Category Framework

Release 9.6

The Sage Development Team

May 16, 2022
1 Introduction 1
 1.1 Sage categories quickref 1

2 The Sage Category Framework 3
 2.1 Elements, parents, and categories in Sage: a (draft of) primer 3
 2.2 Categories 30
 2.3 Axioms 66
 2.4 Functors 100
 2.5 Implementing a new parent: a (draft of) tutorial 104

3 Maps and Morphisms 107
 3.1 Base class for maps 107
 3.2 Homsets 116
 3.3 Morphisms 124
 3.4 Coercion via construction functors 128

4 Individual Categories 157
 4.1 Group, ring, etc. actions on objects 157
 4.2 Additive groups 160
 4.3 Additive magmas 162
 4.4 Additive monoids 173
 4.5 Additive semigroups 174
 4.6 Affine Weyl groups 176
 4.7 Algebra ideals 179
 4.8 Algebra modules 180
 4.9 Algebras 180
 4.10 Algebras With Basis 184
 4.11 Aperiodic semigroups 189
 4.12 Associative algebras 189
 4.13 Bialgebras 189
 4.14 Bialgebras with basis 191
 4.15 Bimodules 195
 4.16 Classical Crystals 196
 4.17 Coalgebras 200
 4.18 Coalgebras with basis 205
 4.19 Commutative additive groups 207
 4.20 Commutative additive monoids 209
 4.21 Commutative additive semigroups 209
 4.22 Commutative algebra ideals 210
 4.23 Commutative algebras 210
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.24 Commutative ring ideals</td>
<td>211</td>
</tr>
<tr>
<td>4.25 Commutative rings</td>
<td>211</td>
</tr>
<tr>
<td>4.26 Complete Discrete Valuation Rings (CDVR) and Fields (CDVF)</td>
<td>215</td>
</tr>
<tr>
<td>4.27 Complex reflection groups</td>
<td>219</td>
</tr>
<tr>
<td>4.28 Common category for Generalized Coxeter Groups or Complex Reflection Groups</td>
<td>221</td>
</tr>
<tr>
<td>4.29 Coxeter Group Algebras</td>
<td>239</td>
</tr>
<tr>
<td>4.30 Coxeter Groups</td>
<td>242</td>
</tr>
<tr>
<td>4.31 Crystals</td>
<td>275</td>
</tr>
<tr>
<td>4.32 CW Complexes</td>
<td>299</td>
</tr>
<tr>
<td>4.33 Discrete Valuation Rings (DVR) and Fields (DVF)</td>
<td>301</td>
</tr>
<tr>
<td>4.34 Distributive Magmas and Additive Magmas</td>
<td>304</td>
</tr>
<tr>
<td>4.35 Division rings</td>
<td>305</td>
</tr>
<tr>
<td>4.36 Domains</td>
<td>306</td>
</tr>
<tr>
<td>4.37 Enumerated sets</td>
<td>306</td>
</tr>
<tr>
<td>4.38 Euclidean domains</td>
<td>313</td>
</tr>
<tr>
<td>4.39 Fields</td>
<td>315</td>
</tr>
<tr>
<td>4.40 Filtered Algebras</td>
<td>320</td>
</tr>
<tr>
<td>4.41 Filtered Algebras With Basis</td>
<td>321</td>
</tr>
<tr>
<td>4.42 Filtered Modules</td>
<td>328</td>
</tr>
<tr>
<td>4.43 Filtered Modules With Basis</td>
<td>330</td>
</tr>
<tr>
<td>4.44 Finite Complex Reflection Groups</td>
<td>345</td>
</tr>
<tr>
<td>4.45 Finite Coxeter Groups</td>
<td>362</td>
</tr>
<tr>
<td>4.46 Finite Crystals</td>
<td>374</td>
</tr>
<tr>
<td>4.47 Finite dimensional algebras with basis</td>
<td>375</td>
</tr>
<tr>
<td>4.48 Finite dimensional bialgebras with basis</td>
<td>393</td>
</tr>
<tr>
<td>4.49 Finite dimensional coalgebras with basis</td>
<td>393</td>
</tr>
<tr>
<td>4.50 Finite Dimensional Graded Lie Algebras With Basis</td>
<td>393</td>
</tr>
<tr>
<td>4.51 Finite dimensional Hopf algebras with basis</td>
<td>395</td>
</tr>
<tr>
<td>4.52 Finite Dimensional Lie Algebras With Basis</td>
<td>395</td>
</tr>
<tr>
<td>4.53 Finite dimensional modules with basis</td>
<td>412</td>
</tr>
<tr>
<td>4.54 Finite Dimensional Nilpotent Lie Algebras With Basis</td>
<td>420</td>
</tr>
<tr>
<td>4.55 Finite dimensional semisimple algebras with basis</td>
<td>421</td>
</tr>
<tr>
<td>4.56 Finite Enumerated Sets</td>
<td>423</td>
</tr>
<tr>
<td>4.57 Finite fields</td>
<td>429</td>
</tr>
<tr>
<td>4.58 Finite groups</td>
<td>430</td>
</tr>
<tr>
<td>4.59 Finite lattice posets</td>
<td>433</td>
</tr>
<tr>
<td>4.60 Finite monoids</td>
<td>435</td>
</tr>
<tr>
<td>4.61 Finite Permutation Groups</td>
<td>439</td>
</tr>
<tr>
<td>4.62 Finite posets</td>
<td>443</td>
</tr>
<tr>
<td>4.63 Finite semigroups</td>
<td>465</td>
</tr>
<tr>
<td>4.64 Finite sets</td>
<td>467</td>
</tr>
<tr>
<td>4.65 Finite Weyl Groups</td>
<td>468</td>
</tr>
<tr>
<td>4.66 Finitely Generated Lambda bracket Algebras</td>
<td>468</td>
</tr>
<tr>
<td>4.67 Finitely Generated Lie Conformal Algebras</td>
<td>470</td>
</tr>
<tr>
<td>4.68 Finitely generated magmas</td>
<td>471</td>
</tr>
<tr>
<td>4.69 Finitely generated semigroups</td>
<td>471</td>
</tr>
<tr>
<td>4.70 Function fields</td>
<td>474</td>
</tr>
<tr>
<td>4.71 G-Groups</td>
<td>474</td>
</tr>
<tr>
<td>4.72 Gcd domains</td>
<td>475</td>
</tr>
<tr>
<td>4.73 Generalized Coxeter Groups</td>
<td>476</td>
</tr>
<tr>
<td>4.74 Graded Algebras</td>
<td>477</td>
</tr>
<tr>
<td>4.75 Graded algebras with basis</td>
<td>478</td>
</tr>
<tr>
<td>4.76 Graded bialgebras</td>
<td>480</td>
</tr>
<tr>
<td>4.77 Graded bialgebras with basis</td>
<td>480</td>
</tr>
</tbody>
</table>
4.130 Quotient fields ... 651
4.129 Principal ideal domains 650
4.127 Polyhedral subsets of free ZZ, QQ or RR-modules. 640
4.126 Pointed sets .. 640
4.125 Permutation groups ... 639
4.124 Partially ordered monoids 638
4.123 Objects ... 637
4.121 Monoids .. 629
4.120 Monoid algebras ... 628
4.119 Modules With Basis .. 602
4.118 Modules .. 591
4.117 Modular abelian varieties 590
4.116 Metric Spaces ... 585
4.115 Matrix algebras ... 584
4.114 Manifolds .. 581
4.113 Non-unital non-associative algebras 578
4.112 Magmas and Additive Magmas 576
4.111 Magmas ... 562
4.110 L-trivial semigroups .. 561
4.88 Group Algebras .. 493
4.87 Graphs .. 491
4.86 Graded modules with basis 487
4.85 Graded modules ... 486
4.84 Graded Lie Conformal Algebras 485
4.83 Graded Lie Algebras With Basis 485
4.82 Graded Lie Algebras .. 484
4.81 Graded Hopf algebras with basis 482
4.80 Graded Hopf algebras .. 481
4.79 Graded coalgebras with basis 480
4.78 Graded Coalgebras .. 480
4.77 Groups .. 499
4.76 Integral domains ... 523
4.75 J-trivial semigroups .. 523
4.74 Hecke modules ... 508
4.73 Hopf algebras ... 515
4.72 Highest Weight Crystals 509
4.71 Hopf algebras with basis 518
4.70 H-trivial semigroups .. 521
4.69 Infinite Enumerated Sets 522
4.68 Integral domains ... 523
4.67 Lambda Bracket Algebras 525
4.66 Lie Conformal Algebras With Basis 546
4.65 Lie Conformal Algebras 542
4.64 Lie Algebras With Basis 540
4.63 Lie Algebras .. 530
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.132 Regular Crystals</td>
<td>663</td>
</tr>
<tr>
<td>4.133 Regular Supercrystals</td>
<td>671</td>
</tr>
<tr>
<td>4.134 Right modules</td>
<td>673</td>
</tr>
<tr>
<td>4.135 Ring ideals</td>
<td>673</td>
</tr>
<tr>
<td>4.136 Rings</td>
<td>674</td>
</tr>
<tr>
<td>4.137 Rings</td>
<td>683</td>
</tr>
<tr>
<td>4.138 R-trivial semigroups</td>
<td>684</td>
</tr>
<tr>
<td>4.139 Schemes</td>
<td>684</td>
</tr>
<tr>
<td>4.140 Semigroups</td>
<td>685</td>
</tr>
<tr>
<td>4.141 Semirings</td>
<td>697</td>
</tr>
<tr>
<td>4.142 Semisimple Algebras</td>
<td>697</td>
</tr>
<tr>
<td>4.143 Sets</td>
<td>699</td>
</tr>
<tr>
<td>4.144 Sets With a Grading</td>
<td>725</td>
</tr>
<tr>
<td>4.145 SetsWithPartialMaps</td>
<td>728</td>
</tr>
<tr>
<td>4.146 Shephard Groups</td>
<td>728</td>
</tr>
<tr>
<td>4.147 Simplicial Complexes</td>
<td>729</td>
</tr>
<tr>
<td>4.148 Simplicial Sets</td>
<td>730</td>
</tr>
<tr>
<td>4.149 Super Algebras</td>
<td>737</td>
</tr>
<tr>
<td>4.150 Super algebras with basis</td>
<td>739</td>
</tr>
<tr>
<td>4.151 Super Hopf algebras with basis</td>
<td>740</td>
</tr>
<tr>
<td>4.152 Super Lie Conformal Algebras</td>
<td>740</td>
</tr>
<tr>
<td>4.153 Super modules</td>
<td>742</td>
</tr>
<tr>
<td>4.154 Super modules with basis</td>
<td>744</td>
</tr>
<tr>
<td>4.155 Supercommutative Algebras</td>
<td>746</td>
</tr>
<tr>
<td>4.156 Supercrystals</td>
<td>747</td>
</tr>
<tr>
<td>4.157 Topological Spaces</td>
<td>752</td>
</tr>
<tr>
<td>4.158 Kac-Moody Algebras With Triangular Decomposition Basis</td>
<td>753</td>
</tr>
<tr>
<td>4.159 Unique factorization domains</td>
<td>755</td>
</tr>
<tr>
<td>4.160 Unital algebras</td>
<td>757</td>
</tr>
<tr>
<td>4.161 Vector Bundles</td>
<td>759</td>
</tr>
<tr>
<td>4.162 Vector Spaces</td>
<td>760</td>
</tr>
<tr>
<td>4.163 Weyl Groups</td>
<td>764</td>
</tr>
<tr>
<td>4.164 Technical Categories</td>
<td>774</td>
</tr>
<tr>
<td>5 Functorial constructions</td>
<td>777</td>
</tr>
<tr>
<td>5.1 Covariant Functorial Constructions</td>
<td>777</td>
</tr>
<tr>
<td>5.2 Cartesian Product Functorial Construction</td>
<td>783</td>
</tr>
<tr>
<td>5.3 Tensor Product Functorial Construction</td>
<td>785</td>
</tr>
<tr>
<td>5.4 Signed Tensor Product Functorial Construction</td>
<td>786</td>
</tr>
<tr>
<td>5.5 Dual functorial construction</td>
<td>787</td>
</tr>
<tr>
<td>5.6 Group algebras and beyond: the Algebra functorial construction</td>
<td>787</td>
</tr>
<tr>
<td>5.7 Subquotient Functorial Construction</td>
<td>794</td>
</tr>
<tr>
<td>5.8 Quotients Functorial Construction</td>
<td>794</td>
</tr>
<tr>
<td>5.9 Subobjects Functorial Construction</td>
<td>795</td>
</tr>
<tr>
<td>5.10 Isomorphic Objects Functorial Construction</td>
<td>795</td>
</tr>
<tr>
<td>5.11 Homset categories</td>
<td>796</td>
</tr>
<tr>
<td>5.12 Realizations Covariant Functorial Construction</td>
<td>800</td>
</tr>
<tr>
<td>5.13 With Realizations Covariant Functorial Construction</td>
<td>802</td>
</tr>
<tr>
<td>6 Examples of parents using categories</td>
<td>807</td>
</tr>
<tr>
<td>6.1 Examples of algebras with basis</td>
<td>807</td>
</tr>
<tr>
<td>6.2 Examples of commutative additive monoids</td>
<td>808</td>
</tr>
<tr>
<td>6.3 Examples of commutative additive semigroups</td>
<td>809</td>
</tr>
<tr>
<td>6.4 Examples of Coxeter groups</td>
<td>811</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.5 Example of a crystal</td>
<td>811</td>
</tr>
<tr>
<td>6.6 Examples of CW complexes</td>
<td>813</td>
</tr>
<tr>
<td>6.7 Example of facade set</td>
<td>814</td>
</tr>
<tr>
<td>6.8 Examples of finite Coxeter groups</td>
<td>815</td>
</tr>
<tr>
<td>6.9 Example of a finite dimensional algebra with basis</td>
<td>817</td>
</tr>
<tr>
<td>6.10 Examples of a finite dimensional Lie algebra with basis</td>
<td>818</td>
</tr>
<tr>
<td>6.11 Examples of finite enumerated sets</td>
<td>822</td>
</tr>
<tr>
<td>6.12 Examples of finite monoids</td>
<td>824</td>
</tr>
<tr>
<td>6.13 Examples of finite semigroups</td>
<td>826</td>
</tr>
<tr>
<td>6.14 Examples of finite Weyl groups</td>
<td>828</td>
</tr>
<tr>
<td>6.15 Examples of graded connected Hopf algebras with basis</td>
<td>830</td>
</tr>
<tr>
<td>6.16 Examples of graded modules with basis</td>
<td>832</td>
</tr>
<tr>
<td>6.17 Examples of graphs</td>
<td>834</td>
</tr>
<tr>
<td>6.18 Examples of Hopf algebras with basis</td>
<td>835</td>
</tr>
<tr>
<td>6.19 Examples of infinite enumerated sets</td>
<td>837</td>
</tr>
<tr>
<td>6.20 Examples of a Lie algebra</td>
<td>838</td>
</tr>
<tr>
<td>6.21 Examples of a Lie algebra with basis</td>
<td>840</td>
</tr>
<tr>
<td>6.22 Examples of magmas</td>
<td>841</td>
</tr>
<tr>
<td>6.23 Examples of manifolds</td>
<td>842</td>
</tr>
<tr>
<td>6.24 Examples of monoids</td>
<td>843</td>
</tr>
<tr>
<td>6.25 Examples of posets</td>
<td>845</td>
</tr>
<tr>
<td>6.26 Examples of semigroups</td>
<td>847</td>
</tr>
<tr>
<td>6.27 Examples of semigroups in cython</td>
<td>852</td>
</tr>
<tr>
<td>6.28 Examples of sets</td>
<td>854</td>
</tr>
<tr>
<td>6.29 Example of a set with grading</td>
<td>860</td>
</tr>
<tr>
<td>6.30 Examples of parents endowed with multiple realizations</td>
<td>861</td>
</tr>
<tr>
<td>7 Internals</td>
<td>867</td>
</tr>
<tr>
<td>7.1 Specific category classes</td>
<td>867</td>
</tr>
<tr>
<td>7.2 Singleton categories</td>
<td>870</td>
</tr>
<tr>
<td>7.3 Fast functions for the category framework</td>
<td>873</td>
</tr>
<tr>
<td>7.4 Coercion methods for categories</td>
<td>875</td>
</tr>
<tr>
<td>7.5 Poor Man’s map</td>
<td>875</td>
</tr>
<tr>
<td>8 Indices and Tables</td>
<td>877</td>
</tr>
<tr>
<td>Bibliography</td>
<td>879</td>
</tr>
<tr>
<td>Python Module Index</td>
<td>881</td>
</tr>
<tr>
<td>Index</td>
<td>885</td>
</tr>
</tbody>
</table>
1.1 Sage categories quickref

- sage.categories.primer? a primer on Elements, Parents, and Categories
- sage.categories.tutorial? a tutorial on Elements, Parents, and Categories
- Category? technical background on categories
- Sets().Semigroups().Algebras(QQ) some categories
- SemiGroups().example()?? sample implementation of a semigroup
- Hom(A, B), End(A, Algebras()) homomorphisms sets
- tensor, cartesian_product functorial constructions

Module layout:

- sage.categories.basic the basic categories
- sage.categories.all all categories
- sage.categories.semigroups the Semigroups() category
- sage.categories.examples.semigroups the example of Semigroups()
- sage.categories.homset morphisms, ...
- sage.categories.map
- sage.categories.morphism
- sage.categories.functors
- sage.categories.cartesian_product functorial constructions
- sage.categories.tensor
- sage.categories.dual
2.1 Elements, parents, and categories in Sage: a (draft of) primer

2.1.1 Abstract

The purpose of categories in Sage is to translate the mathematical concept of categories (category of groups, of vector spaces, ...) into a concrete software engineering design pattern for:

- organizing and promoting generic code
- fostering consistency across the Sage library (naming conventions, doc, tests)
- embedding more mathematical knowledge into the system

This design pattern is largely inspired from Axiom and its followers (Aldor, Fricas, MuPAD, ...). It differs from those by:

- blending in the Magma inspired concept of Parent/Element
- being built on top of (and not into) the standard Python object oriented and class hierarchy mechanism. This did not require changing the language, and could in principle be implemented in any language supporting the creation of new classes dynamically.
The general philosophy is that *Building mathematical information into the system yields more expressive, more conceptual and, at the end, easier to maintain and faster code* (within a programming realm; this would not necessarily apply to specialized libraries like gmp!).

One line pitch for mathematicians

Categories in Sage provide a library of interrelated bookshelves, with each bookshelf containing algorithms, tests, documentation, or some mathematical facts about the objects of a given category (e.g. groups).

One line pitch for programmers

Categories in Sage provide a large hierarchy of abstract classes for mathematical objects. To keep it maintainable, the inheritance information between the classes is not hardcoded but instead reconstructed dynamically from duplication free semantic information.

2.1.2 Introduction: Sage as a library of objects and algorithms

The Sage library, with more than one million lines of code, documentation, and tests, implements:

- Thousands of different kinds of objects (classes):
 - Integers, polynomials, matrices, groups, number fields, elliptic curves, permutations, morphisms, languages, … and a few racoons …
- Tens of thousands methods and functions:
 - Arithmetic, integer and polynomial factorization, pattern matching on words, …

Some challenges

- How to organize this library?
 One needs some bookshelves to group together related objects and algorithms.
- How to ensure consistency?
 Similar objects should behave similarly:

```
sage: Permutations(5).cardinality()
120

sage: GL(2,2).cardinality()
6

sage: A=random_matrix(ZZ,6,3,x=7)
sage: L=LatticePolytope(A.rows())
sage: L.npoints()  # oops! # random
37
```

- How to ensure robustness?
- How to reduce duplication?
 Example: binary powering:
We want to implement binary powering only once, as *generic* code that will apply in all cases.

2.1.3 A bit of help from abstract algebra

The hierarchy of categories

What makes binary powering work in the above examples? In both cases, we have a set endowed with a *multiplicative binary operation* which is *associative* and which has a unit element. Such a set is called a *monoid*, and binary powering (to a non-negative power) works generally for any monoid.

Sage knows about monoids:

```sage
sage: Monoids()
Category of monoids
```

and sure enough, binary powering is defined there:

```sage
sage: m._pow_int.__module__
'sage.categories.monoids'
```

That’s our bookshelf! And it’s used in many places:

```sage
sage: GL(2,ZZ) in Monoids()
True
sage: NN in Monoids()
True
```

For a less trivial bookshelf we can consider euclidean rings: once we know how to do euclidean division in some set \(R \), we can compute gcd’s in \(R \) generically using the Euclidean algorithm.

We are in fact very lucky: abstract algebra provides us right away with a large and robust set of bookshelves which is the result of centuries of work of mathematicians to identify the important concepts. This includes for example:

```sage
sage: Sets()
Category of sets
```

```sage
sage: Groups()
Category of groups
```

```sage
sage: Rings()
Category of rings
```

```sage
sage: Fields()
Category of fields
```

(continues on next page)
Each of the above is called a category. It typically specifies what are the operations on the elements, as well as the axioms satisfied by those operations. For example the category of groups specifies that a group is a set endowed with a binary operation (the multiplication) which is associative and admits a unit and inverses.

Each set in Sage knows which bookshelf of generic algorithms it can use, that is to which category it belongs:

```sage
sage: G = GL(2,ZZ)
sage: G.category()
Category of infinite groups
```

In fact a group is a semigroup, and Sage knows about this:

```sage
sage: Groups().is_subcategory(Semigroups())
True
sage: G in Semigroups()
True
```

Altogether, our group gets algorithms from a bunch of bookshelves:

```sage
sage: G.categories()
[Category of infinite groups, Category of groups, Category of monoids, ...
, Category of magmas,
Category of infinite sets, ...]
```

Those can be viewed graphically:

```sage
sage: g = Groups().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested
```

In case `dot2tex` is not available, you can use instead:

```sage
sage: g.show(vertex_shape=None, figsize=20)
```

Here is an overview of all categories in Sage:

```sage
sage: g = sage.categories.category.category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested
```

Wrap-up: generic algorithms in Sage are organized in a hierarchy of bookshelves modelled upon the usual hierarchy of categories provided by abstract algebra.
Elements, Parents, Categories

Parent

A parent is a Python instance modelling a set of mathematical elements together with its additional (algebraic) structure. Examples include the ring of integers, the group S_3, the set of prime numbers, the set of linear maps between two given vector spaces, and a given finite semigroup.

These sets are often equipped with additional structure: the set of all integers forms a ring. The main way of encoding this information is specifying which categories a parent belongs to.

It is completely possible to have different Python instances modelling the same set of elements. For example, one might want to consider the ring of integers, or the poset of integers under their standard order, or the poset of integers under divisibility, or the semiring of integers under the operations of maximum and addition. Each of these would be a different instance, belonging to different categories.

For a given model, there should be a unique instance in Sage representing that parent:

```
sage: IntegerRing() is IntegerRing()
True
```

Element

An element is a Python instance modelling a mathematical element of a set.

Examples of element include 5 in the integer ring, $x^3 - x$ in the polynomial ring in x over the rationals, $4 + O(3^3)$ in the 3-adics, the transposition (12) in S_3, and the identity morphism in the set of linear maps from \mathbb{Q}^3 to \mathbb{Q}^3.

Every element in Sage has a parent. The standard idioms in Sage for creating elements is to create their parent, and then provide enough data to define the element:

```
sage: R = PolynomialRing(ZZ, name='x')
sage: R([1,2,3])
3*x^2 + 2*x + 1
```

One can also create elements using various methods on the parent and arithmetic of elements:

```
sage: x = R.gen()
sage: 1 + 2*x + 3*x^2
3*x^2 + 2*x + 1
```

Unlike parents, elements in Sage are not necessarily unique:

```
sage: ZZ(5040) is ZZ(5040)
False
```

Many parents model algebraic structures, and their elements support arithmetic operations. One often further wants to do arithmetic by combining elements from different parents: adding together integers and rationals for example. Sage supports this feature using coercion (see sage.structure.coerce for more details).

It is possible for a parent to also have simultaneously the structure of an element. Consider for example the monoid of all finite groups, endowed with the Cartesian product operation. Then, every finite group (which is a parent) is also an element of this monoid. This is not yet implemented, and the design details are not yet fixed but experiments are underway in this direction.
Todo: Give a concrete example, typically using `ElementWrapper`.

Category

A *category* is a Python instance modelling a mathematical category.

Examples of categories include the category of finite semigroups, the category of all (Python) objects, the category of \(\mathbb{Z}\)-algebras, and the category of Cartesian products of \(\mathbb{Z}\)-algebras:

```
sage: FiniteSemigroups()
Category of finite semigroups
sage: Objects()
Category of objects
sage: Algebras(ZZ)
Category of algebras over Integer Ring
sage: Algebras(ZZ).CartesianProducts()
Category of Cartesian products of algebras over Integer Ring
```

Mind the ‘s’ in the names of the categories above; `GroupAlgebra` and `GroupAlgebras` are distinct things.

Every parent belongs to a collection of categories. Moreover, categories are interrelated by the super categories relation. For example, the category of rings is a super category of the category of fields, because every field is also a ring.

A category serves two roles:

- to provide a model for the mathematical concept of a category and the associated structures: homsets, morphisms, functorial constructions, axioms.
- to organize and promote generic code, naming conventions, documentation, and tests across similar mathematical structures.

CategoryObject

Objects of a mathematical category are not necessarily parents. Parent has a superclass that provides a means of modeling such.

For example, the category of schemes does not have a faithful forgetful functor to the category of sets, so it does not make sense to talk about schemes as parents.

Morphisms, Homsets

As category theorists will expect, `Morphisms` and `Homsets` will play an ever more important role, as support for them will improve.

Much of the mathematical information in Sage is encoded as relations between elements and their parents, parents and their categories, and categories and their super categories:

```
sage: 1.parent()
Integer Ring
sage: ZZ
```
Integer Ring

\begin{verbatim}
sage: ZZ.category()
Join of Category of euclidean domains
 and Category of infinite enumerated sets
 and Category of metric spaces

sage: ZZ.categories()
[Join of Category of euclidean domains
 and Category of infinite enumerated sets
 and Category of metric spaces,
 Category of euclidean domains, Category of principal ideal domains,
 Category of unique factorization domains, Category of gcd domains,
 Category of integral domains, Category of domains,
 Category of commutative rings, Category of rings, ...
 Category of magmas and additive magmas, ...
 Category of monoids, Category of semigroups,
 Category of commutative magmas, Category of unital magmas, Category of magmas,
 Category of commutative additive groups, ..., Category of additive magmas,
 Category of infinite enumerated sets, Category of enumerated sets,
 Category of infinite sets, Category of metric spaces,
 Category of topological spaces, Category of sets,
 Category of sets with partial maps,
 Category of objects]
\end{verbatim}

\begin{verbatim}
sage: g = EuclideanDomains().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested
\end{verbatim}

2.1.4 A bit of help from computer science

Hierarchy of classes

How are the bookshelves implemented in practice?

Sage uses the classical design paradigm of Object Oriented Programming (OOP). Its fundamental principle is that any object that a program is to manipulate should be modelled by an *instance* of a *class*. The class implements:

- a *data structure*: which describes how the object is stored,
- *methods*: which describe the operations on the object.

The instance itself contains the data for the given object, according to the specified data structure.

Hence, all the objects mentioned above should be instances of some classes. For example, an integer in Sage is an instance of the class `Integer` (and it knows about it!):

\begin{verbatim}
sage: i = 12
sage: type(i)
<class 'sage.rings.integer.Integer'>
\end{verbatim}

Applying an operation is generally done by *calling a method*:
Factoring integers, expressions, or polynomials are distinct tasks, with completely different algorithms. Yet, from a user (or caller) point of view, all those objects can be manipulated alike. This illustrates the OOP concepts of polymorphism, data abstraction, and encapsulation.

Let us be curious, and see where some methods are defined. This can be done by introspection:

```python
sage: i._mul_ ? # not tested
```

For plain Python methods, one can also just ask in which module they are implemented:

```python
sage: i._pow_.__module__ # not tested (Trac #24275)
'sage.categories.semigroups'
sage: pQ._mul_.__module__
'sage.rings.polynomial.polynomial_element_generic'
sage: pQ._pow_.__module__ # not tested (Trac #24275)
'sage.categories.semigroups'
```

We see that integers and polynomials have each their own multiplication method: the multiplication algorithms are indeed unrelated and deeply tied to their respective datastructures. On the other hand, as we have seen above, they share the same powering method because the set \mathbb{Z} of integers, and the set $\mathbb{Q}[x]$ of polynomials are both semigroups. Namely, the class for integers and the class for polynomials both derive from an abstract class for semigroup elements, which factors out the generic methods like _pow_. This illustrates the use of hierarchy of classes to share common code between classes having common behaviour.

OOP design is all about isolating the objects that one wants to model together with their operations, and designing an appropriate hierarchy of classes for organizing the code. As we have seen above, the design of the class hierarchy is easy since it can be modelled upon the hierarchy of categories (bookshelves). Here is for example a piece of the hierarchy of classes for an element of a group of permutations:
On the top, we see concrete classes that describe the data structure for matrices and provide the operations that are tied to this data structure. Then follow abstract classes that are attached to the hierarchy of categories and provide generic algorithms.

The full hierarchy is best viewed graphically:

```python
sage: g = class_graph(m.__class__)  
sage: g.set_latex_options(format="dot2tex")  
sage: view(g)  # not tested
```

Parallel hierarchy of classes for parents

Let us recall that we do not just want to compute with elements of mathematical sets, but with the sets themselves:

```python
sage: ZZ.one()  
1  
sage: R = QQ['x,y']  
sage: R.krull_dimension()  
2  
sage: A = R.quotient( R.ideal(x^2 - 2) )  
sage: A.krull_dimension()  # todo: not implemented
```

Here are some typical operations that one may want to carry on various kinds of sets:

- The set of permutations of 5, the set of rational points of an elliptic curve: counting, listing, random generation
- A language (set of words): rationality testing, counting elements, generating series
- A finite semigroup: left/right ideals, center, representation theory
- A vector space, an algebra: Cartesian product, tensor product, quotient

Hence, following the OOP fundamental principle, parents should also be modelled by instances of some (hierarchy of) classes. For example, our group G is an instance of the following class:

```python
sage: G = GL(2,ZZ)  
sage: type(G)  
<class 'sage.groups.matrix_gps.linear.LinearMatrixGroup_gap_with_category'>
```

Here is a piece of the hierarchy of classes above it:
Note that the hierarchy of abstract classes is again attached to categories and parallel to that we had seen for the elements. This is best viewed graphically:

```
for cls in G.__class__.mro(): print(cls)
```

```
<class 'sage.groups.matrix_gps.linear.LinearMatrixGroup_gap_with_category'>
...
<class 'sage.categories.groups.Groups.parent_class'>
<class 'sage.categories.monoids.Monoids.parent_class'>
<class 'sage.categories.semigroups.Semigroups.parent_class'>
...
```

Note: This is a progress upon systems like Axiom or MuPAD where a parent is modelled by the class of its elements; this oversimplification leads to confusion between methods on parents and elements, and makes parents special; in particular it prevents potentially interesting constructions like “groups of groups”.

2.1.5 Sage categories

Why this business of categories? And to start with, why don’t we just have a good old hierarchy of classes Group, Semigroup, Magma,...?

Dynamic hierarchy of classes

As we have just seen, when we manipulate groups, we actually manipulate several kinds of objects:

- groups
- group elements
- morphisms between groups
- and even the category of groups itself!

Thus, on the group bookshelf, we want to put generic code for each of the above. We therefore need three, parallel hierarchies of abstract classes:

- Group, Monoid, Semigroup, Magma, …
- GroupElement, MonoidElement, SemigroupElement, MagmaElement, …
- GroupMorphism, SemigroupMorphism, SemigroupMorphism, MagmaMorphism, …

(and in fact many more as we will see).

We could implement the above hierarchies as usual:

```python
class Group(Monoid):
    # generic methods that apply to all groups
class GroupElement(MonoidElement):
```

(continues on next page)
And indeed that’s how it was done in Sage before 2009, and there are still many traces of this. The drawback of this approach is duplication: the fact that a group is a monoid is repeated three times above!

Instead, Sage now uses the following syntax, where the Groups bookshelf is structured into units with nested classes:

```python
class Groups(Category):
    def super_categories(self):
        return [Monoids(), ...]

class ParentMethods:
    # generic methods that apply to all groups

class ElementMethods:
    # generic methods that apply to all group elements

class MorphismMethods:
    # generic methods that apply to all group morphisms (not yet implemented)

class SubcategoryMethods:
    # generic methods that apply to all subcategories of Groups()
```

With this syntax, the information that a group is a monoid is specified only once, in the `Category.super_categories()` method. And indeed, when the category of inverse unital magmas was introduced, there was a single point of truth to update in order to reflect the fact that a group is an inverse unital magma:

```bash
sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]
```

The price to pay (there is no free lunch) is that some magic is required to construct the actual hierarchy of classes for parents, elements, and morphisms. Namely, `Groups.ElementMethods` should be seen as just a bag of methods, and the actual class `Groups().element_class` is constructed from it by adding the appropriate super classes according to `Groups().super_categories()`:

```bash
sage: Groups().element_class
<class 'sage.categories.groups.Groups.element_class'>
sage: Groups().element_class.__bases__
(<class 'sage.categories.monoids.Monoids.element_class'>,
 <class 'sage.categories.magas.Magmas.Unital.Inverse.element_class'>)
```

We now see that the hierarchy of classes for parents and elements is parallel to the hierarchy of categories:

```bash
sage: Groups().all_super_categories()
[Category of groups,
 Category of monoids,
 Category of semigroups,
 ...]
```

(continues on next page)
Another advantage of building the hierarchy of classes dynamically is that, for parametrized categories, the hierarchy may depend on the parameters. For example an algebra over \mathbb{Q} is a \mathbb{Q}-vector space, but an algebra over \mathbb{Z} is not (it is just a \mathbb{Z}-module!)

Note: At this point this whole infrastructure may feel like overdesigning, right? We felt like this too! But we will see later that, once one gets used to it, this approach scales very naturally.

From a computer science point of view, this infrastructure implements, on top of standard multiple inheritance, a dynamic composition mechanism of mixin classes (Wikipedia article Mixin), governed by mathematical properties.

For implementation details on how the hierarchy of classes for parents and elements is constructed, see `Category`.

On the category hierarchy: subcategories and super categories

We have seen above that, for example, the category of sets is a super category of the category of groups. This models the fact that a group can be unambiguously considered as a set by forgetting its group operation. In object-oriented parlance, we want the relation “a group is a set”, so that groups can directly inherit code implemented on sets.

Formally, a category $\mathcal{C}_S()$ is a *super category* of a category $\mathcal{D}_S()$ if Sage considers any object of $\mathcal{D}_S()$ to be an object of $\mathcal{C}_S()$, up to an implicit application of a canonical functor from $\mathcal{D}_S()$ to $\mathcal{C}_S()$. This functor is normally an inclusion of categories or a forgetful functor. Reciprocally, $\mathcal{D}_S()$ is said to be a *subcategory* of $\mathcal{C}_S()$.

Warning: This terminology deviates from the usual mathematical definition of *subcategory* and is subject to change. Indeed, the forgetful functor from the category of groups to the category of sets is not an inclusion of categories, as it is not injective: a given set may admit more than one group structure. See trac ticket #16183 for more details. The name *supercategory* is also used with a different meaning in certain areas of mathematics.
Categories are instances and have operations

Note that categories themselves are naturally modelled by instances because they can have operations of their own. An important one is:

```sage
Groups().example()
```
General Linear Group of degree 4 over Rational Field

which gives an example of object of the category. Besides illustrating the category, the example provides a minimal template for implementing a new object in the category:

```sage
S = Semigroups().example(); S
An example of a semigroup: the left zero semigroup
```

Its source code can be obtained by introspection:

```sage
S
```
not tested

This example is also typically used for testing generic methods. See `Category.example()` for more.

Other operations on categories include querying the super categories or the axioms satisfied by the operations of a category:

```sage
Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]
```

```sage
Groups().axioms()
frozenset({ 'Associative', 'Inverse', 'Unital' })
```

or constructing the intersection of two categories, or the smallest category containing them:

```sage
Groups() & FiniteSets()
Category of finite groups
```

```sage
Algebras(QQ) | Groups()
Category of monoids
```

Specifications and generic documentation

Categories do not only contain code but also the specifications of the operations. In particular a list of mandatory and optional methods to be implemented can be found by introspection with:

```sage
Groups().required_methods()

{'element': {'optional': ['_mul_'], 'required': []},
 'parent': {'optional': [], 'required': ['__contains__']}}
```

Documentation about those methods can be obtained with:

```sage
G = Groups()
```

```sage
G.element_class._mul_
```
not tested

```sage
G.parent_class.one
```
not tested

See also the `abstract_method()` decorator.
Warning: Well, more precisely, that’s how things should be, but there is still some work to do in this direction. For example, the inverse operation is not specified above. Also, we are still missing a good programmatic syntax to specify the input and output types of the methods. Finally, in many cases the implementer must provide at least one of two methods, each having a default implementation using the other one (e.g. listing or iterating for a finite enumerated set); there is currently no good programmatic way to specify this.

Generic tests

Another feature that parents and elements receive from categories is generic tests; their purpose is to check (at least to some extent) that the parent satisfies the required mathematical properties (is my semigroup indeed associative?) and is implemented according to the specifications (does the method `an_element` indeed return an element of the parent?):

```sage
sage: S = FiniteSemigroups().example(alphabet=('a', 'b'))
sage: TestSuite(S).run(verbosity=True)
running ._test_an_element() ... pass
running ._test_associativity() ... pass
running ._test_cardinality() ... pass
running ._test_category() ... pass
running ._test_construction() ... pass
running ._test_elements() ... pass
   Running the test suite of self.an_element()
   running ._test_category() ... pass
   running ._test_eq() ... pass
   running ._test_new() ... pass
   running ._test_not_implemented_methods() ... pass
   running ._test_pickling() ... pass
   pass
   running ._test_elements_eq_reflexive() ... pass
   running ._test_elements_eq_symmetric() ... pass
   running ._test_elements_eq_transitive() ... pass
   running ._test_elements_neq() ... pass
running ._test_enumerated_set_contains() ... pass
running ._test_enumerated_set_iter_cardinality() ... pass
running ._test_enumerated_set_iter_list() ... pass
running ._test_eq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
running ._test_some_elements() ... pass
```

Tests can be run individually:

```sage
sage: S._test_associativity()
```

Here is how to access the code of this test:

```sage
sage: S._test_associativity??  # not tested
```

Here is how to run the test on all elements:

```sage
sage: L = S.list()
sage: S._test_associativity(elements=L)
```
See TestSuite for more information.

Let us see what happens when a test fails. Here we redefine the product of S to something definitely not associative:

```
\texttt{sage: } S.\text{product} = \texttt{lambda } x, y: S("(x.value +y.value")")
```

And rerun the test:

```
\texttt{sage: } S._\text{test_associativity(elements=L)}
```

```
Traceback (most recent call last):
...
 File ".//sage/categories/semigroups.py", line ..., in _test_associativity
 tester\text{assertTrue}((x \ast y) \ast z == x \ast (y \ast z))
...
AssertionError: '((aa)a)' !='(a(aa))'
```

We can recover instantly the actual values of x, y, z, that is, a counterexample to the associativity of our broken semigroup, using post mortem introspection with the Python debugger pdb (this does not work yet in the notebook):

```
\texttt{sage: import pdb}
\texttt{sage: pdb.pm()}  \quad \# \text{not tested}
```

```
(Pdb) u
```

```
(Pdb) p x, y, z
('a', 'a', 'a')
(Pdb) p (x * y) * z
'((aa)a)
(Pdb) p x * (y * z)
'(a(aa))'
```

Wrap-up

- Categories provide a natural hierarchy of bookshelves to organize not only code, but also specifications and testing tools.

- Everything about, say, algebras with a distinguished basis is gathered in \texttt{AlgebrasWithBasis} or its super categories. This includes properties and algorithms for elements, parents, morphisms, but also, as we will see, for constructions like Cartesian products or quotients.

- The mathematical relations between elements, parents, and categories translate dynamically into a traditional hierarchy of classes.

- This design enforces robustness and consistency, which is particularly welcome given that Python is an interpreted language without static type checking.
2.1.6 Case study

In this section, we study an existing parent in detail; a good followup is to go through the `sage.categories.tutorial` or the thematic tutorial on coercion and categories (“How to implement new algebraic structures in Sage”) to learn how to implement a new one!

We consider the example of finite semigroup provided by the category:

```python
sage: S = FiniteSemigroups().example(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')
```

Where do all the operations on `S` and its elements come from?

```python
sage: x = S('a')
__repr__ is a technical method which comes with the data structure (ElementWrapper); since it’s implemented in Cython, we need to use Sage’s introspection tools to recover where it’s implemented:
```

```python
sage: x._repr_.__module__
sage: sage.misc.sageinspect.sage_getfile(x._repr_)
'/..../sage/structure/element_wrapper.pyx'
```

__pow_int__ is a generic method for all finite semigroups:

```python
sage: x._pow_int.__module__
'sage.categories.semigroups'
```

__mul__ is a generic method provided by the Magmas category (a magma is a set with an inner law *, not necessarily associative). If the two arguments are in the same parent, it will call the method __mul__, and otherwise let the coercion model try to discover how to do the multiplication:

```python
sage: x.__mul__?? # not tested
```

Since it is a speed critical method, it is implemented in Cython in a separate file:

```python
sage: x.__mul__.__module__
'sage.categories.coercion_methods'
```

__mul__ is a default implementation, also provided by the Magmas category, that delegates the work to the method product of the parent (following the advice: if you do not know what to do, ask your parent); it’s also a speed critical method:

```python
sage: x.__mul__?? # not tested
```

product is a mathematical method implemented by the parent:

```python
sage: S.product.__module__
'sage.categories.examples.finite_semigroups'
```

cayley_graph is a generic method on the parent, provided by the FiniteSemigroups category:
multiplication_table is a generic method on the parent, provided by the Magmas category (it does not require associativity):

```python
sage: S.multiplication_table.__module__
'sage.categories.magmas'
```

Consider now the implementation of the semigroup:

```python
sage: S
```

This implementation specifies a data structure for the parents and the elements, and makes a promise: the implemented parent is a finite semigroup. Then it fulfills the promise by implementing the basic operation product. It also implements the optional method semigroup_generators. In exchange, \(S \) and its elements receive generic implementations of all the other operations. \(S \) may override any of those by more efficient ones. It may typically implement the element method is_idempotent to always return True.

A (not yet complete) list of mandatory and optional methods to be implemented can be found by introspection with:

```python
sage: FiniteSemigroups().required_methods()
{'element': {'optional': ['_mul_'], 'required': []},
 'parent': {'optional': ['semigroup_generators'],
            'required': ['__contains__']}
```

product does not appear in the list because a default implementation is provided in term of the method _mul_ on elements. Of course, at least one of them should be implemented. On the other hand, a default implementation for _contains_ is provided by Parent.

Documentation about those methods can be obtained with:

```python
sage: C = FiniteSemigroups().element_class
sage: C._mul_  # not tested
```

See also the abstract_method() decorator.

Here is the code for the finite semigroups category:

```python
sage: FiniteSemigroups??  # not tested
```

2.1.7 Specifying the category of a parent

Some parent constructors (not enough!) allow to specify the desired category for the parent. This can typically be used to specify additional properties of the parent that we know to hold a priori. For example, permutation groups are by default in the category of finite permutation groups (no surprise):

```python
sage: P = PermutationGroup([[(1,2,3)]]); P
Permutation Group with generators [(1,2,3)]
sage: P.category()
Category of finite enumerated permutation groups
```

In this case, the group is commutative, so we can specify this:
This feature can even be used, typically in experimental code, to add more structure to existing parents, and in particular to add methods for the parents or the elements, without touching the code base:

```python
sage: class Foos(Category):
    ....:     def super_categories(self):
    ....:         return [PermutationGroups().Finite().Commutative()]
    ....:     class ParentMethods:
    ....:         def foo(self): print("foo")
    ....:     class ElementMethods:
    ....:         def bar(self): print("bar")

sage: P = PermutationGroup([[(1,2,3)]], category=Foos())
sage: P.foo()
foo
sage: p = P.an_element()
sage: p.bar()
bar
```

In the long run, it would be thinkable to use this idiom to implement forgetful functors; for example the above group could be constructed as a plain set with:

```python
sage: P = PermutationGroup([[(1,2,3)]], category=Sets()) # todo: not implemented
```

At this stage though, this is still to be explored for robustness and practicality. For now, most parents that accept a category argument only accept a subcategory of the default one.

2.1.8 Scaling further: functorial constructions, axioms, ...

In this section, we explore more advanced features of categories. Along the way, we illustrate that a large hierarchy of categories is desirable to model complicated mathematics, and that scaling to support such a large hierarchy is the driving motivation for the design of the category infrastructure.

Functorial constructions

Sage has support for a certain number of so-called *covariant functorial constructions* which can be used to construct new parents from existing ones while carrying over as much as possible of their algebraic structure. This includes:

- Cartesian products: See `cartesian_product`.
- Tensor products: See `tensor`.
- Subquotients / quotients / subobjects / isomorphic objects: See:
 - `Sets().Subquotients`.
 - `Sets().Quotients`.
 - `Sets().Subobjects`.
 - `Sets().IsomorphicObjects`
• Dual objects: See `Modules().DualObjects`.

• Algebras, as in group algebras, monoid algebras, ...: See: `Sets.ParentMethods.algebra()`.

Let for example A and B be two parents, and let us construct the Cartesian product $A \times B \times B$:

```python
sage: A = AlgebrasWithBasis(QQ).example(); A.rename("A")
sage: B = HopfAlgebrasWithBasis(QQ).example(); B.rename("B")
sage: C = cartesian_product([A, B, B]); C
A (+) B (+) B
```

In which category should this new parent be? Since A and B are vector spaces, the result is, as a vector space, the direct sum $A \oplus B \oplus B$, hence the notation. Also, since both A and B are monoids, $A \times B \times B$ is naturally endowed with a monoid structure for pointwise multiplication:

```python
sage: C in Monoids()
True
```

the unit being the Cartesian product of the units of the operands:

```python
sage: C.one()
B[(0, word: )] + B[(1, ())] + B[(2, ()]
sage: cartesian_product([A.one(), B.one(), B.one()])
B[(0, word: )] + B[(1, ())] + B[(2, ()]
```

The pointwise product can be implemented generically for all magmas (i.e. sets endowed with a multiplicative operation) that are constructed as Cartesian products. It’s thus implemented in the `Magmas` category:

```python
sage: C.product.__module__
'sage.categories.magmas'
```

More specifically, keeping on using nested classes to structure the code, the product method is put in the nested class `Magmas.CartesianProducts.ParentMethods`:

```python
class Magmas(Category):
    class ParentMethods:
        # methods for magmas
    class ElementMethods:
        # methods for elements of magmas

class CartesianProduct(CartesianProductCategory):
    class ParentMethods:
        # methods for magmas that are constructed as Cartesian products
        def product(self, x, y):
            # ...
    class ElementMethods:
        # ...
```

Note: The support for nested classes in Python is relatively recent. Their intensive use for the category infrastructure did reveal some glitches in their implementation, in particular around class naming and introspection. Sage currently works around the more annoying ones but some remain visible. See e.g. `sage.misc.test_nested_class`.

Let us now look at the categories of C:
This reveals the parallel hierarchy of categories for Cartesian products of semigroups, magmas, ... We are thus glad that Sage uses its knowledge that a monoid is a semigroup to automatically deduce that a Cartesian product of monoids is a Cartesian product of semigroups, and build the hierarchy of classes for parents and elements accordingly.

In general, the Cartesian product of A and B can potentially be an algebra, a coalgebra, a differential module, and be finite dimensional, or graded, or This can only be decided at runtime, by introspection into the properties of A and B; furthermore, the number of possible combinations (e.g. finite dimensional differential algebra) grows exponentially with the number of properties.

Axioms

First examples

We have seen that Sage is aware of the axioms satisfied by, for example, groups:

```
sage: Groups().axioms()
frozendict({'Associative', 'Inverse', 'Unital'})
```

In fact, the category of groups can be *defined* by stating that a group is a magma, that is a set endowed with an internal binary multiplication, which satisfies the above axioms. Accordingly, we can construct the category of groups from the category of magmas:

```
sage: Magmas().Associative().Unital().Inverse()
Category of groups
```

In general, we can construct new categories in Sage by specifying the axioms satisfied by the operations of the super categories. For example, starting from the category of magmas, we can construct all the following categories just by specifying the axioms satisfied by the multiplication:

```
sage: Magmas()
Category of magmas
sage: Magmas().Unital()
Category of unital magmas
sage: Magmas().Commutative().Unital()
Category of commutative unital magmas
sage: Magmas().Unital().Commutative()
Category of commutative unital magmas
sage: Magmas().Associative()
Category of semigroups
```
Axioms and categories with axioms

Here, Associative, Unital, Commutative are axioms. In general, any category \(Cs \) in Sage can declare a new axiom \(A \). Then, the category with axiom \(Cs.A() \) models the subcategory of the objects of \(Cs \) satisfying the axiom \(A \). Similarly, for any subcategory \(Ds \) of \(Cs \), \(Ds.A() \) models the subcategory of the objects of \(Ds \) satisfying the axiom \(A \). In most cases, it's a full subcategory (see Wikipedia article Subcategory).

For example, the category of sets defines the Finite axiom, and this axiom is available in the subcategory of groups:

```
sage: Sets().Finite()
Category of finite sets
sage: Groups().Finite()
Category of finite groups
```

The meaning of each axiom is described in the documentation of the corresponding method, which can be obtained as usual by introspection:

```
sage: C = Groups()
sage: C.Finite

# not tested
```

The purpose of categories with axioms is no different from other categories: to provide bookshelves of code, documentation, mathematical knowledge, tests, for their objects. The extra feature is that, when intersecting categories, axioms are automatically combined together:

```
sage: C = Magmas().Associative().Unital().Inverse() & Sets().Finite(); C
Category of finite groups
sage: sorted(C.axioms())
['Associative', 'Finite', 'Inverse', 'Unital']
```

For a more advanced example, Sage knows that a ring is a set \(C \) endowed with a multiplication which distributes over addition, such that \((C, +)\) is a commutative additive group and \((C, \ast)\) is a monoid:

```
sage: C = (CommutativeAdditiveGroups() & Monoids()).Distributive(); C
Category of rings
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital', 'Associative', 'Distributive', 'Unital']
```

The infrastructure allows for specifying further deduction rules, in order to encode mathematical facts like Wedderburn’s theorem:

```
sage: DivisionRings() & Sets().Finite()
Category of finite enumerated fields
```
Note: When an axiom specifies the properties of some operations in Sage, the notations for those operations are tied to this axiom. For example, as we have seen above, we need two distinct axioms for associativity: the axiom “AdditiveAssociative” is about the properties of the addition +, whereas the axiom “Associative” is about the properties of the multiplication *.

We are touching here an inherent limitation of the current infrastructure. There is indeed no support for providing generic code that is independent of the notations. In particular, the category hierarchy about additive structures (additive monoids, additive groups, ...) is completely duplicated by that for multiplicative structures (monoids, groups, ...).

As far as we know, none of the existing computer algebra systems has a good solution for this problem. The difficulty is that this is not only about a single notation but a bunch of operators and methods: +, -, zero, summation, sum, ... in one case, *, /, one, product, prod, factor, ... in the other. Sharing something between the two hierarchies of categories would only be useful if one could write generic code that applies in both cases; for that one needs to somehow automatically substitute the right operations in the right spots in the code. That’s kind of what we are doing manually between e.g. `AdditiveMagmas.ParentMethods.addition_table()` and `Magmas.ParentMethods.multiplication_table()`, but doing this systematically is a different beast from what we have been doing so far with just usual inheritance.

Single entry point and name space usage

A nice feature of the notation Cs.A() is that, from a single entry point (say the category `Magmas` as above), one can explore a whole range of related categories, typically with the help of introspection to discover which axioms are available, and without having to import new Python modules. This feature will be used in trac ticket #15741 to unclutter the global name space from, for example, the many variants of the category of algebras like:

```
sage: FiniteDimensionalAlgebrasWithBasis(QQ)
Category of finite dimensional algebras with basis over Rational Field
```

There will of course be a deprecation step, but it’s recommended to prefer right away the more flexible notation:

```
sage: Algebras(QQ).WithBasis().FiniteDimensional()
Category of finite dimensional algebras with basis over Rational Field
```

Design discussion

How far should this be pushed? `Fields` should definitely stay, but should `FiniteGroups` or `DivisionRings` be removed from the global namespace? Do we want to further completely deprecate the notation `FiniteGroups()` in favor of ``Groups().Finite()``?

On the potential combinatorial explosion of categories with axioms

Even for a very simple category like `Magmas`, there are about 2^5 potential combinations of the axioms! Think about what this becomes for a category with two operations + and *:

```
sage: C = (Magmas() & AdditiveMagmas()).Distributive(); C
Category of distributive magmas and additive magmas
```

```
sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
  AdditiveInverse()
```
Category of rngs

sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
 Unital()
Category of semirings

sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
 AdditiveInverse().Unital()
Category of rings

sage: Rings().Division()
Category of division rings

sage: Rings().Division().Commutative()
Category of fields

sage: Rings().Division().Finite()
Category of finite enumerated fields

or for more advanced categories:

sage: g = HopfAlgebras(QQ).WithBasis().Graded().Connected().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested

Difference between axioms and regressive covariant functorial constructions

Our running examples here will be the axiom FiniteDimensional and the regressive covariant functorial construction Graded. Let Cs be some subcategory of Modules, say the category of modules itself:

sage: Cs = Modules(QQ)

Then, Cs.FiniteDimensional() (respectively Cs.Graded()) is the subcategory of the objects O of Cs which are finite dimensional (respectively graded).

Let also Ds be a subcategory of Cs, say:

sage: Ds = Algebras(QQ)

A finite dimensional algebra is also a finite dimensional module:

sage: Algebras(QQ).FiniteDimensional().is_subcategory(Modules(QQ).FiniteDimensional())
True

Similarly a graded algebra is also a graded module:

sage: Algebras(QQ).Graded().is_subcategory(Modules(QQ).Graded())
True

This is the covariance property: for A an axiom or a covariant functorial construction, if Ds is a subcategory of Cs, then Ds.A() is a subcategory of Cs.A().

What happens if we consider reciprocally an object of Cs.A() which is also in Ds? A finite dimensional module which is also an algebra is a finite dimensional algebra:

2.1. Elements, parents, and categories in Sage: a (draft of) primer
On the other hand, a graded module O which is also an algebra is not necessarily a graded algebra! Indeed, the grading on O may not be compatible with the product on O:

\begin{verbatim}
sage: Modules(QQ).Graded() & Algebras(QQ)
Join of Category of algebras over Rational Field
and Category of graded vector spaces over Rational Field
\end{verbatim}

The relevant difference between `FiniteDimensional` and `Graded` is that `FiniteDimensional` is a statement about the properties of O seen as a module (and thus does not depend on the given category), whereas `Graded` is a statement about the properties of O and all its operations in the given category.

In general, if a category satisfies a given axiom, any subcategory also satisfies that axiom. Another formulation is that, for an axiom A defined in a super category C_s of D_s, $D_s.A()$ is the intersection of the categories D_s and $C_s.A()$:

\begin{verbatim}
sage: As = Algebras(QQ).FiniteDimensional(); As
Category of finite dimensional algebras over Rational Field
sage: Bs = Algebras(QQ).Graded().FiniteDimensional(); As
Category of finite dimensional algebras over Rational Field
sage: As is Bs
True
\end{verbatim}

An immediate consequence is that, as we have already noticed, axioms commute:

\begin{verbatim}
sage: As = Algebras(QQ).FiniteDimensional().WithBasis(); As
Category of finite dimensional algebras with basis over Rational Field
sage: Bs = Algebras(QQ).WithBasis().FiniteDimensional(); Bs
Category of finite dimensional algebras with basis over Rational Field
sage: As is Bs
True
\end{verbatim}

On the other hand, axioms do not necessarily commute with functorial constructions, even if the current printout may missuggest so:

\begin{verbatim}
sage: As = Algebras(QQ).Graded().WithBasis(); As
Category of graded algebras with basis over Rational Field
sage: Bs = Algebras(QQ).WithBasis().Graded(); Bs
Category of graded algebras with basis over Rational Field
sage: As is Bs
False
\end{verbatim}

This is because B_s is the category of algebras endowed with basis, which are further graded; in particular the basis must respect the grading (i.e. be made of homogeneous elements). On the other hand, A_s is the category of graded algebras, which are further endowed with some basis; that basis need not respect the grading. In fact A_s is really a join category:

\begin{verbatim}
sage: type(As)
<class 'sage.categories.category.JoinCategory_with_category'>
sage: As._repr_(as_join=True)
'Join of Category of algebras with basis over Rational Field and Category of graded algebras over Rational Field'
\end{verbatim}
Todo: Improve the printing of functorial constructions and joins to raise this potentially dangerous ambiguity.

Further reading on axioms

We refer to sage.categories.category_with_axiom for how to implement axioms.

Wrap-up

As we have seen, there is a combinatorial explosion of possible classes. Constructing by hand the full class hierarchy would not scale unless one would restrict to a very rigid subset. Even if it was possible to construct automatically the full hierarchy, this would not scale with respect to system resources.

When designing software systems with large hierarchies of abstract classes for business objects, the difficulty is usually to identify a proper set of key concepts. Here we are lucky, as the key concepts have been long identified and are relatively few:

- Operations (+, *, ...)
- Axioms on those operations (associativity, ...)
- Constructions (Cartesian products, ...)

Better, those concepts are sufficiently well known so that a user can reasonably be expected to be familiar with the concepts that are involved for his own needs.

Instead, the difficulty is concentrated in the huge number of possible combinations, an unpredictable large subset of which being potentially of interest; at the same time, only a small – but moving – subset has code naturally attached to it.

This has led to the current design, where one focuses on writing the relatively few classes for which there is actual code or mathematical information, and lets Sage compose dynamically and lazily those building blocks to construct the minimal hierarchy of classes needed for the computation at hand. This allows for the infrastructure to scale smoothly as bookshelves are added, extended, or reorganized.

2.1.9 Writing a new category

Each category C must be provided with a method $C\text{.super_categories()}$ and can be provided with a method $C\text{._subcategory_hook_(D)}$. Also, it may be needed to insert C into the output of the $C\text{.super_categories()}$ method of some other category. This determines the position of C in the category graph.

A category may provide methods that can be used by all its objects, respectively by all elements of its objects.

Each category should come with a good example, in sage.categories.examples.
Inserting the new category into the category graph

C.super_categories() must return a list of categories, namely the immediate super categories of C. Of course, if you know that your new category C is an immediate super category of some existing category D, then you should also update the method D.super_categories to include C.

The immediate super categories of C should not be join categories. Furthermore, one always should have:

\[
\text{Cs().is_subcategory(Category.join(Cs().super_categories()))}
\]

\[
\text{Cs()._cmp_key > other._cmp_key for other in Cs().super_categories()}
\]

This is checked by _test_category().

In several cases, the category C is directly provided with a generic implementation of super_categories; a typical example is when C implements an axiom or a functorial construction; in such a case, C may implement C. extra_super_categories() to complement the super categories discovered by the generic implementation. This method needs not return immediate super categories; instead it’s usually best to specify the largest super category providing the desired mathematical information. For example, the category Magsmas.Combativity.Algebras just states that the algebra of a commutative magma is a commutative magma. This is sufficient to let Sage deduce that it’s in fact a commutative algebra.

Methods for objects and elements

Different objects of the same category share some algebraic features, and very often these features can be encoded in a method, in a generic way. For example, for every commutative additive monoid, it makes sense to ask for the sum of a list of elements. Sage’s category framework allows to provide a generic implementation for all objects of a category.

If you want to provide your new category with generic methods for objects (or elements of objects), then you simply add a nested class called ParentMethods (or ElementMethods). The methods of that class will automatically become methods of the objects (or the elements). For instance:

```
sage: P.<x,y> = ZZ[]
sage: P.prod([x,y,2])
2*x*y
sage: P.prod.__module__
'sage.categories.monoids'
sage: P.prod.__func__ is raw_getattr(Monoids().ParentMethods, "prod")
True
```

We recommend to study the code of one example:

```
sage: C = CommutativeAdditiveMonoids()
sage: C
```
On the order of super categories

The generic method `C.all_super_categories()` determines recursively the list of all super categories of `C`.

The order of the categories in this list does influence the inheritance of methods for parents and elements. Namely, if `P` is an object in the category `C` and if `C_1` and `C_2` are both super categories of `C` defining some method `foo` in `ParentMethods`, then `P` will use `C_1`’s version of `foo` if and only if `C_1` appears in `C.all_super_categories()` before `C_2`.

However this must be considered as an implementation detail: if `C_1` and `C_2` are incomparable categories, then the order in which they appear must be mathematically irrelevant: in particular, the methods `foo` in `C_1` and `C_2` must have the same semantic. Code should not rely on any specific order, as it is subject to later change. Whenever one of the implementations is preferred in some common subcategory of `C_1` and `C_2`, for example for efficiency reasons, the ambiguity should be resolved explicitly by defining a method `foo` in this category. See the method `some_elements` in the code of the category `FiniteCoxeterGroups` for an example.

Since trac ticket #11943, `C.all_super_categories()` is computed by the so-called C3 algorithm used by Python to compute Method Resolution Order of new-style classes. Thus the order in `C.all_super_categories()`, `C.parent_class.mro()` and `C.element_class.mro()` are guaranteed to be consistent.

Since trac ticket #13589, the C3 algorithm is put under control of some total order on categories. This order is not necessarily meaningful, but it guarantees that C3 always finds a consistent Method Resolution Order. For background, see `sage.misc.c3_controlled`. A visible effect is that the order in which categories are specified in `C.super_categories()`, or in a join category, no longer influences the result of `C.all_super_categories()`.

Subcategory hook (advanced optimization feature)

The default implementation of the method `C.is_subcategory(D)` is to look up whether `D` appears in `C.all_super_categories()`. However, building the list of all the super categories of `C` is an expensive operation that is sometimes best avoided. For example, if both `C` and `D` are categories defined over a base, but the bases differ, then one knows right away that they can not be subcategories of each other.

When such a short-path is known, one can implement a method `_subcategory_hook_`. Then, `C.is_subcategory(D)` first calls `D._subcategory_hook_(C)`. If this returns `Unknown`, then `C.is_subcategory(D)` tries to find `D` in `C.all_super_categories()`. Otherwise, `C.is_subcategory(D)` returns the result of `D._subcategory_hook_(C)`.

By default, `D._subcategory_hook_(C)` tests whether `issubclass(C.parent_class,D.parent_class)`, which is very often giving the right answer:

```
sage: Rings()._subcategory_hook_(Algebras(QQ))
True
sage: HopfAlgebras(QQ)._subcategory_hook_(Algebras(QQ))
False
sage: Algebras(QQ)._subcategory_hook_(HopfAlgebras(QQ))
True
```
2.2 Categories

AUTHORS:

• David Kohel, William Stein and Nicolas M. Thiery

Every Sage object lies in a category. Categories in Sage are modeled on the mathematical idea of category, and are distinct from Python classes, which are a programming construct.

In most cases, typing \texttt{x.category()} returns the category to which \texttt{x} belongs. If \texttt{C} is a category and \texttt{x} is any object, \texttt{C(x)} tries to make an object in \texttt{C} from \texttt{x}. Checking if \texttt{x} belongs to \texttt{C} is done as usually by \texttt{x in C}.

See \texttt{Category} and \texttt{sage.categories.primer} for more details.

EXAMPLES:

We create a couple of categories:

\begin{verbatim}
sage: Sets()
Category of sets
sage: GSets(AbelianGroup([2,4,9]))
Category of G-sets for Multiplicative Abelian group isomorphic to C2 x C4 x C9
sage: Semigroups()
Category of semigroups
sage: VectorSpaces(FiniteField(11))
Category of vector spaces over Finite Field of size 11
sage: Ideals(IntegerRing())
Category of ring ideals in Integer Ring
\end{verbatim}

Let's request the category of some objects:

\begin{verbatim}
sage: V = VectorSpace(RationalField(), 3)
sage: V.category()
Category of finite dimensional vector spaces with basis
 over (number fields and quotient fields and metric spaces)
sage: G = SymmetricGroup(9)
sage: G.category()
Join of Category of finite enumerated permutation groups and
Category of finite weyl groups and
Category of well generated finite irreducible complex reflection groups
sage: P = PerfectMatchings(3)
sage: P.category()
Category of finite enumerated sets
\end{verbatim}

Let's check some memberships:

\begin{verbatim}
sage: V in VectorSpaces(QQ)
True
sage: V in VectorSpaces(FiniteField(11))
False
sage: G in Monoids()
True
sage: P in Rings()
False
\end{verbatim}
For parametrized categories one can use the following shorthand:

```
sage: V in VectorSpaces
True
sage: G in VectorSpaces
False
```

A parent P is in a category C if $P.category()$ is a subcategory of C.

Note: Any object of a category should be an instance of `CategoryObject`.

For backward compatibility this is not yet enforced:

```
sage: class A:
....:     def category(self):
....:         return Fields()
sage: A() in Rings()
True
```

By default, the category of an element x of a parent P is the category of all objects of P (this is dubious and may be deprecated):

```
sage: V = VectorSpace(RationalField(), 3)
sage: v = V.gen(1)
sage: v.category()
Category of elements of Vector space of dimension 3 over Rational Field
```

```python
class sage.categories.category.Category(s=None):
   _bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.sage_object.SageObject

    The base class for modeling mathematical categories, like for example:
    * `Groups()`: the category of groups
    * `EuclideanDomains()`: the category of euclidean rings
    * `VectorSpaces(QQ)`: the category of vector spaces over the field of rationals

    See `sage.categories.primer` for an introduction to categories in Sage, their relevance, purpose, and usage.
    The documentation below will focus on their implementation.

    Technically, a category is an instance of the class `Category` or some of its subclasses. Some categories, like `VectorSpaces`, are parametrized: `VectorSpaces(QQ)` is one of many instances of the class `VectorSpaces`.
    On the other hand, `EuclideanDomains()` is the single instance of the class `EuclideanDomains`.

    Recall that an algebraic structure (say, the ring $\mathbb{Q}[x]$) is modelled in Sage by an object which is called a parent.
    This object belongs to certain categories (here `EuclideanDomains()` and `Algebras()`). The elements of the ring are themselves objects.

    The class of a category (say `EuclideanDomains`) can define simultaneously:
    * Operations on the category itself (what is its super categories? its category of morphisms? its dual category?).
    * Generic operations on parents in this category, like the ring $\mathbb{Q}[x]$.
    * Generic operations on elements of such parents (e.g., the Euclidean algorithm for computing gcds).
    * Generic operations on morphisms of this category.
```
This is achieved as follows:

```python
sage: from sage.categories.all import Category
sage: class EuclideanDomains(Category):
    ....:     # operations on the category itself
    ....:     def super_categories(self):
    ....:         [Rings()]
    ....:     ....:
    ....:     def dummy(self): # TODO: find some good examples
    ....:         pass
    ....:
    ....:     class ParentMethods: # holds the generic operations on parents
    ....:         # TODO: find a good example of an operation
    ....:         pass
    ....:     ....:
    ....:     class ElementMethods:# holds the generic operations on elements
    ....:         def gcd(x,y):
    ....:             # Euclid algorithms
    ....:             pass
    ....:     ....:
    ....:     class MorphismMethods: # holds the generic operations on morphisms
    ....:         # TODO: find a good example of an operation
    ....:         pass
    ....:
```

Note that the nested class `ParentMethods` is merely a container of operations, and does not inherit from anything. Instead, the hierarchy relation is defined once at the level of the categories, and the actual hierarchy of classes is built in parallel from all the `ParentMethods` nested classes, and stored in the attributes `parent_class`.

Then, a parent in a category \(C\) receives the appropriate operations from all the super categories by usual class inheritance from \(C.parent_class\).

Similarly, two other hierarchies of classes, for elements and morphisms respectively, are built from all the `ElementMethods` and `MorphismMethods` nested classes.

EXAMPLES:

We define a hierarchy of four categories `As()`, `Bs()`, `Cs()`, `Ds()` with a diamond inheritance. Think for example:

- `As()`: the category of sets
- `Bs()`: the category of additive groups
- `Cs()`: the category of multiplicative monoids
- `Ds()`: the category of rings

```python
sage: from sage.categories.all import Category
sage: from sage.misc.lazy_attribute import lazy_attribute
sage: class As (Category):
    ....:     def super_categories(self):
    ....:         return []
    ....:     ....:
    ....:     class ParentMethods:
    ....:         def fA(self):
    ....:             return "A"
    ....:         f = fA
```

(continues on next page)
Categories should always have unique representation; by trac ticket #12215, this means that it will be kept in cache, but only if there is still some strong reference to it.

We check this before proceeding:

```python
sage: import gc
sage: idAs = id(As())
sage: _ = gc.collect()
sage: n == id(As())
False
sage: a = As()
sage: id(As()) == id(As())
True
sage: As().parent_class == As().parent_class
True
```

We construct a parent in the category \mathbb{D} (that is, an instance of $\mathbb{D}.\text{parent_class}$), and check that it has access to all the methods provided by all the categories, with the appropriate inheritance order:

```python
sage: D = Ds().parent_class()
sage: ['A', 'B', 'C', 'D']
sage: D.f()
'C'
```

```python
sage: C = Cs().parent_class()
sage: ['A', 'C']
```
Here is the parallel hierarchy of classes which has been built automatically, together with the method resolution order (.mro()):

```python
sage: As().parent_class
<class '__main__.As.parent_class'>
sage: As().parent_class.__bases__
(... 'object'),)
sage: As().parent_class.mro()
[<class '__main__.As.parent_class'>, <... 'object'>]
```

```python
sage: Bs().parent_class
<class '__main__.Bs.parent_class'>
sage: Bs().parent_class.__bases__
(<class '__main__.As.parent_class'>,
)sage: Bs().parent_class.mro()
[<class '__main__.Bs.parent_class'>, <class '__main__.As.parent_class'>, <...
˓→'object'>]
```

```python
sage: Cs().parent_class
<class '__main__.Cs.parent_class'>
sage: Cs().parent_class.__bases__
(<class '__main__.As.parent_class'>,
)sage: Cs().parent_class.__mro__
(<class '__main__.Cs.parent_class'>, <class '__main__.As.parent_class'>, <...
˓→'object'>)
```

```python
sage: Ds().parent_class
<class '__main__.Ds.parent_class'>
sage: Ds().parent_class.__bases__
(<class '__main__.Cs.parent_class'>, <class '__main__.Bs.parent_class'>)
sage: Ds().parent_class.mro()
[<class '__main__.Ds.parent_class'>, <class '__main__.Cs.parent_class'>, <class '__main__.Bs.parent_class'>, <class '__main__.As.parent_class'>, <...
˓→'object'>]
```

Note that two categories in the same class need not have the same super_categories. For example, `Algebras(QQ)` has `VectorSpaces(QQ)` as super category, whereas `Algebras(ZZ)` only has `Modules(ZZ)` as super category. In particular, the constructed parent class and element class will differ (inheriting, or not, methods specific for vector spaces):

```python
sage: Algebras(QQ).parent_class is Algebras(ZZ).parent_class
False
sage: isinstance(Algebras(QQ).parent_class, VectorSpaces(QQ).parent_class)
True
```

On the other hand, identical hierarchies of classes are, preferably, built only once (e.g. for categories over a base ring):

```python
sage: Algebras(GF(5)).parent_class is Algebras(GF(7)).parent_class
True
```
We now construct a parent in the usual way:

```python
sage: class myparent(Parent):
    ....:     def __init__(self):
    ....:         Parent.__init__(self, category=Ds())
    ....:     def g(self):
    ....:         return "myparent"
    ....:     class Element(object):
    ....:         pass
sage: D = myparent()
sage: D.__class__
<class '__main__.myparent_with_category'>
sage: D.__class__.__bases__
(<class '__main__.myparent'>,
 <class '__main__.Ds.parent_class'>)
sage: D.__class__.mro()
[<class '__main__.myparent_with_category'>,
 <class '__main__.myparent'>,
 <class 'sage.structure.parent.Parent'>,
 <class 'sage.structure.category_object.CategoryObject'>,
 <class 'sage.structure.sage_object.SageObject'>,
 <class '__main__.Ds.parent_class'>,
 <class '__main__.Cs.parent_class'>,
 <class '__main__.Bs.parent_class'>,
 <class '__main__.As.parent_class'>,
 <... 'object'>]
sage: D.fA()
'A'
sage: D.fB()
'B'
sage: D.fC()
'C'
sage: D.fD()
'D'
sage: D.f()
'C'
sage: D.g()
'myparent'
```

```python
sage: D.element_class
<class '__main__.myparent_with_category.element_class'>
sage: D.element_class.mro()
[<class '__main__.myparent_with_category.element_class'>,
 <class ...__main__....Element...>,
 <class '__main__.Ds.element_class'>,
 <class '__main__.Cs.element_class'>,
 <class '__main__.Bs.element_class'>,
 <class '__main__.As.element_class'>,
 <... 'object'>]
```
_super_categories()

The immediate super categories of this category.

This lazy attribute caches the result of the mandatory method `super_categories()` for speed. It also does some mangling (flattening join categories, sorting, ...).

Whenever speed matters, developers are advised to use this lazy attribute rather than calling `super_categories()`.

Note: This attribute is likely to eventually become a tuple. When this happens, we might as well use `Category._sort()`, if not `Category._sort_uniq()`.

EXAMPLES:

```python
sage: Rings()._super_categories
[Category of rngs, Category of semirings]
```

__super_categories_for_classes__

The super categories of this category used for building classes.

This is a close variant of `__super_categories__` used for constructing the list of the bases for `parent_class()`, `element_class()`, and friends. The purpose is ensure that Python will find a proper Method Resolution Order for those classes. For background, see `sage.misc.c3_controlled`.

See also:

`__cmp_key__`.

Note: This attribute is calculated as a by-product of computing `__all_super_categories__`.

EXAMPLES:

```python
sage: Rings().__super_categories_for_classes
[Category of rngs, Category of semirings]
```

__all_super_categories__

All the super categories of this category, including this category.

Since trac ticket #11943, the order of super categories is determined by Python’s method resolution order C3 algorithm.

See also:

`all_super_categories()`

Note: this attribute is likely to eventually become a tuple.

Note: this sets `__super_categories_for_classes__` as a side effect

EXAMPLES:

```python
sage: C = Rings(); C
Category of rings
```
sage: C._all_super_categories
[Category of rings, Category of rngs, Category of semirings, ...
Category of monoids, ...
Category of commutative additive groups, ...
Category of sets, Category of sets with partial maps,
Category of objects]

_all_super_categories_proper()
All the proper super categories of this category.

Since trac ticket #11943, the order of super categories is determined by Python’s method resolution order C3 algorithm.

See also:

all_super_categories()

Note: this attribute is likely to eventually become a tuple.

EXAMPLES:

sage: C = Rings(); C
Category of rings
sage: C._all_super_categories_proper
[Category of rngs, Category of semirings, ...
Category of monoids, ...
Category of commutative additive groups, ...
Category of sets, Category of sets with partial maps,
Category of objects]

_set_of_super_categories()
The frozen set of all proper super categories of this category.

Note: this is used for speeding up category containment tests.

See also:

all_super_categories()

EXAMPLES:

sage: sorted(Groups()._set_of_super_categories, key=str)
[Category of inverse unital magmas,
Category of magmas,
Category of monoids,
Category of objects,
Category of semigroups,
Category of sets,
Category of sets with partial maps,
Category of unital magmas]
sage: sorted(Groups()._set_of_super_categories, key=str)
[Category of inverse unital magmas, Category of magmas, Category of monoids,
Category Framework, Release 9.6

(continued from previous page)

Category of objects, Category of semigroups, Category of sets, Category of sets with partial maps, Category of unital magmas

_make_named_class(name, method_provider, cache=False, picklable=True)
Construction of the parent/element/... class of self.

INPUT:
- name – a string; the name of the class as an attribute of self. E.g. “parent_class”
- method_provider – a string; the name of an attribute of self that provides methods for the new class (in addition to those coming from the super categories). E.g. “ParentMethods”
- cache – a boolean or ignore_reduction (default: False) (passed down to dynamic_class; for internal use only)
- picklable – a boolean (default: True)

ASSUMPTION:
It is assumed that this method is only called from a lazy attribute whose name coincides with the given name.

OUTPUT:
A dynamic class with bases given by the corresponding named classes of self’s super_categories, and methods taken from the class getattr(self,method_provider).

Note:
- In this default implementation, the reduction data of the named class makes it depend on self. Since the result is going to be stored in a lazy attribute of self anyway, we may as well disable the caching in dynamic_class (hence the default value cache=False).
- CategoryWithParameters overrides this method so that the same parent/element/... classes can be shared between closely related categories.
- The bases of the named class may also contain the named classes of some indirect super categories, according to _super_categories_for_classes(). This is to guarantee that Python will build consistent method resolution orders. For background, see sage.misc.c3_controlled.

See also:
CategoryWithParameters._make_named_class()

EXAMPLES:
sage: PC = Rings()._make_named_class("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
sage: type(PC)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
sage: PC.__bases__
(<class 'sage.categories.rngs.Rngs.parent_class'>,
 <class 'sage.categories.semirings.Semirings.parent_class'>)

Note that, by default, the result is not cached:

sage: PC is Rings()._make_named_class("parent_class", "ParentMethods")
False
Indeed this method is only meant to construct lazy attributes like `parent_class` which already handle this caching:

```python
sage: Rings().parent_class
<class 'sage.categories.rings.Rings.parent_class'>
```

Reduction for pickling also assumes the existence of this lazy attribute:

```python
sage: PC._reduction
(<built-in function getattr>, (Category of rings, 'parent_class'))
sage: loads(dumps(PC)) is Rings().parent_class
True
```

```python
_repr_()

Return the print representation of this category.

EXAMPLES:

```python
sage: Sets() # indirect doctest
Category of sets
```

```python
__repr_object_names__

Return the name of the objects of this category.

EXAMPLES:

```python
sage: FiniteGroups()._repr_object_names()
'finite groups'
sage: AlgebrasWithBasis(QQ)._repr_object_names()
'algebras with basis over Rational Field'
```

```python
__test_category__(**options)

Run generic tests on this category

See also:

TestSuite.

EXAMPLES:

```python
sage: Sets()._test_category()
```

Let us now write a couple broken categories:

```python
sage: class MyObjects(Category):
 : pass
sage: MyObjects()._test_category()
Traceback (most recent call last):
...:
NotImplementedError: <abstract method super_categories at ...>
```

```python
sage: class MyObjects(Category):
 : def super_categories(self):
 : return tuple()

sage: MyObjects()._test_category()
Traceback (most recent call last):
...
```

(continues on next page)
AssertionError: Category of my objects.super_categories() should return a list

```
sage: class MyObjects(Category):
 ..: def super_categories(self):
 ..: return []
sage: MyObjects()._test_category()
Traceback (most recent call last):
 ...
AssertionError: Category of my objects is not a subcategory of Objects()
```

\_with\_axiom(\textit{axiom})

Return the subcategory of the objects of self satisfying the given \textit{axiom}.

**INPUT:**

- \textit{axiom} – a string, the name of an axiom

**EXAMPLES:**

```
sage: Sets()._with_axiom("Finite")
Category of finite sets
sage: type(Magmas().Finite().Commutative())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: Magmas().Finite().Commutative().super_categories()
[Category of commutative magmas, Category of finite sets]
sage: Algebras(QQ).WithBasis().Commutative() is Algebras(QQ).Commutative()._WithBasis()
True
```

When \textit{axiom} is not defined for self, self is returned:

```
sage: Sets()._with_axiom("Associative")
Category of sets
```

\textbf{Warning:} This may be changed in the future to raising an error.

\_with\_axiom\_as\_tuple(\textit{axiom})

Return a tuple of categories whose join is self._with_axiom().

**INPUT:**

- \textit{axiom} – a string, the name of an axiom

This is a lazy version of _with_axiom() which is used to avoid recursion loops during join calculations.

\textbf{Note:} The order in the result is irrelevant.

**EXAMPLES:**

```
sage: Sets()._with_axiom_as_tuple('Finite')
(Category of finite sets,)
sage: Magmas()._with_axiom_as_tuple('Finite')
```

(continues on next page)
(Category of magmas, Category of finite sets)
sage: Rings().Division()._with_axiom_as_tuple('Finite')
(Category of division rings,
 Category of finite monoids,
 Category of commutative magmas,
 Category of finite additive groups)
sage: HopfAlgebras(QQ)._with_axiom_as_tuple('FiniteDimensional')
(Category of hopf algebras over Rational Field,
 Category of finite dimensional vector spaces over Rational Field)

_without_axioms(named=False)
Return the category without the axioms that have been added to create it.

INPUT:
  • named – a boolean (default: False)

Todo: Improve this explanation.

If named is True, then this stops at the first category that has an explicit name of its own. See category_with_axiom.CategoryWithAxiom._without_axioms()

EXAMPLES:

sage: Sets()._without_axioms()
Category of sets
sage: Semigroups()._without_axioms()
Category of magmas
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms()
Category of magmatic algebras over Rational Field
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms(named=True)
Category of algebras over Rational Field

static _sort(categories)
Return the categories after sorting them decreasingly according to their comparison key.

See also:
  _cmp_key()

INPUT:
  • categories – a list (or iterable) of non-join categories

OUTPUT:
A sorted tuple of categories, possibly with repeats.

Note: The auxiliary function flatten_categories used in the test below expects a second argument, which is a type such that instances of that type will be replaced by its super categories. Usually, this type is JoinCategory.

EXAMPLES:
sage: Category._sort([Sets(), Objects(), Coalgebras(QQ), Monoids(), Sets().Finite()])
(Category of monoids,
Category of coalgebras over Rational Field,
Category of finite sets,
Category of sets,
Category of objects)
sage: Category._sort([Sets().Finite(), Semigroups().Finite(), Sets().Facade(),
                    Magmas().Commutative()])
(Category of finite semigroups,
Category of commutative magmas,
Category of finite sets,
Category of facade sets)
sage: Category._sort(Category._flatten_categories([Sets().Finite(),
                                                 Algebras(QQ).WithBasis(), Semigroups().Finite(), Sets().Facade(),
                                                 Algebras(QQ).Commutative(), Algebras(QQ).Graded().WithBasis(),
                                                 JoinCategory]))
(Category of algebras with basis over Rational Field,
Category of algebras with basis over Rational Field,
Category of graded algebras over Rational Field,
Category of commutative algebras over Rational Field,
Category of finite semigroups,
Category of finite sets,
Category of facade sets)

static _sort_uniq(categories)
Return the categories after sorting them and removing redundant categories.
Redundant categories include duplicates and categories which are super categories of other categories in
the input.
INPUT:
  • categories – a list (or iterable) of categories
OUTPUT: a sorted tuple of mutually incomparable categories
EXAMPLES:
sage: Category._sort_uniq([Rings(), Monoids(), Coalgebras(QQ)])
(Category of rings, Category of coalgebras over Rational Field)
Note that, in the above example, Monoids() does not appear in the result because it is a super category of
Rings().

static __classcall__(*args, **options)
Input mangling for unique representation.
Let C = Cs(...) be a category. Since trac ticket #12895, the class of C is a dynamic subclass
Cs_with_category of Cs in order for C to inherit code from the SubcategoryMethods nested classes
of its super categories.
The purpose of this __classcall__ method is to ensure that reconstructing C from its class with
Cs_with_category(...) actually calls properly Cs(...) and gives back C.
See also:
subcategory_class()}
EXAMPLES:

```python
sage: A = Algebras(QQ)
sage: A.__class__
<class 'sage.categories.algebras.Algebras_with_category'>
sage: A is Algebras(QQ)
True
sage: A is A.__class__(QQ)
True
```

```python
__init__(s=None)
Initialize this category.
```

```python
sage: class SemiprimitiveRings(Category):
 : def super_categories(self):
 : return [Rings()]
 : class ParentMethods:
 : : def jacobson_radical(self):
 : return self.ideal(0)
 sage: C = SemiprimitiveRings()
 sage: C
 Category of semiprimitive rings
 sage: C.__class__
 <class '__main__.SemiprimitiveRings_with_category'>
```

**Note:** Specifying the name of this category by passing a string is deprecated. If the default name (built from the name of the class) is not adequate, please use `__repr_object_names()` to customize it.

### Realizations()

Return the category of realizations of the parent `self` or of objects of the category `self`.

**INPUT:**
- `self` – a parent or a concrete category

**Note:** this function is actually inserted as a method in the class `Category` (see `Realizations()`). It is defined here for code locality reasons.

**EXAMPLES:**

The category of realizations of some algebra:

```python
sage: Algebras(QQ).Realizations()
Join of Category of algebras over Rational Field and Category of realizations of unital magmas
```

The category of realizations of a given algebra:

```python
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.Realizations()
```
Category of realizations of The subset algebra of \{1, 2, 3\} over Rational Field

\begin{verbatim}
sage: C = GradedHopfAlgebrasWithBasis(QQ).Realizations(); C
Join of Category of graded hopf algebras with basis over Rational Field and
  \rightarrow Category of realizations of hopf algebras over Rational Field
sage: C.super_categories()
[Category of graded hopf algebras with basis over Rational Field, Category of
  \rightarrow realizations of hopf algebras over Rational Field]
sage: TestSuite(C).run()
\end{verbatim}

See also:

- \texttt{Sets().WithRealizations}
- \texttt{ClasscallMetaClass}

Todo: Add an optional argument to allow for:

\begin{verbatim}
sage: Realizations(A, category = Blahs()) # todo: not implemented
\end{verbatim}

\texttt{WithRealizations()}

Return the category of parents in \texttt{self} endowed with multiple realizations.

INPUT:

- \texttt{self} – a category

See also:

- The documentation and code (\texttt{sage.categories.examples.with_realizations}) of \texttt{Sets().WithRealizations().example()} for more on how to use and implement a parent with several realizations.
- Various use cases:
  - \texttt{SymmetricFunctions}
  - \texttt{QuasiSymmetricFunctions}
  - \texttt{NonCommutativeSymmetricFunctions}
  - \texttt{SymmetricFunctionsNonCommutingVariables}
  - \texttt{DescentAlgebra}
  - \texttt{algebras.Moebius}
  - \texttt{IwahoriHeckeAlgebra}
  - \texttt{ExtendedAffineWeylGroup}
- The \texttt{Implementing Algebraic Structures} thematic tutorial.
- \texttt{sage.categories.realizations}
Note: this function is actually inserted as a method in the class Category (see WithRealizations). It is defined here for code locality reasons.

EXAMPLES:

```
sage: Sets().WithRealizations()
Category of sets with realizations
```

Parent with realizations

Let us now explain the concept of realizations. A parent with realizations is a facade parent (see SetsFacade) admitting multiple concrete realizations where its elements are represented. Consider for example an algebra $A$ which admits several natural bases:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
```

For each such basis $B$ one implements a parent $P_B$ which realizes $A$ with its elements represented by expanding them on the basis $B$:

```
sage: A.F()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: A.Out()
The subset algebra of {1, 2, 3} over Rational Field in the Out basis
sage: A.In()
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: A.an_element()
F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]
```

If $B$ and $B'$ are two bases, then the change of basis from $B$ to $B'$ is implemented by a canonical coercion between $P_B$ and $P_B'$:

```
sage: F = A.F(); In = A.In(); Out = A.Out()
sage: i = In.an_element(); i
In[{}] + 2*In[{1}] + 3*In[{2}] + In[{1, 2}]
sage: F(i)
7*F[{}] + 3*F[{1}] + 4*F[{2}] + F[{1, 2}]
sage: F.coerce_map_from(Out)
Generic morphism:
 From: The subset algebra of {1, 2, 3} over Rational Field in the Out basis
 To: The subset algebra of {1, 2, 3} over Rational Field in the Fundamental base
 allowing for mixed arithmetic:

sage: (1 + Out.from_set(1)) * In.from_set(2,3)
Out[{}] + 2*Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] +
+ 4*Out[{2, 3}] + 4*Out[{1, 2, 3}]
```

In our example, there are three realizations:
Instead of manually defining the shorthands \( F \), \( \text{In} \), and \( \text{Out} \), as above one can just do:

\[
\text{sage: } A\text{.inject_shorthands()}
\]

Defining \( F \) as shorthand for The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis
Defining \( \text{In} \) as shorthand for The subset algebra of \{1, 2, 3\} over Rational Field in the In basis
Defining \( \text{Out} \) as shorthand for The subset algebra of \{1, 2, 3\} over Rational Field in the Out basis

**Rationale**

Besides some goodies described below, the role of \( A \) is threefold:

- To provide, as illustrated above, a single entry point for the algebra as a whole: documentation, access to its properties and different realizations, etc.
- To provide a natural location for the initialization of the bases and the coercions between, and other methods that are common to all bases.
- To let other objects refer to \( A \) while allowing elements to be represented in any of the realizations.

We now illustrate this second point by defining the polynomial ring with coefficients in \( A \):

\[
\text{sage: } P = A['x']; P
\]

Univariate Polynomial Ring in x over The subset algebra of \{1, 2, 3\} over Rational Field

\[
\text{sage: } x = P\text{.gen()}
\]

In the following examples, the coefficients turn out to be all represented in the \( F \) basis:

\[
\text{sage: } P\text{.one()}
\]

\[
F[{}]
\]

\[
\text{sage: } (P\text{.an_element() }+ 1)^2
\]

\[
F[{}]*x^2 + 2*F[{}]*x + F[{}]
\]

However we can create a polynomial with mixed coefficients, and compute with it:

\[
\text{sage: } p = P([1, \text{In}[\{1\}], \text{Out}[\{2\}]]); p
\]

\[
\text{Out}[\{2\}]*x^2 + \text{In}[\{1\}]*x + F[{}]
\]

\[
\text{sage: } p^2
\]

\[
\text{Out}[\{2\}]*x^4 + (-8*F[{}]) + 4*\text{In}[\{1\}] + 8*\text{In}[\{2\}] + 4*\text{In}[\{3\}] - 4*\text{In}[\{1, 2\}] - 2*\text{In}[\{1, 3\}] - 2*\text{In}[\{2, 3\}])\*x^3 + (F[{}]) + 3*F[\{1\}] + 2*F[\{2\}] - 2*F[\{1, 2\}] + 2*F[\{1, 3\}] + 2*F[\{1, 2, 3\}]\*x^2 + (2*F[\{\}]) + 2*F[\{1\}]\*x + F[\{\}]
\]

Note how each coefficient involves a single basis which need not be that of the other coefficients. Which basis is used depends on how coercion happened during mixed arithmetic and needs not be deterministic.
One can easily coerce all coefficients to a given basis with:

```sage
p.map_coefficients(In)
(-4*In[{}] + 2*In[{1}] + 4*In[{2}] + 2*In[{3}] - 2*In[{1, 2}] - In[{1, 3}] -
 2*In[{2, 3}] + In[{1, 2, 3}])*x^2 + In[{1}]*x + In[{}]
```

Alas, the natural notation for constructing such polynomials does not yet work:

```sage
In[{1}]*x
```

Traceback (most recent call last):

```
TypeError: unsupported operand parent(s) for *: 'The subset algebra of {1, 2, 3} over Rational Field in the In basis' and 'Univariate Polynomial Ring in x over The subset algebra of {1, 2, 3} over Rational Field'
```

### The category of realizations of \( A \)

The set of all realizations of \( A \), together with the coercion morphisms is a category (whose class inherits from `Category_realization_of_parent`):

```sage
A.Realizations()
```

Category of realizations of The subset algebra of {1, 2, 3} over Rational Field

The various parent realizing \( A \) belong to this category:

```sage
A.F() in A.Realizations()
```

True

\( A \) itself is in the category of algebras with realizations:

```sage
A in Algebras(QQ).WithRealizations()
```

True

The (mostly technical) `WithRealizations` categories are the analogs of the `*WithSeveralBases` categories in MuPAD-Combinat. They provide support tools for handling the different realizations and the morphisms between them.

Typically, `VectorSpaces(QQ).FiniteDimensional().WithRealizations()` will eventually be in charge, whenever a coercion \( \phi : A \rightarrow B \) is registered, to register \( \phi^{-1} \) as coercion \( B \rightarrow A \) if there is none defined yet. To achieve this, `FiniteDimensionalVectorSpaces` would provide a nested class `WithRealizations` implementing the appropriate logic.

`WithRealizations` is a **regressive covariant functorial construction**. On our example, this simply means that \( A \) is automatically in the category of rings with realizations (covariance):

```sage
A in Rings().WithRealizations()
```

True

and in the category of algebras (regressiveness):

```sage
A in Algebras(QQ)
```

True

---

**Note:** For \( C \) a category, `C.WithRealizations()` in fact calls `sage.categories.with_realizations.WithRealizations(C)`. The later is responsible for building the hierarchy
of the categories with realizations in parallel to that of their base categories, optimizing away those categories that do not provide a WithRealizations nested class. See sage.categories.covariant_functorial_construction for the technical details.

**Note:** Design question: currently WithRealizations is a regressive construction. That is self.WithRealizations() is a subcategory of self by default:

```
sage: Algebras(QQ).WithRealizations().super_categories()
[Category of algebras over Rational Field,
 Category of monoids with realizations,
 Category of additive unital additive magmas with realizations]
```

Is this always desirable? For example, AlgebrasWithBasis(QQ).WithRealizations() should certainly be a subcategory of Algebras(QQ), but not of AlgebrasWithBasis(QQ). This is because AlgebrasWithBasis(QQ) is specifying something about the concrete realization.

**additional_structure()**
Return whether self defines additional structure.

OUTPUT:

- self if self defines additional structure and None otherwise. This default implementation returns self.

A category \( C \) defines additional structure if \( C \)-morphisms shall preserve more structure (e.g. operations) than that specified by the super categories of \( C \). For example, the category of magmas defines additional structure, namely the operation \(*\) that shall be preserved by magma morphisms. On the other hand the category of rings does not define additional structure: a function between two rings that is both a unital magma morphism and a unital additive magma morphism is automatically a ring morphism.

Formally speaking \( C \) defines additional structure, if \( C \) is not a full subcategory of the join of its super categories: the morphisms need to preserve more structure, and thus the homsets are smaller.

By default, a category is considered as defining additional structure, unless it is a category with axiom.

**EXAMPLES:**
Here are some typical structure categories, with the additional structure they define:

```
sage: Sets().additional_structure()
Category of sets
sage: Magmas().additional_structure() # `*`
Category of magmas
sage: AdditiveMagmas().additional_structure() # `+`
Category of additive magmas
sage: LeftModules(ZZ).additional_structure() # left multiplication by scalar
Category of left modules over Integer Ring
sage: Coalgebras(QQ).additional_structure() # coproduct
Category of coalgebras over Rational Field
sage: Crystals().additional_structure() # crystal operators
Category of crystals
```

On the other hand, the category of semigroups is not a structure category, since its operation \(+\) is already defined by the category of magmas:
Most categories with axiom don’t define additional structure:

```python
sage: Sets().Finite().additional_structure()
sage: Rings().Commutative().additional_structure()
sage: Modules(QQ).FiniteDimensional().additional_structure()
sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras(QQ).Unital().additional_structure()
```

As of Sage 6.4, the only exceptions are the category of unital magmas or the category of unital additive magmas (both define a unit which shall be preserved by morphisms):

```python
sage: Magmas().Unital().additional_structure()
Category of unital magmas
sage: AdditiveMagmas().AdditiveUnital().additional_structure()
Category of additive unital additive magmas
```

Similarly, functorial construction categories don’t define additional structure, unless the construction is actually defined by their base category. For example, the category of graded modules defines a grading which shall be preserved by morphisms:

```python
sage: Modules(ZZ).Graded().additional_structure()
Category of graded modules over Integer Ring
```

On the other hand, the category of graded algebras does not define additional structure; indeed an algebra morphism which is also a module morphism is a graded algebra morphism:

```python
sage: Algebras(ZZ).Graded().additional_structure()
```

Similarly, morphisms are requested to preserve the structure given by the following constructions:

```python
sage: Sets().Quotients().additional_structure()
Category of quotients of sets
sage: Sets().CartesianProducts().additional_structure()
Category of Cartesian products of sets
sage: Modules(QQ).TensorProducts().additional_structure()
```

This might change, as we are lacking enough data points to guarantee that this was the correct design decision.

**Note:** In some cases a category defines additional structure, where the structure can be useful to manipulate morphisms but where, in most use cases, we don’t want the morphisms to necessarily preserve it. For example, in the context of finite dimensional vector spaces, having a distinguished basis allows for representing morphisms by matrices; yet considering only morphisms that preserve that distinguished basis would be boring.

In such cases, we might want to eventually have two categories, one where the additional structure is preserved, and one where it’s not necessarily preserved (we would need to find an idiom for this).

At this point, a choice is to be made each time, according to the main use cases. Some of those choices are yet to be settled. For example, should by default:

- an euclidean domain morphism preserve euclidean division?
Category Framework, Release 9.6

sage: EuclideanDomains().additional_structure()
Category of euclidean domains

• an enumerated set morphism preserve the distinguished enumeration?

sage: EnumeratedSets().additional_structure()

• a module with basis morphism preserve the distinguished basis?

sage: Modules(QQ).WithBasis().additional_structure()

See also:

This method together with the methods overloading it provide the basic data to determine, for a given
category, the super categories that define some structure (see structure()), and to test whether a category
is a full subcategory of some other category (see is_full_subcategory()). For example, the category
of Coxeter groups is not full subcategory of the category of groups since morphisms need to preserve the
distinguished generators:

sage: CoxeterGroups().is_full_subcategory(Groups())
False

The support for modeling full subcategories has been introduced in trac ticket #16340.

all_super_categories(proper=False)
Returns the list of all super categories of this category.

INPUT:

• proper – a boolean (default: False); whether to exclude this category.

Since trac ticket #11943, the order of super categories is determined by Python’s method resolution order
C3 algorithm.

Note: Whenever speed matters, the developers are advised to use instead the lazy attributes _all_super_categories(), _all_super_categories_proper(), or _set_of_super_categories(), as appropriate. Simply because lazy attributes are much faster
than any method.

EXAMPLES:

sage: C = Rings(); C
Category of rings
sage: C.all_super_categories()
[Category of rings, Category of rngs, Category of semirings, ...
 Category of monoids, ...
 Category of commutative additive groups, ...
 Category of sets, Category of sets with partial maps,
 Category of objects]

sage: C.all_super_categories(proper = True)
[Category of rngs, Category of semirings, ...
 Category of monoids, ...
 Category of commutative additive groups, ...
(continues on next page)
Category of sets, Category of sets with partial maps, Category of objects

```
sage: Sets().all_super_categories()
[Category of sets, Category of sets with partial maps, Category of objects]
sage: Sets().all_super_categories(proper=True)
[Category of sets with partial maps, Category of objects]
sage: Sets().all_super_categories() is Sets()._all_super_categories
True
sage: Sets().all_super_categories(proper=True) is Sets()._all_super_categories
True
```

```python
classmethod an_instance()```

Return an instance of this class.

```
sage: Rings.an_instance()
Category of rings
```

Parametrized categories should overload this default implementation to provide appropriate arguments:

```
sage: Algebras.an_instance()
Category of algebras over Rational Field
sage: Bimodules.an_instance()
Category of bimodules over Rational Field on the left and Real Field with 53˓→bits of precision on the right
sage: AlgebraIdeals.an_instance()
Category of algebra ideals in Univariate Polynomial Ring in x over Rational˓→Field
```

```python
axioms()```

Return the axioms known to be satisfied by all the objects of `self`.

Technically, this is the set of all the axioms `A` such that, if `Cs` is the category defining `A`, then `self` is a subcategory of `Cs().A()`. Any additional axiom `A` would yield a strict subcategory of `self`, at the very least `self & Cs().A()` where `Cs` is the category defining `A`.

```
sage: Monoids().axioms()
frozenset({'Associative', 'Unital'})
sage: (EnumeratedSets().Infinite() & Sets().Facade()).axioms()
frozenset({'Enumerated', 'Facade', 'Infinite'})
```

```python
category()```

Return the category of this category. So far, all categories are in the category of objects.

```
sage: Sets().category()
Category of objects
sage: VectorSpaces(QQ).category()
Category of objects
```

2.2. Categories
category_graph()

Returns the graph of all super categories of this category

EXAMPLES:

```
sage: C = Algebras(QQ)
sage: G = C.category_graph()
sage: G.is_directed_acyclic()
True
```

The girth of a directed acyclic graph is infinite, however, the girth of the underlying undirected graph is 4 in this case:

```
sage: Graph(G).girth()
4
```

element_class()

A common super class for all elements of parents in this category (and its subcategories).

This class contains the methods defined in the nested class `self.ElementMethods` (if it exists), and has as bases the element classes of the super categories of `self`.

See also:

- `parent_class()`, `morphism_class()`
- `Category` for details

EXAMPLES:

```
sage: C = Algebras(QQ).element_class; C
<class 'sage.categories.algebras.Algebras.element_class'>
sage: type(C)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
```

By [trac ticket #11935](https://trac.sagemath.org/ticket/11935), some categories share their element classes. For example, the element class of an algebra only depends on the category of the base. A typical example is the category of algebras over a field versus algebras over a non-field:

```
sage: Algebras(GF(5)).element_class is Algebras(GF(3)).element_class
True
sage: Algebras(QQ).element_class is Algebras(ZZ).element_class
False
sage: Algebras(ZZ['t']).element_class is Algebras(ZZ['t','x']).element_class
True
```

These classes are constructed with `__slots__ = ()`, so instances may not have a `__dict__`:

```
sage: E = FiniteEnumeratedSets().element_class
sage: E.__dictoffset__
0
```

See also:

`parent_class()`
This serves three purposes:

• Give a typical example to better explain what the category is all about. (and by the way prove that the
category is non empty :-))
• Provide a minimal template for implementing other objects in this category
• Provide an object on which to test generic code implemented by the category

For all those applications, the implementation of the object shall be kept to a strict minimum. The object
is therefore not meant to be used for other applications; most of the time a full featured version is available
elsewhere in Sage, and should be used instead.

Technical note: by default FooBar(...).example() is constructed by looking up sage.categories.
examples.foo_bar.Example and calling it as Example(). Extra positional or named parameters are also
passed down. For a category over base ring, the base ring is further passed down as an optional argument.

Categories are welcome to override this default implementation.

EXAMPLES:

```python
sage: Semigroups().example()
An example of a semigroup: the left zero semigroup
sage: Monoids().Subquotients().example()
NotImplemented
```

full_super_categories()

Return the immediate full super categories of self.

See also:

• super_categories()
• is_full_subcategory()

Warning: The current implementation selects the full subcategories among the immediate super cat-
ergories of self. This assumes that, if $C \subset B \subset A$ is a chain of categories and C is a full subcategory
of A, then C is a full subcategory of B and B is a full subcategory of A.

This assumption is guaranteed to hold with the current model and implementation of full subcategories
in Sage. However, mathematically speaking, this is too restrictive. This indeed prevents the complete
modelling of situations where any A morphism between elements of C automatically preserves the B
structure. See below for an example.

EXAMPLES:

A semigroup morphism between two finite semigroups is a finite semigroup morphism:

```python
sage: Semigroups().Finite().full_super_categories()
[Category of semigroups]
```

On the other hand, a semigroup morphism between two monoids is not necessarily a monoid morphism
(which must map the unit to the unit):

```python
sage: Monoids().super_categories()
[Category of semigroups, Category of unital magmas]
```
Any semigroup morphism between two groups is automatically a monoid morphism (in a group the unit is the unique idempotent, so it has to be mapped to the unit). Yet, due to the limitation of the model advertised above, Sage currently cannot be taught that the category of groups is a full subcategory of the category of semigroups:

```
sage: Groups().full_super_categories()  # todo: not implemented
[Category of monoids, Category of semigroups, Category of inverse unital magmas]
sage: Groups().full_super_categories()
[Category of monoids, Category of inverse unital magmas]
```

is_abelian()

Return whether this category is abelian.

An abelian category is a category satisfying:

- It has a zero object;
- It has all pullbacks and pushouts;
- All monomorphisms and epimorphisms are normal.

Equivalently, one can define an increasing sequence of conditions:

- A category is pre-additive if it is enriched over abelian groups (all homsets are abelian groups and composition is bilinear);
- A pre-additive category is additive if every finite set of objects has a biproduct (we can form direct sums and direct products);
- An additive category is pre-abelian if every morphism has both a kernel and a cokernel;
- A pre-abelian category is abelian if every monomorphism is the kernel of some morphism and every epimorphism is the cokernel of some morphism.

EXAMPLES:

```
sage: Modules(ZZ).is_abelian()
True
sage: FreeModules(ZZ).is_abelian()
False
sage: FreeModules(QQ).is_abelian()
True
sage: CommutativeAdditiveGroups().is_abelian()
True
sage: Semigroups().is_abelian()
Traceback (most recent call last):
  ...
NotImplementedError: is_abelian
```

is_full_subcategory(other)

Return whether self is a full subcategory of other.

A subcategory B of a category A is a full subcategory if any A-morphism between two objects of B is also a B-morphism (the reciprocal always holds: any B-morphism between two objects of B is an A-morphism).
This is computed by testing whether `self` is a subcategory of `other` and whether they have the same structure, as determined by `structure()` from the result of `additional_structure()` on the super categories.

Warning: A positive answer is guaranteed to be mathematically correct. A negative answer may mean that Sage has not been taught enough information (or can not yet within the current model) to derive this information. See `full_super_categories()` for a discussion.

See also:
- `is_subcategory()`
- `full_super_categories()`

EXAMPLES:

```
sage: Magmas().Associative().is_full_subcategory(Magmas())
True
sage: Magmas().Unital().is_full_subcategory(Magmas())
False
sage: Rings().is_full_subcategory(Magmas().Unital() & AdditiveMagmas().AdditiveUnital())
True
```

Here are two typical examples of false negatives:

```
sage: Groups().is_full_subcategory(Semigroups())
False
sage: Groups().is_full_subcategory(Semigroups())  # todo: not implemented
True
sage: Fields().is_full_subcategory(Rings())
False
sage: Fields().is_full_subcategory(Rings())  # todo: not implemented
True
```

Todo: The latter is a consequence of `EuclideanDomains` currently being a structure category. Is this what we want?

```
sage: EuclideanDomains().is_full_subcategory(Rings())
False
```

`is_subcategory(c)`

Returns True if `self` is naturally embedded as a subcategory of `c`.

EXAMPLES:

```
sage: AbGrps = CommutativeAdditiveGroups()
sage: Rings().is_subcategory(AbGrps)
True
sage: AbGrps.is_subcategory(Rings())
False
```
The `is_subcategory` function takes into account the base.

```python
sage: M3 = VectorSpaces(FiniteField(3))
sage: M9 = VectorSpaces(FiniteField(9, 'a'))
sage: M3.is_subcategory(M9)
False
```

Join categories are properly handled:

```python
sage: CatJ = Category.join((CommutativeAdditiveGroups(), Semigroups()))
sage: Rings().is_subcategory(CatJ)
True
```

```python
sage: V3 = VectorSpaces(FiniteField(3))
sage: POSet = PartiallyOrderedSets()
sage: PoV3 = Category.join((V3, POSet))
sage: A3 = AlgebrasWithBasis(FiniteField(3))
sage: PoA3 = Category.join((A3, POSet))
sage: PoA3.is_subcategory(PoV3)
True
sage: PoV3.is_subcategory(PoV3)
True
sage: PoV3.is_subcategory(PoA3)
False
```

```
static join(categories, as_list=False, ignore_axioms=(), axioms=())
```

Return the join of the input categories in the lattice of categories.

At the level of objects and morphisms, this operation corresponds to intersection: the objects and morphisms of a join category are those that belong to all its super categories.

INPUT:

- `categories` – a list (or iterable) of categories
- `as_list` – a boolean (default: `False`); whether the result should be returned as a list
- `axioms` – a tuple of strings; the names of some supplementary axioms

See also:

`__and__()` for a shortcut

EXAMPLES:

```python
sage: J = Category.join((Groups(), CommutativeAdditiveMonoids())); J
Join of Category of groups and Category of commutative additive monoids
sage: J.super_categories()
[Category of groups, Category of commutative additive monoids]
sage: J.all_super_categories(proper=True)
[Category of groups, ..., Category of magmas, Category of commutative additive monoids, ..., Category of additive magmas, Category of sets, ...]
```

As a short hand, one can use:

```python
sage: Groups() & CommutativeAdditiveMonoids()
Join of Category of groups and Category of commutative additive monoids
```
This is a commutative and associative operation:

```python
sage: Groups() & Posets()
Join of Category of groups and Category of posets
sage: Posets() & Groups()
Join of Category of groups and Category of posets
sage: Groups() & (CommutativeAdditiveMonoids() & Posets())
Join of Category of groups
    and Category of commutative additive monoids
    and Category of posets
sage: (Groups() & CommutativeAdditiveMonoids()) & Posets()
Join of Category of groups
    and Category of commutative additive monoids
    and Category of posets
```

The join of a single category is the category itself:

```python
sage: Category.join([Monoids()])
Category of monoids
```

Similarly, the join of several mutually comparable categories is the smallest one:

```python
sage: Category.join((Sets(), Rings(), Monoids()))
Category of rings
```

In particular, the unit is the top category `Objects`:

```python
sage: Groups() & Objects()
Category of groups
```

If the optional parameter `as_list` is `True`, this returns the super categories of the join as a list, without constructing the join category itself:

```python
sage: Category.join((Groups(), CommutativeAdditiveMonoids()), as_list=True)
[Category of groups, Category of commutative additive monoids]
sage: Category.join((Sets(), Rings(), Monoids()), as_list=True)
[Category of rings]
sage: Category.join((Modules(ZZ), FiniteFields()), as_list=True)
[Category of finite enumerated fields, Category of modules over Integer Ring]
sage: Category.join([], as_list=True)
[]
sage: Category.join([Groups()], as_list=True)
[Category of groups]
sage: Category.join([Groups() & Posets()], as_list=True)
[Category of groups, Category of posets]
```

Support for axiom categories (TODO: put here meaningful examples):

```python
sage: Sets().Facade() & Sets().Infinite()
Category of facade infinite sets
sage: Magmas().Infinite() & Sets().Facade()
Category of facade infinite magmas
```

(continues on next page)
Note that several of the above examples are actually join categories; they are just nicely displayed:

```
sage: AlgebrasWithBasis(QQ) & FiniteSets().Algebras(QQ)
Join of Category of finite dimensional algebras with basis over Rational Field
and Category of finite set algebras over Rational Field
```

```
sage: UniqueFactorizationDomains() & Algebras(QQ)
Join of Category of unique factorization domains
and Category of commutative algebras over Rational Field
```

```
static meet(categories)
Returns the meet of a list of categories
```

INPUT:

• categories - a non empty list (or iterable) of categories

See also:

`__or__()` for a shortcut

EXAMPLES:

```
sage: Category.meet([Algebras(ZZ), Algebras(QQ), Groups()])
Category of monoids
```

That meet of an empty list should be a category which is a subcategory of all categories, which does not
make practical sense:

```
sage: Category.meet([])
Traceback (most recent call last):
  ... ValueError: The meet of an empty list of categories is not implemented
```

```
morphism_class()
A common super class for all morphisms between parents in this category (and its subcategories).
This class contains the methods defined in the nested class `self.MorphismMethods` (if it exists), and has
as bases the morphism classes of the super categories of `self`

See also:

• `parent_class()`, `element_class()`
  
• `Category` for details

EXAMPLES:

```
sage: C = Algebras(QQ).morphism_class; C
<class 'sage.categories.algebras.Algebras.morphism_class'>
sage: type(C)
<class 'sage.structure.dynamic_class.DynamicMetaClass'>
```
or_subcategory(category=None, join=False)

Return category or self if category is None.

INPUT:
• category – a sub category of self, tuple/list thereof, or None
• join – a boolean (default: False)

OUTPUT:
• a category

EXAMPLES:

```sage
sage: Monoids().or_subcategory(Groups())
Category of groups
sage: Monoids().or_subcategory(None)
Category of monoids
```

If category is a list/tuple, then a join category is returned:

```sage
sage: Monoids().or_subcategory((CommutativeAdditiveMonoids(), Groups()))
Join of Category of groups and Category of commutative additive monoids
```

If join is False, an error if raised if category is not a subcategory of self:

```sage
sage: Monoids().or_subcategory(EnumeratedSets())
Traceback (most recent call last):
... ValueError: Subcategory of `Category of monoids` required; got `Category of enumerated sets`
```

Otherwise, the two categories are joined together:

```sage
sage: Monoids().or_subcategory(EnumeratedSets(), join=True)
Category of enumerated monoids
```

parent_class()

A common super class for all parents in this category (and its subcategories). This class contains the methods defined in the nested class self.ParentMethods (if it exists), and has as bases the parent classes of the super categories of self.

See also:
• `element_class()`, `morphism_class()`
• `Category` for details

EXAMPLES:

```sage
sage: C = Algebras(QQ).parent_class; C
<class 'sage.categories.algebras.Algebras.parent_class'>
sage: type(C)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
```

By trac ticket #11935, some categories share their parent classes. For example, the parent class of an algebra only depends on the category of the base ring. A typical example is the category of algebras over a finite field versus algebras over a non-field:
```
sage: Algebras(GF(7)).parent_class is Algebras(GF(5)).parent_class
True
sage: Algebras(QQ).parent_class is Algebras(ZZ).parent_class
False
sage: Algebras(ZZ['t']).parent_class is Algebras(ZZ['t','x']).parent_class
True
```

See `CategoryWithParameters` for an abstract base class for categories that depend on parameters, even though the parent and element classes only depend on the parent or element classes of its super categories. It is used in `Bimodules`, `Category_over_base` and `sage.categories.category.JoinCategory`.

**required_methods()**
Returns the methods that are required and optional for parents in this category and their elements.

EXAMPLES:
```
sage: Algebras(QQ).required_methods()
{'element': {'optional': ['_add_', '_mul_'], 'required': ['__bool__']},
'parent': {'optional': ['algebra_generators'], 'required': ['__contains__']}}
```

**structure()**
Return the structure `self` is endowed with.

This method returns the structure that morphisms in this category shall be preserving. For example, it tells that a ring is a set endowed with a structure of both a unital magma and an additive unital magma which satisfies some further axioms. In other words, a ring morphism is a function that preserves the unital magma and additive unital magma structure.

In practice, this returns the collection of all the super categories of `self` that define some additional structure, as a frozen set.

EXAMPLES:
```
sage: Objects().structure()
frozenset()

sage: def structure(C):
....: return Category._sort(C.structure())

sage: structure(Sets())
(Category of sets, Category of sets with partial maps)
sage: structure(Magmas())
(Category of magmas, Category of sets, Category of sets with partial maps)

In the following example, we only list the smallest structure categories to get a more readable output:
```
sage: def structure(C):
....:     return Category._sort_uniq(C.structure())

sage: structure(Magmas())
(Category of magmas,)
sage: structure(Rings())
(Category of unital magmas, Category of additive unital additive magmas)
sage: structure(Fields())
(Category of euclidean domains,)
sage: structure(Algebras(QQ))
```

This method is used in is_full_subcategory() for deciding whether a category is a full subcategory of some other category, and for documentation purposes. It is computed recursively from the result of additional_structure() on the super categories of self.

subcategory_class()

A common superclass for all subcategories of this category (including this one).

This class derives from D.subcategory_class for each super category D of self, and includes all the methods from the nested class self.SubcategoryMethods, if it exists.

See also:

• trac ticket #12895
• parent_class()
• element_class()
• _make_named_class()

EXAMPLES:

```sage
sage: cls = Rings().subcategory_class; cls
<class 'sage.categories.rings.Rings.subcategory_class'>
sage: type(cls)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
```

Rings() is an instance of this class, as well as all its subcategories:

```sage
sage: isinstance(Rings(), cls)
True
sage: isinstance(AlgebrasWithBasis(QQ), cls)
True
```

super_categories()

Return the immediate super categories of self.

OUTPUT:

• a duplicate-free list of categories.

Every category should implement this method.

EXAMPLES:

```sage
sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]
sage: Objects().super_categories()
[]
```
Note: Since trac ticket #10963, the order of the categories in the result is irrelevant. For details, see On the order of super categories.

Note: Whenever speed matters, developers are advised to use the lazy attribute _super_categories() instead of calling this method.

class sage.categories.category.CategoryWithParameters(s=None)
 Bases: sage.categories.category.Category

A parametrized category whose parent/element classes depend only on its super categories.

Many categories in Sage are parametrized, like \texttt{C = Algebras(K)} which takes a base ring as parameter. In many cases, however, the operations provided by \texttt{C} in the parent class and element class depend only on the super categories of \texttt{C}. For example, the vector space operations are provided if and only if \texttt{K} is a field, since \texttt{VectorSpaces(K)} is a super category of \texttt{C} only in that case. In such cases, and as an optimization (see trac ticket #11935), we want to use the same parent and element class for all fields. This is the purpose of this abstract class.

Currently, \texttt{JoinCategory}, \texttt{Category_over_base} and \texttt{Bimodules} inherit from this class.

EXAMPLES:

\begin{verbatim}
sage: C1 = Algebras(GF(5))
sage: C2 = Algebras(GF(3))
sage: C3 = Algebras(ZZ)
sage: from sage.categories.category import CategoryWithParameters
sage: isinstance(C1, CategoryWithParameters)
True
sage: C1.parent_class is C2.parent_class
True
sage: C1.parent_class is C3.parent_class
False
\end{verbatim}

\texttt{Category_make_named_class(name, method_provider, cache=False, picklable=True)}

Construction of the parent/element/... class of \texttt{self}.

INPUT:

- \texttt{name} – a string; the name of the class as an attribute of \texttt{self}. E.g. “parent_class”
- \texttt{method_provider} – a string; the name of an attribute of \texttt{self} that provides methods for the new class (in addition to those coming from the super categories). E.g. “ParentMethods”
- \texttt{cache} – a boolean or \texttt{ignore_reduction} (default: \texttt{False}) (passed down to \texttt{dynamic_class}; for internal use only)
- \texttt{picklable} – a boolean (default: \texttt{True})

ASSUMPTION:

It is assumed that this method is only called from a lazy attribute whose name coincides with the given name.

OUTPUT:

A dynamic class with bases given by the corresponding named classes of \texttt{self}’s super_categories, and methods taken from the class \texttt{getattr(self,method_provider)}.
Note:

- In this default implementation, the reduction data of the named class makes it depend on `self`. Since the result is going to be stored in a lazy attribute of `self` anyway, we may as well disable the caching in `dynamic_class` (hence the default value `cache=False`).

- `CategoryWithParameters` overrides this method so that the same parent/element/... classes can be shared between closely related categories.

- The bases of the named class may also contain the named classes of some indirect super categories, according to `_super_categories_for_classes()`. This is to guarantee that Python will build consistent method resolution orders. For background, see `sage.misc.c3_controlled`.

See also:

CategoryWithParameters._make_named_class()

EXAMPLES:

```
sage: PC = Rings()._make_named_class("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
sage: type(PC)
<class 'sage.structure.dynamic_class.DynamicMetaclas'>
sage: PC.__bases__
(<class 'sage.categories.rngs.Rngs.parent_class'>,
 <class 'sage.categories.semirings.Semirings.parent_class'>)
```

Note that, by default, the result is not cached:

```
sage: PC is Rings()._make_named_class("parent_class", "ParentMethods")
False
```

Indeed this method is only meant to construct lazy attributes like `parent_class` which already handle this caching:

```
sage: Rings().parent_class
<class 'sage.categories.rings.Rings.parent_class'>
```

Reduction for pickling also assumes the existence of this lazy attribute:

```
sage: PC._reduction
(<built-in function getattr>, (Category of rings, 'parent_class'))
sage: loads(dumps(PC)) is Rings().parent_class
True
```

```python
class sage.categories.category.JoinCategory
    super_categories, **kwds)
    Bases: sage.categories.category.CategoryWithParameters

    A class for joins of several categories. Do not use directly; see Category.join instead.

    EXAMPLES:

    sage: from sage.categories.category import JoinCategory
    sage: J = JoinCategory((Groups(), CommutativeAdditiveMonoids())); J
    Join of Category of groups and Category of commutative additive monoids
    sage: J.super_categories()
    ```
By trac ticket #11935, join categories and categories over base rings inherit from `CategoryWithParameters`. This allows for sharing parent and element classes between similar categories. For example, since group algebras belong to a join category and since the underlying implementation is the same for all finite fields, we have:

```python
sage: G = SymmetricGroup(10)
sage: A3 = G.algebra(GF(3))
sage: A5 = G.algebra(GF(5))
sage: type(A3.category())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: type(A3) is type(A5)
True
```

Category `_repr_object_names_`

Return the name of the objects of this category.

EXAMPLES:

```python
sage: FiniteGroups()._repr_object_names()
'finite groups'
sage: AlgebrasWithBasis(QQ)._repr_object_names()
'algebras with basis over Rational Field'
```

Category `_repr_`

Return the print representation of this category.

EXAMPLES:

```python
sage: Sets() # indirect doctest
Category of sets
```

Category `_without_axioms_(named=False)`

Return the category without the axioms that have been added to create it.

INPUT:

- named – a boolean (default: False)

Todo: Improve this explanation.

If named is True, then this stops at the first category that has an explicit name of its own. See `category_with_axiom.CategoryWithAxiom._without_axioms()`

EXAMPLES:

```python
sage: Sets()._without_axioms()
Category of sets
sage: Semigroups()._without_axioms()
Category of magmas
```
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms()
Category of magmatic algebras over Rational Field
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms(named=True)
Category of algebras over Rational Field

additional_structure()
Return None.
Indeed, a join category defines no additional structure.

See also:
Category.additional_structure()

EXAMPLES:

sage: Modules(ZZ).additional_structure()

is_subcategory(C)
Check whether this join category is subcategory of another category C.

EXAMPLES:

sage: Category.join([Rings(),Modules(QQ)]).is_subcategory(Category.join([Rngs(),...
→ Bimodules(QQ,QQ)]))
True

super_categories()
Returns the immediate super categories, as per Category.super_categories().

EXAMPLES:

sage: from sage.categories.category import JoinCategory
sage: JoinCategory((Semigroups(), FiniteEnumeratedSets())).super_categories()

sage.categories.category.category_graph(categories=None)
Return the graph of the categories in Sage.

INPUT:

• categories – a list (or iterable) of categories

If categories is specified, then the graph contains the mentioned categories together with all their super categories. Otherwise the graph contains (an instance of) each category in sage.categories.all (e.g. Algebras(QQ) for algebras).

For readability, the names of the category are shortened.

Todo: Further remove the base ring (see also trac ticket #15801).

EXAMPLES:

sage: G = sage.categories.category.category_graph(categories = [Groups()])
sage: G.vertices()
['groups', 'inverse unital magmas', 'magmas', 'monoids', 'objects',...
'semigroups', 'sets', 'sets with partial maps', 'unital magmas']
sage: G.plot()
Graphics object consisting of 20 graphics primitives

sage: sage.categories.category.category_graph().plot()
Graphics object consisting of ... graphics primitives

sage.categories.category.category_sample()

Return a sample of categories.

It is constructed by looking for all concrete category classes declared in sage.categories.all, calling Category.an_instance() on those and taking all their super categories.

EXAMPLES:

```
sage: from sage.categories.category import category_sample
sage: sorted(category_sample(), key=str)
[Category of G-sets for Symmetric group of order 8! as a permutation group,
 Category of Hecke modules over Rational Field,
 Category of Lie algebras over Rational Field,
 Category of additive magmas, ...
 Category of fields, ...
 Category of graded hopf algebras with basis over Rational Field, ...
 Category of modular abelian varieties over Rational Field, ...
 Category of simplicial complexes, ...
 Category of vector spaces over Rational Field, ...
 Category of weyl groups, ...
```

sage.categories.category.is_Category(x)

Returns True if x is a category.

EXAMPLES:

```
sage: sage.categories.category.is_Category(CommutativeAdditiveSemigroups())
True
sage: sage.categories.category.is_Category(ZZ)
False
```

2.3 Axioms

This documentation covers how to implement axioms and proceeds with an overview of the implementation of the axiom infrastructure. It assumes that the reader is familiar with the category primer, and in particular its section about axioms.
2.3.1 Implementing axioms

Simple case involving a single predefined axiom

Suppose that one wants to provide code (and documentation, tests, ...) for the objects of some existing category `Cs()` that satisfy some predefined axiom `A`.

The first step is to open the hood and check whether there already exists a class implementing the category `Cs().A()`. For example, taking `Cs=Semigroups` and the `Finite` axiom, there already exists a class for the category of finite semigroups:

```
sage: Semigroups().Finite()
Category of finite semigroups
sage: type(Semigroups().Finite())
<class 'sage.categories.finite_semigroups.FiniteSemigroups_with_category'>
```

In this case, we say that the category of semigroups implements the axiom `Finite`, and code about finite semigroups should go in the class `FiniteSemigroups` (or, as usual, in its nested classes `ParentMethods`, `ElementMethods`, and so on).

On the other hand, there is no class for the category of infinite semigroups:

```
sage: Semigroups().Infinite()
Category of infinite semigroups
sage: type(Semigroups().Infinite())
<class 'sage.categories.category.JoinCategory_with_category'>
```

This category is indeed just constructed as the intersection of the categories of semigroups and of infinite sets respectively:

```
sage: Semigroups().Infinite().super_categories()
[Category of semigroups, Category of infinite sets]
```

In this case, one needs to create a new class to implement the axiom `Infinite` for this category. This boils down to adding a nested class `Semigroups.Infinite` inheriting from `CategoryWithAxiom`.

In the following example, we implement a category `Cs`, with a subcategory for the objects satisfying the `Finite` axiom defined in the super category `Sets` (we will see later on how to define new axioms):

```
sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: class Cs(Category):
    ....:     def super_categories(self):
    ....:         return [Sets()]
    ....:     class Finite(CategoryWithAxiom):
    ....:         class ParentMethods:
    ....:             def foo(self):
    ....:                 print("I am a method on finite C's")

sage: Cs().Finite()
Category of finite cs
sage: Cs().Finite().super_categories()
[Category of finite sets, Category of cs]
sage: Cs().Finite().all_super_categories()
[Category of finite cs, Category of finite sets, Category of cs, Category of sets, ...]
```

(continues on next page)
Now a parent declared in the category \texttt{Cs().Finite()} inherits from all the methods of finite sets and of finite \(C\)'s, as desired:

```
sage: P = Parent(category=Cs().Finite())
sage: P.is_finite()  # Provided by Sets.Finite.ParentMethods
True
sage: P.foo()  # Provided by Cs.Finite.ParentMethods
I am a method on finite C's
```

Note:

- This follows the same idiom as for *Covariant Functorial Constructions*.
- From an object oriented point of view, any subcategory \texttt{Cs()} of \texttt{Sets} inherits a \texttt{Finite} method. Usually \texttt{Cs} could complement this method by overriding it with a method \texttt{Cs.Finite} which would make a super call to \texttt{Sets.Finite} and then do extra stuff.

In the above example, \texttt{Cs} also wants to complement \texttt{Sets.Finite}, though not by doing more stuff, but by providing it with an additional mixin class containing the code for finite \texttt{Cs}. To keep the analogy, this mixin class is to be put in \texttt{Cs.Finite}.

- By defining the axiom \texttt{Finite}, \texttt{Sets} fixes the semantic of \texttt{Cs.Finite()} for all its subcategories \texttt{Cs}: namely "the category of \texttt{Cs} which are finite as sets". Hence, for example, \texttt{Modules.Free.Finite} cannot be used to model the category of free modules of finite rank, even though their traditional name "finite free modules" might suggest it.

- It may come as a surprise that we can actually use the same name \texttt{Finite} for the mixin class and for the method defining the axiom; indeed, by default a class does not have a binding behavior and would completely override the method. See the section *Defining a new axiom* for details and the rationale behind it.

An alternative would have been to give another name to the mixin class, like \texttt{FiniteCategory}. However this would have resulted in more namespace pollution, whereas using \texttt{Finite} is already clear, explicit, and easier to remember.

- Under the hood, the category \texttt{Cs().Finite()} is aware that it has been constructed from the category \texttt{Cs()} by adding the axiom \texttt{Finite}:

```
sage: Cs().Finite().base_category()
Category of cs
sage: Cs().Finite()._axiom
'Finite'
```

Over time, the nested class \texttt{Cs.Finite} may become large and too cumbersome to keep as a nested subclass of \texttt{Cs}. Or the category with axiom may have a name of its own in the literature, like \textit{semigroups} rather than \textit{associative magmas}, or \textit{fields} rather than \textit{commutative division rings}. In this case, the category with axiom can be put elsewhere, typically in a separate file, with just a link from \texttt{Cs}:

```
sage: class Cs(Category):
    ....:     def super_categories(self):
    ....:         return [Sets()]
sage: class FiniteCs(CategoryWithAxiom):
(continues on next page)
For a real example, see the code of the class `FiniteGroups` and the link to it in `Groups`. Note that the link is implemented using `LazyImport`; this is highly recommended: it makes sure that `FiniteGroups` is imported after `Groups` it depends upon, and makes it explicit that the class `Groups` can be imported and is fully functional without importing `FiniteGroups`.

Note: Some categories with axioms are created upon Sage’s startup. In such a case, one needs to pass the `at_startup=True` option to `LazyImport`, in order to quiet the warning about that lazy import being resolved upon startup. See for example `Sets.Finite`.

This is undoubtedly a code smell. Nevertheless, it is preferable to stick to lazy imports, first to resolve the import order properly, and more importantly as a reminder that the category would be best not constructed upon Sage’s startup. This is to spur developers to reduce the number of parents (and therefore categories) that are constructed upon startup. Each `at_startup=True` that will be removed will be a measure of progress in this direction.

Note: In principle, due to a limitation of `LazyImport` with nested classes (see trac ticket #15648), one should pass the option `as_name` to `LazyImport`:

```python
Finite = LazyImport('sage.categories.finite_groups', 'FiniteGroups', as_name='Finite')
```

in order to prevent `Groups.Finite` to keep on reimporting `FiniteGroups`.

Given that passing this option introduces some redundancy and is error prone, the axiom infrastructure includes a little workaround which makes the `as_name` unnecessary in this case.

### Making the category with axiom directly callable

If desired, a category with axiom can be constructed directly through its class rather than through its base category:

```python
sage: Semigroups()
Category of semigroups
sage: Semigroups() is Magmas().Associative()
True

sage: FiniteGroups()
Category of finite groups
sage: FiniteGroups() is Groups().Finite()
True
```

For this notation to work, the class `Semigroups` needs to be aware of the base category class (here, `Magmas`) and of the axiom (here, `Associative`):

```python
sage: Semigroups._base_category_class_and_axiom
<class 'sage.categories.magmas.Magmas'>, 'Associative'
```

### 2.3. Axioms
In our example, the attribute \_base_category_class_and_axiom was set upon calling Cs().Finite(), which makes the notation seemingly work:

\begin{verbatim}
sage: FiniteCs()
Category of finite cs
sage: FiniteCs._base_category_class_and_axiom
(<class '__main__.Cs'>, 'Finite')
sage: FiniteCs._base_category_class_and_axiom_origin
'set by __classget__'
\end{verbatim}

But calling FiniteCs() right after defining the class would have failed (try it!). In general, one needs to set the attribute explicitly:

\begin{verbatim}
sage: class FiniteCs(CategoryWithAxiom):
    ....:     _base_category_class_and_axiom = (Cs, 'Finite')
    ....: class ParentMethods:
    ....:     def foo(self):
    ....:         print("I am a method on finite C's")
\end{verbatim}

Having to set explicitly this link back from FiniteCs to Cs introduces redundancy in the code. It would therefore be desirable to have the infrastructure set the link automatically instead (a difficulty is to achieve this while supporting lazy imported categories with axiom).

As a first step, the link is set automatically upon accessing the class from the base category class:

\begin{verbatim}
sage: Algebras.WithBasis._base_category_class_and_axiom
(<class 'sage.categories.algebras.Algebras'>, 'WithBasis')
sage: Algebras.WithBasis._base_category_class_and_axiom_origin
'set by __classget__'
\end{verbatim}

Hence, for whatever this notation is worth, one can currently do:

\begin{verbatim}
sage: Algebras.WithBasis(QQ)
Category of algebras with basis over Rational Field
\end{verbatim}

We don’t recommend using syntax like Algebras.WithBasis(QQ), as it may eventually be deprecated.

As a second step, Sage tries some obvious heuristics to deduce the link from the name of the category with axiom (see base_category_class_and_axiom() for the details). This typically covers the following examples:

\begin{verbatim}
sage: FiniteCoxeterGroups()
Category of finite coxeter groups
sage: FiniteCoxeterGroups() is CoxeterGroups().Finite()
True
sage: FiniteCoxeterGroups._base_category_class_and_axiom_origin
'deduced by base_category_class_and_axiom'
\end{verbatim}
If the heuristic succeeds, the result is guaranteed to be correct. If it fails, typically because the category has a name of its own like `Fields`, the attribute `_base_category_class_and_axiom` should be set explicitly. For more examples, see the code of the classes `Semigroups` or `Fields`.

**Note:** When printing out a category with axiom, the heuristic determines whether a category has a name of its own by checking out how `_base_category_class_and_axiom` was set:

```python
sage: Fields._base_category_class_and_axiom_origin
'hardcoded'
```

See `CategoryWithAxiom._without_axioms()`, `CategoryWithAxiom._repr_object_names_static()`.

In our running example `FiniteCs`, Sage failed to deduce automatically the base category class and axiom because the class `Cs` is not in the standard location `sage.categories.cs`.

**Design discussion**

The above deduction, based on names, is undoubtedly inelegant. But it's safe (either the result is guaranteed to be correct, or an error is raised), it saves on some redundant information, and it is only used for the simple shorthands like `FiniteGroups()` for `Groups().Finite()`. Finally, most if not all of these shorthands are likely to eventually disappear (see trac ticket #15741 and the related discussion in the primer).

**Defining a new axiom**

We describe now how to define a new axiom. The first step is to figure out the largest category where the axiom makes sense. For example `Sets` for `Finite`, `Magmas` for `Associative`, or `Modules` for `FiniteDimensional`. Here we define the axiom `Green` for the category `Cs` and its subcategories:

```python
sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: class Cs(Category):
....: def super_categories(self):
....: return [Sets()]
....: class SubcategoryMethods:
....: def Green(self):
....: '<documentation of the axiom Green>'
....: return self._with_axiom("Green")
....: class Green(CategoryWithAxiom):
....: class ParentMethods:
....: def foo(self):
....: print("I am a method on green C's")
```

With the current implementation, the name of the axiom must also be added to a global container:
We can now use the axiom as usual:

```
sage: Cs().Green()
Category of green cs
```

```
sage: P = Parent(category=Cs().Green())
sage: P.foo()
I am a method on green C's
```

Compared with our first example, the only newcomer is the method `.Green()` that can be used by any subcategory `Ds()` of `Cs()` to add the axiom Green. Note that the expression `Ds().Green` always evaluates to this method, regardless of whether `Ds` has a nested class `Ds.Green` or not (an implementation detail):

```
sage: Cs().Green
<bound method Cs.SubcategoryMethods.Green of Category of cs>
```

Thanks to this feature (implemented in `CategoryWithAxiom.__classget__()`), the user is systematically referred to the documentation of this method when doing introspection on `Ds().Green`:

```
sage: C = Cs()
sage: C.Green
not tested
sage: Cs().Green.__doc__
'<documentation of the axiom Green>'
```

It is therefore the natural spot for the documentation of the axiom.

**Note:** The presence of the nested class `Green` in `Cs` is currently mandatory even if it is empty.

**Todo:** Specify whether or not one should systematically use `@cached_method` in the definition of the axiom. And make sure all the definition of axioms in Sage are consistent in this respect!

**Todo:** We could possibly define an `@axiom` decorator? This could hide two little implementation details: whether or not to make the method a cached method, and the call to `__with_axiom(...)` under the hood. It could do possibly do some more magic. The gain is not obvious though.

**Note:** `all_axioms` is only used marginally, for sanity checks and when trying to derive automatically the base category class. The order of the axioms in this tuple also controls the order in which they appear when printing out categories with axioms (see `CategoryWithAxiom._repr_object_names_static()`).

During a Sage session, new axioms should only be added at the *end* of `all_axioms`, as above, so as to not break the cache of `axioms_rank()`. Otherwise, they can be inserted statically anywhere in the tuple. For axioms defined within the Sage library, the name is best inserted by editing directly the definition of `all_axioms` in `sage.categories.category_with_axiom`. 

---

Chapter 2. The Sage Category Framework
Design note

Let us state again that, unlike what the existence of all_axioms might suggest, the definition of an axiom is local to a category and its subcategories. In particular, two independent categories $C_s()$ and $D_s()$ can very well define axioms with the same name and different semantics. As long as the two hierarchies of subcategories don’t intersect, this is not a problem. And if they do intersect naturally (that is if one is likely to create a parent belonging to both categories), this probably means that the categories $C_s$ and $D_s$ are about related enough areas of mathematics that one should clear the ambiguity by having either the same semantic or different names.

This caveat is no different from that of name clashes in hierarchy of classes involving multiple inheritance.

Todo: Explore ways to get rid of this global all_axioms tuple, and/or have automatic registration there, and/or having a register_axiom(...) method.

Special case: defining an axiom depending on several categories

In some cases, the largest category where the axiom makes sense is the intersection of two categories. This is typically the case for axioms specifying compatibility conditions between two otherwise unrelated operations, like Distributive which specifies a compatibility between $*$ and $\oplus$. Ideally, we would want the Distributive axiom to be defined by:

```sage
Magmas() & AdditiveMagmas()
```

Join of Category of magmas and Category of additive magmas

The current infrastructure does not support this perfectly: indeed, defining an axiom for a category $C$ requires $C$ to have a class of its own; hence a JoinCategory as above won’t do; we need to implement a new class like MagmasAndAdditiveMagmas; furthermore, we cannot yet model the fact that MagmasAndAdditiveMagmas() is the intersection of Magmas() and AdditiveMagmas() rather than a mere subcategory:

```sage
from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
Magmas() & AdditiveMagmas() is MagmasAndAdditiveMagmas()
False
Magmas() & AdditiveMagmas() # todo: not implemented
```

Still, there is a workaround to get the natural notations:

```sage
(Magmas() & AdditiveMagmas()).Distributive()
```

Category of distributive magmas and additive magmas

```sage
(Monoids() & CommutativeAdditiveGroups()).Distributive()
```

Category of rings

The trick is to define Distributive as usual in MagmasAndAdditiveMagmas, and to add a method MagmasAndAdditiveMagmas.SubcategoryMethods.Distributive() which checks that self is a subcategory of both Magmas() and AdditiveMagmas(), complains if not, and otherwise takes the intersection of self with MagmasAndAdditiveMagmas() before calling Distributive.

The downsides of this workaround are:

- Creation of an otherwise empty class MagmasAndAdditiveMagmas.
- Pollution of the namespace of Magmas() (and subcategories like Groups()) with a method that is irrelevant (but safely complains if called).
• C._with_axiom('Distributive') is not strictly equivalent to \texttt{C.Distributive()}, which can be unpleasantly surprising:

\begin{verbatim}
sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
Category of rings

sage: (Monoids() & CommutativeAdditiveGroups())._with_axiom('Distributive')
Join of Category of monoids and Category of commutative additive groups
\end{verbatim}

Todo: Other categories that would be better implemented via an axiom depending on a join category include:

• \textit{Algebras}: defining an associative unital algebra as a ring and a module satisfying the suitable compatibility axiom between inner multiplication and multiplication by scalars (bilinearity). Of course this should be implemented at the level of \texttt{MagmaticAlgebras}, if not higher.

• \textit{Bialgebras}: defining an bialgebra as an algebra and coalgebra where the coproduct is a morphism for the product.

• \textit{Bimodules}: defining a bimodule as a left and right module where the two actions commute.

Todo:

• Design and implement an idiom for the definition of an axiom by a join category.

• Or support more advanced joins, through some hook or registration process to specify that a given category is the intersection of two (or more) categories.

• Or at least improve the above workaround to avoid the last issue; this possibly could be achieved using a class \texttt{Magmas.Distributive} with a bit of \texttt{__classcall__} magic.

Handling multiple axioms, arborescence structure of the code

Prelude

Let us consider the category of magmas, together with two of its axioms, namely \texttt{Associative} and \texttt{Unital}. An associative magma is a \textit{semigroup} and a unital semigroup is a \textit{monoid}. We have also seen that axioms commute:

\begin{verbatim}
sage: Magmas().Unital()
Category of unital magmas
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().Unital()
Category of monoids
sage: Magmas().Unital().Associative()
Category of monoids
\end{verbatim}

At the level of the classes implementing these categories, the following comes as a general naturalization of the previous section:

\begin{verbatim}
sage: Magmas.Unital
<class 'sage.categories.magas.Magmas.Unital'>
sage: Magmas.Associative
\end{verbatim}
Abstract model

As we have seen in the Primer, the objects of a category $\mathcal{C}_S$ can usually satisfy, or not, many different axioms. Out of all combinations of axioms, only a small number are relevant in practice, in the sense that we actually want to provide features for the objects satisfying these axioms.

Therefore, in the context of the category class $\mathcal{C}_S$, we want to provide the system with a collection $(D_S)_S \in \mathcal{S}$ where each $S$ is a subset of the axioms and the corresponding $D_S$ is a class for the subcategory of the objects of $\mathcal{C}_S$ satisfying the axioms in $S$. For example, if $\mathcal{C}_S$ is the category of magmas, the pairs $(S, D_S)$ would include:

- \{Associative\} : Semigroups
- \{Associative, Unital\} : Monoids
- \{Associative, Unital, Inverse\} : Groups
- \{Associative, Commutative\} : Commutative Semigroups
- \{Unital, Inverse\} : Loops

Then, given a subset $T$ of axioms, we want the system to be able to select automatically the relevant classes $(D_S)_S \in \mathcal{S} \cap T$, and build from them a category for the objects of $\mathcal{C}_S$ satisfying the axioms in $T$, together with its hierarchy of super categories. If $T$ is in the indexing set $\mathcal{S}$, then the class of the resulting category is directly $D_T$:

```
sage: C = Magmas().Unital().Inverse().Associative(); C
Category of groups
sage: type(C)
<class 'sage.categories.groups.Groups_with_category'>
```

Otherwise, we get a join category:

```
sage: C = Magmas().Infinite().Unital().Associative(); C
Category of infinite monoids
sage: type(C)
<class 'sage.categories.category.JoinCategory_with_category'>
sage: C.super_categories()
[Category of monoids, Category of infinite sets]
```
Concrete model as an arborescence of nested classes

We further want the construction to be efficient and amenable to laziness. This led us to the following design decision: the collection \( (D_S)_{S \in \mathcal{S}} \) of classes should be structured as an arborescence (or equivalently a rooted forest). The root is \( C_\varnothing \), corresponding to \( S = \varnothing \). Any other class \( D_S \) should be the child of a single class \( D_{S'} \) where \( S' \) is obtained from \( S \) by removing a single axiom \( A \). Of course, \( D_{\varnothing} \) and \( A \) are respectively the base category class and axiom of the category with axiom \( D_S \) that we have met in the first section.

At this point, we urge the reader to explore the code of \texttt{Magmas} and \texttt{DistributiveMagmasAndAdditiveMagmas} and see how the arborescence structure on the categories with axioms is reflected by the nesting of category classes.

Discussion of the design

Performance

Thanks to the arborescence structure on subsets of axioms, constructing the hierarchy of categories and computing intersections can be made efficient with, roughly speaking, a linear/quadratic complexity in the size of the involved category hierarchy multiplied by the number of axioms (see Section \textit{Algorithms}). This is to be put in perspective with the manipulation of arbitrary collections of subsets (aka boolean functions) which can easily raise NP-hard problems.

Furthermore, thanks to its locality, the algorithms can be made suitably lazy: in particular, only the involved category classes need to be imported.

Flexibility

This design also brings in quite some flexibility, with the possibility to support features such as defining new axioms depending on other axioms and deduction rules. See below.

Asymmetry

As we have seen at the beginning of this section, this design introduces an asymmetry. It’s not so bad in practice, since in most practical cases, we want to work incrementally. It’s for example more natural to describe \texttt{FiniteFields} as \texttt{Fields} with the axiom \texttt{Finite} rather than \texttt{Magmas} and \texttt{AdditiveMagmas} with all (or at least sufficiently many) of the following axioms:

\begin{verbatim}
 sage: sorted(Fields().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
 'AdditiveUnital', 'Associative', 'Commutative', 'Distributive',
 'Division', 'NoZeroDivisors', 'Unital']
\end{verbatim}

The main limitation is that the infrastructure currently imposes to be incremental by steps of a single axiom.

In practice, among the roughly 60 categories with axioms that are currently implemented in Sage, most admitted a (rather) natural choice of a base category and single axiom to add. For example, one usually thinks more naturally of a monoid as a semigroup which is unital rather than as a unital magma which is associative. Modeling this asymmetry in the code actually brings a bonus: it is used for printing out categories in a (heuristically) mathematician-friendly way:

\begin{verbatim}
 sage: Magmas().Commutative().Associative()
Category of commutative semigroups
\end{verbatim}
Only in a few cases is a choice made that feels mathematically arbitrary. This is essentially in the chain of nested classes `distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas. AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative.

**Placeholder classes**

Given that we can only add a single axiom at a time when implementing a `CategoryWithAxiom`, we need to create a few category classes that are just placeholders. For the worst example, see the chain of nested classes `distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas. AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative.

This is suboptimal, but fits within the scope of the axiom infrastructure which is to reduce a potentially exponential number of placeholder category classes to just a couple.

Note also that, in the above example, it’s likely that some of the intermediate classes will grow to non placeholder ones, as people will explore more weaker variants of rings.

**Mismatch between the arborescence of nested classes and the hierarchy of categories**

The fact that the hierarchy relation between categories is not reflected directly as a relation between the classes may sound suspicious at first! However, as mentioned in the primer, this is actually a big selling point of the axioms infrastructure: by calculating automatically the hierarchy relation between categories with axioms one avoids the nightmare of maintaining it by hand. Instead, only a rather minimal number of links needs to be maintained in the code (one per category with axiom).

Besides, with the flexibility introduced by runtime deduction rules (see below), the hierarchy of categories may depend on the parameters of the categories and not just their class. So it’s fine to make it clear from the onset that the two relations do not match.

**Evolutivity**

At this point, the arborescence structure has to be hardcoded by hand with the annoyances we have seen. This does not preclude, in a future iteration, to design and implement some idiom for categories with axioms that adds several axioms at once to a base category; maybe some variation around:

```python
class DistributiveMagmasAndAdditiveMagmas:
 ...

 @category_with_axiom(
 AdditiveAssociative,
 AdditiveCommutative,
 AdditiveUnital,
 AdditiveInverse,
 Associative
)
 def _(): return LazyImport('sage.categories.rngs', 'Rngs', at_startup=True)
```

or:

```python
register_axiom_category(DistributiveMagmasAndAdditiveMagmas,
 {AdditiveAssociative,
 AdditiveCommutative,
 AdditiveUnital,
 ...
 })
```

(continues on next page)
The infrastructure would then be in charge of building the appropriate arborescence under the hood. Or rely on some database (see discussion on trac ticket #10963, in particular at the end of comment 332).

**Axioms defined upon other axioms**

Sometimes an axiom can only be defined when some other axiom holds. For example, the axiom `NoZeroDivisors` only makes sense if there is a zero, that is if the axiom `AdditiveUnital` holds. Hence, for the category `MagmasAndAdditiveMagmas`, we consider in the abstract model only those subsets of axioms where the presence of `NoZeroDivisors` implies that of `AdditiveUnital`. We also want the axiom to be only available if meaningful:

```python
sage: Rings().NoZeroDivisors()
Category of domains
sage: Rings().Commutative().NoZeroDivisors()
Category of integral domains
sage: Semirings().NoZeroDivisors()
Traceback (most recent call last):
 ... AttributeError: 'Semirings_with_category' object has no attribute 'NoZeroDivisors'
```

Concretely, this is to be implemented by defining the new axiom in the (SubcategoryMethods nested class of the) appropriate category with axiom. For example the axiom `NoZeroDivisors` would be naturally defined in `magmas_and_additive_magmas.MagmasAndAdditiveMagmas.Distributive.AdditiveUnital`.

**Note:** The axiom `NoZeroDivisors` is currently defined in `Rings`, by simple lack of need for the feature; it should be lifted up as soon as relevant, that is when some code will be available for parents with no zero divisors that are not necessarily rings.

**Deduction rules**

A similar situation is when an axiom `A` of a category `Cs` implies some other axiom `B`, with the same consequence as above on the subsets of axioms appearing in the abstract model. For example, a division ring necessarily has no zero divisors:

```python
sage: 'NoZeroDivisors' in Rings().Division().axioms()
True
sage: 'NoZeroDivisors' in Rings().axioms()
False
```

This deduction rule is implemented by the method `Rings.Division.extra_super_categories()`:

```python
sage: Rings().Division().extra_super_categories()
(Category of domains,)
```

In general, this is to be implemented by a method `Cs.A.extra_super_categories` returning a tuple `(Cs().B(),)`, or preferably `(Ds().B(),)` where `Ds` is the category defining the axiom `B`. 
This follows the same idiom as for deduction rules about functorial constructions (see covariant_functorial_construction.CovariantConstructionCategory.extra_super_categories()). For example, the fact that a Cartesian product of associative magmas (i.e. of semigroups) is an associative magma is implemented in Semigroups.CartesianProducts.extra_super_categories():

```sage
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().CartesianProducts().extra_super_categories()
[Category of semigroups]
```

Similarly, the fact that the algebra of a commutative magma is commutative is implemented in Magmas.Commutative.Algebras.extra_super_categories():

```sage
sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
```

**Warning:** In some situations this idiom is inapplicable as it would require to implement two classes for the same category. This is the purpose of the next section.

### Special case

In the previous examples, the deduction rule only had an influence on the super categories of the category with axiom being constructed. For example, when constructing Rings().Division(), the rule Rings.Division.extra_super_categories() simply adds Rings().NoZeroDivisors() as a super category thereof.

In some situations this idiom is inapplicable because a class for the category with axiom under construction already exists elsewhere. Take for example Wedderburn’s theorem: any finite division ring is commutative, i.e. is a finite field. In other words, DivisionRings().Finite() coincides with Fields().Finite:

```sage
sage: DivisionRings().Finite()
Category of finite enumerated fields
sage: DivisionRings().Finite() is Fields().Finite()
True
```

Therefore we cannot create a class DivisionRings.Finite to hold the desired extra_super_categories method, because there is already a class for this category with axiom, namely Fields.Finite.

A natural idiom would be to have DivisionRings.Finite be a link to Fields.Finite (locally introducing an undirected cycle in the arborescence of nested classes). It would be a bit tricky to implement though, since one would need to detect, upon constructing DivisionRings().Finite(), that DivisionRings.Finite is actually Fields.Finite, in order to construct appropriately Fields().Finite(): and reciprocally, upon computing the super categories of Fields().Finite(), to not try to add DivisionRings().Finite() as a super category.

Instead the current idiom is to have a method DivisionRings.Finite_extra_super_categories which mimics the behavior of the would-be DivisionRings.Finite.extra_super_categories:

```sage
sage: DivisionRings().Finite_extra_super_categories()
(Category of commutative magmas,)
```

This idiom is admittedly rudimentary, but consistent with how mathematical facts specifying non trivial inclusion relations between categories are implemented elsewhere in the various extra_super_categories methods of axiom categories and covariant functorial constructions. Besides, it gives a natural spot (the docstring of the method) to document and test the modeling of the mathematical fact. Finally, Wedderburn’s theorem is arguably a theorem
about division rings (in the context of division rings, finiteness implies commutativity) and therefore lives naturally in \texttt{DivisionRings}.

An alternative would be to implement the category of finite division rings (i.e. finite fields) in a class \texttt{DivisionRings}. Finite rather than \texttt{Fields.Finite}:

\begin{Verbatim}
sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: class MyDivisionRings(Category):
....:   def super_categories(self):
....:       return [Rings()]

sage: class MyFields(Category):
....:   def super_categories(self):
....:       return [MyDivisionRings()]

sage: class MyFiniteFields(CategoryWithAxiom):
....:   _base_category_class_and_axiom = (MyDivisionRings, "Finite")
....:   def extra_super_categories(self): # Wedderburn's theorem
....:       return [MyFields()]

sage: MyDivisionRings.Finite = MyFiniteFields
sage: MyDivisionRings().Finite() Category of my finite fields
sage: MyFields().Finite() is MyDivisionRings().Finite() True
\end{Verbatim}

In general, if several categories $C_1s()$, $C_2s()$, ... are mapped to the same category when applying some axiom $A$ (that is $C_1s().A() == C_2s().A() \ Markup{==} ...$), then one should be careful to implement this category in a single class $C_s$. $A$, and set up methods \texttt{extra_super_categories} or \texttt{A_extra_super_categories} methods as appropriate. Each such method should return something like \texttt{[C_2s()]} and not \texttt{[C_2s().A()]} for the latter would likely lead to an infinite recursion.

\begin{Verbatim}
Design discussion

Supporting similar deduction rules will be an important feature in the future, with quite a few occurrences already implemented in upcoming tickets. For the time being though there is a single occurrence of this idiom outside of the tests. So this would be an easy thing to refactor after \texttt{trac ticket #10963} if a better idiom is found.
\end{Verbatim}

\begin{Verbatim}
Larger synthetic examples

We now consider some larger synthetic examples to check that the machinery works as expected. Let us start with a category defining a bunch of axioms, using \texttt{axiom()} for conciseness (don't do it for real axioms; they deserve a full documentation!):

\begin{Verbatim}
sage: from sage.categories.category_singleton import Category_singleton
sage: from sage.categories.category_with_axiom import axiom
sage: import sage.categories.category_with_axiom
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: all_axioms += ("B","C","D","E","F")
\end{Verbatim}

(continues on next page)
Now we construct a subcategory where, by some theorem of William, axioms B and C together are equivalent to E and F together:

```python
sage: class A1s(Category_singleton):
 : def super_categories(self):
 : return [As()]
 : class B(CategoryWithAxiom):
 : def C_extra_super_categories(self):
 : return [As().E(), As().F()]
 : class E(CategoryWithAxiom):
 : def F_extra_super_categories(self):
 : return [As().B(), As().C()]
```

sage: A1s().B().C()
Category of e f a1s

The axioms B and C do not show up in the name of the obtained category because, for concision, the printing uses some heuristics to not show axioms that are implied by others. But they are satisfied:

```python
sage: sorted(A1s().B().C().axioms())
['B', 'C', 'E', 'F']
```

Note also that this is a join category:

```python
sage: type(A1s().B().C())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: A1s().B().C().super_categories()
[Category of e a1s, Category of f as,]
```

2.3. Axioms
As desired, William’s theorem holds:

```python
sage: A1s().B().C() is A1s().E().F()
True
```

and propagates appropriately to subcategories:

```python
sage: C = A1s().E().F().D().B().C()
sage: C is A1s().B().C().E().F().D() # commutativity
True
sage: C is A1s().E().F().E().F().D() # William's theorem
True
sage: C is A1s().E().E().F().F().D() # commutativity
True
sage: C is A1s().E().F().D() # idempotency
True
sage: C is A1s().D().E().F()
True
```

In this quick variant, we actually implement the category of `b c a2s`, and choose to do so in `A2s.B.C`:

```python
sage: class A2s(Category_singleton):
 : def super_categories(self):
 : return [As()]
 :
 : class B(CategoryWithAxiom):
 : class C(CategoryWithAxiom):
 : def extra_super_categories(self):
 : return [As().E(), As().F()]
 :
 : class E(CategoryWithAxiom):
 : def F_extra_super_categories(self):
 : return [As().B(), As().C()]

sage: A2s().B().C()
Category of e f a2s
sage: sorted(A2s().B().C().axioms())
['B', 'C', 'E', 'F']
sage: type(A2s().B().C())
<class '__main__.A2s.B.C_with_category'>
```

As desired, William’s theorem and its consequences hold:

```python
sage: A2s().B().C() is A2s().E().F()
True
sage: C = A2s().E().F().D().B().C()
sage: C is A2s().B().C().E().F().D() # commutativity
True
sage: C is A2s().E().F().E().F().D() # William's theorem
```

(continues on next page)
Finally, we “accidentally” implement the category of b c a1s, both in A3s.B.C and A3s.E.F:

```python
sage: class A3s(Category_singleton):
 def super_categories(self):
 return [As()]

 class B(CategoryWithAxiom):
 class C(CategoryWithAxiom):
 def extra_super_categories(self):
 return [As().E(), As().F()]

 class E(CategoryWithAxiom):
 class F(CategoryWithAxiom):
 def extra_super_categories(self):
 return [As().B(), As().C()]
```

We can still construct, say:

```python
sage: A3s().B()
Category of b a3s
sage: A3s().C()
Category of c a3s
```

However,

```python
sage: A3s().B().C() # not tested
```

runs into an infinite recursion loop, as A3s().B().C() wants to have A3s().E().F() as super category and reciprocally.

**Todo:** The above example violates the specifications (a category should be modelled by at most one class), so it’s appropriate that it fails. Yet, the error message could be usefully complemented by some hint at what the source of the problem is (a category implemented in two distinct classes). Leaving a large enough piece of the backtrace would be useful though, so that one can explore where the issue comes from (e.g. with post mortem debugging).
2.3.2 Specifications

After fixing some vocabulary, we summarize here some specifications about categories and axioms.

The lattice of constructible categories

A mathematical category $C$ is implemented if there is a class in Sage modelling it; it is constructible if it is either implemented, or is the intersection of implemented categories; in the latter case it is modelled by a JoinCategory. The comparison of two constructible categories with the `Category.is_subcategory()` method is supposed to model the comparison of the corresponding mathematical categories for inclusion of the objects (see On the category hierarchy: subcategories and super categories for details). For example:

```python
sage: Fields().is_subcategory(Rings())
True
```

However this modelling may be incomplete. It can happen that a mathematical fact implying that a category $A$ is a subcategory of a category $B$ is not implemented. Still, the comparison should endow the set of constructible categories with a poset structure and in fact a lattice structure.

In this lattice, the join of two categories (Category.join()) is supposed to model their intersection. Given that we compare categories for inclusion, it would be more natural to call this operation the meet; blame goes to me (Nicolas) for originally comparing categories by amount of structure rather than by inclusion. In practice, the join of two categories may be a strict super category of their intersection; first because this intersection might not be constructible; second because Sage might miss some mathematical information to recover the smallest constructible super category of the intersection.

Axioms

We say that an axiom $A$ is defined by a category $Cs()$ if $Cs$ defines an appropriate method $Cs$.SubcategoryMethods.A, with the semantic of the axiom specified in the documentation; for any subcategory $Ds()$, $Ds().A()$ models the subcategory of the objects of $Ds()$ satisfying $A$. In this case, we say that the axiom $A$ is defined for the category $Ds()$. Furthermore, $Ds$ implements the axiom $A$ if $Ds$ has a category with axiom as nested class $Ds.A$. The category $Ds()$ satisfies the axiom if $Ds()$ is a subcategory of $Cs().A()$ (meaning that all the objects of $Ds()$ are known to satisfy the axiom $A$).

A digression on the structure of fibers when adding an axiom

Consider the application $\phi_A$ which maps a category to its category of objects satisfying $A$. Equivalently, $\phi_A$ is computing the intersection with the defining category with axiom of $A$. It follows immediately from the latter that $\phi_A$ is a regressive endomorphism of the lattice of categories. It restricts to a regressive endomorphism $Cs() \rightarrow Cs().A()$ on the lattice of constructible categories.

This endomorphism may have non trivial fibers, as in our favorite example: DivisionRings() and Fields() are in the same fiber for the axiom Finite:

```python
sage: DivisionRings().Finite() is Fields().Finite()
True
```

Consider the intersection $S$ of such a fiber of $\phi_A$ with the upper set $I_A$ of categories that do not satisfy $A$. The fiber itself is a sublattice. However $I_A$ is not guaranteed to be stable under intersection (though exceptions should be rare). Therefore, there is a priori no guarantee that $S$ would be stable under intersection. Also it’s presumably finite, in fact small, but this is not guaranteed either.
Specifications

- Any constructible category $C$ should admit a finite number of larger constructible categories.

- The methods `super_categories`, `extra_super_categories`, and friends should always return strict super-categories.

  For example, to specify that a finite division ring is a finite field, `DivisionRings.Finite_extra_super_categories` should not return `Fields().Finite()`! It could possibly return `Fields()`, but it's preferable to return the largest category that contains the relevant information, in this case `Magmas().Commutative()`, and to let the infrastructure apply the derivations.

- The base category of a `CategoryWithAxiom` should be an implemented category (i.e. not a `JoinCategory`). This is checked by `CategoryWithAxiom._test_category_with_axiom()`.

- Arborescent structure: Let $Cs()$ be a category, and $S$ be some set of axioms defined in some super categories of $Cs()$ but not satisfied by $Cs()$. Suppose we want to provide a category with axiom for the elements of $Cs()$ satisfying the axioms in $S$. Then, there should be a single enumeration $A_1$, $A_2$, ..., $A_k$ without repetition of axioms in $S$ such that $Cs.A_1.A_2....A_k$ is an implemented category. Furthermore, every intermediate step $Cs.A_1.A_2....A_i$ with $i \leq k$ should be a category with axiom having $A_i$ as axiom and $Cs.A_1.A_2....A_{i-1}$ as base category class; this base category class should not satisfy $A_i$. In particular, when some axioms of $S$ can be deduced from previous ones by deduction rules, they should not appear in the enumeration $A_1, A_2, ..., A_k$.

  In particular, if $Cs()$ is a category that satisfies some axiom $A$ (e.g. from one of its super categories), then it should not implement that axiom. For example, a category class $Cs$ can never have a nested class $Cs.A.A$.

  Similarly, applying the specification recursively, a category satisfying $A$ cannot have a nested class $Cs.A_1.A_2.A_3.A$ where $A_1$, $A_2$, $A_3$ are axioms.

- A category can only implement an axiom if this axiom is defined by some super category. The code has not been systematically checked to support having two super categories defining the same axiom (which should of course have the same semantic). You are welcome to try, at your own risk. :-)

- When a category defines an axiom or functorial construction $A$, this fixes the semantic of $A$ for all the subcategories. In particular, if two categories define $A$, then these categories should be independent, and either the semantic of $A$ should be the same, or there should be no natural intersection between the two hierarchies of subcategories.

- Any super category of a `CategoryWithParameters` should either be a `CategoryWithParameters` or a `Category_singleton`.

- A `CategoryWithAxiom` having a `Category_singleton` as base category should be a `CategoryWithAxiom_singleton`. This is handled automatically by `CategoryWithAxiom.__init__()` and checked in `CategoryWithAxiom._test_category_with_axiom()`.

- A `CategoryWithAxiom` having a `Category_over_base_ring` as base category should be a `Category_over_base_ring`. This currently has to be handled by hand, using `CategoryWithAxiom_over_base_ring`. This is checked in `CategoryWithAxiom._test_category_with_axiom()`.

Todo: The following specifications would be desirable but are not yet implemented:

- A functorial construction category (Graded, CartesianProducts, ...) having a `Category_singleton` as base category should be a `CategoryWithAxiom_singleton`.

  Nothing difficult to implement, but this will need to rework the current “no subclass of a concrete class” assertion test of `Category_singleton.__classcall__()`.

- Similarly, a covariant functorial construction category having a `Category_over_base_ring` as base category should be a `Category_over_base_ring`.  

2.3. Axioms
The following specification might be desirable, or not:

- A join category involving a `Category_over_base_ring` should be a `Category_over_base_ring`. In the mean time, a `base_ring` method is automatically provided for most of those by `Modules.SubcategoryMethods.base_ring()`.

### 2.3.3 Design goals

As pointed out in the primer, the main design goal of the axioms infrastructure is to subdue the potential combinatorial explosion of the category hierarchy by letting the developer focus on implementing a few bookshelves for which there is actual code or mathematical information, and let Sage compose dynamically and lazily these building blocks to construct the minimal hierarchy of classes needed for the computation at hand. This allows for the infrastructure to scale smoothly as bookshelves are added, extended, or reorganized.

Other design goals include:

- Flexibility in the code layout: the category of, say, finite sets can be implemented either within the `Sets` category (in a nested class `Sets.Finite`), or in a separate file (typically in a class `FiniteSets` in a lazily imported module `sage.categories.finite_sets`).

- Single point of truth: a theorem, like Wedderburn’s, should be implemented in a single spot.

- Single entry point: for example, from the entry `Rings`, one can explore a whole range of related categories just by applying axioms and constructions:

  ```sage```
  ```
  sage: Rings().Commutative().Finite().NoZeroDivisors()
  Category of finite integral domains
  sage: Rings().Finite().Division()
  Category of finite enumerated fields
  ```

 This will allow for progressively getting rid of all the entries like `GradedHopfAlgebrasWithBasis` which are polluting the global name space.

 Note that this is not about precluding the existence of multiple natural ways to construct the same category:

  ```sage```
  ```
 sage: Groups().Finite()
 Category of finite groups
 sage: Monoids().Finite().Inverse()
 Category of finite groups
 sage: Sets().Finite() & Monoids().Inverse()
 Category of finite groups
  ```

- Concise idioms for the users (adding axioms, …)

- Concise idioms and well highlighted hierarchy of bookshelves for the developer (especially with code folding)

- Introspection friendly (listing the axioms, recovering the mixins)

**Note:** The constructor for instances of this class takes as input the base category. Hence, they should in principle be constructed as:

```sage```
```
 sage: FiniteSets(Sets())
 Category of finite sets
 sage: Sets.Finite(Sets())
 Category of finite sets
```
None of these idioms are really practical for the user. So instead, this object is to be constructed using any of the following idioms:

```
sage: Sets()._with_axiom('Finite')
Category of finite sets
sage: FiniteSets()
Category of finite sets
sage: Sets().Finite()
Category of finite sets
```

The later two are implemented using respectively `CategoryWithAxiom.__classcall__()` and `CategoryWithAxiom.__classget__()`.

2.3.4 Upcoming features

Todo:

- Implement compatibility axiom / functorial constructions. For example, one would want to have:

  ```
  A.CartesianProducts() & B.CartesianProducts() = (A&B).CartesianProducts()
  ```

- Once full subcategories are implemented (see trac ticket #10668), make the relevant categories with axioms be such. This can be done systematically for, e.g., the axioms Associative or Commutative, but not for the axiom Unital: a semigroup morphism between two monoids need not preserve the unit.

 Should all full subcategories be implemented in term of axioms?

2.3.5 Algorithms

Computing joins

The workhorse of the axiom infrastructure is the algorithm for computing the join J of a set C_1, \ldots, C_k of categories (see `Category.join()`). Formally, J is defined as the largest constructible category such that $J \subseteq C_i$ for all i, and $J \subseteq C.A()$ for every constructible category $C \supseteq J$ and any axiom A satisfied by J.

The join J is naturally computed as a closure in the lattice of constructible categories: it starts with the C_i’s, gathers the set S of all the axioms satisfied by them, and repeatedly adds each axiom A to those categories that do not yet satisfy A using `Category._with_axiom()`. Due to deduction rules or (extra) super categories, new categories or new axioms may appear in the process. The process stops when each remaining category has been combined with each axiom. In practice, only the smallest categories are kept along the way; this is correct because adding an axiom is covariant: $C.A()$ is a subcategory of $D.A()$ whenever C is a subcategory of D.

As usual in such closure computations, the result does not depend on the order of execution. Furthermore, given that adding an axiom is an idempotent and regressive operation, the process is guaranteed to stop in a number of steps which is bounded by the number of super categories of J. In particular, it is a finite process.

Todo: Detail this a bit. What could typically go wrong is a situation where, for some category C_1, $C_1.A()$ specifies a category C_2 as super category such that $C_2.A()$ specifies C_3 as super category such that \ldots; this would clearly cause an infinite execution. Note that this situation violates the specifications since $C_1.A()$ is supposed to be a subcategory of $C_2.A(), \ldots$ so we would have an infinite increasing chain of constructible categories.
It’s reasonable to assume that there is a finite number of axioms defined in the code. There remains to use this assumption to argue that any infinite execution of the algorithm would give rise to such an infinite sequence.

Adding an axiom

Let Cs be a category and A an axiom defined for this category. To compute Cs().A(), there are two cases.

Adding an axiom A to a category Cs() not implementing it

In this case, Cs().A() returns the join of:
- Cs()
- Bs().A() for every direct super category Bs() of Cs()
- the categories appearing in Cs().A_extra_super_categories()

This is a highly recursive process. In fact, as such, it would run right away into an infinite loop! Indeed, the join of Cs() with Bs().A() would trigger the construction of Cs().A() and reciprocally. To avoid this, the Category.join() method itself does not use Category._with_axiom() to add axioms, but its sister Category._with_axiom_as_tuple(); the latter builds a tuple of categories that should be joined together but leaves the computation of the join to its caller, the master join calculation.

Adding an axiom A to a category Cs() implementing it

In this case Cs().A() simply constructs an instance D of Cs.A which models the desired category. The non trivial part is the construction of the super categories of D. Very much like above, this includes:
- Cs()
- Bs().A() for every super category Bs() of Cs()
- the categories appearing in D.extra_super_categories()

This by itself may not be sufficient, due in particular to deduction rules. On may for example discover a new axiom A1 satisfied by D, imposing to add A1 to all of the above categories. Therefore the super categories are computed as the join of the above categories. Up to one twist: as is, the computation of this join would trigger recursively a recalculation of Cs().A()! To avoid this, Category.join() is given an optional argument to specify that the axiom A should not be applied to Cs().

Sketch of proof of correctness and evaluation of complexity

As we have seen, this is a highly recursive process! In particular, one needs to argue that, as long as the specifications are satisfied, the algorithm won’t run in an infinite recursion, in particular in case of deduction rule.

Theorem

Consider the construction of a category C by adding an axiom to a category (or computing of a join). Let H be the hierarchy of implemented categories above C. Let n and m be respectively the number of categories and the number of inheritance edges in H.
Assuming that the specifications are satisfied, the construction of C involves constructing the categories in H exactly once (and no other category), and at most n join calculations. In particular, the time complexity should be, roughly speaking, bounded by n^2. In particular, it’s finite.

Remark

It’s actually to be expected that the complexity is more of the order of magnitude of $na + m$, where a is the number of axioms satisfied by C. But this is to be checked in detail, in particular due to the many category inclusion tests involved.

The key argument is that `Category.join` cannot call itself recursively without going through the construction of some implemented category. In turn, the construction of some implemented category C only involves constructing strictly smaller categories, and possibly a direct join calculation whose result is strictly smaller than C. This statement is obvious if C implements the `super_categories` method directly, and easy to check for functorial construction categories. It requires a proof for categories with axioms since there is a recursive join involved.

Lemma

Let C be a category implementing an axiom A. Recall that the construction of $C.A()$ involves a single direct join calculation for computing the super categories. No other direct join calculation occur, and the calculation involves only implemented categories that are strictly smaller than $C.A()$.

Proof

Let D be a category involved in the join calculation for the super categories of $C.A()$, and assume by induction that D is strictly smaller than $C.A()$. A category E newly constructed from D can come from:

- $D.(\text{extra}_\text{.)super_categories()}$
 In this case, the specifications impose that E should be strictly smaller than D and therefore strictly smaller than C.

- $D.\text{with_axiom_as_tuple('B')}$ or $D.B.\text{extra_super_categories()}$ for some axiom B
 In this case, the axiom B is satisfied by some subcategory of $C.A()$, and therefore must be satisfied by $C.A()$ itself. Since adding an axiom is a regressive construction, E must be a subcategory of $C.A()$. If there is equality, then E and $C.A()$ must have the same class, and therefore, E must be directly constructed as $C.A()$. However the join construction explicitly prevents this call.

Note that a call to $D.\text{with_axiom_as_tuple('B')}$ does not trigger a direct join calculation; but of course, if D implements B, the construction of the implemented category $E = D.B()$ will involve a strictly smaller join calculation.
2.3.6 Conclusion

This is the end of the axioms documentation. Congratulations on having read that far!

2.3.7 Tests

Note: Quite a few categories with axioms are constructed early on during Sage’s startup. Therefore, when playing around with the implementation of the axiom infrastructure, it is easy to break Sage. The following sequence of tests is designed to test the infrastructure from the ground up even in a partially broken Sage. Please don’t remove the imports!

```python
class sage.categories.category_with_axiom.Bars(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

    A toy singleton category, for testing purposes.

    See also:

    Blahs

    Unital_extra_super_categories()

    Return extraneous super categories for the unital objects of self.

    This method specifies that a unital bar is a test object. Thus, the categories of unital bars and of unital test objects coincide.

    EXAMPLES:

    sage: from sage.categories.category_with_axiom import Bars, TestObjects
    sage: Bars().Unital_extra_super_categories()
    [Category of test objects]
    sage: Bars().Unital()
    Category of unital test objects
    sage: TestObjects().Unital().all_super_categories()
    [Category of unital test objects,
     Category of unital blahs,
     Category of test objects,
     Category of bars,
     Category of blahs,
     Category of sets,
     Category of sets with partial maps,
     Category of objects]

    super_categories()

class sage.categories.category_with_axiom.Blahs(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

    A toy singleton category, for testing purposes.

    This is the root of a hierarchy of mathematically meaningless categories, used for testing Sage’s category framework:

    • Bars
    • TestObjects
    • TestObjectsOverBaseRing
```
Blue_extra_super_categories()
Illustrates a current limitation in the way to have an axiom imply another one.

Here, we would want Blue to imply Unital, and to put the class for the category of unital blue blahs in Blahs.Unital.Blue rather than Blahs.Blue.

This currently fails because Blahs is the category where the axiom Blue is defined, and the specifications currently impose that a category defining an axiom should also implement it (here in an category with axiom Blahs.Blue). In practice, due to this violation of the specifications, the axiom is lost during the join calculation.

Todo: Decide whether we care about this feature. In such a situation, we are not really defining a new axiom, but just defining an axiom as an alias for a couple others, which might not be that useful.

Todo: Improve the infrastructure to detect and report this violation of the specifications, if this is easy. Otherwise, it's not so bad: when defining an axiom A in a category Cs the first thing one is supposed to doctest is that Cs().A() works. So the problem should not go unnoticed.

class Commutative(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Connected(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class FiniteDimensional(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Flying(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

extra_super_categories()
This illustrates a way to have an axiom imply another one.

Here, we want Flying to imply Unital, and to put the class for the category of unital flying blahs in Blahs.Flying rather than Blahs.Unital.Flying.

class SubcategoryMethods
 Bases: object

 Blue()
 Commutative()
 Connected()
 FiniteDimensional()
 Flying()
 Unital()

class Unital(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Blue(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

super_categories()
class sage.categories.category_with_axiom.CategoryWithAxiom(base_category)
Bases: sage.categories.category.Category

An abstract class for categories obtained by adding an axiom to a base category.

See the category primer, and in particular its section about axioms for an introduction to axioms, and CategoryWithAxiom for how to implement axioms and the documentation of the axiom infrastructure.

static __classcall__(*args, **options)
Make FoosBar(**) an alias for Foos(**)._with_axiom("Bar").

EXAMPLES:

```
sage: FiniteGroups()
Category of finite groups
sage: ModulesWithBasis(ZZ)
Category of modules with basis over Integer Ring
sage: AlgebrasWithBasis(QQ)
Category of algebras with basis over Rational Field
```

This is relevant when e.g. Foos(**) does some non trivial transformations:

```
sage: Modules(QQ) is VectorSpaces(QQ)
True
sage: type(Modules(QQ))
<class 'sage.categories.vector_spaces(VectorSpaces_with_category)'

sage: ModulesWithBasis(QQ) is VectorSpaces(QQ).WithBasis()
True
sage: type(ModulesWithBasis(QQ))
<class 'sage.categories.vector_spaces(VectorSpaces_with_category)'
```

static __classget__(base_category, base_category_class)
Implement the binding behavior for categories with axioms.

This method implements a binding behavior on category with axioms so that, when a category Cs implements an axiom A with a nested class Cs.A, the expression Cs().A evaluates to the method defining the axiom A and not the nested class. See those design notes for the rationale behind this behavior.

EXAMPLES:

```
sage: Sets().Infinite()
Category of infinite sets
sage: Sets().Infinite
Cached version of <function ...Infinite at ...>

sage: Sets().Infinite.f == Sets.SubcategoryMethods.Infinite.f
True
```

We check that this also works when the class is implemented in a separate file, and lazy imported:

```
sage: Sets().Finite
Cached version of <function ...Finite at ...>
```

There is no binding behavior when accessing Finite or Infinite from the class of the category instead of the category itself:
This method also initializes the attribute `_base_category_class_and_axiom` if not already set:

```
sage: Sets.Infinite._base_category_class_and_axiom
<class 'sage.categories.sets_cat.Sets.Infinite'>
sage: Sets.Infinite._base_category_class_and_axiom_origin
'set by __classget__'
```

```python
__init__(base_category)
```  
```
_repr_object_names()
```  
The names of the objects of this category, as used by `__repr__`.

See also:
Category._repr_object_names()

EXAMPLES:

```
sage: FiniteSets()._repr_object_names()
'finite sets'
sage: AlgebrasWithBasis(QQ).FiniteDimensional()._repr_object_names()
'finite dimensional algebras with basis over Rational Field'
sage: Monoids()._repr_object_names()
'monoids'
sage: Semigroups().Unital().Finite()._repr_object_names()
'finite monoids'
sage: Algebras(QQ).Commutative()._repr_object_names()
'commutative algebras over Rational Field'
```

Note: This is implemented by taking `_repr_object_names` from `self._without_axioms(named=True)`, and adding the names of the relevant axioms in appropriate order.

```
static _repr_object_names_static(category, axioms)
```  
```
INPUT:
```  
• base_category – a category
• axioms – a list or iterable of strings

EXAMPLES:

```
sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: CategoryWithAxiom._repr_object_names_static(Semigroups(), ['Flying', 'Blue'])
'flying blue semigroups'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ['Flying', '->WithBasis', 'Blue'])
'flying blue algebras with basis over Rational Field'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ['WithBasis'])
'algebras with basis over Rational Field'
```

(continues on next page)
If the axioms is a set or frozen set, then they are first sorted using `canonicalize_axioms()`:

```
sage: CategoryWithAxiom._repr_object_names_static(Semigroups(), set("
˓→'Finite', "Commutative", "Facade"))
'facade finite commutative semigroups'
```

See also:

```
_repr_object_names()
```

Note: The logic here is shared between `_repr_object_names()` and `category.JoinCategory._repr_object_names()`

_test_category_with_axiom(**options)

Run generic tests on this category with axioms.

See also:

TestSuite.

This check that an axiom category of a `Category_singleton` is a singleton category, and similarwise for `Category_over_base_ring`.

EXAMPLES:

```
sage: Sets().Finite()._test_category_with_axiom()
sage: Modules(ZZ).FiniteDimensional()._test_category_with_axiom()
```

_without_axioms(named=False)

Return the category without the axioms that have been added to create it.

EXAMPLES:

```
sage: Sets().Finite()._without_axioms()
Category of sets
sage: Monoids().Finite()._without_axioms()
Category of magmas
```

This is because:

```
sage: Semigroups().Unital() is Monoids()
True
```

If named is True, then `_without_axioms` stops at the first category that has an explicit name of its own:
Technically we test this by checking if the class specifies explicitly the attribute `_base_category_class_and_axiom` by looking up `_base_category_class_and_axiom_origin`.

Some more examples:

```
sage: Algebras(QQ).Commutative()._without_axioms()
Category of magmatic algebras over Rational Field
sage: Algebras(QQ).Commutative()._without_axioms(named=True)
Category of algebras over Rational Field
```

additional_structure()

Return the additional structure defined by `self`.

OUTPUT: None

By default, a category with axiom defines no additional structure.

See also:

`Category.additional_structure()`.

EXAMPLES:

```
sage: Sets().Finite().additional_structure()  
sage: Monoids().additional_structure()
```

axioms()

Return the axioms known to be satisfied by all the objects of `self`.

See also:

`Category.axioms()`

EXAMPLES:

```
sage: C = Sets.Finite(); C
Category of finite sets
sage: C.axioms()
frozenset({'Finite'})
sage: C = Modules(GF(5)).FiniteDimensional(); C
Category of finite dimensional vector spaces over Finite Field of size 5
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',  
 AdditiveUnital', 'Finite', 'FiniteDimensional']
sage: sorted(FiniteMonoids().Algebras(QQ).axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',  
 AdditiveUnital', 'Associative', 'Distributive', 'FiniteDimensional',  
 'Unital', 'WithBasis']
sage: sorted(FiniteMonoids().Algebras(GF(3)).axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',  
 AdditiveUnital', 'Associative', 'Distributive', 'Finite',
(continues on next page)
'FiniteDimensional', 'Unital', 'WithBasis']

sage: from sage.categories.magas_and_additive_magmas import MagmasAndAdditiveMagmas
sage: MagmasAndAdditiveMagmas().Distributive().Unital().axioms()
frozenset({'Distributive', 'Unital'})

sage: D = MagmasAndAdditiveMagmas().Distributive()
sage: X = D.AdditiveAssociative().AdditiveCommutative().Associative()
sage: X.Unital().super_categories()[1]  # Monoids
Category of monoids

sage: X.Unital().super_categories()[1]  # Monoids
is Monoids()
True

base_category()

Return the base category of self.

EXAMPLES:

sage: C = Sets.Finite(); C
Category of finite sets
sage: C.base_category()
Category of sets
sage: C._without_axioms()
Category of sets

extra_super_categories()

Return the extra super categories of a category with axiom.

Default implementation which returns [].

EXAMPLES:

sage: FiniteSets().extra_super_categories()
[]

super_categories()

Return a list of the (immediate) super categories of self, as per `Category.super_categories()`.

This implements the property that if As is a subcategory of Bs, then the intersection of As with FiniteSets() is a subcategory of As and of the intersection of Bs with FiniteSets().

EXAMPLES:

A finite magma is both a magma and a finite set:

sage: Magmas().Finite().super_categories()
[Category of magmas, Category of finite sets]

Variants:

sage: Sets().Finite().super_categories()
[Category of sets]

sage: Monoids().Finite().super_categories()
[Category of monoids, Category of finite semigroups]
EXAMPLES:

class sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom, sage.categories.category_types.Category_over_base_ring

class sage.categories.category_with_axiom.CategoryWithAxiom_singleton(base_category)
    Bases: sage.categories.category_singleton.Category_singleton, sage.categories.category_with_axiom.CategoryWithAxiom

class sage.categories.category_with_axiom.TestObjects(s=None)
    Bases: sage.categories.category_singleton.Category_singleton
    A toy singleton category, for testing purposes.
    See also:
    Blahs

    class Commutative(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    class Facade(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    class Finite(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    class FiniteDimensional(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    class FiniteDimensional(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    class Finite(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    class Unital(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    class Commutative(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    class Unital(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    super_categories()

class sage.categories.category_with_axiom.TestObjectsOverBaseRing(base, name=None)
    Bases: sage.categories.category_types.Category_over_base_ring
    A toy singleton category, for testing purposes.
    See also:
    Blahs

    class Commutative(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

    class Facade(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

    class Finite(base_category)
        Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

2.3. Axioms
class FiniteDimensional(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class FiniteDimensional(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Finite(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Unital(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Commutative(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Unital(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

super_categories()

sage.categories.category_with_axiom.axiom(axiom)
    Return a function/method self -> self._with_axiom(axiom).
    This can used as a shorthand to define axioms, in particular in the tests below. Usually one will want to attach
documentation to an axiom, so the need for such a shorthand in real life might not be that clear, unless we start
creating lots of axioms.

In the long run maybe this could evolve into an @axiom decorator.

EXAMPLES:

    sage: from sage.categories.category_with_axiom import axiom
    sage: axiom("Finite")(Semigroups())
    Category of finite semigroups

Upon assigning the result to a class this becomes a method:

    sage: class As:
    ....:    def _with_axiom(self, axiom): return self, axiom
    ....:    Finite = axiom("Finite")
    ....:    As().Finite()
    (\<__main__.As ... at ...>, 'Finite')

sage.categories.category_with_axiom.axiom_of_nested_class(cls, nested_cls)
    Given a class and a nested axiom class, return the axiom.

EXAMPLES:

    sage: from sage.categories.category_with_axiom import TestObjects, axiom_of_nested_˓
class
    sage: axiom_of_nested_class(TestObjects, TestObjects.FiniteDimensional)
    'FiniteDimensional'
    sage: axiom_of_nested_class(TestObjects.FiniteDimensional, TestObjects.
                    FiniteDimensional.Finite)
    'Finite'
    sage: axiom_of_nested_class(Sets, FiniteSets)
    'Finite'

(continues on next page)
In all other cases, the nested class should provide an attribute `_base_category_class_and_axiom`:

```
sage: Semigroups._base_category_class_and_axiom
(<class 'sage.categories.magmas.Magmas'>, 'Associative')
sage: axiom_of_nested_class(Magmas, Semigroups)
'Associative'
```

```
sage.categories.category_with_axiom.base_category_class_and_axiom(cls)
```

Try to deduce the base category and the axiom from the name of cls.

The heuristic is to try to decompose the name as the concatenation of the name of a category and the name of an axiom, and looking up that category in the standard location (i.e. in `sage.categories.hopf_algebras` for `HopfAlgebras`, and in `sage.categories.sets_cat` as a special case for `Sets`).

If the heuristic succeeds, the result is guaranteed to be correct. Otherwise, an error is raised.

**EXAMPLES:**

```
sage: from sage.categories.category_with_axiom import base_category_class_and_axiom

sage: base_category_class_and_axiom(FiniteSets)
(<class 'sage.categories.sets_cat.Sets'>, 'Finite')
sage: Sets.Finite
<class 'sage.categories.finite_sets.FiniteSets'>
sage: base_category_class_and_axiom(Sets.Finite)
(<class 'sage.categories.sets_cat.Sets'>, 'Finite')

sage: base_category_class_and_axiom(FiniteDimensionalHopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis'>, 'FiniteDimensional')
sage: base_category_class_and_axiom(HopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras.HopfAlgebras'>, 'WithBasis')
```

Along the way, this does some sanity checks:

```
sage: class FacadeSemigroups(CategoryWithAxiom):
 : pass

sage: base_category_class_and_axiom(FacadeSemigroups)
Traceback (most recent call last):
 ...
AssertionError: Missing (lazy import) link for <class 'sage.categories.seigroups.Semigroups'> to <class '__main__.FacadeSemigroups'> for axiom Facade?
```

```
sage: Semigroups.Facade = FacadeSemigroups

sage: base_category_class_and_axiom(FacadeSemigroups)
(<class 'sage.categories.seigroups.Semigroups'>, 'Facade')
```

**Note:** In the following example, we could possibly retrieve `Sets` from the class name. However this cannot be implemented robustly until trac ticket #9107 is fixed. Anyway this feature has not been needed so far:

```
```
sage: Sets.Infinite
<class 'sage.categories.sets_cat.Sets.Infinite'>
sage: base_category_class_and_axiom(Sets.Infinite)
Traceback (most recent call last):
... TypeError: Could not retrieve the base category class and axiom for <class 'sage.categories.sets_cat.Sets.Infinite'>.
...

sage.categories.category_with_axiom.uncamelcase(s, separator='')

EXAMPLES:

sage: sage.categories.category_with_axiom.uncamelcase("FiniteDimensionalAlgebras")
'finite dimensional algebras'
sage: sage.categories.category_with_axiom.uncamelcase("JTrivialMonoids")
'j trivial monoids'
sage: sage.categories.category_with_axiom.uncamelcase("FiniteDimensionalAlgebras", "")
'finite_dimensional_algebras'

2.4 Functors

AUTHORS:

• David Kohel and William Stein
• David Joyner (2005-12-17): examples
• Robert Bradshaw (2007-06-23): Pyrexify
• Simon King (2010-04-30): more examples, several bug fixes, re-implementation of the default call method, making functors applicable to morphisms (not only to objects)
• Simon King (2010-12): Pickling of functors without losing domain and codomain

sage.categories.functor.ForgetfulFunctor(domain, codomain)

Construct the forgetful function from one category to another.

INPUT:
C, D - two categories

OUTPUT:
A functor that returns the corresponding object of D for any element of C, by forgetting the extra structure.

ASSUMPTION:
The category C must be a sub-category of D.

EXAMPLES:

sage: rings = Rings()
sage: abgrps = CommutativeAdditiveGroups()
sage: F = ForgetfulFunctor(rings, abgrps)
The forgetful functor from Category of rings to Category of commutative additive groups

It would be a mistake to call it in opposite order:

```sage
F = ForgetfulFunctor(abgrps, rings)
Traceback (most recent call last):
...
ValueError: Forgetful functor not supported for domain Category of commutative additive groups
```

If both categories are equal, the forgetful functor is the same as the identity functor:

```sage
ForgetfulFunctor(abgrps, abgrps) == IdentityFunctor(abgrps)
True
```

```python
class sage.categories.functor.ForgetfulFunctor_generic
Bases: sage.categories.functor.Functor

The forgetful functor, i.e., embedding of a subcategory.

NOTE:
Forgetful functors should be created using `ForgetfulFunctor()`, since the init method of this class does not check whether the domain is a subcategory of the codomain.

EXAMPLES:

```sage
F = ForgetfulFunctor(FiniteFields(),Fields()) #indirect doctest
F
The forgetful functor from Category of finite enumerated fields to Category of fields
sage: F(GF(3))
Finite Field of size 3
```

```python
class sage.categories.functor.Functor
Bases: sage.structure.sage_object.SageObject

A class for functors between two categories

NOTE:

- In the first place, a functor is given by its domain and codomain, which are both categories.
- When defining a sub-class, the user should not implement a call method. Instead, one should implement three methods, which are composed in the default call method:
  - `coerce_into_domain(self, x)`: Return an object of `self`'s domain, corresponding to `x`, or raise a `TypeError`.
    * Default: Raise `TypeError` if `x` is not in `self`'s domain.
  - `apply_functor(self, x)`: Apply `self` to an object `x` of `self`'s domain.
    * Default: Conversion into `self`'s codomain.
  - `apply_functor_to_morphism(self, f)`: Apply `self` to a morphism `f` in `self`'s domain.
    * Default: Return `self(f.domain())`.hom(f,self(f.codomain())).
EXAMPLES:

```python
sage: rings = Rings()
sage: abgrps = CommutativeAdditiveGroups()
sage: F = ForgetfulFunctor(rings, abgrps)
sage: F.domain()
Category of rings
sage: F.codomain()
Category of commutative additive groups
sage: from sage.categories.functor import is_Functor
sage: is_Functor(F)
True
sage: I = IdentityFunctor(abgrps)
sage: I
The identity functor on Category of commutative additive groups
sage: I.domain()
Category of commutative additive groups
sage: is_Functor(I)
True
```

Note that by default, an instance of the class Functor is coercion from the domain into the codomain. The above subclasses overloaded this behaviour. Here we illustrate the default:

```python
sage: from sage.categories.functor import Functor
sage: F = Functor(Rings(),Fields())
sage: F
Functor from Category of rings to Category of fields
sage: F(ZZ)
Rational Field
sage: F(GF(2))
Finite Field of size 2
```

Functors are not only about the objects of a category, but also about their morphisms. We illustrate it, again, with the coercion functor from rings to fields.

```python
sage: R1.<x> = ZZ[]
sage: R2.<a,b> = QQ[]
sage: f = R1.hom([a+b],R2)
sage: f
Ring morphism:
 From: Univariate Polynomial Ring in x over Integer Ring
 To: Multivariate Polynomial Ring in a, b over Rational Field
 Defn: x |--> a + b
sage: F(f)
Ring morphism:
 From: Fraction Field of Univariate Polynomial Ring in x over Integer Ring
 To: Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field
 Defn: x |--> a + b
sage: F(f)(1/x)
1/(a + b)
```

We can also apply a polynomial ring construction functor to our homomorphism. The result is a homomorphism that is defined on the base ring:
sage: F = QQ['t'].construction()[0]
sage: F
Poly[t]
sage: F(f)
Ring morphism:
  From: Univariate Polynomial Ring in t over Univariate Polynomial Ring in x over Integer Ring
  To: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in a, b over Rational Field
  Defn: Induced from base ring by
    Ring morphism:
      From: Univariate Polynomial Ring in x over Integer Ring
      To: Multivariate Polynomial Ring in a, b over Rational Field
      Defn: x |--> a + b
sage: p = R1['t']((-x^2 + x)*t^2 + (x^2 - x)*t - 4*x^2 - x + 1)
sage: F(f)(p)
(-a^2 - 2*a*b - b^2 + a + b)*t^2 + (a^2 + 2*a*b + b^2 - a - b)*t - 4*a^2 - 8*a*b - 4*b^2 - a - b + 1

codomain()
The codomain of self
EXAMPLES:

sage: F = ForgetfulFunctor(FiniteFields(),Fields())
sage: F.codomain()
Category of fields
domain()
The domain of self
EXAMPLES:

sage: F = ForgetfulFunctor(FiniteFields(),Fields())
sage: F.domain()
Category of finite enumerated fields

sage.categories.functor.IdentityFunctor(C)
Construct the identity functor of the given category.

INPUT:
A category, C.

OUTPUT:
The identity functor in C.

EXAMPLES:

sage: rings = Rings()
sage: F = IdentityFunctor(rings)
sage: F(ZZ['x','y']) is ZZ['x','y']
True

class sage.categories.functor.IdentityFunctor_generic(C)
Bases: sage.categories.functor.ForgetfulFunctor_generic
Generic identity functor on any category

NOTE:
This usually is created using \texttt{IdentityFunctor()}.

EXAMPLES:

\begin{verbatim}
sage: F = IdentityFunctor(Fields()) #indirect doctest
sage: F
The identity functor on Category of fields
sage: F(RR) is RR
True
sage: F(ZZ)
Traceback (most recent call last):
  ...TypeError: x (=Integer Ring) is not in Category of fields
\end{verbatim}

\texttt{sage.categories.functor.is\_Functor(x)}
Test whether the argument is a functor

NOTE:
There is a deprecation warning when using it from top level. Therefore we import it in our doc test.

EXAMPLES:

\begin{verbatim}
sage: from sage.categories.functor import is\_Functor
sage: F1 = QQ.construction()[0]
sage: F1
FractionField
sage: is\_Functor(F1)
True
sage: is\_Functor(FractionField)
False
sage: F2 = ForgetfulFunctor(Fields(), Rings())
sage: F2
The forgetful functor from Category of fields to Category of rings
sage: is\_Functor(F2)
True
\end{verbatim}

\section{2.5 Implementing a new parent: a (draft of) tutorial}

The easiest approach for implementing a new parent is to start from a close example in \texttt{sage.categories.examples}. Here, we will get through the process of implementing a new finite semigroup, taking as starting point the provided example:

\begin{verbatim}
sage: S = FiniteSemigroups().example()
sage: S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')
\end{verbatim}

You may lookup the implementation of this example with:

\begin{verbatim}
sage: S
\end{verbatim}

Or by browsing the source code of \texttt{sage.categories.examples.finite\_semigroups.LeftRegularBand}.
Copy-paste this code into, say, a cell of the notebook, and replace every occurrence of `FiniteSemigroups()`.
`example(...) in the documentation by LeftRegularBand. This will be equivalent to:

```
sage: from sage.categories.examples.finite_semigroups import LeftRegularBand
```

Now, try:

```
sage: S = LeftRegularBand(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')
```

and play around with the examples in the documentation of `S` and of `FiniteSemigroups`.

Rename the class to `ShiftSemigroup`, and modify the product to implement the semigroup generated by the given alphabet such that \( au = u \) for any \( u \) of length 3.

Use `TestSuite` to test the newly implemented semigroup; draw its Cayley graph.

Add another option to the constructor to generalize the construction to any \( u \) of length \( k \).

Lookup the Sloane for the sequence of the sizes of those semigroups.

Now implement the commutative monoid of subsets of \( \{1, \ldots, n\} \) endowed with union as product. What is its category?

What are the extra functionalities available there? Implement iteration and cardinality.

TODO: the tutorial should explain there how to reuse the enumerated set of subsets, and endow it with more structure.
3.1 Base class for maps

AUTHORS:

- Robert Bradshaw: initial implementation
- Sebastien Besnier (2014-05-5): FormalCompositeMap contains a list of Map instead of only two Map. See trac ticket #16291.

class sage.categories.map.FormalCompositeMap
  Bases: sage.categories.map.Map

Formal composite maps.

A formal composite map is formed by two maps, so that the codomain of the first map is contained in the domain of the second map.

Note: When calling a composite with additional arguments, these arguments are only passed to the second underlying map.

EXAMPLES:

```sage
definitions:
sage: R.<x> = QQ[]
sage: S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())
sage: g = S.hom([2*x])
sage: f*g
Composite map:
 From: Univariate Polynomial Ring in a over Rational Field
 To: Univariate Polynomial Ring in a over Rational Field
 Defn: Ring morphism:
 From: Univariate Polynomial Ring in a over Rational Field
 To: Univariate Polynomial Ring in x over Rational Field
 Defn: a |--> 2*a
 then
 Generic morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in a over Rational Field
```

(continues on next page)
sage: g*f

Composite map:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Univariate Polynomial Ring in x over Rational Field
Defn: Generic morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Univariate Polynomial Ring in a over Rational Field
then
  Ring morphism:
  From: Univariate Polynomial Ring in a over Rational Field
  To:   Univariate Polynomial Ring in x over Rational Field
Defn: a |--> 2*x

sage: (f*g)(2*a^2+5)
5*a^2

sage: (g*f)(2*x^2+5)
20*x^2

domains()
Iterate over the domains of the factors of this map.
(This is useful in particular to check for loops in coercion maps.)

See also:
Map.domains()

EXAMPLES:

sage: f = QQ.coerce_map_from(ZZ)
sage: g = MatrixSpace(QQ, 2, 2).coerce_map_from(QQ)
sage: list((g*f).domains())
[Integer Ring, Rational Field]

first()
Return the first map in the formal composition.

If self represents $f_n \circ f_{n-1} \circ \cdots \circ f_1 \circ f_0$, then self.first() returns $f_0$. We have self == self.then() * self.first().

EXAMPLES:

sage: R.<x> = QQ[]
sage: S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())
sage: g = S.hom([2*x])
sage: fg = f * g
sage: fg.first() == g
True
sage: fg == fg.then() * fg.first()
True

is_injective()
Tell whether self is injective.

It raises NotImplementedError if it can’t be determined.
EXAMPLES:

```python
sage: V1 = QQ^2
sage: V2 = QQ^3
sage: phi1 = (QQ^1).hom(Matrix([[1, 1]]), V1)
V1.hom(Matrix([[1, 2, 3], [4, 5, 6]]), V2)
```

If both constituents are injective, the composition is injective:

```python
sage: from sage.categories.map import FormalCompositeMap
sage: c1 = FormalCompositeMap(Hom(QQ^1, V2, phi1.category_for()), phi1, phi2)
```

If it cannot be determined whether the composition is injective, an error is raised:

```python
sage: psi1 = V2.hom(Matrix([[1, 2], [3, 4], [5, 6]]), V1)
```

If the first map is surjective and the second map is not injective, then the composition is not injective:

```python
sage: psi2 = V1.hom([[1], [1]], QQ^1)
```

`is_surjective()`

Tell whether `self` is surjective.

It raises `NotImplementedError` if it can’t be determined.

EXAMPLES:

```python
sage: from sage.categories.map import FormalCompositeMap
sage: V3 = QQ^3
sage: V2 = QQ^2
sage: V1 = QQ^1
```

If both maps are surjective, the composition is surjective:

```python
sage: phi32 = V3.hom(Matrix([[1, 2], [3, 4], [5, 6]]), V2)
```

If the second map is not surjective, the composition is not surjective:

```python
sage: FormalCompositeMap(Hom(V3, V1, phi32.category_for()), phi32, V2.
```

3.1. Base class for maps
If the second map is an isomorphism and the first map is not surjective, then the composition is not surjective:

```
sage: FormalCompositeMap(Hom(V2, V1, phi32.category_for()), V2.hom(Matrix([[0]], \rightarrow [0])), V1, V1.hom(Matrix([[1]]), V1)).is_surjective()
False
```

Otherwise, surjectivity of the composition cannot be determined:

```
sage: FormalCompositeMap(Hom(V2, V1, phi32.category_for()),
......: V2.hom(Matrix([[1, 1], [1, 1]]), V2),
......: V2.hom(Matrix([[1], [1]]), V1)).is_surjective()
Traceback (most recent call last):
...:
NotImplementedError: Not enough information to deduce surjectivity.
```

section()

Compute a section map from sections of the factors of self if they have been implemented.

EXAMPLES:

```
sage: P.<x> = QQ[]
sage: incl = P.coerce_map_from(ZZ)
sage: sect = incl.section(); sect
Composite map:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Integer Ring
 Defn: Generic map:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Rational Field
 then
 Generic map:
 From: Rational Field
 To: Integer Ring
sage: p = x + 5; q = x + 2
sage: sect(p-q)
3
```

the following example has been attached to _integer_() of sage.rings.polynomial.polynomial_element.Polynomial before (see comment there):

```
sage: k = GF(47)
sage: R.<x> = PolynomialRing(k)
sage: R.coerce_map_from(ZZ).section()
Composite map:
 From: Univariate Polynomial Ring in x over Finite Field of size 47
 To: Integer Ring
 Defn: Generic map:
 From: Univariate Polynomial Ring in x over Finite Field of size 47
 To: Finite Field of size 47
 then
 Lifting map:
 From: Finite Field of size 47
 To: Integer Ring
sage: ZZ(R(45)) # indirect doctest
```

(continues on next page)
45

```python
sage: ZZ(3*x + 45) # indirect doctest
Traceback (most recent call last):
 ...
TypeError: not a constant polynomial
```

**then()**

Return the tail of the list of maps.

If `self` represents \( f_n \circ f_{n-1} \circ \cdots \circ f_1 \circ f_0 \), then `self.first()` returns \( f_n \circ f_{n-1} \circ \cdots \circ f_1 \). We have `self == self.then() * self.first()`.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
def f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())
sage: g = S.hom([2*x])
(sage: (f*g).then() == f)

True
```

```python
sage: f = QQ.coerce_map_from(ZZ)
sage: f = f.extend_domain(ZZ).extend_codomain(QQ)
sage: f.then()

Composite map:
From: Integer Ring
To: Rational Field
Defn: Natural morphism:
From: Integer Ring
To: Rational Field
then
Identity endomorphism of Rational Field
```

```python
class sage.categories.map.Map
```

```
Bases: sage.structure.element.Element
```

Basic class for all maps.

**Note:** The call method is of course not implemented in this base class. This must be done in the sub classes, by overloading `_call_` and possibly also `_call_with_args`.

**EXAMPLES:**

Usually, instances of this class will not be constructed directly, but for example like this:

```python
sage: from sage.categories.morphism import SetMorphism
def f = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi(x^2+2*x-1)
-1
```

```python
sage: R.<x,y> = QQ[]
```

(continues on next page)
sage: f = R.hom([x+y, x-y], R)
sage: f(x^2+2*x-1)
x^2 + 2*x*y + y^2 + 2*x + 2*y - 1

category_for()
Returns the category self is a morphism for.

Note: This is different from the category of maps to which this map belongs as an object.

EXAMPLES:

```python
sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[
sage: Y = ZZ
sage: phi = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi.category_for()
Category of rings
sage: phi.category()
Category of homsets of unital magmas and additive unital additive magmas
sage: R.<x,y> = QQ[
sage: f = R.hom([x+y, x-y], R)
sage: f.category_for()
Join of Category of unique factorization domains
and Category of commutative algebras
over (number fields and quotient fields and metric spaces)
and Category of infinite sets
sage: f.category()
Category of endsets of unital magmas
and right modules over (number fields and quotient fields and metric spaces)
and left modules over (number fields and quotient fields and metric spaces)
```

FIXME: find a better name for this method

codomain
domain
domains()
Iterate over the domains of the factors of a (composite) map.
This default implementation simply yields the domain of this map.

See also:

* FormalCompositeMap.domains()

EXAMPLES:

```python
sage: list(QQ.coerce_map_from(ZZ).domains())
[Integer Ring]
```

extend_codomain(new_codomain)
INPUT:

- self – a member of Hom(X, Y)
- new_codomain – an object Z such that there is a canonical coercion φ in Hom(Y, Z)
OUTPUT:

An element of Hom(X, Z) obtained by composing self with \( \phi \). If no canonical \( \phi \) exists, a TypeError is raised.

EXAMPLES:

```python
sage: mor = QQ.coerce_map_from(ZZ)
sage: mor.extend_codomain(RDF)
Composite map:
 From: Integer Ring
 To: Real Double Field
Defn: Natural morphism:
 From: Integer Ring
 To: Rational Field
 then
 Native morphism:
 From: Rational Field
 To: Real Double Field
sage: mor.extend_codomain(GF(7))
Traceback (most recent call last):
 ... TypeError: No coercion from Rational Field to Finite Field of size 7
```

```python
extend_domain(new_domain)
```

INPUT:

- `self` – a member of Hom(Y, Z)
- `new_codomain` – an object X such that there is a canonical coercion \( \phi \) in Hom(X, Y)

OUTPUT:

An element of Hom(X, Z) obtained by composing self with \( \phi \). If no canonical \( \phi \) exists, a TypeError is raised.

EXAMPLES:

```python
sage: mor = CDF.coerce_map_from(RDF)
sage: mor.extend_domain(QQ)
Composite map:
 From: Rational Field
 To: Complex Double Field
Defn: Native morphism:
 From: Rational Field
 To: Real Double Field
 then
 Native morphism:
 From: Real Double Field
 To: Complex Double Field
sage: mor.extend_domain(ZZ['x'])
Traceback (most recent call last):
 ... TypeError: No coercion from Univariate Polynomial Ring in x over Integer Ring to Real Double Field
```

```python
is_surjective()
```

Tells whether the map is surjective (not implemented in the base class).

3.1. Base class for maps 113
parent()

Return the homset containing this map.

Note: The method _make_weak_references(), that is used for the maps found by the coercion system, needs to remove the usual strong reference from the coercion map to the homset containing it. As long as the user keeps strong references to domain and codomain of the map, we will be able to reconstruct the homset. However, a strong reference to the coercion map does not prevent the domain from garbage collection!

EXAMPLES:

```
sage: Q = QuadraticField(-5)
sage: phi = CDF._internal_convert_map_from(Q)
sage: print(phi.parent())
Set of field embeddings from Number Field in a with defining polynomial x^2 + 5
 -- with a = 2.236067977499790?*I to Complex Double Field
```

We now demonstrate that the reference to the coercion map \( \phi \) does not prevent \( Q \) from being garbage collected:

```
sage: import gc
sage: del Q
sage: _ = gc.collect()
sage: phi.parent()
Traceback (most recent call last):
 ...
ValueError: This map is in an invalid state, the domain has been garbage collected
```

You can still obtain copies of the maps used by the coercion system with strong references:

```
sage: Q = QuadraticField(-5)
sage: phi = CDF.convert_map_from(Q)
sage: print(phi.parent())
Set of field embeddings from Number Field in a with defining polynomial x^2 + 5
 -- with a = 2.236067977499790?*I to Complex Double Field
```

post_compose(left)

INPUT:

- self – a Map in some \( \text{Hom}(X, Y, \text{category\_right}) \)
- left – a Map in some \( \text{Hom}(Y, Z, \text{category\_left}) \)

Returns the composition of \( \text{self} \) followed by \( \text{right} \) as a morphism in \( \text{Hom}(X, Z, \text{category}) \) where \( \text{category} \) is the meet of \( \text{category\_left} \) and \( \text{category\_right} \).

Caveat: see the current restrictions on \( \text{Category\_meet()} \)

EXAMPLES:
sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[]

sage: Y = ZZ

sage: Z = QQ

sage: phi_xy = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])

sage: phi_yz = SetMorphism(Hom(Y, Z, Monoids()), lambda y: QQ(y**2))

sage: phi_xz = phi_xy.post_compose(phi_yz); phi_xz

Composite map:
From: Univariate Polynomial Ring in x over Integer Ring
To: Rational Field
Defn: Generic morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Integer Ring
then
Generic morphism:
From: Integer Ring
To: Rational Field

sage: phi_xz.category_for()
Category of monoids

pre_compose(right)

INPUT:

• self – a Map in some Hom(Y, Z, category_left)
• left – a Map in some Hom(X, Y, category_right)

Returns the composition of right followed by self as a morphism in Hom(X, Z, category) where category is the meet of category_left and category_right.

EXAMPLES:

sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[]

sage: Y = ZZ

sage: Z = QQ

sage: phi_xy = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])

sage: phi_yz = SetMorphism(Hom(Y, Z, Monoids()), lambda y: QQ(y**2))

sage: phi_xz = phi_yz.pre_compose(phi_xy); phi_xz

Composite map:
From: Univariate Polynomial Ring in x over Integer Ring
To: Rational Field
Defn: Generic morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Integer Ring
then
Generic morphism:
From: Integer Ring
To: Rational Field

sage: phi_xz.category_for()
Category of monoids

section()

Return a section of self.

3.1. Base class for maps
class sage.categories.map.Section
Bases: sage.categories.map.Map

A formal section of a map.

Note: Call methods are not implemented for the base class Section.

EXAMPLES:

sage: from sage.categories.map import Section
sage: R.<x,y> = ZZ[]
sage: S.<a,b> = QQ[]
sage: f = R.hom([a+b, a-b])
sage: sf = Section(f); sf
Section map:
    From: Multivariate Polynomial Ring in a, b over Rational Field
    To:  Multivariate Polynomial Ring in x, y over Integer Ring
sage: sf(a)
Traceback (most recent call last):
  ...\nNotImplementedError: <class 'sage.categories.map.Section'>

inverse()
    Return inverse of self.

sage.categories.map.is_Map(x)
    Auxiliary function: Is the argument a map?

    EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = R.hom([x+y, x-y], R)

sage: from sage.categories.map import is_Map
sage: is_Map(f)
True

sage.categories.map.unpickle_map(_class, parent, _dict, _slots)
    Auxiliary function for unpickling a map.

3.2 Homsets

The class Hom is the base class used to represent sets of morphisms between objects of a given category. Hom objects are usually “weakly” cached upon creation so that they don’t have to be generated over and over but can be garbage collected together with the corresponding objects when these are not strongly ref’ed anymore.

    EXAMPLES:

In the following, the Hom object is indeed cached:
sage: K = GF(17)
sage: H = Hom(ZZ, K)
sage: H
Set of Homomorphisms from Integer Ring to Finite Field of size 17
sage: H is Hom(ZZ, K)
True

Nonetheless, garbage collection occurs when the original references are overwritten:

sage: for p in prime_range(200):
    ....:     K = GF(p)
    ....:     H = Hom(ZZ, K)
sage: import gc
sage: _ = gc.collect()
sage: from sage.rings.finite_rings.finite_field_prime_modn import FiniteField_prime_modn
˓→as FF
sage: L = [x for x in gc.get_objects() if isinstance(x, FF)]
sage: len(L)
1
sage: L
[Finite Field of size 199]

AUTHORS:
• David Kohel and William Stein
• David Joyner (2005-12-17): added examples
• Nicolas M. Thiery (2008-12-): Updated for the new category framework
• Simon King (2011-12): Use a weak cache for homsets
• Simon King (2013-02): added examples

sage.categories.homset.End(X, category=None)
Create the set of endomorphisms of X in the category category.

INPUT:
• X – anything
• category – (optional) category in which to coerce X

OUTPUT:
A set of endomorphisms in category

EXAMPLES:

sage: V = VectorSpace(QQ, 3)
sage: E = End(V)
Set of Morphisms (Linear Transformations) from Vector space of dimension 3 over Rational Field to Vector space of dimension 3 over Rational Field

sage: G = AlternatingGroup(3)
sage: S = End(G); S
(continues on next page)
Set of Morphisms from Alternating group of order 3!/2 as a permutation group to...
Alternating group of order 3!/2 as a permutation group in Category of finite...

\[\text{sage: from sage.categories.homset import is_Endset}\]
\[\text{sage: is_Endset(S)}\]
\[\text{True}\]
\[\text{sage: S.domain()}\]
Alternating group of order 3!/2 as a permutation group

To avoid creating superfluous categories, a homset in a category \(Cs()\) is in the homset category of the lowest full super category \(Bs()\) of \(Cs()\) that implements \(Bs().\text{Homsets}\) (or the join thereof if there are several). For example, finite groups form a full subcategory of unital magmas: any unital magma morphism between two finite groups is a finite group morphism. Since finite groups currently implement nothing more than unital magmas about their homsets, we have:

\[\text{sage: G = GL(3,3)}\]
\[\text{sage: G.category()}\]
Category of finite groups
\[\text{sage: H = Hom(G,G)}\]
\[\text{sage: H.homset_category()}\]
Category of finite groups
\[\text{sage: H.category()}\]
Category of endsets of unital magmas

Similarly, a ring morphism just needs to preserve addition, multiplication, zero, and one. Accordingly, and since the category of rings implements nothing specific about its homsets, a ring homset is currently constructed in the category of homsets of unital magmas and unital additive magmas:

\[\text{sage: H = Hom(ZZ,ZZ,Rings())}\]
\[\text{sage: H.category()}\]
Category of endsets of unital magmas and additive unital additive magmas

\text{sage.categories.homset.Hom(X, Y, category=None, check=True)}
Create the space of homomorphisms from \(X\) to \(Y\) in the category \(category\).

\text{INPUT:}

- \(X\) – an object of a category
- \(Y\) – an object of a category
- \(category\) – a category in which the morphisms must be. (default: the meet of the categories of \(X\) and \(Y\)) Both \(X\) and \(Y\) must belong to that category.
- \(check\) – a boolean (default: \(True\)): whether to check the input, and in particular that \(X\) and \(Y\) belong to \(category\).

\text{OUTPUT:} a homset in category

\text{EXAMPLES:}

\[\text{sage: V = VectorSpace(QQ,3)}\]
\[\text{sage: Hom(V, V)}\]
Set of Morphisms (Linear Transformations) from Vector space of dimension 3 over Rational Field to Vector space of dimension 3 over Rational Field

(continues on next page)
Here, we test against a memory leak that has been fixed at trac ticket #11521 by using a weak cache:

```python
sage: for p in prime_range(10^3):
 : K = GF(p)
 : a = K(0)

sage: import gc
sage: gc.collect() # random
624
sage: from sage.rings.finite_rings.finite_field_prime_modn import FiniteField_prime_modn as FF
sage: L = [x for x in gc.get_objects() if isinstance(x, FF)]

sage: len(L), L[0]
(1, Finite Field of size 997)
```

To illustrate the choice of the category, we consider the following parents as running examples:

```python
sage: X = ZZ; X
Integer Ring
sage: Y = SymmetricGroup(3); Y
Symmetric group of order 3! as a permutation group
```

By default, the smallest category containing both `X` and `Y`, is used:

```python
sage: Hom(X, Y)
Set of Morphisms from Integer Ring to Symmetric group of order 3! as a permutation group in Category of enumerated monoids
```

Otherwise, if `category` is specified, then `category` is used, after checking that `X` and `Y` are indeed in `category`:

```python
sage: Hom(X, Y, Magmas())
Set of Morphisms from Integer Ring to Symmetric group of order 3! as a permutation group in Category of magmas

sage: Hom(X, Y, Groups())
Traceback (most recent call last):
```

(continues on next page)
A parent (or a parent class of a category) may specify how to construct certain homsets by implementing a method \_Hom\_(self, codomain, category). This method should either construct the requested homset or raise a TypeError. This hook is currently mostly used to create homsets in some specific subclass of Homset (e.g. sage.rings.homset.RingHomset):

```
sage: Hom(QQ,QQ)._class_
<class 'sage.rings.homset.RingHomset_generic_with_category'>
```

Do not call this hook directly to create homsets, as it does not handle unique representation:

```
sage: Hom(QQ,QQ) == QQ._Hom_(QQ, category=QQ.category())
True
sage: Hom(QQ,QQ) is QQ._Hom_(QQ, category=QQ.category())
False
```

Todo:

- Design decision: how much of the homset comes from the category of X and Y, and how much from the specific X and Y. In particular, do we need several parent classes depending on X and Y, or does the difference only lie in the elements (i.e. the morphism), and of course how the parent calls their constructors.
- Specify the protocol for the \_Hom\_ hook in case of ambiguity (e.g. if both a parent and some category thereof provide one).

```
class sage.categories.homset.Homset(X, Y, category=None, base=None, check=True)

 Bases: sage.structure.parent.Set_generic

 The class for collections of morphisms in a category.

 EXAMPLES:

 sage: H = Hom(QQ^2, QQ^3)
 sage: loads(H.dumps()) is H
 True
```

Homsets of unique parents are unique as well:

```
sage: H = End(AffineSpace(2, names='x,y'))
sage: loads(dumps(AffineSpace(2, names='x,y'))) is AffineSpace(2, names='x,y')
True
sage: loads(dumps(H)) is H
True
```

Conversely, homsets of non-unique parents are non-unique:

```
sage: H = End(ProductProjectiveSpaces(QQ, [1, 1]))
sage: loads(dumps(ProductProjectiveSpaces(QQ, [1, 1]))) == _
 ProductProjectiveSpaces(QQ, [1, 1])
False
sage: loads(dumps(ProductProjectiveSpaces(QQ, [1, 1]))) == _
 ProductProjectiveSpaces(QQ, [1, 1])
False
```

(continues on next page)
True

```
sage: loads(dumps(H)) is H
False
```

```
sage: loads(dumps(H)) == H
True
```

codomain()

Return the codomain of this homset.

EXAMPLES:

```
sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: f.parent().codomain()
Univariate Polynomial Ring in t over Rational Field
```

```
sage: f.codomain() is f.parent().codomain()
True
```

domain()

Return the domain of this homset.

EXAMPLES:

```
sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: f.parent().domain()
Univariate Polynomial Ring in t over Integer Ring
```

```
sage: f.domain() is f.parent().domain()
True
```

element_class_set_morphism()

A base class for elements of this homset which are also SetMorphism, i.e. implemented by mean of a Python function.

This is currently plain SetMorphism, without inheritance from categories.

Todo: Refactor during the upcoming homset cleanup.

EXAMPLES:

```
sage: H = Hom(ZZ, ZZ)
sage: H.element_class_set_morphism
<class 'sage.categories.morphism.SetMorphism'>
```

homset_category()

Return the category that this is a Hom in, i.e., this is typically the category of the domain or codomain object.

EXAMPLES:

```
sage: H = Hom(AlternatingGroup(4), AlternatingGroup(7))
sage: H.homset_category()
Category of finite enumerated permutation groups
```
identity()

The identity map of this homset.

Note: Of course, this only exists for sets of endomorphisms.

EXAMPLES:

```sage
sage: H = Hom(QQ,QQ)
sage: H.identity()
Identity endomorphism of Rational Field
sage: H = Hom(ZZ,QQ)
sage: H.identity()
Traceback (most recent call last):
...TypeError: Identity map only defined for endomorphisms. Try natural_map() instead.
sage: H.natural_map()
Natural morphism:
 From: Integer Ring
 To: Rational Field
```

natural_map()

Return the “natural map” of this homset.

Note: By default, a formal coercion morphism is returned.

EXAMPLES:

```sage
sage: H = Hom(ZZ['t'],QQ['t'], CommutativeAdditiveGroups())
sage: H.natural_map()
Coercion morphism:
 From: Univariate Polynomial Ring in t over Integer Ring
 To: Univariate Polynomial Ring in t over Rational Field
sage: H = Hom(QQ['t'],GF(3)['t'])
sage: H.natural_map()
Traceback (most recent call last):
...
TypeError: natural coercion morphism from Univariate Polynomial Ring in t over Rational Field to Univariate Polynomial Ring in t over Finite Field of size 3 not defined
```

one()

The identity map of this homset.

Note: Of course, this only exists for sets of endomorphisms.

EXAMPLES:

```sage
sage: K = GaussianIntegers()
sage: End(K).one()
Identity endomorphism of Gaussian Integers in Number Field in I with defining polynomial x^2 + 1 with I = 1*I
```
reversed()

Return the corresponding homset, but with the domain and codomain reversed.

EXAMPLES:

```python
sage: H = Hom(ZZ^2, ZZ^3); H
Set of Morphisms from Ambient free module of rank 2 over
the principal ideal domain Integer Ring to Ambient free module
of rank 3 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (euclidean
domains and infinite enumerated sets and metric spaces)
sage: type(H)
<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>
sage: H.reversed()
Set of Morphisms from Ambient free module of rank 3 over
the principal ideal domain Integer Ring to Ambient free module
of rank 2 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (euclidean
domains and infinite enumerated sets and metric spaces)
sage: type(H.reversed())
<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>
```

class sage.categories.homset.HomsetWithBase(X, Y, category=None, check=True, base=None)
Bases: sage.categories.homset.Homset

```python
sage.categories.homset.end(X, f)
Return End(X)(f), where f is data that defines an element of End(X).

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: phi = end(R, [x + 1])
sage: phi
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
  Defn: x |--> x + 1
sage: phi(x^2 + 5)
x^2 + 2*x + 6
```

sage.categories.homset.hom(X, Y, f)
Return Hom(X, Y)(f), where f is data that defines an element of Hom(X, Y).

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: phi = hom(R, QQ, [2])
sage: phi(x^2 + 3)
7
```

sage.categories.homset.is_Endset(x)
Return True if x is a set of endomorphisms in a category.

EXAMPLES:
```
sage: from sage.categories.homset import is_Endset
sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
False
sage: is_Endset(f.parent())
False
sage: g = P.hom([2*t])
True
sage: is_Endset(g.parent())
```

```
sage.categories.homset.is_Homset(x)
    Return True if x is a set of homomorphisms in a category.

EXAMPLES:
```
sage: from sage.categories.homset import is_Homset
sage: P.<t> = ZZ[
True
```

## 3.3 Morphisms

This module defines the base classes of morphisms between objects of a given category.

EXAMPLES:

```
sage: X.<a, b> = ZZ[
Ring morphism:
 From: Multivariate Polynomial Ring in a, b over Integer Ring
 To: Univariate Polynomial Ring in c over Integer Ring
 Defn: a |---> c
 b |---> c^2
```

AUTHORS:

- William Stein (2005): initial version
- David Joyner (2005-12-17): added examples

class sage.categories.morphism.CallMorphism
    Bases: sage.categories.morphism.Morphism

class sage.categories.morphism.FormalCoercionMorphism
    Bases: sage.categories.morphism.Morphism
```
class sage.categories.morphism.IdentityMorphism
Bases: sage.categories.morphism.Morphism

is_identity()
Return True if this morphism is the identity morphism.

EXAMPLES:

```
sage: E = End(Partitions(5))
sage: E.identity().is_identity()
True
```

Check that trac ticket #15478 is fixed:

```
sage: K.<z> = GF(4)
sage: phi = End(K)([z^2])
sage: R.<t> = K[]
sage: psi = End(R)(phi)
sage: psi.is_identity()
False
```

is_injective()
Return whether this morphism is injective.

EXAMPLES:

```
sage: Hom(ZZ, ZZ).identity().is_injective()
True
```

is_surjective()
Return whether this morphism is surjective.

EXAMPLES:

```
sage: Hom(ZZ, ZZ).identity().is_surjective()
True
```

section()
Return a section of this morphism.

EXAMPLES:

```
sage: T = Hom(ZZ, ZZ).identity()
sage: T.section() is T
True
```

class sage.categories.morphism.Morphism
Bases: sage.categories.map.Map

category()
Return the category of the parent of this morphism.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: f = R.hom([t^2])
sage: f.category()
Category of endsets of unital magmas and right modules over
```

3.3. Morphisms
is_endomorphism()

Return True if this morphism is an endomorphism.

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: f = R.hom([t])
sage: f.is_endomorphism()
True

sage: R.<t> = ZZ[]
sage: f = R.hom([t])
sage: f.is_endomorphism()
False
```

is_identity()

Return True if this morphism is the identity morphism.

Note: Implemented only when the domain has a method gens()

EXAMPLES:

```
sage: R.<t> = ZZ[]
sage: f = R.hom([t])
sage: f.is_identity()
True

sage: g = R.hom([t+1])
sage: g.is_identity()
False
```

A morphism between two different spaces cannot be the identity:

```
sage: R2.<t2> = QQ[]
sage: h = R2.hom([t2])
sage: h.is_identity()
False
```

pushforward(I)

register_as_coercion()

Register this morphism as a coercion to Sage’s coercion model (see `sage.structure.coerce`).

EXAMPLES:
By default, adding polynomials over different variables triggers an error:

```
sage: X.<x> = ZZ[]
sage: Y.<y> = ZZ[]
sage: x^2 + y
Traceback (most recent call last):
...  
TypeError: unsupported operand parent(s) for +: 'Univariate Polynomial Ring in x over Integer Ring' and 'Univariate Polynomial Ring in y over Integer Ring'
```

Let us declare a coercion from $\mathbb{Z}[x]$ to $\mathbb{Z}[z]$:

```
sage: Z.<z> = ZZ[]
sage: phi = Hom(X, Z)(z)
sage: phi(x^2+1)
z^2 + 1
sage: phi.register_as_coercion()
```

Now we can add elements from $\mathbb{Z}[x]$ and $\mathbb{Z}[z]$, because the elements of the former are allowed to be implicitly coerced into the later:

```
sage: x^2 + z
z^2 + z
```

Caveat: the registration of the coercion must be done before any other coercion is registered or discovered:

```
sage: phi = Hom(X, Z)(x^2)
sage: phi.register_as_coercion()
Traceback (most recent call last):
...  
AssertionError: coercion from Univariate Polynomial Ring in x over Integer Ring to Univariate Polynomial Ring in z over Integer Ring already registered or discovered
```

```
register_as_conversion()
```

Register this morphism as a conversion to Sage’s coercion model (see `sage.structure.coerce`).

EXAMPLES:

Let us declare a conversion from the symmetric group to \mathbb{Z} through the sign map:

```
sage: S = SymmetricGroup(4)
sage: phi = Hom(S, ZZ)(lambda x: ZZ(x.sign()))
sage: x = S.an_element(); x
(2,3,4)
sage: phi(x)
1
sage: phi.register_as_conversion()
```

```
class sage.categories.morphism.SetMorphism
    Bases: sage.categories.morphism.Morphism

    INPUT:
```
• parent – a Homset
• function – a Python function that takes elements of the domain as input and returns elements of the domain.

EXAMPLES:

```sage
from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(QQ, ZZ, Sets()), numerator)
sage: f.parent()
Set of Morphisms from Rational Field to Integer Ring in Category of sets
sage: f.domain()
Rational Field
sage: f.codomain()
Integer Ring
sage: TestSuite(f).run()
sage.categories.morphism.is_Morphism(x)
```

3.4 Coercion via construction functors

```python
class sage.categories.pushout.AlgebraicClosureFunctor
Bases: sage.categories.pushout.ConstructionFunctor

Algebraic Closure.

EXAMPLES:

```sage
F = CDF.construction()[0]
sage: F(QQ)
Algebraic Field
sage: F(RR)
Complex Field with 53 bits of precision
sage: F(F(QQ)) is F(QQ)
True
```

```python
merge(other)
Mathematically, Algebraic Closure subsumes Algebraic Extension. However, it seems that people do want to work with algebraic extensions of RR. Therefore, we do not merge with algebraic extension.
```

```python
class sage.categories.pushout.AlgebraicExtensionFunctor(polys, names, embeddings, structures, cyclotomic=None, precs=None, implementations=None, residue=None, latex_names=None, **kwds)
Bases: sage.categories.pushout.ConstructionFunctor

Algebraic extension (univariate polynomial ring modulo principal ideal).

EXAMPLES:

```sage
x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 + x^2 + 1)
sage: F = K.construction()[0]
sage: F(ZZ['t'])
Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in t over Integer Ring with modulus a^3 + a^2 + 1
```
Note that, even if a field is algebraically closed, the algebraic extension will be constructed as the quotient of a univariate polynomial ring:

```
sage: F(CC)
Univariate Quotient Polynomial Ring in a over Complex Field with 53 bits of precision with modulus a^3 + a^2 + 1.000000000000000
sage: F(RR)
Univariate Quotient Polynomial Ring in a over Real Field with 53 bits of precision with modulus a^3 + a^2 + 1.000000000000000
```

Note that the construction functor of a number field applied to the integers returns an order (not necessarily maximal) of that field, similar to the behaviour of `ZZ.extension(...)`:

```
sage: F(ZZ)
Order in Number Field in a with defining polynomial x^3 + x^2 + 1
```

This also holds for non-absolute number fields:

```
sage: x = polygen(QQ, 'x')
sage: K.<a,b> = NumberField([x^3 + x^2 + 1, x^2 + x + 1])
sage: F = K.construction()[0]
sage: O = F(ZZ); O
Relative Order in Number Field in a with defining polynomial x^3 + x^2 + 1 over its base field
sage: O.ambient() is K
True
```

Special cases are made for cyclotomic fields and residue fields:

```
sage: C = CyclotomicField(8)
sage: F, R = C.construction()
sage: F
AlgebraicExtensionFunctor
sage: R
Rational Field
sage: F(R)
Cyclotomic Field of order 8 and degree 4
sage: F(ZZ)
Maximal Order in Cyclotomic Field of order 8 and degree 4
```

```
sage: K.<z> = CyclotomicField(7)
sage: P = K.factor(17)[0][0]
sage: k = K.residue_field(P)
sage: F, R = k.construction()
sage: F
AlgebraicExtensionFunctor
sage: R
Cyclotomic Field of order 7 and degree 6
sage: F(R) is k
True
sage: F(ZZ)
Residue field of Integers modulo 17
```
expand()

Decompose the functor F into sub-functors, whose product returns F.

EXAMPLES:

```sage
sage: P.<x> = QQ[]
sage: K.<a> = NumberField(x^3-5,embedding=0)
sage: L.<b> = K.extension(x^2+a)
sage: F,R = L.construction()
sage: prod(F.expand())(R) == L
True
sage: K = NumberField([x^2-2, x^2-3], 'a')
sage: F, R = K.construction()
sage: F
AlgebraicExtensionFunctor
sage: L = F.expand(); L
[AlgebraicExtensionFunctor, AlgebraicExtensionFunctor]
sage: L[-1](QQ)
Number Field in a1 with defining polynomial x^2 - 3
```

merge(other)

Merging with another `AlgebraicExtensionFunctor`.

INPUT:

- `other` – Construction Functor.

OUTPUT:

- If `self==other`, `self` is returned.
- If `self` and `other` are simple extensions and both provide an embedding, then it is tested whether one of the number fields provided by the functors coerces into the other; the functor associated with the target of the coercion is returned. Otherwise, the construction functor associated with the pushout of the codomains of the two embeddings is returned, provided that it is a number field.
- If these two extensions are defined by Conway polynomials over finite fields, merges them into a single extension of degree the lcm of the two degrees.
- Otherwise, `None` is returned.

REMARK:

Algebraic extension with embeddings currently only works when applied to the rational field. This is why we use the admittedly strange rule above for merging.

EXAMPLES:

The following demonstrate coercions for finite fields using Conway or pseudo-Conway polynomials:

```sage
sage: k = GF(3^2, prefix='z'); a = k.gen()
sage: l = GF(3^3, prefix='z'); b = l.gen()
sage: a + b # indirect doctest
z6^5 + 2*z6^4 + 2*z6^3 + z6^2 + 2*z6 + 1
```

Note that embeddings are compatible in lattices of such finite fields:

```sage
sage: m = GF(3^5, prefix='z'); c = m.gen()
sage: (a+b)+c == a+(b+c) # indirect doctest
True
```

(continues on next page)
Coercion is also available for number fields:

```python
sage: P.<x> = QQ[]
sage: L.<b> = NumberField(x^8 - x^4 + 1, embedding=CDF.0)
sage: M1.<c1> = NumberField(x^2 + x + 1, embedding=b^4 - 1)
sage: M2.<c2> = NumberField(x^2 + 1, embedding=-b^6)
sage: M1.coerce_map_from(M2)
sage: M2.coerce_map_from(M1)
sage: c1+c2; parent(c1+c2)  # indirect doctest
-b^6 + b^4 - 1
Number Field in b with defining polynomial x^8 - x^4 + 1 with b = -0.2588190451025208? + 0.9659258262890683?*I
sage: pushout(M1['x'],M2['x'])
Univariate Polynomial Ring in x over Number Field in b with defining polynomial x^8 - x^4 + 1 with b = -0.2588190451025208? + 0.9659258262890683?*I
```

In the previous example, the number field L becomes the pushout of M1 and M2 since both are provided with an embedding into L, and since L is a number field. If two number fields are embedded into a field that is not a numberfield, no merging occurs:

```python
sage: cbrt2 = CDF(2)^(1/3)
sage: zeta3 = CDF.zeta(3)
sage: K.<a> = NumberField(x^3 - 2, embedding=cbrt2 * zeta3)
sage: L.<b> = NumberField(x^6 - 2, embedding=1.1)
sage: L.coerce_map_from(K)
sage: K.coerce_map_from(L)
sage: pushout(K,L)
Traceback (most recent call last):
...
CoercionException: ('Ambiguous Base Extension', Number Field in a with defining polynomial x^3 - 2 with a = -0.6299605249474365? + 1.091123635971722?*I, Number Field in b with defining polynomial x^6 - 2 with b = 1.1224620483093737? )
```

```python
class sage.categories.pushout.BlackBoxConstructionFunctor(box)
    Bases: sage.categories.pushout.ConstructionFunctor

    Construction functor obtained from any callable object.

    EXAMPLES:
```

3.4. Coercion via construction functors
Integers
sage: FG(ZZ).parent()
Gap
sage: FS(QQ['t'])
polynomial ring, over a field, global ordering
// coefficients: QQ
// number of vars : 1
// block 1 : ordering lp
// : names t
// block 2 : ordering C
sage: FG == FS
False
sage: FG == loads(dumps(FG))
True

class sage.categories.pushout.CompletionFunctor(p, prec, extras=None)
Bases: sage.categories.pushout.ConstructionFunctor
Completion of a ring with respect to a given prime (including infinity).

EXAMPLES:

sage: R = Zp(5)
sage: R
5-adic Ring with capped relative precision 20
sage: F1 = R.construction()[0]
sage: F1
Completion[5, prec=20]
sage: F1(ZZ) is R
True
sage: F2 = RR.construction()[0]
sage: F2
Completion[+Infinity, prec=53]
sage: F2(QQ) is RR
True
sage: P.<x> = ZZ[]
sage: Px = P.completion(x) # currently the only implemented completion of P
sage: Px
Power Series Ring in x over Integer Ring
sage: F3 = Px.construction()[0]
sage: F3(GF(3)['x'])
Power Series Ring in x over Finite Field of size 3

commutes(other)
Completion commutes with fraction fields.

EXAMPLES:

sage: F1 = Zp(5).construction()[0]
sage: F2 = QQ.construction()[0]
sage: F1.commutes(F2)
True
merge(*other*)

Two Completion functors are merged, if they are equal. If the precisions of both functors coincide, then a Completion functor is returned that results from updating the extras dictionary of self by other. extras. Otherwise, if the completion is at infinity then merging does not increase the set precision, and if the completion is at a finite prime, merging does not decrease the capped precision.

EXAMPLES:

```
sage: R1.<a> = Zp(5, prec=20)
sage: R2 = Qp(5, prec=40)
sage: R2(1)+a       # indirect doctest
(1 + O(5^20))*a + 1 + O(5^40)
sage: R3 = RealField(30)
sage: R4 = RealField(50)
sage: R3(1) + R4(1) # indirect doctest
2.0000000
sage: (R3(1) + R4(1)).parent()
Real Field with 30 bits of precision
```

class sage.categories.pushout.CompositeConstructionFunctor(*args)

Bases: sage.categories.pushout.ConstructionFunctor

A Construction Functor composed by other Construction Functors.

INPUT:

F1, F2,...: A list of Construction Functors. The result is the composition F1 followed by F2 followed by ...

EXAMPLES:

```
sage: from sage.categories.pushout import CompositeConstructionFunctor
sage: F = CompositeConstructionFunctor(QQ.construction()[0], ZZ['x'].construction()[0], QQ.construction()[0], ZZ['y'].construction()[0])
sage: F
Poly[y](FractionField(Poly[x](FractionField(...))))
sage: F == loads(dumps(F))
True
sage: F == CompositeConstructionFunctor(F.all)
True
sage: F(GF(2)['t'])
Univariate Polynomial Ring in y over Fraction Field of Univariate Polynomial Ring in x over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
```

expand()

Return expansion of a CompositeConstructionFunctor.

Note: The product over the list of components, as returned by the expand() method, is equal to self.

EXAMPLES:

```
sage: from sage.categories.pushout import CompositeConstructionFunctor
sage: F = CompositeConstructionFunctor(QQ.construction()[0], ZZ['x'].construction()[0], QQ.construction()[0], ZZ['y'].construction()[0])
sage: F
```

(continues on next page)
class sage.categories.pushout.ConstructionFunctor
Bases: sage.categories.functor.Functor

Base class for construction functors.

A construction functor is a functorial algebraic construction, such as the construction of a matrix ring over a given ring or the fraction field of a given ring.

In addition to the class `Functor`, construction functors provide rules for combining and merging constructions. This is an important part of Sage’s coercion model, namely the pushout of two constructions: When a polynomial \(p \) in a variable \(x \) with integer coefficients is added to a rational number \(q \), then Sage finds that the parents \(\mathbb{Z}[x] \) and \(\mathbb{Q} \) are obtained from \(\mathbb{Z} \) by applying a polynomial ring construction respectively the fraction field construction. Each construction functor has an attribute `rank`, and the rank of the polynomial ring construction is higher than the rank of the fraction field construction. This means that the pushout of \(\mathbb{Q} \) and \(\mathbb{Z}[x] \), and thus a common parent in which \(p \) and \(q \) can be added, is \(\mathbb{Q}(x) \), since the construction functor with a lower rank is applied first.

When composing two construction functors, they are sometimes merged into one, as is the case in the Quotient construction:
Functors can not only be applied to objects, but also to morphisms in the respective categories. For example:

```sage
sage: P.<x,y> = ZZ[]
sage: F = P.construction()[0]; F
MPoly[x,y]
sage: A.<a,b> = GF(5)[]
sage: f = A.hom([a+b,a-b],A)
sage: F(A)
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over
\text{\textup{\textmd{Finite Field of size 5}}}
```

```sage
sage: F(f)
Ring endomorphism of Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over \text{\textup{\textmd{Finite Field of size 5}}}
Defn: Induced from base ring by
\text{\textup{\textmd{Ring endomorphism of Multivariate Polynomial Ring in a, b over \text{\textup{\textmd{Finite Field of size 5}}}}}}
\text{\textup{\textmd{Defn: a |--> a + b}}}
\text{\textup{\textmd{b |--> a - b}}}
sage: F(f)(F(A)(x)*a)
(a + b)*x
```

Then:

```sage
common_base(other_functor, self_bases, other_bases)
```

This function is called by `pushout()` when no common parent is found in the construction tower.

Note: The main use is for multivariate construction functors, which use this function to implement recursion for `pushout()`.

INPUT:
- `other_functor` – a construction functor.
- `self_bases` – the arguments passed to this functor.
- `other_bases` – the arguments passed to the functor `other_functor`.

OUTPUT:
Nothing, since a `CoercionException` is raised.

Note: Overload this function in derived class, see e.g. `MultivariateConstructionFunctor`.

```sage
commutes(other)
```

Determine whether `self` commutes with another construction functor.

Note: By default, `False` is returned in all cases (even if the two functors are the same, since in this case `merge()` will apply anyway). So far there is no construction functor that overloads this method. Anyway, this method only becomes relevant if two construction functors have the same rank.

EXAMPLES:
expand()

Decompose self into a list of construction functors.

Note: The default is to return the list only containing `self`.

EXAMPLES:

```python
sage: F = QQ.construction()[0]
sage: P = ZZ['t'].construction()[0]
sage: F.expand()
[FractionField]
sage: Q = ZZ.quo(2).construction()[0]
sage: Q.expand()
[QuotientFunctor]
sage: P = ZZ['t'].construction()[0]
sage: FP = F*P
sage: FP.expand()
[FractionField, Poly[t]]
```

merge(other)

Merge self with another construction functor, or return `None`.

Note: The default is to merge only if the two functors coincide. But this may be overloaded for subclasses, such as the quotient functor.

EXAMPLES:

```python
sage: F = QQ.construction()[0]
sage: P = ZZ['t'].construction()[0]
sage: F.merge(F)
FractionField
sage: F.merge(P)
FractionField
sage: P.merge(F)
Poly[t]
sage: P.merge(P)
Poly[t]
```

pushout(other)

Composition of two construction functors, ordered by their ranks.

Note:
- This method seems not to be used in the coercion model.
- By default, the functor with smaller rank is applied first.
class sage.categories.pushout.FractionField

 Bases: sage.categories.pushout.ConstructionFunctor

 Construction functor for fraction fields.

 EXAMPLES:

 sage: F = QQ.construction()[0]
sage: F
 FractionField
sage: F.domain()
Category of integral domains
sage: F.codomain()
Category of fields
sage: F(GF(5))
is GF(5)
True
sage: F(ZZ['t'])
Fraction Field of Univariate Polynomial Ring in t over Integer Ring
sage: f = P.hom([x+2*y,3*x-y],P)
sage: F(f)
Ring endomorphism of Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
 Defn: x |--> x + 2*y
 y |--> 3*x - y
sage: F(f)(1/x)
1/(x + 2*y)
sage: F == loads(dumps(F))
True

class sage.categories.pushout.IdentityConstructionFunctor

 Bases: sage.categories.pushout.ConstructionFunctor

 A construction functor that is the identity functor.

class sage.categories.pushout.InfinitePolynomialFunctor(gens, order, implementation)

 Bases: sage.categories.pushout.ConstructionFunctor

 A Construction Functor for Infinite Polynomial Rings (see infinite_polynomial_ring).

 AUTHOR:

 – Simon King

 This construction functor is used to provide uniqueness of infinite polynomial rings as parent structures. As usual, the construction functor allows for constructing pushouts.

 Another purpose is to avoid name conflicts of variables of the to-be-constructed infinite polynomial ring with variables of the base ring, and moreover to keep the internal structure of an Infinite Polynomial Ring as simple as possible: If variables \(v_1, \ldots, v_n \) of the given base ring generate an ordered sub-monoid of the monomials of the ambient Infinite Polynomial Ring, then they are removed from the base ring and merged with the generators of the ambient ring. However, if the orders don’t match, an error is raised, since there was a name conflict without merging.

 EXAMPLES:
Apparently the variables a_1, a_3 of the polynomial ring are merged with the variables a_0, a_1, a_2, \ldots of the infinite polynomial ring; indeed, they form an ordered sub-structure. However, if the polynomial ring was given a different ordering, merging would not be allowed, resulting in a name conflict:

```plaintext
sage: A.construction()[0] * PolynomialRing(QQ, names=['x', 'y', 'a_3', 'a_1']).construction()[0]
Traceback (most recent call last):
... CoercionException: Overlapping variables (('a', 'b'), ['a_1', 'a_3']) are incompatible
```

In an infinite polynomial ring with generator a_*, the variable a_3 will always be greater than the variable a_1. Hence, the orders are incompatible in the next example as well:

```plaintext
sage: A.construction()[0] * PolynomialRing(QQ, names=['x', 'y', 'a_1', 'a_3'], order='lex').construction()[0]
Traceback (most recent call last):
... CoercionException: Overlapping variables (('a', 'b'), ['a_1', 'a_3']) are incompatible
```

Another requirement is that after merging the order of the remaining variables must be unique. This is not the case in the following example, since it is not clear whether the variables x, y should be greater or smaller than the variables b_*:

```plaintext
sage: A.construction()[0] * PolynomialRing(QQ, names=['a_3', 'a_1', 'x', 'y'], order='lex').construction()[0]
Traceback (most recent call last):
... CoercionException: Overlapping variables (('a', 'b'), ['a_3', 'a_1']) are incompatible
```

Since the construction functors are actually used to construct infinite polynomial rings, the following result is no surprise:

```plaintext
sage: C.<a,b> = InfinitePolynomialRing(B); C
Infinite polynomial ring in a, b over Multivariate Polynomial Ring in x, y over Rational Field
```

There is also an overlap in the next example:

```plaintext
sage: X.<w,x,y> = InfinitePolynomialRing(ZZ)
sage: Y.<x,y,z> = InfinitePolynomialRing(QQ)
```
X and Y have an overlapping generators x_*, y_*. Since the default lexicographic order is used in both rings, it gives rise to isomorphic sub-monoids in both X and Y. They are merged in the pushout, which also yields a common parent for doing arithmetic:

```python
sage: P = sage.categories.pushout.pushout(Y,X); P
Infinite polynomial ring in w, x, y, z over Rational Field
w_2 + z_3
sage: _.parent() is P
True
```

expand()

Decompose the functor F into sub-functors, whose product returns F.

EXAMPLES:

```python
sage: F = InfinitePolynomialRing(QQ, ['x','y'],order='degrevlex').
    →construction()[0]; F
InfPoly{[x,y], "degrevlex", "dense"}
sage: F.expand()
[InfPoly{[y], "degrevlex", "dense"}, InfPoly{[x], "degrevlex", "dense"}]
sage: F = InfinitePolynomialRing(QQ, ['x','y','z'],order='degrevlex').
    →construction()[0]; F
InfPoly{[x,y,z], "degrevlex", "dense"}
sage: F.expand()
[InfPoly{[z], "degrevlex", "dense"},
 InfPoly{[y], "degrevlex", "dense"},
 InfPoly{[x], "degrevlex", "dense"}]
sage: prod(F.expand())==F
True
```

merge(other)

Merge two construction functors of infinite polynomial rings, regardless of monomial order and implementation.

The purpose is to have a pushout (and thus, arithmetic) even in cases when the parents are isomorphic as rings, but not as ordered rings.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse')
sage: Y.<x,y> = InfinitePolynomialRing(QQ,order='degrevlex')
sage: X.construction()
[InfPoly{[x,y], "lex", "sparse"}, Rational Field]
sage: Y.construction()
[InfPoly{[x,y], "degrevlex", "dense"}, Rational Field]
sage: Y.construction()[0].merge(Y.construction()[0])
InfPoly{[x,y], "degrevlex", "dense"}
sage: y[3] + X(x[2])
x_2 + y_3
sage: _.parent().construction()
[InfPoly{[x,y], "degrevlex", "dense"}, Rational Field]
```

class `sage.categories.pushout.LaurentPolynomialFunctor`(var, multi_variate=False)

Bases: `sage.categories.pushout.ConstructionFunctor`

Construction functor for Laurent polynomial rings.

3.4. Coercion via construction functors
EXAMPLES:

```python
sage: L.<t> = LaurentPolynomialRing(ZZ)
sage: F = L.construction()[0]
sage: F
LaurentPolynomialFunctor
sage: F(QQ)
Univariate Laurent Polynomial Ring in t over Rational Field
sage: K.<x> = LaurentPolynomialRing(ZZ)
sage: F(K)
Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial Ring in...
    → x over Integer Ring
sage: P.<x,y> = ZZ[]
sage: f = P.hom([x+2*y,3*x-y],P)
sage: F(f)
Ring endomorphism of Univariate Laurent Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Integer Ring
    Defn: Induced from base ring by
        Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
            Defn: x |---> x + 2*y
                    y |---> 3*x - y
sage: F(f)(x*F(P).gen()^-2+y*F(P).gen()^3)
(x + 2*y)*t^-2 + (3*x - y)*t^3
```

merge(other)

Two Laurent polynomial construction functors merge if the variable names coincide.

The result is multivariate if one of the arguments is multivariate.

EXAMPLES:

```python
sage: from sage.categories.pushout import LaurentPolynomialFunctor
sage: F1 = LaurentPolynomialFunctor('t')
```

```python
sage: F2 = LaurentPolynomialFunctor('t', multi_variate=True)
```

```python
sage: F1.merge(F2)
LaurentPolynomialFunctor
```

```python
sage: F1.merge(F2)(LaurentPolynomialRing(GF(2), 'a'))
Multivariate Laurent Polynomial Ring in a, t over Finite Field of size 2
```

```python
sage: F1.merge(F1)(LaurentPolynomialRing(GF(2), 'a'))
Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial Ring in...
    → a over Finite Field of size 2
```

class sage.categories.pushout.MatrixFunctor(nrows, ncols, is_sparse=False)

Bases: sage.categories.pushout.ConstructionFunctor

A construction functor for matrices over rings.

EXAMPLES:

```python
sage: MS = MatrixSpace(ZZ, 2, 3)
sage: F = MS.construction()[0]; F
MatrixFunctor
```

```python
sage: MS = MatrixSpace(ZZ, 2)
sage: F = MS.construction()[0]; F
MatrixFunctor
```

```python
sage: P.<x,y> = QQ[]
```
sage: R = F(P); R
Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial Ring in x, y
--> over Rational Field
sage: f = P.hom([x+y,x-y],P); F(f)
Ring endomorphism of Full MatrixSpace of 2 by 2 dense matrices over Multivariate
--> Polynomial Ring in x, y over Rational Field
Defn: Induced from base ring by
 Ring endomorphism of Multivariate Polynomial Ring in x, y over Rational
--> Field
 Defn: x |--> x + y
 y |--> x - y
sage: M = R([x,y,x\cdot y,x+y])
sage: F(f)(M)
\begin{bmatrix}
 x + y & x - y \\
 x^2 - y^2 & 2*x
\end{bmatrix}

merge(other)
Merging is only happening if both functors are matrix functors of the same dimension.

The result is sparse if and only if both given functors are sparse.

EXAMPLES:

```
sage: F1 = MatrixSpace(ZZ,2,2).construction()[0]
sage: F2 = MatrixSpace(ZZ,2,3).construction()[0]
sage: F3 = MatrixSpace(ZZ,2,2,sparse=True).construction()[0]
sage: F1.merge(F2)
MatrixFunctor
sage: F1.merge(F3)
MatrixFunctor
sage: F13 = F1.merge(F3)
sage: F13.is_sparse
False
sage: F1.is_sparse
False
sage: F3.is_sparse
True
sage: F3.merge(F3).is_sparse
True
```

class sage.categories.pushout.MultiPolynomialFunctor(vars, term_order)

Bases: sage.categories.pushout.ConstructionFunctor

A constructor for multivariate polynomial rings.

EXAMPLES:

```
sage: P.<x,y> = ZZ[]
sage: F = P.construction()[0]; F
MPoly[x,y]
sage: A.<a,b> = GF(5)[]
sage: F(A)
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over
--> Finite Field of size 5
sage: f = A.hom([[a+b,a-b],A])
```

3.4. Coercion via construction functors
sage: F(f)
Ring endomorphism of Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Finite Field of size 5
Defn: Induced from base ring by
 Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite Field of size 5
 Defn: a |--> a + b
 b |--> a - b
sage: F(f)(F(A)(x)*a)
(a + b)*x

expand()
Decompose self into a list of construction functors.

EXAMPLES:

sage: F = QQ['x,y,z,t'].construction()[0]; F
MPoly[x,y,z,t]
sage: F.expand()
[MPoly[t], MPoly[z], MPoly[y], MPoly[x]]

Now an actual use case:

sage: R.<x,y,z> = ZZ[]
sage: S.<z,t> = QQ[]
sage: x+t
x + t
sage: parent(x+t)
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: T.<y,s> = QQ[]
sage: x + s
Traceback (most recent call last):
 ...TypeError: unsupported operand parent(s) for +: 'Multivariate Polynomial Ring in x, y, z over Integer Ring' and 'Multivariate Polynomial Ring in y, s over Rational Field'
sage: R = PolynomialRing(ZZ, 'x', 500)
sage: S = PolynomialRing(GF(5), 'x', 200)
sage: R.gen(0) + S.gen(0)
2*x0

merge(other)
Merge self with another construction functor, or return None.

EXAMPLES:

sage: F = sage.categories.pushout.MultiPolynomialFunctor(['x','y'], None)
sage: G = sage.categories.pushout.MultiPolynomialFunctor(['t'], None)
sage: F.merge(G) is None
True
sage: F.merge(F)
MPoly[x,y]
class sage.categories.pushout.MultivariateConstructionFunctor
 Bases: sage.categories.pushout.ConstructionFunctor

 An abstract base class for functors that take multiple inputs (e.g. Cartesian products).

 common_base(other_functor, self_bases, other_bases)
 This function is called by pushout() when no common parent is found in the construction tower.

 INPUT:
 • other_functor – a construction functor.
 • self_bases – the arguments passed to this functor.
 • other_bases – the arguments passed to the functor other_functor.

 OUTPUT:
 A parent.
 If no common base is found a sage.structure.coerce_exceptions.CoercionException is raised.

 Note: Overload this function in derived class, see e.g. MultivariateConstructionFunctor.

class sage.categories.pushout.PermutationGroupFunctor(gens, domain)
 Bases: sage.categories.pushout.ConstructionFunctor

 EXAMPLES:
 sage: from sage.categories.pushout import PermutationGroupFunctor
 sage: PF = PermutationGroupFunctor([PermutationGroupElement([(1,2)])], [1,2]); PF
 PermutationGroupFunctor[(1,2)]
 gens()
 EXAMPLES:
 sage: P1 = PermutationGroup([(1,2)])
 sage: PF, P = P1.construction()
 sage: PF.gens()
 [(1,2)]
 merge(other)
 Merge self with another construction functor, or return None.
 EXAMPLES:
 sage: P1 = PermutationGroup([(1,2)])
 sage: PF1, P = P1.construction()
 sage: P2 = PermutationGroup([(1,3)])
 sage: PF2, P = P2.construction()
 sage: PF1.merge(PF2)
 PermutationGroupFunctor[(1,2), (1,3)]

class sage.categories.pushout.PolynomialFunctor(var, multi_variate=False, sparse=False)
 Bases: sage.categories.pushout.ConstructionFunctor

 Construction functor for univariate polynomial rings.
 EXAMPLES:
By trac ticket #9944, the construction functor distinguishes sparse and dense polynomial rings. Before, the following example failed:

```python
sage: R.<x> = PolynomialRing(GF(5), sparse=True)
sage: F,B = R.construction()
sage: F(B) is R
True
sage: S.<x> = PolynomialRing(ZZ)
sage: R.has_coerce_map_from(S)
False
sage: S.has_coerce_map_from(R)
False
sage: S.0 + R.0
2*x
sage: (S.0 + R.0).parent()
Univariate Polynomial Ring in x over Finite Field of size 5
sage: (S.0 + R.0).parent().is_sparse()
False
```

merge(other)
Merge self with another construction functor, or return None.

Note: Internally, the merging is delegated to the merging of multipolynomial construction functors. But in effect, this does the same as the default implementation, that returns None unless the to-be-merged functors coincide.

EXAMPLES:

```python
sage: P = ZZ['x'].construction()[0]
sage: Q = ZZ['y','x'].construction()[0]
sage: P.merge(Q)
sage: P.merge(P) is P
True
```

class sage.categories.pushout.QuotientFunctor(*, names=None, as_field=False, domain=None, codomain=None, **kwds)

Construction functor for quotient rings.

Note: The functor keeps track of variable names. Optionally, it may keep track of additional properties of the quotient, such as its category or its implementation.
EXAMPLES:

```python
sage: P.<x,y> = ZZ[]
sage: Q = P.quo([x^2+y^2]*P)
sage: F = Q.construction()[0]
sage: F(QQ['x','y'])
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal
˓→(x^2 + y^2)
sage: F(QQ['x','y']) == QQ['x','y'].quo([x^2+y^2]*QQ['x','y'])
True
sage: F(QQ['x','y','z'])
Traceback (most recent call last):
  ... CoercionException: Cannot apply this quotient functor to Multivariate PolynomialRing
˓→Ring in x, y, z over Rational Field
sage: F(QQ['y','z'])
Traceback (most recent call last):
  ... TypeError: Could not find a mapping of the passed element to this ring.
```

merge(other)

Two quotient functors with coinciding names are merged by taking the gcd of their moduli, the meet of
their domains, and the join of their codomains.

In particular, if one of the functors being merged knows that the quotient is going to be a field, then the
merged functor will return fields as well.

EXAMPLES:

```python
sage: P.<x> = QQ[]
sage: Q1 = P.quo([(x^2+1)^2*(x^2-3)])
sage: Q2 = P.quo([(x^2+1)^2*(x^5+3)])
sage: from sage.categories.pushout import pushout
sage: pushout(Q1,Q2)  # indirect doctest
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^4 + 2*x^2 + 1
```

The following was fixed in trac ticket #8800:

```python
sage: pushout(GF(5), Integers(5))
Finite Field of size 5
```

class sage.categories.pushout.SubspaceFunctor(basis)

Bases: sage.categories.pushout.ConstructionFunctor

Constructing a subspace of an ambient free module, given by a basis.

Note: This construction functor keeps track of the basis. It can only be applied to free modules into which this
basis coerces.

EXAMPLES:

```python
sage: M = ZZ^3
sage: S = M.submodule([(1,2,3),(4,5,6)]); S
```

(continues on next page)
Free module of degree 3 and rank 2 over Integer Ring
Echelon basis matrix:
\[
\begin{bmatrix}
1 & 2 & 3 \\
0 & 3 & 6
\end{bmatrix}
\]

```python
sage: F = S.construction()[0]
sage: F(GF(2)^3)
Vector space of degree 3 and dimension 2 over Finite Field of size 2
User basis matrix:
\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]
```

merge(other)

Two Subspace Functors are merged into a construction functor of the sum of two subspaces.

EXAMPLES:

```python
sage: M = GF(5)^3
sage: S1 = M.submodule([(1,2,3),(4,5,6)])
sage: S2 = M.submodule([(2,2,3)])
sage: F1 = S1.construction()[0]
sage: F2 = S2.construction()[0]
sage: F1.merge(F2)
SubspaceFunctor
sage: F1.merge(F2)(GF(5)^3) == S1+S2
True
sage: F1.merge(F2)(GF(5)[t]^3)
Free module of degree 3 and rank 3 over Univariate Polynomial Ring in t over Finite Field of size 5
User basis matrix:
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
```

class `sage.categories.pushout.VectorFunctor(n, is_sparse=False, inner_product_matrix=None)`

A construction functor for free modules over commutative rings.

EXAMPLES:

```python
sage: F = (ZZ^3).construction()[0]
sage: F
VectorFunctor
sage: F(GF(2)['t'])
Ambient free module of rank 3 over the principal ideal domain Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
```

merge(other)

Two constructors of free modules merge, if the module ranks and the inner products coincide. If both have explicitly given inner product matrices, they must coincide as well.

EXAMPLES:

Two modules without explicitly given inner product allow coercion:
If only one summand has an explicit inner product, the result will be provided with it:

```
sage: M3 = FreeModule(P, 3, inner_product_matrix = Matrix(3,3,range(9)))
sage: M1([1,1/2,1/3]) + M3([t,t^2+t,3])
(t + 1, t^2 + t + 1/2, 10/3)
sage: (M1([1,1/2,1/3]) + M3([t,t^2+t,3])).parent().inner_product_matrix()
[0 1 2]
[3 4 5]
[6 7 8]
```

If both summands have an explicit inner product (even if it is the standard inner product), then the products must coincide. The only difference between M1 and M4 in the following example is the fact that the default inner product was explicitly requested for M4. It is therefore not possible to coerce with a different inner product:

```
sage: M4 = FreeModule(QQ,3, inner_product_matrix = Matrix(3,3,1))
sage: M4 == M1
True
sage: M4.inner_product_matrix() == M1.inner_product_matrix()
True
sage: M4([1,1/2,1/3]) + M3([t,t^2+t,3])  # indirect doctest
Traceback (most recent call last):
  ...
TypeError: unsupported operand parent(s) for +: 'Ambient quadratic space of dimension 3 over Rational Field' and 'Ambient free quadratic module of rank 3 over the integral domain Univariate Polynomial Ring in t over Integer Ring'
```

```
sage.categories.pushout.construction_tower(R)
```

An auxiliary function that is used in `pushout()` and `pushout_lattice()`.

INPUT:

An object

OUTPUT:

A constructive description of the object from scratch, by a list of pairs of a construction functor and an object to which the construction functor is to be applied. The first pair is formed by `None` and the given object.

EXAMPLES:

3.4. Coercion via construction functors
```
sage: from sage.categories.pushout import construction_tower
sage: construction_tower(MatrixSpace(FractionField(QQ['t']),2))
[(None, Full MatrixSpace of 2 by 2 dense matrices over Fraction Field of Univariate Polynomial Ring in t over Rational Field), (MatrixFunctor, Fraction Field of Univariate Polynomial Ring in t over Rational Field), (FractionField, Univariate Polynomial Ring in t over Rational Field), (Poly[t], Rational Field), (FractionField, Integer Ring)]
```

`sage.categories.pushout.expand_tower(tower)`

An auxiliary function that is used in `pushout()`.

INPUT:

A construction tower as returned by `construction_tower()`.

OUTPUT:

A new construction tower with all the construction functors expanded.

EXAMPLES:

```
sage: from sage.categories.pushout import construction_tower, expand_tower
sage: construction_tower(QQ['x,y,z'])
[(None, Multivariate Polynomial Ring in x, y, z over Rational Field), (MPoly[x,y,z], Rational Field), (FractionField, Integer Ring)]
sage: expand_tower(construction_tower(QQ['x,y,z']))
[(None, Multivariate Polynomial Ring in x, y, z over Rational Field), (MPoly[z], Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field), (MPoly[y], Univariate Polynomial Ring in x over Rational Field), (MPoly[x], Rational Field), (FractionField, Integer Ring)]
```

`sage.categories.pushout.pushout(R, S)`

Given a pair of objects R and S, try to construct a reasonable object Y and return maps such that canonically $R \leftarrow Y \rightarrow S$.

ALGORITHM:

This incorporates the idea of functors discussed at Sage Days 4. Every object R can be viewed as an initial object and a series of functors (e.g. polynomial, quotient, extension, completion, vector/matrix, etc.). Call the series of increasingly simple objects (with the associated functors) the “tower” of R. The construction method is used to create the tower.

Given two objects R and S, try to find a common initial object Z. If the towers of R and S meet, let Z be their join. Otherwise, see if the top of one coerces naturally into the other.

Now we have an initial object and two ordered lists of functors to apply. We wish to merge these in an unambiguous order, popping elements off the top of one or the other tower as we apply them to Z.

- If the functors are of distinct types, there is an absolute ordering given by the rank attribute. Use this.
- Otherwise:
 - If the tops are equal, we (try to) merge them.
 - If exactly one occurs lower in the other tower, we may unambiguously apply the other (hoping for a later merge).
 - If the tops commute, we can apply either first.
Otherwise fail due to ambiguity.

The algorithm assumes by default that when a construction \(F \) is applied to an object \(X \), the object \(F(X) \) admits a coercion map from \(X \). However, the algorithm can also handle the case where \(F(X) \) has a coercion map to \(X \) instead. In this case, the attribute \(coercion_reversed \) of the class implementing \(F \) should be set to \(True \).

EXAMPLES:

Here our “towers” are \(R = Complete_7(Frac(Z)) \) and \(Frac(Poly_x(Z)) \), which give us \(Frac(Poly_y(Complete_7(Frac(Z)))) \):

```python
sage: from sage.categories.pushout import pushout
sage: pushout(Qp(7), Frac(ZZ['x']))
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped
˓→relative precision 20
```

Note we get the same thing with

```python
sage: pushout(Zp(7), Frac(QQ['x']))
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped
˓→relative precision 20
```

Note that polynomial variable ordering must be unambiguously determined.

```python
sage: pushout(ZZ['x,y,z'], QQ['w,z,t'])
Traceback (most recent call last):
...
CoercionException: ('Ambiguous Base Extension', Multivariate Polynomial Ring in x, y, z over Integer Ring, Multivariate Polynomial Ring in w, z, t over Rational Field)
sage: pushout(ZZ['x,y,z'], QQ['w,x,z,t'])
Multivariate Polynomial Ring in w, x, y, z, t over Rational Field
```

Some other examples:

```python
sage: pushout(Zp(7)['y'], Frac(QQ['t'])['x,y,z'])
Multivariate Polynomial Ring in x, y, z over Fraction Field of Univariate Polynomial Ring in t over 7-adic Field with capped relative precision 20
```

```python
sage: pushout(ZZ['x,y,z'], Frac(ZZ['x'])['y'])
Multivariate Polynomial Ring in y, z over Fraction Field of Univariate Polynomial Ring in x over Integer Ring
```

```python
sage: pushout(MatrixSpace(RDF, 2, 2), Frac(ZZ['x']))
Full MatrixSpace of 2 by 2 dense matrices over Fraction Field of Univariate Polynomial Ring in x over Real Double Field
```

```python
sage: pushout(ZZ, MatrixSpace(ZZ['x'], 3, 3))
Full MatrixSpace of 3 by 3 dense matrices over Power Series Ring in x over Integer Ring
```

```python
sage: pushout(QQ['x,y'], ZZ[['x']])
Univariate Polynomial Ring in y over Power Series Ring in x over Rational Field
```

```python
sage: pushout(Frac(ZZ['x']), QQ[['x']])
Laurent Series Ring in x over Rational Field
```

A construction with \(coercion_reversed = True \) (currently only the \(SubspaceFunctor \) construction) is only
applied if it leads to a valid coercion:

```python
sage: A = ZZ^2
sage: V = span([[1, 2]], QQ)
sage: P = sage.categories.pushout.pushout(A, V)
sage: P
Vector space of dimension 2 over Rational Field
sage: P.has_coerce_map_from(A)
True
sage: V = (QQ^3).span([[1, 2, 3/4]])
sage: A = ZZ^3
sage: pushout(A, V)
Vector space of dimension 3 over Rational Field
sage: B = A.span([[0, 0, 2/3]])
sage: pushout(B, V)
Vector space of degree 3 and dimension 2 over Rational Field
User basis matrix:
[1 2 0]
[0 0 1]
```

Some more tests with coercion_reversed = True:

```python
sage: from sage.categories.pushout import ConstructionFunctor
sage: class EvenPolynomialRing(type(QQ['x'])):
....:     def __init__(self, base, var):
....:         super(EvenPolynomialRing, self).__init__(base, var)
....:         self.register_embedding(base[var])
....:     def __repr__(self):
....:         return "Even Power " + super(EvenPolynomialRing, self).__repr__()
....:     def construction(self):
....:         return EvenPolynomialFunctor(), self.base()[self.variable_name()]
....:     def _coerce_map_from_(self, R):
....:         return self.base().has_coerce_map_from(R)

sage: class EvenPolynomialFunctor(ConstructionFunctor):
....:     rank = 10
....:     coercion_reversed = True
....:     def __init__(self):
....:         ConstructionFunctor.__init__(self, Rings(), Rings())
....:     def _apply_function(self, R):
....:         return EvenPolynomialRing(R.base(), R.variable_name())

sage: pushout(EvenPolynomialRing(QQ, 'x'), ZZ)
Even Power Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), QQ)
Even Power Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), RR)
Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision
```

(continues on next page)
sage: pushout(EvenPolynomialRing(QQ, 'x'), EvenPolynomialRing(QQ, 'x'))
Even Power Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), EvenPolynomialRing(RR, 'x'))
Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: pushout(EvenPolynomialRing(QQ, 'x')^2, RR^2)
Ambient free module of rank 2 over the principal ideal domain Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: pushout(EvenPolynomialRing(QQ, 'x')^2, RR['x']^2)
Ambient free module of rank 2 over the principal ideal domain Univariate Polynomial Ring in x over Real Field with 53 bits of precision

Some more tests related to univariate/multivariate constructions. We consider a generalization of polynomial rings, where in addition to the coefficient ring C we also specify an additive monoid E for the exponents of the indeterminate. In particular, the elements of such a parent are given by

$$\sum_{i=0}^{I} c_i X^{e_i}$$

with $c_i \in C$ and $e_i \in E$. We define

```
sage: class GPolynomialRing(Parent):
    ....:     def __init__(self, coefficients, var, exponents):
    ....:         self.coefficients = coefficients
    ....:         self.var = var
    ....:         self.exponents = exponents
    ....:         super(GPolynomialRing, self).__init__(category=Rings())
    ....:     def _repr_(self):
    ....:         return 'Generalized Polynomial Ring in %s^(%s) over %s' % (self.var, self.exponents, self.coefficients)
    ....:     def construction(self):
    ....:         return GPolynomialFunctor(self.var, self.exponents), self.coefficients
    ....:     def _coerce_map_from_(self, R):
    ....:         return self.coefficients.has_coerce_map_from(R)
```

and

```
sage: class GPolynomialFunctor(ConstructionFunctor):
    ....:     rank = 10
    ....:     def __init__(self, var, exponents):
    ....:         self.var = var
    ....:         self.exponents = exponents
    ....:     def __init__(self, var, exponents):
    ....:         self = super(GPolynomialFunctor, self).__init__(category=Rings())
    ....:     def _repr_(self):
    ....:         return 'GPoly[%s^(%s)]' % (self.var, self.exponents)
    ....:     def _apply_functor(self, coefficients):
    ....:         return GPolynomialRing(coefficients, self.var, self.exponents)
    ....:     def merge(self, other):
    ....:         if isinstance(other, GPolynomialFunctor) and other.var == self.var:
    ....:             exponents = pushout(self.exponents, other.exponents)
    ....:         return GPolynomialFunctor(self.var, exponents)
```

We can construct a parent now in two different ways:
sage: GPolynomialRing(QQ, 'X', ZZ)
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field
sage: GP_ZZ = GPolynomialFunctor('X', ZZ); GP_ZZ
GPoly[X^(Integer Ring)]
sage: GP_ZZ(QQ)
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field

Since the construction

sage: GP_ZZ(QQ).construction()
(GPoly[X^(Integer Ring)], Rational Field)

uses the coefficient ring, we have the usual coercion with respect to this parameter:

sage: pushout(GP_ZZ(ZZ), GP_ZZ(QQ))
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field
sage: pushout(GP_ZZ(ZZ['t']), GP_ZZ(QQ))
Generalized Polynomial Ring in X^(Integer Ring) over Univariate Polynomial Ring in t over Rational Field
sage: pushout(GP_ZZ(ZZ['a,b']), GP_ZZ(ZZ['b,c']))
Generalized Polynomial Ring in X^(Integer Ring) over Multivariate Polynomial Ring in a, b, c over Integer Ring
sage: pushout(GP_ZZ(ZZ['a,b']), GP_ZZ(QQ['b,c']))
Generalized Polynomial Ring in X^(Integer Ring) over Multivariate Polynomial Ring in a, b, c over Rational Field
sage: pushout(GP_ZZ(ZZ['a,b']), GP_ZZ(ZZ['c,d']))
Traceback (most recent call last):
... CoercionException: ('Ambiguous Base Extension', ...)

sage: GP_QQ = GPolynomialFunctor('X', QQ)
sage: pushout(GP_ZZ(ZZ), GP_QQ(ZZ))
Generalized Polynomial Ring in X^(Integer Ring) over Integer Ring
sage: pushout(GP_QQ(ZZ), GP_ZZ(ZZ))
Generalized Polynomial Ring in X^(Rational Field) over Integer Ring

sage: GP_ZZt = GPolynomialFunctor('X', ZZ['t'])
sage: pushout(GP_ZZt(ZZ), GP_QQ(ZZ))
Generalized Polynomial Ring in X^(Univariate Polynomial Ring in t over Rational Field) over Integer Ring

sage: pushout(GP_ZZt(ZZ), GP_QQ(QQ))
Generalized Polynomial Ring in X^(Integer Ring) over Integer Ring
sage: pushout(GP_ZZt(QQ), GP_QQ(ZZ))
Generalized Polynomial Ring in X^(Rational Field) over Integer Ring
sage: pushout(GP_ZZt(QQ), GP_QQ(QQ))
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field
sage: pushout(GP_ZZt(QQ), GP_QQ(QQ))
Generalized Polynomial Ring in X^(Rational Field) over Integer Ring
sage: pushout(GP_ZZt(QQ), GP_QQ(QQ))
Generalized Polynomial Ring in X^(Univariate Polynomial Ring in t over Rational Field) over Integer Ring
sage: pushout(GP_ZZt(QQ), GP_QQ(QQ))
Generalized Polynomial Ring in X^(Univariate Polynomial Ring in t over Rational Field) over Integer Ring
sage: pushout(GP_ZZt(ZZ['a,b']), GP_QQ(ZZ['c,d']))
(continues on next page)
Some tests with Cartesian products:

```python
sage: from sage.sets.cartesian_product import CartesianProduct
sage: A = CartesianProduct((ZZ['x'], QQ['y'], QQ['z'])), Sets().CartesianProducts())
```

The Cartesian product of
- Univariate Polynomial Ring in x over Integer Ring,
- Univariate Polynomial Ring in y over Rational Field,
- Univariate Polynomial Ring in z over Rational Field

```python
sage: B = CartesianProduct((ZZ['x'], ZZ['y'], ZZ['t']['z']), Sets().CartesianProducts())
```

```python
sage: A.construction()
```

(The cartesian_product functorial construction,
- Univariate Polynomial Ring in x over Integer Ring,
- Univariate Polynomial Ring in y over Rational Field,
- Univariate Polynomial Ring in z over Rational Field)

```python
sage: pushout(A, B)
```

```
The Cartesian product of
- Univariate Polynomial Ring in x over Integer Ring,
- Univariate Polynomial Ring in y over Rational Field,
- Univariate Polynomial Ring in z over Univariate Polynomial Ring in t over Rational Field

sage: pushout(ZZ, cartesian_product([ZZ, QQ]))
```

```
Traceback (most recent call last):
... CoercionException: 'NoneType' object is not iterable
```

```python
sage: from sage.categories.pushout import PolynomialFunctor
sage: from sage.sets.cartesian_product import CartesianProduct
sage: class CartesianProductPoly(CartesianProduct):
    ....:     def __init__(self, polynomial_rings):
    ....:         sort = sorted(polynomial_rings, key=lambda P: P.variable_name())
    ....:         super(CartesianProductPoly, self).__init__(sort, Sets().CartesianProducts())
    ....:     def vars(self):
    ....:         return tuple(P.variable_name() for P in self.cartesian_factors())
    ....:     def _pushout_(self, other):
    ....:         if isinstance(other, CartesianProductPoly):
    ....:             s_vars = self.vars()
    ....:             o_vars = other.vars()
    ....:             if s_vars == o_vars:
    ....:                 return pushout(CartesianProductPoly(
    ....:                     self.cartesian_factors() +
    ....:                     tuple(f for f in other.cartesian_factors() if f.variable_name() not in s_vars)),
    ....:                     CartesianProductPoly(
    ....:                         other.cartesian_factors() +
    ....:                         tuple(f for f in self.cartesian_factors())))
```

(continues on next page)
.. code-block:: python

 if f.variable_name() not in o_vars)
 C = other.construction()
 if C is None:
 return
 elif isinstance(C[0], PolynomialFunctor):
 return pushout(self, CartesianProductPoly((other,)))

```
sage: pushout(CartesianProductPoly((ZZ['x'],)),
            CartesianProductPoly((ZZ['y'],)))
The Cartesian product of
    (Univariate Polynomial Ring in x over Integer Ring,
     Univariate Polynomial Ring in y over Integer Ring)
```

```
sage: pushout(CartesianProductPoly((ZZ['x'], ZZ['y'])),
            CartesianProductPoly((ZZ['x'], ZZ['z'])))
The Cartesian product of
    (Univariate Polynomial Ring in x over Integer Ring,
     Univariate Polynomial Ring in y over Integer Ring,
     Univariate Polynomial Ring in z over Integer Ring)
```

```
sage: pushout(CartesianProductPoly((QQ['a,b']('x'), QQ['y'])),  # optional - sage.symbolic
            CartesianProductPoly((ZZ['b,c']('x'), SR['z'])))
The Cartesian product of
    (Univariate Polynomial Ring in x over
     Multivariate Polynomial Ring in a, b over Rational Field,
     Univariate Polynomial Ring in y over Rational Field,
     Univariate Polynomial Ring in z over Symbolic Ring)
```

```
sage: pushout(CartesianProductPoly((ZZ['x'],)), ZZ['y'])
The Cartesian product of
    (Univariate Polynomial Ring in x over Integer Ring,
     Univariate Polynomial Ring in y over Integer Ring)
```

```
sage: pushout(QQ['b,c']['y'], CartesianProductPoly((ZZ['a,b']('x'),)))
The Cartesian product of
    (Univariate Polynomial Ring in x over
     Multivariate Polynomial Ring in a, b over Integer Ring,
     Univariate Polynomial Ring in y over
     Multivariate Polynomial Ring in b, c over Rational Field)
```

```
sage: pushout(CartesianProductPoly((ZZ['x'],)), ZZ)
Traceback (most recent call last):
...
CoercionException: No common base ("join") found for
The cartesian_product functorial construction(...) and None(Integer Ring):
(Multivariate) functors are incompatible.
```

AUTHORS:

- Robert Bradshaw
- Peter Bruin
- Simon King
- Daniel Krenn
sage.categories.pushout.pushout_lattice(R, S)
Given a pair of objects R and S, try to construct a reasonable object Y and return maps such that canonically $R \leftarrow Y \rightarrow S$.

ALGORITHM:
This is based on the model that arose from much discussion at Sage Days 4. Going up the tower of constructions of R and S (e.g. the reals come from the rationals come from the integers), try to find a common parent, and then try to fill in a lattice with these two towers as sides with the top as the common ancestor and the bottom will be the desired ring.

See the code for a specific worked-out example.

EXAMPLES:

```python
sage: from sage.categories.pushout import pushout_lattice
sage: A, B = pushout_lattice(Qp(7), Frac(ZZ['x']))
sage: A.codomain()
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped relative precision 20
sage: A.codomain() is B.codomain()
True
sage: A, B = pushout_lattice(ZZ, MatrixSpace(ZZ[['x']], 3, 3))
sage: B
Identity endomorphism of Full MatrixSpace of 3 by 3 dense matrices over Power Series Ring in x over Integer Ring
```

AUTHOR:
- Robert Bradshaw

sage.categories.pushout.type_to_parent(P)
An auxiliary function that is used in `pushout()`.

INPUT:
- A type

OUTPUT:
- A Sage parent structure corresponding to the given type
4.1 Group, ring, etc. actions on objects

The terminology and notation used is suggestive of groups acting on sets, but this framework can be used for modules, algebras, etc.

A group action $G \times S \to S$ is a functor from G to Sets.

Warning: An Action object only keeps a weak reference to the underlying set which is acted upon. This decision was made in trac ticket #715 in order to allow garbage collection within the coercion framework (this is where actions are mainly used) and avoid memory leaks.

```sage
sage: from sage.categories.action import Action
sage: class P:
    pass
sage: A = Action(P(),P())
sage: import gc
sage: _ = gc.collect()
sage: A
<repr(<sage.categories.action.Action at 0x...>) failed: RuntimeError: This action_→acted on a set that became garbage collected>
```

To avoid garbage collection of the underlying set, it is sufficient to create a strong reference to it before the action is created.

```sage
sage: _ = gc.collect()

sage: from sage.categories.action import Action
sage: class P:
    pass
sage: q = P()

sage: A = Action(P(),q)

sage: gc.collect()
0

sage: A
Left action by __main__.P ... at ... on __main__.P ... at ...
```

AUTHOR:
- Robert Bradshaw: initial version

```python
class sage.categories.action.Action
    Bases: sage.categories.functor.Functor

The action of G on S.
```
INPUT:

- G – a parent or Python type
- S – a parent or Python type
- is_left – (boolean, default: True) whether elements of G are on the left
- op – (default: None) operation. This is not used by Action itself, but other classes may use it

G

$\text{act}(g, x)$

This is a consistent interface for acting on x by g, regardless of whether it’s a left or right action.

If needed, g and x are converted to the correct parent.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: from sage.structure.coerce_actions import IntegerMulAction
cpy sage: A = IntegerMulAction(ZZ, R, True) \# Left action
sage: A.act(5, x)
5*x
sage: A.act(int(5), x)
5*x
sage: A = IntegerMulAction(ZZ, R, False) \# Right action
sage: A.act(5, x)
5*x
sage: A.act(int(5), x)
5*x
```

actor()

codomain()

domain()

is_left

left_domain()

op

operation()

right_domain()

class sage.categories.action.ActionEndomorphism

Bases: sage.categories.morphism.Morphism

The endomorphism defined by the action of one element.

EXAMPLES:

```
sage: A = ZZ['x'].get_action(QQ, self_on_left=False, op=operator.mul)
sage: A
Left scalar multiplication by Rational Field on Univariate Polynomial Ring in $x$ over Integer Ring
sage: A(1/2)
Action of 1/2 on Univariate Polynomial Ring in $x$ over Integer Ring under Left scalar multiplication by Rational Field on Univariate Polynomial Ring in $x$ over Integer Ring.
```
class sage.categories.action.InverseAction
 Bases: sage.categories.action.Action

 An action that acts as the inverse of the given action.

 EXAMPLES:

 sage: V = QQ^3
 sage: v = V((1, 2, 3))
sage: cm = get_coercion_model()
sage: a = cm.get_action(V, QQ, operator.mul)
sage: a
 Right scalar multiplication by Rational Field on Vector space of dimension 3 over Rational Field
 sage: ~a
 Right inverse action by Rational Field on Vector space of dimension 3 over Rational Field
 sage: (~a)(v, 1/3)
 (3, 6, 9)
sage: b = cm.get_action(QQ, V, operator.mul)
sage: b
 Left scalar multiplication by Rational Field on Vector space of dimension 3 over Rational Field
 sage: ~b
 Left inverse action by Rational Field on Vector space of dimension 3 over Rational Field
 sage: (~b)(1/3, v)
 (3, 6, 9)

 sage: c = cm.get_action(ZZ, list, operator.mul)
sage: c
 Left action by Integer Ring on <...
 sage: ~c
 Traceback (most recent call last):
 ...
 TypeError: no inverse defined for Left action by Integer Ring on <...

codomain()

class sage.categories.action.PrecomposedAction
 Bases: sage.categories.action.Action

 A precomposed action first applies given maps, and then applying an action to the return values of the maps.

 EXAMPLES:

 We demonstrate that an example discussed on trac ticket #14711 did not become a problem:

 sage: E = ModularSymbols(11).2
 sage: s = E.modular_symbol_rep()
sage: del E,s
sage: import gc
sage: _ = gc.collect()
sage: E = ModularSymbols(11).2
sage: v = E.manin_symbol_rep()
sage: c, x = v[0]
sage: y = x.modular_symbol_rep()
sage: coercion_model.get_action(QQ, parent(y), op=operator.mul)

Left scalar multiplication by Rational Field on Abelian Group of all Formal Finite Sums over Rational Field
with precomposition on right by Coercion map:
 From: Abelian Group of all Formal Finite Sums over Integer Ring
 To: Abelian Group of all Formal Finite Sums over Rational Field

codomain()
domain()

left_precomposition
The left map to precompose with, or None if there is no left precomposition map.

right_precomposition
The right map to precompose with, or None if there is no right precomposition map.

4.2 Additive groups

```python
class sage.categories.additive_groups.AdditiveGroups(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

    The category of additive groups.

    An additive group is a set with an internal binary operation + which is associative, admits a zero, and where every element can be negated.

    EXAMPLES:
```

sage: from sage.categories.additive_groups import AdditiveGroups
sage: AdditiveGroups()
Category of additive groups
sage: AdditiveGroups().super_categories()
[Category of additive inverse additive unital additive magmas, Category of additive monoids]
sage: AdditiveGroups().all_super_categories()
[Category of additive groups, Category of additive inverse additive unital additive magmas, Category of additive monoids, Category of additive unital additive magmas, Category of additive semigroups, Category of additive magmas, Category of sets, Category of sets with partial maps, Category of objects]
sage: AdditiveGroups().axioms()
frozenset({'AdditiveAssociative', 'AdditiveInverse', 'AdditiveUnital'})
sage: AdditiveGroups() is AdditiveMonoids().AdditiveInverse()
True
```
AdditiveCommutative
    alias of sage.categories.commutative_additive_groups.CommutativeAdditiveGroups

class Algebras(category, *args)
    Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
    Bases: object

    group()
        Return the underlying group of the group algebra.
        EXAMPLES:

        sage: GroupAlgebras(QQ).example(GL(3, GF(11))).group()
        General Linear Group of degree 3 over Finite Field of size 11
        sage: SymmetricGroup(10).algebra(QQ).group()
        Symmetric group of order 10! as a permutation group

class Finite(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Algebras(category, *args)
    Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
    Bases: object

    extra_super_categories()
        Implement Maschke’s theorem.
        In characteristic 0 all finite group algebras are semisimple.
        EXAMPLES:

        sage: FiniteGroups().Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
        True
        sage: FiniteGroups().Algebras(FiniteField(7)).is_subcategory(Algebras(FiniteField(7)).Semisimple())
        False
        sage: FiniteGroups().Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
        False
        sage: FiniteGroups().Algebras(Fields()).is_subcategory(Algebras(Fields()).Semisimple())
        False
        sage: Cat = CommutativeAdditiveGroups().Finite()
        sage: Cat.Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
        True
        sage: Cat.Algebras(GF(7)).is_subcategory(Algebras(GF(7)).Semisimple())
        False
        sage: Cat.Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
        False
        sage: Cat.Algebras(Fields()).is_subcategory(Algebras(Fields()).Semisimple())
        False

4.2. Additive groups
4.3 Additive magmas

class sage.categories.additive_magmas.AdditiveMagmas(s=None)
    Bases: sage.categories.category_singleton.Category_singleton

The category of additive magmas.
An additive magma is a set endowed with a binary operation +.

EXAMPLES:

```
sage: AdditiveMagmas()
Category of additive magmas
sage: AdditiveMagmas().super_categories()
[Category of sets]
sage: AdditiveMagmas().all_super_categories()
[Category of additive magmas, Category of sets, Category of sets with partial maps, ...
˓→Category of objects]
```

The following axioms are defined by this category:

```
sage: AdditiveMagmas().AdditiveAssociative()
Category of additive semigroups
sage: AdditiveMagmas().AdditiveUnital()
Category of additive unital additive magmas
sage: AdditiveMagmas().AdditiveCommutative()
Category of additive commutative additive magmas
sage: AdditiveMagmas().AdditiveUnital().AdditiveInverse()
Category of additive inverse additive unital additive magmas
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative()
Category of commutative additive semigroups
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().AdditiveUnital()
Category of commutative additive monoids
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
˓→AdditiveInverse()
Category of commutative additive groups
```

AdditiveAssociative
alias of sage.categories.additive_semigroups.AdditiveSemigroups

class AdditiveCommutative(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Algebras(category, *args)
    Bases: sage.categories.algebra_functor.AlgebrasCategory

extra_super_categories()
    Implement the fact that the algebra of a commutative additive magmas is commutative.

EXAMPLES:

```
sage: AdditiveMagmas().AdditiveCommutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
sage: AdditiveMagmas().AdditiveCommutative().Algebras(QQ).super_categories()
```

(continues on next page)
class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()

Implement the fact that a Cartesian product of commutative additive magmas is a commutative
additive magma.

EXAMPLES:

sage: C = AdditiveMagmas().AdditiveCommutative().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive commutative additive magmas]
sage: C.axioms()
frozenset({'AdditiveCommutative'})

class AdditiveUnital(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveInverse(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ElementMethods

Bases: object

extra_super_categories()

Implement the fact that a Cartesian product of additive magmas with inverses is an additive
magma with inverse.

EXAMPLES:

sage: C = AdditiveMagmas().AdditiveUnital().AdditiveInverse().˓→CartesianProducts()
sage: C.extra_super_categories()
[Category of additive inverse additive unital additive magmas]
sage: sorted(C.axioms())
['AdditiveInverse', 'AdditiveUnital']

class Algebras(category, *args)

Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods

Bases: object

one_basis()

Return the zero of this additive magma, which index the one of this algebra, as per
AlgebrasWithBasis.ParentMethods.one_basis().

EXAMPLES:

sage: S = CommutativeAdditiveMonoids().example(); S
An example of a commutative monoid: the free commutative monoid␣
˓→generated by ('a', 'b', 'c', 'd')

4.3. Additive magmas 163
sage: A = S.algebra(ZZ)
sage: A.one_basis()
0
sage: A.one()
B[0]
sage: A(3)
3*B[0]

element_extra_super_categories()

EXAMPLES:

sage: C = AdditiveMagmas().AdditiveUnital().Algebras(QQ)
sage: C.extra_super_categories()
[Category of unital magmas]
sage: C.super_categories()
[Category of unital algebras with basis over Rational Field, Category of additive magma algebras over Rational Field]

class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods

Bases: object

zero()

Returns the zero of this group

EXAMPLES:

sage: GF(8,'x').cartesian_product(GF(5)).zero()
(0, 0)

element_extra_super_categories()

Implement the fact that a Cartesian product of unital additive magmas is a unital additive magma.

EXAMPLES:

sage: C = AdditiveMagmas().AdditiveUnital().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive unital additive magmas]
sage: C.axioms()
frozenset({'AdditiveUnital'})

class ElementMethods

Bases: object

class Homsets(category, *args)

Bases: sage.categories.homsets.HomsetsCategory

class ParentMethods

Bases: object

zero()

EXAMPLES:
sage: R = QQ['x']
sage: H = Hom(ZZ, R, AdditiveMagmas().AdditiveUnital())
sage: f = H.zero()
sage: f
Generic morphism:
   From: Integer Ring
   To:  Univariate Polynomial Ring in x over Rational Field
sage: f(3)
0
sage: f(3) is R.zero()
True

extra_super_categories()
Implement the fact that a homset between two unital additive magmas is a unital additive magma.

EXAMPLES:

sage: AdditiveMagmas().AdditiveUnital().Homsets().extra_super_categories()
[Category of additive unital additive magmas]
sage: AdditiveMagmas().AdditiveUnital().Homsets().super_categories()
[Category of additive unital additive magmas, Category of homsets]

class ParentMethods
Bases: object

is_empty()
Return whether this set is empty.

Since this set is an additive magma it has a zero element and hence is not empty. This method thus always returns False.

EXAMPLES:

sage: A = AdditiveAbelianGroup([3,3])
sage: A in AdditiveMagmas()
True
sage: A.is_empty()
False

sage: B = CommutativeAdditiveMonoids().example()
sage: B.is_empty()
False

zero()
Return the zero of this additive magma, that is the unique neutral element for +.

The default implementation is to coerce 0 into self.

It is recommended to override this method because the coercion from the integers:
• is not always meaningful (except for 0), and
• often uses self.zero() otherwise.

EXAMPLES:

sage: S = CommutativeAdditiveMonoids().example()
sage: S.zero()
0

4.3. Additive magmas
class SubcategoryMethods
    Bases: object

    AdditiveInverse()
    Return the full subcategory of the additive inverse objects of self.

    An inverse additive magma is a unital additive magma such that every element admits both an additive inverse on the left and on the right. Such an additive magma is also called an additive loop.

    See also:
    Wikipedia article Inverse_element, Wikipedia article Quasigroup

    EXAMPLES:
    sage: AdditiveMagmas().AdditiveUnital().AdditiveInverse()
    Category of additive inverse additive unital additive magmas
    sage: from sage.categories.additive_monoids import AdditiveMonoids
    sage: AdditiveMonoids().AdditiveInverse()
    Category of additive groups

class WithRealizations(category, *args)
    Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
    Bases: object

    zero()
    Return the zero of this unital additive magma.

    This default implementation returns the zero of the realization of self given by a_realization().

    EXAMPLES:
    sage: A = Sets().WithRealizations().example(); A
    The subset algebra of {1, 2, 3} over Rational Field
    sage: A.zero.__module__
    'sage.categories.additive_magmas'
    sage: A.zero()
    0

    additional_structure()
    Return whether self is a structure category.

    See also:
    Category.additional_structure()

    The category of unital additive magmas defines the zero as additional structure, and this zero shall be preserved by morphisms.

    EXAMPLES:
    sage: AdditiveMagmas().AdditiveUnital().additional_structure()
    Category of additive unital additive magmas

class Algebras(category, *args)
    Bases: sage.categories.algebra_functor.AlgebrasCategory
class ParentMethods
    Bases: object

    algebra_generators()
    The generators of this algebra, as per MagmaticAlgebras.ParentMethods.
    algebra_generators().

    They correspond to the generators of the additive semigroup.

    EXAMPLES:

    sage: S = CommutativeAdditiveSemigroups().example(); S
    An example of a commutative semigroup: the free commutative semigroup
    generated by ('a', 'b', 'c', 'd')
    sage: A = S.algebra(QQ)
    sage: A.algebra_generators()
    Finite family {0: B[a], 1: B[b], 2: B[c], 3: B[d]}

    Todo: This doctest does not actually test this method, but rather the method of the same name
    for AdditiveSemigroups. Find a better doctest!

    product_on_basis(g1, g2)
    Product, on basis elements, as per MagmaticAlgebras.WithBasis.ParentMethods.
    product_on_basis().

    The product of two basis elements is induced by the addition of the corresponding elements of the
    group.

    EXAMPLES:

    sage: S = CommutativeAdditiveSemigroups().example(); S
    An example of a commutative semigroup: the free commutative semigroup
    generated by ('a', 'b', 'c', 'd')
    sage: A = S.algebra(QQ)
    sage: a,b,c,d = A.algebra_generators()
    sage: a * d * b
    B[a + b + d]

    Todo: This doctest does not actually test this method, but rather the method of the same name
    for AdditiveSemigroups. Find a better doctest!

    extra_super_categories()
    EXAMPLES:

    sage: AdditiveMagmas().Algebras(QQ).extra_super_categories()
    [Category of magmatic algebras with basis over Rational Field]
    sage: AdditiveMagmas().Algebras(QQ).super_categories()
    [Category of magmatic algebras with basis over Rational Field, Category of...

class CartesianProducts(category, *args)
    Bases: sage.categories.cartesian_product.CartesianProductsCategory
class ElementMethods
Bases: object

extra_super_categories()
Implement the fact that a Cartesian product of additive magmas is an additive magma.

EXAMPLES:

```
sage: C = AdditiveMagmas().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive magmas]
sage: C.super_categories()
[Category of additive magmas, Category of Cartesian products of sets]
sage: C.axioms()
frozenset()
```

class ElementMethods
Bases: object
class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

extra_super_categories()
Implement the fact that a homset between two magmas is a magma.

EXAMPLES:

```
sage: AdditiveMagmas().Homsets().extra_super_categories()
[Category of additive magmas]
sage: AdditiveMagmas().Homsets().super_categories()
[Category of additive magmas, Category of homsets]
```

class ParentMethods
Bases: object

addition_table(names='letters', elements=None)
Return a table describing the addition operation.

Note: The order of the elements in the row and column headings is equal to the order given by
the table's column_keys() method. The association can also be retrieved with the translation() method.

INPUT:
- names – the type of names used:
  - 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements'
    positions in the list given by column_keys(), padded to a common width with leading ‘a’s.
  - 'digits' - base 10 representation of the elements’ positions in the list given by
    column_keys(), padded to a common width with leading zeros.
  - 'elements' - the string representations of the elements themselves.
  - a list - a list of strings, where the length of the list equals the number of elements.
- elements – (default: None) A list of elements of the additive magma, in forms that can be coerced
  into the structure, eg. their string representations. This may be used to impose an alternate ordering
  on the elements, perhaps when this is used in the context of a particular structure. The default is
  to use whatever ordering the S.list method returns. Or the elements can be a subset which is
  closed under the operation. In particular, this can be used when the base set is infinite.

OUTPUT:
The addition table as an object of the class `OperationTable` which defines several methods for manipulating and displaying the table. See the documentation there for full details to supplement the documentation here.

**EXAMPLES:**

All that is required is that an algebraic structure has an addition defined. The default is to represent elements as lowercase ASCII letters.

```
sage: R=IntegerModRing(5)
sage: R.addition_table()
+ a b c d e
 +-------------------
 a| a b c d e
 b| b c d e a
 c| c d e a b
 d| d e a b c
 e| e a b c d
```

The `names` argument allows displaying the elements in different ways. Requesting `elements` will use the representation of the elements of the set. Requesting `digits` will include leading zeros as padding.

```
sage: R=IntegerModRing(11)
sage: P=R.addition_table(names='elements')
sage: P
+ 0 1 2 3 4 5 6 7 8 9 10
 +---------------------------
 0| 0 1 2 3 4 5 6 7 8 9 10
 1| 1 2 3 4 5 6 7 8 9 10 0
 2| 2 3 4 5 6 7 8 9 10 0 1
 3| 3 4 5 6 7 8 9 10 0 1 2
 4| 4 5 6 7 8 9 10 0 1 2 3
 5| 5 6 7 8 9 10 0 1 2 3 4
 6| 6 7 8 9 10 0 1 2 3 4 5
 7| 7 8 9 10 0 1 2 3 4 5 6
 8| 8 9 10 0 1 2 3 4 5 6 7
 9| 9 10 0 1 2 3 4 5 6 7 8
10|10 0 1 2 3 4 5 6 7 8 9

sage: T=R.addition_table(names='digits')
sage: T
+ 00 01 02 03 04 05 06 07 08 09 10
 +---------------------------
 00| 00 01 02 03 04 05 06 07 08 09 10
 01| 01 02 03 04 05 06 07 08 09 10 00
 02| 02 03 04 05 06 07 08 09 10 00 01
 03| 03 04 05 06 07 08 09 10 00 01 02
 04| 04 05 06 07 08 09 10 00 01 02 03
 05| 05 06 07 08 09 10 00 01 02 03 04
 06| 06 07 08 09 10 00 01 02 03 04 05
 07| 07 08 09 10 00 01 02 03 04 05 06
 08| 08 09 10 00 01 02 03 04 05 06 07
 09| 09 10 00 01 02 03 04 05 06 07 08
10|10 00 01 02 03 04 05 06 07 08 09
```

4.3. Additive magmas
Specifying the elements in an alternative order can provide more insight into how the operation behaves.

```
sage: S=IntegerModRing(7)
sage: elts = [0, 3, 6, 2, 5, 1, 4]
sage: S.addition_table(elements=elts)
+ a b c d e f g
+------------------------
a| a b c d e f g
b| b c d e f g a
c| c d e f g a b
d| d e f g a b c
e| e f g a b c d
f| f g a b c d e
g| g a b c d e f
```

The `elements` argument can be used to provide a subset of the elements of the structure. The subset must be closed under the operation. Elements need only be in a form that can be coerced into the set. The `names` argument can also be used to request that the elements be represented with their usual string representation.

```
sage: T=IntegerModRing(12)
sage: elts=[0, 3, 6, 9]
sage: T.addition_table(names='elements', elements=elts)
+ 0 3 6 9
+-----------
0| 0 3 6 9
3| 3 6 9 0
6| 6 9 0 3
9| 9 0 3 6
```

The table returned can be manipulated in various ways. See the documentation for `OperationTable` for more comprehensive documentation.

```
sage: R=IntegerModRing(3)
sage: T=R.addition_table()
sage: T.column_keys()
(0, 1, 2)
sage: sorted(T.translation().items())
[('a', 0), ('b', 1), ('c', 2)]
sage: T.change_names([x, y, z])
sage: sorted(T.translation().items())
[('a', 0), ('b', 1), ('c', 2)]
sage: T
+ x y z
+-------
x| x y z
y| y z x
z| z x y
```

`summation(x, y)`

Return the sum of `x` and `y`.

The binary addition operator of this additive magma.

INPUT:
• $x, y$ – elements of this additive magma

EXAMPLES:

```
sage: S = CommutativeAdditiveSemigroups().example()
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: S.summation(a, b)
a + b
```

A parent in `AdditiveMagmas()` must either implement `summation()` in the parent class or `_add_` in the element class. By default, the addition method on elements $x._add_(y)$ calls $S.summation(x, y)$, and reciprocally.

As a bonus effect, $S.summation$ by itself models the binary function from $S$ to $S$:

```
sage: bin = S.summation
sage: bin(a,b)
a + b
```

Here, $S.summation$ is just a bound method. Whenever possible, it is recommended to enrich $S$. $summation$ with extra mathematical structure. Lazy attributes can come handy for this.

**Todo:** Add an example.

### summation_from_element_class_add($x, y$)

Return the sum of $x$ and $y$.

The binary addition operator of this additive magma.

**INPUT:**

• $x, y$ – elements of this additive magma

**EXAMPLES:**

```
sage: S = CommutativeAdditiveSemigroups().example()
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: S.summation(a, b)
a + b
```

A parent in `AdditiveMagmas()` must either implement `summation()` in the parent class or `_add_` in the element class. By default, the addition method on elements $x._add_(y)$ calls $S.summation(x, y)$, and reciprocally.

As a bonus effect, $S.summation$ by itself models the binary function from $S$ to $S$:

```
sage: bin = S.summation
sage: bin(a,b)
a + b
```

Here, $S.summation$ is just a bound method. Whenever possible, it is recommended to enrich $S$. $summation$ with extra mathematical structure. Lazy attributes can come handy for this.

**Todo:** Add an example.

```python
class SubcategoryMethods
 Bases: object
```

### 4.3. Additive magmas

171
AdditiveAssociative()
Return the full subcategory of the additive associative objects of self.

An additive magma \( M \) is associative if, for all \( x, y, z \in M \),

\[ x + (y + z) = (x + y) + z \]

See also:
Wikipedia article Associative_property

EXAMPLES:

```
sage: AdditiveMagmas().AdditiveAssociative()
Category of additive semigroups
```

AdditiveCommutative()
Return the full subcategory of the commutative objects of self.

An additive magma \( M \) is commutative if, for all \( x, y \in M \),

\[ x + y = y + x \]

See also:
Wikipedia article Commutative_property

EXAMPLES:

```
sage: AdditiveMagmas().AdditiveCommutative()
Category of additive commutative additive magmas
sage: AdditiveMagmas().AdditiveAssociative().AdditiveUnital().˓
AdditiveCommutative()
Category of commutative additive monoids
sage: _ is CommutativeAdditiveMonoids()
True
```

AdditiveUnital()
Return the subcategory of the unital objects of self.

An additive magma \( M \) is unital if it admits an element 0, called neutral element, such that for all \( x \in M \),

\[ 0 + x = x + 0 = x \]

This element is necessarily unique, and should be provided as \( M\.zero() \).

See also:
Wikipedia article Unital_magma#unital

EXAMPLES:

```
sage: AdditiveMagmas().AdditiveUnital()
Category of additive unital additive magmas
sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: AdditiveSemigroups().AdditiveUnital()
Category of additive monoids
sage: CommutativeAdditiveMonoids().AdditiveUnital()
Category of commutative additive monoids
```
class sage.categories.additive_monoids.AdditiveMonoids(base_category)

The category of additive monoids.

An additive monoid is a unital additive semigroup, that is a set endowed with a binary operation + which is associative and admits a zero (see Wikipedia article Monoid).

EXAMPLES:

```
sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: C = AdditiveMonoids(); C
Category of additive monoids
sage: C.super_categories()
[Category of additive unital additive magmas, Category of additive semigroups]
```

AdditiveCommutative

alias of sage.categories.commutative_additive_monoids.CommutativeAdditiveMonoids

AdditiveInverse

alias of sage.categories.additive_groups.AdditiveGroups

class Homsets(category, *args)

Bases: sage.categories.homsets.HomsetsCategory

extra_super_categories()

Implement the fact that a homset between two monoids is associative.

EXAMPLES:

```
sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: AdditiveMonoids().Homsets().extra_super_categories()
[Category of additive semigroups]
```

Todo: This could be deduced from AdditiveSemigroups.Homsets.

```python
extra_super_categories()
```.

See comment in Objects.SubcategoryMethods.Homsets().
class ParentMethods
    Bases: object

    sum(args)
    Return the sum of the elements in args, as an element of self.

    INPUT:
    • args – a list (or iterable) of elements of self

    EXAMPLES:

    sage: S = CommutativeAdditiveMonoids().example()
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: S.sum((a,b,a,c,a,b))
3*a + 2*b + c
sage: S.sum(())
0
sage: S.sum().parent() == S
True

4.5 Additive semigroups

class sage.categories.additive_semigroups.AdditiveSemigroups(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

    The category of additive semigroups.
    An additive semigroup is an associative additive magma, that is a set endowed with an operation + which is associative.

    EXAMPLES:

    sage: from sage.categories.additive_semigroups import AdditiveSemigroups
    sage: C = AdditiveSemigroups(); C
    Category of additive semigroups
    sage: C.super_categories()
    [Category of additive magmas]
    sage: C.all_super_categories()
    [Category of additive semigroups, Category of additive magmas, Category of sets, Category of sets with partial maps, Category of objects]
    sage: C.axioms()
    frozenset({'AdditiveAssociative'})
    sage: C is AdditiveMagmas().AdditiveAssociative()
    True

AdditiveCommutative
    alias of sage.categories.commutative_additive_semigroups.CommutativeAdditiveSemigroups

AdditiveUnital
    alias of sage.categories.additive_monoids.AdditiveMonoids
class Algebras(category, *args)
    Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
    Bases: object

    algebra_generators()
    Return the generators of this algebra, as per MagmaticAlgebras.ParentMethods.
    algebra_generators().

    EXAMPLES:
    sage: S = CommutativeAdditiveSemigroups().example(); S
    An example of a commutative semigroup: the free commutative semigroup
    \langle 'a', 'b', 'c', 'd' \rangle
    sage: A = S.algebra(QQ)
    sage: A.algebra_generators()
    Finite family {0: B[a], 1: B[b], 2: B[c], 3: B[d]}

    product_on_basis(g1, g2)
    Product, on basis elements, as per MagmaticAlgebras.WithBasis.ParentMethods.
    product_on_basis().

    EXAMPLES:
    sage: S = CommutativeAdditiveSemigroups().example(); S
    An example of a commutative semigroup: the free commutative semigroup
    \langle 'a', 'b', 'c', 'd' \rangle
    sage: A = S.algebra(QQ)
    sage: a,b,c,d = A.algebra_generators()
    sage: b * d * c
    B[b + c + d]

    extra_super_categories()
    EXAMPLES:
    sage: from sage.categories.additive_semigroups import AdditiveSemigroups
    sage: AdditiveSemigroups().Algebras(QQ).extra_super_categories()
    [Category of semigroups]
    sage: CommutativeAdditiveSemigroups().Algebras(QQ).super_categories()
    [Category of additive semigroup algebras over Rational Field,
    Category of additive commutative magma algebras over Rational Field]

class CartesianProducts(category, *args)
    Bases: sage.categories.cartesian_product.CartesianProductsCategory

    extra_super_categories()
    Implement the fact that a Cartesian product of additive semigroups is an additive semigroup.

    EXAMPLES:
```python
sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: C = AdditiveSemigroups().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive semigroups]
sage: C.axioms()
frozenset({'AdditiveAssociative'})
```

```python
class Homsets(category, *args):
 Bases: sage.categories.homsets.HomsetsCategory
eextra_super_categories()
 Implement the fact that a homset between two semigroups is a semigroup.
 EXAMPLES:
    ```python
    sage: from sage.categories.additive_semigroups import AdditiveSemigroups
    sage: AdditiveSemigroups().Homsets().extra_super_categories()
    [Category of additive semigroups]
    sage: AdditiveSemigroups().Homsets().super_categories()
    [Category of homsets of additive magmas, Category of additive semigroups]
    ```
```

```python
class ParentMethods
 Bases: object

4.6 Affine Weyl groups

```python
class sage.categories.affine_weyl_groups.AffineWeylGroups(s=None)
    Bases: sage.categories.category_singleton.Category_singleton
    The category of affine Weyl groups
    Todo: add a description of this category
    See also:
    - Wikipedia article Affine_weyl_group
    - WeylGroups, WeylGroup
    EXAMPLES:
    ```python
 sage: C = AffineWeylGroups(); C
 Category of affine weyl groups
 sage: C.super_categories()
 [Category of infinite weyl groups]
 sage: C.example()
 NotImplemented
 sage: W = WeylGroup(['A',4,1]); W
 Weyl Group of type ['A', 4, 1] (as a matrix group acting on the root space)
 sage: W.category()
 Category of irreducible affine weyl groups
    ```
```
class ElementMethods
 Bases: object

 affine_grassmannian_to_core()
 Bijection between affine Grassmannian elements of type $A_k^{(1)}$ and $(k + 1)$-cores.

 INPUT:
 • self – an affine Grassmannian element of some affine Weyl group of type $A_k^{(1)}$
 Recall that an element w of an affine Weyl group is affine Grassmannian if all its all reduced words
 end in 0, see is_affine_grassmannian().

 OUTPUT:
 • a $(k + 1)$-core

 See also:

 affine_grassmannian_to_partition()

 EXAMPLES:
 sage: W = WeylGroup(['A',2,1])
 sage: w = W.from_reduced_word([0,2,1,0])
 sage: la = w.affine_grassmannian_to_core(); la
 [4, 2]
 sage: type(la)
 <class 'sage.combinat.core.Cores_length_with_category.element_class'>
 sage: la.to_grassmannian() == w
 True
 sage: w = W.from_reduced_word([0,2,1])
 sage: w.affine_grassmannian_to_core()
 Traceback (most recent call last):
 ...
 ValueError: this only works on type 'A' affine Grassmannian elements

 affine_grassmannian_to_partition()
 Bijection between affine Grassmannian elements of type $A_k^{(1)}$ and k-bounded partitions.

 INPUT:
 • self is affine Grassmannian element of the affine Weyl group of type $A_k^{(1)}$ (i.e. all reduced words
 end in 0)

 OUTPUT:
 • k-bounded partition

 See also:

 affine_grassmannian_to_core()

 EXAMPLES:
 sage: k = 2
 sage: W = WeylGroup(['A',k,1])
 sage: w = W.from_reduced_word([0,2,1,0])
 sage: la = w.affine_grassmannian_to_partition(); la
 [2, 2]
 sage: la.from_kbounded_to_grassmannian(k) == w
 True

 is_affine_grassmannian()
 Test whether self is affine Grassmannian.
An element of an affine Weyl group is affine Grassmannian if any of the following equivalent properties hold:

- all reduced words for self end with 0.
- self is the identity, or 0 is its single right descent.
- self is a minimal coset representative for W / cl W.

EXAMPLES:

```sage
W = WeylGroup(['A',3,1])
w = W.from_reduced_word([2,1,0])
w.is_affine_grassmannian()  # True
w = W.from_reduced_word([2,0])
w.is_affine_grassmannian()  # False
w = W(1).is_affine_grassmannian()  # True
```

class ParentMethods

Bases: object

affine_grassmannian_elements_of_given_length(k)

Return the affine Grassmannian elements of length k.

This is returned as a finite enumerated set.

EXAMPLES:

```sage
W = WeylGroup(['A',3,1])
[x.reduced_word() for x in W.affine_grassmannian_elements_of_given_length(3)]
[[2, 1, 0], [3, 1, 0], [2, 3, 0]]
```

See also:

AffineWeylGroups.ElementMethods.is_affine_grassmannian()

special_node()

Return the distinguished special node of the underlying Dynkin diagram.

EXAMPLES:

```sage
W = WeylGroup(['A',3,1])
W.special_node()
0
```

additional_structure()

Return None.

Indeed, the category of affine Weyl groups defines no additional structure: affine Weyl groups are a special class of Weyl groups.

See also:

Category.addition_structure()

Todo: Should this category be a CategoryWithAxiom?
4.7 Algebra ideals

class sage.categories.algebra_ideals.AlgebraIdeals(A)
Bases: sage.categories.category_types.Category_ideal

The category of two-sided ideals in a fixed algebra A.

EXAMPLES:

```
sage: AlgebraIdeals(QQ['a'])
Category of algebra ideals in Univariate Polynomial Ring in a over Rational Field
```

Todo:
- Add support for non commutative rings (this is currently not supported by the subcategory AlgebraModules).
- Make AlgebraIdeals(R), return CommutativeAlgebraIdeals(R) when R is commutative.
- If useful, implement AlgebraLeftIdeals and AlgebraRightIdeals of which AlgebraIdeals would be a subcategory.

algebra()
EXAMPLES:

```
sage: AlgebraIdeals(QQ['x']).algebra()
Univariate Polynomial Ring in x over Rational Field
```

super_categories()

The category of algebra modules should be a super category of this category.

However, since algebra modules are currently only available over commutative rings, we have to omit it if our ring is non-commutative.

EXAMPLES:

```
sage: AlgebraIdeals(QQ['x']).super_categories()
[Category of algebra modules over Univariate Polynomial Ring in x over Rational Field]
sage: C = AlgebraIdeals(FreeAlgebra(QQ,2,'a,b'))
sage: C.super_categories()
[]
```
4.8 Algebra modules

class sage.categories.algebra_modules.AlgebraModules(A)
 Bases: sage.categories.category_types.Category_module

The category of modules over a fixed algebra A.

EXAMPLES:

```
sage: AlgebraModules(QQ['a'])
Category of algebra modules over Univariate Polynomial Ring in a over Rational Field
```

Note: as of now, A is required to be commutative, ensuring that the categories of left and right modules are isomorphic. Feedback and use cases for potential generalizations to the non commutative case are welcome.

algebra()

 EXAMPLES:

```
sage: AlgebraModules(QQ['x']).algebra()
Univariate Polynomial Ring in x over Rational Field
```

classmethod an_instance()
 Returns an instance of this class

 EXAMPLES:

```
sage: AlgebraModules.an_instance()
Category of algebra modules over Univariate Polynomial Ring in x over Rational Field
```

super_categories()

 EXAMPLES:

```
sage: AlgebraModules(QQ['x']).super_categories()
[Category of modules over Univariate Polynomial Ring in x over Rational Field]
```

4.9 Algebras

AUTHORS:

- David Kohel & William Stein (2005): initial revision

class sage.categories.algebras.Algebras(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of associative and unital algebras over a given base ring.

An associative and unital algebra over a ring R is a module over R which is itself a ring.
Warning: *Algebras* will be eventually be replaced by *magmatic_algebras.MagmaticAlgebras* for consistency with e.g. Wikipedia article *Algebras* which assumes neither associativity nor the existence of a unit (see trac ticket #15043).

Todo: Should R be a commutative ring?

EXAMPLES:

```python
sage: Algebras(ZZ)
Category of algebras over Integer Ring
sage: sorted(Algebras(ZZ).super_categories(), key=str)
[Category of associative algebras over Integer Ring,
 Category of rings,
 Category of unital algebras over Integer Ring]
```

```python
class CartesianProducts(category, *args)
    Bases: sage.categories.cartesian_product.CartesianProductsCategory
    
The category of algebras constructed as Cartesian products of algebras
    
    This construction gives the direct product of algebras. See discussion on:
    
    • http://groups.google.fr/group/sage-devel/browse_thread/thread/35a72b1d0a2fc77a/348f42ae77a66d16
    
    • Wikipedia article Direct_product

    **extra_super_categories()**
    
    A Cartesian product of algebras is endowed with a natural algebra structure.

    **EXAMPLES:**

    ```python
 sage: C = Algebras(QQ).CartesianProducts()
 sage: sorted(C.super_categories(), key=str)
 [Category of Cartesian products of distributive magmas and additive magmas,
 Category of Cartesian products of monoids,
 Category of Cartesian products of vector spaces over Rational Field,
 Category of algebras over Rational Field]
    ```
    
    **Commutative**
    
    alias of *sage.categories.commutative_algebras.CommutativeAlgebras*

    ```python
class DualObjects(category, *args)
 Bases: sage.categories.dual.DualObjectsCategory

 extra_super_categories()

 Return the dual category

 EXAMPLES:

 The category of algebras over the Rational Field is dual to the category of coalgebras over the same field:
```
sage: C = Algebras(QQ)
sage: C.dual()
Category of duals of algebras over Rational Field
sage: C.dual().extra_super_categories()
[Category of coalgebras over Rational Field]

Warning: This is only correct in certain cases (finite dimension, ...). See trac ticket #15647.

class ElementMethods
    Bases: object

    Filtered
        alias of sage.categories.filtered_algebras FilteredAlgebras

    Graded
        alias of sage.categories.graded_algebras GradedAlgebras

class Quotients(category, *args)
    Bases: sage.categories.quotients QuotientsCategory

class ParentMethods
    Bases: object

    algebra_generators()
        Return algebra generators for self.
        
This implementation retracts the algebra generators from the ambient algebra.

    EXAMPLES:

        sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
        sage: S = A.semisimple_quotient()
        sage: S.algebra_generators()
Finite family {'x': B['x'], 'y': B['y'], 'a': 0, 'b': 0}

Todo: this could possibly remove the elements that retract to zero.

Semisimple
    alias of sage.categories semisimple algebras SemisimpleAlgebras

class SubcategoryMethods
    Bases: object

    Semisimple()
        Return the subcategory of semisimple objects of self.

    Note: This mimics the syntax of axioms for a smooth transition if Semisimple becomes one.

    EXAMPLES:
sage: Algebras(QQ).Semisimple()
Category of semisimple algebras over Rational Field
sage: Algebras(QQ).WithBasis().FiniteDimensional().Semisimple()
Category of finite dimensional semisimple algebras with basis over Rational Field

Supercommutative()

Return the full subcategory of the supercommutative objects of self.

This is shorthand for creating the corresponding super category.

EXAMPLES:

sage: Algebras(ZZ).Supercommutative()
Category of supercommutative algebras over Integer Ring
sage: Algebras(ZZ).WithBasis().Supercommutative()
Category of supercommutative super algebras with basis over Integer Ring
sage: Cat = Algebras(ZZ).Supercommutative()
sage: Cat is Algebras(ZZ).Super().Supercommutative()
True

Super
alia of sage.categories.super_algebras.SuperAlgebras

class TensorProducts(category, *args)

    Bases: sage.categories.tensor.TensorProductsCategory

class ElementMethods

    Bases: object

class ParentMethods

    Bases: object

    extra_super_categories()

    EXAMPLES:

sage: Algebras(QQ).TensorProducts().extra_super_categories()
[Category of algebras over Rational Field]
sage: Algebras(QQ).TensorProducts().super_categories()
[Category of algebras over Rational Field,
 Category of tensor products of vector spaces over Rational Field]

Meaning: a tensor product of algebras is an algebra

WithBasis
alia of sage.categories.algebras_with_basis.AlgebrasWithBasis
4.10 Algebras With Basis

class sage.categories.algebras_with_basis.AlgebrasWithBasis(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of algebras with a distinguished basis.

EXAMPLES:

```
sage: C = AlgebrasWithBasis(QQ); C
Category of algebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of algebras over Rational Field,
 Category of unital algebras with basis over Rational Field]
```

We construct a typical parent in this category, and do some computations with it:

```
sage: A = C.example(); A
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
sage: A.category()
Category of algebras with basis over Rational Field
sage: A.one_basis()
word:
sage: A.one()
B[word:]
sage: A.base_ring()
Rational Field
sage: A.basis().keys()
Finite words over {'a', 'b', 'c'}

sage: (a,b,c) = A.algebra_generators()
sage: a^3, b^2
(B[word: aaa], B[word: bb])
sage: a*c*b
B[word: acb]
sage: A.product
<bound method MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_basis_multiply of
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field>
sage: A.product(a*b,b)
B[word: abb]
sage: TestSuite(A).run(verbosity=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
```

(continues on next page)
Please see the source code of $A$ (with $A??$) for how to implement other algebras with basis.

```python
class CartesianProducts(
category, *args
)
 Bases: sage.categories.cartesian_product.CartesianProductsCategory
 The category of algebras with basis, constructed as Cartesian products of algebras with basis.
 Note: this construction give the direct products of algebras with basis. See comment in Algebras. CartesianProducts
class ParentMethods
 Bases: object
 one()
 one_from_cartesian_product_of_one_basis()
 Returns the one of this Cartesian product of algebras, as per Monoids.ParentMethods.one
 It is constructed as the Cartesian product of the ones of the summands, using their one_basis() methods.
 This implementation does not require multiplication by scalars nor calling cartesian_product. This might help keeping things as lazy as possible upon initialization.
 EXAMPLES:
```
sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
sage: A.one_basis()
word:

sage: B = cartesian_product((A, A, A))
sage: B.one_from_cartesian_product_of_one_basis()
B[(0, word: )] + B[(1, word: )] + B[(2, word: )]
sage: B.one()
B[(0, word: )] + B[(1, word: )] + B[(2, word: )]

sage: cartesian_product([SymmetricGroupAlgebra(QQ, 3), SymmetricGroupAlgebra(QQ, 4)]).one()
B[(0, [1, 2, 3])] + B[(1, [1, 2, 3, 4])]

extra_super_categories()
A Cartesian product of algebras with basis is endowed with a natural algebra with basis structure.

EXAMPLES:

sage: AlgebrasWithBasis(QQ).CartesianProducts().extra_super_categories()
[Category of algebras with basis over Rational Field]
sage: AlgebrasWithBasis(QQ).CartesianProducts().super_categories()
[Category of algebras with basis over Rational Field, Category of Cartesian products of algebras over Rational Field, Category of Cartesian products of vector spaces with basis over Rational Field]

class ElementMethods
Bases: object

Filtered
alias of sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis

FiniteDimensional
alias of sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis

Graded
alias of sage.categories_graded_algebras_with_basis.GradedAlgebrasWithBasis

class ParentMethods
Bases: object

hochschild_complex(M)
Return the Hochschild complex of self with coefficients in M.

See also:
HochschildComplex

EXAMPLES:

sage: R.<x> = QQ[]
sage: A = algebras.DifferentialWeyl(R)
sage: H = A.hochschild_complex(A)
```python
sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
```

**one()**
Return the multiplicative unit element.

**EXAMPLES:**
```python
sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B[word:]
```

**Super**
alias of `sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis`

class `TensorProducts`(category, *args)
Bases: `sage.categories.tensor.TensorProductsCategory`
The category of algebras with basis constructed by tensor product of algebras with basis

class `ElementMethods`
Bases: `object`
Implements operations on elements of tensor products of algebras with basis

class `ParentMethods`
Bases: `object`
implements operations on tensor products of algebras with basis

**one_basis()**
Returns the index of the one of this tensor product of algebras, as per `AlgebrasWithBasis.ParentMethods.one_basis`

It is the tuple whose operands are the indices of the ones of the operands, as returned by their `one_basis()` methods.

**EXAMPLES:**
```python
sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators (→'a', 'b', 'c') over Rational Field
sage: A.one_basis()
word:
sage: B = tensor((A, A, A))
sage: B.one_basis()
(word: , word: , word:)
sage: B.one()
```

**product_on_basis**(t1, t2)
The product of the algebra on the basis, as per `AlgebrasWithBasis.ParentMethods.product_on_basis`

**EXAMPLES:**

4.10. Algebras With Basis 187
sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators (‘a’, ‘b’, ‘c’) over Rational Field
sage: (a,b,c) = A.algebra_generators()

sage: x = tensor( (a, b, c) ); x
sage: y = tensor( (c, b, a) ); y
sage: x*y
sage: x = tensor( ((a+2*b), c) ) ; x
sage: y = tensor( (c, a) ) + 1; y
sage: x*y

TODO: optimize this implementation!

extra_super_categories()
EXAMPLES:

sage: AlgebrasWithBasis(QQ).TensorProducts().extra_super_categories()

[Category of algebras with basis over Rational Field]
sage: AlgebrasWithBasis(QQ).TensorProducts().super_categories()

[Category of algebras with basis over Rational Field,
 Category of tensor products of algebras over Rational Field,
 Category of tensor products of vector spaces with basis over Rational Field]

dexample(alphabet=('a', 'b', 'c'))
Return an example of algebra with basis.

EXAMPLES:

sage: AlgebrasWithBasis(QQ).example()
An example of an algebra with basis: the free algebra on the generators (‘a’, ‘b’, ‘c’) over Rational Field

An other set of generators can be specified as optional argument:

sage: AlgebrasWithBasis(QQ).example((1,2,3))
An example of an algebra with basis: the free algebra on the generators (1, 2, 3) over Rational Field
4.11 Aperiodic semigroups

class sage.categories.aperiodic_semigroups.AperiodicSemigroups(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom
    extra_super_categories()  
    Implement the fact that an aperiodic semigroup is $H$-trivial.

    EXAMPLES:
    sage: Semigroups().Aperiodic().extra_super_categories()
    [Category of h trivial semigroups]

4.12 Associative algebras

class sage.categories.associative_algebras.AssociativeAlgebras(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
    The category of associative algebras over a given base ring.
    An associative algebra over a ring $R$ is a module over $R$ which is also a not necessarily unital ring.

    Warning: Until trac ticket #15043 is implemented, Algebras is the category of associative unital algebras; thus, unlike the name suggests, AssociativeAlgebras is not a subcategory of Algebras but of MagmaticAlgebras.

    EXAMPLES:
    sage: from sage.categories.associative_algebras import AssociativeAlgebras
    sage: C = AssociativeAlgebras(ZZ); C
    Category of associative algebras over Integer Ring
    Unital
    alias of sage.categories.algebras.Algebras

4.13 Bialgebras

class sage.categories.bialgebras.Bialgebras(base, name=None):
    Bases: sage.categories.category_types.Category_over_base_ring
    The category of bialgebras

    EXAMPLES:
    sage: Bialgebras(ZZ)
    Category of bialgebras over Integer Ring
    sage: Bialgebras(ZZ).super_categories()
    [Category of algebras over Integer Ring, Category of coalgebras over Integer Ring]

    class ElementMethods
        Bases: object
is_grouplike()
Return whether self is a grouplike element.

EXAMPLES:

```
sage: s = SymmetricFunctions(QQ).schur()
sage: s([5]).is_grouplike()
False
sage: s([]).is_grouplike()
True
```

is_primitive()
Return whether self is a primitive element.

EXAMPLES:

```
sage: s = SymmetricFunctions(QQ).schur()
sage: s([5]).is_primitive()
False
sage: p = SymmetricFunctions(QQ).powersum()
sage: p([5]).is_primitive()
True
```

class Super(base_category)
Bases: `sage.categories.super_modules.SuperModulesCategory`

WithBasis
alias of `sage.categories.bialgebras_with_basis.BialgebrasWithBasis`

additional_structure()
Return None.

Indeed, the category of bialgebras defines no additional structure: a morphism of coalgebras and of algebras between two bialgebras is a bialgebra morphism.

See also:

```
Category.additional_structure()
```

Todo: This category should be a `CategoryWithAxiom`.

EXAMPLES:

```
sage: Bialgebras(QQ).additional_structure()
```

super_categories()
EXAMPLES:

```
sage: Bialgebras(QQ).super_categories()
[Category of algebras over Rational Field, Category of coalgebras over Rational Field]
```
4.14 Bialgebras with basis

**class** `sage.categories.bialgebras_with_basis.BialgebrasWithBasis(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of bialgebras with a distinguished basis.

**EXAMPLES:**

```python
sage: C = BialgebrasWithBasis(QQ); C
Category of bialgebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of algebras with basis over Rational Field,
 Category of bialgebras over Rational Field,
 Category of coalgebras with basis over Rational Field]
```

**class** `ElementMethods`

Bases: `object`

`adams_operator(n)`

Compute the $n$-th convolution power of the identity morphism $\text{Id}$ on `self`.

**INPUT:**
- `n` – a nonnegative integer

**OUTPUT:**
- the image of `self` under the convolution power $\text{Id}^n$

**Note:** In the literature, this is also called a Hopf power or Sweedler power, cf. [AL2015].

**See also:**
- `sage.categories.bialgebras.ElementMethods.convolution_product()`

**Todo:** Remove dependency on `modules_with_basis` methods.

**EXAMPLES:**

```python
sage: h = SymmetricFunctions(QQ).h()
sage: h[5].adams_operator(2)
sage: h[5].plethysm(2*h[1])
sage: h([]).adams_operator(0)
h[]
sage: h([]).adams_operator(1)
h[]
sage: h[3,2].adams_operator(0)
0
sage: h[3,2].adams_operator(1)
h[3, 2]
```
convolution_product(*maps)

Return the image of self under the convolution product (map) of the maps.

Let \( A \) and \( B \) be bialgebras over a commutative ring \( R \). Given maps \( f_i : A \to B \) for \( 1 \leq i < n \), define the convolution product

\[
(f_1 * f_2 * \cdots * f_n) := \mu^{(n-1)} \circ (f_1 \otimes f_2 \otimes \cdots \otimes f_n) \circ \Delta^{(n-1)},
\]

where \( \Delta^{(k)} := (\Delta \otimes \text{Id}^{(k-1)}) \circ \Delta^{(k-1)}, \) with \( \Delta^{(1)} = \Delta \) (the ordinary coproduct in \( A \)) and \( \Delta^{(0)} = \text{Id} \); and with \( \mu^{(k)} := \mu \circ (\mu^{(k-1)} \otimes \text{Id}) \) and \( \mu^{(1)} = \mu \) (the ordinary product in \( B \)). See [Swe1969].

(In the literature, one finds, e.g., \( \Delta^{(2)} \) for what we denote above as \( \Delta^{(1)} \). See [KMN2012].)

INPUT:
- maps – any number \( n \geq 0 \) of linear maps \( f_1, f_2, \ldots, f_n \) on self.parent(); or a single list or tuple of such maps

OUTPUT:
- the convolution product of maps applied to self

AUTHORS:
- Amy Pang - 12 June 2015 - Sage Days 65

Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:

We compute convolution products of the identity and antipode maps on Schur functions:

\[
\begin{align*}
\text{convolution_product}(\text{Id}, \text{Id}) &= 2s[2, 1] + 4s[3] \\
\end{align*}
\]

The method accepts multiple arguments, or a single argument consisting of a list of maps:

\[
\begin{align*}
\end{align*}
\]

We test the defining property of the antipode morphism; namely, that the antipode is the inverse of the identity map in the convolution algebra whose identity element is the composition of the counit and unit:
sage: s[3,2].convolution_product() == s[3,2].convolution_product(Antipode, Id) == s[3,2].convolution_product(Id, Antipode)
True

sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()

sage: Psi[2,1].convolution_product(Id, Id, Id)
3*Psi[1, 2] + 6*Psi[2, 1]

sage: (Psi[5,1] - Psi[1,5]).convolution_product(Id, Id, Id)
-3*Psi[1, 5] + 3*Psi[5, 1]

sage: G = SymmetricGroup(3)
sage: QG = GroupAlgebra(G,QQ)
sage: x = QG.sum_of_terms([(p,p.length()) for p in Permutations(3)]); x
[1, 3, 2] + [2, 1, 3] + 2*[3, 1, 2] + 2*[3, 2, 1]

sage: x.convolution_product(Id, Id)
5*[1, 2, 3] + 2*[1, 3, 2] + 2*[2, 1, 3]

sage: x.convolution_product(Id, Id, Id)
4*[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + 3*[3, 2, 1]

sage: x.convolution_product([Id]*6)
9*[1, 2, 3]

class ParentMethods
Bases: object

convolution_product(*maps)

Return the convolution product (a map) of the given maps.

Let $A$ and $B$ be bialgebras over a commutative ring $R$. Given maps $f_i : A \to B$ for $1 \leq i < n$, define the convolution product

$$(f_1 * f_2 * \cdots * f_n) := \mu^{(n-1)} \circ (f_1 \otimes f_2 \otimes \cdots \otimes f_n) \circ \Delta^{(n-1)},$$

where $\Delta^{(k)} := (\Delta \otimes \text{Id}^{\otimes (k-1)}) \circ \Delta^{(k-1)}$, with $\Delta^{(1)} = \Delta$ (the ordinary coproduct in $A$) and $\Delta^{(0)} = \text{Id}$; and with $\mu^{(k)} := \mu \circ (\mu^{(k-1)} \otimes \text{Id})$ and $\mu^{(1)} = \mu$ (the ordinary product in $B$). See [Swe1969].

(In the literature, one finds, e.g., $\Delta^{(2)}$ for what we denote above as $\Delta^{(1)}$. See [KMN2012].)

INPUT:
• maps -- any number $n \geq 0$ of linear maps $f_1, f_2, \ldots, f_n$ on self; or a single list or tuple of such maps

OUTPUT:
• the new map $f_1 * f_2 * \cdots * f_n$ representing their convolution product

See also:
sage.categories.bialgebras.ElementMethods.convolution_product()

AUTHORS:
• Aaron Lauve - 12 June 2015 - Sage Days 65

Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:

We construct some maps: the identity, the antipode and projection onto the homogeneous component of degree 2:
Compute the convolution product of the identity with itself and with the projection \( \text{Proj}2 \) on the Hopf algebra of non-commutative symmetric functions:

```
sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: T = R.convolution_product([Id, Id])
sage: [T(R(comp)) for comp in Compositions(3)]
[4*R[1, 1, 1] + R[1, 2] + R[2, 1],
 2*R[1, 1, 1] + 4*R[1, 2] + 2*R[2, 1] + 2*R[3],
 2*R[1, 1, 1] + 2*R[1, 2] + 4*R[2, 1] + 2*R[3],
 R[1, 2] + R[2, 1] + 4*R[3]]
sage: T = R.convolution_product(Proj2, Id)
sage: [T(R([i])) for i in range(1, 5)]
[0, R[2], R[2, 1] + R[3], R[2, 2] + R[4]]
```

Compute the convolution product of no maps on the Hopf algebra of symmetric functions in non-commuting variables. This is the composition of the counit with the unit:

```
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: T = m.convolution_product()
sage: [T(m(lam)) for lam in SetPartitions(0).list() + SetPartitions(2).list()]
[m{}, 0, 0]
```

Compute the convolution product of the projection \( \text{Proj}2 \) with the identity on the Hopf algebra of symmetric functions in non-commuting variables:

```
sage: T = m.convolution_product(Proj2, Id)
sage: [T(m(lam)) for lam in SetPartitions(3)]
[0,
 m{{1, 2}, {3}} + m{{1, 2, 3}},
 m{{1, 2}, {3}} + m{{1, 2, 3}},
 m{{1, 2}, {3}} + m{{1, 2, 3}},
 3*m{{1}, {2}, {3}} + 3*m{{1}, {2, 3}} + 3*m{{1, 3}, {2}}]
```

Compute the convolution product of the antipode with itself and the identity map on group algebra of the symmetric group:

```
sage: G = SymmetricGroup(3)
sage: QG = GroupAlgebra(G, QQ)
sage: x = QG.sum_of_terms([p.number_of_peaks() + p.number_of_inversions() for p in Permutations(3)]); x
2*[1, 3, 2] + [2, 1, 3] + 3*[2, 3, 1] + 2*[3, 1, 2] + 3*[3, 2, 1]
sage: T = QG.convolution_product(Antipode, Antipode, Id)
sage: T(x)
2*[1, 3, 2] + [2, 1, 3] + 2*[2, 3, 1] + 3*[3, 1, 2] + 3*[3, 2, 1]
```
4.15 Bimodules

class sage.categories.bimodules.Bimodules(left_base, right_base, name=None)
Bases: sage.categories.category.CategoryWithParameters

The category of \((R, S)\)-bimodules

For \(R\) and \(S\) rings, a \((R, S)\)-bimodule \(X\) is a left \(R\)-module and right \(S\)-module such that the left and right actions commute: \(r \cdot (x \cdot s) = (r \cdot x) \cdot s\).

EXAMPLES:

```sage
Bimodules(QQ, ZZ)
Category of bimodules over Rational Field on the left and Integer Ring on the right
```

```sage
Bimodules(QQ, ZZ).super_categories()
[Category of left modules over Rational Field, Category of right modules over Integer Ring]
```

class ElementMethods
Bases: object

class ParentMethods
Bases: object

additional_structure()
Return None.

Indeed, the category of bimodules defines no additional structure: a left and right module morphism between two bimodules is a bimodule morphism.

See also:
Category.additionastructure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

```sage
Bimodules(QQ, ZZ).additional_structure()
```

classmethod an_instance()
Return an instance of this class.

EXAMPLES:

```sage
Bimodules.an_instance()
Category of bimodules over Rational Field on the left and Real Field with 53 bits of precision on the right
```

left_base_ring()
Return the left base ring over which elements of this category are defined.

EXAMPLES:

```sage
Bimodules(QQ, ZZ).left_base_ring()
Rational Field
```
**right_base_ring()**

Return the right base ring over which elements of this category are defined.

**EXAMPLES:**

```
sage: Bimodules(QQ, ZZ).right_base_ring()
Integer Ring
```

**super_categories()**

**EXAMPLES:**

```
sage: Bimodules(QQ, ZZ).super_categories()
[Category of left modules over Rational Field, Category of right modules over Integer Ring]
```

### 4.16 Classical Crystals

**class** `sage.categories.classical_crystals.ClassicalCrystals(s=None)`

**Bases:** `sage.categories.category_singleton.Category_singleton`

The category of classical crystals, that is crystals of finite Cartan type.

**EXAMPLES:**

```
sage: C = ClassicalCrystals()
sage: C
Category of classical crystals
sage: C.super_categories()
[Category of regular crystals, Category of finite crystals, Category of highest weight crystals]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1
```

**class** `ElementMethods`

**Bases:** `object`

**lusztig_involution()**

Return the Lusztig involution on the classical highest weight crystal `self`.

The Lusztig involution on a finite-dimensional highest weight crystal \(B(\lambda)\) of highest weight \(\lambda\) maps the highest weight vector to the lowest weight vector and the Kashiwara operator \(f_i\) to \(e_i^{*}\), where \(i^{*}\) is defined as \(\alpha_i^{*} = -w_0(\alpha_i)\). Here \(w_0\) is the longest element of the Weyl group acting on the \(i\)-th simple root \(\alpha_i\).

**EXAMPLES:**

```
sage: B = crystals.Tableaux(['A',3],shape=[2,1])
sage: b = B(rows=[[1,2],[4]])
sage: b.lusztig_involution()
[[1, 4], [3]]
sage: b.to_tableau().schuetzenberger_involution(n=4)
[[1, 4], [3]]
sage: all(b.lusztig_involution().to_tableau() == b.to_tableau().schuetzenberger_involution(n=4) for b in B)
(continues on next page)```
sage: B = crystals.Tableaux(['D',4],shape=[1])
sage: [[b,b.lusztig_involution()] for b in B]

[[[[1]], [[-1]]], [[[2]], [[-2]]], [[[3]], [[-3]]], [[[4]], [[-4]]], [[[4]], [[-4]]], [[[4]], [[-4]]], [[[4]], [[-4]]], [[[4]], [[-4]]], [[[4]], [[-4]]]]

sage: B = crystals.Tableaux(['D',3],shape=[1])
sage: [[b,b.lusztig_involution()] for b in B]

[[[[1]], [[-1]]], [[[2]], [[-2]]], [[[3]], [[-3]]], [[[3]], [[-3]]], [[[3]], [[-3]]], [[[3]], [[-3]]], [[[2]], [[2]]], [[[1]], [[1]]]]

sage: C = CartanType(['E',6])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: t = T[3]; t
(-4, 2, 5)
sage: t.lusztig_involution()
(-2, -3, 4)

class ParentMethods
Bases: object

cardinality()

Returns the number of elements of the crystal, using Weyl’s dimension formula on each connected component.

EXAMPLES:

sage: C = ClassicalCrystals().example(5)
sage: C.cardinality()
6

character(R=None)

Returns the character of this crystal.

INPUT:

• R – a WeylCharacterRing (default: the default WeylCharacterRing for this Cartan type)

Returns the character of self as an element of R.

EXAMPLES:

sage: C = crystals.Tableaux("A2", shape=[2,1])
sage: chi = C.character(); chi
A2(2,1,0)

sage: T = crystals.TensorProduct(C,C)
sage: chiT = T.character(); chiT
A2(2,2,2) + 2^aA2(3,2,1) + A2(3,3,0) + A2(4,1,1) + A2(4,2,0)
sage: chiT == chi^2
True

One may specify an alternate WeylCharacterRing:
sage: R = WeylCharacterRing("A2", style="coroots")
sage: chiT = T.character(R); chiT
A2(0,0) + 2*A2(1,1) + A2(0,3) + A2(3,0) + A2(2,2)
sage: chiT in R
True

It should have the same Cartan type and use the same realization of the weight lattice as self:

sage: R = WeylCharacterRing("A3", style="coroots")
sage: T.character(R)
Traceback (most recent call last):
 ...
ValueError: Weyl character ring does not have the right Cartan type

demazure_character\(\(w, f=\text{None}\)\)
Return the Demazure character associated to \(w\).

INPUT:
• \(w\) – an element of the ambient weight lattice realization of the crystal, or a reduced word, or an
 element in the associated Weyl group

OPTIONAL:
• \(f\) – a function from the crystal to a module

This is currently only supported for crystals whose underlying weight space is the ambient space.

The Demazure character is obtained by applying the Demazure operator \(D_w\) (see \texttt{sage.categories.regular_crystals.RegularCrystals.ParentMethods.demazure_operator()})) to the highest
weight element of the classical crystal. The simple Demazure operators \(D_i\) (see \texttt{sage.categories.regular_crystals.RegularCrystals.ElementMethods.demazure_operator_simple()})) do not braid on the level of crystals, but on the level of characters they do. That is why it makes sense to
input \(w\) either as a weight, a reduced word, or as an element of the underlying Weyl group.

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape = [2,1])
sage: e = T.weight_lattice_realization().basis()
sage: weight = e[0] + 2*e[2]
sage: weight.reduced_word()
[2, 1]
sage: T.demazure_character(weight)
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x1*x3^2

sage: T = crystals.Tableaux(['A',3],shape=[2,1])
sage: T.demazure_character([1,2,3])
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x2^2*x3
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([1,2,3])
sage: T.demazure_character(w)
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x2^2*x3

sage: T = crystals.Tableaux(['B',2], shape = [2])
sage: e = T.weight_lattice_realization().basis()
sage: weight = -2*e[1]
sage: T.demazure_character(weight)
x1^2 + x1*x2 + x2^2 + x1 + x2 + x1/x2 + 1/x2 + 1/x2^2 + 1

(continues on next page)
class TensorProducts(category, *args)

Bases: sage.categories.tensor.TensorProductsCategory

The category of classical crystals constructed by tensor product of classical crystals.

extra_super_categories()

EXAMPLES:

sage: ClassicalCrystals().TensorProducts().extra_super_categories()

[Category of classical crystals]

additional_structure()

Return None.

Indeed, the category of classical crystals defines no additional structure: it only states that its objects are $U_q(g)$-crystals, where g is of finite type.

See also:

Category.addtional_structure()

EXAMPLES:

sage: ClassicalCrystals().additional_structure()

example($n=3$)

Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

sage: B = ClassicalCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1

super_categories()

EXAMPLES:

sage: ClassicalCrystals().super_categories()

[Category of regular crystals,
 Category of finite crystals,
 Category of highest weight crystals]
4.17 Coalgebras

class sage.categories.coalgebras.Coalgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of coalgebras

EXAMPLES:

```python
sage: Coalgebras(QQ)
Category of coalgebras over Rational Field
sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]
```

class Cocommutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of cocommutative coalgebras.

class DualObjects(category, *args)
Bases: sage.categories.dual.DualObjectsCategory

extra_super_categories()
 Return the dual category.

EXAMPLES:

The category of coalgebras over the Rational Field is dual to the category of algebras over the same field:

```python
sage: C = Coalgebras(QQ)
sage: C.dual()
Category of duals of coalgebras over Rational Field
sage: C.dual().super_categories() # indirect doctest
[Category of algebras over Rational Field,
 Category of duals of vector spaces over Rational Field]
```

Warning: This is only correct in certain cases (finite dimension, ...). See trac ticket #15647.

class ElementMethods
Bases: object

coproduct()
 Return the coproduct of self.

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.coproduct()
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, b.coproduct()
(B[(1,3)], B[(1,3)] # B[(1,3)])
```
counit()
Return the counit of self.

EXAMPLES:

```sage
A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
  the group algebra of the Dihedral group of order 6 as a permutation group
  over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.counit()
(B[(1,2,3)], 1)
sage: b, b.counit()
(B[(1,3)], 1)
```

class Filtered(base_category)
Bases: `sage.categories.filtered_modules.FilteredModulesCategory`

Category of filtered coalgebras.

Graded
alias of `sage.categories.graded_coalgebras.GradedCoalgebras`

class ParentMethods
Bases: object

coproduct(x)
Return the coproduct of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forcing the conversion back

EXAMPLES:

```sage
A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
  the group algebra of the Dihedral group of order 6 as a permutation group
  over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.coproduct(a)
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, A.coproduct(b)
(B[(1,3)], B[(1,3)] # B[(1,3)])
```

counit(x)
Return the counit of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forcing the conversion back

EXAMPLES:

```sage
A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
  the group algebra of the Dihedral group of order 6 as a permutation group
  over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.counit(a)
```

(continues on next page)
TODO: implement some tests of the axioms of coalgebras, bialgebras and Hopf algebras using the counit.

```python
class Realizations(category, *args):
    Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods:
    coproduct_by_coercion(x):
        Return the coproduct by coercion if coproduct_by_basis is not implemented.

        EXAMPLES:

        sage: Sym = SymmetricFunctions(QQ)
        sage: m = Sym.monomial()
        sage: f = m[2, 1]
        sage: f.coproduct.__module__
        'sage.categories.coalgebras'
        sage: m.coproduct_on_basis
        NotImplemented
        sage: m.coproduct == m.coproduct_by_coercion
        True
        sage: f.coproduct()

        sage: N = NonCommutativeSymmetricFunctions(QQ)
        sage: R = N.ribbon()
        sage: R.coproduct_by_coercion.__module__
        'sage.categories.coalgebras'
        sage: R.coproduct_on_basis
        NotImplemented
        sage: R.coproduct == R.coproduct_by_coercion
        True
        sage: R[1].coproduct()
```

counit_by_coercion(x)
 Return the counit of x if counit_by_basis is not implemented.

 EXAMPLES:

 sage: sp = SymmetricFunctions(QQ).sp()
 sage: sp.an_element()
 2*sp[] + 2*sp[1] + 3*sp[2]
 sage: sp.counit(sp.an_element())
 2

 sage: o = SymmetricFunctions(QQ).o()
 sage: o.an_element()
 2*o[] + 2*o[1] + 3*o[2]
```
class SubcategoryMethods
Bases: object

Cocommutative()
Return the full subcategory of the cocommutative objects of self.
A coalgebra $C$ is said to be cocommutative if
\[
\Delta(c) = \sum_{(c)} c_{(1)} \otimes c_{(2)} = \sum_{(c)} c_{(2)} \otimes c_{(1)}
\]
in Sweedler’s notation for all $c \in C$.

EXAMPLES:

```python
sage: C1 = Coalgebras(ZZ).Cocommutative().WithBasis(); C1
Category of cocommutative coalgebras with basis over Integer Ring
sage: C2 = Coalgebras(ZZ).WithBasis().Cocommutative()
sage: C1 is C2
True
sage: BialgebrasWithBasis(QQ).Cocommutative()
Category of cocommutative bialgebras with basis over Rational Field
```

class Super(base_category)
Bases: `sage.categories.super_modules.SuperModulesCategory`

class SubcategoryMethods
Bases: object

Supercocommutative()
Return the full subcategory of the supercocommutative objects of self.

EXAMPLES:

```python
sage: Coalgebras(ZZ).WithBasis().Super().Supercocommutative()
Category of supercocommutative super coalgebras with basis over Integer Ring
sage: BialgebrasWithBasis(QQ).Super().Supercocommutative()
Join of Category of super algebras with basis over Rational Field
and Category of super bialgebras over Rational Field
and Category of super coalgebras with basis over Rational Field
and Category of supercocommutative super coalgebras over Rational Field
```

class Supercocommutative(base_category)
Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

Category of supercocommutative coalgebras.

extra_super_categories()

EXAMPLES:

```python
sage: Coalgebras(ZZ).Super().extra_super_categories()
[Category of graded coalgebras over Integer Ring]
sage: Coalgebras(ZZ).Super().super_categories()
(continues on next page)
```

4.17. Coalgebras

203
[Category of graded coalgebras over Integer Ring,
Category of super modules over Integer Ring]

Compare this with the situation for bialgebras:

```python
sage: Bialgebras(ZZ).Super().extra_super_categories()
[]
sage: Bialgebras(ZZ).Super().super_categories()
[Category of super algebras over Integer Ring,
Category of super coalgebras over Integer Ring]
```

The category of bialgebras does not occur in these results, since super bialgebras are not bialgebras.

class TensorProducts(category, *args)
Bases: `sage.categories.tensor.TensorProductsCategory`

class ElementMethods
Bases: object

class ParentMethods
Bases: object

```python
element_extra_super_categories()
EXAMPLES:
```

```python
sage: Coalgebras(QQ).TensorProducts().extra_super_categories()
[Category of coalgebras over Rational Field]
sage: Coalgebras(QQ).TensorProducts().super_categories()
[Category of tensor products of vector spaces over Rational Field,
Category of coalgebras over Rational Field]
```

Meaning: a tensor product of coalgebras is a coalgebra

WithBasis
alias of `sage.categories.coalgebras_with_basis.CoalgebrasWithBasis`

class WithRealizations(category, *args)
Bases: `sage.categories.with_realizations.WithRealizationsCategory`

class ParentMethods
Bases: object

coproduct(x)
Return the coproduct of x.

EXAMPLES:

```python
sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: N.coproduct.__module__
'sage.categories.coalgebras'
sage: N.coproduct(S[2])
```

counit(x)
Return the counit of x.

EXAMPLES:
sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: f = s[2,1]
sage: f.counit.__module__
'sage.categories.coalgebras'
sage: f.counit()
0

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.counit.__module__
'sage.categories.coalgebras'
sage: N.counit(N.one())
1
sage: x = N.an_element(); x
2*S[] + 2*S[1] + 3*S[1, 1]
sage: N.counit(x)
2

super_categories()
EXAMPLES:
sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]

4.18 Coalgebras with basis

class sage.categories.coalgebras_with_basis.CoalgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of coalgebras with a distinguished basis.

EXAMPLES:
sage: CoalgebrasWithBasis(ZZ)
Category of coalgebras with basis over Integer Ring
sage: sorted(CoalgebrasWithBasis(ZZ).super_categories(), key=str)
[Category of coalgebras over Integer Ring,
Category of modules with basis over Integer Ring]

class ElementMethods
Bases: object
coproduct_iterated(n=1)
Apply n coproducts to self.

Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:
sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()
sage: Psi[2,2].coproduct_iterated(0)

(continues on next page)
Psi[2, 2]

sage: Psi[2,2].coproduct_iterated(2)

class Filtered(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

Category of filtered coalgebras.

Graded
alias of sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis

class ParentMethods
Bases: object

coproduct()
If coproduct_on_basis() is available, construct the coproduct morphism from self to self ⊗ self by extending it by linearity. Otherwise, use coproduct_by_coercion(), if available.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.coproduct(a)
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, A.coproduct(b)
(B[(1,3)], B[(1,3)] # B[(1,3)])

coproduct_on_basis(i)
The coproduct of the algebra on the basis (optional).

INPUT:
• i – the indices of an element of the basis of self

Returns the coproduct of the corresponding basis elements If implemented, the coproduct of the algebra is defined from it by linearity.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: (a, b) = A._group.gens()
sage: A.coproduct_on_basis(a)
B[(1,2,3)] # B[(1,2,3)]

counit()
If counit_on_basis() is available, construct the counit morphism from self to self ⊗ self by extending it by linearity

EXAMPLES:
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field

\[ \{a, b\} = A.\text{algebra\_generators()} \]

\[ a, A.\text{counit}(a) \]
\[ B[(1,2,3)], 1 \]

\[ b, A.\text{counit}(b) \]
\[ B[(1,3)], 1 \]

\textbf{counit\_on\_basis}(i)

The counit of the algebra on the basis (optional).

\textbf{INPUT:}

\begin{itemize}
  \item \textit{i} – the indices of an element of the basis of \texttt{self}
\end{itemize}

Returns the counit of the corresponding basis elements If implemented, the counit of the algebra is defined from it by linearity.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral → group of order 6 as a permutation group over Rational Field
sage: (a, b) = A._group.gens()
sage: A.counit_on_basis(a)
1
\end{verbatim}

\textbf{class Super}(\texttt{base\_category})

\textbf{Bases:} \texttt{sage.categories.super\_modules.Super\_Modules\_Category}

\textbf{extra\_super\_categories}()

\textbf{EXAMPLES:}

\begin{verbatim}
sage: C = Coalgebras(ZZ).WithBasis().Super(); C
Category of super coalgebras over Integer Ring
sage: sorted(C.super_categories(), key=str) # indirect doctest
[Category of graded coalgebras with basis over Integer Ring,
 Category of super coalgebras over Integer Ring,
 Category of super modules with basis over Integer Ring]
\end{verbatim}

\section{4.19 Commutative additive groups}

\textbf{class} \texttt{sage.categories.commutative\_additive\_groups.CommutativeAdditiveGroups}(\texttt{base\_category})

\textbf{Bases:} \texttt{sage.categories.category\_with\_axiom.Category\_With\_Axiom\_Singleton}, \texttt{sage.categories.category\_types.Abelian\_Category}

The category of abelian groups, i.e. additive abelian monoids where each element has an inverse.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: C = CommutativeAdditiveGroups(); C
Category of commutative additive groups
sage: sorted(C.super_categories(), key=str) # indirect doctest
[Category of additive groups, Category of commutative additive monoids]
\end{verbatim}
Note: This category is currently empty. It’s left there for backward compatibility and because it is likely to grow in the future.

class Algebras(category, *args)
    Bases: sage.categories.algebra_functor.AlgebrasCategory

class CartesianProducts(category, *args)
    Bases: sage.categories.cartesian_product.CartesianProductsCategory
class ElementMethods
    Bases: object

    additive_order()
    Return the additive order of this element.

    EXAMPLES:

        sage: G = cartesian_product([Zmod(3), Zmod(6), Zmod(5)])
        sage: G((1,1,1)).additive_order()
        30
        sage: any((i * G((1,1,1))).is_zero() for i in range(1,30))
        False
        sage: 30 * G((1,1,1))
        (0, 0, 0)
        sage: G = cartesian_product([ZZ, ZZ])
        sage: G((0,0)).additive_order()
        1
        sage: G((0,1)).additive_order()
        +Infinity
        sage: K = GF(9)
        sage: H = cartesian_product([cartesian_product([Zmod(2),Zmod(9)]), K])
        sage: z = H(((1,2), K.gen()))
        sage: z.additive_order()
        18
4.20 Commutative additive monoids

class sage.categories.commutative_additive_monoids.CommutativeAdditiveMonoids(base_category)
   Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of commutative additive monoids, that is abelian additive semigroups with a unit

EXAMPLES:

```python
sage: C = CommutativeAdditiveMonoids(); C
Category of commutative additive monoids
sage: C.super_categories()
[Category of additive monoids, Category of commutative additive semigroups]
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveUnital']
sage: C is AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().AdditiveUnital()
True
```

Note: This category is currently empty and only serves as a place holder to make C.example() work.

4.21 Commutative additive semigroups

class sage.categories.commutative_additive_semigroups.CommutativeAdditiveSemigroups(base_category)
   Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of additive abelian semigroups, i.e. sets with an associative and abelian operation +.

EXAMPLES:

```python
sage: C = CommutativeAdditiveSemigroups(); C
Category of commutative additive semigroups
sage: C.example()
An example of a commutative semigroup: the free commutative semigroup generated by ('a', 'b', 'c', 'd')

sage: sorted(C.super_categories(), key=str)
[Category of additive commutative additive magmas, Category of additive semigroups]
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative']
sage: C is AdditiveMagmas().AdditiveAssociative().AdditiveCommutative()
True
```

Note: This category is currently empty and only serves as a place holder to make C.example() work.
4.22 Commutative algebra ideals

```python
class sage.categories.commutative_algebra_ideals.CommutativeAlgebraIdeals(A):
 Bases: sage.categories.category_types.Category_ideal
 The category of ideals in a fixed commutative algebra A.

 EXAMPLES:
 sage: C = CommutativeAlgebraIdeals(QQ['x'])
 sage: C
 Category of commutative algebra ideals in Univariate Polynomial Ring in x over Rational Field

 algebra()
 EXAMPLES:
 sage: CommutativeAlgebraIdeals(QQ['x']).algebra()
 Univariate Polynomial Ring in x over Rational Field

 super_categories()
 EXAMPLES:
 sage: CommutativeAlgebraIdeals(QQ['x']).super_categories()
 [Category of algebra ideals in Univariate Polynomial Ring in x over Rational Field]
```

4.23 Commutative algebras

```python
class sage.categories.commutative_algebras.CommutativeAlgebras(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
 The category of commutative algebras with unit over a given base ring.

 EXAMPLES:
 sage: M = CommutativeAlgebras(GF(19))
 sage: M
 Category of commutative algebras over Finite Field of size 19
 sage: CommutativeAlgebras(QQ).super_categories()
 [Category of algebras over Rational Field, Category of commutative rings]

 This is just a shortcut for:
 sage: Algebras(QQ).Commutative()
 Category of commutative algebras over Rational Field
```
### 4.24 Commutative ring ideals

**class** `sage.categories.commutative_ring_ideals.CommutativeRingIdeals(R)`

Bases: `sage.categories.category_types.Category_ideal`

The category of ideals in a fixed commutative ring.

**EXAMPLES:**

```python
sage: C = CommutativeRingIdeals(IntegerRing())
sage: C
Category of commutative ring ideals in Integer Ring
```

**super_categories()**

**EXAMPLES:**

```python
sage: CommutativeRingIdeals(ZZ).super_categories()
[Category of ring ideals in Integer Ring]
```

### 4.25 Commutative rings

**class** `sage.categories.commutative_rings.CommutativeRings(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of commutative rings.

**EXAMPLES:**

```python
sage: C = CommutativeRings(); C
Category of commutative rings
sage: C.super_categories()
[Category of rings, Category of commutative monoids]
```

**class** `CartesianProducts(category, *args)`

Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

**extra_super_categories()**

Let Sage knows that Cartesian products of commutative rings is a commutative ring.

**EXAMPLES:**

```python
sage: CommutativeRings().Commutative().CartesianProducts().extra_super_categories()
[Category of commutative rings]
sage: cartesian_product([ZZ, Zmod(34), QQ, GF(5)]) in CommutativeRings()
True
```

**class** `ElementMethods`

Bases: `object`

**class** `Finite(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

Check that Sage knows that Cartesian products of finite commutative rings is a finite commutative ring.
EXAMPLES:

```
sage: cartesian_product([Zmod(34), GF(5)]) in Rings().Commutative().Finite()
True
```

class ParentMethods

Bases: object

cyclotomic_cosets(q, cosets=None)

Return the (multiplicative) orbits of q in the ring.

Let \( R \) be a finite commutative ring. The group of invertible elements \( R^\times \) in \( R \) gives rise to a group action on \( R \) by multiplication. An orbit of the subgroup generated by an invertible element \( q \) is called a \( q \)-cyclotomic coset (since in a finite ring, each invertible element is a root of unity).

These cosets arise in the theory of minimal polynomials of finite fields, duadic codes and combinatorial designs. Fix a primitive element \( z \) of \( GF(q^k) \). The minimal polynomial of \( z^s \) over \( GF(q) \) is given by

\[
M_s(x) = \prod_{i \in C_s} (x - z^i),
\]

where \( C_s \) is the \( q \)-cyclotomic coset mod \( n \) containing \( s \), \( n = q^k - 1 \).

**Note:** When \( R = \mathbb{Z}/n\mathbb{Z} \) the smallest element of each coset is sometimes called a coset leader. This function returns sorted lists so that the coset leader will always be the first element of the coset.

**INPUT:**

- \( q \) – an invertible element of the ring
- \( \text{cosets} \) – an optional lists of elements of \( \text{self} \). If provided, the function only return the list of cosets that contain some element from \( \text{cosets} \).

**OUTPUT:**

A list of lists.

EXAMPLES:

```
sage: Zmod(11).cyclotomic_cosets(2)
[[0], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
sage: Zmod(15).cyclotomic_cosets(2)
[[0], [1, 2, 4, 8], [3, 6, 9, 12], [5, 10], [7, 11, 13, 14]]
```

Since the group of invertible elements of a finite field is cyclic, the set of squares is a particular case of cyclotomic coset:

```
sage: K = GF(25, 'z')
sage: a = K.multiplicative_generator()
sage: K.cyclotomic_cosets(a**2, cosets=[1])
[[1, 2, 3, 4, z + 1, z + 3, 2*z + 1, 2*z + 2, 3*z + 3, 3*z + 4, 4*z + 2, 4*z + 4]]
sage: sorted(b for b in K if not b.is_zero() and b.is_square())
[1, 2, 3, 4, z + 1, z + 3, 2*z + 1, 2*z + 2, 3*z + 3, 3*z + 4, 4*z + 2, 4*z + 4]
```
We compute some examples of minimal polynomials:

```
sage: K = GF(27, 'z')
sage: a = K.multiplicative_generator()
sage: R.<X> = PolynomialRing(K, 'X')
sage: a.minimal_polynomial('X')
X^3 + 2*X + 1
```

```
sage: cyc3 = Zmod(26).cyclotomic_cosets(3, cosets=[1]); cyc3
[[1, 3, 9]]
sage: prod(X - a**i for i in cyc3[0])
X^3 + 2*X + 1
```

```
sage: (a**7).minimal_polynomial('X')
X^3 + X^2 + 2*X + 1
```

Cyclotomic cosets of fields are useful in combinatorial design theory to provide so called difference families (see Wikipedia article Difference_set and difference_family). This is illustrated on the following examples:

```
sage: K = GF(5)
sage: a = K.multiplicative_generator()
sage: H = K.cyclotomic_cosets(a**2, cosets=[1,2]); H
[[1, 4], [2, 3]]
sage: sorted(x-y for D in H for x in D for y in D if x != y)
[1, 2, 3, 4]
```

```
sage: K = GF(37)
sage: a = K.multiplicative_generator()
sage: H = K.cyclotomic_cosets(a**4, cosets=[1]); H
[[1, 7, 9, 10, 12, 16, 26, 33, 34]]
sage: sorted(x-y for D in H for x in D for y in D if x != y)
[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ..., 33, 34, 34, 35, 35, 36, 36]
```

The method cyclotomic_cosets works on any finite commutative ring:

```
sage: R = cartesian_product([GF(7), Zmod(14)])
sage: a = R((3,5))
sage: R.cyclotomic_cosets((3,5), [(1,1)])
[[[1, 1], (2, 11), (3, 5), (4, 9), (5, 3), (6, 13)]]
```
• names – a list or a tuple of variable names or None (default: None)

EXAMPLES:

We construct an extension of finite fields:

```
[](https://example.com) sage: F = GF(5^2)
sage: k = GF(5^4)
sage: z4 = k.gen()
sage: K = k.over(F)
sage: K
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
```

If not explicitly given, the default generator of the top ring (here k) is used and the same name is kept:

```
[](https://example.com) sage: K.gen()
z4
sage: K(z4)
z4
```

However, it is possible to specify another generator and/or another name. For example:

```
[](https://example.com) sage: Ka = k.over(F, name='a')
sage: Ka
Field in a with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
sage: Ka.gen()
a
sage: Ka(z4)
a
```

```
[](https://example.com) sage: Kb = k.over(F, gen=-z4+1, name='b')
sage: Kb
Field in b with defining polynomial x^2 + z2*x + 4 over its base
sage: Kb.gen()
b
sage: Kb(-z4+1)
b
```

Note that the shortcut \texttt{K.<a>} is also available:

```
[](https://example.com) sage: KKa.<a> = k.over(F)
sage: KKa.is(Ka)
True
```

Building an extension on top of another extension is allowed:

```
[](https://example.com) sage: L = GF(5^12).over(K)
sage: L
Field in z12 with defining polynomial x^3 + (1 + (4*z2 + 2)*z4)*x^2 + (2 + ˓→ 2*z4)*x - z4 over its base
sage: L.base_ring()
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
```

The successive bases of an extension are accessible via the method \texttt{sage.rings.ring_extension. RingExtension_generic.bases()}:
When base is omitted, the canonical base of the ring is used:

```
sage: S.<x> = QQ[]
sage: E = S.over()
sage: E
Univariate Polynomial Ring in x over Rational Field over its base
sage: E.base_ring()
Rational Field
```

Here is an example where base is a defining morphism:

```
sage: k.<a> = QQ.extension(x^2 - 2)
sage: l. = QQ.extension(x^4 - 2)
sage: f = k.hom([b^2])
sage: L = l.over(f)
sage: L
Field in b with defining polynomial x^2 - a over its base
sage: L.base_ring()
Number Field in a with defining polynomial x^2 - 2
```

Similarly, one can create a tower of extensions:

```
sage: K = k.over()
sage: L = l.over(Hom(K,l)(f))
sage: L
Field in b with defining polynomial x^2 - a over its base
sage: L.base_ring()
Field in a with defining polynomial x^2 - 2 over its base
sage: L.bases()
[Field in b with defining polynomial x^2 - a over its base,
 Field in a with defining polynomial x^2 - 2 over its base,
 Rational Field]
```

4.26 Complete Discrete Valuation Rings (CDVR) and Fields (CDVF)

```
class sage.categories.complete_discretevaluation.CompleteDiscreteValuationFields(s=None)
 Bases: sage.categories.category_singleton.Category_singleton
The category of complete discrete valuation fields
```

EXAMPLES:

```
sage: Zp(7) in CompleteDiscreteValuationFields()
False
sage: QQ in CompleteDiscreteValuationFields()
False
```
```python
sage: LaurentSeriesRing(QQ, 'u') in CompleteDiscreteValuationFields()
True
sage: Qp(7) in CompleteDiscreteValuationFields()
True
sage: TestSuite(CompleteDiscreteValuationFields()).run()
```

```python
class ElementMethods
 Bases: object

denominator()
 Return the denominator of this element normalized as a power of the uniformizer

 EXAMPLES:
    ```
sage: K = Qp(7)
sage: x = K(1/21)
sage: x.denominator()
7 + O(7^21)
sage: x = K(7)
sage: x.denominator()
1 + O(7^20)
    ```

 Note that the denominator lives in the ring of integers:
    ```
sage: x.denominator().parent()
7-adic Ring with capped relative precision 20
    ```

 When the denominator is indistinguishable from 0 and the precision on the input is $O(p^n)$, the return value is 1 if n is nonnegative and $p^(-n)$ otherwise:
    ```
sage: x = K(0,5); x
0(7^5)
sage: x.denominator()
1 + O(7^20)
sage: x = K(0,-5); x
0(7^-5)
sage: x.denominator()
7^5 + O(7^25)
    ```

numerator()
 Return the numerator of this element, normalized in such a way that $x = x.numerator() / x.denominator()$ always holds true.

 EXAMPLES:
    ```
sage: K = Qp(7, 5)
sage: x = K(1/21)
sage: x.numerator()
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + O(7^5)
sage: x == x.numerator() / x.denominator()
True
    ```
Note that the numerator lives in the ring of integers:

```python
sage: x.numerator().parent()
7-adic Ring with capped relative precision 5
```

valuation()

Return the valuation of this element.

EXAMPLES:

```python
sage: K = Qp(7)
sage: x = K(7); x
7 + O(7^21)
sage: x.valuation()
1
```

super_categories()

EXAMPLES:

```python
sage: CompleteDiscreteValuationFields().super_categories()
[Category of discrete valuation fields]
```

class `sage.categories.complete_discretevaluation.CompleteDiscreteValuationRings`

* Bases: `sage.categories.category_singleton.Category_singleton`

The category of complete discrete valuation rings

EXAMPLES:

```python
sage: Zp(7) in CompleteDiscreteValuationRings()
True
sage: QQ in CompleteDiscreteValuationRings()
False
sage: QQ[['u']] in CompleteDiscreteValuationRings()
True
sage: Qp(7) in CompleteDiscreteValuationRings()
False
sage: TestSuite(CompleteDiscreteValuationRings()).run()
```

class `ElementMethods`

* Bases: `object`

denominator()

Return the denominator of this element normalized as a power of the uniformizer

EXAMPLES:

```python
sage: K = Qp(7)
sage: x = K(1/21)
sage: x.denominator()
7 + O(7^21)

sage: x = K(7)
sage: x.denominator()
1 + O(7^20)
```

Note that the denominator lives in the ring of integers:
When the denominator is indistinguishable from 0 and the precision on the input is \(O(p^n) \), the return value is 1 if \(n \) is nonnegative and \(p^k - n \) otherwise:

```sage
sage: x = K(0,5); x
O(7^5)
sage: x.denominator()
1 + O(7^20)
sage: x = K(0,-5); x
O(7^-5)
sage: x.denominator()
7^5 + O(7^25)
```

lift_to_precision *(absprec=None)*

Return another element of the same parent with absolute precision at least absprec, congruent to this element modulo the precision of this element.

INPUT:

- **absprec** – an integer or None (default: None), the absolute precision of the result. If None, lifts to the maximum precision allowed.

Note: If setting absprec that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.

EXAMPLES:

```sage
sage: R = ZpCA(17)
sage: R(-1,2).lift_to_precision(10)
16 + 16*17 + O(17^10)
sage: R(1,15).lift_to_precision(10)
1 + O(17^15)
sage: R(1,15).lift_to_precision(30)
Traceback (most recent call last):
...
PrecisionError: precision higher than allowed by the precision cap
sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_cap()
True

sage: R = Zp(5); c = R(17,3); c.lift_to_precision(8)
2 + 3*5 + O(5^8)
sage: c.lift_to_precision().precision_relative() == R.precision_cap()
True
```

numerator()

Return the numerator of this element, normalized in such a way that \(x = x.numerator()/x.denominator() \) always holds true.

EXAMPLES:

```sage
sage: K = Qp(7, 5)
sage: x = K(1/21)
```
Note that the numerator lives in the ring of integers:

```python
sage: x.numerator().parent()
7-adic Ring with capped relative precision 5
```

valuation()

Return the valuation of this element.

EXAMPLES:

```python
sage: R = Zp(7)
sage: x = R(7); x
7 + O(7^21)
sage: x.valuation()
1
```

super_categories()

EXAMPLES:

```python
sage: CompleteDiscreteValuationRings().super_categories()
[Category of discrete valuation rings]
```

4.27 Complex reflection groups

class sage.categories.complex_reflection_groups.ComplexReflectionGroups

Bases: `sage.categories.category_singleton.Category_singleton`

The category of complex reflection groups.

Let V be a complex vector space. A complex reflection is an element of $GL(V)$ fixing an hyperplane pointwise and acting by multiplication by a root of unity on a complementary line.

A complex reflection group is a group W that is (isomorphic to) a subgroup of some general linear group $GL(V)$ generated by a distinguished set of complex reflections.

The dimension of V is the rank of W.

For a comprehensive treatment of complex reflection groups and many definitions and theorems used here, we refer to [LT2009]. See also [Wikipedia article Reflection_group].

See also:

ReflectionGroup() for usage examples of this category.

EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups()
Category of complex reflection groups
```
An example of a reflection group:

```
sage: W = ComplexReflectionGroups().example(); W
5-colored permutations of size 3
```

W is in the category of complex reflection groups:

```
sage: W in ComplexReflectionGroups()
True
```

Finite

alias of `sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups`

```python
class ParentMethods
    Bases: object

    rank()
    Return the rank of self.

    The rank of self is the dimension of the smallest faithful reflection representation of self.

    EXAMPLES:

    ```
sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: W.rank()
3
```
```

additional_structure()
Return None.

Indeed, all the structure complex reflection groups have in addition to groups (simple reflections, ...) is already defined in the super category.

See also:

`Category.additional_structure()`
EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().additional_structure()
```

```
example()
Return an example of a complex reflection group.

EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().example()
5-colored permutations of size 3
```

```
super_categories()
Return the super categories of self.

EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]
```

4.28 Common category for Generalized Coxeter Groups or Complex Reflection Groups

```python
class sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

The category of complex reflection groups or generalized Coxeter groups.

Finite Coxeter groups can be defined equivalently as groups generated by reflections, or by presentations. Over the last decades, the theory has been generalized in both directions, leading to the study of (finite) complex reflection groups on the one hand, and (finite) generalized Coxeter groups on the other hand. Many of the features remain similar, yet, in the current state of the art, there is no general theory covering both directions.

This is reflected by the name of this category which is about factoring out the common code, tests, and declarations.

A group in this category has:

- A distinguished finite set of generators \( (s_i)_{i \in I} \), called \textit{simple reflections}. The set \( I \) is called the \textit{index set}. The name “reflection” is somewhat of an abuse as they can have higher order; still, they are all of finite order: \( s_i^k = 1 \) for some \( k \).

- A collection of \textit{distinguished reflections} which are the conjugates of the simple reflections. For complex reflection groups, they are in one-to-one correspondence with the reflection hyperplanes and share the same index set.

- A collection of \textit{reflections} which are the conjugates of all the non trivial powers of the simple reflections.

The usual notions of reduced words, length, irreducibility, etc can be canonically defined from the above.

The following methods must be implemented:
• `ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods.index_set()`
• `ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods.simple_reflection()`

Optionally one can define analog methods for distinguished reflections and reflections (see below).

At least one of the following methods must be implemented:
• `ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection()`
• `ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection_left()`
• `ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.apply_simple_reflection_right()`
• `ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods._mul_()`

It’s recommended to implement either `_mul_` or both `apply_simple_reflection_left` and `apply_simple_reflection_right`.

See also:
• `complex_reflection_groups.ComplexReflectionGroups`
• `generalized_coxeter_groups.GeneralizedCoxeterGroups`

EXAMPLES:

```python
sage: from sage.categories.complex_reflection_or_generalized_coxeter_groups import...
 → ComplexReflectionOrGeneralizedCoxeterGroups
sage: C = ComplexReflectionOrGeneralizedCoxeterGroups(); C
Category of complex reflection or generalized coxeter groups
sage: C.super_categories()
[Category of finitely generated enumerated groups]

sage: C.required_methods()
{'element': {'optional': ['reflection_length'],
 'required': []},
 'parent': {'optional': ['distinguished_reflection', 'hyperplane_index_set',
 'irreducible_components',
 'reflection', 'reflection_index_set'],
 'required': ['__contains__', 'index_set']}}
```

```python
class ElementMethods
 Bases: object

 apply_conjugation_by_simple_reflection(i)
 Conjugate self by the i-th simple reflection.

 EXAMPLES:

 sage: W = WeylGroup(['A',3])
 sage: w = W.from_reduced_word([3,1,2,1])
 sage: w.apply_conjugation_by_simple_reflection(1).reduced_word()
 [3, 2]

 apply_reflections(word, side='right', word_type='all')
 Return the result of the (left/right) multiplication of self by word.
```
INPUT:
- word – a sequence of indices of reflections
- side – (default: 'right') indicates multiplying from left or right
- word_type – (optional, default: 'all'): either 'simple', 'distinguished', or 'all'

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.one().apply_reflections([1]) # optional - gap3
(1,4)(2,3)(5,6)
sage: W.one().apply_reflections([2]) # optional - gap3
(1,3)(2,5)(4,6)
sage: W.one().apply_reflections([2,1]) # optional - gap3
(1,2,6)(3,4,5)

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.one().apply_reflections([1], word_type='distinguished') #
(1,4)(2,3)(5,6)
sage: W.one().apply_reflections([2], word_type='distinguished') #
(1,3)(2,5)(4,6)
sage: W.one().apply_reflections([3], word_type='distinguished') #
(1,5)(2,4)(3,6)
sage: W.one().apply_reflections([2,1], word_type='distinguished') #
(1,2,6)(3,4,5)
```

(continues on next page)
apply_simple_reflection$(i, \text{side}='right')$

Return self multiplied by the simple reflection $s[i]$.

INPUT:
- $i$ – an element of the index set
- side – (default: "right") "left" or "right"

This default implementation simply calls apply_simple_reflection_left() or apply_simple_reflection_right().

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection(0, side = "left")
(0, 2, 3, 1)
sage: w.apply_simple_reflection(1, side = "left")
(2, 1, 3, 0)
sage: w.apply_simple_reflection(2, side = "left")
(1, 3, 2, 0)
sage: w.apply_simple_reflection(0, side = "right")
(2, 1, 3, 0)
sage: w.apply_simple_reflection(1, side = "right")
(1, 3, 2, 0)
sage: w.apply_simple_reflection(2, side = "right")
(1, 2, 0, 3)
```

By default, side is "right":

```python
sage: w.apply_simple_reflection(0)
(2, 1, 3, 0)
```

Some tests with a complex reflection group:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: W = ComplexReflectionGroups().example(); W 5-colored permutations of size 3
sage: w = W.an_element(); w
[[1, 0, 0], [3, 1, 2]]
sage: w.apply_simple_reflection(1, side="left")
[[0, 1, 0], [1, 3, 2]]
sage: w.apply_simple_reflection(2, side="left")
[[1, 0, 0], [3, 2, 1]]
sage: w.apply_simple_reflection(3, side="left")
```

(continues on next page)
apply_simple_reflection_left(i)
Return self multiplied by the simple reflection s[i] on the left.

This low level method is used intensively. Coxeter groups are encouraged to override this straightforward implementation whenever a faster approach exists.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection_left(0)
(0, 2, 3, 1)
sage: w.apply_simple_reflection_left(1)
(2, 1, 3, 0)
sage: w.apply_simple_reflection_left(2)
(1, 3, 2, 0)
```

apply_simple_reflection_right(i)
Return self multiplied by the simple reflection s[i] on the right.

This low level method is used intensively. Coxeter groups are encouraged to override this straightforward implementation whenever a faster approach exists.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection_right(0)
(2, 1, 3, 0)
sage: w.apply_simple_reflection_right(1)
(1, 3, 2, 0)
```
apply_simple_reflections(*word*, *side='right', *type='simple'*)

Return the result of the (left/right) multiplication of self by word.

**INPUT:**
- *word* – a sequence of indices of simple reflections
- *side* – (default: 'right') indicates multiplying from left or right

This is a specialized implementation of apply_reflections() for the simple reflections. The rationale for its existence are:
- It can take advantage of apply_simple_reflection, which often is less expensive than computing a product.
- It reduced burden on implementations that would want to provide an optimized version of this method.

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflections([0,1])
(2, 3, 1, 0)
sage: w
(1, 2, 3, 0)
sage: w.apply_simple_reflections([0,1], side='left')
(0, 1, 3, 2)
```

inverse()

Return the inverse of self.

**EXAMPLES:**

```python
sage: W = WeylGroup(['B',7])
sage: w = W.an_element()
sage: u = w.inverse()
sage: u == ~w
True
sage: u * w == w * u
True
sage: u * w
```

(continues on next page)
is_reflection()
Return whether self is a reflection.

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: [t.is_reflection() for t in W.reflections()] # optional - gap3
[True, True, True, True, True, True]
```

```python
sage: len([t for t in W.reflections() if t.is_reflection()]) # optional - gap3
6
```

```python
sage: W = ReflectionGroup((2,1,3)) # optional - gap3
sage: [t.is_reflection() for t in W.reflections()] # optional - gap3
[True, True, True, True, True, True, True, True, True]
```

```python
sage: len([t for t in W.reflections() if t.is_reflection()]) # optional - gap3
9
```

reflection_length()
Return the reflection length of self.
This is the minimal length of a factorization of self into reflections.

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1]
```

```python
sage: W = ReflectionGroup((2,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 2, 2, 2]
```

```python
sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
```

```python
sage: W = ReflectionGroup((2,2,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 2]
```

class Irreducible(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object

4.28. Common category for Generalized Coxeter Groups or Complex Reflection Groups
irreducible_components()
Return a list containing all irreducible components of self as finite reflection groups.

EXAMPLES:

```
sage: W = ColoredPermutations(4, 3)
sage: W.irreducible_components()
[4-colored permutations of size 3]
```

class ParentMethods
Bases: object

distinguished_reflection(i)
Return the i-th distinguished reflection of self.

INPUT:
• i – an element of the index set of the distinguished reflections.

See also:
• distinguished_reflections()
• hyperplane_index_set()

EXAMPLES:

```
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=('a','b','c','d','e', 'f')) # optional - gap3
sage: for i in W.hyperplane_index_set(): # optional - gap3
 : print('%s %s'(i, W.distinguished_reflection(i))) # optional - gap3
 a (1,7)(2,4)(5,6)(8,10)(11,12)
b (1,4)(2,8)(3,5)(7,10)(9,11)
c (2,5)(3,9)(4,6)(8,11)(10,12)
d (1,8)(2,7)(3,6)(4,10)(9,12)
e (1,6)(2,9)(3,8)(5,11)(7,12)
f (1,11)(3,10)(4,9)(5,7)(6,12)
```

distinguished_reflections()
Return a finite family containing the distinguished reflections of self, indexed by hyperplane_index_set().

A distinguished reflection is a conjugate of a simple reflection. For a Coxeter group, reflections and distinguished reflections coincide. For a Complex reflection groups this is a reflection acting on the complement of the fixed hyperplane $H$ as $\exp(2\pi i/n)$, where $n$ is the order of the reflection subgroup fixing $H$.

See also:
• distinguished_reflection()
• hyperplane_index_set()

EXAMPLES:

```
sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: distinguished_reflections = W.distinguished_reflections() # optional - gap3
sage: for index in sorted(distinguished_reflections.keys()): # optional - gap3
 : print('%s %s'(i, W.distinguished_reflection(i))) # optional - gap3
```

(continues on next page)
from_reduced_word(word, word_type='simple')

Return an element of self from its (reduced) word.

INPUT:
• word – a list (or iterable) of elements of the index set of self (resp. of the distinguished or of all reflections)
• word_type – (optional, default: 'simple'): either 'simple', 'distinguished', or 'all'
If word is \([i_1, i_2, \ldots, i_k]\), then this returns the corresponding product of simple reflections \(s_{i_1} s_{i_2} \cdots s_{i_k}\).

If word_type is 'distinguished' (resp. 'all'), then the product of the distinguished reflections (resp. all reflections) is returned.

**Note:** The main use case is for constructing elements from reduced words, hence the name of this method. However, the input word need not be reduced.

**See also:**
- `index_set()`
- `reflection_index_set()`
- `hyperplane_index_set()`
- `apply_simple_reflections()`
- `reduced_word()`
- `_test_reduced_word()`

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example()
sage: W
The symmetric group on \{0, ..., 3\}
sage: s = W.simple_reflections()
sage: W.from_reduced_word([0,2,0,1])
(0, 3, 1, 2)
sage: W.from_reduced_word((0,2,0,1))
(0, 3, 1, 2)
sage: s[0]*s[2]*s[0]*s[1]
(0, 3, 1, 2)
```

We now experiment with the different values for word_type for the colored symmetric group:

```python
sage: W = ColoredPermutations(1,4)
sage: W.from_reduced_word([1,2,1,2,1,2])
[[0, 0, 0, 0], [1, 2, 3, 4]]
sage: W.from_reduced_word([1, 2, 3]).reduced_word()
[1, 2, 3]
sage: W = WeylGroup("A3", prefix='s')
sage: AS = W.domain()
sage: r1 = AS.roots()[4]
sage: r1
(0, 1, 0, -1)
sage: r2 = AS.roots()[5]
sage: r2
(0, 0, 1, -1)
sage: W.from_reduced_word([r1, r2], word_type='all')
s3*s2
```

```python
sage: W = WeylGroup("G2", prefix='s')
sage: W.from_reduced_word(W.domain().positive_roots(), word_type='all')
s1*s2
```

(continues on next page)
```python
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.from_reduced_word([1,2,3], word_type='all').reduced_word() # optional - gap3
[1, 2, 3]

sage: W.from_reduced_word([1,2,3], word_type='all').reduced_word_in_reflections() # optional - gap3
[1, 2, 3]

sage: W.from_reduced_word([1,2,3]).reduced_word_in_reflections() # optional - gap3
[1, 2, 3]
```

**group_generators()**

Return the simple reflections of `self`, as distinguished group generators.

See also:

- `simple_reflections()`
- `Groups.ParentMethods.group_generators()`
- `Semigroups.ParentMethods.semigroup_generators()`

**EXAMPLES:**

```python
sage: D10 = FiniteCoxeterGroups().example(10)
sage: D10.group_generators()
Finite family {1: (1,), 2: (2,)}

sage: SymmetricGroup(5).group_generators()
Finite family {1: (1,2), 2: (2,3), 3: (3,4), 4: (4,5)}

sage: W = ColoredPermutations(3,2)
sage: W.group_generators()
Finite family {1: [[0, 0],
 [2, 1]],
 2: [[0, 1],
 [1, 2]]}
```

The simple reflections are also semigroup generators, even for an infinite group:

```python
sage: W = WeylGroup("A",2,1)
sage: W.semigroup_generators()
Finite family {0: [-1 1 1]
 [0 1 0]
 [0 0 1],
 1: [1 0 0]
 [1 -1 1]
 [0 0 1],
 2: [1 0 0]
 [0 1 0]
 [1 1 -1]}
```

**hyperplane_index_set()**

Return the index set of the distinguished reflections of `self`. 

4.28. Common category for Generalized Coxeter Groups or Complex Reflection Groups 231
This is also the index set of the reflection hyperplanes of self, hence the name. This name is slightly abusive since the concept of reflection hyperplanes is not defined for all generalized Coxeter groups. However for all practical purposes this is only used for complex reflection groups, and there this is the desirable name.

See also:

- `distinguished_reflection()`
- `distinguished_reflections()`

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
(1, 2, 3, 4, 5, 6)
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=[1,3,'asdf',7,9,11]) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
(1, 3, 'asdf', 7, 9, 11)
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=('a','b','c','d','e','f')) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
('a', 'b', 'c', 'd', 'e', 'f')
```

`index_set()`

Return the index set of (the simple reflections of) self, as a list (or iterable).

See also:

- `simple_reflection()`
- `simple_reflections()`

EXAMPLES:

```python
sage: W = CoxeterGroups().Finite().example(); W
The 5-th dihedral group of order 10
sage: W.index_set()
(1, 2)
sage: W = ColoredPermutations(1, 4)
sage: W.index_set()
(1, 2, 3)
sage: W = ReflectionGroup((1,1,4), index_set=[1,3,'asdf']) # optional - gap3
sage: W.index_set() # optional - gap3
(1, 3, 'asdf')
sage: W = ReflectionGroup((1,1,4), index_set=('a','b','c')) # optional - gap3
sage: W.index_set() # optional - gap3
('a', 'b', 'c')
```

`irreducible_component_index_sets()`

Return a list containing the index sets of the irreducible components of self as finite reflection groups.

EXAMPLES:
**ALGORITHM:**

Take the connected components of the graph on the index set with edges \( (i, j) \), where \( s[i] \) and \( s[j] \) do not commute.

**irreducible_components()**

Return the irreducible components of \( self \) as finite reflection groups.

**EXAMPLES:**

```python
sage: W = ReflectionGroup([1,1,3], [3,1,3], 4); W # optional - gap3
Reducible complex reflection group of rank 7 and type A2 x G(3,1,3) x ST4
sage: sorted(W.irreducible_component_index_sets()) # optional - gap3
[[1, 2], [3, 4, 5], [6, 7]]
```

**is_irreducible()**

Return True if \( self \) is irreducible.

**EXAMPLES:**

```python
sage: W = ColoredPermutations(1,3); W
1-colored permutations of size 3
sage: W.is_irreducible()
True

sage: W = ReflectionGroup((1,1,3), (2,1,3)); W # optional - gap3
Reducible real reflection group of rank 5 and type A2 x B3
sage: W.is_irreducible() # optional - gap3
False
```

**is_reducible()**

Return True if \( self \) is not irreducible.

**EXAMPLES:**

```python
sage: W = ColoredPermutations(1,3); W
1-colored permutations of size 3
sage: W.is_reducible()
False

sage: W = ReflectionGroup((1,1,3), (2,1,3)); W # optional - gap3
Reducible real reflection group of rank 5 and type A2 x B3
sage: W.is_reducible() # optional - gap3
True
```

**number_of_irreducible_components()**

Return the number of irreducible components of \( self \).

**EXAMPLES:**
number_of_simple_reflections()  
Return the number of simple reflections of self.

EXAMPLES:

```python
sage: W = ColoredPermutations(1,3)
sage: W.number_of_simple_reflections()
2
sage: W = ColoredPermutations(2,3)
sage: W.number_of_simple_reflections()
3
sage: W = ColoredPermutations(4,3)
sage: W.number_of_simple_reflections()
3
sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.number_of_simple_reflections() # optional - gap3
4
```

reflection(i)  
Return the \(i\)-th reflection of self.

For \(i\) in 1, \ldots, \(N\), this gives the \(i\)-th reflection of self.

See also:

- reflections_index_set()
- reflections()

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: for i in W.reflection_index_set(): # optional - gap3
 print('%s %s
(1,7)(2,4)(5,6)(8,10)(11,12)
 Schneider safe

1 (1,7)(2,4)(5,6)(8,10)(11,12)
2 (1,4)(2,8)(3,5)(7,10)(9,11)
3 (2,5)(3,9)(4,6)(8,11)(10,12)
4 (1,8)(2,7)(3,6)(4,10)(9,12)
5 (1,6)(2,9)(3,8)(5,11)(7,12)
6 (1,11)(3,10)(4,9)(5,7)(6,12)
```

reflection_index_set()  
Return the index set of the reflections of self.

See also:

- reflection()
- reflections()
EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
(1, 2, 3, 4, 5, 6)
sage: W = ReflectionGroup((1,1,4), reflection_index_set=[1,3,'asdf',7,9,...]) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
(1, 3, 'asdf', 7, 9, 11)
sage: W = ReflectionGroup((1,1,4), reflection_index_set=('a','b','c','d','e','f')) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
('a', 'b', 'c', 'd', 'e', 'f')
```

```
reflections()

Return a finite family containing the reflections of self, indexed by reflection_index_set().

See also:

- reflection()
- reflection_index_set()

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,3))  # optional - gap3
sage: reflections = W.reflections()  # optional - gap3
sage: for index in sorted(reflections.keys()):
....:     print('%s %s' % (index, reflections[index]))  # optional - gap3
1 (1,4)(2,3)(5,6)
2 (1,3)(2,5)(4,6)
3 (1,5)(2,4)(3,6)

sage: W = ReflectionGroup((1,1,3), reflection_index_set=['a','b','c'])  # optional - gap3
sage: reflections = W.reflections()  # optional - gap3
sage: for index in sorted(reflections.keys()):
....:     print('%s %s' % (index, reflections[index]))  # optional - gap3
a (1,4)(2,3)(5,6)
b (1,3)(2,5)(4,6)
c (1,5)(2,4)(3,6)

sage: W = ReflectionGroup((3,1,1))  # optional - gap3
sage: reflections = W.reflections()  # optional - gap3
sage: for index in sorted(reflections.keys()):
....:     print('%s %s' % (index, reflections[index]))  # optional - gap3
1 (1,2,3)
2 (1,3,2)

sage: W = ReflectionGroup((1,1,3), (3,1,2))  # optional - gap3
sage: reflections = W.reflections()  # optional - gap3
sage: for index in sorted(reflections.keys()):
....:     print('%s %s' % (index, reflections[index]))  # optional - gap3
1 (1,6)(2,5)(7,8)
2 (1,5)(2,7)(6,8)
3 (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30)
```

(continues on next page)
semigroup_generators()

Return the simple reflections of self, as distinguished group generators.

See also:

- simple_reflections()
- Groups.ParentMethods.group_generators()
- Semigroups.ParentMethods.semigroup_generators()

EXAMPLES:

```python
sage: D10 = FiniteCoxeterGroups().example(10)
sage: D10.group_generators()
Finite family {1: (1,), 2: (2,)}
sage: SymmetricGroup(5).group_generators()
Finite family {1: (1,2), 2: (2,3), 3: (3,4), 4: (4,5)}

sage: W = ColoredPermutations(3,2)
sage: W.group_generators()
Finite family {1: [[0, 0],
              [2, 1]],
             2: [[0, 1],
               [1, 2]]}
```

The simple reflections are also semigroup generators, even for an infinite group:

```python
sage: W = WeylGroup("A",2,1)
sage: W.semigroup_generators()
Finite family {0: [-1  1  1]
               [ 0  1  0]
               [ 0  0  1],
             1: [ 1  0  0]
               [ 1 -1  1]
               [ 0  0  1],
             2: [ 1  0  0]
               [ 0  1  0]
               [ 1  1 -1]}
```

simple_reflection(i)

Return the i-th simple reflection s_i of self.

INPUT:

- i -- an element from the index set

See also:
• `index_set()`
 • `simple_reflections()`

EXAMPLES:
```
sage: W = CoxeterGroups().example()
sage: W
The symmetric group on {0, ..., 3}
sage: W.simple_reflection(1)
(0, 2, 1, 3)
sage: s = W.simple_reflections()
sage: s[1]
(0, 2, 1, 3)
```

```
sage: W = ReflectionGroup((1,1,4), index_set=[1,3,'asdf'])  # optional - gap3
sage: for i in W.index_set(): # optional - gap3
    ....: print('%s %s
1 (1,7)(2,4)(5,6)(8,10)(11,12)
3 (1,4)(2,8)(3,5)(7,10)(9,11)
asdf (2,5)(3,9)(4,6)(8,11)(10,12)
```

`simple_reflection_orders()`
Return the orders of the simple reflections.

EXAMPLES:
```
sage: W = WeylGroup(['B',3])
sage: W.simple_reflection_orders()
[2, 2, 2]
sage: W = CoxeterGroup(['C',4])
sage: W.simple_reflection_orders()
[2, 2, 2, 2]
sage: SymmetricGroup(5).simple_reflection_orders()
[2, 2, 2, 2]
sage: C = ColoredPermutations(4, 3)
sage: C.simple_reflection_orders()
[2, 2, 4]
```

`simple_reflections()`
Return the simple reflections \((s_i)_{i \in I}\) of `self` as a family indexed by `index_set()`.

See also:
• `simple_reflection()`
• `index_set()`

EXAMPLES:
For the symmetric group, we recognize the simple transpositions:
```
sage: W = SymmetricGroup(4); W
Symmetric group of order 4! as a permutation group
sage: s = W.simple_reflections()
sage: s
Finite family {1: (1,2), 2: (2,3), 3: (3,4)}
sage: s[1]
```
Here are the simple reflections for a colored symmetric group and a reflection group:

```python
sage: W = ColoredPermutations(1,3)
sage: W.simple_reflections()
Finite family {1: [[0, 0, 0], [2, 1, 3]], 2: [[0, 0, 0], [1, 3, 2]]}

sage: W = ReflectionGroup((1,1,3), index_set=['a','b'])
# optional - gap3
sage: W.simple_reflections()
# optional - gap3
Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6)}
```

This default implementation uses `index_set()` and `simple_reflection()`.

some_elements()

Implement `Sets.ParentMethods.some_elements()` by returning some typical elements of `self`.

The result is currently composed of the simple reflections together with the unit and the result of `an_element()`.

EXAMPLES:

```python
sage: W = WeylGroup(['A',3])
sage: W.some_elements()
[ [0 1 0 0] [1 0 0 0] [1 0 0 0] [1 0 0 0] [0 0 0 1]
 [1 0 0 0] [0 0 1 0] [0 1 0 0] [0 1 0 0] [1 0 0 0]
 [0 0 1 0] [0 1 0 0] [0 0 0 1] [0 0 1 0] [0 1 0 0]
 [0 0 0 1], [0 0 0 1], [0 0 1 0], [0 0 0 1], [0 0 1 0]
 ]

sage: W = ColoredPermutations(1,4)
sage: W.some_elements()
[[[0, 0, 0, 0], [2, 1, 3, 4]],
 [[0, 0, 0, 0], [1, 3, 2, 4]],
 [[0, 0, 0, 0], [1, 2, 4, 3]],
 [[0, 0, 0, 0], [1, 2, 3, 4]],
 [[0, 0, 0, 0], [4, 1, 2, 3]]]
```

class SubcategoryMethods

Bases: object

Irreducible()

Return the full subcategory of irreducible objects of `self`.

A complex reflection group, or generalized coxeter group is reducible if its simple reflections can be split in two sets X and Y such that the elements of X commute with that of Y. In particular, the group is then direct product of $\langle X \rangle$ and $\langle Y \rangle$. It’s irreducible otherwise.

EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Irreducible()
Category of irreducible complex reflection groups
sage: CoxeterGroups().Irreducible()
Category of irreducible coxeter groups

super_categories()

Return the super categories of self.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]

4.29 Coxeter Group Algebras

class sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras(category, *args)

Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods

Bases: object

demazure_lusztig_eigenvectors(q1, q2)

Return the family of eigenvectors for the Cherednik operators.

INPUT:

- **self** – a finite Coxeter group \(W \)
- **q1, q2** – two elements of the ground ring \(K \)

The affine Hecke algebra \(H_{q_1,q_2}(W) \) acts on the group algebra of \(W \) through the Demazure-Lusztig operators \(T_i \). Its Cherednik operators \(Y^\lambda \) can be simultaneously diagonalized as long as \(q_1/q_2 \) is not a small root of unity [HST2008].

This method returns the family of joint eigenvectors, indexed by \(W \).

See also:

- demazure_lusztig_operators()
- sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors

EXAMPLES:

sage: W = WeylGroup(['B',2])
sage: W.element_class._repr_=lambda x: ''.join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1,q2)
sage: E.keys()
Weyl Group of type ['B', 2] (as a matrix group acting on the ambient space)
sage: w = W.an_element()

(continues on next page)
\texttt{sage: E[w]}
\begin{align*}
(q2/(-q1+q2)) & \times 2121 + ((-q2)/(-q1+q2)) \times 121 - 212 + 12
\end{align*}

\texttt{demazure_lusztig_operator_on_basis}(w, i, q1, q2, side='right')

Return the result of applying the i-th Demazure Lusztig operator on w.

\textbf{INPUT:}
\begin{itemize}
\item w – an element of the Coxeter group
\item i – an element of the index set
\item q_1, q_2 – two elements of the ground ring
\item bar – a boolean (default False)
\end{itemize}

See \texttt{demazure_lusztig_operators}() for details.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = WeylGroup(['B',3])
sage: W.element_class._repr_ = lambda x: ''.join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: w = W.an_element()
sage: KW.demazure_lusztig_operator_on_basis(w, 0, q1, q2)
(q2)*323123 + (q1+q2)*123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, q1, q2)
q1*1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, q1, q2)
q1*1232
sage: KW.demazure_lusztig_operator_on_basis(w, 3, q1, q2)
(q1+q2)*123 + (-q2)*12
\end{verbatim}

At $q_1 = 1$ and $q_2 = 0$ we recover the action of the isobaric divided differences π_i:

\begin{verbatim}
sage: KW.demazure_lusztig_operator_on_basis(w, 0, 1, 0)
123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, 1, 0)
1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, 1, 0)
1232
sage: KW.demazure_lusztig_operator_on_basis(w, 3, 1, 0)
123
\end{verbatim}

At $q_1 = 1$ and $q_2 = -1$ we recover the action of the simple reflection s_i:

\begin{verbatim}
sage: KW.demazure_lusztig_operator_on_basis(w, 0, 1, -1)
323123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, 1, -1)
1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, 1, -1)
1232
sage: KW.demazure_lusztig_operator_on_basis(w, 3, 1, -1)
12
\end{verbatim}
demazure_lusztig_operators(q1, q2, side='right', affine=True)

Return the Demazure Lusztig operators acting on self.

INPUT:
- q1, q2 – two elements of the ground ring \(K \)
- side – "left" or "right" (default: "right"); which side to act upon
- affine – a boolean (default: True)

The Demazure-Lusztig operator \(T_i \) is the linear map \(R \to R \) obtained by interpolating between the simple projection \(\pi_i \) (see \(\text{CoxeterGroups.ElementMethods.simple_projection()} \)) and the simple reflection \(s_i \) so that \(T_i \) has eigenvalues \(q_1 \) and \(q_2 \):

\[(q_1 + q_2)\pi_i - q_2s_i.\]

The Demazure-Lusztig operators give the usual representation of the operators \(T_i \) of the \(q_1, q_2 \) Hecke algebra associated to the Coxeter group.

For a finite Coxeter group, and if affine=True, the Demazure-Lusztig operators \(T_1, \ldots, T_n \) are completed by \(T_0 \) to implement the level 0 action of the affine Hecke algebra.

EXAMPLES:

```
sage: W = WeylGroup(['B',3])
sage: W.element_class._repr_=
    lambda x: ''.join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
sage: x = KW.monomial(W.an_element()); x
123
sage: T[0](x)
(-q2)*323123 + (q1+q2)*123
sage: T[1](x)
q1*1231
sage: T[2](x)
q1*1232
sage: T[3](x)
(q1+q2)*123 + (-q2)*12
sage: T._test_relations()
```

Note: For a finite Weyl group \(W \), the level 0 action of the affine Weyl group \(\hat{W} \) only depends on the Coxeter diagram of the affinization, not its Dynkin diagram. Hence it is possible to explore all cases using only untwisted affinizations.
4.30 Coxeter Groups

class sage.categories.coxeter_groups.CoxeterGroups(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

The category of Coxeter groups.

A Coxeter group is a group \(W \) with a distinguished (finite) family of involutions \((s_i)_{i \in I}\), called the simple reflections, subject to relations of the form \((s_i s_j)^{m_{i,j}} = 1\).

\(I \) is the index set of \(W \) and \(| I | \) is the rank of \(W \).

See Wikipedia article Coxeter_group for details.

EXAMPLES:

```
sage: C = CoxeterGroups(); C
Category of coxeter groups
sage: C.super_categories()
[Category of generalized coxeter groups]
sage: W = C.example(); W
The symmetric group on {0, ..., 3}
sage: W.simple_reflections()
Finite family {0: (1, 0, 2, 3), 1: (0, 2, 1, 3), 2: (0, 1, 3, 2)}
```

Here are some further examples:

```
sage: FiniteCoxeterGroups().example()
The 5-th dihedral group of order 10
sage: FiniteWeylGroups().example()
The symmetric group on {0, ..., 3}
sage: WeylGroup(['B', 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
sage: S4 = SymmetricGroup(4); S4
Symmetric group of order 4! as a permutation group
sage: S4 in CoxeterGroups().Finite()
True
```

Those will eventually be also in this category:

```
sage: DihedralGroup(5)
Dihedral group of order 10 as a permutation group
```

Todo: add a demo of usual computations on Coxeter groups.

See also:

- sage.combinat.root_system
- WeylGroups
- GeneralizedCoxeterGroups
Warning: It is assumed that morphisms in this category preserve the distinguished choice of simple reflections. In particular, subobjects in this category are parabolic subgroups. In this sense, this category might be better named Coxeter Systems. In the long run we might want to have two distinct categories, one for Coxeter groups (with morphisms being just group morphisms) and one for Coxeter systems:

```python
sage: CoxeterGroups().is_full_subcategory(Groups())
False
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: CoxeterGroups().is_full_subcategory(GeneralizedCoxeterGroups())
True
```

Algebras

alias of `sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras`

class ElementMethods

Bases: object

`absolute_covers()`

Return the list of covers of `self` in absolute order.

See also:

`absolute_length()`

EXAMPLES:

```python
sage: W = WeylGroup("A", 3)
sage: s = W.simple_reflections()
sage: w0 = s[1]
sage: w1 = s[1]*s[2]*s[3]
sage: w0.absolute_covers()
    [[0 0 1 0] [0 1 0 0] [0 1 0 0] [0 0 0 1] [0 1 0 0]
     [1 0 0 0] [1 0 0 0] [0 0 1 0] [1 0 0 0] [0 0 0 1]
     [0 1 0 0] [0 0 0 1] [1 0 0 0] [0 0 1 0] [0 0 1 0]
     [0 0 0 1], [0 0 0 1], [0 0 0 1], [0 1 0 0], [1 0 0 0]]
```

`absolute_le(other)`

Return whether `self` is smaller than `other` in the absolute order.

A general reflection is an element of the form \(w_s w_i^{-1} \), where \(s_i \) is a simple reflection. The absolute order is defined analogously to the weak order but using general reflections rather than just simple reflections.

This partial order can be used to define noncrossing partitions associated with this Coxeter group.

See also:

`absolute_length()`

EXAMPLES:

```python
sage: W = WeylGroup("A", 3)
sage: s = W.simple_reflections()
sage: w0 = s[1]
```

(continues on next page)
absolute_length()

Return the absolute length of self.

The absolute length is the length of the shortest expression of the element as a product of reflections.

For permutations in the symmetric groups, the absolute length is the size minus the number of its disjoint cycles.

See also:

absolute_le()

EXAMPLES:

```python
sage: W = WeylGroup(['A', 3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).absolute_length()
3

sage: W = SymmetricGroup(4)
sage: s = W.simple_reflections()
sage: (s[3]*s[2]*s[1]).absolute_length()
3
```

apply_demazure_product(element, side='right', length_increasing=True)

Return the Demazure or 0-Hecke product of self with another Coxeter group element.

See CoxeterGroups.ParentMethods.simple_projections().

INPUT:

- element – either an element of the same Coxeter group as self or a tuple or a list (such as a reduced word) of elements from the index set of the Coxeter group.
- side – ‘left’ or ‘right’ (default: ‘right’); the side of self on which the element should be applied. If side is ‘left’ then the operation is applied on the left.
- length_increasing – a boolean (default True) whether to act length increasing or decreasingly

EXAMPLES:

```python
sage: W = WeylGroup(['C',4],prefix="s")
sage: v = W.from_reduced_word([1,2,3,4,3,1])
sage: v.apply_demazure_product([1,3,4,3,3])
s4*s1*s2*s3*s4*s3*s1
sage: v.apply_demazure_product([1,3,4,3],side='left')
s3*s4*s1*s2*s3*s4*s2*s3*s1
sage: v.apply_demazure_product([1,3,4,3],side='left')
s3*s4*s1*s2*s3*s4*s2*s3*s1
sage: v.apply_demazure_product(v)
s2*s3*s4*s1*s2*s3*s4*s2*s3*s2*s1
```
apply_simple_projection($i, \text{side}='right', \text{length_increasing}=\text{True}$)

Return the result of the application of the simple projection π_i (resp. π_i) on self.

INPUT:

- i - an element of the index set of the Coxeter group
- side - ‘left’ or ‘right’ (default: ‘right’)
- length_increasing - a boolean (default: True) specifying the direction of the projection

See `CoxeterGroups.ParentMethods.simple_projections()` for the definition of the simple projections.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: w = W.an_element()
sage: w
(1, 2, 3, 0)
sage: w.apply_simple_projection(2)
(1, 2, 3, 0)
sage: w.apply_simple_projection(2, length_increasing=False)
(1, 2, 0, 3)
sage: W = WeylGroup(['C',4],prefix="s")
sage: v = W.from_reduced_word([1,2,3,4,3,1])
sage: v
s1*s2*s3*s4*s3*s1
sage: v.apply_simple_projection(2)
s1*s2*s3*s4*s3*s1*s2
sage: v.apply_simple_projection(2, side='left')
s1*s2*s3*s4*s3*s1
sage: v.apply_simple_projection(1, length_increasing = False)
s1*s2*s3*s4*s3
```

binary_factorizations($\text{predicate}=\text{The constant function (...) \rightarrow True}$)

Return the set of all the factorizations $self = uv$ such that $l(self) = l(u) + l(v)$.

Iterating through this set is Constant Amortized Time (counting arithmetic operations in the Coxeter group as constant time) complexity, and memory linear in the length of $self$.

One can pass as optional argument a predicate p such that $p(u)$ implies $p(u')$ for any u left factor of $self$ and u' left factor of u. Then this returns only the factorizations $self = uv$ such $p(u)$ holds.

EXAMPLES:

We construct the set of all factorizations of the maximal element of the group:

```python
sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: w0 = W.from_reduced_word([1,2,3,1,2,1])
sage: w0.binary_factorizations().cardinality()
24
```

The same number of factorizations, by bounded length:

```python
sage: [w0.binary_factorizations(lambda u: u.length() <= l).cardinality() for l in [-1,0,1,2,3,4,5,6]]
[0, 1, 4, 9, 15, 20, 23, 24]
```

The number of factorizations of the elements just below the maximal element:
bruhat_le\(\text{other}\)
Return whether self \(\leq\) other in the Bruhat order.

\textbf{INPUT:}

- other \text{ an element of the same Coxeter group}

\textbf{OUTPUT:} a boolean

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = WeylGroup(['A',3])
sage: u = W.from_reduced_word([1,2,1])
sage: v = W.from_reduced_word([1,2,3,2,1])
sage: u.bruhat_le(u) True
sage: u.bruhat_le(v) True
sage: v.bruhat_le(u) False
sage: v.bruhat_le(v) True
sage: s = W.simple_reflections()
sage: s[1].bruhat_le(W.one()) False
\end{verbatim}

The implementation uses the equivalent condition that any reduced word for other contains a reduced word for self as subword. See Stembridge, A short derivation of the Möbius function for the Bruhat order. J. Algebraic Combin. 25 (2007), no. 2, 141–148, Proposition 1.1.

Complexity: \(O(l \ast c)\), where \(l\) is the minimum of the lengths of \(u\) and of \(v\), and \(c\) is the cost of the low level methods \(\text{first_descent()}, \text{has_descent()}, \text{apply_simple_reflection()},\) etc. Those are typically \(O(n)\), where \(n\) is the rank of the Coxeter group.

bruhat_lower_covers()

Return all elements that self covers in (strong) Bruhat order.

If \(w = \text{self}\) has a descent at \(i\), then the elements that \(w\) covers are exactly \(\{ws_1, u_1s_i, u_2s_i, \ldots, u_j s_i\}\), where the \(u_k\) are elements that \(ws_i\) covers that also do not have a descent at \(i\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,2,3])
sage: print([v.reduced_word() for v in w.bruhat_lower_covers()]) [[3, 2], [2, 3]]

sage: W = WeylGroup(['A',3])
sage: print([v.reduced_word() for v in W.simple_reflection(1).bruhat_lower_covers()]) []
sage: print([v.reduced_word() for v in W.one().bruhat_lower_covers()]) []
\end{verbatim}

(continues on next page)
We now show how to construct the Bruhat poset:

```python
sage: W = WeylGroup(['A', 3])
sage: covers = tuple([u, v] for v in W for u in v.bruhat_lower_covers())
sage: P = Poset((W, covers), cover_relations = True)
sage: P.show()
```

Alternatively, one can just use:

```python
sage: P = W.bruhat_poset()
```

The algorithm is taken from Stembridge’s ‘coxeter/weyl’ package for Maple.

bruhat_lower_covers_reflections()

Return all 2-tuples of lower_covers and reflections (v, r) where v is covered by self and r is the reflection such that \(self = v r \).

ALGORITHM:

See `bruhat_lower_covers()`

EXAMPLES:

```python
sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_lower_covers_reflections()
```

```python
[(s1*s2*s1, s1*s2*s3*s2*s1), (s3*s2*s1, s2), (s3*s1*s2, s1)]
```

bruhat_upper_covers()

Return all elements that cover self in (strong) Bruhat order.

The algorithm works recursively, using the ‘inverse’ of the method described for lower covers `bruhat_lower_covers()`. Namely, it runs through all i in the index set. Let w equal self. If w has no right descent i, then \(ws_1 \) is a cover; if w has a decent at i, then \(u_j s_i \) is a cover of w where \(u_j \) is a cover of \(ws_i \).

EXAMPLES:

```python
sage: W = WeylGroup(['A',3,1], prefix="s")
sage: w = W.from_reduced_word([1,2,1])
sage: w.bruhat_upper_covers()
```

```python
[1*s2*s1*s0, 1*s2*s0*s1, s0*s1*s2*s1, 3*s1*s2*s1, s2*s3*s1*s2, s3*s2*s3*s1]
```
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([1,2,1])
sage: S = [v for v in W if w in v.bruhat_lower_covers()]
sage: C = w.bruhat_upper_covers()
sage: set(S) == set(C)
True

bruhat_upper_covers_reflections()

Return all 2-tuples of covers and reflections \((v, r)\) where \(v\) covers \(self\) and \(r\) is the reflection such that \(self = v r\).

ALGORITHM:

See bruhat_upper_covers()

EXAMPLES:

sage: W = WeylGroup(['A',4], prefix='s')
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_upper_covers_reflections()
[(s1*s2*s3*s2*s1, s3), (s2*s3*s1*s2*s1, s2*s3*s2), (s3*s4*s1*s2*s1, s4),
 (s4*s3*s1*s2*s1, s1*s2*s3*s4*s3*s2*s1)]

canonical_matrix()

Return the matrix of \(self\) in the canonical faithful representation.

This is an \(n\)-dimension real faithful essential representation, where \(n\) is the number of generators of the Coxeter group. Note that this is not always the most natural matrix representation, for instance in type \(A_n\).

EXAMPLES:

sage: W = WeylGroup(["A", 3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).canonical_matrix()
[0 0 -1]
[1 0 -1]
[0 1 -1]

coset_reprentative(index_set, side='right')

Return the unique shortest element of the Coxeter group \(W\) which is in the same left (resp. right) coset as \(self\), with respect to the parabolic subgroup \(W_I\).

INPUT:

- index_set - a subset (or iterable) of the nodes of the Dynkin diagram
- side - ‘left’ or ‘right’

EXAMPLES:

sage: W = CoxeterGroups().example(5)
sage: s = W.simple_reflections()
sage: w = s[2]*s[1]*s[3]
sage: w.coset_representative([]).reduced_word()
[2, 3, 1]
sage: w.coset_representative([1]).reduced_word()
[2, 3]
sage: w.coset_representative([1,2]).reduced_word()
[2, 3]
sage: w.coset_representative([1,3]).reduced_word()
[2]
sage: w.coset_representative([2,3]).reduced_word()
[2, 1]
sage: w.coset_representative([1,2,3]).reduced_word()
[
]
sage: w.coset_representative([], side='left').reduced_word()
[2, 3, 1]
sage: w.coset_representative([1], side='left').reduced_word()
[2, 3, 1]
sage: w.coset_representative([1,2], side='left').reduced_word()
[3]
sage: w.coset_representative([1,3], side='left').reduced_word()
[2, 3, 1]
sage: w.coset_representative([2,3], side='left').reduced_word()
[1]
sage: w.coset_representative([1,2,3], side='left').reduced_word()
[
]

cover_reflections(side='right')

Return the set of reflections t such that self t covers self.

If side is 'left', t self covers self.

EXAMPLES:

sage: W = WeylGroup(['A',4], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.cover_reflections()
[s3, s2*a3*s2, s4, s1*a2*a3*a4*a3*a2*a3]*
sage: w.cover_reflections(side='left')
[s4, s2, s1*a2*a3, s3*a4*a3]*

coxeter_sorting_word(c)

Return the c-sorting word of self.

For a Coxeter element c and an element w, the c-sorting word of w is the lexicographic minimal reduced expression of w in the infinite word c∞.

INPUT:

• c– a Coxeter element.

OUTPUT:

the c-sorting word of self as a list of integers.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: c = W.from_reduced_word([0,2,1])
sage: w = W.from_reduced_word([1,2,1,0,1])
sage: w.coxeter_sorting_word(c)
[2, 1, 2, 0, 1]
deodhar_factor_element\((w, \text{index}_\text{set})\)

Return Deodhar’s Bruhat order factoring element.

INPUT:

- \(w\) is an element of the same Coxeter group \(\mathbb{W}\) as \(\text{self}\)
- \(\text{index}_\text{set}\) is a subset of Dynkin nodes defining a parabolic subgroup \(\mathbb{W}'\) of \(\mathbb{W}\)

It is assumed that \(v = \text{self}\) and \(w\) are minimum length coset representatives for \(\mathbb{W}/\mathbb{W}'\) such that \(v \leq w\) in Bruhat order.

OUTPUT:

Deodhar’s element \(f(v, w)\) is the unique element of \(\mathbb{W}'\) such that, for all \(v'\) and \(w'\) in \(\mathbb{W}'\), \(vv' \leq ww'\) in \(\mathbb{W}\) if and only if \(v' \leq f(v, w) * w'\) in \(\mathbb{W}'\) where \(*\) is the Demazure product.

EXAMPLES:

```python
sage: W = WeylGroup(['A',5],prefix="s")
sage: v = W.from_reduced_word([5])
sage: w = W.from_reduced_word([4,5,2,3,1,2])
sage: v.deodhar_factor_element(w,[1,3,4])
s3*s1
```

REFERENCES:

- [Deo1987a]

deodhar_lift_down\((w, \text{index}_\text{set})\)

Letting \(v = \text{self}\), given a Bruhat relation \(v \mathbb{W}' \geq w \mathbb{W}'\) among cosets with respect to the subgroup \(\mathbb{W}'\) given by the Dynkin node subset \(\text{index}_\text{set}\), returns the Bruhat-maximum lift \(x\) of \(w\mathbb{W}'\) such that \(v \geq x\).

INPUT:

- \(w\) is an element of the same Coxeter group \(\mathbb{W}\) as \(\text{self}\).
- \(\text{index}_\text{set}\) is a subset of Dynkin nodes defining a parabolic subgroup \(\mathbb{W}'\).

OUTPUT:

The unique Bruhat-maximum element \(x\) in \(\mathbb{W}\) such that \(x \mathbb{W}' = w \mathbb{W}'\) and \(v < x\).

See also:

`sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.deodhar_lift_up()`

EXAMPLES:

```python
sage: W = WeylGroup(['A',3],prefix="s")
sage: v = W.from_reduced_word([1,2,3,2])
sage: w = W.from_reduced_word([3,2])
sage: v.deodhar_lift_down(w, [3])
s2*s3*s2
```

deodhar_lift_up\((w, \text{index}_\text{set})\)

Letting \(v = \text{self}\), given a Bruhat relation \(v \mathbb{W}' \leq w \mathbb{W}'\) among cosets with respect to the subgroup
\(W' \) given by the Dynkin node subset \(\text{index_set} \), returns the Bruhat-minimum lift \(x \) of \(wW' \) such that \(v \leq x \).

INPUT:
- \(w \) is an element of the same Coxeter group \(W \) as \(\text{self} \).
- \(\text{index_set} \) is a subset of Dynkin nodes defining a parabolic subgroup \(W' \).

OUTPUT:
The unique Bruhat-minimum element \(x \) in \(W \) such that \(x \, W' = w \, W' \) and \(v \leq x \).

See also:
sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.deodhar_lift_down()

EXAMPLES:
```
sage: W = WeylGroup(['A',3],prefix='s')
sage: v = W.from_reduced_word([1,2,3])
sage: w = W.from_reduced_word([1,3,2])
sage: v.deodhar_lift_up(w, [3])
s1*s2*s3*s2
```

\textbf{descents}(side='right', index_set=None, positive=False)

Return the descents of self, as a list of elements of the \(\text{index_set} \).

INPUT:
- \(\text{index_set} \) - a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: all of them)
- \(\text{side} \) - ‘left’ or ‘right’ (default: ‘right’)
- \(\text{positive} \) - a boolean (default: False)

The \(\text{index_set} \) option can be used to restrict to the parabolic subgroup indexed by \(\text{index_set} \).

If positive is True, then returns the non-descents instead

Todo: find a better name for \(\text{positive} \): complement? non_descent?

Caveat: the return type may change to some other iterable (tuple, …) in the future. Please use keyword arguments also, as the order of the arguments may change as well.

EXAMPLES:
```
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]
sage: w.descents()
[1]
sage: w = s[0]*s[2]
sage: w.descents()
[0, 2]
```

Todo: \(\text{side, index_set, positive} \)

\textbf{first_descent}(side='right', index_set=None, positive=False)

Return the first left (resp. right) descent of self, as an element of \(\text{index_set} \), or None if there is none.

Todo: \(\text{side, index_set, positive} \)
See \texttt{descents()} for a description of the options.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[2]*s[0]
sage: w.first_descent()
0

sage: w = s[0]*s[2]
sage: w.first_descent()
0

sage: w = s[0]*s[1]
sage: w.first_descent()
1
```

\texttt{has_descent}(i, side='right', positive=False)

Return whether \(i\) is a (left/right) descent of \(self\).

See \texttt{descents()} for a description of the options.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0] * s[1] * s[2]
sage: w.has_descent(2)
True

sage: [ w.has_descent(i) for i in [0,1,2] ]
[False, False, True]

sage: [ w.has_descent(i, side='left') for i in [0,1,2] ]
[True, False, False]

sage: [ w.has_descent(i, positive=True) for i in [0,1,2] ]
[True, True, False]
```

This default implementation delegates the work to \texttt{has_left_descent()} and \texttt{has_right_descent()}.

\texttt{has_full_support}()

Return whether \(self\) has full support.

An element is said to have full support if its support contains all simple reflections.

EXAMPLES:

```python
sage: W = CoxeterGroups().example()
sage: w = W.from_reduced_word([1,2,1])
sage: w.has_full_support()
False

sage: w = W.from_reduced_word([1,2,1,0,1])
sage: w.has_full_support()
True
```

\texttt{has_left_descent}(i)

Return whether \(i\) is a left descent of \(self\).

This default implementation uses that a left descent of \(w\) is a right descent of \(w^{-1}\).

EXAMPLES:
```python
sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.has_left_descent(0)
True
sage: w.has_left_descent(1)
False
sage: w.has_left_descent(2)
False

has_right_descent(i)
Return whether i is a right descent of self.

EXAMPLES:
```
```python
sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.has_right_descent(0)
False
sage: w.has_right_descent(1)
False
sage: w.has_right_descent(2)
True

inversions_as_reflections()
Return the set of reflections r such that self r < self.

EXAMPLES:
```
```python
sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.inversions_as_reflections()
[s1, s1*s2*s1, s2, s1*s2*s3*s2*s1]

is_coxeter_sortable(c, sorting_word=None)
Return whether self is c-sortable.

Given a Coxeter element c, an element w is c-sortable if its c-sorting word decomposes into a sequence of weakly decreasing subwords of c.

INPUT:
• c – a Coxeter element.
• sorting_word – sorting word (default: None) used to not recompute the c-sorting word if already computed.

OUTPUT:

is self c-sortable

EXAMPLES:
```
```python
sage: W = CoxeterGroups().example()
sage: c = W.from_reduced_word([0,2,1])
sage: w = W.from_reduced_word([1,2,1,0,1])
(continues on next page)```
sage: w.coxeter_sorting_word(c)
[2, 1, 2, 0, 1]
sage: w.is_coxeter_sortable(c)
False
sage: w = W.from_reduced_word([0,2,1,0,2])
sage: w.coxeter_sorting_word(c)
[2, 0, 1, 2, 0]
sage: w.is_coxeter_sortable(c)
True
sage: W = CoxeterGroup(['A',3])
sage: c = W.from_reduced_word([1,2,3])
sage: len([w for w in W if w.is_coxeter_sortable(c)])  # number of c-sortable elements in A_3 (Catalan number)
14

is_grassmannian(side='right')

Return whether self is Grassmannian.

INPUT:
• side – “left” or “right” (default: “right”)

An element is Grassmannian if it has at most one descent on the right (resp. on the left).

EXAMPLES:

sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: s = W.simple_reflections()
sage: W.one().is_grassmannian()
True
sage: s[1].is_grassmannian()
True
sage: (s[1]*s[2]).is_grassmannian()
True
sage: (s[0]*s[1]).is_grassmannian()
True
sage: (s[1]*s[2]*s[1]).is_grassmannian()
False
sage: (s[0]*s[2]*s[1]).is_grassmannian(side="left")
False
sage: (s[0]*s[2]*s[1]).is_grassmannian(side="right")
True
sage: (s[0]*s[2]*s[1]).is_grassmannian()
True

kazhdan_lusztig_cell(side='left')

Compute the left, right, or two-sided Kazhdan-Lusztig cell containing the element self depending on the specified side.

Let $C'_t$ denote the Kazhdan-Lusztig $C'_t$-basis of the Iwahori-Hecke algebra $H$ of a Coxeter system $(W,S)$. Two elements $x, y$ of the Coxeter group $W$ are said to lie in the same left Kazhdan-Lusztig cell if there exist sequences $x = w_1, w_2, \ldots, w_k = y$ and $y = u_1, u_2, \ldots, u_l = x$ such that for all $1 \leq i < k$ and all $1 \leq j < l$, there exist some Coxeter generators $s, t \in S$ for which $C_{w_{i+1}}'$ appears in $C'_{s}C'_{w_i}$, and $C_{u_{j+1}}'$ appears in $C'_{u_j}C'_{t}$ in $H$. Right and two-sided
Kazhdan-Lusztig cells of $W$ are defined similarly; see [Lus2013].

In this function, we compute products in the $C'$ basis by using \texttt{IwahoriHeckeAlgebra.Cp}. As mentioned in that class, installing the optional package \texttt{coxeter3} is recommended (though not required) before using this function because the package speeds up product computations that are sometimes computationally infeasible without it.

**INPUT:**
- $w$ – an element of \texttt{self}
- \texttt{side} – (default: 'left') the kind of cell to compute; must be either 'left', 'right', or 'two-sided'

**EXAMPLES:**

We compute the left cell of the generator $s_1$ in type $A_3$ in three different implementations of the Coxeter group. Note that the choice of implementation affects the representation of elements in the output cell but not the method used for the cell computation:

```python
sage: W = CoxeterGroup('A3', implementation='permutation')

sage: s1,s2,s3 = W.simple_reflections()

sage: s1.kazhdan_lusztig_cell()
{(1,2,3,12)(4,5,10,11)(6,7,8,9),
 (1,2,10)(3,6,5)(4,7,8)(9,12,11),
 (1,7)(2,4)(5,6)(8,10)(11,12)}
```

The cell computation uses the optional package \texttt{coxeter3} in the background if available to speed up the computation, even in the different implementations implementations:

```python
sage: W = WeylGroup('A3', prefix='s')
optional - → coxeter3

sage: s1,s2,s3 = W.simple_reflections() # optional - → coxeter3

sage: s1.kazhdan_lusztig_cell() # optional - → coxeter3
{s3*s2*s1, s2*s1, s1}

sage: W = CoxeterGroup('A3', implementation='coxeter3') # optional - → coxeter3

sage: s1,s2,s3 = W.simple_reflections() # optional - → coxeter3

sage: s1.kazhdan_lusztig_cell() # optional - → coxeter3
[[1], [2, 1], [3, 2, 1]]
```

Next, we compute a right cell and a two-sided cell in $A_3$:

```python
sage: W = CoxeterGroup('A3', implementation='coxeter3') # optional - → coxeter3

sage: s1,s2,s3 = W.simple_reflections() # optional - → coxeter3

sage: w = s1 * s3 # optional - → coxeter3

sage: w.kazhdan_lusztig_cell(side='right') # optional - → coxeter3
{[1, 3], [1, 3, 2]}

sage: w.kazhdan_lusztig_cell(side='two-sided') # optional - → coxeter3
{[1], [2, 1], [3, 2, 1]}
```

(continues on next page)
Some slightly longer computations in \( B_4 \):

\[
\text{sage: } \bar{W} = \text{CoxeterGroup('B4', implementation='coxeter3')} \quad \text{# optional - coxeter3}
\]

\[
\text{sage: } s1, s2, s3, s4 = \bar{W}.\text{simple_reflections()} \quad \text{# optional - coxeter3}
\]

\[
\text{sage: } s1.\text{kazhdan_lusztig_cell(side='right')} \quad \text{# long time...}
\]

\[(4 \text{ seconds) # optional - coxeter3}
\]

\[
\{[1],
[1, 2],
[1, 2, 3],
[1, 2, 3, 4],
[1, 2, 3, 4, 3],
[1, 2, 3, 4, 3, 2],
[1, 2, 3, 4, 3, 2, 1]}\]

\[
\text{sage: } (s4*s2*s3*s4).\text{kazhdan_lusztig_cell(side='two-sided')} \quad \text{# long time...}
\]

\[(8 \text{ seconds) # optional - coxeter3}
\]

\[
\{[2, 3, 1],
[2, 3, 1, 2],
[2, 3, 4, 1],
[2, 3, 4, 1, 2],
[2, 3, 4, 1, 2, 3],
[2, 3, 4, 1, 2, 3, 4],
[2, 3, 4, 3, 1],
[2, 3, 4, 3, 1, 2],
...
[4, 3, 4, 2, 3, 4, 1, 2, 3, 4]}\]

left_inversions_as_reflections()

Return the set of reflections \( r \) such that \( r \ self < self \).

EXAMPLES:

\[
\text{sage: } \bar{W} = \text{WeylGroup(['A', 3], prefix='s')}
\]

\[
\text{sage: } w = \bar{W}.\text{from_reduced_word([3, 1, 2])}
\]

\[
\text{sage: } w.\text{left_inversions_as_reflections()}
\]

\[
[s1, s3, s1*s2*s3*s2*s1, s2*s3*s2]
\]

length()

Return the length of \( self \).

This is the minimal length of a product of simple reflections giving \( self \).

EXAMPLES:

\[
\text{sage: } \bar{W} = \text{CoxeterGroups().example()}
\]

\[
\text{sage: } s1 = \bar{W}.\text{simple_reflection(1)}
\]

\[
\text{sage: } s2 = \bar{W}.\text{simple_reflection(2)}
\]

\[
\text{sage: } s1.\text{length()}
\]

\[
1
\]

\[
\text{sage: } (s1*s2).\text{length()}
\]

\[
2
\]
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]*s[0]
sage: w.length()
3
sage: W = CoxeterGroups().example()
sage: R.<x> = ZZ[]
sage: s = sum(x^w.length() for w in W)
sage: p = prod(sum(x^i for i in range(j)) for j in range(1, 5))
sage: s - p
0

See also:
reduced_word()

Todo: Should use reduced_word_iterator (or reverse_iterator)

lower_cover_reflections(side='right')
Return the reflections $t$ such that $self$ covers $self t$.
If $side$ is 'left', $self$ covers $t self$.

EXAMPLES:

sage: W = WeylGroup(['A',3],prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.lower_cover_reflections()
[s1*s2*s3*s2*s1, s2, s1]
sage: w.lower_cover_reflections(side='left')
[s2*s3*s2, s3, s1]

lower_covers(side='right', index_set=None)
Return all elements that $self$ covers in weak order.

INPUT:
• side – 'left' or 'right' (default: 'right')
• index_set – a list of indices or None

OUTPUT: a list

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,2,1])

To obtain covers for left weak order, set the option side to 'left':

sage: [x.reduced_word() for x in w.lower_covers(side='left')]
[[2, 1]]
sage: w = W.from_reduced_word([3,2,3,1])
sage: [x.reduced_word() for x in w.lower_covers()]
[[2, 3, 2], [3, 2, 1]]
Covers w.r.t. a parabolic subgroup are obtained with the option `index_set`:

```
sage: [x.reduced_word() for x in w.lower_covers(index_set = [1,2])]
[[2, 3, 2]]
sage: [x.reduced_word() for x in w.lower_covers(side='left')]
[[3, 2, 1], [2, 3, 1]]
```

### `min_demazure_product_greater(element)`

Find the unique Bruhat-minimum element $u$ such that $v \leq w * u$ where $v$ is `self`, $w$ is `element` and `$*$` is the Demazure product.

**INPUT:**
- `element` is either an element of the same Coxeter group as `self` or a list (such as a reduced word) of elements from the index set of the Coxeter group.

**EXAMPLES:**

```
sage: W = WeylGroup(['A',4],prefix="s")
sage: v = W.from_reduced_word([2,3,4,1,2])
sage: u = W.from_reduced_word([2,3,2,1])
sage: v.min_demazure_product_greater(u)
s4*s2
sage: v.min_demazure_product_greater([2,3,2,1])
s4*s2
sage: v.min_demazure_product_greater((2,3,2,1))
s4*s2
```

### `reduced_word()`

Return a reduced word for `self`.

This is a word $[i_1, i_2, \ldots, i_k]$ of minimal length such that $s_{i_1} s_{i_2} \cdots s_{i_k} = \text{self}$, where the $s_i$ are the simple reflections.

**EXAMPLES:**

```
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]*s[2]
sage: w.reduced_word()
[0, 1, 2]
sage: w = s[0]*s[2]
sage: w.reduced_word()
[2, 0]
```

See also:
- `reduced_words()`, `reduced_word_reverse_iterator()`,
- `length()`, `reduced_word_graph()`

### `reduced_word_graph()`

Return the reduced word graph of `self`.

The reduced word graph of an element $w$ in a Coxeter group is the graph whose vertices are the reduced words for $w$ (see `reduced_word()` for a definition of this term), and which has an $m$-colored edge between two reduced words $x$ and $y$ whenever $x$ and $y$ differ by exactly one length-$m$ braid move (with $m \geq 2$).

This graph is always connected (a theorem due to Tits) and has no multiple edges.

**EXAMPLES:**
sage: W = WeylGroup(['A',3], prefix='s')
sage: w0 = W.long_element()
sage: G = w0.reduced_word_graph()
sage: G.num_verts()
16
sage: len(w0.reduced_words())
16
sage: G.num_edges()
18
sage: len([e for e in G.edges() if e[2] == 2])
10
sage: len([e for e in G.edges() if e[2] == 3])
8

See also:
reduced_words(), reduced_word_reverse_iterator(), length(), reduced_word()

reduced_word_reverse_iterator()

Return a reverse iterator on a reduced word for self.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: sigma = s[0]*s[1]*s[2]
sage: ri=sigma.reduced_word_reverse_iterator()
sage: [i for i in ri]
[2, 1, 0]
sage: s[0]*s[1]*s[2]==sigma
True
sage: sigma.length()
3

See also:
reduced_word()

Default implementation: recursively remove the first right descent until the identity is reached (see first_descent() and apply_simple_reflection()).

reduced_words()

Return all reduced words for self.

See reduced_word() for the definition of a reduced word.

The algorithm uses the Matsumoto property that any two reduced expressions are related by braid relations, see Theorem 3.3.1(ii) in [BB2005].

See also:
braid_orbit()

EXAMPLES:
Todo: The result should be full featured finite enumerated set (e.g., counting can be done much faster than iterating).

See also:

reduced_word(), reduced_word_reverse_iterator(), length(), reduced_word_graph()

reflection_length()
Return the reflection length of self.
The reflection length is the length of the shortest expression of the element as a product of reflections.

See also:

absolute_length()

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).reflection_length()
3
sage: W = SymmetricGroup(4)
sage: s = W.simple_reflections()
sage: (s[3]*s[2]*s[3]).reflection_length()
1

**support()**

Return the support of *self*, that is the simple reflections that appear in the reduced expressions of *self*.

**OUTPUT:**

The support of *self* as a set of integers

**EXAMPLES:**

```python
sage: W = CoxeterGroups().example()
sage: w = W.from_reduced_word([1, 2, 1])
sage: w.support()
{1, 2}
```

**upper_covers**(side='right', index_set=None)

Return all elements that cover *self* in weak order.

**INPUT:**

- side – ‘left’ or ‘right’ (default: ‘right’)
- index_set – a list of indices or None

**OUTPUT:** a list

**EXAMPLES:**

```python
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([2, 3])
sage: [x.reduced_word() for x in w.upper_covers()]
[[2, 3, 1], [2, 3, 2]]
```

To obtain covers for left weak order, set the option side to ‘left’:

```python
sage: [x.reduced_word() for x in w.upper_covers(side='left')]
[[1, 2, 3], [2, 3, 2]]
```

Covers w.r.t. a parabolic subgroup are obtained with the option index_set:

```python
sage: [x.reduced_word() for x in w.upper_covers(index_set = [1])]
[[2, 3, 1]]
sage: [x.reduced_word() for x in w.upper_covers(side='left', index_set = [1])]
[[1, 2, 3]]
```

**weak_covers**(side='right', index_set=None, positive=False)

Return all elements that *self* covers in weak order.

**INPUT:**

- side – ‘left’ or ‘right’ (default: ‘right’)
- positive – a boolean (default: False)
- index_set – a list of indices or None

**OUTPUT:** a list
EXAMPLES:

```
sage: W = WeylGroup(['A', 3])
sage: w = W.from_reduced_word([3, 2, 1])
sage: [x.reduced_word() for x in w.weak_covers()]
[[3, 2]]
```

To obtain instead elements that cover self, set `positive=True`:

```
sage: [x.reduced_word() for x in w.weak_covers(positive=True)]
[[3, 1, 2, 1], [2, 3, 2, 1]]
```

To obtain covers for left weak order, set the option side to ‘left’:

```
sage: [x.reduced_word() for x in w.weak_covers(side='left')]
[[2, 1]]
sage: w = W.from_reduced_word([3, 2, 3, 1])
sage: [x.reduced_word() for x in w.weak_covers()]
[[2, 3, 2], [3, 2, 1]]
sage: [x.reduced_word() for x in w.weak_covers(side='left')]
[[3, 2, 1], [2, 3, 1]]
```

Covers w.r.t. a parabolic subgroup are obtained with the option `index_set`:

```
sage: [x.reduced_word() for x in w.weak_covers(index_set = [1, 2])]
[[2, 3, 2]]
```

`weak_le(other, side='right')`

Comparison in weak order.

INPUT:
- `other` – an element of the same Coxeter group
- `side` – ‘left’ or ‘right’ (default: ‘right’)

OUTPUT: a boolean

This returns whether `self <= other` in left (resp. right) weak order, that is if ‘v’ can be obtained from ‘v’ by length increasing multiplication by simple reflections on the left (resp. right).

EXAMPLES:

```
sage: W = WeylGroup(['A', 3])
sage: u = W.from_reduced_word([1, 2])
sage: v = W.from_reduced_word([1, 2, 3, 2])
sage: u.weak_le(u)
True
sage: u.weak_le(v)
True
sage: v.weak_le(u)
False
sage: v.weak_le(v)
True
```

Comparison for left weak order is achieved with the option `side`:

```
sage: u.weak_le(v, side='left')
False
```
The implementation uses the equivalent condition that any reduced word for \( u \) is a right (resp. left) prefix of some reduced word for \( v \).

Complexity: \( O(l \cdot c) \), where \( l \) is the minimum of the lengths of \( u \) and of \( v \), and \( c \) is the cost of the low level methods \( \text{first_descent()}, \text{has_descent()}, \text{apply_simple_reflection()} \), etc. Those are typically \( O(n) \), where \( n \) is the rank of the Coxeter group.

We now run consistency tests with permutations:

```python
sage: W = WeylGroup(['A',3])
sage: P4 = Permutations(4)
sage: def P4toW(w):
 return W.from_reduced_word(w.reduced_word())
sage: for u in P4:
 # long time (5s on sage.math, 2011)
 : for v in P4:
 : assert u.permutohedron_lequal(v) == P4toW(u).weak_le(P4toW(v))
 : assert u.permutohedron_lequal(v, side='left') == P4toW(u).
 \ldots .weak_le(P4toW(v), side='left')
```

### Finite

alias of `sage.categories.finite_coxeter_groups.FiniteCoxeterGroups`

```python
class ParentMethods
 Bases: object

 \textbf{braid_group_as_finitely_presented_group()}

 Return the associated braid group.

 EXAMPLES:

    ```
    sage: W = CoxeterGroup(['A',2])
    sage: W.braid_group_as_finitely_presented_group()
    Finitely presented group < S1, S2 | S1*S2*S1*S2^-1*S1^-1*S2^-1 >
    ```

    ```
    sage: W = WeylGroup(['B',2])
    sage: W.braid_group_as_finitely_presented_group()
    Finitely presented group < S1, S2 | (S1*S2)^2*(S1^-1*S2^-1)^2 >
    ```

    ```
    sage: W = ReflectionGroup(['B',3], index_set=['AA','BB',5])
    # optional ~ gap3
    sage: W.braid_group_as_finitely_presented_group()
    # optional ~ gap3
    Finitely presented group < SAA, SBB, S5 |
    SAA*SBB*SAA*SBB^-1*SAA^-1*SBB^-1, SAA*S5*SAA^-1*S5^-1, SBB*S5)^2*(SBB^-1*S5^-1)^2 >
    ```

 \textbf{braid_orbit(word)}

 Return the braid orbit of a word \(\text{word} \) of indices.

 The input word does not need to be a reduced expression of an element.

 INPUT:
 - \(\text{word} \): a list (or iterable) of indices in \(\text{self.index_set()} \)

 OUTPUT: a list of all lists that can be obtained from \(\text{word} \) by replacements of braid relations

 See \text{braid_relations()} for the definition of braid relations.

 EXAMPLES:
```
sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: word = w.reduced_word(); word
[0, 1, 2, 1]
sage: sorted(W.braid_orbit(word))
[[0, 1, 2, 1], [0, 2, 1, 2], [2, 0, 1, 2]]
sage: sorted(W.braid_orbit([2,1,1,2,1]))
[[1, 2, 1, 1, 2], [2, 1, 1, 2, 1], [2, 1, 2, 1, 2], [2, 2, 1, 2, 2]]
sage: W = ReflectionGroup(['A',3], index_set=['AA','BB',5])  # optional - gap3
˓→gap3
sage: w = W.long_element()
˓→gap3
sage: W.braid_orbit(w.reduced_word())  # optional - gap3
[5, 'BB', 'AA', 5, 'BB', 5], ['BB', 5, 'AA', 'BB', 5, 'AA'],
[5, 'BB', 5, 'AA', 'BB', 5], ['BB', 5, 'AA', 'BB', 5, 'AA'],
[['AA', 'BB', 'AA', 5, 'BB', 'AA'],
[5, 'BB', 'AA', 'BB', 5, 'AA'],
[['BB', 'AA', 5, 'BB', 'AA', 5], ['BB', 'AA', 5, 'BB'], ['BB', 'AA', 5, 'BB', 5],
[5, 'BB', 5, 'BB'], ['BB', 5, 'BB', 'AA', 5, 'BB'],
[['BB', 'AA', 5, 'BB', 'AA', 5, 'BB', 'AA'],
[5, 'AA', 'BB', 5, 'AA', 'BB', 5],
[['AA', 'BB', 5, 'BB', 'AA', 5], ['BB', 'BB', 'AA', 5, 'BB', 5],
[['BB', 'AA', 'BB', 'AA', 5, 'BB'],
[5, 'AA', 'BB', 'AA', 5, 'BB', 5]]]

Todo: The result should be full featured finite enumerated set (e.g., counting can be done much faster
than iterating).

See also:

reduced_words()

braid_relations()

Return the braid relations of self as a list of reduced words of the braid relations.

EXAMPLES:

sage: W = WeylGroup(['A',2])
sage: W.braid_relations()
[[[1, 2, 1], [2, 1, 2]]]
bruhat_graph(x=None, y=None, edge_labels=False)

Return the Bruhat graph as a directed graph, with an edge \( u \rightarrow v \) if and only if \( u < v \) in the Bruhat order, and \( u = r \cdot v \).

The Bruhat graph \( \Gamma(x, y) \), defined if \( x \leq y \) in the Bruhat order, has as its vertices the Bruhat interval \( \{ t | x \leq t \leq y \} \), and as its edges are the pairs \( (u, v) \) such that \( u = r \cdot v \) where \( r \) is a reflection, that is, a conjugate of a simple reflection.

REFERENCES:


EXAMPLES:

```
sage: W = CoxeterGroup(['H',3])
sage: W.bruhat_graph(); G
Digraph on 120 vertices

sage: W = CoxeterGroup(['A',2,1])
sage: s1, s2, s3 = W.simple_reflections()
sage: W.bruhat_graph(s1, s1*s3*s2*s3)
Digraph on 6 vertices

sage: W.bruhat_graph(s1, s3*s2*s3)
Digraph on 0 vertices

sage: W = WeylGroup("A3", prefix="s")
sage: s1, s2, s3 = W.simple_reflections()
sage: G = W.bruhat_graph(s1*s3, s1*s2*s3*s2*s1); G
Digraph on 10 vertices

Check that the graph has the correct number of edges (see trac ticket #17744):

```
sage: len(G.edges())
16
```

bruhat_interval(x, y)

Return the list of \(t \) such that \(x \leq t \leq y \).

EXAMPLES:

```
sage: W = WeylGroup("A3", prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: W.bruhat_interval(s2,s1*s3*s2*s1)
[s1*s2*s3*s2*s1, s2*s3*s2*s1, s3*s1*s2*s1, s1*s2*s3*s1, s1*s2*s3*s2, s3*s1*s2, s2*s3*s1, s2*s3*s2, s1*s2*s1, s3*s1*s2, s1*s2*s3, s2*s1, s3*s2, s2*s3, s1*s2, s2]
sage: W = WeylGroup(['A',2,1], prefix="s")
sage: [s0,s1,s2] = W.simple_reflections()
```

(continues on next page)
sage: W.bruhat_interval(1, s0*s1*s2)
[s0*s1*s2, s1*s2, s0*s2, s0*s1, s2, s1, s0, 1]

bruhat_interval_poset(x, y, facade=False)
Return the poset of the Bruhat interval between x and y in Bruhat order.

EXAMPLES:

sage: W = WeylGroup("A3", prefix="s")
sage: s1, s2, s3 = W.simple_reflections()
sage: W.bruhat_interval_poset(s2, s1*s3*s2*s1*s3)
Finite poset containing 16 elements

sage: W = WeylGroup(["A", 2, 1], prefix="s")
sage: s0, s1, s2 = W.simple_reflections()
sage: W.bruhat_interval_poset(1, s0*s1*s2)
Finite poset containing 8 elements

canonical_representation()
Return the canonical faithful representation of self.

EXAMPLES:

sage: W = WeylGroup("A3")
sage: W.canonical_representation()
Finite Coxeter group over Integer Ring with Coxeter matrix:
[1 3 2]
[3 1 3]
[2 3 1]

coxeter_diagram()
Return the Coxeter diagram of self.

EXAMPLES:

sage: W = CoxeterGroup(["H", 3], implementation="reflection")
sage: G = W.coxeter_diagram(); G
Graph on 3 vertices
sage: G.edges()
[(1, 2, 3), (2, 3, 5)]
sage: CoxeterGroup(G) is W
True
sage: G = Graph([(0, 1, 3), (1, 2, oo)])
sage: W = CoxeterGroup(G)
sage: W.coxeter_diagram() == G
True
sage: CoxeterGroup(W.coxeter_diagram()) is W
True

coxeter_element()
Return a Coxeter element.

The result is the product of the simple reflections, in some order.

Note: This implementation is shared with well generated complex reflection groups. It would be
nicer to put it in some joint super category; however, in the current state of the art, there is none where it is clear that this is the right construction for obtaining a Coxeter element.

In this context, this is an element having a regular eigenvector (a vector not contained in any reflection hyperplane of self).

EXAMPLES:

```sage
coxeter_matrix()
Return the Coxeter matrix associated to self.
EXAMPLES:

```sage
```
sage: W = CoxeterGroup(['H', 3])
sage: W.coxeter_type()
Coxeter type of ['H', 3]

demazure_product(Q)
Return the Demazure product of the list Q in self.

INPUT:
- Q is a list of elements from the index set of self.

This returns the Coxeter group element that represents the composition of 0-Hecke or Demazure operators.


EXAMPLES:

```
sage: W = WeylGroup(['A', 2])
sage: w = W.demazure_product([2, 2, 1])
sage: w.reduced_word()
[2, 1]
sage: w = W.demazure_product([2, 1, 2, 1, 2])
sage: w.reduced_word()
[1, 2, 1]
sage: W = WeylGroup(['B', 2])
sage: w = W.demazure_product([2, 1, 2, 1, 2])
sage: w.reduced_word()
[2, 1, 2, 1]
```

elements_of_length(n)
Return all elements of length n.

EXAMPLES:

```
sage: A = AffinePermutationGroup(['A', 2, 1])
sage: [len(list(A.elements_of_length(i))) for i in [0..5]]
[1, 3, 6, 9, 12, 15]
sage: W = CoxeterGroup(['H', 3])
sage: [len(list(W.elements_of_length(i))) for i in range(4)]
[1, 3, 5, 7]
sage: W = CoxeterGroup(['A', 2])
sage: [len(list(W.elements_of_length(i))) for i in range(6)]
[1, 2, 2, 1, 0, 0]
```

fully_commutative_elements()
Return the set of fully commutative elements in this Coxeter group.

See also:
- `FullyCommutativeElements`

EXAMPLES:
grassmannian_elements(side='right')

Return the left or right Grassmannian elements of self as an enumerated set.

INPUT:
• side – (default: "right") "left" or "right"

EXAMPLES:

```sage
S = CoxeterGroups().example()
G = S.grassmannian_elements()
G.cardinality()
12
G.list()
[(0, 1, 2, 3), (1, 0, 2, 3), (0, 2, 1, 3), (0, 1, 3, 2),
 (2, 0, 1, 3), (1, 2, 0, 3), (0, 3, 1, 2), (0, 2, 3, 1),
 (3, 0, 1, 2), (1, 3, 0, 2), (1, 2, 0, 3), (2, 1, 3, 0), (2, 3, 0, 1)]
```

```sage
sorted(tuple(w.descents()) for w in G)
[(0,), (0,), (0,), (0,), (1,), (1,), (1,), (1,), (1,), (1,), (2,), (2,), (2,)]
```

index_set()

Return the index set of self.

EXAMPLES:

```sage
W = CoxeterGroup([[1,3],[3,1]])
W.index_set()
(1, 2)
```

```sage
W = CoxeterGroup([[1,3],[3,1]], index_set=['x', 'y'])
W.index_set()
('x', 'y')
```

```sage
W = CoxeterGroup(['H',3])
W.index_set()
(1, 2, 3)
```
We compute the right cells in the Coxeter group of type $A_2$ below. Note that each Coxeter group may be created with multiple implementations, namely, ‘reflection’ (default), ‘permutation’, ‘matrix’, or ‘coxeter3’. The choice of implementation affects the representation of elements in the output cells but not the method used for the cell computation:

```
sage: W = CoxeterGroup('A2')
sage: KL_cells = W.kazhdan_lusztig_cells(side='right')
sage: set([tuple(sorted(C, key=lambda w: w.reduced_word()))
 for C in KL_cells])
{(
 [-1 1]
 [0 -1],
 [1 1]
),
 (
 [0 -1]
 [-1 0],
 [1 0]
),
 (
 [1 0]
 [0 1]
),
 (
 [1 0]
 [-1 1],
 [1 -1],
 [1 0])
})
sage: len(KL_cells)
4
sage: W = CoxeterGroup('A2', implementation='permutation')
sage: len(W.kazhdan_lusztig_cells(side='right'))
4
```

We compute the left cells in the Coxeter group of type $A_3$ below. If the optional package coxeter3 is installed, it runs in the background even if the group is not created with the 'coxeter3' implementation:

```
sage: W = CoxeterGroup('A3', implementation='coxeter3') # optional ~
.sage: KL_cells = W.kazhdan_lusztig_cells() # optional ~
sage: set([tuple(sorted(C)) for C in KL_cells]) # optional ~
{([]),
 ([1], [2, 1], [3, 2, 1]),
 ([1, 2], [2], [3, 2]),
 ([1, 2, 1], [1, 3, 2, 1], [2, 1, 3, 2, 1]),
 ([1, 2, 1, 3], [1, 2, 3, 2, 1], [2, 3, 2, 1]),
 ([1, 2, 1, 3, 2], [1, 2, 3, 2], [2, 3, 2]),
 ([1, 2, 1, 3, 2, 1]),
 ([1, 2, 3], [2, 3], [3]),
 ([1, 3], [2, 1, 3]),
 ([1, 3, 2], [2, 1, 3, 2])
}sage: len(KL_cells) # optional ~
```

(continues on next page)
Computing the two sided cells in $B_3$:

```python
sage: W = CoxeterGroup('B3', implementation='coxeter3') # optional - coxeter3
sage: b3_cells = W.kazhdan_lusztig_cells('two-sided') # optional - coxeter3
sage: len(b3_cells) # optional - coxeter3
6
sage: set([tuple(sorted(C)) for C in W.kazhdan_lusztig_cells()]) # optional - coxeter3
{(1, 2, 3, 2, 1), (1, 2, 3, 2, 1, 2), (1, 2, 3, 2, 1, 2, 3), ...
```

**random_element_of_length(n)**

Return a random element of length n in self.

Starts at the identity, then chooses an upper cover at random.

Not very uniform: actually constructs a uniformly random reduced word of length n. Thus we most likely get elements with lots of reduced words!

EXAMPLES:
```
sage: A = AffinePermutationGroup(['A', 7, 1])
sage: p = A.random_element_of_length(10)
sage: p in A
True
sage: p.length() == 10
True

sage: W = CoxeterGroup(['A', 4])
sage: p = W.random_element_of_length(5)
sage: p in W
True
sage: p.length() == 5
True
```

**sign_representation**(*base_ring=None, side='twosided')

Return the sign representation of self over base_ring.

**INPUT:**
- `base_ring` – (optional) the base ring; the default is \(\mathbb{Z}\)
- `side` – ignored

**EXAMPLES:**
```
sage: W = WeylGroup(['A', 1, 1])
sage: W.sign_representation()
Sign representation of Weyl Group of type ['A', 1, 1] (as a matrix group acting on the root space) over Integer Ring
```

**simple_projection**(*i, side='right', length_increasing=True*)

Return the simple projection \(\pi_i\) (or \(\pi_i\) if \(\text{length}\_\text{increasing}\) is False).

**INPUT:**
- `i` - an element of the index set of self

See **simple_projections()** for the options and for the definition of the simple projections.

**EXAMPLES:**
```
sage: W = CoxeterGroups().example()
sage: W
The symmetric group on \{0, ..., 3\}
sage: s = W.simple_reflections()
sage: sigma = W.an_element()
sage: sigma
(1, 2, 3, 0)
sage: u0 = W.simple_projection(0)
sage: d0 = W.simple_projection(0, length_increasing=False)
sage: sigma.length()
3
sage: pi= sigma*s[0]
sage: pi.length()
4
sage: u0(sigma)
(2, 1, 3, 0)
sage: pi
(2, 1, 3, 0)
```
simple_projections\( (side=\text{\textquoteleft right\textquoteright}, \text{\textquoteleft length\_increasing\textquoteright}=\text{\texttrue}) \)

Return the family of simple projections, also known as 0-Hecke or Demazure operators.

**INPUT:**

- `self` – a Coxeter group \( W \)
- `side` – ‘left’ or ‘right’ (default: ‘right’)
- `\text{\textquoteleft length\_increasing\textquoteright}` – a boolean (default: \texttrue) specifying whether the operator increases or decreases length

This returns the simple projections of \( W \), as a family.

To each simple reflection \( s_i \) of \( W \), corresponds a simple projection \( \pi_i \) from \( W \) to \( W \) defined by:

\[ \pi_i(w) = ws_i \] if \( i \) is not a descent of \( w \)

\[ \pi_i(w) = w \] otherwise.

The simple projections \( (\pi_i)_{i \in I} \) move elements down the right permutohedron, toward the maximal element. They satisfy the same braid relations as the simple reflections, but are idempotents \( \pi_i^2 = \pi \) not involutions \( s_i^2 = 1 \). As such, the simple projections generate the 0-Hecke monoid.

By symmetry, one can also define the projections \( (\pi_i)_{i \in I} \) (when the option \text{\textquoteleft length\_increasing\textquoteright} is False):

\[ \pi_i(w) = ws_i \] if \( i \) is a descent of \( w \)

\[ \pi_i(w) = w \] otherwise.

as well as the analogues acting on the left (when the option `side` is ‘left’).

**EXAMPLES:**

\begin{verbatim}
sage: W = CoxeterGroups().example(); W
The symmetric group on \{0, ..., 3\}
sage: s = W.simple_reflections()
sage: sigma = W.an_element(); sigma
(1, 2, 3, 0)
sage: pi = W.simple_projections(); pi
Finite family \{0: <function ...<lambda> at ...>, 1: <function ...<lambda> \text{\textat} ...>, 2: <function ...<lambda> ...}\}
sage: pi[1](sigma)
(1, 3, 2, 0)
sage: W.simple_projection(1)(sigma)
(1, 3, 2, 0)
\end{verbatim}

**standard_coxeter_elements()**

Return all standard Coxeter elements in `self`.

This is the set of all elements in `self` obtained from any product of the simple reflections in `self`.

**Note:**

- `self` is assumed to be well-generated.
- This works even beyond real reflection groups, but the conjugacy class is not unique and we only obtain one such class.

**EXAMPLES:**

\begin{verbatim}
\end{verbatim}
\begin{verbatim}
sage: W = ReflectionGroup(4) # optional - gap3
sage: sorted(W.standard_coxeter_elements()) # optional - gap3
[(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13),
 (1,10,4,12,21,22)(2,11,19,24,13,3)(5,15,7,17,16,23)(6,18,8,20,14,9)]
\end{verbatim}

\textbf{weak_order_ideal}(\textit{predicate}, \textit{side}=\textquoteleft right\textquoteright, \textit{category}=\texttt{None})

Return a weak order ideal defined by a predicate

\textbf{INPUT:}
\begin{itemize}
  \item \textit{predicate}: a predicate on the elements of \texttt{self} defining an weak order ideal in \texttt{self}
  \item \textit{side}: \text{“left”} or \text{“right”} (default: \texttt{“right”})
\end{itemize}

\textbf{OUTPUT:} an enumerated set

\textbf{EXAMPLES:}

\begin{verbatim}
sage: D6 = FiniteCoxeterGroups().example(5)
sage: I = D6.weak_order_ideal(predicate = lambda w: w.length() <= 3)
sage: I.cardinality()
7
sage: list(I)
[(], (1,), (2,), (1, 2), (2, 1), (1, 2, 1), (2, 1, 2)]
\end{verbatim}

We now consider an infinite Coxeter group:

\begin{verbatim}
sage: W = WeylGroup([\textquoteleft A\textquoteright,1,1])
sage: I = W.weak_order_ideal(predicate = lambda w: w.length() <= 2)
sage: list(iter(I))
[ [1 0] [-1 2] [ 1 0] [ 3 -2] [-1 2]
 [0 1], [ 0 1], [ 2 -1], [ 2 -1], [-2 3]
]
\end{verbatim}

Even when the result is finite, some features of \texttt{FiniteEnumeratedSets} are not available:

\begin{verbatim}
sage: I.cardinality() # todo: not implemented
5
sage: list(I) # todo: not implemented
\end{verbatim}

unless this finiteness is explicitly specified:

\begin{verbatim}
sage: I = W.weak_order_ideal(predicate = lambda w: w.length() <= 2, category = FiniteEnumeratedSets())
sage: I.cardinality()
5
sage: list(I)
[ [1 0] [-1 2] [ 1 0] [ 3 -2] [-1 2]
 [0 1], [ 0 1], [ 2 -1], [ 2 -1], [-2 3]
]  
\end{verbatim}
Background

The weak order is returned as a `RecursivelyEnumeratedSet_forest`. This is achieved by assigning to each element \( u_1 \) of the ideal a single ancestor \( u = u_1 s_i \), where \( i \) is the smallest descent of \( u \).

This allows for iterating through the elements in roughly Constant Amortized Time and constant memory (taking the operations and size of the generated objects as constants).

**additional_structure()**

Return None.

Indeed, all the structure Coxeter groups have in addition to groups (simple reflections, ...) is already defined in the super category.

See also:

`Category.additional_structure()`

**EXAMPLES:**

```python
sage: CoxeterGroups().additional_structure()
```

**super_categories()**

**EXAMPLES:**

```python
sage: CoxeterGroups().super_categories()
[Category of generalized coxeter groups]
```

### 4.31 Crystals

**class** `sage.categories.crystals.CrystalHomset(X, Y, category=None)`

**Bases:** `sage.categories.homset.Homset`

The set of crystal morphisms from one crystal to another.

An \( U_q(g) \) \( I \)-crystal morphism \( \Psi : B \to C \) is a map \( \Psi : B \cup \{0\} \to C \cup \{0\} \) such that:

- \( \Psi(0) = 0 \).

- If \( b \in B \) and \( \Psi(b) \in C \), then \( wt(\Psi(b)) = wt(b) \), \( \varepsilon_i(\Psi(b)) = \varepsilon_i(b) \), and \( \varphi_i(\Psi(b)) = \varphi_i(b) \) for all \( i \in I \).

- If \( b, b' \in B \), \( \Psi(b), \Psi(b') \in C \) and \( f_i b = b' \), then \( f_i \Psi(b) = \Psi(b') \) and \( \Psi(b) = e_i \Psi(b') \) for all \( i \in I \).

If the Cartan type is unambiguous, it is suppressed from the notation.

We can also generalize the definition of a crystal morphism by considering a map of \( \sigma \) of the (now possibly different) Dynkin diagrams corresponding to \( B \) and \( C \) along with scaling factors \( \gamma_i \in \mathbb{Z} \) for \( i \in I \). Let \( \sigma_i \) denote the orbit of \( i \) under \( \sigma \). We write objects for \( B \) as \( X \) with corresponding objects of \( C \) as \( \hat{X} \). Then a virtual crystal morphism \( \Psi \) is a map such that the following holds:

- \( \Psi(0) = 0 \).

- If \( b \in B \) and \( \Psi(b) \in C \), then for all \( j \in \sigma_i \):

\[
\varepsilon_i(b) = \frac{1}{\gamma_{ij}} \hat{\varepsilon}_{ij}(\Psi(b)), \quad \varphi_i(b) = \frac{1}{\gamma_{ij}} \hat{\varphi}_{ij}(\Psi(b)), \quad wt(\Psi(b)) = \sum_i c_i \sum_{j \in \sigma_i} \gamma_{ij} \Lambda_j,
\]

where \( wt(b) = \sum_i c_i \Lambda_i \).
• If \( b, b' \in B \), \( \Psi(b), \Psi(b') \in C \) and \( f_i b = b' \), then independent of the ordering of \( \sigma_i \) we have:

\[
\Psi(b') = e_i \Psi(b) = \prod_{j \in \sigma_i} \tilde{e}_j^t \Psi(b), \quad \Psi(b') = f_i \Psi(b) = \prod_{j \in \sigma_i} \tilde{f}_j^t \Psi(b).
\]

If \( \gamma_i = 1 \) for all \( i \in I \) and the Dynkin diagrams are the same, then we call \( \Psi \) a twisted crystal morphism.

INPUT:
• \( X \) – the domain
• \( Y \) – the codomain
• category – (optional) the category of the crystal morphisms

See also:
For the construction of an element of the homset, see \texttt{CrystalMorphismByGenerators} and \texttt{crystal_morphism()}. 

EXAMPLES:
We begin with the natural embedding of \( B(2\Lambda_1) \) into \( B(\Lambda_1) \otimes B(\Lambda_1) \) in type \( A_1 \):

```python
sage: B = crystals.Tableaux(['A',1], shape=[2])
sage: F = crystals.Tableaux(['A',1], shape=[1])
sage: T = crystals.TensorProduct(F,F)
sage: v = T.highest_weight_vectors()[0]; v
[[], []]
sage: H = Hom(B, T)
sage: psi = H([v])
sage: b = B.highest_weight_vector(); b
[[1, 1]]
sage: psi(b)
[[], []]
sage: b.f(1)
[[1, 2]]
sage: psi(b.f(1))
[[[1], []], [[2]]]
```

We now look at the decomposition of \( B(\Lambda_1) \otimes B(\Lambda_1) \) into \( B(2\Lambda_1) \oplus B(0) \):

```python
sage: B0 = crystals.Tableaux(['A',1], shape=[])
sage: D = crystals.DirectSum([B, B0])
sage: H = Hom(T, D)
sage: psi = H(D.module_generators)
sage: psi.
['A', 1] Crystal morphism:
 From: Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 1] and shape(s) [[1]],
 The crystal of tableaux of type ['A', 1] and shape(s) [[1]]]
 To: Direct sum of the crystals Family
 (The crystal of tableaux of type ['A', 1] and shape(s) [[2]],
 The crystal of tableaux of type ['A', 1] and shape(s) [[]])
 Defn: [[[[1], []]], [[[1]]]] |--> [[1, 1]]
 [[[2]], [[1]]] |--> []
sage: psi.is_isomorphism()
True
```
We can always construct the trivial morphism which sends everything to 0:

```
sage: Binf = crystals.infinity.Tableaux(['B', 2])
sage: B = crystals.Tableaux(['B', 2], shape=[1])
sage: H = Hom(Binf, B)
sage: psi = H(lambda x: None)
sage: psi(Binf.highest_weight_vector())
```

For Kirillov-Reshetikhin crystals, we consider the map to the corresponding classical crystal:

```
sage: K = crystals.KirillovReshetikhin(['D', 4, 1], 2, 1)
sage: B = K.classical_decomposition()
sage: H = Hom(K, B)
sage: psi = H(lambda x: x.lift(), cartan_type=['D', 4])
sage: L = [psi(mg) for mg in K.module_generators]; L
[[], [[1], [2]]]
sage: all(x.parent() == B for x in L)
True
```

Next we consider a type $D_4$ crystal morphism where we twist by $3 \leftrightarrow 4$:

```
sage: B = crystals.Tableaux(['D', 4], shape=[1])
sage: H = Hom(B, B)
sage: d = {1:1, 2:2, 3:4, 4:3}
sage: psi = H(B.module_generators, automorphism=d)
sage: b = B.highest_weight_vector()
sage: b.f_string([1, 2, 3])
[[4]]
sage: b.f_string([1, 2, 4])
[[4]]
sage: psi(b.f_string([1, 2, 3]))
[[4]]
sage: psi(b.f_string([1, 2, 4]))
[[4]]
```

We construct the natural virtual embedding of a type $B_3$ into a type $D_4$ crystal:

```
sage: B = crystals.Tableaux(['B', 3], shape=[1])
sage: C = crystals.Tableaux(['D', 4], shape=[2])
sage: H = Hom(B, C)
sage: psi = H(C.module_generators)
sage: psi
['B', 3] -> ['D', 4] Virtual Crystal morphism:
 From: The crystal of tableaux of type ['B', 3] and shape(s) [[1]]
 To: The crystal of tableaux of type ['D', 4] and shape(s) [[2]]
 Defn: [[1]] |--> [[1, 1]]
sage: for b in B: print("{} |--> {}".format(b, psi(b)))
[[1]] |--> [[1, 1]]
[[2]] |--> [[2, 2]]
[[3]] |--> [[3, 3]]
[[0]] |--> [[3, -3]]
[[-3]] |--> [[-3, -3]]
[[2]] |--> [[-2, -2]]
[[-1]] |--> [[-1, -1]]
```
Element
alias of CrystalMorphismByGenerators

class sage.categories.crystals.CrystalMorphism

Bases: sage.categories.morphism.Morphism

A crystal morphism.

INPUT:

• parent – a homset
• cartan_type – (optional) a Cartan type; the default is the Cartan type of the domain
• virtualization – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain
• scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, $\varepsilon$ and $\varphi$

cartan_type()

Return the Cartan type of self.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: psi = Hom(B, B).an_element()
sage: psi.cartan_type()
['A', 2]
```

is_injective()

Return if self is an injective crystal morphism.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: psi = Hom(B, B).an_element()
sage: psi.is_injective()
False
```

is_surjective()

Check if self is a surjective crystal morphism.

EXAMPLES:

```python
sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_surjective()
False
sage: im_gens = [None, B.module_generators[0]]
sage: psi = C.crystal_morphism(im_gens, codomain=B)
sage: psi.is_surjective()
True
```

(continues on next page)
```python
sage: W = crystals.elementary.T(['A',2], La[1]+La[2])
sage: T = W.tensor(B)
sage: mg = T(W.module_generators[0], B.module_generators[0])
sage: psi = Hom(C,T)([mg])
sage: psi.is_surjective()
False
```

The scaling factors $\gamma_i$.

**EXAMPLES:**

```python
sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: psi = B.crystal_morphism(C.module_generators)
sage: psi.scaling_factors()
Finite family {1: 2, 2: 2, 3: 1}
```

The virtualization sets $\sigma_i$.

**EXAMPLES:**

```python
sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: psi = B.crystal_morphism(C.module_generators)
sage: psi.virtualization()
Finite family {1: (1,), 2: (2,), 3: (3, 4)}
```

class `sage.categories.crystals.CrystalMorphismByGenerators`(*parent, on_gens*, *cartan_type=None, virtualization=None, scaling_factors=None, gens=None, check=True)

Bases: `sage.categories.crystals.CrystalMorphism`

A crystal morphism defined by a set of generators which create a virtual crystal inside the codomain.

**INPUT:**

- *parent* – a homset
- *on_gens* – a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of the domain under `self`
- *cartan_type* – (optional) a Cartan type; the default is the Cartan type of the domain
- *virtualization* – (optional) a dictionary whose keys are in the Cartan type of the domain and whose values are lists of entries in the index set of the codomain
- *scaling_factors* – (optional) a dictionary whose keys are in the Cartan type of the domain and whose values are scaling factors for the weight, $\varepsilon$ and $\varphi$
- *gens* – (optional) a finite list of generators to define the morphism; the default is to use the highest weight vectors of the crystal
- *check* – (default: `True`) check if the crystal morphism is valid

**See also:**

`sage.categories.crystals.Crystals.ParentMethods.crystal_morphism()`
im_gens()

Return the image of the generators of self as a tuple.

EXAMPLES:

```
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: F = crystals.Tableaux(['A',2], shape=[1])
sage: T = crystals.TensorProduct(F, F, F)
sage: H = Hom(T, B)
sage: b = B.highest_weight_vector()
sage: psi = H((None, b, b, None), generators=T.highest_weight_vectors())
sage: psi.im_gens()
(None, [[1, 1], [2]], [[1, 1], [2]], None)
```

image()

Return the image of self in the codomain as a Subcrystal.

**Warning:** This assumes that self is a strict crystal morphism.

EXAMPLES:

```
sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: H = Hom(B, C)
sage: psi = H(C.module_generators)
sage: psi.image()
Virtual crystal of The crystal of tableaux of type ['D', 4] and shape(s) [[2]] of type ['B', 3]
```

to_module_generator(x)

Return a generator mg and a path of \(e_i\) and \(f_i\) operations to mg.

**OUTPUT:**

A tuple consisting of:

- a module generator,
- a list of 'e' and 'f' to denote which operation, and
- a list of matching indices.

EXAMPLES:

```
sage: B = crystals.elementary.Elementary(['A',2], 2)
sage: psi = B.crystal_morphism(B.module_generators)
sage: psi.to_module_generator(B(4))
(0, ['f', 'f', 'f', 'f'], [2, 2, 2, 2])
sage: psi.to_module_generator(B(-2))
(0, ['e', 'e'], [2, 2])
```

class sage.categories.crystals.Crystals(s=None)

Bases: sage.categories.category_singleton.Category_singleton

The category of crystals.

See `sage.combinat.crystals.crystals` for an introduction to crystals.
EXAMPLES:

```python
sage: C = Crystals()
sage: C
Category of crystals
sage: C.super_categories()
[Category of... enumerated sets]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1
```

Parents in this category should implement the following methods:

- either an attribute `_cartan_type` or a method `cartan_type`
- `module_generators`: a list (or container) of distinct elements which generate the crystal using $f_i$

Furthermore, their elements $x$ should implement the following methods:

- $x.e(i)$ (returning $e_i(x)$)
- $x.f(i)$ (returning $f_i(x)$)
- $x.epsilon(i)$ (returning $\varepsilon_i(x)$)
- $x.phi(i)$ (returning $\phi_i(x)$)

EXAMPLES:

```python
sage: from sage.misc.abstract_method import abstract_methods_of_class
sage: abstract_methods_of_class(Crystals().element_class)
{'optional': [], 'required': ['e', 'epsilon', 'f', 'phi', 'weight']}
```

```python
class ElementMethods
 Bases: object
 Epsilon()
 EXAMPLES:

 sage: C = crystals.Letters(['A',5])
sage: C(0).Epsilon()
(0, 0, 0, 0, 0)
sage: C(1).Epsilon()
(0, 0, 0, 0, 0)
sage: C(2).Epsilon()
(1, 0, 0, 0, 0)

 Phi()
 EXAMPLES:

 sage: C = crystals.Letters(['A',5])
sage: C(0).Phi()
(0, 0, 0, 0, 0)
sage: C(1).Phi()
(1, 0, 0, 0, 0)
sage: C(2).Phi()
(1, 1, 0, 0, 0)
```

```python
all_paths_to_highest_weight(index_set=None)
 Iterate over all paths to the highest weight from self with respect to index_set.
```
INPUT:
• `index_set` – (optional) a subset of the index set of `self`

EXAMPLES:

```python
sage: B = crystals.infinity.Tableaux("A2")
sage: b0 = B.highest_weight_vector()
sage: b = b0.f_string([1, 2, 1, 2])
sage: L = b.all_paths_to_highest_weight()
sage: list(L)
[[2, 1, 2, 1], [2, 2, 1, 1]]
```

```python
sage: Y = crystals.infinity.GeneralizedYoungWalls(3)
sage: y0 = Y.highest_weight_vector()
sage: y = y0.f_string([0, 1, 2, 3, 2, 1, 0])
sage: list(y.all_paths_to_highest_weight())
[[0, 1, 2, 3, 2, 1, 0], [0, 1, 3, 2, 2, 1, 0], [0, 3, 1, 2, 2, 1, 0], [0, 3, 2, 1, 1, 0, 2], [0, 3, 2, 1, 1, 2, 0]]
```

```python
sage: B = crystals.Tableaux("A3", shape=[4, 2, 1])
sage: b0 = B.highest_weight_vector()
sage: b = b0.f_string([1, 1, 2, 3])
sage: list(b.all_paths_to_highest_weight())
[[1, 3, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1]]
```

cartan_type()

Returns the Cartan type associated to `self`

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 5])
sage: C(1).cartan_type()
['A', 5]
```

e(i)

Return \(e_i\) of `self` if it exists or `None` otherwise.

This method should be implemented by the element class of the crystal.

EXAMPLES:

```python
sage: C = Crystals().example(5)
sage: x = C[2]; x
3
sage: x.e(1), x.e(2), x.e(3)
(None, 2, None)
```

e_string(list)

Applies \(e_{i_1} \cdots e_{i_r}\) to self for `list` as \([i_1, \ldots, i_r]\)

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 3])
sage: b = C(3)
```

(continues on next page)
### epsilon(i)

**EXAMPLES:**

```
sage: C = crystals.Letters(['A',5])
sage: C(1).epsilon(1)
0
sage: C(2).epsilon(1)
1
```

### f(i)

Return $f_i$ of self if it exists or None otherwise.

This method should be implemented by the element class of the crystal.

**EXAMPLES:**

```
sage: C = Crystals().example(5)
sage: x = C[1]; x
2
sage: x.f(1), x.f(2), x.f(3)
(None, 3, None)
```

### f_string(list)

Applies $f_{i_r} \cdots f_{i_1}$ to self for list as $[i_1, \ldots, i_r]$

**EXAMPLES:**

```
sage: C = crystals.Letters(['A',3])
sage: b = C(1)
sage: b.f_string([1,2])
3
sage: b.f_string([2,1])
```

### index_set()

**EXAMPLES:**

```
sage: C = crystals.Letters(['A',5])
sage: C(1).index_set()
(1, 2, 3, 4, 5)
```

### is_highest_weight(index_set=None)

Returns True if self is a highest weight. Specifying the option index_set to be a subset $I$ of the index set of the underlying crystal, finds all highest weight vectors for arrows in $I$.

**EXAMPLES:**

```
sage: C = crystals.Letters(['A',5])
sage: C(1).is_highest_weight()
True
sage: C(2).is_highest_weight()
False
```
sage: C(2).is_highest_weight(index_set = [2,3,4,5])
True

is_lowest_weight(index_set=None)
Returns True if self is a lowest weight. Specifying the option index_set to be a subset $I$ of the index set of the underlying crystal, finds all lowest weight vectors for arrows in $I$.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).is_lowest_weight()
False
sage: C(6).is_lowest_weight()
True
sage: C(4).is_lowest_weight(index_set = [1,3])
True

phi(i)
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi(1)
1
sage: C(2).phi(1)
0

phi_minus_epsilon(i)
Return $\varphi_i - \varepsilon_i$ of self.

There are sometimes better implementations using the weight for this. It is used for reflections along a string.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi_minus_epsilon(1)
1

s(i)
Return the reflection of self along its $i$-string.

EXAMPLES:

sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: b = C(rows=[[1,1],[3]])
sage: b.s(1)
[[2, 2], [3]]
sage: b = C(rows=[[1,2],[3]])
sage: b.s(2)
[[1, 2], [3]]
sage: T = crystals.Tableaux(['A',2],shape=[4])
sage: t = T(rows=[[1,2,2,2]])
sage: t.s(1)
[[1, 1, 1, 2]]
**subcrystal** *(index_set=None, max_depth=inf, direction='both', contained=None, cartan_type=None, category=None)*

Construct the subcrystal generated by *self* using $e_i$ and/or $f_i$ for all $i$ in *index_set*.

**INPUT:**
- *index_set* – (default: None) the index set; if None then use the index set of the crystal
- *max_depth* – (default: infinity) the maximum depth to build
- *direction* – (default: 'both') the direction to build the subcrystal; it can be one of the following:
  - 'both' - using both $e_i$ and $f_i$
  - 'upper' - using $e_i$
  - 'lower' - using $f_i$
- *contained* – (optional) a set (or function) defining the containment in the subcrystal
- *cartan_type* – (optional) specify the Cartan type of the subcrystal
- *category* – (optional) specify the category of the subcrystal

**See also:**
- *Crystals.ParentMethods.subcrystal()*

**EXAMPLES:**

```python
sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2)
sage: elt = C(1,4)
sage: list(elt.subcrystal(index_set=[1,3]))
[[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], max_depth=1))
[[[1, 4]], [[2, 4]], [[1, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], direction='upper'))
[[[1, 4]], [[1, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], direction='lower'))
[[[1, 4]], [[2, 4]]]
```

**tensor**(elts)

Return the tensor product of *self* with the crystal elements *elts*.

**EXAMPLES:**

```python
sage: C = crystals.Letters(['A', 3])
sage: B = crystals.infinity.Tableaux(['A', 3])
sage: c = C[0]
sage: b = B.highest_weight_vector()
sage: t = c.tensor(b)
sage: ascii_art(t)
1 1 1
1 # 1 # 2 2
3
sage: tensor([c, c, b]) == t
True
sage: ascii_art(tensor([b, b, c]))
1 1 1 1 1 1
2 2 # 2 2 # 1
3 3
```

**to_highest_weight**(index_set=None)

Return the highest weight element $u$ and a list $[i_1, \ldots, i_k]$ such that *self* = $f_{i_1} \ldots f_{i_k} u$, where $i_1, \ldots, i_k$ are elements in *index_set*. By default the index set is assumed to be the full index set of *self*.

**EXAMPLES:**

4.31. Crystals 285
sage: T = crystals.Tableaux(['A',3], shape = [1])
sage: t = T(rows = [[3]])
sage: t.to_highest_weight()
[[[1]], [2, 1]]
sage: T = crystals.Tableaux(['A',3], shape = [2,1])
sage: t = T(rows = [[1,2],[4]]))
sage: t.to_highest_weight()
[[[1], [2]], [1, 3, 2]]
sage: t.to_highest_weight(index_set = [3])
[[[1, 2], [3]], [3]]
sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: t = K(rows=[[2],[3]]); t.to_highest_weight(index_set=[1])
[[[1], [3]], [1]]
sage: t.to_highest_weight()
Traceback (most recent call last): ...
ValueError: This is not a highest weight crystals!

to_lowest_weight(index_set=None)
Return the lowest weight element u and a list [i_1, ..., i_k] such that self = e_{i_1}...e_{i_k}u, where i_1, ..., i_k are elements in index_set. By default the index set is assumed to be the full index set of self.

EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape = [1])
sage: t = T(rows = [[3]])
sage: t.to_lowest_weight()
[[[4]], [3]]
sage: T = crystals.Tableaux(['A',3], shape = [2,1])
sage: t = T(rows = [[1,2],[4]]))
sage: t.to_lowest_weight()
[[[3, 4], [4]], [1, 2, 2, 3]]
sage: t.to_lowest_weight(index_set = [3])
[[[1, 2], [4]], [1]]
sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: t = K.module_generator(); t
[[[1], [2]]
sage: t.to_lowest_weight(index_set=[1,2,3])
[[[3], [4]], [1, 1, 3, 2]]
sage: t.to_lowest_weight()  
Traceback (most recent call last): ...
ValueError: This is not a highest weight crystals!

weight()
Return the weight of this crystal element.

This method should be implemented by the element class of the crystal.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).weight()
(1, 0, 0, 0, 0, 0)
Finite

alias of \texttt{sage.categories.finite_crystals.FiniteCrystals}

\textbf{class MorphismMethods}

Bases: object

\textbf{is\_embedding()}

Check if \texttt{self} is an injective crystal morphism.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1],[1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_embedding()
True
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: B = crystals.infinity.Tableaux(['A',2])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: W = crystals.elementary.T(['A',2], La[1]+La[2])
sage: T = W.tensor(B)
sage: mg = T(W.module_generators[0], B.module_generators[0])
sage: psi = Hom(C,T)([mg])
sage: psi.is_embedding()
True
\end{verbatim}

\textbf{is\_isomorphism()}

Check if \texttt{self} is a crystal isomorphism.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1],[1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_isomorphism()
False
\end{verbatim}

\textbf{is\_strict()}

Check if \texttt{self} is a strict crystal morphism.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1],[1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_strict()
True
\end{verbatim}

\textbf{class ParentMethods}

Bases: object

\textbf{Lambda()}

Returns the fundamental weights in the weight lattice realization for the root system associated with the crystal

\textbf{EXAMPLES:}
sage: C = crystals.Letters(['A', 5])
sage: C.Lambda()
Finite family {1: (1, 0, 0, 0, 0), 2: (1, 1, 0, 0, 0), 3: (1, 1, 1, 0, 0), 4: (1, 1, 1, 1, 0), 5: (1, 1, 1, 1, 1)}

an_element()
Returns an element of self
sage: C = crystals.Letters(['A', 5]) sage: C.an_element() 1
cartan_type()
Returns the Cartan type of the crystal
EXAMPLES:
sage: C = crystals.Letters(['A', 2])
sage: C.cartan_type() ['A', 2]
connected_components()
Return the connected components of self as subcrystals.
EXAMPLES:
sage: B = crystals.Tableaux(['A', 2], shape=[2, 1])
sage: C = crystals.Letters(['A', 2])
sage: T = crystals.TensorProduct(B, C)
sage: T.connected_components()
[Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
  The crystal of letters for type ['A', 2]],
 Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
  The crystal of letters for type ['A', 2]],
 Subcrystal of Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
  The crystal of letters for type ['A', 2]]]
connected_components_generators()
Return a tuple of generators for each of the connected components of self.
EXAMPLES:
sage: B = crystals.Tableaux(['A', 2], shape=[2, 1])
sage: C = crystals.Letters(['A', 2])
sage: T = crystals.TensorProduct(B, C)
sage: T.connected_components_generators()
[[[[1, 1], [2]], 1], [[[1, 2], [2]], 1], [[[1, 2], [3]], 1]]
crystal_morphism(on_gens, codomain=None, cartan_type=None, index_set=None, generators=None, automorphism=None, virtualization=None, scaling_factors=None, category=None, check=True)
Construct a crystal morphism from self to another crystal codomain.
INPUT:
• on_gens – a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of self under the crystal morphism
• **codomain** – (default: self) the codomain of the morphism
• **cartan_type** – (optional) the Cartan type of the morphism; the default is the Cartan type of self
• **index_set** – (optional) the index set of the morphism; the default is the index set of the Cartan type
• **generators** – (optional) the generators to define the morphism; the default is the generators of self
• **automorphism** – (optional) the automorphism to perform the twisting
• **virtualization** – (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomain; the default is the identity dictionary
• **scaling_factors** – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, $\varepsilon$ and $\varphi$; the default are all scaling factors to be one
• **category** – (optional) the category for the crystal morphism; the default is the category of **Crystals**.
• **check** – (default: True) check if the crystal morphism is valid

See also:

For more examples, see `sage.categories.crystals.CrystalHomset`.

EXAMPLES:

We construct the natural embedding of a crystal using tableaux into the tensor product of single boxes via the reading word:

```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: F = crystals.Tableaux(['A',2], shape=[1])
sage: T = crystals.TensorProduct(F, F)
sage: mg = T.highest_weight_vectors()[2]; mg
[[1]], [[2]], [[1]]
sage: psi = B.crystal_morphism([mg], codomain=T); psi
['A', 2] Crystal morphism:
 From: The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]
 To: Full tensor product of the crystals
 [The crystal of tableaux of type ['A', 2] and shape(s) [[1]],
 The crystal of tableaux of type ['A', 2] and shape(s) [[1]],
 The crystal of tableaux of type ['A', 2] and shape(s) [[1]]]
 Defn: [[1, 1], [2]] |--> [[[1]], [[2]], [[1]]]
sage: b = B.module_generators[0]
sage: b.pp()
 1 1
 2
sage: psi(b)
[[[1]], [[2]], [[1]]]
sage: psi(b.f(2))
[[[1]], [[3]], [[1]]]
sage: psi(b.f_string([2,1,1]))
[[[2]], [[3]], [[2]]]
sage: lw = b.to_lowest_weight()[0]
sage: lw.pp()
 2 3
 3
sage: psi(lw)
[[[3]], [[3]], [[2]]]
sage: psi(lw) == mg.to_lowest_weight()[0]
(continues on next page)
```
We now take the other isomorphic highest weight component in the tensor product:

```python
sage: mg = T.highest_weight_vectors()[1]; mg
[[[2]], [[1]], [[1]]]
sage: psi = B.crystal_morphism([mg], codomain=T)
sage: psi(lw)
[[[3]], [[2]], [[3]]]
```

We construct a crystal morphism of classical crystals using a Kirillov-Reshetikhin crystal:

```python
sage: B = crystals.Tableaux(['D', 4], shape=[1,1])
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: K.module_generators
[[], [[1], [2]], [[1, 1], [2, 2]]]
sage: v = K.module_generators[1]
sage: psi = B.crystal_morphism([v], codomain=K, category=FiniteCrystals())
sage: psi
['D', 4] -> ['D', 4, 1] Virtual Crystal morphism:
 From: The crystal of tableaux of type ['D', 4] and shape(s) [[1, 1]]
 To: Kirillov-Reshetikhin crystal of type ['D', 4, 1] with (r,s)=(2,2)
 Defn: [[1], [2]] |--> [[1], [2]]
sage: b = B.module_generators[0]
sage: psi(b)
[[1], [2]]
sage: psi(b.to_lowest_weight()[0])
[-2], [-1]
```

We can define crystal morphisms using a different set of generators. For example, we construct an example using the lowest weight vector:

```python
sage: B = crystals.Tableaux(['A',2], shape=[1])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(['A',2], La[2])
sage: Bp = T.tensor(B)
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: x = C.module_generators[0].f_string([1,2])
sage: psi = Bp.crystal_morphism([x], generators=Bp.lowest_weight_vectors())
sage: psi(Bp.highest_weight_vector())
[[1, 1], [2]]
```

We can also use a dictionary to specify the generators and their images:

```python
sage: psi = Bp.crystal_morphism((Bp.lowest_weight_vectors()[0]: x))
sage: psi(Bp.highest_weight_vector())
[[1, 1], [2]]
```

We construct a twisted crystal morphism induced from the diagram automorphism of type $A_3^{(1)}$:

```python
sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_weights()
sage: B0 = crystals.GeneralizedYoungWalls(3, La[0])
```

(continues on next page)
We construct a virtual crystal morphism from type $G_2$ into type $D_4$:

```python
sage: D = crystals.Tableaux(['D',4], shape=[1,1])
sage: G = crystals.Tableaux(['G',2], shape=[1])
sage: psi = G.crystal_morphism(D.module_generators,
 virtualization={1:[2],2:[1,3,4]},
 scaling_factors={1:1, 2:1})
sage: for x in G:
 ascii_art(x, psi(x), sep=' |--> '
 print('')
```

```
1 |--> 2
 1 |--> 3
 2 |--> 3
 3 |--> -2
 3 |--> -3
 0 |--> -3
-3 |--> -2
-2 |--> -1
-1 |--> -1
```

`digraph(subset=None, index_set=None)`

Return the DiGraph associated to self.

**INPUT:**
- `subset` – (optional) a subset of vertices for which the digraph should be constructed
- `index_set` – (optional) the index set to draw arrows

**EXAMPLES:**
sage: C = Crystals().example(5)
sage: C.digraph()
Digraph on 6 vertices

The edges of the crystal graph are by default colored using blue for edge 1, red for edge 2, and green for edge 3:

sage: C = Crystals().example(3)
sage: G = C.digraph()
sage: view(G)  # optional - dot2tex graphviz, not tested (opens external window)

One may also overwrite the colors:

sage: C = Crystals().example(3)
sage: G = C.digraph()
sage: G.set_latex_options(color_by_label = {1:"red", 2:"purple", 3:"blue"})
sage: view(G)  # optional - dot2tex graphviz, not tested (opens external window)

Or one may add colors to yet unspecified edges:

sage: C = Crystals().example(4)
sage: G = C.digraph()
sage: C.cartan_type()._index_set_coloring[4]="purple"
sage: view(G)  # optional - dot2tex graphviz, not tested (opens external window)

Here is an example of how to take the top part up to a given depth of an infinite dimensional crystal:

sage: C = CartanType(['C',2,1])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[0])
sage: S = T.subcrystal(max_depth=3)
sage: G = T.digraph(subset=S); G
Digraph on 5 vertices
sage: sorted(G.vertices(), key=str)
[(-Lambda[0] + 2*Lambda[1] - delta,),
 -Lambda[1] - 1/2*delta),
 -Lambda[1] - 1/2*delta),
 (Lambda[0],)]

Here is a way to construct a picture of a Demazure crystal using the subset option:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = B.highest_weight_vector()

sage: D = B.demazure_subcrystal(t, [2,1])
sage: list(D)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
 [[1, 3], [2]], [[1, 3], [3]]]
sage: view(D)  # optional - dot2tex graphviz, not tested (opens external window)
We can also choose to display particular arrows using the `index_set` option:

```python
sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: G = C.digraph(index_set=[1,3])
sage: len(G.edges())
20
sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)
```

**Todo:** Add more tests.

### `direct_sum(X)`

Return the direct sum of `self` with `X`.

**EXAMPLES:**

```python
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: B.direct_sum(C)
```

As a shorthand, we can use `+`:

```python
sage: B + C
```

### `dot_tex()`

Return a dot_tex string representation of `self`.

**EXAMPLES:**

```python
sage: C = crystals.Letters(['A',2])
sage: C.dot_tex()
'digraph G { \n node [shape=plaintext];\n N_0 [label = " ", texlbl = "$1\$"];\n N_1 [label = " ", texlbl = "$2\$"];\n N_2 [label = " ", texlbl = "$3\$"];\n N_0 -> N_1 [label = " ", texlbl = "1"];\n N_1 -> N_2 [label = " ", texlbl = "2"];\n}
```

### `index_set()`

Returns the index set of the Dynkin diagram underlying the crystal

**EXAMPLES:**

```python
sage: C = crystals.Letters(['A', 5])
sage: C.index_set()
(1, 2, 3, 4, 5)
```
**is_connected()**
Return True if self is a connected crystal.

EXAMPLES:
```
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: B.is_connected()
True
sage: T.is_connected()
False
```

**latex(**options**)**
Returns the crystal graph as a latex string. This can be exported to a file with self.latex_file('filename').

EXAMPLES:
```
sage: T = crystals.Tableaux(['A',2],shape=[1])
sage: T._latex_()
'
...tikzpicture...

sage: view(T) # optional - dot2tex graphviz, not tested (opens external window)
```

One can for example also color the edges using the following options:
```
sage: T = crystals.Tableaux(['A',2],shape=[1])
sage: T._latex_(color_by_label={0:"black", 1:"red", 2:"blue"})
'
...tikzpicture...
```

**latex_file(filename)**
Export a file, suitable for pdflatex, to 'filename'.

This requires a proper installation of dot2tex in sage-python. For more information see the documentation for self.latex().

EXAMPLES:
```
sage: C = crystals.Letters(['A', 5])
sage: fn = tmp_filename(ext='.tex')
sage: C.latex_file(fn)
```

**metapost(filename, thicklines=False, labels=True, scaling_factor=1.0, tallness=1.0)**
Use C.metapost("filename.mp",[options]), where options can be:

thicklines = True (for thicker edges) labels = False (to suppress labeling of the vertices) scaling_factor=value, where value is a floating point number, 1.0 by default. Increasing or decreasing the scaling factor changes the size of the image. tallness=1.0. Increasing makes the image taller without increasing the width.

Root operators e(1) or f(1) move along red lines, e(2) or f(2) along green. The highest weight is in the lower left. Vertices with the same weight are kept close together. The concise labels on the nodes are strings introduced by Berenstein and Zelevinsky and Littelmann; see Littelmann’s paper Cones, Crystals, Patterns, sections 5 and 6.

For Cartan types B2 or C2, the pattern has the form
```
a2 a3 a4 a1
```
where $c^2 a_2 = a_3 = 2a_4 = 0$ and $a_1 = 0$, with $c = 2$ for $B_2$, $c = 1$ for $C_2$. Applying $e(2)$ $a_1$ times, $e(1)$ $a_2$ times, $e(2)$ $a_3$ times, $e(1)$ $a_4$ times returns to the highest weight. (Observe that Littelmann writes the roots in opposite of the usual order, so our $e(1)$ is his $e(2)$ for these Cartan types.) For type $A_2$, the pattern has the form

$a_3 a_2 a_1$

where applying $e(1)$ $a_1$ times, $e(2)$ $a_2$ times then $e(3)$ $a_1$ times returns to the highest weight. These data determine the vertex and may be translated into a Gelfand-Tsetlin pattern or tableau.

**EXAMPLES:**

```
sage: C = crystals.Letters(['A', 2])
sage: C.metapost(tmp_filename())
```

```
sage: C = crystals.Letters(['A', 5])
sage: C.metapost(tmp_filename())
Traceback (most recent call last):
 ...
NotImplementedError
```

```
number_of_connected_components()
```

This function returns the number of connected components of `self`.

**EXAMPLES:**

```
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.number_of_connected_components()
3
```

```
plot(**options)
```

This function returns the plot of `self` as a directed graph.

**EXAMPLES:**

```
sage: C = crystals.Letters(['A', 5])
sage: print(C.plot())
Graphics object consisting of 17 graphics primitives
```

```
plot3d(**options)
```

This function returns the 3-dimensional plot of `self` as a directed graph.

**EXAMPLES:**

```
sage: C = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: print(C.plot3d())
Graphics3d Object
```

```
subcrystal(index_set=None, generators=None, max_depth=inf, direction='both', contained=None, virtualization=None, scaling_factors=None, cartan_type=None, category=None)
```

This function constructs the subcrystal from `generators` using $e_i$ and/or $f_i$ for all $i$ in `index_set`.

**INPUT:**

- `index_set` – (default: None) the index set; if None then use the index set of the crystal
- `generators` – (default: None) the list of generators; if None then use the module generators of the crystal
• max_depth – (default: infinity) the maximum depth to build
• direction – (default: 'both') the direction to build the subcrystal; it can be one of the following:
  – 'both' - using both $e_i$ and $f_i$
  – 'upper' - using $e_i$
  – 'lower' - using $f_i$
• contained – (optional) a set or function defining the containment in the subcrystal
• virtualization, scaling_factors – (optional) dictionaries whose key $i$ corresponds to the sets $\sigma_i$ and $\gamma_i$, respectively used to define virtual crystals; see VirtualCrystal
• cartan_type – (optional) specify the Cartan type of the subcrystal
• category – (optional) specify the category of the subcrystal

EXAMPLES:

```python
sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2)
sage: S = list(C.subcrystal(index_set=[1,2])); S
[[[1, 1]], [[1, 2]], [[2, 2]], [[1, 3]], [[2, 3]], [[3, 3]]]
sage: C.cardinality()
10
sage: len(S)
6
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)]))
[[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], max_depth=1))
[[[1, 4]], [[2, 4]], [[1, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction='upper'))
[[[1, 4]], [[1, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction='lower'))
[[[1, 4]], [[2, 4]]]
sage: G = C.subcrystal(index_set=[1,2,3]).digraph()
sage: GA = crystals.Tableaux('A3', shape=[2]).digraph()
sage: G.is_isomorphic(GA, edge_labels=True)
True
```
We construct the subcrystal which contains the necessary data to construct the corresponding dual equivalence graph:

```python
sage: C = crystals.Tableaux(['A',5], shape=[3,3])
sage: is_wt0 = lambda x: all(x.epsilon(i) == x.phi(i) for i in x.parent().index_set())
sage: def check(x):
...: if is_wt0(x):
...: return True
...: for i in x.parent().index_set()[:-1]:
...: L = [x.e(i), x.e_string([i,i+1]), x.f(i), x.f_string([i,i+1])]
...: if any(y is not None and is_wt0(y) for y in L):
...: return True
...: return False
sage: wt0 = [x for x in C if is_wt0(x)]
sage: S = C.subcrystal(contained=check, generators=wt0)
sage: S.module_generators[0]
[[1, 3, 5], [2, 4, 6]]
sage: S.module_generators[0].e(2).e(3).f(2).f(3)
```
(continues on next page)
An example of a type $B_2$ virtual crystal inside of a type $A_3$ ambient crystal:

```python
sage: A = crystals.Tableaux(['A',3], shape=[2,1,1])
sage: S = A.subcrystal(virtualization={1:[1,3], 2:[2]},
 : scaling_factors={1:1,2:1}, cartan_type=['B',2])
sage: B = crystals.Tableaux(['B',2], shape=[1])
sage: S.digraph().is_isomorphic(B.digraph(), edge_labels=True)
True
```

tensor(*crystals, **options)

Return the tensor product of self with the crystals B.

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 3])
sage: B = crystals.infinity.Tableaux(['A', 3])
sage: T = C.tensor(C, B); T
Full tensor product of the crystals
[The crystal of letters for type ['A', 3],
The crystal of letters for type ['A', 3],
The infinity crystal of tableaux of type ['A', 3]]
sage: tensor([C, C, B]) is T
True
```

weight_lattice_realization()

Return the weight lattice realization used to express weights in self.

This default implementation uses the ambient space of the root system for (non relabelled) finite types and the weight lattice otherwise. This is a legacy from when ambient spaces were partially implemented, and may be changed in the future.

For affine types, this returns the extended weight lattice by default.

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 5])
sage: C.weight_lattice_realization()
Ambient space of the Root system of type ['A', 5]
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.weight_lattice_realization()
Weight lattice of the Root system of type ['A', 2, 1]
```
Methods for all subcategories.

**TensorProducts()**

Return the full subcategory of objects of `self` constructed as tensor products.

See also:

- `tensor.TensorProductsCategory`
- `RegressiveCovariantFunctorialConstruction`.

**EXAMPLES:**

```
sage: HighestWeightCrystals().TensorProducts()
Category of tensor products of highest weight crystals
```

class TensorProducts(category, *args)

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of crystals constructed by tensor product of crystals.

**extra_super_categories()**

**EXAMPLES:**

```
sage: Crystals().TensorProducts().extra_super_categories()
[Category of crystals]
```

def example(choice='highwt', **kwds)

Returns an example of a crystal, as per `Category.example()`.

**INPUT:**

- `choice` – str [default: 'highwt']. Can be either ‘highwt’ for the highest weight crystal of type A, or ‘naive’ for an example of a broken crystal.

- `**kwds` – keyword arguments passed onto the constructor for the chosen crystal.

**EXAMPLES:**

```
sage: Crystals().example(choice='highwt', n=5)
Highest weight crystal of type A_5 of highest weight omega_1
sage: Crystals().example(choice='naive')
A broken crystal, defined by digraph, of dimension five.
```

def super_categories()

**EXAMPLES:**

```
sage: Crystals().super_categories()
[Category of enumerated sets]
```
4.32 CW Complexes

class sage.categories.cw_complexes.CWComplexes(s=None)
    Bases: sage.categories.category_singleton.Category_singleton

The category of CW complexes.

A CW complex is a Closure-finite cell complex in the Weak topology.

REFERENCES:

• Wikipedia article CW_complex

Note: The notion of “finite” is that the number of cells is finite.

EXAMPLES:

    sage: from sage.categories.cw_complexes import CWComplexes
    sage: C = CWComplexes(); C
    Category of CW complexes

Compact_extra_super_categories()
Return extraneous super categories for CWComplexes().Compact().

A compact CW complex is finite, see Proposition A.1 in [Hat2002].

Todo: Fix the name of finite CW complexes.

EXAMPLES:

    sage: from sage.categories.cw_complexes import CWComplexes
    sage: CWComplexes().Compact()  # indirect doctest
    Category of finite finite dimensional CW complexes
    sage: CWComplexes().Compact() is CWComplexes().Finite()
    True

class Connected(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of connected CW complexes.

class ElementMethods
    Bases: object

    dimension()
    Return the dimension of self.

    EXAMPLES:

    sage: from sage.categories.cw_complexes import CWComplexes
    sage: X = CWComplexes().example()
    sage: X.an_element().dimension()
    2

class Finite(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom
Category of finite CW complexes.
A finite CW complex is a CW complex with a finite number of cells.

class ParentMethods
Bases: object

dimension()
Return the dimension of self.
EXAMPLES:

    sage: from sage.categories.cw_complexes import CWComplexes
    sage: X = CWComplexes().example()
    sage: X.dimension()
    2

eextra_super_categories()
Return the extra super categories of self.
A finite CW complex is a compact finite-dimensional CW complex.
EXAMPLES:

    sage: from sage.categories.cw_complexes import CWComplexes
    sage: C = CWComplexes().Finite()
    sage: C.extra_super_categories()
    [Category of finite dimensional CW complexes,
     Category of compact topological spaces]

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
Category of finite dimensional CW complexes.

class ParentMethods
Bases: object

cells()
Return the cells of self.
EXAMPLES:

    sage: from sage.categories.cw_complexes import CWComplexes
    sage: X = CWComplexes().example()
    sage: C = X.cells()
    sage: sorted((d, C[d]) for d in C.keys())
    [(0, (0-cell v,)),
     (1, (0-cell e1, 0-cell e2)),
     (2, (2-cell f,))]

dimension()
Return the dimension of self.
EXAMPLES:

    sage: from sage.categories.cw_complexes import CWComplexes
    sage: X = CWComplexes().example()
    sage: X.dimension()
    2
class SubcategoryMethods
Bases: object

Connected()
Return the full subcategory of the connected objects of self.

EXAMPLES:

```python
sage: from sage.categories.cw_complexes import CWComplexes
sage: CWComplexes().Connected()
Category of connected CW complexes
```

FiniteDimensional()
Return the full subcategory of the finite dimensional objects of self.

EXAMPLES:

```python
sage: from sage.categories.cw_complexes import CWComplexes
sage: C = CWComplexes().FiniteDimensional(); C
Category of finite dimensional CW complexes
```

super_categories()
EXAMPLES:

```python
sage: from sage.categories.cw_complexes import CWComplexes
sage: CWComplexes().super_categories()
[Category of topological spaces]
```

4.33 Discrete Valuation Rings (DVR) and Fields (DVF)

class sage.categories.discrete_valuation.DiscreteValuationFields(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of discrete valuation fields

EXAMPLES:

```python
sage: Qp(7) in DiscreteValuationFields()
True
sage: TestSuite(DiscreteValuationFields()).run()
```

class ElementMethods
Bases: object

valuation()
Return the valuation of this element.

EXAMPLES:

```python
sage: x = Qp(5)(50)
sage: x.valuation()
2
```

class ParentMethods
Bases: object
residue_field()
Return the residue field of the ring of integers of this discrete valuation field.

EXAMPLES:

```
sage: Qp(5).residue_field()
Finite Field of size 5
sage: K.<u> = LaurentSeriesRing(QQ)
sage: K.residue_field()
Rational Field
```

uniformizer()
Return a uniformizer of this ring.

EXAMPLES:

```
sage: Qp(5).uniformizer()
5 + 0(5^21)
```

super_categories()
EXAMPLES:

```
sage: DiscreteValuationFields().super_categories()
[Category of fields]
```

class sage.categories.discrete_valuation.DiscreteValuationRings(s=None)
Bases: sage.categories.category_singleton.Category_singleton
The category of discrete valuation rings

EXAMPLES:

```
sage: GF(7)[['x']] in DiscreteValuationRings()
True
sage: TestSuite(DiscreteValuationRings()).run()
```

class ElementMethods
Bases: object

euclidean_degree()
Return the Euclidean degree of this element.

gcd(other)
Return the greatest common divisor of self and other, normalized so that it is a power of the distinguished uniformizer.

is_unit()
Return True if self is invertible.

EXAMPLES:

```
sage: x = Zp(5)(50)
sage: x.is_unit()
False
sage: x = Zp(7)(50)
sage: x.is_unit()
True
```
lcm(other)
Return the least common multiple of self and other, normalized so that it is a power of the distinguished uniformizer.

quo_rem(other)
Return the quotient and remainder for Euclidean division of self by other.

valuation()
Return the valuation of this element.

EXAMPLES:
```
sage: x = Zp(5)(50)
sage: x.valuation()
2
```

class ParentMethods
Bases: object

residue_field()
Return the residue field of this ring.

EXAMPLES:
```
sage: Zp(5).residue_field()
Finite Field of size 5
sage: K.<u> = QQ[[u]]
sage: K.residue_field()
Rational Field
```

uniformizer()
Return a uniformizer of this ring.

EXAMPLES:
```
sage: Zp(5).uniformizer()
5 + O(5^21)
sage: K.<u> = QQ[[u]]
sage: K.uniformizer()
u
```

super_categories()
EXAMPLES:
```
sage: DiscreteValuationRings().super_categories()
[Category of euclidean domains]
```
4.34 Distributive Magmas and Additive Magmas

class sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of sets \((S, +, \cdot)\) with \(\cdot\) distributing on +.

This is similar to a ring, but + and \(\cdot\) are only required to be (additive) magmas.

EXAMPLES:

```python
sage: from sage.categories.distributive_magmas_and_additive_magmas import *

sage: C = DistributiveMagmasAndAdditiveMagmas(); C
Category of distributive magmas and additive magmas
sage: C.super_categories()
[Category of magmas and additive magmas]
```

class AdditiveAssociative(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveCommutative(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveUnital(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Associative(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

AdditiveInverse

alias of sage.categories.rings.Rings

Unital

alias of sage.categories.semirings.Semirings

class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()

Implement the fact that a Cartesian product of magmas distributing over additive magmas is a magma distributing over an additive magma.

EXAMPLES:

```python
sage: C = (Magmas() & AdditiveMagmas()).Distributive().CartesianProducts()
sage: C.extra_super_categories()
[Category of distributive magmas and additive magmas]
sage: C.axioms()
frozenset({'Distributive'})
```

class ParentMethods

Bases: object
### 4.35 Division rings

```python
class sage.categories.division_rings.DivisionRings(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of division rings

A division ring (or skew field) is a not necessarily commutative ring where all non-zero elements have multiplicative inverses

EXAMPLES:

```sage```
DivisionRings()
Category of division rings
```
``sage``
DivisionRings().super_categories()
[Category of domains]
```

**Commutative**

alias of `sage.categories.fields.Fields`

class ElementMethods

    Bases: object

**Finite_extra_super_categories()**

Return extraneous super categories for `DivisionRings().Finite()`.

EXAMPLES:

Any field is a division ring:

```sage```
Fields().is_subcategory(DivisionRings())
True
```

This method specifies that, by Weddeburn theorem, the reciprocal holds in the finite case: a finite division ring is commutative and thus a field:

```sage```
DivisionRings().Finite_extra_super_categories()
(Category of commutative magmas,)
```
``sage``
DivisionRings().Finite()
Category of finite enumerated fields
```

Warning: This is not implemented in `DivisionRings.Finite.extra_super_categories` because the categories of finite division rings and of finite fields coincide. See the section *Deduction rules* in the documentation of axioms.

class ParentMethods

 Bases: object

extra_super_categories()

Return the `Domains` category.

This method specifies that a division ring has no zero divisors, i.e. is a domain.

See also:

The *Deduction rules* section in the documentation of axioms

EXAMPLES:
```python
sage: DivisionRings().extra_super_categories()
(Category of domains,)
sage: "NoZeroDivisors" in DivisionRings().axioms()
True
```

4.36 Domains

```python
class sage.categories.domains.Domains(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of domains

A domain (or non-commutative integral domain), is a ring, not necessarily commutative, with no nonzero zero divisors.

EXAMPLES:

```python
sage: C = Domains(); C
Category of domains
sage: C.super_categories()
[Category of rings]
```
```
Commutative
 alias of sage.categories.integral_domains.IntegralDomains
```

```python
class ElementMethods
 Bases: object
class ParentMethods
 Bases: object
super_categories()
 EXAMPLES:

```python
sage: Domains().super_categories()
[Category of rings]
```
```
4.37 Enumerated sets
```

```python
class sage.categories.enumerated_setsEnumeratedSets(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of enumerated sets

An enumerated set is a finite or countable set or multiset \( S \) together with a canonical enumeration of its elements; conceptually, this is very similar to an immutable list. The main difference lies in the names and the return type of the methods, and of course the fact that the list of elements is not supposed to be expanded in memory. Whenever possible one should use one of the two sub-categories FiniteEnumeratedSets or InfiniteEnumeratedSets.

The purpose of this category is threefold:
```
• to fix a common interface for all these sets;
• to provide a bunch of default implementations;
• to provide consistency tests.

The standard methods for an enumerated set S are:

• S.cardinality(): the number of elements of the set. This is the equivalent for `len` on a list except that the return value is specified to be a Sage `Integer` or `infinity`, instead of a Python `int`.
• $\text{iter}(S)$: an iterator for the elements of the set;
• S.list(): the list of the elements of the set, when possible; raises a `NotImplementedError` if the list is predictably too large to be expanded in memory.
• S.unrank(n): the n-th element of the set when n is a Sage `Integer`. This is the equivalent for $l[n]$ on a list.
• S.rank(e): the position of the element e in the set; This is equivalent to l.index(e) for a list except that the return value is specified to be a Sage `Integer`, instead of a Python `int`.
• S.first(): the first object of the set; it is equivalent to S.unrank(0).
• S.next(e): the object of the set which follows e; It is equivalent to S.unrank(S.rank(e)+1).
• S.random_element(): a random generator for an element of the set. Unless otherwise stated, and for finite enumerated sets, the probability is uniform.

For examples and tests see:

• `FiniteEnumeratedSets().example()`
• `InfiniteEnumeratedSets().example()`

EXAMPLES:

```python
sage: EnumeratedSets()
Category of enumerated sets
sage: EnumeratedSets().super_categories()
[Category of sets]
sage: EnumeratedSets().all_super_categories()
[Category of enumerated sets, Category of sets, Category of sets with partial maps, ... Category of objects]
```

class CartesianProducts(category, *args)
 Bases: sage.categories.cartesian_product.CartesianProductsCategory
class ParentMethods
 Bases: object
 first()
 Return the first element.

 EXAMPLES:

```python
sage: cartesian_product([ZZ]*10).first()
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
```

class ElementMethods
 Bases: object
Category Framework, Release 9.6

rank()
Return the rank of self in its parent.

See also `EnumeratedSets.ElementMethods.rank()`

EXAMPLES:
```python
sage: F = FiniteSemigroups().example(('a', 'b', 'c'))
sage: L = list(F)
sage: L[7].rank()  # doctest: +NORMALIZE_WHITESPACE
7
sage: all(x.rank() == i for i, x in enumerate(L))  # doctest: +NORMALIZE_WHITESPACE
True
```

Finite
alias of `sage.categories.finite_enumerated_sets.FiniteEnumeratedSets`

Infinite
alias of `sage.categories.infinite_enumerated_sets.InfiniteEnumeratedSets`

class ParentMethods
Bases: object

first()
The “first” element of self.

self.first() returns the first element of the set self. This is a generic implementation from the category `EnumeratedSets()` which can be used when the method `__iter__` is provided.

EXAMPLES:
```python
sage: C = FiniteEnumeratedSets().example()
sage: C.first()  # indirect doctest
1
```

is_empty()
Return whether this set is empty.

EXAMPLES:
```python
sage: F = FiniteEnumeratedSet([1, 2, 3])
sage: F.is_empty()
False
sage: F = FiniteEnumeratedSet([])
sage: F.is_empty()
True
```

iterator_range(start=None, stop=None, step=None)
Iterate over the range of elements of self starting at start, ending at stop, and stepping by step.

See also:
unrank(), unrank_range()

EXAMPLES:
```python
sage: P = Partitions()
sage: list(P.iterator_range(stop=5))
[[], [1], [2], [1, 1], [3]]
```

(continues on next page)
sage: list(P.iterator_range(0, 5))
[[], [1], [2], [1, 1], [3]]
sage: list(P.iterator_range(3, 5))
[[1, 1], [3]]
sage: list(P.iterator_range(3, 10))
[[1, 1], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2]]
sage: list(P.iterator_range(3, 10, 2))
[[1, 1], [2, 1], [4], [2, 2]]
sage: it = P.iterator_range(3)
sage: [next(it) for x in range(10)]
[[1, 1], [3], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1], [5]]
sage: it = P.iterator_range(3, step=2)
sage: [next(it) for x in range(5)]
[[1, 1], [2, 1], [4], [2, 2], [1, 1, 1, 1]]

sage: next(P.iterator_range(stop=-3))
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set
sage: next(P.iterator_range(start=-3))
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set

list()

Return a list of the elements of self.

The elements of set x are created and cached on the first call of x.list(). Then each call of x.list() returns a new list from the cached result. Thus in looping, it may be better to do for e in x:, not for e in x.list():.

If x is not known to be finite, then an exception is raised.

EXAMPLES:

sage: (GF(3)^2).list()
[(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)]
sage: R = Integers(11)
sage: R.list()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: l = R.list(); l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: l.remove(0); l
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: R.list()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

map(f, name, is_injective=None)

Return the image \{f(x) | x ∈ self\} of this enumerated set by f, as an enumerated set.

INPUT:
• is_injective – boolean (default: True) whether to assume that \(f \) is injective.

EXAMPLES:

```python
sage: R = Compositions(4).map(attrcall('partial_sums')); R
Image of Compositions of 4 by The map *.partial_sums()
from Compositions of 4
sage: R.cardinality()
8
sage: R.list()
[[1, 2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 4], [2, 3, 4], [2, 4], [3, 4], [4]]
```

Warning: If the function is not injective, then there may be repeated elements:

```python
sage: P = Compositions(4)
sage: P.list()
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1], ...
˓→[4]]
```

Pass `is_injective=False` to get a correct result in this case:

```python
sage: P.map(attrcall('major_index'), is_injective=False).list()
[6, 3, 4, 1, 5, 2, 0]
```

next(obj)

The “next” element after obj in self.

self.next(e) returns the element of the set self which follows e. This is a generic implementation from the category `EnumeratedSets()` which can be used when the method `__iter__` is provided.

Remark: this is the default (brute force) implementation of the category `EnumeratedSets()`. Its complexity is \(O(r) \), where \(r \) is the rank of obj.

EXAMPLES:

```python
sage: C = InfiniteEnumeratedSets().example()
sage: C._next_from_iterator(10) # indirect doctest
11
```

TODO: specify the behavior when obj is not in self.

random_element()

Return a random element in self.

Unless otherwise stated, and for finite enumerated sets, the probability is uniform.

This is a generic implementation from the category `EnumeratedSets()`. It raise a `NotImplementedError` since one does not know whether the set is finite.

EXAMPLES:
sage: class broken(UniqueRepresentation, Parent):
 : def __init__(self):
 : Parent.__init__(self, category = EnumeratedSets())
sage: broken().random_element()
Traceback (most recent call last):
...
NotImplementedError: unknown cardinality

rank(x)

The rank of an element of self

self.rank(x) returns the rank of x, that is its position in the enumeration of self. This is an integer between 0 and n-1 where n is the cardinality of self, or None if x is not in self.

This is the default (brute force) implementation from the category EnumeratedSets() which can be used when the method __iter__ is provided. Its complexity is \(O(r) \), where \(r \) is the rank of obj. For infinite enumerated sets, this won’t terminate when \(x \) is not in self

EXAMPLES:

```
sage: C = FiniteEnumeratedSets().example()
sage: list(C)
[1, 2, 3]
sage: C.rank(3) # indirect doctest
2
sage: C.rank(5) # indirect doctest
```

some_elements()

Return some elements in self.

See TestSuite for a typical use case.

This is a generic implementation from the category EnumeratedSets() which can be used when the method __iter__ is provided. It returns an iterator for up to the first 100 elements of self

EXAMPLES:

```
sage: C = FiniteEnumeratedSets().example()
sage: list(C.some_elements()) # indirect doctest
[1, 2, 3]
```

unrank(r)

The r-th element of self

self.unrank(r) returns the r-th element of self, where r is an integer between 0 and n-1 where n is the cardinality of self.

This is the default (brute force) implementation from the category EnumeratedSets() which can be used when the method __iter__ is provided. Its complexity is \(O(r) \), where \(r \) is the rank of obj.

EXAMPLES:

```
sage: C = FiniteEnumeratedSets().example()
sage: C.unrank(2) # indirect doctest
3
sage: C.unrank_from_iterator(5)
Traceback (most recent call last):
```
ValueError: the value must be between 0 and 2 inclusive

unrank_range(start=None, stop=None, step=None)

Return the range of elements of self starting at start, ending at stop, and stepping by step.

See also:
unrank(), iterator_range()

EXAMPLES:

```
sage: P = Partitions()
sage: P.unrank_range(stop=5)
[[], [1], [2], [1, 1], [3]]
sage: P.unrank_range(0, 5)
[[], [1], [2], [1, 1], [3]]
sage: P.unrank_range(3, 5)
[[1, 1], [3]]
sage: P.unrank_range(3, 10)
[[1, 1], [3], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2]]
sage: P.unrank_range(3, 10, 2)
[[1, 1], [2, 1], [4], [2, 2]]
sage: P.unrank_range(3)
Traceback (most recent call last):
...  
NotImplementedError: cannot list an infinite set
sage: P.unrank_range(stop=-3)
Traceback (most recent call last):
...  
NotImplementedError: cannot list an infinite set
sage: P.unrank_range(start=-3)
Traceback (most recent call last):
...  
NotImplementedError: cannot list an infinite set
```

additional_structure()

Return None.

Indeed, morphisms of enumerated sets are not required to preserve the enumeration.

See also:

Category.additional_structure()

EXAMPLES:

```
sage: EnumeratedSets().additional_structure()
```

super_categories()

EXAMPLES:

```
sage: EnumeratedSets().super_categories()
[Category of sets]
```
4.38 Euclidean domains

AUTHORS:

- Teresa Gomez-Diaz (2008): initial version
- Julian Rueth (2013-09-13): added euclidean degree, quotient remainder, and their tests

```python
class sage.categories.euclidean_domains.EuclideanDomains(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

    The category of constructive euclidean domains, i.e., one can divide producing a quotient and a remainder where the remainder is either zero or its ElementMethods.euclidean_degree() is smaller than the divisor.

    EXAMPLES:
    sage: EuclideanDomains()
    Category of euclidean domains
    sage: EuclideanDomains().super_categories()
    [Category of principal ideal domains]
```

```python
class ElementMethods
    Bases: object
    euclidean_degree()

    Return the degree of this element as an element of an Euclidean domain, i.e., for elements $a, b$ the euclidean degree $f$ satisfies the usual properties:
    1. if $b$ is not zero, then there are elements $q$ and $r$ such that $a = bq + r$ with $r = 0$ or $f(r) < f(b)$
    2. if $a, b$ are not zero, then $f(a) \leq f(ab)$

    Note: The name euclidean_degree was chosen because the euclidean function has different names in different contexts, e.g., absolute value for integers, degree for polynomials.
```

OUTPUT:

For non-zero elements, a natural number. For the zero element, this might raise an exception or produce some other output, depending on the implementation.

```python
sage: R.<x> = QQ[]
sage: x.euclidean_degree()
1
sage: ZZ.one().euclidean_degree()
1
```

```python
gcd(other)
```

Return the greatest common divisor of this element and other.

INPUT:

- `other` – an element in the same ring as self

ALGORITHM:

Algorithm 3.2.1 in [Coh1993].

EXAMPLES:
sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: EuclideanDomains().element_class.gcd(x,x+1)
-1

quo_rem(other)
Return the quotient and remainder of the division of this element by the non-zero element other.

INPUT:
- other – an element in the same euclidean domain

OUTPUT:
a pair of elements

EXAMPLES:

sage: R.<x> = QQ[]
sage: x.quo_rem(x)
(1, 0)

class ParentMethods
Bases: object

gcd_free_basis(elts)
Compute a set of coprime elements that can be used to express the elements of elts.

INPUT:
- elts - A sequence of elements of self.

OUTPUT:
A GCD-free basis (also called a coprime base) of elts, that is, a set of pairwise relatively prime elements of self such that any element of elts can be written as a product of elements of the set.

ALGORITHM:
Naive implementation of the algorithm described in Section 4.8 of Bach & Shallit [BS1996].

EXAMPLES:

sage: ZZ.gcd_free_basis([1])
[]
sage: ZZ.gcd_free_basis([4, 30, 14, 49])
[2, 15, 7]
sage: Pol.<x> = QQ[]
sage: sorted(Pol.gcd_free_basis([x+1, x+2, x+3, (x+1)*(x+2)*(x+3), (x+1)*(x+2)*(x+4)])[x + 3, x + 4, x^2 + 3*x + 2]

is_euclidean_domain()
Return True, since this in an object of the category of Euclidean domains.

EXAMPLES:

sage: Parent(QQ,category=EuclideanDomains()).is_euclidean_domain()
True

super_categories()
EXAMPLES:
4.39 Fields

class sage.categories.fields.Fields(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of (commutative) fields, i.e. commutative rings where all non-zero elements have multiplicative inverses

EXAMPLES:

```python
sage: K = Fields()
sage: K
Category of fields
sage: Fields().super_categories()
[Category of euclidean domains, Category of division rings]
```

class ElementMethods
 Bases: object

 euclidean_degree()
 Return the degree of this element as an element of an Euclidean domain.
 In a field, this returns 0 for all but the zero element (for which it is undefined).

 EXAMPLES:

        ```python
        sage: QQ.one().euclidean_degree()
        0
        ```

 factor()
 Return a factorization of self.
 Since self is either a unit or zero, this function is trivial.

 EXAMPLES:

        ```python
        sage: x = GF(7)(5)
sage: x.factor()
        5
        sage: RR(0).factor()
        Traceback (most recent call last):
        ...
        ArithmeticError: factorization of 0.000000000000000 is not defined
        ```
gcd(<other>)
Greatest common divisor.

Note: Since we are in a field and the greatest common divisor is only determined up to a unit, it is correct to either return zero or one. Note that fraction fields of unique factorization domains provide a more sophisticated gcd.

EXAMPLES:

sage: K = GF(5)
sage: K(2).gcd(K(1))
1
sage: K(0).gcd(K(0))
0
sage: all(x.gcd(y) == (0 if x == 0 and y == 0 else 1) for x in K for y in K)
True

For field of characteristic zero, the gcd of integers is considered as if they were elements of the integer ring:

sage: gcd(15.0, 12.0)
3.00000000000000

But for other floating point numbers, the gcd is just 0.0 or 1.0:

sage: gcd(3.2, 2.18)
1.00000000000000
sage: gcd(0.0, 0.0)
0.000000000000000

AUTHOR:
• Simon King (2011-02) – trac ticket #10771
• Vincent Delecroix (2015) – trac ticket #17671

inverse_of_unit()
Return the inverse of this element.

EXAMPLES:

sage: NumberField(x^7+2,'a')(2).inverse_of_unit()
1/2

Trying to invert the zero element typically raises a ZeroDivisionError:

sage: QQ(0).inverse_of_unit()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

To catch that exception in a way that also works for non-units in more general rings, use something like:
```
sage: try:
....:   QQ(0).inverse_of_unit()
....: except ArithmeticError:
....:   pass
```

Also note that some “fields” allow one to invert the zero element:
```
sage: RR(0).inverse_of_unit()
+infinity
```

is_unit()
Returns True if self has a multiplicative inverse.

EXAMPLES:
```
sage: QQ(2).is_unit()
True
sage: QQ(0).is_unit()
False
```

lcm(other)
Least common multiple.

Note: Since we are in a field and the least common multiple is only determined up to a unit, it is correct to either return zero or one. Note that fraction fields of unique factorization domains provide a more sophisticated lcm.

EXAMPLES:
```
sage: GF(2)(1).lcm(GF(2)(0))
0
sage: GF(2)(1).lcm(GF(2)(1))
1
```

For field of characteristic zero, the lcm of integers is considered as if they were elements of the integer ring:
```
sage: lcm(15.0, 12.0)
60.0000000000000
```

But for others floating point numbers, it is just 0.0 or 1.0:
```
sage: lcm(3.2, 2.18)
1.00000000000000
sage: lcm(0.0, 0.0)
0.000000000000000
```

AUTHOR:
• Simon King (2011-02) – trac ticket #10771
• Vincent Delecroix (2015) – trac ticket #17671

quo_rem(other)
Return the quotient with remainder of the division of this element by other.
INPUT:
• other – an element of the field

EXAMPLES:

```python
sage: f, g = QQ(1), QQ(2)
sage: f.quo_rem(g)
(1/2, 0)
```

\texttt{xgcd}\texttt{(other)}

Compute the extended gcd of \texttt{self} and \texttt{other}.

INPUT:
• other – an element with the same parent as \texttt{self}

OUTPUT:
A tuple (r, s, t) of elements in the parent of \texttt{self} such that \(r = s \cdot \texttt{self} + t \cdot \texttt{other} \). Since the computations are done over a field, \(r \) is zero if \texttt{self} and \texttt{other} are zero, and one otherwise.

AUTHORS:
• Julian Rueth (2012-10-19): moved here from \texttt{sage.structure.element.FieldElement}

EXAMPLES:

```python
sage: K = GF(5)
sage: K(2).xgcd(K(1))
(1, 3, 0)
sage: K(0).xgcd(K(4))
(1, 0, 4)
sage: K(1).xgcd(K(1))
(1, 1, 0)
sage: GF(5)(0).xgcd(GF(5)(0))
(0, 0, 0)
```

The \texttt{xgcd} of non-zero floating point numbers will be a triple of floating points. But if the input are two integral floating points the result is a floating point version of the standard gcd on \(\mathbb{Z} \):

```python
sage: xgcd(12.0, 8.0)
(4.00000000000000, 1.00000000000000, -1.00000000000000)
sage: xgcd(3.1, 2.98714)
(1.00000000000000, 0.322580645161290, 0.000000000000000)
sage: xgcd(0.0, 1.1)
(1.00000000000000, 0.000000000000000, 0.909090909090909)
```

Finite
alias of \texttt{sage.categories.finite_fields.FiniteFields}

class ParentMethods

Bases: \texttt{object}

fraction_field()

Returns the \texttt{fraction field} of \texttt{self}, which is \texttt{self}.

EXAMPLES:

```python
sage: QQ.fraction_field() \texttt{is} QQ
True
```
is_field\(\text{\texttt{\emph{proof=\text{\emph{True}}}}}\)

Returns True as self is a field.

EXAMPLES:

```python
sage: QQ.is_field()
True
sage: Parent(QQ, category=Fields()).is_field()
True
```

is_integrally_closed()

Return True, as per IntegralDomain.is_integrally_closed(): for every field \(F\), \(F\) is its own field of fractions, hence every element of \(F\) is integral over \(F\).

EXAMPLES:

```python
sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()
True
sage: Z5 = GF(5); Z5
Finite Field of size 5
sage: Z5.is_integrally_closed()
True
```

is_perfect()

Return whether this field is perfect, i.e., its characteristic is \(p = 0\) or every element has a \(p\)-th root.

EXAMPLES:

```python
sage: QQ.is_perfect()
True
sage: GF(2).is_perfect()
True
sage: FunctionField(GF(2), 'x').is_perfect()
False
```

vector_space\(\text{\texttt{\emph{*args, **kwds}}}\)

Gives an isomorphism of this field with a vector space over a subfield.

This method is an alias for free_module, which may have more documentation.

INPUT:

- **\texttt{base}** – a subfield or morphism into this field (defaults to the base field)
- **\texttt{basis}** – a basis of the field as a vector space over the subfield; if not given, one is chosen automatically
- **\texttt{map}** – whether to return maps from and to the vector space

OUTPUT:

- **\texttt{V}** – a vector space over \texttt{base}
- **\texttt{from}_V** – an isomorphism from \texttt{V} to this field
- **\texttt{to}_V** – the inverse isomorphism from this field to \texttt{V}

EXAMPLES:

```python
sage: K.<a> = Qq(125)  # optional - sage.
˓→rings.padics
sage: V, fr, to = K.vector_space()  # optional - sage.
˓→rings.padics
```

(continues on next page)
Category Framework, Release 9.6

(continued from previous page)

```
sage: v = V([1, 2, 3])  
˓→rings.padics
sage: fr(v, 7)  
˓→rings.padics
(3*a^2 + 2*a + 1) + O(5^7)
```

```
extra_super_categories()

EXAMPLES:

```
sage: Fields().extra_super_categories()
[Category of euclidean domains]
```

4.40 Filtered Algebras

class `sage.categories.filtered_algebras.FilteredAlgebras`(base_category)

Bases: `sage.categories.filtered_modules.FilteredModulesCategory`

The category of filtered algebras.

An algebra $A$ over a commutative ring $R$ is filtered if $A$ is endowed with a structure of a filtered $R$-module (whose underlying $R$-module structure is identical with that of the $R$-algebra $A$) such that the indexing set $I$ (typically $I = \mathbb{N}$) is also an additive abelian monoid, the unity $1$ of $A$ belongs to $F_0$, and we have $F_i \cdot F_j \subseteq F_{i+j}$ for all $i, j \in I$.

EXAMPLES:

```
sage: Algebras(ZZ).Filtered()
Category of filtered algebras over Integer Ring
sage: Algebras(ZZ).Filtered().super_categories()
[Category of algebras over Integer Ring,
Category of filtered modules over Integer Ring]
```

REFERENCES:

• Wikipedia article Filtered_algebra

class ParentMethods

Bases: object

grading_algebra()

Return the associated graded algebra to self.

Todo: Implement a version of the associated graded algebra which does not require self to have a distinguished basis.

EXAMPLES:

```
sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.grading_algebra()
Graded Algebra of An example of a filtered algebra with basis:
the universal enveloping algebra of
Lie algebra of \mathbb{R}^3 with cross product over Integer Ring
```
### 4.41 Filtered Algebras With Basis

A filtered algebra with basis over a commutative ring $R$ is a filtered algebra over $R$ endowed with the structure of a filtered module with basis (with the same underlying filtered-module structure). See \texttt{FilteredAlgebras} and \texttt{FilteredModulesWithBasis} for these two notions.

```python
class sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis(base_category):
 bases = sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered algebras with a distinguished homogeneous basis.

A filtered algebra with basis over a commutative ring R is a filtered algebra over R endowed with the structure of a filtered module with basis (with the same underlying filtered-module structure). See \texttt{FilteredAlgebras} and \texttt{FilteredModulesWithBasis} for these two notions.

EXAMPLES:

```python
sage: C = AlgebrasWithBasis(ZZ).Filtered(); C
Category of filtered algebras with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of algebras with basis over Integer Ring,
 Category of filtered algebras over Integer Ring,
 Category of filtered modules with basis over Integer Ring]
```

```python
class ElementMethods

Bases: object

class ParentMethods

Bases: object

\texttt{from_graded_conversion()}

Return the inverse of the canonical $R$-module isomorphism $A \to \text{gr} A$ induced by the basis of $A$ (where $A =$). This inverse is an isomorphism $\text{gr} A \to A$.

This is an isomorphism of $R$-modules, not of algebras. See the class documentation \texttt{AssociatedGradedAlgebra}.

See also:

\texttt{to_graded_conversion()}

**EXAMPLES:**

```python
sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']*2*U['z']^3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.to_graded_conversion()(p)
sage: A.from_graded_conversion()(q) == p
True
sage: q.parent() is A.graded_algebra()
True
```

\texttt{graded_algebra()}

Return the associated graded algebra to self.

See \texttt{AssociatedGradedAlgebra} for the definition and the properties of this.

If the filtered algebra self with basis is called $A$, then this method returns $\text{gr} A$. The method \texttt{to_graded_conversion()} returns the canonical $R$-module isomorphism $A \to \text{gr} A$ induced by the basis of $A$, and the method \texttt{from_graded_conversion()} returns the inverse of this isomorphism.

**4.41. Filtered Algebras With Basis**
The method `projection()` projects elements of \( A \) onto \( \text{gr} \ A \) according to their place in the filtration on \( A \).

**Warning:** When not overridden, this method returns the default implementation of an associated graded algebra – namely, `AssociatedGradedAlgebra(self)`, where `AssociatedGradedAlgebra` is `AssociatedGradedAlgebra`. But many instances of `FilteredAlgebrasWithBasis` override this method, as the associated graded algebra often is (isomorphic) to a simpler object (for instance, the associated graded algebra of a graded algebra can be identified with the graded algebra itself). Generic code that uses associated graded algebras (such as the code of the `induced_graded_map()` method below) should make sure to only communicate with them via the `to_graded_conversion()`, `from_graded_conversion()`, and `projection()` methods (in particular, do not expect there to be a conversion from `self` to `self.graded_algebra();` this currently does not work for Clifford algebras). Similarly, when overriding `graded_algebra()`, make sure to accordingly redefine these three methods, unless their definitions below still apply to your case (this will happen whenever the basis of your `graded_algebra()` has the same indexing set as `self`, and the partition of this indexing set according to degree is the same as for `self`).

**Todo:** Maybe the thing about the conversion from `self` to `self.graded_algebra()` on the Clifford at least could be made to work? (I would still warn the user against ASSUMING that it must work – as there is probably no way to guarantee it in all cases, and we shouldn’t require users to mess with element constructors.)

**EXAMPLES:**

```sage
sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.graded_algebra()
Graded Algebra of An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Integer Ring
```

`induced_graded_map(other, f)`

Return the graded linear map between the associated graded algebras of `self` and `other` canonically induced by the filtration-preserving map \( f : \text{self} \to \text{other} \).

Let \( A \) and \( B \) be two filtered algebras with basis, and let \( (F_i)_{i \in I} \) and \( (G_i)_{i \in I} \) be their filtrations. Let \( f : A \to B \) be a linear map which preserves the filtration (i.e., satisfies \( f(F_i) \subseteq G_i \) for all \( i \in I \)).

Then, there is a canonically defined graded linear map \( \text{gr} f : \text{gr} A \to \text{gr} B \) which satisfies

\[
(\text{gr} f)(p_i(a)) = p_i(f(a)) \quad \text{for all } i \in I \text{ and } a \in F_i,
\]

where the \( p_i \) on the left hand side is the canonical projection from \( F_i \) onto the \( i \)-th graded component of \( \text{gr} A \), while the \( p_i \) on the right hand side is the canonical projection from \( G_i \) onto the \( i \)-th graded component of \( \text{gr} B \).

**INPUT:**

- `other` – a filtered algebra with basis
- `f` – a filtration-preserving linear map from `self` to `other` (can be given as a morphism or as a function)

**OUTPUT:**

The graded linear map \( \text{gr} f \).

**EXAMPLES:**

322 Chapter 4. Individual Categories
Example 1.

We start with the universal enveloping algebra of the Lie algebra $\mathbb{R}^3$ (with the cross product serving as Lie bracket):

```python
sage: A = AlgebrasWithBasis(QQ).Filtered().example(); A
An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Rational Field
sage: M = A.indices(); M
Free abelian monoid indexed by {'x', 'y', 'z'}
sage: x,y,z = [A.basis()[i].gens()[i] for i in "xyz"]
```

Let us define a stupid filtered map from $A$ to itself:

```python
sage: def map_on_basis(m):
 d = m.dict()
 i = d.get('x', 0); j = d.get('y', 0); k = d.get('z', 0)
 g = (y ** (i+j)) * (z ** k)
 if i > 0:
 g += i * (x ** (i-1)) * (y ** j) * (z ** k)
 return g
sage: f = A.module_morphism(on_basis=map_on_basis, codomain=A)
sage: f(x)
U[y] + 1
sage: f(x*y*z)
U[y]^2*U[z] + U[y]*U[z]
```

(There is nothing here that is peculiar to this universal enveloping algebra; we are only using its module structure, and we could just as well be using a polynomial algebra in its stead.)

We now compute $\text{gr } f$

```python
sage: grA = A.graded_algebra(); grA
Graded Algebra of An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Rational Field
sage: xx, yy, zz = [A.to_graded_conversion()(i) for i in [x, y, z]]
```

```python
sage: xx+yy*zz
bar(U[y]*U[z]) + bar(U[x])
```

```python
sage: grf = A.induced_graded_map(A, f); grf
Generic endomorphism of Graded Algebra of An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Rational Field
sage: grf(xx)
bar(U[y])
```

```python
sage: grf(xx*yy*zz)
(continues on next page)
```
Example 2.

We shall now construct $gr f$ for a different map $f$ out of the same $A$; the new map $f$ will lead into a graded algebra already, namely into the algebra of symmetric functions:

```python
sage: h = SymmetricFunctions(QQ).h()

sage: def map_on_basis(m): # redefining map_on_basis
 d = m.dict()
 i = d.get('x', 0); j = d.get('y', 0); k = d.get('z', 0)
 g = (h[1]**i) * (h[2]**(j // 2) * (h[3]**(k // 3)))
 g += i * (h[1]**(i+j+k))
 return g

sage: f = A.module_morphism(on_basis=map_on_basis, codomain=h) # redefining f

sage: f(x) 2*h[1]
sage: f(y) h[]
sage: f(z) h[]
sage: f(y**2) h[2]
sage: f(x**2) 3*h[1, 1]
sage: f(x*y*z) h[1] + h[1, 1, 1]
sage: f(x*y**2*z) 2*h[1, 1, 1, 1] + h[2, 1, 1]
sage: f(A.one()) h[]
```

The algebra $h$ of symmetric functions in the $h$-basis is already graded, so its associated graded algebra is implemented as itself:

```python
sage: grh = h.graded_algebra(); grh is h True
sage: grf = A.induced_graded_map(h, f); grf
Generic morphism:
 From: Graded Algebra of An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Rational Field
 To: Symmetric Functions over Rational Field
```
in the homogeneous basis
sage: grf(xx)
2*h[1]
sage: grf(yy)
0
sage: grf.zz
0
sage: grf(yy**2)
\frac{1}{2!}h[2]
sage: grf(xx**2)
3\frac{1}{2!}h[1, 1]
sage: grf(xx*yy*zz)
\frac{1}{3!}h[1, 1, 1]
sage: grf(xx*xx*yy*yy*zz)
\frac{1}{2!}h[1, 1, 1, 1]
sage: grf(grA.one())
\frac{1}{1!}h[

Example 3.
After having had a graded algebra as the codomain, let us try to have one as the domain instead. Our new $f$ will go from $h$ to $A$:

sage: def map_on_basis(lam):
    return x ** (sum(lam)) + y ** (len(lam))
sage: f = h.module_morphism(on_basis=map_on_basis,
codomain=A)
sage: f(h[1])
U['x'] + U['y']
sage: f(h[2])
U['x']^2 + U['y']
sage: f(h[1, 1])
U['x']^2 + U['y']^2
sage: f(h[2, 2])
U['x']^4 + U['y']^2
sage: f(h[3, 2, 1])
U['x']^6 + U['y']^3
sage: f(h.one())
2
sage: grf = h.induced_graded_map(A, f); grf
Generic morphism:
    From: Symmetric Functions over Rational Field
    in the homogeneous basis
    To:   Graded Algebra of An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Rational Field
sage: grf(h[1])
\bar{U['x']} + \bar{U['y']}
sage: grf(h[2])
\bar{U['x']}^2
sage: grf(h[1, 1])
\bar{U['x']}^2 + \bar{U['y']}^2

(continues on next page)
The construct \( \text{grf} \) also makes sense when \( f \) is a filtration-preserving map between graded algebras.

```python
sage: def map_on_basis(lam):
 # redefining map_on_basis
 ...: return h[lam] + h[len(lam)]

sage: f = h.module_morphism(on_basis=map_on_basis,
 ...: codomain=h) # redefining f

sage: f(h[1])
2*h[1]
sage: f(h[2])
h[1] + h[2]
sage: f(h[1, 1])
h[1, 1] + h[2]
sage: f(h[2, 1])
h[2] + h[2, 1]
sage: f(h.one())
2*h[]
sage: grf = h.induced_graded_map(h, f); grf
Generic endomorphism of Symmetric Functions over Rational Field in the homogeneous basis

sage: grf(h[1])
2*h[1]
sage: grf(h[2])
h[2]
sage: grf(h[1, 1])
h[1, 1] + h[2]
sage: grf(h[2, 1])
h[2, 1]
sage: grf(h.one())
2*h[]
```

Example 5.

For another example, let us compute \( \text{grf} \) for a map \( f \) between two Clifford algebras:

```python
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: B = CliffordAlgebra(Q, names=['u','v']); B
The Clifford algebra of the Quadratic form in 2 variables over Integer Ring with coefficients:
[1 2]
[* 3]
sage: m = Matrix(ZZ, [[1, 2], [1, -1]])
sage: f = B.lift_module_morphism(m, names=['x','y'])
sage: A = f.domain(); A
The Clifford algebra of the Quadratic form in 2
```

(continues on next page)
variables over Integer Ring with coefficients:
\[
\begin{bmatrix}
6 & 0 \\
0 & 3
\end{bmatrix}
\]
sage: x, y = A.gens()
sage: f(x)
u + v
sage: f(y)
2u - v
sage: f(x**2)
6
sage: f(x*y)
-3u*v + 3
sage: grA = A.graded_algebra(); grA
The exterior algebra of rank 2 over Integer Ring
sage: A.to_graded_conversion()(x)
x
sage: A.to_graded_conversion()(y)
y
sage: A.to_graded_conversion()(x*y)
x*y
sage: u = A.to_graded_conversion()(x*y+1); u
x*y + 1
sage: A.from_graded_conversion()(u)
x*y + 1
sage: A.projection(2)(x*y+1)
x*y
sage: A.projection(1)(x+2*y-2)
x + 2*y
sage: grf = A.induced_graded_map(B, f); grf
Generic morphism:
    From: The exterior algebra of rank 2 over Integer Ring
    To: The exterior algebra of rank 2 over Integer Ring
sage: grf(A.to_graded_conversion()(x))
u + v
sage: grf(A.to_graded_conversion()(y))
2u - v
sage: grf(A.to_graded_conversion()(x**2))
6
sage: grf(A.to_graded_conversion()(x*y))
-3u*v
sage: grf(grA.one())
1

projection(i)

Return the i-th projection \( p_i : F_i \to G_i \) (in the notations of the class documentation AssociatedGradedAlgebra, where \( A = \)).

This method actually does not return the map \( p_i \) itself, but an extension of \( p_i \) to the whole \( R \)-module \( A \). This extension is the composition of the \( R \)-module isomorphism \( A \to \text{gr} A \) with the canonical projection of the graded \( R \)-module \( \text{gr} A \) onto its i-th graded component \( G_i \). The codomain of this map is \( \text{gr} A \), although its actual image is \( G_i \). The map \( p_i \) is obtained from this map by restricting its domain to \( F_i \) and its image to \( G_i \).

EXAMPLES:
to\_graded\_conversion()

Return the canonical $R$-module isomorphism $A \to \text{gr} A$ induced by the basis of $A$ (where $A = \ldots$).

This is an isomorphism of $R$-modules, not of algebras. See the class documentation AssociatedGradedAlgebra.

See also:

\textbf{from\_graded\_conversion()}

EXAMPLES:

sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']*2*U['z']*3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.projection(7)(p); q
\text{bar}(U['x']^2*U['y']*2*U['z']*3)

\textbf{q.parent() is A.graded\_algebra()}
True

sage: A.projection(8)(p)
\textbf{0}

to\_graded\_conversion()

Return the canonical $R$-module isomorphism $A \to \text{gr} A$ induced by the basis of $A$ (where $A = \ldots$).

This is an isomorphism of $R$-modules, not of algebras. See the class documentation AssociatedGradedAlgebra.

See also:

\textbf{from\_graded\_conversion()}

EXAMPLES:

sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']*2*U['z']*3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.to\_graded\_conversion()(p); q
\text{bar}(U['x']^2*U['y']*2*U['z']*3) + 3*\text{bar}(U['x'])
 + 3*\text{bar}(U['y']) + 3*\text{bar}(1)

\textbf{q.parent() is A.graded\_algebra()}
True

4.42 Filtered Modules

A \textit{filtered module} over a ring $R$ with a totally ordered indexing set $I$ (typically $I = \mathbb{N}$) is an $R$-module $M$ equipped with a family $(F_i)_{i \in I}$ of $R$-submodules satisfying $F_i \subseteq F_j$ for all $i, j \in I$ having $i \leq j$, and $M = \bigcup_{i \in I} F_i$. This family is called a \textit{filtration} of the given module $M$.

Todo: Implement a notion for decreasing filtrations: where $F_j \subseteq F_i$ when $i \leq j$.

Todo: Implement filtrations for all concrete categories.

Todo: Implement $\text{gr}$ as a functor.

class sage.categories.filtered_modules.FilteredModules(base\_category)

Bases: sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered modules over a given ring $R$.

A \textit{filtered module} over a ring $R$ with a totally ordered indexing set $I$ (typically $I = \mathbb{N}$) is an $R$-module $M$ equipped with a family $(F_i)_{i \in I}$ of $R$-submodules satisfying $F_i \subseteq F_j$ for all $i, j \in I$ having $i \leq j$, and $M = \ldots$
\[ \bigcup_{i \in I} F_i \] This family is called a *filtration* of the given module \( M \).

**EXAMPLES:**

```python
sage: Modules(ZZ).Filtered()
Category of filtered modules over Integer Ring
sage: Modules(ZZ).Filtered().super_categories()
[Category of modules over Integer Ring]
```

**REFERENCES:**

- Wikipedia article Filtration_(mathematics)

```python
class Connected(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class SubcategoryMethods
 Bases: object

Connected()
 Return the full subcategory of the connected objects of self.

A filtered \(R \)-module \(M \) with filtration \((F_0, F_1, F_2, \ldots) \) (indexed by \(N \)) is said to be *connected* if \(F_0 \) is isomorphic to \(R \).

EXAMPLES:

```python
sage: Modules(ZZ).Filtered().Connected()
Category of filtered connected modules over Integer Ring
sage: Coalgebras(QQ).Filtered().Connected()
Category of filtered connected coalgebras over Rational Field
sage: AlgebrasWithBasis(QQ).Filtered().Connected()
Category of filtered connected algebras with basis over Rational Field
```

```python
extra_super_categories()
    Add VectorSpaces to the super categories of self if the base ring is a field.

**EXAMPLES:**

```python
sage: Modules(QQ).Filtered().is_subcategory(VectorSpaces(QQ))
True
sage: Modules(ZZ).Filtered().extra_super_categories()
[]
```

This makes sure that Modules(QQ).Filtered() returns an instance of FilteredModules and not a join category of an instance of this class and of VectorSpaces(QQ):

```python
sage: type(Modules(QQ).Filtered())
<class 'sage.categories.vector_spaces.VectorSpaces.Filtered_with_category'>
```

**Todo:** Get rid of this workaround once there is a more systematic approach for the alias Modules(QQ) -> VectorSpaces(QQ). Probably the latter should be a category with axiom, and covariant constructions should play well with axioms.

```python
class sage.categories.filtered_modules.FilteredModulesCategory(base_category)
 Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory, sage.categories.category_types.Category_over_base_ring
```
EXAMPLES:

```
sage: C = Algebras(QQ).Filtered()
sage: C
Category of filtered algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of algebras over Rational Field,
 Category of filtered algebras over Rational Field]
sage: AlgebrasWithBasis(QQ).Filtered().base_ring()
Rational Field
sage: HopfAlgebrasWithBasis(QQ).Filtered().base_ring()
Rational Field
```

4.43 Filtered Modules With Basis

A filtered module with basis over a ring $R$ means (for the purpose of this code) a filtered $R$-module $M$ with filtration $(F_i)_{i \in I}$ (typically $I = \mathbb{N}$) endowed with a basis $(b_j)_{j \in J}$ of $M$ and a partition $J = \bigsqcup_{i \in I} J_i$ of the set $J$ (it is allowed that some $J_i$ are empty) such that for every $n \in I$, the subfamily $(b_j)_{j \in U_n}$, where $U_n = \bigcup_{i \leq n} J_i$, is a basis of the $R$-submodule $F_n$.

For every $i \in I$, the $R$-submodule of $M$ spanned by $(b_j)_{j \in J_i}$ is called the $i$-th graded component (aka the $i$-th homogeneous component) of the filtered module with basis $M$; the elements of this submodule are referred to as homogeneous elements of degree $i$.

See the class documentation `FilteredModulesWithBasis` for further details.

```
class sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis(base_category)
Bases: sage.categories.filtered_modules_with_basis.FilteredModulesCategory
```

The category of filtered modules with a distinguished basis.

A filtered module with basis over a ring $R$ means (for the purpose of this code) a filtered $R$-module $M$ with filtration $(F_i)_{i \in I}$ (typically $I = \mathbb{N}$) endowed with a basis $(b_j)_{j \in J}$ of $M$ and a partition $J = \bigsqcup_{i \in I} J_i$ of the set $J$ (it is allowed that some $J_i$ are empty) such that for every $n \in I$, the subfamily $(b_j)_{j \in U_n}$, where $U_n = \bigcup_{i \leq n} J_i$, is a basis of the $R$-submodule $F_n$.

For every $i \in I$, the $R$-submodule of $M$ spanned by $(b_j)_{j \in J_i}$ is called the $i$-th graded component (aka the $i$-th homogeneous component) of the filtered module with basis $M$; the elements of this submodule are referred to as homogeneous elements of degree $i$. The $R$-module $M$ is the direct sum of its $i$-th graded components over all $i \in I$, and thus becomes a graded $R$-module with basis. Conversely, any graded $R$-module with basis canonically becomes a filtered $R$-module with basis (by defining $F_i = \bigoplus_{i \leq n} G_i$ where $G_i$ is the $i$-th graded component, and defining $J_i$ as the indexing set of the basis of the $i$-th graded component). Hence, the notion of a filtered $R$-module with basis is equivalent to the notion of a graded $R$-module with basis.

However, the category of filtered $R$-modules with basis is not the category of graded $R$-modules with basis. Indeed, the morphisms of filtered $R$-modules with basis are defined to be morphisms of $R$-modules which send each $F_n$ of the domain to the corresponding $F_n$ of the target; in contrast, the morphisms of graded $R$-modules with basis must preserve each homogeneous component. Also, the notion of a filtered algebra with basis differs from that of a graded algebra with basis.

**Note:** Currently, to make use of the functionality of this class, an instance of `FilteredModulesWithBasis` should fulfill the contract of a `CombinatorialFreeModule` (most likely by inheriting from it). It should also
have the indexing set $J$ encoded as its \_indices attribute, and \_indices.subset(size=i) should yield the subset $J_i$ (as an iterable). If the latter conditions are not satisfied, then basis() must be overridden.

Note: One should implement a degree_on_basis method in the parent class in order to fully utilize the methods of this category. This might become a required abstract method in the future.

EXAMPLES:

```python
sage: C = ModulesWithBasis(ZZ).Filtered(); C
Category of filtered modules with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of filtered modules over Integer Ring,
Category of modules with basis over Integer Ring]
sage: C is ModulesWithBasis(ZZ).Filtered()
True
```

class ElementMethods

    Bases: object

    degree()
    The degree of a nonzero homogeneous element self in the filtered module.

Note: This raises an error if the element is not homogeneous. To compute the maximum of the degrees of the homogeneous summands of a (not necessarily homogeneous) element, use maximal_degree() instead.

EXAMPLES:

```python
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
sage: y = A(Partition((4,4,1)))
sage: z = A(Partition((2,2,2)))
sage: x.degree()
6
sage: (x + 2*z).degree()
6
sage: (y - x).degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous
```

An example in a graded algebra:

```python
sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.homogeneous_degree()
2
sage: (x^3 + 4*y^2).homogeneous_degree()
6
sage: ((1 + x)^3).homogeneous_degree()
Traceback (most recent call last):
```

(continues on next page)
...  
ValueError: element is not homogeneous

Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the choice of a basis):

```
sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x, y, z = A.algebra_generators()
sage: (x*y).homogeneous_degree()
2
sage: (y*x).homogeneous_degree()
Traceback (most recent call last):
 ...
ValueError: element is not homogeneous
sage: A.one().homogeneous_degree()
0
```

**degree_on_basis**(m)

Return the degree of the basis element indexed by m in self.

**EXAMPLES:**

```
sage: A = GradedModulesWithBasis(QQ).example()
sage: A.degree_on_basis(Partition((2,1)))
3
sage: A.degree_on_basis(Partition((4,2,1,1,1,1)))
10
```

**homogeneous_component**(n)

Return the homogeneous component of degree n of the element self.

Let m be an element of a filtered R-module M with basis. Then, m can be uniquely written in the form $m = \sum_{i \in I} m_i$, where each $m_i$ is a homogeneous element of degree i. For $n \in I$, we define the homogeneous component of degree n of the element m to be $m_n$.

**EXAMPLES:**

```
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A.an_element(); x
sage: x.homogeneous_component(-1)
0
sage: x.homogeneous_component(0)
2*P[]
sage: x.homogeneous_component(1)
2*P[1]
sage: x.homogeneous_component(2)
3*P[2]
sage: x.homogeneous_component(3)
0
sage: A = ModulesWithBasis(ZZ).Graded().example()
sage: x = A.an_element(); x
```

(continues on next page)
sage: x.homogeneous_component(-1)
0
sage: x.homogeneous_component(0)
2°P[]
sage: x.homogeneous_component(1)
2°P[1]
sage: x.homogeneous_component(2)
3°P[2]
sage: x.homogeneous_component(3)
0

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: G = A.algebra_generators()
sage: g = A.an_element() - 2 * G['x'] * G['y']; g
U['x']^2*U['y']^2*U['z']^3 - 2*U['x']*U['y']
 + 2*U['x'] + 3*U['y'] + 1
sage: g.homogeneous_component(-1)
0
sage: g.homogeneous_component(0)
1
sage: g.homogeneous_component(2)
-2*U['x']^2*U['y']

sage: g.homogeneous_component(5)
0
sage: g.homogeneous_component(7)
U['x']^2*U['y']^2*U['z']^3
sage: g.homogeneous_component(8)
0

homogeneous_degree()
The degree of a nonzero homogeneous element self in the filtered module.

**Note:** This raises an error if the element is not homogeneous. To compute the maximum of the degrees of the homogeneous summands of a (not necessarily homogeneous) element, use `maximal_degree()` instead.

**EXAMPLES:**

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
sage: y = A(Partition((4,4,1)))
sage: z = A(Partition((2,2,2)))
sage: x.degree()
6
sage: (x + 2*z).degree()
6
sage: (y - x).degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous

An example in a graded algebra:
Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the choice of a basis):

```python
sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x,y,z = A.algebra_generators()
sage: (x*y).homogeneous_degree()
2
sage: (y*x).homogeneous_degree()
Traceback (most recent call last):
 ... ValueError: element is not homogeneous
sage: A.one().homogeneous_degree()
0
```

`is_homogeneous()`

Return whether the element `self` is homogeneous.

**EXAMPLES:**

```python
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x=A(Partition((3,2,1)))
sage: y=A(Partition((4,4,1)))
sage: z=A(Partition((2,2,2)))
sage: (3*x).is_homogeneous()
True
sage: (x - y).is_homogeneous()
False
sage: (x+2*z).is_homogeneous()
True
```

Here is an example with a graded algebra:

```python
sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: (3*x).is_homogeneous()
True
sage: (x^3 - y^2).is_homogeneous()
True
sage: ((x + y)^2).is_homogeneous()
False
```

Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the choice of a basis, or at least on a definition of homogeneous components):
maximal_degree()

The maximum of the degrees of the homogeneous components of self.

This is also the smallest $i$ such that self belongs to $F_i$. Hence, it does not depend on the basis of the parent of self.

See also:

homogeneous_degree()

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
sage: y = A(Partition((4,4,1)))
sage: z = A(Partition((2,2,2)))
sage: x.maximal_degree()
6
sage: (x + 2*z).maximal_degree()
6
sage: (y - x).maximal_degree()
9
sage: (3*z).maximal_degree()
6

Now, we test this on a graded algebra:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.maximal_degree()
2
sage: (x^3 + 4*y^2).maximal_degree()
6
sage: ((1 + x)^3).maximal_degree()
6

Let us now test a filtered algebra:

sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x, y, z = A.algebra_generators()
sage: (x^y).maximal_degree()
2

(continues on next page)
\texttt{sage: \( (y \times x) \).maximal\_degree()}
\[2\]
\texttt{sage: A.one().maximal\_degree()}
\[0\]
\texttt{sage: A.zero().maximal\_degree()}
Traceback (most recent call last):
  ...
ValueError: the zero element does not have a well-defined degree
\texttt{sage: (A.one()+x).maximal\_degree()}
\[1\]

\texttt{truncate}(n)

Return the sum of the homogeneous components of degree strictly less than \(n\) of \texttt{self}.

See \texttt{homogeneous\_component()} for the notion of a homogeneous component.

**EXAMPLES:**

\begin{verbatim}
\texttt{sage: A = ModulesWithBasis(ZZ).Filtered().example()}
\texttt{sage: x = A.an_element(); x}
\texttt{sage: x.truncate(0)}
0
\texttt{sage: x.truncate(1)}
2*P[]
\texttt{sage: x.truncate(2)}
2*P[] + 2*P[1]
\texttt{sage: x.truncate(3)}
\texttt{sage: A = ModulesWithBasis(ZZ).Graded().example()}
\texttt{sage: x = A.an_element(); x}
\texttt{sage: x.truncate(0)}
0
\texttt{sage: x.truncate(1)}
2*P[]
\texttt{sage: x.truncate(2)}
2*P[] + 2*P[1]
\texttt{sage: x.truncate(3)}
\texttt{sage: A = AlgebrasWithBasis(ZZ).Filtered().example()}
\texttt{sage: G = A.algebra\_generators()}
\texttt{sage: g = A.an\_element() - 2 \times G['x'] \times G['y']; g}
U['x']*^2*U['y']*^2*U['z']^3 - 2*U['x']*U['y']
+ 2*U['x'] + 3*U['y'] + 1
\texttt{sage: g.truncate(-1)}
0
\texttt{sage: g.truncate(0)}
0
\texttt{sage: g.truncate(2)}
2*U['x'] + 3*U['y'] + 1
\end{verbatim}
sage: g.truncate(3)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(5)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(7)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(8)
U['x']^2*U['y']^2*U['z']^3 - 2*U['x']*U['y']
+ 2*U['x'] + 3*U['y'] + 1

class ParentMethods
Bases: object

    basis(d=None)
    Return the basis for (the d-th homogeneous component of) self.

    INPUT:
    • d – (optional, default None) nonnegative integer or None

    OUTPUT:

    If d is None, returns the basis of the module. Otherwise, returns the basis of the homogeneous component
    of degree d (i.e., the subfamily of the basis of the whole module which consists only of the basis
    vectors lying in 𝐹_ɗ \bigcup_{i<d} 𝐹_i).

    The basis is always returned as a family.

    EXAMPLES:

    sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions of the integer 4}

    Without arguments, the full basis is returned:

    sage: A.basis()
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions}

    sage: A.basis()
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions}

    Checking this method on a filtered algebra. Note that this will typically raise a
NotImplementedError when this feature is not implemented.

    sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Traceback (most recent call last):
...
NotImplementedError: infinite set

    Without arguments, the full basis is returned:

    sage: A.basis()
sage: A.basis()
Lazy family (Term map from Free abelian monoid indexed by
{'x', 'y', 'z'} to An example of a filtered algebra with
basis: the universal enveloping algebra of Lie algebra
of RR^3 with cross product over Integer Ring(i))_{i in
Free abelian monoid indexed by {'x', 'y', 'z'}}

An example with a graded algebra:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.basis()
Lazy family (Term map from Subsets of {0, 1} to
The exterior algebra of rank 2 over Rational Field(i))_{i in
Subsets of {0, 1}}

from_graded_conversion()

Return the inverse of the canonical $R$-module isomorphism $A \rightarrow \text{gr} A$ induced by the basis of $A$
(where $A =$). This inverse is an isomorphism $\text{gr} A \rightarrow A$.

This is an isomorphism of $R$-modules. See the class documentation AssociatedGradedAlgebra.

See also:

to_graded_conversion()

EXAMPLES:

sage: A = Modules(QQ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
sage: q = A.to_graded_conversion()(p); q
sage: A.from_graded_conversion()(q) == p
True
sage: q.parent() is A.graded_algebra()
True

graded_algebra()

Return the associated graded module to self.

See AssociatedGradedAlgebra for the definition and the properties of this.

If the filtered module self with basis is called $A$, then this method returns $\text{gr} A$. The method
to_graded_conversion() returns the canonical $R$-module isomorphism $A \rightarrow \text{gr} A$ induced by the
basis of $A$, and the method from_graded_conversion() returns the inverse of this isomorphism.
The method projection() projects elements of $A$ onto $\text{gr} A$ according to their place in the filtration
on $A$.

Warning: When not overridden, this method returns the default implementation
of an associated graded module – namely, AssociatedGradedAlgebra(self), where
AssociatedGradedAlgebra is AssociatedGradedAlgebra. But some instances of
FilteredModulesWithBasis override this method, as the associated graded module often is
(isomorphic) to a simpler object (for instance, the associated graded module of a graded mod-
ule can be identified with the graded module itself). Generic code that uses associated graded
modules (such as the code of the induced_graded_map() method below) should make sure to
only communicate with them via the `to_graded_conversion()`, `from_graded_conversion()` and `projection()` methods (in particular, do not expect there to be a conversion from `self` to `self.graded_algebra()`; this currently does not work for Clifford algebras). Similarly, when overriding `graded_algebra()`, make sure to accordingly redefine these three methods, unless their definitions below still apply to your case (this will happen whenever the basis of your `graded_algebra()` has the same indexing set as `self`, and the partition of this indexing set according to degree is the same as for `self`).

**EXAMPLES:**

```python
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.graded_algebra()
Graded Module of An example of a filtered module with basis: the free module on partitions over Integer Ring
```

**homogeneous_component** *(d)*

Return the d-th homogeneous component of `self`.

**EXAMPLES:**

```python
sage: A = GradedModulesWithBasis(ZZ).example()
sage: A.homogeneous_component(4)
Degree 4 homogeneous component of An example of a graded module with basis: the free module on partitions over Integer Ring
```

**homogeneous_component_basis** *(d)*

Return a basis for the d-th homogeneous component of `self`.

**EXAMPLES:**

```python
sage: A = GradedModulesWithBasis(ZZ).example()
sage: A.homogeneous_component_basis(4)
```

**induced_graded_map**(other, f)

Return the graded linear map between the associated graded modules of `self` and `other` canonically induced by the filtration-preserving map `f : self -> other`.

Let `A` and `B` be two filtered modules with basis, and let `(F_i)_{i \in I}` and `(G_i)_{i \in I}` be their filtrations. Let `f : A \rightarrow B` be a linear map which preserves the filtration (i.e., satisfies `f(F_i) \subseteq G_i` for all `i \in I`). Then, there is a canonically defined graded linear map `gr f : gr A \rightarrow gr B` which satisfies

\[(gr f)(p_i(a)) = p_i(f(a)) \quad \text{for all} \ i \in I \text{ and } a \in F_i,\]
where the $p_i$ on the left hand side is the canonical projection from $F_i$ onto the $i$-th graded component of $\text{gr} A$, while the $p_i$ on the right hand side is the canonical projection from $G_i$ onto the $i$-th graded component of $\text{gr} B$.

INPUT:

• other – a filtered algebra with basis
• $f$ – a filtration-preserving linear map from self to other (can be given as a morphism or as a function)

OUTPUT:

The graded linear map $\text{gr} f$.

EXAMPLES:

Example 1.

We start with the free $\mathbb{Q}$-module with basis the set of all partitions:

```
sage: A = Modules(QQ).WithBasis().Filtered().example(); A
An example of a filtered module with basis: the free module on partitions over Rational Field
```

Let us define a map from $A$ to itself which acts on the basis by sending every partition $\lambda$ to the sum of the conjugates of all partitions $\mu$ for which $\lambda/\mu$ is a horizontal strip:

```
sage: def map_on_basis(lam):
....: return A.sum_of_monomials([Partition(mu).conjugate() for k in range(sum(lam) + 1)]
....: for mu in lam.remove_horizontal_border_strip(k))
```

```
sage: f = A.module_morphism(on_basis=map_on_basis, codomain=A)
```

```
sage: f(p1)
P[] + P[1]
sage: f(p2)
P[] + P[1] + P[1, 1]
sage: f(p21)
sage: f(p21 - p1)
sage: f(p321)
```

We now compute $\text{gr} f$

```
sage: grA = A.graded_algebra(); grA
Graded Module of An example of a filtered module with basis: the free module on partitions over Rational Field
```

```
sage: pp1, pp2, pp21, pp321 = [A.to_graded_conversion()(i) for i in [p1, p2, p21, p321]]
sage: pp2 + 4 * pp21
```

(continues on next page)
Example 2.

We shall now construct \( gf \) for a different map \( f \) out of the same \( A \); the new map \( f \) will lead into a graded algebra already, namely into the algebra of symmetric functions:

\[
\text{sage: } h = \text{SymmetricFunctions(QQ).h()}
\]
\[
\text{sage: def map_on_basis(lam): } \# \text{redefining map_on_basis}
\]
\[
\ldots: \quad \text{return } h.\text{sum_of_monomials([Partition(mu).conjugate() for } k \text{ in } \ldots:
\]
\[
\ldots: \quad \text{for } \mu \text{ in } \text{lam.remove_horizontal_border_}
\]
\[
\ldots: \quad \text{strip(k)])}
\]
\[
\text{sage: } f = A.\text{module_morphism(on_basis=map_on_basis,}
\]
\[
\ldots: \quad \text{codomain=h) } \# \text{redefining } f
\]
\[
\text{sage: f(p1)}
\]
\[
\text{h[1] + h[1]}
\text{sage: f(p2)}
\]
\[
\text{h[1] + h[1] + h[1, 1]}
\text{sage: f(A.zero())}
\]
\[
\emptyset
\text{sage: f(p2 - 3*p1)}
\]
\[
-2*h[] - 2*h[1] + h[1, 1]
\]

The algebra \( h \) of symmetric functions in the \( h \)-basis is already graded, so its associated graded algebra is implemented as itself:

\[
\text{sage: grh = h.graded_algebra(); grh is h}
\]
\[
\text{True}
\]
\[
\text{sage: grf = A.\text{induced_graded_map}(h, f); grf}
\]

Generic morphism:

From: Graded Module of An example of a filtered module with basis: the free module on partitions over Rational Field

To: Symmetric Functions over Rational Field in the homogeneous basis

\[
\text{sage: grf(ppl)}
\]
\[
\text{h[1]}
\text{sage: grf(pp2)}
\]
\[
\text{h[1, 1]}
\text{sage: grf(pp321)}
\]
\[
\text{h[3, 2, 1]}
\text{sage: grf(pp2 - 3*p1)}
\]
\[
-3*h[1] + h[1, 1]
\text{sage: grf(pp21)}
\]

(continues on next page)
Example 3.

After having had a graded module as the codomain, let us try to have one as the domain instead. Our new \( f \) will go from \( h \) to \( A \):

```python
sage: def map_on_basis(lam):
 return A.sum_of_monomials([Partition(mu).conjugate() for k in range(sum(lam) + 1)]
 for mu in lam.remove_horizontal_border_strip(k))

sage: f = h.module_morphism(on_basis=map_on_basis, codomain=A) # redefining f

sage: f(h[1])
P[0] + P[1]
sage: f(h[2])
P[0] + P[1] + P[1, 1]
sage: f(h[1, 1])
sage: f(h[2, 2])
P[1, 1] + P[2, 1] + P[2, 2]
sage: f(h[1, 2])
sage: f(h.one())
P[]
sage: grf = h.induced_graded_map(A, f); grf
Generic morphism:
 From: Symmetric Functions over Rational Field in the homogeneous basis
 To: Graded Module of An example of a filtered module with basis: the free module on partitions over Rational Field

sage: grf(h[1])
Bbar[1]
sage: grf(h[2])
Bbar[1, 1]
sage: grf(h[1, 1])
Bbar[2]
sage: grf(h[2, 2])
Bbar[2, 2]
sage: grf(h[3, 2, 1])
Bbar[3, 2, 1]
sage: grf(h.one())
Bbar[]
```

Example 4.

The construct \( \text{gr} f \) also makes sense when \( f \) is a filtration-preserving map between graded modules.
projection\((i)\)
Return the \(i\)-th projection \(p_i : F_i \rightarrow G_i\) (in the notations of the class documentation AssociatedGradedAlgebra, where \(A =\)).

This method actually does not return the map \(p_i\) itself, but an extension of \(p_i\) to the whole \(R\)-module \(A\). This extension is the composition of the \(R\)-module isomorphism \(A \rightarrow gr\ A\) with the canonical projection of the graded \(R\)-module \(gr\ A\) onto its \(i\)-th graded component \(G_i\). The codomain of this map is \(gr\ A\), although its actual image is \(G_i\). The map \(p_i\) is obtained from this map by restricting its domain to \(F_i\) and its image to \(G_i\).

EXAMPLES:

```
sage: A = Modules(ZZ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
sage: q = A.projection(2)(p); q
-6*Bbar[[2]]
sage: q.parent() is A.graded_algebra()
True
sage: A.projection(3)(p)
[]
```

to_graded_conversion()
Return the canonical \(R\)-module isomorphism \(A \rightarrow gr\ A\) induced by the basis of \(A\) (where \(A =\)).
This is an isomorphism of $R$-modules. See the class documentation AssociatedGradedAlgebra.

See also:

from_graded_conversion()

EXAMPLES:

```python
sage: A = Modules(QQ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
sage: q = A.to_graded_conversion()(p); q
sage: q.parent() is A.graded_algebra()
True
```

class Subobjects(category, *args)

Bases: sage.categories.subobjects.SubobjectsCategory

class ElementMethods

Bases: object

degree()

Return the degree of self.

EXAMPLES:

```python
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z, y])
sage: B = S.basis()
[x, y, x*y - y*z]
sage: B[0].degree()
1
sage: B[1].degree()
1
sage: (B[0] + 3*B[1]).degree()
1
```

The degree of inhomogeneous elements is not defined (following the behavior of the exterior algebra):

```python
sage: (B[0] + B[2]).degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous
```

We can still get the maximal degree:

```python
sage: (B[0] + B[2]).maximal_degree()
2
```

maximal_degree()

The maximum of the degrees of the homogeneous components of self.

This is also the smallest $i$ such that self belongs to $F_i$. Hence, it does not depend on the basis of the parent of self.
See also:

homogeneous_degree()

EXAMPLES:

```python
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: F = E.submodule([x + 1, x*y - 1])
sage: B = F.basis()
sage: [B[0].lift(), B[1].lift()]
[-x*y + 1, x*y + x]
sage: B[0].maximal_degree()
2
sage: B[1].maximal_degree()
2
```

class ParentMethods

Bases: object

```
degree_on_basis(m)
```

Return the degree of the basis element indexed by m in self.

EXAMPLES:

```python
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z, y])
sage: B = S.basis()
[x, y, x*y - y*z]
sage: S.degree_on_basis(0)
1
sage: S.degree_on_basis(1)
1
sage: S.degree_on_basis(2)
2
```

### 4.44 Finite Complex Reflection Groups

class sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite complex reflection groups.

See ComplexReflectionGroups for the definition of complex reflection group. In the finite case, most of the information about the group can be recovered from its degrees and codegrees, and to a lesser extent to the explicit realization as subgroup of $GL(V)$. Hence the most important optional methods to implement are:

- ComplexReflectionGroups.Finite.ParentMethods.codegrees().
- ComplexReflectionGroups.Finite.ElementMethods.to_matrix().

Finite complex reflection groups are completely classified. In particular, if the group is irreducible, then it's uniquely determined by its degrees and codegrees and whether it's reflection representation is primitive or not (see [LT2009] Chapter 2.1 for the definition of primitive).
See also:
Wikipedia article Complex_reflection_groups

EXAMPLES:

```
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite()
Category of finite complex reflection groups
sage: ComplexReflectionGroups().Finite().super_categories()
[Category of complex reflection groups,
 Category of finite groups,
 Category of finite finitely generated semigroups]
```

An example of a finite reflection group:

```
sage: W = ComplexReflectionGroups().Finite().example(); W
optional - gap3
Reducible real reflection group of rank 4 and type A2 x B2
sage: W.reflections()
optional - gap3
Finite family {1: (1,8)(2,5)(9,12), 2: (1,5)(2,9)(8,12),
 3: (3,10)(4,7)(11,14), 4: (3,6)(4,11)(10,13),
 5: (1,9)(2,8)(5,12), 6: (4,14)(6,13)(7,11),
 7: (3,13)(6,10)(7,14)}
```

W is in the category of complex reflection groups:

```
sage: W in ComplexReflectionGroups().Finite() # optional - gap3
True
```

```python
class ElementMethods
 Bases: object

 character_value()
 Return the value at self of the character of the reflection representation given by to_matrix().

 EXAMPLES:

 sage: W = ColoredPermutations(1,3); W
 1-colored permutations of size 3
 sage: [t.character_value() for t in W]
 [3, 1, 1, θ, θ, 1]
```

Note that this could be a different (faithful) representation than that given by the corresponding root system:

```
sage: W = ReflectionGroup((1,1,3)); W
optional - gap3
Irreducible real reflection group of rank 2 and type A2
sage: [t.character_value() for t in W] # optional - gap3
[2, θ, θ, -1, -1, θ]
```

```
sage: W = ColoredPermutations(2,2); W
2-colored permutations of size 2
sage: [t.character_value() for t in W]
[2, θ, θ, -2, θ, θ, θ, θ]
```

(continues on next page)
sage: W = ColoredPermutations(3,1); W
3-colored permutations of size 1
sage: [t.character_value() for t in W]
[1, zeta3, -zeta3 - 1]

\textbf{reflection_length}(\texttt{in_unitary_group=False})

Return the reflection length of \texttt{self}.

This is the minimal numbers of reflections needed to obtain \texttt{self}.

INPUT:

- \texttt{in_unitary_group} – (default: \texttt{False}) if \texttt{True}, the reflection length is computed in the unitary
group which is the dimension of the move space of \texttt{self}

EXAMPLES:

sage: W = ReflectionGroup((1,1,3))
# optional - gap3
sage: sorted([t.reflection_length() for t in W])
# optional - gap3
[0, 1, 1, 1, 2, 2]

sage: W = ReflectionGroup((2,1,2))
# optional - gap3
sage: sorted([t.reflection_length() for t in W])
# optional - gap3
[0, 1, 1, 1, 1, 2, 2, 2]

sage: W = ReflectionGroup((2,2,2))
# optional - gap3
sage: sorted([t.reflection_length() for t in W])
# optional - gap3
[0, 1, 1, 2]

sage: W = ReflectionGroup((3,1,2))
# optional - gap3
sage: sorted([t.reflection_length() for t in W])
# optional - gap3
[0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

to\_matrix()

Return the matrix presentation of \texttt{self} acting on a vector space \(V\).

EXAMPLES:

sage: W = ReflectionGroup((1,1,3))
# optional - gap3
sage: [t.to_matrix() for t in W]
# optional - gap3
[[1 0]
 [1 1] [-1 0] [-1 -1] [ 0 1] [ 0 -1]
[0 1], [ 0 -1], [ 1 1], [ 1 0], [-1 -1], [-1 0]
]

sage: W = ColoredPermutations(1,3)

sage: [t.to_matrix() for t in W]
[[1 0 0] [1 0 0] [0 1 0] [0 0 1] [0 1 0] [0 0 1]
 [0 1 0] [0 0 1] [1 0 0] [1 0 0] [0 0 1] [0 1 0]
[0 0 1], [0 1 0], [0 0 1], [0 1 0], [1 0 0], [1 0 0]
]

A different representation is given by the colored permutations:
class Irreducible(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object

absolute_order_ideal(gens=None, in_unitary_group=True, return_lengths=False)
    Return all elements in self below given elements in the absolute order of self.

    This order is defined by
    \[ \omega \leq_R \tau \iff \ell_R(\omega) + \ell_R(\omega^{-1}\tau) = \ell_R(\tau), \]
    where \( \ell_R \) denotes the reflection length.

    This is, if in_unitary_group is False, then
    \[ \ell_R(w) = \min\{\ell : w = r_1 \cdots r_\ell, r_i \in R\}, \]
    and otherwise
    \[ \ell_R(w) = \dim \text{im}(w - 1). \]

    **Note:** If gens are not given, self is assumed to be well-generated.

INPUT:
- gens – (default: None) if one or more elements are given, the order ideal in the absolute order generated by gens is returned. Otherwise, the standard Coxeter element is used as unique maximal element.
- in_unitary_group (default: True) determines the length function used to compute the order. For real groups, both possible orders coincide, and for complex non-real groups, the order in the unitary group is much faster to compute.
- return_lengths (default: False) whether or not to also return the lengths of the elements.

EXAMPLES:

```
sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: sorted(w.reduced_word() for w in W.absolute_order_ideal()) # optional - gap3
[[], [1], [1, 2], [1, 2, 1], [2]]

sage: sorted(w.reduced_word() for w in W.absolute_order_ideal(W.from_reduced_word([2,1]))) # optional - gap3
[[], [1], [1, 2, 1], [2], [2, 1]]

sage: sorted(w.reduced_word() for w in W.absolute_order_ideal(W.from_reduced_word([2]))) # optional - gap3
[[], [2]]
```

(continues on next page)
sage: W = CoxeterGroup(['A', 3])

sage: len(list(W.absolute_order_ideal()))
14

sage: W = CoxeterGroup(['A', 2])

sage: for (w, l) in W.absolute_order_ideal(return_lengths=True):
    print(w.reduced_word(), l)
[1, 2] 2
[1, 2, 1] 1
[2] 1
[1] 1
[] 0

absolute_poset(in_unitary_group=False)

Return the poset induced by the absolute order of self as a finite lattice.

INPUT:
• in_unitary_group – (default: False) if False, the relation is given by \sigma \leq \tau if \ell_R(\sigma) + \ell_R(\sigma^{-1}\tau) = \ell_R(\tau). If True, the relation is given by \sigma \leq \tau if \dim(\text{Fix}(\sigma)) + \dim(\text{Fix}(\sigma^{-1}\tau)) = \dim(\text{Fix}(\tau)).

See also:
noncrossing_partition_lattice()

EXAMPLES:

sage: P = ReflectionGroup((1,1,3)).absolute_poset(); P  # optional - gap3
Finite poset containing 6 elements

sage: sorted(w.reduced_word() for w in P)  # optional - gap3
[[], [1], [1, 2], [1, 2, 1], [2], [2, 1]]

sage: W = ReflectionGroup(4); W  # optional - gap3
Irreducible complex reflection group of rank 2 and type ST4

sage: W.absolute_poset()  # optional - gap3
Finite poset containing 24 elements

coxeter_number()  

Return the Coxeter number of an irreducible reflection group.

This is defined as \frac{N + N^*}{n} where \(N\) is the number of reflections, \(N^*\) is the number of reflection hyperplanes, and \(n\) is the rank of self.

EXAMPLES:

sage: W = ReflectionGroup(31)  # optional - gap3
sage: W.coxeter_number()  # optional - gap3
30

elements_below_coxeter_element(c=None)

Deprecated method.
Superseded by `absolute_order_ideal()`

**generalized_noncrossing_partitions**\((m, c=None, positive=False)\)

Return the set of all chains of length \(m\) in the noncrossing partition lattice of \(self\), see `noncrossing_partition_lattice()`.

**Note:** `self` is assumed to be well-generated.

**INPUT:**

- \(c\) – (default: `None`) if an element \(c\) in `self` is given, it is used as the maximal element in the interval
- `positive` – (default: `False`) if `True`, only those generalized noncrossing partitions of full support are returned

**EXAMPLES:**

```python
sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: sorted([w.reduced_word() for w in chain] # optional - gap3
 for chain in W.generalized_noncrossing_partitions(2)) # optional - gap3
[[[], [], [1, 2]],
 [[], [1], [2]],
 [[], [1, 2], []],
 [[], [1, 2, 1], [1]],
 [[], [2], [1, 2, 1]],
 [[1], [], [2]],
 [[1], [2], []],
 [[1, 2], [], []],
 [[1, 2, 1], [], [1]],
 [[1, 2, 1], [], [2]],
 [[2], [], [1, 2, 1]],
 [[2], [], [2]]]
```

```python
sage: sorted([w.reduced_word() for w in chain] # optional - gap3
 for chain in W.generalized_noncrossing_partitions(2, positive=True)) # optional - gap3
[[[], [1, 2], []],
 [[], [1, 2, 1], [1]],
 [[1], [2], []],
 [[1], [2, 1], []],
 [[1, 2], [], []],
 [[1, 2, 1], [], [1]],
 [[1, 2, 1], [], [2]],
 [[2], [1, 2, 1], []],
 [[2], [1, 2, 1], []]]
```

**noncrossing_partition_lattice**\((c=None, L=None, in_unitary_group=True)\)

Return the interval \([1, c]\) in the absolute order of `self` as a finite lattice.

**See also:**

`absolute_order_ideal()`

**INPUT:**
• c – (default: None) if an element c in self is given, it is used as the maximal element in the interval
• L – (default: None) if a subset L (must be hashable!) of self is given, it is used as the underlying set (only cover relations are checked).
• in_unitary_group – (default: False) if False, the relation is given by \( \sigma \leq \tau \) if \( l_R(\sigma) + l_R(\sigma^{-1}\tau) = l_R(\tau) \); if True, the relation is given by \( \sigma \leq \tau \) if \( \dim(Fix(\sigma)) + \dim(Fix(\sigma^{-1}\tau)) = \dim(Fix(\tau)) \)

**Note:** If L is given, the parameter c is ignored.

**EXAMPLES:**

```python
sage: W = SymmetricGroup(4)
sage: W.noncrossing_partition_lattice()
Finite lattice containing 14 elements

sage: W = WeylGroup(['G', 2])
sage: W.noncrossing_partition_lattice()
Finite lattice containing 8 elements

sage: W = ReflectionGroup((1,1,3))
optional - gap3

sage: sorted(w.reduced_word() for w in W.noncrossing_partition_lattice())
optional - gap3
[[], [1], [1, 2], [1, 2, 1], [2]]

sage: sorted(w.reduced_word() for w in W.noncrossing_partition_lattice(W.from_reduced_word([2,1])))
optional - gap3
[[], [1], [1, 2, 1], [2], [2, 1]]

sage: sorted(w.reduced_word() for w in W.noncrossing_partition_lattice(W.from_reduced_word([2])))
optional - gap3
[[], [2]]
```

e**xample()**

Return an example of an irreducible complex reflection group.

**EXAMPLES:**

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().Irreducible().example() # optional - gap3
Irreducible complex reflection group of rank 3 and type G(4,2,3)
```

**class ParentMethods**

**Bases:** object

**base_change_matrix()**

Return the base change from the standard basis of the vector space of self to the basis given by the independent roots of self.
Todo: For non-well-generated groups there is a conflict with construction of the matrix for an element.

EXAMPLES:

```python
sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.base_change_matrix() # optional - gap3
[1 0]
[0 1]
```

```python
sage: W = ReflectionGroup(23) # optional - gap3
sage: W.base_change_matrix() # optional - gap3
[1 0 0]
[0 1 0]
[0 0 1]
```

```python
sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: W.base_change_matrix() # optional - gap3
[1 0]
[1 1]
```

```python
sage: W = ReflectionGroup((4,2,2)) # optional - gap3
sage: W.base_change_matrix() # optional - gap3
[1 0]
[E(4) 1]
```

cardinality()

Return the cardinality of self.

It is given by the product of the degrees of self.

EXAMPLES:

```python
sage: W = ColoredPermutations(1,3)
sage: W.cardinality()
6
```

```python
sage: W = ColoredPermutations(2,3)
sage: W.cardinality()
48
```

```python
sage: W = ColoredPermutations(4,3)
sage: W.cardinality()
384
```

```python
sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.cardinality() # optional - gap3
192
```
**codegrees()**

Return the codegrees of self.

OUTPUT: a tuple of Sage integers

EXAMPLES:

```sage
sage: W = ColoredPermutations(1,4)
sage: W.codegrees()
(2, 1, 0)
sage: W = ColoredPermutations(3,3)
sage: W.codegrees()
(6, 3, 0)
sage: W = ReflectionGroup(31) # optional - gap3
sage: W.codegrees() # optional - gap3
(28, 16, 12, 0)
```

**degrees()**

Return the degrees of self.

OUTPUT: a tuple of Sage integers

EXAMPLES:

```sage
sage: W = ColoredPermutations(1,4)
sage: W.degrees()
(2, 3, 4)
sage: W = ColoredPermutations(3,3)
sage: W.degrees()
(3, 6, 9)
sage: W = ReflectionGroup(31) # optional - gap3
sage: W.degrees() # optional - gap3
(8, 12, 20, 24)
```

**is_real()**

Return whether self is real.

A complex reflection group is real if it is isomorphic to a reflection group in \( GL(V) \) over a real vector space \( V \). Equivalently its character table has real entries.

This implementation uses the following statement: an irreducible complex reflection group is real if and only if 2 is a degree of self with multiplicity one. Hence, in general we just need to compare the number of occurrences of 2 as degree of self and the number of irreducible components.

EXAMPLES:

```sage
sage: W = ColoredPermutations(1,3)
sage: W.is_real()
True
sage: W = ColoredPermutations(4,3)
sage: W.is_real()
False
```
Todo: Add an example of non real finite complex reflection group that is generated by order 2 reflections.

is_well_generated()

Return whether self is well-generated.

A finite complex reflection group is well generated if the number of its simple reflections coincides with its rank.

See also:
ComplexReflectionGroups.Finite.WellGenerated()

Note:
• All finite real reflection groups are well generated.
• The complex reflection groups of type \( G(r, 1, n) \) and of type \( G(r, r, n) \) are well generated.
• The complex reflection groups of type \( G(r, p, n) \) with \( 1 < p < r \) are not well generated.
• The direct product of two well generated finite complex reflection group is still well generated.

EXAMPLES:

```sage
W = ColoredPermutations(1,3)
sage: W.is_well_generated()
True

W = ColoredPermutations(4,3)
sage: W.is_well_generated()
True

W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.is_well_generated() # optional - gap3
False

W = ReflectionGroup((4,4,3)) # optional - gap3
sage: W.is_well_generated() # optional - gap3
True
```

number_of_reflection_hyperplanes()

Return the number of reflection hyperplanes of self.

This is also the number of distinguished reflections. For real groups, this coincides with the number of reflections.

This implementation uses that it is given by the sum of the codegrees of self plus its rank.

See also:
number_of_reflections()

EXAMPLES:

```sage
W = ColoredPermutations(1,3)
sage: W.number_of_reflection_hyperplanes()
3

W = ColoredPermutations(2,3)
sage: W.number_of_reflection_hyperplanes()
```
(continues on next page)
sage: W.number_of_reflection_hyperplanes()
9
sage: W = ColoredPermutations(4,3)
sage: W.number_of_reflection_hyperplanes()
15
sage: W = ReflectionGroup((4,2,3))  # optional - gap3
sage: W.number_of_reflection_hyperplanes()  # optional - gap3
15

number_of_reflections()

Return the number of reflections of self.

For real groups, this coincides with the number of reflection hyperplanes.

This implementation uses that it is given by the sum of the degrees of self minus its rank.

See also:

number_of_reflection_hyperplanes()

EXAMPLES:

sage: [SymmetricGroup(i).number_of_reflections() for i in range(int(8))]
[0, 0, 1, 3, 6, 10, 15, 21]

sage: W = ColoredPermutations(1,3)
sage: W.number_of_reflections()
3
sage: W = ColoredPermutations(2,3)
sage: W.number_of_reflections()
9
sage: W = ColoredPermutations(4,3)
sage: W.number_of_reflections()
21
sage: W = ReflectionGroup((4,2,3))  # optional - gap3
sage: W.number_of_reflections()  # optional - gap3
15

rank()

Return the rank of self.

The rank of self is the dimension of the smallest faithfull reflection representation of self.

This default implementation uses that the rank is the number of degrees().

See also:

ComplexReflectionGroups.rank()

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.rank()
2
sage: W = ColoredPermutations(2,3)
sage: W.rank()
3
sage: W = ColoredPermutations(4,3)
sage: W.rank()
3
sage: W = ReflectionGroup((4,2,3))  # optional - gap3
sage: W.rank()  # optional - gap3
3

class SubcategoryMethods
Bases: object

WellGenerated()
Return the full subcategory of well-generated objects of self.

A finite complex generated group is well generated if it is isomorphic to a subgroup of the general linear group $GL_n$ generated by $n$ reflections.

See also:
ComplexReflectionGroups.Finite.ParentMethods.is_well_generated()

EXAMPLES:

```python
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: C = ComplexReflectionGroups().Finite().WellGenerated(); C
Category of well generated finite complex reflection groups
```

Here is an example of a finite well-generated complex reflection group:

```python
sage: W = C.example(); W # optional - gap3
Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
```

All finite Coxeter groups are well generated:

```python
sage: CoxeterGroups().Finite().is_subcategory(C)
True
sage: SymmetricGroup(3) in C
True
```

Note: The category of well generated finite complex reflection groups is currently implemented as an axiom. See discussion on trac ticket #11187. This may be a bit of overkill. Still it’s nice to have a full subcategory.

class WellGenerated(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Irreducible(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite irreducible well-generated finite complex reflection groups.

class ParentMethods
Bases: object

catalan_number(positive=False, polynomial=False)
    Return the Catalan number associated to self.
It is defined by
\[ \prod_{i=1}^{n} \frac{d_i + h}{d_i}, \]
where \(d_1, \ldots, d_n\) are the degrees and where \(h\) is the Coxeter number. See [Ar2006] for further information.

**INPUT:**
- **positive** – optional boolean (default False) if True, return instead the positive Catalan number
- **polynomial** – optional boolean (default False) if True, return instead the \(q\)-analogue as a polynomial in \(q\)

**Note:**
- For the symmetric group \(S_n\), it reduces to the Catalan number \(\frac{1}{n+1} \binom{2n}{n}\).
- The Catalan numbers for \(G(r, 1, n)\) all coincide for \(r > 1\).

**EXAMPLES:**

```python
sage: [ColoredPermutations(1,n).catalan_number() for n in [3,4,5]]
[5, 14, 42]

sage: [ColoredPermutations(2,n).catalan_number() for n in [3,4,5]]
[20, 70, 252]

sage: [ReflectionGroup((2,2,n)).catalan_number() for n in [3,4,5]] # optional - gap3
[14, 50, 182]
```

**coxeter_number()**

Return the Coxeter number of a well-generated, irreducible reflection group. This is defined to be the order of a regular element in \(self\), and is equal to the highest degree of \(self\).

**See also:**
ComplexReflectionGroups.Finite.Irreducible()

**Note:** This method overwrites the more general method for complex reflection groups since the expression given here is quicker to compute.

**EXAMPLES:**

```python
sage: W = ColoredPermutations(1,3)
sage: W.coxeter_number()
3

sage: W = ColoredPermutations(4,3)
sage: W.coxeter_number()
12

sage: W = ReflectionGroup((4,4,3)) # optional - gap3
sage: W.coxeter_number() # optional - gap3
8
```
\textbf{fuss\_catalan\_number}(m, positive=False, polynomial=False)
Return the \(m\)-th Fuss-Catalan number associated to \texttt{self}.

This is defined by
\[
\prod_{i=1}^{n} \frac{d_i + mh}{d_i},
\]
where \(d_1, \ldots, d_n\) are the degrees and \(h\) is the Coxeter number.

\textbf{INPUT:}
- \texttt{positive} – optional boolean (default \texttt{False}) if \texttt{True}, return instead the positive Fuss-Catalan number
- \texttt{polynomial} – optional boolean (default \texttt{False}) if \texttt{True}, return instead the \(q\)-analogue as a polynomial in \(q\)

See [Ar2006] for further information.

\textbf{Note:}
- For the symmetric group \(S_n\), it reduces to the Fuss-Catalan number \(\frac{1}{mn+1} \binom{(m+1)n}{n}\).
- The Fuss-Catalan numbers for \(G(r, 1, n)\) all coincide for \(r > 1\).

\textbf{EXAMPLES:}
\begin{verbatim}sage: W = ColoredPermutations(1,3)sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [5, 12, 22]
sage: W = ColoredPermutations(1,4)sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [14, 55, 140]
sage: W = ColoredPermutations(1,5)sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [42, 273, 969]
sage: W = ColoredPermutations(2,2)sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [6, 15, 28]
sage: W = ColoredPermutations(2,3)sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [20, 84, 220]
sage: W = ColoredPermutations(2,4)sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [70, 495, 1820]
\end{verbatim}

\textbf{number\_of\_reflections\_of\_full\_support()}
Return the number of reflections with full support.

\textbf{EXAMPLES:}
\begin{verbatim}sage: W = Permutations(4)sage: W.number_of_reflections_of_full_support()
\end{verbatim}
sage: W = ColoredPermutations(1,4)
sage: W.number_of_reflections_of_full_support()
1

sage: W = CoxeterGroup("B3")
sage: W.number_of_reflections_of_full_support()
3

sage: W = ColoredPermutations(3,3)
sage: W.number_of_reflections_of_full_support()
3

rational_catalan_number(p, polynomial=False)

Return the p-th rational Catalan number associated to self.

It is defined by

\[
\prod_{i=1}^{n} \frac{p + (p(d_i - 1)) \mod h}{d_i},
\]

where \(d_1, \ldots, d_n\) are the degrees and \(h\) is the Coxeter number. See [STW2016] for this formula.

INPUT:
• polynomial – optional boolean (default False) if True, return instead the \(q\)-analogue as a polynomial in \(q\)

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: [W.rational_catalan_number(p) for p in [5,7,8]]
[7, 12, 15]

sage: W = ColoredPermutations(2,2)
sage: [W.rational_catalan_number(p) for p in [7,9,11]]
[10, 15, 21]

example()

Return an example of an irreducible well-generated complex reflection group.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().WellGenerated().Irreducible().example()
4-colored permutations of size 3

class ParentMethods

Bases: object

coxeter_element()

Return a Coxeter element.

The result is the product of the simple reflections, in some order.
Note: This implementation is shared with well generated complex reflection groups. It would be
nicer to put it in some joint super category; however, in the current state of the art, there is none
where it is clear that this is the right construction for obtaining a Coxeter element.

In this context, this is an element having a regular eigenvector (a vector not contained in any
reflection hyperplane of \textit{self}).

EXAMPLES:

\begin{verbatim}
    sage: CoxeterGroup(['A', 4]).coxeter_element().reduced_word()
    [1, 2, 3, 4]
    sage: CoxeterGroup(['B', 4]).coxeter_element().reduced_word()
    [1, 2, 3, 4]
    sage: CoxeterGroup(['D', 4]).coxeter_element().reduced_word()
    [1, 2, 4, 3]
    sage: CoxeterGroup(['F', 4]).coxeter_element().reduced_word()
    [1, 2, 3, 4]
    sage: CoxeterGroup(['E', 8]).coxeter_element().reduced_word()
    [1, 3, 2, 4, 5, 6, 7, 8]
    sage: CoxeterGroup(['H', 3]).coxeter_element().reduced_word()
    [1, 2, 3]
\end{verbatim}

This method is also used for well generated finite complex reflection groups:

\begin{verbatim}
    sage: W = ReflectionGroup((1,1,4)) # optional - gap3
    sage: W.coxeter_element().reduced_word() # optional - gap3
    [1, 2, 3]
    sage: W = ReflectionGroup((2,1,4)) # optional - gap3
    sage: W.coxeter_element().reduced_word() # optional - gap3
    [1, 2, 3, 4]
    sage: W = ReflectionGroup((4,1,4)) # optional - gap3
    sage: W.coxeter_element().reduced_word() # optional - gap3
    [1, 2, 3, 4]
    sage: W = ReflectionGroup((4,4,4)) # optional - gap3
    sage: W.coxeter_element().reduced_word() # optional - gap3
    [1, 2, 3, 4]
\end{verbatim}

\texttt{coxeter\_elements()}

Return the (unique) conjugacy class in \textit{self} containing all Coxeter elements.

A Coxeter element is an element that has an eigenvalue $e^{2\pi i/h}$ where $h$ is the Coxeter number.

In case of finite Coxeter groups, these are exactly the elements that are conjugate to one (or, equivalentdly, all) standard Coxeter element, this is, to an element that is the product of the simple gen-
erators in some order.

See also:

\texttt{standard\_coxeter\_elements()}

EXAMPLES:
```python
is_well_generated()
Return True as self is well-generated.

EXAMPLES:
```
4.45 Finite Coxeter Groups

class sage.categories.finite_coxeter_groups.FiniteCoxeterGroups(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite Coxeter groups.

EXAMPLES:

sage: CoxeterGroups.Finite()
Category of finite coxeter groups
sage: FiniteCoxeterGroups().super_categories()
[Category of finite generalized coxeter groups,
 Category of coxeter groups]

sage: G = CoxeterGroups().Finite().example()
sage: G.cayley_graph(side = "right").plot()
Graphics object consisting of 40 graphics primitives

Here are some further examples:

sage: WeylGroups().Finite().example()
The symmetric group on \{0, ..., 3\}

sage: WeylGroup(['B', 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)

Those other examples will eventually be also in this category:

sage: SymmetricGroup(4)
Symmetric group of order 4! as a permutation group
sage: DihedralGroup(5)
Dihedral group of order 10 as a permutation group

class ElementMethods

Bases: object

bruhat_upper_covers()

Returns all the elements that cover \texttt{self} in Bruhat order.

EXAMPLES:

sage: W = WeylGroup(['A',4])
sage: w = W.from_reduced_word([3,2])
sage: print([v.reduced_word() for v in w.bruhat_upper_covers()])
[[4, 3, 2], [3, 4, 2], [2, 3, 2], [3, 1, 2], [3, 2, 1]]

sage: W = WeylGroup(['B',6])
(continues on next page)
sage: w = W.from_reduced_word([1,2,1,4,5])
sage: C = w.bruhat_upper_covers()
sage: len(C)
9
sage: print([v.reduced_word() for v in C])
[[6, 4, 5, 1, 2, 1], [4, 5, 6, 1, 2, 1], [3, 4, 5, 1, 2, 1], [2, 3, 4, 5, 1, → 2],
[1, 2, 3, 4, 5, 1], [4, 5, 4, 1, 2, 1], [4, 5, 3, 1, 2, 1], [4, 5, 2, 3, 1, → 2],
[4, 5, 1, 2, 3, 1]]
sage: ww = W.from_reduced_word([5,6,5])
sage: CC = ww.bruhat_upper_covers()
sage: print([v.reduced_word() for v in CC])
[[6, 5, 6, 5], [4, 5, 6, 5], [5, 6, 4, 5], [5, 6, 5, 4], [5, 6, 5, 3], [5, → 6, 5, 2],
[5, 6, 5, 1]]

Recursive algorithm: write \( w \) for \( self \). If \( i \) is a non-descent of \( w \), then the covers of \( w \) are exactly 
\{ \( w s_i \), \( u_1 s_i \), \( u_2 s_i \), ..., \( u_j s_i \) \}, where the \( u_k \) are those covers of \( w s_i \) that have a descent at \( i \).

covered_reflections_subgroup()  
Return the subgroup of \( W \) generated by the conjugates by \( w \) of the simple reflections indexed by right descents of \( w \).

This is used to compute the shard intersection order on \( W \).

EXAMPLES:

```python
sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: len(W.long_element().covered_reflections_subgroup())
24
sage: s = W.simple_reflection(1)
sage: Gs = s.covered_reflections_subgroup()
sage: len(Gs)
2
sage: s in [u.lift() for u in Gs]
True
sage: len(W.one().covered_reflections_subgroup())
1
```

coxeter_knuth_graph()  
Return the Coxeter-Knuth graph of type \( A \).

The Coxeter-Knuth graph of type \( A \) is generated by the Coxeter-Knuth relations which are given by
\( a a + 1 a ~ a + 1 a a + 1, a b c ~ a e c \) if \( b < a < c \) and \( a b c ~ b a c \) if \( a < c < b \).

EXAMPLES:

```python
sage: W = WeylGroup(['A',4], prefix='s')
sage: w = W.from_reduced_word([1,2,1,3,2])
sage: D = w.coxeter_knuth_graph()
sage: D.vertices()
[(1, 2, 1, 3, 2),
(1, 2, 3, 1, 2),
(2, 1, 2, 3, 2),
(2, 1, 3, 2, 1),
(2, 3, 1, 2, 1),
(2, 3, 2, 1, 2),
(3, 1, 2, 3, 2),
(3, 2, 1, 3, 2),
(3, 2, 3, 1, 2),
(3, 2, 3, 2, 1),
(3, 1, 2, 3, 2)]
```
\begin{verbatim}
(2, 1, 3, 2, 3),
(2, 3, 1, 2, 3)]
sage: D.edges()
[((1, 2, 1, 3, 2), (1, 2, 3, 1, 2), None),
(1, 2, 1, 3, 2), (2, 1, 2, 3, 2), None),
((2, 1, 2, 3, 2), (2, 1, 3, 2, 3), None),
((2, 1, 3, 2, 3), (2, 3, 1, 2, 3), None)]
sage: w = W.from_reduced_word([1,3])
sage: D = w.coxeter_knuth_graph()
sage: D.vertices()
[(1, 3), (3, 1)]
sage: D.edges()
[]
\end{verbatim}

\textbf{coxeter\_knuth\_neighbor}(\textit{w})

Return the Coxeter-Knuth (oriented) neighbors of the reduced word \textit{w} of \texttt{self}.

\textbf{INPUT:}

\begin{itemize}
  \item \textit{w} – reduced word of \texttt{self}
\end{itemize}

The Coxeter-Knuth relations are given by $aa + 1a \sim a + 1aa + 1$, $abc \sim acb$ if $b < a < c$ and $abc \sim bac$ if $a < c < b$. This method returns all neighbors of \textit{w} under the Coxeter-Knuth relations oriented from left to right.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = WeylGroup(['A',4], prefix='s')
sage: word = [1,2,1,3,2]
sage: w = W.from_reduced_word(word)
sage: w.coxeter_knuth_neighbor(word)
{(1, 2, 3, 1, 2), (2, 1, 2, 3, 2)}

sage: word = [1,2,1,3,2,4,3]
sage: w = W.from_reduced_word(word)
sage: w.coxeter_knuth_neighbor(word)
{(1, 2, 1, 3, 4, 2, 3), (1, 2, 3, 1, 2, 4, 3), (2, 1, 2, 3, 2, 4, 3)}
\end{verbatim}

\textbf{is\_coxeter\_element()}

Return whether this is a Coxeter element.

This is, whether \texttt{self} has an eigenvalue $e^{2\pi i/h}$ where \textit{h} is the Coxeter number.

\textbf{See also:}

coxeter\_elements()

\textbf{EXAMPLES:}

\begin{verbatim}
sage: W = CoxeterGroup(['A',2])
sage: c = prod(W.gens())
sage: c.is_coxeter_element()
True
sage: W.one().is_coxeter_element()
False
\end{verbatim}
Ambiguity resolution: the implementation of `some_elements` is preferable to that of `FiniteGroups`. The same holds for `__iter__`, although a breadth first search would be more natural; at least this maintains backward compatibility after trac ticket #13589.

`bhz_poset()`

Return the Bergeron-Hohlweg-Zabrocki partial order on the Coxeter group.

This is a partial order on the elements of a finite Coxeter group $W$, which is distinct from the Bruhat order, the weak order and the shard intersection order. It was defined in [BHZ2005].

This partial order is not a lattice, as there is no unique maximal element. It can be succinctly defined as follows.

Let $u$ and $v$ be two elements of the Coxeter group $W$. Let $S(u)$ be the support of $u$. Then $u \leq v$ if and only if $v^I S(u) = u$ (here $v^I = v^I v_I$ denotes the usual parabolic decomposition with respect to the standard parabolic subgroup $W_I$).

See also:

`bruhat_poset()`, `shard_poset()`, `weak_poset()`

EXAMPLES:

```python
sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: P = W.bhz_poset(); P
Finite poset containing 24 elements
sage: P.relations_number()
103
sage: P.chain_polynomial()
34*q^4 + 90*q^3 + 79*q^2 + 24*q + 1
sage: len(P.maximal_elements())
13
```

`bruhat_poset(facade=False)`

Return the Bruhat poset of `self`.

See also:

`bhz_poset()`, `shard_poset()`, `weak_poset()`

EXAMPLES:

```python
sage: W = WeylGroup(['A', 2])
sage: P = W.bruhat_poset()
sage: P
Finite poset containing 6 elements
sage: P.show()
```

Here are some typical operations on this poset:
by default, the elements of \( P \) are aware that they belong to \( P \):

```
\begin{verbatim}
sage: P.an_element().parent()
Finite poset containing 24 elements
\end{verbatim}
```

if instead one wants the elements to be plain elements of the Coxeter group, one can use the facade option:

```
\begin{verbatim}
sage: P = W.bruhat_poset(facade = True)
sage: P.an_element().parent()
Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space)
\end{verbatim}
```

**see also:**

`Poset()` for more on posets and facade posets.

**todo:**

- use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
- the constructed poset should be lazy, in order to handle large / infinite Coxeter groups.

---

**cambrian_lattice**

```
\begin{verbatim}
cambrian_lattice(c, on_roots=False)
\end{verbatim}
```

Return the \( c \)-Cambrian lattice on delta sequences.

see arXiv 1503.00710 and arXiv math/0611106.

delta sequences are certain 2-colored minimal factorizations of \( c \) into reflections.

**input:**

- \( c \) – a standard Coxeter element in `self` (as a tuple, or as an element of `self`)
- `on_roots` (optional, default `False`) – if `on_roots` is `True`, the lattice is realized on roots rather than on reflections. In order for this to work, the ElementMethod `reflection_to_root` must be available.

**examples:**

```
\begin{verbatim}
sage: CoxeterGroup(["A", 2]).cambrian_lattice((1,2))
Finite lattice containing 5 elements

sage: CoxeterGroup(["B", 2]).cambrian_lattice((1,2))
Finite lattice containing 6 elements

sage: CoxeterGroup(["G", 2]).cambrian_lattice((1,2))
Finite lattice containing 8 elements
\end{verbatim}
```
codegrees()
Return the codegrees of the Coxeter group.
These are just the degrees minus 2.

EXAMPLES:
```
sage: CoxeterGroup(['A', 4]).codegrees()
(0, 1, 2, 3)
sage: CoxeterGroup(['B', 4]).codegrees()
(0, 2, 4, 6)
sage: CoxeterGroup(['D', 4]).codegrees()
(0, 2, 2, 4)
sage: CoxeterGroup(['F', 4]).codegrees()
(0, 4, 6, 10)
sage: CoxeterGroup(['E', 8]).codegrees()
(0, 6, 10, 12, 16, 18, 22, 28)
sage: CoxeterGroup(['H', 3]).codegrees()
(0, 4, 8)
sage: WeylGroup([['A',3], ['A',3], ['B',2]]).codegrees()
(0, 1, 2, 0, 1, 2, 0, 2)
```

degrees()
Return the degrees of the Coxeter group.
The output is an increasing list of integers.

EXAMPLES:
```
sage: CoxeterGroup(['A', 4]).degrees()
(2, 3, 4, 5)
sage: CoxeterGroup(['B', 4]).degrees()
(2, 4, 6, 8)
sage: CoxeterGroup(['D', 4]).degrees()
(2, 4, 4, 6)
sage: CoxeterGroup(['F', 4]).degrees()
(2, 6, 8, 12)
sage: CoxeterGroup(['E', 8]).degrees()
(2, 8, 12, 14, 18, 20, 24, 30)
sage: CoxeterGroup(['H', 3]).degrees()
(2, 6, 10)
sage: WeylGroup([['A',3], ['A',3], ['B',2]]).degrees()
(2, 3, 4, 2, 3, 4, 2, 4)
```

inversion_sequence(word)
Return the inversion sequence corresponding to the word in indices of simple generators of self.
If word corresponds to \([w_0, w_1, ..., w_k]\), the output is \([w_0, w_0w_1, ..., w_0w_1...w_kw_0]\).

INPUT:
• word – a word in the indices of the simple generators of self.

EXAMPLES:
```
sage: CoxeterGroup(['A', 2]).inversion_sequence([1,2,1])
[4, 3, 2, 1]
```
sage: [t.reduced_word() for t in CoxeterGroup(['A',3]).inversion_sequence([2,1,3,2,1,3])]
[[2], [1, 2, 1], [2, 3, 2], [1, 2, 3, 2, 1, 3], [3], [1]]

is_real()
Return True since self is a real reflection group.

EXAMPLES:

sage: CoxeterGroup(['F',4]).is_real()
True
sage: CoxeterGroup(['H',4]).is_real()
True

long_element(index_set=None, as_word=False)
Return the longest element of self, or of the parabolic subgroup corresponding to the given index_set.

INPUT:
• index_set – a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: all of them)
• as_word – boolean (default False). If True, then return instead a reduced decomposition of the longest element.

EXAMPLES:

sage: D10 = FiniteCoxeterGroups().example(10)
sage: D10.long_element()
(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)
sage: D10.long_element([1])
(1,)
sage: D10.long_element([2])
(2,)
sage: D10.long_element([])
()
sage: D7 = FiniteCoxeterGroups().example(7)
sage: D7.long_element()
(1, 2, 1, 2, 1, 2, 1)

One can require instead a reduced word for w0:

sage: A3 = CoxeterGroup(['A', 3])
sage: A3.long_element(as_word=True)
[1, 2, 1, 3, 2, 1]

m_cambrian_lattice(c, m=1, on_roots=False)
Return the m-Cambrian lattice on m-delta sequences.

The $m$-delta sequences are certain $m$-colored minimal factorizations of $c$ into reflections.

**INPUT:**

- $c$ – a Coxeter element of self (as a tuple, or as an element of self)
- $m$ – a positive integer (optional, default 1)
- on_roots (optional, default False) – if on_roots is True, the lattice is realized on roots rather than on reflections. In order for this to work, the ElementMethod `reflection_to_root` must be available.

**EXAMPLES:**

```python
sage: G = CoxeterGroup(['A',2]).m_cambrian_lattice((1,2))
Finite lattice containing 5 elements

sage: G.m_cambrian_lattice((1,2),2)
Finite lattice containing 12 elements
```

### permutahedron(point=None, base_ring=None)

Return the permutahedron of self.

This is the convex hull of the point point in the weight basis under the action of self on the underlying vector space $V$.

**See also:**

permutahedron()

**INPUT:**

- point – optional, a point given by its coordinates in the weight basis (default is $(1,1,1,\ldots)$)
- base_ring – optional, the base ring of the polytope

**Note:** The result is expressed in the root basis coordinates.

**Note:** If function is too slow, switching the base ring to RDF will almost certainly speed things up.

**EXAMPLES:**

```python
sage: W = CoxeterGroup(['H',3], base_ring=RDF)
sage: W.permutahedron()
```

```
UserWarning: This polyhedron data is numerically complicated; cdd could not convert between the inexact V and H representation without loss of data. The resulting object might show inconsistencies.
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of 120 vertices
```

```python
sage: W = CoxeterGroup(['I',7])
sage: W.permutahedron()
sage: W.permutahedron(base_ring=RDF)
```

```
A 2-dimensional polyhedron in AA^2 defined as the convex hull of 14 vertices
```

```
A 2-dimensional polyhedron in RDF^2 defined as the convex hull of 14 vertices
```

```python
sage: W = ReflectionGroup(['A',3])
```

(continues on next page)
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 24 vertices

A 5-dimensional polyhedron in QQ^5 defined as the convex hull of 192 vertices

reflections_from_w0()

Return the reflections of self using the inversion set of w_0.

EXAMPLES:

sage: WeylGroup(['A',2]).reflections_from_w0()
[0 1 0] [0 0 1] [1 0 0]
[1 0 0] [0 1 0] [0 0 1]
[0 0 1], [1 0 0], [0 1 0]

sage: WeylGroup(['A',3]).reflections_from_w0()
[0 1 0 0] [0 0 1 0] [1 0 0 0] [0 0 0 1]
[1 0 0 0] [0 1 0 0] [0 0 1 0] [0 1 0 0]
[0 0 1 0] [1 0 0 0] [0 1 0 0] [0 0 0 1]
[0 0 0 1], [0 0 0 1], [0 0 0 1], [0 1 0 0], [0 1 0 0], [0 0 1 0]

shard_poset(side='right')

Return the shard intersection order attached to W.

This is a lattice structure on W, introduced in [Rea2009]. It contains the noncrossing partition lattice, as the induced lattice on the subset of c-sortable elements.

The partial order is given by simultaneous inclusion of inversion sets and subgroups attached to every
element.
The precise description used here can be found in [STW2018].

Another implementation for the symmetric groups is available as `shard_poset()`.

See also:
`bhz_poset()`, `bruhat_poset()`, `weak_poset()`

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: SH = W.shard_poset(); SH
Finite lattice containing 24 elements
sage: SH.is_graded()
True
sage: SH.characteristic_polynomial()
q^3 - 11*q^2 + 23*q - 13
sage: SH.f_polynomial()
34*q^3 + 22*q^2 + q
```

`w0()`

Return the longest element of `self`.

This attribute is deprecated, use `long_element()` instead.

EXAMPLES:

```
sage: D8 = FiniteCoxeterGroups().example(8)
sage: D8.w0
(1, 2, 1, 2, 1, 2, 1, 2)
sage: D3 = FiniteCoxeterGroups().example(3)
sage: D3.w0
(1, 2, 1)
```

`weak_lattice(side='right', facade=False)`

INPUT:
- `side` – “left”, “right”, or “twosided” (default: “right”)
- `facade` – a boolean (default: False)

Returns the left (resp. right) poset for weak order. In this poset, \( u \) is smaller than \( v \) if some reduced word of \( u \) is a right (resp. left) factor of some reduced word of \( v \).

See also:
`bhz_poset()`, `bruhat_poset()`, `shard_poset()`

EXAMPLES:

```
sage: W = WeylGroup(['A', 2])
sage: P = W.weak_poset()
sage: P
Finite lattice containing 6 elements
sage: P.show()
```

This poset is in fact a lattice:

```
sage: W = WeylGroup(['B', 3])
sage: P = W.weak_poset(side = "left")
```
sage: P.is_lattice()
True

so this method has an alias \texttt{weak\_lattice()}:\

\begin{verbatim}
sage: W.weak_lattice(side = "left") is W.weak_poset(side = "left")
True
\end{verbatim}

As a bonus feature, one can create the left-right weak poset:

\begin{verbatim}
sage: W = WeylGroup(['A',2])
sage: P = W.weak_poset(side = "twosided")
sage: P.show()
sage: len(P.hasse_diagram().edges())
8
\end{verbatim}

This is the transitive closure of the union of left and right order. In this poset, $u$ is smaller than $v$ if some reduced word of $u$ is a factor of some reduced word of $v$. Note that this is not a lattice:

\begin{verbatim}
sage: P.is_lattice()
False
\end{verbatim}

By default, the elements of $P$ are aware of that they belong to $P$:

\begin{verbatim}
sage: P.an_element().parent()
Finite poset containing 6 elements
\end{verbatim}

If instead one wants the elements to be plain elements of the Coxeter group, one can use the \texttt{facade} option:

\begin{verbatim}
sage: P = W.weak_poset(facade = True)
sage: P.an_element().parent()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)
\end{verbatim}

\textbf{See also:}
\linebreak \texttt{Poset()} for more on posets and facade posets.

\textbf{Todo:}
\begin{itemize}
\item Use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
\item The constructed poset should be lazy, in order to handle large / infinite Coxeter groups.
\end{itemize}

\texttt{weak\_poset}(\texttt{side}='right', \texttt{facade}=False)\
\textbf{INPUT:}
\begin{itemize}
\item \texttt{side} – “left”, “right”, or “twosided” (default: “right”)
\item \texttt{facade} – a boolean (default: False)
\end{itemize}
\textbf{Returns the left (resp. right) poset for weak order. In this poset, $u$ is smaller than $v$ if some reduced word of $u$ is a right (resp. left) factor of some reduced word of $v$.}

\textbf{See also:}
\texttt{bhz\_poset()}, \texttt{bruhat\_poset()}, \texttt{shard\_poset()}

\textbf{EXAMPLES:}
This poset is in fact a lattice:

```python
sage: W = WeylGroup(['B', 3])
sage: P = W.weak_poset(side = "left")
sage: P.is_lattice()
True
```

so this method has an alias `weak_lattice()`:

```python
sage: W.weak_lattice(side = "left") is W.weak_poset(side = "left")
True
```

As a bonus feature, one can create the left-right weak poset:

```python
sage: W = WeylGroup(['A',2])
sage: P = W.weak_poset(side = "twosided")
sage: P.show()
sage: len(P.hasse_diagram().edges())
8
```

This is the transitive closure of the union of left and right order. In this poset, $u$ is smaller than $v$ if some reduced word of $u$ is a factor of some reduced word of $v$. Note that this is not a lattice:

```python
sage: P.is_lattice()
False
```

By default, the elements of $P$ are aware of that they belong to $P$:

```python
sage: P.an_element().parent()
Finite poset containing 6 elements
```

If instead one wants the elements to be plain elements of the Coxeter group, one can use the facade option:

```python
sage: P = W.weak_poset(facade = True)
sage: P.an_element().parent()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)
```

See also:

Poset() for more on posets and facade posets.

Todo:

- Use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
- The constructed poset should be lazy, in order to handle large / infinite Coxeter groups.

extra_super_categories()

EXAMPLES:
**4.46 Finite Crystals**

**class** `sage.categories.finite_crystals.FiniteCrystals(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of finite crystals.

**EXAMPLES:**

```python
sage: C = FiniteCrystals()
sage: C
Category of finite crystals
sage: C.super_categories()
[Category of crystals, Category of finite enumerated sets]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1
```

**class** `TensorProducts(category, *args)`

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of finite crystals constructed by tensor product of finite crystals.

**extra_super_categories()**

**EXAMPLES:**

```python
sage: FiniteCrystals().TensorProducts().extra_super_categories()
[Category of finite crystals]
```

**example**(n=3)

Returns an example of highest weight crystals, as per `Category.example()`.

**EXAMPLES:**

```python
sage: B = FiniteCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1
```

**extra_super_categories()**

**EXAMPLES:**

```python
sage: FiniteCrystals().extra_super_categories()
[Category of finite enumerated sets]
```
4.47 Finite dimensional algebras with basis

Todo: Quotients of polynomial rings.
Quotients in general.
Matrix rings.

REFERENCES:
• [CR1962]

class sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis(base_category)

    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finite dimensional algebras with a distinguished basis.

EXAMPLES:

sage: C = FiniteDimensionalAlgebrasWithBasis(QQ); C
Category of finite dimensional algebras with basis over Rational Field
sage: C.super_categories()
[Category of algebras with basis over Rational Field,
 Category of finite dimensional magmatic algebras with basis over Rational Field]

sage: C.example()
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field

class Cellular(base_category)

    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Cellular algebras.

Let $R$ be a commutative ring. A $R$-algebra $A$ is a cellular algebra if it has a cell datum, which is a tuple $(\Lambda, i, M, C)$, where $\Lambda$ is finite poset with order $\geq$, if $\mu \in \Lambda$ then $T(\mu)$ is a finite set and

$$C: \prod_{\mu \in \Lambda} T(\mu) \times T(\mu) \rightarrow A; (\mu, s, t) \mapsto c_{st}^\mu$$

is an injective map such that the following holds:

• The set $\{c_{st}^\mu | \mu \in \Lambda, s, t \in T(\mu)\}$ is a basis of $A$.
• If $a \in A$ and $\mu \in \Lambda, s, t \in T(\mu)$ then:

$$ac_{st}^\mu = \sum_{u \in T(\mu)} r_{a}(s, u)c_{ut}^\mu \pmod{A^{\geq \mu}},$$

where $A^{\geq \mu}$ is spanned by

$$\{c_{ab}^\nu | \nu > \mu \text{ and } a, b \in T(\nu)\}.$$

Moreover, the scalar $r_{a}(s, u)$ depends only on $a, s$ and $u$ and, in particular, is independent of $t$.
• The map $t: A \rightarrow A; c_{st}^\mu \mapsto c_{ts}^\mu$ is an algebra anti-isomorphism.

A cellular basis for $A$ is any basis of the form $\{c_{st}^\mu | \mu \in \Lambda, s, t \in T(\mu)\}$.

Note that in particular, the scalars $r_{a}(u, s)$ in the second condition do not depend on $t$.

REFERENCES:
class ElementMethods
Bases: object

cellular_involution()
Return the cellular involution on self.

EXAMPLES:

```python
sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: elt = S([3,1,2,4])
sage: ci = elt.cellular_involution(); ci
7/48*[1, 3, 2, 4] + 49/48*[2, 3, 1, 4] - 1/48*[3, 1, 2, 4] - 7/48*[3, 2, 1, 4]
sage: ci.cellular_involution()
[3, 1, 2, 4]
```

class ParentMethods
Bases: object

cell_module(mu, **kwds)
Return the cell module indexed by mu.

EXAMPLES:

```python
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cell_module(Partition([2,1]))
Cell module indexed by [2, 1] of Cellular basis of Symmetric group algebra of order 3 over Rational Field
```

cell_module_indices(mu)
Return the indices of the cell module of self indexed by mu.

This is the finite set $M(\lambda)$.

EXAMPLES:

```python
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cell_module_indices([2,1])
Standard tableaux of shape [2, 1]
```

cell_poset()
Return the cell poset of self.

EXAMPLES:

```python
sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cell_poset()
Finite poset containing 5 elements
```

cells()
Return the cells of self.
EXAMPLES:

```
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: dict(S.cells())
{{[1, 1, 1]: Standard tableaux of shape [1, 1, 1],
 [2, 1]: Standard tableaux of shape [2, 1],
 [3]: Standard tableaux of shape [3]}}
```

cellular_basis()
Return the cellular basis of self.

EXAMPLES:

```
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cellular_basis()
Cellular basis of Symmetric group algebra of order 3
over Rational Field
```

cellular_involution(x)
Return the cellular involution of x in self.

EXAMPLES:

```
sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: for b in S.basis(): b, S.cellular_involution(b)
(([1, 2, 3], [1, 2, 3])
 ([2, 1, 3], [2, 1, 3])
 ([3, 2, 1], -7/48*[1, 3, 2] + 49/48*[3, 2, 1])
 (-1/48*[1, 3, 2] + 7/48*[2, 3, 1] + 49/48*[3, 2, 1])
([2, 1, 3], [2, 1, 3])
 ([3, 2, 1], [-7/48*[1, 3, 2] - 1/48*[3, 2, 1] + 49/48*[3, 2, 1]])
```

simple_module_parameterization()
Return a parameterization of the simple modules of self.

The set of simple modules are parameterized by \( \lambda \in \Lambda \) such that the cell module bilinear form \( \Phi_\lambda \neq 0 \).

EXAMPLES:

```
sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.simple_module_parameterization()
([4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1])
```

class TensorProducts(category, *args)
Bases: `sage.categories.tensor.TensorProductsCategory`

The category of cellular algebras constructed by tensor product of cellular algebras.

class ParentMethods
Bases: object

    cell_module_indices(mu)
    Return the indices of the cell module of self indexed by mu.
This is the finite set $M(\lambda)$.

**EXAMPLES:**

```
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: T.cell_module_indices(([1,1], [2,1]))
The Cartesian product of (Standard tableaux of shape [1, 1],
Standard tableaux of shape [2, 1])
```

cell_poset()

Return the cell poset of self.

**EXAMPLES:**

```
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: T.cell_poset()
Finite poset containing 6 elements
```

cellular_involution()

Return the image of the cellular involution of the basis element indexed by $i$.

**EXAMPLES:**

```
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: for b in T.basis(): b, T.cellular_involution(b)
(([1, 2] # [1, 2, 3], [1, 2] # [1, 2, 3])
 (49/48*[1, 2] # [1, 3, 2] + 7/48*[1, 2] # [2, 3, 1]
 - 7/48*[1, 2] # [3, 1, 2] - 1/48*[1, 2] # [3, 2, 1])
 ([(1, 2) # [2, 1, 3], [1, 2] # [2, 1, 3])
 (7/48*[1, 2] # [1, 3, 2] - 1/48*[1, 2] # [2, 3, 1]
 + 49/48*[1, 2] # [3, 1, 2] + 7/48*[1, 2] # [3, 2, 1])
 ([(1, 2) # [2, 3, 1], [1, 2] # [2, 3, 1])
 (-7/48*[1, 2] # [1, 3, 2] - 1/48*[1, 2] # [2, 3, 1]
 + 49/48*[1, 2] # [3, 1, 2] + 7/48*[1, 2] # [3, 2, 1])
 ([(1, 2) # [3, 1, 2], [1, 2] # [3, 1, 2])
 (7/48*[1, 2] # [1, 3, 2] + 49/48*[1, 2] # [2, 3, 1]
 - 1/48*[1, 2] # [3, 1, 2] - 7/48*[1, 2] # [3, 2, 1])
 ([(1, 2) # [3, 2, 1], [1, 2] # [3, 2, 1])
 (-1/48*[1, 2] # [1, 3, 2] - 7/48*[1, 2] # [2, 3, 1]
 + 7/48*[1, 2] # [3, 1, 2] + 49/48*[1, 2] # [3, 2, 1])
 ([(2, 1) # [1, 2, 3], [2, 1] # [1, 2, 3])
 (49/48*[2, 1] # [1, 3, 2] + 7/48*[2, 1] # [2, 3, 1]
 - 7/48*[2, 1] # [3, 1, 2] - 1/48*[2, 1] # [3, 2, 1])
 ([(2, 1) # [2, 1, 3], [2, 1] # [2, 1, 3])
 (7/48*[2, 1] # [1, 3, 2] + 49/48*[2, 1] # [2, 3, 1]
 + 7/48*[2, 1] # [3, 1, 2] + 7/48*[2, 1] # [3, 2, 1])
 ([(2, 1) # [3, 1, 2], [2, 1] # [3, 1, 2])
 (7/48*[2, 1] # [1, 3, 2] + 49/48*[2, 1] # [2, 3, 1]
 + 7/48*[2, 1] # [3, 1, 2] + 7/48*[2, 1] # [3, 2, 1])
```

(continues on next page)
extra_super_categories()

Tensor products of cellular algebras are cellular.

EXAMPLES:

```
sage: cat = Algebras(QQ).FiniteDimensional().WithBasis()
sage: cat.Cellular().TensorProducts().extra_super_categories()
[Category of finite dimensional cellular algebras with basis over Rational Field]
```

class ElementMethods

Bases: object

```
on_left_matrix(base_ring=None, action=<built-in function mul>, side='left')

Return the matrix of the action of self on the algebra.

INPUT:

- base_ring – the base ring for the matrix to be constructed
- action – a bivariate function (default: operator.mul())
- side – ‘left’ or ‘right’ (default: ‘left’)

EXAMPLES:

```
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])
sage: a.to_matrix(side='left')
[ 0  0  0  0  1  0]
[ 0  0  0  0  0  1]
[ 0  0  0  0  0  0]
[ 1  0  0  0  0  0]
[ 0  0  0  0  0  0]
[ 0  1  0  0  0  0]
sage: a.to_matrix(side='right')
[ 0  0  0  0  0  1]
[ 0  0  0  0  0  1]
[ 0  0  0  0  0  1]
[ 0  0  0  0  0  0]
[ 0  0  0  0  0  0]
[ 0  0  0  1  0  0]
sage: a.to_matrix(base_ring=RDF, side="left")
[[ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  1.  0.  0.  0.  0.  0.  0.]]
```

AUTHORS: Mike Hansen,…

```
to_matrix(base_ring=None, action=<built-in function mul>, side='left')

Return the matrix of the action of self on the algebra.
```
INPUT:
• base_ring – the base ring for the matrix to be constructed
• action – a bivariate function (default: operator.mul())
• side – ‘left’ or ‘right’ (default: ‘left’)

EXAMPLES:

```python
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])
sage: a.to_matrix(side='left')
[0 0 1 0 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 0]
[0 0 0 0 0 1]
[0 1 0 0 0 0]
[0 0 0 1 0 0]
sage: a.to_matrix(side='right')
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 0 0 0 1]
[0 0 0 1 0 0]
sage: a.to_matrix(base_ring=RDF, side="left")
[0.0 0.0 1.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 1.0 0.0]
[1.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 1.0]
[0.0 1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 1.0 0.0 0.0]
```

AUTHORS: Mike Hansen, ...

class ParentMethods
Bases: object

cartan_invariants_matrix()

Return the Cartan invariants matrix of the algebra.

OUTPUT: a matrix of non negative integers

Let A be this finite dimensional algebra and $(S_i)_{i \in I}$ be representatives of the right simple modules of A. Note that their adjoints S_i^* are representatives of the left simple modules.

Let $(P^L_i)_{i \in I}$ and $(P^R_i)_{i \in I}$ be respectively representatives of the corresponding indecomposable projective left and right modules of A. In particular, we assume that the indexing is consistent so that $S_i^* = \text{top } P^L_i$ and $S_i = \text{top } P^R_i$.

The Cartan invariant matrix $(C_{i,j})_{i,j \in I}$ is a matrix of non negative integers that encodes much of the representation theory of A; namely:
• $C_{i,j}$ counts how many times $S_i^* \otimes S_j$ appears as composition factor of A seen as a bimodule over itself;
• $C_{i,j} = \dim \text{Hom}_A(P^R_j, P^R_i)$;
• $C_{i,j}$ counts how many times S_j appears as composition factor of P^R_i;
• $C_{i,j} = \dim \text{Hom}_A(P^L_i, P^L_j)$;
• $C_{i,j}$ counts how many times S_i^* appears as composition factor of P^L_j.

In the commutative case, the Cartan invariant matrix is diagonal. In the context of solving systems of multivariate polynomial equations of dimension zero, A is the quotient of the polynomial ring by the
ideal generated by the equations, the simple modules correspond to the roots, and the numbers $C_{i,i}$ give the multiplicities of those roots.

Note: For simplicity, the current implementation assumes that the index set I is of the form $\{0, \ldots, n-1\}$. Better indexations will be possible in the future.

ALGORITHM:

The Cartan invariant matrix of A is computed from the dimension of the summands of its Peirce decomposition.

See also:

- `peirce_decomposition()`
- `isotypic_projective_modules()`

EXAMPLES:

For a semisimple algebra, in particular for group algebras in characteristic zero, the Cartan invariants matrix is the identity:

```sage
sage: A3 = SymmetricGroup(3).algebra(QQ)
sage: A3.cartan_invariants_matrix()
[1 0 0]
[0 1 0]
[0 0 1]
```

For the path algebra of a quiver, the Cartan invariants matrix counts the number of paths between two vertices:

```sage
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: A.cartan_invariants_matrix()
[1 2]
[0 1]
```

In the commutative case, the Cartan invariant matrix is diagonal:

```sage
sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid: the integers modulo 12
sage: A = Z12.algebra(QQ)
sage: A.cartan_invariants_matrix()
[1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 2 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 2 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 2 0]
[0 0 0 0 0 0 0 0 1]
```

With the algebra of the 0-Hecke monoid:

```sage
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
```

(continues on next page)
sage: A.cartan_invariants_matrix()
[1 0 0 0 0 0 0 0]
[0 2 1 0 1 1 0 0]
[0 1 1 0 1 0 0 0]
[0 0 1 0 1 1 0 0]
[0 1 1 0 1 0 0 0]
[0 1 0 1 0 2 1 0]
[0 0 0 1 0 1 1 0]
[0 0 0 0 0 0 1]

center()
Return the center of self.

See also:
center_basis()

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: center = A.center(); center
Center of An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: center in Algebras(QQ).WithBasis().FiniteDimensional().Commutative()
True
sage: center.dimension()
1
sage: center.basis()
Finite family {0: B[0]}

sage: center.ambient() is A
True
sage: [c.lift() for c in center.basis()]
[x + y]

The center of a semisimple algebra is semisimple:

True

Todo:
• Pickling by construction, as A.center()?
• Lazy evaluation of _repr_

center_basis()
Return a basis of the center of self.

OUTPUT:
• a list of elements of self.
See also:

center()

EXAMPLES:

```python
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.center_basis()
(x + y,)
```

idempotent_lift(x)

Lift an idempotent of the semisimple quotient into an idempotent of *self*.

Let \(A \) be this finite dimensional algebra and \(\pi \) be the projection \(A \rightarrow \bar{A} \) on its semisimple quotient. Let \(\bar{\pi} \) be an idempotent of \(\bar{A} \), and \(x \) any lift thereof in \(A \). This returns an idempotent \(e \) of \(A \) such that \(\pi(e) = \bar{\pi}(x) \) and \(e \) is a polynomial in \(x \).

INPUT:

- \(x \) an element of \(A \) that projects on an idempotent \(\bar{\pi} \) of the semisimple quotient of \(A \). Alternatively one may give as input the idempotent \(\bar{\pi} \), in which case some lift thereof will be taken for \(x \).

OUTPUT: the idempotent \(e \) of *self*

ALGORITHM:

Iterate the formula \(1 - (1 - x^2)^2 \) until having an idempotent.

See [CR1962] for correctness and termination proofs.

EXAMPLES:

```python
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: S = A.semisimple_quotient()
sage: A.idempotent_lift(S.basis()["x"])
x
sage: A.idempotent_lift(A.basis()["y"])
y
```

Todo: Add some non trivial example

is_commutative()

Return whether *self* is a commutative algebra.

EXAMPLES:

```python
sage: S4 = SymmetricGroupAlgebra(QQ, 4)
sage: S4.is_commutative()
False
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S2.is_commutative()
True
```

is_identity_decomposition_into_orthogonal_idempotents(l)

Return whether \(l \) is a decomposition of the identity into orthogonal idempotents.

INPUT:
• 1 – a list or iterable of elements of self

EXAMPLES:

```
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field

sage: x,y,a,b = A.algebra_generators(); x,y,a,b
(x, y, a, b)

sage: A.is_identity_decomposition_into_orthogonal_idempotents([A.one()])
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x,y])
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x+a, y-a])
True

Here the idempotents do not sum up to 1:

sage: A.is_identity_decomposition_into_orthogonal_idempotents([x])
False

Here 1 + x and −x are neither idempotent nor orthogonal:

sage: A.is_identity_decomposition_into_orthogonal_idempotents([1+x,-x])
False

With the algebra of the 0-Hecke monoid:

```
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True
```

Here are some more counterexamples:
1. Some orthogonal elements summing to 1 but not being idempotent:

```
sage: class PQAlgebra(CombinatorialFreeModule):
 : def __init__(self, F, p):
 : # Construct the quotient algebra F[x] / p,
 : # where p is a univariate polynomial.
 : R = parent(p); x = R.gen()
 : I = R.ideal(p)
 : self._xbar = R.quotient(I).gen()
 : basis_keys = [self._xbar**i for i in range(p.degree())]
 : CombinatorialFreeModule.__init__(self, F, basis_keys,
 : category=Algebras(F).FiniteDimensional().
 : def x(self):
 : return self(self._xbar)
 : def one(self):
 : return self.basis()[self.base_ring().one()]
```

(continues on next page)
.. code-block:: python

    ....:     def product_on_basis(self, w1, w2):
    ....:         return self.from_vector(vector(w1*w2))
    sage:     R.<x> = PolynomialRing(QQ)
    sage:     A = PQAlgebra(QQ, x**3 - x**2 + x + 1); y = A.x()
    sage:     a, b = y, 1-y
    sage:     A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
    False

For comparison:

    sage:     A = PQAlgebra(QQ, x**2 - x); y = A.x()
    sage:     a, b = y, 1-y
    sage:     A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
    True
    sage:     A.is_identity_decomposition_into_orthogonal_idempotents((a, A.zero(), b))
    True
    sage:     A = PQAlgebra(QQ, x**3 - x**2 + x - 1); y = A.x()
    sage:     a = (y**2 + 1) / 2
    sage:     b = 1 - a
    sage:     A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
    True

2. Some idempotents summing to 1 but not orthogonal:

    sage:     R.<x> = PolynomialRing(GF(2))
    sage:     A = PQAlgebra(GF(2), x)
    sage:     a = A.one()
    sage:     A.is_identity_decomposition_into_orthogonal_idempotents((a,))
    True
    sage:     A.is_identity_decomposition_into_orthogonal_idempotents((a, a, a))
    False

3. Some orthogonal idempotents not summing to the identity:

    sage:     A.is_identity_decomposition_into_orthogonal_idempotents((a,a))
    False
    sage:     A.is_identity_decomposition_into_orthogonal_idempotents(())
    False

isotypic_projective_modules(side='left')

Return the isotypic projective side self-modules.

Let \( P_i \) be representatives of the indecomposable projective side-modules of this finite dimensional algebra \( A \), and \( S_i \) be the associated simple modules.

The regular side representation of \( A \) can be decomposed as a direct sum \( A = \bigoplus_i Q_i \), where each \( Q_i \) is an isotypic projective module; namely \( Q_i \) is the direct sum of \( \dim S_i \) copies of the indecomposable projective module \( P_i \). This decomposition is not unique.

The isotypic projective modules are constructed as \( Q_i = e_i A \), where the \((e_i)_i\) is the decomposition of the identity into orthogonal idempotents obtained by lifting the central orthogonal idempotents of the semisimple quotient of \( A \).

INPUT:
- \( \text{side} \) – ‘left’ or ‘right’ (default: ‘left’)

4.47. Finite dimensional algebras with basis 385
OUTPUT: a list of subspaces of self.

EXAMPLES:

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: Q = A.isotypic_projective_modules(side="left"); Q
[Free module generated by {0} over Rational Field,
 Free module generated by {0, 1, 2} over Rational Field]
sage: [[x.lift() for x in Qi.basis()]: for Qi in Q]
[[x],
 [y, a, b]]
```

We check that the sum of the dimensions of the isotypic projective modules is the dimension of self:

```
sage: sum([Qi.dimension() for Qi in Q]) == A.dimension()
True
```

See also:

- `orthogonal_idempotents_central_mod_radical()`
- `peirce_decomposition()`

`orthogonal_idempotents_central_mod_radical()`

Return a family of orthogonal idempotents of self that project on the central orthogonal idempotents of the semisimple quotient.

OUTPUT:

- a list of orthogonal idempotents obtained by lifting the central orthogonal idempotents of the semisimple quotient.

ALGORITHM:

The orthogonal idempotents of $A$ are obtained by lifting the central orthogonal idempotents of the semisimple quotient $\overline{A}$.

Namely, let $(\overline{f}_i)$ be the central orthogonal idempotents of the semisimple quotient of $A$. We recursively construct orthogonal idempotents of $A$ by the following procedure: assuming $(f_i)_{i<n}$ is a set of already constructed orthogonal idempotent, we construct $f_k$ by idempotent lifting of $(1 - f)g(1 - f)$, where $g$ is any lift of $\overline{e_k}$ and $f = \sum_{i<k} \overline{f}_i$.

See [CR1962] for correctness and termination proofs.

See also:

- `idempotent_lift()`

EXAMPLES:

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.orthogonal_idempotents_central_mod_radical()
(x, y)
```
sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid: the integers modulo 12
sage: A = Z12.algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: sorted(idempotents, key=str)
  1/2*B[9] - 1/2*B[3],
  B[0]]
sage: sum(idempotents) == 1
True
sage: all(e*e == e for e in idempotents)
True
sage: all(e*f == 0 and f*e == 0 for e in idempotents for f in idempotents
    if e != f)
True

This is best tested with:

sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True

We construct orthogonal idempotents for the algebra of the 0-Hecke monoid:

sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True

peirce_decomposition(idempotents=None, check=True)

Return a Peirce decomposition of self.

Let \((e_i)\) be a collection of orthogonal idempotents of \(A\) with sum 1. The Peirce decomposition of \(A\) is the decomposition of \(A\) into the direct sum of the subspaces \(e_i A e_j\).

With the default collection of orthogonal idempotents, one has

\[
\dim e_i A e_j = C_{i,j} \dim S_i \dim S_j
\]

where \((S_i)\) are the simple modules of \(A\) and \((C_{i,j})_{i,j}\) is the Cartan invariants matrix.

**INPUT:**
- idempotents – a list of orthogonal idempotents \((e_i)_{i=0,\ldots,n}\) of the algebra that sum to 1 (default: the idempotents returned by \texttt{orthogonal_idempotents_central_mod_radical()} )
- check – (default: True) whether to check that the idempotents are indeed orthogonal and idempotent and sum to 1

**OUTPUT:**
A list of lists \(l\) such that \(l[i][j]\) is the subspace \(e_i A e_j\).
See also:

- `orthogonal_idempotents_central_mod_radical()`
- `cartan_invariants_matrix()`

EXAMPLES:

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(contains the arrows a:x->y and b:x->y) over Rational Field
sage: A.orthogonal_idempotents_central_mod_radical()
(x, y)
sage: decomposition = A.peirce_decomposition(); decomposition
[[Free module generated by {0} over Rational Field,
 Free module generated by {0, 1} over Rational Field],
[Free module generated by {} over Rational Field,
 Free module generated by {0} over Rational Field]]
sage: [[x.lift() for x in decomposition[i][j].basis()]
 for j in range(2)]
[[[x], [a, b]],
[[], [y]]]
```

We recover that the group algebra of the symmetric group \( S_4 \) is a block matrix algebra:

```
sage: A = SymmetricGroup(4).algebra(QQ)
sage: decomposition = A.peirce_decomposition() # long time
sage: [[decomposition[i][j].dimension() # long time (4s)
 for j in range(len(decomposition))]
 for i in range(len(decomposition))]
[[9, 0, 0, 0, 0],
[0, 9, 0, 0, 0],
[0, 0, 4, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]
```

The dimension of each block is \( d^2 \), where \( d \) is the dimension of the corresponding simple module of \( S_4 \). The latter are given by:

```
sage: [p.standard_tableaux().cardinality() for p in Partitions(4)]
[1, 3, 2, 3, 1]
```

`peirce_summand(ei, ej)`

Return the Peirce decomposition summand \( e_i A e_j \).

INPUT:

- `self` – an algebra \( A \)
- `ei, ej` – two idempotents of \( A \)

OUTPUT: \( e_i A e_j \), as a subspace of \( A \).

See also:

- `peirce_decomposition()`
- `principal_ideal()`

EXAMPLES:
We recover the $2 \times 2$ block of $\mathbb{Q}[S_4]$ corresponding to the unique simple module of dimension 2 of the symmetric group $S_4$:

```python
sage: A4 = SymmetricGroup(4).algebra(QQ)
sage: e = A4.central_orthogonal_idempotents()[2]
sage: A4.peirce_summand(e, e)
Free module generated by {0, 1, 2, 3} over Rational Field
```

principal_ideal($a$, side='left')

Construct the side principal ideal generated by $a$.

EXAMPLES:

In order to highlight the difference between left and right principal ideals, our first example deals with a non commutative algebra:

```python
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x, y, a, b = A.basis()
```

In this algebra, multiplication on the right by $x$ annihilates all basis elements but $x$:

```python
sage: x*x, x*y, a*x, b*x
(x, 0, a, b)
```

so the left ideal generated by $x$ is one-dimensional:

```python
sage: Ax = A.principal_ideal(x, side='left'); Ax
Free module generated by {0} over Rational Field
sage: [B.lift() for B in Ax.basis()]
[x]
```

Multiplication on the left by $x$ annihilates only $x$ and fixes the other basis elements:

```python
sage: x*x, x*y, x*a, x*b
(x, 0, a, b)
```

so the right ideal generated by $x$ is 3-dimensional:

```python
sage: xA = A.principal_ideal(x, side='right'); xA
Free module generated by {0, 1, 2} over Rational Field
sage: [B.lift() for B in xA.basis()]
[x, a, b]
```

See also:

• peirce_summand()
radical()
Return the Jacobson radical of self.

This uses radical_basis(), whose default implementation handles algebras over fields of characteristic zero or fields of characteristic $p$ in which we can compute $x^{1/p}$.

See also:
radical_basis(), semisimple_quotient()

EXAMPLES:

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field
sage: radical = A.radical(); radical
Radical of An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field
```

The radical is an ideal of $A$, and thus a finite dimensional non unital associative algebra:

```
sage: from sage.categories.associative_algebras import AssociativeAlgebras
sage: radical in AssociativeAlgebras(QQ).WithBasis().FiniteDimensional()
True
sage: radical in Algebras(QQ)
False
sage: radical.dimension()
2
sage: radical.basis()
Finite family {0: B[0], 1: B[1]}
sage: radical.ambient() is A
True
sage: [c.lift() for c in radical.basis()]
[a, b]
```

Todo:
• Tell Sage that the radical is in fact an ideal;
• Pickling by construction, as A.center();
  • Lazy evaluation of _repr_.

radical_basis()
Return a basis of the Jacobson radical of this algebra.

Note: This implementation handles algebras over fields of characteristic zero (using Dixon’s lemma) or fields of characteristic $p$ in which we can compute $x^{1/p}$ [FR1985], [Eb1989].

OUTPUT:
• a list of elements of self.

See also:
radical(), Algebras.Semisimple
EXAMPLES:

```
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.radical_basis()
(a, b)
```

We construct the group algebra of the Klein Four-Group over the rationals:

```
sage: A = KleinFourGroup().algebra(QQ)
```

This algebra belongs to the category of finite dimensional algebras over the rationals:

```
sage: A in Algebras(QQ).FiniteDimensional().WithBasis()
True
```

Since the field has characteristic 0, Maschke’s Theorem tells us that the group algebra is semisimple. So its radical is the zero ideal:

```
sage: A in Algebras(QQ).Semisimple()
True
sage: A.radical_basis()
()
```

Let’s work instead over a field of characteristic 2:

```
sage: A = KleinFourGroup().algebra(GF(2))
sage: A in Algebras(GF(2)).Semisimple()
False
sage: A.radical_basis()
(() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4))
```

We now implement the algebra $A = K[x]/(x^p - 1)$, where $K$ is a finite field of characteristic $p$, and check its radical; alas, we currently need to wrap $A$ to make it a proper `ModulesWithBasis`:

```
sage: class AnAlgebra(CombinatorialFreeModule):
...... def __init__(self, F):
...... R.<x> = PolynomialRing(F)
...... I = R.ideal(x**F.characteristic() - F.one())
...... self._xbar = R.quotient(I).gen()
...... basis_keys = [self._xbar**i for i in range(F.characteristic())]
...... CombinatorialFreeModule.__init__(self, F, basis_keys,
...... category=Algebras(F).FiniteDimensional().WithBasis())
...... def one(self):
...... return self.basis()[self.base_ring().one()]
...... def product_on_basis(self, w1, w2):
...... return self.from_vector(vector(w1*w2))

sage: AnAlgebra(GF(3)).radical_basis()
(B[1] + 2*B[xbar^2], B[xbar] + 2*B[xbar^2])
sage: AnAlgebra(GF(16, 'a')).radical_basis()
(B[1] + B[xbar],)
```

(continues on next page)
sage: AnAlgebra(GF(49, 'a')).radical_basis()

semisimple_quotient()

Return the semisimple quotient of self.

This is the quotient of self by its radical.

See also:

radical()

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
( containing the arrows a:x->y and b:x->y) over Rational Field
sage: a, b, x, y = sorted(A.basis())
sage: S = A.semisimple_quotient(); S
Semisimple quotient of An example of a finite dimensional algebra with
basis:
the path algebra of the Kronecker quiver
( containing the arrows a:x->y and b:x->y) over Rational Field
sage: S in Algebras(QQ).Semisimple()
True
sage: S.basis()
Finite family {'x': B['x'], 'y': B['y']}
sage: xs, ys = sorted(S.basis())
sage: (xs + ys) * xs
B['x']

Sanity check: the semisimple quotient of the \(n\)-th descent algebra of the symmetric group is of dimension the number of partitions of \(n\):

sage: [ DescentAlgebra(QQ,n).B().semisimple_quotient().dimension()
....:   for n in range(6) ]
[1, 1, 2, 3, 5, 7]
sage: [Partitions(n).cardinality() for n in range(10)]
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]

Todo:

• Pickling by construction, as A.semisimple_quotient()?
• Lazy evaluation of _repr_

class SubcategoryMethods
Bases: object

Cellular()

Return the full subcategory of the cellular objects of self.

See also:

Wikipedia article Cellular_algebra
EXAMPLES:

```
sage: Algebras(QQ).FiniteDimensional().WithBasis().Cellular()
Category of finite dimensional cellular algebras with basis
over Rational Field
```

### 4.48 Finite dimensional bialgebras with basis

```
sage.categories.finite_dimensional_bialgebras_with_basis.FiniteDimensionalBialgebrasWithBasis(base_ring)
The category of finite dimensional bialgebras with a distinguished basis
```

EXAMPLES:

```
sage: C = FiniteDimensionalBialgebrasWithBasis(QQ); C
Category of finite dimensional bialgebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of bialgebras with basis over Rational Field,
Category of finite dimensional algebras with basis over Rational Field]
sage: C is Bialgebras(QQ).WithBasis().FiniteDimensional()
True
```

### 4.49 Finite dimensional coalgebras with basis

```
sage.categories.finite_dimensional_coalgebras_with_basis.FiniteDimensionalCoalgebrasWithBasis(base_ring)
The category of finite dimensional coalgebras with a distinguished basis
```

EXAMPLES:

```
sage: C = FiniteDimensionalCoalgebrasWithBasis(QQ); C
Category of finite dimensional coalgebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of coalgebras with basis over Rational Field,
Category of finite dimensional vector spaces with basis over Rational Field]
sage: C is Coalgebras(QQ).WithBasis().FiniteDimensional()
True
```

### 4.50 Finite Dimensional Graded Lie Algebras With Basis

AUTHORS:

- Eero Hakavuori (2018-08-16): initial version

```
class sage.categories.finite_dimensional_graded_lie_algebras_with_basis.FiniteDimensionalGradedLieAlgebrasWithBasis(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional graded Lie algebras with a basis.
A grading of a Lie algebra \(\mathfrak{g} \) is a direct sum decomposition \(\mathfrak{g} = \bigoplus_i V_i \) such that \([V_i, V_j] \subseteq V_{i+j} \).
```

EXAMPLES:
sage: C = LieAlgebras(ZZ).WithBasis().FiniteDimensional().Graded(); C
Category of finite dimensional graded lie algebras with basis over Integer Ring
sage: C.super_categories()
[Category of graded lie algebras with basis over Integer Ring,
 Category of finite dimensional lie algebras with basis over Integer Ring]
sage: C is LieAlgebras(ZZ).WithBasis().FiniteDimensional().Graded()
True

```python
class ParentMethods
 Bases: object

 homogeneous_component_as_submodule(d)
 Return the d-th homogeneous component of self as a submodule.

 EXAMPLES:

 sage: C = LieAlgebras(QQ).WithBasis().Graded()
 sage: C = C.FiniteDimensional().Stratified().Nilpotent()
 : nilpotent=True, category=C)
 sage: L.homogeneous_component_as_submodule(2)
 Sparse vector space of degree 3 and dimension 1 over Rational Field
 Basis matrix:
 [0 0 1]
```

class Stratified(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional stratified Lie algebras with a basis.

A stratified Lie algebra is a graded Lie algebra that is generated as a Lie algebra by its homogeneous component of degree 1. That is to say, for a graded Lie algebra \( L = \bigoplus_{k=1}^s L_k \), we have \( L_{k+1} = [L_1, L_k] \).

EXAMPLES:

```python
sage: C = LieAlgebras(QQ).WithBasis().Graded().Stratified().FiniteDimensional()
 C
Category of finite dimensional stratified lie algebras with basis over RationalField

A finite-dimensional stratified Lie algebra is nilpotent:

```python
sage: C is C.Nilpotent()
True
```

class ParentMethods
 Bases: object

 degree_on_basis(m)
 Return the degree of the basis element indexed by m.

 If the degrees of the basis elements are not defined, they will be computed. By assumption the stratification \(L_1 \oplus \cdots \oplus L_s \) of self is such that each component \(L_k \) is spanned by some subset of the basis.

 The degree of a basis element \(X \) is therefore the largest index \(k \) such that \(X \in L_k \oplus \cdots \oplus L_s \). The space \(L_k \oplus \cdots \oplus L_s \) is by assumption the \(k \)-th term of the lower central series.
```
4.51 Finite dimensional Hopf algebras with basis

class sage.categories.finite_dimensional_hopf_algebras_with_basis.FiniteDimensionalHopfAlgebrasWithBasis(base_category):
    ...

 exemptions:
sage: C = LieAlgebras(QQ).WithBasis().Graded()
sage: C = C.FiniteDimensional().Stratified().Nilpotent()
sage: sc = {('X', 'Y'): {'Z': 1}}
sage: L.<X,Y,Z> = LieAlgebra(QQ, sc, nilpotent=True, category=C)
sage: L.degree_on_basis(X.leading_support())
1
sage: X.degree()
1
sage: Y.degree()
1
sage: L[X, Y]
Z
sage: Z.degree()
2

4.52 Finite Dimensional Lie Algebras With Basis

AUTHORS:
- Travis Scrimshaw (07-15-2013): Initial implementation

class sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis(base_category):
    ...

 exemptions:

todo: Many of these tests should use non-abelian Lie algebras and need to be added after trac ticket #16820.
class ElementMethods
    Bases: object

    adjoint_matrix(sparse=False)
    Return the matrix of the adjoint action of self.

    EXAMPLES:
    sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
    sage: L.an_element().adjoint_matrix()
    [0 0 0]
    [0 0 0]
    [0 0 0]
    sage: L.an_element().adjoint_matrix(sparse=True).is_sparse()
    True

    sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
    sage: x.adjoint_matrix()
    [0 0]
    [1 0]
    sage: y.adjoint_matrix()
    [-1 0]
    [ 0 0]

to_vector(order=None, sparse=False)
    Return the vector in g.module() corresponding to the element self of g (where g is the parent of self).

    Implement this if you implement g.module(). See sage.categories.lie_algebras.LieAlgebras.module() for how this is to be done.

    EXAMPLES:
    sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
    sage: L.an_element().to_vector()
    (0, 0, 0)
    sage: L.an_element().to_vector(sparse=True)
    (0, 0, 0)
    sage: D = DescentAlgebra(QQ, 4).D()
    sage: L = LieAlgebra(associative=D)
    sage: L.an_element().to_vector()
    (1, 1, 1, 1, 1, 1, 1, 1)

Nilpotent
    alias of sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis.FiniteDimensionalNilpotentLieAlgebrasWithBasis

class ParentMethods
    Bases: object

    as_finite_dimensional_algebra()
    Return self as a FiniteDimensionalAlgebra.

    EXAMPLES:
sage: L = lie_algebras.cross_product(QQ)
sage: x,y,z = L.basis()
sage: F = L.as_finite_dimensional_algebra()
sage: X,Y,Z = F.basis()
sage: x.bracket(y)
Z
sage: X * Y
Z

center()
Return the center of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: Z = L.center(); Z
An example of a finite dimensional Lie algebra with basis: the
3-dimensional abelian Lie algebra over Rational Field
sage: Z.basis_matrix()
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

centralizer(S)
Return the centralizer of S in self.

INPUT:
• S – a subalgebra of self or a list of elements that represent generators for a subalgebra

See also:
centralizer_basis()

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: S = L.centralizer([a + b, 2*a + c]); S
An example of a finite dimensional Lie algebra with basis:
the 3-dimensional abelian Lie algebra over Rational Field
sage: S.basis_matrix()
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

centralizer_basis(S)
Return a basis of the centralizer of S in self.

INPUT:
• S – a subalgebra of self or a list of elements that represent generators for a subalgebra

See also:
centralizer()

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
The `centralizer_basis` method returns a basis for the centralizer of a given element in a Lie algebra. For example:

```
sage: L.centralizer_basis([a + b, 2*a + c])
[(1, 0, 0), (0, 1, 0), (0, 0, 1)]
```

The `Heisenberg` algebra can also be used to find centralizers:

```
sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: H.centralizer_basis(H)
[z]
```

The `DescentAlgebra` and `LieAlgebra` classes can be used to find centralizers as well:

```
sage: D = DescentAlgebra(QQ, 4).D()
sage: L = LieAlgebra(associative=D)
sage: L.centralizer_basis(L)
[D{}, D{1} + D{1, 2} + D{2, 3} + D{3}, D{1, 2, 3} + D{1, 3} + D{2}]
```

The `center_basis` method returns a basis for the center of an algebra. For example:

```
sage: D.center_basis()
(D{}, D{1} + D{1, 2} + D{2, 3} + D{3}, D{1, 2, 3} + D{1, 3} + D{2})
```

The `chevalley_eilenberg_complex` method returns the Chevalley-Eilenberg complex of a Lie algebra. This complex is used to compute the cohomology of a Lie algebra. For example:

```
sage: L = lie_algebras.sl(ZZ, 2)
sage: C = L.chevalley_eilenberg_complex(); C
Chain complex with at most 4 nonzero terms over Integer Ring
```

The following examples show how to compute the ranks of the modules in the Chevalley-Eilenberg complex:

```
sage: L = LieAlgebra(QQ, cartan_type=['C',2])
sage: C = L.chevalley_eilenberg_complex()
long time
sage: [C.free_module_rank(i) for i in range(11)] # long time
[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1]
```

The `chevalley_eilenberg_complex` method has the following INPUT:

- `M` – (default: the trivial 1-dimensional module) the module
- `dual` – (default: `False`) if `True`, causes the dual of the complex to be computed
- `sparse` – (default: `True`) whether to use sparse or dense matrices
- `ncpus` – (optional) how many cpus to use

REFERENCES:

Chapter 4. Individual Categories
Todo: Currently this is only implemented for coefficients given by the trivial module $R$, where $R$ is the base ring and $gR = 0$ for all $g \in g$. Allow generic coefficient modules $M$.

cohomology$(\text{deg}=\text{None}, \text{M}=\text{None}, \text{sparse}=\text{True}, \text{ncpus}=\text{None})$

Return the Lie algebra cohomology of self.

The Lie algebra cohomology is the cohomology of the Chevalley-Eilenberg cochain complex (which is the dual of the Chevalley-Eilenberg chain complex).

Let $g$ be a Lie algebra and $M$ a left $g$-module. It is known that $H^0(g; M)$ is the subspace of $g$-invariants of $M$:

$$H^0(g; M) = M^g = \{ m \in M \mid gm = 0 \text{ for all } g \in g \}.$$ 

Additionally, $H^1(g; M)$ is the space of derivations $g \to M$ modulo the space of inner derivations, and $H^2(g; M)$ is the space of equivalence classes of Lie algebra extensions of $g$ by $M$.

INPUT:

- $\text{deg}$ – the degree of the homology (optional)
- $\text{M}$ – (default: the trivial module) a right module of $g$
- $\text{sparse}$ – (default: $\text{True}$) whether to use sparse matrices for the Chevalley-Eilenberg chain complex
- $\text{ncpus}$ – (optional) how many cpus to use when computing the Chevalley-Eilenberg chain complex

EXAMPLES:

```sage
sage: L = lie_algebras.so(QQ, 4)
sage: L.cohomology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 0 over Rational Field,
 2: Vector space of dimension 0 over Rational Field,
 3: Vector space of dimension 2 over Rational Field,
 4: Vector space of dimension 0 over Rational Field,
 5: Vector space of dimension 0 over Rational Field,
 6: Vector space of dimension 1 over Rational Field}

sage: L = lie_algebras.Heisenberg(QQ, 2)
sage: L.cohomology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 4 over Rational Field,
 2: Vector space of dimension 5 over Rational Field,
 3: Vector space of dimension 5 over Rational Field,
 4: Vector space of dimension 4 over Rational Field,
 5: Vector space of dimension 1 over Rational Field}

sage: d = {('x', 'y'): 2}
sage: L.<x,y> = LieAlgebra(ZZ, d)
sage: L.cohomology()
{0: Z, 1: Z, 2: C2}
```

See also:

- chevalley_eilenberg_complex()

REFERENCES:
Wikipedia article Lie_algebra_cohomology

derivations_basis()
Return a basis for the Lie algebra of derivations of self as matrices.
A derivation $D$ of an algebra is an endomorphism of $A$ such that

$$D([a, b]) = [D(a), b] + [a, D(b)]$$

for all $a, b \in A$. The set of all derivations form a Lie algebra.

EXAMPLES:
We construct the derivations of the Heisenberg Lie algebra:

```
sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: H.derivations_basis()
([1 0 0] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [1 0 0] [0 1 0] [0 0 0] [0 0 0]
[0 0 1], [0 0 0], [0 0 0], [0 0 1], [1 0 0], [0 1 0])
```

We construct the derivations of $sl_2$:

```
sage: sl2 = lie_algebras.sl(QQ, 2)
sage: sl2.derivations_basis()
([1 0 0] [0 1 0] [0 0 0]
[0 0 0] [0 0 -1/2] [1 0 0]
[0 0 -1], [0 0 0], [0 -2 0])
```

We verify these are derivations:

```
sage: D = [sl2.module_morphism(matrix=M, codomain=sl2)
...: for M in sl2.derivations_basis()]
sage: all(d(a.bracket(b)) == d(a).bracket(b) + a.bracket(d(b))
...: for a in sl2.basis() for b in sl2.basis() for d in D)
True
```

REFERENCES:
Wikipedia article Derivation_(differential_algebra)
derived_series()
Return the derived series $(g^{(i)})_i$ of self where the rightmost $g^{(k)} = g^{(k+1)} = \ldots$.
We define the derived series of a Lie algebra $g$ recursively by $g^{(0)} := g$ and

$$(g^{(k+1)}) = [g^{(k)}, g^{(k)}]$$

and recall that $g^{(k)} \supseteq g^{(k+1)}$. Alternatively we can express this as

$$g \supseteq [g, g] \supseteq [[g, g], [g, g]] \supseteq \cdots$$

EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.derived_series()
(An example of a finite dimensional Lie algebra with basis:
the 3-dimensional abelian Lie algebra over Rational Field,
An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[])

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.derived_series() # todo: not implemented - #17416
(Lie algebra on 2 generators (x, y) over Rational Field,
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational Field
with basis:
(x,)
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational Field
with basis:
())

derived_subalgebra()

Return the derived subalgebra of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.derived_subalgebra()
(An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[])

If self is semisimple, then the derived subalgebra is self:

sage: sl3 = LieAlgebra(QQ, cartan_type=['A',2])
sage: sl3.derived_subalgebra()
Lie algebra of ['A', 2] in the Chevalley basis
sage: sl3 is sl3.derived_subalgebra()
True

from_vector(v, order=None)

Return the element of self corresponding to the vector v in self.module().

Implement this if you implement module(): see the documentation of sage.categories.lie_algebras.LieAlgebras.module() for how this is to be done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True

homology(deg=None, M=None, sparse=True, ncpus=None)

Return the Lie algebra homology of self.
The Lie algebra homology is the homology of the Chevalley-Eilenberg chain complex.

INPUT:
- `deg` – the degree of the homology (optional)
- `M` – (default: the trivial module) a right module of `self`
- `sparse` – (default: `True`) whether to use sparse matrices for the Chevalley-Eilenberg chain complex
- `ncpus` – (optional) how many cpus to use when computing the Chevalley-Eilenberg chain complex

EXAMPLES:

```python
sage: L = lie_algebras.cross_product(QQ)
sage: L.homology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 0 over Rational Field,
 2: Vector space of dimension 0 over Rational Field,
 3: Vector space of dimension 1 over Rational Field}

sage: L = lie_algebras.pwitt(GF(5), 5)
sage: L.homology()
{0: Vector space of dimension 1 over Finite Field of size 5,
 1: Vector space of dimension 0 over Finite Field of size 5,
 2: Vector space of dimension 1 over Finite Field of size 5,
 3: Vector space of dimension 1 over Finite Field of size 5,
 4: Vector space of dimension 0 over Finite Field of size 5,
 5: Vector space of dimension 1 over Finite Field of size 5}

sage: d = {('x', 'y'): 2}
sage: L.<x,y> = LieAlgebra(ZZ, d)
sage: L.homology()
{0: Z, 1: Z x C2, 2: 0}
```

See also:

`chevalley_eilenberg_complex()`

ideal(*gens, **kwds)
Return the ideal of `self` generated by `gens`.

INPUT:
- `gens` – a list of generators of the ideal
- `category` – (optional) a subcategory of subobjects of finite dimensional Lie algebras with basis

EXAMPLES:

```python
sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: p1,p2,q1,q2,z = H.basis()
sage: I = H.ideal([p1-p2, q1-q2])
sage: I.basis().list()
[-p1 + p2, -q1 + q2, z]
sage: I.reduce(p1 + p2 + q1 + q2 + z)
2*p1 + 2*q1
```

Passing an extra category to an ideal:

```python
sage: L.<x,y,z> = LieAlgebra(QQ, abelian=True)
sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
sage: C = C.Subobjects().Graded().Stratified()
```
inner_derivations_basis()
Return a basis for the Lie algebra of inner derivations of self as matrices.

EXAMPLES:

```
sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: H.inner_derivations_basis()
([0 0 1] [0 0 0]
[0 0 0] [0 0 1]
[0 0 0], [0 0 0])
```

is_abelian()
Return if self is an abelian Lie algebra.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_abelian()
True
```

```
sage: L.<x,y> = LieAlgebra(QQ, {'x','y'}: {'x':1})
sage: L.is_abelian()
False
```

is_ideal(A)
Return if self is an ideal of A.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: I = L.ideal([2*a - c, b + c])
sage: I.is_ideal(L)
True
```

```
sage: L.<x,y> = LieAlgebra(QQ, {'x','y'}: {'x':1})
sage: L.is_ideal(L)
True
```

```
sage: F = LieAlgebra(QQ, 'F', representation='polynomial')
sage: F.is_ideal(F)
Traceback (most recent call last):
... NotImplementedError: A must be a finite dimensional Lie algebra with basis
```

is_nilpotent()
Return if self is a nilpotent Lie algebra.
A Lie algebra is nilpotent if the lower central series eventually becomes 0.

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_nilpotent()
True
```

**is_semisimple()**

Return if `self` if a semisimple Lie algebra.

A Lie algebra is semisimple if the solvable radical is zero. In characteristic 0, this is equivalent to saying the Killing form is non-degenerate.

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_semisimple()
False
```

**is_solvable()**

Return if `self` is a solvable Lie algebra.

A Lie algebra is solvable if the derived series eventually becomes 0.

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_solvable()
True
```

```python
sage: L.<x,y> = LieAlgebra(QQ, {'x','y'}:{'x':1})
sage: L.is_solvable() # todo: not implemented - #17416
False
```

**killing_form(x, y)**

Return the Killing form on `x` and `y`, where `x` and `y` are two elements of `self`.

The Killing form is defined as

\[ \langle x | y \rangle = \text{tr} (\text{ad}_x \circ \text{ad}_y) . \]

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: L.killing_form(a, b)
0
```

**killing_form_matrix()**

Return the matrix of the Killing form of `self`.

The rows and the columns of this matrix are indexed by the elements of the basis of `self` (in the order provided by `basis()`).

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: L.killing_form_matrix()
\end{verbatim}
```

Chapter 4. Individual Categories
killing_matrix($x, y$)
Return the Killing matrix of $x$ and $y$, where $x$ and $y$ are two elements of self.

The Killing matrix is defined as the matrix corresponding to the action of $\text{ad}_x \circ \text{ad}_y$ in the basis of self.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.killing_matrix(a, b)
[0 0 0]
[0 0 0]
[0 0 0]
```

lower_central_series($\text{submodule}=\text{False}$)
Return the lower central series $(g_k)_i$ of self where the rightmost $g_k = g_{k+1} = \cdots$.

INPUT:
- $\text{submodule}$ -- (default: False) if True, then the result is given as submodules of self

We define the lower central series of a Lie algebra $g$ recursively by $g_0 := g$ and

$$g_{k+1} = [g, g_k]$$

and recall that $g_k \supseteq g_{k+1}$. Alternatively we can express this as

$$g \supseteq [g, g] \supseteq [g, g, g] \supseteq [g, g, g, g] \supseteq \cdots$$

EXAMPLES:

```python
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.killing_matrix(x, y)
[0 0]
[-1 0]
```
The lower central series as submodules:

```
sage: L.<x,y> = LieAlgebra(QQ, {'x','y':1})
sage: L.lower_central_series(submodule=True)
(Sparse vector space of dimension 2 over Rational Field,
 Vector space of degree 2 and dimension 1 over Rational Field
 Basis matrix:
[1 0])
```

```
sage: L.<x,y> = LieAlgebra(QQ, {'x','y':1})
sage: L.lower_central_series()
todo: not implemented - #17416
(Lie algebra on 2 generators (x, y) over Rational Field,
 Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational...
 Field with basis: (x,))
```

---

**module**(\(R=None\))

Return a dense free module associated to \(\text{self}\) over \(R\).

**EXAMPLES:**

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L._dense_free_module()
Vector space of dimension 3 over Rational Field
```

**morphism**(\(\text{on\_generators}=\text{None}, \text{codomain}=\text{None}, \text{base\_map}=\text{None}, \text{check}=\text{True}\))

Return a Lie algebra morphism defined by images of a Lie generating subset of \(\text{self}\).

**INPUT:**

- \(\text{on\_generators}\) – dictionary \(\{X: Y\}\) of the images \(Y\) in \(\text{codomain}\) of elements \(X\) of \(\text{domain}\)
- \(\text{codomain}\) – a Lie algebra (optional); this is inferred from the values of \(\text{on\_generators}\) if not given
- \(\text{base\_map}\) – a homomorphism from the base ring to something coercing into the \(\text{codomain}\)
- \(\text{check}\) – (default: \text{True}) boolean; if \text{False} the values on the Lie brackets implied by \(\text{on\_generators}\) will not be checked for contradictory values

**Note:** The keys of \(\text{on\_generators}\) need to generate \(\text{domain}\) as a Lie algebra.

**See also:**

- `sage.algebras.lie_algebras.morphism.LieAlgebraMorphism_from_generators`

**EXAMPLES:**

A quotient type Lie algebra morphism

```
sage: L.<X,Y,Z,W> = LieAlgebra(QQ, {'X','Y':1}, {'X','Z':1}, {'W':1})
sage: K.<A,B> = LieAlgebra(QQ, abelian=True)
sage: L.morphism({X: A, Y: B})
Lie algebra morphism:
 From: Lie algebra on 4 generators (X, Y, Z, W) over Rational Field
 To: Abelian Lie algebra on 2 generators (A, B) over Rational Field
 Defn: X |--> A
 Y |--> B
 Z |--> 0
 W |--> 0
```
The reverse map $A \mapsto X, B \mapsto Y$ does not define a Lie algebra morphism, since $[A, B] = 0$, but $[X, Y] \neq 0$:

```python
sage: K.morphism({A: X, B: Y})
Traceback (most recent call last):
 ... ValueError: this does not define a Lie algebra morphism;
 contradictory values for brackets of length 2
```

However, it is still possible to create a morphism that acts nontrivially on the coefficients, even though it's not a Lie algebra morphism (since it isn't linear):

```python
sage: R.<x> = ZZ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: cc = K.hom([-i])
sage: L.<X,Y,Z,W> = LieAlgebra(K, {('X','Y'): {'Z':1}, ('X','Z'): {'W':1}})
sage: M.<A,B> = LieAlgebra(K, abelian=True)
sage: phi = L.morphism({X: A, Y: B}, base_map=cc)
sage: phi(X)
A
sage: phi(i*X)
-i*A
```

**product_space**($L$, **submodule=False**)  
Return the product space $[self, L]$.  

**INPUT:**  
- $L$ – a Lie subalgebra of self  
- submodule – (default: False) if True, then the result is forced to be a submodule of self  

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: X = L.subalgebra([a, b+c])
sage: L.product_space(X)
An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[]
sage: Y = L.subalgebra([a, 2*b-c])
sage: X.product_space(Y)
An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[]

sage: H = lie_algebras.Heisenberg(ZZ, 4)
sage: Hp = H.product_space(H, submodule=True).basis()
sage: [H.from_vector(v) for v in Hp]
[z]
```

```python
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: Lp = L.product_space(L) # todo: not implemented - #17416
sage: Lp # todo: not implemented - #17416
```

(continues on next page)
### quotient(I, names=None, category=None)

Return the quotient of self by the ideal I.

A quotient Lie algebra.

**INPUT:**

- I – an ideal or a list of generators of the ideal
- names – (optional) a string or a list of strings; names for the basis elements of the quotient. If names is a string, the basis will be named names_1,...,``names_n``.

**EXAMPLES:**

The Engel Lie algebra as a quotient of the free nilpotent Lie algebra of step 3 with 2 generators:

```python
sage: L.<X,Y,Z,W,U> = LieAlgebra(QQ, 2, step=3)
sage: E = L.quotient(U); E
Lie algebra quotient L/I of dimension 4 over Rational Field where L: Free Nilpotent Lie algebra on 5 generators (X, Y, Z, W, U) over Rational Field I: Ideal (U)
sage: E.basis().list()
[X, Y, Z, W]
sage: E(X).bracket(E(Y))
Z
sage: E(Y).bracket(Z)
-U
sage: E(Y).bracket(E(Z))
0
sage: E(U)
0
```

Quotients when the base ring is not a field are not implemented:

```python
sage: L = lie_algebras.Heisenberg(ZZ, 1)
sage: L.quotient(L.an_element())
Traceback (most recent call last):
 ...
NotImplementedError: quotients over non-fields not implemented
```
**structure_coefficients(include_zeros=False)**

Return the structure coefficients of **self**.

**INPUT:**
- include_zeros – (default: False) if True, then include the $[x, y] = 0$ pairs in the output

**OUTPUT:**
A dictionary whose keys are pairs of basis indices $(i, j)$ with $i < j$, and whose values are the corresponding elements $[b_i, b_j]$ in the Lie algebra.

**EXAMPLES:**

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.structure_coefficients()
Finite family {}
sage: L.structure_coefficients(True)
Finite family {((0, 1): (0, 0, 0), (0, 2): (0, 0, 0), (1, 2): (0, 0, 0)}
```

**subalgebra(**gens, **kwds)**

Return the subalgebra of **self** generated by **gens**.

**INPUT:**
- gens – a list of generators of the subalgebra
- category – (optional) a subcategory of subobjects of finite dimensional Lie algebras with basis

**EXAMPLES:**

```python
sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: p1, p2, q1, q2, z = H.basis()
sage: S = H.subalgebra([p1, q1])
sage: S.basis().list()
[p1, q1, z]
sage: S.basis_matrix()
[1 0 0 0]
[0 0 1 0]
[0 0 0 1]
```

Passing an extra category to a subalgebra:

```python
sage: L = LieAlgebra(QQ, 3, step=2)
sage: x, y, z = L.homogeneous_component_basis(1)
sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
```
universal_commutative_algebra()

Return the universal commutative algebra associated to self.

Let $I$ be the index set of the basis of self. Let $\mathcal{P} = \{ P_{a,i,j} \}_{a,i,j \in I}$ denote the universal polynomials of a Lie algebra $L$. The universal commutative algebra associated to $L$ is the quotient ring $R[X_{ij}]_{i,j \in I}/(\mathcal{P})$.

EXAMPLES:

sage: L.<x,y> = LieAlgebra(QQ, {'x','y'}: {'x':1})
sage: A = L.universal_commutative_algebra()
sage: a,b,c,d = A.gens()
sage: (a,b,c,d)
(X00bar, X01bar, 0, X11bar)
sage: a*d - a
0

universal_polynomials()

Return the family of universal polynomials of self.

The universal polynomials of a Lie algebra $L$ with basis $\{e_i\}_{i \in I}$ and structure coefficients $[e_i, e_j] = \tau_{ij}^a e_a$ is given by

$$P_{aij} = \sum_{u \in I} \tau_{ij}^u X_{au} - \sum_{s,t \in I} \tau_{st}^a X_{si} X_{tj},$$

where $a, i, j \in I$.

REFERENCES:
• [AM2020]

EXAMPLES:

sage: L.<x,y> = LieAlgebra(QQ, {'x','y'}: {'x':1})
sage: L.universal_polynomials()
Finite family {('x', 'x', 'y'): X01*X10 - X00*X11 + X00, ('y', 'x', 'y'): X10}
sage: L = LieAlgebra(QQ, cartan_type='A',1)
sage: list(L.universal_polynomials())
[-2*X01*X10 + 2*X00*X11 - 2*X00, -2*X02*X10 + 2*X00*X12 + X01, -2*X02*X11 + 2*X01*X12 - 2*X02, X01*X20 - X00*X21 - 2*X10, X02*X20 - X00*X22 + X11, X02*X21 - X01*X22 - 2*X12, -2*X11*X20 + 2*X10*X21 - 2*X20, -2*X12*X20 + 2*X10*X22 + X21, -2*X12*X21 + 2*X11*X22 - 2*X22]
sage: L = LieAlgebra(QQ, cartan_type='B',2)
sage: al = RootSystem(['B',2]).root_lattice().simple_roots()
sage: k = list(L.basis().keys())[0]
sage: UP = L.universal_polynomials() # long time
sage: len(UP) # long time
450
sage: UP[al[2],al[1],-al[1]] # long time
X0_7*X4_1 - X0_1*X4_7 - 2*X0_7*X5_1 + 2*X0_1*X5_7 + X2_7*X7_1
- X2_1*X7_7 - X3_7*X8_1 + X3_1*X8_7 + X0_4

class Subobjects(category, *args)
   Bases: sage.categories.subobjects.SubobjectsCategory

   A category for subalgebras of a finite dimensional Lie algebra with basis.

class ParentMethods
   Bases: object

   ambient()
      Return the ambient Lie algebra of self.

      EXAMPLES:

      sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
      sage: a, b, c = L.lie_algebra_generators()
      sage: S = L.subalgebra([2*a+b, b + c])
      sage: S.ambient() == L
      True

   basis_matrix()
      Return the basis matrix of self.

      EXAMPLES:

      sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
      sage: a, b, c = L.lie_algebra_generators()
      sage: S = L.subalgebra([2*a+b, b + c])
      sage: S.basis_matrix()
      [ 1 0 -1/2]
      [ 0 1 1]

   example(n=3)
      Return an example of a finite dimensional Lie algebra with basis as per Category.example.

      EXAMPLES:

      sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
      sage: C.example()
      An example of a finite dimensional Lie algebra with basis:
      the 3-dimensional abelian Lie algebra over Rational Field

      Other dimensions can be specified as an optional argument:

      sage: C.example(5)
      An example of a finite dimensional Lie algebra with basis:
      the 5-dimensional abelian Lie algebra over Rational Field
4.53 Finite dimensional modules with basis

```python
class sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

 The category of finite dimensional modules with a distinguished basis

 EXAMPLES:

 sage: C = FiniteDimensionalModulesWithBasis(ZZ); C
 Category of finite dimensional modules with basis over Integer Ring
 sage: sorted(C.super_categories(), key=str)
 [Category of finite dimensional modules over Integer Ring,
 Category of modules with basis over Integer Ring]
 sage: C is Modules(ZZ).WithBasis().FiniteDimensional()
 True
```

```python
class ElementMethods
 Bases: object

 dense_coefficient_list(order=None)
 Return a list of all coefficients of self.
 By default, this list is ordered in the same way as the indexing set of the basis of the parent of self.
 INPUT:
 • order – (optional) an ordering of the basis indexing set
 EXAMPLES:

 sage: v = vector([0, -1, -3])
 sage: v.dense_coefficient_list()
 [0, -1, -3]
 sage: v.dense_coefficient_list([2,1,0])
 [-3, -1, 0]
 sage: sorted(v.coefficients())
 [-3, -1]
```

```python
class MorphismMethods
 Bases: object

 image()
 Return the image of self as a submodule of the codomain.
 EXAMPLES:

 sage: SGA = SymmetricGroupAlgebra(QQ, 3)
 sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
 sage: f.image()
 Free module generated by {0, 1, 2} over Rational Field

 image_basis()
 Return a basis for the image of self in echelon form.
 EXAMPLES:

 sage: SGA = SymmetricGroupAlgebra(QQ, 3)
 sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
```
(continues on next page)
sage: f.image_basis()
([1, 2, 3], [2, 3, 1], [3, 1, 2])

kernel()
Return the kernel of self as a submodule of the domain.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: K = f.kernel()
sage: K
Free module generated by {0, 1, 2} over Rational Field
sage: K.ambient()
Symmetric group algebra of order 3 over Rational Field

kernel_basis()
Return a basis of the kernel of self in echelon form.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: f.kernel_basis()
([1, 2, 3] - [3, 2, 1], [1, 3, 2] - [3, 2, 1], [2, 1, 3] - [3, 2, 1])

matrix(base_ring=None, side='left')
Return the matrix of this morphism in the distinguished bases of the domain and codomain.

INPUT:
• base_ring – a ring (default: None, meaning the base ring of the codomain)
• side – “left” or “right” (default: “left”)

If side is “left”, this morphism is considered as acting on the left; i.e. each column of the matrix represents the image of an element of the basis of the domain.

The order of the rows and columns matches with the order in which the bases are enumerated.

See also:
Modules.WithBasis.ParentMethods.module_morphism()

EXAMPLES:

sage: X = CombinatorialFreeModule(ZZ, [1,2]); x = X.basis()
sage: Y = CombinatorialFreeModule(ZZ, [3,4]); y = Y.basis()
sage: phi.matrix()
[1 2]
[3 5]
sage: phi.matrix(side='right')
[1 3]
[2 5]
sage: phi.matrix().parent()
The resulting matrix is immutable:

```
sage: phi.matrix().is Mutable()
False
```

The zero morphism has a zero matrix:

```
sage: Hom(X,Y).zero().matrix()
[[0 0]
 [0 0]
```

**Todo:** Add support for morphisms where the codomain has a different base ring than the domain:

```
sage: Y = CombinatorialFreeModule(QQ, [3,4]); y = Y.basis()
 2*y[4]}.__getitem__,
 ...:
 ...: codomain = Y)
sage: phi.matrix().parent() # todo: not implemented
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

This currently does not work because, in this case, the morphism is just in the category of commutative additive groups (i.e. the intersection of the categories of modules over \(\mathbb{Z}\) and over \(\mathbb{Q}\)):

```
sage: phi.parent().homset_category()
Category of commutative additive semigroups
sage: phi.parent().homset_category() # todo: not implemented
Category of finite dimensional modules with basis over Integer Ring
```

---

**class** `ParentMethods`

Bases: object

**annihilator**(S, action=<built-in function mul>, side='right', category=None)

Return the annihilator of a finite set.

**INPUT:**
- S – a finite set
- action – a function (default: `operator.mul`)
- side – ‘left’ or ‘right’ (default: ‘right’)
- category – a category

**Assumptions:**
- action takes elements of self as first argument and elements of S as second argument;
- The codomain is any vector space, and action is linear on its first argument; typically it is bilinear;
- If side is ‘left’, this is reversed.

**OUTPUT:**

The subspace of the elements \(x\) of self such that action\((x,s) = 0\) for all \(s \in S\). If side is ‘left’ replace the above equation by action\((s,x) = 0\).

If self is a ring, action an action of self on a module \(M\) and \(S\) is a subset of \(M\), we recover the Wikipedia article Annihilator_%28ring_theory%29. Similarly this can be used to compute torsion or
orthogonals.

See also:

annihilator_basis() for lots of examples.

EXAMPLES:

```python
sage: F = FiniteDimensionalAlgebrasWithBasis(QQ).example(); F
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x,y,a,b = F.basis()
sage: A = F.anihilator([a + 3*b + 2*y]); A
Free module generated by {} over Rational Field
sage: [b.lift() for b in A.basis()]
[-1/2*a - 3/2*b + x]
```

The category can be used to specify other properties of this subspace, like that this is a subalgebra:

```python
sage: center = F.anihilator(F.basis(), F.bracket,
....: category=Algebras(QQ).Subobjects())
sage: (e,) = center.basis()
sage: e.lift()
x + y
sage: e * e == e
True
```

Taking annihilator is order reversing for inclusion:

```python
sage: A = F.anihilator([]); A .rename("A")
sage: Ax = F.anihilator([x]); Ax.rename("Ax")
sage: Ay = F.anihilator([y]); Ay.rename("Ay")
sage: Axy = F.anihilator([x,y]); Axy.rename("Axy")
sage: P = Poset(([A, Ax, Ay, Axy], attrcall("is submodule")))
sage: sorted(P.cover_relations(), key=str)
[[Ax, A], [Axy, Ax], [Axy, Ay], [Ay, A]]
```

annihilator_basis($S$, action=<built-in function mul>, side='right')

Return a basis of the annihilator of a finite set of elements.

INPUT:

- $S$ – a finite set of objects
- action – a function (default: operator.mul)
- side – ‘left’ or ‘right’ (default: ‘right’): on which side of self the elements of $S$ acts.

See annihilator() for the assumptions and definition of the annihilator.

EXAMPLES:

By default, the action is the standard * operation. So our first example is about an algebra:

```python
sage: F = FiniteDimensionalAlgebrasWithBasis(QQ).example(); F
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x,y,a,b = F.basis()
```

In this algebra, multiplication on the right by $x$ annihilates all basis elements but $x$:
So the annihilator is the subspace spanned by \( y, a, \) and \( b \):

\[
\text{sage: } \text{F.annihilator\_basis([x])}
\]

\( (y, a, b) \)

The same holds for \( a \) and \( b \):

\[
\text{sage: } x*a, y*a, a*a, b*a
\]

\( (a, 0, 0, 0) \)

\[
\text{sage: } \text{F.annihilator\_basis([a])}
\]

\( (y, a, b) \)

On the other hand, \( y \) annihilates only \( x \):

\[
\text{sage: } \text{F.annihilator\_basis([y])}
\]

\( (x,) \)

Here is a non trivial annihilator:

\[
\text{sage: } \text{F.annihilator\_basis([a + 3*b + 2*y])}
\]

\( (-1/2*a - 3/2*b + x,) \)

Let's check it:

\[
\text{sage: } (-1/2*a - 3/2*b + x) * (a + 3*b + 2*y)
\]

\( 0 \)

Doing the same calculations on the left exchanges the roles of \( x \) and \( y \):

\[
\text{sage: } \text{F.annihilator\_basis([y], side="left")}
\]

\( (x, a, b) \)

\[
\text{sage: } \text{F.annihilator\_basis([a], side="left")}
\]

\( (x, a, b) \)

\[
\text{sage: } \text{F.annihilator\_basis([b], side="left")}
\]

\( (x, a, b) \)

\[
\text{sage: } \text{F.annihilator\_basis([x], side="left")}
\]

\( (y,) \)

\[
\text{sage: } \text{F.annihilator\_basis([a+3*b+2*x], side="left")}
\]

\( (-1/2*a - 3/2*b + y,) \)

By specifying an inner product, this method can be used to compute the orthogonal of a subspace:

\[
\text{sage: } x, y, a, b = F.basis()
\]

\[
\text{sage: } \text{def scalar(u,v): return vector([sum(u[i]*v[i] for i in F.basis().\_keys())])}
\]

\[
\text{sage: } \text{F.annihilator\_basis([x+y, a+b], scalar)}
\]

\( (x - y, a - b) \)

By specifying the standard Lie bracket as action, one can compute the commutator of a subspace of \( F \):

\[
\text{sage: } x, y, a, b = F.basis()
\]

\[
\text{sage: } \text{def scalar(u,v): return vector([sum(u[i]*v[i] for i in F.basis().\_keys())])}
\]

\[
\text{sage: } \text{F.annihilator\_basis([x+y, a+b], scalar)}
\]

\( (x - y, a - b) \)
sage: F.annihilator_basis([a+b], action=F.bracket)
(x + y, a, b)

In particular one can compute a basis of the center of the algebra. In our example, it is reduced to the identity:

sage: F.annihilator_basis(F.algebra_generators(), action=F.bracket)
(x + y,)

But see also \texttt{FiniteDimensionalAlgebrasWithBasis.ParentMethods.center\_basis()}.  

\textbf{echelon\_form}(\texttt{elements}, \texttt{row\_reduced=False, order=None})

Return a basis in echelon form of the subspace spanned by a finite set of elements.

\textbf{INPUT:}
\begin{itemize}
  \item \texttt{elements} – a list or finite iterable of elements of \texttt{self}
  \item \texttt{row\_reduced} – (default: \texttt{False}) whether to compute the basis for the row reduced echelon form
  \item \texttt{order} – (optional) either something that can be converted into a tuple or a key function
\end{itemize}

\textbf{OUTPUT:}
A list of elements of \texttt{self} whose expressions as vectors form a matrix in echelon form. If \texttt{base\_ring} is specified, then the calculation is achieved in this base ring.

\textbf{EXAMPLES:}

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: V = X.echelon_form([x[0]-x[1], x[0]-x[2], x[1]-x[2]]); V
[x[0] - x[2], x[1] - x[2]]
sage: matrix(list(map(vector, V)))
\begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & -1
\end{bmatrix}

sage: F = CombinatorialFreeModule(ZZ, [1,2,3,4])
sage: B = F.basis()
sage: F.echelon_form(elements)
[B['a'] + B['c'], B['b'] + 2*B['c']]

sage: a,b,c = F.basis()
sage: F.echelon_form([8*a+b+10*c, -3*a+b-c, a-b-c])
[B['a'] + B['c'], B['b'] + 2*B['c']]

sage: R.<x,y> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: C.echelon_form([x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]])
[x[0] - x[2], x[1] - x[2]]

sage: M = MatrixSpace(QQ, 3, 3)
sage: A = M([[0, 0, 2], [0, 0, 0], [0, 0, 0]])
sage: M.echelon_form([A, A])

(continues on next page)
from_vector(vector, order=None, coerce=True)
Build an element of self from a vector.

EXAMPLES:
sage: p_mult = matrix([[0,0,0],[0,0,-1],[0,0,0]])
sage: q_mult = matrix([[0,0,1],[0,0,0],[0,0,0]])
sage: A = algebras.FiniteDimensional(QQ, [p_mult, q_mult, matrix(QQ,3,3)], 
    ....:'p,q,z')
sage: A.from_vector(vector([1,0,2]))
\[p + 2z\]

gens()
Return the generators of self.

OUTPUT:
A tuple containing the basis elements of self.

EXAMPLES:
sage: F = CombinatorialFreeModule(ZZ, ['a', 'b', 'c'])
sage: F.gens()
(B['a'], B['b'], B['c'])

invariant_module(S, action=<built-in function mul>, action_on_basis=None, side='left', **kwargs)
Return the submodule of self invariant under the action of S.

For a semigroup S acting on a module M, the invariant submodule is given by

\[M^S = \{ m \in M : s \cdot m = m, \forall s \in S \}.\]

INPUT:
• S – a finitely-generated semigroup
• action – a function (default: operator.mul)
• side – 'left' or 'right' (default: 'right'); which side of self the elements of S acts
• action_on_basis – (optional) define the action of S on the basis of self

OUTPUT:
• FiniteDimensionalInvariantModule

EXAMPLES:
We build the invariant module of the permutation representation of the symmetric group:
sage: G = SymmetricGroup(3); G.rename('S3')
sage: M = FreeModule(ZZ, [1,2,3], prefix='M'); M.rename('M')
sage: action = lambda g, x: M.term(g(x))
sage: I = M.invariant_module(G, action_on_basis=action); I
(S3)-invariant submodule of M
sage: I.basis()
Finite family {0: B[0]}
sage: [I.lift(b) for b in I.basis()]
(continues on next page)
We can construct the invariant module of any module that has an action of \( S \). In this example, we consider the dihedral group \( G = D_4 \) and the subgroup \( H < G \) of all rotations. We construct the \( H \)-invariant module of the group algebra \( \mathbb{Q}[G] \):

```python
sage: G = groups.permutation.Dihedral(4)
sage: H = G.subgroup(G.gen(0))
sage: H
Subgroup generated by [(1,2,3,4)] of (Dihedral group of order 8 as a permutation group)
sage: H.cardinality()
4
sage: A = G.algebra(QQ)
sage: I = A.invariant_module(H)
sage: [I.lift(b) for b in I.basis()]
[(0) + (1,2,3,4) + (1,3)(2,4) + (1,4,3,2),
 (2,4) + (1,2)(3,4) + (1,3) + (1,4)(2,3)]
sage: all(h * I.lift(b) == I.lift(b) for b in I.basis() for h in H)
True
```

\texttt{twisted\_invariant\_module}(G, chi, action=<\texttt{built-in function mul}>, action\_on\_basis=None, side='left', **kwargs)

Create the isotypic component of the action of \( G \) on \( \text{self} \) with irreducible character given by \( \chi \).

See also:

- \texttt{FiniteDimensionalTwistedInvariantModule}

INPUT:

- \( G \) – a finitely-generated group
- \( \chi \) – a list/tuple of character values or an instance of \texttt{ClassFunction\_gap}
- \( \text{action} \) – a function (default: \texttt{operator.mul})
- \( \text{action\_on\_basis} \) – (optional) define the action of \( g \) on the basis of \( \text{self} \)
- \( \text{side} \) – 'left' or 'right' (default: 'right'); which side of \( \text{self} \) the elements of \( S \) acts

OUTPUT:

- \texttt{FiniteDimensionalTwistedInvariantModule}

EXAMPLES:

```python
sage: M = CombinatorialFreeModule(QQ, [1,2,3])
sage: G = SymmetricGroup(3)
sage: def action(g,x): return(M.term(g(x))) # permute coordinates
sage: T = M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action)
sage: import __main__; __main__.action = action
sage: TestSuite(T).run()
```

\texttt{class TensorProducts(category, *args)}

Bases: \texttt{sage.categories.tensor.TensorProductsCategory}

\texttt{extra\_super\_categories()} Implement the fact that a (finite) tensor product of finite dimensional modules is a finite dimensional module.

EXAMPLES:
4.54 Finite Dimensional Nilpotent Lie Algebras With Basis

AUTHORS:

• Eero Hakavuori (2018-08-16): initial version

class sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis.FiniteDimensionalNilpotentLieAlgebrasWithBasis(B)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
Category of finite dimensional nilpotent Lie algebras with basis.

class ParentMethods
Bases: object

    is_nilpotent()
    Return True since self is nilpotent.

    EXAMPLES:

    sage: L = LieAlgebra(QQ, {('x','y'): {'z': 1}}, nilpotent=True)
    sage: L.is_nilpotent()
    True

    lie_group(name='G', **kwds)
    Return the Lie group associated to self.

    INPUT:

    • name – string (default: 'G'); the name (symbol) given to the Lie group

    EXAMPLES:

    We define the Heisenberg group:

    sage: L = lie_algebras.Heisenberg(QQ, 1)
    sage: G = L.lie_group('G'); G  #optional - sage.symbolic
    Lie group G of Heisenberg algebra of rank 1 over Rational Field

    We test multiplying elements of the group:

    sage: p,q,z = L.basis()  #optional - sage.symbolic
    sage: g = G.exp(p); g  #optional - sage.symbolic
    exp(p1)
    sage: h = G.exp(q); h  #optional - sage.symbolic
    exp(q1)
We extend an element of the Lie algebra to a left-invariant vector field:

```python
sage: X = G.left_invariant_extension(2*p + 3*q, name='X'); X
Vector field X on the Lie group G of Heisenberg algebra of rank 1 over Rational Field
```

```python
sage: X.at(G.one()).display()
X = 2 \partial/\partial x_0 + 3 \partial/\partial x_1
sage: X.display()
X = 2 \partial/\partial x_0 + 3 \partial/\partial x_1 + (3/2*x_0 - x_1) \partial/\partial x_2
```

See also:
NilpotentLieGroup

```python
step()
```

Return the nilpotency step of self.

**EXAMPLES:**

```python
sage: L = LieAlgebra(QQ, {('X','Y'): {'Z': 1}}, nilpotent=True)
sage: L.step()
2
sage: sc = {('X','Y'): {'Z': 1}, ('X','Z'): {'W': 1}}
sage: LieAlgebra(QQ, sc, nilpotent=True).step()
3
```

## 4.55 Finite dimensional semisimple algebras with basis

### class sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of finite dimensional semisimple algebras with a distinguished basis

**EXAMPLES:**

```python
sage: from sage.categories.finite_dimensional_semisimple_algebras_with_basis import FiniteDimensionalSemisimpleAlgebrasWithBasis
sage: C = FiniteDimensionalSemisimpleAlgebrasWithBasis(QQ); C
Category of finite dimensional semisimple algebras with basis over Rational Field
```

This category is best constructed as:

```python
sage: D = Algebras(QQ).Semisimple().FiniteDimensional().WithBasis(); D
Category of finite dimensional semisimple algebras with basis over Rational Field
sage: D is C
True
```
class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods
Bases: object

central_orthogonal_idempotents()
Return the central orthogonal idempotents of this semisimple commutative algebra.

Those idempotents form a maximal decomposition of the identity into primitive orthogonal idempotents.

OUTPUT:
A list of orthogonal idempotents of self.

EXAMPLES:

\begin{verbatim}
sage: A4 = SymmetricGroup(4).algebra(QQ)
sage: Z4 = A4.center()
sage: idempotents = Z4.central_orthogonal_idempotents()
sage: idempotents
1/6*B[0] + 1/6*B[2] - 1/12*B[3],
\end{verbatim}

Lifting those idempotents from the center, we recognize among them the sum and alternating sum of all permutations:

\begin{verbatim}
sage: [e.lift() for e in idempotents]
[1/24*() + 1/24*(3,4) + 1/24*(2,3) + 1/24*(2,3,4) + 1/24*(2,4,3) + 1/24*(1,2) + 1/24*(1,2,3),
+ 1/24*(1,2,3,4) + 1/24*(1,2,4,3) + 1/24*(1,2,4), + 1/24*(1,3,2) + 1/24*(1,3,4) + 1/24*(1,3,2),
1/24*(1,3,2,4) + 1/24*(1,4,3,2) + 1/24*(1,4,3) + 1/24*(1,4,2) + 1/24*(1,4,2),
+ 1/24*(1,4) + 1/24*(1,4,2,3) + 1/24*(1,4,2,3),
..., 1/24*() - 1/24*(3,4) - 1/24*(2,3) + 1/24*(2,3,4) + 1/24*(2,4,3) - 1/24*(1,2) + 1/24*(1,2,3),
- 1/24*(1,2,3,4) - 1/24*(1,2,4,3) + 1/24*(1,2,4), - 1/24*(1,3,2) + 1/24*(1,3,4) + 1/24*(1,3,2),
- 1/24*(1,3,4,2) - 1/24*(1,4,3,2) + 1/24*(1,4,3) + 1/24*(1,4,2) + 1/24*(1,4,3) - 1/24*(1,4) - 1/24*(1,4,2,3) + 1/24*(1,4,2,3),
]}
\end{verbatim}

We check that they indeed form a decomposition of the identity of $Z_4$ into orthogonal idempotents:

\begin{verbatim}
sage: Z4.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True
\end{verbatim}

class ParentMethods
Bases: object

central_orthogonal_idempotents()
Return a maximal list of central orthogonal idempotents of self.
Central orthogonal idempotents of an algebra \( A \) are idempotents \((e_1, \ldots, e_n)\) in the center of \( A \) such that \( e_i e_j = 0 \) whenever \( i \neq j \).

With the maximality condition, they sum up to 1 and are uniquely determined (up to order).

**EXAMPLES:**

For the algebra of the (abelian) alternating group \( A_3 \), we recover three idempotents corresponding to the three one-dimensional representations \( V_i \) on which \((1, 2, 3)\) acts as multiplication by the \( i \)-th power of a cube root of unity:

```python
sage: R = CyclotomicField(3)
sage: A3 = AlternatingGroup(3).algebra(R)
sage: idempotents = A3.central_orthogonal_idempotents()
sage: idempotents
(1/3*() + 1/3*(1,2,3) + 1/3*(1,3,2),
 1/3*() - (1/3*zeta3+1/3)*(1,2,3) - (-1/3*zeta3)*(+1,3,2),
 1/3*() - (-1/3*zeta3)*(1,2,3) - (1/3*zeta3+1/3)*(1,3,2))
sage: A3.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True
```

For the semisimple quotient of a quiver algebra, we recover the vertices of the quiver:

```python
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver (containing
the arrows a:x->y and b:x->y) over Rational Field
sage: Aquo = A.semisimple_quotient()
sage: Aquo.central_orthogonal_idempotents()
(B['x'], B['y'])
```

**radical_basis(**keywords**)**

Return a basis of the Jacobson radical of this algebra.

- **keywords** – for compatibility; ignored.

**OUTPUT:** the empty list since this algebra is semisimple.

**EXAMPLES:**

```python
sage: A = SymmetricGroup(4).algebra(QQ)
sage: A.radical_basis()
()```

4.56 Finite Enumerated Sets

class `sage.categories.finiteenumeratedsets.FiniteEnumeratedSets(base_category)`

* Bases: `sage.categories.category_with_axiom.CategoryWithAxiomSingleton`

The category of finite enumerated sets

EXAMPLES:

```python
sage: FiniteEnumeratedSets()
Category of finite enumerated sets
sage: FiniteEnumeratedSets().super_categories()
[Category of enumerated sets, Category of finite sets]
```
sage: FiniteEnumeratedSets().all_super_categories()
[Category of finite enumerated sets,
 Category of enumerated sets,
 Category of finite sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]

todo: sage.combinat.debruijn_sequence.DeBruijnSequences should not inherit from this class. If that is solved, then FiniteEnumeratedSets shall be turned into a subclass of Category_singleton.

class CartesianProducts(category, *args)
 Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods
 Bases: object

cardinality()
 Return the cardinality of self.

 EXAMPLES:

 sage: E = FiniteEnumeratedSet([1,2,3])
sage: C = cartesian_product([E,SymmetricGroup(4)])
sage: C.cardinality()
72

 sage: E = FiniteEnumeratedSet([])
sage: C = cartesian_product([E, ZZ, QQ])
sage: C.cardinality()
0

 sage: C = cartesian_product([ZZ, QQ])
sage: C.cardinality()
+Infinity

 sage: cartesian_product([GF(5), Permutations(10)]).cardinality()
18144000
 sage: cartesian_product([GF(71)^20]).cardinality() == 71^20
 True

last()
 Return the last element

 EXAMPLES:

 sage: C = cartesian_product([Zmod(42), Partitions(10), IntegerRange(5)])
sage: C.last()
(41, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 4)

random_element(*args)
 Return a random element of this Cartesian product.
 The extra arguments are passed down to each of the factors of the Cartesian product.
EXAMPLES:

```python
sage: C = cartesian_product([Permutations(10)]*5)
sage: C.random_element()  # random
([2, 9, 4, 7, 1, 8, 6, 10, 5, 3],
 [8, 6, 5, 7, 1, 4, 9, 3, 10, 2],
 [5, 10, 3, 8, 2, 9, 1, 4, 7, 6],
 [9, 6, 10, 3, 2, 1, 5, 8, 7, 4],
 [8, 5, 2, 9, 10, 3, 7, 1, 4, 6])

sage: C = cartesian_product([ZZ]*10)
sage: c1 = C.random_element()
sage: c1  # random
(3, 1, 4, 1, 1, -3, 0, -4, -17, 2)

sage: c2 = C.random_element(4,7)
sage: c2  # random
(6, 5, 6, 4, 5, 6, 6, 4, 5, 5)

sage: all(4 <= i < 7 for i in c2)
True
```

rank

Return the rank of an element of this Cartesian product.

The *rank* of *x* is its position in the enumeration. It is an integer between 0 and *n*−1 where *n* is the cardinality of this set.

See also:

- `EnumeratedSets.ParentMethods.rank()`
- `unrank()`

EXAMPLES:

```python
sage: C = cartesian_product([GF(2), GF(11), GF(7)])
sage: C.rank(C((1,2,5)))
96

sage: C.rank(C((0,0,0)))
0

sage: for c in C: print(C.rank(c))
0
1
2
3
4
5
...
150
151
152
153

sage: F1 = FiniteEnumeratedSet('abcdefgh')
sage: F2 = IntegerRange(250)
sage: F3 = Partitions(20)

sage: C = cartesian_product([F1, F2, F3])
```

(continues on next page)
\begin{verbatim}
sage: c = C(('a', 86, [7, 5, 4, 4]))
sage: C.rank(c)
54213
sage: C.unrank(54213)
('a', 86, [7, 5, 4, 4])
\end{verbatim}

\textbf{unrank}(i)

Return the \texttt{i}-th element of this Cartesian product.

INPUT:

- \texttt{i} – integer between 0 and \texttt{n}-1 where \texttt{n} is the cardinality of this set.

See also:

- \texttt{EnumeratedSets.ParentMethods.unrank()}
- \texttt{rank()}

EXAMPLES:

\begin{verbatim}
sage: C = cartesian_product([GF(3), GF(11), GF(7), GF(5)])
sage: c = C.unrank(123); c
(0, 3, 3, 3)
sage: C.rank(c)
123
sage: c = C.unrank(857); c
(2, 2, 3, 2)
sage: C.rank(c)
857
\end{verbatim}

\begin{verbatim}
sage: C.unrank(2500)
Traceback (most recent call last):
...
IndexError: index i (=2) is greater than the cardinality
\end{verbatim}

\textbf{extra_super_categories}()

A Cartesian product of finite enumerated sets is a finite enumerated set.

EXAMPLES:

\begin{verbatim}
sage: C = FiniteEnumeratedSets().CartesianProducts()
sage: C.extra_super_categories()
[Category of finite enumerated sets]
\end{verbatim}

class IsomorphicObjects(\texttt{category, *_*_*args})

Bases: \texttt{sage.categories.isomorphic_objects.IsomorphicObjectsCategory}

class ParentMethods

Bases: \texttt{object}

\textbf{cardinality}()

Returns the cardinality of \texttt{self} which is the same as that of the ambient set \texttt{self} is isomorphic to.

EXAMPLES:
example()

Returns an example of isomorphic object of a finite enumerated set, as per Category.example.

EXAMPLES:

```python
sage: FiniteEnumeratedSets().IsomorphicObjects().example()
The image by some isomorphism of An example of a finite enumerated set: {1, 2, 3}
```

class ParentMethods

Bases: object

cardinality(*ignored_args, **ignored_kwds)

Return the cardinality of self.

This brute force implementation of cardinality() iterates through the elements of self to count them.

EXAMPLES:

```python
sage: C = FiniteEnumeratedSets().example(); C
An example of a finite enumerated set: {1, 2, 3}
sage: C._cardinality_from_iterator()
3
```

iterator_range(start=None, stop=None, step=None)

Iterate over the range of elements of self starting at start, ending at stop, and stepping by step.

See also:

unrank(), unrank_range()

EXAMPLES:

```python
sage: F = FiniteEnumeratedSet([1, 2, 3])
sage: list(F.iterator_range(1))
[2, 3]
sage: list(F.iterator_range(stop=2))
[1, 2]
sage: list(F.iterator_range(stop=2, step=2))
[1]
sage: list(F.iterator_range(start=1, step=2))
[2]
sage: list(F.iterator_range(start=1, stop=2))
[2]
sage: list(F.iterator_range(start=0, stop=1))
[1]
sage: list(F.iterator_range(start=0, stop=3, step=2))
[1, 3]
sage: list(F.iterator_range(stop=-1))
[1, 2]
```
last()

The last element of `self`

`self.last()` returns the last element of `self`

This is the default (brute force) implementation from the category `FiniteEnumeratedSet()` which can be used when the method `__iter__` is provided. Its complexity is $O(n)$ where n is the size of `self`

EXAMPLES:

```python
sage: C = FiniteEnumeratedSets().example()
sage: C.last()
3
sage: C._last_from_iterator()
3
```

list()

Return a list of the elements of `self`

The elements of set `x` is created and cached on the fist call of `x.list()`. Then each call of `x.list()` returns a new list from the cached result. Thus in looping, it may be better to do `for e in x:`, not `for e in x.list()`.

See also:

__list_from_iterator__, __cardinality_from_list__, __iterator_from_list__, and __unrank_from_list__

EXAMPLES:

```python
sage: C = FiniteEnumeratedSets().example()
sage: C.list()
[1, 2, 3]
```

random_element()

A random element in `self`

`self.random_element()` returns a random element in `self` with uniform probability.

This is the default implementation from the category `EnumeratedSet()` which uses the method `unrank`

EXAMPLES:

```python
sage: C = FiniteEnumeratedSets().example()
sage: n = C.random_element()
sage: n in C
True
```
sage: n = C._random_element_from_unrank()
sage: n in C
True

TODO: implement _test_random which checks uniformness

\textbf{unrank_range}(\texttt{start}=None, \texttt{stop}=None, \texttt{step}=None)

Return the range of elements of self starting at \texttt{start}, ending at \texttt{stop}, and stepping by \texttt{step}.

See also \texttt{unrank()}.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: F = FiniteEnumeratedSet([1,2,3])
sage: F.unrank_range(1) [2, 3]
sage: F.unrank_range(stop=2) [1, 2]
sage: F.unrank_range(stop=2, step=2) [1]
sage: F.unrank_range(start=1, step=2) [2]
sage: F.unrank_range(stop=-1) [1, 2]
sage: F = FiniteEnumeratedSet([1,2,3,4])
sage: F.unrank_range(stop=10) [1, 2, 3, 4]
\end{verbatim}

\section{4.57 Finite fields}

\textbf{class \texttt{sage.categories.finite_fields.FiniteFields}}(\texttt{base_category})

Bases: \texttt{sage.categories.category_with_axiom.CategoryWithAxiom_singleton}

The category of finite fields.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: K = FiniteFields(); K
Category of finite enumerated fields

A finite field is a finite monoid with the structure of a field; it is currently assumed to be enumerated:

sage: K.super_categories()
[Category of fields,
 Category of finite commutative rings,
 Category of finite enumerated sets]

Some examples of membership testing and coercion:

sage: FiniteField(17) in K
True
sage: RationalField() in K
\end{verbatim}
False
sage: K(RationalField())
Traceback (most recent call last):
...
TypeError: unable to canonically associate a finite field to Rational Field

class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

debug.extra_super_categories()
 Any finite field is assumed to be endowed with an enumeration.

4.58 Finite groups

class sage.categories.finite_groups.FiniteGroups(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

 The category of finite (multiplicative) groups.

 EXAMPLES:

 sage: C = FiniteGroups(); C
 Category of finite groups
 sage: C.super_categories()
 [Category of finite monoids, Category of groups]
 sage: C.example()
 General Linear Group of degree 2 over Finite Field of size 3

class Algebras(category, *args)
 Bases: sage.categories.algebra_functor.AlgebrasCategory

 class ParentMethods
 Bases: object

debug.extra_super_categories()
 Implement Maschke’s theorem.

 In characteristic 0 all finite group algebras are semisimple.

 EXAMPLES:

 sage: FiniteGroups().Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
 True
 sage: FiniteGroups().Algebras(FiniteField(7)).is_subcategory(Algebras(FiniteField(7)).Semisimple())
 False
 sage: FiniteGroups().Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
 False
 sage: FiniteGroups().Algebras(Fields()).is_subcategory(Algebras(Fields()).Semisimple())
 False
sage: Cat = CommutativeAdditiveGroups().Finite()
sage: Cat.Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
True
sage: Cat.Algebras(GF(7)).is_subcategory(Algebras(GF(7)).Semisimple())
False
sage: Cat.Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
False
sage: Cat.Algebras(Fields()).is_subcategory(Algebras(Fields()).Semisimple())
False

class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

cardinality()
 Returns the cardinality of self, as per EnumeratedSets.ParentMethods.cardinality().
 This default implementation calls order() if available, and otherwise resorts to
 _cardinality_from_iterator(). This is for backward compatibility only. Finite groups
 should override this method instead of order().

EXAMPLES:

We need to use a finite group which uses this default implementation of cardinality:

sage: G = groups.misc.SemimonomialTransformation(GF(5), 3); G
Semimonomial transformation group over Finite Field of size 5 of degree 3
sage: G.cardinality.__module__
'sage.categories.finite_groups'
sage: G.cardinality()
384

cayley_graph_disabled(connecting_set=None)

AUTHORS:
• Bobby Moretti (2007-08-10)
• Robert Miller (2008-05-01): editing

conjugacy_classes()
 Return a list with all the conjugacy classes of the group.
 This will eventually be a fall-back method for groups not defined over GAP. Right now just raises a
 NotImplementedError, until we include a non-GAP way of listing the conjugacy classes representa-
 tives.

EXAMPLES:

sage: from sage.groups.group import FiniteGroup
sage: G = FiniteGroup()
sage: G.conjugacy_classes()
Traceback (most recent call last):
...
NotImplementedError: Listing the conjugacy classes for group <sage.groups.
˓
group.FiniteGroup object at ...> is not implemented

4.58. Finite groups
conjugacy_classes_representatives()

Return a list of the conjugacy classes representatives of the group.

EXAMPLES:

```
sage: G = SymmetricGroup(3)
sage: G.conjugacy_classes_representatives()
[((), (1,2), (1,2,3))]
```

monoid_generators()

Return monoid generators for self.

For finite groups, the group generators are also monoid generators. Hence, this default implementation calls `group_generators()`.

EXAMPLES:

```
sage: A = AlternatingGroup(4)
sage: A.monoid_generators()
Family ((2,3,4), (1,2,3))
```

semigroup_generators()

Returns semigroup generators for self.

For finite groups, the group generators are also semigroup generators. Hence, this default implementation calls `group_generators()`.

EXAMPLES:

```
sage: A = AlternatingGroup(4)
sage: A.semigroup_generators()
Family ((2,3,4), (1,2,3))
```

some_elements()

Return some elements of self.

EXAMPLES:

```
sage: A = AlternatingGroup(4)
sage: A.some_elements()
Family ((2,3,4), (1,2,3))
```

element()

Return an example of finite group, as per Category.example().

EXAMPLES:

```
sage: G = FiniteGroups().example(); G
General Linear Group of degree 2 over Finite Field of size 3
```
4.59 Finite lattice posets

class sage.categories.finite_lattice_posets.FiniteLatticePosets(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

 The category of finite lattices, i.e. finite partially ordered sets which are also lattices.

 EXAMPLES:

 sage: FiniteLatticePosets()
 Category of finite lattice posets
 sage: FiniteLatticePosets().super_categories()
 [Category of lattice posets, Category of finite posets]
 sage: FiniteLatticePosets().example()
 NotImplemented

 See also:

 FinitePosets, LatticePosets, FiniteLatticePoset

class ParentMethods
 Bases: object

 irreducibles_poset()
 Return the poset of meet- or join-irreducibles of the lattice.

 A join-irreducible element of a lattice is an element with exactly one lower cover. Dually a meet-
 irreducible element has exactly one upper cover.

 This is the smallest poset with completion by cuts being isomorphic to the lattice. As a special case
 this returns one-element poset from one-element lattice.

 See also:

 completion_by_cuts().

 EXAMPLES:

 sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5],
 : 4: [6], 5: [9, 7], 6: [9, 8], 7: [10],
 : 8: [10], 9: [10], 10: [11]})
 sage: L_.is_lattice_morphism(f, codomain)
 Return whether \(f \) is a morphism of posets from \texttt{self} to \texttt{codomain}.

 A map \(f : P \to Q \) is a poset morphism if

 \[
 x \leq y \Rightarrow f(x) \leq f(y)
 \]

 for all \(x, y \in P \).

 INPUT:

 • \texttt{f} – a function from \texttt{self} to \texttt{codomain}
 • \texttt{codomain} – a lattice
EXAMPLES:

We build the boolean lattice of \{2, 2, 3\} and the lattice of divisors of 60, and check that the map \(b \mapsto 5 \prod_{x \in b} x \) is a morphism of lattices:

```
sage: D = LatticePoset((divisors(60), attrcall("divides")))
sage: B = LatticePoset((Subsets([2, 2, 3]), attrcall("issubset")))
sage: def f(b): return D(5*prod(b))
sage: B.is_lattice_morphism(f, D)
True
```

We construct the boolean lattice \(B_2 \):

```
sage: B = posets.BooleanLattice(2)
sage: B.cover_relations()
[[0, 1], [0, 2], [1, 3], [2, 3]]
```

And the same lattice with new top and bottom elements numbered respectively \(-1\) and 3:

```
sage: L = LatticePoset(DiGraph({-1:[0], 0:[1,2], 1:[3], 2:[3,4], 3:[4]}))
sage: L.cover_relations()
[[-1, 0], [0, 1], [0, 2], [1, 3], [2, 3], [3, 4]]
sage: f = { B(0): L(0), B(1): L(1), B(2): L(2), B(3): L(3) }.__getitem__
sage: B.is_lattice_morphism(f, L)
True
sage: f = { B(0): L(-1), B(1): L(1), B(2): L(2), B(3): L(3) }.__getitem__
sage: B.is_lattice_morphism(f, L)
False
sage: f = { B(0): L(0), B(1): L(1), B(2): L(2), B(3): L(4) }.__getitem__
sage: B.is_lattice_morphism(f, L)
False
```

See also:

- `is_poset_morphism()`
- `join_irreducibles()`

 Return the join-irreducible elements of this finite lattice.

 A join-irreducible element of `self` is an element \(x \) that is not minimal and that can not be written as the join of two elements different from \(x \).

 EXAMPLES:

```
sage: L = LatticePoset({0:[1,2], 1:[3], 2:[3,4], 3:[5], 4:[5]})
sage: L.join_irreducibles()
[1, 2, 4]
```

See also:

- Dual function: `meet_irreducibles()`
- Other: `double_irreducibles()`, `join_irreducibles_poset()`

- `join_irreducibles_poset()`

 Return the poset of join-irreducible elements of this finite lattice.
A *join-irreducible element* of *self* is an element \(x \) that is not minimal and can not be written as the join of two elements different from \(x \).

EXAMPLES:

```python
sage: L = LatticePoset({0:[1,2,3],1:[4],2:[4],3:[4]})
```

```python
sage: L.join_irreducibles_poset()
Finite poset containing 3 elements
```

See also:

- Dual function: `meet_irreducibles_poset()`
- Other: `join_irreducibles()`

meet_irreducibles()

Return the meet-irreducible elements of this finite lattice.

A *meet-irreducible element* of *self* is an element \(x \) that is not maximal and cannot be written as the meet of two elements different from \(x \).

EXAMPLES:

```python
sage: L = LatticePoset({0:[1,2],1:[3],2:[3,4],3:[5],4:[5]})
```

```python
sage: L.meet_irreducibles()
[1, 3, 4]
```

See also:

- Dual function: `join_irreducibles()`
- Other: `double_irreducibles(), meet_irreducibles_poset()`

meet_irreducibles_poset()

Return the poset of join-irreducible elements of this finite lattice.

A *meet-irreducible element* of *self* is an element \(x \) that is not maximal and cannot be written as the meet of two elements different from \(x \).

EXAMPLES:

```python
sage: L = LatticePoset({0:[1,2,3],1:[4],2:[4],3:[4]})
```

```python
sage: L.join_irreducibles_poset()
Finite poset containing 3 elements
```

See also:

- Dual function: `join_irreducibles_poset()`
- Other: `meet_irreducibles()`

4.60 Finite monoids

class `sage.categories.finite_monoids.FiniteMonoids(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of finite (multiplicative) *monoids*.

A finite monoid is a *finite sets* endowed with an associative unital binary operation \(*\).

EXAMPLES:
class ElementMethods
Bases: object

pseudo_order()

Returns the pair \([k, j]\) with \(k\) minimal and \(0 \leq j < k\) such that \(\text{self}^k = \text{self}^j\).

Note that \(j\) is uniquely determined.

EXAMPLES:

```
sage: M = FiniteMonoids().example(); M
An example of a finite multiplicative monoid: the integers modulo 12
sage: x = M(2)
sage: [ x^i for i in range(7) ]
[1, 2, 4, 8, 4, 8, 4]
sage: x.pseudo_order()
[4, 2]

sage: x = M(3)
sage: [ x^i for i in range(7) ]
[1, 3, 9, 3, 9, 3, 9]
sage: x.pseudo_order()
[3, 1]

sage: x = M(4)
sage: [ x^i for i in range(7) ]
[1, 4, 4, 4, 4, 4, 4]
sage: x.pseudo_order()
[2, 1]

sage: x = M(5)
sage: [ x^i for i in range(7) ]
[1, 5, 1, 5, 1, 5, 1]
sage: x.pseudo_order()
[2, 0]
```

TODO: more appropriate name? see, for example, Jean-Eric Pin’s lecture notes on semigroups.

class ParentMethods
Bases: object

nerve()

The nerve (classifying space) of this monoid.

OUTPUT: the nerve \(BG\) (if \(G\) denotes this monoid), as a simplicial set. The \(k\)-dimensional simplices of this object are indexed by products of \(k\) elements in the monoid:

\[a_1 \ast a_2 \ast \cdots \ast a_k \]

The 0th face of this is obtained by deleting \(a_1\), and the \(k\)-th face is obtained by deleting \(a_k\). The other
faces are obtained by multiplying elements: the 1st face is

\[(a_1 \times a_2) \times \cdots \times a_k\]

and so on. See Wikipedia article Nerve_(category_theory), which describes the construction of the nerve as a simplicial set.

A simplex in this simplicial set will be degenerate if in the corresponding product of \(k\) elements, one of those elements is the identity. So we only need to keep track of the products of non-identity elements. Similarly, if a product \(a_{i-1}a_i\) is the identity element, then the corresponding face of the simplex will be a degenerate simplex.

EXAMPLES:

The nerve (classifying space) of the cyclic group of order 2 is infinite-dimensional real projective space.

```
sage: Sigma2 = groups.permutation.Cyclic(2)
sage: BSigma2 = Sigma2.nerve()
sage: BSigma2.cohomology(4, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2
```

The \(k\)-simplices of the nerve are named after the chains of \(k\) non-unit elements to be multiplied. The group \(\Sigma_2\) has two elements, written () (the identity element) and (1,2) in Sage. So the 1-cells and 2-cells in \(B\Sigma_2\) are:

```
sage: BSigma2.n_cells(1)
[(1,2)]
sage: BSigma2.n_cells(2)
[(1,2) * (1,2)]
```

Another construction of the group, with different names for its elements:

```
sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = C2.nerve()
sage: BC2.n_cells(0)
[1]
sage: BC2.n_cells(1)
[f]
sage: BC2.n_cells(2)
[f * f]
```

With mod \(p\) coefficients, \(B\Sigma_p\) should have its first nonvanishing homology group in dimension \(p\):

```
sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = Sigma3.nerve()
sage: BSigma3.homology(range(4), base_ring=GF(3))
{0: Vector space of dimension 0 over Finite Field of size 3,
 1: Vector space of dimension 0 over Finite Field of size 3,
 2: Vector space of dimension 0 over Finite Field of size 3,
 3: Vector space of dimension 1 over Finite Field of size 3}
```

Note that we can construct the \(n\)-skeleton for \(B\Sigma_2\) for relatively large values of \(n\), while for \(B\Sigma_3\), the complexes get large pretty quickly.
Finally, note that the classifying space of the order p cyclic group is smaller than that of the symmetric group on p letters, and its first homology group appears earlier:

```python
sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: list(C3)
[1, f, f^2]
sage: BC3 = C3.nerve()
sage: BC3.n_cells(1)
[f, f^2]
sage: BC3.n_cells(2)
[f * f, f * f^2, f^2 * f, f^2 * f^2]
sage: len(BC3.n_cells(2))
25
sage: len(BC3.n_cells(3))
8
sage: len(BSigma3.n_cells(3))
125

sage: BC3.homology(range(5), base_ring=GF(3))
{0: Vector space of dimension 0 over Finite Field of size 3,
 1: Vector space of dimension 1 over Finite Field of size 3,
 2: Vector space of dimension 1 over Finite Field of size 3,
 3: Vector space of dimension 1 over Finite Field of size 3,
 4: Vector space of dimension 1 over Finite Field of size 3}

sage: BC5 = groups.permutation.Cyclic(5).nerve()
sage: BC5.homology(range(5), base_ring=GF(5))
{0: Vector space of dimension 0 over Finite Field of size 5,
 1: Vector space of dimension 1 over Finite Field of size 5,
 2: Vector space of dimension 1 over Finite Field of size 5,
 3: Vector space of dimension 1 over Finite Field of size 5,
 4: Vector space of dimension 1 over Finite Field of size 5}
```

rhodes_radical_congruence(base_ring=None)

Return the Rhodes radical congruence of the semigroup.

The Rhodes radical congruence is the congruence induced on S by the map $S \to kS \to kS/\text{rad}kS$ with k a field.

INPUT:
- base_ring (default: \mathbb{Q}) a field

OUTPUT:
- A list of couples (m, n) with $m \neq n$ in the lexicographic order for the enumeration of the monoid **self**.

EXAMPLES:
By Maschke’s theorem, every group algebra over \mathbb{Q} is semisimple hence the Rhodes radical of a group must be trivial:

```sage
sage: SymmetricGroup(3).rhodes_radical_congruence()
[]
sage: DihedralGroup(10).rhodes_radical_congruence()
[]
```

REFERENCES:
• [Rho69]

4.61 Finite Permutation Groups

```sage
class sage.categories.finite_permutation_groups.FinitePermutationGroups(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite permutation groups, i.e. groups concretely represented as groups of permutations acting on a finite set.

It is currently assumed that any finite permutation group comes endowed with a distinguished finite set of generators (method `group_generators`); this is the case for all the existing implementations in Sage.

EXAMPLES:
```
```
```sage
class ElementMethods
 Bases: object
class ParentMethods
 Bases: object
cycle_index(parent=None)
 Return the cycle index of self.
 INPUT:
 • self - a permutation group G
```

4.61. Finite Permutation Groups
• parent – a free module with basis indexed by partitions, or behave as such, with a term and sum
method (default: the symmetric functions over the rational field in the \( p \) basis)

The cycle index of a permutation group \( G \) (Wikipedia article Cycle_index) is a gadget counting the
elements of \( G \) by cycle type, averaged over the group:

\[
P = \frac{1}{|G|} \sum_{g \in G} p_{\text{cycle type}(g)}
\]

EXAMPLES:
Among the permutations of the symmetric group \( S_4 \), there is the identity, 6 cycles of length 2, 3
products of two cycles of length 2, 8 cycles of length 3, and 6 cycles of length 4:

```python
sage: S4 = SymmetricGroup(4)
sage: P = S4.cycle_index()
sage: 24 * P
```

If \( l = (l_1, \ldots, l_k) \) is a partition, \(|G| P[l]\) is the number of elements of \( G \) with cycles of length
\( (p_1, \ldots, p_k) \):

```python
sage: 24 * P[Partition([3,1])]
8
```

The cycle index plays an important role in the enumeration of objects modulo the action of a group
(Pólya enumeration), via the use of symmetric functions and plethysms. It is therefore encoded as a
symmetric function, expressed in the powersum basis:

```python
sage: P.parent()
Symmetric Functions over Rational Field in the powersum basis
```

This symmetric function can have some nice properties; for example, for the symmetric group \( S_n \), we
get the complete symmetric function \( h_n \):

```python
sage: S = SymmetricFunctions(QQ); h = S.h()
sage: h(P)
h[4]
```

Todo: Add some simple examples of Pólya enumeration, once it will be easy to expand symmetric
functions on any alphabet.

Here are the cycle indices of some permutation groups:

```python
sage: 6 * CyclicPermutationGroup(6).cycle_index()
```

```python
sage: 60 * AlternatingGroup(5).cycle_index()
```

```python
sage: for G in TransitiveGroups(5):
 # long time
 :
 G.cardinality() * G.cycle_index()
p[1, 1, 1, 1, 1] + 4*p[5]
p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 4*p[5]
```
Permutation groups with arbitrary domains are supported (see trac ticket #22765):

```python
sage: G = PermutationGroup([['b','c','a']], domain=['a','b','c'])
sage: G.cycle_index()
1/3*p[1, 1, 1] + 2/3*p[3]
```

One may specify another parent for the result:

```python
sage: F = CombinatorialFreeModule(QQ, Partitions())
sage: P = CyclicPermutationGroup(6).cycle_index(parent = F)
sage: 6 * P
B[[1, 1, 1, 1, 1, 1]] + B[[2, 2, 2]] + 2*B[[3, 3]] + 2*B[[6]]
sage: P.parent() is F
True
```

This parent should be a module with basis indexed by partitions:

```python
sage: CyclicPermutationGroup(6).cycle_index(parent = QQ)
Traceback (most recent call last):
 ...
ValueError: `parent` should be a module with basis indexed by partitions
```

REFERENCES:

• [Ke1991]

AUTHORS:

• Nicolas Borie and Nicolas M. Thiéry

**profile**(n, using_polya=True)

Return the value in n of the profile of the group self.

Optional argument using_polya allows to change the default method.

INPUT:

• n – a nonnegative integer

• using_polya (optional) – a boolean: if True (default), the computation uses Pólya enumeration (and all values of the profile are cached, so this should be the method used in case several of them are needed); if False, uses the GAP interface to compute the orbit.

OUTPUT:

• A nonnegative integer that is the number of orbits of n-subsets under the action induced by self on the subsets of its domain (i.e. the value of the profile of self in n)

See also:

• profile_series()

EXAMPLES:

```python
sage: C6 = CyclicPermutationGroup(6)
sage: C6.profile(2)
3
sage: C6.profile(3)
```

4.61. Finite Permutation Groups 441
profile_polynomial (variable='z')

Return the (finite) generating series of the (finite) profile of the group.

The profile of a permutation group \( G \) is the counting function that maps each nonnegative integer \( n \) onto the number of orbits of the action induced by \( G \) on the \( n \)-subsets of its domain. If \( f \) is the profile of \( G \), \( f(n) \) is thus the number of orbits of \( n \)-subsets of \( G \).

INPUT:
• variable – a variable, or variable name as a string (default: 'z')

OUTPUT:
• A polynomial in variable with nonnegative integer coefficients. By default, a polynomial in \( z \) over \( \mathbb{Z} \).

See also:
• profile()

EXAMPLES:

```python
sage: C8 = CyclicPermutationGroup(8)
sage: C8.profile_series()
z^8 + z^7 + 4*z^6 + 7*z^5 + 10*z^4 + 7*z^3 + 4*z^2 + z + 1
sage: D8 = DihedralGroup(8)
sage: poly_D8 = D8.profile_series()
sage: poly_D8
z^8 + z^7 + 4*z^6 + 5*z^5 + 8*z^4 + 5*z^3 + 4*z^2 + z + 1
sage: poly_D8.parent()
Univariate Polynomial Ring in z over Rational Field
sage: D8.profile_series(variable='y')
y^8 + y^7 + 4*y^6 + 5*y^5 + 8*y^4 + 5*y^3 + 4*y^2 + y + 1
sage: u = var('u')
optional -
→ sage.symbolic
sage: D8.profile_series(u).parent() # optional -
→ sage.symbolic
Symbolic Ring
```
sage: C8 = CyclicPermutationGroup(8)
sage: C8.profile_series()
z^8 + z^7 + 4*z^6 + 7*z^5 + 10*z^4 + 7*z^3 + 4*z^2 + z + 1
sage: D8 = DihedralGroup(8)
sage: poly_D8 = D8.profile_series()
sage: poly_D8
z^8 + z^7 + 4*z^6 + 5*z^5 + 8*z^4 + 5*z^3 + 4*z^2 + z + 1
sage: poly_D8.parent()
Univariate Polynomial Ring in z over Rational Field
sage: D8.profile_series(variable='y')
y^8 + y^7 + 4*y^6 + 5*y^5 + 8*y^4 + 5*y^3 + 4*y^2 + y + 1
sage: u = var('u')
# optional - sage.symbolic
sage: D8.profile_series(u).parent()
# optional - sage.symbolic
Symbolic Ring

example()
Returns an example of finite permutation group, as per Category.example().

EXAMPLES:

sage: G = FinitePermutationGroups().example(); G
Dihedral group of order 6 as a permutation group

extra_super_categories()
Any permutation group is assumed to be endowed with a finite set of generators.

4.62 Finite posets

Here is some terminology used in this file:

- An order filter (or upper set) of a poset $P$ is a subset $S$ of $P$ such that if $x \leq y$ and $x \in S$ then $y \in S$.
- An order ideal (or lower set) of a poset $P$ is a subset $S$ of $P$ such that if $x \leq y$ and $y \in S$ then $x \in S$.

class sage.categories.finite_posets.FinitePosets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
The category of finite posets i.e. finite sets with a partial order structure.

EXAMPLES:

sage: FinitePosets()
Category of finite posets
sage: FinitePosets().super_categories()
[Category of posets, Category of finite sets]
sage: FinitePosets().example()
NotImplemented

See also:
Posets, Poset()

class ParentMethods
Bases: object
antichains()

Return all antichains of self.

EXAMPLES:

sage: A = posets.PentagonPoset().antichains(); A
Set of antichains of Finite lattice containing 5 elements
sage: list(A)
[[], [0], [1], [1, 2], [1, 3], [2], [3], [4]]

birational_free_labelling(linear_extension=None, prefix='!', base_field=None, reduced=False, addvars=None, labels=None, min_label=None, max_label=None)

Return the birational free labelling of self.

Let us hold back defining this, and introduce birational toggles and birational rowmotion first. These notions have been introduced in [EP2013] as generalizations of the notions of toggles (order_ideal_toggle()) and rowmotion on order ideals of a finite poset. They have been studied further in [GR2013].

Let \( K \) be a field, and \( P \) be a finite poset. Let \( \hat{P} \) denote the poset obtained from \( P \) by adding a new element 1 which is greater than all existing elements of \( P \), and a new element 0 which is smaller than all existing elements of \( P \) and 1. Now, a \( K \)-labelling of \( P \) will mean any function from \( \hat{P} \) to \( K \). The image of an element \( v \) of \( \hat{P} \) under this labelling will be called the label of this labelling at \( v \). The set of all \( K \)-labellings of \( P \) is clearly \( K^\hat{P} \).

For any \( v \in P \), we now define a rational map \( T_v : K^\hat{P} \rightarrow K^\hat{P} \) as follows: For every \( f \in K^\hat{P} \), the image \( T_v f \) should send every element \( u \in \hat{P} \) distinct from \( v \) to \( f(u) \) (so the labels at all \( u \neq v \) don’t change), while \( v \) is sent to

\[
\frac{1}{f(v)} \cdot \frac{\sum_{u < v} f(u)}{\sum_{u > v} f(u)}
\]

(both sums are over all \( u \in \hat{P} \) satisfying the respectively given conditions). Here, \( < \) and \( > \) mean (respectively) “covered by” and “covers”, interpreted with respect to the poset \( \hat{P} \). This rational map \( T_v \) is an involution and is called the (birational) \( v \)-toggle; see birational_toggle() for its implementation.

Now, birational rowmotion is defined as the composition \( T_{v_1} \circ T_{v_2} \circ \cdots \circ T_{v_n} \), where \( (v_1, v_2, \ldots, v_n) \) is a linear extension of \( P \) (written as a linear ordering of the elements of \( \hat{P} \)). This is a rational map \( K^\hat{P} \rightarrow K^\hat{P} \) which does not depend on the choice of the linear extension; it is denoted by \( R \). See birational_rowmotion() for its implementation.

The definitions of birational toggles and birational rowmotion extend to the case of \( K \) being any semifield rather than necessarily a field (although it becomes less clear what constitutes a rational map in this generality). The most useful case is that of the tropical semiring, in which case birational rowmotion relates to classical constructions such as promotion of rectangular semistandard Young tableaux (page 5 of [EP2013b] and future work, via the related notion of birational promotion) and rowmotion on order ideals of the poset ([EP2013]).

The birational free labelling is a special labelling defined for every finite poset \( P \) and every linear extension \( (v_1, v_2, \ldots, v_n) \) of \( P \). It is given by sending every element \( v_i \) in \( P \) to \( x_i \), sending the element 0 of \( \hat{P} \) to \( a \), and sending the element 1 of \( \hat{P} \) to \( b \), where the ground field \( K \) is the field of rational functions in \( n + 2 \) indeterminates \( a, x_1, x_2, \ldots, x_n, b \) over \( \mathbb{Q} \).

In Sage, a labelling \( f \) of a poset \( P \) is encoded as a 4-tuple \((K, d, u, v)\), where \( K \) is the ground field of the labelling (i. e., its target), \( d \) is the dictionary containing the values of \( f \) at the elements of \( P \) (the keys being the respective elements of \( P \)), \( u \) is the label of \( f \) at 0, and \( v \) is the label of \( f \) at 1.
Warning: The dictionary $d$ is labelled by the elements of $P$. If $P$ is a poset with facade option set to False, these might not be what they seem to be! (For instance, if $P == \text{Poset}([1: [2, 3]], \text{facade}=\text{False})$, then the value of $d$ at 1 has to be accessed by $d[P(1)]$, not by $d[1]$.)

Warning: Dictionaries are mutable. They do compare correctly, but are not hashable and need to be cloned to avoid spooky action at a distance. Be careful!

INPUT:
- $\text{linear_extension}$ – (default: the default linear extension of self) a linear extension of self (as a linear extension or as a list), or more generally a list of all elements of all elements of self each occurring exactly once
- $\text{prefix}$ – (default: 'x') the prefix to name the indeterminates corresponding to the elements of self in the labelling (so, setting it to 'frog' will result in these indeterminates being called frog1, frog2, ..., frogn rather than x1, x2, ..., xn).
- $\text{base_field}$ – (default: QQ) the base field to be used instead of Q to define the rational function field over; this is not going to be the base field of the labelling, because the latter will have indeterminates adjoined!
- $\text{reduced}$ – (default: False) if set to True, the result will be the reduced birational free labelling, which differs from the regular one by having 0 and 1 both sent to 1 instead of $a$ and $b$ (the indeterminates $a$ and $b$ then also won't appear in the ground field)
- $\text{addvars}$ – (default: '') a string containing names of extra variables to be adjoined to the ground field (these don't have an effect on the labels)
- $\text{labels}$ – (default: 'x') Either a function that takes an element of the poset and returns a name for the indeterminate corresponding to that element, or a string containing a comma-separated list of indeterminates that will be assigned to elements in the order of linear_extension. If the list contains more indeterminates than needed, the excess will be ignored. If it contains too few, then the needed indeterminates will be constructed from prefix.
- $\text{min_label}$ – (default: 'a') a string to be used as the label for the element 0 of $\hat{P}$
- $\text{max_label}$ – (default: 'b') a string to be used as the label for the element 1 of $\hat{P}$

OUTPUT:
The birational free labelling of the poset self and the linear extension linear_extension. Or, if reduced is set to True, the reduced birational free labelling.

EXAMPLES:
We construct the birational free labelling on a simple poset:

```
sage: P = Poset({1: [2, 3]})
sage: l = P.birational_free_labelling(); l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over Rational Field,
 {...},
 a,
 b)
sage: sorted(l[1].items())
[(1, x1), (2, x2), (3, x3)]
sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2]); l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over Rational Field,
 {...},
```
(continues on next page)
a, b)
sage: sorted(l[1].items())
[(1, x1), (2, x3), (3, x2)]

sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2], reduced=True, addvars="spam, eggs"); l
(Fraction Field of Multivariate Polynomial Ring in x1, x2, x3, spam, eggs over Rational Field, {...}, 1, 1)
sage: sorted(l[1].items())
[(1, x1), (2, x3), (3, x2)]

sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2], prefix="wut", reduced=True, addvars="spam, eggs"); l
(Fraction Field of Multivariate Polynomial Ring in wut1, wut2, wut3, spam, eggs over Rational Field, {...}, 1, 1)
sage: sorted(l[1].items())
[(1, wut1), (2, wut3), (3, wut2)]

sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2], reduced=False, addvars="spam, eggs"); l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b, spam, eggs over Rational Field, {...}, a, b)
sage: sorted(l[1].items())
[(1, x1), (2, x3), (3, x2)]
sage: l[1][2]
x3

Illustrating labelling with a function:

sage: P = posets.ChainPoset(2).product(posets.ChainPoset(2))
sage: l = P.birational_free_labelling(labels=lambda e : 'x_' + str(e[0]) + str(e[1])); l
sage: sorted(l[1].items())
[((0, 0), x_00), ((0, 1), x_01), ((1, 0), x_10), ((1, 1), x_11)]
sage: l[2]
a

The same, but with min_label and max_label provided:

sage: P = posets.ChainPoset(2).product(posets.ChainPoset(2))
sage: l = P.birational_free_labelling(labels=lambda e : 'x_' + str(e[0]) + str(e[1]), min_label="lambda", max_label="mu")
Illustrating labelling with a comma separated list of labels:

```python
sage: P = Poset({1: [2, 3]}, facade=False)
sage: lext = sorted(P)
sage: l = P.birational_free_labelling(linear_extension=lext, addvars="ohai")
sage: l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, x5, ..., x6, x7, x8, b, ohai over Rational Field, {...}, a, b)
sage: sorted(l[1].items())
[(([1, 1], [2]], x1), (...}, a, b)
sage: sorted(l[1].items())
[(([1, 1], [2]], x1), ([1, 1], [3], x2), ([1, 2], [2], x3), ([1, 2], [3], x4), ([1, 3], [2], x5), ([1, 3], [3], x6), ([2, 2], [3], x7), ([2, 3], [3], x8)]
```

Another poset:

```python
sage: P = posets.SSTPoset([2,1])
sage: lext = sorted(P)
sage: l = P.birational_free_labelling(linear_extension=lext, addvars="ohai")
sage: l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, x5, ..., x6, x7, x8, b, ohai over Rational Field, {...}, a, b)
sage: sorted(l[1].items())
[(([1, 1], [2], x1), ([1, 1], [3], x2), ([1, 2], [2], x3), ([1, 2], [3], x4), ([1, 3], [2], x5), ([1, 3], [3], x6), ([2, 2], [3], x7), ([2, 3], [3], x8)]
```
See `birational_rowmotion()`, `birational_toggle()` and `birational_toggles()` for more substantial examples of what one can do with the birational free labelling.

**birational_rowmotion(labelling)**

Return the result of applying birational rowmotion to the \(K\)-labelling `labelling` of the poset `self`.

See the documentation of `birational_free_labelling()` for a definition of birational rowmotion and \(K\)-labellings and for an explanation of how \(K\)-labellings are to be encoded to be understood by Sage. This implementation allows \(K\) to be a semifield, not just a field. Birational rowmotion is only a rational map, so an exception (most likely, `ZeroDivisionError`) will be thrown if the denominator is zero.

**INPUT:**

- `labelling` – a \(K\)-labelling of `self` in the sense as defined in the documentation of `birational_free_labelling()`

**OUTPUT:**

The image of the \(K\)-labelling \(f\) under birational rowmotion.

**EXAMPLES:**

```python
sage: P = Poset({1: [2, 3], 2: [4], 3: [4]})
sage: lex = [1, 2, 3, 4]
sage: t = P.birational_free_labelling(linear_extension=lex); t
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, b␣
˓→over Rational Field,
{...},
a,
b)
sage: sorted(t[1].items())
[(1, x1), (2, x2), (3, x3), (4, x4)]
sage: t = P.birational_rowmotion(t); t
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, b␣
˓→over Rational Field,
{...},
a,
b)
sage: sorted(t[1].items())
[(1, a*b/x4), (2, (x1*x2*b + x1*x3*b)/(x2*x4)),
(3, (x1*x2*b + x1*x3*b)/(x3*x4)), (4, (x2*b + x3*b)/x4)]
```

A result of [GR2013] states that applying birational rowmotion \(n + m\) times to a \(K\)-labelling \(f\) of the poset \([n] \times [m]\) gives back \(f\). Let us check this:

```python
sage: def test_rectangle_periodicity(n, m, k):
 : P = posets.ChainPoset(n).product(posets.ChainPoset(m))
 : t0 = P.birational_free_labelling(P)
 : t = t0
 : for i in range(k):
 : t = P.birational_rowmotion(t)
 : return t == t0
sage: test_rectangle_periodicity(2, 2, 4)
True
sage: test_rectangle_periodicity(2, 2, 2)
False
sage: test_rectangle_periodicity(2, 3, 5) # long time
```

(continues on next page)
While computations with the birational free labelling quickly run out of memory due to the complexity of the rational functions involved, it is computationally cheap to check properties of birational rowmotion on examples in the tropical semiring:

```python
sage: def test_rectangle_periodicity_tropical(n, m, k):
 P = posets.ChainPoset(n).product(posets.ChainPoset(m))
 TT = TropicalSemiring(ZZ)
 t0 = (TT, {v: TT(randint(0, 99)) for v in P}, TT(0), TT(124))
 t = t0
 for i in range(k):
 t = P.birational_rowmotion(t)
 return t == t0
sage: test_rectangle_periodicity_tropical(7, 6, 13)
True
```

Tropicalization is also what relates birational rowmotion to classical rowmotion on order ideals. In fact, if $T$ denotes the tropical semiring of $\mathbb{Z}$ and $P$ is a finite poset, then we can define an embedding $\phi$ from the set $J(P)$ of all order ideals of $P$ into the set $T^P$ of all $T$-labellings of $P$ by sending every $I \in J(P)$ to the indicator function of $I$ extended by the value 1 at the element 0 and the value 0 at the element 1. This map $\phi$ has the property that $R \circ \phi = \phi \circ r$, where $R$ denotes birational rowmotion, and $r$ denotes classical rowmotion on $J(P)$. An example:

```python
sage: P = posets.IntegerPartitions(5)

sage: TT = TropicalSemiring(ZZ)

sage: def indicator_labelling(I):
 # send order ideal `I` to a `T`-labelling of `P`.
 dct = {v: TT(v in I) for v in P}
 return (TT, dct, TT(1), TT(0))

sage: all(indicator_labelling(P.rowmotion(I))
 == P.birational_rowmotion(indicator_labelling(I))
 for I in P.order_ideals_lattice(facade=True))
True
```

**birational_toggle**($v, \text{labelling}$)

Return the result of applying the birational $v$-toggle $T_v$ to the $K$-labelling labelling of the poset self.

See the documentation of **birational_free_labelling** for a definition of this toggle and of $K$-labellings as well as an explanation of how $K$-labellings are to be encoded to be understood by Sage. This implementation allows $K$ to be a semifield, not just a field. The birational $v$-toggle is only a rational map, so an exception (most likely, ZeroDivisionError) will be thrown if the denominator is zero.

**INPUT:**

- $v$ – an element of self (must have self as parent if self is a facade=False poset)
- labelling – a $K$-labelling of self in the sense as defined in the documentation of **birational_free_labelling**

**OUTPUT:**

The $K$-labelling $T_v f$ of self, where $f$ is labelling.

**EXAMPLES:**
Let us start with the birational free labelling of the “V”-poset (the three-element poset with Hasse diagram looking like a “V”):

```sage
V = Poset({1: [2, 3]})
s = V.birational_free_labelling(); s
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over Rational Field,
 {...},
 a,
b)
sage: sorted(s[1].items())
[(1, x1), (2, x2), (3, x3)]
```

The image of \(s\) under the 1-toggle \(T_1\) is:

```sage
s1 = V.birational_toggle(1, s); s1
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over Rational Field,
 {...},
 a,
b)
sage: sorted(s1[1].items())
[(1, a*x2*x3/(x1*x2 + x1*x3)), (2, x2), (3, x3)]
```

Now let us apply the 2-toggle \(T_2\) (to the old \(s\)):

```sage
s2 = V.birational_toggle(2, s); s2
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over Rational Field,
 {...},
 a,
b)
sage: sorted(s2[1].items())
[(1, x1), (2, x1*b/x2), (3, x3)]
```

On the other hand, we can also apply \(T_2\) to the image of \(s\) under \(T_1\):

```sage
s12 = V.birational_toggle(2, s1); s12
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over Rational Field,
 {...},
 a,
b)
sage: sorted(s12[1].items())
[(1, a*x2*x3/(x1*x2 + x1*x3)), (2, a*x3*b/(x1*x2 + x1*x3)), (3, x3)]
```

Each toggle is an involution:

```sage
all(V.birational_toggle(i, V.birational_toggle(i, s)) == s
: for i in V)
True
```

We can also start with a less generic labelling:
However, labellings have to be sufficiently generic, lest denominators vanish:

```
sage: t = (QQ, {1: 3, 2: 5, 3: -5}, 1, 15)
sage: t1 = V.birational_toggle(1, t)
Traceback (most recent call last):
 ... ZeroDivisionError: rational division by zero
```

We don't get into zero-division issues in the tropical semiring (unless the zero of the tropical semiring appears in the labelling):

```
sage: TT = TropicalSemiring(QQ)
sage: t = (TT, {1: TT(2), 2: TT(4), 3: TT(1)}, TT(6), TT(0))
sage: t1 = V.birational_toggle(1, t, 123)
(Tropical semiring over Rational Field, {...}, 6, 0)
sage: sorted(t1[1].items())
[(1, 8), (2, 4), (3, 1)]
sage: t12 = V.birational_toggle(2, t1, 123)
(Tropical semiring over Rational Field, {...}, 6, 0)
sage: sorted(t12[1].items())
[(1, 8), (2, 4), (3, 1)]
sage: t123 = V.birational_toggle(3, t12, 123)
(Tropical semiring over Rational Field, {...}, 6, 0)
sage: sorted(t123[1].items())
[(1, 8), (2, 4), (3, 7)]
```

We turn to more interesting posets. Here is the 6-element poset arising from the weak order on $S_3$:

```
sage: P = posets.SymmetricGroupWeakOrderPoset(3)
sage: sorted(list(P))
['123', '132', '213', '231', '312', '321']
sage: t = (TT, {1: TT(4), 2: TT(2), 3: TT(1)}, TT(6), TT(0))
sage: t1 = P.birational_toggle('123', t, 123)
(Tropical semiring over Rational Field, {...}, 7, 1)
sage: sorted(t1[1].items())
[('123', 6), ('132', 2), ('213', 3), ('231', 1), ('312', 2), ('321', 1)]
sage: t13 = P.birational_toggle('213', t1)
(Tropical semiring over Rational Field, {...}, 7, 1)
sage: sorted(t13[1].items())
[('123', 6), ('132', 2), ('213', 4), ('231', 1), ('312', 2), ('321', 1)]
```

Let us verify on this example some basic properties of toggles. First of all, again let us check that $T_v$ is an involution for every $v$:
Furthermore, two toggles $T_v$ and $T_w$ commute unless one of $v$ or $w$ covers the other:

```python
sage: all(P.birational_toggle(v, P.birational_toggle(w, t)) == P.birational_toggle(w, P.birational_toggle(v, t)) for v in P for w in P)
True
```

**birational_toggles**(vs, labelling)

Return the result of applying a sequence of birational toggles (specified by vs) to the $K$-labelling of the poset self.

See the documentation of **birational_free_labelling()** for a definition of birational toggles and $K$-labellings and for an explanation of how $K$-labellings are to be encoded to be understood by Sage. This implementation allows $K$ to be a semifield, not just a field. The birational $v$-toggle is only a rational map, so an exception (most likely, **ZeroDivisionError**) will be thrown if the denominator is zero.

**INPUT:**

- vs – an iterable comprising elements of self (which must have self as parent if self is a facade=False poset)
- labelling – a $K$-labelling of self in the sense as defined in the documentation of **birational_free_labelling()**

**OUTPUT:**

The $K$-labelling $T_{v_n}T_{v_{n-1}} \cdots T_{v_1}f$ of self, where $f$ is labelling and $(v_1, v_2, \ldots, v_n)$ is vs (written as list).

**EXAMPLES:**

```python
sage: P = posets.SymmetricGroupBruhatOrderPoset(3)
sage: sorted(list(P))
['123', '132', '213', '231', '312', '321']
sage: TT = TropicalSemiring(ZZ)
sage: t = (TT, {'123': TT(4), '132': TT(2), '213': TT(3), '231': TT(1), '312': TT(1), '321': TT(1)}, TT(7), TT(1))
sage: tA = P.birational_toggles(['123', '231', '312'], t); tA
(Tropical semiring over Integer Ring, {...}, 7, 1)
sage: sorted(tA[1].items())
[('123', 6), ('132', 2), ('213', 3), ('231', 2), ('312', 1), ('321', 1)]
sage: tAB = P.birational_toggles(['132', '213', '321'], tA); tAB
(Tropical semiring over Integer Ring, {...}, 7, 1)
sage: sorted(tAB[1].items())
[('123', 6), ('132', 6), ('213', 5), ('231', 2), ('312', 1), ('321', 1)]
```

```python
sage: P = Poset({1: [2, 3], 2: [4], 3: [4]})
sage: Qx = PolynomialRing(QQ, 'x').fraction_field()
sage: x = Qx.gen()
sage: t = (Qx, {1: 1, 2: x, 3: (x+1)/x, 4: x^2}, 1, 1)
sage: t1 = P.birational_toggles(i for i in range(1, 5), t); t1
(Fraction Field of Univariate Polynomial Ring in x over Rational Field,
(continues on next page)
"
Facade set to False works:

```sage
P = Poset({'x': ['y', 'w'], 'y': ['z'], 'w': ['z']}, facade=False)
lex = ['x', 'y', 'w', 'z']
t = P.birational_free_labelling(linear_extension=lex)
sorted(P.birational_toggles([P('x'), P('y')], t)[1].items())
[(x, a*x2*x3/(x1*x2 + x1*x3)), (y, a*x3*x4/(x1*x2 + x1*x3)), (w, x3), (z, x4)]
```

directed_subsets(direction)

Return the order filters (resp. order ideals) of self, as lists.

If direction is 'up', returns the order filters (upper sets).

If direction is 'down', returns the order ideals (lower sets).

INPUT:

• direction – 'up' or 'down'

EXAMPLES:

```sage
A = P.directed_subsets('up')
sorted(list(A))
[[], [1, 2, 4, 3, 6, 12], [2, 4, 3, 6, 12], [2, 4, 6, 12], [3, 6, 12], [4, 3, 6, 12], [4, 6, 12], [4, 12], [6, 12], [12]]
```

is_lattice()

Return whether the poset is a lattice.

A poset is a lattice if all pairs of elements have both a least upper bound (“join”) and a greatest lower bound (“meet”) in the poset.

EXAMPLES:

```sage
P = Poset({0: [2, 3], 1: [2, 3]})
sage: P.is_lattice()
True
```

(continues on next page)
False

\begin{Verbatim}
\textbf{sage: } P = Poset({1: [2, 3, 4], 2: [5, 6], 3: [5, 7], 4: [6, 7], 5: [8, 9],
\ldots: 6: [8, 10], 7: [9, 10], 8: [11], 9: [11], 10: [11]})
\textbf{sage: } P.is_lattice()
\end{Verbatim}

False

\textbf{See also:}

\begin{itemize}
 \item Weaker properties: \texttt{is_join_semilattice()}, \texttt{is_meet_semilattice()}
\end{itemize}

\texttt{is_poset_isomorphism}(f, codomain)

Return whether \(f \) is an isomorphism of posets from \texttt{self} to \texttt{codomain}.

\textbf{INPUT:}

\begin{itemize}
 \item \(f \) – a function from \texttt{self} to \texttt{codomain}
 \item \texttt{codomain} – a poset
\end{itemize}

\textbf{EXAMPLES:}

We build the poset \(D \) of divisors of 30, and check that it is isomorphic to the boolean lattice \(B \) of the subsets of \(\{2, 3, 5\} \) ordered by inclusion, via the reverse function \(f : B \to D, b \mapsto \prod_{x \in b} x :\)

\begin{Verbatim}
\texttt{sage: } D = Poset((divisors(30), attrcall("divides")))
\texttt{sage: } B = Poset(([frozenset(s) for s in Subsets([2,3,5])], attrcall("issubset")))
\texttt{sage: } def f(b): return D(prod(b))
\texttt{sage: } B.is_poset_isomorphism(f, D)
\end{Verbatim}

\texttt{True}

On the other hand, \(f \) is not an isomorphism to the chain of divisors of 30, ordered by usual comparison:

\begin{Verbatim}
\texttt{sage: } P = Poset((divisors(30), operator.le))
\texttt{sage: } def f(b): return P(prod(b))
\texttt{sage: } B.is_poset_isomorphism(f, P)
\end{Verbatim}

\texttt{False}

A non surjective case:

\begin{Verbatim}
\texttt{sage: } B = Poset(([frozenset(s) for s in Subsets([2,3])], attrcall("issubset ")))
\texttt{sage: } def f(b): return D(prod(b))
\texttt{sage: } B.is_poset_isomorphism(f, D)
\end{Verbatim}

\texttt{False}

A non injective case:

\begin{Verbatim}
\texttt{sage: } B = Poset(([frozenset(s) for s in Subsets([2,3,5,6])], attrcall("issubset ")))
\texttt{sage: } def f(b): return D(gcd(prod(b), 30))
\texttt{sage: } B.is_poset_isomorphism(f, D)
\end{Verbatim}

\texttt{False}

\textbf{Note:} since \(D \) and \(B \) are not facade posets, \(f \) is responsible for the conversions between integers and subsets to elements of \(D \) and \(B \) and back.
is_poset_morphism(f, codomain)

Return whether f is a morphism of posets from self to codomain, that is

$$x \leq y \implies f(x) \leq f(y)$$

for all x and y in self.

INPUT:

• f – a function from self to codomain
• codomain – a poset

EXAMPLES:

We build the boolean lattice of the subsets of $\{2, 3, 5, 6\}$ and the lattice of divisors of 30, and check that the map $b \mapsto \gcd(\prod_{x \in b} x, 30)$ is a morphism of posets:

```
sage: D = Poset((divisors(30), attrcall("divides")))
sage: B = Poset(([frozenset(s) for s in Subsets([2,3,5,6])], attrcall("issubset")))
sage: def f(b):
    return D(gcd(prod(b), 30))
sage: B.is_poset_morphism(f, D)
True
```

Note: since D and B are not facade posets, f is responsible for the conversions between integers and subsets to elements of D and B and back.

f is also a morphism of posets to the chain of divisors of 30, ordered by usual comparison:

```
sage: P = Poset((divisors(30), operator.le))
sage: def f(b):
    return P(gcd(prod(b), 30))
sage: B.is_poset_morphism(f, P)
True
```

FIXME: should this be is_order_preserving_morphism?

See also:

is_poset_isomorphism()

is_self_dual()

Return whether the poset is self-dual.

A poset is self-dual if it is isomorphic to its dual poset.

EXAMPLES:

```
sage: P = Poset({1: [3, 4], 2: [3, 4]})
sage: P.is_self_dual()
True
```

```
sage: P = Poset({1: [2, 3]})
sage: P.is_self_dual()
False
```

See also:
• Stronger properties: `is_orthocomplemented()` (for lattices)
• Other: `dual()`

`order_filter_generators(filter)`
Generators for an order filter

INPUT:
• `filter` – an order filter of `self`, as a list (or iterable)

EXAMPLES:

```python
sage: P = Poset((Subsets([1,2,3]), attrcall("issubset")))
sage: I = P.order_filter([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted(sorted(p) for p in I)
[[1], [1, 2], [1, 2, 3], [1, 3], [2, 3]]
sage: gen = P.order_filter_generators(I)
sage: sorted(sorted(p) for p in gen)
[[1], [2, 3]]
```

See also:
`order_ideal_generators()`

`order_ideal_complement_generators(antichain, direction='up')`
Return the Panyushev complement of the antichain antichain.

Given an antichain A of a poset P, the Panyushev complement of A is defined to be the antichain consisting of the minimal elements of the order filter B, where B is the (set-theoretic) complement of the order ideal of P generated by A.

Setting the optional keyword variable `direction` to 'down' leads to the inverse Panyushev complement being computed instead of the Panyushev complement. The inverse Panyushev complement of an antichain A is the antichain whose Panyushev complement is A. It can be found as the antichain consisting of the maximal elements of the order ideal C, where C is the (set-theoretic) complement of the order filter of P generated by A.

`panyushev_complement()` is an alias for this method.

Panyushev complementation is related (actually, isomorphic) to rowmotion (`rowmotion()`).

INPUT:
• `antichain` – an antichain of `self`, as a list (or iterable), or, more generally, generators of an order ideal (resp. order filter)
• `direction` – 'up' or 'down' (default: 'up')

OUTPUT:
• the generating antichain of the complement order filter (resp. order ideal) of the order ideal (resp. order filter) generated by the antichain antichain

EXAMPLES:

```python
sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: P.order_ideal_complement_generators([1])
{2}
sage: P.order_ideal_complement_generators([3])
set()
sage: P.order_ideal_complement_generators([1,2])
{3}
sage: P.order_ideal_complement_generators([1,2,3])
set()
```
Warning: This is a brute force implementation, building the order ideal generated by the antichain, and searching for order filter generators of its complement.

order_ideal_generators(ideal, direction='down')

Return the antichain of (minimal) generators of the order ideal (resp. order filter) ideal.

INPUT:

- ideal – an order ideal I (resp. order filter) of self, as a list (or iterable); this should be an order ideal if direction is set to 'down', and an order filter if direction is set to 'up'.
- direction – 'up' or 'down' (default: 'down').

The antichain of (minimal) generators of an order ideal I in a poset P is the set of all minimal elements of P. In the case of an order filter, the definition is similar, but with “maximal” used instead of “minimal”.

EXAMPLES:

We build the boolean lattice of all subsets of {1, 2, 3} ordered by inclusion, and compute an order ideal there:

```
sage: P = Poset((Subsets([1,2,3]), attrcall("issubset")))
sage: I = P.order_ideal([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted([sorted(p) for p in I])
[[], [1], [1, 2], [2], [2, 3], [3]]
```

Then, we retrieve the generators of this ideal:

```
sage: gen = P.order_ideal_generators(I)
sage: sorted([sorted(p) for p in gen])
[[1, 2], [2, 3]]
```

If direction is ‘up’, then this instead computes the minimal generators for an order filter:

```
sage: I = P.order_filter([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted([sorted(p) for p in I])
[[1], [1, 2], [1, 2, 3], [1, 3], [2, 3]]
sage: gen = P.order_ideal_generators(I, direction='up')
sage: sorted([sorted(p) for p in gen])
[[1], [2, 3]]
```

Complexity: $O(n + m)$ where n is the cardinality of I, and m the number of upper covers of elements of I.

order_ideals_lattice(as_ideals=True, facade=None)

Return the lattice of order ideals of a poset self, ordered by inclusion.
The lattice of order ideals of a poset P is usually denoted by $J(P)$. Its underlying set is the set of order ideals of P, and its partial order is given by inclusion.

The order ideals of P are in a canonical bijection with the antichains of P. The bijection maps every order ideal to the antichain formed by its maximal elements. By setting the `as_ideals` keyword variable to `False`, one can make this method apply this bijection before returning the lattice.

INPUT:
- `as_ideals` – Boolean, if `True` (default) returns a poset on the set of order ideals, otherwise on the set of antichains
- `facade` – Boolean or `None` (default). Whether to return a facade lattice or not. By default return facade lattice if the poset is a facade poset.

EXAMPLES:

```python
sage: P = posets.PentagonPoset()
sage: P.cover_relations()
[[0, 1], [0, 2], [1, 4], [2, 3], [3, 4]]
sage: J = P.order_ideals_lattice(); J
Finite lattice containing 8 elements
sage: sorted(sorted(e) for e in J)
[[], [0], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4], [0, 2], [0, 2, 3]]
```

As a lattice on antichains:

```python
sage: J2 = P.order_ideals_lattice(False); J2
Finite lattice containing 8 elements
sage: sorted(J2)
[(0, ), (1, ), (1, 2), (1, 3), (2, ), (3, ), (4, )]
```

panyushev_complement *(antichain, direction='up')*

Return the Panyushev complement of the antichain `antichain`.

Given an antichain A of a poset P, the Panyushev complement of A is defined to be the antichain consisting of the minimal elements of the order filter B, where B is the (set-theoretic) complement of the order ideal of P generated by A.

Setting the optional keyword variable `direction` to 'down' leads to the inverse Panyushev complement being computed instead of the Panyushev complement. The inverse Panyushev complement of an antichain A is the antichain whose Panyushev complement is A. It can be found as the antichain consisting of the maximal elements of the order ideal C, where C is the (set-theoretic) complement of the order filter of P generated by A.

`panyushev_complement()` is an alias for this method.

Panyushev complementation is related (actually, isomorphic) to rowmotion (`rowmotion()`).

INPUT:
- `antichain` – an antichain of `self`, as a list (or iterable), or, more generally, generators of an order ideal (resp. order filter)
- `direction` – ‘up’ or ‘down’ (default: ‘up’)

OUTPUT:
- the generating antichain of the complement order filter (resp. order ideal) of the order ideal (resp. order filter) generated by the antichain antichain

EXAMPLES:

```python
```
```python
sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: P.order_ideal_complement_generators([1])
{2}
sage: P.order_ideal_complement_generators([3])
set()
sage: P.order_ideal_complement_generators([1,2])
{3}
sage: P.order_ideal_complement_generators([1,2,3])
set()
sage: P.order_ideal_complement_generators([1], direction="down")
{2}
sage: P.order_ideal_complement_generators([3], direction="down")
{1, 2}
sage: P.order_ideal_complement_generators([1,2], direction="down")
set()
sage: P.order_ideal_complement_generators([1,2,3], direction="down")
set()
```

Warning: This is a brute force implementation, building the order ideal generated by the antichain, and searching for order filter generators of its complement.

panyushev_orbit_iter

`panyushev_orbit_iter(antichain, element_constructor=<class 'set'>, stop=True, check=True)`

Iterate over the Panyushev orbit of an antichain antichain of self.

The Panyushev orbit of an antichain is its orbit under Panyushev complementation (see `panyushev_complement()`).

INPUT:

- `antichain` – an antichain of self, given as an iterable.
- `element_constructor` (defaults to `set`) – a type constructor (`set, tuple, list, frozenset, iter`, etc.) which is to be applied to the antichains before they are yielded.
- `stop` – a Boolean (default: `True`) determining whether the iterator should stop once it completes its cycle (this happens when it is set to `True`) or go on forever (this happens when it is set to `False`).
- `check` – a Boolean (default: `True`) determining whether antichain should be checked for being an antichain.

OUTPUT:

- an iterator over the orbit of the antichain antichain under Panyushev complementation. This iterator I has the property that I[0] == antichain and each i satisfies self.order_ideal_complement_generators(I[i]) == I[i+1], where I[i+1] has to be understood as I[0] if it is undefined. The entries I[i] are sets by default, but depending on the optional keyword variable `element_constructors` they can also be tuples, lists etc.

EXAMPLES:

```python
sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: list(P.panyushev_orbit_iter(set([1, 2])))
[[1, 2], {3}, set()]
sage: list(P.panyushev_orbit_iter([1, 2]))
[[1, 2], {3}, set()]
sage: list(P.panyushev_orbit_iter([2, 1]))
[[1, 2], {3}, set()]
```

(continues on next page)
panyushev_orbits(element_constructor=<class 'set'>)

Return the Panyushev orbits of antichains in self.

The Panyushev orbit of an antichain is its orbit under Panyushev complementation (see panyushev_complement()).

INPUT:
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset, iter, etc.) which is to be applied to the antichains before they are returned.

OUTPUT:
• the partition of the set of all antichains of self into orbits under Panyushev complementation. This is returned as a list of lists L such that for each L and i, cyclically: self.order_ideal_complement_generators(L[i]) == L[i+1]. The entries L[i] are sets by default, but depending on the optional keyword variable element_constructors they can also be tuples, lists etc.

EXAMPLES:

```python
sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] )
sage: orb = P.panyushev_orbits()
sage: sorted(sorted(o) for o in orb)
[[set(), {1, 2}, {3}], [{2}, {1}]]
sage: orb = P.panyushev_orbits(element_constructor=list)
sage: sorted(sorted(o) for o in orb)
[[[], {1, 2}, {3}], [[1], [2]]]
sage: orb = P.panyushev_orbits(element_constructor=frozenset)
sage: sorted(sorted(o) for o in orb)
[[frozenset(), frozenset({1, 2}), frozenset({3})],
 [frozenset({2}), frozenset({1})]]
sage: orb = P.panyushev_orbits(element_constructor=tuple)
sage: sorted(sorted(o) for o in orb)
```
rowmotion(order_ideal)

The image of the order ideal order_ideal under rowmotion in self.

Rowmotion on a finite poset P is an automorphism of the set $J(P)$ of all order ideals of P. One way to define it is as follows: Given an order ideal $I \in J(P)$, we let F be the set-theoretic complement of I in P. Furthermore we let A be the antichain consisting of all minimal elements of F. Then, the rowmotion of I is defined to be the order ideal of P generated by the antichain A (that is, the order ideal consisting of each element of P which has some element of A above it).

Rowmotion is related (actually, isomorphic) to Panyushev complementation (panyushev_complement()).

INPUT:
- order_ideal – an order ideal of self, as a set

OUTPUT:
- the image of order_ideal under rowmotion, as a set again

EXAMPLES:

```python
sage: P = Poset( {1: [2, 3], 2: [], 3: [], 4: [8], 5: [], 6: [5], 7: [1, 4], 8: []} )
sage: I = Set({2, 6, 1, 7})
sage: P.rowmotion(I)
{1, 3, 4, 5, 6, 7}
sage: P = Poset( {} )
sage: I = Set({})
sage: P.rowmotion(I)
{ }
```

rowmotion_orbit_iter(oideal, element_constructor=<class 'set'>, stop=True, check=True)

Iterate over the rowmotion orbit of an order ideal oideal of self.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see rowmotion()).

INPUT:
- oideal – an order ideal of self, given as an iterable.
- element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset, iter, etc.) which is to be applied to the order ideals before they are yielded.
- stop – a Boolean (default: True) determining whether the iterator should stop once it completes its cycle (this happens when it is set to True) or go on forever (this happens when it is set to False).
- check – a Boolean (default: True) determining whether oideal should be checked for being an order ideal.

OUTPUT:
- an iterator over the orbit of the order ideal oideal under rowmotion. This iterator I has the property that $I[0] == oideal$ and that every i satisfies $self.rowmotion(I[i]) == I[i+1]$, where $I[i+1]$ has to be understood as $I[0]$ if it is undefined. The entries $I[i]$ are sets by default, but depending on the optional keyword variable element_constructors they can also be tuples, lists etc.

EXAMPLES:
sage: P = Poset(([1,2,3], [[1,3], [2,3]]))
sage: list(P.rowmotion_orbit_iter(set([1, 2])))
[1, 2], {1, 2, 3}, set()
sage: list(P.rowmotion_orbit_iter([1, 2]))
[1, 2], {1, 2, 3}, set()
sage: list(P.rowmotion_orbit_iter([2, 1]))
[1, 2), {1, 2, 3}, set()]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_constructor=list))
[[1, 2], [1, 2, 3], []]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_constructor=frozenset))
[frozenset({1, 2}), frozenset({1, 2, 3}), frozenset()]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_constructor=tuple))
[(1, 2), (1, 2, 3), ()]
sage: P = Poset({})
sage: list(P.rowmotion_orbit_iter([]))
[set()]
sage: P = Poset({ 1: [2, 3], 2: [4], 3: [4], 4: [] })
sage: Piter = P.rowmotion_orbit_iter([1, 2, 3], stop=False)
sage: next(Piter)
{1, 2, 3}
sage: next(Piter)
{1, 2, 3, 4}
sage: next(Piter)
set()
sage: next(Piter)
{1}
sage: next(Piter)
{1, 2, 3}
sage: P = Poset({ 1: [4], 2: [4, 5], 3: [5] })
sage: list(P.rowmotion_orbit_iter([1, 2], element_constructor=list))
[[1, 2], [1, 2, 3, 4], [2, 3, 5], [1], [2, 3, 5], [1, 2, 3, 5], [1, 2, 4], [3]]

rowmotion_orbits(element_constructor=<class 'set'>)
Return the rowmotion orbits of order ideals in self.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see rowmotion()).

INPUT:

• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset, iter, etc.) which is to be applied to the antichains before they are returned.

OUTPUT:

• the partition of the set of all order ideals of self into orbits under rowmotion. This is returned as a list of lists L such that for each L and i, cyclically: self.rowmotion(L[i]) == L[i+1]. The entries L[i] are sets by default, but depending on the optional keyword variable element_constructors they can also be tuples, lists etc.

EXAMPLES:

sage: P = Poset({1: [2, 3], 2: [], 3: [], 4: [2]})
sage: sorted(len(o) for o in P.rowmotion_orbits())
[3, 5]

(continues on next page)
sage: orb = P.rowmotion_orbits(element_constructor=list)
sage: sorted(sorted(e) for e in orb)
[[[], [4, 1], [4, 1, 2, 3]], [[1], [1, 3], [4], [4, 1, 2], [4, 1, 3]]]
sage: orb = P.rowmotion_orbits(element_constructor=tuple)
sage: sorted(sorted(e) for e in orb)
[[(), (4, 1), (4, 1, 2, 3)], [(1,), (1, 3), (4,), (4, 1, 2), (4, 1, 3)]]
sage: P = Poset({})
sage: P.rowmotion_orbits(element_constructor=tuple)
[[()]]

\texttt{rowmotion_orbits_plots()}

Return plots of the rowmotion orbits of order ideals in \texttt{self}.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see \texttt{rowmotion()}).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: P = Poset({1: [2, 3], 2: [], 3: [], 4: [2]})
sage: P.rowmotion_orbits_plots()
Graphics Array of size 2 x 5
sage: P = Poset({})
sage: P.rowmotion_orbits_plots()
Graphics Array of size 1 x 1
\end{verbatim}

\texttt{toggling_orbit_iter}(\texttt{vs}, \texttt{oideal}, \texttt{element_constructor=\texttt{<class 'set'>}}, \texttt{stop=True}, \texttt{check=True})

Iterate over the orbit of an order ideal \texttt{oideal} of \texttt{self} under the operation of toggling the vertices \texttt{vs[0]}, \texttt{vs[1]}, ... in this order.

See \texttt{order_ideal_toggle()} for a definition of toggling.

\textbf{Warning:} The orbit is that under the composition of toggles, \textit{not} under the single toggles themselves. Thus, for example, if \texttt{vs} == [1,2], then the orbit has the form (I, T_2 T_1 I, T_2 T_1 T_2 T_1 I, ...) (where \texttt{I} denotes \texttt{oideal} and \texttt{T_i} means toggling at \texttt{i}) rather than (I, T_1 I, T_2 T_1 I, T_1 T_2 T_1 I, ...).

\textbf{INPUT:}
\begin{itemize}
 \item \texttt{vs}: a list (or other iterable) of elements of \texttt{self} (but since the output depends on the order, sets should not be used as \texttt{vs}).
 \item \texttt{oideal} – an order ideal of \texttt{self}, given as an iterable.
 \item \texttt{element_constructor} (defaults to \texttt{set}) – a type constructor (\texttt{set}, \texttt{tuple}, \texttt{list}, \texttt{frozenset}, \texttt{iter}, etc.) which is to be applied to the order ideals before they are yielded.
 \item \texttt{stop} – a Boolean (default: \texttt{True}) determining whether the iterator should stop once it completes its cycle (this happens when it is set to \texttt{True}) or go on forever (this happens when it is set to \texttt{False}).
 \item \texttt{check} – a Boolean (default: \texttt{True}) determining whether \texttt{oideal} should be checked for being an order ideal.
\end{itemize}

\textbf{OUTPUT:}
\begin{itemize}
 \item an iterator over the orbit of the order ideal \texttt{oideal} under toggling the vertices in the list \texttt{vs} in this order. This iterator \texttt{I} has the property that \texttt{I[0]} == \texttt{oideal} and that every \texttt{i} satisfies \texttt{self.order_ideal_toggles(I[i], vs)} == \texttt{I[i+1]}, where \texttt{I[i+1]} has to be understood as \texttt{I[0]} if it is undefined. The entries \texttt{I[i]} are sets by default, but depending on the optional keyword variable \texttt{element_constructors} they can also be tuples, lists etc.
\end{itemize}

\textbf{EXAMPLES:}
toggling_orbits(vs, element_constructor=<class 'set'>)

Return the orbits of order ideals in self under the operation of toggling the vertices vs[0], vs[1], ... in this order.

See order_ideal_toggle() for a definition of toggling.

Warning: The orbits are those under the composition of toggles, not under the single toggles themselves. Thus, for example, if vs == [1,2], then the orbits have the form (I, T_1 T_2 I, T_2 T_1 T_2 I, ...) (where I denotes an order ideal and T_i means toggling at i) rather than (I, T_1 I, T_2 T_1 I, T_1 T_2 T_1 I, ...).
• a partition of the order ideals of self, as a list of sets L such that for each L and i, cyclically:

$$\text{self.order_ideal_toggles}(L[i], \text{vs}) = L[i+1].$$

EXAMPLES:

```
sage: P = Poset({1: [2, 4], 2: [], 3: [4], 4: []})
sage: sorted(len(o) for o in P.toggling_orbits([1, 2]))
[2, 3, 3]
sage: P = Poset({1: [3], 2: [1, 4], 3: [], 4: [3]})
sage: sorted(len(o) for o in P.toggling_orbits((1, 2, 4, 3)))
[3, 3]
```

`toggling_orbits_plots(vs)`

Return plots of the orbits of order ideals in `self` under the operation of toggling the vertices `vs[0]`, `vs[1]`, ... in this order.

See `toggling_orbits()` for more information.

EXAMPLES:

```
sage: P = Poset({1: [2, 3], 2: [], 3: [], 4: [2]})
sage: P.toggling_orbits_plots([1,2,3,4])
Graphics Array of size 2 x 5
sage: P = Poset({})
sage: P.toggling_orbits_plots([])
Graphics Array of size 1 x 1
```

4.63 Finite semigroups

class `sage.categories.finite_semigroups.FiniteSemigroups(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of finite (multiplicative) semigroups.

A finite semigroup is a *finite set* endowed with an associative binary operation \ast.

Warning: Finite semigroups in Sage used to be automatically endowed with an *enumerated set* structure; the default enumeration is then obtained by iteratively multiplying the semigroup generators. This forced any finite semigroup to either implement an enumeration, or provide semigroup generators; this was often inconvenient.

Instead, finite semigroups that provide a distinguished finite set of generators with `semigroup_generators()` should now explicitly declare themselves in the category of finitely generated semigroups:

```
sage: Semigroups().FinitelyGenerated()
Category of finitely generated semigroups
```

This is a backward incompatible change.

EXAMPLES:

```
sage: C = FiniteSemigroups(); C
Category of finite semigroups
```

(continues on next page)
sage: C.super_categories()
[Category of semigroups, Category of finite sets]
sage: sorted(C.axioms())
['Associative', 'Finite']
sage: C.example()
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')

class ParentMethods
 Bases: object

 idempotents()
 Returns the idempotents of the semigroup

 EXAMPLES:
 sage: S = FiniteSemigroups().example(alphabet=('x', 'y'))
sage: sorted(S.idempotents())
['x', 'xy', 'y', 'yx']

 j_classes()
 Returns the J-classes of the semigroup.

 Two elements u and v of a monoid are in the same J-class if u divides v and v divides u.

 OUTPUT:
 All the JS-classes of self, as a list of lists.

 EXAMPLES:
 sage: S = FiniteSemigroups().example(alphabet=('a', 'b', 'c'))
sage: sorted(map(sorted, S.j_classes()))
[['a'], ['ab', 'ba'], ['abc', 'acb', 'bac', 'bca', 'cab', 'cba'], ['ac', 'ca →'], ['b'], ['bc', 'cb'], ['c']]

 j_classes_of_idempotents()
 Returns all the idempotents of self, grouped by J-class.

 OUTPUT:
 a list of lists.

 EXAMPLES:
 sage: S = FiniteSemigroups().example(alphabet=('a', 'b', 'c'))
sage: sorted(map(sorted, S.j_classes_of_idempotents()))
[['a'], ['ab', 'ba'], ['abc', 'acb', 'bac', 'bca', 'cab', 'cba'], ['ac', 'ca →'], ['b'], ['bc', 'cb'], ['c']]

 j_transversal_of_idempotents()
 Returns a list of one idempotent per regular J-class

 EXAMPLES:
 sage: S = FiniteSemigroups().example(alphabet=('a', 'b', 'c'))

 The chosen elements depend on the order of each J-class, and that order is random when using Python 3.
4.64 Finite sets

class sage.categories.finite_sets.FiniteSets(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite sets.

EXAMPLES:

```
sage: C = FiniteSets(); C
Category of finite sets
sage: C.super_categories()
[Category of sets]
sage: C.all_super_categories()
[Category of finite sets, Category of sets, Category of sets with partial maps, Category of objects]
sage: C.example()
NotImplemented
```

class Algebras(category, *args)
 Bases: sage.categories.algebra_functor.AlgebrasCategory

extra_super_categories()

EXAMPLES:

```
sage: FiniteSets().Algebras(QQ).extra_super_categories()
[Category of finite dimensional vector spaces with basis over Rational Field]
```

This implements the fact that the algebra of a finite set is finite dimensional:

```
sage: FiniteMonoids().Algebras(QQ).is_subcategory(AlgebrasWithBasis(QQ).FiniteDimensional())
True
```

class ParentMethods
 Bases: object

is_finite()
 Return True since self is finite.

EXAMPLES:

```
sage: C = FiniteEnumeratedSets().example()
sage: C.is_finite()
True
```

class Subquotients(category, *args)
 Bases: sage.categories.subquotients.SubquotientsCategory

4.64. Finite sets
extra_super_categories()

EXAMPLES:

```
sage: FiniteSets().Subquotients().extra_super_categories()
[Category of finite sets]
```

This implements the fact that a subquotient (and therefore a quotient or subobject) of a finite set is finite:

```
sage: FiniteSets().Subquotients().is_subcategory(FiniteSets())
True
sage: FiniteSets().Quotients().is_subcategory(FiniteSets())
True
sage: FiniteSets().Subobjects().is_subcategory(FiniteSets())
True
```

4.65 Finite Weyl Groups

class sage.categories.finite_weyl_groups.FiniteWeylGroups(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite Weyl groups.

EXAMPLES:

```
sage: C = FiniteWeylGroups()
sage: C
Category of finite weyl groups
sage: C.super_categories()
[Category of finite coxeter groups, Category of weyl groups]
sage: C.example()
The symmetric group on {0, ..., 3}
```

class ElementMethods

Bases: object

class ParentMethods

Bases: object

4.66 Finitely Generated Lambda bracket Algebras

AUTHORS:

- Reimundo Heluani (2020-08-21): Initial implementation.

class sage.categories.finitely_generated_lambda_bracket_algebras.FinitelyGeneratedLambdaBracketAlgebras(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finitely generated lambda bracket algebras.

EXAMPLES:
sage: from sage.categories.lambda_bracket_algebras import LambdaBracketAlgebras
sage: LambdaBracketAlgebras(QQbar).FinitelyGenerated()
Category of finitely generated lambda bracket algebras over Algebraic Field

class Graded(base_category)
 Bases: sage.categories.graded_modules.GradedModulesCategory

 The category of \(H\)-graded finitely generated Lie conformal algebras.

 EXAMPLES:

 sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Graded()
 Category of \(H\)-graded finitely generated lie conformal algebras over Algebraic Field

class ParentMethods
 Bases: object

 gen(i)
 The \(i\)-th generator of this Lie conformal algebra.

 EXAMPLES:

 sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
sage: V.gens()
(B[\alpha[1]], B[\alphacheck[1]], B[-\alpha[1]], B'[K'])
sage: V.gen(0)
B[\alpha[1]]
sage: V.1
B[\alphacheck[1]]

 ngens()
 The number of generators of this Lie conformal algebra.

 EXAMPLES:

 sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.ngens()
2
 sage: V = lie_conformal_algebras.Affine(QQ, 'A2')
sage: V.ngens()
9

 some_elements()
 Some elements of this Lie conformal algebra.

 This method returns a list with elements containing at least the generators.

 EXAMPLES:

 sage: V = lie_conformal_algebras.Affine(QQ, 'A1', names=('e', 'h', 'f'))
sage: V.some_elements()
[e, h, f, K, ...]
sage: all(v.parent() is V for v in V.some_elements())
True
4.67 Finitely Generated Lie Conformal Algebras

AUTHORS:

class sage.categories.finitely_generated_lie_conformal_algebras.FinitelyGeneratedLieConformalAlgebras (base_category):

 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

 The category of finitely generated Lie conformal algebras.

 EXAMPLES:

 sage: LieConformalAlgebras(QQbar).FinitelyGenerated()
 Category of finitely generated lie conformal algebras over Algebraic Field

class Graded (base_category):

 Bases: sage.categories.graded_modules.GradedModulesCategory

 The category of H-graded finitely generated Lie conformal algebras.

 EXAMPLES:

 sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Graded()
 Category of H-graded finitely generated lie conformal algebras over Algebraic Field

class ParentMethods

 Bases: object

 some_elements ()

 Some elements of this Lie conformal algebra.

 Returns a list with elements containing at least the generators.

 EXAMPLES:

 sage: V = lie_conformal_algebras.Affine(QQ, 'A1', names=('e', 'h', 'f'))
 sage: V.some_elements()
 [e, h, f, K, ...]
 sage: all(v.parent() is V for v in V.some_elements())
 True

class Super (base_category):

 Bases: sage.categories.super_modules.SuperModulesCategory

 The category of super finitely generated Lie conformal algebras.

 EXAMPLES:

 sage: LieConformalAlgebras(AA).FinitelyGenerated().Super()
 Category of super finitely generated lie conformal algebras over Algebraic Real Field

 class Graded (base_category):

 Bases: sage.categories.graded_modules.GradedModulesCategory

 The category of H-graded super finitely generated Lie conformal algebras.

 EXAMPLES:
4.68 Finitely generated magmas

```python
sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Super().Graded()
Category of H-graded super finitely generated lie conformal algebras over Algebraic Field
```

class `sage.categories.finitely_generated_magmas.FinitelyGeneratedMagmas`(`base_category`)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of finitely generated (multiplicative) magmas.

See `Magmas.SubcategoryMethods.FinitelyGeneratedAsMagma()` for details.

EXAMPLES:

```python
sage: C = Magmas().FinitelyGeneratedAsMagma(); C
Category of finitely generated magmas
sage: C.super_categories()
[Category of magmas]
```

```python
def magma_generators(self):
    return distinguished magma generators for self.

    OUTPUT: a finite family
    
    This method should be implemented by all finitely generated magmas.

    EXAMPLES:
    ```
 sage: S = FiniteSemigroups().example()
 sage: S.magma_generators()
 Family ('a', 'b', 'c', 'd')
```

4.69 Finitely generated semigroups

```python
class `sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups`(`base_category`)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of finitely generated (multiplicative) semigroups.

A finitely generated semigroup is a semigroup endowed with a distinguished finite set of generators (see `FinitelyGeneratedSemigroups.ParentMethods.semigroup_generators()`). This makes it into an enumerated set.

EXAMPLES:

```python
sage: C = Semigroups().FinitelyGenerated(); C
Category of finitely generated semigroups
sage: C.super_categories()
```

(continues on next page)
[Category of semigroups,
Category of finitely generated magmas,
Category of enumerated sets]
sage: sorted(C.axioms())
['Associative', 'Enumerated', 'FinitelyGeneratedAsMagma']
sage: C.example()
An example of a semigroup: the free semigroup generated
by ('a', 'b', 'c', 'd')

class Finite(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class ParentMethods
 Bases: object

 some_elements()
 Return an iterable containing some elements of the semigroup.
 OUTPUT: the ten first elements of the semigroup, if they exist.

 EXAMPLES:

 sage: S = FiniteSemigroups().example(alphabet=('x','y'))
sage: sorted(S.some_elements())
['x', 'xy', 'y', 'yx']
sage: S = FiniteSemigroups().example(alphabet=('x','y','z'))
sage: X = S.some_elements()
sage: len(X)
10
sage: all(x in S for x in X)
True

class ParentMethods
 Bases: object

 ideal(gens, side='twosided')
 Return the side-sid ideal generated by gens.
 This brute force implementation recursively multiplies the elements of gens by the distinguished genera-
 tors of this semigroup.

 See also:

 semigroup_generators()

 INPUT:
 • gens – a list (or iterable) of elements of self
 • side – [default: “twosided”] “left”, “right” or “twosided”

 EXAMPLES:

 sage: S = FiniteSemigroups().example()
sage: sorted(S.ideal(['abc'], side='left'))
['abc', 'abc', 'abcd', 'acbd', 'acdb', 'acbc',
 'adcb', 'bac', 'b'acbd', 'b'acdb', 'b'acbc',
 'badbc', 'bc', 'bc'acdb', 'bc'acbd', 'bc'acbc',
 'b'cadbc', 'b'cadcb', 'b'cadbc', 'b'cadcb', 'b'cadbc',
 'bdac', 'b'c', 'c'ab', 'c'abad', 'c'abdc', 'c'bacd', 'c'badc',
 'c'd', 'c'db', 'c'db', 'c'db', 'c'db', 'c'db', 'c'db', 'c'db']

(continues on next page)
sage: list(S.ideal([S('cab')], side="right"))
['cab', 'cabd']
sage: sorted(S.ideal([S('cab')], side="twosided"))
['cab', 'cabd']
sage: sorted(S.ideal([S('cab')]))

semigroup_generators()
Return distinguished semigroup generators for self.

OUTPUT: a finite family

This method should be implemented by all semigroups in FinitelyGeneratedSemigroups.

EXAMPLES:

sage: S = FiniteSemigroups().example()
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')

succ_generators(side='twosided')
Return the successor function of the side-sided Cayley graph of self.

This is a function that maps an element of self to all the products of x by a generator of this semigroup, where the product is taken on the left, right, or both sides.

INPUT:
• side: “left”, “right”, or “twosided”

Todo: Design choice:
• find a better name for this method
• should we return a set? a family?

EXAMPLES:

sage: S = FiniteSemigroups().example()
sage: S.succ_generators("left") (S('ca'))
('ac', 'bca', 'ca', 'dca')
sage: S.succ_generators("right") (S('ca'))
('ca', 'cab', 'ca', 'cad')
sage: S.succ_generators("twosided") (S('ca'))
('ac', 'bca', 'ca', 'dca', 'ca', 'cab', 'ca', 'cad')

eexample()
EXAMPLES:
4.70 Function fields

```python
class sage.categories.function_fields.FunctionFields(s=None):
    Bases: sage.categories.category.Category

    The category of function fields.

    EXAMPLES:
    We create the category of function fields:

    sage: C = FunctionFields()
    sage: C
    Category of function fields

    class ElementMethods
        Bases: object

    class ParentMethods
        Bases: object

    super_categories()
        Returns the Category of which this is a direct sub-Category For a list off all super categories see all_super_categories

        EXAMPLES:
        sage: FunctionFields().super_categories()
        [Category of enumerated sets]
```

4.71 G-Sets

```python
class sage.categories.g_sets.GSets(G):
    Bases: sage.categories.category.Category

    The category of $G$-sets, for a group $G$.

    EXAMPLES:
    sage: S = SymmetricGroup(3)
    sage: GSets(S)
    Category of $G$-sets for Symmetric group of order 3! as a permutation group
```
TODO: should this derive from Category_over_base?

```
classmethod an_instance()
    Returns an instance of this class.
    EXAMPLES:

    sage: GSets.an_instance()  # indirect doctest
    Category of G-sets for Symmetric group of order 8! as a permutation group
```

```
super_categories()
    EXAMPLES:

    sage: GSets(SymmetricGroup(8)).super_categories()
    [Category of sets]
```

4.72 Gcd domains

```
class sage.categories.gcd_domains.GcdDomains(s=None)
    Bases: sage.categories.category_singleton.Category_singleton
    The category of gcd domains domains where gcd can be computed but where there is no guarantee of factorisation into irreducibles
    EXAMPLES:

    sage: GcdDomains()
    Category of gcd domains
    sage: GcdDomains().super_categories()
    [Category of integral domains]
```

```
class ElementMethods
    Bases: object

class ParentMethods
    Bases: object

additional_structure()
    Return None.
    Indeed, the category of gcd domains defines no additional structure: a ring morphism between two gcd domains is a gcd domain morphism.
    See also:
    Category.additional_structure()
    EXAMPLES:

    sage: GcdDomains().additional_structure()
```

```
super_categories()
    EXAMPLES:

    sage: GcdDomains().super_categories()
    [Category of integral domains]
```
4.73 Generalized Coxeter Groups

class `sage.categories.generalized_coxeter_groups.GenerallizedCoxeterGroups(s=None)`

Bases: `sage.categories.category_singleton.Category_singleton`

The category of generalized Coxeter groups.

A generalized Coxeter group is a group with a presentation of the following form:

\[\langle s_i \mid s_i^p_i, s_i s_j \cdots = s_j s_i \cdots \rangle, \]

where \(p_i > 1, i \in I \), and the factors in the braid relation occur \(m_{ij} = m_{ji} \) times for all \(i \neq j \in I \).

EXAMPLES:

```python
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: C = GeneralizedCoxeterGroups(); C
Category of generalized coxeter groups
```

class `Finite(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of finite generalized Coxeter groups.

extra_super_categories

Implement that a finite generalized Coxeter group is a well-generated complex reflection group.

EXAMPLES:

```python
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: Cat = GeneralizedCoxeterGroups().Finite()
sage: Cat.extra_super_categories()
[Category of well generated finite complex reflection groups]
sage: Cat.is_subcategory(ComplexReflectionGroups().Finite().WellGenerated())
True
```

additional_structure

Return None.

Indeed, all the structure generalized Coxeter groups have in addition to groups (simple reflections, ...) is already defined in the super category.

See also:

`Category.additional_structure()`

EXAMPLES:

```python
sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups
sage: GeneralizedCoxeterGroups().additional_structure()
```

super_categories

EXAMPLES:
4.74 Graded Algebras

class sage.categories.graded_algebras.GradedAlgebras(base_category):
 Bases: sage.categories.graded_modules.GradedModulesCategory

 The category of graded algebras

 EXAMPLES:

 sage: GradedAlgebras(ZZ)
 Category of graded algebras over Integer Ring
 sage: GradedAlgebras(ZZ).super_categories()
 [Category of filtered algebras over Integer Ring,
 Category of graded modules over Integer Ring]

class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

 graded_algebra()
 Return the associated graded algebra to self.
 Since self is already graded, this just returns self.

 EXAMPLES:

 sage: m = SymmetricFunctions(QQ).m()
 sage: m.graded_algebra() is m
 True

class SignedTensorProducts(category, *args):
 Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

 extra_super_categories()
 EXAMPLES:

 sage: Algebras(QQ).Graded().SignedTensorProducts().extra_super_categories()
 [Category of graded algebras over Rational Field]
 sage: Algebras(QQ).Graded().SignedTensorProducts().super_categories()
 [Category of graded algebras over Rational Field]

 Meaning: a signed tensor product of algebras is an algebra

class SubcategoryMethods
 Bases: object

 SignedTensorProducts()
 Return the full subcategory of objects of self constructed as signed tensor products.

 See also:
• SignedTensorProductsCategory
• CovariantFunctorialConstruction

EXAMPLES:

```python
sage: AlgebrasWithBasis(QQ).Graded().SignedTensorProducts()
Category of signed tensor products of graded algebras with basis over Rational Field
```

4.75 Graded algebras with basis

```python
class sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis(base_category):
    Bases: sage.categories.graded_modules.GradedModulesCategory

    The category of graded algebras with a distinguished basis

    EXAMPLES:

    ```python
 sage: C = GradedAlgebrasWithBasis(ZZ); C
 Category of graded algebras with basis over Integer Ring
 sage: sorted(C.super_categories(), key=str)
 [Category of filtered algebras with basis over Integer Ring,
 Category of graded algebras over Integer Ring,
 Category of graded modules with basis over Integer Ring]
    ```

    ```python
class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

 free_graded_module(generator_degrees, names=None)

 Create a finitely generated free graded module over self

 INPUT:
 • generator_degrees – tuple of integers defining the number of generators of the module and their degrees
 • names – (optional) the names of the generators. If names is a comma-separated string like 'a, b, c', then those will be the names. Otherwise, for example if names is abc, then the names will be abc[d,i].

 By default, if all generators are in distinct degrees, then the names of the generators will have the form g[d] where d is the degree of the generator. If the degrees are not distinct, then the generators will be called g[d,i] where d is the degree and i is its index in the list of generators in that degree.

 See sage.modules.fp_graded.free_module for more examples and details.

 EXAMPLES:

    ```python
    sage: Q = QuadraticForm(QQ, 3, [1,2,3,4,5,6])
    sage: Cl = CliffordAlgebra(Q)
    sage: M = Cl.free_graded_module((0, 2, 3))
    sage: M.gens()
    (g[0], g[2], g[3])
    sage: N.<xy, z> = Cl.free_graded_module((1, 2))
    sage: N.generators()
    (xy, z)
    ```
```
graded_algebra()
Return the associated graded algebra to self.

This is self, because self is already graded. See graded_algebra() for the general behavior of this
method, and see AssociatedGradedAlgebra for the definition and properties of associated graded
algebras.

EXAMPLES:

```
sage: m = SymmetricFunctions(QQ).m()
sage: m.graded_algebra() is m
True
```

class SignedTensorProducts(category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

The category of algebras with basis constructed by signed tensor product of algebras with basis.

class ParentMethods
Bases: object

Implements operations on tensor products of super algebras with basis.

one_basis()
Return the index of the one of this signed tensor product of algebras, as per AlgebrasWithBasis.
ParentMethods.one_basis.

It is the tuple whose operands are the indices of the ones of the operands, as returned by their
one_basis() methods.

EXAMPLES:

```
sage: A.<x,y> = ExteriorAlgebra(QQ)
sage: A.one_basis()
()sage: B = tensor((A, A, A))
sage: B.one_basis()
((), (), ())sage: B.one()
1 # 1 # 1
```

product_on_basis(t0, t1)
The product of the algebra on the basis, as per AlgebrasWithBasis.ParentMethods.
product_on_basis.

EXAMPLES:

Test the sign in the super tensor product:

```
sage: A = SteenrodAlgebra(3)
sage: x = A.Q(0)
sage: y = x.coproduct()
sage: y^2
0
```

TODO: optimize this implementation!

extra_super_categories()
EXAMPLES:
### 4.76 Graded bialgebras

sage.categories.graded_bialgebras.GradedBialgebras(base_ring)
The category of graded bialgebras

```python
sage: C = GradedBialgebras(QQ); C
Join of Category of graded algebras over Rational Field
 and Category of bialgebras over Rational Field
 and Category of graded coalgebras over Rational Field
sage: C is Bialgebras(QQ).Graded()
True
```

### 4.77 Graded bialgebras with basis

sage.categories.graded_bialgebras_with_basis.GradedBialgebrasWithBasis(base_ring)
The category of graded bialgebras with a distinguished basis

```python
sage: C = GradedBialgebrasWithBasis(QQ); C
Join of Category of graded algebras over Rational Field
 and Category of graded coalgebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of graded algebras with basis over Rational Field,
 Category of graded coalgebras with basis over Rational Field]
```

### 4.78 Graded Coalgebras

class sage.categories.graded_coalgebras.GradedCoalgebras(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded coalgebras

```python
sage: C = GradedCoalgebras(QQ); C
Category of graded coalgebras over Rational Field
sage: C is Coalgebras(QQ).Graded()
True
```
class SignedTensorProducts(category, *args)
    Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

    extra_super_categories()
    EXAMPLES:
    sage: Coalgebras(QQ).Graded().SignedTensorProducts().extra_super_categories()
    [Category of graded coalgebras over Rational Field]
    sage: Coalgebras(QQ).Graded().SignedTensorProducts().super_categories()
    [Category of graded coalgebras over Rational Field]

    Meaning: a signed tensor product of coalgebras is a coalgebra

class SubcategoryMethods
    Bases: object

    SignedTensorProducts()
    Return the full subcategory of objects of self constructed as signed tensor products.

    See also:
    • SignedTensorProductsCategory
    • CovariantFunctorialConstruction

    EXAMPLES:
    sage: CoalgebrasWithBasis(QQ).Graded().SignedTensorProducts()
    Category of signed tensor products of graded coalgebras with basis over Rational Field

4.79 Graded coalgebras with basis

class sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis(base_category)
    Bases: sage.categories.graded_modules.GradedModulesCategory

    The category of graded coalgebras with a distinguished basis.

    EXAMPLES:
    sage: C = GradedCoalgebrasWithBasis(QQ); C
    Category of graded coalgebras with basis over Rational Field
    sage: C is Coalgebras(QQ).WithBasis().Graded()
    True

class SignedTensorProducts(category, *args)
    Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

    The category of coalgebras with basis constructed by signed tensor product of coalgebras with basis.

    extra_super_categories()
    EXAMPLES:
    sage: Cat = CoalgebrasWithBasis(QQ).Graded(); Cat
    Category of signed tensor products of graded coalgebras with basis over Rational Field
    sage: Cat.SignedTensorProducts().extra_super_categories()
    [Category of graded coalgebras with basis over Rational Field]
    sage: Cat.SignedTensorProducts().super_categories()

    (continues on next page)
4.80 Graded Hopf algebras

sage.categories.graded_hopf_algebras.GradedHopfAlgebras(base_ring)

The category of graded Hopf algebras.

EXAMPLES:

```
sage: C = GradedHopfAlgebras(QQ); C
Join of Category of hopf algebras over Rational Field
 and Category of graded algebras over Rational Field
 and Category of graded coalgebras over Rational Field
sage: C is HopfAlgebras(QQ).Graded()
True
```

**Note:** This is not a graded Hopf algebra as is typically defined in algebraic topology as the product in the tensor square \((x \otimes y)(a \otimes b) = (xa) \otimes (yb)\) does not carry an additional sign. For this, instead use super Hopf algebras.

4.81 Graded Hopf algebras with basis

class sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis(base_category)

Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded Hopf algebras with a distinguished basis.

EXAMPLES:

```
sage: C = GradedHopfAlgebrasWithBasis(ZZ); C
Category of graded hopf algebras with basis over Integer Ring
sage: C.super_categories()
[Category of filtered hopf algebras with basis over Integer Ring,
 Category of graded algebras with basis over Integer Ring,
 Category of graded coalgebras with basis over Integer Ring]
sage: C is HopfAlgebras(ZZ).WithBasis().Graded()
True
sage: C is HopfAlgebras(ZZ).Graded().WithBasis()
False
```

class Connected(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ElementMethods

Bases: object
class ParentMethods
    Bases: object

antipode_on_basis(index)
The antipode on the basis element indexed by index.
    INPUT:
    • index – an element of the index set
    For a graded connected Hopf algebra, we can define an antipode recursively by
    \( S(x) := - \sum_{x \neq x'} S(x') \times x'' \)
    when \(|x| > 0\), and by \( S(x) = x \) when \(|x| = 0\).

counit_on_basis(i)
The default counit of a graded connected Hopf algebra.
    INPUT:
    • i – an element of the index set
    OUTPUT:
    • an element of the base ring
    \( c(i) := \begin{cases} 1 & \text{if } i \text{ indexes the 1 of the algebra} \\ 0 & \text{otherwise} \end{cases} \)

EXAMPLES:

    sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
    sage: H.monomial(4).counit()  # indirect doctest
    0
    sage: H.monomial(0).counit()  # indirect doctest
    1

documentation

example()
Return an example of a graded connected Hopf algebra with a distinguished basis.

class ElementMethods
    Bases: object

class ParentMethods
    Bases: object

class WithRealizations(category, *args)
    Bases: sage.categories.with_realizations.WithRealizationsCategory

super_categories()
EXAMPLES:

    sage: GradedHopfAlgebrasWithBasis(QQ).WithRealizations().super_categories()
    [Join of Category of hopf algebras over Rational Field
     and Category of graded algebras over Rational Field
     and Category of graded coalgebras over Rational Field]

documentation

documentation

example()
Return an example of a graded Hopf algebra with a distinguished basis.
4.82 Graded Lie Algebras

AUTHORS:
- Eero Hakavuori (2018-08-16): initial version

**class** sage.categories.graded_lie_algebras.GradedLieAlgebras(base_category)

Bases: sage.categories.graded_modules.GradedModulesCategory

Category of graded Lie algebras.

**class** Stratified(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of stratified Lie algebras.

A graded Lie algebra $L = \bigoplus_{k=1}^{M} L_k$ (where possibly $M = \infty$) is called stratified if it is generated by $L_1$; in other words, we have $L_{k+1} = [L_1, L_k]$.

**class** FiniteDimensional(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional stratified Lie algebras.

**extra_super_categories()**

Implements the fact that a finite dimensional stratified Lie algebra is nilpotent.

**Examples:**

```
sage: C = LieAlgebras(QQ).Graded().Stratified().FiniteDimensional()
sage: C.extra_super_categories()
[Category of nilpotent Lie algebras over Rational Field]
sage: C.is_nilpotent()
True
sage: C.is_subcategory(LieAlgebras(QQ).Nilpotent())
True
```

**class** SubcategoryMethods

Bases: object

**Stratified()**

Return the full subcategory of stratified objects of self.

A Lie algebra is stratified if it is graded and generated as a Lie algebra by its component of degree one.

**Examples:**

```
sage: LieAlgebras(QQ).Graded().Stratified()
Category of stratified Lie algebras over Rational Field
```

484 Chapter 4. Individual Categories
4.83 Graded Lie Algebras With Basis

class sage.categories.graded_lie_algebras_with_basis.GradedLieAlgebrasWithBasis(base_category):
    Bases: sage.categories.graded_modules.GradedModulesCategory

    The category of graded Lie algebras with a distinguished basis.

    EXAMPLES:

    sage: C = LieAlgebras(ZZ).WithBasis().Graded(); C
    Category of graded lie algebras with basis over Integer Ring
    sage: C.super_categories()
    [Category of graded modules with basis over Integer Ring,  
      Category of lie algebras with basis over Integer Ring,  
      Category of graded Lie algebras over Integer Ring]
    sage: C is LieAlgebras(ZZ).WithBasis().Graded()
    True
    sage: C is LieAlgebras(ZZ).Graded().WithBasis()
    False

    FiniteDimensional
    alias of sage.categories.finite_dimensional_graded_lie_algebras_with_basis.
    FiniteDimensionalGradedLieAlgebrasWithBasis

4.84 Graded Lie Conformal Algebras

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebras(base_category):
    Bases: sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory

    The category of graded Lie conformal algebras.

    EXAMPLES:

    sage: C = LieConformalAlgebras(QQbar).Graded(); C
    Category of H-graded Lie conformal algebras over Algebraic Field
    sage: CS = LieConformalAlgebras(QQ).Graded().Super(); CS
    Category of H-graded super Lie conformal algebras over Rational Field
    sage: CS is LieConformalAlgebras(QQ).Super().Graded()
    True

class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory(base_category):
    Bases: sage.categories.graded_modules.GradedModulesCategory

    Super(base_ring=None)
    Return the super-analogue category of self.

    INPUT:

    • base_ring – this is ignored

    EXAMPLES:
4.85 Graded modules

class sage.categories.graded_modules.GradedModules(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded modules.

We consider every graded module \( M = \bigoplus_i M_i \) as a filtered module under the (natural) filtration given by

\[
F_i = \bigoplus_{j < i} M_j,
\]

EXAMPLES:

```
sage: GradedModules(ZZ)
Category of graded modules over Integer Ring
sage: GradedModules(ZZ).super_categories()
[Category of filtered modules over Integer Ring]
```

The category of graded modules defines the graded structure which shall be preserved by morphisms:

```
sage: Modules(ZZ).Graded().additional_structure()
Category of graded modules over Integer Ring
```

class ElementMethods
Bases: object

class ParentMethods
Bases: object

class sage.categories.graded_modules.GradedModulesCategory(base_category)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory, sage.categories.category_types.Category_over_base_ring

EXAMPLES:

```
sage: C = GradedAlgebras(QQ)
sage: C
Category of graded algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of filtered algebras over Rational Field, Category of graded vector spaces over Rational Field]
sage: AlgebrasWithBasis(QQ).Graded().base_ring()
Rational Field
```
class sage.categories.graded_modules_with_basis.GradedModulesWithBasis(base_category)

The category of graded modules with a distinguished basis.

EXAMPLES:

```python
c = GradedModulesWithBasis(ZZ); c
Category of graded modules with basis over Integer Ring
cs = sorted(c.super_categories(), key=str)
[Category of filtered modules with basis over Integer Ring,
 Category of graded modules over Integer Ring]
c is ModulesWithBasis(ZZ).Graded()
True
```

class ElementMethods

Bases: object
degree_negation()

Return the image of \texttt{self} under the degree negation automorphism of the graded module to which \texttt{self} belongs.

The degree negation is the module automorphism which scales every homogeneous element of degree \( k \) by \((-1)^{k}\) (for all \( k \)). This assumes that the module to which \texttt{self} belongs (that is, the module \texttt{self.parent()}) is \( \mathbb{Z} \)-graded.

EXAMPLES:


def E.<a,b> = ExteriorAlgebra(QQ)
def (1 + a) * (1 + b).degree_negation()
a*b - a - b + 1
def E.zero().degree_negation()
\emptyset

def P = GradedModulesWithBasis(ZZ).example(); P
An example of a graded module with basis: the free module on partitions \( \rightarrow \) over Integer Ring

def pbp = lambda x: P.basis()[Partition(list(x))]
def p = pbp([3,1]) - 2 * pbp([2]) + 4 * pbp([1])
def P.degree_negation(p)

class ParentMethods

Bases: object

def degree_negation(element)

Return the image of \texttt{element} under the degree negation automorphism of the graded module \texttt{self}.

The degree negation is the module automorphism which scales every homogeneous element of degree \( k \) by \((-1)^{k}\) (for all \( k \)). This assumes that the module \texttt{self} is \( \mathbb{Z} \)-graded.

INPUT:

• \texttt{element} – element of the module \texttt{self}

EXAMPLES:


def E.<a,b> = ExteriorAlgebra(QQ)
def E.degree_negation((1 + a) * (1 + b))
a*b - a - b + 1
def E.degree_negation(E.zero())
\emptyset

def P = GradedModulesWithBasis(ZZ).example(); P
An example of a graded module with basis: the free module on partitions \( \rightarrow \) over Integer Ring

def pbp = lambda x: P.basis()[Partition(list(x))]
def p = pbp([3,1]) - 2 * pbp([2]) + 4 * pbp([1])
def P.degree_negation(p)

quotient_module(submodule, check=True, already_echelonized=False, category=None)

Construct the quotient module \texttt{self} / \texttt{submodule}.

INPUT:

• \texttt{submodule} – a submodule with basis of \texttt{self}, or something that can be turned into one via \texttt{self}. \texttt{submodule(submodule)}
• check, already_echelonized – passed down to ModulesWithBasis.ParentMethods.submodule()
• category – (optional) the category of the quotient module

**Warning:** At this point, this only supports quotients by free submodules admitting a basis in unitriangular echelon form. In this case, the quotient is also a free module, with a basis consisting of the retract of a subset of the basis of self.

**EXAMPLES:**

```python
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z, y])
sage: Q = E.quotient_module(S)
sage: Q.category()
Join of Category of quotients of graded modules with basis over Rational Field
and Category of graded vector spaces with basis over Rational Field
and Category of finite dimensional vector spaces with basis over Rational Field
```

See also:

• ModulesWithBasis.ParentMethods.submodule()
• Rings.ParentMethods.quotient()
• sage.modules.with_basis.subquotient.QuotientModuleWithBasis

**submodule** (gens, check=True, already_echelonized=False, unitriangular=False, support_order=None, category=None, *args, **opts)

Return the submodule spanned by a finite set of elements.

**INPUT:**

• gens – a list or family of elements of self
• check – (default: True) whether to verify that the elements of gens are in self
• already_echelonized – (default: False) whether the elements of gens are already in (not necessarily reduced) echelon form
• unitriangular – (default: False) whether the lift morphism is unitriangular
• support_order – (optional) either something that can be converted into a tuple or a key function
• category – (optional) the category of the submodule

If already_echelonized is False, then the generators are put in reduced echelon form using echelonize(), and reindexed by 0, 1, ...
A graded submodule of a graded module generated by homogeneous elements is naturally graded:

```
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z])
sage: S.category()
Join of Category of graded vector spaces with basis over Rational Field
 and Category of subobjects of filtered modules with basis over Rational Field
 and Category of finite dimensional vector spaces with basis over Rational Field
sage: S.basis()[0].degree()
1
sage: S.basis()[1].degree()
2
```

We check on the echelonized basis:

```
sage: Sp = E.submodule([1, x + y + 5, x*y - y*z + x + y - 2])
sage: Sp.category()
Join of Category of graded vector spaces with basis over Rational Field
 and Category of subobjects of filtered modules with basis over Rational Field
 and Category of finite dimensional vector spaces with basis over Rational Field
sage: Sp.basis()[0].degree()
1
sage: Sp.basis()[1].degree()
2
```

If it is generated by inhomogeneous elements, then it is filtered by default:

```
sage: F = E.submodule([x + y*z, x*z + y*x])
sage: F.category()
Join of Category of subobjects of filtered modules with basis over Rational Field
 and Category of filtered vector spaces with basis over Rational Field
 and Category of finite dimensional vector spaces with basis over Rational Field
sage: F.basis()[0].degree()
1
sage: F.basis()[1].degree()
2
```

If `category` is specified, then it does not give any extra structure to the submodule (we can think of this as applying the forgetful functor):

```
sage: SM = E.submodule([x + y, x*y - y*z], category=ModulesWithBasis(QQ))
sage: SM.category()
Join of Category of finite dimensional vector spaces with basis over Rational Field
 and Category of subobjects of sets
sage: FM = E.submodule([x + 1, x*y - x*y*z], category=ModulesWithBasis(QQ))
sage: FM.category()
Join of Category of finite dimensional vector spaces with basis over Rational Field
 and Category of subobjects of sets
```

If we have specified that this is a graded submodule of a graded module, then the echelonized elements must be homogeneous:

```
sage: Cat = ModulesWithBasis(QQ).Graded().Subobjects()
sage: E.submodule([x + y, x*y - 1], category=Cat)
```

(continues on next page)
4.87 Graphs

class sage.categories.graphs.Graphs(s=None)
    Bases: sage.categories.category_singleton.Category_singleton

    The category of graphs.

    EXAMPLES:
sage: from sage.categories.graphs import Graphs
sage: C = Graphs(); C
Category of graphs

class Connected(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    The category of connected graphs.

    EXAMPLES:

    sage: from sage.categories.graphs import Graphs
    sage: C = Graphs().Connected()
    sage: TestSuite(C).run()

    extra_super_categories()
    Return the extra super categories of self.

    A connected graph is also a metric space.

    EXAMPLES:

    sage: from sage.categories.graphs import Graphs
    sage: Graphs().Connected().super_categories() # indirect doctest
    [Category of connected topological spaces,
     Category of connected simplicial complexes,
     Category of graphs,
     Category of metric spaces]

class ParentMethods
    Bases: object

    dimension()
    Return the dimension of self as a CW complex.

    EXAMPLES:

    sage: from sage.categories.graphs import Graphs
    sage: C = Graphs().example()
    sage: C.dimension()
    1

    edges()
    Return the edges of self.

    EXAMPLES:

    sage: from sage.categories.graphs import Graphs
    sage: C = Graphs().example()
    sage: C.edges()
    [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

    faces()
    Return the faces of self.

    EXAMPLES:
```python
sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: sorted(C.faces(), key=lambda x: (x.dimension(), x.value))
[0, 1, 2, 3, 4, (0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
```

**facets()**

Return the facets of self.

EXAMPLES:

```python
sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
```
```python
sage: C.facets()
[((0, 1), (1, 2), (2, 3), (3, 4), (4, 0))]
```

**vertices()**

Return the vertices of self.

EXAMPLES:

```python
sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
```
```python
sage: C.vertices()
[0, 1, 2, 3, 4]
```

**super_categories()**

EXAMPLES:

```python
sage: from sage.categories.graphs import Graphs
```
```python
sage: Graphs().super_categories()
[Category of simplicial complexes]
```

## 4.88 Group Algebras

This module implements the category of group algebras for arbitrary groups over arbitrary commutative rings. For details, see `sage.categories.algebra_functor`.

**AUTHOR:**

- David Loeffler (2008-08-24): initial version
- Martin Raum (2009-08): update to use new coercion model – see trac ticket #6670.
- John Palmieri (2011-07): more updates to coercion, categories, etc., group algebras constructed using CombinatorialFreeModule – see trac ticket #6670.
- Nicolas M. Thiéry (2010-2017), Travis Scrimshaw (2017): generalization to a covariant functorial construction for monoid algebras, and beyond – see e.g. trac ticket #18700.

**class** `sage.categories.group_algebras.GroupAlgebras`(*category, *args*)

Bases: `sage.categories.algebra_functor.AlgebrasCategory`

The category of group algebras over a given base ring.

EXAMPLES:
We can also construct this category with:

```python
sage: C is GroupAlgebras(ZZ)
True
```

Here is how to create the group algebra of a group $G$:

```python
sage: G = DihedralGroup(5)
sage: QG = G.algebra(QQ); QG
Algebra of Dihedral group of order 10 as a permutation group over Rational Field
```

and an example of computation:

```python
sage: g = G.an_element(); g
(1,4)(2,3)
sage: (QG.term(g) + 1)**3
4*(()) + 4*(1,4)(2,3)
```

Todo:

- Check which methods would be better located in `Monoid.Algebras` or `Groups.Finite.Algebras`.

```python
class ElementMethods
 Bases: object

 central_form()
 Return self expressed in the canonical basis of the center of the group algebra.

 INPUT:
 • self – an element of the center of the group algebra

 OUTPUT:
 • A formal linear combination of the conjugacy class representatives representing its coordinates in
 the canonical basis of the center. See `Groups.Algebras.ParentMethods.center_basis()` for details.

 Warning:
 • This method requires the underlying group to have a method `conjugacy_classes_representatives` (every permutation group has one, thanks GAP!).
 • This method does not check that the element is indeed central. Use the method `Monoids.Algebras.ElementMethods.is_central()` for this purpose.
 • This function has a complexity linear in the number of conjugacy classes of the group. One could easily implement a function whose complexity is linear in the size of the support of self.

 EXAMPLES:
```
sage: QS3 = SymmetricGroup(3).algebra(QQ)
sage: A = QS3([2,3,1]) + QS3([3,1,2])
sage: A.central_form()
B[(1,2,3)]

sage: QS4 = SymmetricGroup(4).algebra(QQ)
sage: B = sum(len(s.cycle_type())*QS4(s) for s in Permutations(4))
sage: B.central_form()
4*B[()] + 3*B[(1,2)] + 2*B[(1,2)(3,4)] + 2*B[(1,2,3)] + B[(1,2,3,4)]

The following test fails due to a bug involving combinatorial free modules and the coercion system (see trac ticket #28544):

sage: QG = GroupAlgebras(QQ).example(PermutationGroup([[(1,2,3),(4,5)],[3,\rightarrow 4]])
sage: s = sum(i for i in QG.basis())
sage: s.central_form()  # not tested
B[()] + B[(4,5)] + B[(3,4,5)] + B[(2,3)(4,5)] + B[(2,3,4,5)] + B[(1,2)(3,4,\rightarrow 5)] + B[(1,2,3,4,5)]

See also:

• Groups.Algebras.ParentMethods.center_basis()
• Monoids.Algebras.ElementMethods.is_central()

class ParentMethods
Bases: object

antipode_on_basis(g)
Return the antipode of the element g of the basis.

Each basis element g is group-like, and so has antipode g^{-1}. This method is used to compute the antipode of any element.

EXAMPLES:

sage: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: g = CyclicPermutationGroup(6).an_element(); g
(1,2,3,4,5,6)
sage: A.antipode_on_basis(g)
(1,6,5,4,3,2)
sage: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)
sage: a.antipode()
() + 3*(1,5,3)(2,6,4) + 3*(1,6,5,4,3,2)

center BASIS()
Return a basis of the center of the group algebra.

The canonical basis of the center of the group algebra is the family \(f_\sigma\)_{\sigma \in C}, where \(C\) is any collection of representatives of the conjugacy classes of the group, and \(f_\sigma\) is the sum of the elements in the conjugacy class of \(\sigma\).

OUTPUT:

• tuple of elements of self
Warning:

- This method requires the underlying group to have a method \texttt{conjugacy_classes} (every permutation group has one, thanks GAP!).

EXAMPLES:

```python
sage: SymmetricGroup(3).algebra(QQ).center_basis()
(((), (2,3), (1,2), (1,3), (1,2,3), (1,3,2))
```

See also:

- \texttt{Groups.Algebras.ElementMethods.central_form()}
- \texttt{Monoids.Algebras.ElementMethods.is_central()}

\textbf{coproduct\_on\_basis}(g)

Return the coproduct of the element \(g\) of the basis.

Each basis element \(g\) is group-like. This method is used to compute the coproduct of any element.

EXAMPLES:

```python
sage: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: g = CyclicPermutationGroup(6).an_element(); g
(1,2,3,4,5,6)
```

```python
sage: A.coproduct_on_basis(g)
(1,2,3,4,5,6) # (1,2,3,4,5,6)
```

```python
sage: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)
```

```python
sage: a.coproduct()
() # () + 3*(1,2,3,4,5,6) # (1,2,3,4,5,6) + 3*(1,3,5)(2,4,6) # (1,3,5)(2,4,6) + 3*(1,3,5)(2,4,6) # (1,3,5)(2,4,6)
```

\textbf{counit}(x)

Return the counit of the element \(x\) of the group algebra.

This is the sum of all coefficients of \(x\) with respect to the standard basis of the group algebra.

EXAMPLES:

```python
sage: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)
```

```python
sage: a.counit()
7
```

\textbf{counit\_on\_basis}(g)

Return the counit of the element \(g\) of the basis.

Each basis element \(g\) is group-like, and so has \texttt{counit 1}. This method is used to compute the counit of any element.

EXAMPLES:
sage: A=CyclicPermutationGroup(6).algebra(ZZ);A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: g=CyclicPermutationGroup(6).an_element();g
(1,2,3,4,5,6)
sage: A.counit_on_basis(g)
1

group()
Return the underlying group of the group algebra.

EXAMPLES:

sage: GroupAlgebras(QQ).example(GL(3, GF(11))).group()
General Linear Group of degree 3 over Finite Field of size 11
sage: SymmetricGroup(10).algebra(QQ).group()
Symmetric group of order 10! as a permutation group

is_integral_domain(proof=True)
Return True if self is an integral domain.

This is false unless self.base_ring() is an integral domain, and even then it is false unless self.
group() has no nontrivial elements of finite order. I don’t know if this condition suffices, but it
obviously does if the group is abelian and finitely generated.

EXAMPLES:

sage: GroupAlgebra(SymmetricGroup(2)).is_integral_domain()
False
sage: GroupAlgebra(SymmetricGroup(1)).is_integral_domain()
True
sage: GroupAlgebra(SymmetricGroup(1), IntegerModRing(4)).is_integral_domain()
False
sage: GroupAlgebra(AlternatingGroup(1)).is_integral_domain()
True
sage: GroupAlgebra(AlternatingGroup(2, [0,2])).is_integral_domain()
False
sage: GroupAlgebra(GL(2, ZZ)).is_integral_domain()  # not implemented
False

example(G=None)
Return an example of group algebra.

EXAMPLES:

sage: GroupAlgebras(QQ['x']).example()
Algebra of Dihedral group of order 8 as a permutation group over Univariate
Polynomial Ring in x over Rational Field

An other group can be specified as optional argument:

sage: GroupAlgebras(QQ).example(AlternatingGroup(4))
Algebra of Alternating group of order 4!/2 as a permutation group over Rational Field
extra_super_categories()

Implement the fact that the algebra of a group is a Hopf algebra.

EXAMPLES:

```sage
C = Groups().Algebras(QQ)
sage: C.extra_super_categories()
[Category of hopf algebras over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of hopf algebras with basis over Rational Field,
 Category of monoid algebras over Rational Field]
```

### 4.89 Groupoid

```python
class sage.categories.groupoid.Groupoid(G=None)

Bases: sage.categories.category.CategoryWithParameters

The category of groupoids, for a set (usually a group) G.

FIXME:

- Groupoid or Groupoids ?
- definition and link with Wikipedia article Groupoid
- Should Groupoid inherit from Category_over_base?

EXAMPLES:

```sage
Groupoid(DihedralGroup(3))
Groupoid with underlying set Dihedral group of order 6 as a permutation group
```

```python
classmethod an_instance()

Returns an instance of this class.

EXAMPLES:

```sage
Groupoid.an_instance() # indirect doctest
Groupoid with underlying set Symmetric group of order 8! as a permutation group
```

```python
super_categories()

EXAMPLES:

```sage
Groupoid(DihedralGroup(3)).super_categories()
[Category of sets]```
4.90 Groups

class sage.categories.groups.Groups(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of (multiplicative) groups, i.e. monoids with inverses.

EXAMPLES:

sage: Groups()
Category of groups
sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]

Algebras

alias of sage.categories.group_algebras.GroupAlgebras

class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of groups constructed as Cartesian products of groups.

This construction gives the direct product of groups. See Wikipedia article Direct_product and Wikipedia article Direct_product_of_groups for more information.

class ElementMethods

Bases: object

    multiplicative_order()

    Return the multiplicative order of this element.

    EXAMPLES:

    sage: G1 = SymmetricGroup(3)
sage: G2 = SL(2,3)
sage: G = cartesian_product([G1,G2])
sage: G((G1.gen(0), G2.gen(1))).multiplicative_order()
12

class ParentMethods

Bases: object

    group_generators()

    Return the group generators of self.

    EXAMPLES:

    sage: C5 = CyclicPermutationGroup(5)
sage: C4 = CyclicPermutationGroup(4)
sage: S4 = SymmetricGroup(3)
sage: C = cartesian_product([C5, C4, S4])
sage: C.group_generators()
Family (((1,2,3,4,5), (), ()),
     ((), (1,2,3,4), ()),
     ((), (1,2)),
     ((), (2,3)))

We check the other portion of trac ticket #16718 is fixed:
sage: len(C.j_classes())
1

An example with an infinitely generated group (a better output is needed):

sage: G = Groups.free([1,2])
sage: H = Groups.free(ZZ)
sage: C = cartesian_product([G, H])
sage: C.monoid_generators()
Lazy family (gen(i))_{i in The Cartesian product of (...)}

order()
Return the cardinality of self.

EXAMPLES:

sage: C = cartesian_product([SymmetricGroup(10), SL(2,GF(3))])
sage: C.order()
87091200

Todo: this method is just here to prevent FiniteGroups.ParentMethods to call _cardinality_from_iterator.

extra_super_categories()
A Cartesian product of groups is endowed with a natural group structure.

EXAMPLES:

sage: C = Groups().CartesianProducts()
sage: C.extra_super_categories()
[Category of groups]
sage: sorted(C.super_categories(), key=str)
[Category of Cartesian products of inverse unital magmas,
 Category of Cartesian products of monoids,
 Category of groups]

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Category of commutative (abelian) groups.

A group $G$ is commutative if $xy = yx$ for all $x, y \in G$.

static free(index_set=None, names=None, **kwds)
Return the free commutative group.

INPUT:

- index_set – (optional) an index set for the generators; if an integer, then this represents \{0,1,...,n-1\}
- names – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix

EXAMPLES:

sage: Groups.Commutative.free(index_set=ZZ)
Free abelian group indexed by Integer Ring
sage: Groups().Commutative().free(ZZ)
Free abelian group indexed by Integer Ring
\texttt{sage: Groups().Commutative().free(5)}
Multiplicative Abelian group isomorphic to $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
\texttt{sage: F.<x,y,z> = Groups().Commutative().free(); F}
Multiplicative Abelian group isomorphic to $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$

\textbf{class ElementMethods}
\textbf{Bases: object}

\textbf{conjugacy_class()}
Return the conjugacy class of \texttt{self}.

\textbf{EXAMPLES:}

\texttt{sage: D = DihedralGroup(5)}
\texttt{sage: g = D((1,3,5,2,4))}
\texttt{sage: g.conjugacy_class()}
Conjugacy class of (1,3,5,2,4) in Dihedral group of order 10 as a permutation group

\texttt{sage: H = MatrixGroup([matrix(GF(5),2,[1,2, -1, 1]), matrix(GF(5),2, [1,1, 0,1])])}
\texttt{sage: h = H(matrix(GF(5),2,[1,2, -1, 1]))}
\texttt{sage: h.conjugacy_class()}
Conjugacy class of \[\begin{array}{ll}
1 & 2 \\
4 & 1
\end{array}\]
in Matrix group over Finite Field of size 5 with 2 generators ( \[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\], \[\begin{array}{ll}
0 & 1 \\
4 & 1
\end{array}\]
)

\texttt{sage: G = SL(2, GF(2))}
\texttt{sage: g = G.gens()[0]}
\texttt{sage: g.conjugacy_class()}
Conjugacy class of \[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\] in Special Linear Group of degree 2 over Finite Field of size 2

\texttt{sage: G = SL(2, QQ)}
\texttt{sage: g = G([[1,1],[0,1]])}
\texttt{sage: g.conjugacy_class()}
Conjugacy class of \[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\] in Special Linear Group of degree 2 over Rational Field

\textbf{Finite}
alias of \texttt{sage.categories.finite_groups.FiniteGroups}

\textbf{Lie}
alias of \texttt{sage.categories.lie_groups.LieGroups}

\textbf{class ParentMethods}
\textbf{Bases: object}

\textbf{cayley_table}(\texttt{names='letters', elements=None})
Return the “multiplication” table of this multiplicative group, which is also known as the “Cayley table”.

4.90. Groups
Note: The order of the elements in the row and column headings is equal to the order given by the table's `column_keys()` method. The association between the actual elements and the names/symbols used in the table can also be retrieved as a dictionary with the `translation()` method.

For groups, this routine should behave identically to the `multiplication_table()` method for magmas, which applies in greater generality.

INPUT:
- `names` - the type of names used, values are:
  - 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements' positions in the list given by `list()`, padded to a common width with leading 'a's.
  - 'digits' - base 10 representation of the elements' positions in the list given by `column_keys()`, padded to a common width with leading zeros.
  - 'elements' - the string representations of the elements themselves.
  - a list - a list of strings, where the length of the list equals the number of elements.
- `elements` - default = `None`. A list of elements of the group, in forms that can be coerced into the structure, eg. their string representations. This may be used to impose an alternate ordering on the elements, perhaps when this is used in the context of a particular structure. The default is to use whatever ordering is provided by the the group, which is reported by the `column_keys()` method. Or the `elements` can be a subset which is closed under the operation. In particular, this can be used when the base set is infinite.

OUTPUT: An object representing the multiplication table. This is an `OperationTable` object and even more documentation can be found there.

EXAMPLES:

Permutation groups, matrix groups and abelian groups can all compute their multiplication tables.

```
sage: G = DiCyclicGroup(3)
sage: T = G.cayley_table()
sage: T.column_keys()
(((), (5, 6, 7), ..., (1, 4, 2, 3)(5, 7))
sage: T
* a b c d e f g h i j k l
+------------------------
a| a b c d e f g h i j k l
b| b c a e f d i g h l j k
c| c a b f d e h i g k l j
d| d e f a b c j k l g h i
e| e f d b c a l j k i g h
f| f d e c a b k l j h i g
g| g h i j k l d e f a b c
h| h i g k l j f d e c a b
i| i g h l j k e f d b c a
j| j k l g h i a b c d e f
k| k l j h i g c a b f d e
l| l j k i g h b c a e f d

sage: M = SL(2, 2)
sage: M.cayley_table()
* a b c d e f
+----------
a| a b c d e f

(continues on next page)
```
Lowercase ASCII letters are the default symbols used for the table, but you can also specify the use of decimal digit strings, or provide your own strings (in the proper order if they have meaning). Also, if the elements themselves are not too complex, you can choose to just use the string representations of the elements themselves.
The `change_names()` routine behaves similarly, but changes an existing table “in-place.”

For an infinite group, you can still work with finite sets of elements, provided the set is closed under multiplication. Elements will be coerced into the group as part of setting up the table.

The `OperationTable` class provides even greater flexibility, including changing the operation. Here is one such example, illustrating the computation of commutators. `commutator` is defined as a function of two variables, before being used to build the table. From this, the commutator subgroup seems obvious, and creating a Cayley table with just these three elements confirms that they form a closed subset in the group.
Todo: Arrange an ordering of elements into cosets of a normal subgroup close to size $\sqrt{n}$. Then the quotient group structure is often apparent in the table. See comments on trac ticket #7555.

AUTHOR:
- Rob Beezer (2010-03-15)

conjugacy_class($g$)

Return the conjugacy class of the element $g$.

This is a fall-back method for groups not defined over GAP.

EXAMPLES:

```
sage: A = AbelianGroup([2,2])
sage: c = A.conjugacy_class(A.an_element())
sage: type(c)
<class 'sage.groups.conjugacy_classes.ConjugacyClass_with_category'>
```

group_generators()

Return group generators for self.

This default implementation calls gens(), for backward compatibility.

EXAMPLES:

```
sage: A = AlternatingGroup(4)
sage: A.group_generators()
Family ((2,3,4), (1,2,3))
```

holomorph()

The holomorph of a group

The holomorph of a group $G$ is the semidirect product $G \rtimes_{id} Aut(G)$, where $id$ is the identity function on $Aut(G)$, the automorphism group of $G$.

See Wikipedia article Holomorph (mathematics)
EXAMPLES:

```python
sage: G = Groups().example()
sage: G.holomorph()
Traceback (most recent call last):
 ...
NotImplementedError: holomorph of General Linear Group of degree 4 over Rational Field not yet implemented
```

**monoid_generators()**

Return the generators of `self` as a monoid.

Let $G$ be a group with generating set $X$. In general, the generating set of $G$ as a monoid is given by $X \cup X^{-1}$, where $X^{-1}$ is the set of inverses of $X$. If $G$ is a finite group, then the generating set as a monoid is $X$.

**EXAMPLES:**

```python
sage: A = AlternatingGroup(4)
sage: A.monoid_generators()
Family ((2,3,4), (1,2,3))
sage: F.<x,y> = FreeGroup()
sage: F.monoid_generators()
Family (x, y, x^(-1), y^(-1))
```

**semidirect_product** ($N$, mapping, check=True)

The semi-direct product of two groups.

**EXAMPLES:**

```python
sage: G = Groups().example()
sage: G.semidirect_product(G,Morphism(G,G))
Traceback (most recent call last):
 ...
NotImplementedError: semidirect product of General Linear Group of degree 4 over Rational Field and General Linear Group of degree 4 over Rational Field not yet implemented
```

**class Topological** (category, *args)

Bases: `sage.categories.topological_spaces.TopologicalSpacesCategory`

Category of topological groups.

A topological group $G$ is a group which has a topology such that multiplication and taking inverses are continuous functions.

**REFERENCES:**

- Wikipedia article Topological_group

**example()**

**EXAMPLES:**

```python
sage: Groups().example()
General Linear Group of degree 4 over Rational Field
```

**static free** (index_set=None, names=None, **kwds)

Return the free group.
INPUT:

- **index_set** – (optional) an index set for the generators; if an integer, then this represents \(\{0, 1, \ldots, n-1\}\)
- **names** – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix

When the index set is an integer or only variable names are given, this returns `FreeGroup_class`, which currently has more features due to the interface with GAP than `IndexedFreeGroup`.

**EXAMPLES:**

```
 sage: Groups().free(index_set=ZZ)
 Free group indexed by Integer Ring
 sage: Groups().free(ZZ)
 Free group indexed by Integer Ring
 sage: Groups().free(5)
 Free Group on generators \{x0, x1, x2, x3, x4\}
 sage: F.<x,y,z> = Groups().free(); F
 Free Group on generators \{x, y, z\}
```

### 4.91 Hecke modules

#### class `sage.categories.hecke_modules.HeckeModules(R)`

**Bases:** `sage.categories.category_types.Category_module`

The category of Hecke modules.

A Hecke module is a module \(M\) over the emph{anemic} Hecke algebra, i.e., the Hecke algebra generated by Hecke operators \(T_n\) with \(n\) coprime to the level of \(M\). (Every Hecke module defines a level function, which is a positive integer.) The reason we require that \(M\) only be a module over the anemic Hecke algebra is that many natural maps, e.g., degeneracy maps, Atkin-Lehner operators, etc., are \(T\)-module homomorphisms; but they are homomorphisms over the anemic Hecke algebra.

**EXAMPLES:**

We create the category of Hecke modules over \(\mathbb{Q}\):

```
 sage: C = HeckeModules(QQ); C
 Category of Hecke modules over Rational Field
```

TODO: check that this is what we want:

```
 sage: C.super_categories()
 [Category of vector spaces with basis over Rational Field]
```

# [Category of vector spaces over Rational Field]

Note that the base ring can be an arbitrary commutative ring:

```
 sage: HeckeModules(IntegerRing())
 Category of Hecke modules over Integer Ring
 sage: HeckeModules(FiniteField(5))
 Category of Hecke modules over Finite Field of size 5
```

The base ring doesn’t have to be a principal ideal domain:
```python
sage: HeckeModules(PolynomialRing(IntegerRing(), 'x'))
Category of Hecke modules over Univariate Polynomial Ring in x over Integer Ring
```

```python
class Homsets(category, *args):
 Bases: sage.categories.homsets.HomsetsCategory
class ParentMethods
 Bases: object
element_extra_super_categories()
class ParentMethods
 Bases: object
super_categories()
EXAMPLES:
```
• **scaling_factors** – (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \( \varepsilon \) and \( \varphi \)
• **gens** – (optional) a list of generators to define the morphism; the default is to use the highest weight vectors of the crystal
• **check** – (default: True) check if the crystal morphism is valid

```python
class sage.categories.highest_weight_crystals.HighestWeightCrystals(s=None):
 Bases: sage.categories.category_singleton.Category_singleton

 The category of highest weight crystals.

 A crystal is highest weight if it is acyclic; in particular, every connected component has a unique highest weight element, and that element generate the component.

 EXAMPLES:

 sage: C = HighestWeightCrystals()
sage: C
 Category of highest weight crystals
 sage: C.super_categories()
 [Category of crystals]
sage: C.example()
 Highest weight crystal of type A_3 of highest weight omega_1
```

```python
class ElementMethods
 Bases: object

 string_parameters(word=None)

 Return the string parameters of self corresponding to the reduced word word.

 Given a reduced expression \(w = s_{i_1} \cdots s_{i_k} \), the string parameters of \(b \in B \) corresponding to \(w \) are \((a_1, \ldots, a_k) \) such that

 \[
 \begin{align*}
 e_i^{a_{m}} \cdots e_i^{a_1} b & \neq 0 \\
 e_i^{a_m+1} \cdots e_i^{a_1} b & = 0
 \end{align*}
 \]

 for all \(1 \leq m \leq k \).

 For connected components isomorphic to \(B(\lambda) \) or \(B(\infty) \), if \(w = w_0 \) is the longest element of the Weyl group, then the path determined by the string parametrization terminates at the highest weight vector.

 INPUT:

 • **word** – a word in the alphabet of the index set; if not specified and we are in finite type, then this will be some reduced expression for the long element determined by the Weyl group

 EXAMPLES:

 sage: B = crystals.infinity.NakajimaMonomials(['A',3])
sage: mg = B.highest_weight_vector()
sage: w0 = [1,2,1,3,2,1]
sage: mg.string_parameters(w0)
[0, 0, 0, 0, 0, 0]
sage: mg.f_string([1]).string_parameters(w0)
[1, 0, 0, 0, 0, 0]
sage: mg.f_string([1,1]).string_parameters(w0)
[3, 0, 0, 0, 0, 0]
sage: mg.f_string([1,1,1,2,2]).string_parameters(w0)
```

(continues on next page)
sage: mg.f_string([1,1,1,2,2]) == mg.f_string([1,1,2,2,1])
True
sage: x = mg.f_string([1,1,1,2,2,1,3,3,2,1,1,1])
sage: x.string_parameters(w0)
[4, 1, 1, 2, 2, 2]
sage: x.string_parameters([3,2,1,3,2,3])
[2, 3, 7, 0, 0, 0]
sage: x == mg.f_string([1]*7 + [2]*3 + [3]*2)
True
sage: B = crystals.infinity.Tableaux("A5")
sage: b = B(rows=[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,6,6,6,6,6,6],
....: [2,2,2,2,2,2,2,2,2,4,5,5,5,5,6],
....: [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5],
....: [4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6],
....: [5,6]])
sage: b.string_parameters([1,2,1,3,2,1,4,3,2,1,5,4,3,2,1])
[0, 1, 1, 1, 1, 0, 4, 4, 3, 0, 11, 10, 7, 7, 6]
sage: B = crystals.infinity.Tableaux("G2")
sage: b = B(rows=[[1,1,1,1,1,1,3,3,0,-3,-3,-2,-2,-1,-1,-1,-1],[2,3,3,3]])
sage: b.string_parameters([2,1,2,1,2,1])
[5, 13, 11, 15, 4, 4]
sage: b.string_parameters([1,2,1,2,1,2])
[7, 12, 15, 8, 10, 0]

sage: C = crystals.Tableaux(['C',2], shape=[2,1])
sage: mg = C.highest_weight_vector()
sage: lw = C.lowest_weight_vectors()[0]
sage: lw.string_parameters([1,2,1,2])
[1, 2, 3, 1]
sage: lw.string_parameters([2,1,2,1])
[1, 3, 2, 1]
sage: lw.e_string([2,1,1,1,2,2,1]) == mg
True
sage: lw.e_string([1,2,2,1,1,1,2]) == mg
True

class ParentMethods
Bases: object

connected_components_generators()
Returns the highest weight vectors of self

This default implementation selects among the module generators those that are highest weight, and

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C.highest_weight_vectors()
(1,)
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)],[C(1), -C(2),C(1)]]))
sage: T.highest_weight_vectors()
([2, 1, 1], [1, 2, 1])

digraph(subset=None, index_set=None, depth=None)

Return the DiGraph associated to self.

INPUT:
• subset – (optional) a subset of vertices for which the digraph should be constructed
• index_set – (optional) the index set to draw arrows
• depth – the depth to draw; optional only for finite crystals

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: T.digraph()
Digraph on 8 vertices
sage: S = T.subcrystal(max_depth=2)
5
sage: G = T.digraph(subset=list(S))
sage: G.is_isomorphic(T.digraph(depth=2), edge_labels=True)
True

highest_weight_vector()

Returns the highest weight vector if there is a single one; otherwise, raises an error.

Caveat: this assumes that highest_weight_vectors() returns a list or tuple.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C.highest_weight_vector()
1

highest_weight_vectors()

Returns the highest weight vectors of self

This default implementation selects among the module generators those that are highest weight, and caches the result. A crystal element \( b \) is highest weight if \( e_i(b) = 0 \) for all \( i \) in the index set.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C.highest_weight_vectors()
(1,)
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)],[C(1), -C(2),C(1)]]))
sage: T.highest_weight_vectors()
([2, 1, 1], [1, 2, 1])

lowest_weight_vectors()

Return the lowest weight vectors of self.
This default implementation selects among all elements of the crystal those that are lowest weight, and cache the result. A crystal element \( b \) is lowest weight if \( f_i(b) = 0 \) for all \( i \) in the index set.

**EXAMPLES:**

```python
sage: C = crystals.Letters(['A', 5])
sage: C.lowest_weight_vectors()
(6,)
```

```python
sage: C = crystals.Letters(['A', 2])
sage: T = crystals.TensorProduct(C, C, generators=[[C(2), C(1), C(1)], [C(1), C(2), C(1)]]
sage: T.lowest_weight_vectors()
([3, 2, 3], [3, 3, 2])
```

**q_dimension**

```python
q_dimension(q=None, prec=None, use_product=False)
```

Return the \( q \)-dimension of \( \text{self} \).

Let \( B(\lambda) \) denote a highest weight crystal. Recall that the degree of the \( \mu \)-weight space of \( B(\lambda) \) (under the principal gradation) is equal to \( \langle \rho^\vee, \lambda - \mu \rangle \) where \( \langle \rho^\vee, \alpha_i \rangle = 1 \) for all \( i \in I \) (in particular, take \( \rho^\vee = \sum_{i \in I} h_i \)).

The \( q \)-dimension of a highest weight crystal \( B(\lambda) \) is defined as

\[
\dim_q B(\lambda) := \sum_{j \geq 0} \dim(B_j) q^j,
\]

where \( B_j \) denotes the degree \( j \) portion of \( B(\lambda) \). This can be expressed as the product

\[
\dim_q B(\lambda) = \prod_{\alpha^\vee \in \Delta^+_\lambda} \left( \frac{1 - q^{\langle \lambda + \rho, \alpha^\vee \rangle}}{1 - q^{\langle \rho, \alpha^\vee \rangle}} \right)^{\text{mult } \alpha},
\]

where \( \Delta^+_\lambda \) denotes the set of positive coroots. Taking the limit as \( q \to 1 \) gives the dimension of \( B(\lambda) \). For more information, see [Ka1990] Section 10.10.

**INPUT:**

- \( q \) – the (generic) parameter \( q \)
- \( \text{prec} \) – (default: \( \text{None} \)) The precision of the power series ring to use if the crystal is not known to be finite (i.e. the number of terms returned). If \( \text{None} \), then the result is returned as a lazy power series.
- \( \text{use_product} \) – (default: \( \text{False} \)) if we have a finite crystal and \( \text{True} \), use the product formula

**EXAMPLES:**

```python
sage: C = crystals.Tableaux(['A', 2], shape=[2,1])
sage: qdim = C.q_dimension(); qdim
q^4 + 2*q^3 + 2*q^2 + 2*q + 1
sage: qdim(1)
8
sage: len(C) == qdim(1)
True
sage: C.q_dimension(use_product=True) == qdim
True
sage: C.q_dimension(prec=20)
q^4 + 2*q^3 + 2*q^2 + 2*q + 1
sage: C.q_dimension(prec=2)
```

(continues on next page)
2*q + 1

sage: R.<t> = QQ[]
sage: C.q_dimension(q=t^2)
t^8 + 2*t^6 + 2*t^4 + 2*t^2 + 1

sage: C = crystals.Tableaux(['A',2], shape=[5,2])
sage: C.q_dimension()
q^10 + 2*q^9 + 4*q^8 + 5*q^7 + 6*q^6 + 6*q^5 + 6*q^4 + 5*q^3 + 4*q^2 + 2*q + 1

sage: C = crystals.Tableaux(['B',2], shape=[2,1])
sage: qdim = C.q_dimension(); qdim
q^10 + 2*q^9 + 3*q^8 + 4*q^7 + 5*q^6 + 5*q^5 + 5*q^4 + 4*q^3 + 3*q^2 + 2*q + 1

sage: qdim == C.q_dimension(use_product=True)
True

sage: C = crystals.Tableaux(['D',4], shape=[2,1])
sage: C.q_dimension()
q^16 + 2*q^15 + 4*q^14 + 7*q^13 + 10*q^12 + 13*q^11 + 16*q^10 + 18*q^9 + 18*q^8 + 18*q^7 + 16*q^6 + 13*q^5 + 10*q^4 + 7*q^3 + 4*q^2 + 2*q + 1

We check with a finite tensor product:

sage: TP = crystals.TensorProduct(C, C)
sage: TP.cardinality()
25600

sage: qdim = TP.q_dimension(use_product=True); qdim
# long time
q^32 + 2*q^31 + 8*q^30 + 15*q^29 + 34*q^28 + 63*q^27 + 110*q^26 + 175*q^25 + 276*q^24 + 389*q^23 + 550*q^22 + 725*q^21 + 930*q^20 + 1131*q^19 + 1362*q^18 + 1548*q^17 + 1736*q^16 + 1858*q^15 + 1947*q^14 + 1944*q^13 + 1918*q^12 + 1777*q^11 + 1628*q^10 + 1407*q^9 + 1186*q^8 + 928*q^7 + 720*q^6 + 498*q^5 + 342*q^4 + 201*q^3 + 117*q^2 + 48*q + 26

sage: qdim(1)
# long time
25600

sage: TP.q_dimension() == qdim
# long time
True

The \( q \)-dimensions of infinite crystals are returned as formal power series:

sage: C = crystals.LSPaths(['A',2,1], [1,0,0])
sage: C.q_dimension(prec=5)
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + O(q^5)

sage: C.q_dimension(prec=10)
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 + 9*q^7 + 13*q^8 + 16*q^9 + 0(q^10)

sage: qdim = C.q_dimension(); qdim
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 + 9*q^7 + 13*q^8 + 16*q^9 + 22*q^10 + 0(x^11)
sage: qdim.compute_coefficients(15)
sage: qdim
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6
+ 9*q^7 + 13*q^8 + 16*q^9 + 22*q^10 + 27*q^11
+ 36*q^12 + 44*q^13 + 57*q^14 + 70*q^15 + O(x^16)

class TensorProducts(category, *args)
    
    Bases: sage.categories.tensor.TensorProductsCategory

    The category of highest weight crystals constructed by tensor product
    of highest weight crystals.

    class ParentMethods
        
        Bases: object

        Implements operations on tensor products of crystals.

        highest_weight_vectors()
        
        Return the highest weight vectors of self.

        This works by using a backtracing algorithm since if \(b_2 \otimes b_1\) is
        highest weight then \(b_1\) is highest weight.

        EXAMPLES:

        sage: C = crystals.Tableaux(['D',4], shape=[2,2])
sage: D = crystals.Tableaux(['D',4], shape=[1])
sage: T = crystals.TensorProduct(D, C)
sage: T.highest_weight_vectors()

        ([[[1]], [[1, 1], [2, 2]]],
         [[[3]], [[1, 1], [2, 2]]],
         [[[2]], [[1, 1], [2, 2]]])
sage: L = filter(lambda x: x.is_highest_weight(), T)
sage: tuple(L) == T.highest_weight_vectors()
        True

        highest_weight_vectors_iterator()
        
        Iterate over the highest weight vectors of self.

        This works by using a backtracing algorithm since if \(b_2 \otimes b_1\) is
        highest weight then \(b_1\) is highest weight.

        EXAMPLES:

        sage: C = crystals.Tableaux(['D',4], shape=[2,2])
sage: D = crystals.Tableaux(['D',4], shape=[1])
sage: T = crystals.TensorProduct(D, C)
sage: tuple(T.highest_weight_vectors_iterator())

        ([[[1]], [[1, 1], [2, 2]]],
         [[[3]], [[1, 1], [2, 2]]],
         [[[2]], [[1, 1], [2, 2]]])
sage: L = filter(lambda x: x.is_highest_weight(), T)
sage: tuple(L) == tuple(T.highest_weight_vectors_iterator())
        True

        extra_super_categories()
        
        EXAMPLES:
additional_structure()
Return None.
Indeed, the category of highest weight crystals defines no additional structure: it only guarantees the existence of a unique highest weight element in each component.

See also:
Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

```sage
sage: HighestWeightCrystals().additional_structure()
```

example()
Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

```sage
sage: B = HighestWeightCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1
```

super_categories()
EXAMPLES:

```sage
sage: HighestWeightCrystals().super_categories()
[Category of crystals]
```

4.93 Hopf algebras

class sage.categories.hopf_algebras.HopfAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Hopf algebras.

EXAMPLES:

```sage
sage: HopfAlgebras(QQ)
Category of hopf algebras over Rational Field
sage: HopfAlgebras(QQ).super_categories()
[Category of bialgebras over Rational Field]
```

class DualCategory(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Hopf algebras constructed as dual of a Hopf algebra

class ParentMethods
Bases: object
class ElementMethods
  Bases: object
  antipode()
  Return the antipode of self

  EXAMPLES:

  sage: A = HopfAlgebrasWithBasis(QQ).example(); A
  An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
  sage: [a,b] = A.algebra_generators()
  sage: a, a.antipode()
  (B[(1,2,3)], B[(1,3,2)])
  sage: b, b.antipode()
  (B[(1,3)], B[(1,3)])

class Morphism(s=\text{None})
  Bases: \text{sage.categories.category.Category}

  The category of Hopf algebra morphisms.

class ParentMethods
  Bases: object

class Realizations(category, *\text{args})
  Bases: \text{sage.categories.realizations.RealizationsCategory}

class ParentMethods
  Bases: object
  antipode_by_coercion(x)
  Returns the image of $x$ by the antipode

  This default implementation coerces to the default realization, computes the antipode there, and coerces the result back.

  EXAMPLES:

  sage: N = NonCommutativeSymmetricFunctions(QQ)
  sage: R = N.ribbon()
  sage: R.antipode_by_coercion.__module__
  'sage.categories.hopf_algebras'
  sage: R.antipode_by_coercion(R[1,3,1])
  -R[2, 1, 2]

class Super(base_category)
  Bases: \text{sage.categories.super_modules.SuperModulesCategory}

  The category of super Hopf algebras.

  \textbf{Note:} A super Hopf algebra is \textit{not} simply a Hopf algebra with a $\mathbb{Z}/2\mathbb{Z}$ grading due to the signed bialgebra compatibility conditions.

class ElementMethods
  Bases: object
  antipode()
  Return the antipode of self.
EXAMPLES:

```python
sage: A = SteenrodAlgebra(3)
sage: a = A.an_element()
sage: a, a.antipode()
(2 Q_1 Q_3 P(2,1), Q_1 Q_3 P(2,1))
```

dual()

Return the dual category.

EXAMPLES:

The category of super Hopf algebras over any field is self dual:

```python
sage: C = HopfAlgebras(QQ).Super()
sage: C.dual()
Category of super hopf algebras over Rational Field
```

class TensorProducts(category, *args)

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of Hopf algebras constructed by tensor product of Hopf algebras

class ElementMethods

Bases: object

class ParentMethods

Bases: object

extra_super_categories()

EXAMPLES:

```python
sage: C = HopfAlgebras(QQ).TensorProducts()
sage: C.extra_super_categories()
[Category of hopf algebras over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of hopf algebras over Rational Field, Category of tensor products of algebras over Rational Field, Category of tensor products of coalgebras over Rational Field]
```

WithBasis

alias of `sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis`

dual()

Return the dual category

EXAMPLES:

The category of Hopf algebras over any field is self dual:

```python
sage: C = HopfAlgebras(QQ)
sage: C.dual()
Category of hopf algebras over Rational Field
```

super_categories()

EXAMPLES:

```python
sage: HopfAlgebras(QQ).super_categories()
[Category of bialgebras over Rational Field]
```
4.94 Hopf algebras with basis

```
class sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

 The category of Hopf algebras with a distinguished basis

 EXAMPLES:

 sage: C = HopfAlgebrasWithBasis(QQ)
 sage: C
 Category of hopf algebras with basis over Rational Field
 sage: C.super_categories()
 [Category of hopf algebras over Rational Field,
 Category of bialgebras with basis over Rational Field]

 We now show how to use a simple Hopf algebra, namely the group algebra of the dihedral group (see also AlgebrasWithBasis):

 sage: A = C.example(); A
 An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
 sage: A.__custom_name = "A"
 sage: A.category()
 Category of finite dimensional hopf algebras with basis over Rational Field
 sage: A.one_basis()
 ()
 sage: A.one()
 B[()]

 sage: A.base_ring()
 Rational Field
 sage: A.basis().keys()
 Dihedral group of order 6 as a permutation group
 sage: [a,b] = A.algebra_generators()
 sage: a, b
 (B[(1,2,3)], B[(1,3)])
 sage: a^3, b^2
 (B[()], B[()])
 sage: a*b
 B[(1,2)]
 sage: A.product
 # todo: not quite ...
 <bound method MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_basis_multiply of A>
 sage: A.product(b,b)
 B[()]
 sage: A.zero().coproduct()
 0
 sage: A.zero().coproduct().parent()
 A # A
```

(continues on next page)
Let us look at the code for implementing $A$:

```python
sage: A ?? # todo: not implemented
class ElementMethods
 Bases: object
 Filtered
 alias of sage.categories.filtered_hopf_algebras_with_basis.FilteredHopfAlgebrasWithBasis
 FiniteDimensional
 alias of sage.categories.finite_dimensional_hopf_algebras_with_basis.
```

4.94. Hopf algebras with basis
**FiniteDimensionalHopfAlgebrasWithBasis**

**Graded**

alias of \( \text{sage.categories.graded_hopf_algebras_with_basis.} \text{GradedHopfAlgebrasWithBasis} \)

class **ParentMethods**

Bases: object

**antipode()**

The antipode of this Hopf algebra.

If `antipode_basis()` is available, this constructs the antipode morphism from `self` to `self` by extending it by linearity. Otherwise, `self.antipode_by_coercion()` is used, if available.

**EXAMPLES:**

```python
sage: A = HopfAlgebrasWithBasis(ZZ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Integer Ring
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: [a,b] = A.algebra_generators()
sage: a, A.antipode(a)
(B[(1,2,3)], B[(1,3,2)])
sage: b, A.antipode(b)
(B[(1,3)], B[(1,3)])
```

**antipode_on_basis(x)**

The antipode of the Hopf algebra on the basis (optional)

**INPUT:**

- \( x \) – an index of an element of the basis of `self`

Returns the antipode of the basis element indexed by \( x \).

If this method is implemented, then `antipode()` is defined from this by linearity.

**EXAMPLES:**

```python
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: W = A.basis().keys(); W
Dihedral group of order 6 as a permutation group
sage: w = W.gen(0); w
(1,2,3)
sage: A.antipode_on_basis(w)
B[(1,3,2)]
```

**Super**

alias of \( \text{sage.categories.super_hopf_algebras_with_basis.} \text{SuperHopfAlgebrasWithBasis} \)

class **TensorProducts**(category, *args)

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of hopf algebras with basis constructed by tensor product of hopf algebras with basis

class **ElementMethods**

Bases: object

class **ParentMethods**

Bases: object
extra_super_categories()

EXAMPLES:

```python
sage: C = HopfAlgebrasWithBasis(QQ).TensorProducts()
sage: C.extra_super_categories()
[Category of hopf algebras with basis over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of hopf algebras with basis over Rational Field,
Category of tensor products of algebras with basis over Rational Field,
Category of tensor products of hopf algebras over Rational Field]
```

example(G=None)

Returns an example of algebra with basis:

```python
sage: HopfAlgebrasWithBasis(QQ['x']).example()
An example of Hopf algebra with basis: the group algebra of the Dihedral group\textsuperscript{\textcircled{2}} of order 6 as a permutation group over Univariate Polynomial Ring in x over\textsuperscript{\textcircled{2}} Rational Field
```

An other group can be specified as optional argument:

```python
sage: HopfAlgebrasWithBasis(QQ).example(SymmetricGroup(4))
An example of Hopf algebra with basis: the group algebra of the Symmetric group\textsuperscript{\textcircled{2}} of order 4! as a permutation group over Rational Field
```

4.95 H-trivial semigroups

class sage.categories.h_trivial_semigroups.HTrivialSemigroups(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Finite_extra_super_categories()

Implement the fact that a finite $H$-trivial is aperiodic

EXAMPLES:

```python
sage: Semigroups().HTrivial().Finite_extra_super_categories()
[Category of aperiodic semigroups]
sage: Semigroups().HTrivial().Finite() is Semigroups().Aperiodic().Finite()
True
```

Inverse_extra_super_categories()

Implement the fact that an $H$-trivial inverse semigroup is $J$-trivial.

Todo: Generalization for inverse semigroups.

Recall that there are two invertibility axioms for a semigroup $S$:

- One stating the existence, for all $x$, of a local inverse $y$ satisfying $x = xyx$ and $y = yxy$;
- One stating the existence, for all $x$, of a global inverse $y$ satisfying $xy = yx = 1$, where $1$ is the unit of $S$ (which must of course exist).

It is sufficient to have local inverses for $H$-triviality to imply $J$-triviality. However, at this stage, only the second axiom is implemented in Sage (see `Magmas.Unital.SubcategoryMethods.Inverse()`).
Therefore this fact is only implemented for semigroups with global inverses, that is groups. However the trivial group is the unique $H$-trivial group, so this is rather boring.

EXAMPLES:

```sage
sage: Semigroups().HTrivial().Inverse_extra_super_categories()
[Category of j trivial semigroups]
sage: Monoids().HTrivial().Inverse()
Category of h trivial groups
```

### 4.96 Infinite Enumerated Sets

AUTHORS:


```python
class sage.categories.infinite_enumerated_sets.InfiniteEnumeratedSets(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of infinite enumerated sets

An infinite enumerated sets is a countable set together with a canonical enumeration of its elements.

EXAMPLES:

```sage
sage: InfiniteEnumeratedSets()
Category of infinite enumerated sets
sage: InfiniteEnumeratedSets().super_categories()
[Category of enumerated sets, Category of infinite sets]
sage: InfiniteEnumeratedSets().all_super_categories()
[Category of infinite enumerated sets, 
  Category of enumerated sets, 
  Category of infinite sets, 
  Category of sets, 
  Category of sets with partial maps, 
  Category of objects]
```

```python
class ParentMethods
    Bases: object

    list()
    Returns an error since self is an infinite enumerated set.

    EXAMPLES:

```sage
sage: NN = InfiniteEnumeratedSets().example()
sage: NN.list()
Traceback (most recent call last):
 ...
NotImplementedError: cannot list an infinite set
```

```python
random_element()
 Returns an error since self is an infinite enumerated set.

 EXAMPLES:
```
 TODO: should this be an optional abstract_method instead?

### 4.97 Integral domains

```python
class sage.categories.integral_domains.IntegralDomains(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton
 The category of integral domains
 An integral domain is commutative ring with no zero divisors, or equivalently a commutative domain.

 EXAMPLES:

 sage: C = IntegralDomains(); C
 Category of integral domains
 sage: sorted(C.super_categories(), key=str)
 [Category of commutative rings, Category of domains]
 sage: C is Domains().Commutative()
 True
 sage: C is Rings().Commutative().NoZeroDivisors()
 True
```

```python
class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

 is_integral_domain()
 Return True, since this in an object of the category of integral domains.

 EXAMPLES:

 sage: QQ.is_integral_domain()
 True
 sage: Parent(QQ,category=IntegralDomains()).is_integral_domain()
 True
```

### 4.98 J-trivial semigroups

```python
class sage.categories.j_trivial_semigroups.JTrivialSemigroups(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

 extra_super_categories()
 Implement the fact that a J-trivial semigroup is L and R-trivial.

 EXAMPLES:
```
4.99 Kac-Moody Algebras

AUTHORS:

- Travis Scrimshaw (07-15-2017): Initial implementation

class sage.categories.kac_moody_algebras.KacMoodyAlgebras(base, name=None)
    Bases: sage.categories.category_types.Category_over_base_ring

Category of Kac-Moody algebras.

class ParentMethods
    Bases: object

    cartan_type()
    Return the Cartan type of self.
    EXAMPLES:

    sage: L = LieAlgebra(QQ, cartan_type=['A', 2])
    sage: L.cartan_type()
    ['A', 2]

    weyl_group()
    Return the Weyl group of self.
    EXAMPLES:

    sage: L = LieAlgebra(QQ, cartan_type=['A', 2])
    sage: L.weyl_group()
    Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)

    example(n=2)
    Return an example of a Kac-Moody algebra as per Category.example.
    EXAMPLES:

    sage: from sage.categories.kac_moody_algebras import KacMoodyAlgebras
    sage: KacMoodyAlgebras(QQ).example()
    Lie algebra of ['A', 2] in the Chevalley basis

    We can specify the rank of the example:

    sage: KacMoodyAlgebras(QQ).example(4)
    Lie algebra of ['A', 4] in the Chevalley basis

    super_categories()
    EXAMPLES:

    sage: from sage.categories.kac_moody_algebras import KacMoodyAlgebras
    sage: KacMoodyAlgebras(QQ).super_categories()
    [Category of Lie algebras over Rational Field]
4.100 Lambda Bracket Algebras

AUTHORS:


class sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Lambda bracket algebras.

This is an abstract base category for Lie conformal algebras and super Lie conformal algebras.

class ElementMethods
Bases: object

T(n=1)
The n-th derivative of self.

INPUT:
• n – integer (default:1); how many times to apply T to this element

OUTPUT:
T^n a where a is this element. Notice that we use the divided powers notation T(j) = T^j / j!

EXAMPLES:

```
sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.inject_variables()
Defining L, C
sage: L.T() TL
sage: L.T(3) 6*T^(3)L
sage: C.T() 0
```

bracket(rhs)
The λ-bracket of these two elements.

EXAMPLES:

The brackets of the Virasoro Lie conformal algebra:

```
sage: Vir = lie_conformal_algebras.Virasoro(QQ); L = Vir.0
sage: L.bracket(L) {0: TL, 1: 2*L, 3: 1/2*C}
sage: L.bracket(L.T()) {0: 2*T^(2)L, 1: 3*TL, 2: 4*L, 4: 2*C}
```

Now with a current algebra:

```
sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
sage: V.gens()
(B[alpha[1]], B[alphacheck[1]], B[-alpha[1]], B['K'])
sage: E = V.0; H = V.1; F = V.2;
sage: H.bracket(H) {1: 2*B['K']}
```
 sage: E.bracket(F)
{0: B[alphacheck[1]], 1: B['K']}

\textbf{nproduct}(\textit{rhs}, \textit{n})

The \textit{n}-th product of these two elements.

\textbf{EXAMPLES:}

 sage: Vir = lie_conformal_algebras.Virasoro(QQ); L = Vir.0
 sage: L.nproduct(L, 3)
1/2*C
 sage: L.nproduct(L.T(), 0)
2*T^(2)L
 sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
 sage: E = V.0; H = V.1; F = V.2;
 sage: E.nproduct(H, 0) == - 2*E
True
 sage: E.nproduct(F, 1)
B['K']

\textbf{FinitelyGeneratedAsLambdaBracketAlgebra}

alias of \textit{sage.categories.finitely_generated_lambda_bracket_algebras.}
\textit{FinitelyGeneratedLambdaBracketAlgebras}

\textbf{class ParentMethods}

Bases: object

\textbf{ideal}(\textit{*gens}, \textit{**kwds})

The ideal of this Lambda bracket algebra generated by \textit{gens}.

\textbf{Todo:}  Ideals of Lie Conformal Algebras are not implemented yet.

\textbf{EXAMPLES:}

 sage: Vir = lie_conformal_algebras.Virasoro(QQ)
 sage: Vir.ideal()
Traceback (most recent call last):
 ... 
NotImplementedError: ideals of Lie Conformal algebras are not implemented yet

\textbf{class SubcategoryMethods}

Bases: object

\textbf{FinitelyGenerated}()

The category of finitely generated Lambda bracket algebras.

\textbf{EXAMPLES:}

 sage: LieConformalAlgebras(QQ).FinitelyGenerated()
Category of finitely generated lie conformal algebras over Rational Field

\textbf{FinitelyGeneratedAsLambdaBracketAlgebra}()

The category of finitely generated Lambda bracket algebras.
EXAMPLES:
```
sage: LieConformalAlgebras(QQ).FinitelyGenerated()
Category of finitely generated lie conformal algebras over Rational Field
```

```
WithBasis
alias of sage.categories.lambda_bracket_algebras_with_basis.
LambdaBracketAlgebrasWithBasis
```

```
sage: from sage.categories.lambda_bracket_algebras import LambdaBracketAlgebras
sage: LambdaBracketAlgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]
```

### 4.101 Lambda Bracket Algebras With Basis

AUTHORS:

- Reimundo Heluani (2020-08-21): Initial implementation.

```
class sage.categories.lambda_bracket_algebras_with_basis.LambdaBracketAlgebrasWithBasis(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
 The category of Lambda bracket algebras with basis.
```

```
sage: LieConformalAlgebras(QQbar).WithBasis()
Category of Lie conformal algebras with basis over Algebraic Field
```

```
class ElementMethods
 Bases: object
 index()
 The index of this basis element.
```

```
sage: V = lie_conformal_algebras.NeveuSchwarz(QQ)
sage: V.inject_variables()
Defining L, G, C
sage: G.T(3).index()
('G', 3)
sage: v = V.an_element(); v
L + G + C
sage: v.index()
Traceback (most recent call last):
 ... ValueError: index can only be computed for monomials, got L + G + C
```

```
class FinitelyGeneratedAsLambdaBracketAlgebra(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
```

4.101. Lambda Bracket Algebras With Basis
The category of finitely generated lambda bracket algebras with basis.

EXAMPLES:

```python
sage: C = LieConformalAlgebras(QQbar)
sage: C.WithBasis().FinitelyGenerated()
Category of finitely generated Lie conformal algebras with basis over Algebraic Field

sage: C.WithBasis().FinitelyGenerated() is C.FinitelyGenerated().WithBasis()
True
```

class Graded(base_category):

Bases: `sage.categories.graded_modules.GradedModulesCategory`

The category of H-graded finitely generated lambda bracket algebras with basis.

EXAMPLES:

```python
sage: LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated().Graded()
Category of H-graded finitely generated Lie conformal algebras with basis over Algebraic Field
```

class ParentMethods

Bases: object

```
degree_on_basis(m)
```

Return the degree of the basis element indexed by m in self.

EXAMPLES:

```python
sage: V = lie_conformal_algebras.Virasoro(QQ)
sage: V.degree_on_basis(('L',2))
4
```

### 4.102 Lattice posets

```python
class sage.categories.lattice_posets.LatticePosets(s=None)

Bases: `sage.categories.category.Category`
```

The category of lattices, i.e. partially ordered sets in which any two elements have a unique supremum (the elements' least upper bound; called their `join`) and a unique infimum (greatest lower bound; called their `meet`).

EXAMPLES:

```python
sage: LatticePosets()
Category of lattice posets
sage: LatticePosets().super_categories()
[Category of posets]
sage: LatticePosets().example()
NotImplemented
```

See also:

Posets, `FiniteLatticePosets`, `LatticePoset()`

Finite

alias of `sage.categories.finite_lattice_posets.FiniteLatticePosets`
Category Framework, Release 9.6

class ParentMethods
Bases: object
join(x, y)
Returns the join of 𝑥 and 𝑦 in this lattice
INPUT:
• x, y – elements of self
EXAMPLES:
sage: D = LatticePoset((divisors(60), attrcall("divides")))
sage: D.join( D(6), D(10) )
30
meet(x, y)
Returns the meet of 𝑥 and 𝑦 in this lattice
INPUT:
• x, y – elements of self
EXAMPLES:
sage: D = LatticePoset((divisors(30), attrcall("divides")))
sage: D.meet( D(6), D(15) )
3
super_categories()
Returns a list of the (immediate) super categories of self, as per Category.super_categories().
EXAMPLES:
sage: LatticePosets().super_categories()
[Category of posets]

4.103 Left modules
class sage.categories.left_modules.LeftModules(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring
The category of left modules left modules over an rng (ring not necessarily with unit), i.e. an abelian group with
left multiplication by elements of the rng
EXAMPLES:
sage: LeftModules(ZZ)
Category of left modules over Integer Ring
sage: LeftModules(ZZ).super_categories()
[Category of commutative additive groups]
class ElementMethods
Bases: object
class ParentMethods
Bases: object
super_categories()
EXAMPLES:

4.103. Left modules

529


4.104 Lie Algebras

AUTHORS:

- Travis Scrimshaw (07-15-2013): Initial implementation

```python
sage: LeftModules(QQ).super_categories()
[Category of commutative additive groups]
```

```python
class sage.categories.lie_algebras.LieAlgebras(base, name=None)
 Bases: sage.categories.category_types.Category_over_base_ring

The category of Lie algebras.

EXAMPLES:

```python
sage: C = LieAlgebras(QQ); C
Category of Lie algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of vector spaces over Rational Field]
```

We construct a typical parent in this category, and do some computations with it:

```python
sage: A = C.example(); A
An example of a Lie algebra: the Lie algebra from the associative algebra Symmetric group algebra of order 3 over Rational Field generated by ([2, 1, 3], [2, 3, 1])

sage: A.category()
Category of Lie algebras over Rational Field
sage: A.base_ring()
Rational Field

sage: a, b = A.lie_algebra_generators()
sage: a.bracket(b)
-[[1, 3, 2] + [3, 2, 1]]
sage: b.bracket(2*a + b)
2*[1, 3, 2] - 2*[3, 2, 1]
sage: A.bracket(a, b)
-[[1, 3, 2] + [3, 2, 1]]
```

Please see the source code of \texttt{A} (with \texttt{A?}) for how to implement other Lie algebras.

Todo: Many of these tests should use Lie algebras that are not the minimal example and need to be added after trac ticket #16820 (and trac ticket #16823).

```python
class ElementMethods
    Bases: object

    bracket(rhs)
        Return the Lie bracket \([self, \text{rhs}]\).
```
EXAMPLES:

```
sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: x.bracket(y)
- [1, 3, 2] + [3, 2, 1]
sage: x.bracket(0)
0
```

\texttt{exp}(\texttt{lie_group=None})

Return the exponential of self in \texttt{lie_group}.

INPUT:

- \texttt{lie_group} – (optional) the Lie group to map into; If \texttt{lie_group} is not given, the Lie group associated to the parent Lie algebra of self is used.

EXAMPLES:

```
sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: g = (X + Y + Z).exp(); g
# optional - \rightarrow \texttt{sage\_symbolic}
exp(X + Y + Z)
sage: h = X.exp(); h
# optional - \rightarrow \texttt{sage\_symbolic}
exp(X)
sage: g.parent()
# optional - \rightarrow \texttt{sage\_symbolic}
Lie group G of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over \rightarrow \texttt{Rational Field}
sage: g.parent() is h.parent()
# optional - \rightarrow \texttt{sage\_symbolic}
True
```

The Lie group can be specified explicitly:

```
sage: H = L.lie_group('H')
# optional - \rightarrow \texttt{sage\_symbolic}
sage: k = Z.exp(lie\_group=H); k
# optional - \rightarrow \texttt{sage\_symbolic}
exp(Z)
sage: k.parent()
# optional - \rightarrow \texttt{sage\_symbolic}
Lie group H of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over \rightarrow \texttt{Rational Field}
sage: g.parent() == k.parent()
# optional - \rightarrow \texttt{sage\_symbolic}
False
```

\texttt{killing_form}(\texttt{x})

Return the Killing form of self and \texttt{x}.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
```

(continues on next page)
sage: a.killing_form(b)
0

lift()
Return the image of self under the canonical lift from the Lie algebra to its universal enveloping algebra.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 3*a + b - c
sage: elt.lift()
3*b0 + b1 - b2
```

```python
sage: L.<x,y> = LieAlgebra(QQ, abelian=True)
sage: x.lift()
x
```

to_vector(order=None)
Return the vector in g.module() corresponding to the element self of g (where g is the parent of self).

Implement this if you implement g.module(). See LieAlgebras.module() for how this is to be done.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L((1, 0, 0)).to_vector(); u
(1, 0, 0)
sage: parent(u)
Vector space of dimension 3 over Rational Field
```

class `FiniteDimensional`(base_category)
Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring` WithBasis
alias of `sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis`

eextra_super_categories()
Implements the fact that a finite dimensional Lie algebra over a finite ring is finite.

EXAMPLES:

```python
sage: LieAlgebras(IntegerModRing(4)).FiniteDimensional().extra_super_categories()
[Category of finite sets]
sage: LieAlgebras(ZZ).FiniteDimensional().extra_super_categories()
[]
sage: LieAlgebras(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: LieAlgebras(ZZ).FiniteDimensional().is_subcategory(Sets().Finite())
False
```
Graded

alias of `sage.categories.graded_lie_algebras.GradedLieAlgebras`

class Nilpotent(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

Category of nilpotent Lie algebras.

class ParentMethods

Bases: object

`is_nilpotent()`

Return True since `self` is nilpotent.

EXAMPLES:

```
sage: h = lie_algebras.Heisenberg(ZZ, oo)
sage: h.is_nilpotent()
True
```

`step()`

Return the nilpotency step of `self`.

EXAMPLES:

```
sage: h = lie_algebras.Heisenberg(ZZ, oo)
sage: h.step()
2
```

class ParentMethods

Bases: object

`baker_campbell_hausdorff(X, Y, prec=None)`

Return the element `log(exp(X) exp(Y))`.

The BCH formula is an expression for `log(exp(X) exp(Y))` as a sum of Lie brackets of `X` and `Y` with rational coefficients. It is only defined if the base ring of `self` has a coercion from the rationals.

INPUT:

- `X` – an element of `self`
- `Y` – an element of `self`
- `prec` – an integer; the maximum length of Lie brackets to be considered in the formula

EXAMPLES:

The BCH formula for the generators of a free nilpotent Lie algebra of step 4:

```
sage: L = LieAlgebra(QQ, 2, step=4)
sage: L.inject_variables()
Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1222
sage: L.bch(X_1, X_2)
X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1112
```

An example of the BCH formula in a quotient:
sage: Q = L.quotient(X_112 + X_122)
sage: x, y = Q.basis().list()[:2]
sage: Q.bch(x, y)
X_1 + X_2 + 1/2*X_12 - 1/24*X_1112

The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:

sage: L.<X,Y> = LieAlgebra(QQ)
sage: L.bch(X, Y)
Traceback (most recent call last):
...
ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision
sage: L.bch(X, Y, 4)
X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[X, [Y, Y]] + Y

bch(X, Y, prec=None)

Return the element log(exp(X) exp(Y)).

The BCH formula is an expression for log(exp(X) exp(Y)) as a sum of Lie brackets of X and Y with rational coefficients. It is only defined if the base ring of self has a coercion from the rationals.

INPUT:
• X – an element of self
• Y – an element of self
• prec – an integer; the maximum length of Lie brackets to be considered in the formula

EXAMPLES:
The BCH formula for the generators of a free nilpotent Lie algebra of step 4:

sage: L = LieAlgebra(QQ, 2, step=4)
sage: L.inject_variables()
Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222
sage: L.bch(X_1, X_2)
X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_1112 + 1/24*X_1112

An example of the BCH formula in a quotient:

sage: Q = L.quotient(X_112 + X_122)
sage: x, y = Q.basis().list()[:2]
sage: Q.bch(x, y)
X_1 + X_2 + 1/2*X_12 - 1/24*X_1112

The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:
```python
sage: L.<X,Y> = LieAlgebra(QQ)
sage: L.bch(X, Y)
Traceback (most recent call last):
  ... 
ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision
sage: L.bch(X, Y, 4)
X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[X, Y] + Y
```

The BCH formula requires a coercion from the rationals:

```python
sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2)
sage: L.bch(X, Y)
Traceback (most recent call last):
  ... 
TypeError: the BCH formula is not well defined since Integer Ring has no coercion from Rational Field
```

```
bracket(lhs, rhs)

Return the Lie bracket [lhs, rhs] after coercing lhs and rhs into elements of self.

If lhs and rhs are Lie algebras, then this constructs the product space, and if only one of them is a Lie algebra, then it constructs the corresponding ideal.

EXAMPLES:
```
```python
sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: L.bracket(x, x + y)
-1*[[1, 3, 2], [3, 2, 1]]
sage: L.bracket(x, 0)
0
sage: L.bracket(0, x)
0
```
Constructing the product space:

```python
sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: Z = L.bracket(L, L); Z
Ideal (z) of Heisenberg algebra of rank 1 over Rational Field
sage: L.bracket(L, Z)
Ideal () of Heisenberg algebra of rank 1 over Rational Field
```

Constructing ideals:

```python
sage: p,q,z = L.basis(); (p,q,z)
(p1, q1, z)
sage: L.bracket(3*p, L)
Ideal (3*p1) of Heisenberg algebra of rank 1 over Rational Field
sage: L.bracket(L, q+p)
Ideal (p1 + q1) of Heisenberg algebra of rank 1 over Rational Field
```

```
from_vector(v, order=None, coerce=False)

Return the element of self corresponding to the vector v in self.module().
```
Implement this if you implement `module()`; see the documentation of the latter for how this is to be done.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True
```

`ideal(*gens, **kwds)`

Return the ideal of `self` generated by `gens`.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.ideal([2*a - c, b + c])
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[ 1 0 -1/2]
[ 0 1 1]
```

```python
sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: L.ideal([x + y])
Traceback (most recent call last):
  ...  
NotImplementedError: ideals not yet implemented: see #16824
```

`is_abelian()`

Return `True` if this Lie algebra is abelian.

A Lie algebra g is abelian if $[x, y] = 0$ for all $x, y \in g$.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).example()
sage: L.is_abelian()
False
sage: R = QQ['x,y']
sage: L = LieAlgebras(QQ).example(R.gens())
sage: L.is_abelian()
True
```

```python
sage: L.<x> = LieAlgebra(QQ,1)  # todo: not implemented - #16823
sage: L.is_abelian()            # todo: not implemented - #16823
True
sage: L.<x,y> = LieAlgebra(QQ,2)  # todo: not implemented - #16823
sage: L.is_abelian()            # todo: not implemented - #16823
False
```

`is_commutative()`

Return if `self` is commutative. This is equivalent to `self` being abelian.
EXAMPLES:

```python
sage: L = LieAlgebras(QQ).example()
sage: L.is_commutative()
False

sage: L.<x> = LieAlgebra(QQ, 1)  # todo: not implemented - #16823
sage: L.is_commutative()  # todo: not implemented - #16823
True
```

`is_ideal(A)`

Return if `self` is an ideal of `A`.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).example()
sage: L.is_ideal(L)
True
```

`is_nilpotent()`

Return if `self` is a nilpotent Lie algebra.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_nilpotent()
True
```

`is_solvable()`

Return if `self` is a solvable Lie algebra.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_solvable()
True
```

`killing_form(x, y)`

Return the Killing form of `x` and `y`.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.killing_form(a, b+c)
0
```

`lie_group(name='G', **kwds)`

Return the simply connected Lie group related to `self`.

INPUT:

* name – string (default: 'G'); the name (symbol) given to the Lie group

EXAMPLES:
The `lift()` method constructs the lift morphism from `self` to the universal enveloping algebra of `self` (the latter is implemented as `universal_enveloping_algebra()`).

This is a Lie algebra homomorphism. It is injective if `self` is a free module over its base ring, or if the base ring is a \(\mathbb{Q}\)-algebra.

Examples:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: lifted = L.lift(2*a + b - c); lifted
2*b0 + b1 - b2
sage: lifted.parent() is L.universal_enveloping_algebra()
True
```

The `module()` method returns an \(R\)-module which is isomorphic to the underlying \(R\)-module of `self`.

The rationale behind this method is to enable linear algebraic functionality on `self` (such as computing the span of a list of vectors in `self`) via an isomorphism from `self` to an \(R\)-module (typically, although not always, an \(R\)-module of the form \(R^n\) for an \(n \in \mathbb{N}\) on which such functionality already exists. For this method to be of any use, it should return an \(R\)-module which has linear algebraic functionality that `self` does not have.

For instance, if `self` has ordered basis \((e, f, h)\), then `self.module()` will be the \(R\)-module \(R^3\), and the elements \(e, f\) and \(h\) of `self` will correspond to the basis vectors \((1, 0, 0)\), \((0, 1, 0)\) and \((0, 0, 1)\) of `self.module()`.

This method `module()` needs to be set whenever a finite-dimensional Lie algebra with basis is intended to support linear algebra (which is, e.g., used in the computation of centralizers and lower central series). One then needs to also implement the \(R\)-module isomorphism from `self` to `self.module()` in both directions; that is, implement:

- a `to_vector` ElementMethod which sends every element of `self` to the corresponding element of `self.module()`;
- a `from_vector` ParentMethod which sends every element of `self.module()` to an element of `self`.

The `from_vector` method will automatically serve as an element constructor of `self` (that is, `self(v)` for any `v` in `self.module()` will return `self.from_vector(v)`).

Todo: Ensure that this is actually so.

Examples:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.module()
Vector space of dimension 3 over Rational Field
```

The `subalgebra()` method returns the subalgebra of `self` generated by `gens`.

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.module()
Vector space of dimension 3 over Rational Field
```
EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.subalgebra([2*a - c, b + c])
```

An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field
with basis matrix:
```
[ 1  0 -1/2]
[ 0  1  1]
```

```python
sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: L.subalgebra([x + y])
```

Traceback (most recent call last):
...
NotImplementedError: subalgebras not yet implemented: see #17416

``universal_enveloping_algebra``

Return the universal enveloping algebra of self.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.universal_enveloping_algebra()
Noncommutative Multivariate Polynomial Ring in b0, b1, b2
over Rational Field, nc-relations: {}
```

```python
sage: L = LieAlgebra(QQ, 3, 'x', abelian=True)
sage: L.universal_enveloping_algebra()
Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
```

See also:

``lift()``

class SubcategoryMethods

Bases: object

``Nilpotent``

Return the full subcategory of nilpotent objects of self.

A Lie algebra L is nilpotent if there exist an integer s such that all iterated brackets of L of length more than s vanish. The integer s is called the nilpotency step. For instance any abelian Lie algebra is nilpotent of step 1.

EXAMPLES:

```python
sage: LieAlgebras(QQ).Nilpotent()
Category of nilpotent Lie algebras over Rational Field
```

```python
sage: LieAlgebras(QQ).WithBasis().Nilpotent()
Category of nilpotent lie algebras with basis over Rational Field
```

``WithBasis``

alias of sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis

``example(gens=None)``

Return an example of a Lie algebra as per Category.example.
EXAMPLES:

```
sage: LieAlgebras(QQ).example()
An example of a Lie algebra: the Lie algebra from the associative algebra
Symmetric group algebra of order 3 over Rational Field
genenerated by ([2, 1, 3], [2, 3, 1])
```

Another set of generators can be specified as an optional argument:

```
sage: F.<x,y,z> = FreeAlgebra(QQ)
sage: LieAlgebras(QQ).example(F.gens())
An example of a Lie algebra: the Lie algebra from the associative algebra
Free Algebra on 3 generators (x, y, z) over Rational Field
genenerated by (x, y, z)
```

```
sage: LieAlgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]
```

class `Sage.categories.lie_algebras.LiftMorphism(domain, codomain)`

Bases: `sage.categories.morphism.Morphism`

The natural lifting morphism from a Lie algebra to its enveloping algebra.

4.105 Lie Algebras With Basis

AUTHORS:

- Travis Scrimshaw (07-15-2013): Initial implementation

```
class sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis(base_category)
    Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`
The category of Lie algebras with a basis.

class ElementMethods
    Bases: `object`
    lift()
        Lift self to the universal enveloping algebra.
    EXAMPLES:
```
```sage: S = SymmetricGroup(3).algebra(QQ)
sage: L = LieAlgebra(associative=S)
sage: x = L.gens(3)
sage: y = L.gens(1)
sage: x.lift()
b3
sage: y.lift()
b1
sage: x * y
b1*b3 + b4 - b5
```
to_vector(order=None)
Return the vector in g.module() corresponding to the element self of g (where g is the parent of self).
Implement this if you implement g.module(). See sage.categories.lie_algebras.LieAlgebras.module() for how this is to be done.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.an_element().to_vector()
(0, 0, 0)
```

Todo: Doctest this implementation on an example not overshadowed.

Graded
alias of sage.categories.graded_lie_algebras_with_basis.GradedLieAlgebrasWithBasis

class ParentMethods
Bases: object

bracket_on_basis(x, y)
Return the bracket of basis elements indexed by x and y where x < y. If this is not implemented, then the method _bracket_() for the elements must be overwritten.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.bracket_on_basis(Partition([3,1]), Partition([2,2,1,1]))
0
```

dimension()
Return the dimension of self.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.dimension()
3
```

```python
sage: L = LieAlgebra(QQ, 'x,y', {'x':1})
sage: L.dimension()
2
```

from_vector(v, order=None, coerce=False)
Return the element of self corresponding to the vector v in self.module().
Implement this if you implement module(); see the documentation of sage.categories.lie_algebras.LieAlgebras.module() for how this is to be done.

EXAMPLES:

```python
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True
```
The `module()` method returns an R-module which is isomorphic to the underlying R-module of `self`. See `sage.categories.lie_algebras.LieAlgebras.module()` for an explanation.

```python
sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.module()
Free module generated by Partitions over Rational Field
```

The `pbw_basis()` method returns the Poincare-Birkhoff-Witt basis of the universal enveloping algebra corresponding to `self`.

```python
sage: L = lie_algebras.sl(QQ, 2)
sage: PBW = L.pbw_basis()
```

The `poincare_birkhoff_witt_basis()` method also returns the Poincare-Birkhoff-Witt basis of the universal enveloping algebra corresponding to `self`.

```python
sage: L = lie_algebras.sl(QQ, 2)
sage: PBW = L.pbw_basis()
```

The `example()` method returns an example of a Lie algebra as per `Category.example`.

```python
sage: LieAlgebras(QQ).WithBasis().example()
An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Partitions over Rational Field
```

An example with a different set of generators:

```python
sage: LieAlgebras(QQ).WithBasis().example(Compositions())
An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Compositions of non-negative integers
over Rational Field
```

4.106 Lie Conformal Algebras

Let R be a commutative ring, a super Lie conformal algebra [Kac1997] over R (also known as a vertex Lie algebra) is an $R[T]$ super module L together with a $\mathbb{Z}/2\mathbb{Z}$-graded R-bilinear operation (called the λ-bracket) $L \otimes L \to L[\lambda]$ (polynomials in λ with coefficients in L), $a \otimes b \mapsto [a_\lambda b]$ satisfying

1. Sesquilinearity:

 $$[Ta_\lambda b] = -\lambda[a_\lambda b], \quad [a_\lambda Tb] = (\lambda + T)[a_\lambda b].$$

2. Skew-Symmetry:

 $$[a_\lambda b] = -(-1)^{p(a)p(b)}[b_{-\lambda - T} a],$$

where $p(x)$ denotes the parity of the element x. These conditions ensure that the λ-bracket behaves like a λ-derivation, which is essential for the structure of vertex Lie algebras.
where \(p(a) \) is 0 if \(a \) is even and 1 if \(a \) is odd. The bracket in the RHS is computed as follows. First we evaluate \([b_\mu, a]\) with the formal parameter \(\mu \) to the left, then replace each appearance of the formal variable \(\mu \) by \(-\lambda - T\). Finally apply \(T \) to the coefficients in \(L \).

3. Jacobi identity:

\[
[a_\lambda [b_\mu, c]] = [[a_\lambda + \mu b_\mu, c] + (-1)^{p(a)p(b)}[b_\mu, a_\lambda c]],
\]

which is understood as an equality in \(L[\lambda, \mu] \).

\(T \) is usually called the translation operation or the derivative. For an element \(a \in L \) we will say that \(Ta \) is the derivative of \(a \). We define the \(n \)-th products \(a(n) b \) for \(a, b \in L \) by

\[
[a_\lambda b] = \sum_{n \geq 0} \frac{\lambda^n}{n!} a(n) b.
\]

A Lie conformal algebra is called H-Graded [DSK2006] if there exists a decomposition \(L = \oplus L_n \) such that the \(\lambda \)-bracket becomes graded of degree \(-1\), that is:

\[
a(n) b \in L_{p+q-n-1} \quad a \in L_p, \ b \in L_q, \ n \geq 0.
\]

In particular this implies that the action of \(T \) increases degree by 1.

Note: In the literature arbitrary gradings are allowed. In this implementation we only support non-negative rational gradings.

EXAMPLES:

1. The Virasoro Lie conformal algebra \(\mathcal{V} \) over a ring \(R \) where 12 is invertible has two generators \(L, C \) as an \(R[T]\)-module. It is the direct sum of a free module of rank 1 generated by \(L \), and a free rank one \(R \) module generated by \(C \) satisfying \(TC = 0 \). \(C \) is central (the \(\lambda \)-bracket of \(C \) with any other vector vanishes). The remaining \(\lambda \)-bracket is given by

\[
[L_\lambda L] = TL + 2\lambda L + \frac{\lambda^3}{12} C.
\]

2. The affine or current Lie conformal algebra \(\mathcal{L}(\mathfrak{g}) \) associated to a finite dimensional Lie algebra \(\mathfrak{g} \) with non-degenerate, invariant \(R \)-bilinear form \((,) \) is given as a central extension of the free \(R[T] \) module generated by \(\mathfrak{g} \) by a central element \(K \). The \(\lambda \)-bracket of generators is given by

\[
[a_\lambda b] = [a, b] + \lambda(a, b)K, \quad a, b \in \mathfrak{g}
\]

3. The Weyl Lie conformal algebra, or \(\beta - \gamma \) system is given as the central extension of a free \(R[T] \) module with two generators \(\beta \) and \(\gamma \), by a central element \(K \). The only non-trivial brackets among generators are

\[
[\beta_\lambda \gamma] = -[\gamma_\lambda \beta] = K
\]

4. The Neveu-Schwarz super Lie conformal algebra is a super Lie conformal algebra which is an extension of the Virasoro Lie conformal algebra. It consists of a Virasoro generator \(L \) as in example 1 above and an odd generator \(G \). The remaining brackets are given by:

\[
[L_\lambda G] = \left(T + \frac{3}{2} \lambda \right) G \quad [G_\lambda G] = 2L + \frac{\lambda^2}{3} C
\]

See also:

4.106. Lie Conformal Algebras
• sage.algebras.lie_conformal_algebras.lie_conformal_algebra
• sage.algebras.lie_conformal_algebras.examples

AUTHORS:
• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.lie_conformal_algebras.LieConformalAlgebras(base, name=None):
 Bases: sage.categories.category_types.Category_over_base_ring

 The category of Lie conformal algebras.

 This is the base category for all Lie conformal algebras. Subcategories with axioms are FinitelyGenerated
 and WithBasis. A finitely generated Lie conformal algebra is a Lie conformal algebra over \(R \) which is finitely
 generated as an \(R[T] \)-module. A Lie conformal algebra with basis is one with a preferred basis as an \(R \)-module.

 EXAMPLES:

 The base category:

 sage: C = LieConformalAlgebras(QQ);
 Category of Lie conformal algebras over Rational Field
 sage: C.is_subcategory(VectorSpaces(QQ))
 True

 Some subcategories:

 sage: LieConformalAlgebras(QQbar).FinitelyGenerated().WithBasis()
 Category of finitely generated Lie conformal algebras with basis over Algebraic...

 In addition we support functorial constructions Graded and Super. These functors commute:

 sage: LieConformalAlgebras(AA).Graded().Super()
 Category of H-graded super Lie conformal algebras over Algebraic Real Field
 sage: LieConformalAlgebras(AA).Graded().Super() is LieConformalAlgebras(AA).Super().
 : Graded()
 True

 That is, we only consider gradings on super Lie conformal algebras that are compatible with the \(\mathbb{Z}/2\mathbb{Z} \) grading.

 The base ring needs to be a commutative ring:

 sage: LieConformalAlgebras(QuaternionAlgebra(2))
 Traceback (most recent call last):
 ValueError: base must be a commutative ring got Quaternion Algebra (-1, -1) with...

 : base ring Rational Field

 class ElementMethods
 Bases: object

 is_even_odd()
 Return 0 if this element is even and 1 if it is odd.

 Note: This method returns 0 by default since every Lie conformal algebra can be thought as a purely
 even Lie conformal algebra. In order to implement a super Lie conformal algebra, the user needs to
 implement this method.
EXAMPLES:

```
sage: R = lie_conformal_algebras.NeveuSchwarz(QQ);
sage: R.inject_variables()
Defining L, G, C
sage: G.is_even_odd()
1
```

FinitelyGeneratedAsLambdaBracketAlgebra

alias of `sage.categories.finitely_generated_lie_conformal_algebras.FinitelyGeneratedLieConformalAlgebras`

Graded

alias of `sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebras`

class ParentMethods

Bases: object

Super

alias of `sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras`

WithBasis

alias of `sage.categories.lie_conformal_algebras_with_basis.LieConformalAlgebrasWithBasis`

example()

An example of parent in this category.

EXAMPLES:

```
sage: LieConformalAlgebras(QQ).example()
The Virasoro Lie conformal algebra over Rational Field
```

super_categories()

The list of super categories of this category.

EXAMPLES:

```
sage: C = LieConformalAlgebras(QQ)
sage: C.super_categories()
[Category of Lambda bracket algebras over Rational Field]
sage: C = LieConformalAlgebras(QQ).FinitelyGenerated(); C
Category of finitely generated lie conformal algebras over Rational Field
sage: C.super_categories()
[Category of finitely generated lambda bracket algebras over Rational Field, Category of Lie conformal algebras over Rational Field]
sage: C.all_super_categories()
[Category of finitely generated lambda bracket algebras over Rational Field, Category of Lie conformal algebras over Rational Field, Category of vector spaces over Rational Field, Category of modules over Rational Field, Category of bimodules over Rational Field on the left and Rational Field on the right, Category of right modules over Rational Field, Category of left modules over Rational Field, ...
```
4.107 Lie Conformal Algebras With Basis

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class Sage.categories.lie_conformal_algebras_with_basis.LieConformalAlgebrasWithBasis(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of Lie conformal algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).WithBasis()
Category of Lie conformal algebras with basis over Algebraic Field

class FinitelyGeneratedAsLambdaBracketAlgebra(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finitely generated Lie conformal algebras with basis.

EXAMPLES:

sage: C = LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated()
sage: C.
Category of finitely generated Lie conformal algebras with basis over Algebraic Field

sage: C.is(C.FinitelyGenerated().WithBasis())
True

class Graded(base_category)

Bases: sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory

The category of H-graded finitely generated Lie conformal algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated().Graded()
Category of H-graded finitely generated Lie conformal algebras with basis over Algebraic Field
class Super(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super finitely generated Lie conformal algebras with basis.

EXAMPLES:

```sage
sage: LieConformalAlgebras(AA).WithBasis().FinitelyGenerated().Super() Category of super finitely generated Lie conformal algebras with basis over Algebraic Real Field
```

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded super finitely generated Lie conformal algebras with basis.

EXAMPLES:

```sage
sage: C = LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated()
sage: C.Graded().Super() Category of H-graded super finitely generated Lie conformal algebras with basis over Algebraic Field
```

```sage
sage: C.Graded().Super() is C.Super().Graded()
True
```

class Graded(base_category)
Bases: sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory

The category of H-graded super Lie conformal algebras with basis.

EXAMPLES:

```sage
sage: LieConformalAlgebras(QQbar).WithBasis().Super().Graded() Category of H-graded super Lie conformal algebras with basis over Algebraic Field
```

class ParentMethods
Bases: object
4.108 Lie Groups

```
class sage.categories.lie_groups.LieGroups(base, name=None):
    Bases: sage.categories.category_types.Category_over_base_ring

    The category of Lie groups.

    A Lie group is a topological group with a smooth manifold structure.

    EXAMPLES:

    sage: from sage.categories.lie_groups import LieGroups
    sage: C = LieGroups(QQ); C
    Category of Lie groups over Rational Field

    additional_structure()

    Return None.

    Indeed, the category of Lie groups defines no new structure: a morphism of topological spaces and of
    smooth manifolds is a morphism as Lie groups.

    See also:

    Category.additional_structure()

    EXAMPLES:

    sage: from sage.categories.lie_groups import LieGroups
    sage: LieGroups(QQ).additional_structure()

    super_categories()

    EXAMPLES:

    sage: from sage.categories.lie_groups import LieGroups
    sage: LieGroups(QQ).super_categories()
    [Category of topological groups,
     Category of smooth manifolds over Rational Field]
```

4.109 Loop Crystals

```
class sage.categories.loop_crystals.KirillovReshetikhinCrystals(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

    Category of Kirillov-Reshetikhin crystals.

    class ElementMethods

    Bases: object

    energy_function()

    Return the energy function of self.

    Let $B$ be a KR crystal. Let $b^\dagger$ denote the unique element such that $\varphi(b^\dagger) = \ell \Lambda_0$ with $\ell = \min \{ \langle c, \varphi(b) \rangle \mid b \in B \}$. Let $u_B$ denote the maximal element of $B$. The energy of $b \in B$ is given by

    $$D(b) = H(b \otimes b^\dagger) - H(u_B \otimes b^\dagger),$$

    where $H$ is the local energy function.
```
EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: for x in K.classically_highest_weight_vectors():
    ...:    x, x.energy_function()
    ([], 1)
    ([[1], [2]], 0)

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1,2)
sage: for x in K.classically_highest_weight_vectors():
    ...:    x, x.energy_function()
    ([], 2)
    ([[1]], 1)
    ([[1, 1]], 0)
```

`lusztig_involution()`

Return the result of the classical Lusztig involution on `self`.

EXAMPLES:

```python
sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR')
sage: mg = KRT.module_generators[1]
sage: mg.lusztig_involution()
[[-2, -2, 1], [-1, -1, 2]]
sage: elt = mg.f_string([2,1,3,2]); elt
[[3, -2, 1], [4, -1, 2]]
sage: elt.lusztig_involution()
[[3, -2, 1], [4, -1, 2]]
```

class `ParentMethods`

Bases: object

`R_matrix(K)`

Return the combinatorial R-matrix of `self` to K.

The combinatorial R-matrix is the affine crystal isomorphism $R : L \otimes K \to K \otimes L$ which maps $u_L \otimes u_K$ to $u_K \otimes u_L$, where u_K is the unique element in $K = B^{r,s}$ of weight $s\Lambda_r - sc\Lambda_0$ (see `maximal_vector()`).

INPUT:

- `self` – a crystal L
- `K` – a Kirillov-Reshetikhin crystal of the same type as L

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: L = crystals.KirillovReshetikhin(['A',2,1],1,2)
sage: f = K.R_matrix(L)
sage: [[b,f(b)] for b in crystals.TensorProduct(K,L)]
[[[[[1]], [[1], [1]]], [[[1], [1]], [[1]]]],
 [[[1]], [[1], [2]]], [[[1, 1], [2]]],
 [[[1]], [[2], [2]]], [[[1, 2], [2]]],
 [[[1]], [[1], [3]]], [[[1, 1], [3]]],
 [[[1]], [[2], [3]]], [[[1, 2], [3]]],
 [[[1]], [[1], [3]]], [[[1, 1], [3]]],
 [[[1]], [[2], [3]]], [[[1, 2], [3]]],
 [[[2]], [[1], [1]]], [[[1], [2]], [[1]]]]
```
sage: K = crystals.KirillovReshetikhin(['D',4,1],1,1)
sage: L = crystals.KirillovReshetikhin(['D',4,1],2,1)
sage: f = K.R_matrix(L)
sage: T = crystals.TensorProduct(K,L)
sage: b = T(K(rows=[[1]]), L(rows=[[]])
sage: f(b)
[[[2], [-2]], [[1]]]

Alternatively, one can compute the combinatorial R-matrix using the isomorphism method of digraphs:

sage: K1 = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: K2 = crystals.KirillovReshetikhin(['A',2,1],2,1)
sage: T1 = crystals.TensorProduct(K1,K2)
sage: T2 = crystals.TensorProduct(K2,K1)
sage: T1.digraph().is_isomorphic(T2.digraph(), edge_labels=True, certificate=True, certificate=True) # todo: not implemented (see #10904 and #10549)
(True, {
[[[1]], [[2], [3]]]: [[[1], [3]], [[2]]], [[[3]], [[2], [3]]]:
----[[2], [3]], [[3]]],
[[[3]], [[1], [3]]]: [[[1], [3]], [[3]]], [[[1]], [[1], [3]]]: [[[1], [3]],
----[[1]], [[3]]],
[[[1], [2]]]: [[[1], [2]], [[1]]], [[[2]], [[1], [2]]]: [[[1], [2]], [[2]]],
----[[3]],
[[[2]], [[1], [2]]]: [[[2], [3]], [[1]]], [[[2]], [[1], [3]]]: [[[1], [2]], [[3]]],
----[[2]], [[2], [3]]: [[[2], [3]], [[2]]]})

affinization()

Return the corresponding affinization crystal of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.affinization()
Affinization of Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r, s)=(1,1)

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1, model='KR')
sage: K.affinization()
Affinization of Kirillov-Reshetikhin tableaux of type ['A', 2, 1] and shape (1,1)

b_sharp()

Return the element $b^\#$ of self.
Let B be a KR crystal. The element b^\dagger is the unique element such that $\varphi(b^\dagger) = \ell \Lambda_0$ with $\ell = \min\{c, \varphi(b) \mid b \in B\}$.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,1)
sage: K.b_sharp()
[]
sage: K.b_sharp().Phi()
Lambda[0]

sage: K = crystals.KirillovReshetikhin(['C',3,1], 1,3)
sage: K.b_sharp()
[-1]
sage: K.b_sharp().Phi()
2*Lambda[0]

sage: K = crystals.KirillovReshetikhin(['D',6,2], 2,2)
sage: K.b_sharp()  # long time
[]
sage: K.b_sharp().Phi()  # long time
2*Lambda[0]
```

cardinality()
Return the cardinality of self.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,1)
sage: K.cardinality()
27
sage: K = crystals.KirillovReshetikhin(['C',6,1], 4,3)
sage: K.cardinality()
4736732
```

classical_decomposition()
Return the classical decomposition of self.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['A', 3] and shape(s) [[2, 2]]
```

classically_highest_weight_vectors()
Return the classically highest weight elements of self.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.classically_highest_weight_vectors()
([(1,)],)
```

is_perfect(ell=None)
Check if self is a perfect crystal of level ell.

A crystal B is perfect of level ℓ if:
1. \mathcal{B} is isomorphic to the crystal graph of a finite-dimensional $U'_q(g)$-module.
2. $\mathcal{B} \otimes \mathcal{B}$ is connected.
3. There exists a $\lambda \in X$, such that $\text{wt}(\mathcal{B}) \subset \lambda + \sum_{i \in I} Z_{\leq 0} \alpha_i$ and there is a unique element in \mathcal{B} of classical weight λ.
4. For all $b \in \mathcal{B}$, $\text{level}(\varepsilon(b)) \geq \ell$.
5. For all dominant weights of level ℓ, there exist unique elements $b_\Lambda, b^\Lambda \in \mathcal{B}$, such that $\varepsilon(b_\Lambda) = \Lambda = \varphi(b^\Lambda)$.

Points (1)-(3) are known to hold. This method checks points (4) and (5).

If self is the Kirillov-Reshetikhin crystal $B^{r,s}$, then it was proven for non-exceptional types in [FOS2010] that it is perfect if and only if s/c_r is an integer (where c_r is a constant related to the type of the crystal).

It is conjectured this is true for all affine types.

INPUT:
- ell – (default: s/c_r) integer; the level

REFERENCES:
[FOS2010]

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.is_perfect()
True
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1)
sage: K.is_perfect()
False
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2)
sage: K.is_perfect()
True
sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,3)
sage: K.is_perfect()
True
```

Todo: Implement a version for tensor products of KR crystals.

```python
level()
```

Return the level of self when self is a perfect crystal.

See also:
- is_perfect()

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.level()
1
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2)
sage: K.level()
1
```
local_energy_function(B)
Return the local energy function of self and B.
See LocalEnergyFunction for a definition.

```python
sage: K = crystals.KirillovReshetikhin(['A',6,2], 2, 1)
sage: Kp = crystals.KirillovReshetikhin(['A',6,2], 1, 1)
sage: H = K.local_energy_function(Kp); H
Local energy function of Kirillov-Reshetikhin crystal of type ['BC', 3, 2] with (r,s)=(2,1) tensor Kirillov-Reshetikhin crystal of type ['BC', 3, 2] with (r,s)=(1,1)
```

maximal_vector()
Return the unique element of classical weight $s\Lambda_r$ in self.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['C',2,1],1,2)
sage: K.maximal_vector()[[1, 1]]
sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.maximal_vector()[(1,)]
```

module_generator()
Return the unique module generator of classical weight $s\Lambda_r$ of the Kirillov-Reshetikhin crystal $B_{r,s}$.

EXAMPLES:

```python
sage: La = RootSystem(['G',2,1]).weight_space().fundamental_weights()
sage: K = crystals.ProjectedLevelZeroLSPaths(La[1])
sage: K.module_generator()(-Lambda[0] + Lambda[1],)
```

q_dimension(q=None, $prec$=None, use_product=False)
Return the q-dimension of self.

The q-dimension of a KR crystal is defined as the q-dimension of the underlying classical crystal.
EXAMPLES:

```python
sage: KRC = crystals.KirillovReshetikhin(['A',2,1], 2,2)
sage: KRC.q_dimension()
q^4 + q^3 + 2*q^2 + q + 1
sage: KRC = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: KRC.q_dimension()
q^10 + q^9 + 3*q^8 + 3*q^7 + 4*q^6 + 4*q^5 + 4*q^4 + 3*q^3 + 3*q^2 + q + 2
```

```
r()
Return the value \( r \) in \texttt{self} written as \( B^{r,s} \).

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,4)
sage: K.r()
2
```

```
s()
Return the value \(s \) in \texttt{self} written as \(B^{r,s} \).

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,4)
sage: K.s()
4
```
```

```python
class TensorProducts(category, *args):
 Bases: sage.categories.tensor.TensorProductsCategory

 The category of tensor products of Kirillov-Reshetikhin crystals.

class ElementMethods
 Bases: object

 affine_grading()
 Return the affine grading of \texttt{self}.

 The affine grading is calculated by finding a path from \texttt{self} to a ground state path (using the helper method \texttt{e_string_to_ground_state()}) and counting the number of affine Kashiwara operators \(e_0 \) applied on the way.

 OUTPUT: an integer

 EXAMPLES:

    ```python
    sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]
sage: t'affine_grading()
1
```
```
```python
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]
sage: t'affine_grading()
1
```
```python
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
 : print("{} {}".format(b, b'affine_grading()))
[[[1]], [[1]], [[1]]] 3
```
```
e_string_to_ground_state()

Return a string of integers in the index set \((i_1, \ldots, i_k)\) such that \(e_{i_k} \cdots e_{i_1}\) of \texttt{self} is the ground state.

This method calculates a path from \texttt{self} to a ground state path using Demazure arrows as defined in Lemma 7.3 in [ST2011].

OUTPUT: a tuple of integers \((i_1, \ldots, i_k)\)

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]
sage: t.e_string_to_ground_state()
(0, 2)
```

```python
sage: K = crystals.KirillovReshetikhin(['C',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]; t
[[[1]], [[1]]]
sage: t.e_string_to_ground_state()
(0,)
sage: x = t.e(0)
sage: x.e_string_to_ground_state()
()
sage: y = t.f_string([1,2,1,1,0]); y
[[[2]], [[1]]]
sage: y.e_string_to_ground_state()
()
```

energy_function(algorithm=None)

Return the energy function of \texttt{self}.

ALGORITHM:
Let T be a tensor product of Kirillov-Reshetikhin crystals. Let R_i and H_i be the combinatorial R-matrix and local energy functions, respectively, acting on the i and $i + 1$ factors. Let D_B be the energy function of a single Kirillov-Reshetikhin crystal. The energy function is given by

$$D = \sum_{j>i} H_i R_{i+1} R_{i+2} \cdots R_{j-1} + \sum_j D_B R_1 R_2 \cdots R_{j-1},$$

where D_B acts on the rightmost factor.

grading

If `self` is an element of T, a tensor product of perfect crystals of the same level, then use the affine grading to determine the energy. Specifically, let g denote the affine grading of `self` and d the affine grading of the maximal vector in T. Then the energy of `self` is given by $d - g$.

For more details, see Theorem 7.5 in [ST2011].

INPUT:

- `algorithm` – (default: None) use one of the following algorithms to determine the energy function:
 - `'definition'` - use the definition of the energy function;
 - `'grading'` - use the affine grading;

 if not specified, then this uses `'grading'` if all factors are perfect of the same level and otherwise this uses `'definition'`

OUTPUT: an integer

EXAMPLES:

```sage
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: T = crystals.TensorProduct(K,K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw: ....:     print("{} {}".format(b, b.energy_function()))
[[[1]], [[1]], [[1]]] 0
[[[2]], [[1]], [[1]]] 1
[[[1]], [[2]], [[1]]] 2
[[[3]], [[2]], [[1]]] 3

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2)
sage: T = crystals.TensorProduct(K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw: ....:     print("{} {}".format(b, b.energy_function()))
[[], [1]] 4
[[[1, 1]], [], [1]] 3
[[], [1, [1]]] 1
[[[1, 1]], [[1, 1]]] 0
[[[1, 2]], [[1, 1]]] 1
[[[2, 2]], [[1, 1]]] 2
[[[-1, -1]], [[1, 1]]] 2
[[[1, -1]], [[1, 1]]] 2
[[[2, -1]], [[1, 1]]] 2
```
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1)
sage: T = crystals.TensorProduct(K)
sage: t = T.module_generators[0]
sage: t.energy_function('grading')
Traceback (most recent call last):
...
NotImplementedError: all crystals in the tensor product need to be perfect of the same level

class ParentMethods
 Bases: object

cardinality()
 Return the cardinality of self.

 EXAMPLES:

 sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [1, 2]])
sage: RC.cardinality()
100
sage: len(RC.list())
100

sage: RC = RiggedConfigurations(['E', 7, 1], [[1,1]])
sage: RC.cardinality()
134
sage: len(RC.list())
134

sage: RC = RiggedConfigurations(['B', 3, 1], [[2,2],[1,2]])
sage: RC.cardinality()
5130

classically_highest_weight_vectors()
 Return the classically highest weight elements of self.

 This works by using a backtracking algorithm since if $b_2 \otimes b_1$ is classically highest weight then b_1 is classically highest weight.

 EXAMPLES:

 sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K,K)
sage: T.classically_highest_weight_vectors()
([[[1]], [[1]], [[1]]],
 [[[2]], [[1]], [[1]]],
 [[[1]], [[2]], [[1]]],
 [[[3]], [[2]], [[1]]])

maximal_vector()
 Return the maximal vector of self.

 EXAMPLES:
```python
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: T.maximal_vector()
[[[1]], [[1]], [[1]]]
```

one-dimensional_configuration_sum *(q=None, group_components=True)*

Compute the one-dimensional configuration sum of self.

INPUT:
- **q** – (default: None) a variable or None; if None, a variable q is set in the code
- **group_components** – (default: True) boolean; if True, then the terms are grouped by classical component

The one-dimensional configuration sum is the sum of the weights of all elements in the crystal weighted by the energy function.

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: T.one_dimensional_configuration_sum()
sage: R.<t> = ZZ[]
sage: T.one_dimensional_configuration_sum(t, False)
sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: LS.one_dimensional_configuration_sum() == T.one_dimensional_configuration_sum() # long time
True
```

extra_super_categories()

EXAMPLES:

```python
sage: from sage.categories.loop_crystals import KirillovReshetikhinCrystals
sage: KirillovReshetikhinCrystals().TensorProducts().extra_super_categories()
[Category of finite regular loop crystals]
```

super_categories()

EXAMPLES:

```python
sage: from sage.categories.loop_crystals import KirillovReshetikhinCrystals
sage: KirillovReshetikhinCrystals().super_categories()
[Category of finite regular loop crystals]
```

class `sage.categories.loop_crystals.LocalEnergyFunction(B, Bp, normalization=0)`

Bases: `sage.categories.map.Map`

The local energy function.

558 Chapter 4. Individual Categories
Let B and B' be Kirillov-Reshetikhin crystals with maximal vectors u_B and $u_{B'}$, respectively. The local energy function $H : B \otimes B' \to \mathbb{Z}$ is the function which satisfies

$$H(e_0(b \otimes b')) = H(b \otimes b') + \begin{cases} 1 & \text{if } i = 0 \text{ and LL}, \\ -1 & \text{if } i = 0 \text{ and RR}, \\ 0 & \text{otherwise}, \end{cases}$$

where LL (resp. RR) denote e_0 acts on the left (resp. right) on both $b \otimes b'$ and $R(b \otimes b')$, and normalized by $H(u_B \otimes u_{B'}) = 0$.

INPUT:

- B – a Kirillov-Reshetikhin crystal
- B' – a Kirillov-Reshetikhin crystal
- normalization – (default: 0) the normalization value

EXAMPLES:

```python
sage: K = crystals.KirillovReshetikhin(['C', 2, 1], 1, 2)
sage: K2 = crystals.KirillovReshetikhin(['C', 2, 1], 2, 1)
sage: H = K.local_energy_function(K2)
sage: T = tensor([K, K2])
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
    ....:     b, H(b)
([[]], [[1], [2]], 1)
([[[1, 1], [[1], [2]]], 0)
([[[2, -2], [[1], [2]]], 1])
([[[1, -2], [[1], [2]]], 1])
```

REFERENCES:

[KKMMNN1992]
INPUT:
• subset – (optional) a subset of vertices for which the digraph should be constructed
• index_set – (optional) the index set to draw arrows

See also:
sage.categories.crystals.Crystals.ParentMethods.digraph()

EXAMPLES:

```python
sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: G = C.digraph()
sage: G.latex_options() # optional - dot2tex
LaTeX options for Digraph on 29 vertices:
{...
edge_options': <function ... at ...>...}
sage: view(G, tightpage=True) # optional - dot2tex graphviz
(open external window)
```

weight_lattice_realization()

Return the weight lattice realization used to express weights of elements in self.

The default is to use the non-extended affine weight lattice.

EXAMPLES:

```python
sage: C = crystals.Letters(['A', 5])
sage: C.weight_lattice_realization()
Ambient space of the Root system of type ['A', 5]
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.weight_lattice_realization()
Weight lattice of the Root system of type ['A', 2, 1]
```

easy_example(n)

Return an example of Kirillov-Reshetikhin crystals, as per Category.example().

EXAMPLES:

```python
sage: from sage.categories.loop_crystals import LoopCrystals
sage: B = LoopCrystals().example(); B
Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(1,1)
```

super_categories()

EXAMPLES:

```python
sage: from sage.categories.loop_crystals import LoopCrystals
sage: LoopCrystals().super_categories()
[Category of crystals]
```

class sage.categories.loop_crystals.RegularLoopCrystals($s=None$)

The category of regular $U_q'(g)$-crystals, where g is of affine type.

class ElementMethods

Bases: object

classical_weight()

Return the classical weight of self.

EXAMPLES:
sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: hw = LS.classically_highest_weight_vectors()
sage: [(v.weight(), v.classical_weight()) for v in hw]
[(-2*Lambda[0] + 2*Lambda[1], (2, 0, 0)),
 (-Lambda[0] + Lambda[2], (1, 1, 0))]

super_categories()
EXAMPLES:

sage: from sage.categories.loop_crystals import RegularLoopCrystals
sage: RegularLoopCrystals().super_categories()
[Category of regular crystals,
 Category of loop crystals]

4.110 L-trivial semigroups

class sage.categories.l_trivial_semigroups.LTrivialSemigroups(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Commutative_extra_super_categories()
Implement the fact that a commutative \(R \)-trivial semigroup is \(J \)-trivial.

EXAMPLES:

sage: Semigroups().LTrivial().Commutative_extra_super_categories()
[Category of \(J \) trivial semigroups]

RTrivial_extra_super_categories()
Implement the fact that an \(L \)-trivial and \(R \)-trivial semigroup is \(J \)-trivial.

EXAMPLES:

sage: Semigroups().LTrivial().RTrivial_extra_super_categories()
[Category of \(J \) trivial magmas]

eextra_super_categories()
Implement the fact that a \(L \)-trivial semigroup is \(H \)-trivial.

EXAMPLES:

sage: Semigroups().LTrivial().extra_super_categories()
[Category of \(H \) trivial semigroups]
4.111 Magmas

class sage.categories.magmas.Magmas(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

The category of (multiplicative) magmas.
A magma is a set with a binary operation \(*\).

EXAMPLES:

```
sage: Magmas()
Category of magmas
sage: Magmas().super_categories()
[Category of sets]
sage: Magmas().all_super_categories()
[Category of magmas, Category of sets, Category of sets with partial maps, Category of objects]
```

The following axioms are defined by this category:

```
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Unital()
Category of unital magmas
sage: Magmas().Commutative()
Category of commutative magmas
sage: Magmas().Unital().Inverse()
Category of inverse unital magmas
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().Unital()
Category of monoids
sage: Magmas().Associative().Unital().Inverse()
Category of groups
```

class Algebras(category, *args)
 Bases: sage.categories.algebra_functor.AlgebrasCategory

 class ParentMethods
 Bases: object

 is_field(proof=True)
 Return True if self is a field.
 For a magma algebra \(RS\) this is always false unless \(S\) is trivial and the base ring \(R\) is a field.

 EXAMPLES:

```
sage: SymmetricGroup(1).algebra(QQ).is_field()
True
sage: SymmetricGroup(1).algebra(ZZ).is_field()
False
sage: SymmetricGroup(2).algebra(QQ).is_field()
False
```
extra_super_categories()

EXAMPLES:

```python
sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
```

This implements the fact that the algebra of a commutative magma is commutative:

```python
sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field, Category of commutative...
˓→magmas]
```

In particular, commutative monoid algebras are commutative algebras:

```python
sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).
˓→Commutative())
True
```

Associative

alias of `sage.categories.semigroups.Semigroups`

class **CartesianProducts**(category, *args)

Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

class **ParentMethods**

Bases: `object`

product(left, right)

EXAMPLES:

```python
sage: C = Magmas().CartesianProducts().example(); C
The Cartesian product of (Rational Field, Integer Ring, Integer Ring)
sage: x = C.an_element(); x
(1/2, 1, 1)
sage: x * x
(1/4, 1, 1)
```

```python
sage: A = SymmetricGroupAlgebra(QQ, 3)
sage: x = cartesian_product([A([1,3,2]), A([2,3,1])])
sage: y = cartesian_product([A([1,3,2]), A([2,3,1])])
sage: cartesian_product([A,A]).product(x,y)
B[(0, [1, 2, 3])] + B[(1, [3, 1, 2])]
sage: x*y
B[(0, [1, 2, 3])] + B[(1, [3, 1, 2])]
```

example()

Return an example of Cartesian product of magmas.

EXAMPLES:

```python
sage: C = Magmas().CartesianProducts().example(); C
The Cartesian product of (Rational Field, Integer Ring, Integer Ring)
sage: C.category()
Join of Category of Cartesian products of commutative rings and
Category of Cartesian products of metric spaces
```

(continues on next page)
extra_super_categories()

This implements the fact that a subquotient (and therefore a quotient or subobject) of a finite set is finite.

EXAMPLES:

```python
sage: Semigroups().CartesianProducts().extra_super_categories()
[Category of semigroups]
sage: Semigroups().CartesianProducts().super_categories()
[Category of semigroups, Category of Cartesian products of magmas]
```

class Commutative(base_category)
Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

class Algebras(category, *args)
Bases: `sage.categories.algebra_functor.AlgebrasCategory`

extra_super_categories()

EXAMPLES:

```python
sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
```

This implements the fact that the algebra of a commutative magma is commutative:

```python
sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field, Category of commutative magmas]
```

In particular, commutative monoid algebras are commutative algebras:

```python
sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).→Commutative())
True
```

class CartesianProducts(category, *args)
Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

extra_super_categories()

Implement the fact that a Cartesian product of commutative additive magmas is still an commutative additive magmas.

EXAMPLES:

```python
sage: C = Magmas().Commutative().CartesianProducts()
sage: C.extra_super_categories()
[Category of commutative magmas]
sage: C.axioms()
frozenset({'Commutative'})
```
class ParentMethods
 Bases: object

 is_commutative()
 Return True, since commutative magmas are commutative.

 EXAMPLES:
 sage: Parent(QQ,category=CommutativeRings()).is_commutative()
 True

class ElementMethods
 Bases: object

 is_idempotent()
 Test whether self is idempotent.

 EXAMPLES:
 sage: S = Semigroups().example("free"); S
 An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')
 sage: a = S('a')
 sage: a^2
 'aa'
 sage: a.is_idempotent()
 False

 sage: L = Semigroups().example("leftzero"); L
 An example of a semigroup: the left zero semigroup
 sage: x = L('x')
 sage: x^2
 'x'
 sage: x.is_idempotent()
 True

FinitelyGeneratedAsMagma
 alias of sage.categories.finitely_generated_magmas.FinitelyGeneratedMagmas

class JTrivial(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
 Bases: object

 multiplication_table(names='letters', elements=None)
 Returns a table describing the multiplication operation.

 Note: The order of the elements in the row and column headings is equal to the order given by the table's list() method. The association can also be retrieved with the dict() method.

 INPUT:
 • names - the type of names used
 - 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements' positions in the list given by column_keys(), padded to a common width with leading 'a's.
 - 'digits' - base 10 representation of the elements' positions in the list given by column_keys(), padded to a common width with leading zeros.
– 'elements' - the string representations of the elements themselves.
– a list - a list of strings, where the length of the list equals the number of elements.

• elements - default = None. A list of elements of the magma, in forms that can be coerced into the structure, eg. their string representations. This may be used to impose an alternate ordering on the elements, perhaps when this is used in the context of a particular structure. The default is to use whatever ordering the S.list method returns. Or the elements can be a subset which is closed under the operation. In particular, this can be used when the base set is infinite.

OUTPUT: The multiplication table as an object of the class OperationTable which defines several methods for manipulating and displaying the table. See the documentation there for full details to supplement the documentation here.

EXAMPLES:
The default is to represent elements as lowercase ASCII letters.

```
sage: G = CyclicPermutationGroup(5)
sage: G.multiplication_table()
* a b c d e
+--------
a| a b c d e
b| b c d e a
c| c d e a b
d| d e a b c
e| e a b c d
```

All that is required is that an algebraic structure has a multiplication defined. A LeftRegularBand is an example of a finite semigroup. The names argument allows displaying the elements in different ways.

```
sage: from sage.categories.examples.finite_semigroups import LeftRegularBand
sage: L = LeftRegularBand(('a', 'b'))
sage: T = L.multiplication_table(names='digits')
sage: T.column_keys()
('a', 'ab', 'b', 'ba')
sage: T
* 0 1 2 3
+--------
0| 0 1 1 1
1| 1 1 1 1
2| 3 3 2 3
3| 3 3 3 3
```

Specifying the elements in an alternative order can provide more insight into how the operation behaves.

```
sage: L = LeftRegularBand(('a', 'b', 'c'))
sage: elts = sorted(L.list())
sage: L.multiplication_table(elements=elts)
* a b c d e f g h i j k l m n o
+----------------------------------
a| a b c d e b b c c d d e e e
b| b b c c c b b c c c c c c
c| c c c c c c c c c c c c
d| d e e e e e e e e e e
e| e e e e e e e e e e e
```

(continues on next page)
The elements argument can be used to provide a subset of the elements of the structure. The subset must be closed under the operation. Elements need only be in a form that can be coerced into the set. The names argument can also be used to request that the elements be represented with their usual string representation.

```python
sage: L=LeftRegularBand(('a','b','c'))
sage: elts=['a', 'c', 'ac', 'ca']
sage: L.multiplication_table(names='elements', elements=elts)
```

The table returned can be manipulated in various ways. See the documentation for OperationTable for more comprehensive documentation.

```python
sage: G=AlternatingGroup(3)
sage: T=G.multiplication_table()
sage: T.column_keys()
((), (1,2,3), (1,3,2))
sage: T.translation()
{'a': (), 'b': (1,2,3), 'c': (1,3,2)}
sage: T.change_names(['x', 'y', 'z'])
sage: T.translation()
{'x': (), 'y': (1,2,3), 'z': (1,3,2)}
sage: T
```

product(x, y)
The binary multiplication of the magma.

INPUT:
- x, y – elements of this magma

OUTPUT:
- an element of the magma (the product of x and y)

EXAMPLES:
A parent in `Magmas()` must either implement `product()` in the parent class or `_mul_` in the element class. By default, the addition method on elements `x._mul_(y)` calls `S.product(x,y)`, and reciprocally.

As a bonus, `S.product` models the binary function from `S` to `S`:

```python
sage: bin = S.product
sage: bin(x,y)
'ab'
```

Currently, `S.product` is just a bound method:

```python
sage: bin
<bound method FreeSemigroup.product of An example of a semigroup: the free
˓→semigroup generated by ('a', 'b', 'c', 'd')>
```

When Sage will support multivariate morphisms, it will be possible, and in fact recommended, to enrich `S.product` with extra mathematical structure. This will typically be implemented using lazy attributes:

```python
sage: bin
# todo: not implemented
Generic binary morphism:
From: (S x S)
To:   S
```

`product_from_element_class_mul(x, y)`

The binary multiplication of the magma.

INPUT:
- `x, y` – elements of this magma

OUTPUT:
- an element of the magma (the product of `x` and `y`)

EXAMPLES:

```python
sage: S = Semigroups().example("free")
sage: x = S('a'); y = S('b')
sage: S.product(x, y)
'ab'
```

A parent in `Magmas()` must either implement `product()` in the parent class or `_mul_` in the element class. By default, the addition method on elements `x._mul_(y)` calls `S.product(x,y)`, and reciprocally.

As a bonus, `S.product` models the binary function from `S` to `S`:

```python
sage: bin = S.product
sage: bin(x,y)
'ab'
```

Currently, `S.product` is just a bound method:
When Sage will support multivariate morphisms, it will be possible, and in fact recommended, to enrich `S.product` with extra mathematical structure. This will typically be implemented using lazy attributes:

```sage
sage: bin # todo: not implemented
Generic binary morphism:
From: (S x S)
To:  S
```

```python
class Realizations(category, *args):
    Bases: sage.categories.realizations.RealizationsCategory
class ParentMethods
    Bases: object
    product_by_coercion(left, right)
    Default implementation of product for realizations.
    This method coerces to the realization specified by `self.realization_of()`.
    a_realization(), computes the product in that realization, and then coerces back.
    EXAMPLES:
```
```
sage: Out = Sets().WithRealizations().example().Out(); Out
The subset algebra of {1, 2, 3} over Rational Field in the Out basis
sage: Out.product
<bound method Magmas.Realizations.ParentMethods.product_by_coercion of
  The subset algebra of {1, 2, 3} over Rational Field in the Out basis>
sage: Out.product.__module__
'sage.categories.magmas'
sage: x = Out.an_element()
sage: y = Out.an_element()
sage: Out.product(x, y)
Out[{}] + 4*Out[{1}] + 9*Out[{2}] + Out[{1, 2}]
```

```python
class SubcategoryMethods
    Bases: object
    Associative()
    Return the full subcategory of the associative objects of `self`.
    A (multiplicative) magma Magmas $M$ is associative if, for all $x, y, z \in M$,
    $$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
    See also:
    Wikipedia article Associative_property
    EXAMPLES:
```
```
sage: Magmas().Associative()
Category of semigroups
```

4.111. Magmas
Commutative()
Return the full subcategory of the commutative objects of self.

A (multiplicative) magma \(M \) is commutative if, for all \(x, y \in M \),

\[
x \ast y = y \ast x
\]

See also:
Wikipedia article Commutative_property

EXAMPLES:

```sage
sage: Magmas().Commutative()
Category of commutative magmas
sage: Monoids().Commutative()
Category of commutative monoids
```

Distributive()
Return the full subcategory of the objects of self where \(\ast \) is distributive on +.

INPUT:
- **self** – a subcategory of **Magmas** and **AdditiveMagmas**

Given that Sage does not yet know that the category **MagmasAndAdditiveMagmas** is the intersection of the categories **Magmas** and **AdditiveMagmas**, the method **MagmasAndAdditiveMagmas.SubcategoryMethods.Distributive()** is not available, as would be desirable, for this intersection.

This method is a workaround. It checks that **self** is a subcategory of both **Magmas** and **AdditiveMagmas** and upgrades it to a subcategory of **MagmasAndAdditiveMagmas** before applying the axiom. It complains otherwise, since the Distributive axiom does not make sense for a plain magma.

EXAMPLES:

```sage
sage: (Magmas() & AdditiveMagmas()).Distributive()
Category of distributive magmas and additive magmas
sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
Category of rings
```

```sage
sage: Magmas().Distributive()
Traceback (most recent call last):
...
ValueError: The distributive axiom only makes sense on a magma which is...

sage: Semigroups().Distributive()
Traceback (most recent call last):
...
ValueError: The distributive axiom only makes sense on a magma which is...
```

FinitelyGenerated()
Return the subcategory of the objects of self that are endowed with a distinguished finite set of (multiplicative) magma generators.

EXAMPLES:

This is a shorthand for **FinitelyGeneratedAsMagma()**, which see:
An error is raised if this is ambiguous:

```python
sage: (Magmas() & AdditiveMagmas()).FinitelyGenerated()
Traceback (most recent call last):
...  
ValueError: FinitelyGenerated is ambiguous for
Join of Category of magmas and Category of additive magmas.
Please use explicitly one of the FinitelyGeneratedAsXXX methods
```

Note: Checking that there is no ambiguity currently assumes that all the other “finitely generated”
axioms involve an additive structure. As of Sage 6.4, this is correct.

The use of this shorthand should be reserved for casual interactive use or when there is no risk of
ambiguity.

FinitelyGeneratedAsMagma()

Return the subcategory of the objects of `self` that are endowed with a distinguished finite set of
(multiplicative) magma generators.

A set S of elements of a multiplicative magma form a set of generators if any element of the magma
can be expressed recursively from elements of S and products thereof.

It is not imposed that morphisms shall preserve the distinguished set of generators; hence this is a full
subcategory.

See also:

Wikipedia article Unital_magma#unital

EXAMPLES:

```python
sage: Magmas().FinitelyGeneratedAsMagma()
Category of finitely generated magmas
```

Being finitely generated does depend on the structure: for a ring, being finitely generated as a magma,
as an additive magma, or as a ring are different concepts. Hence the name of this axiom is explicit:

```python
sage: Rings().FinitelyGeneratedAsMagma()
Category of finitely generated as magma enumerated rings
```

On the other hand, it does not depend on the multiplicative structure: for example a group is finitely
generated if and only if it is finitely generated as a magma. A short hand is provided when there is no
ambiguity, and the output tries to reflect that:

```python
sage: Semigroups().FinitelyGenerated()
Category of finitely generated semigroups
sage: Groups().FinitelyGenerated()
Category of finitely generated enumerated groups
```

(continues on next page)
sage: Semigroups().FinitelyGenerated().axioms()
frozenset({'Associative', 'Enumerated', 'FinitelyGeneratedAsMagma'})

Note that the set of generators may depend on the actual category; for example, in a group, one can often use less generators since it is allowed to take inverses.

JTrivial()

Return the full subcategory of the J-trivial objects of *self*.

This axiom is in fact only meaningful for *semigroups*. This stub definition is here as a workaround for trac ticket #20515, in order to define the J-trivial axiom as the intersection of the L and R-trivial axioms.

See also:

Semigroups.SubcategoryMethods.JTrivial()

Unital()

Return the subcategory of the unital objects of *self*.

A (multiplicative) magma *Magmas* M is unital if it admits an element 1, called *unit*, such that for all $x \in M$,

$$1 \ast x = x \ast 1 = x$$

This element is necessarily unique, and should be provided as *M*.one().

See also:

Wikipedia article Unital_magma#unital

EXAMPLES:

```sage
sage: Magmas().Unital()
Category of unital magmas
sage: Semigroups().Unital()
Category of monoids
sage: Monoids().Unital()
Category of monoids
sage: from sage.categories.associative_algebras import AssociativeAlgebras
sage: AssociativeAlgebras(QQ).Unital()
Category of algebras over Rational Field
```

class Subquotients(*category, **args)

Bases: sage.categories.subquotients.SubquotientsCategory

The category of subquotient magmas.

See Sets.SubcategoryMethods.Subquotients() for the general setup for subquotients. In the case of a subquotient magma S of a magma G, the condition that r be a morphism in As can be rewritten as follows:

- for any two $a, b \in S$ the identity $a \times_S b = r(l(a) \times_G l(b))$ holds.

This is used by this category to implement the product \times_S of S from l and r and the product of G.

EXAMPLES:
```python
sage: Semigroups().Subquotients().all_super_categories()
[Category of subquotients of semigroups, Category of semigroups,
 Category of subquotients of magmas, Category of magmas,
 Category of subquotients of sets, Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

class ParentMethods

Bases: object

product(x, y)

Return the product of two elements of self.

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: S
An example of a (sub)quotient semigroup: a quotient of the left zero semigroup
sage: S.product(S(19), S(3))
19
```

Here is a more elaborate example involving a sub algebra:

```python
sage: Z = SymmetricGroup(5).algebra(QQ).center()
sage: B = Z.basis()
```

class Unital(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom Singleton`

class Algebras(category, *args)

Bases: `sage.categories.algebra_functor.AlgebrasCategory`

extra_super_categories()

EXAMPLES:

```python
sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]
```

This implements the fact that the algebra of a commutative magma is commutative:

```python
sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field,
 Category of commutative magmas]
```

In particular, commutative monoid algebras are commutative algebras:

```python
sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).
  -Commutative())
True
```

class CartesianProducts(category, *args)

Bases: `sage.categories.cartesian_product.CartesianProductsCategory`
class ElementMethods
 _bases: object

class ParentMethods
 _bases: object

 one()
 Return the unit of this Cartesian product.
 It is built from the units for the Cartesian factors of self.

 EXAMPLES:

 sage: cartesian_product([QQ, ZZ, RR]).one()
 (1, 1, 1.00000000000000)

estra_super_categories()
 Implement the fact that a Cartesian product of unital magmas is a unital magma

 EXAMPLES:

 sage: C = Magmas().Unital().CartesianProducts()
 sage: C.extra_super_categories()
 [Category of unital magmas]
 sage: C.axioms()
 frozenset({'Unital'})
 sage: Monoids().CartesianProducts().is_subcategory(Monoids())
 True

class ElementMethods
 _bases: object

class Inverse(
 base_category)
 _bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class CartesianProducts(
 category, *args)
 _bases: sage.categories.cartesian_product.CartesianProductsCategory

 extra_super_categories()
 Implement the fact that a Cartesian product of magmas with inverses is a magma with inverse.

 EXAMPLES:

 sage: C = Magmas().Unital().Inverse().CartesianProducts()
 sage: C.extra_super_categories()
 [Category of inverse unital magmas]
 sage: sorted(C.axioms())
 ['Inverse', 'Unital']

class ParentMethods
 _bases: object

 is_empty()
 Return whether self is empty.
 Since this set is a unital magma it is not empty and this method always return False.

 EXAMPLES:
one()
Return the unit of the monoid, that is the unique neutral element for *.

Note: The default implementation is to coerce 1 into self. It is recommended to override this method because the coercion from the integers:
• is not always meaningful (except for 1);
• often uses self.one().

EXAMPLES:

```python
sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.one()
'
```

class Realizations(category, *args)
Bases: sage.categories.realizations.RealizationsCategory
class ParentMethods
Bases: object
one()
Return the unit element of self.
sage: from sage.combinat.root_system.extended_affine_weyl_group import ExtendedAffineWeylGroup
dsage: PvW0 = ExtendedAffineWeylGroup(['A',2,1]).PvW0()
sage: PvW0 in Magmas().Unital().Realizations() True
sage: PvW0.one() 1

class SubcategoryMethods
Bases: object
Inverse()
Return the full subcategory of the inverse objects of self.
An inverse class: (multiplicative) magma <Magmas> is a unital magma such that every element admits both an inverse on the left and on the right. Such a magma is also called a loop.

See also:
Wikipedia article Inverse_element, Wikipedia article Quasigroup

EXAMPLES:

```python
sage: Magmas().Unital().Inverse()
Category of inverse unital magmas
sage: Monoids().Inverse()
Category of groups
```

additional_structure()
Return self.
Indeed, the category of unital magmas defines an additional structure, namely the unit of the magma which shall be preserved by morphisms.

See also:

Category.additional_structure()

EXAMPLES:

super_categories()

EXAMPLES:

4.112 Magmas and Additive Magmas

class sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas(s=None)

Bases: sage.categories.category_singleton.Category_singleton

The category of sets $(S, +, *)$ with an additive operation ‘+’ and a multiplicative operation ‘*’

EXAMPLES:

This is the base category for the categories of rings and their variants:

This category is really meant to represent the intersection of the categories of Magmas and AdditiveMagmas; however Sage’s infrastructure does not allow yet to model this:

class CartesianProducts(category, *args)
 Bases: sage.categories.cartesian_product.CartesianProductsCategory

 extra_super_categories()
 Implement the fact that this structure is stable under Cartesian products.

Distributive alias of sage.categories.distributive_magmas_and_additive_magmas.
DistributiveMagmasAndAdditiveMagmas

class SubcategoryMethods
 Bases: object

 Distributive()
 Return the full subcategory of the objects of self where * is distributive on +.
 A magma and additive magma M is distributive if, for all $x, y, z \in M$,
 $x \ast (y + z) = x \ast y + x \ast z$ and $(x + y) \ast z = x \ast z + y \ast z$

 EXAMPLES:
 sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
 sage: C = MagmasAndAdditiveMagmas().Distributive(); C
 Category of distributive magmas and additive magmas

 Note: Given that Sage does not know that MagmasAndAdditiveMagmas is the intersection of Magmas and AdditiveMagmas, this method is not available for:
 sage: Magmas() & AdditiveMagmas()
 Join of Category of magmas and Category of additive magmas

 Still, the natural syntax works:
 sage: (Magmas() & AdditiveMagmas()).Distributive()
 Category of distributive magmas and additive magmas

 thanks to a workaround implemented in Magmas.SubcategoryMethods.Distributive():
 sage: (Magmas() & AdditiveMagmas()).Distributive.__module__
 'sage.categories.magmas'

 additional_structure()
 Return None.
 Indeed, this category is meant to represent the join of AdditiveMagmas and Magmas. As such, it defines no additional structure.

 See also:
 Category.additional_structure()

 EXAMPLES:
 sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
 sage: MagmasAndAdditiveMagmas().additional_structure()
4.113 Non-unital non-associative algebras

class sage.categories.magmatic_algebras.MagmaticAlgebras(base, name=None)
 Bases: sage.categories.category_types.Category_over_base_ring

 The category of algebras over a given base ring.

 An algebra over a ring R is a module over R endowed with a bilinear multiplication.

 Warning: MagmaticAlgebras will eventually replace the current Algebras for consistency with e.g. Wikipedia article Algebras which assumes neither associativity nor the existence of a unit (see trac ticket #15043).

 EXAMPLES:

 sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
 sage: C = MagmaticAlgebras(ZZ); C
 Category of magmatic algebras over Integer Ring
 sage: C.super_categories()
 [Category of additive commutative additive associative additive unital distributive magmas and additive magmas,
 Category of modules over Integer Ring]

 Associative
 alias of sage.categories.associative_algebras.AssociativeAlgebras

class ParentMethods
 Bases: object

 algebra_generators()
 Return a family of generators of this algebra.

 EXAMPLES:

 sage: F = AlgebrasWithBasis(QQ).example(); F
 An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
 sage: F.algebra_generators()
 Family (B[word: a], B[word: b], B[word: c])

 Unital
 alias of sage.categories.unital_algebras.UnitalAlgebras

class WithBasis(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
class **FiniteDimensional**(*base_category*)

Bases: *sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring*

class **ParentMethods**

Bases: object

def **derivations_basis()**

Return a basis for the Lie algebra of derivations of self as matrices.

A derivation D of an algebra is an endomorphism of A such that

$$D(ab) = D(a)b + aD(b)$$

for all $a,b \in A$. The set of all derivations form a Lie algebra.

EXAMPLES:

We construct the Heisenberg Lie algebra as a multiplicative algebra:

```python
sage: p_mult = matrix([[0,0,0],[0,0,-1],[0,0,0]])
```

```python
sage: q_mult = matrix([[0,0,1],[0,0,0],[0,0,0]])
```

```python
sage: A = algebras.FiniteDimensional(QQ, ....: [p_mult,q_mult,matrix(QQ,3,3)], 'p,q,z')
```

```python
sage: A.inject_variables()
```

```python
Defining p, q, z
```

```python
sage: p^q * z
```

```python
sage: q^p
```

```python
-z
```

```python
sage: A.derivations_basis()
```

```
(1 0 0) [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [1 0 0] [0 1 0] [0 0 0] [0 0 0]
[0 0 1], [0 0 0], [0 0 0], [0 0 1], [1 0 0], [0 1 0]
```

We construct another example using the exterior algebra and verify we obtain a derivation:

```python
sage: A = algebras.Exterior(QQ, 1)
```

```python
sage: A.derivations_basis()
```

```
(0 0)
[0 1]
```

```python
sage: D = A.module_morphism(matrix=A.derivations_basis()[0], ..., →codomain=A)
```

```python
sage: one, e = A.basis()
```

```python
sage: all(D(a*b) == D(a) * b + a * D(b)
```

```python
....: for a in A.basis() for b in A.basis())
```

```python
True
```

REFERENCES:

Wikipedia article Derivation_(differential_algebra)

class **ParentMethods**

Bases: object

4.113. Non-unital non-associative algebras 579
algebra_generators()
Return generators for this algebra.

This default implementation returns the basis of this algebra.

OUTPUT: a family

See also:
• basis()
• MagmaticAlgebras.ParentMethods.algebra_generators()

EXAMPLES:

```
sage: D4 = DescentAlgebra(QQ, 4).B()
sage: D4.algebra_generators()
Lazy family (...)_{i in Compositions of 4}
```

```
sage: R.<x> = ZZ[]
sage: P = PartitionAlgebra(1, x, R)
sage: P.algebra_generators()
Lazy family (Term map from Partition diagrams of order 1 to
Partition Algebra of rank 1 with parameter x over Univariate Polynomial˓
Ring in x
over Integer Ring(i))_{i in Partition diagrams of order 1}
```

product()
The product of the algebra, as per Magmas.ParentMethods.product()

By default, this is implemented using one of the following methods, in the specified order:
• product_on_basis()
• product_by_coercion()

EXAMPLES:

```
sage: A = AlgebrasWithBasis(QQ).example()
sage: a, b, c = A.algebra_generators()
sage: A.product(a + 2*b, 3*c)
3*B[word: ac] + 6*B[word: bc]
```

product_on_basis(i, j)
The product of the algebra on the basis (optional).

INPUT:
• i, j – the indices of two elements of the basis of self

Return the product of the two corresponding basis elements indexed by i and j.

If implemented, product() is defined from it by bilinearity.

EXAMPLES:

```
sage: A = AlgebrasWithBasis(QQ).example()
sage: Word = A.basis().keys()
sage: A.product_on_basis(Word("abc"),Word("cba"))
B[word: abccba]
```

additional_structure()
Return None.

Indeed, the category of (magmatic) algebras defines no new structure: a morphism of modules and of magmas between two (magmatic) algebras is a (magmatic) algebra morphism.
See also:

```
Category.additional_structure()
```

Todo: This category should be a `CategoryWithAxiom`, the axiom specifying the compatibility between the magma and module structure.

EXAMPLES:

```
sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras(ZZ).additional_structure()
```

```
sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras(ZZ).super_categories()
```

```
[Category of additive commutative additive associative additive unital →
distributive magmas and additive magmas, Category of modules over Integer →
Ring]
```

```
sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: MagmaticAlgebras(ZZ).is_subcategory((AdditiveSemigroups() & Magmas()).→
Distributive())
True
```

4.114 Manifolds

class `sage.categories.manifolds.ComplexManifolds(` *base*, *name=None*)

Bases: `sage.categories.category_types.Category_over_base_ring`

The category of complex manifolds.

A d-dimensional complex manifold is a manifold whose underlying vector space is \mathbb{C}^d and has a holomorphic atlas.

super_categories()

EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).super_categories()
```

```
[Category of topological spaces]
```

class `sage.categories.manifolds.Manifolds(` *base*, *name=None*)

Bases: `sage.categories.category_types.Category_over_base_ring`

The category of manifolds over any topological field.

Let k be a topological field. A d-dimensional k-manifold M is a second countable Hausdorff space such that the neighborhood of any point $x \in M$ is homeomorphic to k^d.

EXAMPLES:
```python
sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR); C
Category of manifolds over Real Field with 53 bits of precision
sage: C.super_categories()
[Category of topological spaces]
```

```
class AlmostComplex(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

    The category of almost complex manifolds.

    An almost complex manifold $M$ is a manifold with a smooth tensor field $J$ of rank $(1, 1)$ such that $J^2 = -1$ when regarded as a vector bundle isomorphism $J: TM \to TM$ on the tangent bundle. The tensor field $J$ is called the almost complex structure of $M$.

    extra_super_categories()
    Return the extra super categories of `self`.

    EXAMPLES:

    ```
 sage: from sage.categories.manifolds import Manifolds
 sage: Manifolds(RR).AlmostComplex().super_categories() # indirect doctest
 [Category of smooth manifolds over Real Field with 53 bits of precision]
    ```
```

```
class Analytic(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

    The category of complex manifolds.

    An analytic manifold is a manifold with an analytic atlas.

    extra_super_categories()
    Return the extra super categories of `self`.

    EXAMPLES:

    ```
 sage: from sage.categories.manifolds import Manifolds
 sage: Manifolds(RR).Analytic().super_categories() # indirect doctest
 [Category of smooth manifolds over Real Field with 53 bits of precision]
    ```
```

```
class Connected(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

    The category of connected manifolds.

    EXAMPLES:

    ```
 sage: from sage.categories.manifolds import Manifolds
 sage: Manifolds(RR).Connected().super_categories() # indirect doctest
    ```
```

```
class Differentiable(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

    EXAMPLES:

    ```
 sage: from sage.categories.manifolds import Manifolds
 sage: C = Manifolds(RR).Connected()
 sage: TestSuite(C).run(skip="_test_category_over_bases")
    ```
```
The category of differentiable manifolds.

A differentiable manifold is a manifold with a differentiable atlas.

class FiniteDimensional(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

Category of finite dimensional manifolds.

EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR).FiniteDimensional()
sage: TestSuite(C).run(skip="_test_category_over_bases")
```

class ParentMethods

Bases: `object`

dimension()

Return the dimension of `self`.

EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: M = Manifolds(RR).example()
sage: M.dimension()
3
```

class Smooth(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of smooth manifolds.

A smooth manifold is a manifold with a smooth atlas.

extra_super_categories()

Return the extra super categories of `self`.

A smooth manifold is differentiable.

EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Smooth().super_categories() # indirect doctest
[Category of differentiable manifolds over Real Field with 53 bits of precision]
```

class SubcategoryMethods

Bases: `object`

AlmostComplex()

Return the subcategory of the almost complex objects of `self`.

EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).AlmostComplex()
Category of almost complex manifolds over Real Field with 53 bits of precision
```
Analytic()
Return the subcategory of the analytic objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Analytic()
Category of analytic manifolds over Real Field with 53 bits of precision
```

Complex()
Return the subcategory of manifolds over \(\mathbb{C} \) of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(CC).Complex()
Category of complex manifolds over Complex Field with 53 bits of precision
```

Connected()
Return the full subcategory of the connected objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Connected()
Category of connected manifolds over Real Field with 53 bits of precision
```

Differentiable()
Return the subcategory of the differentiable objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Differentiable()
Category of differentiable manifolds over Real Field with 53 bits of precision
```

FiniteDimensional()
Return the full subcategory of the finite dimensional objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR).Connected().FiniteDimensional(); C
Category of finite dimensional connected manifolds over Real Field with 53 bits of precision
```

Smooth()
Return the subcategory of the smooth objects of self.

EXAMPLES:

```python
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Smooth()
```

(continues on next page)
additional_structure()
Return None.

Indeed, the category of manifolds defines no new structure: a morphism of topological spaces between manifolds is a manifold morphism.

See also:
Category.additionl_structure()

EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).additional_structure()
```

super_categories()
EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).super_categories()
[Category of topological spaces]
```

4.115 Matrix algebras

```
class sage.categories.matrix_algebras.MatrixAlgebras(base, name=None)

Bases: sage.categories.category_types.Category_over_base_ring

The category of matrix algebras over a field.

EXAMPLES:

```
sage: MatrixAlgebras(RationalField())
Category of matrix algebras over Rational Field
```

super_categories()
EXAMPLES:

```
sage: MatrixAlgebras(QQ).super_categories()
[Category of algebras over Rational Field]
```

### 4.116 Metric Spaces

```
class sage.categories.metric_spaces.MetricSpaces(category, *args)

Bases: sage.categories.metric_spaces.MetricSpacesCategory

The category of metric spaces.

A metric on a set S is a function $d : S \times S \to \mathbb{R}$ such that:

- $d(a, b) \geq 0$,
• \(d(a, b) = 0\) if and only if \(a = b\).

A metric space is a set \(S\) with a distinguished metric.

Implementation

Objects in this category must implement either a `dist` on the parent or the elements or `metric` on the parent; otherwise this will cause an infinite recursion.

Todo:

- Implement a general geodesics class.
- Implement a category for metric additive groups and move the generic distance \(d(a, b) = |a - b|\) there.
- Incorporate the length of a geodesic as part of the default distance cycle.

EXAMPLES:

```python
sage: from sage.categories.metric_spaces import MetricSpaces
sage: C = MetricSpaces()

Category of metric spaces

sage: TestSuite(C).run()
```

```python
class CartesianProducts(category, *args)
    Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods
    Bases: object

    dist(a, b)
        Return the distance between \(a\) and \(b\) in \(self\).

        It is defined as the maximum of the distances within the Cartesian factors.

        EXAMPLES:

        ```python
 sage: from sage.categories.metric_spaces import MetricSpaces
 sage: Q2 = QQ.cartesian_product(QQ)
 sage: Q2.category()
 Join of Category of Cartesian products of commutative rings and
 Category of Cartesian products of metric spaces
 sage: Q2 in MetricSpaces()
 True
 sage: Q2.dist((0, 0), (2, 3))
 3
        ```

    extra_super_categories()
        Implement the fact that a (finite) Cartesian product of metric spaces is a metric space.

        EXAMPLES:

        ```python
 sage: from sage.categories.metric_spaces import MetricSpaces
 sage: C = MetricSpaces().CartesianProducts()
        ```
```
class Complete(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of complete metric spaces.

class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()

Implement the fact that a (finite) Cartesian product of complete metric spaces is a complete metric space.

EXAMPLES:

```python
sage: from sage.categories.metric_spaces import MetricSpaces
sage: C = MetricSpaces().Complete().CartesianProducts()
sage: C.extra_super_categories()
[Category of complete metric spaces]
sage: C.super_categories()
[Category of Cartesian products of metric spaces, Category of complete metric spaces]
```

```python
sage: frozenset({'Complete'})
sage: R2 = RR.cartesian_product(RR)
sage: R2 in MetricSpaces()
True
sage: R2 in MetricSpaces().Complete()
True
sage: QR = QQ.cartesian_product(RR)
sage: QR in MetricSpaces()
True
sage: QR in MetricSpaces().Complete()
False
```

class ElementMethods

Bases: object

abs()

Return the absolute value of self.

EXAMPLES:

```python
sage: CC(I).abs()
1.00000000000000
```
dist(b)

Return the distance between self and other.

EXAMPLES:

```
sage: UHP = HyperbolicPlane().UHP()            # optional - sage.symbolic
     # optional - sage.symbolic
sage: p1 = UHP.get_point(5 + 7*I)              # optional - sage.symbolic
sage: p2 = UHP.get_point(1 + I)                # optional - sage.symbolic
sage: UHP.dist(p1, p2)                        # optional - sage.symbolic
arccosh(33/7)
```

class Homsets(category, *args)

Bases: sage.categories.homsets.HomsetsCategory

The category of homsets of metric spaces

It consists of the metric maps, that is, the Lipschitz functions with Lipschitz constant 1.

class ElementMethods

Bases: object

class ParentMethods

Bases: object

dist(a, b)

Return the distance between a and b in self.

EXAMPLES:

```
sage: UHP = HyperbolicPlane().UHP()            # optional - sage.symbolic
     # optional - sage.symbolic
sage: p1 = UHP.get_point(5 + 7*I)              # optional - sage.symbolic
sage: p2 = UHP.get_point(1.0 + I)              # optional - sage.symbolic
sage: UHP.dist(p1, p2)                        # optional - sage.symbolic
2.23230104635820
sage: PD = HyperbolicPlane().PD()              # optional - sage.symbolic
     # optional - sage.symbolic
sage: PD.dist(PD.get_point(0), PD.get_point(I/2)) # optional - sage.symbolic
arccosh(5/3)
```

metric($*args, **kwds$)

Deprecated: Use metric_function() instead. See trac ticket #30062 for details.

metric_function()

Return the metric function of self.

EXAMPLES:
sage: UHP = HyperbolicPlane().UHP() # optional - sage.symbolic
sage: m = UHP.metric_function() # optional - sage.symbolic
sage: p1 = UHP.get_point(5 + 7*I) # optional - sage.symbolic
sage: p2 = UHP.get_point(1.0 + I) # optional - sage.symbolic
sage: m(p1, p2) # optional - sage.symbolic
2.23230104635820

```
class SubcategoryMethods
    Bases: object

    Complete()
    Return the full subcategory of the complete objects of self.

    EXAMPLES:
    sage: Sets().Metric().Complete()
    Category of complete metric spaces

class WithRealizations(category, *args)
    Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
    Bases: object

    dist(a, b)
    Return the distance between a and b by converting them to a realization of self and doing the computation.

    EXAMPLES:
    sage: H = HyperbolicPlane()  # optional - sage.symbolic
    sage: PD = H.PD()  # optional - sage.symbolic
    sage: p1 = PD.get_point(0)  # optional - sage.symbolic
    sage: p2 = PD.get_point(I/2)  # optional - sage.symbolic
    sage: H.dist(p1, p2)  # optional - sage.symbolic
    arccosh(5/3)

class sage.categories.metric_spaces.MetricSpacesCategory(category, *args)
    Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

    classmethod default_super_categories(category)
    Return the default super categories of category.Metric().

    Mathematical meaning: if A is a metric space in the category C, then A is also a topological space.

    INPUT:
• cls – the class MetricSpaces
• category – a category Cat

OUTPUT:
A (join) category

In practice, this returns category.Metric(), joined together with the result of the method RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of category and cat.Metric() for each cat in the super categories of category).

EXAMPLES:
Consider category=Groups(). Then, a group $G$ with a metric is simultaneously a topological group by itself, and a metric space:

```
sage: Groups().Metric().super_categories()
[Category of topological groups, Category of metric spaces]
```

This resulted from the following call:

```
sage: sage.categories.metric_spaces.MetricSpacesCategory.default_super_categories(Groups())
Join of Category of topological groups and Category of metric spaces
```

4.117 Modular abelian varieties

class sage.categories.modular_abelian_varieties.ModularAbelianVarieties(Y)

Bases: sage.categories.category_types.Category_over_base

The category of modular abelian varieties over a given field.

EXAMPLES:

```
sage: ModularAbelianVarieties(QQ)
Category of modular abelian varieties over Rational Field
```

class Homsets(category, *args)

Bases: sage.categories.homsets.HomsetsCategory

class Endset(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom

extra_super_categories()

Implement the fact that an endset of modular abelian variety is a ring.

EXAMPLES:

```
sage: ModularAbelianVarieties(QQ).Endsets().extra_super_categories()
[Category of rings]
```

base_field()

EXAMPLES:

```
sage: ModularAbelianVarieties(QQ).base_field()
Rational Field
```
super_categories()

EXAMPLES:

```python
sage: ModularAbelianVarieties(QQ).super_categories()
[Category of sets]
```

## 4.118 Modules

```python
class sage.categories.modules.Modules(base, name=None):
 Bases: sage.categories.category_types.Category_module

The category of all modules over a base ring R.

An R-module M is a left and right R-module over a commutative ring R such that:

$$r \cdot (x \cdot s) = (r \cdot x) \cdot s \quad \forall r, s \in R \text{ and } x \in M$$

INPUT:

- `base_ring` – a ring R or subcategory of Rings()
- `dispatch` – a boolean (for internal use; default: True)

When the base ring is a field, the category of vector spaces is returned instead (unless dispatch == False).

Warning: Outside of the context of symmetric modules over a commutative ring, the specifications of this category are fuzzy and not yet set in stone (see below). The code in this category and its subcategories is therefore prone to bugs or arbitrary limitations in this case.

EXAMPLES:

```python
sage: Modules(ZZ)
Category of modules over Integer Ring
sage: Modules(QQ)
Category of vector spaces over Rational Field
sage: Modules(Rings())
Category of modules over rings
sage: Modules(FiniteFields())
Category of vector spaces over finite enumerated fields
sage: Modules(Integers(9))
Category of modules over Ring of integers modulo 9
sage: Modules(Integers(9)).super_categories()
[Category of bimodules over Ring of integers modulo 9 on the left and Ring of...
  integers modulo 9 on the right]
sage: Modules(ZZ).super_categories()
[Category of bimodules over Integer Ring on the left and Integer Ring on the right]
```

```
sage: Modules == RingModules
True
```

(continues on next page)
Todo:

- Clarify the distinction, if any, with `BiModules(R, R)`. In particular, if \(R \) is a commutative ring (e.g. a field), some pieces of the code possibly assume that \(M \) is a symmetric \(R \)-\(R \)-bimodule:

\[
r \ast x = x \ast r \quad \forall r \in R \text{ and } x \in M
\]

- Make sure that non symmetric modules are properly supported by all the code, and advertise it.
- Make sure that non commutative rings are properly supported by all the code, and advertise it.
- Add support for base semirings.
- Implement a `FreeModules(R)` category, when so prompted by a concrete use case: e.g. modeling a free module with several bases (using `Sets.SubcategoryMethods.Realizations()`) or with an atlas of local maps (see e.g. trac ticket #15916).

class CartesianProducts(category, *args):
 Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

 The category of modules constructed as Cartesian products of modules.

 This construction gives the direct product of modules. The implementation is based on the following resources:

 - http://groups.google.fr/group/sage-devel/browse_thread/thread/35a72b1d0a2fc77a/348f42ae77a66d16
 - Wikipedia article Direct_product

class ElementMethods:
 Bases: object

class ParentMethods:
 Bases: object

eextra_super_categories() # A Cartesian product of modules is endowed with a natural module structure.

 EXAMPLES:

 sage: Modules(ZZ).CartesianProducts().extra_super_categories()
 [Category of modules over Integer Ring]
 sage: Modules(ZZ).CartesianProducts().super_categories()
 [Category of Cartesian products of commutative additive groups,
 Category of modules over Integer Ring]

class ElementMethods:
 Bases: object

 Filtered
 alias of `sage.categories.filtered_modules.FilteredModules`
class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

eextra_super_categories()
Implement the fact that a (finite) tensor product of finite dimensional modules is a finite dimensional module.

EXAMPLES:

```python
sage: Modules(ZZ).FiniteDimensional().TensorProducts().extra_super_categories()
[Category of finite dimensional modules over Integer Ring]
sage: Modules(QQ).FiniteDimensional().TensorProducts().FiniteDimensional()
Category of tensor products of finite dimensional vector spaces over Rational Field
```

eextra_super_categories()
Implement the fact that a finite dimensional module over a finite ring is finite.

EXAMPLES:

```python
sage: Modules(IntegerModRing(4)).FiniteDimensional().extra_super_categories()
[Category of finite sets]
sage: Modules(ZZ).FiniteDimensional().extra_super_categories()
[]
sage: Modules(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: Modules(ZZ).FiniteDimensional().is_subcategory(Sets().Finite())
False
sage: Modules(Rings().Finite()).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: Modules(Rings()).FiniteDimensional().is_subcategory(Sets().Finite())
False
```

class FinitelyPresented(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

eextra_super_categories()
Implement the fact that a finitely presented module over a finite ring is finite.

EXAMPLES:

```python
sage: Modules(IntegerModRing(4)).FiniteDimensional().extra_super_categories()
[Category of finite sets]
sage: Modules(ZZ).FiniteDimensional().extra_super_categories()
[]
sage: Modules(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: Modules(ZZ).FiniteDimensional().is_subcategory(Sets().Finite())
False
sage: Modules(Rings().Finite()).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: Modules(Rings()).FiniteDimensional().is_subcategory(Sets().Finite())
False
```
False

```
sage: Modules(Rings().Finite()).FiniteDimensional().is_subcategory(Sets().Finite())
True
```

```
sage: Modules(Rings()).FiniteDimensional().is_subcategory(Sets().Finite())
False
```

Graded

Alias of `sage.categories.graded_modules.GradedModules`

class Homsets

```
category, *args)
```

Bases: `sage.categories.homsets.HomsetsCategory`

The category of homomorphism sets \(\text{hom}(X, Y) \) for \(X, Y \) modules.

class Endset

```
(base_category)
```

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of endomorphism sets \(\text{End}(X) \) for \(X \) a module (this is not used yet)

extra_super_categories()

Implement the fact that the endomorphism set of a module is an algebra.

See also:

`CategoryWithAxiom.extra_super_categories()`

EXAMPLES:

```
sage: Modules(ZZ).Endsets().extra_super_categories()
[Category of magmatic algebras over Integer Ring]
sage: End(ZZ^3) in Algebras(ZZ)
True
```

class ParentMethods

Bases: `object`

base_ring()

Return the base ring of `self`.

EXAMPLES:

```
sage: E = CombinatorialFreeModule(ZZ, [1,2,3])
sage: F = CombinatorialFreeModule(ZZ, [2,3,4])
sage: H = Hom(E, F)
sage: H.base_ring()
Integer Ring
```

This `base_ring` method is actually overridden by `sage.structure.category_object.CategoryObject.base_ring()`:

```
sage: H.base_ring.__module__
```

Here we call it directly:
sage: method = H.category().parent_class.base_ring
sage: method.__get__(H)()
Integer Ring

zero()
EXAMPLES:

sage: E = CombinatorialFreeModule(ZZ, [1,2,3])
sage: F = CombinatorialFreeModule(ZZ, [2,3,4])
sage: H = Hom(E, F)
sage: f = H.zero()
sage: f
Generic morphism:
From: Free module generated by {1, 2, 3} over Integer Ring
To: Free module generated by {2, 3, 4} over Integer Ring
sage: f(E.monomial(2))
0
sage: f(E.monomial(3)) == F.zero()
True

base_ring()
EXAMPLES:

sage: Modules(ZZ).Homsets().base_ring()
Integer Ring

Todo: Generalize this so that any homset category of a full subcategory of modules over a base ring is a category over this base ring.

extra_super_categories()
EXAMPLES:

sage: Modules(ZZ).Homsets().extra_super_categories()
[Category of modules over Integer Ring]

class ParentMethods
Bases: object

linear_combination(iter_of_elements_coeff, factor_on_left=True)
Return the linear combination \(\lambda_1 v_1 + \cdots + \lambda_k v_k \) (resp. the linear combination \(v_1 \lambda_1 + \cdots + v_k \lambda_k \)) where \(\text{iter_of_elements_coeff} \) iterates through the sequence \((\lambda_1, v_1), \ldots, (\lambda_k, v_k)\).

INPUT:
- \(\text{iter_of_elements_coeff} \) – iterator of pairs (element, coeff) with element in self and coeff in self.base_ring()
- \(\text{factor_on_left} \) – (optional) if True, the coefficients are multiplied from the left; if False, the coefficients are multiplied from the right

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.linear_combination(((a+b, 1), (-2*b + c, -1)))
1 + (3, -1)

4.118. Modules 595
module_morphism(function, category, codomain, **keywords)

Construct a module morphism from self to codomain.

Let self be a module X over a ring R. This constructs a morphism $f : X \rightarrow Y$.

INPUT:
- **self** – a parent X in Modules(R).
- **function** – a function f from X to Y
- **codomain** – the codomain Y of the morphism (default: f.codomain() if it’s defined; otherwise it must be specified)
- **category** – a category or None (default: None)

EXAMPLES:

```python
sage: V = FiniteRankFreeModule(QQ, 2)
sage: e = V.basis('e'); e
Basis (e_0,e_1) on the 2-dimensional vector space over the Rational Field
sage: neg = V.module_morphism(function=operator.neg, codomain=V); neg
Generic endomorphism of 2-dimensional vector space over the Rational Field
sage: neg(e[0])
Element -e_0 of the 2-dimensional vector space over the Rational Field
```

tensor_square()

Returns the tensor square of self

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: A.tensor_square()
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6
as a permutation group over Rational Field # An example
of Hopf algebra with basis: the group algebra of the Dihedral
group of order 6 as a permutation group over Rational Field
```

class SubcategoryMethods

Bases: object

DualObjects()

Return the category of spaces constructed as duals of spaces of self.

The dual of a vector space V is the space consisting of all linear functionals on V (see Wikipedia article Dual_space). Additional structure on V can endow its dual with additional structure; for example, if V is a finite dimensional algebra, then its dual is a coalgebra.

This returns the category of spaces constructed as dual of spaces in self, endowed with the appropriate additional structure.

Warning:

- This semantic of dual and DualObject is imposed on all subcategories, in particular to make dual a covariant functorial construction.

 A subcategory that defines a different notion of dual needs to use a different name.

- Typically, the category of graded modules should define a separate graded_dual construction (see trac ticket #15647). For now the two constructions are not distinguished which is an oversimplified model.
See also:

- `dual.DualObjectsCategory`
- `CovariantFunctorialConstruction`.

EXAMPLES:

```sage
VectorSpaces(QQ).DualObjects()
```

Category of duals of vector spaces over Rational Field

The dual of a vector space is a vector space:

```sage
VectorSpaces(QQ).DualObjects().super_categories()
```

[Category of vector spaces over Rational Field]

The dual of an algebra is a coalgebra:

```sage
sorted(Algebras(QQ).DualObjects().super_categories(), key=str)
```

[Category of coalgebras over Rational Field,
Category of duals of vector spaces over Rational Field]

The dual of a coalgebra is an algebra:

```sage
sorted(Coalgebras(QQ).DualObjects().super_categories(), key=str)
```

[Category of algebras over Rational Field,
Category of duals of vector spaces over Rational Field]

As a shorthand, this category can be accessed with the `dual()` method:

```sage
VectorSpaces(QQ).dual()
```

Category of duals of vector spaces over Rational Field

Filtered(`base_ring=None`)

Return the subcategory of the filtered objects of `self`.

INPUT:

- `base_ring` – this is ignored

EXAMPLES:

```sage
Modules(ZZ).Filtered()
```

Category of filtered modules over Integer Ring

```sage
Coalgebras(QQ).Filtered()
```

Category of filtered coalgebras over Rational Field

```sage
AlgebrasWithBasis(QQ).Filtered()
```

Category of filtered algebras with basis over Rational Field

Todo:

- Explain why this does not commute with `WithBasis()`
- Improve the support for covariant functorial constructions categories over a base ring so as to get rid of the `base_ring` argument.

FiniteDimensional()

Return the full subcategory of the finite dimensional objects of `self`.

4.118. Modules
EXAMPLES:

```
sage: Modules(ZZ).FiniteDimensional()
Category of finite dimensional modules over Integer Ring
sage: Coalgebras(QQ).FiniteDimensional()
Category of finite dimensional coalgebras over Rational Field
sage: AlgebrasWithBasis(QQ).FiniteDimensional()
Category of finite dimensional algebras with basis over Rational Field
```

FinitelyPresented()

Return the full subcategory of the finitely presented objects of self.

EXAMPLES:

```
sage: Modules(ZZ).FinitelyPresented()
Category of finitely presented modules over Integer Ring
sage: A = SteenrodAlgebra(2)
sage: from sage.modules.fp_graded.module import FPModule
sage: FPModule(A, [0, 1], [[Sq(2), Sq(1)]]).category()
Category of finitely presented graded modules over mod 2 Steenrod algebra, →milnor basis
```

Graded(base_ring=\text{None})

Return the subcategory of the graded objects of self.

INPUT:
- `base_ring` – this is ignored

EXAMPLES:

```
sage: Modules(ZZ).Graded()
Category of graded modules over Integer Ring
sage: Coalgebras(QQ).Graded()
Category of graded coalgebras over Rational Field
sage: AlgebrasWithBasis(QQ).Graded()
Category of graded algebras with basis over Rational Field
```

Todo:
- Explain why this does not commute with `WithBasis()`
- Improve the support for covariant functorial constructions categories over a base ring so as to get rid of the `base_ring` argument.

Super(base_ring=\text{None})

Return the super-analogue category of self.

INPUT:
- `base_ring` – this is ignored

EXAMPLES:

```
sage: Modules(ZZ).Super()
Category of super modules over Integer Ring
sage: Coalgebras(QQ).Super()
```

(continues on next page)
Category of super coalgebras over Rational Field

\texttt{sage: AlgebrasWithBasis(QQ).Super()}
Category of super algebras with basis over Rational Field

\textbf{Todo:}

- Explain why this does not commute with \texttt{WithBasis()}
- Improve the support for covariant functorial constructions categories over a base ring so as to get rid of the \texttt{base_ring} argument.

\textbf{TensorProducts()}

Return the full subcategory of objects of \texttt{self} constructed as tensor products.

\textbf{See also:}

- \texttt{tensor.TensorProductsCategory}
- \texttt{RegressiveCovariantFunctorialConstruction}.

\textbf{EXAMPLES:}

\texttt{sage: ModulesWithBasis(QQ).TensorProducts()}
Category of tensor products of vector spaces with basis over Rational Field

\textbf{WithBasis()}

Return the full subcategory of the objects of \texttt{self} with a distinguished basis.

\textbf{EXAMPLES:}

\texttt{sage: Modules(ZZ).WithBasis()}
Category of modules with basis over Integer Ring
\texttt{sage: Coalgebras(QQ).WithBasis()}
Category of coalgebras with basis over Rational Field
\texttt{sage: AlgebrasWithBasis(QQ).WithBasis()}
Category of algebras with basis over Rational Field

\textbf{base_ring()}

Return the base ring (category) for \texttt{self}.

This implements a \texttt{base_ring} method for all subcategories of \texttt{Modules(K)}.

\textbf{EXAMPLES:}

\texttt{sage: C = Modules(QQ) & Semigroups(); C}
Join of Category of semigroups and Category of vector spaces over Rational Field
\texttt{sage: C.base_ring()}
Rational Field
\texttt{sage: C.base_ring.__module__}
'sage.categories.modules'
\texttt{sage: C = Modules(Rings()) & Semigroups(); C}
Join of Category of semigroups and Category of modules over rings
\texttt{sage: C.base_ring()}
Category of rings

(continues on next page)
Return the category of spaces constructed as duals of spaces of \texttt{self}.

The dual of a vector space \(V \) is the space consisting of all linear functionals on \(V \) (see Wikipedia article \texttt{Dual_space}). Additional structure on \(V \) can endow its dual with additional structure; for example, if \(V \) is a finite dimensional algebra, then its dual is a coalgebra.

This returns the category of spaces constructed as dual of spaces in \texttt{self}, endowed with the appropriate additional structure.

\begin{itemize}
\item This semantic of dual and \texttt{DualObject} is imposed on all subcategories, in particular to make dual a covariant functorial construction.
\item A subcategory that defines a different notion of dual needs to use a different name.
\item Typically, the category of graded modules should define a separate \texttt{graded_dual} construction (see trac ticket \#15647). For now the two constructions are not distinguished which is an oversimplified model.
\end{itemize}

\textbf{See also:}
- \texttt{dual.DualObjectsCategory}
- \texttt{CovariantFunctorialConstruction}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: VectorSpaces(QQ).DualObjects() Category of duals of vector spaces over Rational Field
\end{verbatim}

The dual of a vector space is a vector space:

\begin{verbatim}
sage: VectorSpaces(QQ).DualObjects().super_categories() [Category of vector spaces over Rational Field]
\end{verbatim}

The dual of an algebra is a coalgebra:
The dual of a coalgebra is an algebra:

```sage
sage: sorted(Coalgebras(QQ).DualObjects().super_categories(), key=str)
[Category of algebras over Rational Field, Category of duals of vector spaces over Rational Field]
```

As a shorthand, this category can be accessed with the `dual()` method:

```sage
sage: VectorSpaces(QQ).dual()
Category of duals of vector spaces over Rational Field
```

Super

alias of `sage.categories.super_modules.SuperModules`

class TensorProducts(category, *args)

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of modules constructed by tensor product of modules.

extra_super_categories()

EXAMPLES:

```sage
sage: Modules(ZZ).TensorProducts().extra_super_categories()
[Category of modules over Integer Ring]
sage: Modules(ZZ).TensorProducts().super_categories()
[Category of modules over Integer Ring]
```

WithBasis

alias of `sage.categories.modules_with_basis.ModulesWithBasis`

additional_structure()

Return None.

Indeed, the category of modules defines no additional structure: a bimodule morphism between two modules is a module morphism.

See also:

`Category.additional_structure()`

Todo: Should this category be a `CategoryWithAxiom`?

EXAMPLES:

```sage
sage: Modules(ZZ).additional_structure()
```

super_categories()

EXAMPLES:

```sage
sage: Modules(ZZ).super_categories()
[Category of bimodules over Integer Ring on the left and Integer Ring on the right]
```
Nota bene:

```python
sage: Modules(QQ)
Category of vector spaces over Rational Field
sage: Modules(QQ).super_categories()
[Category of modules over Rational Field]
```

4.119 Modules With Basis

AUTHORS:

- Jason Bandlow and Florent Hivert (2010): Triangular Morphisms
- Christian Stump (2010): trac ticket #9648 module_morphism’s to a wider class of codomains

class `sage.categories.modules_with_basis.ModulesWithBasis(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of modules with a distinguished basis.

The elements are represented by expanding them in the distinguished basis. The morphisms are not required to respect the distinguished basis.

EXAMPLES:

```python
sage: ModulesWithBasis(ZZ)
Category of modules with basis over Integer Ring
sage: ModulesWithBasis(ZZ).super_categories()
[Category of modules over Integer Ring]
```

If the base ring is actually a field, this constructs instead the category of vector spaces with basis:

```python
sage: ModulesWithBasis(QQ)
Category of vector spaces with basis over Rational Field
sage: ModulesWithBasis(QQ).super_categories()
[Category of modules with basis over Rational Field, Category of vector spaces over Rational Field]
```

Let X and Y be two modules with basis. We can build $\text{Hom}(X,Y)$:

```python
sage: X = CombinatorialFreeModule(QQ, [1,2]); X.__custom_name = "X"
sage: Y = CombinatorialFreeModule(QQ, [3,4]); Y.__custom_name = "Y"
sage: H = Hom(X, Y); H
Set of Morphisms from X to Y in Category of finite dimensional vector spaces with_˓→basis over Rational Field
```

The simplest morphism is the zero map:

```python
sage: H.zero()  # todo: move this test into module once we have an example
Generic morphism:
    From: X
    To:   Y
```

602 Chapter 4. Individual Categories
which we can apply to elements of X:

```
sage: x = X.monomial(1) + 3 * X.monomial(2)
sage: H.zero()(x)
0
```

EXAMPLES:

We now construct a more interesting morphism by extending a function by linearity:

```
sage: phi = H(on_basis = lambda i: Y.monomial(i+2)); phi
Generic morphism:
  From: X
  To:  Y
sage: phi(x)
```

We can retrieve the function acting on indices of the basis:

```
sage: f = phi.on_basis()
sage: f(1), f(2)
(B[3], B[4])
```

$\text{Hom}(X,Y)$ has a natural module structure (except for the zero, the operations are not yet implemented though). However since the dimension is not necessarily finite, it is not a module with basis; but see `FiniteDimensionalModulesWithBasis` and `GradedModulesWithBasis`:

```
sage: H in ModulesWithBasis(QQ), H in Modules(QQ)
(True, True)
```

Some more playing around with categories and higher order homsets:

```
sage: H.category()
Category of homsets of modules with basis over Rational Field
sage: Hom(H, H).category()
Category of endsets of homsets of modules with basis over Rational Field
```

Todo: $\text{End}(X)$ is an algebra.

Note: This category currently requires an implementation of an element method `support`. Once trac ticket #18066 is merged, an implementation of an `items` method will be required.

class `CartesianProducts` (category, *args)

Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

The category of modules with basis constructed by Cartesian products of modules with basis.

```
class ParentMethods
    Bases: object

    extra_super_categories()
    EXAMPLES:
```
class DualObjects(category, *args)
 Bases: sage.categories.dual.DualObjectsCategory

 extra_super_categories()

 EXAMPLES:

 sage: ModulesWithBasis(ZZ).DualObjects().extra_super_categories()
 [Category of modules over Integer Ring]
 sage: ModulesWithBasis(QQ).DualObjects().super_categories()
 [Category of duals of vector spaces over Rational Field, Category of duals of modules with basis over Rational Field]

class ElementMethods
 Bases: object

 coefficient(m)
 Return the coefficient of m in self and raise an error if m is not in the basis indexing set.

 INPUT:
 • m -- a basis index of the parent of self

 OUTPUT:

 The B[m]-coordinate of self with respect to the basis B. Here, B denotes the given basis of the parent of self.

 EXAMPLES:

 sage: s = CombinatorialFreeModule(QQ, Partitions())
 sage: z = s([4]) - 2*s([2,1]) + s([1,1,1]) + s([1])
 sage: z.coefficient([4])
 1
 sage: z.coefficient([2,1])
 -2
 sage: z.coefficient(Partition([2,1]))
 -2
 sage: z.coefficient([1,2])
 Traceback (most recent call last):
 ...
 AssertionError: [1, 2] should be an element of Partitions
 sage: z.coefficient(Composition([2,1]))
 Traceback (most recent call last):
 ...
 AssertionError: [2, 1] should be an element of Partitions

Test that coefficient also works for those parents that do not have an element_class:

 sage: H = pAdicWeightSpace(3)
 sage: F = CombinatorialFreeModule(QQ, H)
 sage: hasattr(H, "element_class")
False
sage: h = H.an_element()
sage: (2*F.monomial(h)).coefficient(h)
2

coefficients(*sort=True*)

Return a list of the (non-zero) coefficients appearing on the basis elements in self (in an arbitrary order).

INPUT:

- sort – (default: True) to sort the coefficients based upon the default ordering of the indexing set

See also:

dense_coefficient_list()

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.coefficients()
[1, -3]
sage: f = B['c'] - 3*B['a']
sage: f.coefficients()
[-3, 1]

sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.coefficients()
[1, 1, 1, 1]

is_zero()

Return True if and only if self == 0.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.is_zero()
False
sage: F.zero().is_zero()
True
sage: s = SymmetricFunctions(QQ).schur()
sage: s([2,1]).is_zero()
False
sage: s(0).is_zero()
True
sage: (s([2,1]) - s([2,1])).is_zero()
True

leading_coefficient(*args, **kwds*)

Return the leading coefficient of self.
This is the coefficient of the term whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when \texttt{self} is printed.

If the default term ordering is not what is desired, a comparison key, \texttt{key(x,y)}, can be provided.

\textbf{EXAMPLES:}

```python
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X")
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_coefficient()
1
sage: def key(x): return -x
sage: x.leading_coefficient(key=key)
3

sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_coefficient()
-5
```

\textbf{leading_item}(*\texttt{args}, **\texttt{kwds})

Return the pair \((k, c)\) where

\[c \cdot (\text{the basis element indexed by } k) \]

is the leading term of \texttt{self}.

Here ‘leading term’ means that the corresponding basis element is maximal. Note that this may not be the term which actually appears first when \texttt{self} is printed.

If the default term ordering is not what is desired, a comparison function, \texttt{key(x)}, can be provided.

\textbf{EXAMPLES:}

```python
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.leading_item()
(3, 4)

sage: def key(x): return -x
sage: x.leading_item(key=key)
(1, 3)

sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_item()
([3], -5)
```

\textbf{leading_monomial}(*\texttt{args}, **\texttt{kwds})

Return the leading monomial of \texttt{self}.

This is the monomial whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when \texttt{self} is printed.

If the default term ordering is not what is desired, a comparison key, \texttt{key(x)}, can be provided.

\textbf{EXAMPLES:}
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_monomial()
B[3]
sage: def key(x): return -x
sage: x.leading_monomial(key=key)
B[1]
sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_monomial()
s[3]

leading_support(*args, **kwds)
Return the maximal element of the support of self.

Note that this may not be the term which actually appears first when self is printed.

If the default ordering of the basis elements is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3])
sage: X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_support()
3
sage: def key(x): return -x
sage: x.leading_support(key=key)
1
sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_support()
s[3]

leading_term(*args, **kwds)
Return the leading term of self.

This is the term whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_term()
B[3]
sage: def key(x): return -x
sage: x.leading_term(key=key)
3*B[1]
sage: s = SymmetricFunctions(QQ).schur()
sage: f.leading_term()
-5*s[3]

length()
Return the number of basis elements whose coefficients in self are nonzero.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.length()
2

map_coefficients(f)
Mapping a function on coefficients.

INPUT:
 • f – an endofunction on the coefficient ring of the free module

Return a new element of self.parent() obtained by applying the function f to all of the coefficients of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.map_coefficients(lambda x: x+5)
6*B['a'] + 2*B['c']

Killed coefficients are handled properly:

sage: f.map_coefficients(lambda x: 0)
0
sage: list(f.map_coefficients(lambda x: 0))
[]

map_item(f)
Mapping a function on items.

INPUT:
 • f – a function mapping pairs (index, coeff) to other such pairs
Return a new element of self.parent() obtained by applying the function f to all items (index, coeff) of self.

EXAMPLES:

```python
sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_item(lambda i, c: (-i, 2*c))
6*B[-1] + 4*B[0] + 4*B[1]
```

f needs not be injective:

```python
sage: x.map_item(lambda i, c: (1, 2*c))
14*B[1]
sage: s = SymmetricFunctions(QQ).schur()
sage: f = lambda m,c: (m.conjugate(), 2*c)
sage: a = s([2,1]) + s([1,1,1])
sage: a.map_item(f)
s[2, 1] + 2*s[3]
```

map_support(f)
Mapping a function on the support.

INPUT:
- f – an endofunction on the indices of the free module

Returns a new element of self.parent() obtained by applying the function f to all of the objects indexing the basis elements.

EXAMPLES:

```python
sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_support(lambda i: -i)
3*B[-1] + 2*B[0] + 2*B[1]
```

f needs not be injective:

```python
sage: x.map_support(lambda i: 1)
7*B[1]
sage: s = SymmetricFunctions(QQ).schur()
sage: a = s([2,1]) + s([3,2])
sage: a.map_support(lambda x: x.conjugate())
s[2, 1] + 2*s[2, 2, 1]
```

map_support_skip_none(f)
Mapping a function on the support.

INPUT:
- f – an endofunction on the indices of the free module

Returns a new element of self.parent() obtained by applying the function f to all of the objects indexing the basis elements.

EXAMPLES:
```python
sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_support_skip_none(lambda i: -i if i else None)
3*B[-1] + 2*B[1]

f needs not be injective:

sage: x.map_support_skip_none(lambda i: 1 if i else None)
5*B[1]
```

monomial_coefficients(copy=True)

Return a dictionary whose keys are indices of basis elements in the support of self and whose values are the corresponding coefficients.

INPUT:

- copy – (default: True) if self is internally represented by a dictionary d, then make a copy of d; if False, then this can cause undesired behavior by mutating d

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 3*B['c']
sage: d = f.monomial_coefficients()
sage: d['a']
1
sage: d['c']
3
```

monomials()

Return a list of the monomials of self (in an arbitrary order).

The monomials of an element a are defined to be the basis elements whose corresponding coefficients of a are non-zero.

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 2*B['c']
sage: f.monomials()
[B['a'], B['c']]
sage: (F.zero()).monomials()
[]
```

support()

Return a list of the objects indexing the basis of self.parent() whose corresponding coefficients of self are non-zero.

This method returns these objects in an arbitrary order.

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
```

(continues on next page)
sage: f = B['a'] - 3*B['c']
sage: sorted(f.support())
['a', 'c']

sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: sorted(z.support())
[[1], [1, 1, 1], [2, 1], [4]]

support_of_term()

Return the support of self, where self is a monomial (possibly with coefficient).

EXAMPLES:

```sage
sage: X = CombinatorialFreeModule(QQ, [1,2,3,4]); X.rename("X")
sage: X.monomial(2).support_of_term()
2
sage: X.term(3, 2).support_of_term()
3
```

An exception is raised if self has more than one term:

```sage
sage: (X.monomial(2) + X.monomial(3)).support_of_term()
Traceback (most recent call last):
```

tensor(*elements)

Return the tensor product of its arguments, as an element of the tensor product of the parents of those elements.

EXAMPLES:

```sage
sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example()
sage: (a,b,c) = A.algebra_generators()
sage: a.tensor(b, c)
```

terms()

Return a list of the (non-zero) terms of self (in an arbitrary order).

See also:

- **monomials()**

EXAMPLES:

```sage
sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 2*B['c']
sage: f.terms()
[B['a'], 2*B['c']]
```
trailing_coefficient(*args, **kwds)
Return the trailing coefficient of self.

This is the coefficient of the monomial whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

```python
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
˓
basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_coefficient() 3
sage: def key(x): return
˓
-x
trailing_coefficient(key=key)
1
sage: s = SymmetricFunctions(QQ).schur()
sage: f.trailing_coefficient() 2
```

trailing_item(*args, **kwds)
Return the pair (c, k) where c*self.parent().monomial(k) is the trailing term of self.

This is the monomial whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

```python
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
˓
basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_item() (1, 3)
sage: def key(x): return
˓
-x
trailing_item(key=key)
(3, 1)
sage: s = SymmetricFunctions(QQ).schur()
sage: f.trailing_item() ([1], 2)
```

trailing_monomial(*args, **kwds)
Return the trailing monomial of self.

This is the monomial whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:
trailing_support(*args, **kwds)
Return the minimal element of the support of \texttt{self}. Note that this may not be the term which actually appears last when \texttt{self} is printed.

If the default ordering of the basis elements is not what is desired, a comparison key, \texttt{key(x)}, can be provided.

EXAMPLES:

```
sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_support()
1

sage: def key(x):
    return -x
sage: x.trailing_support(key=key)
3

sage: s = SymmetricFunctions(QQ).schur()
sage: f.trailing_support()
s[1]
```
sage: s = SymmetricFunctions(QQ).schur()
sage: f.trailing_term()
2⁺s[1]

Filtered
derived from sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis

FiniteDimensional
derived from sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

class ParentMethods
Bases: object

class MorphismMethods
Bases: object

 on_basis()
 Return the action of this morphism on basis elements.

 OUTPUT:
 • a function from the indices of the basis of the domain to the codomain

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1,2,3]); X.rename("X")
sage: Y = CombinatorialFreeModule(QQ, [1,2,3,4]); Y.rename("Y")
sage: H = Hom(X, Y)
sage: x = X.basis()
sage: f = H(\lambda x: Y.zero()).on_basis()
sage: f(2)
0
sage: f = \lambda i: Y.monomial(i) + 2⁺Y.monomial(i+1)
sage: g = H(on_basis = f).on_basis()
sage: g(2)
sage: g == f
True

class ParentMethods
Bases: object

 basis()
 Return the basis of self.

EXAMPLES:
sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.basis()
Finite family {'a': B['a'], 'b': B['b'], 'c': B['c']}

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: list(QS3.basis())
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cardinality()
+Infinity
sage: S = SymmetricGroupAlgebra(GF(2), 4) # not tested -- MRO bug trac #15475
sage: S.cardinality() # not tested -- MRO bug trac #15475
16777216
sage: S.cardinality().factor() # not tested -- MRO bug trac #15475
2^24

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.cardinality()
+Infinity
sage: E.<x,y> = ExteriorAlgebra(GF(3))
sage: E.cardinality()
81

sage: s = SymmetricFunctions(GF(2)).s()
sage: s.cardinality()
+Infinity

dimension()
Return the dimension of self.

EXAMPLES:

sage: A.<x,y> = algebras.DifferentialWeyl(QQ)
sage: A.dimension()
+Infinity

echelon_form(elements, row_reduced=False, order=None)
Return a basis in echelon form of the subspace spanned by a finite set of elements.

INPUT:
- elements – a list or finite iterable of elements of self
- row_reduced – (default: False) whether to compute the basis for the row reduced echelon form
- order – (optional) either something that can be converted into a tuple or a key function

OUTPUT:
A list of elements of self whose expressions as vectors form a matrix in echelon form. If base_ring is specified, then the calculation is achieved in this base ring.

EXAMPLES:
Category Framework, Release 9.6

```python
sage: R.<x,y> = QQ[]
sage: C = CombinatorialFreeModule(R, ZZ, prefix='z')
```

```python
sage: z = C.basis()
sage: C.echelon_form([z[0] - z[1], 2*z[1] - 2*z[2], z[0] - z[2]])
[z[0] - z[2], z[1] - z[2]]
```

```python
is_finite()
Return whether self is finite.
This is true if and only if self.basis().keys() and self.base_ring() are both finite.
EXAMPLES:
```
```python
sage: GroupAlgebra(SymmetricGroup(2), IntegerModRing(10)).is_finite()
True
```
```python
sage: GroupAlgebra(SymmetricGroup(2)).is_finite()
False
```
```python
sage: GroupAlgebra(AbelianGroup(1), IntegerModRing(10)).is_finite()
False
```

```python
module_morphism(on_basis=None, matrix=None, function=None, diagonal=None, triangular=None, unitriangular=False, **keywords)
Construct a module morphism from self to codomain.
Let self be a module X with a basis indexed by I. This constructs a morphism f : X → Y by
linearity from a map I → Y which is to be its restriction to the basis (x_i)_{i ∈ I} of X. Some variants are possible too.
INPUT:
• self – a parent X in ModulesWithBasis(R) with basis x = (x_i)_{i ∈ I}.
Exactly one of the four following options must be specified in order to define the morphism:
• on_basis – a function f from I to Y
• diagonal – a function d from I to R
• function – a function f from X to Y
• matrix – a matrix of size dim Y × dim X (if the keyword side is set to 'left') or dim Y × dim X
  (if this keyword is 'right')
Further options include:
• codomain – the codomain Y of the morphism (default: f.codomain() if it’s defined; otherwise
  it must be specified)
• category – a category or None (default: None)
• zero – the zero of the codomain (default: codomain.zero()); can be used (with care) to define
  affine maps. Only meaningful with on_basis.
• position – a non-negative integer specifying which positional argument is used as the input of
  the function f (default: 0); this is currently only used with on_basis.
• triangular – (default: False) a boolean. Only meaningful for a triangular morphism. As a shorthand, one may use
  unitriangular="lower" for triangular="lower",
  unitriangular=True.
• side – “left” or “right” (default: “left”) Only meaningful for a morphism built from a matrix.
EXAMPLES:
With the on_basis option, this returns a function g obtained by extending f by linearity on the
position-th positional argument. For example, for position == 1 and a ternary function f, one
```
has:

\[g \left(a, \sum_i \lambda_i x_i, c \right) = \sum_i \lambda_i f(a, i, c). \]

```
sage: X = CombinatorialFreeModule(QQ, [1,2,3]); X.rename("X")
sage: Y = CombinatorialFreeModule(QQ, [1,2,3,4]); Y.rename("Y")
sage: phi = X.module_morphism(lambdai: Y.monomial(i) + 2*Y.monomial(i+1),
                                      codomain = Y)
sage: x = X.basis(); y = Y.basis()
sage: phi(x[1] + x[3])
```

By default, the category is the first of `Modules(R).WithBasis().FiniteDimensional()`, `Modules(R).WithBasis()`, `Modules(R)`, and `CommutativeAdditiveMonoids()` that contains both the domain and the codomain:

```
sage: phi.category_for()
Category of finite dimensional vector spaces with basis over Rational Field
```

With the `zero` argument, one can define affine morphisms:

```
sage: phi = X.module_morphism(lambdai: Y.monomial(i) + 2*Y.monomial(i+1),
                                      codomain = Y, zero = 10*y[1])
sage: phi(x[1] + x[3])
```

In this special case, the default category is `Sets()`:

```
sage: phi.category_for()
Category of sets
```

One can construct morphisms with the base ring as codomain:

```
sage: X = CombinatorialFreeModule(ZZ,[1,-1])
sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=ZZ)
sage: phi(2 * X.monomial(1) + 3 * X.monomial(-1))
-1
```

```
sage: phi.category_for()
Category of commutative additive semigroups
```

```
sage: phi.category_for()  # todo: not implemented (ZZ is currently not in Modules(ZZ))
Category of modules over Integer Ring
```

Or more generally any ring admitting a coercion map from the base ring:

```
sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=RR)
sage: phi(2 * X.monomial(1) + 3 * X.monomial(-1))
-1.00000000000000
```

(continues on next page)
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (RR is currently not in...
˓→Modules(ZZ))
Category of modules over Integer Ring
sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=Zmod(4))
sage: phi(2 * X.monomial(1) + 3 * X.monomial(-1))
3
sage: phi = Y.module_morphism(on_basis=lambda i: i, codomain=Zmod(4))
Traceback (most recent call last):
...
ValueError: codomain(=Ring of integers modulo 4) should be a module over...
˓→the base ring of the domain(=Y)

On can also define module morphisms between free modules over different base rings; here we implement the natural map from $X = \mathbb{R}^2$ to $Y = \mathbb{C}$:

sage: X = CombinatorialFreeModule(RR,['x','y'])
sage: Y = CombinatorialFreeModule(CC,['z'])
sage: x = X.monomial('x')
sage: y = X.monomial('y')
sage: z = Y.monomial('z')
sage: def on_basis(a):
 : if a == 'x':
 : return CC(1) * z
 : elif a == 'y':
 : return CC(I) * z
sage: phi = X.module_morphism(on_basis=on_basis, codomain=Y)
sage: phi(v)
(3.00000000000000+2.00000000000000*I)*B['z']
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (CC is currently not in...
˓→Modules(RR)!)
Category of vector spaces over Real Field with 53 bits of precision

sage: Y = CombinatorialFreeModule(QQ,['z'])
sage: phi = X.module_morphism(on_basis=on_basis, codomain=Y)
Traceback (most recent call last):
...

Of course, there should be a coercion between the respective base rings of the domain and the codomain for this to be meaningful:

sage: Y = CombinatorialFreeModule(QQ,['z'])
sage: phi = X.module_morphism(on_basis=on_basis, codomain=Y)
Traceback (most recent call last):
ValueError: codomain(=Free module generated by {'z'} over Rational Field) should be a module over the base ring of the domain(=Free module generated by {'x', 'y'} over Real Field with 53 bits of precision)

sage: Y = CombinatorialFreeModule(RR['q'], ['z'])
sage: phi = Y.module_morphism(on_basis=on_basis, codomain=X)
Traceback (most recent call last):
... ValueError: codomain(=Free module generated by {'x', 'y'} over Real Field with 53 bits of precision) should be a module over the base ring of the domain(=Free module generated by {'z'} over Univariate Polynomial Ring in q over Real Field with 53 bits of precision)

With the diagonal=d argument, this constructs the module morphism \(g \) such that

\[
\begin{align*}
g(x_i) &= d(i)y_i.
\end{align*}
\]

This assumes that the respective bases \(x \) and \(y \) of \(X \) and \(Y \) have the same index set \(I \):

sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X")
sage: from sage.arith.misc import factorial
sage: phi = X.module_morphism(diagonal=factorial, codomain=X)
sage: x = X.basis()
sage: phi(x[1]), phi(x[2]), phi(x[3])
(B[1], 2*B[2], 6*B[3])

See also: sage.modules.with_basis.morphism.DiagonalModuleMorphism.

With the matrix=m argument, this constructs the module morphism whose matrix in the distinguished basis of \(X \) and \(Y \) is \(m \):

sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X"); x = X.basis()
sage: Y = CombinatorialFreeModule(ZZ, [3,4]); Y.rename("Y"); y = Y.basis()
sage: m = matrix([[0,1,2],[3,5,0]])
sage: phi = X.module_morphism(matrix=m, codomain=Y)
sage: phi(x[1])
3*B[4]
sage: phi(x[2])

See also: sage.modules.with_basis.morphism.ModuleMorphismFromMatrix.

With triangular="upper", the constructed module morphism is assumed to be upper triangular; that is its matrix in the distinguished basis of \(X \) and \(Y \) would be upper triangular with invertible elements on its diagonal. This is used to compute preimages and to invert the morphism:

sage: I = list(range(1, 200))
sage: X = CombinatorialFreeModule(QQ, I); X.rename("X")
sage: Y = CombinatorialFreeModule(QQ, I); Y.rename("Y")
sage: f = Y.sum_of_monomials * divisors
sage: phi = X.module_morphism(f, triangular="upper", codomain = Y)
Since trac ticket #8678, one can also define a triangular morphism from a function:

```python
sage: X = CombinatorialFreeModule(QQ, [0,1,2,3,4]); x = X.basis()
.sage: from sage.modules.with_basis.morphism import...
˓→TriangularModuleMorphismFromFunction
sage: def f(x): return x + X.term(0, sum(x.coefficients()))
sage: phi = X.module_morphism(function=f, codomain=X, triangular="upper")
sage: phi(x[2] + 3*x[4])
sage: phi.preimage(_)
```

For details and further optional arguments, see `sage.modules.with_basis.morphism.TriangularModuleMorphism`.

Warning: As a temporary measure, until multivariate morphisms are implemented, the constructed morphism is in \(\text{Hom}(\text{codomain}, \text{domain}, \text{category})\). This is only correct for unary functions.

Todo:
- Should codomain be `self` by default in the diagonal, triangular, and matrix cases?
- Support for diagonal morphisms between modules not sharing the same index set

monomial(i)
Return the basis element indexed by \(i\).

INPUT:
- \(i\) – an element of the index set

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial('a')
B['a']
```

`F.monomial` is in fact (almost) a map:
monomial_or_zero_if_none(i)
EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial_or_zero_if_none('a')
B['a']
sage: F.monomial_or_zero_if_none(None)
0

quotient_module(submodule, check=True, already_echelonized=False, category=None)
Construct the quotient module self / submodule.

INPUT:
• submodule – a submodule with basis of self, or something that can be turned into one via self.
submodule(submodule)
• check, already_echelonized – passed down to ModulesWithBasis.ParentMethods.
submodule()

Warning: At this point, this only supports quotients by free submodules admitting a basis in
unitriangular echelon form. In this case, the quotient is also a free module, with a basis consisting
of the retract of a subset of the basis of self.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: Y = X.quotient_module([x[0]-x[1], x[1]-x[2]], already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {2} over Rational Field
sage: y = Y.basis()
y[2]
sage: y[2].lift()
x[2]
sage: Y.retract(x[0]+2*x[1])
3*y[2]
sage: R.<a,b> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = C.quotient_module(gens)

See also:
• Modules.WithBasis.ParentMethods.submodule()
• Rings.ParentMethods.quotient()
• sage.modules.with_basis.subquotient.QuotientModuleWithBasis
\texttt{random_element} (\(n=2\))

Return a ‘random’ element of \texttt{self}.

INPUT:
\begin{itemize}
 \item \texttt{n} – integer (default: 2); number of summands
\end{itemize}

ALGORITHM:

Return a sum of \(n\) terms, each of which is formed by multiplying a random element of the base ring by a random element of the group.

EXAMPLES:

\begin{verbatim}
sage: x = DihedralGroup(6).algebra(QQ).random_element()
sage: x.parent() is DihedralGroup(6).algebra(QQ)
True
\end{verbatim}

Note, this result can depend on the PRNG state in \texttt{libgap} in a way that depends on which packages are loaded, so we must re-seed \texttt{GAP} to ensure a consistent result for this example:

\begin{verbatim}
sage: libgap.set_seed(0)
\end{verbatim}

\begin{verbatim}
sage: m = SU(2, 13).algebra(QQ).random_element(1)
sage: m.parent() is SU(2, 13).algebra(QQ)
True
sage: p = CombinatorialFreeModule(ZZ, Partitions(4)).random_element()
sage: p.parent() is CombinatorialFreeModule(ZZ, Partitions(4))
True
\end{verbatim}

\texttt{submodule} (\texttt{gens, check=True, already_echelonized=False, unitriangular=False, support_order=None, category=None, *args, **opts})

The submodule spanned by a finite set of elements.

INPUT:
\begin{itemize}
 \item \texttt{gens} – a list or family of elements of \texttt{self}
 \item \texttt{check} – (default: True) whether to verify that the elements of \texttt{gens} are in \texttt{self}
 \item \texttt{already_echelonized} – (default: False) whether the elements of \texttt{gens} are already in (not necessarily reduced) echelon form
 \item \texttt{unitriangular} – (default: False) whether the lift morphism is unitriangular
 \item \texttt{support_order} – (optional) either something that can be converted into a tuple or a key function
 \item \texttt{category} – (optional) the category of the submodule
\end{itemize}

If \texttt{already_echelonized} is \texttt{False}, then the generators are put in reduced echelon form using \texttt{echelonize()}, and reindexed by 0, 1,

\textbf{Warning:} At this point, this method only works for finite dimensional submodules and if matrices can be echelonized over the base ring.

If in addition \texttt{unitriangular} is \texttt{True}, then the generators are made such that the coefficients of the pivots are 1, so that lifting map is unitriangular.

The basis of the submodule uses the same index set as the generators, and the lifting map sends \(y_i\) to \texttt{gens[i]}.

See also:
\begin{itemize}
 \item \texttt{ModulesWithBasis.FiniteDimensional.ParentMethods.quotient_module()}
 \item \texttt{sage.modules.with_basis.subquotient.SubmoduleWithBasis}
\end{itemize}
EXAMPLES:

We construct a submodule of the free \mathbb{Q}-module generated by x_0, x_1, x_2. The submodule is spanned by $y_0 = x_0 - x_1$ and $y_1 = x_1 - x_2$, and its basis elements are indexed by 0 and 1:

```sage
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = [x[0] - x[1], x[1] - x[2]]; gens
[x[0] - x[1], x[1] - x[2]]
sage: Y = X.submodule(gens, already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {0, 1} over Rational Field
sage: y = Y.basis()
sage: y[1]
y[1]
sage: y[1].lift()
x[1] - x[2]
sage: Y.retract(x[0]-x[2])
y[0] + y[1]
sage: Y.retract(x[0])
Traceback (most recent call last):
  ...
ValueError: x[0] is not in the image
```

By using a family to specify a basis of the submodule, we obtain a submodule whose index set coincides with the index set of the family:

```sage
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = Family({1 : x[0] - x[1], 3: x[1] - x[2]}); gens
Finite family {1: x[0] - x[1], 3: x[1] - x[2]}
sage: Y = X.submodule(gens, already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {1, 3} over Rational Field
sage: y = Y.basis()
sage: y[1]
y[1]
sage: y[1].lift()
x[0] - x[1]
sage: y[3].lift()
x[1] - x[2]
sage: Y.retract(x[0]-x[2])
y[0] + y[3]
sage: Y.retract(x[0])
Traceback (most recent call last):
  ...
ValueError: x[0] is not in the image
```

It is not necessary that the generators of the submodule form a basis (an explicit basis will be computed):

```sage
sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]; gens
(continues on next page)
```
We now implement by hand the center of the algebra of the symmetric group S_3:

```python
sage: S3 = SymmetricGroup(3)
sage: S3A = S3.algebra(QQ)
sage: basis = S3A.annihilator_basis(S3A.algebra_generators(), S3A.bracket)
sage: basis
((), (1,2,3) + (1,3,2), (2,3) + (1,2) + (1,3))
sage: center = S3A.submodule(basis, category=AlgebrasWithBasis(QQ).Subobjects(), already_echelonized=True)
sage: center
Free module generated by {0, 1, 2} over Rational Field
sage: center in Algebras
True
sage: center.print_options(prefix='c')
sage: c = center.basis()
sage: c[1].lift()
(1,2,3) + (1,3,2)
sage: c[0]^2
1/6*(c[0]+c[1]+c[2])
sage: e = 1/6*(c[0]+c[1]+c[2])
sage: e.is_idempotent()
True
```

Of course, this center is best constructed using:

```python
sage: center = S3A.center()
```

We can also automatically construct a basis such that the lift morphism is (lower) unitriangular:

```python
sage: R.<a,b> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = C.submodule(gens, unitriangular=True)
sage: Y.lift.matrix()
[ 1 0]
[ 0 1]
[-1 -1]
```

We now construct a (finite-dimensional) submodule of an infinite dimensional free module:

```python
sage: C = CombinatorialFreeModule(QQ, ZZ, prefix='z')
sage: z = C.basis()
sage: gens = [z[0] - z[1], 2*z[1] - 2*z[2], z[0] - z[2]]
```
sage: Y = C.submodule(gens)

sage: [Y.lift(b) for b in Y.basis()]

[\[z[0] - z[2], z[1] - z[2]\]]

sum_of_monomials()

Return the sum of the basis elements with indices in indices.

INPUT:
- indices – an list (or iterable) of indices of basis elements

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.sum_of_monomials(['a', 'b'])
B['a'] + B['b']
sage: F.sum_of_monomials(['a', 'b', 'a'])
2*B['a'] + B['b']
```

F.sum_of_monomials is in fact (almost) a map:

```python
sage: F.sum_of_monomials
A map to Free module generated by {'a', 'b', 'c'} over Rational Field
```

sum_of_terms(terms)

Construct a sum of terms of self.

INPUT:
- terms – a list (or iterable) of pairs (index, coeff)

OUTPUT:
Sum of coeff * B[index] over all (index, coeff) in terms, where B is the basis of self.

EXAMPLES:

```python
sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.sum_of_terms([[0, 2], [2, -3]])
2 + (0, -3)
```

tensor(*parents, **kwargs)

Return the tensor product of the parents.

EXAMPLES:

```python
sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example(); A.rename("A")
sage: A.tensor(A,A)
A # A # A
sage: A.rename(None)
```

term(index, coeff=None)

Construct a term in self.

INPUT:
- index – the index of a basis element
- coeff – an element of the coefficient ring (default: one)
OUTPUT:

\[\text{coeff} \ast \text{B[index]}, \text{where B is the basis of self.} \]

EXAMPLES:

```
sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.term(1, -2)
0 + (-2, 0)
```

Design: should this do coercion on the coefficient ring?

Super

alias of `sage.categories.super_modules_with_basis.SuperModulesWithBasis`

class `TensorProducts(category, *args)`

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of modules with basis constructed by tensor product of modules with basis.

class `ElementMethods`

Bases: `object`

Implements operations on elements of tensor products of modules with basis.

`apply_multilinear_morphism(f, codomain=None)`

Return the result of applying the morphism induced by `f` to `self`.

INPUT:

- `f` – a multilinear morphism from the component modules of the parent tensor product to any module
- `codomain` – the codomain of `f` (optional)

By the universal property of the tensor product, `f` induces a linear morphism from `self.parent()` to the target module. Returns the result of applying that morphism to `self`.

The codomain is used for optimizations purposes only. If it’s not provided, it’s recovered by calling `f` on the zero input.

EXAMPLES:

We start with simple (admittedly not so interesting) examples, with two modules `A` and `B`:

```
sage: A = CombinatorialFreeModule(ZZ, [1,2], prefix="A"); A.rename("A")
sage: B = CombinatorialFreeModule(ZZ, [3,4], prefix="B"); B.rename("B")
```

and `f` the bilinear morphism \((a, b) \mapsto b \otimes a\) from \(A \times B\) to \(B \otimes A\):

```
sage: def f(a,b):
.....:     return tensor([b,a])
```

Now, calling applying `f` on \(a \otimes b\) returns the same as `f(a, b)`:

```
sage: a = A.monomial(1) + 2 * A.monomial(2) ; a
sage: b = B.monomial(3) - 2 * B.monomial(4); b
sage: f(a,b)
```

(continues on next page)
sage: tensor([a,b]).apply_multilinear_morphism(f)

\(f\) may be a bilinear morphism to any module over the base ring of \(A\) and \(B\). Here the codomain is \(\mathbb{Z}\):

sage: def f(a,b):
....: return sum(a.coefficients(), 0) * sum(b.coefficients(), 0)
sage: f(a,b)
-3
sage: tensor([a,b]).apply_multilinear_morphism(f)
-3

Mind the 0 in the sums above; otherwise \(f\) would not return 0 in \(\mathbb{Z}\):

sage: def f(a,b):
....: return sum(a.coefficients()) * sum(b.coefficients())
sage: type(f(A.zero(), B.zero()))
<...
'int'>

Which would be wrong and break this method:

sage: tensor([a,b]).apply_multilinear_morphism(f)
Traceback (most recent call last):
... AttributeError: 'int' object has no attribute 'parent'

Here we consider an example where the codomain is a module with basis with a different base ring:

sage: C = CombinatorialFreeModule(QQ, [(1,3),(2,4)], prefix="C"); C.
˓→rename("C")
sage: def f(a,b):
....: return C.sum_of_terms([(1,3), QQ(a[1]*b[3])], ((2,4),
˓→QQ(a[2]*b[4])))
sage: f(a,b)
C[(1, 3)] - 4*C[(2, 4)]
sage: tensor([a,b]).apply_multilinear_morphism(f)
C[(1, 3)] - 4*C[(2, 4)]

We conclude with a real life application, where we check that the antipode of the Hopf algebra of Symmetric functions on the Schur basis satisfies its defining formula:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: def f(a,b): return a*b.antipode()
sage: x = 4*s.an_element(); x
8*s[] + 8*s[1] + 12*s[2]
sage: x.coproduct().apply_multilinear_morphism(f)
8*s[]
We recover the constant term of x, as desired.

Todo: Extract a method to linearize a multilinear morphism, and delegate the work there.

```python
sage: x.coproduct().apply_multilinear_morphism(f) == x.counit()
True
```

class `ParentMethods`

Bases: object

Implements operations on tensor products of modules with basis.

extra_super_categories()

EXAMPLES:

```python
sage: ModulesWithBasis(QQ).TensorProducts().extra_super_categories()
[Category of vector spaces with basis over Rational Field]
sage: ModulesWithBasis(QQ).TensorProducts().super_categories()
[Category of tensor products of modules with basis over Rational Field, Category of vector spaces with basis over Rational Field, Category of tensor products of vector spaces over Rational Field]
```

is_abelian()

Return whether this category is abelian.

This is the case if and only if the base ring is a field.

EXAMPLES:

```python
sage: ModulesWithBasis(QQ).is_abelian()
True
sage: ModulesWithBasis(ZZ).is_abelian()
False
```

4.120 Monoid algebras

```
sage.categories.monoid_algebras.MonoidAlgebras(base_ring)
The category of monoid algebras over base_ring.
```

EXAMPLES:

```python
sage: C = MonoidAlgebras(QQ); C
Category of monoid algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of bialgebras with basis over Rational Field, Category of semigroup algebras over Rational Field, Category of unital magma algebras over Rational Field]
```

This is just an alias for:

```python
sage: C is Monoids().Algebras(QQ)
True
```
4.121 Monoids

class sage.categories.monoids.Monoids(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of (multiplicative) monoids.

A monoid is a unital semigroup, that is a set endowed with a multiplicative binary operation \(\ast \) which is associative and admits a unit (see Wikipedia article Monoid).

EXAMPLES:

```python
sage: Monoids()
Category of monoids
sage: Monoids().super_categories()
[Category of semigroups, Category of unital magmas]
sage: Monoids().all_super_categories()
[Category of monoids, Category of semigroups, Category of unital magmas, Category of magmas, Category of sets, Category of sets with partial maps, Category of objects]
sage: Monoids().axioms()
frozenset({'Associative', 'Unital'})
sage: Semigroups().Unital()
Category of monoids
sage: Monoids().example()
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
```

class Algebras(category, *args)

Bases: sage.categories.algebra_functor.AlgebrasCategory

class ElementMethods

Bases: object

is_central()

Return whether the element self is central.

EXAMPLES:

```python
sage: SG4 = SymmetricGroupAlgebra(ZZ, 4)
sage: SG4(1).is_central()
True
sage: SG4(Permutation([1,3,2,4])).is_central()
False
sage: A = GroupAlgebras(QQ).example(); A
Algebra of Dihedral group of order 8 as a permutation group over
˓Rational Field
sage: sum(i for i in A.basis()).is_central()
True
```
algebra_generators()

Return generators for this algebra.

For a monoid algebra, the algebra generators are built from the monoid generators if available and from the semigroup generators otherwise.

See also:
- \texttt{Semigroups.Algebras.ParentMethods.algebra_generators()}
- \texttt{MagmaticAlgebras.ParentMethods.algebra_generators()}

EXAMPLES:

\begin{verbatim}
sage: M = Monoids().example(); M
An example of a monoid:
the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.monoid_generators()
Finite family {'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd'}
sage: M.algebra(ZZ).algebra_generators()
Finite family {'a': B['a'], 'b': B['b'], 'c': B['c'], 'd': B['d']}

sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid:
the integers modulo 12
sage: Z12.monoid_generators()
Traceback (most recent call last):
... AttributeError: 'IntegerModMonoid_with_category' object
has no attribute 'monoid_generators'
sage: Z12.semidgroup_generators()
Family (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
sage: Z12.algebra(QQ).algebra_generators()
Finite family {0: B[0], 1: B[1], 2: B[2], 3: B[3], 4: B[4], 5: B[5],

sage: GroupAlgebras(QQ).example(AlternatingGroup(10)).algebra_generators()
Finite family {0: (8,9,10), 1: (1,2,3,4,5,6,7,8,9)}

sage: A = DihedralGroup(3).algebra(QQ); A
Algebra of Dihedral group of order 6 as a permutation group
over Rational Field
sage: A.algebra_generators()
Finite family {0: (1,2,3), 1: (1,3)}
\end{verbatim}

one_basis()

Return the unit of the monoid, which indexes the unit of this algebra, as per \texttt{AlgebrasWithBasis.ParentMethods.one_basis()}.

EXAMPLES:

\begin{verbatim}
sage: A = Monoids().example().algebra(ZZ)
sage: A.one_basis()
'',
sage: A.one()
\end{verbatim}
The algebra of a monoid is a bialgebra and a monoid.

EXAMPLES:

```python
sage: C = Monoids().Algebras(QQ)
sage: C.extra_super_categories()
[Category of bialgebras over Rational Field,
 Category of monoids]
sage: Monoids().Algebras(QQ).super_categories()
[Category of bialgebras with basis over Rational Field,
 Category of semigroup algebras over Rational Field,
 Category of unital magma algebras over Rational Field]
```

class `CartesianProducts`(`category`, *`args`)

Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

The category of monoids constructed as Cartesian products of monoids.

This construction gives the direct product of monoids. See Wikipedia article Direct_product for more information.

class `ParentMethods`

Bases: object

`monoid_generators()`

Return the generators of `self`.

EXAMPLES:

```python
sage: M = Monoids().free([1,2,3])
sage: N = Monoids().free(['a','b'])
sage: C = cartesian_product([M, N])
sage: C.monoid_generators()
Family ((F[1], 1), (F[2], 1), (F[3], 1),
 (1, F['a'])), (1, F['b']))
```

An example with an infinitely generated group (a better output is needed):

```python
sage: N = Monoids().free(ZZ)
sage: C = cartesian_product([M, N])
sage: C.monoid_generators()
Lazy family (gen(i))_{i in The Cartesian product of (...)}
```

extra_super_categories()

A Cartesian product of monoids is endowed with a natural group structure.

EXAMPLES:

```python
sage: C = Monoids().CartesianProducts()
sage: C.extra_super_categories()
[Category of monoids]
```
sage: sorted(C.super_categories(), key=str)
[Category of Cartesian products of semigroups,
 Category of Cartesian products of unital magmas,
 Category of monoids]

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

Category of commutative (abelian) monoids.

A monoid M is commutative if $xy = yx$ for all $x, y \in M$.

static free(index_set=None, names=None, **kwds)
 Return a free abelian monoid on n generators or with the generators indexed by a set I.

 A free monoid is constructed by specifying either:
 • the number of generators and/or the names of the generators, or
 • the indexing set for the generators.

 INPUT:
 • index_set – (optional) an index set for the generators; if an integer, then this represents
 \{0,1,...,n-1\}
 • names – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix

 EXAMPLES:

 sage: Monoids().Commutative().free(index_set=ZZ)
 Free abelian monoid indexed by Integer Ring
 sage: Monoids().Commutative().free(ZZ)
 Free abelian monoid indexed by Integer Ring
 sage: F.<x,y,z> = Monoids().Commutative().free(); F
 Free abelian monoid indexed by {'x', 'y', 'z'}

class ElementMethods
Bases: object

is_one()
 Return whether self is the one of the monoid.

 The default implementation is to compare with self.one().

powers(n)
 Return the list $[x^0, x^1, ..., x^{n-1}]$.

 EXAMPLES:

 sage: A = Matrix([[1, 1], [-1, 0]])
 sage: A.powers(6)
 [[1 0] [1 1] [0 1] [-1 0] [-1 -1] [0 -1]
 [0 1], [-1 0], [-1 -1], [0 -1], [1 0], [1 1]]

Finite
 alias of sage.categories.finite_monoids.FiniteMonoids

Inverse
 alias of sage.categories.groups.Groups
class ParentMethods
Bases: object

prod(args)
n-ary product of elements of self.

INPUT:
• args – a list (or iterable) of elements of self

Returns the product of the elements in args, as an element of self.

EXAMPLES:

sage: S = Monoids().example()
sage: S.prod([S('a'), S('b')])
'ab'

semigroup_generators()
Return the generators of self as a semigroup.

The generators of a monoid M as a semigroup are the generators of M as a monoid and the unit.

EXAMPLES:

sage: M = Monoids().free([1,2,3])
sage: M.semigroup_generators()
Family (1, F[1], F[2], F[3])

submonoid(generators, category=None)
Return the multiplicative submonoid generated by generators.

INPUT:
• generators – a finite family of elements of self, or a list, iterable, … that can be converted into one (see Family).
• category – a category

This is a shorthand for Semigroups.ParentMethods.subsemigroup() that specifies that this is a submonoid, and in particular that the unit is self.one().

EXAMPLES:

sage: R = IntegerModRing(15)
sage: M = R.submonoid([R(3),R(5)]); M
A submonoid of (Ring of integers modulo 15) with 2 generators
sage: M.list()
[1, 3, 5, 9, 0, 10, 12, 6]

Not the presence of the unit, unlike in:

sage: S = R.subsemigroup([R(3),R(5)]); S
A subsemigroup of (Ring of integers modulo 15) with 2 generators
sage: S.list()
[3, 5, 9, 0, 10, 12, 6]

This method is really a shorthand for subsemigroup:

sage: M2 = R.subsemigroup([R(3),R(5)], one=R.one())
sage: M2 is M
True
class Subquotients(category, *args)
 Bases: sage.categories.subquotients.SubquotientsCategory

class ParentMethods
 Bases: object

 one()
 Returns the multiplicative unit of this monoid, obtained by retracting that of the ambient monoid.

 EXAMPLES:
 sage: S = Monoids().Subquotients().example() # todo: not implemented
 sage: S.one() # todo: not implemented

class WithRealizations(category, *args)
 Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
 Bases: object

 one()
 Return the unit of this monoid.
 This default implementation returns the unit of the realization of self given by a_realization().

 EXAMPLES:
 sage: A = Sets().WithRealizations().example(); A
 The subset algebra of {1, 2, 3} over Rational Field
 sage: A.one.__module__
 'sage.categories.monoids'
 sage: A.one()
 F[{}]

static free(index_set=None, names=None, **kwds)
Return a free monoid on \(n \) generators or with the generators indexed by a set \(I \).

A free monoid is constructed by specifying either:

- the number of generators and/or the names of the generators
- the indexing set for the generators

INPUT:

- index_set – (optional) an index set for the generators; if an integer, then this represents \(\{0, 1, \ldots, n - 1\} \)
- names – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix

EXAMPLES:

sage: Monoids().free(index_set=ZZ)
Free monoid indexed by Integer Ring
sage: Monoids().free(ZZ)
Free monoid indexed by Integer Ring
sage: F.<x,y,z> = Monoids().free(); F
Free monoid indexed by {'x', 'y', 'z'}
4.122 Number fields

```python
class sage.categories.number_fields.NumberFields(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

    The category of number fields.

    EXAMPLES:
    We create the category of number fields:

    sage: C = NumberFields()
    sage: C
    Category of number fields

    By definition, it is infinite:

    sage: NumberFields().Infinite() is NumberFields()
    True

    Notice that the rational numbers \( \mathbb{Q} \) are considered as an object in this category:

    sage: RationalField() in C
    True

    However, we can define a degree 1 extension of \( \mathbb{Q} \), which is of course also in this category:

    sage: x = PolynomialRing(RationalField(), 'x').gen()
    sage: K = NumberField(x - 1, 'a'); K
    Number Field in a with defining polynomial x - 1
    sage: K in C
    True

    Number fields all lie in this category, regardless of the name of the variable:

    sage: K = NumberField(x^2 + 1, 'a')
    sage: K in C
    True
```

```python
class ElementMethods
    Bases: object

class ParentMethods
    Bases: object

    zeta_function(prec=53, max_imaginary_part=0, max_asymp_coeffs=40, algorithm='pari')

    Return the Dedekind zeta function of this number field.

    Actually, this returns an interface for computing with the Dedekind zeta function \( \zeta_F(s) \) of the number field \( F \).

    INPUT:
    - prec – optional integer (default 53) bits precision
    - max_imaginary_part – optional real number (default 0)
    - max_asymp_coeffs – optional integer (default 40)
    - algorithm – optional (default “pari”) either “gp” or “pari”
```
OUTPUT: The zeta function of this number field.

If algorithm is “gp”, this returns an interface to Tim Dokchitser’s gp script for computing with L-functions.

If algorithm is “pari”, this returns instead an interface to Pari’s own general implementation of L-functions.

EXAMPLES:

```python
sage: K.<a> = NumberField(ZZ['x'].0^2+ZZ['x'].0-1)
sage: Z = K.zeta_function(); Z
optional - sage.symbolic
PARI zeta function associated to Number Field in a with defining polynomial x^2 + x - 1
sage: Z(-1)
optional - sage.symbolic
0.033333333333333

sage: x = polygen(QQ, 'x')
optional - sage.symbolic
sage: L.<a, b, c> = NumberField([x^2 - 5, x^2 + 3, x^2 + 1])
optional - sage.symbolic
sage: Z = L.zeta_function()
optional - sage.symbolic
sage: Z(5)
optional - sage.symbolic
1.00199015670185
```

Using the algorithm “pari”:

```python
sage: K.<a> = NumberField(ZZ['x'].0^2+ZZ['x'].0-1)
optional - sage.symbolic
sage: Z = K.zeta_function(algorithm="pari")
optional - sage.symbolic
sage: Z(-1)
optional - sage.symbolic
0.033333333333333

sage: x = polygen(QQ, 'x')
optional - sage.symbolic
sage: L.<a, b, c> = NumberField([x^2 - 5, x^2 + 3, x^2 + 1])
optional - sage.symbolic
sage: Z = L.zeta_function(algorithm="pari")
optional - sage.symbolic
sage: Z(5)
optional - sage.symbolic
1.00199015670185
```

```
super_categories()
EXAMPLES:

sage: NumberFields().super_categories()
[Category of infinite fields]
```
4.123 Objects

```python
class sage.categories.objects.Objects(s=None):
    Bases: sage.categories.category_singleton.Category_singleton

    The category of all objects the basic category

    EXAMPLES:

    sage: Objects()
    Category of objects
    sage: Objects().super_categories()
    []
```

class ParentMethods
 Bases: object

 Methods for all category objects

class SubcategoryMethods
 Bases: object

 Endsets()
 - Return the category of endsets between objects of this category.

 EXAMPLES:

 sage: Sets().Endsets()
 Category of endsets of sets
 sage: Rings().Endsets()
 Category of endsets of unital magmas and additive unital additive magmas

 See also:
 - Homsets()

 Homsets()
 - Return the category of homsets between objects of this category.

 EXAMPLES:

 sage: Sets().Homsets()
 Category of homsets of sets
 sage: Rings().Homsets()
 Category of homsets of unital magmas and additive unital additive magmas

 Note: Background

 Information, code, documentation, and tests about the category of homsets of a category Cs should go in the nested class Cs.Homsets. They will then be made available to homsets of any subcategory of Cs.

 Assume, for example, that homsets of Cs are Cs themselves. This information can be implemented in the method Cs.Homsets.extra_super_categories to make Cs.Homsets() a subcategory of Cs().

 Methods about the homsets themselves should go in the nested class Cs.Homsets.ParentMethods.
Methods about the morphisms can go in the nested class `Cs.Homsets.ElementMethods`. However it's generally preferable to put them in the nested class `Cs.MorphismMethods`; indeed they will then apply to morphisms of all subcategories of `Cs`, and not only full subcategories.

See also:

FunctorialConstruction

Todo:

- Design a mechanism to specify that an axiom is compatible with taking subsets. Examples: `Finite`, `Associative`, `Commutative` (when meaningful), but not `Infinite` nor `Unital`.
- Design a mechanism to specify that, when B is a subcategory of A, a B-homset is a subset of the corresponding A homset. And use it to recover all the relevant axioms from homsets in super categories.
- For instances of redundant code due to this missing feature, see:
 - `AdditiveMonoids.Homsets.extra_super_categories()`
 - `HomsetsCategory.extra_super_categories()` (slightly different nature)
 - plus plenty of spots where this is not implemented.

additional_structure()

Return None

Indeed, by convention, the category of objects defines no additional structure.

See also:

`Category.additional_structure()`

EXAMPLES:

```
sage: Objects().additional_structure()
```

super_categories()

EXAMPLES:

```
sage: Objects().super_categories()
[]
```

4.124 Partially ordered monoids

class sage.categories.partially_ordered_monoids.PartiallyOrderedMonoids(s=None)

Bases: sage.categories.category_singleton.Category_singleton

The category of partially ordered monoids, that is partially ordered sets which are also monoids, and such that multiplication preserves the ordering: $x \leq y$ implies $x \ast z < y \ast z$ and $z \ast x < z \ast y$.

See Wikipedia article Ordered_monoid

EXAMPLES:

```
sage: PartiallyOrderedMonoids()
Category of partially ordered monoids
sage: PartiallyOrderedMonoids().super_categories()
[Category of posets, Category of monoids]
```
class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

super_categories()

EXAMPLES:

```
sage: PartiallyOrderedMonoids().super_categories()
[Category of posets, Category of monoids]
```

4.125 Permutation groups

class sage.categories.permutation_groups.PermutationGroups(s=None)
 Bases: sage.categories.category.Category

The category of permutation groups.

A permutation group is a group whose elements are concretely represented by permutations of some set. In other words, the group comes endowed with a distinguished action on some set.

This distinguished action should be preserved by permutation group morphisms. For details, see Wikipedia article Permutation_group#Permutation_isomorphic_groups.

Todo: shall we accept only permutations with finite support or not?

EXAMPLES:

```
sage: PermutationGroups()
Category of permutation groups
sage: PermutationGroups().super_categories()
[Category of groups]
```

The category of permutation groups defines additional structure that should be preserved by morphisms, namely the distinguished action:

```
sage: PermutationGroups().additional_structure()
Category of permutation groups
```

Finite

alias of `sage.categories.finite_permutation_groups.FinitePermutationGroups`

super_categories()

Return a list of the immediate super categories of `self`.

EXAMPLES:

```
sage: PermutationGroups().super_categories()
[Category of groups]
```

4.125. Permutation groups
4.126 Pointed sets

class sage.categories.pointed_sets.PointedSets(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

 The category of pointed sets.

 EXAMPLES:

 sage: PointedSets()
 Category of pointed sets

 super_categories()
 EXAMPLES:

 sage: PointedSets().super_categories()
 [Category of sets]

4.127 Polyhedral subsets of free ZZ, QQ or RR-modules.

class sage.categories.polyhedra.PolyhedralSets(R)
 Bases: sage.categories.category_types.Category_over_base_ring

 The category of polyhedra over a ring.

 EXAMPLES:

 We create the category of polyhedra over Q:

 sage: PolyhedralSets(QQ)
 Category of polyhedral sets over Rational Field

 super_categories()
 EXAMPLES:

 sage: PolyhedralSets(QQ).super_categories()
 [Category of commutative magmas, Category of additive monoids]

4.128 Posets

class sage.categories.posets.Posets(s=None)
 Bases: sage.categories.category.Category

 The category of posets i.e. sets with a partial order structure.

 EXAMPLES:

 sage: Posets()
 Category of posets
 sage: Posets().super_categories()
 [Category of sets]
 sage: P = Posets().example(); P
 An example of a poset: sets ordered by inclusion
The partial order is implemented by the mandatory method :meth:`le`:

```
sage: x = P(Set([1, 3])); y = P(Set([1, 2, 3]))
sage: x, y
({1, 3}, {1, 2, 3})
sage: P.le(x, y)
True
sage: P.le(x, x)
True
sage: P.le(y, x)
False
```

The other comparison methods are called :meth:`lt`, :meth:`ge`, :meth:`gt`, following Python’s naming convention in :mod:`operator`. Default implementations are provided:

```
sage: P.lt(x, x)
False
sage: P.ge(y, x)
True
```

Unless the poset is a facade (see :class:`Sets.Facade`), one can compare directly its elements using the usual Python operators:

```
sage: D = Poset((divisors(30), attrcall("divides")), facade = False)
sage: D(3) <= D(6)
True
sage: D(3) <= D(3)
True
sage: D(3) <= D(5)
False
sage: D(3) < D(3)
False
sage: D(10) >= D(5)
True
```

At this point, this has to be implemented by hand. Once trac ticket #10130 will be resolved, this will be automatically provided by this category:

```
sage: x < y      # todo: not implemented
True
sage: x < x     # todo: not implemented
False
sage: x <= x    # todo: not implemented
True
sage: y >= x    # todo: not implemented
True
```

See also:

- :class:`Poset`
- :class:`FinitePosets`
- :class:`LatticePosets`

\begin{Verbatim}
\textbf{class ElementMethods}
\end{Verbatim}

\begin{Verbatim}
Bases: object
\end{Verbatim}

\begin{Verbatim}
\textbf{Finite}
\end{Verbatim}

\begin{Verbatim}
alias of \texttt{sage.categories.finite_posets.FinitePosets}
\end{Verbatim}
class ParentMethods
 Bases: object

CartesianProduct
 alias of sage.combinat.posets.cartesian_product.CartesianProductPoset
directed_subset(elements, direction)
 Return the order filter or the order ideal generated by a list of elements.
 If direction is 'up', the order filter (upper set) is being returned.
 If direction is 'down', the order ideal (lower set) is being returned.
 INPUT:
 • elements – a list of elements.
 • direction – ‘up’ or ‘down’.
 EXAMPLES:

 sage: B = posets.BooleanLattice(4)
sage: B.directed_subset([3, 8], 'up')
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: B.directed_subset([7, 10], 'down')
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]

ge(x, y)
 Return whether \(x \geq y\) in the poset self.
 INPUT:
 • x, y – elements of self.
 This default implementation delegates the work to le().
 EXAMPLES:

 sage: D = Poset((divisors(30), attrcall("divides"))
sage: D.ge(6, 3)
True
sage: D.ge(3, 3)
True
sage: D.ge(3, 5)
False

gt(x, y)
 Return whether \(x > y\) in the poset self.
 INPUT:
 • x, y – elements of self.
 This default implementation delegates the work to lt().
 EXAMPLES:

 sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.gt(3, 6)
False
sage: D.gt(3, 3)
False
sage: D.gt(3, 5)
False
is_antichain_of_poset(o)

Return whether an iterable o is an antichain of self.

INPUT:
- o – an iterable (e.g., list, set, or tuple) containing some elements of self

OUTPUT:
True if the subset of self consisting of the entries of o is an antichain of self, and False otherwise.

EXAMPLES:

```
sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_antichain_of_poset([1, 3])
False
sage: P.is_antichain_of_poset([3, 1])
False
sage: P.is_antichain_of_poset([1, 1, 3])
False
sage: P.is_antichain_of_poset([])
True
sage: P.is_antichain_of_poset([1])
True
sage: P.is_antichain_of_poset([1, 1])
True
sage: P.is_antichain_of_poset([3, 4])
True
sage: P.is_antichain_of_poset([3, 4, 12])
False
sage: P.is_antichain_of_poset([6, 4])
True
sage: P.is_antichain_of_poset((i for i in divisors(12) if (2 < i and i < 6))
True
sage: P.is_antichain_of_poset((i for i in divisors(12) if (2 <= i and i < 6))
False

sage: Q = Poset({2: [3, 1], 3: [4], 1: [4]})
sage: Q.is_antichain_of_poset((1, 2))
False
sage: Q.is_antichain_of_poset((2, 4))
False
sage: Q.is_antichain_of_poset((4, 2))
False
sage: Q.is_antichain_of_poset((2, 2))
True
sage: Q.is_antichain_of_poset((3, 4))
False
sage: Q.is_antichain_of_poset((3, 1))
True
sage: Q.is_antichain_of_poset((1, ))
True
sage: Q.is_antichain_of_poset()
True
```
An infinite poset:

```
sage: from sage.categories.examples.posets import FiniteSetsOrderedByInclusion
sage: R = FiniteSetsOrderedByInclusion()
sage: R.is_antichain_of_poset([R(set([3, 1, 2])), R(set([1, 4])), R(set([4, 5]))])
True
sage: R.is_antichain_of_poset([R(set([3, 1, 2, 4])), R(set([1, 4])), R(set([4, 5]))])
False
```

is_chain_of_poset(o, ordered=False)

Return whether an iterable o is a chain of self, including a check for o being ordered from smallest to largest element if the keyword ordered is set to True.

INPUT:
- o – an iterable (e.g., list, set, or tuple) containing some elements of self
- ordered – a Boolean (default: False) which decides whether the notion of a chain includes being ordered

OUTPUT:
- If ordered is set to False, the truth value of the following assertion is returned: The subset of self formed by the elements of o is a chain in self.

- If ordered is set to True, the truth value of the following assertion is returned: Every element of the list o is (strictly!) smaller than its successor in self. (This makes no sense if ordered is a set.)

EXAMPLES:

```
sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_chain_of_poset([1, 3])
True
sage: P.is_chain_of_poset([3, 1])
True
sage: P.is_chain_of_poset([1, 3], ordered=True)
True
sage: P.is_chain_of_poset([3, 1], ordered=True)
False
sage: P.is_chain_of_poset([])
True
sage: P.is_chain_of_poset([], ordered=True)
True
sage: P.is_chain_of_poset((2, 12, 6))
True
sage: P.is_chain_of_poset((2, 6, 12), ordered=True)
True
sage: P.is_chain_of_poset((2, 12, 6), ordered=True)
False
sage: P.is_chain_of_poset((2, 12, 6, 3))
False
sage: P.is_chain_of_poset((2, 3))
False
```
Examples with infinite posets:

```
sage: from sage.categories.examples.posets import FiniteSetsOrderedByInclusion
sage: R = FiniteSetsOrderedByInclusion()
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 4])), R(set([4, 5]))])
False
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 2])), R(set([1]))], ordered=True)
False
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 2])), R(set([1]))])
True

sage: from sage.categories.examples.posets import PositiveIntegersOrderedByDivisibilityFacade
sage: T = PositiveIntegersOrderedByDivisibilityFacade()
sage: T.is_chain_of_poset((T(3), T(4), T(7)))
False
sage: T.is_chain_of_poset((T(3), T(6), T(3)))
True
sage: T.is_chain_of_poset((T(3), T(6), T(3)), ordered=True)
False
sage: T.is_chain_of_poset((T(3), T(3), T(6)))
True
sage: T.is_chain_of_poset((T(3), T(3), T(6)), ordered=True)
False
sage: T.is_chain_of_poset((T(3), T(6)), ordered=True)
True
sage: T.is_chain_of_poset((T(3)), ordered=True)
True
sage: T.is_chain_of_poset((T(3),), ordered=True)
True
```

(continues on next page)
sage: T.is_chain_of_poset((T(q) for q in divisors(27)))
True
sage: T.is_chain_of_poset((T(q) for q in divisors(18)))
False

is_order_filter(o)

Return whether o is an order filter of self, assuming self has no infinite ascending path.

INPUT:

• o – a list (or set, or tuple) containing some elements of self

EXAMPLES:

```python
sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_order_filter([4, 12])
True
sage: P.is_order_filter([])
True
sage: P.is_order_filter({3, 4, 12})
False
sage: P.is_order_filter({3, 6, 12})
True
```

is_order_ideal(o)

Return whether o is an order ideal of self, assuming self has no infinite descending path.

INPUT:

• o – a list (or set, or tuple) containing some elements of self

EXAMPLES:

```python
sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_order_ideal([1, 3])
True
sage: P.is_order_ideal([])
True
sage: P.is_order_ideal({1, 3})
True
sage: P.is_order_ideal([1, 3, 4])
False
```

le(x, y)

Return whether x ≤ y in the poset self.

INPUT:

• x, y – elements of self

EXAMPLES:

```python
sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.le(3, 6)
(True, False)
```

(continues on next page)
lower_covers(x)
Return the lower covers of x, that is, the elements y such that $y < x$ and there exists no z such that $y < z < x$.

EXAMPLES:

```python
sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.lower_covers(15)
[3, 5]
```

lt(x, y)
Return whether $x < y$ in the poset self.

INPUT:
• x, y – elements of self.
This default implementation delegates the work to le().

EXAMPLES:

```python
sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.lt(3, 6)
True
sage: D.lt(3, 3)
False
sage: D.lt(3, 5)
False
```

order_filter(elements)
Return the order filter generated by a list of elements.
A subset I of a poset is said to be an order filter if, for any x in I and y such that $y \geq x$, then y is in I.
This is also called the upper set generated by these elements.

EXAMPLES:

```python
sage: B = posets.BooleanLattice(4)
sage: B.order_filter([3, 8])
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]
```

order_ideal(elements)
Return the order ideal in self generated by the elements of an iterable elements.
A subset I of a poset is said to be an order ideal if, for any x in I and y such that $y \leq x$, then y is in I.
This is also called the lower set generated by these elements.

EXAMPLES:

```python
sage: B = posets.BooleanLattice(4)
sage: B.order_ideal([7, 10])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]
```
order_ideal_toggle(I, v)
Return the result of toggling the element v in the order ideal I.

If v is an element of a poset P, then toggling the element v is an automorphism of the set $J(P)$ of all order ideals of P. It is defined as follows: If I is an order ideal of P, then the image of I under toggling the element v is
- the set $I \cup \{v\}$, if $v \not\in I$ but every element of P smaller than v is in I;
- the set $I \setminus \{v\}$, if $v \in I$ but no element of P greater than v is in I;
- I otherwise.
This image always is an order ideal of P.

EXAMPLES:

```
sage: P = Poset({1: [2,3], 2: [4], 3: []})
sage: I = Set({1, 2})
sage: I in P.order_ideals_lattice()
True
sage: P.order_ideal_toggle(I, 1)
{1, 2}
sage: P.order_ideal_toggle(I, 2)
{1}
sage: P.order_ideal_toggle(I, 3)
{1, 2, 3}
sage: P.order_ideal_toggle(I, 4)
{1, 2, 4}
sage: P4 = Posets(4)
sage: all(all(all(P.order_ideal_toggle(P.order_ideal_toggle(I, i), i) == I
....: for i in range(4))
....: for I in P.order_ideals_lattice(facade=True))
....: for P in P4)
True
```

order_ideal_toggles(I, vs)
Return the result of toggling the elements of the list (or iterable) vs (one by one, from left to right) in the order ideal I.

See order_ideal_toggle() for a definition of toggling.

EXAMPLES:

```
sage: P = Poset({1: [2,3], 2: [4], 3: []})
sage: I = Set({1, 2})
sage: P.order_ideal_toggles(I, [1,2,3,4])
{1, 3}
sage: P.order_ideal_toggles(I, (1,2,3,4))
{1, 3}
```

principal_lower_set(x)
Return the order ideal generated by an element x.

This is also called the lower set generated by this element.

EXAMPLES:

```
sage: B = posets.BooleanLattice(4)
sage: B.principal_order_ideal(6)
[0, 2, 4, 6]
```


principal_order_filter(x)
Return the order filter generated by an element x.
This is also called the upper set generated by this element.

EXAMPLES:
```
sage: B = posets.BooleanLattice(4)
sage: B.principal_order_filter(2)
[2, 3, 6, 7, 10, 11, 14, 15]
```

principal_order_ideal(x)
Return the order ideal generated by an element x.
This is also called the lower set generated by this element.

EXAMPLES:
```
sage: B = posets.BooleanLattice(4)
sage: B.principal_order_ideal(6)
[0, 2, 4, 6]
```

principal_upper_set(x)
Return the order filter generated by an element x.
This is also called the upper set generated by this element.

EXAMPLES:
```
sage: B = posets.BooleanLattice(4)
sage: B.principal_order_filter(2)
[2, 3, 6, 7, 10, 11, 14, 15]
```

upper_covers(x)
Return the upper covers of x, that is, the elements y such that x < y and there exists no z such that x < z < y.

EXAMPLES:
```
sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.upper_covers(3)
[6, 15]
```

example(choice=None)
Return examples of objects of Posets(), as per Category.example().

EXAMPLES:
```
sage: Posets().example()
An example of a poset: sets ordered by inclusion

sage: Posets().example("facade")
An example of a facade poset: the positive integers ordered by divisibility
```

super_categories()
Return a list of the (immediate) super categories of self, as per Category.super_categories().

EXAMPLES:
4.129 Principal ideal domains

class sage.categories.principal_ideal_domains.PrincipalIdealDomains(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

The category of (constructive) principal ideal domains

By constructive, we mean that a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.

EXAMPLES:

 sage: PrincipalIdealDomains()
 Category of principal ideal domains
 sage: PrincipalIdealDomains().super_categories()
 [Category of unique factorization domains]

See also Wikipedia article Principal_ideal_domain

class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

additional_structure()
 Return None.

 Indeed, the category of principal ideal domains defines no additional structure: a ring morphism between two principal ideal domains is a principal ideal domain morphism.

 EXAMPLES:

 sage: PrincipalIdealDomains().additional_structure()

super_categories()
 EXAMPLES:

 sage: PrincipalIdealDomains().super_categories()
 [Category of unique factorization domains]
4.130 Quotient fields

class sage.categories.quotient_fields.QuotientFields(s=None)
 Bases: sage.categories.category_singleton.Category_singleton
 The category of quotient fields over an integral domain

 EXAMPLES:

 sage: QuotientFields()
 Category of quotient fields
 sage: QuotientFields().super_categories()
 [Category of fields]

 class ElementMethods
 Bases: object

 denominator()
 Constructor for abstract methods

 EXAMPLES:

 sage: def f(x):
 : "doc of f"
 : return 1
 sage: x = abstract_method(f); x
 <abstract method f at ...>
 sage: x.__doc__
 'doc of f'
 sage: x.__name__
 'f'
 sage: x.__module__
 '__main__'

 derivative(*args)
 The derivative of this rational function, with respect to variables supplied in args.

 Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

 See also:
 _derivative()

 EXAMPLES:

 sage: F.<x> = Frac(QQ['x'])
 sage: (1/x).derivative()
 -1/x^2

 sage: (x+1/x).derivative(x, 2)
 2/x^3

 sage: F.<x,y> = Frac(QQ['x,y'])
 sage: (1/(x+y)).derivative(x,y)
 2/(x^3 + 3*x^2*y + 3*x*y^2 + y^3)
factor(*args, **kwds)
Return the factorization of self over the base ring.

INPUT:
• *args - Arbitrary arguments suitable over the base ring
• **kwds - Arbitrary keyword arguments suitable over the base ring

OUTPUT:
• Factorization of self over the base ring

EXAMPLES:

```
sage: K.<x> = QQ[]
sage: f = (x^3+x)/(x-3)
sage: f.factor()
(x - 3)^-1 * x * (x^2 + 1)
```

Here is an example to show that trac ticket #7868 has been resolved:

```
sage: R.<x,y> = GF(2)[]
sage: f = x*y/(x+y)
sage: f.factor()
(x + y)^-1 * y * x
```

gcd(other)
Greatest common divisor

Note: In a field, the greatest common divisor is not very informative, as it is only determined up to a unit. But in the fraction field of an integral domain that provides both gcd and lcm, it is possible to be a bit more specific and define the gcd uniquely up to a unit of the base ring (rather than in the fraction field).

AUTHOR:
• Simon King (2011-02): See trac ticket #10771

EXAMPLES:

```
sage: R.<x> = QQ['x']
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
sage: factor(p)
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(q)
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
sage: gcd(p,q)
(x + 1)/(x^7 + x^5 - x^2 - 1)
sage: factor(gcd(p,q))
(x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(gcd(p,1+x))
(x - 1)^-1 * (x + 1) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(gcd(1+x,q))
(x - 1)^-1 * (x + 1) * (x^2 + 1)^-1
```

lcm(other)
Least common multiple

In a field, the least common multiple is not very informative, as it is only determined up to a unit. But in the fraction field of an integral domain that provides both gcd and lcm, it is reasonable to be a bit
more specific and to define the least common multiple so that it restricts to the usual least common multiple in the base ring and is unique up to a unit of the base ring (rather than up to a unit of the fraction field).

The least common multiple is easily described in terms of the prime decomposition. A rational number can be written as a product of primes with integer (positive or negative) powers in a unique way. The least common multiple of two rational numbers x and y can then be defined by specifying that the exponent of every prime p in $\text{lcm}(x, y)$ is the supremum of the exponents of p in x, and the exponent of p in y (where the primes that do not appear in the decomposition of x or y are considered to have exponent zero).

AUTHOR:
• Simon King (2011-02): See trac ticket #10771

EXAMPLES:

```python
sage: lcm(2/3, 1/5)
2
```

Indeed $2/3 = 2^1 \cdot 3^{-1} \cdot 5^0$ and $1/5 = 2^0 \cdot 3^0 \cdot 5^{-1}$, so $\text{lcm}(2/3, 1/5) = 2^1 \cdot 3^0 \cdot 5^0 = 2$.

```python
sage: lcm(1/3, 1/5)
sage: lcm(1/3, 1/6)
```

Some more involved examples:

```python
sage: R.<x> = QQ[]
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
sage: factor(p)
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(q)
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1/3)
sage: factor(lcm(p,q))
(x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^2 + 1/3)
sage: factor(lcm(p,1+x))
(x + 1)^3 * (x^2 + 1/2)
sage: factor(lcm(1+x,q))
(x + 1) * (x^2 + 1/3)
```

numerator()

Constructor for abstract methods

EXAMPLES:

```python
sage: def f(x):
...:     "doc of f"
...:     return 1
sage: x = abstract_method(f); x
<abstract method f at ...>
sage: x.__doc__
'doc of f'
sage: x.__name__
'f'
sage: x.__module__
'__main__'
```

partial_fraction_decomposition(decompose_powers=True)

Decomposes fraction field element into a whole part and a list of fraction field elements over prime power denominators.
The sum will be equal to the original fraction.

INPUT:
- **decompose_powers** – whether to decompose prime power denominators as opposed to having a single term for each irreducible factor of the denominator (default: True)

OUTPUT:
- Partial fraction decomposition of self over the base ring.

AUTHORS:

EXAMPLES:

```
sage: S.<t> = QQ[]
sage: q = 1/(t+1) + 2/(t+2) + 3/(t-3); q
(6*t^2 + 4*t - 6)/(t^3 - 7*t - 6)
sage: whole, parts = q.partial_fraction_decomposition(); parts
[3/(t - 3), 1/(t + 1), 2/(t + 2)]
sage: sum(parts) == q
True
```

```
sage: q = 1/(t^3+1) + 2/(t^2+2) + 3/(t-3)^5
sage: whole, parts = q.partial_fraction_decomposition(); parts
[1/3/(t + 1), 3/(t^5 - 15*t^4 + 90*t^3 - 270*t^2 + 405*t - 243), (-1/3*t + 2/3)/(t^2 - t + 1), 2/(t^2 + 2)]
sage: sum(parts) == q
True
```

```
sage: q = 2*t / (t + 3)^2
sage: q.partial_fraction_decomposition()
(0, [2*t/(t^2 + 6*t + 9)])
sage: for p in q.partial_fraction_decomposition()[1]: print(p.factor())
(2) * (t + 3)^-1
(-6) * (t + 3)^-2
```

We can decompose over a given algebraic extension:

```
sage: R.<x> = QQ[sqrt(2)][]
sage: r = 1/(x^4+1)
sage: r.partial_fraction_decomposition()
(0, [(-1/4*sqrt2*x + 1/2)/(x^2 - sqrt2*x + 1), (1/4*sqrt2*x + 1/2)/(x^2 + sqrt2*x + 1)])
sage: R.<x> = QQ[I][]  # of QQ[sqrt(-1)]
sage: r = 1/(x^4+1)
sage: r.partial_fraction_decomposition()
(0, [(-1/2*I)/(x^2 - I), 1/2*I/(x^2 + I)])
```

We can also ask Sage to find the least extension where the denominator factors in linear terms:

```
sage: R.<x> = QQ[]
sage: r = 1/(x^4+2)
sage: N = r.denominator().splitting_field('a')
sage: N
Number Field in a with defining polynomial x^8 - 8*x^6 + 28*x^4 + 16*x^2 + 36
```
Category Framework, Release 9.6

(continued from previous page)

```python
sage: R1.<x1>=N[]
sage: r1 = 1/(x1^4+2)
sage: r1.partial_fraction_decomposition()
(0,
 [-1/224*a^6 + 13/448*a^4 - 5/56*a^2 - 25/224)/(x1 - 1/28*a^6 + 13/56*a^4 -
   5/7*a^2 - 25/28),
 (1/224*a^6 - 13/448*a^4 + 5/56*a^2 + 25/224)/(x1 + 1/28*a^6 - 13/56*a^4 +
   5/7*a^2 + 25/28),
 (-5/1344*a^7 + 43/1344*a^5 - 85/672*a^3 - 31/672*a)/(x1 - 5/168*a^7 + 43/
   168*a^5 - 85/84*a^3 - 31/84*a),
 (5/1344*a^7 - 43/1344*a^5 + 85/672*a^3 + 31/672*a)/(x1 + 5/168*a^7 - 43/
   168*a^5 + 85/84*a^3 + 31/84*a))
```

Or we may work directly over an algebraically closed field:

```python
sage: R.<x> = QQbar[]
sage: r = 1/(x^4+1)
sage: r.partial_fraction_decomposition()
(0,
 [-0.1767766952966369? - 0.1767766952966369?*I)/(x - 0.7071067811865475? -
   0.7071067811865475?*I),
 (-0.1767766952966369? + 0.1767766952966369?*I)/(x - 0.7071067811865475? +
   0.7071067811865475?*I),
 (0.1767766952966369? - 0.1767766952966369?*I)/(x + 0.7071067811865475? -
   0.7071067811865475?*I),
 (0.1767766952966369? + 0.1767766952966369?*I)/(x + 0.7071067811865475? +
   0.7071067811865475?*I))
```

We do the best we can over inexact fields:

```python
sage: R.<x> = RealField(20)[]
sage: q = 1/(x^2 + x + 2)^2 + 1/(x-1); q
(x^4 + 2.0000*x^3 + 5.0000*x^2 + 5.0000*x + 3.0000)/(x^5 + x^4 + 3.0000*x^3 -
   x^2 - 4.0000)
sage: whole, parts = q.partial_fraction_decomposition(); parts
[1.0000/(x - 1.0000), 1.0000/(x^4 + 2.0000*x^3 + 5.0000*x^2 + 4.0000*x + 4.0000)]
sage: sum(parts)
(x^4 + 2.0000*x^3 + 5.0000*x^2 + 5.0000*x + 3.0000)/(x^5 + x^4 + 3.0000*x^3 -
   x^2 - 4.0000)
```

xgcd(other)

Return a triple \((g, s, t)\) of elements of that field such that \(g\) is the greatest common divisor of \(self\) and \(other\) and \(g = s*\text{self} + t*\text{other}\).

Note: In a field, the greatest common divisor is not very informative, as it is only determined up to a unit. But in the fraction field of an integral domain that provides both \(\text{xgcd}\) and \(\text{lcm}\), it is possible to be a bit more specific and define the gcd uniquely up to a unit of the base ring (rather than in the fraction field).

EXAMPLES:
An example without a well defined gcd or xgcd on its base ring:

```python
sage: K = QuadraticField(5)
sage: O = K.maximal_order()
sage: R = PolynomialRing(O, 'x')
sage: F = R.fraction_field()
sage: x = F.gen(0)
sage: x.gcd(x+1)
1
sage: x.xgcd(x+1)
(1, 1/x, 0)
sage: zero = F.zero()
sage: zero.gcd(x)
1
sage: zero.xgcd(x)
(1, 0, 1/x)
sage: zero.xgcd(zero)
(0, 0, 0)
```

class ParentMethods
 Bases: object
 super_categories()
 EXAMPLES:

```python
sage: QuotientFields().super_categories()
[Category of fields]
```
4.131 Quantum Group Representations

AUTHORS:

- Travis Scrimshaw (2018): initial version

class sage.categories.quantum_group_representations.QuantumGroupRepresentations(base, name=None)

 Bases: sage.categories.category_types.Category_module

The category of quantum group representations.

class ParentMethods

 Bases: object

 cartan_type()

 Return the Cartan type of self.

 EXAMPLES:

 sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
 sage: C = crystals.Tableaux(['C',4], shape=[1])
 sage: R = ZZ['q'].fraction_field()
 sage: V = MinusculeRepresentation(R, C)
 sage: V.cartan_type()

 ['C', 4]

 index_set()

 Return the index set of self.

 EXAMPLES:

 sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
 sage: C = crystals.Tableaux(['C',4], shape=[1])
 sage: R = ZZ['q'].fraction_field()
 sage: V = MinusculeRepresentation(R, C)
 sage: V.index_set()

 (1, 2, 3, 4)

 q()

 Return the quantum parameter q of self.

 EXAMPLES:

 sage: from sage.algebras.quantum_groups.representations import MinusculeRepresentation
 sage: C = crystals.Tableaux(['C',4], shape=[1])
 sage: R = ZZ['q'].fraction_field()
 sage: V = MinusculeRepresentation(R, C)
 sage: V.q()

 q

class TensorProducts(category, *args)

 Bases: sage.categories.tensor.TensorProductsCategory

 The category of quantum group representations constructed by tensor product of quantum group representations.
Warning: We use the reversed coproduct in order to match the tensor product rule on crystals.

class ParentMethods
 Bases: object

 cartan_type()
 Return the Cartan type of self.

 EXAMPLES:

 sage: from sage.algebras.quantum_groups.representations import *
 →MinusculeRepresentation
 sage: C = crystals.Tableaux(['C',2], shape=[1])
 sage: R = ZZ['q'].fraction_field()
 sage: V = MinusculeRepresentation(R, C)
 sage: T = tensor([V,V])
 sage: T.cartan_type()
 ['C', 2]

 extra_super_categories()
 EXAMPLES:

 sage: from sage.categories.quantum_group_representations import *
 →QuantumGroupRepresentations
 sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
 sage: Cat.TensorProducts().extra_super_categories()
 [Category of quantum group representations over
 Fraction Field of Univariate Polynomial Ring in q over Integer Ring]

class WithBasis(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

 The category of quantum group representations with a distinguished basis.

class ElementMethods
 Bases: object

 K(i, power=1)
 Return the action of K_i on self to the power $power$.

 INPUT:
 • i – an element of the index set
 • $power$ – (default: 1) the power of K_i

 EXAMPLES:

 sage: from sage.algebras.quantum_groups.representations import *
 →AdjointRepresentation
 sage: K = crystals.KirillovReshetikhin(['D',4,2], 1,1)
 sage: R = ZZ['q'].fraction_field()
 sage: V = AdjointRepresentation(R, K)
 sage: v = V.an_element(); v
 2*B[] + 2*B[[[1]]] + 3*B[[[2]]]
 sage: v.K(0)
 2*B[] + 2/q^2*B[[[1]]] + 3*B[[[2]]]
 sage: v.K(1)
\[2^*B[[\square]] + 2^*q^2*B[[[1]]] + 3/q^2*B[[[2]]]\]
\[sage: v.K(1, 2)\]
\[2^*B[[\square]] + 2^*q^4*B[[[1]]] + 3/q^4*B[[[2]]]\]
\[sage: v.K(1, -1)\]
\[2^*B[[\square]] + 2/q^2*B[[[1]]] + 3*q^2*B[[[2]]]\]

\[
\text{e}(i)
\]
Return the action of \(e_i\) on \(self\).

INPUT:
• \(i\) – an element of the index set

EXAMPLES:

\[
\text{sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation}
\]
\[
\text{sage: C = crystals.Tableaux(['G',2], shape=[1,1])}
\]
\[
\text{sage: R = ZZ['q'].fraction_field()}
\]
\[
\text{sage: V = AdjointRepresentation(R, C)}
\]
\[
\text{sage: v = V.an_element(); v}
\]
\[
2^*B[[[1], [2]]] + 2^*B[[[1], [3]]] + 3^*B[[[2], [3]]]
\]
\[
\text{sage: v.e(1)}
\]
\[
((3*q^4+3*q^2+3)/q^2)*B[[[1], [3]]]
\]
\[
\text{sage: v.e(2)}
\]
\[
2^*B[[[1], [2]]]
\]

\[
\text{f}(i)
\]
Return the action of \(f_i\) on \(self\).

INPUT:
• \(i\) – an element of the index set

EXAMPLES:

\[
\text{sage: from sage.algebras.quantum_groups.representations import AdjointRepresentation}
\]
\[
\text{sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1)}
\]
\[
\text{sage: R = ZZ['q'].fraction_field()}
\]
\[
\text{sage: V = AdjointRepresentation(R, K)}
\]
\[
\text{sage: v = V.an_element(); v}
\]
\[
2^*B[[\square]] + 2^*B[[[1], [2]]] + 3^*B[[[1], [3]]]
\]
\[
\text{sage: v.f(0)}
\]
\[
((2*q^2+2)/q)*B[[[1], [2]]]
\]
\[
\text{sage: v.f(1)}
\]
\[
3^*B[[[2], [3]]]
\]
\[
\text{sage: v.f(2)}
\]
\[
2^*B[[[1], [3]]]
\]
\[
\text{sage: v.f(3)}
\]
\[
3^*B[[[1], [4]]]
\]
\[
\text{sage: v.f(4)}
\]
\[
3^*B[[[1], [-4]]]
\]

class ParentMethods
 Bases: object

 tensor(*factors)
 Return the tensor product of \(self\) with the representations \(factors\).
EXAMPLES:

```python
sage: from sage.algebras.quantum_groups.representations import ...:
      MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()
sage: CM = crystals.Tableaux(['D',4], shape=[1])
sage: CA = crystals.Tableaux(['D',4], shape=[1,1])
sage: V = MinusculeRepresentation(R, CM)
sage: A = MinusculeRepresentation(R, CA)
sage: V.tensor(V)
V((1, 0, 0, 0)) # V((1, 0, 0, 0)) # V((1, 0, 0, 0))
sage: V.tensor(A)
V((1, 0, 0, 0)) # V((1, 1, 0, 0))
sage: B = crystals.Tableaux(['A',2], shape=[1])
sage: W = MinusculeRepresentation(R, B)
sage: tensor([W, V])
Traceback (most recent call last):
...
ValueError: all factors must be of the same Cartan type

Traceback (most recent call last):
...
ValueError: all factors must be of the same Cartan type
```

```python
class TensorProducts(category, *args)
    Bases: sage.categories.tensor.TensorProductsCategory

    The category of quantum group representations with a
distinguished basis constructed by tensor product
    of quantum group representations with a distinguished basis.

class ParentMethods
    Bases: object

    K_on_basis(i, b, power=1)
    Return the action of $K_i$ on the basis element indexed by b to the power power.

    INPUT:
    • i – an element of the index set
    • b – an element of basis keys
    • power – (default: 1) the power of $K_i$

    EXAMPLES:

```
```
```
+ q*B[[[3]]] # B[[[1, 1], [2]]]

sage: v.K(2, -1) # indirect doctest

1/q*B[[[1]]] # B[[[1, 1], [2]]]
+ 1/q^2*B[[[2]]] # B[[[1, 1], [2]]]
+ B[[[3]]] # B[[[1, 1], [2]]]
```

**e_on_basis(i, b)**

Return the action of \( e_i \) on the basis element indexed by \( b \).

**INPUT:**

- \( i \) – an element of the index set
- \( b \) – an element of basis keys

**EXAMPLES:**

```
sage: from sage.algebras.quantum_groups.representations import *
....: MinusculeRepresentation, AdjointRepresentation

sage: R = ZZ['q'].fraction_field()

sage: CM = crystals.Tableaux(['D', 4], shape=[1])

sage: VM = MinusculeRepresentation(R, CM)

sage: CA = crystals.Tableaux(['D', 4], shape=[1, 1])

sage: VA = AdjointRepresentation(R, CA)

sage: v = tensor([VM.an_element(), VA.an_element()]); v

4*B[[[1]]] # B[[[1], [2]]] + 4*B[[[1]]] # B[[[1], [3]]]
+ 6*B[[[1]]] # B[[[2], [3]]] + 4*B[[[2]]] # B[[[1], [2]]]
+ 4*B[[[2]]] # B[[[1], [3]]] + 6*B[[[2]]] # B[[[2], [3]]]
+ 6*B[[[3]]] # B[[[1], [2]]] + 6*B[[[3]]] # B[[[1], [3]]]
+ 9*B[[[3]]] # B[[[2], [3]]]

sage: v.e(1) # indirect doctest

4*B[[[1]]] # B[[[1], [2]]]
+ ((4*q+6)/q)*B[[[1]]] # B[[[1], [3]]]
+ 6*B[[[1]]] # B[[[2], [3]]]
+ 6*q*B[[[2]]] # B[[[1], [3]]]
+ 9*B[[[3]]] # B[[[1], [3]]]

sage: v.e(2) # indirect doctest

4*B[[[1]]] # B[[[1], [2]]]
+ ((6*q+4)/q)*B[[[2]]] # B[[[1], [2]]]
+ 6*B[[[2]]] # B[[[1], [3]]]
+ 9*B[[[2]]] # B[[[2], [3]]]
+ 6*q*B[[[3]]] # B[[[1], [2]]]

sage: v.e(3) # indirect doctest
0

sage: v.e(4) # indirect doctest
0
```

**f_on_basis(i, b)**

Return the action of \( f_i \) on the basis element indexed by \( b \).

**INPUT:**

- \( i \) – an element of the index set
- \( b \) – an element of basis keys

**EXAMPLES:**

```
sage: from sage.algebras.quantum_groups.representations import *

sage: f_on_basis(1, b)

sage: f_on_basis(2, b)

sage: f_on_basis(3, b)

sage: f_on_basis(4, b)

0
```

4.131. Quantum Group Representations
Category Framework, Release 9.6

(continued from previous page)

....:  MinusculeRepresentation, AdjointRepresentation
sage:  R = ZZ['q'].fraction_field()
sage:  KM = crystals.KirillovReshetikhin(['B',3,1], 3,1)
sage:  VM = MinusculeRepresentation(R, KM)
sage:  KA = crystals.KirillovReshetikhin(['B',3,1], 2,1)
sage:  VA = AdjointRepresentation(R, KA)
sage:  v = tensor([VM.an_element(), VA.an_element()]); v
4*B[+++, []] # B[+++, [1], [2]]
  + 6*B[+++, []] # B[+++, [1], [3]] + 4*B[++-, []] # B[[]]
  + 4*B[+++, []] # B[[], [1], [2]]
  + 6*B[++-, []] # B[[], [1], [3]] + 6*B[+++, []] # B[[]]
  + 6*B[++-, []] # B[[], [1], [2]]
  + 9*B[++-, []] # B[[], [1], [3]]
sage:  v.f(0)  # indirect doctest
((4*q^4+4)/q^2)*B[+++, [1], [2]]
  + ((4*q^4+4)/q^2)*B[+++, [1], [3]] + (6*q^4+6)/q^2)*B[+++, [1], [2]]
sage:  v.f(1)  # indirect doctest
6*B[+++, []] # B[[], [1], [2]]
  + 6*B[+++, []] # B[[], [1], [3]]
  + 9*B[+++, []] # B[[], [2], [3]]
  + 6*B[+++, []] # B[[], [1], [2]]
  + 6*B[+++, []] # B[[], [1], [3]]
  + 9*q^2*B[+++, []] # B[[], [1], [3]]
sage:  v.f(2)  # indirect doctest
4*B[+++, []] # B[[], [1], [3]]
  + 4*B[+++, []] # B[[], [1], [3]]
  + 4*B[+++, []] # B[[], [1], [2]]
  + 4*q^2*B[+++, []] # B[[], [1], [2]]
  + ((6*q^2+6)/q^2)*B[+++, []] # B[[], [1], [3]]
sage:  v.f(3)  # indirect doctest
6*B[+++, []] # B[[], [1], [3]]
  + 4*B[+++, []] # B[[], [1], [3]]
  + 4*B[+++, []] # B[[], [1], [2]]
  + 4*q^2*B[+++, []] # B[[], [1], [2]]
  + 6*B[+++, []] # B[[], [1], [3]]
  + 9*q^2*B[+++, []] # B[[], [1], [3]]

extra_super_categories()

EXAMPLES:

sage:  from sage.categories.quantum_group_representations import QuantumGroupRepresentations
sage:  Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
sage:  Cat.WithBasis().TensorProducts().extra_super_categories()  [Category of quantum group representations with basis over Fraction Field of Univariate Polynomial Ring in q over Integer Ring]

example()

Return an example of a quantum group representation as per Category.example.
EXAMPLES:

```python
sage: from sage.categories.quantum_group_representations import QuantumGroupRepresentations
sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
sage: Cat.example()
V((2, 1, 0))
```

```
sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
sage: Cat.example()
V((2, 1, 0))
```

\section*{4.132 Regular Crystals}

\textbf{class} \texttt{sage.categories.regular_crystals.RegularCrystals}(s=None)

\textbf{Bases:} \texttt{sage.categories.category_singleton.Category_singleton}

The category of regular crystals.

A crystal is called \textit{regular} if every vertex $b$ satisfies

\[ \varepsilon_i(b) = \max\{k \mid e_k^i(b) \neq 0\} \quad \text{and} \quad \varphi_i(b) = \max\{k \mid f_k^i(b) \neq 0\}. \]

\textbf{Note:} Regular crystals are sometimes referred to as \textit{normal}. When only one of the conditions (on either $\varphi$, or $\varepsilon$) holds, these crystals are sometimes called \textit{seminormal} or \textit{semiregular}.

\textbf{EXAMPLES:}

```python
sage: C = RegularCrystals()
sage: C
Category of regular crystals
sage: C.super_categories()
[Category of crystals]
sage: C.example()
Highest weight crystal of type A_3 of highest weight ω_1
```

\textbf{class ElementMethods}

\textbf{Bases: object}

\textbf{\texttt{demazure_operator_simple}(i, ring=None)}

Return the Demazure operator $D_i$ applied to self.

\textbf{INPUT:}

\begin{itemize}
  \item i – an element of the index set of the underlying crystal
  \item ring – (default: QQ) a ring
\end{itemize}
OUTPUT:

An element of the ring-free module indexed by the underlying crystal.

Let \( r = (\text{wt}(b), \alpha_i^\vee) \) then \( D_i(b) \) is defined as follows:

- If \( r \geq 0 \), this returns the sum of the elements obtained from \( \text{self} \) by application of \( f_i^k \) for \( 0 \leq k \leq r \).
- If \( r < 0 \), this returns the opposite of the sum of the elements obtained by application of \( e_i^k \) for \( 0 < k < -r \).

REFERENCES:

- [Li1995]
- [Ka1993]

EXAMPLES:

```sage
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T(rows=[[1,2],[2]])
sage: t.demazure_operator_simple(2)
B[[[1, 2], [2]]] + B[[[1, 3], [2]]] + B[[[1, 3], [3]]]
sage: t.demazure_operator_simple(2).parent()
Algebra of The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]] over Integer Ring
sage: t.demazure_operator_simple(1)
\[0\]
sage: K = crystals.KirillovReshetikhin(['A',2,1],2,1)
sage: t = K(rows=[[3],[2]])
sage: t.demazure_operator_simple(0)
B[[[1, 2]]] + B[[[2, 3]]]
```

dual_equivalence_class(index_set=None)

Return the dual equivalence class indexed by index_set of self.

The dual equivalence class of an element \( b \in B \) is the set of all elements of \( B \) reachable from \( b \) via sequences of \( i \)-elementary dual equivalence relations (i.e., \( i \)-elementary dual equivalence transformations and their inverses) for \( i \) in the index set of \( B \).

For this to be well-defined, the element \( b \) has to be of weight 0 with respect to \( I \); that is, we need to have \( \epsilon_j(b) = \varphi_j(b) \) for all \( j \in I \).

See [As2008]. See also dual_equivalence_graph() for a definition of \( i \)-elementary dual equivalence transformations.

INPUT:

- index_set – (optional) the index set \( I \) (default: the whole index set of the crystal); this has to be a subset of the index set of the crystal (as a list or tuple)

OUTPUT:

The dual equivalence class of \( \text{self} \) indexed by the subset index_set. This class is returned as an undirected edge-colored multigraph. The color of an edge is the index \( i \) of the dual equivalence relation it encodes.

See also:

- dual_equivalence_graph()
- sage.combinat.partition.Partition.dual_equivalence_graph()

EXAMPLES:
sage: T = crystals.Tableaux(['A',3], shape=[2,2])
sage: G = T(2,1,4,3).dual_equivalence_class()
sage: sorted(G.edges())
[([[1, 3], [2, 4]], [[1, 2], [3, 4]], 2),
 ([[1, 3], [2, 4]], [[1, 2], [3, 4]], 3)]
sage: T = crystals.Tableaux(['A',4], shape=[3,2])
sage: G = T(2,1,4,3,5).dual_equivalence_class()
sage: sorted(G.edges())
[([[1, 3, 5], [2, 4]], [[1, 3, 4], [2, 5]], 4),
 ([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 2),
 ([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 3),
 ([[1, 3, 4], [2, 5]], [[1, 2, 4], [3, 5]], 2),
 ([[1, 2, 4], [3, 5]], [[1, 2, 3], [4, 5]], 3),
 ([[1, 2, 4], [3, 5]], [[1, 2, 3], [4, 5]], 4)]

epsilon(i)
Return $\varepsilon_i$ of self.
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).epsilon(1)
0
sage: C(2).epsilon(1)
1

phi(i)
Return $\varphi_i$ of self.
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi(1)
1
sage: C(2).phi(1)
0

stembridgeDel_depth(i,j)
Return the difference in the $j$-depth of self and $f_i$ of self, where $i$ and $j$ are in the index set of the underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.
The $i$-depth of a crystal node $x$ is $\varepsilon_i(x)$.
EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[[1,1],[2]])
sage: t.stembridgeDel_depth(1,2)
0
sage: s=T(rows=[[1,3],[3]])
sage: s.stembridgeDel_depth(1,2)
-1

stembridgeDel_rise(i,j)
Return the difference in the $j$-rise of self and $f_i$ of self, where $i$ and $j$ are in the index set of the underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

4.132. Regular Crystals
The $i$-rise of a crystal node $x$ is $\varphi_i(x)$.

**EXAMPLES:**

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[[1,1],[2]])
sage: t.stembridgeDel_rise(1,2)
-1
sage: s=T(rows=[[1,3],[3]])
sage: s.stembridgeDel_rise(1,2)
0
```

`stembridgeDelta_depth(i,j)`

Return the difference in the $j$-depth of `self` and $e_i$ of `self`, where $i$ and $j$ are in the index set of the underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The $i$-depth of a crystal node $x$ is $-\varepsilon_i(x)$.

**EXAMPLES:**

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[[1,2],[2]])
sage: t.stembridgeDelta_depth(1,2)
0
sage: s=T(rows=[[2,3],[3]])
sage: s.stembridgeDelta_depth(1,2)
-1
```

`stembridgeDelta_rise(i,j)`

Return the difference in the $j$-rise of `self` and $e_i$ of `self`, where $i$ and $j$ are in the index set of the underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The $i$-rise of a crystal node $x$ is $\varphi_i(x)$.

**EXAMPLES:**

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[[1,1],[2]])
sage: t.stembridgeDelta_rise(1,2)
-1
sage: s=T(rows=[[1,3],[3]])
sage: s.stembridgeDelta_rise(1,2)
0
```

`stembridgeTriple(i,j)`

Let $A$ be the Cartan matrix of the crystal, $x$ a crystal element, and let $i$ and $j$ be in the index set of the crystal. Further, set $b=\text{stembridgeDelta}_\text{depth}(x,i,j)$, and $c=\text{stembridgeDelta}_\text{rise}(x,i,j)$. If $x.e(i)$ is non-empty, this function returns the triple $(A_{ij}, b, c)$; otherwise it returns `None`. By the Stembridge local characterization of crystal bases, one should have $A_{ij} = b + c$.

**EXAMPLES:**

```python
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t=T(rows=[[1,1],[2]])
sage: t.stembridgeTriple(1,2)
sage: s=T(rows=[[1,2],[2]])
sage: s.stembridgeTriple(1,2)
```

(continues on next page)
weight()

Return the weight of this crystal element.

EXAMPLES:

```python
sage: C = crystals.Letters(['A',5])
sage: C(1).weight()
(1, 0, 0, 0, 0, 0)
```

class MorphismMethods
Bases: object

is_isomorphism()

Check if self is a crystal isomorphism, which is true if and only if this is a strict embedding with the
same number of connected components.

EXAMPLES:

```python
sage: La = RootSystem(['A',2,1]).weight_space(extended=True).fundamental_˓→weights()
sage: B = crystals.LSPaths(La[0])
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_˓→weights()
sage: C = crystals.GeneralizedYoungWalls(2, La[0])
sage: H = Hom(B, C)
sage: from sage.categories.highest_weight_crystals import ˓→HighestWeightCrystalMorphism
sage: class Psi(HighestWeightCrystalMorphism):
 : def is_strict(self):
 : return True
sage: psi = Psi(H, C.module_generators)
sage: psi
['A', 2, 1] Crystal morphism:
 From: The crystal of LS paths of type ['A', 2, 1] and weight Lambda[0]
 To: Highest weight crystal of generalized Young walls of Cartan type ['A ˓→', 2, 1]
 and highest weight Lambda[0]
 Defn: (Lambda[0],) |--> []
sage: psi.is_isomorphism()
True
```
class ParentMethods
Bases: object

demazure_operator(element, reduced_word)

Returns the application of Demazure operators $D_i$ for $i$ from reduced_word on element.

INPUT:
• element – an element of a free module indexed by the underlying crystal
• reduced_word – a reduced word of the Weyl group of the same type as the underlying crystal

OUTPUT:
• an element of the free module indexed by the underlying crystal

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = CombinatorialFreeModule(QQ,T)
sage: t = T.highest_weight_vector()
sage: b = 2^c(t)
sage: T.demazure_operator(b,[1,2,1])
2*B[[1, 1], [2]] + 2*B[[1, 2], [2]] + 2*B[[1, 3], [2]] + 2*B[[1, 1], [3]]
+ 2*B[[1, 2], [3]] + 2*B[[1, 3], [3]] + 2*B[[2, 2], [3]] + 2*B[[2, 3], [3]]

The Demazure operator is idempotent:

sage: T = crystals.Tableaux("A1",shape=[4])
sage: C = CombinatorialFreeModule(QQ,T)
sage: b = C(T.module_generators[0]); b
B[[1, 1, 1, 1]]
sage: e = T.demazure_operator(b,[1]); e
B[[1, 1, 1, 1]] + B[[1, 1, 1, 2]] + B[[1, 1, 2, 2]] + B[[1, 2, 2, 2]] + B[[2, 2, 2, 2]] + B[[2, 3, 3, 3]]
sage: e == T.demazure_operator(e,[1])
True

sage: all(T.demazure_operator(T.demazure_operator(C(t),[1]),[1]) == T.demazure_operator(C(t),[1]) for t in T)
True

demazure_subcrystal(element, reduced_word, only_support=True)

Return the subcrystal corresponding to the application of Demazure operators $D_i$ for $i$ from reduced_word on element.

INPUT:
• element – an element of a free module indexed by the underlying crystal
• reduced_word – a reduced word of the Weyl group of the same type as the underlying crystal
• only_support – (default: True) only include arrows corresponding to the support of reduced_word

OUTPUT:
• the Demazure subcrystal

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T.highest_weight_vector()
sage: S = T.demazure_subcrystal(t, [1,2])
(continues on next page)
We construct an example where we don’t only want the arrows indicated by the support of the reduced word:

```python
sage: K = crystals.KirillovReshetikhin(['A',1,1], 1, 2)
sage: mg = K.module_generator()
sage: S = K.demazure_subcrystal(mg, [1])
sage: S.digraph().edges()
([(1, 1), (1, 2), 1), (1, 2), 1])
sage: S = K.demazure_subcrystal(mg, [1], only_support=False)
sage: S.digraph().edges()
([(1, 1), (1, 2), 1),
 (1, 2), (1, 1), 0),
 (1, 2), (2, 2), 1),
 (2, 2), (1, 2), 0])
```

dual_equivalence_graph(X=None, index_set=None, directed=True)
Return the dual equivalence graph indexed by index_set on the subset X of self.

Let $b \in B$ be an element of weight 0, so $\varepsilon_j(b) = \varphi_j(b)$ for all $j \in I$, where $I$ is the indexing set. We say $b'$ is an $i$-elementary dual equivalence transformation of $b$ (where $i \in I$) if
- $\varepsilon_i(b) = 1$ and $\varepsilon_{i-1}(b) = 0$, and
- $b' = f_i f_{i-1} e_i b$.

We can do the inverse procedure by interchanging $i$ and $i-1$ above.

**Note:** If the index set is not an ordered interval, we let $i-1$ mean the index appearing before $i$ in $I$.

This definition comes from [As2008] Section 4 (where our $\varphi_j(b)$ and $\varepsilon_j(b)$ are denoted by $\epsilon(b,j)$ and $-\delta(b,j)$, respectively).

The dual equivalence graph of $B$ is defined to be the colored graph whose vertices are the elements of $B$ of weight 0, and whose edges of color $i$ (for $i \in I$) connect pairs $\{b, b'\}$ such that $b'$ is an $i$-elementary dual equivalence transformation of $b$.

**Note:** This dual equivalence graph is a generalization of $G(\mathcal{X})$ in [As2008] Section 4 except we do not require $\varepsilon_i(b) = 0, 1$ for all $i$.

This definition can be generalized by choosing a subset $X$ of the set of all vertices of $B$ of weight 0, and restricting the dual equivalence graph to the vertex set $X$.

**INPUT:**
- $X$ – (optional) the vertex set $X$ (default: the whole set of vertices of self of weight 0)
- $index_set$ – (optional) the index set $I$ (default: the whole index set of self); this has to be a subset of the index set of self (as a list or tuple)
• directed – (default: True) whether to have the dual equivalence graph be directed, where the
  head of an edge \( b - b' \) is \( b \) and the tail is \( b' = f_{i-1} f_i e_{i-1} e_i b \)

See also:
sage.combinat.partition.Partition.dual_equivalence_graph()

EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape=[2,2])
sage: G = T.dual_equivalence_graph()
sage: sorted(G.edges())
[([[1, 3], [2, 4]], [[1, 2], [3, 4]], 2),
 ([[1, 2], [3, 4]], [[1, 3], [2, 4]], 3)]
sage: T = crystals.Tableaux(['A',4], shape=[3,2])
sage: G = T.dual_equivalence_graph()
sage: sorted(G.edges())
[([[1, 3, 5], [2, 4]], [[1, 3, 4], [2, 5]], 4),
 ([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 2),
 ([[1, 3, 4], [2, 5]], [[1, 2, 4], [3, 5]], 2),
 ([[1, 2, 5], [3, 4]], [[1, 3, 5], [2, 4]], 3),
 ([[1, 2, 4], [3, 5]], [[1, 2, 3], [4, 5]], 3),
 ([[1, 2, 3], [4, 5]], [[1, 2, 4], [3, 5]], 4)]
sage: T = crystals.Tableaux(['A',4], shape=[3,1])
sage: G = T.dual_equivalence_graph(index_set=[1,2,3])
sage: G.vertices()
[[[1, 3, 4], [2]], [[1, 2, 4], [3]], [[1, 2, 3], [4]]]
sage: G.edges()
[([[1, 3, 4], [2]], [[1, 2, 4], [3]], 2),
 ([[1, 2, 4], [3]], [[1, 2, 3], [4]], 3)]

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of regular crystals constructed by tensor product of regular crystals.

extra_super_categories()

EXAMPLES:

sage: RegularCrystals().TensorProducts().extra_super_categories()
[Category of regular crystals]

additional_structure()

Return None.

Indeed, the category of regular crystals defines no new structure: it only relates \( \varepsilon_a \) and \( \varphi_a \) to \( e_a \) and \( f_a \)
respectively.

See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:
example(n=3)
Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

sage: B = RegularCrystals().example(); B
Highest weight crystal of type A_3 of highest weight \omega_1

super_categories()
EXAMPLES:

sage: RegularCrystals().super_categories()
[Category of crystals]

4.133 Regular Supercrystals

class sage.categories.regular_supercrystals.RegularSuperCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of crystals for super Lie algebras.

EXAMPLES:

sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: C = RegularSuperCrystals()
sage: C
Category of regular super crystals
sage: C.super_categories()
[Category of finite super crystals]

Parents in this category should implement the following methods:

• either an attribute _cartan_type or a method cartan_type

• module_generators: a list (or container) of distinct elements that generate the crystal using \(f_i\) and \(e_i\)

Furthermore, their elements \(x\) should implement the following methods:

• \(x.e(i)\) (returning \(e_i(x)\))

• \(x.f(i)\) (returning \(f_i(x)\))

• \(x.weight()\) (returning \(wt(x)\))

EXAMPLES:

sage: from sage.misc.abstract_method import abstract_methods_of_class
sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: abstract_methods_of_class(RegularSuperCrystals().element_class)
{'optional': [], 'required': ['e', 'f', 'weight']}

class ElementMethods
Bases: object
**epsilon**

Return \( \varepsilon_i \) of self.

**EXAMPLES:**

```
sage: C = crystals.Tableaux(['A',1,2], shape = [2,1])
sage: c = C.an_element(); c

 [[-2, -2], [-1]]
```

```
sage: c.epsilon(2)
0
sage: c.epsilon(0)
0
sage: c.epsilon(-1)
0
```

**phi**

Return \( \varphi_i \) of self.

**EXAMPLES:**

```
sage: C = crystals.Tableaux(['A',1,2], shape = [2,1])
sage: c = C.an_element(); c

 [[-2, -2], [-1]]
```

```
sage: c.phi(1)
0
sage: c.phi(2)
0
sage: c.phi(0)
1
```

**class TensorProducts**(category, *args)

Bases: *sage.categories.tensor.TensorProductsCategory*

The category of regular crystals constructed by tensor product of regular crystals.

**extra_super_categories**

**EXAMPLES:**

```
sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: RegularSuperCrystals().TensorProducts().extra_super_categories()
[Category of regular super crystals]
```

**super_categories**

**EXAMPLES:**

```
sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: C = RegularSuperCrystals()
sage: C.super_categories()
[Category of finite super crystals]```
4.134 Right modules

```python
class sage.categories.right_modules.RightModules(base, name=None):
    Bases: sage.categories.category_types.Category_over_base_ring
    The category of right modules right modules over an rng (ring not necessarily with unit), i.e. an abelian group with right multiplication by elements of the rng

EXAMPIES:

sage: RightModules(QQ)
Category of right modules over Rational Field
sage: RightModules(QQ).super_categories()
[Category of commutative additive groups]
```

class ElementMethods
 Bases: object

class ParentMethods
 Bases: object

super_categories()
 EXAMPLES:

sage: RightModules(QQ).super_categories()
[Category of commutative additive groups]

4.135 Ring ideals

```python
class sage.categories.ring_ideals.RingIdeals(R):
    Bases: sage.categories.category_types.Category_ideal
    The category of two-sided ideals in a fixed ring.

EXAMPIES:

sage: Ideals(Integers(200))
Category of ring ideals in Ring of integers modulo 200
sage: C = Ideals(IntegerRing()); C
Category of ring ideals in Integer Ring
sage: I = C([8,12,18])
sage: I
Principal ideal (2) of Integer Ring

See also: CommutativeRingIdeals.
```

Todo:
- If useful, implement RingLeftIdeals and RingRightIdeals of which RingIdeals would be a subcategory.
- Make RingIdeals(R), return CommutativeRingIdeals(R) when R is commutative.

super_categories()
 EXAMPLES:
4.136 Rings

class sage.categories.rings.Rings(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of rings
 Associative rings with unit, not necessarily commutative
 EXAMPLES:

 sage: Rings()
 Category of rings
 sage: sorted(Rings().super_categories(), key=str)
 [Category of rngs, Category of semirings]
 sage: sorted(Rings().axioms())
 ['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
 'AdditiveUnital', 'Associative', 'Distributive', 'Unital']
 sage: Rings() is (CommutativeAdditiveGroups() & Monoids()).Distributive()
 True
 sage: Rings() is Rngs().Unital()
 True
 sage: Rings() is Semirings().AdditiveInverse()
 True

Todo: (see: http://trac.sagemath.org/sage_trac/wiki/CategoriesRoadMap)

- Make Rings() into a subcategory or alias of Algebras(ZZ);
- A parent P in the category Rings() should automatically be in the category Algebras(P).

Commutative
 alias of sage.categories.commutative_rings.CommutativeRings

Division
 alias of sage.categories.division_rings.DivisionRings

class ElementMethods
 Bases: object

 inverse_of_unit()
 Return the inverse of this element if it is a unit.
 OUTPUT:
 An element in the same ring as this element.
 EXAMPLES:
This method fails when the element is not a unit:

```
sage: 2.inverse_of_unit()
Traceback (most recent call last):
...  
ArithmeticError: inverse does not exist
```

The inverse returned is in the same ring as this element:

```
sage: a = -1
sage: a.parent()
Integer Ring
sage: a.inverse_of_unit().parent()
Integer Ring
```

Note that this is often not the case when computing inverses in other ways:

```
sage: (-a).parent()
Rational Field
sage: (1/a).parent()
Rational Field
```

is_unit()

Return whether this element is a unit in the ring.

Note: This is a generic implementation for (non-commutative) rings which only works for the one element, its additive inverse, and the zero element. Most rings should provide a more specialized implementation.

EXAMPLES:

```
sage: MS = MatrixSpace(ZZ, 2)
sage: MS.one().is_unit()
True
sage: MS.zero().is_unit()
False
sage: MS([1,2,3,4]).is_unit()
False
```

class MorphismMethods

extend_to_fraction_field()

Return the extension of this morphism to fraction fields of the domain and the codomain.

EXAMPLES:

```
sage: S.<x> = QQ[]
sage: f = S.hom([x+1]); f
```

(continues on next page)
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
 Defn: x |--> x + 1

\texttt{sage: } g = f.extend_to_fraction_field(); g
\texttt{Ring endomorphism of Fraction Field of Univariate Polynomial Ring in x over Rational Field}
 \texttt{Defn: x |--> x + 1}
\texttt{sage: } g(x)
x + 1
\texttt{sage: } g(1/x)
1/(x + 1)

If this morphism is not injective, it does not extend to the fraction field and an error is raised:

\texttt{sage: } f = GF(5).coerce_map_from(ZZ)
\texttt{sage: } f.extend_to_fraction_field()
Traceback (most recent call last):
 ... ValueError: the morphism is not injective

\texttt{is_injective()}

Return whether or not this morphism is injective.

\textbf{EXAMPLES:}

\texttt{sage: } R.<x,y> = QQ[]
\texttt{sage: } R.hom([x, y^2], R).is_injective()
True
\texttt{sage: } R.hom([x, x^2], R).is_injective()
False
\texttt{sage: } S.<u,v> = R.quotient(x^3*y)
\texttt{sage: } R.hom([v, u], S).is_injective()
False
\texttt{sage: } S.hom([-u, v], S).is_injective()
True
\texttt{sage: } S.cover().is_injective()
False

If the domain is a field, the homomorphism is injective:

\texttt{sage: } K.<x> = FunctionField(QQ)
\texttt{sage: } L.<y> = FunctionField(QQ)
\texttt{sage: } f = K.hom([y]); f
Function Field morphism:
 \texttt{From: } Rational function field in x over Rational Field
 \texttt{To: } Rational function field in y over Rational Field
 \texttt{Defn: x |--> y}
\texttt{sage: } f.is_injective()
True

Unless the codomain is the zero ring:
sage: codomain = Integers(1)
sage: f = QQ.hom([Zmod(1)(0)], check=False)
sage: f.is_injective()
False

Homomorphism from rings of characteristic zero to rings of positive characteristic cannot be injective:

sage: R.<x> = ZZ[]
sage: f = R.hom([GF(3)(1)]); f
Ring morphism:
 From: Univariate Polynomial Ring in x over Integer Ring
 To: Finite Field of size 3
 Defn: x |--> 1
sage: f.is_injective()
False

A morphism whose domain is an order in a number field is injective if the codomain has characteristic zero:

sage: K.<x> = FunctionField(QQ)
sage: f = ZZ.hom(K); f
Composite map:
 From: Integer Ring
 To: Rational function field in x over Rational Field
 Defn: Conversion via FractionFieldElement_1poly_field map:
 From: Integer Ring
 To: Fraction Field of Univariate Polynomial Ring in x over Rational Field
 Then
 Isomorphism:
 From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
 To: Rational function field in x over Rational Field
sage: f.is_injective()
True

A coercion to the fraction field is injective:

sage: R = ZpFM(3)
sage: R.fraction_field().coerce_map_from(R).is_injective()
True

NoZeroDivisors

alias of **sage.categories.domainsDomains**

class **ParentMethods**

Bases: object

bracket(x, y)

Returns the Lie bracket $[x, y] = xy - yx$ of x and y.

INPUT:

* x, y – elements of self

EXAMPLES:
sage: F = AlgebrasWithBasis(QQ).example()
sage: F
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
sage: a,b,c = F.algebra_generators()
sage: F.bracket(a,b)
B[ab] - B[ba]
This measures the default of commutation between x and y. F endowed with the bracket operation is a Lie algebra; in particular, it satisfies Jacobi’s identity:

sage: F.bracket(F.bracket(a,b), c) + F.bracket(F.bracket(b,c),a) + F.bracket(F.bracket(c,a),b)
0

characteristic()
Return the characteristic of this ring.

EXAMPLES:

sage: QQ.characteristic()
0
sage: GF(19).characteristic()
19
sage: Integers(8).characteristic()
8
sage: Zp(5).characteristic()
0

free_module(base=None, basis=None, map=True)
Return a free module V over the specified subring together with maps to and from V.
The default implementation only supports the case that the base ring is the ring itself.

INPUT:
- `base` – a subring R so that this ring is isomorphic to a finite-rank free R-module V
- `basis` – (optional) a basis for this ring over the base
- `map` – boolean (default True), whether to return R-linear maps to and from V

OUTPUT:
- A finite-rank free R-module V
- An R-module isomorphism from V to this ring (only included if map is True)
- An R-module isomorphism from this ring to V (only included if map is True)

EXAMPLES:

sage: R.<x> = QQ[[[]]]
sage: V, from_V, to_V = R.free_module(R)
sage: v = to_V(1+x); v
(1 + x)
sage: from_V(v)
1 + x
sage: W, from_W, to_W = R.free_module(R, basis=(1-x))
sage: W is V
True
sage: w = to_W(1+x); w
(1 - x^2)
(continues on next page)
ideal(*args, **kwds)
Create an ideal of this ring.

NOTE:
The code is copied from the base class Ring. This is because there are rings that do not inherit from that class, such as matrix algebras. See trac ticket #7797.

INPUT:
• An element or a list/tuple/sequence of elements.
• coerce (optional bool, default True): First coerce the elements into this ring.
• side, optional string, one of "twosided" (default), "left", "right": determines whether the resulting ideal is twosided, a left ideal or a right ideal.

EXAMPLES:

```sage
sage: MS = MatrixSpace(QQ,2,2)
sage: MS in Rings()
False
sage: MS.ideal(2)
Twosided Ideal
( 2 0
 [0 2]
) of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

```sage
sage: MS.ideal([MS.0,MS.1],side='right')
Right Ideal
( 1 0
 [0 0],
 [0 1]
 [0 0]
) of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

ideal_monoid()
The monoid of the ideals of this ring.

NOTE:
The code is copied from the base class of rings. This is since there are rings that do not inherit from that class, such as matrix algebras. See trac ticket #7797.

EXAMPLES:

```sage
sage: MS = MatrixSpace(QQ,2,2)
sage: MS in Rings()
False
```

(continues on next page)
True
\sage{MS.ideal_monoid()}
Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

Note that the monoid is cached:

\sage{MS.ideal_monoid() is MS.ideal_monoid()}
True

\texttt{is_ring()}
Return True, since this in an object of the category of rings.

\textbf{EXAMPLES:}

\sage{Parent(QQ, category=Rings()).is_ring()}
True

\texttt{is_zero()}
Return True if this is the zero ring.

\textbf{EXAMPLES:}

\sage{Integers(1).is_zero()}
True
\sage{Integers(2).is_zero()}
False
\sage{QQ.is_zero()}
False
\sage{R.<x> = ZZ[]}
\sage{R.quo(1).is_zero()}
True
\sage{R.<x> = GF(101)[]}
\sage{R.quo(77).is_zero()}
True
\sage{R.quo(x^2+1).is_zero()}
False

\texttt{quo(I, names=None, **kwds)}
Quotient of a ring by a two-sided ideal.

\textbf{NOTE:}

This is a synonym for \texttt{quotient()}.

\textbf{EXAMPLES:}

\sage{MS = MatrixSpace(QQ, 2)}
\sage{I = MS^MS.gens()^MS}

\texttt{MS} is not an instance of \texttt{Ring}.

However it is an instance of the parent class of the category of rings. The quotient method is inherited from there:
sage: isinstance(MS, sage.rings.ring.Ring)
False
sage: isinstance(MS, Rings().parent_class)
True
sage: MS.quo(I, names = ['a', 'b', 'c', 'd'])
Quotient of Full MatrixSpace of 2 by 2 dense matrices over Rational Field by the ideal
\
$$\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix},$$
\
$$\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix},$$
\
$$\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix},$$
\
$$\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}$$

\textbf{Quotient}(\textit{I}, \textit{names}=None, **\textit{kwds})

Quotient of a ring by a two-sided ideal.

INPUT:

- \textit{I}: A twosided ideal of this ring.
- \textit{names}: a list of strings to be used as names for the variables in the quotient ring.
- further named arguments that may be passed to the quotient ring constructor.

EXAMPLES:

Usually, a ring inherits a method \texttt{sage.rings.ring.Ring.quotient()}. So, we need a bit of effort to make the following example work with the category framework:

\begin{verbatim}
sage: F.<x,y,z> = FreeAlgebra(QQ)
sage: from sage.rings.noncommutative_ideals import Ideal_nc
sage: from itertools import product
sage: class PowerIdeal(Ideal_nc):
....: def __init__(self, R, n):
....: self._power = n
....: Ideal_nc.__init__(self, R, [R.prod(m) for m in product(R.gens(), repeat=n)])
....: def reduce(self, x):
....: R = self.ring()
....: return add([c*R(m) for m,c in x if len(m) < self._power], R(0))
sage: I = PowerIdeal(F, 3)
sage: Q = Rings().parent_class.quotient(F, I); Q
Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by
the ideal (x^3, x^2*y, x^2*z, x*y^2, x*z^2, y^2*x, x^2*y, x^2*z, x*z*y, x^2*z^2, y*x^2, x*y^2, x*z^2, y^2*x, y^2*z, y*z^2, z*x^2, z*y^2, z*z^2, z^2*x, z^2*y, z^3)
sage: Q.0
xbar
sage: Q.1
ybar
\end{verbatim}
\texttt{sage: Q.2}
zbar
\texttt{sage: Q.0*Q.1}
xbar*ybar
\texttt{sage: Q.0*Q.1*Q.0}
0

\texttt{quotient_ring}(I, \textit{names}={None, **kwds})
Quotient of a ring by a two-sided ideal.

\textbf{NOTE:}
This is a synonyme for \texttt{quotient()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: MS = MatrixSpace(QQ,2)
sage: I = MS*MS.gens()*MS
sage: MS is not an instance of \texttt{Ring}, but it is an instance of the parent class of the category of rings. The quotient method is inherited from there:
sage: isinstance(MS,sage.rings.ring.Ring)
False
sage: isinstance(MS,Rings().parent_class)
True
sage: MS.quotient_ring(I,names = ['a','b','c','d'])
Quotient of Full MatrixSpace of 2 by 2 dense matrices over Rational Field → by the ideal
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
\end{verbatim}

\texttt{class SubcategoryMethods}

\textbf{Division()}

Return the full subcategory of the division objects of \texttt{self}.

A ring satisfies the \textit{division axiom} if all non-zero elements have multiplicative inverses.

\textbf{Note:} This could be generalized to \texttt{MagmasAndAdditiveMagmas.Distributive.AdditiveUnital}.

\textbf{EXAMPLES:}
NoZeroDivisors()

Return the full subcategory of the objects of self having no nonzero zero divisors.

A zero divisor in a ring \(R \) is an element \(x \in R \) such that there exists a nonzero element \(y \in R \) such that \(x \cdot y = 0 \) or \(y \cdot x = 0 \) (see Wikipedia article Zero_divisor).

EXAMPLES:

```
sage: Rings().NoZeroDivisors()
Category of domains
```

Note: This could be generalized to MagmasAndAdditiveMagmas.Distributive. AdditiveUnital.

4.137 Rngs

class `sage.categories.rngs.Rngs(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of rngs.

An rng \((S, +, *) \) is similar to a ring but not necessarily unital. In other words, it is a combination of a commutative additive group \((S, +) \) and a multiplicative semigroup \((S, *) \), where \(* \) distributes over \(+ \).

EXAMPLES:

```
sage: C = Rngs(); C
Category of rngs
sage: sorted(C.super_categories(), key=str)
[Category of associative additive commutative additive associative additive unital → distributive magmas and additive magmas,
 Category of commutative additive groups]
sage: C.names()
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
 'AdditiveUnital', 'Associative', 'Distributive']
sage: C.is (CommutativeAdditiveGroups() & Semigroups()).Distributive()
True
sage: C.Unital()
Category of rings
```

Unital

alias of `sage.categories.rings.Rings`
4.138 R-trivial semigroups

```python
class sage.categories.r_trivial_semigroups.RTrivialSemigroups(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

    Commutative_extra_super_categories(
        Implement the fact that a commutative $R$-trivial semigroup is $J$-trivial.
        EXAMPLES:
        
        sage: Semigroups().RTrivial().Commutative_extra_super_categories()
        [Category of j trivial semigroups]
    
    extra_super_categories(
        Implement the fact that a $R$-trivial semigroup is $H$-trivial.
        EXAMPLES:
        
        sage: Semigroups().RTrivial().extra_super_categories()
        [Category of h trivial semigroups]
```

4.139 Schemes

```python
class sage.categories.schemes.Schemes(s=None):
    Bases: sage.categories.category.Category

    The category of all schemes.
    EXAMPLES:
    
    sage: Schemes()
    Category of schemes

    Schemes can also be used to construct the category of schemes over a given base:
    
    sage: Schemes(Spec(ZZ))
    Category of schemes over Integer Ring

    sage: Schemes(ZZ)
    Category of schemes over Integer Ring

    Todo: Make Schemes() a singleton category (and remove Schemes from the workaround in
category_types.Category_over_base._test_category_over_bases()).
    This is currently incompatible with the dispatching below.
    ```

 super_categories(
 EXAMPLES:

 sage: Schemes().super_categories()
 [Category of sets]
    ```
class sage.categories.schemes.Schemes_over_base(base, name=None)

Bases: sage.categories.category_types.Category_over_base

The category of schemes over a given base scheme.

EXAMPLES:

```
sage: Schemes(Spec(ZZ))
Category of schemes over Integer Ring
```

base_scheme()

EXAMPLES:

```
sage: Schemes(Spec(ZZ)).base_scheme()
Spectrum of Integer Ring
```

super_categories()

EXAMPLES:

```
sage: Schemes(Spec(ZZ)).super_categories()
[Category of schemes]
```

### 4.140 Semigroups

class sage.categories.semigroups.Semigroups(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of (multiplicative) semigroups.

A semigroup is an associative magma, that is a set endowed with a multiplicative binary operation \(*\) which is associative (see Wikipedia article Semigroup).

The operation \(*\) is not required to have a neutral element. A semigroup for which such an element exists is a monoid.

EXAMPLES:

```
sage: C = Semigroups(); C
Category of semigroups
sage: C.super_categories()
[Category of magmas]
sage: C.all_super_categories()
[Category of semigroups, Category of magmas, Category of sets, Category of sets with partial maps, Category of objects]
sage: C.axioms()
frozenset({'Associative'})
sage: C.example()
An example of a semigroup: the left zero semigroup
```

class Algebras(category, *args)

Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods

Bases: object
algebra_generators()

The generators of this algebra, as per MagmaticAlgebras.ParentMethods.algebra_generators().

They correspond to the generators of the semigroup.

EXAMPLES:

```
sage: M = FiniteSemigroups().example(); M
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')
sage: M.semigroup_generators()
Family ('a', 'b', 'c', 'd')
sage: M.algebra(ZZ).algebra_generators()
Finite family {0: B['a'], 1: B['b'], 2: B['c'], 3: B['d']}
```

gen(i=0)

Return the i-th generator of self.

EXAMPLES:

```
sage: A = GL(3, GF(7)).algebra(ZZ)
sage: A.gen(0)
[3 0 0]
[0 1 0]
[0 0 1]
```

gens()

Return the generators of self.

EXAMPLES:

```
sage: a, b = SL2Z.algebra(ZZ).gens(); a, b
([0 -1]
 [1 0],
 [0 1])
sage: 2*a + b
2*[[0 -1]
 [1 0]]
 +
 [1 1]
 [0 1]
```

ngens()

Return the number of generators of self.

EXAMPLES:

```
sage: SL2Z.algebra(ZZ).ngens()
2
sage: DihedralGroup(4).algebra(RR).ngens()
2
```

product_on_basis(g1, g2)

Product, on basis elements, as per MagmaticAlgebras.WithBasis.ParentMethods.product_on_basis().
The product of two basis elements is induced by the product of the corresponding elements of the group.

**EXAMPLES:**

```python
sage: S = FiniteSemigroups().example(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: a, b, c, d = A.algebra_generators()
sage: a * b + b * d * c * d
B['ab'] + B['bdc']
```

`regular_representation(side='left')`
Return the regular representation of `self`.

**INPUT:**
- `side` – (default: "left") whether this is the "left" or "right" regular representation

**EXAMPLES:**

```python
sage: G = groups.permutation.Dihedral(4)
sage: A = G.algebra(QQ)
sage: V = A.regular_representation()
sage: V == G.regular_representation(QQ)
True
```

`trivial_representation(side='twosided')`
Return the trivial representation of `self`.

**INPUT:**
- `side` – ignored

**EXAMPLES:**

```python
sage: G = groups.permutation.Dihedral(4)
sage: A = G.algebra(QQ)
sage: V = A.trivial_representation()
sage: V == G.trivial_representation(QQ)
True
```

`extra_super_categories()`
Implement the fact that the algebra of a semigroup is indeed a (not necessarily unital) algebra.

**EXAMPLES:**

```python
sage: Semigroups().Algebras(QQ).extra_super_categories()
[Category of semigroups]
sage: Semigroups().Algebras(QQ).super_categories()
[Category of associative algebras over Rational Field, Category of magma algebras over Rational Field]
```

**Aperiodic**
alias of `sage.categories.aperiodic_semigroups.AperiodicSemigroups`

**class** `CartesianProducts`(category, *args)
Bases: `sage.categories.cartesian_product.CartesianProductsCategory`

`extra_super_categories()`
Implement the fact that a Cartesian product of semigroups is a semigroup.
EXAMPLES:

```python
sage: Semigroups().CartesianProducts().extra_super_categories()
[Category of semigroups]
sage: Semigroups().CartesianProducts().super_categories()
[Category of semigroups, Category of Cartesian products of magmas]
```

class ElementMethods

Bases: object

Finite

alias of `sage.categories.finite_semigroups.FiniteSemigroups`

FinitelyGeneratedAsMagma

alias of `sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups`

HTrivial

alias of `sage.categories.h_trivial_semigroups.HTrivialSemigroups`

JTrivial

alias of `sage.categories.j_trivial_semigroups.JTrivialSemigroups`

LTrivial

alias of `sage.categories.l_trivial_semigroups.LTrivialSemigroups`

class ParentMethods

Bases: object

```
cayley_graph(side=’right’, simple=False, elements=None, generators=None, connecting_set=None)
```

Return the Cayley graph for this finite semigroup.

INPUT:

- `side` – “left”, “right”, or “twosided”: the side on which the generators act (default:”right”)
- `simple` – boolean (default:False): if True, returns a simple graph (no loops, no labels, no multiple edges)
- `generators` – a list, tuple, or family of elements of self (default: self.semigroup_generators())
- `connecting_set` – alias for generators; deprecated
- `elements` – a list (or iterable) of elements of self

OUTPUT:

- DiGraph

EXAMPLES:

We start with the (right) Cayley graphs of some classical groups:

```python
sage: D4 = DihedralGroup(4); D4
Dihedral group of order 8 as a permutation group
sage: G = D4.cayley_graph()
sage: show(G, color_by_label=True, edge_labels=True)
sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
sage: G.show3d(color_by_label=True, edge_size=0.01, edge_size2=0.02, vertex_size=0.03, background=(0,0,0), colors={(1,1,1):G.vertices()}, xres=700, yres=700, iterations=200) # long time (less than a minute)
sage: G.num_edges()
```
```python
sage: w = WeylGroup(['A', 3])
sage: d = w.cayley_graph(); d
Digraph on 24 vertices
sage: d.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03)
```

Alternative generators may be specified:

```python
sage: G = A5.cayley_graph(generators=A5.gens()[0])
sage: G.num_edges()
60
sage: g = PermutationGroup(((i+1,j+1) for i in range(5) for j in range(5) if i!=j))
sage: g.cayley_graph(generators=[(1,2),(2,3)])
Digraph on 120 vertices
```

If elements is specified, then only the subgraph induced and those elements is returned. Here we use it to display the Cayley graph of the free monoid truncated on the elements of length at most 3:

```python
sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: elements = [M.prod(w) for w in sum((list(Words(M.semigroup_generators(),k)) for k in range(4)),())]
sage: G = M.cayley_graph(elements=elements)
sage: G.num_verts(), G.num_edges()
(85, 84)
sage: G.show3d(color_by_label=True, edge_size=0.001, vertex_size=0.01)
```

We now illustrate the side and simple options on a semigroup:

```python
sage: S = FiniteSemigroups().example(alphabet=('a', 'b'))
sage: g = S.cayley_graph(simple=True)
sage: g.vertices()
['a', 'ab', 'b', 'ba']
sage: g.edges()
[('a', 'ab', None), ('b', 'ba', None)]
```

```python
sage: g = S.cayley_graph(side="left", simple=True)
sage: g.vertices()
['a', 'ab', 'b', 'ba']
sage: g.edges()
[('a', 'ba', None), ('ab', 'ba', None), ('b', 'ab', None), ('ba', 'ab', None)]
```

```python
sage: g = S.cayley_graph(side="twosided", simple=True)
sage: g.vertices()
['a', 'ab', 'b', 'ba']
sage: g.edges()
[('a', 'ab', None), ('a', 'ba', None), ('ab', 'ba', None), ('b', 'ab', None), ('b', 'ba', None), ('ba', 'ab', None)]
```

4.140. Semigroups 689
Todo:
- Add more options for constructing subgraphs of the Cayley graph, handling the standard use cases when exploring large/infinite semigroups (a predicate, generators of an ideal, a maximal length in term of the generators)
- Specify good default layout/plot/latex options in the graph
- Generalize to combinatorial modules with module generators / operators

AUTHORS:
- Bobby Moretti (2007-08-10)
- Nicolas M. Thiery (2008-12): extension to semigroups, side, simple, and elements options, ...

magma_generators()  
An alias for semigroup_generators().

EXAMPLES:

```python
sage: S = Semigroups().example("free"); S
An example of a semigroup: the free semigroup generated by ("a", "b", "c", "d")
sage: S.magma_generators()
Family ("a", "b", "c", "d")
sage: S.semigroup_generators()
Family ("a", "b", "c", "d")
```

prod(args)  
Return the product of the list of elements args inside self.

EXAMPLES:

```python
sage: S = Semigroups().example("free")
sage: S.prod([S("a"), S("b"), S("c")])
'abc'
sage: S.prod([])
Traceback (most recent call last):
 ...
AssertionError: Cannot compute an empty product in a semigroup
```
regular_representation\((base\_ring=\text{None}, side='left')\)

Return the regular representation of self over base_ring.

- side – (default: "left") whether this is the "left" or "right" regular representation

EXAMPLES:

```python
sage: G = groups.permutation.Dihedral(4)
sage: G.regular_representation()
Left Regular Representation of Dihedral group of order 8 as a permutation group over Integer Ring
```

semigroup_generators()

Return distinguished semigroup generators for self.

OUTPUT: a family

This method is optional.

EXAMPLES:

```python
sage: S = Semigroups().example("free"); S
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')
```

subsemigroup\((generators, one=\text{None}, category=\text{None})\)

Return the multiplicative subsemigroup generated by generators.

INPUT:
- generators – a finite family of elements of self, or a list, iterable, … that can be converted into one (see Family).
- one – a unit for the subsemigroup, or None.
- category – a category

This implementation lazily constructs all the elements of the semigroup, and the right Cayley graph relations between them, and uses the latter as an automaton.

See AutomaticSemigroup for details.

EXAMPLES:

```python
sage: R = IntegerModRing(15)
sage: M = R.subsemigroup([R(3), R(5)]); M
A subsemigroup of (Ring of integers modulo 15) with 2 generators
sage: M.list()
[3, 5, 9, 0, 10, 12, 6]
```

By default, \(M\) is just in the category of subsemigroups:

```python
sage: M in Semigroups().Subobjects()
True
```

In the following example, we specify that \(M\) is a submonoid of the finite monoid \(R\) (it shares the same unit), and a group by itself:

```python
sage: M = R.subsemigroup([R(-1)],
....: category=Monoids().Finite().Subobjects() & Groups()); M
A submonoid of (Ring of integers modulo 15) with 1 generators
```

(continues on next page)
In the following example $M$ is a group; however its unit does not coincide with that of $R$, so $M$ is only a subsemigroup, and we need to specify its unit explicitly:

```
sage: M = R.subsemigroup([R(5)], one=R(10),
....: category=Semigroups().Finite().Subobjects() & Groups()); M
A subsemigroup of (Ring of integers modulo 15) with 1 generators
sage: M in Groups()
True
sage: M.list()
[10, 5]
sage: M.one()
10
```

Todo:
- Fix the failure in TESTS by providing a default implementation of `__invert__` for finite groups (or even finite monoids).
- Provide a default implementation of `one` for a finite monoid, so that we would not need to specify it explicitly?

```
trivial_representation(base_ring=None, side='twosided')
 Return the trivial representation of self over base_ring.
```

```
class Quotients(category, *args)
 Bases: sage.categories.quotients.QuotientsCategory

class ParentMethods
 Bases: object

 semigroup_generators()
 Return semigroup generators for self by retracting the semigroup generators of the ambient semi-
```
EXAMPLES:

```python
sage: S = FiniteSemigroups().Quotients().example().semigroup_generators() # todo: not implemented
```

```python
example()
Return an example of quotient of a semigroup, as per Category.example().
```

EXAMPLES:

```python
sage: Semigroups().Quotients().example()
An example of a (sub)quotient semigroup: a quotient of the left zero semigroup
```

RTrivial
alias of `sage.categories.r_trivial_semigroups.RTrivialSemigroups`

class SubcategoryMethods
    Bases: object

Aperiodic()
Return the full subcategory of the aperiodic objects of self.

A (multiplicative) semigroup $S$ is aperiodic if for any element $s \in S$, the sequence $s, s^2, s^3, ...$ eventually stabilizes.

In terms of variety, this can be described by the equation $s^{\omega} s = s$.

EXAMPLES:

```python
sage: Semigroups().Aperiodic()
Category of aperiodic semigroups
```

An aperiodic semigroup is $H$-trivial:

```python
sage: Semigroups().Aperiodic().axioms()
frozenset({'Aperiodic', 'Associative', 'HTrivial'})
```

In the finite case, the two notions coincide:

```python
sage: Semigroups().Aperiodic().Finite() is Semigroups().HTrivial().Finite()
True
```

See also:
* Wikipedia article Aperiodic_semigroup
* Semigroups.SubcategoryMethods.RTrivial
* Semigroups.SubcategoryMethods.LTrivial
* Semigroups.SubcategoryMethods.JTrivial
* Semigroups.SubcategoryMethods.Aperiodic

HTrivial()
Return the full subcategory of the $H$-trivial objects of self.

Let $S$ be (multiplicative) semigroup. Two elements of $S$ are in the same $H$-class if they are in the same $L$-class and in the same $R$-class.

The semigroup $S$ is $H$-trivial if all its $H$-classes are trivial (that is of cardinality 1).

EXAMPLES:
```python
sage: C = Semigroups().HTrivial(); C
Category of h trivial semigroups
sage: Semigroups().HTrivial().Finite().example()
NotImplemented

See also:
- Wikipedia article Green%27s_relations
- Semigroups.SubcategoryMethods.RTrivial
- Semigroups.SubcategoryMethods.LTrivial
- Semigroups.SubcategoryMethods.JTrivial
- Semigroups.SubcategoryMethods.Aperiodic

.. method:: JTrivial()

 Return the full subcategory of the J-trivial objects of self.

 Let S be (multiplicative) :class:`~sage.categories.semigroups.Semigroups`. The J-preorder \leq_J on S is defined by:
 \[x \leq_J y \iff x \in S \cdot y \cdot S \]

 The J-classes are the equivalence classes for the associated equivalence relation. The semigroup S is J-trivial if all its J-classes are trivial (that is of cardinality 1), or equivalently if the J-preorder is in fact a partial order.

 EXAMPLES:

   ```python
   sage: C = Semigroups().JTrivial(); C
   Category of j trivial semigroups
   ```

 A semigroup is J-trivial if and only if it is L-trivial and R-trivial:

   ```python
   sage: sorted(C.axioms())
   ['Associative', 'HTrivial', 'JTrivial', 'LTrivial', 'RTrivial']
   sage: Semigroups().LTrivial().RTrivial()
   Category of j trivial semigroups
   ```

 For a commutative semigroup, all three axioms are equivalent:

   ```python
   sage: Semigroups().Commutative().LTrivial()
   Category of commutative j trivial semigroups
   sage: Semigroups().Commutative().RTrivial()
   Category of commutative j trivial semigroups
   ```

 See also:
 - Wikipedia article Green%27s_relations
 - Semigroups.SubcategoryMethods.LTrivial
 - Semigroups.SubcategoryMethods.RTrivial
 - Semigroups.SubcategoryMethods.HTrivial

.. method:: LTrivial()

 Return the full subcategory of the L-trivial objects of self.

 Let S be (multiplicative) :class:`~sage.categories.semigroups.Semigroups`. The L-preorder \leq_L on S is defined by:
 \[x \leq_L y \iff x \in S \cdot y \]

 For a commutative semigroup, all three axioms are equivalent:

   ```python
   sage: Semigroups().Commutative().LTrivial()
   Category of commutative j trivial semigroups
   ```

 See also:
 - Wikipedia article Green%27s_relations
 - Semigroups.SubcategoryMethods.LTrivial
 - Semigroups.SubcategoryMethods.RTrivial
 - Semigroups.SubcategoryMethods.HTrivial

.. method:: RTrivial()

 Return the full subcategory of the R-trivial objects of self.

 Let S be (multiplicative) :class:`~sage.categories.semigroups.Semigroups`. The R-preorder \leq_R on S is defined by:
 \[x \leq_R y \iff x \in S \cdot y \]

 For a commutative semigroup, all three axioms are equivalent:

   ```python
   sage: Semigroups().Commutative().RTrivial()
   Category of commutative j trivial semigroups
   ```

 See also:
 - Wikipedia article Green%27s_relations
 - Semigroups.SubcategoryMethods.LTrivial
 - Semigroups.SubcategoryMethods.RTrivial
 - Semigroups.SubcategoryMethods.HTrivial
```
The \textit{L-classes} are the equivalence classes for the associated equivalence relation. The semigroup \( S \) is \textit{L-trivial} if all its \( L \)-classes are trivial (that is of cardinality 1), or equivalently if the \( L \)-preorder is in fact a partial order.

**EXAMPLES:**

```python
sage: C = Semigroups().LTrivial(); C
Category of l trivial semigroups
```

A \( L \)-trivial semigroup is \( H \)-trivial:

```python
sage: sorted(C.axioms())
['Associative', 'HTrivial', 'LTrivial']
```

See also:

- Wikipedia article Green%27s_relations
- `Semigroups.SubcategoryMethods.RTrivial`
- `Semigroups.SubcategoryMethods.JTrivial`
- `Semigroups.SubcategoryMethods.HTrivial`

\texttt{RTrivial()}

Return the full subcategory of the \( R \)-trivial objects of \texttt{self}.

Let \( S \) be (multiplicative) \texttt{semigroup}. The \( R \)-preorder \( \leq_R \) on \( S \) is defined by:

\[
x \leq_R y \iff x \in yS
\]

The \( R \)-classes are the equivalence classes for the associated equivalence relation. The semigroup \( S \) is \textit{R-trivial} if all its \( R \)-classes are trivial (that is of cardinality 1), or equivalently if the \( R \)-preorder is in fact a partial order.

**EXAMPLES:**

```python
sage: C = Semigroups().RTrivial(); C
Category of r trivial semigroups
```

An \( R \)-trivial semigroup is \( H \)-trivial:

```python
sage: sorted(C.axioms())
['Associative', 'HTrivial', 'RTrivial']
```

See also:

- Wikipedia article Green%27s_relations
- `Semigroups.SubcategoryMethods.LTrivial`
- `Semigroups.SubcategoryMethods.JTrivial`
- `Semigroups.SubcategoryMethods.HTrivial`

\texttt{class Subquotients(category, \*args)}

Bases: `sage.categories.subquotients.SubquotientsCategory`

The category of subquotient semi-groups.

**EXAMPLES:**

```python
sage: Semigroups().Subquotients().all_super_categories()
[Category of subquotients of semigroups,

Category of semigroups,

]```

(continues on next page)
Category of subquotients of magmas,
Category of magmas,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

[Category of subquotients of semigroups,
Category of semigroups,
Category of subquotients of magmas,
Category of magmas,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

example()
Returs an example of subquotient of a semigroup, as per Category.example().

EXAMPLES:

```
sage: Semigroups().Subquotients().example()
An example of a (sub)quotient semigroup: a quotient of the left zero
←semigroup
```

Unital
alias of sage.categories.monoids.Monoids

eample(choic=’leftzero’, **kws)
Returs an example of a semigroup, as per Category.example().

INPUT:

• choice – str (default: ‘leftzero’). Can be either ‘leftzero’ for the left zero semigroup, or ‘free’ for the free semigroup.

• **kws – keyword arguments passed onto the constructor for the chosen semigroup.

EXAMPLES:

```
sage: Semigroups().example(choice=’leftzero’)
An example of a semigroup: the left zero semigroup
sage: Semigroups().example(choice=’free’)
An example of a semigroup: the free semigroup generated by (’a’, ’b’, ’c’, ’d’)
sage: Semigroups().example(choice=’free’, alphabet=(’a’,’b’))
An example of a semigroup: the free semigroup generated by (’a’, ’b’)
```
4.141 Semirings

class `sage.categories.semirings.Semirings(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

The category of semirings.

A semiring $(S, +, *)$ is similar to a ring, but without the requirement that each element must have an additive inverse. In other words, it is a combination of a commutative additive monoid $(S, +)$ and a multiplicative monoid $(S, *)$, where $*$ distributes over $+$.

See also:

Wikipedia article Semiring

EXAMPLES:

```
sage: Semirings()
Category of semirings
sage: Semirings().super_categories()
[Category of associative additive commutative additive associative additive unital → distributive magmas and additive magmas, Category of monoids]
sage: sorted(Semirings().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveUnital', 'Associative', → 'Distributive', 'Unital']
sage: Semirings() is (CommutativeAdditiveMonoids() & Monoids()).Distributive()
True
sage: Semirings().AdditiveInverse()
Category of rings
```

4.142 Semisimple Algebras

class `sage.categories.semisimple_algebras.SemisimpleAlgebras(base, name=None)`

Bases: `sage.categories.category_types.Category_over_base_ring`

The category of semisimple algebras over a given base ring.

EXAMPLES:

```
sage: from sage.categories.semisimple_algebras import SemisimpleAlgebras
sage: C = SemisimpleAlgebras(QQ); C
Category of semisimple algebras over Rational Field
```

This category is best constructed as:

```
sage: D = Algebras(QQ).Semisimple(); D
Category of semisimple algebras over Rational Field
sage: D is C
True
```

(continues on next page)
Typically, finite group algebras are semisimple:

```python
sage: DihedralGroup(5).algebra(QQ) in SemisimpleAlgebras
True
```

Unless the characteristic of the field divides the order of the group:

```python
sage: DihedralGroup(5).algebra(IntegerModRing(5)) in SemisimpleAlgebras
False
sage: DihedralGroup(5).algebra(IntegerModRing(7)) in SemisimpleAlgebras
True
```

See also:

Wikipedia article Semisimple_algebra

```python
class FiniteDimensional(base_category):
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

    WithBasis
        alias of sage.categories.finite_dimensional_semisimple_algebras_with_basis.
        FiniteDimensionalSemisimpleAlgebrasWithBasis

class ParentMethods
    Bases: object

    radical_basis(**keywords)
        Return a basis of the Jacobson radical of this algebra.
        • keywords – for compatibility; ignored.
        OUTPUT: the empty list since this algebra is semisimple.
        EXAMPLES:

        sage: A = SymmetricGroup(4).algebra(QQ)
        sage: A.radical_basis()
        ()
```

```python
super_categories()

    EXAMPLES:

    sage: Algebras(QQ).Semisimple().super_categories()
    [Category of algebras over Rational Field]
```
4.143 Sets

exception sage.categories.sets_cat.EmptySetError

 Bases: ValueError

 Exception raised when some operation can't be performed on the empty set.

 EXAMPLES:

   ```python
   sage: def first_element(st):
   ....:     if not st:
   ....:         raise EmptySetError("no elements")
   ....:     else:
   ....:         return st[0]
   sage: first_element(Set((1,2,3)))
   1
   sage: first_element(Set([]))
   Traceback (most recent call last):
   ...  
   EmptySetError: no elements
   ```

class sage.categories.sets_cat.Sets(s=None)

 Bases: sage.categories.category_singleton.Category_singleton

 The category of sets.

 The base category for collections of elements with = (equality).

 This is also the category whose objects are all parents.

 EXAMPLES:

   ```python
   sage: Sets()
   Category of sets
   sage: Sets().super_categories()
   [Category of sets with partial maps]
   sage: Sets().all_super_categories()
   [Category of sets, Category of sets with partial maps, Category of objects]
   ```

 Let us consider an example of set:

   ```python
   sage: P = Sets().example("inherits")
   sage: P
   Set of prime numbers
   ```

 See P?? for the code.

 P is in the category of sets:

   ```python
   sage: P.category()
   Category of sets
   ```

 and therefore gets its methods from the following classes:

   ```python
   sage: for cl in P.__class__.mro(): print(cl)
   ...<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category'>
   ...<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits'>
   ...<class 'sage.categories.examples.sets_cat.PrimeNumbers_Abstract'>
   ...<class 'sage.structure.unique_representation.UniqueRepresentation'>
   ```

 (continues on next page)
We run some generic checks on P:

```
sage: TestSuite(P).run(verbosetrue=True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
    Running the test suite of self.an_element()
    running ._test_category() . . . pass
    running ._test_eq() . . . pass
    running ._test_new() . . . pass
    running ._test_not_implemented_methods() . . . pass
    running ._test_pickling() . . . pass
    pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
```

Now, we manipulate some elements of P:

```
sage: P.an_element()
47
sage: x = P(3)
sage: x.parent()
Set of prime numbers
sage: x in P, 4 in P
(True, False)
sage: x.is_prime()
True
```

They get their methods from the following classes:

```
sage: for cl in x.__class__.mro(): print(cl)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category._element_class'>
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits.Element'>
```
class Algebras(category, *args)
 Bases: sage.categories.algebra_functor.AlgebrasCategory

 class ParentMethods
 Bases: object

 construction()
 Return the functorial construction of self.

 EXAMPLES:

 sage: A = GroupAlgebra(KleinFourGroup(), QQ)
 sage: F, arg = A.construction(); F, arg
 (GroupAlgebraFunctor, Rational Field)
 sage: F(arg) is A
 True

 This also works for structures such as monoid algebras (see trac ticket #27937):

 sage: A = FreeAbelianMonoid('x,y').algebra(QQ)
 sage: F, arg = A.construction(); F, arg
 (The algebra functorial construction, Free abelian monoid on 2 generators (x, y))
 sage: F(arg) is A
 True

 extra_super_categories()
 EXAMPLES:

 sage: Sets().Algebras(ZZ).super_categories()
 [Category of modules with basis over Integer Ring]

 sage: Sets().Algebras(QQ).extra_super_categories()
 [Category of vector spaces with basis over Rational Field]

 sage: Sets().example().algebra(ZZ).categories()
class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

EXAMPLES:

```python
sage: C = Sets().CartesianProducts().example()
sage: C
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: {1,2,3})
sage: C.category()
Category of Cartesian products of sets
sage: C.categories()
[Category of Cartesian products of sets, Category of sets,
Category of sets with partial maps, Category of objects]
sage: TestSuite(C).run()
```

class ElementMethods

Bases: object

```
cartesian_factors()

Return the Cartesian factors of self.

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: H = CombinatorialFreeModule(ZZ, [4,7]); H.__custom_name = "H"
sage: S = cartesian_product([F, G, H])
sage: x = S.monomial((0,4)) + 2 * S.monomial((0,5)) + 3 * S.monomial((1, ˓→6)) + 4 * S.monomial((2,4)) + 5 * S.monomial((2,7))
sage: x.cartesian_factors()
sage: [s.parent() for s in x.cartesian_factors()]
[F, G, H]
sage: S.zero().cartesian_factors()
(0, 0, 0)
sage: [s.parent() for s in S.zero().cartesian_factors()]
[F, G, H]
```

cartesian_projection(i)

Return the projection of self onto the i-th factor of the Cartesian product.

INPUT:

* i – the index of a factor of the Cartesian product

EXAMPLES:

```python
sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
```
sage: S = cartesian_product([F, G])
sage: x = S.monomial((0,4)) + 2 * S.monomial((0,5)) + 3 * S.monomial((1,6))
sage: x.cartesian_projection(0)
sage: x.cartesian_projection(1)
3*B[6]

class ParentMethods
    Bases: object
    an_element()
    EXAMPLES:
    sage: C = Sets().CartesianProducts().example(); C
    The Cartesian product of (Set of prime numbers (basic implementation),
    An example of an infinite enumerated set: the non negative integers,
    An example of a finite enumerated set: {1,2,3})
    sage: C.an_element()
    (47, 42, 1)

cardinality()
    Return the cardinality of self.
    EXAMPLES:
    sage: E = FiniteEnumeratedSet([1,2,3])
    sage: C = cartesian_product([E,SymmetricGroup(4)])
    sage: C.cardinality()
    72
    sage: E = FiniteEnumeratedSet([])
    sage: C = cartesian_product([E, ZZ, QQ])
    sage: C.cardinality()
    0
    sage: C = cartesian_product([ZZ, QQ])
    sage: C.cardinality()
    +Infinity
    sage: cartesian_product([GF(5), Permutations(10)]).cardinality()
    18144000
    sage: cartesian_product([GF(71)]*20).cardinality() == 71**20
    True

cartesian_factors()
    Return the Cartesian factors of self.
    EXAMPLES:
    sage: cartesian_product([QQ, ZZ, ZZ]).cartesian_factors()
    (Rational Field, Integer Ring, Integer Ring)

cartesian_projection(i)
    Return the natural projection onto the i-th Cartesian factor of self.
INPUT:
• i – the index of a Cartesian factor of self

EXAMPLES:

```
sage: C = Sets().CartesianProducts().example(); C
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: {1,2,3})
sage: x = C.an_element(); x
(47, 42, 1)
sage: pi = C.cartesian_projection(1)
sage: pi(x)
42
```

**is_empty()**

Return whether this set is empty.

EXAMPLES:

```
sage: S1 = FiniteEnumeratedSet([1,2,3])
sage: S2 = Set([])
sage: cartesian_product([S1,ZZ]).is_empty()
False
sage: cartesian_product([S1,S2,S1]).is_empty()
True
```

**is_finite()**

Return whether this set is finite.

EXAMPLES:

```
sage: E = FiniteEnumeratedSet([1,2,3])
sage: C = cartesian_product([E, SymmetricGroup(4)])
sage: C.is_finite()
True
sage: cartesian_product([ZZ,ZZ]).is_finite()
False
sage: cartesian_product([ZZ, Set(), ZZ]).is_finite()
True
```

**random_element(**args**)**

Return a random element of this Cartesian product.

The extra arguments are passed down to each of the factors of the Cartesian product.

EXAMPLES:

```
sage: C = cartesian_product([Permutations(10)]*5)
sage: C.random_element()
random
([2, 9, 4, 7, 1, 8, 6, 10, 5, 3],
 [8, 6, 5, 7, 1, 4, 9, 3, 10, 2],
 [5, 10, 3, 8, 2, 9, 1, 4, 7, 6],
 [9, 6, 10, 3, 2, 1, 5, 8, 7, 4],
 [8, 5, 2, 9, 10, 3, 7, 1, 4, 6])
```

(continues on next page)
```python
sage: C = cartesian_product([ZZ]*10)
sage: c1 = C.random_element()
 # random
(3, 1, 4, 1, 1, -3, 0, -4, -17, 2)
sage: c2 = C.random_element(4,7)
 # random
(6, 5, 6, 4, 5, 6, 6, 4, 5, 5)
sage: all(4 <= i < 7 for i in c2)
True
```

### example()

**EXAMPLES:**

```python
sage: Sets().CartesianProducts().example()
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: {1,2,3})
```

### extra_super_categories()

A Cartesian product of sets is a set.

**EXAMPLES:**

```python
sage: Sets().CartesianProducts().extra_super_categories()
[Category of sets]
sage: Sets().CartesianProducts().super_categories()
[Category of sets]
```

### class ElementMethods

**Bases:** object

#### cartesian_product(*elements)

Return the Cartesian product of its arguments, as an element of the Cartesian product of the parents of those elements.

**EXAMPLES:**

```python
sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example()
sage: (a,b,c) = A.algebra_generators()
sage: a.cartesian_product(b, c)
B[(0, word: a)] + B[(1, word: b)] + B[(2, word: c)]
```

FIXME: is this a policy that we want to enforce on all parents?

### Enumerated

alias of `sage.categories.enumerated_sets.EnumeratedSets`

### Facade

alias of `sage.categories.facade_sets.FacadeSets`

### Finite

alias of `sage.categories.finite_sets.FiniteSets`

### class Infinite(base_category)

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

"""
class ParentMethods
    Bases: object

cardinality()
    Count the elements of the enumerated set.
    EXAMPLES:
    sage: NN = InfiniteEnumeratedSets().example()
sage: NN.cardinality()
+Infinity

is_empty()
    Return whether this set is empty.
    Since this set is infinite this always returns False.
    EXAMPLES:
    sage: C = InfiniteEnumeratedSets().example()
sage: C.is_empty()
False

is_finite()
    Return whether this set is finite.
    Since this set is infinite this always returns False.
    EXAMPLES:
    sage: C = InfiniteEnumeratedSets().example()
sage: C.is_finite()
False

class IsomorphicObjects(category, *args)
    Bases: sage.categories.isomorphic_objects.IsomorphicObjectsCategory
    A category for isomorphic objects of sets.
    EXAMPLES:
    sage: Sets().IsomorphicObjects()
Category of isomorphic objects of sets
    sage: Sets().IsomorphicObjects().all_super_categories()
    [Category of isomorphic objects of sets,
    Category of subobjects of sets, Category of quotients of sets,
    Category of subquotients of sets,
    Category of sets,
    Category of sets with partial maps,
    Category of objects]

class ParentMethods
    Bases: object

Metric
    alias of sage.categories.metric_spaces.MetricSpaces

class MorphismMethods
    Bases: object
image\(\text{domain\_subset=None}\)

Return the image of the domain or of domain\_subset.

EXAMPLES:

```python
sage: P = Partitions(6)
sage: H = Hom(P, ZZ)
sage: f = H(ZZ.sum)
sage: X = f.image()
sage: list(X)
[6]
```

is\_injective()

Return whether this map is injective.

EXAMPLES:

```python
sage: f = ZZ.hom(GF(3)); f
Natural morphism:
 From: Integer Ring
 To: Finite Field of size 3
sage: f.is_injective()
False
```

class ParentMethods

Bases: object

CartesianProduct

alias of sage.sets.cartesian_product.CartesianProduct

algebra\(\text{base\_ring, category=None, **kwds}\)

Return the algebra of self over base\_ring.

INPUT:

• self – a parent \(S\)
• base\_ring – a ring \(K\)
• category – a super category of the category of \(S\), or None

This returns the space of formal linear combinations of elements of \(G\) with coefficients in \(R\), endowed with whatever structure can be induced from that of \(S\). See the documentation of sage.categories.algebra\_functor for details.

EXAMPLES:

If \(S\) is a group, the result is its group algebra \(KS\):

```python
sage: S = DihedralGroup(4); S
Dihedral group of order 8 as a permutation group
sage: A = S.algebra(QQ); A
Algebra of Dihedral group of order 8 as a permutation group
 over Rational Field
sage: A.category()
Category of finite group algebras over Rational Field
sage: a = A.an_element(); a
() + (1,3) + 2*(1,3)(2,4) + 3*(1,4,3,2)
```

This space is endowed with an algebra structure, obtained by extending by bilinearity the multiplication of \(G\) to a multiplication on \(RG\):
If $S$ is a monoid, the result is its monoid algebra $KS$:

```
sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ); A
Algebra of An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
 over Rational Field
sage: A.category()
Category of monoid algebras over Rational Field
```

Similarly, we can construct algebras for additive magmas, monoids, and groups.

One may specify for which category one takes the algebra; here we build the algebra of the additive group $GF_3$:

```
sage: from sage.categories.additive_groups import AdditiveGroups
sage: S = GF(7)
sage: A = S.algebra(QQ, category=AdditiveGroups()); A
Algebra of Finite Field of size 7 over Rational Field
sage: A.category()
Category of finite dimensional additive group algebras over Rational Field
```

Note that the category keyword needs to be fed with the structure on $S$ to be used, not the induced structure on the result.

**an_element()**

Return a (preferably typical) element of this parent.

This is used both for illustration and testing purposes. If the set self is empty, an_element() should raise the exception EmptySetError.

This default implementation calls _an_element_() and caches the result. Any parent should implement either an_element() or _an_element_.

**cartesian_product(*parents, **kwargs)**

Return the Cartesian product of the parents.

**INPUT:**
• parents – a list (or other iterable) of parents.
• category – (default: None) the category the Cartesian product belongs to. If None is passed, then category_from_parents() is used to determine the category.
• extra_category – (default: None) a category that is added to the Cartesian product in addition to the categories obtained from the parents.
• other keyword arguments will passed on to the class used for this Cartesian product (see also CartesianProduct).

OUTPUT:
The Cartesian product.

EXAMPLES:

```
sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example(); A.rename("A")
sage: A.cartesian_product(A,A)
A (+) A (+) A
sage: ZZ.cartesian_product(GF(2), FiniteEnumeratedSet([1,2,3]))
The Cartesian product of (Integer Ring, Finite Field of size 2, {1, 2, 3})
sage: C = ZZ.cartesian_product(A); C
The Cartesian product of (Integer Ring, A)
```

construction()

Return a pair (functor, parent) such that functor(parent) returns self. If self does not have a functorial construction, return None.

EXAMPLES:

```
sage: QQ.construction()
(FractionField, Integer Ring)
sage: f, R = QQ['x'].construction()
sage: f
Poly[x]
sage: R
Rational Field
sage: f(R)
Univariate Polynomial Ring in x over Rational Field
```

is_parent_of(element)

Return whether self is the parent of element.

INPUT:
• element – any object

EXAMPLES:

```
sage: S = ZZ
sage: S.is_parent_of(1)
True
sage: S.is_parent_of(2/1)
False
```

This method differs from __contains__() because it does not attempt any coercion:

```
sage: 2/1 in S, S.is_parent_of(2/1)
(True, False)
```

(continues on next page)
some_elements()

Return a list (or iterable) of elements of \texttt{self}.

This is typically used for running generic tests (see \texttt{TestSuite}).

This default implementation calls \texttt{an_element()}.

EXAMPLES:

```python
sage: S = Sets().example(); S
Set of prime numbers (basic implementation)
sage: S.an_element()
47
sage: S.some_elements()
[47]
sage: S = Set([])
sage: S.some_elements()
[]
```

This method should return an iterable, not an iterator.

class Quotients(category, *args)

Bases: \texttt{sage.categories.quotients.QuotientsCategory}

A category for quotients of sets.

See also:

Sets().Quotients()

EXAMPLES:

```python
sage: Sets().Quotients()
Category of quotients of sets
sage: Sets().Quotients().all_super_categories()
[Category of quotients of sets,
 Category of subquotients of sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

class ParentMethods

Bases: object

class Realizations(category, *args)

Bases: \texttt{sage.categories.realizations.RealizationsCategory}

class ParentMethods

Bases: object

realization_of()

Return the parent this is a realization of.

EXAMPLES:
class SubcategoryMethods
    Bases: object

    Algebras(base_ring)
    Return the category of objects constructed as algebras of objects of self over base_ring.

    INPUT:
    • base_ring – a ring


    EXAMPLES:

    sage: Monoids().Algebras(QQ)
    Category of monoid algebras over Rational Field
    sage: Groups().Algebras(QQ)
    Category of group algebras over Rational Field
    sage: AdditiveMagmas().AdditiveAssociative().Algebras(QQ)
    Category of additive semigroup algebras over Rational Field
    sage: Monoids().Algebras(Rings())
    Category of monoid algebras over Category of rings

    See also:
    • algebra_functor.AlgebrasCategory
    • CovariantFunctorialConstruction

    CartesianProducts()
    Return the full subcategory of the objects of self constructed as Cartesian products.

    See also:
    • cartesian_product.CartesianProductFunctor
    • RegressiveCovariantFunctorialConstruction

    EXAMPLES:

    sage: Sets().CartesianProducts()
    Category of Cartesian products of sets
    sage: Semigroups().CartesianProducts()
    Category of Cartesian products of semigroups
    sage: EuclideanDomains().CartesianProducts()
    Category of Cartesian products of commutative rings

    Enumerated()
    Return the full subcategory of the enumerated objects of self.

    An enumerated object can be iterated to get its elements.

    EXAMPLES:
Facade()

Return the full subcategory of the facade objects of self.

What is a facade set?

Recall that, in Sage, sets are modelled by parents, and their elements know which distinguished set they belong to. For example, the ring of integers $\mathbb{Z}$ is modelled by the parent $\mathbb{Z}$, and integers know that they belong to this set:

```
sage: ZZ
Integer Ring
sage: 42.parent()
Integer Ring
```

Sometimes, it is convenient to represent the elements of a parent $P$ by elements of some other parent. For example, the elements of the set of prime numbers are represented by plain integers:

```
sage: Primes()
Set of all prime numbers: 2, 3, 5, 7, ...
sage: p = Primes().an_element(); p
43
sage: p.parent()
Integer Ring
```

In this case, $P$ is called a facade set.

This feature is advertised through the category of $P$:

```
sage: Primes().category()
Category of facade infinite enumerated sets
sage: Sets().Facade()
Category of facade sets
```

Typical use cases include modeling a subset of an existing parent:

```
sage: Set([4,6,9]) # random
{4, 6, 9}
sage: Sets().Facade().example()
An example of facade set: the monoid of positive integers
```

or the union of several parents:

```
sage: Sets().Facade().example("union")
An example of a facade set: the integers completed by +-infinity
```

or endowing an existing parent with more (or less!) structure:
Let us investigate in detail a close variant of this last example: let $P$ be set of divisors of 12 partially ordered by divisibility. There are two options for representing its elements:

1. as plain integers:

```python
sage: P = Poset((divisors(12), attrcall("divides")), facade=True)
```

2. as integers, modified to be aware that their parent is $P$:

```python
sage: Q = Poset((divisors(12), attrcall("divides")), facade=False)
```

The advantage of option 1. is that one needs not do conversions back and forth between $P$ and $\mathbb{Z}$. The disadvantage is that this introduces an ambiguity when writing $2 < 3$: does this compare 2 and 3 w.r.t. the natural order on integers or w.r.t. divisibility?:

```python
sage: 2 < 3
True
```

To raise this ambiguity, one needs to explicitly specify the underlying poset as in $2 <_P 3$:

```python
sage: P = Posets().example("facade")
sage: P.lt(2,3)
False
```

On the other hand, with option 2. and once constructed, the elements know unambiguously how to compare themselves:

```python
sage: Q(2) < Q(3)
False
sage: Q(2) < Q(6)
True
```

Beware that $P(2)$ is still the integer 2. Therefore $P(2) < P(3)$ still compares 2 and 3 as integers!:

```python
sage: P(2) < P(3)
True
```

In short $P$ being a facade parent is one of the programmatic counterparts (with e.g. coercions) of the usual mathematical idiom: “for ease of notation, we identify an element of $P$ with the corresponding integer”. Too many identifications lead to confusion; the lack thereof leads to heavy, if not obfuscated, notations. Finding the right balance is an art, and even though there are common guidelines, it is ultimately up to the writer to choose which identifications to do. This is no different in code.

See also:

The following examples illustrate various ways to implement subsets like the set of prime numbers; look at their code for details:

```python
sage: Sets().example("facade")
Set of prime numbers (facade implementation)
sage: Sets().example("inherits")
Set of prime numbers
sage: Sets().example("wrapper")
Set of prime numbers (wrapper implementation)
```
Specifications

A parent which is a facade must either:
• call Parent.__init__() using the facade parameter to specify a parent, or tuple thereof.
• overload the method facade_for().

Note: The concept of facade parents was originally introduced in the computer algebra system Mu-
PAD.

Finite()
Return the full subcategory of the finite objects of self.

EXAMPLES:

```
sage: Sets().Finite()
Category of finite sets
sage: Rings().Finite()
Category of finite rings
```

Infinite()
Return the full subcategory of the infinite objects of self.

EXAMPLES:

```
sage: Sets().Infinite()
Category of infinite sets
sage: Rings().Infinite()
Category of infinite rings
```

IsomorphicObjects()
Return the full subcategory of the objects of self constructed by isomorphism.

Given a concrete category As() (i.e. a subcategory of Sets()). As().IsomorphicObjects() returns the category of objects of As() endowed with a distinguished description as the image of some other object of As() by an isomorphism in this category.

See Subquotients() for background.

EXAMPLES:

In the following example, A is defined as the image by \( x \mapsto x^2 \) of the finite set \( B = \{1, 2, 3\} \):

```
sage: A = FiniteEnumeratedSets().IsomorphicObjects().example(); A
The image by some isomorphism of An example of a finite enumerated set: {1, 2, 3}
```

Since \( B \) is a finite enumerated set, so is \( A \):

```
sage: A in FiniteEnumeratedSets()
True
sage: A.cardinality()
3
sage: A.list()
[1, 4, 9]
```

The isomorphism from \( B \) to \( A \) is available as:
and its inverse as:

```python
sage: A.lift(9)
3
```

It often is natural to declare those morphisms as coercions so that one can do \( A(b) \) and \( B(a) \) to go back and forth between \( A \) and \( B \) (TODO: refer to a category example where the maps are declared as a coercion). This is not done by default. Indeed, in many cases one only wants to transport part of the structure of \( B \) to \( A \). Assume for example, that one wants to construct the set of integers \( B = \mathbb{Z} \), endowed with \( \max \) as addition, and + as multiplication instead of the usual + and \( \ast \). One can construct \( A \) as isomorphic to \( B \) as an infinite enumerated set. However \( A \) is not isomorphic to \( B \) as a ring; for example, for \( a \in A \) and \( a \in B \), the expressions \( a + A(b) \) and \( B(a) + b \) give completely different results; hence we would not want the expression \( a + b \) to be implicitly resolved to any one of above two, as the coercion mechanism would do.

Coercions also cannot be used with facade parents (see \texttt{Sets.Facade}) like in the example above.

We now look at a category of isomorphic objects:

```python
sage: C = Sets().IsomorphicObjects(); C
Category of isomorphic objects of sets
sage: C.super_categories()
[Category of subobjects of sets, Category of quotients of sets]

sage: C.all_super_categories()
[Category of isomorphic objects of sets, Category of subobjects of sets, Category of quotients of sets, Category of subquotients of sets, Category of sets, Category of sets with partial maps, Category of objects]
```

Unless something specific about isomorphic objects is implemented for this category, one actually get an optimized super category:

```python
sage: C = Semigroups().IsomorphicObjects(); C
Join of Category of quotients of semigroups and Category of isomorphic objects of sets
```

See also:

- \texttt{Subquotients()} for background
- \texttt{isomorphic_objects.IsomorphicObjectsCategory}
- \texttt{RegressiveCovariantFunctorialConstruction}

\textbf{Metric()}

Return the subcategory of the metric objects of \texttt{self}.

\textbf{Quotients()}

Return the full subcategory of the objects of \texttt{self} constructed as quotients.
Given a concrete category \( \text{As()} \) (i.e. a subcategory of \( \text{Sets()} \)), \( \text{As().Quotients()} \) returns the category of objects of \( \text{As()} \) endowed with a distinguished description as quotient (in fact homomorphic image) of some other object of \( \text{As()} \).

Implementing an object of \( \text{As().Quotients()} \) is done in the same way as for \( \text{As()} \). \( \text{Subquotients()} \); namely by providing an ambient space and a lift and a retract map. See \( \text{Subquotients()} \) for detailed instructions.

See also:

- \( \text{Subquotients()} \) for background
- \( \text{quotients.QuotientsCategory} \)
- \( \text{RegressiveCovariantFunctorialConstruction} \)

EXAMPLES:

```
sage: C = Semigroups().Quotients(); C
Category of quotients of semigroups
sage: C.super_categories()
[Category of subquotients of semigroups, Category of quotients of sets]
sage: C.all_super_categories()
[Category of quotients of semigroups,
 Category of subquotients of semigroups,
 Category of semigroups,
 Category of subquotients of magmas,
 Category of magmas,
 Category of quotients of sets,
 Category of subquotients of sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]
```

The caller is responsible for checking that the given category admits a well defined category of quotients:

```
sage: EuclideanDomains().Quotients()
Join of Category of euclidean domains
 and Category of subquotients of monoids
 and Category of quotients of semigroups
```

\( \text{Subobjects()} \)

Return the full subcategory of the objects of \( \text{self} \) constructed as subobjects.

Given a concrete category \( \text{As()} \) (i.e. a subcategory of \( \text{Sets()} \)), \( \text{As().Subobjects()} \) returns the category of objects of \( \text{As()} \) endowed with a distinguished embedding into some other object of \( \text{As()} \).

Implementing an object of \( \text{As().Subobjects()} \) is done in the same way as for \( \text{As()} \). \( \text{Subquotients()} \); namely by providing an ambient space and a lift and a retract map. In the case of a trivial embedding, the two maps will typically be identity maps that just change the parent of their argument. See \( \text{Subquotients()} \) for detailed instructions.

See also:

- \( \text{Subquotients()} \) for background
- \( \text{subobjects.SubobjectsCategory} \)
- \( \text{RegressiveCovariantFunctorialConstruction} \)

EXAMPLES:
sage: C = Sets().Subobjects(); C
Category of subobjects of sets

sage: C.super_categories()
[Category of subquotients of sets]

sage: C.all_super_categories()
[Category of subobjects of sets,
 Category of subquotients of sets,
 Category of sets,
 Category of sets with partial maps,
 Category of objects]

Unless something specific about subobjects is implemented for this category, one actually gets an
optimized super category:

sage: C = Semigroups().Subobjects(); C
Join of Category of subquotients of semigroups
 and Category of subobjects of sets

The caller is responsible for checking that the given category admits a well defined category of sub-
objects.

Subquotients()

Return the full subcategory of the objects of self constructed as subquotients.

Given a concrete category self == As() (i.e. a subcategory of Sets()), As().Subquotients() returns the category of objects of As() endowed with a distinguished description as subquotient of some other object of As().

EXAMPLES:

sage: Monoids().Subquotients()
Category of subquotients of monoids

A parent $A$ in As() is further in As().Subquotients() if there is a distinguished parent $B$ in As(),
called the ambient set, a subobject $B'$ of $B$, and a pair of maps:

$$l: A \to B' \text{ and } r: B' \to A$$

called respectively the lifting map and retract map such that $r \circ l$ is the identity of $A$ and $r$ is a morphism in As().

Todo: Draw the typical commutative diagram.

It follows that, for each operation $op$ of the category, we have some property like:

$$op_A(e) = r(op_B(l(e))), \text{ for all } e \in A$$

This allows for implementing the operations on $A$ from those on $B$.

The two most common use cases are:

- **homomorphic images** (or quotients), when $B' = B$, $r$ is an homomorphism from $B$ to $A$ (typ-
ically a canonical quotient map), and $l$ a section of it (not necessarily a homomorphism); see

Quotients():
• subobjects (up to an isomorphism), when \( l \) is an embedding from \( A \) into \( B \); in this case, \( B' \) is typically isomorphic to \( A \) through the inverse isomorphisms \( r \) and \( l \); see \texttt{Subobjects()};

\[ \]

Note:
\begin{itemize}
    \item The usual definition of “subquotient” (\textit{Wikipedia article Subquotient}) does not involve the lifting map \( l \). This map is required in Sage’s context to make the definition constructive. It is only used in computations and does not affect their results. This is relatively harmless since the category is a concrete category (i.e., its objects are sets and its morphisms are set maps).
    \item In mathematics, especially in the context of quotients, the retract map \( r \) is often referred to as a projection map instead.
    \item Since \( B' \) is not specified explicitly, it is possible to abuse the framework with situations where \( B' \) is not quite a subobject and \( r \) not quite a morphism, as long as the lifting and retract maps can be used as above to compute all the operations in \( A \). Use at your own risk!
\end{itemize}

Assumptions:
\begin{itemize}
    \item For any category \( As() \), \( As().Subquotients() \) is a subcategory of \( As() \).
        Example: a subquotient of a group is a group (e.g., a left or right quotient of a group by a non-normal subgroup is not in this category).
    \item This construction is covariant: if \( As() \) is a subcategory of \( Bs() \), then \( As().Subquotients() \) is a subcategory of \( Bs().Subquotients() \).
        Example: if \( A \) is a subquotient of \( B \) in the category of groups, then it is also a subquotient of \( B \) in the category of monoids.
    \item If the user (or a program) calls \( As().Subquotients() \), then it is assumed that subquotients are well defined in this category. This is not checked, and probably never will be. Note that, if a category \( As() \) does not specify anything about its subquotients, then its subquotient category looks like this:
\end{itemize}

\texttt{[sage: EuclideanDomains().Subquotients()]}  
Join of Category of euclidean domains  
   and Category of subquotients of monoids

Interface: the ambient set \( B \) of \( A \) is given by \( A.ambient() \). The subset \( B' \) needs not be specified, so the retract map is handled as a partial map from \( B \) to \( A \).

The lifting and retract map are implemented respectively as methods \( A.lift(a) \) and \( A.retract(b) \). As a shorthand for the former, one can use alternatively \( a.lift() \):

\texttt{[sage: S = Semigroups().Subquotients().example(); S]}  
An example of a (sub)quotient semigroup: a quotient of the left zero semigroup
\texttt{[sage: S.ambient()]}  
An example of a semigroup: the left zero semigroup
\texttt{[sage: S(3).lift().parent()]}  
An example of a semigroup: the left zero semigroup
\texttt{[sage: S(3) * S(1) == S.retract(S(3).lift() * S(1).lift())]}  
True

See \texttt{S?} for more.

\textbf{Todo:} use a more interesting example, like \( \mathbb{Z}/n\mathbb{Z} \).

\textbf{See also:}
• Quotients(), Subobjects(), IsomorphicObjects()
• subquotients.SubquotientsCategory
• RegressiveCovariantFunctorialConstruction

Topological()
Return the subcategory of the topological objects of self.

class Subobjects(category, *args)
    Bases: sage.categories.subobjects.SubobjectsCategory
A category for subobjects of sets.
See also:
Sets().Subobjects()

EXAMPLES:

sage: Sets().Subobjects()
Category of subobjects of sets
sage: Sets().Subobjects().all_super_categories()

class ParentMethods
    Bases: object

class Subquotients(category, *args)
    Bases: sage.categories.subquotients.SubquotientsCategory
A category for subquotients of sets.
See also:
Sets().Subquotients()

EXAMPLES:

sage: Sets().Subquotients()
Category of subquotients of sets
sage: Sets().Subquotients().all_super_categories()

class ElementMethods
    Bases: object

    lift()
    Lift self to the ambient space for its parent.

    EXAMPLES:

    sage: S = Semigroups().Subquotients().example()
sage: s = S.an_element()
sage: s, s.parent()
(42, An example of a (sub)quotient semigroup: a quotient of the left → zero semigroup)
sage: S.lift(s), S.lift(s).parent()
(42, An example of a semigroup: the left zero semigroup)
sage: s.lift(), s.lift().parent()
(42, An example of a semigroup: the left zero semigroup)

class ParentMethods
Bases: object

ambient()
Return the ambient space for self.

EXAMPLES:

sage: Semigroups().Subquotients().example().ambient()
An example of a semigroup: the left zero semigroup

See also:

Sets.SubcategoryMethods.Subquotients() for the specifications and lift() and retract().

lift(x)
Lift x to the ambient space for self.

INPUT:
• x – an element of self

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: s = S.an_element()
sage: s, s.parent()
(42, An example of a (sub)quotient semigroup: a quotient of the left zero semigroup)
sage: S.lift(s), S.lift(s).parent()
(42, An example of a semigroup: the left zero semigroup)
sage: s.lift(), s.lift().parent()
(42, An example of a semigroup: the left zero semigroup)

See also:


retract(x)
Retract x to self.

INPUT:
• x – an element of the ambient space for self

See also:


EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: s = S.ambient().an_element()
Topological

alias of sage.categories.topological_spaces.TopologicalSpaces
class WithRealizations(category, *args)
    Bases: sage.categories.with_realizations.WithRealizationsCategory
class ParentMethods
    Bases: object
class Realizations(parent_with_realization)
    Bases: sage.categories.realizations.Category_realization_of_parent
    super_categories()
    EXAMPLES:
    sage: A = Sets().WithRealizations().example(); A
    The subset algebra of {1, 2, 3} over Rational Field
    sage: A.Realizations().super_categories()
    [Category of realizations of sets]

a_realization()
    Return a realization of self.
    EXAMPLES:
    sage: A = Sets().WithRealizations().example(); A
    The subset algebra of {1, 2, 3} over Rational Field
    sage: A.a_realization()
    The subset algebra of {1, 2, 3} over Rational Field in the Fundamental→
    basis

c facade_for()
    Return the parents self is a facade for, that is the realizations of self
    EXAMPLES:
    sage: A = Sets().WithRealizations().example(); A
    The subset algebra of {1, 2, 3} over Rational Field
    sage: A.facade_for()
    [The subset algebra of {1, 2, 3} over Rational Field in the Fundamental→
    basis, The subset algebra of {1, 2, 3} over Rational Field in the In→
    basis, The subset algebra of {1, 2, 3} over Rational Field in the Out→
    basis]
    sage: A = Sets().WithRealizations().example(); A
    The subset algebra of {1, 2, 3} over Rational Field
    sage: f = A.F().an_element(); f
    F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]
    sage: i = A.In().an_element(); i
    (continues on next page)
In[] + 2*In[1] + 3*In[2] + In[1, 2]
sage: o = A.Out().an_element(); o
sage: f in A, i in A, o in A
(True, True, True)

\texttt{inject\_shorthands}(\texttt{shorthands=None, verbose=True})
Import standard shorthands into the global namespace.

INPUT:
\begin{itemize}
  \item shorthands – a list (or iterable) of strings (default: \texttt{self._shorthands}) or "all" (for \texttt{self._shorthands\_all})
  \item verbose – boolean (default True); whether to print the defined shorthands
\end{itemize}

EXAMPLES:
When computing with a set with multiple realizations, like \texttt{SymmetricFunctions} or \texttt{SubsetAlgebra}, it is convenient to define shorthands for the various realizations, but cumbersome to do it by hand:

\begin{verbatim}
sage: S = SymmetricFunctions(ZZ); S
Symmetric Functions over Integer Ring
sage: s = S.s(); s
Symmetric Functions over Integer Ring in the Schur basis
sage: e = S.e(); e
Symmetric Functions over Integer Ring in the elementary basis
sage: p = S.p(); p
Symmetric Functions over Integer Ring in the powersum basis
sage: s
Symmetric Functions over Integer Ring in the Schur basis
\end{verbatim}

This method automates the process:

\begin{verbatim}
sage: S.inject\_shorthands()
Defining e as shorthand for Symmetric Functions over Integer Ring in the \texttt{elementary} basis
Defining f as shorthand for Symmetric Functions over Integer Ring in the \texttt{forgotten} basis
Defining h as shorthand for Symmetric Functions over Integer Ring in the \texttt{homogeneous} basis
Defining m as shorthand for Symmetric Functions over Integer Ring in the \texttt{monomial} basis
Defining p as shorthand for Symmetric Functions over Integer Ring in the \texttt{powersum} basis
Defining s as shorthand for Symmetric Functions over Integer Ring in the \texttt{Schur} basis
\end{verbatim}

\begin{verbatim}
s[1] - 2*s[1, 1, 1] + s[1, 1, 1, 1] + s[2, 1] + 2*s[2, 1, 1] + s[2, 2] +
2^2*s[3] + s[3, 1]
sage: e
Symmetric Functions over Integer Ring in the elementary basis
sage: p
Symmetric Functions over Integer Ring in the powersum basis
sage: s
Symmetric Functions over Integer Ring in the Schur basis
\end{verbatim}

Sometimes, like for symmetric functions, one can request for all shorthands to be defined, including less common ones:
sage: S.inject_shorthands("all")
Defining e as shorthand for Symmetric Functions over Integer Ring in the
  → elementary basis
Defining f as shorthand for Symmetric Functions over Integer Ring in the
  → forgotten basis
Defining h as shorthand for Symmetric Functions over Integer Ring in the
  → homogeneous basis
Defining ht as shorthand for Symmetric Functions over Integer Ring in
  → the induced trivial symmetric group character basis
Defining m as shorthand for Symmetric Functions over Integer Ring in the
  → monomial basis
Defining o as shorthand for Symmetric Functions over Integer Ring in the
  → orthogonal basis
Defining p as shorthand for Symmetric Functions over Integer Ring in the
  → powersum basis
Defining s as shorthand for Symmetric Functions over Integer Ring in the
  → Schur basis
Defining sp as shorthand for Symmetric Functions over Integer Ring in
  → the symplectic basis
Defining st as shorthand for Symmetric Functions over Integer Ring in
  → the irreducible symmetric group character basis
Defining w as shorthand for Symmetric Functions over Integer Ring in the
  → Witt basis

The messages can be silenced by setting verbose=False:

sage: Q = QuasiSymmetricFunctions(ZZ)
sage: Q.inject_shorthands(verbose=False)
5*F[1, 1, 1, 1] - 5*F[1, 1, 2] - 3*F[1, 2, 1] + 6*F[1, 3] +
sage: F
Quasisymmetric functions over the Integer Ring in the
  Fundamental basis
sage: M
Quasisymmetric functions over the Integer Ring in the
  Monomial basis

One can also just import a subset of the shorthands:

sage: SQ = SymmetricFunctions(QQ)
sage: SQ.inject_shorthands(['p', 's'], verbose=False)
sage: p
Symmetric Functions over Rational Field in the powersum basis
sage: s
Symmetric Functions over Rational Field in the Schur basis

Note that e is left unchanged:

sage: e
Symmetric Functions over Integer Ring in the elementary basis
realizations()
  Return all the realizations of self that self is aware of.

EXAMPLES:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.realizations()
[The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis, The subset algebra of {1, 2, 3} over Rational Field in the In basis, The subset algebra of {1, 2, 3} over Rational Field in the Out basis]
```

Note: Constructing a parent P in the category A.Realizations() automatically adds P to this list by calling A._register_realization(A)

example(base_ring=None, set=None)
  Return an example of set with multiple realizations, as per Category.example().

EXAMPLES:

```
sage: Sets().WithRealizations().example()
The subset algebra of {1, 2, 3} over Rational Field
sage: Sets().WithRealizations().example(ZZ, Set([1,2]))
The subset algebra of {1, 2} over Integer Ring
```

eextra_super_categories()
  A set with multiple realizations is a facade parent.

EXAMPLES:

```
sage: Sets().WithRealizations().extra_super_categories()
[Category of facade sets]
sage: Sets().WithRealizations().super_categories()
[Category of facade sets]
```

example(choice=None)
  Return examples of objects of Sets(), as per Category.example().

EXAMPLES:

```
sage: Sets().example()
Set of prime numbers (basic implementation)
sage: Sets().example("inherits")
Set of prime numbers
sage: Sets().example("facade")
Set of prime numbers (facade implementation)
sage: Sets().example("wrapper")
Set of prime numbers (wrapper implementation)
```
super_categories()
We include SetsWithPartialMaps between Sets and Objects so that we can define morphisms between sets
that are only partially defined. This is also to have the Homset constructor not complain that SetsWithPar-
tialMaps is not a supercategory of Fields, for example.

EXAMPLES:

```
sage: Sets().super_categories()
[Category of sets with partial maps]
```

4.144 Sets With a Grading

class sage.categories.sets_with_grading.SetsWithGrading(s=None)
Bases: sage.categories.category.Category
The category of sets with a grading.

A set with a grading is a set $S$ equipped with a grading by some other set $I$ (by default the set $\mathbb{N}$ of the non-
negative integers):

$$S = \bigcup_{i \in I} S_i$$

where the graded components $S_i$ are (usually finite) sets. The grading function maps each element $s$ of $S$ to its
grade $i$, so that $s \in S_i$.

From implementation point of view, if the graded set is enumerated then each graded component should be
enumerated (there is a check in the method _test_graded_components()). The contrary needs not be true.

To implement this category, a parent must either implement graded_component() or subset(). If only
subset() is implemented, the first argument must be the grading for compatibility with graded_component().
Additionally either the parent must implement grading() or its elements must implement a method grade().
See the example sage.categories.examples.sets_with_grading.NonNegativeIntegers.

Finally, if the graded set is enumerated (see EnumeratedSets) then each graded component should be enumerated.
The contrary needs not be true.

EXAMPLES:
A typical example of a set with a grading is the set of non-negative integers graded by themselves:
sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.category()
Category of facade infinite sets with grading
sage: N.grading_set()
Non negative integers

The \textit{grading function} is given by \texttt{N.grading}:

sage: N.grading(4)
4

The graded component \(N_i\) is the set with one element \(i\):

sage: N.graded_component(grade=5)
\{5\}
sage: N.graded_component(grade=42)
\{42\}

Here are some information about this category:

sage: SetsWithGrading()
Category of sets with grading
sage: SetsWithGrading().super_categories()
[Category of sets]
sage: SetsWithGrading().all_super_categories()
[Category of sets with grading, 
Category of sets, 
Category of sets with partial maps, 
Category of objects]

Todo:

- This should be moved to \texttt{Sets().WithGrading}.
- Should the grading set be a parameter for this category?
- Does the enumeration need to be compatible with the grading? Be careful that the fact that graded components are allowed to be finite or infinite make the answer complicated.

class ParentMethods
    Bases: object

generating_series()
    Default implementation for generating series.
    OUTPUT:
    A series, indexed by the grading set.
    EXAMPLES:

sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.generating_series()
1/(-z + 1)
**graded_component**(grade)

Return the graded component of self with grade grade.

The default implementation just calls the method `subset()` with the first argument grade.

EXAMPLES:

```python
sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.graded_component(3)
{3}
```

**grading**(elt)

Return the grading of the element elt of self.

This default implementation calls elt.grade().

EXAMPLES:

```python
sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.grading(4)
4
```

**grading_set**()

Return the set self is graded by. By default, this is the set of non-negative integers.

EXAMPLES:

```python
sage: SetsWithGrading().example().grading_set()
Non negative integers
```

**subset**(args, **options)

Return the subset of self described by the given parameters.

See also:

- `graded_component()`

EXAMPLES:

```python
sage: W = WeightedIntegerVectors([3,2,1]); W
Integer vectors weighted by [3, 2, 1]
sage: W.subset(4)
Integer vectors of 4 weighted by [3, 2, 1]
```

**super_categories**()

EXAMPLES:

```python
sage: SetsWithGrading().super_categories()
[Category of sets]
```
### 4.145 SetsWithPartialMaps

```python
class sage.categories.sets_with_partial_maps.SetsWithPartialMaps(s=None):
 Bases: sage.categories.category_singleton.Category_singleton

 The category whose objects are sets and whose morphisms are maps that are allowed to raise a ValueError on some inputs.

 This category is equivalent to the category of pointed sets, via the equivalence sending an object X to X union \{error\}, a morphism f to the morphism of pointed sets that sends x to $f(x)$ if f does not raise an error on x, or to error if it does.

 EXAMPLES:
 >>> sage: SetsWithPartialMaps()
 Category of sets with partial maps
 >>> sage: SetsWithPartialMaps().super_categories()
 [Category of objects]
```

### 4.146 Shephard Groups

```python
class sage.categories.shephard_groups.ShephardGroups(s=None):
 Bases: sage.categories.category_singleton.Category_singleton

 The category of Shephard groups.

 EXAMPLES:
 >>> sage: from sage.categories.shephard_groups import ShephardGroups
 >>> sage: C = ShephardGroups(); C
 Category of shephard groups
 >>> sage: from sage.categories.shephard_groups import ShephardGroups
 >>> sage: ShephardGroups().super_categories()
 [Category of finite generalized coxeter groups]
```
4.147 Simplicial Complexes

class `sage.categories.simplicial_complexes.SimplicialComplexes`(s=None)
Bases: `sage.categories.category_singleton.Category_singleton`

The category of abstract simplicial complexes.

An abstract simplicial complex $A$ is a collection of sets $X$ such that:

- $\emptyset \in A$,
- if $X \subseteq Y \in A$, then $X \in A$.

Todo: Implement the category of simplicial complexes considered as CW complexes and rename this to the category of AbstractSimplicialComplexes with appropriate functors.

EXAMPLES:

```
sage: from sage.categories.simplicial_complexes import SimplicialComplexes
sage: C = SimplicialComplexes(); C
Category of simplicial complexes
```

**class Connected**(`base_category`)
Bases: `sage.categories.category_with_axiom.CategoryWithAxiom`

The category of connected simplicial complexes.

EXAMPLES:

```
sage: from sage.categories.simplicial_complexes import SimplicialComplexes
sage: C = SimplicialComplexes().Connected()
sage: TestSuite(C).run()
```

**class Finite**(`base_category`)
Bases: `sage.categories.category_with_axiom.CategoryWithAxiom`

Category of finite simplicial complexes.

**class ParentMethods**
Bases: `object`

**dimension**()

Return the dimension of self.

EXAMPLES:

```
sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]])
sage: S.dimension()
2
```

**class ParentMethods**
Bases: `object`

**faces**()

Return the faces of self.

EXAMPLES:
```python
sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]])
sage: S.faces()
{-1: {()},
 0: {(1,), (2,), (3,), (4,), (5,)},
 1: {(1, 2), (1, 3), (1, 4), (2, 5), (3, 4), (4, 5)},
 2: {(1, 3, 4)}}
```

**facets()**

Return the facets of self.

**EXAMPLES:**

```python
tsage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]])
tsage: sorted(S.facets())
[(1, 2), (1, 3, 4), (2, 5), (4, 5)]
```

```python
class SubcategoryMethods
 Bases: object

 Connected()
 Return the full subcategory of the connected objects of self.

 EXAMPLES:

 sage: from sage.categories.simplicial_complexes import SimplicialComplexes
tage: SimplicialComplexes().Connected()
Category of connected simplicial complexes
```

```python
class SubcategoryMethods
 Bases: object

 Connected()
 Return the full subcategory of the connected objects of self.

 EXAMPLES:

 sage: from sage.categories.simplicial_complexes import SimplicialComplexes
tage: SimplicialComplexes().Connected()
Category of connected simplicial complexes
```

```python
class SubcategoryMethods
 Bases: object

 Connected()
 Return the full subcategory of the connected objects of self.

 EXAMPLES:

 sage: from sage.categories.simplicial_complexes import SimplicialComplexes
tage: SimplicialComplexes().Connected()
Category of connected simplicial complexes
```

```python
class SubcategoryMethods
 Bases: object

 Connected()
 Return the full subcategory of the connected objects of self.

 EXAMPLES:

 sage: from sage.categories.simplicial_complexes import SimplicialComplexes
tage: SimplicialComplexes().Connected()
Category of connected simplicial complexes
```

**super_categories()**

Return the super categories of self.

**EXAMPLES:**

```python
tsage: from sage.categories.simplicial_complexes import SimplicialComplexes
tage: SimplicialComplexes().super_categories()
[Category of sets]
```

### 4.148 Simplicial Sets

```python
class sage.categories.simplicial_sets.SimplicialSets(s=None)
 Bases: sage.categories.category_singleton.Category_singleton

 The category of simplicial sets.

 A simplicial set X is a collection of sets X_i, indexed by the non-negative integers, together with maps
 $$d_i : X_n \to X_{n-1}, \quad 0 \leq i \leq n \quad \text{(face maps)}$$
 $$s_j : X_n \to X_{n+1}, \quad 0 \leq j \leq n \quad \text{(degeneracy maps)}$$

 satisfying the simplicial identities:
 $$d_id_j = d_{j-1}d_i \quad \text{if } i < j$$
 $$d_is_j = s_{j-1}d_i \quad \text{if } i < j$$
 $$d_js_j = 1 = d_{j+1}s_j$$
 $$d_is_j = s_jd_{i-1} \quad \text{if } i > j + 1$$
 $$s_is_j = s_{j+1}s_i \quad \text{if } i \leq j$$
```
Morphisms are sequences of maps \( f_i : X_i \to Y_i \) which commute with the face and degeneracy maps.

**EXAMPLES:**

```python
sage: from sage.categories.simplicial_sets import SimplicialSets
sage: C = SimplicialSets(); C
Category of simplicial sets
```

```python
class Finite(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom

 Category of finite simplicial sets.

The objects are simplicial sets with finitely many non-degenerate simplices.
```

```python
class Homsets(category, *args):
 Bases: sage.categories.homsets.HomsetsCategory
```

```python
class Endset(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom
```

```python
class ParentMethods
 Bases: object

 one()
 Return the identity morphism in \(\text{Hom}(S, S) \).

 EXAMPLES:

    ```python
    sage: T = simplicial_sets.Torus()
sage: Hom(T, T).identity()
    Simplicial set endomorphism of Torus
    Defn: Identity map
    ```
```

```python
class ParentMethods
 Bases: object

 is_finite()
 Return True if this simplicial set is finite, i.e., has a finite number of nondegenerate simplices.

 EXAMPLES:

    ```python
    sage: simplicial_sets.Torus().is_finite()
    True
    sage: C5 = groups.misc.MultiplicativeAbelian([5])
sage: simplicial_sets.ClassifyingSpace(C5).is_finite()
    False
    ```
```

```python
class ParentMethods
 Bases: object

 is_pointed()
 Return True if this simplicial set is pointed, i.e., has a base point.

 EXAMPLES:

    ```python
    sage: from sage.topology.simplicial_set import AbstractSimplex,
    ...  SimplicialSet
    sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: e = AbstractSimplex(1)
sage: X = SimplicialSet({e: (v, w)})
    ```
```
sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: X.is_pointed()
False
sage: Y.is_pointed()
True

**set_base_point**(point)

Return a copy of this simplicial set in which the base point is set to point.

INPUT:

• point – a 0-simplex in this simplicial set

EXAMPLES:

```python
sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v_0')
sage: w = AbstractSimplex(0, name='w_0')
sage: e = AbstractSimplex(1)
sage: X = SimplicialSet({e: (v, w)})
sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: Y.base_point()
w_0
sage: X_star = X.set_base_point(w)
sage: X_star.base_point()
w_0
sage: Y_star = Y.set_base_point(v)
sage: Y_star.base_point()
v_0
```

class **Pointed**(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom`

class **Finite**(base_category)

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom`

class **ParentMethods**

Bases: `object`

**fat_wedge**(n)

Return the n-th fat wedge of this pointed simplicial set.

This is the subcomplex of the n-fold product \(X^n\) consisting of those points in which at least one factor is the base point. Thus when \(n = 2\), this is the wedge of the simplicial set with itself, but when \(n\) is larger, the fat wedge is larger than the n-fold wedge.

EXAMPLES:

```python
sage: S1 = simplicial_sets.Sphere(1)
sage: S1.fat_wedge(0)
Point
sage: S1.fat_wedge(1)
S^1
sage: S1.fat_wedge(2).fundamental_group()
Finitely presented group < e0, e1 | >
sage: S1.fat_wedge(4).homology()
{0: 0, 1: Z x Z x Z x Z, 2: Z^6, 3: Z x Z x Z x Z x Z}
```

732 Chapter 4. Individual Categories
smash_product(*others)
Return the smash product of this simplicial set with others.

INPUT:
• others – one or several simplicial sets

EXAMPLES:

```python
sage: S1 = simplicial_sets.Sphere(1)
sage: RP2 = simplicial_sets.RealProjectiveSpace(2)
sage: X = S1.smash_product(RP2)
sage: X.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
 1: Vector space of dimension 0 over Finite Field of size 2,
 2: Vector space of dimension 1 over Finite Field of size 2,
 3: Vector space of dimension 1 over Finite Field of size 2}
```

unset_base_point()
Return a copy of this simplicial set in which the base point has been forgotten.

EXAMPLES:

```python
sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v_0')
sage: w = AbstractSimplex(0, name='w_0')
sage: e = AbstractSimplex(1)
sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: Y.is_pointed()
True
sage: Y.base_point()
w_0
sage: Z = Y.unset_base_point()
sage: Z.is_pointed()
False
```

class ParentMethods
Bases: object

base_point()
Return this simplicial set's base point

EXAMPLES:

```python
sage: from sage.topology.simplicial_set import AbstractSimplex, SimplicialSet
sage: v = AbstractSimplex(0, name='v')
sage: e = AbstractSimplex(1)
sage: S1 = SimplicialSet({e: (v, v)}, base_point=v)
sage: S1.is_pointed()
True
```
**base_point_map** *(domain=None)*

Return a map from a one-point space to this one, with image the base point.

This raises an error if this simplicial set does not have a base point.

**INPUT:**

- domain – optional, default None. Use this to specify a particular one-point space as the domain.

  The default behavior is to use the `sage.topology.simplicial_set.Point()` function to use a standard one-point space.

**EXAMPLES:**

```python
sage: T = simplicial_sets.Torus()
sage: f = T.base_point_map(); f
Simplicial set morphism:
 From: Point
 To: Torus
 Defn: Constant map at (v_0, v_0)
sage: S3 = simplicial_sets.Sphere(3)
sage: g = S3.base_point_map()
sage: f.domain() == g.domain()
True
sage: RP3 = simplicial_sets.RealProjectiveSpace(3)
sage: temp = simplicial_sets.Simplex(0)
sage: pt = temp.set_base_point(temp.n_cells(0)[0])
sage: h = RP3.base_point_map(domain=pt)
sage: f.domain() == h.domain()
False
```

**connectivity** *(max_dim=None)*

Return the connectivity of this pointed simplicial set.

**INPUT:**

- max_dim – specify a maximum dimension through which to check. This is required if this simplicial set is simply connected and not finite.

  The dimension of the first nonzero homotopy group. If simply connected, this is the same as the dimension of the first nonzero homology group.

**Warning:** See the warning for the `is_simply_connected()` method.

The connectivity of a contractible space is `+Infinity`.

**EXAMPLES:**
\begin{Verbatim}
sage: simplicial_sets.Sphere(3).connectivity()
sage: simplicial_sets.Sphere(0).connectivity()
sage: K = simplicial_sets.Simplex(4)
sage: K = K.set_base_point(K.n_cells(0)[0])
sage: K.connectivity()
\end{Verbatim}

\begin{Verbatim}
sage: X = simplicial_sets.Torus().suspension(2)
sage: X.connectivity()
sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = simplicial_sets.ClassifyingSpace(C2)
sage: BC2.connectivity()
\end{Verbatim}

\textbf{fundamental\_group}(\textit{simplify=True})

Return the fundamental group of this pointed simplicial set.

**INPUT:**

- \textit{simplify} (bool, optional True) – if False, then return a presentation of the group in terms of generators and relations. If True, the default, simplify as much as GAP is able to.

**Algorithm:** we compute the edge-path group – see Section 19 of [Kan1958] and Wikipedia article Fundamental\_group. Choose a spanning tree for the connected component of the 1-skeleton containing the base point, and then the group’s generators are given by the non-degenerate edges. There are two types of relations: \(e = 1\) if \(e\) is in the spanning tree, and for every 2-simplex, if its faces are \(e_0, e_1,\) and \(e_2\), then we impose the relation \(e_0e_1^{-1}e_2 = 1\), where we first set \(e_i = 1\) if \(e_i\) is degenerate.

**EXAMPLES:**

\begin{Verbatim}
sage: S1 = simplicial_sets.Sphere(1)
sage: eight = S1.wedge(S1)
sage: eight.fundamental_group() # free group on 2 generators
\end{Verbatim}

Finitely presented group < e0, e1 | >

The fundamental group of a disjoint union of course depends on the choice of base point:

\begin{Verbatim}
sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: X = T.disjoint_union(K)
sage: X_0 = X.set_base_point(X.n_cells(0)[0])
sage: X_0.fundamental_group().is_abelian()
\end{Verbatim}

True

\begin{Verbatim}
sage: X_1 = X.set_base_point(X.n_cells(0)[1])
sage: X_1.fundamental_group().is_abelian()
\end{Verbatim}

False

\begin{Verbatim}
sage: RP3 = simplicial_sets.RealProjectiveSpace(3)
sage: RP3.fundamental_group()
\end{Verbatim}

Finitely presented group < e | e^2 >
The sphere has a trivial fundamental group:

\begin{verbatim}
sage: S2 = simplicial_sets.Sphere(2)
sage: S2.fundamental_group()
Finitely presented group < | >
\end{verbatim}

\texttt{is\_simply\_connected()}  
Return True if this pointed simplicial set is simply connected.

\textbf{Warning:} Determining simple connectivity is not always possible, because it requires determining when a group, as given by generators and relations, is trivial. So this conceivably may give a false negative in some cases.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: T = simplicial_sets.Torus()
sage: T.is_simply_connected()
False
sage: T.suspension().is_simply_connected()
True
sage: simplicial_sets.KleinBottle().is_simply_connected()
False
sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: (S2.wedge(S3)).is_simply_connected()
True
sage: X = S2.disjoint_union(S3)
sage: X = X.set_base_point(X.n_cells(0)[0])
sage: X.is_simply_connected()
False
sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.is_simply_connected()
False
\end{verbatim}
class SubcategoryMethods
    Bases: object
    
    Pointed()
    
    A simplicial set is pointed if it has a distinguished base point.
    EXAMPLES:

    sage: from sage.categories.simplicial_sets import SimplicialSets
    sage: SimplicialSets().Pointed().Finite()
    Category of finite pointed simplicial sets
    sage: SimplicialSets().Finite().Pointed()
    Category of finite pointed simplicial sets

super_categories()
EXAMPLES:

    sage: from sage.categories.simplicial_sets import SimplicialSets
    sage: SimplicialSets().super_categories()
    [Category of sets]

4.149 Super Algebras

class sage.categories.super_algebras.SuperAlgebras(base_category)
    Bases: sage.categories.super_modules.SuperModulesCategory
    The category of super algebras.
    
    An $R$-super algebra is an $R$-super module $A$ endowed with an $R$-algebra structure satisfying
    
    $A_0 A_0 \subseteq A_0, \quad A_0 A_1 \subseteq A_1, \quad A_1 A_0 \subseteq A_1, \quad A_1 A_1 \subseteq A_0$
    
    and $1 \in A_0$.
    
    EXAMPLES:

    sage: Algebras(ZZ).Super()
    Category of super algebras over Integer Ring

class ParentMethods
    Bases: object
    
    graded_algebra()
    
    Return the associated graded algebra to self.
    
    Warning: Because a super module $M$ is naturally $\mathbb{Z}/2\mathbb{Z}$-graded, and graded modules have a natural filtration induced by the grading, if $M$ has a different filtration, then the associated graded module $\text{gr} M \neq M$. This is most apparent with super algebras, such as the differential Weyl algebra, and the multiplication may not coincide.

    tensor(*parents, **kwargs)
    
    Return the tensor product of the parents.
    
    EXAMPLES:
This also works when the other elements do not have a signed tensor product (trac ticket #31266):

```python
sage: a = SteenrodAlgebra(3).an_element()
sage: M = CombinatorialFreeModule(GF(3), ['s', 't', 'u'])
sage: s = M.basis()['s']
sage: tensor([a, s])
2*Q_1 Q_3 P(2,1) # B['s']
```

```python
class SignedTensorProducts(category, *args)
 Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

 extra_super_categories()
 EXAMPLES:

 sage: Coalgebras(QQ).Graded().SignedTensorProducts().extra_super_categories()
 [Category of graded coalgebras over Rational Field]
 sage: Coalgebras(QQ).Graded().SignedTensorProducts().super_categories()
 [Category of graded coalgebras over Rational Field]

 Meaning: a signed tensor product of coalgebras is a coalgebra
```

```python
class SubcategoryMethods
 Bases: object

 Supercommutative()
 Return the full subcategory of the supercommutative objects of self.

 A super algebra \(M \) is supercommutative if, for all homogeneous \(x, y \in M \),

 \[
 x \cdot y = (-1)^{|x||y|} y \cdot x.
 \]

 REFERENCES:
 Wikipedia article Supercommutative_algebra

 EXAMPLES:

 sage: Algebras(ZZ).Super().Supercommutative()
 Category of supercommutative algebras over Integer Ring
 sage: Algebras(ZZ).Super().WithBasis().Supercommutative()
 Category of supercommutative algebras with basis over Integer Ring

 Supercommutative
 alias of sage.categories.supercommutative_algebras.SupercommutativeAlgebras

 extra_super_categories()
 EXAMPLES:
```
4.150 Super algebras with basis

class sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis(base_category)
    Bases: sage.categories.super_modules.SuperModulesCategory

The category of super algebras with a distinguished basis

EXAMPLES:

sage: C = Algebras(ZZ).WithBasis().Super(); C
Category of super algebras with basis over Integer Ring

class ParentMethods
    Bases: object

    graded_algebra()
    Return the associated graded module to self.
    See AssociatedGradedAlgebra for the definition and the properties of this.
    See also:
    graded_algebra()

    EXAMPLES:

sage: W.<x,y> = algebras.DifferentialWeyl(QQ)
sage: W.graded_algebra()
Graded Algebra of Differential Weyl algebra of polynomials in x, y over Rational Field

class SignedTensorProducts(category, *args)
    Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

The category of super algebras with basis constructed by tensor product of super algebras with basis.

extra_super_categories()

EXAMPLES:

sage: Algebras(QQ).Super().SignedTensorProducts().extra_super_categories()
[Category of super algebras over Rational Field]
sage: Algebras(QQ).Super().SignedTensorProducts().super_categories()
[Category of signed tensor products of graded algebras over Rational Field, Category of super algebras over Rational Field]

Meaning: a signed tensor product of super algebras is a super algebra

extra_super_categories()

EXAMPLES:
4.151 Super Hopf algebras with basis

class sage.categories.super_hopf_algebras_with_basis.SuperHopfAlgebrasWithBasis(base_category)

Bases: sage.categories.super_modules.SuperModulesCategory

The category of super Hopf algebras with a distinguished basis.

EXAMPLES:

sage: C = HopfAlgebras(ZZ).WithBasis().Super(); C
Category of super hopf algebras with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of super algebras with basis over Integer Ring,
 Category of super coalgebras with basis over Integer Ring,
 Category of super hopf algebras over Integer Ring]

class ParentMethods

Bases: object

antipode()

The antipode of this Hopf algebra.

If antipode_basis() is available, this constructs the antipode morphism from self to self by extending it by linearity. Otherwise, self.antipode_by_coercion() is used, if available.

EXAMPLES:

sage: A = SteenrodAlgebra(7)
sage: a = A.an_element()
sage: a, A.antipode(a)
(6 Q_1 Q_3 P(2,1), Q_1 Q_3 P(2,1))

4.152 Super Lie Conformal Algebras

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras(base_category)

Bases: sage.categories.super_modules.SuperModulesCategory

The category of super Lie conformal algebras.

EXAMPLES:

sage: LieConformalAlgebras(AA).Super()
Category of super Lie conformal algebras over Algebraic Real Field
Notice that we can force to have a purely even super Lie conformal algebra:

```python
sage: bosondict = {('a','a'):1:{('K',0):1}}
sage: R = LieConformalAlgebra(QQ,bosondict,central_elements=('K',), super=True)
sage: [g.is_even_odd() for g in R.gens()]
[0, 0]
```

```python
class ElementMethods
 Bases: object

 is_even_odd()
 Return 0 if this element is even and 1 if it is odd.

 EXAMPLES:
 sage: R = lie_conformal_algebras.NeveuSchwarz(QQ);
 sage: R.inject_variables()
 Defining L, G, C
 sage: G.is_even_odd()
 1
```

```python
class Graded(base_category)
 Bases: sage.categories.graded_modules.GradedModulesCategory

 The category of H-graded super Lie conformal algebras.

 EXAMPLES:
 sage: LieConformalAlgebras(AA).Super().Graded()
 Category of H-graded super Lie conformal algebras over Algebraic Real Field
```

```python
class ParentMethods
 Bases: object

 example()
 An example parent in this category.

 EXAMPLES:
 sage: LieConformalAlgebras(QQ).Super().example()
 The Neveu–Schwarz super Lie conformal algebra over Rational Field
```

```python
def extra_super_categories()
 The extra super categories of self.

 EXAMPLES:
 sage: LieConformalAlgebras(QQ).Super().super_categories()
 [Category of super modules over Rational Field,
 Category of Lambda bracket algebras over Rational Field]
```
4.153 Super modules

**class** sage.categories.super_modules.SuperModules(base_category)

Bases: sage.categories.super_modules.SuperModulesCategory

The category of super modules.

An $R$-super module (where $R$ is a ring) is an $R$-module $M$ equipped with a decomposition $M = M_0 \oplus M_1$ into two $R$-submodules $M_0$ and $M_1$ (called the even part and the odd part of $M$, respectively).

Thus, an $R$-super module automatically becomes a $\mathbb{Z}/2\mathbb{Z}$-graded $R$-module, with $M_0$ being the degree-0 component and $M_1$ being the degree-1 component.

**EXAMPLES:**

```python
sage: Modules(ZZ).Super()
Category of super modules over Integer Ring
sage: Modules(ZZ).Super().super_categories()[0]
[Category of graded modules over Integer Ring]
```

The category of super modules defines the super structure which shall be preserved by morphisms:

```python
sage: Modules(ZZ).Super().additional_structure()
Category of super modules over Integer Ring
```

**class** ElementMethods

Bases: object

*is_even()*

Return if `self` is an even element.

**EXAMPLES:**

```python
sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_even() # False
sage: C.basis()[2,2].is_even() # True
```

*is_even_odd()*

Return 0 if `self` is an even element or 1 if an odd element.

**Note:** The default implementation assumes that the even/odd is determined by the parity of `degree()`.

Overwrite this method if the even/odd behavior is desired to be independent.

**EXAMPLES:**

```python
sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_even_odd() # 1
```
sage: C.basis()[2,2].is_even_odd()
0

is_odd()
Return if self is an odd element.

EXAMPLES:

sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_odd()
True
sage: C.basis()[2,2].is_odd()
False

class ParentMethods
Bases: object

extra_super_categories()
Adds VectorSpaces to the super categories of self if the base ring is a field.

EXAMPLES:

sage: Modules(QQ).Super().extra_super_categories()
[Category of vector spaces over Rational Field]
sage: Modules(ZZ).Super().extra_super_categories()
[]

This makes sure that Modules(QQ).Super() returns an instance of SuperModules and not a join category of an instance of this class and of VectorSpaces(QQ):

sage: type(Modules(QQ).Super())
<class 'sage.categories.super_modules.SuperModules_with_category'>

Todo: Get rid of this workaround once there is a more systematic approach for the alias Modules(QQ) -> VectorSpaces(QQ). Probably the latter should be a category with axiom, and covariant constructions should play well with axioms.

super_categories()
EXAMPLES:

sage: Modules(ZZ).Super().super_categories()
[Category of graded modules over Integer Ring]

Nota bene:

sage: Modules(QQ).Super()
Category of super modules over Rational Field
sage: Modules(QQ).Super().super_categories()
[Category of graded modules over Rational Field]
class sage.categories.super_modules.SuperModulesCategory(base_category)
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory,
sage.categories.category_types.Category_over_base_ring

EXAMPLES:

```python
sage: C = Algebras(QQ).Super()
sage: C
Category of super algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of graded algebras over Rational Field,
 Category of super modules over Rational Field]
sage: AlgebrasWithBasis(QQ).Super().base_ring()
Rational Field
sage: HopfAlgebrasWithBasis(QQ).Super().base_ring()
Rational Field
```

classmethod default_super_categories(category, *args)

Return the default super categories of $F_{\mathcal{C}at}(A, B, ...)$ for $A, B, ...$ parents in $\mathcal{C}at$.

INPUT:

- `cls` – the category class for the functor $F$
- `category` – a category $\mathcal{C}at$
- `*args` – further arguments for the functor

OUTPUT:

A join category.

This implements the property that subcategories constructed by the set of whitelisted axioms is a subcategory.

EXAMPLES:

```python
sage: HopfAlgebras(ZZ).WithBasis().FiniteDimensional().Super() # indirect doctest
Category of finite dimensional super hopf algebras with basis over Integer Ring
```

### 4.154 Super modules with basis

class sage.categories.super_modules_with_basis.SuperModulesWithBasis(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super modules with a distinguished basis.

An $R$-super module with a distinguished basis is an $R$-super module equipped with an $R$-module basis whose elements are homogeneous.

EXAMPLES:
sage: C = GradedModulesWithBasis(QQ); C
Category of graded vector spaces with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of filtered vector spaces with basis over Rational Field,
 Category of graded modules with basis over Rational Field,
 Category of graded vector spaces over Rational Field]
sage: C is ModulesWithBasis(QQ).Graded()
True

class ElementMethods
    Bases: object

    even_component()
        Return the even component of self.

        EXAMPLES:

        sage: Q = QuadraticForm(QQ, 2, [1,2,3])
        sage: C.<x,y> = CliffordAlgebra(Q)
        sage: a = x*y + x - 3*y + 4
        sage: a.even_component()
x*y + 4

    is_even_odd()
        Return 0 if self is an even element and 1 if self is an odd element.

        EXAMPLES:

        sage: Q = QuadraticForm(QQ, 2, [1,2,3])
        sage: C.<x,y> = CliffordAlgebra(Q)
        sage: a = x + y
        sage: a.is_even_odd()
1
        sage: a = x*y + 4
        sage: a.is_even_odd()
0
        sage: a = x + 4
        sage: a.is_even_odd()
Traceback (most recent call last):
  ... ValueError: element is not homogeneous

        sage: E.<x,y> = ExteriorAlgebra(QQ)
        sage: (x*y).is_even_odd()
0

    is_super_homogeneous()
        Return whether this element is homogeneous, in the sense of a super module (i.e., is even or odd).

        EXAMPLES:

        sage: Q = QuadraticForm(QQ, 2, [1,2,3])
        sage: C.<x,y> = CliffordAlgebra(Q)
        sage: a = x + y
        sage: a.is_super_homogeneous()
(continues on next page)
The exterior algebra has a \( \mathbb{Z} \) grading, which induces the \( \mathbb{Z}/2\mathbb{Z} \) grading. However the definition of homogeneous elements differs because of the different gradings:

```sage
e.<x,y> = ExteriorAlgebra(QQ)
a = x*y + 4
a.is_super_homogeneous()
```

```
True
```

```sage
a = x*y + x - 3*y + 4
a.is_super_homogeneous()
```

```
False
```

The odd component of \( \text{self} \).

**EXAMPLES:**

```sage
Q = QuadraticForm(QQ, 2, [1,2,3])
C.<x,y> = CliffordAlgebra(Q)
a = x*y + x - 3*y + 4
a.odd_component()
```

```
x - 3*y
```

**4.155 Supercommutative Algebras**

**class** `sage.categories.supercommutative_algebras.SupercommutativeAlgebras(base_category)`

**Bases:** `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of supercommutative algebras.

An \( R \)-supercommutative algebra is an \( R \)-super algebra \( A = A_0 \oplus A_1 \) endowed with an \( R \)-super algebra structure satisfying:

\[
x_0x'_0 = x'_0x_0, \quad x_1x'_1 = -x'_1x_1, \quad x_0x_1 = x_1x_0,
\]

for all \( x_0, x'_0 \in A_0 \) and \( x_1, x'_1 \in A_1 \).

**EXAMPLES:**

```sage
Algebras(ZZ).Supercommutative()
```

Category of supercommutative algebras over Integer Ring

**class** `SignedTensorProducts(category, *args)`

**Bases:** `sage.categories.signed_tensor.SignedTensorProductsCategory`
extra_super_categories()  
Return the extra super categories of self.

A signed tensor product of supercommutative algebras is a supercommutative algebra.

EXAMPLES:

```
sage: C = Algebras(ZZ).Supercommutative().SignedTensorProducts()
sage: C.extra_super_categories()
[Category of supercommutative algebras over Integer Ring]
```

class WithBasis(base_category)
Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

class ParentMethods
Bases: object

4.156 Supercrystals

class sage.categories.supercrystals.SuperCrystals(s=None)
Bases: `sage.categories.category_singleton.Category_singleton`

class Finite(base_category)
Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_singleton`

class ElementMethods
Bases: object

is_genuine_highest_weight(index_set=None)
Return whether self is a genuine highest weight element.

INPUT:
• index_set – (optional) the index set of the (sub)crystal on which to check

EXAMPLES:

```
sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: for b in B.highest_weight_vectors():
 : print("{} {}").format(b, b.is_genuine_highest_weight()))
[[[-2, -2, -2], [-1, -1], [1]] True
[[[-2, -2, -2], [-1, 2], [1]] False
[[[-2, -2, 2], [-1, -1], [1]] False

sage: [b for b in B if b.is_genuine_highest_weight([-1,0])]
[[[-2, -2, -2], [-1, -1], [1]],
 [[-2, -2, -2], [-1, -1], [2]],
 [[-2, -2, -2], [-1, 2], [2]],
 [[-2, -2, 2], [-1, -1], [2]],
 [[-2, -2, 2], [-1, 2], [2]],
 [[-2, -2, 2], [-1, 2], [1]],
 [[-2, -2, 2], [-1, -1], [1]],
 [[-2, -2, 2], [-1, 2], [1]]]
```

is_genuine_lowest_weight(index_set=None)
Return whether self is a genuine lowest weight element.

INPUT:
• index_set – (optional) the index set of the (sub)crystal on which to check

EXAMPLES:
sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: for b in sorted(B.lowest_weight_vectors()):
....:     print("{} {}", format(b, b.is_genuine_lowest_weight()))
[[-2, 1, 2], [-1, 2], [1]] False
[[-2, 1, 2], [-1, 2], [2]] False
[[-1, 1, 2], [1, 2], [2]] True
sage: [b for b in B if b.is_genuine_lowest_weight([-1,0])]
[[[-2, -1, 1], [-1, 1], [1]],
 [[-2, -1, 1], [-1, 1], [2]],
 [[-2, 1, 2], [-1, 1], [2]],
 [[-2, 1, 2], [-1, 1], [1]],
 [[-1, -1, 1], [1, 2], [2]],
 [[-1, -1, 1], [1, 2], [1]],
 [[-1, 1, 2], [1, 2], [2]],
 [[-1, 1, 2], [1, 2], [1]]]

class ParentMethods
    Bases: object

    character()
    Return the character of self.

    Todo: Once the WeylCharacterRing is implemented, make this consistent with the implementation in sage.categories.classical_crystals.ClassicalCrystals.ParentMethods.character().

    EXAMPLES:

    sage: B = crystals.Letters(['A', [1,2]])
    sage: B.character()
    B[(1, 0, 0, 0, 0)] + B[(0, 1, 0, 0, 0)] + B[(0, 0, 1, 0, 0)]
    + B[(0, 0, 0, 1, 0)] + B[(0, 0, 0, 0, 1)]

class connected_components()
    Return the connected components of self as subcrystals.

    EXAMPLES:

    sage: B = crystals.Letters(['A', [1,2]])
    sage: B.connected_components()
    [Subcrystal of The crystal of letters for type ['A', [1, 2]]]
    sage: T = B.tensor(B)
    sage: T.connected_components()
    [Subcrystal of Full tensor product of the crystals
     [The crystal of letters for type ['A', [1, 2]],
      The crystal of letters for type ['A', [1, 2]]],
     Subcrystal of Full tensor product of the crystals
     [The crystal of letters for type ['A', [1, 2]],
      The crystal of letters for type ['A', [1, 2]]]]

    connected_components_generators()
    Return the tuple of genuine highest weight elements of self.
EXAMPLES:

```
sage: B = crystals.Letters(['A', [1, 2]])
sage: B.genuine_highest_weight_vectors()
(-2,)

sage: T = B.tensor(B)
sage: T.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])
sage: s1, s2 = T.connected_components()
sage: s = s1 + s2
sage: s.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])
```

digraph(index_set=None)

Return the DiGraph associated to self.

EXAMPLES:

```
sage: B = crystals.Letters(['A', [1, 3]])
sage: G = B.digraph(); G
Multi-digraph on 6 vertices
sage: Q = crystals.Letters(['Q', 3])
sage: G = Q.digraph(); G
Multi-digraph on 3 vertices
sage: G.edges()
[(1, 2, -1), (1, 2, 1), (2, 3, -2), (2, 3, 2)]
```

The edges of the crystal graph are by default colored using blue for edge 1, red for edge 2, green for edge 3, and dashed with the corresponding color for barred edges. Edge 0 is dotted black:

```
sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)
```

genuine_highest_weight_vectors()

Return the tuple of genuine highest weight elements of self.

EXAMPLES:

```
sage: B = crystals.Letters(['A', [1, 2]])
sage: B.genuine_highest_weight_vectors()
(-2,)

sage: T = B.tensor(B)
sage: T.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])
sage: s1, s2 = T.connected_components()
sage: s = s1 + s2
sage: s.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])
```

genuine_lowest_weight_vectors()

Return the tuple of genuine lowest weight elements of self.

EXAMPLES:
sage: B = crystals.Letters(['A', [1,2]])
sage: B.genuine_lowest_weight_vectors()
(3,)

sage: T = B.tensor(B)
sage: T.genuine_lowest_weight_vectors()
([3, 3], [3, 2])

sage: s1, s2 = T.connected_components()
sage: s = s1 + s2
sage: s.genuine_lowest_weight_vectors()
([3, 3], [3, 2])

highest_weight_vectors()
Return the highest weight vectors of self.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,2]])
sage: B.highest_weight_vectors()
(-2,)

sage: T = B.tensor(B)
sage: T.highest_weight_vectors()
([-2, -2], [-2, -1])

We give an example from [BKK2000] that has fake highest weight vectors:

sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: B.highest_weight_vectors()
([[-2, -2, -2], [-1, -1], [1]],
 [[-2, -2, -2], [-1, 2], [1]],
 [[-2, -2, 2], [-1, -1], [1]])
sage: B.genuine_highest_weight_vectors()
([[-2, -2, -2], [-1, -1], [1]],)

lowest_weight_vectors()
Return the lowest weight vectors of self.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,2]])
sage: B.lowest_weight_vectors()
(3,)

sage: T = B.tensor(B)
sage: sorted(T.lowest_weight_vectors())
[[3, 2], [3, 3]]

We give an example from [BKK2000] that has fake lowest weight vectors:

sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: sorted(B.lowest_weight_vectors())
[[[-2, 1, 2], [-1, 2], [1]],
 [[-2, 1, 2], [-1, 2], [2]],
 [[-2, 1, 2], [-1, 2], [2]],
 ((continues on next page))

(continues on next page)
class ParentMethods

Bases: object

tensor(*crystals, **options)

Return the tensor product of self with the crystals B.

EXAMPLES:

```
sage: B = crystals.Letters(['A',[1,2]])
sage: C = crystals.Tableaux(['A',[1,2]], shape = [2,1])
sage: T = C.tensor(B); T
Full tensor product of the crystals [Crystal of BKK tableaux of shape [2, 1] of gl(2|3), The crystal of letters for type ['A', [1, 2]]]
sage: S = B.tensor(C); S
Full tensor product of the crystals [The crystal of letters for type ['A', [1, 2]], Crystal of BKK tableaux of shape [2, 1] of gl(2|3)]
sage: G = T.digraph()
sage: H = S.digraph()
sage: G.is_isomorphic(H, edge_labels= True)
True
```

class TensorProducts(category, *args)

Bases: `sage.categories.tensor.TensorProductsCategory`

The category of regular crystals constructed by tensor product of regular crystals.

extra_super_categories()

EXAMPLES:

```
sage: from sage.categories.supercrystals import SuperCrystals
sage: SuperCrystals().TensorProducts().extra_super_categories()
[Category of super crystals]
```

super_categories()

EXAMPLES:

```
sage: from sage.categories.supercrystals import SuperCrystals
sage: C = SuperCrystals()
sage: C.super_categories()
[Category of crystals]
```
4.157 Topological Spaces

class sage.categories.topological_spaces.TopologicalSpaces(category, *args)

Bases: sage.categories.topological_spaces.TopologicalSpacesCategory

The category of topological spaces.

EXAMPLES:

sage: Sets().Topological()
Category of topological spaces
sage: Sets().Topological().super_categories()
[Category of sets]

The category of topological spaces defines the topological structure, which shall be preserved by morphisms:

sage: Sets().Topological().additional_structure()
Category of topological spaces

class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()

Implement the fact that a (finite) Cartesian product of topological spaces is a topological space.

EXAMPLES:

sage: from sage.categories.topological_spaces import TopologicalSpaces
sage: C = TopologicalSpaces().CartesianProducts()
sage: C.extra_super_categories()
[Category of topological spaces]
sage: C.super_categories()
[Category of Cartesian products of sets, Category of topological spaces]

sage: C.axioms()

frozenset({})

class Compact(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of compact topological spaces.

class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()

Implement the fact that a (finite) Cartesian product of compact topological spaces is compact.

EXAMPLES:

sage: from sage.categories.topological_spaces import TopologicalSpaces
sage: C = TopologicalSpaces().Compact().CartesianProducts()
sage: C.extra_super_categories()
[Category of compact topological spaces]
sage: C.super_categories()
[Category of Cartesian products of topological spaces, Category of compact topological spaces]

sage: C.axioms()

frozenset({'Compact'})
class Connected(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of connected topological spaces.

class CartesianProducts(category, *args)
    Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
    Implement the fact that a (finite) Cartesian product of connected topological spaces is connected.

EXAMPLES:

    sage: from sage.categories.topological_spaces import TopologicalSpaces
    sage: C = TopologicalSpaces().Connected().CartesianProducts()
    sage: C.extra_super_categories()
    [Category of connected topological spaces]
    sage: C.super_categories()
    [Category of Cartesian products of topological spaces,  
     Category of connected topological spaces]
    sage: C.axioms()
    frozenset({'Connected'})

class SubcategoryMethods
    Bases: object

    Compact()
        Return the subcategory of the compact objects of self.

        EXAMPLES:

            sage: Sets().Topological().Compact()
            Category of compact topological spaces

    Connected()
        Return the full subcategory of the connected objects of self.

        EXAMPLES:

            sage: Sets().Topological().Connected()
            Category of connected topological spaces

class sage.categories.topological_spaces.TopologicalSpacesCategory(category, *args)
    Bases: sage.categories.covariant Functorial Construction.RegressiveCovariantConstructionCategory

4.158 Kac-Moody Algebras With Triangular Decomposition Basis

AUTHORS:

    • Travis Scrimshaw (07-15-2017): Initial implementation

class sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras(base,  
    name=None)
    Bases: sage.categories.category_types.Category_over_base_ring

Category of Kac-Moody algebras with a distinguished basis that respects the triangular decomposition.

We require that the grading group is the root lattice of the appropriate Cartan type.
class ElementMethods
    Bases: object

    part()
    Return whether the element v is in the lower, zero, or upper part of self.
    OUTPUT:
    −1 if v is in the lower part, 0 if in the zero part, or 1 if in the upper part
    EXAMPLES:

    sage: L = LieAlgebra(QQ, cartan_type="F4")
    sage: L.inject_variables()
    Defining e1, e2, e3, e4, f1, f2, f3, f4, h1, h2, h3, h4
    sage: e1.part()
    1
    sage: f4.part()
    -1
    sage: (h2 + h3).part()
    0
    sage: (f1.bracket(f2) + 4*f4).part()
    -1
    sage: (e1 + f1).part()
    Traceback (most recent call last):
    ...
    ValueError: element is not in one part

class ParentMethods
    Bases: object

    e(i=None)
    Return the generators e of self.
    INPUT:
    • i – (optional) if specified, return just the generator eᵢ
    EXAMPLES:

    sage: L = lie_algebras.so(QQ, 5)
    sage: L.e()
    Finite family {1: E[alpha[1]], 2: E[alpha[2]]}
    sage: L.e(1)
    E[alpha[1]]

    f(i=None)
    Return the generators f of self.
    INPUT:
    • i – (optional) if specified, return just the generator fᵢ
    EXAMPLES:

    sage: L = lie_algebras.so(QQ, 5)
    sage: L.f()
    Finite family {1: E[-alpha[1]], 2: E[-alpha[2]]}
    sage: L.f(1)
    E[-alpha[1]]
verma_module(la, basis_key=None, **kwds)
    Return the Verma module with highest weight la over self.

    INPUT:
    • basis_key – (optional) a key function for the indexing set of the basis elements of self

    EXAMPLES:

    sage: L = lie_algebras.sl(QQ, 3)
    sage: P = L.cartan_type().root_system().weight_lattice()
    sage: La = P.fundamental_weights()
    sage: M = L.verma_module(La[1]+La[2])
    sage: M
    of Lie algebra of ['A', 2] in the Chevalley basis

super_categories()
    EXAMPLES:

    sage: from sage.categories.triangular_kac_moody_algebras import _
    TriangleKacMoodyAlgebras
    sage: TriangleKacMoodyAlgebras(QQ).super_categories()
    [Join of Category of graded lie algebras with basis over Rational Field
     and Category of kac moody algebras over Rational Field]

4.159 Unique factorization domains

class sage.categories.unique_factorization_domains.UniqueFactorizationDomains(s=None)
    Bases: sage.categories.category_singleton.Category_singleton

    The category of unique factorization domains constructive unique factorization domains, i.e. where one can
    constructively factor members into a product of a finite number of irreducible elements

    EXAMPLES:

    sage: UniqueFactorizationDomains()
    Category of unique factorization domains
    sage: UniqueFactorizationDomains().super_categories()
    [Category of gcd domains]

class ElementMethods
    Bases: object

    radical(*args, **kwds)
        Return the radical of this element, i.e. the product of its irreducible factors.
        This default implementation calls squarefree_decomposition if available, and factor otherwise.
        See also:
        squarefree_part()

    EXAMPLES:

    sage: Pol.<x> = QQ[]
    sage: (x^2*(x-1)^3).radical()
    x^2 - x

(continues on next page)
sage: pol = 37 * (x-1)^3 * (x-2)^2 * (x-1/3)^7 * (x-3/7)
sage: pol.radical()
37*x^4 - 2923/21*x^3 + 1147/7*x^2 - 1517/21*x + 74/7
sage: Integer(10).radical()
10
sage: Integer(-100).radical()
10
sage: Integer(0).radical()
Traceback (most recent call last):
  ... ArithmeticError: Radical of 0 not defined.

The next example shows how to compute the radical of a number, assuming no prime > 100000 has exponent > 1 in the factorization:

sage: n = 2^1000-1; n / radical(n, limit=100000)
125

\texttt{squarefree\_part()}

Return the square-free part of this element, i.e. the product of its irreducible factors appearing with odd multiplicity.

This default implementation calls \texttt{squarefree\_decomposition}.

\textbf{See also:}

\texttt{radical()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Pol.<x> = QQ[]
sage: (x^2*(x-1)^3).squarefree_part()
x - 1
sage: pol = 37 * (x-1)^3 * (x-2)^2 * (x-1/3)^7 * (x-3/7)
sage: pol.squarefree_part()
37*x^3 - 1369/21*x^2 + 703/21*x - 37/7
\end{verbatim}

\textbf{class ParentMethods}

\textbf{Bases:} object

\texttt{is\_unique\_factorization\_domain(\textit{proof}=True)}

Return True, since this in an object of the category of unique factorization domains.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Parent(QQ,category=UniqueFactorizationDomains()).is_unique_factorization_domain() True
\end{verbatim}

\texttt{additional\_structure()}

Return whether self is a structure category.

\textbf{See also:}

\texttt{Category.additional\_structure()}
The category of unique factorization domains does not define additional structure: a ring morphism between unique factorization domains is a unique factorization domain morphism.

**EXAMPLES:**

```
sage: UniqueFactorizationDomains().additional_structure()
```

**super_categories()**

**EXAMPLES:**

```
sage: UniqueFactorizationDomains().super_categories()
[Category of gcd domains]
```

### 4.160 Unital algebras

**class** `sage.categories.unital_algebras.UnitalAlgebras(base_category)`

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

The category of non-associative algebras over a given base ring.

A non-associative algebra over a ring $R$ is a module over $R$ which is also a unital magma.

**Warning:** Until trac ticket #15043 is implemented, `Algebras` is the category of associative unital algebras; thus, unlike the name suggests, `UnitalAlgebras` is not a subcategory of `Algebras` but of `MagmaticAlgebras`.

**EXAMPLES:**

```
sage: from sage.categories.unital_algebras import UnitalAlgebras
sage: C = UnitalAlgebras(ZZ); C
Category of unital algebras over Integer Ring
```

**class ParentMethods**

Bases: `object`

**from_base_ring(r)**

Return the canonical embedding of $r$ into self.

**INPUT:**

- $r$ – an element of self.base_ring()

**EXAMPLES:**

```
sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
sage: A.from_base_ring(1)
B[word:]
```

**class WithBasis(base_category)**

Bases: `sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring`

**class ParentMethods**

Bases: `object`

**from_base_ring()**
from_base_ring_from_one_basis(r)
Implement the canonical embedding from the ground ring.

INPUT:
• r – an element of the coefficient ring

EXAMPLES:

```sage
A = AlgebrasWithBasis(QQ).example()
sage: A.from_base_ring_from_one_basis(3)
3*B
```

one()
Return the multiplicative unit element.

EXAMPLES:

```sage
A = AlgebrasWithBasis(QQ).example()
sage: A.one()
B
```

one_basis()
When the one of an algebra with basis is an element of this basis, this optional method can return
the index of this element. This is used to provide a default implementation of one(), and an
optimized default implementation of from_base_ring().

EXAMPLES:

```sage
A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B
```

one_from_one_basis()
Return the one of the algebra, as per Monoids.ParentMethods.one()
By default, this is implemented from one_basis(), if available.

EXAMPLES:

```sage
A = AlgebrasWithBasis(QQ).example()
sage: A.one_from_one_basis()
B
```

Even if called in the wrong order, they should returns their respective one:
4.161 Vector Bundles

class sage.categories.vector_bundles.VectorBundles(base_space, base_field, name=None)
   Bases: sage.categories.category_types.Category_over_base_ring
   The category of vector bundles over any base space and base field.

   See also:
   TopologicalVectorBundle

   EXAMPLES:

   sage: M = Manifold(2, 'M', structure='top')
   sage: from sage.categories.vector_bundles import VectorBundles
   sage: C = VectorBundles(M, RR); C
   Category of vector bundles over Real Field with 53 bits of precision
   with base space 2-dimensional topological manifold M
   sage: C.super_categories()
   [Category of topological spaces]

class Differentiable(base_category)
   Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
   The category of differentiable vector bundles.

   A differentiable vector bundle is a differentiable manifold with differentiable surjective projection on a
differentiable base space.

class Smooth(base_category)
   Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
   The category of smooth vector bundles.

   A smooth vector bundle is a smooth manifold with smooth surjective projection on a smooth base space.

class SubcategoryMethods
   Bases: object

   Differentiable()
   Return the subcategory of the differentiable objects of self.

   EXAMPLES:

   sage: M = Manifold(2, 'M')
   sage: from sage.categories.vector_bundles import VectorBundles
   sage: VectorBundles(M, RR).Differentiable()
   Category of differentiable vector bundles over Real Field with 53 bits of precision with base space 2-dimensional
differentiable manifold M
Smooth()  
Return the subcategory of the smooth objects of self.

EXAMPLES:

```
sage: M = Manifold(2, 'M')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).Smooth()
Category of smooth vector bundles over Real Field with 53 bits of precision with base space 2-dimensional differentiable manifold M
```

category.base_space()  
Return the base space of this category.

EXAMPLES:

```
sage: M = Manifold(2, 'M', structure='top')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).base_space()
2-dimensional topological manifold M
```

category.extra_super_categories()  
The category of vector spaces is closed under Cartesian products:

```
sage: C = VectorSpaces(QQ)
sage: C_CARTESIAN = C.CartesianProducts()
sage: C_CARTESIAN.extra_super_categories()
[Category of Cartesian products of vector spaces over Rational Field]
```

## 4.162 Vector Spaces

class sage.categories.vector_spaces.VectorSpaces(K)  
Bases: sage.categories.category_types.Category_module

The category of (abstract) vector spaces over a given field $K$ with an embedding in an ambient vector space $??$.

EXAMPLES:

```
sage: VectorSpaces(QQ)
Category of vector spaces over Rational Field
sage: VectorSpaces(QQ).super_categories()
[Category of modules over Rational Field]
```

class CartesianProducts(category, *args)  
Bases: sage.categories.cartesian_product.CartesianProductsCategory

```
extra_super_categories()
The category of vector spaces is closed under Cartesian products:

```
sage: C = VectorSpaces(QQ)
sage: C_CARTESIAN = C.CartesianProducts()
sage: C_CARTESIAN.extra_super_categories()
[Category of Cartesian products of vector spaces over Rational Field]
```
class DualObjects(category, *args)
 Bases: sage.categories.dual.DualObjectsCategory

 extra_super_categories()
 Returns the dual category

 EXAMPLES:
 The category of algebras over the Rational Field is dual to the category of coalgebras over the same field:

 sage: C = VectorSpaces(QQ)
sage: C.dual()
Category of duals of vector spaces over Rational Field
sage: C.dual().super_categories() # indirect doctest
[Category of vector spaces over Rational Field]

class ElementMethods
 Bases: object

class Filtered(base_category)
 Bases: sage.categories.filtered_modules.FilteredModulesCategory

 Category of filtered vector spaces.

class FiniteDimensional(base_category)
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

 class TensorProducts(category, *args)
 Bases: sage.categories.tensor.TensorProductsCategory

 extra_super_categories()
 Implement the fact that a (finite) tensor product of finite dimensional vector spaces is a finite dimensional vector space.

 EXAMPLES:

 sage: VectorSpaces(QQ).FiniteDimensional().TensorProducts().extra_super_categories()
 [Category of finite dimensional vector spaces over Rational Field]
sage: VectorSpaces(QQ).FiniteDimensional().TensorProducts().FiniteDimensional()
Category of tensor products of finite dimensional vector spaces over Rational Field

class Graded(base_category)
 Bases: sage.categories.graded_modules.GradedModulesCategory

 Category of graded vector spaces.

class ParentMethods
 Bases: object

 dimension()
 Return the dimension of this vector space.

 EXAMPLES:
sage: M = FreeModule(FiniteField(19), 100)
sage: W = M.submodule([M.gen(50)])
sage: W.dimension()
1

sage: M = FiniteRankFreeModule(QQ, 3)
sage: M.dimension()
3
sage: M.tensor_module(1,2).dimension()
27

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

extra_super_categories()
The category of vector spaces is closed under tensor products:
sage: C = VectorSpaces(QQ)
sage: C.TensorProducts()
Category of tensor products of vector spaces over Rational Field
sage: C in C.TensorProducts().super_categories()
True

class WithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
The category of vector spaces with basis is closed under Cartesian products:
sage: C = VectorSpaces(QQ).WithBasis()
sage: C.CartesianProducts()
Category of Cartesian products of vector spaces with basis over Rational Field
sage: C in C.CartesianProducts().super_categories()
True

class Filtered(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

Category of filtered vector spaces with basis.

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory
extra_super_categories()
Implement the fact that a (finite) tensor product of finite dimensional vector spaces is a finite
dimensional vector space.

EXAMPLES:

```
sage: VectorSpaces(QQ).WithBasis().FiniteDimensional().
    TensorProducts().extra_super_categories()
(Category of finite dimensional vector spaces with basis over Rational
Field)
sage: VectorSpaces(QQ).WithBasis().FiniteDimensional().
    TensorProducts().FiniteDimensional()
Category of tensor products of finite dimensional vector spaces with
basis over Rational Field
```

class Graded(base_category)
Bases: `sage.categories.graded_modules.GradedModulesCategory`

Category of graded vector spaces with basis.

example(base_ring=None)
Return an example of a graded vector space with basis, as per `Category.example()`.

EXAMPLES:

```
sage: Modules(QQ).WithBasis().Graded().example()
An example of a graded module with basis:
the free module on partitions over Rational Field
```

class TensorProducts(category, *args)
Bases: `sage.categories.tensor.TensorProductsCategory`

extra_super_categories()
The category of vector spaces with basis is closed under tensor products:

```
sage: C = VectorSpaces(QQ).WithBasis()
sage: C.TensorProducts()
Category of tensor products of vector spaces with basis over Rational
Field
sage: C in C.TensorProducts().super_categories()
True
```

is_abelian()
Return whether this category is abelian.
This is always True since the base ring is a field.

EXAMPLES:

```
sage: VectorSpaces(QQ).WithBasis().is_abelian()
True
```

additional_structure()
Return None.
Indeed, the category of vector spaces defines no additional structure: a bimodule morphism between two
vector spaces is a vector space morphism.
See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

```sage
sage: VectorSpaces(QQ).additional_structure()
```

base_field()

Returns the base field over which the vector spaces of this category are all defined.

EXAMPLES:

```sage
sage: VectorSpaces(QQ).base_field()
Rational Field
```

super_categories()

EXAMPLES:

```sage
sage: VectorSpaces(QQ).super_categories()
[Category of modules over Rational Field]
```

4.163 Weyl Groups

REFERENCES:

```python
class sage.categories.weyl_groups.WeylGroups(s=None)

Bases: sage.categories.category_singleton.Category_singleton
```

The category of Weyl groups

See the Wikipedia page of Weyl Groups.

EXAMPLES:

```sage
sage: WeylGroups()
Category of weyl groups
sage: WeylGroups().super_categories()
[Category of coxeter groups]
```

Here are some examples:

```sage
sage: WeylGroups().example() # todo: not implemented
sage: FiniteWeylGroups().example()
The symmetric group on {0, ..., 3}
sage: AffineWeylGroups().example() # todo: not implemented
sage: WeylGroup(['B', 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
```

This one will eventually be also in this category:

```sage
sage: SymmetricGroup(4)
Symmetric group of order 4! as a permutation group
```
class ElementMethods
Bases: object

bruhat_lower_covers_coroots()
Return all 2-tuples \((v, \alpha)\) where \(v\) is covered by \(self\) and \(\alpha\) is the positive coroot such that \(self = v s_\alpha\), where \(s_\alpha\) is the reflection orthogonal to \(\alpha\).

ALGORITHM:
See bruhat_lower_covers() and bruhat_lower_covers_reflections() for Coxeter groups.

EXAMPLES:

```python
sage: W = WeylGroup(['A',3], prefix='s')
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_lower_covers_coroots()
 (s3*s2*s1, alphacheck[2]), (s3*s1*s2, alphacheck[1])]
```

bruhat_upper_covers_coroots()
Returns all 2-tuples \((v, \alpha)\) where \(v\) is covers \(self\) and \(\alpha\) is the positive coroot such that \(self = v s_\alpha\), where \(s_\alpha\) is the reflection orthogonal to \(\alpha\).

ALGORITHM:
See bruhat_upper_covers() and bruhat_upper_covers_reflections() for Coxeter groups.

EXAMPLES:

```python
sage: W = WeylGroup(['A',4], prefix='s')
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_upper_covers_coroots()
[(s1*s2*s3*s2*s1, alphacheck[3]),
 (s2*s3*s1*s2*s1, alphacheck[2] + alphacheck[3]),
 (s3*s4*s1*s2*s1, alphacheck[4]),
```

inversion_arrangement(side='right')
Return the inversion hyperplane arrangement of \(self\).

INPUT:
• side – 'right' (default) or 'left'

OUTPUT:
A (central) hyperplane arrangement whose hyperplanes correspond to the inversions of \(self\) given as roots.

The side parameter determines on which side to compute the inversions.

EXAMPLES:

```python
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([1, 2, 3, 1, 2])
sage: A = w.inversion_arrangement(); A
Arrangement of 5 hyperplanes of dimension 3 and rank 3
sage: A.hyperplanes()
(Hyperplane 0*a1 + 0*a2 + a3 + 0,
 Hyperplane 0*a1 + a2 + 0*a3 + 0,

(continues on next page)```
Hyperplane $0^*a_1 + a_2 + a_3 + 0$,
Hyperplane $a_1 + a_2 + 0^*a_3 + 0$,
Hyperplane $a_1 + a_2 + a_3 + 0$)

The identity element gives the empty arrangement:

```
sage: W = WeylGroup(['A',3])
sage: W.one().inversion_arrangement()
Empty hyperplane arrangement of dimension 3
```

**inversions** *(side='right', inversion_type='reflections')*

Returns the set of inversions of `self`.

**INPUT:**
- `side` – ‘right’ (default) or ‘left’
- `inversion_type` – ‘reflections’ (default), ‘roots’, or ‘coroots’.

**OUTPUT:**
For reflections, the set of reflections $r$ in the Weyl group such that $\text{self} r < \text{self}$. For (co)roots, the set of positive (co)roots that are sent by $\text{self}$ to negative (co)roots; their associated reflections are described above.

If `side` is ‘left’, the inverse Weyl group element is used.

**EXAMPLES:**

```
sage: W=WeylGroup(['C',2], prefix="s")
sage: w=W.from_reduced_word([1,2])
sage: w.inversions() # reflections
[s2, s2*s1*s2]
sage: w.inversions(inversion_type = 'reflections') # reflections
[s2, s2*s1*s2]
sage: w.inversions(inversion_type = 'roots') # roots
[alpha[2], alpha[1] + alpha[2]]
sage: w.inversions(inversion_type = 'coroots') # coroots
[alphacheck[2], alphacheck[1] + 2*alphacheck[2]]
sage: w.inversions(side = 'left') # left
[s1, s1*s2*s1]
sage: w.inversions(side = 'left', inversion_type = 'roots') # left, reflections
[alpha[1], 2*alpha[1] + alpha[2]]
sage: w.inversions(side = 'left', inversion_type = 'coroots') # left, coroots
[alphacheck[1], alphacheck[1] + alphacheck[2]]
```

**is_pieri_factor()**

Returns whether `self` is a Pieri factor, as used for computing Stanley symmetric functions.

**See also:**
- `stanley_symmetric_function()`
- `WeylGroups.ParentMethods.pieri_factors()`

**EXAMPLES:**

```
sage: W = WeylGroup(['A',5,1])
sage: W.from_reduced_word([3,2,5]).is_pieri_factor()
True
```
```
sage: W.from_reduced_word([3,2,4,5]).is_pieri_factor()
False

sage: W = WeylGroup(['C',4,1])
sage: W.from_reduced_word([0,2,1]).is_pieri_factor()
True

sage: W.from_reduced_word([0,2,1,0]).is_pieri_factor()
False

sage: W = WeylGroup(['B',3])
sage: W.from_reduced_word([3,2,3]).is_pieri_factor()
False

sage: W.from_reduced_word([2,1,2]).is_pieri_factor()
True
```

**left_pieri_factorizations** *(max_length=None)*

Returns all factorizations of self as \(uv\), where \(u\) is a Pieri factor and \(v\) is an element of the Weyl group.

See also:

- `WeylGroups.ParentMethods.pieri_factors()`
- `sage.combinat.root_system.pieri_factors`

**EXAMPLES:**

If we take \(w = w_0\) the maximal element of a strict parabolic subgroup of type \(A_{n_1} \times \cdots \times A_{n_k}\), then the Pieri factorizations are in correspondence with all Pieri factors, and there are \(\prod 2^{n_i}\) of them:

```
sage: W = WeylGroup(['A', 4, 1])
sage: W.from_reduced_word([]).left_pieri_factorizations().cardinality()
1
sage: W.from_reduced_word([1]).left_pieri_factorizations().cardinality()
2
sage: W.from_reduced_word([1,2,1]).left_pieri_factorizations().cardinality()
4
sage: W.from_reduced_word([1,2,3,1,2,1]).left_pieri_factorizations().
 ...cardinality()
8

sage: W.from_reduced_word([1,3]).left_pieri_factorizations().cardinality()
4
sage: W.from_reduced_word([1,3,4,3]).left_pieri_factorizations().
 ...cardinality()
8

sage: W.from_reduced_word([2,1]).left_pieri_factorizations().cardinality()
3
sage: W.from_reduced_word([1,2]).left_pieri_factorizations().cardinality()
2
sage: [W.from_reduced_word([1,2]).left_pieri_factorizations(max_length=i).
 ...cardinality() for i in [-1, 0, 1, 2]]
[0, 1, 2, 2]
```

(continues on next page)
sage: W = WeylGroup(['C',4,1])
sage: w = W.from_reduced_word([0,3,2,1,0])
sage: w.left_pieri_factorizations().cardinality()
7
sage: [(u.reduced_word(),v.reduced_word()) for (u,v) in w.left_pieri_factorizations()]
[([], [3, 2, 0, 1, 0]),
 ([0], [3, 2, 1, 0]),
 ([3], [2, 0, 1, 0]),
 ([3, 0], [2, 1, 0]),
 ([3, 2], [0, 1, 0]),
 ([3, 2, 0], [1, 0]),
 ([3, 2, 0, 1], [0])]
sage: W = WeylGroup(['B',4,1])
sage: W.from_reduced_word([0,2,1,0]).left_pieri_factorizations().cardinality()
6

quantum_bruhat_successors(index_set=None, roots=False, quantum_only=False)

Return the successors of self in the quantum Bruhat graph on the parabolic quotient of the Weyl group determined by the subset of Dynkin nodes index_set.

INPUT:

- **self** – a Weyl group element, which is assumed to be of minimum length in its coset with respect to the parabolic subgroup
- **index_set** – (default: None) indicates the set of simple reflections used to generate the parabolic subgroup; the default value indicates that the subgroup is the identity
- **roots** – (default: False) if True, returns the list of 2-tuples (w, α) where w is a successor and α is the positive root associated with the successor relation
- **quantum_only** – (default: False) if True, returns only the quantum successors

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2])
sage: w.quantum_bruhat_successors([1], roots=True)
[(s3, alpha[2]), (s1*s2*s3*s2, alpha[3]), (s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3])]
sage: w.quantum_bruhat_successors([1,3])
[1, s2*s3*s1*s2]
sage: w.quantum_bruhat_successors(roots=True)
[(s3*s1*s2*s1, alpha[1]), (s3*s1, alpha[2]), (s1*s2*s3*s2, alpha[3]), (s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3])]
sage: w.quantum_bruhat_successors()  
[s3*s1] 
sage: w.quantum_bruhat_successors(quantum_only=True) 
[s3*s1] 
sage: w = W.from_reduced_word([2,3])
sage: w.quantum_bruhat_successors([1,3])
Traceback (most recent call last):
...
Reflection to coroot

Returns the coroot associated with the reflection self.

EXAMPLES:

```
sage: W=WeylGroup(['C',2],prefix="s")
sage: W.from_reduced_word([1,2,1]).reflection_to_coroot()
sage: W.from_reduced_word([1,2]).reflection_to_coroot()
Traceback (most recent call last):
 ... ValueError: s1*s2 is not a reflection
```

Reflection to root

Returns the root associated with the reflection self.

EXAMPLES:

```
sage: W=WeylGroup(['C',2],prefix="s")
sage: W.from_reduced_word([1,2,1]).reflection_to_root()
sage: W.from_reduced_word([1,2]).reflection_to_root()
Traceback (most recent call last):
 ... ValueError: s1*s2 is not a reflection
```

Stanley symmetric function

Return the affine Stanley symmetric function indexed by self.

INPUT:

- **self** – an element \( w \) of a Weyl group

Returns the affine Stanley symmetric function indexed by \( w \). Stanley symmetric functions are defined as generating series of the factorizations of \( w \) into Pieri factors and weighted by a statistic on Pieri factors.

See also:

- \( \text{stanley_symmetric_function}_\text{as}_\text{polynomial}() \)
- \( \text{WeylGroups.ParentMethods.pieri_factors}() \)
- \( \text{sage.combinat.root_system.pieri_factors} \)

EXAMPLES:

```
sage: W = WeylGroup(['A', 3, 1])
sage: W.from_reduced_word([[3,1,2,0,3,1,0]]).stanley_symmetric_function()
```
\[8m[1, 1, 1, 1, 1, 1] + 4m[2, 1, 1, 1, 1, 1] + 2m[2, 2, 1, 1, 1, 1] + m[2, 2, 2, 1]\]

```
sage: A = AffinePermutationGroup(['A',3,1])
sage: A.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function()
8*m[1, 1, 1, 1, 1, 1] + 4*m[2, 1, 1, 1, 1, 1] + 2*m[2, 2, 1, 1, 1, 1] + m[2, 2, 2, 1]
```

```
sage: W = WeylGroup(['C',3,1])
sage: W.from_reduced_word([0,2,1,0]).stanley_symmetric_function()
32*m[1, 1, 1, 1] + 16*m[2, 1, 1] + 8*m[2, 2] + 4*m[3, 1]
```

```
sage: W = WeylGroup(['B',3,1])
sage: W.from_reduced_word([3,2,1]).stanley_symmetric_function()
2*m[1, 1, 1] + m[2, 1] + 1/2*m[3]
```

```
sage: A = AffinePermutationGroup(['A',4,1])
sage: a = A([-2,0,1,4,12])
sage: a.stanley_symmetric_function()
6*m[1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + 5*m[2, 1, 1, 1, 1, 1, 1, 1, 1, 1] + 4*m[2, 2, 1, 1, 1, 1, 1, 1, 1, 1] +
\quad m[2, 2, 2, 1, 1, 1, 1, 1, 1, 1]
+ 3*m[2, 2, 2, 1, 1, 1, 1, 1] + 2*m[2, 2, 2, 2] + 4*m[3, 1, 1, 1, 1, 1, 1, 1, 1, 1] + 3*m[3, 2, 1, 1, 1, 1, 1, 1, 1, 1] +
\quad 2*m[3, 3, 1, 1, 1, 1, 1, 1, 1, 1] + m[4, 1, 1, 1, 1, 1, 1, 1, 1, 1] +
\quad 2*m[4, 2, 1, 1, 1] + m[4, 2, 2] + m[4, 3, 1]
```

One more example (trac ticket #14095):

```
sage: G = SymmetricGroup(4)
sage: w = G.from_reduced_word([3,2,3,1])
sage: w.stanley_symmetric_function()
3*m[1, 1, 1, 1] + 2*m[2, 1, 1] + m[2, 2] + m[3, 1]
```

REFERENCES:

* [BH1994]
* [Lam2008]
* [LSS2009]
* [Pon2010]

stanley_symmetric_function_as_polynomial(max_length=None)

Returns a multivariate generating function for the number of factorizations of a Weyl group element into Pieri factors of decreasing length, weighted by a statistic on Pieri factors.

See also:

* stanley_symmetric_function()
* WeylGroups.ParentMethods.pieri_factors()
* sage.combinat.root_system.pieri_factors

INPUT:
self – an element \( w \) of a Weyl group \( W \)

max_length – a non negative integer or infinity (default: infinity)

Returns the generating series for the Pieri factorizations \( w = u_1 \cdots u_k \), where \( u_i \) is a Pieri factor for all \( i \), \( l(w) = \sum_{i=1}^{k} l(u_i) \) and \( \text{max_length} \geq l(u_1) \geq \cdots \geq l(u_k) \).

A factorization \( u_1 \cdots u_k \) contributes a monomial of the form \( \prod_{i} x_{l(u_i)} \), with coefficient given by \( \prod_{i} c(u_i) \), where \( c \) is a type-dependent statistic on Pieri factors, as returned by the method \( u[i].stanley_symm_poly_weight() \).

EXAMPLES:

```python
sage: W = WeylGroup(['A', 3, 1])
sage: W.from_reduced_word([]).stanley_symmetric_function_as_polynomial()
1
sage: W.from_reduced_word([1]).stanley_symmetric_function_as_polynomial()
x1
sage: W.from_reduced_word([1,2]).stanley_symmetric_function_as_polynomial()
x1^2
sage: W.from_reduced_word([2,1]).stanley_symmetric_function_as_polynomial()
x1^2 + x2
sage: W.from_reduced_word([1,2,1]).stanley_symmetric_function_as_polynomial()
2*x1^3 + x1*x2^2
sage: W.from_reduced_word([1,2,1,0]).stanley_symmetric_function_as_polynomial()
3*x1^4 + 2*x1^2*x2 + x2^2 + x1*x3
sage: W.from_reduced_word([1,2,3,1,2,1,0]).stanley_symmetric_function_as_polynomial() # long time
22*x1^7 + 11*x1^5*x2 + 5*x1^3*x2^2 + 3*x1^4*x3 + 2*x1^2*x2^3 + x1^2*x2*x3
sage: W.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function_as_polynomial() # long time
8*x1^7 + 4*x1^5*x2 + 2*x1^3*x2*x3
```

Algorithm: Induction on the left Pieri factors. Note that this induction preserves subsets of \( W \) which are stable by taking right factors, and in particular Grassmanian elements.

Finite

alias of `sage.categories.finite_weyl_groups.FiniteWeylGroups`

class ParentMethods

Bases: object

bruhat_cone(x, y, side='upper', backend='cdd')

Return the (upper or lower) Bruhat cone associated to the interval \([x,y]\).

To a cover relation \( v \prec w \) in strong Bruhat order you can assign a positive root \( \beta \) given by the unique reflection \( s_\beta \) such that \( s_\beta v = w \).
The upper Bruhat cone of the interval \([x, y]\) is the non-empty, polyhedral cone generated by the roots corresponding to \(x \prec a\) for all atoms \(a\) in the interval. The lower Bruhat cone of the interval \([x, y]\) is the non-empty, polyhedral cone generated by the roots corresponding to \(c \prec y\) for all coatoms \(c\) in the interval.

**INPUT:**
- \(x\) - an element in the group \(W\)
- \(y\) - an element in the group \(W\)
- side (default: 'upper') – must be one of the following:
  - 'upper' - return the upper Bruhat cone of the interval \([x, y]\)
  - 'lower' - return the lower Bruhat cone of the interval \([x, y]\)
- backend – string (default: 'cdd'); the backend to use to create the polyhedron

**EXAMPLES:**

```python
sage: W = WeylGroup(['A',2])
sage: x = W.from_reduced_word([1])
sage: y = W.w0
sage: W.bruhat_cone(x, y)
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 2 rays

sage: W = WeylGroup(['E',6])
sage: x = W.one()
sage: y = W.w0
sage: W.bruhat_cone(x, y, side='lower')
A 6-dimensional polyhedron in QQ^8 defined as the convex hull of 1 vertex and 6 rays
```

**REFERENCES:**
- [Dye]
- [JahStu]

**coxeter_matrix()**
Return the Coxeter matrix associated to self.

**EXAMPLES:**

```python
sage: G = WeylGroup(['A',3])
sage: G.coxeter_matrix()
[1 3 2]
[3 1 3]
[2 3 1]
```

**pieri_factors(*args, **keywords)**
Returns the set of Pieri factors in this Weyl group.

For any type, the set of Pieri factors forms a lower ideal in Bruhat order, generated by all the conjugates of some special element of the Weyl group. In type \(A_n\), this special element is \(s_n \cdots s_1\), and the conjugates are obtained by rotating around this reduced word.

These are used to compute Stanley symmetric functions.

**See also:**
- \texttt{WeylGroups.ElementMethods.stanley_symmetric_function()}
- \texttt{sage.combinat.root_system.pieri_factors}

**EXAMPLES:**
quantum_bruhat_graph(index_set=())

Return the quantum Bruhat graph of the quotient of the Weyl group by a parabolic subgroup \( W_J \).

INPUT:
- **index_set** – (default: ()) a tuple \( J \) of nodes of the Dynkin diagram

By default, the value for index_set indicates that the subgroup is trivial and the quotient is the full Weyl group.

EXAMPLES:

```python
sage: W = WeylGroup(['A', 3], prefix="s")
sage: g = W.quantum_bruhat_graph((1,3))
sage: g
Parabolic Quantum Bruhat Graph of Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space) for nodes (1, 3): Digraph on 6 vertices
sage: g.vertices()
[s2*s3*s1*s2, s3*s1*s2, s1*s2, s3*s2, s2, 1]
sage: g.edges()
[(s2*s3*s1*s2, s2, alpha[2]),
 (s3*s1*s2, s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3]),
 (s3*s1*s2, 1, alpha[2])]
```

(continues on next page)
(s1*s2, s3*s1*s2, alpha[2] + alpha[3]),
(s3*s2, s3*s1*s2, alpha[1] + alpha[2]),
(s2, s1*s2, alpha[1] + alpha[2]),
(s2, s3*s2, alpha[2] + alpha[3]),
(1, s2, alpha[2])

sage: W = WeylGroup(['A',3,1], prefix='s')
sage: g = W.quantum_bruhat_graph()
Traceback (most recent call last):
...
ValueError: the Cartan type ['A', 3, 1] is not finite

additional_structure()
    Return None.

    Indeed, the category of Weyl groups defines no additional structure: Weyl groups are a special class of Coxeter groups.

    See also:
    Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

sage: WeylGroups().additional_structure()

super_categories()
    EXAMPLES:

sage: WeylGroups().super_categories()
    [Category of coxeter groups]

4.164 Technical Categories

4.164.1 Facade Sets

For background, see What is a facade set?.

class sage.categories.facade_sets.FacadeSets(base_category)
    Bases: sage.categories.category_with_axiom.CategoryWithAxiomsingleton

class ParentMethods
    Bases: object

    facade_for()
        Returns the parents this set is a facade for

        This default implementation assumes that self has an attribute _facade_for, typically initialized by Parent.__init__(). If the attribute is not present, the method raises a NotImplementedError.

        EXAMPLES:
An example of facade set: the monoid of positive integers

```
sage: S = Sets().Facade().example(); S
sage: S.facade_for()
(Integer Ring,)
```

Check that trac ticket #13801 is corrected:

```
sage: class A(Parent):
....: def __init__(self):
....: Parent.__init__(self, category=Sets(), facade=True)
sage: a = A()
sage: a.facade_for()
Traceback (most recent call last):
...:
NotImplementedError: this parent did not specify which parents it is a facade for
```

### `is_parent_of(element)`

Returns whether `self` is the parent of `element`

**INPUT:**
- `element` – any object

Since `self` is a facade domain, this actually tests whether the parent of `element` is any of the parent `self` is a facade for.

**EXAMPLES:**

```
sage: S = Sets().Facade().example(); S
An example of facade set: the monoid of positive integers
sage: S.is_parent_of(1)
True
sage: S.is_parent_of(1/2)
False
```

This method differs from `__contains__()` in two ways. First, this does not take into account the fact that `self` may be a strict subset of the parent(s) it is a facade for:

```
sage: -1 in S, S.is_parent_of(-1)
(False, True)
```

Furthermore, there is no coercion attempted:

```
sage: int(1) in S, S.is_parent_of(int(1))
(True, False)
```

**Warning:** this implementation does not handle facade parents of facade parents. Is this a feature we want generically?

### `example(choice='subset')`

Returns an example of facade set, as per `Category.example()`.

**INPUT:**
- `choice` – ‘union’ or ‘subset’ (default: ‘subset’).
EXAMPLES:

```sage
Sets().Facade().example()
An example of facade set: the monoid of positive integers
```

```sage
Sets().Facade().example(choice='union')
An example of a facade set: the integers completed by +\(-\infty\)
```

```sage
Sets().Facade().example(choice='subset')
An example of facade set: the monoid of positive integers
```
5.1 Covariant Functorial Constructions

A functorial construction is a collection of functors $(F \mathcal{C})_{\mathcal{C}}$ (indexed by a collection of categories) which associate to a sequence of parents $(A, B, ...)$ in a category $\mathcal{C}$ a parent $F(A, B, ...)$. Typical examples of functorial constructions are cartesian_product and tensor_product.

The category of $F_{\mathcal{C}}(A, B, ...)$, which only depends on $\mathcal{C}$, is called the (functorial) construction category.

A functorial construction is (category)-covariant if for every categories $\mathcal{C}$ and $\mathcal{S}uper\mathcal{C}$, the category of $F_{\mathcal{C}}(A, B, ...)$ is a subcategory of the category of $F_{\mathcal{S}uper\mathcal{C}}(A, B, ...)$ whenever $\mathcal{C}$ is a subcategory of $\mathcal{S}uper\mathcal{C}$.

A functorial construction is (category)-regressive if the category of $F_{\mathcal{C}}(A, B, ...)$ is a subcategory of $\mathcal{C}$.

The goal of this module is to provide generic support for covariant functorial constructions. In particular, given some parents $A, B, ...$, in respective categories $\mathcal{C}at_A, \mathcal{C}at_B, ...$, it provides tools for calculating the best known category for the parent $F(A, B, ...)$. For examples, knowing that Cartesian products of semigroups (resp. monoids, groups) have a semigroup (resp. monoid, group) structure, and given a group $B$ and two monoids $A$ and $C$ it can calculate that $A \times B \times C$ is naturally endowed with a monoid structure.

See CovariantFunctorialConstruction, CovariantConstructionCategory and RegressiveCovariantConstructionCategory for more details.

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

class sage.categories.covariant_functorial_construction.CovariantConstructionCategory(category, *args)

Bases: sage.categories.covariant_functorial_construction.FunctorialConstructionCategory

Abstract class for categories $F_{\mathcal{C}}$ obtained through a covariant functorial construction

additional_structure()

Return the additional structure defined by self.

By default, a functorial construction category $A.F()$ defines additional structure if and only if $A$ is the category defining $F$. The rationale is that, for a subcategory $B$ of $A$, the fact that $B.F()$ morphisms shall preserve the $F$-specific structure is already imposed by $A.F()$.

See also:

• Category.additional_structure().
• is_construction_defined_by_base().

EXAMPLES:
class method default_super_categories(category, *args)
Return the default super categories of \( F_{\text{Cat}}(A, B, ...) \) for \( A, B, ... \) parents in \( \text{Cat} \).

INPUT:

* cls – the category class for the functor \( F \)
* category – a category \( \text{Cat} \)
* *args – further arguments for the functor

OUTPUT: a (join) category

The default implementation is to return the join of the categories of \( F(A, B, ...) \) for \( A, B, ... \) in turn in each of the super categories of \( \text{category} \).

This is implemented as a class method, in order to be able to reconstruct the functorial category associated to each of the super categories of \( \text{category} \).

EXAMPLES:

Bialgebras are both algebras and coalgebras:

```
sage: Bialgebras(QQ).super_categories()
[Category of algebras over Rational Field, Category of coalgebras over Rational Field]
```

Hence tensor products of bialgebras are tensor products of algebras and tensor products of coalgebras:

```
sage: Bialgebras(QQ).TensorProducts().super_categories()
[Category of tensor products of algebras over Rational Field, Category of tensor products of coalgebras over Rational Field]
```

Here is how `default_super_categories()` was called internally:

```
sage: sage.categories.tensor.TensorProductsCategory.default_super_categories(Bialgebras(QQ))
Join of Category of tensor products of algebras over Rational Field and Category of tensor products of coalgebras over Rational Field
```

We now show a similar example, with the Algebra functor which takes a parameter \( Q \):

```
sage: FiniteMonoids().super_categories()
[Category of monoids, Category of finite semigroups]
sage: sorted(FiniteMonoids().Algebras(QQ).super_categories(), key=str)
[Category of finite dimensional algebras with basis over Rational Field, Category of finite set algebras over Rational Field, Category of monoid algebras over Rational Field]
```

Note that neither the category of finite semigroup algebras nor that of monoid algebras appear in the result; this is because there is currently nothing specific implemented about them.

Here is how `default_super_categories()` was called internally:
is_construction_defined_by_base()  
Return whether the construction is defined by the base of self.

EXAMPLES:

The graded functorial construction is defined by the modules category. Hence this method returns True for graded modules and False for other graded xxx categories:

```
sage: Modules(ZZ).Graded().is_construction_defined_by_base()
True
sage: Algebras(QQ).Graded().is_construction_defined_by_base()
False
sage: Modules(ZZ).WithBasis().Graded().is_construction_defined_by_base()
False
```

This is implemented as follows: given the base category $A$ and the construction $F$ of self, that is self=$A$. $F()$, check whether no super category of $A$ has $F$ defined.

**Note:** Recall that, when $A$ does not implement the construction $F$, a join category is returned. Therefore, in such cases, this method is not available:

```
sage: Bialgebras(QQ).Graded().is_construction_defined_by_base()
Traceback (most recent call last):
 ...
AttributeError: 'JoinCategory_with_category' object has no attribute 'is_
...construction_defined_by_base'
```

class sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

An abstract class for construction functors $F$ (eg $F =$ Cartesian product, tensor product, $Q$-algebra, ...) such that:

- Each category $Cat$ (eg $Cat =$ Groups()) can provide a category $F_{Cat}$ for parents constructed via this functor (e.g. $F_{Cat} =$ CartesianProductsOfGroups()).
- For every category $Cat$, $F_{Cat}$ is a subcategory of $F_{SuperCat}$ for every super category $SuperCat$ of $Cat$ (the functorial construction is (category)-covariant).
- For parents $A, B, ...$, respectively in the categories $Cat_A, Cat_B, ...$, the category of $F(A, B, ...)$ is $F_{Cat}$ where $Cat$ is the meet of the categories $Cat_A, Cat_B, ...$.

This covers two slightly different use cases:

- In the first use case, one uses directly the construction functor to create new parents:

```
sage: tensor() # todo: not implemented (add an example)
```

or even new elements, which indirectly constructs the corresponding parent:
In the second use case, one implements a parent, and then put it in the category $F_{Cat}$ to specify supplementary mathematical information about that parent.

The main purpose of this class is to handle automatically the trivial part of the category hierarchy. For example, CartesianProductsOf(Groups()) is set automatically as a subcategory of CartesianProductsOf(Monoids()).

In practice, each subclass of this class should provide the following attributes:

- `_functor_category` - a string which should match the name of the nested category class to be used in each category to specify information and generic operations for elements of this category.

- `_functor_name` - an string which specifies the name of the functor, and also (when relevant) of the method on parents and elements used for calling the construction.

**TODO:** What syntax do we want for $F_{Cat}$? For example, for the tensor product construction, which one do we want among (see chat on IRC, on 07/12/2009):

- tensor(Cat)
- tensor((Cat, Cat))
- tensor.of((Cat, Cat))
- tensor.category_from_categories((Cat, Cat, Cat))
- Cat.TensorProducts()

The syntax Cat.TensorProducts() does not supports well multivariate constructions like tensor.of([Algebras(), HopfAlgebras(), ...]). Also it forces every category to be (somehow) aware of all the tensorial construction that could apply to it, even those which are only induced from super categories.

Note: for each functorial construction, there probably is one (or several) largest categories on which it applies. For example, the CartesianProducts() construction makes only sense for concrete categories, that is subcategories of Sets(). Maybe we want to model this one way or the other.

**category_from_categories**(*categories*)

Return the category of $F(A, B, ...)$ for $A, B, ...$ parents in the given categories.

**INPUT:**

- `self`: a functor $F$
- `categories`: a non empty tuple of categories

**EXAMPLES:**

```sage
sage: Cat1 = Rings()
sage: Cat2 = Groups()
sage: cartesian_product.category_from_categories(((Cat1, Cat1, Cat1))
Join of Category of rings and ...
 and Category of Cartesian products of monoids
 and Category of Cartesian products of commutative additive groups
sage: cartesian_product.category_from_categories(((Cat1, Cat2))
Category of Cartesian products of monoids
```

**category_from_category**(*category*)

Return the category of $F(A, B, ...)$ for $A, B, ...$ parents in category.

**INPUT:**
- self: a functor \( F \)
- category: a category

EXAMPLES:

```
sage: tensor.category_from_category(ModulesWithBasis(QQ))
Category of tensor products of vector spaces with basis over Rational Field
```

# TODO: add support for parametrized functors
category_from_parents\(\)\(\)(parents)\)

Return the category of \( F(A, B, ...) \) for \( A, B, ... \) parents.

INPUT:
- self: a functor \( F \)
- parents: a list (or iterable) of parents.

EXAMPLES:

```
sage: E = CombinatorialFreeModule(QQ, ["a", "b", "c"])
sage: tensor.category_from_parents((E, E, E))
Category of tensor products of finite dimensional vector spaces with basis over Rational Field
```

class \texttt{sage.categories.covariant functorial construction.} FunctorialConstructionCategory\(\)(category, \*args)\)

Bases: \texttt{sage.categories.category.Category}\n
Abstract class for categories \( F_{\text{Cat}} \) obtained through a functorial construction

\texttt{base_category()}\n
Return the base category of the category self.

For any category \( B = F_{\text{Cat}} \) obtained through a functorial construction \( F \), the call \( B.\text{base_category()} \)
returns the category \( \text{Cat} \).

EXAMPLES:

```
sage: Semigroups().Quotients().base_category()
Category of semigroups
```

classmethod \texttt{category.of(category, \*args)}\n
Return the image category of the functor \( F_{\text{Cat}} \).

This is the main entry point for constructing the category \( F_{\text{Cat}} \) of parents \( F(A, B, ...) \) constructed from parents \( A, B, ... \) in \( \text{Cat} \).

INPUT:
- \texttt{cls} – the category class for the functorial construction \( F \)
- \texttt{category} – a category \( \text{Cat} \)
- \texttt{\*args} – further arguments for the functor

EXAMPLES:
sage: sage.categories.tensor.TensorProductsCategory.category_of(ModulesWithBasis(QQ))
Category of tensor products of vector spaces with basis over Rational Field

sage: sage.categories.algebra_functor.AlgebrasCategory.category_of(FiniteMonoids(), QQ)
Join of Category of finite dimensional algebras with basis over Rational Field
and Category of monoid algebras over Rational Field
and Category of finite set algebras over Rational Field

extra_super_categories()
Return the extra super categories of a construction category.
Default implementation which returns [].

EXAMPLES:

sage: Sets().Subquotients().extra_super_categories()
[]
sage: Semigroups().Quotients().extra_super_categories()
[]

super_categories()
Return the super categories of a construction category.

EXAMPLES:

sage: Sets().Subquotients().super_categories()
[Category of sets]
sage: Semigroups().Quotients().super_categories()
[Category of subquotients of semigroups, Category of quotients of sets]

class sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory(category, *args)

Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory
Abstract class for categories \( \mathcal{F} \mathcal{C} \mathcal{A} \mathcal{T} \) obtained through a regressive covariant functorial construction

classmethod default_super_categories(category, *args)
Return the default super categories of \( \mathcal{F} \mathcal{C}_\mathcal{A}_\mathcal{T} \( A, B, \ldots \) for \( A, B, \ldots \) parents in \( \mathcal{C} \mathcal{A} \).

INPUT:

- cls – the category class for the functor \( \mathcal{F} \)
- category – a category \( \mathcal{C} \mathcal{A} \)
- *args – further arguments for the functor

OUTPUT:

A join category.
This implements the property that an induced subcategory is a subcategory.

EXAMPLES:

A subquotient of a monoid is a monoid, and a subquotient of semigroup:

sage: Monoids().Subquotients().super_categories()
[Category of monoids, Category of subquotients of semigroups]
5.2 Cartesian Product Functorial Construction

AUTHORS:

- Nicolas M. Thiery (2008-2010): initial revision and refactorization

```python
class sage.categories.cartesian_product.CartesianProductFunctor(category=None):
 Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction,
 sage.categories.pushout.MultivariateConstructionFunctor

 The Cartesian product functor.

 EXAMPLES:

 sage: cartesian_product
 The cartesian_product functorial construction

cartesian_product takes a finite collection of sets, and constructs the Cartesian product of those sets:

 sage: A = FiniteEnumeratedSet(['a','b','c'])
sage: B = FiniteEnumeratedSet([1,2])
sage: C = cartesian_product([A, B]); C
 The Cartesian product of ({'a', 'b', 'c'}, {1, 2})
sage: C.an_element()
 ('a', 1)
sage: C.list() # todo: not implemented
 [['a', 1], ['a', 2], ['b', 1], ['b', 2], ['c', 1], ['c', 2]]
```

If those sets are endowed with more structure, say they are monoids (hence in the category Monoids()), then the result is automatically endowed with its natural monoid structure:

```python
 sage: M = Monoids().example()
sage: M
 An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.rename('M')
sage: C = cartesian_product([M, ZZ, QQ])
sage: C
 The Cartesian product of (M, Integer Ring, Rational Field)
sage: C.an_element()
 ('abcd', 1, 1/2)
sage: C.an_element()^2
 ('abcdabcd', 1, 1/4)
sage: C.category()
 Category of Cartesian products of monoids

sage: Monoids().CartesianProducts()
 Category of Cartesian products of monoids
```

The Cartesian product functor is covariant: if $A$ is a subcategory of $B$, then $A.CartesianProducts()$ is a subcategory of $B.CartesianProducts()$ (see also CovariantFunctorialConstruction):

```python
 sage: C.categories()
[Category of Cartesian products of monoids,
 Category of monoids,
 Category of Cartesian products of semigroups, ...
```

(continues on next page)
Hence, the role of `Monoids().CartesianProducts()` is solely to provide mathematical information and algorithms which are relevant to Cartesian product of monoids. For example, it specifies that the result is again a monoid, and that its multiplicative unit is the Cartesian product of the units of the underlying sets:

```sage
C.one()

('', 1, 1)
```

Those are implemented in the nested class `Monoids.CartesianProducts` of `Monoids(QQ)`. This nested class is itself a subclass of `CartesianProductsCategory`.

```python
class sage.categories.cartesian_product.CartesianProductsCategory(category, *args):
 Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

 An abstract base class for all CartesianProducts categories.

 CartesianProducts()
 Return the category of (finite) Cartesian products of objects of self.

 By associativity of Cartesian products, this is self (a Cartesian product of Cartesian products of A’s is a Cartesian product of A’s).

 EXAMPLES:

 sage: ModulesWithBasis(QQ).CartesianProducts().CartesianProducts()
 Category of Cartesian products of vector spaces with basis over Rational Field

 base_ring()
 The base ring of a Cartesian product is the base ring of the underlying category.

 EXAMPLES:

 sage: Algebras(ZZ).CartesianProducts().base_ring()
 Integer Ring
```
5.3 Tensor Product Functorial Construction

AUTHORS:

- Nicolas M. Thiéry (2008-2010): initial revision and refactorization

class sage.categories.tensor.TensorProductFunctor

Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

A singleton class for the tensor functor.

This functor takes a collection of vector spaces (or modules with basis), and constructs the tensor product of those vector spaces. If this vector space is in a subcategory, say that of `Algebras(QQ)`, it is automatically endowed with its natural algebra structure, thanks to the category `Algebras(QQ).TensorProducts()` of tensor products of algebras. For elements, it constructs the natural tensor product element in the corresponding tensor product of their parents.

The tensor functor is covariant: if `A` is a subcategory of `B`, then `A.TensorProducts()` is a subcategory of `B.TensorProducts()` (see also `CovariantFunctorialConstruction`). Hence, the role of `Algebras(QQ).TensorProducts()` is solely to provide mathematical information and algorithms which are relevant to tensor product of algebras.

Those are implemented in the nested class `TensorProducts` of `Algebras(QQ)`. This nested class is itself a subclass of `TensorProductsCategory`.

class sage.categories.tensor.TensorProductsCategory(category, *args)

Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

An abstract base class for all TensorProducts’s categories

TensorProducts()

Returns the category of tensor products of objects of self

By associativity of tensor products, this is self (a tensor product of tensor products of Cat’s is a tensor product of Cat’s)

EXAMPLES:

```python
sage: ModulesWithBasis(QQ).TensorProducts().TensorProducts()
Category of tensor products of vector spaces with basis over Rational Field
```

base()

The base of a tensor product is the base (usually a ring) of the underlying category.

EXAMPLES:

```python
sage: ModulesWithBasis(ZZ).TensorProducts().base()
Integer Ring
```

sage.categories.tensor.tensor = The tensor functorial construction

The tensor product functorial construction

See `TensorProductFunctor` for more information

EXAMPLES:

```python
sage: tensor
The tensor functorial construction
```
5.4 Signed Tensor Product Functorial Construction

AUTHORS:
- Travis Scrimshaw (2019-07): initial version

class sage.categories.signed_tensor.SignedTensorProductFunctor
Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction
A singleton class for the signed tensor functor.

This functor takes a collection of graded algebras (possibly with basis) and constructs the signed tensor product of those algebras. If this algebra is in a subcategory, say that of \texttt{Algebras(QQ).Graded()}, it is automatically endowed with its natural algebra structure, thanks to the category \texttt{Algebras(QQ).Graded()}. \texttt{SignedTensorProducts()} of signed tensor products of graded algebras. For elements, it constructs the natural tensor product element in the corresponding tensor product of their parents.

The signed tensor functor is covariant: if \texttt{A} is a subcategory of \texttt{B}, then \texttt{A.SignedTensorProducts()} is a subcategory of \texttt{B.SignedTensorProducts()} (see also \texttt{CovariantFunctorialConstruction}). Hence, the role of \texttt{Algebras(QQ).Graded().SignedTensorProducts()} is solely to provide mathematical information and algorithms which are relevant to signed tensor product of graded algebras.

Those are implemented in the nested class \texttt{SignedTensorProducts} of \texttt{Algebras(QQ).Graded()}. This nested class is itself a subclass of \texttt{SignedTensorProductsCategory}.

EXAMPLES:

```
sage: tensor_signed
The signed tensor functorial construction
```

class sage.categories.signed_tensor.SignedTensorProductsCategory\texttt{(category, *args)}
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory
An abstract base class for all SignedTensorProducts's categories.

\texttt{SignedTensorProducts()}
Return the category of signed tensor products of objects of \texttt{self}.

By associativity of signed tensor products, this is \texttt{self} (a tensor product of signed tensor products of \texttt{Cat}'s is a tensor product of \texttt{Cat}'s with the same twisting morphism)

EXAMPLES:

```
sage: AlgebrasWithBasis(QQ).Graded().SignedTensorProducts().
 SignedTensorProducts()
Category of signed tensor products of graded algebras with basis
over Rational Field
```

\texttt{base()}
The base of a signed tensor product is the base (usually a ring) of the underlying category.

EXAMPLES:

```
sage: AlgebrasWithBasis(ZZ).Graded().SignedTensorProducts().base()
Integer Ring
```
sage.categories.signed_tensor.tensor_signed = The signed tensor functorial construction
5.5 Dual functorial construction

AUTHORS:

• Nicolas M. Thiery (2009-2010): initial revision

class sage.categories.dual.DualFunctor
    Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction
    A singleton class for the dual functor

class sage.categories.dual.DualObjectsCategory(category, *args)
    Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

5.6 Group algebras and beyond: the Algebra functorial construction

5.6.1 Introduction: group algebras

Let $G$ be a group and $R$ be a ring. For example:

```
sage: G = DihedralGroup(3)
sage: R = QQ
```

The group algebra $A = RG$ of $G$ over $R$ is the space of formal linear combinations of elements of group with coefficients in $R$:

```
sage: A = G.algebra(R); A
Algebra of Dihedral group of order 6 as a permutation group over Rational Field
sage: a = A.an_element(); a
() + (1,2) + 3*(1,2,3) + 2*(1,3,2)
```

This space is endowed with an algebra structure, obtained by extending by bilinearity the multiplication of $G$ to a multiplication on $RG$:

```
sage: A in Algebras
True
sage: a * a
14*() + 5*(2,3) + 2*(1,2) + 10*(1,2,3) + 13*(1,3,2) + 5*(1,3)
```

In particular, the product of two basis elements is induced by the product of the corresponding elements of the group, and the unit of the group algebra is indexed by the unit of the group:

```
sage: (s, t) = A.algebra_generators()
sage: s*t
(1,2)
sage: A.one_basis()
()
sage: A.one()
()```

For the user convenience and backward compatibility, the group algebra can also be constructed with:
5.6.2 Generalizations

The above construction extends to weaker multiplicative structures than groups: magmas, semigroups, monoids. For a monoid S, we obtain the monoid algebra RS, which is defined exactly as above:

\begin{verbatim}
sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ); A
Algebra of An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
 over Rational Field
sage: A.category()
Category of monoid algebras over Rational Field
\end{verbatim}

This construction also extends to additive structures: magmas, semigroups, monoids, or groups:

\begin{verbatim}
sage: S = CommutativeAdditiveMonoids().example(); S
An example of a commutative monoid:
 the free commutative monoid generated by ('a', 'b', 'c', 'd')
sage: U = S.algebra(QQ); U
Algebra of An example of a commutative monoid:
 the free commutative monoid generated by ('a', 'b', 'c', 'd')
 over Rational Field
sage: U in Algebras(QQ)
True
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: U(a) * U(b)
B[a + b]
\end{verbatim}

Despite saying “free module”, this is really an algebra, whose multiplication is induced by the addition of elements of S:

\begin{verbatim}
sage: U in Algebras(QQ)
True
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: U(a) * U(b)
B[a + b]
\end{verbatim}

To cater uniformly for the use cases above and some others, for S a set and K a ring, we define in Sage the algebra of S as the K-free module with basis indexed by S, endowed with whatever algebraic structure can be induced from that of S.

Warning: In most use cases, the result is actually an algebra, hence the name of this construction. In other cases this name is misleading:

\begin{verbatim}
sage: A = Sets().example().algebra(QQ); A
Algebra of Set of prime numbers (basic implementation)
 over Rational Field
\end{verbatim}
To achieve this flexibility, the features are implemented as a *Covariant Functorial Constructions* that is essentially a hierarchy of categories each providing the relevant additional features:

```sage
A = DihedralGroup(3).algebra(QQ)
A.categories()
[Category of finite group algebras over Rational Field,
 ... Category of group algebras over Rational Field,
 ... Category of monoid algebras over Rational Field,
 ... Category of semigroup algebras over Rational Field,
 ... Category of unital magma algebras over Rational Field,
 ... Category of magma algebras over Rational Field,
 ... Category of set algebras over Rational Field,
 ...]
```

5.6.3 Specifying the algebraic structure

Constructing the algebra of a set endowed with both an additive and a multiplicative structure is ambiguous:

```sage
Z3 = IntegerModRing(3)
A = Z3.algebra(QQ)
Traceback (most recent call last):
 ... TypeError: `S = Ring of integers modulo 3` is both
an additive and a multiplicative semigroup.
Constructing its algebra is ambiguous.
Please use, e.g., S.algebra(QQ, category=Semigroups())
```

This ambiguity can be resolved using the category argument of the construction:

```sage
A = Z3.algebra(QQ, category=Monoids()); A
Category of finite dimensional monoid algebras over Rational Field

A = Z3.algebra(QQ, category=CommutativeAdditiveGroups()); A
Category of finite dimensional commutative additive group algebras
over Rational Field
```

5.6. Group algebras and beyond: the Algebra functorial construction
In general, the category argument can be used to specify which structure of S shall be extended to KS.

5.6.4 Group algebras, continued

Let us come back to the case of a group algebra $A = RG$. It is endowed with more structure and in particular that of a Hopf algebra:

```
sage: G = DihedralGroup(3)
sage: A = G.algebra(R); A
Algebra of Dihedral group of order 6 as a permutation group over Rational Field
sage: A in HopfAlgebras(R).FiniteDimensional().WithBasis()
True
```

The basis elements are *group-like* for the coproduct: $\Delta(g) = g \otimes g$:

```
sage: s
(1,2,3)
sage: s.coproduct()
(1,2,3) # (1,2,3)
```

The counit is the constant function 1 on the basis elements:

```
sage: A = GroupAlgebra(DihedralGroup(6), QQ)
sage: [A.counit(g) for g in A.basis()]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

The antipode is given on basis elements by $\chi(g) = g^{-1}$:

```
sage: A = GroupAlgebra(DihedralGroup(3), QQ)
sage: s
(1,2,3)
sage: s.antipode()
(1,3,2)
```

By Maschke’s theorem, for a finite group whose cardinality does not divide the characteristic of the base field, the algebra is semisimple:

```
sage: SymmetricGroup(5).algebra(QQ) in Algebras(QQ).Semisimple()
True
sage: CyclicPermutationGroup(10).algebra(FiniteField(7)) in Algebras.Semisimple
True
sage: CyclicPermutationGroup(10).algebra(FiniteField(5)) in Algebras.Semisimple
False
```
5.6.5 Coercions

Let RS be the algebra of some structure S. Then RS admits the natural coercion from any other algebra $R'S'$ of some structure S', as long as R' coerces into R and S' coerces into S.

For example, since there is a natural inclusion from the dihedral group D_2 of order 4 into the symmetric group S_4 of order $4!$, and since there is a natural map from the integers to the rationals, there is a natural map from $\mathbb{Z}[D_2]$ to $\mathbb{Q}[S_4]$:

```sage
sage: A = DihedralGroup(2).algebra(ZZ)
sage: B = SymmetricGroup(4).algebra(QQ)
sage: a = A.an_element(); a
() + 2*(3,4) + 3*(1,2) + (1,2)(3,4)
sage: b = B.an_element(); b
() + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3)
sage: B(a)
() + 2*(3,4) + 3*(1,2) + (1,2)(3,4)
sage: a * b  # a is automatically converted to an element of B
() + 2*(3,4) + 2*(2,3) + (2,3,4) + 3*(1,2)(3,4) + (1,3,2) + 3*(1,3,4,2) + 5*(1,3)(2,4) + 13*(1,3,2,4) + 12*(1,4,2,3) + 5*(1,4)(2,3)
sage: parent(a * b)
Symmetric group algebra of order 4 over Rational Field
```

There is no obvious map in the other direction, though:

```sage
sage: A(b)
Traceback (most recent call last):
  ...TypeError: do not know how to make x (= () + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3)) an element of self
  (=Algebra of Dihedral group of order 4 as a permutation group over Integer Ring)
```

If S is a unital (additive) magma, then RS is a unital algebra, and thus admits a coercion from its base ring R and any ring that coerces into R.

```sage
sage: G = DihedralGroup(2)
sage: A = G.algebra(ZZ)
sage: A(2)
2*(())
```

If S is a multiplicative group, then RS admits a coercion from S and from any group which coerce into S:

```sage
sage: g = DihedralGroup(2).gen(0); g
(3,4)
sage: A(g)
(3,4)
sage: A(2) * g
2*(3,4)
```

Note that there is an ambiguity if S' is a group which coerces into both R and S. For example, if S is the additive group $(\mathbb{Z}, +)$, and $A = RS$ is its group algebra, then the integer 2 can be coerced into A in two ways – via S, or via the base ring R – and the answers are different. It that case the coercion to R takes precedence. In particular, if \mathbb{Z} is the ring (or group) of integers, then \mathbb{Z} will coerce to any RS, by sending \mathbb{Z} to R. In generic code, it is therefore recommended to always explicitly use $A.monomial(g)$ to convert an element of the group into A.

AUTHORS:
• David Loeffler (2008-08-24): initial version

• Martin Raum (2009-08): update to use new coercion model – see trac ticket #6670.

• John Palmieri (2011-07): more updates to coercion, categories, etc., group algebras constructed using Combi-
 natorialFreeModule – see trac ticket #6670.

• Nicolas M. Thiéry (2010-2017), Travis Scrimshaw (2017): generalization to a covariant functorial construction
 for monoid algebras, and beyond – see e.g. trac ticket #18700.

class sage.categories.algebra_functor.AlgebraFunctor(base_ring)

 Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

 For a fixed ring, a functor sending a group/... to the corresponding group/... algebra.

 EXAMPLES:

 sage: from sage.categories.algebra_functor import AlgebraFunctor
 sage: F = AlgebraFunctor(QQ); F
 The algebra functorial construction
 sage: F(DihedralGroup(3))
 Algebra of Dihedral group of order 6 as a permutation group
 over Rational Field

 base_ring()

 Return the base ring for this functor.

 EXAMPLES:

 sage: from sage.categories.algebra_functor import AlgebraFunctor
 sage: AlgebraFunctor(QQ).base_ring()
 Rational Field

class sage.categories.algebra_functor.AlgebrasCategory(category, *args)

 Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory,
 sage.categories.category_types.Category_over_base_ring

 An abstract base class for categories of monoid algebras, groups algebras, and the like.

 See also:

 • Sets.ParentMethods.algebra()
 • Sets.SubcategoryMethods.Algebras()
 • CovariantFunctorialConstruction

 INPUT:

 • base_ring – a ring

 EXAMPLES:

 sage: C = Groups().Algebras(QQ); C
 Category of group algebras over Rational Field
 sage: C = Monoids().Algebras(QQ); C
 Category of monoid algebras over Rational Field

 sage: C._short_name()
 'Algebras'

 (continues on next page)
class ParentMethods

 Bases: object

coproduct_on_basis(g)
 Return the coproduct of the element g of the basis.

 Each basis element g is group-like. This method is used to compute the coproduct of any element.

 EXAMPLES:

```
sage: PF = NonDecreasingParkingFunctions(4)
sage: A = PF.algebra(ZZ); A
Algebra of Non-decreasing parking functions of size 4 over Integer Ring
sage: g = PF.an_element(); g
[1, 1, 1, 1]
sage: A.coproduct_on_basis(g)
B[[1, 1, 1, 1]] # B[[1, 1, 1, 1]]
sage: a = A.an_element(); a
2*B[[1, 1, 1, 1]] + 2*B[[1, 1, 1, 2]] + 3*B[[1, 1, 1, 3]]
sage: a.coproduct()
2*B[[1, 1, 1, 1]] # B[[1, 1, 1, 1]] +
2*B[[1, 1, 1, 2]] # B[[1, 1, 1, 2]] +
3*B[[1, 1, 1, 3]] # B[[1, 1, 1, 3]]
```

class sage.categories.algebra_functor.GroupAlgebraFunctor(group)

 Bases: sage.categories.pushout.ConstructionFunctor

 For a fixed group, a functor sending a commutative ring to the corresponding group algebra.

 INPUT:
 • group – the group associated to each group algebra under consideration

 EXAMPLES:

```
sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
sage: F = GroupAlgebraFunctor(KleinFourGroup()); F
GroupAlgebraFunctor
sage: A = F(QQ); A
Algebra of The Klein 4 group of order 4, as a permutation group over Rational Field
```

group()
 Return the group which is associated to this functor.

 EXAMPLES:

```
sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
sage: GroupAlgebraFunctor(CyclicPermutationGroup(17)).group() ==
CyclicPermutationGroup(17)
True
```
5.7 Subquotient Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

```python
class sage.categories.subquotients.SubquotientsCategory(category, *args):
    Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory
```

5.8 Quotients Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

```python
class sage.categories.quotients.QuotientsCategory(category, *args):
    Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory
```

```python
classmethod default_super_categories(cls, category):
    Returns the default super categories of category.quotients()

    Mathematical meaning: if A is a quotient of B in the category C, then A is also a subquotient of B in the category C.

    INPUT:
    • cls – the class QuotientsCategory
    • category – a category Cat

    OUTPUT: a (join) category

    In practice, this returns category.Subquotients(), joined together with the result of the method
    RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of
    category and cat.Quotients() for each cat in the super categories of category).

    EXAMPLES:

    Consider category=Groups(), which has cat=Monoids() as super category. Then, a subgroup of a
group G is simultaneously a subquotient of G, a group by itself, and a quotient monoid of G:

```
sage: Groups().Quotients().super_categories()
[Category of groups, Category of subquotients of monoids, Category of quotients of semigroups]
```

Mind the last item above: there is indeed currently nothing implemented about quotient monoids.

This resulted from the following call:

```
sage: sage.categories.quotients.QuotientsCategory.default_super_categories(Groups())
Join of Category of groups and Category of subquotients of monoids and Category of quotients of semigroups
```
5.9 Subobjects Functorial Construction

AUTHORS:

- Nicolas M. Thiery (2010): initial revision

class sage.categories.subobjects.SubobjectsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)
Returns the default super categories of category.Subobjects()

Mathematical meaning: if $A$ is a subobject of $B$ in the category $C$, then $A$ is also a subquotient of $B$ in the category $C$.

INPUT:

- cls – the class SubobjectsCategory
- category – a category $Cat$

OUTPUT: a (join) category

In practice, this returns category.Subquotients(), joined together with the result of the method RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of category and cat.Subobjects() for each cat in the super categories of category).

EXAMPLES:

Consider category=Groups(), which has cat=Monoids() as super category. Then, a subgroup of a group $G$ is simultaneously a subquotient of $G$, a group by itself, and a submonoid of $G$:

```
sage: Groups().Subobjects().super_categories()
[Category of groups, Category of subquotients of monoids, Category of subobjects of sets]
```

Mind the last item above: there is indeed currently nothing implemented about submonoids.

This resulted from the following call:

```
sage: sage.categories.subobjects.SubobjectsCategory.default_super_categories(Groups())
Join of Category of groups and Category of subquotients of monoids and Category of subobjects of sets
```

5.10 Isomorphic Objects Functorial Construction

AUTHORS:

- Nicolas M. Thiery (2010): initial revision

class sage.categories.isomorphic_objects.IsomorphicObjectsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)
Returns the default super categories of category.IsomorphicObjects()
Mathematical meaning: if $A$ is the image of $B$ by an isomorphism in the category $C$, then $A$ is both a subobject of $B$ and a quotient of $B$ in the category $C$.

INPUT:

- `cls` – the class `IsomorphicObjectsCategory`
- `category` – a category $C$

OUTPUT: a (join) category

In practice, this returns `category.Subobjects()` and `category.Quotients()`, joined together with the result of the method `RegressiveCovariantConstructionCategory.default_super_categories()` (that is the join of `category` and `cat.IsomorphicObjects()` for each `cat` in the super categories of `category`).

EXAMPLES:

Consider `category=Groups()`, which has `cat=Monoids()` as super category. Then, the image of a group $G'$ by a group isomorphism is simultaneously a subgroup of $G$, a subquotient of $G$, a group by itself, and the image of $G$ by a monoid isomorphism:

```sage
sage: Groups().IsomorphicObjects().super_categories()
[Category of groups,
 Category of subquotients of monoids,
 Category of quotients of semigroups,
 Category of isomorphic objects of sets]
```

Mind the last item above: there is indeed currently nothing implemented about isomorphic objects of monoids.

This resulted from the following call:

```sage
sage: sage.categories.isomorphic_objects.IsomorphicObjectsCategory.default_
 →super_categories(Groups())
Join of Category of groups and
Category of subquotients of monoids and
Category of quotients of semigroups and
Category of isomorphic objects of sets
```

5.11 Homset categories

```python
class sage.categories.homsets.Homsets(s=None)

Bases: sage.categories.category_singleton.Category_singleton
```

The category of all homsets.

EXAMPLES:

```sage
sage: from sage.categories.homsets import Homsets
sage: Homsets()
Category of homsets
```

This is a subcategory of `Sets()`:

```sage
sage: Homsets().super_categories()
[Category of sets]
```
By this, we assume that all homsets implemented in Sage are sets, or equivalently that we only implement locally small categories. See Wikipedia article Category_(mathematics).

trac ticket #17364: every homset category shall be a subcategory of the category of all homsets:

```python
class Endset(base_category):
 Bases: sage.categories.category_with_axiom.CategoryWithAxiom
 The category of all endomorphism sets.
 This category serves two purposes: making sure that the Endset axiom is implemented in the category where it’s defined, namely Homsets, and specifying that Endsets are monoids.
 EXAMPLES:
 sage: from sage.categories.homsets import Homsets
 sage: Homsets().Endset() # Category of endsets
```

```python
class ParentMethods
 Bases: object
 is_endomorphism_set()
 Return True as self is in the category of Endsets.
 EXAMPLES:
 sage: P.<t> = ZZ[]
 sage: E = End(P)
 sage: E.is_endomorphism_set()
 True
```

```python
easy_super_categories()
 Implement the fact that endsets are monoids.
 See also:
 CategoryWithAxiom.easy_super_categories()
 EXAMPLES:
 sage: from sage.categories.homsets import Homsets
 sage: Homsets().Endset().easy_super_categories()
 [Category of monoids]
```

5.11. Homset categories
class SubcategoryMethods
    Bases: object

    Endset()
    Return the subcategory of the homsets of self that are endomorphism sets.

    EXAMPLES:
    sage: Sets().Homsets().Endset()
    Category of endsets of sets
    sage: Posets().Homsets().Endset()
    Category of endsets of posets

super_categories()
    Return the super categories of self.

    EXAMPLES:
    sage: from sage.categories.homsets import Homsets
    sage: Homsets()
    Category of homsets

class sage.categories.homsets.HomsetsCategory(category, *args)
    Bases: sage.categories.covariant_functorial_construction.FunctorialConstructionCategory

    base()
    If this homsets category is subcategory of a category with a base, return that base.

    Todo: Is this really useful?

    EXAMPLES:
    sage: ModulesWithBasis(ZZ).Homsets().base()
    Integer Ring

    classmethod default_super_categories(category)
    Return the default super categories of category.Homsets().

    INPUT:
    • cls – the category class for the functor \( F \)
    • category – a category \( \mathcal{C} \)

    OUTPUT: a category
As for the other functorial constructions, if `category` implements a nested `Homsets` class, this method is used in combination with `category.Homsets().extra_super_categories()` to compute the super categories of `category.Homsets()`.

**EXAMPLES:**

If `category` has one or more full super categories, then the join of their respective homsets category is returned. In this example, this join consists of a single category:

```sage
sage: from sage.categories.homsets import HomsetsCategory
sage: from sage.categories.additive_groups import AdditiveGroups
sage: C = AdditiveGroups()
sage: C.full_super_categories()
[Category of additive inverse additive unital additive magmas, Category of additive monoids]
sage: H = HomsetsCategory.default_super_categories(C); H
Category of homsets of additive monoids
sage: type(H)
<class 'sage.categories.additive_monoids.AdditiveMonoids.Homsets_with_category'>
```

and, given that nothing specific is currently implemented for homsets of additive groups, `H` is directly the category thereof:

```sage
sage: C.Homsets()
Category of homsets of additive monoids
```

Similarly for rings: a ring homset is just a homset of unital magmas and additive magmas:

```sage
sage: Rings().Homsets()
Category of homsets of unital magmas and additive unital additive magmas
```

Otherwise, if `category` implements a nested class `Homsets`, this method returns the category of all homsets:

```sage
sage: AdditiveMagmas.Homsets
<class 'sage.categories.additive_magmas.AdditiveMagmas.Homsets'>
sage: HomsetsCategory.default_super_categories(AdditiveMagmas())
Category of homsets
```

which gives one of the super categories of `category.Homsets()`:

```sage
sage: AdditiveMagmas().Homsets().super_categories()
[Category of additive magmas, Category of homsets]
sage: AdditiveMagmas().AdditiveUnital().Homsets().super_categories()
[Category of additive unital additive magmas, Category of homsets]
```

the other coming from `category.Homsets().extra_super_categories()`:

```sage
sage: AdditiveMagmas().Homsets().extra_super_categories()
[Category of additive magmas]
```

Finally, as a last resort, this method returns a stub category modelling the homsets of this category:

```sage
sage: hasattr(Posets, "Homsets")
False
```

(continues on next page)
class sage.categories.homsets.HomsetsOf(*args)

Bases: sage.categories.homsets.HomsetsCategory

Default class for homsets of a category.

This is used when a category \( C \) defines some additional structure but not a homset category of its own. Indeed, unlike for covariant functorial constructions, we cannot represent the homset category of \( C \) by just the join of the homset categories of its super categories.

EXAMPLES:

```sage
sage: C = (Magmas() & Posets()).Homsets(); C
Category of homsets of magmas and posets
sage: type(C)
<class 'sage.categories.homsets.HomsetsOf_with_category'>
```

super_categories()

Return the super categories of \( self \).

A stub homset category admits a single super category, namely the category of all homsets.

EXAMPLES:

```sage
sage: C = (Magmas() & Posets()).Homsets(); C
Category of homsets of magmas and posets
sage: type(C)
<class 'sage.categories.homsets.HomsetsOf_with_category'>
```

5.12 Realizations Covariant Functorial Construction

See also:

- `Sets().WithRealizations` for an introduction to realizations and with realizations.
- `sage.categories.covariant Functorial_construction` for an introduction to covariant functorial constructions.
- `sage.categories.examples.with_realizations` for an example.

class sage.categories.realizations.Category_realization_of_parent(parent_with_realization)

Bases: sage.categories.category_types.Category_over_base, sage.misc.bindable_classBindableClass

An abstract base class for categories of all realizations of a given parent

INPUT:

- `parent_with_realization` – a parent
See also:

\texttt{Sets().WithRealizations}

EXAMPLES:

\begin{verbatim}
\texttt{sage: A = Sets().WithRealizations().example(); A}
The subset algebra of \{1, 2, 3\} over Rational Field
\end{verbatim}

The role of this base class is to implement some technical goodies, like the binding \texttt{A.Realizations()} when a subclass \texttt{Realizations} is implemented as a nested class in \texttt{A} (see the \textit{code of the example}):

\begin{verbatim}
\texttt{sage: C = A.Realizations(); C}
Category of realizations of The subset algebra of \{1, 2, 3\} over Rational Field
\end{verbatim}

as well as the name for that category.

\begin{verbatim}
\texttt{sage.categories.realizations.Realizations(self)}
Return the category of realizations of the parent \texttt{self} or of objects of the category \texttt{self}
\end{verbatim}

\textbf{INPUT:}

- \texttt{self} – a parent or a concrete category

\textbf{Note:} this \textit{function} is actually inserted as a \textit{method} in the class \texttt{Category} (see \texttt{Realizations()}). It is defined here for code locality reasons.

EXAMPLES:

The category of realizations of some algebra:

\begin{verbatim}
\texttt{sage: Algebras(QQ).Realizations()}
Join of Category of algebras over Rational Field and Category of realizations of unital magmas
\end{verbatim}

The category of realizations of a given algebra:

\begin{verbatim}
\texttt{sage: A = Sets().WithRealizations().example(); A}
The subset algebra of \{1, 2, 3\} over Rational Field
\texttt{sage: A.Realizations()}
Category of realizations of The subset algebra of \{1, 2, 3\} over Rational Field
\texttt{sage: C = GradedHopfAlgebrasWithBasis(QQ).Realizations(); C}
Join of Category of graded hopf algebras with basis over Rational Field and \textcolor{red}{\textit{\rightarrow}} Category of realizations of hopf algebras over Rational Field
\texttt{sage: C.super_categories()}
[Category of graded hopf algebras with basis over Rational Field, Category of \textcolor{red}{\textit{\rightarrow}} realizations of hopf algebras over Rational Field]
\texttt{sage: TestSuite(C).run()}
\end{verbatim}

See also:

- \texttt{Sets().WithRealizations}
- \texttt{ClasscallMetaclass}
Todo: Add an optional argument to allow for:

```sage
Realizations(A, category = Blahs()) # todo: not implemented
```

class `sage.categories.realizations.RealizationsCategory(category, *args)`

Bases: `sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory`

An abstract base class for all categories of realizations category

Realization are implemented as `RegressiveCovariantConstructionCategory`. See there for the documentation of how the various bindings such as `Sets().Realizations()` and `P.Realizations()`, where `P` is a parent, work.

See also:

`Sets().WithRealizations`

### 5.13 With Realizations Covariant Functorial Construction

See also:

- `Sets().WithRealizations` for an introduction to realizations and with realizations.
- `sage.categories.covariant_functorial_construction` for an introduction to covariant functorial constructions.

```
sage.categories.with_realizations.WithRealizations(self)
```

Return the category of parents in `self` endowed with multiple realizations.

INPUT:

- `self` – a category

See also:

- The documentation and code (`sage.categories.examples.with_realizations`) of `Sets().WithRealizations().example()` for more on how to use and implement a parent with several realizations.
- Various use cases:
  - `SymmetricFunctions`
  - `QuasiSymmetricFunctions`
  - `NonCommutativeSymmetricFunctions`
  - `SymmetricFunctionsNonCommutingVariables`
  - `DescentAlgebra`
  - `algebras.Moebius`
  - `IwahoriHeckeAlgebra`
  - `ExtendedAffineWeylGroup`
- The Implementing Algebraic Structures thematic tutorial.
- `sage.categories.realizations`
Note: this function is actually inserted as a method in the class Category (see WithRealizations()). It is defined here for code locality reasons.

EXAMPLES:

```
sage: Sets().WithRealizations()
Category of sets with realizations
```

**Parent with realizations**

Let us now explain the concept of realizations. A parent with realizations is a facade parent (see SetsFacade) admitting multiple concrete realizations where its elements are represented. Consider for example an algebra \( A \) which admits several natural bases:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of \(\{1, 2, 3\} \) over Rational Field
```

For each such basis \( B \) one implements a parent \( P_B \) which realizes \( A \) with its elements represented by expanding them on the basis \( B \):

```
sage: A.F()
The subset algebra of \(\{1, 2, 3\} \) over Rational Field in the Fundamental basis
sage: A.Out()
The subset algebra of \(\{1, 2, 3\} \) over Rational Field in the Out basis
sage: A.In()
The subset algebra of \(\{1, 2, 3\} \) over Rational Field in the In basis
```

If \( B \) and \( B' \) are two bases, then the change of basis from \( B \) to \( B' \) is implemented by a canonical coercion between \( P_B \) and \( P_{B'} \):

```
sage: F = A.F(); In = A.In(); Out = A.Out()
sage: i = In.an_element(); i
In[{}] + 2*In[{1}] + 3*In[{2}] + In[{1, 2}]
sage: F(i)
7*F[{}] + 3*F[{1}] + 4*F[{2}] + F[{1, 2}]
sage: F.coerce_map_from(Out)
Generic morphism:
From: The subset algebra of \(\{1, 2, 3\} \) over Rational Field in the Out basis
To: The subset algebra of \(\{1, 2, 3\} \) over Rational Field in the Fundamental basis allowing for mixed arithmetic:
```

```
sage: (1 + Out.from_set(1)) * In.from_set(2,3)
Out[{}] + 2*Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] +...
 4*Out[{2, 3}] + 4*Out[{1, 2, 3}]
```

In our example, there are three realizations:
sage: A.realizations()  
([The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis, 
The subset algebra of \{1, 2, 3\} over Rational Field in the In basis, 
The subset algebra of \{1, 2, 3\} over Rational Field in the Out basis])

Instead of manually defining the shorthands \(F\), In, and Out, as above one can just do:

```
sage: A.inject_shorthands()
Defining F as shorthand for The subset algebra of \{1, 2, 3\} over Rational Field in \to the Fundamental basis
Defining In as shorthand for The subset algebra of \{1, 2, 3\} over Rational Field in \to the In basis
Defining Out as shorthand for The subset algebra of \{1, 2, 3\} over Rational Field in \to the Out basis
```

Rationale

Besides some goodies described below, the role of \(A\) is threefold:

- To provide, as illustrated above, a single entry point for the algebra as a whole: documentation, access to its properties and different realizations, etc.
- To provide a natural location for the initialization of the bases and the coercions between, and other methods that are common to all bases.
- To let other objects refer to \(A\) while allowing elements to be represented in any of the realizations.

We now illustrate this second point by defining the polynomial ring with coefficients in \(A\):

```
sage: P = A['x']; P
Univariate Polynomial Ring in x over The subset algebra of \{1, 2, 3\} over Rational Field
```

```
sage: x = P.gen()
```      
In the following examples, the coefficients turn out to be all represented in the \(F\) basis:

```
sage: P.one()
F[{}]
```

```
sage: (P.an_element() + 1)^2
F[{}]x^2 + 2*F[{}]*x + F[{}]
```

However we can create a polynomial with mixed coefficients, and compute with it:

```
sage: p = P([1, In[{1}], Out[{2}]]); p
Out[{2}]*x^2 + In[{1}]*x + F[{}]
```

```
sage: p^2
Out[{2}]*x^4
-8*In[{}] + 4*In[{1}] + 8*In[{2}] + 4*In[{3}] - 4*In[{1, 2}] - 2*In[{1, 2, 3}]*x^3
+ (F[{}] + 3*F[{1}]) + 2*F[{2}] - 2*F[{1, 2}] - 2*F[{2, 3}] + 2*F[{1, 2, 3}] + 2*F[{1, 2, 3}])x^2
+ (2*F[{}]) + 2*F[{1}])x + F[{}]
```      

Note how each coefficient involves a single basis which need not be that of the other coefficients. Which basis is used depends on how coercion happened during mixed arithmetic and needs not be deterministic.
One can easily coerce all coefficient to a given basis with:

```
sage: p.map_coefficients(In)
(-4*In[{}] + 2*In[{1}] + 4*In[{2}] + 2*In[{3}] - 2*In[{1, 2}] - In[{1, 3}] - 2*In[{2, 3}] + In[{1, 2, 3}])*x^2 + In[{1}]*x + In[{}]
```

Alas, the natural notation for constructing such polynomials does not yet work:

```
sage: In[{1}]*x
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'The subset algebra of {1, 2, 3} over Rational Field in the In basis' and 'Univariate Polynomial Ring in x over The subset algebra of {1, 2, 3} over Rational Field'
```

**The category of realizations of \( A \)**

The set of all realizations of \( A \), together with the coercion morphisms is a category (whose class inherits from `Category_realization_of_parent`):

```
sage: A.Realizations()
Category of realizations of The subset algebra of {1, 2, 3} over Rational Field
```

The various parent realizing \( A \) belong to this category:

```
sage: A.F() in A.Realizations()
True
```

\( A \) itself is in the category of algebras with realizations:

```
sage: A in Algebras(QQ).WithRealizations()
True
```

The (mostly technical) `WithRealizations` categories are the analogs of the `*WithSeveralBases` categories in MuPAD-Combinat. They provide support tools for handling the different realizations and the morphisms between them.

Typically, `VectorSpaces(QQ).FiniteDimensional().WithRealizations()` will eventually be in charge, whenever a coercion \( \phi : A \to B \) is registered, to register \( \phi^{-1} \) as coercion \( B \to A \) if there is none defined yet. To achieve this, `FiniteDimensionalVectorSpaces` would provide a nested class `WithRealizations` implementing the appropriate logic.

`WithRealizations` is a **regressive covariant functorial construction**. On our example, this simply means that \( A \) is automatically in the category of rings with realizations (covariance):

```
sage: A in Rings().WithRealizations()
True
```

and in the category of algebras (regressiveness):

```
sage: A in Algebras(QQ)
True
```
Note: For a category, `C.WithRealizations()` in fact calls `sage.categories.with_realizations.WithRealizations(C)`. The later is responsible for building the hierarchy of the categories with realizations in parallel to that of their base categories, optimizing away those categories that do not provide a `WithRealizations` nested class. See `sage.categories.covariant_functorial_construction` for the technical details.

Note: Design question: currently `WithRealizations` is a regressive construction. That is `self.WithRealizations()` is a subcategory of `self` by default:

```
sage: Algebras(QQ).WithRealizations().super_categories()
[Category of algebras over Rational Field,
 Category of monoids with realizations,
 Category of additive unital additive magmas with realizations]
```

Is this always desirable? For example, `AlgebrasWithBasis(QQ).WithRealizations()` should certainly be a subcategory of `Algebras(QQ)`, but not of `AlgebrasWithBasis(QQ)`. This is because `AlgebrasWithBasis(QQ)` is specifying something about the concrete realization.

class `sage.categories.with_realizations.WithRealizationsCategory(category, *args)`
Bases: `sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory`

An abstract base class for all categories of parents with multiple realizations.

See also:

`Sets().WithRealizations`

The role of this base class is to implement some technical goodies, such as the name for that category.
6.1 Examples of algebras with basis

sage.categories.examples.algebras_with_basis.Example
    alias of sage.categories.examples.algebras_with_basis.FreeAlgebra
class sage.categories.examples.algebras_with_basis.FreeAlgebra(R, alphabet=('a', 'b', 'c'))
    Bases: sage.combinat.free_module.CombinatorialFreeModule
    An example of an algebra with basis: the free algebra
    This class illustrates a minimal implementation of an algebra with basis.
    algebra_generators()
        Return the generators of this algebra, as per algebra_generators().
        EXAMPLES:
        sage: A = AlgebrasWithBasis(QQ).example(); A
        An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
        sage: A.algebra_generators()
        Family (B[a], B[b], B[c])
    one_basis()
        Returns the empty word, which index the one of this algebra, as per AlgebrasWithBasis.ParentMethods.one_basis().
        EXAMPLES:
        sage: A = AlgebrasWithBasis(QQ).example() sage: A.one_basis() word:
    product_on_basis(w1, w2)
        Product of basis elements, as per AlgebrasWithBasis.ParentMethods.product_on_basis().
        EXAMPLES:
        sage: A = AlgebrasWithBasis(QQ).example()
        sage: Words = A.basis().keys()
        sage: A.product_on_basis(Words("acb"), Words("cba"))
6.2 Examples of commutative additive monoids

sage.categories.examples.commutative_additive_monoids.Example

alias of sage.categories.examples.commutative_additive_monoids.

FreeCommutativeAdditiveMonoid

class sage.categories.examples.commutative_additive_monoids.FreeCommutativeAdditiveMonoid(alphabet=('a', 'b', 'c', 'd'))

Bases: sage.categories.examples.commutative_additive_semigroups.

FreeCommutativeAdditiveSemigroup

An example of a commutative additive monoid: the free commutative monoid

This class illustrates a minimal implementation of a commutative monoid.

EXAMPLES:

sage: S = CommutativeAdditiveMonoids().example(); S
An example of a commutative monoid: the free commutative monoid generated by ('a', 'b', 'c', 'd')

sage: S.category()
Category of commutative additive monoids

This is the free semigroup generated by:

sage: S.additive_semigroup_generators()
Family (a, b, c, d)

with product rule given by \(a \times b = a\) for all \(a, b\):

sage: (a,b,c,d) = S.additive_semigroup_generators()

We conclude by running systematic tests on this commutative monoid:

sage: TestSuite(S).run(\texttt{verbose = True})
running \_\_test_additive_associativity() . . . pass
running \_\_test_an_element() . . . pass
running \_\_test_cardinality() . . . pass
running \_\_test_category() . . . pass
running \_\_test_construction() . . . pass
running \_\_test_elements() . . .
  Running the test suite of self.an_element()
  running \_\_test_category() . . . pass
  running \_\_test_eq() . . . pass
  running \_\_test_new() . . . pass
  running \_\_test_nonzero_equal() . . . pass
  running \_\_test_not_implemented_methods() . . . pass
  running \_\_test_pickling() . . . pass
  pass
running \_\_test_elements_eq_reflexive() . . . pass
running \_\_test_elements_eq_symmetric() . . . pass
running \_\_test_elements_eq_transitive() . . . pass

(continues on next page)
running ._test_elements_neq() ... pass
running ._test_eq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
running ._test_some_elements() ... pass
running ._test_zero() ... pass

class Element(parent, iterable)
    Bases: sage.categories.examples.commutative_additive_semigroups.
          FreeCommutativeAdditiveSemigroup.Element

zero()
    Returns the zero of this additive monoid, as per
    CommutativeAdditiveMonoids.ParentMethods.zero().
    EXAMPLES:

    sage: M = CommutativeAdditiveMonoids().example(); M
    An example of a commutative monoid: the free commutative monoid
gen
    generated by ('a', 'b', 'c', 'd')
    sage: M.zero()
    0

6.3 Examples of commutative additive semigroups

sage.categories.examples.commutative_additive_semigroups.Example
    alias of sage.categories.examples.commutative_additive_semigroups.
    FreeCommutativeAdditiveSemigroup

class sage.categories.examples.commutative_additive_semigroups.FreeCommutativeAdditiveSemigroup(alphabet=('a', 'b', 'c', 'd'))
    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
           parent.Parent

    An example of a commutative additive monoid: the free commutative monoid

    This class illustrates a minimal implementation of a commutative additive monoid.
    EXAMPLES:

    sage: S = CommutativeAdditiveSemigroups().example(); S
    An example of a commutative semigroup: the free commutative semigroup
gen
    generated by (a, 'b', 'c', 'd')
    sage: S.category()
    Category of commutative additive semigroups

    This is the free semigroup generated by:

    sage: S.additive_semigroup_generators()
    Family (a, b, c, d)
with product rule given by \( a \times b = a \) for all \( a, b \):

```
sage: (a,b,c,d) = S.additive_semigroup_generators()
```

We conclude by running systematic tests on this commutative monoid:

```
sage: TestSuite(S).run(verbose = True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
 Running the test suite of self.an_element()
 running ._test_category() . . . pass
 running ._test_eq() . . . pass
 running ._test_new() . . . pass
 running ._test_not_implemented_methods() . . . pass
 running ._test_pickling() . . . pass
 pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
```

```python
class Element(parent, iterable)
 Bases: sage.structure.element_wrapper.ElementWrapper

EXAMPLES:
```
```
sage: F = CommutativeAdditiveSemigroups().example()
sage: x = F.element_class(F, ('a',4), ('b', 0), ('a', 2), ('c', 1), ('d', 5))
sage: x
2*a + c + 5*d
sage: x.value
{'a': 2, 'b': 0, 'c': 1, 'd': 5}
sage: x.parent()
An example of a commutative semigroup: the free commutative semigroup generated by ('a', 'b', 'c', 'd')
```

Internally, elements are represented as dense dictionaries which associate to each generator of the monoid its multiplicity. In order to get an element, we wrap the dictionary into an element via `ElementWrapper`:

```
sage: x.value
{'a': 2, 'b': 0, 'c': 1, 'd': 5}
```

```
additive_semigroup_generators()
 Returns the generators of the semigroup.
```

EXAMPLES:
sage: F = CommutativeAdditiveSemigroups().example()

sage: F.additive_semigroup_generators()
Family (a, b, c, d)

an_element()
Returns an element of the semigroup.

EXAMPLES:

sage: F = CommutativeAdditiveSemigroups().example()

sage: F.an_element()

a + 2*b + 3*c + 4*d

summation(x, y)
Returns the product of \( x \) and \( y \) in the semigroup, as per CommutativeAdditiveSemigroups.

ParentMethodssummation().

EXAMPLES:

sage: F = CommutativeAdditiveSemigroups().example()

(a,b,c,d) = F.additive_semigroup_generators()

sage: F.summation(a,b)
a + b

sage: (a+b) + (a+c)
2*a + b + c

6.4 Examples of Coxeter groups

6.5 Example of a crystal

class sage.categories.examples.crystals.HighestWeightCrystalOfTypeA(n=3)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of a crystal: the highest weight crystal of type \( A_n \) of highest weight \( \omega_1 \).

The purpose of this class is to provide a minimal template for implementing crystals. See CrystalOfLetters
for a full featured and optimized implementation.

EXAMPLES:

sage: C = Crystals().example()

sage: C

Highest weight crystal of type A_3 of highest weight omega_1

sage: C.category()

category of classical crystals

The elements of this crystal are in the set \{1, \ldots, n + 1\}:

sage: C.list()
[1, 2, 3, 4]

sage: C.module_generators[0]
1
The crystal operators themselves correspond to the elementary transpositions:

```python
sage: b = C.module_generators[0]
sage: b.f(1)
2
sage: b.f(1).e(1) == b
True
```

Only the following basic operations are implemented:

- `cartan_type()` or an attribute `_cartan_type`
- an attribute `module_generators`
- `Element.e()`
- `Element.f()`

All the other usual crystal operations are inherited from the categories; for example:

```python
sage: C.cardinality()
4
```

**class Element**

Bases: `sage.structure.element_wrapper.ElementWrapper`

```python
e(i)
Returns the action of \(e_i\) on self.

EXAMPLES:

```python
sage: C = Crystals().example(4)
sage: [[c,i,c.e(i)] for i in C.index_set() for c in C if c.e(i) is not None]
[[[2, 1, 1], [3, 2, 2], [4, 3, 3], [5, 4, 4]]
```

```python
f(i)
Returns the action of \(f_i\) on self.

EXAMPLES:

```python
sage: C = Crystals().example(4)
sage: [[c,i,c.f(i)] for i in C.index_set() for c in C if c.f(i) is not None]
[[[1, 1, 2], [2, 2, 3], [3, 3, 4], [4, 4, 5]]
```

**class sage.categories.examples.crystals.NaiveCrystal**

Bases: `sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent`

This is an example of a “crystal” which does not come from any kind of representation, designed primarily to test the Stembridge local rules with. The crystal has vertices labeled 0 through 5, with 0 the highest weight.

The code here could also possibly be generalized to create a class that automatically builds a crystal from an edge-colored digraph, if someone feels adventurous.

Currently, only the methods `highest_weight_vector()`, `e()`, and `f()` are guaranteed to work.

**EXAMPLES:**

```python
sage: C = Crystals().example(choice='naive')
sage: C.highest_weight_vector()
0
```
class Element
Bases: sage.structure.element_wrapper.ElementWrapper

\(e(i)\)

Returns the action of \(e_i\) on self.

EXAMPLES:

```
sage: C = Crystals().example(choice='naive')
sage: [[c,i,c.e(i)] for i in C.index_set() for c in [C(j) for j in [0..5]] if c.e(i) is not None]
[[1, 1, 0], [2, 1, 1], [3, 1, 2], [5, 1, 3], [4, 2, 0], [5, 2, 4]]
```

\(f(i)\)

Returns the action of \(f_i\) on self.

EXAMPLES:

```
sage: C = Crystals().example(choice='naive')
sage: [[c,i,c.f(i)] for i in C.index_set() for c in [C(j) for j in [0..5]] if c.f(i) is not None]
[[0, 1, 1], [1, 1, 2], [2, 1, 3], [3, 1, 5], [0, 2, 4], [4, 2, 5]]
```

### 6.6 Examples of CW complexes

sage.categories.examples.cw_complexes.Example
alias of sage.categories.examples.cw_complexes.Surface

class sage.categories.examples.cw_complexes.Surface(bdy=(1, 2, 1, 2))
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of a CW complex: a (2-dimensional) surface.
This class illustrates a minimal implementation of a CW complex.

EXAMPLES:

```
sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example(); X
An example of a CW complex: the surface given by the boundary map (1, 2, 1, 2)
sage: X.category()
Category of finite finite dimensional CW complexes
```

We conclude by running systematic tests on this manifold:

```
sage: TestSuite(X).run()
```

class Element(parent, dim, name)
Bases: sage.structure.element.Element

A cell in a CW complex.

dimension()

Return the dimension of self.

EXAMPLES:
from sage.categories.cw_complexes import CWComplexes
X = CWComplexes().example()
f = X.an_element()
f.dimension()
2

an_element()
Return an element of the CW complex, as per Sets.ParentMethods.an_element().

EXAMPLES:

from sage.categories.cw_complexes import CWComplexes
X = CWComplexes().example()
f = X.an_element()
2-cell f

cells()
Return the cells of self.

EXAMPLES:

from sage.categories.cw_complexes import CWComplexes
X = CWComplexes().example()
C = X.cells()
[sorted((d, C[d]) for d in C.keys())
[(0, (0-cell v,)),
 (1, (0-cell e1, 0-cell e2)),
 (2, (2-cell f,))]]

6.7 Example of facade set

class sage.categories.examples.facade_sets.IntegersCompletion
    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.
An example of a facade parent: the set of integers completed with + − ∞.
This class illustrates a minimal implementation of a facade parent that models the union of several other parents.

EXAMPLES:

S = Sets().Facade().example("union"); S
An example of a facade set: the integers completed by +-infinity

class sage.categories.examples.facade_sets.PositiveIntegerMonoid
    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
An example of a facade parent: the positive integers viewed as a multiplicative monoid.
This class illustrates a minimal implementation of a facade parent which models a subset of a set.

EXAMPLES:

S = Sets().Facade().example(); S
An example of facade set: the monoid of positive integers
6.8 Examples of finite Coxeter groups

```python
class sage.categories.examples.finite_coxeter_groups.DihedralGroup(n=5):
 Bases:
 sage.structure.unique_representation.UniqueRepresentation,
 sage.structure.parent.Parent

 An example of finite Coxeter group: the n-th dihedral group of order $2n$.

 The purpose of this class is to provide a minimal template for implementing finite Coxeter groups. See
 DihedralGroup for a full featured and optimized implementation.

 EXAMPLES:

 sage: G = FiniteCoxeterGroups().example()
 This group is generated by two simple reflections s_1 and s_2 subject to the relation $(s_1s_2)^n = 1$:

 sage: G.simple_reflections()
 Finite family {1: (1,), 2: (2,)}
 sage: s1, s2 = G.simple_reflections()
 sage: (s1*s2)^5 == G.one()
 True

 An element is represented by its reduced word (a tuple of elements of self.index_set()):

 sage: G.an_element()
 (1, 2)
 sage: list(G)
 [(),
 (1,),
 (2,),
 (1, 2),
 (2, 1),
 (1, 2, 1),
 (2, 1, 2),
 (1, 2, 1, 2),
 (2, 1, 2, 1),
 (1, 2, 1, 2, 1)]

 This reduced word is unique, except for the longest element where the chosen reduced word is $(1, 2, 1, 2, ...)$:

 sage: G.long_element()
 (1, 2, 1, 2, 1)
```

```python
class Element
 Bases:
 sage.structure.element_wrapper.ElementWrapper

 apply_simple_reflection_right(i)
 Implements CoxeterGroups.ElementMethods.apply_simple_reflection().

 EXAMPLES:

 sage: D5 = FiniteCoxeterGroups().example(5)
 sage: [i^2 for i in D5]
 # indirect doctest
```

(continues on next page)
\[
\begin{bmatrix}
(\), (\), (\), (1, 2, 1, 2), (2, 1, 2, 1), (\), (\), (2, 1), (1, 2), (\)
\end{bmatrix}
\]

\texttt{sage: [i^5 for i in D5]} # indirect doctest
\[
\begin{bmatrix}
(\), (1,), (2,), (\), (\), (1, 2, 1), (2, 1, 2), (\), (\), (1, 2, 1, 2, 1)
\end{bmatrix}
\]

\textbf{has_right_descent}(i, positive=False, side='right')

Implements \texttt{SemiGroups.ElementMethods.has_right_descent()}.  

**EXAMPLES:**

\texttt{sage: D6 = FiniteCoxeterGroups().example(6)}
\texttt{sage: s = D6.simple_reflections()}
\texttt{sage: s[1].has_descent(1)}  
True
\texttt{sage: s[1].has_descent(2)}  
False
\texttt{sage: D6.one().has_descent(1)}  
False
\texttt{sage: D6.one().has_descent(2)}  
False
\texttt{sage: D6.long_element().has_descent(1)}  
True
\texttt{sage: D6.long_element().has_descent(2)}  
True

**wrapped_class**

alias of \texttt{builtins.tuple}

\textbf{coxeter_matrix()}

Return the Coxeter matrix of \texttt{self}.

**EXAMPLES:**

\texttt{sage:FiniteCoxeterGroups().example(6).coxeter_matrix()}
\[
\begin{bmatrix}
1 & 6 \\
6 & 1 \\
\end{bmatrix}
\]

\textbf{degrees()}

Return the degrees of \texttt{self}.

**EXAMPLES:**

\texttt{sage:FiniteCoxeterGroups().example(6).degrees()}
\[(2, 6)\]

\textbf{index_set()}

Implements \texttt{CoxeterGroups.ParentMethods.index_set()}.  

**EXAMPLES:**

\texttt{sage: D4 = FiniteCoxeterGroups().example(4)}
\texttt{sage: D4.index_set()}
\[(1, 2)\]
one()
Implements Monoids.ParentMethods.one().

EXAMPLES:

```
sage: D6 = FiniteCoxeterGroups().example(6)
sage: D6.one()
()```

```
sage.categories.examples.finite_coxeter_groups.Example
alias of sage.categories.examples.finite_coxeter_groups.DihedralGroup```

### 6.9 Example of a finite dimensional algebra with basis

```
sage.categories.examples.finite_dimensional_algebras_with_basis.Example
alias of sage.categories.examples.finite_dimensional_algebras_with_basis.
KroneckerQuiverPathAlgebra```

```
class sage.categories.examples.finite_dimensional_algebras_with_basis.
KroneckerQuiverPathAlgebra(base_ring)

Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of a finite dimensional algebra with basis: the path algebra of the
Kronecker quiver.

This class illustrates a minimal implementation of a finite dimensional algebra with basis. See sage.quivers.
algebra.PathAlgebra for a full-featured implementation of path algebras.

algebra_generators()
Return algebra generators for this algebra.

See also:
Algebras.ParentMethods.algebra_generators().

EXAMPLES:

```
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.algebra_generators()
Finite family {'x': x, 'y': y, 'a': a, 'b': b}
```

one()
Return the unit of this algebra.

See also:
AlgebrasWithBasis.ParentMethods.one_basis()

EXAMPLES:

```
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example()
sage: A.-one()
x + y```

product_on_basis(w1, w2)
Return the product of the two basis elements indexed by w1 and w2.
See also:
AlgebrasWithBasis.ParentMethods.product_on_basis().

EXAMPLES:

```
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example()
```

Here is the multiplication table for the algebra:

```
sage: matrix([[p*q for q in A.basis()] for p in A.basis()])
x	0	a	b
 0 | y | 0 | 0
a | a | 0 | 0
b | b | 0 | 0
```

Here we take some products of linear combinations of basis elements:

```
sage: x, y, a, b = A.basis()
sage: a * (1-b)^2 * x
0
sage: x*a + b*y
a + b
sage: x*x
x
sage: x*y
0
sage: x*a*y
a
```

6.10 Examples of a finite dimensional Lie algebra with basis

class sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra(R, n=None, M=None, ambient=None):

Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

An example of a finite dimensional Lie algebra with basis: the abelian Lie algebra.

Let R be a commutative ring, and M an R-module. The *abelian Lie algebra* on M is the R-Lie algebra obtained by endowing M with the trivial Lie bracket ($[a, b] = 0$ for all $a, b \in M$).

This class illustrates a minimal implementation of a finite dimensional Lie algebra with basis.

INPUT:

- R – base ring
- n – (optional) a nonnegative integer (default: None)
- M – an R-module (default: the free R-module of rank n) to serve as the ground space for the Lie algebra
• ambient – (optional) a Lie algebra; if this is set, then the resulting Lie algebra is declared a Lie subalgebra of ambient

OUTPUT:
The abelian Lie algebra on M.

class Element
Bases: $\text{sage.categories.examples.lie_algebras.LieAlgebraFromAssociative.Element}$

lift()
Return the lift of self to the universal enveloping algebra.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.lift()
2*b0 + 2*b1 + 3*b2
```

monomial_coefficients(copy=False)
Return the monomial coefficients of self.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.monomial_coefficients()
{0: 2, 1: 2, 2: 3}
```

to_vector($\text{order=None, sparse=False}$)
Return self as a vector in self.parent().module().

See the docstring of the latter method for the meaning of this.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.to_vector()
(2, 2, 3)
```

ambient()
Return the ambient Lie algebra of self.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: S = L.subalgebra([2*a+b, b + c])
sage: S.ambient() == L
True
```

basis()
Return the basis of self.

EXAMPLES:
```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis()
Finite family {0: (1, 0, 0), 1: (0, 1, 0), 2: (0, 0, 1)}
```

basis_matrix()

Return the basis matrix of self.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis_matrix()
[1 0 0]
[0 1 0]
[0 0 1]
```

from_vector(v, order=None)

Return the element of self corresponding to the vector v in self.module().

Implement this if you implement `module()`; see the documentation of sage.categories.lie_algebras.LieAlgebras.module() for how this is to be done.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True
```

gens()

Return the generators of self.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.gens()
((1, 0, 0), (0, 1, 0), (0, 0, 1))
```

ideal(gens)

Return the Lie subalgebra of self generated by the elements of the iterable gens.

This currently requires the ground ring R to be a field.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.subalgebra([2*a+b, b + c])
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field with
basis matrix:
| 1  0 -1/2 |
| 0  1  1 |
```

is_ideal(A)

Return if self is an ideal of the ambient space A.

EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.is_ideal(L)
True
sage: S1 = L.subalgebra([2*a+b, b + c])
sage: S1.is_ideal(L)
True
sage: S2 = L.subalgebra([2*a+b])
sage: S2.is_ideal(S1)
True
sage: S1.is_ideal(S2)
False

lie_algebra_generators()

Return the basis of self.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis()
Finite family {0: (1, 0, 0), 1: (0, 1, 0), 2: (0, 0, 1)}
```

module()

Return an R-module which is isomorphic to the underlying R-module of self.

See `sage.categories.lie_algebras.LieAlgebras.module()` for an explanation.

In this particular example, this returns the module M that was used to construct self.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.module()
Vector space of dimension 3 over Rational Field
```

subalgebra(gens)

Return the Lie subalgebra of self generated by the elements of the iterable gens.

This currently requires the ground ring R to be a field.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: S = L.subalgebra([2*a+b, b + c])
sage: S.module()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[-1 0 -1/2]
[ 1 1 1]
```

(continues on next page)
zero()

Return the zero element.

EXAMPLES:

```
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.zero()
(0, 0, 0)
```

```
sage.categories.examples.finite_dimensional_lie_algebras_with_basis.Example
alias of sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra
```

6.11 Examples of finite enumerated sets

class `sage.categories.examples.finite_enumerated_sets.Example`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.structure.parent.Parent`

An example of a finite enumerated set: \{1, 2, 3\}

This class provides a minimal implementation of a finite enumerated set.

See `FiniteEnumeratedSet` for a full featured implementation.

EXAMPLES:

```
sage: C = FiniteEnumeratedSets().example()
sage: C.cardinality()
3
sage: C.list()
[1, 2, 3]
sage: C.an_element()
1
```

This checks that the different methods of the enumerated set \(C\) return consistent results:

```
sage: TestSuite(C).run(verbosity = True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
  Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
```

(continues on next page)
pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

class sage.categories.examples.finite_enumerated_sets.IsomorphicObjectOfFiniteEnumeratedSet(ambient=An example of a finite enumerated set: {1, 2, 3})

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

ambient()
Returns the ambient space for self, as per Sets.Subquotients.ParentMethods.ambient().
EXAMPLES:

 sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
The image by some isomorphism of An example of a finite enumerated set: {1,2,3}
 sage: C.ambient()
An example of a finite enumerated set: {1,2,3}

lift(x)

INPUT:

• x – an element of self

 Lifts x to the ambient space for self, as per Sets.Subquotients.ParentMethods.lift().
EXAMPLES:

 sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
The image by some isomorphism of An example of a finite enumerated set: {1,2,3}
\texttt{sage: C.lift(9)}

\texttt{3}

\textbf{retract}(x)

\textbf{INPUT:}

- \texttt{x} – an element of the ambient space for \texttt{self}

Retracts \texttt{x} from the ambient space to \texttt{self}, as per \texttt{Sets.Subquotients.ParentMethods.retract()}.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
 The image by some isomorphism of An example of a finite enumerated set: {1,2,3}
 sage: C.retract(3)
 9
\end{verbatim}

\section*{6.12 Examples of finite monoids}

\texttt{sage.categories.examples.finite_monoids.Example}

alias of \texttt{sage.categories.examples.finite_monoids.IntegerModMonoid}

\textbf{class} \texttt{sage.categories.examples.finite_monoids.IntegerModMonoid(n=12)}

\textbf{Bases:} \texttt{sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent}

An example of a finite monoid: the integers mod \texttt{n}

This class illustrates a minimal implementation of a finite monoid.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: S = FiniteMonoids().example(); S
 An example of a finite multiplicative monoid: the integers modulo 12
 sage: S.category()
 Category of finitely generated finite enumerated monoids
\end{verbatim}

We conclude by running systematic tests on this monoid:

\begin{verbatim}
 sage: TestSuite(S).run(verbos...e = True)
 running ._test_an_element() ... pass
 running ._test_associativity() ... pass
 running ._test_category() ... pass
 running ._test_construction() ... pass
 running ._test_elements() ... Running the test suite of self.an_element()
 running ._test_category() ... pass
 running ._test_eq() ... pass
 running ._test_new() ... pass
 running ._test_not_implemented_methods() ... pass
\end{verbatim}

(continues on next page)
class Element

 Bases: sage.structure.element_wrapper.ElementWrapper

 wrapped_class
 alias of sage.rings.integer.Integer

 an_element()

 Returns an element of the monoid, as per Sets.ParentMethods.an_element().

 EXAMPLES:

 sage: M = FiniteMonoids().example()
 sage: M.an_element()
 6

 one()

 Return the one of the monoid, as per Monoids.ParentMethods.one().

 EXAMPLES:

 sage: M = FiniteMonoids().example()
 sage: M.one()
 1

 product(x, y)

 Return the product of two elements x and y of the monoid, as per Semigroups.ParentMethods.product().

 EXAMPLES:

 sage: M = FiniteMonoids().example()
 sage: M.product(M(3), M(5))
 3

 semigroup_generators()

 Returns a set of generators for self, as per Semigroups.ParentMethods.semigroup_generators().
 Currently this returns all integers mod n, which is of course far from optimal!

 EXAMPLES:
6.13 Examples of finite semigroups

sage.categories.examples.finite_semigroups.Example
alias of sage.categories.examples.finite_semigroups.LeftRegularBand
class sage.categories.examples.finite_semigroups.LeftRegularBand(alphabet=('a', 'b', 'c', 'd'))
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent
 An example of a finite semigroup

This class provides a minimal implementation of a finite semigroup.

EXAMPLES:

 sage: S = FiniteSemigroups().example(); S
 An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')

This is the semigroup generated by:

 sage: S.semigroup_generators()
 Family ('a', 'b', 'c', 'd')

such that $x^2 = x$ and $x y x = x y$ for any x and y in S:

 sage: S('dab')
 'dab'
 sage: S('dab') == S('acb')
 'dabc'

It follows that the elements of S are strings without repetitions over the alphabet a, b, c, d:

 sage: sorted(S.list())

It also follows that there are finitely many of them:

 sage: S.cardinality()
 64

Indeed:
As expected, all the elements of S are idempotents:

```
sage: all( x.is_idempotent() for x in S )
True
```

Now, let us look at the structure of the semigroup:

```
sage: S = FiniteSemigroups().example(alphabet = ('a','b','c'))
sage: S.cayley_graph(side="left", simple=True).plot()
Graphics object consisting of 60 graphics primitives
```

We conclude by running systematic tests on this semigroup:

```
sage: TestSuite(S).run(verbose = True)
running ._test_an_element() ... pass
running ._test_associativity() ... pass
running ._test_cardinality() ... pass
running ._test_category() ... pass
running ._test_construction() ... pass
running ._test_elements() ... .
    Running the test suite of self.an_element()
    running ._test_category() ... pass
    running ._test_eq() ... pass
    running ._test_new() ... pass
    running ._test_not_implemented_methods() ... pass
    running ._test_pickling() ... pass
    pass
running ._test_elements_eq_reflexive() ... pass
running ._test_elements_eq_symmetric() ... pass
running ._test_elements_eq_transitive() ... pass
running ._test_elements_neq() ... pass
running ._test_enumerated_set_contains() ... pass
running ._test_enumerated_set_iter_cardinality() ... pass
running ._test_enumerated_set_iter_list() ... pass
running ._test_eq() ... pass
running ._test_new() ... pass
running ._test_not_implemented_methods() ... pass
running ._test_pickling() ... pass
running ._test_some_elements() ... pass
```

```
class Element
    Bases: sage.structure.element_wrapper.ElementWrapper

    wrapped_class
        alias of builtins.str

    an_element()
        Returns an element of the semigroup.

    EXAMPLES:
```
product(x, y)
Returns the product of two elements of the semigroup.

EXAMPLES:

```
sage: S = FiniteSemigroups().example()
sage: S('a') * S('b')
'ab'
sage: S('a') * S('b') * S('a')
'ab'
sage: S('a') * S('a')
'a'
```

semigroup_generators()
Returns the generators of the semigroup.

EXAMPLES:

```
sage: S = FiniteSemigroups().example(alphabet=('x', 'y'))
sage: S.semigroup_generators()
Family ('x', 'y')
```

6.14 Examples of finite Weyl groups

```
sage.categories.examples.finite_weyl_groups.Example
alias of sage.categories.examples.finite_weyl_groups.SymmetricGroup
```

```
class sage.categories.examples.finite_weyl_groups.SymmetricGroup(n=4)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of finite Weyl group: the symmetric group, with elements in list notation.

The purpose of this class is to provide a minimal template for implementing finite Weyl groups. See SymmetricGroup for a full featured and optimized implementation.

EXAMPLES:

```
sage: S = FiniteWeylGroups().example()
sage: S
The symmetric group on {0, ..., 3}
sage: S.category()
Category of finite irreducible weyl groups
```
```
The elements of this group are permutations of the set {0, ... , 3}:
```
The group itself is generated by the elementary transpositions:

```
sage: S.simple_reflections()
Finite family {0: (1, 0, 2, 3), 1: (0, 2, 1, 3), 2: (0, 1, 3, 2)}
```

Only the following basic operations are implemented:

- `one()`
- `product()`
- `simple_reflection()`
- `cartan_type()`
- `Element.has_right_descent()`.

All the other usual Weyl group operations are inherited from the categories:

```
sage: S.cardinality()
24
sage: S.long_element()
(3, 2, 1, 0)
sage: S.cayley_graph(side = "left").plot()
Graphics object consisting of 120 graphics primitives
```

Alternatively, one could have implemented `sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.apply_simple_reflection()` instead of `simple_reflection()` and `product()`. See `CoxeterGroups().example()`.

```
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 has_right_descent(i)
 Implements `CoxeterGroups.ElementMethods.has_right_descent()`.

 EXAMPLES:
    ```sage```
    s = FiniteWeylGroups().example()
    s = S.simple_reflections()
    (s[1] * s[2]).has_descent(2)
    True
    sage: S._test_has_descent()

    cartan_type()
    Return the Cartan type of self.

    EXAMPLES:
    ```sage```
 FiniteWeylGroups().example().cartan_type()
 ['A', 3] relabelled by {1: 0, 2: 1, 3: 2}

 degrees()
 Return the degrees of self.
```
EXAMPLES:

```python
sage: W = FiniteWeylGroups().example()
sage: W.degrees()
(2, 3, 4)
```

**index_set()**


EXAMPLES:

```python
sage: FiniteWeylGroups().example().index_set()
[0, 1, 2]
```

**one()**

Implements `Monoids.ParentMethods.one()`.

EXAMPLES:

```python
sage: FiniteWeylGroups().example().one()
(0, 1, 2, 3)
```

**product**(x, y)


EXAMPLES:

```python
sage: s = FiniteWeylGroups().example().simple_reflections()
(0, 2, 3, 1)
```

**simple_reflection**(i)

Implement `CoxeterGroups.ParentMethods.simple_reflection()` by returning the transposition \((i, i+1)\).

EXAMPLES:

```python
sage: FiniteWeylGroups().example().simple_reflection(2)
(0, 1, 3, 2)
```

### 6.15 Examples of graded connected Hopf algebras with basis

```python
sage.categories.examples.graded_connected_hopf_algebras_with_basis.Example
alias of sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator
class sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator
```

This class illustrates an implementation of a graded Hopf algebra with basis that has one primitive generator of degree 1 and basis elements indexed by non-negative integers.

This Hopf algebra example differs from what topologists refer to as a graded Hopf algebra because the twist operation in the tensor rule satisfies

\[
(\mu \otimes \mu) \circ (id \otimes \tau \otimes id) \circ (\Delta \otimes \Delta) = \Delta \circ \mu
\]
where \( \tau(x \otimes y) = y \otimes x \).

**coproduct_on_basis\( (i) \)**

The coproduct of a basis element.

\[
\Delta(P_i) = \sum_{j=0}^{i} P_{i-j} \otimes P_j
\]

**INPUT:**

- \( i \) – a non-negative integer

**OUTPUT:**

- an element of the tensor square of \( \text{self} \)

**degree_on_basis\( (i) \)**

The degree of a non-negative integer is itself

**INPUT:**

- \( i \) – a non-negative integer

**OUTPUT:**

- a non-negative integer

**one_basis\()**

Returns 0, which index the unit of the Hopf algebra.

**OUTPUT:**

- the non-negative integer 0

**EXAMPLES:**

```sage
sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
sage: H.one_basis()
0
sage: H.one()
P0
```

**product_on_basis\( (i, j) \)**

The product of two basis elements.

The product of elements of degree \( i \) and \( j \) is an element of degree \( i+j \).

**INPUT:**

- \( i, j \) – non-negative integers

**OUTPUT:**

- a basis element indexed by \( i+j \)
6.16 Examples of graded modules with basis

```python
sage.categories.examples.graded_modules_with_basis.Example
alias of sage.categories.examples.graded_modules_with_basis.GradedPartitionModule
class sage.categories.examples.graded_modules_with_basis.GradedPartitionModule(base_ring)
 Bases: sage.combinat.free_module.CombinatorialFreeModule

This class illustrates an implementation of a graded module with basis: the free module over partitions.

INPUT:

• R – base ring

The implementation involves the following:

• A choice of how to represent elements. In this case, the basis elements are partitions. The algebra is
 constructed as a CombinatorialFreeModule on the set of partitions, so it inherits all of the methods for
 such objects, and has operations like addition already defined.

```sage```
A = GradedModulesWithBasis(QQ).example()
```

• A basis function - this module is graded by the non-negative integers, so there is a function defined in this
 module, creatively called basis(), which takes an integer d as input and returns a family of partitions
 representing a basis for the algebra in degree d.

```sage```
A.basis(2)
```
Lazy family (Term map from Partitions to An example of a graded module with␣
˓
→
basis: the free module on partitions over Rational Field(i))_{i in Partitions␣
˓
→
of the integer 2}

```sage```
A.basis(6)[Partition([3,2,1])]
```
P[3, 2, 1]

• If the algebra is called A, then its basis function is stored as A.basis. Thus the function can be used to
 find a basis for the degree d piece: essentially, just call A.basis(d). More precisely, call x for each x in
 A.basis(d).

```sage```
[m for m in A.basis(4)]
```
[P[4], P[3, 1], P[2, 2], P[2, 1, 1], P[1, 1, 1, 1]]

• For dealing with basis elements: degree_on_basis(), and _repr_term(). The first of these defines the
 degree of any monomial, and then the degree method for elements – see the next item – uses it to compute
 the degree for a linear combination of monomials. The last of these determines the print representation for
 monomials, which automatically produces the print representation for general elements.

```sage```
A.degree_on_basis(Partition([4,3]))
```
7
```sage```
A._repr_term(Partition([4,3]))
```
'P[4, 3]'

• There is a class for elements, which inherits from IndexedFreeModuleElement. An element is determined
 by a dictionary whose keys are partitions and whose corresponding values are the coefficients. The
 class implements two things: an is_homogeneous method and a degree method.

```sage```
p = A.monomial(Partition([3,2,1])); p
```
P[3, 2, 1]
sage: p.is_homogeneous()
True
sage: p.degree()
6

basis *(d=None)*

Return the basis for (the d-th homogeneous component of) self.

INPUT:

- d – (optional, default None) nonnegative integer or None

OUTPUT:

If d is None, returns the basis of the module. Otherwise, returns the basis of the homogeneous component of degree d (i.e., the subfamily of the basis of the whole module which consists only of the basis vectors lying in \(F_d \setminus \bigcup_{i<d} F_i \)).

The basis is always returned as a family.

EXAMPLES:

```python
sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Lazy family (Term map from Partitions to An example of a filtered module with basis: the free module on partitions over Integer Ring(i))_{i in Partitions of the integer 4}
```

Without arguments, the full basis is returned:

```python
sage: A.basis()
Lazy family (Term map from Partitions to An example of a filtered module with basis: the free module on partitions over Integer Ring(i))_{i in Partitions}
sage: A.basis()
Lazy family (Term map from Partitions to An example of a filtered module with basis: the free module on partitions over Integer Ring(i))_{i in Partitions}
```

Checking this method on a filtered algebra. Note that this will typically raise a `NotImplementedError` when this feature is not implemented.

```python
sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Traceback (most recent call last):
...
NotImplementedError: infinite set
```

Without arguments, the full basis is returned:

```python
sage: A.basis()
Lazy family (Term map from Free abelian monoid indexed by {'x', 'y', 'z'} to An example of a filtered algebra with basis: the universal enveloping algebra of Lie algebra of RR^3 with cross product over Integer Ring(i))_{i in Free abelian monoid indexed by {'x', 'y', 'z'}}
```
An example with a graded algebra:

```python
sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.basis()
Lazy family (Term map from Subsets of {0, 1} to
  The exterior algebra of rank 2 over Rational Field(i))_{i in
Subsets of {0, 1}}
```

degree_on_basis(t)
The degree of the element determined by the partition t in this graded module.

INPUT:
- t – the index of an element of the basis of this module, i.e. a partition

OUTPUT: an integer, the degree of the corresponding basis element

EXAMPLES:

```python
sage: A = GradedModulesWithBasis(QQ).example()
sage: A.degree_on_basis(Partition((2,1)))
3
sage: A.degree_on_basis(Partition((4,2,1,1,1,1)))
10
sage: type(A.degree_on_basis(Partition((1,1))))
<class 'sage.rings.integer.Integer'>
```

6.17 Examples of graphs

class `sage.categories.examples.graphs.Cycle(n=5)`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.structure.parent.Parent`

An example of a graph: the cycle of length n.

This class illustrates a minimal implementation of a graph.

EXAMPLES:

```python
sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example(); C
An example of a graph: the 5-cycle
sage: C.category()
Category of graphs
```

We conclude by running systematic tests on this graph:

```python
sage: TestSuite(C).run()
```

class `Element`

Bases: `sage.structure.element_wrapper.ElementWrapper`

dimension()
Return the dimension of self.

EXAMPLES:
sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: e = C.edges()[0]
sage: e.dimension()
2
sage: v = C.vertices()[0]
sage: v.dimension()
1

an_element()
Return an element of the graph, as per Sets.ParentMethods.an_element().

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.an_element()
0

edges()
Return the edges of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.edges()
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

vertices()
Return the vertices of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.vertices()
[0, 1, 2, 3, 4]

sage.categories.examples.graphs.Example
alias of sage.categories.examples.graphs.Cycle

6.18 Examples of Hopf algebras with basis

class sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra(R, G)
 Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of a Hopf algebra with basis: the group algebra of a group

This class illustrates a minimal implementation of a Hopf algebra with basis.

algebra_generators()
Return the generators of this algebra, as per algebra_generators().

They correspond to the generators of the group.
EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: A.algebra_generators()
Finite family {(1,2,3): B[(1,2,3)], (1,3): B[(1,3)]}
```

antipode_on_basis(g)

Antipode, on basis elements, as per `HopfAlgebrasWithBasis.ParentMethods.antipode_on_basis()`.

It is given, on basis elements, by \(\nu(g) = g^{-1} \)

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.antipode_on_basis(a)
B[(1,3,2)]
```

coproduct_on_basis(g)

Coproduct, on basis elements, as per `HopfAlgebrasWithBasis.ParentMethods.coproduct_on_basis()`.

The basis elements are group like: \(\Delta(g) = g \otimes g \).

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.coproduct_on_basis(a)
B[(1,2,3)] # B[(1,2,3)]
```

counit_on_basis(g)

Counit, on basis elements, as per `HopfAlgebrasWithBasis.ParentMethods.counit_on_basis()`.

The counit on the basis elements is 1.

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.counit_on_basis(a)
1
```

one_basis()

Returns the one of the group, which index the one of this algebra, as per `AlgebrasWithBasis.ParentMethods.one_basis()`.

EXAMPLES:

```python
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: A.one_basis()
() # B[(])
sage: A.one()
B[()]```
**product_on_basis**(*g1*, *g2*)

Product, on basis elements, as per `AlgebrasWithBasis.ParentMethods.product_on_basis()`.

The product of two basis elements is induced by the product of the corresponding elements of the group.

**EXAMPLES:**

```python
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: a*b
(1,2)
sage: A.product_on_basis(a, b)
B[(1,2)]
```

---

### 6.19 Examples of infinite enumerated sets

sage.categories.examples.infinite_enumerated_sets.Example

alias of `sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers`

**class** `sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.structure.parent.Parent`

An example of infinite enumerated set: the non negative integers

This class provides a minimal implementation of an infinite enumerated set.

**EXAMPLES:**

```python
sage: NN = InfiniteEnumeratedSets().example()
sage: NN
An example of an infinite enumerated set: the non negative integers
sage: NN.cardinality()
+Infinity
sage: NN.list()
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set
sage: NN.element_class
<class 'sage.rings.integer.Integer'>
sage: it = iter(NN)
sage: [next(it), next(it), next(it), next(it), next(it)]
[0, 1, 2, 3, 4]
sage: x = next(it); type(x)
<class 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: x+3
8
sage: NN(15)
15
sage: NN.first()
0
```

This checks that the different methods of `NN` return consistent results:
sage: TestSuite(NN).run(verbosetrue=True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
    Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
    pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

**Element**
alias of sage.rings.integer.Integer

**an_element()**
EXAMPLES:

```sage
sage: InfiniteEnumeratedSets().example().an_element()
42
```

**next(o)**
EXAMPLES:

```sage
sage: NN = InfiniteEnumeratedSets().example()
sage: NN.next(3)
4
```

### 6.20 Examples of a Lie algebra

sage.categories.examples.lie_algebras.Example
alias of sage.categories.examples.lie_algebras.LieAlgebraFromAssociative
class sage.categories.examples.lie_algebras.LieAlgebraFromAssociative(gens)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation
An example of a Lie algebra: a Lie algebra generated by a set of elements of an associative algebra.
This class illustrates a minimal implementation of a Lie algebra.

Let \( R \) be a commutative ring, and \( A \) an associative \( R \)-algebra. The Lie algebra \( A \) (sometimes denoted \( A^- \)) is defined to be the \( R \)-module \( A \) with Lie bracket given by the commutator in \( A \): that is, \( [a, b] := ab - ba \) for all \( a, b \in A \).

What this class implements is not precisely \( A^- \), however; it is the Lie subalgebra of \( A^- \) generated by the elements of the iterable \( \text{gens} \). This specific implementation does not provide a reasonable containment test (i.e., it does not allow you to check if a given element \( a \) of \( A^- \) belongs to this Lie subalgebra); it, however, allows computing inside it.

INPUT:

- \( \text{gens} \) – a nonempty iterable consisting of elements of an associative algebra \( A \)

OUTPUT:

The Lie subalgebra of \( A^- \) generated by the elements of \( \text{gens} \)

EXAMPLES:

We create a model of \( \mathfrak{s}l_2 \) using matrices:

```
sage: gens = \([\text{matrix}([[0,1],[0,0]]), \text{matrix}([[0,0],[1,0]]), \text{matrix}([[1,0],[0,-1]])]\)
sage: for g in gens:
 : g.set_immutable()
sage: L = LieAlgebras(QQ).example(gens)
sage: e,f,h = L.lie_algebra_generators()
sage: e.bracket(f) == h
True
sage: h.bracket(e) == 2*e
True
sage: h.bracket(f) == -2*f
True
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper
 Wrap an element as a Lie algebra element.

lie_algebra_generators()
 Return the generators of \(\text{self} \) as a Lie algebra.

 EXAMPLES:

   ```
sage: L = LieAlgebras(QQ).example()
sage: L.lie_algebra_generators()
Family ([2, 1, 3], [2, 3, 1])
   ```
```

zero()
   Return the element 0.

   EXAMPLES:

   ```
sage: L = LieAlgebras(QQ).example()
sage: L.zero()
0
   ```
6.21 Examples of a Lie algebra with basis

class sage.categories.examples.lie_algebras_with_basis.AbelianLieAlgebra(R, gens):
    Bases: sage.combinat.free_module.CombinatorialFreeModule
    
    An example of a Lie algebra: the abelian Lie algebra.
    This class illustrates a minimal implementation of a Lie algebra with a distinguished basis.

class Element:
    Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

    lift()
    Return the lift of self to the universal enveloping algebra.

    EXAMPLES:
    sage: L = LieAlgebras(QQ).WithBasis().example()
    sage: elt = L.an_element()
    sage: elt.lift()
    3*P[F[2]] + 2*P[F[1]] + 2*P[F[]]

    bracket_on_basis(x, y)
    Return the Lie bracket on basis elements indexed by x and y.

    EXAMPLES:
    sage: L = LieAlgebras(QQ).WithBasis().example()
    sage: L.bracket_on_basis(Partition([4,1]), Partition([2,2,1]))
    0

    lie_algebra_generators()
    Return the generators of self as a Lie algebra.

    EXAMPLES:
    sage: L = LieAlgebras(QQ).WithBasis().example()
    sage: L.lie_algebra_generators()
    Lazy family (Term map from Partitions to
    An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Partitions over Rational
Field(i))_{i in Partitions}

sage.categories.examples.lie_algebras_with_basis.Example
    alias of sage.categories.examples.lie_algebras_with_basis.AbelianLieAlgebra

class sage.categories.examples.lie_algebras_with_basis.IndexedPolynomialRing(R, indices, **kwds):
    Bases: sage.combinat.free_module.CombinatorialFreeModule
    
    Polynomial ring whose generators are indexed by an arbitrary set.

    Todo: Currently this is just used as the universal enveloping algebra for the example of the abelian Lie algebra. This should be factored out into a more complete class.

    algebra_generators()
    Return the algebra generators of self.
6.22 Examples of magmas

sage.categories.examples.magas.Example
alias of sage.categories.examples.magas.FreeMagma
class sage.categories.examples.magas.FreeMagma(alphabet=('a', 'b', 'c', 'd'))

An example of magma.
The purpose of this class is to provide a minimal template for implementing a magma.
EXAMPLES:

```
sage: M = Magmas().example(); M
An example of a magma: the free magma generated by ('a', 'b', 'c', 'd')
```

This is the free magma generated by:

```
sage: M.magma_generators()
Family ('a', 'b', 'c', 'd')
sage: a, b, c, d = M.magma_generators()
```

and with a non-associative product given by:
class Element
Bases: sage.structure.element_wrapper.ElementWrapper

The class for elements of the free magma.

wrapped_class
alias of builtins.str

an_element()
Return an element of the magma.

EXAMPLES:

```sage
F = Magmas().example()
sage: F.an_element()
'((a*b)*c)*d'
```

magma_generators()
Return the generators of the magma.

EXAMPLES:

```sage
F = Magmas().example()
sage: F.magma_generators()
Family ('a', 'b', 'c', 'd')
```

product(x, y)
Return the product of \( x \) and \( y \) in the magma, as per `Magmas.ParentMethods.product()`.

EXAMPLES:

```sage
F = Magmas().example()
sage: F.an_element() * F.an_element()
'(a*(((a*b)*c)*d))'
```

### 6.23 Examples of manifolds

sage.categories.examples.manifolds.Example
alias of sage.categories.examples.manifolds.Plane
class sage.categories.examples.manifolds.Plane(n=3, base_ring=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of a manifold: the \( n \)-dimensional plane.

This class illustrates a minimal implementation of a manifold.

EXAMPLES:
sage: from sage.categories.manifolds import Manifolds
sage: M = Manifolds(QQ).example(); M
An example of a Rational Field manifold: the 3-dimensional plane

sage: M.category()
Category of manifolds over Rational Field

We conclude by running systematic tests on this manifold:

sage: TestSuite(M).run()

**Element**

alias of `sage.structure.element_wrapper.ElementWrapper`

**an_element()**

Return an element of the manifold, as per `Sets.ParentMethods.an_element()`.

EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: M = Manifolds(QQ).example()
sage: M.an_element()
(0, 0, 0)
```

**dimension()**

Return the dimension of `self`.

EXAMPLES:

```
sage: from sage.categories.manifolds import Manifolds
sage: M = Manifolds(QQ).example()
sage: M.dimension()
3
```

---

### 6.24 Examples of monoids

sage.categories.examples.monoids.Example

alias of `sage.categories.examples.monoids.FreeMonoid`

class sage.categories.examples.monoids.FreeMonoid(alphabet=('a', 'b', 'c', 'd'))

Bases: `sage.categories.examples.semigroups.FreeSemigroup`

An example of a monoid: the free monoid

This class illustrates a minimal implementation of a monoid. For a full featured implementation of free monoids, see `FreeMonoid()`.

EXAMPLES:

```
sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: S.category()
Category of monoids
```
This is the free semigroup generated by:

```python
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')
```

with product rule given by concatenation of words:

```python
sage: S('dab') * S('acb')
dabacb
```

and unit given by the empty word:

```python
sage: S.one()
```

We conclude by running systematic tests on this monoid:

```python
sage: TestSuite(S).run(verbos...e = True)
```

```
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 wrapped_class
 alias of builtins.str

 monoid_generators()
 Return the generators of this monoid.

 EXAMPLES:

 sage: M = Monoids().example(); M
 An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
```

(continues on next page)
sage: M.monoid_generators()
Finite family {'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd'}
sage: a,b,c,d = M.monoid_generators()
sage: a*d*c*b
'adcb'

one()

Returns the one of the monoid, as per `Monoids.ParentMethods.one()`.

EXAMPLES:

sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.one() 
''

### 6.25 Examples of posets

```python
class sage.categories.examples.posets.FiniteSetsOrderedByInclusion
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of a poset: finite sets ordered by inclusion

This class provides a minimal implementation of a poset

EXAMPLES:

sage: P = Posets().example(); P
An example of a poset: sets ordered by inclusion

We conclude by running systematic tests on this poset:

sage: TestSuite(P).run(verbos
```
class Element
    Bases: sage.structure.element_wrapper.ElementWrapper

    wrapped_class
        alias of sage.sets.set.Set_objectEnumerated

    an_element()
        Returns an element of this poset

        EXAMPLES:

        sage: B = Posets().example()
sage: B.an_element()
{1, 4, 6}

le(x, y)
    Returns whether x is a subset of y

    EXAMPLES:

    sage: P = Posets().example()
sage: P.le( P(Set([1,3])), P(Set([1,2,3])) )
True
sage: P.le( P(Set([1,3])), P(Set([1,3])) )
True
sage: P.le( P(Set([1,2])), P(Set([1,3])) )
False

class sage.categories.examples.posets.PositiveIntegersOrderedByDivisibilityFacade
    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

    An example of a facade poset: the positive integers ordered by divisibility

    This class provides a minimal implementation of a facade poset

    EXAMPLES:

    sage: P = Posets().example("facade"); P
An example of a facade poset: the positive integers ordered by divisibility

    sage: P(5)
5
sage: P(0)
Traceback (most recent call last):
...
ValueError: Can't coerce `0` in any parent `An example of a facade poset: the → positive integers ordered by divisibility` is a facade for

sage: 3 in P
True
class element_class(X)
          parent_class
    A finite enumerated set.
le(x,y)
    Returns whether \( x \) is divisible by \( y \)

EXAMPLES:

```
sage: P = Posets().example("facade")
sage: P.le(3, 6)
True
sage: P.le(3, 3)
True
sage: P.le(3, 7)
False
```

### 6.26 Examples of semigroups

```python
class sage.categories.examples.semigroups.FreeSemigroup(alphabet=('a', 'b', 'c', 'd'))
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
 parent.Parent
 An example of a semigroup.
 The purpose of this class is to provide a minimal template for implementing of a semigroup.
 EXAMPLES:

    ```python
    sage: S = Semigroups().example("free"); S
    An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')
    ```
```

This is the free semigroup generated by:

```
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')
```

and with product given by concatenation:

```
sage: S('dab') * S('acb')
'dabacb'
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper
 The class for elements of the free semigroup.
 wrapped_class
 alias of builtins.str
```

### 6.26. Examples of semigroups
an_element()  
Returns an element of the semigroup.

EXAMPLES:
```
sage: F = Semigroups().example('free')
sage: F.an_element()
'abcd'
```

product(x, y)  
Returns the product of x and y in the semigroup, as per Semigroups.ParentMethods.product().

EXAMPLES:
```
sage: F = Semigroups().example('free')
sage: F.an_element() * F('a')^5
'abcdaaaaa'
```

semigroup_generators()  
Returns the generators of the semigroup.

EXAMPLES:
```
sage: F = Semigroups().example('free')
sage: F.semigroup_generators()
Family ('a', 'b', 'c', 'd')
```

class sage.categories.examples.semigroups.IncompleteSubquotientSemigroup(category=None)
    Bases:      sage.structure.unique_representation.UniqueRepresentation,  
                sage.structure.parent.PrioritySetParent,  
                sage.structure.parent.SingletonParent,  
                sage.structure.parent.NoCategoryParent
    An incompletely implemented subquotient semigroup, for testing purposes

EXAMPLES:
```
sage: S = sage.categories.examples.semigroups.IncompleteSubquotientSemigroup()
sage: S
A subquotient of An example of a semigroup: the left zero semigroup
```
class Element
    Bases:      sage.structure.element_wrapper.ElementWrapper
    ambient()
    Returns the ambient semigroup.

EXAMPLES:
```
sage: S = Semigroups().Subquotients().example()
sage: S.ambient()
An example of a semigroup: the left zero semigroup
```

class sage.categories.examples.semigroups.LeftZeroSemigroup
class sage.categories.examples.semigroups.LeftZeroSemigroup
    Bases:      sage.structure.unique_representation.UniqueRepresentation,  
                sage.structure.parent.PrioritySetParent,  
                sage.structure.parent.SingletonParent,  
                sage.structure.parent.NoCategoryParent
    An example of a semigroup.

This class illustrates a minimal implementation of a semigroup.

EXAMPLES:
sage: S = Semigroups().example(); S
An example of a semigroup: the left zero semigroup

This is the semigroup that contains all sorts of objects:

```
sage: S.some_elements()
[3, 42, 'a', 3.4, 'raton laveur']
```

with product rule given by \( a \times b = a \) for all \( a, b \):

```
sage: S('hello') * S('world')
'hello'
sage: S(3)*S(1)*S(2)
3
sage: S(3)^12312321312321
3
```

```python
class Element
 Bases: sage.structure.element_wrapper.ElementWrapper

 is_idempotent()
 Trivial implementation of Semigroups.Element.is_idempotent since all elements of this semi-
 group are idempotent!
 EXAMPLES:
 sage: S = Semigroups().example()
 sage: S.an_element().is_idempotent()
 True
 sage: S(17).is_idempotent()
 True

 an_element()
 Returns an element of the semigroup.
 EXAMPLES:
 sage: Semigroups().example().an_element()
 42

 product(x, y)
 Returns the product of \(x \) and \(y \) in the semigroup, as per Semigroups.ParentMethods.product().
 EXAMPLES:
 sage: S = Semigroups().example()
 sage: S('hello') * S('world')
 'hello'
 sage: S(3)*S(1)*S(2)
 3

 some_elements()
 Returns a list of some elements of the semigroup.
 EXAMPLES:
```

6.26. Examples of semigroups
sage: Semigroups().example().some_elements()
[3, 42, 'a', 3.4, 'raton laveur']

class sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup(category=None)
    Bases:  
           sage.structure.unique_representation.UniqueRepresentation,  
                   sage.structure.parent.Parent

Example of a quotient semigroup

EXAMPLES:

    sage: S = Semigroups().Subquotients().example(); S
    An example of a (sub)quotient semigroup: a quotient of the left zero semigroup

This is the quotient of:

    sage: S.ambient()
    An example of a semigroup: the left zero semigroup

obtained by setting \( x = 42 \) for any \( x \geq 42 \):

    sage: S(100)
    42
    sage: S(100) == S(42)
    True

The product is inherited from the ambient semigroup:

    sage: S(1)*S(2) == S(1)
    True

class Element
    Bases: sage.structure.element_wrapper.ElementWrapper

ambient()
    Returns the ambient semigroup.

    EXAMPLES:

    sage: S = Semigroups().Subquotients().example()
    sage: S.ambient()
    An example of a semigroup: the left zero semigroup

an_element()
    Returns an element of the semigroup.

    EXAMPLES:

    sage: S = Semigroups().Subquotients().example()
    sage: S.an_element()
    42

lift(x)
    Lift the element \( x \) into the ambient semigroup.

    INPUT:
    * \( x \) – an element of self.
OUTPUT:

• an element of \(\text{self.ambient}()\).

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: x = S.an_element(); x
42
sage: S.lift(x)
42
sage: S.lift(x) in S.ambient()
True
sage: y = S.ambient()(100); y
100
sage: S.lift(S(y))
42
```

\textbf{retract}(x)

Returns the retract \(x\) onto an element of this semigroup.

INPUT:

• \(x\) – an element of the ambient semigroup (\(\text{self.ambient}()\)).

OUTPUT:

• an element of \(\text{self}\).

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: L = S.ambient()
sage: S.retract(L(17))
17
sage: S.retract(L(42))
42
sage: S.retract(L(171))
42
```

\textbf{some_elements}()

Returns a list of some elements of the semigroup.

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: S.some_elements()
[1, 2, 3, 8, 42, 42]
```

\textbf{the_answer}()

Returns the Answer to Life, the Universe, and Everything as an element of this semigroup.

EXAMPLES:

```python
sage: S = Semigroups().Subquotients().example()
sage: S.the_answer()
42
```
6.27 Examples of semigroups in cython

class sage.categories.examples.semigroups_cython.IdempotentSemigroups(s=None)
    Bases: sage.categories.category.Category

class ElementMethods
    Bases: object

    is_idempotent()
    EXAMPLES:

    sage: from sage.categories.examples.semigroups_cython import ...
       \rightarrow LeftZeroSemigroup
    sage: S = LeftZeroSemigroup()
    sage: S(2).is_idempotent()
    True

    super_categories()
    EXAMPLES:

    sage: from sage.categories.examples.semigroups_cython import ...
       \rightarrow IdempotentSemigroups
    sage: IdempotentSemigroups().super_categories()
    [Category of semigroups]

class sage.categories.examples.semigroups_cython.LeftZeroSemigroup
    Bases: sage.categories.examples.semigroups.LeftZeroSemigroup

An example of semigroup

This class illustrates a minimal implementation of a semi-group where the element class is an extension type, and still gets code from the category. The category itself must be a Python class though.

This is purely a proof of concept. The code obviously needs refactorisation!

Comments:

• one cannot play ugly class surgery tricks (as with _mul_parent). available operations should really be declared to the coercion model!

EXAMPLES:

    sage: from sage.categories.examples.semigroups_cython import LeftZeroSemigroup
    sage: S = LeftZeroSemigroup(); S
    An example of a semigroup: the left zero semigroup

This is the semigroup which contains all sort of objects:

    sage: S.some_elements()
    [3, 42, 'a', 3.4, 'raton laveur']

with product rule is given by $a \times b = a$ for all $a, b$.

    sage: S('hello') * S('world')
    'hello'

    sage: S(3)*S(1)*S(2)

(continues on next page)
That's really the only method which is obtained from the category ...
6.28 Examples of sets

class sage.categories.examples.sets_cat.PrimeNumbers
    Bases:  sage.structure.unique_representation.UniqueRepresentation,  sage.structure.parent.Parent

An example of parent in the category of sets: the set of prime numbers.

The elements are represented as plain integers in \( \mathbb{Z} \) (facade implementation).

This is a minimal implementations. For more advanced examples of implementations, see also:

```
sage: P = Sets().example("facade")
sage: P = Sets().example("inherits")
sage: P = Sets().example("wrapper")
```

EXAMPLES:

```
sage: P = Sets().example()
sage: P(12)
Traceback (most recent call last):
...
AssertionError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Integer Ring
sage: x = P(13); x
13
sage: type(x)
<class 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: 13 in P
True
sage: 12 in P
False
sage: y = x+1; y
14
sage: type(y)
<class 'sage.rings.integer.Integer'>
sage: TestSuite(P).run(verbos=True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
```

(continues on next page)
Running the test suite of `self.an_element()`
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

`an_element()`

`element_class`
    alias of `sage.rings.integer.Integer`

class `sage.categories.examples.sets_cat.PrimeNumbers_Abstract`
    Bases: `sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent`

This class shows how to write a parent while keeping the choice of the datastructure for the children open. Different class with fixed datastructure will then be constructed by inheriting from `PrimeNumbers_Abstract`.

This is used by:
sage: P = Sets().example("facade")
sage: P = Sets().example("inherits")
sage: P = Sets().example("wrapper")

class `Element`
    Bases: `sage.structure.element.Element`

`is_prime()`
    Return whether `self` is a prime number.

    EXAMPLES:

    ```sage```
 P = Sets().example("inherits")
 x = P.an_element()
 sage: P.an_element().is_prime()
 True
    ```

`next()`
    Return the next prime number.

    EXAMPLES:

    ```sage```
 P = Sets().example("inherits")
 sage: x = P.an_element()
 sage: p = P.an_element(); p
 47
    ```
Note: This method is not meant to implement the protocol iterator, and thus not subject to Python 2 vs Python 3 incompatibilities.

**an_element()**

**next(i)**
Return the next prime number.

**some_elements()**
Return some prime numbers.

```python
sage: P = Sets().example("inherits")
sage: x = P.next(P.an_element()); x
53
sage: x.parent()
Set of prime numbers
```

```python
sage: P = Sets().example("inherits")
sage: P.some_elements()
[47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
```

**class sage.categories.examples.sets_cat.PrimeNumbers_Facade**

Bases: `sage.categories.examples.sets_cat.PrimeNumbers_Abstract`

An example of parent in the category of sets: the set of prime numbers.

In this alternative implementation, the elements are represented as plain integers in \( \mathbb{Z} \) (facade implementation).

**EXAMPLES:**

```python
sage: P = Sets().example("facade")
sage: P(12)
Traceback (most recent call last):
 ... ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Integer Ring
sage: x = P(13); x
13
sage: type(x)
<class 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: 13 in P
True
```

(continues on next page)
The disadvantage of this implementation is that the elements do not know that they are prime, so that prime testing is slow:

```python
sage: pf = Sets().example("facade").an_element()
sage: timeit("pf.is_prime()") # random
625 loops, best of 3: 4.1 us per loop
```

compared to the other implementations where prime testing is only done if needed during the construction of the element, and later on the elements “know” that they are prime:

```python
sage: pw = Sets().example("wrapper").an_element()
sage: timeit("pw.is_prime()") # random
625 loops, best of 3: 859 ns per loop
sage: pi = Sets().example("inherits").an_element()
sage: timeit("pw.is_prime()") # random
625 loops, best of 3: 854 ns per loop
```

Note also that the `next` method for the elements does not exist:

```python
sage: pf.next()
Traceback (most recent call last):
 ...
AttributeError: 'sage.rings.integer.Integer' object has no attribute 'next'
```

unlike in the other implementations:

```python
sage: pw.next()
53
sage: pi.next()
53
```

**element_class**

alias of `sage.rings.integer.Integer`

class `sage.categories.examples.sets_cat.PrimeNumbers_Inherits`

Bases: `sage.categories.examples.sets_cat.PrimeNumbers_Abstract`

An example of parent in the category of sets: the set of prime numbers. In this implementation, the element are stored as object of a new class which inherits from the class Integer (technically `IntegerWrapper`).
EXAMPLES:

```python
sage: P = Sets().example("inherits")
sage: P
Set of prime numbers
sage: P(12)
Traceback (most recent call last):
 ... ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Set of prime numbers
sage: x = P(13); x
13
sage: x.is_prime()
True
sage: type(x)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category.
 → element_class'>
sage: x.parent()
Set of prime numbers
sage: P(13) in P
True
sage: y = x+1; y
14
sage: type(y)
<class 'sage.rings.integer.Integer'>
sage: y.parent()
Integer Ring
sage: type(P(13)+P(17))
<class 'sage.rings.integer.Integer'>
sage: type(P(2)+P(3))
<class 'sage.rings.integer.Integer'>
sage: z = P.next(x); z
17
sage: type(z)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category.
 → element_class'>
sage: z.parent()
Set of prime numbers
sage: TestSuite(P).run(\text{verbose} = \text{True})
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
 Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
```

(continues on next page)
See also:

```python
sage: P = Sets().example("facade")
sage: P = Sets().example("inherits")
sage: P = Sets().example("wrapper")
```

```python
class Element(parent, p):
 Bases: sage.rings.integer.IntegerWrapper, sage.categories.examples.sets_cat.PrimeNumbers_Abstract.Element

class sage.categories.examples.sets_cat.PrimeNumbers_Wrapper
 Bases: sage.categories.examples.sets_cat.PrimeNumbers_Abstract

An example of parent in the category of sets: the set of prime numbers.

In this second alternative implementation, the prime integer are stored as a attribute of a sage object by inheriting from `ElementWrapper`. In this case we need to ensure conversion and coercion from this parent and its element to ZZ and Integer.

EXAMPLES:

```python
sage: P = Sets().example("wrapper")
sage: P(12)
Traceback (most recent call last):
...
ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Set of prime numbers (wrapper implementation)
sage: x = P(13); x
13
sage: type(x)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Wrapper_with_category.element_class'>
sage: x.parent()
Set of prime numbers (wrapper implementation)
sage: 13 in P
True
sage: 12 in P
False
sage: y = x+1; y
14
```
```python
sage: type(y)
<class 'sage.rings.integer.Integer'>

sage: z = P.next(x); z
17
sage: type(z)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Wrapper_with_category.element_class'>

sage: z.parent()
Set of prime numbers (wrapper implementation)
```

class Element
 Bases: sage.structure.element_wrapper.ElementWrapper, sage.categories.examples.sets_cat.PrimeNumbers_Abstract.Element

ElementWrapper
 alias of sage.structure.element_wrapper.ElementWrapper

6.29 Example of a set with grading

```python
sage.categories.examples.sets_with_grading.Example
   alias of sage.categories.examples.sets_with_grading.NonNegativeIntegers
class sage.categories.examples.sets_with_grading.NonNegativeIntegers
   Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent
   Non negative integers graded by themselves.
   EXAMPLES:

sage: E = SetsWithGrading().example(); E
Non negative integers
sage: E in Sets().Infinite()
True
sage: E.graded_component(0)
{0}
```

an_element()
 Return 0.
 EXAMPLES:

```python
sage: SetsWithGrading().example().an_element()
0
```

generating_series(var='z')
 Return 1/(1 - z).
 EXAMPLES:
sage: N = SetsWithGrading().example(); N
Non negative integers
sage: f = N.generating_series(); f
1/(-z + 1)
sage: LaurentSeriesRing(ZZ,'z')(f)
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + z^7 + z^8 + z^9 + z^10 + z^11 + z^12 + z^13 + z^14 + z^15 + z^16 + z^17 + z^18 + z^19 + O(z^20)

graded_component(grade)
Return the component with grade grade.

EXAMPLES:

sage: N = SetsWithGrading().example()
sage: N.graded_component(65)
{65}

grading(elt)
Return the grade of elt.

EXAMPLES:

sage: N = SetsWithGrading().example()
sage: N.grading(10)
10

6.30 Examples of parents endowed with multiple realizations

class sage.categories.examples.with_realizations.SubsetAlgebra(R, S)
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of parent endowed with several realizations

We consider an algebra $A(S)$ whose bases are indexed by the subsets s of a given set S. We consider three natural basis of this algebra: F, In, and Out. In the first basis, the product is given by the union of the indexing sets. That is, for any $s, t \subseteq S$

$$F_s F_t = F_{s \cup t}$$

The In basis and Out basis are defined respectively by:

$$In_s = \sum_{t \subseteq s} F_t \quad \text{and} \quad F_s = \sum_{t \supseteq s} Out_t$$

Each such basis gives a realization of A, where the elements are represented by their expansion in this basis.

This parent, and its code, demonstrate how to implement this algebra and its three realizations, with coercions and mixed arithmetic between them.

See also:

- *Sets().WithRealizations*
- the Implementing Algebraic Structures thematic tutorial.
EXAMPLES:

```python
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.base_ring()
Rational Field
```

The three bases of A:

```python
sage: F = A.F() ; F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: In = A.In() ; In
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: Out = A.Out(); Out
The subset algebra of {1, 2, 3} over Rational Field in the Out basis
```

One can quickly define all the bases using the following shortcut:

```python
sage: A.inject_shorthands()
Defining F as shorthand for The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
Defining In as shorthand for The subset algebra of {1, 2, 3} over Rational Field in the In basis
Defining Out as shorthand for The subset algebra of {1, 2, 3} over Rational Field in the Out basis
```

Accessing the basis elements is done with `basis()` method:

```python
sage: F.basis().list()
[F[{}], F[{1}], F[{2}], F[{3}], F[{1, 2}], F[{1, 3}], F[{2, 3}], F[{1, 2, 3}]]
```

To access a particular basis element, you can use the `from_set()` method:

```python
sage: F.from_set(2,3)
F[{2, 3}]
sage: In.from_set(1,3)
In[{1, 3}]
```

or as a convenient shorthand, one can use the following notation:

```python
sage: F[2,3]
F[{2, 3}]
sage: In[1,3]
In[{1, 3}]
```

Some conversions:

```python
sage: F(In[2,3])
F[{}] + F[{2}] + F[{3}] + F[{2, 3}]
sage: In(F[2,3])
In[{}] - In[{2}] - In[{3}] + In[{2, 3}]
sage: Out(F[3])
Out[3] + Out[{1, 3}] + Out[{2, 3}] + Out[{1, 2, 3}]
sage: F(Out[3])
```

(continues on next page)
\[F\{3\} - F\{1, 3\} - F\{2, 3\} + F\{1, 2, 3\} \]

```
sage: Out(In[2,3])
Out[{}] + Out[\{\}1\}] + 2*Out[\{\}2\}] + 2*Out[\{\}3\}] + 2*Out[\{1, \}2\}] + 2*Out[\{1, \}3\}] +
\rightarrow 4*Out[\{2, \}3\}] + 4*Out[\{1, 2, \}3\}
```

We can now mix expressions:

```
sage: (1 + Out[1]) * In[2,3]
Out[{}] + 2*Out[\{\}1\}] + 2*Out[\{\}2\}] + 2*Out[\{\}3\}] + 2*Out[\{1, \}2\}] + 2*Out[\{1, \}3\}] +
\rightarrow 4*Out[\{2, \}3\}] + 4*Out[\{1, 2, \}3\}
```

```
class Bases (parent_with_realization)

The category of the realizations of the subset algebra
```

```
class ParentMethods

Bases: object

from_set(*args)
    Construct the monomial indexed by the set containing the elements passed as arguments.

    EXAMPLES:

```
sage: In = Sets().WithRealizations().example().In(); In
The subset algebra of \{1, 2, 3\} over Rational Field in the In basis
sage: In.from_set(2,3)
In[\{2, 3\}]
```

As a shorthand, one can construct elements using the following notation:

```
sage: In[2,3]
In[\{2, 3\}]
```

```
one()
 Returns the unit of this algebra.

 This default implementation takes the unit in the fundamental basis, and coerces it in self.

 EXAMPLES:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of \{1, 2, 3\} over Rational Field
sage: In = A.In(); Out = A.Out()
sage: In.one()
In[\{}]
sage: Out.one()
Out[\{}] + Out[\{1\}] + Out[\{2\}] + Out[\{3\}] + Out[\{1, 2\}] + Out[\{1, 3\}] +
 \rightarrow Out[\{2, 3\}] + Out[\{1, 2, 3\}]
```

```
super_categories()  

    EXAMPLES:

```
sage: A = Sets().WithRealizations().example(); A
The subset algebra of \{1, 2, 3\} over Rational Field
```
sage: C = A.Bases(); C
Category of bases of The subset algebra of \{1, 2, 3\} over Rational Field
sage: C.super_categories()
[Category of realizations of The subset algebra of \{1, 2, 3\} over Rational Field,
 Join of Category of algebras with basis over Rational Field and
 Category of commutative algebras over Rational Field and
 Category of realizations of unital magmas]

\textbf{F}

alias of \texttt{SubsetAlgebra.Fundamental}

class \texttt{Fundamental}(A)

\textbf{Bases:} \texttt{sage.combinat.free_module.CombinatorialFreeModule}, \texttt{sage.misc.bindable_classBindableClass}

The Subset algebra, in the fundamental basis

\textbf{INPUT:}

- \texttt{A} – a parent with realization in \texttt{SubsetAlgebra}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = Sets().WithRealizations().example()
sage: A.F()
The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis
sage: A.Fundamental()
The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis
\end{verbatim}

\textbf{one()}

Return the multiplicative unit element.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one()
word:
sage: A.F().one_basis()
\end{verbatim}

\textbf{one_basis()}

Returns the index of the basis element which is equal to ‘1’.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: F = Sets().WithRealizations().example().F(); F The subset algebra of \{1, 2, 3\} over Rational Field in the Fundamental basis
sage: F.one_basis()
\{}
sage: F.one()
F[{}]\end{verbatim}

\textbf{product_on_basis(left, right)}

Product of basis elements, as per \texttt{AlgebrasWithBasis.ParentMethods.product_on_basis()}. 

\textbf{INPUT:}
• left, right – sets indexing basis elements

EXAMPLES:

```python
sage: F = Sets().WithRealizations().example().F(); F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: S = F.basis().keys(); S
Subsets of {1, 2, 3}
sage: F.product_on_basis(S([]), S([]))
F[{}]
sage: F.product_on_basis(S({1}), S({3}))
F[{1, 3}]
sage: F.product_on_basis(S({1,2}), S({2,3}))
F[{1, 2, 3}]
```

class In(A):
    Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_classBindableClass
    The Subset Algebra, in the In basis

    INPUT:
    • A – a parent with realization in SubsetAlgebra

    EXAMPLES:

```python
sage: A = Sets().WithRealizations().example()
sage: A.In()
The subset algebra of {1, 2, 3} over Rational Field in the In basis
```

class Out(A):
    Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_classBindableClass
    The Subset Algebra, in the Out basis

    INPUT:
    • A – a parent with realization in SubsetAlgebra

    EXAMPLES:

```python
sage: A = Sets().WithRealizations().example()
sage: A.Out()
The subset algebra of {1, 2, 3} over Rational Field in the Out basis
```

a_realization()
Returns the default realization of self

EXAMPLES:

```python
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.a_realization()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
```

base_set()

EXAMPLES:
sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.base_set()
{1, 2, 3}

indices()
The objects that index the basis elements of this algebra.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.indices()
Subsets of {1, 2, 3}

indices_key(x)
A key function on a set which gives a linear extension of the inclusion order.

INPUT:
• x – set

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: sorted(A.indices(), key=A.indices_key)
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]

supsets(set)
Returns all the subsets of $S$ containing set

INPUT:
• set – a subset of the base set $S$ of self

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.supsets(Set((2,)))
[{{1, 2, 3}, {2, 3}, {1, 2}, {2}}]
### 7.1 Specific category classes

This is placed in a separate file from categories.py to avoid circular imports (as morphisms must be very low in the hierarchy with the new coercion model).

```python
class sage.categories.category_types.AbelianCategory(s=None):
 Bases: sage.categories.category.Category

 def is_abelian(self):
 return True # as self is an abelian category.

 EXAMPLES:
 sage: CommutativeAdditiveGroups().is_abelian()
 True

class sage.categories.category_types.Category_ideal(ambient, name=None):
 Bases: sage.categories.category_types.Category_in_ambient

 @classmethod
 def an_instance(cls):
 return cls()

 EXAMPLES:
 sage: AlgebraIdeals.an_instance()
 Category of algebra ideals in Univariate Polynomial Ring in x over Rational Field

 def ring(self):
 return self.ambient()

 EXAMPLES:
 sage: C = Ideals(IntegerRing())
 sage: C.ring()
 Integer Ring
```

```python
class sage.categories.category_types.Category_in_ambient(ambient, name=None):
 Bases: sage.categories.category.Category

 EXAMPLES:
```

ambient()

Return the ambient object in which objects of this category are embedded.

EXAMPLES:

```python
sage: C = Ideals(IntegerRing())
sage: C.ambient()
Integer Ring
```

class sage.categories.category_types.Category_module(base, name=None)

Bases: sage.categories.category_types.AbelianCategory, sage.categories.category_types.Category_over_base_ring

A base class for categories over some base object

INPUT:

- base – a category $C$ or an object of such a category

Assumption: the classes for the parents, elements, morphisms, of `self` should only depend on $C$. See trac ticket #11935 for details.

EXAMPLES:

```python
sage: Algebras(GF(2)).element_class is Algebras(GF(3)).element_class
True
sage: C = GF(2).category()
sage: Algebras(GF(2)).parent_class is Algebras(C).parent_class
True
sage: C = ZZ.category()
sage: Algebras(ZZ).element_class is Algebras(C).element_class
True
```

classmethod an_instance()

Returns an instance of this class

EXAMPLES:

```python
sage: Algebras.an_instance()
Category of algebras over Rational Field
```

base()

Return the base over which elements of this category are defined.

EXAMPLES:

```python
sage: C = Algebras(QQ)
sage: C.base()
Rational Field
```
class sage.categories.category_types.Category_over_base_ring(base, name=None)
Bases: sage.categories.category_types.Category_over_base

Initialize self.

EXAMPLES:

```
sage: C = Algebras(GF(2)); C
Category of algebras over Finite Field of size 2
sage: TestSuite(C).run()
```

base_ring()
Return the base ring over which elements of this category are defined.

EXAMPLES:

```
sage: C = Algebras(GF(2))
sage: C.base_ring()
Finite Field of size 2
```

class sage.categories.category_types.Elements(object)
Bases: sage.categories.category.Category

The category of all elements of a given parent.

EXAMPLES:

```
sage: a = IntegerRing()(5)
sage: C = a.category(); C
Category of elements of Integer Ring
sage: a in C
True
sage: 2/3 in C
False
sage: loads(C.dumps()) == C
True
```

classmethod an_instance()
Returns an instance of this class

EXAMPLES:

```
sage: Elements.an_instance()
Category of elements of Rational Field
```

object()
EXAMPLES:

```
sage: Elements(ZZ).object()
Integer Ring
```

super_categories()
EXAMPLES:

```
sage: Elements(ZZ).super_categories()
[Category of objects]
```
Todo: Check that this is what we want.

### 7.2 Singleton categories

class sage.categories.category_singleton.Category_contains_method_by_parent_class
    Bases: object
    Returns whether \( x \) is an object in this category.
    More specifically, returns True if and only if \( x \) has a category which is a subcategory of this one.

EXAMPLES:

```sage
sage: ZZ in Sets()
True
```

class sage.categories.category_singleton.Category_singleton(s=None)
    Bases: sage.categories.category.Category
    A base class for implementing singleton category
    A singleton category is a category whose class takes no parameters like Fields() or Rings(). See also the Singleton design pattern.
    This is a subclass of Category, with a couple optimizations for singleton categories.
    The main purpose is to make the idioms:

```sage
sage: QQ in Fields()
True
sage: ZZ in Fields()
False
```
as fast as possible, and in particular competitive to calling a constant Python method, in order to foster its systematic use throughout the Sage library. Such tests are time critical, in particular when creating a lot of polynomial rings over small fields like in the elliptic curve code.

EXAMPLES:

```sage
sage: from sage.categories.category_singleton import Category_singleton
sage: class MyRings(Category):
 : def super_categories(self): return Rings().super_categories()

class MyRingsSingleton(Category_singleton):
 : def super_categories(self): return Rings().super_categories()
```

We create three rings. One of them is contained in the usual category of rings, one in the category of “my rings” and the third in the category of “my rings singleton”:

```sage
sage: R = QQ['x','y']
sage: R1 = Parent(category = MyRings())
sage: R2 = Parent(category = MyRingsSingleton())
sage: R in MyRings()
False
sage: R1 in MyRings()
(continues on next page)
One sees that containment tests for the singleton class is a lot faster than for a usual class:

```
sage: timeit("R in MyRings()", number=10000)  # not tested
10000 loops, best of 3: 7.12 μs per loop
sage: timeit("R1 in MyRings()", number=10000)  # not tested
10000 loops, best of 3: 6.98 μs per loop
sage: timeit("R in MyRingsSingleton()", number=10000)  # not tested
10000 loops, best of 3: 3.08 μs per loop
sage: timeit("R2 in MyRingsSingleton()", number=10000)  # not tested
10000 loops, best of 3: 2.99 μs per loop
```

So this is an improvement, but not yet competitive with a pure Cython method:

```
sage: timeit("R.is_ring()", number=10000)  # not tested
10000 loops, best of 3: 383 ns per loop
```

However, it is competitive with a Python method. Actually it is faster, if one stores the category in a variable:

```
sage: _Rings = Rings()
sage: R3 = Parent(category = _Rings)
sage: R3.is_ring.__module__
'sage.categories.rings'
sage: timeit("R3.is_ring()", number=10000)  # not tested
10000 loops, best of 3: 2.64 μs per loop
sage: timeit("R3 in Rings()", number=10000)  # not tested
10000 loops, best of 3: 3.01 μs per loop
sage: timeit("R3 in _Rings", number=10000)  # not tested
10000 loops, best of 3: 652 ns per loop
```

This might not be easy to further optimize, since the time is consumed in many different spots:

```
sage: timeit("MyRingsSingleton.__classcall__()", number=10000) # not tested
10000 loops, best of 3: 306 ns per loop
sage: X = MyRingsSingleton()
sage: timeit("R in X ", number=10000)  # not tested
10000 loops, best of 3: 699 ns per loop
sage: c = MyRingsSingleton().__contains__
sage: timeit("c(R)", number = 10000)  # not tested
10000 loops, best of 3: 661 ns per loop
```

Warning: A singleton concrete class A should not have a subclass B (necessarily concrete). Otherwise, creating an instance a of A and an instance b of B would break the singleton principle: A would have two
instances a and b.

With the current implementation only direct subclasses of `Category_singleton` are supported:

```python
sage: class MyRingsSingleton(Category_singleton):
    ....:   def super_categories(self): return Rings().super_categories()

sage: class Disaster(MyRingsSingleton): pass

sage: Disaster()
Traceback (most recent call last):
  ...:
AssertionError: <class '__main__.Disaster'> is not a direct subclass of <class 'sage.categories.category_singleton.Category_singleton'>
```

However, it is acceptable for a direct subclass R of `Category_singleton` to create its unique instance as an instance of a subclass of itself (in which case, its the subclass of R which is concrete, not R itself). This is used for example to plug in extra category code via a dynamic subclass:

```python
sage: from sage.categories.category_singleton import Category_singleton

sage: class R(Category_singleton):
    ....:   def super_categories(self): return [Sets()]

sage: R()
Category of r

sage: R().__class__
<class '__main__.R_with_category'>

sage: R().__class__.mro()
[<class '__main__.R_with_category'>,
 <class '__main__.R'>,
 <class 'sage.categories.category_singleton.Category_singleton'>,
 <class 'sage.categories.category.Category'>,
 <class 'sage.categories.structure.unique_representation.UniqueRepresentation'>,
 <class 'sage.categories.structure.unique_representation.CachedRepresentation'>,
 <class 'sage.misc.fast_methods.WithEqualityById'>,
 <class 'sage.categories.category.Category'>,
 <class 'sage.categories.objects.Objects.subcategory_class'>,
 <... 'object'>]

sage: R() is R()
True

sage: R() is R().__class__()
True
```

In that case, R is an abstract class and has a single concrete subclass, so this does not break the Singleton design pattern.

See also:

`Category.__classcall__(), Category.__init__()`

Note: The `_test_category` test is failing because `MyRingsSingleton()` is not a subcategory of the join of its super categories:

```python
sage: C = MyRingsSingleton()
```

(continues on next page)
7.3 Fast functions for the category framework

AUTHOR:

• Simon King (initial version)

class sage.categories.category_cy_helper.AxiomContainer
 Bases: dict
 A fast container for axioms.
 This is derived from dict. A key is the name of an axiom. The corresponding value is the “rank” of this axiom, that is used to order the axioms in canonicalize_axioms().

EXAMPLES:

```
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: isinstance(all_axioms, sage.categories.category_with_axiom.AxiomContainer)
True
```

```python
sage: add(axiom)
Add a new axiom name, of the next rank.

EXAMPLES:

```
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: m = max(all_axioms.values())
sage: all_axioms.add('Awesome')
sage: all_axioms['Awesome'] == m + 1
True
```
```
To avoid side effects, we remove the added axiom:

```
sage: del all_axioms['Awesome']
```
```
sage.categories.category_cy_helper.canonicalize_axioms(all_axioms, axioms)
Canonicalize a set of axioms.

INPUT:

• all_axioms – all available axioms
• axioms – a set (or iterable) of axioms
```
Note: AxiomContainer provides a fast container for axioms, and the collection of axioms is stored in sage.categories.category_with_axiom. In order to avoid circular imports, we expect that the collection of all axioms is provided as an argument to this auxiliary function.

OUTPUT:

A set of axioms as a tuple sorted according to the order of the tuple all_axioms in sage.categories.category_with_axiom.

EXAMPLES:

```
sage: from sage.categories.category_with_axiom import canonicalize_axioms, all_axioms
sage: canonicalize_axioms(all_axioms, ['Commutative', 'Connected', 'WithBasis', 'Finite'])
('Finite', 'Connected', 'WithBasis', 'Commutative')
sage: canonicalize_axioms(all_axioms, ['Commutative', 'Connected', 'Commutative', 'WithBasis', 'Finite'])
('Finite', 'Connected', 'WithBasis', 'Commutative')
```

sage.categories.category_cy_helper.category_sort_key(category)

Return category._cmp_key.

This helper function is used for sorting lists of categories.

It is semantically equivalent to operator.attrgetter() ("_cmp_key"), but currently faster.

EXAMPLES:

```
sage: from sage.categories.category_cy_helper import category_sort_key
sage: category_sort_key(Rings()) is Rings()._cmp_key
True
```

sage.categories.category_cy_helper.get_axiom_index(all_axioms, axiom)

Helper function: Return the rank of an axiom.

INPUT:

- all_axioms -- the axiom collection
- axiom -- string, name of an axiom

EXAMPLES:

```
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: from sage.categories.category_cy_helper import get_axiom_index
sage: get_axiom_index(all_axioms, 'AdditiveCommutative') == all_axioms['AdditiveCommutative']
True
```

sage.categories.category_cy_helper.join_as_tuple(categories, axioms, ignore_axioms)

Helper for join().

INPUT:

- categories -- tuple of categories to be joined,
- axioms -- tuple of strings; the names of some supplementary axioms.
• **ignore_axioms** – tuple of pairs (cat, axiom), such that axiom will not be applied to cat, should cat
occur in the algorithm.

EXAMPLES:

```python
sage: from sage.categories.category_cy_helper import join_as_tuple
gs:
T = (Coalgebras(QQ), Sets().Finite(), Algebras(ZZ), SimplicialComplexes())
gs:
join_as_tuple(T,(),())

(Category of algebras over Integer Ring,
Category of finite monoids,
Category of finite additive groups,
Category of coalgebras over Rational Field,
Category of finite simplicial complexes)
```

```python
sage: join_as_tuple(T,('WithBasis',),())

(Category of algebras with basis over Integer Ring,
Category of finite monoids,
Category of coalgebras with basis over Rational Field,
Category of finite additive groups,
Category of finite simplicial complexes)
```

```python
sage: join_as_tuple(T,(),(Monoids(),'Finite',))

(Category of algebras over Integer Ring,
Category of finite additive groups,
Category of coalgebras over Rational Field,
Category of finite simplicial complexes)
```

7.4 Coercion methods for categories

The purpose of this Cython module is to hold special coercion methods, which are inserted by their respective categories.

7.5 Poor Man’s map

class `sage.categories.poor_man_map.PoorManMap`

```
Bases: sage.structure.sage_object.SageObject

A class for maps between sets which are not (yet) modeled by parents
Could possibly disappear when all combinatorial classes / enumerated sets will be parents
```

INPUT:

• **function** – a callable or an iterable of callables. This represents the underlying function used to implement this map. If it is an iterable, then the callables will be composed to implement this map.

• **domain** – the domain of this map or `None` if the domain is not known or should remain unspecified

• **codomain** – the codomain of this map or `None` if the codomain is not known or should remain unspecified

• **name** – a name for this map or `None` if this map has no particular name

EXAMPLES:

```python
sage: from sage.categories.poor_man_map import PoorManMap
sage: f = PoorManMap(factorial, domain = (1, 2, 3), codomain = (1, 2, 6))
```
A map from $(1, 2, 3)$ to $(1, 2, 6)$

The composition of several functions can be created by passing in a tuple of functions:

```
sage: i = PoorManMap((factorial, sqrt), domain= (1, 4, 9), codomain = (1, 2, 6))
```

However, the same effect can also be achieved by just composing maps:

```
sage: g = PoorManMap(factorial, domain = (1, 2, 3), codomain = (1, 2, 6))
sage: h = PoorManMap(sqrt, domain = (1, 4, 9), codomain = (1, 2, 3))
sage: i == g*h
True
```

codomain()
Returns the codomain of self

```
sage: from sage.categories.poor_man_map import PoorManMap
sage: PoorManMap(lambda x: x+1, domain = (1,2,3), codomain = (2,3,4)).codomain()
(2, 3, 4)
```

domain()
Returns the domain of self

```
sage: from sage.categories.poor_man_map import PoorManMap
sage: PoorManMap(lambda x: x+1, domain = (1,2,3), codomain = (2,3,4)).domain()
(1, 2, 3)
```
CHAPTER EIGHT

INDICES AND TABLES

• Index
• Module Index
• Search Page

PYTHON MODULE INDEX

<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage.categories.algebras</td>
<td>180</td>
</tr>
<tr>
<td>sage.categories.algebras_with_basis</td>
<td>184</td>
</tr>
<tr>
<td>sage.categories.associative_algebras</td>
<td>189</td>
</tr>
<tr>
<td>sage.categories.bialgebras</td>
<td>189</td>
</tr>
<tr>
<td>sage.categories.bialgebras_with_basis</td>
<td>191</td>
</tr>
<tr>
<td>sage.categories.cartesian_product</td>
<td>783</td>
</tr>
<tr>
<td>sage.categories.category</td>
<td>157</td>
</tr>
<tr>
<td>sage.categories.category_cy_helper</td>
<td>873</td>
</tr>
<tr>
<td>sage.categories.category_singleton</td>
<td>870</td>
</tr>
<tr>
<td>sage.categories.commutative_additive_groups</td>
<td>207</td>
</tr>
<tr>
<td>sage.categories.commutative_additive_monoids</td>
<td>209</td>
</tr>
<tr>
<td>sage.categories.commutative_additive_semigroups</td>
<td>209</td>
</tr>
<tr>
<td>sage.categories.commutative_algebras</td>
<td>210</td>
</tr>
<tr>
<td>sage.categories.commutative_algebra_ideals</td>
<td>210</td>
</tr>
<tr>
<td>sage.categories.commutative_ring_ideals</td>
<td>211</td>
</tr>
<tr>
<td>sage.categories.commutative_rings</td>
<td>211</td>
</tr>
<tr>
<td>sage.categories.complex_reflection_groups</td>
<td>219</td>
</tr>
<tr>
<td>sage.categories.complex_reflection_or_generalized_coxeter_groups</td>
<td>221</td>
</tr>
<tr>
<td>sage.categories.covariant_functorial_construction</td>
<td>777</td>
</tr>
<tr>
<td>sage.categories.coxeter_group_algebras</td>
<td>239</td>
</tr>
<tr>
<td>sage.categories.coxeter_groups</td>
<td>242</td>
</tr>
<tr>
<td>sage.categories.dual</td>
<td>787</td>
</tr>
<tr>
<td>sage.categories.dual álgebras</td>
<td>305</td>
</tr>
<tr>
<td>sage.categories.division_rings</td>
<td>306</td>
</tr>
<tr>
<td>sage.categories.domains</td>
<td>306</td>
</tr>
<tr>
<td>sage.categories.discrete_valuation</td>
<td>304</td>
</tr>
<tr>
<td>sage.categories.distributive_magmas_and_additive_magmas</td>
<td>301</td>
</tr>
<tr>
<td>sage.categories.dual álgebras</td>
<td>807</td>
</tr>
<tr>
<td>sage.categories.examples.algebras_with_basis</td>
<td>807</td>
</tr>
<tr>
<td>sage.categories.examples.commutative_additive_monoids</td>
<td>809</td>
</tr>
<tr>
<td>sage.categories.examples.commutative_additive_semigroups</td>
<td>809</td>
</tr>
<tr>
<td>sage.categories.examples.coxeter_groups</td>
<td>811</td>
</tr>
<tr>
<td>sage.categories.examples.crystals</td>
<td>811</td>
</tr>
<tr>
<td>sage.categories.examples.cw_complexes</td>
<td>813</td>
</tr>
<tr>
<td>sage.categories.examples.facade_sets</td>
<td>814</td>
</tr>
<tr>
<td>sage.categories.examples.finite_coxeter_groups</td>
<td>815</td>
</tr>
<tr>
<td>sage.categories.examples.finite_dimensional_algebras</td>
<td>817</td>
</tr>
<tr>
<td>sage.categories.examples.finite_dimensional_lie_algebras</td>
<td>818</td>
</tr>
<tr>
<td>sage.categories.examples.finite_enumerated_sets</td>
<td>822</td>
</tr>
<tr>
<td>sage.categories.examples.finite_monoids</td>
<td>824</td>
</tr>
<tr>
<td>sage.categories.examples.finite_semigroups</td>
<td>826</td>
</tr>
<tr>
<td>sage.categories.examples.finite_weyl_groups</td>
<td>828</td>
</tr>
<tr>
<td>sage.categories.examples.graded_connected_hopf_algebras</td>
<td>830</td>
</tr>
<tr>
<td>Category</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>sage.categories.examples.graded_modules_with_basis</td>
<td>832</td>
</tr>
<tr>
<td>sage.categories.examples.graphs</td>
<td>834</td>
</tr>
<tr>
<td>sage.categories.examples.hopf_algebras_with_basis</td>
<td>835</td>
</tr>
<tr>
<td>sage.categories.examples.infinite Enumerated Sets</td>
<td>837</td>
</tr>
<tr>
<td>sage.categories.examples.lie_algebras</td>
<td>838</td>
</tr>
<tr>
<td>sage.categories.examples.lie_algebras_with_basis</td>
<td>840</td>
</tr>
<tr>
<td>sage.categories.examples.magas</td>
<td>841</td>
</tr>
<tr>
<td>sage.categories.examples.manifolds</td>
<td>842</td>
</tr>
<tr>
<td>sage.categories.examples.monoids</td>
<td>843</td>
</tr>
<tr>
<td>sage.categories.examples.posets</td>
<td>845</td>
</tr>
<tr>
<td>sage.categories.examples.semigroups</td>
<td>847</td>
</tr>
<tr>
<td>sage.categories.examples.semigroups_cython</td>
<td>852</td>
</tr>
<tr>
<td>sage.categories.examples.sets_cat</td>
<td>854</td>
</tr>
<tr>
<td>sage.categories.examples.sets_with_grading</td>
<td>860</td>
</tr>
<tr>
<td>sage.categories.facade_sets</td>
<td>774</td>
</tr>
<tr>
<td>sage.categories.fields</td>
<td>315</td>
</tr>
<tr>
<td>sage.categories.filtered_algebras</td>
<td>320</td>
</tr>
<tr>
<td>sage.categories.filtered_algebras_with_basis</td>
<td>321</td>
</tr>
<tr>
<td>sage.categories.filtered_modules</td>
<td>328</td>
</tr>
<tr>
<td>sage.categories.filtered_modules_with_basis</td>
<td>330</td>
</tr>
<tr>
<td>sage.categories.finite_complex_reflection_groups</td>
<td>345</td>
</tr>
<tr>
<td>sage.categories.finite_coxeter_groups</td>
<td>362</td>
</tr>
<tr>
<td>sage.categories.finite_crystals</td>
<td>374</td>
</tr>
<tr>
<td>sage.categories.finite_dimensional_algebras_with_basis</td>
<td>375</td>
</tr>
<tr>
<td>sage.categories.finite_dimensional_bialgebras</td>
<td>393</td>
</tr>
<tr>
<td>sage.categories.finite_dimensional_lie_algebras_with_basis</td>
<td>393</td>
</tr>
<tr>
<td>sage.categories.finite_dimensional_graded_lie_algebras_with_basis</td>
<td>395</td>
</tr>
<tr>
<td>sage.categories.finite_dimensional_graded_lie_algebras</td>
<td>395</td>
</tr>
<tr>
<td>sage.categories.finite_dimensional_hopf_algebras_with_basis</td>
<td>412</td>
</tr>
<tr>
<td>sage.categories.finite_dimensional_hopf_algebras</td>
<td>420</td>
</tr>
<tr>
<td>sage.categories.finite_dimensional_nilpotent_lie_algebras_with_base</td>
<td>421</td>
</tr>
<tr>
<td>sage.categories.finite_enumerated_sets</td>
<td>423</td>
</tr>
<tr>
<td>sage.categories.finite_fields</td>
<td>429</td>
</tr>
</tbody>
</table>
Symbols

__classcall__() (sage.categories.category.Category static method), 42
__classcall__() (sage.categories.category_with_axiom.CategoryWithAxiom static method), 92
__classget__() (sage.categories.category_with_axiom.CategoryWithAxiom static method), 92
__init__() (sage.categories.category.Category method), 43
__init__() (sage.categories.category_with_axiom.CategoryWithAxiom method), 93
_all_super_categories() (sage.categories.category.Category method), 36
_all_super_categories_proper() (sage.categories.category.Category method), 37
_make_named_class() (sage.categories.category.Category method), 38
_make_named_class() (sage.categories.category_with_axiom.CategoryWithAxiom method), 62
_repr__() (sage.categories.category.Category method), 39
_repr__() (sage.categories.category.JoinCategory.Category method), 64
_repr_object_names() (sage.categories.category.Category method), 39
_repr_object_names() (sage.categories.category.JoinCategory.Category method), 64
_repr_object_names() (sage.categories.category_with_axiom.CategoryWithAxiom method), 93
_repr_object_names_static() (sage.categories.category_with_axiom.CategoryWithAxiom static method), 93
_set_of_super_categories() (sage.categories.category.Category method), 37
_sort() (sage.categories.category.Category static method), 41
_sort_uniq() (sage.categories.category.Category static method), 42
super_categories() (sage.categories.category.Category method), 35
super_categories_for_classes() (sage.categories.category.Category method), 36
test_category() (sage.categories.category.Category method), 39
test_category_with_axiom() (sage.categories.category_with_axiom.CategoryWithAxiom method), 94
with_axiom() (sage.categories.category.Category method), 40
with_axiom_as_tuple() (sage.categories.category.Category method), 40
without_axioms() (sage.categories.category.Category method), 41
without_axioms() (sage.categories.category.JoinCategory.Category method), 64
without_axioms() (sage.categories.category_with_axiom.CategoryWithAxiom method), 94

A
a_realization() (sage.categories.examples.with_realizations.SubsetAlgebra method), 865
a_realization() (sage.categories.sets_cat.Sets.WithRealizations.ParentMethods method), 721
AbelianCategory (class in sage.categories.category_types), 867
AbelianLieAlgebra (class in sage.categories.examples.finite_dimensional_lie_algebras_with_basis), 818
AbelianLieAlgebra (class in sage.categories.examples.lie_algebras_with_basis), 840
AbelianLieAlgebra.Element (class in sage.categories.examples.finite_dimensional_lie_algebras_with_basis),
AbelianLieAlgebra.Element (class in sage.categories.examples.lie_algebras_with_basis), method, 220

abs() (sage.categories.metric_spaces.MetricSpaces.ElementMethods method), 587

absolute_covers() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 243

absolute_le() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 243

absolute_length() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods method), 244

absolute_order_ideal() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods method), 475

actor() (sage.categories.action.Action method), 158

additional_structure() (sage.categories.additive_magmas.AdditiveUnital method), 166

additional_structure() (sage.categories.affine_weyl_groups.AffineWeylGroups method), 191

add() (sage.categories.category_cy_helper.AxiomContainer method), 873

addition_table() (sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital method), 168

additional_structure() (sage.categories.additive_magmas.AdditiveMagmas method), 166

additional_structure() (sage.categories.affine_weyl_groups.AffineWeylGroups method), 585

additional_structure() (sage.categories.bialgebras.Bialgebras method), 190

additional_structure() (sage.categories.module_categories.modules.ModuleCategories method), 601

additional_structure() (sage.categories.objects.Objects method), 638

additional_structure() (sage.categories.principal_ideal_domains.PrincipalIdealDomains method), 650

additional_structure() (sage.categories.regular_crystals.RegularCrystals method), 670

additional_structure() (sage.categories.unique_factorization_domains.UniqueFactorizationDomains method), 756

additional_structure() (sage.categories.vector_spaces.VectorSpaces method), 763

additional_structure() (sage.categories.weyl_groups.WeylGroups method), 767
AdditiveGroups.Finite

Algebras.ElementMethods (class in sage.categories.algebras), 182
Algebras.Quotients (class in sage.categories.algebras), 182
Algebras.Quotients.ParentMethods (class in sage.categories.algebras), 182
Algebras.SubcategoryMethods (class in sage.categories.algebras), 182
Algebras.TensorProducts (class in sage.categories.algebras), 183
Algebras.TensorProducts.ElementMethods (class in sage.categories.algebras), 183
Algebras.TensorProducts.ParentMethods (class in sage.categories.algebras), 183
AlgebrasCategory (class in sage.categories.algebra_functor), 792
AlgebrasCategory.ParentMethods (class in sage.categories.algebra_functor), 793
AlgebrasWithBasis (class in sage.categories.algebras_with_basis), 184
AlgebrasWithBasis.CartesianProducts (class in sage.categories.algebras_with_basis), 185
AlgebrasWithBasis.CartesianProducts.ParentMethods (class in sage.categories.algebras_with_basis), 185
AlgebrasWithBasis.ElementMethods (class in sage.categories.algebras_with_basis), 187
AlgebrasWithBasis.ParentMethods (class in sage.categories.algebras_with_basis), 187
all_paths_to_highest_weight() (sage.categories.crystals.Crystals.ElementMethods method), 281
all_super_categories() (sage.categories.category.Category method), 50
AlmostComplex() (sage.categories.manifolds.Manifolds.Surface method), 583
ambient() (sage.categories.manifolds.Manifolds.Surface method), 583
ambient() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis method), 187
ambient() (sage.categories.algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis method), 411
an_element() (sage.categories.crystals.Crystals.ParentMethods method), 288
an_element() (sage.categories.examples.commutative_additive_semigroups.Crystals.ElementMethods method), 811
an_element() (sage.categories.examples.cw_complexes.Surface method), 814
an_element() (sage.categories.examples.finite_monoids.IntegerModMonoids.ElementMethods method), 825
an_element() (sage.categories.examples.finite_semigroups.LeftRegularBand.ElementMethods method), 827
an_element() (sage.categories.examples.graphs.Cycle method), 835
an_element() (sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers.ElementMethods method), 838
an_element() (sage.categories.examples.mmagmas.FiniteSemigroups.ElementMethods method), 842
an_element() (sage.categories.examples.manifolds.Plane method), 843
an_element() (sage.categories.examples.posets.FiniteSetsOrderedByInclusion.ElementMethods method), 846
an_element() (sage.categories.examples.semigroups.FiniteSemigroups.ElementMethods method), 847
an_element() (sage.categories.examples.semigroups.LeftZeroSemigroups.ElementMethods method), 849
an_element() (sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup.ElementMethods method), 850
an_element() (sage.categories.examples.sets_cat.FiniteSetsOrderedByInclusion.ElementMethods method), 855
an_element() (sage.categories.examples.sets_cat.NonNegativeIntegers.ElementMethods method), 856
an_element() (sage.categories.examples.sets_with_grading.NonNegativeIntegers.ElementMethods method), 858
an_element() (sage.categories.parent.Parent.ElementMethods method), 703
an_element() (sage.categories.sets_cat.Sets.ElementMethods method), 708
CallMorphism (class in sage.categories.morphism), 124
cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods), 376

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods), 377

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods), 378

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods), 379

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods), 381

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods), 382

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods), 383

character()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Commutative.ParentMethods), 397

classically_highest_weight_vectors()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Commutative.ParentMethods), 397

classically_highest_weight_vectors()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Commutative.ParentMethods), 398

classically_highest_weight_vectors()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Commutative.ParentMethods), 399

classically_highest_weight_vectors()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Commutative.ParentMethods), 400

classically_highest_weight_vectors()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Commutative.ParentMethods), 401

Coalgebras()
(class in sage.categories.coalgebras), 200

Coalgebras()
(class in sage.categories.coalgebras), 201

Coalgebras()
(class in sage.categories.coalgebras), 202

Coalgebras()
(class in sage.categories.coalgebras), 203

Coalgebras()
(class in sage.categories.coalgebras), 204

Coalgebras()
(class in sage.categories.coalgebras), 205

Coalgebras()
(class in sage.categories.coalgebras), 206

Coalgebras()
(class in sage.categories.coalgebras), 207

Coalgebras()
(class in sage.categories.coalgebras), 208

Coalgebras()
(class in sage.categories.coalgebras), 209

Coalgebras()
(class in sage.categories.coalgebras), 210

Coalgebras()
(class in sage.categories.coalgebras), 211

Coalgebras()
(class in sage.categories.coalgebras), 212

Coalgebras()
(class in sage.categories.coalgebras), 213

Coalgebras()
(class in sage.categories.coalgebras), 214
codomain (sage.categories.map.Map attribute), 112

codomain (sage.categories.action.Action method), 158

codomain (sage.categories.action.InverseAction method), 159

codomain (sage.categories.action.PrecomposedAction method), 160

codomain (sage.categories.functor.Functor method), 103

codomain (sage.categories.homset.Hom set method), 121

codomain (sage.categories.poor_man_map.PoorManMap method), 876

coefficient (sage.categories.modules_with_basis.ModuleMethods (class in sage.categories.commutative_rings), 604

coefficients (sage.categories.modules_with_basis.ModuleMethods (class in sage.categories.commutative_rings), 605

cohomology (sage.categories.algebras.CommutativeAlgebras (class in sage.categories.commutative_algebras), 210

cohomology (sage.categories.algebras.CommutativeRingIdeals (class in sage.categories.commutative_ringIdeals), 211

cohomology (sage.categories.algebras.CommutativeRings (class in sage.categories.commutative_rings), 211

cohomology (sage.categories.algebras.CommutativeRings.Finite (class in sage.categories.commutative_rings), 211

cohomology (sage.categories.algebras.CommutativeRings.Finite.ParentMethods (class in sage.categories.commutative_rings), 212

cohomology (sage.categories.algebras.CommutativeRings.ParentMethods (class in sage.categories.commutative_rings), 213

cohomology (sage.categories.division rings.DivisionRingcommutes (sage.categories.pushout.CompletionFunctor method), 132

collate (sage.categories.domains.Domains attribute), 306

collate (sage.categories.rings.Rings attribute), 674

collative (sage.categories.category_with_axiom.Blahs.SubcategoryMethods, 569

collative (sage.categories.magnas.Magmas.SubcategoryMethods) (class in sage.categories.magnas), 299

Category Framework, Release 9.6
coproduct_on_basis()
counit_on_basis()
counit_by_coercion()
counit()
counit()
counit()
counit()
counit()
counit()
counit()
coset_representative()
coxeter_matrix()
coxeter_knuth_neighbor()
coxeter_knuth_graph()
coxeter_elements()
coxeter_type()
coxeter_diagram()
covered_reflections_subgroup()
sage.categories.cw_complexes), 300
cycle_index() (sage.categories.finite_permutation_groups, 834)
cyclopticosets() (sage.categories.commutative_rings.CommutativeRings.FiniteParentMethods, 212)

default_super_categories() (sage.categories.covariant_functorial_construction, 778)
demazure_product() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods, 268)
demazure_lusztig_operators() (sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras.ElementMethods, 240)
demazure_lusztig_operator_on_basis() (sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras.ElementMethods, 240)
demazure_subcrystal() (sage.categories.regular_crystals.RegularCrystals.ParentMethods, 268)
degree() (sage.categories.filtered_modules_with_basis, 331)
degree() (sage.categories.filtered_modules_with_basis, 344)
degree() (sage.categories.graded_modules_with_basis, 491)
degree() (sage.categories.graded_modules_with_basis, 487)
degree() (sage.categories.graded_modules_with_basis, 488)
degree() (sage.categories.examples.commutative_rings, 831)
deodhar_lift_down()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods)
method, 250

deodhar_lift_up()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods)
method, 250

derivations_basis()
(sage.categories.finite_dimensional_lie_algebras.FiniteDimensionalLieAlgebrasWithBasis)
dimension(), 400

derivations_basis()
(sage.categories.magnetic_algebras.MagneticAlgebras)
dimension()

derivative()
(sage.categories.quotient_fields.QuotientFields.ElementMethods)

derived_series()
(sage.categories.finite_dimensional_lie_algebras.FiniteDimensionalLieAlgebrasWithBasis)

	
	

dimension()

dimensional()

direct_sum()

dimension()

distance()

dist()

dist()
Category Framework, Release 9.6

example() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGeneratedWithReductions method), 359
example() (sage.categories.finite_crystals.FiniteCrystals method), 374
example() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis method), 741
example() (sage.categories.finite_permutation_groups.FinitePermutationGroups method), 427
example() (sage.categories.finite_groups.FiniteGroups method), 432
example() (sage.categories.finite_permutation_groups.FinitePermutationGroups method), 443
example() (sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups method), 473
example() (sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis method), 483
example() (sage.categories.highest_weight_crystals.HighestWeightCrystals method), 531
example() (sage.categories.highest_weight_crystals.HighestWeightCrystals method), 539
example() (sage.categories.lie_algebras.LieAlgebras method), 545
example() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis method), 560
example() (sage.categories.magnus.Magnus.method), 563
example() (sage.categories.posets.Posets method), 649
example() (sage.categories.quantum_group_representations.QuantumGroupRepresentations method), 662
example() (sage.categories.regular_crystals.RegularCrystals method), 671
example() (sage.categories.regular_crystals.RegularCrystals method), 671
example() (sage.categories.semigroups.Semigroups method), 696
example() (sage.categories.semigroups.Semigroups method), 696
example() (sage.categories.sets_cat.Sets method), 724

extra_super_categories()

extra_super_categories()
extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.CartesianProducts method), 167
extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.Homsets method), 168
extra_super_categories()
(sage.categories.additive_monoids.AdditiveMonoids.Homsets method), 173
extra_super_categories()
(sage.categories.additive_semigroups.AdditiveSemigroups.Algebras method), 175
extra_super_categories()
(sage.categories.additive_semigroups.AdditiveSemigroups.CartesianProducts method), 175
extra_super_categories()
(sage.categories.additive_semigroups.AdditiveSemigroups.Homsets method), 176
extra_super_categories()
(sage.categories.algebras.Algebras.CartesianProducts method), 181
extra_super_categories()
(sage.categories.algebras.Algebras.DualObjects method), 181
extra_super_categories()
(sage.categories.algebras.Algebras.TensorProducts method), 183
extra_super_categories()
(sage.categories.algebras_with_basis.AlgebrasWithBasis.CartesianProducts method), 186
extra_super_categories()
(sage.categories.algebras_with_basis.AlgebrasWithBasis.TensorProducts method), 188
extra_super_categories()
(sage.categories.aperiodic_semigroups.AperiodicSemigroups method), 189
extra_super_categories()
(sage.categories.category_with_axiom.Blahs.Flying method), 91
extra_super_categories()
(sage.categories.category_with_axiom.CategoryWithAxiom method), 96
extra_super_categories()
(sage.categories.classical_crystals.ClassicalCrystals.TensorProducts method), 199
extra_super_categories()
(sage.categories.coalgebras.Coalgebras.Algebras method), 200
extra_super_categories()
(sage.categories.coalgebras.Coalgebras.DualObjects method), 204
extra_super_categories()
(sage.categories.coalgebras.WithBasis metod: CoalgebrasWithBasis.Super method), 207
extra_super_categories()
(sage.categories.commutative_rings.CommutativeRings.CartesianProducts method), 211
extra_super_categories()
(sage.categories.covariant_functorial_construction.FunctorialConstructionCategory method), 782
extra_super_categories()
(sage.categories.crystals.Crystals.TensorProducts method), 298
extra_super_categories()
(sage.categories.division_rings.DivisionRings method), 305
extra_super_categories()
(sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.CartesianProducts method), 304
extra_super_categories()
(sage.categories.distributive_rings.DistributiveRings method), 311
extra_super_categories()
(sage.categories.division_rings.DivisionRings method), 305
extra_super_categories()
(sage.categories.fields.Fields method), 320
extra_super_categories()
(sage.categories.filtered_modules.FilteredModules method), 329
extra_super_categories()
(sage.categories.finite_coxeter_groups.FiniteCoxeterGroups method), 373
extra_super_categories()
(sage.categories.finite_crystals.FiniteCrystals method), 374
extra_super_categories()
(sage.categories.finite_crystals.FiniteCrystals.TensorProducts method), 379
extra_super_categories()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis method), 384
extra_super_categories()
(sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis method), 419
extra_super_categories()
(sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.CartesianProducts method), 426
extra_super_categories()
(sage.categories.finite_fields.FiniteFields method), 430
extra_super_categories()
(sage.categories.finite_groups.FiniteGroups.Algebras method), 430
extra_super_categories()
(sage.categories.finite_permutation_groups.FinitePermutationGroups method), 443
extra_super_categories()
(sage.categories.filtered_modules.FilteredModules method), 329
extra_super_categories()
(sage.categories.finite_fields.FiniteFields method), 430
extra_super_categories()
(sage.categories.finite_groups.FiniteGroups.Algebras method), 430
extra_super_categories()
(sage.categories.finite_permutation_groups.FinitePermutationGroups method), 443

Index 903
extra_super_categories()
(sage.categories.finite_sets.FiniteSets.Algebras method), 467
extra_super_categories()
(sage.categories.finite_sets.FiniteSets.Subquotients method), 467
extra_super_categories()
(sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups method), 474
extra_super_categories()
(sage.categories.generalized_coxeter_groups.GeneralizedCoxeterGroups.Finite method), 476
extra_super_categories()
(sage.categories.graded_algebras.GradedAlgebras.SignedTensorProducts method), 477
extra_super_categories()
(sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis.SignedTensorProducts method), 479
extra_super_categories()
(sage.categories.graded_coalgebras.GradedCoalgebras.SignedTensorProducts method), 481
extra_super_categories()
(sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis.SignedTensorProducts method), 481
extra_super_categories()
(sage.categories.graded_lie_algebras.GradedLieAlgebras.Stratified.FiniteDimensional method), 484
extra_super_categories()
(sage.categories.graphs.Graphs.Connected method), 492
extra_super_categories()
(sage.categories.group_algebras.GroupAlgebras method), 497
extra_super_categories()
(sage.categories.groups.Groups.CartesianProducts method), 500
extra_super_categories()
(sage.categories.hecke_modules.HeckeModules.Homsets method), 508
extra_super_categories()
(sage.categories.highest_weight_crystals.HighestWeightCrystals.TensorProducts method), 514
extra_super_categories()
(sage.categories.hopf_algebras.HopfAlgebras.TensorProducts method), 517
extra_super_categories()
(sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis.Homsets.Endset method), 520
extra_super_categories()
(sage.categories.j_trivial_semigroups.JTrivialSemigroups method), 523
<table>
<thead>
<tr>
<th>extra_super_categories()</th>
<th>extra_super_categories()</th>
</tr>
</thead>
<tbody>
<tr>
<td>extra_super_categories()</td>
<td>extra_super_categories()</td>
</tr>
</tbody>
</table>

Index 905
extra_super_categories()

extra_super_categories()

extra_super_categories()

Fields (class in sage.categories.fields, 315)

Fields.ElementMethods (class in sage.categories.fields, 315)

Facade (class in sage.categories.facade_sets, 705)

Facade (class in sage.categories.sets_cat, 712)

FacadeSets (class in sage.categories.facade_sets, 774)

FacadeSets.ParentMethods (class in sage.categories.facade_sets, 774)

FacadeSets.ParentMethods (class in sage.categories.facade_sets, 774)

faces() (sage.categories.simplicial_complexes.SimplicialComplexes.ParentMethods method, 729)

facets() (sage.categories.simplicial_complexes.SimplicialComplexes.ParentMethods method, 730)

factor() (sage.categories.fields.Fields.ElementMethods method, 315)

factor() (sage.categories.quotient_fields.QuotientFields.ElementMethods method, 651)

Fields (class in sage.categories.fields, 315)

Fields.ElementMethods (class in sage.categories.fields, 315)

Facade (class in sage.categories.facade_sets, 705)

Facade (class in sage.categories.sets_cat, 712)

FacadeSets (class in sage.categories.facade_sets, 774)

FacadeSets.ParentMethods (class in sage.categories.facade_sets, 774)

faces() (sage.categories.simplicial_complexes.SimplicialComplexes.ParentMethods method, 729)

facets() (sage.categories.simplicial_complexes.SimplicialComplexes.ParentMethods method, 730)

factor() (sage.categories.fields.Fields.ElementMethods method, 315)

factor() (sage.categories.quotient_fields.QuotientFields.ElementMethods method, 651)

Fields (class in sage.categories.fields, 315)

Fields.ElementMethods (class in sage.categories.fields, 315)
<table>
<thead>
<tr>
<th>Class/Method</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiniteSetsOrderedByInclusion (class in sage.categories.examples.posets), 845</td>
<td>809</td>
</tr>
<tr>
<td>FiniteSetsOrderedByInclusion.Element (class in sage.categories.examples.posets), 846</td>
<td>FreeCommutativeAdditiveSemigroup.Element (class in sage.categories.examples.commutative_additive_semigroups), 810</td>
</tr>
<tr>
<td>FiniteWeylGroups (class in sage.categories.finite_weyl_groups), 468</td>
<td>FreeMagma (class in sage.categories.examples.magmas), 841</td>
</tr>
<tr>
<td>FiniteWeylGroups.ElementMethods (class in sage.categories.finite_weyl_groups), 468</td>
<td>FreeMagma.Element (class in sage.categories.examples.magmas), 841</td>
</tr>
<tr>
<td>FiniteWeylGroups.ParentMethods (class in sage.categories.finite_weyl_groups), 468</td>
<td>FreeMonoid (class in sage.categories.examples.monoids), 842</td>
</tr>
<tr>
<td>first() (sage.categories.enumerated_setsEnumeratedSetsCartesianProductsParentMethods)</td>
<td>FreeMonoid.Element (class in sage.categories.examples.monoids), 844</td>
</tr>
<tr>
<td>first() (sage.categories.enumerated_setsEnumeratedSetsParentMethodscategoriesexamplesmonoids), 844</td>
<td>FreeSemigroup (class in sage.categories.examples.semigroups), 847</td>
</tr>
<tr>
<td>first() (sage.categories.mapFormalCompositeMap method), 108</td>
<td>FreeSemigroup.Element (class in sage.categories.examples.semigroups), 847</td>
</tr>
<tr>
<td>first_descent() (sage.categories.coxeter_groupsCoxeterGroupsParentMethodsexamplessemigroups), 847</td>
<td>ForgetfulFunctor() (class in sage.categories.pushout), 137</td>
</tr>
<tr>
<td>Flying() (sage.categories.category_with_axiomBlahsSubcategoryMethods), 91</td>
<td>ForgetfulFunctor_generic (class in sage.categories.pushout), 101</td>
</tr>
<tr>
<td>ForgetfulFunctor() (class in sage.categories.function_fields), 137</td>
<td>FormalCoercionMorphism (class in sage.categories.function_fields), 124</td>
</tr>
<tr>
<td>ForgetfulFunctor_generic (class in sage.categories.function_fields), 101</td>
<td>FractionField (class in sage.categories.pushout), 137</td>
</tr>
<tr>
<td>FormalCoercionMorphism (class in sage.categories.group), 124</td>
<td>FractionField (class in sage.categories.pushout), 137</td>
</tr>
<tr>
<td>FractionField (class in sage.categories.pushout), 137</td>
<td>Free() (sage.categories.groupsGroups static method), 506</td>
</tr>
<tr>
<td>Free() (sage.categories.groupsGroups.Commutative static method), 500</td>
<td>Free() (sage.categories.groupsGroups.Commutative static method), 500</td>
</tr>
<tr>
<td>Free() (sage.categories.monoidsMonoids static method), 634</td>
<td>Free() (sage.categories.monoidsMonoids.Commutative static method), 632</td>
</tr>
<tr>
<td>Free() (sage.categories.monoidsMonoids.Commutative static method), 632</td>
<td>Free_graded_module() (sage.categories.graded_algebras_with_basisGradedAlgebrasWithBasisParentMethods), 478</td>
</tr>
<tr>
<td>Free_graded_module() (sage.categories.graded_algebras_with_basisGradedAlgebrasWithBasisParentMethods), 478</td>
<td>Free_graded_module() (sage.categories.graded_algebras_with_basisGradedAlgebrasWithBasisParentMethods), 478</td>
</tr>
<tr>
<td>Free_graded_module() (sage.categories.graded_algebras_with_basisGradedAlgebrasWithBasisParentMethods), 478</td>
<td>Free_graded_module() (sage.categories.graded_algebras_with_basisGradedAlgebrasWithBasisParentMethods), 478</td>
</tr>
<tr>
<td>Free_graded_module() (sage.categories.graded_algebras_with_basisGradedAlgebrasWithBasisParentMethods), 478</td>
<td>Free_graded_module() (sage.categories.graded_algebras_with_basisGradedAlgebrasWithBasisParentMethods), 478</td>
</tr>
<tr>
<td>Free_module() (sage.categories.ringsRingsParentMethods), 678</td>
<td>Free_module() (sage.categories.ringsRingsParentMethods), 678</td>
</tr>
<tr>
<td>FreeAlgebra (class in sage.categories.examples.algebras_with_basis), 807</td>
<td>FreeAlgebra (class in sage.categories.examples.algebras_with_basis), 807</td>
</tr>
<tr>
<td>FreeCommutativeAdditiveMonoid (class in sage.categories.examples.commutative_additive_semigroups), 808</td>
<td>FreeCommutativeAdditiveMonoid (class in sage.categories.examples.commutative_additive_semigroups), 808</td>
</tr>
<tr>
<td>FreeCommutativeAdditiveMonoid.Element (class in sage.categories.examples.commutative_additive_semigroups), 809</td>
<td>FreeCommutativeAdditiveSemigroup (class in FunctionFields.ElementMethods), 477</td>
</tr>
<tr>
<td>FreeCommutativeAdditiveSemigroup (class in FunctionFields.ElementMethods), 477</td>
<td>FreeCommutativeAdditiveSemigroup (class in FunctionFields.ElementMethods), 477</td>
</tr>
<tr>
<td>Class</td>
<td>Method</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>GradedModulesWithBasis.Quotients.ParentMethods</td>
<td>Topological (class in sage.categories.groups),</td>
</tr>
<tr>
<td></td>
<td>grading()</td>
</tr>
<tr>
<td></td>
<td>GSets (class in sage.categories.g_sets),</td>
</tr>
<tr>
<td>GradedPartitionModule</td>
<td>(class in sage.categories.graded_modules_with_basis),</td>
</tr>
<tr>
<td></td>
<td>grading()</td>
</tr>
<tr>
<td></td>
<td>grading()</td>
</tr>
<tr>
<td></td>
<td>grading_set()</td>
</tr>
<tr>
<td>Graphs</td>
<td>(class in sage.categories.graphs),</td>
</tr>
<tr>
<td></td>
<td>Grassmannian_elements()</td>
</tr>
<tr>
<td></td>
<td>group()</td>
</tr>
<tr>
<td></td>
<td>HeckeModules</td>
</tr>
<tr>
<td></td>
<td>HeckeModules.Homsets</td>
</tr>
<tr>
<td></td>
<td>HighestWeightCrystalMorphism</td>
</tr>
<tr>
<td></td>
<td>HighestWeightCrystalHomset</td>
</tr>
<tr>
<td></td>
<td>HighestWeightCrystalMorphism()</td>
</tr>
<tr>
<td></td>
<td>HighestWeightCrystalMorpphism()</td>
</tr>
<tr>
<td></td>
<td>HighestWeightCrystalOfTypeA</td>
</tr>
</tbody>
</table>
is_odd() (sage.categories.super_modules.SuperModules.ElementMethods method), 55
is_one() (sage.categories.monoids.Monoids.ElementMethods method), 632
is_order_filter() (sage.categories.posets.Posets.ParentMethods method), 646
is_order_ideal() (sage.categories.posets.Posets.ParentMethods method), 646
is_parent_of() (sage.categories.facade_sets.FacadeSets.ParentMethods method), 775
is_parent_of() (sage.categories.sets_cat.Sets.ParentMethods method), 709
is_perfect() (sage.categories.fields.Fields.ParentMethods method), 319
is_perfect() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods method), 551
is_pieri_factor() (sage.categories.weyl_groups.WeylGroups.ElementMethods method), 766
is_pointed() (sage.categories.simplicial_sets.SimplicialSets.ElementMethods method), 731
is_poset_isomorphism() (sage.categories.finite_posets.FinitePosets.ElementMethods method), 454
is_poset_morphism() (sage.categories.finite_posets.FinitePosets.ParentMethods method), 455
is_prime() (sage.categories.examples.sets_cat.PrimeNumbers.ElementMethods method), 190
is_primitive() (sage.categories.bialgebras.Bialgebras.ElementMethods method), 190
is_real() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.FiniteComplexReflectionGroups.ParentMethods method), 354
is_real() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods method), 354
is_reducible() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods method), 233
is_reflection() (sage.categories.finite_complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.FiniteCoxeterGroups.ElementMethods method), 227
is_ring() (sage.categories.rings.Rings.ElementMethods method), 680
is_semisimple() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ElementMethods method), 404
is_simply_connected() (sage.categories.simplicial_sets.SimplicialSets.Pointed.ElementMethods method), 736
is_solvable() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ElementMethods method), 404
is_solvable() (sage.categories.lie_algebras.LieAlgebras.ElementMethods method), 537
is_strict() (sage.categories.crystals.Crystals.ElementMethods method), 287
is_subcategory() (sage.categories.category.JoinCategory)
Index 919

Category Framework, Release 9.6

\begin{itemize}
 \item \texttt{j_transversal_of_idempotents()} (\texttt{sage.categories.finite_semi_groups.Finite_Semigroups Attribute}), 466
 \item \texttt{killin}\texttt{_matrix()} (\texttt{sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ElementMethods}), 405
 \item \texttt{K() (\texttt{sage.categories.lie_algebras.Lie_Algebras_Parent_Methods})}), 287
 \item \texttt{K_on_basis()} (\texttt{sage.categories.lie_algebras.Lie_Algebras_With_Basis_Parent_Methods}), 660
 \item \texttt{KacMoody_Algebras()} (\texttt{sage.categories.kac_moody_algebras.Kac_Moody_Algebras_Parent_Methods}), 524
 \item \texttt{KacMoody_Algebras_Parent_Methods} (\texttt{sage.categories.kac_moody_algebras.Kac_Moody_Algebras_With_Basis_Parent_Methods}), 524
 \item \texttt{kazhdan_lusztig_cell()} (\texttt{sage.categories.j_trivial_semigroups.JTrivialSemigroups_LambdaBracketAlgebras_With_Basis_Parent_Methods}), 254
 \item \texttt{kazhdan_lusztig_cells()} (\texttt{sage.categories.lambda_bracket_algebras_with_basis.Lambda_Bracket_Algebras_With_Basis_Finitely_Generated_As_LambdaBracket_Algebra_Element_Methods}), 527
 \item \texttt{kernel()} (\texttt{sage.categories.lie_algebras.Lie_Algebras_Parent_Methods}), 404
 \item \texttt{kernel_basis()} (\texttt{sage.categories.lie_algebras.Lie_Algebras_Parent_Methods}), 404
 \item \texttt{killing_form()} (\texttt{sage.categories.lie_algebras.Lie_Algebras_With_Basis_Parent_Methods}), 531
 \item \texttt{killing_form()} (\texttt{sage.categories.lie_algebras.Lie_Algebras_Parent_Methods}), 537
 \item \texttt{killing_form_matrix()} (\texttt{sage.categories.lambda_bracket_algebras_with_basis.Lambda_Bracket_Algebras_With_Basis_Finitely_Generated_As_LambdaBracket_Algebra_Element_Methods}), 404
 \item \texttt{Kirillov_Reshetikhin_Crystals_With_Basis_Parent_Methods} (\texttt{sage.categories.kac_moody_algebras.Kirillov_Reshetikhin_Crystals_With_Basis_Parent_Methods}), 548
 \item \texttt{Kirillov_Reshetikhin_Crystals_With_Basis_Element_Methods} (\texttt{sage.categories.kac_moody_algebras.Kirillov_Reshetikhin_Crystals_With_Basis_Element_Methods}), 557
 \item \texttt{LambdaBracketAlgebras()} (\texttt{sage.categories.lambda_bracket_algebras.Lambda_Bracket_Algebras_With_Basis_Parent_Methods}), 525
 \item \texttt{LambdaBracketAlgebras_Element_Methods} (\texttt{sage.categories.lambda_bracket_algebras.Lambda_Bracket_Algebras_With_Basis_Element_Methods}), 525
 \item \texttt{Lambda_Bracket_Algebras_With_Basis_Parent_Methods} (\texttt{sage.categories.lambda_bracket_algebras_with_basis.Lambda_Bracket_Algebras_With_Basis_Parent_Methods}), 527
 \item \texttt{Lambda_Bracket_Algebras_With_Basis_Element_Methods} (\texttt{sage.categories.lambda_bracket_algebras_with_basis.Lambda_Bracket_Algebras_With_Basis_Element_Methods}), 527
\end{itemize}
lusztig_involution()
(sage.categories.loop_crystals.KirillovReshetikhinCrystals.
method), 549

M
m_cambrian_lattice()
(sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.
method), 568
magma_generators()
(sage.categories.examples.magmas.FreeMagma.
method), 842
magma_generators()
(sage.categories.finitely_generated_magmas.FinitelyGeneratedMagmas.
method), 471
magma_generators()
(sage.categories.semisigroups.Semigroups.
method), 690
Magmas (class in sage.categories.magmas), 562
Magmas.Algebras (class in sage.categories.magmas), 562
Magmas.Algebras.ParentMethods (class in sage.categories.magmas), 562
Magmas.CartesianProducts (class in sage.categories.magmas), 563
Magmas.CartesianProducts.ParentMethods (class in sage.categories.magmas), 563
Magmas.Commutative (class in sage.categories.magmas), 564
Magmas.Commutative.Algebras (class in sage.categories.magmas), 564
Magmas.Commutative.CartesianProducts (class in sage.categories.magmas), 564
Magmas.Commutative.ParentMethods (class in sage.categories.magmas), 564
Magmas.ElementMethods (class in sage.categories.magmas), 565
Magmas.JTrivial (class in sage.categories.magmas), 565
Magmas.ParentMethods (class in sage.categories.magmas), 565
Magmas.Realizations (class in sage.categories.magmas), 569
Magmas.Realizations.ParentMethods (class in sage.categories.magmas), 569
Magmas.SubcategoryMethods (class in sage.categories.magmas), 569
Magmas.Subquotients (class in sage.categories.magmas), 572
Magmas.Subquotients.ParentMethods (class in sage.categories.magmas), 573
Magmas.Unital (class in sage.categories.magmas), 573
Magmas.Unital.Algebras (class in sage.categories.magmas), 573
Magmas.Unital.CartesianProducts (class in sage.categories.magmas), 573
Magmas.Unital.CartesianProducts.ElementMethods (class in sage.categories.magmas), 573
Magmas.Unital.CartesianProducts.ElementMethods (class in sage.categories.magmas), 574
Magmas.Unital.ElementMethods (class in sage.categories.magmas), 574
Magmas.Unital.Inverse (class in sage.categories.magmas), 574
Magmas.Unital.ParentMethods (class in sage.categories.magmas), 574
Magmas.Unital.Realizations (class in sage.categories.magmas), 575
Magmas.Unital.Realizations.ParentMethods (class in sage.categories.magmas), 575
Magmas.Unital.SubcategoryMethods (class in sage.categories.magmas), 575
Magmas.Unital.SubcategoryMethods (class in sage.categories.magmas), 577
MagmasAndAdditiveMagma (class in sage.categories.magmas_and_additive_magmas), 576
MagmasAndAdditiveMagma.CartesianProducts (class in sage.categories.magmas_and_additive_magmas), 576
MagmasAndAdditiveMagma.SubcategoryMethods (class in sage.categories.magmas_and_additive_magmas), 577
MagmaticAlgebras (class in sage.categories.mgactic_algebras), 578
MagmaticAlgebras.ParentMethods (class in sage.categories.mgactic_algebras), 578
MagmaticAlgebras.WithBasis (class in sage.categories.mgactic_algebras), 578
MagmaticAlgebras.WithBasis.FiniteDimensional (class in sage.categories.mgactic_algebras), 578
MagmaticAlgebras.WithBasis.FiniteDimensional.ParentMethods (class in sage.categories.mgactic_algebras), 579
MagmaticAlgebras.WithBasis.ParentMethods (class in sage.categories.mgactic_algebras), 579
Manifolds (class in sage.categories.manifolds), 581
Manifolds.AlmostComplex (class in sage.categories.manifolds), 582
Manifolds.Analytic (class in sage.categories.manifolds), 582
Manifolds.Connected (class in sage.categories.manifolds), 582
Manifolds.Differentiable (class in sage.categories.manifolds), 582
Manifolds.FiniteDimensional (class in sage.categories.manifolds), 583
Manifolds.ParentMethods (class in sage.categories.manifolds), 583
Manifolds.Smooth (class in sage.categories.manifolds), 583
Map (class in sage.categories.map), 111
map() (sage.categories.enumerated_sets.EnumeratedSets.ParentMethods), 290

MatrixAlgebras (class in sage.categories.matrix_algebras), 585
MatrixFunctor (class in sage.categories.pushout), 140
maximal_degree() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods), 335

maximal_degree() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods), 344
maximal_vector() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts.ParentMethods), 553

meet() (sage.categories.category.Category static method), 58

meet() (sage.categories.lattice_posets.LatticePosets.ParentMethods), 529
meet_irreducibles() (sage.categories.finite_lattice_posets.FiniteLatticePosets.ElementMethods), 435

meet_irreducibles_poset() (sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods), 435

merge() (sage.categories.pushout.AlgebraicClosureFunctor method), 128
merge() (sage.categories.pushout.AlgebraicExtensionFunctor method), 130

merge() (sage.categories.pushout.CompletionFunctor method), 132
merge() (sage.categories.pushout.ConstructionFunctor method), 136

merge() (sage.categories.pushout.InfinitePolynomialFunctor method), 139
merge() (sage.categories.pushout.LaurentPolynomialFunctor method), 140
merge() (sage.categories.pushout.MatrixFunctor method), 141
merge() (sage.categories.pushout.MultiPolynomialFunctor method), 142

Metric (class in sage.categories.metric_spaces), 587
MetricSpaces (class in sage.categories.metric_spaces), 588

MetricSpaces.\texttt{Homsets} (class in sage.categories.metric_spaces), 588
MetricSpaces.\texttt{ParentMethods} (class in sage.categories.metric_spaces), 588

MetricSpaces.\texttt{SubcategoryMethods} (class in sage.categories.metric_spaces), 588

MetricSpaces.\texttt{WithRealizations} (class in sage.categories.metric_spaces), 589

MetricSpaces.\texttt{WithRealizations.ParentMethods} (class in sage.categories.metric_spaces), 589

min_demazure_product_greater() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods), 258

ModularAbelianVarieties (class in sage.categories.modular_abelian_varieties), 590

ModularAbelianVarieties.\texttt{Homsets} (class in sage.categories.modular_abelian_varieties), 590
ModularAbelianVarieties.Homsets.Endset (class in sage.categories.modular_abelian_varieties), 590

module
sage.categories, 1
sage.categories.action, 157
sage.categories.additive_groups, 160
sage.categories.additive_magmas, 162
sage.categories.additive_monoids, 173
sage.categories.additive_semigroups, 174
sage.categories.affine_weyl_groups, 176
sage.categories.algebra Functor, 787
sage.categories.algebra ideals, 179
sage.categories.algebra modules, 180
sage.categories.algebras, 180
sage.categories.algebras_with_basis, 184
sage.categories.aperiodic_semigroups, 189
sage.categories.associative algebras, 189
sage.categories.bialgebras, 189
sage.categories.bialgebras_with_basis, 191
sage.categories.bimodules, 195
sage.categories.cartesian_product, 783
sage.categories.category, 30
sage.categories.category_cy_helper, 873
sage.categories.category_simplex, 870
sage.categories.category_types, 867
sage.categories.category with axiom, 66
sage.categories.classical_crystals, 196
sage.categories.coalgebras, 200
sage.categories.coalgebras_with_basis, 205
sage.categories.coercion_methods, 875
sage.categories.commutative additive groups, 207
sage.categories.commutative additive monoids, 209
sage.categories.commutative additive semigroups, 209
sage.categories.commutative algebra ideals, 210
sage.categories.commutative algebras, 210
sage.categories.commutative ring ideals, 211
sage.categories.commutative rings, 211
sage.categories.complete discrete valuation, 215
sage.categories.complex reflection groups, 219
sage.categories.complex reflection or generalized coxeter groups, 221
sage.categories.covariant functorial construction, 777
sage.categories.coxeter group algebras, 239
sage.categories.coxeter groups, 242
sage.categories.crystals, 275
sage.categories.cx complexes, 299
sage.categories.divisible valuation, 301
sage.categories.distributive magmas and additive magma actions, 304
sage.categories.division rings, 305
sage.categories.domains, 306
sage.categories.dual, 787
sage.categories.enumerated_sets, 306
sage.categories.euclidean domains, 313
sage.categories.examples algebras, 307
sage.categories.examples.algebras_with_basis, 807
sage.categories.examples.commutative additive monoids, 808
sage.categories.examples.commutative additive semigroups, 809
sage.categories.examples.coxeter groups, 811
sage.categories.examples.crystals, 811
sage.categories.examples.cx complexes, 813
sage.categories.examples.facade sets, 814
sage.categories.examples.finite coxeter groups, 815
sage.categories.examples.finite dimensional algebras, 817
sage.categories.examples.finite dimensional lie algebras, 818
sage.categories.examples.finite enumerated sets, 822
sage.categories.examples.finite monoids, 824
sage.categories.examples.finite semigroups, 826
sage.categories.examples.finite weyl groups, 828
sage.categories.examples.graded connected hopf algebras, 830
sage.categories.examples.graded modules with basis, 832
sage.categories.examples.graphs, 834
sage.categories.examples.hopf algebras with basis, 835
sage.categories.examples.infinite enumerated sets, 837
sage.categories.examples.lie algebras, 838
sage.categories.examples.lie algebras with basis, 840
sage.categories.examples.magmas, 841
sage.categories.examples.manifolds, 842
Morphism (class in sage.categories.morphism), 125
morphism() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 406
morphism_class() (sage.categories.category.Category method), 58
multiplication_table() (sage.categories.magma.Magmas.ParentMethods method), 565
multiplicative_order() (sage.categories.groups.Groups.CartesianProducts.ParentMethods method), 499
MultiPolynomialFunctor (class in sage.categories.pushout), 141
MultivariateConstructionFunctor (class in sage.categories.pushout), 142
MyGroupAlgebra (class in sage.categories.examples.hopf_algebras_with_basis), 835

NaiveCrystal (class in sage.categories.examples.crystals), 812
NaiveCrystal.Element (class in sage.categories.examples.crystals), 812
natural_map() (sage.categories.homset.Homset method), 122
nerve() (sage.categories.finite_monoids.FiniteMonoids.ParentMethods method), 436
next() (sage.categories.enumerated_sets_ENUMERATED_SETS_PARENT method), 310
next() (sage.categories.examples.infinite_enumerated_sets.INFINITE_ENUMERATED_SETS method), 838
next() (sage.categories.examples.samplesample.PRIME_NUMBERS method), 856
next() (sage.categories.examples.samplesample.PRIME_NUMBERS method), 855
ngens() (sage.categories.finitely_generated_lambda_bracket_algebras.FinitelyGeneratedLambdaBracketAlgebras method), 469
Nilpotent (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods method), 396
Nilpotent() (sage.categories.lie_algebras.LieAlgebras.SubcategoryMethods method), 539
noncrossing_partition_lattice() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups method), 350
NonNegativeIntegers (class in sage.categories.examples.infinite_enumerated_sets), 837
NonNegativeIntegers (class in sage.categories.examples.sets_with_grading), 860
NoZeroDivisors (sage.categories.rings.Rings attribute), 683
N product() (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras method), 526
number_of_irreducible_components() (sage.categories.complex_reflection_or_generalized_coxeter_groups.Irreducible method), 233
number_of_reflection_hyperplanes() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups method), 354
number_of_reflections() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups method), 355
number_of_reflections_of_full_support() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups method), 358
number_of_simple_reflections() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups method), 359
NumberFields (class in sage.categories.number_fields), 635
NumberFields.ElementMethods (class in sage.categories.number_fields), 635
NumberFields.ParentMethods (class in sage.categories.number_fields), 635
Objects (class in sage.categories.category), 216
Objects.ParentMethods (class in sage.categories.quotient_fields.QUOTIENT_FIELD parental methods), 653
Object() (sage.categories.category_types.Elements method), 869
Objects (sage.categories.category.Category method), 637
Objects (sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups method), 746
on_basis() (sage.categories.modules_with_basis.ModulesWithBasis method), 614
on_left_matrix() (sage.categories.finite_dimensional_algebras_with_basis method), 379
one() (sage.categories.algebras_with_basis.AlgebrasWithBasis method), 125

Index
reduced_words() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods), 259

reduced_word_reverse_iterator() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods), 259

reflection() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ElementMethods), 234

reflection_index_set() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ElementMethods), 234

reflection_length() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ElementMethods), 227

reflection_length() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods), 260

reflection_length() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ElementMethods), 347

reflection_to_coroot() (sage.categories.weyl_groups.WeylGroups.ElementMethods), 769

reflection_to_root() (sage.categories.weyl_groups.WeylGroups.ElementMethods), 769

reflections() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ElementMethods), 235

reflections_from_w0() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods), 672

register_as_coercion() (sage.categories.morphism.MorphismMethods), 123

register_as_conversion() (sage.categories.morphism.MorphismMethods), 127

RegressiveCovariantConstructionCategory (class in sage.categories.covariant Functorial_construction), 782

regular_representation() (sage.categories.semi groups.Semigroups.Algebras.ParentMethods), 687

regular_representation() (sage.categories.semi groups.Semigroups.ParentMethods), 690

RegularCrystals (class in sage.categories.regular_cry stall), 663

RegularCrystals.ElementMethods (class in sage.categories.regular_cry stall), 663

RegularCrystals.MorphismMethods (class in sage.categories.regular_cry stall), 667

RegularCrystals.ParentMethods (class in sage.categories.regular_cry stall), 667

RegularCrystals.TensorProducts (class in sage.categories.regular_crystals), 670

RegularLoopCrystals (class in sage.categories.loop_cry stall), 560

RegularLoopCrystals.ElementMethods (class in sage.categories.loop_cry stall), 560

RegularSuperCrystals (class in sage.categories.regular_super cry stall), 672

RegularSuperCrystals.TensorProducts (class in sage.categories.regular_super cry stall), 672

required_methods() (sage.categories.complex_reflection_or_generalized_coxeter_groups.ElementMethods), 60

residue_field() (sage.categories.discrete_valuation.DiscreteValuationFieldMethods), 301

residue_field() (sage.categories.discrete_valuation.DiscreteValuationRingMethods), 303

retract() (sage.categories.sets_cat.Subquotients.ParentMethods), 438

retract() (sage.categories.example semigroups.QuotientOfLeftZeroSemigroupMethods), 851

right_domain() (sage.categories.action.ActionMethods), 158

right_precomposition (sage.categories.action.PrezoomActionAttribute), 160

RightModules (class in sage.categories.right_modules), 673

RightModules.ElementMethods (class in sage.categories.right_modules), 673

RightModules.ParentMethods (class in sage.categories.right_modules), 673

ring() (sage.categories.category_types.Category_idealMethod), 867

RingsIdeals (class in sage.categories.ring_ideals), 673

Rings (class in sage.categories.rings), 674

Rings.ElementMethods (class in sage.categories.rings), 674

Rings.MorphismMethods (class in sage.categories.rings), 675

Rings.ParentMethods (class in sage.categories.rings), 677

Rings.SubcategoryMethods (class in sage.categories.rings), 682
Rngs (class in sage.categories.rngs), 683
rowmotion() (sage.categories.finite_posets.FinitePosets.ParentMethods.method), 461
rowmotion_orbits() (sage.categories.finite_posets.FinitePosets.ParentMethods.method), 462
rowmotion_orbits_plots() (sage.categories.finite_posets.FinitePosets.ParentMethods.method), 463
RTrivial (sage.categories.semigroups.Semigroups.attribute), 693
RTrivial() (sage.categories.semigroups.Semigroups.SubcategoryMethods.method), 695
RTrivial_extra_super_categories() (sage.categories.l_trivial_semigroups.LTrivialSemigroups.method), 561
RTrivialSemigroups (class in sage.categories.r_trivial_semigroups), 684

s() (sage.categories.crystals.Crystals.ElementMethods.method), 284
s() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods.method), 554
sage.categories module, 1
sage.categories.action module, 157
sage.categories.additive_groups module, 160
sage.categories.additive_magmas module, 162
sage.categories.additive_monoids module, 173
sage.categories.additive_semigroups module, 174
sage.categories.affine_weyl_groups module, 176
sage.categories.algebra_functor module, 787
sage.categories.algebra_ideals module, 179
sage.categories.algebra_modules module, 180
sage.categories.algebras module, 180
sage.categories.algebras_with_basis module, 184
sage.categories.aperiodic_semigroups module, 189
sage.categories.associative_algebras module, 189
sage.categories.bialgebras module, 189
sage.categories.bialgebras_with_basis module, 191
sage.categories.bimodules module, 195
sage.categories.cartesian_product module, 783
sage.categories.category module, 30
sage.categories.category_cy_helper module, 873
sage.categories.category_singleton module, 870
sage.categories.category_types module, 867
sage.categories.category_with_axiom module, 66
sage.categories.classical_crystals module, 196
sage.categories.coalgebras module, 200
sage.categories.coalgebras_with_basis module, 205
sage.categories.coercion_methods module, 875
sage.categories.commutative_additive_groups module, 207
sage.categories.commutative_additive_monoids module, 209
sage.categories.commutative_additive_semigroups module, 209
sage.categories.commutative_algebra_ideals module, 210
sage.categories.commutative_algebras module, 210
sage.categories.commutative_ring_ideals module, 211
sage.categories.commutative_rings module, 211
sage.categories.complete_discrete_valuation module, 215
sage.categories.complex_reflection_groups module, 219
sage.categories.complex_reflection_or_generalized_coxeter_groups module, 221
sage.categories.covariant Functorial_construction module, 777
sage.categories.coxeter_group_algebras module, 239
sage.categories.coxeter_groups module, 242
sage.categories.crystals module, 275
<table>
<thead>
<tr>
<th>Category Framework, Release 9.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage.categories.cw_complexes</td>
</tr>
<tr>
<td>module, 299</td>
</tr>
<tr>
<td>sage.categories.discrete_valuation</td>
</tr>
<tr>
<td>module, 301</td>
</tr>
<tr>
<td>sage.categories.distributive_magmas_and_additive_magmas</td>
</tr>
<tr>
<td>module, 304</td>
</tr>
<tr>
<td>sage.categories.division_rings</td>
</tr>
<tr>
<td>module, 305</td>
</tr>
<tr>
<td>sage.categories.domains</td>
</tr>
<tr>
<td>module, 306</td>
</tr>
<tr>
<td>sage.categories.dual</td>
</tr>
<tr>
<td>module, 787</td>
</tr>
<tr>
<td>sage.categories.enumerated_sets</td>
</tr>
<tr>
<td>module, 306</td>
</tr>
<tr>
<td>sage.categories.euclidean_domains</td>
</tr>
<tr>
<td>module, 313</td>
</tr>
<tr>
<td>sage.categories.examples.algebras_with_basis</td>
</tr>
<tr>
<td>module, 807</td>
</tr>
<tr>
<td>sage.categories.examples.commutative_additive_monoids</td>
</tr>
<tr>
<td>module, 808</td>
</tr>
<tr>
<td>sage.categories.examples.commutative_additive_semigroups</td>
</tr>
<tr>
<td>module, 809</td>
</tr>
<tr>
<td>sage.categories.examples.coxeter_groups</td>
</tr>
<tr>
<td>module, 811</td>
</tr>
<tr>
<td>sage.categories.examples.crystals</td>
</tr>
<tr>
<td>module, 811</td>
</tr>
<tr>
<td>sage.categories.examples.cw_complexes</td>
</tr>
<tr>
<td>module, 813</td>
</tr>
<tr>
<td>sage.categories.examples.facade_sets</td>
</tr>
<tr>
<td>module, 814</td>
</tr>
<tr>
<td>sage.categories.examples.finite_coxeter_groups</td>
</tr>
<tr>
<td>module, 815</td>
</tr>
<tr>
<td>sage.categories.examples.finite_dimensional_algebras_with_basis</td>
</tr>
<tr>
<td>module, 817</td>
</tr>
<tr>
<td>sage.categories.examples.finite_dimensional_bialgebras_with_basis</td>
</tr>
<tr>
<td>module, 818</td>
</tr>
<tr>
<td>sage.categories.examples.finite enumerated_sets</td>
</tr>
<tr>
<td>module, 822</td>
</tr>
<tr>
<td>sage.categories.examples.finite_monoids</td>
</tr>
<tr>
<td>module, 824</td>
</tr>
<tr>
<td>sage.categories.examples.finite_semigroups</td>
</tr>
<tr>
<td>module, 826</td>
</tr>
<tr>
<td>sage.categories.examples.finite_weyl_groups</td>
</tr>
<tr>
<td>module, 828</td>
</tr>
<tr>
<td>sage.categories.examples.graduated_hopf_algebras</td>
</tr>
<tr>
<td>module, 830</td>
</tr>
<tr>
<td>sage.categories.examples.graduated_modules_with_basis</td>
</tr>
<tr>
<td>module, 832</td>
</tr>
<tr>
<td>sage.categories.examples.graphs</td>
</tr>
<tr>
<td>module, 834</td>
</tr>
<tr>
<td>sage.categories.examples.hopf_algebras_with_basis</td>
</tr>
<tr>
<td>module, 835</td>
</tr>
<tr>
<td>sage.categories.examples.infinite enumerated sets</td>
</tr>
<tr>
<td>module, 837</td>
</tr>
</tbody>
</table>
super_categories() (sage.categories.quotient_fields.QuotientField, method), 656
SuperAlgebrasWithBasis.ParentMethods (class in sage.categories.super_algebras_with_basis), 739
super_categories() (sage.categories.regular_crystals.RegularCrystals, method), 671
SuperAlgebrasWithBasis.SignedTensorProducts (class in sage.categories.super_algebras_with_basis), 739
super_categories() (sage.categories.right_modules.RightModules, method), 673
Supercocommutative()
super_categories() (sage.categories.ring_ideals.RingIdeals, method), 673
SupercommutativeAlgebras (class in sage.categories.supercommutative_algebras), 738
super_categories() (sage.categories.schemes.Schemes, method), 684
SupercommutativeAlgebras.SignedTensorProducts
super_categories() (sage.categories.schemes.Schemes, Supercommutative(), method), 685
SupercommutativeAlgebras
super_categories() (sage.categories.semisimple_algebras.SemisimpleAlgebras, method), 698
SupercommutativeAlgebras
super_categories() (sage.categories.sets_cat.Sets, method), 724
SupercommutativeAlgebras.
SupercommutativeAlgebras.SignedTensorProducts
super_categories() (sage.categories.sets_cat.Sets, WithRealizations.ParentMethods, Realizations, method), 746
SupercommutativeAlgebras
super_categories() (sage.categories.sets_with_grading.SetsWithGrading, method), 727
SupercommutativeAlgebras.SignedTensorProducts
super_categories() (sage.categories.sets_with_partial_maps.SetsWithPartialMaps, method), 728
SuperLieConformalAlgebras
super_categories() (sage.categories.shiffler_groups.ShifflerGroups, method), 729
SuperLieConformalAlgebras.
SuperLieConformalAlgebras.SignedTensorProducts
super_categories() (sage.categories.simplicial_complexes.SimplicialComplexes, method), 730
SuperLieConformalAlgebras.SuperCrystals (class in sage.categories.superlie_conformal_algebras), 746
super_categories() (sage.categories.simplicial_sets.SimplicialSets, method), 731
SuperLieConformalAlgebras.
SuperLieConformalAlgebras.SuperCrystals
super_categories() (sage.categories.simplicial_sets.SimplicialSets, SuperCrystals, method), 732
SuperLieConformalAlgebras.
SuperLieConformalAlgebras.SuperCrystals
super_categories() (sage.categories.simplicial_sets.SimplicialSets, SuperCrystals.Finite, method), 733
SuperLieConformalAlgebras.
SuperLieConformalAlgebras.SuperCrystals.Finite
super_categories() (sage.categories.simplicial_sets.SimplicialSets, SuperCrystals.Finite.ElementMethods, method), 734
SuperLieConformalAlgebras.
super_categories() (sage.categories.simplicial_sets.SimplicialSets, SuperCrystals.Finite.ParentMethods, method), 735
SuperLieConformalAlgebras.
SuperLieConformalAlgebras.
super_categories() (sage.categories.vector_bundles.VectorBundles, method), 760
SuperLieConformalAlgebras.
SuperLieConformalAlgebras.SuperHopfAlgebrasWithBasis
super_categories() (sage.categories.vector_spaces.VectorSpaces, method), 764
SuperLieConformalAlgebras.
SuperLieConformalAlgebras.SuperHopfAlgebrasWithBasis
super_categories() (sage.categories.weyl_groups.WeylGroups, method), 774
SuperHopfAlgebrasWithBasis.
SuperHopfAlgebrasWithBasis.ParentMethods
SuperAlgebras (class in sage.categories.super_algebras), 737
SuperAlgebras. (class in sage.categories.super_algebras), 737
SuperAlgebras.SignedTensorProducts (class in sage.categories.super_algebras), 738
SuperAlgebras.SubcategoryMethods (class in sage.categories.super_algebras), 738
SuperAlgebrasWithBasis (class in sage.categories.super_algebras_with_basis), 739
SuperLieConformalAlgebras (class in sage.categories.superlie_conformal_algebras), 740
SuperLieConformalAlgebras.ElementMethods (class in sage.categories.superlie_conformal_algebras), 741

Index 943
twisted_invariant_module() (sage.categories.finite_dimensional_modules_with_basis.ElementMethods.parent(), 419)

type_to_parent() (in module sage.categories.pushout), 155

U

uncamelcase() (in module sage.categories.category_with_axiom), 100

UniqueFactorizationDomains (class in sage.categories.unique_factorization_domains), 755

UniqueFactorizationDomains.ElementMethods (class in sage.categories.unique_factorization_domains), 755

UniqueFactorizationDomains.ParentMethods (class in sage.categories.unique_factorization_domains), 756

Unital (sage.categories.associative_algebras.AssociativeAlgebras.ElementMethods.parent_attribute), 189

Unital (sage.categories.distributive_magmas_and_additive_magmas.AdditiveMagmas.ElementMethods.parent_attribute), 304

Unital (sage.categories.magmatic_algebras.MagmaticAlgebras.ElementMethods.parent_attribute), 578

Unital (sage.categories.rings.Rings.ElementMethods.parent_attribute), 683

Unital (sage.categories.semirings.Semirings.ElementMethods.parent_attribute), 696

Unital (sage.categories.category_with_axiom.Blahs.SubcategoryMethods.parent_method), 91

Unital (sage.categories.magas.Magas.SubcategoryMethods.parent_method), 572

Unital_extra_super_categories() (sage.categories.category_with_axiom.Bars.parent_method), 90

UnitalAlgebras (class in sage.categories.unital_algebras), 757

UnitalAlgebras.ParentMethods (class in sage.categories.unital_algebras), 757

UnitalAlgebras.WithBasis (class in sage.categories.unital_algebras), 757

UnitalAlgebras.WithBasis.ParentMethods (class in sage.categories.unital_algebras), 757

universal_commutative_algebra() (sage.categories.finite_dimensional_lie_algebras.CommutativeAlgebras.ElementMethods.parent_method), 410

universal_enveloping_algebra() (sage.categories.lie_algebras.LieAlgebras.ElementMethods.parent_method), 539

universal_polynomials() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods)
<table>
<thead>
<tr>
<th>Class</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VectorSpaces.ParentMethods</td>
<td>class in sage.categories.vector_spaces</td>
<td>761</td>
</tr>
<tr>
<td>VectorSpaces.TensorProducts</td>
<td>class in sage.categories.vector_spaces</td>
<td>762</td>
</tr>
<tr>
<td>VectorSpaces.WithBasis</td>
<td>class in sage.categories.vector_spaces</td>
<td>762</td>
</tr>
<tr>
<td>VectorSpaces.WithBasis.CartesianProducts</td>
<td>class in sage.categories.vector_spaces</td>
<td>762</td>
</tr>
<tr>
<td>VectorSpaces-WithBasis.Filtered</td>
<td>class in sage.categories.vector_spaces</td>
<td>762</td>
</tr>
<tr>
<td>VectorSpaces-WithBasis.FiniteDimensional</td>
<td>class in sage.categories.vector_spaces</td>
<td>762</td>
</tr>
<tr>
<td>VectorSpaces-WithBasis.FiniteDimensional.TensorProducts</td>
<td>class in sage.categories.vector_spaces</td>
<td>762</td>
</tr>
<tr>
<td>VectorSpaces-WithBasis.Graded</td>
<td>class in sage.categories.vector_spaces</td>
<td>762</td>
</tr>
<tr>
<td>VectorSpaces-WithBasis.TensorProducts</td>
<td>class in sage.categories.vector_spaces</td>
<td>763</td>
</tr>
<tr>
<td>verma_module()</td>
<td>class in sage.categories.triangular_kac_moody_algebras</td>
<td>754</td>
</tr>
<tr>
<td>vertices()</td>
<td>class in sage.categories.examples.graphs.cycle</td>
<td>835</td>
</tr>
<tr>
<td>vertices()</td>
<td>class in sage.categories.graphs.graphs.parent_methods</td>
<td>493</td>
</tr>
<tr>
<td>virtualization()</td>
<td>class in sage.categories.crystals.crystal_morphism</td>
<td>279</td>
</tr>
<tr>
<td>W</td>
<td>method</td>
<td></td>
</tr>
<tr>
<td>w()</td>
<td>class in sage.categories.finite_coxeter_groups.finite_coxeter_groups</td>
<td>371</td>
</tr>
<tr>
<td>weak_covers()</td>
<td>class in sage.categories.coxeter_groups.coxeter_groups.element_methods</td>
<td>261</td>
</tr>
<tr>
<td>weak_lattice()</td>
<td>class in sage.categories.finite_coxeter_groups.finite_coxeter_groups</td>
<td>371</td>
</tr>
<tr>
<td>weak_le()</td>
<td>class in sage.categories.coxeter_groups.coxeter_groups.element_methods</td>
<td>262</td>
</tr>
<tr>
<td>weak_order_ideal()</td>
<td>class in sage.categories.coxeter_groups.coxeter_groups.element_methods</td>
<td>274</td>
</tr>
<tr>
<td>weak_poset()</td>
<td>class in sage.categories.finite_coxeter_groups.finite_coxeter_groups</td>
<td>372</td>
</tr>
<tr>
<td>weight()</td>
<td>class in sage.categories.crystals.crystal_element_methods</td>
<td>286</td>
</tr>
<tr>
<td>weight()</td>
<td>class in sage.categories.regular_crystals.element_methods</td>
<td>667</td>
</tr>
<tr>
<td>weight_lattice_realization()</td>
<td>class in sage.categories.crystals.crystal_lattice</td>
<td>297</td>
</tr>
<tr>
<td>weight_lattice_realization()</td>
<td>class in sage.categories.loop_crystals.loop_crystals.element_methods</td>
<td>560</td>
</tr>
<tr>
<td>WellGenerated()</td>
<td>class in sage.categories.finite_complex_reflection_groups.subcategory_methods</td>
<td>536</td>
</tr>
<tr>
<td>X</td>
<td>method</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>class in sage.categories.fields.fields.element_methods</td>
<td>356</td>
</tr>
<tr>
<td>xgcd()</td>
<td>class in sage.categories.quotient_fields.quotient_fields.element_methods</td>
<td>524</td>
</tr>
</tbody>
</table>
Z

zero() (sage.categories.examples.commutative_additive_monoids.FreeCommutativeAdditiveMonoid method), 809

zero() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra method), 822

zero() (sage.categories.examples.lie_algebras.LieAlgebraFromAssociative method), 839

zeta_function() (sage.categories.number_fields.NumberFields.ParentMethods method), 635