Databases

Release 10.1

The Sage Development Team

Aug 21, 2023
There are numerous specific mathematical databases either included in Sage or available as optional packages. Also, Sage includes two powerful general database packages.

Sage includes the ZOPE object oriented database ZODB, which “is a Python object persistence system. It provides transparent object-oriented persistency.”

Sage also includes the powerful relational database SQLite, along with a Python interface to SQLite. SQLite is a small C library that implements a self-contained, embeddable, zero-configuration SQL database engine.

- Transactions are atomic, consistent, isolated, and durable (ACID) even after system crashes and power failures.
- Zero-configuration - no setup or administration needed.
- Implements most of SQL92. (Features not supported)
- A complete database is stored in a single disk file.
- Database files can be freely shared between machines with different byte orders.
- Supports databases up to 2 tebibytes (2^41 bytes) in size.
- Strings and BLOBs up to 2 gibibytes (2^31 bytes) in size.
- Small code footprint: less than 250KiB fully configured or less than 150KiB with optional features omitted.
- Faster than popular client/server database engines for most common operations.
- Simple, easy to use API.
- TCL bindings included. Bindings for many other languages available separately.
- Well-commented source code with over 95% test coverage.
- Self-contained: no external dependencies.
- Sources are in the public domain. Use for any purpose.
CREMONA’S TABLES OF ELLIPTIC CURVES

Sage includes John Cremona’s tables of elliptic curves in an easy-to-use format. An instance of the class CremonaDatabase() gives access to the database.

If the optional full CremonaDatabase is not installed, a mini-version is included by default with Sage. It contains Weierstrass equations, rank, and torsion for curves up to conductor 10000.

The large database includes all curves in John Cremona’s tables. It also includes data related to the BSD conjecture and modular degrees for all of these curves, and generators for the Mordell-Weil groups. To install it, run the following in the shell:

```
sage -i database_cremona_ellcurve
```

This causes the latest version of the database to be downloaded from the internet.

Both the mini and full versions of John Cremona’s tables are stored in SAGE_SHARE/cremona as SQLite databases. The mini version has the layout:

- `CREATE TABLE t_class(conductor INTEGER, class TEXT PRIMARY KEY, rank INTEGER);`
- `CREATE TABLE t_curve(class TEXT, curve TEXT PRIMARY KEY, eqn TEXT UNIQUE, tors INTEGER);`
- `CREATE INDEX i_t_class_conductor ON t_class(conductor);`
- `CREATE INDEX i_t_curve_class ON t_curve(class);`

while the full version has the layout:

- `CREATE TABLE t_class(conductor INTEGER, class TEXT PRIMARY KEY, rank INTEGER, L REAL, deg INTEGER);`
- `CREATE TABLE t_curve(class TEXT, curve TEXT PRIMARY KEY, eqn TEXT UNIQUE, gens TEXT, tors INTEGER, cp INTEGER, om REAL, reg REAL, sha);`
- `CREATE INDEX i_t_class_conductor ON t_class(conductor);`
- `CREATE INDEX i_t_curve_class ON t_curve(class);`
sage: c = CremonaDatabase('cremona') # optional - database_cremona_ellcurve
sage: c.allcurves(11) # optional - database_cremona_ellcurve
{'a1': [[0, -1, 1, -10, -20], 0, 5],
 'a2': [[0, -1, 1, -7820, -263580], 0, 1],
 'a3': [[0, -1, 1, 0, 0], 0, 5]}

\textbf{allbsd} (N)

Return the allbsd table for conductor N. The entries are:

\begin{verbatim}
[id, tamagawa_product, Omega_E, L, Reg_E, Sha_an(E)]
\end{verbatim}

where id is the isogeny class (letter) followed by a number, e.g., b3, and L is \(L^r(E, 1)/r! \), where E has rank r.

\textbf{INPUT:}

- N - int, the conductor

\textbf{OUTPUT:} dict containing the allbsd table for each isogeny class in conductor N

\textbf{EXAMPLES:}

sage: c = CremonaDatabase()
sage: c.allbsd(12) # optional - database_cremona_ellcurve
{}
sage: c.allbsd(19)['a3'] # optional - database_cremona_ellcurve
[1, 4.07927920046493, 0.453253244496104, 1.0, 1]
sage: c.allbsd(12001)['a1'] # optional - database_cremona_ellcurve
[2, 3.27608135248722, 1.54910143090506, 0.236425971187952, 1.0]

\textbf{allgens} (N)

Return the allgens table for conductor N.

\textbf{INPUT:}

- N - int, the conductor

\textbf{OUTPUT:}

- dict - id:[points,...],...

\textbf{EXAMPLES:}

sage: c = CremonaDatabase()
sage: c.allgens(12) # optional - database_cremona_ellcurve
{}
sage: c.allgens(1001)['a1'] # optional - database_cremona_ellcurve
[[61, 181, 1]]
sage: c.allgens(12001)['a1'] # optional - database_cremona_ellcurve
[[7, 2, 1]]

\textbf{degphi} (N)

Return the degphi table for conductor N.

\textbf{INPUT:}

- N - int, the conductor

\textbf{OUTPUT:}
class sage.databases.cremona.MiniCremonaDatabase(name, read_only=True, build=False)

The Cremona database of elliptic curves.

EXAMPLES:

sage: c = CremonaDatabase()
sage: c.degphi(11) # optional - database_cremona_ellcurve
{'a1': 1}
sage: c.degphi(12001)['c1'] # optional - database_cremona_ellcurve
1640

allcurves(N)

Return the allcurves table of curves of conductor N.

INPUT:
• N - int, the conductor

OUTPUT:
• dict - id:[ainvs, rank, tor], ...

EXAMPLES:

sage: c = CremonaDatabase()
sage: c.allcurves(11)
{'a1': [[0, -1, 1, -10, -20], 0, 5],
 'a2': [[0, -1, 1, -7820, -263580], 0, 1],
 'a3': [[0, -1, 1, 0, 0], 0, 5]}

coefficients_and_data(label)

Return the Weierstrass coefficients and other data for the curve with given label.

EXAMPLES:

sage: c, d = CremonaDatabase().coefficients_and_data('144b1')
sage: c
[0, 0, 0, 6, 7]
sage: d['conductor']
144
sage: d['cremona_label']
'144b1'
sage: d['rank']
0
sage: d['torsion_order']
2

Check that github issue #17904 is fixed:

```python
sage: 'gens' in CremonaDatabase().coefficients_and_data('100467a2')[1]  # optional - database_cremona_ellcurve
True
```

conductor_range()

Return the range of conductors that are covered by the database.

INPUT:
- N - int, the conductor

OUTPUT: tuple of ints (N1,N2+1) where N1 is the smallest and N2 the largest conductor for which the database is complete.

EXAMPLES:

```python
sage: c = CremonaDatabase('cremona mini')
sage: c.conductor_range()
(1, 10000)
```

curves(N)

Return the curves table of all optimal curves of conductor N.

INPUT:
- N - int, the conductor

OUTPUT:
- dict - id:[ainvs, rank, tor],...

EXAMPLES:

Optimal curves of conductor 37:

```python
sage: CremonaDatabase().curves(37)
{'a1': [[0, 0, 1, -1, 0], 1, 1], 'b1': [[0, 1, 1, -23, -50], 0, 3]}
```

Note the ‘h3’, which is the unique case in the tables where the optimal curve doesn’t have label ending in 1:

```python
sage: sorted(CremonaDatabase().curves(990))
['a1', 'b1', 'c1', 'd1', 'e1', 'f1', 'g1', 'h3', 'i1', 'j1', 'k1', 'l1']
```

data_from_coefficients(ainvs)

Return elliptic curve data for the curve with given Weierstrass coefficients.

EXAMPLES:

```python
sage: d = CremonaDatabase().data_from_coefficients([1, -1, 1, 31, 128])
sage: d['conductor']
1953
sage: d['cremona_label']
'1953c1'
sage: d['rank']
1
```
Check that github issue #17904 is fixed:

```sage
d['torsion_order']
2
```

elliptic_curve(label)

Return an elliptic curve with given label with some data about it from the database pre-filled in.

INPUT:
- label - str (Cremona or LMFDB label)

OUTPUT:
- an `sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field`

Note: For more details on LMFDB labels see `parse_lmfdb_label()`.

EXAMPLES:

```sage
c = CremonaDatabase()
c.elliptic_curve('11a1')
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
c.elliptic_curve('12001a1') # optional - database_cremona_ellcurve
Elliptic Curve defined by y^2 + x*y = x^3 - 101*x + 382 over Rational Field
c.elliptic_curve('48c1')
Traceback (most recent call last):
 ... ValueError: There is no elliptic curve with label 48c1 in the database
c.elliptic_curve('462.f3')
Elliptic Curve defined by y^2 + x*y = x^3 - 363*x + 1305 over Rational Field
```

You can also use LMFDB labels:

```sage
c.elliptic_curve('462.f3')
Elliptic Curve defined by y^2 + x*y = x^3 - 363*x + 1305 over Rational Field
```

elliptic_curve_from_ainvs(ainvs)

Return the elliptic curve in the database of with minimal ainvs, if it exists, or raises a `RuntimeError` exception otherwise.

INPUT:
- ainvs - list (5-tuple of int's); the minimal Weierstrass model for an elliptic curve

OUTPUT: EllipticCurve

EXAMPLES:

```sage
c = CremonaDatabase()
c.elliptic_curve_from_ainvs([0, -1, 1, -10, -20])
```
Elliptic Curve defined by \(y^2 + y = x^3 - x^2 - 10x - 20 \) over Rational Field

\[
sage: \text{c.elliptic_curve_from_ainvs}([1, 0, 0, -101, 382]) \text{ # optional - database_} \\
\text{˓→ cremona_ellcurve}
\]

Elliptic Curve defined by \(y^2 + x^3 = x^3 - 101x + 382 \) over Rational Field

Old (pre-2006) Cremona labels are also allowed:

\[
sage: \text{c.elliptic_curve('9450KKKK1')}
\]

Elliptic Curve defined by \(y^2 + x^2y + y = x^3 - 10^2x - 5x + 7 \) over Rational Field

Make sure \href{https://github.com/sagemath/sage/issues/12565}{github issue #12565} is fixed:

\[
sage: \text{c.elliptic_curve('10a1')}
\]

Traceback (most recent call last):
...
ValueError: There is no elliptic curve with label 10a1 in the database

\textbf{isogeny_class}\((\text{label}) \)

Return the isogeny class of elliptic curves that are isogenous to the curve with given Cremona label.

INPUT:
- label - string

OUTPUT:
- list - list of EllipticCurve objects.

EXAMPLES:

\[
sage: \text{c = CremonaDatabase()}
\]
\[
sage: \text{c.isogeny_class('11a1')}
\]

\[\begin{align*}
\text{[Elliptic Curve defined by } & y^2 + y = x^3 - x^2 - 10x - 20 \text{ over Rational Field}, \\
& \text{Elliptic Curve defined by } y^2 + y = x^3 - x^2 - 7820x - 263580 \text{ over Rational Field}, \\
& \text{Elliptic Curve defined by } y^2 + y = x^3 - x^2 \text{ over Rational Field}] \\
\end{align*}\]

\[
sage: \text{c.isogeny_class('12001a1')} \text{ # optional - database_cremona_ellcurve}
\]

[Elliptic Curve defined by \(y^2 + x^3 = 101x + 382 \) over Rational Field]

\textbf{isogeny_classes}\((\text{conductor}) \)

Return the allcurves data (ainvariants, rank and torsion) for the elliptic curves in the database of given conductor as a list of lists, one for each isogeny class. The curve with number 1 is always listed first.

EXAMPLES:

\[
sage: \text{c = CremonaDatabase()}
\]
\[
sage: \text{c.isogeny_classes(11)}
\]

\[\begin{align*}
\text{[[[0, -1, 1, -10, -20], 0, 5],} \\
& \text{[[0, -1, 1, -7820, -263580], 0, 1],} \\
& \text{[[0, -1, 1, 0, 0], 0, 5]]} \\
\end{align*}\]

\[
sage: \text{c.isogeny_classes(12001)} \text{ # optional - database_cremona_ellcurve}
\]

\[\begin{align*}
\text{[[[1, 0, 0, -101, 382], 1, 1]],} \\
& \text{[[0, 0, 1, -247, 1494], 1, 1]],} \\
& \text{[[0, 0, 1, -4, -18], 1, 1]],} \\
& \text{[[0, 1, 1, -10, 18], 1, 1]]} \\
\end{align*}\]

8 Chapter 1. Cremona's tables of elliptic curves
iter\(\text{(conductors)}\)
Return an iterator through all curves in the database with given conductors.

INPUT:
• conductors - list or generator of ints

OUTPUT: generator that iterates over EllipticCurve objects.

EXAMPLES:

```
sage: [e.cremona_label() for e in CremonaDatabase().iter([11..15])]
['11a1', '11a2', '11a3', '14a1', '14a2', '14a3', '14a4', '14a5', '14a6', '15a1', '15a2', '15a3', '15a4', '15a5', '15a6', '15a7', '15a8']
```

iter_optimal\(\text{(conductors)}\)
Return an iterator through all optimal curves in the database with given conductors.

INPUT:
• conductors - list or generator of ints

OUTPUT: generator that iterates over EllipticCurve objects.

EXAMPLES:

We list optimal curves with conductor up to 20:

```
sage: [e.cremona_label() for e in CremonaDatabase().iter_optimal([11..20])]
['11a1', '14a1', '15a1', '17a1', '19a1', '20a1']
```

Note the unfortunate 990h3 special case:

```
sage: [e.cremona_label() for e in CremonaDatabase().iter_optimal([990])]
['990a1', '990b1', '990c1', '990d1', '990e1', '990f1', '990g1', '990h3', '990i1', '990j1', '990k1', '990l1']
```

largest_conductor\()\)
The largest conductor for which the database is complete.

OUTPUT:
• int - largest conductor

EXAMPLES:

```
sage: c = CremonaDatabase('cremona mini')
sage: c.largest_conductor()
9999
```

list\(\text{(conductors)}\)
Return a list of all curves with given conductors.

INPUT:
• conductors - list or generator of ints

OUTPUT:
• list of EllipticCurve objects.
EXAMPLES:

```python
sage: CremonaDatabase().list([37])
[Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 3*x + 1 over Rational Field]
```

`list_optimal(conductors)`

Return a list of all optimal curves with given conductors.

INPUT:

- `conductors` - list or generator of ints

OUTPUT:

list of EllipticCurve objects.

EXAMPLES:

```python
sage: CremonaDatabase().list_optimal([37])
[Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field,
 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over Rational Field]
```

`number_of_curves(N=0, i=0)`

Return the number of curves stored in the database with conductor N. If N = 0, returns the total number of curves in the database.

If i is nonzero, returns the number of curves in the i-th isogeny class. If i is a Cremona letter code, e.g., ‘a’ or ‘bc’, it is converted to the corresponding number.

INPUT:

- `N` - int
- `i` - int or str

OUTPUT: int

EXAMPLES:

```python
sage: c = CremonaDatabase()
sage: c.number_of_curves(11)
3
sage: c.number_of_curves(37)
4
sage: c.number_of_curves(990)
42
sage: num = c.number_of_curves()
```

`number_of_isogeny_classes(N=0)`

Return the number of isogeny classes of curves in the database of conductor N. If N is 0, return the total number of isogeny classes of curves in the database.

INPUT:

- `N` - int
OUTPUT: int

EXAMPLES:

```python
sage: c = CremonaDatabase()
sage: c.number_of_isogeny_classes(11)
1
sage: c.number_of_isogeny_classes(37)
2
sage: num = c.number_of_isogeny_classes()
```

random()

Return a random curve from the database.

EXAMPLES:

```python
sage: CremonaDatabase().random() # random -- depends on database installed
Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 224*x + 3072 over Rational Field
```

smallest_conductor()

The smallest conductor for which the database is complete: always 1.

OUTPUT:

- int - smallest conductor

Note: This always returns the integer 1, since that is the smallest conductor for which the database is complete, although there are no elliptic curves of conductor 1. The smallest conductor of a curve in the database is 11.

EXAMPLES:

```python
sage: CremonaDatabase().smallest_conductor()
1
```

sage.databases.cremona.build(name, data_tgz, largest_conductor=0, mini=False, decompress=True)

Build the CremonaDatabase with given name from scratch using the data_tgz tarball.

Note: For data up to level 350000, this function takes about 3m40s. The resulting database occupies 426MB disk space.

To create the large Cremona database from Cremona’s data_tgz tarball, obtainable from http://homepages.warwick.ac.uk/staff/J.E.Cremona/ftp/data/, run the following command:

```python
sage: d = sage.databases.cremona.build('cremona','ecdata.tgz') # not tested
```

sage.databases.cremona.class_to_int(k)

Convert class id string into an integer.

Note that this is the inverse of **cremona_letter_code()**.

EXAMPLES:
sage: import sage.databases.cremona as cremona
sage: cremona.class_to_int('ba')
26
sage: cremona.class_to_int('cremona')
821863562
sage: cremona.cremona_letter_code(821863562)
'cremona'

sage.databases.cremona.cremona_letter_code(n)

Return the Cremona letter code corresponding to an integer.
For example, 0 - a 25 - z 26 - ba 51 - bz 52 - ca 53 - cb etc.

Note: This is just the base 26 representation of n, where a=0, b=1, ..., z=25. This extends the old Cremona notation (counting from 0) for the first 26 classes, and is different for classes above 26.

INPUT:
• n (int) – a non-negative integer

OUTPUT: str

EXAMPLES:

sage: from sage.databases.cremona import cremona_letter_code
sage: cremona_letter_code(0)
'a'
sage: cremona_letter_code(26)
'ba'
sage: cremona_letter_code(27)
'bb'
sage: cremona_letter_code(521)
'ub'
sage: cremona_letter_code(53)
'cb'
sage: cremona_letter_code(2005)
'czd'

sage.databases.cremona.cremona_to_lmfdb(cremona_label, CDB=None)

Convert a Cremona label into an LMFDB label.
See parse_lmfdb_label() for an explanation of LMFDB labels.

INPUT:
• cremona_label – a string, the Cremona label of a curve. This can be the label of a curve (e.g. ‘990j1’) or of an isogeny class (e.g. ‘990j’)
• CDB – the Cremona database in which to look up the isogeny classes of the same conductor.

OUTPUT:
• lmfdb_label – a string, the corresponding LMFDB label.

EXAMPLES:
sage: from sage.databases.cremona import cremona_to_lmfdb, lmfdb_to_cremona
sage: cremona_to_lmfdb('990j1')
'990.h3'
sage: lmfdb_to_cremona('990.h3')
'990j1'

sage.databases.cremona.is_optimal_id(id)

Return True if the Cremona id refers to an optimal curve, and false otherwise.
The curve is optimal if the id, which is of the form [letter code][number] has number 1.

Note: 990h3 is the optimal curve in that class, so doesn’t obey this rule.

INPUT:
• id - str of form letter code followed by an integer, e.g., a3, bb5, etc.

OUTPUT: bool

EXAMPLES:

sage: from sage.databases.cremona import is_optimal_id
sage: is_optimal_id('b1')
True
sage: is_optimal_id('bb1')
True
sage: is_optimal_id('c1')
True
sage: is_optimal_id('c2')
False

sage.databases.cremona.lmfdb_to_cremona(lmfdb_label, CDB=None)

Convert an LMFDB label into a Cremona label.

See parse_lmfdb_label() for an explanation of LMFDB labels.

INPUT:
• lmfdb_label – a string, the LMFDB label of a curve. This can be the label of a curve (e.g. ‘990.j1’) or of an isogeny class (e.g. ‘990.j’)
• CDB – the Cremona database in which to look up the isogeny classes of the same conductor.

OUTPUT:
• cremona_label – a string, the corresponding Cremona label.

EXAMPLES:

sage: from sage.databases.cremona import lmfdb_to_cremona
sage: lmfdb_to_cremona('990.h3')
'990j1'
sage: cremona_to_lmfdb('990j1')
'990.h3'

sage.databases.cremona.old_cremona_letter_code(n)

Return the old Cremona letter code corresponding to an integer.
For example:

```
1  --> A  
26 --> Z
27 --> AA
52 --> ZZ
53 --> AAA
etc.
```

INPUT:
- n - int

OUTPUT: str

EXAMPLES:

```
sage: from sage.databases.cremona import old_cremona_letter_code
sage: old_cremona_letter_code(1)
'A'
sage: old_cremona_letter_code(26)
'Z'
sage: old_cremona_letter_code(27)
'AA'
sage: old_cremona_letter_code(521)
'AAAAAAAAAAAAAAAAAAA'
sage: old_cremona_letter_code(53)
'AAA'
sage: old_cremona_letter_code(2005)
'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC'
sage.databases.cremona.parse_cremona_label
```

Given a Cremona label that defines an elliptic curve, e.g., 11a1 or 37b3, parse the label and return the conductor, isogeny class label, and number.

For this function, the curve number may be omitted, in which case it defaults to 1. If the curve number and isogeny class are both omitted (label is just a string representing a conductor), then the isogeny class defaults to 'a' and the number to 1. Valid labels consist of one or more digits, followed by zero or more letters (either all in upper case for an old Cremona label, or all in lower case), followed by zero or more digits.

INPUT:
- label (string) - a valid Cremona elliptic curve label
- numerical_class_code (boolean, default False) - if True, convert the isogeny class label from a letter code in base 26 to an integer; this is useful for sorting

OUTPUT:
- int - the conductor
- str or int - the isogeny class label
- int - the number

EXAMPLES:

```
sage: from sage.databases.cremona import parse_cremona_label
sage: parse_cremona_label('37a2')
```
Valid old Cremona labels are allowed:

```python
sage: parse_cremona_label('17CCCC')
(17, 'dc', 1)
sage: parse_cremona_label('5AB2')
Traceback (most recent call last):
 ... 
ValueError: 5AB2 is not a valid Cremona label
```

When `numerical_class_code` is `True`, the output is a triple of integers:

```python
sage: from sage.databases.cremona import parse_cremona_label
sage: parse_cremona_label('100800hj2')
(100800, 'hj', 2)
sage: parse_cremona_label('100800hj2', numerical_class_code=True)
(100800, 191, 2)
```

\[\text{sage.databases.cremona.parse_lmfdb_label}(\text{label}, \text{numerical_class_code=False})\]

Given an LMFDB label that defines an elliptic curve, e.g., 11.a1 or 37.b3, parse the label and return the conductor, isogeny class label, and number.

The LMFDB label (named after the L-functions and modular forms database), is determined by the following two orders:

- Isogeny classes with the same conductor are ordered lexicographically by the coefficients in the q-expansion of the associated modular form.
- Curves within the same isogeny class are ordered lexicographically by the \(a\)-invariants of the minimal model.

The format is \(<\text{conductor}>.\langle\text{iso}\rangle.<\text{curve}>\), where the isogeny class is encoded using the same base-26 encoding into letters used in Cremona’s labels. For example, 990.h3 is the same as Cremona’s 990j1

For this function, the curve number may be omitted, in which case it defaults to 1. If the curve number and isogeny class are both omitted (label is just a string representing a conductor), then the isogeny class defaults to ‘a’ and the number to 1.

INPUT:

- label - str
- \textbf{numerical_class_code} (boolean, default False) - if True, convert the isogeny class label from a letter code in base 26 to an integer; this is useful for sorting

OUTPUT:

- int - the conductor
- **str** or **int** - the isogeny class label
- **int** - the number

EXAMPLES:

```python
sage: from sage.databases.cremona import parse_lmfdb_label
sage: parse_lmfdb_label('37.a2')
(37, 'a', 2)
sage: parse_lmfdb_label('37.b')
(37, 'b', 1)
sage: parse_lmfdb_label('10.bb2')
(10, 'bb', 2)
```

When `numerical_class_code` is True, the output is a triple of integers:

```python
sage: from sage.databases.cremona import parse_lmfdb_label
sage: parse_lmfdb_label('100800.bg4')
(100800, 'bg', 4)
sage: parse_lmfdb_label('100800.bg4', numerical_class_code=True)
(100800, 32, 4)
```

```python
sage.databases.cremona.sort_key(key1)
```

Comparison key for curve id strings.

Note: Not the same as standard lexicographic order!

EXAMPLES:

```python
sage: import sage.databases.cremona as cremona
sage: cremona.sort_key(['ba1', 'z1'])
['z1', 'ba1']
```

```python
sage.databases.cremona.split_code(key)
```

Split class + curve id string into its two parts.

EXAMPLES:

```python
sage: import sage.databases.cremona as cremona
sage: cremona.split_code('ba2')
('ba', '2')
sage: cremona.split_code('42')
Traceback (most recent call last):
  ... ValueError: invalid curve ID: '42'
```
THE STEIN-WATKINS TABLE OF ELLIPTIC CURVES

Sage gives access to the Stein-Watkins table of elliptic curves, via an optional package that you must install. This is a huge database of elliptic curves. You can install the database (a 2.6GB package) with the command

```
sage -i database_stein_watkins
```

You can also automatically download a small version, which takes much less time, using the command

```
sage -i database_stein_watkins_mini
```

This database covers a wide range of conductors, but unlike the Cremona database, this database need not list all curves of a given conductor. It lists the curves whose coefficients are not “too large” (see [SW2002]).

- The command `SteinWatkinsAllData(n)` returns an iterator over the curves in the \(n\)-th Stein-Watkins table, which contains elliptic curves of conductor between \(n \cdot 10^5\) and \((n + 1) \cdot 10^5\). Here \(n\) can be between 0 and 999, inclusive.

- The command `SteinWatkinsPrimeData(n)` returns an iterator over the curves in the \(n\)th Stein-Watkins prime table, which contains prime conductor elliptic curves of conductor between \(n \cdot 10^8\) and \((n + 1) \cdot 10^8\). Here \(n\) varies between 0 and 99, inclusive.

EXAMPLES: We obtain the first table of elliptic curves.

```
sage: d = SteinWatkinsAllData(0)
sage: d
Stein-Watkins Database a.0 Iterator
```

We type `next(d)` to get each isogeny class of curves from \(d\):

```
sage: C = next(d)  # optional - database_stein_watkins
sage: C
Stein-Watkins isogeny class of conductor 11
```

```
sage: next(d)  # optional - database_stein_watkins
Stein-Watkins isogeny class of conductor 14
```

```
sage: next(d)  # optional - database_stein_watkins
Stein-Watkins isogeny class of conductor 15
```

An isogeny class has a number of attributes that give data about the isogeny class, such as the rank, equations of curves, conductor, leading coefficient of \(L\)-function, etc.

```
sage: C.data  # optional - database_stein_watkins
['11', '[11]', '0', '0.253842', '25', '+*1']
sage: C.curves  # optional - database_stein_watkins
[[[0, -1, 1, 0, 0], '(1)', '1', '5'],
```

(continues on next page)
If we were to continue typing `next(d)` we would iterate over all curves in the Stein-Watkins database up to conductor 10^5. We could also type `for C in d: ...`

To access the data file starting at 10^5 do the following:

```python
sage: d = SteinWatkinsAllData(1)

sage: C = next(d)  # optional - database_stein_watkins
sage: C
Stein-Watkins isogeny class of conductor 100002
```

Next we access the prime-conductor data:

```python
sage: d = SteinWatkinsPrimeData(0)

sage: C = next(d)  # optional - database_stein_watkins
sage: C
Stein-Watkins isogeny class of conductor 11
```

Each call `next(d)` gives another elliptic curve of prime conductor:

```python
sage: C = next(d)  # optional - database_stein_watkins
sage: C
Stein-Watkins isogeny class of conductor 17
```

REFERENCE:

- [SW2002]

```python
class sage.databases.stein_watkins.SteinWatkinsAllData(num)
    Bases: object

    Class for iterating through one of the Stein-Watkins database files for all conductors.
```
iter_levels()

Iterate through the curve classes, but grouped into lists by level.

EXAMPLES:

```python
sage: d = SteinWatkinsAllData(1)
sage: E = d.iter_levels()
sage: next(E) # optional - database_stein_watkins
[Stein-Watkins isogeny class of conductor 100002]
sage: next(E) # optional - database_stein_watkins
[Stein-Watkins isogeny class of conductor 100005,
  Stein-Watkins isogeny class of conductor 100005]
sage: next(E) # optional - database_stein_watkins
[Stein-Watkins isogeny class of conductor 100007]
```

class sage.databases.stein_watkins.SteinWatkinsIsogenyClass(conductor)

Bases: object

class sage.databases.stein_watkins.SteinWatkinsPrimeData(num)

Bases: SteinWatkinsAllData

sage.databases.stein_watkins.ecdb_num_curves(max_level=200000)

Return a list whose \(N \)-th entry, for \(0 \leq N \leq \text{max_level} \), is the number of elliptic curves of conductor \(N \) in the database.

EXAMPLES:

```python
sage: sage.databases.stein_watkins.ecdb_num_curves(100) # optional - database_stein_watkins
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 6, 8, 0, 4, 0, 3, 4, 6, 0, 0, 6, 0, 5, 4, 0, 0, 8, 0, 4, 4, 4, 3, 4, 4, 5, 4, 4, 0, 6, 1, 2, 8, 2, 0, 6, 4, 8, 2, 2, 1, 6, 4, 6, 7, 3, 0, 0, 1, 4, 6, 4, 2, 12, 1, 0, 2, 4, 0, 6, 2, 0, 12, 1, 6, 4, 1, 8, 0, 2, 1, 6, 2, 0, 0, 1, 3, 16, 4, 3, 0, 2, 0, 8, 0, 6, 11, 4]
```
In order to use the Jones database, the optional database package must be installed using the Sage command !sage -i database_jones_numfield

This is a table of number fields with bounded ramification and degree ≤ 6. You can query the database for all number fields in Jones’s tables with bounded ramification and degree.

EXAMPLES: First load the database:

```
sage: J = JonesDatabase()
sage: J
John Jones's table of number fields with bounded ramification and degree <= 6
```

List the degree and discriminant of all fields in the database that have ramification at most at 2:

```
sage: [(k.degree(), k.disc()) for k in J.unramified_outside([2])]  # optional ~
˓→database_jones_numfield
[(1, 1), (2, -4), (2, -8), (2, 8), (4, 256), (4, 512), (4, -1024), (4, -2048), (4, 2048),
  (4, 2048), (4, 2048)]
```

List the discriminants of the fields of degree exactly 2 unramified outside 2:

```
sage: [k.disc() for k in J.unramified_outside([2],2)]  # optional ~
˓→database_jones_numfield
[-4, -8, 8]
```

List the discriminants of cubic field in the database ramified exactly at 3 and 5:

```
sage: [k.disc() for k in J.ramified_at([3,5],3)]  # optional ~
˓→database_jones_numfield
[-135, -675, -6075, -6075]
sage: factor(6075)
3^5 * 5^2
sage: factor(675)
3^3 * 5^2
sage: factor(135)
3^3 * 5
```

List all fields in the database ramified at 101:

```
sage: J.ramified_at(101)  # optional ~
˓→database_jones_numfield
[Number Field in a with defining polynomial x^2 - 101,
```
Number Field in a with defining polynomial $x^4 - x^3 + 13*x^2 - 19*x + 361,$
Number Field in a with defining polynomial $x^5 + x^4 - 6*x^3 - x^2 + 18*x + 4,$
Number Field in a with defining polynomial $x^5 + 2*x^4 + 7*x^3 + 4*x^2 + 11*x - 6,$
Number Field in a with defining polynomial $x^5 - x^4 - 40*x^3 - 93*x^2 - 21*x + 17$.

class sage.databases.jones.JonesDatabase

 Bases: object

 get(S, var='a')

 Return all fields in the database ramified exactly at the primes in S.

 INPUT:

 • S - list or set of primes, or a single prime
 • var - the name used for the generator of the number fields (default ‘a’).

 EXAMPLES:

 sage: J = JonesDatabase() # optional - database_jones_numfield
 sage: J.get([163], var='z') # optional - database_jones_numfield
 [Number Field in z with defining polynomial $x^2 + 163,$
 Number Field in z with defining polynomial $x^3 - x^2 - 54*x + 169,$
 Number Field in z with defining polynomial $x^4 - x^3 - 7*x^2 + 2*x + 9$]
 sage: J.get([3, 4]) # optional - database_jones_numfield
 Traceback (most recent call last):
 ...
 ValueError: S must be a list of primes

 ramified_at(S, d=None, var='a')

 Return all fields in the database of degree d ramified exactly at the primes in S. The fields are ordered by
degree and discriminant.

 INPUT:

 • S - list or set of primes
 • d - None (default, in which case all fields of degree <= 6 are returned) or a positive integer giving the
degree of the number fields returned.
 • var - the name used for the generator of the number fields (default ‘a’).

 EXAMPLES:

 sage: J = JonesDatabase() # optional - database_jones_numfield
 sage: J.ramified_at([101,109]) # optional - database_jones_numfield
 []
 sage: J.ramified_at([109]) # optional - database_jones_numfield
 [Number Field in a with defining polynomial $x^2 - 109,$
 Number Field in a with defining polynomial $x^4 - x^3 + 13*x^2 - 19*x + 361,$
 Number Field in a with defining polynomial $x^5 + x^4 - 6*x^3 - x^2 + 18*x + 4,$
 Number Field in a with defining polynomial $x^5 + 2*x^4 + 7*x^3 + 4*x^2 + 11*x - 6,$
 Number Field in a with defining polynomial $x^5 + 2*x^4 + 7*x^3 + 4*x^2 + 11*x + 361,$
 Number Field in a with defining polynomial $x^5 - x^4 - 40*x^3 - 93*x^2 - 21*x + 17$]
Number Field in a with defining polynomial $x^5 - x^4 - 40*x^3 - 93*x^2 - 21*x \rightarrow 17$

```
sage: J.ramified_at((2, 5, 29), 3, 'c')  # optional - database_jones_numfield
[Number Field in c with defining polynomial $x^3 - x^2 - 8*x - 28$,
 Number Field in c with defining polynomial $x^3 - x^2 + 10*x + 102$,
 Number Field in c with defining polynomial $x^3 - x^2 - 48*x - 188$,
 Number Field in c with defining polynomial $x^3 - x^2 + 97*x - 333$]
```

unramified_outside(S, $d=None$, $var='a')$

Return all fields in the database of degree d unramified outside S. If d is omitted, return fields of any degree up to 6. The fields are ordered by degree and discriminant.

INPUT:

- S - list or set of primes, or a single prime
- d - None (default, in which case all fields of degree ≤ 6 are returned) or a positive integer giving the degree of the number fields returned.
- var - the name used for the generator of the number fields (default 'a').

EXAMPLES:

```
sage: J = JonesDatabase()  # optional - database_jones_numfield
sage: J.unramified_outside([101,109])  # optional - database_jones_numfield
[Number Field in a with defining polynomial $x - 1$,
 Number Field in a with defining polynomial $x^2 - 101$,
 Number Field in a with defining polynomial $x^2 - 109$,
 Number Field in a with defining polynomial $x^3 - x^2 - 36*x + 4$,
 Number Field in a with defining polynomial $x^4 - x^3 + 13*x^2 - 19*x + 361$,
 Number Field in a with defining polynomial $x^4 - x^3 + 14*x^2 + 34*x + 393$,
 Number Field in a with defining polynomial $x^5 + x^4 - 6*x^3 - x^2 + 18*x + 4$,
 Number Field in a with defining polynomial $x^5 + 2*x^4 + 7*x^3 + 4*x^2 + 11*x - 6$,
 Number Field in a with defining polynomial $x^5 - x^4 - 40*x^3 - 93*x^2 - 21*x \rightarrow 17$]
```

sage.databases.jones.sortkey(K)

A completely deterministic sorting key for number fields.

EXAMPLES:

```
sage: from sage.databases.jones import sortkey
sage: sortkey(QuadraticField(-3))
(2, 3, False, x^2 + 3)
```
THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES (OEIS)

You can query the OEIS (Online Database of Integer Sequences) through Sage in order to:

- identify a sequence from its first terms.
- obtain more terms, formulae, references, etc. for a given sequence.

AUTHORS:

- Vincent Delecroix (2014): modifies continued fractions because of github issue #14567
- Moritz Firsching (2016): modifies handling of dead sequence, see github issue #17330
- Thierry Monteil (2019): refactoring (unique representation github issue #28480, laziness github issue #28627)

EXAMPLES:

```
sage: oeis
The On-Line Encyclopedia of Integer Sequences (https://oeis.org/)
```

What about a sequence starting with 3, 7, 15, 1?

```
sage: search = oeis([3, 7, 15, 1], max_results=4) ; search  # optional -- internet # random
0: A001203: Simple continued fraction expansion of Pi.
2: A082495: a(n) = (2^n - 1) mod n.
3: A165416: Irregular array read by rows: The n-th row contains those distinct positive integers that each, when written in binary, occurs as a substring in binary n.
```

```
sage: [u.id() for u in search]  # optional -- internet # random
['A001203', 'A240698', 'A082495', 'A165416']
sage: c = search[0] ; c  # optional -- internet
A001203: Simple continued fraction expansion of Pi.
```

```
sage: c.first_terms(15)  # optional -- internet
(3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1)
sage: c.examples()  # optional -- internet
0: Pi = 3.1415926535897932384...
1: = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...))))
2: = [a_0; a_1, a_2, a_3, ...] = [3; 7, 15, 1, 292, ...].
```

(continues on next page)
What about posets? Are they hard to count? To which other structures are they related?

```python
sage: [Posets(i).cardinality() for i in range(10)]
[1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231]
```

```python
sage: p = _[0]
```

```python
sage: 'hard' in p.keywords()
True
```

```python
sage: len(p.formulas())
0
```

```python
sage: len(p.first_terms())
17
```

```python
sage: p.cross_references(fetch=True)  # optional -- internet  # random
0: A000798: Number of different quasi-orders (or topologies, or transitive digraphs)
    with n labeled elements.
1: A001930: Number of topologies, or transitive digraphs with n unlabeled nodes.
3: A006057: Number of topologies on n labeled points satisfying axioms T_0-T_4.
4: A079263: Number of constrained mixed models with n factors.
5: A079265: Number of antisymmetric transitive binary relations on n unlabeled points.
6: A263859: Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of posets with n
    elements and rank k (or depth k+1).
7: A316978: Number of factorizations of n into factors > 1 with no equivalent primes.
8: A319559: Number of non-isomorphic T_0 set systems of weight n.
9: A326939: Number of T_0 sets of subsets of {1..n} that cover all n vertices.
10: A326943: Number of T_0 sets of subsets of {1..n} that cover all n vertices and are
    closed under intersection.
```

What does the Taylor expansion of the e^{e^x-1} function have to do with primes?
Databases, Release 10.1

\[\text{sage: } x = \text{var('x')}; f(x) = e^\left(e^x - 1\right) \]
\[\text{sage: } L = [a^*\text{factorial}(b) \text{ for } a,b \text{ in } \text{taylor}(f(x), x, 0, 20).\text{coefficients()}; L \]
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159, 5832742205057, 51724158235372]

\[\text{sage: } \text{oeis}(L) \]
optional -- internet
0: A000110: Bell or exponential numbers: number of ways to partition a set of n labeled elements.
1: A292935: E.g.f.: exp(exp(-x) - 1).

\[\text{sage: } b = {_[0]} \]
optional -- internet
\[\text{sage: } b.\text{formulas()[0]} \]
optional -- internet
'E.g.f.: exp(exp(x) - 1).'

\[\text{sage: } [i \text{ for } i \text{ in } b.\text{comments()} \text{ if } '\text{prime}' \text{ in } i][-1] \]
optional -- internet
'Number n is prime if ...'

\[\text{sage: } [n \text{ for } n \text{ in range(2, 20)} \text{ if } (b(n)-2) \% n == 0] \]
optional -- internet
[2, 3, 5, 7, 11, 13, 17, 19]

See also:

- If you plan to do a lot of automatic searches for subsequences, you should consider installing
 \texttt{SloaneEncyclopedia}, a local partial copy of the OEIS.
- Some infinite OEIS sequences are implemented in Sage, via the \texttt{sloane_functions} module.

Todo:

- in case of flood, suggest the user to install the off-line database instead.
- interface with the off-line database (or reimplement it).

4.1 Classes and methods

\texttt{class sage.databases.oeis.FancyTuple(iterable=(),/)}

Bases: \texttt{tuple}

This class inherits from \texttt{tuple}, it allows to nicely print tuples whose elements have a one line representation.

EXAMPLES:

\[\text{sage: from sage.databases.oeis import FancyTuple} \]
\[\text{sage: t = FancyTuple(['zero', 'one', 'two', 'three', 4])}; t \]
0: zero
1: one
2: two
3: three
4: 4

(continues on next page)
class sage.databases.oeis.OEIS
Bases: object

The On-Line Encyclopedia of Integer Sequences.

OEIS is a class representing the On-Line Encyclopedia of Integer Sequences. You can query it using its methods, but OEIS can also be called directly with three arguments:

- query - it can be:
 - a string representing an OEIS ID (e.g. ‘A000045’).
 - an integer representing an OEIS ID (e.g. 45).
 - a list representing a sequence of integers.
 - a string, representing a text search.

- max_results - (integer, default: 30) the maximum number of results to return, they are sorted according to their relevance. In any cases, the OEIS website will never provide more than 100 results.

- first_result - (integer, default: 0) allow to skip the first_result first results in the search, to go further. This is useful if you are looking for a sequence that may appear after the 100 first found sequences.

OUTPUT:

- if query is an integer or an OEIS ID (e.g. ‘A000045’), returns the associated OEIS sequence.

- if query is a string, returns a tuple of OEIS sequences whose description corresponds to the query. Those sequences can be used without the need to fetch the database again.

- if query is a list or tuple of integers, returns a tuple of OEIS sequences containing it as a subsequence. Those sequences can be used without the need to fetch the database again.

EXAMPLES:

sage: oeis
The On-Line Encyclopedia of Integer Sequences (https://oeis.org/)

A particular sequence can be called by its A-number or number:

sage: oeis('A000040') # optional -- internet
A000040: The prime numbers.

sage: oeis(45) # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

The database can be searched by subsequence:

sage: search = oeis([1,2,3,5,8,13]) ; search # optional -- internet
0: A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
1: A290689: Number of transitive rooted trees with n nodes.
2: A027926: Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0; T(n, -1) = 1 for n >= 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) for k = 2..2n-1, n >= 2.

sage: fibo = search[0] # optional -- internet

(continues on next page)
sage: fibo.name() # optional -- internet
'Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.'

sage: print(fibo.first_terms()) # optional -- internet
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155)

sage: fibo.cross_references()[0] # optional -- internet
'A039834'

sage: fibo == oeis(45) # optional -- internet
True

sage: sfibo = oeis('A039834')
sage: sfibo.first_terms() # optional -- internet
(1, 1, 0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144, 233, -377, 610, -987, 1597, -2584, 4181, -6765, 10946, -17711, 28657, -46368, 75025, -121393, 196418, -317811, 514229, -832040, 1346269, -2178309, 3524578, -5702887, 9227465, -14930352, 24157817)

tuple(abs(i) for i in sfibo.first_terms()[2:20]) == fibo.first_terms()[:18] # optional -- internet
True

sage: fibo.formulas()[4] # optional -- internet
'F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).'

sage: fibo.comments()[6] # optional -- internet
"F(n+2) = number of binary sequences of length n that have no consecutive 0's."

sage: fibo.links()[0] # optional -- internet
'https://oeis.org/A000045/b000045.txt'

The database can be searched by description:

sage: oeis('prime gap factorization', max_results=4) # optional -- internet # random
0: A073491: Numbers having no prime gaps in their factorization.
1: A073485: Product of any number of consecutive primes; squarefree numbers with no gaps in their prime factorization.
2: A073490: Number of prime gaps in factorization of n.
3: A073492: Numbers having at least one prime gap in their factorization.

Note: The following will fetch the OEIS database only once:

sage: oeis([1,2,3,5,8,13]) # optional -- internet
0: A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
1: A290689: Number of transitive rooted trees with n nodes.
Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0; T(n,→1) = 1 for n >= 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) for k = 2..2n-1, n >= 2.

\texttt{sage: oeis('A000045')} \hspace{1cm} \# \text{optional -- internet}

\texttt{A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.}

Indeed, due to some caching mechanism, the sequence is not re-created when called from its ID.

\texttt{browse()}

Open the OEIS web page in a browser.

\texttt{EXAMPLES:}

\texttt{sage: oeis.browse()} \hspace{1cm} \# \text{optional -- webbrowser}

\texttt{find_by_description(description, max_results=3, first_result=0)}

Search for OEIS sequences corresponding to the description.

\texttt{INPUT:}

- \texttt{description} – (string) the description the searched sequences.
- \texttt{max_results} – (integer, default: 3) the maximum number of results we want. In any case, the on-line encyclopedia will not return more than 100 results.
- \texttt{first_result} – (integer, default: 0) allow to skip the first_result first results in the search, to go further. This is useful if you are looking for a sequence that may appear after the 100 first found sequences.

\texttt{OUTPUT:}

- a tuple (with fancy formatting) of at most \texttt{max_results} OEIS sequences. Those sequences can be used without the need to fetch the database again.

\texttt{EXAMPLES:}

\texttt{sage: oeis.find_by_description('prime gap factorization')} \hspace{1cm} \# optional -- internet

\texttt{0: A...: ...}

\texttt{1: A...: ...}

\texttt{2: A...: ...}

\texttt{sage: prime_gaps = _[2] \; \text{; prime_gaps \hspace{1cm} # optional -- internet}}

\texttt{A...}

\texttt{sage: oeis('beaver')} \hspace{1cm} \# \text{optional -- internet}

\texttt{0: A...: ...eaver...}

\texttt{1: A...: ...eaver...}

\texttt{2: A...: ...eaver...}

\texttt{sage: oeis('beaver', max_results=4, first_result=2)} \hspace{1cm} \# \text{optional -- internet}

\texttt{0: A...: ...eaver...}

\texttt{1: A...: ...eaver...}

\texttt{2: A...: ...eaver...}

\texttt{3: A...: ...eaver...}
find_by_entry(*entry*)

INPUT:
- *entry* – a string corresponding to an entry in the internal format of the OEIS.

OUTPUT:
- The corresponding OEIS sequence.

EXAMPLES:

```sage
sage: entry = '%I A262002
%N A262002 L.g.f.: log( Sum_{n>=0} x^n/n! * Product_{k=1..n} (k^2 + 1) ).
%K A262002 nonn'

sage: s = oeis.find_by_entry(entry)
sage: s
A262002: L.g.f.: log( Sum_{n>=0} x^n/n! * Product_{k=1..n} (k^2 + 1) ).
```

find_by_id(*ident*, *fetch=False*)

INPUT:
- *ident* – a string representing the A-number of the sequence or an integer representing its number.
- *fetch* – (bool, default: False) whether to force fetching the content of the sequence on the internet.

OUTPUT:
- The OEIS sequence whose A-number or number corresponds to *ident*.

EXAMPLES:

```sage
sage: oeis.find_by_id('A000040')  # optional -- internet
A000040: The prime numbers.

sage: oeis.find_by_id(40)  # optional -- internet
A000040: The prime numbers.
```

find_by_subsequence(*subsequence*, *max_results=3*, *first_result=0*)

Search for OEIS sequences containing the given subsequence.

INPUT:
- *subsequence* – a list or tuple of integers.
- *max_results* – (integer, default: 3), the maximum of results requested.
- *first_result* – (integer, default: 0) allow to skip the *first_result* first results in the search, to go further. This is useful if you are looking for a sequence that may appear after the 100 first found sequences.

OUTPUT:
- a tuple (with fancy formatting) of at most *max_results* OEIS sequences. Those sequences can be used without the need to fetch the database again.

EXAMPLES:

```sage
sage: oeis.find_by_subsequence([2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377])  # optional -- internet # random
0: A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
1: A212804: Expansion of (1 - x)/(1 - x - x^2).
```

(continues on next page)
2: A020695: Pisot sequence E(2,3).

\[
sage: \text{fibo = _[0]}; \text{fibo} \quad \text{\# optional -- internet}
\]

A000045: Fibonacci numbers: \(F(n) = F(n-1) + F(n-2) \) with \(F(0) = 0 \) and \(F(1) = 1 \).

\[
\text{class sage.databases.oeis.OEISSequence}(\text{ident})
\]

Bases: SageObject, UniqueRepresentation

The class of OEIS sequences.

This class implements OEIS sequences. They are usually produced by calls to the On-Line Encyclopedia of Integer Sequences, represented by the class OEIS.

Note: Since some sequences do not start with index 0, there is a difference between calling and getting item, see __call_() for more details

\[
\begin{array}{l}
\text{sage: sfibo = oeis(\text{'A039834'})} \\
\text{sage: sfibo.first_terms()[:10]} \quad \text{\# optional -- internet} \\
(1, 1, 0, 1, -1, 2, -3, 5, -8, 13) \\
\text{sage: sfibo(-2)} \quad \text{\# optional -- internet} \\
1 \\
\text{sage: sfibo(3)} \quad \text{\# optional -- internet} \\
2 \\
\text{sage: sfibo.offsets()} \quad \text{\# optional -- internet} \\
(-2, 6) \\
\text{sage: sfibo[0]} \quad \text{\# optional -- internet} \\
1 \\
\text{sage: sfibo[6]} \quad \text{\# optional -- internet} \\
-3
\end{array}
\]

__call__(\text{k})

Return the element of the sequence \text{self} with index \text{k}.

INPUT:

• \text{k} – integer.

OUTPUT:

• integer.

Note: The first index of the sequence \text{self} is not necessarily zero, it depends on the first offset of \text{self}. If the sequence represents the decimal expansion of a real number, the index 0 corresponds to the digit right after the decimal point.

EXAMPLES:

\[
\begin{array}{l}
\text{sage: f = oeis(45)} \quad \text{\# optional -- internet} \\
\text{sage: f.first_terms()[:10]} \quad \text{\# optional -- internet} \\
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
\end{array}
\]
sage: f(4) # optional -- internet
3

sage: sfibo = oeis('A039834') # optional -- internet
sage: sfibo.first_terms()[:10] # optional -- internet
(1, 1, 0, 1, -1, 2, -3, 5, -8, 13)

sage: sfibo(-2) # optional -- internet
1
sage: sfibo(4) # optional -- internet
-3
sage: sfibo.offsets() # optional -- internet
(-2, 6)

author()
Return the author of the sequence in the encyclopedia.

OUTPUT:
• string.

EXAMPLES:

sage: f = oeis(45) ; f # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: f.author() # optional -- internet
'J. L. A. Sloane_, 1964'

browse()
Open the OEIS web page associated to the sequence self in a browser.

EXAMPLES:

sage: f = oeis(45) ; f # optional -- internet webbrowser
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: f.browse() # optional -- internet webbrowser

comments()
Return a tuple of comments associated to the sequence self.

OUTPUT:
• tuple of strings (with fancy formatting).

EXAMPLES:

sage: f = oeis(45) ; f # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: f.comments()[:8] # optional -- internet
0: D. E. Knuth writes...
1: In keeping with historical accounts...
2: Susantha Goonatilake writes...
3: Also sometimes called Hemachandra numbers.
4: Also sometimes called Lamé's sequence.
5: ...
6: \(F(n+2) \) = number of binary sequences of length \(n \) that have no consecutive 0's.
7: \(F(n+2) \) = number of subsets of \{1,2,...,n\} that contain no consecutive integers.

cross_references *(fetch=False)*

Return a tuple of cross references associated to the sequence self.

INPUT:
- *fetch* – boolean (default: False).

OUTPUT:
- if *fetch* is False, return a list of OEIS IDs (strings).
- if *fetch* if True, return a tuple of OEIS sequences.

EXAMPLES:

```python
sage: nbalanced = oeis("A005598") ; nbalanced  # optional -- internet
A005598: a(n) = 1 + Sum_{i=1..n} (n-i+1)*phi(i).

sage: nbalanced.cross_references()  # optional -- internet
('A000010', 'A002088', 'A011755', 'A049695', 'A049703', 'A103116')

sage: nbalanced.cross_references(fetch=True)  # optional -- internet
0: A000010: Euler totient function phi(n): count numbers \( \leq n \) and prime to n.
1: A002088: Sum of totient function: a(n) = Sum_{k=1..n} phi(k), cf. A000010.
2: A011755: a(n) = Sum_{k=1..n} k*phi(k).
3: A049695: Array T read by diagonals; T(i,j) is the number of nonnegative slopes of lines determined by 2 lattice points in \([0,i] \times [0,j]\) if \( i > 0 \); \( T(0,j) = 1 \) if \( j > 0 \); \( T(0,0) = 0 \).
4: A049703: a(0) = 0; for n>0, a(n) = A005598(n)/2.
5: A103116: a(n) = Sum_{i=1..n} (n-i+1)*phi(i).

sage: phi = _[3]  # optional -- internet
```

examples()

Return a tuple of examples associated to the sequence self.

OUTPUT:
- tuple of strings (with fancy formatting).

EXAMPLES:

```python
sage: c = oeis(1203) ; c  # optional -- internet
A001203: Simple continued fraction expansion of Pi.

sage: c.examples()  # optional -- internet
0: Pi = 3.1415926535897932384...
1: = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...))))
2: = [a_0; a_1, a_2, a_3, ...] = [3; 7, 15, 1, 292, ...].
```
extensions_or_errors()

Return a tuple of extensions or errors associated to the sequence self.

OUTPUT:
• tuple of strings (with fancy formatting).

EXAMPLES:

```
sage: sfibo = oeis('A039834') ; sfibo                  # optional -- internet
A039834: a(n+2) = -a(n+1) + a(n) (signed Fibonacci numbers) with a(-2) = a(-1)\rightarrow 1; or Fibonacci numbers (A000045) extended to negative indices.
```

```
sage: sfibo.extensions_or_errors()[0]                  # optional -- internet
'Signs corrected by _Len Smiley_ and _N. J. A. Sloane_'
```

first_terms(number=None)

INPUT:
• number – (integer or None, default: None) the number of terms returned (if less than the number of available terms). When set to None, returns all the known terms.

OUTPUT:
• tuple of integers.

EXAMPLES:

```
sage: f = oeis(45) ; f                                    # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
```

```
sage: f.first_terms()[:10]                               # optional -- internet
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
```

Handle dead sequences, see github issue #17330

```
sage: oeis(5000).first_terms(12)                          # optional -- internet
doctest:warning
...
RuntimeWarning: This sequence is dead: "A005000: Erroneous version of A006505."
(1, 0, 0, 1, 1, 1, 11, 36, 92, 491, 2537)
```

formulas()

Return a tuple of formulas associated to the sequence self.

OUTPUT:
• tuple of strings (with fancy formatting).

EXAMPLES:

```
sage: f = oeis(45) ; f                                    # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
```

```
sage: f.formulas()[2]                                    # optional -- internet
'F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)).'
```

4.1. Classes and methods
id(format='A')

The ID of the sequence self is the A-number that identifies self.

INPUT:
• format – (string, default: ‘A’).

OUTPUT:
• if format is set to ‘A’, returns a string of the form ‘A000123’.
• if format is set to ‘int’ returns an integer of the form 123.

EXAMPLES:

```
sage: f = oeis(45) ; f
# optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
sage: f.id()
# optional -- internet
'A000045'
sage: f.id(format='int')
# optional -- internet
45
```

is_dead(warn_only=False)

Tell whether the sequence is dead (i.e. erroneous).

INPUT:
• warn_only – (bool, default: False), whether to warn when the sequence is dead instead of returning a boolean.

EXAMPLES:
A warn_only test is triggered as soon as some information on the sequence is queried:

```
sage: s = oeis(17)
sage: s
# optional -- internet
doctest:warning
...
RuntimeWarning: This sequence is dead: "A000017: Erroneous version of A032522."
A000017: Erroneous version of A032522.
```

is_finite()

Tell whether the sequence is finite.

Currently, OEIS only provides a keyword when the sequence is known to be finite. So, when this keyword is not there, we do not know whether it is infinite or not.

OUTPUT:
• True when the sequence is known to be finite.
• Unknown otherwise.

Todo: Ask OEIS for a keyword ensuring that a sequence is infinite.

EXAMPLES:
sage: s = oeis('A114288') ; s # optional -- internet
A114288: Lexicographically earliest solution of any 9 X 9 sudoku, read by rows.
sage: s.is_finite() # optional -- internet
True

sage: f = oeis(45) ; f # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
sage: f.is_finite() # optional -- internet
Unknown

is_full()
Tell whether the sequence self is full, that is, if all its elements are listed in self.first_terms().
Currently, OEIS only provides a keyword when the sequence is known to be full. So, when this keyword is
not there, we do not know whether some elements are missing or not.
OUTPUT:
• True when the sequence is known to be full.
• Unknown otherwise.
EXAMPLES:

sage: s = oeis('A114288') ; s # optional -- internet
A114288: Lexicographically earliest solution of any 9 X 9 sudoku, read by rows.
sage: s.is_full() # optional -- internet
True

sage: f = oeis(45) ; f # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
sage: f.is_full() # optional -- internet
Unknown

keywords()
Return the keywords associated to the sequence self.
OUTPUT:
• tuple of strings.
EXAMPLES:

sage: f = oeis(53) ; f # optional -- internet
A000053: Local stops on New York City...
sage: f.keywords() # optional -- internet
('nonn', 'fini', ...)

links(browse=None, format='guess')
Return, display or browse links associated to the sequence self.
INPUT:
• **browse** – an integer, a list of integers, or the word ‘all’ (default: None) : which links to open in a web browser.

• **format** – string (default: ‘guess’) : how to display the links.

OUTPUT:

• **tuple of strings (with fancy formatting):**

 – if **format** is url, returns a tuple of absolute links without description.

 – if **format** is html, returns nothing but prints a tuple of clickable absolute links in their context.

 – if **format** is guess, adapts the output to the context (command line or notebook).

 – if **format** is raw, the links as they appear in the database, relative links are not made absolute.

EXAMPLES:

```sage
sage: f = oeis(45) ; f  # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: f.links(format='url')  # optional -- internet
0: https://oeis.org/A000045/b000045.txt
1: ...
2: ...

sage: f.links(format='raw')  # optional -- internet
0: N. J. A. Sloane, <a href="/A000045/b000045.txt">The first 2000 Fibonacci numbers: Table of n, F(n) for n = 0..2000</a>
1: ...
2: ...
```

name()

Return the name of the sequence self.

OUTPUT:

• string.

EXAMPLES:

```sage
sage: f = oeis(45) ; f  # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: f.name()  # optional -- internet
'Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.'
```

natural_object()

Return the natural object associated to the sequence self.

OUTPUT:

• If the sequence self corresponds to the digits of a real number, returns the associated real number (as an element of RealLazyField()).

• If the sequence self corresponds to the convergents of a continued fraction, returns the associated continued fraction.
Warning: This method forgets the fact that the returned sequence may not be complete.

Todo:

• ask OEIS to add a keyword telling whether the sequence comes from a power series, e.g. for OEIS sequence A000182

• discover other possible conversions.

EXAMPLES:

```
sage: g = oeis("A002852") ; g                  # optional -- internet
A002852: Continued fraction for Euler's constant (or Euler-Mascheroni constant).
˓→gamma.

sage: x = g.natural_object() ; type(x)        # optional -- internet
<class 'sage.rings.continued_fraction.ContinuedFraction_periodic'>

sage: RDF(x) == RDF(euler_gamma)              # optional -- internet
True

sage: cfg = continued_fraction(euler_gamma)

sage: x[:90] == cfg[:90]                      # optional -- internet
True

sage: ee = oeis('A001113') ; ee              # optional -- internet
A001113: Decimal expansion of e.

sage: x = ee.natural_object() ; x            # optional -- internet
2.718281828459046?

sage: x.parent()                              # optional -- internet
Real Lazy Field

sage: x == RR(e)                              # optional -- internet
True

sage: av = oeis('A087778') ; av              # optional -- internet
A087778: Decimal expansion ... Avogadro...

sage: av.natural_object()                    # optional -- internet
6.022141000000000?e23

sage: fib = oeis('A000045') ; fib            # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: x = fib.natural_object() ; x.universe() # optional -- internet
Non negative integer semiring
```
sage: sfib = oeis('A039834') ; sfib # optional -- internet
A039834: a(n+2) = -a(n+1) + a(n) (signed Fibonacci numbers) with a(-2) = a(-1) = 1; or Fibonacci numbers (A000045) extended to negative indices.

sage: x = sfib.natural_object() ; x.universe() # optional -- internet
Integer Ring

offsets()

Return the offsets of the sequence self.

The first offset is the subscript of the first term in the sequence self. When, the sequence represents the decimal expansion of a real number, it corresponds to the number of digits of its integer part.

The second offset is the first term in the sequence self (starting from 1) whose absolute value is greater than 1. This is set to 1 if all the terms are 0 or ±1.

OUTPUT:

• tuple of two elements.

EXAMPLES:

sage: f = oeis(45) ; f # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: f.offsets() # optional -- internet
(0, 4)

sage: f.first_terms()[:4] # optional -- internet
(0, 1, 1, 2)

old_IDs()

Return the IDs of the sequence self corresponding to ancestors of OEIS.

OUTPUT:

• a tuple of at most two strings. When the string starts with M, it corresponds to the ID of “The Encyclopedia of Integer Sequences” of 1995. When the string starts with N, it corresponds to the ID of the “Handbook of Integer Sequences” of 1973.

EXAMPLES:

sage: f = oeis(45) ; f # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: f.old_IDs() # optional -- internet
('M0692', 'N0256')

online_update()

Fetch the online OEIS to update the informations about this sequence.

programs(language='all', preparsing=True, keep_comments=False)

Return programs for the sequence self in the given language.

INPUT:

• language – string (default: ‘all’), the chosen language. Possible values are ‘all’ for the full list, or any language name, for example ‘sage’, ‘maple’, ‘mathematica’, etc.
Some further optional input is specific to sage code treatment:

- **preparser** – boolean (default: True) whether to preparse sage code
- **keep_comments** – boolean (default: False) whether to keep comments in sage code

OUTPUT:

If `language` is 'all', this returns a sorted list of pairs (language, code), where every language can appear several times.

Otherwise, this returns a list of programs in the `language`, each program being a tuple of strings (with fancy formatting).

EXAMPLES:

```python
sage: ee = oeis('A001113') ; ee
# optional -- internet
A001113: Decimal expansion of e.

sage: ee.programs('pari')[0]
# optional -- internet
0: default(realprecision, 50080); x=exp(1); for (n=1, 50000, d=floor(x); x=(x-d)*10; write("b001113.txt", n, " ", d)); \_Harry J. Smith_, Apr 15 2009

sage: G = oeis.find_by_id('A27642')
# optional -- internet
sage: G.programs('all')
# optional -- internet
[('haskell', ...), ('magma', ...), ...
('python', ...), ('sage', ...)]
```

raw_entry()

Return the raw entry of the sequence `self`, in the OEIS format.

The raw entry is fetched online if needed.

OUTPUT:

- string.

EXAMPLES:

```python
sage: f = oeis(45) ; f
# optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

sage: print(f.raw_entry())
# optional -- internet
%I A000045 M0692 N0256
%S A000045 0,1,1,2,3,5,8,13,21,34,55,89,144, ...
%T A000045 10946,17711,28657,46368, ...
```

references()

Return a tuple of references associated to the sequence `self`.

OUTPUT:

- tuple of strings (with fancy formatting).

EXAMPLES:

```python
```
Databases, Release 10.1

```python
sage: w = oeis(7540) ; w  # optional -- internet
A007540: Wilson primes: primes p such that (p-1)! == -1 (mod p^2).

sage: w.references()  # optional -- internet
...
```

show()

Display most available informations about the sequence `self`.

EXAMPLES:

```python
sage: s = oeis(12345)  # optional -- internet
sage: s.show()  # optional -- internet
ID
A012345

NAME
Coefficients in the expansion sinh(arcsin(x)*arcsin(x)) = 2*x^2/2!+8*x^4/4!+
+248*x^6/6!+11328*x^8/8!+...

FIRST TERMS
(2, 8, 248, 11328, 30919214720, 7095343312000, 14819214720, 831657655349760, 280473756197529600, 115967597965430077440, 577122578245691192960, 34039765801079493369569280)

LINKS
0: https://oeis.org/A012345/b012345.txt

FORMULAS
...

OFFSETS
(0, 1)

URL
https://oeis.org/A012345

AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
```

test_compile_sage_code()

Try to compile the extracted sage code, if there is any.

If there are several sage code fields, they are all considered.

Dead sequences are considered to compile correctly by default.

This returns True if the code compiles, and raises an error otherwise.

EXAMPLES:

One correct sequence:
```python
sage: s = oeis.find_by_id('A027642')  # optional -- internet
sage: s.test_compile_sage_code()    # optional -- internet
True

One dead sequence:

```python
sage: s = oeis.find_by_id('A000154') # optional -- internet
sage: s.test_compile_sage_code() # optional -- internet
doctest:warning
... RuntimeWarning: This sequence is dead: ...
True

```python
url()
```

Return the URL of the page associated to the sequence self.

OUTPUT:
- string.

EXAMPLES:

```python
sage: f = oeis(45) ; f     # optional -- internet
A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
sage: f.url()     # optional -- internet
'https://oeis.org/A000045'
```

```python
sage.databases.oeis.to_tuple(string)
```

Convert a string to a tuple of integers.

EXAMPLES:

```python
sage: from sage.databases.oeis import to_tuple
sage: to_tuple('12,55,273')
(12, 55, 273)
```
CHAPTER
FIVE

LOCAL COPY OF SLOANE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES

The SloaneEncyclopedia object provides access to a local copy of the database containing only the sequences and their names. To use this you must download and install the database using SloaneEncyclopedia.install(), or SloaneEncyclopedia.install_from_gz() if you have already downloaded the database manually.

To look up a sequence, type

```sage
SloaneEncyclopedia[60843]  # optional - sloane_database
[1, 6, 21, 107]
```

To get the name of a sequence, type

```sage
SloaneEncyclopedia.sequence_name(1)  # optional - sloane_database
'Number of groups of order n.'
```

To search locally for a particular subsequence, type

```sage
SloaneEncyclopedia.find([1,2,3,4,5], 1)  # optional - sloane_database
```

The default maximum number of results is 30, but to return up to 100, type

```sage
SloaneEncyclopedia.find([1,2,3,4,5], 100)  # optional - sloane_database
[(15, [1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, ...
```

Results in either case are of the form [(number, list)].

See also:

- If you want to get more informations relative to a sequence (references, links, examples, programs,…), you can use the On-Line Encyclopedia of Integer Sequences provided by the OEIS module.

- Some infinite OEIS sequences are implemented in Sage, via the sloane_functions module.

AUTHORS:

- Steven Sivek (2005-12-22): first version

- Steven Sivek (2006-02-07): updated to correctly handle the new search form on the Sloane website, and it is now also smarter about loading the local database in that it does not convert a sequence from string form to a list of integers until absolutely necessary. This seems to cut the loading time roughly in half.
• Steven Sivek (2009-12-22): added the SloaneEncyclopedia functions install() and install_from_gz() so users can get the latest versions of the OEIS without having to get an updated spkg; added sequence_name() to return the description of a sequence; and changed the data type for elements of each sequence from int to Integer.

• Thierry Monteil (2012-02-10): deprecate dead code and update related doc and tests.

5.1 Classes and methods

class sage.databases.sloane.SloaneEncyclopediaClass
 Bases: object

 A local copy of the Sloane Online Encyclopedia of Integer Sequences that contains only the sequence numbers and the sequences themselves.

 find(seq, maxresults=30)

 Return a list of all sequences which have seq as a subsequence, up to maxresults results. Sequences are returned in the form (number, list).

 INPUT:
 • seq – list
 • maxresults – int

 OUTPUT: list of 2-tuples (i, v), where v is a sequence with seq as a subsequence.

 install(oeis_url='https://oeis.org/stripped.gz', names_url='https://oeis.org/names.gz', overwrite=False)

 Download and install the online encyclopedia, raising an IOError if either step fails.

 INPUT:
 • names_url - string (default: “https://oeis.org...”) The URL of the names.gz encyclopedia file. If you do not want to download this file, set names_url=None.
 • overwrite - boolean (default: False) If the encyclopedia is already installed and overwrite=True, download and install the latest version over the installed one.

 install_from_gz(stripped_file, names_file, overwrite=False)

 Install the online encyclopedia from a local stripped.gz file.

 INPUT:
 • stripped_file - string. The name of the stripped.gz OEIS file.
 • names_file - string. The name of the names.gz OEIS file, or None if the user does not want it installed.
 • overwrite - boolean (default: False) If the encyclopedia is already installed and overwrite=True, install ‘filename’ over the old encyclopedia.

 load()

 Load the entire encyclopedia into memory from a file. This is done automatically if the user tries to perform a lookup or a search.

 sequence_name(N)

 Return the name of sequence N in the encyclopedia.

 If sequence N does not exist, return ’ ’. If the names database is not installed, raise an IOError.

 INPUT:
• N – int

OUTPUT: string

EXAMPLES:

```
sage: SloaneEncyclopedia.sequence_name(1) # optional - sloane_database
'Number of groups of order n.'
```

unload()

Remove the database from memory.

`sage.databases.sloane.copy_gz_file(gz_source, bz_destination)`

Decompress a gzipped file and install the bzipped version.

This is used by SloaneEncyclopedia.install_from_gz to install several gzipped OEIS database files.

INPUT:

• `gz_source` – string. The name of the gzipped file.

• `bz_destination` – string. The name of the newly compressed file.
FINDSTAT - THE COMBINATORIAL STATISTIC FINDER.

The FindStat database can be found at:

\texttt{sage: findstat()}

The Combinatorial Statistic Finder (https://www.findstat.org/)

Fix the following three notions:

- A \textit{combinatorial collection} is a set S with interesting combinatorial properties,
- a \textit{combinatorial map} is a combinatorially interesting map $f : S \to S'$ between combinatorial collections, and
- a \textit{combinatorial statistic} is a combinatorially interesting map $s : S \to \mathbb{Z}$.

You can use the sage interface to FindStat to:

- identify a combinatorial statistic or map given the values on a few small objects,
- obtain more terms, formulae, references, etc. for a given statistic or map,
- edit statistics and maps and submit new statistics.

AUTHORS:

- Martin Rubey (2020): rewrite, adapt to new FindStat API

6.1 The main entry points

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{findstat()}</td>
<td>search for matching statistics.</td>
</tr>
<tr>
<td>\texttt{findmap()}</td>
<td>search for matching maps.</td>
</tr>
</tbody>
</table>

6.2 A guided tour

6.2.1 Retrieving information

The most straightforward application of the FindStat interface is to gather information about a combinatorial statistic. To do this, we supply \texttt{findstat()} with a list of (object, value) pairs. For example:
The result of this query is a list (presented as a `sage.databases.oeis.FancyTuple`) of matches. Each match consists of a `FindStatCompoundStatistic` $s : S \to \mathbb{Z}$ and an indication of the quality of the match.

The precise meaning of the result is as follows:

The composition $f_n \circ \ldots \circ f_2 \circ f_1$ applied to the objects sent to FindStat agrees with all $(\text{object}, \text{value})$ pairs of s in the database. The optional parameter `depth=1` limits the output to $n = 1$.

Suppose that the quality of the match is (q_a, q_d). Then q_a is the percentage of $(\text{object}, \text{value})$ pairs that are in the database among those which were sent to FindStat, and q_d is the percentage of $(\text{object}, \text{value})$ pairs with distinct values in the database among those which were sent to FindStat.

Put differently, if `quality` is not too small it is likely that the statistic sent to FindStat equals $s \circ f_n \circ \ldots \circ f_2 \circ f_1$. If q_a is large, but q_b is small, then there were many matches, but while the sought for statistic attains many distinct values, the match found by FindStat covers only $(\text{object}, \text{value})$ pairs for few values.

In the case at hand, for the match `St000041`, the list of maps is empty. We can retrieve the description of the statistic from the database as follows:

```python
sage: print(r[1].statistic().description())  # optional -- internet
The number of nestings of a perfect matching.
This is the number of pairs of edges $((a,b), (c,d))$ such that $a \leq c \leq d \leq b$. i.e., the edge $(c,d)$ is nested inside $(a,b)$.
```

We can check the references:

```python
sage: r[1].statistic().references()  # optional -- internet
```

If you prefer, you can look at this information also in your browser:

```python
sage: r[1].statistic().browse()  # optional -- webbrowser
```

Another interesting possibility is to look for equidistributed statistics. Instead of submitting a list of $(\text{object}, \text{value})$ pairs, we pass a list of pairs $(\text{objects}, \text{values})$:

```python
sage: data = [(PM(2*n), [m.number_of_nestings() for m in PM(2*n))] for n in range(5)]
sage: findstat(data, depth=0)  # optional -- internet
0: St000041 (quality [99, 100])
1: St000042 (quality [99, 100])
```
This results tells us that the database contains another entry that is equidistributed with the number of nestings on perfect matchings of size at most 10, namely the number of crossings. Note that there is a limit on the number of elements FindStat accepts for a query, which is currently 1000. Queries with more than 1000 elements are truncated.

Let us now look at a slightly more complicated example, where the submitted statistic is the composition of a sequence of combinatorial maps and a statistic known to FindStat. We use the occasion to advertise yet another way to pass values to FindStat:

```sage
r = findstat(Permutations, lambda pi: pi.saliances()[0], depth=2); r
```

```
# optional --
0: St000740oMp00066 with offset 1 (quality [100, 100])
1: St000740oMp00087 with offset 1 (quality [100, 100])
...
```

Note that some of the matches are up to a global offset. For example, we have:

```sage
r[1].info()
```

```
# optional --
after adding 1 to every value
and applying
   Mp00087: inverse first fundamental transformation: Permutations -> Permutations
   to the objects (see `.compound_map()` for details)

your input matches
   St000740: The last entry of a permutation.

among the values you sent, 100 percent are actually in the database,
among the distinct values you sent, 100 percent are actually in the database
```

Let us pick another particular result:

```sage
s = findstat("St000051oMp00061oMp00069")
```

```
# optional --
Mp00069: complement: Permutations -> Permutations
Mp00061: to increasing tree: Permutations -> Binary trees
St000051: The size of the left subtree of a binary tree.
```

To obtain the value of the statistic sent to FindStat on a given object, apply the maps in the list in the given order to this object, and evaluate the statistic on the result. For example, let us check that the result given by FindStat agrees with our statistic on the following permutation:

```sage
pi = Permutation([3,1,4,5,2]); pi.saliances()[0]
```

```
3
```

We first have to find out, what the maps and the statistic actually do:

```sage
print(s.statistic().description())
```

```
The size of the left subtree of a binary tree.
```

```sage
print(s.statistic().sage_code())
```

```
def statistic(T):
    (continues on next page)
So, the following should coincide with what we sent FindStat:

```python
sage: pi.complement().increasing_tree_shape()[0].node_number()
3
```

## 6.2.2 Editing and submitting statistics

Of course, often a statistic will not be in the database:

```python
sage: s = findstat([(d, randint(1,1000)) for d in DyckWords(4)]); s # optional --
˓→ internet
St000000: a new statistic on Dyck paths
```

In this case, and if the statistic might be “interesting”, please consider submitting it to the database using `FindStatStatistic.submit()`.

Also, you may notice omissions, typos or even mistakes in the description, the code and the references. In this case, simply replace the value by using `FindStatFunction.set_description()`, `FindStatStatistic.set_code()` or `FindStatFunction.set_references_raw()`, and then `FindStatStatistic.submit()` your changes for review by the FindStat team.

## 6.3 Classes and methods

```python
class sage.databases.findstat.FindStat
 Bases: UniqueRepresentation, SageObject
 The Combinatorial Statistic Finder.
 FindStat is a class preserving user information.

 browse()
 Open the FindStat web page in a browser.
 EXAMPLES:

        ```
        sage: findstat().browse()  # optional --
        ←- webbrowser
        ```

 login()
 Open the FindStat login page in a browser.
 EXAMPLES:
```
```python
sage: findstat().login() # optional - webbrowser
set_user(name=None, email=None)
Set the user for the session.

INPUT:
- name – the name of the user.
- email – an email address of the user.

This information is used when submitting a statistic with `FindStatStatistic.submit()`.

EXAMPLES:
```python
sage: findstat().set_user(name="Anonymous", email="invalid@org")
```

Note: It is usually more convenient to login into the FindStat web page using the `login()` method.

```python
user_email()
Return the user name used for submissions.

EXAMPLES:
```python
sage: findstat().set_user(name="Anonymous", email="invalid@org")
sage: findstat().user_email()
'invalid@org'
```

```python
user_name()
Return the user name used for submissions.

EXAMPLES:
```python
sage: findstat().set_user(name="Anonymous", email="invalid@org")
sage: findstat().user_name()
'Anonymous'
```

```python
class sage.databases.findstat.FindStatCollection(parent, id, data, sageconstructor_overridden)
Bases: Element
A FindStat collection.

*FindStatCollection* is a class representing a combinatorial collection available in the FindStat database.

Its main use is to allow easy specification of the combinatorial collection when using `findstat`. It also provides methods to quickly access its FindStat web page (`browse()`), check whether a particular element is actually in the range considered by FindStat (`in_range()`), etc.

INPUT:

One of the following:
- a string eg. ‘Dyck paths’ or ‘DyckPaths’, case-insensitive, or
- an integer designating the FindStat id of the collection, or
- a sage object belonging to a collection, or
- an iterable producing a sage object belonging to a collection.
EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatCollection
sage: FindStatCollection("Dyck paths") # optional - internet
Cc0005: Dyck paths

sage: FindStatCollection(5) # optional - internet
Cc0005: Dyck paths

sage: FindStatCollection(DyckWord([1,0,1,0])) # optional - internet
Cc0005: Dyck paths

sage: FindStatCollection(DyckWords(2)) # optional - internet
a subset of Cc0005: Dyck paths

sage: FindStatCollection(DyckWords) # optional - internet
Cc0005: Dyck paths
```

See also:

FindStatCollections

browse()

Open the FindStat web page of the collection in a browser.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatCollection
sage: FindStatCollection("Permutations").browse() # optional - webbrowser
```

element_level(element)

Return the level of an element.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatCollection
sage: cc = FindStatCollection("Perfect Matchings") # optional - internet
sage: cc.element_level(PerfectMatching([[1,2],[3,4],[5,6]])) # optional - internet
6
```

elements_on_level(level)

Return an iterable over the elements on the given level.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatCollection
sage: FindStatCollection("Perfect Matchings").elements_on_level(4) # optional -
```

(continues on next page)
Perfect matchings of \{1, 2, 3, 4\}

**first_terms** *(function, level=None)*

Compute the first few terms of the given function, possibly restricted to a level, as a lazy list.

**INPUT:**

- *function* – a callable
- *level* – (optional), the level to restrict to

**OUTPUT:**

A lazy list of pairs of the form (object, value).

**EXAMPLES:**

```python
sage: from sage.databases.findstat import FindStatCollection
sage: c = FindStatCollection("GelfandTsetlinPatterns")
optional - internet
sage: c.first_terms(lambda x: 1)[:10].list() # optional - internet
[([[1, 0], [0]], 1),
 [[[[2, 0], [0]], 1),
 [[[[2, 0], [1]], 1),
 [[[[2, 0], [2]], 1),
 [[[[1, 1], [1]], 1),
 ([[[1, 0, 0], [0, 0], [0]], 1),
 ([[[1, 0, 0], [1, 0], [0]], 1),
 ([[[1, 0, 0], [1, 0], [1]], 1),
 ([[[3, 0], [0]], 1])
```

**from_string()**

Return a function that returns the object given a FindStat representation.

**OUTPUT:**

The function that produces the sage object given its FindStat representation as a string.

**EXAMPLES:**

```python
sage: from sage.databases.findstat import FindStatCollection
sage: c = FindStatCollection("Posets")
optional - internet
sage: p = c.from_string('([[0, 2], (2, 1)], 3)')
optional - internet
sage: p.cover_relations()
optional - internet
[[0, 2], [2, 1]]
```

```python
sage: c = FindStatCollection("Binary Words")
optional - internet
sage: w = c.from_string('010101')
optional - internet
```
### id()

Return the FindStat identifier of the collection.

**OUTPUT:**

The FindStat identifier of the collection as an integer.

**EXAMPLES:**

```python
sage: from sage.databases.findstat import FindStatCollection
sage: c = FindStatCollection("GelfandTsetlinPatterns")
optional - \rightarrow \text{internet}
sage: c.id() # optional - \rightarrow \text{internet}
18
```

### id_str()

Return the FindStat identifier of the collection.

**OUTPUT:**

The FindStat identifier of the collection as a string.

**EXAMPLES:**

```python
sage: from sage.databases.findstat import FindStatCollection
sage: c = FindStatCollection("GelfandTsetlinPatterns")
optional - \rightarrow \text{internet}
sage: c.id_str() # optional - \rightarrow \text{internet}
'Cc0018'
```

### in_range(element)

Check whether an element of the collection is in FindStat’s precomputed range.

**INPUT:**

- **element** – a sage object that belongs to the collection.

**OUTPUT:**

True, if `element` is used by the FindStat search engine, and False if it is ignored.

**EXAMPLES:**

```python
sage: from sage.databases.findstat import FindStatCollection
sage: c = FindStatCollection("GelfandTsetlinPatterns")
optional - \rightarrow \text{internet}
sage: c.in_range(GelfandTsetlinPattern([[2, 1], [1]])) # optional - \rightarrow \text{internet}
True
sage: c.in_range(GelfandTsetlinPattern([[3, 1], [1]])) # optional - \rightarrow \text{internet}
```
**is_element**(element)

Return whether the element belongs to the collection.

If the collection is not yet supported, return whether element is a string.

**EXAMPLES:**

```
sage: from sage.databases.findstat import FindStatCollection
sage: cc = FindStatCollection("Perfect Matchings")
˓→ internet
sage: cc.is_element(PerfectMatching([[1,2],[3,4],[5,6]]))
˓→ internet
True
sage: cc.is_element(SetPartition([[1,2],[3,4],[5,6]]))
˓→ internet
False
```

**is_supported**()

Check whether the collection is fully supported by the interface.

**EXAMPLES:**

```
sage: from sage.databases.findstat import FindStatCollection
sage: FindStatCollection(1).is_supported()
˓→ internet
True
sage: FindStatCollection(24).is_supported()
˓→ internet, random
False
```

**levels_with_sizes**()

Return a dictionary from levels to level sizes.

**EXAMPLES:**

```
sage: from sage.databases.findstat import FindStatCollection
sage: cc = FindStatCollection("Perfect Matchings")
˓→ internet
sage: cc.levels_with_sizes()
˓→ internet
{2: 1, 4: 3, 6: 15, 8: 105, 10: 945}
```

**name**(style=’singular’)

Return the name of the FindStat collection.

**INPUT:**

- a string – (default:”singular”) can be “singular”, or “plural”.  

---

6.3. Classes and methods
OUTPUT:
The name of the FindStat collection, in singular or in plural.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatCollection
sage: FindStatCollection("Binary trees").name() # optional - internet
'Binary tree'
sage: FindStatCollection("Binary trees").name(style="plural") # optional - internet
'Binary trees'
```

to_string()

Return a function that returns a FindStat representation given an object.

If the collection is not yet supported, return the identity.

OUTPUT:
The function that produces the string representation as needed by the FindStat search webpage.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatCollection
sage: p = Poset((range(3), [[0, 1], [1, 2]])) # optional - internet
sage: c = FindStatCollection("Posets") # optional - internet
sage: c.to_string()(p) # optional - internet
'([[(0, 1), (1, 2)], 3]'
```

class sage.databases.findstat.FindStatCollections

Bases: UniqueRepresentation, Parent

The class of FindStat collections.

The elements of this class are combinatorial collections in FindStat as of January 2020. If a new collection was added to the web service since then, the dictionary _SupportedFindStatCollections in this module has to be updated accordingly.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatCollections
sage: sorted(c for c in FindStatCollections() if c.is_supported()) # optional - internet
[Cc0001: Permutations,
Cc0002: Integer partitions,
Cc0005: Dyck paths,
Cc0006: Integer compositions,
Cc0007: Standard tableaux,
Cc0009: Set partitions,
Cc0010: Binary trees,
Cc0012: Perfect matchings,
Cc0013: Cores,
(continues on next page)
Cc0014: Posets,
Cc0017: Alternating sign matrices,
Cc0018: Gelfand-Tsetlin patterns,
Cc0019: Semistandard tableaux,
Cc0020: Graphs,
Cc0021: Ordered trees,
Cc0022: Finite Cartan types,
Cc0023: Parking functions,
Cc0024: Binary words,
Cc0025: Plane partitions,
Cc0026: Decorated permutations,
Cc0027: Signed permutations,
Cc0028: Skew partitions,
Cc0029: Lattices]

Element
alias of FindStatCollection

class sage.databases.findstat.FindStatCombinatorialMap
Bases: SageObject
A class serving as common ancestor of FindStatStatistic and FindStatCompoundStatistic.

class sage.databases.findstat.FindStatCombinatorialStatistic
Bases: SageObject
A class providing methods to retrieve the first terms of a statistic.

This class provides methods applicable to instances of FindStatStatistic, FindStatCompoundStatistic and FindStatStatisticQuery.

first_terms()
Return the first terms of the (compound) statistic as a dictionary.

OUTPUT:
A dictionary from sage objects representing an element of the appropriate collection to integers.

This method is overridden in FindStatStatisticQuery.

EXAMPLES:

```sage
sage: findstat(41).first_terms()[PerfectMatching([(1,6),(2,5),(3,4)])] #␣  ˓→optional -- internet
3
```

first_terms_str(max_values=1200)
Return the first terms of the statistic in the format needed for a FindStat query.

OUTPUT:
A string, where each line is of the form object => value, where object is the string representation of an element of the appropriate collection as used by FindStat and value is an integer.

EXAMPLES:
generating_functions(style='polynomial', max_values=1200)

Return the generating functions of the statistic as a dictionary.

The keys of this dictionary are the levels for which the generating function of the statistic can be computed from the known data. Each value represents a generating function for one level, as a polynomial, as a dictionary, or as a list of coefficients.

INPUT:

- a string – (default:"polynomial") can be “polynomial”, “dictionary”, or “list”.

OUTPUT:

- if style is "polynomial", the generating function is returned as a polynomial.
- if style is "dictionary", the generating function is returned as a dictionary representing the monomials of the generating function.
- if style is "list", the generating function is returned as a list of coefficients of the generating function. In this case, leading and trailing zeros are omitted.

EXAMPLES:

```sage
sage: st = findstat(41) # optional -
←- internet
sage: st.generating_functions() # optional -
←- internet
{2: 1,
 4: q + 2,
 6: q^3 + 3*q^2 + 6*q + 5,
 8: q^6 + 4*q^5 + 10*q^4 + 20*q^3 + 28*q^2 + 28*q + 14}

sage: st.generating_functions(style="dictionary") # optional -
←- internet
{2: {0: 1},
 4: {0: 2, 1: 1},
 6: {0: 5, 1: 6, 2: 3, 3: 1},
 8: {0: 14, 1: 28, 2: 28, 3: 20, 4: 10, 5: 4, 6: 1}}

sage: st.generating_functions(style="list") # optional -
←- internet
{2: [1], 4: [2, 1], 6: [5, 6, 3, 1], 8: [14, 28, 28, 20, 10, 4, 1]}
```

eois_search(search_size=32, verbose=True)

Search the OEIS for the generating function of the statistic.

INPUT:

- search_size (default:32) the number of integers in the sequence. If this is chosen too big, the OEIS result may be corrupted.
- verbose (default:True) if true, some information about the search are printed.
OUTPUT:

• a tuple of OEIS sequences, see `sage.databases.oeis.OEIS.find_by_description()` for more information.

EXAMPLES:

```
sage: st = findstat(41)  # optional - internet
sage: st.oeis_search()  # optional - internet
```

Searching the OEIS for "1 2,1 5,6,3,1 14,28,28,20,10,4,1"
0: A067311: Triangle read by rows: T(n,k) gives number of ways of arranging n___
→ chords on a circle with k simple intersections ...

```
class sage.databases.findstat.FindStatCompoundMap(id, domain=None, codomain=None, check=True)
```

Initialize a compound statistic.

INPUT:

• id – a padded identifier
• domain– (optional), the domain of the compound map
• codomain– (optional), the codomain of the compound map
• check – whether to check that domains and codomains fit

If domain and codomain are given and check is False, they are not fetched from FindStat.
If id is the empty string, domain must be provided, and the identity map on this collection is returned.

```
browse()
```

Open the FindStat web page of the compound map in a browser.

EXAMPLES:

```
sage: findmap(62).browse()  # optional - webbrowser
```

```
codomain()
```

Return the codomain of the compound map.

EXAMPLES:

```
sage: findmap("Mp00099oMp00127").codomain()  # optional - internet
Cc0005: Dyck paths
```

```
domain()
```

Return the domain of the compound map.

EXAMPLES:

```
sage: findmap("Mp00099oMp00127").domain()  # optional - internet
Cc0001: Permutations
```

6.3. Classes and methods
id_str()

Return the padded identifier of the compound map.

EXAMPLES:

```python
sage: findmap("Mp00099oMp00127").id_str()  # optional - \internet
'Mp00099oMp00127'
```

info()

Print a detailed explanation of the compound map.

EXAMPLES:

```python
sage: findmap("Mp00099oMp00127").info()  # optional - \internet
Mp00127: left-to-right-maxima to Dyck path: Permutations -> Dyck paths
Mp00099: bounce path: Dyck paths -> Dyck paths
```

maps()

Return the maps occurring in the compound map as a list.

EXAMPLES:

```python
sage: findmap("Mp00099oMp00127").maps()  # optional - \internet
[Mp00127: left-to-right-maxima to Dyck path, Mp00099: bounce path]
```

class sage.databases.findstat.FindStatCompoundStatistic(id, domain=None, check=True)

Bases: Element, FindStatCombinatorialStatistic

Initialize a compound statistic.

A compound statistic is a sequence of maps followed by a statistic.

INPUT:

- id – a padded identifier
- domain – (optional), the domain of the compound statistic
- check – whether to check that domains and codomains fit

If the domain is given and check is False, it is not fetched from FindStat.

browse()

Open the FindStat web page of the compound statistic in a browser.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatCompoundStatistic
sage: FindStatCompoundStatistic("St000042oMp00116").browse()  # optional - \webbrowser
```

compound_map()

Return the compound map which is part of the compound statistic.

EXAMPLES:
Databases, Release 10.1

```python
sage: findstat("St000051oMp00061oMp00069").compound_map()  # optional -
               \rightarrow \text{internet}
Mp00061oMp00069
```

domain()

Return the domain of the compound statistic.

EXAMPLES:

```python
sage: findstat("St000042oMp00116").domain()  # optional -
               \rightarrow \text{internet}
Cc0012: Perfect matchings
```

id_str()

Return the padded identifier of the compound statistic.

EXAMPLES:

```python
sage: findstat("St000042oMp00116").id_str()  # optional -
               \rightarrow \text{internet}
'St000042oMp00116'
```

info()

Print a detailed description of the compound statistic.

EXAMPLES:

```python
sage: findstat("St000042oMp00116").info()  # optional -
               \rightarrow \text{internet}
Mp00116: Kasraoui-Zeng: Perfect matchings \rightarrow Perfect matchings
St000042: The number of crossings of a perfect matching.
```

statistic()

Return the statistic of the compound statistic.

EXAMPLES:

```python
sage: findstat("St000041oMp00116").statistic()  # optional -
               \rightarrow \text{internet}
St000041: The number of nestings of a perfect matching.
```

class `sage.databases.findstat.FindStatFunction(id, data=None, function=None)`

Bases: `SageObject`

A class providing the common methods of `FindStatMap` and `FindStatStatistic`.

This class provides methods to access and modify properties of a single statistic or map of the FindStat database.

description()

Return the description of the statistic or map.

OUTPUT:

A string. For statistics, the first line is used as name.

EXAMPLES:
Databases, Release 10.1

```
sage: print(findstat(51).description())  # optional - internet
The size of the left subtree of a binary tree.
```

domain()

Return the FindStat domain of the statistic or map.

OUTPUT:

The domain of the statistic or map as an instance of `FindStatCollection`.

EXAMPLES:

```
sage: findstat(51).domain()  # optional - internet
Cc0010: Binary trees
sage: findmap(62).domain()  # optional - internet
Cc0001: Permutations
```

id()

Return the FindStat identifier of the statistic or map.

OUTPUT:

The FindStat identifier of the statistic or map, as an integer.

EXAMPLES:

```
sage: findstat(51).id()  # optional - internet
51
```

id_str()

Return the FindStat identifier of the statistic or map.

OUTPUT:

The FindStat identifier of the statistic or map, as a string.

EXAMPLES:

```
sage: findstat(51).id_str()  # optional - internet
'St000051'
```

name()

Return the name of the statistic or map.

OUTPUT:

A string. For statistics, this is just the first line of the description.

EXAMPLES:

```
sage: findstat(51).name()  # optional - internet
'The size of the left subtree of a binary tree.'
```

Chapter 6. FindStat - the Combinatorial Statistic Finder.
references()

Return the references associated with the statistic or map.

OUTPUT:
An instance of `sage.databases.oeis.FancyTuple`, each item corresponds to a reference.

EXAMPLES:

```
sage: findstat(41).references()                   # optional - internet
```

references_raw()

Return the unrendered references associated with the statistic or map.

EXAMPLES:

```
sage: print(findstat(41).references_raw())        # optional - internet
```

reset()

Discard all modification of the statistic or map.

EXAMPLES:

```
sage: s = findmap(62)                              # optional - internet
sage: s.set_name(u"Möbius"); s                  # optional - internet
Mp00062(modified): Möbius
sage: s.reset(); s                                # optional - internet
Mp00062: Lehmer-code to major-code bijection
```

sage_code()

Return the sage code associated with the statistic or map.

OUTPUT:
An empty string or a string of the form:

```python
def statistic(x):
    ...
```
or:

```python
def mapping(x):
    ...
```

EXAMPLES:
set_description(value)
Set the description of the statistic or map.

INPUT:

• a string – for statistics, this is the name of the statistic followed by its description on a separate line.
This information is used when submitting the statistic or map with submit().

EXAMPLES:

```sage:
sage: q = findstat([(d, randint(1, 1000)) for d in DyckWords(4)])  # optional -- internet
sage: q.set_description("Random values on Dyck paths.\nNot for submission.")  # optional -- internet
sage: print(q.description())  # optional -- internet
```

Random values on Dyck paths.
Not for submission.

set_references_raw(value)
Set the references associated with the statistic or map.

INPUT:

• a string – each reference should be on a single line, and consist of one or more links to the same item.
FindStat will automatically resolve the links, if possible. A complete list of supported services can be found at <https://findstat.org/NewStatistic>.
This information is used when submitting the statistic with submit().

EXAMPLES:

```sage:
sage: q = findstat([(d, randint(1, 1000)) for d in DyckWords(4)])  # optional -- internet
sage: q.set_references_raw("[[arXiv:1102.4226]]\n[[oeis:A000001]]")  # optional -- internet
sage: q.references()  # optional -- internet
```

0: [[arXiv:1102.4226]]
1: [[oeis:A000001]]

set_sage_code(value)
Set the code associated with the statistic or map.

INPUT:

• a string – SageMath code producing the values of the statistic or map.
Contributors are encouraged to submit code for statistics using FindStatStatistic.set_code(). Modifying the “verified” SageMath code using this method is restricted to members of the FindStatCrew, for all other contributors this method has no effect.

EXAMPLES:
class sage.databases.findstat.FindStatMap(parent, id)

Bases: Element, FindStatFunction, FindStatCombinatorialMap

A FindStat map.

FindStatMap is a class representing a combinatorial map available in the FindStat database.
This class provides methods to inspect various properties of these maps, in particular code().

EXAMPLES:

def statistic(x):
 return randint(1,1000)

codomain()
Return the FindStat collection which is the codomain of the map.

OUTPUT:
The codomain of the map as a FindStatCollection.

EXAMPLES:

code()
Optional -- internet
sage: q = findstat([(d, randint(1,1000)) for d in DyckWords(4)])
optional -- internet
sage: q.set_sage_code("def statistic(x):
 return randint(1,1000)"")
optional -- internet
sage: print(q.sage_code())
optional -- internet
def statistic(x):
 return randint(1,1000)

class sage.databases.findstat.FindStatMap(parent, id)

Bases: Element, FindStatFunction, FindStatCombinatorialMap

A FindStat map.

FindStatMap is a class representing a combinatorial map available in the FindStat database.
This class provides methods to inspect various properties of these maps, in particular code().

EXAMPLES:

def statistic(x):
 return randint(1,1000)

codomain()
Return the FindStat collection which is the codomain of the map.

OUTPUT:
The codomain of the map as a FindStatCollection.

EXAMPLES:

code()
Optional -- internet
sage: q = findstat([(d, randint(1,1000)) for d in DyckWords(4)])
optional -- internet
sage: q.set_sage_code("def statistic(x):
 return randint(1,1000)"")
optional -- internet
sage: print(q.sage_code())
optional -- internet
def statistic(x):
 return randint(1,1000)

class sage.databases.findstat.FindStatMap(parent, id)

Bases: Element, FindStatFunction, FindStatCombinatorialMap

A FindStat map.

FindStatMap is a class representing a combinatorial map available in the FindStat database.
This class provides methods to inspect various properties of these maps, in particular code().

EXAMPLES:

def statistic(x):
 return randint(1,1000)

codomain()
Return the FindStat collection which is the codomain of the map.

OUTPUT:
The codomain of the map as a FindStatCollection.

EXAMPLES:

code()
Optional -- internet
sage: q = findstat([(d, randint(1,1000)) for d in DyckWords(4)])
optional -- internet
sage: q.set_sage_code("def statistic(x):
 return randint(1,1000)"")
optional -- internet
sage: print(q.sage_code())
optional -- internet
def statistic(x):
 return randint(1,1000)

class sage.databases.findstat.FindStatMap(parent, id)

Bases: Element, FindStatFunction, FindStatCombinatorialMap

A FindStat map.

FindStatMap is a class representing a combinatorial map available in the FindStat database.
This class provides methods to inspect various properties of these maps, in particular code().

EXAMPLES:

def statistic(x):
 return randint(1,1000)

codomain()
Return the FindStat collection which is the codomain of the map.

OUTPUT:
The codomain of the map as a FindStatCollection.

EXAMPLES:

code()
Optional -- internet
sage: q = findstat([(d, randint(1,1000)) for d in DyckWords(4)])
optional -- internet
sage: q.set_sage_code("def statistic(x):
 return randint(1,1000)"")
optional -- internet
sage: print(q.sage_code())
optional -- internet
def statistic(x):
 return randint(1,1000)

class sage.databases.findstat.FindStatMap(parent, id)

Bases: Element, FindStatFunction, FindStatCombinatorialMap

A FindStat map.

FindStatMap is a class representing a combinatorial map available in the FindStat database.
This class provides methods to inspect various properties of these maps, in particular code().

EXAMPLES:

def statistic(x):
 return randint(1,1000)

codomain()
Return the FindStat collection which is the codomain of the map.

OUTPUT:
The codomain of the map as a FindStatCollection.

EXAMPLES:

code()
Optional -- internet
sage: q = findstat([(d, randint(1,1000)) for d in DyckWords(4)])
optional -- internet
sage: q.set_sage_code("def statistic(x):
 return randint(1,1000)"")
optional -- internet
sage: print(q.sage_code())
optional -- internet
def statistic(x):
 return randint(1,1000)

class sage.databases.findstat.FindStatMap(parent, id)

Bases: Element, FindStatFunction, FindStatCombinatorialMap

A FindStat map.

FindStatMap is a class representing a combinatorial map available in the FindStat database.
This class provides methods to inspect various properties of these maps, in particular code().

EXAMPLES:

def statistic(x):
 return randint(1,1000)

codomain()
Return the FindStat collection which is the codomain of the map.

OUTPUT:
The codomain of the map as a FindStatCollection.

EXAMPLES:

code()
Optional -- internet
sage: q = findstat([(d, randint(1,1000)) for d in DyckWords(4)])
optional -- internet
sage: q.set_sage_code("def statistic(x):
 return randint(1,1000)"")
optional -- internet
sage: print(q.sage_code())
optional -- internet
def statistic(x):
 return randint(1,1000)
info()

Print a detailed description of the map.

EXAMPLES:

```python
sage: findmap("Mp00116").info() # optional -
Mp00116: Kasraoui-Zeng: Perfect matchings -> Perfect matchings
```

properties_raw()

Return the properties of the map.

OUTPUT:

The properties as a string.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatMap # optional -
sage: FindStatMap(61).properties_raw() # optional -
'surjective, graded'
```

set_name(value)

Set the name of the map.

INPUT:

- a string – the new name of the map.

This information is used when submitting the map with `submit()`.

set_properties_raw(value)

Set the properties of the map.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatMap # optional -
sage: FindStatMap(61).set_properties_raw('surjective') # optional --
sage: FindStatMap(61).properties_raw() # optional -
'surjective'
```

submit()

Open the FindStat web page for editing the map in a browser.
class sage.databases.findstat.FindStatMapQuery(data=None, values_of=None, distribution_of=None, domain=None, codomain=None, known_terms=None, function=None, depth=2, debug=False)

Bases: FindStatMap

A class representing a query for FindStat (compound) maps.

class sage.databases.findstat.FindStatMaps(domain=None, codomain=None)

Bases: UniqueRepresentation, Parent

The class of FindStat maps.

The elements of this class are combinatorial maps currently in FindStat.

EXAMPLES:

We can print a sample map for each domain and codomain:

```
sage: from sage.databases.findstat import FindStatCollections, FindStatMaps
sage: ccs = sorted(FindStatCollections())[:3]  # optional - internet
sage: for cc_dom in ccs:  # optional - internet
....:     for cc_codom in ccs:
....:         print(cc_dom.name(style="plural") + " -> " + cc_codom.name(style="plural"))
....:         try:
....:             print(" " + next(iter(FindStatMaps(cc_dom, cc_codom))).name())
....:         except StopIteration:
....:             pass
Permutations -> Permutations
    Lehmer-code to major-code bijection
Permutations -> Integer partitions
    Robinson-Schensted tableau shape
Permutations -> Dyck paths
    left-to-right-maxima to Dyck path
Integer partitions -> Permutations
Integer partitions -> Integer partitions
    conjugate
Integer partitions -> Dyck paths
    to Dyck path
Dyck paths -> Permutations
    to non-crossing permutation
Dyck paths -> Integer partitions
    to partition
Dyck paths -> Dyck paths
    reverse
```

Element

alias of FindStatMap

class sage.databases.findstat.FindStatMatchingMap(matching_map, quality, domain=None, codomain=None)

Bases: FindStatCompoundMap

Initialize a FindStat map match.

INPUT:
• matching_map, a compound map identifier
• quality, the quality of the match, as provided by FindStat
• domain – (optional), the domain of the compound map
• codomain – (optional), the codomain of the compound map

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatMatchingMap
dsage: FindStatMatchingMap("Mp00099oMp00127", [83])
# optional --internet
Mp00099oMp00127 (quality [83])
```

info()

Print a detailed explanation of the match.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatMatchingMap
dsage: FindStatMatchingMap("Mp00099oMp00127", [83]).info()
# optional --internet
your input matches
Mp00127: left-to-right-maxima to Dyck path: Permutations -> Dyck paths
Mp00099: bounce path: Dyck paths -> Dyck paths
among the values you sent, 83 percent are actually in the database
```

quality()

Return the quality of the match, as provided by FindStat.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatMatchingMap
dsage: FindStatMatchingMap("Mp00099oMp00127", [83]).quality()
# optional --internet
[83]
```

class sage.databases.findstat.FindStatMatchingStatistic

Bases: FindStatCompoundStatistic

Initialize a FindStat statistic match.

INPUT:

• matching_statistic, a compound statistic identifier
• offset, the offset of the values, as provided by FindStat
• quality, the quality of the match, as provided by FindStat
• domain – (optional), the domain of the compound statistic

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatMatchingStatistic
dsage: FindStatMatchingStatistic("St000042oMp00116", 1, [17, 83])
# optional --internet
(continues on next page)```
### info()

Print a detailed explanation of the match.

**EXAMPLES:**

```python
sage: from sage.databases.findstat import FindStatMatchingStatistic
sage: r = FindStatMatchingStatistic("St000042oMp00116", 1, [17, 83]) # optional -- internet
sage: r.info() # optional -- internet

Your input matches
- **St000042**: The number of crossings of a perfect matching.

among the values you sent, 17 percent are actually in the database,
among the distinct values you sent, 83 percent are actually in the database

```

### offset()

Return the offset which has to be added to each value of the compound statistic to obtain the desired value.

**EXAMPLES:**

```python
sage: from sage.databases.findstat import FindStatMatchingStatistic
sage: r = FindStatMatchingStatistic("St000042oMp00116", 1, [17, 83]) # optional -- internet
sage: r.offset() # optional -- internet

1
```

### quality()

Return the quality of the match, as provided by FindStat.

The quality of a statistic match is a pair of percentages \((q_a, q_d)\), where \(q_a\) is the percentage of \((object, value)\) pairs that are in the database among those which were sent to FindStat, and \(q_d\) is the percentage of \((object, value)\) pairs with distinct values in the database among those which were sent to FindStat.
EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatMatchingStatistic
sage: r = FindStatMatchingStatistic("St000042oMp00116", 1, [17, 83]) # optional -- internet
sage: r.quality() # optional -- internet
[17, 83]
```

```python
class sage.databases.findstat.FindStatStatistic(parent, id)

Bases: Element, FindStatFunction, FindStatCombinatorialStatistic

A FindStat statistic. FindStatStatistic is a class representing a combinatorial statistic available in the FindStat database. This class provides methods to inspect and update various properties of these statistics.

EXAMPLES:

```python
sage: from sage.databases.findstat import FindStatStatistic
sage: FindStatStatistic(41)  # optional -- internet
St000041: The number of nestings of a perfect matching.
```

See also:

* FindStatStatistics

* browse() Open the FindStat web page of the statistic in a browser.

EXAMPLES:

```python
sage: findstat(41).browse()  # optional -- webbrowser
```

* code() Return the code associated with the statistic or map.

OUTPUT:

A string. Contributors are encouraged to submit sage code in the form:

```python
def statistic(x):
    ...
```

but the string may also contain code for other computer algebra systems.

EXAMPLES:

```python
sage: print(findstat(41).code())  # optional -- internet
def statistic(x):
    return len(x.nestings())
```

(continues on next page)
Databases, Release 10.1

(* in Mathematica *)

```mathematica
tree = {{{{}, {}}, {{}, {}}}, {{}, {}}}, {{}, {}}};
Count[tree, {{___}, {{___}, {{___}, {___}}}}, {0, Infinity}]
```

edit(max_values=1200)

Open the FindStat web page for editing the statistic or submitting a new statistic in a browser.

info()

Print a detailed description of the statistic.

EXAMPLES:

```python
sage: findstat("St000042").info()  # optional - internet
St000042: The number of crossings of a perfect matching.
```

set_code(value)

Set the code associated with the statistic.

INPUT:

- a string – code producing the values of the statistic.

Contributors are encouraged to submit SageMath code in the form:

```python
def statistic(x):
    ...
```

However, code for any other platform is accepted also.

This information is used when submitting the statistic with `submit()`.

EXAMPLES:

```python
sage: q = findstat([[(d, randint(1,1000)) for d in DyckWords(4)]]))  # optional - internet
sage: q.set_code("def statistic(x):
    return randint(1,1000)")  # optional - internet
sage: print(q.code())  # optional - internet
def statistic(x):
    return randint(1,1000)
```

set_first_terms(values)

Update the first terms of the statistic.

INPUT:

- a list of pairs of the form (object, value) where object is a sage object representing an element of the appropriate collection and value is an integer.

This information is used when submitting the statistic with `submit()`.

Warning: This method cannot check whether the given values are actually correct. Moreover, it does not even perform any sanity checks.

6.3. Classes and methods 73
submit(max_values=1200)

Open the FindStat web page for editing the statistic or submitting a new statistic in a browser.

class sage.databases.findstat.FindStatStatisticQuery(data=None, values_of=None, distribution_of=None, domain=None, known_terms=None, function=None, depth=2, debug=False)

Bases: FindStatStatistic

A class representing a query for FindStat (compound) statistics.

first_terms(max_values=1200)

Return the pairs of the known terms which contain singletons as a dictionary.

EXAMPLES:

```python
sage: PM = PerfectMatchings
sage: l = [(PM(2*n), m.number_of_nestings() for m in PM(2*n)) for n in range(5)]
sage: r = findstat(l, depth=0); r # optional -- internet
0: St000041 (quality [99, 100])
1: St000042 (quality [99, 100])
sage: r.first_terms() # optional -- internet
{[]: 0, [(1, 2)]: 0}
```

class sage.databases.findstat.FindStatStatistics(domain=None)

Bases: UniqueRepresentation, Parent

The class of FindStat statistics.

The elements of this class are combinatorial statistics currently in FindStat.

EXAMPLES:

We can print a list of the first few statistics currently in FindStat in a given domain:

```python
sage: from sage.databases.findstat import FindStatStatistics
sage: for st, _ in zip(FindStatStatistics("Perfect Matchings"), range(3)): # optional -- internet
.....: print(" " + st.name())
The number of nestings of a perfect matching.
The number of crossings of a perfect matching.
The number of crossings plus two-nestings of a perfect matching.
```

Element

alias of FindStatStatistic

sage.databases.findstat.findmap(*args, **kwargs)

Return matching maps.

INPUT:

Valid keywords are: domain, codomain, values, distribution, depth and max_values. They have the following meanings:

- depth – (default FINDSTAT_DEFAULT_DEPTH), a non-negative integer, specifying how many maps to apply to generate the given map.
• **max_values** – (default `FINDSTAT_MAX_VALUES`), an integer specifying how many values are sent to the finder.

• **domain, codomain**, an integer or string of the form `Cc1234`, designates the domain and codomain of the sought for maps.

• **values, distribution**, data specifying the values or distribution of values of the sought for maps. The keyword arguments `depth` and `max_values` are passed to the finder. The data may be specified in one of the following forms:

 – a list of pairs of the form `(object, value)`, or a dictionary from sage objects to sage objects.

 – a list of pairs of the form `(list of objects, list of values)`, or a single pair of the form `(list of objects, list of values)`. In each pair there should be as many objects as values.

 – a callable. In this case, the domain must be specified, also. The callable is then used to generate `max_values (object, value)` pairs.

 The number of terms generated may also be controlled by passing an iterable collection, such as `Permutations(3)`.

`findmap` also accepts at most three positional arguments as follows:

• a single positional argument, if none of `domain, codomain, values` or `distribution` are specified, is interpreted as a FindStat map identifier. If further arguments are given and it is a string, it is interpreted as a domain. If all this fails, it is interpreted as the specification of values.

• if two positional arguments are given, the first is interpreted as domain, and the second either as codomain or the specification of values.

• if three positional arguments are given, the first two are interpreted as domain and codomain, and the third as the specification of values.

OUTPUT:

An instance of a `FindStatMap, FindStatMapQuery` or `FindStatMaps`.

EXAMPLES:

A particular map can be retrieved by its Mp-identifier or number:

```
sage: findmap('Mp00062')
Mp00062: Lehmer-code to major-code bijection
```

```
sage: findmap(62)
Mp00062: Lehmer-code to major-code bijection
```

```
sage: findmap("Mp00099oMp00127")
Mp00099oMp00127
```

The database can be searched by providing a list of pairs:

```
sage: l = [pi for n in range(5) for pi in Permutations(n)]
sage: findmap([(pi, pi.complement().increasing_tree_shape()) for pi in l], depth=2)
0: Mp00061oMp00069 (quality [...])
```

or a dictionary:
Note however, that the results of these two queries need not compare equal, because we compare queries by the
data sent, and the ordering of the data might be different.

Another possibility is to send a collection and a function. In this case, the function is applied to the first few
objects of the collection:

```
sage: findmap("Permutations", lambda pi: pi.increasing_tree_shape(), depth=1)  #optional -- internet
0: Mp00061 (quality [100])
```

In rare cases, it may not be possible to guess the codomain of a map, in which case it can be provided as second
argument or keyword argument:

```
sage: findmap("Dyck paths", "Perfect matchings", lambda D: [(a+1, b) for a,b in D.→tunnels()],) # optional -- internet
0: Mp00146 (quality [100])
```

```
sage: findmap("Dyck paths", "Set partitions", lambda D: [(a+1, b) for a,b in D.→tunnels()],) # optional -- internet
0: Mp00092oMp00146 (quality [...])
```

Finally, we can also retrieve all maps with a given domain or codomain:

```
sage: findmap("Cc0024")  # optional -- internet
Set of combinatorial maps with domain Cc0024: Binary words used by FindStat
```

```
sage: findmap(codomain="Cores")  # optional -- internet
Set of combinatorial maps with codomain Cc0013: Cores used by FindStat
```

`sage.databases.findstat.findstat`(query=None, values=None, distribution=None, domain=None, depth=2, max_values=1000)

Return matching statistics.

INPUT:

One of the following:

- an integer or a string representing a valid FindStat identifier (e.g. 45 or ‘St000045’). The keyword arguments depth and max_values are ignored, values and distribution must be None.
- a list of pairs of the form (object, value), or a dictionary from sage objects to integer values. The keyword arguments depth and max_values are passed to the finder, values and distribution must be None.
- a list of pairs of the form (list of objects, list of values), or a single pair of the form (list of objects, list of values). In each pair there should be as many objects as values. The keyword arguments depth and max_values are passed to the finder.
- a collection and a list of pairs of the form (string, value), or a dictionary from strings to integer values. The keyword arguments depth and max_values are passed to the finder. This should only be used if the collection is not yet supported.
• a collection and a callable. The callable is used to generate max_values (object, value) pairs. The number of terms generated may also be controlled by passing an iterable collection, such as Permutations(3). The keyword arguments depth and max_values are passed to the finder.

OUTPUT:

An instance of a FindStatStatistic, represented by

• the FindStat identifier together with its name, or

• a list of triples, each consisting of
 – the statistic
 – a list of strings naming certain maps
 – a number which says how many of the values submitted agree with the values in the database, when applying the maps in the given order to the object and then computing the statistic on the result.

EXAMPLES:

A particular statistic can be retrieved by its St-identifier or number:

```sage
defindstat('St000041') # optional -
<-- internet
St000041: The number of nestings of a perfect matching.
```

```sage
defindstat(51) # optional -
<-- internet
St000051: The size of the left subtree of a binary tree.
```

```sage
defindstat('St000042oMp00116') # optional -
<-- internet
St000042oMp00116
```

The database can be searched by providing a list of pairs:

```sage
l = [m for n in range(1, 4) for m in PerfectMatchings(2^n)]
sage: findstat([(m, m.number_of_nestings()) for m in l], depth=0) # optional -
<-- internet
0: St000041 (quality [100, 100])
```

or a dictionary:

```sage
defindstat({m: m.number_of_nestings() for m in l}, depth=0) # optional -
<-- internet
0: St000041 (quality [100, 100])
```

Note however, that the results of these two queries need not compare equal, because we compare queries by the data sent, and the ordering of the data might be different.

Another possibility is to send a collection and a function. In this case, the function is applied to the first few objects of the collection:

```sage
defindstat("Perfect Matchings", lambda m: m.number_of_nestings(), depth=0) #
<-- optional -- internet
0: St000041 (quality [20, 100])
```

To search for a distribution, send a list of lists, or a single pair:
sage: PM = PerfectMatchings(10); findstat((PM, [m.number_of_nestings() for m in PM]), depth=0) # optional -- internet
0: St000042 (quality [100, 100])
1: St000041 (quality [9, 100])

Alternatively, specify the distribution parameter:

sage: findstat(12, distribution=lambda m: m.number_of_nestings(), depth=0) # optional -- internet
0: St000041 (quality [100, 100])
1: St000042 (quality [100, 100])

Note that there is a limit, FINDSTAT_MAX_VALUES, on the number of elements that may be submitted to FindStat, which is currently 1000. Therefore, the interface tries to truncate queries appropriately, but this may be impossible, especially with distribution searches:

sage: PM = PerfectMatchings(12); PM.cardinality() # optional -- internet
10395
sage: findstat((PM, [1 for m in PM])) # optional -- internet
Traceback (most recent call last):
...
ValueError: E016: The statistic finder was unable to perform a search on your data.
The following errors have occured:
You passed too few elements (0 < 3) to FindStat!

Finally, we can also retrieve all statistics with a given domain:

sage: findstat("Cc0024") # optional -- internet
Set of combinatorial statistics with domain Cc0024: Binary words in FindStat
sage: findstat(domain="Cores") # optional -- internet
Set of combinatorial statistics with domain Cc0013: Cores in FindStat
class sage.databases.conway.ConwayPolynomials
Bases: Mapping

Initialize the database.

degrees(p)
Return the list of integers \(n \) for which the database of Conway polynomials contains the polynomial of degree \(n \) over \(\text{GF}(p) \).

EXAMPLES:

```
sage: c = ConwayPolynomials()
sage: c.degrees(60821)
[1, 2, 3, 4]
sage: c.degrees(next_prime(10^7))
[]
```

has_polynomial(p, n)
Return True if the database of Conway polynomials contains the polynomial of degree \(n \) over \(\text{GF}(p) \).

INPUT:

- \(p \) – prime number
- \(n \) – positive integer

EXAMPLES:

```
sage: c = ConwayPolynomials()
sage: c.has_polynomial(97, 12)
True	sage: c.has_polynomial(60821, 5)
False
```

polynomial(p, n)
Return the Conway polynomial of degree \(n \) over \(\text{GF}(p) \), or raise a RuntimeError if this polynomial is not in the database.

Note: See also the global function conway_polynomial for a more user-friendly way of accessing the polynomial.

INPUT:
• \(p\) – prime number

• \(n\) – positive integer

OUTPUT:

List of Python int’s giving the coefficients of the corresponding Conway polynomial in ascending order of degree.

EXAMPLES:

```python
sage: c = ConwayPolynomials()
sage: c.polynomial(3, 21)
(1, 2, 0, 2, 0, 1, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
sage: c.polynomial(97, 128)
Traceback (most recent call last):
...
RuntimeError: Conway polynomial over F_97 of degree 128 not in database.
```

primes()

Return the list of prime numbers \(p\) for which the database of Conway polynomials contains polynomials over GF\((p)\).

EXAMPLES:

```python
c = ConwayPolynomials()
P = c.primes()
2 in P
True
next_prime(10^7) in P
False
```

class `sage.databases.conway.DictInMapping(dict)`

Bases: `Mapping`

Places dict into a non-mutable mapping.
TABLES OF ZEROS OF THE Riemann-zeta function

AUTHORS:

• William Stein: initial version
• Jeroen Demeyer (2015-01-20): convert database_odlyzko_zeta to new-style package

sage.databases.odlyzko.zeta_zeros()

List of the imaginary parts of the first 2,001,052 zeros of the Riemann zeta function, accurate to within 4e-9.

In order to use zeta_zeros(), you will need to install the optional Odlyzko database package:

```sage
sage -i database_odlyzko_zeta
```

You can see a list of all available optional packages with sage --optional.

REFERENCES:

• http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html

EXAMPLES:

The following example prints the imaginary part of the 13th nontrivial zero of the Riemann zeta function:

```sage
sage: zz = zeta_zeros()  # optional - database_odlyzko_zeta
sage: zz[12]               # optional - database_odlyzko_zeta
      59.347044003
sage: len(zz)              # optional - database_odlyzko_zeta
      2001052
```
IDEALS FROM THE SYMBOLIC DATA PROJECT

This file implements a thin wrapper for the optional symbolic data set of ideals as published on http://www.symbolicdata.org. From the project website:

For different purposes algorithms and implementations are tested on certified and reliable data. The development of tools and data for such tests is usually ‘orthogonal’ to the main implementation efforts, it requires different skills and technologies and is not loved by programmers. On the other hand, in many cases tools and data could easily be reused - with slight modifications - across similar projects. The SymbolicData Project is set out to coordinate such efforts within the Computer Algebra Community. Commonly collected certified and reliable data can also be used to compare otherwise incomparable approaches, algorithms, and implementations. Benchmark suites and Challenges for symbolic computations are not as well established as in other areas of computer science. This is probably due to the fact that there are not yet well agreed aims of such a benchmarking. Nevertheless various (often high quality) special benchmarks are scattered through the literature. During the last years efforts toward collection of test data for symbolic computations were intensified. They focused mainly on the creation of general benchmarks for different areas of symbolic computation and the collection of such activities on different Web site. For further qualification of these efforts it would be of great benefit to create a commonly available digital archive of these special benchmark data scattered through the literature. This would provide the community with an electronic repository of certified data that could be addressed and extended during further development.

EXAMPLES:

```
sage: sd = SymbolicData(); sd  # optional - database_symbolic_data
SymbolicData with 372 ideals

sage: sd.ZeroDim_example_1  # optional - database_symbolic_data
Ideal (x1^2 + x2^2 - 10, x1^2 + x1*x2 + 2*x2^2 - 16) of Multivariate Polynomial Ring in x1, x2 over Rational Field

sage: sd.Katsura_3  # optional - database_symbolic_data
Ideal (u0 + 2*u1 + 2*u2 + 2*u3 - 1,
     u1^2 + 2*u0*u2 + 2*u1*u3 - u2,
     2*u0*u1 + 2*u1*u2 + 2*u2*u3 - u1,
     u0^2 + 2*u1^2 + 2*u2^2 + 2*u3^2 - u0) of Multivariate Polynomial Ring in u0, u1, u2, u3 over Rational Field

sage: sd.get_ideal(’Katsura_3’, GF(127), ’degrevlex’)  # optional - database_symbolic_data
Ideal (u0 + 2*u1 + 2*u2 + 2*u3 - 1,
     u1^2 + 2*u0*u2 + 2*u1*u3 - u2,
     2*u0*u1 + 2*u1*u2 + 2*u2*u3 - u1,
     u0^2 + 2*u1^2 + 2*u2^2 + 2*u3^2 - u0) of Multivariate Polynomial Ring in u0, u1, u2, u3 over Finite Field of size 127
```
AUTHORS:

• Martin Albrecht <martinralbrecht@googlemail.com>

class sage.databases.symbolic_data.SymbolicData

 Bases: object

 Database of ideals as distributed by The SymbolicData Project (http://symbolicdata.org).

 This class needs the optional database_symbolic_data package to be installed.

 get_ideal(name, base_ring=Rational Field, term_order='degrevlex')

 Return the ideal given by ‘name’ over the base ring given by ‘base_ring’ in a polynomial ring with the term order given by ‘term_order’.

 INPUT:

 • name - name as on the symbolic data website
 • base_ring - base ring for the polynomial ring (default: QQ)
 • term_order - term order for the polynomial ring (default: degrevlex)

 OUTPUT:

 ideal as given by name in PolynomialRing(base_ring,vars,term_order)

 EXAMPLES:

 sage: sd = SymbolicData() # optional - database_symbolic_data
 sage: sd.get_ideal('Katsura_3',GF(127),'degrevlex') # optional - database_symbolic_data
 Ideal (u0 + 2*u1 + 2*u2 + 2*u3 - 1,
 u1^2 + 2*u0*u2 + 2*u1*u3 - u2,
 2*u0*u1 + 2*u1*u2 + 2*u2*u3 - u1,
 u0^2 + 2*u1^2 + 2*u2^2 + 2*u3^2 - u0) of Multivariate Polynomial Ring in u0, u1, u2, u3 over Finite Field of size 127
sage.databases.cunningham_tables.cunningham_prime_factors()

List of all the prime numbers occurring in the so called Cunningham table.

They occur in the factorization of numbers of type $b^n + 1$ or $b^n - 1$ with $b \in \{2, 3, 5, 6, 7, 10, 11, 12\}$.

Data from http://cage.ugent.be/~jdemeyer/cunningham/
class sage.databases.db_class_polynomials.AtkinClassPolynomialDatabase

Bases: ClassPolynomialDatabase

The database of Atkin class polynomials.

model = 'Atk'

class sage.databases.db_class_polynomials.ClassPolynomialDatabase

Bases: object

class sage.databases.db_class_polynomials.DedekindEtaClassPolynomialDatabase

Bases: ClassPolynomialDatabase

The database of Dedekind eta class polynomials.

model = 'Eta'

class sage.databases.db_class_polynomials.HilbertClassPolynomialDatabase

Bases: ClassPolynomialDatabase

The database of Hilbert class polynomials.

EXAMPLES:

```sage
db = HilbertClassPolynomialDatabase()
db[-4]   # optional - database_kohel
x - 1728

db[-7]   # optional - database_kohel
x + 3375

f = db[-23]; f  # optional - database_kohel
x^3 + 3491750*x^2 - 5151296875*x + 12771880859375

f.discriminant().factor()  # optional - database_kohel
-1 * 5^18 * 7^12 * 11^4 * 17^2 * 19^2 * 23

db[-23]  # optional - database_kohel
x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
```

model = 'Cls'

class sage.databases.db_class_polynomials.WeberClassPolynomialDatabase

Bases: ClassPolynomialDatabase

The database of Weber class polynomials.
CHAPTER
TWELVE

DATABASE OF MODULAR POLYNOMIALS

class sage.databases.db_modular_polynomials.AtkinModularCorrespondenceDatabase
 Bases: ModularCorrespondenceDatabase
 model = 'AtkCrr'

class sage.databases.db_modular_polynomials.AtkinModularPolynomialDatabase
 Bases: ModularPolynomialDatabase
 The database of modular polynomials \(\Phi(x,j) \) for \(X_0(p) \), where \(x \) is a function on invariant under the Atkin-Lehner invariant, with pole of minimal order at infinity.
 model = 'Atk'

class sage.databases.db_modular_polynomials.ClassicalModularPolynomialDatabase
 Bases: ModularPolynomialDatabase
 The database of classical modular polynomials, i.e. the polynomials \(\Phi_N(X,Y) \) relating the \(j \)-functions \(j(q) \) and \(j(q^N) \).
 model = 'Cls'

class sage.databases.db_modular_polynomials.DedekindEtaModularCorrespondenceDatabase
 Bases: ModularCorrespondenceDatabase
 The database of modular correspondences in \(X_0(p) \times X_0(p) \), where the model of the curves \(X_0(p) = \mathbb{P}^1 \) are specified by quotients of Dedekind’s eta function.
 model = 'EtaCrr'

class sage.databases.db_modular_polynomials.DedekindEtaModularPolynomialDatabase
 Bases: ModularPolynomialDatabase
 The database of modular polynomials \(\Phi_N(X,Y) \) relating a quotient of Dedekind eta functions, well-defined on \(X_0(N) \), relating \(x(q) \) and the \(j \)-function \(j(q) \).
 model = 'Eta'

class sage.databases.db_modular_polynomials.ModularCorrespondenceDatabase
 Bases: ModularPolynomialDatabase

class sage.databases.db_modular_polynomials.ModularPolynomialDatabase
 Bases: object
This module contains the class `KnotInfoDataBase` and auxiliary classes for it which serves as an interface to the lists of named knots and links provided at the web-pages KnotInfo and LinkInfo.

AUTHORS:

- Sebastian Oehms August 2020: initial version

```python
class sage.databases.knotinfo_db.KnotInfoColumnTypes(value)
    Bases: Enum

    Enum class to specify if a column from the table of knots and links provided at the web-pages KnotInfo and LinkInfo. is used for knots only, links only or both.

    EXAMPLES:

    sage: from sage.databases.knotinfo_db import KnotInfoColumnTypes
    sage: [col_type for col_type in KnotInfoColumnTypes]
    [KnotInfoColumnTypes.OnlyKnots: 'K',
     KnotInfoColumnTypes.OnlyLinks: 'L',
     KnotInfoColumnTypes.KnotsAndLinks: 'B']

    KnotsAndLinks = 'B'
    OnlyKnots = 'K'
    OnlyLinks = 'L'
```

```python
class sage.databases.knotinfo_db.KnotInfoColumns(value)
    Bases: Enum

    Enum class to select a column from the table of knots and links provided at the web-pages KnotInfo and LinkInfo.

    EXAMPLES:

    sage: from sage.databases.knotinfo_db import KnotInfoDataBase
    sage: ki_db = KnotInfoDataBase()
    sage: cols = ki_db.columns(); cols
    <enum 'Columns'>
    sage: from sage.databases.knotinfo_db import KnotInfoColumns
    sage: isinstance(cols.name, KnotInfoColumns)
    True

    sage: def only_links(c):
    .....:    return c.column_type() == c.types.OnlyLinks
```

(continues on next page)
\texttt{sage: [c.column_name() for c in cols if only_links(c)]} # optional - database_knotinfo

['Name - Unoriented',
'Orientations',
'Unoriented Rank',
'PD Notation (vector)',
'PD Notation (KnotTheory)',
'Braid Notation',
'Quasipositive Braid',
'Multivariable Alexander Polynomial',
'HOMF LYPT Polynomial',
'Unoriented',
'Arc Notation',
'Linking Matrix',
'Rolfes Name',
'Components',
'DT code',
'Splitting Number',
'Nullity',
'Unlinking Number',
'Weak Splitting Number']

\textbf{column_name()}

Return the name of \texttt{self} displayed on the KnotInfo web-page.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.databases.knotinfo_db import KnotInfoData_Base
sage: ki_db = KnotInfoData_Base()
sage: cols = ki_db.columns()
sage: cols.dt_code.column_name()
'DT code'
\end{verbatim}

\textbf{column_type()}

Return the type of \texttt{self}. That is an instance of Enum \texttt{KnotInfoColumn_Types}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.databases.knotinfo_db import KnotInfoData_Base
sage: ki_db = KnotInfoData_Base()
sage: cols = ki_db.columns()
sage: cols.homfly_polynomial.column_type()
<KnotInfoColumn_Types.OnlyKnots: 'K'>
sage: cols.homflypt_polynomial.column_type()
<KnotInfoColumn_Types.OnlyLinks: 'L'>
sage: cols.name.column_type()
<KnotInfoColumn_Types.KnotsAndLinks: 'B'>
\end{verbatim}

\textbf{description_webpage(new=0, autoraise=True)}

Launch the description page of \texttt{self} in the standard web browser.

\textbf{EXAMPLES:}
Databases, Release 10.1

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: cols = ki_db.columns()
sage: cols.pd_notation.description_webpage()  # not tested
True
sage: cols.homflypt_polynomial.description_webpage()  # not tested
True
```

property types

Return `KnotInfoColumnTypes` to be used for checks.

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: cols = ki_db.columns()
>>> cols.dt_code.column_type() == cols.dt_code.types.OnlyLinks
True
```

class `sage.databases.knotinfo_db.KnotInfoDataBase`(`install=False`)

Bases: `SageObject`, `UniqueRepresentation`

Database interface to KnotInfo

The original data are obtained from KnotInfo web-page (URL see the example below). In order to have these data installed during the build process as a sage-package they are converted as csv files into a tarball. This tarball has been created using the method `create_spkg_tarball()`.

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
>>> ki_db.filename.knots
<KnotInfoFilename.knots: ['https://knotinfo.math.indiana.edu/', 'knotinfo_data_complete']>
```

columns()

Return the columns of the database table as instances of enum class `KnotInfoColumns`.

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: cols = ki_db.columns()
>>> [col.column_name() for col in cols if col.name.startswith('pd')]  # not tested
['PD Notation', 'PD Notation (vector)', 'PD Notation (KnotTheory)']
```

create_filecache(`force=False`)

Create the internal files containing the database.

INPUT:

- `force` – optional boolean. If set to True the existing file-cache is overwritten

EXAMPLES:

```python
```
Databases, Release 10.1

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.create_filecache()  # optional - database_knotinfo
```

demo_version()
Return whether the KnotInfo databases are installed completely or just the demo version is used.

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.demo_version()  # optional - database_knotinfo
False
```

filename
alias of KnotInfoFilename

knot_list()
Return the KnotInfo table rows as Python list.

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: len(ki_db.knot_list())  # not tested (just used on installation)
```

link_list()
Return the LinkInfo table rows as Python list.

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: len(ki_db.link_list())  # not tested (just used on installation)
```

read(column)
Access a column of KnotInfo / LinkInfo

INPUT:

- `column` – instance of enum KnotInfoColumns
to select the data to be read in

OUTPUT:

A python list containing the data corresponding to the column.

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
```

read_column_dict()
Read the dictionary for the column names from the according sobj-file

OUTPUT:

A python dictionary containing the column names and types
EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
```

```
sage: len(ki_db.read_column_dict()) > 120  # optional - database_knotinfo
True
```

read_num_knots()

Read the number of knots contained in the database (without proper links) from the according sobj-file.

OUTPUT:

Integer

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
```

```
sage: ki_db.read_num_knots()  # optional - database_knotinfo
2978
```

read_row_dict()

Read the dictionary for the row names that is the knot and link names from the according sobj-file

OUTPUT:

A python dictionary containing the names of the knots and links together with their table index and the corresponding number of components

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
```

```
sage: ki_db.read_row_dict()['K7_1']
[8, 1]
```

row_names()

Return a dictionary to obtain the original name to a row_dict key

OUTPUT:

A python dictionary containing the names of the knots and links together with their original names from the database,

EXAMPLES:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
```

```
sage: ki_db.row_names()['K7_1']  # optional - database_knotinfo
'7_1'
```

version()

Return the version of the database currently installed on the device.

Note: The development of the original databases on the KnotInfo and LinkInfo web-pages is in a continuous flow. The installed version can be behind the current available state of these databases. Every month a cronjob on the GitHub repository searches for differences and creates a new release on PyPI in case of success.
If you note that your version is behind the version on PyPI and would like to have Sage working with that release you should first try to upgrade using `sage -i database_knotinfo`. If this is not successful even though you are on the latest Sage release please create an issue for that in the GitHub repository.

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.version() >= '2021.10.1'  # optional database_knotinfo
True
```

```python
class sage.databases.knotinfo_db.KnotInfoFilename(value)

Enum for the different data files. The following choices are possible:

- `knots` – contains the data from KnotInfo
- `links` – contains the data for proper links from LinkInfo

Examples:
```
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename
<enum 'KnotInfoFilename'>
```

csv()

Return the file name under which the data from the web-page are stored as csv file.

Examples:
```
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.csv()
'knotinfo_data_complete.csv'
```

description_url(column)

Return the url of the description page of the given column.

Examples:
```
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.description_url(ki_db.columns().braid_notation)
'https://knotinfo.math.indiana.edu/descriptions/braid_notation.html'
```

diagram_url(fname, single=False)

Return the url of the diagram page of the given link.

Examples:
```
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.diagram_url('3_1-50.png')
'https://knotinfo.math.indiana.edu/diagram_display.php?3_1-50.png'
```

(continues on next page)
Databases, Release 10.1

(continued from previous page)

```python
sage: ki_db.filename.knots.diagram_url('3_1', single=True)
'https://knotinfo.math.indiana.edu/diagrams/3_1'
```

```
excel()

Return the Excel-file name to download the data from the web-page.

Examples:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.excel()
'knotinfo_data_complete.xls'
```

```
knots = ['https://knotinfo.math.indiana.edu/', 'knotinfo_data_complete']
links = ['https://linkinfo.sitehost.iu.edu/', 'linkinfo_data_complete']

num_knots(version)

Return the file name under which the number of knots is stored in an sobj-file.

Examples:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.num_knots('21.7')
'num_knots_21.7.sobj'
```

```
sobj_column()

Return the file name under which the column-data of the csv-File is stored as python dictionary in a sobj-file.

Examples:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.sobj_column()
'column_dict.sobj'
```

```
sobj_data(column)

Return the file name under which the data of the given column is stored as python list in a sobj-file.

Examples:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.sobj_data(ki_db.columns().braid_notation)
'knotinfo_braid_notation'
```

```
sobj_row()

Return the file name under which the row-data of the csv-File is stored as python dictionary in a sobj-file.

Examples:

```python
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.sobj_row()
'row_dict.sobj'
```
url()

Return the URL to download the data from the web-page.

Examples:

```
sage: from sage.databases.knotinfo_db import KnotInfoDataBase
sage: ki_db = KnotInfoDataBase()
sage: ki_db.filename.knots.url()
'https://knotinfo.math.indiana.edu/
```

class sage.databases.knotinfo_db.dc(value)

Bases: KnotInfoColumns

An enumeration.

alexander_polynomial = ['Alexander', <KnotInfoColumnType.OnlyKnots: 'K'>]
alternating = ['Alternating', <KnotInfoColumnType.KnotsAndLinks: 'B'>]
arc_notation = ['Arc Notation', <KnotInfoColumnType.OnlyLinks: 'L'>]
braid_index = ['Braid Index', <KnotInfoColumnType.OnlyKnots: 'K'>]
braid_length = ['Braid Length', <KnotInfoColumnType.OnlyKnots: 'K'>]
braid_notation = ['Braid Notation', <KnotInfoColumnType.KnotsAndLinks: 'B'>]
braid_notation_old = ['Braid Notation', <KnotInfoColumnType.OnlyLinks: 'L'>]
conway_polynomial = ['Conway', <KnotInfoColumnType.KnotsAndLinks: 'B'>]
crossing_number = ['Crossing Number', <KnotInfoColumnType.KnotsAndLinks: 'B'>]
determinant = ['Determinant', <KnotInfoColumnType.KnotsAndLinks: 'B'>]
dt_code = ['DT code', <KnotInfoColumnType.OnlyLinks: 'L'>]
dt_notation = ['DT Notation', <KnotInfoColumnType.OnlyKnots: 'K'>]
fibered = ['Fibered', <KnotInfoColumnType.OnlyKnots: 'K'>]
gauss_notation = ['Gauss Notation', <KnotInfoColumnType.KnotsAndLinks: 'B'>]
homfly_polynomial = ['HOMFLY', <KnotInfoColumnType.OnlyKnots: 'K'>]
homflypt_polynomial = ['HOMFLYPT Polynomial', <KnotInfoColumnType.OnlyLinks: 'L'>]
jones_polynomial = ['Jones', <KnotInfoColumnType.KnotsAndLinks: 'B'>]
kauffman_polynomial = ['Kauffman', <KnotInfoColumnType.KnotsAndLinks: 'B'>]
khovanov_odd_integral_polynomial = ['KH Odd Red Z Poly', <KnotInfoColumnType.OnlyKnots: 'K'>]
khovanov_odd_mod2_polynomial = ['KH Red Odd Mod2 Poly', <KnotInfoColumnType.OnlyKnots: 'K'>]
khovanov_odd_rational_polynomial = ['KH Odd Red Q Poly', <KnotInfoColumnType.OnlyKnots: 'K']
``
khovanov_polynomial = ['Khovanov', <KnotInfoColumnTypes.KnotsAndLinks: 'B'>]

khovanov_reduced_integral_polynomial = ['KH Red Z Poly',
<KnotInfoColumnTypes.OnlyKnots: 'K'>]

khovanov_reduced_mod2_polynomial = ['KH Red Mod2 Poly',
<KnotInfoColumnTypes.OnlyKnots: 'K'>]

khovanov_reduced_rational_polynomial = ['KH Red Q Poly',
<KnotInfoColumnTypes.OnlyKnots: 'K'>]

khovanov_torsion_polynomial = ['Khovanov Torsion', <KnotInfoColumnTypes.OnlyKnots: 'K'>]

khovanov_unreduced_integral_polynomial = ['KH Unred Z Poly',
<KnotInfoColumnTypes.OnlyKnots: 'K'>]

name = ['Name', <KnotInfoColumnTypes.KnotsAndLinks: 'B'>]

name_unoriented = ['Name - Unoriented', <KnotInfoColumnTypes.OnlyLinks: 'L'>]

pd_notation = ['PD Notation',
<KnotInfoColumnTypes.OnlyKnots: 'K'>]

pd_notation_vector = ['PD Notation (vector)', <KnotInfoColumnTypes.OnlyLinks: 'L'>]

positive = ['Positive', <KnotInfoColumnTypes.OnlyKnots: 'K'>]

symmetry_type = ['Symmetry Type', <KnotInfoColumnTypes.OnlyKnots: 'K'>]

unoriented = ['Unoriented', <KnotInfoColumnTypes.OnlyLinks: 'L'>]

width = ['Width', <KnotInfoColumnTypes.OnlyKnots: 'K']]

This module contains the class `CubicHeckeDataBase` which serves as an interface to Ivan Marin’s data files with respect to the cubic Hecke algebras. The data is available via a Python wrapper as a pip installable package `database_cubic_hecke`. For installation hints please see the documentation there. All data needed for the cubic Hecke algebras on less than four strands is included in this module for demonstration purpose (see for example `read_basis()`, `read_irr()`, ... generated with the help of `create_demo_data()`).

In addition to Ivan Marin’s data the package contains a function `read_markov()` to obtain the coefficients of Markov traces on the cubic Hecke algebras. This data has been precomputed with the help of `create_markov_trace_data.py` in the `database_cubic_hecke` repository. Again, for less than four strands, this data is included here for demonstration purposes.

Furthermore, this module contains the class `CubicHeckeFileCache` that enables `CubicHeckeAlgebra` to keep intermediate results of calculations in the file system.

The enum `MarkovTraceModuleBasis` serves as basis for the submodule of linear forms on the cubic Hecke algebra on at most four strands satisfying the Markov trace condition for its cubic Hecke subalgebras.

AUTHORS:

- Sebastian Oehms (May 2020): initial version
- Sebastian Oehms (March 2022): PyPi version and Markov trace functionality

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeDataBase
sage: cha_db = CubicHeckeDataBase()
sage: cha_db._feature
Feature('database_cubic_hecke')
```

`demo_version()`

Return whether the cubic Hecke database is installed completely or just the demo version is used.

```python
demo_version()
```
read(section, variables=None, nstrands=4)

Access various static data libraries.

INPUT:

- **section** – instance of enum `CubicHeckeDataSection` to select the data to be read in

OUTPUT:

A dictionary containing the data corresponding to the section.

EXAMPLES:

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeDataBase
sage: cha_db = CubicHeckeDataBase()
sage: basis = cha_db.read(cha_db.section.basis, nstrands=3)
sage: len(basis)
24
```

read_matrix_representation(representation_type, gen_ind, nstrands, ring_of_definition)

Return the matrix representations from the database.

INPUT:

- **representation_type** – an element of `RepresentationType` specifying the type of the representation

OUTPUT:

EXAMPLES:

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeDataBase
sage: CHA3 = algebras.CubicHecke(2)
sage: GER = CHA3.extension_ring(generic=True)
sage: cha_db = CHA3._database
sage: rt = CHA3.repr_type
sage: m1 = cha_db.read_matrix_representation(rt.SplitIrredMarin, 1, 3, GER)
sage: len(m1)
7
sage: GBR = CHA3.base_ring(generic=True)
sage: m1rl = cha_db.read_matrix_representation(rt.RegularLeft, 1, 3, GBR)
sage: m1rl[0].dimensions()
(24, 24)
```
```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeDataBase
sage: cha_db = CubicHeckeDataBase()
```

```python
sage: cha_db.version() > '2022.1.1'  # optional - database_cubic_hecke
True
```

class sage.databases.cubic_hecke_db.CubicHeckeDataSection(value)

Bases: Enum

Enum for the different sections of the database.

The following choices are possible:

- `basis` – list of basis elements
- `reg_left_reprs` – data for the left regular representation
- `reg_right_reprs` – data for the right regular representation
- `irr_reprs` – data for the split irreducible representations
- `markov_tr_cfs` – data for the coefficients of the formal Markov traces

EXAMPLES:

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeDataBase
sage: cha_db = CubicHeckeDataBase()
sage: cha_db.section
<enum 'CubicHeckeDataSection'>
```

```python
basis = 'basis'
markov_tr_cfs = 'markov_tr_cfs'
regular_left = 'regular_left'
regular_right = 'regular_right'
split_irred = 'split_irred'
```

class sage.databases.cubic_hecke_db.CubicHeckeFileCache(num_strands)

Bases: SageObject

A class to cache calculations of CubicHeckeAlgebra in the local file system.

`is_empty(section=None)`

Return True if the cache of the given section is empty.

INPUT:

- `section` – an element of `CubicHeckeFileCache.section` to select the section of the file cache or
 `None` (default) meaning all sections

EXAMPLES:

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: cha2_fc = CubicHeckeFileCache(2)
sage: cha2_fc.reset_library()
sage: cha2_fc.is_empty()
True
```
read(section)

Read data into memory from the file system.

INPUT:

• section – an element of CubicHeckeFileCache.section specifying the section where the corresponding cached data belong to

OUTPUT:

Dictionary containing the data library corresponding to the section of file cache

EXAMPLES:

```
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: cha2_fc = CubicHeckeFileCache(2)
sage: cha2_fc.reset_library(cha2_fc.section.braid_images)
sage: cha2_fc.read(cha2_fc.section.braid_images)
{}
```

read_braid_image(braid_tietze, ring_of_definition)

Return the list of pre calculated braid images from file cache.

INPUT:

• braid_tietze – tuple representing the braid in Tietze form

• ring_of_definition – a CubicHeckeRingOfDefinition

OUTPUT:

A dictionary containing the pre calculated braid image of the given braid.

EXAMPLES:

```
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: CHA2 = algebras.CubicHecke(2)
sage: ring_of_definition = CHA2.base_ring(generic=True)
sage: cha_fc = CubicHeckeFileCache(2)
sage: B2 = BraidGroup(2)
sage: b, = B2.gens(); b2 = b**2
sage: cha_fc.is_empty(CubicHeckeFileCache.section.braid_images)
True
sage: b2_img = CHA2(b2); b2_img
w*c^-1 + u*c + (-v)
sage: cha_fc.write_braid_image(b2.Tietze(), b2_img.to_vector())
sage: cha_fc.read_braid_image(b2.Tietze(), ring_of_definition)
(-v, u, w)
```

read_matrix_representation(representation_type, monomial_tietze, ring_of_definition)

Return the matrix representations of the given monomial (in Tietze form) if it has been stored in the file cache before. INPUT:

• representation_type – an element of RepresentationType specifying the type of the representation

• monomial_tietze – tuple representing the braid in Tietze form

• ring_of_definition – instance of CubicHeckeRingOfDefinition respectively CubicHeckeExtensionRing depending on whether representation_type is split or not
OUTPUT:

Dictionary containing all matrix representations of self of the given representation_type which have been stored in the file cache. Otherwise None is returned.

EXAMPLES:

```sage
sage: CHA2 = algebras.CubicHecke(2)
sage: R = CHA2.base_ring(generic=True)
sage: cha_fc = CHA2._filecache
sage: g, = CHA2.gens(); gt = g.Tietze()
sage: rt = CHA2.repr_type
sage: g.matrix(representation_type=rt.RegularLeft)
[ 0 -v 1]
[ 1 u 0]
[ 0 w 0]
sage: [_] == cha_fc.read_matrix_representation(rt.RegularLeft, gt, R)
True
sage: cha_fc.reset_library(cha_fc.section.matrix_representations)
sage: cha_fc.write(cha_fc.section.matrix_representations)
sage: cha_fc.read_matrix_representation(rt.RegularLeft, gt, R) == None
True
```

reset_library(section=None)

Reset the file cache corresponding to the specified section.

INPUT:

- section – an element of *CubicHeckeFileCache.section* to select the section of the file cache or None (default) meaning all sections

EXAMPLES:

```sage
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: cha2_fc = CubicHeckeFileCache(2)
sage: cha2_fc.reset_library(cha2_fc.section.braid_images)
sage: cha2_fc.read(cha2_fc.section.braid_images)
{}
sage: cha2_fc.reset_library(cha2_fc.section.matrix_representations)
sage: data_mat = cha2_fc.read(cha2_fc.section.matrix_representations)
sage: len(data_mat.keys())
4
```

class section(value)

Bases: *Enum*

Enum for the different sections of file cache. The following choices are possible:

- **matrix_representations** – file cache for representation matrices of basis elements
- **braid_images** – file cache for images of braids
- **basis_extensions** – file cache for a dynamical growing basis used in the case of cubic Hecke algebras on more than 4 strands
- **markov_trace** – file cache for intermediate results of long calculations in order to recover the results already obtained by previous attempts of calculation until the corresponding intermediate step

EXAMPLES:
Databases, Release 10.1

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: CHA2 = algebras.CubicHecke(2)
sage: cha_fc = CubicHeckeFileCache(CHA2)
sage: cha_fc.section
<enum 'section'>
```

basis_extensions = 'basis_extensions'

braid_images = 'braid_images'

filename(nstrands=None)

Return the file name under which the data of this file cache section is stored as an sobj-file.

INPUT:

- `nstrands` – (optional) Integer; number of strands of the underlying braid group if the data file depends on it

EXAMPLES:

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: CHA2 = algebras.CubicHecke(2)
sage: cha_fc = CubicHeckeFileCache(CHA2)
sage: cha_fc.section.matrix_representations.filename(2)
'matrix_representations_2.sobj'
sage: cha_fc.section.braid_images.filename(2)
'braid_images_2.sobj'
```

markov_trace = 'markov_trace'

matrix_representations = 'matrix_representations'

update_basis_extensions(new_basis_extensions)

Update the file cache for basis extensions for cubic Hecke algebras on more than 4 strands according to the given `new_basis_extensions`.

INPUT:

- `new_basis_extensions` – list of additional (to the static basis) basis elements which should replace the former such list in the file

EXAMPLES:

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: CHA2 = algebras.CubicHecke(2)
sage: cha_fc = CubicHeckeFileCache(CHA2)
sage: cha_fc.is_empty(CubicHeckeFileCache.section.basis_extensions)
True
sage: cha_fc.update_basis_extensions([(1,), (-1,)])
True
sage: cha_fc.read(CubicHeckeFileCache.section.basis_extensions)
[(1,), (-1,)]
sage: cha_fc.reset_library(CubicHeckeFileCache.section.basis_extensions)
sage: cha_fc.write(CubicHeckeFileCache.section.basis_extensions)
sage: cha_fc.is_empty(CubicHeckeFileCache.section.basis_extensions)
True
```

write(section=None)

Write data from memory to the file system.
INPUT:

- **section** – an element of `CubicHeckeFileCache.section` specifying the section where the corresponding cached data belong to; if omitted, the data of all sections is written to the file system

EXAMPLES:

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: cha2_fc = CubicHeckeFileCache(2)
sage: cha2_fc.reset_library(cha2_fc.section.braid_images)
sage: cha2_fc.write(cha2_fc.section.braid_images)
```

write_braid_image(braid_tietze, braid_image_vect)

Write the braid image of the given braid to the file cache.

INPUT:

- **braid_tietze** – tuple representing the braid in Tietze form
- **braid_image_vect** – image of the given braid as a vector with respect to the basis of the cubic Hecke algebra

EXAMPLES:

```python
sage: from sage.databases.cubic_hecke_db import CubicHeckeFileCache
sage: CHA2 = algebras.CubicHecke(2)
sage: ring_of_definition = CHA2.base_ring(generic=True)
sage: cha_fc = CubicHeckeFileCache(2)
sage: B2 = BraidGroup(2)
sage: b, = B2.gens(); b3 = b**3
sage: b3_img = CHA2(b3); b3_img
u*w*c^-1 + (u^2-v)*c + (-u*v+w)
sage: cha_fc.write_braid_image(b3.Tietze(), b3_img.to_vector())
sage: cha_fc.read_braid_image(b3.Tietze(), ring_of_definition)
(-u*v + w, u^2 - v, u*w)
sage: cha_fc.reset_library(CubicHeckeFileCache.section.braid_images)
sage: cha_fc.write(CubicHeckeFileCache.section.braid_images)
sage: cha_fc.is_empty(CubicHeckeFileCache.section.braid_images)
True
```

write_matrix_representation(representation_type, monomial_tietze, matrix_list)

Write the matrix representation of a monomial to the file cache.

INPUT:

- **representation_type** – an element of `RepresentationType` specifying the type of the representation
- **monomial_tietze** – tuple representing the braid in Tietze form
- **matrix_list** – list of matrices corresponding to the irreducible representations

EXAMPLES:

```python
sage: CHA2 = algebras.CubicHecke(2)
sage: R = CHA2.base_ring(generic=True)
sage: cha_fc = CHA2._filecache
sage: g, = CHA2.gens(); gi = ~g; git = gi.Tietze()
sage: rt = CHA2.repr_type
(continues on next page)
```
class sage.databases.cubic_hecke_db.MarkovTraceModuleBasis(value)

Bases: Enum

Enum for the basis elements for the Markov trace module.

The choice of the basis elements doesn’t have a systematically background apart from generating the submodule of maximal rank in the module of linear forms on the cubic Hecke algebra for which the Markov trace condition with respect to its cubic Hecke subalgebras hold. The number of crossings in the corresponding links is chosen as minimal as possible.

EXAMPLES:

 sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
 sage: MarkovTraceModuleBasis.K92.description()
 'knot 9_34'

K4 = ['knot 4_1', 3, (1, -2, 1, -2), None]

K4U = ['knot 4_1 plus one unlink', 4, (1, -2, 1, -2), [[3, 8, 4, 9], [9, 7, 10, 6], [7, 4, 8, 5], [5, 11, 6, 10], [11, 1, 12, 2], [12, 1, 3, 2]]

K6 = ['knot 6_1', 4, (1, 1, 2, -1, -3, 2, -3), None]

K7 = ['knot 7_4', 4, (1, 1, 2, -1, 2, 3, -2, 3), None]

K91 = ['knot 9_29', 4, (1, -2, -2, 3, -2, 1, -2, 3, -2), None]

K92 = ['knot 9_34', 4, (-1, 2, -1, 2, -3, 2, -1, 2, -3), None]

U1 = ['one unlink', 1, (), []]

U2 = ['two unlinks', 2, (), [[3, 1, 4, 2], [4, 1, 3, 2]]]

U3 = ['three unlinks', 3, (), [[3, 7, 4, 8], [4, 7, 5, 8], [5, 1, 6, 2], [6, 1, 3, 2]]]

U4 = ['four unlinks', 4, (), [[3, 9, 4, 10], [4, 9, 5, 10], [5, 11, 6, 12], [6, 11, 7, 12], [7, 1, 8, 2], [8, 1, 3, 2]]]

braid_tietze(strands_embed=None)
 Return the Tietze representation of the braid corresponding to this basis element.

 INPUT:
• strands_embed – (optional) the number of strands of the braid if strands should be added

OUTPUT:
A tuple representing the braid in Tietze form.

EXAMPLES:

```
sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
sage: MarkovTraceModuleBasis.U2.braid_tietze()
()
sage: MarkovTraceModuleBasis.U2.braid_tietze(strands_embed=4)
(2, 3)
```

description()
Return a description of the link corresponding to this basis element.
In the case of knots it refers to the naming according to KnotInfo.

EXAMPLES:

```
sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
sage: MarkovTraceModuleBasis.U3.description()
'three unlinks'
```

link()
Return the Link that represents this basis element.

EXAMPLES:

```
sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
sage: MarkovTraceModuleBasis.U1.link()
Link with 1 component represented by 0 crossings
sage: MarkovTraceModuleBasis.K4.link()
Link with 1 component represented by 4 crossings
```

links_gould_polynomial()
Return the Links-Gould polynomial of the link that represents this basis element.

EXAMPLES:

```
sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
sage: MarkovTraceModuleBasis.U1.links_gould_polynomial()
1
sage: MarkovTraceModuleBasis.K4.links_gould_polynomial()
0
```

regular_homfly_polynomial()
Return the regular variant of the HOMFLY-PT polynomial of the link that represents this basis element.
This is the HOMFLY-PT polynomial renormalized by the writhe factor such that it is an invariant of regular isotopy.

EXAMPLES:
sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
sage: MarkovTraceModuleBasis.U1.regular_homfly_polynomial()
1
sage: u2 = MarkovTraceModuleBasis.U2.regular_homfly_polynomial(); u2
-L*M^-1 - L^-1*M^-1
sage: u2**2 == MarkovTraceModuleBasis.U3.regular_homfly_polynomial()
True
sage: u2**3 == MarkovTraceModuleBasis.U4.regular_homfly_polynomial()
True

regular_kauffman_polynomial()
Return the regular variant of the Kauffman polynomial of the link that represents this basis element.
This is the Kauffman polynomial renormalized by the writhe factor such that it is an invariant of regular isotopy.

EXAMPLES:

sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
sage: MarkovTraceModuleBasis.U1.regular_homfly_polynomial()
1
sage: u2 = MarkovTraceModuleBasis.U2.regular_kauffman_polynomial(); u2
a*z^-1 - 1 + a^-1*z^-1
sage: u2**2 == MarkovTraceModuleBasis.U3.regular_kauffman_polynomial()
True
sage: u2**3 == MarkovTraceModuleBasis.U4.regular_kauffman_polynomial()
True

strands()
Return the number of strands of the minimal braid representative of the link corresponding to self.

EXAMPLES:

sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
sage: MarkovTraceModuleBasis.K7.strands()
4

writhe()
Return the writhe of the link corresponding to this basis element.

EXAMPLES:

sage: from sage.databases.cubic_hecke_db import MarkovTraceModuleBasis
sage: MarkovTraceModuleBasis.K4.writhe()
0
sage: MarkovTraceModuleBasis.K6.writhe()
1

sage.databases.cubic_hecke_db.create_demo_data(filename='demo_data.py')
Generate code for the functions inserted below to access the small cases of less than 4 strands as demonstration cases.
The code is written to a file with the given name from where it can be copied into this source file (in case a change is needed).

EXAMPLES:
sage: from sage.databases.cubic_hecke_db import create_demo_data
sage: create_demo_data() # not tested

sage.databases.cubic_hecke_db.read_basis(num_strands=3)
Return precomputed data of Ivan Marin.
This code was generated by create_demo_data(), please do not edit.

INPUT:
• num_strands – integer; number of strands of the cubic Hecke algebra

EXAMPLES:

sage: from sage.databases.cubic_hecke_db import read_basis
sage: read_basis(2)
[[], [1], [-1]]

sage.databases.cubic_hecke_db.read_irr(variables, num_strands=3)
Return precomputed data of Ivan Marin.
This code was generated by create_demo_data(), please do not edit.

INPUT:
• variables – tuple containing the indeterminates of the representation
• num_strands – integer; number of strands of the cubic Hecke algebra

EXAMPLES:

sage: from sage.databases.cubic_hecke_db import read_irr
sage: L.<a, b, c, j> = LaurentPolynomialRing(ZZ)
sage: read_irr((a, b, c, j), 2)
([1, 1, 1],
[[{(0, 0): a}], [{(0, 0): c}], [{(0, 0): b}]],
[[{(0, 0): a^-1}], [{(0, 0): c^-1}], [{(0, 0): b^-1}]])

sage.databases.cubic_hecke_db.read_markov(bas_ele, variables, num_strands=4)
Return precomputed Markov trace coefficients.
This code was generated by create_markov_trace_data.py (from the database_cubic_hecke repository), please do not edit.

INPUT:
• bas_ele – an element of MarkovTraceModuleBasis
• variables – tuple consisting of the variables used in the coefficients
• num_strands – integer (default: 4); the number of strands

OUTPUT:
A list of the coefficients. The i’th member corresponds to the i’th basis element.

EXAMPLES:

sage: from sage.databases.cubic_hecke_db import read_markov
sage: from sympy import var
sage: u, v, w, s = var('u, v, w, s')

(continues on next page)
sage: variables = (u, v, w, s)
sage: read_markov('U2', variables, num_strands=3)
[0, s, 1/s, s, 1/s, 0, 0, 0, 0, -s*v, s, s, -s*u/w, -v/s, 1/s, 0, 0, 0, 1/s, -u/(s*w), -v/s, 0, 0]

sage.databases.cubic_hecke_db.read_regl(variables, num_strands=3)
Return precomputed data of Ivan Marin.
This code was generated by create_demo_data(), please do not edit.

INPUT:
• variables – tuple containing the indeterminates of the representation
• num_strands – integer; number of strands of the cubic Hecke algebra

EXAMPLES:
sage: from sage.databases.cubic_hecke_db import read_regl
sage: L.<u, v, w> = LaurentPolynomialRing(ZZ)

.linalg: read_regl((u, v, w), 2)
([3],
[[[(0, 1): -v, (0, 2): 1, (1, 0): 1, (1, 1): u, (2, 1): w]]],
[[[(0, 1): 1, (0, 2): -u*w^-1, (1, 2): w^-1, (2, 0): 1, (2, 2): v*w^-1]]])

sage.databases.cubic_hecke_db.read_regr(variables, num_strands=3)
Return precomputed data of Ivan Marin.
This code was generated by create_demo_data(), please do not edit.

INPUT:
• variables – tuple containing the indeterminates of the representation
• num_strands – integer; number of strands of the cubic Hecke algebra

EXAMPLES:
sage: from sage.databases.cubic_hecke_db import read_regre
sage: L.<u, v, w> = LaurentPolynomialRing(ZZ)
sage: read_regre((u, v, w), 2)
([3],
[[[(0, 1): -v, (0, 2): 1, (1, 0): 1, (1, 1): u, (2, 1): w]]],
[[[(0, 1): 1, (0, 2): -u*w^-1, (1, 2): w^-1, (2, 0): 1, (2, 2): v*w^-1]]])

sage.databases.cubic_hecke_db.simplify(mat)
Convert a matrix to a dictionary consisting of flat Python objects.

INPUT:
• mat – matrix to be converted into a dict

OUTPUT:
A dict from which mat can be reconstructed via element construction. The values of the dictionary may be dictionaries of tuples of integers or strings.

EXAMPLES:
sage: from sage.databases.cubic_hecke_db import simplify
sage: import sage.algebras.hecke_algebras.cubic_hecke_base_ring as chbr
sage: ER.<a, b, c> = chbr.CubicHeckeExtensionRing()
sage: mat = matrix(ER, [[2*a, -3], [c, 4*b^c-1]]); mat
[2*a -3]
[c 4*b*c^-1]
sage: simplify(mat)
{(0, 0): {(1, 0, 0): {0: 2}},
 (0, 1): {(0, 0, 0): {0: -3}},
 (1, 0): {(0, 0, 1): {0: 1}},
 (1, 1): {(0, 1, -1): {0: 4}}}
sage: mat == matrix(ER, _)
True
sage: F = ER.fraction_field()
sage: matf = mat.change_ring(F)
sage: simplify(matf)
{(0, 0): '2*a', (0, 1): '-3', (1, 0): 'c', (1, 1): '4*b/c'}
sage: matf == matrix(F, _)
True
CHAPTER
FIFTEEN

INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.databases.conway, 79
sage.databases.cremona, 3
sage.databases.cubic_hecke_db, 101
sage.databases.cunningham_tables, 85
sage.databases.db_class_polynomials, 87
sage.databases.db_modular_polynomials, 89
sage.databases.findstat, 49
sage.databases.jones, 21
sage.databases.knotinfo_db, 91
sage.databases.odlyzko, 81
sage.databases.oeis, 25
sage.databases.sloane, 45
sage.databases.stein_watkins, 17
sage.databases.symbolic_data, 83
INDEX

Symbols

__call__() (sage.databases.oeis.OEISSequence method), 32
alexander_polynomial
 (sage.databases.knotinfo_db.dc attribute), 98
allbsd() (sage.databases.cremona.LargeCremonaDatabase method), 4
allcurves() (sage.databases.cremona.MiniCremonaDatabase method), 5
allgens() (sage.databases.cremona.LargeCremonaDatabase method), 4
alternating (sage.databases.knotinfo_db.dc attribute), 98
arc_notation (sage.databases.knotinfo_db.dc attribute), 98
AtkinClassPolynomialDatabase (class in sage.databases.db_class_polynomials), 87
AtkinModularCorrespondenceDatabase (class in sage.databases.db_modular_polynomials), 89
AtkinModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 89
author() (sage.databases.oeis.OEISSequence method), 33
build() (in module sage.databases.cremona), 11
class_to_int() (in module sage.databases.cremona), 11
ClassicalModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 89
ClassPolynomialDatabase (class in sage.databases.db_class_polynomials), 89
codomain() (sage.databases.findstat.FindStatStatistic method), 72
codomain() (sage.databases.findstat.FindStatCompoundMap method), 61
codomain() (sage.databases.findstat.FindStatCompoundStatistic method), 62
codomain() (sage.databases.findstat.FindStatMap method), 67
codomain() (sage.databases.findstat.FindStatStatistic method), 62
codomain() (sage.databases.findstat.FindStatCompoundMap method), 61
codomain() (sage.databases.findstat.FindStatCompoundStatistic method), 62
codomain() (sage.databases.findstat.FindStatMap method), 67
codomain() (sage.databases.findstat.FindStatStatistic method), 72
coefficients_and_data() (sage.databases.cremona.MiniCremonaDatabase method), 5
column_name() (sage.databases.knotinfo_db.KnotInfoColumns method), 5
column_type() (sage.databases.knotinfo_db.KnotInfoColumns method), 5
columns() (sage.databases.knotinfo_db.KnotInfoDataBase method), 93
Databases, Release 10.1

comments() (sage.databases.oeis.OEISSequence method), 33
compound_map() (sage.databases.findstat.FindStatCompoundMap method), 62
crossing_number (sage.databases.knotinfo_db.dc attribute), 98
csv() (sage.databases.knotinfo_db.KnotInfoFilename method), 96
cremona_letter_code() (in module sage.databases.cremona), 12
cremona_to_lmfdb() (in module sage.databases.cremona), 12
CremonaDatabase() (in module sage.databases.cremona), 3
crossing_number (sage.databases.knotinfo_db.dc attribute), 98
dc (class in sage.databases.knotinfo_db), 98
CubicHeckeDataSection (class in sage.databases.cubic_hecke_db), 103
cunningham_prime_factors() (in module sage.databases.cunningham_tables), 85
curves() (sage.databases.cremona.MiniCremonaDatabase method), 6
data_from_coefficients() (sage.databases.cremona.MiniCremonaDatabase method), 6
dc (class in sage.databases.knotinfo_db), 98
DedekindEtaClassPolynomialDatabase (class in sage.databases.db_class_polynomials), 87
DedekindEtaModularCorrespondenceDatabase (class in sage.databases.db_modular_polynomials), 89
DedekindEtaModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 89
degphi() (sage.databases.cremona.LargeCremonaDatabase method), 4
degrees() (sage.databases.conway.ConwayPolynomials method), 79
dog() (sage.databases.stein_watkins.db, 19
dict() (sage.databases.oeis.OEISSequence method), 33
dict() (sage.databases.findstat.FindStatCompoundMap method), 62
dict() (sage.databases.findstat.FindStatCompoundStatistic method), 63
dict() (sage.databases.findstat.FindStatFunction method), 64
dict() (sage.databases.findstat.FindStatMap method), 67
dict() (sage.databases.findstat.FindStatStatistic method), 73
dict() (sage.databases.findstat.FindStatStatistics attribute), 60
dict() (sage.databases.findstat.FindStatCollections attribute), 59
dict() (sage.databases.findstat.FindStatMaps attribute), 69
dict() (sage.databases.findstat.FindStatStatistics attribute), 74
dict() (sage.databases.findstat.FindStatCollection method), 54
dict() (sage.databases.findstat.FindStatCollection method), 54
dict() (sage.databases.findstat.FindStatCollection method), 54
dict() (sage.databases.findstat.FindStatCollections attribute), 59
dict() (sage.databases.findstat.FindStatMaps attribute), 69
D

data_from_coefficients() (sage.databases.cremona.MiniCremonaDatabase method), 6
dc (class in sage.databases.knotinfo_db), 98
DedekindEtaClassPolynomialDatabase (class in sage.databases.db_class_polynomials), 87
DedekindEtaModularCorrespondenceDatabase (class in sage.databases.db_modular_polynomials), 89
DedekindEtaModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 89
degphi() (sage.databases.cremona.LargeCremonaDatabase method), 4
<table>
<thead>
<tr>
<th>Database Method</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>examples()</td>
<td>sage.databases.oeis.OEISSequence</td>
<td>34</td>
</tr>
<tr>
<td>excel()</td>
<td>sage.databases.knotinfo_db.KnotInfoFilename</td>
<td>97</td>
</tr>
<tr>
<td>extensions_or_errors()</td>
<td>sage.databases.oeis.OEISSequence</td>
<td>34</td>
</tr>
<tr>
<td>FancyTuple</td>
<td>sage.databases.oeis.OEISSequence</td>
<td>27</td>
</tr>
<tr>
<td>fibered</td>
<td>sage.databases.knotinfo_db.KnotInfoFilename</td>
<td>98</td>
</tr>
<tr>
<td>filename()</td>
<td>sage.databases.knotinfo_db.KnotInfoDatabase</td>
<td>94</td>
</tr>
<tr>
<td>find()</td>
<td>sage.databases.sloane.SloaneEncyclopediaClass</td>
<td>46</td>
</tr>
<tr>
<td>find_by_description()</td>
<td>sage.databases.oeis.OEIS</td>
<td>30</td>
</tr>
<tr>
<td>find_by_entry()</td>
<td>sage.databases.oeis.OEIS</td>
<td>30</td>
</tr>
<tr>
<td>find_by_id()</td>
<td>sage.databases.oeis.OEIS</td>
<td>31</td>
</tr>
<tr>
<td>find_by_subsequence()</td>
<td>sage.databases.oeis.OEIS</td>
<td>31</td>
</tr>
<tr>
<td>findmap()</td>
<td>in module sage.databases.findstat</td>
<td>74</td>
</tr>
<tr>
<td>FindStat</td>
<td>class in sage.databases.findstat</td>
<td>52</td>
</tr>
<tr>
<td>FindStatCollection</td>
<td>class in sage.databases.findstat</td>
<td>56</td>
</tr>
<tr>
<td>FindStatCollections</td>
<td>class in sage.databases.findstat</td>
<td>58</td>
</tr>
<tr>
<td>FindStatCombinatorialMap</td>
<td>class in sage.databases.findstat</td>
<td>59</td>
</tr>
<tr>
<td>FindStatCombinatorialStatistic</td>
<td>class in sage.databases.findstat</td>
<td>59</td>
</tr>
<tr>
<td>FindStatCompoundMap</td>
<td>class in sage.databases.findstat</td>
<td>61</td>
</tr>
<tr>
<td>FindStatCompoundStatistic</td>
<td>class in sage.databases.findstat</td>
<td>62</td>
</tr>
<tr>
<td>FindStatFunction</td>
<td>class in sage.databases.findstat</td>
<td>63</td>
</tr>
<tr>
<td>FindStatMap</td>
<td>class in sage.databases.findstat</td>
<td>67</td>
</tr>
<tr>
<td>FindStatMapQuery</td>
<td>class in sage.databases.findstat</td>
<td>68</td>
</tr>
<tr>
<td>FindStatMaps</td>
<td>class in sage.databases.findstat</td>
<td>69</td>
</tr>
<tr>
<td>FindStatMatchingMap</td>
<td>class in sage.databases.findstat</td>
<td>69</td>
</tr>
<tr>
<td>FindStatMatchingStatistic</td>
<td>class in sage.databases.findstat</td>
<td>70</td>
</tr>
<tr>
<td>FindStatStatistic</td>
<td>class in sage.databases.findstat</td>
<td>72</td>
</tr>
<tr>
<td>FindStatStatisticQuery</td>
<td>class in sage.databases.findstat</td>
<td>74</td>
</tr>
<tr>
<td>FindStatStatistics</td>
<td>class in sage.databases.findstat</td>
<td>74</td>
</tr>
<tr>
<td>first_terms()</td>
<td>sage.databases.findstat.FindStatCollection</td>
<td>55</td>
</tr>
<tr>
<td>first_terms()</td>
<td>sage.databases.findstat.FindStatCombinatorialStatistic</td>
<td>59</td>
</tr>
<tr>
<td>first_terms()</td>
<td>sage.databases.findstat.FindStatStatisticQuery</td>
<td>74</td>
</tr>
<tr>
<td>first_terms_str()</td>
<td>sage.databases.findstat.FindStatCombinatorialStatistic</td>
<td>59</td>
</tr>
<tr>
<td>formulas()</td>
<td>sage.databases.oeis.OEISSequence</td>
<td>35</td>
</tr>
<tr>
<td>from_string()</td>
<td>sage.databases.findstat.FindStatCollection</td>
<td>55</td>
</tr>
<tr>
<td>gauss_notation</td>
<td>sage.databases.knotinfo_db.KnotInfoFilename</td>
<td>98</td>
</tr>
<tr>
<td>generating_functions()</td>
<td>sage.databases.findstat.FindStatCombinatorialStatistic</td>
<td>98</td>
</tr>
<tr>
<td>get()</td>
<td>sage.databases.jones.JonesDatabase</td>
<td>22</td>
</tr>
<tr>
<td>get_ideal()</td>
<td>sage.databases.symbolic_data.SymbolicData</td>
<td>84</td>
</tr>
<tr>
<td>has_polynomial()</td>
<td>sage.databases.conway.ConwayPolynomials</td>
<td>79</td>
</tr>
<tr>
<td>HilbertClassPolynomialDatabase</td>
<td>class in sage.databases.db_class_polynomials</td>
<td>87</td>
</tr>
<tr>
<td>homfly_polynomial</td>
<td>sage.databases.knotinfo_db.KnotInfoFilename</td>
<td>98</td>
</tr>
<tr>
<td>homflypt_polynomial</td>
<td>sage.databases.knotinfo_db.KnotInfoFilename</td>
<td>98</td>
</tr>
<tr>
<td>id()</td>
<td>sage.databases.findstat.FindStatCollection</td>
<td>56</td>
</tr>
<tr>
<td>id()</td>
<td>sage.databases.findstat.FindStatFunction</td>
<td>64</td>
</tr>
<tr>
<td>id()</td>
<td>sage.databases.oeis.OEISSequence</td>
<td>35</td>
</tr>
<tr>
<td>id_str()</td>
<td>sage.databases.findstat.FindStatCollection</td>
<td>56</td>
</tr>
<tr>
<td>id_str()</td>
<td>sage.databases.findstat.FindStatCompoundMap</td>
<td>61</td>
</tr>
<tr>
<td>id_str()</td>
<td>sage.databases.findstat.FindStatCompoundStatistic</td>
<td>63</td>
</tr>
<tr>
<td>id_str()</td>
<td>sage.databases.findstat.FindStatFunction</td>
<td>64</td>
</tr>
<tr>
<td>in_range()</td>
<td>sage.databases.findstat.FindStatCollection</td>
<td>56</td>
</tr>
</tbody>
</table>
Databases, Release 10.1

info() (sage.databases.findstat.FindStatCompoundMap
method), 62
info() (sage.databases.findstat.FindStatCompoundStatistics
method), 63
info() (sage.databases.findstat.FindStatMap
method), 67
info() (sage.databases.findstat.FindStatMatchingMap
method), 70
info() (sage.databases.findstat.FindStatMatchingStatistic
method), 71
info() (sage.databases.findstat.FindStatStatistic
method), 73
install() (sage.databases.sloane.SloaneEncyclopediaClass
method), 46
install_from_gz() (sage.databases.sloane.SloaneEncyclopediaClass
method), 46
is_dead() (sage.databases.oeis.OEISSequence
method), 36
is_element() (sage.databases.findstat.FindStatCollection
method), 57
is_empty() (sage.databases.cubic_hecke_db.CubicHeckeFileCache
method), 103
is_finite() (sage.databases.oeis.OEISSequence
method), 36
is_full() (sage.databases.oeis.OEISSequence
method), 37
is_optimal_id() (in module sage.databases.cremona),
13
is_supported() (sage.databases.findstat.FindStatCollection
method), 57
isogeny_class() (sage.databases.cremona.MiniCremona
method), 8
isogeny_classes() (sage.databases.cremona.MiniCremonaDatabase
method), 8
iter() (sage.databases.cremona.MiniCremonaDatabase
method), 8
iter_levels() (sage.databases.stein_watkins.SteinWatkinsAllData
method), 18
iter_optimal() (sage.databases.cremona.MiniCremona
method), 9
J
jones_polynomial (sage.databases.knotinfo_db.dc
attribute), 98
JonesDatabase (class in sage.databases.jones), 22
K
K4 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
K4U (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
K6 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
K7 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
K91 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
K92 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
kauffman_polynomial (sage.databases.knotinfo_db.dc
attribute), 98
keywords() (sage.databases.oeis.OEISSequence
method), 37
khovanov_odd_integral_polynomial
(sage.databases.knotinfo_db.dc
attribute), 98
khovanov_odd_mod2_polynomial
(sage.databases.knotinfo_db.dc
attribute), 98
khovanov_odd_rational_polynomial
(sage.databases.knotinfo_db.dc
attribute), 99
khovanov_reduced_integral_polynomial
(sage.databases.knotinfo_db.dc
attribute), 99
khovanov_reduced_mod2_polynomial
(sage.databases.knotinfo_db.dc
attribute), 99
khovanov_reduced_rational_polynomial
(sage.databases.knotinfo_db.dc
attribute), 99
khovanov_torsion_polynomial
(sage.databases.knotinfo_db.dc
attribute), 99
khovanov_unreduced_integral_polynomial
(sage.databases.knotinfo_db.dc
attribute), 99
KnotInfoColumns (class in
sage.databases.knotinfo_db), 91
KnotInfoColumnTypes (class in
sage.databases.knotinfo_db), 91
KnotInfoDataBase (class in
sage.databases.knotinfo_db), 93
KnotInfoFilename (class in
sage.databases.knotinfo_db), 96
knots (sage.databases.knotinfo_db.KnotInfoDataBase
attribute), 97
KnotsAndLinks (sage.databases.knotinfo_db.KnotInfoColumnTypes
attribute), 91
LargeCremonaDatabase (class in
sage.databases.cremona), 3
largest_conductor() (sage.databases.cremona.MiniCremonaDatabase method), 9

levels_with_sizes() (sage.databases.findstat.FindStatCollection method), 57

link() (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis method), 109

link_list() (sage.databases.knotinfo_db.KnotInfoDataBase method), 94

links (sage.databases.knotinfo_db.KnotInfoFilename attribute), 97

links() (sage.databases.oeis.OEISSequence method), 37

links_gould_polynomial() (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis method), 109

list() (sage.databases.cremona.MiniCremonaDatabase method), 9

list_optimal() (sage.databases.cremona.MiniCremonaDatabase method), 10

lmfdb_to_cremona() (in module sage.databases.cremona), 13

load() (sage.databases.sloane.SloaneEncyclopediaClass method), 46

login() (sage.databases.findstat.FindStat method), 52

MiniCremonaDatabase (class in sage.databases.cremona), 5

model (sage.databases.db_modular_polynomials.DedekindEtaCorrespondenceDatabase attribute), 89

model (sage.databases.db_modular_polynomials.DedekindEtaPolynomialDatabase attribute), 89

ModularCorrespondenceDatabase (class in sage.databases.db_modular_polynomials), 89

ModularPolynomialDatabase (class in sage.databases.db_modular_polynomials), 89

Index 123
sage.databases.db_class_polynomials
module, 87
sage.databases.db_modular_polynomials
module, 89
sage.databases.findstat
module, 49
sage.databases.jones
module, 21
sage.databases.knotinfo_db
module, 91
sage.databases.odlyzko
module, 81
sage.databases.oeis
module, 25
sage.databases.sloane
module, 45
sage.databases.stein_watkins
module, 17
sage.databases.symbolic_data
module, 83
sage_code() (sage.databases.findstat.FindStatFunction
method), 65
section(sage.databases.cubic_hecke_db.CubicHeckeDataBase
attribute), 102
sequence_name() (sage.databases.sloane.SloaneEncyclopediaClass
method), 46
set_code() (sage.databases.findstat.FindStatStatistic
method), 73
set_description() (sage.databases.findstat.FindStatFunction
method), 66
set_first_terms() (sage.databases.findstat.FindStatStatistic
method), 73
set_name() (sage.databases.findstat.FindStatMap
method), 68
set_properties_raw()
(sage.databases.findstat.FindStatMap method), 68
set_references_raw()
(sage.databases.findstat.FindStatFunction
method), 66
set_sage_code() (sage.databases.findstat.FindStatFunction
method), 66
set_user() (sage.databases.findstat.FindStatFunction
method), 53
show() (sage.databases.oeis.OEISSequence method), 42
simplify()
(sage.databases.cubic_hecke_db), 112
SloaneEncyclopediaClass (class in
sage.databases.sloane), 46
smallest_conductor()
(sage.databases.cremona.MiniCremonaDatabase
method), 11
sobj_column() (sage.databases.knotinfo_db.KnotInfoFilename
method), 97
sobj_data() (sage.databases.knotinfo_db.KnotInfoFilename
method), 97
sobj_row() (sage.databases.knotinfo_db.KnotInfoFilename
method), 97
sort_key() (in module sage.databases.cremona), 16
sortkey() (in module sage.databases.jones), 23
split_code() (in module sage.databases.cremona), 16
split_irred(sage.databases.cubic_hecke_db.CubicHeckeDataSection
attribute), 103
statistic() (sage.databases.findstat.FindStatCompoundStatistic
method), 63
SteinWatkinsAllData (class in
sage.databases.stein_watkins), 18
SteinWatkinsIsogenyClass (class in
sage.databases.stein_watkins), 19
SteinWatkinsPrimeData (class in
sage.databases.stein_watkins), 19
strands() (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
method), 110
submit() (sage.databases.findstat.FindStatMap
method), 68
submit() (sage.databases.findstat.FindStatStatistic
method), 73
SymbolicData (class in sage.databases.symbolic_data),
symmetry_type (sage.databases.knotinfo_db.dc attribute), 99
test_compile_sage_code()
(sage.databases.oeis.OEISSequence method), 42
to_string() (sage.databases.findstat.FindStatCollection
method), 42
to_tuple() (in module sage.databases.oeis), 43
types (sage.databases.knotinfo_db.KnotInfoColumns
property), 93
U
U1 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
U2 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
U3 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
U4 (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
attribute), 108
unload() (sage.databases.sloane.SloaneEncyclopediaClass
method), 47
unoriented (sage.databases.knotinfo_db.dc attribute), 99
unramified_outside() (sage.databases.jones.JonesDatabase method), 23
update_basis_extensions()
(sage.databases.cubic_hecke_db.CubicHeckeFileCache
method), 106

url()
(sage.databases.knotinfo_db.KnotInfoFilename
method), 97

url() (sage.databases.oeis.OEISSequence method), 43

user_email()
(sage.databases.findstat.FindStat
method), 53

user_name() (sage.databases.findstat.FindStat method),
53

V

version() (sage.databases.cubic_hecke_db.CubicHeckeDataBase
method), 102

version() (sage.databases.knotinfo_db.KnotInfoDataBase
method), 95

W

WeberClassPolynomialDatabase (class in
sage.databases.db_class_polynomials), 87

width (sage.databases.knotinfo_db.dc attribute), 99

write()
(sage.databases.cubic_hecke_db.CubicHeckeFileCache
method), 106

write_braid_image()
(sage.databases.cubic_hecke_db.CubicHeckeFileCache
method), 107

write_matrix_representation()
(sage.databases.cubic_hecke_db.CubicHeckeFileCache
method), 107

write() (sage.databases.cubic_hecke_db.MarkovTraceModuleBasis
method), 110

Z

zeta_zeros() (in module sage.databases.odlyzko), 81