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CHAPTER
ONE

1.1

INTRODUCTION

Sage categories quickref

sage.categories.primer? a primer on Elements, Parents, and Categories

sage.categories.tutorial? a tutorial on Elements, Parents, and Categories

Category? technical background on categories

Sets (), Semigroups (), Algebras (QQ) some categories

SemiGroups () .example () ?? sample implementation of a semigroup

Hom (A, B),End(A, Algebras()) homomorphisms sets

tensor, cartesian_product functorial constructions

Module layout:

* sage.categories
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sage.

sage.

sage.

sage.

sage.

sage.

sage.

.categories.
categories.
.categories.

categories.

categories

categories

categories.
categories.
categories.

categories.

.basic the basic categories

a1l all categories
semigroups the Semigroups () category
examples.semigroupstheexanqﬂeofSemigroups()

homset morphisms, ...

.map

.morphism

functors
cartesian_product functorial constructions
tensor

dual
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CHAPTER
TWO

THE SAGE CATEGORY FRAMEWORK

2.1 Elements, parents, and categories in Sage: a primer

Contents

o Elements, parents, and categories in Sage: a primer

Abstract

Introduction: Sage as a library of objects and algorithms

A bit of help from abstract algebra

A bit of help from computer science
— Sage categories

— Case study

— Specifying the category of a parent

— Scaling further: functorial constructions, axioms, ...

— Writing a new category

2.1.1 Abstract

The purpose of categories in Sage is to translate the mathematical concept of categories (category of groups,
of vector spaces, ...) into a concrete software engineering design pattern for:

* organizing and promoting generic code
« fostering consistency across the Sage library (naming conventions, doc, tests)
¢ embedding more mathematical knowledge into the system

This design pattern is largely inspired from Axiom and its followers (Aldor, Fricas, MuPAD, ...). It differs
from those by:

* blending in the Magma inspired concept of Parent/Element

* being built on top of (and not into) the standard Python object oriented and class hierarchy mechanism.
This did not require changing the language, and could in principle be implemented in any language
supporting the creation of new classes dynamically.
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The general philosophy is that Building mathematical information into the system yields more expressive, more
conceptual and, at the end, easier to maintain and faster code (within a programming realm; this would not
necessarily apply to specialized libraries like gmp!).

One line pitch for mathematicians

Categories in Sage provide a library of interrelated bookshelves, with each bookshelf containing algorithms, tests, docu-
mentation, or some mathematical facts about the objects of a given category (e.g. groups).

One line pitch for programmers

Categories in Sage provide a large hierarchy of abstract classes for mathematical objects. To keep it maintainable, the
inheritance information between the classes is not hardcoded but instead reconstructed dynamically from duplication free
semantic information.

2.1.2 Introduction: Sage as a library of objects and algorithms
The Sage library, with more than one million lines of code, documentation, and tests, implements:
» Thousands of different kinds of objects (classes):

Integers, polynomials, matrices, groups, number fields, elliptic curves, permutations, morphisms, languages, ... and
a few raccoons ...

e Tens of thousands methods and functions:

Arithmetic, integer and polynomial factorization, pattern matching on words, ...

Some challenges
* How to organize this library?
One needs some bookshelves to group together related objects and algorithms.
* How to ensure consistency?

Similar objects should behave similarly:

p
sage: Permutations (5) .cardinality ()

120

sage: GL(2,2) .cardinality ()
—# needs sage.libs.gap sage.modules
6

sage: A = random _matrix(zz, 6, 3, x=7)

—# needs sage.modules

sage: L = LatticePolytope (A.rows())

—# needs sage.geometry.polyhedron sage.modules
sage: L.npoints() # oops! # random
—# needs sage.geometry.polyhedron sage.modules

37

g
>>> from sage.all import *

>>> Permutations (Integer (5)) .cardinality ()
120

(continues on next page)
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(continued from previous page)

>>> GL (Integer (2), Integer(2)) .cardinality () -
< # needs sage.libs.gap sage.modules
6

>>> A = random_matrix (ZZ, Integer(6), Integer(3), x=Integer (7)) -
- # needs sage.modules

>>> L = LatticePolytope (A.rows()) #o
—needs sage.geometry.polyhedron sage.modules

>>> L.npoints () # oops! # random #_
—needs sage.geometry.polyhedron sage.modules

37

¢ How to ensure robustness?
* How to reduce duplication?

Example: binary powering:

=3

sage: m
sage: m"8 == m*m*m*m*m*m*m*m == ((m"2)"2)"2

True

g
>>> from sage.all import *

>>> m = Integer (3)
>>> m**Integer (8) == m*m*m*m*m*m*m*m == ((m**Integer (2))**Integer (2))**Integer (2)

True

sage: # needs sage.modules

sage: m = random_matrix (QQ, 4, algorithm='echelonizable',
e rank=3, upper_bound=60)

sage: m"8 == m*m*m*m*m*m*m*m == ((m"2)"2)"2

>>> from sage.all import *
>>> # needs sage.modules
>>> m = random_matrix (QQ, Integer(4), algorithm='echelonizable',
rank=Integer (3), upper_bound=Integer (60))
>>> m**Integer (8) == m*m*m*m*m*m*m*m == ((m**Integer (2))**Integer (2))**Integer (2)

True

We want to implement binary powering only once, as generic code that will apply in all cases.

2.1.3 A bit of help from abstract algebra

The hierarchy of categories

What makes binary powering work in the above examples? In both cases, we have a set endowed with a multiplicative
binary operation which is associative and which has a unit element. Such a set is called a monoid, and binary powering
(to a nonnegative power) works generally for any monoid.

Sage knows about monoids:

sage: Monoids ()
Category of monoids

2.1. Elements, parents, and categories in Sage: a primer 5
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>>> from sage.all import *
>>> Monoids ()
Category of monoids

and sure enough, binary powering is defined there:

sage: m._pow_int.__module_ #.
—needs sage.modules
'sage.categories.monoids'

>>> from sage.all import *

>>> m._pow_int._module_ #_
—needs sage.modules

'sage.categories.monoids'’

That’s our bookshelf! And it’s used in many places:

sage: GL(2, ZZ) in Monoids () #_
—needs sage.modules

True

sage: NN in Monoids ()

True

>>> from sage.all import *

>>> GL(Integer(2), ZZ) in Monoids () .
— # needs sage.modules
True

>>> NN in Monoids ()
True

For a less trivial bookshelf we can consider euclidean rings: once we know how to do euclidean division in some set 2,
we can compute ged’s in R generically using the Euclidean algorithm.

We are in fact very lucky: abstract algebra provides us right away with a large and robust set of bookshelves which is the
result of centuries of work of mathematicians to identify the important concepts. This includes for example:

sage: Sets()
Category of sets

sage: Groups ()
Category of groups

sage: Rings ()
Category of rings

sage: Fields()
Category of fields

sage: HopfAlgebras (QQ)
Category of Hopf algebras over Rational Field

>>> from sage.all import *
>>> Sets ()

(continues on next page)
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(continued from previous page)

Category of sets

>>> Groups ()

Category of groups

>>> Rings ()

Category of rings

>>> Fields ()
Category of fields

>>> HopfAlgebras (QQ)
Category of Hopf algebras over Rational Field

Each of the above is called a category. It typically specifies what are the operations on the elements, as well as the axioms
satisfied by those operations. For example the category of groups specifies that a group is a set endowed with a binary
operation (the multiplication) which is associative and admits a unit and inverses.

Each set in Sage knows which bookshelf of generic algorithms it can use, that is to which category it belongs:

sage: G = GL(2, ZZ) #o
—needs sage.modules

sage: G.category () #o
—needs sage.modules

Category of infinite groups

>>> from sage.all import *

>>> G = GL(Integer(2), Z22) -
— # needs sage.modules

>>> G.category () #_
—needs sage.modules

Category of infinite groups

In fact a group is a semigroup, and Sage knows about this:

sage: Groups () .is_subcategory (Semigroups())
True
sage: G in Semigroups () #.

—needs sage.modules
True

>>> from sage.all import *

>>> Groups () .1is_subcategory (Semigroups())
True
>>> G in Semigroups () #o

—needs sage.modules
True

Altogether, our group gets algorithms from a bunch of bookshelves:

sage: G.categories() #_
—needs sage.modules
[Category of infinite groups, Category of groups, Category of monoids,

(continues on next page)
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Category of magmas,
Category of infinite sets, ...]

(continued from previous page)

>>> from sage.all import *

>>> G.categories () #o
—needs sage.modules

[Category of infinite groups, Category of groups, Category of monoids,

o

Category of magmas,

Category of infinite sets, ...]
Those can be viewed graphically:

sage: g = Groups () .category_graph () #o
—needs sage.graphs

sage: g.set_latex_options (format='dot2tex"') #o
—needs sage.graphs sage.modules sage.plot

sage: view(qg) # not tested #.
—needs sage.graphs sage.modules sage.plot
>>> from sage.all import *
>>> g = Groups () .category_graph () #o
—needs sage.graphs
>>> g.set_latex_options (format='dot2tex"') #_
—needs sage.graphs sage.modules sage.plot
>>> view (q) # not tested #.
—needs sage.graphs sage.modules sage.plot
In case dot2tex is not available, you can use instead:
sage: g.show(vertex_shape=None, figsize=20) #o
—needs sage.graphs sage.modules sage.plot
>>> from sage.all import *
>>> g.show (vertex_shape=None, figsize=Integer (20)) -
— # needs sage.graphs sage.modules sage.plot
Here is an overview of all categories in Sage:
sage: g = sage.categories.category.category_graph () #o
—needs sage.graphs sage.groups sage.modules
sage: g.set_latex_options (format="'dot2tex") #
—needs sage.graphs sage.modules sage.plot
sage: view(q) # not tested #.
—needs sage.graphs sage.modules sage.plot
>>> from sage.all import *
>>> g = sage.categories.category.category_graph () #o
—needs sage.graphs sage.groups sage.modules
>>> g.set_latex_options (format="'dot2tex") #_

(continues on next page)
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(continued from previous page)
—needs sage.graphs sage.modules sage.plot
>>> view (q) # not tested #o

—needs sage.graphs sage.modules sage.plot

Wrap-up: generic algorithms in Sage are organized in a hierarchy of bookshelves modelled upon the usual hierarchy of
categories provided by abstract algebra.

Elements, Parents, Categories
Parent
A parent is a Python instance modelling a set of mathematical elements together with its additional (algebraic) structure.

Examples include the ring of integers, the group Ss, the set of prime numbers, the set of linear maps between two given
vector spaces, and a given finite semigroup.

These sets are often equipped with additional structure: the set of all integers forms a ring. The main way of encoding
this information is specifying which categories a parent belongs to.

It is completely possible to have different Python instances modelling the same set of elements. For example, one might
want to consider the ring of integers, or the poset of integers under their standard order, or the poset of integers under
divisibility, or the semiring of integers under the operations of maximum and addition. Each of these would be a different
instance, belonging to different categories.

For a given model, there should be a unique instance in Sage representing that parent:

sage: IntegerRing() is IntegerRing ()
True

>>> from sage.all import *
>>> IntegerRing () is IntegerRing()
True

Element
An element is a Python instance modelling a mathematical element of a set.

Examples of element include 5 in the integer ring, 2> —  in the polynomial ring in & over the rationals, 4 + O(3%) in the
3-adics, the transposition (12) in Ss, and the identity morphism in the set of linear maps from Q? to Q3.

Every element in Sage has a parent. The standard idiom in Sage for creating elements is to create their parent, and then
provide enough data to define the element:

sage: R = PolynomialRing(ZZ, name='x")
sage: R([1,2,3])
3*x72 + 2*x + 1

>>> from sage.all import *

>>> R = PolynomialRing(ZZ, name='x")

>>> R([Integer (1), Integer(2), Integer(3)1])
3*x"2 + 2*x + 1

One can also create elements using various methods on the parent and arithmetic of elements:

2.1. Elements, parents, and categories in Sage: a primer 9
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sage: x = R.gen()
sage: 1 + 2*x + 3*x"2
3*x72 + 2*x + 1

>>> from sage.all import *

>>> x = R.gen()

>>> Integer(l) + Integer(2)*x + Integer (3)*x**Integer (2)
3*x72 + 2*x + 1

Unlike parents, elements in Sage are not necessarily unique:

sage: ZZ(5040) is ZZ(5040)
False

>>> from sage.all import *
>>> 77 (Integer (5040)) is ZZ (Integer (5040))
False

Many parents model algebraic structures, and their elements support arithmetic operations. One often further wants to
do arithmetic by combining elements from different parents: adding together integers and rationals for example. Sage
supports this feature using coercion (see sage.structure.coerce for more details).

It is possible for a parent to also have simultaneously the structure of an element. Consider for example the monoid of
all finite groups, endowed with the Cartesian product operation. Then, every finite group (which is a parent) is also an
element of this monoid. This is not yet implemented, and the design details are not yet fixed but experiments are underway
in this direction.

& Todo

Give a concrete example, typically using ElementWrapper.

Category
A category is a Python instance modelling a mathematical category.

Examples of categories include the category of finite semigroups, the category of all (Python) objects, the category of
Z-algebras, and the category of Cartesian products of Z-algebras:

sage: FiniteSemigroups ()

Category of finite semigroups

sage: Objects ()

Category of objects

sage: Algebras(ZZ)

Category of algebras over Integer Ring

sage: Algebras (ZZ) .CartesianProducts ()

Category of Cartesian products of algebras over Integer Ring

>>> from sage.all import *
>>> FiniteSemigroups ()
Category of finite semigroups
>>> Objects ()
Category of objects
(continues on next page)
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(continued from previous page)
>>> Algebras (ZZ)
Category of algebras over Integer Ring
>>> Algebras (ZZ) .CartesianProducts ()
Category of Cartesian products of algebras over Integer Ring

Mind the ‘s’ in the names of the categories above; GroupAlgebra and GroupAlgebras are distinct things.

Every parent belongs to a collection of categories. Moreover, categories are interrelated by the super categories relation.
For example, the category of rings is a super category of the category of fields, because every field is also a ring.

A category serves two roles:

* to provide a model for the mathematical concept of a category and the associated structures: homsets, morphisms,
functorial constructions, axioms.

* to organize and promote generic code, naming conventions, documentation, and tests across similar mathematical
structures.
CategoryObiject

Objects of a mathematical category are not necessarily parents. Parent has a superclass that provides a means of modeling
such.

For example, the category of schemes does not have a faithful forgetful functor to the category of sets, so it does not make
sense to talk about schemes as parents.
Morphisms, Homsets

As category theorists will expect, Morphisms and Homsets will play an ever more important role, as support for them will
improve.

Much of the mathematical information in Sage is encoded as relations between elements and their parents, parents and
their categories, and categories and their super categories:

sage: l.parent ()
Integer Ring

sage: ZZ
Integer Ring

sage: ZZ.category ()
Join of Category of Dedekind domains
and Category of euclidean domains
and Category of noetherian rings
and Category of infinite enumerated sets
and Category of metric spaces

sage: ZZ.categories()
[Join of Category of Dedekind domains
and Category of euclidean domains
and Category of noetherian rings
and Category of infinite enumerated sets
and Category of metric spaces,
Category of Dedekind domains,

(continues on next page)
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Category
Category
Category
Category
Category
Category
Category
Category
Category
Category
Category
Category
Category

sage: g =

of
of
of
of
of
of
of
of
of
of
of
of
of

(continued from previous page)

euclidean domains, Category of principal ideal domains,

unique factorization domains, Category of gcd domains,
integral domains, Category of domains,

commutative rings, Category of rings,

magmas and additive magmas,

monoids, Category of semigroups,

commutative magmas, Category of unital magmas, Category of magmas,
commutative additive groups, ..., Category of additive magmas,
infinite enumerated sets, Category of enumerated sets,
infinite sets, Category of metric spaces,

topological spaces, Category of sets,

sets with partial maps,

objects]

EuclideanDomains () .category_graph () #.

—needs sage.graphs

sage: g.set_latex_options (format="'dot2tex"') #

—needs sage.graphs sage.plot

sage: view(g)

# not tested #o

—needs sage.graphs sage.plot

>>> from sage.all import *

>>> Integer (1) .parent ()

Integer R

>>> 77
Integer R

ing

ing

>>> 77.category ()

Join of Category of Dedekind domains

and Category of euclidean domains

and Category of noetherian rings

and Category of infinite enumerated sets

and Category of metric spaces

>>> 77 .categories ()

[Join of Category of Dedekind domains
and Category of euclidean domains
and Category of noetherian rings
and Category of infinite enumerated sets
and Category of metric spaces,
Category of Dedekind domains,
Category of euclidean domains, Category of principal ideal domains,
Category of unique factorization domains, Category of gcd domains,
Category of integral domains, Category of domains,
Category of commutative rings, Category of rings,
Category of magmas and additive magmas,
Category of monoids, Category of semigroups,
Category of commutative magmas, Category of unital magmas, Category of magmas,
Category of commutative additive groups, ..., Category of additive magmas,
Category of infinite enumerated sets, Category of enumerated sets,
Category of infinite sets, Category of metric spaces,
(continues on next page)
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(continued from previous page)
Category of topological spaces, Category of sets,
Category of sets with partial maps,
Category of objects]

>>> g = EuclideanDomains () .category_graph () #_
—needs sage.graphs

>>> g.set_latex_options (format="'dot2tex") #_
—needs sage.graphs sage.plot

>>> view (g) # not tested #_

—needs sage.graphs sage.plot

2.1.4 A bit of help from computer science

Hierarchy of classes
How are the bookshelves implemented in practice?

Sage uses the classical design paradigm of Object Oriented Programming (OOP). Its fundamental principle is that any
object that a program is to manipulate should be modelled by an instance of a class. The class implements:

* a data structure: which describes how the object is stored,
* methods: which describe the operations on the object.
The instance itself contains the data for the given object, according to the specified data structure.

Hence, all the objects mentioned above should be instances of some classes. For example, an integer in Sage is an instance
of the class Integer (and it knows about it!):

sage: i = 12
sage: type (i)
<class 'sage.rings.integer.Integer'>

>>> from sage.all import *

>>> i = Integer(12)

>>> type (i)

<class 'sage.rings.integer.Integer'>

Applying an operation is generally done by calling a method:

sage: i.factor()
222 *

w

sage: # needs sage.symbolic

sage: x = var('x")

sage: p = 6*x"2 + 12*x + 6

sage: type (p)

<class 'sage.symbolic.expression.Expression'>
sage: p.factor()

6% (x + 1)72

sage: # needs sage.symbolic
sage: R.<x> = PolynomialRing (QQ, sparse=True)
sage: pQ = R(p)
(continues on next page)
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(continued from previous page)
sage: type (pQ)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field with_category.
—~element_class'>
sage: pQ.factor ()
(6) * (x + 1)"2

sage: # needs sage.symbolic

sage: pZ = Z2Z['x"'] (p)

sage: type (pZ)

<class 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_
—flint'>

sage: pZ.factor ()

2 *x 3 * (x + 1)"2

>>> from sage.all import *
>>> i.factor ()
2722 * 3

>>> # needs sage.symbolic

>>> x = var('x")

>>> p = Integer (6) *x**Integer (2) + Integer(12)*x + Integer (6)
>>> type (p)

<class 'sage.symbolic.expression.Expression'>

>>> p.factor ()

6* (x + 1)72

>>> # needs sage.symbolic

>>> R = PolynomialRing(QQ, sparse=True, names=('x',)); (x,) = R._first_ngens (1)
>>> pQ = R(p)

>>> type (pQ)

<class 'sage.rings.polynomial.polynomial_ ring.PolynomialRing_field with_category.
—~element_class'>

>>> pQ.factor ()

(6) * (x + 1)"2

>>> # needs sage.symbolic

>>> pZ = ZZ['x'] (p)

>>> type (pZ)

<class 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_
—flint'>

>>> pZ.factor ()

2 *x 3 % (x + 1)"2

Factoring integers, expressions, or polynomials are distinct tasks, with completely different algorithms. Yet, from a user
(or caller) point of view, all those objects can be manipulated alike. This illustrates the OOP concepts of polymorphism,
data abstraction, and encapsulation.

Let us be curious, and see where some methods are defined. This can be done by introspection:

[sage: i._mul # not tested

[>>> from sage.all import *

(continues on next page)
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(continued from previous page)

{>>> i._mul # not tested

For plain Python methods, one can also just ask in which module they are implemented:

sage: i._pow_._ _module__ # not tested (Issue #24275)
'sage.categories.semigroups’

sage: pQ._mul_._ module_ #_
—needs sage.symbolic

'sage.rings.polynomial.polynomial_element_generic'

sage: pQ._pow_.__module_ # not tested (Issue #24275) #.
—needs sage.symbolic

'sage.categories.semigroups'

>>> from sage.all import *
>>> 1. _pow_.__module__ # not tested (Issue #24275)
'sage.categories.semigroups'

>>> pQ._mul_._ module_ #_
—needs sage.symbolic

'sage.rings.polynomial.polynomial_element_generic'

>>> pQ._pow_.__module_ # not tested (Issue #24275) #
—needs sage.symbolic

'sage.categories.semigroups’

We see that integers and polynomials have each their own multiplication method: the multiplication algorithms are indeed
unrelated and deeply tied to their respective datastructures. On the other hand, as we have seen above, they share the
same powering method because the set Z of integers, and the set Q[z] of polynomials are both semigroups. Namely, the
class for integers and the class for polynomials both derive from an abstract class for semigroup elements, which factors
out the generic methods like _pow_. This illustrates the use of hierarchy of classes to share common code between classes
having common behaviour.

OOP design is all about isolating the objects that one wants to model together with their operations, and designing an
appropriate hierarchy of classes for organizing the code. As we have seen above, the design of the class hierarchy is easy
since it can be modelled upon the hierarchy of categories (bookshelves). Here is for example a piece of the hierarchy of
classes for an element of a group of permutations:

sage: P = Permutations (4)

sage: m = P.an_element ()

sage: for cls in m._class__.mro(): print (cls)

<class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class'>
<class 'sage.combinat.permutation.StandardPermutations_n.Element'>

<class 'sage.combinat.permutation.Permutation'>

<class 'sage.categories.groups.Groups.element_class'>
<class 'sage.categories.monoids.Monoids.element_class'>

<class 'sage.categories.semigroups.Semigroups.element_class'>

>>> from sage.all import *
>>> P = Permutations (Integer (4))

(continues on next page)
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(continued from previous page)
>>> m = P.an_element ()
>>> for cls in m.__class__.mro(): print(cls)
<class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class'>
<class 'sage.combinat.permutation.StandardPermutations_n.Element'>

<class 'sage.combinat.permutation.Permutation'>

<class 'sage.categories.groups.Groups.element_class'>
<class 'sage.categories.monoids.Monoids.element_class'>

<class 'sage.categories.semigroups.Semigroups.element_class'>

On the top, we see concrete classes that describe the data structure for matrices and provide the operations that are tied
to this data structure. Then follow abstract classes that are attached to the hierarchy of categories and provide generic
algorithms.

The full hierarchy is best viewed graphically:

sage: g = class_graph(m.__class__ ) #_
—needs sage.combinat sage.graphs

sage: g.set_latex_options (format='dot2tex') #.
—needs sage.combinat sage.graphs sage.plot

sage: view(qg) # not tested #.
—needs sage.combinat sage.graphs sage.plot

>>> from sage.all import *

>>> g = class_graph(m.__class__) #_
—needs sage.combinat sage.graphs

>>> g.set_latex_options (format='dot2tex"') #_
—needs sage.combinat sage.graphs sage.plot

>>> view (qg) # not tested #_
—needs sage.combinat sage.graphs sage.plot

Parallel hierarchy of classes for parents

Let us recall that we do not just want to compute with elements of mathematical sets, but with the sets themselves:

sage: ZZ.one()
1

sage: R = Q0['x,y"]

sage: R.krull_dimension ()

2

sage: A = R.quotient( R.ideal (x"2 - 2) )

sage: A.krull dimension() # todo: not implemented

>>> from sage.all import *
>>> 77 .one ()
1

>>> R = Q0['x,y"]
>>> R.krull_dimension ()

(continues on next page)
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(continued from previous page)

2
>>> A = R.quotient ( R.ideal (x**Integer (2) - Integer(2)) )
>>> A.krull_dimension() # todo: not implemented

Here are some typical operations that one may want to carry on various kinds of sets:
» The set of permutations of 5, the set of rational points of an elliptic curve: counting, listing, random generation
¢ A language (set of words): rationality testing, counting elements, generating series
* A finite semigroup: left/right ideals, center, representation theory
* A vector space, an algebra: Cartesian product, tensor product, quotient

Hence, following the OOP fundamental principle, parents should also be modelled by instances of some (hierarchy of)
classes. For example, our group G is an instance of the following class:

sage: G = GL(2, ZZ) #.
—needs sage.modules
sage: type (G) #.

—needs sage.libs.gap sage.modules
<class 'sage.groups.matrix_gps.linear_gap.LinearMatrixGroup_gap_with_category'>

>>> from sage.all import *

>>> G = GL(Integer(2), ZZ) =
— # needs sage.modules
>>> type (G) #o

—needs sage.libs.gap sage.modules
<class 'sage.groups.matrix_gps.linear_gap.LinearMatrixGroup_gap_with_category'>

Here is a piece of the hierarchy of classes above it:

sage: for cls in G.__class__.mro(): print (cls) #
—needs sage.libs.gap sage.modules
<class 'sage.groups.matrix_gps.linear_gap.LinearMatrixGroup_gap_with_category'>

<class 'sage.categories.groups.Groups.parent_class'>
<class 'sage.categories.monoids.Monoids.parent_class'>
<class 'sage.categories.semigroups.Semigroups.parent_class'>

>>> from sage.all import *

>>> for cls in G.__class__.mro(): print (cls) #.
—needs sage.libs.gap sage.modules

<class 'sage.groups.matrix_gps.linear_gap.LinearMatrixGroup_gap_with_category'>

<class 'sage.categories.groups.Groups.parent_class'>
<class 'sage.categories.monoids.Monoids.parent_class'>
<class 'sage.categories.semigroups.Semigroups.parent_class'>

Note that the hierarchy of abstract classes is again attached to categories and parallel to that we had seen for the elements.
This is best viewed graphically:
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sage: # needs sage.combinat sage.graphs sage.modules sage.plot
sage: g = class_graph(m.__class__ )

sage: g.relabel (lambda x: x.replace("_",r"\_"))

sage: g.set_latex_options (format="'dot2tex"')

sage: view(q) # not tested

>>> from sage.all import *
>>> # needs sage.combinat sage.graphs sage.modules sage.plot

>>> g = class_graph(m.__class__ )

>>> g.relabel (lambda x: x.replace("_",r"\_"))

>>> g.set_latex_options (format="'dot2tex")

>>> view (g) # not tested
© Note

This is a progress upon systems like Axiom or MuPAD where a parent is modelled by the class of its elements;
this oversimplification leads to confusion between methods on parents and elements, and makes parents special; in
particular it prevents potentially interesting constructions like “groups of groups”.

2.1.5 Sage categories
Why this business of categories? And to start with, why don’t we just have a good old hierarchy of classes Group,
Semigroup, Magma, ... ?
Dynamic hierarchy of classes
As we have just seen, when we manipulate groups, we actually manipulate several kinds of objects:
* groups
* group elements
* morphisms between groups
« and even the category of groups itself!

Thus, on the group bookshelf, we want to put generic code for each of the above. We therefore need three, parallel
hierarchies of abstract classes:

¢ Group, Monoid, Semigroup, Magma, ...

¢ GroupElement, MonoidElement, SemigroupElement, MagmaFlement, ...

¢ GroupMorphism, MonoidMorphism, SemigroupMorphism, MagmaMorphism, ...
(and in fact many more as we will see).

We could implement the above hierarchies as usual:

class Group (Monoid) :
# generic methods that apply to all groups

class GroupElement (MonoidElement) :
# generic methods that apply to all group elements

class GroupMorphism (MonoidMorphism) :
# generic methods that apply to all group morphisms
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And indeed that’s how it was done in Sage before 2009, and there are still many traces of this. The drawback of this
approach is duplication: the fact that a group is a monoid is repeated three times above!

Instead, Sage now uses the following syntax, where the Groups bookshelf is structured into units with nested classes:

class Groups (Category) :

def super_categories(self):
return [Monoids (), ...]

class ParentMethods:
# generic methods that apply to all groups

class ElementMethods:
# generic methods that apply to all group elements

class MorphismMethods:
# generic methods that apply to all group morphisms (not yet implemented)

class SubcategoryMethods:
# generic methods that apply to all subcategories of Groups ()

With this syntax, the information that a group is a monoid is specified only once, in the Category.
super_categories () method. And indeed, when the category of inverse unital magmas was introduced, there was a
single point of truth to update in order to reflect the fact that a group is an inverse unital magma:

sage: Groups () .super_categories()
[Category of monoids, Category of inverse unital magmas]

>>> from sage.all import *
>>> Groups () .super_categories|()
[Category of monoids, Category of inverse unital magmas]

The price to pay (there is no free lunch) is that some magic is required to construct the actual hierarchy of classes for
parents, elements, and morphisms. Namely, Groups.ElementMethods should be seen as just a bag of methods, and
the actual class Groups () .element_class is constructed from it by adding the appropriate super classes according to
Groups () .super_categories():

sage: Groups () .element_class
<class 'sage.categories.groups.Groups.element_class'>

sage: Groups () .element_class.__bases___
(<class 'sage.categories.monoids.Monoids.element_class'>,
<class 'sage.categories.magmas.Magmas.Unital.Inverse.element_class'>)

>>> from sage.all import *
>>> Groups () .element_class
<class 'sage.categories.groups.Groups.element_class'>

>>> Groups () .element_class.__bases_
(<class 'sage.categories.monoids.Monoids.element_class'>,
<class 'sage.categories.magmas.Magmas.Unital.Inverse.element_class'>)

We now see that the hierarchy of classes for parents and elements is parallel to the hierarchy of categories:

2.1. Elements, parents, and categories in Sage: a primer 19




Category Framework, Release 10.6

sage: Groups () .all_ super_categories ()
[Category of groups,

Category of monoids,

Category of semigroups,

Category of magmas,
Category of sets,
-1

sage: for cls in Groups() .element_class.mro(): print(cls)
<class 'sage.categories.groups.Groups.element_class'>

<class 'sage.categories.monoids.Monoids.element_class'>
<class 'sage.categories.semigroups.Semigroups.element_class'>

<class 'sage.categories.magmas.Magmas.element_class'>
sage: for cls in Groups () .parent_class.mro(): print (cls)
<class 'sage.categories.groups.Groups.parent_class'>
<class 'sage.categories.monoids.Monoids.parent_class'>

<class 'sage.categories.semigroups.Semigroups.parent_class'>

<class 'sage.categories.magmas.Magmas.parent_class'>

>>> from sage.all import *
>>> Groups () .all_super_categories ()
[Category of groups,

Category of monoids,

Category of semigroups,

Category of magmas,
Category of sets,
-1

>>> for cls in Groups () .element_class.mro(): print (cls)
<class 'sage.categories.groups.Groups.element_class'>

<class 'sage.categories.monoids.Monoids.element_class'>
<class 'sage.categories.semigroups.Semigroups.element_class'>

<class 'sage.categories.magmas.Magmas.element_class'>
>>> for cls in Groups () .parent_class.mro(): print(cls)
<class 'sage.categories.groups.Groups.parent_class'>

<class 'sage.categories.monoids.Monoids.parent_class'>

<class 'sage.categories.semigroups.Semigroups.parent_class'>

<class 'sage.categories.magmas.Magmas.parent_class'>

Another advantage of building the hierarchy of classes dynamically is that, for parametrized categories, the hierarchy may
depend on the parameters. For example an algebra over Q is a Q-vector space, but an algebra over Z is not (it is just a
Z-module)!
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© Note

At this point this whole infrastructure may feel like overdesigning, right? We felt like this too! But we will see later
that, once one gets used to it, this approach scales very naturally.

From a computer science point of view, this infrastructure implements, on top of standard multiple inheritance, a
dynamic composition mechanism of mixin classes (Wikipedia article Mixin), governed by mathematical properties.

For implementation details on how the hierarchy of classes for parents and elements is constructed, see Category.

On the category hierarchy: subcategories and super categories

‘We have seen above that, for example, the category of sets is a super category of the category of groups. This models the
fact that a group can be unambiguously considered as a set by forgetting its group operation. In object-oriented parlance,
we want the relation “a group is a set”, so that groups can directly inherit code implemented on sets.

Formally, a category Cs () is a super category of a category Ds () if Sage considers any object of Ds () to be an object of
Cs (), up to an implicit application of a canonical functor from Ds () to Cs (). This functor is normally an inclusion of
categories or a forgetful functor. Reciprocally, Ds () is said to be a subcategory of Cs ().

A Warning

This terminology deviates from the usual mathematical definition of subcategory and is subject to change. Indeed,
the forgetful functor from the category of groups to the category of sets is not an inclusion of categories, as it is
not injective: a given set may admit more than one group structure. See Issue #16183 for more details. The name
supercategory is also used with a different meaning in certain areas of mathematics.

Categories are instances and have operations

Note that categories themselves are naturally modelled by instances because they can have operations of their own. An
important one is:

sage: Groups () .example () #_
—needs sage.modules
General Linear Group of degree 4 over Rational Field

>>> from sage.all import *

>>> Groups () .example () #o
—needs sage.modules

General Linear Group of degree 4 over Rational Field

which gives an example of object of the category. Besides illustrating the category, the example provides a minimal
template for implementing a new object in the category:

sage: S = Semigroups() .example(); S
An example of a semigroup: the left zero semigroup

>>> from sage.all import *
>>> S = Semigroups () .example(); S
An example of a semigroup: the left zero semigroup

Its source code can be obtained by introspection:
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[sage: SEE # not tested

>>> from sage.all import *
>>> SEE # not tested

This example is also typically used for testing generic methods. See Category.example () for more.

Other operations on categories include querying the super categories or the axioms satisfied by the operations of a category:

sage: Groups () .super_categories()

[Category of monoids, Category of inverse unital magmas]
sage: Groups () .axioms ()

frozenset ({'Associative', 'Inverse', 'Unital'})

>>> from sage.all import *

>>> Groups () .super_categories ()

[Category of monoids, Category of inverse unital magmas]
>>> Groups () .axioms ()

frozenset ({'Associative', 'Inverse', 'Unital'})

or constructing the intersection of two categories, or the smallest category containing them:

sage: Groups () & FiniteSets ()
Category of finite groups
sage: Algebras(QQ) | Groups()
Category of monoids

>>> from sage.all import *

>>> Groups () & FiniteSets()
Category of finite groups
>>> Algebras (QQ) | Groups()

Category of monoids

Specifications and generic documentation

Categories do not only contain code but also the specifications of the operations. In particular a list of mandatory and
optional methods to be implemented can be found by introspection with:

sage: Groups () .required_methods ()
{'element': {'optional': ['_mul_'], 'required': []},
'parent': {'optional': [], 'required': ['__contains__ ']}}

>>> from sage.all import *

>>> Groups () .required_methods ()
{'element': {'optional': ['_mul_'], 'required': []},
'parent': {'optional': [], 'required': ['__contains__']}}

Documentation about those methods can be obtained with:

sage: G = Groups ()
sage: G.element_class._mul_i # not tested
sage: G.parent_class.onei # not tested
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>>> from sage.all import *

>>> G = Groups ()
>>> G.element_class._mul_i # not tested
>>> G.parent_class.onei # not tested

See also the abstract_method () decorator.

A\ Warning

Well, more precisely, that’s how things should be, but there is still some work to do in this direction. For example, the
inverse operation is not specified above. Also, we are still missing a good programmatic syntax to specify the input
and output types of the methods. Finally, in many cases the implementer must provide at least one of two methods,
each having a default implementation using the other one (e.g. listing or iterating for a finite enumerated set); there is
currently no good programmatic way to specify this.

Generic tests

Another feature that parents and elements receive from categories is generic tests; their purpose is to check (at least to
some extent) that the parent satisfies the required mathematical properties (is my semigroup indeed associative?) and is
implemented according to the specifications (does the method an_element indeed return an element of the parent?):

sage: S = FiniteSemigroups () .example (alphabet=('a', 'b'))
sage: TestSuite(S).run(verbose = True)

running ._test_an_element () . . . pass

running ._test_associativity () . . . pass

running ._test_cardinality() . . . pass

running ._test_category() . . . pass

running ._test_construction() . . . pass

running ._test_elements()

Running the test suite of self.an_element ()
running ._test_category() . . . pass
running ._test_eqg() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass
running ._test_elements_eq reflexive() . . . pass
running ._test_elements_eqg symmetric() . . . pass
running ._test_elements_eq _transitive() . . . pass
running ._test_elements_neqg() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eqg() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

>>> from sage.all import *
>>> S = FiniteSemigroups () .example (alphabet=('a', 'b'))

>>> TestSuite (S) .run (verbose = True)
(continues on next page)
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running ._test_an_element () . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements ()

Running the test suite of self.an_element ()
running ._test_category() . . . pass
running ._test_eqg() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass
running ._test_elements_eqg reflexive() . . . pass
running ._test_elements_eq _symmetric() . . . pass
running ._test_elements_eq transitive() . . . pass
running ._test_elements_neqg() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eqg() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass

running ._test_some_elements() . . . pass

Tests can be run individually:

[sage: S._test_associativity ()

>>> from sage.all import *
>>> S._test_associativity()

Here is how to access the code of this test:

[sage: S._test_associativity # not tested

>>> from sage.all import *
>>> S._test_associativity # not tested

Here is how to run the test on all elements:

= S.list ()

sage: L
sage: S._test_associativity(elements=L)

>>> from sage.all import *
>>> L = S.1list ()
>>> S._test_associativity (elements=L)

See TestSuite for more information.

Let us see what happens when a test fails. Here we redefine the product of S to something definitely not associative:
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[sage: S.product = lambda x, y: S("("+x.value +y.value+")")

>>> from sage.all import *
>>> S.product = lambda x, y: S(" ("+x.value +y.value+")")

And rerun the test:

sage: S._test_associativity(elements=L)
Traceback (most recent call last):

File ".../sage/categories/semigroups.py", line ..., in _test_associativity

tester.assertTrue((x * y) * z == x * (y * z))
AssertionError: '((aa)a)' != '(a(aa))'

>>> from sage.all import *
>>> S._test_associativity (elements=L)
Traceback (most recent call last):

File ".../sage/categories/semigroups.py", line ..., in _test_associativity

tester.assertTrue((x * y) * z == x * (y * z))
AssertionError: '((aa)a)' !'= '"(a(aa))'

We can recover instantly the actual values of x, vy, z, that is, a counterexample to the associativity of our broken semigroup,
using post mortem introspection with the Python debugger pdb (this does not work yet in the notebook):

sage: import pdb

sage: pdb.pm/() # not tested

> /opt/sage-5.11.rcl/local/lib/python/unittest/case.py (424)assertTrue ()
—> raise self.failureException (msg)

(Pdb) u

> /opt/sage-5.11.rcl/local/lib/python2.7/site-packages/sage/categories/semigroups.
—py (145)_test_associativity ()

—> tester.assertTrue((x * y) * z == x * (y * z))

(Pdb) p %, vy, zZ

('a', 'a', 'a")

(Pdb) p (x * y) * z

!

(Pdb) p x * (y * z)

'(a(aa))’

>>> from sage.all import *

>>> import pdb

>>> pdb.pm() # not tested

> /opt/sage-5.11.rcl/local/lib/python/unittest/case.py (424)assertTrue ()

—> raise self.failureException (msg)

(Pdb) u

> /opt/sage-5.11.rcl/local/lib/python2.7/site-packages/sage/categories/semigroups.
—py (145)_test_associativity ()

—-> tester.assertTrue((x * y) * z == x * (y * z))

(Pdb) p %, y, z

(continues on next page)
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'a', lav, lal)

Pdb) p (x * y) * z
((aa)a)'
(Pdb) p x * (y * z)
'(a(aa)) '’
Wrap-up

* Categories provide a natural hierarchy of bookshelves to organize not only code, but also specifications and testing
tools.

» Everything about, say, algebras with a distinguished basis is gathered in Al1gebraswithBasis or its super cat-
egories. This includes properties and algorithms for elements, parents, morphisms, but also, as we will see, for
constructions like Cartesian products or quotients.

» The mathematical relations between elements, parents, and categories translate dynamically into a traditional hier-
archy of classes.

* This design enforces robustness and consistency, which is particularly welcome given that Python is an interpreted
language without static type checking.

2.1.6 Case study

In this section, we study an existing parent in detail; a good followup is to go through the sage.categories. tutorial
or the thematic tutorial on coercion and categories (“How to implement new algebraic structures in Sage”) to learn how
to implement a new one!

We consider the example of finite semigroup provided by the category:

sage: S = FiniteSemigroups () .example(); S

An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c',
—'d'")

sage: SE # not tested

>>> from sage.all import *

>>> S = FiniteSemigroups () .example(); S

An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c',
—'d")

>>> si # not tested

Where do all the operations on S and its elements come from?

[sage: x = S('a'")

>>> from sage.all import *
>>> x = S('a')

_repr_ isatechnical method which comes with the data structure (E1ementWrapper); since it’s implemented in Cython,
we need to use Sage’s introspection tools to recover where it’s implemented:

sage: x._repr_.__module_
sage: sage.misc.sageinspect.sage_getfile(x._repr_)
./sage/structure/element_wrapper.pyx'
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>>> from sage.all import *

>>> x._repr_.__module_

>>> sage.misc.sageinspect.sage_getfile (x._repr_)
'.../sage/structure/element_wrapper.pyx'

_pow_int is a generic method for all finite semigroups:

sage: x._pow_int._ module_
'sage.categories.semigroups'’

>>> from sage.all import *
>>> x._pow_int._ module_
'sage.categories.semigroups’

__mul__ is a generic method provided by the Magmas category (a magma is a set with an inner law *, not necessarily
associative). If the two arguments are in the same parent, it will call the method _mul_, and otherwise let the coercion
model try to discover how to do the multiplication:

[sage: x.__mul__iﬁ # not tested ]

>>> from sage.all import *

>>> x._ mul . # not tested

Since it is a speed critical method, it is implemented in Cython in a separate file:

sage: x._mul_.__module_

'sage.categories.coercion_methods'

>>> from sage.all import *
>>> x._mul_. module

'sage.categories.coercion_methods'

_mul_ is adefault implementation, also provided by the Magma s category, that delegates the work to the method product
of the parent (following the advice: if you do not know what to do, ask your parent); it’s also a speed critical method:

sage: x._mul # not tested
sage: x._mul_._module_

'sage.categories.coercion_methods'

sage: x._mul_. func  is Magmas.ElementMethods._mul_parent
True

>>> from sage.all import *

>>> X._mul # not tested
>>> x._mul_. module

'sage.categories.coercion_methods'

>>> x._mul_. func  is Magmas.ElementMethods._mul_parent

True

product is a mathematical method implemented by the parent:

sage: S.product.__module_

'sage.categories.examples.finite_semigroups'
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>>> from sage.all import *
>>> S.product.__module_

'sage.categories.examples.finite_semigroups'

cayley_graph is a generic method on the parent, provided by the riniteSemigroups category:

sage: S.cayley_graph._ module_
'sage.categories.semigroups’

>>> from sage.all import *
>>> S.cayley_graph.__module_

'sage.categories.semigroups’

multiplication_table is a generic method on the parent, provided by the Magmas category (it does not require
associativity):

sage: S.multiplication_table._module_
'sage.categories.magmas’

>>> from sage.all import *
>>> S.multiplication_table. module
'sage.categories.magmas’

Consider now the implementation of the semigroup:

# not tested

>>> from sage.all import *
>>> s # not tested

This implementation specifies a data structure for the parents and the elements, and makes a promise: the implemented
parent is a finite semigroup. Then it fulfills the promise by implementing the basic operation product. It also implements
the optional method semigroup_generators. In exchange, S and its elements receive generic implementations of all
the other operations. .S may override any of those by more efficient ones. It may typically implement the element method
is_idempotent to always return True.

A (not yet complete) list of mandatory and optional methods to be implemented can be found by introspection with:

sage: FiniteSemigroups () .required_methods ()
{'element': {'optional': ['_mul_'], 'required': []},
'parent': {'optional': ['semigroup_generators'],
'required': ['__contains__']}}

>>> from sage.all import *
>>> FiniteSemigroups () .required_methods ()
{'element': {'optional': ['_mul_ '], 'required': []},
'parent': {'optional': ['semigroup_generators'],
'required': ['__contains__']}}

product does not appear in the list because a default implementation is provided in term of the method _mul_ on
elements. Of course, at least one of them should be implemented. On the other hand, a default implementation for
__contains__is provided by Parent.

Documentation about those methods can be obtained with:
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sage: C = FiniteSemigroups () .element_class
sage: C._mul # not tested

>>> from sage.all import *
>>> C = FiniteSemigroups () .element_class
>>> C._mul # not tested

See also the abstract_method () decorator.

Here is the code for the finite semigroups category:

[sage: FiniteSemigroups # not tested ]

>>> from sage.all import *
>>> FiniteSemigroups # not tested

2.1.7 Specifying the category of a parent

Some parent constructors (not enough!) allow to specify the desired category for the parent. This can typically be used to
specify additional properties of the parent that we know to hold a priori. For example, permutation groups are by default
in the category of finite permutation groups (no surprise):

sage: P = PermutationGroup([[(1,2,3)]]); P #_
—needs sage.groups

Permutation Group with generators [(1,2,3)]

sage: P.category () #o

—needs sage.groups
Category of finite enumerated permutation groups

>>> from sage.all import *

>>> P = PermutationGroup ([[ (Integer(l),Integer(2),Integer(3))]1]1); P -
- # needs sage.groups

Permutation Group with generators [(1,2,3)]

>>> P.category () #o
—needs sage.groups

Category of finite enumerated permutation groups

In this case, the group is commutative, so we can specify this:

sage: P = PermutationGroup ([[(1,2,3)]1], #.
—needs sage.groups

el category=PermutationGroups () .Finite () .Commutative()); P
Permutation Group with generators [(1,2,3)]

sage: P.category () #

—needs sage.groups
Category of finite enumerated commutative permutation groups

>>> from sage.all import *

>>> P = PermutationGroup ([[ (Integer(l),Integer (2),Integer(3))]1], -
— # needs sage.groups

category=PermutationGroups () .Finite () .Commutative()); P
Permutation Group with generators [(1,2,3)]

(continues on next page)
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>>> P.category () #_
—needs sage.groups
Category of finite enumerated commutative permutation groups

This feature can even be used, typically in experimental code, to add more structure to existing parents, and in particular
to add methods for the parents or the elements, without touching the code base:

sage: class Foos (Category) :

el def super_categories (self) :

R return [PermutationGroups () .Finite () .Commutative () ]
50008 class ParentMethods:

et def foo(self): print ("foo")

ceeat class ElementMethods:

e def bar(self): print ("bar")

sage: # needs sage.groups

sage: P = PermutationGroup([[(1,2,3)]], category=Foos/())
sage: P.foo()

foo

sage: p = P.an_element ()

sage: p.bar()
bar

>>> from sage.all import *
>>> class Foos (Category) :
def super_categories(self):
return [PermutationGroups () .Finite () .Commutative ()]
class ParentMethods:
def foo(self): print ("foo")
class ElementMethods:
def bar(self): print ("bar")

>>> # needs sage.groups

>>> P = PermutationGroup ([[ (Integer (1), Integer(2),Integer(3))]], category=Foos())
>>> P.foo ()

foo

>>> p = P.an_element ()

>>> p.bar ()

bar

In the long run, it would be thinkable to use this idiom to implement forgetful functors; for example the above group could
be constructed as a plain set with:

sage: P = PermutationGroup([[(1,2,3)]], category=Sets()) # not implemented, needs.
—sage.groups

>>> from sage.all import *
>>> P = PermutationGroup ([[ (Integer(l),Integer(2),Integer(3))]1], category=Sets())
—# not Implemented, needs sage.groups

At this stage though, this is still to be explored for robustness and practicality. For now, most parents that accept a category
argument only accept a subcategory of the default one.
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2.1.8 Scaling further: functorial constructions, axioms, ...

In this section, we explore more advanced features of categories. Along the way, we illustrate that a large hierarchy of
categories is desirable to model complicated mathematics, and that scaling to support such a large hierarchy is the driving
motivation for the design of the category infrastructure.

Functorial constructions

Sage has support for a certain number of so-called covariant functorial constructions which can be used to construct new
parents from existing ones while carrying over as much as possible of their algebraic structure. This includes:

* Cartesian products: See cartesian_product.
 Tensor products: See tensor.
» Subquotients / quotients / subobjects / isomorphic objects: See:
— Sets () .Subquotients,
— Sets () .Quotients,
— Sets () .Subobjects,
— Sets().IsomorphicObjects
* Dual objects: See Modules () .DualObjects.
¢ Algebras, as in group algebras, monoid algebras, ...: See: Sets.ParentMethods.algebra ().

Let for example A and B be two parents, and let us construct the Cartesian product A X B x B:

sage: A = AlgebrasWithBasis (QQ) .example () ; A.rename ('A'") #_
—needs sage.combinat sage.modules

sage: B = HopfAlgebrasWithBasis (QQ) .example(); B.rename('B') #_
—needs sage.groups sage.modules

sage: C = cartesian_product([A, B, B]); C #.
—needs sage.combinat sage.groups sage.modules

A (+) B (+) B

>>> from sage.all import *

>>> A = AlgebrasWithBasis (QQ) .example () ; A.rename ('A") #_
—needs sage.combinat sage.modules

>>> B = HopfAlgebrasWithBasis (QQ) .example (); B.rename ('B'") #_
—needs sage.groups sage.modules

>>> C = cartesian_product ([A, B, B]); C #
—needs sage.combinat sage.groups sage.modules

A (+) B (+) B

In which category should this new parent be? Since A and B are vector spaces, the result is, as a vector space, the direct
sum A @ B @ B, hence the notation. Also, since both A and B are monoids, A x B x B is naturally endowed with a
monoid structure for pointwise multiplication:

sage: C in Monoids () #_
—needs sage.combinat sage.groups sage.modules
True

>>> from sage.all import *
>>> C in Monoids () #e

(continues on next page)
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(continued from previous page)

—needs sage.combinat sage.groups sage.modules
True

the unit being the Cartesian product of the units of the operands:

sage: C.one () #.
—needs sage.combinat sage.groups sage.modules

B[ (0, word: )] + B[(1, ())] + B[(2, ())]

sage: cartesian_product ([A.one(), B.one(), B.one()]) #_

—needs sage.combinat sage.groups sage.modules
B[ (0, word: )] + B[(1, ()] + B[(2, ())]

>>> from sage.all import *

>>> C.one () #_
—needs sage.combinat sage.groups sage.modules

B[ (0, word: )] + B[(1, ())] + B[(2, ())]

>>> cartesian_product ([A.one(), B.one(), B.one()]) i
—needs sage.combinat sage.groups sage.modules

B[ (0, word: )] + B[(1, ()] + B[(2, ()]

The pointwise product can be implemented generically for all magmas (i.e. sets endowed with a multiplicative operation)
that are constructed as Cartesian products. It’s thus implemented in the Magmas category:

sage: C.product._ _module_ #_
—needs sage.combinat sage.groups sage.modules
'sage.categories.magmas'

>>> from sage.all import *
>>> C.product.__module_ #_
—needs sage.combinat sage.groups sage.modules

'sage.categories.magmas'

More specifically, keeping on using nested classes to structure the code, the product method is put in the nested class
Magmas.CartesianProducts.ParentMethods:

class Magmas (Category) :
class ParentMethods:
# methods for magmas
class ElementMethods:
# methods for elements of magmas
class CartesianProduct (CartesianProductCategory) :
class ParentMethods:
# methods for magmas that are constructed as Cartesian products
def product (self, x, vy):
#
class ElementMethods:
#

© Note

The support for nested classes in Python is relatively recent. Their intensive use for the category infrastructure did
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reveal some glitches in their implementation, in particular around class naming and introspection. Sage currently
works around the more annoying ones but some remain visible. See e.g. sage.misc.test_nested _class.

Let us now look at the categories of C:

sage: C.categories|() #_
—needs sage.combinat sage.groups sage.modules

[Category of finite dimensional Cartesian products of algebras with basis over.
—Rational Field,

Category of Cartesian products of algebras over Rational Field,

Category of Cartesian products of semigroups, Category of semigroups,

Category of Cartesian products of magmas, ..., Category of magmas,

Category of Cartesian products of additive magmas, ..., Category of additive magmas,
Category of Cartesian products of sets, Category of sets, ...]

>>> from sage.all import *

>>> C.categories () #_
—needs sage.combinat sage.groups sage.modules

[Category of finite dimensional Cartesian products of algebras with basis over.
—~Rational Field,

Category of Cartesian products of algebras over Rational Field,

Category of Cartesian products of semigroups, Category of semigroups,

Category of Cartesian products of magmas, ..., Category of magmas,

Category of Cartesian products of additive magmas, ..., Category of additive magmas,
Category of Cartesian products of sets, Category of sets, ...]

This reveals the parallel hierarchy of categories for Cartesian products of semigroups magmas, ... We are thus glad that
Sage uses its knowledge that a monoid is a semigroup to automatically deduce that a Cartesian product of monoids is a
Cartesian product of semigroups, and build the hierarchy of classes for parents and elements accordingly.

In general, the Cartesian product of A and B can potentially be an algebra, a coalgebra, a differential module, and be
finite dimensional, or graded, or .... This can only be decided at runtime, by introspection into the properties of A and
B; furthermore, the number of possible combinations (e.g. finite dimensional differential algebra) grows exponentially
with the number of properties.

Axioms

First examples

We have seen that Sage is aware of the axioms satisfied by, for example, groups:

sage: Groups () .axioms ()
frozenset ({'Associative', 'Inverse', 'Unital'})

>>> from sage.all import *
>>> Groups () .axioms ()
frozenset ({'Associative', 'Inverse', 'Unital'})

In fact, the category of groups can be defined by stating that a group is a magma, that is a set endowed with an internal
binary multiplication, which satisfies the above axioms. Accordingly, we can construct the category of groups from the
category of magmas:
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sage: Magmas () .Associative () .Unital () .Inverse ()
Category of groups

>>> from sage.all import *
>>> Magmas () .Associative () .Unital () .Inverse ()
Category of groups

In general, we can construct new categories in Sage by specifying the axioms that are satisfied by the operations of the
super categories. For example, starting from the category of magmas, we can construct all the following categories just
by specifying the axioms satisfied by the multiplication:

sage: Magmas ()

Category of magmas

sage: Magmas () .Unital ()
Category of unital magmas

>>> from sage.all import *
>>> Magmas ()

Category of magmas

>>> Magmas () .Unital ()
Category of unital magmas

sage: Magmas () .Commutative () .Unital ()
Category of commutative unital magmas
sage: Magmas () .Unital () .Commutative ()
Category of commutative unital magmas

>>> from sage.all import *

>>> Magmas () .Commutative () .Unital ()
Category of commutative unital magmas
>>> Magmas () .Unital () .Commutative ()
Category of commutative unital magmas

sage: Magmas () .Associative ()
Category of semigroups

>>> from sage.all import *
>>> Magmas () .Associative ()
Category of semigroups

sage: Magmas () .Associative () .Unital ()
Category of monoids

>>> from sage.all import *
>>> Magmas () .Associative () .Unital ()
Category of monoids

sage: Magmas () .Associative () .Unital () .Commutative ()
Category of commutative monoids
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>>> from sage.all import *
>>> Magmas () .Associative () .Unital () .Commutative ()
Category of commutative monoids

sage: Magmas () .Associative () .Unital () .Inverse ()
Category of groups

>>> from sage.all import *
>>> Magmas () .Associative () .Unital () .Inverse ()
Category of groups

Axioms and categories with axioms

Here, Associative, Unital, Commutative are axioms. In general, any category Cs in Sage can declare a new axiom
A. Then, the category with axiom Cs . A () models the subcategory of the objects of Cs satisfying the axiom A. Similarly,
for any subcategory Ds of Cs, Ds.A () models the subcategory of the objects of Ds satisfying the axiom A. In most cases,
it’s a full subcategory (see Wikipedia article Subcategory).

For example, the category of sets defines the Finite axiom, and this axiom is available in the subcategory of groups:

sage: Sets () .Finite()
Category of finite sets
sage: Groups () .Finite ()
Category of finite groups

>>> from sage.all import *
>>> Sets () .Finite ()
Category of finite sets
>>> Groups () .Finite ()
Category of finite groups

The meaning of each axiom is described in the documentation of the corresponding method, which can be obtained as
usual by introspection:

sage: C = Groups ()
sage: C.Finitei # not tested

>>> from sage.all import *
>>> C = Groups()
>>> C.Finite # not tested

The purpose of categories with axioms is no different from other categories: to provide bookshelves of code, documenta-
tion, mathematical knowledge, tests, for their objects. The extra feature is that, when intersecting categories, axioms are
automatically combined together:

sage: C = Magmas () .Associative () & Magmas () .Unital () .Inverse() & Sets () .Finite(); C
Category of finite groups

sage: sorted(C.axioms())

['Associative', 'Finite', 'Inverse', 'Unital']

>>> from sage.all import *
>>> C = Magmas () .Associative () & Magmas () .Unital () .Inverse() & Sets().Finite(); C
(continues on next page)
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(continued from previous page)
Category of finite groups
>>> sorted(C.axioms () )

['Associative', 'Finite', 'Inverse', 'Unital']

For a more advanced example, Sage knows that a ring is a set C' endowed with a multiplication which distributes over
addition, such that (C, +) is a commutative additive group and (C, ) is a monoid:

sage: C = (CommutativeAdditiveGroups () & Monoids()) .Distributive(); C
Category of rings

sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Distributive', 'Unital']

>>> from sage.all import *
>>> C = (CommutativeAdditiveGroups () & Monoids()) .Distributive(); C

Category of rings

>>> sorted(C.axioms ())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Distributive', 'Unital']

The infrastructure allows for specifying further deduction rules, in order to encode mathematical facts like Wedderburn’s
theorem:

sage: DivisionRings() & Sets () .Finite()
Category of finite enumerated fields

>>> from sage.all import *
>>> DivisionRings () & Sets () .Finite()
Category of finite enumerated fields

© Note

When an axiom specifies the properties of some operations in Sage, the notations for those operations are tied to this
axiom. For example, as we have seen above, we need two distinct axioms for associativity: the axiom “AdditiveAs-
sociative” is about the properties of the addition +, whereas the axiom “Associative” is about the properties of the
multiplication x*.

We are touching here an inherent limitation of the current infrastructure. There is indeed no support for providing
generic code that is independent of the notations. In particular, the category hierarchy about additive structures
(additive monoids, additive groups, ...) is completely duplicated by that for multiplicative structures (monoids, groups,

).

As far as we know, none of the existing computer algebra systems has a good solution for this problem. The difficulty
is that this is not only about a single notation but a bunch of operators and methods: +, -, zero, summation,
sum, ...Iinonecase,*, /, one, product, prod, factor, ... inthe other. Sharing something between
the two hierarchies of categories would only be useful if one could write generic code that applies in both cases;
for that one needs to somehow automatically substitute the right operations in the right spots in the code. That’s
kind of what we are doing manually between e.g. AdditiveMagmas.ParentMethods.addition_table () and
Magmas.ParentMethods.multiplication_table (), but doing this systematically is a different beast from
what we have been doing so far with just usual inheritance.
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Single entry point and name space usage

A nice feature of the notation Cs . A () is that, from a single entry point (say the category Magma s as above), one can explore
a whole range of related categories, typically with the help of introspection to discover which axioms are available, and
without having to import new Python modules. This feature will be used in Issue #15741 to unclutter the global name
space from, for example, the many variants of the category of algebras like:

sage: FiniteDimensionalAlgebrasWithBasis (QQ)
Category of finite dimensional algebras with basis over Rational Field

>>> from sage.all import *
>>> FiniteDimensionalAlgebrasWithBasis (QQ)
Category of finite dimensional algebras with basis over Rational Field

There will of course be a deprecation step, but it’s recommended to prefer right away the more flexible notation:

sage: Algebras (QQ) .WithBasis () .FiniteDimensional ()
Category of finite dimensional algebras with basis over Rational Field

>>> from sage.all import *
>>> Algebras (QQ) .WithBasis () .FiniteDimensional ()
Category of finite dimensional algebras with basis over Rational Field

Design discussion

How far should this be pushed? 7ields should definitely stay, but should FiniteGroups or DivisionRings be
removed from the global namespace? Do we want to further completely deprecate the notation FiniteGroups ()
in favor of Groups () .Finite () ?

On the potential combinatorial explosion of categories with axioms

Even for a very simple category like Magmas, there are about 2° potential combinations of the axioms! Think about what
this becomes for a category with two operations + and *:

sage: C = (Magmas() & AdditiveMagmas ()) .Distributive(); C
Category of distributive magmas and additive magmas

sage: CAA = C.Associlative () .AdditiveAssociative ()
sage: CAA.AdditiveCommutative () .AdditiveUnital () .AdditivelInverse ()
Category of rngs

sage: CAA.AdditiveCommutative () .AdditiveUnital () .Unital ()
Category of semirings

sage: CAA.AdditiveCommutative () .AdditiveUnital () .AdditivelInverse () .Unital ()
Category of rings

sage: Rings () .Division{()
Category of division rings

sage: Rings () .Division () .Commutative ()
Category of fields
(continues on next page)
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(continued from previous page)

sage: Rings () .Division () .Finite ()
Category of finite enumerated fields

>>> from sage.all import *
>>> C = (Magmas () & AdditiveMagmas ()) .Distributive(); C
Category of distributive magmas and additive magmas

>>> CAA = C.Associative () .AdditiveAssociative ()
>>> CAA.AdditiveCommutative () .AdditiveUnital () .AdditiveInverse ()
Category of rngs

>>> CAA.AdditiveCommutative () .AdditiveUnital () .Unital ()
Category of semirings

>>> CAA.AdditiveCommutative () .AdditiveUnital () .AdditivelInverse () .Unital ()
Category of rings

>>> Rings () .Division ()
Category of division rings

>>> Rings () .Division () .Commutative ()
Category of fields

>>> Rings () .Division () .Finite ()
Category of finite enumerated fields

or for more advanced categories:

sage: g = HopfAlgebras (QQ) .WithBasis () .Graded () .Connected() .category_graph () #_
—needs sage.graphs

sage: g.set_latex_options (format='dot2tex"') #.
—needs sage.graphs sage.plot

sage: view(g) # not tested #_
—needs sage.graphs sage.plot

>>> from sage.all import *

>>> g = HopfAlgebras (QQ) .WithBasis () .Graded () .Connected () .category_graph () #_
—needs sage.graphs

>>> g.set_latex_options (format="'dot2tex") #_
—needs sage.graphs sage.plot

>>> view (qg) # not tested #o

—needs sage.graphs sage.plot

Difference between axioms and regressive covariant functorial constructions

Our running examples here will be the axiom FiniteDimensional and the regressive covariant functorial construction
Graded. Let Cs be some subcategory of Modules, say the category of modules itself:

[sage: Cs = Modules (QQ)
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>>> from sage.all import *
>>> Cs = Modules (QQ)

Then, Cs.FiniteDimensional () (respectively Cs.Graded ()) is the subcategory of the objects 0 of Cs which are
finite dimensional (respectively graded).

Let also Ds be a subcategory of Cs, say:

[sage: Ds = Algebras (QQ)

>>> from sage.all import *
>>> Ds = Algebras (QQ)

A finite dimensional algebra is also a finite dimensional module:

sage: Algebras (QQ) .FiniteDimensional () .is_subcategory (Modules (QQ) .FiniteDimensional ())
True

>>> from sage.all import *
>>> Algebras (QQ) .FiniteDimensional () .is_subcategory (Modules (QQ) .FiniteDimensional ())
True

Similarly a graded algebra is also a graded module:

sage: Algebras (QQ) .Graded () .is_subcategory( Modules (QQ) .Graded () )
True

>>> from sage.all import *
>>> Algebras (QQ) .Graded () .is_subcategory ( Modules (QQ) .Graded () )
True

This is the covariance property: for A an axiom or a covariant functorial construction, if Ds is a subcategory of Cs, then
Ds.A () is a subcategory of Cs.A ().

What happens if we consider reciprocally an object of Cs.A () which is also in Ds? A finite dimensional module which
is also an algebra is a finite dimensional algebra:

sage: Modules (QQ) .FiniteDimensional () & Algebras (QQ)
Category of finite dimensional algebras over Rational Field

>>> from sage.all import *
>>> Modules (QQ) .FiniteDimensional () & Algebras (QQ)
Category of finite dimensional algebras over Rational Field

On the other hand, a graded module O which is also an algebra is not necessarily a graded algebra! Indeed, the grading
on O may not be compatible with the product on O:

sage: Modules (QQ) .Graded () & Algebras (QQ)
Join of Category of algebras over Rational Field
and Category of graded vector spaces over Rational Field

>>> from sage.all import *
>>> Modules (QQ) .Graded () & Algebras (QQ)

(continues on next page)
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(continued from previous page)

Join of Category of algebras over Rational Field
and Category of graded vector spaces over Rational Field

The relevant difference between FiniteDimensional and Gradedis that FiniteDimensional is a statement about
the properties of O seen as a module (and thus does not depend on the given category), whereas Graded is a statement
about the properties of 0 and all its operations in the given category.

In general, if a category satisfies a given axiom, any subcategory also satisfies that axiom. Another formulation is that, for
an axiom A defined in a super category Cs of Ds, Ds.A () is the intersection of the categories Ds and Cs.A () :

sage: As = Algebras (QQ) .FiniteDimensional(); As

Category of finite dimensional algebras over Rational Field
sage: Bs Algebras (QQ) & Modules (QQ) .FiniteDimensional (); As
Category of finite dimensional algebras over Rational Field

sage: As is Bs

True

>>> from sage.all import *

>>> As = Algebras (QQ) .FiniteDimensional (); As

Category of finite dimensional algebras over Rational Field
>>> Bs = Algebras (QQ) & Modules (QQ) .FiniteDimensional (); As
Category of finite dimensional algebras over Rational Field
>>> As is Bs

True

An immediate consequence is that, as we have already noticed, axioms commute:

sage: As

Algebras (QQ) .FiniteDimensional () .WithBasis (); As

Category of finite dimensional algebras with basis over Rational Field
sage: Bs = Algebras (QQ) .WithBasis () .FiniteDimensional (); Bs

Category of finite dimensional algebras with basis over Rational Field
sage: As is Bs

True

>>> from sage.all import *

>>> As = Algebras (QQ) .FiniteDimensional () .WithBasis(); As

Category of finite dimensional algebras with basis over Rational Field
>>> Bs = Algebras (QQ) .WithBasis () .FiniteDimensional (); Bs

Category of finite dimensional algebras with basis over Rational Field
>>> As is Bs

True

On the other hand, axioms do not necessarily commute with functorial constructions, even if the current printout may
missuggest so:

sage: As = Algebras(QQ) .Graded() .WithBasis(); As
Category of graded algebras with basis over Rational Field
sage: Bs Algebras (QQ) .WithBasis () .Graded(); Bs
Category of graded algebras with basis over Rational Field

sage: As is Bs
False
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>>> from sage.all import *

>>> As = Algebras (QQ) .Graded () .WithBasis (); As

Category of graded algebras with basis over Rational Field
>>> Bs = Algebras (QQ) .WithBasis () .Graded(); Bs

Category of graded algebras with basis over Rational Field
>>> As is Bs

False

This is because Bs is the category of algebras endowed with basis, which are further graded; in particular the basis must
respect the grading (i.e. be made of homogeneous elements). On the other hand, As is the category of graded algebras,
which are further endowed with some basis; that basis need not respect the grading. In fact As is really a join category:

sage: type (As)

<class 'sage.categories.category.JoinCategory_with_category'>

sage: As._repr_ (as_join=True)

'Join of Category of algebras with basis over Rational Field and Category of graded.
—algebras over Rational Field'

>>> from sage.all import *

>>> type (As)

<class 'sage.categories.category.JoinCategory_with_category'>

>>> As._repr_ (as_join=True)

'Join of Category of algebras with basis over Rational Field and Category of graded.
—algebras over Rational Field'

& Todo

Improve the printing of functorial constructions and joins to raise this potentially dangerous ambiguity.

Further reading on axioms

We refer to sage.categories.category_with_axiom for how to implement axioms.

Wrap-up

As we have seen, there is a combinatorial explosion of possible classes. Constructing by hand the full class hierarchy
would not scale unless one would restrict to a very rigid subset. Even if it was possible to construct automatically the full
hierarchy, this would not scale with respect to system resources.

When designing software systems with large hierarchies of abstract classes for business objects, the difficulty is usually to
identify a proper set of key concepts. Here we are lucky, as the key concepts have been long identified and are relatively
few:

¢ Operations (+, *, ...)
¢ Axioms on those operations (associativity, ...)
¢ Constructions (Cartesian products, ...)

Better, those concepts are sufficiently well known so that a user can reasonably be expected to be familiar with the concepts
that are involved for his own needs.

Instead, the difficulty is concentrated in the huge number of possible combinations, an unpredictable large subset of which
being potentially of interest; at the same time, only a small — but moving — subset has code naturally attached to it.
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This has led to the current design, where one focuses on writing the relatively few classes for which there is actual code or
mathematical information, and lets Sage compose dynamically and lazily those building blocks to construct the minimal
hierarchy of classes needed for the computation at hand. This allows for the infrastructure to scale smoothly as bookshelves
are added, extended, or reorganized.

2.1.9 Writing a new category

Each category C' must be provided with a method C.super_categories () and can be provided with a method c.
_subcategory_hook_ (D). Also, it may be needed to insert C' into the output of the super_categories () method
of some other category. This determines the position of C' in the category graph.

A category may provide methods that can be used by all its objects, respectively by all elements of its objects.

Each category should come with a good example, in sage.categories.examples.

Inserting the new category into the category graph

C.super_categories () must return a list of categories, namely the immediate super categories of C'. Of course, if
you know that your new category C' is an immediate super category of some existing category D), then you should also
udeEthenKﬂhOdD.super_categoriestOindude(l

The immediate super categories of C' should not be join categories. Furthermore, one always should have:

Cs () .is_subcategory ( Category.join(Cs () .super_categories()) )

Cs () ._cmp_key > other._cmp_key for other in Cs() .super_categories/()

This is checked by _test_category ().

In several cases, the category C' is directly provided with a generic implementation of super_categories; a typ-
ical example is when C' implements an axiom or a functorial construction; in such a case, C' may implement C.
extra_super_categories () to complement the super categories discovered by the generic implementation. This
method needs not return immediate super categories; instead it’s usually best to specify the largest super category pro-
viding the desired mathematical information. For example, the category Magmas. Commutative.Algebras just states
that the algebra of a commutative magma is a commutative magma. This is sufficient to let Sage deduce that it’s in fact a
commutative algebra.

Methods for objects and elements

Different objects of the same category share some algebraic features, and very often these features can be encoded in a
method, in a generic way. For example, for every commutative additive monoid, it makes sense to ask for the sum of a
list of elements. Sage’s category framework allows to provide a generic implementation for all objects of a category.

If you want to provide your new category with generic methods for objects (or elements of objects), then you simply add
a nested class called ParentMethods (or ElementMethods). The methods of that class will automatically become
methods of the objects (or the elements). For instance:

sage: P.<x,y> = ZZ[]
sage: P.prod([x,vy,2])

2R

sage: P.prod.__module_

'sage.categories.monoids'

sage: P.prod. func_  is raw_getattr (Monoids () .ParentMethods, "prod")
True
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>>> from sage.all import *

>>> P = 7272['x, y']; (x, y,) = P._first_ngens(2)

>>> P.prod([x,y, Integer(2)1])

DY

>>> P.prod.__module__

'sage.categories.monoids'

>>> P.prod._ func__ is raw_getattr (Monoids () .ParentMethods, "prod")
True

We recommend to study the code of one example:

sage: C = CommutativeAdditiveMonoids ()
sage: Cﬂi # not tested

>>> from sage.all import *
CommutativeAdditiveMonoids ()

# not tested

On the order of super categories
The generic method C.all_super_categories () determines recursively the list of all super categories of C.

The order of the categories in this list does influence the inheritance of methods for parents and elements. Namely,
if P is an object in the category C' and if C; and Cy are both super categories of C' defining some method foo in
ParentMethods, then P will use Cy’s version of foo if and only if C'; appears in C.all_super_categories ()
before Cs.

However this must be considered as an implementation detail: if C; and C5 are incomparable categories, then the order
in which they appear must be mathematically irrelevant: in particular, the methods foo in C; and Co must have the same
semantic. Code should not rely on any specific order, as it is subject to later change. Whenever one of the implementations
is preferred in some common subcategory of C and Cs, for example for efficiency reasons, the ambiguity should be
resolved explicitly by defining a method foo in this category. See the method some_elements in the code of the
category FiniteCoxeterGroups for an example.

Since Issue #11943, c.all_super_categories () is computed by the so-called c3 algorithm used by Python
to compute Method Resolution Order of new-style classes. Thus the order in C.all_super_categories (), C.
parent_class.mro () and C.element_class.mro () are guaranteed to be consistent.

Since Issue #13589, the €3 algorithm is put under control of some total order on categories. This order is not necessarily
meaningful, but it guarantees that C3 always finds a consistent Method Resolution Order. For background, see sage.
misc.c3_controlled. A visible effectis that the order in which categories are specified in C. super_categories (),
or in a join category, no longer influences the result of C.all_super_categories().

Subcategory hook (advanced optimization feature)

The default implementation of the method C.is_subcategory (D) is to look up whether D appears in C.
all_super_categories (). However, building the list of all the super categories of C' is an expensive operation
that is sometimes best avoided. For example, if both C' and D are categories defined over a base, but the bases differ,
then one knows right away that they can not be subcategories of each other.

When such a short-path is known, one can implement a method _subcategory_hook_. Then, cC.
is_subcategory (D) first calls D._subcategory_hook_(C). If this returns Unknown, then C.
is_subcategory (D) tries to find D in C.all_super_categories (). Otherwise, C.is_subcategory (D)

returns the result of D._subcategory_hook_ (C).

2.1. Elements, parents, and categories in Sage: a primer 43



https://github.com/sagemath/sage/issues/11943
https://github.com/sagemath/sage/issues/13589
../../../../../../html/en/reference/misc/sage/misc/c3_controlled.html#module-sage.misc.c3_controlled
../../../../../../html/en/reference/misc/sage/misc/c3_controlled.html#module-sage.misc.c3_controlled

Category Framework, Release 10.6

By default, D._subcategory_hook_(C) tests whether issubclass(C.parent_class,D.parent_class),
which is very often giving the right answer:

sage: Rings () ._subcategory_hook_ (Algebras (QQ))

True

sage: HopfAlgebras (QQ) ._subcategory_hook_ (Algebras (QQ))
False

sage: Algebras (QQ) ._subcategory_hook_ (HopfAlgebras (QQ))
True

>>> from sage.all import *

>>> Rings () ._subcategory_hook_ (Algebras (QQ))

True

>>> HopfAlgebras (QQ) ._subcategory_hook_ (Algebras (QQ))
False

>>> Algebras (QQ) ._subcategory_hook_ (HopfAlgebras (QQ))
True

2.2 Categories

AUTHORS:
* David Kohel, William Stein and Nicolas M. Thiery

Every Sage object lies in a category. Categories in Sage are modeled on the mathematical idea of category, and are distinct
from Python classes, which are a programming construct.

In most cases, typing x.category () returns the category to which x belongs. If C is a category and x is any object,
C (x) tries to make an object in C from x. Checking if x belongs to C is done as usually by x in C.

See category and sage.categories.primer for more details.
EXAMPLES:

We create a couple of categories:

sage: Sets()

Category of sets

sage: GSets (AbelianGroup([2, 4, 91)) #_
—needs sage.groups

Category of G-sets for Multiplicative Abelian group isomorphic to C2 x C4 x C9
sage: Semigroups ()

Category of semigroups

sage: VectorSpaces (FiniteField(11))

Category of vector spaces over Finite Field of size 11

sage: Ideals(IntegerRing())

Category of ring ideals in Integer Ring

>>> from sage.all import *

>>> Sets ()

Category of sets

>>> GSets (AbelianGroup ([Integer (2), Integer(4), Integer(9)])) -
s # needs sage.groups

Category of G-sets for Multiplicative Abelian group isomorphic to C2 x C4 x C9

>>> Semigroups ()

(continues on next page)
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(continued from previous page)

Category of semigroups

>>> VectorSpaces (FiniteField (Integer (11)))

Category of vector spaces over Finite Field of size 11
>>> Tdeals (IntegerRing())

Category of ring ideals in Integer Ring

Let’s request the category of some objects:

sage: V = VectorSpace (RationalField (), 3) #_
—needs sage.modules

sage: V.category () #o
—needs sage.modules
Category of finite dimensional vector spaces with basis

over (number fields and quotient fields and metric spaces)

sage: G = SymmetricGroup (9) #o
—needs sage.groups

sage: G.category () #o
—needs sage.groups

Join of

Category of finite enumerated permutation groups and

Category of finite Weyl groups and

Category of well generated finite irreducible complex reflection groups

sage: P = PerfectMatchings (3) #.
—needs sage.combinat

sage: P.category () #o
—needs sage.combinat

Category of finite enumerated sets

>>> from sage.all import *

>>> V = VectorSpace (RationalField(), Integer(3)) _
— # needs sage.modules
>>> V.category () #o

—needs sage.modules
Category of finite dimensional vector spaces with basis
over (number fields and quotient fields and metric spaces)

>>> G = SymmetricGroup (Integer (9)) =
N # needs sage.groups
>>> G.category () #_

—needs sage.groups

Join of

Category of finite enumerated permutation groups and

Category of finite Weyl groups and

Category of well generated finite irreducible complex reflection groups

>>> P = PerfectMatchings (Integer (3)) _
— # needs sage.combinat
>>> P.category () #o

—needs sage.combinat
Category of finite enumerated sets
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Let’s check some memberships:

sage: V in VectorSpaces (QQ) #o
—needs sage.modules

True

sage: V in VectorSpaces (FiniteField(11)) #_
—needs sage.modules

False

sage: G in Monoids () #_
—needs sage.groups

True

sage: P in Rings|() #_

—needs sage.combinat
False

>>> from sage.all import *

>>> V in VectorSpaces (QQ) #_
—needs sage.modules

True

>>> V in VectorSpaces (FiniteField (Integer (11))) -

- # needs sage.modules
False
>>> G in Monoids () #

—needs sage.groups

True

>>> P in Rings() #o
—needs sage.combinat

False

For parametrized categories one can use the following shorthand:

sage: V in VectorSpaces #
—needs sage.modules

True

sage: G in VectorSpaces #o

—needs sage.groups
False

>>> from sage.all import *

>>> V in VectorSpaces #e
—needs sage.modules

True

>>> G in VectorSpaces #

—needs sage.groups
False

A parent P is in a category C if P.category () is a subcategory of C.

© Note

Any object of a category should be an instance of CategoryObiject.

For backward compatibility this is not yet enforced:
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sage: class A:

e def category(self):
et return Fields ()
sage: A() in Rings()

>>> from sage.all import *
>>> class A:
def category(self):
return Fields ()
>>> A () in Rings|()
True

By default, the category of an element x of a parent P is the category of all objects of P (this is dubious and may be
deprecated):

sage: V = VectorSpace (RationalField (), 3) #_
—needs sage.modules

sage: v = V.gen (1) #_
—needs sage.modules

sage: v.category () #o
—needs sage.modules

Category of elements of Vector space of dimension 3 over Rational Field

>>> from sage.all import *

>>> V = VectorSpace (RationalField (), Integer(3)) -
— # needs sage.modules

>>> v = V.gen(Integer(l)) o
— # needs sage.modules

>>> v.category () #
—needs sage.modules

Category of elements of Vector space of dimension 3 over Rational Field

class sage.categories.category.Category

Bases: UniqueRepresentation, SageObject
The base class for modeling mathematical categories, like for example:
e Groups () — the category of groups
* EuclideanDomains () — the category of euclidean rings
* VectorSpaces (QQ) — the category of vector spaces over the field of rationals

See sage.categories.primer for an introduction to categories in Sage, their relevance, purpose, and usage.
The documentation below will focus on their implementation.

Technically, a category is an instance of the class Category or some of its subclasses. Some categories, like
VectorSpaces, are parametrized: VectorSpaces (QQ) is one of many instances of the class VectorSpaces.
On the other hand, EuclideanDomains () is the single instance of the class EuclideanDomains.

Recall that an algebraic structure (say, the ring Q[x]) is modelled in Sage by an object which is called a parent.
This object belongs to certain categories (here EuclideanDomains () and Algebras ()). The elements of the
ring are themselves objects.

The class of a category (say EuclideanDomains) can define simultaneously:
» Operations on the category itself (what is its super categories? its category of morphisms? its dual category?).

* Generic operations on parents in this category, like the ring Q[x].
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* Generic operations on elements of such parents (e. g., the Euclidean algorithm for computing gcds).
* Generic operations on morphisms of this category.

This is achieved as follows:

r

sage: from sage.categories.category import Category

sage: class EuclideanDomains (Category) :

oLt # operations on the category itself

e def super_categories(self):

[Rings () ]

e def dummy (self): # TODO: find some good examples

et pass

P class ParentMethods: # holds the generic operations on parents
et # TODO: find a good example of an operation

50008 pass

00008 class ElementMethods:# holds the generic operations on elements
e def gcd(x, y):

5c0o0a # Euclid algorithms

50 00¢ pass

50008 class MorphismMethods: # holds the generic operations on morphisms
P # TODO: find a good example of an operation

5000¢ pass

>>> from sage.all import *
>>> from sage.categories.category import Category
>>> class EuclideanDomains (Category) :

# operations on the category itself

def super_categories(self) :

[Rings ()]
>>> def dummy (self): # TODO: find some good examples
pass
>>> class ParentMethods: # holds the generic operations on parents

# TODO: find a good example of an operation
pass
>>> class ElementMethods:# holds the generic operations on elements
def gcd(x, y):
# Euclid algorithms
pass
>>> class MorphismMethods: # holds the generic operations on morphisms
# TODO: find a good example of an operation
pass

Note that the nested class ParentMethods is merely a container of operations, and does not inherit from anything.
Instead, the hierarchy relation is defined once at the level of the categories, and the actual hierarchy of classes is
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built in parallel from all the ParentMethods nested classes, and stored in the attributes parent_class. Then,
a parent in a category C receives the appropriate operations from all the super categories by usual class inheritance

from C.parent_class.

Similarly, two other hierarchies of classes, for elements and morphisms respectively, are built from all the Ele-

mentMethods and MorphismMethods nested classes.

EXAMPLES:

We define a hierarchy of four categories As (), Bs (), Cs (), Ds () with a diamond inheritance. Think for example:

e As () — the category of sets
* Bs () — the category of additive groups
e Cs () — the category of multiplicative monoids

* Ds () — the category of rings

sage: from sage.categories.category import Category

sage: from sage.misc.lazy_ attribute import lazy_attribute
sage: class As (Category):

e def super_categories(self) :

ce return []

et class ParentMethods:

e def fA (self):

6oooa8 return "A"

50008 f = fA

sage: class Bs (Category):

80505 def super_categories(self):
e return [As ()]

P class ParentMethods:

e def fB(self):

oLt return "B"

sage: class Cs (Category):

e def super_categories(self) :
et return [As ()]

et class ParentMethods:

e def fC(self):

et return "C"

50008 f = fC

sage: class Ds (Category):

e def super_categories(self):
e return [Bs(),Cs ()]
60008 class ParentMethods:

5o 805 def fD(self):

cooo8 return "D"

>>> from sage.all import *

>>> from sage.categories.category import Category

(continues on next page)
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(continued from previous page)

>>> from sage.misc.lazy_attribute import lazy_attribute
>>> class As (Category):
def super_categories(self):

return []
>>> class ParentMethods:

def fA(self):

return "A"
f = fA

>>> class Bs (Category):
def super_categories(self) :
return [As ()]
>>> class ParentMethods:
def fB(self):
return "B"

>>> class Cs (Category):
def super_categories(self) :
return [As ()]
>>> class ParentMethods:
def fC(self):
return "C"
f = fC

>>> class Ds (Category):
def super_categories(self):
return [Bs(),Cs ()]
>>> class ParentMethods:
def fD(self):
return "D"

Categories should always have unique representation; by Issue #12215, this means that it will be kept in cache, but
only if there is still some strong reference to it.

We check this before proceeding:

g
sage: import gc

sage: idAs = id(As())

sage: _ = gc.collect ()
sage: n == 1id(As())
False

sage: a = As()

sage: id(As()) == id(As())

True

sage: As () .parent_class == As () .parent_class
True

(>>> from sage.all import *
(continues on next page)
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>>> import gc

>>> idAs = id(As())

>>> = gc.collect ()

>>> n == id(As())

False

>>> a = As ()

>>> id(As()) == id(As())

True

>>> As () .parent_class == As () .parent_class
True

.

We construct a parent in the category Ds () (that, is an instance of Ds () .parent_class), and check that it has
access to all the methods provided by all the categories, with the appropriate inheritance order:

sage: D = Ds () .parent_class()

sage: [ D.fA(), D.fB(), D.fC(), D.fD() ]
['a', 'B', 'C', 'D']

sage: D.f ()

ICV

.

>>> from sage.all import *

>>> D = Ds () .parent_class/()

>>> [ D.fA(), D.fB(), D.fC(), D.£fD() 1
['a', 'B', 'C', 'D']

>>> D.f ()

ICI

p
sage: C = Cs() .parent_class()

sage: [ C.fA(), C.fC() ]
['a', 'C']

sage: C.f ()

ICV

.

>>> from sage.all import *
>>> C = Cs() .parent_class()
>>> [ C.fA(), C.fC() ]
[rar, 'c'

>>> C.f()

lcl

Here is the parallel hierarchy of classes which has been built automatically, together with the method resolution
order (.mro ()):

sage: As () .parent_class

<class '__main__.As.parent_class'>
sage: As () .parent_class.__bases_
(<... 'object'>,)

sage: As () .parent_class.mro ()

[<class '__main__ .As.parent_class'>, <... 'object'>]

(>>> from sage.all import *

(continues on next page)
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(continued from previous page)

—'object'>]
.

>>> As () .parent_class

<class '__main__.As.parent_class'>

>>> As () .parent_class.__bases_

(<... 'object'>,)

>>> As () .parent_class.mro ()

[<class '__main__ .As.parent_class'>, <... 'object'>]
-

sage: Bs () .parent_class

<class '__main__ .Bs.parent_class'>

sage: Bs () .parent_class.__bases_

(<class '__main__ .As.parent_class'>,)

sage: Bs () .parent_class.mro ()

[<class '__main__ .Bs.parent_class'>, <class '__main__ .As.parent_class'>, <...

g
>>> from sage.all import *

>>> Bs () .parent_class

—'object'>]

<class '__main__ .Bs.parent_class'>
>>> Bs () .parent_class._bases_
(<class '__main__ .As.parent_class'>,)
>>> Bs () .parent_class.mro()
[<class '__main__ .Bs.parent_class'>, <class '__main__ .As.parent_class'>, <...
—'object'>]
.
sage: Cs () .parent_class
<class '__main__.Cs.parent_class'>
sage: Cs () .parent_class.__bases_
(<class '__main__ .As.parent_class'>,)
sage: Cs () .parent_class.__mro___
(<class '__main__ .Cs.parent_class'>, <class '__main__ .As.parent_class'>, <...
—'object'>)
>>> from sage.all import *
>>> Cs () .parent_class
<class '__main__.Cs.parent_class'>
>>> Cs () .parent_class.__bases_
(<class '__main__ .As.parent_class'>,)
>>> Cs () .parent_class._ _mro_
(<class '__main__ .Cs.parent_class'>, <class '__main__ .As.parent_class'>, <...
—'object'>)
sage: Ds () .parent_class
<class '__main__ .Ds.parent_class'>
sage: Ds () .parent_class.__bases_
(<class '__main__ .Cs.parent_class'>, <class '__main__ .Bs.parent_class'>)
sage: Ds () .parent_class.mro ()
[<class '__main__ .Ds.parent_class'>, <class '__main__ .Cs.parent_class'>,
<class '__main__ .Bs.parent_class'>, <class '__main__ .As.parent_class'>, <...

52

Chapter 2. The Sage Category Framework




Category Framework, Release 10.6

-
>>> from sage.all import *

>>> Ds () .parent_class

<class '__main__ .Ds.parent_class'>
>>> Ds () .parent_class._ _bases_
(<class '__main__ .Cs.parent_class'>, <class '__main__ .Bs.parent_class'>)

>>> Ds () .parent_class.mro ()

[<class '__main__.Ds.parent_class'>, <class '__main__ .Cs.parent_class'>,
<class '__main__ .Bs.parent_class'>, <class '__main__ .As.parent_class'>, <...
—'object'>]

Note that two categories in the same class need not have the same super_categories. For example, Alge-
bras (QQ) has VectorSpaces (QQ) as super category, whereas Algebras (ZZ) only has Modules (ZZ) as super
category. In particular, the constructed parent class and element class will differ (inheriting, or not, methods specific
for vector spaces):

-

sage: Algebras (QQ) .parent_class is Algebras (ZZ) .parent_class

False

sage: issubclass (Algebras (QQ) .parent_class, VectorSpaces (QQ) .parent_class)
True

>>> from sage.all import *

>>> Algebras (QQ) .parent_class is Algebras(ZZ) .parent_class

False

>>> issubclass (Algebras (QQ) .parent_class, VectorSpaces (QQ) .parent_class)
True

On the other hand, identical hierarchies of classes are, preferably, built only once (e.g. for categories over a base
ring):

~

sage: Algebras (GF (5)) .parent_class is Algebras (GF (7)) .parent_class

True

sage: F = FractionField(ZZ['t'])

sage: Coalgebras (F) .parent_class is Coalgebras (FractionField(F['x'])) .parent_class
True

>>> from sage.all import *

>>> Algebras (GF (Integer (5))) .parent_class is Algebras (GF (Integer (7))) .parent_class
True

>>> F = FractionField(zZ['t'])

>>> Coalgebras (F) .parent_class is Coalgebras (FractionField(F['x'])) .parent_class
True

‘We now construct a parent in the usual way:

sage: class myparent (Parent):
e def _ init__ (self):
e Parent.__init__ (self, category=Ds())
e def g(self):
50008 return "myparent"
et class Element () :
P pass
D = myparent ()
sage: D._ class___

(continues on next page)
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<class '__main__ .myparent_with_category'>

sage: D.__class__.__bases___

(<class '__main__ .myparent'>, <class '_ _main__ .Ds.parent_class'>)
sage: D._ class__.mro()

[<class '__main__ .myparent_with_category'>,

<class '__main__ .myparent'>,

<class 'sage.structure.parent.Parent'>,
<class 'sage.structure.category_object.CategoryObject'>,
<class 'sage.structure.sage_object.SageObject'>,

<class '__main__ .Ds.parent_class'>,
<class '__main__ .Cs.parent_class'>,
<class '__main__ .Bs.parent_class'>,
<class '__main__ .As.parent_class'>,
<... 'object'>]

sage: D.fA()

IAV

sage: D.fB()

IBI

sage: D.fC()

ICV

sage: D.fD()

lDl

sage: D.f ()

ICV

sage: D.g()

'myparent’

.

g
>>> from sage.all import *

>>> class myparent (Parent) :
def _ init_ (self):
Parent.__init__ (self, category=Ds())
def g(self):
return "myparent"
class Element () :

pass

>>> D = myparent ()

>>> D._ class_

<class '__main__ .myparent_with_category'>

>>> D._ class__ ._ bases_

(<class '__main__.myparent'>, <class '__main__ .Ds.parent_class'>)
>>> D._ class__.mro ()

[<class '__main__ .myparent_with_category'>,

<class '__main__ .myparent'>,

<class 'sage.structure.parent.Parent'>,
<class 'sage.structure.category_object.CategoryObject'>,
<class 'sage.structure.sage_object.SageObject'>,

<class '__main__ .Ds.parent_class'>,
<class '__main__ .Cs.parent_class'>,
<class '__main__ .Bs.parent_class'>,
<class '__main__ .As.parent_class'>,
<... 'object'>]

>>> D.fA ()

(continues on next page)
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IAI

>>> D.fB()
IBV

>>> D.£C()
lc 1

>>> D.fD ()
IDI

>>> D.f ()
ICV

>>> D.g()
'myparent’

-
sage: D.element_class

<class '__main__ .myparent_with_category.element_class'>
sage: D.element_class.mro()

[<class '__main__ .myparent_with_category.element_class'>,
<class ..._main__....Element...>,

<class '__main__ .Ds.element_class'>,

<class '__main_ .Cs.element_class'>,

<class '__main__ .Bs.element_class'>,

<class '_ _main_ .As.element_class'>,

<... 'object'>]

g
>>> from sage.all import *

>>> D.element_class

<class '__main__ .myparent_with_category.element_class'>
>>> D.element_class.mro ()

[<class '__main__ .myparent_with_category.element_class'>,
<class ..._ main_ ....Element...>,

<class '__main__ .Ds.element_class'>,

<class '__main__ .Cs.element_class'>,

<class '__main__ .Bs.element_class'>,

<class '__main__ .As.element_class'>,

<... 'object'>]

.

_super_categories()

The immediate super categories of this category.

This lazy attribute caches the result of the mandatory method super_categories () for speed. It also does
some mangling (flattening join categories, sorting, ...).

Whenever speed matters, developers are advised to use this lazy attribute rather than calling super cate-
gories ().

O Note

This attribute is likely to eventually become a tuple. When this happens, we might as well use category.
_sort (),if not category._sort_uniqg().

EXAMPLES:
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sage: Rings () ._super_categories

[Category of rngs,

Category of semirings]

>>> from sage.all import *
>>> Rings ()
[Category of rngs,

._super_categories

Category of semirings]

_super_categories_for_classes ()

The super categories of this category used for building classes.

This is a close variant of _super categories () used for constructing the list of the bases for par-
ent_class (), element_class (), and friends. The purpose is ensure that Python will find a proper
Method Resolution Order for those classes. For background, see sage.misc.c3_controlled.

> See also

_cmp_key ().

© Note

This attribute is calculated as a by-product of computing _all super categories().

EXAMPLES:

sage: Rings()

[Category of rngs,

._super_categories_for_classes
Category of semirings]

>>> from sage.all import *
>>> Rings ()

[Category of rngs,

._super_categories_for_classes
Category of semirings]

_all_super_categories ()

All the super categories of this category, including this category.

Since Issue #11943, the order of super categories is determined by Python’s method resolution order C3

algorithm.

> See also

all_super_categories()

© Note

this attribute is likely to eventually become a tuple.

© Note

this sets _ super categories_for_classes () as a side effect

56

Chapter 2. The Sage Category Framework



../../../../../../html/en/reference/misc/sage/misc/c3_controlled.html#module-sage.misc.c3_controlled
https://github.com/sagemath/sage/issues/11943

Category Framework, Release 10.6

EXAMPLES:

sage: C = Rings(); C

Category of rings

sage: C._all_super_categories

[Category of rings, Category of rngs, Category of semirings,
Category of monoids,

Category of commutative additive groups,

Category of sets, Category of sets with partial maps,
Category of objects]

>>> from sage.all import *

>>> C = Rings(); C

Category of rings

>>> C._all_super_categories

[Category of rings, Category of rngs, Category of semirings,
Category of monoids,

Category of commutative additive groups,

Category of sets, Category of sets with partial maps,
Category of objects]

_all_super_categories_proper ()

All the proper super categories of this category.

Since Issue #11943, the order of super categories is determined by Python’s method resolution order C3
algorithm.

> See also

all_super_categories ()

© Note

this attribute is likely to eventually become a tuple.

EXAMPLES:

sage: C = Rings(); C

Category of rings

sage: C._all_super_categories_proper

[Category of rngs, Category of semirings,

Category of monoids,

Category of commutative additive groups,

Category of sets, Category of sets with partial maps,
Category of objects]

>>> from sage.all import *

>>> C = Rings(); C

Category of rings

>>> C._all super_categories_proper
[Category of rngs, Category of semirings,

(continues on next page)
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Category of monoids,
Category of commutative additive groups,
Category of sets, Category of sets with partial maps,
Category of objects]

_set_of_super_categories()

The frozen set of all proper super categories of this category.

O Note

this is used for speeding up category containment tests.

> See also

all_super_categories()

EXAMPLES:

sage: sorted(Groups () ._set_of_super_categories, key=str)
[Category of inverse unital magmas,

Category of magmas,

Category of monoids,

Category of objects,

Category of semigroups,

Category of sets,

Category of sets with partial maps,

Category of unital magmas]

sage: sorted(Groups () ._set_of_super_categories, key=str)
[Category of inverse unital magmas, Category of magmas, Category of monoids,
Category of objects, Category of semigroups, Category of sets,
Category of sets with partial maps, Category of unital magmas]

>>> from sage.all import *
>>> sorted(Groups () ._set_of_super_categories, key=str)
[Category of inverse unital magmas,
Category of magmas,
Category of monoids,
Category of objects,
Category of semigroups,
Category of sets,
Category of sets with partial maps,
Category of unital magmas]
>>> sorted(Groups () ._set_of_super_categories, key=str)
[Category of inverse unital magmas, Category of magmas, Category of monoids,
Category of objects, Category of semigroups, Category of sets,
Category of sets with partial maps, Category of unital magmas]

_make_named_class (name, method_provider, cache=False, picklable=True)

Construction of the parent/element/... class of self.

INPUT:
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* name - string; the name of the class as an attribute of self (e.g. “parent_class”)

* method_provider — string; the name of an attribute of self that provides methods for the new class
(in addition to those coming from the super categories, e.g. “ParentMethods”)

¢ cache —boolean or ignore_reduction (default: False) (passed down to dynamic_class; for internal
use only)

e picklable —boolean (default: True)
ASSUMPTION:
It is assumed that this method is only called from a lazy attribute whose name coincides with the given name.
OUTPUT:

A dynamic class with bases given by the corresponding named classes of sel f’s super_categories, and meth-
ods taken from the class getattr (self, method_provider).

© Note

* In this default implementation, the reduction data of the named class makes it depend on self.
Since the result is going to be stored in a lazy attribute of self anyway, we may as well disable the
caching in dynamic_class (hence the default value cache=False).

* CategoryWithParameters overrides this method so that the same parent/element/... classes
can be shared between closely related categories.

¢ The bases of the named class may also contain the named classes of some indirect super categories,
accordingto _super categories_for classes (). Thisis to guarantee that Python will build
consistent method resolution orders. For background, see sage .misc.c3_controlled.

# See also

CategoryWithParameters._make_named_class ()

EXAMPLES:

sage: PC = Rings () ._make_named_class ("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
sage: type (PC)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
sage: PC._ bases_
(<class 'sage.categories.rngs.Rngs.parent_class'>,
<class 'sage.categories.semirings.Semirings.parent_class'>)

>>> from sage.all import *

>>> PC = Rings () ._make_named_class ("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>

>>> type (PC)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>

>>> PC._bases_

(<class 'sage.categories.rngs.Rngs.parent_class'>,

<class 'sage.categories.semirings.Semirings.parent_class'>)

Note that, by default, the result is not cached:
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sage: PC is Rings () ._make_named_class ("parent_class", "ParentMethods")
False

>>> from sage.all import *
>>> PC is Rings () ._make_named_class ("parent_class", "ParentMethods")
False

Indeed this method is only meant to construct lazy attributes like parent_class which already handle this
caching:

sage: Rings () .parent_class
<class 'sage.categories.rings.Rings.parent_class'>

>>> from sage.all import *
>>> Rings () .parent_class
<class 'sage.categories.rings.Rings.parent_class'>

Reduction for pickling also assumes the existence of this lazy attribute:

sage: PC._reduction

(<built-in function getattr>, (Category of rings, 'parent_class'))
sage: loads (dumps (PC)) is Rings () .parent_class

True

>>> from sage.all import *

>>> PC._reduction

(<built-in function getattr>, (Category of rings, 'parent_class'))
>>> loads (dumps (PC)) is Rings () .parent_class

True

_rep

r_ ()

Return the print representation of this category.

EXAMPLES:

-

sage: Sets () # indirect doctest
Category of sets

>>> from sage.all import *
>>> Sets () # indirect doctest

Category of sets

_rep

r_object_names ()

Return the name of the objects of this category.

EXAMPLES:

sage: FiniteGroups () ._repr_object_names ()
'finite groups'

sage: AlgebrasWithBasis (QQ) ._repr_object_names ()
'algebras with basis over Rational Field'
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>>> from sage.all import *

>>> FiniteGroups () ._repr_object_names ()
'finite groups'

>>> AlgebrasWithBasis (QQ) ._repr_object_names ()
'algebras with basis over Rational Field'

_test_category ( **options)
Run generic tests on this category.

> See also

TestSuite.

EXAMPLES:

[sage: Sets () ._test_category ()

>>> from sage.all import *
>>> Sets () ._test_category ()

Let us now write a couple broken categories:

sage: class MyObjects (Category) :
et pass

sage: MyObjects () ._test_category ()
Traceback (most recent call last):

NotImplementedError: <abstract method super_categories at ...>

sage: class MyObjects (Category) :

e def super_categories(self):
et return tuple ()

sage: MyObjects () ._test_category()
Traceback (most recent call last):

AssertionError: Category of my objects.super_categories () should return a list

sage: class MyObjects (Category) :

e def super_categories (self):
e return []

sage: MyObjects () ._test_category ()
Traceback (most recent call last):

AssertionError: Category of my objects is not a subcategory of Objects ()

>>> from sage.all import *

>>> class MyObjects (Category) :
pass

>>> MyObjects () ._test_category ()

Traceback (most recent call last):

NotImplementedError: <abstract method super_categories at ...>
(continues on next page)
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>>> class MyObjects (Category) :

def super_categories(self):
Ce . return tuple ()
>>> MyObjects () ._test_category ()
Traceback (most recent call last):

>>> class MyObjects (Category) :

def super_categories(self):
Ce return []
>>> MyObjects () ._test_category ()
Traceback (most recent call last):

AssertionError: Category of my objects is not a subcategory of Objects ()

AssertionError: Category of my objects.super_categories () should return a list

_with_axiom (axiom)

Return the subcategory of the objects of self satisfying the given axiom.
Note that this is a private method thus should not be directly used, see below.
INPUT:

* axiom - string, the name of an axiom

EXAMPLES:

sage: Sets()._with_axiom("Finite") # not idiomatic
Category of finite sets

sage: Sets () .Finite() # recommended

Category of finite sets

sage: type (Magmas () .Finite () .Commutative())

<class 'sage.categories.category.JoinCategory_with_category'>
sage: Magmas () .Finite () .Commutative () .super_categories ()
[Category of commutative magmas, Category of finite sets]
sage: C = Algebras(QQ) .WithBasis () .Commutative ()

sage: C is Algebras (QQ) .Commutative () .WithBasis ()

True

.

>>> from sage.all import *

>>> Sets()._with_axiom("Finite™) # not idiomatic
Category of finite sets

>>> Sets () .Finite () # recommended

Category of finite sets

>>> type (Magmas () .Finite () .Commutative ())

<class 'sage.categories.category.JoinCategory_with_category'>
>>> Magmas () .Finite () .Commutative () .super_categories ()
[Category of commutative magmas, Category of finite sets]

>>> C = Algebras (QQ) .WithBasis () .Commutative ()

>>> C is Algebras (QQ) .Commutative () .WithBasis ()

True
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When axiom is not defined for self, self is returned:

sage: Sets()._with_axiom("Associative")
Category of sets

>>> from sage.all import *
>>> Sets()._with_axiom("Associative")
Category of sets

A Warning

This may be changed in the future to raise an error.

_with_axiom_as_tuple (axiom)

Return a tuple of categories whose join is self._with_axiom().
INPUT:
* axiom - string, the name of an axiom

This is a lazy version of _with_axiom () which is used to avoid recursion loops during join calculations.

© Note

The order in the result is irrelevant.

EXAMPLES:

sage: Sets()._with_axiom_as_tuple('Finite')

(Category of finite sets,)

sage: Magmas () ._with_axiom_as_tuple('Finite')

(Category of magmas, Category of finite sets)

sage: Rings () .Division () ._with_axiom_as_tuple ('Finite")
(Category of division rings,

Category of finite monoids,

Category of commutative magmas,

Category of finite additive groups)

sage: HopfAlgebras (QQ) ._with_axiom_as_tuple('FiniteDimensional')
(Category of Hopf algebras over Rational Field,

Category of finite dimensional vector spaces over Rational Field)

>>> from sage.all import *
>>> Sets()._with_axiom_as_tuple('Finite")
(Category of finite sets,)
>>> Magmas () ._with_axiom_as_tuple('Finite')
(Category of magmas, Category of finite sets)
>>> Rings () .Division()._with_axiom_as_tuple('Finite')
(Category of division rings,
Category of finite monoids,
Category of commutative magmas,
Category of finite additive groups)
>>> HopfAlgebras (QQ) . _with_axiom_as_tuple('FiniteDimensional')

(continues on next page)
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(Category of Hopf algebras over Rational Field,
Category of finite dimensional vector spaces over Rational Field)

_without_axioms (named=Fualse)

Return the category without the axioms that have been added to create it.
INPUT:

¢ named — boolean (default: False)

& Todo

Improve this explanation.

If named is True, then this stops at the first category that has an explicit name of its own. See
category_with_axiom.CategoryWithAxiom._without_axioms ()

EXAMPLES:

sage: Sets () ._without_axioms ()

Category of sets

sage: Semigroups () ._without_axioms ()

Category of magmas

sage: Algebras (QQ) .Commutative () .WithBasis () ._without_axioms ()

Category of magmatic algebras over Rational Field

sage: Algebras (QQ) .Commutative () .WithBasis () ._without_axioms (named=True)
Category of algebras over Rational Field

>>> from sage.all import *

>>> Sets () ._without_axioms ()

Category of sets

>>> Semigroups () ._without_axioms ()

Category of magmas

>>> Algebras (QQ) .Commutative () .WithBasis () ._without_axioms ()

Category of magmatic algebras over Rational Field

>>> Algebras (QQ) .Commutative () .WithBasis () ._without_axioms (named=True)
Category of algebras over Rational Field

static _sort (categories)

Return the categories after sorting them decreasingly according to their comparison key.

> See also

_cmp_key ()

INPUT:
e categories —list (or iterable) of non-join categories

OUTPUT: a sorted tuple of categories, possibly with repeats
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O Note

The auxiliary function _flatten_categories used in the test below expects a second argument, which
is a type such that instances of that type will be replaced by its super categories. Usually, this type is
JoinCategory.

EXAMPLES:

sage: Category._sort ([Sets (), Objects(), Coalgebras(QQ), Monoids (), Sets().
—Finite () 1)

(Category of monoids,

Category of coalgebras over Rational Field,

Category of finite sets,

Category of sets,

Category of objects)
sage: Category._sort ([Sets().Finite (), Semigroups () .Finite (), Sets () .Facade(),
—Magmas () . Commutative () ])

(Category of finite semigroups,

Category of commutative magmas,

Category of finite sets,

Category of facade sets)
sage: Category._sort (Category._flatten_categories([Sets () .Finite(),_
—Algebras (QQ) .WithBasis (), Semigroups () .Finite(),

20088 Sets () .Facade (), .
—~Algebras (QQ) .Commutative (), Algebras (QQ) .Graded() .WithBasis ()],

e sage.categories.category.
—~JoinCategory))

(Category of algebras with basis over Rational Field,

Category of algebras with basis over Rational Field,

Category of graded algebras over Rational Field,

Category of commutative algebras over Rational Field,

Category of finite semigroups,

Category of finite sets,

Category of facade sets)

>>> from sage.all import *

>>> Category._sort ([Sets (), Objects (), Coalgebras(QQ), Monoids (), Sets().
—Finite () 1)

(Category of monoids,

Category of coalgebras over Rational Field,

Category of finite sets,

Category of sets,

Category of objects)

>>> Category._sort ([Sets () .Finite (), Semigroups () .Finite (), Sets () .Facade(),
—Magmas () . Commutative () ])

(Category of finite semigroups,

Category of commutative magmas,

Category of finite sets,

Category of facade sets)
>>> Category._sort (Category._flatten_categories ([Sets () .Finite(), -
—Algebras (QQ) .WithBasis (), Semigroups() .Finite(),

Sets () .Facade (), .
(continues on next page)
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—Algebras (QQ) .Commutative (), Algebras (QQ) .Graded() .WithBasis ()],
ce sage.categories.category.
—JoinCategory))
(Category of algebras with basis over Rational Field,
Category of algebras with basis over Rational Field,
Category of graded algebras over Rational Field,
Category of commutative algebras over Rational Field,
Category of finite semigroups,
Category of finite sets,
Category of facade sets)

static _sort_unigq (categories)

Return the categories after sorting them and removing redundant categories.

Redundant categories include duplicates and categories which are super categories of other categories in the
input.

INPUT:

* categories — list (or iterable) of categories
OUTPUT: a sorted tuple of mutually incomparable categories
EXAMPLES:

sage: Category._sort_uniqg([Rings (), Monoids (), Coalgebras (QQ)])
(Category of rings, Category of coalgebras over Rational Field)

>>> from sage.all import *
>>> Category._sort_unig([Rings (), Monoids (), Coalgebras (QQ)])
(Category of rings, Category of coalgebras over Rational Field)

Note that, in the above example, Monoids () does not appear in the result because it is a super category of
Rings ().

static _ classcall__ (*args, **options)

Input mangling for unique representation.

LetCc = Cs(...) beacategory. Since Issue #12895, the class of C is a dynamic subclass Cs_with_cat—
egory of Cs in order for C to inherit code from the SubcategoryMethods nested classes of its super
categories.

The purpose of this _ classcall__ method is to ensure that reconstructing C from its class with
Cs_with_category (...) actually calls properly Cs (. ..) and gives back C.

> See also

subcategory_class ()

EXAMPLES:

sage: A = Algebras (QQ)

sage: A._class___

<class 'sage.categories.algebras.Algebras_with_category'>
sage: A is Algebras (QQ)

(continues on next page)
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True
sage: A is A.__class__ (QQ)
True

-

>>> from sage.all import *

>>> A = Algebras (QQ)

>>> A._ class_

<class 'sage.categories.algebras.Algebras_with_category'>
>>> A is Algebras (QQ)

True

>>> A is A._ _class__ (QQ)

True

__init__ ()

Initialize this category.

EXAMPLES:

sage: class SemiprimitiveRings (Category) :
et def super_categories(self):
e return [Rings ()]

et class ParentMethods:

e def jacobson_radical (self) :
el return self.ideal (0)

sage: C = SemiprimitiveRings ()

sage: C

Category of semiprimitive rings

sage: C.__class___

<class '__main__.SemiprimitiveRings_with_category'>

>>> from sage.all import *
>>> class SemiprimitiveRings (Category) :
def super_categories (self):
return [Rings ()]
class ParentMethods:
def jacobson_radical (self) :
return self.ideal (Integer (0))
>>> C = SemiprimitiveRings ()
>>> C

Category of semiprimitive rings

>>> C._ class_
<class '__main__ .SemiprimitiveRings_with_category'>
O Note

If the default name of the category (built from the name of the class) is not adequate, please implement
_repr_object_names () to customize it.

Realizations ()

Return the category of realizations of the parent self or of objects of the category self

INPUT:
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¢ self —a parent or a concrete category

O Note

this function is actually inserted as a method in the class Category (see Realizations ()). Itis defined
here for code locality reasons.

EXAMPLES:

The category of realizations of some algebra:

sage: Algebras (QQ) .Realizations()
Join of Category of algebras over Rational Field
and Category of realizations of unital magmas

>>> from sage.all import *

>>> Algebras (QQ) .Realizations ()

Join of Category of algebras over Rational Field
and Category of realizations of unital magmas

The category of realizations of a given algebra:

sage: A = Sets().WithRealizations () .example(); A .
— # needs sage.modules

The subset algebra of {1, 2, 3} over Rational Field

sage: A.Realizations() o
— # needs sage.modules
Category of realizations of

The subset algebra of {1, 2, 3} over Rational Field

sage: C = GradedHopfAlgebrasWithBasis (QQ) .Realizations(); C

Join of Category of graded Hopf algebras with basis over Rational Field
and Category of realizations of Hopf algebras over Rational Field

sage: C.super_categories/()

[Category of graded Hopf algebras with basis over Rational Field,

Category of realizations of Hopf algebras over Rational Field]

sage: TestSuite (C) .run()

>>> from sage.all import *
>>> A = Sets().WithRealizations () .example(); A
—# needs sage.modules
The subset algebra of {1, 2, 3} over Rational Field
>>> A.Realizations()
—# needs sage.modules
Category of realizations of
The subset algebra of {1, 2, 3} over Rational Field

>>> C = GradedHopfAlgebrasWithBasis (QQ) .Realizations(); C

Join of Category of graded Hopf algebras with basis over Rational Field
and Category of realizations of Hopf algebras over Rational Field

>>> C.super_categories|()

[Category of graded Hopf algebras with basis over Rational Field,
(continues on next page)
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Category of realizations of Hopf algebras over Rational Field]

>>> TestSuite (C) .run ()

> See also

® Sets().WithRealizations

® ClasscallMetaclass

& Todo

Add an optional argument to allow for:

{sage: Realizations (A, category=Blahs()) # todo: not implemented ]

>>> from sage.all import *
>>> Realizations (A, category=Blahs()) # todo: not implemented

WithRealizations ()

Return the category of parents in sel £ endowed with multiple realizations.
INPUT:

* self —a category

> See also

e The documentation and code (sage.categories.examples.with realizations) of
Sets () .WithRealizations () .example () for more on how to use and implement a parent
with several realizations.

e Various use cases:

SymmetricFunctions
— QuasiSymmetricFunctions
— NonCommutativeSymmetricFunctions
— SymmetricFunctionsNonCommutingVariables
— DescentAlgebra
— algebras.Moebius
— IwahoriHeckeAlgebra
— ExtendedAffineWeylGroup
e The Implementing Algebraic Structures thematic tutorial.

® sage.categories.realizations
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O Note

this function is actually inserted as a method in the class Category (see WithRealizations ()). Itis
defined here for code locality reasons.

EXAMPLES:

sage: Sets () .WithRealizations()
Category of sets with realizations

>>> from sage.all import *
>>> Sets () .WithRealizations ()
Category of sets with realizations

Parent with realizations

Let us now explain the concept of realizations. A parent with realizations is a facade parent (see Sets.
Facade) admitting multiple concrete realizations where its elements are represented. Consider for example
an algebra A which admits several natural bases:

sage: A = Sets().WithRealizations () .example(); A -
— # needs sage.modules
The subset algebra of {1, 2, 3} over Rational Field

>>> from sage.all import *

>>> A = Sets () .WithRealizations () .example(); A

—# needs sage.modules

The subset algebra of {1, 2, 3} over Rational Field

For each such basis B one implements a parent Pg which realizes A with its elements represented by ex-
panding them on the basis B:

sage: # needs sage.modules

sage: A.F ()

The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: A.Out ()

The subset algebra of {1, 2, 3} over Rational Field in the Out basis

sage: A.In()

The subset algebra of {1, 2, 3} over Rational Field in the In basis

sage: A.an_element ()

F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]

>>> from sage.all import *

>>> # needs sage.modules

>>> A.F ()

The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
>>> A.0ut ()

The subset algebra of {1, 2, 3} over Rational Field in the Out basis

>>> A.In()

The subset algebra of {1, 2, 3} over Rational Field in the In basis

>>> A.an_element ()

F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]
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If B and B’ are two bases, then the change of basis from B to B’ is implemented by a canonical coercion
between Pp and Pg/:

sage: # needs sage.modules

sage: F = A.F(); In = A.In(); Out = A.Out ()

sage: i = In.an_element(); i

In[{}] + 2*In[{1}] + 3*In[{2}] + In[{1, 2}]

sage: F (i)

T*E[{}] + 3*F[{1}] + 4*F[{2}] + F[{1, 2}]

sage: F.coerce_map_from(Out)

Generic morphism:
From: The subset algebra of {1, 2, 3} over Rational Field in the Out basis
To: The subset algebra of {1, 2, 3} over Rational Field in the.

—Fundamental basis

>>> from sage.all import *
>>> # needs sage.modules
>>> F = A.F(); In = A.In(); Out = A.Out ()

>>> 1 = In.an_element (); 1
In[{}] + 2*In[{1}] + 3*In[{2}] + In[{1, 2}]
>>> F (1)

T*F[{}] + 3*F[{1}] + 4*F[{2}] + F[{1l, 2}]
>>> F.coerce_map_from(Out)
Generic morphism:
From: The subset algebra of {1, 2, 3} over Rational Field in the Out basis
To: The subset algebra of {1, 2, 3} over Rational Field in the.
—Fundamental basis

allowing for mixed arithmetic:

sage: (1 + Out.from_set(l)) * In.from_set (2,3) -
— # needs sage.modules

Out[{}] + 2*Out[{1}] + 2*Out[{2}] + 2*0Out[{3}] + 2*Out([{1l, 2}]

+ 2*0out[{1, 3}] + 4*Out([{2, 3}] + 4*Out[{1, 2, 3}]

>>> from sage.all import *

>>> (Integer(l) + Out.from_set (Integer(l))) * In.from_set (Integer(2),
—Integer (3)) # needs sage.modules
Out [{}] + 2*Out[{1}] + 2*0Out[{2}] + 2*Out[{3}] + 2*0Out[{1, 2}]

+ 2*0out[{1, 3}] + 4*Out([{2, 3}] + 4*Out[{1, 2, 3}]

In our example, there are three realizations:

sage: A.realizations() .
— # needs sage.modules

[The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis,
The subset algebra of {1, 2, 3} over Rational Field in the In basis,

The subset algebra of {1, 2, 3} over Rational Field in the Out basis]

>>> from sage.all import *

>>> A.realizations()

—# needs sage.modules

[The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis,

(continues on next page)
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The subset algebra of {1, 2, 3} over Rational Field in the In basis,
The subset algebra of {1, 2, 3} over Rational Field in the Out basis]

Instead of manually defining the shorthands F, In, and Out, as above one can just do:

sage: A.inject_shorthands () o
— # needs sage.modules
Defining F as shorthand for

The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
Defining In as shorthand for

The subset algebra of {1, 2, 3} over Rational Field in the In basis
Defining Out as shorthand for

The subset algebra of {1, 2, 3} over Rational Field in the Out basis

>>> from sage.all import *
>>> A.inject_shorthands ()
—# needs sage.modules
Defining F as shorthand for
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
Defining In as shorthand for
The subset algebra of {1, 2, 3} over Rational Field in the In basis
Defining Out as shorthand for
The subset algebra of {1, 2, 3} over Rational Field in the Out basis

Rationale
Besides some goodies described below, the role of A is threefold:

¢ To provide, as illustrated above, a single entry point for the algebra as a whole: documentation, access
to its properties and different realizations, etc.

» To provide a natural location for the initialization of the bases and the coercions between, and other
methods that are common to all bases.

* To let other objects refer to A while allowing elements to be represented in any of the realizations.

We now illustrate this second point by defining the polynomial ring with coefficients in A:

sage: P = A['x']; P o
— # needs sage.modules
Univariate Polynomial Ring in x over

The subset algebra of {1, 2, 3} over Rational Field

sage: x = P.gen() o
— # needs sage.modules

>>> from sage.all import *
>>> P = A['x"'"]; P
—# needs sage.modules
Univariate Polynomial Ring in x over
The subset algebra of {1, 2, 3} over Rational Field
>>> x = P.gen()

—# needs sage.modules

In the following examples, the coefficients turn out to be all represented in the F' basis:
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sage: P.one() g
— # needs sage.modules

F[{}]

sage: (P.an_element () + 1)72 _
— # needs sage.modules

F{}]*x72 + 2*F[{}]*x + F[{}]

>>> from sage.all import *
>>> P.one ()

—# needs sage.modules

F[{}]
>>> (P.an_element () + Integer(l))**Integer(2) .
— # needs sage.modules

F{}]*=x"2 + 2*F[{}]*x + F[{}]

However we can create a polynomial with mixed coefficients, and compute with it:

sage: p = P([1, In[{1}], Out[{2}] 1); p ~
— # needs sage.modules
Out [{2}]1*x72 + In[{1}]*x + F[{}]
sage: p"2 -
— # needs sage.modules
Out [{2}]*x"4
+ (=8*In[{}] + 4*In[{1}] + 8*In[{2}] + 4*In[{3}]
- 4*In[{1, 2}] - 2*In[{1, 3}] - 4*In[{2, 3}] + 2*In[{1l, 2, 3}])*x"3
+ (F[{}] + 3*F[{1}] + 2*F[{2}] - 2*F[{1, 2}] - 2*F[{2, 3}] + 2*F[{1, 2, 3}
—])*x"2
+ (2*F[{}] + 2*F[{1}])*x
+ F[{}]

>>> from sage.all import *
>>> p = P([Integer(l), In[{Integer(l)}], Out[{Integer(2)}] 1); p -
— # needs sage.modules
Out [{2}]1*x72 + In[{1}]1*x + F[{}]
>>> p**Integer (2) -
— # needs sage.modules
Oout[{2}]*x"4
+ (=8*In[{}] + 4*In[{1}] + 8*In[{2}] + 4*In[{3}]
- 4*In[{1, 2}] - 2*In[{1, 3}] - 4*In[{2, 3}] + 2*In[{l, 2, 3}])*x"3
+ (F[{}] + 3*F[{1}] + 2*F[{2}] - 2*F[{1, 2}] - 2*F[{2, 3}] + 2*F[{1, 2, 3}
1) *x"2
+ (2*F[{}] + 2*F[{1}])*x
+ F[{}]

Note how each coefficient involves a single basis which need not be that of the other coefficients. Which basis
is used depends on how coercion happened during mixed arithmetic and needs not be deterministic.

One can easily coerce all coefficient to a given basis with:

sage: p.map_coefficients (In) o
— # needs sage.modules
(=4*In[{}] + 2*In[{1}] + 4*In[{2}] + 2*In[{3}]
- 2*In[{1, 2}] - In[{1, 3}] - 2*In[{2, 3}] + In[{1, 2, 3}])*x"2
(continues on next page)
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{+ In[{1}]*x + In[{}]

>>> from sage.all import *
>>> p.map_coefficients (In)
—# needs sage.modules
(=4*In[{}] + 2*In[{1}] + 4*In[{2}] + 2*In[{3}]
- 2*In[{1, 2}] - In[{1, 3}] - 2*In[{2, 3}] + In[{1, 2, 3}])*x"2
+ In[{1}1*x + In[{}]

Alas, the natural notation for constructing such polynomials does not yet work:

sage: In[{1}] * x g
— # needs sage.modules
Traceback (most recent call last):

TypeError: unsupported operand parent (s) for *:

'The subset algebra of {1, 2, 3} over Rational Field in the In basis'
and 'Univariate Polynomial Ring in x over

The subset algebra of {1, 2, 3} over Rational Field'

>>> from sage.all import *

>>> In[{Integer(1l)}] * x -
— # needs sage.modules

Traceback (most recent call last):

TypeError: unsupported operand parent (s) for *:

'The subset algebra of {1, 2, 3} over Rational Field in the In basis'
and 'Univariate Polynomial Ring in x over

The subset algebra of {1, 2, 3} over Rational Field'

The category of realizations of A

The set of all realizations of A, together with the coercion morphisms is a category (whose class inherits from
Category_realization_of;parenty

sage: A.Realizations() o
— # needs sage.modules
Category of realizations of

The subset algebra of {1, 2, 3} over Rational Field

>>> from sage.all import *
>>> A.Realizations ()
—# needs sage.modules
Category of realizations of
The subset algebra of {1, 2, 3} over Rational Field

The various parent realizing A belong to this category:

sage: A.F() in A.Realizations() -
— # needs sage.modules
True
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>>> from sage.all import *
>>> A.F () in A.Realizations()
—# needs sage.modules

True

A itself is in the category of algebras with realizations:

sage: A in Algebras (QQ) .WithRealizations () o
— # needs sage.modules
True

>>> from sage.all import *
>>> A in Algebras (QQ) .WithRealizations ()
—# needs sage.modules

True

The (mostly technical) WithRealizations categories are the analogs of the *WithSeveralBases cat-
egories in MuPAD-Combinat. They provide support tools for handling the different realizations and the
morphisms between them.

Typically, VectorSpaces (QQ) .FiniteDimensional () .WithRealizations () will eventually be in
charge, whenever a coercion ¢ : A +— B is registered, to register ¢! as coercion B ~ A if there is none
defined yet. To achieve this, FiniteDimensionalVectorSpaces would provide a nested class WithRe—
alizations implementing the appropriate logic.

WithRealizations is a regressive covariant functorial construction. On our example,
this simply means that A is automatically in the category of rings with realizations (covariance):

sage: A in Rings () .WithRealizations () o
— # needs sage.modules
True

>>> from sage.all import *

>>> A in Rings () .WithRealizations ()
—# needs sage.modules

True

and in the category of algebras (regressiveness):

sage: A in Algebras (QQ) .
— # needs sage.modules
True

>>> from sage.all import *
>>> A in Algebras (QQ)

—# needs sage.modules
True

© Note

For C a category, C.WithRealizations () infactcalls sage.categories.with_realizations.
WithRealizations (C). The later is responsible for building the hierarchy of the categories
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with realizations in parallel to that of their base categories, optimizing away those cate-
gories that do not provide a WithRealizations nested class. See sage.categories.
covariant_functorial_construction for the technical details.

© Note

Design question: currently WwithRealizations iS a regressive construction. That is self.
WithRealizations () is a subcategory of self by default:

sage: Algebras (QQ) .WithRealizations () .super_categories ()
[Category of algebras over Rational Field,

Category of monoids with realizations,

Category of additive unital additive magmas with realizations]

>>> from sage.all import *

>>> Algebras (QQ) .WithRealizations () .super_categories ()
[Category of algebras over Rational Field,

Category of monoids with realizations,

Category of additive unital additive magmas with realizations]

Is this always desirable? For example, AlgebrasWithBasis (QQ) .WithRealizations () should cer-
tainly be a subcategory of Algebras (QQ), but not of AlgebrasWithBasis (QQ). This is because A1-
gebrasWithBasis (QQ) is specifying something about the concrete realization.

additional_structure ()

Return whether self defines additional structure.
OUTPUT:

e self if self defines additional structure and None otherwise. This default implementation returns
self.

A category C defines additional structure if C-morphisms shall preserve more structure (e.g. operations) than
that specified by the super categories of C'. For example, the category of magmas defines additional structure,
namely the operation * that shall be preserved by magma morphisms. On the other hand the category of rings
does not define additional structure: a function between two rings that is both a unital magma morphism and
a unital additive magma morphism is automatically a ring morphism.

Formally speaking C' defines additional structure, if C' is not a full subcategory of the join of its super cate-
gories: the morphisms need to preserve more structure, and thus the homsets are smaller.

By default, a category is considered as defining additional structure, unless it is a category with axiom.
EXAMPLES:

Here are some typical structure categories, with the additional structure they define:

sage: Sets () .additional_structure ()

Category of sets

sage: Magmas () .additional_structure () #

Category of magmas

sage: AdditiveMagmas () .additional_structure() # ~+°

Category of additive magmas

sage: LeftModules (ZZ) .additional_structure () # left multiplication by scalar
Category of left modules over Integer Ring

(continues on next page)
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sage: Coalgebras (QQ) .additional_structure () # coproduct
Category of coalgebras over Rational Field

sage: Crystals().additional_structure () # crystal operators
Category of crystals

-

>>> from sage.all import *

>>> Sets () .additional_structure ()

Category of sets

>>> Magmas () .additional_structure () #

Category of magmas

>>> AdditiveMagmas () .additional_structure() # "+

Category of additive magmas

>>> LeftModules (ZZ) .additional_structure () # left multiplication by scalar
Category of left modules over Integer Ring

>>> Coalgebras (QQ) .additional_structure () # coproduct
Category of coalgebras over Rational Field

>>> Crystals () .additional_structure () # crystal operators
Category of crystals

On the other hand, the category of semigroups is not a structure category, since its operation + is already
defined by the category of magmas:

[sage: Semigroups () .additional_structure ()

>>> from sage.all import *
>>> Semigroups () .additional_structure ()

Most categories with axiom don’t define additional structure:

sage: Sets () .Finite () .additional_structure ()
sage: Rings () .Commutative ().additional_structure ()
sage: Modules (QQ) .FiniteDimensional () .additional_structure ()

sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras (QQ) .Unital () .additional_structure ()

>>> from sage.all import *

>>> Sets () .Finite () .additional_structure ()
>>> Rings () .Commutative () .additional_structure ()
>>> Modules (QQ) .FiniteDimensional () .additional_structure ()

>>> from sage.categories.magmatic_algebras import MagmaticAlgebras

>>> MagmaticAlgebras (QQ) .Unital () .additional_structure ()

As of Sage 6.4, the only exceptions are the category of unital magmas or the category of unital additive
magmas (both define a unit which shall be preserved by morphisms):

sage: Magmas () .Unital () .additional_structure ()

Category of unital magmas

sage: AdditiveMagmas () .AdditiveUnital ().additional_structure()
Category of additive unital additive magmas

>>> from sage.all import *

>>> Magmas () .Unital () .additional_structure ()
(continues on next page)
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Category of unital magmas
>>> AdditiveMagmas () .AdditiveUnital () .additional_structure ()
Category of additive unital additive magmas

Similarly, functorial construction categories don’t define additional structure, unless the construction is actually
defined by their base category. For example, the category of graded modules defines a grading which shall be
preserved by morphisms:

sage: Modules (ZZ) .Graded () .additional_structure ()
Category of graded modules over Integer Ring

>>> from sage.all import *
>>> Modules (Z7Z) .Graded () .additional_structure ()
Category of graded modules over Integer Ring

On the other hand, the category of graded algebras does not define additional structure; indeed an algebra
morphism which is also a module morphism is a graded algebra morphism:

[sage: Algebras (ZZ) .Graded () .additional_structure ()

>>> from sage.all import *
>>> Algebras (ZZ) .Graded () .additional_structure ()

Similarly, morphisms are requested to preserve the structure given by the following constructions:

sage: Sets () .Quotients().additional_structure ()

Category of quotients of sets

sage: Sets () .CartesianProducts () .additional_structure ()
Category of Cartesian products of sets

sage: Modules (QQ) .TensorProducts () .additional_structure ()

>>> from sage.all import *

>>> Sets () .Quotients () .additional_structure ()
Category of quotients of sets

>>> Sets () .CartesianProducts () .additional_structure ()
Category of Cartesian products of sets

>>> Modules (QQ) .TensorProducts () .additional_structure ()

This might change, as we are lacking enough data points to guarantee that this was the correct design decision.

© Note

In some cases a category defines additional structure, where the structure can be useful to manipulate
morphisms but where, in most use cases, we don’t want the morphisms to necessarily preserve it. For
example, in the context of finite dimensional vector spaces, having a distinguished basis allows for rep-
resenting morphisms by matrices; yet considering only morphisms that preserve that distinguished basis
would be boring.

In such cases, we might want to eventually have two categories, one where the additional structure is
preserved, and one where it’s not necessarily preserved (we would need to find an idiom for this).

At this point, a choice is to be made each time, according to the main use cases. Some of those choices
are yet to be settled. For example, should by default:
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¢ an euclidean domain morphism preserve euclidean division?

sage: EuclideanDomains () .additional_structure ()
Category of euclidean domains

>>> from sage.all import *
>>> EuclideanDomains () .additional_structure ()

Category of euclidean domains

 an enumerated set morphism preserve the distinguished enumeration?

[sage: EnumeratedSets () .additional_structure () ]

>>> from sage.all import * ’

>>> EnumeratedSets () .additional_structure ()

* a module with basis morphism preserve the distinguished basis?

[sage: Modules (QQ) .WithBasis () .additional_structure () J

>>> from sage.all import *
>>> Modules (QQ) .WithBasis () .additional_structure ()

> See also

This method together with the methods overloading it provide the basic data to determine, for a given
category, the super categories that define some structure (see st ructure ()), and to test whether a cat-
egory is a full subcategory of some other category (see is_full subcategory ()). For example, the
category of Coxeter groups is not full subcategory of the category of groups since morphisms need to
preserve the distinguished generators:

sage: CoxeterGroups () .is_full_subcategory (Groups () )
False

>>> from sage.all import *
>>> CoxeterGroups () .is_full_subcategory (Groups () )
False

The support for modeling full subcategories has been introduced in Issue #16340.

all_super_categories (proper=False)

Return the list of all super categories of this category.
INPUT:
* proper — boolean (default: False); whether to exclude this category

Since Issue #11943, the order of super categories is determined by Python’s method resolution order C3
algorithm.

© Note

Whenever speed matters, the developers are advised to use instead the lazy attributes _a11_super_cat—
egories (), _all_super_categories_proper (), Of _set_of_super_categories (), as ap-
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L propriate. Simply because lazy attributes are much faster than any method.

O Note

This is not the same as the concept of super category in mathematics. In fact, this is not even the opposite
relation of is subcat egory():

p

sage: A = VectorSpaces(QQ); A

Category of vector spaces over Rational Field

sage: B = VectorSpaces (QQ.category()); B

Category of vector spaces over (number fields and quotient fields and..
—metric spaces)

sage: A.is_subcategory (B)

True

sage: B in A.all_super_categories /()

False

.

>>> from sage.all import *

>>> A = VectorSpaces (QQ); A

Category of vector spaces over Rational Field

>>> B = VectorSpaces (QQ.category()); B

Category of vector spaces over (number fields and quotient fields and.
—metric spaces)

>>> A.is_subcategory (B)

True

>>> B in A.all_super_categories|()

False

.

> See also

_test_category_graph ()

EXAMPLES:

sage: C = Rings(); C

Category of rings

sage: C.all_super_categories|()

[Category of rings, Category of rngs, Category of semirings,
Category of monoids,

Category of commutative additive groups,

Category of sets, Category of sets with partial maps,
Category of objects]

sage: C.all_super_categories (proper = True)

[Category of rngs, Category of semirings,

Category of monoids,

Category of commutative additive groups,

Category of sets, Category of sets with partial maps,
Category of objects]

(continues on next page)
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—categories_proper
True

(continued from previous page)

sage: Sets().all_super_categories/()

[Category of sets, Category of sets with partial maps, Category of objects]
sage: Sets () .all_super_categories (proper=True)

[Category of sets with partial maps, Category of objects]

sage: Sets () .all_super_categories () is Sets()._all_super_categories

True

sage: Sets () .all_super_categories (proper=True) is Sets()._all_super_

>>> from sage.all import *
>>> C = Rings(); C

Category of rings

>>> C.all_super_categories|()

Category of monoids,

Category of commutative additive groups,

Category of sets, Category of sets with partial maps,
Category of objects]

>>> C.all_super_categories (proper = True)
[Category of rngs, Category of semirings,
Category of monoids,
Category of commutative additive groups,
Category of sets, Category of sets with partial maps,
Category of objects]

[Category of rings, Category of rngs, Category of semirings,

>>> Sets().all_super_categories()

[Category of sets, Category of sets with partial maps, Category of objects]
>>> Sets().all_super_categories (proper=True)

[Category of sets with partial maps, Category of objects]

>>> Sets().all_super_categories() is Sets () ._all_super_categories

True

>>> Sets().all_super_categories (proper=True) is Sets()._all_super_categories_
—proper

True

classmethod an_instance()

Return an instance of this class.

EXAMPLES:

sage: Rings.an_instance ()
Category of rings

>>> from sage.all import *
>>> Rings.an_instance ()
Category of rings

Parametrized categories should overload this default implementation to provide appropriate arguments:
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sage: Algebras.an_instance ()
Category of algebras over Rational Field
sage: Bimodules.an_instance () #.
—needs sage.rings.real_mpfr
Category of bimodules over Rational Field on the left
and Real Field with 53 bits of precision on the right
sage: Algebraldeals.an_instance()
Category of algebra ideals
in Univariate Polynomial Ring in x over Rational Field

>>> from sage.all import *
>>> Algebras.an_instance ()
Category of algebras over Rational Field
>>> Bimodules.an_instance () #.
—needs sage.rings.real_mpfr
Category of bimodules over Rational Field on the left
and Real Field with 53 bits of precision on the right
>>> Algebraldeals.an_instance ()
Category of algebra ideals

in Univariate Polynomial Ring in x over Rational Field

axioms ()
Return the axioms known to be satisfied by all the objects of self.
Technically, this is the set of all the axioms A such that, if Cs is the category defining A, then self is a

subcategory of Cs () .A (). Any additional axiom A would yield a strict subcategory of self, at the very least
self & Cs().A() where Cs is the category defining A.

EXAMPLES:

sage: Monoids () .axioms ()

frozenset ({'Associative', 'Unital'})

sage: (EnumeratedSets().Infinite() & Sets () .Facade()) .axioms ()
frozenset ({'Enumerated', 'Facade', 'Infinite'})

>>> from sage.all import *

>>> Monoids () .axioms ()

frozenset ({'Associative', 'Unital'})

>>> (EnumeratedSets () .Infinite() & Sets () .Facade()) .axioms ()
frozenset ({'Enumerated', 'Facade', 'Infinite'})

category ()

Return the category of this category. So far, all categories are in the category of objects.

EXAMPLES:

sage: Sets().category()

Category of objects

sage: VectorSpaces (QQ) .category ()
Category of objects

>>> from sage.all import *
>>> Sets () .category ()

(continues on next page)
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Category of objects
>>> VectorSpaces (QQ) .category ()
Category of objects

category_graph ()
Return the graph of all super categories of this category.

EXAMPLES:

sage: C = Algebras (QQ)

sage: G = C.category_graph () #o
—needs sage.graphs

sage: G.is_directed_acyclic() #.
—needs sage.graphs

True

>>> from sage.all import *
>>> C = Algebras (QQ)
>>> G = C.category_graph () #o

—needs sage.graphs

>>> G.is_directed_acyclic() #o
—needs sage.graphs

True

The girth of a directed acyclic graph is infinite, however, the girth of the underlying undirected graph is 4 in
this case:

sage: Graph(G) .girth() #.
—needs sage.graphs
4

>>> from sage.all import *

>>> Graph (G) .girth () #_
—needs sage.graphs
4

element_class ()

A common super class for all elements of parents in this category (and its subcategories).

This class contains the methods defined in the nested class self.ElementMethods (if it exists), and has as
bases the element classes of the super categories of self.

> See also

® parent_class (), morphism_class ()

e Category for details

EXAMPLES:

sage: C = Algebras(QQ) .element_class; C
<class 'sage.categories.algebras.Algebras.element_class'>
(continues on next page)
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sage: type (C)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>

>>> from sage.all import *

>>> C = Algebras (QQ) .element_class; C

<class 'sage.categories.algebras.Algebras.element_class'>
>>> type (C)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>

By Issue #11935, some categories share their element classes. For example, the element class of an algebra
only depends on the category of the base. A typical example is the category of algebras over a field versus
algebras over a non-field:

sage: Algebras (GF (5)) .element_class is Algebras(GF (3)) .element_class

True

sage: Algebras (QQ) .element_class is Algebras (ZZ) .element_class

False

sage: Algebras(ZZ['t']) .element_class is Algebras(ZzZ['t', 'x']) .element_class
True

>>> from sage.all import *

>>> Algebras (GF (Integer (5))) .element_class is Algebras (GF (Integer(3))) .
—~element_class

True

>>> Algebras (QQ) .element_class is Algebras (ZZ) .element_class

False

>>> Algebras(ZZ['t']) .element_class is Algebras (ZZ['t', 'x']) .element_class
True

These classes are constructed with __slots__ = (), so instances may not havea __ dict__:

sage: E = FiniteEnumeratedSets () .element_class
sage: E.__ dictoffset_
0

>>> from sage.all import *

>>> E = FiniteEnumeratedSets () .element_class
>>> E.__dictoffset_
0

> See also

parent_class ()

© Note

See the note about _test_category_graph () regarding Python class hierarchy.

example ( *args, **keywords)
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Return an object in this category. Most of the time, this is a parent.
This serves three purposes:

* Give a typical example to better explain what the category is all about. (and by the way prove that the
category is non empty :-) )

¢ Provide a minimal template for implementing other objects in this category
* Provide an object on which to test generic code implemented by the category

For all those applications, the implementation of the object shall be kept to a strict minimum. The object
is therefore not meant to be used for other applications; most of the time a full featured version is available
elsewhere in Sage, and should be used instead.

Technical note: by default FooBar (...) .example () is constructed by looking up sage.categories.
examples. foo_bar.Example and calling it as Example (). Extra positional or named parameters are also
passed down. For a category over base ring, the base ring is further passed down as an optional argument.

Categories are welcome to override this default implementation.

EXAMPLES:

sage: Semigroups () .example ()
An example of a semigroup: the left zero semigroup

sage: Monoids () .Subquotients () .example ()
NotImplemented

>>> from sage.all import *
>>> Semigroups () .example ()
An example of a semigroup: the left zero semigroup

>>> Monoids () .Subquotients () .example ()

NotImplemented

full_super_categories()

Return the immediate full super categories of self.

e See also

® super_categories()

® is_full_subcategory()

A Warning

The current implementation selects the full subcategories among the immediate super categories of self.
This assumes that, if C' C B C A is a chain of categories and C' is a full subcategory of A, then C'is a
full subcategory of B and B is a full subcategory of A.

This assumption is guaranteed to hold with the current model and implementation of full subcategories
in Sage. However, mathematically speaking, this is too restrictive. This indeed prevents the complete
modelling of situations where any A morphism between elements of C' automatically preserves the B
structure. See below for an example.
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EXAMPLES:

A semigroup morphism between two finite semigroups is a finite semigroup morphism:

sage: Semigroups () .Finite().full_super_categories()
[Category of semigroups]

>>> from sage.all import *
>>> Semigroups () .Finite () .full_super_categories ()
[Category of semigroups]

On the other hand, a semigroup morphism between two monoids is not necessarily a monoid morphism (which
must map the unit to the unit):

sage: Monoids () .super_categories()

[Category of semigroups, Category of unital magmas]
sage: Monoids () .full_super_categories()

[Category of unital magmas]

>>> from sage.all import *

>>> Monoids () .super_categories ()

[Category of semigroups, Category of unital magmas]
>>> Monoids () .full_super_categories ()

[Category of unital magmas]

Any semigroup morphism between two groups is automatically a monoid morphism (in a group the unit is
the unique idempotent, so it has to be mapped to the unit). Yet, due to the limitation of the model advertised
above, Sage currently cannot be taught that the category of groups is a full subcategory of the category of
semigroups:

sage: Groups () .full_super_categories() # todo: not implemented
[Category of monoids, Category of semigroups, Category of inverse unital.
—magmas ]

sage: Groups () .full_super_categories|()

[Category of monoids, Category of inverse unital magmas]

>>> from sage.all import *

>>> Groups () .full_super_categories () # todo: not implemented
[Category of monoids, Category of semigroups, Category of inverse unital.
—magmas ]

>>> Groups () .full_super_categories()

[Category of monoids, Category of inverse unital magmas]

is_abelian()

Return whether this category is abelian.
An abelian category is a category satisfying:
* It has a zero object;
* It has all pullbacks and pushouts;
¢ All monomorphisms and epimorphisms are normal.

Equivalently, one can define an increasing sequence of conditions:
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A category is pre-additive if it is enriched over abelian groups (all homsets are abelian groups and com-
position is bilinear);

* A pre-additive category is additive if every finite set of objects has a biproduct (we can form direct sums
and direct products);

* An additive category is pre-abelian if every morphism has both a kernel and a cokernel;

* A pre-abelian category is abelian if every monomorphism is the kernel of some morphism and every
epimorphism is the cokernel of some morphism.

EXAMPLES:

sage: Modules (ZZ) .is_abelian ()
True

sage: FreeModules (ZZ) .is_abelian()
False

sage: FreeModules (QQ) .is_abelian ()

True

sage: CommutativeAdditiveGroups () .is_abelian ()
True

sage: Semigroups () .is_abelian()

Traceback (most recent call last):

NotImplementedError: is_abelian

>>> from sage.all import *

>>> Modules (ZZ) .is_abelian()
True

>>> FreeModules (Z2Z) .is_abelian ()

False

>>> FreeModules (QQ) .is_abelian ()

True

>>> CommutativeAdditiveGroups () .is_abelian ()
True

>>> Semigroups () .is_abelian ()

Traceback (most recent call last):

NotImplementedError: is_abelian

is_full_subcategory (other)
Return whether self is a full subcategory of other.

A subcategory B of a category A is a full subcategory if any A-morphism between two objects of B is also a
B-morphism (the reciprocal always holds: any B-morphism between two objects of B is an A-morphism).

This is computed by testing whether self is a subcategory of other and whether they have the same struc-
ture, as determined by structure () from the result of additional structure () on the super cate-
gories.

A Warning

A positive answer is guaranteed to be mathematically correct. A negative answer may mean that Sage has
not been taught enough information (or can not yet within the current model) to derive this information.
See full_super categories () for a discussion.

2.2. Categories 87



Category Framework, Release 10.6

> See also

® is_subcategory ()

* full super_categories()

EXAMPLES:

sage: Magmas () .Associative () .is_full_ subcategory (Magmas ())
True

sage: Magmas () .Unital () .is_full_subcategory (Magmas ())
False

sage: Rings () .is_full_subcategory (Magmas () .Unital () & AdditiveMagmas () .
—AdditiveUnital())
True

>>> from sage.all import *

>>> Magmas () .Associative () .is_full_subcategory (Magmas () )
True

>>> Magmas () .Unital () .is_full_subcategory (Magmas ())
False

>>> Rings () .is_full_subcategory (Magmas () .Unital () & AdditiveMagmas () .
—AdditiveUnital())
True

Here are two typical examples of false negatives:

sage: Groups () .is_full_subcategory (Semigroups () )

False

sage: Groups () .is_full_subcategory (Semigroups()) # todo: not implemented
True

sage: Fields () .is_full_subcategory (Rings())

False

sage: Fields () .is_full_subcategory (Rings()) # todo: not implemented
True

>>> from sage.all import *

>>> Groups () .is_full_subcategory (Semigroups())

False

>>> Groups () .is_full_subcategory (Semigroups()) # todo: not implemented
True

>>> Fields () .is_full_subcategory (Rings ())

False

>>> Fields () .is_full_subcategory (Rings()) # todo: not implemented
True

2 Todo

The latter is a consequence of EuclideanDomains currently being a structure category. Is this what we
want?

sage: EuclideanDomains () .is_full_subcategory (Rings())

False
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>>> from sage.all import *
>>> EuclideanDomains () .is_full_subcategory (Rings())
False

is_subcategory (¢)

Return True if there is a natural forgetful functor from self to c.

EXAMPLES:

sage: AbGrps = CommutativeAdditiveGroups ()
sage: Rings () .is_subcategory (AbGrps)

True

sage: AbGrps.is_subcategory (Rings ())

False

>>> from sage.all import *

>>> AbGrps = CommutativeAdditiveGroups ()
>>> Rings () .is_subcategory (AbGrps)

True

>>> AbGrps.is_subcategory (Rings())

False

The is_subcategory function takes into account the base.

sage: M3 = VectorSpaces (FiniteField(3))

sage: M9 = VectorSpaces (FiniteField (9, 'a')) #o
—needs sage.rings.finite_rings

sage: M3.is_subcategory (M9) #.
—needs sage.rings.finite_rings

False

>>> from sage.all import *
>>> M3 = VectorSpaces (FiniteField(Integer (3)))

>>> M9 = VectorSpaces (FiniteField(Integer(9), 'a')) -
— # needs sage.rings.finite_rings
>>> M3.is_subcategory (M9) #.

—needs sage.rings.finite_rings

False

Join categories are properly handled:

sage: CatJ = Category.join((CommutativeAdditiveGroups (), Semigroups()))
sage: Rings () .is_subcategory (CatdJ)
True

>>> from sage.all import *
>>> CatJ = Category.join((CommutativeAdditiveGroups (), Semigroups()))
>>> Rings () .is_subcategory (CatdJd)

True
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sage: V3 = VectorSpaces (FiniteField(3))
sage: POSet = PartiallyOrderedSets ()
sage: PoV3 = Category.join((V3, POSet))
sage: A3 = AlgebrasWithBasis (FiniteField(3))
sage: PoA3 = Category.join((A3, POSet))
sage: PoA3.is_subcategory (PoV3)

True

sage: PoV3.is_subcategory (PoV3)

True

sage: PoV3.1is_subcategory (PoA3)

False

>>> from sage.all import *

>>> V3 = VectorSpaces (FiniteField(Integer (3)))
>>> POSet = PartiallyOrderedSets ()

>>> PoV3 = Category.join((V3, POSet))

>>> A3 = AlgebrasWithBasis (FiniteField (Integer(3)))
>>> PoA3 = Category.join( (A3, POSet))

>>> PoA3.is_subcategory (PoV3)

True

>>> PoV3.is_subcategory (PoV3)

True

>>> PoV3.is_subcategory (PoA3)

False

static join (categories, as_list=False, ignore_axioms=(), axioms=())

Return the join of the input categories in the lattice of categories.

At the level of objects and morphisms, this operation corresponds to intersection: the objects and morphisms
of a join category are those that belong to all its super categories.

INPUT:
* categories —list (or iterable) of categories
e as_list —boolean (default: False); whether the result should be returned as a list

* axioms — tuple of strings; the names of some supplementary axioms

> See also

and__ () for a shortcut

EXAMPLES:

sage: J = Category.join ((Groups (), CommutativeAdditiveMonoids())); J

Join of Category of groups and Category of commutative additive monoids
sage: J.super_categories()

[Category of groups, Category of commutative additive monoids]

sage: J.all_super_categories (proper=True)

[Category of groups, ..., Category of magmas,

Category of commutative additive monoids, ..., Category of additive magmas,
Category of sets, ...]
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>>> from sage.all import *

>>> J = Category.join((Groups (), CommutativeAdditiveMonoids())); J

Join of Category of groups and Category of commutative additive monoids

>>> J.super_categories ()

[Category of groups, Category of commutative additive monoids]

>>> J.all_super_categories (proper=True)

[Category of groups, ..., Category of magmas,

Category of commutative additive monoids, ..., Category of additive magmas,
Category of sets, ...]

As a short hand, one can use:

sage: Groups () & CommutativeAdditiveMonoids ()
Join of Category of groups and Category of commutative additive monoids

-

>>> from sage.all import *
>>> Groups () & CommutativeAdditiveMonoids ()
Join of Category of groups and Category of commutative additive monoids

This is a commutative and associative operation:

sage: Groups () & Posets()
Join of Category of groups and Category of posets
sage: Posets () & Groups()
Join of Category of groups and Category of posets

sage: Groups () & (CommutativeAdditiveMonoids () & Posets())
Join of Category of groups

and Category of commutative additive monoids

and Category of posets
sage: (Groups () & CommutativeAdditiveMonoids()) & Posets()
Join of Category of groups

and Category of commutative additive monoids

and Category of posets

>>> from sage.all import *

>>> Groups () & Posets()

Join of Category of groups and Category of posets
>>> Posets () & Groups()

Join of Category of groups and Category of posets

>>> Groups () & (CommutativeAdditiveMonoids () & Posets())
Join of Category of groups

and Category of commutative additive monoids

and Category of posets
>>> (Groups () & CommutativeAdditiveMonoids()) & Posets()
Join of Category of groups

and Category of commutative additive monoids

and Category of posets

The join of a single category is the category itself:
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sage: Category.join([Monoids()])
Category of monoids

>>> from sage.all import *
>>> Category.join ([Monoids()])
Category of monoids

Similarly, the join of several mutually comparable categories is the smallest one:

sage: Category.join((Sets (), Rings (), Monoids()))
Category of rings

>>> from sage.all import *
>>> Category.join((Sets (), Rings (), Monoids()))
Category of rings

In particular, the unit is the top category objects:

sage: Groups () & Objects()
Category of groups

>>> from sage.all import *
>>> Groups () & Objects()
Category of groups

If the optional parameter as_1list iS True, this returns the super categories of the join as a list, without
constructing the join category itself:

sage: Category.join((Groups(), CommutativeAdditiveMonoids()), as_list=True)
[Category of groups, Category of commutative additive monoids]

sage: Category.join((Sets (), Rings (), Monoids()), as_list=True)

[Category of rings]

sage: Category.join((Modules(ZZ), FiniteFields()), as_list=True)

[Category of finite enumerated fields, Category of modules over Integer Ring]
sage: Category.join([], as_list=True)

[]

sage: Category.join([Groups ()], as_list=True)

[Category of groups]
sage: Category.join([Groups() & Posets ()], as_list=True)
[Category of groups, Category of posets]

>>> from sage.all import *

>>> Category.join ((Groups (), CommutativeAdditiveMonoids()), as_list=True)
[Category of groups, Category of commutative additive monoids]

>>> Category.join((Sets (), Rings (), Monoids()), as_list=True)

[Category of rings]

>>> Category.join((Modules (ZZ), FiniteFields()), as_list=True)

[Category of finite enumerated fields, Category of modules over Integer Ring]
>>> Category.join([], as_list=True)

[]

>>> Category.join([Groups ()], as_list=True)

[Category of groups]

(continues on next page)
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(continued from previous page)

>>> Category.join ([Groups () & Posets ()], as_list=True)
[Category of groups, Category of posets]

Support for axiom categories (TODO: put here meaningful examples):

sage: Sets () .Facade() & Sets().Infinite()
Category of facade infinite sets

sage: Magmas () .Infinite() & Sets() .Facade()
Category of facade infinite magmas

sage: FiniteSets () & Monoids ()

Category of finite monoids

sage: Rings () .Commutative () & Sets().Finite()
Category of finite commutative rings

>>> from sage.all import *

>>> Sets () .Facade () & Sets().Infinite()
Category of facade infinite sets

>>> Magmas () .Infinite () & Sets () .Facade()
Category of facade infinite magmas

>>> FiniteSets () & Monoids ()

Category of finite monoids

>>> Rings () .Commutative () & Sets().Finite()
Category of finite commutative rings

Note that several of the above examples are actually join categories; they are just nicely displayed:

sage: AlgebrasWithBasis (QQ) & FiniteSets () .Algebras (QQ)
Join of Category of finite dimensional algebras with basis over Rational Field
and Category of finite set algebras over Rational Field

sage: UniqueFactorizationDomains () & Algebras (QQ)
Join of Category of unique factorization domains
and Category of commutative algebras over Rational Field

>>> from sage.all import *

>>> AlgebrasWithBasis (QQ) & FiniteSets () .Algebras (QQ)

Join of Category of finite dimensional algebras with basis over Rational Field
and Category of finite set algebras over Rational Field

>>> UniqueFactorizationDomains () & Algebras (QQ)
Join of Category of unique factorization domains
and Category of commutative algebras over Rational Field

static meet (categories)

Return the meet of a list of categories.
INPUT:

* categories —anon empty list (or iterable) of categories
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> See also

__or__ () for a shortcut

EXAMPLES:

sage: Category.meet ([Algebras (Z2Z), Algebras (QQ), Groups()])
Category of monoids

>>> from sage.all import *
>>> Category.meet ([Algebras (Z2Z2), Algebras(QQ), Groups()])
Category of monoids

That meet of an empty list should be a category which is a subcategory of all categories, which does not make
practical sense:

-

sage: Category.meet ([])
Traceback (most recent call last):

ValueError: The meet of an empty list of categories is not implemented

>>> from sage.all import *
>>> Category.meet ([])
Traceback (most recent call last):

ValueError: The meet of an empty list of categories is not implemented

morp

hism class ()

A common super class for all morphisms between parents in this category (and its subcategories).

This class contains the methods defined in the nested class self.MorphismMethods (if it exists), and has
as bases the morphism classes of the super categories of self.

> See also

® parent_class (), element_class ()

e Category for details

EXAMPLES:

sage: C = Algebras (QQ) .morphism_class; C

<class 'sage.categories.algebras.Algebras.morphism_class'>
sage: type(C)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>

>>> from sage.all import *

>>> C = Algebras (QQ) .morphism_class; C

<class 'sage.categories.algebras.Algebras.morphism_class'>
>>> type (C)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>
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or_subcategory (category=None, join=False)

Return category or self if category is None.

INPUT:
* category — a sub category of self, tuple/list thereof, or None
¢ join — boolean (default: False)

OUTPUT: a category

EXAMPLES:

sage: Monoids () .or_subcategory (Groups())
Category of groups

sage: Monoids () .or_subcategory (None)
Category of monoids

>>> from sage.all import *

>>> Monoids () .or_subcategory (Groups () )
Category of groups

>>> Monoids () .or_subcategory (None)
Category of monoids

If category is a list/tuple, then a join category is returned:

sage: Monoids () .or_subcategory ((CommutativeAdditiveMonoids (), Groups()))
Join of Category of groups and Category of commutative additive monoids

>>> from sage.all import *
>>> Monoids () .or_subcategory ( (CommutativeAdditiveMonoids (), Groups()))

Join of Category of groups and Category of commutative additive monoids

If join is False, an error if raised if category is not a subcategory of self:

sage: Monoids () .or_subcategory (EnumeratedSets())
Traceback (most recent call last):

ValueError: Subcategory of “Category of monoids’ required;
got “Category of enumerated sets’

>>> from sage.all import *
>>> Monoids () .or_subcategory (EnumeratedSets ())
Traceback (most recent call last):

ValueError: Subcategory of “Category of monoids’ required;
got "Category of enumerated sets’

Otherwise, the two categories are joined together:

sage: Monoids () .or_subcategory (EnumeratedSets (), join=True)
Category of enumerated monoids

>>> from sage.all import *
>>> Monoids () .or_subcategory (EnumeratedSets (), join=True)
Category of enumerated monoids
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parent_class ()

A common super class for all parents in this category (and its subcategories).

This class contains the methods defined in the nested class self.ParentMethods (if it exists), and has as
bases the parent classes of the super categories of self.

> See also

® element_class (), morphism _class ()

e Category for details

EXAMPLES:

sage: C = Algebras (QQ) .parent_class; C

<class 'sage.categories.algebras.Algebras.parent_class'>
sage: type (C)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>

>>> from sage.all import *

>>> C = Algebras (QQ) .parent_class; C

<class 'sage.categories.algebras.Algebras.parent_class'>
>>> type (C)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>

By Issue #11935, some categories share their parent classes. For example, the parent class of an algebra only
depends on the category of the base ring. A typical example is the category of algebras over a finite field
versus algebras over a non-field:

sage: Algebras(GF (7)) .parent_class is Algebras (GF (5)) .parent_class

True

sage: Algebras (QQ) .parent_class is Algebras (ZZ) .parent_class

False

sage: Algebras(zZzZ['t']) .parent_class is Algebras(zz['t', 'x']) .parent_class
True

>>> from sage.all import *

>>> Algebras (GF (Integer(7))) .parent_class is Algebras (GF (Integer (5))) .parent_
—~class

True

>>> Algebras (QQ) .parent_class is Algebras(ZZ) .parent_class

False

>>> Algebras (ZZ['t']) .parent_class is Algebras(zz['t', 'x']) .parent_class

True

See categoryiithParameters for an abstract base class for categories that depend on parameters, even
though the parent and element classes only depend on the parent or element classes of its super categories. It
is used in Bimodules, Category_over_base and sage.categories.category.JoinCategory.

O Note

See the note about _test_category_graph () regarding Python class hierarchy.
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required_methods ()

Return the methods that are required and optional for parents in this category and their elements.

EXAMPLES:

sage: Algebras (QQ) .required_methods ()

{'element': {'optional': ['_add_', '_mul_'], 'required': ['__bool__ ']},
'parent': {'optional': ['algebra_generators'], 'required': ['__contains__']}}

>>> from sage.all import *

>>> Algebras (QQ) .required_methods ()

{'element': {'optional': ['_add_', '_mul_"'], 'required': ['__bool__']l},
'parent': {'optional': ['algebra_generators'], 'required': ['__contains__']}}

structure ()
Return the structure self is endowed with.
This method returns the structure that morphisms in this category shall be preserving. For example, it tells
that a ring is a set endowed with a structure of both a unital magma and an additive unital magma which

satisfies some further axioms. In other words, a ring morphism is a function that preserves the unital magma
and additive unital magma structure.

In practice, this returns the collection of all the super categories of self that define some additional structure,
as a frozen set.

EXAMPLES:

sage: Objects () .structure()
frozenset ()

sage: def structure(C):
e return Category._sort (C.structure())

sage: structure(Sets())

(Category of sets, Category of sets with partial maps)

sage: structure (Magmas())

(Category of magmas, Category of sets, Category of sets with partial maps)

>>> from sage.all import *
>>> Objects () .structure ()
frozenset ()

>>> def structure(C):
return Category._sort (C.structure())

>>> structure (Sets())

(Category of sets, Category of sets with partial maps)

>>> structure (Magmas () )

(Category of magmas, Category of sets, Category of sets with partial maps)

In the following example, we only list the smallest structure categories to get a more readable output:

sage: def structure(C):
e return Category._sort_uniqg(C.structure())

(continues on next page)
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(continued from previous page)

sage: structure (Magmas ())
(Category of magmas,)
sage: structure (Rings())
(Category of unital magmas, Category of additive unital additive magmas)
sage: structure (Fields())
(Category of euclidean domains, Category of noetherian rings)
sage: structure (Algebras (QQ))
(Category of unital magmas,
Category of right modules over Rational Field,
Category of left modules over Rational Field)
sage: structure (HopfAlgebras (QQ) .Graded () .WithBasis () .Connected())
(Category of Hopf algebras over Rational Field,
Category of graded modules over Rational Field)

>>> from sage.all import *
>>> def structure(C):
return Category._sort_uniqg(C.structure())

>>> structure (Magmas () )
(Category of magmas,)
>>> structure (Rings())
(Category of unital magmas, Category of additive unital additive magmas)
>>> structure (Fields())
(Category of euclidean domains, Category of noetherian rings)
>>> structure (Algebras (QQ))
(Category of unital magmas,
Category of right modules over Rational Field,
Category of left modules over Rational Field)
>>> structure (HopfAlgebras (QQ) .Graded () .WithBasis () .Connected())
(Category of Hopf algebras over Rational Field,
Category of graded modules over Rational Field)

This method is used in is_rfull subcategory () for deciding whether a category is a full subcategory of
some other category, and for documentation purposes. It is computed recursively from the result of addi-
tional_ structure () on the super categories of self.

subcategory_class ()

A common superclass for all subcategories of this category (including this one).

This class derives from D.subcategory_class for each super category D of self, and includes all the
methods from the nested class self.SubcategoryMethods, if it exists.

> See also

Issue #12895
® parent_class ()
®* eclement_class()

®* make_ named_class ()

EXAMPLES:

98

Chapter 2. The Sage Category Framework



https://github.com/sagemath/sage/issues/12895

Category Framework, Release 10.6

sage: cls = Rings () .subcategory_class; cls

<class 'sage.categories.rings.Rings.subcategory_class'>
sage: type(cls)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>

>>> from sage.all import *

>>> cls = Rings () .subcategory_class; cls

<class 'sage.categories.rings.Rings.subcategory_class'>
>>> type(cls)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>

Rings () is an instance of this class, as well as all its subcategories:

sage: isinstance(Rings(), cls)

True

sage: isinstance (AlgebrasWithBasis (QQ), cls)
True

>>> from sage.all import *

>>> isinstance (Rings (), cls)

True

>>> isinstance (AlgebrasWithBasis (QQ), cls)
True

O Note

See the note about _test_category_graph () regarding Python class hierarchy.

super_categories ()

Return the immediate super categories of self.
OUTPUT: a duplicate-free list of categories
Every category should implement this method.

EXAMPLES:

sage: Groups () .super_categories()
[Category of monoids, Category of inverse unital magmas]
sage: Objects () .super_categories ()

(]

>>> from sage.all import *

>>> Groups () .super_categories()

[Category of monoids, Category of inverse unital magmas]
>>> Objects () .super_categories|()

[]

( © Note
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Since Issue #10963, the order of the categories in the result is irrelevant. For details, see On the order of
super categories.

© Note

Whenever speed matters, developers are advised to use the lazy attribute _super categories () in-
stead of calling this method.

class sage.categories.category.CategoryWithParameters

Bases: category
A parametrized category whose parent/element classes depend only on its super categories.

Many categories in Sage are parametrized, like C = Algebras (K) which takes a base ring as parameter. In
many cases, however, the operations provided by C in the parent class and element class depend only on the su-
per categories of C. For example, the vector space operations are provided if and only if K is a field, since vec-
torSpaces (K) is a super category of C only in that case. In such cases, and as an optimization (see Issue #11935),
we want to use the same parent and element class for all fields. This is the purpose of this abstract class.

Currently, JoinCategory, Category_over_base and Bimodules inherit from this class.

EXAMPLES:

-

sage: Cl = Algebras (GF (5))

sage: C2 = Algebras (GF (3))

sage: C3 = Algebras(ZZ)

sage: from sage.categories.category import CategoryWithParameters
sage: isinstance(Cl, CategoryWithParameters)

True

sage: Cl.parent_class is C2.parent_class

True

sage: Cl.parent_class is C3.parent_class

False

>>> from sage.all import *

>>> Cl = Algebras (GF (Integer (5)))

>>> C2 = Algebras (GF (Integer(3)))

>>> C3 = Algebras (zZ2)

>>> from sage.categories.category import CategoryWithParameters
>>> isinstance (Cl, CategoryWithParameters)

True

>>> Cl.parent_class is C2.parent_class

True

>>> Cl.parent_class is C3.parent_class

False
.

Category._make_named_class (name, method_provider, cache=False, picklable=True)

Construction of the parent/element/... class of self.
INPUT:

* name - string; the name of the class as an attribute of self (e.g. “parent_class”)
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* method_provider — string; the name of an attribute of self that provides methods for the new class
(in addition to those coming from the super categories, e.g. “ParentMethods”)

* cache—booleanor ignore_reduction (default: False) (passed down to dynamic_class; for internal
use only)

* picklable —boolean (default: True)
ASSUMPTION:
It is assumed that this method is only called from a lazy attribute whose name coincides with the given name.
OUTPUT:

A dynamic class with bases given by the corresponding named classes of sel£’s super_categories, and meth-
ods taken from the class getattr (self, method_provider).

© Note

¢ In this default implementation, the reduction data of the named class makes it depend on self.
Since the result is going to be stored in a lazy attribute of self anyway, we may as well disable the
caching in dynamic_class (hence the default value cache=False).

* CategoryliithParameters overrides this method so that the same parent/element/... classes
can be shared between closely related categories.

» The bases of the named class may also contain the named classes of some indirect super categories,
accordingto _super categories_for classes (). Thisis to guarantee that Python will build
consistent method resolution orders. For background, see sage .misc.c3_controlled.

> See also

CategoryWithParameters._make_named_class ()

EXAMPLES:

sage: PC = Rings () ._make_named_class ("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
sage: type (PC)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
sage: PC._ _bases_
(<class 'sage.categories.rngs.Rngs.parent_class'>,
<class 'sage.categories.semirings.Semirings.parent_class'>)

>>> from sage.all import *
>>> PC = Rings () ._make_named_class ("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
>>> type (PC)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
>>> PC._ bases
(<class 'sage.categories.rngs.Rngs.parent_class'>,
<class 'sage.categories.semirings.Semirings.parent_class'>)

Note that, by default, the result is not cached:
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sage: PC is Rings () ._make_named_class ("parent_class", "ParentMethods")
False

.

>>> from sage.all import *
>>> PC is Rings () ._make_named_class ("parent_class", "ParentMethods")
False

Indeed this method is only meant to construct lazy attributes like parent_class which already handle this
caching:

sage: Rings () .parent_class
<class 'sage.categories.rings.Rings.parent_class'>

>>> from sage.all import *
>>> Rings () .parent_class
<class 'sage.categories.rings.Rings.parent_class'>

Reduction for pickling also assumes the existence of this lazy attribute:

sage: PC._reduction

(<built-in function getattr>, (Category of rings, 'parent_class'))
sage: loads (dumps (PC)) is Rings () .parent_class

True

>>> from sage.all import *

>>> PC._reduction

(<built-in function getattr>, (Category of rings, 'parent_class'))
>>> loads (dumps (PC)) is Rings () .parent_class

True

class sage.categories.category.JoinCategory (super_categories, **kwds)

Bases: categoryWithParameters
A class for joins of several categories. Do not use directly; see Category.join instead.

EXAMPLES:

sage: from sage.categories.category import JoinCategory

sage: J = JoinCategory ((Groups (), CommutativeAdditiveMonoids())); J

Join of Category of groups and Category of commutative additive monoids
sage: J.super_categories ()

[Category of groups, Category of commutative additive monoids]

sage: J.all_super_categories (proper=True)

[Category of groups, ..., Category of magmas,

Category of commutative additive monoids, ..., Category of additive magmas,
Category of sets, Category of sets with partial maps, Category of objects]

.

-
>>> from sage.all import *

>>> from sage.categories.category import JoinCategory

>>> J = JoinCategory ((Groups (), CommutativeAdditiveMonoids())); J

Join of Category of groups and Category of commutative additive monoids
>>> J.super_categories ()

[Category of groups, Category of commutative additive monoids]

(continues on next page)
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(continued from previous page)
>>> J.all_super_categories (proper=True)
[Category of groups, ..., Category of magmas,
Category of commutative additive monoids, ..., Category of additive magmas,
Category of sets, Category of sets with partial maps, Category of objects]

By Issue #11935, join categories and categories over base rings inherit from CategorywithParameters. This
allows for sharing parent and element classes between similar categories. For example, since group algebras belong
to a join category and since the underlying implementation is the same for all finite fields, we have:

sage: # needs sage.groups sage.rings.finite_rings

sage: G = SymmetricGroup (10)

sage: A3 = G.algebra(GF (3))

sage: A5 = G.algebra (GF (5))

sage: type (A3.category())

<class 'sage.categories.category.JoinCategory_with_category'>
sage: type (A3) is type (AD)

True

.
>>> from sage.all import *

>>> # needs sage.groups sage.rings.finite_rings

>>> G = SymmetricGroup (Integer (10))

>>> A3 = G.algebra (GF (Integer (3)))

>>> A5 = G.algebra (GF (Integer (5)))

>>> type (A3.category())

<class 'sage.categories.category.JoinCategory_with_category'>
>>> type (A3) is type (AD)

True

Category._repr_object_names ()

Return the name of the objects of this category.

EXAMPLES:

sage: FiniteGroups () ._repr_object_names ()
'finite groups'

sage: AlgebrasWithBasis (QQ) ._repr_object_names ()
'algebras with basis over Rational Field'

>>> from sage.all import *

>>> FiniteGroups () ._repr_object_names ()
'finite groups'

>>> AlgebrasWithBasis (QQ) ._repr_object_names ()

'algebras with basis over Rational Field'

Category._repr_ ()

Return the print representation of this category.

EXAMPLES:

sage: Sets () # indirect doctest
Category of sets
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>>> from sage.all import *
>>> Sets () # indirect doctest
Category of sets

Category._without_axioms (named=False)

Return the category without the axioms that have been added to create it.
INPUT:

¢ named — boolean (default: False)

& Todo

Improve this explanation.

If named is True, then this stops at the first category that has an explicit name of its own.

category_with_axiom.CategoryWithAxiom._without_axioms ()

EXAMPLES:

See

sage: Sets()._without_axioms ()

Category of sets

sage: Semigroups () ._without_axioms ()

Category of magmas

sage: Algebras (QQ) .Commutative () .WithBasis () ._without_axioms ()

Category of magmatic algebras over Rational Field

sage: Algebras (QQ) .Commutative () .WithBasis () ._without_axioms (named=True)
Category of algebras over Rational Field

>>> from sage.all import *

>>> Sets()._without_axioms ()

Category of sets

>>> Semigroups () ._without_axioms ()

Category of magmas

>>> Algebras (QQ) .Commutative () .WithBasis () ._without_axioms ()

Category of magmatic algebras over Rational Field

>>> Algebras (QQ) .Commutative () .WithBasis () ._without_axioms (named=True)

Category of algebras over Rational Field

additional_structure ()

Return None.

Indeed, a join category defines no additional structure.

> See also

Category.additional_structure ()

EXAMPLES:

[sage: Modules (ZZ) .additional_structure ()
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>>> from sage.all import *
>>> Modules (ZZ) .additional_structure ()

is_subcategory (C)

Check whether this join category is subcategory of another category C.
EXAMPLES:

sage: Category.join([Rings () ,Modules (QQ)]) .is_subcategory (Category.
—Jjoin ([Rngs () ,Bimodules (QQ,Q0) 1))
True

>>> from sage.all import *

>>> Category.join ([Rings (),Modules (QQ)]) .is_subcategory (Category.join ([Rngs (),
—Bimodules (QQ,0Q) 1))
True

super_categories ()

Return the immediate super categories, as per Category. super_categories ().

EXAMPLES:

sage: from sage.categories.category import JoinCategory
sage: JoinCategory ((Semigroups (), FiniteEnumeratedSets())) .super_categories/()
[Category of semigroups, Category of finite enumerated sets]

>>> from sage.all import *

>>> from sage.categories.category import JoinCategory

>>> JoinCategory ((Semigroups (), FiniteEnumeratedSets())) .super_categories|()
[Category of semigroups, Category of finite enumerated sets]

sage.categories.category.category_graph (categories=None)
Return the graph of the categories in Sage.

INPUT:
* categories — list (or iterable) of categories

If categories is specified, then the graph contains the mentioned categories together with all their super cat-
egories. Otherwise the graph contains (an instance of) each category in sage.categories.all (e.g. Alge-
bras (QQ) for algebras).

For readability, the names of the category are shortened.

2 Todo

Further remove the base ring (see also Issue #15801).

EXAMPLES:

sage: G = sage.categories.category.category_graph (categories=[Groups()]) #o
—needs sage.graphs
sage: G.vertices (sort=True) #
—needs sage.graphs

(continues on next page)
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(continued from previous page)

["groups', 'inverse unital magmas', 'magmas', 'monoids', 'objects',
'semigroups', 'sets', 'sets with partial maps', 'unital magmas']
sage: G.plot () #_

—needs sage.graphs sage.plot
Graphics object consisting of 20 graphics primitives

sage: sage.categories.category.category_graph() .plot () #o
—needs sage.graphs sage.groups sage.plot

Graphics object consisting of ... graphics primitives
.

>>> from sage.all import *

>>> G = sage.categories.category.category_graph (categories=[Groups()]) #o
—needs sage.graphs

>>> G.vertices (sort=True) #
—needs sage.graphs

["groups', 'inverse unital magmas', 'magmas', 'monoids', 'objects',
'semigroups', 'sets', 'sets with partial maps', 'unital magmas']
>>> G.plot () #o

—needs sage.graphs sage.plot
Graphics object consisting of 20 graphics primitives

>>> sage.categories.category.category_graph () .plot () #o
—needs sage.graphs sage.groups sage.plot

Graphics object consisting of ... graphics primitives
.

sage.categories.category.category_sample ()

Return a sample of categories.

It is constructed by looking for all concrete category classes declared in sage.categories.all, calling
Category.an_instance () on those and taking all their super categories.

EXAMPLES:

sage: from sage.categories.category import category_sample

sage: sorted(category_sample (), key=str) #o
—needs sage.groups

[Category of Coxeter groups,

Category of Dedekind domains,

Category of G-sets for Symmetric group of order 8! as a permutation group,
Category of Hecke modules over Rational Field,

Category of Hopf algebras over Rational Field,

Category of Hopf algebras with basis over Rational Field,

Category of Jacobians over Rational Field,

Category of Lie algebras over Rational Field,

Category of Weyl groups,

Category of abelian varieties over Rational Field,

Category of additive magmas, ...,

Category of fields, ...,

Category of graded Hopf algebras with basis over Rational Field, ...,
Category of modular abelian varieties over Rational Field, ...,

Category of simplicial complexes, ...,

Category of vector spaces over Rational Field,
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-
>>> from sage.all import *

>>> from sage.categories.category import category_sample

>>> sorted(category_sample (), key=str) #
—needs sage.groups

[Category of Coxeter groups,

Category of Dedekind domains,

Category of G-sets for Symmetric group of order 8! as a permutation group,
Category of Hecke modules over Rational Field,

Category of Hopf algebras over Rational Field,

Category of Hopf algebras with basis over Rational Field,

Category of Jacobians over Rational Field,

Category of Lie algebras over Rational Field,

Category of Weyl groups,

Category of abelian varieties over Rational Field,

Category of additive magmas, ...,

Category of fields, ...,

Category of graded Hopf algebras with basis over Rational Field, ...,
Category of modular abelian varieties over Rational Field, ...,
Category of simplicial complexes, ...,

Category of vector spaces over Rational Field,

sage.categories.category.is_Category (x)

Return True if x is a category.

EXAMPLES:

sage: sage.categories.category.is_Category (CommutativeAdditiveSemigroups())
doctest:warning. ..

DeprecationWarning: the function is_Category is deprecated;

use 'isinstance(..., Category)' instead

See https://github.com/sagemath/sage/issues/37922 for details.

True

sage: sage.categories.category.is_Category (ZZ)

False

g
>>> from sage.all import *

>>> sage.categories.category.is_Category (CommutativeAdditiveSemigroups () )
doctest:warning...

DeprecationWarning: the function is_Category is deprecated;

use 'isinstance(..., Category)' instead

See https://github.com/sagemath/sage/issues/37922 for details.

True

>>> sage.categories.category.is_Category (ZZ)

False

2.3 Axioms

This documentation covers how to implement axioms and proceeds with an overview of the implementation of the axiom
infrastructure. It assumes that the reader is familiar with the category primer, and in particular its section about axioms.

2.3. Axioms 107



Category Framework, Release 10.6

2.3.1 Implementing axioms

Simple case involving a single predefined axiom

Suppose that one wants to provide code (and documentation, tests, ...) for the objects of some existing category Cs ()
that satisfy some predefined axiom A.

The first step is to open the hood and check whether there already exists a class implementing the category Cs () .A ().
For example, taking Cs=Semigroups and the Finite axiom, there already exists a class for the category of finite
semigroups:

sage: Semigroups () .Finite ()

Category of finite semigroups

sage: type (Semigroups () .Finite())

<class 'sage.categories.finite_semigroups.FiniteSemigroups_with_category'>

>>> from sage.all import *

>>> Semigroups () .Finite ()

Category of finite semigroups

>>> type (Semigroups () .Finite())

<class 'sage.categories.finite_semigroups.FiniteSemigroups_with_category'>

In this case, we say that the category of semigroups implements the axiom Finite, and code about finite semigroups
should go in the class FiniteSemigroups (or, as usual, in its nested classes ParentMethods, ElementMethods, and
SO on).

On the other hand, there is no class for the category of infinite semigroups:

sage: Semigroups () .Infinite()

Category of infinite semigroups

sage: type (Semigroups () .Infinite())

<class 'sage.categories.category.JoinCategory_with_category'>

>>> from sage.all import *

>>> Semigroups () .Infinite ()

Category of infinite semigroups

>>> type (Semigroups () .Infinite())

<class 'sage.categories.category.JoinCategory_with_category'>

This category is indeed just constructed as the intersection of the categories of semigroups and of infinite sets respectively:

sage: Semigroups () .Infinite () .super_categories()
[Category of semigroups, Category of infinite sets]

>>> from sage.all import *
>>> Semigroups () .Infinite () .super_categories|()
[Category of semigroups, Category of infinite sets]

In this case, one needs to create a new class to implement the axiom Infinite for this category. This boils down to
adding a nested class Semigroups.Infinite inheriting from CategorywithAxiom.

In the following example, we implement a category Cs, with a subcategory for the objects satisfying the Finite axiom
defined in the super category Sets (we will see later on how to define new axioms):
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sage: from sage.categories.category with_axiom import CategoryWithAxiom
sage: class Cs (Category) :

e def super_categories(self) :

el return [Sets()]

ceaat class Finite (CategoryWithAxiom) :

ceelt class ParentMethods:

e def foo(self):

e print ("I am a method on finite C's")

>>> from sage.all import *
>>> from sage.categories.category_with_axiom import CategoryWithAxiom
>>> class Cs (Category) :
def super_categories (self):
return [Sets()]
class Finite (CategoryWithAxiom) :
class ParentMethods:
def foo(self):
print ("I am a method on finite C's")

sage: Cs () .Finite ()

Category of finite cs

sage: Cs () .Finite () .super_categories|()

[Category of finite sets, Category of cs]

sage: Cs () .Finite () .all_super_categories()
[Category of finite cs, Category of finite sets,
Category of cs, Category of sets, ...]

sage: Cs () .Finite () .axioms ()

frozenset ({'Finite'})

>>> from sage.all import *

>>> Cs () .Finite ()

Category of finite cs

>>> Cs () .Finite () .super_categories ()

[Category of finite sets, Category of cs]

>>> Cs () .Finite () .all_super_categories|()
[Category of finite cs, Category of finite sets,
Category of cs, Category of sets, ...]

>>> Cs () .Finite () .axioms ()

frozenset ({'Finite'})

Now a parent declared in the category Cs () .Finite () inherits from all the methods of finite sets and of finite C’s, as
desired:

sage: P = Parent (category=Cs () .Finite())

sage: P.is_finite () # Provided by Sets.Finite.ParentMethods
True
sage: P.foo() # Provided by Cs.Finite.ParentMethods

I am a method on finite C's

>>> from sage.all import *
>>> P = Parent (category=Cs () .Finite())
>>> P.is_finite () # Provided by Sets.Finite.ParentMethods

(continues on next page)
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True

(continued from previous page)

>>> P.foo() # Provided by Cs.Finite.ParentMethods

I am a method on finite C's

© Note

This follows the same idiom as for Covariant Functorial Constructions.

From an object oriented point of view, any subcategory Cs () of Sets inherits a Finite method. Usually Cs
could complement this method by overriding it with a method Cs.Finite which would make a super call to
Sets.Finite and then do extra stuff.

In the above example, Cs also wants to complement Sets.Finite, though not by doing more stuff, but by
providing it with an additional mixin class containing the code for finite Cs. To keep the analogy, this mixin
classistobe putin Cs.Finite.

By defining the axiom Finite, Set s fixes the semantic of Cs.Finite () for all its subcategories Cs: namely
“the category of Cs which are finite as sets”. Hence, for example, Modules.Free.Finite cannot be used
to model the category of free modules of finite rank, even though their traditional name “finite free modules”
might suggest it.

It may come as a surprise that we can actually use the same name Finite for the mixin class and for the
method defining the axiom; indeed, by default a class does not have a binding behavior and would completely
override the method. See the section Defining a new axiom for details and the rationale behind it.

An alternative would have been to give another name to the mixin class, like FiniteCategory. However this
would have resulted in more namespace pollution, whereas using Finite is already clear, explicit, and easier
to remember.

Under the hood, the category Cs () .Finite () is aware that it has been constructed from the category Cs ()
by adding the axiom Finite:

sage: Cs () .Finite () .base_category ()
Category of cs

sage: Cs() .Finite () ._axiom

'Finite'

>>> from sage.all import *

>>> Cs () .Finite () .base_category ()
Category of cs

>>> Cs () .Finite () ._axiom

'Finite'

Over time, the nested class Cs.Finite may become large and too cumbersome to keep as a nested subclass of Cs. Or
the category with axiom may have a name of its own in the literature, like semigroups rather than associative magmas, or
fields rather than commutative division rings. In this case, the category with axiom can be put elsewhere, typically in a

separate file, with just a link from Cs:

sage: class Cs (Category) :

e def super_categories (self) :
500082 return [Sets ()]

sage: class FiniteCs (CategoryWithAxiom) :
et class ParentMethods:

e def foo(self):

(continues on next page)
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e print ("I am a method on finite C's")
sage: Cs.Finite = FiniteCs

sage: Cs () .Finite()

Category of finite cs

(continued from previous page)

>>> from sage.all import *
>>> class Cs (Category) :
def super_categories(self):
. return [Sets ()]
>>> class FiniteCs (CategoryWithAxiom) :
class ParentMethods:
def foo(self):
print ("I am a method on finite C's")
>>> Cs.Finite = FiniteCs
>>> Cs () .Finite()
Category of finite cs

For a real example, see the code of the class FiniteGroups and the link to it in Groups. Note that the link is imple-
mented using LazyImport; this is highly recommended: it makes sure that 7initeGroups is imported after Groups
it depends upon, and makes it explicit that the class Groups can be imported and is fully functional without importing

FiniteGroups.

© Note

Some categories with axioms are created upon Sage’s startup.

In such a case, one needs to pass the

at_startup=True option to LazyImport, in order to quiet the warning about that lazy import being resolved
upon startup. See for example Sets.Finite.

This is undoubtedly a code smell. Nevertheless, it is preferable to stick to lazy imports, first to resolve the import order
properly, and more importantly as a reminder that the category would be best not constructed upon Sage’s startup.
This is to spur developers to reduce the number of parents (and therefore categories) that are constructed upon startup.
Each at_startup=True that will be removed will be a measure of progress in this direction.

© Note

In principle, due to a limitation of LazyImport with nested classes (see Issue #15648), one should pass the option
as_name t0o LazyImport:

Finite = LazyImport ('sage.categories.finite_groups', 'FiniteGroups',
as_name='Finite')

in order to prevent Groups.Finite to keep on reimporting FiniteGroups.

Given that passing this option introduces some redundancy and is error prone, the axiom infrastructure includes a
little workaround which makes the as_name unnecessary in this case.

Making the category with axiom directly callable

If desired, a category with axiom can be constructed directly through its class rather than through its base category:
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sage: Semigroups ()

Category of semigroups

sage: Semigroups () is Magmas () .Associative ()
True

sage: FiniteGroups ()

Category of finite groups

sage: FiniteGroups() is Groups () .Finite()
True

>>> from sage.all import *

>>> Semigroups ()

Category of semigroups

>>> Semigroups () is Magmas () .Associative ()
True

>>> FiniteGroups ()

Category of finite groups

>>> FiniteGroups () is Groups () .Finite ()
True

For this notation to work, the class semigroups needs to be aware of the base category class (here, Magmas) and of the
axiom (here, Associative):

sage: Semigroups._base_category_class_and_axiom

(<class 'sage.categories.magmas.Magmas'>, 'Associative')

sage: Fields._base_category_class_and_axiom

(<class 'sage.categories.division_rings.DivisionRings'>, 'Commutative')

sage: FiniteGroups._base_category_class_and_axiom

(<class 'sage.categories.groups.Groups'>, 'Finite')

sage: FiniteDimensionalAlgebrasWithBasis._base_category_class_and_axiom

(<class 'sage.categories.algebras_with_basis.AlgebrasWithBasis'>, 'FiniteDimensional')

>>> from sage.all import *

>>> Semigroups._base_category_class_and_axiom

(<class 'sage.categories.magmas.Magmas'>, 'Associative')

>>> Fields._base_category_class_and_axiom

(<class 'sage.categories.division_rings.DivisionRings'>, 'Commutative')

>>> FiniteGroups._base_category_class_and_axiom

(<class 'sage.categories.groups.Groups'>, 'Finite')

>>> FiniteDimensionalAlgebrasWithBasis._base_category_class_and_axiom

(<class 'sage.categories.algebras_with_basis.AlgebrasWithBasis'>, 'FiniteDimensional')

In our example, the attribute _base_category_class_and_axiom was set upon calling Cs () .Finite (), which
makes the notation seemingly work:

sage: FiniteCs ()

Category of finite cs

sage: FiniteCs._base_category_class_and_axiom
(<class '__main__ .Cs'>, 'Finite')

sage: FiniteCs._base_category_class_and_axiom_origin
'set by _ _classget_ '

112 Chapter 2. The Sage Category Framework




Category Framework, Release 10.6

>>> from sage.all import *

>>> FiniteCs ()

Category of finite cs

>>> FiniteCs._base_category_class_and_axiom
(<class '__main__.Cs'>, 'Finite'")

>>> FiniteCs._base_category_class_and_axiom_origin
'set by _ _classget_ '

But calling FiniteCs () right after defining the class would have failed (try it!). In general, one needs to set the attribute
explicitly:

sage: class FiniteCs (CategoryWithAxiom) :

e _base_category_class_and_axiom = (Cs, 'Finite')
50008 class ParentMethods:

S50 a8 def foo(self):

28005 print ("I am a method on finite C's")

>>> from sage.all import *
>>> class FiniteCs (CategoryWithAxiom) :
_base_category_class_and_axiom = (Cs, 'Finite')
class ParentMethods:
def foo(self):
print ("I am a method on finite C's")

Having to set explicitly this link back from FiniteCs to Cs introduces redundancy in the code. It would therefore be
desirable to have the infrastructure set the link automatically instead (a difficulty is to achieve this while supporting lazy
imported categories with axiom).

As a first step, the link is set automatically upon accessing the class from the base category class:

sage: Algebras.WithBasis._base_category_class_and_axiom
(<class 'sage.categories.algebras.Algebras'>, 'WithBasis')
sage: Algebras.WithBasis._base_category_class_and_axiom_origin
'set by __classget_ '

>>> from sage.all import *

>>> Algebras.WithBasis._base_category_class_and_axiom
(<class 'sage.categories.algebras.Algebras'>, 'WithBasis')
>>> Algebras.WithBasis._base_category_class_and_axiom_origin
'set by __classget_ '

Hence, for whatever this notation is worth, one can currently do:

sage: Algebras.WithBasis (QQ)
Category of algebras with basis over Rational Field

>>> from sage.all import *
>>> Algebras.WithBasis (QQ)
Category of algebras with basis over Rational Field

We don’t recommend using syntax like Algebras.WithBasis (QQ), as it may eventually be deprecated.

As a second step, Sage tries some obvious heuristics to deduce the link from the name of the category with axiom (see
base_category_class_and_axiom () for the details). This typically covers the following examples:
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sage: FiniteCoxeterGroups ()

Category of finite Coxeter groups

sage: FiniteCoxeterGroups () is CoxeterGroups () .Finite ()

True

sage: FiniteCoxeterGroups._base_category_class_and_axiom_origin
'deduced by base_category_class_and_axiom'

sage: FiniteDimensionalAlgebrasWithBasis (QQ)

Category of finite dimensional algebras with basis over Rational Field

sage: FiniteDimensionalAlgebrasWithBasis (QQ) is Algebras (QQ) .FiniteDimensional () .
—WithBasis ()

True

>>> from sage.all import *

>>> FiniteCoxeterGroups ()

Category of finite Coxeter groups

>>> FiniteCoxeterGroups () is CoxeterGroups () .Finite ()

True

>>> FiniteCoxeterGroups._base_category_class_and_axiom_origin
'deduced by base_category_class_and_axiom'

>>> FiniteDimensionalAlgebrasWithBasis (QQ)

Category of finite dimensional algebras with basis over Rational Field

>>> FiniteDimensionalAlgebrasWithBasis (QQ) is Algebras (QQ) .FiniteDimensional () .
—WithBasis ()

True

If the heuristic succeeds, the result is guaranteed to be correct. If it fails, typically because the category has a name of
its own like Fie1ds, the attribute _base_category_class_and_axiom should be set explicitly. For more examples,
see the code of the classes Semigroups or Fields.

© Note

When printing out a category with axiom, the heuristic determines whether a category has a name of its own by
checking out how _base_category_class_and_axiom was set:

sage: Fields._base_category_class_and_axiom_origin
'hardcoded'

>>> from sage.all import *
>>> Fields._base_category_class_and_axiom_origin
'hardcoded’

SeeCategoryWithAXiom.fwithoutfaXioms(),CategoryWithAXiom.7repr;object7namesﬁstatic(L

In our running example FiniteCs, Sage failed to deduce automatically the base category class and axiom because the
class Cs is not in the standard location sage.categories.cs.

Design discussion

The above deduction, based on names, is undoubtedly inelegant. But it’s safe (either the result is guaranteed to be
correct, or an error is raised), it saves on some redundant information, and it is only used for the simple shorthands
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like FiniteGroups () for Groups () .Finite (). Finally, most if not all of these shorthands are likely to eventually
disappear (see Issue #15741 and the related discussion in the primer).

Defining a new axiom

We describe now how to define a new axiom. The first step is to figure out the largest category where the axiom makes
sense. For example Sets for Finite, Magmas for Associative, or Modules for FiniteDimensional. Here we
define the axiom Green for the category Cs and its subcategories:

sage: from sage.categories.category_ with_axiom import CategoryWithAxiom
sage: class Cs (Category) :

et def super_categories (self) :

e return [Sets ()]

ceat class SubcategoryMethods:

e def Green(self):

ceat '<documentation of the axiom Green>'
e return self._with_axiom("Green")

et class Green (CategoryWithAxiom) :

ceeat class ParentMethods:

e def foo(self):

e print ("I am a method on green C's")

>>> from sage.all import *
>>> from sage.categories.category_with_axiom import CategoryWithAxiom
>>> class Cs (Category) :
def super_categories(self):
return [Sets()]
class SubcategoryMethods:
def Green(self):
'<documentation of the axiom Green>'
return self._with_axiom("Green")
class Green (CategoryWithAxiom) :
class ParentMethods:
def foo(self):
print ("I am a method on green C's")

With the current implementation, the name of the axiom must also be added to a global container:

sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: all_axioms += ("Green",)

>>> from sage.all import *
>>> all_axioms = sage.categories.category_with_axiom.all_axioms
>>> all_axioms += ("Green",)

We can now use the axiom as usual:

sage: Cs () .Green()
Category of green cs

sage: P = Parent (category=Cs () .Green())
sage: P.foo()
I am a method on green C's
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>>> from sage.all import *
>>> Cs () .Green ()
Category of green cs

>>> P = Parent (category=Cs () .Green())
>>> P.foo ()
I am a method on green C's

Compared with our first example, the only newcomer is the method . Green () that can be used by any subcategory Ds ()
of Cs () to add the axiom Green. Note that the expression Ds () . Green always evaluates to this method, regardless of
whether Ds has a nested class Ds . Green or not (an implementation detail):

sage: Cs () .Green
<bound method Cs.SubcategoryMethods.Green of Category of cs>

>>> from sage.all import *
>>> Cs () .Green

<bound method Cs.SubcategoryMethods.Green of Category of cs>

Thanks to this feature (implemented in CategoryWithAxiom. _classget__ ()), the user is systematically referred
to the documentation of this method when doing introspection on Ds () . Green:

sage: C = Cs{()
sage: C.Greeni # not tested
sage: Cs() .Green.__doc

'<documentation of the axiom Green>'

>>> from sage.all import *

>>> C = Cs|()
>>> C.Greeni # not tested
>>> Cs () .Green. doc

'<documentation of the axiom Green>'

It is therefore the natural spot for the documentation of the axiom.

O Note

The presence of the nested class Green in Cs is currently mandatory even if it is empty.

& Todo

Specify whether or not one should systematically use @cached_method in the definition of the axiom. And make sure
all the definition of axioms in Sage are consistent in this respect!

& Todo

We could possibly define an @axiom decorator? This could hide two little implementation details: whether or not to
make the method a cached method, and the call to _with_axiom(...) under the hood. It could do possibly do some
more magic. The gain is not obvious though.
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© Note

all_axioms is only used marginally, for sanity checks and when trying to derive automatically the base category
class. The order of the axioms in this tuple also controls the order in which they appear when printing out categories
with axioms (see CategoryWithAxiom._repr_object_names_static()).

During a Sage session, new axioms should only be added at the end of all_axioms, as above, so as to not break
the cache of axioms_rank (). Otherwise, they can be inserted statically anywhere in the tuple. For axioms de-
fined within the Sage library, the name is best inserted by editing directly the definition of all_axioms in sage.
categories.category with_axiom.

Design note

Let us state again that, unlike what the existence of all_axioms might suggest, the definition of an axiom is local
to a category and its subcategories. In particular, two independent categories Cs () and Ds () can very well define
axioms with the same name and different semantics. As long as the two hierarchies of subcategories don’t intersect,
this is not a problem. And if they do intersect naturally (that is if one is likely to create a parent belonging to both
categories), this probably means that the categories Cs and Ds are about related enough areas of mathematics that one
should clear the ambiguity by having either the same semantic or different names.

This caveat is no different from that of name clashes in hierarchy of classes involving multiple inheritance.

& Todo

Explore ways to get rid of this global all_axioms tuple, and/or have automatic registration there, and/or having a
register_axiom(...) method.

Special case: defining an axiom depending on several categories

In some cases, the largest category where the axiom makes sense is the intersection of two categories. This is typically the
case for axioms specifying compatibility conditions between two otherwise unrelated operations, like Distributive
which specifies a compatibility between * and +. Ideally, we would want the Distributive axiom to be defined by:

sage: Magmas () & AdditiveMagmas ()
Join of Category of magmas and Category of additive magmas

>>> from sage.all import *
>>> Magmas () & AdditiveMagmas ()
Join of Category of magmas and Category of additive magmas

The current infrastructure does not support this perfectly: indeed, defining an axiom for a category C' requires C' to have
a class of its own; hence a JoinCategory as above won’t do; we need to implement a new class like MagmasAndad-
ditiveMagmas; furthermore, we cannot yet model the fact that MagmasAndAdditiveMagmas () is the intersection of
Magmas () and AdditiveMagmas () rather than a mere subcategory:

sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas

sage: Magmas () & AdditiveMagmas () is MagmasAndAdditiveMagmas ()
False
sage: Magmas () & AdditiveMagmas () # todo: not implemented

Category of magmas and additive magmas
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>>> from sage.all import *

>>> from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
>>> Magmas () & AdditiveMagmas () is MagmasAndAdditiveMagmas ()

False

>>> Magmas () & AdditiveMagmas () # todo: not implemented

Category of magmas and additive magmas

Still, there is a workaround to get the natural notations:

sage: (Magmas () & AdditiveMagmas()) .Distributive ()

Category of distributive magmas and additive magmas

sage: (Monoids () & CommutativeAdditiveGroups()) .Distributive ()
Category of rings

>>> from sage.all import *

>>> (Magmas () & AdditiveMagmas()) .Distributive ()

Category of distributive magmas and additive magmas

>>> (Monoids () & CommutativeAdditiveGroups()) .Distributive ()
Category of rings

The trick is to define Distributive as usual in MagmasAndAdditiveMagmas, and to add a method Magmas.
SubcategoryMethods.Distributive () which checks that self is a subcategory of both Magmas () and Addi-
tiveMagmas (), complains if not, and otherwise takes the intersection of sel f with MagmasAndAdditiveMagmas ()
before calling Distributive.

The downsides of this workaround are:
* Creation of an otherwise empty class MagmasAndAdditiveMagmas.

* Pollution of the namespace of Magmas () (and subcategories like Groups () ) with a method that is irrelevant (but
safely complains if called).

* C._with_axiom('Distributive"') is not strictly equivalent to C.Distributive (), which can be unpleas-
antly surprising:

sage: (Monoids() & CommutativeAdditiveGroups()) .Distributive ()
Category of rings

sage: (Monoids () & CommutativeAdditiveGroups())._with_axiom('Distributive')

Join of Category of monoids and Category of commutative additive groups
.

-
>>> from sage.all import *

>>> (Monoids () & CommutativeAdditiveGroups()) .Distributive ()
Category of rings

>>> (Monoids () & CommutativeAdditiveGroups())._with_axiom('Distributive')

Join of Category of monoids and Category of commutative additive groups
.

& Todo

Other categories that would be better implemented via an axiom depending on a join category include:

e Algebras: defining an associative unital algebra as a ring and a module satisfying the suitable compatibil-
ity axiom between inner multiplication and multiplication by scalars (bilinearity). Of course this should be
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implemented at the level of MagmaticAlgebras, if not higher.

e Bialgebras: defining a bialgebra as an algebra and coalgebra where the coproduct is a morphism for the
product.

* Bimodules: defining a bimodule as a left and right module where the two actions commute.

2 Todo

* Design and implement an idiom for the definition of an axiom by a join category.

* Or support more advanced joins, through some hook or registration process to specify that a given category is
the intersection of two (or more) categories.

¢ Or at least improve the above workaround to avoid the last issue; this possibly could be achieved using a class
Magmas.Distributive withabitof _ classcall__ magic.

Handling multiple axioms, arborescence structure of the code

Prelude

Let us consider the category of magmas, together with two of its axioms, namely Associative and Unital. An
associative magma is a semigroup and a unital semigroup is a monoid. We have also seen that axioms commute:

sage: Magmas () .Unital ()

Category of unital magmas

sage: Magmas () .Associative ()

Category of semigroups

sage: Magmas () .Associative () .Unital ()
Category of monoids

sage: Magmas () .Unital () .Associative ()
Category of monoids

>>> from sage.all import *

>>> Magmas () .Unital ()

Category of unital magmas

>>> Magmas () .Associative ()

Category of semigroups

>>> Magmas () .Associative () .Unital ()
Category of monoids

>>> Magmas () .Unital () .Associative ()
Category of monoids

At the level of the classes implementing these categories, the following comes as a general naturalization of the previous
section:

sage: Magmas.Unital

<class 'sage.categories.magmas.Magmas.Unital'>
sage: Magmas.Associlative

<class 'sage.categories.semigroups.Semigroups'>
sage: Magmas.Associative.Unital

<class 'sage.categories.monoids.Monoids'>
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>>> from sage.all import *

>>> Magmas.Unital

<class 'sage.categories.magmas.Magmas.Unital'>
>>> Magmas.Associative

<class 'sage.categories.semigroups.Semigroups'>
>>> Magmas.Associative.Unital

<class 'sage.categories.monoids.Monoids'>

However, the following may look suspicious at first:

sage: Magmas.Unital.Associative
Traceback (most recent call last):

AttributeError: type object 'Magmas.Unital' has no attribute 'Associative'...

>>> from sage.all import *
>>> Magmas.Unital.Associative
Traceback (most recent call last):

AttributeError: type object 'Magmas.Unital' has no attribute 'Associative'...

The purpose of this section is to explain the design of the code layout and the rationale for this mismatch.

Abstract model

As we have seen in the Primer, the objects of a category Cs () can usually satisfy, or not, many different axioms. Out
of all combinations of axioms, only a small number are relevant in practice, in the sense that we actually want to provide
features for the objects satisfying these axioms.

Therefore, in the context of the category class Cs, we want to provide the system with a collection (Dg)secs where each
S is a subset of the axioms and the corresponding Dy is a class for the subcategory of the objects of Cs () satisfying the
axioms in S. For example, if Cs () is the category of magmas, the pairs (S, Dg) would include:

{Associative} : Semigroups
{Associative, Unital} : Monoids

{Associative, Unital, Inverse}: Groups

{Associative, Commutative} : Commutative Semigroups
{Unital, Inverse} : Loops

Then, given a subset T" of axioms, we want the system to be able to select automatically the relevant classes (Dg)ses,scrs
and build from them a category for the objects of Cs satisfying the axioms in 7, together with its hierarchy of super
categories. If T is in the indexing set S, then the class of the resulting category is directly Dr:

sage: C = Magmas () .Unital () .Inverse () .Associative(); C
Category of groups

sage: type (C)

<class 'sage.categories.groups.Groups_with_category'>

>>> from sage.all import *

>>> C = Magmas () .Unital () .Inverse () .Associative(); C
Category of groups

>>> type (C)

<class 'sage.categories.groups.Groups_with_category'>
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Otherwise, we get a join category:

sage: C = Magmas () .Infinite() .Unital() .Associative(); C
Category of infinite monoids

sage: type (C)

<class 'sage.categories.category.JoinCategory_with_category'>
sage: C.super_categories/()

[Category of monoids, Category of infinite sets]

>>> from sage.all import *

>>> C = Magmas () .Infinite() .Unital () .Associative(); C
Category of infinite monoids

>>> type (C)

<class 'sage.categories.category.JoinCategory_with_category'>
>>> C.super_categories|()

[Category of monoids, Category of infinite sets]

Concrete model as an arborescence of nested classes

We further want the construction to be efficient and amenable to laziness. This led us to the following design decision:
the collection (Dg)ges of classes should be structured as an arborescence (or equivalently a rooted forest). The root is
Cs, corresponding to S = (). Any other class Dg should be the child of a single class Dg where S’ is obtained from S
by removing a single axiom A. Of course, Dg: and A are respectively the base category class and axiom of the category
with axiom Dg that we have met in the first section.

At this point, we urge the reader to explore the code of Magmas and DistributiveMagmasAndAdditiveMagmas and
see how the arborescence structure on the categories with axioms is reflected by the nesting of category classes.

Discussion of the design
Performance

Thanks to the arborescence structure on subsets of axioms, constructing the hierarchy of categories and computing inter-
sections can be made efficient with, roughly speaking, a linear/quadratic complexity in the size of the involved category
hierarchy multiplied by the number of axioms (see Section Algorithms). This is to be put in perspective with the manip-
ulation of arbitrary collections of subsets (aka boolean functions) which can easily raise NP-hard problems.

Furthermore, thanks to its locality, the algorithms can be made suitably lazy: in particular, only the involved category
classes need to be imported.

Flexibility

This design also brings in quite some flexibility, with the possibility to support features such as defining new axioms
depending on other axioms and deduction rules. See below.

Asymmetry

As we have seen at the beginning of this section, this design introduces an asymmetry. It’s not so bad in practice, since
in most practical cases, we want to work incrementally. It’s for example more natural to describe FiniteFields as
Fields with the axiom Finite rather than Magmas and AdditiveMagmas with all (or at least sufficiently many) of
the following axioms:

sage: sorted(Fields () .axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditivelInverse',
(continues on next page)
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'AdditiveUnital', 'Associative', 'Commutative', 'Distributive',
'Division', 'NoZeroDivisors', 'Unital']

>>> from sage.all import *

>>> sorted(Fields () .axioms ())

['AdditiveAssociative', 'AdditiveCommutative', 'AdditivelInverse',
'AdditiveUnital', 'Associative', 'Commutative', 'Distributive',
'Division', 'NoZeroDivisors', 'Unital']

The main limitation is that the infrastructure currently imposes to be incremental by steps of a single axiom.

In practice, among the roughly 60 categories with axioms that are currently implemented in Sage, most admitted a (rather)
natural choice of a base category and single axiom to add. For example, one usually thinks more naturally of a monoid
as a semigroup which is unital rather than as a unital magma which is associative. Modeling this asymmetry in the code
actually brings a bonus: it is used for printing out categories in a (heuristically) mathematician-friendly way:

sage: Magmas () .Commutative () .Associative ()
Category of commutative semigroups

>>> from sage.all import *
>>> Magmas () .Commutative () .Associative ()
Category of commutative semigroups

Only in a few cases is a choice made that feels mathematically arbitrary. This is essentially in the chain of
nested classes distributive _magmas_and_additive _magmas.DistributiveMagmasAndAdditiveMagmas.
AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative.

Placeholder classes

Given that we can only add a single axiom at a time when implementing a CategoryWithAxiom, Wwe
need to create a few category classes that are just placeholders. For the worst example, see the chain of
nested classes distributive _magmas_and_additive _magmas.DistributiveMagmasAndAdditiveMagmas.
AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative.

This is suboptimal, but fits within the scope of the axiom infrastructure which is to reduce a potentially exponential number
of placeholder category classes to just a couple.

Note also that, in the above example, it’s likely that some of the intermediate classes will grow to non placeholder ones,
as people will explore more weaker variants of rings.

Mismatch between the arborescence of nested classes and the hierarchy of categories

The fact that the hierarchy relation between categories is not reflected directly as a relation between the classes may sound
suspicious at first! However, as mentioned in the primer, this is actually a big selling point of the axioms infrastructure: by
calculating automatically the hierarchy relation between categories with axioms one avoids the nightmare of maintaining
it by hand. Instead, only a rather minimal number of links needs to be maintained in the code (one per category with
axiom).

Besides, with the flexibility introduced by runtime deduction rules (see below), the hierarchy of categories may depend on
the parameters of the categories and not just their class. So it’s fine to make it clear from the onset that the two relations
do not match.
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Evolutivity

At this point, the arborescence structure has to be hardcoded by hand with the annoyances we have seen. This does not
preclude, in a future iteration, to design and implement some idiom for categories with axioms that adds several axioms
at once to a base category; maybe some variation around:

class DistributiveMagmasAndAdditiveMagmas:

@category_with_axiom(
AdditiveAssociative,
AdditiveCommutative,
AdditiveUnital,
AdditiveInverse,
Associative)
def _(): return LazyImport ('sage.categories.rngs', 'Rngs', at_startup=True)

or:

register_axiom_category (DistributiveMagmasAndAdditiveMagmas,
{AdditiveAssociative,
AdditiveCommutative,
AdditiveUnital,
AdditiveInverse,
Associative},
'sage.categories.rngs', 'Rngs', at_startup=True)

The infrastructure would then be in charge of building the appropriate arborescence under the hood. Or rely on some
database (see discussion on Issue #10963, in particular at the end of comment 332).

Axioms defined upon other axioms

Sometimes an axiom can only be defined when some other axiom holds. For example, the axiom NoZeroDivisors only
makes sense if there is a zero, that is if the axiom AdditiveUnital holds. Hence, for the category MagmasAndAddi-
tiveMagmas, we consider in the abstract model only those subsets of axioms where the presence of NozZeroDivisors
implies that of AdditiveUnital. We also want the axiom to be only available if meaningful:

sage: Rings () .NoZeroDivisors ()

Category of domains

sage: Rings () .Commutative () .NoZeroDivisors ()
Category of integral domains

sage: Semirings () .NoZeroDivisors ()

Traceback (most recent call last):

AttributeError: 'Semirings_with_category' object has no attribute 'NoZeroDivisors'...

>>> from sage.all import *

>>> Rings () .NoZeroDivisors ()

Category of domains

>>> Rings () .Commutative () .NoZeroDivisors ()
Category of integral domains

>>> Semirings () .NoZeroDivisors ()

Traceback (most recent call last):

(continues on next page)
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AttributeError: 'Semirings_with_category' object has no attribute 'NoZeroDivisors'...

Concretely, this is to be implemented by defining the new axiom in the (SubcategoryMethods nested class of
the) appropriate category with axiom. For example the axiom NoZeroDivisors would be naturally defined in
magmas_and_additive_magmas.MagmasAndAdditiveMagmas.Distributive.AdditiveUnital

© Note

The axiom NoZeroDivisors is currently defined in Rings, by simple lack of need for the feature; it should be
lifted up as soon as relevant, that is when some code will be available for parents with no zero divisors that are not
necessarily rings.

Deduction rules

A similar situation is when an axiom A of a category Cs implies some other axiom B, with the same consequence as above
on the subsets of axioms appearing in the abstract model. For example, a division ring necessarily has no zero divisors:

sage: 'NoZeroDivisors' in Rings () .Division () .axioms ()
True

sage: 'NoZeroDivisors' in Rings () .axioms ()

False

>>> from sage.all import *

>>> 'NoZeroDivisors' in Rings () .Division () .axioms ()
True

>>> 'NoZeroDivisors' in Rings () .axioms ()

False

This deduction rule is implemented by the method Rings.Division.extra_super_categories():

sage: Rings () .Division () .extra_super_categories ()
(Category of domains,)

>>> from sage.all import *
>>> Rings () .Division () .extra_super_categories|()
(Category of domains,)

In general, this is to be implemented by a method Cs.A.extra_super_categories returninga tuple (Cs () .B(),),
or preferably (Ds () .B(),) where Ds is the category defining the axiom B.

This follows the same idiom as for deduction rules about functorial constructions

(see covariant_functorial_construction.CovariantConstructionCategory.
extra_super_categories()). For example, the fact that a Cartesian product of associative magmas
(i.e. of semigroups) is an associative magma is implemented in Semigroups.CartesianProducts.

extra_super_categories():

sage: Magmas () .Associative ()

Category of semigroups

sage: Magmas () .Associative () .CartesianProducts () .extra_super_categories()
[Category of semigroups]
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>>> from sage.all import *

>>> Magmas () .Associative ()

Category of semigroups

>>> Magmas () .Associative () .CartesianProducts () .extra_super_categories ()
[Category of semigroups]

Similarly, the fact that the algebra of a commutative magma is commutative is implemented in Magmas. Commutative.
Algebras.extra_super_categories():

sage: Magmas () .Commutative () .Algebras (QQ) .extra_super_categories ()
[Category of commutative magmas]

>>> from sage.all import *
>>> Magmas () .Commutative () .Algebras (QQ) .extra_super_categories ()
[Category of commutative magmas]

A Warning

In some situations this idiom is inapplicable as it would require to implement two classes for the same category. This
is the purpose of the next section.

Special case

In the previous examples, the deduction rule only had an influence on the super categories of the category with
axiom being constructed. For example, when constructing Rings () .Division(), the rule Rings.Division.
extra_super_categories () simply adds Rings () .NoZeroDivisors () as a super category thereof.

In some situations this idiom is inapplicable because a class for the category with axiom under construction already exists
elsewhere. Take for example Wedderburn’s theorem: any finite division ring is commutative, i.e. is a finite field. In other
words, DivisionRings () .Finite () coincides with Fields () .Finite ():

sage: DivisionRings () .Finite ()

Category of finite enumerated fields

sage: DivisionRings () .Finite() is Fields () .Finite()
True

>>> from sage.all import *

>>> DivisionRings () .Finite ()

Category of finite enumerated fields

>>> DivisionRings () .Finite () is Fields () .Finite ()
True

Therefore we cannot create a class DivisionRings.Finite tohold the desired ext ra_super_categories method,
because there is already a class for this category with axiom, namely Fields.Finite.

A natural idiom would be to have DivisionRings.Finite be a link to Fields.Finite (locally introducing an
undirected cycle in the arborescence of nested classes). It would be a bit tricky to implement though, since one would
need to detect, upon constructing DivisionRings () .Finite (), thatDivisionRings.Finiteisactually Fields.
Finite, in order to construct appropriately Fields () .Finite (); and reciprocally, upon computing the super cate-
gories of Fields () .Finite (), tonottry to add DivisionRings () .Finite () as a super category.

Instead the current idiom is to have a method DivisionRings.Finite_extra_super_categories which mimics
the behavior of the would-be DivisionRings.Finite.extra_super_categories
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sage: DivisionRings () .Finite_extra_super_categories ()
(Category of commutative magmas, )

>>> from sage.all import *
>>> DivisionRings () .Finite_extra_super_categories|()
(Category of commutative magmas, )

This idiom is admittedly rudimentary, but consistent with how mathematical facts specifying non trivial inclusion relations
between categories are implemented elsewhere in the various ext ra_super_categories methods of axiom categories
and covariant functorial constructions. Besides, it gives a natural spot (the docstring of the method) to document and test
the modeling of the mathematical fact. Finally, Wedderburn’s theorem is arguably a theorem about division rings (in the
context of division rings, finiteness implies commutativity) and therefore lives naturally in DivisionRings.

An alternative would be to implement the category of finite division rings (i.e. finite fields) in a class DivisionRings.
Finite rather than Fields.Finite:

sage: from sage.categories.category_ with_axiom import CategoryWithAxiom

sage: class MyDivisionRings (Category) :
et def super_categories (self) :
e return [Rings ()]

sage: class MyFields (Category) :
e def super_categories (self) :
e return [MyDivisionRings () ]

sage: class MyFiniteFields (CategoryWithAxiom) :

et _base_category_class_and_axiom = (MyDivisionRings, "Finite")
e def extra_super_categories(self): # Wedderburn's theorem
e return [MyFields ()]

sage: MyDivisionRings.Finite = MyFiniteFields

sage: MyDivisionRings () .Finite ()

Category of my finite fields

sage: MyFields () .Finite () is MyDivisionRings () .Finite ()
True

>>> from sage.all import *
>>> from sage.categories.category with_axiom import CategoryWithAxiom

>>> class MyDivisionRings (Category) :
def super_categories(self):
return [Rings ()]

>>> class MyFields (Category) :
def super_categories (self):
return [MyDivisionRings () ]

>>> class MyFiniteFields (CategoryWithAxiom) :
_base_category_class_and_axiom = (MyDivisionRings, "Finite")
def extra_super_categories(self): # Wedderburn's theorem
return [MyFields()]
(continues on next page)

126 Chapter 2. The Sage Category Framework




Category Framework, Release 10.6

(continued from previous page)

>>> MyDivisionRings.Finite = MyFiniteFields

>>> MyDivisionRings () .Finite ()

Category of my finite fields

>>> MyFields () .Finite () is MyDivisionRings () .Finite ()

True

In general, if several categories C1s (), C2s (), ... are mapped to the same category when applying some axiom A (that
iSCls().A() == C2s().A() == ...),then one should be careful to implement this category in a single class Cs.

A, and set up methods extra_super_categories or A_extra_super_categories methods as appropriate. Each
such method should return something like [C2s () ] and not [C2s () .A () ] for the latter would likely lead to an infinite
recursion.

Design discussion

Supporting similar deduction rules will be an important feature in the future, with quite a few occurrences already
implemented in upcoming issues. For the time being though there is a single occurrence of this idiom outside of the
tests. So this would be an easy thing to refactor after Issue #10963 if a better idiom is found.

Larger synthetic examples

We now consider some larger synthetic examples to check that the machinery works as expected. Let us start with a
category defining a bunch of axioms, using axiom () for conciseness (don’t do it for real axioms; they deserve a full
documentation!):

sage: from sage.categories.category_singleton import Category_singleton
sage: from sage.categories.category_with_axiom import axiom

sage: import sage.categories.category with_axiom

sage: all_axioms = sage.categories.category_with_axiom.all_axioms

sage: all_axioms += ("B","C","D","E","F")

sage: class As (Category_singleton) :
e def super_categories(self) :
return [Objects ()]
et class SubcategoryMethods:
e B = axiom("B")

= axiom("C"

axiom ("D"

0 om0 Q
Il

)
)
= axiom("E")
axiom ("EF"™)
e class B(CategoryWithAxiom) :
ceat pass
et class C(CategoryWithAxiom) :
ceaat pass
e class D (CategoryWithAxiom) :
ceat pass
e class E (CategoryWithAxiom) :
et pass
(continues on next page)
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: class F (CategoryWithAxiom) :
K pass

>>>
>>>
>>>
>>>
>>>
>>>

>>>

from sage.all import *

from sage.categories.category_singleton import Category_singleton
from sage.categories.category_with_axiom import axiom

import sage.categories.category_with_axiom

all_axioms = sage.categories.category_with_axiom.all_axioms
all_axioms +: ("B"’"CH,IIDH’"EYI’"FH)
class As (Category_singleton) :

def super_categories(self):
return [Objects ()]
class SubcategoryMethods:
B = axiom("B")

moE Y Q
I
Q
b
b
o
3

class B(CategoryWithAxiom) :
pass

class C(CategoryWithAxiom) :
pass

class D (CategoryWithAxiom) :
pass

class E(CategoryWithAxiom) :
pass

class F (CategoryWithAxiom) :
pass

Now we construct a subcategory where, by some theorem of William, axioms B and C together are equivalent to E and F
together:

class Als(Category_singleton) :
: def super_categories(self) :
: return [As ()]
: class B(CategoryWithAxiom) :
: def C_extra_super_categories(self):
E return [As().E(), As().F()]
: class E (CategoryWithAxiom) :
g def F_extra_super_categories(self):
: return [As().B(), As().C()]

sage: Als().B().C()
Category of e f als

>>>
>>>

from sage.all import *

class Als (Category_singleton) :
(continues on next page)
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def super_categories(self):
return [As ()]
>>> class B(CategoryWithAxiom) :
def C_extra_super_categories (self):
return [As().E(), As().F()]
>>> class E (CategoryWithAxiom) :
def F_extra_super_categories(self):
return [As().B(), As().C()]

>>> Als().B().C()
Category of e f als

The axioms B and C do not show up in the name of the obtained category because, for concision, the printing uses some
heuristics to not show axioms that are implied by others. But they are satisfied:

sage: sorted(Als().B().C().axioms())
[VB', YC', YE', ’FY]

>>> from sage.all import *
>>> sorted (Als () .B().C().axioms())
[VB" YC', YEY, ’FY]

Note also that this is a join category:

sage: type (Als().B().C())

<class 'sage.categories.category.JoinCategory_with_category'>

sage: Als () .B().C().super_categories()

[Category of e als,

Category of f as,

Category of b als,
c

Category of as]

>>> from sage.all import *
>>> type (Als () .B().C())
<class 'sage.categories.category.JoinCategory_with_category'>

>>> Als () .B().C() .super_categories()
[Category of e als,

Category of f as,

Category of b als,

Category of c as]

As desired, William’s theorem holds:

sage: Als().B().C() is Als().E().F()
True

>>> from sage.all import *
>>> Als () .B().C() is Als().E().F()
True

and propagates appropriately to subcategories:
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sage:
sage:
True
sage:
True
sage:
True
sage:
True
sage:
True

is

is

is

is

is

Als () .E() .F().D().B().C()

Als ()

Als ()

Als ()

Als ()

Als ()

.BO.CO.EQ.F().D()

CEQ)CFOLEQLF().DO)

CEQLEQLFQOLE().D()

CEQ.FQ).D()

DO .E().F()

# commutativity

# William's theorem

# commutativity

# idempotency

>>> from sage.all import *

>>> C
>>> C
True
>>> C
True
>>> C
True
>>> C
True
>>> C

True

is

is

is

is

is

Als () .E() .F() .D() .
Als () .B().C().E() .
Als() .E() .F () .E()
Als () .E() .E() .F ()
Als () .E() .F() .D()
Als().D().E() .F()

commutativity

William's theorem

commutativity

idempotency

In this quick variant, we actually implement the category of b ¢ a2s, and choose to do so in A2s.B.C:

sage:

sage:

sage:
[IB'
sage:

<class

class A2s (Category_singleton) :

return

def super_categories(self) :
[As ()]

class B(CategoryWithAxiom) :

class C(CategoryWithAxiom) :

def extra_super_categories (self):

return [As ()

class E (CategoryWithAxiom) :

EQ), As().F()]

def F_extra_super_categories(self):
return [As().B(),

A2s () .B() .C()
Category of e f a2s

sorted (A2s () .B() .C() .axioms ())
IFI]

'C

v
’

'E',

type (A2s () .B() .C())
' _main__ .A2s.B.C_with_category'>

s().Cc(O]

>>> from sage.all import *

>>> class A2s (Category_singleton) :

def super_categories (self):

return [As ()]

(continues on next page)
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>>> class B(CategoryWithAxiom) :
class C(CategoryWithAxiom) :
def extra_super_categories(self):
return [As().E(), As().F()]
>>> class E (CategoryWithAxiom) :
def F_extra_super_categories(self):
return [As().B(), As().C()]

>>> A2s () .B().C()

Category of e f aZs

>>> sorted (A2s () .B().C() .axioms ())

['8°, €7, "m7, "B]

>>> type (A2s () .B().C())

<class '__main__ .A2s.B.C_with_category'>

As desired, William’s theorem and its consequences hold:

sage: A2s () .B().C() is A2s().E().F()

True

sage: C = A2s().E().F().D().B().C()

sage: C is A2s().B().C().E().F().D() # commutativity
True

sage: C is A2s().E().F().E().F().D() # wWilliam's theorem
True

sage: C is A2s().E().E().F().F().D() # commutativity
True

sage: C is A2s () .E().F().D() # idempotency
True

sage: C is A2s().D().E() .F()

True

>>> from sage.all import *
>>> A2s().B() .C() is A2s().E() .F ()

True

>>> C = A2s().E().F().D().B().C()

>>> C is A2s () .B().C().E().F().D() # commutativity
True

>>> C is A2s () .E() .F() .E().F().D() # William's theorem
True

>>> C is A2s () .E() .E() .F().F().D() # commutativity
True

>>> C is A2s () .E().F().D() # idempotency
True

>>> C is A2s().D().E().F ()

True

Finally, we “accidentally” implement the category of b ¢ als, bothin A3s.B.C and A3s.E.F:

[sage: class A3s(Category_singleton) :

(continues on next page)
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et def super_categories(self):
PR return [As ()]

e class B(CategoryWithAxiom) :
50008 class C(CategoryWithAxiom) :

e return [As().E(), As().F()]

e class E (CategoryWithAxiom) :
el class F (CategoryWithAxiom) :

et return [As().B(), As().C()]

e def extra_super_categories (self):

e def extra_super_categories (self):

(continued from previous page)

>>> from sage.all import *
>>> class A3s (Category_singleton) :
def super_categories(self):
return [As ()]
>>> class B(CategoryWithAxiom) :
class C(CategoryWithAxiom) :
def extra_super_categories(self):
return [As () .E(), As().F()]
>>> class E(CategoryWithAxiom) :
class F (CategoryWithAxiom) :
def extra_super_categories(self):
return [As().B(), As().C()]

We can still construct, say:

sage: A3s () .B()
Category of b a3s
sage: A3s () .C()
Category of c a3s

>>> from sage.all import *
>>> A3s () .B()

Category of b a3s

>>> A3s () .C()

Category of c a3s

However,

[sage: A3s () .B().C() # not tested

>>> from sage.all import *
>>> A3s().B().C() # not tested

runs into an infinite recursion loop, as A3s () .B () .C () wants to have A3s () .E () .F () as super category and recipro-

cally.
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& Todo

The above example violates the specifications (a category should be modelled by at most one class), so it’s appropriate
that it fails. Yet, the error message could be usefully complemented by some hint at what the source of the problem
is (a category implemented in two distinct classes). Leaving a large enough piece of the backtrace would be useful
though, so that one can explore where the issue comes from (e.g. with post mortem debugging).

2.3.2 Specifications

After fixing some vocabulary, we summarize here some specifications about categories and axioms.

The lattice of constructible categories

A mathematical category C' is implemented if there is a class in Sage modelling it; it is constructible if it is either im-
plemented, or is the intersection of implemented categories; in the latter case it is modelled by a JoinCategory. The
comparison of two constructible categories with the Category.is_subcategory () method is supposed to model the
comparison of the corresponding mathematical categories for inclusion of the objects (see On the category hierarchy:
subcategories and super categories for details). For example:

sage: Fields() .is_subcategory (Rings())
True

>>> from sage.all import *
>>> Fields () .is_subcategory (Rings())
True

However this modelling may be incomplete. It can happen that a mathematical fact implying that a category A is a
subcategory of a category B is not implemented. Still, the comparison should endow the set of constructible categories
with a poset structure and in fact a lattice structure.

In this lattice, the join of two categories (Category. join ()) is supposed to model their intersection. Given that we
compare categories for inclusion, it would be more natural to call this operation the meet; blames go to me (Nicolas) for
originally comparing categories by amount of structure rather than by inclusion. In practice, the join of two categories may
be a strict super category of their intersection; first because this intersection might not be constructible; second because
Sage might miss some mathematical information to recover the smallest constructible super category of the intersection.

Axioms

We say that an axiom 2 is defined by a category Cs () if Cs defines an appropriate method Cs . SubcategoryMethods.
A, with the semantic of the axiom specified in the documentation; for any subcategory Ds (), Ds () .A () models the
subcategory of the objects of Ds () satisfying A. In this case, we say that the axiom A is defined for the category Ds ().
Furthermore, Ds implements the axiom A if Ds has a category with axiom as nested class Ds . A. The category Ds () safisfies
the axiom if Ds () is a subcategory of Cs () .A () (meaning that all the objects of Ds () are known to satisfy the axiom
D).

A digression on the structure of fibers when adding an axiom

Consider the application ¢ 4 which maps a category to its category of objects satisfying A. Equivalently, ¢ 4 is computing
the intersection with the defining category with axiom of A. It follows immediately from the latter that ¢ 4 is a regressive
endomorphism of the lattice of categories. It restricts to a regressive endomorphism Cs () |-> Cs () .A () on the lattice
of constructible categories.

This endomorphism may have non trivial fibers, as in our favorite example: DivisionRings () and Fields () are in
the same fiber for the axiom Finite:
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sage: DivisionRings () .Finite() is Fields () .Finite()
True

>>> from sage.all import *
>>> DivisionRings () .Finite () is Fields () .Finite ()
True

Consider the intersection S of such a fiber of ¢ 4 with the upper set 14 of categories that do not satisfy A. The fiber itself is
a sublattice. However I 4 is not guaranteed to be stable under intersection (though exceptions should be rare). Therefore,
there is a priori no guarantee that S would be stable under intersection. Also it’s presumably finite, in fact small, but this
is not guaranteed either.

Specifications
* Any constructible category C should admit a finite number of larger constructible categories.

¢ The methods super_categories, extra_super_categories, and friends should always return strict super-
categories.

For example, to specify that a finite division ring is a finite field, DivisionRings.
Finite_extra_super_categories should not return Fields () .Finite()! It could possibly return
Fields (); but it’s preferable to return the largest category that contains the relevant information, in this case
Magmas () .Commutative (), and to let the infrastructure apply the derivations.

* The base category of a CategorylithAxiom should be an implemented category (i.e. not a JoinCategory).
This is checked by categoryWithAxiom._ test_category with_axiom().

* Arborescent structure: Let Cs () be a category, and S be some set of axioms defined in some super categories
of Cs () but not satisfied by Cs (). Suppose we want to provide a category with axiom for the elements of Cs ()
satisfying the axioms in S. Then, there should be a single enumeration A1, A2, ..., Ak without repetition
of axioms in S such that Cs.A1.A2....Ak is an implemented category. Furthermore, every intermediate step
Cs.A1.A2....Ai withi < k should be a category with axiom having Ai as axiom and Cs.A1.A2....Ai-1 as
base category class; this base category class should not satisfy 1. In particular, when some axioms of S can be
deduced from previous ones by deduction rules, they should not appear in the enumeration A1, A2, ..., Ak.

¢ In particular, if Cs () is a category that satisfies some axiom A (e.g. from one of its super categories), then it should
not implement that axiom. For example, a category class Cs can never have a nested class Cs.A.A. Similarly,
applying the specification recursively, a category satisfying A cannot have a nested class Cs.A1.A2.A3.A where
A1, A2, A3 are axioms.

* A category can only implement an axiom if this axiom is defined by some super category. The code has not been
systematically checked to support having two super categories defining the same axiom (which should of course
have the same semantic). You are welcome to try, at your own risk. :-)

* When a category defines an axiom or functorial construction 2, this fixes the semantic of a for all the subcategories.
In particular, if two categories define A, then these categories should be independent, and either the semantic of 2
should be the same, or there should be no natural intersection between the two hierarchies of subcategories.

* Any super category of a CategoryWithParameters should either be a CategoryithParametersora Cat-
egory_singleton

* A CategoryWithAxiom having a Category_singleton as base category should be a Categorywith-
Axiom_singleton. This is handled automatically by categorywithAxiom. _init__ () and checked in
CategoryWithAxiom._test_category_with_axiom().

* A CategoryWithAxiom having a Category_over base_ring as base category should be a cat-
egory_over_base_ring. This currently has to be handled by hand, using categoryWithAx-
iom over base_ring. Thisis checked in CategoryWithAxiom._ test_category with_axiom().
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& Todo

The following specifications would be desirable but are not yet implemented:

* A functorial construction category (Graded, CartesianProducts, ...) having a Category singleton as base
category should be a CategoryWithAxiom singleton.

Nothing difficult to implement, but this will need to rework the current “no subclass of a concrete class” assertion
test of Category_singleton._ classcall__ ().

 Similarly, a covariant functorial construction category having a Category over base ring as base cate-
gory should be a Category _over base ring.

The following specification might be desirable, or not:

* A join category involving a Category over base ring should be a Category over base ring
In the mean time, a base_ring method is automatically provided for most of those by Modules.
SubcategoryMethods.base_ring().

2.3.3 Design goals

As pointed out in the primer, the main design goal of the axioms infrastructure is to subdue the potential combinatorial
explosion of the category hierarchy by letting the developer focus on implementing a few bookshelves for which there is
actual code or mathematical information, and let Sage compose dynamically and lazily these building blocks to construct
the minimal hierarchy of classes needed for the computation at hand. This allows for the infrastructure to scale smoothly
as bookshelves are added, extended, or reorganized.

Other design goals include:

* Flexibility in the code layout: the category of, say, finite sets can be implemented either within the Sets category (in
a nested class Sets.Finite), or in a separate file (typically in a class FiniteSets in a lazily imported module
sage.categories.finite_sets).

* Single point of truth: a theorem, like Wedderburn’s, should be implemented in a single spot.

» Single entry point: for example, from the entry Rings, one can explore a whole range of related categories just by
applying axioms and constructions:

sage: Rings () .Commutative () .Finite () .NoZeroDivisors ()
Category of finite integral domains
sage: Rings () .Finite () .Division ()

Category of finite enumerated fields

>>> from sage.all import *

>>> Rings () .Commutative () .Finite () .NoZeroDivisors ()
Category of finite integral domains

>>> Rings () .Finite () .Division ()

Category of finite enumerated fields

This will allow for progressively getting rid of all the entries like GradedHopfAlgebrasiiithBasis which are
polluting the global name space.

Note that this is not about precluding the existence of multiple natural ways to construct the same category:

sage: Groups () .Finite()
Category of finite groups
sage: Monoids () .Finite () .Inverse ()

(continues on next page)
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(continued from previous page)
Category of finite groups
sage: Sets () .Finite() & Monoids () .Inverse ()
Category of finite groups
.

-
>>> from sage.all import *

>>> Groups () .Finite ()

Category of finite groups

>>> Monoids () .Finite () .Inverse ()

Category of finite groups

>>> Sets () .Finite () & Monoids () .Inverse ()
Category of finite groups

L

* Concise idioms for the users (adding axioms, ...)
* Concise idioms and well highlighted hierarchy of bookshelves for the developer (especially with code folding)

* Introspection friendly (listing the axioms, recovering the mixins)

© Note

The constructor for instances of this class takes as input the base category. Hence, they should in principle be con-
structed as:

sage: FiniteSets (Sets())
Category of finite sets

sage: Sets.Finite(Sets())
Category of finite sets

>>> from sage.all import *
>>> FiniteSets (Sets())
Category of finite sets

>>> Sets.Finite(Sets())
Category of finite sets

None of these idioms are really practical for the user. So instead, this object is to be constructed using any of the
following idioms:

sage: Sets()._with_axiom('Finite'")
Category of finite sets

sage: FiniteSets()

Category of finite sets

sage: Sets () .Finite()

Category of finite sets

>>> from sage.all import *

>>> Sets()._with axiom('Finite')
Category of finite sets

>>> FiniteSets()

Category of finite sets

>>> Sets () .Finite ()

Category of finite sets

The later two are implemented using respectively CategorywithAxiom._ _classcall () and
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CategoryWithAxiom.__classget__ ().

2.3.4 Upcoming features

& Todo

¢ Implement compatibility axiom / functorial constructions. For example, one would want to have:

[A.CartesianProducts() & B.CartesianProducts () = (A&B).CartesianProducts () ]

* Once full subcategories are implemented (see Issue #10668), make the relevant categories with axioms be such.
This can be done systematically for, e.g., the axioms Associative or Commutative, but not for the axiom
Unital: a semigroup morphism between two monoids need not preserve the unit.

Should all full subcategories be implemented in term of axioms?

2.3.5 Algorithms
Computing joins

The workhorse of the axiom infrastructure is the algorithm for computing the join J of a set C1, ..., C} of categories
(see Category.join()). Formally, J is defined as the largest constructible category such that J C C; for all 4, and
J C C.A() for every constructible category C' O J and any axiom A satisfied by J.

The join J is naturally computed as a closure in the lattice of constructible categories: it starts with the C;’s, gathers the
set S of all the axioms satisfied by them, and repeatedly adds each axiom A to those categories that do not yet satisfy A
using Category._with_axiom(). Due to deduction rules or (extra) super categories, new categories or new axioms
may appear in the process. The process stops when each remaining category has been combined with each axiom. In
practice, only the smallest categories are kept along the way; this is correct because adding an axiom is covariant: C.2 ()
is a subcategory of D.A () whenever C is a subcategory of D.

As usual in such closure computations, the result does not depend on the order of execution. Furthermore, given that
adding an axiom is an idempotent and regressive operation, the process is guaranteed to stop in a number of steps which
is bounded by the number of super categories of J. In particular, it is a finite process.

2 Todo

Detail this a bit. What could typically go wrong is a situation where, for some category c1, C1.A () specifies a
category C2 as super category such that C2.2 () specifies C3 as super category such that ...; this would clearly cause
an infinite execution. Note that this situation violates the specifications since C1 .4 () is supposed to be a subcategory
of C2.A (), ... so we would have an infinite increasing chain of constructible categories.

It’s reasonable to assume that there is a finite number of axioms defined in the code. There remains to use this
assumption to argue that any infinite execution of the algorithm would give rise to such an infinite sequence.

Adding an axiom

Let Cs be a category and A an axiom defined for this category. To compute Cs () .A (), there are two cases.
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Adding an axiom a to a category cs () not implementing it

In this case, Cs () .A () returns the join of:
* Cs()
* Bs () .A () for every direct super category Bs () of Cs ()
* the categories appearing in Cs () .A_extra_super_categories ()

This is a highly recursive process. In fact, as such, it would run right away into an infinite loop! Indeed, the
join of cs () with Bs () .A() would trigger the construction of Cs().aA () and reciprocally. To avoid this, the
Category. join () method itself does not use Category. with_axiom () to add axioms, but its sister Category.
_with_axiom_as_tuple (); the latter builds a tuple of categories that should be joined together but leaves the com-
putation of the join to its caller, the master join calculation.

Adding an axiom a to a category cs () implementing it

In this case Cs () . A () simply constructs an instance D of Cs.A which models the desired category. The non trivial part
is the construction of the super categories of D. Very much like above, this includes:

* Cs()
* Bs () .A() for every super category Bs () of Cs ()
* the categories appearing in D.extra_super_categories ()

This by itself may not be sufficient, due in particular to deduction rules. On may for example discover a new axiom A1
satisfied by D, imposing to add A1 to all of the above categories. Therefore the super categories are computed as the join
of the above categories. Up to one twist: as is, the computation of this join would trigger recursively a recalculation of
Cs () .A()! Toavoid this, Category. join () is given an optional argument to specify that the axiom a should not be
applied to Cs ().

Sketch of proof of correctness and evaluation of complexity

As we have seen, this is a highly recursive process! In particular, one needs to argue that, as long as the specifications are
satisfied, the algorithm won’t run in an infinite recursion, in particular in case of deduction rule.

Theorem

Consider the construction of a category C' by adding an axiom to a category (or computing of a join). Let H be the
hierarchy of implemented categories above C'. Let n and m be respectively the number of categories and the number
of inheritance edges in H.

Assuming that the specifications are satisfied, the construction of C' involves constructing the categories in H exactly
once (and no other category), and at most n join calculations. In particular, the time complexity should be, roughly
speaking, bounded by n2. In particular, it’s finite.

Remark

It’s actually to be expected that the complexity is more of the order of magnitude of na + m, where a is the number
of axioms satisfied by C. But this is to be checked in detail, in particular due to the many category inclusion tests
involved.

The key argument is that Category. join cannot call itself recursively without going through the construction of some
implemented category. In turn, the construction of some implemented category C' only involves constructing strictly
smaller categories, and possibly a direct join calculation whose result is strictly smaller than C'. This statement is obvious
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if C implements the super_categories method directly, and easy to check for functorial construction categories. It
requires a proof for categories with axioms since there is a recursive join involved.

Lemma

Let C be a category implementing an axiom A. Recall that the construction of C.2 () involves a single direct join
calculation for computing the super categories. No other direct join calculation occur, and the calculation involves
only implemented categories that are strictly smaller than C.a ().

Proof

Let D be a category involved in the join calculation for the super categories of C.A (), and assume by induction that
D is strictly smaller than c.A (). A category E newly constructed from D can come from:

® D. (extra_) super_categories()

In this case, the specifications impose that E should be strictly smaller than D and therefore strictly smaller
than C.

e D.with_axiom_as_tuple('B') or D.B_extra_super_categories () for some axiom B

In this case, the axiom B is satisfied by some subcategory of C.A (), and therefore must be satisfied by C .2 ()
itself. Since adding an axiom is a regressive construction, E must be a subcategory of . (). If there is
equality, then E' and C .2 () must have the same class, and therefore, E must be directly constructed as C. A ().
However the join construction explicitly prevents this call.

Note that a call to D.with_axiom_as_tuple ('B') does not trigger a direct join calculation; but of course, if
D implements B, the construction of the implemented category E = D.B() will involve a strictly smaller join
calculation.

2.3.6 Conclusion

This is the end of the axioms documentation. Congratulations on having read that far!

2.3.7 Tests

© Note

Quite a few categories with axioms are constructed early on during Sage’s startup. Therefore, when playing around with
the implementation of the axiom infrastructure, it is easy to break Sage. The following sequence of tests is designed
to test the infrastructure from the ground up even in a partially broken Sage. Please don’t remove the imports!

class sage.categories.category_with_axiom.Bars

Bases: category_singleton

A toy singleton category, for testing purposes.

See also

Blahs
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Unital_extra_super_categories()

Return extraneous super categories for the unital objects of self.

This method specifies that a unital bar is a test object. Thus, the categories of unital bars and of unital test
objects coincide.

EXAMPLES:

sage: from sage.categories.category_ with_axiom import Bars, TestObjects
sage: Bars () .Unital_extra_super_categories|()
[Category of test objects]

sage: Bars () .Unital ()

Category of unital test objects

sage: TestObjects () .Unital() .all_super_categories()
[Category of unital test objects,

Category of unital blahs,

Category of test objects,

Category of bars,

Category of blahs,

Category of sets,

Category of sets with partial maps,

Category of objects]

>>> from sage.all import *

>>> from sage.categories.category_with_axiom import Bars, TestObjects
>>> Bars () .Unital_extra_super_categories()
[Category of test objects]

>>> Bars () .Unital ()

Category of unital test objects

>>> TestObjects () .Unital () .all_super_categories()
[Category of unital test objects,

Category of unital blahs,

Category of test objects,

Category of bars,

Category of blahs,

Category of sets,

Category of sets with partial maps,

Category of objects]

super_categories ()
class sage.categories.category_with_axiom.Blahs

Bases: category singleton

A toy singleton category, for testing purposes.

This is the root of a hierarchy of mathematically meaningless categories, used for testing Sage’s category framework:
® Bars
® TestObjects
® TestObjectsOverBaseRing

Blue_extra_super_categories()

[llustrates a current limitation in the way to have an axiom imply another one.
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Here, we would want Blue to imply Unital, and to put the class for the category of unital blue blahs in
Blahs.Unital.Blue rather than Blahs.Blue.

This currently fails because Blahs is the category where the axiom Blue is defined, and the specifications
currently impose that a category defining an axiom should also implement it (here in a category with ax-
iom Blahs.Blue). In practice, due to this violation of the specifications, the axiom is lost during the join
calculation.

& Todo

Decide whether we care about this feature. In such a situation, we are not really defining a new axiom,
but just defining an axiom as an alias for a couple others, which might not be that useful.

& Todo

Improve the infrastructure to detect and report this violation of the specifications, if this is easy. Other-
wise, it’s not so bad: when defining an axiom A in a category Cs the first thing one is supposed to doctest
is that Cs () .A () works. So the problem should not go unnoticed.

class Commutative (base_category)

Bases: categorywithAxiom

class Connected (base_category)

Bases: categorywithAxiom

class FiniteDimensional ( base_category )

Bases: categorywithAxiom

class Flying (base_category)
Bases: categorywithAxiom

extra_super_categories ()

This illustrates a way to have an axiom imply another one.

Here, we want Flying to imply Unital, and to put the class for the category of unital flying blahs in
Blahs.Flying rather than Blahs.Unital.Flying.

class SubcategoryMethods
Bases: object

Blue ()

Commutative ()
Connected ()
FiniteDimensional ()
Flying ()

Unital ()

class Unital (base_category)

Bases: categorywithAxiom
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class Blue (base_category)

Bases: categoryWithAxiom
super_categories ()
class sage.categories.category_with_axiom.CategoryWithAxiom (base_category)
Bases: category
An abstract class for categories obtained by adding an axiom to a base category.

See the category primer, and in particular its section about axioms for an introduction to axioms, and Cate—
goryliithAxiom for how to implement axioms and the documentation of the axiom infrastructure.

static __classcall__ (*args, **options)

Make FoosBar (**) an alias for Foos (**) ._with_axiom("Bar").

EXAMPLES:

sage: FiniteGroups ()

Category of finite groups

sage: ModulesWithBasis (ZZ)

Category of modules with basis over Integer Ring
sage: AlgebrasWithBasis (QQ)

Category of algebras with basis over Rational Field

>>> from sage.all import *

>>> FiniteGroups ()

Category of finite groups

>>> ModulesWithBasis (ZZ)

Category of modules with basis over Integer Ring
>>> AlgebrasWithBasis (QQ)

Category of algebras with basis over Rational Field

This is relevant when e.g. Foos (**) does some non trivial transformations:

sage: Modules (QQ) is VectorSpaces (QQ)

True

sage: type (Modules (QQ))

<class 'sage.categories.vector_spaces.VectorSpaces_with_category'>

sage: ModulesWithBasis (QQ) is VectorSpaces (QQ) .WithBasis ()

True

sage: type (ModulesWithBasis (QQ))

<class 'sage.categories.vector_spaces.VectorSpaces.WithBasis_with_category'>

>>> from sage.all import *

>>> Modules (QQ) is VectorSpaces (QQ)

True

>>> type (Modules (QQ))

<class 'sage.categories.vector_spaces.VectorSpaces_with_category'>

>>> ModulesWithBasis (QQ) is VectorSpaces (QQ) .WithBasis ()

True

>>> type (ModulesWithBasis (QQ) )

<class 'sage.categories.vector_spaces.VectorSpaces.WithBasis_with_category'>
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static __ classget__ (base_category, base_category_class)
Implement the binding behavior for categories with axioms.
This method implements a binding behavior on category with axioms so that, when a category Cs implements

an axiom A with a nested class Cs. A, the expression Cs () . A evaluates to the method defining the axiom A
and not the nested class. See those design notes for the rationale behind this behavior.

EXAMPLES:

sage: Sets().Infinite()

Category of infinite sets

sage: Sets().Infinite

Cached version of <function ...Infinite at ...>

sage: Sets().Infinite.f == Sets.SubcategoryMethods.Infinite.f
True

>>> from sage.all import *
>>> Sets().Infinite ()
Category of infinite sets
>>> Sets () .Infinite

Cached version of <function ...Infinite at ...>
>>> Sets().Infinite.f == Sets.SubcategoryMethods.Infinite.f
True

We check that this also works when the class is implemented in a separate file, and lazy imported:

sage: Sets () .Finite
Cached version of <function ...Finite at ...>

>>> from sage.all import *
>>> Sets () .Finite
Cached version of <function ...Finite at ...>

There is no binding behavior when accessing Finite or Infinite from the class of the category instead of
the category itself:

sage: Sets.Finite

<class 'sage.categories.finite_sets.FiniteSets'>
sage: Sets.Infinite

<class 'sage.categories.sets_cat.Sets.Infinite'>

>>> from sage.all import *

>>> Sets.Finite

<class 'sage.categories.finite_sets.FiniteSets'>
>>> Sets.Infinite

<class 'sage.categories.sets_cat.Sets.Infinite'>

This method also initializes the attribute _base_category_class_and_axiom if not already set:

sage: Sets.Infinite._base_category_class_and_axiom
(<class 'sage.categories.sets_cat.Sets'>, 'Infinite')
sage: Sets.Infinite._base_category_class_and_axiom_origin
'set by __classget_ '
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>>> from sage.all import *

>>> Sets.Infinite._base_category_class_and_axiom
(<class 'sage.categories.sets_cat.Sets'>, 'Infinite')
>>> Sets.Infinite._base_category_class_and_axiom_origin
'set by __classget_ '

__init__ (base_category)

_repr_object_names ()

The names of the objects of this category, as used by _repr_.

> See also

Category._repr_object_names ()

EXAMPLES:

sage: FiniteSets () ._repr_object_names ()

'finite sets'

sage: AlgebrasWithBasis (QQ) .FiniteDimensional () ._repr_object_names ()
'finite dimensional algebras with basis over Rational Field'

sage: Monoids () ._repr_object_names ()
'monoids"
sage: Semigroups () .Unital() .Finite () ._repr_object_names ()

'finite monoids'
sage: Algebras (QQ) .Commutative () ._repr_object_names ()
'commutative algebras over Rational Field'

>>> from sage.all import *

>>> FiniteSets () ._repr_object_names ()

'finite sets'

>>> AlgebrasWithBasis (QQ) .FiniteDimensional () ._repr_object_names ()
'finite dimensional algebras with basis over Rational Field'

>>> Monoids () ._repr_object_names ()

'monoids'

>>> Semigroups () .Unital () .Finite () ._repr_object_names ()

'finite monoids'
>>> Algebras (QQ) .Commutative () . _repr_object_names ()
'commutative algebras over Rational Field'

© Note

This is implemented by taking _repr_object_names from self._without_axioms(named=True), and adding
the names of the relevant axioms in appropriate order.

static _repr_object_names_static (category, axioms)

INPUT:
* base_category — a category

* axioms — list or iterable of strings
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EXAMPLES:

sage: from sage.categories.category with_axiom import CategoryWithAxiom
sage: CategoryWithAxiom._repr_object_names_static(Semigroups (), ["Flying",
—"Blue"])

'flying blue semigroups'

sage: CategoryWithAxiom._repr_object_names_static (Algebras(QQ), ["Flying",
—"WithBasis", "Blue"])

'flying blue algebras with basis over Rational Field'

sage: CategoryWithAxiom._repr_object_names_static (Algebras(QQ), ["WithBasis"])
'algebras with basis over Rational Field'

sage: CategoryWithAxiom._repr_object_names_static(Sets().Finite() .

—Subquotients (), ["Finite"])

'subquotients of finite sets'

sage: CategoryWithAxiom._repr_object_names_static(Monoids (), ["Unital"])
'monoids'

sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ['x'"1['v']1), [

—"Flying", "WithBasis", "Blue"])
'flying blue algebras with basis over Univariate Polynomial Ring in y over.
—Univariate Polynomial Ring in x over Rational Field'

>>> from sage.all import *

>>> from sage.categories.category with_axiom import CategoryWithAxiom

>>> CategoryWithAxiom._repr_object_names_static (Semigroups (), ["Flying", "Blue
—"1)

'flying blue semigroups'

>>> CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ["Flying",
—"WithBasis", "Blue"])

'flying blue algebras with basis over Rational Field'

>>> CategoryWithAxiom._repr_object_names_static (Algebras (QQ), ["WithBasis"])
'algebras with basis over Rational Field'

>>> CategoryWithAxiom._repr_object_names_static(Sets () .Finite() .

—Subquotients (), ["Finite"])

'subquotients of finite sets'

>>> CategoryWithAxiom._repr_object_names_static (Monoids (), ["Unital"])
'monoids'

>>> CategoryWithAxiom._repr_object_names_static (Algebras (QO['x"]1['yv']), I

—"Flying", "WithBasis", "Blue"])
'flying blue algebras with basis over Univariate Polynomial Ring in y over.

—Univariate Polynomial Ring in x over Rational Field'

If the axioms is a set or frozen set, then they are first sorted using canonicalize axioms ():

sage: CategoryWithAxiom._repr_object_names_static(Semigroups (), set(["Finite",
— "Commutative", "Facade"]))
'facade finite commutative semigroups'

.

>>> from sage.all import *

>>> CategoryWithAxiom._repr_object_names_static (Semigroups (), set (["Finite",
—"Commutative", "Facade"]))

'facade finite commutative semigroups'
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> See also

_repr_object_names ()

O Note

The logic here is shared between _repr object_names() and category.JoinCategory.
_repr_object_names ()

_test_category_ with_axiom (**options)

Run generic tests on this category with axioms.

> See also

TestSuite.

This check that an axiom category of a Category_singleton is a singleton category, and similarwise for
Category_over_base_ring.

EXAMPLES:
sage: Sets () .Finite () ._test_category_with_axiom()
sage: Modules (ZZ) .FiniteDimensional () ._test_category_with_axiom()

>>> from sage.all import *
>>> Sets () .Finite () ._test_category_with_axiom/()
>>> Modules (ZZ) .FiniteDimensional () ._test_category_with_axiom()

_without_axioms (named=False)

Return the category without the axioms that have been added to create it.

EXAMPLES:

sage: Sets () .Finite () ._without_axioms ()
Category of sets

sage: Monoids () .Finite () ._without_axioms ()
Category of magmas

>>> from sage.all import *

>>> Sets () .Finite () ._without_axioms ()
Category of sets

>>> Monoids () .Finite () ._without_axioms ()

Category of magmas

This is because:

sage: Semigroups () .Unital() is Monoids()
True
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>>> from sage.all import *
>>> Semigroups () .Unital () is Monoids ()
True

If named is True, then _without_axioms stops at the first category that has an explicit name of its own:

sage: Sets () .Finite()._without_axioms (named=True)
Category of sets

sage: Monoids () .Finite () ._without_axioms (named=True)
Category of monoids

>>> from sage.all import *

>>> Sets () .Finite () ._without_axioms (named=True)
Category of sets

>>> Monoids () .Finite () ._without_axioms (named=True)
Category of monoids

Technically we test this by checking if the class specifies explicitly the attribute _base_cate-
gory_class_and_axiom by looking up _base_category_class_and_axiom_origin

Some more examples:

sage: Algebras (QQ) .Commutative () ._without_axioms ()

Category of magmatic algebras over Rational Field

sage: Algebras (QQ) .Commutative () ._without_axioms (named=True)
Category of algebras over Rational Field

>>> from sage.all import *

>>> Algebras (QQ) .Commutative () ._without_axioms ()

Category of magmatic algebras over Rational Field

>>> Algebras (QQ) .Commutative () ._without_axioms (named=True)
Category of algebras over Rational Field

additional_structure ()

Return the additional structure defined by self.
OUTPUT: None

By default, a category with axiom defines no additional structure.

> See also

Category.additional_structure ().

EXAMPLES:
sage: Sets () .Finite () .additional_structure ()
sage: Monoids () .additional_structure ()

>>> from sage.all import *
>>> Sets () .Finite () .additional_structure ()
>>> Monoids () .additional_structure ()
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axioms ()

Return the axioms known to be satisfied by all the objects of self.

> See also

Category.axioms ()

EXAMPLES:

sage: C = Sets.Finite(); C
Category of finite sets
sage: C.axioms ()

frozenset ({'Finite'})

sage: C = Modules(GF(5)) .FiniteDimensional(); C

Category of finite dimensional vector spaces over Finite Field of size 5

sage: sorted(C.axioms())

['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Finite', 'FiniteDimensional']

sage: sorted(FiniteMonoids () .Algebras (QQ) .axioms ())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditivelInverse',
'AdditiveUnital', 'Associative', 'Distributive',
'FiniteDimensional', 'Unital', 'WithBasis']

sage: sorted(FiniteMonoids () .Algebras (GF (3)) .axioms())
['"AdditiveAssociative', 'AdditiveCommutative', 'AdditivelInverse',
'AdditiveUnital', 'Associative', 'Distributive', 'Finite',
'FiniteDimensional', 'Unital', 'WithBasis']

sage: from sage.categories.magmas_and_additive_magmas import..
—MagmasAndAdditiveMagmas

sage: MagmasAndAdditiveMagmas () .Distributive () .Unital () .axioms ()
frozenset ({'Distributive', 'Unital'})

sage: D = MagmasAndAdditiveMagmas () .Distributive ()
sage: X = D.AdditiveAssociative () .AdditiveCommutative () .Associative ()

sage: X.Unital () .super_categories () [1]

Category of monoids

sage: X.Unital ().super_categories () [1] is Monoids ()
True

>>> from sage.all import *
>>> C = Sets.Finite(); C
Category of finite sets
>>> C.axioms ()

frozenset ({'Finite'})

>>> C = Modules (GF (Integer (5))) .FiniteDimensional (); C

Category of finite dimensional vector spaces over Finite Field of size 5

>>> sorted(C.axioms ())

['"AdditiveAssociative', 'AdditiveCommutative', 'AdditivelInverse',
'AdditiveUnital', 'Finite', 'FiniteDimensional']

(continues on next page)
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(continued from previous page)

>>> sorted(FiniteMonoids () .Algebras (QQ) .axioms ())
['"AdditiveAssociative', 'AdditiveCommutative', 'AdditivelInverse',
'AdditiveUnital', 'Associative', 'Distributive',
'FiniteDimensional', 'Unital', 'WithBasis']

>>> sorted(FiniteMonoids () .Algebras (GF (Integer (3))) .axioms ())
['"AdditiveAssociative', 'AdditiveCommutative', 'AdditivelInverse',
'AdditiveUnital', 'Associative', 'Distributive', 'Finite',
'FiniteDimensional', 'Unital', 'WithBasis']

>>> from sage.categories.magmas_and_additive_magmas import.
—MagmasAndAdditiveMagmas

>>> MagmasAndAdditiveMagmas () .Distributive () .Unital () .axioms ()
frozenset ({'Distributive', 'Unital'})

>>> D = MagmasAndAdditiveMagmas () .Distributive ()

>>> X = D.AdditiveAssociative () .AdditiveCommutative () .Associative ()
>>> X.Unital () .super_categories () [Integer (1) ]

Category of monoids

>>> X.Unital () .super_categories () [Integer (1) ] is Monoids ()

True

base_category ()

Return the base category of self.

EXAMPLES:

sage: C = Sets.Finite(); C
Category of finite sets
sage: C.base_category ()
Category of sets

sage: C._without_axioms ()
Category of sets

>>> from sage.all import *
>>> C = Sets.Finite(); C
Category of finite sets
>>> C.base_category ()
Category of sets

>>> C._without_axioms ()

Category of sets

extra_super_categories ()

Return the extra super categories of a category with axiom.
Default implementation which returns [].

EXAMPLES:

sage: FiniteSets () .extra_super_categories ()

[]
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>>> from sage.all import *
>>> FiniteSets () .extra_super_categories|()

[]

super_categories ()

Return a list of the (immediate) super categories of self, as per Category.super_categories ().

This implements the property that if As is a subcategory of Bs, then the intersection of As with Finite-
Sets () is a subcategory of As and of the intersection of Bs with FiniteSets ().

EXAMPLES:

A finite magma is both a magma and a finite set:

sage: Magmas () .Finite () .super_categories|()
[Category of magmas, Category of finite sets]

>>> from sage.all import *
>>> Magmas () .Finite () .super_categories ()
[Category of magmas, Category of finite sets]

Variants:

sage: Sets () .Finite () .super_categories()
[Category of sets]

sage: Monoids () .Finite () .super_categories ()
[Category of monoids, Category of finite semigroups]

>>> from sage.all import *
>>> Sets () .Finite () .super_categories ()
[Category of sets]

>>> Monoids () .Finite () .super_categories|()

[Category of monoids, Category of finite semigroups]

EXAMPLES:

class sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring (base_category)

Bases: categoryWithAxiom, Category_over_base_ring

class sage.categories.category_with_axiom.CategoryWithAxiom_singleton(ba&gﬁakgvry)

Bases: category singleton, CategoryWithAxiom

class sage.categories.category_with_axiom.TestObjects

Bases: category _singleton

A toy singleton category, for testing purposes.

> See also

Blahs

class Commutative (base_category)

Bases: categorywithAxiom
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class Facade (base_category)

Bases: categoryWithAxiom

class Finite (base_category)

Bases: categoryWithAxiom

class FiniteDimensional (base_category)

Bases: categoryWithAxiom

class FiniteDimensional (base_category)

Bases: categoryWithAxiom

class Finite (base_category)

Bases: categoryWithAxiom

class Unital (base_category)

Bases: categoryWithAxiom

class Commutative (base_category)

Bases: categoryWithAxiom

class Unital (base_category)

Bases: categorywithAxiom
super_categories ()
class sage.categories.category_with_axiom.TestObjectsOverBaseRing (base, name=None)
Bases: cat egory_over_base_ring

A toy singleton category, for testing purposes.

e See also

Blahs

class Commutative (base_category)

Bases: CategoryWithAxiom_over_base_ring

class Facade (base_category)

Bases: CategoryWithAxiom_over_base_ring
class Finite (base_category)

Bases: CategoryWithAxiom_over_base_ring
class FiniteDimensional (base_category)

Bases: CategoryWithAxiom_over_base_ring

class FiniteDimensional (base_category)

Bases: CategoryWithAxiom_over_base_ring
class Finite (base_category)

Bases: CategoryWithAxiom_over_base_ring

class Unital (base_category)

Bases: CategoryWithAxiom_over_base_ring
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class Commutative (base_category)

Bases: categoryWithAxiom_over_base_ring

class Unital (base_category)

Bases: CategoryWithAxiom_over_base_ring

super_categories ()

sage.categories.category_with_axiom.axiom (axiom)

Return a function/method self -> self._with_axiom(axiom).

This can used as a shorthand to define axioms, in particular in the tests below. Usually one will want to attach
documentation to an axiom, so the need for such a shorthand in real life might not be that clear, unless we start
creating lots of axioms.

In the long run maybe this could evolve into an @axiom decorator.

EXAMPLES:

p
sage: from sage.categories.category with_axiom import axiom

sage: axiom("Finite") (Semigroups())
Category of finite semigroups

>>> from sage.all import *
>>> from sage.categories.category with_axiom import axiom
>>> axiom("Finite") (Semigroups())

Category of finite semigroups
.

Upon assigning the result to a class this becomes a method:

sage: class As:
e def _with_axiom(self, axiom): return self, axiom

e Finite = axiom("Finite")
sage: As () .Finite()
(<_main__.As ... at ...>, 'Finite')

>>> from sage.all import *
>>> class As:

def _with_axiom(self, axiom): return self, axiom
Finite = axiom("Finite™)

>>> As () .Finite ()

(<_main__ .As ... at ...>, 'Finite')

sage.categories.category_with_axiom.axiom_of_nested_class (nested_cls)

Given a class and a nested axiom class, return the axiom.
EXAMPLES:

This uses some heuristics like checking if the nested_cls carries the name of the axiom, or is built by appending or
prepending the name of the axiom to that of the class:

sage: from sage.categories.category_with_axiom import TestObjects, axiom_of__
—snested_class
sage: axiom_of nested_class(TestObjects, TestObjects.FiniteDimensional)
'FiniteDimensional'
sage: axiom_of_nested_class (TestObjects.FiniteDimensional,

(continues on next page)
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(continued from previous page)

..... TestObjects.FiniteDimensional.Finite)
'Finite'

sage: axiom_of_nested_class(Sets, FiniteSets)

'Finite'

sage: axiom_of_nested_class (Algebras, AlgebrasWithBasis)
'WithBasis'

g
>>> from sage.all import *

>>> from sage.categories.category_with_axiom import TestObjects, axiom_of_nested_

—class

>>> axiom_of_nested_class (TestObjects, TestObjects.FiniteDimensional)

'FiniteDimensional'

>>> axiom_of_nested_class (TestObjects.FiniteDimensional,
TestObjects.FiniteDimensional.Finite)

'Finite'

>>> axiom_of_nested_class (Sets, FiniteSets)

'Finite'

>>> axiom_of_ nested_class (Algebras, AlgebrasWithBasis)

'WithBasis'

.

In all other cases, the nested class should provide an attribute _base_category_class_and_axiom:

-
sage: Semigroups._base_category_class_and_axiom

(<class 'sage.categories.magmas.Magmas'>, 'Associative')
sage: axiom_of_nested_class (Magmas, Semigroups)

'Associative'’

g
>>> from sage.all import *

>>> Semigroups._base_category_class_and_axiom

(<class 'sage.categories.magmas.Magmas'>, 'Associative')
>>> axiom_of_ nested_class (Magmas, Semigroups)
'Associative'’

.

sage.categories.category_with_axiom.base_category_class_and_axiom (cls)

Try to deduce the base category and the axiom from the name of c1s.

The heuristic is to try to decompose the name as the concatenation of the name of a category and the name of an
axiom, and looking up that category in the standard location (i.e. in sage.categories.hopf_algebras for
HopfAlgebras,andin sage.categories.sets_cat as a special case for Sets).

If the heuristic succeeds, the result is guaranteed to be correct. Otherwise, an error is raised.

EXAMPLES:

sage: from sage.categories.category with_axiom import base_category_class_and_
—axiom, CategoryWithAxiom

sage: base_category_class_and_axiom(FiniteSets)

(<class 'sage.categories.sets_cat.Sets'>, 'Finite')

sage: Sets.Finite

<class 'sage.categories.finite_sets.FiniteSets'>

sage: base_category_class_and_axiom(Sets.Finite)

(<class 'sage.categories.sets_cat.Sets'>, 'Finite')

(continues on next page)
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sage: base_category_class_and_axiom(FiniteDimensionalHopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis'>,
'FiniteDimensional')

sage: base_category_class_and_axiom(HopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras.HopfAlgebras'>, 'WithBasis')

(

.

>>> from sage.all import *

>>> from sage.categories.category_with_axiom import base_category_class_and_axiom,
— CategoryWithAxiom

>>> base_category_class_and_axiom(FiniteSets)

(<class 'sage.categories.sets_cat.Sets'>, 'Finite')

>>> Sets.Finite

<class 'sage.categories.finite_sets.FiniteSets'>

>>> base_category_class_and_axiom(Sets.Finite)

(<class 'sage.categories.sets_cat.Sets'>, 'Finite')

>>> base_category_class_and_axiom(FiniteDimensionalHopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis'>,
'FiniteDimensional')

>>> base_category_class_and_axiom (HopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras.HopfAlgebras'>, 'WithBasis')

Along the way, this does some sanity checks:

sage: class FacadeSemigroups (CategoryWithAxiom) :
P pass

sage: base_category_class_and_axiom(FacadeSemigroups)
Traceback (most recent call last):

AssertionError: Missing (lazy import) link
for <class 'sage.categories.semigroups.Semigroups'>
to <class '__main__ .FacadeSemigroups'> for axiom Facade?

sage: Semigroups.Facade = FacadeSemigroups
sage: base_category_class_and_axiom(FacadeSemigroups)
(<class 'sage.categories.semigroups.Semigroups'>, 'Facade')

>>> from sage.all import *

>>> class FacadeSemigroups (CategoryWithAxiom) :
pass

>>> base_category_class_and_axiom(FacadeSemigroups)

Traceback (most recent call last):

AssertionError: Missing (lazy import) link
for <class 'sage.categories.semigroups.Semigroups'>
to <class '__main__ .FacadeSemigroups'> for axiom Facade?

>>> Semigroups.Facade = FacadeSemigroups
>>> base_category_class_and_axiom(FacadeSemigroups)
(<class 'sage.categories.semigroups.Semigroups'>, 'Facade')
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B
O Note

In the following example, we could possibly retrieve Sets from the class name. However this cannot be im-
plemented robustly until Issue #9107 is fixed. Anyway this feature has not been needed so far:

sage: Sets.Infinite

<class 'sage.categories.sets_cat.Sets.Infinite'>
sage: base_category_class_and_axiom(Sets.Infinite)
Traceback (most recent call last):

TypeError: Could not retrieve the base category class and axiom
for <class 'sage.categories.sets_cat.Sets.Infinite'>.

>>> from sage.all import *

>>> Sets.Infinite

<class 'sage.categories.sets_cat.Sets.Infinite'>
>>> base_category_class_and_axiom(Sets.Infinite)
Traceback (most recent call last):

TypeError: Could not retrieve the base category class and axiom
for <class 'sage.categories.sets_cat.Sets.Infinite'>.

&

sage.categories.category_with_axiom.uncamelcase (s, separator="")

EXAMPLES:

(sage: sage.categories.category_with_axiom.uncamelcase ("FiniteDimensionalAlgebras")
'finite dimensional algebras'

sage: sage.categories.category_with_axiom.uncamelcase ("JTrivialMonoids")

'j trivial monoids'

sage: sage.categories.category_with_axiom.uncamelcase ("FiniteDimensionalAlgebras",
= "_")

'finite_dimensional_algebras'
.

>>> from sage.all import *

>>> sage.categories.category_with_axiom.uncamelcase ("FiniteDimensionalAlgebras")
'finite dimensional algebras'

>>> sage.categories.category_with_axiom.uncamelcase ("JTrivialMonoids")

'j trivial monoids'

>>> sage.categories.category_with_axiom.uncamelcase ("FiniteDimensionalAlgebras",
="_")

'finite_dimensional_algebras'

&

2.4 Functors

AUTHORS:
* David Kohel and William Stein
 David Joyner (2005-12-17): examples
* Robert Bradshaw (2007-06-23): Pyrexify
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 Simon King (2010-04-30): more examples, several bug fixes, re-implementation of the default call method, making

functors applicable to morphisms (not only to objects)
» Simon King (2010-12): Pickling of functors without losing domain and codomain

sage.categories.functor.ForgetfulFunctor (domain, codomain)

Construct the forgetful function from one category to another.
INPUT:
* C, D — two categories

OUTPUT:

A functor that returns the corresponding object of D for any element of c, by forgetting the extra structure.

ASSUMPTION:
The category C must be a sub-category of D.

EXAMPLES:

p
sage: rings = Rings()

sage: abgrps = CommutativeAdditiveGroups ()
sage: F = ForgetfulFunctor (rings, abgrps)
sage: F
The forgetful functor

from Category of rings

to Category of commutative additive groups
.

-
>>> from sage.all import *

>>> rings = Rings ()
>>> abgrps = CommutativeAdditiveGroups ()
>>> F = ForgetfulFunctor (rings, abgrps)
>>> F
The forgetful functor
from Category of rings
to Category of commutative additive groups

.

It would be a mistake to call it in opposite order:

-

sage: F = ForgetfulFunctor (abgrps, rings)
Traceback (most recent call last):

ValueError: Forgetful functor not supported for domain
Category of commutative additive groups

>>> from sage.all import *
>>> F = ForgetfulFunctor (abgrps, rings)
Traceback (most recent call last):

ValueError: Forgetful functor not supported for domain

Category of commutative additive groups
.

If both categories are equal, the forgetful functor is the same as the identity functor:

-

sage: ForgetfulFunctor (abgrps, abgrps) == IdentityFunctor (abgrps)
True
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>>> from sage.all import *
>>> ForgetfulFunctor (abgrps, abgrps) == IdentityFunctor (abgrps)

True

class sage.categories.functor.ForgetfulFunctor_generic

Bases: Functor
The forgetful functor, i.e., embedding of a subcategory.
NOTE:

Forgetful functors should be created using Forget fulFunctor (), since the init method of this class does not
check whether the domain is a subcategory of the codomain.

EXAMPLES:

-

sage: F = ForgetfulFunctor (FiniteFields (), Fields()) # indirect doctest
sage: F
The forgetful functor
from Category of finite enumerated fields
to Category of fields
sage: F (GF (3))

Finite Field of size 3
“

p
>>> from sage.all import *

>>> F = ForgetfulFunctor (FiniteFields (), Fields()) # indirect doctest
>>> F
The forgetful functor
from Category of finite enumerated fields
to Category of fields
>>> F (GF (Integer (3)))
Finite Field of size 3

.

class sage.categories.functor.Functor

Bases: sageObject
A class for functors between two categories.
NOTE:
* In the first place, a functor is given by its domain and codomain, which are both categories.

¢ When defining a sub-class, the user should not implement a call method. Instead, one should implement three
methods, which are composed in the default call method:

— _coerce_into_domain (self, x) —returnan object of self’s domain, corresponding to x, or raise
a TypeError. - Default: Raise TypeError if x is not in sel£’s domain.

— _apply_functor(self, x) —apply self to an object x of self’s domain. - Default: Conversion
into self’s codomain.

— _apply_functor_to_morphism(self, f£) — apply self to a morphism f in self’s domain. -
Default: Return self (f.domain ()) .hom(f, self (f.codomain())).

EXAMPLES:

sage: rings Rings ()
sage: abgrps = CommutativeAdditiveGroups ()

(continues on next page)
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sage: F = ForgetfulFunctor (rings, abgrps)
sage: F.domain ()
Category of rings
sage: F.codomain ()
Category of commutative additive groups
sage: from sage.categories.functor import Functor
sage: isinstance (F, Functor)
True
sage: I = IdentityFunctor (abgrps)
sage: I
The identity functor on Category of commutative additive groups
sage: I.domain ()
Category of commutative additive groups
sage: isinstance (I, Functor)
True

.

>>> from sage.all import *

>>> rings = Rings()

>>> abgrps = CommutativeAdditiveGroups ()

>>> F = ForgetfulFunctor (rings, abgrps)

>>> F.domain ()

Category of rings

>>> F.codomain ()

Category of commutative additive groups

>>> from sage.categories.functor import Functor
>>> isinstance (F, Functor)

True

>>> I = IdentityFunctor (abgrps)

>>> T

The identity functor on Category of commutative additive groups
>>> I.domain ()

Category of commutative additive groups

>>> isinstance (I, Functor)

True

Note that by default, an instance of the class Functor is coercion from the domain into the codomain. The above
subclasses overloaded this behaviour. Here we illustrate the default:

&

sage: from sage.categories.functor import Functor
sage: F = Functor (Rings (), Fields())

sage: F

Functor from Category of rings to Category of fields
sage: F (ZZ)

Rational Field

sage: F (GF (2))

Finite Field of size 2

-

>>> from sage.all import *

>>> from sage.categories.functor import Functor
>>> F = Functor (Rings (), Fields())

>>> F

Functor from Category of rings to Category of fields
(continues on next page)
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>>> F(22)
Rational Field
>>> F (GF (Integer (2)))
Finite Field of size 2

Functors are not only about the objects of a category, but also about their morphisms. We illustrate it, again, with
the coercion functor from rings to fields.

e

sage: Rl1.<x> = ZZ[]
sage: R2.<a,b> = QQI[]
sage: £ = Rl.hom([a + b], R2)
sage: f
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring

To: Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |-—> a + b
sage: F (f)

Ring morphism:
From: Fraction Field of Univariate Polynomial Ring in x over Integer Ring

To: Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |-—> a + b

sage: F (f) (1/x)

1/(a + b)

>>> from sage.all import *
>>> R1 = z2Z['x"']; (x,) = Rl._first_ngens (1)
>>> R2 = QQ['a, b'l; (a, b,) = R2._first_ngens (2)
>>> f = Rl.hom([a + b], R2)
>>> f
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring

To: Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |-—> a + b
>>> F (f)

Ring morphism:
From: Fraction Field of Univariate Polynomial Ring in x over Integer Ring

To: Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |-—> a + b

>>> F (f) (Integer (1) /x)

1/(a + b)

.

We can also apply a polynomial ring construction functor to our homomorphism. The result is a homomorphism
that is defined on the base ring:

r

sage: F = QQ['t'].construction() [0]

sage: F
Poly[t]
sage: F (f)

Ring morphism:
From: Univariate Polynomial Ring in t
over Univariate Polynomial Ring in x over Integer Ring

To: Univariate Polynomial Ring in t
(continues on next page)
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over Multivariate Polynomial Ring in a, b over Rational Field
Defn: Induced from base ring by
Ring morphism:

From: Univariate Polynomial Ring in x over Integer Ring

To: Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |-—> a + b
sage: p = RI['"t'] (' (—x"2 + x)*t"2 + (x72 - x)*t — 4*x"2 - x + 1")

sage: F (f) (p)
(-a”2 - 2*a*b - b"2 + a + b)*t"2 + (a2 + 2*a*b + b"2 - a - b)*t
- 4*a”~2 - 8*a*b - 4*b"2 - a - b + 1

.

>>> from sage.all import *
>>> F = QQ['t'].construction () [Integer (0) ]
>>> F
Poly[t]
>>> F (f)
Ring morphism:
From: Univariate Polynomial Ring in t
over Univariate Polynomial Ring in x over Integer Ring
To: Univariate Polynomial Ring in t
over Multivariate Polynomial Ring in a, b over Rational Field
Defn: Induced from base ring by
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring

To: Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |-—> a + b
>>> p = RI['t'] (' (-x"2 + x)*£"2 + (x"2 - x)*t - 4*x"2 - x + 1)

>>> F (f) (p)
(-a”2 - 2*a*b - b"2 + a + b)*t"2 + (a2 + 2*a*b + b2 - a - b)*t
- 4*a”~2 - 8*a*b - 4*b"2 - a - b + 1

.

codomain ()

The codomain of self.

EXAMPLES:

sage: F = ForgetfulFunctor (FiniteFields (), Fields())
sage: F.codomain ()
Category of fields

>>> from sage.all import *
>>> F = ForgetfulFunctor (FiniteFields (), Fields())
>>> F.codomain ()

Category of fields

domain ()

The domain of self.

EXAMPLES:

sage: F = ForgetfulFunctor (FiniteFields (), Fields())
sage: F.domain ()
Category of finite enumerated fields
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>>> from sage.all import *
>>> F = ForgetfulFunctor (FiniteFields (), Fields())
>>> F.domain ()

Category of finite enumerated fields

sage.categories.functor.IdentityFunctor (C)

Construct the identity functor of the given category.
INPUT:
* C —a category

OUTPUT: the identity functor in C

.

EXAMPLES:

sage: rings = Rings ()

sage: F = IdentityFunctor (rings)
sage: F(ZZ['x','y']l) is ZzZ['x"','y']
True

-

&

>>> from sage.all import *

>>> rings = Rings ()

>>> F = IdentityFunctor (rings)
>>> F(z2zZ['x"','y']) is Zz['x"','y"]
True

class sage.categories.functor.IdentityFunctor_generic (C)

Bases: Forget fulFunctor_generic
Generic identity functor on any category.
NOTE:

This usually is created using IdentityFunctor ().

-

EXAMPLES:
sage: F = IdentityFunctor (Fields()) #indirect doctest
sage: F

The identity functor on Category of fields
sage: F(RR) is RR

True

sage: F (ZZ)

Traceback (most recent call last):

TypeError: x (=Integer Ring) is not in Category of fields

>>> from sage.all import *
>>> F = IdentityFunctor (Fields()) #indirect doctest
>>> F
The identity functor on Category of fields
>>> F (RR) is RR
True
>>> F (Z27Z)
Traceback (most recent call last):
(continues on next page)
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TypeError: x (=Integer Ring) is not in Category of fields

sage.

categories.functor.is_Functor (x)

Test whether the argument is a functor.

This function is deprecated.

EXAMPLES:

-

.

sage: from sage.categories.functor import is_Functor

sage: F1 = QQ.construction() [0]

sage: F1

FractionField

sage: is_Functor (F1)

doctest:warning...

DeprecationWarning: The function is_Functor is deprecated;

use 'isinstance (..., Functor)' instead.

See https://github.com/sagemath/sage/issues/38184 for details.
True

sage: is_Functor (FractionField)

False

sage: F2 = ForgetfulFunctor (Fields (), Rings())

sage: F2

The forgetful functor from Category of fields to Category of rings
sage: is_Functor (F2)

True

>>> from sage.all import *
>>> from sage.categories.functor import is_Functor

>>> F1 = QQ.construction () [Integer (0)]
>>> F1
FractionField

>>> is_Functor (F1l)

doctest:warning...

DeprecationWarning: The function is_Functor is deprecated;

use 'isinstance (..., Functor)' instead.

See https://github.com/sagemath/sage/issues/38184 for details.
True

>>> is_Functor (FractionField)

False

>>> F2 = ForgetfulFunctor (Fields (), Rings())

>>> F2

The forgetful functor from Category of fields to Category of rings
>>> is_Functor (F2)

True

2.5

Implementing a new parent: a tutorial

The easiest approach for implementing a new parent is to start from a close example in sage.categories.examples. Here,
we will get through the process of implementing a new finite semigroup, taking as starting point the provided example:
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sage: S = FiniteSemigroups () .example ()

sage: S

An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c',
‘*}'d')

>>> from sage.all import *

>>> S = FiniteSemigroups () .example ()

>>> S

An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c',
(_}ldl)

You may lookup the implementation of this example with:

[sage: SEE # not tested

>>> from sage.all import *
>>> S # not tested

Or by browsing the source code of sage.categories.examples. finite_semigroups.LeftRegularBand

Copy-paste this code into, say, a cell of the notebook, and replace every occurrence of FiniteSemigroups () .
example (...) in the documentation by LeftRegularBand. This will be equivalent to:

[sage: from sage.categories.examples.finite_semigroups import LeftRegularBand

>>> from sage.all import *
>>> from sage.categories.examples.finite_semigroups import LeftRegularBand

Now, try:

sage: S = LeftRegularBand(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c',
;}ldl)

>>> from sage.all import *

>>> S = LeftRegularBand(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c',
‘—)'d’)

and play around with the examples in the documentation of s and of FiniteSemigroups.

Rename the class to shiftSemigroup, and modify the product to implement the semigroup generated by the given
alphabet such that au = u for any w of length 3.

Use TestSuite to test the newly implemented semigroup; draw its Cayley graph.
Add another option to the constructor to generalize the construction to any u of length k.
Lookup the Sloane for the sequence of the sizes of those semigroups.

Now implement the commutative monoid of subsets of {1, ..., n} endowed with union as product. What is its category?
What are the extra functionalities available there? Implement iteration and cardinality.
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& Todo

The tutorial should explain there how to reuse the enumerated set of subsets, and endow it with more structure.
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MAPS AND MORPHISMS

3.1 Base class for maps

AUTHORS:
* Robert Bradshaw: initial implementation

* Sebastien Besnier (2014-05-5): FormalCompositeMap contains a list of Map instead of only two Map. See Issue
#16291.

¢ Sebastian Oehms (2019-01-19): section () added to FormalCompositeMap. See Issue #27081.

class sage.categories.map.FormalCompositeMap

Bases: Map
Formal composite maps.

A formal composite map is formed by two maps, so that the codomain of the first map is contained in the domain
of the second map.

© Note

When calling a composite with additional arguments, these arguments are only passed to the second underlying
map.

EXAMPLES:

sage: R.<x> = QQI]
sage: S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a”"p.degree())
sage: g = S.hom([2*x])
sage: f*g
Composite map:
From: Univariate Polynomial Ring in a over Rational Field

To: Univariate Polynomial Ring in a over Rational Field
Defn: Ring morphism:
From: Univariate Polynomial Ring in a over Rational Field
To: Univariate Polynomial Ring in x over Rational Field
Defn: a |-——> 2*x
then

Generic morphism:

From: Univariate Polynomial Ring in x over Rational Field

(continues on next page)
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To:
g*f
Composite map:

Univariate Polynomial Ring in a over Rational

sage:

From: Univariate Polynomial Ring in x over Rational Field

(continued from previous page)

Field

.

To: Univariate Polynomial Ring in x over Rational Field
Defn: Generic morphism:
From: Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in a over Rational Field
then

Ring morphism:
From: Univariate Polynomial Ring in a over Rational Field
To: Univariate Polynomial Ring in x over Rational Field
Defn: a |—-——> 2*x

sage: (f*g) (2*a”2+5)

5*ar2

sage: (g*f) (2*x"2+5)

20*x"2

>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1l)

>>> S = QQ['a'l; (a,) = S._first_ngens (1)

>>> from sage.categories.morphism import SetMorphism

>>> f = SetMorphism(Hom (R, S, Rings()), lambda p: p[Integer(0)]*a**p.degree())

>>> g = S.hom([Integer (2) *x])

>>> f*g

Composite map:

From: Univariate Polynomial Ring in a over Rational Field
To: Univariate Polynomial Ring in a over Rational Field
Defn: Ring morphism:

From: Univariate Polynomial Ring in a over Rational

To: Univariate Polynomial Ring in x over Rational

Defn: a |—-—> 2*x

then

Generic morphism:

From: Univariate Polynomial Ring in x over Rational

To: Univariate Polynomial Ring in a over Rational

>>> g*f

Composite map:

From: Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in x over Rational Field
Defn: Generic morphism:
From: Univariate Polynomial Ring in x over Rational
To: Univariate Polynomial Ring in a over Rational
then
Ring morphism:
From: Univariate Polynomial Ring in a over Rational
To: Univariate Polynomial Ring in x over Rational
Defn: a |—-—> 2*x
>>> (f*g) (Integer (2) *a**Integer (2) +Integer (5))
5*an2
>>> (g*f) (Integer (2) *x**Integer (2) +Integer (5))

20*x"2

Field
Field

Field
Field

Field
Field

Field
Field
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domains ()

Iterate over the domains of the factors of this map.

(This is useful in particular to check for loops in coercion maps.)

> See also

Map.domains ()

EXAMPLES:

sage: f = QQ.coerce_map_from(ZZ)

sage: g = MatrixSpace (QQ, 2, 2).coerce_map_~from(QQ) #.
—needs sage.modules

sage: list((g * f).domains()) #
—needs sage.modules

[Integer Ring, Rational Field]

>>> from sage.all import *
>>> f = QQ.coerce_map_from(ZZ)

>>> g = MatrixSpace (QQ, Integer(2), Integer(2)).coerce_map_~from(QQ) -
— # needs sage.modules
>>> list ((g * f).domains()) #o

—needs sage.modules

[Integer Ring, Rational Field]

first ()

Return the first map in the formal composition.

If self represents f, o f,_10---0 f1 0 fo, then self.first () returns fo. We have self == self.
then() * self.first ().

EXAMPLES:

sage: R.<x> = QQ[]

sage: S.<a> = QQ[]

sage: from sage.categories.morphism import SetMorphism

sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0] *a"p.degree())
sage: g = S.hom([2*x])

sage: fg = £ * g

sage: fg.first() == g

True

sage: fg == fg.then() * fg.first()
True

>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens (1)

>>> S = QQ['a']l; (a,) = S._first_ngens (1)

>>> from sage.categories.morphism import SetMorphism

>>> f = SetMorphism(Hom(R, S, Rings()), lambda p: p[Integer (0)]*a**p.degree())
>>> g = S.hom([Integer(2) *x])

>>> fg = f * g

>>> fg.first() == g

(continues on next page)
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True
>>> fg == fg.then() * fg.first ()
True

is_injective()
Tell whether self is injective.

It raises Not ImplementedError if it cannot be determined.

EXAMPLES:

sage: # needs sage.modules

sage: V1 = Q0”2

sage: V2 = Q0”3

sage: phil = (QQ"1) .hom(Matrix([[1, 111), V1)

sage: phi2 = V1.hom(Matrix([[1, 2, 31, [4, 5, 611), V2)

>>> from sage.all import *
>>> # needs sage.modules
>>> V1 = QQ**Integer (2)
>>> V2 = QQ**Integer (3)

>>> phi2 = V1.hom(Matrix ([[Integer (1), Integer(2), Integer(3)],
—Integer(5), Integer(6)1]1), V2)

>>> phil = (QQ**Integer(l)).hom(Matrix([[Integer(l), Integer(1l)]1]1), V1)

[Integer (4), -

If both constituents are injective, the composition is injective:

sage: from sage.categories.map import FormalCompositeMap

sage: cl = FormalCompositeMap (Hom (QQ"1, V2, phil.category_for()), #
—needs sage.modules
50008 phil, phi2)
sage: cl.is_injective() #_
—needs sage.modules
True
>>> from sage.all import *
>>> from sage.categories.map import FormalCompositeMap
>>> ¢l = FormalCompositeMap (Hom (QQ**Integer (1), V2, phil.category_for()), .
— # needs sage.modules

phil, phi2)
>>> cl.is_injective () #_
—needs sage.modules
True
If it cannot be determined whether the composition is injective, an error is raised:
sage: psil = V2.hom(Matrix([[1, 2], [3, 41, [5, 611), V1) #o
—needs sage.modules
sage: c2 = FormalCompositeMap (Hom(V1l, V1, phi2.category_for()), #_
—needs sage.modules
et phi2, psil)
sage: c2.is_injective () #
—needs sage.modules

(continues on next page)
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Traceback (most recent call last):

NotImplementedError: not enough information to deduce injectivity

>>> from sage.all import *
>>> psil = V2.hom(Matrix([[Integer (1), Integer(2)], [Integer(3), Integer(4)],-—
— [Integer(5), Integer(6)]]1), V1) # needs sage.modules
>>> c2 = FormalCompositeMap (Hom(V1l, V1, phi2.category_for()), #o
—needs sage.modules

phi2, psil)
>>> c2.1is_injective () #_
—needs sage.modules
Traceback (most recent call last):

NotImplementedError: not enough information to deduce injectivity

If the first map is surjective and the second map is not injective, then the composition is not injective:

sage: psi2 = Vli.hom([[1], [11]1, Q0Q"1) #.
—needs sage.modules

sage: c3 = FormalCompositeMap (Hom(V2, Q0"1, phi2.category_for()), #.
—needs sage.modules

et psi2, psil)

sage: c3.is_injective() #.

—needs sage.modules
False

>>> from sage.all import *
>>> psi2 = V1.hom([[Integer(1)], [Integer(1l)]], QQ**Integer(l)) -

. # needs sage.modules
>>> c3 = FormalCompositeMap (Hom(V2, QQ**Integer (1), phi2.category_for()), o
— # needs sage.modules

psi2, psil)
>>> c3.is_injective () #-
—needs sage.modules
False

is_surjective ()

Tell whether self is surjective.
It raises Not ImplementedError if it cannot be determined.

EXAMPLES:

sage: from sage.categories.map import FormalCompositeMap

sage: V3 = Q0”3 #_
—needs sage.modules

sage: V2 = QQ"2 #.
—needs sage.modules

sage: V1 = Q0”1 #.
—needs sage.modules
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>>> from sage.all import *
>>> from sage.categories.map import FormalCompositeMap
>>> V3 = QQ**Integer (3) -

— # needs sage.modules
>>> V2 = QQ**Integer (2) -
— # needs sage.modules
>>> V1 = QQ**Integer (1) o
— # needs sage.modules

If both maps are surjective, the composition is surjective:

sage: # needs sage.modules

sage: phi32 = V3.hom(Matrix([[1, 2], [3, 41, [5, 611), V2)

sage: phi2l = V2.hom(Matrix ([[1], [1]1]), V1)

sage: c_phi = FormalCompositeMap (Hom(V3, V1, phi32.category_for()),
et phi32, phi2l)

sage: c_phi.is_surjective ()

True

>>> from sage.all import *
>>> # needs sage.modules
>>> phi32 = V3.hom(Matrix ([[Integer(l), Integer(2)], [Integer(3), Integer(4)],
— [Integer(5), Integer(6)11), V2)
>>> phi2l = V2.hom(Matrix([[Integer(1l)], [Integer(l)]]), V1)
>>> c_phi = FormalCompositeMap (Hom(V3, V1, phi32.category_for()),
phi32, phi2l)
>>> c_phi.is_surjective()
True

If the second map is not surjective, the composition is not surjective:

sage: FormalCompositeMap (Hom(V3, V1, phi32.category_for()), #.
—needs sage.modules

cellt phi32,

3800 V2.hom(Matrix ([[0], [0]1), V1)) .is_surjective()

>>> from sage.all import *
>>> FormalCompositeMap (Hom (V3, V1, phi32.category_for()), #_
—needs sage.modules

phi32,

V2.hom (Matrix ([[Integer (0)], [Integer(0)]]), V1)) .is_
—surjective ()
False

If the second map is an isomorphism and the first map is not surjective, then the composition is not surjective:

sage: FormalCompositeMap (Hom(V2, V1, phi32.category_for()), #.
—needs sage.modules

et V2.hom(Matrix ([[0], [0]1), V1),

el V1.hom(Matrix ([[1]]), V1)) .is_surjective()
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>>> from sage.all import *
>>> FormalCompositeMap (Hom(V2, V1, phi32.category_for()), #.
—needs sage.modules
V2.hom (Matrix ([ [Integer (0)], [Integer(0)]]1), V1),
V1.hom(Matrix ([[Integer(1)]]), V1)) .is_surjective()
False

Otherwise, surjectivity of the composition cannot be determined:

sage: FormalCompositeMap (Hom(V2, V1, phi32.category_for()), #.
—needs sage.modules

et V2.hom(Matrix([[1, 11, [1, 111), V2),

el V2.hom(Matrix ([[1], [111), V1)) .is_surjective()

Traceback (most recent call last):

NotImplementedError: not enough information to deduce surjectivity

>>> from sage.all import *

>>> FormalCompositeMap (Hom (V2, V1, phi32.category_for()), #_

—needs sage.modules

5 V2.hom (Matrix ([ [Integer (1), Integer(l)], [Integer(l), Integer(l)]1]),-

-V2),
V2.hom(Matrix ([ [Integer(l)], I[Integer(1)]]), V1)).is_surjective()

Traceback (most recent call last):

NotImplementedError: not enough information to deduce surjectivity

section ()

Compute a section map from sections of the factors of self if they have been implemented.

EXAMPLES:

sage: P.<x> = Q0[]
sage: incl = P.coerce_map_from(ZZ)
sage: sect = incl.section(); sect
Composite map:
From: Univariate Polynomial Ring in x over Rational Field

To: Integer Ring
Defn: Generic map:
From: Univariate Polynomial Ring in x over Rational Field
To: Rational Field
then

Generic map:

From: Rational Field

To: Integer Ring
sage: p = x + 5; g =x + 2
sage: sect (p—qg)
3

>>> from sage.all import *

>>> P = QQ['x"']; (x,) = P._first_ngens (1)
>>> incl = P.coerce_map_from(ZZz)

>>> sect = incl.section(); sect

(continues on next page)
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Composite map:
From: Univariate Polynomial Ring in x over Rational Field

To: Integer Ring
Defn: Generic map:
From: Univariate Polynomial Ring in x over Rational Field
To: Rational Field
then

Generic map:

From: Rational Field

To: Integer Ring
>>> p = x + Integer(5); g = x + Integer(2)
>>> sect (p—q)
3

the following example has been attached to _integer_ () of sage.rings.polynomial.
polynomial_element.Polynomial before (see comment there):

-

sage: k = GF (47)
sage: R.<x> = PolynomialRing (k)
sage: R.coerce_map_from(ZZ) .section ()
Composite map:
From: Univariate Polynomial Ring in x over Finite Field of size 47

To: Integer Ring
Defn: Generic map:
From: Univariate Polynomial Ring in x over Finite Field of size 47
To: Finite Field of size 47
then

Lifting map:
From: Finite Field of size 47

To: Integer Ring
sage: ZZ(R(45)) # indirect doctest
45
sage: ZZ(3*x + 45) # indirect doctest

Traceback (most recent call last):

TypeError: 3*x + 45 is not a constant polynomial

>>> from sage.all import *
GF (Integer (47))
>>> R = PolynomialRing(k, names=('x',)); (x,) = R._first_ngens (1)

>>> k

>>> R.coerce_map_from(ZZ) .section ()
Composite map:
From: Univariate Polynomial Ring in x over Finite Field of size 47

To: Integer Ring
Defn: Generic map:
From: Univariate Polynomial Ring in x over Finite Field of size 47
To: Finite Field of size 47
then

Lifting map:
From: Finite Field of size 47
To: Integer Ring
>>> 77 (R(Integer (45))) # indirect doctest
(continues on next page)
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45
>>> 77 (Integer (3) *x + Integer (45)) # indirect doctest
Traceback (most recent call last):

TypeError: 3*x + 45 is not a constant polynomial

then ()
Return the tail of the list of maps.

If self represents f,, o f,_1 0---0 f1 0 fo, then self.first () returns f,, o f,_1 0---0o f;. We have

self == self.then() * self.first().
EXAMPLES:

sage: R.<x> = QQI]

sage: S.<a> = QQI[]

sage: from sage.categories.morphism import SetMorphism

sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a”p.degree())
sage: g = S.hom([2*x])

sage: (f*g).then() == £

True

sage: f = QQ.coerce_map_from(ZZ)

sage: f = f.extend_domain (ZZ) .extend_codomain (QQ)
sage: f.then()

Composite map:

From: Integer Ring

To: Rational Field
Defn: Natural morphism:
From: Integer Ring

To: Rational Field
then

Identity endomorphism of Rational Field

>>> from sage.all import *

>>> R = QQ['x"']; (x,) = R._first_ngens (1)

>>> S = QQ['a']l; (a,) = S._first_ngens (1)

>>> from sage.categories.morphism import SetMorphism

>>> f = SetMorphism(Hom(R, S, Rings()), lambda p: p[Integer (0)]*a**p.degree())
>>> g = S.hom([Integer(2) *x])

>>> (f*g).then() ==
True

>>> f = QQ.coerce_map_from(ZZ)

>>> f = f.extend_domain (ZZ) .extend_codomain (QQ)
>>> f.then ()

Composite map:

From: Integer Ring

To: Rational Field
Defn: Natural morphism:
From: Integer Ring

To: Rational Field
then

(continues on next page)
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{Identity endomorphism of Rational Field

class sage.categories.map.Map

Bases: Element

Basic class for all maps.

© Note

The call method is of course not implemented in this base class. This must be done in the sub classes, by
overloading _call_ and possibly also _call_with_args.

EXAMPLES:

Usually, instances of this class will not be constructed directly, but for example like this:

-
sage: from sage.categories.morphism import SetMorphism

sage: X.<x> = ZZ[]

sage: Y = 7ZZ

sage: phi = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi (x"2+2*x-1)

=i

sage: R.<x,y> = QQI[]

sage: f = R.hom([x+y, x-y], R)

sage: f (x"2+2*x-1)

22 F 2¥RFy F Y2 + 2¥x + 2%y = 1

>>> from sage.all import *

>>> from sage.categories.morphism import SetMorphism
>>> X = ZZ['x"'"]; (x,) = X._first_ngens (1)

>>> Y = ZZ

>>> phi = SetMorphism(Hom (X, Y, Rings()), lambda p: p[Integer(0)])
>>> phi (x**Integer (2) +Integer (2) *x-Integer (1))

=i

>>> R = QQ['x, yv']l; (x, y,) = R._first_ngens(2)

>>> f = R.hom([x+y, x-v], R)

>>> f (x**Integer (2)+Integer (2) *x-Integer (1))

BA2 A 2EREY # Y2 F 2% + 2%y = i

.

category_ for ()

Return the category self is a morphism for.

O Note

This is different from the category of maps to which this map belongs as an object.

EXAMPLES:

sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[]
sage: Y = ZZ
(continues on next page)
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sage: phi = SetMorphism(Hom (X, Y, Rings()), lambda p: p[0])
sage: phi.category_for ()
Category of rings
sage: phi.category ()
Category of homsets of unital magmas and additive unital additive magmas
sage: R.<x,y> = QQI[]
sage: f = R.hom([xty, x-vy], R)
sage: f.category_for ()
Join of Category of unique factorization domains
and Category of algebras with basis over
(number fields and quotient fields and metric spaces)
and Category of commutative algebras over
(number fields and quotient fields and metric spaces)
and Category of infinite sets
sage: f.category()
Category of endsets of unital magmas
and right modules over (number fields and quotient fields and metric spaces)
and left modules over (number fields and quotient fields and metric spaces)

>>> from sage.all import *
>>> from sage.categories.morphism import SetMorphism

>>> X = ZZ['x']; (x,) = X._first_ngens (1)
>>> Y = 7%
>>> phi = SetMorphism(Hom(X, Y, Rings()), lambda p: p[Integer(0)])

>>> phi.category_for ()
Category of rings
>>> phi.category ()
Category of homsets of unital magmas and additive unital additive magmas
>>> R = Q0['x, v'l; (x, y,) = R._first_ngens(2)
>>> f = R.hom([x+y, x-y], R)
>>> f.category_for()
Join of Category of unique factorization domains
and Category of algebras with basis over
(number fields and quotient fields and metric spaces)
and Category of commutative algebras over
(number fields and quotient fields and metric spaces)
and Category of infinite sets
>>> f.category ()
Category of endsets of unital magmas
and right modules over (number fields and quotient fields and metric spaces)

and left modules over (number fields and quotient fields and metric spaces)

FIXME: find a better name for this method

codomain
domain

domains ()

Iterate over the domains of the factors of a (composite) map.

This default implementation simply yields the domain of this map.
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> See also

FormalCompositeMap.domains ()

EXAMPLES:

sage: list (QQ.coerce_map_from(zZZ) .domains())
[Integer Ring]

>>> from sage.all import *
>>> 1ist (QQ.coerce_map_from(ZZ) .domains ())
[Integer Ring]

extend_codomain (new_codomain)

INPUT:

¢ self —a member of Hom(X, Y)

* new_codomain — an object Z such that there is a canonical coercion ¢ in Hom(Y, Z)
OUTPUT:

An element of Hom(X, Z) obtained by composing self with ¢. If no canonical ¢ exists, a TypeError is
raised.

EXAMPLES:

sage: mor = QQ.coerce_map_from(ZZ)
sage: mor.extend_codomain (RDF)
Composite map:
From: Integer Ring
1O 8 Real Double Field
Defn: Natural morphism:
From: Integer Ring
To: Rational Field
then
Native morphism:
From: Rational Field
To: Real Double Field
sage: mor.extend_codomain (GF (7))
Traceback (most recent call last):

TypeError: No coercion from Rational Field to Finite Field of size 7

>>> from sage.all import *
>>> mor = QQ.coerce_map_from(ZZ)
>>> mor.extend_codomain (RDF)
Composite map:

From: Integer Ring

To: Real Double Field
Defn: Natural morphism:
From: Integer Ring
To: Rational Field
then

(continues on next page)
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Native morphism:
From: Rational Field
To: Real Double Field
>>> mor.extend_codomain (GF (Integer (7)) )
Traceback (most recent call last):

TypeError: No coercion from Rational Field to Finite Field of size 7

extend_domain (new_domain)

INPUT:

¢ self —a member of Hom(Y, Z)

* new_codomain — an object X such that there is a canonical coercion ¢ in Hom(X, Y)
OUTPUT:

An element of Hom(X, Z) obtained by composing self with ¢. If no canonical ¢ exists, a TypeError is
raised.

EXAMPLES:

sage: # needs sage.rings.complex_double
sage: mor = CDF.coerce_map_from (RDF)
sage: mor.extend_domain (QQ)
Composite map:

From: Rational Field

To: Complex Double Field
Defn: Native morphism:
From: Rational Field
To: Real Double Field
then

Native morphism:

From: Real Double Field

To: Complex Double Field
sage: mor.extend_domain (ZZ['x'])
Traceback (most recent call last):

TypeError: No coercion from Univariate Polynomial Ring in x over Integer Ring
to Real Double Field

>>> from sage.all import *
>>> # needs sage.rings.complex_double
>>> mor = CDF.coerce_map_from (RDF)
>>> mor.extend_domain (QQ)
Composite map:

From: Rational Field

To: Complex Double Field
Defn: Native morphism:
From: Rational Field
To: Real Double Field
then

Native morphism:
From: Real Double Field

(continues on next page)
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To: Complex Double Field
>>> mor.extend_domain (ZzZ['x'])
Traceback (most recent call last):

TypeError: No coercion from Univariate Polynomial Ring in x over Integer Ring
to Real Double Field

is_surjective ()

Tell whether the map is surjective (not implemented in the base class).

parent ()

Return the homset containing this map.

© Note

The method _make_weak_references (), that is used for the maps found by the coercion system,
needs to remove the usual strong reference from the coercion map to the homset containing it. As long
as the user keeps strong references to domain and codomain of the map, we will be able to reconstruct
the homset. However, a strong reference to the coercion map does not prevent the domain from garbage
collection!

EXAMPLES:

sage: Q = QuadraticField(-5) #
—needs sage.rings.number_ field
sage: phi = CDF._internal_convert_map_from(Q) #.
—needs sage.rings.number_ field
sage: print (phi.parent()) #
—needs sage.rings.number_field
Set of field embeddings
from Number Field in a with defining polynomial x"2 + 5
with a = 2.236067977499790?*I
to Complex Double Field

>>> from sage.all import *
>>> Q = QuadraticField(-Integer (5)) -
— # needs sage.rings.number_ field
>>> phi = CDF._internal_convert_map_from(Q) #
—needs sage.rings.number_field
>>> print (phi.parent ()) 7o
—needs sage.rings.number_field
Set of field embeddings
from Number Field in a with defining polynomial x*2 + 5
with a = 2.236067977499790?*1I
to Complex Double Field

We now demonstrate that the reference to the coercion map ¢ does not prevent ) from being garbage col-
lected:

sage: import gc
sage: del Q #_

(continues on next page)
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—needs sage.rings.number_field

sage: _ = gc.collect ()

sage: phi.parent () #o
—needs sage.rings.number_field

Traceback (most recent call last):

ValueError: This map is in an invalid state,
the domain has been garbage collected

>>> from sage.all import *

>>> import gc

>>> del Q #o
—needs sage.rings.number_ field

>>> = gc.collect ()

>>> phi.parent () #
—needs sage.rings.number_field

Traceback (most recent call last):

ValueError: This map is in an invalid state,
the domain has been garbage collected

You can still obtain copies of the maps used by the coercion system with strong references:

sage: # needs sage.rings.number_field
sage: Q = QuadraticField(-5)
sage: phi = CDF.convert_map_from(Q)
sage: print (phi.parent())
Set of field embeddings
from Number Field in a with defining polynomial x"2 + 5
with a = 2.236067977499790?*I
to Complex Double Field
sage: import gc
sage: del Q
sage: _ = gc.collect ()
sage: phi.parent ()
Set of field embeddings
from Number Field in a with defining polynomial x"2 + 5
with a = 2.2360679774997907?*I
to Complex Double Field

>>> from sage.all import *

>>> # needs sage.rings.number_ field

>>> Q = QuadraticField(-Integer(5))

>>> phi = CDF.convert_map_from(Q)

>>> print (phi.parent ())

Set of field embeddings

from Number Field in a with defining polynomial x"2 + 5
with a = 2.236067977499790?*I

to Complex Double Field

>>> import gc

>>> del Q

>>> = gc.collect ()

(continues on next page)
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>>> phi.parent ()
Set of field embeddings
from Number Field in a with defining polynomial x*2 + 5
with a = 2.2360679774997902*1I
to Complex Double Field

post_compose (left)
INPUT:

* self —aMapinsome Hom (X, Y, category_right)
e left —a Mapin some Hom (Y, Z, category_left)

Returns the composition of self followed by left as a morphism in Hom (X, Z, category) where
category is the meet of category_left and category_right.

Caveat: see the current restrictions on Category.meet ()

EXAMPLES:

sage: from sage.categories.morphism import SetMorphism

sage: X.<x> = ZZ[]

sage: Y = ZZ

sage: Z = QQ

sage: phi_xy = SetMorphism(Hom (X, Y, Rings()), lambda p: p[0])

sage: phi_yz SetMorphism (Hom (Y, Z, Monoids()), lambda y: QQ(y**2))
sage: phi_xz = phi_xy.post_compose (phi_yz); phi_xz

Composite map:
From: Univariate Polynomial Ring in x over Integer Ring
Toes Rational Field
Defn: Generic morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Integer Ring
then
Generic morphism:
From: Integer Ring
To: Rational Field
sage: phi_xz.category_for ()
Category of monoids

>>> from sage.all import *
>>> from sage.categories.morphism import SetMorphism

>>> X = ZZ['x']; (x,) = X._first_ngens (1)

>>> Y = ZZ

>>> 7 = Q0

>>> phi_xy = SetMorphism(Hom (X, Y, Rings()), lambda p: p[Integer (0)])

>>> phi_yz = SetMorphism(Hom (Y, Z, Monoids()), lambda y: QQ(y**Integer(2)))
>>> phi_xz = phi_xy.post_compose (phi_yz); phi_xz

Composite map:
From: Univariate Polynomial Ring in x over Integer Ring
To: Rational Field
Defn: Generic morphism:
From: Univariate Polynomial Ring in x over Integer Ring

To: Integer Ring

(continues on next page)
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then
Generic morphism:
From: Integer Ring
To: Rational Field
>>> phi_xz.category_for ()
Category of monoids

pre_compose (right)
INPUT:

* self —aMapinsome Hom(Y, 7, category_left)
* left —a Map in some Hom (X, Y, category_right)

Returns the composition of right followed by self as a morphism in Hom (X, Z, category) where
category is the meet of category_left and category_right.

EXAMPLES:

-

sage: from sage.categories.morphism import SetMorphism

sage: X.<x> = ZZ[]

sage: Y = ZZ

sage: Z = QQ

sage: phi_xy SetMorphism (Hom (X, Y, Rings()), lambda p: p[0])

sage: phi_yz = SetMorphism(Hom(Y, Z, Monoids()), lambda y: QQ(y**2))
phi_yz.pre_compose (phi_xy); phi_xz

sage: phi_xz
Composite map:
From: Univariate Polynomial Ring in x over Integer Ring
To: Rational Field
Defn: Generic morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Integer Ring
then
Generic morphism:
From: Integer Ring
To: Rational Field
sage: phi_xz.category_for ()
Category of monoids

>>> from sage.all import *
>>> from sage.categories.morphism import SetMorphism

>>> X = ZZ['x']; (x,) = X._first_ngens (1)

>>> Y = ZZ

>>> 7 = QQ

>>> phi_xy = SetMorphism(Hom (X, Y, Rings()), lambda p: pl[Integer (0)])

>>> phi_yz = SetMorphism(Hom (Y, Z, Monoids()), lambda y: QQ(y**Integer(2)))

>>> phi_xz phi_yz.pre_compose (phi_xy); phi_xz
Composite map:
From: Univariate Polynomial Ring in x over Integer Ring
Toes Rational Field
Defn: Generic morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Integer Ring

then

(continues on next page)
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Generic morphism:

From: Integer Ring

To: Rational Field
>>> phi_xz.category_for ()
Category of monoids

(continued from previous page)

section ()

Return a section of self.

© Note

By default, it returns None. You may override it in subclasses.

class sage.categories.map.Section

Bases: Map

A formal section of a map.

O Note

Call methods are not implemented for the base class Section.

EXAMPLES:

sage: from sage.categories.map import Section
sage: R.<x,y> = ZZ[]

sage: S.<a,b> Q0[]

sage: £ = R.hom([atb, a-b])

sage: sf = Section(f); sf

Section map:

sage: sf(a)
Traceback (most recent call last):

NotImplementedError: <class 'sage.categories.map.Section'>

From: Multivariate Polynomial Ring in a, b over Rational Field

To: Multivariate Polynomial Ring in x, y over Integer Ring

g
>>> from sage.all import *

>>> from sage.categories.map import Section

>>> R = ZZ['x, y']l; (x, y,) = R._first_ngens(2)
>>> S = QQ['a, b'l; (a, b,) = S._first_ngens(2)
>>> f = R.hom([atb, a-Dbl)

>>> sf = Section(f); sf

Section map:

>>> sf (a)

Traceback (most recent call last):

NotImplementedError: <class 'sage.categories.map.Section'>

From: Multivariate Polynomial Ring in a, b over Rational Field
To: Multivariate Polynomial Ring in x, y over Integer Ring
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inverse ()

Return inverse of self.

sage.categories.map.is_Map (x)

Auxiliary function: Is the argument a map?

EXAMPLES:

f

sage: R.<x,y> = QQ[]

sage: f = R.hom([x+y, x-y], R)

sage: from sage.categories.map import is_Map

sage: is_Map (f)

doctest:warning...

DeprecationWarning: The function is_Map is deprecated; use 'isinstance(..., Map) 'o
—instead.

See https://github.com/sagemath/sage/issues/38103 for details.

True

g
>>> from sage.all import *

>>> R = Q0Q['x, v']; (x, y,) = R._first_ngens(2)

>>> f = R.hom([xty, x-Vv], R)

>>> from sage.categories.map import is_Map

>>> is_Map (f)

doctest:warning. ..

DeprecationWarning: The function is_Map is deprecated; use 'isinstance(..., Map) 'o
—linstead.

See https://github.com/sagemath/sage/issues/38103 for details.

True
.

sage.categories.map.unpickle_map (_class, parent, _dict, _slots)
Auxiliary function for unpickling a map.

3.2 Homsets

The class Hom is the base class used to represent sets of morphisms between objects of a given category. Hom objects are
usually “weakly” cached upon creation so that they don’t have to be generated over and over but can be garbage collected
together with the corresponding objects when these are not strongly ref’ed anymore.

EXAMPLES:

In the following, the Hom object is indeed cached:

sage: K = GF (17)
sage: H = Hom(ZZ, K)
sage: H

Set of Homomorphisms from Integer Ring to Finite Field of size 17
sage: H is Hom(ZZ, K)
True

>>> from sage.all import *
>>> K = GF (Integer(17))
>>> H = Hom(ZZ, K)
>>> H
Set of Homomorphisms from Integer Ring to Finite Field of size 17
(continues on next page)
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(continued from previous page)

>>> H is Hom(ZZ, K)
True

Nonetheless, garbage collection occurs when the original references are overwritten:

sage: # needs sage.libs.pari
sage: for p in prime_range (200) :
e K = GF (p)

Hom (27, K)

sage: import gc

jass
Il

sage: _ = gc.collect()

sage: from sage.rings.finite_rings.finite_field prime_modn import FiniteField_prime_
—modn as FF

sage: L = [x for x in gc.get_objects() if isinstance(x, FF)]
sage: len(L)

1

sage: L

[Finite Field of size 199]

>>> from sage.all import *
>>> # needs sage.libs.pari
>>> for p in prime_range (Integer (200)) :
K = GF (p)
H = Hom(ZZ, K)
>>> import gc
>>> = gc.collect ()
>>> from sage.rings.finite_rings.finite_field prime_modn import FiniteField_prime_
—modn as FF
>>> L = [x for x in gc.get_objects() if isinstance(x, FF)]
>>> len (L)
1
>>> L

[Finite Field of size 199]

AUTHORS:
* David Kohel and William Stein
David Joyner (2005-12-17): added examples
William Stein (2006-01-14): Changed from Homspace to Homset.

Nicolas M. Thiery (2008-12-): Updated for the new category framework

Simon King (2011-12): Use a weak cache for homsets
Simon King (2013-02): added examples

sage.categories.homset .End (X, category=None)

Create the set of endomorphisms of x in the category category.
INPUT:
e X —anything

* category — (optional) category in which to coerce x
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OUTPUT: a set of endomorphisms in category
EXAMPLES:

-

sage: V = VectorSpace (QQ, 3) #_
—needs sage.modules
sage: End (V) #_
—needs sage.modules
Set of Morphisms (Linear Transformations)

from Vector space of dimension 3 over Rational Field

to Vector space of dimension 3 over Rational Field
.

>>> from sage.all import *

>>> V = VectorSpace (QQ, Integer(3)) ~
— # needs sage.modules
>>> End (V) #

—needs sage.modules
Set of Morphisms (Linear Transformations)
from Vector space of dimension 3 over Rational Field

to Vector space of dimension 3 over Rational Field
.

sage: # needs sage.groups

sage: G = AlternatingGroup (3)

sage: S = End(G); S

Set of Morphisms

from Alternating group of order 3!/2 as a permutation group
to Alternating group of order 3!/2 as a permutation group
in Category of finite enumerated permutation groups

sage: S.domain ()

Alternating group of order 3!/2 as a permutation group
.

>>> from sage.all import *

>>> # needs sage.groups

>>> G = AlternatingGroup (Integer (3))
End(G); S

Set of Morphisms

>>> S

from Alternating group of order 3!/2 as a permutation group
to Alternating group of order 3!/2 as a permutation group
in Category of finite enumerated permutation groups
>>> S.domain ()

Alternating group of order 3!/2 as a permutation group
.

To avoid creating superfluous categories, a homset in a category Cs () is in the homset category of the lowest full
super category Bs () of Cs () that implements Bs . Homset s (or the join thereof if there are several). For example,
finite groups form a full subcategory of unital magmas: any unital magma morphism between two finite groups is
a finite group morphism. Since finite groups currently implement nothing more than unital magmas about their
homsets, we have:

sage: # needs sage.groups
sage: G = GL(3, 3)
sage: G.category ()
Category of finite groups
sage: H = Hom(G, G)

(continues on next page)
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sage: H.homset_category ()

Category of finite groups

sage: H.category ()

Category of endsets of unital magmas

(continued from previous page)

>>> from sage.all import *

>>> # needs sage.groups

>>> G = GL(Integer(3), Integer(3))
>>> G.category ()

Category of finite groups

>>> H = Hom (G, G)

>>> H.homset_category ()

Category of finite groups

>>> H.category ()

Category of endsets of unital magmas

Similarly, a ring morphism just needs to preserve addition, multiplication, zero, and one. Accordingly, and since
the category of rings implements nothing specific about its homsets, a ring homset is currently constructed in the

category of homsets of unital magmas and unital additive magmas:

L

sage: H = Hom(ZZ,Z2Z,Rings())
sage: H.category ()

Category of endsets of unital magmas and additive unital additive magmas

.

>>> from sage.all import *
>>> H = Hom(ZZ,ZZ,Rings())
>>> H.category ()

Category of endsets of unital magmas and additive unital additive magmas

sage.categories.homset .Hom (X, Y, category=None, check=True)

Create the space of homomorphisms from X to Y in the category category.

INPUT:
e X —an object of a category

* Y —an object of a category

* category — a category in which the morphisms must be (default: the meet of the categories of x and Y);

both x and Y must belong to that category

¢ check — boolean (default: True); whether to check the input, and in particular that X and Y belong to

category.
OUTPUT: a homset in category
EXAMPLES:

-

sage: V = VectorSpace (QQ, 3)
—needs sage.modules

sage: Hom(V, V)

—needs sage.modules

Set of Morphisms (Linear Transformations) from
Vector space of dimension 3 over Rational Field to
Vector space of dimension 3 over Rational Field

(continues on next page)
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(continued from previous page)

sage: G = AlternatingGroup (3) #o
—needs sage.groups
sage: Hom (G, G) #
—needs sage.groups
Set of Morphisms
from Alternating group of order 3!/2 as a permutation group
to Alternating group of order 3!/2 as a permutation group
in Category of finite enumerated permutation groups
sage: Hom(ZZ, QQ, Sets())
Set of Morphisms from Integer Ring to Rational Field in Category of sets

sage: Hom(FreeModule (zZ, 1), FreeModule(QQ, 1)) #
—needs sage.modules
Set of Morphisms
from Ambient free module of rank 1 over the principal ideal domain Integer Ring
to Vector space of dimension 1 over Rational Field
in Category of commutative additive groups
sage: Hom(FreeModule (QQ, 1), FreeModule(zzZ, 1)) #_
—needs sage.modules
Set of Morphisms
from Vector space of dimension 1 over Rational Field
to Ambient free module of rank 1 over the principal ideal domain Integer Ring
in Category of commutative additive groups

>>> from sage.all import *

>>> V = VectorSpace (QQ, Integer(3)) _
— # needs sage.modules
>>> Hom(V, V) #o

—needs sage.modules
Set of Morphisms (Linear Transformations) from
Vector space of dimension 3 over Rational Field to
Vector space of dimension 3 over Rational Field
>>> G = AlternatingGroup (Integer (3)) -
. # needs sage.groups
>>> Hom (G, G) #_
—needs sage.groups
Set of Morphisms
from Alternating group of order 3!/2 as a permutation group
to Alternating group of order 3!/2 as a permutation group
in Category of finite enumerated permutation groups
>>> Hom(ZZ, QQ, Sets())
Set of Morphisms from Integer Ring to Rational Field in Category of sets

>>> Hom (FreeModule (ZZ, Integer(1l)), FreeModule(QQ, Integer(l))) -
— # needs sage.modules
Set of Morphisms
from Ambient free module of rank 1 over the principal ideal domain Integer Ring
to Vector space of dimension 1 over Rational Field
in Category of commutative additive groups
>>> Hom (FreeModule (QQ, Integer (1)), FreeModule(ZZ, Integer(1l))) -
— # needs sage.modules

Set of Morphisms
(continues on next page)
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(continued from previous page)
from Vector space of dimension 1 over Rational Field
to Ambient free module of rank 1 over the principal ideal domain Integer Ring

in Category of commutative additive groups
.

Here, we test against a memory leak that has been fixed at Issue #1 1521 by using a weak cache:

sage: # needs sage.libs.pari
sage: for p in prime_range (1073):

e K = GF (p)

... a = K(0)

sage: import gc

sage: gc.collect () # random
624

sage: from sage.rings.finite_rings.finite_field prime_modn import FiniteField_
—prime_modn as FF

sage: L = [x for x in gc.get_objects() if isinstance(x, FF)]

sage: len (L), LI[O]

(1, Finite Field of size 997)

.

>>> from sage.all import *
>>> # needs sage.libs.pari
>>> for p in prime_range (Integer (10) **Integer (3)) :
K = GF (p)
a = K(Integer (0))
>>> import gc
>>> gc.collect () # random
624
>>> from sage.rings.finite_rings.finite_field_prime_modn import FiniteField_prime_
—modn as FF
>>> L = [x for x in gc.get_objects() if isinstance(x, FF)]
>>> len(L), L[Integer(0)]
(1, Finite Field of size 997)

To illustrate the choice of the category, we consider the following parents as running examples:

sage: X = 7ZZ; X

Integer Ring

sage: Y = SymmetricGroup(3); Y #o
—needs sage.groups

Symmetric group of order 3! as a permutation group
.

-
>>> from sage.all import *

>>> X = 7Z7Z; X

Integer Ring

>>> Y = SymmetricGroup (Integer(3)); Y =
. # needs sage.groups

Symmetric group of order 3! as a permutation group

&

By default, the smallest category containing both X and v, is used:

sage: Hom (X, Y) #_
—needs sage.groups

(continues on next page)
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(continued from previous page)
Set of Morphisms from Integer Ring
to Symmetric group of order 3! as a permutation group
in Category of enumerated monoids

>>> from sage.all import *

>>> Hom (X, Y) #
—needs sage.groups

Set of Morphisms from Integer Ring

to Symmetric group of order 3! as a permutation group

in Category of enumerated monoids

Otherwise, if category is specified, then category is used, after checking that X and v are indeed in category:

sage: Hom (X, Y, Magmas()) #_
—needs sage.groups

Set of Morphisms

from Integer Ring

to Symmetric group of order 3! as a permutation group

in Category of magmas

sage: Hom (X, Y, Groups()) #_
—needs sage.groups

Traceback (most recent call last):

ValueError: Integer Ring is not in Category of groups

-
>>> from sage.all import *

>>> Hom (X, Y, Magmas()) #_
—needs sage.groups
Set of Morphisms

from Integer Ring

to Symmetric group of order 3! as a permutation group

in Category of magmas

>>> Hom (X, Y, Groups()) #
—needs sage.groups

Traceback (most recent call last):

ValueError: Integer Ring is not in Category of groups

.

A parent (or a parent class of a category) may specify how to construct certain homsets by implementing a method
_Hom_(self, codomain, category). This method should either construct the requested homset or raise
a TypeError. This hook is currently mostly used to create homsets in some specific subclass of Homset (e.g.
sage.rings.homset.RingHomset):

sage: Hom(QQ,Q0Q)._ class___
<class 'sage.rings.homset.RingHomset_generic_with_category'>

>>> from sage.all import *
>>> Hom (QQ,QQ) . class
<class 'sage.rings.homset.RingHomset_generic_with_category'>
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Do not call this hook directly to create homsets, as it does not handle unique representation:

sage: Hom(QQ,0Q00Q0) == QQ._Hom_(QQ, category=0QQ.category())
True
sage: Hom(QQ,QQ) is QQ._Hom_(QQ, category=QQ.category())
False

.

-
>>> from sage.all import *

>>> Hom (QQ,00) == QQ._Hom_(QQ, category=QQ.category())
True
>>> Hom (QQ,QQ) is QQ._Hom_(QQ, category=QQ.category())
False

# Todo

* Design decision: how much of the homset comes from the category of x and v, and how much from
the specific X and Y. In particular, do we need several parent classes depending on X and Y, or does
the difference only lie in the elements (i.e. the morphism), and of course how the parent calls their
constructors.

* Specify the protocol for the _Hom_ hook in case of ambiguity (e.g. if both a parent and some category
thereof provide one).

class sage.categories.homset.Homset (X, Y, category=None, base=None, check=True)

Bases: set_generic
The class for collections of morphisms in a category.

EXAMPLES:

rsage: H = Hom(QQ"2, QQ"3) #e
—needs sage.modules

sage: loads (H.dumps()) is H #_
—needs sage.modules

True

.
>>> from sage.all import *

>>> H = Hom(QQ**Integer(2), QQ**Integer (3)) -
N # needs sage.modules

>>> loads (H.dumps ()) is H #_
—needs sage.modules

True
.

Homsets of unique parents are unique as well:

-

sage: H = End(AffineSpace (2, names='x,vy'))

sage: loads (dumps (AffineSpace (2, names='x,y'))) is AffineSpace (2, names='x,y')
True

sage: loads (dumps(H)) is H

True
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-
>>> from sage.all import *

>>> H = End(AffineSpace (Integer(2), names='x,v'"))

>>> loads (dumps (AffineSpace (Integer(2), names='x,vy'))) is AffineSpace (Integer(2), .
—names="x,v")

True

>>> loads (dumps (H)) is H

True

.

Conversely, homsets of non-unique parents are non-unique:

(

sage: P11 = ProductProjectiveSpaces (QQ, [1, 11])

sage: H = End(P11)

sage: loads (dumps (P11)) is ProductProjectiveSpaces (QQ, [1, 11])
False

sage: loads (dumps (P11)) == ProductProjectiveSpaces(QQ, [1, 1])
True

sage: loads (dumps(H)) is H

False

sage: loads (dumps (H)) == H

True

.
>>> from sage.all import *

>>> P11 = ProductProjectiveSpaces (QQ, [Integer(l), Integer(1l)])
>>> H = End(P11)

>>> loads (dumps (P11)) is ProductProjectiveSpaces (QQ, [Integer(l), Integer(l)])
False

>>> loads (dumps (P11)) == ProductProjectiveSpaces (QQ, [Integer(l), Integer(l)])
True

>>> loads (dumps (H)) is H
False

>>> loads (dumps (H)) == H
True

.

codomain ()

Return the codomain of this homset.

EXAMPLES:

sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])

sage: f.parent () .codomain ()

Univariate Polynomial Ring in t over Rational Field
sage: f.codomain() is f.parent () .codomain ()

True

>>> from sage.all import *

>>> P = ZZ['t']; (t,) = P._first_ngens (1)

>>> f = P.hom([Integer (1) /Integer(2)*t])

>>> f.parent () .codomain ()

Univariate Polynomial Ring in t over Rational Field
>>> f.codomain () is f.parent () .codomain ()

True
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domain ()

Return the domain of this homset.

EXAMPLES:

sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])

sage: f.parent ().domain ()

Univariate Polynomial Ring in t over Integer Ring
sage: f.domain() is f.parent () .domain ()

True

>>> from sage.all import *

>>> P = 727Z['t']; (t,) = P._first_ngens (1)
>>> f = P.hom([Integer (1) /Integer (2)*t])
>>> f.parent () .domain ()

Univariate Polynomial Ring in t over Integer Ring
>>> f.domain() is f.parent () .domain ()
True

element_class_set_morphism()

A base class for elements of this homset which are also SetMorphism, i.e. implemented by mean of a Python
function.

This is currently plain SetMorphism, without inheritance from categories.

& Todo

Refactor during the upcoming homset cleanup.

EXAMPLES:

sage: H = Hom(ZZ, ZZ)
sage: H.element_class_set_morphism
<class 'sage.categories.morphism.SetMorphism'>

>>> from sage.all import *
>>> H = Hom(ZZ, ZZ)
>>> H.element_class_set_morphism

<class 'sage.categories.morphism.SetMorphism'>

homset_category ()

Return the category that this is a Hom in, i.e., this is typically the category of the domain or codomain object.

EXAMPLES:

sage: H = Hom(AlternatingGroup(4), AlternatingGroup (7)) #_
—needs sage.groups

sage: H.homset_category () #
—needs sage.groups

Category of finite enumerated permutation groups

192
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>>> from sage.all import *

>>> H = Hom(AlternatingGroup (Integer (4)), AlternatingGroup (Integer(7))) o
< # needs sage.groups
>>> H.homset_category () #o

—needs sage.groups

Category of finite enumerated permutation groups

identity ()
The identity map of this homset.

© Note

Of course, this only exists for sets of endomorphisms.

EXAMPLES:

sage: H = Hom(QQ, QQ)

sage: H.identity ()

Identity endomorphism of Rational Field
sage: H = Hom(ZZ,QQ)

sage: H.identity ()

Traceback (most recent call last):

TypeError: identity map only defined for endomorphisms; try natural_map ().
—instead
sage: H.natural_map ()
Natural morphism:
From: Integer Ring
To: Rational Field

>>> from sage.all import *

>>> H = Hom (QQ, QQ)

>>> H.identity ()

Identity endomorphism of Rational Field
>>> H = Hom(ZZ,QQ)

>>> H.identity ()

Traceback (most recent call last):

TypeError: identity map only defined for endomorphisms; try natural_map ().
—instead
>>> H.natural_map ()
Natural morphism:
From: Integer Ring
To: Rational Field

natural_map ()

Return the “natural map” of this homset.

© Note

By default, a formal coercion morphism is returned.
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EXAMPLES:

sage: H = Hom(ZZ['t'],QQ['t'], CommutativeAdditiveGroups())
sage: H.natural_map ()
Coercion morphism:
From: Univariate Polynomial Ring in t over Integer Ring
To: Univariate Polynomial Ring in t over Rational Field
sage: H = Hom(QQ['t']l, GF(3)['t'])
sage: H.natural_map ()
Traceback (most recent call last):

TypeError: natural coercion morphism
from Univariate Polynomial Ring in t over Rational Field
to Univariate Polynomial Ring in t over Finite Field of size 3 not defined

>>> from sage.all import *
>>> H = Hom(ZZ['t'],QQ['t'], CommutativeAdditiveGroups/())
>>> H.natural_map ()
Coercion morphism:
From: Univariate Polynomial Ring in t over Integer Ring
To: Univariate Polynomial Ring in t over Rational Field
>>> H = Hom(QQ['t'], GF(Integer(3))['t'])
>>> H.natural_map ()
Traceback (most recent call last):

TypeError: natural coercion morphism
from Univariate Polynomial Ring in t over Rational Field
to Univariate Polynomial Ring in t over Finite Field of size 3 not defined

one ()

The identity map of this homset.

© Note

Of course, this only exists for sets of endomorphisms.

EXAMPLES:

sage: K = GaussianIntegers () #_
—needs sage.rings.number_field
sage: End(K) .one () #
—needs sage.rings.number_ field

Identity endomorphism of Gaussian Integers generated by I

in Number Field in I with defining polynomial x”*2 + 1 with I = 1*I

>>> from sage.all import *
>>> K = GaussianIntegers () #.
—needs sage.rings.number_field
>>> End (K) .one () #
—needs sage.rings.number_ field

Identity endomorphism of Gaussian Integers generated by I

in Number Field in I with defining polynomial x”*2 + 1 with I = 1*I
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reversed ()

Return the corresponding homset, but with the domain and codomain reversed.

EXAMPLES:

sage: # needs sage.modules

sage: H = Hom(ZZz"2, ZzZ"3); H

Set of Morphisms from Ambient free module of rank 2 over

the principal ideal domain Integer Ring to Ambient free module
of rank 3 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (Dedekind
domains and euclidean domains and noetherian rings

and infinite enumerated sets and metric spaces)
sage: type (H)

sage: H.reversed()

Set of Morphisms from Ambient free module of rank 3 over

the principal ideal domain Integer Ring to Ambient free module
of rank 2 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (Dedekind
domains and euclidean domains and noetherian rings

and infinite enumerated sets and metric spaces)

sage: type (H.reversed())

.

<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>

<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>

>>> from sage.all import *

>>> # needs sage.modules

>>> H = Hom(ZZ**Integer(2), ZZ**Integer(3)); H

Set of Morphisms from Ambient free module of rank 2 over

the principal ideal domain Integer Ring to Ambient free module
of rank 3 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (Dedekind
domains and euclidean domains and noetherian rings

and infinite enumerated sets and metric spaces)

>>> type (H)

>>> H.reversed()

Set of Morphisms from Ambient free module of rank 3 over

the principal ideal domain Integer Ring to Ambient free module
of rank 2 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (Dedekind
domains and euclidean domains and noetherian rings

and infinite enumerated sets and metric spaces)

>>> type (H.reversed())

<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>

<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>

class sage.categories.homset .HomsetWithBase (X, Y, category=None, check=True, base=None)

Bases: Homset

sage.categories.homset .end (X, f)

Return End (X) (£), where £ is data that defines an element of End (X) .

EXAMPLES:
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-

sage: R.<x> = QOQ[]

sage: phi = end(R, [x + 1])

sage: phi

Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
Defn: x |-—> x + 1

sage: phi(x"2 + 5)

X"2 + 2*x + 6
|

g
>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1l)
>>> phi = end(R, [x + Integer(1l)])
>>> phi

Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
Defn: x |-—> x + 1

>>> phi (x**Integer (2) + Integer(5))

X"2 + 2*x + 6

sage.categories.homset.hom (X, Y, f)

Return Hom (X, Y) (f), where £ is data that defines an element of Hom (X, Y) .

EXAMPLES:

sage: R.<x> = QQI]

sage: phi = hom(R, QQ, [2])
sage: phi(x"2 + 3)

.

.

-
>>> from sage.all import *

>>> R = QQ['x"'"]; (x,) = R._first_ngens (1)
>>> phi = hom(R, QQ, [Integer(2)])
>>> phi (x**Integer (2) + Integer(3))

sage.categories.homset.is_Endset (x)

Return True if x is a set of endomorphisms in a category.

EXAMPLES:

sage: from sage.categories.homset import is_FEndset

sage: P.<t> = ZZ[]

sage: f = P.hom([1/2*t])

sage: is_Endset (f.parent ())

doctest:warning. ..

DeprecationWarning: the function is_Endset is deprecated;

use 'isinstance (..., Homset) and ....is_endomorphism_set ()' instead
See https://github.com/sagemath/sage/issues/37922 for details.
False

sage: g = P.hom([2*t])

sage: is_Endset (g.parent ())

True

>>> from sage.all import *
>>> from sage.categories.homset import is_Endset

(continues on next page)
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>>> P = 72Z2['t']; (t,) = P._first_ngens (1)
>>> f = P.hom([Integer (1) /Integer(2)*t])
>>> is_Endset (f.parent ())
doctest:warning. ..
DeprecationWarning: the function is_Endset is deprecated;
use 'isinstance (..., Homset) and ....is_endomorphism_set ()' instead
See https://github.com/sagemath/sage/issues/37922 for details.
False
>>> g = P.hom([Integer(2)*t])
>>> is_Endset (g.parent ())
True

sage.categories.homset.is_Homset (x)

Return True if x is a set of homomorphisms in a category.

EXAMPLES:

sage: from sage.categories.homset import is_Homset

sage: P.<t> = ZZ[]

sage: £ = P.hom([1/2*t])

sage: is_Homset (f)

doctest:warning. ..

DeprecationWarning: the function is_Homset is deprecated;
use 'isinstance (..., Homset)' instead

See https://github.com/sagemath/sage/issues/37922 for details.
False

sage: is_Homset (f.category())

False

sage: is_Homset (f.parent ())

True

.

>>> from sage.all import *

>>> from sage.categories.homset import is_Homset

>>> P = ZzZ['t"']; (t,) = P._first_ngens (1)

>>> f = P.hom([Integer (1) /Integer(2)*t])

>>> is_Homset (f)

doctest:warning. ..

DeprecationWarning: the function is_Homset is deprecated;
use 'isinstance(..., Homset)' instead

See https://github.com/sagemath/sage/issues/37922 for details.
False

>>> is_Homset (f.category())

False

>>> is_Homset (f.parent ())

True

3.3

Morphisms

This module defines the base classes of morphisms between objects of a given category.

EXAMPLES:

Typically, a morphism is defined by the images of the generators of the domain.
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sage: X.<a, b> = ZZ[]
sage: Y.<c> = ZZ[]
sage: X.hom([c, c"2])
Ring morphism:

From: Multivariate Polynomial Ring in a, b over Integer Ring

To: Univariate Polynomial Ring in c over Integer Ring
Defn: a |-—> c
b |--> c"2

>>> from sage.all import *

>>> X = ZZ['a, b']l; (a, b,) = X._first_ngens(2)
>>> Y = 72Z['c']; (c,) = Y._first_ngens (1)

>>> X.hom([c, c**Integer(2)])

Ring morphism:

From: Multivariate Polynomial Ring in a, b over Integer Ring

To: Univariate Polynomial Ring in c over Integer Ring
Defn: a |-—> c
b |[-—> c"2
AUTHORS:

¢ William Stein (2005): initial version
* David Joyner (2005-12-17): added examples
* Robert Bradshaw (2007-06-25): Pyrexification

class sage.categories.morphism.CallMorphism
Bases: Morphism
class sage.categories.morphism.FormalCoercionMorphism
Bases: Morphism
class sage.categories.morphism.IdentityMorphism
Bases: Morphism
is_identity()
Return True if this morphism is the identity morphism.

EXAMPLES:

sage: E = End(Partitions(5))
—needs sage.combinat

sage: E.identity () .is_identity ()
—needs sage.combinat

True

>>> from sage.all import *

>>> E = End(Partitions (Integer(5)))
— # needs sage.combinat

>>> E.identity () .is_identity ()
—needs sage.combinat

True

Check that Issue #15478 is fixed:
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sage: # needs sage.rings.finite_rings
sage: K.<z> = GF (4)

sage: phi = End(K) ([z"2])

sage: R.<t> = K][]

sage: psi = End(R) (phi)

sage: psi.is_identity ()

False

>>> from sage.all import *

>>> # needs sage.rings.finite_rings

>>> K = GF (Integer(4), names=('z"',)); (z,) = K._first_ngens (1)
>>> phi = End(K) ([z**Integer(2)])

>>> R = K['t"']; (t,) = R._first_ngens (1)

>>> psi = End(R) (phi)

>>> psi.is_identity ()

False

is_injective()

Return whether this morphism is injective.

EXAMPLES:
sage: Hom(ZZ, ZZ).identity () .is_injective()
True

>>> from sage.all import *
>>> Hom(ZZ, ZZ).identity () .is_injective ()

True

is_surjective ()

Return whether this morphism is surjective.

EXAMPLES:
sage: Hom(ZZ, ZZ).identity () .is_surjective()
True

>>> from sage.all import *
>>> Hom(ZZ, ZZ).identity () .is_surjective ()

True

section ()
Return a section of this morphism.

EXAMPLES:

sage: T = Hom(ZZ, ZZ).identity ()
sage: T.section() is T
True

>>> from sage.all import *
>>> T = Hom(ZZ, ZZ).identity /()
>>> T.section() is T

True
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class sage.categories.morphism.Morphism

Bases: mMap

category ()

Return the category of the parent of this morphism.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: f = R.hom([t**2])
sage: f.category()
Category of endsets of unital magmas and right modules over
(Dedekind domains and euclidean domains
and noetherian rings
and infinite enumerated sets and metric spaces)
and left modules over
(Dedekind domains and euclidean domains
and noetherian rings
and infinite enumerated sets and metric spaces)

sage: # needs sage.rings.number_field
sage: K = CyclotomicField(12)

sage: L CyclotomicField (132)

sage: phi = L._internal_coerce_map_from(K)

sage: phi.category ()
Category of homsets of number fields

>>> from sage.all import *
>>> R = ZZ['t']; (t,) = R._first_ngens (1)
>>> f = R.hom([t**Integer(2)])
>>> f.category ()
Category of endsets of unital magmas and right modules over
(Dedekind domains and euclidean domains
and noetherian rings
and infinite enumerated sets and metric spaces)
and left modules over
(Dedekind domains and euclidean domains
and noetherian rings
and infinite enumerated sets and metric spaces)

>>> # needs sage.rings.number_ field

>>> K = CyclotomicField(Integer (12))

>>> I, = CyclotomicField(Integer (132))
>>> phi = L._internal_coerce_map_from(K)
>>> phi.category ()

Category of homsets of number fields

is_endomorphism ()

Return True if this morphism is an endomorphism.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: £ = R.hom([t])

(continues on next page)
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sage: f.is_endomorphism{()

True

sage: # needs sage.rings.number_field
sage: K = CyclotomicField(12)

sage: L = CyclotomicField (132)

sage: phi = L._internal_coerce_map_from(K)

sage: phi.is_endomorphism /()
False

>>> from sage.all import *

>>> R = ZZ['t"']; (t,) = R._first_ngens (1)
>>> f = R.hom([t])

>>> f.is_endomorphism()

True

>>> # needs sage.rings.number_ field

>>> K = CyclotomicField(Integer(12))

>>> L = CyclotomicField(Integer (132))
>>> phi = L._internal_coerce_map_from(K)
>>> phi.is_endomorphism/()

False

is_identity()

Return True if this morphism is the identity morphism.

O Note

Implemented only when the domain has a method gens()

EXAMPLES:

sage: R.<t> = ZZ[]

sage: f = R.hom([t])
sage: f.is_identity()
True

sage: = R.hom ([t + 17)
sage: g.is_identity ()

Q

False

>>> from sage.all import *

>>> R = 72Z['t']; (t,) = R._first_ngens (1)
>>> f = R.hom([t])

>>> f.is_identity ()

True

>>> g = R.hom ([t + Integer(1l)])

>>> g.is_identity ()

False

A morphism between two different spaces cannot be the identity:
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sage: R2.<t2> = QQ[]
sage: h = R.hom([t2])
sage: h.is_identity()
False

>>> from sage.all import *

>>> R2 = QQ['t2"]; (t2,) = R2._first_ngens (1)
>>> h = R.hom([t2])

>>> h.is_identity ()

False

pushforward (/)

register_as_coercion ()
Register this morphism as a coercion to Sage’s coercion model (see sage . st ructure.coerce).

EXAMPLES:

By default, adding polynomials over different variables triggers an error:

sage: X.<x> = ZZ[]

sage: Y.<y> = ZZ[]

sage: x"2 + y

Traceback (most recent call last):

TypeError: unsupported operand parent (s) for +:
'Univariate Polynomial Ring in x over Integer Ring' and
'Univariate Polynomial Ring in y over Integer Ring'

>>> from sage.all import *

>>> X = ZZ['x']; (x,) = X._first_ngens (1)
>>> Y = ZZ['y']l; (y,) = Y._first_ngens (1)
>>> x**Integer(2) + y

Traceback (most recent call last):

TypeError: unsupported operand parent (s) for +:
'Univariate Polynomial Ring in x over Integer Ring' and
'Univariate Polynomial Ring in y over Integer Ring'

Let us declare a coercion from Z[z] to Z[z]:

sage: Z.<z> = ZZ[]

sage: phi = Hom(X, Z) (z)

sage: phi (x"2+1)

z"2 + 1

sage: phi.register_as_coercion ()

>>> from sage.all import *

>>> 7 = ZZ['z"'"]; (z,) = Z._first_ngens (1)
>>> phi = Hom(X, Z) (z)

>>> phi (x**Integer (2)+Integer (1))

z"2 + 1

>>> phi.register_as_coercion()
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Now we can add elements from Z[x] and Z[z], because the elements of the former are allowed to be implicitly
coerced into the later:

sage: x"2 + z
z"2 + z

>>> from sage.all import *
>>> x**Integer (2) + z
z"2 + z

Caveat: the registration of the coercion must be done before any other coercion is registered or discovered:

sage: phi = Hom (X, Z) (z"2)
sage: phi.register_as_coercion ()
Traceback (most recent call last):

AssertionError: coercion from Univariate Polynomial Ring in x over Integer.
—Ring

to Univariate Polynomial Ring in z over Integer Ring

already registered or discovered

>>> from sage.all import *

>>> phi = Hom (X, Z) (z**Integer(2))
>>> phi.register_as_coercion ()
Traceback (most recent call last):

AssertionError: coercion from Univariate Polynomial Ring in x over Integer.
—Ring

to Univariate Polynomial Ring in z over Integer Ring

already registered or discovered

register_as_conversion ()

Register this morphism as a conversion to Sage’s coercion model.
(see sage.structure.coerce).
EXAMPLES:

Let us declare a conversion from the symmetric group to Z through the sign map:

sage: # needs sage.groups

sage: S = SymmetricGroup (4)

sage: phi = Hom(S, ZZ) (lambda x: ZZ(x.sign()))
sage: x = S.an_element (); x

(2,3,4)

sage: phi (x)

1

sage: phi.register_as_conversion ()
sage: ZZ(x)
1

>>> from sage.all import *
>>> # needs sage.groups

>>> S = SymmetricGroup (Integer (4))
(continues on next page)
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>>> phi = Hom(S, ZZ) (lambda x: ZZ(x.sign()))

>>> x = S.an_element (); x
(2,3,4)

>>> phi (x)

1

>>> phi.register_as_conversion ()
>>> 77 (x)
1

class sage.categories.morphism.SetIsomorphism

Bases: setMorphism
An isomorphism of sets.
INPUT:

e parent —a Homset

e function — a Python function that takes elements of the domain as input and returns elements of the

codomain
EXAMPLES:
p
sage: f = sage.categories.morphism.SetIsomorphism(Hom(ZZ, ZZ, Sets()),
et operator._ _neg_ ); f
Generic endomorphism of Integer Ring
sage: f._set_inverse (f)
sage: ~f is f
True
.
>>> from sage.all import *
>>> f = sage.categories.morphism.SetIsomorphism(Hom(ZZ, ZZ, Sets()),
operator.__neg_ ); £
Generic endomorphism of Integer Ring
>>> f. set_inverse (f)
>>> ~f is f
True
is_injective()
Return whether this morphism is injective.
EXAMPLES:
sage: f = sage.categories.morphism.SetIsomorphism(Hom(ZZ, ZZ, Sets()),
25088 operator._ _neg__)
sage: f.is_injective()
True
>>> from sage.all import *
>>> f = sage.categories.morphism.SetIsomorphism(Hom(ZZ, ZZ, Sets()),
operator._ neg_ )
>>> f.is_injective ()
True
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is_surjective ()
Return whether this morphism is surjective.

EXAMPLES:

sage: f = sage.categories.morphism.SetIsomorphism(Hom(ZZ, ZZ, Sets()),
20083 operator.__neg_ )
sage: f.is_surjective()

>>> from sage.all import *

>>> f

sage.categories.morphism.SetIsomorphism(Hom (Z2Z, ZZ, Sets()),
operator._ _neg_ )

>>> f.is_surjective()

True

section ()

Return a section of this morphism.

EXAMPLES:

sage: f = sage.categories.morphism.SetIsomorphism(Hom(ZZ, ZZ, Sets()),
6000 operator.__neg_ )
sage: f._set_inverse(f)

sage: f.section() is £

>>> from sage.all import *
>>> f sage.categories.morphism.SetIsomorphism(Hom (Z2Z, ZZ, Sets()),

operator.__neg_ )
>>> f._set_inverse (f)
>>> f.section() is f

True

class sage.categories.morphism.SetMorphism

Bases: Morphism
INPUT:
¢ parent —a Homset

e function — a Python function that takes elements of the domain as input and returns elements of the
codomain

EXAMPLES:

sage: from sage.categories.morphism import SetMorphism

sage: f = SetMorphism(Hom(QQ, ZZ, Sets()), numerator)

sage: f.parent ()

Set of Morphisms from Rational Field to Integer Ring in Category of sets
sage: f.domain ()

Rational Field

sage: f.codomain ()

Integer Ring

sage: TestSuite (f) .run()
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-
>>> from sage.all import *

>>> from sage.categories.morphism import SetMorphism

>>> f = SetMorphism(Hom(QQ, ZZ, Sets()), numerator)

>>> f.parent ()

Set of Morphisms from Rational Field to Integer Ring in Category of sets
>>> f.domain ()

Rational Field

>>> f.codomain ()

Integer Ring

>>> TestSuite (f) .run()

sage.categories.morphism.is_Morphism (x)

3.4 Coercion via construction functors

class sage.categories.pushout.AlgebraicClosureFunctor

Bases: constructionFunctor
Algebraic Closure.
EXAMPLES:

-
sage: # needs sage.rings.complex_double sage.rings.number_field

sage: F = CDF.construction() [0]

sage: F (QQ)

Algebraic Field

sage: F (RR) #

—needs sage.rings.real_mpfr
Complex Field with 53 bits of precision
sage: F(F(QQ)) is F(QQ)

True
“

-
>>> from sage.all import *

>>> # needs sage.rings.complex_double sage.rings.number_field

>>> F = CDF.construction() [Integer (0)]

>>> F (QQ)

Algebraic Field

>>> F (RR) #o
—needs sage.rings.real_mpfr

Complex Field with 53 bits of precision

>>> F(F(QQ)) is F(QQ)

True

merge (other)

Mathematically, Algebraic Closure subsumes Algebraic Extension. However, it seems that people do want to
work with algebraic extensions of RR. Therefore, we do not merge with algebraic extension.

rank = 3

class sage.categories.pushout.AlgebraicExtensionFunctor (polys, names, embeddings=None,
structures=None, cyclotomic=None,
precs=None, implementations=None, *,
residue=None, latex_names=None,
**ewds)
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Bases: ConstructionFunctor
Algebraic extension (univariate polynomial ring modulo principal ideal).

EXAMPLES:

sage: x = polygen(QQ, 'x'")

sage: K.<a> = NumberField(x"3 + x"2 + 1) #
—needs sage.rings.number_field

sage: F = K.construction() [0] #
—needs sage.rings.number_field

sage: F(ZZ['t']) #_
—needs sage.rings.number_field
Univariate Quotient Polynomial Ring in a

over Univariate Polynomial Ring in t over Integer Ring

with modulus a”3 + a”2 + 1
.

>>> from sage.all import *
>>> x = polygen(QQ, 'x'")

>>> K = NumberField(x**Integer (3) + x**Integer (2) + Integer(l), names=('a',)); (a,
—) = K._first_ngens(l) # needs sage.rings.number_field

>>> F = K.construction() [Integer (0)] -
— # needs sage.rings.number field

>>> F(ZZ['t"']) #o

—needs sage.rings.number_field
Univariate Quotient Polynomial Ring in a

over Univariate Polynomial Ring in t over Integer Ring
with modulus a3 + a2 + 1

Note that, even if a field is algebraically closed, the algebraic extension will be constructed as the quotient of a
univariate polynomial ring:

sage: F (CC) #_
—needs sage.rings.number_field
Univariate Quotient Polynomial Ring in a

over Complex Field with 53 bits of precision

with modulus a3 + a”2 + 1.00000000000000

sage: F (RR) #o
—needs sage.rings.number_field
Univariate Quotient Polynomial Ring in a

over Real Field with 53 bits of precision

with modulus a3 + a”2 + 1.00000000000000

.

-
>>> from sage.all import *

>>> F (CC) #o
—needs sage.rings.number_ field
Univariate Quotient Polynomial Ring in a

over Complex Field with 53 bits of precision

with modulus a3 + a”2 + 1.00000000000000
>>> F (RR) #
—needs sage.rings.number_field
Univariate Quotient Polynomial Ring in a

over Real Field with 53 bits of precision

(continues on next page)
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with modulus a3 + a”2 + 1.00000000000000

Note that the construction functor of a number field applied to the integers returns an order (not necessarily maxi-
mal) of that field, similar to the behaviour of zZ.extension(...):

&

sage: F(ZZ) #o
—needs sage.rings.number_field
Order generated by a in Number Field in a with defining polynomial x*3 + x"2 + 1

.

>>> from sage.all import *

>>> F (ZZ) #
—needs sage.rings.number_ field

Order generated by a in Number Field in a with defining polynomial x*3 + x"2 + 1

This also holds for non-absolute number fields:

(

.

sage: # needs sage.rings.number_field

sage: x = polygen(QQ, 'x'")

sage: K.<a,b> = NumberField([x"3 + x"2 + 1, x"2 + x + 11])
sage: F K.construction () [0]

sage: O = F(zz2); O

Relative Order
generated by [(b - 2)*a”2 + (3*b - 1)*a + 3*b + 4, a - b]
in Number Field in a with defining polynomial x"3 + x*2 + 1

over its base field
sage: O.ambient () is K
True

>>> from sage.all import *
>>> # needs sage.rings.number_ field

>>> x = polygen(QQ, 'x'")

>>> K = NumberField([x**Integer (3) + x**Integer(2) + Integer(l), x**Integer (2) +.
—x + Integer(l)], names=('a', 'b',)); (a, b,) = K._first_ngens(2)

>>> F = K.construction() [Integer (0)]

>>> 0 = F(zZ2); O

Relative Order
generated by [(b - 2)*a”"2 + (3*b - 1)*a + 3*b + 4, a - b]
in Number Field in a with defining polynomial x"3 + x*2 + 1
over its base field

>>> O.ambient () is K

True

Special cases are made for cyclotomic fields and residue fields:

sage: # needs sage.rings.number_field
sage: C = CyclotomicField(8)
sage: F, R = C.construction ()
sage: F
AlgebraicExtensionFunctor
sage: R
Rational Field
sage: F (R)
(continues on next page)
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Cyclotomic Field of order 8 and degree 4
sage: F (ZZ)

Maximal Order generated by zeta8 in Cyclotomic Field of order 8 and degree 4
.

g
>>> from sage.all import *

>>> # needs sage.rings.number_ field

>>> C = CyclotomicField(Integer(8))

>>> F, R = C.construction()

>>> F

AlgebraicExtensionFunctor

>>> R

Rational Field

>>> F (R)

Cyclotomic Field of order 8 and degree 4
>>> F (ZZ)

Maximal Order generated by zeta8 in Cyclotomic Field of order 8 and degree 4

sage: # needs sage.rings.number_field
sage: K.<z> = CyclotomicField(7)

sage: P = K.factor(17) [0][0]

sage: k = K.residue_field(P)

sage: F, R = k.construction ()

sage: F

AlgebraicExtensionFunctor

sage: R

Cyclotomic Field of order 7 and degree 6
sage: F(R) is k

True

sage: F (ZZ)

Residue field of Integers modulo 17
sage: F(CyclotomicField (49))

Residue field in zbar of Fractional ideal (17)
.

g
>>> from sage.all import *

>>> # needs sage.rings.number_field

>>> K = CyclotomicField(Integer(7), names=('z',)); (z,) = K._first_ngens (1)
>>> P = K.factor (Integer(17)) [Integer (0)] [Integer (0)]
>>> k = K.residue_field (P)

>>> F, R = k.construction()

>>> F

AlgebraicExtensionFunctor

>>> R

Cyclotomic Field of order 7 and degree 6

>>> F(R) is k

True

>>> F (Z2)

Residue field of Integers modulo 17

>>> F (CyclotomicField (Integer (49)))

Residue field in zbar of Fractional ideal (17)

expand ()

Decompose the functor F' into sub-functors, whose product returns F'.
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EXAMPLES:

sage: # needs sage.rings.number_field

sage: P.<x> = QQI]

sage: K.<a> = NumberField(x"3 - 5, embedding=0)
sage: L.<b> = K.extension(x"2 + a)

sage: F, R = L.construction()

sage: prod(F.expand()) (R) == L

True

sage: K = NumberField([x"2 - 2, x"2 - 3],'a'")

sage: F, R = K.construction/()

sage: F

AlgebraicExtensionFunctor

sage: L = F.expand(); L

[AlgebraicExtensionFunctor, AlgebraicExtensionFunctor]
sage: L[-1] (QQ)

Number Field in al with defining polynomial x"2 - 3

>>> from sage.all import *
>>> # needs sage.rings.number_field

>>> P = QQ['x'"]; (x,) = P._first_ngens (1)

>>> K = NumberField(x**Integer (3) - Integer(5), embedding=Integer (0), names=(
—'a',)); (a,) = K._first_ngens (1)

>>> 1L = K.extension (x**Integer(2) + a, names=('b',)); (b,) = L._first_ngens(l)

>>> F, R = L.construction()

>>> prod(F.expand()) (R) == L

True

>>> K = NumberField([x**Integer (2) - Integer(2), x**Integer(2) - Integer(3)],
%'a')

>>> F, R = K.construction()

>>> F

AlgebraicExtensionFunctor

>>> L = F.expand(); L

[AlgebraicExtensionFunctor, AlgebraicExtensionFunctor]
>>> L[-Integer (1)] (QQ)

Number Field in al with defining polynomial x72 - 3

merge (other)

Merging with another 21gebraicExtensionFunctor.
INPUT:

e other — Construction Functor
OUTPUT:

e If self==other, self is returned.

e If self and other are simple extensions and both provide an embedding, then it is tested whether one
of the number fields provided by the functors coerces into the other; the functor associated with the
target of the coercion is returned. Otherwise, the construction functor associated with the pushout of the
codomains of the two embeddings is returned, provided that it is a number field.

* If these two extensions are defined by Conway polynomials over finite fields, merges them into a single
extension of degree the lcm of the two degrees.

¢ Otherwise, None is returned.
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REMARK:

Algebraic extension with embeddings currently only works when applied to the rational field. This is why we
use the admittedly strange rule above for merging.

EXAMPLES:

The following demonstrate coercions for finite fields using Conway or pseudo-Conway polynomials:

sage: k = GF (372, prefix='z'); a = k.gen() #_
—needs sage.rings.finite_rings

sage: 1 = GF (373, prefix='z'); b = l.gen() #
—needs sage.rings.finite_rings

sage: a + b # indirect doctest #o
—needs sage.rings.finite_rings

2675 + 2*z674 + 2*%z6"3 + 2672 + 2*z6 + 1

-

>>> from sage.all import *
>>> k = GF (Integer (3)**Integer(2), prefix='z"'); a = k.gen() o

- # needs sage.rings.finite_rings

>>> 1 = GF (Integer (3)**Integer(3), prefix='z"'); b = l.gen() -
— # needs sage.rings.finite_rings

>>> a + b # indirect doctest #o

—needs sage.rings.finite_rings
z6"5 + 2*z6"4 + 2*z6"3 + 2672 + 2*z6 + 1

Note that embeddings are compatible in lattices of such finite fields:

-

sage: # needs sage.rings.finite_rings

sage: m = GF (375, prefix='z'); ¢ = m.gen()

sage: (a + b) + ¢ == a + (b + ¢c) # indirect doctest
True

sage: from sage.categories.pushout import pushout
sage: n = pushout (k, 1)

sage: o = pushout (1, m)

sage: g = pushout (n, o)

sage: g(o(b)) == g(n(b)) # indirect doctest
True

>>> from sage.all import *

>>> # needs sage.rings.finite_rings

>>> m = GF (Integer (3)**Integer(5), prefix='z"'); c = m.gen()
>>> (a + b) + ¢ ==a + (b + c) # indirect doctest

True

>>> from sage.categories.pushout import pushout

>>> n = pushout (k, 1)

>>> o

pushout (1, m)

>>> g = pushout (n, o)

>>> g(o(b)) == g(n(b)) # indirect doctest
True

Coercion is also available for number fields:

sage: # needs sage.rings.number_field
sage: P.<x> = QQI[]

(continues on next page)
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sage: L.<b> = NumberField(x"8 - x4 + 1, embedding=CDF.O0)
sage: Ml.<cl> = NumberField(x"2 + x + 1, embedding=b"4 - 1)
sage: M2.<c2> = NumberField(x"2 + 1, embedding=-b"6)
sage: Ml.coerce_map_from(M2)
sage: M2.coerce_map_from(M1)
sage: cl + c2; parent(cl + c2) #indirect doctest
b6 + b"4 - 1
Number Field in b with defining polynomial x"8 - x"4 + 1

with b = -0.2588190451025208? + 0.96592582628906832*1T
sage: pushout (M1['x'"'], M2['x']) #.
—needs sage.rings.finite_rings
Univariate Polynomial Ring in x

over Number Field in b with defining polynomial x"8 - x4 + 1

with b = -0.2588190451025208? + 0.9659258262890683?*1I

>>> from sage.all import *
>>> # needs sage.rings.number_ field

>>> P = QQ['x"']; (x,) = P._first_ngens (1)

>>> L = NumberField(x**Integer (8) - x**Integer(4) + Integer(l), embedding=CDF.
—~gen (0), names=('b',)); (b,) = L._first_ngens (1)

>>> M1 = NumberField(x**Integer(2) + x + Integer(l), embedding=b**Integer (4) -
— Integer(l), names=('cl',)); (cl,) = M1l._first_ngens (1)

>>> M2 = NumberField(x**Integer (2) + Integer(l), embedding=-b**Integer (6),._
—names=('c2',)); (c2,) = M2._first_ngens (1)

>>> M1l.coerce_map_from(M2)
>>> M2 .coerce_map_from(M1)
>>> cl + c2; parent(cl + c2) #indirect doctest
-b"6 + b4 - 1
Number Field in b with defining polynomial x°8 - x*4 + 1
with b = -0.2588190451025208? + 0.9659258262890683?*1T
>>> pushout (M1['x"], M2['x']) #
—needs sage.rings.finite_rings
Univariate Polynomial Ring in x
over Number Field in b with defining polynomial x*8 - x4 + 1
with b = -0.2588190451025208? + 0.9659258262890683?*I

In the previous example, the number field L becomes the pushout of M1 and M2 since both are provided with
an embedding into L, and since L is a number field. If two number fields are embedded into a field that is not
a numberfield, no merging occurs:

sage: # needs sage.rings.complex_double sage.rings.number_field
sage: cbrt2 = CDF(2)"(1/3)

sage: zeta3 CDF.zeta (3)

sage: K.<a> = NumberField(x"3 - 2, embedding=cbrt2 * zeta3)
sage: L.<b> = NumberField(x"6 - 2, embedding=1.1)

sage: L.coerce_map_from(K)

sage: K.coerce_map_from(L)

sage: pushout (K, L) #_
—needs sage.rings.finite_rings

Traceback (most recent call last):

CoercionException: ('Ambiguous Base Extension', Number Field in a with
(continues on next page)
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defining polynomial x*3 - 2 with a = -0.6299605249474365? + 1.0911236359717227
=1,
Number Field in b with defining polynomial x"6 - 2 with b = 1.1224620483093737

)

\

>>> from sage.all import *

>>> # needs sage.rings.complex_double sage.rings.number field

>>> cbrt2 = CDF (Integer (2))** (Integer (1) /Integer(3))

>>> zeta3 = CDF.zeta(Integer (3))

>>> K = NumberField(x**Integer (3) - Integer(2), embedding=cbrt2 * zetal,.
—names=('a',)); (a,) = K._first_ngens (1)

>>> L = NumberField(x**Integer (6) - Integer(2), embedding=RealNumber ('1.1'),.
—names=('b',)); (b,) = L._first_ngens (1)

>>> L.coerce_map_from(K)

>>> K.coerce_map_from(L)

>>> pushout (K, L) #_
—needs sage.rings.finite_rings

Traceback (most recent call last):

CoercionException: ('Ambiguous Base Extension', Number Field in a with
defining polynomial x*3 - 2 with a = -0.6299605249474365? + 1.0911236359717227
<4>*I,

Number Field in b with defining polynomial x”6 - 2 with b = 1.1224620483093737

=)

rank

=3

class sage.categories.pushout.BlackBoxConstructionFunctor (box)

Bases: constructionFunctor

Construction functor obtained from any callable object.

EXAMPLES:

sage: from sage.categories.pushout import BlackBoxConstructionFunctor
sage: # needs sage.libs.gap

sage: from sage.interfaces.gap import gap

sage: FG = BlackBoxConstructionFunctor (gap)

sage: FG

BlackBoxConstructionFunctor

sage: FG(ZZ)

Integers

sage: FG(ZZ) .parent ()

Gap

sage: FG == loads (dumps (FG))

True

sage: FS = BlackBoxConstructionFunctor (singular)

sage: FS(QQ['t']) =
—needs sage.libs.singular

polynomial ring, over a field, global ordering

// coefficients: QQ...

(continues on next page)

3.4. Coercion via construction functors 213




Category Framework, Release 10.6

// number of vars : 1

// block 1 : ordering lp
// : names t
// block 2 : ordering C
sage: FG == FS

—needs sage.libs.gap sage.libs.singular
False

(continued from previous page)

>>> from sage.all import *

>>> # needs sage.libs.gap

>>> from sage.interfaces.gap import gap
>>> FG = BlackBoxConstructionFunctor (gap)
>>> FG

BlackBoxConstructionFunctor

>>> FG(ZZ)

Integers

>>> FG(ZZ) .parent ()

Gap

>>> FG == loads (dumps (FG))

True

>>> FS = BlackBoxConstructionFunctor (singular)

>>> from sage.categories.pushout import BlackBoxConstructionFunctor

>>> FS(QQ['t']) #_
—needs sage.libs.singular

polynomial ring, over a field, global ordering

// coefficients: QQ...

// number of vars : 1

// block 1 : ordering lp

// : names t

// block 2 : ordering C

>>> FG == FS #
—needs sage.libs.gap sage.libs.singular

False

rank = 100

class sage.categories.pushout.CompletionFunctor (p, prec, extras=None)

Bases: ConstructionFunctor
Completion of a ring with respect to a given prime (including infinity).

EXAMPLES:

sage: # needs sage.rings.padics
sage: R = Zp(5)

sage: R

5-adic Ring with capped relative precision 20
sage: F1 = R.construction() [0]

sage: F1

Completion[5, prec=20]
sage: F1(zz) is R

(continues on next page)
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True

sage: F1(QQ)
5-adic Field with capped relative precision 20

sage: F2 = RR.construction() [0]
sage: F2

Completion[+Infinity, prec=53]
sage: F2(QQ) is RR

True

sage: P.<x> = ZZ[]

sage: Px = P.completion(x) # currently the only implemented completion of P
sage: Px

Power Series Ring in x over Integer Ring

sage: F3 = Px.construction() [0]

sage: F3(GF(3)['x'])

Power Series Ring in x over Finite Field of size 3

>>> from sage.all import *

>>> # needs sage.rings.padics

>>> R = Zp(Integer(5))

>>> R

5-adic Ring with capped relative precision 20
>>> F1 = R.construction() [Integer (0)]

>>> F1

Completion[5, prec=20]

>>> F1(z2Z) is R

True

>>> F1(QQ)

5-adic Field with capped relative precision 20

>>> F2 = RR.construction () [Integer (0) ]
>>> F2

Completion[+Infinity, prec=53]

>>> F2(QQ) is RR

True

>>> P = ZzZ['x"']; (x,) = P._first_ngens (1)

>>> Px = P.completion(x) # currently the only implemented completion of P
>>> Px

Power Series Ring in x over Integer Ring

>>> F3 = Px.construction() [Integer (0)]

>>> F3(GF (Integer(3))['x"'])

Power Series Ring in x over Finite Field of size 3

commutes (other)

Completion commutes with fraction fields.

EXAMPLES:

sage: F1 = Zp(5) .construction() [0] #
—needs sage.rings.padics
(continues on next page)
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F2
F1.commutes (F2)

sage: = QQ.construction () [0]
sage:
—needs sage.rings.padics

True

(continued from previous page)

#

>>> from sage.all import *

>>> F1 = Zp(Integer(5)) .construction() [Integer (0)]
— # needs sage.rings.padics

>>> F2 = QQ.construction () [Integer (0) ]

>>> F1.commutes (F2)

—needs sage.rings.padics

True

merge (other)

Two Completion functors are merged, if they are equal. If the precisions of both functors coincide, then
a Completion functor is returned that results from updating the extras dictionary of self by other.
extras. Otherwise, if the completion is at infinity then merging does not increase the set precision, and if
the completion is at a finite prime, merging does not decrease the capped precision.

EXAMPLES:

sage: # needs sage.rings.padics

sage: Rl.<a> = Zp (5, prec=20)[]

sage: R2 = Qp (5, prec=40)

sage: R2 (1) + a # indirect doctest
(1 + 0(5%20))*a + 1 + 0(5740)

sage: R3 = RealField(30)

sage: R4 = RealField(50)

sage: R3(1) + R4 (1) # indirect doctest
2.0000000

sage: (R3(1) + R4(1l)) .parent ()

Real Field with 30 bits of precision

>>> from sage.all import *

>>> # needs sage.rings.padics

>>> R1 = Zp(Integer(5), prec=Integer(20))['a']l; (a,) = R1
>>> R2 = Qp(Integer(5), prec=Integer (40))
>>> R2 (Integer(l)) + a # indirect doctest

(1 + 0(5%20))*a + 1 + 0(5740)
RealField (Integer (30))
RealField (Integer (50))

>>> R3(Integer(l)) + R4 (Integer(l))
2.0000000

(R3 (Integer(l)) + R4 (Integer(l))) .parent ()
Real Field with 30 bits of precision

>>> R3

>>> R4

# indirect doctest

>>>

._first_ngens (1)

rank 4

class sage.categories.pushout.CompositeConstructionFunctor (*args)
Bases: ConstructionFunctor
A Construction Functor composed by other Construction Functors.

INPUT:
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e F1, F2,...—alistof Construction Functors. The result is the composition F1 followed by F2 followed by

EXAMPLES:

sage: from sage.categories.pushout import CompositeConstructionFunctor
sage: F = CompositeConstructionFunctor (QQ.construction() [0], ZZ['x'].
—construction() [0],
R QQ.construction() [0], ZZ['y'].
—construction() [0])
sage: F
Polyl[y] (FractionField (Poly[x] (FractionField(...))))

13

sage: == loads (dumps (F) )

True

sage: F == CompositeConstructionFunctor (*F.all)

True

sage: F(GF(2)['t']) #

—needs sage.libs.ntl
Univariate Polynomial Ring in y
over Fraction Field of Univariate Polynomial Ring in x
over Fraction Field of Univariate Polynomial Ring in t
over Finite Field of size 2 (using GF2X)

>>> from sage.all import *
>>> from sage.categories.pushout import CompositeConstructionFunctor
>>> F = CompositeConstructionFunctor (QQ.construction() [Integer(0)], ZZ['x'].
—construction () [Integer (0)1],
QQ.construction () [Integer (0)]1, Zz['y'].
—construction () [Integer (0)])
>>> F
Poly[y] (FractionField (Poly[x] (FractionField(...))))

>>> F == loads (dumps (F))

True

>>> F == CompositeConstructionFunctor (*F.all)

True

>>> F (GF (Integer(2))['t']) -
. # needs sage.libs.ntl

Univariate Polynomial Ring in y
over Fraction Field of Univariate Polynomial Ring in x
over Fraction Field of Univariate Polynomial Ring in t
over Finite Field of size 2 (using GF2X)

expand ()

Return expansion of a CompositeConstructionFunctor.

© Note

The product over the list of components, as returned by the expand () method, is equal to self.

EXAMPLES:

sage: from sage.categories.pushout import CompositeConstructionFunctor

sage: F = CompositeConstructionFunctor (QQ.construction() [0],
(continues on next page)

3.4. Coercion via construction functors 217



Category Framework, Release 10.6

(continued from previous page)

5000 & Z2Z['x'].construction() [0],
e QQ.construction () [0],

5000 ¢ ZZ['y'].construction() [0])
sage: F

Polyl[y] (FractionField (Poly[x] (FractionField(...))))

sage: prod(F.expand()) == F

True

>>> from sage.all import *
>>> from sage.categories.pushout import CompositeConstructionFunctor

>>> F = CompositeConstructionFunctor (QQ.construction() [Integer(0)],
ZZ['x'"].construction () [Integer (0)],
QQ.construction () [Integer(0)],
ZZ['y'].construction () [Integer(0)])
>>> F

Poly[y] (FractionField (Poly[x] (FractionField(...))))
>>> prod(F.expand()) ==
True

class sage.categories.pushout.ConstructionFunctor

Bases: Functor
Base class for construction functors.

A construction functor is a functorial algebraic construction, such as the construction of a matrix ring over a given
ring or the fraction field of a given ring.

In addition to the class Functor, construction functors provide rules for combining and merging constructions.
This is an important part of Sage’s coercion model, namely the pushout of two constructions: When a polynomial
p in a variable x with integer coefficients is added to a rational number g, then Sage finds that the parents zz [ 'x ']
and Q0 are obtained from zz by applying a polynomial ring construction respectively the fraction field construction.
Each construction functor has an attribute rank, and the rank of the polynomial ring construction is higher than
the rank of the fraction field construction. This means that the pushout of 00 and zZ['x"' ], and thus a common
parent in which p and g can be added, is QQ[ ' x ' ], since the construction functor with a lower rank is applied first.

sage: F1, R = QQ.construction ()

sage: F1

FractionField

sage: R

Integer Ring

sage: F2, R = (ZZ['x']) .construction ()
sage: F2

Poly[x]

sage: R

Integer Ring

sage: F3 = F2.pushout (F1)

sage: F3

Poly[x] (FractionField(...))

sage: F3(R)

Univariate Polynomial Ring in x over Rational Field
sage: from sage.categories.pushout import pushout
sage: P.<x> = ZZ][]

sage: pushout (QQ,P)

(continues on next page)
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Univariate Polynomial Ring in x over Rational Field
sage: ((x+1) + 1/2) .parent ()

Univariate Polynomial Ring in x over Rational Field
.

>>> from sage.all import *

>>> F1, R = QQ.construction /()

>>> F1

FractionField

>>> R

Integer Ring

>>> F2, R = (ZZ['x']) .construction ()

>>> F2

Poly[x]

>>> R

Integer Ring

>>> F3 = F2.pushout (F1)

>>> F3

Poly[x] (FractionField(...))

>>> F3(R)

Univariate Polynomial Ring in x over Rational Field
>>> from sage.categories.pushout import pushout

>>> P = ZZ['x"']; (x,) = P._first_ngens (1)

>>> pushout (QQ, P)

Univariate Polynomial Ring in x over Rational Field
>>> ((x+Integer(l)) + Integer(l)/Integer(2)) .parent ()
Univariate Polynomial Ring in x over Rational Field

When composing two construction functors, they are sometimes merged into one, as is the case in the Quotient

construction:

sage: Q15, R = (ZZ.quo(15*%ZZ)) .construction ()
sage: Q15

QuotientFunctor

sage: Q35, R = (ZZ.quo(35*ZZ)) .construction ()
sage: Q35

QuotientFunctor

sage: Q15.merge (Q35)

QuotientFunctor

sage: Ql15.merge (Q35) (Z2)

Ring of integers modulo 5
.

g
>>> from sage.all import *

>>> Q15, R = (ZZ.quo(Integer (15)*ZZ)) .construction ()
>>> Q15

QuotientFunctor

>>> 035, R = (ZZ.quo(Integer (35)*ZZ)) .construction ()
>>> Q35

QuotientFunctor

>>> Q15.merge (Q35)

QuotientFunctor

>>> Q15.merge (Q35) (ZZ)

Ring of integers modulo 5
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Functors can not only be applied to objects, but also to morphisms in the respective categories. For example:

sage: P.<x,y> = ZZ[]
sage: F = P.construction() [0]; F
MPoly[x,Vy]
sage: A.<a,b> = GF(5) []
sage: £ = A.hom([a + b, a - b], A)
sage: F (A)
Multivariate Polynomial Ring in x, y

over Multivariate Polynomial Ring in a, b over Finite Field of size 5
sage: F (f)
Ring endomorphism of Multivariate Polynomial Ring in x, y

over Multivariate Polynomial Ring in a, b over Finite Field of size 5

Defn: Induced from base ring by

Ring endomorphism of Multivariate Polynomial Ring in a, b
over Finite Field of size 5

Defn: a |-—> a + Db
b |-—> a - Db
sage: F (f) (F (A7) (x) *a)

(a + b)*x

-
>>> from sage.all import *

>>> P = 7272['x, y']l; (x, y,) = P._first_ngens(2)

>>> F = P.construction() [Integer(0)]; F

MPoly[x,vy]

>>> A = GF (Integer(5))['a, b'l; (a, b,) = A._first_ngens(2)
>>> f = A.hom([a + b, a - b], A)

>>> F (A)

Multivariate Polynomial Ring in x, y

over Multivariate Polynomial Ring in a, b over Finite Field of size 5
>>> F (f)
Ring endomorphism of Multivariate Polynomial Ring in x, y

over Multivariate Polynomial Ring in a, b over Finite Field of size 5

Defn: Induced from base ring by

Ring endomorphism of Multivariate Polynomial Ring in a, b
over Finite Field of size 5

Defn: a |-—> a + b
b |-——> a -Db
>>> F (f) (F(A) (x) *a)

(a + b) *x

.

coercion_reversed = False

common_base (other_functor, self_bases, other_bases)

This function is called by pushout () when no common parent is found in the construction tower.

O Note

The main use is for multivariate construction functors, which use this function to implement recursion for
pushout ().

INPUT:

e other_functor —a construction functor
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* self_bases — the arguments passed to this functor

* other_bases — the arguments passed to the functor other_functor

OUTPUT:

Nothing, since a CoercionException is raised.

© Note

Overload this function in derived class, see e.e. MultivariateConstructionFunctor.

commutes (other)

Determine whether self commutes with another construction functor.

© Note

By default, False is returned in all cases (even if the two functors are the same, since in this case merge ()
will apply anyway). So far there is no construction functor that overloads this method. Anyway, this
method only becomes relevant if two construction functors have the same rank.

EXAMPLES:

sage: F = QQ.construction() [0]
sage: P = ZZ['t'].construction() [0]
sage: F.commutes (P)

False

sage: P.commutes (F)

False

sage: F.commutes (F)

False

>>> F
>>> P
>>> F
False
>>> P.
False
>>> F.

False

>>> from sage.all import *

= QQ.construction () [Integer (0) ]
= ZZ['t'].construction () [Integer (0) ]

.commutes (P)

commutes (F)

commutes (F)

expand ()

Decompose self into a list of construction functors.

© Note

The default is to return the list only containing self.

EXAMPLES:

3.4. Coercion via construction functors
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sage: F = QQ.construction() [0]

sage: F.expand()

[FractionField]

sage: Q = ZZ.quo(2) .construction () [0]
sage: Q.expand()

[QuotientFunctor]

sage: P = ZZ['t'].construction() [0]
sage: FP = F*P

sage: FP.expand()

[FractionField, Polyl[t]]

>>> from sage.all import *
>>> F = QQ.construction() [Integer (0) ]
>>> F.expand()

[FractionField]

>>> Q = ZZ.quo (Integer(2)) .construction () [Integer (0) ]
>>> Q.expand ()

[QuotientFunctor]

>>> P = ZZ['t'].construction () [Integer (0)]
[ERSE

>>> FP.expand ()

[FractionField, Polyl[t]]

>>> FP =

merge (other)

Merge self with another construction functor, or return None.

© Note

The default is to merge only if the two functors coincide. But this may be overloaded for subclasses, such

as the quotient functor.

EXAMPLES:

sage: F = QQ.construction() [0]
sage: P = ZZ['t'].construction () [0]
sage: F.merge (F)

FractionField

sage: F.merge (P)

sage: P.merge (F)

sage: P.merge (P)

Poly([t]

>>> from sage.all import *

>>> F = QQ.construction() [Integer (0) ]

>>> P = ZZ['t'].construction () [Integer (0) ]
>>> F.merge (F)

FractionField

>>> F.merge (P)
>>> P.merge (F)
>>> P.merge (P)
Poly([t]
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pushout (other)

Composition of two construction functors, ordered by their ranks.

© Note

¢ This method seems not to be used in the coercion model.

* By default, the functor with smaller rank is applied first.

class sage.categories.pushout.EquivariantSubobjectConstructionFunctor (S, action=<built-in
function mul>,
side="left’,
other_action=None,
other_side="left")

Bases: ConstructionFunctor
Constructor for subobjects invariant or equivariant under given semigroup actions.

Let S be a semigroup that - acts on a parent X as s -« (action, side="left')or-actson X asx - s (action,
side="right "), and (possibly trivially) - acts on X as s *x x (other_action, other_side='left')or - acts
on X as x * s (other_action, other_side='right').

The S-equivariant subobject is the subobject
X9 ={recX:s-x=s%x,Vs €S}

when side = other_side = 'left' and mutatis mutandis for the other values of side and other_side.
When other_action is trivial, X° is called the S-invariant subobject.

EXAMPLES:

Monoterm symmetries of a tensor, here only for matrices: row (index 0), column (index 1); the order of the extra
element 2 in a permutation determines whether it is a symmetry or an antisymmetry:

sage: # needs sage.groups sage.modules
sage: GSym0l = PermutationGroup ([[(0,1), (2,), (3,)]1]1); GSymOl

Permutation Group with generators [(0,1)]
sage: GASym0l = PermutationGroup ([[(0,1), (2,3)1]1); GASymO1l
Permutation Group with generators [(0,1) (2,3)]

sage: from sage.categories.action import Action
sage: from sage.structure.element import Matrix
sage: class TensorIndexAction (Action):

85505 def _act_(self, g, x):

e if isinstance(x, Matrix):

if g(0) ==

if g(2) == 2:

el return x.transpose ()
oLt else:

SaB8os return —-x.transpose ()
R else:

e return x
50008 raise NotImplementedError
sage: M = matrix([[1, 21, [3, 411); M

(continues on next page)
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[3 4]
sage: GSymOl_action = TensorIndexAction (GSym01l, M.parent ())
sage: GASym0Ol_action = TensorIndexAction (GASymOl, M.parent ())
sage: GSym0Ol_action.act (GSym01.0, M)
[1 3]
[2 4]
sage: GASym0Ol_action.act (GASym01.0, M)
[-1 -3]
[-2 -4]
sage: SymOl = M.parent () .invariant_module (GSym0O1l, action=GSymO0l1l_action); SymO1
(Permutation Group with generators [(0,1)])-invariant submodule
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: list (SymOl.basis())
[B[O], B[1]l, BIl[2]]
sage: list (SymOl.basis () .map(Sym01l.1ift))
[
[1 0] [0 1] [0 0]
[0 0], [12 O], [O 1]
]
sage: ASym0l = M.parent () .invariant_module (GASymO1l, action=GASymOl_action)
sage: ASym01
(Permutation Group with generators [(0,1) (2,3)])-invariant submodule
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: list (ASymOl.basis())
[B[O]]
sage: list (ASymOl.basis () .map (ASym01.1ift))

sage: from sage.categories.pushout import pushout

sage: pushout (Sym01, QQ)

(Permutation Group with generators [(0,1)])-invariant submodule
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

>>> from sage.all import *
>>> # needs sage.groups sage.modules

>>> GSym0l1 = PermutationGroup([[ (Integer(0), Integer (1)), (Integer(2),), (Integer(3),
—)11); GSymO1
Permutation Group with generators [(0,1)]

>>> GASym0l1l = PermutationGroup([[ (Integer(0),Integer(l)), (Integer(2),
—Integer(3))11); GASymO1l
Permutation Group with generators [(0,1) (2,3)]
>>> from sage.categories.action import Action
>>> from sage.structure.element import Matrix
>>> class TensorIndexAction (Action) :
def _act_(self, g, x):
if isinstance(x, Matrix):
if g(Integer(0)) == Integer(l):
if g(Integer(2)) == Integer(2):
return x.transpose ()

else:
(continues on next page)
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return -x.transpose ()
else:
return x
C raise NotImplementedError
>>> M = matrix ([ [Integer(l), Integer(2)], [Integer(3), Integer(4)]]); M
[1 2]
[3 4]
>>> GSymOl_action = TensorIndexAction (GSym0l, M.parent ())
>>> GASymOl_action = TensorIndexAction (GASym0l, M.parent ())
>>> GSym0Ol_action.act (GSym0l.gen (0), M)

[1 3]

[2 4]

>>> GASym0l1l_action.act (GASym0l.gen (0), M)

[-1 -3]

[-2 -4]

>>> Sym01 = M.parent () .invariant_module (GSym01l, action=GSym0l_action); SymO1
(Permutation Group with generators [(0,1)])-invariant submodule

of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

>>> list (SymO1l.basis())

[B[O], B[1], BI[2]]

>>> list (SymOl.basis () .map(Sym01.1ift))

[

[1 0] [0 1] [0 0]

(0 01, [1 01,

]

>>> ASym0l1 = M.parent () .invariant_module (GASym0l, action=GASymOl_action)

>>> ASymO1

(Permutation Group with generators [(0,1) (2,3)])-invariant submodule
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

>>> list (ASym0O1.basis())

[B[O]]

>>> list (ASymOl.basis () .map (ASym01.1ift))

>>> from sage.categories.pushout import pushout
>>> pushout (Sym01, QOQ)
(Permutation Group with generators [(0,1)])-invariant submodule

of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

class sage.categories.pushout.FractionField

Bases: constructionFunctor
Construction functor for fraction fields.

EXAMPLES:

sage: F

QQ.construction () [0]
sage: F

FractionField

sage: F.domain ()

Category of integral domains

(continues on next page)
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sage: F.codomain ()
Category of fields
sage: F(GF (5)) is GF (5)
True
sage: F(ZZ['t'])
Fraction Field of Univariate Polynomial Ring in t over Integer Ring
sage: P.<x,y> = QQI]
sage: f = P.hom([xt2*y,3*x-y],P)
sage: F (f)
Ring endomorphism of
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
Defn: x [-—> x + 2%y
y |-——> 3*x -y
sage: F (f) (1/x)
1/(x + 2*y)
sage: F == loads (dumps (F))
True

>>> from sage.all import *
>>> F = QQ.construction() [Integer (0)]
>>> F
FractionField
>>> F.domain ()
Category of integral domains
>>> F.codomain ()
Category of fields
>>> F (GF (Integer (5))) is GF (Integer(5))
True
>>> F(ZZ['t'])
Fraction Field of Univariate Polynomial Ring in t over Integer Ring
>>> P = QQ['x, v']; (x, y,) = P._first_ngens(2)
>>> f = P.hom([x+tInteger(2)*y, Integer (3) *x-y],P)
>>> F (f)
Ring endomorphism of
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
Defn: x |-—> x + 2*y
y I==> 3*x -y
>>> F (f) (Integer (1) /x)
1/(x + 2*y)
>>> F == loads (dumps (F))
True

rank = 5
class sage.categories.pushout.IdentityConstructionFunctor
Bases: ConstructionFunctor
A construction functor that is the identity functor.
rank = -100

class sage.categories.pushout.InfinitePolynomialFunctor (gens, order, implementation)

Bases: ConstructionFunctor
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A Construction Functor for Infinite Polynomial Rings (see infinite polynomial ring).
AUTHOR:
— Simon King

This construction functor is used to provide uniqueness of infinite polynomial rings as parent structures. As usual,
the construction functor allows for constructing pushouts.

Another purpose is to avoid name conflicts of variables of the to-be-constructed infinite polynomial ring with
variables of the base ring, and moreover to keep the internal structure of an Infinite Polynomial Ring as simple as
possible: If variables vy, ..., v, of the given base ring generate an ordered sub-monoid of the monomials of the
ambient Infinite Polynomial Ring, then they are removed from the base ring and merged with the generators of
the ambient ring. However, if the orders don’t match, an error is raised, since there was a name conflict without
merging.

EXAMPLES:

-

sage: A.<a,b> = InfinitePolynomialRing(ZZ['t'])

sage: A.construction()

[InfPoly{[a,b], "lex", "dense"},

Univariate Polynomial Ring in t over Integer Ring]
sage: type(_I[0])

<class 'sage.categories.pushout.InfinitePolynomialFunctor'>
sage: B.<x,y,a_3,a_1> = PolynomialRing(QQ, order='lex')
sage: B.construction()

(MPoly[x,y,a_3,a_1], Rational Field)

sage: A.construction() [0] * B.construction() [0]
InfPoly{[a,b], "lex", "dense"} (MPoly[x,y] (...))
L

>>> from sage.all import *

>>> A = InfinitePolynomialRing(ZZ['t'], names=('a', 'b',)); (a, b,) = A._first_
—ngens (2)

>>> A.construction ()

[InfPoly{[a,b], "lex", "dense"},
Univariate Polynomial Ring in t over Integer Ring]

>>> type (_[Integer(0)])

<class 'sage.categories.pushout.InfinitePolynomialFunctor'>

>>> B = PolynomialRing(QQ, order='lex', names=('x', 'y', 'a_ 3', 'a_1',)); (X, V,o
—a_3, a_l,) = B._first_ngens (4)

>>> B.construction ()

(MPoly[x,y,a_3,a_1], Rational Field)

>>> A.construction () [Integer (0)] * B.construction() [Integer (0)]

InfPoly{[a,b], "lex", "dense"} (MPoly[x,v] (...))

L

Apparently the variables a;, az of the polynomial ring are merged with the variables ag, a1, ag, ... of the infinite
polynomial ring; indeed, they form an ordered sub-structure. However, if the polynomial ring was given a different
ordering, merging would not be allowed, resulting in a name conflict:

sage: R = PolynomialRing (QQ, names=['x"','y','a_3',"'a_1"'])
sage: A.construction() [0] * R.construction() [0]
Traceback (most recent call last):

CoercionException: Incompatible term orders lex, degrevlex
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-
>>> from sage.all import *

>>> R = PolynomialRing (QQ, names=['x',6'y','a 3"','a_1'])
>>> A.construction () [Integer (0)] * R.construction() [Integer (0)]

Traceback (most recent call last):

CoercionException: Incompatible term orders lex, degrevlex

L

In an infinite polynomial ring with generator a.., the variable a3 will always be greater than the variable a;. Hence,
the orders are incompatible in the next example as well:

-
sage: R = PolynomialRing (QQ, names=['x',6'y','a 1','a_3'], order='lex'")
sage: A.construction() [0] * R.construction() [0]

Traceback (most recent call last):

CoercionException: Overlapping variables (('a', 'b'),['a_1l', 'a_3'])

are incompatible
.

-
>>> from sage.all import *

>>> R = PolynomialRing (QQ, names=['x"','
>>> A.construction () [Integer (0)] * R.construction() [Integer (0)]

Traceback (most recent call last):

y','a_1','a_3"'"], order='lex"')

CoercionException: Overlapping variables (('a', 'b'),['a_1l', 'a_3'])

are incompatible
.

Another requirement is that after merging the order of the remaining variables must be unique. This is not the
case in the following example, since it is not clear whether the variables x, y should be greater or smaller than the
variables b,.:

-
sage: R = PolynomialRing (QQ, names=['a 3','a_1','x','y'], order='lex'")

sage: A.construction() [0] * R.construction() [0]
Traceback (most recent call last):

CoercionException: Overlapping variables (('a', 'b'),['a_3', 'a_1'l)

are incompatible

>>> from sage.all import *

>>> R = PolynomialRing (QQ, names=['a_3','a_1','x','y'], order='lex"')
>>> A.construction () [Integer (0)] * R.construction() [Integer (0)]
Traceback (most recent call last):

CoercionException: Overlapping variables (('a', 'b'),['a_3', 'a_1'l)

are incompatible

Since the construction functors are actually used to construct infinite polynomial rings, the following result is no
surprise:

-

sage: C.<a,b> = InfinitePolynomialRing(B); C
Infinite polynomial ring in a, b
over Multivariate Polynomial Ring in x, y over Rational Field

>>> from sage.all import *

>>> C = InfinitePolynomialRing (B, names=('a', 'b',)); (a, b,) = C._first_ngens(2);
(continues on next page)
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— C
Infinite polynomial ring in a, b

over Multivariate Polynomial Ring in x, y over Rational Field
.

There is also an overlap in the next example:

sage: X.<w,x,y> = InfinitePolynomialRing(ZZ)

sage: Y.<x,y,z> InfinitePolynomialRing (QQ)

>>> from sage.all import *
>>> X = InfinitePolynomialRing(ZZ, names=('w', 'x', 'v',)); (w, x, y,) = X._first_
—ngens (3)

>>> Y = InfinitePolynomialRing(QQ, names=('x", v', 'z',)); (x, y, z,) = Y. _first_
—ngens (3)

.

X and Y have an overlapping generators z.., y.. Since the default lexicographic order is used in both rings, it gives
rise to isomorphic sub-monoids in both X and Y. They are merged in the pushout, which also yields a common
parent for doing arithmetic:

-
sage: P = sage.categories.pushout.pushout (Y,X); P

Infinite polynomial ring in w, X, y, z over Rational Field
sage: w[2]+z[3]

w_2 + z_3
sage: _.parent () is P
True

.

g
>>> from sage.all import *

>>> P = sage.categories.pushout.pushout (Y,X); P

Infinite polynomial ring in w, X, y, z over Rational Field
>>> w[Integer (2)]+z[Integer (3) ]

w 2 + z_3

>>> _.parent() is P

True
.

expand ()
Decompose the functor F' into sub-functors, whose product returns F'.

EXAMPLES:

sage: A = InfinitePolynomialRing(QQ, ['x','y']l, order='degrevlex')

sage: F = A.construction() [0]; F

InfPoly{[x,y], "degrevlex", "dense"}

sage: F.expand()

[InfPoly{[y], "degrevlex", "dense"}, InfPoly{[x], "degrevlex", "dense"}]
Yy

sage: A = InfinitePolynomialRing(QQ, ['x',

]

,'2'], order='degrevlex')
sage: F = A.construction() [0]; F
InfPoly{[x,y,z], "degrevlex", "dense"}
sage: F.expand()
[InfPoly{[z], "degrevlex", "dense"},
InfPoly{[y], "degrevlex", "dense"},
InfPoly{[x], "degrevlex", "dense"}]
sage: prod(F.expand())==F
True
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>>> from sage.all import *
>>> A = InfinitePolynomialRing(QQ, ['x','y'], order='degrevlex')
>>> F = A.construction() [Integer(0)]; F
InfPoly{[x,y], "degrevlex", "dense"}
>>> F.expand ()
[InfPoly{[y], "degrevlex", "dense"}, InfPoly{[x], "degrevlex", "dense"}]
>>> A = InfinitePolynomialRing(QQ, ['x','y','z'], order='degrevlex')
>>> F = A.construction() [Integer(0)]; F
InfPoly{[x,y,z], "degrevlex", "dense"}
>>> F.expand()
[InfPoly{[z], "degrevlex", "dense"},
InfPoly{[y], "degrevlex", "dense"},
InfPoly{[x], "degrevlex", "dense"}]
>>> prod(F.expand () )==F
True

merge (other)

Merge two construction functors of infinite polynomial rings, regardless of monomial order and implementa-
tion.

The purpose is to have a pushout (and thus, arithmetic) even in cases when the parents are isomorphic as
rings, but not as ordered rings.

EXAMPLES:
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: Y.<x,y> = InfinitePolynomialRing(QQ, order='degrevlex')

sage: X.construction ()

[InfPoly{[x,y], "lex", "sparse"}, Rational Field]
sage: Y.construction ()

[InfPoly{[x,y], "degrevlex", "dense"}, Rational Field]
sage: Y.construction() [0] .merge (Y.construction() [0])
InfPoly{[x,y], "degrevlex", "dense"}

sage: y[3] + X(x[2])

x_2 + y_3

sage: _.parent ().construction ()

[InfPoly{[x,y], "degrevlex", "dense"}, Rational Field]

>>> from sage.all import *

>>> X = InfinitePolynomialRing(QQ, implementation='sparse', names=('x', 'y',
—)); (x, y,) = X._first_ngens(2)

>>> Y = InfinitePolynomialRing (QQ, order='degrevlex', names=('x', 'v',)); (x,-
—y,) = Y._first_ngens(2)

>>> X.construction ()

[InfPoly{[x,y], "lex", "sparse"}, Rational Field]

>>> Y.construction ()

[InfPoly{[x,y], "degrevlex", "dense"}, Rational Field]

>>> Y.construction () [Integer (0) ] .merge (Y.construction () [Integer (0)])
InfPoly{[x,y], "degrevlex", "dense"}

>>> y[Integer(3)] + X(x[Integer(2)])

X _2 + y_3

>>> _ .parent () .construction ()

[InfPoly{[x,y], "degrevlex", "dense"}, Rational Field]
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rank = 9.5

class sage.categories.pushout.LaurentPolynomialFunctor (var, multi_variate=False)

Bases: constructionFunctor

Construction functor for Laurent polynomial rings.

EXAMPLES:

sage: L.<t> = LaurentPolynomialRing(ZZ)
sage: F = L.construction() [0]

sage: F

LaurentPolynomialFunctor
sage: F(QQ)
Univariate Laurent Polynomial Ring in t over Rational Field
sage: K.<x> = LaurentPolynomialRing(ZZ)
sage: F (K)
Univariate Laurent Polynomial Ring in t
over Univariate Laurent Polynomial Ring in x over Integer Ring
sage: P.<x,y> = ZZ[]
sage: f = P.hom([x + 2*y, 3*x — y],P)
sage: F (f)
Ring endomorphism of Univariate Laurent Polynomial Ring in t
over Multivariate Polynomial Ring in x, y over Integer Ring
Defn: Induced from base ring by
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer.
—Ring
Defn: x |-—> x + 2*y
y [==> 3*x -y
sage: F (f) (x*F(P).gen()"-2 + y*F(P).gen()"3)
(= F 2¥y) *Er=2 + (I = W) & 3

>>> from sage.all import *

>>> L = LaurentPolynomialRing(ZZ, names=('t',)); (t,) = L._first_ngens (1)
>>> F = L.construction () [Integer (0) ]
>>> F

LaurentPolynomialFunctor
>>> F(QQ)
Univariate Laurent Polynomial Ring in t over Rational Field
>>> K = LaurentPolynomialRing(ZZ, names=('x',)); (x,) = K._first_ngens (1)
>>> F (K)
Univariate Laurent Polynomial Ring in t
over Univariate Laurent Polynomial Ring in x over Integer Ring
>>> P = Z7Z['x, y'l; (x, y,) = P._first_ngens(2)
>>> f = P.hom([x + Integer(2)*y, Integer(3)*x - yl,P)
>>> F (f)
Ring endomorphism of Univariate Laurent Polynomial Ring in t
over Multivariate Polynomial Ring in x, y over Integer Ring
Defn: Induced from base ring by
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer.
—Ring
Defn: x |-—> x + 2*y
y [==> 3*x -y
>>> F (f) (x*F(P) .gen () **-Integer (2) + y*F(P).gen()**Integer(3))
(= F 2¥y) *Er=2 + (I = W) & 3
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merge (other)

Two Laurent polynomial construction functors merge if the variable names coincide.

The result is multivariate if one of the arguments is multivariate.

EXAMPLES:

sage: from sage.categories.pushout import LaurentPolynomialFunctor
sage: F1 = LaurentPolynomialFunctor('t')

sage: F2 = LaurentPolynomialFunctor('t', multi_variate=True)

sage: Fl.merge (F2)

LaurentPolynomialFunctor

sage: Fl.merge (F2) (LaurentPolynomialRing (GF (2), 'a')) #
—needs sage.modules

Multivariate Laurent Polynomial Ring in a, t over Finite Field of size 2

sage: Fl.merge (F1l) (LaurentPolynomialRing(GF (2), 'a'))

Univariate Laurent Polynomial Ring in t over

Univariate Laurent Polynomial Ring in a over Finite Field of size 2

>>> from sage.all import *
>>> from sage.categories.pushout import LaurentPolynomialFunctor
>>> F1 = LaurentPolynomialFunctor('t")
>>> F2 = LaurentPolynomialFunctor ('t', multi_variate=True)
>>> F1l.merge (F2)
LaurentPolynomialFunctor
>>> F1l.merge (F2) (LaurentPolynomialRing (GF (Integer (2)), 'a')) -
— # needs sage.modules
Multivariate Laurent Polynomial Ring in a, t over Finite Field of size 2
>>> F1l.merge (F1) (LaurentPolynomialRing (GF (Integer(2)), 'a'))
Univariate Laurent Polynomial Ring in t over
Univariate Laurent Polynomial Ring in a over Finite Field of size 2

rank = 9

class sage.categories.pushout.MatrixFunctor (nrows, ncols, is_sparse=False)

Bases: ConstructionFunctor
A construction functor for matrices over rings.

EXAMPLES:

sage: # needs sage.modules
sage: MS = MatrixSpace (Z2Z, 2, 3)
sage: F = MS.construction() [0]; F
MatrixFunctor
sage: MS = MatrixSpace (ZZ, 2)
sage: F = MS.construction() [0]; F
MatrixFunctor
sage: P.<x,y> = QQI[]
sage: R = F(P); R
Full MatrixSpace of 2 by 2 dense matrices
over Multivariate Polynomial Ring in x, y over Rational Field
sage: f = P.hom([xty, x-y], P); F(f)
Ring endomorphism
of Full MatrixSpace of 2 by 2 dense matrices

(continues on next page)
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over Multivariate Polynomial Ring in x, y over Rational Field
Defn: Induced from base ring by
Ring endomorphism
of Multivariate Polynomial Ring in x, y over Rational Field
Defn: x [|[-—> x + y
y I-——>x -y
sage: M = R([x, y, x*y, x + y])
sage: F (f) (M)
[ Xty X — y]
[x72 = y"2 2%5%]

>>> from sage.all import *
>>> # needs sage.modules
>>> MS = MatrixSpace(ZZ, Integer(2), Integer(3))
>>> F = MS.construction() [Integer(0)]; F
MatrixFunctor
>>> MS = MatrixSpace(ZZ, Integer(2))
>>> F = MS.construction() [Integer(0)]; F
MatrixFunctor
>>> P = QQ['x, y']l; (x, y,) = P._first_ngens(2)
>>> R = F(P); R
Full MatrixSpace of 2 by 2 dense matrices
over Multivariate Polynomial Ring in x, y over Rational Field
>>> f = P.hom([x+ty, x-y], P); F(f)
Ring endomorphism
of Full MatrixSpace of 2 by 2 dense matrices
over Multivariate Polynomial Ring in x, y over Rational Field
Defn: Induced from base ring by
Ring endomorphism
of Multivariate Polynomial Ring in x, y over Rational Field
Defn: x |-—> x + y
y I=—=—>x -y
>>> M = R([x, y, x*y, x + vyI])
>>> F (f) (M)
[ X +y x — VY]
[x72 = y"2 2%5%]

merge (other)
Merging is only happening if both functors are matrix functors of the same dimension.

The result is sparse if and only if both given functors are sparse.

EXAMPLES:

sage: # needs sage.modules

sage: F1 = MatrixSpace(ZZ, 2, 2).construction() [0]
sage: F2 = MatrixSpace(ZZ, 2, 3).construction() [0]

sage: F3 = MatrixSpace(ZZ, 2, 2, sparse=True) .construction() [0]
sage: Fl.merge (F2)

sage: Fl.merge (F3)

MatrixFunctor

sage: F13 = Fl.merge (F3)

sage: F13.is_sparse
(continues on next page)
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False

sage: Fl.is_sparse

False

sage: F3.is_sparse

True

sage: F3.merge (F3) .1is_sparse
True

>>> from sage.all import *

>>> # needs sage.modules

>>> F1 = MatrixSpace(ZZ, Integer(2), Integer(2)).construction() [Integer (0)]
>>> F2

MatrixSpace (ZZ, Integer(2), Integer(3)) .construction() [Integer (0)]
>>> F3 = MatrixSpace(ZZ, Integer(2), Integer(2), sparse=True).
—construction () [Integer (0) ]

>>> F1.merge (F2)

>>> F1.merge (F3)

MatrixFunctor

>>> F13 = Fl.merge (F3)

>>> F13.1is_sparse

False

>>> Fl.is_sparse

False

>>> F3.1s_sparse

True

>>> F3.merge (F3) .is_sparse

True

rank = 10

class sage.categories.pushout.MultiPolynomialFunctor (vars, term_order)

Bases: constructionFunctor

A constructor for multivariate polynomial rings.

EXAMPLES:

(sage: P.<x,y> = ZZ[]

sage: F = P.construction() [0]; F
MPoly[x,Vy]

sage: A.<a,b> = GF(5) []

sage: F (A)

Multivariate Polynomial Ring in x, y
over Multivariate Polynomial Ring in a, b over Finite Field of size 5
sage: f = A.hom([atb, a-b], A)
sage: F (f)
Ring endomorphism of Multivariate Polynomial Ring in x, y
over Multivariate Polynomial Ring in a, b over Finite Field of size 5
Defn: Induced from base ring by
Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite.
—Field of size 5
Defn: a |-—> a + b
b |-—>a - Db
sage: F (f) (F(RA) (x) *a)

(continues on next page)
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(a + b)*x

g
>>> from sage.all import *

>>> P = 7272['x, yv']l; (x, y,) = P._first_ngens(2)

>>> F = P.construction() [Integer(0)]; F

MPoly[x,Vy]

>>> A = GF (Integer(5))['a, b'l; (a, b,) = A._first_ngens(2)
>>> F (A)

Multivariate Polynomial Ring in x, y

over Multivariate Polynomial Ring in a, b over Finite Field of size 5
>>> f = A.hom([atb, a-b]l, A)
>>> F (f)
Ring endomorphism of Multivariate Polynomial Ring in x, y

over Multivariate Polynomial Ring in a, b over Finite Field of size 5

Defn: Induced from base ring by

Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite.

—Field of size 5

Defn: a |--> a + b
b |-——>a -Db
>>> F (f) (F(A) (x) *a)
(a + b)*x
expand ()

Decompose self into a list of construction functors.

EXAMPLES:

sage: F = QQ['x,y,z,t'].construction() [0]; F
MPoly[x,y,z,t]

sage: F.expand()

[MPoly[t], MPoly[z], MPolyl[y], MPoly[x]]

>>> from sage.all import *

>>> F = QQ['x,v,z,t'].construction() [Integer(0)]; F
MPoly[x,y,z,t]

>>> F.expand()

[MPoly[t], MPoly([z], MPolyl[y], MPoly[x]]

Now an actual use case:

sage: R.<x,y,z> = ZZ[]

sage: S.<z,t> = QQI[]

sage: xtt

x + t

sage: parent (x+t)

Multivariate Polynomial Ring in x, y, z, t over Rational Field
sage: T.<y,s> = QQ[]

sage: x + s

Traceback (most recent call last):

TypeError: unsupported operand parent (s) for +:
'Multivariate Polynomial Ring in x, y, z over Integer Ring' and

(continues on next page)
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'Multivariate Polynomial Ring in y, s over Rational Field'

sage: R PolynomialRing (z2Z, 'x', 50)
sage: S = PolynomialRing(GF (5), 'x', 20)
sage: R.gen(0) + S.gen(0)

2*x0

>>> from sage.all import *

>>> R = 2Z['x, vy, z']; (%X, y, z,) = R._first_ngens(3)
>>> S = QQ['z, t']; (z, t,) = S._first_ngens(2)

>>> x+t

x + t

>>> parent (x+t)

Multivariate Polynomial Ring in x, y, z, t over Rational Field
>>> T = QQ['y, s']l; (y, s,) = T._first_ngens(2)

>>> x + s

Traceback (most recent call last):

TypeError: unsupported operand parent (s) for +:

'Multivariate Polynomial Ring in x, y, z over Integer Ring' and
'Multivariate Polynomial Ring in y, s over Rational Field'

>>> R = PolynomialRing(ZZ, 'x', Integer(50))

>>> S = PolynomialRing(GF (Integer(5)), 'x', Integer(20))

>>> R.gen(Integer (0)) + S.gen(Integer (0))

2*x0

merge (other)

Merge self with another construction functor, or return None.

EXAMPLES:

sage: F = sage.categories.pushout.MultiPolynomialFunctor(['x"','y'], None)
sage: G = sage.categories.pushout.MultiPolynomialFunctor(['t'], None)
sage: F.merge (G) is None

True

sage: F.merge (F)

MPoly[x,Vy]

>>> from sage.all import *

>>> F = sage.categories.pushout.MultiPolynomialFunctor(['x','y'], None)
>>> G = sage.categories.pushout.MultiPolynomialFunctor (['t"'], None)

>>> F.merge (G) is None

True

>>> F.merge (F)

MPoly[x,V]

rank = 9
class sage.categories.pushout .MultivariateConstructionFunctor
Bases: ConstructionFunctor
An abstract base class for functors that take multiple inputs (e.g. Cartesian products).

common_base (other_functor, self_bases, other_bases)

This function is called by pushout () when no common parent is found in the construction tower.
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INPUT:
e other_functor —a construction functor
* self_bases — the arguments passed to this functor

e other_bases — the arguments passed to the functor other_functor

OUTPUT: a parent

If no common base is found a sage . st ructure.coerce_exceptions.CoercionException israised.

© Note

Overload this function in derived class, see e.g. MultivariateConstructionFunctor.

class sage.categories.pushout.PermutationGroupFunctor (gens, domain)

Bases: ConstructionFunctor

EXAMPLES:

sage: from sage.categories.pushout import PermutationGroupFunctor

—needs sage.groups
5000¢ [1,2]); PF

PermutationGroupFunctor|[ (1,2)]
.

sage: PF = PermutationGroupFunctor ([PermutationGroupElement ([(1,2)]1)],

>>> from sage.all import *
>>> from sage.categories.pushout import PermutationGroupFunctor

—Integer(2))1)1, # needs sage.groups
[Integer (1), Integer(2)]); PF

PermutationGroupFunctor|[ (1,2)]

>>> PF = PermutationGroupFunctor ([PermutationGroupElement ([ (Integer (1),

gens ()

EXAMPLES:

sage: Pl = PermutationGroup([[(1,2)]11])
—needs sage.groups

sage: PF, P = Pl.construction ()
—needs sage.groups

sage: PF.gens|()

—needs sage.groups

((1,2),)

-

>>> from sage.all import *

>>> P1 = PermutationGroup ([[ (Integer(l),Integer(2))11])
— # needs sage.groups

>>> PF, P = Pl.construction/()

—needs sage.groups

>>> PF.gens ()

—needs sage.groups

((1,2),)
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merge (other)

Merge self with another construction functor, or return None.

EXAMPLES:

sage: # needs sage.groups

sage: P1 = PermutationGroup ([[(1,2)]1])
sage: PF1l, P = Pl.construction()

sage: P2 = PermutationGroup ([[(1,3)11)
sage: PF2, P = P2.construction()

sage: PF1l.merge (PF2)
PermutationGroupFunctor|[ (1,2), (1,3)]

>>> from sage.all import *
>>> # needs sage.groups

>>> P1 = PermutationGroup ([[ (Integer (l),Integer(2))]1])

>>> PF1, P = Pl.construction/()

>>> P2 = PermutationGroup ([[ (Integer (l),Integer(3))]1])
()

>>> PF2, P = P2.construction
>>> PF1.merge (PF2)
PermutationGroupFunctor|[ (1,2), (1,3)]

rank = 10

class sage.categories.pushout.PolynomialFunctor (var, multi_variate=False, sparse=False,
implementation=None)
Bases: ConstructionFunctor

Construction functor for univariate polynomial rings.

EXAMPLES:

sage: P = ZZ['t'].construction() [0]

sage: P (GF (3))

Univariate Polynomial Ring in t over Finite Field of size 3
sage: P == loads (dumps (P))

True

sage: R.<x,y> = GF(5) []

sage: £ = R.hom([x + 2*y, 3*x - y], R)

sage: P (f) ((x+ty) * P(R).0)

(=x + y)*t

.

-
>>> from sage.all import *

>>> P = ZZ['t'].construction () [Integer (0) ]
>>> P (GF (Integer(3)))
Univariate Polynomial Ring in t over Finite Field of size 3

>>> P == loads (dumps (P))

True

>>> R = GF (Integer(5))['x, v'l; (x, y,) = R._first_ngens(2)
>>> f = R.hom([x + Integer(2)*y, Integer(3)*x - yl, R)

>>> P (f) ((x+y) * P(R).gen(0))
(-x + y)*t

By Issue #9944, the construction functor distinguishes sparse and dense polynomial rings. Before, the following

example failed:
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-
sage: R.<x> = PolynomialRing(GF (5), sparse=True)

sage: F, B = R.construction()

sage: F(B) is R

True

sage: S.<x> = PolynomialRing(ZZ)

sage: R.has_coerce_map_from(S)

False

sage: S.has_coerce_map_from(R)

False

sage: S.0 + R.0O

2*%x

sage: (S.0 + R.0).parent ()

Univariate Polynomial Ring in x over Finite Field of size 5
sage: (S.0 + R.0).parent () .is_sparse()
False

g
>>> from sage.all import *

>>> R = PolynomialRing (GF (Integer (5)), sparse=True, names=('x',)); (x,) = R._
—~first_ngens (1)

>>> F, B = R.construction/()

>>> F(B) is R

True

>>> S = PolynomialRing(ZZ, names=('x',)); (x,) = S._first_ngens(1l)
>>> R.has_coerce_map_from(S)

False

>>> S.has_coerce_map_from(R)

False

>>> S.gen(0) + R.gen(0)

2755

>>> (S.gen(0) + R.gen(0)) .parent ()

Univariate Polynomial Ring in x over Finite Field of size 5

>>> (S.gen(0) + R.gen(0)) .parent () .is_sparse()

False

.

merge (other)

Merge self with another construction functor, or return None.

© Note

Internally, the merging is delegated to the merging of multipolynomial construction functors. But in effect,
this does the same as the default implementation, that returns None unless the to-be-merged functors

coincide.
EXAMPLES:
sage: P = ZZ['x'].construction() [0]
sage: Q = ZZ['y','x'].construction() [0]
sage: P.merge (Q)
sage: P.merge(P) is P

True
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>>> from sage.all import *

>>> P = ZZ['x'].construction () [Integer (0)]

>>> Q = ZZ['y','x"].construction () [Integer (0)]
>>> P.merge (Q)

>>> P.merge(P) is P

True

rank = 9

class sage.categories.pushout.QuotientFunctor (I, names=None, as_field=False, domain=None,
codomain=None, **kwds)

Bases: constructionFunctor

Construction functor for quotient rings.

© Note

The functor keeps track of variable names. Optionally, it may keep track of additional properties of the quotient,
such as its category or its implementation.

EXAMPLES:

-

sage: P.<x,y> = ZZ[]

sage: Q = P.quo([x"2 + y*2] * P)

sage: F = Q.construction() [0]

sage: F(QQ['x"','y'])

Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x"2 + y"2)

sage: F(QQ['x','y']l) == QQ['x','y']l.quo([x"2 + y"2] * QQ['x"','y"'])
True

sage: F(QQ['x','y','z"'])

Traceback (most recent call last):

CoercionException: Cannot apply this quotient functor to

Multivariate Polynomial Ring in x, y, z over Rational Field

sage: F(QQ['y','z']) #
—needs sage.rings.finite_rings

Traceback (most recent call last):

TypeError: Could not find a mapping of the passed element to this ring.
.

-
>>> from sage.all import *

>>> P = ZZ['x, y'l; (x, y,) = P._first_ngens(2)
>>> Q = P.quo([x**Integer(2) + y**Integer(2)] * P)
>>> F = Q.construction() [Integer (0)]

>>> F(QO['x"','y'])

Quotient of Multivariate Polynomial Ring in x, y over Rational Field

by the ideal (x"2 + y*2)

>>> F(QQ['x',"'y']) == QQ['x",'y'].quo([x**Integer(2) + y**Integer(2)] * QQ['x',"y
='])

True

>>> F(QO['x",'y',"z"])

(continues on next page)

240 Chapter 3. Maps and Morphisms




Category Framework, Release 10.6

(continued from previous page)

Traceback (most recent call last):

CoercionException: Cannot apply this quotient functor to

Multivariate Polynomial Ring in x, y, z over Rational Field

>>> F(QQ['y','z"']) #
—needs sage.rings.finite rings

Traceback (most recent call last):

TypeError: Could not find a mapping of the passed element to this ring.
.

merge (other)
Two quotient functors with coinciding names are merged by taking the gcd of their moduli, the meet of their
domains, and the join of their codomains.

In particular, if one of the functors being merged knows that the quotient is going to be a field, then the
merged functor will return fields as well.

EXAMPLES:

sage: # needs sage.libs.pari

sage: P.<x> = QQI[]

sage: Q1 = P.quo ([ (x"2+1)"2*(x"2-3)1])

sage: Q2 = P.quo ([ (x"2+1)"2*(x"5+3)1)

sage: from sage.categories.pushout import pushout

sage: pushout (Q1,Q2) # indirect doctest

Univariate Quotient Polynomial Ring in xbar over Rational Field
with modulus x"4 + 2*x"2 + 1

>>> from sage.all import *

>>> # needs sage.libs.pari

>>> P = QQ['x"']; (x,) = P._first_ngens (1)

>>> Q1 = P.quo ([ (x**Integer (2)+Integer (1)) **Integer (2)* (x**Integer (2) -
—Integer(3))1])

>>> Q2 = P.

—quo ([ (x**Integer (2) +Integer (1)) **Integer (2) * (x**Integer (5) +Integer (3)) 1)
>>> from sage.categories.pushout import pushout

>>> pushout (Q1,Q2) # indirect doctest

Univariate Quotient Polynomial Ring in xbar over Rational Field

with modulus x"4 + 2*x"2 + 1

The following was fixed in Issue #8800:

sage: pushout (GF (5), Integers()5)) #.
—needs sage.libs.pari
Finite Field of size 5

>>> from sage.all import *

>>> pushout (GF (Integer (5)), Integers(Integer(5))) -
. # needs sage.libs.pari

Finite Field of size 5

rank = 4.5
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class sage.categories.pushout .SubspaceFunctor (basis)

Bases: constructionFunctor

Constructing a subspace of an ambient free module, given by a basis.

© Note

This construction functor keeps track of the basis. It can only be applied to free modules into which this basis
coerces.

EXAMPLES:

-
sage: # needs sage.modules

sage: M = 77”3

sage: S = M.submodule([(1,2,3), (4,5,6)]1); S

Free module of degree 3 and rank 2 over Integer Ring
Echelon basis matrix:

[1 2 3]

[0 3 6]

sage: F = S.construction() [0]

sage: F (GF (2)"3)

Vector space of degree 3 and dimension 2 over Finite Field of size 2
User basis matrix:

[1 0 1]

[0 1 0]

.

>>> from sage.all import *

>>> # needs sage.modules

>>> M = ZZ**Integer (3)

>>> S = M.submodule ([ (Integer (1), Integer (2), Integer(3)), (Integer (4),Integer(5),
—Integer(6))1); S

Free module of degree 3 and rank 2 over Integer Ring

Echelon basis matrix:

[1 2 3]

[0 3 6]

>>> F = S.construction() [Integer (0)]

>>> F (GF (Integer (2)) **Integer (3))

Vector space of degree 3 and dimension 2 over Finite Field of size 2
User basis matrix:

[1 0 1]

[0 1 0]

.

coercion_reversed = True

merge (other)

Two Subspace Functors are merged into a construction functor of the sum of two subspaces.

EXAMPLES:

sage: # needs sage.modules

sage: M = GF (5) "3

sage: S1 = M.submodule([(1,2,3), (4,5,6)1)
M. submodule ([ (2,2,3)1)

sage: S2

(continues on next page)
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sage: F1 = Sl.construction() [0]

sage: F2 = S2.construction() [0]

sage: Fl.merge (F2)

SubspaceFunctor

sage: Fl.merge (F2) (GF (5)"3) == S1 + S2
True

sage: Fl.merge(F2) (GF(5) ['t']"3)
Free module of degree 3 and rank 3
over Univariate Polynomial Ring in t over Finite Field of size 5
User basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]

>>> from sage.all import *

>>> # needs sage.modules

>>> M = GF (Integer (5))**Integer (3)

>>> S1 = M.submodule ([ (Integer (1), Integer(2),Integer(3)), (Integer (4),
—Integer (5),Integer(6))1)

>>> S2 = M.submodule ([ (Integer (2), Integer(2), Integer(3))1])

>>> F1 = Sl.construction() [Integer (0)]

>>> F2 = S2.construction() [Integer (0)]

>>> F1.merge (F2)

SubspaceFunctor

>>> F1l.merge (F2) (GF (Integer (5)) **Integer(3)) == S1 + S2
True

>>> F1.merge (F2) (GF (Integer (5)) ['t']**Integer (3))
Free module of degree 3 and rank 3
over Univariate Polynomial Ring in t over Finite Field of size 5
User basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]

rank = 11

class sage.categories.pushout.VectorFunctor (n=None, is_sparse=False, inner_product_matrix=None, *,
with_basis='standard', basis_keys=None,
name_mapping=None, latex_name_mapping=None)

Bases: constructionFunctor

A construction functor for free modules over commutative rings.

EXAMPLES:

sage: # needs sage.modules

sage: F = (ZZ"3) .construction() [0]

sage: F

VectorFunctor

sage: F(GF(2)['t"']) #_

—needs sage.libs.ntl
Ambient free module of rank 3

over the principal ideal domain Univariate Polynomial Ring in t

(continues on next page)
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over Finite Field of size 2 (using GF2X)

-
>>>

>>>
>>>
>>>

>>>

—

from sage.all import *

# needs sage.modules

F = (ZZ**Integer(3)) .construction() [Integer (0)]
B

VectorFunctor

F(GF (Integer(2))['t']) =
# needs sage.libs.ntl

Ambient free module of rank 3
over the principal ideal domain Univariate Polynomial Ring in t
over Finite Field of size 2 (using GF2X)

merge (other)

Two constructors of free modules merge, if the module ranks and the inner products coincide. If both have
explicitly given inner product matrices, they must coincide as well.

EXAMPLES:

Two modules without explicitly given inner product allow coercion:

sage: M1 = Q0”3 #o
—needs sage.modules
sage: P.<t> = ZZ[]

sage: M2 = FreeModule (P, 3) #
—needs sage.modules
sage: M1([1,1/2,1/3]1) + M2([t,t"2+t,3]) # indirect doctest #_

—needs sage.modules
(t + 1, t72 + t + 1/2, 10/3)

>>> from sage.all import *

>>> M1 = QQ**Integer (3) o
— # needs sage.modules

>>> P = ZZ['t']; (t,) = P._first_ngens (1)

>>> M2 = FreeModule (P, Integer(3)) -
— # needs sage.modules

>>> M1 ([Integer(l),Integer(l)/Integer(2),Integer(l)/Integer(3)]) + M2([t,
—t**Integer (2) +t, Integer(3)1]) # indirect doctest # needs.
—sage.modules

(t + 1, t72 + t + 1/2, 10/3)

If only one summand has an explicit inner product, the result will be provided with it:

sage: M3 = FreeModule (P, 3, inner_product_matrix=Matrix (3, 3, range(9))) #
—needs sage.modules

sage: M1([1,1/2,1/3]1) + M3([t,t"2+t,3]) #_
—needs sage.modules

(t + 1, t72 + t + 1/2, 10/3)

sage: (M1([1,1/2,1/3]1) + M3([t,t"2+t,3])) .parent () .inner_product_matrix () #_
—needs sage.modules

[0 1 2]

[3 4 5]

[6 7 8]
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>>> from sage.all import *
>>> M3 = FreeModule (P, Integer(3), inner_product_matrix=Matrix (Integer(3),._

—Integer (3), range (Integer(9)))) # needs sage.modules
>>> M1 ([Integer (1), Integer (1) /Integer(2),Integer (1) /Integer(3)]) + M3([t,
—t**Integer (2)+t, Integer(3)1]) # needs.

—sage.modules

(t + 1, t*2 + t + 1/2, 10/3)
>>> (M1 ([Integer(l),Integer(l)/Integer(2),Integer(1l)/Integer(3)]) + M3([t,
—t**Integer (2)+t, Integer (3) ]

—sage.modules

[0 1 2]

[3 4 5]

[6 7 8]

)) .parent () .inner_product_matrix() # needs.

If both summands have an explicit inner product (even if it is the standard inner product), then the products
must coincide. The only difference between M1 and M4 in the following example is the fact that the default
inner product was explicitly requested for M4. It is therefore not possible to coerce with a different inner
product:

sage: # needs sage.modules
sage: M4 = FreeModule (QQ, 3, inner_product_matrix=Matrix (3, 3, 1))

sage: M4 == Ml

True

sage: M4.inner_product_matrix () == Ml.inner_product_matrix()
True

sage: M4 ([1,1/2,1/3]1) + M3([t,t"2+t,3]) # Iindirect doctest

Traceback (most recent call last):

TypeError: unsupported operand parent (s) for +:

'Ambient quadratic space of dimension 3 over Rational Field
Inner product matrix:

[1 0 0]

[0 1 0]

[0 0 1]" and

'Ambient free quadratic module of rank 3 over the integral domain
Univariate Polynomial Ring in t over Integer Ring

Inner product matrix:

[0 1 2]

[3 4 5]

[6 7 81"

>>> from sage.all import *

>>> # needs sage.modules

>>> M4 = FreeModule (QQ, Integer(3), inner_product_matrix=Matrix (Integer (3), .
—Integer (3), Integer(l)))

>>> M4 == M1l

True

>>> M4 .inner_product_matrix () == Ml.inner_product_matrix ()

True

>>> M4 ([Integer (1), Integer (1) /Integer(2),Integer(l)/Integer(3)]1) + M3([t,
—t**Integer (2) +t, Integer(3)1]) # indirect doctest

Traceback (most recent call last):
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TypeError: unsupported operand parent (s) for +:

'Ambient quadratic space of dimension 3 over Rational Field
Inner product matrix:

(1 0 0]

[0 1 0]

[0 0 1]" and

'Ambient free quadratic module of rank 3 over the integral domain
Univariate Polynomial Ring in t over Integer Ring

Inner product matrix:

[0 1 2]

[3 4 5]

[6 7 8]"

Names are removed when they conflict:

sage: # needs sage.modules
sage: from sage.categories.pushout import VectorFunctor, pushout
sage: M_ZZx = FreeModule (ZZ['x'], 4, with_basis=None, name='M_77Zx')
sage: N_ZZx = FreeModule (ZZ['x'], 4, with_basis=None, name='N_Z7Zx")
sage: pushout (M_ZZx, QQ)
Rank—-4 free module M_ZZ7Zx_base_ext
over the Univariate Polynomial Ring in x over Rational Field
sage: pushout (M_ZZx, N_Z7Zx)
Rank-4 free module
over the Univariate Polynomial Ring in x over Integer Ring
sage: pushout (pushout (M_ZZx, N_ZZx), QOQ)
Rank-4 free module
over the Univariate Polynomial Ring in x over Rational Field

>>> from sage.all import *
>>> # needs sage.modules
>>> from sage.categories.pushout import VectorFunctor, pushout
>>> M_77Zx = FreeModule(ZZ['x'], Integer(4), with_basis=None, name='M_ Z7Zx')
>>> N_7Z7Zx = FreeModule(ZZ['x'], Integer(4), with_basis=None, name='N_ZzZx")
>>> pushout (M_ZZx, QOQ)
Rank-4 free module M_Z77Zx_base_ext
over the Univariate Polynomial Ring in x over Rational Field
>>> pushout (M_ZZx, N_ZZx)
Rank-4 free module
over the Univariate Polynomial Ring in x over Integer Ring
>>> pushout (pushout (M_ZZx, N_ZZ7Zx), QOQ)
Rank-4 free module
over the Univariate Polynomial Ring in x over Rational Field

rank = 10
sage.categories.pushout.construction_tower (R)
An auxiliary function that is used in pushout () and pushout_lattice ().
INPUT:
* R —an object

OUTPUT:
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A constructive description of the object from scratch, by a list of pairs of a construction functor and an object to
which the construction functor is to be applied. The first pair is formed by None and the given object.

EXAMPLES:

-

sage: from sage.categories.pushout import construction_tower
sage: construction_tower (MatrixSpace (FractionField (QQ['t']), 2)) #_
—needs sage.modules

[ (None, Full MatrixSpace of 2 by 2 dense matrices over Fraction Field

of Univariate Polynomial Ring in t over Rational Field),
(MatrixFunctor, Fraction Field
of Univariate Polynomial Ring in t over Rational Field),
(FractionField, Univariate Polynomial Ring in t over Rational Field),
(Poly[t], Rational Field), (FractionField, Integer Ring) ]

r

>>> from sage.all import *

>>> from sage.categories.pushout import construction_tower

>>> construction_tower (MatrixSpace (FractionField (QQ['t'"']), Integer(2)))

— # needs sage.modules

[ (None, Full MatrixSpace of 2 by 2 dense matrices over Fraction Field

of Univariate Polynomial Ring in t over Rational Field),
(MatrixFunctor, Fraction Field
of Univariate Polynomial Ring in t over Rational Field),

(FractionField, Univariate Polynomial Ring in t over Rational Field),
(Poly[t], Rational Field), (FractionField, Integer Ring) ]

.

sage.categories.pushout .expand_tower (fower)

An auxiliary function that is used in pushout ().
INPUT:
* tower — a construction tower as returned by construction_tower ()

OUTPUT: a new construction tower with all the construction functors expanded

EXAMPLES:

sage: from sage.categories.pushout import construction_tower, expand_tower
sage: construction_tower (QQ['x,v,z"'])
[ (None, Multivariate Polynomial Ring in x, y, z over Rational Field),
(MPoly[x,y,z], Rational Field),
(FractionField, Integer Ring) ]
sage: expand_tower (construction_tower (QQ['x,v,z']))
[ (None, Multivariate Polynomial Ring in x, y, z over Rational Field),
(MPoly([z], Univariate Polynomial Ring in y
over Univariate Polynomial Ring in x over Rational Field),
(MPoly[y], Univariate Polynomial Ring in x over Rational Field),
(MPoly[x], Rational Field),
(FractionField, Integer Ring) ]

>>> from sage.all import *

>>> from sage.categories.pushout import construction_tower, expand_tower

>>> construction_tower (QQ['x,v,z'])

[ (None, Multivariate Polynomial Ring in x, y, z over Rational Field),
(MPoly[x,y,z], Rational Field),

(continues on next page)
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(FractionField, Integer Ring) ]

>>> expand_tower (construction_tower (QQ['x,v,z"']))

[ (None, Multivariate Polynomial Ring in x, y, z over Rational Field),
(MPoly[z], Univariate Polynomial Ring in y

over Univariate Polynomial Ring in x over Rational Field),

(MPoly([y], Univariate Polynomial Ring in x over Rational Field),
(MPoly[x], Rational Field),
(FractionField, Integer Ring) ]

sage.categories.pushout.pushout (R, §)

Given a pair of objects R and S, try to construct a reasonable object Y and return maps such that canonically
R<Y =S

ALGORITHM:

This incorporates the idea of functors discussed at Sage Days 4. Every object ? can be viewed as an initial object
and a series of functors (e.g. polynomial, quotient, extension, completion, vector/matrix, etc.). Call the series of
increasingly simple objects (with the associated functors) the “tower” of R. The construction method is used to
create the tower.

Given two objects R and .S, try to find a common initial object Z. If the towers of R and S meet, let Z be their
join. Otherwise, see if the top of one coerces naturally into the other.

Now we have an initial object and two ordered lists of functors to apply. We wish to merge these in an unambiguous
order, popping elements off the top of one or the other tower as we apply them to Z.

« If the functors are of distinct types, there is an absolute ordering given by the rank attribute. Use this.

¢ QOtherwise:

If the tops are equal, we (try to) merge them.

If exactly one occurs lower in the other tower, we may unambiguously apply the other (hoping for a later
merge).

If the tops commute, we can apply either first.
— Otherwise fail due to ambiguity.

The algorithm assumes by default that when a construction F' is applied to an object X, the object F'(X') admits
a coercion map from X. However, the algorithm can also handle the case where F'(X) has a coercion map o X
instead. In this case, the attribute coercion_reversed of the class implementing /' should be set to True.

EXAMPLES:

Here our “towers” are R =  Completer(Frac(Z)) and Frac(Poly,(Z)), which give us
Frac(Poly,(Completer(Frac(Z)))):

-

sage: from sage.categories.pushout import pushout
sage: pushout (Qp(7), Frac(zZzZ['x']l)) #_
—needs sage.rings.padics
Fraction Field of Univariate Polynomial Ring in x
over 7-adic Field with capped relative precision 20

>>> from sage.all import *
>>> from sage.categories.pushout import pushout
>>> pushout (Qp (Integer (7)), Frac(zZzZ['x'])) -
— # needs sage.rings.padics
(continues on next page)
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Fraction Field of Univariate Polynomial Ring in x
over 7-adic Field with capped relative precision 20

Note we get the same thing with

sage: pushout (Zp(7), Frac(QQ['x'])) #_
—needs sage.rings.padics
Fraction Field of Univariate Polynomial Ring in x

over 7-adic Field with capped relative precision 20

sage: pushout (Zp(7) ['x'], Frac(QQ['x'])) #_
—needs sage.rings.padics
Fraction Field of Univariate Polynomial Ring in x

over 7-adic Field with capped relative precision 20
.

>>> from sage.all import *
>>> pushout (Zp (Integer (7)), Frac(QQ['x'])) -
— # needs sage.rings.padics
Fraction Field of Univariate Polynomial Ring in x
over 7-adic Field with capped relative precision 20
>>> pushout (Zp (Integer (7)) ['x"], Frac(QQ['x"'])) -
— # needs sage.rings.padics
Fraction Field of Univariate Polynomial Ring in x

over 7-adic Field with capped relative precision 20
.

Note that polynomial variable ordering must be unambiguously determined.

-

sage: pushout(ZZ['x,y,z'], QO['w,z,t'])
Traceback (most recent call last):

CoercionException: ('Ambiguous Base Extension',

Multivariate Polynomial Ring in x, y, z over Integer Ring,
Multivariate Polynomial Ring in w, z, t over Rational Field)
sage: pushout(ZZ['x,y,z'], QO['w,x,z,t"'])

Multivariate Polynomial Ring in w, %X, y, z, t over Rational Field
.

g
>>> from sage.all import *

>>> pushout (ZZ['x,y,z'], QQ['w,z,t"])
Traceback (most recent call last):

CoercionException: ('Ambiguous Base Extension',

Multivariate Polynomial Ring in x, y, z over Integer Ring,
Multivariate Polynomial Ring in w, z, t over Rational Field)

>>> pushout (ZZ['x,y,z"'], OQO['w,x,2z,t"'])

Multivariate Polynomial Ring in w, %X, y, z, t over Rational Field

.

Some other examples:

sage: pushout (Zp(7) ['y']l, Frac(QQo['t'])['x,y,z']) #o
—needs sage.rings.padics
Multivariate Polynomial Ring in x, y, z
over Fraction Field of Univariate Polynomial Ring in t
over 7-adic Field with capped relative precision 20
(continues on next page)
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sage: pushout (Z2Z['x,y,z'], Frac(ZZ['x"'])['y'])
Multivariate Polynomial Ring in y, =z
over Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: pushout (MatrixSpace (RDF, 2, 2), Frac(ZzZ['x'])) #.
—needs sage.modules
Full MatrixSpace of 2 by 2 dense matrices
over Fraction Field of Univariate Polynomial Ring in x over Real Double Field
sage: pushout (ZZ, MatrixSpace(ZZ[['x']], 3, 3)) #o
—needs sage.modules
Full MatrixSpace of 3 by 3 dense matrices
over Power Series Ring in x over Integer Ring
sage: pushout (QQ['x,vy']l, ZZ[['x']])
Univariate Polynomial Ring in y
over Power Series Ring in x over Rational Field
sage: pushout (Frac(ZZ['x"']), QO[['x"]])

Laurent Series Ring in x over Rational Field
.

g
>>> from sage.all import *

>>> pushout (Zp (Integer (7)) ['y'], Frac(QQ['t'])['x,v,z"']) -
— # needs sage.rings.padics
Multivariate Polynomial Ring in x, y, z

over Fraction Field of Univariate Polynomial Ring in t

over 7-adic Field with capped relative precision 20
>>> pushout (ZZ['x,y,z'], Frac(ZZ['x']1)I['y'l)
Multivariate Polynomial Ring in y, z

over Fraction Field of Univariate Polynomial Ring in x over Integer Ring
>>> pushout (MatrixSpace (RDF, Integer (2), Integer(2)), Frac(zz['x']l)) -
s # needs sage.modules
Full MatrixSpace of 2 by 2 dense matrices

over Fraction Field of Univariate Polynomial Ring in x over Real Double Field

>>> pushout (ZZ, MatrixSpace (ZZ[['x']], Integer(3), Integer(3))) -
— # needs sage.modules
Full MatrixSpace of 3 by 3 dense matrices

over Power Series Ring in x over Integer Ring

>>> pushout (QQ['x,y"'], ZZ[['x"']])

Univariate Polynomial Ring in y

over Power Series Ring in x over Rational Field

>>> pushout (Frac(Zz['x']), QQ[['x"]])

Laurent Series Ring in x over Rational Field

.

A construction with coercion_reversed=True (currently only the SubspaceFunctor construction) is only
applied if it leads to a valid coercion:

sage: # needs sage.modules

sage: A = ZZ"2

sage: V = span([[1, 2]], QQ)

sage: P = sage.categories.pushout.pushout (A, V)
sage: P

Vector space of dimension 2 over Rational Field
sage: P.has_coerce_map_from(A)

True

(continues on next page)
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sage: # needs sage.modules

sage: V (00"3) .span([[1, 2, 3/411)

sage: A = ZZ"3

sage: pushout (A, V)

Vector space of dimension 3 over Rational Field

sage: B = A.span([[0, 0, 2/3]11])

sage: pushout (B, V)

Vector space of degree 3 and dimension 2 over Rational Field

User basis matrix:
[1 2 0]
[0 0 1]

r

>>> from sage.all import *
>>> needs sage.modules

#

>>> A = ZZ**Integer(2)
\
P

>>> span([[Integer(l), Integer(2)]], QQ)

>>> sage.categories.pushout.pushout (A, V)

>>> P

Vector space of dimension 2 over Rational Field
>>> P.has_coerce_map_from(A)

True

>>> # needs sage.modules

>>> A = ZZ**Integer (3)

>>> pushout (A, V)

Vector space of dimension 3 over Rational Field

>>> B = A.span([[Integer (0), Integer(0), Integer(2)/Integer(3)]1])
>>> pushout (B, V)

Vector space of degree 3 and dimension 2 over Rational Field
User basis matrix:

[1 2 0]

[0 0 1]

&

>>> V = (QQ**Integer(3)) .span([[Integer (1), Integer(2), Integer (3)/Integer(4)]1])

Some more tests with coercion_reversed=True:

-
sage: from sage.categories.pushout import ConstructionFunctor

sage: class EvenPolynomialRing (type (QQ['x'])):

e def _ init_ (self, base, var):

e super () .__init__ (base, wvar)

50001 self.register_embedding (base[var])

e def _ repr (self):

e return "Even Power " + super().__repr__ ()

e def construction(self):

56001 def _coerce_map_from_(self, R):
SaB8os return self.base () .has_coerce_map_from(R)
sage: class EvenPolynomialFunctor (ConstructionFunctor) :

50008 rank = 10

e coercion_reversed = True

e def _ init_ (self):

R ConstructionFunctor.__init__ (self, Rings (), Rings{())

e return EvenPolynomialFunctor (), self.base() [self.variable_name () ]

(continues on next page)
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e def _apply_functor(self, R):

e return EvenPolynomialRing (R.base (), R.variable_name())
sage: pushout (EvenPolynomialRing (QQ, 'x'), ZZ)

Even Power Univariate Polynomial Ring in x over Rational Field

x'), QQ)

Even Power Univariate Polynomial Ring in x over Rational Field

]

sage: pushout (EvenPolynomialRing (QQ,

sage: pushout (EvenPolynomialRing (QQ, 'x'), RR) #o
—needs sage.rings.real_mpfr

Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of.
—precision

sage: pushout (EvenPolynomialRing (QQ, 'x'), ZZ['x'])
Univariate Polynomial Ring in x over Rational Field
sage: pushout (EvenPolynomialRing (QQ, 'x'), QQ['x'])
Univariate Polynomial Ring in x over Rational Field
x"), RR['x']) #o

]

sage: pushout (EvenPolynomialRing (QQ,
—needs sage.rings.real_mpfr
Univariate Polynomial Ring in x over Real Field with 53 bits of precision

sage: pushout (EvenPolynomialRing (QQ, 'x'), EvenPolynomialRing(QQ, 'x'))
Even Power Univariate Polynomial Ring in x over Rational Field

sage: pushout (EvenPolynomialRing (QQ, 'x'), EvenPolynomialRing(RR, 'x'")) #_
—needs sage.rings.real_mpfr

Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of.

—precision

sage: pushout (EvenPolynomialRing (QQ, 'x')”"2, RR"2) #
—needs sage.modules sage.rings.real_mpfr
Ambient free module of rank 2

over the principal ideal domain Even Power Univariate Polynomial Ring in x

over Real Field with 53 bits of precision
sage: pushout (EvenPolynomialRing(QQ, 'x')"2, RR['x']"2) #
—needs sage.modules sage.rings.real mpfr
Ambient free module of rank 2

over the principal ideal domain Univariate Polynomial Ring in x

over Real Field with 53 bits of precision

>>> from sage.all import *
>>> from sage.categories.pushout import ConstructionFunctor
>>> class EvenPolynomialRing (type (QQ['x'])):
def _ init_ (self, base, var):
super () .__init__ (base, var)
self.register_embedding (base[var])
(self) :
return "Even Power " + super()._ _repr__ ()

def _ repr

def construction(self):
return EvenPolynomialFunctor (), self.base() [self.variable_name ()]
def _coerce_map_from_(self, R):
return self.base () .has_coerce_map_from(R)
>>> class EvenPolynomialFunctor (ConstructionFunctor) :
rank = Integer (10)

coercion_reversed = True
(continues on next page)
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def _ init_ (self):
ConstructionFunctor.__init__ (self, Rings (), Rings())

def _apply_functor(self, R):
... return EvenPolynomialRing (R.base (), R.variable_name())
>>> pushout (EvenPolynomialRing (QQ, 'x'), ZZ)
Even Power Univariate Polynomial Ring in x over Rational Field
>>> pushout (EvenPolynomialRing (QQ, 'x'), QQ)
Even Power Univariate Polynomial Ring in x over Rational Field
>>> pushout (EvenPolynomialRing (QQ, 'x'), RR) #o
—needs sage.rings.real_mpfr
Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of.
—precision

>>> pushout (EvenPolynomialRing (QQ, 'x'), ZZ['x'])

Univariate Polynomial Ring in x over Rational Field

>>> pushout (EvenPolynomialRing (QQ, 'x'), QQ['x'])

Univariate Polynomial Ring in x over Rational Field

>>> pushout (EvenPolynomialRing (QQ, 'x'), RR['x']) #_
—needs sage.rings.real_mpfr

Univariate Polynomial Ring in x over Real Field with 53 bits of precision

>>> pushout (EvenPolynomialRing (QQ, 'x'), EvenPolynomialRing(QQ, 'x"))

Even Power Univariate Polynomial Ring in x over Rational Field

>>> pushout (EvenPolynomialRing (QQ, 'x'), EvenPolynomialRing(RR, 'x')) #_
—needs sage.rings.real_mpfr

Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of.

—precision
>>> pushout (EvenPolynomialRing (QQ, 'x')**Integer(2), RR**Integer (2)) -
= # needs sage.modules sage.rings.real_mpfr

Ambient free module of rank 2
over the principal ideal domain Even Power Univariate Polynomial Ring in x
over Real Field with 53 bits of precision
>>> pushout (EvenPolynomialRing (QQ, 'x')**Integer(2), RR['x']**Integer(2)) -
— # needs sage.modules sage.rings.real_mpfr
Ambient free module of rank 2
over the principal ideal domain Univariate Polynomial Ring in x

over Real Field with 53 bits of precision

Some more tests related to univariate/multivariate constructions. We consider a generalization of polynomial rings,
where in addition to the coefficient ring C' we also specify an additive monoid E for the exponents of the indeter-
minate. In particular, the elements of such a parent are given by

I
E CiXei
i=0

with ¢; € C and e; € E. We define

sage: class GPolynomialRing (Parent) :

e def _ init__ (self, coefficients, var, exponents):
et self.coefficients = coefficients
500008 self.var = var

(continues on next page)
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50008 self.exponents = exponents
el super () .__init__ (category=Rings())

et return 'Generalized Polynomial Ring in $%s” (%s) over

e def _repr_(self):

e self.var, self.exponents, self.coefficients)
e def construction(self):

CL =
S

L (

ce return GPolynomialFunctor (self.var, self.exponents), self.

—coefficients
e def _coerce_map_from_(self, R):
e return self.coefficients.has_coerce_map_from(R)

>>> from sage.all import *
>>> class GPolynomialRing (Parent) :
def _ init__ (self, coefficients, var, exponents):
self.coefficients = coefficients
self.var = var
self.exponents = exponents
super () .__init__ (category=Rings())
def _repr_(self):
return 'Generalized Polynomial Ring in %s” (%s) over $%s'
self.var, self.exponents, self.coefficients)
def construction(self):

5

return GPolynomialFunctor (self.var, self.exponents), self.coefficients

def _coerce_map_from_(self, R):
return self.coefficients.has_coerce_map_from(R)

sage: class GPolynomialFunctor (ConstructionFunctor) :

celt rank = 10

e def _ init__ (self, var, exponents):

50008 self.var = var

60008 self.exponents = exponents

e ConstructionFunctor.__init__ (self, Rings (), Rings())
e def _repr_(self):

e return 'GPoly[%s”(%s)]' % (self.var, self.exponents)
e def _apply_ functor(self, coefficients):

et return GPolynomialRing (coefficients, self.var, self.exponents)

e def merge(self, other):
e if isinstance (other, GPolynomialFunctor) and self.var

== other.var:

celt exponents = pushout (self.exponents, other.exponents)

e return GPolynomialFunctor (self.var, exponents)

>>> from sage.all import *
>>> class GPolynomialFunctor (ConstructionFunctor) :
rank = Integer (10)

def _ _init__ (self, wvar, exponents):
self.var = var
self.exponents = exponents
ConstructionFunctor.__init__ (self, Rings (), Rings{())
def _repr_(self):
return 'GPoly[%s”(%s)]' % (self.var, self.exponents)

(continues on next page)
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def _apply_functor(self, coefficients):
return GPolynomialRing(coefficients, self.var, self.exponents)
def merge (self, other):
if isinstance (other, GPolynomialFunctor) and self.var == other.var:
exponents = pushout (self.exponents, other.exponents)
return GPolynomialFunctor (self.var, exponents)

We can construct a parent now in two different ways:

sage: GPolynomialRing(QQ, 'X', Z7Z)

Generalized Polynomial Ring in X” (Integer Ring) over Rational Field
sage: GP_ZZ = GPolynomialFunctor ('X', ZZ); GP_ZZ

GPoly [X” (Integer Ring) ]

sage: GP_ZZ (QQ)

Generalized Polynomial Ring in X” (Integer Ring) over Rational Field

>>> from sage.all import *

>>> GPolynomialRing (QQ, 'X', Z2)

Generalized Polynomial Ring in X” (Integer Ring) over Rational Field
>>> GP_Z77Z = GPolynomialFunctor ('X', ZZ); GP_ZZ

GPoly [X” (Integer Ring)]

>>> GP_77 (QQ)

Generalized Polynomial Ring in X" (Integer Ring) over Rational Field

.

Since the construction

-

sage: GP_ZZ (QQ) .construction ()
(GPoly [X” (Integer Ring)], Rational Field)

.

>>> from sage.all import *
>>> GP_Z7Z (QQ) .construction ()
(GPoly [X” (Integer Ring)], Rational Field)

.

uses the coefficient ring, we have the usual coercion with respect to this parameter:

-

sage: pushout (GP_ZZ (Z2Z), GP_ZZ (QQ))
Generalized Polynomial Ring in X” (Integer Ring) over Rational Field
sage: pushout (GP_ZZ(ZZ['t']), GP_ZZ(QQ))
Generalized Polynomial Ring in X" (Integer Ring)
over Univariate Polynomial Ring in t over Rational Field
sage: pushout (GP_ZZ (ZZ['a,b']l), GP_ZZ(zZ['b,c']))
Generalized Polynomial Ring in X” (Integer Ring)
over Multivariate Polynomial Ring in a, b, ¢ over Integer Ring
sage: pushout (GP_ZZ (ZZ['a,b']l), GP_ZZ(QQ['b,c']))
Generalized Polynomial Ring in X” (Integer Ring)
over Multivariate Polynomial Ring in a, b, ¢ over Rational Field
sage: pushout (GP_ZZ (ZZ['a,b']l), GP_ZZ(ZzZ['c,d"']))
Traceback (most recent call last):

CoercionException: ('Ambiguous Base Extension', ...)
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>>> from sage.all import *
>>> pushout (GP_Z7 (2Z2), GP_ZZ (QQ))
Generalized Polynomial Ring in X” (Integer Ring) over Rational Field
>>> pushout (GP_ZZ (ZZ['t"']), GP_ZZ(QQ))
Generalized Polynomial Ring in X" (Integer Ring)
over Univariate Polynomial Ring in t over Rational Field
>>> pushout (GP_ZZ (Z2Z['a,b']), GP_ZZ(Z2Z['b,c']))
Generalized Polynomial Ring in X" (Integer Ring)
over Multivariate Polynomial Ring in a, b, ¢ over Integer Ring
>>> pushout (GP_ZZ (ZZ['a,b']), GP_ZZ(QQ['b,c']))
Generalized Polynomial Ring in X" (Integer Ring)
over Multivariate Polynomial Ring in a, b, ¢ over Rational Field
>>> pushout (GP_ZZ (Z2Z['a,b']), GP_Z2Z(Z2Z['c,d']))
Traceback (most recent call last):

CoercionException: ('Ambiguous Base Extension', ...)

sage: GP_QQ = GPolynomialFunctor ('X', QOQ)

sage: pushout (GP_ZZ (Z2Z), GP_QQ(ZZ))

Generalized Polynomial Ring in X" (Rational Field) over Integer Ring
sage: pushout (GP_QQ(ZZ), GP_ZZ(ZZ))

Generalized Polynomial Ring in X" (Rational Field) over Integer Ring

>>> from sage.all import *

>>> GP_QQ = GPolynomialFunctor ('X', QOQ)

>>> pushout (GP_ZZ (2Z), GP_QQ(ZZ))

Generalized Polynomial Ring in X~ (Rational Field) over Integer Ring
>>> pushout (GP_QQ(ZZ), GP_ZZ(ZZ))

Generalized Polynomial Ring in X” (Rational Field) over Integer Ring

r

sage: GP_Z7Zt = GPolynomialFunctor ('X', ZZ['t'])

sage: pushout (GP_ZZt (ZZ), GP_QQ(ZZ))

Generalized Polynomial Ring in X" (Univariate Polynomial Ring in t
over Rational Field) over Integer Ring

>>> from sage.all import *

>>> GP_ZZt = GPolynomialFunctor ('X', ZzZ['t'])

>>> pushout (GP_ZZt (2Z2), GP_QQ(z2Z))

Generalized Polynomial Ring in X” (Univariate Polynomial Ring in t
over Rational Field) over Integer Ring

sage: pushout (GP_ZZ (ZZ), GP_QQ(QQ))

Generalized Polynomial Ring in X" (Rational Field) over Rational Field
sage: pushout (GP_ZZ (QQ), GP_0QQ(ZZ))

Generalized Polynomial Ring in X" (Rational Field) over Rational Field
sage: pushout (GP_ZZt (QQ), GP_QQ(ZZ))

Generalized Polynomial Ring in X” (Univariate Polynomial Ring in t

over Rational Field) over Rational Field
sage: pushout (GP_ZZt (ZZ), GP_QQ (QQ))
Generalized Polynomial Ring in X” (Univariate Polynomial Ring in t

over Rational Field) over Rational Field
(continues on next page)
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sage: pushout (GP_ZZt (ZZ['a,b']), GP_QQ(ZZ['c,d']))
Traceback (most recent call last):

CoercionException: ('Ambiguous Base Extension', ...)
sage: pushout (GP_ZZt (ZZ['a,b']), GP_QQ(ZZ['b,c']))
Generalized Polynomial Ring
in X”* (Univariate Polynomial Ring in t over Rational Field)
over Multivariate Polynomial Ring in a, b, ¢ over Integer Ring

>>> from sage.all import *

>>> pushout (GP_ZZ (2Z), GP_QQ (QQ))

Generalized Polynomial Ring in X" (Rational Field) over Rational Field

>>> pushout (GP_ZZ (QQ), GP_Q0Q(ZZ))

Generalized Polynomial Ring in X" (Rational Field) over Rational Field

>>> pushout (GP_ZZt (QQ), GP_QQ(ZZ))

Generalized Polynomial Ring in X" (Univariate Polynomial Ring in t
over Rational Field) over Rational Field

>>> pushout (GP_ZZt (ZZ), GP_QQ (QQ))

Generalized Polynomial Ring in X” (Univariate Polynomial Ring in t
over Rational Field) over Rational Field

>>> pushout (GP_ZZt (ZZ['a,b']), GP_QQ(ZZ['c,d']))

Traceback (most recent call last):

CoercionException: ('Ambiguous Base Extension', ...)
>>> pushout (GP_ZZt (ZZ['a,b']), GP_QQ(ZZ['b,c']))
Generalized Polynomial Ring

in X”* (Univariate Polynomial Ring in t over Rational Field)

over Multivariate Polynomial Ring in a, b, ¢ over Integer Ring

Some tests with Cartesian products:

sage: from sage.sets.cartesian_product import CartesianProduct
sage: A = CartesianProduct ((zZ['x'], QQ['v'l, 0Q['z"']),
e Sets () .CartesianProducts ())
sage: B = CartesianProduct ((Z2Z['x']l, Z2Z['y'l, Zz['t']1['z']),
e Sets () .CartesianProducts ())
sage: A.construction ()
(The cartesian_product functorial construction,
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Rational Field,
Univariate Polynomial Ring in z over Rational Field))
sage: pushout (A, B)
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Rational Field,
Univariate Polynomial Ring in z over
Univariate Polynomial Ring in t over Rational Field)
sage: pushout (ZZ, cartesian_product ([ZZ, QQ]))
Traceback (most recent call last):

CoercionException: 'NoneType' object is not iterable

.
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-

>>> from sage.all import *
>>> from sage.sets.cartesian_product import CartesianProduct
>>> A = CartesianProduct ((Z2Z['x"'"], QOQ['y'l, QQ['z']l),

C Sets () .CartesianProducts())
>>> B = CartesianProduct ((Z2Z['x"'], ZzZ['y'], ZZ['t']['z"']),
Sets () .CartesianProducts ())

>>> A.construction ()

(The cartesian_product functorial construction,
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Rational Field,
Univariate Polynomial Ring in z over Rational Field))

>>> pushout (A, B)

The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Rational Field,
Univariate Polynomial Ring in z over

Univariate Polynomial Ring in t over Rational Field)
>>> pushout (ZZ, cartesian_product ([ZZ, QQ]))

Traceback (most recent call last):

CoercionException: 'NoneType' object is not iterable

r

sage: from sage.categories.pushout import PolynomialFunctor
sage: from sage.sets.cartesian_product import CartesianProduct
sage: class CartesianProductPoly (CartesianProduct) :

e def _ init__ (self, polynomial_rings):

Lt sort = sorted(polynomial_rings,

e key=lambda P: P.variable_name())
e super () .__init__ (sort, Sets().CartesianProducts())

e def vars(self):

e return tuple (P.variable_name ()

e for P in self.cartesian_factors())

e def _pushout_(self, other):

e if isinstance (other, CartesianProductPoly) :

e s_vars = self.vars|()

e o_vars = other.vars()

e if s _vars == o_vars:

et return

e return pushout (CartesianProductPoly (

e self.cartesian_factors () +

e tuple (f for f in other.cartesian_factors ()
e if f.variable_name () not in s_vars)),
e CartesianProductPoly (

e other.cartesian_factors () +

e tuple (f for f in self.cartesian_factors()
e if f.variable_name () not in o_vars)))
50001 C = other.construction ()

P if C is None:

060008 return

e elif isinstance(C[0], PolynomialFunctor):

e return pushout (self, CartesianProductPoly((other,)))
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>>> from sage.all import *

>>> from sage.categories.pushout import PolynomialFunctor
>>> from sage.sets.cartesian_product import CartesianProduct
>>> class CartesianProductPoly (CartesianProduct) :

def _ init__ (self, polynomial_rings):
sort = sorted(polynomial_rings,
key=lambda P: P.variable_name ())
super () .__init__ (sort, Sets () .CartesianProducts())

def vars(self):
return tuple (P.variable_name ()
for P in self.cartesian_factors())
def _pushout_ (self, other):
if isinstance (other, CartesianProductPoly) :
s_vars = self.vars /()
o_vars = other.vars ()
if s_vars == o_vars:
return
return pushout (CartesianProductPoly (
self.cartesian_factors() +
tuple (f for f in other.cartesian_factors ()
if f.variable_name () not in s_vars)),
CartesianProductPoly (
other.cartesian_factors () +
tuple (f for f in self.cartesian_factors()
if f.variable_name () not in o_vars)))
C = other.construction ()
if C is None:
return
elif isinstance(C[Integer (0)], PolynomialFunctor) :

return pushout (self, CartesianProductPoly((other,)))
“

-

sage: pushout (CartesianProductPoly ((ZZ['x"'],)),
e CartesianProductPoly ((ZZ['y'1,)))
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Integer Ring)
sage: pushout (CartesianProductPoly ((ZZ['x"'], ZZ['v']l)),
celt CartesianProductPoly ((ZZ['x"], Z2Z['z"'])))
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Integer Ring,
Univariate Polynomial Ring in z over Integer Ring)
sage: pushout (CartesianProductPoly ((QQ['a,b']1['x"'], QQ['yv'1)), #o
—needs sage.symbolic
et CartesianProductPoly ((ZZ['b,c"]['x"], SR['z"'])))
The Cartesian product of
(Univariate Polynomial Ring in x over
Multivariate Polynomial Ring in a, b, ¢ over Rational Field,
Univariate Polynomial Ring in y over Rational Field,

Univariate Polynomial Ring in z over Symbolic Ring)
.

(>>> from sage.all import *
(continues on next page)
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>>> pushout (CartesianProductPoly ((ZZ['x'],)),
R CartesianProductPoly ((ZZ['y']1,)))
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Integer Ring)
>>> pushout (CartesianProductPoly ((ZZ['x"], ZZ['v'1)),
e CartesianProductPoly ((ZZ['x"], Z2Z['z'])))
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Integer Ring,
Univariate Polynomial Ring in z over Integer Ring)

>>> pushout (CartesianProductPoly ((QQ['a,b']1['x"], QQ['v'1)), #o
—needs sage.symbolic
CartesianProductPoly ((ZZ['b,c']1['x"'"], SR['z"'])))

The Cartesian product of
(Univariate Polynomial Ring in x over
Multivariate Polynomial Ring in a, b, ¢ over Rational Field,
Univariate Polynomial Ring in y over Rational Field,
Univariate Polynomial Ring in z over Symbolic Ring)

sage: pushout (CartesianProductPoly ((ZZ['x'1,)), ZZ['y'])
The Cartesian product of

(Univariate Polynomial Ring in x over Integer Ring,

Univariate Polynomial Ring in y over Integer Ring)
sage: pushout (QQ['b,c']['y'], CartesianProductPoly((ZZ['a,b']['x"'],)))
The Cartesian product of

(Univariate Polynomial Ring in x over

Multivariate Polynomial Ring in a, b over Integer Ring,
Univariate Polynomial Ring in y over

Multivariate Polynomial Ring in b, ¢ over Rational Field)
.

g
>>> from sage.all import *

>>> pushout (CartesianProductPoly ((ZZ['x"']1,)), ZZ['v'])
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Integer Ring)
>>> pushout (QQ['b,c']['y'], CartesianProductPoly ((ZZ['a,b']1['x"],)))
The Cartesian product of
(Univariate Polynomial Ring in x over
Multivariate Polynomial Ring in a, b over Integer Ring,
Univariate Polynomial Ring in y over
Multivariate Polynomial Ring in b, ¢ over Rational Field)

r

sage: pushout (CartesianProductPoly ((Z2Z['x"']1,)), ZZ)
Traceback (most recent call last):

CoercionException: No common base ("join") found for
The cartesian_product functorial construction(...) and None (Integer Ring):
(Multivariate) functors are incompatible.

.
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-
>>> from sage.all import *

>>> pushout (CartesianProductPoly ((ZZ['x']1,)), ZZ)
Traceback (most recent call last):

CoercionException: No common base ("join") found for
The cartesian_product functorial construction(...) and None (Integer Ring):

(Multivariate) functors are incompatible.
|

AUTHORS:
* Robert Bradshaw
 Peter Bruin
* Simon King
¢ Daniel Krenn
¢ David Roe

sage.categories.pushout .pushout_lattice (R, S)
Given a pair of objects R and S, try to construct a reasonable object Y and return maps such that canonically
R+Y =5
ALGORITHM:

This is based on the model that arose from much discussion at Sage Days 4. Going up the tower of constructions
of R and S (e.g. the reals come from the rationals come from the integers), try to find a common parent, and then
try to fill in a lattice with these two towers as sides with the top as the common ancestor and the bottom will be the
desired ring.

See the code for a specific worked-out example.

EXAMPLES:

p
sage: from sage.categories.pushout import pushout_lattice

sage: A, B = pushout_lattice(Qp(7), Frac(zzZ['x'])) #_
—needs sage.rings.padics
sage: A.codomain () #_
—needs sage.rings.padics
Fraction Field of Univariate Polynomial Ring in x

over 7-adic Field with capped relative precision 20

sage: A.codomain () is B.codomain () #_
—needs sage.rings.padics

True

sage: A, B = pushout_lattice(ZZ, MatrixSpace(ZZ[['x']]l, 3, 3)) #_

—needs sage.modules

sage: B #o
—needs sage.modules

Identity endomorphism of Full MatrixSpace of 3 by 3 dense matrices

over Power Series Ring in x over Integer Ring
.

>>> from sage.all import *

>>> from sage.categories.pushout import pushout_lattice

>>> A, B = pushout_lattice (Qp(Integer (7)), Frac(zZzZ['x']l)) ~
— # needs sage.rings.padics

>>> A.codomain () #_
(continues on next page)
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—needs sage.rings.padics
Fraction Field of Univariate Polynomial Ring in x
over 7-adic Field with capped relative precision 20
>>> A.codomain () is B.codomain () #_
—needs sage.rings.padics

True

>>> A, B = pushout_lattice(Z2Z, MatrixSpace(ZZ[['x']], Integer(3), Integer(3))) -
— # needs sage.modules

>>> B #o

—needs sage.modules
Identity endomorphism of Full MatrixSpace of 3 by 3 dense matrices
over Power Series Ring in x over Integer Ring

AUTHOR:
¢ Robert Bradshaw

sage.categories.pushout.type_to_parent (P)

An auxiliary function that is used in pushout ().
INPUT:
e P —atype

OUTPUT: a Sage parent structure corresponding to the given type
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CHAPTER
FOUR

INDIVIDUAL CATEGORIES

4.1 Group, ring, etc. actions on objects

The terminology and notation used is suggestive of groups acting on sets, but this framework can be used for modules,
algebras, etc.

A group action G x S — S is a functor from G to Sets.

A\ Warning

An Act ion object only keeps a weak reference to the underlying set which is acted upon. This decision was made in
Issue #715 in order to allow garbage collection within the coercion framework (this is where actions are mainly used)
and avoid memory leaks.

sage: from sage.categories.action import Action
sage: class P: pass

sage: A = Action(P(),P())

sage: import gc

sage: _ = gc.collect ()
sage: A
<repr (<sage.categories.action.Action at Ox...>) failed:

RuntimeError: This action acted on a set that became garbage collected>

>>> from sage.all import *

>>> from sage.categories.action import Action
>>> class P: pass

>>> A = Action(P(),P())

>>> import gc

>>> = gc.col