derivations_basis()
```

```
[1 0 0] [0 1 0] [0 0 0]
[0 0 0] [0 0 -1/2] [1 0 0]
[0 0 -1], [0 0 0], [0 -2 0]
```

We verify these are derivations:

```python
sage: D = [sl2.module_morphism(matrix=M, codomain=sl2) for M in sl2.derivations_basis()]
sage: all(d(a.bracket(b)) == d(a).bracket(b) + a.bracket(d(b)) for a in sl2.basis() for b in sl2.basis() for d in D)
True
```

**REFERENCES:**

Wikipedia article Derivation_(differential_algebra)
derived_subalgebra()  
Return the derived subalgebra of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()  
sage: L.derived_subalgebra()  
An example of a finite dimensional Lie algebra with basis:  
the 0-dimensional abelian Lie algebra over Rational Field  
with basis matrix:  

If self is semisimple, then the derived subalgebra is self:

sage: sl3 = LieAlgebra(QQ, cartan_type=['A',2])  
sage: sl3.derived_subalgebra()  
Lie algebra of ['A', 2] in the Chevalley basis  
sage: sl3 is sl3.derived_subalgebra()  
True

homology(deg=None, M=None, sparse=True, ncpus=None)  
Return the Lie algebra homology of self.

The Lie algebra homology is the homology of the Chevalley-Eilenberg chain complex.

INPUT:
• $\text{deg}$ – the degree of the homology (optional)
• $M$ – (default: the trivial module) a right module of $\text{self}$
• $\text{sparse}$ – (default: True) whether to use sparse matrices for the Chevalley-Eilenberg chain complex
• $\text{ncpus}$ – (optional) how many cpus to use when computing the Chevalley-Eilenberg chain complex

**EXAMPLES:**

```python
sage: L = lie_algebras.cross_product(QQ)
sage: L.homology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 0 over Rational Field,
 2: Vector space of dimension 0 over Rational Field,
 3: Vector space of dimension 1 over Rational Field}

sage: L = lie_algebras.pwitt(GF(5), 5)
sage: L.homology()
{0: Vector space of dimension 1 over Finite Field of size 5,
 1: Vector space of dimension 0 over Finite Field of size 5,
 2: Vector space of dimension 1 over Finite Field of size 5,
 3: Vector space of dimension 1 over Finite Field of size 5,
 4: Vector space of dimension 0 over Finite Field of size 5,
 5: Vector space of dimension 1 over Finite Field of size 5}

sage: d = {('x', 'y'): {'y': 2}}
sage: L.<x,y> = LieAlgebra(ZZ, d)
sage: L.homology()
{0: Z, 1: Z x C2, 2: 0}
```

See also: `chevalley_eilenberg_complex()`

**ideal (#gens, **kwargs)**

Return the ideal of $\text{self}$ generated by $\text{gens}$.

**INPUT:**

• $\text{gens}$ – a list of generators of the ideal
• $\text{category}$ – (optional) a subcategory of subobjects of finite dimensional Lie algebras with basis

**EXAMPLES:**

```python
sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: p1,p2,q1,q2,z = H.basis()
sage: I = H.ideal([p1-p2, q1-q2])
sage: I.basis().list()
[-p1 + p2, -q1 + q2, z]
sage: I.reduce(p1 + p2 + q1 + q2 + z)
2*p1 + 2*q1

Passing an extra category to an ideal:

```python
sage: L.<x,y,z> = LieAlgebra(QQ, abelian=True)
sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
sage: C = C.Subobjects().Graded().Stratified()
sage: I = L.ideal(x, y, category=C)
sage: I.homogeneous_component_basis(1).list()
[x, y]
```

inner_derivations_basis()
Return a basis for the Lie algebra of inner derivations of \texttt{self} as matrices.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: H.inner_derivations_basis()
[0 0 1] [0 0 0]
[0 0 0] [0 0 1]
[0 0 0], [0 0 0]
\end{verbatim}

\textbf{is_abelian}()
Return if \texttt{self} is an abelian Lie algebra.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_abelian()
True
\end{verbatim}

\begin{verbatim}
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}})
sage: L.is_abelian()
False
\end{verbatim}

\textbf{is_ideal}(A)
Return if \texttt{self} is an ideal of \texttt{A}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: I = L.ideal([2*a - c, b + c])
sage: I.is_ideal(L)
True
\end{verbatim}

\begin{verbatim}
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}})
sage: I.is_ideal(L)
True
\end{verbatim}

\begin{verbatim}
sage: F = LieAlgebra(QQ, 'F', representation='polynomial')
sage: L.is_ideal(F)
Traceback (most recent call last):
... NotImplementedError: A must be a finite dimensional Lie algebra with basis
\end{verbatim}

\textbf{is_nilpotent}()
Return if \texttt{self} is a nilpotent Lie algebra.

A Lie algebra is nilpotent if the lower central series eventually becomes 0.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_nilpotent()
True
\end{verbatim}

\textbf{is_semisimple}()
Return if \texttt{self} if a semisimple Lie algebra.
A Lie algebra is semisimple if the solvable radical is zero. In characteristic 0, this is equivalent to saying the Killing form is non-degenerate.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_semisimple()
False
```

is_solvable()

Return if `self` is a solvable Lie algebra.

A Lie algebra is solvable if the derived series eventually becomes 0.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_solvable()
True
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.is_solvable() # todo: not implemented - #17416
False
```

killing_form(x, y)

Return the Killing form on `x` and `y`, where `x` and `y` are two elements of `self`.

The Killing form is defined as

\[\langle x \mid y \rangle = \text{tr}(\text{ad}_x \circ \text{ad}_y) \]

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: L.killing_form(a, b)
0
```

killing_form_matrix()

Return the matrix of the Killing form of `self`.

The rows and the columns of this matrix are indexed by the elements of the basis of `self` (in the order provided by `basis()`).

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.killing_form_matrix()
[0 0 0]
[0 0 0]
[0 0 0]
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example(0)
sage: m = L.killing_form_matrix(); m
[]
sage: parent(m)
Full MatrixSpace of 0 by 0 dense matrices over Rational Field
```

killing_matrix(x, y)

Return the Killing matrix of `x` and `y`, where `x` and `y` are two elements of `self`.

3.52. Finite Dimensional Lie Algebras With Basis

383
The Killing matrix is defined as the matrix corresponding to the action of \(\text{ad}_x \circ \text{ad}_y \) in the basis of \(\text{self} \).

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.killing_matrix(a, b)
[0 0 0]
[0 0 0]
[0 0 0]
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.killing_matrix(x, y)
[ 0 0]
[-1 0]
```

`lower_central_series` *(submodule=\text{False})*

Return the lower central series \((g_i)_i\) of \(\text{self} \) where the rightmost \(g_k = g_{k+1} = \cdots \).

INPUT:

- `submodule` – (default: \text{False}) if True, then the result is given as submodules of \(\text{self} \)

We define the lower central series of a Lie algebra \(g \) recursively by

\[
g_0 := g \\
g_{k+1} = [g, g_k]
\]

and recall that \(g_k \supseteq g_{k+1} \). Alternatively we can express this as

\[
g \supseteq [g, g] \supseteq [g, [g, g]] \supseteq [g, [g, [g, g]]] \supseteq \cdots .
\]

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.derived_series()
(An example of a finite dimensional Lie algebra with basis: 
the 3-dimensional abelian Lie algebra over \text{Rational Field},
An example of a finite dimensional Lie algebra with basis: 
the 0-dimensional abelian Lie algebra over \text{Rational Field}
with basis matrix: 
[])
```

The lower central series as submodules:

```python
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.lower_central_series(submodule=True)
(Sparse vector space of dimension 2 over \text{Rational Field},
Vector space of degree 2 and dimension 1 over \text{Rational Field}
Basis matrix:
[1 0])
```

```python
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.lower_central_series()  # todo: not implemented - #17416
(Lie algebra on 2 generators \((x, y)\) over \text{Rational Field},
Subalgebra generated of Lie algebra on 2 generators \((x, y)\) over \text{Rational Field}
with basis: 
\((x,))
```
module \((R=None)\)
Return a dense free module associated to \(\text{self}\) over \(R\).

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L._dense_free_module()
Vector space of dimension 3 over Rational Field
```

morphism \((\text{on_generators}, \text{codomain}=None, \text{base_map}=None, \text{check}=True)\)
Return a Lie algebra morphism defined by images of a Lie generating subset of \(\text{self}\).

INPUT:

- \(\text{on_generators}\) – dictionary \(\{X: Y\}\) of the images \(Y\) in \(\text{codomain}\) of elements \(X\) of \(\text{domain}\)
- \(\text{codomain}\) – a Lie algebra (optional); this is inferred from the values of \(\text{on_generators}\) if not given
- \(\text{base_map}\) – a homomorphism from the base ring to something coercing into the \(\text{codomain}\)
- \(\text{check}\) – (default: True) boolean; if False the values on the Lie brackets implied by \(\text{on_generators}\) will not be checked for contradictory values

Note: The keys of \(\text{on_generators}\) need to generate \(\text{domain}\) as a Lie algebra.

See also:

`sage.algebras.lie_algebras.morphism.LieAlgebraMorphism_from_generators`

EXAMPLES:

A quotient type Lie algebra morphism

```
sage: L.<X,Y,Z,W> = LieAlgebra(QQ, {('X','Y'): {'Z':1}, ('X','Z'): {'W':1} ...
```

The reverse map \(A \mapsto X, B \mapsto Y\) does not define a Lie algebra morphism, since \([A, B] = 0\), but \([X, Y] \neq 0\):

```
sage: K.morphism({A:X, B: Y})
Traceback (most recent call last):
...
ValueError: this does not define a Lie algebra morphism;
contradictory values for brackets of length 2
```

However, it is still possible to create a morphism that acts nontrivially on the coefficients, even though it’s not a Lie algebra morphism (since it isn’t linear):

```
sage: R.<x> = ZZ[
 sage: K.<i> = NumberField(x^2 + 1)
 sage: cc = K.hom([-i])
```

(continues on next page)
sage: L.<X,Y,Z,W> = LieAlgebra(K, {('X','Y'): {'Z':1}, ('X','Z'): {'W':1}})
˓→
sage: M.<A,B> = LieAlgebra(K, abelian=True)
sage: phi = L.morphism({X: A, Y: B}, base_map=cc)
sage: phi(X)
A
sage: phi(i*X)
-i*A

product_space(L, submodule=False)

Return the product space \([self, L]\).

INPUT:
- \(L\) – a Lie subalgebra of self
- submodule – (default: False) if True, then the result is forced to be a submodule of self

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: X = L.subalgebra([a, b+c])
sage: L.product_space(X)
An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[]
sage: Y = L.subalgebra([a, 2*b-c])
sage: X.product_space(Y)
An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational Field with basis matrix:
[]

sage: H = lie_algebras.Heisenberg(ZZ, 4)
sage: Hp = H.product_space(H, submodule=True).basis()
sage: [H.from_vector(v) for v in Hp]
[z]

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: Lp = L.product_space(L) # todo: not implemented - #17416
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational Field with basis:
(x,)
sage: Lp.product_space(L) # todo: not implemented - #17416
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational Field with basis:
(x,)
sage: L.product_space(Lp) # todo: not implemented - #17416
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational Field with basis:
(x,)
sage: Lp.product_space(Lp) # todo: not implemented - #17416
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational Field with basis:
()
Return the quotient of self by the ideal I.

A quotient Lie algebra.

INPUT:
* I – an ideal or a list of generators of the ideal
* names – (optional) a string or a list of strings; names for the basis elements of the quotient. If names is a string, the basis will be named names_1,...,`names_n`.

EXAMPLES:
The Engel Lie algebra as a quotient of the free nilpotent Lie algebra of step 3 with 2 generators:

```python
sage: L.<X,Y,Z,W,U> = LieAlgebra(QQ, 2, step=3)
sage: E = L.quotient(U); E
Lie algebra quotient L/I of dimension 4 over Rational Field where
L: Free Nilpotent Lie algebra on 5 generators (X, Y, Z, W, U) over Rational Field
I: Ideal (U)
sage: E.basis().list()
[X, Y, Z, W]
sage: E(X).bracket(E(Y))
Z
sage: Y.bracket(Z)
-U
sage: E(Y).bracket(E(Z))
0
sage: E(U)
0
```

Quotients when the base ring is not a field are not implemented:

```python
sage: L = lie_algebras.Heisenberg(ZZ, 1)
sage: L.quotient(L.an_element())
Traceback (most recent call last):
...
NotImplementedError: quotients over non-fields not implemented
```

structure_coefficients *(include_zeros=False)*

Return the structure coefficients of self.

INPUT:
* include_zeros – (default: False) if True, then include the $[x,y] = 0$ pairs in the output

OUTPUT:
A dictionary whose keys are pairs of basis indices (i,j) with $i < j$, and whose values are the corresponding elements $[b_i, b_j]$ in the Lie algebra.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.structure_coefficients()
Finite family {}
sage: L.structure_coefficients(True)
Finite family {((0, 1): (0, 0, 0), (0, 2): (0, 0, 0), (1, 2): (0, 0, 0)}
```

(continues on next page)
Finite family {((2,3), (1,2)): (1,2,3) - (1,3,2),
((2,3), (1,3)): -(1,2,3) + (1,3,2),
((1,2,3), (2,3)): -(1,2) + (1,3),
((1,2,3), (1,2)): (2,3) - (1,3),
((1,2,3), (1,3)): -(2,3) + (1,2),
((1,3,2), (2,3)): (1,2) - (1,3),
((1,3,2), (1,2)): -(2,3) + (1,3),
((1,3,2), (1,3)): (2,3) - (1,2),
((1,3), (1,2)): -(1,2,3) + (1,3,2)}

subalgebra (*gens, **kwds*)
Return the subalgebra of self generated by gens.

INPUT:
- gens – a list of generators of the subalgebra
- category – (optional) a subcategory of subobjects of finite dimensional Lie algebras with basis

EXAMPLES:

```
sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: p1, p2, q1, q2, z = H.basis()
sage: S = H.subalgebra([p1, q1])
sage: S.basis().list()
[p1, q1, z]
sage: S.basis_matrix()
[1 0 0 0]
[0 0 1 0]
[0 0 0 1]
```

Passing an extra category to a subalgebra:

```
sage: L = LieAlgebra(QQ, 3, step=2)
sage: x, y, z = L.homogeneous_component_basis(1)
sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
sage: C = C.Subobjects().Graded().Stratified()
sage: S = L.subalgebra([x, y], category=C)
sage: S.homogeneous_component_basis(2).list()
[X_12]
```

universal_commutative_algebra()
Return the universal commutative algebra associated to self.

Let I be the index set of the basis of self. Let $\mathcal{P} = \{P_{a,i,j}\}_{a,i,j \in I}$ denote the universal polynomials of a Lie algebra L. The universal commutative algebra associated to L is the quotient ring $R[X_{ij}]_{i,j \in I}/(\mathcal{P})$.

EXAMPLES:

```
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}})
sage: A = L.universal_commutative_algebra()
sage: a, b, c, d = A.gens()
sage: (X00bar, X01bar, 0, XL1bar)
sage: a*d - a
0
```

universal_polynomials()
Return the family of universal polynomials of self.
The universal polynomials of a Lie algebra L with basis $\{e_i\}_{i \in I}$ and structure coefficients $[e_i, e_j] = \tau_{ij}^a e_a$ is given by

$$P_{aij} = \sum_{u \in I} \tau_{ij}^a X_u - \sum_{s, t \in I} \tau_{st}^a X_{si} X_{tj},$$

where $a, i, j \in I$.

REFERENCES:

• [AM2020]

EXAMPLES:

```
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}})
sage: L.universal_polynomials()
Finite family {('x', 'x', 'y'): X01*X10 - X00*X11 + X00,
  ('y', 'x', 'y'): X10}
sage: L = LieAlgebra(QQ, cartan_type=['A',1])
sage: list(L.universal_polynomials())
[-2*X01*X10 + 2*X00*X11 - 2*X00,
 -2*X02*X10 + 2*X00*X12 + X01,
 -2*X02*X11 + 2*X01*X12 - 2*X02,
 X01*X20 - X00*X21 - 2*X10,
 X02*X20 - X00*X22 + X11,
 X02*X21 - X01*X22 - 2*X12,
 -2*X11*X20 + 2*X10*X21 - 2*X20,
 -2*X12*X20 + 2*X10*X22 + X21,
 -2*X12*X21 + 2*X11*X22 - 2*X22]
sage: L = LieAlgebra(QQ, cartan_type=['B',2])
sage: al = RootSystem(['B',2]).root_lattice().simple_roots()
sage: k = list(L.basis().keys())[0]
sage: UP = L.universal_polynomials()
# long time
sage: len(UP)
450
sage: UP[al[2],al[1],-al[1]]
X0_7*X4_1 - X0_1*X4_7 - 2*X0_7*X5_1 + 2*X0_1*X5_7 + X2_7*X7_1
  - X2_1*X7_7 - X3_7*X8_1 + X3_1*X8_7 + X0_4
```

class Subobjects (category, *args)

Bases: sage.categories.subobjects.SubobjectsCategory

A category for subalgebras of a finite dimensional Lie algebra with basis.

class ParentMethods

Bases: object

ambient ()

Return the ambient Lie algebra of self.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: S = L.subalgebra([2*a+b, b + c])
sage: S.ambient() == L
True
```

basis_matrix ()

Return the basis matrix of self.
EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: S = L.subalgebra([2*a+b, b + c])
sage: S.basis_matrix()
[ 1 0 -1/2]
[ 0 1 1]
```

`example (n=3)`

Return an example of a finite dimensional Lie algebra with basis as per `Category.example`.

EXAMPLES:

```python
sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
sage: C.example()
An example of a finite dimensional Lie algebra with basis:
the 3-dimensional abelian Lie algebra over Rational Field
```

Other dimensions can be specified as an optional argument:

```python
sage: C.example(5)
An example of a finite dimensional Lie algebra with basis:
the 5-dimensional abelian Lie algebra over Rational Field
```

3.53 Finite dimensional modules with basis

class `sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of finite dimensional modules with a distinguished basis

EXAMPLES:

```python
sage: C = FiniteDimensionalModulesWithBasis(ZZ); C
Category of finite dimensional modules with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of finite dimensional modules over Integer Ring,
 Category of modules with basis over Integer Ring]
sage: C is Modules(ZZ).WithBasis().FiniteDimensional()
True
```

class `ElementMethods`

Bases: `object`

`dense_coefficient_list (order=None)`

Return a list of all coefficients of `self`.

By default, this list is ordered in the same way as the indexing set of the basis of the parent of `self`.

INPUT:

* `order` – (optional) an ordering of the basis indexing set

EXAMPLES:

```python
sage: v = vector([0, -1, -3])
sage: v.dense_coefficient_list()
[0, -1, -3]
```
sage: v.dense_coefficient_list([2,1,0])
[-3, -1, 0]
sage: sorted(v.coefficients())
[-3, -1]

class MorphismMethods
Bases: object

image()
Return the image of self as a submodule of the codomain.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: f.image()
Free module generated by {0, 1, 2} over Rational Field

image_basis()
Return a basis for the image of self in echelon form.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: f.image_basis()
([1, 2, 3], [2, 3, 1], [3, 1, 2])

kernel()
Return the kernel of self as a submodule of the domain.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: K = f.kernel()
sage: K
Free module generated by {0, 1, 2} over Rational Field
sage: K.ambient()
Symmetric group algebra of order 3 over Rational Field

kernel_basis()
Return a basis of the kernel of self in echelon form.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: f.kernel_basis()
([1, 2, 3] - [3, 2, 1], [1, 3, 2] - [3, 2, 1], [2, 1, 3] - [3, 2, 1])

matrix(base_ring=None, side='left')
Return the matrix of this morphism in the distinguished bases of the domain and codomain.

INPUT:

* base_ring – a ring (default: None, meaning the base ring of the codomain)
* side – “left” or “right” (default: “left”)
If `side` is “left”, this morphism is considered as acting on the left; i.e. each column of the matrix represents the image of an element of the basis of the domain.

The order of the rows and columns matches with the order in which the bases are enumerated.

See also:

`Modules.WithBasis.ParentMethods.module_morphism()`

EXAMPLES:

```python
sage: X = CombinatorialFreeModule(ZZ, [1,2]); x = X.basis()
sage: Y = CombinatorialFreeModule(ZZ, [3,4]); y = Y.basis()
sage: phi.matrix()
[1 2]
[3 5]
sage: phi.matrix(side="right")
[1 3]
[2 5]
```

The resulting matrix is immutable:

```python
sage: phi.matrix().is_mutable()
False
```

The zero morphism has a zero matrix:

```python
sage: Hom(X,Y).zero().matrix()
[0 0]
[0 0]
```

Todo: Add support for morphisms where the codomain has a different base ring than the domain:

```python
sage: Y = CombinatorialFreeModule(QQ, [3,4]); y = Y.basis()
sage: phi.matrix().parent()
# todo: not implemented
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

This currently does not work because, in this case, the morphism is just in the category of commutative additive groups (i.e. the intersection of the categories of modules over \(\mathbb{Z} \) and over \(\mathbb{Q} \)):

```python
sage: phi.parent().homset_category()
Category of commutative additive semigroups
sage: phi.parent().homset_category() # todo: not implemented
Category of finite dimensional modules with basis over Integer Ring
```

class `ParentMethods`

Bases: `object`
annihilator(S, $action=\langle\text{built-in function mul}\rangle$, $side='right'$, $category=None$)

Return the annihilator of a finite set.

INPUT:
- S – a finite set
- $action$ – a function (default: operator.mul)
- $side$ – ‘left’ or ‘right’ (default: ‘right’)
- $category$ – a category

Assumptions:
- $action$ takes elements of self as first argument and elements of S as second argument;
- The codomain is any vector space, and $action$ is linear on its first argument; typically it is bilinear;
- If $side$ is ‘left’, this is reversed.

OUTPUT:
The subspace of the elements x of self such that $action(x, s) = 0$ for all $s \in S$. If $side$ is ‘left’ replace the above equation by $action(s, x) = 0$.

If self is a ring, $action$ an action of self on a module M and S is a subset of M, we recover the Wikipedia article Annihilator_%28ring_theory%29. Similarly this can be used to compute torsion or orthogonals.

See also:

annihilator_basis() for lots of examples.

EXAMPLES:

```
sage: F = FiniteDimensionalAlgebrasWithBasis(QQ).example(); F
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows $a:x->y$ and $b:x->y$) over Rational Field
sage: x,y,a,b = F.basis()
sage: A = F.annihilator([a + 3*b + 2*y]); A
Free module generated by {0} over Rational Field
sage: [b.lift() for b in A.basis()]
[-1/2*a - 3/2*b + x]
```

The category can be used to specify other properties of this subspace, like that this is a subalgebra:

```
sage: center = F.annihilator(F.basis(), F.bracket, ....: category=Algebras(QQ).Subobjects())
sage: (e,) = center.basis()
sage: e.lift()
$x + y$
sage: e * e == e
True
```

Taking annihilator is order reversing for inclusion:

```
sage: A = F.annihilator([]); A .rename("A")
sage: Ax = F.annihilator([x]); Ax .rename("Ax")
sage: Ay = F.annihilator([y]); Ay .rename("Ay")
sage: Axy = F.annihilator([x,y]); Axy.rename("Axy")
sage: P = Poset([[A, Ax, Ay, Axy], attrcall("is_submodule")])
sage: sorted(P.cover_relations(), key=str)
[[Ax, A], [Axy, Ax], [Axy, Ay], [Ay, A]]
```

annihilator_basis(S, $action=\langle\text{built-in function mul}\rangle$, $side='right'$)

Return a basis of the annihilator of a finite set of elements.
INPUT:
- S - a finite set of objects
- `action` - a function (default: `operator.mul`)
- `side` - ‘left’ or ‘right’ (default: ‘right’): on which side of `self` the elements of S acts.

See `annihilator()` for the assumptions and definition of the annihilator.

EXAMPLES:

By default, the action is the standard $*$ operation. So our first example is about an algebra:

```python
sage: F = FiniteDimensionalAlgebrasWithBasis(QQ).example(); F
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x,y,a,b = F.basis()
```

In this algebra, multiplication on the right by x annihilates all basis elements but x:

```python
sage: x*x, y*x, a*x, b*x
(x, 0, 0, 0)
```

So the annihilator is the subspace spanned by y, a, and b:

```python
sage: F.annihilator_basis([x])
(y, a, b)
```

The same holds for a and b:

```python
sage: x*a, y*a, a*a, b*a
(a, 0, 0, 0)
sage: F.annihilator_basis([a])
(y, a, b)
```

On the other hand, y annihilates only x:

```python
sage: F.annihilator_basis([y])
(x,)
```

Here is a non trivial annihilator:

```python
sage: F.annihilator_basis([a + 3*b + 2*y])
(-1/2*a - 3/2*b + x,)
```

Let’s check it:

```python
sage: (-1/2*a - 3/2*b + x) * (a + 3*b + 2*y)
0
```

Doing the same calculations on the left exchanges the roles of x and y:

```python
sage: F.annihilator_basis([y], side="left")
(x, a, b)
sage: F.annihilator_basis([a], side="left")
(x, a, b)
sage: F.annihilator_basis([b], side="left")
(x, a, b)
sage: F.annihilator_basis([x], side="left")
(y,)
```

(continues on next page)
By specifying an inner product, this method can be used to compute the orthogonal of a subspace:

```python
sage: x, y, a, b = F.basis()
sage: def scalar(u, v):
    return vector([sum(u[i]*v[i] for i in F.basis().keys())])
sage: F.annihilator_basis([x+y, a+b], scalar)
(x - y, a - b)
```

By specifying the standard Lie bracket as action, one can compute the commutator of a subspace of \(F \):

```python
sage: F.annihilator_basis([a+b], action=F.bracket)
(x + y, a, b)
```

In particular one can compute a basis of the center of the algebra. In our example, it is reduced to the identity:

```python
sage: F.annihilator_basis(F.algebra_generators(), action=F.bracket)
(x + y,)
```

But see also `FiniteDimensionalAlgebrasWithBasis.ParentMethods.center_basis()`.

echelon_form(elements, row_reduced=False, order=None)
Return a basis in echelon form of the subspace spanned by a finite set of elements.

INPUT:
- `elements` – a list or finite iterable of elements of `self`
- `row_reduced` – (default: `False`) whether to compute the basis for the row reduced echelon form
- `order` – (optional) either something that can be converted into a tuple or a key function

OUTPUT:
A list of elements of `self` whose expressions as vectors form a matrix in echelon form. If `base_ring` is specified, then the calculation is achieved in this base ring.

EXAMPLES:

```python
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: V = X.echelon_form([x[0]-x[1], x[0]-x[2],x[1]-x[2]]); V
[x[0] - x[2], x[1] - x[2]]
sage: matrix(list(map(vector, V)))
[ 1 0 -1]
[ 0 1 -1]
```
sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: a,b,c = F.basis()
sage: F.echelon_form([8*a+b+10*c, -3*a+b-c, a-b-c])
[B['a'] + B['c'], B['b'] + 2*B['c']]

sage: R.<x,y> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: C.echelon_form([x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]])
[x[0] - x[2], x[1] - x[2]]

from_vector *(vector, order=None)*
Build an element of self from a vector.

EXAMPLES:

```python
sage: p_mult = matrix([[0,0,0], [0,0,-1], [0,0,0]])
sage: q_mult = matrix([[0,0,1], [0,0,0], [0,0,0]])
sage: A = algebras.FiniteDimensional(QQ, [p_mult, q_mult, matrix(QQ,3,3)],
...: 'p,q,z')
sage: A.from_vector(vector([1,0,2]))
p + 2*z
```

gens ()
Return the generators of self.

OUTPUT:
A tuple containing the basis elements of self.

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(ZZ, ['a', 'b', 'c'])
sage: F.gens()
(B['a'], B['b'], B['c'])
```

3.54 Finite Dimensional Nilpotent Lie Algebras With Basis

AUTHORS:
- Eero Hakavuori (2018-08-16): initial version

class `sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis.FiniteDimensionalNilpotentLieAlgebrasWithBasis`

Category of finite dimensional nilpotent Lie algebras with basis.

class ParentMethods

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

Category of finite dimensional nilpotent Lie algebras with basis.

class ParentMethods

Bases: `object`

is_nilpotent ()
Return True since self is nilpotent.

EXAMPLES:

```python
sage: L = LieAlgebra(QQ, {('x', 'y'): {'z': 1}}, nilpotent=True)
sage: L.is_nilpotent()
True
```
\texttt{lie_group}(\texttt{name}='G', **\texttt{kwds})
Return the Lie group associated to \texttt{self}.

INPUT:
• \texttt{name} – string (default: 'G'); the name (symbol) given to the Lie group

EXAMPLES:
We define the Heisenberg group:

\begin{verbatim}
sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: G = L.lie_group('G'); G
Lie group G of Heisenberg algebra of rank 1 over Rational Field
\end{verbatim}

We test multiplying elements of the group:

\begin{verbatim}
sage: p,q,z = L.basis()
sage: g = G.exp(p); g
exp(p1)
sage: h = G.exp(q); h
exp(q1)
sage: g*h
exp(p1 + q1 + 1/2*z)
\end{verbatim}

We extend an element of the Lie algebra to a left-invariant vector field:

\begin{verbatim}
sage: X = G.left_invariant_extension(2*p + 3*q, name='X'); X
Vector field X on the Lie group G of Heisenberg algebra of rank 1 over Rational Field
sage: X.at(G.one()).display()
X = 2 d/dx_0 + 3 d/dx_1
sage: X.display()
X = 2 d/dx_0 + 3 d/dx_1 + (3/2*x_0 - x_1) d/dx_2
\end{verbatim}

See also:
\texttt{NilpotentLieGroup}
\texttt{step}()
Return the nilpotency step of \texttt{self}.

EXAMPLES:

\begin{verbatim}
sage: L = LieAlgebra(QQ, {('X','Y'): {'Z': 1}}, nilpotent=True)
sage: L.step()
2
sage: sc = {('X','Y'): {'Z': 1}, ('X','Z'): {'W': 1}}
sage: LieAlgebra(QQ, sc, nilpotent=True).step()
3
\end{verbatim}
3.55 Finite dimensional semisimple algebras with basis

```python
class sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finite dimensional semisimple algebras with a distinguished basis

EXAMPLES:

```python
sage: from sage.categories.finite_dimensional_semisimple_algebras_with_basis import FiniteDimensionalSemisimpleAlgebrasWithBasis
sage: C = FiniteDimensionalSemisimpleAlgebrasWithBasis(QQ); C
Category of finite dimensional semisimple algebras with basis over Rational Field
```

This category is best constructed as:

```python
sage: D = Algebras(QQ).Semisimple().FiniteDimensional().WithBasis(); D
Category of finite dimensional semisimple algebras with basis over Rational Field
sage: D is C
True
```

class Commutative(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods
    Bases: object

    central_orthogonal_idempotents()

    Return the central orthogonal idempotents of this semisimple commutative algebra.

    Those idempotents form a maximal decomposition of the identity into primitive orthogonal idempotents.

    OUTPUT:

    A list of orthogonal idempotents of self.

    EXAMPLES:

```python
sage: A4 = SymmetricGroup(4).algebra(QQ)
sage: Z4 = A4.center()
sage: idempotents = Z4.central_orthogonal_idempotents()
sage: idempotents
 1/6*B[0] + 1/6*B[2] - 1/12*B[3],
```

Lifting those idempotents from the center, we recognize among them the sum and alternating sum of all permutations:

```python
sage: [e.lift() for e in idempotents]
[1/24*() + 1/24*(3,4) + 1/24*(2,3) + 1/24*(2,3,4) + 1/24*(2,4,3) + 1/24*(2,4) + 1/24*(1,2) + 1/24*(1,2,3) + 1/24*(1,2,3,4) + 1/24*(1,3,2) + 1/24*(1,3,4) + 1/24*(1,3,2,4) + 1/24*(1,4,3,2) + 1/24*(1,4,2) + 1/24*(1,4,3)
```
We check that they indeed form a decomposition of the identity of $\mathbb{Z}_4$ into orthogonal idempotents:

```
sage: Z4.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True
```

```
class ParentMethods
Bases: object

```central_orthogonal_idempotents()`

Return a maximal list of central orthogonal idempotents of self.

Central orthogonal idempotents of an algebra $A$ are idempotents $(e_1, \ldots, e_n)$ in the center of $A$ such that $e_i e_j = 0$ whenever $i \neq j$.

With the maximality condition, they sum up to 1 and are uniquely determined (up to order).

**EXAMPLES:**

For the algebra of the (abelian) alternating group $A_3$, we recover three idempotents corresponding to the three one-dimensional representations $V_i$ on which $(1, 2, 3)$ acts on $V_i$ as multiplication by the $i$-th power of a cube root of unity:

```
sage: R = CyclotomicField(3)
sage: A3 = AlternatingGroup(3).algebra(R)
sage: idempotents = A3.central_orthogonal_idempotents()
sage: idempotents
(1/3*() + 1/3*(1,2,3) + 1/3*(1,3,2),
 1/3*() - (1/3*zeta3+1/3)*(1,2,3) - (-1/3*zeta3)*(1,3,2),
 1/3*() - (-1/3*zeta3)*(1,2,3) - (1/3*zeta3+1/3)*(1,3,2))
sage: A3.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True
```

For the semisimple quotient of a quiver algebra, we recover the vertices of the quiver:

```
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field
sage: Aquo = A.semisimple_quotient()
sage: Aquo.central_orthogonal_idempotents()
(B['x'], B['y'])
```

**radical_basis(**keywords)**

Return a basis of the Jacobson radical of this algebra.

- **keywords** – for compatibility; ignored.

**OUTPUT:** the empty list since this algebra is semisimple.

3.55. Finite dimensional semisimple algebras with basis
EXAMPLES:

```python
sage: A = SymmetricGroup(4).algebra(QQ)
sage: A.radical_basis()
()```

3.56 Finite Enumerated Sets

```python
class sage.categories.finite_enumerated_sets.FiniteEnumeratedSets(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite enumerated sets
```

EXAMPLES:

```python
sage: FiniteEnumeratedSets()
Category of finite enumerated sets
sage: FiniteEnumeratedSets().super_categories()
[Category of enumerated sets, Category of finite sets]
sage: FiniteEnumeratedSets().all_super_categories()
[Category of finite enumerated sets,
 Category of enumerated sets,
 Category of finite sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

Todo: `sage.combinat.debruijn_sequence.DeBruijnSequences` should not inherit from this class. If that is solved, then `FiniteEnumeratedSets` shall be turned into a subclass of `Category_singleton`.

```python
class CartesianProducts(category, *args):
    Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods
    Bases: object

    cardinality()
    Return the cardinality of self.
```

EXAMPLES:

```python
sage: E = FiniteEnumeratedSet([1,2,3])
sage: C = cartesian_product([E, SymmetricGroup(4)])
sage: C.cardinality()
72

sage: E = FiniteEnumeratedSet([])
sage: C = cartesian_product([E, ZZ, QQ])
sage: C.cardinality()
0

sage: C = cartesian_product([ZZ, QQ])
sage: C.cardinality()
+Infinity
```
sage: cartesian_product([GF(5), Permutations(10)]).cardinality()
18144000
sage: cartesian_product([GF(71)]*20).cardinality() == 71**20
True

last()
Return the last element

EXAMPLES:

sage: C = cartesian_product([Zmod(42), Partitions(10),
 IntegerRange(5)])
sage: C.last()
(41, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 4)

random_element(*args)
Return a random element of this Cartesian product.

The extra arguments are passed down to each of the factors of the Cartesian product.

EXAMPLES:

sage: C = cartesian_product([Permutations(10)]*5)
sage: C.random_element() # random
([2, 9, 4, 7, 1, 8, 6, 10, 5, 3],
 [8, 6, 5, 7, 1, 4, 9, 3, 10, 2],
 [5, 10, 3, 8, 2, 9, 1, 4, 7, 6],
 [9, 6, 10, 3, 2, 1, 5, 8, 7, 4],
 [8, 5, 2, 9, 10, 3, 7, 1, 4, 6])
sage: C = cartesian_product([ZZ]*10)
sage: c1 = C.random_element()
sage: c1 # random
(3, 1, 4, 1, 1, -3, 0, -4, -17, 2)
sage: c2 = C.random_element(4,7)
sage: c2 # random
(6, 5, 6, 4, 5, 6, 6, 4, 5, 5)
sage: all(4 <= i < 7 for i in c2)
True

rank(x)
Return the rank of an element of this Cartesian product.

The rank of x is its position in the enumeration. It is an integer between 0 and n-1 where n is the cardinality of this set.

See also:
• EnumeratedSets.ParentMethods.rank()
• unrank()

EXAMPLES:

sage: C = cartesian_product([GF(2), GF(11), GF(7)])
sage: C.rank(C((1,2,5)))
96
sage: C.rank(C((0,0,0)))
0

(continues on next page)
sage: for c in C: print(C.rank(c))
0
1
2
3
4
5
...
150
151
152
153

sage: F1 = FiniteEnumeratedSet('abcdefgh')
sage: F2 = IntegerRange(250)
sage: F3 = Partitions(20)
sage: C = cartesian_product([F1, F2, F3])
sage: c = C(('a', 86, [7,5,4,4]))
sage: C.rank(c)
54213
sage: C.unrank(54213)
('a', 86, [7, 5, 4, 4])

unrank (i)
Return the i-th element of this Cartesian product.

INPUT:
• i – integer between 0 and n-1 where n is the cardinality of this set.

See also:
• EnumeratedSets.ParentMethods.unrank()
• rank()

EXAMPLES:

sage: C = cartesian_product([GF(3), GF(11), GF(7), GF(5)])
sage: c = C.unrank(123); c
(0, 3, 3, 3)

sage: C.rank(c)
123

sage: c = C.unrank(857); c
(2, 2, 3, 2)

sage: C.rank(c)
857

sage: C.unrank(2500)
Traceback (most recent call last):
...
IndexError: index i (=2) is greater than the cardinality

extra_super_categories ()
A Cartesian product of finite enumerated sets is a finite enumerated set.

EXAMPLES:
```python
tsage: C = FiniteEnumeratedSets().CartesianProducts()
tsage: C.extra_super_categories()
[Category of finite enumerated sets]
```

```python
class IsomorphicObjects(category, *args):
class ParentMethods
    Bases: object
cardinality()
    Returns the cardinality of self which is the same as that of the ambient set self is isomorphic to.

    EXAMPLES:
    sage: A = FiniteEnumeratedSets().IsomorphicObjects().example(); A
    The image by some isomorphism of An example of a finite enumerated set: \{1,2,3\}
    sage: A.cardinality()
    3

element()  # Returns an example of isomorphic object of a finite enumerated set, as per Category.example.

    EXAMPLES:
    sage: FiniteEnumeratedSets().IsomorphicObjects().example()
    The image by some isomorphism of An example of a finite enumerated set: \{1,2,3\}

class ParentMethods
    Bases: object
cardinality(*ignored_args, **ignored_kwds)
    Return the cardinality of self.
    This brute force implementation of cardinality() iterates through the elements of self to count them.

    EXAMPLES:
    sage: C = FiniteEnumeratedSets().example(); C
    An example of a finite enumerated set: \{1,2,3\}
    sage: C._cardinality_from_iterator()
    3

    iterator_range(start=None, stop=None, step=None)
    Iterate over the range of elements of self starting at start, ending at stop, and stepping by step.

    See also:
    unrank(), unrank_range()

    EXAMPLES:
    sage: F = FiniteEnumeratedSet([1, 2, 3])
sage: list(F.iterator_range(1))
    [2, 3]
sage: list(F.iterator_range(stop=2))
    `[continues on next page]`
last ()

The last element of self.

self.last() returns the last element of self.

This is the default (brute force) implementation from the category `FiniteEnumeratedSet` which can be used when the method `__iter__` is provided. Its complexity is $O(n)$ where $n$ is the size of self.

EXAMPLES:

```python
sage: C = FiniteEnumeratedSets().example()
sage: C.last()
3
sage: C._last_from_iterator()
3
```

list ()

Return a list of the elements of self.

The elements of set $x$ is created and cached on the fist call of $x$.list(). Then each call of $x$.list() returns a new list from the cashed result. Thus in looping, it may be better to do for $e$ in $x$; not for $e$ in $x$.list():

See also:

`_list_from_iterator()`, `_cardinality_from_list()`, `_iterator_from_list()`, and `_unrank_from_list()`

EXAMPLES:

```python
sage: C = FiniteEnumeratedSets().example()
sage: C.list()
[1, 2, 3]
```

random_element ()

A random element in self.

self.random_element() returns a random element in self with uniform probability.
This is the default implementation from the category `EnumeratedSet()` which uses the method `unrank`.

**EXAMPLES:**

```python
sage: C = FiniteEnumeratedSets().example()
sage: n = C.random_element()
sage: n in C
True
sage: n = C._random_element_from_unrank()
sage: n in C
True
```

TODO: implement `_test_random` which checks uniformness

**unrank_range**( `start=None, stop=None, step=None` )

Return the range of elements of `self` starting at `start`, ending at `stop`, and stepping by `step`.

See also `unrank()`.

**EXAMPLES:**

```python
sage: F = FiniteEnumeratedSet([1,2,3])
sage: F.unrank_range(1)
[2, 3]
sage: F.unrank_range(stop=2)
[1, 2]
sage: F.unrank_range(stop=2, step=2)
[1]
sage: F.unrank_range(start=1, step=2)
[2]
sage: F.unrank_range(stop=-1)
[1, 2]
sage: F = FiniteEnumeratedSet([1,2,3,4])
sage: F.unrank_range(stop=10)
[1, 2, 3, 4]
```

### 3.57 Finite fields

**class** `sage.categories.finite_fields.FiniteFields`( `base_category` )

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of finite fields.

**EXAMPLES:**

```python
sage: K = FiniteFields(); K
Category of finite enumerated fields
```

A finite field is a finite monoid with the structure of a field; it is currently assumed to be enumerated:

```python
sage: K.super_categories()
(Category of fields,
 Category of finite commutative rings,
 Category of finite enumerated sets)
```
Some examples of membership testing and coercion:

```python
sage: FiniteField(17) in K
True
sage: RationalField() in K
False
sage: K(RationalField())
Traceback (most recent call last):
 ...TypeError: unable to canonically associate a finite field to Rational Field
```

class **ElementMethods**

    Bases: object

class **ParentMethods**

    Bases: object

    **extra_super_categories()**

    Any finite field is assumed to be endowed with an enumeration.

### 3.58 Finite groups

```python
class sage.categories.finite_groups.FiniteGroups(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

 The category of finite (multiplicative) groups.

 EXAMPLES:

    ```python
    sage: C = FiniteGroups(); C
    Category of finite groups
    sage: C.super_categories()
    [Category of finite monoids, Category of groups]
    sage: C.example()
    General Linear Group of degree 2 over Finite Field of size 3
    ```
```

class **Algebras**(category, *args)

    Bases: sage.categories.algebra_functor.AlgebrasCategory

    class **ParentMethods**

        Bases: object

        **extra_super_categories()**

        Implement Maschke’s theorem.

        In characteristic 0 all finite group algebras are semisimple.

        **EXAMPLES:**

        ```python
 sage: FiniteGroups().Algebras(QQ).is_subcategory(Algebras(QQ).→Semisimple())
 True
 sage: FiniteGroups().Algebras(FiniteField(7)).is_→subcategory(Algebras(FiniteField(7)).Semisimple())
 False
 sage: FiniteGroups().Algebras(ZZ).is_subcategory(Algebras(ZZ).→Semisimple())
 False
        ```
```
class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

 cardinality()
 Returns the cardinality of self, as per EnumeratedSets.ParentMethods.
 cardinality().

 This default implementation calls order() if available, and otherwise resorts to
 _cardinality_from_iterator(). This is for backward compatibility only. Finite
 groups should override this method instead of order().

 EXAMPLES:

 We need to use a finite group which uses this default implementation of cardinality:

 sage: G = groups.misc.SemimonomialTransformation(GF(5), 3); G
 Semimonomial transformation group over Finite Field of size 5 of degree 3
 sage: G.cardinality.__module__
 'sage.categories.finite_groups'
 sage: G.cardinality()
 384

 cayley_graph_disabled(connecting_set=None)

 conjugacy_classes()
 Return a list with all the conjugacy classes of the group.

 This will eventually be a fall-back method for groups not defined over GAP. Right now just raises a
 NotImplementedError, until we include a non-GAP way of listing the conjugacy classes repre-
 sentatives.

 EXAMPLES:

 sage: from sage.groups.group import FiniteGroup
 sage: G = FiniteGroup()
 sage: G.conjugacy_classes()
 Traceback (most recent call last):
...
NotImplementedError: Listing the conjugacy classes for group \texttt{<sage.groups.\rightarrow group.FiniteGroup object at ...>} is not implemented

\textbf{conjugacy_classes_representatives()}

Return a list of the conjugacy classes representatives of the group.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: G = SymmetricGroup(3)
sage: G.conjugacy_classes_representatives()
[(), (1,2), (1,2,3)]
\end{verbatim}

\textbf{monoid_generators()}

Return monoid generators for \texttt{self}.

For finite groups, the group generators are also monoid generators. Hence, this default implementation calls \texttt{group_generators()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = AlternatingGroup(4)
sage: A.monoid_generators()
Family ((2,3,4), (1,2,3))
\end{verbatim}

\textbf{semigroup_generators()}

Returns semigroup generators for \texttt{self}.

For finite groups, the group generators are also semigroup generators. Hence, this default implementation calls \texttt{group_generators()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = AlternatingGroup(4)
sage: A.semigroup_generators()
Family ((2,3,4), (1,2,3))
\end{verbatim}

\textbf{some_elements()}

Return some elements of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = AlternatingGroup(4)
sage: A.some_elements()
Family ((2,3,4), (1,2,3))
\end{verbatim}

\textbf{example()}

Return an example of finite group, as per \texttt{Category.example()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: G = FiniteGroups().example(); G
General Linear Group of degree 2 over Finite Field of size 3
\end{verbatim}
3.59 Finite lattice posets

class sage.categories.finite_lattice_posets.FiniteLatticePosets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite lattices, i.e. finite partially ordered sets which are also lattices.

EXAMPLES:

```python
sage: FiniteLatticePosets()
Category of finite lattice posets
sage: FiniteLatticePosets().super_categories()
[Category of lattice posets, Category of finite posets]
sage: FiniteLatticePosets().example()
NotImplemented
```

See also:

FinitePosets, LatticePosets, FiniteLatticePoset

class ParentMethods
Bases: object

irreducibles_poset()

Return the poset of meet- or join-irreducibles of the lattice.

A *join-irreducible* element of a lattice is an element with exactly one lower cover. Dually a *meet-irreducible* element has exactly one upper cover.

This is the smallest poset with completion by cuts being isomorphic to the lattice. As a special case this returns one-element poset from one-element lattice.

See also:

completion_by_cuts().

EXAMPLES:

```python
sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5], ....: 4: [6], 5: [9, 7], 6: [9, 8], 7: [10], ....: 8: [10], 9: [10], 10: [11]})
sage: L_.irreducibles_poset()
sage: sorted(L_.irreducibles_poset())
[2, 3, 4, 7, 8, 9, 10, 11]
sage: L_.completion_by_cuts().is_isomorphic(L)
True
```

is_lattice_morphism(f, codomain)

Return whether f is a morphism of posets from self to codomain.

A map \(f : P \rightarrow Q \) is a poset morphism if

\[x \leq y \Rightarrow f(x) \leq f(y) \]

for all \(x, y \in P \).

INPUT:

- \(f \) – a function from self to codomain
- \(\text{codomain} \) – a lattice
EXAMPLES:

We build the boolean lattice of \{2, 2, 3\} and the lattice of divisors of 60, and check that the map \(b \mapsto 5 \prod_{x \in b} x\) is a morphism of lattices:

```python
sage: D = LatticePoset((divisors(60), attrcall("divides")))
sage: B = LatticePoset((Subsets([2, 2, 3]), attrcall("issubset")))
sage: def f(b):
    return D(5*prod(b))
sage: B.is_lattice_morphism(f, D)
True
```

We construct the boolean lattice \(B_2\):

```python
sage: B = posets.BooleanLattice(2)
sage: B.cover_relations()
[[0, 1], [0, 2], [1, 3], [2, 3]]
```

And the same lattice with new top and bottom elements numbered respectively \(-1\) and 3:

```python
sage: L = LatticePoset(DiGraph({-1:[0], 0:[1, 2], 1:[3], 2:[3], 3:[4]}))
sage: L.cover_relations()
[[-1, 0], [0, 1], [0, 2], [1, 3], [2, 3], [3, 4]]
sage: f = { B(0): L(0), B(1): L(1), B(2): L(2), B(3): L(3) }.__getitem__
sage: B.is_lattice_morphism(f, L)
True
sage: f = { B(0): L(-1),B(1): L(1), B(2): L(2), B(3): L(3) }.__getitem__
sage: B.is_lattice_morphism(f, L)
False
sage: f = { B(0): L(0), B(1): L(1), B(2): L(2), B(3): L(4) }.__getitem__
sage: B.is_lattice_morphism(f, L)
False
```

See also:

- `is_poset_morphism()`
- `join_irreducibles()`

Return the join-irreducible elements of this finite lattice.

A join-irreducible element of self is an element \(x\) that is not minimal and that can not be written as the join of two elements different from \(x\).

EXAMPPLES:

```python
sage: L = LatticePoset({0:[1,2],1:[3,2],2:[3,4],3:[5,4],[5]})
sage: L.join_irreducibles()
[1, 2, 4]
```

See also:

- Dual function: `meet_irreducibles()`
- Other: `double_irreducibles()`, `join_irreducibles_poset()`

Return the poset of join-irreducible elements of this finite lattice.

A join-irreducible element of self is an element \(x\) that is not minimal and can not be written as the join of two elements different from \(x\).
EXAMPLES:

```python
sage: L = LatticePoset({0:[1,2,3],1:[4],2:[4],3:[4]})
sage: L.join_irreducibles_poset()
Finite poset containing 3 elements
```

See also:
- Dual function: `meet_irreducibles_poset()`
- Other: `join_irreducibles()`

meet_irreducibles()

Return the meet-irreducible elements of this finite lattice.

A *meet-irreducible element* of `self` is an element `x` that is not maximal and that cannot be written as the meet of two elements different from `x`.

EXAMPLES:

```python
sage: L = LatticePoset({0:[1,2],[3],2:[3,4],3:[5],4:[5]})
sage: L.meet_irreducibles()
[1, 3, 4]
```

See also:
- Dual function: `join_irreducibles()`
- Other: `double_irreducibles(), meet_irreducibles_poset()`

meet_irreducibles_poset()

Return the poset of join-irreducible elements of this finite lattice.

A *meet-irreducible element* of `self` is an element `x` that is not maximal and cannot be written as the meet of two elements different from `x`.

EXAMPLES:

```python
sage: L = LatticePoset({0:[1,2,3],1:[4],2:[4],3:[4]})
sage: L.join_irreducibles_poset()
Finite poset containing 3 elements
```

See also:
- Dual function: `join_irreducibles_poset()`
- Other: `meet_irreducibles()`

3.60 Finite monoids

```python
class sage.categories.finite_monoids.FiniteMonoids (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiomSingleton
```

The category of finite (multiplicative) *monoids*.

A finite monoid is a *finite sets* endowed with an associative unital binary operation `*`.

EXAMPLES:

```python
sage: FiniteMonoids()
Category of finite monoids
sage: FiniteMonoids().super_categories()
[Category of monoids, Category of finite semigroups]
```

3.60. Finite monoids 411
class ElementMethods
Bases: object

pseudo_order()
Returns the pair \([k, j]\) with \(k\) minimal and \(0 \leq j < k\) such that \(\text{self}^k = \text{self}^j\).

Note that \(j\) is uniquely determined.

EXAMPLES:

```python
sage: M = FiniteMonoids().example(); M
An example of a finite multiplicative monoid: the integers modulo 12
sage: x = M(2)
sage: [ x^i for i in range(7) ]
[1, 2, 4, 8, 4, 8, 4]
sage: x.pseudo_order()
[4, 2]
sage: x = M(3)
sage: [ x^i for i in range(7) ]
[1, 3, 9, 3, 9, 3, 9]
sage: x.pseudo_order()
[3, 1]
sage: x = M(4)
sage: [ x^i for i in range(7) ]
[1, 4, 4, 4, 4, 4, 4]
sage: x.pseudo_order()
[2, 1]
sage: x = M(5)
sage: [ x^i for i in range(7) ]
[1, 5, 1, 5, 1, 5, 1]
sage: x.pseudo_order()
[2, 0]
```

TODO: more appropriate name? see, for example, Jean-Eric Pin’s lecture notes on semigroups.

class ParentMethods
Bases: object

nerve()
The nerve (classifying space) of this monoid.

OUTPUT: the nerve \(BG\) (if \(G\) denotes this monoid), as a simplicial set. The \(k\)-dimensional simplices of this object are indexed by products of \(k\) elements in the monoid:

\[a_1 \ast a_2 \ast \cdots \ast a_k \]

The 0th face of this is obtained by deleting \(a_1\), and the \(k\)-th face is obtained by deleting \(a_k\). The other faces are obtained by multiplying elements: the 1st face is

\[(a_1 \ast a_2) \ast \cdots \ast a_k \]

and so on. See Wikipedia article Nerve_(category_theory), which describes the construction of the nerve as a simplicial set.

A simplex in this simplicial set will be degenerate if in the corresponding product of \(k\) elements, one of those elements is the identity. So we only need to keep track of the products of non-identity elements.
elements. Similarly, if a product $a_{i-1}a_i$ is the identity element, then the corresponding face of the simplex will be a degenerate simplex.

EXAMPLES:

The nerve (classifying space) of the cyclic group of order 2 is infinite-dimensional real projective space.

```
sage: Sigma2 = groups.permutation.Cyclic(2)
sage: BSigma2 = Sigma2.nerve()
sage: BSigma2.cohomology(4, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
```

The k-simplices of the nerve are named after the chains of k non-unit elements to be multiplied. The group $Σ_2$ has two elements, written $(())$ (the identity element) and $(1,2)$ in Sage. So the 1-cells and 2-cells in $BΣ_2$ are:

```
sage: BSigma2.n_cells(1)
[(1,2)]
sage: BSigma2.n_cells(2)
[(1,2) * (1,2)]
```

Another construction of the group, with different names for its elements:

```
sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = C2.nerve()
sage: BC2.n_cells(0)
[1]
sage: BC2.n_cells(1)
[f]
sage: BC2.n_cells(2)
[f * f]
```

With mod p coefficients, $BΣ_p$ should have its first nonvanishing homology group in dimension p:

```
sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = Sigma3.nerve()
sage: BSigma3.homology(range(4), base_ring=GF(3))
{0: Vector space of dimension 0 over Finite Field of size 3,
 1: Vector space of dimension 0 over Finite Field of size 3,
 2: Vector space of dimension 0 over Finite Field of size 3,
 3: Vector space of dimension 1 over Finite Field of size 3}
```

Note that we can construct the n-skeleton for $BΣ_2$ for relatively large values of n, while for $BΣ_3$, the complexes get large pretty quickly:

```
sage: Sigma2.nerve().n_skeleton(14)
Simplicial set with 15 non-degenerate simplices
sage: BSigma3 = Sigma3.nerve()
sage: BSigma3.n_skeleton(3)
Simplicial set with 156 non-degenerate simplices
sage: BSigma3.n_skeleton(4)
Simplicial set with 781 non-degenerate simplices
```

Finally, note that the classifying space of the order p cyclic group is smaller than that of the symmetric group on p letters, and its first homology group appears earlier:
rhodes_radical_congruence\((base_ring=\text{None})\)

Return the Rhodes radical congruence of the semigroup.

The Rhodes radical congruence is the congruence induced on \(S\) by the map \(S \to kS \to kS/\rad kS\) with \(k\) a field.

INPUT:
- \text{base_ring} (default: \text{Q}) a field

OUTPUT:
- A list of couples \((m, n)\) with \(m \neq n\) in the lexicographic order for the enumeration of the monoid \text{self}.

EXAMPLES:

```python
sage: M = Monoids().Finite().example()
sage: M.rhodes_radical_congruence()
[[(0, 6)], [(0, 8), (0, 10)]

sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: H3 = HeckeMonoid(SymmetricGroup(3))
sage: H3.repr_element_method(style="reduced")
sage: H3.rhodes_radical_congruence()
[([(1, 2), [2, 1]), ([1, 2], [1, 2, 1]), ([2, 1], [1, 2, 1])]
```

By Maschke’s theorem, every group algebra over \(\text{Q}\) is semisimple hence the Rhodes radical of a group must be trivial:

```python
sage: SymmetricGroup(3).rhodes_radical_congruence()
[]
```
class sage.categories.finite_permutation_groups.FinitePermutationGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite permutation groups, i.e. groups concretely represented as groups of permutations acting on a finite set.

It is currently assumed that any finite permutation group comes endowed with a distinguished finite set of generators (method group_generators); this is the case for all the existing implementations in Sage.

EXAMPLES:

```
sage: C = PermutationGroups().Finite(); C
Category of finite enumerated permutation groups
sage: C.super_categories()
[Category of permutation groups, 
 Category of finite groups, 
 Category of finite finitely generated semigroups]

sage: C.example()
Dihedral group of order 6 as a permutation group
```

class ElementMethods
Bases: object

cycle_index (parent=None)
Return the cycle index of self.

INPUT:
* self - a permutation group \(G \)
* parent - a free module with basis indexed by partitions, or behave as such, with a term and sum method (default: the symmetric functions over the rational field in the \(p \) basis)

The cycle index of a permutation group \(G \) (Wikipedia article Cycle_index) is a gadget counting the elements of \(G \) by cycle type, averaged over the group:

\[
P = \frac{1}{|G|} \sum_{g \in G} p_{\text{cycle type}(g)}
\]

EXAMPLES:

Among the permutations of the symmetric group \(S_4 \), there is the identity, 6 cycles of length 2, 3 products of two cycles of length 2, 8 cycles of length 3, and 6 cycles of length 4:

```
sage: S4 = SymmetricGroup(4)
sage: P = S4.cycle_index()
sage: 24 * P
```
If \(l = (l_1, \ldots, l_k) \) is a partition, \(|G| \ P[l] \) is the number of elements of \(G \) with cycles of length \((p_1, \ldots, p_k)\):

```python
sage: 24 * P[ Partition([3,1]) ]
8
```

The cycle index plays an important role in the enumeration of objects modulo the action of a group (Pólya enumeration), via the use of symmetric functions and plethysms. It is therefore encoded as a symmetric function, expressed in the powersum basis:

```python
sage: P.parent()
Symmetric Functions over Rational Field in the powersum basis
```

This symmetric function can have some nice properties; for example, for the symmetric group \(S_n \), we get the complete symmetric function \(h_n \):

```python
sage: S = SymmetricFunctions(QQ); h = S.h()
sage: h(P)
\(h[4]\)
```

Todo: Add some simple examples of Pólya enumeration, once it will be easy to expand symmetric functions on any alphabet.

Here are the cycle indices of some permutation groups:

```python
sage: 6 * CyclicPermutationGroup(6).cycle_index()
sage: 60 * AlternatingGroup(5).cycle_index()
sage: for G in TransitiveGroups(5):
    G.cardinality() * G.cycle_index()
    # long time
    p[1, 1, 1, 1, 1] + 4*p[5]
p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 4*p[5]
p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 10*p[4, 1] + 4*p[5]
```

Permutation groups with arbitrary domains are supported (see trac ticket #22765):

```python
sage: G = PermutationGroup([['b','c','a']], domain=['a','b','c'])
sage: G.cycle_index()
1/3*p[1, 1, 1] + 2/3*p[3]
```

One may specify another parent for the result:

```python
sage: F = CombinatorialFreeModule(QQ, Partitions())
sage: P = CyclicPermutationGroup(6).cycle_index(parent = F)
sage: 6 * P
B[[1, 1, 1, 1, 1, 1]] + B[[2, 2, 2]] + 2*B[[3, 3]] + 2*B[[6]]
sage: P.parent() is F
True
```

This parent should be a module with basis indexed by partitions:
sage: CyclicPermutationGroup(6).cycle_index(parent = QQ)
Traceback (most recent call last):
 ...
ValueError: `parent` should be a module with basis indexed by partitions

REFERENCES:
• [Ke1991]

AUTHORS:
• Nicolas Borie and Nicolas M. Thiéry

profile \((n, \text{using_polya}=\text{True})\)

Return the value in \(n\) of the profile of the group \(\text{self}\).

Optional argument \text{using_polya} allows to change the default method.

INPUT:
• \(n\) – a nonnegative integer
• \text{using_polya} (optional) – a boolean: if True (default), the computation uses Pólya enumeration (and all values of the profile are cached, so this should be the method used in case several of them are needed); if False, uses the GAP interface to compute the orbit.

OUTPUT:
• A nonnegative integer that is the number of orbits of \(n\)-subsets under the action induced by \(\text{self}\) on the subsets of its domain (i.e. the value of the profile of \(\text{self}\) in \(n\))

See also:
• \text{profile_series()}

EXAMPLES:

\[
\begin{align*}
sage: C6 = CyclicPermutationGroup(6) \\
sage: C6.profile(2) \\
3 \\
sage: C6.profile(3) \\
4 \\
sage: D8 = DihedralGroup(8) \\
sage: D8.profile(4, using_polya=False) \\
8
\end{align*}
\]

profile polynomial \((variable='z')\)

Return the (finite) generating series of the (finite) profile of the group.

The profile of a permutation group \(G\) is the counting function that maps each nonnegative integer \(n\) onto the number of orbits of the action induced by \(G\) on the \(n\)-subsets of its domain. If \(f\) is the profile of \(G\), \(f(n)\) is thus the number of orbits of \(n\)-subsets of \(G\).

INPUT:
• \text{variable} – a variable, or variable name as a string (default: ‘\(z\)’)

OUTPUT:
• A polynomial in \text{variable} with nonnegative integer coefficients. By default, a polynomial in \(z\) over ZZ.

See also:
• \text{profile()}

EXAMPLES:

\[
\begin{align*}
sage: C8 = CyclicPermutationGroup(8) \\
sage: C8.profile_series() \\
z^8 + z^7 + 4*z^6 + 7*z^5 + 10*z^4 + 7*z^3 + 4*z^2 + z + 1
\end{align*}
\]
profile_series (variable='z')

Return the (finite) generating series of the (finite) profile of the group.

The profile of a permutation group G is the counting function that maps each nonnegative integer n onto the number of orbits of the action induced by G on the n-subsets of its domain. If f is the profile of G, $f(n)$ is thus the number of orbits of n-subsets of G.

INPUT:
- variable – a variable, or variable name as a string (default: ‘z’)

OUTPUT:
- A polynomial in variable with nonnegative integer coefficients. By default, a polynomial in z over \mathbb{Z}.

See also:
- profile()
3.62 Finite posets

Here is some terminology used in this file:

- An order filter (or upper set) of a poset P is a subset S of P such that if $x \leq y$ and $x \in S$ then $y \in S$.
- An order ideal (or lower set) of a poset P is a subset S of P such that if $x \leq y$ and $y \in S$ then $x \in S$.

```python
class sage.categories.finite_posets.FinitePosets(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite posets i.e. finite sets with a partial order structure.

EXAMPLES:

```
sage: FinitePosets()
Category of finite posets
sage: FinitePosets().super_categories()
[Category of posets, Category of finite sets]
sage: FinitePosets().example()
NotImplemented
```

See also:

Posets, Poset()

class ParentMethods
    Bases: object

    antichains()
        Return all antichains of self.

        EXAMPLES:

```
sage: A = posets.PentagonPoset().antichains(); A
Set of antichains of Finite lattice containing 5 elements
sage: list(A)
[[], [0], [1], [1, 2], [1, 3], [2], [3], [4]]
```

    birational_free_labelling(linear_extension=None, prefix='x', base_field=None, reduced=False, addvars=None, labels=None, min_label=None, max_label=None)
        Return the birational free labelling of self.

        Let us hold back defining this, and introduce birational toggles and birational rowmotion first. These notions have been introduced in [EP2013] as generalizations of the notions of toggles (order_ideal_toggle()) and rowmotion on order ideals of a finite poset. They have been studied further in [GR2013].

        Let $K$ be a field, and $P$ be a finite poset. Let $\hat{P}$ denote the poset obtained from $P$ by adding a new element $1$ which is greater than all existing elements of $P$, and a new element $0$ which is smaller than all existing elements of $P$ and $1$. Now, a $K$-labelling of $P$ will mean any function from $\hat{P}$ to $K$. The image of an element $v$ of $\hat{P}$ under this labelling will be called the label of this labelling at $v$. The set of all $K$-labellings of $P$ is clearly $K^{\hat{P}}$.

        For any $v \in P$, we now define a rational map $T_v : K^{\hat{P}} \to K^{\hat{P}}$ as follows: For every $f \in K^{\hat{P}}$, the image $T_v f$ should send every element $u \in \hat{P}$ distinct from $v$ to $f(u)$ (so the labels at all $u \neq v$ don’t change), while $v$ is sent to

\[
\frac{1}{f(v)} \cdot \frac{\sum_{u < v} f(u)}{\sum_{u > v} f(u)}
\]

3.62. Finite posets
Now, birational rowmotion is defined as the composition 
\[ T_{v_1} \circ T_{v_2} \circ \cdots \circ T_{v_n}, \]
where \((v_1, v_2, \ldots, v_n)\) is a linear extension of \(P\) (written as a linear ordering of the elements of \(P\)). This is a rational map 
\[ K^P \to K^P \]
which does not depend on the choice of the linear extension; it is denoted by \(R\). See \texttt{birational_rowmotion()} for its implementation.

The definitions of birational toggles and birational rowmotion extend to the case of \(K\) being any semifield rather than necessarily a field (although it becomes less clear what constitutes a rational map in this generality). The most useful case is that of the tropical semiring, in which case birational rowmotion relates to classical constructions such as promotion of rectangular semistandard Young tableaux (page 5 of [EP2013b] and future work, via the related notion of birational promotion) and rowmotion on order ideals of the poset ([EP2013]).

The birational free labelling is a special labelling defined for every finite poset \(P\) and every linear extension \((v_1, v_2, \ldots, v_n)\) of \(P\). It is given by sending every element \(v_i\) in \(P\) to \(x_i\), sending the element 0 of \(\tilde{P}\) to 0, and sending the element 1 of \(\tilde{P}\) to 1, where the ground field \(K\) is the field of rational functions in \(n + 2\) indeterminates \(a, x_1, x_2, \ldots, x_n, b\) over \(\mathbb{Q}\).

In Sage, a labelling \(f\) of a poset \(P\) is encoded as a 4-tuple \((K, d, u, v)\), where \(K\) is the ground field of the labelling (i.e., its target), \(d\) is the dictionary containing the values of \(f\) at the elements of \(P\) (the keys being the respective elements of \(P\)), \(u\) is the label of \(f\) at 0, and \(v\) is the label of \(f\) at 1.

**Warning:** The dictionary \(d\) is labelled by the elements of \(P\). If \(P\) is a poset with \texttt{facade} option set to \texttt{False}, these might not be what they seem to be! (For instance, if \(P = \text{Poset}([1: [2, 3]], \text{facade} = \text{False})\), then the value of \(d\) at 1 has to be accessed by \(d[P(1)]\), not by \(d[1]\)).

**Warning:** Dictionaries are mutable. They do compare correctly, but are not hashable and need to be cloned to avoid spooky action at a distance. Be careful!

**INPUT:**
- \texttt{linear_extension} – (default: the default linear extension of \texttt{self}) a linear extension of \texttt{self} (as a linear extension or as a list), or more generally a list of all elements of all elements of \texttt{self} each occurring exactly once
- \texttt{prefix} – (default: `x`) the prefix to name the indeterminates corresponding to the elements of \texttt{self} in the labelling (so, setting it to `frog` will result in these indeterminates being called `frog1`, `frog2`, ..., `frogn` rather than `x1`, `x2`, ..., `xn`).
- \texttt{base_field} – (default: \texttt{QQ}) the base field to be used instead of \texttt{Q} to define the rational function field over; this is not going to be the base field of the labelling, because the latter will have indeterminates adjoined!
- \texttt{reduced} – (default: \texttt{False}) if set to \texttt{True}, the result will be the reduced birational free labelling, which differs from the regular one by having 0 and 1 both sent to 1 instead of \(a\) and \(b\) (the indeterminates \(a\) and \(b\) then also won’t appear in the ground field)
- \texttt{addvars} – (default: `\'x\'`) a string containing names of extra variables to be adjoined to the ground field (these don’t have an effect on the labels)
- \texttt{labels} – (default: `\'x\'`) Either a function that takes an element of the poset and returns a name for the indeterminate corresponding to that element, or a string containing a comma-separated list of indeterminates that will be assigned to elements in the order of \texttt{linear_extension}. If the
list contains more indeterminates than needed, the excess will be ignored. If it contains too few, then the needed indeterminates will be constructed from prefix.

• **min_label** – (default: 'a') a string to be used as the label for the element 0 of \( \hat{P} \)
• **max_label** – (default: 'b') a string to be used as the label for the element 1 of \( \hat{P} \)

**OUTPUT:**

The birational free labelling of the poset `self` and the linear extension `linear_extension`. Or, if `reduced` is set to True, the reduced birational free labelling.

**EXAMPLES:**

We construct the birational free labelling on a simple poset:

```sage
def P = Poset({1: [2, 3]})
def 1 = P.birational_free_labelling(); 1
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over Rational Field,
 {...},
 a,
 b)
sage: sorted(1[1].items())
[(1, x1), (2, x2), (3, x3)]
sage: 1 = P.birational_free_labelling(linear_extension=[1, 3, 2]); 1
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over Rational Field,
 {...},
 a,
 b)
sage: sorted(1[1].items())
[(1, x1), (2, x3), (3, x2)]
sage: 1 = P.birational_free_labelling(linear_extension=[1, 3, 2], reduced=True, addvars="spam, eggs"); 1
(Fraction Field of Multivariate Polynomial Ring in x1, x2, x3, spam, eggs over Rational Field,
 {...},
 1,
 1)
sage: sorted(1[1].items())
[(1, x1), (2, x3), (3, x2)]
sage: 1 = P.birational_free_labelling(linear_extension=[1, 3, 2], prefix="wut", reduced=True, addvars="spam, eggs"); 1
(Fraction Field of Multivariate Polynomial Ring in wut1, wut2, wut3, spam, eggs over Rational Field,
 {...},
 1,
 1)
sage: sorted(1[1].items())
[(1, wut1), (2, wut3), (3, wut2)]
sage: 1 = P.birational_free_labelling(linear_extension=[1, 3, 2], reduced=False, addvars="spam, eggs"); 1
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b, spam, eggs over Rational Field,
 {...},
 a,
 b)
```

(continues on next page)
Illustrating labelling with a function:

```python
sage: P = posets.ChainPoset(2).product(posets.ChainPoset(2))
sage: l = P.birational_free_labelling(labels='lambda e : x_' + str(e[0]) + str(e[1]), min_label="lambda", max_label="mu")
sage: sorted(l[1].items())
[((0, 0), x_00), ((0, 1), x_01), ((1, 0), x_10), ((1, 1), x_11)]
sage: l[2]
lambda
sage: l[3]
u
```

The same, but with `min_label` and `max_label` provided:

```python
sage: P = posets.ChainPoset(2).product(posets.ChainPoset(2))
sage: l = P.birational_free_labelling(labels='lambda e : x_' + str(e[0]) + str(e[1]), min_label="lambda", max_label="mu")
sage: sorted(l[1].items())
[((0, 0), x_00), ((0, 1), x_01), ((1, 0), x_10), ((1, 1), x_11)]
sage: l[2]
lambda
sage: l[3]
u
```

Illustrating labelling with a comma separated list of labels:

```python
sage: l = P.birational_free_labelling(labels='w,x,y,z')
sage: sorted(l[1].items())
[((0, 0), w), ((0, 1), x), ((1, 0), y), ((1, 1), z)]
sage: l = P.birational_free_labelling(labels='w,x,y,z,m')
sage: sorted(l[1].items())
[((0, 0), w), ((0, 1), x), ((1, 0), y), ((1, 1), z)]
sage: l = P.birational_free_labelling(labels='w')
sage: sorted(l[1].items())
[((0, 0), w), ((0, 1), x1), ((1, 0), x2), ((1, 1), x3)]
```

Illustrating the warning about facade:

```python
sage: P = Poset({1: [2, 3]}, facade=False)
sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2], reduced=False, addvars="spam, eggs")
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b, spam, eggs over Rational Field,
..., a,
b)
sage: l[1][2]
Traceback (most recent call last):
 ...
 KeyError: 2
sage: l[1][P(2)]
x3
```

Another poset:
sage: P = posets.SSTPoset([2,1])
sage: lext = sorted(P)
sage: l = P.birational_free_labelling(linear_extension=lext, addvars="ohai 
  →")
sage: l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, x5, x6, x7, x8, b, ohai over Rational Field,
  {...},
  a, b)
sage: sorted(l[1].items())
[(\[\[1, 1\], \[2\]\], x1), (\[\[1, 1\], \[3\]\], x2), (\[\[1, 2\], \[2\]\], x3), (\[\[1, 2\], \[3\]\], x4),
  (\[\[1, 3\], \[2\]\], x5), (\[\[1, 3\], \[3\]\], x6), (\[\[2, 2\], \[3\]\], x7), (\[\[2, 3\], \[3\]\], x8)]

See `birational_rowmotion()`, `birational_toggle()` and `birational_toggles()` for more substantial examples of what one can do with the birational free labelling.

**birational_rowmotion** *(labelling)*

Return the result of applying birational rowmotion to the \(K\)-labelling `labelling` of the poset `self`.

See the documentation of `birational_free_labelling()` for a definition of birational rowmotion and \(K\)-labellings and for an explanation of how \(K\)-labellings are to be understood by Sage. This implementation allows \(K\) to be a semifield, not just a field. Birational rowmotion is only a rational map, so an exception (most likely, `ZeroDivisionError`) will be thrown if the denominator is zero.

**INPUT:**

- `labelling` – a \(K\)-labelling of `self` in the sense as defined in the documentation of `birational_free_labelling()`

**OUTPUT:**

The image of the \(K\)-labelling \(f\) under birational rowmotion.

**EXAMPLES:**

```
sage: P = Poset({1: [2, 3], 2: [4], 3: [4]})
sage: lex = [1, 2, 3, 4]
sage: t = P.birational_free_labelling(linear_extension=lex); t
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, b
 → over Rational Field,
 {...},
 a, b)
sage: sorted(t[1].items())
[(1, x1), (2, x2), (3, x3), (4, x4)]
sage: t = P.birational_rowmotion(t); t
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, b
 → over Rational Field,
 {...},
 a, b)
sage: sorted(t[1].items())
[(1, a*b/x4), (2, (x1*x2*b + x1*x3*b)/(x2*x4)), (3, (x1*x2*b + x1*x3*b)/(x3*x4)), (4, (x2*b + x3*b)/x4)]
```

A result of [GR2013] states that applying birational rowmotion \(n + m\) times to a \(K\)-labelling \(f\) of the
poset $[n] \times [m]$ gives back $f$. Let us check this:

```python
sage: def test_rectangle_periodicity(n, m, k):
....: P = posets.ChainPoset(n).product(posets.ChainPoset(m))
....: t0 = P.birational_free_labelling(P)
....: t = t0
....: for i in range(k):
....: t = P.birational_rowmotion(t)
....: return t == t0
sage: test_rectangle_periodicity(2, 2, 4)
True
sage: test_rectangle_periodicity(2, 2, 2)
False
sage: test_rectangle_periodicity(2, 3, 5) # long time
True
```

While computations with the birational free labelling quickly run out of memory due to the complexity of the rational functions involved, it is computationally cheap to check properties of birational rowmotion on examples in the tropical semiring:

```python
sage: def test_rectangle_periodicity_tropical(n, m, k):
....: P = posets.ChainPoset(n).product(posets.ChainPoset(m))
....: TT = TropicalSemiring(ZZ)
....: t0 = (TT, {v: TT(floor(random()*100)) for v in P}, TT(0), TT(124))
....: t = t0
....: for i in range(k):
....: t = P.birational_rowmotion(t)
....: return t == t0
sage: test_rectangle_periodicity_tropical(7, 6, 13)
True
```

Tropicalization is also what relates birational rowmotion to classical rowmotion on order ideals. In fact, if $T$ denotes the tropical semiring of $\mathbb{Z}$ and $P$ is a finite poset, then we can define an embedding $\phi$ from the set $J(P)$ of all order ideals of $P$ into the set $T^P$ of all $T$-labellings of $P$ by sending every $I \in J(P)$ to the indicator function of $I$ extended by the value 1 at the element 0 and the value 0 at the element 1. This map $\phi$ has the property that $R \circ \phi = \phi \circ r$, where $R$ denotes birational rowmotion, and $r$ denotes classical rowmotion on $J(P)$. An example:

```python
sage: P = posets.IntegerPartitions(5)
sage: TT = TropicalSemiring(ZZ)
sage: def indicator_labelling(I):
....: # send order ideal 'I' to a 'T'-labelling of 'P'.
....: dct = {v: TT(v in I) for v in P}
....: return (TT, dct, TT(0), TT(1))

sage: all(indicator_labelling(P.rowmotion(I)) == P.birational_rowmotion(indicator_labelling(I))
for I in P.order_ideals_lattice(facade=True))
True
```

```
```

The result of applying the birational $v$-toggle $T_v$ to the $K$-labelling labelling of the poset self.

See the documentation of `birational_free_labelling()` for a definition of this toggle and of $K$-labellings as well as an explanation of how $K$-labellings are to be encoded to be understood by Sage. This implementation allows $K$ to be a semifield, not just a field. The birational $v$-toggle is only a rational map, so an exception (most likely, `ZeroDivisionError`) will be thrown if the
denominator is zero.

**INPUT:**
- \(v\) – an element of \(self\) (must have \(self\) as parent if \(self\) is a facade=False poset)
- labelling – a \(K\)-labelling of \(self\) in the sense as defined in the documentation of `birational_free_labelling()`

**OUTPUT:**
The \(K\)-labelling \(T_v f\) of \(self\), where \(f\) is labelling.

**EXAMPLES:**
Let us start with the birational free labelling of the “V”-poset (the three-element poset with Hasse diagram looking like a “V”):

```python
sage: V = Poset({1: [2, 3]})
sage: s = V.birational_free_labelling(); s
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over \(\mathbb{Q}\),
 {a, b})
sage: sorted(s[1].items())
[(1, x1), (2, x2), (3, x3)]
```

The image of \(s\) under the 1-toggle \(T_1\) is:

```python
sage: s1 = V.birational_toggle(1, s); s1
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over \(\mathbb{Q}\),
 {a, b})
sage: sorted(s1[1].items())
[(1, a*x2*x3/(x1*x2 + x1*x3)), (2, x2), (3, x3)]
```

Now let us apply the 2-toggle \(T_2\) (to the old \(s\)):

```python
sage: s2 = V.birational_toggle(2, s); s2
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over \(\mathbb{Q}\),
 {a, b})
sage: sorted(s2[1].items())
[(1, x1), (2, x1*b/x2), (3, x3)]
```

On the other hand, we can also apply \(T_2\) to the image of \(s\) under \(T_1\):

```python
sage: s12 = V.birational_toggle(2, s1); s12
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over \(\mathbb{Q}\),
 {a, b})
sage: sorted(s12[1].items())
[(1, a*x2*x3/(x1*x2 + x1*x3)), (2, a*x3*b/(x1*x2 + x1*x3)), (3, x3)]
```

Each toggle is an involution:
```python
sage: all(V.birational_toggle(i, V.birational_toggle(i, s)) == s
.....: for i in V)
True
```

We can also start with a less generic labelling:

```python
sage: t = (QQ, {1: 3, 2: 6, 3: 7}, 2, 10)
sage: t1 = V.birational_toggle(1, t); t1
(Rational Field, {...}, 2, 10)
sage: sorted(t1[1].items())
[(1, 28/13), (2, 6), (3, 7)]
sage: t13 = V.birational_toggle(3, t1); t13
(Rational Field, {...}, 2, 10)
sage: sorted(t13[1].items())
[(1, 28/13), (2, 6), (3, 40/13)]
```

However, labellings have to be sufficiently generic, lest denominators vanish:

```python
sage: t = (QQ, {1: 3, 2: 5, 3: -5}, 1, 15)
sage: t1 = V.birational_toggle(1, t)
Traceback (most recent call last):
... ZeroDivisionError: rational division by zero
```

We don’t get into zero-division issues in the tropical semiring (unless the zero of the tropical semiring appears in the labelling):

```python
sage: TT = TropicalSemiring(QQ)
sage: t = (TT, {'123': TT(2), '132': TT(4), '213': TT(3), '231': TT(1), '312': TT(2), '321': TT(1)}, TT(7), TT(1))
sage: t1 = P.birational_toggle('123', t); t1
(Tropical semiring over Rational Field, {...}, 7, 1)
sage: sorted(t1[1].items())
[('123', 6), ('132', 2), ('213', 3), ('231', 1), ('312', 2), ('321', 1)]
```

We turn to more interesting posets. Here is the 6-element poset arising from the weak order on $S_3$:

```python
sage: P = posets.SymmetricGroupWeakOrderPoset(3)
sage: sorted(list(P))
['123', '132', '213', '231', '312', '321']
sage: t = (TT, {'123': TT(4), '132': TT(2), '213': TT(3), '231': TT(1), '312': TT(2), '321': TT(1)}, TT(7), TT(1))
sage: t1 = P.birational_toggle('123', t); t1
(Tropical semiring over Rational Field, {...}, 7, 1)
sage: sorted(t1[1].items())
[('123', 6), ('132', 2), ('213', 3), ('231', 1), ('312', 2), ('321', 1)]
```
Let us verify on this example some basic properties of toggles. First of all, again let us check that $T_v$ is an involution for every $v$:

```python
sage: all(P.birational_toggle(v, P.birational_toggle(v, t)) == t
 : for v in P)
True
```

Furthermore, two toggles $T_v$ and $T_w$ commute unless one of $v$ or $w$ covers the other:

```python
sage: all(P.covers(v, w) or P.covers(w, v)
 : or P.birational_toggle(v, P.birational_toggle(w, t))
 : == P.birational_toggle(w, P.birational_toggle(v, t))
 : for v in P for w in P)
True
```

**birational_toggles** *(vs, labelling)*

Return the result of applying a sequence of birational toggles (specified by vs) to the $K$-labelling of the poset self.

See the documentation of `birational_free_labelling()` for a definition of birational toggles and $K$-labellings and for an explanation of how $K$-labellings are to be encoded to be understood by Sage. This implementation allows $K$ to be a semifield, not just a field. The birational $v$-toggle is only a rational map, so an exception (most likely, `ZeroDivisionError`) will be thrown if the denominator is zero.

**INPUT:**
- `vs` – an iterable comprising elements of `self` (which must have `self` as parent if `self` is a facade=False poset)
- `labelling` – a $K$-labelling of `self` in the sense as defined in the documentation of `birational_free_labelling()`

**OUTPUT:**

The $K$-labelling $T_{v_n}T_{v_{n-1}}\cdots T_{v_1}f$ of `self`, where $f$ is labelling and $(v_1,v_2,\ldots,v_n)$ is `vs` (written as list).

**EXAMPLES:**

```python
sage: P = posets.SymmetricGroupBruhatOrderPoset(3)
sage: sorted(list(P))
['123', '132', '213', '231', '312', '321']
sage: TT = TropicalSemiring(ZZ)
sage: t = (TT, {'123': TT(4), '132': TT(2), '213': TT(3), '231': TT(1), '312': TT(2)}, TT(7), TT(1))
sage: tA = P.birational_toggles(['123', '231', '312'], t); tA
(Tropical semiring over Integer Ring, {...}, 7, 1)
sage: sorted(tA[1].items())
[('123', 6), ('132', 2), ('213', 3), ('231', 2), ('312', 1), ('321', 1)]
sage: tAB = P.birational_toggles(['132', '213', '321'], tA); tAB
(Tropical semiring over Integer Ring, {...}, 7, 1)
sage: sorted(tAB[1].items())
[('123', 6), ('132', 6), ('213', 5), ('231', 2), ('312', 1), ('321', 1)]
sage: P = Poset({1: [2, 3], 2: [4], 3: [4]})
sage: Qx = PolynomialRing(QQ, 'x').fraction_field()
sage: x = Qx.gen()
sage: t = (Qx, {1: 1, 2: x, 3: (x+1)/x, 4: x^2}, 1, 1)
sage: t1 = P.birational_toggles((i for i in range(1, 5)), t); t1
(Fraction Field of Univariate Polynomial Ring in x over Rational Field, {...}, 1, 1)
```
(continued from previous page)

```python
sage: t1 =
[(1, (x^2 + x)/(x^2 + x + 1)),
 (2, (x^3 + x^2)/(x^2 + x + 1)),
 (3, x^4/(x^2 + x + 1)),
 (4, 1)]

sage: sorted(t1[1].items())

[(1, (x^2 + x)/(x^2 + x + 1)),
 (2, (x^3 + x^2)/(x^2 + x + 1)),
 (3, x^4/(x^2 + x + 1)),
 (4, 1)]
```

Facade set to `False` works:

```python
sage: P = Poset({'x': ['y', 'w'],
 'y': ['z'],
 'w': ['z'],
 'facade=False'})

sage: t = P.birational_free_labelling(linear_extension=lex)

sage: sorted(P.birational_toggles([P('x'), P('y')], t)[1].items())

[(x, a*x2*x3/(x1*x2 + x1*x3)),
 (y, a*x3*x4/(x1*x2 + x1*x3)),
 (w, x3),
 (z, x4)]
```

**directed_subsets** *(direction)*

Return the order filters (resp. order ideals) of `self`, as lists.

If `direction` is ‘up’, returns the order filters (upper sets).

If `direction` is ‘down’, returns the order ideals (lower sets).

**INPUT:**

- `direction` – ‘up’ or ‘down’

**EXAMPLES:**

```python
sage: P = Poset((divisors(12), attrcall("divides")), facade=True)

sage: A = P.directed_subsets('up')

sage: sorted(list(A))

[[], [1, 2, 4, 3, 6, 12], [2, 4, 3, 6, 12], [2, 4, 6, 12], [3, 6, 12], [4, 3, 6, 12], [4, 6, 12], [4, 12], [6, 12], [12]]
```

**is_lattice()**

Return whether the poset is a lattice.

A poset is a lattice if all pairs of elements have both a least upper bound (“join”) and a greatest lower bound (“meet”) in the poset.

**EXAMPLES:**

```python
sage: P = Poset({[1, 3, 2], [4], [4, 5, 6], [6], [7], [7], [7], []})

sage: P.is_lattice()

True

sage: P = Poset({[1, 2], [3], []})

sage: P.is_lattice()

True

sage: P = Poset({0: [2, 3], 1: [2, 3]})

sage: P.is_lattice()

False

sage: P = Poset({1: [2, 3, 4], 2: [5, 6], 3: [5, 7], 4: [6, 7], 5: [8, 9],
 9: [8, 9], [10], []})

sage: P.is_lattice()

True
```

(continues on next page)
...:

```python
 sage: P.is_lattice()
 False
```

See also:

- Weaker properties: `is_join_semilattice(), is_meet_semilattice()`

**is_poset_isomorphism(f, codomain)**

Return whether \( f \) is an isomorphism of posets from `self` to `codomain`.

**INPUT:**

- \( f \) – a function from `self` to `codomain`
- `codomain` – a poset

**EXAMPLES:**

We build the poset \( D \) of divisors of 30, and check that it is isomorphic to the boolean lattice \( B \) of the subsets of \( \{2, 3, 5\} \) ordered by inclusion, via the reverse function \( f : B \to D, b \mapsto \prod_{x \in b} x \):

```python
 sage: D = Poset((divisors(30), attrcall("divides"))
 sage: B = Poset((\{\text{frozenset}(s) for s in Subsets([2,3,5])\}, attrcall("issubset"))
 sage: def f(b):
 ... return D(prod(b))
 sage: B.is_poset_isomorphism(f, D)
 True
```

On the other hand, \( f \) is not an isomorphism to the chain of divisors of 30, ordered by usual comparison:

```python
 sage: P = Poset((divisors(30), operator.le))
 sage: def f(b):
 ... return P(prod(b))
 sage: B.is_poset_isomorphism(f, P)
 False
```

A non surjective case:

```python
 sage: B = Poset((\{\text{frozenset}(s) for s in Subsets([2,3])\}, attrcall("issubset"))
 sage: def f(b):
 ... return D(prod(b))
 sage: B.is_poset_isomorphism(f, D)
 False
```

A non injective case:

```python
 sage: B = Poset((\{\text{frozenset}(s) for s in Subsets([2,3,5,6])\}, attrcall("issubset"))
 sage: def f(b):
 ... return D(gcd(prod(b), 30))
 sage: B.is_poset_isomorphism(f, D)
 False
```

**Note:** since \( D \) and \( B \) are not facade posets, \( f \) is responsible for the conversions between integers and subsets to elements of \( D \) and \( B \) and back.

**See also:**

`FiniteLatticePosets.ParentMethods.is_lattice_morphism()`
\textbf{is\_poset\_morphism}(f, \text{codomain})

Return whether \(f\) is a morphism of posets from \text{self} to \text{codomain}, that is

\[ x \leq y \implies f(x) \leq f(y) \]

for all \(x\) and \(y\) in \text{self}.

\textbf{INPUT:}

\begin{itemize}
  \item \(f\) – a function from \text{self} to \text{codomain}
  \item \text{codomain} – a poset
\end{itemize}

\textbf{EXAMPLES:}

We build the boolean lattice of the subsets of \{2, 3, 5, 6\} and the lattice of divisors of 30, and check that the map \(b \mapsto \gcd(\prod_{x \in b} x, 30)\) is a morphism of posets:

\begin{verbatim}
sage: D = Poset((divisors(30), attrcall("divides")))
sage: B = Poset(([frozenset(s) for s in Subsets([2,3,5,6])], attrcall("issubset")))
sage: def f(b):
    return D(gcd(prod(b), 30))
sage: B.is_poset_morphism(f, D)
True
\end{verbatim}

\textbf{Note:} since \(D\) and \(B\) are not facade posets, \(f\) is responsible for the conversions between integers and subsets to elements of \(D\) and \(B\) and back.

\(f\) is also a morphism of posets to the chain of divisors of 30, ordered by usual comparison:

\begin{verbatim}
sage: P = Poset((divisors(30), operator.le))
sage: def f(b):
    return P(gcd(prod(b), 30))
sage: B.is_poset_morphism(f, P)
True
\end{verbatim}

\textbf{FIXME:} should this be \textit{is\_order\_preserving\_morphism}?  

See also:

\textbf{is\_poset\_isomorphism()}

\textbf{is\_self\_dual()}

Return whether the poset is \textit{self-dual}.

A poset is self-dual if it is isomorphic to its dual poset.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: P = Poset({1: [3, 4], 2: [3, 4]})
sage: P.is_self_dual()
True
sage: P = Poset({1: [2, 3]})
sage: P.is_self_dual()
False
\end{verbatim}

\textbf{See also:}

\begin{itemize}
  \item Stronger properties: \textit{is\_orthocomplemented() (for lattices)}
  \item Other: \textit{dual()}
\end{itemize}
order_filter_generators (filter)
Generators for an order filter

INPUT:
• filter – an order filter of self, as a list (or iterable)

EXAMPLES:

```
sage: P = Poset((Subsets([1,2,3]), attrcall("issubset")))
sage: I = P.order_filter([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted(sorted(p) for p in I)
[[1], [1, 2], [1, 2, 3], [1, 3], [2, 3]]
sage: gen = P.order_filter_generators(I)
sage: sorted(sorted(p) for p in gen)
[[1], [2, 3]]
```

See also:

order_ideal_generators()

order_ideal_complement_generators (antichain, direction='up')
Return the Panyushev complement of the antichain antichain.

Given an antichain $A$ of a poset $P$, the Panyushev complement of $A$ is defined to be the antichain consisting of the minimal elements of the order filter $B$, where $B$ is the (set-theoretic) complement of the order ideal of $P$ generated by $A$.

Setting the optional keyword variable direction to 'down' leads to the inverse Panyushev complement being computed instead of the Panyushev complement. The inverse Panyushev complement of an antichain $A$ is the antichain whose Panyushev complement is $A$. It can be found as the antichain consisting of the maximal elements of the order ideal $C$, where $C$ is the (set-theoretic) complement of the order filter of $P$ generated by $A$.

panyushev_complement () is an alias for this method.

Panyushev complementation is related (actually, isomorphic) to rowmotion (rowmotion()).

INPUT:
• antichain – an antichain of self, as a list (or iterable), or, more generally, generators of an order ideal (resp. order filter)
• direction – ‘up’ or ‘down’ (default: ‘up’)

OUTPUT:
• the generating antichain of the complement order filter (resp. order ideal) of the order ideal (resp. order filter) generated by the antichain antichain

EXAMPLES:

```
sage: P = Poset(([1,2,3], [[1,3], [2,3]]))
sage: P.order_ideal_complement_generators([1])
{2}
sage: P.order_ideal_complement_generators([3])
set()
sage: P.order_ideal_complement_generators([1,2])
{3}
sage: P.order_ideal_complement_generators([1,2,3])
set()
sage: P.order_ideal_complement_generators([1], direction="down")
{2}
sage: P.order_ideal_complement_generators([3], direction="down")
{1, 2}
```

(continues on next page)
sage: P.order_ideal_complement_generators([1,2], direction="down")
set()
sage: P.order_ideal_complement_generators([1,2,3], direction="down")
set()

**Warning:** This is a brute force implementation, building the order ideal generated by the antichain, and searching for order filter generators of its complement

**order_ideal_generators** *(ideal, direction='down')*

Return the antichain of (minimal) generators of the order ideal (resp. order filter) `ideal`.

**INPUT:**

- `ideal` – an order ideal `I` (resp. order filter) of `self`, as a list (or iterable); this should be an order ideal if `direction` is set to 'down', and an order filter if `direction` is set to 'up'.
- `direction` – 'up' or 'down' (default: 'down').

The antichain of (minimal) generators of an order ideal `I` in a poset `P` is the set of all minimal elements of `P`. In the case of an order filter, the definition is similar, but with “maximal” used instead of “minimal”.

**EXAMPLES:**

We build the boolean lattice of all subsets of `{1,2,3}` ordered by inclusion, and compute an order ideal there:

```python
sage: P = Poset((Subsets([1,2,3]), attrcall("issubset")))
sage: I = P.order_ideal([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted(sorted(p) for p in I)
[[], [1], [1, 2], [2], [2, 3], [3]]
```

Then, we retrieve the generators of this ideal:

```python
sage: gen = P.order_ideal_generators(I)
sage: sorted(sorted(p) for p in gen)
[[1, 2], [2, 3]]
```

If `direction` is ‘up’, then this instead computes the minimal generators for an order filter:

```python
sage: I = P.order_filter([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted(sorted(p) for p in I)
[[1], [1, 2], [1, 2, 3], [1, 3], [2, 3]]
sage: gen = P.order_ideal_generators(I, direction='up')
sage: sorted(sorted(p) for p in gen)
[[1], [2, 3]]
```

**Complexity:** $O(n + m)$ where $n$ is the cardinality of $I$, and $m$ the number of upper covers of elements of $I$.

**order_ideals_lattice** *(as_ideals=True, facade=None)*

Return the lattice of order ideals of a poset `self`, ordered by inclusion.

The lattice of order ideals of a poset $P$ is usually denoted by $J(P)$. Its underlying set is the set of order ideals of $P$, and its partial order is given by inclusion.

The order ideals of $P$ are in a canonical bijection with the antichains of $P$. The bijection maps every order ideal to the antichain formed by its maximal elements. By setting the `as_ideals` keyword variable to False, one can make this method apply this bijection before returning the lattice.
INPUT:

• `as_ideals` – Boolean, if True (default) returns a poset on the set of order ideals, otherwise on the set of antichains

• `facade` – Boolean or None (default). Whether to return a facade lattice or not. By default return facade lattice if the poset is a facade poset.

EXAMPLES:

```
sage: P = posets.PentagonPoset()
sage: P.cover_relations()
[[0, 1], [0, 2], [1, 4], [2, 3], [3, 4]]
sage: J = P.order_ideals_lattice(); J
Finite lattice containing 8 elements
sage: sorted(sorted(e) for e in J)
[[], [0], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4], [0, 2], [0, 2, 3]]
```

As a lattice on antichains:

```
sage: J2 = P.order_ideals_lattice(False); J2
Finite lattice containing 8 elements
sage: sorted(J2)
[(), (0,), (1,), (1, 2), (1, 3), (2,), (3,), (4,)]
```

`panyushev_complement(antichain, direction='up')`

Return the Panyushev complement of the antichain `antichain`.

Given an antichain `A` of a poset `P`, the Panyushev complement of `A` is defined to be the antichain consisting of the minimal elements of the order filter `B`, where `B` is the (set-theoretic) complement of the order ideal of `P` generated by `A`.

Setting the optional keyword variable `direction` to 'down' leads to the inverse Panyushev complement being computed instead of the Panyushev complement. The inverse Panyushev complement of an antichain `A` is the antichain whose Panyushev complement is `A`. It can be found as the antichain consisting of the maximal elements of the order ideal `C`, where `C` is the (set-theoretic) complement of the order filter of `P` generated by `A`.

`panyushev_complement()` is an alias for this method.

Panyushev complementation is related (actually, isomorphic) to rowmotion (`rowmotion()`).

INPUT:

• `antichain` – an antichain of self, as a list (or iterable), or, more generally, generators of an order ideal (resp. order filter)

• `direction` – 'up' or 'down' (default: 'up')

OUTPUT:

• the generating antichain of the complement order filter (resp. order ideal) of the order ideal (resp. order filter) generated by the antichain `antichain`

EXAMPLES:

```
sage: P = Poset(([1,2,3], [[1,3], [2,3]]))
sage: P.order_ideal_complement_generators([1])
{2}
sage: P.order_ideal_complement_generators([3])
set()
sage: P.order_ideal_complement_generators([1,2])
{3}
sage: P.order_ideal_complement_generators([1,2,3])
set()
```
Warning: This is a brute force implementation, building the order ideal generated by the antichain, and searching for order filter generators of its complement.

\textbf{panyushev\_orbit\_iter} (antichain, element\_constructor=<class 'set'>, stop=True, check=True)

Iterate over the Panyushev orbit of an antichain antichain of self.

The Panyushev orbit of an antichain is its orbit under Panyushev complementation (see \texttt{panyushev\_complement()}).

\textbf{INPUT}:
- antichain – an antichain of self, given as an iterable.
- element\_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset, iter, etc.) which is to be applied to the antichains before they are yielded.
- stop – a Boolean (default: True) determining whether the iterator should stop once it completes its cycle (this happens when it is set to True) or go on forever (this happens when it is set to False).
- check – a Boolean (default: True) determining whether antichain should be checked for being an antichain.

\textbf{OUTPUT}:
- an iterator over the orbit of the antichain antichain under Panyushev complementation. This iterator \( I \) has the property that \( I[0] == \text{antichain} \) and each \( i \) satisfies self.order\_ideal\_complement\_generators(I[i]) == I[i+1], where \( I[i+1] \) has to be understood as \( I[0] \) if it is undefined. The entries \( I[i] \) are sets by default, but depending on the optional keyword variable element\_constructors they can also be tuples, lists etc.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: list(P.panyushev_orbit_iter(set([1, 2])))
[(1, 2), (3,), set()]
sage: list(P.panyushev_orbit_iter([1, 2]))
[(1, 2), (3,), set()]
sage: list(P.panyushev_orbit_iter([2, 1]))
[(1, 2), (3,), set()]
sage: list(P.panyushev_orbit_iter(set([1, 2]), element\_constructor=list))
[[1, 2], [3, []]]
sage: list(P.panyushev_orbit_iter(set([1, 2]), element\_constructor=frozenset))
[frozenset([1, 2]), frozenset([3]), frozenset()]
sage: list(P.panyushev_orbit_iter(set([1, 2]), element\_constructor=tuple))
[(1, 2), (3,), ()]
sage: P = Poset( [] )
sage: list(P.panyushev_orbit_iter([]))
\end{verbatim}
panyushev_orbits (element_constructor=<class 'set'>)

Return the Panyushev orbits of antichains in self.

The Panyushev orbit of an antichain is its orbit under Panyushev complementation (see \panyushev_complement()).

INPUT:
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset, iter, etc.) which is to be applied to the antichains before they are returned.

OUTPUT:
• the partition of the set of all antichains of self into orbits under Panyushev complementation. This is returned as a list of lists \( L \) such that for each \( L \) and \( i \), cyclically: self.order_ideal_complement_generators(\( L[i] \)) == \( L[i+1] \). The entries \( L[i] \) are sets by default, but depending on the optional keyword variable element_constructors they can also be tuples, lists etc.

EXAMPLES:

```python
sage: P = Poset(([1,2,3], ([1,3], [2,3]))
sage: orb = P.panyushev_orbits()
```

rowmotion (order_ideal)

The image of the order ideal order_ideal under rowmotion in self.

Rowmotion on a finite poset \( P \) is an automorphism of the set \( J(P) \) of all order ideals of \( P \). One way to define it is as follows: Given an order ideal \( I \in J(P) \), we let \( \overline{I} \) be the set-theoretic complement of \( I \) in \( P \). Furthermore we let \( A \) be the antichain consisting of all minimal elements of \( \overline{I} \). Then, the rowmotion of \( I \) is defined to be the order ideal of \( P \) generated by the antichain \( A \) (that is, the order ideal consisting of each element of \( P \) which has some element of \( A \) above it).
Rowmotion is related (actually, isomorphic) to Panyushev complementation (panyushev_complement()).

INPUT:
• order_ideal – an order ideal of self, as a set

OUTPUT:
• the image of order_ideal under rowmotion, as a set again

EXAMPLES:

```python
sage: P = Poset({1: [2, 3], 2: [], 3: [], 4: [8], 5: [], 6: [5], 7: [1, 4], 8: []})
sage: I = Set({2, 6, 1, 7})
sage: P.rowmotion(I)
{1, 3, 4, 5, 6, 7}
sage: P = Poset({})
sage: I = Set({})
sage: P.rowmotion(I)
{}
```

rowmotion_orbit_iter (oideal, element_constructor=<class 'set'>, stop=True, check=True)
Iterate over the rowmotion orbit of an order ideal oideal of self.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see rowmotion()).

INPUT:
• oideal – an order ideal of self, given as an iterable.
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset, iter, etc.) which is to be applied to the order ideals before they are yielded.
• stop – a Boolean (default: True) determining whether the iterator should stop once it completes its cycle (this happens when it is set to True) or go on forever (this happens when it is set to False).
• check – a Boolean (default: True) determining whether oideal should be checked for being an order ideal.

OUTPUT:
• an iterator over the orbit of the order ideal oideal under rowmotion. This iterator \( I \) has the property that \( I[0] == oideal \) and that every \( i \) satisfies \( self.rowmotion(I[i]) == I[i+1] \), where \( I[i+1] \) has to be understood as \( I[0] \) if it is undefined. The entries \( I[i] \) are sets by default, but depending on the optional keyword variable element_constructors they can also be tuples, lists etc.

EXAMPLES:

```python
sage: P = Poset(([1,2,3], [[1,3], [2,3]]))
sage: list(P.rowmotion_orbit_iter(set([1, 2])))
[(1, 2), (1, 2, 3), ()]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_constructor=list))
[[1, 2], [1, 2, 3], []]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_constructor=frozenset))
[frozenset((1, 2)), frozenset((1, 2, 3)), frozenset()]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_constructor=tuple))
[(1, 2), (1, 2, 3), ()]
```

(continues on next page)
rowmotion_orbits(element_constructor=<class 'set'>)

Return the rowmotion orbits of order ideals in self.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see rowmotion()).

INPUT:
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset, iter, etc.) which is to be applied to the antichains before they are returned.

OUTPUT:
• the partition of the set of all order ideals of self into orbits under rowmotion. This is returned as a list of lists $L$ such that for each $L$ and $i$, cyclically: self.rowmotion(L[i]) == L[i+1]. The entries $L[i]$ are sets by default, but depending on the optional keyword variable element_constructors they can also be tuples, lists etc.

EXAMPLES:

```python
sage: P = Poset({ 1: [2, 3], 2: [], 3: [], 4: [1] })
sage: list(P.rowmotion_orbit_iter([1, 2], element_constructor=list))
[[[1, 2], [1, 2, 3, 4], [2, 3, 5], [1, 2, 3], [1, 2, 3, 5], [1, 2, 4], [3]]]
```

rowmotion_orbits_plots()

Return plots of the rowmotion orbits of order ideals in self.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see rowmotion()).

EXAMPLES:
```
sage: P = Poset({1: [2, 3], 2: [], 3: [], 4: [2]})
sage: P.rowmotion_orbits_plots()
Graphics Array of size 2 x 5
sage: P = Poset({})
sage: P.rowmotion_orbits_plots()
Graphics Array of size 1 x 1
```

**toggling_orbit_iter**(vs, oideal, element_constructor=<class 'set'>, stop=True, check=True)

Iterate over the orbit of an order ideal oideal of self under the operation of toggling the vertices vs[0], vs[1], ... in this order.

See order_ideal_toggle() for a definition of toggling.

**Warning:** The orbit is that under the composition of toggles, **not** under the single toggles themselves. Thus, for example, if vs == [1,2], then the orbit has the form (I, T_1 I, T_2 T_1 I, ... ) (where I denotes oideal and T_i means toggling at i) rather than (I, T_1 I, T_2 T_1 I, ...).

**INPUT:**
- vs: a list (or other iterable) of elements of self (but since the output depends on the order, sets should not be used as vs).
- oideal – an order ideal of self, given as an iterable.
- element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset, iter, etc.) which is to be applied to the order ideals before they are yielded.
- stop – a Boolean (default: True) determining whether the iterator should stop once it completes its cycle (this happens when it is set to True) or go on forever (this happens when it is set to False).
- check – a Boolean (default: True) determining whether oideal should be checked for being an order ideal.

**OUTPUT:**
- an iterator over the orbit of the order ideal oideal under toggling the vertices in the list vs in this order. This iterator I has the property that I[0] == oideal and that every i satisfies self.order_ideal_toggles(I[i], vs) == I[i+1], where I[i+1] has to be understood as I[0] if it is undefined. The entries I[i] are sets by default, but depending on the optional keyword variable element_constructors they can also be tuples, lists etc.

**EXAMPLES:**

```
sage: P = Poset(([1,2,3], [[1,3], [2,3]]))
sage: list(P.toggling_orbit_iter([1, 3, 1], set([1, 2])))
[(1, 2)]
sage: list(P.toggling_orbit_iter([1, 2, 3], set([1, 2])))
[(1, 2), (1, 2, 3)]
sage: list(P.toggling_orbit_iter([3, 2, 1], set([1, 2])))
[(1, 2), (1, 2, 3)]
sage: list(P.toggling_orbit_iter([3, 2, 1], set([1, 2]), element_constructor=list))
[[1, 2], [1, 2, 3], []]
sage: list(P.toggling_orbit_iter([3, 2, 1], set([1, 2]), element_constructor=frozenset))
[frozenset([1, 2]), frozenset([1, 2, 3]), frozenset([])]
sage: list(P.toggling_orbit_iter([3, 2, 1], set([1, 2]), element_constructor=tuple))
[(1, 2), (1, 2, 3), ()]
```

(continues on next page)
toggling_orbits (vs, element_constructor=<class 'set'>)
Return the orbits of order ideals in self under the operation of toggling the vertices vs[0],
vs[1], ... in this order.

See order_ideal_toggle() for a definition of toggling.

Warning: The orbits are those under the composition of toggles, not under the single
toggles themselves. Thus, for example, if vs == [1,2], then the orbits have the form
(I, T_2 T_1 I, T_2 T_1 T_2 T_1 I, ...) (where I denotes an order ideal and T_i means toggling at i) rather
than (I, T_1 T_2 T_1 I, T_1 T_2 T_1 T_2 T_1 I, ...).

INPUT:
* vs: a list (or other iterable) of elements of self (but since the output depends on the order, sets
should not be used as vs).

OUTPUT:
* a partition of the order ideals of self, as a list of sets L such that for each L and i, cyclically:
  self.order_ideal_toggles(L[i], vs) == L[i+1].

EXAMPLES:

```
sage: P = Poset({ 1: [2, 4], 2: [], 3: [4], 4: [] })
sage: sorted(len(o) for o in P.toggling_orbits([1, 2]))
[2, 3, 3]
sage: P = Poset({ 1: [3], 2: [1, 4], 3: [], 4: [3] })
sage: sorted(len(o) for o in P.toggling_orbits([1, 2, 4, 3]))
[3, 3]
```
3.63 Finite semigroups

```python
defPoset({1: [2, 3], 2: [], 3: [], 4: [2]})

defPoset({})
```

A finite semigroup is a finite set endowed with an associative binary operation \( \ast \).

**Warning:** Finite semigroups in Sage used to be automatically endowed with an enumerated set structure; the default enumeration is then obtained by iteratively multiplying the semigroup generators. This forced any finite semigroup to either implement an enumeration, or provide semigroup generators; this was often inconvenient.

Instead, finite semigroups that provide a distinguished finite set of generators with `semigroup_generators()` should now explicitly declare themselves in the category of finitely generated semigroups:

```python
defSemigroups().FinitelyGenerated()
```

This is a backward incompatible change.

**EXAMPLES:**

```python
defC = FiniteSemigroups(); C
defC.super_categories()
defsorted(C.axioms())
defC.example()
```

An example of a finite semigroup: the left regular band generated by \( \langle a', b', c \mapsto d' \rangle \).

**class ParentMethods**

Bases: object

`idempotents()`

Returns the idempotents of the semigroup

**EXAMPLES:**

```python
defS = FiniteSemigroups().example(alphabet=('x','y'))
defsorted(S.idempotents())
```
\begin{verbatim}
Sage: S = FiniteSemigroups().example(alphabet=('a','b', 'c'))
Sage: sorted(map(sorted, S.j_classes()))
[['a'], ['ab', 'ba'], ['abc', 'acb', 'bac', 'bca', 'cab', 'cba'], ['ac', 'ca'], ['b'], ['bc', 'cb'], ['c']]
\end{verbatim}
class Algebras

    Bases: sage.categories.algebra_functor.AlgebrasCategory

    extra_super_categories()

    EXAMPLES:

        sage: FiniteSets().Algebras(QQ).extra_super_categories()
        [Category of finite dimensional vector spaces with basis over Rational Field]

    This implements the fact that the algebra of a finite set is finite dimensional:

        sage: FiniteMonoids().Algebras(QQ).is_subcategory(AlgebrasWithBasis(QQ).
         ...FiniteDimensional())
        True

class ParentMethods

    Bases: object

    is_finite()

    Return True since self is finite.

    EXAMPLES:

        sage: C = FiniteEnumeratedSets().example()
        sage: C.is_finite()
        True

class Subquotients

    Bases: sage.categories.subquotients.SubquotientsCategory

    extra_super_categories()

    EXAMPLES:

        sage: FiniteSets().Subquotients().extra_super_categories()
        [Category of finite sets]

    This implements the fact that a subquotient (and therefore a quotient or subobject) of a finite set is finite:

        sage: FiniteSets().Subquotients().is_subcategory(FiniteSets())
        True
        sage: FiniteSets().Quotients().is_subcategory(FiniteSets())
        True
        sage: FiniteSets().Subobjects().is_subcategory(FiniteSets())
        True
3.65 Finite Weyl Groups

class sage.categories.finite_weyl_groups.FiniteWeylGroups(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite Weyl groups.

EXAMPLES:

    sage: C = FiniteWeylGroups()
    sage: C
    Category of finite weyl groups
    sage: C.super_categories()
    [Category of finite coxeter groups, Category of weyl groups]
    sage: C.example()
    The symmetric group on {0, ..., 3}

class ElementMethods
    Bases: object

class ParentMethods
    Bases: object

3.66 Finitely Generated Lambda bracket Algebras

AUTHORS:
- Reimundo Heluani (2020-08-21): Initial implementation.

class sage.categories.finitely_generated_lambda_bracket_algebras.FinitelyGeneratedLambdaBracketAlgebras(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finitely generated lambda bracket algebras.

EXAMPLES:

    sage: from sage.categories.lambda_bracket_algebras import LambdaBracketAlgebras
    sage: LambdaBracketAlgebras(QQbar).FinitelyGenerated()
    Category of finitely generated lambda bracket algebras over Algebraic Field

class Graded(base_category)
    Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded finitely generated Lie conformal algebras.

EXAMPLES:

    sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Graded()
    Category of H-graded finitely generated lie conformal algebras over Algebraic Field

class ParentMethods
    Bases: object

    gen(i)
    The i-th generator of this Lie conformal algebra.

    EXAMPLES:
ngens ()
The number of generators of this Lie conformal algebra.

EXAMPLES:

```sage
sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.ngens()
2
```

some_elements ()
Some elements of this Lie conformal algebra.
This method returns a list with elements containing at least the generators.

EXAMPLES:

```sage
sage: V = lie_conformal_algebras.Affine(QQ, 'A1', names=('e', 'h', 'f'))
sage: V.some_elements()
[e, h, f, K, Th + 4*T^(2)e, 4*T^(2)h, Te + 4*T^(2)e, Te + 4*T^(2)h]
```

### 3.67 Finitely Generated Lie Conformal Algebras

AUTHORS:


```sage
sage: LieConformalAlgebras(QQbar).FinitelyGenerated()
Category of finitely generated lie conformal algebras over Algebraic Field
```

```sage
class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory
The category of H-graded finitely generated Lie conformal algebras.
```

```sage
sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Graded()
Category of H-graded finitely generated lie conformal algebras over Algebraic Field
```

---

```sage
sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
sage: V.gens()
(B[alpha[1]], B[alphacheck[1]], B[-alpha[1]], B['K'])
sage: V.gen(0)
B[alpha[1]]
sage: V.1
B[alphacheck[1]]
```

```sage
sage: Vngens()()2
The number of generators of this Lie conformal algebra.

```sage
sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.ngens()
2
```

```sage
sage: V = lie_conformal_algebras.Affine(QQ, 'A2')
sage: V.ngens()
9
```

```sage
sage: V = lie_conformal_algebras.Affine(QQ, 'A1', names=('e', 'h', 'f'))
sage: V.some_elements()
[e, h, f, K, Th + 4*T^(2)e, 4*T^(2)h, Te + 4*T^(2)e, Te + 4*T^(2)h]
```
class ParentMethods
Bases: object

some_elements()
Some elements of this Lie conformal algebra.
Returns a list with elements containing at least the generators.

EXAMPLES:

```
sage: V = lie_conformal_algebras.Affine(QQ, 'A1', names=('e', 'h', 'f'))
sage: V.some_elements()
[e, h, f, K, Th + 4*T^(2)e, 4*T^(2)h, Te + 4*T^(2)e, Te + 4*T^(2)h]
```

class Super (base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super finitely generated Lie conformal algebras.

EXAMPLES:

```
sage: LieConformalAlgebras(AA).FinitelyGenerated().Super()
Category of super finitely generated lie conformal algebras over Algebraic
→ Real Field
```

class Graded (base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded super finitely generated Lie conformal algebras.

EXAMPLES:

```
sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Super().Graded()
Category of H-graded super finitely generated lie conformal algebras over
→ Algebraic Field
```

3.68 Finitely generated magmas

class sage.categories.finitely_generated_magmas.FinitelyGeneratedMagmas (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finitely generated (multiplicative) magmas.

See Magmas.SubcategoryMethods.FinitelyGeneratedAsMagma() for details.

EXAMPLES:

```
sage: C = Magmas().FinitelyGeneratedAsMagma(); C
Category of finitely generated magmas
sage: C.super_categories()
[Category of magmas]
sage: sorted(C.axioms())
['FinitelyGeneratedAsMagma']
```

class ParentMethods
Bases: object

magma_generators()
Return distinguished magma generators for self.

3.68. Finitely generated magmas
OUTPUT: a finite family

This method should be implemented by all finitely generated magmas.

EXAMPLES:

```python
sage: S = FiniteSemigroups().example()
sage: S.magma_generators()
Family ('a', 'b', 'c', 'd')
```

3.69 Finitely generated semigroups

```python
class sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups(base_category)
  Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finitely generated (multiplicative) semigroups.

A finitely generated semigroup is a semigroup endowed with a distinguished finite set of generators (see FinitelyGeneratedSemigroups.ParentMethods.semigroup_generators()). This makes it into an enumerated set.

EXAMPLES:

```python
sage: C = Semigroups().FinitelyGenerated(); C
Category of finitely generated semigroups
sage: C.super_categories()
[Category of semigroups, Category of finitely generated magmas, Category of enumerated sets]
sage: sorted(C.axioms())
['Associative', 'Enumerated', 'FinitelyGeneratedAsMagma']
sage: C.example()
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')
```

```python
class Finite(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class ParentMethods
 Bases: object

 some_elements()

 Return an iterable containing some elements of the semigroup.

 OUTPUT: the ten first elements of the semigroup, if they exist.

 EXAMPLES:

```python
sage: S = FiniteSemigroups().example(alphabet=('x','y'))
sage: sorted(S.some_elements())
['x', 'xy', 'y', 'yx']
sage: S = FiniteSemigroups().example(alphabet=('x','y','z'))
sage: X = S.some_elements()
sage: len(X)
10
sage: all(x in S for x in X)
True```
class ParentMethods
Bases: object

ideal (gens, side='twosided')

Return the side-sided ideal generated by gens.

This brute force implementation recursively multiplies the elements of gens by the distinguished generators of this semigroup.

See also:

semigroup_generators()

INPUT:
• gens – a list (or iterable) of elements of self
• side – [default: “twosided”] “left”, “right” or “twosided”

EXAMPLES:

\[
\begin{align*}
sage: S &= \text{FiniteSemigroups()}.example() \\
sage: \text{sorted}(S.\text{ideal}([S('cab')], \text{side}="left")) \\
&= ['abc', 'abcd', 'abdc', 'acb', 'acbd', 'adbc', 'adcb', 'baced', 'baed', 'bcad', 'bcda', 'bcda', 'cbad', 'cbda', 'cdab', 'cdba', 'dabc', 'dacb', 'dbac', 'dbca', 'dcab', 'dcba'] \\
sage: \text{sorted}(S.\text{ideal}([S('cab')], \text{side}="twosided")) \\
\end{align*}
\]

semigroup_generators()

Return distinguished semigroup generators for self.

OUTPUT: a finite family

This method should be implemented by all semigroups in FinitelyGeneratedSemigroups.

EXAMPLES:

\[
\begin{align*}
sage: S &= \text{FiniteSemigroups()}.example() \\
sage: S.\text{semigroup}\_\text{generators}() \\
Family ('a', 'b', 'c', 'd')
\end{align*}
\]

succ_generators (side='twosided')

Return the successor function of the side-sided Cayley graph of self.

This is a function that maps an element of self to all the products of x by a generator of this semigroup, where the product is taken on the left, right, or both sides.

INPUT:
• side: “left”, “right”, or “twosided”
Todo: Design choice:
• find a better name for this method
• should we return a set? a family?

EXAMPLES:

```python
sage: S = FiniteSemigroups().example()
sage: S.succ_generators("left") (S('ca'))
('ac', 'bca', 'ca', 'dca')
sage: S.succ_generators("right") (S('ca'))
('ca', 'cab', 'ca', 'cad')
sage: S.succ_generators("twosided") (S('ca'))
('ac', 'bca', 'ca', 'dca', 'ca', 'cab', 'ca', 'cad')
```

```
example()
```

```python
sage: Semigroups().FinitelyGenerated().example()
An example of a semigroup: the free semigroup generated
by ('a', 'b', 'c', 'd')
```

extra_super_categories()

State that a finitely generated semigroup is endowed with a default enumeration.

EXAMPLES:

```python
sage: Semigroups().FinitelyGenerated().extra_super_categories()
[Category of enumerated sets]
```

## 3.70 Function fields

class sage.categories.function_fields.FunctionFields(s=None)

Bases: sage.categories.category.Category

The category of function fields.

EXAMPLES:

We create the category of function fields:

```python
sage: C = FunctionFields()
sage: C
Category of function fields
```

class ElementMethods

Bases: object

class ParentMethods

Bases: object

super_categories()

Returns the Category of which this is a direct sub-Category For a list off all super categories see
all_super_categories

EXAMPLES:
3.71 G-Sets

class sage.categories.g_sets.GSets(G)
    Bases: sage.categories.category.Category
    The category of $G$-sets, for a group $G$.

    EXAMPLES:

    sage: S = SymmetricGroup(3)
sage: GSets(S)
Category of G-sets for Symmetric group of order 3! as a permutation group

    TODO: should this derive from Category_over_base?

classmethod an_instance()
    Returns an instance of this class.

    EXAMPLES:

    sage: GSets.an_instance() # indirect doctest
    Category of G-sets for Symmetric group of order 8! as a permutation group

    super_categories()
    EXAMPLES:

    sage: GSets(SymmetricGroup(8)).super_categories()
[Category of sets]

3.72 Gcd domains

class sage.categories.gcd_domains.GcdDomains(s=\text{None})
    Bases: sage.categories.category_singleton.Category_singleton
    The category of gcd domains domains where gcd can be computed but where there is no guarantee of factorisation into irreducibles

    EXAMPLES:

    sage: GcdDomains()
Category of gcd domains
    sage: GcdDomains().super_categories()
[Category of integral domains]

class ElementMethods
    Bases: object

class ParentMethods
    Bases: object
additional_structure()  
Return None.
Indeed, the category of gcd domains defines no additional structure: a ring morphism between two gcd domains is a gcd domain morphism.

See also:
Category.additional_structure()
EXAMPLES:

sage: GcdDomains().additional_structure()

super_categories()  
EXAMPLES:

sage: GcdDomains().super_categories()
[Category of integral domains]

3.73 Generalized Coxeter Groups

class sage.categories.generalized_coxeter_groups.GeneralizedCoxeterGroups(s=None)
Bases: sage.categories.category_singleton.Category_singleton
The category of generalized Coxeter groups.
A generalized Coxeter group is a group with a presentation of the following form:

$$\langle s_i \mid s_i^{p_i}, s_is_j \cdots = s_js_i \cdots \rangle,$$

where $p_i > 1$, $i \in I$, and the factors in the braid relation occur $m_{ij} = m_{ji}$ times for all $i \neq j \in I$.

EXAMPLES:

sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: C = GeneralizedCoxeterGroups(); C
Category of generalized coxeter groups

class sage.categories.generalized_coxeter_groups.Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton
The category of finite generalized Coxeter groups.
extra_super_categories()  
Implement that a finite generalized Coxeter group is a well-generated complex reflection group.

EXAMPLES:

sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: Cat = GeneralizedCoxeterGroups().Finite()
sage: Cat.extra_super_categories()
[Category of well generated finite complex reflection groups]
additional_structure()  
Return None.

Indeed, all the structure generalized Coxeter groups have in addition to groups (simple reflections, ...) is already defined in the super category.

See also:
Category.additional_structure()

EXAMPLES:

```python
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: GeneralizedCoxeterGroups().additional_structure()
```

super_categories()  

EXAMPLES:

```python
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: GeneralizedCoxeterGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]
```

### 3.74 Graded Algebras

```python
class sage.categories.graded_algebras.GradedAlgebras(base_category)
 Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded algebras

 EXAMPLES:

    ```python
    sage: GradedAlgebras(ZZ)
    Category of graded algebras over Integer Ring
    sage: GradedAlgebras(ZZ).super_categories()
    [Category of filtered algebras over Integer Ring,
     Category of graded modules over Integer Ring]
    ```
```

```python
class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

 graded_algebra()

 Return the associated graded algebra to self.

 Since self is already graded, this just returns self.

 EXAMPLES:
    ```
class SignedTensorProducts(category, *args)
    Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

    extra_super_categories()

    EXAMPLES:

    sage: Algebras(QQ).Graded().SignedTensorProducts().extra_super_categories()
    [Category of graded algebras over Rational Field]
    sage: Algebras(QQ).Graded().SignedTensorProducts().super_categories()
    [Category of graded algebras over Rational Field]

    Meaning: a signed tensor product of algebras is an algebra

class SubcategoryMethods
    Bases: object

    SignedTensorProducts()

    Return the full subcategory of objects of self constructed as signed tensor products.

    See also:
    • SignedTensorProductsCategory
    • CovariantFunctorialConstruction

    EXAMPLES:

    sage: AlgebrasWithBasis(QQ).Graded().SignedTensorProducts()
    Category of signed tensor products of graded algebras with basis over Rational Field

3.75 Graded algebras with basis

class sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis(base_category)
    Bases: sage.categories.graded_modules.GradedModulesCategory

    The category of graded algebras with a distinguished basis

    EXAMPLES:

    sage: C = GradedAlgebrasWithBasis(ZZ); C
    Category of graded algebras with basis over Integer Ring
    sage: sorted(C.super_categories(), key=str)
    [Category of filtered algebras with basis over Integer Ring, 
     Category of graded algebras over Integer Ring, 
     Category of graded modules with basis over Integer Ring]

class ElementMethods
    Bases: object
class ParentMethods
    Bases: object
graded_algebra()

Return the associated graded algebra to self.

This is self, because self is already graded. See graded_algebra() for the general behavior of this method, and see AssociatedGradedAlgebra for the definition and properties of associated graded algebras.

EXAMPLES:

```python
sage: m = SymmetricFunctions(QQ).m()
sage: m.graded_algebra() is m
True
```

class SignedTensorProducts(category, *args)

Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

The category of algebras with basis constructed by signed tensor product of algebras with basis.

class ParentMethods

Bases: object

Implements operations on tensor products of super algebras with basis.

one_basis()

Return the index of the one of this signed tensor product of algebras, as per
AlgebrasWithBasis.PARENTS.labels.

It is the tuple whose operands are the indices of the ones of the operands, as returned by their
one_basis() methods.

EXAMPLES:

```python
sage: A.<x,y> = ExteriorAlgebra(QQ)
sage: A.one_basis()()
sage: B = tensor((A, A, A))
sage: B.one_basis()()
sage: B.one()
1 # 1 # 1
```

product_on_basis(t0, t1)

The product of the algebra on the basis, as per
AlgebrasWithBasis.PARENTS.labels.

product_on_basis.

EXAMPLES:

Test the sign in the super tensor product:

```python
sage: A = SteenrodAlgebra(3)
sage: x = A.Q(0)
sage: y = x.coproduct()
sage: y^2 0
```

TODO: optimize this implementation!

extra_super_categories()

EXAMPLES:
3.76 Graded bialgebras

The category of graded bialgebras

EXAMPLES:

```python
sage: C = GradedBialgebras(QQ); C
Join of Category of graded algebras over Rational Field
and Category of bialgebras over Rational Field
and Category of graded coalgebras over Rational Field
sage: C is Bialgebras(QQ).Graded()
True
```

3.77 Graded bialgebras with basis

The category of graded bialgebras with a distinguished basis

EXAMPLES:

```python
sage: C = GradedBialgebrasWithBasis(QQ); C
Join of Category of graded algebras over Rational Field
and Category of bialgebras with basis over Rational Field
and Category of graded coalgebras with basis over Rational Field
sage: C is BialgebrasWithBasis(QQ).Graded()
True
```

3.78 Graded Coalgebras

The category of graded coalgebras

EXAMPLES:

```python
sage: C = GradedCoalgebras(QQ); C
Category of graded coalgebras over Rational Field
sage: C is Coalgebras(QQ).Graded()
True
```

class SignedTensorProducts (category, *args)

Bases: sage.categories.signed_tensor.SignedTensorProductsCategory
extra_super_categories()

EXAMPLES:

```
sage: Coalgebras(QQ).Graded().SignedTensorProducts().extra_super_categories()
[Category of graded coalgebras over Rational Field]
sage: Coalgebras(QQ).Graded().SignedTensorProducts().super_categories()
[Category of graded coalgebras over Rational Field]
```

Meaning: a signed tensor product of coalgebras is a coalgebra

class SubcategoryMethods

Bases: object

SignedTensorProducts()

Return the full subcategory of objects of self constructed as signed tensor products.

See also:

• SignedTensorProductsCategory
• CovariantFunctorialConstruction

EXAMPLES:

```
sage: CoalgebrasWithBasis(QQ).Graded().SignedTensorProducts()
Category of signed tensor products of graded coalgebras with basis over Rational Field
```

### 3.79 Graded coalgebras with basis

class sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis(base_category)

Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded coalgebras with a distinguished basis.

EXAMPLES:

```
sage: C = GradedCoalgebrasWithBasis(QQ); C
Category of graded coalgebras with basis over Rational Field
sage: C is Coalgebras(QQ).WithBasis().Graded()
True
```

class SignedTensorProducts(category, *args)

Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

The category of coalgebras with basis constructed by signed tensor product of coalgebras with basis.

extra_super_categories()

EXAMPLES:

```
sage: Cat = CoalgebrasWithBasis(QQ).Graded()
sage: Cat.SignedTensorProducts().extra_super_categories()
[Category of graded coalgebras with basis over Rational Field]
sage: Cat.SignedTensorProducts().super_categories()
[Category of graded coalgebras with basis over Rational Field, Category of signed tensor products of graded coalgebras over Rational Field]
```
3.80 Graded Hopf algebras

The category of graded Hopf algebras.

```sage
sage: C = GradedHopfAlgebras(QQ); C
Join of Category of hopf algebras over Rational Field
 and Category of graded algebras over Rational Field
 and Category of graded coalgebras over Rational Field

sage: C is HopfAlgebras(QQ).Graded()
True
```

**Note:** This is not a graded Hopf algebra as is typically defined in algebraic topology as the product in the tensor square \((x \otimes y)(a \otimes b) = (xa) \otimes (yb)\) does not carry an additional sign. For this, instead use super Hopf algebras.

3.81 Graded Hopf algebras with basis

The category of graded Hopf algebras with a distinguished basis.

```sage
sage: C = GradedHopfAlgebrasWithBasis(ZZ); C
Category of graded hopf algebras with basis over Integer Ring

sage: C.super_categories()
[Category of filtered hopf algebras with basis over Integer Ring,
 Category of graded algebras with basis over Integer Ring,
 Category of graded coalgebras with basis over Integer Ring]

sage: C is HopfAlgebras(ZZ).WithBasis().Graded()
True
sage: C is HopfAlgebras(ZZ).Graded().WithBasis()
False
```

```sage
class Connected(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

 antipode_on_basis(index)
 The antipode on the basis element indexed by index.

 INPUT:
 - index – an element of the index set
```
For a graded connected Hopf algebra, we can define an antipode recursively by

$$S(x) := - \sum_{x \neq x} S(x^L) \times x^R$$

when $|x| > 0$, and by $S(x) = x$ when $|x| = 0$.

**counit_on_basis**(i)

The default counit of a graded connected Hopf algebra.

**INPUT:**
- i – an element of the index set

**OUTPUT:**
- an element of the base ring

$$c(i) := \begin{cases} 1 & \text{if } i \text{ indexes the 1 of the algebra} \\ 0 & \text{otherwise} \end{cases}$$

**EXAMPLES:**

```python
sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
sage: H.monomial(4).counit() # indirect doctest
0
sage: H.monomial(0).counit() # indirect doctest
1
```

**example()**

Return an example of a graded connected Hopf algebra with a distinguished basis.

**class** **ElementMethods**

Bases: object

**class** **ParentMethods**

Bases: object

**class** **WithRealizations**(category, *args)

Bases: sage.categories.with_realizations.WithRealizationsCategory

**super_categories()**

**EXAMPLES:**

```python
sage: GradedHopfAlgebrasWithBasis(QQ).WithRealizations().super_categories()
[Join of Category of hopf algebras over Rational Field and Category of graded algebras over Rational Field and Category of graded coalgebras over Rational Field]
```

**example()**

Return an example of a graded Hopf algebra with a distinguished basis.
3.82 Graded Lie Algebras

AUTHORS:

- Eero Hakavuori (2018-08-16): initial version

```python
class sage.categories.graded_lie_algebras.GradedLieAlgebras(base_category):
 Bases: sage.categories.graded_modules.GradedModulesCategory

Category of graded Lie algebras.

class Stratified(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of stratified Lie algebras.

A graded Lie algebra \(L = \bigoplus_{k=1}^{M} L_k \) (where possibly \(M = \infty \)) is called **stratified** if it is generated by \(L_1 \); in other words, we have \(L_{k+1} = [L_1, L_k] \).

class FiniteDimensional(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional stratified Lie algebras.

EXAMPLES:

```sage
sage: LieAlgebras(QQ).Graded().Stratified().FiniteDimensional()
Category of finite dimensional stratified Lie algebras over Rational Field
```

extra_super_categories()

Implements the fact that a finite dimensional stratified Lie algebra is nilpotent.

```sage
sage: C = LieAlgebras(QQ).Graded().Stratified().FiniteDimensional()
sage: C.extra_super_categories()
[Category of nilpotent Lie algebras over Rational Field]
sage: C.is(C.Nilpotent())
True
sage: C.is_subcategory(LieAlgebras(QQ).Nilpotent())
True
```

class SubcategoryMethods

Bases: object

Stratified()

Return the full subcategory of stratified objects of `self`.

A Lie algebra is stratified if it is graded and generated as a Lie algebra by its component of degree one.

EXAMPLES:

```sage
sage: LieAlgebras(QQ).Graded().Stratified()
Category of stratified Lie algebras over Rational Field
```
3.83 Graded Lie Algebras With Basis

class sage.categories.graded_lie_algebras_with_basis.GradedLieAlgebrasWithBasis(base_category):
 Bases: sage.categories.graded_modules.GradedModulesCategory

 The category of graded Lie algebras with a distinguished basis.

 EXAMPLES:

 sage: C = LieAlgebras(ZZ).WithBasis().Graded(); C
 Category of graded lie algebras with basis over Integer Ring
 sage: C.super_categories()
 [Category of graded modules with basis over Integer Ring,
 Category of lie algebras with basis over Integer Ring,
 Category of graded Lie algebras over Integer Ring]
 sage: C is LieAlgebras(ZZ).WithBasis().Graded()
 True
 sage: C is LieAlgebras(ZZ).Graded().WithBasis()
 False

 FiniteDimensional
 alias of sage.categories.finite_dimensional_graded_lie_algebras_with_basis.FiniteDimensionalGradedLieAlgebrasWithBasis

3.84 Graded Lie Conformal Algebras

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebras(base_category):
 Bases: sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory

 The category of graded Lie conformal algebras.

 EXAMPLES:

 sage: C = LieConformalAlgebras(QQbar).Graded(); C
 Category of H-graded Lie conformal algebras over Algebraic Field
 sage: CS = LieConformalAlgebras(QQ).Graded().Super(); CS
 Category of H-graded super Lie conformal algebras over Rational Field
 sage: CS is LieConformalAlgebras(QQ).Super().Graded()
 True

 class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory(base_category):
 Bases: sage.categories.graded_modules.GradedModulesCategory

 Super(base_ring=None)
 Return the super-analogue category of self.

 INPUT:

 • base_ring – this is ignored

 EXAMPLES:
sage: C = LieConformalAlgebras(QQbar)
sage: C.Graded().Super() is C.Super().Graded()
True
sage: Cp = C.WithBasis()
sage: Cp.Graded().Super() is Cp.Super().Graded()
True

3.85 Graded modules

class `sage.categories.graded_modules.GradedModules`(`base_category`)

Bases: `sage.categories.graded_modules.GradedModulesCategory`

The category of graded modules.

We consider every graded module \(M = \bigoplus_i M_i \) as a filtered module under the (natural) filtration given by

\[
F_i = \bigoplus_{j<i} M_j.
\]

EXAMPLES:

```python
sage: GradedModules(ZZ)
Category of graded modules over Integer Ring
sage: GradedModules(ZZ).super_categories()
[Category of filtered modules over Integer Ring]
```

The category of graded modules defines the graded structure which shall be preserved by morphisms:

```python
sage: Modules(ZZ).Graded().additional_structure()
Category of graded modules over Integer Ring
```

class `ElementMethods`

Bases: `object`

class `ParentMethods`

Bases: `object`

class `sage.categories.graded_modules.GradedModulesCategory`(`base_category`)

Bases: `sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory`, `sage.categories.category_types.Category_over_base_ring`

EXAMPLES:

```python
sage: C = GradedAlgebras(QQ)
sage: C
Category of graded algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of filtered algebras over Rational Field, Category of graded vector spaces over Rational Field]
```

```python
sage: AlgebrasWithBasis(QQ).Graded().base_ring()
Rational Field
sage: GradedHopfAlgebrasWithBasis(QQ).base_ring()
Rational Field
```
classmethod default_super_categories(category, *args)

Return the default super categories of category.Graded().

Mathematical meaning: every graded object (module, algebra, etc.) is a filtered object with the (implicit) filtration defined by \(F_1 = \bigoplus_{j \leq i} G_j \).

INPUT:

- cls -- the class GradedModulesCategory
- category -- a category

OUTPUT: a (join) category

In practice, this returns category.Filtered(), joined together with the result of the method RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of category.Filtered() and cat for each cat in the super categories of category).

EXAMPLES:

Consider category=Algebras(), which has cat=Modules() as super category. Then, a grading of an algebra \(G \) is also a filtration of \(G \):

```
sage: Algebras(QQ).Graded().super_categories()
[Category of filtered algebras over Rational Field,
 Category of graded vector spaces over Rational Field]
```

This resulted from the following call:

```
sage: sage.categories.graded_modules.GradedModulesCategory.default_super_categories(Algebras(QQ))
Join of Category of filtered algebras over Rational Field
 and Category of graded vector spaces over Rational Field
```

3.86 Graded modules with basis

class sage.categories.graded_modules_with_basis.GradedModulesWithBasis(base_category)

Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded modules with a distinguished basis.

EXAMPLES:

```
sage: C = GradedModulesWithBasis(ZZ); C
Category of graded modules with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of filtered modules with basis over Integer Ring,
 Category of graded modules over Integer Ring]
sage: C is ModulesWithBasis(ZZ).Graded()
True
```

class ElementMethods

Bases: object

degree_negation()

Return the image of self under the degree negation automorphism of the graded module to which self belongs.
The degree negation is the module automorphism which scales every homogeneous element of degree \(k \) by \((-1)^k\) (for all \(k \)). This assumes that the module to which \(self \) belongs (that is, the module \(self.parent() \)) is \(\mathbb{Z} \)-graded.

EXAMPLES:

```python
sage: E.<a,b> = ExteriorAlgebra(QQ)
sage: (1 + a) * (1 + b).degree_negation()
an*b - a - b + 1
sage: E.zero().degree_negation()
0

sage: P = GradedModulesWithBasis(ZZ).example(); P
An example of a graded module with basis: the free module on partitions over Integer Ring
sage: pbp = lambda x: P.basis()[Partition(list(x))]
sage: p = pbp([3,1]) - 2 * pbp([2]) + 4 * pbp([1])
sage: p.degree_negation()
```

3.87 Graphs

class `sage.categories.graphs.Graphs(s=None)`

Bases: `sage.categories.category_singleton.Category_singleton`

The category of graphs.

EXAMPLES:
sage: from sage.categories.graphs import Graphs
sage: C = Graphs(); C
Category of graphs

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of connected graphs.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().Connected();

extra_super_categories()

Return the extra super categories of self.

A connected graph is also a metric space.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: Graphs().Connected().super_categories()

class ParentMethods
Bases: object

dimension()

Return the dimension of self as a CW complex.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()

edges()

Return the edges of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()

faces()

Return the faces of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()

(continues on next page)
facets()
Return the facets of self.

EXAMPLES:

```python
sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.facets()
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
```

vertices()
Return the vertices of self.

EXAMPLES:

```python
sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.vertices()
[0, 1, 2, 3, 4]
```

super_categories()
EXAMPLES:

```python
sage: from sage.categories.graphs import Graphs
sage: Graphs().super_categories()
[Category of simplicial complexes]
```

3.88 Group Algebras

This module implements the category of group algebras for arbitrary groups over arbitrary commutative rings. For details, see `sage.categories.algebra_functor`.

AUTHOR:

- David Loeffler (2008-08-24): initial version
- Martin Raum (2009-08): update to use new coercion model – see trac ticket #6670.
- John Palmieri (2011-07): more updates to coercion, categories, etc., group algebras constructed using CombinatorialFreeModule – see trac ticket #6670.
- Nicolas M. Thiéry (2010-2017), Travis Scrimshaw (2017): generalization to a covariant functorial construction for monoid algebras, and beyond – see e.g. trac ticket #18700.

class `sage.categories.group_algebras.GroupAlgebras`
`category, *args`

Bases: `sage.categories.algebra_functor.AlgebrasCategory`

The category of group algebras over a given base ring.

EXAMPLES:

```python
sage: C = Groups().Algebras(ZZ); C
Category of group algebras over Integer Ring
sage: C.super_categories()
(continues on next page)
```
We can also construct this category with:

```
sage: C is GroupAlgebras(ZZ)
True
```

Here is how to create the group algebra of a group G:

```
sage: G = DihedralGroup(5)
sage: QG = G.algebra(QQ); QG
Algebra of Dihedral group of order 10 as a permutation group over Rational Field
```

and an example of computation:

```
sage: g = G.an_element(); g
(1,4)(2,3)
sage: (QG.term(g) + 1)**3
4*() + 4*(1,4)(2,3)
```

Todo:

- Check which methods would be better located in `Monoid.Algebras` or `Groups.Finite.Algebras`.

```python
class ElementMethods
    Bases: object
    central_form()
        Return `self` expressed in the canonical basis of the center of the group algebra.
        INPUT:
            • `self` – an element of the center of the group algebra
        OUTPUT:
            • A formal linear combination of the conjugacy class representatives representing its coordinates in the canonical basis of the center. See `Groups.Algebras.ParentMethods.center_basis()` for details.
```

Warning:

- This method requires the underlying group to have a method `conjugacy_classes_representatives` (every permutation group has one, thanks GAP!).
- This method does not check that the element is indeed central. Use the method `Monoids.Algebras.ElementMethods.is_central()` for this purpose.
- This function has a complexity linear in the number of conjugacy classes of the group. One could easily implement a function whose complexity is linear in the size of the support of `self`.

Examples:
The following test fails due to a bug involving combinatorial free modules and the coercion system (see trac ticket #28544):

```
sage: QG = GroupAlgebras(QQ).example(PermutationGroup([[1,2,3),(4,5)],
                                           [3,4]))
sage: s = sum(i for i in QG.basis())
sage: s.central_form()  # not tested
B[()] + B[(4,5)] + B[(3,4,5)] + B[(2,3)(4,5)] + B[(2,3,4,5)] + B[(1,2)(3,4,5)] + B[(1,2,3,4,5)]
```

See also:

- Groups.Algebras.ParentMethods.center_basis()
- Monoids.Algebras.ElementMethods.is_central()

```python
class ParentMethods
Bases: object

antipode_on_basis(g)
Return the antipode of the element g of the basis.

Each basis element g is group-like, and so has antipode g⁻¹. This method is used to compute the antipode of any element.

EXAMPLES:
```
sage: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: g = CyclicPermutationGroup(6).an_element(); g
(1,2,3,4,5,6)
sage: A.antipode_on_basis(g)
(1,6,5,4,3,2)
sage: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)
sage: a.antipode()
() + 3*(1,5,3)(2,6,4) + 3*(1,6,5,4,3,2)
```

center_basis()
Return a basis of the center of the group algebra.

The canonical basis of the center of the group algebra is the family \((f_{\sigma})_{\sigma \in C}\), where \(C\) is any collection of representatives of the conjugacy classes of the group, and \(f_{\sigma}\) is the sum of the elements in the conjugacy class of \(\sigma\).

OUTPUT:

- tuple of elements of self

Warning:
• This method requires the underlying group to have a method `conjugacy_classes` (every permutation group has one, thanks GAP!).

**EXAMPLES:**

```python
copy: SymmetricGroup(3).algebra(QQ).center_basis()
(() + (2,3) + (1,2) + (1,3), (1,2,3) + (1,3,2))
```

**See also:**

• Groups.Algebras.ElementMethods.central_form()
• Monoids.Algebras.ElementMethods.is_central()

`coproduct_on_basis(g)`

Return the coproduct of the element `g` of the basis.

Each basis element `g` is group-like. This method is used to compute the coproduct of any element.

**EXAMPLES:**

```python
copy: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer
Ring

copy: g = CyclicPermutationGroup(6).an_element(); g
(1,2,3,4,5,6)

copy: A.coproduct_on_basis(g)
(1,2,3,4,5,6) # (1,2,3,4,5,6)

copy: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)

copy: a.coproduct()
() # () + 3*(1,2,3,4,5,6) # (1,2,3,4,5,6) + 3*(1,3,5)(2,4,6) # (1,3,5)(2,4,6)
```

`counit(x)`

Return the counit of the element `x` of the group algebra.

This is the sum of all coefficients of `x` with respect to the standard basis of the group algebra.

**EXAMPLES:**

```python
copy: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer
Ring

copy: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)

copy: a.counit()
7
```

`counit_on_basis(g)`

Return the counit of the element `g` of the basis.

Each basis element `g` is group-like, and so has counit 1. This method is used to compute the counit of any element.

**EXAMPLES:**

```python
copy: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer
Ring
```

(continues on next page)
group()  
Return the underlying group of the group algebra.

EXAMPLES:

```
sage: GroupAlgebras(QQ).example(GL(3, GF(11))).group()
General Linear Group of degree 3 over Finite Field of size 11
sage: SymmetricGroup(10).algebra(QQ).group()
Symmetric group of order 10! as a permutation group
```

is_integral_domain(proof=True)  
Return True if self is an integral domain.

This is false unless self.base_ring() is an integral domain, and even then it is false unless self.group() has no nontrivial elements of finite order. I don’t know if this condition suffices, but it obviously does if the group is abelian and finitely generated.

EXAMPLES:

```
sage: GroupAlgebra(SymmetricGroup(2)).is_integral_domain()
False
sage: GroupAlgebra(SymmetricGroup(1)).is_integral_domain()
True
sage: GroupAlgebra(SymmetricGroup(1), IntegerModRing(4)).is_integral_domain()
False
sage: GroupAlgebra(AbelianGroup(1)).is_integral_domain()
True
sage: GroupAlgebra(AbelianGroup(2, [0,2])).is_integral_domain()
False
sage: GroupAlgebra(GL(2, ZZ)).is_integral_domain()
not implemented
```

example(G=None)  
Return an example of group algebra.

EXAMPLES:

```
sage: GroupAlgebras(QQ['x']).example()
Algebra of Dihedral group of order 8 as a permutation group over Univariate Polynomial Ring in x over Rational Field
```

An other group can be specified as optional argument:

```
sage: GroupAlgebras(QQ).example(AlternatingGroup(4))
Algebra of Alternating group of order 4!/2 as a permutation group over Rational Field
```

extra_super_categories()  
Implement the fact that the algebra of a group is a Hopf algebra.

EXAMPLES:
```python
sage: C = Groups().Algebras(QQ)
sage: C.extra_super_categories()
[Category of hopf algebras over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of hopf algebras with basis over Rational Field,
Category of monoid algebras over Rational Field]
```

### 3.89 Groupoid

class `sage.categories.groupoid.Groupoid(G=None)`

Bases: `sage.categories.category.CategoryWithParameters`

The category of groupoids, for a set (usually a group) \( G \).

FIXME:
- Groupoid or Groupoids ?
- definition and link with Wikipedia article Groupoid
- Should Groupoid inherit from Category_over_base?

EXAMPLES:

```python
sage: Groupoid(DihedralGroup(3))
Groupoid with underlying set Dihedral group of order 6 as a permutation group
```

```python
classmethod an_instance()

Returns an instance of this class.

EXAMPLES:

```python
sage: Groupoid.an_instance() # indirect doctest
Groupoid with underlying set Symmetric group of order 8! as a permutation group
```

```python
super_categories()

EXAMPLES:

```python
sage: Groupoid(DihedralGroup(3)).super_categories()
[Category of sets]
```

### 3.90 Groups

class `sage.categories.groups.Groups(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of (multiplicative) groups, i.e. monoids with inverses.

EXAMPLES:

```python
sage: Groups()
Category of groups
sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]
```
Algebras
alias of sage.categories.group_algebras.GroupAlgebras

class CartesianProducts (category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of groups constructed as Cartesian products of groups.

This construction gives the direct product of groups. See Wikipedia article Direct_product and Wikipedia article Direct_product_of_groups for more information.

class ElementMethods
Bases: object

    multiplicative_order()

    Return the multiplicative order of this element.

    EXAMPLES:

        sage: G1 = SymmetricGroup(3)
sage: G2 = SL(2,3)
sage: G = cartesian_product([G1,G2])
sage: G((G1.gen(0), G2.gen(1))).multiplicative_order()
12

class ParentMethods
Bases: object

    group_generators()

    Return the group generators of self.

    EXAMPLES:

        sage: C5 = CyclicPermutationGroup(5)
sage: C4 = CyclicPermutationGroup(4)
sage: S4 = SymmetricGroup(3)
sage: C = cartesian_product([C5, C4, S4])
sage: C.group_generators()
Family (((1,2,3,4,5), (), ()),
        (((), (1,2,3,4), ()),
         ((), ((), (1,2)),
          ((), (), (2,3))))

We check the other portion of trac ticket #16718 is fixed:

        sage: len(C.j_classes())
1

An example with an infinitely generated group (a better output is needed):

        sage: G = Groups.free([1,2])
sage: H = Groups.free(ZZ)
sage: C = cartesian_product([G, H])
sage: C.monoid_generators()
Lazy family (gen(i))_{i in The Cartesian product of (...)}

    order()

    Return the cardinality of self.

    EXAMPLES:
Todo: this method is just here to prevent `FiniteGroups.ParentMethods` to call `_cardinality_from_iterator`.

extra_super_categories()
A Cartesian product of groups is endowed with a natural group structure.

```python
sage: C = Groups().CartesianProducts()
sage: C.extra_super_categories()
[Category of groups]
sage: sorted(C.supercategories(), key=str)
[Category of Cartesian products of inverse unital magmas,
 Category of Cartesian products of monoids,
 Category of groups]
```

class Commutative(base_category)
Bases: `sage.categories.category_with_axiom.CategoryWithAxiom`

Category of commutative (abelian) groups.

A group $G$ is commutative if $xy = yx$ for all $x, y \in G$.

static free(index_set=None, names=None, **kwds)
Return the free commutative group.

INPUT:
- `index_set` – (optional) an index set for the generators; if an integer, then this represents \\{0, 1, ... , n - 1\}
- `names` – a string or list/tuple/iterable of strings (default: ’x’); the generator names or name prefix

EXAMPLES:

```python
sage: Groups().Commutative().free(index_set=ZZ)
Free abelian group indexed by Integer Ring
sage: Groups().Commutative().free(5)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z
```

class ElementMethods
Bases: object

conjugacy_class()
Return the conjugacy class of self.

EXAMPLES:

```python
sage: D = DihedralGroup(5)
sage: g = D((1,3,5,2,4))
sage: g.conjugacy_class()
```

Conjugacy class of (1,3,5,2,4) in Dihedral group of order 10 as a permutation group

```
sage: H = MatrixGroup([matrix(GF(5), 2, [1,2, -1, 1]), matrix(GF(5), 2, [1,1, 0,1])])
sage: h = H(matrix(GF(5), 2, [1,2, -1, 1]))
sage: h.conjugacy_class()
Conjugacy class of [1 2]
[4 1] in Matrix group over Finite Field of size 5 with 2 generators ([1 2] [1 1] [4 1], [0 1])
```

```
sage: G = SL(2, GF(2))
sage: g = G.gens()[0]
sage: g.conjugacy_class()
Conjugacy class of [1 1]
[0 1] in Special Linear Group of degree 2 over Finite Field of size 2
```

```
sage: G = SL(2, QQ)
sage: g = G([[1,1],[0,1]])
sage: g.conjugacy_class()
Conjugacy class of [1 1]
[0 1] in Special Linear Group of degree 2 over Rational Field
```

**Finite**

alias of `sage.categories.finite_groups.FiniteGroups`

**Lie**

alias of `sage.categories.lie_groups.LieGroups`

class ParentMethods

Bases: object

cayley_table(names='letters', elements=None)

Return the “multiplication” table of this multiplicative group, which is also known as the “Cayley table”.

**Note:** The order of the elements in the row and column headings is equal to the order given by the table’s `column_keys()` method. The association between the actual elements and the names/symbols used in the table can also be retrieved as a dictionary with the `translation()` method.

For groups, this routine should behave identically to the `multiplication_table()` method for magmas, which applies in greater generality.

**INPUT:**

- `names` - the type of names used, values are:
  - 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements’ positions in the list given by `list()`, padded to a common width with leading ‘a’s.
  - 'digits' - base 10 representation of the elements’ positions in the list given by `column_keys()`, padded to a common width with leading zeros.
  - 'elements' - the string representations of the elements themselves.
  - a list - a list of strings, where the length of the list equals the number of elements.
- `elements` - default = `None`. A list of elements of the group, in forms that can be coerced into the structure, eg. their string representations. This may be used to impose an alternate ordering on
the elements, perhaps when this is used in the context of a particular structure. The default is to use whatever ordering is provided by the group, which is reported by the column_keys() method. Or the elements can be a subset which is closed under the operation. In particular, this can be used when the base set is infinite.

OUTPUT: An object representing the multiplication table. This is an OperationTable object and even more documentation can be found there.

EXAMPLES:

Permutation groups, matrix groups and abelian groups can all compute their multiplication tables.

```
sage: G = DiCyclicGroup(3)
sage: T = G.cayley_table()
sage: T.column_keys()
(((), (5,6,7), ..., (1,4,2,3)(5,7))
sage: T
+ a b c d e f g h i j k l
+------------------------
a| a b c d e f g h i j k l
b| b c a e f d i g h l j k
c| c a b f d e h i g k l j
d| d e f a b c j k l g h i
e| e f d b c a l j k i g h
f| f d e c b k l j h i g
g| g h i j k l d e f a b c
h| h i g k l j f d e c a b
i| i g h l j k e f d b c
j| j k l g h i a b c d e f
k| k l j h i g c a b f d e
l| l j k i g h b c a e f d
```

```
sage: M = SL(2, 2)
sage: M.cayley_table()
+ a b c d e f
+------------
a| a b c d e f
b| b a d c f e
c| c e a f b d
d| d f b e a c
e| e c f a d b
f| f d e b c a
```

```
sage: A = AbelianGroup([2, 3])
sage: A.cayley_table()
+ a b c d e f
+------------
a| a b c d e f
b| b c a e f d
c| c a b f d e
d| d e f a b c
e| e f d b c a
f| f d e c a b
```

Lowercase ASCII letters are the default symbols used for the table, but you can also specify the use of decimal digit strings, or provide your own strings (in the proper order if they have meaning). Also, if the elements themselves are not too complex, you can choose to just use the string representations of the elements themselves.
sage: C=CyclicPermutationGroup(11)
sage: C.cayley_table(names='digits')

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>02</td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td>09</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
</tr>
</tbody>
</table>
```

sage: G=QuaternionGroup()
sage: names=['1', 'I', '-1', '-I', 'J', '-K', '-J', 'K']
sage: G.cayley_table(names=names)

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>I</th>
<th>-1</th>
<th>-I</th>
<th>J</th>
<th>-K</th>
<th>-J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>I</td>
<td>-1</td>
<td>-I</td>
<td>J</td>
<td>-K</td>
<td>-J</td>
<td>K</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>-1</td>
<td>1</td>
<td>J</td>
<td>-K</td>
<td>-J</td>
<td>K</td>
<td>-I</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>I</td>
<td>1</td>
<td>J</td>
<td>-K</td>
<td>-J</td>
<td>K</td>
<td>-I</td>
</tr>
<tr>
<td>-I</td>
<td>-I</td>
<td>1</td>
<td>J</td>
<td>-K</td>
<td>-J</td>
<td>K</td>
<td>-I</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>-K</td>
<td>K</td>
<td>-1</td>
<td>I</td>
<td>1</td>
<td>-I</td>
<td>-J</td>
</tr>
<tr>
<td>-K</td>
<td>-K</td>
<td>J</td>
<td>-K</td>
<td>1</td>
<td>I</td>
<td>-I</td>
<td>-J</td>
<td>K</td>
</tr>
<tr>
<td>-J</td>
<td>-J</td>
<td>K</td>
<td>-K</td>
<td>1</td>
<td>I</td>
<td>-I</td>
<td>-J</td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>J</td>
<td>-K</td>
<td>-J</td>
<td>I</td>
<td>1</td>
<td>-I</td>
<td>-J</td>
</tr>
</tbody>
</table>
```

sage: A=AbelianGroup([2,2])
sage: A.cayley_table(names='elements')

```
<table>
<thead>
<tr>
<th></th>
<th>f1</th>
<th>f0</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>f1</td>
<td>f0</td>
</tr>
<tr>
<td>f0</td>
<td>f0</td>
<td>f1</td>
</tr>
</tbody>
</table>
```

The `change_names()` routine behaves similarly, but changes an existing table “in-place.”

sage: G=AlternatingGroup(3)
sage: T=G.cayley_table()
sage: T.change_names('digits')
sage: T

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

For an infinite group, you can still work with finite sets of elements, provided the set is closed under multiplication. Elements will be coerced into the group as part of setting up the table.

sage: G=SL(2,ZZ)
sage: G (continues on next page)
The `OperationTable` class provides even greater flexibility, including changing the operation. Here is one such example, illustrating the computation of commutators. `commutator` is defined as a function of two variables, before being used to build the table. From this, the commutator subgroup seems obvious, and creating a Cayley table with just these three elements confirms that they form a closed subset in the group.

```python
sage: from sage.matrix.operation_table import OperationTable
sage: G = DiCyclicGroup(3)
sage: commutator = lambda x, y: x*y*x^-1*y^-1
sage: T = OperationTable(G, commutator)
sage: T
. a b c d e f g h i j k l
+------------------------
a| a a a a a a a a a a a a
b| a a a a a a c c c c c
| a a a a a a c c c c c
| a a a a a a c c c c c
f| a a a a a a b b b b b
q| a b c a b c a b a c
h| a b c a b c a b a c
i| a b c a b c a b a c
j| a b c a b c a b a c
k| a b c a b c a b a c
l| a b c a b c a b a c

sage: trans = T.translation()
sage: comm = [trans['a'], trans['b'], trans['c']]
sage: comm
[(), (5,6,7), (5,7,6)]
sage: P = G.cayley_table(elements=comm)
sage: P
* a b c
+------
a| a b c
b| b c a
| c a b
```

Todo: Arrange an ordering of elements into cosets of a normal subgroup close to size $\sqrt{n}$. Then the quotient group structure is often apparent in the table. See comments on trac ticket #7555.

AUTHOR:
- Rob Beezer (2010-03-15)

**conjugacy_class**\( (g) \)

Return the conjugacy class of the element \(g\).

This is a fall-back method for groups not defined over GAP.

3.90. Groups
EXAMPLES:

```python
sage: A = AbelianGroup([2,2])
sage: c = A.conjugacy_class(A.an_element())
sage: type(c)
<class 'sage.groups.conjugacy_classes.ConjugacyClass_with_category'>
```

**group_generators()**

Return group generators for self.

This default implementation calls `gens()`, for backward compatibility.

**EXAMPLES:**

```python
sage: A = AlternatingGroup(4)
sage: A.group_generators()
Family ((2,3,4), (1,2,3))
```

**holomorph()**

The holomorph of a group

The holomorph of a group $G$ is the semidirect product $G \rtimes_{id} \text{Aut}(G)$, where $id$ is the identity function on $\text{Aut}(G)$, the automorphism group of $G$.


**EXAMPLES:**

```python
sage: G = Groups().example()
sage: G.holomorph()
Traceback (most recent call last):
 ... NotImplementedError: holomorph of General Linear Group of degree 4 over Rational Field not yet implemented
```

**monoid_generators()**

Return the generators of self as a monoid.

Let $G$ be a group with generating set $X$. In general, the generating set of $G$ as a monoid is given by $X \cup X^{-1}$, where $X^{-1}$ is the set of inverses of $X$. If $G$ is a finite group, then the generating set as a monoid is $X$.

**EXAMPLES:**

```python
sage: A = AlternatingGroup(4)
sage: A.monoid_generators()
Family ((2,3,4), (1,2,3))
sage: F.<x,y> = FreeGroup()
sage: F.monoid_generators()
Family (x, y, x^-1, y^-1)
```

**semidirect_product** ($N$, mapping, check=True)

The semi-direct product of two groups

**EXAMPLES:**

```python
sage: G = Groups().example()
sage: G.semidirect_product(G,Morphism(G,G))
```

(continues on next page)
NotImplementedError: semidirect product of General Linear Group of degree 4 over Rational Field and General Linear Group of degree 4 over Rational Field not yet implemented

class Topological(category, *args)
    Bases: sage.categories.topological_spaces.TopologicalSpacesCategory

    Category of topological groups.

    A topological group $G$ is a group which has a topology such that multiplication and taking inverses are continuous functions.

    REFERENCES:
    • Wikipedia article Topological_group

def example() ->
    EXAMPLES:
    sage: Groups().example()
    General Linear Group of degree 4 over Rational Field

    static free(index_set=None, names=None, **kwds)
    Return the free group.

    INPUT:
    • index_set – (optional) an index set for the generators; if an integer, then this represents \{0, 1, \ldots, n - 1\}
    • names – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix

    When the index set is an integer or only variable names are given, this returns FreeGroup_class, which currently has more features due to the interface with GAP than IndexedFreeGroup.

    EXAMPLES:
    sage: Groups.free(index_set=ZZ)
    Free group indexed by Integer Ring
    sage: Groups().free(ZZ)
    Free group indexed by Integer Ring
    sage: Groups().free(5)
    Free Group on generators {x0, x1, x2, x3, x4}
    sage: F.<x,y,z> = Groups().free(); F
    Free Group on generators {x, y, z}

3.91 Hecke modules

class sage.categories.hecke_modules.HeckeModules(R)
    Bases: sage.categories.category_types.Category_module

    The category of Hecke modules.

    A Hecke module is a module $M$ over the anemic Hecke algebra, i.e., the Hecke algebra generated by Hecke operators $T_n$ with $n$ coprime to the level of $M$. (Every Hecke module defines a level function, which is a positive integer.) The reason we require that $M$ only be a module over the anemic Hecke algebra is that many...
natural maps, e.g., degeneracy maps, Atkin-Lehner operators, etc., are $T$-module homomorphisms; but they are homomorphisms over the anemic Hecke algebra.

EXAMPLES:

We create the category of Hecke modules over $\mathbb{Q}$:

```
sage: C = HeckeModules(RationalField()); C
Category of Hecke modules over Rational Field
```

TODO: check that this is what we want:

```
sage: C.super_categories()
[Category of vector spaces with basis over Rational Field]
```

Note that the base ring can be an arbitrary commutative ring:

```
sage: HeckeModules(IntegerRing())
Category of Hecke modules over Integer Ring
sage: HeckeModules(FiniteField(5))
Category of Hecke modules over Finite Field of size 5
```

The base ring doesn’t have to be a principal ideal domain:

```
sage: HeckeModules(PolynomialRing(IntegerRing(), 'x'))
Category of Hecke modules over Univariate Polynomial Ring in x over Integer Ring
```

### 3.92 Highest Weight Crystals

```
class sage.categories.highest_weight_crystals.HighestWeightCrystalHomset(X, Y, category=None)
 Bases: sage.categories.crystals.CrystalHomset

 The set of crystal morphisms from a highest weight crystal to another crystal.

 See also:
```
See `sage.categories.crystals.CrystalHomset` for more information.

**Element**
alias of `HighestWeightCrystalMorphism`

```python
class sage.categories.highest_weight_crystals.HighestWeightCrystalMorphism(parent, on_gens, cartan_type=None, virtualization=None, scaling_factors=None, gens=None, check=True)
```

**Bases:** `sage.categories.crystals.CrystalMorphismByGenerators`

A virtual crystal morphism whose domain is a highest weight crystal.

**INPUT:**
- `parent` – a homset
- `on_gens` – a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of the domain under self
- `cartan_type` – (optional) a Cartan type; the default is the Cartan type of the domain
- `virtualization` – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain
- `scaling_factors` – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \( \varepsilon \) and \( \varphi \)
- `gens` – (optional) a list of generators to define the morphism; the default is to use the highest weight vectors of the crystal
- `check` – (default: `True`) check if the crystal morphism is valid

```python
class sage.categories.highest_weight_crystals.HighestWeightCrystals(s=None)
```

**Bases:** `sage.categories.category_singleton.Category_singleton`

The category of highest weight crystals.

A crystal is highest weight if it is acyclic; in particular, every connected component has a unique highest weight element, and that element generate the component.

**EXAMPLES:**

```python
sage: C = HighestWeightCrystals()
sage: C
Category of highest weight crystals
sage: C.super_categories()
[Category of crystals]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1
```

**class ElementMethods**

**Bases:** `object`
**string_parameters** *(word=None)*

Return the string parameters of `self` corresponding to the reduced word `word`.

Given a reduced expression \( w = s_{i_1} \cdots s_{i_k} \), the string parameters of \( b \in B \) corresponding to \( w \) are \((a_1, \ldots, a_k)\) such that

\[
e^{a_m}_{i_m} \cdots e^{a_1}_{i_1} b \neq 0
\]

\[
e^{a_m+1}_{i_m} \cdots e^{a_1}_{i_1} b = 0
\]

for all \( 1 \leq m \leq k \).

For connected components isomorphic to \( B(\lambda) \) or \( B(\infty) \), if \( w = w_0 \) is the longest element of the Weyl group, then the path determined by the string parametrization terminates at the highest weight vector.

**INPUT:**

- **word** – a word in the alphabet of the index set; if not specified and we are in finite type, then this will be some reduced expression for the long element determined by the Weyl group

**EXAMPLES:**

```python
sage: B = crystals.infinity.NakajimaMonomials(['A',3])
sage: mg = B.highest_weight_vector()
sage: w0 = [1,2,1,3,2,1]
sage: mg.string_parameters(w0)
[0, 0, 0, 0, 0, 0]
sage: mg.f_string([1]).string_parameters(w0)
[1, 0, 0, 0, 0, 0]
sage: mg.f_string([1,1]).string_parameters(w0)
[3, 0, 0, 0, 0, 0]
sage: mg.f_string([1,1,2]).string_parameters(w0)
[1, 2, 2, 0, 0, 0]
sage: mg.f_string([1,1,2,2]) == mg.f_string([1,1,2,2,1])
True
sage: x = mg.f_string([1,1,1,2,2,1,3,3,2,1,1,1])
sage: x.string_parameters(w0)
[4, 1, 1, 2, 2, 2]
sage: x.string_parameters([3,2,1,3,2,3])
[2, 3, 7, 0, 0, 0]
sage: x == mg.f_string([1]*7 + [2]*3 + [3]*2)
True
```

```python
sage: B = crystals.infinity.Tableaux("A5")
sage: b = B(rows=[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,6,6,6,6,6,6],
[2,2,2,2,2,2,2,2,2,4,5,5,5,6],
[3,3,3,3,3,3,3,5],
[4,4,4,6,6,6],
[5,6]])
sage: b.string_parameters([1,2,1,3,2,1,5,4,3,2,1])
[0, 1, 1, 1, 0, 4, 4, 3, 0, 11, 10, 7, 7, 6]
```

```python
sage: B = crystals.infinity.Tableaux("G2")
sage: b = B(rows=[[1,1,1,1,1,3,3,0,-3,-3,-2,-2,-1,-1,-1,-1],
[2,3,3,3]])
sage: b.string_parameters([2,1,2,1,2,1])
[5, 13, 11, 15, 4, 4]
sage: b.string_parameters([1,2,1,2,1,2])
[7, 12, 15, 8, 10, 0]
```
sage: C = crystals.Tableaux(['C',2], shape=[2,1])
sage: mg = C.highest_weight_vector()
sage: lw = C.lowest_weight_vectors()[0]
sage: lw.string_parameters([1,2,1,2])
[1, 2, 3, 1]
sage: lw.string_parameters([2,1,2,1])
[1, 3, 2, 1]
sage: lw.e_string([2,1,1,1,2,2,1]) == mg
True
sage: lw.e_string([1,2,2,1,1,1,2]) == mg
True

class ParentMethods
  Bases: object

  connected_components_generators()
  Returns the highest weight vectors of self
  This default implementation selects among the module generators those that are highest weight, and
  caches the result. A crystal element $b$ is highest weight if $e_i(b) = 0$ for all $i$ in the index set.
  EXAMPLES:

  sage: C = crystals.Letters(['A',5])
sage: C.highest_weight_vectors()
(1,)
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)], [C(1), -C(2), C(1)])
sage: T.highest_weight_vectors()
([2, 1, 1], [1, 2, 1])

digraph(subset=None, index_set=None, depth=None)
  Return the DiGraph associated to self.
  INPUT:
  • subset – (optional) a subset of vertices for which the digraph should be constructed
  • index_set – (optional) the index set to draw arrows
  • depth – the depth to draw; optional only for finite crystals
  EXAMPLES:

  sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: T.digraph()
Digraph on 8 vertices
sage: S = T.subcrystal(max_depth=2)
sage: len(S)
5
sage: G = T.digraph(subset=list(S))
sage: G.is_isomorphic(T.digraph(depth=2), edge_labels=True)
True

highest_weight_vector()
  Returns the highest weight vector if there is a single one; otherwise, raises an error.
  Caveat: this assumes that highest_weight_vectors() returns a list or tuple.
  EXAMPLES:
sage: C = crystals.Letters(['A', 5])
sage: C.highest_weight_vector()
1

highest_weight_vectors()
Returns the highest weight vectors of self.
This default implementation selects among the module generators those that are highest weight, and
 caches the result. A crystal element \( b \) is highest weight if \( e_i(b) = 0 \) for all \( i \) in the index set.

EXAMPLES:
sage: C = crystals.Letters(['A', 5])
sage: C.highest_weight_vectors()
(1,)
sage: C = crystals.Letters(['A', 2])
sage: T = crystals.TensorProduct(C, C, C, generators=[[C(2), C(1), C(1)], [C(1), -C(2), C(1)]])
sage: T.highest_weight_vectors()
([2, 1, 1], [1, 2, 1])

lowest_weight_vectors()
Return the lowest weight vectors of self.
This default implementation selects among all elements of the crystal those that are lowest weight,
 and cache the result. A crystal element \( b \) is lowest weight if \( f_i(b) = 0 \) for all \( i \) in the index set.

EXAMPLES:
sage: C = crystals.Letters(['A', 5])
sage: C.lowest_weight_vectors()
(6,)
sage: C = crystals.Letters(['A', 2])
sage: T = crystals.TensorProduct(C, C, C, generators=[[C(2), C(1), C(1)], [C(1), -C(2), C(1)]])
sage: T.lowest_weight_vectors()
([3, 2, 3], [3, 3, 2])

q_dimension(q=None, prec=None, use_product=False)
Return the \( q \)-dimension of self.

Let \( B(\lambda) \) denote a highest weight crystal. Recall that the degree of the \( \mu \)-weight space of \( B(\lambda) \) (under
the principal gradation) is equal to \( \langle \rho^\vee, \lambda - \mu \rangle \) where \( \langle \rho^\vee, \alpha_i \rangle = 1 \) for all \( i \in I \) (in particular, take
\( \rho^\vee = \sum_{i \in I} h_i \)).

The \( q \)-dimension of a highest weight crystal \( B(\lambda) \) is defined as

\[
\dim_q B(\lambda) := \sum_{j \geq 0} \dim(B_j) q^j,
\]

where \( B_j \) denotes the degree \( j \) portion of \( B(\lambda) \). This can be expressed as the product

\[
\dim_q B(\lambda) = \prod_{\alpha^\vee \in \Delta_+^\vee} \left( \frac{1 - q^{\langle \lambda + \rho, \alpha^\vee \rangle}}{1 - q^{\langle \rho, \alpha^\vee \rangle}} \right)^{\mult \alpha},
\]

where \( \Delta_+^\vee \) denotes the set of positive coroots. Taking the limit as \( q \to 1 \) gives the dimension of \( B(\lambda) \).
For more information, see [Ka1990] Section 10.10.
INPUT:

- `q` – the (generic) parameter $q$
- `prec` – (default: None) The precision of the power series ring to use if the crystal is not known to be finite (i.e. the number of terms returned). If None, then the result is returned as a lazy power series.
- `use_product` – (default: False) if we have a finite crystal and True, use the product formula

EXAMPLES:

```python
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: qdim = C.q_dimension(); qdim
q^4 + 2*q^3 + 2*q^2 + 2*q + 1
sage: qdim(1)
8
sage: len(C) == qdim(1)
True
sage: C.q_dimension(use_product=True) == qdim
True
sage: C.q_dimension(prec=20)
q^4 + 2*q^3 + 2*q^2 + 2*q + 1
sage: C.q_dimension(prec=2)
2*q + 1
sage: R.<t> = QQ[

sage: qdim = TP.q_dimension(use_product=True); qdim
long time
```

We check with a finite tensor product:

```python
sage: TP = crystals.TensorProduct(C, C)
sage: TP.cardinality()
25600
sage: qdim = TP.q_dimension(use_product=True); qdim # long time
q^32 + 2*q^31 + 8*q^30 + 15*q^29 + 34*q^28 + 63*q^27 + 110*q^26 + 175*q^25 + 276*q^24 + 389*q^23 + 550*q^22 + 725*q^21 + 930*q^20 + 1131*q^19 + 1362*q^18 + 1548*q^17 + 1736*q^16 + 1858*q^15 + 1947*q^14 + 1944*q^13 + 1918*q^12 + 1777*q^11 + 1628*q^10 + 1407*q^9 + 1186*q^8 + 928*q^7 + 720*q^6 + 498*q^5 + 342*q^4 + 201*q^3 + 117*q^2 + 48*q + 26
sage: qdim(1) # long time
```

(continues on next page)
The $q$-dimensions of infinite crystals are returned as formal power series:

```
sage: C = crystals.LSPaths(['A',2,1], [1,0,0])
sage: C.q_dimension(prec=5)
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + O(q^5)
sage: C.q_dimension(prec=10)
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6
+ 9*q^7 + 13*q^8 + 16*q^9 + O(q^10)
sage: qdim = C.q_dimension(); qdim
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6
+ 9*q^7 + 13*q^8 + 16*q^9 + 22*q^10 + O(q^11)
sage: qdim.compute_coefficients(15)
sage: qdim
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6
+ 9*q^7 + 13*q^8 + 16*q^9 + 22*q^10 + 27*q^11
+ 36*q^12 + 44*q^13 + 57*q^14 + 70*q^15 + O(q^16)
```

```
484 Chapter 3. Individual Categories
```
```sage
c = crystals.Tableaux(['D',4], shape=[2,2])
d = crystals.Tableaux(['D',4], shape=[1])
t = crystals.TensorProduct(d, c)
tuple(t.highest_weight_vectors_iterator())
(('[[1]]', [[1], [2, 2]]),
('[[1, 1], [2, 2]]',
('[[1, 1], [2, 2]]',
('[[1, 1], [2, 2]]',
('L = filter(lambda x: x.is_highest_weight(), t)
tuple(L) == tuple(t.highest_weight_vectors_iterator())
```

**extra_super_categories()**

EXAMPLES:

```sage
HighestWeightCrystals().TensorProducts().extra_super_categories()
```

**additional_structure()**

Return None.

Indeed, the category of highest weight crystals defines no additional structure: it only guarantees the existence of a unique highest weight element in each component.

See also:

`Category.additional_structure()`

Todo: Should this category be a `CategoryWithAxiom`?

EXAMPLES:

```sage
HighestWeightCrystals().additional_structure()
```

**example()**

Returns an example of highest weight crystals, as per `Category.example()`.

EXAMPLES:

```sage
B = HighestWeightCrystals().example(); B
```

**super_categories()**

EXAMPLES:

```sage
HighestWeightCrystals().super_categories()
```

3.92. Highest Weight Crystals
### 3.93 Hopf algebras

**class** sage.categories.hopf_algebras.HopfAlgebras(*base*, name=None)

The category of Hopf algebras.

**EXAMPLES:**

```python
sage: HopfAlgebras(QQ)
Category of hopf algebras over Rational Field
sage: HopfAlgebras(QQ).super_categories()
[Category of bialgebras over Rational Field]
```

**class** DualCategory(*base*, name=None)

The category of Hopf algebras constructed as dual of a Hopf algebra

**class** ParentMethods

**class** ElementMethods

**class** Morphism(s=None)

The category of Hopf algebra morphisms.

```python
sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.antipode_by_coercion.__module__
'sage.categories.hopf_algebras'
sage: R.antipode_by_coercion(R[1,3,1])
-R[2, 1, 2]
```

**class Super** *(base_category)*

Bases: `sage.categories.super_modules.SuperModulesCategory`

The category of super Hopf algebras.

**Note:** A super Hopf algebra is *not* simply a Hopf algebra with a \(\mathbb{Z}/2\mathbb{Z}\) grading due to the signed bialgebra compatibility conditions.

**class ElementMethods**

Bases: `object`

- `antipode()`  
  Return the antipode of `self`.

  **EXAMPLES:**

  ```python
 sage: A = SteenrodAlgebra(3)
sage: a = A.an_element()
sage: a, a.antipode()
 (2 Q_1 Q_3 P(2,1), Q_1 Q_3 P(2,1))
  `````

- `dual()`  
  Return the dual category.

  **EXAMPLES:**

  The category of super Hopf algebras over any field is self dual:

  ```python
 sage: C = HopfAlgebras(QQ).Super()
sage: C.dual()
 Category of super hopf algebras over Rational Field
  ```

**class TensorProducts** *(category, *args)*

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of Hopf algebras constructed by tensor product of Hopf algebras

**class ElementMethods**

Bases: `object`

**class ParentMethods**

Bases: `object`

- `extra_super_categories()`  
  **EXAMPLES:**

  ```python
 sage: C = HopfAlgebras(QQ).TensorProducts()
sage: C.extra_super_categories()
 [Category of hopf algebras over Rational Field]
 sage: sorted(C.super_categories(), key=str)
 [Category of hopf algebras over Rational Field,
 (continues on next page)]
  ```
Category of tensor products of algebras over Rational Field, 
Category of tensor products of coalgebras over Rational Field

WithBasis
alias of sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis
dual()
Return the dual category
EXAMPLES:
The category of Hopf algebras over any field is self dual:

```
sage: C = HopfAlgebras(QQ)
sage: C.dual()
Category of hopf algebras over Rational Field
```

super_categories()
EXAMPLES:

```
sage: HopfAlgebras(QQ).super_categories()
[Category of bialgebras over Rational Field]
```

3.94 Hopf algebras with basis

class sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of Hopf algebras with a distinguished basis

EXAMPLES:

```
sage: C = HopfAlgebrasWithBasis(QQ)
sage: C
Category of hopf algebras with basis over Rational Field
sage: C.super_categories()
[Category of hopf algebras over Rational Field,
 Category of bialgebras with basis over Rational Field]
```

We now show how to use a simple Hopf algebra, namely the group algebra of the dihedral group (see also AlgebrasWithBasis):

```
sage: A = C.example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: A.__custom_name = "A"
sage: A.category()
Category of finite dimensional hopf algebras with basis over Rational Field
sage: A.one_basis()
()
sage: A.one()
B[()]
sage: A.base_ring()
```

(continues on next page)
Rational Field
\texttt{sage: A.basis().keys()}
Dihedral group of order 6 as a permutation group

\texttt{sage: [a,b] = A.algebra_generators()}
\texttt{sage: a, b}
(B[(1,2,3)], B[(1,3)])
\texttt{sage: a^3, b^2}
(B[()], B[()])
\texttt{sage: a*b}
B[(1,2)]
\texttt{sage: A.product}  # todo: not quite ...
<bound method MyGroupAlgebra_with_category._product_from_product_on_basis_\rightarrow multiply of A>
\texttt{sage: A.product(b, b)}
B[()]
\texttt{sage: A.zero().coproduct()}
0
\texttt{sage: A.zero().coproduct().parent()}
A # A
\texttt{sage: a.coproduct()}
B[(1,2,3)] # B[(1,2,3)]
\texttt{sage: TestSuite(A).run(\texttt{verbose}=True)}
running ._test_additive_associativity() ... pass
running ._test_an_element() ... pass
running ._test_antipode() ... pass
running ._test_associativity() ... pass
running ._test_cardinality() ... pass
running ._test_category() ... pass
running ._test_characteristic() ... pass
running ._test_construction() ... pass
running ._test_distributivity() ... pass
running ._test_elements() ...
  Running the test suite of self.an_element()
  running ._test_category() ... pass
  running ._test_eq() ... pass
  running ._test_new() ... pass
  running ._test_nonzero_equal() ... pass
  running ._test_not_implemented_methods() ... pass
  running ._test_pickling() ... pass
  pass
running ._test_elements_eq_reflexive() ... pass
running ._test_elements_eq_symmetric() ... pass
running ._test_elements_eq_transitive() ... pass
running ._test_elements_neq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_one() ... pass
running ._test_pickling() ... pass
running ._test_prod() ... pass
running ._test_some_elements() ... pass
running ._test_zero() ... pass
\texttt{sage: A.__class__}
Let us look at the code for implementing $A$:

```python
sage: A
todo: not implemented
```

```python
class ElementMethods
 Bases: object

Filtered
 alias of sage.categories.filtered_hopf_algebras_with_basis.
 FilteredHopfAlgebrasWithBasis

FiniteDimensional
 alias of sage.categories.finite_dimensional_hopf_algebras_with_basis.
 FiniteDimensionalHopfAlgebrasWithBasis

Graded
 alias of sage.categories.graded_hopf_algebras_with_basis.
 GradedHopfAlgebrasWithBasis

class ParentMethods
 Bases: object

 antipode()
 The antipode of this Hopf algebra.
 If antipode_basis() is available, this constructs the antipode
 morphism from self to self by extending it by linearity. Otherwise, self.antipode_by_coercion() is used, if available.

 EXAMPLES:
 sage: A = HopfAlgebrasWithBasis(QQ).example()
 sage: W = A.basis().keys(); W
 (continues on next page)
```

```python
 antipode_on_basis(x)
 The antipode of the Hopf algebra on the basis (optional)

 INPUT:
 • x -- an index of an element of the basis of self

 Returns the antipode of the basis element indexed by x.

 If this method is implemented, then antipode() is defined from this by linearity.

 EXAMPLES:
 sage: A = HopfAlgebrasWithBasis(QQ).example()
 sage: W = A.basis().keys(); W
 (continues on next page)
```
Dihedral group of order 6 as a permutation group
\begin{verbatim}
sage: w = W.gen(0); w
(1,2,3)
sage: A.antipode_on_basis(w)
B[(1,3,2)]
\end{verbatim}

Super
alias of \texttt{sage.categories.super_hopf_algebras_with_basis}. \texttt{SuperHopfAlgebrasWithBasis}

class \textbf{TensorProducts} (category, *args)
Bases: \texttt{sage.categories.tensor.TensorProductsCategory}

The category of hopf algebras with basis constructed by tensor product of hopf algebras with basis

class \textbf{ElementMethods}
Bases: \texttt{object}

class \textbf{ParentMethods}
Bases: \texttt{object}

\textbf{extra_super_categories}()
EXEMPLES:
\begin{verbatim}
sage: C = HopfAlgebrasWithBasis(QQ).TensorProducts()
sage: C.extra_super_categories()
[Category of hopf algebras with basis over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of hopf algebras with basis over Rational Field, 
 Category of tensor products of algebras with basis over Rational Field, 
 Category of tensor products of hopf algebras over Rational Field]
\end{verbatim}

\textbf{example} (G=None)
Returns an example of algebra with basis:
\begin{verbatim}
sage: HopfAlgebrasWithBasis(QQ['x']).example()
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Univariate Polynomial Ring in x over Rational Field
\end{verbatim}

An other group can be specified as optional argument:
\begin{verbatim}
sage: HopfAlgebrasWithBasis(QQ).example(SymmetricGroup(4))
An example of Hopf algebra with basis: the group algebra of the Symmetric group of order 4! as a permutation group over Rational Field
\end{verbatim}

\section*{3.95 H-trivial semigroups}

class \texttt{sage.categories.h_trivial_semigroups.HTrivialSemigroups} (base_category)
Bases: \texttt{sage.categories.category_with_axiom.CategoryWithAxiom}

\textbf{Finite_extra_super_categories}()
Implement the fact that a finite \(H\)-trivial is aperiodic

\textbf{EXAMPLES}:
**Inverse_extra_super_categories()**

Implement the fact that an \( H \)-trivial inverse semigroup is \( J \)-trivial.

**Todo:** Generalization for inverse semigroups.

Recall that there are two invertibility axioms for a semigroup \( S \):

- One stating the existence, for all \( x \), of a local inverse \( y \) satisfying \( x = xyx \) and \( y = yxy \);
- One stating the existence, for all \( x \), of a global inverse \( y \) satisfying \( xy = yx = 1 \), where 1 is the unit of \( S \) (which must of course exist).

It is sufficient to have local inverses for \( H \)-triviality to imply \( J \)-triviality. However, at this stage, only the second axiom is implemented in Sage (see `Magmas.Unital.SubcategoryMethods.Inverse()`). Therefore this fact is only implemented for semigroups with global inverses, that is groups. However the trivial group is the unique \( H \)-trivial group, so this is rather boring.

**EXAMPLES:**

```python
sage: Semigroups().HTrivial().Finite_extra_super_categories()
[Category of aperiodic semigroups]
sage: Semigroups().HTrivial().Finite() is Semigroups().Aperiodic().Finite()
True
```

### 3.96 Infinite Enumerated Sets

**AUTHORS:**


**class** `sage.categories.infinite EnumeratedSets.InfiniteEnumeratedSets(base_category)`

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiomSingleton`

The category of infinite enumerated sets

An infinite enumerated sets is a countable set together with a canonical enumeration of its elements.

**EXAMPLES:**

```python
sage: InfiniteEnumeratedSets()
Category of infinite enumerated sets
sage: InfiniteEnumeratedSets().super_categories()
[Category of enumerated sets, Category of infinite sets]
sage: InfiniteEnumeratedSets().all_super_categories()
[Category of infinite enumerated sets,
Category of enumerated sets,
Category of infinite sets,
Category of sets,
Category of sets with partial maps,
Category of objects]
```
class ParentMethods
    Bases: object

    list()
    Returns an error since self is an infinite enumerated set.

    EXAMPLES:
    
    sage: NN = InfiniteEnumeratedSets().example()
    sage: NN.list()
    Traceback (most recent call last):
    ... 
    NotImplementedError: cannot list an infinite set

    random_element()
    Returns an error since self is an infinite enumerated set.

    EXAMPLES:
    
    sage: NN = InfiniteEnumeratedSets().example()
    sage: NN.random_element()
    Traceback (most recent call last):
    ... 
    NotImplementedError: infinite set

    TODO: should this be an optional abstract_method instead?

3.97 Integral domains

class sage.categories.integral_domains.IntegralDomains (base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

    The category of integral domains
    An integral domain is commutative ring with no zero divisors, or equivalently a commutative domain.

    EXAMPLES:
    
    sage: C = IntegralDomains(); C
    Category of integral domains
    sage: sorted(C.super_categories(), key=str)
    [Category of commutative rings, Category of domains]
    sage: C is Domains().Commutative()
    True
    sage: C is Rings().Commutative().NoZeroDivisors()
    True

class ElementMethods
    Bases: object

class ParentMethods
    Bases: object

    is_integral_domain()
    Return True, since this in an object of the category of integral domains.

    EXAMPLES:
3.98 J-trivial semigroups

```python
sage: QQ.is_integral_domain()
True
sage: Parent(QQ, category=IntegralDomains()).is_integral_domain()
True
```

### 3.98 J-trivial semigroups

#### class `sage.categories.j_trivial_semigroups.JTrivialSemigroups`

```python
sage.categories.j_trivial_semigroups.JTrivialSemigroups(base_category)
```

**Bases:**

`sage.categories.category_with_axiom.CategoryWithAxiom`

**extra_super_categories()**

Implement the fact that a $J$-trivial semigroup is $L$ and $R$-trivial.

**EXAMPLES:**

```python
sage: Semigroups().JTrivial().extra_super_categories()
[Category of l trivial semigroups, Category of r trivial semigroups]
```

3.99 Kac-Moody Algebras

**AUTHORS:**

- Travis Scrimshaw (07-15-2017): Initial implementation

#### class `sage.categories.kac_moody_algebras.KacMoodyAlgebras`

```python
sage.categories.kac_moody_algebras.KacMoodyAlgebras(base, name=None)
```

**Bases:**

`sage.categories.category_types.Category_over_base_ring`

Category of Kac-Moody algebras.

#### class `ParentMethods`

**Bases:**

`object`

**cartan_type()**

Return the Cartan type of `self`.

**EXAMPLES:**

```python
sage: L = LieAlgebra(QQ, cartan_type=['A', 2])
sage: L.cartan_type()
['A', 2]
```

**weyl_group()**

Return the Weyl group of `self`.

**EXAMPLES:**

```python
sage: L = LieAlgebra(QQ, cartan_type=['A', 2])
sage: L.weyl_group()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)
```

**example**(n=2)

Return an example of a Kac-Moody algebra as per `Category.example`.

**EXAMPLES:**
We can specify the rank of the example:

```
sage: KacMoodyAlgebras(QQ).example(4)
```

```
Lie algebra of ['A', 4] in the Chevalley basis
```

```python
super_categories()
EXAMPLES:

sage: KacMoodyAlgebras(QQ).super_categories()

[Category of Lie algebras over Rational Field]
```

### 3.100 Lambda Bracket Algebras

**AUTHORS:**


```python
class sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras(base, name=None)

Bases: sage.categories.category_types.Category_over_base_ring
```

The category of Lambda bracket algebras.

This is an abstract base category for Lie conformal algebras and super Lie conformal algebras.

```python
class ElementMethods

Bases: object

T(n=1)
The n-th derivative of self.

INPUT:
- n - integer (default: 1); how many times to apply T to this element

OUTPUT:

\(T^n a\) where \(a\) is this element. Notice that we use the divided powers notation \(T^{(j)} = \frac{T^j}{j!}\).

EXAMPLES:

```
sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.inject_variables()
Defining L, C
sage: L.T()
TL
sage: L.T(3)
6*T^3 L
sage: C.T()
0
```

bracket(rhs)
The \(\lambda\)-bracket of these two elements.

EXAMPLES:
The brackets of the Virasoro Lie conformal algebra:

```python
sage: Vir = lie_conformal_algebras.Virasoro(QQ); L = Vir.0
sage: L.bracket(L)
{0: TL, 1: 2*L, 3: 1/2*C}
sage: L.bracket(L.T())
{0: 2*T^(2)L, 1: 3*TL, 2: 4*L, 4: 2*C}
```

Now with a current algebra:

```python
sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
sage: E = V.0; H = V.1; F = V.2;
sage: H.bracket(H)
{1: 2*B['K']}
sage: E.bracket(F)
{0: B[alphacheck[1]], 1: B['K']}
```

nproduct *(rhs, n)*

The n-th product of these two elements.

EXAMPLES:

```python
sage: Vir = lie_conformal_algebras.Virasoro(QQ); L = Vir.0
sage: L.nproduct(L, 3)
1/2*C
sage: L.nproduct(L.T(), 0)
2*T^(2)L
```

FinitelyGeneratedAsLambdaBracketAlgebra

alias of `sage.categories.finitely_generated_lambda_bracket_algebras.FinitelyGeneratedLambdaBracketAlgebras`

```
class ParentMethods
    Bases: object
    ideal(*gens, **kwds)

    The ideal of this Lambda bracket algebra generated by gens.

    **Todo:** Ideals of Lie Conformal Algebras are not implemented yet.
```

EXAMPLES:

```python
sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.ideal()
Traceback (most recent call last):
  ...
NotImplementedError: ideals of Lie Conformal algebras are not implemented yet
```
class SubcategoryMethods
Bases: object

FinitelyGenerated()
The category of finitely generated Lambda bracket algebras.

EXAMPLES:

```
sage: LieConformalAlgebras(QQ).FinitelyGenerated()
Category of finitely generated lie conformal algebras over Rational Field
```

FinitelyGeneratedAsLambdaBracketAlgebra()
The category of finitely generated Lambda bracket algebras.

EXAMPLES:

```
sage: LieConformalAlgebras(QQ).FinitelyGenerated()
Category of finitely generated lie conformal algebras over Rational Field
```

WithBasis
alias of `sage.categories.lambda_bracket_algebras_with_basis.LambdaBracketAlgebrasWithBasis`

super_categories()
The list of super categories of this category.

EXAMPLES:

```
sage: from sage.categories.lambda_bracket_algebras import LambdaBracketAlgebras
sage: LambdaBracketAlgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]
```

3.101 Lambda Bracket Algebras With Basis

AUTHORS:

- Reimundo Heluani (2020-08-21): Initial implementation.

class sage.categories.lambda_bracket_algebras_with_basis.LambdaBracketAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of Lambda bracket algebras with basis.

EXAMPLES:

```
sage: LieConformalAlgebras(QQbar).WithBasis()
Category of lie conformal algebras with basis over Algebraic Field
```

class ElementMethods
Bases: object

index()
The index of this basis element.

EXAMPLES:
class FinitelyGeneratedAsLambdaBracketAlgebra(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finitely generated lambda bracket algebras with basis.

EXAMPLES:

```python
sage: C = LieConformalAlgebras(QQbar)
sage: C.WithBasis().FinitelyGenerated() is C.FinitelyGenerated().WithBasis()
True
```

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded finitely generated lambda bracket algebras with basis.

EXAMPLES:

```python
sage: LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated().Graded() 
Category of H-graded finitely generated Lie conformal algebras with basis over Algebraic Field
```

class ParentMethods
Bases: object

degree_on_basis(m)
Return the degree of the basis element indexed by m in self.

EXAMPLES:

```python
sage: V = lie_conformal_algebras.Virasoro(QQ)
sage: V.degree_on_basis(('L',2))
4
```
3.102 Lattice posets

class sage.categories.lattice_posets.LatticePosets(s=None)
 Bases: sage.categories.category.Category

 The category of lattices, i.e. partially ordered sets in which any two elements have a unique supremum (the elements’ least upper bound; called their join) and a unique infimum (greatest lower bound; called their meet).

 EXAMPLES:

 ::

 sage: LatticePosets()
 Category of lattice posets
 sage: LatticePosets().super_categories()
 [Category of posets]
 sage: LatticePosets().example()
 NotImplemented

 See also:

 Posets, FiniteLatticePosets, LatticePoset()

Finite
 alias of sage.categories.finite_lattice_posets.FiniteLatticePosets

class ParentMethods
 Bases: object

 join(x, y)
 Returns the join of x and y in this lattice

 INPUT:
 • x, y – elements of self

 EXAMPLES:

 ::

 sage: D = LatticePoset((divisors(60), attrcall("divides")))
 sage: D.join(D(6), D(10))
 30

 meet(x, y)
 Returns the meet of x and y in this lattice

 INPUT:
 • x, y – elements of self

 EXAMPLES:

 ::

 sage: D = LatticePoset((divisors(30), attrcall("divides")))
 sage: D.meet(D(6), D(15))
 3

 super_categories()
 Returns a list of the (immediate) super categories of self, as per Category.super_categories().

 EXAMPLES:

 ::

 sage: LatticePosets().super_categories()
 [Category of posets]
3.103 Left modules

```python
class sage.categories.left_modules.LeftModules(base, name=None)
    Bases: sage.categories.category_types.Category_over_base_ring

The category of left modules left modules over an rng (ring not necessarily with unit), i.e. an abelian group
with left multiplication by elements of the rng

EXAMPLES:

sage: LeftModules(ZZ)
Category of left modules over Integer Ring
sage: LeftModules(ZZ).super_categories()
[Category of commutative additive groups]
```

```python
class ElementMethods
    Bases: object
class ParentMethods
    Bases: object

super_categories()
    EXAMPLES:

sage: LeftModules(QQ).super_categories()
[Category of commutative additive groups]
```

3.104 Lie Algebras

AUTHORS:

- Travis Scrimshaw (07-15-2013): Initial implementation

```python
class sage.categories.lie_algebras.LieAlgebras(base, name=None)
    Bases: sage.categories.category_types.Category_over_base_ring

The category of Lie algebras.

EXAMPLES:

sage: C = LieAlgebras(QQ); C
Category of Lie algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of vector spaces over Rational Field]
```

We construct a typical parent in this category, and do some computations with it:

```python
sage: A = C.example(); A
An example of a Lie algebra: the Lie algebra from the associative
algebra Symmetric group algebra of order 3 over Rational Field
generated by ([2, 1, 3], [2, 3, 1])
sage: A.category()
Category of Lie algebras over Rational Field
sage: A.base_ring()
Rational Field
```

(continues on next page)
sage: a, b = A.lie_algebra_generators()
sage: a.bracket(b)
-\[1, 3, 2\] + \[3, 2, 1\]
sage: b.bracket(2*a + b)
2*\[1, 3, 2\] - 2*\[3, 2, 1\]
sage: A.bracket(a, b)
-\[1, 3, 2\] + \[3, 2, 1\]

Please see the source code of A (with $A??$) for how to implement other Lie algebras.

Todo: Many of these tests should use Lie algebras that are not the minimal example and need to be added after trac ticket #16820 (and trac ticket #16823).

```python
class ElementMethods
    Bases: object

    bracket(rhs)
        Return the Lie bracket [self, rhs].

    EXAMPLES:

    sage: L = LieAlgebras(QQ).example()
sage: x, y = L.lie_algebra_generators()
sage: x.bracket(y)
-\[1, 3, 2\] + \[3, 2, 1\]
sage: x.bracket(0)
0
```

```python
exp(lie_group=None)
    Return the exponential of self in lie_group.

    INPUT:
    • lie_group – (optional) the Lie group to map into; If lie_group is not given, the Lie group
        associated to the parent Lie algebra of self is used.

    EXAMPLES:

    sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: g = (X + Y + Z).exp(); g
exp(X + Y + Z)
sage: h = X.exp(); h
exp(X)
sage: g.parent() is h.parent()
True

    The Lie group can be specified explicitly:

    sage: H = L.lie_group('H')
sage: k = 2.exp(lie_group=H); k
exp(2)
sage: k.parent()
```

(continued on next page)
Lie group H of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over Rational Field

```python
sage: g.parent() == k.parent()
False
```

killing_form(x)

Return the Killing form of `self` and `x`.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: a.killing_form(b)
0
```

lift()

Return the image of `self` under the canonical lift from the Lie algebra to its universal enveloping algebra.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 3*a + b - c
sage: elt.lift()
3*b0 + b1 - b2
sage: L.<x,y> = LieAlgebra(QQ, abelian=True)
sage: x.lift()
x
```

to_vector(order=None)

Return the vector in `g.module()` corresponding to the element `self` of `g` (where `g` is the parent of `self`).

Implement this if you implement `g.module()`. See `LieAlgebras.module()` for how this is to be done.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L((1, 0, 0)).to_vector(); u
(1, 0, 0)
sage: parent(u)
Vector space of dimension 3 over Rational Field
```

class **FiniteDimensional**(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

WithBasis

alias of `sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis`

extra_super_categories()

Implements the fact that a finite dimensional Lie algebra over a finite ring is finite.

EXAMPLES:
Graded

alias of sage.categories.graded_lie_algebras.GradedLieAlgebras

class Nilpotent (base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of nilpotent Lie algebras.

class ParentMethods

Bases: object

is_nilpotent ()

Return True since self is nilpotent.

EXAMPLES:

```
sage: h = lie_algebras.Heisenberg(ZZ, oo)
sage: h.is_nilpotent()
True
```

step ()

Return the nilpotency step of self.

EXAMPLES:

```
sage: h = lie_algebras.Heisenberg(ZZ, oo)
sage: h.step()
2
```

class ParentMethods

Bases: object

baker_campbell_hausdorff (X, Y, prec=None)

Return the element log(exp(X)exp(Y)).

The BCH formula is an expression for log(exp(X)exp(Y)) as a sum of Lie brackets of X and Y with rational coefficients. It is only defined if the base ring of self has a coercion from the rationals.

INPUT:

- X – an element of self
- Y – an element of self
- prec – an integer; the maximum length of Lie brackets to be considered in the formula

EXAMPLES:

The BCH formula for the generators of a free nilpotent Lie algebra of step 4:
An example of the BCH formula in a quotient:

```
sage: Q = L.quotient(X_112 + X_122)
sage: x, y = Q.basis().list()[:2]
sage: Q.bch(x, y)
X_1 + X_2 + 1/2*X_12 - 1/24*X_1112
```

The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:

```
sage: L.<X,Y> = LieAlgebra(QQ)
sage: L.bch(X, Y)
Traceback (most recent call last):
  ...  
ValueError: the Lie algebra is not known to be nilpotent, so you must
  specify the precision
sage: L.bch(X, Y, 4)
X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[X, Y],
  Y] + Y
```

The BCH formula requires a coercion from the rationals:

```
sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2)
sage: L.bch(X, Y)
Traceback (most recent call last):
  ...  
TypeError: the BCH formula is not well defined since Integer Ring has no
  coercion from Rational Field
```

bch *(X, Y, prec=*,None)*

Return the element \(\log(\exp(X) \exp(Y)) \).

The BCH formula is an expression for \(\log(\exp(X) \exp(Y)) \) as a sum of Lie brackets of \(X \) and \(Y \) with rational coefficients. It is only defined if the base ring of **self** has a coercion from the rationals.

INPUT:
- \(X \) – an element of **self**
- \(Y \) – an element of **self**
- \(\text{prec} \) – an integer; the maximum length of Lie brackets to be considered in the formula

EXAMPLES:

The BCH formula for the generators of a free nilpotent Lie algebra of step 4:

```
sage: L = LieAlgebra(QQ, 2, step=4)
sage: L.inject_variables()
Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122
sage: L.bch(X_1, X_2)
X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122
```

An example of the BCH formula in a quotient:
The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:

```python
sage: L.<X,Y> = LieAlgebra(QQ)
sage: L.bch(X, Y)
Traceback (most recent call last):
  ... ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision
sage: L.bch(X, Y, 4)
X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[Y, Y] + Y
```

The BCH formula requires a coercion from the rationals:

```python
sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2)
sage: L.bch(X, Y)
Traceback (most recent call last):
  ... TypeError: the BCH formula is not well defined since Integer Ring has no coercion from Rational Field
```

```python
bracket(lhs, rhs)
```

Return the Lie bracket \([\text{lhs}, \text{rhs}]\) after coercing \text{lhs} and \text{rhs} into elements of \text{self}.

If \text{lhs} and \text{rhs} are Lie algebras, then this constructs the product space, and if only one of them is a Lie algebra, then it constructs the corresponding ideal.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: L.bracket(x, x + y)
-[1, 3, 2] + [3, 2, 1]
sage: L.bracket(x, 0)
0
sage: L.bracket(0, x)
0
```

Constructing the product space:

```python
sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: Z = L.bracket(L, L); Z
Ideal (z) of Heisenberg algebra of rank 1 over Rational Field
sage: L.bracket(L, Z)
Ideal () of Heisenberg algebra of rank 1 over Rational Field
```

Constructing ideals:

```python
sage: p,q,z = L.basis(); (p,q,z) (p1, q1, z)
sage: L.bracket(3*p, L)
Ideal (3*p1) of Heisenberg algebra of rank 1 over Rational Field
```

(continues on next page)
sage: L.bracket(L, q+p)
Ideal (p1 + q1) of Heisenberg algebra of rank 1 over Rational Field

from_vector(v, order=None)

Return the element of self corresponding to the vector v in self.module().

Implement this if you implement module(); see the documentation of the latter for how this is to be done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True

ideal(*gens, **kwds)

Return the ideal of self generated by gens.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.ideal([2*a - c, b + c])
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[1 0 -1/2]
[0 1 1]

sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: L.ideal([x + y])
Traceback (most recent call last):
 ... NotImplementedError: ideals not yet implemented: see #16824

is_abelian()

Return True if this Lie algebra is abelian.

A Lie algebra g is abelian if \([x, y] = 0\) for all \(x, y \in g\).

EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: L.is_abelian()
False
sage: R = QQ['x,y']
sage: L = LieAlgebras(QQ).example(R.gens())
sage: L.is_abelian()
True

sage: L.<x> = LieAlgebra(QQ,1) # todo: not implemented - #16823
sage: L.is_abelian() # todo: not implemented - #16823
True
sage: L.<x,y> = LieAlgebra(QQ,2) # todo: not implemented - #16823
sage: L.is_abelian() # todo: not implemented - #16823
False

is_commutative()
Return if \texttt{self} is commutative. This is equivalent to \texttt{self} being abelian.

EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: L.is_commutative()
False

sage: L.<x> = LieAlgebras(QQ, 1) # todo: not implemented - #16823
sage: L.is_commutative() # todo: not implemented - #16823
True

is_ideal(A)
Return if \texttt{self} is an ideal of \texttt{A}.

EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: L.is_ideal(L)
True

is_nilpotent()
Return if \texttt{self} is a nilpotent Lie algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_nilpotent()
True

is_solvable()
Return if \texttt{self} is a solvable Lie algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_solvable()
True

killing_form(x, y)
Return the Killing form of \texttt{x} and \texttt{y}.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.killing_form(a, b+c)
0

lie_group(name='G', **kwds)
Return the simply connected Lie group related to \texttt{self}.

INPUT:
• name – string (default: 'G'); the name (symbol) given to the Lie group
EXAMPLES:

```
sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: G = L.lie_group('G'); G
Lie group G of Heisenberg algebra of rank 1 over Rational Field
```

lift()

Construct the lift morphism from `self` to the universal enveloping algebra of `self` (the latter is implemented as `universal_enveloping_algebra()`).

This is a Lie algebra homomorphism. It is injective if `self` is a free module over its base ring, or if the base ring is a \(\mathbb{Q}\)-algebra.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: lifted = L.lift(2*a + b - c); lifted
2*b0 + b1 - b2
sage: lifted.parent() is L.universal_enveloping_algebra()
True
```

module()

Return an \(R\)-module which is isomorphic to the underlying \(R\)-module of `self`.

The rationale behind this method is to enable linear algebraic functionality on `self` (such as computing the span of a list of vectors in `self`) via an isomorphism from `self` to an \(R\)-module (typically, although not always, an \(R\)-module of the form \(R^n\) for an \(n \in \mathbb{N}\)) on which such functionality already exists. For this method to be of any use, it should return an \(R\)-module which has linear algebraic functionality that `self` does not have.

For instance, if `self` has ordered basis \((e, f, h)\), then `self.module()` will be the \(R\)-module \(R^3\), and the elements \(e, f\) and \(h\) of `self` will correspond to the basis vectors \((1, 0, 0), (0, 1, 0)\) and \((0, 0, 1)\) of `self.module()`.

This method `module()` needs to be set whenever a finite-dimensional Lie algebra with basis is intended to support linear algebra (which is, e.g., used in the computation of centralizers and lower central series). One then needs to also implement the \(R\)-module isomorphism from `self` to `self.module()` in both directions; that is, implement:

- a `to_vector` `ElementMethod` which sends every element of `self` to the corresponding element of `self.module()`;
- a `from_vector` `ParentMethod` which sends every element of `self.module()` to an element of `self`.

The `from_vector` method will automatically serve as an element constructor of `self` (that is, `self(v)` for any `v` in `self.module()` will return `self.from_vector(v)`).

Todo: Ensure that this is actually so.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.module()
Vector space of dimension 3 over Rational Field
```

subalgebra *(gens, names=None, index_set=None, category=None)*

Return the subalgebra of `self` generated by `gens`.

EXAMPLES:
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field
with basis matrix:
\[
\begin{bmatrix}
1 & 0 & -1/2 \\
0 & 1 & 1
\end{bmatrix}
\]

universal_enveloping_algebra()

Return the universal enveloping algebra of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.universal_enveloping_algebra()
Noncommutative Multivariate Polynomial Ring in b0, b1, b2
over Rational Field, nc-relations: {}

sage: L = LieAlgebra(QQ, 3, 'x', abelian=True)
sage: L.universal_enveloping_algebra()
Multivariate Polynomial Ring in x0, x1, x2 over Rational Field

See also:

lift()

class SubcategoryMethods

Bases: object

Nilpotent()

Return the full subcategory of nilpotent objects of self.

A Lie algebra L is nilpotent if there exist an integer s such that all iterated brackets of L of length more than s vanish. The integer s is called the nilpotency step. For instance any abelian Lie algebra is nilpotent of step 1.

EXAMPLES:

sage: LieAlgebras(QQ).Nilpotent()
Category of nilpotent Lie algebras over Rational Field
sage: LieAlgebras(QQ).WithBasis().Nilpotent()
Category of nilpotent lie algebras with basis over Rational Field

WithBasis

alias of sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis

example(gens=None)

Return an example of a Lie algebra as per Category.example.

EXAMPLES:
```
sage: LieAlgebras(QQ).example()
An example of a Lie algebra: the Lie algebra from the associative algebra
Symmetric group algebra of order 3 over Rational Field
generated by ([2, 1, 3], [2, 3, 1])
```

Another set of generators can be specified as an optional argument:

```
sage: F.<x,y,z> = FreeAlgebra(QQ)
sage: LieAlgebras(QQ).example(F.gens())
```

```
EXAMPLES:
sage: LieAlgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]
```

3.105 Lie Algebras With Basis

`class` `sage.categories.lie_algebras.LieAlgebrasWithBasis`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

Category of Lie algebras with a basis.

`class` `ElementMethods`

Bases: `object`

```
lift()
```

Lift `self` to the universal enveloping algebra.

```
EXAMPLES:
sage: S = SymmetricGroup(3).algebra(QQ)
sage: L = LieAlgebra(associative=S)
sage: x = L.gen(3)
sage: y = L.gen(1)
sage: x.lift()
b3
sage: y.lift()
b1
sage: x * y
b1*b3 + b4 - b5
```

```
to_vector(order=None)
```

Return the vector in `g.module()` corresponding to the element `self` of `g` (where `g` is the parent of `self`).

AUTHORS:

• Travis Scrimshaw (07-15-2013): Initial implementation
Implement this if you implement `g.module()`. See `sage.categories.lie_algebras.LieAlgebras.module()` for how this is to be done.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.an_element().to_vector()
(0, 0, 0)
```

Todo: Doctest this implementation on an example not overshadowed.

```
Graded
alias of sage.categories.graded_lie_algebras_with_basis.GradedLieAlgebrasWithBasis
```

```
class ParentMethods
    Bases: object

    bracket_on_basis(x, y)
        Return the bracket of basis elements indexed by `x` and `y` where `x < y`. If this is not implemented, then the method `_bracket_()` for the elements must be overwritten.

        **EXAMPLES:**

        ```
sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.bracket_on_basis(Partition([3,1]), Partition([2,2,1,1]))
0
```

```
dimension()
 Return the dimension of `self`.

 EXAMPLES:

    ```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.dimension()
3
```

```
from_vector(v, order=None)
    Return the element of `self` corresponding to the vector `v` in `self.module()`.

    Implement this if you implement `module()`; see the documentation of `sage.categories.lie_algebras.LieAlgebras.module()` for how this is to be done.

    **EXAMPLES:**

    ```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True
```

```
module()
 Return an \(R \)-module which is isomorphic to the underlying \(R \)-module of `self`.
```
See `sage.categories.lie_algebras.LieAlgebras.module()` for an explanation.

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.module()
Free module generated by Partitions over Rational Field
```

### `pbw_basis(basis_key=None, **kwds)`

Return the Poincare-Birkhoff-Witt basis of the universal enveloping algebra corresponding to `self`.

**EXAMPLES:**

```python
sage: L = lie_algebras.sl(QQ, 2)
sage: PBW = L.pbw_basis()
```

### `poincare_birkhoff_witt_basis(basis_key=None, **kwds)`

Return the Poincare-Birkhoff-Witt basis of the universal enveloping algebra corresponding to `self`.

**EXAMPLES:**

```python
sage: L = lie_algebras.sl(QQ, 2)
sage: PBW = L.pbw_basis()
```

### `example(gens=None)`

Return an example of a Lie algebra as per `Category.example`.

**EXAMPLES:**

```python
sage: LieAlgebras(QQ).WithBasis().example()
An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Partitions over Rational Field
```

Another set of generators can be specified as an optional argument:

```python
sage: LieAlgebras(QQ).WithBasis().example(Compositions())
An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Compositions of non-negative integers
over Rational Field
```

## 3.106 Lie Conformal Algebras

Let $R$ be a commutative ring, a **super Lie conformal algebra** [Kac1997] over $R$ (also known as a **vertex Lie algebra**) is an $R[T]$ super module $L$ together with a $\mathbb{Z}/2\mathbb{Z}$-graded $R$-bilinear operation (called the $\lambda$-bracket) $L \otimes L \to L[\lambda]$ (polynomials in $\lambda$ with coefficients in $L$), $a \otimes b \mapsto [a_\lambda b]$ satisfying

1. Sesquilinearity:

   $$ [T a_\lambda b] = -\lambda [a_\lambda b], \quad [a_\lambda T b] = (\lambda + T) [a_\lambda b]. $$

2. Skew-Symmetry:

   $$ [a_\lambda b] = -(-1)^{p(a)p(b)} [b_{-\lambda - T} a], $$

where $p(a)$ is 0 if $a$ is even and 1 if $a$ is odd. The bracket in the RHS is computed as follows. First we evaluate $[b_\mu a]$ with the formal parameter $\mu$ to the left, then replace each appearance of the formal variable $\mu$ by $-\lambda - T$. Finally apply $T$ to the coefficients in $L$. 
3. Jacobi identity:

\[
[a_\lambda [b_\mu c]] = [[a_{\lambda+\mu} b_\mu c] + (-1)^{p(a)p(b)} b_\mu [a_\lambda c]],
\]

which is understood as an equality in \( L[\lambda, \mu] \).

\( T \) is usually called the **translation operation** or the **derivative**. For an element \( a \in L \) we will say that \( Ta \) is the **derivative of** \( a \). We define the \( n \)-th products \( a_{(n)}b \) for \( a, b \in L \) by

\[
[a_\lambda b] = \sum_{n \geq 0} \frac{\lambda^n}{n!} a_{(n)}b.
\]

A Lie conformal algebra is called **H-Graded** [DSK2006] if there exists a decomposition \( L = \oplus L_n \) such that the \( \lambda \)-bracket becomes graded of degree \(-1\), that is:

\[
a_{(n)}b \in L_{p+q-n-1} \quad a \in L_p, \ b \in L_q, \ n \geq 0.
\]

In particular this implies that the action of \( T \) increases degree by 1.

**Note:** In the literature arbitrary gradings are allowed. In this implementation we only support non-negative rational gradings.

**EXAMPLES:**

1. The **Virasoro** Lie conformal algebra \( Vir \) over a ring \( R \) where 12 is invertible has two generators \( L, C \) as an \( R[T] \)-module. It is the direct sum of a free module of rank 1 generated by \( L \), and a free rank one \( R \) module generated by \( C \) satisfying \( TC = 0 \). \( C \) is central (the \( \lambda \)-bracket of \( C \) with any other vector vanishes). The remaining \( \lambda \)-bracket is given by

\[
[L_\lambda L] = TL + 2\lambda L + \frac{\lambda^3}{12} C.
\]

2. The **affine** or current Lie conformal algebra \( L(g) \) associated to a finite dimensional Lie algebra \( g \) with non-degenerate, invariant \( R \)-bilinear form \((, )\) is given as a central extension of the free \( R[T] \) module generated by \( g \) by a central element \( K \). The \( \lambda \)-bracket of generators is given by

\[
[a_\lambda b] = [a, b] + \lambda (a, b) K, \quad a, b \in g
\]

3. The **Weyl** Lie conformal algebra, or \( \beta - \gamma \) system is given as the central extension of a free \( R[T] \) module with two generators \( \beta \) and \( \gamma \), by a central element \( K \). The only non-trivial brackets among generators are

\[
[\beta_\lambda \gamma] = -[\gamma_\lambda \beta] = K
\]

4. The **Neveu-Schwarz** super Lie conformal algebra is a super Lie conformal algebra which is an extension of the Virasoro Lie conformal algebra. It consists of a Virasoro generator \( L \) as in example 1 above and an **odd** generator \( G \). The remaining brackets are given by:

\[
[L_\lambda G] = \left( T + \frac{3}{2} \lambda \right) G \quad [G_\lambda G] = 2L + \frac{\lambda^2}{3} C
\]

See also:

- sage.algebras.lie_conformal_algebras.lie_conformal_algebra
- sage.algebras.lie_conformal_algebras.examples

3.106. Lie Conformal Algebras

513
AUTHORS:


```python
class sage.categories.lie_conformal_algebras.LieConformalAlgebras(base, name=None):
 Bases: sage.categories.category_types.Category_over_base_ring

The category of Lie conformal algebras.

This is the base category for all Lie conformal algebras. Subcategories with axioms are
FinitelyGenerated and WithBasis. A finitely generated Lie conformal algebra is a Lie conformal
algebra over \(R \) which is finitely generated as an \(R[T] \)-module. A Lie conformal algebra with basis is one with
a preferred basis as an \(R \)-module.

EXAMPLES:

The base category:

```python
sage: C = LieConformalAlgebras(QQ); C
Category of Lie conformal algebras over Rational Field
sage: C.is_subcategory(VectorSpaces(QQ))
True
```

Some subcategories:

```python
sage: LieConformalAlgebras(QQbar).FinitelyGenerated().WithBasis()
Category of finitely generated Lie conformal algebras with basis over Algebraic
˓→Field
```

In addition we support functorial constructions Graded and Super. These functors commute:

```python
sage: LieConformalAlgebras(AA).Graded().Super()
Category of H-graded super Lie conformal algebras over Algebraic Real Field
sage: LieConformalAlgebras(AA).Graded().Super() is LieConformalAlgebras(AA).
˓→Super().Graded()
True
```

That is, we only consider gradings on super Lie conformal algebras that are compatible with the \(\mathbb{Z}/2\mathbb{Z} \) grading.

The base ring needs to be a commutative ring:

```python
sage: LieConformalAlgebras(QuaternionAlgebra(2))
Traceback (most recent call last):
  File "", line 1, in <module>
ValueError: base must be a commutative ring got Quaternion Algebra (-1, -1) with
˓→base ring Rational Field
```

```python
class ElementMethods
    Bases: object

    is_even_odd()
    Return 0 if this element is even and 1 if it is odd.

    Note: This method returns 0 by default since every Lie conformal algebra can be thought as a purely
even Lie conformal algebra. In order to implement a super Lie conformal algebra, the user needs to
implement this method.

    EXAMPLES:
```
```python
sage: R = lie_conformal_algebras.NeveuSchwarz(QQ);
sage: R.inject_variables()
Defining L, G, C
sage: G.is_even_odd()
1
```

FinitelyGeneratedAsLambdaBracketAlgebra
alias of `sage.categories.finitely_generated_lie_conformal_algebras.FinitelyGeneratedLieConformalAlgebras`

Graded
alias of `sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebras`

class ParentMethods
 Bases: object

Super
alias of `sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras`

WithBasis
alias of `sage.categories.lie_conformal_algebras_with_basis.LieConformalAlgebrasWithBasis`

example()
 An example of parent in this category.

EXAMPLES:
```python
sage: LieConformalAlgebras(QQ).example()
The Virasoro Lie conformal algebra over Rational Field
```

super_categories()
 The list of super categories of this category.

EXAMPLES:
```python
sage: C = LieConformalAlgebras(QQ)
sage: C.super_categories()
[Category of Lambda bracket algebras over Rational Field]
sage: C = LieConformalAlgebras(QQ).FinitelyGenerated(); C
Category of finitely generated lie conformal algebras over Rational Field
sage: C.super_categories()
[Category of finitely generated lambda bracket algebras over Rational Field,
 Category of Lie conformal algebras over Rational Field]
sage: C.all_super_categories()
[Category of finitely generated lie conformal algebras over Rational Field,
 Category of finitely generated lambda bracket algebras over Rational Field,
 Category of Lie conformal algebras over Rational Field,
 Category of Lambda bracket algebras over Rational Field,
 Category of vector spaces over Rational Field,
 Category of modules over Rational Field,
 Category of bimodules over Rational Field on the left and Rational Field on the right,
 Category of right modules over Rational Field,
 Category of left modules over Rational Field,
 Category of commutative additive groups,
 Category of additive groups,
```

(continues on next page)
Category of additive inverse additive unital additive magmas,
Category of commutative additive monoids,
Category of additive monoids,
Category of additive unital additive magmas,
Category of commutative additive semigroups,
Category of additive commutative additive magmas,
Category of additive semigroups,
Category of additive magmas,
Category of sets,
Category of sets with partial maps,
Category of objects

3.107 Lie Conformal Algebras With Basis

AUTHORS:


```python
class sage.categories.lie_conformal_algebras_with_basis.LieConformalAlgebrasWithBasis(base_category):
    Bases:
        sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
    The category of Lie conformal algebras with basis.
    EXAMPLES:

    sage: LieConformalAlgebras(QQbar).WithBasis()
    Category of Lie conformal algebras with basis over Algebraic Field

    class FinitelyGeneratedAsLambdaBracketAlgebra(base_category):
        Bases:
            sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
        The category of finitely generated Lie conformal algebras with basis.
        EXAMPLES:

        sage: C = LieConformalAlgebras(QQbar).WithBasis()
sage: C.FinitelyGenerated()
        Category of finitely generated Lie conformal algebras with basis over Algebraic Field
        sage: C.FinitelyGenerated().WithBasis()
        True

    class Graded(base_category):
        Bases:
            sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory
        The category of H-graded finitely generated Lie conformal algebras with basis.
        EXAMPLES:

        sage: LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated().Graded()
        Category of H-graded finitely generated Lie conformal algebras with basis over Algebraic Field

    class Super(base_category):
        Bases:
            sage.categories.super_modules.SuperModulesCategory
```

516 Chapter 3. Individual Categories
The category of super finitely generated Lie conformal algebras with basis.

EXAMPLES:

```python
class Graded(base_category):
    Bases: sage.categories.graded_modules.GradedModulesCategory

    The category of H-graded super finitely generated Lie conformal algebras with basis.

    EXAMPLES:

    sage: C = LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated().Super()
    sage: C.Graded().Super() is C.Super().Graded()
    True
```

```python
class Super(base_category):
    Bases: sage.categories.super_modules.SuperModulesCategory

    The category of super Lie conformal algebras with basis.

    EXAMPLES:

    sage: LieConformalAlgebras(AA).WithBasis().Super()
    Category of super Lie conformal algebras with basis over Algebraic Real Field
```

```python
class Graded(base_category):
    Bases: sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory

    The category of H-graded super Lie conformal algebras with basis.

    EXAMPLES:

    sage: LieConformalAlgebras(QQbar).WithBasis().Super().Graded()
    Category of H-graded super Lie conformal algebras with basis over Algebraic Field
```

```python
class ParentMethods:
    Bases: object
```

3.107. Lie Conformal Algebras With Basis 517
3.108 Lie Groups

class sage.categories.lie_groups.LieGroups(base, name=None)

Bases: sage.categories.category_types.Category_over_base_ring

The category of Lie groups.

A Lie group is a topological group with a smooth manifold structure.

EXAMPLES:

```python
sage: from sage.categories.lie_groups import LieGroups
sage: C = LieGroups(QQ); C
Category of Lie groups over Rational Field
```

additional_structure()

Return None.

Indeed, the category of Lie groups defines no new structure: a morphism of topological spaces and of
smooth manifolds is a morphism as Lie groups.

See also:

Category.additional_structure()

EXAMPLES:

```python
sage: from sage.categories.lie_groups import LieGroups
sage: LieGroups(QQ).additional_structure()
```

super_categories()

EXAMPLES:

```python
sage: from sage.categories.lie_groups import LieGroups
sage: LieGroups(QQ).super_categories()
[Category of topological groups, 
Category of smooth manifolds over Rational Field]
```

3.109 Loop Crystals

class sage.categories.loop_crystals.KirillovReshetikhinCrystals(s=None)

Bases: sage.categories.category_singleton.Category_singleton

Category of Kirillov-Reshetikhin crystals.

class ElementMethods

Bases: object

energy_function()

Return the energy function of self.

Let B be a KR crystal. Let b^\dagger denote the unique element such that $\varphi(b^\dagger) = \ell \Lambda_0$ with $\ell = \min\{\langle c, \varphi(b) \rangle | b \in B\}$. Let u_B denote the maximal element of B. The energy of $b \in B$ is given by

$$D(b) = H(b \otimes b^\dagger) - H(u_B \otimes b^\dagger),$$

where H is the local energy function.

EXAMPLES:
K = crystals.KirillovReshetikhin(['D',4,1], 2,1)
for x in K.classically_highest_weight_vectors():
 x, x.energy_function()
 ([], 1)
 (([1], [2]), 0)

K = crystals.KirillovReshetikhin(['D',4,3], 1,2)
for x in K.classically_highest_weight_vectors():
 x, x.energy_function()
 ([], 2)
 (([1]), 1)
 (([1, 1]), 0)

lusztig_involution()
Return the result of the classical Lusztig involution on self.

EXAMPLES:

KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR')
mg = KRT.module_generators[1]
mg.lusztig_involution()

elt = mg.f_string([2,1,3,2]); elt
elt.lusztig_involution()

class ParentMethods
 Bases: object

 R_matrix(K)
 Return the combinatorial R-matrix of self to K.

 The combinatorial R-matrix is the affine crystal isomorphism $R : L \otimes K \to K \otimes L$ which maps $u_L \otimes u_K$ to $u_K \otimes u_L$, where u_K is the unique element in $K = B^{t,s}$ of weight $s\Lambda_r - sc\Lambda_0$ (see maximal_vector()).

 INPUT:
 • self – a crystal L
 • K – a Kirillov-Reshetikhin crystal of the same type as L

 EXAMPLES:

K = crystals.KirillovReshetikhin(['A',2,1],1,1)
L = crystals.KirillovReshetikhin(['A',2,1],1,2)
f = K.R_matrix(L)
[b, f(b)] for b in crystals.TensorProduct(K,L)
sage: K = crystals.KirillovReshetikhin(['D',4,1],1,1)
sage: L = crystals.KirillovReshetikhin(['D',4,1],2,1)
sage: f = K.R_matrix(L)
sage: T = crystals.TensorProduct(K,L)
sage: b = T(K(rows=[[1]]), L(rows=[[]))
sage: f(b)
[[[2], [-2]], [[1]]]

Alternatively, one can compute the combinatorial \(R \)-matrix using the isomorphism method of digraphs:

sage: K1 = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: K2 = crystals.KirillovReshetikhin(['A',2,1],2,1)
sage: T1 = crystals.TensorProduct(K1,K2)
sage: T2 = crystals.TensorProduct(K2,K1)
sage: T1.digraph().is_isomorphic(T2.digraph(), edge_labels=True, certificate=True)
(True, {
[[[1]], [[2], [3]]]: [[[1], [3]], [[2]]], [[[3]], [[2], [3]]]:
[[[2], [3]], [[3]]],
[[[3]], [[1], [3]]]: [[[1], [3]], [[3]]],
[[[1]], [[1], [3]]]: [[[1], [3]], [[1]]],
[[[2]], [[1], [1]]]: [[[1], [2]], [[1]]],
[[[2]], [[1], [2]]]: [[[1], [2]], [[2]]],
[[[2]], [[3]]],
[[[1], [2]]]: [[[2], [3]], [[1]]],
[[[2]], [[1], [3]]]: [[[1], [2]], [[3]]],
[[[3]], [[2], [3]]]: [[[2], [3]], [[2]]]})

affinization()

Return the corresponding affinization crystal of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.affinization()
Affinization of Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r, s)=(1,1)

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1, model='KR')
sage: K.affinization()
Affinization of Kirillov-Reshetikhin tableaux of type ['A', 2, 1] and shape (1, 1)

b_sharp()

Return the element \(b^\sharp \) of self.

Let \(B \) be a KR crystal. The element \(b^\sharp \) is the unique element such that \(\varphi(b^\sharp) = \ell \Lambda_0 \) with \(\ell = \min\{\langle c, \varphi(b) \rangle \mid b \in B \} \).

EXAMPLES:
```python
sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,1)
sage: K.b_sharp()
[]
sage: K.b_sharp().Phi()
Lambda[0]
sage: K = crystals.KirillovReshetikhin(['C',3,1], 1,3)
sage: K.b_sharp()
[[-1]]
sage: K.b_sharp().Phi()
2*Lambda[0]
sage: K = crystals.KirillovReshetikhin(['D',6,2], 2,2)
sage: K.b_sharp() # long time
[]
sage: K.b_sharp().Phi() # long time
2*Lambda[0]
```

cardinality()

Return the cardinality of `self`.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,1)
sage: K.cardinality()
27
sage: K = crystals.KirillovReshetikhin(['C',6,1], 4,3)
sage: K.cardinality()
4736732
```

classical_decomposition()

Return the classical decomposition of `self`.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['A', 3] and shape(s) [[2, 2]]
```

classically_highest_weight_vectors()

Return the classically highest weight elements of `self`.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.classically_highest_weight_vectors()
(([1, ]),)
```

is_perfect(ell=None)

Check if `self` is a perfect crystal of level `ell`.

A crystal \mathcal{B} is perfect of level ℓ if:

1. \mathcal{B} is isomorphic to the crystal graph of a finite-dimensional $U_q'(g)$-module.
2. $\mathcal{B} \otimes \mathcal{B}$ is connected.
3. There exists a $\lambda \in \mathcal{X}$ such that $\text{wt}(\mathcal{B}) \subseteq \lambda + \sum_{i \in I} \mathbb{Z}_{\leq 0} \alpha_i$ and there is a unique element in \mathcal{B} of classical weight λ.
4. For all $b \in \mathcal{B}$, $\text{level}(\varepsilon(b)) \geq \ell$.
5. For all Λ dominant weights of level ℓ, there exist unique elements $b_\Lambda, b^\Lambda \in \mathcal{B}$, such that $\varepsilon(b_\Lambda) = \Lambda = \varphi(b^\Lambda)$.

3.109. Loop Crystals
Points (1)-(3) are known to hold. This method checks points (4) and (5).

If \(\text{self} \) is the Kirillov-Reshetikhin crystal \(B^{r,s} \), then it was proven for non-exceptional types in [FOS2010] that it is perfect if and only if \(s/c_r \) is an integer (where \(c_r \) is a constant related to the type of the crystal).

It is conjectured this is true for all affine types.

INPUT:

- \(\text{ell} \) – (default: \(s/c_r \)) integer; the level

REFERENCES:

[FOS2010]

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.is_perfect()
True
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1)
sage: K.is_perfect()
False
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2)
sage: K.is_perfect()
True
sage: K = crystals.KirillovReshetikhin(['E',6,1], 1, 3)
sage: K.is_perfect()
True
```

Todo: Implement a version for tensor products of KR crystals.

level()

Return the level of \(\text{self} \) when \(\text{self} \) is a perfect crystal.

See also:

is_perfect()

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.level()
1
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2)
sage: K.level()
1
sage: K = crystals.KirillovReshetikhin(['D',4,1], 1, 3)
sage: K.level()
3
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1)
sage: K.level()
Traceback (most recent call last):
...
ValueError: this crystal is not perfect
```
local_energy_function(B)

Return the local energy function of self and B.

See LocalEnergyFunction for a definition.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,1)
sage: Kp = crystals.KirillovReshetikhin(['A',6,2], 1,1)
sage: H = K.local_energy_function(Kp); H
Local energy function of Kirillov-Reshetikhin crystal of type ['BC', 3, 2] with (r,s)=(2,1) tensor Kirillov-Reshetikhin crystal of type ['BC', 3, 2] with (r,s)=(1,1)
```

maximal_vector()

Return the unique element of classical weight $s\Lambda_r$ in self.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['C',2,1],1,2)
sage: K.maximal_vector()
[[1, 1]]
sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.maximal_vector()
[(1,)]
sage: K = crystals.KirillovReshetikhin(['D',4,1],2,1)
sage: K.maximal_vector()
[[1], [2]]
```

module_generator()

Return the unique module generator of classical weight $s\Lambda_r$ of the Kirillov-Reshetikhin crystal $B^{r,s}$.

EXAMPLES:

```python
sage: La = RootSystem(['G',2,1]).weight_space().fundamental_weights()
sage: K = crystals.ProjectedLevelZeroLSPaths(La[1])
sage: K.module_generator()
(-Lambda[0] + Lambda[1],)
```

q_dimension($q=None$, $prec=None$, $use_product=False$)

Return the q-dimension of self.

The q-dimension of a KR crystal is defined as the q-dimension of the underlying classical crystal.

EXAMPLES:

```python
sage: KRC = crystals.KirillovReshetikhin(['A',2,1], 2,2)
sage: KRC.q_dimension()
q^4 + q^3 + 2*q^2 + q + 1
sage: KRC = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: KRC.q_dimension()
q^10 + q^9 + 3*q^8 + 3*q^7 + 4*q^6 + 4*q^5 + 4*q^4 + 3*q^3 + 3*q^2 + q + 2
```

r()

Return the value r in self written as $B^{r,s}$.

EXAMPLES:
sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,4)
sage: K.r()

s()

Return the value \(s \) in \texttt{self} written as \(B^r s \).

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,4)
sage: K.s()

class TensorProducts (category, *args)

Bases: sage.categories.tensor.TensorProductsCategory

The category of tensor products of Kirillov-Reshetikhin crystals.

class ElementMethods

Bases: object

affine_grading()

Return the affine grading of \texttt{self}.

The affine grading is calculated by finding a path from \texttt{self} to a ground state path (using the helper method \texttt{e_string_to_ground_state()}) and counting the number of affine Kashiwara operators \(e_0 \) applied on the way.

OUTPUT: an integer

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]
sage: t.affine_grading()
1

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
....: print("{} {}").format(b, b.affine_grading())
[[[1]], [[1]], [[1]]] 3
[[[2]], [[1]], [[1]]] 2
[[[1]], [[2]], [[1]]] 1
[[[3]], [[2]], [[1]]] 0

sage: K = crystals.KirillovReshetikhin(['C',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
....: print("{} {}").format(b, b.affine_grading())
[[[1]], [[1]], [[1]]] 2
[[[2]], [[1]], [[1]]] 1
[[[-1]], [[1]], [[1]]] 1
[[[1]], [[2]], [[1]]] 1
[[[-2]], [[2]], [[1]]] 0
[[[1]], [[-1]], [[1]]] 0
e_string_to_ground_state()

Return a string of integers in the index set \((i_1, \ldots, i_k)\) such that \(e_{i_k} \cdots e_{i_1}\) of `self` is the ground state.

This method calculates a path from `self` to a ground state path using Demazure arrows as defined in Lemma 7.3 in [ST2011].

OUTPUT: a tuple of integers \((i_1, \ldots, i_k)\)

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]
sage: t.e_string_to_ground_state()
(0, 2)
sage: K = crystals.KirillovReshetikhin(['C',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]; t
[[[1]], [[1]]]
sage: t.e_string_to_ground_state()
(0,)
sage: x = t.e(0)
sage: x.e_string_to_ground_state()
()
sage: y = t.f_string([1,2,1,1,0]); y
[[[2]], [[1]]]
sage: y.e_string_to_ground_state()
()
```

energy_function(algorithm=None)

Return the energy function of `self`.

ALGORITHM:

definition

Let \(T\) be a tensor product of Kirillov-Reshetikhin crystals. Let \(R_i\) and \(H_i\) be the combinatorial \(R\)-matrix and local energy functions, respectively, acting on the \(i\) and \(i + 1\) factors. Let \(D_B\) be the energy function of a single Kirillov-Reshetikhin crystal. The **energy function** is given by

\[
D = \sum_{j > i} H_j R_{i+1} R_{i+2} \cdots R_{j-1} + \sum_j D_B R_i R_{i+2} \cdots R_{j-1},
\]

where \(D_B\) acts on the rightmost factor.

grading

If `self` is an element of \(T\), a tensor product of perfect crystals of the same level, then use the affine grading to determine the energy. Specifically, let \(g\) denote the affine grading of `self` and \(d\) the affine grading of the maximal vector in \(T\). Then the energy of `self` is given by \(d - g\).

For more details, see Theorem 7.5 in [ST2011].

INPUT:

- `algorithm` – (default: None) use one of the following algorithms to determine the energy function:
'definition' - use the definition of the energy function;
'grading' - use the affine grading;
If not specified, then this uses 'grading' if all factors are perfect of the same level and
otherwise this uses 'definition'.

OUTPUT: an integer

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A', 2, 1], 1, 1)
sage: T = crystals.TensorProduct(K, K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
    print('{} {}'.format(b, b.energy_function()))
[[[1]], [[1]], [[1]]] 0
[[[2]], [[1]], [[1]]] 1
[[[1]], [[2]], [[1]]] 2
[[[3]], [[2]], [[1]]] 3
```

```python
sage: K = crystals.KirillovReshetikhin(['C', 2, 1], 1, 2)
sage: T = crystals.TensorProduct(K, K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
    print('{} {}'.format(b, b.energy_function()))
[[], [], 4]
[[[1, 1]], [], 3]
[[], [[1, 1]], 1]
[[[1, 1]], [[1, 1]], 0]
[[[1, 2]], [[1, 1]], 1]
[[[2, 2]], [[1, 1]], 2]
[[[-1, -1]], [[1, 1]], 2]
[[[1, -1]], [[1, 1]], 2]
[[[2, -1]], [[1, 1]], 2]
```

```python
sage: K = crystals.KirillovReshetikhin(['C', 2, 1], 1, 1)
sage: T = crystals.TensorProduct(K)
sage: t = T.module_generators[0]
sage: t.energy_function('grading')
Traceback (most recent call last):
...
NotImplementedError: all crystals in the tensor product
need to be perfect of the same level
```

```python
class ParentMethods
    Bases: object

    cardinality()
    Return the cardinality of self.

    EXAMPLES:

    ```
sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [1, 2]])
sage: RC.cardinality()
100
sage: len(RC.list())
100

sage: RC = RiggedConfigurations(['E', 7, 1], [[1, 1]])
sage: RC.cardinality()
134
```
```
sage: len(RC.list())
134

sage: RC = RiggedConfigurations(['B', 3, 1], [[2,2],[1,2]])
sage: RC.cardinality()
5130

classically_highest_weight_vectors()
Return the classically highest weight elements of self.
This works by using a backtracking algorithm since if $b_2 \otimes b_1$ is classically highest weight then b_1 is classically highest weight.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: T.classically_highest_weight_vectors()
(
[[[1]], [[1]], [[1]]],
[[[2]], [[1]], [[1]]],
[[[1]], [[2]], [[1]]],
[[[3]], [[2]], [[1]]]
)

maximal_vector()
Return the maximal vector of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: T.maximal_vector()
[[[1]], [[1]], [[1]]]

one_dimensional_configuration_sum($q=None$, $group_components=True$)
Compute the one-dimensional configuration sum of self.

INPUT:
- q – (default: None) a variable or None; if None, a variable q is set in the code
- $group_components$ – (default: True) boolean; if True, then the terms are grouped by classical component

The one-dimensional configuration sum is the sum of the weights of all elements in the crystal weighted by the energy function.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: T.one_dimensional_configuration_sum() # (continues on next page)
```python
sage: R = RootSystem(['A', 2, 1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: LS.one_dimensional_configuration_sum() == T.one_dimensional_configuration_sum()  # long time
True
```

```python
extra_super_categories()

EXAMPLES:
```
```python
sage: from sage.categories.loop_crystals import KirillovReshetikhinCrystals
sage: KirillovReshetikhinCrystals().TensorProducts().extra_super_categories()
[Category of finite regular loop crystals]
```

```python
super_categories()

EXAMPLES:
```
```python
sage: from sage.categories.loop_crystals import KirillovReshetikhinCrystals
sage: KirillovReshetikhinCrystals().super_categories()
[Category of finite regular loop crystals]
```

class sage.categories.loop_crystals.LocalEnergyFunction(B, Bp, normalization=0)
Bases: sage.categories.map.Map

The local energy function.

Let B and B' be Kirillov-Reshetikhin crystals with maximal vectors u_B and $u_{B'}$ respectively. The local energy function $H : B \otimes B' \to \mathbb{Z}$ is the function which satisfies

$$H(e_0(b \otimes b')) = H(b \otimes b') + \begin{cases} 1 & \text{if } i = 0 \text{ and LL}, \\
-1 & \text{if } i = 0 \text{ and RR}, \\
0 & \text{otherwise}, \end{cases}$$

where LL (resp. RR) denote e_0 acts on the left (resp. right) on both $b \otimes b'$ and $R(b \otimes b')$, and normalized by $H(u_B \otimes u_{B'}) = 0$.

INPUT:

- B – a Kirillov-Reshetikhin crystal
- B' – a Kirillov-Reshetikhin crystal
- normalization – (default: 0) the normalization value

EXAMPLES:
```
```python
sage: K = crystals.KirillovReshetikhin(['C', 2, 1], 1, 2)
sage: K2 = crystals.KirillovReshetikhin(['C', 2, 1], 2, 1)
sage: H = K.local_energy_function(K2)
sage: T = tensor([K, K2])
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
....: b, H(b)
(([], [[1], [2]]), 1)
(((1, 1), [[1], [2]]), 0)
(((2, -2), [[1], [2]]), 1)
(((1, -2), [[1], [2]]), 1)
```
class sage.categories.loop_crystals.LoopCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of $U'_q(g)$-crystals, where $g$ is of affine type.

The category is called loop crystals as we can also consider them as crystals corresponding to the loop algebra $g_0[t]$, where $g_0$ is the corresponding classical type.

EXAMPLES:

```python
sage: from sage.categories.loop_crystals import LoopCrystals
sage: C = LoopCrystals()
```

class ParentMethods
Bases: object

digraph(subset=None, index_set=None)

Return the DiGraph associated to self.

INPUT:

• `subset` – (optional) a subset of vertices for which the digraph should be constructed
• `index_set` – (optional) the index set to draw arrows

See also:

```python
sage.categories.crystals.Crystals.ParentMethods.digraph()
```

EXAMPLES:

```python
sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: G = C.digraph()
sage: G.latex_options() # optional - dot2tex
LaTeX options for Digraph on 29 vertices:
{...'edge_options': <function ... at ...>...}
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested
(opens external window)
```

weight_lattice_realization()

Return the weight lattice realization used to express weights of elements in self.

The default is to use the non-extended affine weight lattice.

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 5])
sage: C.weight_lattice_realization()
```

example(n=3)

Return an example of Kirillov-Reshetikhin crystals, as per `Category.example()`.
EXAMPLES:

```
sage: from sage.categories.loop_crystals import LoopCrystals
sage: B = LoopCrystals().example(); B
Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(1,1)
```

```
sage: from sage.categories.loop_crystals import LoopCrystals
sage: LoopCrystals().super_categories()
[Category of crystals]
```

```
class sage.categories.loop_crystals.RegularLoopCrystals(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

 The category of regular $U'_q(g)$-crystals, where g is of affine type.

class ElementMethods
 Bases: object

 classical_weight()
 Return the classical weight of self.

 EXAMPLES:

 sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: hw = LS.classically_highest_weight_vectors()
sage: [(v.weight(), v.classical_weight()) for v in hw]
 [(-2*Lambda[0] + 2*Lambda[1], (2, 0, 0)),
 (-Lambda[0] + Lambda[2], (1, 1, 0))]
```

```
sage: from sage.categories.loop_crystals import RegularLoopCrystals
sage: RegularLoopCrystals().super_categories()
[Category of regular crystals,
 Category of loop crystals]
```

### 3.110 L-trivial semigroups

```
class sage.categories.l_trivial_semigroups.LTrivialSemigroups(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

 Commutative_extra_super_categories()
 Implement the fact that a commutative R-trivial semigroup is J-trivial.

 EXAMPLES:

 sage: Semigroups().LTrivial().Commutative_extra_super_categories()
 [Category of j trivial semigroups]
```

```
RTrivial_extra_super_categories()
 Implement the fact that an L-trivial and R-trivial semigroup is J-trivial.
```
EXAMPLES:

```python
sage: Semigroups().LTrivial().RTrivial_extra_super_categories()
[Category of j trivial magmas]
```

**extra_super_categories()**

Implement the fact that a $L$-trivial semigroup is $H$-trivial.

EXAMPLES:

```python
sage: Semigroups().LTrivial().extra_super_categories()
[Category of h trivial semigroups]
```

### 3.111 Magmas

```python
class sage.categories.magmas.Magmas(s=None)
Bases: sage.categories.category_singleton.Category_singleton
```

The category of (multiplicative) magmas.

A magma is a set with a binary operation $\ast$.

EXAMPLES:

```python
sage: Magmas()
Category of magmas
sage: Magmas().super_categories()
[Category of sets]
```

The following axioms are defined by this category:

```python
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Unital()
Category of unital magmas
sage: Magmas().Commutative()
Category of commutative magmas
sage: Magmas().Unital().Inverse()
Category of inverse unital magmas
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().Unital()
Category of monoids
sage: Magmas().Associative().Unital().Inverse()
Category of groups
```

```python
class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory
```

---

**3.111. Magmas**

531
For a magma algebra $RS$ this is always false unless $S$ is trivial and the base ring $R$ is a field.

**EXAMPLES:**

```python
sage: SymmetricGroup(1).algebra(QQ).is_field()
True
sage: SymmetricGroup(1).algebra(ZZ).is_field()
False
sage: SymmetricGroup(2).algebra(QQ).is_field()
False
```

**extra_super_categories()**

**EXAMPLES:**

```python
sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
```

This implements the fact that the algebra of a commutative magma is commutative:

```python
sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field, Category of commutative magmas]
```

In particular, commutative monoid algebras are commutative algebras:

```python
sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).Commutative())
True
```

**Associative**

alias of `sage.categories.semigroups.Semigroups`

**class CartesianProducts**

*category, *args*

**Bases:** `sage.categories.cartesian_product.CartesianProductsCategory`

**class ParentMethods**

**Bases:** `object`

**product** (`left`, `right`)

**EXAMPLES:**

```python
sage: C = Magmas().CartesianProducts().example(); C
The Cartesian product of (Rational Field, Integer Ring, Integer Ring)
sage: x = C.an_element(); x
(1/2, 1, 1)
sage: x * x
(1/4, 1, 1)
sage: A = SymmetricGroupAlgebra(QQ, 3)
sage: x = cartesian_product([A([1,3,2]), A([2,3,1])])
sage: y = cartesian_product([A([1,3,2]), A([2,3,1])])
sage: cartesian_product([A,A]).product(x,y)
B[(0, [1, 2, 3])] + B[(1, [3, 1, 2])]
sage: x*y
B[(0, [1, 2, 3])] + B[(1, [3, 1, 2])]
```

**example()**

Return an example of Cartesian product of magmas.

**EXAMPLES:**
sage: C = Magmas().CartesianProducts().example(); C
The Cartesian product of (Rational Field, Integer Ring, Integer Ring)
sage: C.category()
Join of Category of Cartesian products of commutative rings and
Category of Cartesian products of metric spaces
sage: sorted(C.category().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
 'AdditiveUnital', 'Associative', 'Commutative',
 'Distributive', 'Unital']
sage: TestSuite(C).run()

extra_super_categories()
This implements the fact that a subquotient (and therefore a quotient or subobject) of a finite set is
finite.
EXAMPLES:

```
sage: Semigroups().CartesianProducts().extra_super_categories()
[Category of semigroups]
sage: Semigroups().CartesianProducts().super_categories()
[Category of semigroups, Category of Cartesian products of magmas]
```

class Commutative (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton
class Algebras (category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory
extra_super_categories()
EXAMPLES:

```
sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
```

This implements the fact that the algebra of a commutative magma is commutative:

```
sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field,
 Category of commutative magmas]
```

In particular, commutative monoid algebras are commutative algebras:

```
sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).˓
 .Commutative())
True
```

class CartesianProducts (category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory
extra_super_categories()
Implement the fact that a Cartesian product of commutative additive magmas is still an commu-
tative additive magmas.
EXAMPLES:

```
sage: C = Magmas().Commutative().CartesianProducts()
sage: C.extra_super_categories()
```
class ParentMethods
    Bases: object

    is_commutative()
    Return True, since commutative magmas are commutative.

    EXAMPLES:
        sage: Parent(QQ,category=CommutativeRings()).is_commutative()
        True

class ElementMethods
    Bases: object

    is_idempotent()
    Test whether self is idempotent.

    EXAMPLES:
        sage: S = Semigroups().example("free"); S
        An example of a semigroup: the free semigroup generated by ('a', 'b', 'c',
        → 'd')
        sage: a = S('a')
        sage: a^2
        'aa'
        sage: a.is_idempotent()
        False
        sage: L = Semigroups().example("leftzero"); L
        An example of a semigroup: the left zero semigroup
        sage: x = L('x')
        sage: x^2
        'x'
        sage: x.is_idempotent()
        True

FinitelyGeneratedAsMagma
    alias of sage.categories.finitely_generated_magmas.FinitelyGeneratedMagmas

class JTrivial(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
    Bases: object

    multiplication_table(names='letters', elements=None)
    Returns a table describing the multiplication operation.

    Note: The order of the elements in the row and column headings is equal to the order given by the table's list() method. The association can also be retrieved with the dict() method.

    INPUT:
    • names - the type of names used
- 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements’ positions in the list given by \texttt{column_keys()}, padded to a common width with leading ‘a’s.
- 'digits' - base 10 representation of the elements’ positions in the list given by \texttt{column_keys()}, padded to a common width with leading zeros.
- 'elements' - the string representations of the elements themselves.
- a list - a list of strings, where the length of the list equals the number of elements.

• \texttt{elements} - default = None. A list of elements of the magma, in forms that can be coerced into the structure, eg. their string representations. This may be used to impose an alternate ordering on the elements, perhaps when this is used in the context of a particular structure. The default is to use whatever ordering the \texttt{S.list} method returns. Or the \texttt{elements} can be a subset which is closed under the operation. In particular, this can be used when the base set is infinite.

OUTPUT: The multiplication table as an object of the class \texttt{OperationTable} which defines several methods for manipulating and displaying the table. See the documentation there for full details to supplement the documentation here.

EXAMPLES:

The default is to represent elements as lowercase ASCII letters.

```
sage: G = CyclicPermutationGroup(5)
sage: G.multiplication_table()
 a b c d e
+-------
a| a b c d e
b| b c d e a
c| c d e a b
d| d e a b c
e| e a b c d
```

All that is required is that an algebraic structure has a multiplication defined. A \texttt{LeftRegularBand} is an example of a finite semigroup. The \texttt{names} argument allows displaying the elements in different ways.

```
sage: from sage.categories.examples.finite_semigroups import LeftRegularBand
sage: L = LeftRegularBand(('a', 'b'))
sage: T = L.multiplication_table(names='digits')
sage: T.column_keys()
('a', 'ab', 'b', 'ba')
sage: T
 0 1 2 3
+--------
0| 0 1 1 1
1| 1 1 1 1
2| 3 3 2 3
3| 3 3 3 3
```

Specifying the elements in an alternative order can provide more insight into how the operation behaves.

```
sage: L = LeftRegularBand(('a', 'b', 'c'))
sage: elts = sorted(L.list())
sage: L.multiplication_table(elements=elts)
 a b c d e f g h i j k l m n o
+-----------------------------
a| a b c d e b b c c c d d e e
b| b b c c b b c c c c c c c
```

(continues on next page)
The `elements` argument can be used to provide a subset of the elements of the structure. The subset must be closed under the operation. Elements need only be in a form that can be coerced into the set. The `names` argument can also be used to request that the elements be represented with their usual string representation.

```sage
sage: L=LeftRegularBand(('a','b','c'))
sage: elts=['a', 'c', 'ac', 'ca']
sage: L.multiplication_table(names='elements', elements=elts)
```

```
* | a | b | c | ac | ca
---|-----|-----|------|------|-------
 a | 'a' | 'ac' | 'ac' | 'a' |
 b | 'c' | 'ca' | 'ca' | 'ca' | 'b'
 c | 'ac' | 'ac' | 'ac' | 'ac' | 'ac'
 ac| 'ca' | 'ca' | 'ca' | 'ca' | 'ca'
```

The table returned can be manipulated in various ways. See the documentation for `OperationTable` for more comprehensive documentation.

```sage
sage: G=AlternatingGroup(3)
sage: T=G.multiplication_table()
sage: T.column_keys()

((), (1,2,3), (1,3,2))
sage: T.translation()

{'a': (), 'b': (1,2,3), 'c': (1,3,2)}
sage: T.change_names(

['x', 'y', 'z'])
sage: T.translation()

{'x': (), 'y': (1,2,3), 'z': (1,3,2)}
sage: T

* x y z
+----
x| x y z
y| y z x
z| z x y
```

**product** (x, y)

The binary multiplication of the magma.

**INPUT:**

• x, y – elements of this magma

**OUTPUT:**

• an element of the magma (the product of x and y)

**EXAMPLES:**
A parent in Magmas() must either implement `product()` in the parent class or `_mul_` in the element class. By default, the addition method on elements `x._mul_(y)` calls `S.product(x, y)`, and reciprocally.

As a bonus, `S.product` models the binary function from `S` to `S`:

```python
sage: bin = S.product
sage: bin(x,y)
'ab'
```

Currently, `S.product` is just a bound method:

```python
sage: bin # py2
<bound method FreeSemigroup_with_category.product of An example of a → semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')>
sage: bin # py3, due to difference in how bound methods are repr'd
<bound method FreeSemigroup.product of An example of a semigroup: the → free semigroup generated by ('a', 'b', 'c', 'd')>
```

When Sage will support multivariate morphisms, it will be possible, and in fact recommended, to enrich `S.product` with extra mathematical structure. This will typically be implemented using lazy attributes:

```python
sage: bin # todo: not implemented
Generic binary morphism:
From: (S x S)
To: S
```

### `product_from_element_class_mul(x, y)`

The binary multiplication of the magma.

**INPUT:**
- `x, y` – elements of this magma

**OUTPUT:**
- an element of the magma (the product of `x` and `y`)

**EXAMPLES:**

```python
sage: S = Semigroups().example("free")
sage: x = S('a'); y = S('b')
sage: S.product(x, y)
'ab'
```

A parent in Magmas() must either implement `product()` in the parent class or `_mul_` in the element class. By default, the addition method on elements `x._mul_(y)` calls `S.product(x, y)`, and reciprocally.

As a bonus, `S.product` models the binary function from `S` to `S`:

```python
sage: bin = S.product
sage: bin(x,y)
'ab'
```

Currently, `S.product` is just a bound method:
When Sage will support multivariate morphisms, it will be possible, and in fact recommended, to enrich \texttt{S.product} with extra mathematical structure. This will typically be implemented using lazy attributes:

```python
sage: bin # todo: not implemented
Generic binary morphism:
From: (S x S)
To: S
```

### class Realizations

**category, *args**

**Bases:** \texttt{sage.categories.realizations.RealizationsCategory}

**class ParentMethods**

**Bases:** \texttt{object}

**product\_by\_coercion\_(left, right)**

Default implementation of product for realizations.

This method coerces to the realization specified by \texttt{self.realization\_of()}. \texttt{a\_realization()}, computes the product in that realization, and then coerces back.

**EXAMPLES:**

```python
sage: Out = Sets().WithRealizations().example().Out(); Out
The subset algebra of \{1, 2, 3\} over Rational Field in the Out basis
sage: Out.product
<bound method SubsetAlgebra.Out_with_category.product_by_coercion of...
The subset algebra of \{1, 2, 3\} over Rational Field in the Out basis>
sage: Out.product.__module__
'sage.categories.magmas'
sage: x = Out.an_element()
sage: y = Out.an_element()
sage: Out.product(x, y)
Out[\{}\] + 4*Out[\{1\}] + 9*Out[\{2\}] + Out[\{1, 2\}]
```

### class SubcategoryMethods

**Bases:** \texttt{object}

**Associative**

Return the full subcategory of the associative objects of \texttt{self}.

A (multiplicative) magma \texttt{Magmas M is associative} if, for all \(x, y, z \in M\),

\[ x * (y * z) = (x * y) * z \]

**See also:**

Wikipedia article \texttt{Associative\_property}

**EXAMPLES:**
Commutative()
Return the full subcategory of the commutative objects of self.

A (multiplicative) magma $\text{Magmas} M$ is *commutative* if, for all $x, y \in M$,

$$x \ast y = y \ast x$$

See also:
Wikipedia article Commutative_property

EXMAPLES:

```
sage: Magmas().Commutative()
Category of commutative magmas
sage: Monoids().Commutative()
Category of commutative monoids
```

Distributive()
Return the full subcategory of the objects of self where $\ast$ is distributive on $+$.  

INPUT:
• self – a subcategory of $\text{Magmas}$ and $\text{AdditiveMagmas}$

Given that Sage does not yet know that the category $\text{MagmasAndAdditiveMagmas}$ is the intersection of the categories $\text{Magmas}$ and $\text{AdditiveMagmas}$, the method $\text{MagmasAndAdditiveMagmas.SubcategoryMethods.Distributive()}$ is not available, as would be desirable, for this intersection.

This method is a workaround. It checks that self is a subcategory of both $\text{Magmas}$ and $\text{AdditiveMagmas}$ and upgrades it to a subcategory of $\text{MagmasAndAdditiveMagmas}$ before applying the axiom. It complains otherwise, since the Distributive axiom does not make sense for a plain magma.

EXMAPLES:

```
sage: (Magmas() & AdditiveMagmas()).Distributive()
Category of distributive magmas and additive magmas
sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
Category of rings
```

FinitelyGenerated()
Return the subcategory of the objects of self that are endowed with a distinguished finite set of (multiplicative) magma generators.

EXMAPLES:
This is a shorthand for \texttt{FinitelyGeneratedAsMagma()}, which see:


```
sage: Magmas().FinitelyGenerated()
Category of finitely generated magmas
sage: Semigroups().FinitelyGenerated()
Category of finitely generated semigroups
sage: Groups().FinitelyGenerated()
Category of finitely generated enumerated groups
```

An error is raised if this is ambiguous:

```
sage: (Magmas() & AdditiveMagmas()).FinitelyGenerated()
Traceback (most recent call last):
...
ValueError: FinitelyGenerated is ambiguous for
Join of Category of magmas and Category of additive magmas.
Please use explicitly one of the FinitelyGeneratedAsXXX methods
```

\textbf{Note:} Checking that there is no ambiguity currently assumes that all the other “finitely generated” axioms involve an additive structure. As of Sage 6.4, this is correct.

The use of this shorthand should be reserved for casual interactive use or when there is no risk of ambiguity.

\textbf{FinitelyGeneratedAsMagma()}

Return the subcategory of the objects of \texttt{self} that are endowed with a distinguished finite set of (multiplicative) magma generators.

A set \( S \) of elements of a multiplicative magma form a set of generators if any element of the magma can be expressed recursively from elements of \( S \) and products thereof.

It is not imposed that morphisms shall preserve the distinguished set of generators; hence this is a full subcategory.

\textbf{See also:}

Wikipedia article Unital_magma\#unital

\textbf{EXAMPLES:}

```
sage: Magmas().FinitelyGeneratedAsMagma()
Category of finitely generated magmas
```

Being finitely generated does depend on the structure: for a ring, being finitely generated as a magma, as an additive magma, or as a ring are different concepts. Hence the name of this axiom is explicit:

```
sage: Rings().FinitelyGeneratedAsMagma()
Category of finitely generated as magma enumerated rings
```

On the other hand, it does not depend on the multiplicative structure: for example a group is finitely generated if and only if it is finitely generated as a magma. A short hand is provided when there is no ambiguity, and the output tries to reflect that:

```
sage: Semigroups().FinitelyGenerated()
Category of finitely generated semigroups
sage: Groups().FinitelyGenerated()
Category of finitely generated enumerated groups
```

(continues on next page)
Note that the set of generators may depend on the actual category; for example, in a group, one can often use less generators since it is allowed to take inverses.

**JTrivial()**

Return the full subcategory of the J-trivial objects of `self`.

This axiom is in fact only meaningful for semigroups. This stub definition is here as a workaround for trac ticket #20515, in order to define the J-trivial axiom as the intersection of the L and R-trivial axioms.

See also:

`Semigroups.SubcategoryMethods.JTrivial()`

**Unital()**

Return the subcategory of the unital objects of `self`.

A (multiplicative) magma `M` is unital if it admits an element 1, called unit, such that for all `x ∈ M`,

\[ 1 \ast x = x \ast 1 = x \]

This element is necessarily unique, and should be provided as `M.one()`.

See also:

Wikipedia article Unital_magma#unital

EXAMPLES:

```python
sage: Magmas().Unital()
Category of unital magmas
sage: Semigroups().Unital()
Category of monoids
sage: Monoids().Unital()
Category of monoids
sage: from sage.categories.associative_algebras import AssociativeAlgebras
sage: AssociativeAlgebras(QQ).Unital()
Category of algebras over Rational Field
```

**class Subquotients (category, *args)**

Bases: `sage.categories.subquotients.SubquotientsCategory`

The category of subquotient magmas.

See `Sets.SubcategoryMethods.Subquotients()` for the general setup for subquotients. In the case of a subquotient magma `S` of a magma `G`, the condition that `r` be a morphism in `As` can be rewritten as follows:

- for any two `a, b ∈ S` the identity `a ×_S b = r(l(a) ×_G l(b))` holds.

This is used by this category to implement the product `×_S` of `S` from `l` and `r` and the product of `G`.

EXAMPLES:
```python
sage: Semigroups().Subquotients().all_super_categories()
[Category of subquotients of semigroups, Category of semigroups,
Category of subquotients of magmas, Category of magmas,
Category of subquotients of sets, Category of sets,
Category of sets with partial maps,
Category of objects]
```

class ParentMethods

Bases: object

```python
product(x, y)
```

Return the product of two elements of self.

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: S
An example of a (sub)quotient semigroup:
a quotient of the left zero semigroup
sage: S.product(S(19), S(3))
19
```

Here is a more elaborate example involving a sub algebra:

```python
sage: Z = SymmetricGroup(5).algebra(QQ).center()
sage: B = Z.basis()
```

class Unital (base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Algebras (category, *args)

Bases: sage.categories.algebra_functor.AlgebrasCategory

extra_super_categories()

EXAMPLES:

```python
sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
```

This implements the fact that the algebra of a commutative magma is commutative:

```python
sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field,
Category of commutative magmas]
```

In particular, commutative monoid algebras are commutative algebras:

```python
sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).
Commutative())
True
```

class CartesianProducts (category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ElementMethods

Bases: object
```
class ParentMethods
Bases: object

one()
Return the unit of this Cartesian product.
It is built from the units for the Cartesian factors of self.

EXAMPLES:

```
sage: cartesian_product([QQ, ZZ, RR]).one()
(1, 1, 1.00000000000000)
```

extra_super_categories()
Implement the fact that a Cartesian product of unital magmas is a unital magma

EXAMPLES:

```
sage: C = Magmas().Unital().CartesianProducts()
sage: C.extra_super_categories()
[Category of unital magmas]
sage: C.axioms()
frozenset({'Unital'})
sage: Monoids().CartesianProducts().is_subcategory(Monoids())
True
```

class ElementMethods
Bases: object
class Inverse(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton
class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a Cartesian product of magmas with inverses is a magma with inverse.

EXAMPLES:

```
sage: C = Magmas().Unital().Inverse().CartesianProducts()
sage: C.extra_super_categories()
[Category of inverse unital magmas]
sage: sorted(C.axioms())
['Inverse', 'Unital']
```

class ParentMethods
Bases: object

is_empty()
Return whether self is empty.
Since this set is a unital magma it is not empty and this method always return False.

EXAMPLES:

```
sage: S = SymmetricGroup(2)
sage: S.is_empty()
False
```
sage: M = Monoids().example()
sage: M.is_empty()
False

one()

Return the unit of the monoid, that is the unique neutral element for *.

Note: The default implementation is to coerce 1 into self. It is recommended to override this method because the coercion from the integers:

- is not always meaningful (except for 1);
- often uses self.one().

EXAMPLES:

```
sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd →')
sage: M.one()
'
```

class Realizations(*category, *args*)

Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods

Bases: object

one()

Return the unit element of self.

```
sage: from sage.combinat.root_system.extended_affine_weyl_group import ExtendedAffineWeylGroup
sage: PvW0 = ExtendedAffineWeylGroup(['A','2',1]).PvW0()
sage: PvW0 in Magmas().Unital().Realizations() True
sage: PvW0.one() 1
```

class SubcategoryMethods

Bases: object

Inverse()

Return the full subcategory of the inverse objects of self.

An inverse :class:`(multiplicative) magma <Magmas>` is a **unital magma** such that every element admits both an inverse on the left and on the right. Such a magma is also called a **loop**.

See also:

Wikipedia article Inverse_element, Wikipedia article Quasigroup

EXAMPLES:

```
sage: Magmas().Unital().Inverse()
Category of inverse unital magmas
sage: Monoids().Inverse()
Category of groups
```

additional_structure()

Return self.

Indeed, the category of unital magmas defines an additional structure, namely the unit of the magma which shall be preserved by morphisms.
See also:

Category.additional_structure()

EXAMPLES:

```python
sage: Magmas().Unital().additional_structure()
Category of unital magmas
```

```
super_categories()
```

EXAMPLES:

```python
sage: Magmas().super_categories()
[Category of sets]
```

3.112 Magmas and Additive Magmas

```python
class sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas(s=None)
Bases: sage.categories.category_singleton.Category_singleton
The category of sets $(\mathcal{S}, +, \cdot)$ with an additive operation `+` and a multiplicative operation `$\cdot$`

EXAMPLES:

```python
sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
sage: C = MagmasAndAdditiveMagmas(); C
Category of magmas and additive magmas
```

This is the base category for the categories of rings and their variants:

```python
sage: C.Distributive()
Category of distributive magmas and additive magmas
sage: C.Distributive().Associative().AdditiveAssociative().AdditiveCommutative().
 AdditiveUnital().AdditiveInverse()
Category of rngs
sage: C.Distributive().Associative().AdditiveAssociative().AdditiveCommutative().
 AdditiveUnital().Unital()
Category of semirings
sage: C.Distributive().Associative().AdditiveAssociative().AdditiveCommutative().
 AdditiveUnital().AdditiveInverse().Unital()
Category of rings
```

This category is really meant to represent the intersection of the categories of `Magmas` and `AdditiveMagmas`; however Sage's infrastructure does not allow yet to model this:

```python
sage: Magmas() & AdditiveMagmas()
Join of Category of magmas and Category of additive magmas
```

```
todo: not implemented
```

Category of magmas and additive magmas

```python
class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory
extra_super_categories()
 Implement the fact that this structure is stable under Cartesian products.
```
Distributive
alias of sage.categories.distributive_magmas_and_additive_magmas.

DistributiveMagmasAndAdditiveMagmas

class SubcategoryMethods
Bases: object

Distributive()
Return the full subcategory of the objects of self where * is distributive on +.

A magma and additive magma $M$ is distributive if, for all $x, y, z \in M$,

$$x \ast (y + z) = x \ast y + x \ast z \text{ and } (x + y) \ast z = x \ast z + y \ast z$$

EXAMPLES:

```python
sage: from sage.categories.magmas_and_additive_magmas import ...
 MagmasAndAdditiveMagmas
sage: C = MagmasAndAdditiveMagmas().Distributive(); C
Category of distributive magmas and additive magmas
```

Note: Given that Sage does not know that MagmasAndAdditiveMagmas is the intersection of Magmas and AdditiveMagmas, this method is not available for:

```python
sage: Magmas() & AdditiveMagmas()
Join of Category of magmas and Category of additive magmas
```

Still, the natural syntax works:

```python
sage: (Magmas() & AdditiveMagmas()).Distributive()
Category of distributive magmas and additive magmas
```

thanks to a workaround implemented in Magmas.SubcategoryMethods.Distributive():

```python
sage: (Magmas() & AdditiveMagmas()).Distributive.__module__
'sage.categories.magmas'
```

additional_structure()
Return None.

Indeed, this category is meant to represent the join of AdditiveMagmas and Magmas. As such, it defines no additional structure.

See also:
Category.additional_structure()

EXAMPLES:

```python
sage: from sage.categories.magmas_and_additive_magmas import ...
 MagmasAndAdditiveMagmas
sage: MagmasAndAdditiveMagmas().additional_structure()
```

super_categories()
EXAMPLES:
class sage.categories.magmatic_algebras.MagmaticAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of algebras over a given base ring.

An algebra over a ring $R$ is a module over $R$ endowed with a bilinear multiplication.

**Warning:** `MagmaticAlgebras` will eventually replace the current `Algebras` for consistency with e.g. Wikipedia article Algebras which assumes neither associativity nor the existence of a unit (see trac ticket #15043).

**EXAMPLES:**

```python
sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: C = MagmaticAlgebras(ZZ); C
Category of magmatic algebras over Integer Ring
sage: C.super_categories()
[Category of additive commutative additive associative additive unital →distributive magmas and additive magmas, Category of modules over Integer Ring]
```

**Associative**

alias of `sage.categories.associative_algebras.AssociativeAlgebras`

**class ParentMethods**

Bases: object

**algebra_generators()**

Return a family of generators of this algebra.

**EXAMPLES:**

```python
sage: F = AlgebrasWithBasis(QQ).example(); F
An example of an algebra with basis: the free algebra on the generators (→'a', 'b', 'c') over Rational Field
sage: F.algebra_generators()
Family (B[word: a], B[word: b], B[word: c])
```

**Unital**

alias of `sage.categories.unital_algebras.UnitalAlgebras`

**class WithBasis**(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

**class FiniteDimensional**(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`
class ParentMethods
    Bases: object

derivations_basis()
    Return a basis for the Lie algebra of derivations of self as matrices.

    A derivation \( D \) of an algebra is an endomorphism of \( A \) such that

    \[
    D(ab) = D(a)b + aD(b)
    \]

    for all \( a, b \in A \). The set of all derivations form a Lie algebra.

    EXAMPLES:

    We construct the Heisenberg Lie algebra as a multiplicative algebra:

    
    ```
 sage: p_mult = matrix([[0,0,0],[0,0,-1],[0,0,0]])
 sage: q_mult = matrix([[0,0,1],[0,0,0],[0,0,0]])
 sage: A = algebras.FiniteDimensional(QQ,...:
 : p_mult,q_mult,matrix(QQ,3,3)], 'p,q,z')
 sage: A.inject_variables()
 Defining p, q, z
 sage: p*q
 z
 sage: q*p
 -z
 sage: A.derivations_basis()
 (
 [1 0 0] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
 [0 0 0] [0 0 0] [1 0 0] [0 1 0] [0 0 0] [0 0 0]
 [0 0 1], [0 0 0], [0 0 0], [0 0 1], [1 0 0], [0 1 0]
)
    ```

    We construct another example using the exterior algebra and verify we obtain a derivation:

    ```
 sage: A = algebras.Exterior(QQ, 1)
 sage: A.derivations_basis()
 ([0 0]
 [0 1])
 sage: D = A.module_morphism(matrix=A.derivations_basis()[0],...
 : -codomain=A)
 sage: one, e = A.basis()
 sage: all(D(a*b) == D(a) * b + a * D(b)
 : for a in A.basis() for b in A.basis())
 True
    ```

    REFERENCES:

    Wikipedia article Derivation_(differential_algebra)

    class ParentMethods
        Bases: object

    algebra_generators()
        Return generators for this algebra.

        This default implementation returns the basis of this algebra.

        OUTPUT: a family
See also:

- `basis()`
- `MagmaticAlgebras.ParentMethods.algebra_generators()`

**EXCEPTIONS**:

```python
sage: D4 = DescentAlgebra(QQ, 4).B()
sage: D4.algebra_generators()
Lazy family (...)_{i in Compositions of 4}
sage: R.<x> = ZZ[]
sage: P = PartitionAlgebra(1, x, R)
sage: P.algebra_generators()
Lazy family (Term map from Partition diagrams of order 1 to Partition Algebra of rank 1 with parameter x over Univariate Polynomial Ring in x over Integer Ring(i))_{i in Partition diagrams of order 1}
```

**product()**

The product of the algebra, as per `Magmas.ParentMethods.product()`

By default, this is implemented using one of the following methods, in the specified order:

- `product_on_basis()`
- `product_by_coercion()`

**EXAMPLES**:

```python
sage: A = AlgebrasWithBasis(QQ).example()
sage: a, b, c = A.algebra_generators()
sage: A.product(a + 2*b, 3*c)
3*B[word: ac] + 6*B[word: bc]
```

**product_on_basis** (i, j)

The product of the algebra on the basis (optional).

**INPUT**:

- i, j – the indices of two elements of the basis of self

**RETURN**:

Return the product of the two corresponding basis elements indexed by i and j.

If implemented, `product()` is defined from it by bilinearity.

**EXAMPLES**:

```python
sage: A = AlgebrasWithBasis(QQ).example()
sage: Word = A.basis().keys()
sage: A.product_on_basis(Word("abc"),Word("cba"))
B[word: abccba]
```

**additional_structure()**

Return None.

Indeed, the category of (magmatic) algebras defines no new structure: a morphism of modules and of magmas between two (magmatic) algebras is a (magmatic) algebra morphism.

**See also:**

`Category.additional_structure()`

**Todo**: This category should be a `CategoryWithAxiom`, the axiom specifying the compatibility be-
between the magma and module structure.

EXAMPLES:

```python
sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras(ZZ).additional_structure()
```

```python
sage: from sage.categories Больше структуры
sage: MagmaticAlgebras(ZZ).additional_structure()
```

```python
super_categories()
EXAMPLES:

```python
sage: from sage.categories Больше структуры
sage: MagmaticAlgebras(ZZ).additional_structure()
```

```python
sage: from sage.categories Больше структуры
sage: MagmaticAlgebras(ZZ).additional_structure()
```

3.114 Manifolds

class sage.categories.manifolds.ComplexManifolds(base, name=None)

The category of complex manifolds.

A d-dimensional complex manifold is a manifold whose underlying vector space is \mathbb{C}^d and has a holomorphic atlas.

```python
super_categories()
EXAMPLES:

```python
sage: from sage.categories Больше структуры
sage: MagnificentAlgebras(ZZ).additional_structure()
```

```python
sage: from sage.categories Больше структуры
sage: MagnificentAlgebras(ZZ).additional_structure()
```

class sage.categories.manifolds.Manifolds(base, name=None)

The category of manifolds over any topological field.

Let $k$ be a topological field. A $d$-dimensional $k$-manifold $M$ is a second countable Hausdorff space such that the neighborhood of any point $x \in M$ is homeomorphic to $k^d$.

EXAMPLES:

```python
sage: from sage.categories Больше структуры
sage: Manifolds(RR).super_categories()
```

```python
sage: from sage.categories Больше структуры
sage: Manifolds(RR).super_categories()
```

class AlmostComplex(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
The category of almost complex manifolds.

An almost complex manifold $M$ is a manifold with a smooth tensor field $J$ of rank $(1, 1)$ such that $J^2 = -1$ when regarded as a vector bundle isomorphism $J : TM \to TM$ on the tangent bundle. The tensor field $J$ is called the almost complex structure of $M$.

\begin{function}
\textbf{extra_super_categories}()
\end{function}

Return the extra super categories of self.

An almost complex manifold is smooth.

\begin{examples}
\begin{verbatim}
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).AlmostComplex().super_categories() # indirect doctest
[Category of smooth manifolds over Real Field with 53 bits of precision]
\end{verbatim}
\end{examples}

\begin{class}
class Analytic(base_category)
\end{class}

The category of complex manifolds.

An analytic manifold is a manifold with an analytic atlas.

\begin{function}
\textbf{extra_super_categories}()
\end{function}

Return the extra super categories of self.

An analytic manifold is smooth.

\begin{examples}
\begin{verbatim}
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Analytic().super_categories() # indirect doctest
[Category of smooth manifolds over Real Field with 53 bits of precision]
\end{verbatim}
\end{examples}

\begin{class}
class Connected(base_category)
\end{class}

The category of connected manifolds.

\begin{examples}
\begin{verbatim}
sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR).Connected()
sage: TestSuite(C).run(skip="_test_category_over_bases")
\end{verbatim}
\end{examples}

\begin{class}
class Differentiable(base_category)
\end{class}

The category of differentiable manifolds.

A differentiable manifold is a manifold with a differentiable atlas.

\begin{class}
class FiniteDimensional(base_category)
\end{class}

Category of finite dimensional manifolds.

\begin{examples}
\end{examples}
class ParentMethods
    Bases: object
    dimension()
        Return the dimension of self.
        EXAMPLES:

    class Smooth(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
        The category of smooth manifolds.
        A smooth manifold is a manifold with a smooth atlas.
        extra_super_categories()
            Return the extra super categories of self.
            A smooth manifold is differentiable.
            EXAMPLES:

    class SubcategoryMethods
        Bases: object
        AlmostComplex()
            Return the subcategory of the almost complex objects of self.
            EXAMPLES:

        Analytic()
            Return the subcategory of the analytic objects of self.
            EXAMPLES:

        Complex()
            Return the subcategory of manifolds over C of self.
EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(CC).Complex()
Category of complex manifolds over
Complex Field with 53 bits of precision
```

**Connected()**

Return the full subcategory of the connected objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Connected()
Category of connected manifolds
over Real Field with 53 bits of precision
```

**Differentiable()**

Return the subcategory of the differentiable objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Differentiable()
Category of differentiable manifolds
over Real Field with 53 bits of precision
```

**FiniteDimensional()**

Return the full subcategory of the finite dimensional objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR).Connected().FiniteDimensional(); C
Category of finite dimensional connected manifolds
over Real Field with 53 bits of precision
```

**Smooth()**

Return the subcategory of the smooth objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Smooth()
Category of smooth manifolds
over Real Field with 53 bits of precision
```

**additional_structure()**

Return None.

Indeed, the category of manifolds defines no new structure: a morphism of topological spaces between manifolds is a manifold morphism.

**See also:**

`Category.additional_structure()`

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).additional_structure()
```
super_categories()
EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).super_categories()
[Category of topological spaces]
```

### 3.115 Matrix algebras

```python
class sage.categories.matrix_algebras.MatrixAlgebras(base, name=None):
 Bases: sage.categories.category_types.Category_over_base_ring
```

The category of matrix algebras over a field.

EXAMPLES:

```
sage: MatrixAlgebras(RationalField())
Category of matrix algebras over Rational Field
```

super_categories()
EXAMPLES:

```
sage: MatrixAlgebras(QQ).super_categories()
[Category of algebras over Rational Field]
```

### 3.116 Metric Spaces

```python
class sage.categories.metric_spaces.MetricSpaces(category, *args):
 Bases: sage.categories.metric_spaces.MetricSpacesCategory
```

The category of metric spaces.

A metric on a set $S$ is a function $d : S \times S \rightarrow \mathbb{R}$ such that:

- $d(a, b) \geq 0$,
- $d(a, b) = 0$ if and only if $a = b$.

A metric space is a set $S$ with a distinguished metric.

**Implementation**

Objects in this category must implement either a `dist` on the parent or the elements or `metric` on the parent; otherwise this will cause an infinite recursion.

**Todo:**

- Implement a general geodesics class.
- Implement a category for metric additive groups and move the generic distance $d(a, b) = |a - b|$ there.
- Incorporate the length of a geodesic as part of the default distance cycle.

EXAMPLES:
from sage.categories.metric_spaces import MetricSpaces
C = MetricSpaces()
C
Category of metric spaces
TestSuite(C).run()

class CartesianProducts:
    Bases: sage.categories.cartesian_product.CartesianProductsCategory
    class ParentMethods:
        Bases: object
dist(a, b)
        Return the distance between a and b in self.
        It is defined as the maximum of the distances within the Cartesian factors.
        EXAMPLES:

        sage: from sage.categories.metric_spaces import MetricSpaces
        sage: Q2 = QQ.cartesian_product(QQ)
sage: Q2.category()
Join of
  Category of Cartesian products of commutative rings and
  Category of Cartesian products of metric spaces
sage: Q2 in MetricSpaces()
True
sage: Q2.dist((0, 0), (2, 3))
3

extra_super_categories()
    Implement the fact that a (finite) Cartesian product of metric spaces is a metric space.
    EXAMPLES:

    sage: from sage.categories.metric_spaces import MetricSpaces
    sage: C = MetricSpaces().CartesianProducts()
sage: C.extra_super_categories()
[Category of metric spaces]
sage: C.super_categories()
[Category of Cartesian products of topological spaces,
  Category of metric spaces]
sage: C.axioms()
frozenset()

class Complete:
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom
    The category of complete metric spaces.
    class CartesianProducts:
        Bases: sage.categories.cartesian_product.CartesianProductsCategory
        extra_super_categories()
        Implement the fact that a (finite) Cartesian product of complete metric spaces is a complete metric space.
        EXAMPLES:
sage: from sage.categories.metric_spaces import MetricSpaces
sage: C = MetricSpaces().Complete().CartesianProducts()
sage: C.extra_super_categories()
[Category of complete metric spaces]
sage: C.super_categories()
[Category of Cartesian products of metric spaces,
Category of complete metric spaces]
sage: C.axioms()
frozenset({'Complete'})
sage: R2 = RR.cartesian_product(RR)
sage: R2 in MetricSpaces()
True
sage: R2 in MetricSpaces().Complete()
True
sage: QR = QQ.cartesian_product(RR)
sage: QR in MetricSpaces()
True
sage: QR in MetricSpaces().Complete()
False

class ElementMethods
Bases: object

abs()
Return the absolute value of self.

EXAMPLES:
sage: CC(I).abs()
1.00000000000000
dist(b)
Return the distance between self and other.

EXAMPLES:
sage: UHP = HyperbolicPlane().UHP()
sage: p1 = UHP.get_point(5 + 7*I)
sage: p2 = UHP.get_point(1 + I)
sage: p1.dist(p2)
arccosh(33/7)

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory
The category of homsets of metric spaces
It consists of the metric maps, that is, the Lipschitz functions with Lipschitz constant 1.
class ElementMethods
Bases: object
class ParentMethods
Bases: object
dist(a, b)
Return the distance between a and b in self.

EXAMPLES:
sage: UHP = HyperbolicPlane().UHP()
sage: p1 = UHP.get_point(5 + 7*I)
sage: p2 = UHP.get_point(1.0 + I)
sage: UHP.dist(p1, p2)
2.23230104635820

sage: PD = HyperbolicPlane().PD()
sage: PD.dist(PD.get_point(0), PD.get_point(I/2))
arccosh(5/3)

metric(*args, **kwds)
   Deprecated: Use metric_function() instead. See trac ticket #30062 for details.

metric_function()
   Return the metric function of self.

   EXAMPLES:

   sage: UHP = HyperbolicPlane().UHP()
   sage: m = UHP.metric_function()
   sage: p1 = UHP.get_point(5 + 7*I)
   sage: p2 = UHP.get_point(1.0 + I)
   sage: m(p1, p2)
   2.23230104635820

class SubcategoryMethods
   Bases: object

   Complete()
   Return the full subcategory of the complete objects of self.

   EXAMPLES:

   sage: Sets().Metric().Complete()
   Category of complete metric spaces

class WithRealizations (category, *args)
   Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
   Bases: object

   dist(a, b)
   Return the distance between a and b by converting them to a realization of self and doing the computation.

   EXAMPLES:

   sage: H = HyperbolicPlane()
   sage: PD = H.PD()
   sage: p1 = PD.get_point(0)
   sage: p2 = PD.get_point(I/2)
   sage: H.dist(p1, p2)
arccosh(5/3)

class sage.categories.metric_spaces.MetricSpacesCategory (category, *args)
   Bases: sage.categories.covariant FunctorialConstructionCategory
classmethod default_super_categories (category)

Return the default super categories of category.Metric().

Mathematical meaning: if $A$ is a metric space in the category $C$, then $A$ is also a topological space.

INPUT:

• cls – the class MetricSpaces
• category – a category $Cat$

OUTPUT:

A (join) category

In practice, this returns category.Metric(), joined together with the result of the method RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of category and cat.Metric() for each cat in the super categories of category).

EXAMPLES:

Consider category=Groups(). Then, a group $G$ with a metric is simultaneously a topological group by itself, and a metric space:

```
sage: Groups().Metric().super_categories()
(Category of topological groups, Category of metric spaces)
```

This resulted from the following call:

```
sage: sage.categories.metric_spaces.MetricSpacesCategory.default_super_categories().join(categories(Groups()))
Join of Category of topological groups and Category of metric spaces
```

### 3.117 Modular abelian varieties

```python
class ModularAbelianVarieties(Y)
Bases: sage.categories.category_types.Category_over_base
```

The category of modular abelian varieties over a given field.

EXAMPLES:

```
sage: ModularAbelianVarieties(QQ)
Category of modular abelian varieties over Rational Field
```

```python
class Homsets (category, *args)
Bases: sage.categories.homsets.HomsetsCategory
```

```python
class Endset (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
```

```
extra_super_categories ()
```

Implement the fact that an endset of modular abelian variety is a ring.

EXAMPLES:

```
sage: ModularAbelianVarieties(QQ).Endsets().extra_super_categories()
[Category of rings]
```
**base_field()**
EXAMPLES:

```
sage: ModularAbelianVarieties(QQ).base_field()
Rational Field
```

**super_categories()**
EXAMPLES:

```
sage: ModularAbelianVarieties(QQ).super_categories()
[Category of sets]
```

## 3.118 Modules

**class** `sage.categories.modules.Modules` *(base, name=None)*

**Bases:** `sage.categories.category_types.Category_module`

The category of all modules over a base ring $R$.

An $R$-module $M$ is a left and right $R$-module over a commutative ring $R$ such that:

$$r * (x * s) = (r * x) * s \quad \forall r, s \in R \text{ and } x \in M$$

**INPUT:**

- `base_ring` – a ring $R$ or subcategory of `Rings()`
- `dispatch` – a boolean (for internal use; default: `True`)

When the base ring is a field, the category of vector spaces is returned instead (unless `dispatch == False`).

**Warning:** Outside of the context of symmetric modules over a commutative ring, the specifications of this category are fuzzy and not yet set in stone (see below). The code in this category and its subcategories is therefore prone to bugs or arbitrary limitations in this case.

**EXAMPLES:**

```
sage: Modules(ZZ)
Category of modules over Integer Ring
sage: Modules(QQ)
Category of vector spaces over Rational Field
sage: Modules(Rings())
Category of modules over rings
sage: Modules(FiniteFields())
Category of vector spaces over finite enumerated fields
sage: Modules(Integers(9))
Category of modules over Ring of integers modulo 9
sage: Modules(Integers(9)).super_categories()
[Category of bimodules over Ring of integers modulo 9 on the left and Ring of integers modulo 9 on the right]
```

(continues on next page)
Todo:

• Clarify the distinction, if any, with $\text{BiModules}(R, R)$. In particular, if $R$ is a commutative ring (e.g. a field), some pieces of the code possibly assume that $M$ is a symmetric $R$-bimodule:

$$r \cdot x = x \cdot r \quad \forall r \in R \text{ and } x \in M$$

• Make sure that non symmetric modules are properly supported by all the code, and advertise it.

• Make sure that non commutative rings are properly supported by all the code, and advertise it.

• Add support for base semirings.

• Implement a $\text{FreeModules}(R)$ category, when so prompted by a concrete use case: e.g. modeling a free module with several bases (using $\text{Sets.SubcategoryMethods.Realizations()}$) or with an atlas of local maps (see e.g. trac ticket #15916).

class CartesianProducts (category, *args)

Bases: $\text{sage.categories.cartesian_product.CartesianProductsCategory}$

The category of modules constructed as Cartesian products of modules

This construction gives the direct product of modules. The implementation is based on the following resources:

• http://groups.google.fr/group/sage-devel/browse_thread/thread/35a72b1d0a2fc77a/348f42ae77a6d16#348f42ae77a6d16

• Wikipedia article Direct_product

class ElementMethods

Bases: object

class ParentMethods

Bases: object

extra_super_categories ()

A Cartesian product of modules is endowed with a natural module structure.

EXAMPLES:

```
sage: Modules(ZZ).CartesianProducts().extra_super_categories() [Category of modules over Integer Ring]
sage: Modules(ZZ).CartesianProducts().super_categories() [Category of Cartesian products of commutative additive groups, Category of modules over Integer Ring]
```

class ElementMethods

Bases: object
Filtered
alias of sage.categories.filtered_modules.FilteredModules

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

extra_super_categories()
Implement the fact that a finite dimensional module over a finite ring is finite.

EXAMPLES:

```
sage: Modules(IntegerModRing(4)).FiniteDimensional().extra_super_categories()
[Category of finite sets]
sage: Modules(ZZ).FiniteDimensional().extra_super_categories()
[]
sage: Modules(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: Modules(ZZ).FiniteDimensional().is_subcategory(Sets().Finite())
False
sage: Modules(Rings().Finite()).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: Modules(Rings()).FiniteDimensional().is_subcategory(Sets().Finite())
False
```

Graded
alias of sage.categories.graded_modules.GradedModules

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

The category of homomorphism sets $\text{hom}(X, Y)$ for $X, Y$ modules.

class Endset(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of endomorphism sets $\text{End}(X)$ for $X$ a module (this is not used yet)

extra_super_categories()
Implement the fact that the endomorphism set of a module is an algebra.

See also:
CategoryWithAxiom.extra_super_categories()

EXAMPLES:

```
sage: Modules(ZZ).Endsets().extra_super_categories()
[Category of magmatic algebras over Integer Ring]
sage: End(ZZ^3) in Algebras(ZZ)
True
```

class ParentMethods
Bases: object

base_ring()
Return the base ring of self.

EXAMPLES:
sage: E = CombinatorialFreeModule(ZZ, [1,2,3])
sage: F = CombinatorialFreeModule(ZZ, [2,3,4])
sage: H = Hom(E, F)
sage: H.base_ring()
Integer Ring

This `base_ring` method is actually overridden by `sage.structure.category_object.CategoryObject.base_ring()`:

```python
sage: H.base_ring.__module__
```

Here we call it directly:

```python
sage: method = H.category().parent_class.base_ring
sage: method.__get__(H)()
Integer Ring
```

**zero()**

**EXAMPLES:**

```python
sage: E = CombinatorialFreeModule(ZZ, [1,2,3])
sage: F = CombinatorialFreeModule(ZZ, [2,3,4])
sage: H = Hom(E, F)
sage: f = H.zero()
sage: f
Generic morphism:
 From: Free module generated by {1, 2, 3} over Integer Ring
 To: Free module generated by {2, 3, 4} over Integer Ring
sage: f(E.monomial(2))
0
sage: f(E.monomial(3)) == F.zero()
True
```

**base_ring()**

**EXAMPLES:**

```python
sage: Modules(ZZ).Homsets().base_ring()
Integer Ring
```

**Todo:** Generalize this so that any homset category of a full subcategory of modules over a base ring is a category over this base ring.

**extra_super_categories()**

**EXAMPLES:**

```python
sage: Modules(ZZ).Homsets().extra_super_categories()
[Category of modules over Integer Ring]
```

**class ParentMethods**

**Bases:** object

**linear_combination(iter_of_elements_coeff, factor_on_left=True)**

Return the linear combination \(\lambda_1 v_1 + \cdots + \lambda_k v_k\) (resp. the linear combination \(v_1 \lambda_1 + \cdots + v_k \lambda_k\)) where `iter_of_elements_coeff` iterates through the sequence \(((\lambda_1, v_1), \ldots, (\lambda_k, v_k))\).

**INPUT:**
iter_of_elements_coeff – iterator of pairs \((\text{element}, \text{coeff})\) with \text{element} in \self and \text{coeff} in \self.base_ring()

factor_on_left – (optional) if True, the coefficients are multiplied from the left; if False, the coefficients are multiplied from the right

EXAMPLES:

\begin{verbatim}
sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.linear_combination(((a+b, 1), (-2*b + c, -1)))
1 + (3, -1)
\end{verbatim}

module_morphism\((\text{function}, \text{category, codomain}, **\text{keywords})\)

Construct a module morphism from \self to \text{codomain}.

Let \self be a module \(X\) over a ring \(R\). This constructs a morphism \(f : X \rightarrow Y\).

INPUT:

- \self – a parent \(X\) in \\text{Modules}(\text{R}).
- function – a function \(f\) from \(X\) to \(Y\)
- codomain – the codomain \(Y\) of the morphism (default: \(f\).\text{codomain}() if it’s defined; otherwise it must be specified)
- category – a category or None (default: None)

EXAMPLES:

\begin{verbatim}
sage: V = FiniteRankFreeModule(QQ, 2)
sage: e = V.basis('e'); e
Basis (e_0,e_1) on the 2-dimensional vector space over the Rational Field
sage: neg = V.module_morphism(function=operator.neg, codomain=V); neg
Generic endomorphism of 2-dimensional vector space over the Rational Field
sage: neg(e[0])
Element -e_0 of the 2-dimensional vector space over the Rational Field
\end{verbatim}

tensor_square()

Returns the tensor square of \self

EXAMPLES:

\begin{verbatim}
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: A.tensor_square()
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6
as a permutation group over Rational Field # An example
of Hopf algebra with basis: the group algebra of the Dihedral
group of order 6 as a permutation group over Rational Field
\end{verbatim}

class SubcategoryMethods

Bases: object

DualObjects()

Return the category of spaces constructed as duals of spaces of \self.

The dual of a vector space \(V\) is the space consisting of all linear functionals on \(V\) (see Wikipedia article Dual_space). Additional structure on \(V\) can endow its dual with additional structure; for example, if \(V\) is a finite dimensional algebra, then its dual is a coalgebra.

This returns the category of spaces constructed as dual of spaces in \self, endowed with the appropriate additional structure.
Warning:

- This semantic of dual and DualObject is imposed on all subcategories, in particular to make dual a covariant functorial construction.

  A subcategory that defines a different notion of dual needs to use a different name.

- Typically, the category of graded modules should define a separate graded_dual construction (see trac ticket #15647). For now the two constructions are not distinguished which is an oversimplified model.

See also:

- dual.DualObjectsCategory
- CovariantFunctorialConstruction.

EXAMPLES:

```sage
sage: VectorSpaces(QQ).DualObjects()
Category of duals of vector spaces over Rational Field
```

The dual of a vector space is a vector space:

```sage
sage: VectorSpaces(QQ).DualObjects().super_categories()
[Category of vector spaces over Rational Field]
```

The dual of an algebra is a coalgebra:

```sage
sage: sorted(Algebras(QQ).DualObjects().super_categories(), key=str)
[Category of coalgebras over Rational Field,
 Category of duals of vector spaces over Rational Field]
```

The dual of a coalgebra is an algebra:

```sage
sage: sorted(Coalgebras(QQ).DualObjects().super_categories(), key=str)
[Category of algebras over Rational Field,
 Category of duals of vector spaces over Rational Field]
```

As a shorthand, this category can be accessed with the dual() method:

```sage
sage: VectorSpaces(QQ).dual()
Category of duals of vector spaces over Rational Field
```

**Filtered** *(base\_ring=None)*

Return the subcategory of the filtered objects of self.

INPUT:

- base\_ring – this is ignored

EXAMPLES:

```sage
sage: Modules(ZZ).Filtered()
Category of filtered modules over Integer Ring

sage: Coalgebras(QQ).Filtered()
Category of filtered coalgebras over Rational Field

sage: AlgebrasWithBasis(QQ).Filtered()
Category of filtered algebras with basis over Rational Field
```
Todo:
- Explain why this does not commute with $\text{WithBasis()}$
- Improve the support for covariant functorial constructions categories over a base ring so as to get rid of the $\text{base\_ring}$ argument.

**FiniteDimensional()**

Return the full subcategory of the finite dimensional objects of $\text{self}$.

EXAMPLES:

```
 sage: Modules(ZZ).FiniteDimensional()
 Category of finite dimensional modules over Integer Ring
 sage: Coalgebras(QQ).FiniteDimensional()
 Category of finite dimensional coalgebras over Rational Field
 sage: AlgebrasWithBasis(QQ).FiniteDimensional()
 Category of finite dimensional algebras with basis over Rational Field
```

Todo:
- Explain why this does not commute with $\text{WithBasis()}$
- Improve the support for covariant functorial constructions categories over a base ring so as to get rid of the $\text{base\_ring}$ argument.

**Graded** ($\text{base\_ring}=\text{None}$)

Return the subcategory of the graded objects of $\text{self}$.

INPUT:
- $\text{base\_ring}$ – this is ignored

EXAMPLES:

```
 sage: Modules(ZZ).Graded()
 Category of graded modules over Integer Ring
 sage: Coalgebras(QQ).Graded()
 Category of graded coalgebras over Rational Field
 sage: AlgebrasWithBasis(QQ).Graded()
 Category of graded algebras with basis over Rational Field
```

Todo:
- Explain why this does not commute with $\text{WithBasis()}$
- Improve the support for covariant functorial constructions categories over a base ring so as to get rid of the $\text{base\_ring}$ argument.

**Super** ($\text{base\_ring}=\text{None}$)

Return the super-analogue category of $\text{self}$.

INPUT:
- $\text{base\_ring}$ – this is ignored

EXAMPLES:

```
 sage: Modules(ZZ).Super()
 Category of super modules over Integer Ring
 sage: Coalgebras(QQ).Super()
 Category of super coalgebras over Rational Field
 sage: AlgebrasWithBasis(QQ).Super()
 Category of super algebras with basis over Rational Field
```

Todo:
- Explain why this does not commute with $\text{WithBasis()}$
- Improve the support for covariant functorial constructions categories over a base ring so as to get rid of the $\text{base\_ring}$ argument.
Todo:
• Explain why this does not commute with $\text{WithBasis()}$
• Improve the support for covariant functorial constructions categories over a base ring so as to get rid of the $\text{base\_ring}$ argument.

**TensorProducts()**

Return the full subcategory of objects of $\text{self}$ constructed as tensor products.

**See also:**
• $\text{tensor.TensorProductsCategory}$
• $\text{RegressiveCovariantFunctorialConstruction}$.

**EXAMPLES:**

```python
sage: ModulesWithBasis(QQ).TensorProducts()
Category of tensor products of vector spaces with basis over Rational Field
```

**WithBasis()**

Return the full subcategory of the objects of $\text{self}$ with a distinguished basis.

**EXAMPLES:**

```python
sage: Modules(ZZ).WithBasis()
Category of modules with basis over Integer Ring
sage: Coalgebras(QQ).WithBasis()
Category of coalgebras with basis over Rational Field
sage: AlgebrasWithBasis(QQ).WithBasis()
Category of algebras with basis over Rational Field
```

**base\_ring()**

Return the base ring (category) for $\text{self}$.

This implements a $\text{base\_ring}$ method for all subcategories of $\text{Modules}(K)$.

**EXAMPLES:**

```python
sage: C = Modules(QQ) & Semigroups(); C
Join of Category of semigroups and Category of vector spaces over Rational Field
sage: C.base_ring()
Rational Field
sage: C.base_ring.__module__
'sage.categories.modules'
sage: C = Modules(Rings()) & Semigroups(); C
Join of Category of semigroups and Category of modules over rings
sage: C.base_ring()
Category of rings
sage: C.base_ring.__module__
'sage.categories.modules'
sage: C = DescentAlgebra(QQ,3).B().category()
sage: C.base_ring.__module__
'sage.categories.modules'
sage: C.base_ring()
Rational Field
```

(continues on next page)
Return the category of spaces constructed as duals of spaces of \texttt{self}.

The dual of a vector space \( V \) is the space consisting of all linear functionals on \( V \) (see Wikipedia article Dual_space). Additional structure on \( V \) can endow its dual with additional structure; for example, if \( V \) is a finite dimensional algebra, then its dual is a coalgebra.

This returns the category of spaces constructed as dual of spaces in \texttt{self}, endowed with the appropriate additional structure.

**Warning:**

- This semantic of \texttt{dual} and \texttt{DualObject} is imposed on all subcategories, in particular to make \texttt{dual} a covariant functorial construction.
  
  A subcategory that defines a different notion of dual needs to use a different name.
- Typically, the category of graded modules should define a separate \texttt{graded_dual} construction (see trac ticket \#15647). For now the two constructions are not distinguished which is an oversimplified model.

See also:

- \texttt{dual.DualObjectsCategory}
- \texttt{CovariantFunctorialConstruction}.

**EXAMPLES:**

```python
sage: VectorSpaces(QQ).DualObjects()
Category of duals of vector spaces over Rational Field
```

The dual of a vector space is a vector space:

```python
sage: VectorSpaces(QQ).DualObjects().super_categories()
[Category of vector spaces over Rational Field]
```

The dual of an algebra is a coalgebra:

```python
sage: sorted(Algebras(QQ).DualObjects().super_categories(), key=str)
[Category of coalgebras over Rational Field,
 Category of duals of vector spaces over Rational Field]
```

The dual of a coalgebra is an algebra:

```python
sage: sorted(Coalgebras(QQ).DualObjects().super_categories(), key=str)
[Category of algebras over Rational Field,
 Category of duals of vector spaces over Rational Field]
```

As a shorthand, this category can be accessed with the \texttt{dual()} method:

```python
sage: VectorSpaces(QQ).dual()
Category of duals of vector spaces over Rational Field
```

**Super**

alias of `sage.categories.super_modules.SuperModules`

**class TensorProducts** *(category, *args)*

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of modules constructed by tensor product of modules.

```python
sage: Modules(ZZ).TensorProducts().extra_super_categories()
[Category of modules over Integer Ring]
```

**WithBasis**

alias of `sage.categories.modules_with_basis.ModulesWithBasis`

**additional_structure** *

Return None.

Indeed, the category of modules defines no additional structure: a bimodule morphism between two modules is a module morphism.

**See also:**

`Category.additional_structure()`

**Todo:** Should this category be a `CategoryWithAxiom`?

```python
sage: Modules(ZZ).additional_structure()
```

**super_categories** *

**Examples:**

```python
sage: Modules(ZZ).super_categories()
[Category of bimodules over Integer Ring on the left and Integer Ring on the right]
```

**Nota bene:**

```python
sage: Modules(QQ)
Category of vector spaces over Rational Field
sage: Modules(QQ).super_categories()
[Category of modules over Rational Field]
```
3.119 Modules With Basis

AUTHORS:

- Jason Bandlow and Florent Hivert (2010): Triangular Morphisms
- Christian Stump (2010): trac ticket #9648 module_morphism’s to a wider class of codomains

```python
class sage.categories.modules_with_basis.ModulesWithBasis(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

 The category of modules with a distinguished basis.

 The elements are represented by expanding them in the distinguished basis. The morphisms are not required to
 respect the distinguished basis.

 EXAMPLES:

 sage: ModulesWithBasis(ZZ)
 Category of modules with basis over Integer Ring
 sage: ModulesWithBasis(ZZ).super_categories()
 [Category of modules over Integer Ring]
```

If the base ring is actually a field, this constructs instead the category of vector spaces with basis:

```python
sage: ModulesWithBasis(QQ)
Category of vector spaces with basis over Rational Field
sage: ModulesWithBasis(QQ).super_categories()
[Category of modules with basis over Rational Field,
 Category of vector spaces over Rational Field]
```

Let \( X \) and \( Y \) be two modules with basis. We can build \( \text{Hom}(X, Y) \):

```python
X = CombinatorialFreeModule(QQ, [1,2]); X.__custom_name = "X"
Y = CombinatorialFreeModule(QQ, [3,4]); Y.__custom_name = "Y"
H = Hom(X, Y); H
```

The simplest morphism is the zero map:

```python
sage: H.zero() # todo: move this test into module once we have an example
Generic morphism:
 From: X
 To: Y
```

which we can apply to elements of \( X \):

```python
x = X.monomial(1) + 3 * X.monomial(2)
sage: H.zero()(x)
0
```

EXAMPLES:

We now construct a more interesting morphism by extending a function by linearity:
sage: phi = H(on_basis = lambda i: Y.monomial(i+2)); phi
Generic morphism:
  From: X
  To:  Y
sage: phi(x)

We can retrieve the function acting on indices of the basis:

sage: f = phi.on_basis()
sage: f(1), f(2)
(B[3], B[4])

\( \text{Hom}(X, Y) \) has a natural module structure (except for the zero, the operations are not yet implemented though). However since the dimension is not necessarily finite, it is not a module with basis; but see \textit{FiniteDimensionalModulesWithBasis} and \textit{GradedModulesWithBasis}:

sage: H in ModulesWithBasis(QQ), H in Modules(QQ)
(False, True)

Some more playing around with categories and higher order homsets:

sage: H.category()
Category of homsets of modules with basis over Rational Field
sage: Hom(H, H).category()
Category of endsets of homsets of modules with basis over Rational Field

Todo: End(X) is an algebra.

Note: This category currently requires an implementation of an element method \text{support}. Once trac ticket \#18066 is merged, an implementation of an \text{items} method will be required.

class CartesianProducts (category, *args)
Bases: \text{sage.categories.cartesian_product.CartesianProductsCategory}
The category of modules with basis constructed by Cartesian products of modules with basis.

class ParentMethods
Bases: object

extra_super_categories()

EXAMPLES:

sage: ModulesWithBasis(QQ).CartesianProducts().extra_super_categories()

[Category of vector spaces with basis over Rational Field]

sage: ModulesWithBasis(QQ).CartesianProducts().super_categories()

[Category of Cartesian products of modules with basis over Rational Field, 
 Category of vector spaces with basis over Rational Field, 
 Category of Cartesian products of vector spaces over Rational Field]

class DualObjects (category, *args)
Bases: \text{sage.categories.dual.DualObjectsCategory}

extra_super_categories()

EXAMPLES:
class ElementMethods

Bases: object

coefficient (m)

Return the coefficient of \( m \) in \( \text{self} \) and raise an error if \( m \) is not in the basis indexing set.

INPUT:
- \( m \) – a basis index of the parent of \( \text{self} \)

OUTPUT:

The \( B[m] \)-coordinate of \( \text{self} \) with respect to the basis \( B \). Here, \( B \) denotes the given basis of the parent of \( \text{self} \).

EXAMPLES:

```python
sage: s = CombinatorialFreeModule(QQ, Partitions())
sage: z = s([4]) - 2*s([2,1]) + s([1,1,1]) + s([1])
sage: z.coefficient([4])
1
sage: z.coefficient([2,1])
-2
sage: z.coefficient(Partition([2,1]))
-2
sage: z.coefficient([1,2])
Traceback (most recent call last):
 ...
AssertionError: [1, 2] should be an element of Partitions
sage: z.coefficient(Composition([2,1]))
Traceback (most recent call last):
 ...
AssertionError: [2, 1] should be an element of Partitions
```

Test that \( \text{coefficient} \) also works for those parents that do not have an \( \text{element_class} \):

```python
sage: H = pAdicWeightSpace(3)
sage: F = CombinatorialFreeModule(QQ, H)
sage: hasattr(H, "element_class")
False
sage: h = H.an_element()
sage: (2*F.monomial(h)).coefficient(h)
2
```

coefficients (sort=True)

Return a list of the (non-zero) coefficients appearing on the basis elements in \( \text{self} \) (in an arbitrary order).

INPUT:
- \( \text{sort} \) – (default: True) to sort the coefficients based upon the default ordering of the indexing set

See also:
- \( \text{dense\_coefficient\_list()} \)

EXAMPLES:
sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.coefficients()
[1, -3]
sage: f = B['c'] - 3*B['a']
sage: f.coefficients()
[-3, 1]

sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.coefficients()
[1, 1, 1, 1]

```
is_zero()
Return True if and only if self == 0.
```

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])

sage: f = B['a'] - 3*B['c']

sage: f.is_zero()
False

sage: F.zero().is_zero()
True

sage: s = SymmetricFunctions(QQ).schur()

sage: s([2,1]).is_zero()
False

sage: s(0).is_zero()
True

sage: (s([2,1]) - s([2,1])).is_zero()
True

```
leading_coefficient(*args, **kwds)
Return the leading coefficient of self.
```

This is the coefficient of the term whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x, y), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X")

sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)

sage: x.leading_coefficient()
1

sage: def key(x):
    return -x
sage: x.leading_coefficient(key=key)
3

sage: s = SymmetricFunctions(QQ).schur()


sage: f.leading_coefficient()
-5
leading_item(*args, **kwds)
Return the pair \((k, c)\) where
\[ c \cdot (\text{the basis element indexed by } k) \]
is the leading term of \textit{self}.

Here ‘leading term’ means that the corresponding basis element is maximal. Note that this may not be the term which actually appears first when \textit{self} is printed.

If the default term ordering is not what is desired, a comparison function, \textit{key}(x), can be provided.

EXAMPLES:

```python
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.leading_item()
(3, 4)
sage: def key(x):
 return -x
sage: x.leading_item(key=key)
(1, 3)
sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_item()
([3], -5)
```

leading_monomial(*args, **kwds)
Return the leading monomial of \textit{self}.

This is the monomial whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when \textit{self} is printed.

If the default term ordering is not what is desired, a comparison key, \textit{key}(x), can be provided.

EXAMPLES:

```python
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_monomial()
B[3]
sage: def key(x):
 return -x
sage: x.leading_monomial(key=key)
B[1]
sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_monomial()
s[3]
```

leading_support(*args, **kwds)
Return the maximal element of the support of \textit{self}.

Note that this may not be the term which actually appears first when \textit{self} is printed.

If the default ordering of the basis elements is not what is desired, a comparison key, \textit{key}(x), can be provided.

EXAMPLES:
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3])
sage: X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.leading_support()
3
sage: def key(x):
    return -x
sage: x.leading_support(key=key)
1
sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_support()
[3]

leading_term(*args, **kwds)
Return the leading term of self.

This is the term whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_term()
B[3]
sage: def key(x):
    return -x
sage: x.leading_term(key=key)
3*B[1]
sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_term()
-5*s[3]

length()
Return the number of basis elements whose coefficients in self are nonzero.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.length()
2

sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.length()
4

map_coefficients(f)
Mapping a function on coefficients.

INPUT:

* f – an endofunction on the coefficient ring of the free module
Return a new element of \texttt{self.parent()} obtained by applying the function \( f \) to all of the coefficients of \( \text{self} \).

**EXAMPLES:**

```python
sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.map_coefficients(lambda x: x+5) 6*B['a'] + 2*B['c']

Killed coefficients are handled properly:

```python
sage: f.map_coefficients(lambda x: 0) 0
```

```python
sage: list(f.map_coefficients(lambda x: 0)) []
```

```python
sage: s = SymmetricFunctions(QQ).schur()
sage: a = s([2,1])+2*s([3,2])
sage: a.map_coefficients(lambda x: x*2) 2*s[2, 1] + 4*s[3, 2]
```

map_item \((f)\)

Mapping a function on items.

INPUT:

* \(f \) – a function mapping pairs (index, coeff) to other such pairs

Return a new element of \texttt{self.parent()} obtained by applying the function \(f \) to all items (index, coeff) of \(\text{self} \).

EXAMPLES:

```python
sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x 2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_item(lambda i, c: (-i, 2*c)) 6*B[-1] + 4*B[0] + 4*B[1]
```

\(f \) needs not be injective:

```python
sage: x.map_item(lambda i, c: (1, 2*c)) 14*B[1]
```

```python
sage: s = SymmetricFunctions(QQ).schur()
sage: f = lambda m,c: (m.conjugate(), 2*c)
sage: a = s([2,1]) + s([1,1,1])
sage: a.map_item(f) 2*s[2, 1] + 2*s[3]
```

map_support \((f)\)

Mapping a function on the support.

INPUT:

* \(f \) – an endofunction on the indices of the free module

Return a new element of \texttt{self.parent()} obtained by applying the function \(f \) to all of the objects indexing the basis elements.

EXAMPLES:
sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_support(\lambda i: -i)
3*B[-1] + 2*B[0] + 2*B[1]

f needs not be injective:

sage: x.map_support(\lambda i: 1)
7*B[1]
sage: s = SymmetricFunctions(QQ).schur()
sage: a = s([2,1])+2*s([3,2])
sage: a.map_support(\lambda x: x.conjugate())
s[2, 1] + 2*s[2, 2, 1]

map_support_skip_none(f)
Mapping a function on the support.

INPUT:
• f – an endofunction on the indices of the free module

Returns a new element of self.parent() obtained by applying the function f to all of the objects indexing the basis elements.

EXAMPLES:

sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_support_skip_none(\lambda i: -i if i else None)
3*B[-1] + 2*B[1]

f needs not be injective:

sage: x.map_support_skip_none(\lambda i: 1 if i else None)
5*B[1]

monomial_coefficients(copy=True)
Return a dictionary whose keys are indices of basis elements in the support of self and whose values are the corresponding coefficients.

INPUT:
• copy – (default: True) if self is internally represented by a dictionary d, then make a copy of d; if False, then this can cause undesired behavior by mutating d

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 3*B['c']
sage: d = f.monomial_coefficients()
sage: d['a']
1
sage: d['c']
3

monomials()
Return a list of the monomials of self (in an arbitrary order).
The monomials of an element \(a \) are defined to be the basis elements whose corresponding coefficients of \(a \) are non-zero.

EXAMPLES:

```
sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 2*B['c']
sage: f.monomials()
[B['a'], B['c']]
sage: (F.zero()).monomials()
[]
```

support()

Return a list of the objects indexing the basis of \(\text{self.parent()} \) whose corresponding coefficients of \(\text{self} \) are non-zero.

This method returns these objects in an arbitrary order.

EXAMPLES:

```
sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: sorted(f.support())
['a', 'c']
sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: sorted(z.support())
[[1], [1, 1, 1], [2, 1], [4]]
```

support_of_term()

Return the support of \(\text{self} \), where \(\text{self} \) is a monomial (possibly with coefficient).

EXAMPLES:

```
sage: X = CombinatorialFreeModule(QQ, [1,2,3,4]); X.rename("X")
sage: X.monomial(2).support_of_term()
2
sage: X.term(3, 2).support_of_term()
3
```

An exception is raised if \(\text{self} \) has more than one term:

```
sage: (X.monomial(2) + X.monomial(3)).support_of_term()
Traceback (most recent call last):
  ...
```

tensor(*elements)

Return the tensor product of its arguments, as an element of the tensor product of the parents of those elements.

EXAMPLES:

```
sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example()
```
\begin{verbatim}
 sage: (a,b,c) = A.algebra_generators()
 sage: a.tensor(b, c)
 B[a] # B[b] # B[c]
\end{verbatim}

FIXME: is this a policy that we want to enforce on all parents?

terms()

Return a list of the (non-zero) terms of \texttt{self} (in an arbitrary order).

See also:

\texttt{monomials()}

EXAMPLES:

\begin{verbatim}
 sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
 sage: B = F.basis()
 sage: f = B['a'] + 2*B['c']
 sage: f.terms()
 [B['a'], 2*B['c']]
\end{verbatim}

trailing_coefficient(*args, **kwds)

Return the trailing coefficient of \texttt{self}.

This is the coefficient of the monomial whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when \texttt{self} is printed.

If the default term ordering is not what is desired, a comparison key \texttt{key(x)}, can be provided.

EXAMPLES:

\begin{verbatim}
 sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
 sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
 sage: x.trailing_coefficient()
 3
 sage: def key(x):
 ... return -x
 sage: x.trailing_coefficient(key=key)
 1
 sage: s = SymmetricFunctions(QQ).schur()
 sage: f.trailing_coefficient()
 2
\end{verbatim}

trailing_item(*args, **kwds)

Return the pair \((c, k)\) where \(c \cdot \texttt{self.parent().monomial(k)}\) is the trailing term of \texttt{self}.

This is the monomial whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when \texttt{self} is printed.

If the default term ordering is not what is desired, a comparison key \texttt{key(x)}, can be provided.

EXAMPLES:

\begin{verbatim}
 sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
 sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
 sage: x.trailing_item()
 (1, 3)
\end{verbatim}
sage: def key(x): return -x
sage: x.trailing_item(key=key)
(3, 1)

sage: s = SymmetricFunctions(QQ).schur()
sage: f.trailing_item()
((1), 2)

trailing_monomial(*args, **kwds)

Return the trailing monomial of self.

This is the monomial whose corresponding basis element is minimal. Note that this may not be the
term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
˓→basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_monomial()
B[1]
sage: def key(x): return -x
sage: x.trailing_monomial(key=key)
B[3]

sage: s = SymmetricFunctions(QQ).schur()
sage: f.trailing_monomial()
s[1]

trailing_support(*args, **kwds)

Return the minimal element of the support of self. Note that this may not be the term which actually
appears last when self is printed.

If the default ordering of the basis elements is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
˓→basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.trailing_support()
1
sage: def key(x): return -x
sage: x.trailing_support(key=key)
3

sage: s = SymmetricFunctions(QQ).schur()
sage: f.trailing_support()
[1]

trailing_term(*args, **kwds)

Return the trailing term of self.
This is the term whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when `self` is printed.

If the default term ordering is not what is desired, a comparison key `key(x)`, can be provided.

EXAMPLES:

```python
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_term()
3*B[1]
sage: def key(x):
    return -x
sage: x.trailing_term(key=key)
B[3]
```

```python
sage: s = SymmetricFunctions(QQ).schur()
sage: f.trailing_term()
2*s[1]
```

Filtered

alias of `sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis`

FiniteDimensional

alias of `sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis`

Graded

alias of `sage.categories.graded_modules_with_basis.GradedModulesWithBasis`

class Homsets(category, *args)

- Bases: `sage.categories.homsets.HomsetsCategory`

class ParentMethods

- Bases: `object`

class MorphismMethods

- Bases: `object`

 on_basis()

 Return the action of this morphism on basis elements.

 OUTPUT:

 - a function from the indices of the basis of the domain to the codomain

 EXAMPLES:

```python
sage: X = CombinatorialFreeModule(QQ, [1,2,3]); X.rename("X")
sage: Y = CombinatorialFreeModule(QQ, [1,2,3,4]); Y.rename("Y")
sage: H = Hom(X, Y)
sage: x = X.basis()
sage: f = H(lambda x: Y.zero()).on_basis()
sage: f(2)
0
```

```python
sage: f = lambda i: Y.monomial(i) + 2*X.monomial(i+1)
sage: g = H(on_basis = f).on_basis()
sage: g(2)
```

(continues on next page)
class ParentMethods
Bases: object

basis()
Return the basis of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.basis()
Finite family {'a': B['a'], 'b': B['b'], 'c': B['c']}

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: list(QS3.basis())
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cardinality()
+Infinity

sage: S = SymmetricGroupAlgebra(GF(2), 4) # not tested -- MRO bug trac #15475
16777216
sage: S.cardinality().factor() # not tested -- MRO bug trac #15475
2^24

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.cardinality()
+Infinity

sage: E.<x,y> = ExteriorAlgebra(GF(3))
sage: E.cardinality()
81

sage: s = SymmetricFunctions(GF(2)).s()
sage: s.cardinality()
+Infinity

dimension()
Return the dimension of self.

EXAMPLES:

sage: A.<x,y> = algebras.DifferentialWeyl(QQ)
sage: A.dimension()
+Infinity

echelon_form(elements, row_reduced=False, order=None)
Return a basis in echelon form of the subspace spanned by a finite set of elements.
INPUT:
• elements – a list or finite iterable of elements of self
• row_reduced – (default: False) whether to compute the basis for the row reduced echelon form
• order – (optional) either something that can be converted into a tuple or a key function

OUTPUT:
A list of elements of self whose expressions as vectors form a matrix in echelon form. If base_ring is specified, then the calculation is achieved in this base ring.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: C = CombinatorialFreeModule(R, ZZ, prefix='z')
sage: z = C.basis()
sage: C.echelon_form([z[0] - z[1], 2*z[1] - 2*z[2], z[0] - z[2]])
[z[0] - z[2], z[1] - z[2]]
```

is_finite()
Return whether self is finite.

This is true if and only if self.basis().keys() and self.base_ring() are both finite.

EXAMPLES:

```python
sage: GroupAlgebra(SymmetricGroup(2), IntegerModRing(10)).is_finite()
True
sage: GroupAlgebra(SymmetricGroup(2)).is_finite()
False
sage: GroupAlgebra(AbelianGroup(1), IntegerModRing(10)).is_finite()
False
```

module_morphism(on_basis=None, matrix=None, function=None, diagonal=None, triangular=None, unitriangular=False, **keywords)
Construct a module morphism from self to codomain.

Let self be a module X with a basis indexed by I. This constructs a morphism f : X → Y by linearity from a map I → Y which is to be its restriction to the basis (x_i)_{i∈I} of X. Some variants are possible too.

INPUT:
• self – a parent X in ModulesWithBasis(R) with basis x = (x_i)_{i∈I}.

Exactly one of the following options must be specified in order to define the morphism:
• on_basis – a function f from I to Y
• diagonal – a function d from I to R
• function – a function f from X to Y
• matrix – a matrix of size dim Y × dim X (if the keyword side is set to 'left') or dim Y × dim X (if this keyword is 'right')

Further options include:
• codomain – the codomain Y of the morphism (default: f.codomain() if it’s defined; otherwise it must be specified)
• category – a category or None (default: None)
• zero – the zero of the codomain (default: codomain.zero()); can be used (with care) to define affine maps. Only meaningful with on_basis.
• position – a non-negative integer specifying which positional argument is used as the input of the function f (default: 0); this is currently only used with on_basis.
• triangular – (default: None) "upper" or "lower" or None:
 – "upper" - if the leading_support() of the image of the basis vector x_i is i, or
- "lower" - if the `trailing_support()` of the image of the basis vector x_i is i.
- `unitriangular` – (default: `False`) a boolean. Only meaningful for a triangular morphism. As a shorthand, one may use `unitriangular="lower"` for `triangular="lower"`, `unitriangular=True`.
- `side` – “left” or “right” (default: “left”) Only meaningful for a morphism built from a matrix.

EXAMPLES:

With the `on_basis` option, this returns a function g obtained by extending f by linearity on the `position`-th positional argument. For example, for `position == 1` and a ternary function f, one has:

$$g(a, \sum_i \lambda_i x_i, c) = \sum_i \lambda_i f(a, i, c).$$

```sage
X = CombinatorialFreeModule(QQ, [1,2,3]); X.rename("X")
Y = CombinatorialFreeModule(QQ, [1,2,3,4]); Y.rename("Y")
phi = X.module_morphism(lambda i: Y.monomial(i) + 2*Y.monomial(i+1),
                          codomain = Y)
x = X.basis(); y = Y.basis()
phi(x[1] + x[3])
```

```
```

By default, the category is the first of `Modules(R).WithBasis().FiniteDimensional()`, `Modules(R).WithBasis()`, `Modules(R)`, and `CommutativeAdditiveMonoids()` that contains both the domain and the codomain:

```sage
phi.category_for()
```

```
Category of finite dimensional vector spaces with basis over RationalField
```

With the `zero` argument, one can define affine morphisms:

```sage
phi = X.module_morphism(lambda i: Y.monomial(i) + 2*Y.monomial(i+1),
                         codomain = Y, zero = 10*y[1])
phi(x[1] + x[3])
```

```
```

In this special case, the default category is `Sets()`:

```sage
phi.category_for()
```

```
Category of sets
```

One can construct morphisms with the base ring as codomain:

```sage
X = CombinatorialFreeModule(ZZ,[1,-1])
phi = X.module_morphism( on_basis=lambda i: i, codomain=ZZ )
phi(2 * X.monomial(1) + 3 * X.monomial(-1))
```

```
-1
```

(continues on next page)
sage: phi.category_for() # todo: not implemented (ZZ is currently not in Modules(ZZ))
Category of modules over Integer Ring

Or more generally any ring admitting a coercion map from the base ring:

sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=RR)
sage: phi(2 * X.monomial(1) + 3 * X.monomial(-1))
-1.00000000000000
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (RR is currently not in Modules(ZZ))
Category of modules over Integer Ring
sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=Zmod(4))
sage: phi(2 * X.monomial(1) + 3 * X.monomial(-1))
3
sage: phi = Y.module_morphism(on_basis=lambda i: i, codomain=Zmod(4))
Traceback (most recent call last):
...
ValueError: codomain(=Ring of integers modulo 4) should be a module over → the base ring of the domain(=Y)

On can also define module morphisms between free modules over different base rings; here we implement the natural map from \(X = \mathbb{R}^2 \) to \(Y = \mathbb{C} \):

sage: X = CombinatorialFreeModule(RR,['x','y'])
sage: Y = CombinatorialFreeModule(CC,['z'])
sage: x = X.monomial('x')
sage: y = X.monomial('y')
sage: z = Y.monomial('z')
sage: def on_basis(a):
 if a == 'x':
 return CC(1) * z
 elif a == 'y':
 return CC(I) * z
sage: phi = X.module_morphism(on_basis=on_basis, codomain=Y)
sage: phi(v)
(3.00000000000000+2.00000000000000*I)*B['z']
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (CC is currently not in Modules(RR))
Category of vector spaces over Real Field with 53 bits of precision
sage: Y = CombinatorialFreeModule(CC['q'],['z'])
sage: z = Y.monomial('z')
sage: phi = X.module_morphism(on_basis=on_basis, codomain=Y)
sage: phi(v)
(3.00000000000000+2.00000000000000*I)*B['z']

Of course, there should be a coercion between the respective base rings of the domain and the codomain for this to be meaningful:
With the diagonal=d argument, this constructs the module morphism g such that
g\left(x_i\right) = d(i)y_i.

This assumes that the respective bases x and y of X and Y have the same index set I:

```
sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X")
sage: phi = X.module_morphism(diagonal=factorial, codomain=X)
sage: x = X.basis()
sage: phi(x[1]), phi(x[2]), phi(x[3])
(B[1], 2*B[2], 6*B[3])
```

See also: `sage.modules.with_basis.morphism.DiagonalModuleMorphism`.

With the matrix=m argument, this constructs the module morphism whose matrix in the distinguished basis of X and Y is m:

```
sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X"); x = X.basis()
sage: Y = CombinatorialFreeModule(ZZ, [3,4]); Y.rename("Y"); y = Y.basis()
sage: m = matrix([[0,1,2],[3,5,0]])
sage: phi = X.module_morphism(matrix=m, codomain=Y)
sage: phi(x[1])
3*B[4]
sage: phi(x[2])
```

See also: `sage.modules.with_basis.morphism.ModuleMorphismFromMatrix`.

With triangular="upper", the constructed module morphism is assumed to be upper triangular; that is its matrix in the distinguished basis of X and Y would be upper triangular with invertible elements on its diagonal. This is used to compute preimages and to invert the morphism:

```
sage: I = list(range(1, 200))
sage: X = CombinatorialFreeModule(QQ, I); X.rename("X"); x = X.basis()
sage: Y = CombinatorialFreeModule(QQ, I); Y.rename("Y"); y = Y.basis()
sage: f = Y.sum_of_monomials * divisors
sage: phi = X.module_morphism(f, triangular="upper", codomain = Y)
sage: phi(x[2])
```

(continues on next page)
Since trac ticket #8678, one can also define a triangular morphism from a function:

```python
sage: X = CombinatorialFreeModule(QQ, [0,1,2,3,4]); x = X.basis()
```

```python
sage: from sage.modules.with_basis.morphism import TriangularModuleMorphismFromFunction
```

```python
sage: def f(x): return x + X.term(0, sum(x.coefficients()))
```

```python
sage: phi = X.module_morphism(function=f, codomain=X, triangular="upper")
```

```python
sage: phi(x[2] + 3*x[4])
```

```python
```

```python
sage: phi.preimage(_)
```

```python
```

For details and further optional arguments, see `sage.modules.with_basis.morphism.TriangularModuleMorphism`.

Warning: As a temporary measure, until multivariate morphisms are implemented, the constructed morphism is in `Hom(codomain, domain, category)`. This is only correct for unary functions.

Todo:
- Should codomain be `self` by default in the diagonal, triangular, and matrix cases?
- Support for diagonal morphisms between modules not sharing the same index set

monomial(i)

Return the basis element indexed by `i`.

INPUT:
- `i` – an element of the index set

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
```

```python
sage: F.monomial('a')
```

```python
B['a']
```

`F.monomial` is in fact (almost) a map:

```python
sage: F.monomial
```

```python
Term map from {'a', 'b', 'c'} to Free module generated by {'a', 'b', 'c'} over Rational Field
```
monomial_or_zero_if_none(i)
EXAMPLES:

```
sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial_or_zero_if_none('a')
B['a']
sage: F.monomial_or_zero_if_none(None)
0
```

quotient_module(submodule, check=True, already_echelonized=False, category=None)
Construct the quotient module self / submodule.

INPUT:
• submodule – a submodule with basis of self, or something that can be turned into one via
 self.submodule(submodule)
• check, already_echelonized – passed down to ModulesWithBasis.
 ParentMethods.submodule()

Warning: At this point, this only supports quotients by free submodules admitting a basis in
unitriangular echelon form. In this case, the quotient is also a free module, with a basis consisting
of the retract of a subset of the basis of self.

EXAMPLES:

```
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: Y = X.quotient_module([x[0]-x[1], x[1]-x[2]], already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {2} over Rational Field
sage: y = Y.basis()
sage: y[2]
y[2]
sage: y[2].lift()
x[2]
sage: Y.retract(x[0]+2*x[1])
3*y[2]
sage: R.<a,b> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = X.quotient_module(gens)
```

See also:
• Modules.WithBasis.ParentMethods.submodule()
• Rings.ParentMethods.quotient()
• sage.modules.with_basis.subquotient.QuotientModuleWithBasis

random_element(n=2)
Return a ‘random’ element of self.

INPUT:
• n – integer (default: 2); number of summands

ALGORITHM:
Return a sum of n terms, each of which is formed by multiplying a random element of the base ring
by a random element of the group.

EXAMPLES:

```python
sage: x = DihedralGroup(6).algebra(QQ).random_element()
sage: x.parent() is DihedralGroup(6).algebra(QQ)
True
```

Note, this result can depend on the PRNG state in libgap in a way that depends on which packages are loaded, so we must re-seed GAP to ensure a consistent result for this example:

```python
sage: libgap.set_seed(0)
0
sage: m = SU(2, 13).algebra(QQ).random_element(1)
sage: m.parent() is SU(2, 13).algebra(QQ)
True
sage: p = CombinatorialFreeModule(ZZ, Partitions(4)).random_element()
sage: p.parent() is CombinatorialFreeModule(ZZ, Partitions(4))
True
```

```
submodule (gens, check=True, already_echelonized=False, unitriangular=False, support_order=None, category=None, *args, **opts)
The submodule spanned by a finite set of elements.

INPUT:
• gens – a list or family of elements of self
• check – (default: True) whether to verify that the elements of gens are in self
• already_echelonized – (default: False) whether the elements of gens are already in (not necessarily reduced) echelon form
• unitriangular – (default: False) whether the lift morphism is unitriangular
• support_order – (optional) either something that can be converted into a tuple or a key function

If already_echelonized is False, then the generators are put in reduced echelon form using echelonize(), and reindexed by 0, 1, ....

Warning: At this point, this method only works for finite dimensional submodules and if matrices can be echelonized over the base ring.

If in addition unitriangular is True, then the generators are made such that the coefficients of the pivots are 1, so that lifting map is unitriangular.

The basis of the submodule uses the same index set as the generators, and the lifting map sends \( y_i \) to \( \text{gens}[i] \).

See also:
• ModulesWithBasis.FiniteDimensional.ParentMethods.quotient_module()
• sage.modules.with_basis.subquotient.SubmoduleWithBasis

EXAMPLES:

We construct a submodule of the free \( \mathbb{Q} \)-module generated by \( x_0, x_1, x_2 \). The submodule is spanned by \( y_0 = x_0 - x_1 \) and \( y_1 = x_1 - x_2 \), and its basis elements are indexed by 0 and 1:

```python
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
```

(continues on next page)
By using a family to specify a basis of the submodule, we obtain a submodule whose index set coincides with the index set of the family:

```
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = Family({1 : x[0] - x[1], 3: x[1] - x[2]}); gens
Finite family {1: x[0] - x[1], 3: x[1] - x[2]}
sage: Y = X.submodule(gens, already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {1, 3} over Rational Field
sage: y = Y.basis()
sage: y[1]
y[1]
sage: y[1].lift()
x[0] - x[1]
sage: Y.retract(x[0]-x[2])
y[0] + y[1]
sage: Y.retract(x[0])
Traceback (most recent call last):
 ... ValueError: x[0] is not in the image
```

It is not necessary that the generators of the submodule form a basis (an explicit basis will be computed):

```
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]; gens
[x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = X.submodule(gens, already_echelonized=False)
sage: Y.print_options(prefix='y')
sage: Y
Free module generated by {0, 1} over Rational Field
sage: [b.lift() for b in Y.basis()]
x[0] - x[2], x[1] - x[2]
```

We now implement by hand the center of the algebra of the symmetric group $S_3$: 3.119. Modules With Basis
sage: S3 = SymmetricGroup(3)
sage: S3A = S3.algebra(QQ)
sage: basis = S3A.annihilator_basis(S3A.algebra_generators(), S3A.bracket)
sage: basis
((), (1,2,3) + (1,3,2), (2,3) + (1,2) + (1,3))
sage: center = S3A.submodule(basis,
....: category=AlgebrasWithBasis(QQ).Subobjects(),
....: already_echelonized=True)
sage: center
Free module generated by {0, 1, 2} over Rational Field
sage: center in Algebras
True
sage: center.print_options(prefix='c')
sage: c = center.basis()
sage: c[1].lift()
(1,2,3) + (1,3,2)
sage: c[0]^2
c[0]
sage: e = 1/6*(c[0]+c[1]+c[2])
sage: e.is_idempotent()
True

Of course, this center is best constructed using:

sage: center = S3A.center()

We can also automatically construct a basis such that the lift morphism is (lower) unitriangular:

sage: R.<a,b> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = C.submodule(gens, unitriangular=True)
sage: Y.lift.matrix()
[ 1 0]
[ 0 1]
[-1 -1]

We now construct a (finite-dimensional) submodule of an infinite dimensional free module:

sage: C = CombinatorialFreeModule(QQ, ZZ, prefix='z')
sage: z = C.basis()
sage: gens = [z[0] - z[1], 2*z[1] - 2*z[2], z[0] - z[2]]
sage: Y = C.submodule(gens)

sum_of_monomials()
Return the sum of the basis elements with indices in indices.

INPUT:
• indices – an list (or iterable) of indices of basis elements

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.sum_of_monomials(['a', 'b'])
B['a'] + B['b']

(continues on next page)
sum_of_monomials

Construct a sum of monomials of self.

INPUT:
• terms – a list (or iterable) of pairs (index, coeff)

OUTPUT:
Sum of coeff * B[index] over all (index, coeff) in terms, where B is the basis of self.

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.sum_of_monomials(['a', 'b', 'a'])
2*B['a'] + B['b']

F.sum_of_monomials is in fact (almost) a map:

sage: F.sum_of_monomials
A map to Free module generated by {'a', 'b', 'c'} over Rational Field

sum_of_terms

Construct a sum of terms of self.

INPUT:
• terms – a list (or iterable) of pairs (index, coeff)

OUTPUT:
Sum of coeff * B[index] over all (index, coeff) in terms, where B is the basis of self.

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.sum_of_terms([(0, 2), (2, -3)])
2 + (0, -3)

tensor

Return the tensor product of the parents.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example(); A.rename("A")
sage: A.tensor(A,A)
A # A # A
sage: A.rename(None)

term

Construct a term in self.

INPUT:
• index – the index of a basis element
• coeff – an element of the coefficient ring (default: one)

OUTPUT:
coeff * B[index], where B is the basis of self.

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.term(1, -2)
0 + (-2, 0)

Design: should this do coercion on the coefficient ring?

Super

alias of sage.categories.super_modules_with_basis.SuperModulesWithBasis
class TensorProducts(category, *args)
    Bases: sage.categories.tensor.TensorProductsCategory

The category of modules with basis constructed by tensor product of modules with basis.

class ElementMethods
    Bases: object

    Implements operations on elements of tensor products of modules with basis.

    apply_multilinear_morphism(f, codomain=None)
    Return the result of applying the morphism induced by f to self.

    INPUT:
    • f – a multilinear morphism from the component modules of the parent tensor product to any
      module
    • codomain – the codomain of f (optional)
    By the universal property of the tensor product, f induces a linear morphism from self.parent()
    to the target module. Returns the result of applying that morphism to self.

    The codomain is used for optimizations purposes only. If it’s not provided, it’s recovered by
    calling f on the zero input.

    EXAMPLES:

    We start with simple (admittedly not so interesting) examples, with two modules A and B:

    sage: A = CombinatorialFreeModule(ZZ, [1,2], prefix="A"); A.rename("A")
    sage: B = CombinatorialFreeModule(ZZ, [3,4], prefix="B"); B.rename("B")

    and f the bilinear morphism (a, b) \mapsto b \otimes a from A \times B to B \otimes A:

    sage: def f(a,b):
    ....:     return tensor([b,a])

    Now, calling applying f on a \otimes b returns the same as f(a, b):

    sage: a = A.monomial(1) + 2 * A.monomial(2); a
    sage: b = B.monomial(3) - 2 * B.monomial(4); b
    sage: f(a,b)
    sage: tensor([a,b]).apply_multilinear_morphism(f)

    f may be a bilinear morphism to any module over the base ring of A and B. Here the codomain
    is ZZ:

    sage: def f(a,b):
    ....:     return sum(a.coefficients(), 0) * sum(b.coefficients(), 0)
    sage: f(a,b)
    -3
    sage: tensor([a,b]).apply_multilinear_morphism(f)
    -3

    Mind the 0 in the sums above; otherwise f would not return 0 in ZZ:

    sage: def f(a,b):
    ....:     return sum(a.coefficients()) * sum(b.coefficients())

(continues on next page)
Which would be wrong and break this method:

```python
sage: tensor([a,b]).apply_multilinear_morphism(f)
Traceback (most recent call last):
...:
AttributeError: 'int' object has no attribute 'parent'
```

Here we consider an example where the codomain is a module with basis with a different base ring:

```python
sage: C = CombinatorialFreeModule(QQ, [(1,3),(2,4)], prefix="C"); C.rename("C")
sage: def f(a,b):
....: return C.sum_of_terms([(1,3), QQ(a[1]*b[3])], ((2,4), QQ(a[2]*b[4])))
sage: f(a,b)
C[1, 3] - 4*C[2, 4]
sage: tensor([a,b]).apply_multilinear_morphism(f)
C[1, 3] - 4*C[2, 4]
```

We conclude with a real life application, where we check that the antipode of the Hopf algebra of Symmetric functions on the Schur basis satisfies its defining formula:

```python
sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: def f(a,b): return a*b.antipode()
sage: x = 4*s.an_element(); x
8*s[0] + 8*s[1] + 12*s[2]
sage: x.coproduct().apply_multilinear_morphism(f)
8*s[0]
sage: x.coproduct().apply_multilinear_morphism(f) == x.counit()
True
```

We recover the constant term of x, as desired.

**Todo:** Extract a method to linearize a multilinear morphism, and delegate the work there.

```python
class ParentMethods
 Bases: object
 Implements operations on tensor products of modules with basis.

 extra_super_categories()

 EXAMPLES:
```

```python
sage: ModulesWithBasis(QQ).TensorProducts().extra_super_categories() [Category of vector spaces with basis over Rational Field]
sage: ModulesWithBasis(QQ).TensorProducts().super_categories() [Category of tensor products of modules with basis over Rational Field, Category of vector spaces with basis over Rational Field, Category of tensor products of vector spaces over Rational Field]
```
is_abelian()
Return whether this category is abelian.
This is the case if and only if the base ring is a field.
EXAMPLES:

```python
sage: ModulesWithBasis(QQ).is_abelian()
True
sage: ModulesWithBasis(ZZ).is_abelian()
False
```

### 3.120 Monoid algebras

sage.categories.monoid_algebras.MonoidAlgebras(base_ring)
The category of monoid algebras over base_ring.

EXAMPLES:

```python
sage: C = MonoidAlgebras(QQ); C
Category of monoid algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of bialgebras with basis over Rational Field,
 Category of semigroup algebras over Rational Field,
 Category of unital magma algebras over Rational Field]
```

This is just an alias for:

```python
sage: C is Monoids().Algebras(QQ)
True
```

### 3.121 Monoids

class sage.categories.monoids.Monoids(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton
The category of (multiplicative) monoids.

A monoid is a unital semigroup, that is a set endowed with a multiplicative binary operation * which is associative and admits a unit (see Wikipedia article Monoid).

EXAMPLES:

```python
sage: Monoids()
Category of monoids
sage: Monoids().super_categories()
[Category of semigroups, Category of unital magmas]
sage: Monoids().all_super_categories()
[Category of monoids,
 Category of semigroups,
 Category of unital magmas, Category of magmas,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

(continues on next page)
sage: Monoids().axioms()
frozenset({'Associative', 'Unital'})
sage: Semigroups().Unital()
Category of monoids
sage: Monoids().example()
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')

class Algebras (category, *args)

Bases: sage.categories.algebra_functor.AlgebrasCategory

class ElementMethods

Bases: object

is_central()

Return whether the element self is central.

EXAMPLES:

sage: SG4 = SymmetricGroupAlgebra(ZZ,4)
sage: SG4(1).is_central()
True
sage: SG4(Permutation([1,3,2,4])).is_central()
False
sage: A = GroupAlgebras(QQ).example(); A
Algebra of Dihedral group of order 8 as a permutation group over Rational Field
sage: sum(i for i in A.basis()).is_central()
True

class ParentMethods

Bases: object

algebra_generators()

Return generators for this algebra.

For a monoid algebra, the algebra generators are built from the monoid generators if available and from the semigroup generators otherwise.

See also:

• Semigroups.Algebras.ParentMethods.algebra_generators()
• MagmaticAlgebras.ParentMethods.algebra_generators().

EXAMPLES:

sage: M = Monoids().example(); M
An example of a monoid:
the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.monoid_generators()
Finite family {'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd'}
sage: M.algebra(ZZ).algebra_generators()
Finite family {'a': B['a'], 'b': B['b'], 'c': B['c'], 'd': B['d']}

sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid:
the integers modulo 12
sage: Z12.monoid_generators()
Traceback (most recent call last):
AttributeError: 'IntegerModMonoid_with_category' object has no attribute 'monoid_generators'
sage: Z12.semigroup_generators()
Family (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
sage: Z12.algebra(QQ).algebra_generators()
˓→B[11]}
sage: GroupAlgebras(QQ).example(AlternatingGroup(10)).algebra_generators()
Finite family {0: (8,9,10), 1: (1,2,3,4,5,6,7,8,9)}
sage: A = DihedralGroup(3).algebra(QQ); A
Algebra of Dihedral group of order 6 as a permutation group over Rational Field
sage: A.algebra_generators()
Finite family {0: (1,2,3), 1: (1,3)}

one_basis()
Return the unit of the monoid, which indexes the unit of this algebra, as per
AlgebrasWithBasis.ParentMethods.one_basis().

EXAMPLES:

sage: A = Monoids().example().algebra(ZZ)
sage: A.one_basis()''
sage: A.one()B''
sage: A(3)3*B''

extra_super_categories()
The algebra of a monoid is a bialgebra and a monoid.

EXAMPLES:

sage: C = Monoids().Algebras(QQ)
sage: C.extra_super_categories()
[Category of bialgebras over Rational Field, Category of monoids]
sage: Monoids().Algebras(QQ).super_categories()
[Category of bialgebras with basis over Rational Field, Category of semigroup algebras over Rational Field, Category of unital magma algebras over Rational Field]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of monoids constructed as Cartesian products of monoids.
This construction gives the direct product of monoids. See Wikipedia article Direct_product for more information.

class ParentMethods
Bases: object
monoid_generators()  
Return the generators of self.

EXAMPLES:

```sage
 sage: M = Monoids().free([1,2,3])
sage: N = Monoids().free(['a','b'])
sage: C = cartesian_product([M, N])
sage: C.monoid_generators()
Family ((F[1], 1), (F[2], 1), (F[3], 1),
 (1, F['a']), (1, F['b']))
```

An example with an infinitely generated group (a better output is needed):

```sage
 sage: N = Monoids().free(ZZ)
sage: C = cartesian_product([M, N])
sage: C.monoid_generators()
Lazy family (gen(i))_{i in The Cartesian product of (...)}
```

extra_super_categories()  
A Cartesian product of monoids is endowed with a natural group structure.

EXAMPLES:

```sage
 sage: C = Monoids().CartesianProducts()
sage: C.extra_super_categories()
[Category of monoids]
sage: sorted(C.super_categories(), key=str)
[Category of Cartesian products of semigroups,
 Category of Cartesian products of unital magmas,
 Category of monoids]
```

class Commutative(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

Category of commutative (abelian) monoids.

A monoid \( M \) is commutative if \( xy = yx \) for all \( x, y \in M \).

static free(index_set=None, names=None, **kwds)

Return a free abelian monoid on \( n \) generators or with the generators indexed by a set \( I \).

A free monoid is constructed by specifying either:

- the number of generators and/or the names of the generators, or
- the indexing set for the generators.

INPUT:

- `index_set` – (optional) an index set for the generators; if an integer, then this represents \( \{0,1,...,n-1\} \)
- `names` – a string or list/tuple/iterable of strings (default: `'x'`); the generator names or name prefix

EXAMPLES:

```sage
 sage: Monoids().Commutative().free(index_set=ZZ)
Free abelian monoid indexed by Integer Ring
 sage: Monoids().Commutative().free(ZZ)
Free abelian monoid indexed by Integer Ring
 sage: F.<x,y,z> = Monoids().Commutative().free(); F
Free abelian monoid indexed by ('x', 'y', 'z')
```
class ElementMethods
    Bases: object

    is_one()
    Return whether self is the one of the monoid.
    The default implementation is to compare with self.one().

    powers(n)
    Return the list \([x^0, x^1, \ldots, x^{n-1}]\).

    EXAMPLES:
    sage: A = Matrix([[1, 1], [-1, 0]])
    sage: A.powers(6)
    [{1 0} [1 1] [0 1] [-1 0] [-1 -1] [0 -1]
    [0 1], [-1 0], [-1 -1], [0 -1], [1 0], [1 1] ]

Finite
    alias of sage.categories.finite_monoids.FiniteMonoids

Inverse
    alias of sage.categories.groups.Groups

class ParentMethods
    Bases: object

    prod(args)
    n-ary product of elements of self.
    INPUT:
    • args – a list (or iterable) of elements of self
    Returns the product of the elements in args, as an element of self.

    EXAMPLES:
    sage: S = Monoids().example()
    sage: S.prod([S('a'), S('b')])
    'ab'

    semigroup_generators()
    Return the generators of self as a semigroup.
    The generators of a monoid \(M\) as a semigroup are the generators of \(M\) as a monoid and the unit.

    EXAMPLES:
    sage: M = Monoids().free([1,2,3])
    sage: M.semisemigroup_generators()
    Family (1, F[1], F[2], F[3])

    submonoid(generators, category=None)
    Return the multiplicative submonoid generated by generators.
    INPUT:
    • generators – a finite family of elements of self, or a list, iterable, … that can be converted into one (see Family).
    • category – a category
This is a shorthand for \texttt{Semigroups.ParentMethods.subsemigroup()} that specifies that this is a submonoid, and in particular that the unit is \texttt{self.one()}.

**EXAMPLES:**

```python
sage: R = IntegerModRing(15)
sage: M = R.submonoid([R(3),R(5)]); M
A submonoid of (Ring of integers modulo 15) with 2 generators
sage: M.list()
\[1, 3, 5, 9, 0, 10, 12, 6\]

Not the presence of the unit, unlike in:

```python
sage: S = R.subsemigroup([R(3),R(5)]); S
A subsemigroup of (Ring of integers modulo 15) with 2 generators
sage: S.list()
\[3, 5, 9, 0, 10, 12, 6\]
```

This method is really a shorthand for subsemigroup:

```python
sage: M2 = R.subsemigroup([R(3),R(5)], one=R.one())
sage: M2
\text{is } M
True
```

class \texttt{Subquotients}(*\texttt{category, *\texttt{args}})

Bases: \texttt{sage.categories.subquotients.SubquotientsCategory}

class \texttt{ParentMethods}

Bases: object

\texttt{one()}

Returns the multiplicative unit of this monoid, obtained by retracting that of the ambient monoid.

EXAMPLES:

```python
sage: S = Monoids().Subquotients().example()
\# todo: not implemented
sage: S.one()
\# todo: not implemented
```

class \texttt{WithRealizations}(*\texttt{category, *\texttt{args}})

Bases: \texttt{sage.categories.with_realizations.WithRealizationsCategory}

class \texttt{ParentMethods}

Bases: object

\texttt{one()}

Return the unit of this monoid.

This default implementation returns the unit of the realization of \texttt{self} given by \texttt{a_realization()}.

EXAMPLES:

```python
sage: A = Sets().WithRealizations().example(); A
The subset algebra of \{1, 2, 3\} over \text{Rational Field}
sage: A.one._module_
\text{"sage.categories.monoids"}
sage: A.one()
F[\{}\]
```

\texttt{static free}(*\texttt{index_set=None, names=None, **kwds})

Return a free monoid on \(n\) generators or with the generators indexed by a set \(I\).
A free monoid is constructed by specifying either:
- the number of generators and/or the names of the generators
- the indexing set for the generators

INPUT:
- `index_set` – (optional) an index set for the generators; if an integer, then this represents \(\{0, 1, \ldots, n-1\} \)
- `names` – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix

EXAMPLES:

```python
sage: Monoids().free(index_set=ZZ)
Free monoid indexed by Integer Ring
sage: Monoids().free(ZZ)
Free monoid indexed by Integer Ring
sage: F.<x,y,z> = Monoids().free(); F
Free monoid indexed by {'x', 'y', 'z'}
```

3.122 Number fields

class `sage.categories.number_fields.NumberFields(s=None)`

Bases: `sage.categories.category_singleton.Category_singleton`

The category of number fields.

EXAMPLES:

We create the category of number fields:

```python
sage: C = NumberFields()
sage: C
Category of number fields
```

By definition, it is infinite:

```python
sage: NumberFields().Infinite() is NumberFields()
True
```

Notice that the rational numbers \(\mathbb{Q} \) are considered as an object in this category:

```python
sage: RationalField() in C
True
```

However, we can define a degree 1 extension of \(\mathbb{Q} \), which is of course also in this category:

```python
sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: K = NumberField(x - 1, 'a'); K
Number Field in a with defining polynomial x - 1
sage: K in C
True
```

Number fields all lie in this category, regardless of the name of the variable:
sage: K = NumberField(x^2 + 1, 'a')
sage: K in C
True

class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

zeta_function (prec=53, max_imaginary_part=0, max_asympt_coeffs=40, algorithm='pari')
Return the Dedekind zeta function of this number field.

Actually, this returns an interface for computing with the Dedekind zeta function \(\zeta_F(s) \) of the number field \(F \).

INPUT:
- prec – optional integer (default 53) bits precision
- max_imaginary_part – optional real number (default 0)
- max_asympt_coeffs – optional integer (default 40)
- algorithm – optional (default “pari”) either “gp” or “pari”

OUTPUT: The zeta function of this number field.

If algorithm is “gp”, this returns an interface to Tim Dokchitser’s gp script for computing with \(L \)-functions.

If algorithm is “pari”, this returns instead an interface to Pari’s own general implementation of \(L \)-functions.

EXAMPLES:

sage: K.<a> = NumberField(ZZ['x'].0^2+ZZ['x'].0-1)
sage: Z = K.zeta_function(); Z
PARI zeta function associated to Number Field in a with defining polynomial x^2 + x - 1
sage: Z(-1)
0.0333333333333333
sage: L.<a, b, c> = NumberField([x^2 - 5, x^2 + 3, x^2 + 1])
sage: Z = L.zeta_function()
sage: Z(5)
1.00199015670185

Using the algorithm “pari”:

sage: K.<a> = NumberField(ZZ['x'].0^2+ZZ['x'].0-1)
sage: Z = K.zeta_function(algorithm="pari")
sage: Z(-1)
0.0333333333333333
sage: L.<a, b, c> = NumberField([x^2 - 5, x^2 + 3, x^2 + 1])
sage: Z = L.zeta_function(algorithm="pari")
sage: Z(5)
1.00199015670185

super_categories()

EXAMPLES:

sage: NumberFields().super_categories()
[Category of infinite fields]
3.123 Objects

class sage.categories.objects.Objects(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

The category of all objects the basic category

EXAMPLES:

```
sage: Objects()
Category of objects
sage: Objects().super_categories()
[]
```

class ParentMethods
 Bases: object

Methods for all category objects

class SubcategoryMethods
 Bases: object

Endsets()
 Return the category of endsets between objects of this category.

EXAMPLES:

```
sage: Sets().Endsets()
Category of endsets of sets
sage: Rings().Endsets()
Category of endsets of unital magmas and additive unital additive magmas
```

See also:
- Homsets()

Homsets()
 Return the category of homsets between objects of this category.

EXAMPLES:

```
sage: Sets().Homsets()
Category of homsets of sets
sage: Rings().Homsets()
Category of homsets of unital magmas and additive unital additive magmas
```

Note: Background

Information, code, documentation, and tests about the category of homsets of a category Cs should go in the nested class Cs.Homsets. They will then be made available to homsets of any subcategory of Cs.

Assume, for example, that homsets of Cs are Cs themselves. This information can be implemented in the method Cs.Homsets.extra_super_categories to make Cs.Homsets() a subcategory of Cs().

Methods about the homsets themselves should go in the nested class Cs.Homsets. ParentMethods.
Methods about the morphisms can go in the nested class `Cs.Homsets.ElementMethods`. However it’s generally preferable to put them in the nested class `Cs.MorphismMethods`; indeed they will then apply to morphisms of all subcategories of `Cs`, and not only full subcategories.

See also:

FunctorialConstruction

Todo:

- Design a mechanism to specify that an axiom is compatible with taking subsets. Examples: Finite, Associative, Commutative (when meaningful), but not Infinite nor Unital.
- Design a mechanism to specify that, when \(B \) is a subcategory of \(A \), a \(B \)-homset is a subset of the corresponding \(A \) homset. And use it to recover all the relevant axioms from homsets in super categories.
- For instances of redundant code due to this missing feature, see:
 - `AdditiveMonoids.Homsets.extra_super_categories()`
 - `HomsetsCategory.extra_super_categories()` (slightly different nature)
 - plus plenty of spots where this is not implemented.

additional_structure()

Return `None`

Indeed, by convention, the category of objects defines no additional structure.

See also:

`Category.additional_structure()`

EXAMPLES:

```sage
sage: Objects().additional_structure()
```

super_categories()

EXAMPLES:

```sage
sage: Objects().super_categories()
[]
```

3.124 Partially ordered monoids

```sage
class sage.categories.partially_ordered_monoids.PartiallyOrderedMonoids(s=None)
Bases: sage.categories.category_singleton.Category_singleton
```

The category of partially ordered monoids, that is partially ordered sets which are also monoids, and such that multiplication preserves the ordering: \(x \leq y \) implies \(x \cdot z < y \cdot z \) and \(z \cdot x < z \cdot y \).

See Wikipedia article `Ordered_monoid`

EXAMPLES:

```sage
sage: PartiallyOrderedMonoids()
Category of partially ordered monoids
sage: PartiallyOrderedMonoids().super_categories()
[Category of posets, Category of monoids]
```
3.125 Permutation groups

The category of permutation groups.

A permutation group is a group whose elements are concretely represented by permutations of some set. In other words, the group comes endowed with a distinguished action on some set.

This distinguished action should be preserved by permutation group morphisms. For details, see Wikipedia article Permutation_group#Permutation_isomorphic_groups.

Todo: shall we accept only permutations with finite support or not?

EXAMPLES:

```
sage: PermutationGroups()
Category of permutation groups
sage: PermutationGroups().super_categories()
[Category of groups]
```

The category of permutation groups defines additional structure that should be preserved by morphisms, namely the distinguished action:

```
sage: PermutationGroups().additional_structure()
Category of permutation groups
```

Finite

alias of `sage.categories.finite_permutation_groups.FinitePermutationGroups`

super_categories()

Return a list of the immediate super categories of self.

EXAMPLES:

```
sage: PermutationGroups().super_categories()
[Category of groups]
```
3.126 Pointed sets

class sage.categories.pointed_sets.PointedSets(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

The category of pointed sets.

EXAMPLES:

sage: PointedSets()
Category of pointed sets

super_categories()

EXAMPLES:

sage: PointedSets().super_categories()
[Category of sets]

3.127 Polyhedral subsets of free ZZ, QQ or RR-modules.

class sage.categories.polyhedra.PolyhedralSets(R)
 Bases: sage.categories.category_types.Category_over_base_ring

The category of polyhedra over a ring.

EXAMPLES:

We create the category of polyhedra over Q:

sage: PolyhedralSets(QQ)
Category of polyhedral sets over Rational Field

super_categories()

EXAMPLES:

sage: PolyhedralSets(QQ).super_categories()
[Category of commutative magmas, Category of additive monoids]

3.128 Posets

class sage.categories.posets.Posets(s=None)
 Bases: sage.categories.category.Category

The category of posets i.e. sets with a partial order structure.

EXAMPLES:

sage: Posets()
Category of posets
sage: Posets().super_categories()
[Category of sets]
sage: P = Posets().example(); P
An example of a poset: sets ordered by inclusion

The partial order is implemented by the mandatory method le():

The other comparison methods are called :meth:`lt()`, :meth:`ge()`, :meth:`gt()`, following Python’s naming convention in :mod:`operator`. Default implementations are provided:

```python
sage: P.lt(x, x)
False
sage: P.ge(y, x)
True
```

Unless the poset is a facade (see :class:`Sets.Facade`), one can compare directly its elements using the usual Python operators:

```python
sage: D = Poset((divisors(30), attrcall("divides")), facade = False)
sage: D(3) <= D(6)
True
sage: D(3) <= D(3)
True
sage: D(3) <= D(5)
False
sage: D(3) < D(3)
False
sage: D(10) >= D(5)
True
```

At this point, this has to be implemented by hand. Once trac ticket #10130 will be resolved, this will be automatically provided by this category:

```python
sage: x < y  # todo: not implemented
True
sage: x < x  # todo: not implemented
False
sage: x <= x  # todo: not implemented
True
sage: y >= x  # todo: not implemented
True
```

See also:

- :func:`Poset`
- :class:`FinitePosets`
- :class:`LatticePosets`

```python
class ElementMethods
    Bases: object

Finite
    alias of sage.categories.finite_posets.FinitePosets
class ParentMethods
    Bases: object
```
CartesianProduct
alias of sage.combinat.posets.cartesian_product.CartesianProductPoset
directed_subset (elements, direction)
Return the order filter or the order ideal generated by a list of elements.
If direction is ‘up’, the order filter (upper set) is being returned.
If direction is ‘down’, the order ideal (lower set) is being returned.
INPUT:
• elements – a list of elements.
• direction – ‘up’ or ‘down’.
EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.directed_subset([3, 8], 'up')
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: B.directed_subset([7, 10], 'down')
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]

ge (x, y)
Return whether \(x \geq y \) in the poset self.
INPUT:
• x, y – elements of self.
This default implementation delegates the work to le().
EXAMPLES:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.ge(6, 3)
True
sage: D.ge(3, 3)
True
sage: D.ge(3, 5)
False
gt (x, y)
Return whether \(x > y \) in the poset self.
INPUT:
• x, y – elements of self.
This default implementation delegates the work to lt().
EXAMPLES:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.gt(3, 6)
False
sage: D.gt(3, 3)
False
sage: D.gt(3, 5)
False

is_antichain_of_poset (o)
Return whether an iterable o is an antichain of self.
INPUT:
• o – an iterable (e. g., list, set, or tuple) containing some elements of self
True if the subset of self consisting of the entries of \(o \) is an antichain of self, and False otherwise.

EXAMPLES:

```python
sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_antichain_of_poset([1, 3])
False
sage: P.is_antichain_of_poset([3, 1])
False
sage: P.is_antichain_of_poset([1, 1, 3])
False
sage: P.is_antichain_of_poset([])
True
sage: P.is_antichain_of_poset([1])
True
sage: P.is_antichain_of_poset([1, 1])
True
sage: P.is_antichain_of_poset([3, 4])
True
sage: P.is_antichain_of_poset([3, 4, 12])
False
sage: P.is_antichain_of_poset([6, 4])
True
sage: P.is_antichain_of_poset(i for i in divisors(12) if (2 < i and i < 6))
True
sage: P.is_antichain_of_poset(i for i in divisors(12) if (2 <= i and i < 6))
False
```

An infinite poset:

```python
sage: from sage.categories.examples.posets import FiniteSetsOrderedByInclusion
sage: R = FiniteSetsOrderedByInclusion()
```

(continues on next page)
is_chain_of_poset \((o, \text{ordered}=False)\)

Return whether an iterable \(o\) is a chain of \(self\), including a check for \(o\) being ordered from smallest to largest element if the keyword \text{ordered} is set to \(True\).

INPUT:
- \(o\) – an iterable (e.g., list, set, or tuple) containing some elements of \(self\)
- \text{ordered} – a Boolean (default: \(False\)) which decides whether the notion of a chain includes being ordered

OUTPUT:

If \text{ordered} is set to \(False\), the truth value of the following assertion is returned: The subset of \(self\) formed by the elements of \(o\) is a chain in \(self\).

If \text{ordered} is set to \(True\), the truth value of the following assertion is returned: Every element of the list \(o\) is (strictly!) smaller than its successor in \(self\). (This makes no sense if \text{ordered} is a set.)

EXAMPLES:

```
sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_chain_of_poset([1, 3])
True
sage: P.is_chain_of_poset([3, 1])
True
sage: P.is_chain_of_poset([1, 3], ordered=True)
True
sage: P.is_chain_of_poset([3, 1], ordered=True)
False
sage: P.is_chain_of_poset([])
True
sage: P.is_chain_of_poset([], ordered=True)
True
sage: P.is_chain_of_poset((2, 12, 6))
True
sage: P.is_chain_of_poset((2, 6, 12), ordered=True)
True
sage: P.is_chain_of_poset((2, 12, 6), ordered=True)
False
sage: P.is_chain_of_poset((2, 12, 6, 3))
False
sage: P.is_chain_of_poset((2, 3))
False
sage: Q = Poset({2: [3, 1], 3: [4], 1: [4]})
sage: Q.is_chain_of_poset([2, [3, 1], 3: [4], 1: [4]])
False
sage: Q.is_chain_of_poset([1, 2], ordered=True)
False
sage: Q.is_chain_of_poset([1, 2])
True
```
is_order_filter(o)

Return whether \(o \) is an order filter of self, assuming self has no infinite ascending path.

INPUT:

- \(o \) – a list (or set, or tuple) containing some elements of self

Examples with infinite posets:

```python
sage: from sage.categories.examples.posets import FiniteSetsOrderedByInclusion
sage: R = FiniteSetsOrderedByInclusion()
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 4])), R(set([4, 5]))])
False
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 2])), R(set([1]))], ordered=True)
False
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 2])), R(set([1]))])
True
```

```python
sage: from sage.categories.examples.posets import PositiveIntegersOrderedByDivisibilityFacade
sage: T = PositiveIntegersOrderedByDivisibilityFacade()
sage: T.is_chain_of_poset((T(3), T(4), T(7)))
False
sage: T.is_chain_of_poset((T(3), T(6), T(3)))
True
sage: T.is_chain_of_poset((T(3), T(6), T(3)), ordered=True)
False
sage: T.is_chain_of_poset((T(3), T(6)), ordered=True)
True
sage: T.is_chain_of_poset((T(q) for q in divisors(27)))
True
sage: T.is_chain_of_poset((T(q) for q in divisors(18)))
False
```
EXAMPLES:

```python
sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_order_filter([4, 12])
True
sage: P.is_order_filter([])
True
sage: P.is_order_filter({3, 4, 12})
False
sage: P.is_order_filter({3, 6, 12})
True
```

`is_order_ideal(o)`

Return whether `o` is an order ideal of `self`, assuming `self` has no infinite descending path.

INPUT:

- `o` – a list (or set, or tuple) containing some elements of `self`

EXAMPLES:

```python
sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_order_ideal([1, 3])
True
sage: P.is_order_ideal([])
True
sage: P.is_order_ideal({1, 3})
True
sage: P.is_order_ideal([1, 3, 4])
False
```

`le(x, y)`

Return whether `x ≤ y` in the poset `self`.

INPUT:

- `x, y` – elements of `self`

EXAMPLES:

```python
sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.le(3, 6)
True
sage: D.le(3, 3)
True
sage: D.le(3, 5)
False
```

`lower_covers(x)`

Return the lower covers of `x`, that is, the elements `y` such that `y < x` and there exists no `z` such that `y < z < x`.

EXAMPLES:

```python
sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.lower_covers(15)
[3, 5]
```
\texttt{lt}(x,y)
Return whether \(x < y\) in the poset self.

\textbf{INPUT:}
\begin{itemize}
 \item \(x, y\) – elements of self.
\end{itemize}
This default implementation delegates the work to \texttt{le()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.lt(3, 6)
True
sage: D.lt(3, 3)
False
sage: D.lt(3, 5)
False
\end{verbatim}

\texttt{order_filter}(\texttt{elements})
Return the order filter generated by a list of elements.

A subset \(I\) of a poset is said to be an order filter if, for any \(x\) in \(I\) and \(y\) such that \(y \geq x\), then \(y\) is in \(I\).
This is also called the upper set generated by these elements.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: B = posets.BooleanLattice(4)
sage: B.order_filter([3,8])
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]
\end{verbatim}

\texttt{order_ideal}(\texttt{elements})
Return the order ideal in self generated by the elements of an iterable elements.

A subset \(I\) of a poset is said to be an order ideal if, for any \(x\) in \(I\) and \(y\) such that \(y \leq x\), then \(y\) is in \(I\).
This is also called the lower set generated by these elements.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: B = posets.BooleanLattice(4)
sage: B.order_ideal([7,10])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]
\end{verbatim}

\texttt{order_ideal_toggle}(I, v)
Return the result of toggling the element \(v\) in the order ideal \(I\).

If \(v\) is an element of a poset \(P\), then toggling the element \(v\) is an automorphism of the set \(J(P)\) of all order ideals of \(P\). It is defined as follows: If \(I\) is an order ideal of \(P\), then the image of \(I\) under toggling the element \(v\) is
\begin{itemize}
 \item the set \(I \cup \{v\}\), if \(v \not\in I\) but every element of \(P\) smaller than \(v\) is in \(I\);
 \item the set \(I \setminus \{v\}\), if \(v \in I\) but no element of \(P\) greater than \(v\) is in \(I\);
 \item \(I\) otherwise.
\end{itemize}
This image always is an order ideal of \(P\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: P = Poset({1: [2,3], 2: [4], 3: []})
sage: I = Set({1, 2})
sage: I in P.order_ideals_lattice()
True
\end{verbatim}

(continues on next page)
sage: P.order_ideal_toggle(I, 1)
{1, 2}
sage: P.order_ideal_toggle(I, 2)
{1}
sage: P.order_ideal_toggle(I, 3)
{1, 2, 3}
sage: P.order_ideal_toggle(I, 4)
{1, 2, 4}
sage: P4 = Posets(4)
sage: all(all(all(P.order_ideal_toggle(P.order_ideal_toggle(I, i), i) == I
....: for i in range(4))
....: for I in P.order_ideals_lattice(facade=True))
....: for P in P4)
True

order_ideal_toggles(I, vs)
Return the result of toggling the elements of the list (or iterable) vs (one by one, from left to right) in the order ideal I.

See order_ideal_toggle() for a definition of toggling.

EXAMPLES:

sage: P = Poset({1: [2,3], 2: [4], 3: []})
sage: I = Set({1, 2})
sage: P.order_ideal_toggles(I, [1,2,3,4])
{1, 3}
sage: P.order_ideal_toggles(I, (1,2,3,4))
{1, 3}

principal_lower_set(x)
Return the order ideal generated by an element x.

This is also called the lower set generated by this element.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.principal_order_ideal(6)
[0, 2, 4, 6]

principal_order_filter(x)
Return the order filter generated by an element x.

This is also called the upper set generated by this element.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.principal_order_filter(2)
[2, 3, 6, 7, 10, 11, 14, 15]

principal_order_ideal(x)
Return the order ideal generated by an element x.

This is also called the lower set generated by this element.

EXAMPLES:
principal_upper_set (x)
Return the order filter generated by an element x.
This is also called the upper set generated by this element.

EXAMPLES:

```
sage: B = posets.BooleanLattice(4)
sage: B.principal_order_filter(2)
[2, 3, 6, 7, 10, 11, 14, 15]
```

upper_covers (x)
Return the upper covers of x, that is, the elements y such that x < y and there exists no z such that x < z < y.

EXAMPLES:

```
sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.upper_covers(3)
[6, 15]
```

def example (choice=None)
Return examples of objects of Posets(), as per Category.example().

EXAMPLES:

```
sage: Posets().example()
An example of a poset: sets ordered by inclusion

sage: Posets().example("facade")
An example of a facade poset: the positive integers ordered by divisibility
```

super_categories ()
Return a list of the (immediate) super categories of self, as per Category.super_categories().

EXAMPLES:

```
sage: Posets().super_categories()
[Category of sets]
```

3.129 Principal ideal domains

class sage.categories.principal_ideal_domains.PrincipalIdealDomains (s=None)
Bases: sage.categories.category_singleton.Category_singleton
The category of (constructive) principal ideal domains

By constructive, we mean that a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.

EXAMPLES:
sage: PrincipalIdealDomains()
Category of principal ideal domains
sage: PrincipalIdealDomains().super_categories()
[Category of unique factorization domains]

See also Wikipedia article Principal_ideal_domain

class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

additional_structure()
 Return None.

Indeed, the category of principal ideal domains defines no additional structure: a ring morphism between two principal ideal domains is a principal ideal domain morphism.

EXAMPLES:

sage: PrincipalIdealDomains().additional_structure()

super_categories()
 EXAMPLES:

sage: PrincipalIdealDomains().super_categories()

3.130 Quotient fields

class sage.categories.quotient_fields.QuotientFields(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

The category of quotient fields over an integral domain

EXAMPLES:

sage: QuotientFields()
Category of quotient fields
sage: QuotientFields().super_categories()

[Category of fields]

class ElementMethods
 Bases: object

denominator()
 Constructor for abstract methods

 EXAMPLES:

sage: def f(x):
...: "doc of f"
...: return 1
sage: x = abstract_method(f); x
<abstract method f at ...>
sage: x.__doc__

(continues on next page)
derivative (*args)
The derivative of this rational function, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:
__derivative()

EXAMPLES:

```
sage: F.<x> = Frac(QQ['x'])
sage: (1/x).derivative()
-1/x^2

sage: (x+1/x).derivative(x, 2)
2/x^3

sage: F.<x,y> = Frac(QQ['x,y'])
sage: (1/(x+y)).derivative(x,y)
2/(x^3 + 3*x^2*y + 3*x*y^2 + y^3)
```

factor (*args, **kwds)
Return the factorization of self over the base ring.

INPUT:
• *args - Arbitrary arguments suitable over the base ring
• **kwds - Arbitrary keyword arguments suitable over the base ring

OUTPUT:
• Factorization of self over the base ring

EXAMPLES:

```
sage: K.<x> = QQ[]
sage: f = (x^3+x)/(x-3)
sage: f.factor()
(x - 3)^-1 * x * (x^2 + 1)

Here is an example to show that trac ticket #7868 has been resolved:

```
sage: R.<x,y> = GF(2)[]
sage: f = x*y/(x+y)
sage: f.factor()
(x + y)^-1 * y * x
```

gcd(other)
Greatest common divisor

Note: In a field, the greatest common divisor is not very informative, as it is only determined up to a unit. But in the fraction field of an integral domain that provides both gcd and lcm, it is possible to be
a bit more specific and define the gcd uniquely up to a unit of the base ring (rather than in the fraction field).

AUTHOR:
• Simon King (2011-02): See trac ticket #10771

EXAMPLES:

```python
sage: R.<x> = QQ['x']
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
sage: factor(p)
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(q)
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
sage: gcd(p,q)
(x + 1)/(x^7 + x^5 - x^2 - 1)
sage: factor(gcd(p,q))
(x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(gcd(p,1+x))
(x - 1)^-1 * (x + 1) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(gcd(1+x,q))
(x - 1)^-1 * (x + 1) * (x^2 + 1/3)
```

.. _lcm:

\texttt{lcm}(\texttt{other})

Least common multiple

In a field, the least common multiple is not very informative, as it is only determined up to a unit. But in the fraction field of an integral domain that provides both \texttt{gcd} and \texttt{lcm}, it is reasonable to be a bit more specific and to define the least common multiple so that it restricts to the usual least common multiple in the base ring and is unique up to a unit of the base ring (rather than up to a unit of the fraction field).

The least common multiple is easily described in terms of the prime decomposition. A rational number can be written as a product of primes with integer (positive or negative) powers in a unique way. The least common multiple of two rational numbers \(x\) and \(y\) can then be defined by specifying that the exponent of every prime \(p\) in \texttt{lcm}(\(x\), \(y\)) is the supremum of the exponents of \(p\) in \(x\), and the exponent of \(p\) in \(y\) (where the primes that does not appear in the decomposition of \(x\) or \(y\) are considered to have exponent zero).

AUTHOR:
• Simon King (2011-02): See trac ticket #10771

EXAMPLES:

```python
sage: lcm(2/3, 1/5)
2

Indeed 2/3 = 2^13^-15^0 and 1/5 = 2^03^05^-1, so \texttt{lcm}(2/3, 1/5) = 2^13^05^0 = 2.

sage: lcm(1/3, 1/5) 1 sage: lcm(1/3, 1/6) 1/3
```

Some more involved examples:

```python
sage: R.<x> = QQ[]
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
sage: factor(p)
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(q)
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
```

(continues on next page)
sage: factor(lcm(p,q))
(x - 1)^-1 * (x + 1)^3 * (x^2 + 1/3) * (x^2 + 1/2)
sage: factor(lcm(p,1+x))
(x + 1)^3 * (x^2 + 1/2)
sage: factor(lcm(1+x,q))
(x + 1) * (x^2 + 1/3)

**numerator()**
Constructor for abstract methods

**EXAMPLES:**

```python
def f(x):
 : "doc of f"
 : return 1
sage: x = abstract_method(f); x
<abstract method f at ...>
sage: x.__doc__
'doc of f'
sage: x.__name__
'f'
sage: x.__module__
'__main__'
```

**partial_fraction_decomposition**(decompose_powers=True)
Decomposes fraction field element into a whole part and a list of fraction field elements over prime power denominators.
The sum will be equal to the original fraction.

**INPUT:**
- **decompose_powers** – whether to decompose prime power denominators as opposed to having a single term for each irreducible factor of the denominator (default: True)

**OUTPUT:**
- Partial fraction decomposition of self over the base ring.

**AUTHORS:**

**EXAMPLES:**

```python
sage: S.<t> = QQ[]
sage: q = 1/(t+1) + 2/(t+2) + 3/(t-3); q
(6*t^2 + 4*t - 6)/(t^3 - 7*t - 6)
sage: whole, parts = q.partial_fraction_decomposition(); parts
[3/(t - 3), 1/(t + 1), 2/(t + 2)]
sage: sum(parts) == q
True
sage: q = 1/(t^3+1) + 2/(t^2+2) + 3/(t-3)^5
sage: whole, parts = q.partial_fraction_decomposition(); parts
[1/3/(t + 1), 3/(t^5 - 15*t^4 + 90*t^3 - 270*t^2 + 405*t - 243), (-1/3*t^4 + 2/3)/(t^2 - t + 1), 2/(t^2 + 2)]
sage: sum(parts) == q
True
sage: q = 2*t / (t + 3)^2
sage: q.partial_fraction_decomposition()
(0, [2/(t + 3), -6/(t^2 + 6*t + 9)])
sage: for p in q.partial_fraction_decomposition()[1]: print(p.factor())
(2) * (t + 3)^-1
```
We can decompose over a given algebraic extension:

```plaintext
sage: R.<x> = QQ[sqrt(2)]
```

```plaintext
sage: r = 1/(x^4+1)
```

```plaintext
sage: r.partial_fraction_decomposition()
```

```
(0, [(1/4*sqrt2*x + 1/2)/(x^2 - sqrt2*x + 1), (1/4*sqrt2*x + 1/2)/(x^2 + sqrt2*x + 1)])
```

We can also ask Sage to find the least extension where the denominator factors in linear terms:

```plaintext
sage: R.<x> = QQ[]
```

```plaintext
sage: r = 1/(x^4+2)
```

```plaintext
sage: N = r.denominator().splitting_field('a')
```

```plaintext
sage: N
```

```
Number Field in a with defining polynomial x^8 - 8*x^6 + 28*x^4 + 16*x^2 + 36
```

```plaintext
sage: R1.<x1>=N[]
```

```plaintext
sage: r1 = 1/(x1^4+2)
```

```plaintext
sage: r1.partial_fraction_decomposition()
```

```
(0, [(-1/224*a^6 + 13/448*a^4 - 5/56*a^2 - 25/224)/(x1 - 1/28*a^6 + 13/56*a^4 - 5/7*a^2 + 25/28), (-5/1344*a^7 + 43/1344*a^5 - 85/672*a^3 - 31/672*a)/(x1 - 5/168*a^7 + 43/168*a^5 - 85/84*a^3 + 31/84*a)])
```

We do the best we can over inexact fields:

```plaintext
sage: R.<x> = QQbar[]
```

```plaintext
sage: r = 1/(x^4+1)
```

```plaintext
sage: r.partial_fraction_decomposition()
```

```
(0, [(-0.1767766952966369? - 0.1767766952966369?*I)/(x - 0.7071067811865475? - 0.7071067811865475?*I), (-0.1767766952966369? + 0.1767766952966369?*I)/(x - 0.7071067811865475? + 0.7071067811865475?*I), (0.1767766952966369? - 0.1767766952966369?*I)/(x + 0.7071067811865475? - 0.7071067811865475?*I), (0.1767766952966369? + 0.1767766952966369?*I)/(x + 0.7071067811865475? + 0.7071067811865475?*I)])
```

3.130. Quotient fields
\begin{verbatim}
sage: R.<x> = RealField(20)[]
sage: q = 1/(x^2 + x + 2)^2 + 1/(x-1); q
(x^4 + 2.0000*x^3 + 5.0000*x^2 + 5.0000*x + 3.0000)/(x^5 + x^4 + 3.0000*x^3 - x^2 - 4.0000)
sage: whole, parts = q.partial_fraction_decomposition(); parts
[1.0000/(x - 1.0000), 1.0000/(x^4 + 2.0000*x^3 + 5.0000*x^2 + 4.0000*x + 3.0000)]
sage: sum(parts)
(x^4 + 2.0000*x^3 + 5.0000*x^2 + 5.0000*x + 3.0000)/(x^5 + x^4 + 3.0000*x^3 - x^2 - 4.0000)
\end{verbatim}

**xgcd** (*other*)

Return a triple \((g, s, t)\) of elements of that field such that \(g\) is the greatest common divisor of \(self\) and \(other\) and \(g = s*\text{self} + t*\text{other}\).

**Note:** In a field, the greatest common divisor is not very informative, as it is only determined up to a unit. But in the fraction field of an integral domain that provides both \text{xgcd} and \text{lcm}, it is possible to be a bit more specific and define the \text{gcd} uniquely up to a unit of the base ring (rather than in the fraction field).

**EXAMPLES:**

\begin{verbatim}
sage: QQ(3).xgcd(QQ(2))
(1, 1, -1)
sage: QQ(3).xgcd(QQ(1/2))
(1/2, 0, 1)
sage: QQ(1/3).xgcd(QQ(2))
(1/3, 1, 0)
sage: QQ(3/2).xgcd(QQ(5/2))
(1/2, 2, -1)
sage: R.<x> = QQ['x']
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
sage: factor(p)
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(q)
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
sage: g,s,t = xgcd(p,q)
sage: g
(x + 1)/(x^7 + x^5 - x^2 - 1)
sage: g == s*p + t*q
True
An example without a well defined gcd or xgcd on its base ring:

\end{verbatim}

\begin{verbatim}
sage: K = QuadraticField(5)
sage: O = K.maximal_order()
sage: R = PolynomialRing(O, 'x')
sage: F = R.fraction_field()
sage: x = F.gen(0)
sage: x.gcd(x+1)
1
sage: x.xgcd(x+1)
(1, 1/x, 0)
\end{verbatim}
3.131 Quantum Group Representations

AUTHORS:

• Travis Scrimshaw (2018): initial version

class sage.categories.quantum_group_representations.QuantumGroupRepresentations(base, name=None)

Bases: sage.categories.category_types.Category_module

The category of quantum group representations.

class ParentMethods

Bases: object

super_categories()

EXAMPLES:

```
sage: QuotientFields().super_categories()
[Category of fields]
```

3.131. Quantum Group Representations

621
q()

Return the quantum parameter $q$ of self.

EXAMPLES:

```python
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
sage: C = crystals.Tableaux(['C',4], shape=[1])
sage: R = ZZ['q'].fraction_field()
sage: V = MinusculeRepresentation(R, C)
sage: V.q()
```

class TensorProducts (category, *args)

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of quantum group representations constructed by tensor product of quantum group representations.

Warning: We use the reversed coproduct in order to match the tensor product rule on crystals.

class ParentMethods

Bases: object

cartan_type()

Return the Cartan type of self.

EXAMPLES:

```python
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
sage: C = crystals.Tableaux(['C',2], shape=[1])
sage: R = ZZ['q'].fraction_field()
sage: V = MinusculeRepresentation(R, C)
sage: T = tensor([V,V])
sage: T.cartan_type()
['C', 2]
```

extra_super_categories()

EXAMPLES:

```python
sage: from sage.categories.quantum_group_representations import QuantumGroupRepresentations
sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
sage: Cat.TensorProducts().extra_super_categories()
[Category of quantum group representations over Fraction Field of Univariate Polynomial Ring in q over Integer Ring]
```

class WithBasis (base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of quantum group representations with a distinguished basis.

class ElementMethods

Bases: object

$K(i, power=1)$

Return the action of $K_i$ on self to the power power.
INPUT:
• $i$ – an element of the index set
• $\text{power}$ – (default: 1) the power of $K_i$

EXAMPLES:

```
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
e
sage: K = crystals.KirillovReshetikhin(['D',4,2], 1,1)
sage: R = ZZ['q'].fraction_field()
sage: V = AdjointRepresentation(R, K)
sage: v = V.an_element(); v
2*B[[1]] + 2*B[[[1]]] + 3*B[[[2]]]
sage: v.K(0)
2*B[[1]] + 2/q^2*B[[[1]]] + 3*B[[[2]]]
sage: v.K(1)
2*B[[1]] + 2*q^2*B[[[1]]] + 3/q^2*B[[[2]]]
sage: v.K(1, 2)
2*B[[1]] + 2*q^4*B[[[1]]] + 3/q^4*B[[[2]]]
sage: v.K(1, -1)
2*B[[1]] + 2/q^2*B[[[1]]] + 3*q^2*B[[[2]]]
```

\(e(i)\)

Return the action of $e_i$ on \self.

INPUT:
• $i$ – an element of the index set

EXAMPLES:

```
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
e
sage: C = crystals.Tableaux(['G',2], shape=[1,1])
sage: R = ZZ['q'].fraction_field()
sage: V = AdjointRepresentation(R, C)
sage: v = V.an_element(); v
2*B[[1], [2]] + 2*B[[1], [3]] + 3*B[[2], [3]]
sage: v.e(1)
((3*q^4+3*q^2+3)/q^2)*B[[1], [3]]
sage: v.e(2)
2*B[[1], [2]]
```

\(f(i)\)

Return the action of $f_i$ on \self.

INPUT:
• $i$ – an element of the index set

EXAMPLES:

```
sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation
e
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: R = ZZ['q'].fraction_field()
sage: V = AdjointRepresentation(R, K)
sage: v = V.an_element(); v
2*B[[1]] + 2*B[[1], [2]] + 3*B[[1], [3]]
sage: v.f(0)
((2*q^2+2)/q)*B[[1], [2]]
sage: v.f(1)
3*B[[2], [3]]
```

(continues on next page)
sage: v.f(2)
2*B[[[1], [3]]]
sage: v.f(3)
3*B[[[1], [4]]]
sage: v.f(4)
3*B[[[1], [-4]]]

class ParentMethods
Bases: object
tensor(*factors)
Return the tensor product of self with the representations factors.

EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import ....: MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()
sage: CM = crystals.Tableaux(['D',4], shape=[1])
sage: CA = crystals.Tableaux(['D',4], shape=[1,1])
sage: V = MinusculeRepresentation(R, CM)
sage: V.tensor(V, V)
V((1, 0, 0, 0)) # V((1, 0, 0, 0)) # V((1, 0, 0, 0))
sage: A = MinusculeRepresentation(R, CA)
sage: V.tensor(A)
V((1, 0, 0, 0)) # V((1, 1, 0, 0))
sage: B = crystals.Tableaux(['A',2], shape=[1])
sage: W = MinusculeRepresentation(R, B)
sage: tensor([W,V])
Traceback (most recent call last):
...
ValueError: all factors must be of the same Cartan type
sage: tensor([V,A,W])
Traceback (most recent call last):
...
ValueError: all factors must be of the same Cartan type

class TensorProducts (category, *args)
Bases: sage.categories.tensor.TensorProductsCategory
The category of quantum group representations with a distinguished basis constructed by tensor product of quantum group representations with a distinguished basis.

class ParentMethods
Bases: object
K_on_basis(i, b, power=1)
Return the action of $K_i$ on the basis element indexed by $b$ to the power $power$.

INPUT:
• i – an element of the index set
• b – an element of basis keys
• power – (default: 1) the power of $K_i$

EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import ....: MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()

(continued from previous page)

```
sage: CM = crystals.Tableaux(['A',2], shape=[1])
sage: VM = MinusculeRepresentation(R, CM)
sage: CA = crystals.Tableaux(['A',2], shape=[2,1])
sage: VA = AdjointRepresentation(R, CA)
sage: v = tensor([sum(VM.basis()), VA.module_generator()]); v
B[[[1]]] # B[[[1], [2]]] + B[[[2]]] # B[[[1], [1], [2]]] + B[[[3]]] # B[[[1], [1], [2]]]
sage: v.K(1) # indirect doctest
q^2*B[[[1]]] # B[[[1], [2]]] + B[[[2]]] # B[[[1], [1], [2]]] + q*B[[[3]]] # B[[[1], [1], [2]]]
sage: v.K(2, -1) # indirect doctest
1/q*B[[[1]]] # B[[[1], [2]]] + 1/q^2*B[[[2]]] # B[[[1], [1], [2]]] + B[[[3]]] # B[[[1], [1], [2]]]
```

**e_on_basis**(i, b)

Return the action of $e_i$ on the basis element indexed by $b$.

**INPUT:**

- i – an element of the index set
- b – an element of basis keys

**EXAMPLES:**

```
sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()
sage: CM = crystals.Tableaux(['D',4], shape=[1])
sage: VM = MinusculeRepresentation(R, CM)
sage: CA = crystals.Tableaux(['D',4], shape=[1,1])
sage: VA = AdjointRepresentation(R, CA)
sage: v = tensor([VM.an_element(), VA.an_element()]); v
4*B[[[1]]] # B[[[1], [2]]] + 4*B[[[1]]] # B[[[1], [3]]] + 6*B[[[2]]] # B[[[1], [3]]] + 4*B[[[2]]] # B[[[1], [2]]] + 4*B[[[3]]] # B[[[1], [3]]] + 6*B[[[3]]] # B[[[2], [3]]] + 9*B[[[3]]] # B[[[2], [3]]]
sage: v.e(1) # indirect doctest
4*B[[[1]]] # B[[[1], [2]]] + (4*q+6)/q*B[[[1]]] # B[[[1], [3]]] + 6*B[[[2]]] # B[[[1], [3]]] + 6*q*B[[[2]]] # B[[[1], [2]]] + 9*B[[[3]]] # B[[[1], [3]]]
sage: v.e(2) # indirect doctest
4*B[[[1]]] # B[[[1], [2]]] + (6*q+4)/q*B[[[1]]] # B[[[1], [3]]] + 6*B[[[2]]] # B[[[1], [3]]] + 9*B[[[2]]] # B[[[1], [2]]] + 6*q*B[[[3]]] # B[[[1], [2]]]
sage: v.e(3) # indirect doctest
0
sage: v.e(4) # indirect doctest
0
```

**f_on_basis**(i, b)

Return the action of $f_i$ on the basis element indexed by $b$.

3.131. Quantum Group Representations 625
INPUT:
• \( i \) – an element of the index set
• \( b \) – an element of basis keys

EXAMPLES:

```python
sage: from sage.algebras.quantum_groups.representations import
 MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()
sage: KM = crystals.KirillovReshetikhin(['B',3,1], 3, 1)
sage: VM = MinusculeRepresentation(R, KM)
sage: KA = crystals.KirillovReshetikhin(['B',3,1], 2, 1)
sage: VA = AdjointRepresentation(R, KA)
sage: v = tensor([VM.an_element(), VA.an_element()]); v
4*B[[+++, []]] # B[[]] + 4*B[[+++, []]] # B[[1], [2]]
+ 6*B[[+++, []]] # B[[1], [3]] + 4*B[[+++, []]] # B[[1], [2]]
+ 4*B[[++-, []]] # B[[1], [2]]
+ 6*B[[++-, []]] # B[[1], [3]] + 6*B[[+-+, []]] # B[[1], [2]]
+ 6*B[[+-+, []]] # B[[1], [2]]
+ 9*B[[+-+, []]] # B[[1], [3]]
sage: v.f(0) # indirect doctest
((4*q^4+4)/q^2)*B[[+++, []]] # B[[1], [2]]
+ ((4*q^4+4)/q^2)*B[[++-, []]] # B[[1], [2]]
+ ((6*q^4+6)/q^2)*B[[+-+, []]] # B[[1], [2]]
sage: v.f(1) # indirect doctest
6*B[[+++, []]] # B[[2], [3]]
+ 6*B[[+++, []]] # B[[2], [3]]
+ 9*B[[+-+, []]] # B[[2], [3]]
+ 6*B[[+-+, []]] # B[[1], [2]]
+ 6*B[[+-+, []]] # B[[1], [2]]
+ 9*q^2*B[[+-+, []]] # B[[1], [2]]
sage: v.f(2) # indirect doctest
4*B[[+++, []]] # B[[1], [3]]
+ 4*B[[+++, []]] # B[[1], [3]]
+ 4*B[[+-+, []]] # B[[1], [2]]
+ 4*q^2*B[[+-+, []]] # B[[1], [2]]
+ ((6*q^2+6)/q^2)*B[[+-+, []]] # B[[1], [2]]
sage: v.f(3) # indirect doctest
6*B[[+++, []]] # B[[1], [0]]
+ 4*B[[+++, []]] # B[[1], [0]]
+ 4*B[[+++, []]] # B[[1], [2]]
+ 6*q^2*B[[+++, []]] # B[[1], [2]]
+ 6*B[[+-+, []]] # B[[1], [0]]
+ 6*B[[+-+, []]] # B[[1], [0]]
+ 9*B[[+-+, []]] # B[[1], [0]]
+ 6*B[[+-+, []]] # B[[1], [0]]
+ 6*B[[+-+, []]] # B[[1], [0]]
+ 9*q^2*B[[+-+, []]] # B[[1], [0]]
```

```
extra_super_categories()

EXAMPLES:

```python
sage: from sage.categories.quantum_group_representations import
     QuantumGroupRepresentations
sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
sage: Cat.WithBasis().TensorProducts().extra_super_categories()
[Category of quantum group representations with basis over Fraction Field of Univariate Polynomial Ring in q over Integer Ring]
```
```
example()
Return an example of a quantum group representation as per \texttt{Category.example}.

\begin{Verbatim}
\texttt{sage: from sage.categories.quantum_group_representations import \_}
\texttt{-QuantumGroupRepresentations}
\texttt{sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())}
\texttt{sage: Cat.example()}
\texttt{V((2, 1, 0))}
\end{Verbatim}

\texttt{super_categories()}

Return the super categories of \texttt{self}.

\begin{Verbatim}
\texttt{sage: from sage.categories.quantum_group_representations import \_}
\texttt{-QuantumGroupRepresentations}
\texttt{sage: QuantumGroupRepresentations(ZZ['q'].fraction_field()).super_categories()}
\texttt{[Category of vector spaces over}
\texttt{Fraction Field of Univariate Polynomial Ring in q over Integer Ring]}
\end{Verbatim}

### 3.132 Regular Crystals

\texttt{class sage.categories.regular_crystals.RegularCrystals(s=None)}

\texttt{Bases: sage.categories.category_singleton.Category_singleton}

The category of regular crystals.

A crystal is called \textit{regular} if every vertex \( b \) satisfies

\[
\varepsilon_i(b) = \max\{k \mid e_k^i(b) \neq 0\} \quad \text{and} \quad \varphi_i(b) = \max\{k \mid f_k^i(b) \neq 0\}.
\]

\textbf{Note:} Regular crystals are sometimes referred to as \textit{normal}. When only one of the conditions (on either \( \varphi \) or \( \varepsilon \)) holds, these crystals are sometimes called \textit{seminormal} or \textit{semiregular}.

\begin{Verbatim}
\texttt{sage: C = RegularCrystals()}
\texttt{sage: C}
\texttt{Category of regular crystals}
\texttt{sage: C.super_categories()}
\texttt{[Category of crystals]}
\texttt{sage: C.example()}
\texttt{Highest weight crystal of type A_3 of highest weight omega_1}
\end{Verbatim}

\texttt{class ElementMethods}

\texttt{Bases: object}

\texttt{demazure_operator_simple(i, ring=None)}

Return the Demazure operator \( D_i \) applied to \texttt{self}.

\textbf{INPUT:}

- \( i \) – an element of the index set of the underlying crystal
- \( \text{ring} \) – (default: \texttt{QQ}) a ring

3.132. Regular Crystals 627
OUTPUT:

An element of the ring-free module indexed by the underlying crystal.

Let $r = (\text{wt}(b), \alpha^\vee_i)$, then $D_i(b)$ is defined as follows:
- If $r \geq 0$, this returns the sum of the elements obtained from $\text{self}$ by application of $f^k_i$ for $0 \leq k \leq r$.
- If $r < 0$, this returns the opposite of the sum of the elements obtained by application of $e^k_i$ for $0 < k < -r$.

REFERENCES:
- [Li1995]
- [Ka1993]

EXAMPLES:

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T(rows=[[1,2],[2]])
sage: t.demazure_operator_simple(2)
B[[[1, 2], [2]]] + B[[[1, 3], [2]]] + B[[[1, 3], [3]]]
sage: t.demazure_operator_simple(2).parent()
Algebra of The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]
over Integer Ring
sage: t.demazure_operator_simple(1)
0
sage: K = crystals.KirillovReshetikhin(['A',2,1],2,1)
sage: t = K(rows=[[3],[2]])
sage: t.demazure_operator_simple(0)
B[[[1, 2]]] + B[[[2, 3]]]
```

dual_equivalence_class(index_set=None)

Return the dual equivalence class indexed by index_set of self.

The dual equivalence class of an element $b \in B$ is the set of all elements of $B$ reachable from $b$ via sequences of $i$-elementary dual equivalence relations (i.e., $i$-elementary dual equivalence transformations and their inverses) for $i$ in the index set of $B$.

For this to be well-defined, the element $b$ has to be of weight 0 with respect to $I$; that is, we need to have $\varepsilon_j(b) = \varphi_j(b)$ for all $j \in I$.

See [As2008]. See also dual_equivalence_graph() for a definition of $i$-elementary dual equivalence transformations.

INPUT:
- index_set – (optional) the index set $I$ (default: the whole index set of the crystal); this has to be a subset of the index set of the crystal (as a list or tuple)

OUTPUT:

The dual equivalence class of self indexed by the subset index_set. This class is returned as an undirected edge-colored multigraph. The color of an edge is the index $i$ of the dual equivalence relation it encodes.

See also:
- dual_equivalence_graph()
- sage.combinat.partition.Partition.dual_equivalence_graph()

EXAMPLES:
```python
sage: T = crystals.Tableaux(['A',3], shape=[2,2])
sage: G = T(2,1,4,3).dual_equivalence_class()
sage: sorted(G.edges())
[([[1, 3], [2, 4]], [[1, 2], [3, 4]], 2),
 ([[1, 3], [2, 4]], [[1, 2], [3, 4]], 3)]
sage: T = crystals.Tableaux(['A',4], shape=[3,2])
sage: G = T(2,1,4,3,5).dual_equivalence_class()
sage: sorted(G.edges())
[([[1, 3, 5], [2, 4]], [[1, 3, 4], [2, 5]], 4),
 ([[[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 2),
 ([[[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 3),
 ([[1, 3, 4], [2, 5]], [[1, 2, 4], [3, 5]], 2),
 ([[1, 2, 4], [3, 5]], [[1, 2, 3], [4, 5]], 3),
 ([[1, 2, 4], [3, 5]], [[1, 2, 3], [4, 5]], 4)]
```

**epsilon** *(i)*

Return \( \varepsilon_i \) of self.

**EXAMPLES:**

```python
sage: C = crystals.Letters(['A',5])
sage: C(1).epsilon(1)
0
sage: C(2).epsilon(1)
1
```

**phi** *(i)*

Return \( \varphi_i \) of self.

**EXAMPLES:**

```python
sage: C = crystals.Letters(['A',5])
sage: C(1).phi(1)
1
sage: C(2).phi(1)
0
```

**stembridgeDel_depth** *(i,j)*

Return the difference in the \( j \)-depth of self and \( f_i \) of self, where \( i \) and \( j \) are in the index set of the underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The \( i \)-depth of a crystal node \( x \) is \( \varepsilon_i(x) \).

**EXAMPLES:**

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[[1,1],[2]])
sage: t.stembridgeDel_depth(1,2)
0
sage: s=T(rows=[[1,3],[3]])
sage: s.stembridgeDel_depth(1,2)
-1
```

**stembridgeDel_rise** *(i,j)*

Return the difference in the \( j \)-rise of self and \( f_i \) of self, where \( i \) and \( j \) are in the index set of the underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The \( i \)-rise of a crystal node \( x \) is \( \varphi_i(x) \).

**EXAMPLES:**

```python
```
stembridgeDelta_depth($i, j$)

Return the difference in the $j$-depth of `self` and $e_i$ of `self`, where $i$ and $j$ are in the index set of the underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The $i$-depth of a crystal node $x$ is $-\varepsilon_i(x)$.

EXAMPLES:

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[1,1],[2])
sage: t.stembridgeDelta_depth(1,2)
-1
sage: s=T(rows=[[1,3],[3]])
sage: s.stembridgeDelta_depth(1,2)
0
```

stembridgeDelta_rise($i, j$)

Return the difference in the $j$-rise of `self` and $e_i$ of `self`, where $i$ and $j$ are in the index set of the underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The $i$-rise of a crystal node $x$ is $\varphi_i(x)$.

EXAMPLES:

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[1,1],[2])
sage: t.stembridgeDelta_rise(1,2)
-1
sage: s=T(rows=[[2,3],[3]])
sage: s.stembridgeDelta_rise(1,2)
0
```

stembridgeTriple($i, j$)

Let $A$ be the Cartan matrix of the crystal, $x$ a crystal element, and let $i$ and $j$ be in the index set of the crystal. Further, set $b=$stembridgeDelta_depth($x, i, j$), and $c=$stembridgeDelta_rise($x, i, j$). If $x.e(i)$ is non-empty, this function returns the triple $(A_{ij}, b, c)$; otherwise it returns `None`. By the Stembridge local characterization of crystal bases, one should have $A_{ij} = b + c$.

EXAMPLES:

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[1,1],[2])
sage: t.stembridgeTriple(1,2)
sage: s=T(rows=[[1,2],[2]])
sage: s.stembridgeTriple(1,2)
(-1, 0, -1)
```

(continues on next page)
sage: t.stembridgeTriple(1,2)
(-2, 0, -2)
sage: s=T(rows=[[1,-1],[1,0]])
sage: s.stembridgeTriple(1,2)
(-2, -2, 0)
sage: u=T(rows=[[0,2],[1]])
sage: u.stembridgeTriple(1,2)
(-2, -1, -1)

weight()
Return the weight of this crystal element.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).weight()
(1, 0, 0, 0, 0)

class MorphismMethods
Bases: object

is_isomorphism()
Check if self is a crystal isomorphism, which is true if and only if this is a strict embedding with the same number of connected components.

EXAMPLES:

sage: La = RootSystem(['A',2,1]).weight_space(extended=True).fundamental_weights()
sage: B = crystals.LSPaths(La[0])
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()
sage: C = crystals.GeneralizedYoungWalls(2, La[0])
sage: H = Hom(B, C)
sage: from sage.categories.highest_weight_crystals import HighestWeightCrystalMorphism
class Psi(HighestWeightCrystalMorphism):
    ....: def is_strict(self):
    ....:     return True
sage: psi = Psi(H, C.module_generators)
sage: psi
['A', 2, 1] Crystal morphism:
  From: The crystal of LS paths of type ['A', 2, 1] and weight Lambda[0]
  To:   Highest weight crystal of generalized Young walls of Cartan type ['A', 2, 1]
        and highest weight Lambda[0]
  Defn: (Lambda[0],) |--> []
sage: psi.is_isomorphism()
True

class ParentMethods
Bases: object

demazure_operator(element, reduced_word)
Returns the application of Demazure operators $D_i$ for $i$ from reduced_word on element.

INPUT:
- element – an element of a free module indexed by the underlying crystal
• reduced_word – a reduced word of the Weyl group of the same type as the underlying crystal

OUTPUT:
• an element of the free module indexed by the underlying crystal

EXAMPLES:

```
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = CombinatorialFreeModule(QQ,T)
sage: t = T.highest_weight_vector()
sage: b = 2*C(t)
sage: T.demazure_operator(b,[1,2,1])
2*B([[1, 1], [2]]) + 2*B([[1, 2], [2]]) + 2*B([[1, 3], [2]]) + 2*B([[1, \rightarrow 1], [3]])
+ 2*B([[1, 2], [3]]) + 2*B([[1, 3], [3]]) + 2*B([[2, 2], [3]]) + 2*B([[2, \rightarrow 3], [3]])
```

The Demazure operator is idempotent:

```
sage: T = crystals.Tableaux("A1",shape=[4])
sage: C = CombinatorialFreeModule(QQ,T)
sage: b = C(T.module_generators[0]); b
B([[1, 1, 1, 1]])
sage: e = T.demazure_operator(b,[1]); e
B([[1, 1, 1, 1]]) + B([[1, 1, 1, 2]]) + B([[1, 1, 2, 2]]) + B([[1, 2, 2, \rightarrow 2]]) + B([[2, 2, 2, 2]])
sage: e == T.demazure_operator(e,[1])
True

sage: all(T.demazure_operator(T.demazure_operator(C(t),[1]),[1]) == T.
-demazure_operator(C(t),[1]) for t in T)
True
```

demazure_subcrystal (element, reduced_word, only_support=True)
Return the subcrystal corresponding to the application of Demazure operators $D_i$ for $i$ from reduced_word on element.

INPUT:
• element – an element of a free module indexed by the underlying crystal
• reduced_word – a reduced word of the Weyl group of the same type as the underlying crystal
• only_support – (default: True) only include arrows corresponding to the support of reduced_word

OUTPUT:
• the Demazure subcrystal

EXAMPLES:

```
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T.highest_weight_vector()
sage: S = T.demazure_subcrystal(t, [1,2])
sage: list(S)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 2], [3]], [[2, 2], [3]]]
sage: S = T.demazure_subcrystal(t, [2,1])
sage: list(S)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 3], [2]], [[1, 3], [3]]]
```

We construct an example where we don’t only want the arrows indicated by the support of the reduced word:

```
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T.highest_weight_vector()
sage: S = T.demazure_subcrystal(t, [1,2])
sage: list(S)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 2], [3]], [[2, 2], [3]]]
sage: S = T.demazure_subcrystal(t, [2,1])
sage: list(S)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 3], [2]], [[1, 3], [3]]]
```

```
sage: T = crystals.Tableaux("A1",shape=[4])
sage: C = CombinatorialFreeModule(QQ,T)
sage: b = C(T.module_generators[0]); b
B([[1, 1, 1, 1]])
sage: e = T.demazure_operator(b,[1]); e
B([[1, 1, 1, 1]]) + B([[1, 1, 1, 2]]) + B([[1, 1, 2, 2]]) + B([[1, 2, 2, \rightarrow 2]]) + B([[2, 2, 2, 2]])
sage: e == T.demazure_operator(e,[1])
True

sage: all(T.demazure_operator(T.demazure_operator(C(t),[1]),[1]) == T.
-demazure_operator(C(t),[1]) for t in T)
True
```

demazure_subcrystal (element, reduced_word, only_support=True)
Return the subcrystal corresponding to the application of Demazure operators $D_i$ for $i$ from reduced_word on element.

INPUT:
• element – an element of a free module indexed by the underlying crystal
• reduced_word – a reduced word of the Weyl group of the same type as the underlying crystal
• only_support – (default: True) only include arrows corresponding to the support of reduced_word

OUTPUT:
• the Demazure subcrystal

EXAMPLES:

```
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T.highest_weight_vector()
sage: S = T.demazure_subcrystal(t, [1,2])
sage: list(S)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 2], [3]], [[2, 2], [3]]]
sage: S = T.demazure_subcrystal(t, [2,1])
sage: list(S)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 3], [2]], [[1, 3], [3]]]
```

We construct an example where we don’t only want the arrows indicated by the support of the reduced word:
```python
sage: K = crystals.KirillovReshetikhin(['A',1,1], 1, 2)
sage: mg = K.module_generator()
sage: S = K.demazure_subcrystal(mg, [1])
sage: S.digraph().edges()
[(\[1, 1\], \[1, 2\], 1), (\[1, 2\], \[2, 2\], 1)]
sage: S = K.demazure_subcrystal(mg, [1], only_support=False)
sage: S.digraph().edges()
[(\[1, 1\], \[1, 2\], 1),
 (\[1, 2\], \[1, 1\], 0),
 (\[1, 2\], \[2, 2\], 1),
 (\[2, 2\], \[1, 2\], 0)]
```

dual_equivalence_graph \( (X=\text{None}, \text{index set}=\text{None}, \text{directed}=\text{True}) \)

Return the dual equivalence graph indexed by \text{index set} on the subset \text{X} of \text{self}.

Let \( b \in B \) be an element of weight 0, so \( \varepsilon_j(b) = \varphi_j(b) \) for all \( j \in I \), where \( I \) is the indexing set. We say \( b' \) is an \( i \)-elementary dual equivalence transformation of \( b \) (where \( i \in I \)) if

- \( \varepsilon_i(b) = 1 \) and \( \varepsilon_{i-1}(b) = 0 \), and
- \( b' = f_{i-1}f_i\varepsilon_i\varepsilon_{i-1}b \).

We can do the inverse procedure by interchanging \( i \) and \( i - 1 \) above.

**Note:** If the index set is not an ordered interval, we let \( i - 1 \) mean the index appearing before \( i \) in \( I \).

This definition comes from [As2008] Section 4 (where our \( \varphi_j(b) \) and \( \varepsilon_j(b) \) are denoted by \( \epsilon(b,j) \) and \( -\delta(b,j) \), respectively).

The dual equivalence graph of \( B \) is defined to be the colored graph whose vertices are the elements of \( B \) of weight 0, and whose edges of color \( i \) (for \( i \in I \)) connect pairs \( \{b, b'\} \) such that \( b' \) is an \( i \)-elementary dual equivalence transformation of \( b \).

**Note:** This dual equivalence graph is a generalization of \( G(X) \) in [As2008] Section 4 except we do not require \( \varepsilon_i(b) = 0 \), 1 for all \( i \).

This definition can be generalized by choosing a subset \( X \) of the set of all vertices of \( B \) of weight 0, and restricting the dual equivalence graph to the vertex set \( X \).

**INPUT:**
- \( X \) — (optional) the vertex set \( X \) (default: the whole set of vertices of \text{self} of weight 0)
- \( \text{index set} \) — (optional) the index set \( I \) (default: the whole index set of \text{self}); this has to be a subset of the index set of \text{self} (as a list or tuple)
- \( \text{directed} \) — (default: True) whether to have the dual equivalence graph be directed, where the head of an edge \( b - b' \) is \( b \) and the tail is \( b' = f_{i-1}f_i\varepsilon_i\varepsilon_{i-1}b \)

**See also:**
- \text{sage.combinat.partition.Partition.dual_equivalence_graph()}

**EXAMPLES:**

```python
sage: T = crystals.Tableaux(['A',3], shape=[2,2])
sage: G = T.dual_equivalence_graph()
sage: sorted(G.edges())
[(\[1, 1\], \[2, 2\], 2),
 (\[1, 2\], \[1, 3\], 2),
 (\[1, 2\], \[2, 3\], 2),
 (\[1, 3\], \[1, 2\], 2),
 (\[1, 3\], \[2, 1\], 2),
 (\[2, 1\], \[1, 3\], 2),
 (\[2, 1\], \[2, 3\], 2),
 (\[2, 3\], \[1, 2\], 2),
 (\[2, 3\], \[2, 1\], 2)]
```

(continues on next page)
sage: sorted(G.edges())
[(([1, 3, 5], [2, 4]), ([1, 3, 4], [2, 5]), 4),
   ([1, 2, 5], [3, 4]), ([1, 3, 5], [2, 4]), 3),
   ([1, 2, 4], [3, 5]), ([1, 2, 3], [4, 5]), 3),
   ([1, 2, 3], [4, 5]), ([1, 2, 4], [3, 5]), 4)]

sage: T = crystals.Tableaux(['A',4], shape=[3,1])

sage: G = T.dual_equivalence_graph(index_set=[1,2,3])

sage: G.vertices()
[[[1, 3, 4], [2]], [[1, 2, 4], [3]], [[1, 2, 3], [4]]]

sage: G.edges()

[[[1, 3, 4], [2]], [[1, 2, 4], [3]], [[1, 2, 3], [4]]]

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of regular crystals constructed by tensor product of regular crystals.

extra_super_categories()

EXAMPLES:

sage: RegularCrystals().TensorProducts().extra_super_categories()
[Category of regular crystals]

additional_structure()

Return None.

Indeed, the category of regular crystals defines no new structure: it only relates \( \varepsilon_a \) and \( \varphi_a \) to \( e_a \) and \( f_a \) respectively.

See also:
Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

sage: RegularCrystals().additional_structure()

example(n=3)

Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

sage: B = RegularCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1

super_categories()

EXAMPLES:

sage: RegularCrystals().super_categories()
[Category of crystals]
3.133 Regular Supercrystals

class sage.categories.regular_supercrystals.RegularSuperCrystals(s=\texttt{None})
Bases: sage.categories.category_singleton.Category_singleton

The category of crystals for super Lie algebras.

EXAMPLES:

```python
sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: C = RegularSuperCrystals()
```

Parents in this category should implement the following methods:

- either an attribute \_cartan_type or a method cartan_type
- module\_generators: a list (or container) of distinct elements that generate the crystal using $f_i$ and $e_i$

Furthermore, their elements $x$ should implement the following methods:

- $x.e(i)$ (returning $e_i(x)$)
- $x.f(i)$ (returning $f_i(x)$)
- $x.weight()$ (returning $\text{wt}(x)$)

EXAMPLES:

```python
sage: from sage.misc.abstract_method import abstract_methods_of_class
sage: abstract_methods_of_class(RegularSuperCrystals().element_class)
{'optional': [], 'required': ['e', 'f', 'weight']}
```

class ElementMethods
Bases: object

\texttt{epsilon}(i)

Return $\varepsilon_i$ of \texttt{self}.

EXAMPLES:

```python
sage: C = crystals.Tableaux(['A',[1,2]], shape = [2,1])
sage: c = C.an_element(); c
[-2, -2], [-1]
sage: c.epsilon(2)
0
sage: c.epsilon(0)
0
sage: c.epsilon(-1)
0
```

\texttt{phi}(i)

Return $\varphi_i$ of \texttt{self}.

EXAMPLES:
sage: C = crystals.Tableaux(['A', [1,2]], shape = [2,1])
sage: c = C.an_element(); c
[-2, -2], [-1]
sage: c.phi(1)
0
sage: c.phi(2)
0
sage: c.phi(0)
1

class TensorProducts(category, *args)
    Bases: sage.categories.tensor.TensorProductsCategory

    The category of regular crystals constructed by tensor product of regular crystals.

    extra_super_categories()
    EXAMPLES:

    sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
    sage: RegularSuperCrystals().TensorProducts().extra_super_categories()
    [Category of regular super crystals]

super_categories()
    EXAMPLES:

    sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
    sage: C = RegularSuperCrystals()
sage: C.super_categories()
    [Category of finite super crystals]

3.134 Right modules

class sage.categories.right_modules.RightModules(base, name=None)
    Bases: sage.categories.category_types.Category_over_base_ring

    The category of right modules right modules over an rng (ring not necessarily with unit), i.e. an abelian group with right multiplication by elements of the rng

    EXAMPLES:

    sage: RightModules(QQ)
    Category of right modules over Rational Field
    sage: RightModules(QQ).super_categories()
    [Category of commutative additive groups]

class ElementMethods
    Bases: object

class ParentMethods
    Bases: object

    super_categories()
    EXAMPLES:

    sage: RightModules(QQ).super_categories()
    [Category of commutative additive groups]
3.135 Ring ideals

**class** sage.categories.ring_ideals.RingIdeals($R$)  
**Bases:** sage.categories.category_types.Category_ideal

The category of two-sided ideals in a fixed ring.

**EXAMPLES:**

```sage
c sage: Ideals(Integers(200))
Category of ring ideals in Ring of integers modulo 200
c sage: C = Ideals(IntegerRing()); C
Category of ring ideals in Integer Ring
c sage: I = C([8,12,18])
c sage: I
Principal ideal (2) of Integer Ring
```

See also: CommutativeRingIdeals.

**Todo:**

- If useful, implement RingLeftIdeals and RingRightIdeals of which RingIdeals would be a subcategory.
- Make RingIdeals($R$), return CommutativeRingIdeals($R$) when $R$ is commutative.

**super_categories()**

**EXAMPLES:**

```sage
c sage: RingIdeals(ZZ).super_categories()
[Category of modules over Integer Ring]
c sage: RingIdeals(QQ).super_categories()
[Category of vector spaces over Rational Field]
```

3.136 Rings

**class** sage.categories.rings.Rings($base\_category$)  
**Bases:** sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of rings

Associative rings with unit, not necessarily commutative

**EXAMPLES:**

```sage
c sage: Rings()
Category of rings
c sage: sorted(Rings().super_categories(), key=str)
[Category of rngs, Category of semirings]
c sage: sorted(Rings().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Distributive', 'Unital']
c sage: Rings() is (CommutativeAdditiveGroups() & Monoids()).Distributive()
True
```
sage: Rings() is Rngs().Unital()
True
sage: Rings() is Semirings().AdditiveInverse()
True

Todo:  (see: http://trac.sagemath.org/sage_trac/wiki/CategoriesRoadMap)
  • Make Rings() into a subcategory or alias of Algebras(ZZ);
  • A parent P in the category Rings() should automatically be in the category Algebras(P).

Commutative
  alias of sage.categories.commutative_rings.CommutativeRings

Division
  alias of sage.categories.division_rings.DivisionRings

class ElementMethods
  Bases: object

  inverse_of_unit()
  Return the inverse of this element if it is a unit.
  OUTPUT:
  An element in the same ring as this element.
  EXAMPLES:

    sage: R.<x> = ZZ[]
    sage: S = R.quo(x^2 + x + 1)
    sage: S(1).inverse_of_unit()
    1

This method fails when the element is not a unit:

    sage: 2.inverse_of_unit()
    Traceback (most recent call last):
    ... ArithmeticError: inverse does not exist

The inverse returned is in the same ring as this element:

    sage: a = -1
    sage: a.parent()
    Integer Ring
    sage: a.inverse_of_unit().parent()
    Integer Ring

Note that this is often not the case when computing inverses in other ways:

    sage: (~a).parent()
    Rational Field
    sage: (1/a).parent()
    Rational Field
**is_unit()**

Return whether this element is a unit in the ring.

**Note:** This is a generic implementation for (non-commutative) rings which only works for the one element, its additive inverse, and the zero element. Most rings should provide a more specialized implementation.

**EXAMPLES:**

```
sage: MS = MatrixSpace(ZZ, 2)
sage: MS.one().is_unit()
True
sage: MS.zero().is_unit()
False
sage: MS([[1,2,3,4]]).is_unit()
False
```

**class MorphismMethods**

**extend_to_fraction_field()**

Return the extension of this morphism to fraction fields of the domain and the codomain.

**EXAMPLES:**

```
sage: S.<x> = QQ[]
sage: f = S.hom([x+1]); f
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
 Defn: x |--> x + 1
sage: g = f.extend_to_fraction_field(); g
Ring endomorphism of Fraction Field of Univariate Polynomial Ring in x
 over Rational Field
 Defn: x |--> x + 1
sage: g(x)
x + 1
sage: g(1/x)
1/(x + 1)
```

If this morphism is not injective, it does not extend to the fraction field and an error is raised:

```
sage: f = GF(5).coerce_map_from(ZZ)
sage: f.extend_to_fraction_field()
Traceback (most recent call last):
 ... ValueError: the morphism is not injective
```

**is_injective()**

Return whether or not this morphism is injective.

**EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: R.hom([x, y^2], R).is_injective()
True
sage: R.hom([x, x^2], R).is_injective()
False
```

(continues on next page)
sage: S.<u,v> = R.quotient(x^3*y)
sage: R.hom([v, u], S).is_injective()
False
sage: S.hom([-u, v], S).is_injective()
True
sage: S.cover().is_injective()
False

If the domain is a field, the homomorphism is injective:

sage: K.<x> = FunctionField(QQ)
sage: L.<y> = FunctionField(QQ)
sage: f = K.hom([y]); f
Function Field morphism:
  From: Rational function field in x over Rational Field
  To:   Rational function field in y over Rational Field
  Defn: x |--> y
sage: f.is_injective()
True

Unless the codomain is the zero ring:

sage: codomain = Integers(1)
sage: f = QQ.hom([Zmod(1)(0)], check=False)
sage: f.is_injective()
False

Homomorphism from rings of characteristic zero to rings of positive characteristic can not be injective:

sage: R.<x> = ZZ[]
sage: f = R.hom([GF(3)(1)]); f
Ring morphism:
  From: Univariate Polynomial Ring in x over Integer Ring
  To:   Finite Field of size 3
  Defn: x |--> 1
sage: f.is_injective()
False

A morphism whose domain is an order in a number field is injective if the codomain has characteristic zero:

sage: K.<x> = FunctionField(QQ)
sage: f = ZZ.hom(K); f
Composite map:
  From: Integer Ring
  To:   Rational function field in x over Rational Field
  Defn: Conversion via FractionFieldElement_1poly_field map:
          Fraction Field of Univariate Polynomial Ring in x over Rational Field
          then
          Isomorphism:
          From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
          To:   Rational function field in x over Rational Field
A coercion to the fraction field is injective:

```
sage: R = ZpFM(3)
sage: R.fraction_field().coerce_map_from(R).is_injective()
True
```

`NoZeroDivisors`  
alias of `sage.categories.domains.Domains`

`class ParentMethods`  
`Bases: object`

`bracket(x, y)`  
Returns the Lie bracket \([x, y] = xy - yx\) of \(x\) and \(y\).

**INPUT:**  
• `x, y` – elements of `self`

**EXAMPLES:**

```
sage: F = AlgebrasWithBasis(QQ).example()
sage: F
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
sage: a,b,c = F.algebra_generators()
sage: F.bracket(a,b)
B[word: ab] - B[word: ba]
```

This measures the default of commutation between \(x\) and \(y\). \(F\) endowed with the bracket operation is a Lie algebra; in particular, it satisfies Jacobi’s identity:

```
sage: F.bracket(F.bracket(a,b), c) + F.bracket(F.bracket(b,c),a) + F.bracket(F.bracket(c,a),b)
0
```

`characteristic()`  
Return the characteristic of this ring.

**EXAMPLES:**

```
sage: QQ.characteristic()
0
sage: GF(19).characteristic()
19
sage: Integers(8).characteristic()
8
sage: Zp(5).characteristic()
0
```

`free_module(base=None, basis=None, map=True)`  
Return a free module \(V\) over the specified subring together with maps to and from \(V\).

The default implementation only supports the case that the base ring is the ring itself.

**INPUT:**  
• `base` – a subring \(R\) so that this ring is isomorphic to a finite-rank free \(R\)-module \(V\)
• basis – (optional) a basis for this ring over the base
• map – boolean (default True), whether to return \( R \)-linear maps to and from \( V \)

OUTPUT:
• A finite-rank free \( R \)-module \( V \)
• An \( R \)-module isomorphism from \( V \) to this ring (only included if map is True)
• An \( R \)-module isomorphism from this ring to \( V \) (only included if map is True)

EXAMPLES:

```python
sage: R.<x> = QQ[[[]]

sage: V, from_V, to_V = R.free_module(R)
sage: v = to_V(1+x); v
(1 + x)
sage: from_V(v)
l + x

sage: W, from_W, to_W = R.free_module(R, basis=(1-x))
sage: W is V
True
sage: w = to_W(1+x); w
(1 - x^2)
sage: from_W(w)
1 + x + O(x^20)
```

### ideal(*args, **kwds)
Create an ideal of this ring.

NOTE:
The code is copied from the base class `Ring`. This is because there are rings that do not inherit from that class, such as matrix algebras. See trac ticket #7797.

INPUT:
• An element or a list/tuple/sequence of elements.
• coerce (optional bool, default True): First coerce the elements into this ring.
• side, optional string, one of "twosided" (default), "left", "right": determines whether the resulting ideal is twosided, a left ideal or a right ideal.

EXAMPLES:

```python
sage: MS = MatrixSpace(QQ,2,2)
sage: isinstance(MS,Ring)
False
sage: MS in Rings()
True
sage: MS.ideal(2)
Twosided Ideal
(
[2 0]
[0 2]
)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MS.ideal([MS.0,MS.1],side='right')
Right Ideal
(
[1 0]
[0 0],
[0 1]
[0 0]
)
```

(continues on next page)
**ideal_monoid()**

The monoid of the ideals of this ring.

**NOTE:**

The code is copied from the base class of rings. This is since there are rings that do not inherit from that class, such as matrix algebras. See trac ticket #7797.

**EXAMPLES:**

```python
sage: MS = MatrixSpace(QQ, 2, 2)
sage: MS in Rings() # The code is copied from the base class of rings.
True
sage: MS.ideal_monoid()
Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

Note that the monoid is cached:

```python
sage: MS.ideal_monoid() is MS.ideal_monoid()
True
```

**is_ring()**

Return True, since this is an object of the category of rings.

**EXAMPLES:**

```python
sage: Parent(QQ, category=Rings()).is_ring()
True
```

**is_zero()**

Return True if this is the zero ring.

**EXAMPLES:**

```python
sage: Integers(1).is_zero()
True
sage: Integers(2).is_zero()
False
sage: QQ.is_zero()
False
sage: R.<x> = ZZ[]
sage: R.quo(1).is_zero()
True
sage: R.<x> = GF(101)[]
sage: R.quo(77).is_zero()
True
sage: R.quo(x^2+1).is_zero()
False
```

**quo(I, names=None, **kwds)**

Quotient of a ring by a two-sided ideal.

**NOTE:**
This is a synonym for `quotient()`.

**EXAMPLES:**

```python
sage: MS = MatrixSpace(QQ, 2)
sage: I = MS * MS.gens() * MS
```

MS is not an instance of `Ring`.

However it is an instance of the parent class of the category of rings. The quotient method is inherited from there:

```python
sage: isinstance(MS, sage.rings.ring.Ring)
False
sage: isinstance(MS, Rings().parent_class)
True
sage: MS.quo(I, names = ['a', 'b', 'c', 'd'])
Quotient of Full MatrixSpace of 2 by 2 dense matrices over Rational Field by the ideal

\[
\begin{bmatrix}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{bmatrix}
\]

quotient *(I, names=None, **kwds)*

Quotient of a ring by a two-sided ideal.

INPUT:

- `I`: A two-sided ideal of this ring.
- `names`: a list of strings to be used as names for the variables in the quotient ring.
- further named arguments that may be passed to the quotient ring constructor.

EXAMPLES:

Usually, a ring inherits a method `sage.rings.ring.Ring.quotient()`. So, we need a bit of effort to make the following example work with the category framework:

```python
sage: F.<x, y, z> = FreeAlgebra(QQ)
sage: from sage.rings.noncommutative_ideals import Ideal_nc
sage: from itertools import product
sage: class PowerIdeal(Ideal_nc):
....:     def __init__(self, R, n):
....:         self._power = n
....:         Ideal_nc.__init__(self, R, [R.prod(m) for m in product(R.gens(), repeat=n)])
....:     def reduce(self, x):
....:         R = self.ring()
....:         return add([c*R(m) for m, c in x if len(m) < self._power], R(0))
```

```python
sage: I = PowerIdeal(F, 3)
sage: Q = Rings().parent_class.quotient(F, I); Q
Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by

The ideal \(\langle x^3, x^2y, x^2z, xyx, x^2, yx^2, z+1, y+y^2, y^2+x, y^2, yz+x, yz+y, y+z, z^2+x, z^2+y, z^3\rangle\) (continues on next page)

9.4 Chapter 3. Individual Categories
sage: Q.0
xbar
sage: Q.1
ybar
sage: Q.2
zbar
sage: Q.0*Q.1
xbar*ybar
sage: Q.0*Q.1*Q.0
0

**quotient_ring** (*I*, **names=None, **kwds)

Quotient of a ring by a two-sided ideal.

**NOTE:**

This is a synonyme for **quotient()**.

**EXAMPLES:**

```sage
sage: MS = MatrixSpace(QQ,2)
sage: I = MS*MS.gens()*MS
```

MS is not an instance of **Ring**, but it is an instance of the parent class of the category of rings. The quotient method is inherited from there:

```sage
sage: isinstance(MS,sage.rings.ring.Ring)
False
sage: isinstance(MS,Rings().parent_class)
True
sage: MS.quotient_ring(I,names = ['a','b','c','d'])
```

**class** **SubcategoryMethods**

**Bases:** **object**

**Division()**

Return the full subcategory of the division objects of **self**.

A ring satisfies the **division axiom** if all non-zero elements have multiplicative inverses.

**Note:** This could be generalized to **MagmasAndAdditiveMagmas.Distributive.AdditiveUnital**.
NoZeroDivisors()
Return the full subcategory of the objects of self having no nonzero zero divisors.

A zero divisor in a ring \( R \) is an element \( x \in R \) such that there exists a nonzero element \( y \in R \) such that \( x \cdot y = 0 \) or \( y \cdot x = 0 \) (see Wikipedia article Zero_divisor).

EXAMPLES:

```python
sage: Rings().NoZeroDivisors()
Category of domains
```

Note: This could be generalized to MagmasAndAdditiveMagmas.Distributive.AdditiveUnital.

### 3.137 Rngs

class sage.categories.rngs.Rngs(base_category)

    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

    The category of rngs.

    An rng \((S, +, *)\) is similar to a ring but not necessarily unital. In other words, it is a combination of a commutative additive group \((S, +)\) and a multiplicative semigroup \((S, *)\), where \(*\) distributes over +.

    EXAMPLES:

```python
sage: C = Rngs(); C
Category of rngs
sage: sorted(C.super_categories(), key=str)
[Category of associative additive commutative additive associative additive unital distributive magmas and additive magmas, Category of commutative additive groups]
```

```python
sage: C.is(CommutativeAdditiveGroups() & Semigroups()).Distributive()
True
sage: C.Unital()
Category of rings
```

Unital
alias of sage.categories.rings.Rings
3.138 R-trivial semigroups

class sage.categories.r_trivial_semigroups.RTrivialSemigroups(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    Commutative_extra_super_categories()
    Implement the fact that a commutative $R$-trivial semigroup is $J$-trivial.
    EXAMPLES:

    sage: Semigroups().RTrivial().Commutative_extra_super_categories()
    [Category of j trivial semigroups]

    extra_super_categories()
    Implement the fact that a $R$-trivial semigroup is $H$-trivial.
    EXAMPLES:

    sage: Semigroups().RTrivial().extra_super_categories()
    [Category of h trivial semigroups]

3.139 Schemes

class sage.categories.schemes.Schemes(s=None):
    Bases: sage.categories.category.Category

    The category of all schemes.
    EXAMPLES:

    sage: Schemes()
    Category of schemes

    Schemes can also be used to construct the category of schemes over a given base:

    sage: Schemes(Spec(ZZ))
    Category of schemes over Integer Ring
    sage: Schemes(ZZ)
    Category of schemes over Integer Ring

    Todo: Make Schemes() a singleton category (and remove Schemes from the workaround in
category_types.Category_over_base._test_category_over_bases()).
    This is currently incompatible with the dispatching below.

    super_categories()
    EXAMPLES:

    sage: Schemes().super_categories()
    [Category of sets]

class sage.categories.schemes.Schemes_over_base(base, name=None):
    Bases: sage.categories.category_types.Category_over_base

The category of schemes over a given base scheme.

**EXAMPLES:**

```python
sage: Schemes(Spec(ZZ))
Category of schemes over Integer Ring
```

**base_scheme()**

**EXAMPLES:**

```python
sage: Schemes(Spec(ZZ)).base_scheme()
Spectrum of Integer Ring
```

**super_categories()**

**EXAMPLES:**

```python
sage: Schemes(Spec(ZZ)).super_categories()
[Category of schemes]
```

---

### 3.140 Semigroups

**class** `sage.categories.semigroups.Semigroups(base_category)`

**bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of (multiplicative) semigroups.

A *semigroup* is an associative *magma*, that is a set endowed with a multiplicative binary operation $*$ which is associative (see Wikipedia article *Semigroup*).

The operation $*$ is not required to have a neutral element. A semigroup for which such an element exists is a *monoid*.

**EXAMPLES:**

```python
sage: C = Semigroups(); C
Category of semigroups
sage: C.super_categories()
[Category of magmas]
sage: C.all_super_categories()
[Category of semigroups, Category of magmas, Category of sets, Category of sets with partial maps, Category of objects]
```

```python
sage: C.axioms()
frozenset({'Associative'})
```

```python
sage: C.example()
An example of a semigroup: the left zero semigroup
```

**class** `Algebras(category, *args)`

**bases:** `sage.categories.algebra_functor.AlgebrasCategory`

**class** `ParentMethods`

**bases:** `object`

**algebra_generators()**

The generators of this algebra, as per `MagmaticAlgebras.ParentMethods.algebra_generators()`.

They correspond to the generators of the semigroup.

**EXAMPLES:**
sage: M = FiniteSemigroups().example(); M
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')

sage: M.semigroup_generators()
Family ('a', 'b', 'c', 'd')

sage: M.algebra(ZZ).algebra_generators()
Finite family {0: B['a'], 1: B['b'], 2: B['c'], 3: B['d']}

**gen**(i=0)

Return the i-th generator of self.

**EXAMPLES:**

```sage
sage: A = GL(3, GF(7)).algebra(ZZ)
sage: A.gen(0)
[3 0 0]
[0 1 0]
[0 0 1]
```

**gens()**

Return the generators of self.

**EXAMPLES:**

```sage
sage: a, b = SL2Z.algebra(ZZ).gens(); a, b
([0 -1]
 [1 0],
 [1 1]
 [0 1])
sage: 2*a + b
2*[
[0 -1]
[1 0]
+ [1 1]
[0 1]
```

**ngens()**

Return the number of generators of self.

**EXAMPLES:**

```sage
sage: SL2Z.algebra(ZZ).ngens()
2
sage: DihedralGroup(4).algebra(RR).ngens()
2
```

**product_on_basis**(g1, g2)

Product, on basis elements, as per *MagmaticAlgebras.WithBasis.ParentMethods.product_on_basis()*.

The product of two basis elements is induced by the product of the corresponding elements of the group.

**EXAMPLES:**

```sage
sage: S = FiniteSemigroups().example(); S
An example of a finite semigroup: the left regular band generated by (→'a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
```
```python
sage: a, b, c, d = A.algebra_generators()
sage: a * b + b * d * c * d
B['ab'] + B['bdc']
```

**regular_representation** *(side='left')*

Return the regular representation of self.

**INPUT:**
- *side* (default: "left") whether this is the "left" or "right" regular representation

**EXAMPLES:**
```python
sage: G = groups.permutation.Dihedral(4)
sage: A = G.algebra(QQ)
sage: V = A.regular_representation()
sage: V == G.regular_representation(QQ)
True
```

**trivial_representation** *(side='twosided')*

Return the trivial representation of self.

**INPUT:**
- *side* – ignored

**EXAMPLES:**
```python
sage: G = groups.permutation.Dihedral(4)
sage: A = G.algebra(QQ)
sage: V = A.trivial_representation()
sage: V == G.trivial_representation(QQ)
True
```

**extra_super_categories** *

Implement the fact that the algebra of a semigroup is indeed a (not necessarily unital) algebra.

**EXAMPLES:**
```python
sage: Semigroups().Algebras(QQ).extra_super_categories()
[Category of semigroups]
sage: Semigroups().Algebras(QQ).super_categories()
[Category of associative algebras over Rational Field,
 Category of magma algebras over Rational Field]
```

**Aperiodic**

alias of *sage.categories.aperiodic_semigroups.AperiodicSemigroups*

**class CartesianProducts** *(category, *args)*

**Bases:** *sage.categories.cartesian_product.CartesianProductsCategory*

**extra_super_categories** *

Implement the fact that a Cartesian product of semigroups is a semigroup.

**EXAMPLES:**
```python
sage: Semigroups().CartesianProducts().extra_super_categories()
[Category of semigroups]
sage: Semigroups().CartesianProducts().super_categories()
[Category of semigroups, Category of Cartesian products of magmas]
```

**class ElementMethods**

**Bases:** *object*
Finite
alias of \texttt{sage.categories.finite_semigroups.FiniteSemigroups}

FinitelyGeneratedAsMagma
alias of \texttt{sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups}

HTrivial
alias of \texttt{sage.categories.h_trivial_semigroups.HTrivialSemigroups}

JTrivial
alias of \texttt{sage.categories.j_trivial_semigroups.JTrivialSemigroups}

LTrivial
alias of \texttt{sage.categories.l_trivial_semigroups.LTrivialSemigroups}

class ParentMethods
Bases: object
cayley_graph\(\text{(side='right', simple=False, elements=None, generators=None, connecting_set=None)}\)
Return the Cayley graph for this finite semigroup.

INPUT:
\begin{itemize}
\item side – “left”, “right”, or “twosided”: the side on which the generators act (default:”right”)
\item simple – boolean (default:False): if True, returns a simple graph (no loops, no labels, no multiple edges)
\item generators – a list, tuple, or family of elements of self (default: self.semigroup_generators())
\item connecting_set – alias for generators; deprecated
\item elements – a list (or iterable) of elements of self
\end{itemize}

OUTPUT:
\begin{itemize}
\item DiGraph
\end{itemize}

EXAMPLES:

We start with the (right) Cayley graphs of some classical groups:

\begin{verbatim}
sage: D4 = DihedralGroup(4); D4
Dihedral group of order 8 as a permutation group
sage: G = D4.cayley_graph()
sage: G.show3d(color_by_label=True, edge_labels=True)
sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
sage: G.show3d(color_by_label=True, edge_size=0.01, edge_size2=0.02, vertex_size=0.03)
sage: G.show3d(vertex_size=0.03, edge_size=0.01, edge_size2=0.02, vertex_colors={(1,1,1):G.vertices()}, bgcolor=(0,0,0), color_by_label=True, xres=700, yres=700, iterations=200) # long time (less than a minute)
sage: G.num_edges()
120
sage: w = WeylGroup(['A',3])
sage: d = w.cayley_graph(); d
Digraph on 24 vertices
sage: d.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03)
\end{verbatim}

Alternative generators may be specified:
sage: G = A5.cayley_graph(generators=[A5 gens() [0]])
sage: G.num_edges()
60
sage: g=PermutationGroup([(i+1,j+1) for i in range(5) for j in range(5)
˓→if j!=i])
sage: g.cayley_graph(generators=[(1,2),(2,3)])
Digraph on 120 vertices

If elements is specified, then only the subgraph induced and those elements is returned. Here we use it to display the Cayley graph of the free monoid truncated on the elements of length at most 3:

sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: elements = [ M.prod(w) for v in sum((list(Words(M.semigroup_˓→generators(),k)) for k in range(4)),[]) ]
sage: G = M.cayley_graph(elements = elements)
sage: G.num_verts(), G.num_edges()
(85, 84)
sage: G.show3d(color_by_label=True, edge_size=0.001, vertex_size=0.01)

We now illustrate the side and simple options on a semigroup:

sage: S = FiniteSemigroups().example(alphabet=('a','b'))
sage: g = S.cayley_graph(simple=True)
sage: g.vertices()
['a', 'ab', 'b', 'ba']
sage: g.edges()
[('a', 'ab', None), ('b', 'ba', None)]

sage: g = S.cayley_graph(side="left", simple=True)
sage: g.vertices()
['a', 'ab', 'b', 'ba']
sage: g.edges()
[('a', 'ba', None), ('b', 'ab', None), ('b', 'ba', None), ('ba', 'ab', None)]

sage: g = S.cayley_graph(side="twosided", simple=True)
sage: g.vertices()
['a', 'ab', 'b', 'ba']
sage: g.edges()
[('a', 'ab', None), ('a', 'ba', None), ('ab', 'ab', None), ('b', 'ab', None), ('ba', 'ab', None)]

sage: g = S.cayley_graph(side="twosided")
sage: g.vertices()
['a', 'ab', 'b', 'ba']
sage: g.edges()
[('a', 'a', (0, 'left')), ('a', 'a', (0, 'right')), ('a', 'ab', (1, 'right')), ('a', 'ba', (1, 'left')), ('ab', 'ab', (0, 'right')), ('ab', 'ab', (0, 'left')), ('ab', 'ba', (1, 'right')), ('ab', 'ba', (0, 'left')), ('ba', 'ab', (0, 'right')), ('ba', 'ab', (0, 'left')), ('ba', 'ba', (1, 'right')), ('ba', 'ba', (1, 'left'))]

sage: s1 = SymmetricGroup(1); s = s1.cayley_graph(); s.vertices()
[()]
Todo:
• Add more options for constructing subgraphs of the Cayley graph, handling the standard use cases when exploring large/infinite semigroups (a predicate, generators of an ideal, a maximal length in term of the generators)
• Specify good default layout/plot/latex options in the graph
• Generalize to combinatorial modules with module generators / operators

AUTHORS:
• Bobby Moretti (2007-08-10)
• Robert Miller (2008-05-01): editing
• Nicolas M. Thiery (2008-12): extension to semigroups, side, simple, and elements options, ...

magma_generators()  
An alias for semigroup_generators().

EXAMPLES:

```
sage: S = Semigroups().example("free"); S
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')
sage: S.magma_generators()
Family ('a', 'b', 'c', 'd')
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')
```

prod(args)  
Return the product of the list of elements args inside self.

EXAMPLES:

```
sage: S = Semigroups().example("free")
sage: S.prod([S('a'), S('b'), S('c')])
'abc'
sage: S.prod([])
Traceback (most recent call last):
 ...
AssertionError: Cannot compute an empty product in a semigroup
```

regular_representation(base_ring=None, side='left')  
Return the regular representation of self over base_ring.

• side – (default: "left") whether this is the "left" or "right" regular representation

EXAMPLES:

```
sage: G = groups.permutation.Dihedral(4)
sage: G.regular_representation()
Left Regular Representation of Dihedral group of order 8 as a permutation group over Integer Ring
```

semigroup_generators()  
Return distinguished semigroup generators for self.

OUTPUT: a family

This method is optional.

EXAMPLES:
**subsemigroup** *(generators, one=None, category=None)*

Return the multiplicative subsemigroup generated by `generators`.

**INPUT:**
- `generators` – a finite family of elements of `self`, or a list, iterable, ... that can be converted into one (see `Family`).
- `one` – a unit for the subsemigroup, or `None`.
- `category` – a category

This implementation lazily constructs all the elements of the semigroup, and the right Cayley graph relations between them, and uses the latter as an automaton.

See `AutomaticSemigroup` for details.

**EXAMPLES:**

```python
sage: R = IntegerModRing(15)
sage: M = R.subsemigroup([R(3), R(5)]); M
A subsemigroup of (Ring of integers modulo 15) with 2 generators
sage: M.list()
[3, 5, 9, 0, 10, 12, 6]
```

By default, `M` is just in the category of subsemigroups:

```python
sage: M in Semigroups().Subobjects()
True
```

In the following example, we specify that `M` is a submonoid of the finite monoid `R` (it shares the same unit), and a group by itself:

```python
sage: M = R.subsemigroup([R(-1)],
....: category=Monoids().Finite().Subobjects() & Groups()); M
A submonoid of (Ring of integers modulo 15) with 1 generators
sage: M.list()
[1, 14]
sage: M.one()
1
```

In the following example `M` is a group; however its unit does not coincide with that of `R`, so `M` is only a subsemigroup, and we need to specify its unit explicitly:

```python
sage: M = R.subsemigroup([R(5)],
....: category=Semigroups().Finite().Subobjects() & Groups()); M
Traceback (most recent call last):
...
ValueError: For a monoid which is just a subsemigroup, the unit should be specified
sage: M = R.subsemigroup([R(5)], one=R(10),
....: category=Semigroups().Finite().Subobjects() & Groups()); M
A subsemigroup of (Ring of integers modulo 15) with 1 generators
sage: M in Groups()
```

(continues on next page)
You have already been provided with some code and documentation. Let's continue with the next part of the documentation:

```
True
sage: M.list()
[10, 5]
sage: M.one()
10
```

**Todo:**
- Fix the failure in TESTS by providing a default implementation of `__invert__` for finite groups (or even finite monoids).
- Provide a default implementation of `one` for a finite monoid, so that we would not need to specify it explicitly?

### `trivial_representation` *(base_ring=None, side='twosided')*

Return the trivial representation of `self` over `base_ring`.

**INPUT:**
- `base_ring` – (optional) the base ring; the default is \( \mathbb{Z} \)
- `side` – ignored

**EXAMPLES:**
```
sage: G = groups.permutation.Dihedral(4)
sage: G.trivial_representation()
Trivial representation of Dihedral group of order 8 as a permutation group over Integer Ring
```

### `class Quotients` *(category, *args)*

**Bases:** `sage.categories.quotients.QuotientsCategory`

**class ParentMethods**

**Bases:** `object`

```
semigroup_generators()
```

Return semigroup generators for `self` by retracting the semigroup generators of the ambient semigroup.

**EXAMPLES:**
```
sage: S = FiniteSemigroups().Quotients().example().semigroup_generators() # todo: not implemented
```

```
exmaple()
```

Return an example of quotient of a semigroup, as per `Category.example()`.

**EXAMPLES:**
```
sage: Semigroups().Quotients().example()
An example of a (sub)quotient semigroup: a quotient of the left zero semigroup
```

**RTrivial**

alias of `sage.categories.r_trivial_semigroups.RTrivialSemigroups`

### `class SubcategoryMethods`

**Bases:** `object`

```
Aperiodic()
```

Return the full subcategory of the aperiodic objects of `self`. 

---

**3.140. Semigroups** 655
A (multiplicative) semigroup $S$ is *aperiodic* if for any element $s \in S$, the sequence $s, s^2, s^3, \ldots$ eventually stabilizes.

In terms of variety, this can be described by the equation $s^{\omega} s = s$.

**EXAMPLES:**

```
sage: Semigroups().Aperiodic()
Category of aperiodic semigroups
```

An aperiodic semigroup is $H$-trivial:

```
sage: Semigroups().Aperiodic().axioms()
frozenset({'Aperiodic', 'Associative', 'HTrivial'})
```

In the finite case, the two notions coincide:

```
sage: Semigroups().Aperiodic().Finite() == Semigroups().HTrivial().Finite()
True
```

See also:

- Wikipedia article Aperiodic_semigroup
- `Semigroups.SubcategoryMethods.RTrivial`
- `Semigroups.SubcategoryMethods.LTrivial`
- `Semigroups.SubcategoryMethods.JTrivial`
- `Semigroups.SubcategoryMethods.Aperiodic`

**HTrivial()**

Return the full subcategory of the $H$-trivial objects of `self`.

Let $S$ be (multiplicative) semigroup. Two elements of $S$ are in the same $H$-class if they are in the same $L$-class and in the same $R$-class.

The semigroup $S$ is *$H$-trivial* if all its $H$-classes are trivial (that is of cardinality 1).

**EXAMPLES:**

```
sage: C = Semigroups().HTrivial(); C
Category of h trivial semigroups
sage: Semigroups().HTrivial().Finite().example()
NotImplemented
```

See also:

- Wikipedia article Green%27s_relations
- `Semigroups.SubcategoryMethods.RTrivial`
- `Semigroups.SubcategoryMethods.LTrivial`
- `Semigroups.SubcategoryMethods.JTrivial`
- `Semigroups.SubcategoryMethods.Aperiodic`

**JTrivial()**

Return the full subcategory of the $J$-trivial objects of `self`.

Let $S$ be (multiplicative) semigroup. The $J$-preorder $\leq_J$ on $S$ is defined by:

$$x \leq_J y \iff x \in SyS$$

The $J$-classes are the equivalence classes for the associated equivalence relation. The semigroup $S$ is *$J$-trivial* if all its $J$-classes are trivial (that is of cardinality 1), or equivalently if the $J$-preorder is in fact a partial order.
EXAMPLES:

```python
sage: C = Semigroups().JTrivial(); C
Category of j trivial semigroups
```

A semigroup is $J$-trivial if and only if it is $L$-trivial and $R$-trivial:

```python
sage: sorted(C.axioms())
['Associative', 'HTrivial', 'JTrivial', 'LTrivial', 'RTrivial']
sage: Semigroups().LTrivial().RTrivial()
Category of j trivial semigroups
```

For a commutative semigroup, all three axioms are equivalent:

```python
sage: Semigroups().Commutative().LTrivial()
Category of commutative j trivial semigroups
sage: Semigroups().Commutative().RTrivial()
Category of commutative j trivial semigroups
```

See also:

- [Wikipedia article Green's relations](https://en.wikipedia.org/wiki/Green%27s_relations)

**LTrivial()**

Return the full subcategory of the $L$-trivial objects of `self`.

Let $S$ be (multiplicative) `semigroup`. The $L$-preorder $\leq_L$ on $S$ is defined by:

$$x \leq_L y \iff x \in Sy$$

The $L$-classes are the equivalence classes for the associated equivalence relation. The semigroup $S$ is $L$-trivial if all its $L$-classes are trivial (that is of cardinality 1), or equivalently if the $L$-preorder is in fact a partial order.

EXAMPLES:

```python
sage: C = Semigroups().LTrivial(); C
Category of l trivial semigroups
```

A $L$-trivial semigroup is $H$-trivial:

```python
sage: sorted(C.axioms())
['Associative', 'HTrivial', 'LTrivial']
```

See also:

- [Wikipedia article Green's relations](https://en.wikipedia.org/wiki/Green%27s_relations)

**RTrivial()**

Return the full subcategory of the $R$-trivial objects of `self`.

Let $S$ be (multiplicative) `semigroup`. The $R$-preorder $\leq_R$ on $S$ is defined by:

$$x \leq_R y \iff x \in yS$$
The \( R \)-classes are the equivalence classes for the associated equivalence relation. The semigroup \( S \) is \( R \)-trivial if all its \( R \)-classes are trivial (that is of cardinality 1), or equivalently if the \( R \)-preorder is in fact a partial order.

**EXAMPLES:**

```
sage: C = Semigroups().RTrivial(); C
Category of r trivial semigroups
```

An \( R \)-trivial semigroup is \( H \)-trivial:

```
sage: sorted(C.axioms())
['Associative', 'HTrivial', 'RTrivial']
```

See also:
- Wikipedia article Green%27s_relations
- `Semigroups.SubcategoryMethods.LTrivial`
- `Semigroups.SubcategoryMethods.JTrivial`
- `Semigroups.SubcategoryMethods.HTrivial`

**class Subquotients**(category, *args)

Bases: `sage.categories.subquotients.SubquotientsCategory`

The category of subquotient semi-groups.

**EXAMPLES:**

```
sage: Semigroups().Subquotients().all_super_categories()
[Category of subquotients of semigroups,
 Category of semigroups,
 Category of subquotients of magmas,
 Category of magmas,
 Category of subquotients of sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

```
sage: Semigroups().Subquotients().example()
An example of a (sub)quotient semigroup: a quotient of the left zero_
˓→semigroup
```

**Unital**

alias of `sage.categories.monoids.Monoids`
example (choice='leftzero', **kwds)

Returns an example of a semigroup, as per Category.example().

INPUT:

• choice – str (default: ‘leftzero’). Can be either ‘leftzero’ for the left zero semigroup, or ‘free’ for the free semigroup.

• **kwds – keyword arguments passed onto the constructor for the chosen semigroup.

EXAMPLES:

```
sage: Semigroups().example(choice='leftzero')
An example of a semigroup: the left zero semigroup
sage: Semigroups().example(choice='free')
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd →')
sage: Semigroups().example(choice='free', alphabet=('a','b'))
An example of a semigroup: the free semigroup generated by ('a', 'b')
```

### 3.141 Semirings

**class** `sage.categories.semirings.Semirings(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of semirings.

A semiring $(S, +, *)$ is similar to a ring, but without the requirement that each element must have an additive inverse. In other words, it is a combination of a commutative additive monoid $(S, +)$ and a multiplicative monoid $(S, *)$, where $*$ distributes over $+$.

**See also:**

Wikipedia article Semiring

**EXAMPLES:**

```
sage: Semirings()
Category of semirings
sage: Semirings().super_categories()
[Category of associative additive commutative additive associative additive unital distributive magmas and additive magmas, Category of monoids]
sage: sorted(Semirings().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveUnital', 'Associative', 'Distributive', 'Unital']
sage: Semirings() is (CommutativeAdditiveMonoids() & Monoids()).Distributive()
True
sage: Semirings().AdditiveInverse()
Category of rings
```
3.142 Semisimple Algebras

class sage.categories.semisimple_algebras.SemisimpleAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of semisimple algebras over a given base ring.

EXAMPLES:

```python
sage: from sage.categories.semisimple_algebras import SemisimpleAlgebras
sage: C = SemisimpleAlgebras(QQ); C
Category of semisimple algebras over Rational Field
```

This category is best constructed as:

```python
sage: D = Algebras(QQ).Semisimple(); D
Category of semisimple algebras over Rational Field

sage: D is C
True

sage: C.super_categories()
[Category of algebras over Rational Field]
```

Typically, finite group algebras are semisimple:

```python
sage: DihedralGroup(5).algebra(QQ) in SemisimpleAlgebras
True
```

Unless the characteristic of the field divides the order of the group:

```python
sage: DihedralGroup(5).algebra(IntegerModRing(5)) in SemisimpleAlgebras
False

sage: DihedralGroup(5).algebra(IntegerModRing(7)) in SemisimpleAlgebras
True
```

See also:

Wikipedia article Semisimple_algebra

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

WithBasis
    alias of sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis

class ParentMethods
    Bases: object

    radical_basis(**keywords)
        Return a basis of the Jacobson radical of this algebra.
        • keywords – for compatibility; ignored.
        OUTPUT: the empty list since this algebra is semisimple.
        EXAMPLES:
super_categories()

EXAMPLES:

```python
sage: Algebras(QQ).Semisimple().super_categories()
[Category of algebras over Rational Field]
```

## 3.143 Sets

### exception sage.categories.sets_cat.EmptySetError

Bases: ValueError

Exception raised when some operation can’t be performed on the empty set.

EXAMPLES:

```python
sage: def first_element(st):
....: if not st:
....: raise EmptySetError("no elements")
....: else:
....: return st[0]

sage: first_element(Set((1,2,3)))
1
sage: first_element(Set([]))
Traceback (most recent call last):
...
EmptySetError: no elements
```

### class sage.categories.sets_cat.Sets(s=None)

Bases: sage.categories.category_singleton.Category_singleton

The category of sets.

The base category for collections of elements with = (equality).

This is also the category whose objects are all parents.

EXAMPLES:

```python
sage: Sets()
Category of sets
sage: Sets().super_categories()
[Category of sets with partial maps]
sage: Sets().all_super_categories()
[Category of sets, Category of sets with partial maps, Category of objects]
```

Let us consider an example of set:

```python
sage: P = Sets().example("inherits")
sage: P
Set of prime numbers
```

See P?? for the code.

P is in the category of sets:
and therefore gets its methods from the following classes:

```
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category'>
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits'>
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Abstract'>
<class 'sage.structure.unique_representation.UniqueRepresentation'>
<class 'sage.structure.unique_representation.CachedRepresentation'>
<type 'sage.misc.fast_methods.WithEqualityById'>
<class 'sage.structure.parent.Parent'>
<class 'sage.categories.sets_cat.Sets.parent_class'>
<class 'sage.categories.sets_with_partial_maps.SetsWithPartialMaps.parent_class'>
<class 'sage.categories.objects.Objects.parent_class'>
<... 'object'>
```

We run some generic checks on P:

```
sage: TestSuite(P).run(Verb=1)
```

Now, we manipulate some elements of P:

```
sage: P.an_element()
47
sage: x = P(3)
sage: x.parent()
Set of prime numbers
sage: x in P, 4 in P
(True, False)
sage: x.is_prime()
True
```

They get their methods from the following classes:
```python
sage: for cl in x.__class__.mro(): print(cl)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category.
˓element_class'>
class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits.Element'
type 'sage.rings.integer.IntegerWrapper'
type 'sage.rings.integer.Integer'
type 'sage.structure.element.EuclideanDomainElement'
type 'sage.structure.element.PrincipalIdealDomainElement'
type 'sage.structure.element.DedekindDomainElement'
type 'sage.structure.element.IntegralDomainElement'
type 'sage.structure.element.CommutativeRingElement'
type 'sage.structure.element.ModuleElement'
class 'sage.categories.examples.sets_cat.PrimeNumbers_Abstract.Element'
type 'sage.structure.element.Element'
type 'sage.structure.sage_object.SageObject'
class 'sage.categories.sets_cat.Sets.element_class'
class 'sage.categories.sets_with_partial_maps.SetsWithPartialMaps.element_class'
class 'sage.categories.objects.Objects.element_class'
... 'object'
```

FIXME: Objects.element_class is not very meaningful …

```python
class Algebras(category, *args)
 Bases: sage.categories.algebra_functor.AlgebrasCategory
class ParentMethods
 Bases: object

 construction()
 Return the functorial construction of self.

 EXAMPLES:

 sage: A = GroupAlgebra(KleinFourGroup(), QQ)
sage: F, arg = A.construction(); F, arg
 (GroupAlgebraFunctor, Rational Field)
sage: F(arg)
 True
```

This also works for structures such as monoid algebras (see trac ticket #27937):

```python
sage: A = FreeAbelianMonoid('(x,y)').algebra(QQ)
sage: F, arg = A.construction(); F, arg
 (The algebra functorial construction,
 Free abelian monoid on 2 generators (x, y))
sage: F(arg)
 True
```

```python
eXtra_super_categories()
 EXAMPLES:

 sage: Sets().Algebras(ZZ).super_categories()
 [Category of modules with basis over Integer Ring]
sage: Sets().Algebras(QQ).extra_super_categories()
 [Category of vector spaces with basis over Rational Field]
```

(continues on next page)
sage: Sets().example().algebra(ZZ).categories()
[Category of set algebras over Integer Ring,
Category of modules with basis over Integer Ring,
...]

Category of objects

class CartesianProducts

    (category, *args)

    Bases: sage.categories.cartesian_product.CartesianProductsCategory

    EXAMPLES:

sage: C = Sets().CartesianProducts().example()
sage: C
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: {1,2,3})
sage: C.category()
Category of Cartesian products of sets
sage: C.categories()
[Category of Cartesian products of sets, Category of sets,
Category of sets with partial maps, Category of objects]
sage: TestSuite(C).run()

class ElementMethods

    Bases: object

cartesian_factors()

    Return the Cartesian factors of self.

    EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: H = CombinatorialFreeModule(ZZ, [4,7]); H.__custom_name = "H"
sage: S = cartesian_product([F, G, H])

    sage: x = S.monomial((0,4)) + 2 * S.monomial((0,5)) + 3 * S.
        \rightarrow monomial((1,6)) + 4 * S.monomial((2,4)) + 5 * S.monomial((2,7))
sage: x.cartesian_factors()
sage: [s.parent() for s in x.cartesian_factors()]
[F, G, H]
sage: S.zero().cartesian_factors()
(0, 0, 0)
sage: [s.parent() for s in S.zero().cartesian_factors()]
[F, G, H]

cartesian_projection(i)

    Return the projection of self onto the i-th factor of the Cartesian product.

    INPUT:
    • i – the index of a factor of the Cartesian product

    EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: S = cartesian_product([F, G])

(continues on next page)
```python
sage: x = S.monomial((0,4)) + 2 * S.monomial((0,5)) + 3 * S.monomial((1,6))
sage: x.cartesian_projection(0)
sage: x.cartesian_projection(1)
3*B[6]
```

```python
class ParentMethods:
 _bases: object

 def an_element(self):
 EXAMPLES:
 sage: C = Sets().CartesianProducts().example(); C
 The Cartesian product of (Set of prime numbers (basic implementation),
 An example of an infinite enumerated set: the non negative integers,
 An example of a finite enumerated set: {1,2,3})
 sage: C.an_element()
 (47, 42, 1)

 def cardinality(self):
 Return the cardinality of self.
 EXAMPLES:
 sage: E = FiniteEnumeratedSet([1,2,3])
sage: C = cartesian_product([E, SymmetricGroup(4)])
sage: C.cardinality()
72
 sage: E = FiniteEnumeratedSet([])
sage: C = cartesian_product([E, ZZ, QQ])
sage: C.cardinality()
0
 sage: C = cartesian_product([ZZ, QQ])
sage: C.cardinality()
+Infinity
 sage: cartesian_product([GF(5), Permutations(10)]).cardinality()
18144000
 sage: cartesian_product([GF(71)]*20).cardinality() == 71**20
 True

 def cartesian_factors(self):
 Return the Cartesian factors of self.
 EXAMPLES:
 sage: cartesian_product([QQ, ZZ, ZZ]).cartesian_factors()
 (Rational Field, Integer Ring, Integer Ring)

 def cartesian_projection(self, i):
 Return the natural projection onto the i-th Cartesian factor of self.
 INPUT:
 • i – the index of a Cartesian factor of self
 EXAMPLES:
        ```
```
sage: C = Sets().CartesianProducts().example(); C
The Cartesian product of (Set of prime numbers (basic implementation),
 An example of an infinite enumerated set: the non negative integers,
 An example of a finite enumerated set: {1,2,3})
sage: x = C.an_element(); x
(47, 42, 1)
sage: pi = C.cartesian_projection(1)
sage: pi(x)
42
```

**is_empty()**

Return whether this set is empty.

EXAMPLES:

```
sage: S1 = FiniteEnumeratedSet([1,2,3])
sage: S2 = Set([])
sage: cartesian_product([S1,ZZ]).is_empty() # False
sage: cartesian_product([S1,S2,S1]).is_empty() # True
```

**is_finite()**

Return whether this set is finite.

EXAMPLES:

```
sage: E = FiniteEnumeratedSet([1,2,3])
sage: C = cartesian_product([E, SymmetricGroup(4)])
sage: C.is_finite() # True
sage: cartesian_product([ZZ,ZZ]).is_finite() # False
sage: cartesian_product([ZZ, Set(), ZZ]).is_finite() # True
```

**random_element (*args)**

Return a random element of this Cartesian product.

The extra arguments are passed down to each of the factors of the Cartesian product.

EXAMPLES:

```
sage: C = cartesian_product([Permutations(10)]*5)
sage: C.random_element() # random
([2, 9, 4, 7, 1, 8, 6, 10, 5, 3],
 [8, 6, 5, 7, 1, 4, 9, 3, 10, 2],
 [5, 10, 3, 8, 2, 9, 1, 4, 7, 6],
 [9, 6, 10, 3, 2, 1, 5, 8, 7, 4],
 [8, 5, 2, 9, 10, 3, 7, 1, 4, 6])
sage: C = cartesian_product([ZZ]*10)
sage: c1 = C.random_element()
random
(3, 1, 4, 1, -3, 0, -4, -17, 2)
sage: c2 = C.random_element(4,7)
random
```

(continues on next page)
\begin{verbatim}
(6, 5, 6, 4, 5, 6, 4, 5, 5)
sage: all(4 <= i < 7 for i in c2)
True
\end{verbatim}

\textbf{example()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Sets().CartesianProducts().example()
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: \{1,2,3\})
\end{verbatim}

\textbf{extra_super_categories()}

A Cartesian product of sets is a set.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Sets().CartesianProducts().extra_super_categories()
[Category of sets]
sage: Sets().CartesianProducts().super_categories()
[Category of sets]
\end{verbatim}

\textbf{class ElementMethods}

\textbf{Bases: object}

\textbf{cartesian_product(*elements)}

Return the Cartesian product of its arguments, as an element of the Cartesian product of the parents of those elements.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example()
sage: (a,b,c) = A.algebra_generators()
sage: a.cartesian_product(b, c)
B[(0, word: a)] + B[(1, word: b)] + B[(2, word: c)]
\end{verbatim}

\textbf{FIXME: is this a policy that we want to enforce on all parents?}

\textbf{Enumerated}

\textbf{alias of} \texttt{sage.categories.enumerated_sets.EnumeratedSets}

\textbf{Facade}

\textbf{alias of} \texttt{sage.categories.facade_setsFacadeSets}

\textbf{Finite}

\textbf{alias of} \texttt{sage.categories.finite_sets.FiniteSets}

\textbf{class Infinite}\texttt{(base_category)}

\textbf{Bases:} \texttt{sage.categories.category_with_axiom.CategoryWithAxiom_singleton}

\textbf{class ParentMethods}

\textbf{Bases: object}

\textbf{cardinality()}

\textbf{Count the elements of the enumerated set.}

\textbf{EXAMPLES:}

3.143. Sets
```python
sage: NN = InfiniteEnumeratedSets().example()
sage: NN.cardinality()
+Infinity
```

**is_empty()**
Return whether this set is empty.

Since this set is infinite this always returns `False`.

**EXAMPLES:**
```python
sage: C = InfiniteEnumeratedSets().example()
sage: C.is_empty()
False
```

**is_finite()**
Return whether this set is finite.

Since this set is infinite this always returns `False`.

**EXAMPLES:**
```python
sage: C = InfiniteEnumeratedSets().example()
sage: C.is_finite()
False
```

**class IsomorphicObjects(category, *args)**
Bases: `sage.categories.isomorphic_objects.IsomorphicObjectsCategory`
A category for isomorphic objects of sets.

**EXAMPLES:**
```python
sage: Sets().IsomorphicObjects()
Category of isomorphic objects of sets
sage: Sets().IsomorphicObjects().all_super_categories()
[Category of isomorphic objects of sets,
 Category of subobjects of sets, Category of quotients of sets,
 Category of subquotients of sets, Category of sets,
 Category of sets with partial maps, Category of objects]
```

**class ParentMethods**
Bases: `object`

**Metric**
alias of `sage.categories.metric_spaces.MetricSpaces`

**class MorphismMethods**
Bases: `object`

**is_injective()**
Return whether this map is injective.

**EXAMPLES:**
```python
sage: f = ZZ.hom(GF(3)); f
Natural morphism:
 From: Integer Ring
 To: Finite Field of size 3
sage: f.is_injective()
```

(continues on next page)
class ParentMethods
Bases: object

CartesianProduct
alias of sage.sets.cartesian_product.CartesianProduct

algebra (base_ring, category=None, **kwds)
Return the algebra of self over base_ring.

INPUT:
• self – a parent S
• base_ring – a ring K
• category – a super category of the category of S, or None

This returns the space of formal linear combinations of elements of G with coefficients in R, endowed with whatever structure can be induced from that of S. See the documentation of sage.categories.algebra Functor for details.

EXAMPLES:
If S is a group, the result is its group algebra KS:

```
sage: S = DihedralGroup(4); S
Dihedral group of order 8 as a permutation group
sage: A = S.algebra(QQ); A
Algebra of Dihedral group of order 8 as a permutation group over Rational Field
sage: A.category()
Category of finite group algebras over Rational Field
sage: a = A.an_element(); a
() + (1,3) + 2*(1,3)(2,4) + 3*(1,4,3,2)
```

This space is endowed with an algebra structure, obtained by extending by bilinearity the multiplication of G to a multiplication on RG:

```
sage: a * a
6*() + 4*(2,4) + 3*(1,2)(3,4) + 12*(1,2,3,4) + 2*(1,3) + 13*(1,3)(2,4) + 6*(1,4,3,2) + 3*(1,4)(2,3)
```

If S is a monoid, the result is its monoid algebra KS:

```
sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ); A
Algebra of An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd') over Rational Field
sage: A.category()
Category of monoid algebras over Rational Field
```

Similarly, we can construct algebras for additive magmas, monoids, and groups.

One may specify for which category one takes the algebra; here we build the algebra of the additive group GF₃:

```
sage: G = GF(3)
sage: f = G.category().element_class()
sage: f.is_injective()
False
```
```python
sage: from sage.categories.additive_groups import AdditiveGroups
sage: S = GF(7)
sage: A = S.algebra(QQ, category=AdditiveGroups()); A
Algebra of Finite Field of size 7 over Rational Field
sage: A.category()
Category of finite dimensional additive group algebras over Rational Field
sage: a = A(S(1))
sage: a
1
sage: 1 + a * a * a
0 + 3
```

Note that the `category` keyword needs to be fed with the structure on $S$ to be used, not the induced structure on the result.

**an_element()**

Return a (preferably typical) element of this parent.

This is used both for illustration and testing purposes. If the set `self` is empty, `an_element()` should raise the exception `EmptySetError`.

This default implementation calls `_an_element_()` and caches the result. Any parent should implement either `an_element()` or `_an_element_()`.

EXAMPLES:

```python
sage: CDF.an_element()
1.0*I
sage: ZZ['t'].an_element()
t
```

cartesian_product(*parents, **kwargs)

Return the Cartesian product of the parents.

**INPUT:**

- `parents` – a list (or other iterable) of parents.
- `category` – (default: `None`) the category the Cartesian product belongs to. If `None` is passed, then `category_from_parents()` is used to determine the category.
- `extra_category` – (default: `None`) a category that is added to the Cartesian product in addition to the categories obtained from the parents.
- other keyword arguments will passed on to the class used for this Cartesian product (see also `CartesianProduct`).

**OUTPUT:**

The Cartesian product.

**EXAMPLES:**

```python
sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example(); A.rename("A")
sage: A.cartesian_product(A,A)
A (+) A (+) A
sage: ZZ.cartesian_product(GF(2), FiniteEnumeratedSet([1,2,3]))
The Cartesian product of (Integer Ring, Finite Field of size 2, {1, 2, 3})
sage: C = ZZ.cartesian_product(A); C
The Cartesian product of (Integer Ring, A)
```
construction()
Return a pair (functor, parent) such that functor(parent) returns self. If self does not have a functorial construction, return None.

EXAMPLES:

```python
sage: QQ.construction()
(FractionField, Integer Ring)
sage: f, R = QQ['x'].construction()
sage: f
Poly[x]
sage: R
Rational Field
sage: f(R)
Univariate Polynomial Ring in x over Rational Field
```

is_parent_of(element)
Return whether self is the parent of element.

INPUT:
• element – any object

EXAMPLES:

```python
sage: S = ZZ
sage: S.is_parent_of(1)
True
sage: S.is_parent_of(2/1)
False
```

This method differs from __contains__() because it does not attempt any coercion:

```python
sage: 2/1 in S, S.is_parent_of(2/1)
(True, False)
sage: int(1) in S, S.is_parent_of(int(1))
(True, False)
```

some_elements()
Return a list (or iterable) of elements of self.

This is typically used for running generic tests (see TestSuite).

This default implementation calls an_element().

EXAMPLES:

```python
sage: S = Sets().example(); S
Set of prime numbers (basic implementation)
sage: S.an_element()
47
sage: S.some_elements()
[47]
sage: S = Set([])
sage: S.some_elements()
[]
```

This method should return an iterable, not an iterator.

class Quotients(category, *args)
Bases: sage.categories.quotients.QuotientsCategory

A category for quotients of sets.
See also:
Sets().Quotients()

EXAMPLES:

```
sage: Sets().Quotients()
Category of quotients of sets
sage: Sets().Quotients().all_super_categories()
[Category of quotients of sets,
 Category of subquotients of sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

class ParentMethods
Bases: object

class Realizations(category, *args)
Bases: sage.categories.realizations.RealizationsCategory
class ParentMethods
Bases: object

realization_of()
Return the parent this is a realization of.

EXAMPLES:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: In = A.In(); In
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: In.realization_of()
The subset algebra of {1, 2, 3} over Rational Field
```

class SubcategoryMethods
Bases: object

Algebras(base_ring)
Return the category of objects constructed as algebras of objects of self over base_ring.

INPUT:
  • base_ring -- a ring

EXAMPLES:

```
sage: Monoids().Algebras(QQ)
Category of monoid algebras over Rational Field
sage: Groups().Algebras(QQ)
Category of group algebras over Rational Field
sage: AdditiveMagmas().AdditiveAssociative().Algebras(QQ)
Category of additive semigroup algebras over Rational Field
sage: Monoids().Algebras(Rings())
Category of monoid algebras over Category of rings
```
**See also:**

- `algebra_functor.AlgebrasCategory`
- `CovariantFunctorialConstruction`

### CartesianProducts()

Return the full subcategory of the objects of `self` constructed as Cartesian products.

**See also:**

- `cartesian_product.CartesianProductFunctor`
- `RegressiveCovariantFunctorialConstruction`

**EXAMPLES:**

```
sage: Sets().CartesianProducts()
Category of Cartesian products of sets
sage: Semigroups().CartesianProducts()
Category of Cartesian products of semigroups
sage: EuclideanDomains().CartesianProducts()
Category of Cartesian products of commutative rings
```

### Enumerated()

Return the full subcategory of the enumerated objects of `self`.

An enumerated object can be iterated to get its elements.

**EXAMPLES:**

```
sage: Sets().Enumerated()
Category of enumerated sets
sage: Rings().Finite().Enumerated()
Category of finite enumerated rings
sage: Rings().Infinite().Enumerated()
Category of infinite enumerated rings
```

### Facade()

Return the full subcategory of the facade objects of `self`.

**What is a facade set?**

Recall that, in Sage, *sets are modelled by *parents*, and their elements know which distinguished set they belong to.* For example, the ring of integers \( \mathbb{Z} \) is modelled by the parent \( \mathbb{Z} \ZZ \), and integers know that they belong to this set:

```
sage: ZZ
Integer Ring
sage: 42.parent()
Integer Ring
```

Sometimes, it is convenient to represent the elements of a parent \( P \) by elements of some other parent. For example, the elements of the set of prime numbers are represented by plain integers:

```
sage: Primes()
Set of all prime numbers: 2, 3, 5, 7, ...
sage: p = Primes().an_element(); p
43
sage: p.parent()
Integer Ring
```
In this case, \( P \) is called a \textit{facade set}.

This feature is advertised through the category of \( P \):

```
sage: Primes().category()
Category of facade infinite enumerated sets
sage: Sets().Facade()
Category of facade sets
```

Typical use cases include modeling a subset of an existing parent:

```
sage: Set([4, 6, 9]) # random
{4, 6, 9}
sage: Sets().Facade().example()
An example of facade set: the monoid of positive integers
```

or the union of several parents:

```
sage: Sets().Facade().example("union")
An example of a facade set: the integers completed by \(+\)-infinity
```

or endowing an existing parent with more (or less!) structure:

```
sage: Posets().example("facade")
An example of a facade poset: the positive integers ordered by \(\to \) divisibility
```

Let us investigate in detail a close variant of this last example: let \( P \) be set of divisors of 12 partially ordered by divisibility. There are two options for representing its elements:

1. as plain integers:

```
sage: P = Poset((divisors(12), attrcall("divides")), facade=True)
```

2. as integers, modified to be aware that their parent is \( P \):

```
sage: Q = Poset((divisors(12), attrcall("divides")), facade=False)
```

The advantage of option 1. is that one needs not do conversions back and forth between \( P \) and \( \mathbb{Z} \).

The disadvantage is that this introduces an ambiguity when writing \( 2 < 3 \): does this compare 2 and 3 w.r.t. the natural order on integers or w.r.t. divisibility?:

```
sage: 2 < 3
True
```

To raise this ambiguity, one needs to explicitly specify the underlying poset as in \( 2 <_P 3 \):

```
sage: P = Posets().example("facade")
sage: P.lt(2,3)
False
```

On the other hand, with option 2. and once constructed, the elements know unambiguously how to compare themselves:

```
sage: Q(2) < Q(3)
False
sage: Q(2) < Q(6)
True
```

Beware that \( P(2) \) is still the integer 2. Therefore \( P(2) < P(3) \) still compares 2 and 3 as integers!
In short $P$ being a facade parent is one of the programmatic counterparts (with e.g. coercions) of the usual mathematical idiom: “for ease of notation, we identify an element of $P$ with the corresponding integer”. Too many identifications lead to confusion; the lack thereof leads to heavy, if not obfuscated, notations. Finding the right balance is an art, and even though there are common guidelines, it is ultimately up to the writer to choose which identifications to do. This is no different in code.

**See also:**
The following examples illustrate various ways to implement subsets like the set of prime numbers; look at their code for details:

```python
sage: Sets().example("facade")
Set of prime numbers (facade implementation)
sage: Sets().example("inherits")
Set of prime numbers
sage: Sets().example("wrapper")
Set of prime numbers (wrapper implementation)
```

**Specifications**

A parent which is a facade must either:

- call `Parent.__init__()` using the facade parameter to specify a parent, or tuple thereof.
- overload the method `facade_for()`.

**Note:** The concept of facade parents was originally introduced in the computer algebra system MuPAD.

### Finite()

Return the fullsubcategory of the finite objects of `self`.

**EXAMPLES:**

```python
sage: Sets().Finite()
Category of finite sets
sage: Rings().Finite()
Category of finite rings
```

### Infinite()

Return the full subcategory of the infinite objects of `self`.

**EXAMPLES:**

```python
sage: Sets().Infinite()
Category of infinite sets
sage: Rings().Infinite()
Category of infinite rings
```

### IsomorphicObjects()

Return the full subcategory of the objects of `self` constructed by isomorphism.

Given a concrete category `As()` (i.e. a subcategory of `Sets()`, `As()`.'s `IsomorphicObjects()` returns the category of objects of `As()` endowed with a distinguished description as the image of some other object of `As()` by an isomorphism in this category.
See `Subquotients()` for background.

**EXAMPLES:**

In the following example, $A$ is defined as the image by $x \mapsto x^2$ of the finite set $B = \{1, 2, 3\}$:

```python
sage: A = FiniteEnumeratedSets().IsomorphicObjects().example(); A
The image by some isomorphism of An example of a finite enumerated set: \rightarrow(1,2,3)
```

Since $B$ is a finite enumerated set, so is $A$:

```python
sage: A in FiniteEnumeratedSets()
True
sage: A.cardinality()
3
sage: A.list()
[1, 4, 9]
```

The isomorphism from $B$ to $A$ is available as:

```python
sage: A.retract(3)
9
```

and its inverse as:

```python
sage: A.lift(9)
3
```

It often is natural to declare those morphisms as coercions so that one can do $A(b)$ and $B(a)$ to go back and forth between $A$ and $B$ (TODO: refer to a category example where the maps are declared as a coercion). This is not done by default. Indeed, in many cases one only wants to transport part of the structure of $B$ to $A$. Assume for example, that one wants to construct the set of integers $B = \mathbb{Z}$, endowed with $\max$ as addition, and $+$ as multiplication instead of the usual $+$ and $\ast$. One can construct $A$ as isomorphic to $B$ as an infinite enumerated set. However $A$ is not isomorphic to $B$ as a ring; for example, for $a \in A$ and $a \in B$, the expressions $a + A(b)$ and $B(a) + b$ give completely different results; hence we would not want the expression $a + b$ to be implicitly resolved to any one of above two, as the coercion mechanism would do.

Coercions also cannot be used with facade parents (see `Sets.Facade`) like in the example above.

We now look at a category of isomorphic objects:

```python
sage: C = Sets().IsomorphicObjects(); C
Category of isomorphic objects of sets
sage: C.super_categories()
[Category of subobjects of sets, Category of quotients of sets]
sage: C.all_super_categories()
[Category of isomorphic objects of sets, Category of subobjects of sets, Category of quotients of sets, Category of subquotients of sets, Category of sets, Category of sets with partial maps, Category of objects]
```
Unless something specific about isomorphic objects is implemented for this category, one actually get
an optimized super category:

```sage
C = Semigroups().IsomorphicObjects(); C
Join of Category of quotients of semigroups
 and Category of isomorphic objects of sets
```

See also:

- `Subquotients()` for background
- `isomorphic_objects.IsomorphicObjectsCategory`
- `RegressiveCovariantFunctorialConstruction`

**Metric()**

Return the subcategory of the metric objects of `self`.

**Quotients()**

Return the full subcategory of the objects of `self` constructed as quotients.

Given a concrete category `As()` (i.e. a subcategory of `Sets()`), `As().Quotients()` returns the
category of objects of `As()` endowed with a distinguished description as quotient (in fact homomor-
phic image) of some other object of `As()`.

Implementing an object of `As().Quotients()` is done in the same way as for `As().
Subquotients()`; namely by providing an ambient space and a lift and a retract map. See
`Subquotients()` for detailed instructions.

See also:

- `Subquotients()` for background
- `quotients.QuotientsCategory`
- `RegressiveCovariantFunctorialConstruction`

**EXAMPLES:**

```sage
C = Semigroups().Quotients(); C
Category of quotients of semigroups
```

```sage
C.super_categories()
[Category of subquotients of semigroups, Category of quotients of sets]
```

```sage
C.all_super_categories()
[Category of quotients of semigroups,
 Category of subquotients of semigroups,
 Category of semigroups,
 Category of subquotients of magmas,
 Category of magmas,
 Category of quotients of sets,
 Category of subquotients of sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

The caller is responsible for checking that the given category admits a well defined category of quo-
tients:

```sage
EuclideanDomains().Quotients()
Join of Category of euclidean domains
 and Category of subquotients of monoids
 and Category of quotients of semigroups
```

**Subobjects()**

Return the full subcategory of the objects of `self` constructed as subobjects.
Given a concrete category \( \mathcal{A} \) (i.e. a subcategory of \( \mathsf{Sets}() \)), \( \mathcal{A} \).\text{Subobjects}() returns the category of objects of \( \mathcal{A} \) endowed with a distinguished embedding into some other object of \( \mathcal{A} \).

Implementing an object of \( \mathcal{A} \).\text{Subobjects}() is done in the same way as for \( \mathcal{A} \).\text{Subquotients}(); namely by providing an ambient space and a lift and a retract map. In the case of a trivial embedding, the two maps will typically be identity maps that just change the parent of their argument. See \text{Subquotients}() for detailed instructions.

See also:

- \text{Subquotients}() for background
- \text{subobjects.SubobjectsCategory}
- \text{RegressiveCovariantFunctorialConstruction}

**EXAMPLES:**

```python
sage: C = Sets().Subobjects(); C
Category of subobjects of sets

sage: C.super_categories()
[Category of subquotients of sets]

sage: C.all_super_categories()
[Category of subobjects of sets,
 Category of subquotients of sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

Unless something specific about subobjects is implemented for this category, one actually gets an optimized super category:

```python
sage: C = Semigroups().Subobjects(); C
Join of Category of subquotients of semigroups
 and Category of subobjects of sets
```

The caller is responsible for checking that the given category admits a well defined category of subobjects.

**Subquotients()**

Return the full subcategory of the objects of \( \text{self} \) constructed as subquotients.

Given a concrete category \( \text{self} == \mathcal{A} \) (i.e. a subcategory of \( \mathsf{Sets}() \)), \( \mathcal{A} \).\text{Subquotients}() returns the category of objects of \( \mathcal{A} \) endowed with a distinguished description as subquotient of some other object of \( \mathcal{A} \).

**EXAMPLES:**

```python
sage: Monoids().Subquotients()
Category of subquotients of monoids
```

A parent \( A \) in \( \mathcal{A} \) is further in \( \mathcal{A} \).\text{Subquotients}() if there is a distinguished parent \( B \) in \( \mathcal{A} \), called the \textit{ambient set}, a subobject \( B' \) of \( B \), and a pair of maps:

\[ l : A \to B' \text{ and } r : B' \to A \]

called respectively the \textit{lifting map} and \textit{retract map} such that \( r \circ l \) is the identity of \( A \) and \( r \) is a morphism in \( \mathcal{A} \).
Todo: Draw the typical commutative diagram.

It follows that, for each operation $op$ of the category, we have some property like:

$$op_A(e) = r(op_B(l(e))),$$ for all $e \in A$

This allows for implementing the operations on $A$ from those on $B$.

The two most common use cases are:

• **homomorphic images** (or *quotients*), when $B' = B$, $r$ is an homomorphism from $B$ to $A$ (typically a canonical quotient map), and $l$ a section of it (not necessarily a homomorphism); see `Quotients()`;

• **subobjects** (up to an isomorphism), when $l$ is an embedding from $A$ into $B$; in this case, $B'$ is typically isomorphic to $A$ through the inverse isomorphisms $r$ and $l$; see `Subobjects()`;

Note:

• The usual definition of “subquotient” (Wikipedia article Subquotient) does not involve the lifting map $l$. This map is required in Sage’s context to make the definition constructive. It is only used in computations and does not affect their results. This is relatively harmless since the category is a concrete category (i.e., its objects are sets and its morphisms are set maps).

• In mathematics, especially in the context of quotients, the retract map $r$ is often referred to as a projection map instead.

• Since $B'$ is not specified explicitly, it is possible to abuse the framework with situations where $B'$ is not quite a subobject and $r$ not quite a morphism, as long as the lifting and retract maps can be used as above to compute all the operations in $A$. Use at your own risk!

Assumptions:

• For any category $As()$, $As().Subquotients()$ is a subcategory of $As()$.

  Example: a subquotient of a group is a group (e.g., a left or right quotient of a group by a non-normal subgroup is not in this category).

• This construction is covariant: if $As()$ is a subcategory of $Bs()$, then $As().Subquotients()$ is a subcategory of $Bs().Subquotients()$.

  Example: if $A$ is a subquotient of $B$ in the category of groups, then it is also a subquotient of $B$ in the category of monoids.

• If the user (or a program) calls $As().Subquotients()$, then it is assumed that subquotients are well defined in this category. This is not checked, and probably never will be. Note that, if a category $As()$ does not specify anything about its subquotients, then its subquotient category looks like this:

  ```python
 sage: EuclideanDomains().Subquotients()
 Join of Category of euclidean domains
 and Category of subquotients of monoids
  ```

Interface: the ambient set $B$ of $A$ is given by $A.ambient()$. The subset $B'$ needs not be specified, so the retract map is handled as a partial map from $B$ to $A$.

The lifting and retract map are implemented respectively as methods $A.lift(a)$ and $A.retract(b)$. As a shorthand for the former, one can use alternatively $a.lift()$:

```python
sage: S = Semigroups().Subquotients().example(); S
An example of a (sub)quotient semigroup: a quotient of the left zero-
→semigroup
sage: S.ambient()
```

(continues on next page)
An example of a semigroup: the left zero semigroup

```
sage: S(3).lift().parent()
```

An example of a semigroup: the left zero semigroup

```
sage: S(3) * S(1) == S.retract(S(3).lift() * S(1).lift())
```

True

See `S?` for more.

**Todo:** use a more interesting example, like $\mathbb{Z}/n\mathbb{Z}$.

See also:

- `Quotients().Subobjects()`, `IsomorphicObjects()`
- `subquotients.SubquotientsCategory`
- `RegressiveCovariantFunctorialConstruction`

**Topological()**

Return the subcategory of the topological objects of `self`.

```python
class Subobjects(category, *args)
 Bases: sage.categories.subobjects.SubobjectsCategory
A category for subobjects of sets.

See also:

Sets().Subobjects()
```

**EXAMPLES:**

```
sage: Sets().Subobjects()
Category of subobjects of sets
sage: Sets().Subobjects().all_super_categories()
[Category of subobjects of sets, Category of subquotients of sets, Category of sets, Category of sets with partial maps, Category of objects]
```

```python
class ParentMethods
 Bases: object

class Subquotients(category, *args)
 Bases: sage.categories.subquotients.SubquotientsCategory
A category for subquotients of sets.

See also:

Sets().Subquotients()
```

**EXAMPLES:**

```
sage: Sets().Subquotients()
Category of subquotients of sets
sage: Sets().Subquotients().all_super_categories()
[Category of subquotients of sets, Category of sets, Category of sets with partial maps, Category of objects]
```
class ElementMethods
    Bases: object

    lift()
    Lift self to the ambient space for its parent.

    EXAMPLES:
    ::
        sage: S = Semigroups().Subquotients().example()
        sage: s = S.an_element()
        sage: s, s.parent()
        (42, An example of a (sub)quotient semigroup: a quotient of the left
        → zero semigroup)
        sage: S.lift(s), S.lift(s).parent()
        (42, An example of a semigroup: the left zero semigroup)
        sage: s.lift(), s.lift().parent()
        (42, An example of a semigroup: the left zero semigroup)

class ParentMethods
    Bases: object

    ambient()
    Return the ambient space for self.

    EXAMPLES:
    ::
        sage: Semigroups().Subquotients().example().ambient()
        An example of a semigroup: the left zero semigroup

    See also:
    Sets.SubcategoryMethods.Subquotients() for the specifications and lift() and retract().

    lift(x)
    Lift x to the ambient space for self.

    INPUT:
    • x – an element of self

    EXAMPLES:
    ::
        sage: S = Semigroups().Subquotients().example()
        sage: s = S.an_element()
        sage: s, s.parent()
        (42, An example of a (sub)quotient semigroup: a quotient of the left
        → zero semigroup)
        sage: S.lift(s), S.lift(s).parent()
        (42, An example of a semigroup: the left zero semigroup)
        sage: s.lift(), s.lift().parent()
        (42, An example of a semigroup: the left zero semigroup)

    See also:

    retract(x)
    Retract x to self.

    INPUT:
    • x – an element of the ambient space for self
See also:

\texttt{Sets.SubcategoryMethods.Subquotients} for the specifications, \texttt{ambient()}, \texttt{retract()}, and also \texttt{Sets.Subquotients.ElementMethods.retract()}.  

\textbf{EXAMPLES:}

\begin{verbatim}
sage: S = Semigroups().Subquotients().example()
sage: s = S.ambient().an_element()
sage: s, s.parent()
(42, An example of a semigroup: the left zero semigroup)
sage: S.retract(s), S.retract(s).parent()
(42, An example of a (sub)quotient semigroup: a quotient of the left→zero semigroup)
\end{verbatim}

\textbf{Topological alias of} \texttt{sage.categories.topological_spaces.TopologicalSpaces}

\textbf{class} \texttt{WithRealizations (category, *args)}  
\hspace{1em} \textbf{Bases:} \texttt{sage.categories.with_realizations.WithRealizationsCategory}

\textbf{class} \texttt{ParentMethods}  
\hspace{1em} \textbf{Bases:} \texttt{object}

\textbf{class} \texttt{Realizations (parent_with_realization)}  
\hspace{1em} \textbf{Bases:} \texttt{sage.categories.realizations.Category_realization_of_parent}

\textbf{super_categories ()}  
\hspace{1em} \textbf{EXAMPLES:}

\begin{verbatim}
sage: A = Sets().WithRealizations().example(); A  
The subset algebra of \{1, 2, 3\} over Rational Field
sage: A.Realizations().super_categories()
[Category of realizations of sets]
\end{verbatim}

\textbf{a_realization ()}  
\hspace{1em} \textbf{Return a realization of self.}

\hspace{1em} \textbf{EXAMPLES:}

\begin{verbatim}
sage: A = Sets().WithRealizations().example(); A  
The subset algebra of \{1, 2, 3\} over Rational Field
sage: A.a_realization()
The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis
\end{verbatim}

\textbf{facade_for ()}  
\hspace{1em} \textbf{Return the parents self is a facade for, that is the realizations of self}

\hspace{1em} \textbf{EXAMPLES:}

\begin{verbatim}
sage: A = Sets().WithRealizations().example(); A  
The subset algebra of \{1, 2, 3\} over Rational Field
sage: A.facade_for()
[The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis,  
The subset algebra of \{1, 2, 3\} over Rational Field in the In basis,  
The subset algebra of \{1, 2, 3\} over Rational Field in the Out basis]
\end{verbatim}

(continues on next page)
The subset algebra of \{1, 2, 3\} over Rational Field

```python
sage: f = A.F().an_element(); f
F[{}]+2*F[{1}]+3*F[{2}]+F[{1, 2}]
sage: i = A.In().an_element(); i
In[{}]+2*In[{1}]+3*In[{2}]+In[{1, 2}]
sage: o = A.Out().an_element(); o
Out[{}]+2*Out[{1}]+3*Out[{2}]+Out[{1, 2}]
```

```python
sage: f in A, i in A, o in A
(True, True, True)
```

```python
sage: inject_shorthands(shorthands=None, verbose=True)
```
Import standard shorthands into the global namespace.

**INPUT:**

- `shorthands` – a list (or iterable) of strings (default: `self._shorthands` or "all" (for `self._shorthands_all`)
- `verbose` – boolean (default `True`); whether to print the defined shorthands

**EXAMPLES:**

When computing with a set with multiple realizations, like `SymmetricFunctions` or `SubsetAlgebra`, it is convenient to define shorthands for the various realizations, but cumbersome to do it by hand:

```python
sage: S = SymmetricFunctions(ZZ); S
Symmetric Functions over Integer Ring
sage: s = S.s(); s
Symmetric Functions over Integer Ring in the Schur basis
sage: e = S.e(); e
Symmetric Functions over Integer Ring in the elementary basis
```

This method automates the process:

```python
sage: S.inject_shorthands()
```

```python
Defining e as shorthand for Symmetric Functions over Integer Ring in...
Defining f as shorthand for Symmetric Functions over Integer Ring in...
Defining h as shorthand for Symmetric Functions over Integer Ring in...
Defining m as shorthand for Symmetric Functions over Integer Ring in...
Defining p as shorthand for Symmetric Functions over Integer Ring in...
Defining s as shorthand for Symmetric Functions over Integer Ring in...
```

```python
```

```python
sage: e
Symmetric Functions over Integer Ring in the elementary basis
```

```python
sage: p
Symmetric Functions over Integer Ring in the powersum basis
```

```python
sage: s
Symmetric Functions over Integer Ring in the Schur basis
```

Sometimes, like for symmetric functions, one can request for all shorthands to be defined, includ-
Defining less common ones:

```python
sage: S.inject_shorthands("all")
Defining e as shorthand for Symmetric Functions over Integer Ring in
 the elementary basis
Defining f as shorthand for Symmetric Functions over Integer Ring in
 the forgotten basis
Defining h as shorthand for Symmetric Functions over Integer Ring in
 the homogeneous basis
Defining ht as shorthand for Symmetric Functions over Integer Ring in
 the induced trivial symmetric group character basis
Defining m as shorthand for Symmetric Functions over Integer Ring in
 the monomial basis
Defining o as shorthand for Symmetric Functions over Integer Ring in
 the orthogonal basis
Defining p as shorthand for Symmetric Functions over Integer Ring in
 the powersum basis
Defining s as shorthand for Symmetric Functions over Integer Ring in
 the Schur basis
Defining sp as shorthand for Symmetric Functions over Integer Ring in
 the symplectic basis
Defining st as shorthand for Symmetric Functions over Integer Ring in
 the irreducible symmetric group character basis
Defining w as shorthand for Symmetric Functions over Integer Ring in
 the Witt basis
```

The messages can be silenced by setting `verbose=False`:

```python
sage: Q = QuasiSymmetricFunctions(ZZ)
sage: Q.inject_shorthands(\[verbose=False])

5*F[1, 1, 1, 1] - 5*F[1, 1, 2] - 3*F[1, 2, 1] + 6*F[1, 3] +
sage: F
Quasisymmetric functions over the Integer Ring in the
 Fundamental basis
sage: M
Quasisymmetric functions over the Integer Ring in the
 Monomial basis
```

One can also just import a subset of the shorthands:

```python
sage: SQ = SymmetricFunctions(QQ)
sage: SQ.inject_shorthands(['p', 's'], verbose=False)
sage: p
Symmetric Functions over Rational Field in the powersum basis
sage: s
Symmetric Functions over Rational Field in the Schur basis
```

Note that `e` is left unchanged:

```python
sage: e
Symmetric Functions over Integer Ring in the elementary basis
```

`realizations()`

Return all the realizations of `self` that `self` is aware of.
EXAMPLES:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.realizations()
[The subset algebra of {1, 2, 3} over Rational Field in the
 → Fundamental basis, The subset algebra of {1, 2, 3} over Rational
 → Field in the In basis, The subset algebra of {1, 2, 3} over Rational
 → Field in the Out basis]
```

**Note:** Constructing a parent P in the category A.Realizations() automatically adds P to this list by calling A._register_realization(A)

```python
example(base_ring=None, set=None)
```

Return an example of set with multiple realizations, as per Category.example().

**EXAMPLES:**

```
sage: Sets().WithRealizations().example()
The subset algebra of {1, 2, 3} over Rational Field
sage: Sets().WithRealizations().example(ZZ, Set([1,2]))
The subset algebra of {1, 2} over Integer Ring
```

```
extra_super_categories()
```

A set with multiple realizations is a facade parent.

**EXAMPLES:**

```
sage: Sets().WithRealizations().extra_super_categories()
[Category of facade sets]
sage: Sets().WithRealizations().super_categories()
[Category of facade sets]
```

```python
example(choice=None)
```

Return examples of objects of Sets(), as per Category.example().

**EXAMPLES:**

```
sage: Sets().example()
Set of prime numbers (basic implementation)
sage: Sets().example("inherits")
Set of prime numbers
sage: Sets().example("facade")
Set of prime numbers (facade implementation)
sage: Sets().example("wrapper")
Set of prime numbers (wrapper implementation)
```

```
super_categories()
```

We include SetsWithPartialMaps between Sets and Objects so that we can define morphisms between sets that are only partially defined. This is also to have the Homset constructor not complain that SetsWithPartialMaps is not a subcategory of Fields, for example.

**EXAMPLES:**
sage: Sets().super_categories()
[Category of sets with partial maps]

sage.categories.sets_cat.print_compare(x, y)
Helper method used in Sets.ParentMethods._test_elements_eq_symmetric(), Sets.
ParentMethods._test_elements_eq_transitive().

INPUT:
- x – an element
- y – an element

EXAMPLES:

```
sage: from sage.categories.sets_cat import print_compare
sage: print_compare(1, 2)
1 != 2
sage: print_compare(1, 1)
1 == 1
```

### 3.144 Sets With a Grading

```
class sage.categories.sets_with_grading.SetsWithGrading(s=None)
 Bases: sage.categories.category.Category

The category of sets with a grading.

A set with a grading is a set S equipped with a grading by some other set I (by default the set \mathbb{N} of the
non-negative integers):

$$S = \bigsqcup_{i \in I} S_i$$

where the graded components S_i are (usually finite) sets. The grading function maps each element s of S to its
grade i, so that $s \in S_i$.

From implementation point of view, if the graded set is enumerated then each graded component should be
enumerated (there is a check in the method _test_graded_components()). The contrary needs not be
true.

To implement this category, a parent must either implement graded_component() or subset().
If only subset() is implemented, the first argument must be the grading for compatibility with
graded_component(). Additionally either the parent must implement grading() or its elements
must implement a method grade(). See the example sage.categories.examples.
sets_with_grading.NonNegativeIntegers.

Finally, if the graded set is enumerated (see EnumeratedSets) then each graded component should be enu-
merated. The contrary needs not be true.

EXAMPLES:

A typical example of a set with a grading is the set of non-negative integers graded by themselves:

```
sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.category()
Category of facade infinite sets with grading
```

(continues on next page)
The grading function is given by \texttt{N.grading}:

\begin{verbatim}
sage: N.grading(4)
sage: N.grading(42)
\end{verbatim}

The graded component \(N_i \) is the set with one element \(i \):

\begin{verbatim}
sage: N.graded_component(grade=5)
sage: N.graded_component(grade=42)
\end{verbatim}

Here are some information about this category:

\begin{verbatim}
sage: SetsWithGrading()
\texttt{Category of sets with grading}
sage: SetsWithGrading().super_categories()
\texttt{[Category of sets]}
sage: SetsWithGrading().all_super_categories()
\texttt{[Category of sets with grading, Category of sets, Category of sets with partial maps, Category of objects]}
\end{verbatim}

Todo:
\begin{itemize}
\item This should be moved to \texttt{Sets().WithGrading()}. \\
\item Should the grading set be a parameter for this category? \\
\item Does the enumeration need to be compatible with the grading? Be careful that the fact that graded components are allowed to be finite or infinite make the answer complicated.
\end{itemize}

class ParentMethods
 Bases: object
 \textbf{generating_series}()
 Default implementation for generating series.
 OUTPUT:
 A series, indexed by the grading set.
 EXAMPLES:

\begin{verbatim}
sage: N = SetsWithGrading().example(); N
\texttt{Non negative integers}
sage: N.generating_series()
\texttt{1/(-z + 1)}
\end{verbatim}

\textbf{graded_component} \texttt{(grade)}
 Return the graded component of \texttt{self} with grade \texttt{grade}.
 The default implementation just calls the method \texttt{subset()} with the first argument \texttt{grade}.

3.144. Sets With a Grading
EXAMPLES:

```
sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N graded_component(3)
{3}
```

`grading(elt)`

Return the grading of the element `elt` of `self`.

This default implementation calls `elt.grade()`.

EXAMPLES:

```
sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N grading(4)
4
```

`grading_set()`

Return the set `self` is graded by. By default, this is the set of non-negative integers.

EXAMPLES:

```
sage: SetsWithGrading().example().grading_set()
Non negative integers
```

`subset(*args, **options)`

Return the subset of `self` described by the given parameters.

See also:
- graded_component()

EXAMPLES:

```
sage: W = WeightedIntegerVectors([3,2,1]); W
Integer vectors weighted by [3, 2, 1]
sage: W subset(4)
Integer vectors of 4 weighted by [3, 2, 1]
```

`super_categories()`

EXAMPLES:

```
sage: SetsWithGrading().super_categories()
[Category of sets]
```

3.145 SetsWithPartialMaps

class `sage.categories.sets_with_partial_maps.SetsWithPartialMaps(s=None)`

Bases: `sage.categories.category_singleton.Category_singleton`

The category whose objects are sets and whose morphisms are maps that are allowed to raise a `ValueError` on some inputs.

This category is equivalent to the category of pointed sets, via the equivalence sending an object \(X\) to \(X\ union\ \{\text{error}\}\), a morphism \(f\) to the morphism of pointed sets that sends \(x\) to \(f(x)\) if \(f\) does not raise an error on \(x\), or to error if it does.
EXAMPLES:

```python
sage: SetsWithPartialMaps()
Category of sets with partial maps

sage: SetsWithPartialMaps().super_categories()
[Category of objects]
```

```python
super_categories()
EXAMPLES:

sage: SetsWithPartialMaps().super_categories()
[Category of objects]
```

3.146 Shephard Groups

class `sage.categories.shephard_groups.ShephardGroups(s=None)`

Bases: `sage.categories.category_singleton.Category_singleton`

The category of Shephard groups.

```python
sage: from sage.categories.shephard_groups import ShephardGroups
sage: C = ShephardGroups(); C
Category of shephard groups

sage: ShephardGroups().super_categories()
[Category of finite generalized coxeter groups]
```

3.147 Simplicial Complexes

class `sage.categories.simplicial_complexes.SimplicialComplexes(s=None)`

Bases: `sage.categories.category_singleton.Category_singleton`

The category of abstract simplicial complexes.

An abstract simplicial complex \(A \) is a collection of sets \(X \) such that:

- \(\emptyset \in A \),
- if \(X \subset Y \in A \), then \(X \in A \).

Todo: Implement the category of simplicial complexes considered as *CW complexes* and rename this to the category of AbstractSimplicialComplexes with appropriate functors.

```python
EXAMPLES:
```

3.146. Shephard Groups
sage: from sage.categories.simplicial_complexes import SimplicialComplexes
sage: C = SimplicialComplexes(); C
Category of simplicial complexes

class Connected(base_category)

 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

 The category of connected simplicial complexes.

 EXAMPLES:

 sage: from sage.categories.simplicial_complexes import SimplicialComplexes
 sage: C = SimplicialComplexes().Connected()
sage: TestSuite(C).run()

class Finite(base_category)

 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

 Category of finite simplicial complexes.

 class ParentMethods

 Bases: object

 dimension()

 Return the dimension of self.

 EXAMPLES:

 sage: S = SimplicialComplex([[1, 3, 4], [1, 2], [2, 5], [4, 5]])
sage: S.dimension()
2

class ParentMethods

 Bases: object

 faces()

 Return the faces of self.

 EXAMPLES:

 sage: S = SimplicialComplex([[1, 3, 4], [1, 2], [2, 5], [4, 5]])
sage: S.faces()
(-1: {()},
 0: {(1,), (2,), (3,), (4,), (5,)},
 1: {(1, 2), (1, 3), (1, 4), (2, 5), (3, 4), (4, 5)},
 2: {(1, 3, 4)})

facets()

 Return the facets of self.

 EXAMPLES:

 sage: S = SimplicialComplex([[1, 3, 4], [1, 2], [2, 5], [4, 5]])
sage: sorted(S.facets())
[(1, 2), (1, 3, 4), (2, 5), (4, 5)]

class SubcategoryMethods

 Bases: object

 Connected()

 Return the full subcategory of the connected objects of self.
EXAMPLES:

```python
sage: from sage.categories.simplicial_complexes import SimplicialComplexes
gsage: SimplicialComplexes().Connected()
Category of connected simplicial complexes
```

```
sage: from sage.categories.simplicial_complexes import SimplicialComplexes
gsage: SimplicialComplexes().super_categories()
[Category of sets]
```

3.148 Simplicial Sets

```python
class sage.categories.simplicial_sets.SimplicialSets(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of simplicial sets.

A simplicial set \( X \) is a collection of sets \( X_i \), indexed by the non-negative integers, together with maps

\[
\begin{align*}
d_i & : X_n \to X_{n-1}, \quad 0 \leq i \leq n \quad \text{(face maps)} \\
s_j & : X_n \to X_{n+1}, \quad 0 \leq j \leq n \quad \text{(degeneracy maps)}
\end{align*}
\]

satisfying the simplicial identities:

\[
\begin{align*}
d_id_j &= d_j d_i \quad \text{if } i < j \\
d_is_j &= s_{j-1} d_i \quad \text{if } i < j \\
d_js_j &= 1 = d_{j+1}s_j \\
d_is_j &= s_{j+1}d_{i-1} \quad \text{if } i > j + 1 \\
s_is_j &= s_{j+1}s_i \quad \text{if } i \leq j
\end{align*}
\]

Morphisms are sequences of maps \( f_i : X_i \to Y_i \) which commute with the face and degeneracy maps.

EXAMPLES:

```python
sage: from sage.categories.simplicial_sets import SimplicialSets
gsage: C = SimplicialSets(); C
Category of simplicial sets
```

```python
class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Category of finite simplicial sets.

The objects are simplicial sets with finitely many non-degenerate simplices.
```

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

class Endset(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object
```

3.148. Simplicial Sets 691
Return the identity morphism in $\text{Hom}(S, S)$.

EXAMPLES:

```python
sage: T = simplicial_sets.Torus()
sage: Hom(T, T).identity()
Simplicial set endomorphism of Torus
  Defn: Identity map
```

class ParentMethods

Bases: object

is_finite()

Return True if this simplicial set is finite, i.e., has a finite number of nondegenerate simplices.

EXAMPLES:

```python
sage: simplicial_sets.Torus().is_finite()
True
sage: C5 = groups.misc.MultiplicativeAbelian([5])
sage: simplicial_sets.ClassifyingSpace(C5).is_finite()
False
```

is_pointed()

Return True if this simplicial set is pointed, i.e., has a base point.

EXAMPLES:

```python
sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: e = AbstractSimplex(1)
sage: X = SimplicialSet({e: (v, w)})
sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: X.is_pointed()
False
sage: Y.is_pointed()
True
```

set_base_point(point)

Return a copy of this simplicial set in which the base point is set to point.

INPUT:

- point – a 0-simplex in this simplicial set

EXAMPLES:

```python
sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v_0')
sage: w = AbstractSimplex(0, name='w_0')
sage: e = AbstractSimplex(1)
sage: X = SimplicialSet({e: (v, w)})
sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: Y.base_point()
w_0
sage: X_star = X.set_base_point(w)
sage: X_star.base_point()
```

(continues on next page)
class Pointed(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object

fat_wedge(n)
Return the \(n\)-th fat wedge of this pointed simplicial set.

This is the subcomplex of the \(n\)-fold product \(X^n\) consisting of those points in which at least one factor is the base point. Thus when \(n = 2\), this is the wedge of the simplicial set with itself, but when \(n\) is larger, the fat wedge is larger than the \(n\)-fold wedge.

EXAMPLES:

```
sage: S1 = simplicial_sets.Sphere(1)
sage: S1.fat_wedge(0)
Point
sage: S1.fat_wedge(1)
S^1
sage: S1.fat_wedge(2).fundamental_group()
Finitely presented group < e0, e1 | >
sage: S1.fat_wedge(4).homology()
{0: 0, 1: \Z x \Z x \Z x \Z, 2: \Z^6, 3: \Z x \Z x \Z x \Z}
```

smash_product(*others)
Return the smash product of this simplicial set with \(\text{others}\).

INPUT:

• \(\text{others}\) – one or several simplicial sets

EXAMPLES:

```
sage: S1 = simplicial_sets.Sphere(1)
sage: RP2 = simplicial_sets.RealProjectiveSpace(2)
sage: X = S1.smash_product(RP2)
sage: X.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2, 1: Vector space of dimension 0 over Finite Field of size 2, 2: Vector space of dimension 1 over Finite Field of size 2, 3: Vector space of dimension 1 over Finite Field of size 2}
sage: T = S1.product(S1)
sage: X = T.smash_product(S1)
sage: X.homology(reduced=False)
{0: \Z, 1: 0, 2: \Z x \Z, 3: \Z}
```

unset_base_point()
Return a copy of this simplicial set in which the base point has been forgotten.

EXAMPLES:
sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v_0')
sage: w = AbstractSimplex(0, name='w_0')
sage: e = AbstractSimplex(1)
sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: Y.is_pointed()
True
sage: Y.base_point()
w_0
sage: Z = Y.unset_base_point()
sage: Z.is_pointed()
False

class ParentMethods
Bases: object

base_point()
Return this simplicial set’s base point

EXAMPLES:

sage: from sage.homology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='*')
sage: e = AbstractSimplex(1)
sage: S1 = SimplicialSet({e: (v, v)}, base_point=v)
sage: S1.is_pointed()
True
sage: S1.base_point()
*

base_point_map(domain=None)
Return a map from a one-point space to this one, with image the base point.

This raises an error if this simplicial set does not have a base point.

INPUT:
• domain – optional, default None. Use this to specify a particular one-point space as the do-
 main. The default behavior is to use the sage.homology.simplicial_set.Point() function to use a standard one-point space.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: f = T.base_point_map(); f
Simplicial set morphism:
 From: Point
 To: Torus
 Defn: Constant map at (v_0, v_0)
sage: S3 = simplicial_sets.Sphere(3)
sage: g = S3.base_point_map()
sage: f.domain() == g.domain()
True
sage: RP3 = simplicial_sets.RealProjectiveSpace(3)
sage: temp = simplicial_sets.Simplex(0)
sage: pt = temp.set_base_point(temp.n_cells(0)[0])
sage: h = RP3.base_point_map(domain=pt)
sage: f.domain() == h.domain()
False

sage: C5 = groups.misc.MultiplicativeAbelian([5])
sage: BC5 = simplicial_sets.ClassifyingSpace(C5)
sage: BC5.base_point_map()

Simplicial set morphism:
 From: Point
 To: Classifying space of Multiplicative Abelian group isomorphic to C5
 Defn: Constant map at 1

connectivity (*max_dim=None*)

Return the connectivity of this pointed simplicial set.

INPUT:
- *max_dim* – specify a maximum dimension through which to check. This is required if this simplicial set is simply connected and not finite.

The dimension of the first nonzero homotopy group. If simply connected, this is the same as the dimension of the first nonzero homology group.

Warning: See the warning for the *is_simply_connected()* method.

The connectivity of a contractible space is +Infinity.

EXAMPLES:

```
sage: simplicial_sets.Sphere(3).connectivity()
2
sage: simplicial_sets.Sphere(0).connectivity()
-1
sage: K = simplicial_sets.Simplex(4)
sage: K = K.set_base_point(K.n_cells(0)[0])
sage: K.connectivity()
+Infinity
sage: X = simplicial_sets.Torus().suspension(2)
sage: X.connectivity()
2

sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = simplicial_sets.ClassifyingSpace(C2)
sage: BC2.connectivity()
0
```

fundamental_group (*simplify=True*)

Return the fundamental group of this pointed simplicial set.

INPUT:
- *simplify* (bool, optional True) – if False, then return a presentation of the group in terms of generators and relations. If True, the default, simplify as much as GAP is able to.

Algorithm: we compute the edge-path group – see Section 19 of [Kan1958] and Wikipedia article Fundamental_group. Choose a spanning tree for the connected component of the 1-skeleton containing the base point, and then the group’s generators are given by the non-degenerate edges. There are two types of relations: $e = 1$ if e is in the spanning tree, and for every 2-simplex, if its faces are $e_0, e_1,$ and e_2, then we impose the relation $e_0e_1^{-1}e_2 = 1$, where we first set $e_i = 1$ if e_i is degenerate.
EXAMPLES:

```python
sage: S1 = simplicial_sets.Sphere(1)
sage: eight = S1.wedge(S1)
sage: eight.fundamental_group() # free group on 2 generators
Finitely presented group < e0, e1 | >
```

The fundamental group of a disjoint union of course depends on the choice of base point:

```python
sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: X = T.disjoint_union(K)
sage: X_0 = X.set_base_point(X.n_cells(0)[0])
sage: X_0.fundamental_group().is_abelian()
True
sage: X_1 = X.set_base_point(X.n_cells(0)[1])
sage: X_1.fundamental_group().is_abelian()
False
sage: RP3 = simplicial_sets.RealProjectiveSpace(3)
sage: RP3.fundamental_group()
Finitely presented group < e | e^2 >
```

Compute the fundamental group of some classifying spaces:

```python
sage: C5 = groups.misc.MultiplicativeAbelian([5])
sage: BC5 = C5.nerve()
sage: BC5.fundamental_group()
Finitely presented group < e0 | e0^5 >
sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = Sigma3.nerve()
sage: pi = BSigma3.fundamental_group(); pi
Finitely presented group < e0, e1 | e0^2, e1^3, (e0*e1^-1)^2 >
sage: pi.order()
6
sage: pi.is_abelian()
False
```

The sphere has a trivial fundamental group:

```python
sage: S2 = simplicial_sets.Sphere(2)
sage: S2.fundamental_group()
Finitely presented group < | >
```

is_simply_connected()

Return `True` if this pointed simplicial set is simply connected.

Warning: Determining simple connectivity is not always possible, because it requires determining when a group, as given by generators and relations, is trivial. So this conceivably may give a false negative in some cases.

EXAMPLES:
```python
sage: T = simplicial_sets.Torus()
sage: T.is_simply_connected()
False
sage: T.suspension().is_simply_connected()
True
sage: simplicial_sets.KleinBottle().is_simply_connected()
False
sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: (S2.wedge(S3)).is_simply_connected()
True
sage: X = S2.disjoint_union(S3)
sage: X = X.set_base_point(X.n_cells(0)[0])
sage: X.is_simply_connected()
False
sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.is_simply_connected()
False
```

```python
class SubcategoryMethods

    Bases: object

    Pointed()

    A simplicial set is pointed if it has a distinguished base point.

    EXAMPLES:

    ```python
sage: from sage.categories.simplicial_sets import SimplicialSets
sage: SimplicialSets().Pointed().Finite()
Category of finite pointed simplicial sets
sage: SimplicialSets().Finite().Pointed()
Category of finite pointed simplicial sets
```

```python
super_categories()

 EXAMPLES:

    ```python
sage: from sage.categories.simplicial_sets import SimplicialSets
sage: SimplicialSets().super_categories()
[Category of sets]
```

3.149 Super Algebras

```python
class sage.categories.super_algebras.SuperAlgebras(base_category)

    Bases: sage.categories.super_modules.SuperModulesCategory

    The category of super algebras.

    An $R$-super algebra is an $R$-super module $A$ endowed with an $R$-algebra structure satisfying

    $$A_0 A_0 \subseteq A_0, \quad A_0 A_1 \subseteq A_1, \quad A_1 A_0 \subseteq A_1, \quad A_1 A_1 \subseteq A_0$$

    and $1 \in A_0$.

    EXAMPLES:
```

3.149. Super Algebras
sage: Algebras(ZZ).Super()
Category of super algebras over Integer Ring

class ParentMethods
 Bases: object

 graded_algebra()
 Return the associated graded algebra to self.

 Warning: Because a super module M is naturally $\mathbb{Z}/2\mathbb{Z}$-graded, and graded modules have a natural filtration induced by the grading, if M has a different filtration, then the associated graded module $\text{gr } M \neq M$. This is most apparent with super algebras, such as the differential Weyl algebra, and the multiplication may not coincide.

tensor(*parents, **kwargs)
 Return the tensor product of the parents.

 EXAMPLES:

 sage: A.<x,y,z> = ExteriorAlgebra(ZZ); A.rename("A")
 sage: T = A.tensor(A,A); T
 A # A # A
 sage: T in Algebras(ZZ).Graded().SignedTensorProducts()
 True
 sage: T in Algebras(ZZ).Graded().TensorProducts()
 False
 sage: A.rename(None)

 This also works when the other elements do not have a signed tensor product (trac ticket #31266):

 sage: a = SteenrodAlgebra(3).an_element()
 sage: M = CombinatorialFreeModule(GF(3), ["s", "t", "u"])
 sage: s = M.basis()["s"]
 sage: tensor([a, s])
 2*Q_1 Q_3 P(2,1) # B["s"]

class SignedTensorProducts (category, *args)
 Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

 extra_super_categories()

 EXAMPLES:

 sage: Coalgebras(QQ).Graded().SignedTensorProducts().extra_super_categories()
 [Category of graded coalgebras over Rational Field]
 sage: Coalgebras(QQ).Graded().SignedTensorProducts().super_categories()
 [Category of graded coalgebras over Rational Field]

 Meaning: a signed tensor product of coalgebras is a coalgebra

class SubcategoryMethods
 Bases: object

 Supercommutative()
 Return the full subcategory of the supercommutative objects of self.
A super algebra \(M \) is supercommutative if, for all homogeneous \(x, y \in M \),

\[
x \cdot y = (-1)^{|x||y|} y \cdot x.
\]

REFERENCES:
Wikipedia article Supercommutative_algebra

EXAMPLES:

```python
sage: Algebras(ZZ).Super().Supercommutative()
Category of supercommutative algebras over Integer Ring
sage: Algebras(ZZ).Super().WithBasis().Supercommutative()
Category of supercommutative algebras with basis over Integer Ring
```

Supercommutative

alias of \(\text{sage.categories.supercommutative_algebras.\text{SupercommutativeAlgebras}} \)

extra_super_categories()

EXAMPLES:

```python
sage: Algebras(ZZ).Super().super_categories() # indirect doctest
[Category of graded algebras over Integer Ring,
 Category of super modules over Integer Ring]
```

3.150 Super algebras with basis

class \(\text{sage.categories.super_algebras_with_basis.\text{SuperAlgebrasWithBasis}}(\text{base_category}) \)

Bases: \(\text{sage.categories.super_modules.\text{SuperModulesCategory}} \)

The category of super algebras with a distinguished basis

EXAMPLES:

```python
sage: C = Algebras(ZZ).WithBasis().Super(); C
Category of super algebras with basis over Integer Ring
```

class ParentMethods

Bases: object

graded_algebra()

Return the associated graded module to \(self \).

See \text{AssociatedGradedAlgebra} for the definition and the properties of this.

See also:

graded_algebra()

EXAMPLES:

```python
sage: W.<x,y> = algebras.DifferentialWeyl(QQ)
sage: W.graded_algebra()
Graded Algebra of Differential Weyl algebra of polynomials in x, y over Rational Field
```
class SignedTensorProducts (category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

The category of super algebras with basis constructed by tensor product of super algebras with basis.

extra_super_categories()

EXAMPLES:

```
sage: Algebras(QQ).Super().SignedTensorProducts().extra_super_categories()
[Category of super algebras over Rational Field]
sage: Algebras(QQ).Super().SignedTensorProducts().super_categories()
[Category of signed tensor products of graded algebras over Rational Field,
  Category of super algebras over Rational Field]
```

Meaning: a signed tensor product of super algebras is a super algebra

extra_super_categories()

EXAMPLES:

```
sage: C = Algebras(ZZ).WithBasis().Super(); C
Category of super hopf algebras with basis over Integer Ring
sage: sorted(C.super_categories(), key=str) # indirect doctest
[Category of graded algebras with basis over Integer Ring,
  Category of super algebras over Integer Ring,
  Category of super modules with basis over Integer Ring]
```

3.151 Super Hopf algebras with basis

class sage.categories.super_hopf_algebras_with_basis.SuperHopfAlgebrasWithBasis (base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super Hopf algebras with a distinguished basis.

EXAMPLES:

```
sage: C = HopfAlgebras(ZZ).WithBasis().Super(); C
Category of super hopf algebras with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of super algebras with basis over Integer Ring,
  Category of super coalgebras with basis over Integer Ring,
  Category of super hopf algebras over Integer Ring]
```

class ParentMethods
Bases: object

antipode()

The antipode of this Hopf algebra.

If antipode_basis() is available, this constructs the antipode morphism from self to self by extending it by linearity. Otherwise, self.antipode_by_coercion() is used, if available.

EXAMPLES:

```
sage: A = SteenrodAlgebra(7)
sage: a = A.an_element()
sage: a, A.antipode(a)
(6 Q_1 Q_3 P(2,1), Q_1 Q_3 P(2,1))
```
3.152 Super Lie Conformal Algebras

AUTHORS:


```python
class sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras(base_category):
    Bases: sage.categories.super_modules.SuperModulesCategory
    
The category of super Lie conformal algebras.
```

EXAMPLES:

```python
sage: LieConformalAlgebras(AA).Super()
Category of super Lie conformal algebras over Algebraic Real Field
```

Notice that we can force to have a purely even super Lie conformal algebra:

```python
sage: bosondict = {('a','a'):{1:{('K',0):1}}}
sage: R = LieConformalAlgebra(QQ,bosondict,names=('a',),
....: central_elements=('K',), super=True)
sage: [g.is_even_odd() for g in R.gens()]
[0, 0]
```

```python
class ElementMethods
    Bases: object
    
    is_even_odd()
        Return 0 if this element is even and 1 if it is odd.
```

EXAMPLES:

```python
sage: R = lie_conformal_algebras.NeveuSchwarz(QQ);
sage: R.inject_variables()
Defining L, G, C
sage: G.is_even_odd()
1
```

```python
class Graded(base_category):
    Bases: sage.categories.graded_modules.GradedModulesCategory
    
The category of H-graded super Lie conformal algebras.
```

EXAMPLES:

```python
sage: LieConformalAlgebras(AA).Super().Graded()
Category of H-graded super Lie conformal algebras over Algebraic Real Field
```

```python
class ParentMethods
    Bases: object
    
    example()
        An example parent in this category.
```

EXAMPLES:

```python
sage: LieConformalAlgebras(QQ).Super().example()
The Neveu-Schwarz super Lie conformal algebra over Rational Field
```

```python
extra_super_categories()
    The extra super categories of self.
```
 EXAMPLES:

```python
sage: LieConformalAlgebras(QQ).Super().super_categories()
[Category of super modules over Rational Field,
 Category of Lambda bracket algebras over Rational Field]
```

3.153 Super modules

class `sage.categories.super_modules.SuperModules(base_category)`

Bases: `sage.categories.super_modules.SuperModulesCategory`

The category of super modules.

An R-super module (where R is a ring) is an R-module M equipped with a decomposition $M = M_0 \oplus M_1$ into two R-submodules M_0 and M_1 (called the even part and the odd part of M, respectively).

Thus, an R-super module automatically becomes a $\mathbb{Z}/2\mathbb{Z}$-graded R-module, with M_0 being the degree-0 component and M_1 being the degree-1 component.

EXAMPLES:

```python
sage: Modules(ZZ).Super() Category of super modules over Integer Ring
sage: Modules(ZZ).Super().super_categories() [Category of graded modules over Integer Ring]
```

The category of super modules defines the super structure which shall be preserved by morphisms:

class `ElementMethods`

Bases: `object`

is_even()

Return if `self` is an even element.

EXAMPLES:

```python
sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_even() False
sage: C.basis()[2,2].is_even() True
```

is_even_odd()

Return 0 if `self` is an even element or 1 if an odd element.

Note: The default implementation assumes that the even/odd is determined by the parity of degree().

Overwrite this method if the even/odd behavior is desired to be independent.

EXAMPLES:
```python
sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_even_odd()
1
sage: C.basis()[2,2].is_even_odd()
0
```

.. _is_odd:

is_odd()

Return if :class:`self` is an odd element.

EXAMPLES:

```python
sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_odd()
True
sage: C.basis()[2,2].is_odd()
False
```

.. _class ParentMethods:

class ParentMethods

Bases: object

extra_super_categories()

Add :class:`VectorSpaces` to the super categories of :class:`self` if the base ring is a field.

EXAMPLES:

```python
sage: Modules(QQ).Super().extra_super_categories()
[Category of vector spaces over Rational Field]
sage: Modules(ZZ).Super().extra_super_categories()
[]
```

This makes sure that :class:`Modules(QQ).Super()` returns an instance of :class:`SuperModules` and not a join category of an instance of this class and of :class:`VectorSpaces(QQ)`:

```python
sage: type(Modules(QQ).Super())
<class 'sage.categories.super_modules.SuperModules_with_category'>
```

Todo: Get rid of this workaround once there is a more systematic approach for the alias :class:`Modules(QQ) -> VectorSpaces(QQ)`. Probably the latter should be a category with axiom, and covariant constructions should play well with axioms.

super_categories()

EXAMPLES:

```python
sage: Modules(ZZ).Super().super_categories()
[Category of graded modules over Integer Ring]
```

Nota bene:

```python
sage: Modules(QQ).Super()
Category of super modules over Rational Field
sage: Modules(QQ).Super().super_categories()
[Category of graded modules over Rational Field]
```

.. _3.153. Super modules:

3.153. **Super modules** 703
class sage.categories.super_modules.SuperModulesCategory(base_category)

Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory, sage.categories.category_types.Category_over_base_ring

EXAMPLES:

sage: C = Algebras(QQ).Super()
sage: C
Category of super algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of graded algebras over Rational Field, Category of super modules over Rational Field]
sage: AlgebrasWithBasis(QQ).Super().base_ring()
Rational Field
sage: HopfAlgebrasWithBasis(QQ).Super().base_ring()
Rational Field

classmethod default_super_categories(category, *args)

Return the default super categories of \(\mathcal{F} \mathcal{C}_\mathcal{A}(\mathcal{B}, ...) \) for \(\mathcal{A}, \mathcal{B}, ... \) parents in \(\mathcal{C}\mathcal{A}t \).

INPUT:

- \(\text{cls} \) – the category class for the functor \(\mathcal{F} \)
- \(\text{category} \) – a category \(\mathcal{C}\mathcal{A}t \)
- \(\text{*args} \) – further arguments for the functor

OUTPUT:

A join category.

This implements the property that subcategories constructed by the set of whitelisted axioms is a subcategory.

EXAMPLES:

sage: HopfAlgebras(ZZ).WithBasis().FiniteDimensional().Super() # indirect doctest
Category of finite dimensional super hopf algebras with basis over Integer

3.154 Super modules with basis

class sage.categories.super_modules_with_basis.SuperModulesWithBasis(base_category)

Bases: sage.categories.super_modules.SuperModulesCategory

The category of super modules with a distinguished basis.

An \(R \)-super module with a distinguished basis is an \(R \)-super module equipped with an \(R \)-module basis whose elements are homogeneous.

EXAMPLES:
class ElementMethods

 Bases: object

 even_component()

 Return the even component of self.

 EXAMPLES:

 sage: Q = QuadraticForm(QQ, 2, [1,2,3])
 sage: C.<x,y> = CliffordAlgebra(Q)
 sage: a = x*y + x - 3*y + 4
 sage: a.even_component()
 x*y + 4

 is_even_odd()

 Return 0 if self is an even element and 1 if self is an odd element.

 EXAMPLES:

 sage: Q = QuadraticForm(QQ, 2, [1,2,3])
 sage: C.<x,y> = CliffordAlgebra(Q)
 sage: a = x + y
 sage: a.is_even_odd()
 1
 sage: a = x*y + 4
 sage: a.is_even_odd()
 0
 sage: a = x + 4
 sage: a.is_even_odd()
 Traceback (most recent call last):
 ...
 ValueError: element is not homogeneous

 sage: E.<x,y> = ExteriorAlgebra(QQ)
 sage: (x*y).is_even_odd()
 0

 is_super_homogeneous()

 Return whether this element is homogeneous, in the sense of a super module (i.e., is even or odd).

 EXAMPLES:

 sage: Q = QuadraticForm(QQ, 2, [1,2,3])
 sage: C.<x,y> = CliffordAlgebra(Q)
 sage: a = x + y
 sage: a.is_super_homogeneous()
 True
 sage: a = x*y + 4
 sage: a.is_super_homogeneous()
 True

 (continues on next page)
The exterior algebra has a \(\mathbb{Z} \) grading, which induces the \(\mathbb{Z}/2\mathbb{Z} \) grading. However the definition of homogeneous elements differs because of the different gradings:

```
sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: a = x*y + 4
sage: a.is_super_homogeneous()
True
sage: a.is_homogeneous()
False
```

```
odd_component()
Return the odd component of self.

EXAMPLES:

```
sage: Q = QuadraticForm(QQ, 2, [1,2,3])
sage: C.<x,y> = CliffordAlgebra(Q)
sage: a = x*y + x - 3*y + 4
sage: a.odd_component()
x - 3*y
```

### 3.155 Supercommutative Algebras

The category of supercommutative algebras.

An \( R \)-supercommutative algebra is an \( R \)-super algebra \( A = A_0 \oplus A_1 \) endowed with an \( R \)-super algebra structure satisfying:

\[
x_0x'_0 = x'_0x_0, \quad x_1x'_1 = -x'_1x_1, \quad x_0x_1 = x_1x_0,
\]

for all \( x_0, x'_0 \in A_0 \) and \( x_1, x'_1 \in A_1 \).

```
sage: Algebras(ZZ).Supercommutative()
Category of supercommutative algebras over Integer Ring
```

class **SignedTensorProducts**

Bases: `sage.categories.signed_tensor.SignedTensorProductsCategory`

```
extra_super_categories()
Return the extra super categories of self.

A signed tensor product of supercommutative algebras is a supercommutative algebra.

EXAMPLES:
```
```python
sage: C = Algebras(ZZ).Supercommutative().SignedTensorProducts()
sage: C.extra_super_categories()
[Category of supercommutative algebras over Integer Ring]
```

```python
class WithBasis(base_category)
Bases:
 sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods
Bases:
 object
```

## 3.156 Supercrystals

```python
class sage.categories.supercrystals.SuperCrystals(s=None)
 Bases:
 sage.categories.category_singleton.Category_singleton

class Finite(base_category)
 Bases:
 sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class ElementMethods
Bases:
 object

 is_genuine_highest_weight(index_set=None)

 Return whether self is a genuine highest weight element.

 INPUT:
 • index_set – (optional) the index set of the (sub)crystal on which to check

 EXAMPLES:

    ```python
    sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
    sage: for b in B.highest_weight_vectors():
    ....:     print("{} {}".format(b, b.is_genuine_highest_weight()))
    [[-2, -2, -2], [-1, -1], [1]] True
    [[-2, -2, -2], [-1, 2], [1]] False
    [[-2, -2, 2], [-1, -1], [1]] False
    ```

    ```python
    sage: [b for b in B if b.is_genuine_highest_weight([-1,0])]
    [[[-2, -2, -2], [-1, -1], [1]],
     [[-2, -2, -2], [-1, 2], [2]],
     [[-2, -2, 2], [-1, -1], [2]],
     [[-2, -2, 2], [-1, 2], [2]],
     [[-2, -2, -2], [-1, 2], [1]],
     [[-2, -2, 2], [-1, -1], [1]],
     [[-2, -2, 2], [-1, 2], [1]]]
    ```
```

```python
 is_genuine_lowest_weight(index_set=None)

 Return whether self is a genuine lowest weight element.

 INPUT:
 • index_set – (optional) the index set of the (sub)crystal on which to check

 EXAMPLES:

    ```python
    sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
    sage: for b in sorted(B.lowest_weight_vectors()):
    ....:     print("{} {}".format(b, b.is_genuine_lowest_weight()))
    [[-2, 1, 2], [-1, 2], [1]] False
    ```
```

(continues on next page)
\[
[-2, 1, 2], [-1, 2], [2] \text{ False}
\]
\[
[-1, 1, 2], [1, 2], [2] \text{ True}
\]
\[
sage: [b \text{ for } b \text{ in } B \text{ if } b.\text{is_genuine_lowest_weight}([-1,0])]
\]
\[
[[-2, -1, 1], [-1, 1], [1]],
[[-2, -1, 1], [-1, 1], [2]],
[[-2, 1, 2], [-1, 1], [2]],
[[-2, 1, 2], [-1, 1], [1]],
[[-1, -1, 1], [1, 2], [2]],
[[-1, -1, 1], [1, 2], [1]],
[[-1, 1, 2], [1, 2], [2]],
[[-1, 1, 2], [1, 2], [1]]
\]

class ParentMethods

Bases: object

def character()
    Return the character of self.

Todo: Once the \textit{WeylCharacterRing} is implemented, make this consistent with the implementation in \texttt{sage.categories.classical_crystals.ClassicalCrystals.ParenMethods.character()}.

EXAMPLES:

\[
sage: B = \text{crystals.Letters(['A', [1,2]])}
sage: B.character()
\]

connected_components()

Return the connected components of self as subcrystals.

EXAMPLES:

\[
sage: B = \text{crystals.Letters(['A', [1,2]])}
sage: B.connected_components()
\]

connected_components_generators()

Return the tuple of genuine highest weight elements of self.

EXAMPLES:

\[
sage: B = \text{crystals.Letters(['A', [1,2]])}
sage: B.genuine_highest_weight_vectors()
\]
sage: T = B.tensor(B)
sage: T.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])
sage: s1, s2 = T.connected_components()
sage: s = s1 + s2
sage: s.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])

digraph (index_set=None)
Return the DiGraph associated to self.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,3]])
sage: G = B.digraph(); G
Multi-digraph on 6 vertices
sage: Q = crystals.Letters(['Q',3])
sage: G = Q.digraph(); G
Multi-digraph on 3 vertices
sage: G.edges()
[(1, 2, -1), (1, 2, 1), (2, 3, -2), (2, 3, 2)]

The edges of the crystal graph are by default colored using blue for edge 1, red for edge 2, green for edge 3, and dashed with the corresponding color for barred edges. Edge 0 is dotted black:

sage: view(G) 

sage: B = crystals.Letters(['A', [1,2]])
sage: B.genuine_highest_weight_vectors()
(-2,)

sage: T = B.tensor(B)
sage: T.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])

sage: s1, s2 = T.connected_components()
sage: s = s1 + s2
sage: s.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])

genuine_lowest_weight_vectors()
Return the tuple of genuine lowest weight elements of self.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,2]])
sage: B.genuine_lowest_weight_vectors()
(3,)

sage: T = B.tensor(B)
sage: T.genuine_lowest_weight_vectors()
([3, 3], [3, 2])

(continues on next page)
We give an example from [BKK2000] that has fake highest weight vectors:

```python
sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: B.highest_weight_vectors()
([([-2, 1, 2], [-1, 2], [1]),
 [([-2, 1, 2], [-1, 2], [2]),
 [[[-1, 1, 2], [1, 2], [2]],
 [[-1, 1, 2], [1, 2], [2]])
sage: B.genuine_highest_weight_vectors()
([([-1, 1, 2], [1, 2], [2]),])
```

We give an example from [BKK2000] that has fake lowest weight vectors:

```python
sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: sorted(B.lowest_weight_vectors())
[[-1, 1, 2], [1, 2], [2]]
sage: B.genuine_lowest_weight_vectors()
[[-1, 1, 2], [1, 2], [2]]
```

```
class ParentMethods
 Bases: object
tensor(*crystals, **options)
 Return the tensor product of self with the crystals B.
 EXAMPLES:
```
class TensorProducts (category, *args)

Bases: sage.categories.tensor.TensorProductsCategory

The category of regular crystals constructed by tensor product of regular crystals.

extra_super_categories()

EXAMPLES:

```python
sage: from sage.categories.supercrystals import SuperCrystals
tsage: SuperCrystals().TensorProducts().extra_super_categories()
[Category of super crystals]
```

super_categories()

EXAMPLES:

```python
sage: from sage.categories.supercrystals import SuperCrystals
tsage: C = SuperCrystals()
tsage: C.super_categories()
[Category of crystals]
```

3.157 Topological Spaces

class sage.categories.topological_spaces.TopologicalSpaces (category, *args)

Bases: sage.categories.topological_spaces.TopologicalSpacesCategory

The category of topological spaces.

EXAMPLES:

```python
tsage: Sets().Topological()
Category of topological spaces
tsage: Sets().Topological().super_categories()
[Category of sets]
```

The category of topological spaces defines the topological structure, which shall be preserved by morphisms:

```python
tsage: Sets().Topological().additional_structure()
Category of topological spaces
```

class CartesianProducts (category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory
extra_super_categories()
Implement the fact that a (finite) Cartesian product of topological spaces is a topological space.

EXAMPLES:

```
sage: from sage.categories.topological_spaces import TopologicalSpaces
tsage: C = TopologicalSpaces().CartesianProducts()
tsage: C.extra_super_categories()
[Category of topological spaces]
tsage: C.super_categories()
[Category of Cartesian products of sets, Category of topological spaces]
tsage: C.axioms()
frozenset()
```

class Compact (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
The category of compact topological spaces.

class CartesianProducts (category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory
extra_super_categories()
Implement the fact that a (finite) Cartesian product of compact topological spaces is compact.

EXAMPLES:

```
sage: from sage.categories.topological_spaces import TopologicalSpaces
tsage: C = TopologicalSpaces().Compact().CartesianProducts()
tsage: C.extra_super_categories()
[Category of compact topological spaces]
tsage: C.super_categories()
[Category of Cartesian products of topological spaces, Category of compact topological spaces]
tsage: C.axioms()
frozenset({'Compact'})
```

class Connected (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
The category of connected topological spaces.

class CartesianProducts (category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory
extra_super_categories()
Implement the fact that a (finite) Cartesian product of connected topological spaces is connected.

EXAMPLES:

```
sage: from sage.categories.topological_spaces import TopologicalSpaces
tsage: C = TopologicalSpaces().Connected().CartesianProducts()
tsage: C.extra_super_categories()
[Category of connected topological spaces]
tsage: C.super_categories()
[Category of Cartesian products of topological spaces, Category of connected topological spaces]
tsage: C.axioms()
frozenset({'Connected'})
```
class SubcategoryMethods
    Bases: object

    Compact()
    Return the subcategory of the compact objects of self.

    EXAMPLES:

    sage: Sets().Topological().Compact()
    Category of compact topological spaces

    Connected()
    Return the full subcategory of the connected objects of self.

    EXAMPLES:

    sage: Sets().Topological().Connected()
    Category of connected topological spaces

class sage.categories.topological_spaces.TopologicalSpacesCategory(*category, *args)
    Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

3.158 Kac-Moody Algebras With Triangular Decomposition Basis

AUTHORS:

• Travis Scrimshaw (07-15-2017): Initial implementation

class sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras(*base, name=None)
    Bases: sage.categories.category_types.Category_over_base_ring

Category of Kac-Moody algebras with a distinguished basis that respects the triangular decomposition.
We require that the grading group is the root lattice of the appropriate Cartan type.

class ElementMethods
    Bases: object

    part()
    Return whether the element v is in the lower, zero, or upper part of self.

    OUTPUT:

    −1 if v is in the lower part, 0 if in the zero part, or 1 if in the upper part

    EXAMPLES:

    sage: L = LieAlgebra(QQ, cartan_type="F4")
    sage: L.inject_variables()
    Defining e1, e2, e3, e4, f1, f2, f3, f4, h1, h2, h3, h4
    sage: e1.part()
    1
    sage: f4.part()
    -1
    sage: (h2 + h3).part()
    0
    sage: (f1.bracket(f2) + 4*f4).part()

(continues on next page)
class ParentMethods
Bases: object

e(i=None)
   Return the generators e of self.
   INPUT:
   • i – (optional) if specified, return just the generator e_i
   EXAMPLES:

   sage: L = lie_algebras.so(QQ, 5)
sage: L.e()
Finite family {1: E[alpha[1]], 2: E[alpha[2]]}
sage: L.e(1)
E[alpha[1]]

f(i=None)
   Return the generators f of self.
   INPUT:
   • i – (optional) if specified, return just the generator f_i
   EXAMPLES:

   sage: L = lie_algebras.so(QQ, 5)
sage: L.f()
Finite family {1: E[-alpha[1]], 2: E[-alpha[2]]}
sage: L.f(1)
E[-alpha[1]]

verma_module(la, basis_key=None, **kwds)
   Return the Verma module with highest weight la over self.
   INPUT:
   • basis_key – (optional) a key function for the indexing set of the basis elements of self
   EXAMPLES:

   sage: L = lie_algebras.sl(QQ, 3)
sage: P = L.cartan_type().root_system().weight_lattice()
sage: La = P.fundamental_weights()
sage: M = L.verma_module(La[1]+La[2])
sage: M
of Lie algebra of ['A', 2] in the Chevalley basis

super_categories()
EXAMPLES:

sage: from sage.categories.triangular_kac_moody_algebras import _
   →TriangularKacMoodyAlgebras
sage: TriangularKacMoodyAlgebras(QQ).super_categories()
3.159 Unique factorization domains

class sage.categories.unique_factorization_domains.UniqueFactorizationDomains(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of unique factorization domains constructive unique factorization domains, i.e. where one can
constructively factor members into a product of a finite number of irreducible elements

EXAMPLES:

sage: UniqueFactorizationDomains()
Category of unique factorization domains
sage: UniqueFactorizationDomains().super_categories()
[Category of gcd domains]

class ElementMethods
Bases: object

radical(*args, **kwds)

Return the radical of this element, i.e. the product of its irreducible factors.

This default implementation calls squarefree_decomposition if available, and factor otherwise.

See also:

squarefree_part()

EXAMPLES:

sage: Pol.<x> = QQ[]
sage: (x^2*(x-1)^3).radical()
x^2 - x
sage: pol = 37 * (x-1)^3 * (x-2)^2 * (x-1/3)^7 * (x-3/7)
sage: pol.radical()
37*x^4 - 2923/21*x^3 + 1147/7*x^2 - 1517/21*x + 74/7
sage: Integer(10).radical()
10
sage: Integer(-100).radical()
10
sage: Integer(0).radical()
Traceback (most recent call last):
... ArithmeticError: Radical of 0 not defined.

The next example shows how to compute the radical of a number, assuming no prime > 100000 has
exponent > 1 in the factorization:

sage: n = 2^1000-1; n / radical(n, limit=100000)
125
squarefree_part()
Return the square-free part of this element, i.e. the product of its irreducible factors appearing with odd multiplicity.

This default implementation calls squarefree_decomposition.

See also:
radical()

EXAMPLES:

```
sage: Pol.<x> = QQ[]
sage: (x^2*(x-1)^3).squarefree_part()
x - 1
sage: pol = 37 * (x-1)^3 * (x-2)^2 * (x-1/3)^7 * (x-3/7)
sage: pol.squarefree_part()
37*x^3 - 1369/21*x^2 + 703/21*x - 37/7
```

class ParentMethods
Bases: object

is_unique_factorization_domain(proof=True)
Return True, since this in an object of the category of unique factorization domains.

EXAMPLES:

```
sage: Parent(QQ,category=UniqueFactorizationDomains()).is_unique_factorization_domain()
True
```

additional_structure()
Return whether self is a structure category.

See also:
Category.additional_structure()
The category of unique factorization domains does not define additional structure: a ring morphism between unique factorization domains is a unique factorization domain morphism.

EXAMPLES:

```
sage: UniqueFactorizationDomains().additional_structure()
```

super_categories()
EXAMPLES:

```
sage: UniqueFactorizationDomains().super_categories()
[Category of gcd domains]
```
3.160 Unital algebras

class sage.categories.unital_algebras.UnitalAlgebras (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of non-associative algebras over a given base ring.

A non-associative algebra over a ring \( R \) is a module over \( R \) which is also a unital magma.

Warning: Until trac ticket #15043 is implemented, Algebras is the category of associative unital algebras; thus, unlike the name suggests, UnitalAlgebras is not a subcategory of Algebras but of MagmaticAlgebras.

EXAMPLES:

```python
sage: from sage.categories.unital_algebras import UnitalAlgebras
sage: C = UnitalAlgebras(ZZ); C
Category of unital algebras over Integer Ring
```

class ParentMethods
Bases: object

\texttt{from\_base\_ring}(r)

Return the canonical embedding of \( r \) into self.

INPUT:

\begin{itemize}
  \item \texttt{r} – an element of self.base\_ring()
\end{itemize}

EXAMPLES:

```python
sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
sage: A.from_base_ring(1)
B[word:]
```

class WithBasis (base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods
Bases: object

\texttt{from\_base\_ring\_from\_one\_basis}(r)

Implement the canonical embedding from the ground ring.

INPUT:

\begin{itemize}
  \item \texttt{r} – an element of the coefficient ring
\end{itemize}

EXAMPLES:

```python
sage: A = AlgebrasWithBasis(QQ).example(); A
sage: A.from_base_ring_from_one_basis(3)
3*B
sage: A.from_base_ring(3)
3*B
```
one()
Return the multiplicative unit element.

EXAMPLES:

```
sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B[word:]
```

one_basis()
When the one of an algebra with basis is an element of this basis, this optional method can return
the index of this element. This is used to provide a default implementation of \texttt{one()}, and an
optimized default implementation of \texttt{from\_base\_ring()}.

EXAMPLES:

```
sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B[word:]
sage: A.from_base_ring(4)
4*B[word:]
```

one\_from\_one\_basis()
Return the one of the algebra, as per \texttt{Monoids.ParentMethods.one()}.

By default, this is implemented from \texttt{one\_basis()}, if available.

EXAMPLES:

```
sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one_from_one_basis()
B[word:]
sage: A.one()
B[word:]
```

Even if called in the wrong order, they should returns their respective one:

```
sage: Bone().parent() is B
True
sage: Aone().parent() is A
True
```
3.161 Vector Bundles

class sage.categories.vector_bundles.VectorBundles(base_space, base_field, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of vector bundles over any base space and base field.

See also:
TopologicalVectorBundle

EXAMPLES:

```python
sage: M = Manifold(2, 'M', structure='top')
sage: from sage.categories.vector_bundles import VectorBundles
sage: C = VectorBundles(M, RR); C
Category of vector bundles over Real Field with 53 bits of precision
with base space 2-dimensional topological manifold M
sage: C.super_categories()
[Category of topological spaces]
```

class Differentiable(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of differentiable vector bundles.

A differentiable vector bundle is a differentiable manifold with differentiable surjective projection on a
differentiable base space.

class Smooth(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of smooth vector bundles.

A smooth vector bundle is a smooth manifold with smooth surjective projection on a smooth base space.

class SubcategoryMethods
Bases: object

Differentiable()
Return the subcategory of the differentiable objects of self.

EXAMPLES:

```python
sage: M = Manifold(2, 'M')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).Differentiable()
Category of differentiable vector bundles over Real Field with 53 bits of precision with base space 2-dimensional differentiable manifold M
```

Smooth()
Return the subcategory of the smooth objects of self.

EXAMPLES:

```python
sage: M = Manifold(2, 'M')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).Smooth()
Category of smooth vector bundles over Real Field with 53 bits
```
of precision with base space 2-dimensional differentiable manifold M

```
basespace()
Return the base space of this category.
EXAMPLES:

sage: M = Manifold(2, 'M', structure='top')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).base_space()
2-dimensional topological manifold M
```

```
super_categories()
EXAMPLES:

sage: M = Manifold(2, 'M')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).super_categories()
[Category of topological spaces]
```

3.162 Vector Spaces

```
class sage.categories.vector_spaces.VectorSpaces(K)
 Bases: sage.categories.category_types.Category_module
The category of (abstract) vector spaces over a given field
with an embedding in an ambient vector space
EXAMPLES:

sage: VectorSpaces(QQ)
Category of vector spaces over Rational Field
sage: VectorSpaces(QQ).super_categories()
[Category of modules over Rational Field]
```

```
class CartesianProducts(category, *args)
 Bases: sage.categories.cartesian_product.CartesianProductsCategory
 extra_super_categories()
 The category of vector spaces is closed under Cartesian products:

sage: C = VectorSpaces(QQ)
 sage: C.CartesianProducts()
 Category of Cartesian products of vector spaces over Rational Field
 sage: C in C.CartesianProducts().super_categories()
 True
```

```
class DualObjects(category, *args)
 Bases: sage.categories.dual.DualObjectsCategory
 extra_super_categories()
 Returns the dual category
 EXAMPLES:
```
The category of algebras over the Rational Field is dual to the category of coalgebras over the same field:

```
sage: C = VectorSpaces(QQ)
sage: C.dual()
Category of duals of vector spaces over Rational Field
sage: C.dual().super_categories() # indirect doctest
[Category of vector spaces over Rational Field]
```

class **ElementMethods**

Bases: object

class **Filtered**(base_category)

Bases: `sage.categories.filtered_modules.FilteredModulesCategory`

Category of filtered vector spaces.

class **Graded**(base_category)

Bases: `sage.categories.graded_modules.GradedModulesCategory`

Category of graded vector spaces.

class **ParentMethods**

Bases: object

**dimension()**

Return the dimension of this vector space.

**EXAMPLES:**

```
sage: M = FreeModule(FiniteField(19), 100)
sage: W = M.submodule([M.gen(50)])
sage: W.dimension()
1
sage: M = FiniteRankFreeModule(QQ, 3)
sage: M.dimension()
3
sage: M.tensor_module(1,2).dimension()
27
```

class **TensorProducts**(category, *args)

Bases: `sage.categories.tensor.TensorProductsCategory`

**extra_super_categories()**

The category of vector spaces is closed under tensor products:

```
sage: C = VectorSpaces(QQ)
sage: C.TensorProducts()
Category of tensor products of vector spaces over Rational Field
sage: C in C.TensorProducts().super_categories()
True
```

class **WithBasis**(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

class **CartesianProducts**(category, *args)

Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

---

3.162. Vector Spaces  721
The category of vector spaces with basis is closed under Cartesian products:

```python
sage: C = VectorSpaces(QQ).WithBasis()
sage: C.CartesianProducts()
Category of Cartesian products of vector spaces with basis over Rational Field
sage: C in C.CartesianProducts().super_categories()
True
```

Category of filtered vector spaces with basis.

**example** *(base_ring=None)*

Return an example of a graded vector space with basis, as per `Category.example()`.

**EXAMPLES:**

```python
sage: Modules(QQ).WithBasis().Graded().example()
An example of a graded module with basis:
the free module on partitions over Rational Field
```

Category of graded vector spaces with basis.

**example** *(base_ring=None)*

Return an example of a graded vector space with basis, as per `Category.example()`.

**EXAMPLES:**

```python
sage: Modules(QQ).WithBasis().Graded().example()
An example of a graded module with basis:
the free module on partitions over Rational Field
```

The category of vector spaces with basis is closed under tensor products:

```python
sage: C = VectorSpaces(QQ).WithBasis()
sage: C.TensorProducts()
Category of tensor products of vector spaces with basis over Rational Field
sage: C in C.TensorProducts().super_categories()
True
```

Return whether this category is abelian.

This is always `True` since the base ring is a field.

**EXAMPLES:**

```python
sage: VectorSpaces(QQ).WithBasis().is_abelian()
True
```
additional_structure()

Return None.

Indeed, the category of vector spaces defines no additional structure: a bimodule morphism between two vector spaces is a vector space morphism.

See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

```
sage: VectorSpaces(QQ).additional_structure()
```

base_field()

Returns the base field over which the vector spaces of this category are all defined.

EXAMPLES:

```
sage: VectorSpaces(QQ).base_field()
Rational Field
```

super_categories()

EXAMPLES:

```
sage: VectorSpaces(QQ).super_categories()
[Category of modules over Rational Field]
```

### 3.163 Weyl Groups

class sage.categories.weyl_groups.WeylGroups(s=None)

Bases: sage.categories.category_singleton.Category_singleton

The category of Weyl groups

See the Wikipedia page of Weyl Groups.

EXAMPLES:

```
sage: WeylGroups()
Category of weyl groups
sage: WeylGroups().super_categories()
[Category of coxeter groups]
```

Here are some examples:

```
sage: WeylGroups().example() # todo: not implemented
sage: FiniteWeylGroups().example() # todo: not implemented
The symmetric group on [0, ..., 3]
sage: AffineWeylGroups().example() # todo: not implemented
sage: WeylGroup(['B', 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
```

This one will eventually be also in this category:
class ElementMethods
    Bases: object

bruhat_lower_covers_coroots()
    Return all 2-tuples \((v, \alpha)\) where \(v\) is covered by \(self\) and \(\alpha\) is the positive coroot such that \(self = v \cdot s_\alpha\) where \(s_\alpha\) is the reflection orthogonal to \(\alpha\).

    ALGORITHM:
    See bruhat_lower_covers() and bruhat_lower_covers_reflections() for Coxeter groups.

    EXAMPLES:

    sage: W = WeylGroup(['A',3], prefix='s')
    sage: w = W.from_reduced_word([3,1,2,1])
    sage: w.bruhat_lower_covers_coroots()
     (s3*s2*s1, alphacheck[2]), (s3*s1*s2, alphacheck[1])]

bruhat_upper_covers_coroots()
    Returns all 2-tuples \((v, \alpha)\) where \(v\) covers \(self\) and \(\alpha\) is the positive coroot such that \(self = v \cdot s_\alpha\) where \(s_\alpha\) is the reflection orthogonal to \(\alpha\).

    ALGORITHM:
    See bruhat_upper_covers() and bruhat_upper_covers_reflections() for Coxeter groups.

    EXAMPLES:

    sage: W = WeylGroup(['A',4], prefix='s')
    sage: w = W.from_reduced_word([3,1,2,1])
    sage: w.bruhat_upper_covers_coroots()
    [(s1*s2*s3*s2*s1, alphacheck[3]),
     (s2*s3*s1*s2*s1, alphacheck[2] + alphacheck[3]),
     (s3*s4*s1*s2*s1, alphacheck[4]),

inversion_arrangement(side='right')
    Return the inversion hyperplane arrangement of \(self\).

    INPUT:
    • side = 'right' (default) or 'left'

    OUTPUT:
    A (central) hyperplane arrangement whose hyperplanes correspond to the inversions of \(self\) given as roots.

    The side parameter determines on which side to compute the inversions.

    EXAMPLES:

    sage: W = WeylGroup(['A',3])
    sage: w = W.from_reduced_word([1, 2, 3, 1, 2])
    sage: A = w.inversion_arrangement(); A

(continues on next page)
Arrangement of 5 hyperplanes of dimension 3 and rank 3

```
sage: A.hyperplanes()
((Hyperplane 0*a1 + 0*a2 + a3 + 0,
 Hyperplane 0*a1 + a2 + 0*a3 + 0,
 Hyperplane 0*a1 + a2 + a3 + 0,
 Hyperplane a1 + a2 + 0*a3 + 0,
 Hyperplane a1 + a2 + a3 + 0)
```

The identity element gives the empty arrangement:

```
sage: W = WeylGroup(['A',3])
sage: W.one().inversion_arrangement()
Empty hyperplane arrangement of dimension 3
```

**inversions** *(side='right', inversion_type='reflections')*

Returns the set of inversions of `self`.

**INPUT:**
- `side` = 'right' (default) or 'left'
- `inversion_type` = 'reflections' (default), 'roots', or 'coroots'.

**OUTPUT:**

For reflections, the set of reflections `r` in the Weyl group such that `self < r`. For (co)roots, the set of positive (co)roots that are sent by `self` to negative (co)roots; their associated reflections are described above.

If `side` is 'left', the inverse Weyl group element is used.

**EXAMPLES:**

```
sage: W=WeylGroup(['C',2], prefix="s")
sage: w=W.from_reduced_word([1,2])
sage: w.inversions()
[s2, s2*s1*s2]
sage: w.inversions(inversion_type = 'reflections')
[s2, s2*s1*s2]
sage: w.inversions(inversion_type = 'roots')
[alpha[2], alpha[1] + alpha[2]]
sage: w.inversions(inversion_type = 'coroots')
[alphacheck[2], alphacheck[1] + 2*alphacheck[2]]
sage: w.inversions(side = 'left')
[s1, s1*s2*s1]
sage: w.inversions(side = 'left', inversion_type = 'roots')
[alpha[1], 2*alpha[1] + alpha[2]]
sage: w.inversions(side = 'left', inversion_type = 'coroots')
[alphacheck[1], alphacheck[1] + alphacheck[2]]
```

**is_pieri_factor** ()

Returns whether `self` is a Pieri factor, as used for computing Stanley symmetric functions.

**See also:**
- `stanley_symmetric_function`
- `WeylGroups.ParentMethods.pieri_factors`

**EXAMPLES:**
left_pieri_factorizations (max_length=None)

Returns all factorizations of self as uv, where u is a Pieri factor and v is an element of the Weyl group.

See also:

• WeylGroups.ParentMethods.pieri_factors()
• sage.combinat.root_system.pieri_factors

EXAMPLES:

If we take \( w = w_0 \) the maximal element of a strict parabolic subgroup of type \( A_{n_1} \times \cdots \times A_{n_k} \), then the Pieri factorizations are in correspondence with all Pieri factors, and there are \( \prod 2^{n_i} \) of them:
sage: W = WeylGroup(['C',4,1])
sage: w = W.from_reduced_word([0,3,2,1,0])
sage: w.left_pieri_factorizations().cardinality()
7
sage: [(u.reduced_word(),v.reduced_word()) for (u,v) in w.left_pieri_factorizations()]
[([], [3, 2, 0, 1, 0]),
 ([0], [3, 2, 1, 0]),
 ([3], [2, 0, 1, 0]),
 ([3, 0], [2, 1, 0]),
 ([3, 2], [0, 1, 0]),
 ([3, 2, 0], [1, 0]),
 ([3, 2, 0, 1], [0])]

quantum_bruhat_successors (index_set=None, roots=False, quantum_only=False)

Return the successors of self in the quantum Bruhat graph on the parabolic quotient of the Weyl group determined by the subset of Dynkin nodes index_set.

INPUT:
- self - a Weyl group element, which is assumed to be of minimum length in its coset with respect to the parabolic subgroup
- index_set - (default: None) indicates the set of simple reflections used to generate the parabolic subgroup; the default value indicates that the subgroup is the identity
- roots - (default: False) if True, returns the list of 2-tuples (w, α) where w is a successor and α is the positive root associated with the successor relation
- quantum_only - (default: False) if True, returns only the quantum successors

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2])
sage: w.quantum_bruhat_successors([1], roots = True)
[(s3, alpha[2]), (s1*s2*s3*s2, alpha[3]),
 (s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3])]
sage: w.quantum_bruhat_successors([1,3])
[1, s2*s3*s1*s2]
sage: w.quantum_bruhat_successors(roots = True)
[(s3*s1*s2*s1, alpha[1]),
 (s3*s1, alpha[2]),
 (s1*s2*s3*s2, alpha[3]),
 (s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3])]
sage: w.quantum_bruhat_successors()
[s3*s1*s2*s1, s3*s1, s1*s2*s3*s2, s2*s3*s1*s2]
sage: w.quantum_bruhat_successors(quantum_only = True)
[s3*s1]
sage: w = W.from_reduced_word([2,3])
sage: w.quantum_bruhat_successors([1,3])
Traceback (most recent call last):
...
ValueError: s2*s3 is not of minimum length in its coset of the parabolic subroup generated by the reflections (1, 3)

reflection_to_coroot ()
Returns the coroot associated with the reflection \texttt{self}.

**EXAMPLES:**

```python
sage: W=WeylGroup(['C',2],prefix="s")
sage: W.from_reduced_word([1,2,1]).reflection_to_coroot()
```

```python
sage: W.from_reduced_word([1,2]).reflection_to_coroot()
Traceback (most recent call last):
... ValueError: s1*s2 is not a reflection
```

```python
sage: W.long_element().reflection_to_coroot()
Traceback (most recent call last):
... ValueError: s2*s1*s2*s1 is not a reflection
```

**reflection_to_root()**

Returns the root associated with the reflection \texttt{self}.

**EXAMPLES:**

```python
sage: W=WeylGroup(['C',2],prefix="s")
sage: W.from_reduced_word([1,2,1]).reflection_to_root()
```

```python
sage: W.from_reduced_word([1,2]).reflection_to_root()
Traceback (most recent call last):
... ValueError: s1*s2 is not a reflection
```

```python
sage: W.long_element().reflection_to_root()
Traceback (most recent call last):
... ValueError: s2*s1*s2*s1 is not a reflection
```

**stanley_symmetric_function()**

Return the affine Stanley symmetric function indexed by \texttt{self}.

**INPUT:**

- \texttt{self} – an element \( w \) of a Weyl group

Returns the affine Stanley symmetric function indexed by \( w \). Stanley symmetric functions are defined as generating series of the factorizations of \( w \) into Pieri factors and weighted by a statistic on Pieri factors.

**See also:**

- \texttt{stanley_symmetric_function_as_polynomial()}
- \texttt{WeylGroups.ParentMethods.pieri_factors()}
- \texttt{sage.combinat.root_system.pieri_factors}

**EXAMPLES:**

```python
sage: W = WeylGroup(['A', 3, 1])
sage: W.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function()
8*m[1, 1, 1, 1, 1, 1, 1] + 4*m[2, 1, 1, 1, 1, 1] + 2*m[2, 2, 1, 1, 1] +
˓→m[2, 2, 2, 1]
sage: A = AffinePermutationGroup(['A',3,1])
sage: A.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function()
8*m[1, 1, 1, 1, 1, 1, 1] + 4*m[2, 1, 1, 1, 1, 1] + 2*m[2, 2, 1, 1, 1] +
˓→m[2, 2, 2, 1]
```
sage: W = WeylGroup(['C',3,1])
sage: W.from_reduced_word([0,2,1,0]).stanley_symmetric_function()
32*m[1, 1, 1, 1] + 16*m[2, 1, 1] + 8*m[2, 2] + 4*m[3, 1]

sage: W = WeylGroup(['B',3,1])
sage: W.from_reduced_word([3,2,1]).stanley_symmetric_function()
2*m[1, 1, 1] + m[2, 1] + 1/2*m[3]

sage: W = WeylGroup(['B',4])
sage: w = W.from_reduced_word([3,2,3,1])
sage: w.stanley_symmetric_function() # long time (6s on sage.math, 2011)
48*m[1, 1, 1, 1] + 24*m[2, 1, 1] + 12*m[2, 2] + 8*m[3, 1] + 2*m[4]

sage: A = AffinePermutationGroup(['A',4,1])
sage: a = A([-2,0,1,4,12])
sage: a.stanley_symmetric_function()
6*m[1, 1, 1, 1, 1, 1, 1, 1] + 5*m[2, 1, 1, 1, 1, 1, 1, 1] + 4*m[2, 2, 1, 1, 1, 1, 1, 1] + m[3, 1, 1, 1, 1, 1, 1, 1] + 3*m[4, 1, 1, 1, 1, 1, 1, 1] + 2*m[5, 1, 1, 1, 1, 1, 1, 1] + 1/2*m[6, 1, 1, 1, 1, 1, 1, 1]

One more example (trac ticket #14095):

sage: G = SymmetricGroup(4)
sage: w = G.from_reduced_word([3,2,3,1])
sage: w.stanley_symmetric_function()
3*m[1, 1, 1, 1] + 2*m[2, 1, 1] + m[2, 2] + m[3, 1]

REFERENCES:

• [BH1994]
• [Lam2008]
• [LSS2009]
• [Pon2010]

stanley_symmetric_function_as_polynomial(max_length=None)

Returns a multivariate generating function for the number of factorizations of a Weyl group element into Pieri factors of decreasing length, weighted by a statistic on Pieri factors.

See also:

• stanley_symmetric_function()
• WeylGroups.ParentMethods.pieri_factors()
• sage.combinat.root_system.pieri_factors

INPUT:

• self – an element \( w \) of a Weyl group \( W \)
• max_length – a non negative integer or infinity (default: infinity)

Returns the generating series for the Pieri factorizations \( w = u_1 \cdots u_k \), where \( u_i \) is a Pieri factor for all \( i, l(u_i) = \sum_{i=1}^{k} l(u_i) \) and \( \text{max_length} \geq l(u_1) \geq \cdots \geq l(u_k) \).

A factorization \( u_1 \cdots u_k \) contributes a monomial of the form \( \prod_{i=1}^{k} x_{l(u_i)} \), with coefficient given by \( \prod_{i=1}^{k} \delta_{c}(u_i) \), where \( c \) is a type-dependent statistic on Pieri factors, as returned by the method \( u[i] \). stanley_symm_poly_weight().

EXAMPLES:
Algorithm: Induction on the left Pieri factors. Note that this induction preserves subsets of $W$ which are stable by taking right factors, and in particular Grassmanian elements.

Finite
alias of `sage.categories.finite_weyl_groups.FiniteWeylGroups`

class ParentMethods
Bases: object

`coxeter_matrix()`
Return the Coxeter matrix associated to `self`.

EXAMPLES:

```
sage: G = WeylGroup(['A', 3])
sage: G.coxeter_matrix()
[1 3 2]
[3 1 3]
[2 3 1]
```

`pieri_factors(*args, **keywords)`
Returns the set of Pieri factors in this Weyl group.

For any type, the set of Pieri factors forms a lower ideal in Bruhat order, generated by all the conjugates of some special element of the Weyl group. In type $A_n$, this special element is $s_n \cdots s_1$, and the
conjugates are obtained by rotating around this reduced word. These are used to compute Stanley symmetric functions.

See also:

- `WeylGroups.ElementMethods.stanley_symmetric_function()`  
- `sage.combinat.root_system.pieri_factors`

EXAMPLES:

```python
sage: W = WeylGroup(['A',5,1])
sage: PF = W.pieri_factors()
sage: PF.cardinality()
63

sage: W = WeylGroup(['B',3])
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF])
[[],
 [1],
 [1, 2],
 [1, 2, 1],
 [1, 2, 3],
 [1, 2, 3, 1],
 [1, 2, 3, 2],
 [1, 2, 3, 2, 1],
 [2],
 [2, 1],
 [2, 3],
 [2, 3, 1],
 [2, 3, 2],
 [2, 3, 2, 1],
 [3],
 [3, 1],
 [3, 1, 2],
 [3, 1, 2, 1],
 [3, 2],
 [3, 2, 1]]
sage: W = WeylGroup(['C',4,1])
sage: PF = W.pieri_factors()
sage: W.from_reduced_word([3,2,0]) in PF
True
```

```python
quantum_bruhat_graph (index_set=())

Return the quantum Bruhat graph of the quotient of the Weyl group by a parabolic subgroup W_J.

INPUT:

- `index_set` – (default: ()) a tuple J of nodes of the Dynkin diagram

By default, the value for `index_set` indicates that the subgroup is trivial and the quotient is the full Weyl group.

EXAMPLES:

```python
sage: W = WeylGroup(['A',3], prefix="s")
sage: g = W.quantum_bruhat_graph((1,3))
sage: g
Parabolic Quantum Bruhat Graph of Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space) for nodes (1, 3): Digraph on 6 vertices
```

(continues on next page)
sage: g.vertices()
sage: g.vertices()
[s2*s3*s1*s2, s3*s1*s2, s1*s2, s3*s2, s2, 1]
sage: g.edges()
sage: g.edges()
[(s2*s3*s1*s2, s2, alpha[2]),
 (s3*s1*s2, s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3]),
 (s3*s1*s2, 1, alpha[2]),
 (s1*s2, s3*s1*s2, alpha[2] + alpha[3]),
 (s3*s2, s3*s1*s2, alpha[1] + alpha[2]),
 (s2, s1*s2, alpha[1] + alpha[2]),
 (s2, s3*s2, alpha[2] + alpha[3]),
 (1, s2, alpha[2])]
sage: W = WeylGroup(['A',3,1], prefix="s")
sage: g = W.quantum_bruhat_graph()
Traceback (most recent call last):
... ValueError: the Cartan type ['A', 3, 1] is not finite

additional_structure()
Return None.

Indeed, the category of Weyl groups defines no additional structure: Weyl groups are a special class of
Coxeter groups.

See also:
Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:
sage: WeylGroups().additional_structure()

super_categories()
EXAMPLES:
sage: WeylGroups().super_categories()

[Category of coxeter groups]

3.164 Technical Categories

3.164.1 Facade Sets

For background, see What is a facade set?.

class sage.categories.facade_sets.FacadeSets(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiomSingleton

class ParentMethods
 Bases: object
 facade_for()
 Returns the parents this set is a facade for
This default implementation assumes that `self` has an attribute `_facade_for`, typically initialized by `Parent.__init__()`. If the attribute is not present, the method raises a `NotImplementedError`.

EXAMPLES:

```
sage: S = Sets().Facade().example(); S
An example of facade set: the monoid of positive integers
sage: S.facade_for()
(Integer Ring,)
```

Check that trac ticket #13801 is corrected:

```
sage: class A(Parent):
    ....:     def __init__(self):
    ....:         Parent.__init__(self, category=Sets(), facade=True)
sage: a = A()
sage: a.facade_for()
Traceback (most recent call last):
...
NotImplementedError: this parent did not specify which parents it is a facade for
```

`is_parent_of(element)`

Returns whether `self` is the parent of `element`.

INPUT:

- `element` – any object

Since `self` is a facade domain, this actually tests whether the parent of `element` is any of the parent `self` is a facade for.

EXAMPLES:

```
sage: S = Sets().Facade().example(); S
An example of facade set: the monoid of positive integers
sage: S.is_parent_of(1)
True
sage: S.is_parent_of(1/2)
False
```

This method differs from `__contains__()` in two ways. First, this does not take into account the fact that `self` may be a strict subset of the parent(s) it is a facade for:

```
sage: -1 in S, S.is_parent_of(-1)
(False, True)
```

Furthermore, there is no coercion attempted:

```
sage: int(1) in S, S.is_parent_of(int(1))
(True, False)
```

Warning: this implementation does not handle facade parents of facade parents. Is this a feature we want generically?

`example(choice='subset')`

Returns an example of facade set, as per `Category.example()`.

INPUT:
• choice = ‘union’ or ‘subset’ (default: ‘subset’).

EXAMPLES:

```python
sage: Sets().Facade().example()
An example of facade set: the monoid of positive integers
sage: Sets().Facade().example(choice='union')
An example of a facade set: the integers completed by +-infinity
sage: Sets().Facade().example(choice='subset')
An example of facade set: the monoid of positive integers
```
4.1 Covariant Functorial Constructions

A functorial construction is a collection of functors \((F_{\mathit{Cat}})_{\mathit{Cat}}\) (indexed by a collection of categories) which associate to a sequence of parents \((A, B, \ldots)\) in a category \(\mathit{Cat}\) a parent \(F_{\mathit{Cat}}(A, B, \ldots)\). Typical examples of functorial constructions are cartesian_product and tensor_product.

The category of \(F_{\mathit{Cat}}(A, B, \ldots)\), which only depends on \(\mathit{Cat}\), is called the (functorial) construction category.

A functorial construction is \((\mathit{category})\)-covariant if for every categories \(\mathit{Cat}\) and \(\mathit{SuperCat}\), the category of \(F_{\mathit{Cat}}(A, B, \ldots)\) is a subcategory of the category of \(F_{\mathit{SuperCat}}(A, B, \ldots)\) whenever \(\mathit{Cat}\) is a subcategory of \(\mathit{SuperCat}\). A functorial construction is \((\mathit{category})\)-recessive if the category of \(F_{\mathit{Cat}}(A, B, \ldots)\) is a subcategory of \(\mathit{Cat}\).

The goal of this module is to provide generic support for covariant functorial constructions. In particular, given some parents \(A, B, \ldots\) in respective categories \(\mathit{Cat}_A, \mathit{Cat}_B, \ldots\), it provides tools for calculating the best known category for the parent \(F(A, B, \ldots)\). For examples, knowing that Cartesian products of semigroups (resp. monoids, groups) have a semigroup (resp. monoid, group) structure, and given a group \(B\) and two monoids \(A\) and \(C\) it can calculate that \(A \times B \times C\) is naturally endowed with a monoid structure.

See CovariantFunctorialConstruction, CovariantConstructionCategory and RegressiveCovariantConstructionCategory for more details.

AUTHORS:

- Nicolas M. Thiery (2010): initial revision

class sage.categories.covariant_functorial_construction.CovariantConstructionCategory (category, *args)

Bases: sage.categories.covariant_functorial_construction.FunctorialConstructionCategory

Abstract class for categories \(F_{\mathit{Cat}}\) obtained through a covariant functorial construction

additional_structure()

Return the additional structure defined by self.

By default, a functorial construction category \(A.F()\) defines additional structure if and only if \(A\) is the category defining \(F\). The rationale is that, for a subcategory \(B\) of \(A\), the fact that \(B.F()\) morphisms shall preserve the \(F\)-specific structure is already imposed by \(A.F()\).

See also:

- Category.additional_structure()
- is_construction_defined_by_base()

EXAMPLES:
classmethod `default_super_categories` \((category, \ast args)\)

Return the default super categories of \(F_{\text{Cat}}(A, B, \ldots)\) for \(A, B, \ldots\) parents in \(\text{Cat}\).

INPUT:

- `cls` – the category class for the functor \(F\)
- `category` – a category \(\text{Cat}\)
- `\ast args` – further arguments for the functor

OUTPUT: a (join) category

The default implementation is to return the join of the categories of \(F(A, B, \ldots)\) for \(A, B, \ldots\) in turn in each of the super categories of \(\text{category}\).

This is implemented as a class method, in order to be able to reconstruct the functorial category associated to each of the super categories of \(\text{category}\).

EXAMPLES:

Bialgebras are both algebras and coalgebras:

```
sage: Bialgebras(QQ).super_categories()
[Category of algebras over Rational Field, Category of coalgebras over \(\mathbb{Q}\)]
```

Hence tensor products of bialgebras are tensor products of algebras and tensor products of coalgebras:

```
sage: Bialgebras(QQ).TensorProducts().super_categories()
[Category of tensor products of algebras over Rational Field, Category of tensor products of coalgebras over Rational Field]
```

Here is how `default_super_categories()` was called internally:

```
sage: sage.categories.tensor.TensorProductsCategory.default_super_categories(Bialgebras(QQ))
Join of Category of tensor products of algebras over Rational Field and Category of tensor products of coalgebras over Rational Field
```

We now show a similar example, with the `Algebra` functor which takes a parameter \(Q\):

```
sage: FiniteMonoids().super_categories()
[Category of monoids, Category of finite semigroups]
sage: sorted(FiniteMonoids().Algebras(QQ).super_categories(), key=str)
[Category of finite dimensional algebras with basis over Rational Field, Category of finite set algebras over Rational Field, Category of monoid algebras over Rational Field]
```

Note that neither the category of finite semigroup algebras nor that of monoid algebras appear in the result; this is because there is currently nothing specific implemented about them.

Here is how `default_super_categories()` was called internally:
is_construction_defined_by_base()

Return whether the construction is defined by the base of self.

EXAMPLES:

The graded functorial construction is defined by the modules category. Hence this method returns True for graded modules and False for other graded xxx categories:

```python
sage: Modules(ZZ).Graded().is_construction_defined_by_base()
True
sage: Algebras(QQ).Graded().is_construction_defined_by_base()
False
sage: Modules(ZZ).WithBasis().Graded().is_construction_defined_by_base()
False
```

This is implemented as follows: given the base category A and the construction F of self, that is self=$A.F()$, check whether no super category of A has F defined.

Note: Recall that, when A does not implement the construction F, a join category is returned. Therefore, in such cases, this method is not available:

```python
sage: Bialgebras(QQ).Graded().is_construction_defined_by_base()
Traceback (most recent call last):
  ... 
AttributeError: 'JoinCategory_with_category' object has no attribute 'is_construction_defined_by_base'
```

class sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

An abstract class for construction functors F (eg $F = \text{Cartesian product, tensor product, Q}-\text{algebra, ...}$) such that:

- Each category Cat (eg $\text{Cat} = \text{Groups()}$) can provide a category F_{Cat} for parents constructed via this functor (e.g. $F_{\text{Cat}} = \text{CartesianProductsOf}(\text{Groups()}$).
- For every category Cat, F_{Cat} is a subcategory of F_{SuperCat} for every super category SuperCat of Cat (the functorial construction is (category)-covariant).
- For parents $A, B, ...$, respectively in the categories $\text{Cat}_A, \text{Cat}_B, ...$, the category of $F(A, B, ...)$ is F_{Cat} where Cat is the meet of the categories $\text{Cat}_A, \text{Cat}_B, ...$.

This covers two slightly different use cases:

- In the first use case, one uses directly the construction functor to create new parents:

```python
sage: tensor()  # todo: not implemented (add an example)
```

or even new elements, which indirectly constructs the corresponding parent:
• In the second use case, one implements a parent, and then put it in the category F_{Cat} to specify supplementary mathematical information about that parent.

The main purpose of this class is to handle automatically the trivial part of the category hierarchy. For example, `CartesianProductsOf(Groups())` is set automatically as a subcategory of `CartesianProductsOf(Monoids())`.

In practice, each subclass of this class should provide the following attributes:

• `_functor_category` - a string which should match the name of the nested category class to be used in each category to specify information and generic operations for elements of this category.

• `_functor_name` - a string which specifies the name of the functor, and also (when relevant) of the method on parents and elements used for calling the construction.

TODO: What syntax do we want for F_{Cat}? For example, for the tensor product construction, which one do we want among (see chat on IRC, on 07/12/2009):

• `tensor(Cat)`
• `tensor((Cat, Cat))`
• `tensor.of((Cat, Cat))`
• `tensor.category_from_categories((Cat, Cat, Cat))`
• `Cat.TensorProducts()`

The syntax `Cat.TensorProducts()` does not support well multivariate constructions like `tensor.of(([Algebras(), HopfAlgebras()], ...))`. Also it forces every category to be (somehow) aware of all the tensorial construction that could apply to it, even those which are only induced from super categories.

Note: for each functorial construction, there probably is one (or several) largest categories on which it applies. For example, the `CartesianProducts()` construction makes only sense for concrete categories, that is subcategories of `Sets()`. Maybe we want to model this one way or the other.

```
sage: Cat1 = Rings()
sage: Cat2 = Groups()
sage: cartesian_product.category_from_categories((Cat1, Cat1, Cat1))
Join of Category of rings and ... and Category of Cartesian products of monoids
and Category of Cartesian products of commutative additive groups
```

```
sage: cartesian_product.category_from_categories((Cat1, Cat2))
Category of Cartesian products of monoids
```

category_from_categories *(categories)*
Return the category of $F(A, B, ...)$ for $A, B, ...$ parents in the given categories.

INPUT:

• `self`: a functor F

• `categories`: a non empty tuple of categories

EXAMPLES:

```
sage: Cat1 = Rings()
sage: Cat2 = Groups()
sage: cartesian_product.category_from_categories((Cat1, Cat1, Cat1))
Join of Category of rings and ... and Category of Cartesian products of monoids
and Category of Cartesian products of commutative additive groups
```

```
sage: cartesian_product.category_from_categories((Cat1, Cat2))
Category of Cartesian products of monoids
```

category_from_category *(category)*
Return the category of $F(A, B, ...)$ for $A, B, ...$ parents in `category`.

INPUT:
• self: a functor \(F \)
• category: a category

EXAMPLES:

```
sage: tensor.category_from_category(ModulesWithBasis(QQ))
Category of tensor products of vector spaces with basis over Rational Field
```

TODO: add support for parametrized functors

category_from_parents (parents)

Return the category of \(F(A, B, ...) \) for \(A, B, ... \) parents.

INPUT:

• self: a functor \(F \)
• parents: a list (or iterable) of parents.

EXAMPLES:

```
sage: E = CombinatorialFreeModule(QQ, ["a", "b", "c"])
sage: tensor.category_from_parents((E, E, E))
Category of tensor products of vector spaces with basis over Rational Field
```

class sage.categories.covariant_functorial_construction.
FunctorialConstructionCategory (category, *args)

Bases: sage.categories.category.Category

Abstract class for categories \(F_{\text{Cat}} \) obtained through a functorial construction

base_category ()

Return the base category of the category self.

For any category \(B = F_{\text{Cat}} \) obtained through a functorial construction \(F \), the call \(B.base_category() \) returns the category \(\text{Cat} \).

EXAMPLES:

```
sage: Semigroups().Quotients().base_category()
Category of semigroups
```

classmethod category_of (category, *args)

Return the image category of the functor \(F_{\text{Cat}} \).

This is the main entry point for constructing the category \(F_{\text{Cat}} \) of parents \(F(A, B, ...) \) constructed from parents \(A, B, ... \) in \(\text{Cat} \).

INPUT:

• cls – the category class for the functorial construction \(F \)
• category – a category \(\text{Cat} \)
• *args – further arguments for the functor

EXAMPLES:

```
sage: sage.categories.tensor.TensorProductsCategory.category_→of(ModulesWithBasis(QQ))
Category of tensor products of vector spaces with basis over Rational Field

sage: sage.categories.algebra_functor.AlgebrasCategory.category_→of(FiniteMonoids(), QQ)
```

(continues on next page)
extra_super_categories()

Return the extra super categories of a construction category.

Default implementation which returns [].

EXAMPLES:

```python
sage: Sets().Subquotients().extra_super_categories()
[]
sage: Semigroups().Quotients().extra_super_categories()
[]
```

super_categories()

Return the super categories of a construction category.

EXAMPLES:

```python
sage: Sets().Subquotients().super_categories()
[Category of sets]
sage: Semigroups().Quotients().super_categories()
[Category of subquotients of semigroups, Category of quotients of sets]
```

class sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

Bases: `sage.categories.covariant_functorial_construction.CovariantConstructionCategory`

Abstract class for categories F_{Cut} obtained through a regressive covariant functorial construction.

classmethod default_super_categories(category, *args)

Return the default super categories of $F_{\text{Cut}}(A, B, ...)$ for $A, B, ...$ parents in Cat.

INPUT:

- cls -- the category class for the functor F
- category -- a category Cat
- *args -- further arguments for the functor

OUTPUT:

A join category.

This implements the property that an induced subcategory is a subcategory.

EXAMPLES:

A subquotient of a monoid is a monoid, and a subquotient of semigroup:

```python
sage: Monoids().Subquotients().super_categories()
[Category of monoids, Category of subquotients of semigroups]
```
4.2 Cartesian Product Functorial Construction

AUTHORS:

- Nicolas M. Thiery (2008-2010): initial revision and refactoring

```python
class sage.categories.cartesian_product.CartesianProductFunctor (category=None)


The Cartesian product functor.

EXAMPLES:

```sage```
cartesian_product
The cartesian_product functorial construction

cartesian_product takes a finite collection of sets, and constructs the Cartesian product of those sets:

```sage```
A = FiniteEnumeratedSet(['a','b','c'])
B = FiniteEnumeratedSet([1,2])
C = cartesian_product([A, B]); C
The Cartesian product of ({'a', 'b', 'c'}, {1, 2})
C.an_element()
('a', 1)
C.list()  # todo: not implemented
[['a', 1], ['a', 2], ['b', 1], ['b', 2], ['c', 1], ['c', 2]]

If those sets are endowed with more structure, say they are monoids (hence in the category `Monoids()`), then the result is automatically endowed with its natural monoid structure:

```sage```
M = Monoids().example()
M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
M.rename('M')
C = cartesian_product([M, ZZ, QQ])
C
The Cartesian product of (M, Integer Ring, Rational Field)
C.an_element()
('abcd', 1, 1/2)
C.an_element()^2
('abcdabcd', 1, 1/4)
C.category()
Category of Cartesian products of monoids

The Cartesian product functor is covariant: if `A` is a subcategory of `B`, then `A.CartesianProducts()` is a subcategory of `B.CartesianProducts()` (see also `CovariantFunctorialConstruction`):

```sage```
C.categories()
[Category of Cartesian products of monoids, Category of monoids, Category of Cartesian products of semigroups, Category of semigroups, Category of Cartesian products of unital magmas,
(continues on next page)
Hence, the role of `Monoids().CartesianProducts()` is solely to provide mathematical information and algorithms which are relevant to Cartesian product of monoids. For example, it specifies that the result is again a monoid, and that its multiplicative unit is the Cartesian product of the units of the underlying sets:

```python
sage: C.one()
('', 1, 1)
```

Those are implemented in the nested class `Monoids.CartesianProducts` of `Monoids(QQ)`. This nested class is itself a subclass of `CartesianProductsCategory`.

```python
class sage.categories.cartesian_product.CartesianProductsCategory(category, *args):
 Bases: sage.categories.covariant Functorial construction.CovariantConstructionCategory

 An abstract base class for all CartesianProducts categories.

 CartesianProducts()
 Return the category of (finite) Cartesian products of objects of self.

 By associativity of Cartesian products, this is self (a Cartesian product of Cartesian products of A’s is a Cartesian product of A’s).

 EXAMPLES:

    ```python
    sage: ModulesWithBasis(QQ).CartesianProducts().CartesianProducts()
    Category of Cartesian products of vector spaces with basis over Rational Field
    ```

 base_ring()
 The base ring of a Cartesian product is the base ring of the underlying category.

 EXAMPLES:

    ```python
    sage: Algebras(ZZ).CartesianProducts().base_ring()
    Integer Ring
    ```
4.3 Tensor Product Functorial Construction

AUTHORS:

- Nicolas M. Thiéry (2008-2010): initial revision and refactoring

```python
class sage.categories.tensor.TensorProductFunctor
Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

A singleton class for the tensor functor.

This functor takes a collection of vector spaces (or modules with basis), and constructs the tensor product of those vector spaces. If this vector space is in a subcategory, say that of :math:`\text{Algebras}(\mathbb{Q})`, it is automatically endowed with its natural algebra structure, thanks to the category :math:`\text{Algebras}(\mathbb{Q}).\text{TensorProducts}(\cdot)` of tensor products of algebras. For elements, it constructs the natural tensor product element in the corresponding tensor product of their parents.

The tensor functor is covariant: if :math:`A` is a subcategory of :math:`B`, then :math:`A.\text{TensorProducts}(\cdot)` is a subcategory of :math:`B.\text{TensorProducts}(\cdot)` (see also :class:`CovariantFunctorialConstruction`). Hence, the role of :math:`\text{Algebras}(\mathbb{Q}).\text{TensorProducts}(\cdot)` is solely to provide mathematical information and algorithms which are relevant to tensor product of algebras.

Those are implemented in the nested class :class:`TensorProducts` of :math:`\text{Algebras}(\mathbb{Q})`. This nested class is itself a subclass of :class:`TensorProductsCategory`.

```python
class sage.categories.tensor.TensorProductsCategory(ccategory, *args)
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

An abstract base class for all TensorProducts’s categories

```

**TensorProducts()**

Returns the category of tensor products of objects of **self**

By associativity of tensor products, this is **self** (a tensor product of tensor products of **Cat**’s is a tensor product of **Cat**’s)

**EXAMPLES:**

```
sage: ModulesWithBasis(QQ).TensorProducts().TensorProducts()
Category of tensor products of vector spaces with basis over Rational Field
```

**base()**

The base of a tensor product is the base (usually a ring) of the underlying category.

**EXAMPLES:**

```
sage: ModulesWithBasis(ZZ).TensorProducts().base()
Integer Ring
```

```
sage.categories.tensor.tensor = The tensor functorial construction

The tensor product functorial construction

See :class:`TensorProductFunctor` for more information

EXAMPLES:

```
sage: tensor
The tensor functorial construction
```

4.3. Tensor Product Functorial Construction 743
4.4 Signed Tensor Product Functorial Construction

AUTHORS:

- Travis Scrimshaw (2019-07): initial version

```python
class sage.categories.signed_tensor.SignedTensorProductFunctor:
    Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

    A singleton class for the signed tensor functor.

    This functor takes a collection of graded algebras (possibly with basis) and constructs the signed tensor product of those algebras. If this algebra is in a subcategory, say that of \texttt{Algebras(QQ).Graded()}, it is automatically endowed with its natural algebra structure, thanks to the category \texttt{Algebras(QQ).Graded().SignedTensorProducts()} of signed tensor products of graded algebras. For elements, it constructs the natural tensor product element in the corresponding tensor product of their parents.

    The signed tensor functor is covariant: if \( A \) is a subcategory of \( B \), then \( A.SignedTensorProducts() \) is a subcategory of \( B.SignedTensorProducts() \) (see also \texttt{CovariantFunctorialConstruction}). Hence, the role of \texttt{Algebras(QQ).Graded().SignedTensorProducts()} is solely to provide mathematical information and algorithms which are relevant to signed tensor product of graded algebras.

    Those are implemented in the nested class \texttt{SignedTensorProducts} of \texttt{Algebras(QQ).Graded()}. This nested class is itself a subclass of \texttt{SignedTensorProductsCategory}.
```

EXAMPLES:

```python
sage: tensor_signed
The signed tensor functorial construction
```

```python
class sage.categories.signed_tensor.SignedTensorProductsCategory(
    category, *args)
    Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

    An abstract base class for all SignedTensorProducts's categories.

    \texttt{SignedTensorProducts()} 

    Return the category of signed tensor products of objects of \texttt{self}.

    By associativity of signed tensor products, this is \texttt{self} (a tensor product of signed tensor products of \texttt{Cat}'s is a tensor product of \texttt{Cat}'s with the same twisting morphism)

    **EXAMPLES:**

    ```python
 sage: AlgebrasWithBasis(QQ).Graded().SignedTensorProducts().
 SignedTensorProducts()
 Category of signed tensor products of graded algebras with basis
 over Rational Field
    ```

    \texttt{base()} 

    The base of a signed tensor product is the base (usually a ring) of the underlying category.

    **EXAMPLES:**

    ```python
 sage: AlgebrasWithBasis(ZZ).Graded().SignedTensorProducts().base()
 Integer Ring
    ```
```

```python
sage.categories.signed_tensor.tensor_signed = The signed tensor functorial construction
```
4.5 Dual functorial construction

AUTHORS:

• Nicolas M. Thiery (2009-2010): initial revision

class sage.categories.dual.DualFunctor
 Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction
 A singleton class for the dual functor

class sage.categories.dual.DualObjectsCategory(category, *args)
 Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

4.6 Group algebras and beyond: the Algebra functorial construction

4.6.1 Introduction: group algebras

Let G be a group and R be a ring. For example:

```
sage: G = DihedralGroup(3)
sage: R = QQ
```

The group algebra $A = RG$ of G over R is the space of formal linear combinations of elements of $group$ with coefficients in R:

```
sage: A = G.algebra(R); A
Algebra of Dihedral group of order 6 as a permutation group over Rational Field
sage: a = A.an_element(); a
() + (1,2) + 3*(1,2,3) + 2*(1,3,2)
```

This space is endowed with an algebra structure, obtained by extending by bilinearity the multiplication of G to a multiplication on RG:

```
sage: A in Algebras
True
sage: a * a
14*(()) + 5*(2,3) + 2*(1,2) + 10*(1,2,3) + 13*(1,3,2) + 5*(1,3)
```

In particular, the product of two basis elements is induced by the product of the corresponding elements of the group, and the unit of the group algebra is indexed by the unit of the group:

```
sage: (s, t) = A.algebra_generators()
sage: s*t
(1,2)
sage: A.one_basis()
()
sage: A.one()
()
```

For the user convenience and backward compatibility, the group algebra can also be constructed with:
Since trac ticket #18700, both constructions are strictly equivalent:

```
sage: GroupAlgebra(G, R) is G.algebra(R)
True
```

Group algebras are further endowed with a Hopf algebra structure; see below.

4.6.2 Generalizations

The above construction extends to weaker multiplicative structures than groups: magmas, semigroups, monoids. For a monoid S, we obtain the monoid algebra RS, which is defined exactly as above:

```
sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ); A
Algebra of An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
over Rational Field
sage: A.category()
Category of monoid algebras over Rational Field
```

This construction also extends to additive structures: magmas, semigroups, monoids, or groups:

```
sage: S = CommutativeAdditiveMonoids().example(); S
An example of a commutative monoid: the free commutative monoid generated by ('a', 'b', 'c', 'd')
sage: U = S.algebra(QQ); U
Algebra of An example of a commutative monoid: the free commutative monoid generated by ('a', 'b', 'c', 'd')
over Rational Field
```

Despite saying “free module”, this is really an algebra, whose multiplication is induced by the addition of elements of S:

```
sage: U in Algebras(QQ)
True
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: U(a) * U(b)
B[a + b]
```

To cater uniformly for the use cases above and some others, for S a set and K a ring, we define in Sage the *algebra of S* as the K-free module with basis indexed by S, endowed with whatever algebraic structure can be induced from that of S.

Warning: In most use cases, the result is actually an algebra, hence the name of this construction. In other cases this name is misleading:

```
sage: A = Sets().example().algebra(QQ); A
Algebra of Set of prime numbers (basic implementation)
over Rational Field
sage: A.category()
Category of set algebras over Rational Field
```
To achieve this flexibility, the features are implemented as a *Covariant Functorial Constructions* that is essentially a hierarchy of categories each providing the relevant additional features:

```
sage: A = DihedralGroup(3).algebra(QQ)
sage: A.categories()
[Category of finite group algebras over Rational Field, ...
 Category of group algebras over Rational Field, ...
 Category of monoid algebras over Rational Field, ...
 Category of semigroup algebras over Rational Field, ...
 Category of unital magma algebras over Rational Field, ...
 Category of magma algebras over Rational Field, ...
 Category of set algebras over Rational Field, ...]
```

4.6.3 Specifying the algebraic structure

Constructing the algebra of a set endowed with both an additive and a multiplicative structure is ambiguous:

```
sage: Z3 = IntegerModRing(3)
sage: A = Z3.algebra(QQ)
Traceback (most recent call last):
...
TypeError: `S = Ring of integers modulo 3` is both an additive and a multiplicative semigroup. Constructing its algebra is ambiguous. Please use, e.g., S.algebra(QQ, category=Semigroups())
```

This ambiguity can be resolved using the `category` argument of the construction:

```
sage: A = Z3.algebra(QQ, category=Monoids()); A
Algebra of Ring of integers modulo 3 over Rational Field
sage: A.category()
Category of finite dimensional monoid algebras over Rational Field
```

This ambiguity can be resolved using the `category` argument of the construction:

```
sage: A = Z3.algebra(QQ, category=CommutativeAdditiveGroups()); A
Algebra of Ring of integers modulo 3 over Rational Field
sage: A.category()
Category of finite dimensional commutative additive group algebras over Rational Field
```

In general, the `category` argument can be used to specify which structure of S shall be extended to KS.

4.6. Group algebras and beyond: the Algebra functorial construction
4.6.4 Group algebras, continued

Let us come back to the case of a group algebra \(A = RG \). It is endowed with more structure and in particular that of a Hopf algebra:

```python
sage: G = DihedralGroup(3)
sage: A = G.algebra(R); A
Algebra of Dihedral group of order 6 as a permutation group over Rational Field
sage: A in HopfAlgebras(R).FiniteDimensional().WithBasis()
True
```

The basis elements are group-like for the coproduct: \(\Delta(g) = g \otimes g \):

```python
sage: s = (1,2,3)
sage: s.coproduct()
(1,2,3) # (1,2,3)
```

The counit is the constant function 1 on the basis elements:

```python
sage: A = GroupAlgebra(DihedralGroup(6), QQ)
sage: [A.counit(g) for g in A.basis()]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

The antipode is given on basis elements by \(\chi(g) = g^{-1} \):

```python
sage: A = GroupAlgebra(DihedralGroup(3), QQ)
sage: s = (1,2,3)
sage: s.antipode()
(1,3,2)
```

By Maschke’s theorem, for a finite group whose cardinality does not divide the characteristic of the base field, the algebra is semisimple:

```python
sage: SymmetricGroup(5).algebra(QQ) in Algebras(QQ).Semisimple()
True
sage: CyclicPermutationGroup(10).algebra(FiniteField(7)) in Algebras.Semisimple
True
sage: CyclicPermutationGroup(10).algebra(FiniteField(5)) in Algebras.Semisimple
False
```

4.6.5 Coercions

Let \(RS \) be the algebra of some structure \(S \). Then \(RS \) admits the natural coercion from any other algebra \(R'S' \) of some structure \(S' \), as long as \(R' \) coerces into \(R \) and \(S' \) coerces into \(S \).

For example, since there is a natural inclusion from the dihedral group \(D_2 \) of order 4 into the symmetric group \(S_4 \) of order 4!, and since there is a natural map from the integers to the rationals, there is a natural map from \(\mathbb{Z}[D_2] \) to \(\mathbb{Q}[S_4] \):

```python
sage: A = DihedralGroup(2).algebra(ZZ)
sage: B = SymmetricGroup(4).algebra(QQ)
sage: a = A.an_element(); a
(1) + 2*(3,4) + 3*(1,2) + (1,2)(3,4)
sage: b = B.an_element(); b
```

(continues on next page)
There is no obvious map in the other direction, though:

```python
sage: A(b)
Traceback (most recent call last):
  ...TypeError: do not know how to make x (= () + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3)) an element of self
  (=Algebra of Dihedral group of order 4 as a permutation group over Integer Ring)
```

If S is a unital (additive) magma, then RS is a unital algebra, and thus admits a coercion from its base ring R and any ring that coerces into R.

```python
sage: G = DihedralGroup(2)
sage: A = G.algebra(ZZ)
sage: A(2)
2*()
```

If S is a multiplicative group, then RS admits a coercion from S and from any group which coerce into S:

```python
sage: g = DihedralGroup(2).gen(0); g
(3,4)
sage: A(g)
(3,4)
sage: A(2) * g
2*(3,4)
```

Note that there is an ambiguity if S' is a group which coerces into both R and S. For example) if S is the additive group $(\mathbb{Z}, +)$, and $A = RS$ is its group algebra, then the integer 2 can be coerced into A in two ways — via S, or via the base ring R — and the answers are different. It that case the coercion to R takes precedence. In particular, if \mathbb{Z} is the ring (or group) of integers, then \mathbb{Z} will coerce to any RS, by sending \mathbb{Z} to R. In generic code, it is therefore recommended to always explicitly use $A.monomial(g)$ to convert an element of the group into A.

AUTHORS:

- David Loeffler (2008-08-24): initial version
- Martin Raum (2009-08): update to use new coercion model – see trac ticket #6670.
- John Palmieri (2011-07): more updates to coercion, categories, etc., group algebras constructed using CombinatorialFreeModule – see trac ticket #6670.
- Nicolas M. Thiéry (2010-2017), Travis Scrimshaw (2017): generalization to a covariant functorial construction for monoid algebras, and beyond – see e.g. trac ticket #18700.

```python
class sage.categories.algebra_functor.AlgebraFunctor(base_ring):
    Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

    For a fixed ring, a functor sending a group/... to the corresponding group/... algebra.
```

4.6. Group algebras and beyond: the Algebra functorial construction
EXAMPLES:

```
sage: from sage.categories.algebra_functor import AlgebraFunctor
sage: F = AlgebraFunctor(QQ); F
The algebra functorial construction
sage: F(DihedralGroup(3))
Algebra of Dihedral group of order 6 as a permutation group
    over Rational Field
```

`base_ring()`

Return the base ring for this functor.

EXAMPLES:

```
sage: from sage.categories.algebra_functor import AlgebraFunctor
sage: AlgebraFunctor(QQ).base_ring()
Rational Field
```

class sage.categories.algebra_functor.AlgebrasCategory(category, *args)

Bases: `sage.categories.covariant_functorial_construction.CovariantConstructionCategory`, `sage.categories.category_types.Category_over_base_ring`

An abstract base class for categories of monoid algebras, groups algebras, and the like.

See also:

- `Sets.ParentMethods.algebra()`
- `Sets.SubcategoryMethods.Algebras()`
- `CovariantFunctorialConstruction`

INPUT:

- `base_ring` – a ring

EXAMPLES:

```
sage: C = Groups().Algebras(QQ); C
Category of group algebras over Rational Field
sage: C = Monoids().Algebras(QQ); C
Category of monoid algebras over Rational Field
sage: C._short_name()
'Algebras'
sage: latex(C)  # todo: improve that
\textbf{Algebras}(\textbf{Monoids})
```

class ParentMethods

Bases: `object`

`coproduct_on_basis(g)`

Return the coproduct of the element `g` of the basis.

Each basis element `g` is group-like. This method is used to compute the coproduct of any element.

EXAMPLES:
```python
sage: PF = NonDecreasingParkingFunctions(4)
sage: A = PF.algebra(ZZ); A
Algebra of Non-decreasing parking functions of size 4 over Integer Ring
sage: g = PF.an_element(); g
[1, 1, 1, 1]
sage: A.coproduct_on_basis(g)
B[[1, 1, 1, 1]] # B[[1, 1, 1, 1]]
sage: a = A.an_element(); a
2*B[[1, 1, 1, 1]] + 2*B[[1, 1, 1, 2]] + 3*B[[1, 1, 1, 3]]
sage: a.coproduct()
2*B[[1, 1, 1, 1]] # B[[1, 1, 1, 1]] + 2*B[[1, 1, 1, 2]] # B[[1, 1, 1, 2]] + 3*B[[1, 1, 1, 3]] # B[[1, 1, 1, 3]]
```

```python
class sage.categories.algebra_functor.GroupAlgebraFunctor(group)
    Bases: sage.categories.pushout.ConstructionFunctor

For a fixed group, a functor sending a commutative ring to the corresponding group algebra.

INPUT:

- group – the group associated to each group algebra under consideration

EXAMPLES:

```python
sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
group = GroupAlgebraFunctor(KleinFourGroup()); group
GroupAlgebraFunctor

Return the group which is associated to this functor.

EXAMPLES:

```python
sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
group = GroupAlgebraFunctor(CyclicPermutationGroup(17)).group()

AUTHORS:

- Nicolas M. Thiery (2010): initial revision
```
4.8 Quotients Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

class sage.categories.quotients.QuotientsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)

Returns the default super categories of category.Quotients()

Mathematical meaning: if \(A\) is a quotient of \(B\) in the category \(C\), then \(A\) is also a subquotient of \(B\) in the category \(C\).

INPUT:

• cls – the class QuotientsCategory
• category – a category \(Cat\)

OUTPUT: a (join) category

In practice, this returns category.Subquotients(), joined together with the result of the method RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of category and cat.Quotients() for each cat in the super categories of category).

EXAMPLES:

Consider category=Groups(), which has cat=Monoids() as super category. Then, a subgroup of a group \(G\) is simultaneously a subquotient of \(G\), a group by itself, and a quotient monoid of \(G\):

```
sage: Groups().Quotients().super_categories()
[Category of groups, Category of subquotients of monoids, Category of quotients of semigroups]
```

Mind the last item above: there is indeed currently nothing implemented about quotient monoids.

This resulted from the following call:

```
sage: sage.categories.quotients.QuotientsCategory.default_super_categories(Groups())
Join of Category of groups and Category of subquotients of monoids and Category of quotients of semigroups
```

4.9 Subobjects Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

class sage.categories.subobjects.SubobjectsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)

Returns the default super categories of category.Subobjects()
Mathematical meaning: if A is a subobject of B in the category C, then A is also a subquotient of B in the category C.

INPUT:

- `cls` – the class `SubobjectsCategory`
- `category` – a category `Cat`

OUTPUT: a (join) category

In practice, this returns `category.Subquotients()`, joined together with the result of the method `RegressiveCovariantConstructionCategory.default_super_categories()` (that is the join of `category` and `cat.Subobjects()` for each `cat` in the super categories of `category`).

EXAMPLES:

Consider `category=Groups()`, which has `cat=Monoids()` as super category. Then, a subgroup of a group G is simultaneously a subquotient of G, a group by itself, and a submonoid of G:

```sage
sage: Groups().Subobjects().super_categories()
[Category of groups, Category of subquotients of monoids, Category of subobjects of sets]
```

Mind the last item above: there is indeed currently nothing implemented about submonoids.

This resulted from the following call:

```sage
sage: sage.categories.subobjects.SubobjectsCategory.default_super_categories(Groups())
Join of Category of groups and Category of subquotients of monoids and Category of subobjects of sets
```

4.10 Isomorphic Objects Functorial Construction

AUTHORS:

- Nicolas M. Thiery (2010): initial revision

```python
class sage.categories.isomorphic_objects.IsomorphicObjectsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)
Returns the default super categories of category.IsomorphicObjects()
```

Mathematical meaning: if A is the image of B by an isomorphism in the category C, then A is both a subobject of B and a quotient of B in the category C.

INPUT:

- `cls` – the class `IsomorphicObjectsCategory`
- `category` – a category `Cat`

OUTPUT: a (join) category

In practice, this returns `category.Subobjects()` and `category.Quotients()`, joined together with the result of the method `RegressiveCovariantConstructionCategory.default_super_categories()` (that is the join of `category` and `cat.IsomorphicObjects()` for each `cat` in the super categories of `category`).

4.10. Isomorphic Objects Functorial Construction 753
EXAMPLES:

Consider category=Groups(), which has cat=Monoids() as super category. Then, the image of a group \(G' \) by a group isomorphism is simultaneously a subgroup of \(G \), a subquotient of \(G \), a group by itself, and the image of \(G \) by a monoid isomorphism:

```
sage: Groups().IsomorphicObjects().super_categories()
[
    Category of groups,
    Category of subquotients of monoids,
    Category of quotients of semigroups,
    Category of isomorphic objects of sets]
```

Mind the last item above: there is indeed currently nothing implemented about isomorphic objects of monoids.

This resulted from the following call:

```
sage: sage.categories.isomorphic_objects.IsomorphicObjectsCategory.default_
  ...__super_categories(Groups())
Join of Category of groups and
Category of subquotients of monoids and
Category of quotients of semigroups and
Category of isomorphic objects of sets
```

4.11 Homset categories

```python
class sage.categories.homsets.Homsets(s=None)
Bases: sage.categories.category_singleton.Category_singleton
```

The category of all homsets.

EXAMPLES:

```
sage: sage.categories.homsets.Homsets()
Category of homsets
```

This is a subcategory of Sets():

```
sage: Homsets().super_categories()
[Category of sets]
```

By this, we assume that all homsets implemented in Sage are sets, or equivalently that we only implement locally small categories. See Wikipedia article Category_(mathematics).

trac ticket #17364: every homset category shall be a subcategory of the category of all homsets:

```
sage: Schemes().Homsets().is_subcategory(Homsets())
True
sage: AdditiveMagmas().Homsets().is_subcategory(Homsets())
True
sage: AdditiveMagmas().AdditiveUnital().Homsets().is_subcategory(Homsets())
True
```

This is tested in HomsetsCategory._test_homsets_category().

```python
class Endset(base_category)
```

```
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
```
The category of all endomorphism sets.

This category serves two purposes: making sure that the `Endset` axiom is implemented in the category where it's defined, namely `Homsets`, and specifying that `Endsets` are monoids.

EXAMPLES:

```python
sage: from sage.categories.homsets import Homsets
sage: Homsets().Endset()
Category of endsets
```

```python
class ParentMethods
    Bases: object

    is_endomorphism_set()
        Return `True` as `self` is in the category of `Endsets`.

        **EXAMPLES:**

        ```python
 sage: P.<t> = ZZ[]
sage: E = End(P)
sage: E.is_endomorphism_set()
 True
        ```

    extra_super_categories()
        Implement the fact that endsets are monoids.

        See also:

        `CategoryWithAxiom.extra_super_categories()`

        **EXAMPLES:**

        ```python
 sage: from sage.categories.homsets import Homsets
 sage: Homsets().Endset().extra_super_categories()
 [Category of monoids]
        ```
```

```python
class ParentMethods
    Bases: object

    is_endomorphism_set()
        Return `True` if the domain and codomain of `self` are the same object.

        **EXAMPLES:**

        ```python
 sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: f.parent().is_endomorphism_set()
 False
 sage: g = P.hom([2*t])
sage: g.parent().is_endomorphism_set()
 True
        ```
```

```python
class SubcategoryMethods
    Bases: object

    Endset()
        Return the subcategory of the homsets of `self` that are endomorphism sets.

        **EXAMPLES:**
```

4.11. Homset categories
sage: Sets().Homsets().Endset()
Category of endsets of sets

sage: Posets().Homsets().Endset()
Category of endsets of posets

super_categories()
Return the super categories of ``self``.

EXAMPLES:

```python
sage: from sage.categories.homsets import Homsets
gsage: Homsets()
Category of homsets
```

class sage.categories.homsets.HomsetsCategory``(category, *args)``

Bases:
sage.categories.covariant_functorial_construction.FunctorialConstructionCategory

base()
If this homsets category is subcategory of a category with a base, return that base.

Todo: Is this really useful?

EXAMPLES:

```python
gsage: ModulesWithBasis(ZZ).Homsets().base()
Integer Ring
```

classmethod default_super_categories``(category)``
Return the default super categories of ``category.Homsets()``.

INPUT:

- `cls` – the category class for the functor \(F \)

- `category` – a category \(C \)

OUTPUT: a category

As for the other functorial constructions, if `category` implements a nested `Homsets` class, this method is used in combination with `category.Homsets().extra_super_categories()` to compute the super categories of `category.Homsets()`.

EXAMPLES:

If `category` has one or more full super categories, then the join of their respective homsets category is returned. In this example, this join consists of a single category:

```python
gsage: from sage.categories.homsets import HomsetsCategory
gsage: from sage.categories.additive_groups import AdditiveGroups
gsage: C = AdditiveGroups()
gsage: C.full_super_categories()
[Category of additive inverse additive unital additive magmas,
 Category of additive monoids]
gsage: H = HomsetsCategory.default_super_categories(C);
H
Category of homsets of additive monoids
```
and, given that nothing specific is currently implemented for homsets of additive groups, \(H \) is directly the category thereof:

```python
sage: C.Homsets()
Category of homsets of additive monoids
```

Similarly for rings: a ring homset is just a homset of unital magmas and additive magmas:

```python
sage: Rings().Homsets()
Category of homsets of unital magmas and additive unital additive magmas
```

Otherwise, if `category` implements a nested class `Homsets`, this method returns the category of all homsets:

```python
sage: AdditiveMagmas().Homsets
<class 'sage.categories.additive_magmas.AdditiveMagmas.Homsets'>
sage: HomsetsCategory.default_super_categories(AdditiveMagmas())
Category of homsets
```

which gives one of the super categories of `category.Homsets()`:

```python
sage: AdditiveMagmas().Homsets().super_categories()
[Category of additive magmas, Category of homsets]
sage: AdditiveMagmas().AdditiveUnital().Homsets().super_categories()
[Category of additive unital additive magmas, Category of homsets]
```

the other coming from `category.Homsets().extra_super_categories()`:

```python
sage: AdditiveMagmas().Homsets().extra_super_categories()
[Category of additive magmas]
```

Finally, as a last resort, this method returns a stub category modelling the homsets of this category:

```python
sage: hasattr(Posets, "Homsets")
False	sage: H = HomsetsCategory.default_super_categories(Posets()); H
Category of homsets of posets	sage: type(H)
<class 'sage.categories.homsets.HomsetsOf_with_category'>
sage: Posets().Homsets()
Category of homsets of posets
```

```python
class sage.categories.homsets.HomsetsOf(category, *args)
Bases: sage.categories.homsets.HomsetsCategory
Default class for homsets of a category.
```

This is used when a category \(C \) defines some additional structure but not a homset category of its own. Indeed, unlike for covariant functorial constructions, we cannot represent the homset category of \(C \) by just the join of the homset categories of its super categories.

EXAMPLES:
sage: C = (Magmas() & Posets()).Homsets(); C
Category of homsets of magmas and posets

sage: type(C)
<class 'sage.categories.homsets.HomsetsOf_with_category'>

super_categories()

Return the super categories of self.

A stub homset category admits a single super category, namely the category of all homsets.

EXAMPLES:

sage: C = (Magmas() & Posets()).Homsets(); C
Category of homsets of magmas and posets
sage: type(C)
<class 'sage.categories.homsets.HomsetsOf_with_category'>
sage: C.super_categories()
[Category of homsets]

4.12 Realizations Covariant Functorial Construction

See also:

• Sets().WithRealizations for an introduction to realizations and with realizations.

• sage.categories.covariant_functorial_construction for an introduction to covariant functorial constructions.

• sage.categories.examples.with_realizations for an example.

class sage.categories.realizations.Category_realization_of_parent(parent_with_realization)

Bases: sage.categories.category_types.Category_over_base, sage.misc.bindable_classBindableClass

An abstract base class for categories of all realizations of a given parent

INPUT:

• parent_with_realization – a parent

See also:

Sets().WithRealizations

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field

The role of this base class is to implement some technical goodies, like the binding A.Realizations() when a subclass Realizations is implemented as a nested class in A (see the code of the example):

sage: C = A.Realizations(); C
Category of realizations of The subset algebra of {1, 2, 3} over Rational Field

as well as the name for that category.

sage.categories.realizations.Realizations(self)

Return the category of realizations of the parent self or of objects of the category self
INPUT:

- **self** – a parent or a concrete category

Note: this function is actually inserted as a method in the class `Category` (see `Realizations()`). It is defined here for code locality reasons.

EXAMPLES:

The category of realizations of some algebra:

```sage
Algebras(QQ).Realizations()
```

Join of Category of algebras over Rational Field and Category of realizations of unital magmas

The category of realizations of a given algebra:

```sage
A = Sets().WithRealizations().example(); A
```

The subset algebra of \{1, 2, 3\} over Rational Field

```sage
A.Realizations()
```

Category of realizations of The subset algebra of \{1, 2, 3\} over Rational Field

```sage
C = GradedHopfAlgebrasWithBasis(QQ).Realizations(); C
```

Join of Category of graded hopf algebras with basis over Rational Field and Category of realizations of hopf algebras over Rational Field

```sage
C.super_categories()
```

[Category of graded hopf algebras with basis over Rational Field, Category of realizations of hopf algebras over Rational Field]

```sage
TestSuite(C).run()
```

See also:

- `Sets().WithRealizations`
- `ClasscallMetaclass`

Todo: Add an optional argument to allow for:

```sage
Realizations(A, category = Blahs()) # todo: not implemented
```

```python
class sage.categories.realizations.RealizationsCategory(category, *args)
```

Bases:

`sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory`

An abstract base class for all categories of realizations category

Relization are implemented as `RegressiveCovariantConstructionCategory`. See there for the documentation of how the various bindings such as `Sets().Realizations()` and `P.Realizations()`, where `P` is a parent, work.

See also:

`Sets().WithRealizations`
4.13 With Realizations Covariant Functorial Construction

See also:

- `Sets().WithRealizations` for an introduction to realizations and with realizations.
- `sage.categories.covariant_functorial_construction` for an introduction to covariant functorial constructions.

`sage.categories.with_realizations.WithRealizations(self)`
Return the category of parents in `self` endowed with multiple realizations.

INPUT:

- `self` — a category

See also:

- The documentation and code (`sage.categories.examples.with_realizations`) of `Sets().WithRealizations().example()` for more on how to use and implement a parent with several realizations.
- Various use cases:
 - `SymmetricFunctions`
 - `QuasiSymmetricFunctions`
 - `NonCommutativeSymmetricFunctions`
 - `SymmetricFunctionsNonCommutingVariables`
 - `DescentAlgebra`
 - `algebras.Moebius`
 - `IwahoriHeckeAlgebra`
 - `ExtendedAffineWeylGroup`
- The Implementing Algebraic Structures thematic tutorial.
- `sage.categories.realizations`

Note: this function is actually inserted as a method in the class `Category` (see `WithRealizations()`). It is defined here for code locality reasons.

EXAMPLES:

```python
sage: Sets().WithRealizations()
Category of sets with realizations
```
Let us now explain the concept of realizations. A parent with realizations is a facade parent (see Sets. Facade) admitting multiple concrete realizations where its elements are represented. Consider for example an algebra \(A \) which admits several natural bases:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of \( \{1, 2, 3\} \) over Rational Field
```

For each such basis \(B \) one implements a parent \(P_B \) which realizes \(A \) with its elements represented by expanding them on the basis \(B \):

```
sage: A.F()
The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the Fundamental basis
sage: A.Out()
The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the Out basis
sage: A.In()
The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the In basis
sage: A.an_element()
\( F[\{\}\] + 2*F[\{1}\] + 3*F[\{2}\] + F[\{1, 2\}] \)
```

If \(B \) and \(B' \) are two bases, then the change of basis from \(B \) to \(B' \) is implemented by a canonical coercion between \(P_B \) and \(P_{B'} \):

```
sage: F = A.F(); In = A.In(); Out = A.Out()
sage: i = In.an_element(); i
\( In[\{\}\] + 2*In[\{1\}] + 3*In[\{2\}] + In[\{1, 2\}] \)
sage: F(i)
7*F[\{\}\] + 3*F[\{1\}] + 4*F[\{2\}] + F[\{1, 2\}]
sage: F.coerce_map_from(Out)
Generic morphism:
    From: The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the Out basis
    To: The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the Fundamental basis
```

allowing for mixed arithmetic:

```
sage: (1 + Out.from_set(1)) * In.from_set(2,3)
Out[\{\}\] + 2*Out[\{1\}] + 2*Out[\{2\}] + 2*Out[\{1, 2\}] + 2*Out[\{1, 3\}] +
    4*Out[\{2, 3\}] + 4*Out[\{1, 2, 3\}]
```

In our example, there are three realizations:

```
sage: A.realizations()
[The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the Fundamental basis,
The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the In basis,
The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the Out basis]
```

Instead of manually defining the shorthands \(F \), \(\text{In} \), and \(\text{Out} \), as above one can just do:

```
sage: A.inject_shorthands()
Defining F as shorthand for The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the Fundamental basis
Defining In as shorthand for The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the In basis
Defining Out as shorthand for The subset algebra of \( \{1, 2, 3\} \) over Rational Field in the Out basis
```

4.13. With Realizations Covariant Functorial Construction
Rationale

Besides some goodies described below, the role of A is threefold:

- To provide, as illustrated above, a single entry point for the algebra as a whole: documentation, access to its properties and different realizations, etc.
- To provide a natural location for the initialization of the bases and the coercions between, and other methods that are common to all bases.
- To let other objects refer to A while allowing elements to be represented in any of the realizations.

We now illustrate this second point by defining the polynomial ring with coefficients in A:

```
sage: P = A['x']; P
Univariate Polynomial Ring in x over The subset algebra of {1, 2, 3} over Rational Field

sage: x = P.gen()
```

In the following examples, the coefficients turn out to be all represented in the F basis:

```
sage: P.one()
F[{}]

sage: (P.an_element() + 1)^2
F[{}]*x^2 + 2*F[{}]*x + F[{}]
```

However we can create a polynomial with mixed coefficients, and compute with it:

```
sage: p = P([1, In[{1}], Out[{2}]]); p
Out[{2}]*x^2 + In[{1}]*x + F[{}]

sage: p^2
Out[{2}]*x^4 + (-8*In[{1}] + 2*In[{1}])^2 + (F[{}] + 3*F[{1}] + 2*F[{2}] - 2*F[{1, 2}] - 2*F[{2, 3}] + 2*F[{1, 2, 3}])^2 + (2*F[{}])^2 + x^2 + F[{}]
```

Note how each coefficient involves a single basis which need not be that of the other coefficients. Which basis is used depends on how coercion happened during mixed arithmetic and needs not be deterministic.

One can easily coerce all coefficient to a given basis with:

```
sage: p.map_coefficients(In)
(-4*In[{1}] + 2*In[{1}])^2 + (F[{}] + 3*F[{1}] + 2*F[{2}] - 2*F[{1, 2}] - 2*F[{2, 3}] + 2*F[{1, 2, 3}])^2 + (2*F[{}])^2 + x^2 + In[{1}]*x + In[{}]
```

Alas, the natural notation for constructing such polynomials does not yet work:

```
sage: In[{1}]*x
Traceback (most recent call last):
  ...
TypeError: unsupported operand parent(s) for *: 'The subset algebra of {1, 2, 3} over Rational Field in the In basis' and 'Univariate Polynomial Ring in x over The subset algebra of {1, 2, 3} over Rational Field'
```
The category of realizations of A

The set of all realizations of A, together with the coercion morphisms is a category (whose class inherits from `Category_realization_of_parent`):

```python
sage: A.Realizations()
Category of realizations of The subset algebra of {1, 2, 3} over Rational Field
```

The various parent realizing A belong to this category:

```python
sage: A.F() in A.Realizations()
True
```

A itself is in the category of algebras with realizations:

```python
sage: A in Algebras(QQ).WithRealizations()
True
```

The (mostly technical) `WithRealizations` categories are the analogs of the `*WithSeveralBases` categories in MuPAD-Combinat. They provide support tools for handling the different realizations and the morphisms between them.

Typically, `VectorSpaces(QQ).FiniteDimensional().WithRealizations()` will eventually be in charge, whenever a coercion $\phi : A \rightarrow B$ is registered, to register ϕ^{-1} as coercion $B \rightarrow A$ if there is none defined yet. To achieve this, `FiniteDimensionalVectorSpaces` would provide a nested class `WithRealizations` implementing the appropriate logic.

`WithRealizations` is a regressive covariant functorial construction. On our example, this simply means that A is automatically in the category of rings with realizations (covariance):

```python
sage: A in Rings().WithRealizations()
True
```

and in the category of algebras (regressiveness):

```python
sage: A in Algebras(QQ)
True
```

Note: For C a category, $C.WithRealizations()$ in fact calls `sage.categories.with_realizations.WithRealizations(C)`. The later is responsible for building the hierarchy of the categories with realizations in parallel to that of their base categories, optimizing away those categories that do not provide a `WithRealizations` nested class. See `sage.categories.covariant Functorial Construction` for the technical details.

Note: Design question: currently `WithRealizations` is a regressive construction. That is self `WithRealizations()` is a subcategory of `self` by default:

```python
sage: Algebras(QQ).WithRealizations().super_categories()
[Category of algebras over Rational Field,
 Category of monoids with realizations,
 Category of additive unital additive magmas with realizations]
```

Is this always desirable? For example, `AlgebrasWithBasis(QQ).WithRealizations()` should certainly be a subcategory of `Algebras(QQ)`, but not of `AlgebrasWithBasis(QQ)`. This is because...
AlgebrasWithBasis(QQ) is specifying something about the concrete realization.

```python
class sage.categories.with_realizations.WithRealizationsCategory(category, *args):
    Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

    An abstract base class for all categories of parents with multiple realizations.
    See also:
    Sets().WithRealizations

    The role of this base class is to implement some technical goodies, such as the name for that category.
```
EXEMPLARY EXAMPLES OF PARENTS USING CATEGORIES

5.1 Examples of algebras with basis

sage.categories.examples.algebras_with_basis.Example
alias of sage.categories.examples.algebras_with_basis.FreeAlgebra
class sage.categories.examples.algebras_with_basis.FreeAlgebra(R, alphabet='a',
'b', 'c')

Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of an algebra with basis: the free algebra

This class illustrates a minimal implementation of an algebra with basis.

algebra_generators()
Return the generators of this algebra, as per algebra_generators().

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators
('a', 'b', 'c') over Rational Field
sage: A.algebra_generators()
Family (B[a], B[b], B[c])

one_basis()
Returns the empty word, which index the one of this algebra, as per
AlgebrasWithBasis.ParentMethods.one_basis().

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example() sage: A.one_basis() word:
sage: A.one() B

product_on_basis(w1, w2)
Product of basis elements, as per AlgebrasWithBasis.ParentMethods.
product_on_basis().

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example() sage: Words = A.basis().keys()
sage: A.product_on_basis(Words("acb"), Words("cba"))

(a,b,c) = A.algebra_generators()
sage: a * (1-b)^2 * c
5.2 Examples of commutative additive monoids

sage.categories.examples.commutative_additive_monoids.Example
alias of sage.categories.examples.commutative_additive_monoids.FreeCommutativeAdditiveMonoid

class sage.categories.examples.commutative_additive_monoids.FreeCommutativeAdditiveMonoid(alphabet='a', 'b', 'c', 'd')

Bases: sage.categories.examples.commutative_additive_semigroups.FreeCommutativeAdditiveSemigroup

An example of a commutative additive monoid: the free commutative monoid

This class illustrates a minimal implementation of a commutative monoid.

EXAMPLES:

```
sage: S = CommutativeAdditiveMonoids().example(); S
An example of a commutative monoid: the free commutative monoid generated by ('a', 'b', 'c', 'd')
sage: S.category()
Category of commutative additive monoids
```

This is the free semigroup generated by:

```
sage: S.additive_semigroup_generators()
Family (a, b, c, d)
```

with product rule given by $a \times b = a$ for all a, b:

```
sage: (a,b,c,d) = S.additive_semigroup_generators()
```

We conclude by running systematic tests on this commutative monoid:

```
sage: TestSuite(S).run(verbose = True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
    Running the test suite of self.an_element()
    running ._test_category() . . . pass
    running ._test_eq() . . . pass
    running ._test_new() . . . pass
    running ._test_nonzero_equal() . . . pass
    running ._test_not_implemented_methods() . . . pass
    running ._test_pickling() . . . pass
    pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
```

(continues on next page)
class Element (parent, iterable)

Bases:
 sage.categories.examples.commutative_additive_semigroups.
 FreeCommutativeAdditiveSemigroup.Element

zero()

Returns the zero of this additive monoid, as per CommutativeAdditiveMonoids.
ParentMethods.zero().

EXAMPLES:

sage: M = CommutativeAdditiveMonoids().example(); M
An example of a commutative monoid: the free commutative monoid generated by ('a', 'b', 'c', 'd')
sage: M.zero()
0

5.3 Examples of commutative additive semigroups

sage.categories.examples.commutative_additive_semigroups.Example
 alias of
 sage.categories.examples.commutative_additive_semigroups.
 FreeCommutativeAdditiveSemigroup

class sage.categories.examples.commutative_additive_semigroups.
 FreeCommutativeAdditiveSemigroup

Bases:
 sage.structure.unique_representation.UniqueRepresentation,
 sage.structure.parent.Parent

An example of a commutative additive monoid: the free commutative monoid

This class illustrates a minimal implementation of a commutative additive monoid.

EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup generated by ('a', 'b', 'c', 'd')
sage: S.category()
Category of commutative additive semigroups

This is the free semigroup generated by:

sage: S.additive_semigroup_generators()
Family (a, b, c, d)

with product rule given by $a \times b = a$ for all a, b:

sage: (a,b,c,d) = S.additive_semigroup_generators()
We conclude by running systematic tests on this commutative monoid:

```sage
sage: TestSuite(S).run( verbose = True)
running ._test_additive_associativity() ... pass
running ._test_an_element() ... pass
running ._test_cardinality() ... pass
running ._test_category() ... pass
running ._test_construction() ... pass
running ._test_elements() ... 
  Running the test suite of self.an_element()
running ._test_category() ... pass
running ._test_eq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
pass
running ._test_elements_eq_reflexive() ... pass
running ._test_elements_eq_symmetric() ... pass
running ._test_elements_eq_transitive() ... pass
running ._test_elements_neq() ... pass
running ._test_eq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
running ._test_some_elements() ... pass
```

```python
class Element (parent, iterable)
    Bases: sage.structure.element_wrapper.ElementWrapper

    EXAMPLES:

    sage: F = CommutativeAdditiveSemigroups().example()
    sage: x = F.element_class(F, ("a", 4), ("b", 0), ("a", 2), ("c", 1), ("d", 5))
    sage: x
    2*a + c + 5*d
    sage: x.value
    {'a': 2, 'b': 0, 'c': 1, 'd': 5}
    sage: x.parent()
    An example of a commutative semigroup: the free commutative semigroup
    generated by ('a', 'b', 'c', 'd')
```

Internally, elements are represented as dense dictionaries which associate to each generator of the monoid its multiplicity. In order to get an element, we wrap the dictionary into an element via `ElementWrapper`:

```sage
sage: x.value
{'a': 2, 'b': 0, 'c': 1, 'd': 5}
```

additive_semigroup_generators()

Returns the generators of the semigroup.

EXAMPLES:

```sage
sage: F = CommutativeAdditiveSemigroups().example()
```

```sage
sage: F.additive_semigroup_generators()
Family (a, b, c, d)
```

an_element()

Returns an element of the semigroup.
EXAMPLES:

```python
sage: F = CommutativeAdditiveSemigroups().example()
sage: F.an_element()
```

```python
a + 2*b + 3*c + 4*d
```

`summation(x, y)`

Returns the product of `x` and `y` in the semigroup, as per `CommutativeAdditiveSemigroups.ParentMethods.summation()`.

EXAMPLES:

```python
sage: F = CommutativeAdditiveSemigroups().example()

sage: (a,b,c,d) = F.additive_semigroup_generators()

sage: F.summation(a,b)
a + b

sage: (a+b) + (a+c)
2*a + b + c
```

5.4 Examples of Coxeter groups

5.5 Example of a crystal

```python
class sage.categories.examples.crystals.HighestWeightCrystalOfTypeA\(n=3\)
Bases: \sage.structure.unique_representation.UniqueRepresentation, \sage.structure.parent.Parent

An example of a crystal: the highest weight crystal of type $A_n$ of highest weight $\omega_1$.

The purpose of this class is to provide a minimal template for implementing crystals. See `CrystalOfLetters` for a full featured and optimized implementation.

EXAMPLES:

```python
sage: C = Crystals().example()
sage: C
Highest weight crystal of type A_3 of highest weight ω_1

sage: C.category()
Category of classical crystals
```

The elements of this crystal are in the set $\{1,\ldots,n+1\}$:

```python
sage: C.list()
[1, 2, 3, 4]
sage: C.module_generators[0]
1
```

The crystal operators themselves correspond to the elementary transpositions:

```python
sage: b = C.module_generators[0]
sage: b.f(1)
2
sage: b.f(1).e(1) == b
True
```

Only the following basic operations are implemented:
• `cartan_type()` or an attribute `_cartan_type`
• an attribute `module_generators`
• `Element.e()`
• `Element.f()`

All the other usual crystal operations are inherited from the categories; for example:

```python
sage: C.cardinality()
4
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 e(i)
 Returns the action of e_i on self.

 EXAMPLES:

 sage: C = Crystals().example(4)
 sage: [[c,i,c.e(i)] for i in C.index_set() for c in C if c.e(i) is not None]
 [[2, 1, 1], [3, 2, 2], [4, 3, 3], [5, 4, 4]]

 f(i)
 Returns the action of f_i on self.

 EXAMPLES:

 sage: C = Crystals().example(4)
 sage: [[c,i,c.f(i)] for i in C.index_set() for c in C if c.f(i) is not None]
 [[1, 1, 2], [2, 2, 3], [3, 3, 4], [4, 4, 5]]
```

class sage.categories.examples.crystals.NaiveCrystal
    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

    This is an example of a “crystal” which does not come from any kind of representation, designed primarily to test the Stembridge local rules with. The crystal has vertices labeled 0 through 5, with 0 the highest weight.

    The code here could also possibly be generalized to create a class that automatically builds a crystal from an edge-colored digraph, if someone feels adventurous.

    Currently, only the methods `highest_weight_vector()`, `e()`, and `f()` are guaranteed to work.

    EXAMPLES:

    ```python
 sage: C = Crystals().example(choice='naive')
 sage: C.highest_weight_vector()
 0
    ```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 e(i)
 Returns the action of e_i on self.

 EXAMPLES:
```
sage: C = Crystals().example(choice='naive')
sage: [[c, i, c.e(i)] for i in C.index_set() for c in [C(j) for j in [0..5]] if c.e(i) is not None]
[[[1, 1, 0], [2, 1, 1], [3, 1, 2], [5, 1, 3], [4, 2, 0], [5, 2, 4]]

\( f(i) \)

Returns the action of \( f_i \) on \( self \).

**EXAMPLES:**

sage: C = Crystals().example(choice='naive')
sage: [[c, i, c.f(i)] for i in C.index_set() for c in [C(j) for j in [0..5]] if c.f(i) is not None]
[[[0, 1, 1], [1, 1, 2], [2, 1, 3], [3, 1, 5], [0, 2, 4], [4, 2, 5]]

## 5.6 Examples of CW complexes

sage.categories.examples.cw_complexes.Example
alias of sage.categories.examples.cw_complexes.Surface
class sage.categories.examples.cw_complexes.Surface(bdy=1, 2, 1, 2)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of a CW complex: a (2-dimensional) surface.
This class illustrates a minimal implementation of a CW complex.

**EXAMPLES:**

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example(); X
An example of a CW complex: the surface given by the boundary map (1, 2, 1, 2)
sage: X.category()
Category of finite finite dimensional CW complexes

We conclude by running systematic tests on this manifold:

sage: TestSuite(X).run()
class Element (parent, dim, name)
Bases: sage.structure.element.Element

A cell in a CW complex.

dimension()

Return the dimension of \( self \).

**EXAMPLES:**

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: f = X.an_element()
sage: f.dimension()
**an_element()**

Return an element of the CW complex, as per `Sets.ParentMethods.an_element()`.

**EXAMPLES:**

```
sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: X.an_element()
2-cell f
```

**cells()**

Return the cells of self.

**EXAMPLES:**

```
sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: C = X.cells()
sage: sorted((d, C[d]) for d in C.keys())
[(0, (0-cell v,)),
 (1, (0-cell e1, 0-cell e2)),
 (2, (2-cell f,))]
```

### 5.7 Example of facade set

**class** `sage.categories.examples.facade_sets.IntegersCompletion`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.structure.parent.Parent`

An example of a facade parent: the set of integers completed with $+ - \infty$

This class illustrates a minimal implementation of a facade parent that models the union of several other parents.

**EXAMPLES:**

```
sage: S = Sets().Facade().example("union"); S
An example of a facade set: the integers completed by +-infinity
```

**class** `sage.categories.examples.facade_sets.PositiveIntegerMonoid`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.structure.parent.Parent`

An example of a facade parent: the positive integers viewed as a multiplicative monoid

This class illustrates a minimal implementation of a facade parent which models a subset of a set.

**EXAMPLES:**

```
sage: S = Sets().Facade().example(); S
An example of facade set: the monoid of positive integers
```
5.8 Examples of finite Coxeter groups

```python
class sage.categories.examples.finite_coxeter_groups.DihedralGroup(n=5):
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of finite Coxeter group: the n-th dihedral group of order $2n$.

The purpose of this class is to provide a minimal template for implementing finite Coxeter groups. See DihedralGroup for a full featured and optimized implementation.

EXAMPLES:

```python
sage: G = FiniteCoxeterGroups().example()
```

This group is generated by two simple reflections s_1 and s_2 subject to the relation $(s_1s_2)^n = 1$:

```python
sage: G.simple_reflections()
Finite family {1: (1,), 2: (2,)}
sage: s1, s2 = G.simple_reflections()
sage: (s1*s2)^5 == G.one()
True
```

An element is represented by its reduced word (a tuple of elements of self.index_set()):

```python
sage: G.an_element()
(1, 2)
sage: list(G)
[(),
 (1,),
 (2,),
 (1, 2),
 (2, 1),
 (1, 2, 1),
 (2, 1, 2),
 (1, 2, 1, 2),
 (2, 1, 2, 1),
 (1, 2, 1, 2, 1)]
```

This reduced word is unique, except for the longest element where the chosen reduced word is $(1, 2, 1, 2, \ldots)$:

```python
sage: G.long_element()
(1, 2, 1, 2, 1)
```

```python
class Element
    Bases: sage.structure.element_wrapper.ElementWrapper

    apply_simple_reflection_right(i)
    Implements CoxeterGroups.ElementMethods.apply_simple_reflection().

    EXAMPLES:

```python
sage: D5 = FiniteCoxeterGroups().example(5)
sage: [i^2 for i in D5] # indirect doctest
[(), (), (), (1, 2, 1, 2), (2, 1, 2, 1), (), (), (2, 1), (1, 2), ()]
sage: [i^5 for i in D5] # indirect doctest
[(), (1,), (2,), (), (), (1, 2, 1), (2, 1, 2), (), (), (1, 2, 1, 2, 1)]
```
**has_right_descent** (*i*, *positive=False*, *side=’right’)

Implements `SemiGroups.ElementMethods.has_right_descent()`.

**EXAMPLES:**

```python
sage: D6 = FiniteCoxeterGroups().example(6)
sage: s = D6.simple_reflections()
sage: s[1].has_descent(1)
True
sage: s[1].has_descent(1)
True
sage: s[1].has_descent(2)
False
sage: D6.one().has_descent(1)
False
sage: D6.one().has_descent(2)
False
sage: D6.long_element().has_descent(1)
True
sage: D6.long_element().has_descent(2)
True
```

**wrapped_class**

alias of builtins.tuple

**coxeter_matrix()**

Return the Coxeter matrix of self.

**EXAMPLES:**

```python
sage: FiniteCoxeterGroups().example(6).coxeter_matrix()
[1 6]
[6 1]
```

**degrees()**

Return the degrees of self.

**EXAMPLES:**

```python
sage: FiniteCoxeterGroups().example(6).degrees()
(2, 6)
```

**index_set()**


**EXAMPLES:**

```python
sage: D4 = FiniteCoxeterGroups().example(4)
sage: D4.index_set()
(1, 2)
```

**one()**

Implements `Monoids.ParentMethods.one()`.

**EXAMPLES:**

```python
sage: D6 = FiniteCoxeterGroups().example(6)
sage: D6.one()
()```
sage.categories.examples.finite_coxeter_groups.Example
 alias of sage.categories.examples.finite_coxeter_groups.DihedralGroup

5.9 Example of a finite dimensional algebra with basis

sage.categories.examples.finite_dimensional_algebras_with_basis.Example
 alias of sage.categories.examples.finite_dimensional_algebras_with_basis.KroneckerQuiverPathAlgebra
class sage.categories.examples.finite_dimensional_algebras_with_basis.KroneckerQuiverPathAlgebra
 Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver.

This class illustrates a minimal implementation of a finite dimensional algebra with basis. See sage.quivers.algebra.PathAlgebra for a full-featured implementation of path algebras.

algebra_generators()
 Return algebra generators for this algebra.

 See also:
 Algebras.ParentMethods.algebra_generators().

 EXAMPLES:

```
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver
  (containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.algebra_generators()
Finite family {'x': x, 'y': y, 'a': a, 'b': b}
```

one()
 Return the unit of this algebra.

 See also:
 AlgebrasWithBasis.ParentMethods.one_basis()

 EXAMPLES:

```
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example()
sage: A.one()
x + y
```

product_on_basis(w1, w2)
 Return the product of the two basis elements indexed by w1 and w2.

 See also:
 AlgebrasWithBasis.ParentMethods.product_on_basis().

 EXAMPLES:

```
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example()
sage: A.product_on_basis('a', 'a')
a*a
```

Here is the multiplication table for the algebra:
Here we take some products of linear combinations of basis elements:

```
sage: x, y, a, b = A.basis()
sage: a * (1-b)^2 * x
0
sage: x*a + b*y
a + b
sage: x*x
x
sage: x*y
0
sage: x*a*y
a
```

5.10 Examples of a finite dimensional Lie algebra with basis

```python
class AbelianLieAlgebra(sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra):
    def lift(self):
        return self
```

An example of a finite dimensional Lie algebra with basis: the abelian Lie algebra.

Let R be a commutative ring, and M an R-module. The **abelian Lie algebra** on M is the R-Lie algebra obtained by endowing M with the trivial Lie bracket ($[a, b] = 0$ for all $a, b \in M$).

This class illustrates a minimal implementation of a finite dimensional Lie algebra with basis.

INPUT:

- R – base ring
- n – (optional) a nonnegative integer (default: None)
- M – an R-module (default: the free R-module of rank n) to serve as the ground space for the Lie algebra
- `ambient` – (optional) a Lie algebra; if this is set, then the resulting Lie algebra is declared a Lie subalgebra of `ambient`

OUTPUT:

The abelian Lie algebra on M.

```python
class Element:
    Bases: sage.categories.examples.lie_algebras.LieAlgebraFromAssociative.Element
    lift()
        Return the lift of `self` to the universal enveloping algebra.
```
EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.lift()
2*b0 + 2*b1 + 3*b2
```

monomial_coefficients *(copy=True)*

Return the monomial coefficients of `self`.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.monomial_coefficients()
{0: 2, 1: 2, 2: 3}
```

to_vector *(order=None)*

Return `self` as a vector in `self.parent().module()`.

See the docstring of the latter method for the meaning of this.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.to_vector()
(2, 2, 3)
```

ambient()

Return the ambient Lie algebra of `self`.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: s = L.subalgebra([2*a+b, b + c])
sage: s.ambient() == L
True
```

basis()

Return the basis of `self`.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis()
Finite family {0: (1, 0, 0), 1: (0, 1, 0), 2: (0, 0, 1)}
```

basis_matrix()

Return the basis matrix of `self`.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis_matrix()
```

(continues on next page)
from_vector \(v, \text{order=None}\)

Return the element of \(\text{self}\) corresponding to the vector \(v\) in \(\text{self}.\text{module}()\).

Implement this if you implement \(\text{module}()\); see the documentation of \sage.categories.lie_algebras.LieAlgebras.\text{module}()\) for how this is to be done.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True
```

gens()

Return the generators of \(\text{self}\).

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.gens()
((1, 0, 0), (0, 1, 0), (0, 0, 1))
```

ideal \(\text{gens}\)

Return the Lie subalgebra of \(\text{self}\) generated by the elements of the iterable \(\text{gens}\).

This currently requires the ground ring \(R\) to be a field.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.subalgebra([2*a+b, b + c])
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field with
basis matrix:
[ 1 0 -1/2]
[ 0 1 1]
```

is_ideal \(A\)

Return if \(\text{self}\) is an ideal of the ambient space \(A\).

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.is_ideal(L)
True
sage: S1 = L.subalgebra([2*a+b, b + c])
sage: S1.is_ideal(L)
True
sage: S2 = L.subalgebra([2*a+b])
sage: S2.is_ideal(S1)
True
```
sage: S1.is_ideal(S2)
False

\textbf{lie_algebra_generators}()

Return the basis of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis()
Finite family {0: (1, 0, 0), 1: (0, 1, 0), 2: (0, 0, 1)}
\end{verbatim}

\textbf{module}()

Return an R-module which is isomorphic to the underlying R-module of \texttt{self}.

See \texttt{sage.categories.lie_algebras.LieAlgebras}\.\texttt{module()} for an explanation.

In this particular example, this returns the module M that was used to construct \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.module()
Vector space of dimension 3 over Rational Field
sage: a, b, c = L.lie_algebra_generators()
sage: S = L.subalgebra([2*a+b, b + c])
sage: S.module()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[1 0 -1/2]
[0 1 1]
\end{verbatim}

\textbf{subalgebra} (\texttt{gens})

Return the Lie subalgebra of \texttt{self} generated by the elements of the iterable \texttt{gens}.

This currently requires the ground ring R to be a field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.subalgebra([2*a+b, b + c])
An example of a finite dimensional Lie algebra with basis: the 2-dimensional abelian Lie algebra over Rational Field with basis matrix:
[1 0 -1/2]
[0 1 1]
\end{verbatim}

\textbf{zero} ()

Return the zero element.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.zero()
(0, 0, 0)
\end{verbatim}
5.11 Examples of finite enumerated sets

class sage.categories.examples.finite Enumerated sets.Example
 Bases: sage.structure.unique_representation.UniformRepresentation, sage.
structural.parent.Parent

An example of a finite enumerated set: \{1, 2, 3\}

This class provides a minimal implementation of a finite enumerated set.

See `FiniteEnumeratedSet` for a full featured implementation.

EXAMPLES:

```python
sage: C = FiniteEnumeratedSets().example()
sage: C.cardinality()
3
sage: C.list()
[1, 2, 3]
sage: C.an_element()
1
```

This checks that the different methods of the enumerated set \(C\) return consistent results:

```python
sage: TestSuite(C).run(\text{verbose = True})
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
    Running the test suite of self.an_element()
    running ._test_category() . . . pass
    running ._test_eq() . . . pass
    running ._test_new() . . . pass
    running ._test_nonzero_equal() . . . pass
    running ._test_not_implemented_methods() . . . pass
    running ._test_pickling() . . . pass
    pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
```
class sage.categories.examples.finite enumerated sets.IsomorphicObjectOfFiniteEnumeratedSet

Bases:
sage.structure.unique_representation.UniqueRepresentation,
sage.structure.parent.Parent

ambient()
Returns the ambient space for self, as per Sets.Subquotients.ParentMethods.ambient().

EXAMPLES:

sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
The image by some isomorphism of An example of a finite enumerated set: \{1,2,
→3\}

sage: C.ambient()
An example of a finite enumerated set: \{1,2,3\}

lift(x)
INPUT:
• x – an element of self

Lifts x to the ambient space for self, as per Sets.Subquotients.ParentMethods.lift().

EXAMPLES:

sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
The image by some isomorphism of An example of a finite enumerated set: \{1,2,
→3\}

sage: C.lift(9)
3

retract(x)
INPUT:
• x – an element of the ambient space for self

Retracts x from the ambient space to self, as per Sets.Subquotients.ParentMethods.
retract().

EXAMPLES:

sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
The image by some isomorphism of An example of a finite enumerated set: \{1,2,
→3\}

sage: C.retract(3)
9
5.12 Examples of finite monoids

sage.categories.examples.finite_monoids.Example
alias of sage.categories.examples.finite_monoids.IntegerModMonoid
class sage.categories.examples.finite_monoids.IntegerModMonoid(n=12)
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.
 structure.parent.Parent
 An example of a finite monoid: the integers mod n
 This class illustrates a minimal implementation of a finite monoid.
 EXAMPLES:
 sage: S = FiniteMonoids().example(); S
 An example of a finite multiplicative monoid: the integers modulo 12
 sage: S.category()
 Category of finitely generated finite enumerated monoids
 We conclude by running systematic tests on this monoid:
 sage: TestSuite(S).run(Verbose = True)
 running ._test_an_element() ... pass
 running ._test_associativity() ... pass
 running ._test_cardinality() ... pass
 running ._test_category() ... pass
 running ._test_construction() ... pass
 running ._test_elements() ... Running the test suite of self.an_element()
 running ._test_category() ... pass
 running ._test_eq() ... pass
 running ._test_not_implemented_methods() ... pass
 running ._test_pickling() ... pass
 pass
 running ._test_elements_eq_reflexive() ... pass
 running ._test_elements_eq_symmetric() ... pass
 running ._test_elements_eq_transitive() ... pass
 running ._test_enumerated_set_contains() ... pass
 running ._test_enumerated_set_iter_cardinality() ... pass
 running ._test_enumerated_set_iter_list() ... pass
 running ._test_eq() ... pass
 running ._test_new() ... pass
 running ._test_not_implemented_methods() ... pass
 running ._test_one() ... pass
 running ._test_pickling() ... pass
 running ._test_prod() ... pass
 running ._test_some_elements() ... pass

class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 wrapped_class
 alias of sage.rings.integer.Integer

 an_element()
 Returns an element of the monoid, as per Sets.ParentMethods.an_element().
EXAMPLES:

```python
sage: M = FiniteMonoids().example()
sage: M.an_element()
6
```

`one()`
Return the one of the monoid, as per `Monoids.ParentMethods.one()`.

EXAMPLES:

```python
sage: M = FiniteMonoids().example()
sage: M.one()
1
```

`product(x, y)`
Return the product of two elements x and y of the monoid, as per `Semigroups.ParentMethods.product()`.

EXAMPLES:

```python
sage: M = FiniteMonoids().example()
sage: M.product(M(3), M(5))
3
```

`semigroup_generators()`
Returns a set of generators for `self`, as per `Semigroups.ParentMethods.semigroup_generators()`. Currently this returns all integers mod n, which is of course far from optimal!

EXAMPLES:

```python
sage: M = FiniteMonoids().example()
sage: M.semigroup_generators()
Family (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
```

5.13 Examples of finite semigroups

```python
sage.categories.examples.finite_semigroups.Example
alias of sage.categories.examples.finite_semigroups.LeftRegularBand
class sage.categories.examples.finite_semigroups.LeftRegularBand(alphabet='a', 'b', 'c', 'd')
    Bases:  sage.structure.unique_representation.UniqueRepresentation, sage.
    structure.parent.Parent
    An example of a finite semigroup
    This class provides a minimal implementation of a finite semigroup.
    EXAMPLES:
    ```
sage: S = FiniteSemigroups().example(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c →', 'd')
```
```
This is the semigroup generated by:
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')

such that \(x^2 = x \) and \(xyx = xy \) for any \(x \) and \(y \) in \(S \):

sage: S('dab')
'dab'
sage: S('dab') * S('acb')
'dabc'

It follows that the elements of \(S \) are strings without repetitions over the alphabet \(a, b, c, d \):

sage: sorted(S.list())

It also follows that there are finitely many of them:

sage: S.cardinality()
64

Indeed:

sage: 4 * (1 + 3 * (1 + 2 * (1 + 1)))
64

As expected, all the elements of \(S \) are idempotents:

sage: all(x.is_idempotent() for x in S)
True

Now, let us look at the structure of the semigroup:

sage: S = FiniteSemigroups().example(alphabet = ('a','b','c'))
sage: S.j_transversal_of_idempotents()
random (arbitrary choice)
['acb', 'ac', 'ab', 'bc', 'a', 'c', 'b']

We conclude by running systematic tests on this semigroup:

sage: TestSuite(S).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
 Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass

(continues on next page)
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
pass
running ._test_elements_eq_reflexive() ... pass
running ._test_elements_eq_symmetric() ... pass
running ._test_elements_eq_transitive() ... pass
running ._test_elements_neq() ... pass
running ._test_enumerated_set_contains() ... pass
running ._test_enumerated_set_iter_cardinality() ... pass
running ._test_enumerated_set_iter_list() ... pass
running ._test_eq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
running ._test_some_elements() ... pass

class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 wrapped_class
 alias of builtins.str

 an_element()
 Returns an element of the semigroup.

 EXAMPLES:

 sage: S = FiniteSemigroups().example()
 sage: S.an_element()
 'cdab'
 sage: S = FiniteSemigroups().example(('b'))
 sage: S.an_element()
 'b'

 product(x, y)
 Returns the product of two elements of the semigroup.

 EXAMPLES:

 sage: S = FiniteSemigroups().example()
 sage: S('a') * S('b')
 'ab'
 sage: S('a') * S('b') * S('a')
 'ab'
 sage: S('a') * S('a')
 'a'

 semigroup_generators()
 Returns the generators of the semigroup.

 EXAMPLES:

 sage: S = FiniteSemigroups().example(alphabet=('x','y'))
 sage: S.semigroup_generators()
 Family ('x', 'y')

5.13. Examples of finite semigroups
5.14 Examples of finite Weyl groups

```python
sage.categories.examples.finite_weyl_groups.Example
alias of sage.categories.examples.finite_weyl_groups.SymmetricGroup
class sage.categories.examples.finite_weyl_groups.SymmetricGroup(n=4)
    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of finite Weyl group: the symmetric group, with elements in list notation.

The purpose of this class is to provide a minimal template for implementing finite Weyl groups. See SymmetricGroup for a full featured and optimized implementation.

EXAMPLES:

```python
sage: S = FiniteWeylGroups().example()
sage: S
The symmetric group on {0, ..., 3}
sage: S.category()
Category of finite irreducible weyl groups
```

The elements of this group are permutations of the set \{0, ..., 3\}:

```python
sage: S.one()
(0, 1, 2, 3)
sage: S.an_element()
(1, 2, 3, 0)
```

The group itself is generated by the elementary transpositions:

```python
sage: S.simple_reflections()
Finite family {0: (1, 0, 2, 3), 1: (0, 2, 1, 3), 2: (0, 1, 3, 2)}
```

Only the following basic operations are implemented:

- `one()`
- `product()`
- `simple_reflection()`
- `cartan_type()`
- `Element.has_right_descent()`.

All the other usual Weyl group operations are inherited from the categories:

```python
sage: S.cardinality()
24
sage: S.long_element()
(3, 2, 1, 0)
sage: S.cayley_graph(side = "left").plot()
Graphics object consisting of 120 graphics primitives
```

Alternatively, one could have implemented sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.apply_simple_reflection() instead of `simple_reflection()` and `product()`. See CoxeterGroups().example().

class Element
    Bases: sage.structure.element_wrapper.ElementWrapper
```
has_right_descent (i)

Implements `CoxeterGroups.ElementMethods.has_right_descent()`.

EXAMPLES:
```
sage: S = FiniteWeylGroups().example()
sage: s = S.simple_reflections()
sage: (s[1] * s[2]).has_descent(2)
True
sage: S._test_has_descent()
```

cartan_type()

Return the Cartan type of `self`.

EXAMPLES:
```
sage: FiniteWeylGroups().example().cartan_type()
['A', 3] relabelled by {1: 0, 2: 1, 3: 2}
```

degrees()

Return the degrees of `self`.

EXAMPLES:
```
sage: W = FiniteWeylGroups().example()
sage: W.degrees()
(2, 3, 4)
```

index_set()

EXAMPLES:
```
sage: FiniteWeylGroups().example().index_set()
[0, 1, 2]
```

one

Implements `Monoids.ParentMethods.one()`.

EXAMPLES:
```
sage: FiniteWeylGroups().example().one()
(0, 1, 2, 3)
```

product (x, y)

EXAMPLES:
```
sage: s = FiniteWeylGroups().example().simple_reflections()
(0, 2, 3, 1)
```

simple_reflection (i)

Implement `CoxeterGroups.ParentMethods.simple_reflection()` by returning the transposition $(i, i+1)$.

EXAMPLES:
5.15 Examples of graded connected Hopf algebras with basis

sage.categories.examples.graded_connected_hopf_algebras_with_basis.Example
alias of sage.categories.examples.graded_connected_hopf_algebras_with_basis.
GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator
class sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator
Bases: sage.combinat.free_module.CombinatorialFreeModule

This class illustrates an implementation of a graded Hopf algebra with basis that has one primitive generator of
degree 1 and basis elements indexed by non-negative integers.

This Hopf algebra example differs from what topologists refer to as a graded Hopf algebra because the twist
operation in the tensor rule satisfies

$$(\mu \otimes \mu) \circ (id \otimes \tau \otimes id) \circ (\Delta \otimes \Delta) = \Delta \circ \mu$$

where $\tau(x \otimes y) = y \otimes x$.

coproduct_on_basis(i)
The coproduct of a basis element.

$$\Delta(P_i) = \sum_{j=0}^{i} P_{i-j} \otimes P_j$$

INPUT:
• i – a non-negative integer

OUTPUT:
• an element of the tensor square of self

degree_on_basis(i)
The degree of a non-negative integer is itself

INPUT:
• i – a non-negative integer

OUTPUT:
• a non-negative integer

one_basis()
Returns 0, which index the unit of the Hopf algebra.

OUTPUT:
• the non-negative integer 0

EXAMPLES:

```
sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
sage: H.one_basis()
0
sage: H.one()
P0
```
product_on_basis(i, j)

The product of two basis elements.

The product of elements of degree i and j is an element of degree i+j.

INPUT:

- i, j – non-negative integers

OUTPUT:

- a basis element indexed by i+j

5.16 Examples of graded modules with basis

```python
sage.categories.examples.graded_modules_with_basis.Example
alias of sage.categories.examples.graded_modules_with_basis.
GradedPartitionModule
class sage.categories.examples.graded_modules_with_basis.GradedPartitionModule(base_ring)
Bases: sage.combinat.free_module.CombinatorialFreeModule

This class illustrates an implementation of a graded module with basis: the free module over partitions.

**INPUT:**

- R – base ring

The implementation involves the following:

- A choice of how to represent elements. In this case, the basis elements are partitions. The algebra is
constructed as a CombinatorialFreeModule on the set of partitions, so it inherits all of the methods
for such objects, and has operations like addition already defined.

```python
sage: A = GradedModulesWithBasis(QQ).example()
```

- A basis function - this module is graded by the non-negative integers, so there is a function defined in this
module, creatively called basis(), which takes an integer d as input and returns a family of partitions
representing a basis for the algebra in degree d.

```python
sage: A.basis(2)
Lazy family (Term map from Partitions to An example of a graded module with
˓
˓→basis: the free module on partitions over Rational Field(i))_{i in
˓
˓→Partitions of the integer 2}

sage: A.basis(6)[Partition([3,2,1])]
P[3, 2, 1]
```

- If the algebra is called A, then its basis function is stored as A.basis. Thus the function can be used to
find a basis for the degree d piece: essentially, just call A.basis(d). More precisely, call x for each x
in A.basis(d).

```python
sage: A.basis(6)

sage: [m for m in A.basis(4)]
[P[4], P[3, 1], P[2, 2], P[2, 1, 1], P[1, 1, 1, 1]]
```

- For dealing with basis elements: degree_on_basis(), and _repr_term(). The first of these
defines the degree of any monomial, and then the degree method for elements – see the next item – uses
it to compute the degree for a linear combination of monomials. The last of these determines the print
representation for monomials, which automatically produces the print representation for general elements.
• There is a class for elements, which inherits from `IndexedFreeModuleElement`. An element is determined by a dictionary whose keys are partitions and whose corresponding values are the coefficients. The class implements two things: an `is_homogeneous` method and a `degree` method.

```sage
sage: p = A.monomial(Partition([3,2,1])); p
P[3, 2, 1]
sage: p.is_homogeneous()
True
sage: p.degree()
6
```

### `basis (d=None)`

Return the basis for (the $d$-th homogeneous component of) `self`.

**INPUT:**

- `d` – (optional, default `None`) nonnegative integer or `None`

**OUTPUT:**

If $d$ is `None`, returns the basis of the module. Otherwise, returns the basis of the homogeneous component of degree $d$ (i.e., the subfamily of the basis of the whole module which consists only of the basis vectors lying in $F_d \setminus \bigcup_{i<d} F_i$).

The basis is always returned as a family.

**EXAMPLES:**

```sage
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Lazy family (Term map from Partitions to An example of a filtered module with basis: the free module on partitions over Integer Ring(i))_{i in Partitions of the integer 4}
```

Without arguments, the full basis is returned:

```sage
sage: A.basis()
Lazy family (Term map from Partitions to An example of a filtered module with basis: the free module on partitions over Integer Ring(i))_{i in Partitions}
sage: A.basis()
Lazy family (Term map from Partitions to An example of a filtered module with basis: the free module on partitions over Integer Ring(i))_{i in Partitions}
```

Checking this method on a filtered algebra. Note that this will typically raise a `NotImplementedError` when this feature is not implemented.

```sage
sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Traceback (most recent call last):
 ...
NotImplementedError: infinite set
```

Without arguments, the full basis is returned:

```sage
sage: A.basis()
```
A.basis()

Lazy family (Term map from Free abelian monoid indexed by
{'x', 'y', 'z'}) to An example of a filtered algebra with
basis: the universal enveloping algebra of Lie algebra
of \( \mathbb{R}^3 \) with cross product over \( \mathbb{Z} \).

An example with a graded algebra:

```
sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.basis()
Lazy family (Term map from Subsets of {0, 1} to
The exterior algebra of rank 2 over Rational Field(i))_{i in
Subsets of {0, 1}}
```

```
degree_on_basis(t)
The degree of the element determined by the partition \(t \) in this graded module.

INPUT:
- \(t \) – the index of an element of the basis of this module, i.e. a partition

OUTPUT: an integer, the degree of the corresponding basis element

EXAMPLES:
```
sage: A = GradedModulesWithBasis(QQ).example()
sage: A.degree_on_basis(Partition((2,1)))
3
sage: A.degree_on_basis(Partition((4,2,1,1,1,1)))
10
sage: type(A.degree_on_basis(Partition((1,1))))
<type 'sage.rings.integer.Integer'>
```

5.17 Examples of graphs

```
class sage.categories.examples.graphs.Cycle(n=5)
Bases:     sage.structure.unique_representation.UniqueRepresentation, sage.
structure.parent.Parent

An example of a graph: the cycle of length \( n \).

This class illustrates a minimal implementation of a graph.

EXAMPLES:
```
sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example(); C
An example of a graph: the 5-cycle

sage: C.category()
Category of graphs
```

We conclude by running systematic tests on this graph:

```
sage: TestSuite(C).run()
```
class Element
    Bases: sage.structure.element_wrapper.ElementWrapper

dimension()
    Return the dimension of self.

    EXAMPLES:

    sage: from sage.categories.graphs import Graphs
    sage: C = Graphs().example()
    sage: e = C.edges()[0]
    sage: e.dimension()
    2
    sage: v = C.vertices()[0]
    sage: v.dimension()
    1

an_element()
    Return an element of the graph, as per Sets.ParentMethods.an_element().

    EXAMPLES:

    sage: from sage.categories.graphs import Graphs
    sage: C = Graphs().example()
    sage: C.an_element()
    0

edges()
    Return the edges of self.

    EXAMPLES:

    sage: from sage.categories.graphs import Graphs
    sage: C = Graphs().example()
    sage: C.edges()
    [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

vertices()
    Return the vertices of self.

    EXAMPLES:

    sage: from sage.categories.graphs import Graphs
    sage: C = Graphs().example()
    sage: C.vertices()
    [0, 1, 2, 3, 4]

sage.categories.examples.graphs.Example
    alias of sage.categories.examples.graphs.Cycle
5.18 Examples of Hopf algebras with basis

```python
class sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra(R, G):
 Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of a Hopf algebra with basis: the group algebra of a group
This class illustrates a minimal implementation of a Hopf algebra with basis.

algebra_generators()
Return the generators of this algebra, as per `algebra_generators()`.

They correspond to the generators of the group.

EXAMPLES:

```sage
A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: A.algebra_generators()
Finite family {(1,2,3): B[(1,2,3)], (1,3): B[(1,3)]}
```

antipode_on_basis(g)
Antipode, on basis elements, as per `HopfAlgebrasWithBasis.ParentMethods.antipode_on_basis()`.

It is given, on basis elements, by $\nu(g) = g^{-1}$

EXAMPLES:

```sage
A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.antipode_on_basis(a)
B[(1,3,2)] # B[(1,2,3)]
```

coproduct_on_basis(g)
Coproduct, on basis elements, as per `HopfAlgebrasWithBasis.ParentMethods.coproduct_on_basis()`.

The basis elements are group like: $\Delta(g) = g \otimes g$.

EXAMPLES:

```sage
A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.coproduct_on_basis(a)
B[(1,3,2)] # B[(1,2,3)]
```

counit_on_basis(g)
Counit, on basis elements, as per `HopfAlgebrasWithBasis.ParentMethods.counit_on_basis()`.

The counit on the basis elements is 1.

EXAMPLES:

```sage
A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.counit_on_basis(a)
1
```
```
one_basis()
Returns the one of the group, which index the one of this algebra, as per AlgebrasWithBasis.
ParentMethods.one_basis().

EXAMPLES:

```
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: A.one_basis()
()
sage: A.one()
B[()]
```

product_on_basis(g1, g2)
Product, on basis elements, as per AlgebrasWithBasis.ParentMethods.
product_on_basis().
The product of two basis elements is induced by the product of the corresponding elements of the group.

EXAMPLES:

```
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: a*b
(1,2)
sage: A.product_on_basis(a, b)
B[(1,2)]
```

### 5.19 Examples of infinite enumerated sets

```
sage.categories.examples.infiniteEnumeratedSets.Example
alias of sage.categories.examples.infiniteEnumeratedSets.NonNegativeIntegers
class sage.categories.examples.infiniteEnumeratedSets.NonNegativeIntegers
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of infinite enumerated set: the non negative integers

This class provides a minimal implementation of an infinite enumerated set.

EXAMPLES:

```
sage: NN = InfiniteEnumeratedSets().example()
sage: NN
An example of an infinite enumerated set: the non negative integers
sage: NN.cardinality()
+Infinity
sage: NN.list()
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set
sage: NN.element_class
<type 'sage.rings.integer.Integer'>
sage: it = iter(NN)
sage: [next(it), next(it), next(it), next(it), next(it)]
[0, 1, 2, 3, 4]
sage: x = next(it); type(x)
```
```
This checks that the different methods of $\mathbb{N}$ return consistent results:

```
sage: TestSuite(\mathbb{N}).run(\text{verbose} = \text{True})
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
 Running the test suite of self.an_element()
 running ._test_category() . . . pass
 running ._test_eq() . . . pass
 running ._test_new() . . . pass
 running ._test_nonzero_equal() . . . pass
 running ._test_not_implemented_methods() . . . pass
 running ._test_pickling() . . . pass
 pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
```

**Element**

alias of `sage.rings.integer.Integer`

**an_element()**

EXAMPLES:

```
sage: InfiniteEnumeratedSets().example().an_element()
42
```

**next(o)**

EXAMPLES:

```
sage: \mathbb{N} = InfiniteEnumeratedSets().example()
sage: \mathbb{N}.next(3)
4
```
5.20 Examples of a Lie algebra

```python
sage.categories.examples.lie_algebras.Example
 alias of sage.categories.examples.lie_algebras.LieAlgebraFromAssociative

class sage.categories.examples.lie_algebras.LieAlgebraFromAssociative(gens)
 Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

 An example of a Lie algebra: a Lie algebra generated by a set of elements of an associative algebra.

 This class illustrates a minimal implementation of a Lie algebra.

 Let R be a commutative ring, and A an associative R-algebra. The Lie algebra A (sometimes denoted A^-) is defined to be the R-module A with Lie bracket given by the commutator in A: that is, $[a, b] := ab - ba$ for all $a, b \in A$.

 What this class implements is not precisely A^-, however; it is the Lie subalgebra of A^- generated by the elements of the iterable `gens`. This specific implementation does not provide a reasonable containment test (i.e., it does not allow you to check if a given element a of A^- belongs to this Lie subalgebra); it, however, allows computing inside it.

 INPUT:

 - `gens` – a nonempty iterable consisting of elements of an associative algebra A

 OUTPUT:

 The Lie subalgebra of A^- generated by the elements of `gens`

 EXAMPLES:

 We create a model of sl_2 using matrices:

    ```python
    sage: gens = [matrix([[0,1],[0,0]]), matrix([[0,0],[1,0]]), matrix([[1,0],[0,-1]])]
    sage: for g in gens:
    ....:     g.set_immutable()
    sage: L = LieAlgebras(QQ).example(gens)
    sage: e, f, h = L.lie_algebra_generators()
    sage: e.bracket(f) == h
    True
    sage: h.bracket(e) == 2*e
    True
    sage: h.bracket(f) == -2*f
    True
    ```

 class Element

 Bases: sage.structure.element_wrapper.ElementWrapper

 Wrap an element as a Lie algebra element.

 lie_algebra_generators

 Return the generators of `self` as a Lie algebra.

 EXAMPLES:

    ```python
    sage: L = LieAlgebras(QQ).example()
    sage: L.lie_algebra_generators()
    Family ({2, 1, 3}, {2, 3, 1})
    ```
```
zero()
   Return the element 0.

   EXAMPLES:
   
   sage: L = LieAlgebras(QQ).example()
sage: L.zero()
0

5.21 Examples of a Lie algebra with basis

class sage.categories.examples.lie_algebras_with_basis.AbelianLieAlgebra(R, gens)
   Bases: sage.combinat.free_module.CombinatorialFreeModule

   An example of a Lie algebra: the abelian Lie algebra.
   This class illustrates a minimal implementation of a Lie algebra with a distinguished basis.

class Element
   Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

   lift()
   Return the lift of self to the universal enveloping algebra.

   EXAMPLES:
   
   sage: L = LieAlgebras(QQ).WithBasis().example()
sage: elt = L.an_element()
sage: elt.lift()
3*P[F[2]] + 2*P[F[1]] + 2*P[F[]]

bracket_on_basis(x, y)
   Return the Lie bracket on basis elements indexed by x and y.

   EXAMPLES:
   
   sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.bracket_on_basis(Partition([4,1]), Partition([2,2,1]))
0

lie_algebra_generators()
   Return the generators of self as a Lie algebra.

   EXAMPLES:
   
   sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.lie_algebra_generators()
Lazy family (Term map from Partitions to
   An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Partitions over Rational
Field(i))_{i in Partitions}
Polyomial ring whose generators are indexed by an arbitrary set.

**Todo:** Currently this is just used as the universal enveloping algebra for the example of the abelian Lie algebra. This should be factored out into a more complete class.

### algebra_generators()  
Return the algebra generators of self.

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).WithBasis().example()
sage: UEA = L.universal_enveloping_algebra()
sage: UEA.algebra_generators()
Lazy family (algebra generator map(i))_{i in Partitions}
```

### one_basis()  
Return the index of element 1.

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).WithBasis().example()
sage: UEA = L.universal_enveloping_algebra()
sage: UEA.one_basis()
1
sage: UEA.one_basis().parent()
Free abelian monoid indexed by Partitions
```

### product_on_basis(x, y)  
Return the product of the monomials indexed by x and y.

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).WithBasis().example()
sage: UEA = L.universal_enveloping_algebra()
sage: I = UEA._indices
sage: UEA.product_on_basis(I.an_element(), I.an_element())
```

## 5.22 Examples of magmas

sage.categories.examples.magmas.Example

alias of sage.categories.examples.magmas.FreeMagma

### class sage.categories.examples.magmas.FreeMagma(alphabet='a', 'b', 'c', 'd')  

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of magma.

The purpose of this class is to provide a minimal template for implementing a magma.
EXAMPLES:

```python
sage: M = Magmas().example(); M
An example of a magma: the free magma generated by ('a', 'b', 'c', 'd')
```

This is the free magma generated by:

```python
sage: M.magma_generators()
Family ('a', 'b', 'c', 'd')
sage: a, b, c, d = M.magma_generators()
```

and with a non-associative product given by:

```python
sage: a * (b * c) * (d * a * b)
'((a*(b*c))*((d*a)*b))'
sage: a * (b * c) == (a * b) * c
False
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 The class for elements of the free magma.

 wrapped_class
 alias of builtins.str

 an_element()
 Return an element of the magma.

 EXAMPLES:

```

```python
sage: F = Magmas().example()
sage: F.an_element()
'(((a*b)*c)*d)'
```

```python
magma_generators()
 Return the generators of the magma.

 EXAMPLES:

```

```python
sage: F = Magmas().example()
sage: F.magma_generators()
Family ('a', 'b', 'c', 'd')
```

```python
product (x, y)
 Return the product of x and y in the magma, as per Magmas.ParentMethods.product().

 EXAMPLES:

```

```python
sage: F = Magmas().example()
sage: F('a') * F.an_element()
'(a*(((a*b)*c)*d))'
```
5.23 Examples of manifolds

sage.categories.examples.manifolds.Example
    alias of sage.categories.examples.manifolds.Plane

class sage.categories.examples.manifolds.Plane(n=3, base_ring=None)
    Bases:    sage.structure.unique_representation.UniqueRepresentation, sage.
              structure.parent.Parent

    An example of a manifold: the $n$-dimensional plane.
    This class illustrates a minimal implementation of a manifold.

    EXAMPLES:

    sage: from sage.categories.manifolds import Manifolds
    sage: M = Manifolds(QQ).example(); M
    An example of a Rational Field manifold: the 3-dimensional plane
    sage: M.category()
    Category of manifolds over Rational Field

    We conclude by running systematic tests on this manifold:

    sage: TestSuite(M).run()

Element
    alias of sage.structure.element_wrapper.ElementWrapper

    an_element()
    Return an element of the manifold, as per Sets.ParentMethods.an_element().

    EXAMPLES:

    sage: from sage.categories.manifolds import Manifolds
    sage: M = Manifolds(QQ).example()
    sage: M.an_element()
    (0, 0, 0)

dimension()
    Return the dimension of self.

    EXAMPLES:

    sage: from sage.categories.manifolds import Manifolds
    sage: M = Manifolds(QQ).example()
    sage: M.dimension()
    3
5.24 Examples of monoids

sage.categories.examples.monoids.Example
alias of sage.categories.examples.monoids.FreeMonoid
class sage.categories.examples.monoids.FreeMonoid(alphabet='a', 'b', 'c', 'd')
Bases: sage.categories.examples.semigroups.FreeSemigroup

An example of a monoid: the free monoid

This class illustrates a minimal implementation of a monoid. For a full featured implementation of free monoids, see FreeMonoid().

EXAMPLES:

```
sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: S.category()
Category of monoids
```

This is the free semigroup generated by:

```
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')
```

with product rule given by concatenation of words:

```
sage: S('dab') * S('acb')
'dabacb'
```

and unit given by the empty word:

```
sage: S.one()
''
```

We conclude by running systematic tests on this monoid:

```
sage: TestSuite(S).run(verbose = True)
running .test_an_element() . . . pass
running .testAssociativity() . . . pass
running .test_cardinality() . . . pass
running .test_category() . . . pass
running .test_construction() . . . pass
running .test_elements() . . .
 Running the test suite of self.an_element()
 running .test_category() . . . pass
 running .test_eq() . . . pass
 running .test_new() . . . pass
 running .test_not_implemented_methods() . . . pass
 running .test_pickling() . . . pass
pass
running .test_elements_eq_reflexive() . . . pass
running .test_elements_eq_symmetric() . . . pass
running .test_elements_eq_transitive() . . . pass
running .test_elements_neq() . . . pass
running .test_eq() . . . pass
running .test_new() . . . pass
```
(continues on next page)
running ._test_not_implemented_methods() ... pass
running ._test_one() ... pass
running ._test_pickling() ... pass
running ._test_prod() ... pass
running ._test_some_elements() ... pass

class Element
    Bases: sage.structure.element_wrapper.ElementWrapper

        wrapped_class
            alias of builtins.str

    monoid_generators()
        Return the generators of this monoid.

        EXAMPLES:

            sage: M = Monoids().example(); M
            An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
            sage: M.monoid_generators()
            Finite family {'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd'}
            sage: a,b,c,d = M.monoid_generators()
            sage: a*d*c*b
            'adcb'

    one()
        Returns the one of the monoid, as per Monoids.ParentMethods.one().

        EXAMPLES:

            sage: M = Monoids().example(); M
            An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
            sage: M.one()
            '

5.25 Examples of posets

class sage.categories.examples.posets.FiniteSetsOrderedByInclusion
    Bases: sage.categories.unique_representation.UniqueRepresentation, sage.
            structure.parent.Parent

    An example of a poset: finite sets ordered by inclusion

    This class provides a minimal implementation of a poset

    EXAMPLES:

            sage: P = Posets().example(); P
            An example of a poset: sets ordered by inclusion

    We conclude by running systematic tests on this poset:

            sage: TestSuite(P).run(verbosity = True)
            running ._test_an_element() ... pass
            running ._test_cardinality() ... pass
            running ._test_category() ... pass
            (continues on next page)
class Element

    Bases: sage.structure.element_wrapper.ElementWrapper

    wrapped_class
        alias of sage.sets.set.Set_objectEnumerated

    an_element()
        Returns an element of this poset

        EXAMPLES:

            sage: B = Posets().example()
sage: B.an_element()
{1, 4, 6}

le(x, y)
    Returns whether \( x \) is a subset of \( y \)

    EXAMPLES:

        sage: P = Posets().example()
sage: P.le( P( Set([1,3]) ), P( Set([1,2,3]) ) )
True
sage: P.le( P( Set([1,3]) ), P( Set([1,3]) ) )
True
sage: P.le( P( Set([1,2]) ), P( Set([1,3]) ) )
False

class sage.categories.examples.posets.PositiveIntegersOrderedByDivisibilityFacade

    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

    An example of a facade poset: the positive integers ordered by divisibility

    This class provides a minimal implementation of a facade poset

    EXAMPLES:
sage: P = Posets().example("facade"); P
An example of a facade poset: the positive integers ordered by divisibility

sage: P(5)
5
sage: P(0)
Traceback (most recent call last):
...
ValueError: Can't coerce `0` in any parent `An example of a facade poset: the positive integers ordered by divisibility` is a facade for

sage: 3 in P
True
sage: 0 in P
False

class element_class(X)
    Bases: sage.sets.set.Set_objectEnumerated, sage.categories.finite_sets.FiniteSetsParent_class

    A finite enumerated set.

le(x, y)
Returns whether x is divisible by y

EXAMPLES:

sage: P = Posets().example("facade")
sage: P.le(3, 6)
True
sage: P.le(3, 3)
True
sage: P.le(3, 7)
False

5.26 Examples of semigroups

class sage.categories.examples.semigroups.FreeSemigroup(alphabet='a', 'b', 'c', 'd')
    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

    An example of semigroup.

    The purpose of this class is to provide a minimal template for implementing of a semigroup.

    EXAMPLES:

sage: S = Semigroups().example("free"); S
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')

This is the free semigroup generated by:

sage: S.semigroupGenerators()
Family ('a', 'b', 'c', 'd')

and with product given by concatenation:
```python
sage: S('dab') * S('acb')
'dabacb'
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 The class for elements of the free semigroup.

 wrapped_class
 alias of builtins.str

 an_element()
 Returns an element of the semigroup.

 EXAMPLES:

 sage: F = Semigroups().example('free')
 sage: F.an_element()
 'abcd'

 product(x, y)
 Returns the product of x and y in the semigroup, as per Semigroups.ParentMethods.product().

 EXAMPLES:

 sage: F = Semigroups().example('free')
 sage: F.an_element() * F('a')^5
 'abcdaaaaa'

 semigroup_generators()
 Returns the generators of the semigroup.

 EXAMPLES:

 sage: F = Semigroups().example('free')
 sage: F.semigroup_generators()
 Family ('a', 'b', 'c', 'd')
```

```python
class sage.categories.examples.semigroups.IncompleteSubquotientSemigroup(category=None)
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

 An incompletely implemented subquotient semigroup, for testing purposes

 EXAMPLES:

 sage: S = sage.categories.examples.semigroups.IncompleteSubquotientSemigroup()
 sage: S
 A subquotient of An example of a semigroup: the left zero semigroup
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 ambient()
 Returns the ambient semigroup.

 EXAMPLES:
```
```python
sage: S = Semigroups().Subquotients().example()
sage: S.ambient()
An example of a semigroup: the left zero semigroup
```

```python
class sage.categories.examples.semigroups.LeftZeroSemigroup
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of a semigroup.

This class illustrates a minimal implementation of a semigroup.

EXAMPLES:
```
```python
sage: S = Semigroups().example(); S
An example of a semigroup: the left zero semigroup
```

This is the semigroup that contains all sorts of objects:
```
```python
sage: S.some_elements()
[3, 42, 'a', 3.4, 'raton laveur']
```

with product rule given by \(a \times b = a \) for all \(a, b \):
```
```python
sage: S('hello') * S('world')
'hello'
sage: S(3)*S(1)*S(2)
3
sage: S(3)^12312321312321
3
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 is_idempotent()
 Trivial implementation of Semigroups.Element.is_idempotent since all elements of this
 semigroup are idempotent!

 EXAMPLES:
```
```python
sage: S = Semigroups().example()
sage: S.an_element().is_idempotent()
True
sage: S(17).is_idempotent()
True
```

```python
an_element()
 Returns an element of the semigroup.

 EXAMPLES:
```
```python
sage: Semigroups().example().an_element()
42
```

```python
product(x, y)
 Returns the product of \(x \) and \(y \) in the semigroup, as per Semigroups.ParentMethods.
 product().

 EXAMPLES:
```
```python
sage: S = Semigroups().example()
sage: S('hello') * S('world')
'hello'
sage: S(3)*S(1)*S(2)
3

some_elements()
Returns a list of some elements of the semigroup.

EXAMPLES:
```n
```python
sage: Semigroups().example().some_elements()
[3, 42, 'a', 3.4, 'raton laveur']
```

class sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup(category=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

Example of a quotient semigroup

EXAMPLES:
```python
sage: S = Semigroups().Subquotients().example(); S
An example of a (sub)quotient semigroup: a quotient of the left zero semigroup

This is the quotient of:
```n
```python
sage: S.ambient()
An example of a semigroup: the left zero semigroup

obtained by setting $x = 42$ for any $x \geq 42$:
```n
```python
sage: S(100)
42
sage: S(100) == S(42)
True

The product is inherited from the ambient semigroup:
```n
```python
sage: S(1)*S(2) == S(1)
True

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

ambient()
Returns the ambient semigroup.

EXAMPLES:
```python
sage: S = Semigroups().Subquotients().example()
sage: S.ambient()
An example of a semigroup: the left zero semigroup

an_element()
Returns an element of the semigroup.

EXAMPLES:
```

lift(x)
Lift the element x into the ambient semigroup.

INPUT:
• x – an element of self.

OUTPUT:
• an element of self.ambient().

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: x = S.an_element(); x
42
sage: S.lift(x)
42
sage: S.lift(x) in S.ambient()
True
sage: y = S.ambient()(100); y
100
sage: S.lift(S(y))
42
```

retract(x)
Returns the retract x onto an element of this semigroup.

INPUT:
• x – an element of the ambient semigroup (self.ambient()).

OUTPUT:
• an element of self.

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: L = S.ambient()
sage: S.retract(L(17))
17
sage: S.retract(L(42))
42
sage: S.retract(L(171))
42
```

some_elements()
Returns a list of some elements of the semigroup.

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: S.some_elements()
[1, 2, 3, 8, 42, 42]
```

the_answer()
Returns the Answer to Life, the Universe, and Everything as an element of this semigroup.
EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: S.the_answer()
42
```

5.27 Examples of semigroups in cython

class `sage.categories.examples.semigroups_cython.IdempotentSemigroups(s=None)`

Bases: `sage.categories.category.Category`

class `ElementMethods`

Bases: `object`

is_idempotent()

EXAMPLES:

```python
sage: from sage.categories.examples.semigroups_cython import
    --LeftZeroSemigroup
sage: S = LeftZeroSemigroup()
sage: S(2).is_idempotent()
True
```

super_categories()

EXAMPLES:

```python
sage: from sage.categories.examples.semigroups_cython import
    --IdempotentSemigroups
sage: IdempotentSemigroups().super_categories()
[Category of semigroups]
```

class `sage.categories.examples.semigroups_cython.LeftZeroSemigroup`

Bases: `sage.categories.examples.semigroups.LeftZeroSemigroup`

An example of semigroup

This class illustrates a minimal implementation of a semi-group where the element class is an extension type, and still gets code from the category. The category itself must be a Python class though.

This is purely a proof of concept. The code obviously needs refactorisation!

Comments:

* one cannot play ugly class surgery tricks (as with `_mul_parent`). available operations should really be declared to the coercion model!

EXAMPLES:

```python
sage: from sage.categories.examples.semigroups_cython import LeftZeroSemigroup
sage: S = LeftZeroSemigroup(); S
An example of a semigroup: the left zero semigroup
```

This is the semigroup which contains all sort of objects:

```python
sage: S.some_elements()
[3, 42, 'a', 3.4, 'raton laveur']
```

with product rule is given by $a \times b = a$ for all a, b.

5.27. Examples of semigroups in cython

809
sage: S('hello') * S('world')
'hello'
sage: S(3)*S(1)*S(2)
3
sage: S(3)^12312321312321
3
sage: TestSuite(S).run(verbos = True)
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
 Running the test suite of self.an_element()
 running ._test_category() . . . pass
 running ._test_eq() . . . pass
 running ._test_new() . . . pass
 running ._test_not_implemented_methods() . . . pass
 running ._test_pickling() . . . pass
 pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
That's really the only method which is obtained from the category ...
sage: S(42).is_idempotent
<bound method IdempotentSemigroups.element_class.is_idempotent of 42>
sage: S(42).is_idempotent()
True
sage: S(42)._pow_int
<bound method IdempotentSemigroups.element_class._pow_int of 42>
sage: S(42)^10
42
sage: S(42).is_idempotent
<bound method IdempotentSemigroups.element_class.is_idempotent of 42>
sage: S(42).is_idempotent()
True

Element
 alias of LeftZeroSemigroupElement
class sage.categories.examples.semigroups_cython.LeftZeroSemigroupElement
 Bases: sage.structure.element.Element

EXAMPLES:
5.28 Examples of sets

```python
sage: from sage.categories.examples.semigroups_cython import LeftZeroSemigroup
sage: S = RightZeroSemigroup()
```

```python
sage: x = S(3)
sage: TestSuite(x).run()
```

class sage.categories.examples.sets_cat.PrimeNumbers

Bases:
sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of parent in the category of sets: the set of prime numbers.

The elements are represented as plain integers in \(\mathbb{Z} \) (facade implementation).

This is a minimal implementation. For more advanced examples of implementations, see also:

```python
sage: P = Sets().example("facade")
sage: P = Sets().example("inherits")
sage: P = Sets().example("wrapper")
```

EXAMPLES:

```python
sage: P = Sets().example()
sage: P(12)
Traceback (most recent call last):
  ...
AssertionError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Integer Ring
sage: x = P(13); x
13
sage: type(x)
<type 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: 13 in P
True
sage: 12 in P
False
sage: y = x+1; y
14
sage: type(y)
<type 'sage.rings.integer.Integer'>
sage: TestSuite(P).run(verify=True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . . Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
```

(continues on next page)
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

\begin{Verbatim}
\textbf{an_element}()
\end{Verbatim}

\begin{Verbatim}
Implements \texttt{Sets.ParentMethods.an_element()}.
\end{Verbatim}

\begin{Verbatim}
\textbf{element_class}
\end{Verbatim}

\begin{Verbatim}
alias of \texttt{sage.rings.integer.Integer}
\end{Verbatim}

\begin{Verbatim}
\textbf{class} sage.categories.examples.sets_cat.PrimeNumbers_Abstract
\end{Verbatim}

\begin{Verbatim}
Bases: \texttt{sage.structure.unique_representation.Unique_Representation,}\ sage.structure.parent.Parent
\end{Verbatim}

This class shows how to write a parent while keeping the choice of the datastructure for the children open. Different class with fixed datastructure will then be constructed by inheriting from \texttt{PrimeNumbers_Abstract}.

This is used by:

\begin{Verbatim}
sage: P = Sets().example(“facade”) sage: P = Sets().example(“inherits”) sage: P = Sets().example(“wrapper”)
\end{Verbatim}

\begin{Verbatim}
\textbf{class} Element
\end{Verbatim}

\begin{Verbatim}
Bases: \texttt{sage.structure.element.Element}
\end{Verbatim}

\begin{Verbatim}
\textbf{is_prime}()
\end{Verbatim}

\begin{Verbatim}
Return whether \texttt{self} is a prime number.
\end{Verbatim}

\begin{Verbatim}
\textbf{EXAMPLES:}
\end{Verbatim}

\begin{Verbatim}
sage: P = Sets().example(“inherits”)
sage: x = P.an_element()
sage: P.an_element().is_prime()
True
\end{Verbatim}

\begin{Verbatim}
\textbf{next}()
\end{Verbatim}

\begin{Verbatim}
Return the next prime number.
\end{Verbatim}

\begin{Verbatim}
\textbf{EXAMPLES:}
\end{Verbatim}

\begin{Verbatim}
sage: P = Sets().example(“inherits”)
sage: p = P.an_element(); p
47
sage: p.next()
53
\end{Verbatim}

\textbf{Note:} This method is not meant to implement the protocol iterator, and thus not subject to Python 2
vs Python 3 incompatibilities.

an_element()

next(i)

Return the next prime number.

EXAMPLES:

```python
sage: P = Sets().example("inherits")
sage: x = P.next(P.an_element()); x
53
sage: x.parent()
Set of prime numbers
```

some_elements()

Return some prime numbers.

EXAMPLES:

```python
sage: P = Sets().example("inherits")
sage: P.some_elements()
[47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
```

class sage.categories.examples.sets_cat.PrimeNumbers_Facade

Bases: `sage.categories.examples.sets_cat.PrimeNumbers_Abstract`

An example of parent in the category of sets: the set of prime numbers.

In this alternative implementation, the elements are represented as plain integers in \(\mathbb{Z} \) (facade implementation).

EXAMPLES:

```python
sage: P = Sets().example("facade")
sage: P(12)
Traceback (most recent call last):
...
ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Integer Ring
sage: x = P(13); x
13
sage: type(x)
<type 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: 13 in P
True
sage: 12 in P
False
sage: y = x+1; y
14
sage: type(y)
<type 'sage.rings.integer.Integer'>
sage: z = P.next(x); z
17

(continues on next page)
The disadvantage of this implementation is that the elements do not know that they are prime, so that prime testing is slow:

```python
sage: pf = Sets().example("facade").an_element()
sage: timeit("pf.is_prime()") # random
625 loops, best of 3: 4.1 us per loop
```

compared to the other implementations where prime testing is only done if needed during the construction of the element, and later on the elements “know” that they are prime:

```python
sage: pw = Sets().example("wrapper").an_element()
sage: timeit("pw.is_prime()") # random
625 loops, best of 3: 859 ns per loop
```

```python
sage: pi = Sets().example("inherits").an_element()
sage: timeit("pi.is_prime()") # random
625 loops, best of 3: 854 ns per loop
```

Note also that the `next` method for the elements does not exist:

```python
sage: pf.next()
Traceback (most recent call last):
... AttributeError: 'sage.rings.integer.Integer' object has no attribute 'next'
```

unlike in the other implementations:

```python
sage: pw.next()
53
sage: pi.next()
53
```

**element_class**

alias of `sage.rings.integer.Integer`

class `sage.categories.examples.sets_cat.PrimeNumbers_Inherits`

Bases: `sage.categories.examples.sets_cat.PrimeNumbers_Abstract`

An example of parent in the category of sets: the set of prime numbers. In this implementation, the element are stored as object of a new class which inherits from the class `Integer` (technically `IntegerWrapper`).

**EXAMPLES:**

```python
sage: P = Sets().example("inherits")
sage: P
Set of prime numbers
sage: P(12)
Traceback (most recent call last):
... ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
```

Set of prime numbers

```
sage: x = P(13); x
13
sage: x.is_prime()
True
sage: type(x)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category.element_class'>
sage: x.parent()
Set of prime numbers
sage: P(13) in P
True
sage: y = x+1; y
14
sage: type(y)
<type 'sage.rings.integer.Integer'>
sage: y.parent()
Integer Ring
sage: type(P(13)+P(17))
<type 'sage.rings.integer.Integer'>
sage: type(P(2)+P(3))
<type 'sage.rings.integer.Integer'>
sage: z = P.next(x); z
17
sage: type(z)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category.element_class'>
sage: z.parent()
Set of prime numbers
sage: TestSuite(P).run(verbose=True)
running ._test_an_element() ... pass
running ._test_cardinality() ... pass
running ._test_category() ... pass
running ._test_construction() ... pass
running ._test_elements() ... Running the test suite of self.an_element()
running ._test_category() ... pass
running ._test_eq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
pass
running ._test_elements_eq_reflexive() ... pass
running ._test_elements_eq_symmetric() ... pass
running ._test_elements_eq_transitive() ... pass
running ._test_elements_neq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
running ._test_some_elements() ... pass
```

See also:

5.28. Examples of sets
An example of parent in the category of sets: the set of prime numbers.

In this second alternative implementation, the prime integer are stored as a attribute of a sage object by inheriting from `ElementWrapper`. In this case we need to ensure conversion and coercion from this parent and its element to `ZZ` and `Integer`.

**EXAMPLES:**

```python
sage: P = Sets().example("wrapper")
sage: P(12)
Traceback (most recent call last):
 ... ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Set of prime numbers (wrapper implementation)
sage: x = P(13); x
13
sage: type(x)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Wrapper_with_category.element_class'>
sage: x.parent()
Set of prime numbers (wrapper implementation)
sage: 13 in P
True
sage: 12 in P
False
sage: y = x+1; y
14
sage: type(y)
<type 'sage.rings.integer.Integer'>
sage: z = P.next(x); z
17
sage: type(z)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Wrapper_with_category.element_class'>
sage: z.parent()
Set of prime numbers (wrapper implementation)
```

class `Element` (parent, p)

Bases: `sage.rings.integer.IntegerWrapper`, `sage.categories.examples.sets_cat.PrimeNumbers_Abstract.Element`

class `sage.categories.examples.sets_cat.PrimeNumbers_Wrapper`

Bases: `sage.categories.examples.sets_cat.PrimeNumbers_Abstract`

ElementWrapper

alias of `sage.structure.element_wrapper.ElementWrapper`
5.29 Example of a set with grading

sage.categories.examples.sets_with_grading.Example
   alias of sage.categories.examples.sets_with_grading.NonNegativeIntegers

class sage.categories.examples.sets_with_grading.NonNegativeIntegers
   Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

Non negative integers graded by themselves.

EXAMPLES:

```
sage: E = SetsWithGrading().example(); E
Non negative integers
sage: E in Sets().Infinite()
True
sage: E.graded_component(0)
{0}
sage: E.graded_component(100)
{100}
```

an_element()
   Return 0.

   EXAMPLES:

```
sage: SetsWithGrading().example().an_element()
0
```

generating_series(var='z')
   Return 1/(1 - z).

   EXAMPLES:

```
sage: N = SetsWithGrading().example(); N
Non negative integers
sage: f = N.generating_series(); f
1/(-z + 1)
sage: LaurentSeriesRing(ZZ,'z')(f)
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + z^7 + z^8 + z^9 + z^10 + z^11 + z^12 + ...
 -z^13 + z^14 + z^15 + z^16 + z^17 + z^18 + z^19 + O(z^20)
```

graded_component(grade)
   Return the component with grade grade.

   EXAMPLES:

```
sage: N = SetsWithGrading().example()
sage: N.graded_component(65)
{65}
```

grading(elt)
   Return the grade of elt.

   EXAMPLES:
5.30 Examples of parents endowed with multiple realizations

```python
sage: N = SetsWithGrading().example()
sage: N.grading(10)
10
```

class sage.categories.examples.with_realizations.SubsetAlgebra(R, S)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of parent endowed with several realizations

We consider an algebra $A(S)$ whose bases are indexed by the subsets $s$ of a given set $S$. We consider three natural basis of this algebra: $F$, $\text{In}$, and $\text{Out}$. In the first basis, the product is given by the union of the indexing sets. That is, for any $s, t \subset S$

$$F_s F_t = F_{s \cup t}$$

The $\text{In}$ basis and $\text{Out}$ basis are defined respectively by:

$$\text{In}_s = \sum_{t \subset s} F_t \quad \text{and} \quad F_s = \sum_{t \supset s} \text{Out}_t$$

Each such basis gives a realization of $A$, where the elements are represented by their expansion in this basis.

This parent, and its code, demonstrate how to implement this algebra and its three realizations, with coercions and mixed arithmetic between them.

See also:

- Sets().WithRealizations
- the Implementing Algebraic Structures thematic tutorial.

EXAMPLES:

```python
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.base_ring()
Rational Field

The three bases of A:

```python
sage: F = A.F() ; F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: In = A.In() ; In
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: Out = A.Out(); Out
The subset algebra of {1, 2, 3} over Rational Field in the Out basis

One can quickly define all the bases using the following shortcut:

```python
sage: A.inject_shorthands()
Defining F as shorthand for The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
```

(continues on next page)
Defining In as shorthand for The subset algebra of \{1, 2, 3\} over Rational Field

\[ \rightarrow \text{in the In basis} \]

Defining Out as shorthand for The subset algebra of \{1, 2, 3\} over Rational Field

\[ \rightarrow \text{in the Out basis} \]

Accessing the basis elements is done with \texttt{basis()} method:

\[
\begin{align*}
\texttt{sage: F.basis().list()}
\rightarrow [F[{}], F[{1}], F[{2}], F[{3}], F[{1, 2}], F[{1, 3}], F[{2, 3}], F[{1, 2, 3}]]
\end{align*}
\]

To access a particular basis element, you can use the \texttt{from_set()} method:

\[
\begin{align*}
\texttt{sage: F.from_set(2,3)}
\rightarrow F[{2, 3}]
\texttt{sage: In.from_set(1,3)}
\rightarrow In[{1, 3}]
\end{align*}
\]

or as a convenient shorthand, one can use the following notation:

\[
\begin{align*}
\texttt{sage: F[2,3]}
\rightarrow F[{2, 3}]
\texttt{sage: In[1,3]}
\rightarrow In[{1, 3}]
\end{align*}
\]

Some conversions:

\[
\begin{align*}
\texttt{sage: F(In[2,3])}
\rightarrow F[{}] + F[{1}] + F[{2}] + F[{3}] + F[{2, 3}]
\texttt{sage: In(F[2,3])}
\rightarrow In[{}] - In[{2}] - In[{3}] + In[{2, 3}]
\texttt{sage: Out(F[3])}
\rightarrow Out[{}] + Out[{1}] + Out[{2}] + Out[{3}] + Out[{1, 2}] + 2*Out[{1, 3}] + 2*Out[{2, 3}] + 4*Out[{1, 2, 3}]
\texttt{sage: F(Out[3])}
\rightarrow F[{}] - F[{1}] - F[{2}] + F[{1, 2}] + F[{1, 3}] + F[{2, 3}] + F[{1, 2, 3}]
\texttt{sage: Out(In[2,3])}
\rightarrow Out[{}] + Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] + 4*Out[{2, 3}] + 4*Out[{1, 2, 3}]
\end{align*}
\]

We can now mix expressions:

\[
\begin{align*}
\texttt{sage: (1 + Out[1]) * In[2,3]}
\rightarrow (1 + Out[1]) + 2*Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] + 4*Out[{2, 3}] + 4*Out[{1, 2, 3}]
\end{align*}
\]

\textbf{class Bases}(\textit{parent_with_realization})

Bases: \texttt{sage.categories.realizations.Category_realization_of_parent}

The category of the realizations of the subset algebra

\textbf{class ParentMethods}

Bases: \texttt{object}

\texttt{from_set(*args)}

Construct the monomial indexed by the set containing the elements passed as arguments.

\textbf{EXAMPLES:}
sage: In = Sets().WithRealizations().example().In(); In
The subset algebra of \{1, 2, 3\} over Rational Field in the In basis
sage: In.from_set(2,3)
In\{2, 3\}

As a shorthand, one can construct elements using the following notation:

sage: In\[2,3\]
In\{2, 3\}

one()

Returns the unit of this algebra.

This default implementation takes the unit in the fundamental basis, and coerces it in self.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of \{1, 2, 3\} over Rational Field
sage: In = A.In(); Out = A.Out()
sage: In.one()
In\{\}\n
sage: Out.one()
Out\{\}\ + Out\{1\}\ + Out\{2\}\ + Out\{3\}\ + Out\{1, 2\}\ +
\cdots Out\{2, 3\}\ + Out\{1, 2, 3\}

super_categories()

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of \{1, 2, 3\} over Rational Field
sage: C = A.Bases(); C
Category of bases of The subset algebra of \{1, 2, 3\} over Rational Field
sage: C.super_categories()
[Category of realizations of The subset algebra of \{1, 2, 3\} over Rational Field,
Join of Category of algebras with basis over Rational Field and
Category of commutative algebras over Rational Field and
Category of realizations of unital magmas]

F

alias of SubsetAlgebra.Fundamental
class Fundamental (A)

Bases:
sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_classBindableClass

The Subset algebra, in the fundamental basis

INPUT:

• A – a parent with realization in SubsetAlgebra

EXAMPLES:

sage: A = Sets().WithRealizations().example()
sage: A.F()
The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis
sage: A.Fundamental()
The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis
one()

Return the multiplicative unit element.

EXAMPLES:

```python
sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B[word:]
```

one_basis()

Returns the index of the basis element which is equal to ‘1’.

EXAMPLES:

```python
sage: F = Sets().WithRealizations().example().F(); F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental
→basis
sage: F.one_basis()
{}
sage: F.one()
F[{}]
```

product_on_basis(left, right)

Product of basis elements, as per AlgebrasWithBasis.ParentMethods.
product_on_basis().

INPUT:

• left, right – sets indexing basis elements

EXAMPLES:

```python
sage: F = Sets().WithRealizations().example().F(); F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental
→basis
sage: S = F.basis().keys(); S
Subsets of {1, 2, 3}
sage: F.product_on_basis(S([{}], S([{}]))
F[{}]
sage: F.product_on_basis(S([1]), S([3]))
F[[1, 3]]
sage: F.product_on_basis(S([1,2]), S([2,3]))
F[[1, 2, 3]]
```

class In(A)

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_classBindableClass

The Subset Algebra, in the In basis

INPUT:

• A – a parent with realization in SubsetAlgebra

EXAMPLES:

```python
sage: A = Sets().WithRealizations().example()
sage: A.In()
The subset algebra of {1, 2, 3} over Rational Field in the In basis
```
class Out(A)
Bases: sage.combinat.free_module CombinatorialFreeModule, sage.misc.bindable_classBindableClass

The Subset Algebra, in the Out basis

INPUT:

• A – a parent with realization in SubsetAlgebra

EXAMPLES:

sage: A = Sets().WithRealizations().example()
sage: A.Out()
The subset algebra of {1, 2, 3} over Rational Field in the Out basis

a_realization()
Returns the default realization of self

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.a_realization()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis

base_set()

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.base_set()
{1, 2, 3}

indices()
The objects that index the basis elements of this algebra.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.indices()
Subsets of {1, 2, 3}

indices_key(x)
A key function on a set which gives a linear extension of the inclusion order.

INPUT:

• x – set

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: sorted(A.indices(), key=A.indices_key)
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]

supsets(set)
Returns all the subsets of S containing set

INPUT:
• set – a subset of the base set $S$ of self

EXAMPLES:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.supsets(Set((2,)))
[[(1, 2, 3), (2, 3), (1, 2), (2)]]
```
6.1 Specific category classes

This is placed in a separate file from categories.py to avoid circular imports (as morphisms must be very low in the hierarchy with the new coercion model).

```python
class sage.categories.category_types.AbelianCategory(s=None):
 Bases: sage.categories.category.Category
 is_abelian()
 Return True as self is an abelian category.
 EXAMPLES:
 sage: CommutativeAdditiveGroups().is_abelian()
 True

class sage.categories.category_types.Category_ideal(ambient, name=None):
 Bases: sage.categories.category_types.Category_in_ambient
 classmethod an_instance()
 Return an instance of this class.
 EXAMPLES:
 sage: AlgebraIdeals.an_instance()
 Category of algebra ideals in Univariate Polynomial Ring in x over Rational
 → Field

 ring()
 Return the ambient ring used to describe objects self.
 EXAMPLES:
 sage: C = Ideals(IntegerRing())
 sage: C.ring()
 Integer Ring

class sage.categories.category_types.Category_in_ambient(ambient, name=None):
 Bases: sage.categories.category.Category
 Initialize self.
 EXAMPLES:
```
Return the ambient object in which objects of this category are embedded.

EXAMPLES:

```python
sage: C = Ideals(IntegerRing())
sage: C.ambient()
Integer Ring
```

class sage.categories.category_types.Category_module(base, name=None)
Bases: sage.categories.category_types.AbelianCategory, sage.categories.category_types.Category_over_base_ring

class sage.categories.category_types.Category_over_base(base, name=None)
Bases: sage.categories.category.CategoryWithParameters

A base class for categories over some base object

INPUT:

• base – a category $C$ or an object of such a category

Assumption: the classes for the parents, elements, morphisms, of self should only depend on $C$. See trac ticket #11935 for details.

EXAMPLES:

```python
sage: Algebras(GF(2)).element_class is Algebras(GF(3)).element_class
True
sage: C = GF(2).category()
sage: Algebras(GF(2)).parent_class is Algebras(C).parent_class
True
sage: C = ZZ.category()
sage: Algebras(ZZ).element_class is Algebras(C).element_class
True
```

classmethod an_instance()
Returns an instance of this class

EXAMPLES:

```python
sage: Algebras.an_instance()
Category of algebras over Rational Field
```

base()
Return the base over which elements of this category are defined.

EXAMPLES:

```python
sage: C = Algebras(QQ)
sage: C.base()
Rational Field
```

class sage.categories.category_types.Category_over_base_ring(base, name=None)
Bases: sage.categories.category_types.Category_over_base
Initialize `self`.

**EXAMPLES:**

```sage
c = Algebras(GF(2)); c
Category of algebras over Finite Field of size 2
c = TestSuite(c).run()
```

**base_ring()**

Return the base ring over which elements of this category are defined.

**EXAMPLES:**

```sage
c = Algebras(GF(2))
c = c.base_ring()
Finite Field of size 2
```

```{.python}
class sage.categories.category_types.Elements(object):
 Bases: sage.categories.category.Category

 The category of all elements of a given parent.

 EXAMPLES:

    ```sage
    a = IntegerRing()(5)
c = a.category(); c
    Category of elements of Integer Ring
    a in c
    True
    a/3 in c
    False
    loads(c.dumps()) == c
    True
    ```

 classmethod an_instance()

 Returns an instance of this class

 EXAMPLES:

    ```sage
    Elements.an_instance()
    Category of elements of Rational Field
    ```

 object()

 EXAMPLES:

    ```sage
    Elements(ZZ).object()
    Integer Ring
    ```

 super_categories()

 EXAMPLES:

    ```sage
    Elements(ZZ).super_categories()
    [Category of objects]
    ```

 Todo: Check that this is what we want.
6.2 Singleton categories

class sage.categories.category_singleton.Category_contains_method_by_parent_class
 Bases: object

 Returns whether \(x \) is an object in this category.

 More specifically, returns True if and only if \(x \) has a category which is a subcategory of this one.

 EXAMPLES:

 sage: ZZ in Sets()
 True

class sage.categories.category_singleton.Category_singleton(s=None)
 Bases: sage.categories.category.Category

 A base class for implementing singleton category

 A singleton category is a category whose class takes no parameters like Fields() or Rings(). See also the Singleton design pattern.

 This is a subclass of Category, with a couple optimizations for singleton categories.

 The main purpose is to make the idioms:

 sage: QQ in Fields()
 True
 sage: ZZ in Fields()
 False

 as fast as possible, and in particular competitive to calling a constant Python method, in order to foster its systematic use throughout the Sage library. Such tests are time critical, in particular when creating a lot of polynomial rings over small fields like in the elliptic curve code.

 EXAMPLES:

 sage: from sage.categories.category_singleton import Category_singleton
 sage: class MyRings(Category):
 : def super_categories(self):
 : return Rings().super_categories()
 sage: class MyRingsSingleton(Category_singleton):
 : def super_categories(self):
 : return Rings().super_categories()

 We create three rings. One of them is contained in the usual category of rings, one in the category of “my rings” and the third in the category of “my rings singleton”:

 sage: R = QQ['x,y']
 sage: R1 = Parent(category = MyRings())
 sage: R2 = Parent(category = MyRingsSingleton())
 sage: R in MyRings()
 False
 sage: R1 in MyRings()
 True
 sage: R2 in MyRings()
 False
 sage: R2 in MyRingsSingleton()
 True
One sees that containment tests for the singleton class is a lot faster than for a usual class:

```
sage: timeit("R in MyRings()", number=10000)  # not tested
10000 loops, best of 3: 7.12 µs per loop
sage: timeit("R1 in MyRings()", number=10000)  # not tested
10000 loops, best of 3: 6.98 µs per loop
sage: timeit("R in MyRingsSingleton()", number=10000)  # not tested
10000 loops, best of 3: 3.08 µs per loop
sage: timeit("R2 in MyRingsSingleton()", number=10000)  # not tested
10000 loops, best of 3: 2.99 µs per loop
```

So this is an improvement, but not yet competitive with a pure Cython method:

```
sage: timeit("R.is_ring()", number=10000)  # not tested
10000 loops, best of 3: 383 ns per loop
```

However, it is competitive with a Python method. Actually it is faster, if one stores the category in a variable:

```
sage: _Rings = Rings()
sage: R3 = Parent(category = _Rings)
sage: R3.is_ring.__module__
'sage.categories.rings'
sage: timeit("R3.is_ring()", number=10000)  # not tested
10000 loops, best of 3: 2.64 µs per loop
sage: timeit("R3 in Rings()", number=10000)  # not tested
10000 loops, best of 3: 3.01 µs per loop
sage: timeit("R3 in _Rings", number=10000)  # not tested
10000 loops, best of 3: 652 ns per loop
```

This might not be easy to further optimize, since the time is consumed in many different spots:

```
sage: timeit("MyRingsSingleton.__classcall__()", number=10000)# not tested
10000 loops, best of 3: 306 ns per loop
sage: X = MyRingsSingleton()
sage: timeit("R in X ", number=10000)  # not tested
10000 loops, best of 3: 699 ns per loop
sage: c = MyRingsSingleton().__contains__
sage: timeit("c(R)", number = 10000)  # not tested
10000 loops, best of 3: 661 ns per loop
```

Warning: A singleton concrete class A should not have a subclass B (necessarily concrete). Otherwise, creating an instance a of A and an instance b of B would break the singleton principle: A would have two instances a and b.

With the current implementation only direct subclasses of `Category_singleton` are supported:

```
sage: class MyRingsSingleton(Category_singleton):
    ....:    def super_categories(self): return Rings().super_categories()
sage: class Disaster(MyRingsSingleton): pass
sage: Disaster()
Traceback (most recent call last):
  ...
AssertionError: <class '__main__.Disaster'> is not a direct subclass of <class 'sage.categories.category_singleton.Category_singleton'>
```

However, it is acceptable for a direct subclass R of `Category_singleton` to create its unique instance...
as an instance of a subclass of itself (in which case, its the subclass of R which is concrete, not R itself). This is used for example to plug in extra category code via a dynamic subclass:

```
sage: from sage.categories.category_singleton import Category_singleton
sage: class R(Category_singleton):
    ....:     def super_categories(self): return [Sets()]
sage: R()
Category of r
sage: R().__class__
<class '__main__.R_with_category'>
sage: R().__class__.mro()
[<class '__main__.R_with_category'>,
     <class '__main__.R'>,
     <class 'sage.categories.category_singleton.Category_singleton'>,
     <class 'sage.categories.category.Category'>,
     <class 'sage.structure.unique_representation.UniqueRepresentation'>,
     <class 'sage.structure.unique_representation.CachedRepresentation'>,
     <type 'sage.misc.fast_methods.WithEqualityById'>,
     <type 'sage.structure.sage_object.SageObject'>,
     <class '__main__.R.subcategory_class'>,
     <class 'sage.categories.sets_cat.Sets.subcategory_class'>,
     <class 'sage.categories.sets_with_partial_maps.SetsWithPartialMaps.
         __subcategory_class'>,
     <class 'sage.categories.objects.Objects.subcategory_class'>,
     <... 'object'>]
sage: R() is R()
True
sage: R() is R().__class__
True
```

In that case, R is an abstract class and has a single concrete subclass, so this does not break the Singleton design pattern.

See also:

```
Category.__classcall__, Category.__init__
```

Note: The _test_category test is failing because MyRingsSingleton() is not a subcategory of the join of its super categories:

```
sage: C = MyRingsSingleton()
sage: C.super_categories()
[Category of rngs, Category of semirings]
sage: Rngs() & Semirings()
Category of rings
sage: C.is_subcategory(Rings())
False
```

Oh well; it's not really relevant for those tests.
6.3 Fast functions for the category framework

AUTHOR:
- Simon King (initial version)

```python
class sage.categories.category_cy_helper.AxiomContainer:
  Bases: dict

  A fast container for axioms.

  This is derived from dict. A key is the name of an axiom. The corresponding value is the “rank” of this axiom, that is used to order the axioms in `canonicalize_axioms()`.

EXAMPLES:

```python
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: isinstance(all_axioms, sage.categories.category_with_axiom.AxiomContainer)
True
```

`add(axiom)`
Add a new axiom name, of the next rank.

EXAMPLES:

```python
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: m = max(all_axioms.values())
sage: all_axioms.add('Awesome')
sage: all_axioms['Awesome'] == m + 1
True
```

To avoid side effects, we remove the added axiom:

```python
sage: del all_axioms['Awesome']
```

```python
sage.categories.category_cy_helper.canonicalize_axioms(all_axioms, axioms)
```
Canonicalize a set of axioms.

INPUT:
- `all_axioms` – all available axioms
- `axioms` – a set (or iterable) of axioms

**Note:** `AxiomContainer` provides a fast container for axioms, and the collection of axioms is stored in `sage.categories.category_with_axiom`. In order to avoid circular imports, we expect that the collection of all axioms is provided as an argument to this auxiliary function.

OUTPUT:
A set of axioms as a tuple sorted according to the order of the tuple `all_axioms` in `sage.categories.category_with_axiom`.

EXAMPLES:

```python
sage: from sage.categories.category_with_axiom import canonicalize_axioms, all_axioms
sage: canonicalize_axioms(all_axioms, ["Commutative", "Connected", "WithBasis", "Finite"])
(continues on next page)
```
sage.categories.category_cy_helper.category_sort_key(category)
Return category._cmp_key.

This helper function is used for sorting lists of categories.

It is semantically equivalent to operator.attrgetter() ("_cmp_key"), but currently faster.

EXAMPLES:

```python
sage: from sage.categories.category_cy_helper import category_sort_key
sage: category_sort_key(Rings()) is Rings()._cmp_key
True
```

sage.categories.category_cy_helper.get_axiom_index(all_axioms, axiom)
Helper function: Return the rank of an axiom.

INPUT:

- all_axioms – the axiom collection
- axiom – string, name of an axiom

EXAMPLES:

```python
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: from sage.categories.category_cy_helper import get_axiom_index
sage: get_axiom_index(all_axioms, 'AdditiveCommutative') == all_axioms['AdditiveCommutative']
True
```

sage.categories.category_cy_helper.join_as_tuple(categories, axioms, ignore_axioms)
Helper for join().

INPUT:

- categories – tuple of categories to be joined,
- axioms – tuple of strings; the names of some supplementary axioms.
- ignore_axioms – tuple of pairs (cat, axiom), such that axiom will not be applied to cat, should cat occur in the algorithm.

EXAMPLES:

```python
sage: from sage.categories.category_cy_helper import join_as_tuple
sage: T = (Coalgebras(QQ), Sets().Finite(), Algebras(ZZ), SimplicialComplexes())
sage: join_as_tuple(T, (), ())
(Category of algebras over Integer Ring,
Category of finite monoids,
Category of finite additive groups,
Category of coalgebras over Rational Field,
Category of finite simplicial complexes)
sage: join_as_tuple(T, ('WithBasis',), ())
(Category of algebras with basis over Integer Ring,
Category of finite monoids,
Category of finite monoids,
Category of finite additive groups,
Category of coalgebras over Rational Field,
Category of finite simplicial complexes)
```

(continues on next page)
6.4 Coercion methods for categories

The purpose of this Cython module is to hold special coercion methods, which are inserted by their respective categories.

6.5 Poor Man’s map

class sage.categories.poor_man_map.PoorManMap (function, domain=None, codomain=None, name=None)

Bases: sage.structure.sage_object.SageObject

A class for maps between sets which are not (yet) modeled by parents
Could possibly disappear when all combinatorial classes / enumerated sets will be parents

INPUT:

• function – a callable or an iterable of callables. This represents the underlying function used to implement this map. If it is an iterable, then the callables will be composed to implement this map.
• domain – the domain of this map or None if the domain is not known or should remain unspecified
• codomain – the codomain of this map or None if the codomain is not known or should remain unspecified
• name – a name for this map or None if this map has no particular name

EXAMPLES:

sage: from sage.categories.poor_man_map import PoorManMap
sage: f = PoorManMap(factorial, domain = (1, 2, 3), codomain = (1, 2, 6))
sage: f
A map from (1, 2, 3) to (1, 2, 6)
sage: f(3)
6

The composition of several functions can be created by passing in a tuple of functions:

sage: i = PoorManMap((factorial, sqrt), domain = (1, 4, 9), codomain = (1, 2, 6))

However, the same effect can also be achieved by just composing maps:

sage: g = PoorManMap(factorial, domain = (1, 2, 3), codomain = (1, 2, 6))
sage: h = PoorManMap(sqrt, domain = (1, 4, 9), codomain = (1, 2, 3))
sage: i == g*h
True
**codomain()**

Returns the codomain of `self`

EXAMPLES:

```
sage: from sage.categories.poor_man_map import PoorManMap
sage: PoorManMap(lambda x: x+1, domain = (1,2,3), codomain = (2,3,4)).codomain()
(2, 3, 4)
```

**domain()**

Returns the domain of `self`

EXAMPLES:

```
sage: from sage.categories.poor_man_map import PoorManMap
sage: PoorManMap(lambda x: x+1, domain = (1,2,3), codomain = (2,3,4)).domain()
(1, 2, 3)
```
INDICES AND TABLES

- Index
- Module Index
- Search Page
PYTHON MODULE INDEX

C
sage.categories.action, 149
sage.categories.additive_groups, 152
sage.categories.additive_magmas, 154
sage.categories.additive_monoids, 165
sage.categories.additive_semigroups, 166
sage.categories.affine_weyl_groups, 168
sage.categories.algebra_functor, 745
sage.categories.algebra_ideals, 171
sage.categories.algebra_modules, 171
sage.categories.algebras, 172
sage.categories.algebras_with_basis, 175
sage.categories.aperiodic_semigroups, 180
sage.categories.associative_algebras, 180
sage.categories.bialgebras, 181
sage.categories.bialgebra_modules, 182
sage.categories.bimodules, 186
sage.categories.cartesian_product, 741
sage.categories.category, 27
sage.categories.category_cy_helper, 831
sage.categories.category_singleton, 828
sage.categories.category_types, 825
sage.categories.category_with_axiom, 62
sage.categories.classical_crystals, 187
sage.categories.coalgebras, 191
sage.categories.coalgebra_modules, 196
sage.categories.coercion_methods, 833
sage.categories.commutative_additive_groups, 198
sage.categories.commutative_additive_monoids, 199
sage.categories.commutative_additive_semigroups, 199
sage.categories.commutative_algebra_ideals, 200
sage.categories.commutative_algebras, 201
sage.categories.commutative_ring_ideals, 201
sage.categories.commutative_rings, 201
sage.categories.complete_discrete_valuation, 206
sage.categories.complex_reflection_groups, 209
sage.categories.complex_reflection_or_generalized_coxeter_groups, 211
<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage.categories.covariant_functorial_construction</td>
<td>735</td>
</tr>
<tr>
<td>sage.categories.coxeter_group_algebras</td>
<td>228</td>
</tr>
<tr>
<td>sage.categories.coxeter_groups</td>
<td>231</td>
</tr>
<tr>
<td>sage.categories.crystals</td>
<td>259</td>
</tr>
<tr>
<td>sage.categories.cw_complexes</td>
<td>282</td>
</tr>
<tr>
<td>sage.categories.discrete_valuation</td>
<td>284</td>
</tr>
<tr>
<td>sage.categories.distributive_magmas_and_additive_magmas</td>
<td>287</td>
</tr>
<tr>
<td>sage.categories.division_rings</td>
<td>288</td>
</tr>
<tr>
<td>sage.categories.domains</td>
<td>289</td>
</tr>
<tr>
<td>sage.categories.dual</td>
<td>745</td>
</tr>
<tr>
<td>sage.categories.enumerated_sets</td>
<td>289</td>
</tr>
<tr>
<td>sage.categories.euclidean_domains</td>
<td>296</td>
</tr>
<tr>
<td>sage.categories.examples.algebras_with_basis</td>
<td>765</td>
</tr>
<tr>
<td>sage.categories.examples.commutative_additive_monoids</td>
<td>766</td>
</tr>
<tr>
<td>sage.categories.examples.commutative_additive_semigroups</td>
<td>767</td>
</tr>
<tr>
<td>sage.categories.examples.coxeter_groups</td>
<td>769</td>
</tr>
<tr>
<td>sage.categories.examples.cystals</td>
<td>769</td>
</tr>
<tr>
<td>sage.categories.examples.cw_complexes</td>
<td>771</td>
</tr>
<tr>
<td>sage.categories.examples.coxeter_groups</td>
<td>773</td>
</tr>
<tr>
<td>sage.categories.examples.finite_coxeter_groups</td>
<td>775</td>
</tr>
<tr>
<td>sage.categories.examples.finite_dimensional_algebras_with_basis</td>
<td>776</td>
</tr>
<tr>
<td>sage.categories.examples.finite_dimensional_lie_algebras_with_basis</td>
<td>776</td>
</tr>
<tr>
<td>sage.categories.examples.finite_enumerated_sets</td>
<td>780</td>
</tr>
<tr>
<td>sage.categories.examples.finite_monoids</td>
<td>782</td>
</tr>
<tr>
<td>sage.categories.examples.finite_semigroups</td>
<td>783</td>
</tr>
<tr>
<td>sage.categories.examples.finite_weyl_groups</td>
<td>786</td>
</tr>
<tr>
<td>sage.categories.examples.graded_connected_hopf_algebras_with_basis</td>
<td>788</td>
</tr>
<tr>
<td>sage.categories.examples.graded_modules_with_basis</td>
<td>789</td>
</tr>
<tr>
<td>sage.categories.examples.hopf_algebras_with_basis</td>
<td>793</td>
</tr>
<tr>
<td>sage.categories.examples.infinite_enumerated_sets</td>
<td>794</td>
</tr>
<tr>
<td>sage.categories.examples.lie_algebras</td>
<td>796</td>
</tr>
<tr>
<td>sage.categories.examples.lie_algebras_with_basis</td>
<td>797</td>
</tr>
<tr>
<td>sage.categories.examples.magnas</td>
<td>798</td>
</tr>
<tr>
<td>sage.categories.examples.manifolds</td>
<td>800</td>
</tr>
<tr>
<td>sage.categories.examples.monoids</td>
<td>801</td>
</tr>
<tr>
<td>sage.categories.examples.posets</td>
<td>802</td>
</tr>
<tr>
<td>sage.categories.examples.semisets</td>
<td>804</td>
</tr>
<tr>
<td>sage.categories.examples.semisigroups_cython</td>
<td>809</td>
</tr>
<tr>
<td>sage.categories.examples.sets_cat</td>
<td>811</td>
</tr>
<tr>
<td>sage.categories.examples.sets_with_grading</td>
<td>817</td>
</tr>
<tr>
<td>sage.categories.examples.with_realizations</td>
<td>818</td>
</tr>
<tr>
<td>sage.categories.facade_sets</td>
<td>732</td>
</tr>
<tr>
<td>sage.categories.fields</td>
<td>298</td>
</tr>
<tr>
<td>sage.categories.filtered_algebras</td>
<td>303</td>
</tr>
<tr>
<td>sage.categories.filtered_algebras_with_basis</td>
<td>303</td>
</tr>
<tr>
<td>sage.categories.filtered_modules</td>
<td>311</td>
</tr>
<tr>
<td>sage.categories.filtered_modules_with_basis</td>
<td>312</td>
</tr>
<tr>
<td>sage.categories.finite_complex_reflection_groups</td>
<td>326</td>
</tr>
<tr>
<td>sage.categories.finite_coxeter_groups</td>
<td>342</td>
</tr>
</tbody>
</table>
sage.categories.finite_crystals, 353
sage.categories.finite_dimensional_algebras_with_basis, 354
sage.categories.finite_dimensional_bialgebras_with_basis, 372
sage.categories.finite_dimensional_coalgebras_with_basis, 372
sage.categories.finite_dimensional_graded_lie_algebras_with_basis, 373
sage.categories.finite_dimensional_hopf_algebras_with_basis, 374
sage.categories.finite_dimensional_lie_algebras_with_basis, 375
sage.categories.finite_dimensional_modules_with_basis, 390
sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis, 396
sage.categories.finite_dimensional_semisimple_algebras_with_basis, 398
sage.categories.finiteEnumeratedSets, 400
sage.categories.finite_fields, 405
sage.categories.finite_groups, 406
sage.categories.finite_lattice_posets, 409
sage.categories.finite_monoids, 411
sage.categories.finite_permutation_groups, 415
sage.categories.finite_posets, 419
sage.categories.finite_semigroups, 440
sage.categories.finite_sets, 441
sage.categories.finite_weyl_groups, 443
sage.categories.finitelyGeneratedLambdaBracketAlgebras, 443
sage.categories.finitelyGeneratedLieConformalAlgebras, 444
sage.categories.finitelyGeneratedMagmas, 445
sage.categories.finitelyGeneratedSemigroups, 446
sage.categories.function_fields, 448
sage.categories.functor, 95
sage.categories.G_sets, 449
sage.categories.gcd_domains, 449
sage.categories.generalized_coxeter_groups, 450
sage.categories.graded_algebras, 451
sage.categories.graded_algebras_with_basis, 452
sage.categories.graded_bialgebras, 454
sage.categories.graded_bialgebras_with_basis, 454
sage.categories.graded_coalgebras, 454
sage.categories.graded_coalgebras_with_basis, 455
sage.categories.graded_hopf_algebras, 456
sage.categories.graded_hopf_algebras_with_basis, 456
sage.categories.graded_lie_algebras, 458
sage.categories.graded_lie_algebras_with_basis, 459
sage.categories.graded_lie_conformal_algebras, 459
sage.categories.graded_modules, 460
sage.categories.graded_modules_with_basis, 461
sage.categories.graphs, 462
sage.categories.group_algebras, 464
sage.categories.groupoid, 469
sage.categories.groups, 469
sage.categories.h_trivial_semigroups, 491
sage.categories.hecke_modules, 477
sage.categories.highest_weight_crystals, 478
sage.categories.homset, 110
INDEX

Symbols
__classcall__() (sage.categories.category.Category static method), 39
__classcall__() (sage.categories.category_with_axiom.CategoryWithAxiom static method), 87
__classget__() (sage.categories.category_with_axiom.CategoryWithAxiom static method), 87
__init__() (sage.categories.category.Category method), 39
__init__() (sage.categories.category_with_axiom.CategoryWithAxiom method), 88
_all_super_categories() (sage.categories.category.Category method), 33
_all_super_categories_proper() (sage.categories.category.Category method), 33
_make_named_class() (sage.categories.category.Category method), 34
_make_named_class() (sage.categories.category_with_axiom.CategoryWithParameters.Category method), 58
_repr_() (sage.categories.category.Category method), 35
_repr_() (sage.categories.category.JoinCategory.Category method), 60
_repr_object_names() (sage.categories.category.Category method), 35
_repr_object_names() (sage.categories.category.JoinCategory.Category method), 60
_repr_object_names() (sage.categories.category_with_axiom.CategoryWithAxiom method), 88
_repr_object_names_static() (sage.categories.category_with_axiom.CategoryWithAxiom static method), 88
_set_of_super_categories() (sage.categories.category.Category method), 34
_sort() (sage.categories.category.Category static method), 38
_sort_uniq() (sage.categories.category.Category static method), 38
_super_categories() (sage.categories.category.Category method), 32
_super_categories_for_classes() (sage.categories.category.Category method), 33
_test_category() (sage.categories.category.Category method), 36
_test_category_with_axiom() (sage.categories.category_with_axiom.CategoryWithAxiom method), 89
_with_axiom() (sage.categories.category.Category method), 36
_with_axiom_as_tuple() (sage.categories.category.Category method), 37
_without_axioms() (sage.categories.category.Category method), 37
_without_axioms() (sage.categories.category.JoinCategory.Category method), 60
_without_axioms() (sage.categories.category_with_axiom.CategoryWithAxiom method), 89

A
a_realization() (sage.categories.examples.with_realizations.SubsetAlgebra method), 822
a_realization() (sage.categories.sets_cat.Sets.WithRealizations.ParentMethods method), 682
AbelianCategory (class in sage.categories.category_types), 825
AbelianLieAlgebra (class in sage.categories.examples.finite_dimensional_lie_algebras_with_basis), 776
AbelianLieAlgebra (class in sage.categories.examples.lie_algebras_with_basis), 797
AbelianLieAlgebra.Element (class in sage.categories.examples.finite_dimensional_lie_algebras_with_basis),
AbelianLieAlgebra.Element (class in sage.categories.examples.lie_algebras_with_basis), 797
abs() (sage.categories.metric_spaces.MetricSpaces.ElementMethods method), 556
absolute_covers() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 232
absolute_le() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 232
absolute_length() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 233
absolute_order_ideal() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods method), 328
absolute_poset() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods method), 329
act() (sage.categories.action.Action method), 150
Action (class in sage.categories.action), 149
ActionEndomorphism (class in sage.categories.action), 150
actor() (sage.categories.action.Action method), 150
adams_operator() (sage.categories.bialgebras_with_basis.BialgebrasWithBasis.ElementMethods method), 182
add() (sage.categories.category_cy_helper.AxiomContainer method), 831
addition_table() (sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital method), 158
additional_structure() (sage.categories.bialgebras.Bialgebras method), 181
additional_structure() (sage.categories.bimodules.Bimodules method), 186
additional_structure() (sage.categories.category.Category method), 44
additional_structure() (sage.categories.category.JoinCategory method), 60
additional_structure() (sage.categories.category_with_axiom.CategoryWithAxiom method), 90
additional_structure() (sage.categories.classical_crystals.ClassicalCrystals method), 190
additional_structure() (sage.categories.complex_reflection_groups.ComplexReflectionGroups method), 210
additional_structure() (sage.categories.commutative_additive_groups.CommutativeAdditiveGroups method), 735
additional_structure() (sage.categories.coxeter_groups.CoxeterGroups method), 259
additional_structure() (sage.categories.enumerated_sets.EnumeratedSets method), 295
additional_structure() (sage.categories.gcd_domains.GcdDomains method), 449
additional_structure() (sage.categories.generalized_coxeter_groups-GeneralizedCoxeterGroups method), 451
additional_structure() (sage.categories.highest_weight_crystals.HighestWeightCrystals method), 485
additional_structure() (sage.categories.lie_groups.LieGroups method), 518
additional_structure() (sage.categories.magmas.Magmas.Unital method), 544
additional_structure() (sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas method), 546
additional_structure() (sage.categories.magnetic_algebras.MagneticAlgebras method), 549
additional_structure() (sage.categories.manifolds.Manifolds method), 553
additional_structure() (sage.categories.modules.Modules method), 568
additional_structure() (sage.categories.objects.Objects method), 603
additional_structure() (sage.categories.principal_ideal_domains.PrincipalIdealDomains method), 615
additional_structure() (sage.categories.regular_crystals.RegularCrystals method), 634
additional_structure() (sage.categories.unique_factorization_domains.UniqueFactorizationDomains method), 716
additional_structure() (sage.categories.vector_spaces.VectorSpaces method), 722
additional_structure() (sage.categories.weyl_groups.WeylGroups method), 732
additive_order() (sage.categories.commutative_additive_groups.CommutativeAdditiveGroups.CartesianProducts.ElementMethods method), 844
additive_semigroup_generators() (sage.categories.examples.commutative_additive_semigroups.FreeCommutativeAdditiveSemigroup method), 768
AdditiveAssociative (sage.categories.additive_magmas.AdditiveMagmas attribute), 154
AdditiveAssociative() (sage.categories.additive_magmas.AdditiveMagmas.SubcategoryMethods method), 163
AdditiveCommutative (sage.categories.additive_groups.AdditiveGroups attribute), 152
AdditiveCommutative (sage.categories.additive_monoids.AdditiveMonoids attribute), 165
AdditiveCommutative (sage.categories.additive_semigroups.AdditiveSemigroups attribute), 166
AdditiveCommutative() (sage.categories.additive_magmas.AdditiveMagmas.SubcategoryMethods method), 164
AdditiveGroups (class in sage.categories.additive_groups), 152
AdditiveGroups.Algebras (class in sage.categories.additive_groups), 152
AdditiveGroups.Finite (class in sage.categories.additive_groups), 153
AdditiveGroups.Finite.Algebras (class in sage.categories.additive_groups), 153
AdditiveInverse (sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.AdditiveUnital attribute), 287
AdditiveMagmas (class in sage.categories.additive_magmas), 154
AdditiveMagmas.AdditiveCommutative (class in sage.categories.additive_magmas), 154
AdditiveMagmas.AdditiveCommutative.Algebras (class in sage.categories.additive_magmas), 154
AdditiveMagmas.AdditiveCommutative.CartesianProducts (class in sage.categories.additive_magmas), 154
AdditiveMagmas.AdditiveUnital (class in sage.categories.additive_magmas), 155
AdditiveMagmas.AdditiveUnital.AdditiveInverse (class in sage.categories.additive_magmas), 155
AdditiveMagmas.AdditiveUnital.AdditiveInverse.CartesianProducts (class in sage.categories.additive_magmas), 155
AdditiveMagmas.AdditiveUnital.Algebras (class in sage.categories.additive_magmas), 155
AdditiveMagmas.AdditiveUnital.Algebras.ParentMethods (class in sage.categories.additive_magmas), 155
AdditiveMagmas.AdditiveUnital.CartesianProducts (class in sage.categories.additive_magmas), 156
AdditiveMagmas.AdditiveUnital.CartesianProducts.ParentMethods (class in sage.categories.additive_magmas), 156
AdditiveMagmas.AdditiveUnital.ElementMethods (class in sage.categories.additive_magmas), 156
AdditiveMagmas.AdditiveUnital.Homsets (class in sage.categories.additive_magmas), 156
AdditiveMagmas.AdditiveUnital.Homsets.ParentMethods (class in sage.categories.additive_magmas), 156
AdditiveMagmas.AdditiveUnital.ParentMethods (class in sage.categories.additive_magmas), 157
AdditiveMagmas.AdditiveUnital.SubcategoryMethods (class in sage.categories.additive_magmas), 157
AdditiveMagmas.AdditiveUnital.WithRealizations (class in sage.categories.additive_magmas), 158
AdditiveMagmas.AdditiveUnital.WithRealizations.ParentMethods (class in sage.categories.additive_magmas), 158
an_element() (sage.categories.examples.cw_complexes.Surface method), 771
an_element() (sage.categories.examples.finite_monoids.IntegerModMonoid method), 782
an_element() (sage.categories.examples.finite_semigroups.LeftRegularBand method), 785
an_element() (sage.categories.examples.graphs.Cycle method), 792
an_element() (sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers method), 795
an_element() (sage.categories.examples.magnas.FreeMagma method), 799
an_element() (sage.categories.examples.manifolds.Plane method), 800
an_element() (sage.categories.examples.posets.FiniteSetsOrderedByInclusion method), 803
an_element() (sage.categories.examples.semigroups.FreeSemigroup method), 805
an_element() (sage.categories.examples.semigroups.LeftZeroSemigroup method), 806
an_element() (sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup method), 807
an_element() (sage.categories.examples.sets_cat.PrimeNumbers method), 812
an_element() (sage.categories.examples.sets_cat.PrimeNumbers_Abstract method), 813
an_element() (sage.categories.examples.sets_cat.PrimeNumbers_Abstract method), 813
antichains() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 419
antipode() (sage.categories.hopf_algebras.HopfAlgebras.ElementMethods method), 486
antipode() (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis.ParentMethods method), 490
antipode() (sage.categories.super_hopf_algebras_with_basis.SuperHopfAlgebrasWithBasis.ParentMethods method), 700
antipode_on_basis() (sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra method), 793
antipode_on_basis() (sage.categories.group_algebras.GroupAlgebras.ParentMethods method), 466
antipode_on_basis() (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis.ParentMethods method), 490
Aperiodic (sage.categories.semigroups.Semigroups attribute), 650
Aperiodic() (sage.categories.semigroups.Semigroups.SubcategoryMethods method), 655
AperiodicSemigroups (class in sage.categories.aperiodic_semigroups), 180
apply_conjugation_by_simple_reflection() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 212
apply_demazure_product() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 233
apply_multilinear_morphism() (sage.categories.modules_with_basis.ModulesWithBasis.TensorProducts.ElementMethods method)
apply_reflections() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 212
apply_simple_projection() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 233
apply_simple_reflection() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 214
apply_simple_reflection_left() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 214
apply_simple_reflection_right() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 215
apply_simple_reflection_right() (sage.categories.examples.finite_coxeter_groups.DihedralGroup.Element method), 773
apply_simple_reflections() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 216
as_finite_dimensional_algebra() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 376
Associative (sage.categories.magas.Magas attribute), 532
Associative (sage.categories.magnetic_algebras.MagneticAlgebras attribute), 547
Associative (sage.categories.magas.Magas.SubcategoryMethods method), 538
AssociativeAlgebras (class in sage.categories.associative_algebras), 180
axiom() (in module sage.categories.category_with_axiom), 93
axiom_of_nested_class() (in module sage.categories.category_with_axiom), 93
AxiomContainer (class in sage.categories.category_cy_helper), 831
axioms() (sage.categories.category.Category method), 47
axioms() (sage.categories.category_with_axiom.CategoryWithAxiom method), 90
B
b_sharp() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 520
baker_campbell_hausdorff() (sage.categories.lie_algebras.LieAlgebras.ParentMethods method), 503
Bars (class in sage.categories.category_with_axiom), 85
base() (sage.categories.category_types.Category_over_base method), 826
base() (sage.categories.homsets.HomsetsCategory method), 756
base() (sage.categories.tensor.TensorProductsCategory method), 743
base_category() (sage.categories.category_with_axiom.CategoryWithAxiom method), 91
base_category() (sage.categories.covariant_functorial_construction.FunctorialConstructionCategory method), 739
base_category_class_and_axiom() (in module sage.categories.category_with_axiom), 94
base_change_matrix() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods method), 332
base_field() (sage.categories.modular_abelian_varieties.ModularAbelianVarieties method), 558
base_field() (sage.categories.vector_spaces.VectorSpaces method), 723
base_point() (sage.categories.simplicial_sets.SimplicialSets.Pointed.ParentMethods method), 694
base_point_map() (sage.categories.simplicial_sets.SimplicialSets.Pointed.ParentMethods method), 694
base_ring() (sage.categories.algebra_functor.AlgebraFunctor method), 750
base_ring() (sage.categories.cartesian_product.CartesianProductsCategory method), 742
base_ring() (sage.categories.category_types.Category_over_base_ring method), 827
base_ring() (sage.categories.modules.Modules.Homsets method), 562
base_ring() (sage.categories.modules.Modules.SubcategoryMethods method), 566
base_scheme() (sage.categories.schemes.Schemes_over_base method), 648
Index 849
bruhat_interval_poset() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 252
bruhat_le() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 234
bruhat_lower_covers() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 235
bruhat_lower_covers_coroots() (sage.categories.weyl_groups.WeylGroups.ElementMethods method), 724
bruhat_lower_covers_reflections() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 236
bruhat_poset() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 345
bruhat_upper_covers() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 236
bruhat_upper_covers() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods method), 342
bruhat_upper_covers_coroots() (sage.categories.weyl_groups.WeylGroups.ElementMethods method), 724
bruhat_upper_covers_reflections() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 236
CallMorphism (class in sage.categories.morphism), 117
cambrian_lattice() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 346
canonical_matrix() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 237
canonical_representation() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 252
canonicalize_axioms() (in module sage.categories.category_cy_helper), 831
cardinality() (sage.categories.classical_crystals.ClassicalCrystals.ParentMethods method), 188
cardinality() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods method), 332
cardinality() (sage.categories.finite Enumerated Sets.FiniteEnumeratedSets.IsomorphicObjects.ParentMethods method), 403
cardinality() (sage.categories.finite Enumerated Sets.FiniteEnumeratedSets.ParentMethods method), 403
cardinality() (sage.categories.finite_groups.FiniteGroups.ParentMethods method), 407
cardinality() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 521
cardinality() (sage.categories-modules_with_basis.ModulesWithBasis.ParentMethods method), 581
cartan_invariants_matrix() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis method), 359
cartan_type() (sage.categories.crystals.CrystalMorphism method), 262
cartan_type() (sage.categories.crystals.Crystals.ElementMethods method), 266
cartan_type() (sage.categories.crystals.Crystals.ParentMethods method), 271
cartan_type() (sage.categories.examples.finite_weyl_groups.SymmetricGroup method), 787
cartan_type() (sage.categories.kac_moody_algebras.KacMoodyAlgebras.ParentMethods method), 494
cartan_type() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.ParentMethods method), 621
cartan_type() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.TensorProducts.ParentMethods method), 622
cartesian_product() (sage.categories.sets_cat.Sets.ElementMethods method), 667
cartesian_product() (sage.categories.sets_cat.Sets.ParentMethods method), 670
CartesianProduct (sage.categories.posets.Posets.ParentMethods attribute), 606
CartesianProduct (sage.categories.sets_cat.Sets.ParentMethods attribute), 669
CartesianProductFunctor (class in sage.categories.cartesian_product), 741
CartesianProducts() (sage.categories.cartesian_product.CartesianProductsCategory method), 742
CartesianProducts() (sage.categories.sets_cat.Sets.SubcategoryMethods method), 673
CartesianProductsCategory (class in sage.categories.cartesian_product), 742
Category (class in sage.categories.category), 28
category() (sage.categories.category.Category method), 47
category() (sage.categories.morphism.Morphism method), 118
Category_contains_method_by_parent_class (class in sage.categories.category_singleton), 828
category_for() (sage.categories.map.Map method), 105
category_from_categories() (sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction method), 738
category_from_category() (sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction method), 738
category_from_parents() (sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction method), 739
category_graph() (in module sage.categories.category), 61
category_graph() (sage.categories.category.Category method), 48
Category_ideal (class in sage.categories.category_types), 825
Category_in_ambient (class in sage.categories.category_types), 825
Category_module (class in sage.categories.category_types), 826
category_of() (sage.categories.covariant_functorial_construction.FunctorialConstructionCategory class method), 739
Category_over_base (class in sage.categories.category_types), 826
Category_over_base_ring (class in sage.categories.category_types), 826
Category_realization_of_parent (class in sage.categories.realizations), 758
category_sample() (in module sage.categories.category), 61
category_sort_key() (in module sage.categories.category_cy_helper), 832
CategoryWithAxiom (class in sage.categories.category_with_axiom), 87
CategoryWithAxiom_over_base_ring (class in sage.categories.category_with_axiom), 91
CategoryWithAxiom_singleton (class in sage.categories.category_with_axiom), 91
CategoryWithParameters (class in sage.categories.category), 58
cayley_graph() (sage.categories.semi_groups.Semigroups.ParentMethods method), 651
cayley_graph_disabled() (sage.categories.finite_groups.FiniteGroups.ParentMethods method), 407
cayley_table() (sage.categories.groups.Groups.ParentMethods method), 472
cell_module() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods method), 355
cell_module_indices() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods method), 356
cell_module_indices() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods method), 357
cell_poset() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods method), 356
cells() (sage.categories.cw_complexes.CWComplexes.ParentMethods method), 283
cells() (sage.categories.examples.cw_complexes.Surface method), 772

cells() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods method), 356

Cellular() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.SubcategoryMethods method), 372

cellular_basis() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods method), 356


cellular_involution() (sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis.ParentMethods method), 399

cellular_involution() (sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis.TensorProducts.ParentMethods method), 399

center() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 361

center() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 376

center() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 376

center() (sage.categories.group_algebras.GroupAlgebras.ElementMethods method), 465

central_form() (sage.categories.group_algebras.GroupAlgebras.ElementMethods method), 465

central_orthogonal_idempotents() (sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis.Commutative.ParentMethods method), 398

central_orthogonal_idempotents() (sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis.ParentMethods method), 399

central_orthogonal_idempotents() (sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis.TensorProducts.ParentMethods method), 399

centralizer() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 376

centralizer() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 376

centralizer() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 376

classical_decomposition() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 521

classical_decomposition() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 521

classical_decomposition() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 521

classical_decomposition() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 521

Coalgebras (class in sage.categories.coalgebras), 191

Coalgebras.ElementMethods (class in sage.categories.coalgebras), 191

Coalgebras.DualObjects (class in sage.categories.coalgebras), 191

Coalgebras.ElementMethods (class in sage.categories.coalgebras), 191
Coalgebras.Filtered (class in sage.categories.coalgebras), 192
Coalgebras.ParentMethods (class in sage.categories.coalgebras), 192
Coalgebras.Realizations (class in sage.categories.coalgebras), 193
Coalgebras.Realizations.ParentMethods (class in sage.categories.coalgebras), 193
Coalgebras.SubcategoryMethods (class in sage.categories.coalgebras), 193
Coalgebras.Super (class in sage.categories.coalgebras), 194
Coalgebras.Super.SubcategoryMethods (class in sage.categories.coalgebras), 194
Coalgebras.Super.Supercocommutative (class in sage.categories.coalgebras), 194
Coalgebras.TensorProducts (class in sage.categories.coalgebras), 195
Coalgebras.TensorProducts.ElementMethods (class in sage.categories.coalgebras), 195
Coalgebras.TensorProducts.ParentMethods (class in sage.categories.coalgebras), 195
Coalgebras.WithRealizations (class in sage.categories.coalgebras), 195
Coalgebras.TensorProducts.ElementMethods (class in sage.categories.coalgebras), 195
Coalgebras.TensorProducts.ParentMethods (class in sage.categories.coalgebras), 195
Coalgebras.AdditiveGroups. WithRealizations. ParentMethods (class in sage.categories.coalgebras), 195
CoalgebrasWithBasis (class in sage.categories.coalgebras_with_basis), 196
CoalgebrasWithBasis.ElementMethods (class in sage.categories.coalgebras_with_basis), 196
CoalgebrasWithBasis.ParentMethods (class in sage.categories.coalgebras_with_basis), 196
CoalgebrasWithBasis.Super (class in sage.categories.coalgebras_with_basis), 198
Cocommutative () (sage.categories.coalgebras.Coalgebras.SubcategoryMethods method), 193
codegrees () (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods method), 333
codegrees () (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 346
codomain (sage.categories.map.Map attribute), 106
codomain () (sage.categories.action.Action method), 150
codomain () (sage.categories.action.InverseAction method), 151
codomain () (sage.categories.action.PrecomposedAction method), 152
codomain () (sage.categories.functor.Functor method), 97
codomain () (sage.categories.homset.Homset method), 114
codomain () (sage.categories.poor_man_map.PoorManMap method), 833
coefficient () (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 571
coefficients () (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 571
cohomology () (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 378
common_base () (sage.categories.pushout.ConstructionFunctor method), 128
common_base () (sage.categories.pushout.MultivariateConstructionFunctor method), 135
Commutative (sage.categories.algebras.Algebras attribute), 173
Commutative (sage.categories.division_rings.DivisionRings attribute), 288
Commutative (sage.categories.domains.Domains attribute), 289
Commutative (sage.categories.rings.Rings attribute), 638
Commutative () (sage.categories.category_with_axiom.Blahs.SubcategoryMethods method), 86
Commutative () (sage.categories.mmagmas.MMagmas.SubcategoryMethods method), 539
Commutative_extra_super_categories () (sage.categories.l_trivial_semigroups.LTrivialSemigroups method), 530
Commutative_extra_super_categories () (sage.categories.r_trivial_semigroups.RTrivialSemigroups method), 647
CommutativeAdditiveGroups (class in sage.categories.commutative_additive_groups), 198
CommutativeAdditiveGroups.Algebras (class in sage.categories.commutative_additive_groups), 198
CommutativeAdditiveGroups.CartesianProducts (class in sage.categories.commutative_additive_groups), 198
CommutativeAdditiveGroups.CartesianProducts.ElementMethods (class in sage.categories.commutative_additive_groups), 198
Connected() (sage.categories.simplicial_complexes.SimplicialComplexes.SubcategoryMethods method), 690
connected_components() (sage.categories.topological_spaces.TopologicalSpaces.SubcategoryMethods method), 713
connected_components() (sage.categories.crystals.Crystals.ParentMethods method), 272
connected_components_generators() (sage.categories.crystals.Crystals.ParentMethods method), 272
connected_components_generators() (sage.categories.highest_weight_crystals.HighestWeightCrystals.ParentMethods method), 481
construction() (sage.categories.sets_cat.Sets.ParentMethods method), 670
construction_tower() (in module sage.categories.pushout), 139
ConstructionFunctor (class in sage.categories.pushout), 126
convolution_product() (sage.categories.bialgebras_with_basis.BialgebrasWithBasis.ElementMethods method), 183
convolution_product() (sage.categories.bialgebras_with_basis.BialgebrasWithBasis.ParentMethods method), 184
coproduct() (sage.categories.coalgebras.Coalgebras.ElementMethods method), 191
coproduct() (sage.categories.coalgebras.Coalgebras.ParentMethods method), 192
coproduct() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ParentMethods method), 196
coproduct_iterated() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ElementMethods method), 196
coproduct_on_basis() (sage.categories.algebra_functor.AlgebrasCategory.ParentMethods method), 750
coproduct_on_basis() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ParentMethods method), 197
coproduct_on_basis() (sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebrasWithBasis.ElementMethods method), 788
coproduct_on_basis() (sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra method), 793
coproduct_on_basis() (sage.categories.group_algebras.GroupAlgebras.ParentMethods method), 467
coset_representative() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 237
counit() (sage.categories.coalgebras.Coalgebras.ElementMethods method), 191
counit() (sage.categories.coalgebras.Coalgebras.ParentMethods method), 192
counit() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ParentMethods method), 197
counit_on_basis() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ParentMethods method), 197
counit_on_basis() (sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra method), 793
counit_on_basis() (sage.categories.graded_hop_algebras_with_basis.GradedHopAlgebrasWithBasis.Connected.ParentMethods method), 457
counit_on_basis() (sage.categories.group_algebras.GroupAlgebras.ParentMethods method), 467
CovariantConstructionCategory (class in sage.categories.covariant FunctorialConstruction), 735
CovariantFunctorialConstruction (class in sage.categories.covariant FunctorialConstruction), 737
cover_reflections() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 238
covered_reflections_subgroup() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods method), 343
coxeter_diagram() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 252
coxeter_element() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 253
coxeter_knuth_graph() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods method), 343
coxeter_knuth_neighbor() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods method), 344
coxeter_matrix() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 254
coxeter_matrix() (sage.categories.examples.finite_coxeter_groups.DihedralGroup method), 774
coxeter_matrix() (sage.categories.weyl_groups.WeylGroups.ParentMethods method), 730
coxeter_number() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods method), 329
coxeter_sorting_word() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 238
coxeter_type() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 254
CoxeterGroupAlgebras (class in sage.categories.coxeter_group_algebras), 228
CoxeterGroupAlgebras.ParentMethods (class in sage.categories.coxeter_group_algebras), 228
CoxeterGroups (class in sage.categories.coxeter_groups), 231
CoxeterGroups.ElementMethods (class in sage.categories.coxeter_groups), 232
CoxeterGroups.ParentMethods (class in sage.categories.coxeter_groups), 249
CrystalHomset (class in sage.categories.crystals), 259
CrystalMorphism (class in sage.categories.crystals), 261
CrystalMorphismByGenerators (class in sage.categories.crystals), 263
Crystals (class in sage.categories.crystals), 264
Crystals.ElementMethods (class in sage.categories.crystals), 265
Crystals.MorphismMethods (class in sage.categories.crystals), 270
Crystals.ParentMethods (class in sage.categories.crystals), 271
Crystals.SubcategoryMethods (class in sage.categories.crystals), 281
Crystals.TensorProducts (class in sage.categories.crystals), 281
CWComplexes (class in sage.categories.cw_complexes), 282
CWComplexes.Connected (class in sage.categories.cw_complexes), 282
CWComplexes.ElementMethods (class in sage.categories.cw_complexes), 282
CWComplexes.Finite (class in sage.categories.cw_complexes), 283
CWComplexes.Finite.ParentMethods (class in sage.categories.cw_complexes), 283
CWComplexes.FiniteDimensional (class in sage.categories.cw_complexes), 283
CWComplexes.ParentMethods (class in sage.categories.cw_complexes), 283
CWComplexes.SubcategoryMethods (class in sage.categories.cw_complexes), 284
Cycle (class in sage.categories.examples.graphs), 791
Cycle.Element (class in sage.categories.examples.graphs), 791
cycle_index() (sage.categories.finite_permutation_groups.FinitePermutationGroups.ParentMethods method), 415
D
default_super_categories() (sage.categories.covariant_functorial_construction.CovariantConstructionCategory
class method), 736

default_super_categories() (sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory class method), 740

default_super_categories() (sage.categories.graded_modules.GradedModulesCategory class method), 460

default_super_categories() (sage.categories.homsets.HomsetsCategory class method), 756

default_super_categories() (sage.categories.isomorphic_objects.IsomorphicObjectsCategory class method), 753

default_super_categories() (sage.categories.metric_spaces.MetricSpacesCategory class method), 557

default_super_categories() (sage.categories.quotients.QuotientsCategory class method), 752

default_super_categories() (sage.categories.subobjects.SubobjectsCategory class method), 752

default_super_categories() (sage.categories.super_modules.SuperModulesCategory class method), 752

default_super_categories() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods method), 313

default_super_categories() (sage.categories.graded_modules_with_basis.GradedModulesWithBasis.ElementMethods method), 461
degree() (sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebra method), 788
degree() (sage.categories.examples.graded_partition_module.GradedPartitionModule method), 791
degree() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods method), 314
degree() (sage.categories.finite_dimensional_graded_lie_algebras_with_basis.FiniteDimensionalGradedLieAlgebrasWithBasis.ElementMethods method), 374
degree() (sage.categories.lambda_bracket_algebras_with_basis.LambdaBracketAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra method), 498
degrees() (sage.categories.examples.finite_coxeter_groups.DihedralGroup method), 774
degrees() (sage.categories.examples.finite_weyl_groups.SymmetricGroup method), 787
degrees() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods method), 333
degrees() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 347
demazure_character() (sage.categories.classical_crystals.ClassicalCrystals.ParentMethods method), 189
demazure_lusztig_eigenvectors() (sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras.ParentMethods method), 228
demazure_lusztig_operator_on_basis() (sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras.ParentMethods method), 229
demazure_lusztig_operators() (sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras.ParentMethods method), 230
demazure_operator() (sage.categories.regular_crystals.RegularCrystals.ParentMethods method), 631
demazure_operator_simple() (sage.categories.regular_crystals.RegularCrystals.ElementMethods method), 627
demazure_product() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 254
demazure_subcrystal() (sage.categories.regular_crystals.RegularCrystals.ParentMethods method), 632
denominator() (sage.categories.quotient_fields.QuotientFields.ElementMethods method), 615
dense_coefficient_list() (sage.categories.filtered_modules_with_basis.FiniteDimensionalModulesWithBasis.ElementMethods method), 390
deodhar_factor_element() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 238

deoohar_lift_down() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 239

deoohar_lift_up() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 239

derivations_basis() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 379


derivative() (sage.categories.quotient_fields.QuotientFields.ElementMethods method), 616

derived_series() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 379

derived_subalgebra() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 380

descents() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 240

differentiable() (sage.categories.manifolds.Manifolds.SubcategoryMethods method), 553

differentiable() (sage.categories.vector_bundles.VectorBundles.SubcategoryMethods method), 719

digraph() (sage.categories.crystals.Crystals.ParentMethods method), 275

digraph() (sage.categories.highest_weight_crystals.HighestWeightCrystals.ParentMethods method), 481

digraph() (sage.categories.loop_crystals.LoopCrystals.ParentMethods method), 529

digraph() (sage.categories.supercrystals.Supercrystals.Finite.ParentMethods method), 709

DihedralGroup (class in sage.categories.examples.finite_coxeter_groups), 773

DihedralGroup.Element (class in sage.categories.examples.finite_coxeter_groups), 773

dimension() (sage.categories.cw_complexes.CWComplexes.ElementMethods method), 283

dimension() (sage.categories.cw_complexes.CWComplexes.Finite.ParentMethods method), 283

dimension() (sage.categories.cw_complexes.CWComplexes.ParentMethods method), 284

dimension() (sage.categories.examples.cw_complexes.Surface.Element method), 771

dimension() (sage.categories.examples.graphs.Cycle.Element method), 792

dimension() (sage.categories.examples.manifolds.Plane method), 800

dimension() (sage.categories.graphs.Graphs.ParentMethods method), 463

dimension() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ParentMethods method), 511

dimension() (sage.categories.manifolds.Manifolds.ParentMethods method), 552

dimension() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 581


dimension() (sage.categories.supercrystals.SuperCrystals.Finite.ParentMethods method), 709

dimensional_sum() (sage.categories.crystals.Crystals.ParentMethods method), 276

directed_subsets() (sage.categories.posets.Posets.ParentMethods method), 607

directed_subsets() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 428

DiscreteValuationFields (class in sage.categories.discrete_valuation), 284

DiscreteValuationFields.ElementMethods (class in sage.categories.discrete_valuation), 284

DiscreteValuationFields.ParentMethods (class in sage.categories.discrete_valuation), 285

DiscreteValuationRings (class in sage.categories.discrete_valuation), 285

DiscreteValuationRings.ElementMethods (class in sage.categories.discrete_valuation), 285

DiscreteValuationRings.ParentMethods (class in sage.categories.discrete_valuation), 286


dist() (sage.categories.metric_spaces.MetricSpaces.ElementMethods method), 556

dist() (sage.categories.metric_spaces.MetricSpaces.ParentMethods method), 556


distinguished_reflection() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 217

distinguished_reflections() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 218
Distributive (sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas attribute), 545
Distributive() (sage.categories.magmas.Magmas.SubcategoryMethods method), 539
Distributive() (sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas.SubcategoryMethods method), 546
DistributiveMagmasAndAdditiveMagmas (class in sage.categories.distributive_magmas_and_additive_magmas), 287
DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative (class in sage.categories.distributive_magmas_and_additive_magmas), 287
DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative (class in sage.categories.distributive_magmas_and_additive_magmas), 287
DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative.AdditiveUnital (class in sage.categories.distributive_magmas_and_additive_magmas), 287
DistributiveMagmasAndAdditiveMagmas.CartesianProducts (class in sage.categories.distributive_magmas_and_additive_magmas), 287
DistributiveMagmasAndAdditiveMagmas.ParentMethods (class in sage.categories.distributive_magmas_and_additive_magmas), 287
Division (sage.categories.rings.Rings attribute), 638
Division() (sage.categories.rings.Rings.SubcategoryMethods method), 645
DivisionRings (class in sage.categories.division_rings), 288
DivisionRings.ElementMethods (class in sage.categories.division_rings), 288
DivisionRings.ParentMethods (class in sage.categories.division_rings), 288
domain (sage.categories.map.Map attribute), 106
domain() (sage.categories.action.Action method), 150
domain() (sage.categories.action.PrecomposedAction method), 152
domain() (sage.categories.functor.Functor method), 98
domain() (sage.categories.homset.Homset method), 114
domain() (sage.categories.poor_man_map.PoorManMap method), 834
Domains (class in sage.categories.domains), 289
domains() (sage.categories.map.FormalCompositeMap method), 102
domains() (sage.categories.map.Map method), 106
Domains.ElementMethods (class in sage.categories.domains), 289
Domains.ParentMethods (class in sage.categories.domains), 289
dot_tex() (sage.categories.crystals.Crystals.ParentMethods method), 277
dual() (sage.categories.modules.Modules.SubcategoryMethods method), 567
dual_equivalence_class() (sage.categories.regular_crystals.RegularCrystals.ElementMethods method), 628
dual_equivalence_graph() (sage.categories.regular_crystals.RegularCrystals.ParentMethods method), 633
DualFunctor (class in sage.categories.dual), 745
DualObjects () (sage.categories.modules.Modules.SubcategoryMethods method), 563
DualObjectsCategory (class in sage.categories.dual), 745

E

e() (sage.categories.crystals.Crystals.ElementMethods method), 266
e() (sage.categories.examples.crystals.HighestWeightCrystalOfTypeA.Element method), 770
e() (sage.categories.examples.crystals.NaiveCrystal.Element method), 770
e() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.ElementMethods method), 623
e() (sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras.ParentMethods method), 714
e_on_basis() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.TensorProducts.ParentMethods method), 714

e_string() (sage.categories.crystals.Crystals.ElementMethods method), 266
e_string_to_ground_state() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts.ElementMethods method), 524

echelon_form() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.ParentMethods method), 395

echelon_form() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 581

edges() (sage.categories.examples.graphs.Cycle method), 792
edges() (sage.categories.graphs.Graphs.ParentMethods method), 463

Element (sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers attribute), 795
Element (sage.categories.examples.manifolds.Plane attribute), 800
Element (sage.categories.examples.semigroups_cython.LeftZeroSemigroup attribute), 810
Element (sage.categories.highest_weight_crystals.HighestWeightCrystalHomset attribute), 479
element_class (sage.categories.examples.sets_cat.PrimeNumbers attribute), 285
element_class (sage.categories.examples.sets_cat.PrimeNumbers_Facade attribute), 437

element_class() (sage.categories.category.Category method), 48

ElementWrapper (sage.categories.examples.sets_cat.PrimeNumbers_Wrapper attribute), 816

EmptySetError, 661

End() (in module sage.categories.homset), 111
end() (in module sage.categories.homset), 116

Endset() (sage.categories.homsets.Homsets.SubcategoryMethods method), 755

Endsets() (sage.categories.objects.Objects.SubcategoryMethods method), 602

energy_function() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ElementMethods method), 518
energy_function() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts.ElementMethods method), 525

Enumerated (sage.categories.sets_cat.Sets attribute), 667
Enumerated() (sage.categories.sets_cat.Sets.SubcategoryMethods method), 673

EnumeratedSets (class in sage.categories.enumerated_sets), 289
EnumeratedSets.CartesianProducts (class in sage.categories.enumerated_sets), 290

EnumeratedSets.ParentMethods (class in sage.categories.enumerated_sets), 290

EnumeratedSets.ElementMethods (class in sage.categories.enumerated_sets), 290

Empterset() (sage.categories.crystals.Crystals.ElementMethods method), 265
epsilon() (sage.categories.crystals.Crystals.ElementMethods method), 266
epsilon() (sage.categories.regular_crystals.RegularCrystals.ElementMethods method), 629
epsilon() (sage.categories.regular_supercrystals.RegularSuperCrystals.ElementMethods method), 635


euclidean_degree() (sage.categories.euclidean_domains.EuclideanDomains.ElementMethods method), 296

EuclideanDomains (class in sage.categories.euclidean_domains), 296
EuclideanDomains.ElementMethods (class in sage.categories.euclidean_domains), 296
EuclideanDomains.ParentMethods (class in sage.categories.euclidean_domains), 297

Example (class in sage.categories.examples.finite Enumerated Sets), 780

Example (in module sage.categories.examples.algebras_with_basis), 765
Example (in module sage.categories.examples.commutative additive monoids), 766
Example (in module sage.categories.examples.commutative additive semigroups), 767
Example (in module sage.categories.examples.cw complexes), 771
Example (in module sage.categories.examples.finite coxeter groups), 774
Example (in module sage.categories.examples.finite dimensional algebras with basis), 775
Example (in module sage.categories.examples.finite dimensional lie algebras with basis), 779
Example (in module sage.categories.examples.finite groups), 782
Example (in module sage.categories.examples.finite semigroups), 783
Example (in module sage.categories.examples.finite weyl groups), 786
Example (in module sage.categories.examples.finitely generated semigroups), 788
Example (in module sage.categories.examples.graphs), 792
Example (in module sage.categories.examples.infinite enumerated sets), 794
Example (in module sage.categories.examples.lie algebras), 796
Example (in module sage.categories.examples.lie algebras with basis), 797
Example (in module sage.categories.examples.magnas), 798
Example (in module sage.categories.examples.manifolds), 800
Example (in module sage.categories.examples.monoids), 801
Example (in module sage.categories.examples.objects), 817
Example (sage.categories.algebras_with_basis.AlgebrasWithBasis method), 179
Example (sage.categories.category.Category method), 49
Example (sage.categories.classical_crystals.ClassicalCrystals method), 190
Example (sage.categories.complex_reflection_groups.ComplexReflectionGroups method), 211
Example (sage.categories.complex_reflection_groups.FiniteComplexReflectionGroups method), 341
Example (sage.categories.complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible method), 331
Example (sage.categories.complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated method), 334
Example (sage.categories.complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.Irreducible method), 339
Example (sage.categories.crystals.Crystals method), 281
Example (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups method), 341
Example (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible method), 331
Example (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated method), 334
Example (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.Irreducible method), 339
Example (sage.categories.finite_crystals.FiniteCrystals method), 354
Example (sage.categories.FiniteDimensionalLieAlgebrasWithBasis method), 390
Example (sage.categories.finite enumerated sets.FiniteEnumeratedSets.IsomorphicObjects method), 403
Example (sage.categories.finite groups.FiniteGroups method), 408
Example (sage.categories.finite permutation groups.FinitePermutationGroups method), 418
Example (sage.categories.finitely generated semigroups.FinitelyGeneratedSemigroups method), 448
Example (sage.categories.GroupAlgebrasWithBasis method), 468
Example (sage.categories.Groups method), 477
Example (sage.categories.highest weight crystals.HighestWeightCrystals method), 485
example() (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis method), 491
example() (sage.categories.kac_moody_algebras.KacMoodyAlgebras method), 494
example() (sage.categories.lie_algebras.LieAlgebras method), 509
example() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis method), 512
example() (sage.categories.lie_conformal_algebras.LieConformalAlgebras method), 515
example() (sage.categories.loop_crystals_LOOPCrystals method), 529
example() (sage.categories.magnas.Magnas.CartesianProducts method), 532
example() (sage.categories.posets.Posets method), 614
example() (sage.categories.quantum_group_representations.QuantumGroupRepresentations method), 626
example() (sage.categories.regular_crystals.RegularCrystals method), 634
example() (sage.categories.semi_groups.Semigroups method), 658
example() (sage.categories.semi_groups.Semigroups.Quotients method), 655
example() (sage.categories.semi_groups.Semigroups.Subquotients method), 658
example() (sage.categories.sets_cat.Sets method), 685
example() (sage.categories.sets_cat.Sets.CartesianProducts method), 667
example() (sage.categories.sets_cat.Sets.WithRealizations method), 685
example() (sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras method), 701
example() (sage.categories.vector_spaces.VectorSpaces.WithBasis.Filtered method), 722
exp() (sage.categories.lie_algebras.LieAlgebras.ElementMethods method), 501
expand() (sage.categories.pushout.AlgebraicExtensionFunctor method), 122
expand() (sage.categories.pushout.CompositeConstructionFunctor method), 126
expand() (sage.categories.pushout.ConstructionFunctor method), 128
expand() (sage.categories.pushout.InfinitePolynomialFunctor method), 131
expand() (sage.categories.pushout.MultiPolynomialFunctor method), 134
expand_tower() (in module sage.categories.pushout), 140
extend_codomain() (sage.categories.map.Map method), 106
extend_domain() (sage.categories.map.Map method), 107
extend_to_fraction_field() (sage.categories.rings.Rings.MorphismMethods method), 639
extra_super_categories() (sage.categories.additive_groups.AdditiveGroups.Finite.Algebras method), 153
extra_super_categories() (sage.categories.additive_magmas.AdditiveMagmas.AdditiveCommutative.Algebras method), 154
extra_super_categories() (sage.categories.additive_magmas.AdditiveMagmas.AdditiveCommutative.CartesianProducts method), 155
extra_super_categories() (sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.CartesianProducts method), 156
extra_super_categories() (sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.Homsets method), 156
extra_super_categories() (sage.categories.additive_monoids.AdditiveMonoids.Homsets method), 159
extra_super_categories() (sage.categories.additive_semigroups.AdditiveSemigroups.Algebras method), 165
extra_super_categories() (sage.categories.additive_semigroups.AdditiveSemigroups.CartesianProducts method), 167
extra_super_categories() (sage.categories.additive_semigroups.AdditiveSemigroups.CartesianProducts method), 168

Index 863
extra_super_categories() (sage.categories.additive_semigroups.AdditiveSemigroups.Homsets method), 167
extra_super_categories() (sage.categories.algebras.Algebras.CartesianProducts method), 173
extra_super_categories() (sage.categories.algebras.Algebras.DualObjects method), 173
extra_super_categories() (sage.categories.algebras.Algebras.TensorProducts method), 175
extra_super_categories() (sage.categories.algebras_with_basis.AlgebrasWithBasis.CartesianProducts method), 177
extra_super_categories() (sage.categories.algebras_with_basis.AlgebrasWithBasis.TensorProducts method), 179
extra_super_categories() (sage.categories.aperiodic_semigroups.AperiodicSemigroups method), 180
extra_super_categories() (sage.categories.category_with_axiom.Blahs.Flying method), 86
extra_super_categories() (sage.categories.category_with_axiom.CategoryWithAxiom method), 91
extra_super_categories() (sage.categories.classical_crystals.ClassicalCrystals.TensorProducts method), 190
extra_super_categories() (sage.categories.coalgebras.Coalgebras.DualObjects method), 191
extra_super_categories() (sage.categories.coalgebras.Coalgebras.Super method), 194
extra_super_categories() (sage.categories.coalgebras.Coalgebras.TensorProducts method), 195
extra_super_categories() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.Super method), 198
extra_super_categories() (sage.categories.covariant_functorial_construction.FunctorialConstructionCategory method), 740
extra_super_categories() (sage.categories.crystals.Crystals.TensorProducts method), 281
extra_super_categories() (sage.categories.cw_complexes.CWComplexes.Finite method), 283
extra_super_categories() (sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.CartesianProducts method), 287
extra_super_categories() (sage.categories.division_rings.DivisionRings method), 288
extra_super_categories() (sage.categories.fields.Fields method), 302
extra_super_categories() (sage.categories.filtered_modules.FilteredModules method), 311
extra_super_categories() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups method), 353
extra_super_categories() (sage.categories.finite_crystals.FiniteCrystals method), 354
extra_super_categories() (sage.categories.finite_crystals.FiniteCrystals.TensorProducts method), 353
extra_super_categories() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts method), 358
extra_super_categories() (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.CartesianProducts method), 402
extra_super_categories() (sage.categories.finite_fields.FiniteFields method), 406
extra_super_categories() (sage.categories.finite_permutation_groups.FinitePermutationGroups method), 406
extra_super_categories() (sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups method), 418
extra_super_categories() (sage.categories.finite_sets.FiniteSets.Algebras method), 442
extra_super_categories() (sage.categories.finite_sets.FiniteSets.Subquotients method), 442
extra_super_categories() (sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups method), 448
extra_super_categories() (sage.categories.generalized_coxeter_groups.GeneralizedCoxeterGroups.Finite method), 450
extra_super_categories() (sage.categories.graded_algebras.GradedAlgebras.SignedTensorProducts method), 452
extra_super_categories() (sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis.SignedTensorProducts method), 452

extra_super_categories() (sage.categories.graded_coalgebras.GradedCoalgebras.SignedTensorProducts method), 453
extra_super_categories() (sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis.SignedTensorProducts method), 455
extra_super_categories() (sage.categories.graded_lie_algebras.GradedLieAlgebras.Stratified.FiniteDimensional method), 458
extra_super_categories() (sage.categories.graphs.Graphs.Connected method), 463
extra_super_categories() (sage.categories.groups.Groups.CartesianProducts method), 471
extra_super_categories() (sage.categories.highest_weight_crystals.HighestWeightCrystals.TensorProducts method), 485
extra_super_categories() (sage.categories.homsets.Homsets.Endset method), 755
extra_super_categories() (sage.categories.hopf_algebras.HopfAlgebras.TensorProducts method), 487
extra_super_categories() (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis.TensorProducts method), 491
extra_super_categories() (sage.categories.l_trivial_semigroups.LTrivialSemigroups method), 531
extra_super_categories() (sage.categories.magnets.Magmas.Algebras method), 532
extra_super_categories() (sage.categories.l_trivial_semigroups.JTrivialSemigroups method), 533
extra_super_categories() (sage.categories.l_trivial_semigroups.JTrivialSemigroups method), 533
extra_super_categories() (sage.categories.magnets.Magmas.Commutative.Algebras method), 533
extra_super_categories() (sage.categories.magnets.Magmas.Commutative.CartesianProducts method), 533
extra_super_categories() (sage.categories.magnets.Magmas.Commutative.CartesianProducts method), 533
extra_super_categories() (sage.categories.magnets.Magmas.Unital.Algebras method), 542
extra_super_categories() (sage.categories.magnets_and_additive_magnets.MagmasAndAdditiveMagmas.CartesianProducts method), 545
extra_super_categories() (sage.categories.manifolds.Manifolds.AlmostComplex method), 551
extra_super_categories() (sage.categories.manifolds.Manifolds.Analytic method), 551
extra_super_categories() (sage.categories.manifolds.Manifolds.Smooth method), 552
extra_super_categories() (sage.categories.metric_spaces.MetricSpaces.CartesianProducts method), 555
extra_super_categories() (sage.categories.modular_abelian_varieties.ModularAbelianVarieties.Homsets.Endset method), 558
extra_super_categories() (sage.categories.modules.Modules.CartesianProducts method), 560
extra_super_categories() (sage.categories.modules.Modules.FiniteDimensional method), 561
extra_super_categories() (sage.categories.modules.Modules.Homsets method), 562
extra_super_categories() (sage.categories.modules.Modules.Homsets.Endset method), 561
extra_super_categories() (sage.categories.modules.Modules.TensorProducts method), 568
extra_super_categories() (sage.categories.modules_with_basis.ModulesWithBasis.CartesianProducts method), 570
extra_super_categories() (sage.categories.modules_with_basis.ModulesWithBasis.DualObjects method), 570
extra_super_categories() (sage.categories.modules_with_basis.ModulesWithBasis.TensorProducts method), 570

Index 865
extra_super_categories() (sage.categories.monoids.Monoids.Algebras method), 593
extra_super_categories() (sage.categories.monoids.Monoids.CartesianProducts method), 597
extra_super_categories() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.TensorProducts method), 622
extra_super_categories() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.TensorProducts method), 626
extra_super_categories() (sage.categories.r_trivial_semigroups.RTrivialSemigroups method), 647
extra_super_categories() (sage.categories.regular_crystals.RegularCrystals.TensorProducts method), 634
extra_super_categories() (sage.categories.regular_supercrystals.RegularSuperCrystals.TensorProducts method), 636
extra_super_categories() (sage.categories.semigroups.Semigroups.Algebras method), 650
extra_super_categories() (sage.categories.semigroups.Semigroups.CartesianProducts method), 650
extra_super_categories() (sage.categories.sets_cat.Sets.Algebras method), 663
extra_super_categories() (sage.categories.sets_cat.Sets.CartesianProducts method), 667
extra_super_categories() (sage.categories.sets_cat.Sets.WithRealizations method), 685
extra_super_categories() (sage.categories.super_algebras.SuperAlgebras method), 699
extra_super_categories() (sage.categories.super_algebras.SuperAlgebras.SignedTensorProducts method), 700
extra_super_categories() (sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis method), 700
extra_super_categories() (sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis.SignedTensorProducts method), 700
extra_super_categories() (sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras method), 701
extra_super_categories() (sage.categories.super_modules.SuperModules method), 703
extra_super_categories() (sage.categories.supercommutative_algebras.SupercommutativeAlgebras.SignedTensorProducts method), 706
extra_super_categories() (sage.categories.supercrystals.SuperCrystals.TensorProducts method), 711
extra_super_categories() (sage.categories.topological_spaces.TopologicalSpaces.CartesianProducts method), 712
extra_super_categories() (sage.categories.tensor_spaces.TensorSpaces.CartesianProducts method), 720
extra_super_categories() (sage.categories.tensor_spaces.TensorSpaces.DualObjects method), 721
extra_super_categories() (sage.categories.tensor_spaces.TensorSpaces.WithBasis.CartesianProducts method), 721
extra_super_categories() (sage.categories.tensor_spaces.TensorSpaces.WithBasis.TensorProducts method), 722

F

F (sage.categories.examples.with_realizations.SubsetAlgebra attribute), 820
f () (sage.categories.crystals.Crystals.ElementMethods method), 267
f () (sage.categories.examples.crystals.HighestWeightCrystalOfTypeA.Element method), 770
f () (sage.categories.examples.crystals.NaiveCrystal.Element method), 771
f () (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.ElementMethods method), 623
f () (sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras.ParentMethods method), 714
Finite (sage.categories.semigroups.Semigroups attribute), 651
Finite (sage.categories.sets_cat.Sets attribute), 667
Finite (sage.categories.weyl_groups.WeylGroups attribute), 730
Finite() (sage.categories.sets_cat.Sets.SubcategoryMethods method), 675
Finite_extra_super_categories() (sage.categories.division_rings.DivisionRings method), 288
Finite_extra_super_categories() (sage.categories.h_trivial_semigroups.HTrivialSemigroups method), 491
FiniteComplexReflectionGroups (class in sage.categories.finite_complex_reflection_groups), 326
FiniteComplexReflectionGroups.ElementMethods (class in sage.categories.finite_complex_reflection_groups), 326
FiniteComplexReflectionGroups.Irreducible (class in sage.categories.finite_complex_reflection_groups), 328
FiniteComplexReflectionGroups.Irreducible.ParentMethods (class in sage.categories.finite_complex_reflection_groups), 331
FiniteComplexReflectionGroups.ParentMethods (class in sage.categories.finite_complex_reflection_groups), 336
FiniteComplexReflectionGroups.SubcategoryMethods (class in sage.categories.finite_complex_reflection_groups), 336
FiniteComplexReflectionGroups.WellGenerated (class in sage.categories.finite_complex_reflection_groups), 339
FiniteCoxeterGroups (class in sage.categories.finite_coxeter_groups), 342
FiniteCoxeterGroups.ElementMethods (class in sage.categories.finite_coxeter_groups), 342
FiniteCoxeterGroups.ParentMethods (class in sage.categories.finite_coxeter_groups), 344
FiniteCrystals (class in sage.categories.finite_crystals), 353
FiniteCrystals.TensorProducts (class in sage.categories.finite_crystals), 353
FiniteDimensional (sage.categories.algebras_with_basis.AlgebrasWithBasis attribute), 178
FiniteDimensional (sage.categories.graded_lie_algebras_with_basis.GradedLieAlgebrasWithBasis attribute), 459
FiniteDimensional (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis attribute), 490
FiniteDimensional (sage.categories.modules_with_basis.ModulesWithBasis attribute), 580
FiniteDimensional () (sage.categories.category_with_axiom.Blahs.SubcategoryMethods method), 86
FiniteDimensional () (sage.categories.cw_complexes.CWComplexes.SubcategoryMethods method), 284
FiniteDimensional () (sage.categories.manifolds.Manifolds.SubcategoryMethods method), 553
FiniteDimensional () (sage.categories.modules.Modules.SubcategoryMethods method), 565
FiniteDimensionalAlgebrasWithBasis (class in sage.categories.finite_dimensional_algebras_with_basis), 349
FiniteDimensionalAlgebrasWithBasis.Cellular (class in sage.categories.finite_dimensional_algebras_with_basis), 354
FiniteDimensionalAlgebrasWithBasis.Cellular.ElementMethods (class in sage.categories.finite_dimensional_algebras_with_basis), 355
FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods (class in sage.categories.finite_dimensional_algebras_with_basis), 355
FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts (class in sage.categories.finite_dimensional_algebras_with_basis), 357
FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts.ParentMethods (class in
sage.categories.finite_dimensional_semisimple_algebras_with_basis), 398
FiniteDimensionalSemisimpleAlgebrasWithBasis.ParentMethods (class in sage.categories.finite_dimensional_semisimple_algebras_with_basis), 399
FiniteEnumeratedSets (class in sage.categories.finite_enumerated_sets), 400
FiniteEnumeratedSets.CartesianProducts (class in sage.categories.finite_enumerated_sets), 400
FiniteEnumeratedSets.CartesianProducts.ParentMethods (class in sage.categories.finite_enumerated_sets), 400
FiniteEnumeratedSets.IsomorphicObjects (class in sage.categories.finite_enumerated_sets), 403
FiniteEnumeratedSets.IsomorphicObjects.ParentMethods (class in sage.categories.finite_enumerated_sets), 403
FiniteEnumeratedSets.ParentMethods (class in sage.categories.finite_enumerated_sets), 403
FiniteFields (class in sage.categories.finite_fields), 405
FiniteFields.ElementMethods (class in sage.categories.finite_fields), 406
FiniteFields.ParentMethods (class in sage.categories.finite_fields), 406
FiniteGroups (class in sage.categories.finite_groups), 406
FiniteGroups.Algebras (class in sage.categories.finite_groups), 406
FiniteGroups.Algebras.ParentMethods (class in sage.categories.finite_groups), 407
FiniteGroups.ParentMethods (class in sage.categories.finite_groups), 407
FiniteLatticePosets (class in sage.categories.finite_lattice_posets), 409
FiniteLatticePosets.ParentMethods (class in sage.categories.finite_lattice_posets), 409
FinitelyGenerated() (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras.SubcategoryMethods method), 497
FinitelyGenerated() (sage.categories.magmas.Magmas.SubcategoryMethods method), 539
FinitelyGeneratedAsLambdaBracketAlgebra (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras attribute), 496
FinitelyGeneratedAsLambdaBracketAlgebra (sage.categories.lie_conformal_algebras.LieConformalAlgebras attribute), 515
FinitelyGeneratedAsLambdaBracketAlgebra() (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras.SubcategoryMethods method), 497
FinitelyGeneratedAsMagma (sage.categories.magmas.Magmas attribute), 534
FinitelyGeneratedAsMagma (sage.categories.semigroups.Semigroups attribute), 651
FinitelyGeneratedAsMagma() (sage.categories.magmas.Magmas.SubcategoryMethods method), 540
FinitelyGeneratedLambdaBracketAlgebras (class in sage.categories.finitely_generated_lambda_bracket_algebras), 443
FinitelyGeneratedLambdaBracketAlgebras.Graded (class in sage.categories.finitely_generated_lambda_bracket_algebras), 443
FinitelyGeneratedLambdaBracketAlgebras.ParentMethods (class in sage.categories.finitely_generated_lambda_bracket_algebras), 443
FinitelyGeneratedLieConformalAlgebras (class in sage.categories.finitely_generated_lie_conformal_algebras), 444
FinitelyGeneratedLieConformalAlgebras.Graded (class in sage.categories.finitely_generated_lie_conformal_algebras), 445
FinitelyGeneratedLieConformalAlgebras.ParentMethods (class in sage.categories.finitely_generated_lie_conformal_algebras), 445
FinitelyGeneratedLieConformalAlgebras.Super (class in sage.categories.finitely_generated_lie_conformal_algebras), 445
FinitelyGeneratedLieConformalAlgebras.Super.Graded (class in sage.categories.finitely_generated_lie_conformal_algebras), 445
FinitelyGeneratedMagmas (class in sage.categories.finitely_generated_magmas), 445
FinitelyGeneratedMagmas.ParentMethods (class in sage.categories.finitely_generated_magmas), 445
FinitelyGeneratedSemigroups (class in sage.categories.finitely_generated_semigroups), 446
FinitelyGeneratedSemigroups.Finite (class in sage.categories.finitely_generated_semigroups), 446
FinitelyGeneratedSemigroups.Finite.ParentMethods (class in sage.categories.finitely_generated_semigroups), 446
FinitelyGeneratedSemigroups.ParentMethods (class in sage.categories.finitely_generated_semigroups), 446

FiniteMonoids (class in sage.categories.finite_monoids), 411
FiniteMonoids.ElementMethods (class in sage.categories.finite_monoids), 411
FiniteMonoids.ParentMethods (class in sage.categories.finite_monoids), 412
FinitePermutationGroups (class in sage.categories.finite_permutation_groups), 415
FinitePermutationGroups.ElementMethods (class in sage.categories.finite_permutation_groups), 415
FinitePermutationGroups.ParentMethods (class in sage.categories.finite_permutation_groups), 415
FinitePosets (class in sage.categories.finite_posets), 419
FinitePosets.ParentMethods (class in sage.categories.finite_posets), 419
FiniteSemigroups (class in sage.categories.finite_semigroups), 440
FiniteSemigroups.ParentMethods (class in sage.categories.finite_semigroups), 440
FiniteSets (class in sage.categories.finite_sets), 441
FiniteSets.Algebras (class in sage.categories.finite_sets), 442
FiniteSets.ParentMethods (class in sage.categories.finite_sets), 442
FiniteSets.Subquotients (class in sage.categories.finite_sets), 442
FiniteSets_ordered_by_inclusion (class in sage.categories.examples.posets), 802
FiniteSets_ordered_by_inclusion.Element (class in sage.categories.examples.posets), 803
FiniteWeylGroups (class in sage.categories.finite_weyl_groups), 443
FiniteWeylGroups.ElementMethods (class in sage.categories.finite_weyl_groups), 443
FiniteWeylGroups.ParentMethods (class in sage.categories.finite_weyl_groups), 443

first() (sage.categories.enumerated_sets.EnumeratedSets.ParentMethods method), 291

first_descent() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 240

ForgetfulFunctor() (in module sage.categories.functor), 95
ForgetfulFunctor_generic (class in sage.categories.functor), 96

NormalCoercionMorphism (class in sage.categories.morphism), 117
NormalCompositeMap (class in sage.categories.map), 101
fraction_field() (sage.categories.fields.Fields.ParentMethods method), 301
FractionField (class in sage.categories.pushout), 129

free() (sage.categories.groups.Groups static method), 477
free() (sage.categories.groups.Groups.Commutative static method), 471
free() (sage.categories.monoids.Monoids static method), 599
free() (sage.categories.monoids.Monoids.Commutative static method), 597
free_module() (sage.categories.rings.Rings.ParentMethods method), 641
FreeAlgebra (class in sage.categories.examples.algebras_with_basis), 765
FreeCommutativeAdditiveMonoid (class in sage.categories.examples.commutative_additive_monoids), 766
FreeCommutativeAdditiveMonoid.Element (class in sage.categories.examples.commutative_additive_monoids), 767
FreeCommutativeAdditiveSemigroup (class in sage.categories.examples.commutative_additive_semigroups), 767
FreeCommutativeAdditiveSemigroup.Element (class in sage.categories.examples.commutative_additive_semigroups), 768
FreeMagma (class in sage.categories.examples.magmas), 798

Index 871
FreeMagma.Element (class in sage.categories.examples.magasms), 799
FreeMonoid (class in sage.categories.examples.monoids), 801
FreeMonoid.Element (class in sage.categories.examples.monoids), 802
FreeSemigroup (class in sage.categories.examples.semigroups), 804
FreeSemigroup.Element (class in sage.categories.examples.semigroups), 805
from_base_ring() (sage.categories.unital_algebras.UnitalAlgebras.ParentMethods method), 717
from_base_ring_from_one_basis() (sage.categories.unital_algebras.UnitalAlgebras.WithBasis.ParentMethods method), 717
from_graded_conversion() (sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis.ParentMethods method), 304
from_graded_conversion() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods method), 320
from_reduced_word() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods method), 219
from_vector() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra method), 778
from_vector() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 380
from_vector() (sage.categories.examples.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.ParentMethods method), 396
from_vector() (sage.categories.lie_algebras.LieAlgebras.ParentMethods method), 506
from_vector() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ParentMethods method), 511
full_super_categories() (sage.categories.category.Category method), 49
FunctionFields (class in sage.categories.function_fields), 448
FunctionFields.ElementMethods (class in sage.categories.function_fields), 448
FunctionFields.ParentMethods (class in sage.categories.function_fields), 448
Functor (class in sage.categories.functor), 96
FunctorialConstructionCategory (class in sage.categories.covariant_functorial_construction), 739
fundamental_group() (sage.categories.simplicial_sets.SimplicialSets.Pointed.ParentMethods method), 695
fuss_catalan_number() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.Irreducible.ParentMethods method), 337
G
G (sage.categories.action.Action attribute), 150
gcd() (sage.categories.euclidean_domains.EuclideanDomains.ElementMethods method), 296
gcd() (sage.categories.fields.Fields.ElementMethods method), 298
gcd() (sage.categories.quotient_fields.QuotientFields.ElementMethods method), 616
gcd_free_basis() (sage.categories.euclidean_domains.EuclideanDomains.ParentMethods method), 297
GcdDomains (class in sage.categories.gcd_domains), 449
GcdDomains.ElementMethods (class in sage.categories.gcd_domains), 449
GcdDomains.ParentMethods (class in sage.categories.gcd_domains), 449
gf() (sage.categories.posets.Posets.ParentMethods method), 607
gen() (sage.categories.finently_generated_lambda_bracket_algebras.FinentlyGeneratedLambdaBracketAlgebras.ParentMethods method), 443
generalized_noncrossing_partitions() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods method), 872
GeneralizedCoxeterGroups (class in sage.categories.generalized_coxeter_groups), 450
GeneralizedCoxeterGroups.Finite (class in sage.categories.generalized_coxeter_groups), 450
generating_series() (sage.categories.examples.sets_with_grading.NonNegativeIntegers method), 817
generating_series() (sage.categories.sets_with_grading.SetsWithGrading.ParentMethods method), 687
gens() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra method), 778
gens() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.ParentMethods method), 396
gens() (sage.categories.pushout.PermutationGroupFunctor method), 135
genuine_highest_weight_vectors() (sage.categories.supercrystals.SuperCrystals.Finite.ParentMethods method), 709
genuine_lowest_weight_vectors() (sage.categories.supercrystals.SuperCrystals.Finite.ParentMethods method), 709
get_axiom_index() (in module sage.categories.category_cy_helper), 832
Graded (sage.categories.algebras.Algebras attribute), 174
Graded (sage.categories.algebras_with_basis.AlgebrasWithBasis attribute), 178
Graded (sage.categories.coalgebras.Coalgebras attribute), 192
Graded (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis attribute), 196
Graded (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis attribute), 503
Graded (sage.categories.lie_conformal_algebras.LieConformalAlgebras attribute), 515
Graded (sage.categories.modules.Modules attribute), 561
Graded (sage.categories.modules_with_basis.ModulesWithBasis attribute), 580
graded_algebra() (sage.categories.filtered_algebras.FilteredAlgebras.ParentMethods method), 303
graded_algebra() (sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis.ParentMethods method), 304
graded_algebra() (sage.categories.graded_algebras.GradedAlgebras.ParentMethods method), 451
graded_algebra() (sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis.ParentMethods method), 452
graded_algebra() (sage.categories.super_algebras.SuperAlgebras.ParentMethods method), 698
graded_algebra() (sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis.ParentMethods method), 699
graded_component() (sage.categories.examples.sets_with_grading.NonNegativeIntegers method), 817
graded_component() (sage.categories.sets_with_grading.SetsWithGrading.ParentMethods method), 687
GradedAlgebras (class in sage.categories.graded_algebras), 451
GradedAlgebras.ElementMethods (class in sage.categories.graded_algebras), 451
GradedAlgebras.ParentMethods (class in sage.categories.graded_algebras), 451
GradedAlgebras.SignedTensorProducts (class in sage.categories.graded_algebras), 452
GradedAlgebras.SubcategoryMethods (class in sage.categories.graded_algebras), 452
GradedAlgebrasWithBasis (class in sage.categories.graded_algebras_with_basis), 452
GradedAlgebrasWithBasis.ElementMethods (class in sage.categories.graded_algebras_with_basis), 452
GradedAlgebrasWithBasis.ParentMethods (class in sage.categories.graded_algebras_with_basis), 452
GradedAlgebrasWithBasis.SignedTensorProducts (class in sage.categories.graded_algebras_with_basis), 453
GradedAlgebrasWithBasis.SignedTensorProducts.ParentMethods (class in sage.categories.graded_algebras_with_basis), 453
GradedBialgebras() (in module sage.categories.graded_bialgebras), 453
GradedBialgebrasWithBasis() (in module sage.categories.graded_bialgebras_with_basis), 453
GradedCoalgebras (class in sage.categories.graded_coalgebras), 453
GradedCoalgebras.SignedTensorProducts (class in sage.categories.graded_coalgebras), 454
GradedCoalgebras.SubcategoryMethods (class in sage.categories.graded_coalgebras), 455
GradedCoalgebrasWithBasis (class in sage.categories.graded_coalgebras_with_basis), 455
GradedCoalgebrasWithBasis.SignedTensorProducts (class in sage.categories.graded_coalgebras_with_basis), 455
GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator (class in sage.categories.examples.graded_connected_hopf_algebras_with_basis), 788
GradedHopfAlgebras() (in module sage.categories.graded_hopf_algebras), 456
GradedHopfAlgebrasWithBasis (class in sage.categories.graded_hopf_algebras_with_basis), 456
GradedHopfAlgebrasWithBasis.Connected (class in sage.categories.graded_hopf_algebras_with_basis), 456
GradedHopfAlgebrasWithBasis.Connected.ElementMethods (class in sage.categories.graded_hopf_algebras_with_basis), 456
GradedHopfAlgebrasWithBasis.Connected.ParentMethods (class in sage.categories.graded_hopf_algebras_with_basis), 456
GradedHopfAlgebrasWithBasis.ElementMethods (class in sage.categories.graded_hopf_algebras_with_basis), 457
GradedHopfAlgebrasWithBasis.ParentMethods (class in sage.categories.graded_hopf_algebras_with_basis), 457
GradedHopfAlgebrasWithBasis.WithRealizations (class in sage.categories.graded_hopf_algebras_with_basis), 457
GradedLieAlgebras (class in sage.categories.graded_lie_algebras), 458
GradedLieAlgebras.Stratified (class in sage.categories.graded_lie_algebras), 458
GradedLieAlgebras.Stratified.FiniteDimensional (class in sage.categories.graded_lie_algebras), 458
GradedLieAlgebras.SubcategoryMethods (class in sage.categories.graded_lie_algebras), 458
GradedLieConformalAlgebras (class in sage.categories.graded_lie_conformal_algebras), 459
GradedLieConformalAlgebrasCategory (class in sage.categories.graded_lie_conformal_algebras), 459
GradedModules (class in sage.categories.graded_modules), 460
GradedModules.ElementMethods (class in sage.categories.graded_modules), 460
GradedModules.ParentMethods (class in sage.categories.graded_modules), 460
GradedModules.Category (class in sage.categories.graded_modules), 460
GradedModulesWithBasis (class in sage.categories.graded_modules_with_basis), 461
GradedModulesWithBasis.ElementMethods (class in sage.categories.graded_modules_with_basis), 461
GradedModulesWithBasis.ParentMethods (class in sage.categories.graded_modules_with_basis), 462
GradedPartitionModule (class in sage.categories.examples.graded_modules_with_basis), 789
grading() (sage.categories.examples.sets_with_grading.NonNegativeIntegers method), 817
grading() (sage.categories.sets_with_grading.SetsWithGrading.ParentMethods method), 688
grading_set() (sage.categories.sets_with_grading.SetsWithGrading.ParentMethods method), 688
Graphs (class in sage.categories.graphs), 462
Graphs.Connected (class in sage.categories.graphs), 463
Graphs.ParentMethods (class in sage.categories.graphs), 463
grassmannian_elements() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 255
group() (sage.categories.additive_groups.AdditiveGroups.Algebras.ParentMethods method), 152
group() (sage.categories.algebra_functor.GroupAlgebraFunctor method), 751
group() (sage.categories.group_algebras.GroupAlgebras.ParentMethods method), 468

group_generators() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 468

group_generators() (sage.categories.groups.Groups.CartesianProducts.ParentMethods method), 470

group_generators() (sage.categories.groups.Groups.ParentMethods method), 476

GroupAlgebraFunctor (class in sage.categories.algebra_functor), 751
GroupAlgebras (class in sage.categories.group_algebras), 464
GroupAlgebras.ElementMethods (class in sage.categories.group_algebras), 465
GroupAlgebras.ParentMethods (class in sage.categories.group_algebras), 466

Groupoid (class in sage.categories.groupoid), 469
Groups (class in sage.categories.groups), 469
Groups.CartesianProducts (class in sage.categories.groups), 470
Groups.CartesianProducts.ElementMethods (class in sage.categories.groups), 470
Groups.CartesianProducts.ParentMethods (class in sage.categories.groups), 470
Groups.Commutative (class in sage.categories.groups), 471
Groups.ElementMethods (class in sage.categories.groups), 471
Groups.ParentMethods (class in sage.categories.groups), 472
Groups.Topological (class in sage.categories.groups), 477

GSets (class in sage.categories.g_sets), 449

gt() (sage.categories.posets.Posets.ParentMethods method), 607

H

has_descent() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 240

has_full_support() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 241

has_left_descent() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 241

has_right_descent() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 241

has_right_descent() (sage.categories.examples.finite_coxeter_groups.DihedralGroup.Element method), 773

has_right_descent() (sage.categories.examples.finite_weyl_groups.SymmetricGroup.Element method), 786

HeckeModules (class in sage.categories.hecke_modules), 477

HeckeModules.Homsets (class in sage.categories.hecke_modules), 478

HeckeModules.Homsets.ParentMethods (class in sage.categories.hecke_modules), 478

HeckeModules.ParentMethods (class in sage.categories.hecke_modules), 478

highest_weight_vector() (sage.categories.highest_weight_crystals.HighestWeightCrystals.ParentMethods method), 481

highest_weight_vectors() (sage.categories.highest_weight_crystals.HighestWeightCrystals.ParentMethods method), 482

highest_weight_vectors() (sage.categories.highest_weight_crystals.HighestWeightCrystals.TensorProducts.ParentMethods method), 484

highest_weight_vectors() (sage.categories.highest_weight_crystals.HighestWeightCrystals.TensorProducts.ParentMethods method), 484

highest_weight_vectors() (sage.categories.highest_weight_crystals.HighestWeightCrystals.Finite.ParentMethods method), 484

highest_weight_vectors_iterator() (sage.categories.highest_weight_crystals.HighestWeightCrystals.TensorProducts.ParentMethods method), 484

HighestWeightCrystalHomset (class in sage.categories.highest_weight_crystals), 478

HighestWeightCrystalMorphism (class in sage.categories.highest_weight_crystals), 479

HighestWeightCrystalOfTypeA (class in sage.categories.examples.crystals), 769

HighestWeightCrystalOfTypeA.Element (class in sage.categories.examples.crystals), 770

HighestWeightCrystals (class in sage.categories.highest_weight_crystals), 479

HighestWeightCrystals.ElementMethods (class in sage.categories.highest_weight_crystals), 479

HighestWeightCrystals.ParentMethods (class in sage.categories.highest_weight_crystals), 481

HighestWeightCrystals.TensorProducts (class in sage.categories.highest_weight_crystals), 484

HighestWeightCrystals.TensorProducts.ParentMethods (class in sage.categories.highest_weight_crystals), 486
hochschild_complex() (sage.categories.algebras_with_basis.AlgebrasWithBasis.ParentMethods method), 178
holomorph() (sage.categories.groups.Groups.ParentMethods method), 476
Hom() (in module sage.categories.homset), 112
hom() (in module sage.categories.homset), 117
homogeneous_component() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods method), 314
homogeneous_component() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods method), 321
homogeneous_component_as_submodule() (sage.categories.finite_dimensional_graded_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 373
homogeneous_component_basis() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods method), 321
homogeneous_degree() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods method), 315
homology() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ElementMethods method), 380
Homset (class in sage.categories.homset), 114
homset_category() (sage.categories.homset.Homset method), 115
Homsets (class in sage.categories.homsets), 754
Homsets() (sage.categories.objects.Objects.SubcategoryMethods method), 602
Homsets.Endset (class in sage.categories.homsets), 754
Homsets.Endset.ParentMethods (class in sage.categories.homsets), 755
Homsets.ParentMethods (class in sage.categories.homsets), 755
Homsets.SubcategoryMethods (class in sage.categories.homsets), 755
HomsetsCategory (class in sage.categories.homsets), 756
HomsetsOf (class in sage.categories.homsets), 757
HomsetWithBase (class in sage.categories.homset), 116
HopfAlgebras (class in sage.categories.hopf_algebras), 486
HopfAlgebras.DualCategory (class in sage.categories.hopf_algebras), 486
HopfAlgebras.DualCategory.ParentMethods (class in sage.categories.hopf_algebras), 486
HopfAlgebras.ElementMethods (class in sage.categories.hopf_algebras), 486
HopfAlgebras.Morphism (class in sage.categories.hopf_algebras), 486
HopfAlgebras.ParentMethods (class in sage.categories.hopf_algebras), 486
HopfAlgebras.Realizations (class in sage.categories.hopf_algebras), 486
HopfAlgebras.Realizations.ParentMethods (class in sage.categories.hopf_algebras), 486
HopfAlgebras.Super (class in sage.categories.hopf_algebras), 487
HopfAlgebras.Super.ElementMethods (class in sage.categories.hopf_algebras), 487
HopfAlgebras.TensorProducts (class in sage.categories.hopf_algebras), 487
HopfAlgebras.TensorProducts.ElementMethods (class in sage.categories.hopf_algebras), 487
HopfAlgebras.TensorProducts.ParentMethods (class in sage.categories.hopf_algebras), 487
HopfAlgebrasWithBasis (class in sage.categories.hopf_algebras_with_basis), 488
HopfAlgebrasWithBasis.ElementMethods (class in sage.categories.hopf_algebras_with_basis), 490
HopfAlgebrasWithBasis.ParentMethods (class in sage.categories.hopf_algebras_with_basis), 490
HopfAlgebrasWithBasis.TensorProducts (class in sage.categories.hopf_algebras_with_basis), 491
HopfAlgebrasWithBasis.TensorProducts.ElementMethods (class in sage.categories.hopf_algebras_with_basis), 491
HopfAlgebrasWithBasis.TensorProducts.ParentMethods (class in sage.categories.hopf_algebras_with_basis), 491
HTrivial (sage.categories.semigroups.Semigroups attribute), 651
HTrivial() (sage.categories.semigroups.Semigroups.SubcategoryMethods method), 656
HTrivialSemigroups (class in sage.categories.h_trivial_semigroups), 491
hyperplane_index_set() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods method), 221

HTrivial() (sage.categories.semigroups.Semigroups.SubcategoryMethods method), 656
HTrivialSemigroups (class in sage.categories.h_trivial_semigroups), 491
hyperplane_index_set() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods method), 221

ideal() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra method), 778
ideal() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 381
ideal() (sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups.ParentMethods method), 447
ideal() (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras.ParentMethods method), 496
ideal() (sage.categories.lambda_bracket_algebras_with_basis.LambdaBracketAlgebrasWithBasis.ParentMethods method), 506
ideal() (sage.categories.rings.Rings.ParentMethods method), 642
ideal_monoid() (sage.categories.rings.Rings.ParentMethods method), 643
idempotent_lift() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods method), 362
idempotents() (sage.categories.finite_semigroups.FiniteSemigroups.ParentMethods method), 440
IdempotentSemigroups (class in sage.categories.examples.semigroups_cython), 809
IdempotentSemigroups.Element (class in sage.categories.examples.semigroups_cython), 809
identity() (sage.categories.homset.Homset method), 115
IdentityConstructionFunctor (class in sage.categories.pushout), 130
IdentityFunctor () (in module sage.categories.functor), 98
IdentityFunctor_generic (class in sage.categories.functor), 98
IdentityMorphism (class in sage.categories.morphism), 118
im_gens() (sage.categories.crystals.CrystalMorphismByGenerators method), 263
image() (sage.categories.crystals.CrystalMorphismByGenerators method), 264
image() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.MorphismMethods method), 391
image_basis() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.MorphismMethods method), 391
IncompleteSubquotientSemigroup (class in sage.categories.examples.semigroups), 805
IncompleteSubquotientSemigroup.Element (class in sage.categories.examples.semigroups), 805
index() (sage.categories.lambda_bracket_algebras_with_basis.LambdaBracketAlgebrasWithBasis.ElementMethods method), 497
index_set() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods method), 221
index_set() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 255
index_set() (sage.categories.crystals.Crystals.ElementMethods method), 267
index_set() (sage.categories.crystals.Crystals.ParentMethods method), 277
index_set() (sage.categories.examples.finite_coxeter_groups.DihedralGroup method), 774
index_set() (sage.categories.examples.finite_weyl_groups.SymmetricGroup method), 787
index_set() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.ParentMethods method), 621
IndexedPolynomialRing (class in sage.categories.examples.lie_algebras_with_basis), 797
indices() (sage.categories.examples.with_realizations.SubsetAlgebra method), 822
indices_key() (sage.categories.examples.with_realizations.SubsetAlgebra method), 822
induced_graded_map() (sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis.ParentMethods method), 305
induced_graded_map() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods method), 321
Infinite (sage.categories.enumerated_sets.EnumeratedSets attribute), 291
Infinite() (sage.categories.sets_cat.Sets.SubcategoryMethods method), 675
InfiniteEnumeratedSets (class in sage.categories.infinite enumerated_sets), 492
InfinitePolynomialFunctor (class in sage.categories.pushout), 130
inner_derivations_basis() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis method), 381
IntegerModMonoid (class in sage.categories.examples.finite_monoids), 782
IntegerModMonoid.Element (class in sage.categories.examples.finite_monoids), 782
IntegralDomains (class in sage.categories.integral_domains.integral_domains), 493
IntegralDomains.ElementMethods (class in sage.categories.integral_domains.integral_domains), 493
IntegralDomains.ParentMethods (class in sage.categories.integral_domains.integral_domains), 493
Inverse (sage.categories.monoids.Monoids attribute), 598
inverse() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 216
Inverse (sage.categories.magmas.Magmas.Unital.SubcategoryMethods method), 544
inverse() (sage.categories.map.Section method), 110
Inverse_extra_super_categories() (sage.categories.h_trivial_semigroups.HTrivialSemigroups method), 492
inverse_of_unit() (sage.categories.fields.Fields.ElementMethods method), 299
inverse_of_unit() (sage.categories.rings.Rings.ElementMethods method), 638
InversionAction (class in sage.categories.action), 150
inversion_arrangement() (sage.categories.weyl_groups.WeylGroups.ElementMethods method), 724
inversion_sequence() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods method), 347
inversions() (sage.categories.weyl_groups.WeylGroups.ElementMethods method), 725
inversions_as_reflections() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 242
Irreducible() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 227
irreducible_component_index_sets() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 222
irreducible_components() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 217
irreducible_components() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 222
irreducibles_poset() (sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods method), 409
is_abelian() (sage.categories.category.Category method), 50
is_abelian() (sage.categories.category_types.AbelianCategory method), 825
is_abelian() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 382
is_abelian() (sage.categories.lie_algebras.LieAlgebras.ParentMethods method), 506
is_abelian() (sage.categories.modules_with_basis.ModulesWithBasis method), 593
is_abelian() (sage.categories.vector_spaces.VectorSpaces method), 722
is_affine_grassmannian() (sage.categories.affine_weyl_groups.AffineWeylGroups.ElementMethods method), 169
is_antichain_of_poset() (sage.categories.posets.Posets.ParentMethods method), 607
is_Category() (in module sage.categories.category), 62
is_central() (sage.categories.monoids.Monoids.Algebras.ElementMethods method), 595
is_real()  (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods method), 333
is_real()  (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 347
is_reducible()  (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods method), 223
is_reflection()  (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods method), 216
is_ring()  (sage.categories.rings.Rings.ParentMethods method), 643
is_self_dual()  (sage.categories.finite_posets.FinitePosets.ParentMethods method), 430
is_semisimple()  (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 382
is_simply_connected()  (sage.categories.simplicial_sets.SimplicialSets.Pointed.ParentMethods method), 696
is_solvable()  (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 383
is_solvable()  (sage.categories.lie_algebras.LieAlgebras.ParentMethods method), 507
is_strict()  (sage.categories.crystals.Crystals.MorphismMethods method), 271
is_subcategory()  (sage.categories.category.Category method), 51
is_subcategory()  (sage.categories.category.JoinCategory method), 61
is_super_homogeneous()  (sage.categories.super_modules_with_basis.SuperModulesWithBasis.ElementMethods method), 705
is_surjective()  (sage.categories.crystals.CrystalMorphism method), 262
is_surjective()  (sage.categories.map.FormalCompositeMap method), 103
is_surjective()  (sage.categories.map.Map method), 107
is_surjective()  (sage.categories.morphism.IdentityMorphism method), 118
is_unique_factorization_domain()  (sage.categories.unique_factorization_domains.UniqueFactorizationDomains.ParentMethods method), 716
is_unit()  (sage.categories.discrete_valuation.DiscreteValuationRings.ElementMethods method), 285
is_unit()  (sage.categories.fields.Fields.ElementMethods method), 300
is_unit()  (sage.categories.rings.Rings.ElementMethods method), 638
is_well_generated()  (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods method), 340
is_well_generated()  (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.ParentMethods method), 340
is_zero()  (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 572
is_zero()  (sage.categories.rings.Rings.ParentMethods method), 643
IsomorphicObjectOfFiniteEnumeratedSet  (class in sage.categories.examples.finiteEnumeratedSets), 780
IsomorphicObjects()  (sage.categories.sets_cat.Sets.SubcategoryMethods method), 675
IsomorphicObjectsCategory  (class in sage.categories.isomorphic_objects), 753
isotypic_projective_modules()  (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ElementMethods method), 364
iterator_range()  (sage.categories.enumerated_sets.EnumeratedSets.ParentMethods method), 291
iterator_range()  (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.ParentMethods method), 403
J
j_classes()  (sage.categories.finite_semigroups.FiniteSemigroups.ParentMethods method), 440
j_classes_of_idempotents()  (sage.categories.finite_semigroups.FiniteSemigroups.ParentMethods method), 441
j_transversal_of_idempotents()  (sage.categories.finite_semigroups.FiniteSemigroups.ParentMethods method), 441
join()  (sage.categories.category.Category static method), 52
join() (sage.categories.lattice_posets.LatticePosets.ParentMethods method), 499
join_as_tuple() (in module sage.categories.category_cy_helper), 832
join_irreducibles() (sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods method), 410
join_irreducibles_poset() (sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods method), 410

JoinCategory (class in sage.categories.category), 59
JTrivial (sage.categories.semigroups.Semigroups.SubcategoryMethods method), 651
JTrivial() (sage.categories.magmas.Magmas.SubcategoryMethods method), 541
JTrivial() (sage.categories.semigroups.Semigroups.SubcategoryMethods method), 656
JTrivialSemigroups (class in sage.categories.j_trivial_semigroups), 494

K
K() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.ElementMethods method), 622
K_on_basis() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.TensorProducts.ParentMethods method), 624
KacMoodyAlgebras (class in sage.categories.kac_moody_algebras), 494
KacMoodyAlgebras.ParentMethods (class in sage.categories.kac_moody_algebras), 494
kernel() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.MorphismMethods method), 391
kernel_basis() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.MorphismMethods method), 391
killing_form() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 383
killing_form() (sage.categories.lie_algebras.LieAlgebras.ElementMethods method), 502
killing_form() (sage.categories.lie_algebras.LieAlgebras.ParentMethods method), 507
killing_form_matrix() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 383
killing_matrix() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 383
KirillovReshetikhinCrystals (class in sage.categories.loop_crystals), 518
KirillovReshetikhinCrystals.ElementMethods (class in sage.categories.loop_crystals), 518
KirillovReshetikhinCrystals.ParentMethods (class in sage.categories.loop_crystals), 519
KirillovReshetikhinCrystals.TensorProducts (class in sage.categories.loop_crystals), 524
KirillovReshetikhinCrystals.TensorProducts.ElementMethods (class in sage.categories.loop_crystals), 524
KirillovReshetikhinCrystals.TensorProducts.ParentMethods (class in sage.categories.loop_crystals), 526
KroneckerQuiverPathAlgebra (class in sage.categories.examples.finite_dimensional_algebras_with_basis), 775

L
Lambda() (sage.categories.crystals.Crystals.ParentMethods method), 271
LambdaBracketAlgebras (class in sage.categories.lambda_bracket_algebras), 495
LambdaBracketAlgebras.ElementMethods (class in sage.categories.lambda_bracket_algebras), 495
LambdaBracketAlgebras.ParentMethods (class in sage.categories.lambda_bracket_algebras), 496
LambdaBracketAlgebras.SubcategoryMethods (class in sage.categories.lambda_bracket_algebras), 496
LambdaBracketAlgebrasWithBasis (class in sage.categories.lambda_bracket_algebras_with_basis), 497
LambdaBracketAlgebrasWithBasis.ElementMethods (class in sage.categories.lambda_bracket_algebras_with_basis), 497
LambdaBracketAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra (class in sage.categories.lambda_bracket_algebras_with_basis), 498
LambdaBracketAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra.Graded (class in sage.categories.lambda_bracket_algebras_with_basis), 498
LambdaBracketAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra.Graded.ParentMethods (class in sage.categories.lambda_bracket_algebras_with_basis), 498
last() (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.CartesianProducts.ParentMethods method), 401
last() (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.ParentMethods method), 404
latex() (sage.categories.crystals.Crystals.ParentMethods method), 277
latex_file() (sage.categories.crystals.Crystals.ParentMethods method), 277
LatticePosets (class in sage.categories.lattice_posets), 499
LatticePosets.ParentMethods (class in sage.categories.lattice_posets), 499
LaurentPolynomialFunctor (class in sage.categories.pushout), 132
lcm() (sage.categories.discrete_valuation.DiscreteValuationRings.ElementMethods method), 286
lcm() (sage.categories.fields.Fields.ElementMethods method), 300
lcm() (sage.categories.quotient_fields.QuotientFields.ElementMethods method), 617
e() (sage.categories.examples.posets.FiniteSetsOrderedByInclusion method), 803
e() (sage.categories.examples.posets.PositiveIntegersOrderedByDivisibilityFacade method), 804
e() (sage.categories.posets.Posets.ParentMethods method), 611
leading_coefficient() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 572
leading_item() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 572
leading_monomial() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 573
leading_support() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 573
leading_term() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 574
left_base_ring() (sage.categories.bimodules.Bimodules method), 186
left_domain() (sage.categories.action.Action method), 150
left_inversions_as_reflections() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 243
left_pieri_factorizations() (sage.categories.weyl_groups.WeylGroups.ElementMethods method), 726
left_precomposition (sage.categories.action.PrecomposedAction attribute), 152
LeftModules (class in sage.categories.left_modules), 500
LeftModules.ElementMethods (class in sage.categories.left_modules), 500
LeftModules.ParentMethods (class in sage.categories.left_modules), 500
LeftRegularBand (class in sage.categories.examples.finite_semigroups), 783
LeftRegularBand.Element (class in sage.categories.examples.finite_semigroups), 785
LeftZeroSemigroup (class in sage.categories.examples.semigroups), 806
LeftZeroSemigroup.Element (class in sage.categories.examples.semigroups), 806
LeftZeroSemigroupElement (class in sage.categories.examples.semigroups_cython), 810
length() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 243
length() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 574
level() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 522
Lie (sage.categories.groups.Groups attribute), 472
lie_algebra_generators() (sage.categories.examples.finite_dimensional_lie_algebras_with基礎.AbelianLieAlgebra method), 779
lie_algebra_generators() (sage.categories.examples.lie_algebras.LieAlgebraFromAssociative method), 796
lie_algebra_generators() (sage.categories.examples.lie_algebras_with_basis.AbelianLieAlgebra method), 796
lie_group() (sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis.FiniteDimensionalNilpotentLieAlgebrasWithBasis.ParentMethods method), 396
lie_group() (sage.categories.lie_algebras.LieAlgebras.ParentMethods method), 507
LieAlgebraFromAssociative (class in sage.categories.examples.lie_algebras), 796
LieAlgebraFromAssociative.Element (class in sage.categories.examples.lie_algebras), 796
LieAlgebras (class in sage.categories.lie_algebras), 500
LieAlgebras.ElementMethods (class in sage.categories.lie_algebras), 501
LieAlgebras.FiniteDimensional (class in sage.categories.lie_algebras), 502
LieAlgebras.Nilpotent (class in sage.categories.lie_algebras), 503
LieAlgebras.Nilpotent.ParentMethods (class in sage.categories.lie_algebras), 503
LieAlgebras.ParentMethods (class in sage.categories.lie_algebras), 503
LieAlgebras.SubcategoryMethods (class in sage.categories.lie_algebras), 509
LieAlgebrasWithBasis (class in sage.categories.lie_algebras_with_basis), 510
LieAlgebrasWithBasis.ElementMethods (class in sage.categories.lie_algebras_with_basis), 510
LieAlgebrasWithBasis.ParentMethods (class in sage.categories.lie_algebras_with_basis), 511
LieConformalAlgebras (class in sage.categories.lie_conformal_algebras), 514
LieConformalAlgebras.ElementMethods (class in sage.categories.lie_conformal_algebras), 514
LieConformalAlgebras.ParentMethods (class in sage.categories.lie_conformal_algebras), 515
LieConformalAlgebrasWithBasis (class in sage.categories.lie_conformal_algebras_with_basis), 516
LieConformalAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra (class in sage.categories.lie_conformal_algebras_with_basis), 516
LieConformalAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra.Graded (class in sage.categories.lie_conformal_algebras_with_basis), 516
LieConformalAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra.Super (class in sage.categories.lie_conformal_algebras_with_basis), 516
LieConformalAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra.Super.Graded (class in sage.categories.lie_conformal_algebras_with_basis), 517
LieConformalAlgebrasWithBasis.Graded (class in sage.categories.lie_conformal_algebras_with_basis), 517
LieConformalAlgebrasWithBasis.Super (class in sage.categories.lie_conformal_algebras_with_basis), 517
LieConformalAlgebrasWithBasis.Super.Graded (class in sage.categories.lie_conformal_algebras_with_basis), 517
LieConformalAlgebrasWithBasis.Super.ParentMethods (class in sage.categories.lie_conformal_algebras_with_basis), 517
LieGroups (class in sage.categories.lie_groups), 518
lift() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra.Element method), 776
lift() (sage.categories.examples.finite_enumerated_sets.IsomorphicObjectOfFiniteEnumeratedSet method), 781
lift() (sage.categories.examples.lie_algebras_with_basis.AbelianLieAlgebra.Element method), 797
lift() (sage.categories.semisimple_sets.QuotientOfLeftZeroSemigroup method), 808
lift() (sage.categories.lie_algebras.LieAlgebras.ElementMethods method), 502
lift() (sage.categories.lie_algebras.LieAlgebras.ParentMethods method), 508
lift() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ElementMethods method), 510
lift() (sage.categoriesSETS.Sets.Subquotients.ElementMethods method), 681
lift() (sage.categoriesSETS.Sets.Subquotients.ParentMethods method), 681
LiftMorphism (class in sage.categories.lie_algebras), 510
linear_combination() (sage.categories.modules.Modules.ParentMethods method), 562
Index 885

list() (sage.categories.enumerated_setsEnumeratedSets.ParentMethods method), 292
list() (sage.categories.finite_enumerated_setsFiniteEnumeratedSetsParentMethods method), 404
list() (sage.categories.infinite_enumerated_setsInfiniteEnumeratedSetsParentMethods method), 493
local_energy_function() (sage.categories.loop_crystalsKirillovReshetikhinCrystalsParentMethods method), 522
LocalEnergyFunction (class in sage.categories.loop_crystals), 528
long_element() (sage.categories.finite_coxeter_groupsFiniteCoxeterGroupsParentMethods method), 347
LoopCrystals (class in sage.categories.loop_crystals), 529
LoopCrystals.ParentMethods (class in sage.categories.loop_crystals), 529
lower_central_series() (sage.categories.finite_dimensional_lie_algebras_with_basisFiniteDimensionalLieAlgebrasWithBasisParentMethods method), 384
lower_cover_reflections() (sage.categories.coxeter_groupsCoxeterGroups.ElementMethods method), 244
lower_covers() (sage.categories.posetsPosets.ParentMethods method), 611
lowest_weight_vectors() (sage.categories.highest_weight_crystalsHighestWeightCrystalsParentMethods method), 482
lowest_weight_vectors() (sage.categories.supercrystalsSuperCrystals.Finite.ParentMethods method), 710
lt() (sage.categories.posetsPosets.ParentMethods method), 611
LTrivial (sage.categories.semigroupsSemigroups attribute), 651
LTrivial() (sage.categories.semigroupsSemigroups.SubcategoryMethods method), 657
LusztigInvolutionSemigroups (class in sage.categories.l_trivial_semigroups), 530
LusztigInvolution() (sage.categories.loop_crystalsKirillovReshetikhinCrystals.ElementMethods method), 519

M

m_cambrian_lattice() (sage.categories.finite_coxeter_groupsFiniteCoxeterGroupsParentMethods method), 348
magma_generators() (sage.categories.examples.magasFreeMagma method), 799
magma_generators() (sage.categories.finitely_generated_magmasFinitelyGeneratedMagmas.ParentMethods method), 445
magma_generators() (sage.categories.semigroupsSemigroups.ParentMethods method), 653
Magmas (class in sage.categories.magmas), 531
Magmas Algebras (class in sage.categories.magmas), 531
Magmas.Algebras.ParentMethods (class in sage.categories.magmas), 531
Magmas.CartesianProducts (class in sage.categories.magmas), 532
Magmas.CartesianProducts.ParentMethods (class in sage.categories.magmas), 532
Magmas.Commutative (class in sage.categories.magmas), 533
Magmas.Commutative.Algebras (class in sage.categories.magmas), 533
Magmas.Commutative.CartesianProducts (class in sage.categories.magmas), 533
Magmas.Commutative.ParentMethods (class in sage.categories.magmas), 534
Magmas.ElementMethods (class in sage.categories.magmas), 534
Magmas.JTrivial (class in sage.categories.magmas), 534
Magmas.ParentMethods (class in sage.categories.magmas), 534
Magmas.Realizations (class in sage.categories.magmas), 538
Magmas.Realizations.ParentMethods (class in sage.categories.magmas), 538
Magmas.SubcategoryMethods (class in sage.categories.magmas), 538
Magmas.Subquotients (class in sage.categories.magmas), 541
Magmas.Subquotients.ParentMethods (class in sage.categories.magmas), 542
Magmas.Unital (class in sage.categories.magmas), 542

<table>
<thead>
<tr>
<th>Class</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magmas.Unital.Algebras</td>
<td><code>sage.categories.magmas</code></td>
<td>542</td>
</tr>
<tr>
<td>Magmas.Unital.CartesianProducts</td>
<td><code>sage.categories.magmas</code></td>
<td>542</td>
</tr>
<tr>
<td>Magmas.Unital.ElementMethods</td>
<td><code>sage.categories.magmas</code></td>
<td>543</td>
</tr>
<tr>
<td>Magmas.Unital.Inverse</td>
<td><code>sage.categories.magmas</code></td>
<td>543</td>
</tr>
<tr>
<td>Magmas.Unital.Inverse.CartesianProducts</td>
<td><code>sage.categories.magmas</code></td>
<td>543</td>
</tr>
<tr>
<td>Magmas.Unital.ParentMethods</td>
<td><code>sage.categories.magmas</code></td>
<td>543</td>
</tr>
<tr>
<td>Magmas.Unital.Realizations</td>
<td><code>sage.categories.magmas</code></td>
<td>544</td>
</tr>
<tr>
<td>Magmas.Unital.SubcategoryMethods</td>
<td><code>sage.categories.magmas</code></td>
<td>544</td>
</tr>
<tr>
<td>MagmasAndAdditiveMagmas</td>
<td><code>sage.categories.magmas_and_additive_magmas</code></td>
<td>545</td>
</tr>
<tr>
<td>MagmasAndAdditiveMagmas.CartesianProducts</td>
<td><code>sage.categories.magmas_and_additive_magmas</code></td>
<td>545</td>
</tr>
<tr>
<td>MagmasAndAdditiveMagmas.SubcategoryMethods</td>
<td><code>sage.categories.magmas_and_additive_magmas</code></td>
<td>546</td>
</tr>
<tr>
<td>MagmaticAlgebras</td>
<td><code>sage.categories.magmatic_algebras</code></td>
<td>547</td>
</tr>
<tr>
<td>MagmaticAlgebras.ParentMethods</td>
<td><code>sage.categories.magmatic_algebras</code></td>
<td>547</td>
</tr>
<tr>
<td>MagmaticAlgebras.WithBasis</td>
<td><code>sage.categories.magmatic_algebras</code></td>
<td>547</td>
</tr>
<tr>
<td>MagmaticAlgebras.WithBasis.FiniteDimensional</td>
<td><code>sage.categories.magmatic_algebras</code></td>
<td>547</td>
</tr>
<tr>
<td>Manifolds</td>
<td><code>sage.categories.manifolds</code></td>
<td>550</td>
</tr>
<tr>
<td>Manifolds.AlmostComplex</td>
<td><code>sage.categories.manifolds</code></td>
<td>550</td>
</tr>
<tr>
<td>Manifolds.Analytic</td>
<td><code>sage.categories.manifolds</code></td>
<td>550</td>
</tr>
<tr>
<td>Manifolds.Connected</td>
<td><code>sage.categories.manifolds</code></td>
<td>551</td>
</tr>
<tr>
<td>Manifolds.Differentiable</td>
<td><code>sage.categories.manifolds</code></td>
<td>551</td>
</tr>
<tr>
<td>Manifolds.FiniteDimensional</td>
<td><code>sage.categories.manifolds</code></td>
<td>551</td>
</tr>
<tr>
<td>Manifolds.ParentMethods</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>Manifolds.Smooth</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>Manifolds.SubcategoryMethods</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>Map</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>Map()</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>map_coefficients()</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>map_item()</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>map_support()</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>map_support_skip_none()</td>
<td><code>sage.categories.manifolds</code></td>
<td>552</td>
</tr>
<tr>
<td>MatrixAlgebras</td>
<td><code>sage.categories.matrix_algebras</code></td>
<td>554</td>
</tr>
<tr>
<td>MatrixFunctor</td>
<td><code>sage.categories.pushout</code></td>
<td>133</td>
</tr>
<tr>
<td>maximal_degree()</td>
<td><code>sage.categories.filtered_modules_with_basis</code></td>
<td>317</td>
</tr>
<tr>
<td>maximal_vector()</td>
<td><code>sage.categories.loop_crystals</code></td>
<td>523</td>
</tr>
<tr>
<td>maximal_vector()</td>
<td><code>sage.categories.loop_crystals</code></td>
<td>527</td>
</tr>
<tr>
<td>meet()</td>
<td><code>sage.categories.category</code></td>
<td>54</td>
</tr>
<tr>
<td>meet()</td>
<td><code>sage.categories.lattice_posets</code></td>
<td>499</td>
</tr>
</tbody>
</table>
meet_irreducibles() (sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods method), 411
meet_irreducibles_poset() (sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods method), 411
merge() (sage.categories.pushout.AlgebraicClosureFunctor method), 121
merge() (sage.categories.pushout.AlgebraicExtensionFunctor method), 123
merge() (sage.categories.pushout.CompletionFunctor method), 125
merge() (sage.categories.pushout.ConstructionFunctor method), 129
merge() (sage.categories.pushout.InfinitePolynomialFunctor method), 132
merge() (sage.categories.pushout.LaurentPolynomialFunctor method), 132
merge() (sage.categories.pushout.MatrixFunctor method), 133
merge() (sage.categories.pushout.MultiPolynomialFunctor method), 135
merge() (sage.categories.pushout.PermutationGroupFunctor method), 136
merge() (sage.categories.pushout.PolynomialFunctor method), 136
merge() (sage.categories.pushout.QuotientFunctor method), 137
merge() (sage.categories.pushout.SubspaceFunctor method), 138
merge() (sage.categories.pushout.VectorFunctor method), 139
metapost() (sage.categories.crystals.Crystals.ParentMethods method), 278
Metric (sage.categories.sets_cat.Sets attribute), 668
metric() (sage.categories.metric_spaces.MetricSpaces.ParentMethods method), 557
Metric() (sage.categories.sets_cat.Sets.SubcategoryMethods method), 677
metric_function() (sage.categories.metric_spaces.MetricSpaces.ParentMethods method), 557
MetricSpaces (class in sage.categories.metric_spaces), 554
MetricSpaces.CartesianProducts (class in sage.categories.metric_spaces), 555
MetricSpaces.CartesianProducts.ParentMethods (class in sage.categories.metric_spaces), 555
MetricSpaces.Complete (class in sage.categories.metric_spaces), 555
MetricSpaces.Complete.CartesianProducts (class in sage.categories.metric_spaces), 555
MetricSpaces.ElementMethods (class in sage.categories.metric_spaces), 556
MetricSpaces.Homsets (class in sage.categories.metric_spaces), 556
MetricSpaces.Homsets.ElementMethods (class in sage.categories.metric_spaces), 556
MetricSpaces.ParentMethods (class in sage.categories.metric_spaces), 556
MetricSpaces.SubcategoryMethods (class in sage.categories.metric_spaces), 557
MetricSpaces.WithRealizations (class in sage.categories.metric_spaces), 557
MetricSpaces.WithRealizations.ParentMethods (class in sage.categories.metric_spaces), 557
MetricSpacesCategory (class in sage.categories.metric_spaces), 557
min_demazure_product_greater() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 244
ModularAbelianVarieties (class in sage.categories.modular_abelian_varieties), 558
ModularAbelianVarieties.Homsets (class in sage.categories.modular_abelian_varieties), 558
ModularAbelianVarieties.Homsets.Endset (class in sage.categories.modular_abelian_varieties), 558
module
sage.categories.action, 149
sage.categories.additive_groups, 152
sage.categories.additive_magmas, 154
sage.categories.additive_monoids, 165
sage.categories.additive_semigroups, 166
sage.categories.affine_weyl_groups, 168
sage.categories.algebra_functor, 745
sage.categories.algebra_ideals, 171
sage.categories.algebra_modules, 171
sage.categories.algebras, 172
sage.categories.algebras_with_basis, 175
sage.categories.aperiodic_semigroups, 180
sage.categories.associative_algebras, 180
sage.categories.bialgebras, 181
sage.categories.bialgebras_with_basis, 182
sage.categories.bimodules, 186
sage.categories.cartesian_product, 741
sage.categories.category, 27
sage.categories.category_cy_helper, 831
sage.categories.category_singleton, 828
sage.categories.category_types, 825
sage.categories.category_with_axiom, 62
sage.categories.classical_crystals, 187
sage.categories.coalgebras, 191
sage.categories.coalgebras_with_basis, 196
sage.categories.coercion_methods, 833
sage.categories.commutative_additive_groups, 198
sage.categories.commutative_additive_monoids, 199
sage.categories.commutative_additive_semigroups, 199
sage.categories.commutative_algebra_ideals, 200
sage.categories.commutative_algebras, 201
sage.categories.commutative_ring_ideals, 201
sage.categories.commutative_rings, 201
sage.categories.complete_discrete_valuation, 206
sage.categories.complex_reflection_groups, 209
sage.categories.complex_reflection_or_generalized_coxeter_groups, 211
sage.categories.covariant_functorial_construction, 735
sage.categories.coxeter_group_algebras, 228
sage.categories.coxeter_groups, 231
sage.categories.crystals, 259
sage.categories.cw_complexes, 282
sage.categories.discrete_valuation, 284
sage.categories.distributive_magmas_and_additive_magmas, 287
sage.categories.division_rings, 288
sage.categories.domains, 289
sage.categories.dual, 745
sage.categories.enumerated_sets, 289
sage.categories.euclidean_domains, 296
sage.categories.examples.algebras_with_basis, 765
sage.categories.examples.commutative_additive_monoids, 766
sage.categories.examples.commutative_additive_semigroups, 767
sage.categories.examples.coxeter_groups, 769
sage.categories.examples.crystals, 769
sage.categories.examples.cw_complexes, 771
sage.categories.examples.facade_sets, 772
sage.categories.examples.finite_coxeter_groups, 773
sage.categories.examples.finite_dimensional_algebras_with_basis, 775
sage.categories.examples.finite_dimensional_lie_algebras_with_basis, 776
sage.categories.examples.finiteEnumeratedSets, 780
sage.categories.examples.finite_monoids, 782
sage.categories.examples.finite_semigroups, 783
sage.categories.examples.finite_weyl_groups, 786
sage.categories.examples.graded_connected_hopf_algebras_with_basis, 788
sage.categories.examples.graded_modules_with_basis, 789
sage.categories.examples.graphs, 791
sage.categories.examples.hopf_algebras_with_basis, 793
sage.categories.examples.infiniteEnumeratedSets, 794
sage.categories.examples.lie_algebras, 796
sage.categories.examples.lie_algebras_with_basis, 797
sage.categories.examples.magmas, 798
sage.categories.examples.manifolds, 800
sage.categories.examples.monoids, 801
sage.categories.examples.posets, 802
sage.categories.examples.semigroups, 804
sage.categories.examples.semigroupsCython, 809
sage.categories.examples.setsCat, 811
sage.categories.examples.setsWithGrading, 817
sage.categories.examples.with_realizations, 818
sage.categories.facadeSets, 732
sage.categories.fields, 298
sage.categories.filteredAlgebras, 303
sage.categories.filtered_algebras_with_basis, 303
sage.categories.filtered_modules, 311
sage.categories.filtered_modules_with_basis, 312
sage.categories.finite_complex_reflection_groups, 326
sage.categories.finite_coxeter_groups, 342
sage.categories.finite_crystals, 353
sage.categories.finite_dimensional_algebras_with_basis, 354
sage.categories.finite_dimensional_bialgebras_with_basis, 372
sage.categories.finite_dimensional_coalgebras_with_basis, 372
sage.categories.finite_dimensional_graded_lie_algebras_with_basis, 373
sage.categories.finite_dimensional_hopf_algebras_with_basis, 374
sage.categories.finite_dimensional_lie_algebras_with_basis, 375
sage.categories.finite_dimensional_modules_with_basis, 390
sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis, 396
sage.categories.finite_dimensional_semisimple_algebras_with_basis, 398
sage.categories.finiteEnumeratedSets, 400
sage.categories.finite_fields, 405
sage.categories.finite_groups, 406
sage.categories.finite_lattice_posets, 409
sage.categories.finite_monoids, 411
sage.categories.finite_permutation_groups, 415
sage.categories.finite_posets, 419
sage.categories.finite_semigroups, 440
sage.categories.finite_sets, 441
sage.categories.finite_weyl_groups, 443
sage.categories.finitely_generated_lambda_bracket_algebras, 443
sage.categories.finitely_generated_lie_conformal_algebras, 444
sage.categories.finitely_generated_magmas, 445
sage.categories.finitely_generated_semigroups, 446
<table>
<thead>
<tr>
<th>Category Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage.categories.function_fields</td>
<td>448</td>
</tr>
<tr>
<td>sage.categories.function_fields</td>
<td>448</td>
</tr>
<tr>
<td>sage.categories.functor</td>
<td>95</td>
</tr>
<tr>
<td>sage.categories.g_sets</td>
<td>449</td>
</tr>
<tr>
<td>sage.categories.g_sets</td>
<td>449</td>
</tr>
<tr>
<td>sage.categories.gcd_domains</td>
<td>449</td>
</tr>
<tr>
<td>sage.categories.gcd_domains</td>
<td>449</td>
</tr>
<tr>
<td>sage.categories.generalized_coxeter_groups</td>
<td>450</td>
</tr>
<tr>
<td>sage.categories.generalized_coxeter_groups</td>
<td>450</td>
</tr>
<tr>
<td>sage.categories.graded_algebras</td>
<td>451</td>
</tr>
<tr>
<td>sage.categories.graded_algebras</td>
<td>451</td>
</tr>
<tr>
<td>sage.categories.graded_algebras_with_basis</td>
<td>452</td>
</tr>
<tr>
<td>sage.categories.graded_algebras_with_basis</td>
<td>452</td>
</tr>
<tr>
<td>sage.categories.graded_bialgebras</td>
<td>454</td>
</tr>
<tr>
<td>sage.categories.graded_bialgebras</td>
<td>454</td>
</tr>
<tr>
<td>sage.categories.graded_coalgebras</td>
<td>454</td>
</tr>
<tr>
<td>sage.categories.graded_coalgebras</td>
<td>454</td>
</tr>
<tr>
<td>sage.categories.graded_coalgebras_with_basis</td>
<td>455</td>
</tr>
<tr>
<td>sage.categories.graded_coalgebras_with_basis</td>
<td>455</td>
</tr>
<tr>
<td>sage.categories.graded_hopf_algebras</td>
<td>456</td>
</tr>
<tr>
<td>sage.categories.graded_hopf_algebras</td>
<td>456</td>
</tr>
<tr>
<td>sage.categories.graded_hopf_algebras_with_basis</td>
<td>456</td>
</tr>
<tr>
<td>sage.categories.graded_hopf_algebras_with_basis</td>
<td>456</td>
</tr>
<tr>
<td>sage.categories.graded_lie_algebras</td>
<td>458</td>
</tr>
<tr>
<td>sage.categories.graded_lie_algebras</td>
<td>458</td>
</tr>
<tr>
<td>sage.categories.graded_lie_algebras_with_basis</td>
<td>459</td>
</tr>
<tr>
<td>sage.categories.graded_lie_algebras_with_basis</td>
<td>459</td>
</tr>
<tr>
<td>sage.categories.graded_lie_conformal_algebras</td>
<td>459</td>
</tr>
<tr>
<td>sage.categories.graded_lie_conformal_algebras</td>
<td>459</td>
</tr>
<tr>
<td>sage.categories.graded_modules</td>
<td>460</td>
</tr>
<tr>
<td>sage.categories.graded_modules</td>
<td>460</td>
</tr>
<tr>
<td>sage.categories.graded_modules_with_basis</td>
<td>461</td>
</tr>
<tr>
<td>sage.categories.graded_modules_with_basis</td>
<td>461</td>
</tr>
<tr>
<td>sage.categories.h_trivial_semigroups</td>
<td>491</td>
</tr>
<tr>
<td>sage.categories.h_trivial_semigroups</td>
<td>491</td>
</tr>
<tr>
<td>sage.categories.hecke_modules</td>
<td>477</td>
</tr>
<tr>
<td>sage.categories.hecke_modules</td>
<td>477</td>
</tr>
<tr>
<td>sage.categories.highest_weight_crystals</td>
<td>478</td>
</tr>
<tr>
<td>sage.categories.highest_weight_crystals</td>
<td>478</td>
</tr>
<tr>
<td>sage.categories.homset</td>
<td>110</td>
</tr>
<tr>
<td>sage.categories.homset</td>
<td>110</td>
</tr>
<tr>
<td>sage.categories.homsets</td>
<td>754</td>
</tr>
<tr>
<td>sage.categories.homsets</td>
<td>754</td>
</tr>
<tr>
<td>sage.categories.hopf_algebras</td>
<td>486</td>
</tr>
<tr>
<td>sage.categories.hopf_algebras</td>
<td>486</td>
</tr>
<tr>
<td>sage.categories.hopf_algebras_with_basis</td>
<td>488</td>
</tr>
<tr>
<td>sage.categories.hopf_algebras_with_basis</td>
<td>488</td>
</tr>
<tr>
<td>sage.categories.infinite enumerated sets</td>
<td>492</td>
</tr>
<tr>
<td>sage.categories.infinite enumerated sets</td>
<td>492</td>
</tr>
<tr>
<td>sage.categories.integral_domains</td>
<td>493</td>
</tr>
<tr>
<td>sage.categories.integral_domains</td>
<td>493</td>
</tr>
<tr>
<td>sage.categories.isomorphic_objects</td>
<td>753</td>
</tr>
<tr>
<td>sage.categories.isomorphic_objects</td>
<td>753</td>
</tr>
<tr>
<td>sage.categories.j_trivial_semigroups</td>
<td>494</td>
</tr>
<tr>
<td>sage.categories.j_trivial_semigroups</td>
<td>494</td>
</tr>
<tr>
<td>sage.categories.kac_moody_algebras</td>
<td>494</td>
</tr>
<tr>
<td>sage.categories.kac_moody_algebras</td>
<td>494</td>
</tr>
<tr>
<td>sage.categories.l_trivial_semigroups</td>
<td>530</td>
</tr>
<tr>
<td>sage.categories.l_trivial_semigroups</td>
<td>530</td>
</tr>
<tr>
<td>sage.categories.lambda_bracket_algebras</td>
<td>495</td>
</tr>
<tr>
<td>sage.categories.lambda_bracket_algebras</td>
<td>495</td>
</tr>
<tr>
<td>sage.categories.lambda_bracket_algebras_with_basis</td>
<td>497</td>
</tr>
<tr>
<td>sage.categories.lambda_bracket_algebras_with_basis</td>
<td>497</td>
</tr>
<tr>
<td>sage.categories.lattice_posets</td>
<td>499</td>
</tr>
<tr>
<td>sage.categories.lattice_posets</td>
<td>499</td>
</tr>
<tr>
<td>sage.categories.left_modules</td>
<td>500</td>
</tr>
<tr>
<td>sage.categories.left_modules</td>
<td>500</td>
</tr>
<tr>
<td>sage.categories.lie_algebras</td>
<td>500</td>
</tr>
<tr>
<td>sage.categories.lie_algebras</td>
<td>500</td>
</tr>
<tr>
<td>sage.categories.lie_algebras_with_basis</td>
<td>510</td>
</tr>
<tr>
<td>sage.categories.lie_algebras_with_basis</td>
<td>510</td>
</tr>
<tr>
<td>sage.categories.lie_conformal_algebras</td>
<td>512</td>
</tr>
<tr>
<td>sage.categories.lie_conformal_algebras</td>
<td>512</td>
</tr>
<tr>
<td>sage.categories.lie_conformal_algebras_with_basis</td>
<td>516</td>
</tr>
<tr>
<td>sage.categories.lie_conformal_algebras_with_basis</td>
<td>516</td>
</tr>
<tr>
<td>sage.categories.lie_groups</td>
<td>518</td>
</tr>
<tr>
<td>sage.categories.lie_groups</td>
<td>518</td>
</tr>
<tr>
<td>sage.categories.loop_crystals</td>
<td>518</td>
</tr>
<tr>
<td>sage.categories.loop_crystals</td>
<td>518</td>
</tr>
<tr>
<td>sage.categories.magmas</td>
<td>531</td>
</tr>
<tr>
<td>sage.categories.magmas</td>
<td>531</td>
</tr>
<tr>
<td>sage.categories.magnetic_algebras</td>
<td>547</td>
</tr>
<tr>
<td>sage.categories.magnetic_algebras</td>
<td>547</td>
</tr>
<tr>
<td>sage.categories.manifolds</td>
<td>550</td>
</tr>
<tr>
<td>sage.categories.manifolds</td>
<td>550</td>
</tr>
<tr>
<td>sage.categories.map</td>
<td>101</td>
</tr>
<tr>
<td>sage.categories.map</td>
<td>101</td>
</tr>
</tbody>
</table>
MonoidAlgebras() (in module sage.categories.monoid_algebras), 594
Monoids (class in sage.categories.monoids), 594
Monoids.Algebras (class in sage.categories.monoids), 595
Monoids.Algebras.ElementMethods (class in sage.categories.monoids), 595
Monoids.Algebras.ParentMethods (class in sage.categories.monoids), 595
Monoids.CartesianProducts (class in sage.categories.monoids), 596
Monoids.CartesianProducts.ParentMethods (class in sage.categories.monoids), 596
Monoids.Commutative (class in sage.categories.monoids), 597
Monoids.ElementMethods (class in sage.categories.monoids), 597
Monoids.ParentMethods (class in sage.categories.monoids), 598
Monoids.Subquotients (class in sage.categories.monoids), 599
Monoids.Subquotients.ParentMethods (class in sage.categories.monoids), 599
Monoids.WithRealizations (class in sage.categories.monoids), 599
Monoids.WithRealizations.ParentMethods (class in sage.categories.monoids), 599
monomial() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 586
monomial_coefficients() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra.Element method), 777
monomial_coefficients() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 576
monomial_or_zero_if_none() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 586
monomials() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 576
Morphism (class in sage.categories.morphism), 118
morphism() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 385
morphism_class() (sage.categories.category.Category method), 54
multiplication_table() (sage.categories.mappings.Mappings.ParentMethods method), 534
multiplicative_order() (sage.categories.groups.Groups.ElementMethods method), 470
MultiPolynomialFunctor (class in sage.categories.pushout), 134
MultivariateConstructionFunctor (class in sage.categories.pushout), 135
MyGroupAlgebra (class in sage.categories.examples.hopf_algebras_with_basis), 793

N

NaiveCrystal (class in sage.categories.examples.crystals), 770
NaiveCrystal.Element (class in sage.categories.examples.crystals), 770
natural_map() (sage.categories.homset.Homset method), 115
nerve() (sage.categories.finite_monoids.FiniteMonoids.ParentMethods method), 412
next() (sage.categories.enumerated_setsEnumeratedSets.ParentMethods method), 293
next() (sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers method), 795
next() (sage.categories.examples.sets_cat.PrimeNumbers_Abstract method), 813
next() (sage.categories.examples.sets_cat.PrimeNumbers_Abstract.Element method), 812
ngens() (sage.categories.finitely_generated_lambda_bracket_algebras.FinitelyGeneratedLambdaBracketAlgebras.ParentMethods method), 444
ngens() (sage.categories.semidirect_products.SemidirectProducts.ElementMethods method), 649
Nilpotent (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis attribute), 375
Nilpotent() (sage.categories.associative_algebras.Algebras.SubcategoryMethods method), 509
noncrossing_partition_lattice() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible method), 331
NonNegativeIntegers (class in sage.categories.examples.infinite_enumerated_sets), 794
NonNegativeIntegers (class in sage.categories.examples.sets_with_grading), 817
NoZeroDivisors (sage.categories.rings.Rings attribute), 641
NoZeroDivisors () (sage.categories.rings.Rings.SubcategoryMethods method), 646
nproduct () (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras.ElementMethods method), 496
number_of_connected_components () (sage.categories.crystals.Crystals.ParentMethods method), 278
number_of_irreducible_components () (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 223
number_of_reflection_hyperplanes () (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods method), 334
number_of_reflections () (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods method), 335
number_of_simple_reflections () (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 223
NumberFields (class in sage.categories.number_fields), 600
NumberFields.ElementMethods (class in sage.categories.number_fields), 601
NumberFields.ParentMethods (class in sage.categories.number_fields), 601
numerator () (sage.categories.complete_discrete_valuation.CompleteDiscreteValuationRings.ElementMethods method), 208
numerator () (sage.categories.quotient_fields.QuotientFields.ElementMethods method), 618

O
object () (sage.categories.category_types.Elements method), 827
Objects (class in sage.categories.objects), 602
Objects.ParentMethods (class in sage.categories.objects), 602
Objects.SubcategoryMethods (class in sage.categories.objects), 602
odd_component () (sage.categories.super_modules_with_basis.SuperModulesWithBasis.ElementMethods method), 706
on_basis () (sage.categories.modules_with_basis.ModulesWithBasis.MorphismMethods method), 580
on_left_matrix () (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ElementMethods method), 358
one () (sage.categories.algebras_with_basis.AlgebrasWithBasis.CartesianProducts.ParentMethods method), 177
one () (sage.categories.algebras_with_basis.AlgebrasWithBasis.ParentMethods method), 178
one () (sage.categories.examples.algebras_with_basis.KroneckerQuiverPathAlgebra method), 774
one () (sage.categories.examples.finite_coxeter_groups.DihedralGroup method), 775
one () (sage.categories.examples.finite_monoids.IntegerModMonoid method), 783
one () (sage.categories.examples.finite_weyl_groups.SymmetricGroup method), 787
one () (sage.categories.examples.monoids.FreeMonoid method), 802
one () (sage.categories.examples.realizations.SubsetAlgebra.Bases.ParentMethods method), 820
one () (sage.categories.examples.realizations.SubsetAlgebra.Fundamental method), 820
one () (sage.categories.homset.Homset method), 116
one () (sage.categories.magas.Magas.Unital.ParentMethods method), 544
one () (sage.categories.monoids.Monoids.WithRealizations.ParentMethods method), 599
 Index 895

P

panyushev_complement() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 433
panyushev_orbit_iter() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 434
panyushev_orbits() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 435
parent() (sage.categories.map.Map method), 107
parent_class() (sage.categories.category.Category method), 55
part() (sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras.ElementMethods method), 713
partial_fraction_decomposition() (sage.categories.quotient_fields.QuotientFields.ElementMethods method), 618
PartiallyOrderedMonoids (class in sage.categories.partially_ordered_monoids), 603
PartiallyOrderedMonoids.ElementMethods (class in sage.categories.partially_ordered_monoids), 603
PartiallyOrderedMonoids.ParentMethods (class in sage.categories.partially_ordered_monoids), 604
pbw_basis() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ParentMethods method), 512
peirce_decomposition() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods method), 366
peirce_summand() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods method), 368
permutedehedron() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 348
PermutationGroupFunctor (class in sage.categories.pushout), 135
PermutationGroups (class in sage.categories.permutation_groups), 604
Phi() (sage.categories.crystals.Crystals.ElementMethods method), 265
phi() (sage.categories.crystals.Crystals.ElementMethods method), 268
phi() (sage.categories.regular_crystals.RegularCrystals.ElementMethods method), 629
phi() (sage.categories.regular_supercrystals.RegularSuperCrystals.ElementMethods method), 635
phi_minus_epsilon() (sage.categories.crystals.Crystals.ElementMethods method), 268
pieri_factors() (sage.categories.weyl_groups.WeylGroups.ParentMethods method), 730
Plane (class in sage.categories.examples.manifolds), 800
plot() (sage.categories.crystals.Crystals.ParentMethods method), 278
plot3d() (sage.categories.crystals.Crystals.ParentMethods method), 279
poincare_birkhoff_witt_basis() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ParentMethods method), 512
Pointed() (sage.categories.simplicial_sets.SimplicialSets.SubcategoryMethods method), 697
PointedSets (class in sage.categories.pointed_sets), 605
PolyhedralSets (class in sage.categories.polyhedra), 605
PolynomialFunctor (class in sage.categories.pushout), 136
PoorManMap (class in sage.categories.poor_man_map), 833
Posets (class in sage.categories.posets), 605
Posets.ElementMethods (class in sage.categories.posets), 606
Posets.ParentMethods (class in sage.categories.posets), 606
PositiveIntegerMonoid (class in sage.categories.examples.facade_sets), 772
PositiveIntegersOrderedByDivisibilityFacade (class in sage.categories.examples.posets), 803
PositiveIntegersOrderedByDivisibilityFacade.element_class (class in sage.categories.examples.posets), 804
post_compose() (sage.categories.map.Map.Map method), 108
powers() (sage.categories.monoids.Monoids.ElementMethods method), 598
pre_compose() (sage.categories.map.Map.Map method), 109
PrecomposedAction (class in sage.categories.action), 151
PrimeNumbers (class in sage.categories.examples.sets_cat), 811
PrimeNumbers_Abstract (class in sage.categories.examples.sets_cat), 812
PrimeNumbers_Abstract.Element (class in sage.categories.examples.sets_cat), 812
PrimeNumbers_Facade (class in sage.categories.examples.sets_cat), 813
PrimeNumbers_Inherits (class in sage.categories.examples.sets_cat), 814
PrimeNumbers_Inherits.Element (class in sage.categories.examples.sets_cat), 816
PrimeNumbers_Wrapper (class in sage.categories.examples.sets_cat), 816
PrimeNumbers_Wrapper.Element (class in sage.categories.examples.sets_cat), 816
principal_ideal() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods method), 368
principal_lower_set() (sage.categories.posets.Posets.ParentMethods method), 613
principal_order_filter() (sage.categories.posets.Posets.ParentMethods method), 613
principal_order_ideal() (sage.categories.posets.Posets.ParentMethods method), 614
PrincipalIdealDomains (class in sage.categories.principal_ideal_domains), 614
PrincipalIdealDomains.ElementMethods (class in sage.categories.principal_ideal_domains), 615
PrincipalIdealDomains.ParentMethods (class in sage.categories.principal_ideal_domains), 615
print_compare() (in module sage.categories.sets_cat), 686
prod() (sage.categories.monoids.Monoids.ParentMethods method), 598
prod() (sage.categories.semigroups.Semigroups.ParentMethods method), 653
product() (sage.categories.examples.finite_monoids.IntegerModMonoid method), 783
product() (sage.categories.examples.finite_semigroups.LeftRegularBand method), 785
product() (sage.categories.examples.multipermutations.SymmetricGroup method), 787
product() (sage.categories.examples.semigroups.FreeSemigroup method), 805
product() (sage.categories.examples.semigroups.LeftZeroSemigroup method), 806
product() (sage.categories.magnetic_algebras.MagmaticAlgebras.ParentMethods method), 549
product_from_element_class_mul() (sage.categories.mags.Magmas.ParentMethods method), 537
product_on_basis() (sage.categories.additive_magmas.AdditiveMagmas.Algebras.ParentMethods method), 159
product_on_basis() (sage.categories.algebras_with_basis.AlgebrasWithBasis.TensorProducts.ParentMethods method), 179
product_on_basis() (sage.categories.examples.algebras_with_basis.FiniteDimensionalAlgebra method), 788
product_on_basis() (sage.categories.examples.algebras_with_basis.FiniteDimensionalLieAlgebra method), 798
product_on_basis() (sage.categories.examples.algebras_with_realizations.SubsetAlgebra.Fundamental method), 821
product_on_basis() (sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebra method), 453
product_on_basis() (sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator method), 459
product_on_basis() (sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithSign method), 459
product_on_basis() (sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithSignAndPrimitiveGenerator method), 459
product_on_basis() (sage.categories.finite_permutation_groups.FinitePermutationGroups.ParentMethods method), 417
product_on_basis() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods method), 310
product_on_space() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods method), 386
profile() (sage.categories.filtered_permutation_groups.FilteredPermutationGroups.ParentMethods method), 310
profile_polynomial() (sage.categories.filtered_permutation_groups.FilteredPermutationGroups.ParentMethods method), 386
profile_series() (sage.categories.filtered_permutation_groups.FilteredPermutationGroups.ParentMethods method), 386
projection() (sage.categories.filtered_modules_with_basis.FilteredAlgebrasWithBasis.ParentMethods method), 325
projection() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods method), 325
pseudo_order() (sage.categories.finite_monoids.FiniteMonoids.ElementMethods method), 412
pushforward() (sage.categories.morphism.Morphism method), 119
pushout() (in module sage.categories.pushout), 140
pushout() (sage.categories.pushout.ConstructionFunctor method), 129

Index 897
pushout_lattice() (in module sage.categories.pushout), 146

Q

q() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.ParentMethods method), 621
q_dimension() (sage.categories.highest_weight_crystals.HighestWeightCrystals.ParentMethods method), 482
q_dimension() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 523
quantum_bruhat_graph() (sage.categories.weyl_groups.WeylGroups.ParentMethods method), 731
quantum_bruhat_successors() (sage.categories.weyl_groups.WeylGroups.ElementMethods method), 727
QuantumGroupRepresentations (class in sage.categories.quantum_group_representations), 621
QuantumGroupRepresentations.TensorProducts (class in sage.categories.quantum_group_representations), 622
QuantumGroupRepresentations.TensorProducts.ParentMethods (class in sage.categories.quantum_group_representations), 622
QuantumGroupRepresentations.TensorProducts.TensorProducts.ParentMethods (class in sage.categories.quantum_group_representations), 624
QuantumGroupRepresentations.TensorProducts.TensorProducts.TensorProducts.ParentMethods (class in sage.categories.quantum_group_representations), 624
quo() (sage.categories.rings.Rings.ParentMethods method), 643
quo_rem() (sage.categories.discrete_valuation.DiscreteValuationRings.ElementMethods method), 286
quo_rem() (sage.categories.euclidean_domains.EuclideanDomains.ElementMethods method), 297
quo_rem() (sage.categories.fields.Fields.ElementMethods method), 300
quotient() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 386
quotient() (sage.categories.rings.Rings.ParentMethods method), 644
quotient_module() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 587
quotient_ring() (sage.categories.rings.Rings.ParentMethods method), 645
QuotientFields (class in sage.categories.quotient_fields), 615
QuotientFields.ElementMethods (class in sage.categories.quotient_fields), 615
QuotientFields.ParentMethods (class in sage.categories.quotient_fields), 621
QuotientFunctor (class in sage.categories.pushout), 137
QuotientOfLeftZeroSemigroup (class in sage.categories.examples.semigroups), 807
QuotientOfLeftZeroSemigroup.Element (class in sage.categories.examples.semigroups), 807
Quotients() (sage.categories.sets_cat.Sets.SubcategoryMethods method), 677
QuotientsCategory (class in sage.categories.quotients), 752

R

r() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 523
R_matrix() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 519
radical() (sage.categories.unique_factorization_domains.UniqueFactorizationDomains.ElementMethods method), 715
regular_representation() (sage.categories.semigroups.Semigroups.ParentMethods method), 653
RegularCrystals (class in sage.categories.regular_crystals), 627
RegularCrystals.ElementMethods (class in sage.categories.regular_crystals), 627
RegularCrystals.MorphismMethods (class in sage.categories.regular_crystals), 631
RegularCrystals.ParentMethods (class in sage.categories.regular_crystals), 631
RegularCrystals.TensorProducts (class in sage.categories.regular_crystals), 634
RegularLoopCrystals (class in sage.categories.loop_crystals), 530
RegularLoopCrystals.ElementMethods (class in sage.categories.loop_crystals), 530
RegularSuperCrystals (class in sage.categories.regular_supercrystals), 635
RegularSuperCrystals.ElementMethods (class in sage.categories.regular_supercrystals), 635
RegularSuperCrystals.TensorProducts (class in sage.categories.regular_supercrystals), 636
required_methods() (sage.categories.category.Category method), 56
residue_field() (sage.categories.discrete_valuation.DiscreteValuationRings.ParentMethods method), 286
retract() (sage.categories.examples.finite EnumeratedSets.IsomorphicObjectOfFiniteEnumeratedSet method), 781
retract() (sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup method), 808
reversed() (sage.categories.homset.Homset method), 116
rhodes_radical_congruence() (sage.categories.finite_monoids.FiniteMonoids.ParentMethods method), 414
right_base_ring() (sage.categories.bimodules.Bimodules method), 187
right_domain() (sage.categories.action.Action method), 150
right_precomposition (sage.categories.action.PrecomposedAction attribute), 152
RightModules (class in sage.categories.right_modules), 636
RightModules.ElementMethods (class in sage.categories.right_modules), 636
RightModules.ParentMethods (class in sage.categories.right_modules), 636
ring() (sage.categories.category_types.CategoryIdeal method), 825
RingIdeals (class in sage.categories.ring_ideals), 637
Rings (class in sage.categories.rings), 637
Rings.ElementMethods (class in sage.categories.rings), 638
Rings.MorphismMethods (class in sage.categories.rings), 639
Rings.ParentMethods (class in sage.categories.rings), 641
Rings.SubcategoryMethods (class in sage.categories.rings), 645
Rngs (class in sage.categories.rings), 646
rowmotion() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 435
rowmotion_orbits() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 437
rowmotion_orbits_plots() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 437
RTrivial (sage.categories.semigroups.Semigroups.Subcategory attribute), 655
RTrivial() (sage.categories.semigroups.Semigroups.SubcategoryMethods method), 657
RTrivial_extra_super_categories() (sage.categories.l_trivial_semigroups.LTrivialSemigroups method), 530
RTrivialSemigroups (class in sage.categories.r_trivial_semigroups), 647
S
s() (sage.categories.crystals.Crystals.ElementMethods method), 268
s() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 524
sage.categories.action
module, 149
sage.categories.additive_groups
module, 152
sage.categories.additive_magmas
module, 154
sage.categories.additive_monoids
module, 165
sage.categories.additive_semigroups
module, 166
sage.categories.affine_weyl_groups
module, 168
sage.categories.algebra_functor
module, 745
sage.categories.algebra_ideals
module, 171
sage.categories.algebra_modules
module, 171
sage.categories.algebras
module, 172
sage.categories.algebras_with_basis
module, 175
sage.categories.aperiodic_semigroups
module, 180
sage.categories.associative_algebras
module, 180
sage.categories.bialgebras
module, 181
sage.categories.bialgebras_with_basis
module, 182
sage.categories.bimodules
module, 186
sage.categories.cartesian_product
module, 741
sage.categories.category
module, 27
sage.categories.category_cy_helper
module, 831
sage.categories.category_singleton
module, 828
sage.categories.category_types
module, 825
sage.categories.category_with_axiom
module, 62
sage.categories.classical_crystals
module, 187
sage.categories.coalgebras
module, 191
sage.categories.coalgebras_with_basis
module, 196
sage.categories.coercion_methods
Index 901

module, 833
sage.categories.commutative_additive_groups
module, 198
sage.categories.commutative_additive_monoids
module, 199
sage.categories.commutative_additive_semigroups
module, 199
sage.categories.commutative_algebra_ideals
module, 200
sage.categories.commutative_algebras
module, 201
sage.categories.commutative_ring_ideals
module, 201
sage.categories.commutative_rings
module, 201
sage.categories.complete_discrete_valuation
module, 206
sage.categories.complex_reflection_groups
module, 209
sage.categories.complex_reflection_or_generalized_coxeter_groups
module, 211
sage.categories.covariant Functorial Construction
module, 735
sage.categories.coxeter_group_algebras
module, 228
sage.categories.coxeter_groups
module, 231
sage.categories.crystals
module, 259
sage.categories.cw_complexes
module, 282
sage.categories.discrete_valuation
module, 284
sage.categories.distributive_magmas_and_additive_magmas
module, 287
sage.categories.division_rings
module, 288
sage.categories.domains
module, 289
sage.categories.dual
module, 745
sage.categories.enumerated_sets
module, 289
sage.categories.euclidean_domains
module, 296
sage.categories.examples.algebras_with_basis
module, 765
sage.categories.examples.commutative_additive_monoids
module, 766
sage.categories.examples.commutative_additive_semigroups

module, 767
sage.categories.examples.coxeter_groups
    module, 769
sage.categories.examples.crystals
    module, 769
sage.categories.examples.cw_complexes
    module, 771
sage.categories.examples.facade_sets
    module, 772
sage.categories.examples.finite_coxeter_groups
    module, 773
sage.categories.examples.finite_dimensional_algebras_with_basis
    module, 775
sage.categories.examples.finite_dimensional_lie_algebras_with_basis
    module, 776
sage.categories.examples.finite_enumerated_sets
    module, 780
sage.categories.examples.finite_monoids
    module, 782
sage.categories.examples.finite_semigroups
    module, 783
sage.categories.examples.finite_weyl_groups
    module, 786
sage.categories.examples.graded_connected_hopf_algebras_with_basis
    module, 788
sage.categories.examples.graded_modules_with_basis
    module, 789
sage.categories.examples.graphs
    module, 791
sage.categories.examples.hopf_algebras_with_basis
    module, 793
sage.categories.examples.infinite_enumerated_sets
    module, 794
sage.categories.examples.lie_algebras
    module, 796
sage.categories.examples.lie_algebras_with_basis
    module, 797
sage.categories.examples.magmas
    module, 798
sage.categories.examples.manifolds
    module, 800
sage.categories.examples.monoids
    module, 801
sage.categories.examples.posets
    module, 802
sage.categories.examples.semigroups
    module, 804
sage.categories.examples.semigroups_cython
    module, 809
sage.categories.examples.sets_cat
module, 811
sage.categories.examples.sets_with_grading
    module, 817
sage.categories.examples.with_realizations
    module, 818
sage.categories.facade_sets
    module, 732
sage.categories.fields
    module, 298
sage.categories.filtered_algebras
    module, 303
sage.categories.filtered_algebras_with_basis
    module, 303
sage.categories.filtered_modules
    module, 311
sage.categories.filtered_modules_with_basis
    module, 312
sage.categories.finite_complex_reflection_groups
    module, 326
sage.categories.finite_coxeter_groups
    module, 342
sage.categories.finite_crystals
    module, 353
sage.categories.finite_dimensional_algebras_with_basis
    module, 354
sage.categories.finite_dimensional_bialgebras_with_basis
    module, 372
sage.categories.finite_dimensional_coalgebras_with_basis
    module, 372
sage.categories.finite_dimensional_graded_lie_algebras_with_basis
    module, 373
sage.categories.finite_dimensional_hopf_algebras_with_basis
    module, 374
sage.categories.finite_dimensional_lie_algebras_with_basis
    module, 375
sage.categories.finite_dimensional_modules_with_basis
    module, 390
sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis
    module, 396
sage.categories.finite_dimensional_semisimple_algebras_with_basis
    module, 398
sage.categories.finiteEnumeratedSets
    module, 400
sage.categories.finiteFields
    module, 405
sage.categories.finiteGroups
    module, 406
sage.categories.finiteLatticePosets
    module, 409
sage.categories.finiteMonoids
<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage.categories.finite_permutation_groups</td>
<td>411</td>
</tr>
<tr>
<td>sage.categories.finite_posets</td>
<td>415</td>
</tr>
<tr>
<td>sage.categories.finite_semigroups</td>
<td>419</td>
</tr>
<tr>
<td>sage.categories.finite_sets</td>
<td>440</td>
</tr>
<tr>
<td>sage.categories.finite_weyl_groups</td>
<td>441</td>
</tr>
<tr>
<td>sage.categories.finitely_generated_lambda_bracket_algebras</td>
<td>443</td>
</tr>
<tr>
<td>sage.categories.finitely_generated_lie_conformal_algebras</td>
<td>444</td>
</tr>
<tr>
<td>sage.categories.finitely_generated_magmas</td>
<td>445</td>
</tr>
<tr>
<td>sage.categories.finitely_generated_semigroups</td>
<td>446</td>
</tr>
<tr>
<td>sage.categories.function_fields</td>
<td>448</td>
</tr>
<tr>
<td>sage.categories.functor</td>
<td>95</td>
</tr>
<tr>
<td>sage.categories.g_sets</td>
<td>449</td>
</tr>
<tr>
<td>sage.categories.gcd_domains</td>
<td>449</td>
</tr>
<tr>
<td>sage.categories.generalized_coxeter_groups</td>
<td>450</td>
</tr>
<tr>
<td>sage.categories_graded_algebras</td>
<td>451</td>
</tr>
<tr>
<td>sage.categories_graded_algebras_with_basis</td>
<td>452</td>
</tr>
<tr>
<td>sage.categories_graded_bialgebras</td>
<td>454</td>
</tr>
<tr>
<td>sage.categories_graded_bialgebras_with_basis</td>
<td>454</td>
</tr>
<tr>
<td>sage.categories_graded_coalgebras</td>
<td>454</td>
</tr>
<tr>
<td>sage.categories_graded_coalgebras_with_basis</td>
<td>455</td>
</tr>
<tr>
<td>sage.categories_graded_hopf_algebras</td>
<td>456</td>
</tr>
<tr>
<td>sage.categories_graded_hopf_algebras_with_basis</td>
<td>456</td>
</tr>
<tr>
<td>sage.categories_graded_lie_algebras</td>
<td>458</td>
</tr>
<tr>
<td>sage.categories_graded_lie_algebras_with_basis</td>
<td>459</td>
</tr>
<tr>
<td>sage.categories_graded_lie_conformal_algebras</td>
<td>460</td>
</tr>
</tbody>
</table>
module, 459
sage.categories.graded_modules
    module, 460
sage.categories.graded_modules_with_basis
    module, 461
sage.categories.graphs
    module, 462
sage.categories.group_algebras
    module, 464
sage.categories.groupoid
    module, 469
sage.categories.groups
    module, 469
sage.categories.h_trivial_semigroups
    module, 491
sage.categories.hecke_modules
    module, 477
sage.categories.highest_weight_crystals
    module, 478
sage.categories.homset
    module, 110
sage.categories.homsets
    module, 754
sage.categories.hopf_algebras
    module, 486
sage.categories.hopf_algebras_with_basis
    module, 488
sage.categories.infinite_enumerated_sets
    module, 492
sage.categories.integral_domains
    module, 493
sage.categories.isomorphic_objects
    module, 753
sage.categories.j_trivial_semigroups
    module, 494
sage.categories.kac_moody_algebras
    module, 494
sage.categories.l_trivial_semigroups
    module, 530
sage.categories.lambda_bracket_algebras
    module, 495
sage.categories.lambda_bracket_algebras_with_basis
    module, 497
sage.categories.lattice_posets
    module, 499
sage.categories.left_modules
    module, 500
sage.categories.lie_algebras
    module, 500
sage.categories.lie_algebras_with_basis
sage.categories.lie_conformal_algebras
    module, 510
sage.categories.lie_conformal_algebras_with_basis
    module, 512
sage.categories.lie_groups
    module, 516
sage.categories.loop_crystals
    module, 518
sage.categories.magmas
    module, 531
sage.categories.magmas_and_additive_magmas
    module, 545
sage.categories.magmatic_algebras
    module, 547
sage.categories.manifolds
    module, 550
sage.categories.map
    module, 101
sage.categories.matrix_algebras
    module, 554
sage.categories.metric_spaces
    module, 554
sage.categories.modular_abelian_varieties
    module, 558
sage.categories.modules
    module, 559
sage.categories.modules_with_basis
    module, 569
sage.categories.monoid_algebras
    module, 594
sage.categories.monoids
    module, 594
sage.categories.morphism
    module, 117
sage.categories.number_fields
    module, 600
sage.categories.objects
    module, 602
sage.categories.partially_ordered_monoids
    module, 603
sage.categories.permutation_groups
    module, 604
sage.categories.pointed_sets
    module, 605
sage.categories.polyhedra
    module, 605
sage.categories.poor_man_map
    module, 833
sage.categories.posets
<table>
<thead>
<tr>
<th>Module/Category Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage.categories.primer</td>
<td>1</td>
</tr>
<tr>
<td>sage.categories.principal_ideal_domains</td>
<td>121</td>
</tr>
<tr>
<td>sage.categories.pushout</td>
<td>614</td>
</tr>
<tr>
<td>sage.categories.quantum_group_representations</td>
<td>621</td>
</tr>
<tr>
<td>sage.categories.quotient_fields</td>
<td>615</td>
</tr>
<tr>
<td>sage.categories.quotients</td>
<td>615</td>
</tr>
<tr>
<td>sage.categories.r_trivial_semigroups</td>
<td>647</td>
</tr>
<tr>
<td>sage.categories.realizations</td>
<td>647</td>
</tr>
<tr>
<td>sage.categories.regular_crystals</td>
<td>647</td>
</tr>
<tr>
<td>sage.categories.regular_supercrystals</td>
<td>647</td>
</tr>
<tr>
<td>sage.categories.right_modules</td>
<td>647</td>
</tr>
<tr>
<td>sage.categories.ring_ideals</td>
<td>659</td>
</tr>
<tr>
<td>sage.categories.simplicial_complexes</td>
<td>660</td>
</tr>
<tr>
<td>sage.categories.sets_cat</td>
<td>661</td>
</tr>
<tr>
<td>sage.categories.sets_with_grading</td>
<td>666</td>
</tr>
<tr>
<td>sage.categories.sets_with_partial_maps</td>
<td>668</td>
</tr>
<tr>
<td>sage.categories.shephard_groups</td>
<td>689</td>
</tr>
<tr>
<td>sage.categories.signed_tensor</td>
<td>744</td>
</tr>
<tr>
<td>sage.categories.simplicial_complexes</td>
<td>689</td>
</tr>
<tr>
<td>sage.categories.simplicial_sets</td>
<td>689</td>
</tr>
</tbody>
</table>
Index


module, 691
sage.categories.subobjects
  module, 752
sage.categories.subquotients
  module, 751
sage.categories.super_algebras
  module, 697
sage.categories.super_algebras_with_basis
  module, 699
sage.categories.super_hopf_algebras_with_basis
  module, 700
sage.categories.super_lie_conformal_algebras
  module, 701
sage.categories.super_modules
  module, 702
sage.categories.super_modules_with_basis
  module, 704
sage.categories.supercrystals
  module, 707
sage.categories.tensor
  module, 743
sage.categories.topological_spaces
  module, 711
sage.categories.triangular_kac_moody_algebras
  module, 713
sage.categories.tutorial
  module, 99
sage.categories.unique_factorization_domains
  module, 715
sage.categories.unital_algebras
  module, 717
sage.categories.vector_bundles
  module, 719
sage.categories.vector_spaces
  module, 720
sage.categories.weyl_groups
  module, 723
sage.categories.with_realizations
  module, 760
scaling_factors() (sage.categories.crystals.CrystalMorphism method), 262
Schemes (class in sage.categories.schemes), 647
Schemes_over_base (class in sage.categories.schemes), 647
Section (class in sage.categories.map), 109
section() (sage.categories.map.FormalCompositeMap method), 104
section() (sage.categories.map.Map method), 109
section() (sage.categories.morphism.IdentityMorphism method), 118
semidirect_product() (sage.categories.groups.Groups.ParentMethods method), 476
semigroup_generators() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods method), 118
semigroup_generators()
  (sage.categories.examples.finite_monoids.IntegerModMonoid method), 783
semigroup_generators()
  (sage.categories.examples.finite_semigroups.LeftRegularBand method), 785
semigroup_generators()
  (sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups.ParentMethods method), 447
semigroup_generators()
  (sage.categories.monoids.Monoids.ParentMethods method), 598
semigroup_generators()
Semigroups
  (class in sage.categories.semigroups), 648
Semigroups.Algebras
  (class in sage.categories.semigroups), 648
Semigroups.Algebras.ParentMethods
  (class in sage.categories.semigroups), 648
Semigroups.CartesianProducts
  (class in sage.categories.semigroups), 650
Semigroups.ElementMethods
  (class in sage.categories.semigroups), 650
Semigroups.ParentMethods
  (class in sage.categories.semigroups), 651
Semigroups.Quotients
  (class in sage.categories.semigroups), 655
Semigroups.Quotients.ParentMethods
  (class in sage.categories.semigroups), 655
Semigroups.SubcategoryMethods
  (class in sage.categories.semigroups), 655
Semigroups.Subquotients
  (class in sage.categories.semigroups), 658
Semirings
  (class in sage.categories.semirings), 659
Semisimple
  (sage.categories.algebras.Algebras attribute), 174
Semisimple()
  (sage.categories.algebras.Algebras.SubcategoryMethods method), 174
semisimple_quotient()
  (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods method), 371
SemisimpleAlgebras
  (class in sage.categories.finitely_generated_semigroups.semisimple_algebras), 660
SemisimpleAlgebras.FiniteDimensional
  (class in sage.categories.finitely_generated_semigroups.semisimple_algebras), 660
set_base_point()
  (sage.categories.sets_cat.SimplicialSets.ParentMethods method), 692
SetMorphism
  (class in sage.categories.morphism), 120
Sets
  (class in sage.categories.sets_cat), 661
Sets.Algebras
  (class in sage.categories.sets_cat), 663
Sets.Algebras.ParentMethods
  (class in sage.categories.sets_cat), 663
Sets.CartesianProducts
  (class in sage.categories.sets_cat), 664
Sets.CartesianProducts.ElementMethods
  (class in sage.categories.sets_cat), 664
Sets.CartesianProducts.ParentMethods
  (class in sage.categories.sets_cat), 665
Sets.ElementMethods
  (class in sage.categories.sets_cat), 667
Sets.Infinite
  (class in sage.categories.sets_cat), 667
Sets.Infinite.ParentMethods
  (class in sage.categories.sets_cat), 667
Sets.IsomorphicObjects
  (class in sage.categories.sets_cat), 668
Sets.IsomorphicObjects.ParentMethods
  (class in sage.categories.sets_cat), 668
Sets.MorphismMethods
  (class in sage.categories.sets_cat), 668
Sets.ParentMethods
  (class in sage.categories.sets_cat), 669
Sets.Quotients
  (class in sage.categories.sets_cat), 671
Sets.Quotients.ParentMethods
  (class in sage.categories.sets_cat), 672
Sets.Realizations
  (class in sage.categories.sets_cat), 672
Sets.Realizations.ParentMethods
  (class in sage.categories.sets_cat), 672
Sets.SubcategoryMethods
  (class in sage.categories.sets_cat), 672
Sets.Subobjects
  (class in sage.categories.sets_cat), 680
Sets.Subobjects.ParentMethods
  (class in sage.categories.sets_cat), 680

Sets.Subquotients (class in sage.categories.sets_cat), 680
Sets.Subquotients.ElementMethods (class in sage.categories.sets_cat), 680
Sets.Subquotients.ParentMethods (class in sage.categories.sets_cat), 681
Sets.WithRealizations (class in sage.categories.sets_cat), 682
Sets.WithRealizations.ParentMethods (class in sage.categories.sets_cat), 682
Sets.WithRealizations.ParentMethods.Realizations (class in sage.categories.sets_cat), 682
SetsWithGrading (class in sage.categories.sets_with_grading), 686
SetsWithGrading.ParentMethods (class in sage.categories.sets_with_grading), 687
SetsWithPartialMaps (class in sage.categories.sets_with_partial_maps), 688
shard_poset() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 350
ShephardGroups (class in sage.categories.shephard_groups), 689
sign_representation() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 256
SignedTensorProductFunctor (class in sage.categories.signed_tensor), 744
SignedTensorProducts() (sage.categories.graded_algebras.GradedAlgebras.SubcategoryMethods method), 452
SignedTensorProducts() (sage.categories.signed_tensor.SignedTensorProductsCategory method), 744
SimplicialComplexes (class in sage.categories.simplicial_complexes), 689
SimplicialComplexes.Connected (class in sage.categories.simplicial_complexes), 690
SimplicialComplexes.Finite (class in sage.categories.simplicial_complexes), 690
SimplicialComplexes.Finite.ParentMethods (class in sage.categories.simplicial_complexes), 690
SimplicialComplexes.ParentMethods (class in sage.categories.simplicial_complexes), 690
SimplicialComplexes.SubcategoryMethods (class in sage.categories.simplicial_complexes), 690
SimplicialSets (class in sage.categories.simplicial_sets), 691
SimplicialSets.Finite (class in sage.categories.simplicial_sets), 691
SimplicialSets.Homsets (class in sage.categories.simplicial_sets), 691
SimplicialSets.Homsets.Endset (class in sage.categories.simplicial_sets), 691
SimplicialSets.Homsets.Endset.ParentMethods (class in sage.categories.simplicial_sets), 691
SimplicialSets.Pointed (class in sage.categories.simplicial_sets), 693
SimplicialSets.Pointed.Finite (class in sage.categories.simplicial_sets), 693
SimplicialSets.Pointed.Finite.ParentMethods (class in sage.categories.simplicial_sets), 693
SimplicialSets.SubcategoryMethods (class in sage.categories.simplicial_sets), 697
Smooth() (sage.categories.manifolds.Manifolds.SubcategoryMethods method), 553
Smooth() (sage.categories.vector_bundles.VectorBundles.SubcategoryMethods method), 719
some_elements() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods method), 227
some_elements() (sage.categories.enumerated_sets.EnumeratedSets.ParentMethods method), 294
some_elements() (sage.categories.examples.semigroups.LeftZeroSemigroup method), 807
some_elements() (sage.categories.examples.sets_cat.PrimeNumbers_Abstract method), 813
some_elements() (sage.categories.finitely_generated_lambda_bracket_algebras.FinitelyGeneratedLambdaBracketAlgebras.ParentMethods method), 444
some_elements() (sage.categories.finitely_generated_lie_conformal_algebras.FinitelyGeneratedLieConformalAlgebras.ParentMethods method), 445
some_elements() (sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups.Finite.ParentMethods method), 446
some_elements() (sage.categories.sets_cat.Sets.ParentMethods method), 671
special_node() (sage.categories.affine_weyl_groups.AffineWeylGroups.ParentMethods method), 170
squarefree_part() (sage.categories.unique_factorization_domains.UniqueFactorizationDomains.ElementMethods method), 715
standard_coxeter_elements() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 257
standard_coxeter_elements() (sage.categories.affine_weyl_groups.WellGenerated.ParentMethods method), 341
stanley_symmetric_function() (sage.categories.affine_weyl_groups.ElementMethods method), 728
stanley_symmetric_function_as_polynomial() (sage.categories.highest_weight_crystals.ElementMethods method), 479
stembridgeDel_depth() (sage.categories.regular_crystals.ElementMethods method), 629
stembridgeDel_rise() (sage.categories.regular_crystals.ElementMethods method), 629
stembridgeDelta_depth() (sage.categories.regular_crystals.ElementMethods method), 630
stembridgeDelta_rise() (sage.categories.regular_crystals.ElementMethods method), 630
stembridgeTriple() (sage.categories.regular_crystals.ElementMethods method), 630
step() (sage.categories.finitely_complex_reflection_groups.WellGenerated.ParentMethods method), 397
Stratified() (sage.categories.graded_lie_algebras.GradedLieAlgebras.SubcategoryMethods method), 458
string_parameters() (sage.categories.higher_weight_crystals.ElementMethods method), 479
structure() (sage.categories.category.Category method), 56
structure_coefficients() (sage.categories.graded_lie_algebras.ElementMethods method), 387
subalgebra() (sage.categories.examples.graded_lie_algebras_with_basis.AbelianLieAlgebra method), 779
subalgebra() (sage.categories.graded_lie_algebras_with_basis.ParentMethods method), 388
subalgebra() (sage.categories.graded_lie_algebras_with_basis.ParentMethods method), 508
subcategory_class() (sage.categories.category.Category method), 57
subcrystal() (sage.categories.crystals.ElementMethods method), 268
subcrystal() (sage.categories.crystals.ParentMethods method), 279
submodule() (sage.categories.modules_with_basis.ElementMethods method), 588
submonoid() (sage.categories.monoids.Monoids.ParentMethods method), 598
Subobjects() (sage.categories.graded_lie_algebras.SubcategoryMethods method), 677
SubobjectsCategory (class in sage.categories.subobjects), 752
Subquotients() (sage.categories.graded_lie_algebras.SubcategoryMethods method), 678
SubquotientsCategory (class in sage.categories.subquotients), 751
subsemigroup() (sage.categories.semigroups.Semigroups.ParentMethods method), 654
subset() (sage.categories.sets_with_grading.SetsWithGrading.ParentMethods method), 688
SubsetAlgebra (class in sage.categories.examples.with_realizations), 818
SubsetAlgebra.Bases (class in sage.categories.examples.with_realizations), 819
SubsetAlgebra.Bases.ParentMethods (class in sage.categories.examples.with_realizations), 819
SubsetAlgebra.Fundamental (class in sage.categories.examples.with_realizations), 820
SubsetAlgebra.In (class in sage.categories.examples.with_realizations), 821
SubsetAlgebra.Out (class in sage.categories.examples.with_realizations), 821
SubspaceFunctor (class in sage.categories.pushout), 138
succ_generators() (sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups.ParentMethods method), 447
sum() (sage.categories.additive_monoids.AdditiveMonoids.ParentMethods method), 165
sum_of_monomials() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 590
sum_of_terms() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 591
summation() (sage.categories.additive_magmas.AdditiveMagmas.ParentMethods method), 162
summation() (sage.categories.examples.commutative_additive_semigroups.FreeCommutativeAdditiveSemigroup method), 769
summation_from_element_class_add() (sage.categories.additive_magmas.AdditiveMagmas.ParentMethods method), 163
Super (sage.categories.algebras.Algebras attribute), 175
Super (sage.categories.algebras_with_basis.AlgebrasWithBasis attribute), 178
Super (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis attribute), 491
Super (sage.categories.lie_conformal_algebras.LieConformalAlgebras attribute), 515
Super (sage.categories.modules.Modules attribute), 568
Super (sage.categories.modules_with_basis.ModulesWithBasis attribute), 591
Super() (sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory method), 459
Super() (sage.categories.modules.Modules.SubcategoryMethods method), 565
super_categories() (sage.categories.additive_magmas.AdditiveMagmas method), 164
super_categories() (sage.categories.algebra_ideals.AlgebraIdeals method), 170
super_categories() (sage.categories.affine_weyl_groups.AffineWeylGroups method), 171
super_categories() (sage.categories.algebra_modules.AlgebraModules method), 172
super_categories() (sage.categories.bialgebras.Bialgebras method), 182
super_categories() (sage.categories.bimodules.Bimodules method), 187
super_categories() (sage.categories.category.Category method), 57
super_categories() (sage.categories.category.JoinCategory method), 61
super_categories() (sage.categories.category_types.Elements method), 827
super_categories() (sage.categories.category_with_axiom.Bars method), 85
super_categories() (sage.categories.category_with_axiom.Blahs method), 87
super_categories() (sage.categories.category_with_axiom.CategoryWithAxiom method), 91
super_categories() (sage.categories.category_with_axiom.TextObjects method), 92
super_categories() (sage.categories.category_with_axiom.TextObjectsOverBaseRing method), 93
super_categories() (sage.categories.classical_crystals.ClassicalCrystals method), 190
super_categories() (sage.categories.coalgebras.Coalgebras method), 196
super_categories() (sage.categories.commutative_algebraIdeals.CommutativeAlgebraIdeals method), 200
super_categories() (sage.categories.commutative_ringIdeals.CommutativeRingIdeals method), 201
super_categories() (sage.categories.complete_discretevaluation.CompleteDiscretevaluationFields method), 207
super_categories() (sage.categories.complete_discretevaluation.CompleteDiscretevaluationRings method), 209
super_categories() (sage.categories.complex_reflection_groups.ComplexReflectionGroups method), 211
super_categories() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups method), 228
super_categories() (sage.categories.covariant_functorial_construction.FunctorialConstructionCategory method), 740
super_categories() (sage.categories.coxeter_groups.CoxeterGroups method), 259
super_categories() (sage.categories.crystals.Crystals method), 282
super_categories() (sage.categories.cw_complexes.CWComplexes method), 284
super_categories() (sage.categories.discrete_valuation.DiscreteValuationFields method), 285
super_categories() (sage.categories.discrete_valuation.DiscreteValuationRings method), 286
super_categories() (sage.categories.domains.Domains method), 289
super_categories() (sage.categories.enumerated_sets.EnumeratedSets method), 295
super_categories() (sage.categories.euclidean_domains.EuclideanDomains method), 297
super_categories() (sage.categories.examples.semigroups_cython.IdempotentSemigroups method), 809
super_categories() (sage.categories.function_fields.FunctionFields method), 448
super_categories() (sage.categories.g_sets.GSets method), 449
super_categories() (sage.categories.gcd_domains.GcdDomains method), 450
super_categories() (sage.categories.generalized_coxeter_groups.GeneralizedCoxeterGroups method), 451
super_categories() (sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis method), 457
super_categories() (sage.categories.groups.Groupoid method), 464
super_categories() (sage.categories.groups.Groupoid method), 469
super_categories() (sage.categories.hecke_modules.HeckeModules method), 478
super_categories() (sage.categories.highest_weight_crystals.HighestWeightCrystals method), 485
super_categories() (sage.categories.homsets.Homsets method), 756
super_categories() (sage.categories.homsets.HomsetsOf method), 758
super_categories() (sage.categories.hopf_algebras.HopfAlgebras method), 488
super_categories() (sage.categories.kac_moody_algebras.KacMoodyAlgebras method), 495
super_categories() (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras method), 497
super_categories() (sage.categories.lattice_posets.LatticePosets method), 499
super_categories() (sage.categories.left_modules.LeftModules method), 500
super_categories() (sage.categories.lie_algebras.LieAlgebras method), 510
super_categories() (sage.categories.lie_conformal_algebras.LieConformalAlgebras method), 515
super_categories() (sage.categories.lie_groups.LieGroups method), 518
super_categories() (sage.categories.loop_crystals.KirillovReshetikhinCrystals method), 528
super_categories() (sage.categories.mean_crystals.RootCrystals method), 530
super_categories() (sage.categories.mappings.Mappings method), 530
super_categories() (sage.categories.mappings.Mappings method), 545
super_categories() (sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas method), 546
super_categories() (sage.categories.magnatic_algebras.MagnaticAlgebras method), 550
super_categories() (sage.categories.manifolds.ComplexManifolds method), 550
super_categories() (sage.categories.manifolds.Manifolds method), 553
super_categories() (sage.categories.module_algebras.MatrixAlgebras method), 554
super_categories() (sage.categories.modular_abelian_varieties.ModularAbelianVarieties method), 559
super_categories() (sage.categories.modules.Modules method), 568
super_categories() (sage.categories.number_fields.NumberFields method), 601
super_categories() (sage.categories.objects.Objects method), 603
super_categories() (sage.categories.partially_ordered_monoids.PartiallyOrderedMonoids method), 604
super_categories() (sage.categories.permutation_groups.PermutationGroups method), 604
super_categories() (sage.categories.pointed_sets.PointedSets method), 605
super_categories() (sage.categories.polyhedra.PolyhedralSets method), 605
super_categories() (sage.categories.posets.Posets method), 614
super_categories() (sage.categories.principal_ideal_domains.PrincipalIdealDomains method), 615
super_categories() (sage.categories.quantum_group_representations.QuantumGroupRepresentations method), 627
super_categories() (sage.categories.quotient_fields.QuotientFields method), 621
super_categories() (sage.categories.regular_crystals.RegularCrystals method), 634
super_categories() (sage.categories.regular_supercrystals.RegularSuperCrystals method), 636
super_categories() (sage.categories.right_modules.RightModules method), 636
super_categories() (sage.categories.ring_ideals.RingIdeals method), 637
super_categories() (sage.categories.schemes.Schemes method), 647
super_categories() (sage.categories.schemes.Schemes_over_base method), 648
super_categories() (sage.categories.semisimple_algebras.SemisimpleAlgebras method), 661
super_categories() (sage.categories.sets_cat.Sets method), 685
super_categories() (sage.categories.sets_with_grading.SetsWithGrading method), 688
super_categories() (sage.categories.sets_with_partial_maps.SetsWithPartialMaps method), 689
super_categories() (sage.categories.shephard_groups.ShephardGroups method), 697
super_categories() (sage.categories.simplicial_complexes.SimplicialComplexes method), 691
super_categories() (sage.categories.simplicial_sets.SimplicialSets method), 697
super_categories() (sage.categories.simplicial_sets.SimplicialSets method), 711
super_categories() (sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras method), 714
super_categories() (sage.categories.unique_factorization_domains.UniqueFactorizationDomains method), 716
super_categories() (sage.categories.vector_bundles.VectorBundles method), 720
super_categories() (sage.categories.vector_spaces.VectorSpaces method), 723
SuperAlgebras (class in sage.categories.super_algebras), 697
SuperAlgebras.ParentMethods (class in sage.categories.super_algebras), 698
SuperAlgebras.SignedTensorProducts (class in sage.categories.super_algebras), 698
SuperAlgebras.SubcategoryMethods (class in sage.categories.super_algebras), 698
SuperAlgebrasWithBasis (class in sage.categories.super_algebras_with_basis), 699
SuperAlgebrasWithBasis.ParentMethods (class in sage.categories.super_algebras_with_basis), 699
SuperAlgebrasWithBasis.SignedTensorProducts (class in sage.categories.super_algebras_with_basis), 699
SuperAlgebrasWithBasis.SignedTensorProducts (class in sage.categories.super_algebras_with_basis), 699
Supercommutative (sage.categories.super_algebras.SuperAlgebras attribute), 699
Supercommutative() (sage.categories.algebras.Algebras.SubcategoryMethods method), 174
Supercommutative() (sage.categories.algebras.Algebras.SubcategoryMethods method), 698
SupercommutativeAlgebras (class in sage.categories.supercommutative_algebras), 706
SupercommutativeAlgebras.SignedTensorProducts (class in sage.categories.supercommutative_algebras), 706
SupercommutativeAlgebras.SignedTensorProducts (class in sage.categories.supercommutative_algebras), 707
SupercommutativeAlgebras.WithBasis (class in sage.categories.supercommutative_algebras), 707
SupercommutativeAlgebras.WithBasis.ParentMethods (class in sage.categories.supercommutative_algebras), 707
SuperCrystals (class in sage.categories.supercrystals), 707
SuperCrystals.Finite (class in sage.categories.supercrystals), 707
SuperCrystals.Finite.ElementMethods (class in sage.categories.supercrystals), 707
SuperCrystals.Finite.ParentMethods (class in sage.categories.supercrystals), 708
SuperCrystals.ParentMethods (class in sage.categories.supercrystals), 710
SuperCrystals.TensorProducts (class in sage.categories.supercrystals), 711
SuperHopfAlgebrasWithBasis (class in sage.categories.super_hopf_algebras_with_basis), 700
SuperHopfAlgebrasWithBasis.ParentMethods (class in sage.categories.super_hopf_algebras_with_basis), 700
SuperLieConformalAlgebras (class in sage.categories.super_lie_conformal_algebras), 701
SuperLieConformalAlgebras.ElementMethods (class in sage.categories.super_lie_conformal_algebras), 701
SuperLieConformalAlgebras.Graded (class in sage.categories.super_lie_conformal_algebras), 701
SuperLieConformalAlgebras.ParentMethods (class in sage.categories.super_lie_conformal_algebras), 701
SuperModules (class in sage.categories.super_modules), 702
SuperModules.ElementMethods (class in sage.categories.super_modules), 702
SuperModules.ParentMethods (class in sage.categories.super_modules), 703
SuperModulesCategory (class in sage.categories.super_modules), 703
SuperModulesWithBasis (class in sage.categories.super_modules_with_basis), 704
SuperModulesWithBasis.ElementMethods (class in sage.categories.super_modules_with_basis), 705
SuperModulesWithBasis.ParentMethods (class in sage.categories.super_modules_with_basis), 706
support() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 247
support() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 577
support_of_term() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 577
supsets() (sage.categories.examples.with_realizations.SubsetAlgebra method), 822
Surface (class in sage.categories.examples.cw_complexes), 771
Surface.Element (class in sage.categories.examples.cw_complexes), 771
SymmetricGroup (class in sage.categories.examples.finite_weyl_groups), 786
SymmetricGroup.Element (class in sage.categories.examples.finite_weyl_groups), 786

T

T() (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras.ElementMethods method), 495
tensor (in module sage.categories.tensor), 743
tensor() (sage.categories.crystals.Crystals.ElementMethods method), 269
tensor() (sage.categories.crystals.Crystals.ParentMethods method), 280
tensor() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 577
tensor() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 591
tensor() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.ParentMethods method), 624
tensor() (sage.categories.super_algebras.SuperAlgebras.ParentMethods method), 698
tensor() (sage.categories.supercrystals.SuperCrystals.ParentMethods method), 710
tensor_signed (in module sage.categories.signed_tensor), 744
tensor_square() (sage.categories.modules.Modules.ParentMethods method), 563
TensorProductFunctor (class in sage.categories.tensor), 743
TensorProducts (class in sage.categories.crystals.Crystals.SubcategoryMethods method), 281
TensorProducts (class in sage.categories.modules.Modules.SubcategoryMethods method), 566
TensorProducts (class in sage.categories.tensor.TensorProductsCategory), 743
TensorProductsCategory (class in sage.categories.tensor), 743
term() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods method), 591
terms() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 578

916 Index
TestObjects (class in sage.categories.category_with_axiom), 91
TestObjects.Commutative (class in sage.categories.category_with_axiom), 92
TestObjects.Commutative.Facade (class in sage.categories.category_with_axiom), 92
TestObjects.Commutative.Finite (class in sage.categories.category_with_axiom), 92
TestObjects.FiniteDimensional (class in sage.categories.category_with_axiom), 92
TestObjects.FiniteDimensional.Finite (class in sage.categories.category_with_axiom), 92
TestObjects.FiniteDimensional.FiniteDimensional.Unital (class in sage.categories.category_with_axiom), 92
TestObjects.FiniteDimensional.Unital.Commutative (class in sage.categories.category_with_axiom), 92
TestObjects.Unital (class in sage.categories.category_with_axiom), 92
TestObjectsOverBaseRing (class in sage.categories.category_with_axiom), 92
TestObjectsOverBaseRing.Commutative (class in sage.categories.category_with_axiom), 92
TestObjectsOverBaseRing.Commutative.Facade (class in sage.categories.category_with_axiom), 92
TestObjectsOverBaseRing.Commutative.Finite (class in sage.categories.category_with_axiom), 92
TestObjectsOverBaseRing.Commutative.FiniteDimensional (class in sage.categories.category_with_axiom), 92
TestObjectsOverBaseRing.FiniteDimensional.Unital (class in sage.categories.category_with_axiom), 93
TestObjectsOverBaseRing.FiniteDimensional.Unital.Commutative (class in sage.categories.category_with_axiom), 93
TestObjectsOverBaseRing.Unital (class in sage.categories.category_with_axiom), 93
the_answer() (sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup method), 808
then() (sage.categories.map.FormalCompositeMap method), 104
to_graded_conversion() (sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis.ParentMethods method), 310
to_graded_conversion() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods method), 325
to_highest_weight() (sage.categories.crystals.Crystals.ElementMethods method), 269
to_lowest_weight() (sage.categories.crystals.Crystals.ElementMethods method), 270
to_matrix() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ElementMethods method), 327
to_matrix() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ElementMethods method), 359
to_module_generator() (sage.categories.crystals.CrystalMorphismByGenerators method), 264
to_vector() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra.Element method), 777
to_vector() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ElementMethods method), 375
to_vector() (sage.categories.lie_algebras.LieAlgebras.ElementMethods method), 502
to_vector() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ElementMethods method), 510
toggling_orbit_iter() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 438
toggling_orbits() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 439
toggling_orbits_plots() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 439
Topological (sage.categories.sets_cat.Sets attribute), 682
Topological() (sage.categories.sets_cat.Sets.SubcategoryMethods method), 680
TopologicalSpaces (class in sage.categories.topological_spaces), 711
TopologicalSpaces.CartesianProducts (class in sage.categories.topological_spaces), 711
TopologicalSpaces.Compact (class in sage.categories.topological_spaces), 712
TopologicalSpaces.Compact.CartesianProducts (class in sage.categories.topological_spaces), 712
TopologicalSpaces.Connected (class in sage.categories.topological_spaces), 712
TopologicalSpaces.Connected.CartesianProducts (class in sage.categories.topological_spaces), 712
TopologicalSpaces.SubcategoryMethods (class in sage.categories.topological_spaces), 712
trailling_coefficient() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 578
trailling_item() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 578
trailling_monomial() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 579
trailling_support() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 579
trailling_term() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods method), 579
TriangularKacMoodyAlgebras (class in sage.categories.triangular_kac_moody_algebras), 713
TriangularKacMoodyAlgebras.ElementMethods (class in sage.categories.triangular_kac_moody_algebras), 713
TriangularKacMoodyAlgebras.ParentMethods (class in sage.categories.triangular_kac_moody_algebras), 714
trivial_representation() (sage.categories.semigroups.Semigroups.ParentMethods method), 655
truncate() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods method), 318
type_to_parent() (in module sage.categories.pushout), 147

U
uncamelcase() (in module sage.categories.category_with_axiom), 95
UniqueFactorizationDomains (class in sage.categories.unique_factorization_domains), 715
UniqueFactorizationDomains.ElementMethods (class in sage.categories.unique_factorization_domains), 715
UniqueFactorizationDomains.ParentMethods (class in sage.categories.unique_factorization_domains), 716
Unital (sage.categories.associative_algebras.AssociativeAlgebras attribute), 180
Unital (sage.categories.magnetic_algebras.MagneticAlgebras attribute), 547
Unital (sage.categories.rings.Rings attribute), 646
Unital (sage.categories.semigroups.Semigroups attribute), 658
Unital (sage.categories.associative_algebras.Blahs.SubcategoryMethods method), 86
Unital (sage.categories.category_with_axiom.Blahs.SubcategoryMethods method), 541
Unital_extra_super_categories() (sage.categories.category_with_axiom.Bars method), 85
UnitalAlgebras (class in sage.categories.unital_algebras), 717
UnitalAlgebras.ParentMethods (class in sage.categories.unital_algebras), 717
UnitalAlgebras.WithBasis (class in sage.categories.unital_algebras), 717
UnitalAlgebras.WithBasis.ParentMethods (class in sage.categories.unital_algebras), 717
universal_commutative_algebra() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis method), 388
universal_enveloping_algebra() (sage.categories.lie_algebras.LieAlgebras.ParentMethods method), 509
universal_polynomials() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 388
unpickle_map() (in module sage.categories.map), 110
unrank() (sage.categories.enumerated_sets.EnumeratedSets.ParentMethods method), 294
unrank_range() (sage.categories.enumerated_sets.EnumeratedSets.ParentMethods method), 294
unrank_range() (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.ParentMethods method), 405
upper_covers() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 247
upper_covers() (sage.categories.posets.Posets.ParentMethods method), 614

V
vector_space() (sage.categories.fields.Fields.ParentMethods method), 302
VectorBundles (class in sage.categories.vector_bundles), 719
VectorBundles.Differentiable (class in sage.categories.vector_bundles), 719
VectorBundles.Smooth (class in sage.categories.vector_bundles), 719
VectorBundles.SubcategoryMethods (class in sage.categories.vector_bundles), 719
VectorFunctor (class in sage.categories.pushout), 138
VectorSpaces (class in sage.categories.vector_spaces), 720
VectorSpaces.CartesianProducts (class in sage.categories.vector_spaces), 720
VectorSpaces.DualObjects (class in sage.categories.vector_spaces), 720
VectorSpaces.ElementMethods (class in sage.categories.vector_spaces), 721
VectorSpaces.Filtered (class in sage.categories.vector_spaces), 721
VectorSpaces.Graded (class in sage.categories.vector_spaces), 721
VectorSpaces.ParentMethods (class in sage.categories.vector_spaces), 721
VectorSpaces.TensorProducts (class in sage.categories.vector_spaces), 721
VectorSpaces.WithBasis (class in sage.categories.vector_spaces), 721
VectorSpaces.WithBasis.CartesianProducts (class in sage.categories.vector_spaces), 721
VectorSpaces.WithBasis.Filtered (class in sage.categories.vector_spaces), 722
VectorSpaces.WithBasis.Graded (class in sage.categories.vector_spaces), 722
VectorSpaces.WithBasis.TensorProducts (class in sage.categories.vector_spaces), 722
verma_module() (sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras.ParentMethods method), 714
vertices() (sage.categories.examples.graphs.Cycle method), 792
vertices() (sage.categories.graphs.Graphs.ParentMethods method), 464
virtualization() (sage.categories.crystals.CrystalMorphism method), 263

W
w0() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 350
weak_covers() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 248
weak_lattice() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 351
weak_le() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 249
weak_order_ideal() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods method), 258
weak_poset() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 352
weight() (sage.categories.crystals.Crystals.ElementMethods method), 270
weight() (sage.categories.regular_crystals.RegularCrystals.ElementMethods method), 631
weight_lattice_realization() (sage.categories.crystals.Crystals.ParentMethods method), 281
weight_lattice_realization() (sage.categories.loop_crystals.LoopCrystals.ParentMethods method), 529
WellGenerated() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.SubcategoryMethods method), 336
weyl_group() (sage.categories.kac_moody_algebras.KacMoodyAlgebras.ParentMethods method), 494
WeylGroups (class in sage.categories.weyl_groups), 723
WeylGroups.ElementMethods (class in sage.categories.weyl_groups), 724
WeylGroups.ParentMethods (class in sage.categories.weyl_groups), 730
WithBasis (sage.categories.algebras.Algebras attribute), 175
WithBasis (sage.categories.bialgebras.Bialgebras attribute), 181
WithBasis (sage.categories.coalgebras.Coalgebras attribute), 195
WithBasis (sage.categories.hopf_algebras.HopfAlgebras attribute), 488
WithBasis (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras attribute), 497
WithBasis (sage.categories.lie_algebras.LieAlgebras attribute), 509
WithBasis (sage.categories.lie_algebras.LieAlgebras.FiniteDimensional attribute), 502
WithBasis (sage.categories.lie_conformal_algebras.LieConformalAlgebras attribute), 515
WithBasis (sage.categories.modules.Modules attribute), 568
WithBasis (sage.categories.examples.commutative_additive_monoids.FreeCommutativeAdditiveMonoid method), 767
WithBasis (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra method), 779
WithBasis (sage.categories.examples.lie_algebras.LieAlgebraFromAssociative method), 796
WithBasis (sage.categories.examples.posets.FiniteSetsOrderedByInclusion.Element attribute), 803
WithBasis (sage.categories.examples.semigroups.FreeSemigroup.Element attribute), 805

X
xgcd() (sage.categories.fields.Fields.ElementMethods method), 300
xgcd() (sage.categories.quotient_fields.QuotientFields.ElementMethods method), 620

Z
zero() (sage.categories.examples.commutative_additive_monoids.FreeCommutativeAdditiveMonoid method), 767
zero() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra method), 779
zero() (sage.categories.examples.lie_algebras.LieAlgebraFromAssociative method), 796
zero() (sage.categories.examples.posets.FiniteSetsOrderedByInclusion.Element attribute), 803
zeta_function() (sage.categories.number_fields.NumberFields.ParentMethods method), 601

920 Index